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Preface

The theory of branching processes is an area of mathematics that describes situa-
tions in which an entity exists for a time and then may be replaced by one, two, or
more entities of a similar or different type. It is a well-developed and active area
of research with theoretical interests and practical applications.

The theory of branching processes has made important contributions to biol-
ogy and medicine since Francis Galton considered the extinction of names among
the British peerage in the nineteenth century. More recently, branching processes
have been successfully used to illuminate problems in the areas of molecular
biology, cell biology, developmental biology, immunology, evolution, ecology,
medicine, and others. For the experimentalist and clinician, branching processes
have helped in the understanding of observations that seem counterintuitive, have
helped develop new experiments and clinical protocols, and have provided pre-
dictions which have been tested in real-life situations. For the mathematician, the
challenge of understanding new biological and clinical observations has motivated
the development of new mathematics in the field of branching processes.

The authors of this monograph are a mathematician and a cell biologist who
have collaborated on investigations in the field of branching processes for more
than a decade. In this monograph, we have collected examples of applications of
branching processes from our own publications and from publications of many
other investigators. Each example is discussed in the context of the relevant math-
ematics. We have made an effort to collect and review much of the published
literature which has applied branching processes to problems in molecular and
cellular biology, as well as selected examples from the fields of human evolution
and medicine.

The intended audiences for this monograph are mathematicians and statisticians
who have had an introduction to stochastic processes but have forgotten much of
their college biology, and biologists who wish to collaborate with mathematicians
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and statisticians. Both audiences will find many examples of successful appli-
cations of branching processes to biological and medical problems. As an aid to
understand the specific examples, we have provided two introductory chapters, one
with background material in mathematics and the other with background material
in biology, as well as two glossaries. As a didactic aid we have included problem
sets at the end of Chapters 3, 4, and 5.

The book is organized as follows: Chapter 1 provides a mathematical back-
ground and motivating examples of branching processes. Chapter 2 provides an
introduction to biological terms and concepts. The subsequent chapters are di-
vided into specific areas of branching processes. Each of these chapters develops
the appropriate mathematics and discusses several applications from the published
literature. Chapter 3 discusses the Galton–Watson process, the oldest, simplest and
best known branching process. Chapter 4 discusses the age-dependent process –
Markov case, the time-continuous branching process with exponential lifetime
distributions. Chapter 5 discusses the Bellman–Harris process, an age-dependent
process. Chapter 6 gives a more systematic treatment of multitype processes, in
which progeny may be of many types. Chapter 7 discusses branching processes
with infinitely many types, stressing interesting properties which are different from
the finite multitype situation. Appendices provide information on probability gen-
erating functions, construction of the probability space for the Bellman–Harris
process, as well as a brief introduction to the Jagers–Crump–Mode process (the
general branching process).

We have made an effort to broadly review the published literature on branching
processes applied to biology. However, we had to select specific examples and we
wish to apologize to our colleagues whose work has not been cited. We welcome
comments from colleagues and students who are interested the field of branching
processes.

A search of any university library or an Internet bookstore will reveal a number
of volumes devoted to branching processes. Among the most important, we cite
the fundamental books by Harris (1963) and by Athreya and Ney (1972). Multi-
type branching processes were first covered in the book by Mode (1971). General
branching processes, in a systematic way, were explored by Jagers (1975). Each of
these classics, particularly Jagers (1975), includes some biological applications.
An important book concerning estimation of branching processes is by Guttorp
(1991). The work by Asmussen and Herring (1983) involves a very mathematical
approach. In addition, there exist at least a dozen or two of collections of papers
and more specialized volumes. For example, Yakovlev and Yanev (1989) deal
with cell proliferation models, mainly using branching processes. Recently, Pakes
(2000) prepared a report on biological applications of branching processes, which
is wider in scope (it has much on spatial branching and ecology, for example),
but less detailed, although an area of overlap with our book exists. We believe
that the scope of the present volume is unique in that it illustrates a paradigm, in
which theoretical results are stimulated by biological applications and biological
processes are illuminated by mathematics.
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Guide to Applications, or
How to Read This Book

As mentioned in the Preface, the book is organized by different classes of branching
process, except for Chapter 1, providing general motivation and some mathematical
background, and Chapter 2, providing biological background. Two glossaries at
the end of the book give definitions of basic biological and mathematical terms
commonly used in the book.

The inner structure of the book is a network of interconnected biological appli-
cations which increase in detail when modeled by progressively more sophisticated
branching processes. The following list gives an overview of these applications:

• Cell cycle models

Simplest version with death and quiescence, Section 3.2
Two cell populations, Section 6.3
Unequal division and growth regulation, Section 7.7.1
Two types with growth regulation, Section 7.7

• Chemotherapy

Stathmokinetic experiment, Section 5.4
Cell-cycle-specific chemotherapy, Section 6.4

• Evolution theory

Complexity threshold in early life, Section 3.4
Galton–Watson branching process and macroevolution, Section 3.8.2
Age of mitochondrial Eve, Section 4.4
Yule’s model of speciation, Section 7.8

• Gene amplification

Galton–Watson branching process model, Section 3.6
Stable gene amplification, Section 7.1
Branching random-walk model, Section 7.4
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• Loss of telomere sequences, Section 7.2
• Molecule aggregation, Section 6.5
• Mutations

Dynamic genetic mutations, Section 3.7
Clonal resistance theory, Section 4.2
Fluctuation analysis, Section 6.1
Deletions in mitochondrial DNA, Section 6.7

• Polymerase chain reaction

Motivating example, Section 1.2
Genealogical analysis, Section 6.8



CHAPTER 1

Motivating Examples
and Other Preliminaries

The branching process is a system of particles (individuals, cells, molecules, etc.)
which live for a random time and, at some point during lifetime or at the moment
of death, produce a random number of progeny. Processes allowing production
of new individuals during a parent individual’s lifetime are called the general or
Jagers–Crump–Mode processes (Fig. 1.1, top). They are suitable for the descrip-
tion of populations of higher organisms, like vertebrates and plants. Processes that
assume the production of progeny at the terminal point of the parent entity’s life-
time are called the classical processes (Fig. 1.1, bottom). They are usually sufficient
for modeling populations of biological cells, genes, or biomolecules. In some pro-
cesses, like the time-continuous Markov process, the distinction is immaterial be-
cause one of the progeny of a particle may be considered an extension of the parent.

One of the important notions in the theory of branching processes is that of
the type space. The type space is the set, which can be finite, denumerable, or a
continuum, of all possible varieties of particles included in the process. Particles
of a given type may produce particles of different types. Restrictions on type
transitions, as well as on the type space, lead to differing properties of resulting
processes. The richness of these classifications is already apparent on the level of
denumerable type spaces.

1.1 Some Motivating Examples

One of the oldest branching processes ever considered was the process in which
“particles” were male individuals bearing noble English family names. An ancestor
in such a process initiated a pedigree which might inevitably become extinct if all
of the male descendants died without heirs. Is extinction of a noble family name
inevitable in the long run? How many generations will elapse before extinction
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FIGURE 1.1. General (top) and classical (bottom) branching processes. Black rectangles
depict individuals (objects, particles, etc.); horizontal lines depict lifetimes. Vertical lines
are added to link individuals to their parents. The length of the vertical lines is arbitrary.

occurs? These are typical questions asked about a process in which the number of
progeny of an individual may be equal to zero. Similar questions may be posed in a
situation when a mutant cell initiates a small colony of precursor cancer cells. How
likely are these colonies to die before they become numerous enough to overgrow
the surrounding normal type?
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A different type of question may be posed for processes in which the growth is
assured by a sufficiently high proliferation rate. Then, the interesting parameter is
the long-term growth rate and the size and composition of the population at a given
time. This is typical of laboratory populations of biological cells, cultured with
abundant nutrients and sufficient space. The same is true of prosperous individuals
settling a large territory with few obstacles to growth. An interesting example is
provided in the book by Demos (1982), in which it is stated that the average number
of progenies surviving to maturity among the British colonists in New England in
the seventeenth century was nine.

The patterns of branching may be quite complicated. An interesting example
was given in the book by Harris (1963). In the course of evolution, new species
are created by successful new varieties of organism which become reproductively
separated from their ancestral species. This is an ordinary branching process. How-
ever, from time to time, an event occurs which creates a species so novel that it has
to be considered an ancestor of a higher taxonomic unit than a species, a family.
Therefore, branching becomes hierarchical: small particles (species) proliferate
inside of large particles (families), which proliferate themselves, each started by a
founder species. At both levels, extinction may occur. A similar branching pattern
describes AIDS viruses proliferating in human T-lymphocyte cells. Divided lym-
phocytes inherit a portion of viruses present in the parent cell. If the number of
viruses in a cell exceed a threshold, the cell dies. In this example, the two levels of
branching compete with each other. Still another pattern is found in cancer cells
inside which multiple copies of a gene increase a cell’s resistance to treatment. If
there are not enough of these, the cell becomes sensitive and dies.

1.2 Application: Polymerase Chain Reaction and
Branching Processes

This section considers an important example of a branching process describing
one of the most important tools of molecular biology, polymerase chain reac-
tion (PCR). Following an introduction, we present a mathematical and simulation
model constructed by Weiss and von Haeseler (1997). Material of this section is
based on the Weiss and von Haeseler (1997) article, if not stated otherwise. Finally,
we describe an application of PCR in artificial evolution.

1.2.1 Introduction to the mechanics of PCR

The following introduction has been adapted from a thesis by Shaw (2000). The
PCR is an experimental system for producing large amounts of genetic material
from a small initial sample. The reaction performs repeated cycles of DNA replica-
tion in a test tube that contains free nucleotides, DNA replication enzymes, primers
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and template DNA molecules. The PCR amplification technique operates by har-
nessing the natural replication scheme of DNA molecules, even using a naturally
derived DNA polymerase protein. The result of the PCR is a vast amplification of
a particular DNA locus from a small initial number of molecules.

Another feature of the PCR process is the stochasticity of amplification. Ampli-
fication is random because not every existing molecule is successfully replicated
in every reaction cycle. Experimental evidence suggests that even the most highly
efficient reactions operate at an efficiency around 0.8; that is, each double-stranded
molecule produces an average of 0.8 new molecules in a given reaction cycle. The
randomness in PCR can be attributed to the multiple molecular events which must
occur in order to copy DNA.

The purpose of the PCR process is to produce clones (subpopulations with
common descent) from DNA molecules from the small initial sample. Under ideal
conditions, the molecules are identical in each clone, in the sense that the sequence
of nucleotides A, T, C, and G in each molecule is either identical or complementary
(A, T, C, and G replaced by T, A, G, and C, respectively) to the ancestral molecule
of the clone (molecules in the initial samples may not be identical).

However, random alterations of nucleotides in DNA sequences, known as muta-
tions, also occur during PCR amplification. In many PCR applications, mutations
which occur during PCR hinder analysis of the initial sample, such as in the foren-
sic setting. In other settings, however, PCR mutations are desirable, as is the case
in site-directed mutagenesis studies and artificial evolution experiments (Joyce
1992). In both situations, analysis of variants generated during PCR is required.
Interest focuses on the study of genetic diversity in a sample of molecules from the
final stage of a PCR experiment. The molecules sampled are potentially related as
descendants of a common ancestor molecule. The common ancestor of a family of
PCR products is an initial molecule present at the starting stage of the amplification.
The sampled molecules more commonly represent k samples of size 1 from distinct
ancestor particles. This situation arises because PCR is performed from a very large
number of initial molecules, usually more than many thousands. In either case, the
genealogical method may be used to analyze the diversity of a sample taking into
account the replication history and relatedness of the sampled molecules.

In order to assess the genealogy of the molecules in a sample, one must model the
PCR and the structure of DNA replication. As in natural systems, DNA replication
in the PCR is semiconservative, so that only one strand of each double-stranded
DNA molecule is newly manufactured in a single replication event. Replication
is semiconservative because each new single strand is built from a complemen-
tary antiparallel template strand during replication. Mutations can occur during
construction of the new strand, so that newly fabricated strands may not be fully
complementary to their templates. If a mutation occurs at some intermediate cycle
of the PCR, the mutation will be propagated by the amplification procedure into
all descendants of the mutant molecule. The goal is to study the sequence diversity
of DNA molecules resulting from mutations during amplification.
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1.2.2 Mathematical model

A model of PCR must include a model of the replication process and the mutation
process. We use the single-stranded model, which is a simplification, because
DNA is double-stranded [see a discussion in Shaw (2000)]. In the following, we
frequently use molecule as a synonym for single-stranded sequence containing the
subsequence of interest. Any other chemical molecules that are, in reality, present
in a PCR tube are not considered. The replication process of PCR is described
in terms of branching processes. The reaction proceeds through discrete cycles
involving thermal and chemical processes. In each cycle, each single-stranded
template should produce a copy. So, ideally, PCR is a binary fission process with
discrete time (a special case of a Galton–Watson process; see Chapter 3). We
assume that a PCR starts with S0 identical copies of single-stranded sequences.
Let Si be the number of sequences present after the ith cycle. In cycle i each of the
Si−1 template molecules is amplified independently of the others with probability
λi . The probability λi can also be viewed as the proportion of amplified molecules
in cycle i; hence, it is called the efficiency in cycle i. More precisely, the efficiency
does not simply depend on the cycle number, but on the number of amplifications
in the previous cycles and on PCR conditions.

If we assume that the random variable Si depends only on λi and Si−1, then the
sequence S0, S1, . . . , Si, . . . forms a nonhomogeneous binary fission. If λi � λ

independently of the cycle number, then the accumulation of PCR product is a
Galton–Watson branching process.

Because replication in PCR is not error-free, we add a mutation process to the
model: We assume that a new mutation occurs at a position that has not mutated in
any other sequence. Furthermore, we model the process of nucleotide substitution
as a Poisson process with parameter µ, where µ is the error rate (mutation rate) of
PCR per target sequence and per replication. This so-called infinitely many-sites
model (ISM) does not allow for parallel or back mutations. In the case of PCR,
this assumption seems reasonable because only a small number of mutations are
observed in practice.

1.2.3 Genealogical approach

Computer simulations of stochastic processes have become a powerful tool to ana-
lyze data in situations where analytical methods are not feasible. In the population
genetics literature, a prominent example is the coalescence process that describes
the ancestral relationship between a sample of individuals in a population as one
goes back in time (Tavaré 1984). Rather than trying to analyze the relations of
all individuals in a population, the coalescent describes the (unknown) genealogy
of a sample in terms of a stochastic process. If one starts with a sample of size
n and traces back the ancestral history of these n lineages, one can compute the
probability that at a time t , two lineages in the genealogy coalesce, that is, the
most recent common ancestor (mrca) of the corresponding individuals is found.
The probability depends on the sample size and the population trajectory. After a



6 1. Motivating Examples and Other Preliminaries

coalescent event occurs, the number of lineages is reduced by 1. The coalescent
process stops when the mrca of the whole sample is found. In the situation of a
stationary population of constant size, simple formulas are available that describe
branch lengths in a genealogy of a sample, total length of a genealogy, and so forth.
If one drops the assumption of constant size, it is more difficult to find analytical
solutions, whereas it is still possible to get instructive results using simulation
techniques.

The following simulation method to analyze PCR data bears similarity with
the coalescent approach (see Section 4.3 for a more mathematical treatment of
a similar process). In PCR, the offspring of the initial molecules are related by a
randomly growing tree. Instead of generating this tree independently for each initial
template, we adopt the following approach: For each initial molecule, the number
of molecules in the PCR product in each cycle (the size trajectory) is computed
(step 1 in the algorithm). Thereby, we distinguish two types of molecule: those
that are immediate copies from a molecule of a previous cycle (filled circles in
Fig. 1.2) and those that existed in the previous cycle (open circles in Fig. 1.2).
From all molecules at the end of the PCR, a random sample of n sequences is

FIGURE 1.2. Graphical illustration of a subsample genealogy according to the example con-
sidered. Filled circles represent molecules that were newly amplified in a cycle; open circles
represent molecules already present in the previous cycle. + indicates that the molecule is
in the sample; thick lines represent a replication in the genealogy. Source: Weiss, G. and
von Haeseler, A. 1997. A coalescent approach to the polymerase chain reaction. Nucleic
Acids Research 25: 3082–3087. Figure 1, page 3084. Copyright: 1997 Oxford University
Press.
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drawn. Then, we randomly assign to each of the sampled sequences one of the
initial molecules as ancestor (step 2) and regard the sets of sampled sequences that
are descendents of the same initial molecule as subsamples. In the next step (step
3), we trace back the genealogies of all subsamples, separately.

Figure 1.2 illustrates this process for one initial molecule (and one subsample).
In this example, we assume that a subsample of 6 sequences was drawn from a total
of 16 sequences. In order to generate the subsample genealogy, the special features
of PCR must be taken into account. A coalescent event (i.e., the merging of two
molecules while going from cycle 5 to cycle 4) is only possible if exactly one of
the two molecules is an immediate copy. Among the six sampled sequences, three
were copied during cycle 5. Hence, at most three coalescent events are possible,
and, in fact, one such event occurred. The coalescent process stops when only one
molecule is left. If only one molecule is present and the cycle number is not equal
to zero, then we have to determine how many replications took place from the
initial molecule to this molecule.

After all subsample genealogies are generated, they are combined to one single
genealogy (step 4). Finally, we superimpose a mutational process on the geneal-
ogy (step 5), where mutations are only allowed where replications took place in
the genealogy (thick lines in Fig. 1.2). Before we describe the simulation more
formally, we assign a number k, k � 1, . . . , S0, to each of the S0 initial molecules.

1.2.4 Statistical estimation of the mutation rate

Weiss and von Haeseler (1997) carried out the estimation of the mutation rate µ,
based on a published data set. They used a convenient measure of the diversity of
the sample, resulting from PCR errors (mutations), defined as the number Mn of
variable positions in a sample of size n (i.e., the number of the entries of the DNA
sequence at which two or more variants are observed in the sample). In genetic
literature, Mn is also known as the number of segregating sites.

Weiss and von Haeseler (1997) used the data of Saiki et al. (1988), who amplified
a 239-bp region (i.e., a DNA sequence 239 nucleotides long) of genomic DNA.
After C � 30 PCR cycles, M28 � 17 variable positions were observed when they
sequenced n � 28 different clones. Furthermore, the authors measured the extent
of amplification after 20, 25, and 30 cycles. They report an increase of 2.8 × 105,
4.5 × 106, and 8.9 × 106, respectively. This corresponds to an overall efficiency of
0.705 in 30 cycles. They also determined cycle-specific efficiencies from the data
using the following formula:

E(Si)

E(Si−j )
� (1 + λi)

j , i ≥ j.

From the reported increase after 20, 25, and 30 cycles, they computed

λi �

⎧⎪⎨⎪⎩
0.872, i � 1, . . . , 20

0.743, i � 21, . . . , 25

0.146, i � 26, . . . , 30.
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FIGURE 1.3. Example of simulated probability distributions Pr(Mn � m|µ) for 100
equidistant values of µ (S0 � 100). Source: Weiss, G. and von Haeseler, A. 1997. A coales-
cent approach to the polymerase chain reaction. Nucleic Acids Research 25: 3082–3087.
Figure 2, page 3084. Copyright: 1997 Oxford University Press.

These values for λi were used in the simulations. Because no information about the
number of initial molecules is given, the analysis was carried out for different S0

values (1, 10, 100, 1000). They generated probability distributions Pr(Mn � m|µ)
for 100 equidistant values of µ in the interval [0.019, 0.079]. The scale on the m

axis is limited to 30, because for the range of µ values considered, the likelihood
has very small values for m > 30. If one takes the observed number of variable
positions in the sample equal to 17 and cuts along this line through Figure 1.3,
one gets lik(µ|M28 � 17), the likelihood function of µ given M28 � 17. Figure
1.4 shows the likelihood functions for S0 � 1, 10, 100, and 1000. For each S0,
the position of the maximum of the likelihood function is the maximum likelihood
estimate of µ.

1.2.5 Mutagenic PCR and artificial evolution

As mentioned earlier, mutations in the PCR may be desirable. One such exam-
ple is provided by artificial evolution experiments, in which biomolecules, like
RNA enzymes (ribozymes), are subjected to alternating rounds of amplification
and mutation, and selection. In some classical experiments (Joyce 1992, Beaudry
and Joyce 1992), high functional specificity of the evolved product was achieved.
In these experiments, mutations provide the substrate for selection; therefore, un-
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FIGURE 1.4. Simulated likelihood functions lik(µ|M28 � 17) for a published data set. The
numbers in the graph represent the S0 values used. Source: Weiss, G. and von Haeseler, A.
1997. A coalescent approach to the polymerase chain reation. Nucleic Acids Research 25:
3082–3087. Figure 3, page 3086. Copyright: 1997 Oxford University Press.

derstanding the mutational process in these experiments is very important. As of
now, this remains an open problem.

1.3 The Branching Property

The branching property is a basic feature identifying processes studied in this
book. It is responsible for many properties of the branching processes, some of
them unexpected. The basic assumption involved is that each particle in the process
behaves identically as all other particles and independently of all other particles
(this latter is conditional on its existence). This may appear simple and obvious.
However, consequences are far-reaching. Let us consider the clone, extending
indefinitely into the future, originating from an ancestral particle. Such a clone is
identical with the entire process we are studying. If we take any particle from this
clone, then it gives rise to its own clone, which is a subprocess of the whole process.
However, by the branching property, this subprocess is identical with the whole
process. This realization provides a way to describe the process mathematically: It
can be decomposed into subprocesses, which are identical (identically distributed,
to be rigorous) with each other and with the entire process. In mathematical terms,
branching processes belong to a class of stochastic objects called “self-recurrent”
by Feller (1968, 1971).

Matters become a little more complicated if we allow particles of different types.
The clones created by particles of different types are different, so the bookkeeping
becomes more involved. However, the principle stays the same. The rest of this
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section is concerned with mathematical notation and it can be safely skipped at
first reading.

Let us consider a classical branching process in which progeny are born at the
moment of the parent’s death. It can be understood as a family {Z(t, ω), t ≥ 0}
of non-negative integer-valued random variables defined on a common probability
space�with elementsω.Z(t, ω) is equal to the number of particles in the process at
time t , andω index the particular realizations of the process. The branching process
is initiated at time t � 0 by the birth of a single ancestor particle. Suppose that
the life length of the ancestor is a random variable τ (ω) and that the number of its
progeny (produced at its death) is equal toX(ω) (Fig. 1.5). Each of the progeny can
be treated as the ancestor of its own process, which is a component of our branching
process. Then, the number of individuals present in the process at time t is equal
to the sum of the numbers of the individuals present in all these subprocesses. This
bookkeeping is correct for t ≥ τ (ω), (i.e., after the ancestor has died). Before the
ancestor’s death, the number of particles is equal to 1. Summarizing,

Z(t, ω) �

⎧⎪⎨⎪⎩
X(ω)∑
i�1

Z(i)(t, τ (ω), ω), t ≥ τ (ω)

1, t < τ (ω),

(1.1)

where Z(t, τ (ω), ω) denotes the number of individuals at time t in the process
started by a single ancestor born at time τ (ω), and the additional superscript (i)
denotes the ith independent identically distributed (iid) copy. The self-recurrence
(or branching) property is embodied in the statement that the processes initiated
by the progeny of the ancestor are independent and distributed identically as the
ancestor:

Z(i)(t, τ (ω), ω)
d� Z(i)(t − τ (ω), ω). (1.2)

Substitution of expression (1.2) into Eq. (1.1) leads to a recurrent relation:

Z(t, ω) �

⎧⎪⎨⎪⎩
X(ω)∑
i�1

Z(i)(t − τ (ω), ω), t ≥ τ (ω)

1, t < τ (ω),

which we will use repeatedly.
In a rigorous way, construction of a branching process proceeds from the spec-

ification of distributions of life lengths and progeny numbers of individuals, to
the construction of the probability space �, to deriving a specific form of rela-
tionships (1.1) and (1.2). Based on a classical construction by Harris (1963), the
procedure has been extended to most general processes. In our applications, the
existence and form of the probability space and self-recurrent relationships of the
type (1.1)–(1.2) will be obvious. Therefore, usually, we will drop from the notation
the argument ω, although, implicitly, it is always present.

The self-recurrence characterizing the branching process is one of the two con-
ceivable ways the process can be defined. It is based on decomposing the process
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FIGURE 1.5. Decomposition of the branching process into subprocesses generated by the
first-generation progeny of the ancestor; see Eq. (1.1). In the case depicted, the number
of the first-generation progeny is equal to X(ω) � 5. At time t > τ (ω), the number of
particles in the subprocesses generated by progeny 1, 2, 3, 4, and 5 is equal, respectively, to
Z(1)(t, τ (ω), ω) � 0, Z(2)(t, τ (ω), ω) � 1, Z(3)(t, τ (ω), ω) � 0, Z(4)(t, τ (ω), ω) � 3,
and Z(5)(t, τ (ω), ω) � 3. The total number of particles in the process at time t is seven.

into a union of subprocesses initiated by the direct descendents of the ancestor. It
can be called the “backward” approach, in an analogy to the backward Chapman–
Kolmogorov equations of Markov processes. A dual “forward” approach consists
of freezing the process at time t , recording the states of all individuals at that time,
and predicting their future paths (e.g., at t +1 or at t +δt). The backward–forward
duality will be useful in some our considerations.

Branching processes have been widely used to describe growth and decay of
biological populations. Their use has always overlapped with that of deterministic
mathematical tools, like ordinary and partial differential equations. The doubtless
applicability of branching processes is in studying small populations in which
random fluctuations play a major role. However, some results concerning large
populations are also easier to deduce using branching processes (see, e.g., Arino
and Kimmel, 1993).

1.4 Probability Generating Functions and Analytical
Methods

Consider a branching process composed of particles of one type. The number of
particles at time t is denoted Z(t). An ancestor is born at t � 0, and at random
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time τ , it gives birth to a random count of progeny. Each of the progeny initiates
a subprocess identical to the whole process. Therefore, conditional on τ ,

Z(t)
d�

X∑
i�1

Z(i)(t − τ ), t ≥ τ, (1.3)

where Z(i)(t) is the number of particles in the ith independent copy of the process.
Therefore, Z(t) can be represented as a sum of a random number of iid random
variables (rv), with non-negative integer values. A useful tool for handling dis-
tributions of such random sums is the probability generating function (pgf) of
a distribution. Methods employing pgf manipulations instead of directly dealing
with random variables are called analytic.

Probability generating functions are the basic analytic tool employed to deal
with non-negative rv’s and finite and denumerable sequences (vectors) of such
variables. Let us denote the set of non-negative integers by Z+. Let X be a Z+-
valued rv, such that P[X � i] � pi . We write X ∼ {

pi

}
i≥0 and say that

{
pi

}
is

the distribution of X.

Definition 1 (Definition of the pgf). The pgffX of aZ+-valued rvX is a function
fX(s) � E

(
sX
) � ∑∞

i�0 pis
i of a symbolic argument s ∈ U ≡ [0, 1]. With some

abuse of notation, we write X ∼ fX(s).

The following theorem is a collection of results, which usually are given sepa-
rately. All can be found, for example, in the book by Feller (1968). Also, see Pakes
(1994).

Theorem 1 (The pgf theorem). Suppose X is a Z+-valued rv with pgf fX(s),
which may not be proper. Let us denote by (N) the nontriviality condition
p0 + p1 < 1.

1. fX is non-negative and continuous with all derivatives on [0, 1). Under (N),
fX is increasing and convex.

2. If X is proper, fX(1) � 1; otherwise, fX(1) � P[X < ∞].
3. dkfX(0)/dsk � k!pk .
4. IfX is proper, the kth factorial moment ofX,µk � E[X(X−1)(X−2) · · · (X−

k+ 1)], is finite if and only if f (k)
X (1−) � lims↑1 f

(k)
X (s) is finite. In such case,

µk � f
(k)
X (1−).

5. If X and Y are two independent Z+-valued rv’s, then fX+Y (s) � fX(s)fY (s).
6. If Y is a Z+-valued rv and

{
X(i), i ≥ 1

}
is a sequence of iid Z+-valued rv’s

independent of Y , then V �∑Y
i�1 X

(i) has the pgf fV (s) � fY
[
fX(1) (s)

]
.

7. Suppose that {Xi, i ≥ 1} is a sequence of Z+-valued rv’s. limi→∞ fXi
(s) �

fX(s) exists for each s ∈ [0, 1) if and only if the sequence {Xi, i ≥ 1} con-
verges in distribution to a rv X (i.e., if limits limi→∞ P[Xi � k] exist for all k
and are equal to P[Xi � k], respectively). Then, fX(s) is the pgf of the limit
rv X.

The definition of the pgf can be generalized to the multivariate and denumerable
cases (Appendix A).
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Returning to the example in the beginning of this section, we notice that based
on the pgf theorem, part 6, Eq. (1.3) can be now replaced by an equivalent pgf
identity:

ft (s) � f [ft−τ (s)], t ≥ τ,

conditional on τ (i.e., given that the ancestor dies at age τ ), where ft (s) denotes the
pgf ofZt and f (s) denotes the pgf ofX. As an example, let us consider the Galton–
Watson process, which will be studied in detail in Chapter 3. In this process, all
particles, including the ancestor, live for a fixed time equal to 1, so that τ ≡ 1. This
means that ft (s) � f [ft−1(s)] for all t ≥ 1, and so ft (s) � f {f [· · · f︸ ︷︷ ︸

n

t−n(s) · · ·]}.

If we limit ourselves to integer t and notice that f0(s) � s (i.e., at t � 0, only the
ancestor is present), then we obtain

ft (s) � f {f [· · · f︸ ︷︷ ︸
t

(s) · · ·]}, (1.4)

which is the pgf law of evolution of the Galton–Watson process.

1.5 Classifications of the Branching Processes

1.5.1 Lifetime

The distribution of particle lifetime τ has much impact on the behavior and analysis
of the process. As shown earlier, if τ ≡ 1 (the Galton–Watson process, Chapter
3), it is enough to consider integer times. The pgf of Zt [Zt is an accepted notation
for Z(t) when time is discrete] is simply the t-fold functional iterate of the pgf of
the progeny number, X [Eq. (1.4)].

Another important special case is when τ is distributed exponentially. The lack
of memory of the exponential distribution leads to a process with continuous time
which can be considered an interpolation of the Galton–Watson process between
integer time points (Chapter 4).

Finally, if τ is an arbitrary non-negative random variable, the resulting process
is called an “age-dependent” or Bellman–Harris process. It is more complicated
to analyze than any of the two previous processes (Chapter 5).

1.5.2 Type space

The following is the list of the frequent variants of type space:

S �

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

{1}, single type

{1, . . . k}, multitype

{1, 2 . . .}, denumerable type

R+, R, [0, 1], continuous type

abstract.



14 1. Motivating Examples and Other Preliminaries

The Galton–Watson and Bellman–Harris processes considered are single type but
have their multitype, denumerable type and continuous type counterparts (Chap-
ters 6 and 7). Abstract type spaces are used to create “superindividuals” composed
of a number of original individuals and, in this way, to handle dependence among
particles (Taı̈b, 1987).

1.5.3 Criticality

A very important classification is based on the mean progeny count m � E(X)
of a particle. We introduce it using the example of the Galton–Watson process,
but it is valid for all branching processes. By the pgf theorem, E(X) � f ′(1−)
and E(Zt ) � f ′

t (1−). Differentiating the formula ft (s) � f {f [· · · f︸ ︷︷ ︸
t

(s) · · ·]} with

respect to s and substituting s � 1, we obtain using the chain rule of differentiation:

E[Zt ] � f ′
t (1−) � [f ′(1−)]t � mt .

Therefore, in the expected value sense, the process grows geometrically if m > 1,
stays constant if m � 1, and decays geometrically if m < 1. These three cases are
called supercritical, critical, and subcritical, respectively:

m > 1, supercritical ⇒ E[Zt ] ↑ ∞,

m � 1, critical ⇒ E[Zt ] � 1,

m < 1, subcritical ⇒ E[Zt ] ↓ 0.

(1.5)

The above relationships are intuitively expected. However, the corresponding laws
of extinction are less intuitive. Let us consider the probability qt � ft (0) � P[Zt �
0] that the process is extinct at time t . We have qt+1 ≥ qt , as Zt � 0 implies
Zt+1 � 0. Because 0 ≤ qt ≤ 1 also, the sequence {qt} tends to a limit q which
is the probability of eventual extinction. Moreover, because ft+1(s) � f [ft (s)],
then, setting s � 0, we obtain qt+1 � f (qt ), and letting t → ∞, q � f (q).
Therefore, q is the coordinate at which f (s) intersects the diagonal. Let us note
that f (s) is convex and f (1) � 1. If m � f ′(1−) > 1, then there exists 0 ≤ q < 1
such that f (q) � q. If m � f ′(1−) ≤ 1, then q has to be equal to 1. Therefore,
we obtain that

m > 1, supercritical ⇒ q < 1,

m � 1, critical

m < 1, subcritical

}
⇒ q � 1.

(1.6)

The supercritical and subcritical processes behave as expected from the expression
for the means. The critical process is counterintuitive. Although the mean value
stays constant and equal to 1, the process becomes extinct almost surely (q �
1). This latter is only possible if the tail of the distribution is heavy enough to
counterbalance the atom at 0. This suggests that a critical process is undergoing
large fluctuations before it becomes extinct [cf, the discussion following Eq. (3.7)].
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Further on, in Chapters 3–5 we will see that the limit behavior in all three cases
may be characterized in more detail.

1.6 Modeling with Branching Processes

In this section, we discuss branching processes as a modeling tool, in a general
and philosophical way. Our discussion owes a lot to ideas presented in a review
article by Jagers (1991). We complement it with our own insights concerning the
interactions between biology and branching processes.

As stated by Jagers (1991),

Mathematical population theory is not the same as demography: Its object
of study is not human populations. Nor is its object actual biological
populations of, say, animals, bacteria or cells, or the physical populations
of splitting particles in a cascade or neutron transport. Rather, its purpose is
to study the common theme of these and many other empirical phenomena,
an idealized pattern of free population growth, of sets changing as their
members generate new set members.

For a mathematician,

the essence of such a theory is mathematical in the same sense as geometry,
the study of idealized shape. It is relevant for actual populations in so far
as their reproduction is close to the idealized free reproduction and to the
extent that this reproduction property is important for the evolution of the
system as a whole. Thus in vitro cell kinetics is close to the pattern, at
least if the population has enough nutrition and space, whereas the well-
regulated growth of a couple of fetus cells into, say, a hand is dominated
by features other than population growth.

The population growth pattern is an important one, often playing a
great role in the evolution of phenomena, and it can be discerned in many
circumstances, ranging not only from demography to particle physics
but including even data structures for sorting and searching in computer
science or fractal sets arising in various types of mathematics. Sometimes
the conclusions you can draw from the general mathematical study are
even stronger than those obtained through more specialized models.

In opposition to the above, the approach advocated in our book is to explain
biological observations in detail, the way mathematics is used in theoretical me-
chanics or relativity, and to generate predictions accurate enough to be practical.
This approach may be considered a type of engineering. One may argue that by
doing so, the modelers enter the turf reserved for other professions: biostatistics,
demography, computer simulation, and biotechnology. Still, only the mathemati-
cal principles can explain the balance of factors contributing to the behavior of a
population as a whole.

Unfortunately, this is not always appreciated in biology. One of the reasons is
that much of modern biology is molecular biology. This latter, through the intro-
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duction of new techniques for gathering data and probing biological processes at a
fundamental level, continuously provides an unprecedented amount of new infor-
mation. Much of this information is connected only at a simplistic level (Maddox
1992). In the extreme reductionist view, everything can be reduced to a molecular
switch which turns on or cuts off expression of a gene. In reality, it is frequently a
delicate dynamic balance that creates a given behavior, and there might be alter-
native ways of inducing a biological system to display a seemingly related set of
properties. For example, a complex human genetic disease, like diabetes, can arise
through many alternative molecular pathways. A recent book by a well-known
evolutionist discusses this subject (Lewontin 2000).

However, there are reasons to think that this situation soon may change. Math-
ematical and computational methods make steady headway in molecular biology.
One example is the progress achieved in analysis of DNA sequences using hidden
Markov models (Durbin et al. 1998). Recent sequencing of the human genome
(Venter et al. 2001, International Human Genome Sequencing Consortium 2001)
will generate a flood of research concerning expression of genes and relations
between expression of different genes as well as the impact of these latter on evo-
lution, human disease, and so on. Resulting problems will be difficult to answer
without mathematics and/or computing power.

The subject of this book is the use of branching processes to model biological
phenomena of some complexity, at different, though predominantly cellular or
subcellular, levels. To understand the power and the limitations of this methodol-
ogy, again we follow Jagers (1991). Probabilistic population dynamics arises from
the interplay of the population growth pattern with probability. Thus, the classical
Galton–Watson branching process defines the pattern of population growth using
sums of iid random variables; the population evolves from generation to generation
by the individuals getting iid numbers of children. This mode of proliferation is
frequently referred to as “free growth” or “free reproduction.”

The formalism of the Galton–Watson process provides insight into one of the
fundamental problems of actual populations, the extinction problem, and its com-
plement, the question of size stabilization: If a freely reproducing population does
not die out, can it stabilize or must it grow beyond bounds? The answer is that
there are no freely reproducing populations with stable sizes (see Section 3.3 for
mathematical details). Population size stability, if it exists in the real world, is the
result of forces other than individual reproduction, of the interplay between popu-
lations and their environment. This is true for structures much more general than
the Galton–Watson process. For example, Breiman (1968, p. 98) demonstrates
that the following is true: Consider a sequence of non-negative random variables
X1, X2, . . ., for which 0 is absorbing in the sense that Xn � 0 implies Xn+1 � 0.
Assume that there is always a risk of extinction in the following way. For any x,
there is a δ > 0 such that

Pr[there exists n such that Xn � 0 | X1, . . . , Xk] ≥ δ,

provided Xk < x. Then, with probability 1, either there is an n such that all
Xk � 0 for k ≥ n , or Xk → ∞ as k → ∞. So, the process either becomes extinct
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or grows indefinitely. We will consider more specific forms of this law for the
Galton–Watson process (Theorems 2 and 3). Also, see Jagers (1992) for further
discussion.

The next natural question is, what is the rate of the unlimited growth? It can be
answered within the generation counting framework of Galton–Watson type pro-
cesses (for biological examples, see Section 3.2). In a more general setup, we must
know not only how many children parents get, but also the ages at child-bearings
(even if they are constant and equal to 1, as in the Galton–Watson process case).
In an even more general framework, the iid random variables describing repro-
duction have to be replaced by iid point processes, and the probabilistic addition
of random variables by the superposition of point processes (Section C.1). In all
these frameworks, in the supercritical case, when the average number of progeny
of an individual is greater than 1, the growth pattern is asymptotically exponential.
The parameter of this exponential growth is the famous Malthusian parameter. In
the supercritical case, we can not only answer questions about the rate of growth
but also questions about the asymptotic composition of nonextinct populations.
What will the age distribution tend to be? What is the probability of being first-
born? The average number of second cousins? What is the distribution of the time
back to your nth grandmother’s birth? Very important for biological applications,
many of these questions do not have natural counterparts in deterministic models
of unlimited growth.

Many other composition questions cannot be posed if we assume that all individ-
uals are of one and the same type. Thus, we are naturally brought on to multitype
branching populations: Whenever an individual is born, we know not only its par-
ent’s age but also its own type. This latter might be identified, in the most general
case, with the individual’s genotype.

Mathematically, the individual reproduction process then turns into a point pro-
cess on the product space, type × age. Also, the evolution of the newborn’s life
will no longer be decided in an iid fashion but rather according to a probability
kernel, determined by the type of the newborn. The introduction of various types
of individual can be viewed as taking the step from independence to the simplest
form of dependence in probability theory, the Markov dependence. One is born by
one’s parent, who decides when one is to come into this world and also passes on a
genotype. Given these two inherited properties, one leads one’s life independently
of all of one’s ancestors. This is the Markov model of population growth, the out-
come of a straightforward combination of a vague population growth pattern with
Markov dependence of random lives and reproduction.

Another general question is, what mathematical tools should be used to measure
populations? Usually, we are interested in the number of individuals present at a
given time. However, we might wish to count only individuals above a certain age.
In some applications, we might be interested in the total number of individuals
ever born. All of these variants are covered under the general concept of addi-
tive measures of population size, which goes back almost three decades (Jagers
1975). In this approach, each individual is measured by a random characteristic,
a stochastic process, whose value at time t is determined by the individual’s type,
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the individual’s age now at time t , and the individual’s, and possibly all of its
progeny’s, life careers. If the characteristic is assumed to vanish for negative ages,
individuals are not taken into account before they are born. The measure of the
population at time t is the sum of all of the characteristics, evaluated for all of
the individuals as above. The simplest characteristic is the one that just records
whether an individual is born or not, having the value of 1 if it is and 0 if it is not.
It counts all individuals ever born.

As it will be seen, multitype branching processes are a tool for very detailed
modeling using the Markov-multitype paradigm. In this setup, the type–space
transitions become as important as branching itself. This is very clearly seen in
processes with denumerable type spaces (e.g., the branching random walk describ-
ing gene amplification in Section 7.3). The process is a supercritical branching
process, but the growth law is not Malthusian: Exponential growth is modified
by a negative fractional power factor. Another example is the model of telomere
shortening (Section 7.2). The transition law there is reducible, which produces a
variety of unusual behaviors including polynomial growth.

A relatively new application of branching processes in genetics and evolutionism
is the characterization of genealogies. In this approach, a sample of individuals
from the process is considered at a given moment t , and conditionally on this
information, distributions of past events related to the process are sought. The part
of the process, existing before t , which contributed to the sample (i.e., excluding
the individual whose descendants became extinct before t), is called the reduced
process. Examples can be found in Section 4.3. The “backward-look” reduced-
process limit laws for the critical and subcritical cases are quite different from
those in the forward approach.

In classical population genetics models, the population size is a deterministic
function of time. The stochastic part of the model is concerned with dependencies
between the genetic makeups of the individuals. However, subpopulations of larger
populations can be approximated by branching processes (Nagylaki 1990). This
has important applications because various rare genotypes (e.g., mutant carriers
of a rare genetic disease) belong to this category. One such application is in gene
mapping (Kaplan et al. 1995) [i.e., determining the location of unknown genes
based on their co-inheritance with known (marker) loci].

Branching processes are a conceptually simple tool for modeling diverse aspects
of biological populations, not limited to demography, but reaching into cell and
molecular biology, genetics, and evolution theory. They provide a framework for
detailed considerations, allowing quantitative predictions, beyond metaphorical
representations. With a future influx of detailed biological data, their importance
for modeling is likely to increase.



CHAPTER 2

Biological Background

This chapter is a brief introduction, for mathematicians, to genes, cells and cancer.
It provides general descriptions of the biological phenomena that are the sub-
ject of the mathematical applications developed in later chapters. More specific
information relevant to each application is given at the beginning of the section
containing the application. No knowledge of biology or chemistry is assumed be-
yond that learned in high school and forgotten due to disuse. Many biological
details are omitted for lucidity. Readers familiar with the biological topics in this
introduction may proceed directly to the later chapters.

2.1 Genomes: Changes in DNA and Chromosomes

2.1.1 Genome

The term “genome” refers to the molecules that function in the storage, expression,
and inheritance of information in biological systems. The genome of humans and
other organisms is dynamic. The number and sequence of its subunits can undergo
rapid changes within a few generations.

2.1.2 DNA and genes

DNA (deoxyribonucleic acid) is the chemical that is the primary genetic material
in the genome of all cells. It is responsible for the storage and inheritance of genetic
information. DNA is a polymer consisting of two long complementary strands. Each
strand contains a linear sequence of four monomer subunits called bases. The bases
are abbreviated A, T, G and C. Each A base on one strand pairs with a T base on
the other strand, and each G base pairs with a C base. The total length of DNA
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FIGURE 2.1. DNA structure. Pairs of complementary bases (A and T, G and C) hold
together the double-stranded helix of DNA. The two strands are separated on the right, for
replication, described further in Figure 2.3. The sequence of bases in DNA is transcribed
into a sequence of bases in RNA and translated into a sequence of amino acids in protein
which functions to determine the observable traits of the organism. Mutational changes in
the sequence of bases in DNA result in changes in observable traits which are inherited.

in the genome of each mammalian cell is about 3 × 109 bases. Genes are specific
subsequences of DNA that code for proteins. A given gene is typically 103–104

bases long and occurs one or only a few times in the genome. The mammalian
genome contains approximately 30,000 different genes. The expression of the ge-
netic information in DNA is accomplished by transcribing a sequence of bases in
DNA into a sequence of bases into a related molecule, RNA (ribonucleic acid).
The sequence of bases in RNA is then translated into a sequence of amino acids,
the subunits of proteins. The proteins carry out catalytic and structural roles which
result in the biological properties of cells and organs. Thus, the flow of information
is usually as follows:

DNA → RNA → protein → phenotype;

in words,

gene → message → catalyst → observable trait.

2.1.3 Mutation

An alteration in the sequence of bases in DNA is referred to as a mutation. The
mutation may be as small as a change in a single base or as large as a rearrangement
of most of the DNA in a chromosome. A mutation in DNA may result in an altered
sequence of amino acids in protein and/or an altered amount of protein. This may
result in a change in the ability of a protein to function properly, resulting in altered
properties of cells and organisms. Many mutations are deleterious, but others may
be advantageous or neutral. Examples of altered properties of cells containing mu-
tations include the misregulation of cell growth and division leading to malignant
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tumors and the new capability of mutant cells to grow in the presence of a drug that
would kill normal cells. A multitype process model describing mutations as oc-
curring in several possible steps, and an improved method of estimating mutation
rates from experimental observations are given in Section 6.1.

2.1.4 Noncoding sequences of DNA

Genes account for a small portion of the genome of mammals. Only about 5–10%
of the DNA codes for proteins; the remainder is referred to as the noncoding portion
of DNA. The function of the noncoding DNA is only partially understood. Some
noncoding regions specify the sequence of bases in RNA that is never translated into
protein. Another small portion consists of special DNA sequences that are required
to maintain the ends of DNA molecules, called telomeres. Maintenance and loss of
telomere sequences is discussed as a Bellman–Harris process with denumerable-
type space in Section 7.2. Yet other noncoding sequences, centromeres, are required
for the accurate segregation of the DNA into progeny cells. Fragments of DNA
that do not contain centromeres distribute into progeny cells in uneven numbers.
This is modeled as a single-type Galton–Watson branching process in Section 3.6
and as random walk with absorbing boundary in Section 7.4.

2.1.5 Repeated sequences of DNA

Much of the noncoding mammalian DNA consists of sequences which are repeated
many times in the genome, most of unknown function. Some repeated sequences
are tandemly distributed; others are dispersed throughout the genome. The length
(number of bases) of a tandemly repeated unit may be as short as 1 base or longer
than 103 bases. The number of repeated units may be as small as 2 or larger
than 102. An increase in the number of tandemly repeated units is referred to as
amplification, and a decrease as deamplification. The emergence of periodicities of
tandemly repeated sequences in DNA by recombination slippage is simulated by
a discrete stochastic dynamical system by Baggerly and Kimmel (1995). Repeats
may also arise by other mechanisms, as discussed in Section 3.7 or in Bat et al.
(1997).

2.1.6 Gene amplification

Regions of DNA may undergo an increase in number (amplification) or decrease
in number (deamplification). The regions of DNA that undergo amplification and
deamplification may contain genes or contain no genes. Amplification and deam-
plification of regions of DNA containing genes can result in increases or decreases
in the amounts of proteins necessary for cell functions. Overproduction of rate-
limiting proteins may confer new properties on cells. For example, if the protein
is involved in cell proliferation, the cells with an increased amount of this protein
may grow as malignant tumors. As another example, if the protein is the target
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of a toxic drug, then an increased amount of the protein may allow the cells to
be resistant and grow in the presence of the drug. Models for gene amplification
resulting in tumor cell growth and drug resistance are the subject of Sections 3.6,
7.1, and 7.4.

Some inherited human syndromes, such as predisposition to some cancers and
neurological diseases, have been related to a rapid change in the numbers of copies
of DNA sequences. An unusual aspect of these is the apparently explosive increase
in the numbers of copies of some sequences from one generation to another. This
increase has been modeled as an iterated Galton–Watson process in Section 3.7. In
contrast to these cases of concerted increases in gene copy numbers, there are situ-
ations in which the number of amplified genes is unstable and decreases. Unstable
decreases in numbers of amplified genes are modeled as a subcritical Galton–
Watson process in Section 3.6 and as a branching random walk with absorbing
barrier in Section 7.4.

2.1.7 Chromosomes

In human cells, the DNA of the genome in divided into pieces of various lengths,
each containing large numbers of different genes. Each piece of DNA is folded
compactly and associated with proteins and RNA to form a chromosome. In human
cells, there are 23 pairs of chromosomes. Each chromosome contains one double-
stranded piece of DNA from end to end. The ends of chromosomes are called
telomeres. They have special sequences and structures that are necessary for the

FIGURE 2.2. Chromosome. One double-stranded piece of DNA, represented here by a
single horizontal line, extends from one end of a chromosome to the other. Several classes
of repeated sequences of bases are represented. Telomere (T) repeats at each end of the
chromosome function to maintain chromosome ends. Centromere (C) repeats function to
separate chromosomes at mitosis and cell division. Other repeated (R) sequences of bases
are dispersed throughout the chromosome. Some function to code for proteins (e.g., genes);
others are noncoding sequences. Repeated sequences may exist as extrachromosomal ele-
ments, also called double minute (DM) chromosomes because of their appearance. They may
replicate but are not partitioned evenly to progeny cells because they lack the centromeres
of chromosomes. The number of repeated units may be variable.
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replication of the end of DNA and the maintenance of chromosomes. DNA in chro-
mosomes replicates and then the products separate from each other in a process
called mitosis. Special DNA sequences near the center of chromosomes (cen-
tromeres) function to segregate one of each pair of duplicated chromosomes into
each of two progeny cells during cell division. This process assures that each
progeny cell receives one copy of each chromosome and its associated DNA-
containing genes. Fragments of DNA without centromeres may increase in number
(replicate) to more than two copies per cell, but without centromeres, there is no
mechanism to distribute exactly equal numbers to each progeny cell.

2.1.8 DNA replication

DNA replication occurs by a so-called semiconservative mechanism. Two com-
plementary parental strands of DNA separate and each strand forms a template
for the production of a new complementary progeny strand. Usually, replication
is initiated by the local separation of two strands, the replication fork, and then
proceeds along the DNA. The result is two double-stranded DNA molecules, each
molecule containing one old strand and one complementary new strand.

Two types of error in DNA replication have been proposed to result in amplifica-
tion of repeated DNA sequences, replication slippage, and replication reinitiation.
Replication slippage may occur when repeated DNA sequences on one strand fold

FIGURE 2.3. DNA replication. Double-stranded DNA (left) replicates by a semicon-
servative mechanism. The parental strands separate (center) and each codes for a new
complementary strand. This results in two progeny double-stranded DNA molecules, each
containing one old strand and one new strand (right top). Two types of error in DNA replica-
tion may result in locally repeated regions (repeat sequences). These errors include slippage
and fold back, forming hairpin-like structures (right center), and replication reinitiation,
forming branches within branches (right bottom).
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back on themselves, forming a hairpin-like structure. This may cause slippage of
the replication complex along one strand relative to the other, resulting in stutter-
ing and repeated replication of a portion of the DNA sequence. The generation of
unstable numbers of DNA repeats by replication slippage may contribute to the
explosive increase in the numbers of repeated sequences in certain cancers and
inherited neurological diseases. A mathematical model describing amplification
of repeats by replication slippage has been developed (Bat et al. 1997), but it is not
described as an application here because it is not a branching process. Replication
reinitiation is another possible mechanism that may contribute to gene amplifi-
cation. It is visualized as the start of a new replication fork before the previous
replication fork has completed moving through the DNA. This leads to the for-
mation of branched DNA structures. Gene amplification by replication reinitiation
has been modeled in Section 3.7.

2.1.9 Recombination

Recombination is an exchange of pieces of DNA. Recombination can result in new
combinations of genes and increases or decreases in the numbers of genes. Re-
combination occurs during the formation of germ cells for sexual reproduction
(meiosis) and the division of nonsexual somatic body cells (mitosis). If replicated
parts of chromosomes, called chromatids, align properly before recombination and
exchange occurs, then new combinations of genes may occur and be segregated
into sex cells. Sometimes, parts of chromatids misalign before recombination.
Such a recombination with misalignment can result in an increase or decrease in
the numbers of genes on chromosomes, in either meiosis or mitosis. Recombi-
nation misalignment leading to gene amplification or deamplification is modeled
as a Markov chain with denumerable infinity of states in Axelrod et al. (1994)
and simulated as a discrete stochastic dynamical system in Baggerly and Kimmel
(1995). Recombination within loops of DNA on the same chromosome may yield
small fragments containing genes but not centromeres. When the acentric frag-
ments replicate, amplified numbers of genes may be produced in tandem arrays. If
these pieces of DNA recombine and reintegrate into a larger chromosomal piece
containing a centromere, then the tandem arrays of amplified genes can become
stabilized. This is modeled as a Galton–Watson process with denumerable-type
space in Section 7.1.

2.2 Cells: Cell Cycle Kinetics and Cell Division

2.2.1 Cells as the basic units of life

The basic structural unit of biological function and reproduction is the cell. Mam-
malian cells are in the range of 20 × 10−6 m in size, although there are many cells
of different functions and different shapes that are smaller or larger. The structure
of the cell is a series of bag-like compartments with specialized functions. The
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FIGURE 2.4. Recombination. New combinations and numbers of genes may be formed
by rearrangement of pieces of DNA. Three examples are shown. Double-stranded DNA is
represented by double lines, genes are represented by letters, and exchange is represented by
an X. Left: The DNA molecules exchange genes, uppercase from the mother and lowercase
from the father, to produce new combinations of genes which may then be passed on to
the progeny. Center: The DNA strands slip and misalign before recombination, producing
one molecule with an increased number of a gene and another molecule with a decreased
number of the gene. Right: One molecule of DNA undergoes exchange with itself, producing
a circular piece of DNA. If this piece replicates and then reintegrates, the result may be an
increased number of a gene.

“bags” are made up of membranes that function as barriers and permit a selective
transport of molecules. The innermost compartment is the nucleus which contains
highly compacted DNA and accessory molecules for expression of genes. Out-
side of the nucleus is a series of compartments for the synthesis and degradation
of molecules used for catalysis, structure, and energy generation. The outermost
cell membrane and its accessory molecules also function as barriers and permit a
selective transport, and, in addition, for communication with other cells. Commu-
nication between cells can occur via small molecules that diffuse between cells
such as hormones or via molecules that become fixed to the surface of other cells,
such as antigens which function in the immune system. A model for multivalent
antigen binding as a multitype Galton–Watson process is given in Section 6.5.

2.2.2 Cell growth and division

Cells grow in size and divide into two. The DNA in the nucleus exactly doubles
in amount, is packaged into chromosomes, and is then partitioned evenly between
two progeny cells at cell division. However, other processes are less exact. The
size to which cells grow before they divide is not exactly the same for all cells of
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FIGURE 2.5. Cell division and partition of contents. During the growth of cells, the amount
of DNA in the nucleus (large circle) doubles and is partitioned evenly into two daughter
cells at cell division. However, other cell constituents may not exactly double and may not
partition evenly, resulting in cells with different numbers of these constituents. These con-
stituents include extrachromosomal pieces of DNA, subcellular organelles, and intracellular
parasites.

a given type, the lifetimes of cells at division are not exactly the same for all
cells, and the non-DNA materials are not partitioned exactly between the two
progeny cells (see Figs. 2.5 and 2.6). The distribution of cell sizes and cell lifetimes
may be stable over time for a population of one cell type, but differ for populations
of cells of different types. Apparently, mechanisms exist to maintain these param-
eters within a population of cells of one type. Populations of cells with different
values of parameters may differ in important characteristics, such as whether or not
they are malignant. A Galton–Watson model describing the growth and division
of cells is given in Section 3.2. Another model in the form of a Galton–Watson
process with continuous-type space is described in Section 7.7.1.

During development of multicellular organisms, some cells divide into two
cells which differ in shape and function. This situation is modeled as multitype
branching process in Sections 6.3 and 7.7.2. If fragments of DNA are not connected
to chromosomes, they may not exactly double in number before each cell division
and may not partition exactly into the two progeny cells. Entities such as subcellular
organelles or intracellular parasites can divide within dividing cells. An appropriate
model for this is a Markov process model of infinitely many types. Such a model
exhibits quasistationarity, as discussed in Section 7.5.
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FIGURE 2.6. Cell division and cell size. Cells may grow for different times and attain
different sizes before they divide. At cell division, cells may divide asymmetrically, resulting
in progeny sibling cells of different size.

2.2.3 Cell cycle kinetics

The time period between cell birth and cell division is referred to as the cell cycle
time. Several distinct events or phases can be distinguished during each cell’s
lifetime. The first event is the birth of two progeny cells at cell division, also called
cytokinesis or mitosis, abbreviated M. The time gap between the birth of a new cell
and the initiation of DNA synthesis is called gap one, abbreviated G1. The period
of DNA synthesis is abbreviated S. The time gap between S and the next mitosis
is abbreviated G2. After G2, during the next M phase the cell divides to form
two new cells. The sequence of phases M, G1, S, G2, and M repeats in progeny
cells of each subsequent generation, thus the name cell cycle. For mammalian
cells, a typical cell cycle time may be 12–24 h, or even longer. For a cell cycle
time of 24 h, the duration for the cell cycle phases M, G1, S, and G2 might be
0.5, 8, 12, and 3.5 h. The duration of the G1 phase is usually the most variable
portion of the cell cycle. Cells which have longer cell cycle times, either because
of genetics, environment, or developmental fate, usually have equally extended
G1 time periods, although important exceptions exist. The relative duration of
the cell cycle phases in a growing population of cells can be inferred from the
percentage of cells with different amounts of DNA or from the rate at which cells
accumulate in one phase of the cell cycle when blocked with a phase-specific drug
(stathmokinesis). Cell cycle kinetics are modeled as a Bellman–Harris process in
Section 5.4 and as a Markov time-continuous branching process in Section 4.2.
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2.3 Cancer: Drug Resistance and Chemotherapy

2.3.1 Cancer cells are immortal

Cancer is a problem of persistent cell proliferation. Tumors are populations of cells
that accumulate in abnormal numbers. The increased number of cells is due to an
increased ratio of cell birth rate over cell death rate. Cancer cells do not necessarily
grow faster than normal cells, but they are persistent. They may not stop dividing
under conditions where normal cells would stop and/or they may not die under
conditions where normal cells would die. Normal cells in an adult seem to be
capable of a finite number of divisions and then the lineage dies out. The process
of a cell lineage losing proliferative potential is referred to as senescence. Tumor
cells seem to be capable of an indefinite number of divisions so that the lineage can
persist. Populations of cells that divide without limit are referred to as immortal.
The mechanisms controlling senescence and immortality are partially known. For
instance, an inhibitor has been identified in old senescent cells that is not expressed
efficiently in young cells. In addition, there seems to be a difference between many
normal cells, which are capable of senescence, and tumor cells which are immortal
(viz. a difference in the ability to maintain the ends of chromosomes). The ends
of chromosomes contain repeated sequences of DNA called telomeres. Although
most of the length of DNA is duplicated exactly once during each cell cycle, that
is not always true of the repeated DNA sequences in telomeres at the ends of
chromosomes. The telomeric DNA sequences can increase or decrease in length
at each round of DNA replication. Normal cells seem to progressively lose the
telomeric repeat sequences and senesce (age), whereas some tumor cells seem to
maintain them and continue to divide. This has been modeled as a Bellman–Harris
process with denumerable-type space in Section 7.2.

2.3.2 Tumor heterogeneity and instability

Tumors are derived from single cells. This conclusion has resulted from observa-
tions in which all the cells in a tumor share a common change from normal cells.
Cells from different tumors have different changes. The changes observed range
in size from single-base mutations in DNA to large chromosome rearrangements.
In addition to the common changes among the cells in a single tumor, many cells
may show additional changes distinct for each cell in a tumor. In other words,
tumors are monoclonal in origin but heterogeneous. Many tumors are genetically
unstable, showing an increased probability of undergoing mutations or gene am-
plification. A mutant gene may produce a protein product with an altered function,
and a gene with amplified number of copies may produce an increased amount of
a protein. If the protein is the target of a toxic drug, then a tumor cell producing
an increased amount of this protein may become resistant to this drug and escape
effective chemotherapy. Gene amplification leading to drug resistance has been
modeled using the Galton–Watson process in Section 3.6, modeled as a Galton–
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Watson process with denumerable types in Section 7.1, and modeled as a branching
random walk with absorbing barrier in Section 7.4.

2.3.3 Cell cycle and resistance to chemotherapy

Some forms of cancer chemotherapy attempt to exploit differences between the
cell cycle of normal and malignant cells. For instance, a single drug that inhibits
DNA synthesis would be expected to kill more tumor cells than normal cells,
if more tumor cells than normal cells are synthesizing DNA during the period
of chemotherapy. Sometimes, two or more drugs are used which affect differ-
ent cell cycle phases, or have different mechanisms of inhibition (combination
chemotherapy). The purpose is to overcome possible resistance to a single drug
and to increase the probability of catching tumor cells in different phases of the
cell cycle. Therefore, it is important to be able to determine the cell cycle phase
durations of normal and malignant cells, the cell cycle phase specificity of drugs,
and the changes that occur when cells are exposed to anticancer drugs. A multitype
process is used to model changes in the cell cycle during chemotherapy, Section
6.4. The emergence of cross resistance (each cell resistant to two drugs) is modeled
as a time continuous branching process in Section 4.2.

2.3.4 Mutations in cancer cells

Rates of mutations that occur in cancer cells are estimated by a method called the
fluctuation test. The procedure was originally developed for bacteria. In this test,
what is observed is the number of mutant cells arising in many parallel cultures,
the number of cell divisions in the cultures, and the number of cultures which
contain no mutant cells. The original method of calculating mutation rates from
these observations is based on the assumption that each mutant cell resulted from a
single rare event that is irreversible. This was appropriate for the bacterial mutations
originally observed, but not for many mutations in cancer cells. The mutations
may not be rare, irreversible, or due to a single step. Application of the fluctuation
test to cancer cells required the development of methods that took into account
these possibilities. Multitype branching processes were used to model two-step
mutations and interpret data from the fluctuation test, see Section 6.1.

2.4 References

References cited here include textbooks and monographs on the topics discussed in
this chapter. Specific citations to the primary literature are given in the applications
sections of later chapters.
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2.4.1 Textbooks and monographs in biology

Two outstanding textbooks in molecular and cellular biology used in upper level
undergraduate and graduate classes are as follows:

• Alberts, B., Bray, D., Lewis, J. , Raff, M., Roberts, K., and Watson, J.D. 1994.
Molecular Biology of the Cell, 3rd ed. Garland Publishing, New York.

• Lodish, H.F., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., and
Darnell, J.E. 1999. Molecular Cell Biology, 4th ed. Scientific American Books,
W.H. Freeman, New York.

More detailed information on DNA and chromosomes can be found in the
following:

• Kornberg, A. and Baker, T.A. 1992. DNA Replication, 2nd ed. W.H. Freeman,
New York.

• Singer, M. and Berg, P. 1991. Genes & Genomes: A Changing Perspective.
University Science Books, Mill Valley, CA.

• Wagner, R., Stallings, R.L., and Maguire, M.P. 1992. Chromosomes, A
Synthesis. Wiley–Liss, New York.

Informative textbooks on cancer:

• Bishop, J.M. and Weinberg, R.A. 1996. Molecular Oncology. Scientific
American Medicine, New York.

• Cooper, G.M. 1992. Elements of Human Cancer. Jones and Bartlett, Boston.
• Ruddon, R.W. 1995. Cancer Biology, 3rd ed. Oxford University Press, New

York.
• Tannock, I.F. and Hill, R.P. (eds.). 1998. The Basic Science of Oncology, 3rd

ed. McGraw-Hill, New York.

An excellent textbook on human molecular genetics:

• Strachan, T. and Read, A. 1999. Human Molecular Genetics, 2nd ed. Wiley,
New York.

A few of the many Web sites with information on molecular and cellular biology
include the following:

• Molecular Genetics Primer, Los Alamos,
http://www.ornl.gov/hgmis/publicat/primer/intro.html

• Biology Hypertextbook, MIT
http://esg-www.mit.edu:8001/esgbio/7001main.html

• WWW Virtual Library Biosciences, with many useful links,
http://golgi.harvard.edu/biopages

2.4.2 Mathematical biology

Several textbooks provide examples of mathematical approaches to biological
problems, although most examples are deterministic rather than stochastic models:

• Batschelet, E. 1992. Introduction to Mathematics for Life Sciences. 3rd
edition. Springer-Verlag, New York.
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• Brown, D. and Rothery, P. 1993. Models in Biology: Mathematics, Statistics
and Computing. Wiley, New York.

• Hoppensteadt, F.C. and Peskin, C.S. 2001. Modeling and Simulation in
Medicine and the Life Sciences. 2nd ed. Springer-Verlag, New York.

• Murray, J.D. 2002. Mathematical Biology: I An Introduction, 3rd ed. Springer-
Verlag. New York.

• Murray, J.D. 2002. Mathematical Biology: II Spatial Models and Biomedical
Applications. 3rd ed., Springer-Verlag, New York.

• Thompson, J.R. 1989. Empirical Model Building. Wiley, New York.
Monographs on mathematical biology include the following:

• Levin, S.A. (ed.). 1994. Frontiers in Mathematical Biology. Lecture Notes in
Biomathematics, Volume 100. Springer-Verlag, Berlin.

• Segel, L.A. 1987. Modeling Dynamic Phenomena in Molecular and Cellular
Biology. Cambridge University Press, Cambridge.

• Segel, L.A. (ed.). 1980. Mathematical Models in Molecular and Cellular
Biology. Cambridge University Press, London.

For those who wish an introduction to stochastic process:
• Syski, R. 1988. Random Processes, A First Look, 2nd ed. Marcel Dekker,

Inc., New York.
• Taylor, H.M. and Karlin, S. 1998. An Introduction to Stochastic Modeling,

3rd ed. Academic Press Harcourt Brace & Co., Boston.
A survey of some mathematical models of tumor cell growth, chemotherapy, and
drug resistance that is useful for mathematicians and readable for biologists is

• Wheldon, T.E. 1988. Mathematical Models in Cancer Research. Adam Hilger,
Bristol.

2.4.3 Arguments for mathematical modeling of
biological phenomena

Several essays have emphasized the importance of mathematical modeling for
progress in cellular and molecular biology:

• Goel, N.S. and Thompson, R.L. 1988. Models and their roles in biol-
ogy, in Computer Simulations of Self-Organization in Biological Systems.
Macmillan, New York, pp. 11–19.

• Huszagh, V.A. and Infante, J.P. 1989. The hypothetical way of progress. Nature
338: 109.

• Maddox, J. 1992. Is molecular biology yet a science? Nature 355: 201.
• Maddox, J. 1994. Cell-cycle regulation by numbers. Nature 369: 437.
• Maddox, J. 1995. Polite row about models in biology. Nature 373: 555.





CHAPTER 3

The Galton–Watson Process

The Galton–Watson process is the oldest, simplest and best known branching
process. It can be described as follows.

A single ancestor particle lives for exactly one unit of time, and at the moment of
death it produces a random number of progeny according to a prescribed probability
distribution. Each of the first-generation progeny behaves, independently of each
other, as the initial particle did. It lives for a unit of time and produces a random
number of progeny. Each of the second-generation progeny behaves in the identical
way, and so forth. From the fact that the life spans of all particles are identical and
equal to 1, it follows that the process can be mathematically described using a
discrete-time index, identical to the number of successive generation. The particle
counts Zn in the successive generations n � 0, 1, 2, . . . (where generation 0 is
composed of the single initial particle) form a sequence of random variables with
many interesting properties (the Markov property, for example). Properties of the
Galton–Watson process provide intuitions about more complicated branching.

The simplicity of the Galton–Watson process makes it an appropriate and fre-
quently employed tool for the introductory study of the processes of proliferation
in biology. It is applicable whenever the hypothesis of discrete nonoverlapping
generations is justified. An example of the Galton–Watson branching process is
the process describing the polymerase chain reaction in Section 1.2.
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3.1 Construction, Functional Equation, and Elementary
Properties

The material in this section follows the style of Athreya and Ney (1972). Let us
suppose that the number of progeny produced by each particle is a non-negative
integer random variable with distribution function {pk; k � 0, 1, 2, . . .}.

3.1.1 Backward equation

Any particle existing in the process, except for the ancestor of the process, can
be assigned to a subprocess traceable to a particular first-generation offspring of
the ancestor. In other words, the process can be represented as a union of the
subprocesses initiated by the first-generation offspring of the ancestor particle.

The number Zn+1 of particles in the generation n+ 1 of the process (or at time
n + 1) is equal to the sum of the particle counts in the generation n of all the Z1

subprocesses initiated by the first-generation offspring of the ancestor particle. Let
Z

(j )
1,n+1 denote the number of individuals at time n + 1 in the process started by a

single ancestor born at time 1. The additional superscript (j ) denotes the j th iid
copy. Mathematically, the random variable Zn+1 is equal to the sum of Z1 random
variables Z(j )

1,n+1, or (see Fig. 3.1.)

Zn+1 �
{

Z
(1)
1,n+1 + · · · + Z

(Z1)
1,n+1, Z1 > 0

0, Z1 � 0

or

Zn+1 �
Z1∑
j�1

Z
(j )
1,n+1. (3.1)

Random variables Z(j )
1,n+1 are independent identically distributed copies and their

common distribution is identical to that of Zn. Equation (3.1) can be equivalently
written as

Zn+1 �
Z1∑
j�1

Z(j )
n .

By the pgf theorem 1 (part 6), it yields the following pgf identity:

fn+1(s) � f1[fn(s)] � f [fn(s)]. (3.2)

If we note that Z0 � 1 implies f0(s) � s, this yields the following:

fn(s) � f (n)(s) � f {· · · f [f︸ ︷︷ ︸
n times

(s)] · · ·}; (3.3)

that is, the pgf of Zn is the nth functional iterate of the progeny pgf f (s).
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FIGURE 3.1. The backward equation for the Galton–Watson process.

3.1.2 Forward equation

An alternative approach is based on the fact that any particle in the (n + 1)st
generation of the process can be traced to its parent in the nth generation of the
process. Let Xin denote the number of progeny of the ith particle existing in
generation n. More generally, let {Xin}i≥1,n≥0 be a doubly infinite array of iid rv’s
such that E(X10) � m < ∞. Then,

Z0 � 1,

Zn+1 �
{

X1n + · · · + XZn,n if Zn > 0,

0 if Zn � 0,
n ≥ 1

(3.4)

or

Zn+1 �
Zn∑
i�1

Xin;

that is, the number of individuals (particles, cells), in the (n + 1)st generation of
the process is equal to the number of progeny of all individuals in the generation
n. In the terms of pgf’s, we obtain a new recursion:

fn+1(s) � fn[f1(s)] � fn[f (s)]. (3.5)

In the case of the Galton–Watson process, the above recurrence also leads to
Eq. (3.3). However, for more general processes, the forward construction may not
be feasible. We will return to this matter.
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Nontriviality

We exclude situations in which the number of particles is deterministic or when
it is either 0 or 1. Therefore, we assume throughout that p0 + p1 < 1 and that
pj � 1 for any j .

3.1.3 Moments

The moments of the process, when they exist, can be expressed in the terms of the
derivatives of f (s) at s � 1. For the mean, we have

E(Z1) � f ′(1−) ≡ m,

where m is the mean number of progeny of a particle. From the chain rule of
differentiation,

E(Zn) � f ′
n(1−) � f ′

n−1(1−)f ′(1−) � · · · � mn. (3.6)

Similarly, using the chain rule for the second derivative, one concludes that

Var(Zn) �
⎧⎨⎩

σ 2mn−1(mn − 1)

m − 1
, m � 1

nσ 2, m � 1,
(3.7)

where σ 2 � Var(Z1) is the variance of the progeny count. Higher moments are
derived similarly, if they exist. The linear growth of variance in the critical case
(m � 1) is consistent with the “heavy tails” of the distribution of Zn in the critical
case as mentioned in Section 1.5.3.

3.1.4 The linear fractional case

Usually, after several iterations, the functional form of the iterates fn(s) becomes
intractable. The linear fractional case is the only nontrivial example for which they
have been explicitly computed. Suppose

p0 � 1 − b − p

1 − p
, pk � bpk−1, k � 1, 2, . . . , p ∈ (0, 1).

Then,

f (s) � 1 − b

1 − p
+ bs

1 − ps
(3.8)

and m � b/(1 − p)2. The equation f (s) � s has roots q and 1. If m > 1, then
q < 1; if m � 1, then q � 1; if m < 1, then q > 1. The following expressions are
proved by induction (for a direct derivation, cf. Athreya and Ney 1972):

fn(s) � 1 − mn

(
1 − q

mn − q

)
+ mn[(1 − q)/(mn − q)]2s

1 − [(mn − 1)/(mn − q)]s
, m � 1, (3.9)

fn(s) � np − (np + p − 1)s

1 − p + np − nps
, m � 1. (3.10)
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The linear functional pgf corresponds to the geometric distribution with a rescaled
term at zero.

3.2 Application: Cell Cycle Model with Death and
Quiescence

The material of this section follows Kimmel and Axelrod (1991). The fundamen-
tal step in the proliferation of a population of cells is the division of one cell into
two cells. After completing its life cycle, each cell approximately doubles in size
and then divides into two progeny cells of approximately equal sizes. Populations
derived from single cells are referred to as clones or colonies. It has been experi-
mentally observed that similar cells may not yield colonies with the same number
of cells after the same amount of time. This may be due to various factors, like the
randomness of cell death and quiescence.

3.2.1 The mathematical model

We consider a process more general than the standard Galton–Watson process. It
is initiated by a single proliferating cell (Fig. 3.2). This cell divides, and each
of its progeny, independently, may (i) become proliferative with probability (wp)
p2, (ii) become quiescent wp p1, or (iii) die wp p0. Quiescent cells continue
to exist without proliferating or dying. They may return to active growth and

FIGURE 3.2. A schematic representation of the cell cycle model. Each of the daughter cells,
independently, starts growing with probability p2, dies with probability p0, or becomes
quiescent with probability p1 (p0 + p1 + p2 � 1).
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proliferation even after a very long time, or eventually die; in the present model,
these possibilities are not considered. We assume p2 + p0 + p1 � 1.

The equations describing the model will be recurrences for the probability gen-
erating functions of the number of proliferating and quiescent cells present in the
population in successive generation, analogous to the backward equation (3.1).
Let us denote the number of proliferating cells in the nth generation by Zn and
the number of quiescent cells in the nth generation by Qn. Also, let Z(j )

n,k and Q
(j )
n,k

denote respectively the number of kth generation proliferating and quiescent off-
spring of the j th of theZn proliferating particles of the nth generation. The number
of offspring of a quiescent cell is always equal to 1, the same quiescent cell. We
write the following equations:

Zn+1 �
Z1∑
j�1

Z
(j )
1,n+1. (3.11)

Qn+1 �
Z1∑
j�1

Q
(j )
1,n+1 + Q1. (3.12)

Let us denote by fn(s, w) the joint pgf of random variables Zn and Qn (see Defi-
nition 6 in the Appendix A). Let us note that Z(j )

1,n+1 and Q
(j )
1,n+1 have distributions

identical to those of Zn and Qn, respectively. To obtain the recurrence for the pgf,
we first condition (Zn+1,Qn+1) on given values of (Z1,Q1). Table 3.1 lists all of
the possibilities.

Multiplying the conditional values of fn+1(s, w) by their probabilities and
summing over the rows of Table 3.1, we obtain the pgf recurrence:

fn+1(s, w) � [p2fn(s, w) + p1w + p0]2. (3.13)

Let us note that if we limit ourselves to the proliferating cells, we obtain a Galton–
Watson process. Indeed, passing to the marginal pgf in Eq. (3.13), by settingw � 1,
yields fn+1(s) � [p2fn(s) + p1 + p0]2, which is a special case of Eq. (3.2) with
f (s) � (p2s + p1 + p0)2.

TABLE 3.1. Derivation of the Backward Equation for the Cell Cycle Model

(Z1,Q1) Probability (Zn+1,Qn+1) fn+1(s, w)

(0, 0) p2
0 (0, 0) 1

(0, 1) 2p0p1 (0, 1) w

(0, 2) p2
1 (0, 2) w2

(1, 0) 2p2p0 (Z(1)
1,n+1,Q

(1)
1,n+1) fn(s, w)

(1, 1) 2p2p1 (Z(1)
1,n+1,Q

(1)
1,n+1 + 1) fn(s, w) w

(2, 0) p2
2 (Z(1)

1,n+1 + Z
(2)
1,n+1,Q

(1)
1,n+1 + Q

(2)
1,n+1) fn(s, w)2
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FIGURE 3.3. Distributions of colony sizes for the NIH cells. Squares represent experimental
data and continuous lines have been generated by the model, as described in the text. The
model satisfactorily reproduces the distributions of the NIH cells’ colony sizes. Source:
Kimmel, M. and D.E. Axelrod 1991. Unequal cell division, growth regulation and colony
size of mammalian cells: A mathematical model and analysis of experimental data. Journal
of Theoretical Biology 153: 157–180. Figure 3a, page 162. Copyright: 1991 Academic
Press Limited.

3.2.2 Modeling biological data

In the article, Kimmel and Axelrod (1991), data on the colonies of cells have
been modeled with the aid of Eq. (3.1). The data included empirical distributions
of colony sizes of two varieties of cultured mouse fibroblast (connective tissue)
cells. The first variety, the NIH cells, are relatively “normal” cells. The second
variety was created by transferring the mutated ras oncogene, implicated in some
malignant tumors, into NIH cells. The purpose of the experiments was to establish
the differences in growth processes between the NIH and NIH(ras) cells.
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TABLE 3.2. Colony Size Distribution: Data and Parameter Estimates

Cell Type

NIH NIH(ras)

Data

Duration of the experiment (hours) 96 96

Number of colonies 52 45

Colony size (cells/colony)

Minimum 10 8

Maximum 116 214

Median 33 70
Estimated parameters

Number of divisions 8 8
Probability of death (p0) 0.15 0.15
Probability of quiescence (p1) 0.1 0

The distributions of colony sizes (i.e., of the numbers of cells per colony)
were obtained for a number of colonies grown for an identical time in identi-
cal conditions. The wide variability of colony sizes demonstrates the utility of
including a stochastic component in modeling. Table 3.2 provides a summary of
data. Cumulative frequencies of colony sizes are depicted in Figs. 3.3 and 3.4.

In the experiment, it is impossible to discern proliferative cells from quiescent
cells. Therefore, a version of Eq. (3.13) is used which gives the distributions of
Zn+Qn. The pgf of this sum is equal to gn(s) � fn(s, s) and, therefore, Eq. (3.13)
yields

gn+1(s) � [p2gn(s) + p1s + p0]2. (3.14)

This pgf is equal to gn(s) � ∑j πn(j )sj , where πn(j ) �P{Zn +Qn � j } and Eq.
(3.14) is equivalent to

{πn+1(j )} � {p2πn(j ) + p1δj1 + p0δj0} ∗ {p2πn(j ) + p1δj1 + p0δj0}, (3.15)

where the asterisk denotes the convolution of distributions [i.e., {c(j )} �
{a(j )} ∗ {b(j )} denotes c(j ) � ∑j

i�0 a(i)b(j − i), for j � 0, 1, . . .]. The
Kronecker symbol, δjk, is equal to 1 if j � k and is equal to 0 if j � k. Re-
currence (3.15), together with the condition π0(j ) � δj1, j ≥ 0, makes it possible
to calculate the distributions of colony sizes.

During the time of the experiment, about n � 8 divisions occurred. Distribu-
tions {π8(j ), j ≥ 0} of colony size can be computed using different values of
probabilities p0 and p1 of cell death and quiescence. The following strategy has
been used:

1. Because the NIH(ras) cells have increased content of the mutated ras oncogene
product, they are not likely to be quiescent; therefore, p1 � 0 is assumed and
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FIGURE 3.4. Distributions of colony sizes for the NIH (ras) cells. Squares represent experi-
mental data and continuous lines have been generated by the model, as described in the text.
The model satisfactorily reproduces the distributions of the NIH(ras) cells’ colony sizes.
Source: Kimmel, M. and Axelrod, D.E. 1991. Unequal cell division, growth regulation
and colonysize of mammalian cells: A mathematical model and analysis of experimental
data. Journal of Theoretical Biology 153: 157–180. Figure 3b, page 162. Copyright: 1991
Academic Press Limited.

the probability p0 of cell death is varied to fit the empirical distribution, in the
sense of least sum of squares of deviations of the model from the data. This
gives p0 � 0.15 (Fig. 3.4).

2. For the NIH cells, which are “normal,” the same value (p0 � 0.15) of the
probability of cell death is used, but the probability p1 of quiescence is varied
until the distribution fits the data. This gives p1 � 0.1 (Fig. 3.3).

As evident from Figure 3.3, the empirical cumulative frequency is initially steep,
which suggests that colonies with less than 10 cells constitute a negligible fraction
of the sample. These colonies were not counted in the experiment; therefore, the
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theoretical distribution is calculated conditional on the event that the colony size
is not less than 10.

The modified Galton–Watson process accurately reproduces variability of the
colony size.

3.3 Extinction and Criticality

In this section, we consider the classification into the subcritical, critical, and
supercritical processes and the laws of process extinction. This material overlaps
with Section 1.5.3, but it seems convenient to reintroduce it here.

The properties of the Galton–Watson process are equivalent to the properties of
the iterates fn(s) of the progeny pgf f (s). In particular, the asymptotic behavior
of {fn(s)} provides insight into the limit theorems for the {Zn} process.

Let s be a real number. From the definition of f (s) as a power series with
non-negative coefficients {pk} and with p0 + p1 < 1, we have the following
properties:

1. f (s) is strictly convex and increasing in [0, 1].
2. f (0) � p0; f (1) � 1.
3. If m ≤ 1, then f (s) > s for s ∈ [0, 1).
4. If m > 1, then f (s) � s has a unique root in [0, 1).

Let q be the smallest root of f (s) � s for s ∈ [0, 1]. Then, the above properties
imply that there is such a root and furthermore:

Lemma 1. If m ≤ 1, then q � 1; if m > 1, then q < 1.

The properties stated earlier and in Lemma 1 are easy to understand if a graph
of the pgf is drawn. Moreover, we can prove that the iterates of f (s) converge to
q.

Lemma 2. If s ∈ [0, q), then fn(s) ↑ q as n → ∞. If s ∈ (q, 1), then fn(s) ↓ q

as n → ∞. If s � q or 1, then fn(s) � s for all n.

As a special case of Lemma 2, we note that fn(0) ↑ q. However,

lim
n→∞ fn(0) � lim

n
P{Zn � 0} � lim

n
P{Zi � 0, for some 1 ≤ i ≤ n}

� P{Zi � 0, for some i ≥ 1} � P{ lim
n→∞Zn � 0},

which is, by definition, the probability that the process ever becomes extinct.
Applying Lemma 1, we get the extinction probability theorem.

Theorem 2. The extinction probability of the {Zn} process is the smallest non-
negative root q of the equation s � f (s). It is equal to 1 if m ≤ 1, and it is less
than 1 if m > 1.

Theorem 2 states that the extinction probability depends on the parameter m,
the mean progeny number of a particle.

Definition 2. If m is less than 1, equal to 1, or greater than 1, then the process is
called subcritical, critical, or supercritical, respectively.
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According to Theorem 2, the subcritical and critical processes eventually be-
come extinct with probability 1. This is particularly surprising in the case of the
critical process, for which the expected value of {Zn} stays constant. Therefore,
some branching process models behave differently from their deterministic coun-
terparts. Early in the history of the branching processes, it was remarked (Harris
1963), and then reiterated (Athreya and Ney 1972), that this instability of the
Galton–Watson process is contrary to the behavior of biological populations, which
tend to reach a state of balance with their environment. We will see, based on ex-
amples taken from cell and molecular biology, that the phenomena of extinction
and instability do not contradict the rules of biology.

The Galton–Watson process is a Markov chain the state of which is equal to the
number of particles present. We may classify its states into transient and recurrent.
Recurrent states are revisited with probability 1. For transient states, this probability
is less than 1. Let us examine the probability of not returning to a given state k. Let
us denote by P (k, j ) � P{Zn+1 � j |Zn � k} the one-step transition probability
of the process. The following is obtained:

P{Zn+i � k, for all i ≥ 1|Zn � k} ≥
{
P (k, 0) � pk

0, p0 > 0

1 − P (k, k) � 1 − pk
1, p0 � 0

}
> 0.

(3.16)
This is demonstrated as follows: Ifp0 > 0, then one of the ways of not returning to
state k is that the process becomes extinct in one step (this occurs with probability
pk

0). If this is impossible (i.e., if p0 � 0), then we notice that one of the ways
of not returning to k is to not return in a single step (if p0 � 0, this occurs with
probability 1 − pk

1). From Eq. (3.16), we deduce the following theorem.

Theorem 3. All states except {Zn � 0} are transient; that is,

P{Zn+i � k, for all i ≥ 1|Zn � k} > 0,

if k � 0. In particular, this implies limn→∞ P{Zn � k} � 0 and P{limn→∞ Zn �
k} � 0, for k ≥ 1. The above, together with Theorem 2, implies that

P{ lim
n→∞Zn � 0} � 1 − P{ lim

n→∞Zn � ∞} � q.

This latter property is known as the instability of the branching process.

3.4 Application: Complexity Threshold in the Evolution
of Early Life

This example is taken from Demetrius et al. (1985). It concerns the ability of
long biomolecules (polymeric chains) composed of smaller units (nucleotides) to
replicate without error. The same problem can be considered in many different
frameworks.

Let us consider a polymeric chain of ν nucleotides. If we assume that there is
a fixed probability p that a single nucleotide is correctly copied, then the prob-
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ability that a copy of the whole chain is correct is pν . Let us suppose that the
chain replicates in a single time unit. During one generation step, the molecule ei-
ther survives (with probability w) and produces a copy, which is accurate with
probability pν , or it is destroyed with probability 1 − w. A given molecule
yields zero, one, or two molecules of the same type after one unit of time: The
probabilities are 1 − w, w(1 − pν), and wpν , respectively. The population of
error-free molecules evolves according to a Galton–Watson branching process
with pgf f (s) � (1 −w) +w(1 −pν )s +wpνs2. This biomolecule is indefinitely
preserved with a positive probability only if the process is supercritical [i.e., if
m � w(1 + pν) > 1], which yields

pν >
1 − w

w
. (3.17)

The probability of nonextinction is equal to 1 − (1 − w)/(wpν).
Relation (3.17) implies that the error probability 1 − p yields a threshold for

the length ν of the molecule, which does not become extinct with probability 1. If
ν is larger than this threshold, then the molecular species becomes extinct.

3.5 Asymptotic properties

The limit theorems for the Galton–Watson process are important for many applica-
tions. Also, they suggest what to expect in more complicated processes. The limit
laws are different in the supercritical, subcritical, and critical cases. In the super-
critical case, the principal result is that the growth is asymptotically exponential,
and that with probability 1, the random variable Zn/m

n tends to a limit W. As a
consequence, Zn is approximated by Wmn for large n. This is an extension of the
exponential or Malthusian law of growth in the realm of stochasticity.

However, here the analogy ends. In the subcritical and critical cases, the prob-
ability of extinction is equal to 1 and the limit of Zn/m

n is 0. Therefore, the
“Malthusian law” is no longer a sensible approximation. In the subcritical case,
it is replaced by the limit laws conditional on nonextinction (i.e., for the process
{Zn|Zn > 0}). In the critical case, the limit distribution of {Zn/n|Zn > 0} is
exponential.

3.5.1 Supercritical process

The main mathematical fact used in this case is that the process {Zn/m
n} is a

martingale.

Definition 3. A sequence of random variables {Xn, n ≥ 0} is called a martingale
if E(|X0|) < ∞ and

E(Xn+1|Xn,Xn−1, . . . , X1, X0) � Xn.
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Theorem 4. If {Xn, n ≥ 0} is a non-negative martingale, such that E(Xn) < ∞
for all n, then there exists a proper random variable X with finite expectation such
that the following hold:
1.

lim
n→∞ Xn � X, wp 1.

2. If the martingale is L2 bounded [i.e., if supn E (X2
n) < ∞], then the

convergence occurs also in the L2 sense. Then, Var(X) � limn→∞ Var(Xn).

Theorem 4 is a modified form of the theorem in Section 1.3 of the book by
Neveu (1975).

If we set

Wn ≡ Zn

mn
,

then E(Wn) � 1 and

E(Wn+1|Wn) � m−(n+1)E(Zn+1|Zn) � m−(n+1)mZn � Wn. (3.18)

Because the Galton–Watson process is a Markov chain, then

E(Zn+1|Zn,Zn−1, . . . , Z1, Z0) � E(Zn+1|Zn).

An analogous property holds for the normalized process {Wn}; that is,

E(Wn+1|Wn,Wn−1, . . . ,W1,W0) � E(Wn+1|Wn).

Consequently, Eq. (3.18) demonstrates that {Wn} is a martingale. Therefore, by
part (1) of Theorem 4, we obtain the following.

Theorem 5. If 0 < m ≡ f ′(1−) < ∞, then there exists a random variable W

such that

lim
n→∞ Wn � W, wp 1.

In the critical and subcritical cases, W ≡ 0 since q � 1. Therefore, W might
be nondegenerate only if m > 1. This is indeed true if an additional condition of
finite variance of the number of progeny is imposed.

Theorem 6. If m > 1, σ 2 < ∞, and Z0 ≡ 1, then (i) limn→∞ E(Wn − W )2 � 0;
(ii) E(W ) � 1,Var(W ) � σ 2/(m2 − m); (iii) P{W � 0} � q � P{Zn � 0
for some n}.

The Laplace transform φ(v) �E(e−vW ) of the distribution of W can be shown
to satisfy a functional equation,

φ(v) � f
[
φ
( v
m

)]
, (3.19)

the so-called Abel’s equation. Indeed, relationship (3.2) can be rewritten in terms
of Laplace transforms ϕn(u) � E[exp(−uZn)] � fn[exp(−u)], where u ≥ 0 is a
symbolic argument,

ϕn+1(u) � f [ϕn(u)]. (3.20)
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Because the Laplace transform of the distribution of Wn is equal to

φn(u) � E[exp(−uWn)] � E
[
exp
(
− u

mn
Zn

)]
� ϕn

( u

mn

)
and, conversely, ϕn(u) � φn(umn), substitution into Eq. (3.20) yields
φn+1(umn+1) � f [φn(umn)]. After a change of variables v � umn+1, we obtain

φn+1(v) � f
[
φn

( v
m

)]
.

Because Wn → W in distribution, φn(v) → φ(v) and the limit (which is the
Laplace transform of the distribution of rv W ) satisfies Abel’s equation (3.19).

Example. In the linear fractional case of Section 3.1.4, the distribution of W can
be directly calculated. Its “density” can be expressed as

fW (w) � qδ(w) + (1 − q)2e−(1−q)w, ≥ 0;

that is, it has an atom at 0 and the remaining part is negative exponential (cf. Section
3.10).

3.5.2 Subcritical process

In the subcritical case, the process becomes extinct with probability 1. What can
be said about the asymptotic behavior?

Example: Linear Fractional Case. The probability of nonextinction is now equal
to

1 − fn(0) � mn

(
1 − q

mn − q

)
(cf. Section 3.1.4), which yields

E(Zn|Zn > 0) � E(Zn)

1 − fn(0)
� mn − q

1 − q
→ q

q − 1
, n → ∞.

This suggests that conditioning on nonextinction is a sufficient device to obtain a
limit law. The proof of the following result can be found in the book of Athreya
and Ney (1972).

Theorem 7 (Yaglom’s). If m < 1, then P{Zn � j |Zn > 0} converges, as
n → ∞, to a probability function whose generating function B(s) satisfies

B[f (s)] � mB(s) + (1 − m). (3.21)

Also,

1 − fn(0) ∼ mn

B′(1−)
, n → ∞. (3.22)
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The above theorem will be useful in the next application considered in this
chapter. Convergence to a limit distribution conditional on nonabsorption is known
as quasistationarity (see Sections 7.4 and 7.5).

3.5.3 Critical process

By analogy to the deterministic case, it might appear that in the critical case,
in which Wn � Zn, the sequence Zn might reach a nontrivial limit. However,
it is impossible, because the extinction probability is equal to 1 in this case. To
approximate the asymptotic behavior of the critical Galton–Watson process, it is
necessary to use conditioning on nonextinction and normalization. Let us start with
a basic lemma (Athreya and Ney, 1972).

Lemma 3. If m � E(Z1) � 1 and σ 2 � Var(Z1) < ∞, then

lim
n→∞

1

n

(
1

1 − fn(t)
− 1

1 − t

)
� σ 2

2

uniformly for 0 ≤ t < 1.

Example: Linear Fractional Case. If m � 1, then Var(Z1) � f ′′(1−) � 2p/(1 −
p) < ∞, based on Eq. (3.10). In this case, the assertion of Lemma 3 is obtained
by directly computing the limit (cf. Section 3.1.4).

Based on Lemma 3, the rate at which the critical process becomes extinct can
be estimated. The limit behavior of the probability of nonextinction, P{Zn > 0},
is found by setting t � 0 in Lemma 3:

P{Zn > 0} � 1 − fn(0) ∼ 2

nσ 2
, n → ∞.

By the same token, the expectation of the process, given nonextinction, satisfies

E(Zn|Zn > 0) � 1

P{Zn > 0} ∼ nσ 2

2
, n → ∞.

This latter suggests that a limit law could exist for the normalized and conditional
process {Zn

n
|Zn > 0}. Indeed, we have the following:

Theorem 8. If m � 1 and σ 2 < ∞, then

lim
n→∞ P

{
Zn

n
> z|Zn > 0

}
� exp

(
− 2z

σ 2

)
, z ≥ 0.

For the proof, see Athreya and Ney (1972).

3.6 Application: Gene Amplification

Material of this section is based on the article by Kimmel and Axelrod (1990). It
is an example of application of the Yaglom’s theorem (Theorem 7) to the analysis
of the asymptotic behavior of a subcritical Galton–Watson process.
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3.6.1 Gene amplification and drug resistance

Amplification of a gene is an increase of the number of copies of that gene in a cell.
Amplification of genes coding for the enzyme dihydrofolate reductase (DHFR)
has been associated with cellular resistance to the anticancer drug methotrexate
(MTX).

A resistant population with an increased number of DHFR gene copies per cell
can be obtained after a sensitive population is grown in increasing concentrations
of the drug. Increased resistance is correlated with increased numbers of gene
copies on small extrachromosomal DNA elements. These elements are visible in
the microscope and resemble pairs of small chromosomes; they are called double
minute chromosomes or double minutes. The number of DHFR genes on double
minutes in a cell may increase or decrease at each cell division. This is because
double minutes are acentric (i.e., they do not have centromeres like real chromo-
somes). Centromeres are required for the mitotic apparatus to faithfully segregate
chromosomes into progeny cells.

In populations of cells with the double minutes, both the increased drug re-
sistance and the increase in number of gene copies are reversible. The classical
experiment confirming this includes transferring the resistant cell population into
a drug-free medium. When these populations are grown in the absence of the drug,
they gradually lose resistance to the drug, by losing extra gene copies.

The population distribution of numbers of copies per cell can be estimated by
the experimental technique called flow cytometry. In the experiments described,
two features of these distributions are notable. First, as expected, the proportion
of cells with amplified genes decreases with time. Second, less obvious, the shape
of the distribution of gene copy number within the subpopulation of cells with
amplified genes appears stable as resistance is being lost. This stable distribution
is depicted in Figure 3.5, taken from Brown et al. (1981). The distribution of cells
with amplified genes retains its shape; only the area under the distribution gradually
decreases while the peak corresponding to sensitive cells increases.

3.6.2 Galton–Watson process model of gene amplification and
deamplification

We consider a cell, one of its progeny (randomly selected), one of the progeny of
that progeny (randomly selected), and so forth. The cell of the nth generation con-
tains Zn double minutes carrying the DHFR genes. During cell’s life, each double
minute is either replicated, with probability a, or not replicated with probability
1−a, independently of the other double minutes. Then, at the time of cell division,
the double minutes are segregated to progeny cells. If the double minute has not
been replicated, it is assigned to one of the progeny cells with probability 1

2 . If it
has been replicated, then either both copies are assigned to progeny 1 (wp α/2),
or to progeny 2 (wp α/2), or they are divided evenly between both progeny (wp
1−α). Let us note that the two double minutes segregate independently to progeny
cells only when α � 1

2 . Otherwise, they either preferentially go to the same cell
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FIGURE 3.5. Loss of the amplified copies of the DHFR gene during cell growth in MTX-
free media. The 3T6 cells resistant to the MTX were grown for different times in MTX-free
medium. The fluorescence level is proportional to the number of gene copies per cell. The
values in parentheses are the percentages of cells with gene copy numbers greater than
those for sensitive cells. (A) Dotted line, 3T6 sensitive cells; solid line, resistant cells. (B)
Cells grown for 17 generations without MTX. (C) Cells grown for 34 generations without
MTX. (D) Cells grown for 47 generations without MTX. (Modified from Brown et al.,
1981.) Source: Brown, P., Beverley, S.M. and Schimke. R.T. 1981. Relationship of amplified
dihydrofolate reductase genes to double minute chromosomes in unstably resistant mouse
fibroblast cell lines. Molecular and Cellular Biology 1: 1077–1983. Figure 1, page 1079.
Copyright: 1981 American Society for Microbiology.

(α > 1
2 ) or to different cells (α < 1

2 ). The randomly selected progeny in our line
of descent contains one of the following (Fig. 3.6) the following:

• No replicas of the original double minute [wp (1 − a)/2 + aα/2]
• One replica of the original double minute [wp (1 − a)/2 + a(1 − α)]
• Both replicas of the original double minute (wp aα/2).
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FIGURE 3.6. Schematic representation of the mathematical model of amplification and
deamplification of genes located on double minute chromosomes. The sequence of events
is presented for one of the possibly many double minutes present in the cell. During the
cell’s life, the double minute is either replicated or not replicated. At the time of cell division,
the double minute is assigned to one of the daughter cells (segregation). If it has not been
replicated, it is assigned to one of the daughter cells. If it has been replicated, then either
both copies are assigned to daughter 1, or to daughter 2, or they are divided evenly between
both daughters.

Therefore, the number of double minutes in the nth generation of the cell lineage
is a Galton–Watson process with the progeny pgf:

f (s) � d + (1 − b − d)s + bs2, (3.23)

where b � aα/2 and d � (1 − a)/2 + aα/2 are the probabilities of gene am-
plification and deamplification, respectively. Because double minutes gradually
disappear from the cell population in the absence of selection, it is assumed that
deamplification (loss of gene copies) exceeds amplification, so that the process is
subcritical. In mathematical terms, b < d and m � f ′(1−) � 1 + b − d < 1.

3.6.3 Mathematical model of the loss of resistance

We will call a cell resistant if it carries at least one double minute chromosome
containing the DHFR gene. Otherwise, it is called sensitive. In the experiments
described earlier, a population of cells resistant to MTX, previously cultured for
N generations in medium containing MTX, consists only of cells with at least one
DHFR gene copy (i.e., ZN > 0). Therefore, the number of gene copies per cell is
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distributed as {ZN |ZN > 0}. If N is large, then, because the process is subcritical,
by Theorem 7 (Yaglom’s Theorem), this distribution has pgf B(s) satisfying the
functional equation given in the theorem. Also, based on the estimates of 1−fn(0)
provided in the same theorem, the resistant clone grows, in each generation, by
the factor 2m on the average.

After the N initial generations, the resistant clone has been transferred to the
MTX-free medium. The overall number of cells now grows by a factor of 2 in each
generation, whereas the average number of resistant cells continues to grow by a
factor of 2m. Let us denote by R(n) and S(n) respectively the number of resistant
and sensitive cells in the population, n generations after transferring the cells to the
MTX-free medium; r(n) � R(n)/[R(n) + S(n)] is the fraction of resistant cells.
We obtain

R(n) � (2m)nR(0), S(n) + R(n) � 2n[S(0) + R(0)];

hence,

r(n)

r(0)
� mn. (3.24)

This means that the proportion of resistant cells decreases geometrically, whereas
the distribution of gene copy number among the resistant cells remains close to
the limit distribution of the Yaglom Theorem. This behavior is consistent with the
experimental data of Figure 3.5.

3.6.4 Probabilities of gene amplification and deamplification
from MTX data

Probabilities b and d can be estimated from the loss of resistance experiments
similar to that in Kimmel and Axelrod (1990), using data on the S-180(R1A) cells
in Kaufman et al. (1981). The resulting estimates are b � 0.47, and d � 0.50,
yielding a � 1 − 2(d − b) � 0.94 and α � 2b/a � 1. The interpretation is that
although the frequency of replication of the double minute chromosomes is quite
high, both copies are assigned almost always to the same progeny cell.

In Kimmel and Axelrod (1990), other models of the same process have been
considered. All of them exhibit dynamics similar to that predicted by Yaglom’s
Theorem.

3.7 Application: Iterated Galton–Watson Process and
Expansion of DNA Repeats

We consider mathematical properties of a time-discrete stochastic process describ-
ing explosive proliferation of DNA repeats in a class of human genetic diseases.
The process contains copies of the Galton–Watson process as its building blocks.
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3.7.1 Dynamics of DNA repeats in human pedigrees

Recently, several heritable disorders have been associated with dynamic increases
of the number of repeats of DNA triplets in certain regions of the human genome.
In two to three subsequent generations, the transitions from normal individuals
to nonaffected or mildly affected carriers and then to full-blown disease occur.
The two syndromes for which the most comprehensive data exist are as follows
(Richards and Sutherland, 1994):

• The fragile X syndrome, caused by a mutation of the FMR-1 gene charac-
terized by expansion of the (CCG)n repeats (normal 6–60; carrier 60–200,
affected >200 repeats).

• Myotonic dystrophy, caused by a mutation of the DM-1 autosomal gene char-
acterized by expansion of the (AGC)n repeats (normal 5–27, affected >50
repeats).

These two inherited human syndromes previously were distinguished by two
features inconsistent with Mendelian inheritance: progressively earlier onset
of symptoms in subsequent generations and higher severity of symptoms in
subsequent generations.

These features have recently been correlated with changes in DNA. In each case,
a trinucleotide existing in a few copies in an unaffected parent is found in multi-
ple tandem copies in the progeny. The number of tandem copies is dramatically
increased (10 – 100-fold) in affected individuals. It has been correlated with the
age of onset and the severity of symptoms.

Important questions that have not been fully answered are as follows:

1. What is the mechanism of fluctuation of the number of repeat sequences in
normal people (not in affected families)?

2. What is the mechanism of the modest increase in repeat sequences in
unaffected carriers?

3. What is the mechanism of the rapid expansion of the number of repeat
sequences in affected progeny within one or two generations?

Caskey et al. (1992) formulated a biological hypothesis regarding the origin of
high variation in repeat count: “The instability in the premutation alleles which
leads to the extraordinary expansions observed in DM and fragile X patients re-
sults from the presumed difficulty of replicating long GC-rich sequences. In this
scenario, unequal rates of DNA synthesis lead to multiple incomplete strands of
complementary, triplet, reinitiated sequences.”

3.7.2 Definition of the process

Gawel and Kimmel (1996) make this hypothesis specific by assuming the following
scenario of expansion of repeats:

• In the initial, 0th, replication round, the number of repeats is n.
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FIGURE 3.7. The nonlinear mechanism of repeat expansion: Illustration of DNA branches
that can be resolved into repeats. Suppose that there are Xi triplets in generation i and that
a random number (usually 0 or 1) of new branches of DNA emerge on top of a previous
one at the endpoint of each repeat (a single “initiation before termination” on each branch).
Assuming that the process is confined to a region defined by the length of the original Xi

repeats and that all triplets from all branches are resolved and incorporated into a linear
structure of chromosomal DNA, we obtain the number of repeats Xi+1 in the (i + 1)st
generation. Source: Gawel, B. and Kimmel, M. 1996. The iterated Galton–Watson process.
Journal of Applied Probability 33: 949–959. Figure 1, page 952. Copyright: 1996 Applied
Probability Trust.

• In each new DNA replication round, a random number of new branching
events (i.e., “initiation without termination of replication” events) occur at the
endpoint of each repeat [this random number is characterized by the pgf f (s)].

• All resulting branches become resolved and reintegrated into the linear DNA
structure, which becomes the template for the succeeding replication round.

Gawel and Kimmel (1996) note that there exists a precedent for such mechanism
in the replication of the T4 bacteriophage. This virus induces production in the host
cell of branched networks of concatenated DNA, which subsequently is resolved
into unbranched phage genomes [see references in Gawel and Kimmel (1996)].

Gawel and Kimmel (1996) developed the so-called iterated simple branching
process {Xi} to provide a mathematical formulation for the expansion process
(Figure 3.7). Here, Xi is the length of a linear chain of DNA repeats after the ith
stage of replication (i � 0, 1, 2, . . .) andX0 � n > 1. A chain withXi � ν repeats
replicates as a branched network, which is assumed to be a Galton–Watson tree
descended from a single ancestor through ν − 1 generations. Thus, the replicating
chain serves as a template for the height of the daughter tree. This partial tree later
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resolves into a linear chain. To compute the length of this chain, let us suppose
that

{Zk, k ≥ 0} (3.25)

is the sequence of numbers of individuals in a Galton–Watson process with progeny
probability generating function f (s). Suppose further that the sequence

{Yk, k ≥ 0}, (3.26)

where

Y0 � Z0 � 1,

Y1 � Z0 + Z1,

Y2 � Z0 + Z1 + Z2,

...

Yk � Z0 + Z1 + · · · + Zk,

...

(3.27)

is the total progeny process (i.e., Yk is the cumulative number of progeny produced
in the generations 0 through k of the Galton–Watson process) (cf. Section 3.10).

Further let, {Z(i)
k , k ≥ 0}, i ≥ 0, be a sequence of iid copies of {Zk} with

{Y (i)
k , k ≥ 0}, i ≥ 0 being the corresponding total progeny processes. These are

the tree structures grown at each (ith) replication round. The generic process {Zk}
is called the underlying Galton–Watson process.

The process

{Xi, i ≥ 0}, (3.28)

can be now defined in a recursive manner:

X0 � n, (3.29)

Xi+1 � Y
(i)
Xi−1, i ≥ 0. (3.30)

Hence, the sequence {Xi} is a Markov process and, because Y
(i)
0 � 1, the state 1

is absorbing.

3.7.3 Example

The following version of the process seems to be realistic from the biological view-
point. Suppose that at the end of each repeat, a new “initiation before termination”
event occurs with small probability p, so that

f (s) � (1 − p)s + ps2. (3.31)

Then, the number of branches stemming from each ramification point is at least
one and at most two, the latter event being less likely. This leads to a “sparse” tree
and implies that the growth of the process will be slow for a number of generations.
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Fluctuations of the number of triplets in the unaffected individuals can be ex-
plained by coexistence of processes of triplet increase and triplet loss. Accordingly,
we also assume that the process of resolution and reincorporation of repeats into
the linear chromosomal structure has a limited efficiency u < 1.

This can be mathematically formalized using the idealized binomial thinning,
(i.e., assuming that each repeat is resolved and reinserted with probability u). The
new process {X̃i, i ≥ 0} including the imperfect efficiency is defined as

X̃0 � n, (3.32)

X̃i+1 � B(u, Y (i)
X̃i−1

− 1) + 1, i ≥ 0, (3.33)

where, conditional on N , B(u,N) is a binomial random variable with parameters
u and N .

With an appropriate choice of parameters (see Theorem 10 further on), this
process produces runs of fluctuations, followed by explosive growth.

3.7.4 Properties

For the process without thinning, Pakes (2000) provides the following analysis,
which is simpler than the original arguments in Gawel and Kimmel (1996). We
exclude the trivial case p1 � 1, where Xi � X0. Then, P[{Xi → 1} ∪ {Xi →
∞}] � 1. Let X∞ denote the almost sure limit of Xi and let g(s, ν) denote the
pgf of Yν . Then, g(s, 0) � s and g(s, ν + 1) � sf [g(s, ν)] (see Section 3.10). It
follows from Eq. (3.33) that

E(sXi+1 ) � E[g(s,Xi − 1)]

and, hence, in all cases,

E(sX∞ ) � E[g(s,X∞ − 1)]. (3.34)

If

0 < p0 < 1, (3.35)

we may choose s ∈ (0, q) and then f (s) > s. This gives g(s, 1) > sf (s) > s and,
hence, by induction, that g(s, ν − 1) > sν . Because Eq. (3.34) can be written as

s + E(sX∞, X∞ > 1) � s + E[g(s,X∞ − 1), X∞ > 1],

it is clear that this can hold if and only if P[X∞ > 1] � 0. We conclude that the
process is absorbed at unity when Eq. (3.35) holds. Next, if p0 � 0, then Y (i)

ν >

ν+1 and, hence, Eq. (3.30) implies Xi+1 ≥ Xi . So, Xi ↑ ∞ if X0 ≥ 2. The above
reasoning (and some other details) are summarized by the following statement.

Theorem 9. Let us consider the iterated Galton–Watson (IGW) process with no
thinning (i.e., with u � 1). Then,

1. m < 1 yields E(Xi) → 1 and Xi
a.s.→ 1;

2. m � 1 yields E(Xi) � E(X0) and Xi
a.s.→ X∞, where X∞ is a finite rv and

X∞ � 1 if p0 < 1;
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3. m > 1 yields E(Xi) → ∞ and

a. if p0 > 0, then Xi
a.s.→ 1,

b. if p0 � 0 [i.e., f (s) � p1s + p2s
2 + · · ·], then Xi

p→ ∞.

The next result concerns the growth of the IGW process with binomial thinning.

Theorem 10. Suppose {X̃n} is the IGW process with binomial thinning.

1. Suppose m > 1. For each integer M > 0, there exists an integer N0 > 0 such
that

E(X̃i+1|X̃i � N0) > MN0.

2. Suppose u > 1
2 and p0 � 0. There exist N0 ≥ 0 and α > 1 such that

E(X̃n+1|X̃n ≥ N0) ≥ αE(X̃n − 1|X̃n ≥ N0).

The properties stated in Theorem 9 are similar to those of the Galton–Watson
process, with the absorbing state being {X � 1} in our case, as opposed to {X � 0}
for the Galton–Watson process. The most notable difference is that the supercritical
Galton–Watson process never becomes absorbed with probability 1, whereas the
iterated supercritical process may.

Theorem 10 shows that no matter how small the efficiency u in the process with
thinning, the process will increase (in the expected value sense) by an arbitrary
factor, if only it exceeds a certain threshold. To illustrate the properties of the
process with thinning, 20 independent simulations with parameters p � 0.05 and
u � 0.8 are presented in Figure 3.8. All of them start from n � 20 repeats. Once
the fluctuation exceeds 100–200 repeats, it usually jumps to ≥ 1000 repeats.

3.8 Application: Galton–Watson Processes in a Random
Environment and Macroevolution

In evolutionary biology, it is frequently assumed that the environment of a popu-
lation is fluctuating randomly (Gillespie 1986). If the dynamics of a population is
described by a Galton–Watson branching process, this means that the pgf of the
number of progeny per particle varies randomly from one generation to another.

The following account follows unpublished lecture notes by V. Vatutin (personal
communication; also, consult Borovkov and Vatutin 1977). Assume that the repro-
duction law in a Galton–Watson process is changing from generation to generation
and particles of the mth generation produce offspring according to the probability
generating function fm(s). Clearly,

Fn(s) � Fn−1[fn(s)] � f0(f1(· · · (fn(s)) · · ·))
is the probability generating function specifying the distribution law of Zn. One
important case is the randomly changing environment. Specifically, let us define
a collection G � {Ga : a ∈ A} of probability generating functions with A being
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FIGURE 3.8. Twenty simulation runs of the iterated Galton–Watson process with binomial
thinning. Parameters arep � 0.05 andu � 0.8; that is, a new “initiation before termination”
event occurs with probability 5% and the efficiency of the resolution and reincorporation
process is 80%. Each run starts from exactly 20 repeats and continues to fluctuate within
narrow limits for a variable number of generations. Once the fluctuation exceeds 100–200
repeats, it usually jumps to ≥ 1000 repeats. Source: Gawel, B. and Kimmel, M. 1996.
The iterated Galton–Watson process. Journal of Applied Probability 33: 949–959. Figure
2, page 958. Copyright: 1996 Applied Probability Trust.
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some set. The reproduction law of the particles of the ith generation is taken from
G at random according to some law

fi ∈ G, iid.

Let us note that this setup implies dependent reproduction in successive gener-
ations. The above model is called the Galton–Watson branching processes in a
random environment (GWBPRE). Let

ρ � E[ln f ′
0(1−)].

The GWBPRE is said to be subcritical if ρ < 0, critical if ρ � 0, and supercritical
if ρ > 0. For nontriviality, we assume that

Var[ln f ′
0(1−)] > 0.

3.8.1 Reduced trees for subcritical GWBPRE

The concept of reduced process is important for the reversed-time analysis of
branching processes. It involves the part of the process that contributed to individ-
uals seen in the present time (Fleischmann and Siegmund–Schultze 1977, Sagitov
1989). Mathematically, we define the reduced process (backward genealogical
tree) as a family

{Zm,n, 0 ≤ m ≤ n}
in whichZm,n is the number of particles at timem ∈ [0, n] with nonempty offspring
at time n.

Fleischmann and Vatutin (1999) established that for the fractional linear case
(Section 3.1.4) and m > 1, we have

lim
n→∞ P[Zm,n � k | Zn > 0] � qk(m) > 0,

∞∑
k�1

qk(m) � 1,

and for all m∗ > 0, we have

lim
n→∞ P[Zn−m∗,n � k | Zn > 0] � q∗

k (m∗) > 0,
∞∑
k�1

q∗
k (m∗) � 1,

and, finally, if un and vn are such that

lim
n→∞ un � lim

n→∞ vn � ∞, lim
n→∞(n − un − vn) � ∞,

then

lim
n→∞ P[Zun,n � Zn−vn,n | Zn > 0] � 1. (3.36)

Let us assume that the present time isn, in the units of one generation of particles. If
we observe a nonextinct process population that evolved in the past like a subcritical
GWBPRE, we see that with a high probability, during the long time interval [un, n−
vn], the process did not change state. This means that the divergence happened
either very close to the present moment or very far in the past.
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3.8.2 Evolutionary interpretation

V. Vatutin (personal communication) noted that Eq. (3.36) may enable a rein-
terpretation of conclusions based on molecular evidence of genetic divergence
between humans and chimpanzees. One of the more influential recent evolution-
ary theories is the theory of punctuated equilibria. The theory, based on some fossil
evidence, states that long periods of evolutionary stasis (invariance of species) are
interspersed with bursts of speciation (appearance of new species). If the evolu-
tionary process can be modeled using a subcritical GWBPRE, then the observed
periods of evolutionary stasis preceded and followed by bursts of speciation may
not necessarily reflect the unevenness of the evolutionary process itself, but they
may follow from the properties of the reduced GWBPRE. Gillespie’s (1986) more
general observations concerning the evolution’s “episodic clock” can be similarly
re-interpreted. Gillespie (1986) has investigated the number of substitutions in
DNA and protein. He found the ratio of the variance to the mean in a set of four
nuclear and five mitochondrial genes in mammals ranged from 0.16 to 35.55, which
can be interpreted as periods of stasis alternating with periods of rapid substitution.
To fit these data, Gillespie (1986) suggested models that incorporate natural selec-
tion in a changing environment. Reduced GWBPRE might provide an alternative
for these models.

3.9 Other Works and Applications

Much work was carried out concerning both various generalizations of the Galton–
Watson process and diverse properties of the basic process. Further in this book,
we will consider examples of Galton–Watson processes with diverse type spaces.
In this section, we provide examples of a different kind.

3.9.1 Stochastic dependence

Stochastic dependence in branching processes can be formulated in various ways.
Examples include intergeneration dependence and dependence between relatives.
Both are interesting because of their applications in cell proliferation. It is known
that progeny cells emerging from a division of a parent cell have life lengths
and other parameters which are correlated. A number of researchers attempted to
account for these empirical observations (Axelrod and Kuczek 1989, Brooks et al.
1980, Rigney 1981, Hejblum et al. 1988, Kuczek and Axelrod 1986, Sennerstam
and Strömberg 1996, Staudte et al. 1984, 1997, Webb, 1989).

Generation dependence (Fearn 1972) has a different meaning for the Galton–
Watson process in which the generations are synchronized, and in the time-
continuous age-dependent processes (Fearn 1976), in which the generations
overlap (Chapters 4 and 5). One way of capturing dependence between relatives is
to consider the individual together with his/her relatives (siblings, cousins, etc.) as
a single superindividual. This can be carried out using the framework of general
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processes (Olofsson 1996). For a different approach, see Crump and Mode (1969).
In the framework of estimation, a convenient manner of expressing such “local”
dependencies is the bifurcating autoregression (Section 5.5.3).

3.9.2 Process state dependence

All Galton–Watson processes, including these for which the progeny distributions
depend on the state of the process, are Markov. However, there is no simple rela-
tionship linking the type of dependence with the properties of the resulting Markov
chain. Therefore, the study of such processes proceeds by way of special cases,
deemed important usually for extramathematical reasons. An early reference is the
article by Lipow (1975).

A series of articles by Klebaner consider limit properties of processes with
progeny distributions depending on the process state (i.e., usually the number
of particles at a given time). Klebaner (1997) provided a short review of size-
and density-dependent processes. Klebaner (1988, 1990) and Cohn and Klebaner
(1986) consider applications in demography and genetics. Another interesting
article (Klebaner and Zeitouni 1994) considers the problem of “cycle slip” (i.e.,
the conditions that a randomly perturbed deterministic system has to satisfy to
escape the basin of attraction of the deterministic part).

Another application is presented by Jagers (1995), who used the coupling
method to analyze state-dependent processes describing proliferation of biological
cells.

3.9.3 Bisexual Galton–Watson process

The bisexual generalization of the Galton–Watson process is not straightforward
to consider, because it involves a process of pair formation. One way to proceed is
to assume that only females bear progeny, of both genders, and to define a mating
function which provides, for each unpaired female, the probability of forming a
pair and mating with an available male. These functions may be consistent with
monogamy or monoandry or they may mimic the mating patterns of insects and
so forth. The mating process destroys the branching property and the resulting
stochastic process is not strictly speaking a branching process. One of the recent
articles on the limit properties of such processes is by González and Molina (1996).
An exhaustive review of older and current literature is provided in the thesis by
Falahati (1999).

3.9.4 Age of the process

The estimation of the age of the branching process based on data concerning ex-
tant individuals, their number, types, and so forth gained importance because of
applications in genetics and molecular evolution. The evolution of chromosomes
containing disease genes can be represented as a branching process with a Poisson
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distribution of progeny if the disease subpopulation is a small subset of a larger
population evolving according to the Fisher–Wright model. A model of this type
was considered by Kaplan et al. (1995) and used to obtain simulation-based like-
lihood estimates of location and age of disease genes. A number of refinements of
this method can be found in the unpublished doctoral thesis of Pankratz (1998), in
which further references also are provided.

Another type of application is finding the age of the most recent common ances-
tor of a population characterized by its genetic makeup, under the assumption that
its demography followed a branching process. An example related to the evolution
of modern humans, using a time-continuous branching process, is described in
detail in Section 4.4.

An early article concerning the estimation of the age of a Galton–Watson branch-
ing process is by Stigler (1970). The author uses the fractional linear case, in which
an estimator can be explicitly derived, and then generalizes the results to the case
of the general Galton–Watson process. This article was followed by a number of
other publications, including those by Tavaré (1980) and Koteeswaran (1989).

3.9.5 Family trees and subtrees

A somewhat related subject is the probability that the family tree of the process
contains an infinite N -nary subtree (i.e., a tree with exactly N progeny of each
individual). Pakes and Dekking (1991) demonstrated that this probability is the
largest root in the interval [0, 1] of the equation

1 − t � GN (1 − t),

where

GN (s) �
N−1∑
j�0

(1 − s)jf (j )(s)

j !

and f (s) is the offspring distribution of the process. Further results concerning the
maximum height of the N -nary subtree are provided in the same article.

3.10 Problems

1. Following are given several examples of probability generating functions of
a Galton–Watson process. For each of them, find E(Z1) ≡ m and Var(Z1) ≡
σ 2. Assume that the Galton–Watson process describes a cell population with
discrete generations. Characterize the model described by each pgf. Example.
If f (s) � (ps + q)2, then each of the two daughter cells, independently,
survives with probability p and dies with probability q.

• f (s) � ps2 + qs

• f (s) � ps2 + q

• f (s) � ps2 + qs + r
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2. Assume that the pgf of the Galton–Watson process is the fractional linear
function. Using induction, prove the form of fn(s) in the case m � 1.

3. Assume the fractional linear case. Treating the Galton–Watson process as a
Markov chain, check that the state {Zn � k} is transient if k � 0 and recurrent
if k � 0. Hint: Use the closed form of fn(s) and base the assertion on the
condition of divergence of

∑
n≥0 Pr{Zn � k}.

4. Suppose that a Galton–Watson process with the pgf f (s) is started not by
a single particle, but by a random number of particles [with pgf g(s)]. Find
fn(s).

5. Problem 4 Continued. Assume f (s) the fractional linear function with
m < 1 and g(s) � (q − 1)s/(q − s), where q � f (q). Define f̄(n)(s) �
[fn(s) − fn(0)]/[1 − fn(0)], the conditional pgf of Zn provided Zn > 0.
Prove, using induction, that f̄(n)(s) ≡ g(s).

6. Distribution with pgfg(s) having properties as in the previous problem is called
a quasistationary distribution of the Galton–Watson process. What makes it
different compared to the stationary distribution of a Markov chain?

7. Galton–Watson Process in Varying Environment. Suppose that the nth gener-
ation of particles has the progeny distribution {p[n]

k , k ≥ 0} with pgf f [n](s).
Define the process in the terms of a Markov chain and derive the forward
equation as it was done for the ordinary process. What is fn(s) now?

8. Integrated Galton–Watson Process . Consider the process {Yn}, where Yn �∑n
i�0 Zi . Demonstrate that the pgf of Yn, denoted Fn(s), satisfies

Fn+1(s) � sf [Fn(s)].

9. Problem 8 Continued. Demonstrate that if m < 1, then the limit
limn→∞ Fn(s) � F (s) exists and satisfies the following functional equation:

F (s) � sf [F (s)].

Hint: Show that |Fn+1(s) − Fn(s)| ≤ m|Fn(s) − Fn−1(s)| if s ∈ [0, 1]. F (s)
is the pgf of the total number of particles produced in the process, and in the
subcritical case it is a proper random variable [i.e., F (1) � 1].

10. Problem 8 Continued. Assume the linear fractional case and calculate F (s)
by solving the functional equation in Problem 9. Does F (s) correspond to any
standard discrete distribution?

11. Quasistationary Distribution. Suppose that a subcritical Galton–Watson (GW)
process with the pgf f (s) is started not by a single particle, but by a random
number of particles having pgf B(s), defined in Yaglom’s Theorem. Prove that
this distribution is a stationary distribution of the GW process. Hint: Use the
functional equation defining B(s) and the property that B(0) � 0.

12. Assume the fractional linear case and m > 1. Calculate the Laplace transform
of Wn � Zn/m

n and find its limit as n → ∞. What is the distribution of W?
13. Consider the following mechanisms of gene amplification:

• Each of the double minute chromosomes present in the newborn daughter
cell survives wp p. If it does survive, then during replication, each next
copy of this particular double minute chromosome is produced wp p.
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• During segregation, each copy is assigned to given daughter cell wp 1
2 .

Consider a random lineage of cells in the population. If in the 0th generation
there exists only a single cell with a single double minute chromosome, then
{Zn, n ≥ 0}, the sequence of number of copies of the double minute in the
cell of nth generation, forms a Galton–Watson process with the progeny pgf
f (s). Find f (s). Hint: Use the expression for the pgf of the sum of random
number of iid rv’s.

14. Problem 13 Continued. Using the properties of the linear fractional pgf’s,
assuming the subcritical process, find the pgf B(s) of the limit distribution of
the number of double minute chromosomes per cell in the cells of the resistant
clone. Suppose that the mean number of double minute chromosomes per
resistant cell is equal to 20 and that double minutes have been counted in 50
cells. Find the maximum likelihood estimate of p and an approximate 95%
confidence interval for this estimate.

15. Consider a population of particles with life lengths equal to 1, proliferating
by binary fission, with each of the two progeny surviving independently with
probability p.

a. Find the probability of eventual extinction

q � Pr{# particles � 0 at some time n}
for a population started by a single ancestor particle, as the function of p
[i.e., q � q(p)], for p ∈ [0, 1].

b. Find the probability that at time n � 3, there will be four or less particles
in the process.

c. An ad hoc way to increase the probability of nonextinction of the process
is to start at time 0 from a collection of N ancestor particles, instead of 1.
Find the probability q � q(p, N ) of eventual extinction of such process.
For p � 3

4 , what should N be equal to so that 1−q(p,N ) exceeds 0.999?

16. Consider a Galton–Watson process Zn with progeny pgf h(s), started by a
random number Y of ancestors [where Y ∼ g(s)]. Find

a. E (Zn|Z0 � Y )
b. Var(Zn|Z0 � Y )
c. Pr{Zn � 0, some n |Z0 � Y }.





CHAPTER 4

The Age-Dependent
Process: The Markov Case

This chapter is devoted to the use of the time-continuous branching process with
exponential life time distributions. This process also has the Markov property and
is closely related to the Galton–Watson process. The exponential distribution to
model lifetimes of particles is not well motivated by any biological assumptions.
Indeed, the exponential distribution admits lifetimes which are arbitrarily close to
0, whereas it is known that life cycles of organisms and cells have lower bounds
of durations, which are greater than 0. The advantage of using the exponential
distribution is that it leads, in many cases, to computable expressions. These latter
allow one to deduce properties which then can be conjectured for more general
models.

4.1 Differential Equation for the pgf and Its Elementary
Properties

4.1.1 Definition of the process

The process can be described as follows. A single ancestor particle is born at
t � 0. It lives for time τ , which is exponentially distributed with parameter λ. At
the moment of death, the particle produces a random number of progeny according
to a probability distribution with pgf f (s). Each of the first-generation progeny
behaves, independently of each other, in the same way as the initial particle. It lives
for an exponentially distributed time and produces a random number of progeny.
Progeny of each of the subsequent generations behave in the same way. If we denote
the particle count at time t by Z(t), we obtain a stochastic process {Z(t), t ≥ 0}.

The probability generating function F (s, t) of Z(t) satisfies an ordinary differ-
ential equation which is easiest to derive based on the Markov nature of the process.
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FIGURE 4.1. Derivation of the backward equation for the Markov time-continuous
branching process.

Indeed, let us consider the process at a given time t . Any of the particles existing
at this time, whatever its age is, has a remaining lifetime distributed exponen-
tially with parameter λ. This follows from the lack of memory of the exponential
distribution. Therefore, each of the particles starts, independently, a subprocess
identically distributed with the entire process (Figure 4.1). Consequently, at any
time t+t , the number of particles in the process is equal to the sum of the number
of particles in all iid subprocesses started by particles existing at time t . Each of
these subprocesses is of age t . In mathematical terms,

Z(t + t) �
Z(t)∑
i�1

Z(i)(t), (4.1)

where the superscript (i) identifies the ith iid subprocess. So, according to the pgf
theorem (Theorem 1), we have the following pgf identity:

F (s, t + t) � F [F (s, t),t]. (4.2)

We subtract F (s, t) from both sides and, remembering that the process is started
by a single particle [i.e., F (s, 0) � s], we can write the result in the following
form:

F (s, t + t) − F (s, t) � F [F (s, t),t] − F [F (s, t), 0]. (4.3)

If t is small, then with a probability close to 1, the process consists of only either
the ancestor or of its first-generation progeny. In the terms of the process pgf,

F (s,t) � se−λt + f (s)(1 − e−λt ) + o(t) (4.4)
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or

F (s,t) − F (s, 0) � [−s + f (s)](1 − e−λt ) + o(t). (4.5)

Substituting Eq. (4.5) into Eq. (4.3) and dividing by t , we obtain

F (s, t + t) − F (s, t)

t
� {−F (s, t) + f [F (s, t)]}(1 − e−λt ) + o(t)

t
.

By letting t → 0, this leads to the following differential equation:

dF (s, t)

dt
� −λ{F (s, t) − f [F (s, t)]}. (4.6)

Equation (4.6), with the initial condition F (s, 0) � s, has a unique pgf solution if
conditions are satisfied which guarantee that the process does not explode [i.e., that
at each time t > 0, the number of particles is finite wp 1 or that lims↑1 F (s; t) � 1
(Pakes 1993)]. For this, it is sufficient that the expected number of progeny per
particle m � f ′(1−) be finite (Athreya and Ney 1972).

In particular, expression (4.2) demonstrates that for any time increment t , we
have

F (s, it) � f
(i)
t (s),

where f (i)
t (s) is the ith iterate of F (s,t). Therefore, {Z(it), i � 0, 1, . . .} is a

Galton–Watson process with progeny pgf ft (s). Of course, ft (s) has properties
very different from those of f (s). In particular, even if f (s) admits only a finite
number of progeny, the distribution of Z(it) always has an infinitely long right
tail.

4.1.2 Probability of extinction and moments

The Markov branching process is called

• subcritical if m < 1,
• critical if m � 1,
• supercritical if m > 1.

Let q be defined as for the Galton–Watson process {i.e., as the smallest root of
the equation f (s) � s, s ∈ [0, 1]}. The extinction probability is, again, equal to q.

Theorem 11. Suppose that m < ∞. If F (s; t) is the pgf solution of Eq. (4.6), then
P (t) ≡ F (0; t) → q as t → ∞.

The extinction probability result is the same as for the Galton–Watson process.
The expressions for the moments are almost as simple as they are for the Galton–
Watson process.

Let us define the kth factorial moment of Z(t), mk(t) � E{Z(t)[Z(t) −
1] · · · [Z(t) − k + 1]}. The differential equations for the factorial moments of
the process are formally derived by differentiating Eq. (4.6) with respect to s and
letting s ↑ 1. For example, the expected value m1(t) satisfies

dm1(t)

dt
� λ(m − 1)m1(t), m1(0) � 1.
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These equations can be solved explicitly. We obtain the following expressions for
the expectation and variance of Z(t):

E[Z(t)] � eat , (4.7)

Var[Z(t)] �
⎧⎨⎩

f ′′(1−) − f ′(1−) + 1

f ′(1−) − 1
eat (eat − 1), a � 0

f ′′(1−)λt, a � 0,
(4.8)

where a � λ(f ′(1−) − 1) is the Malthusian parameter of population growth.

4.2 Application: Clonal Resistance Theory of Cancer
Cells

The aim of cancer chemotherapy is to achieve remission (i.e., the disappearance
of clinically detectable cancers) and then to prevent relapse (i.e., the regrowth of
cancer). In many cases, the failure of chemotherapy is associated with the growth
of cells resistant to further treatment with the same drug. There are two conceivable
modes of drug resistance: Resistant cells might exist in tumors before treatment and
be selected for during treatment. Alternatively, they might be induced by treatment.

Drug resistance was extensively studied in bacteria (see Section 6.1 and also a
review article by Levy 1998) and the resulting ideas have been applied to under-
standing drug resistance in cancer cells. One possible hypothesis is that mutations
from sensitivity to resistance are rare, irreversible events that spontaneously occur
in the absence of the selecting drug. Moreover, mutation to resistance to a drug
is a single event and it arises independently of resistance to another drug. Al-
though simplistic, this model is useful in understanding the initiation and growth
of drug-resistant cancer cells. Also, it might help design new protocols of cancer
chemotherapy.

We explore the branching process approach to a theory of resistance, which
has become influential in the cancer research community. It was originally de-
veloped by Goldie and Coldman (1979, 1984), Goldie (1982) and Coldman
and Goldie (1985). We will rederive some of the original results, using Markov
time-continuous branching processes. This approach seems more rigorous.

The assumptions of the theory are as follows (Fig. 4.2).

1. The cancer cell population is initiated by a single cell which is sensitive to
the cytotoxic (chemotherapeutic) agent. The population proliferates without
losses.

2. The interdivision time of cells is a random variable with a given distribution.
3. At each division, with given probability, a single progeny cell mutates and

becomes resistant to the cytotoxic agent.
4. Mutations are irreversible.

We wish to compute the probability that when the tumor is discovered, it does
not contain any resistant cells. Only in such a situation, is the use of a cytotoxic
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FIGURE 4.2. Schematic representation of the branching process of clonal resistance in the
single-mutation case.

agent effective. If even a small subpopulation of resistant cells exists, the cancer
cell population will eventually reemerge despite the therapy.

4.2.1 Single-mutation case

The branching process model

We translate the hypotheses of clonal resistance into the language of branching
processes.

1. In the process, there exist two types of particle, labeled 0 (sensitive) and 1
(resistant).

2. The process is initiated by a single type 0 particle.
3. The life spans of particles are independent random variables, distributed

exponentially with parameter λ.
4. Each particle, at death, divides into exactly two progeny particles:

• The 0-particle produces either two 0-particles, wp 1−α, or one 0− particle
and one 1-particle, wp α.

• The 1-particle produces two 1-particles.

Thus, we have a two-type time-continuous Markov branching process.
Let us introduce the following notations, which are required because we consider

two types of particle:

• F0(s0, s1; t) is the joint probability generating function (see Appendix A) of
the numbers of cells of both types, present at time t in the process initiated at
time 0 by a type-0 cell.

• F1(s1; t) is the pgf of the numbers of cells of type 1, present at time t in the
process initiated at time 0 by a type-1 cell.

Frequently, we will write Fi(s; t) and even Fi(t) or Fi(s) or Fi .
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In the general case of the process with k types of particles, we denote by fi(s) �
fi(s1, . . . , sk) the joint pgf of the number of progeny of all k types begotten by an
i-type particle. The lifetime of an i-type particle is exponentially distributed with
parameter λi . Denoting by Fi(s; t) the joint pgf of the number of particles of all
types in a process started by an ancestor of type i, we write the system of ordinary
differential equations

dF (s; t)

dt
� −λ · {F (s; t) − f [F (s; t)]}, (4.9)

in which F, f , and λ are vectors and the operator “·” is a componentwise product
of two vectors. The initial condition is F (s; 0) � s.

In our application, based on hypothesis 4, f0(s) � (1−α)s2
0 +αs0s1, f1(s) � s2

1 ,
and λ0 � λ1 � λ. In consequence,

dF0

dt
� −λF0 + λ[(1 − α)F 2

0 + αF0F1], (4.10)

dF1

dt
� −λF1 + λF 2

1 . (4.11)

Solutions

Finding explicit solutions for cell proliferation models of the type (4.10), (4.11)
frequently leads to differential equations with right-hand sides quadratic in the
unknown function (so-called Riccatti-type equations). The reason is that in such
models, the pgf of the number of progeny is a second-order polynomial, which
reflects the binary fission mode of proliferation of living cells. The following result
can be verified by direct substitution. Uniqueness follows by the usual regularity
conditions.

Theorem 12. The solution of the differential equation

dF (t)

dt
� f (t)F (t) + hF (t)2, (4.12)

where f ∈ C[0,∞), with initial condition F (0), is a uniquely defined function
F ∈ C1[0,∞)

F (t) � F (0)e
∫ t

0 f (u) du

1 − hF (0)
∫ t

0 e
∫ u

0 f (v) dvdu
. (4.13)

We will solve the system (4.10), (4.11). First, the separation of variables, or
Eq. (4.13) is applied to Eq. (4.11) and it yields

F1(s; t) � s1

s1 + (1 − s1)eλt
. (4.14)

Substituting Eq. (4.14) into Eq. (4.10) and employing Theorem 12, we obtain

F0(s; t) � s0e
−λt [e−λt s1 + (1 − s1)]−α

1 + s0{[e−λt s1 + (1 − s1)]1−α − 1}s−1
1

. (4.15)
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Differentiating F0(s; t) with respect to s0 and s1, we obtain the expressions for the
expected counts of the sensitive and resistant cells

M0(t) � ∂F (1, 1; t)

∂s0
� eλ(1−α)t , t ≥ 0,

M1(t) � ∂F (1, 1; t)

∂s1
� eλt − eλ(1−α)t , t ≥ 0.

The conclusion is that in the absence of intervention, the resistant cells eventually
outgrow the sensitive ones. The probability of no resistant cells at time t is also
easy to obtain:

P (t) � lim
s0↑1

lim
s1↓0

F0(s; t) � 1

(1 − α) + αeλt
� 1

(1 − α) + α[M0(t) + M1(t)]
.

(4.16)

Conclusions

Based on Eq. (4.16), the following observations can be made (Coldman 1987,
Coldman and Goldie 1983, 1985, 1987, Coldman et al. 1985)

• The probability that there are no resistant cells at time t is inversely related to
the total number of cells.

• For different mutation rates α, if the α’s are small, the plots of P (t) are
approximately shifted, with respect to each other, along the t axis.

• The time interval in which the resistant clone is likely to emerge [i.e., in which
P (t) falls from near 1 to near 0, e.g., from 0.95 to 0.05], constitutes a relatively
short “window” (Fig. 4.3). Therefore, the therapy should be prompt and radical
to decrease the cell number and probability [(1−P (t))] of emerging resistance.
For discussions, see e.g. Mackillop (1986) and Rosen (1986).

An alternative model

An alternative variant of the model presented above assumes that each of the
progeny cells may mutate independently with probability α, as depicted in Figure
4.4.

The equations of the process assume now the form

dF0

dt
� −λF0 + λ[(1 − α)F0 + αF1]2, (4.17)

dF1

dt
� −λF1 + λF 2

1 . (4.18)

They are of a more general Riccatti form, not admitting a closed-form solution.
However, it is still possible to obtain P (t). Let us note that F1(1, 0; t) ≡ 0 (i.e.,
the probability of no resistant cells in the subprocess initiated by a resistant cell is
equal to 0). Therefore, letting s0 ↑ 1 and s1 ↓ 0 in Eq. (4.17) yields the following
differential equation for P (t):

dP (t)

dt
� −λP (t) + λ(1 − α)2P (t)2, P (0) � 1, (4.19)
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FIGURE 4.3. Probability P (t) of no resistant cells depending on mutation rate α and tumor
size N (t) � exp(λt) in the single-mutation model. Source: Coldman, A.J. and Goldie,
J.H. 1987. Modeling resistance to cancer chemotherapeutic agents. Ch. 8, pp. 315–364. In
Cancer Modeling (ed.) J.R. Thompson and B.W. Brown. Marcel Dekker, Inc. NY. Figure
1, page 329. Copyright: 1987 Marcel Dekker, Inc.

FIGURE 4.4. Schematic representation of the alternative branching process of clonal
resistance in the single-mutation case.

the solution of which is

P (t) � 1

[1 − (1 − α)2]eλt + (1 − α)2
, t ≥ 0. (4.20)

If α is small and, consequently, α2 is a second-order small, then the new P (t) is
approximately equal to that in Eq. (4.16), with α replaced by 2α.
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FIGURE 4.5. Schematic representation of the branching process of clonal resistance in the
two-mutation case.

4.2.2 Two-mutation case

The aim of the two-mutation model is to address the problem of the so-called
cross-resistance (i.e., resistance to more than one cancer cell killing agent). Cross-
resistance is important for cancer chemotherapy because protocols including more
than one agent are frequently used in therapy.

We will specify the hypotheses of our model (Fig. 4.5):

• The population of cells proliferates by binary fission starting from a single
cell. The life spans of all the cells are independent exponentially distributed
random variables with parameter λ.

• The founder cell of the population is sensitive to chemotherapy.
• A sensitive cell divides into either two sensitive cells, or one sensitive cell

and the other cell resistant to drug 1, or one sensitive cell and the other cell
resistant to drug 2. These events occur with probabilities 1 − α1 − α2, α1, and
α2, respectively.
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• A cell resistant to drug 1 divides into either two cells resistant to drug 1, or one
cell resistant to drug 1 and the other resistant to drugs 1 and 2. These events
occur with probabilities 1 − α12 and α12, respectively.

• A cell resistant to drug 2 divides into either two cells resistant to drug 2, or one
cell resistant to drug 2 and the other resistant to drugs 1 and 2. These events
occur with probabilities 1 − α21 and α21, respectively.

• A cell resistant to drugs 1 and 2 divides into two cells resistant to drugs 1 and
2.

We will name the sensitive cells type 0, cells resistant to drug 1 type 1, cells
resistant to drug 2 type 2, and cells resistant to drugs 1 and 2 type 12, respectively.

The above-specified rules define a four-type time-continuous Markov branching
process. The mathematical description of this process is based on the observation
that it can be decomposed into unions of subprocesses generated by progeny cells
of different types. There are four types of such subprocess, generated by cells of
type 0, 1, 2, and 12, respectively. Biologically, they can be identified with clones
of different cells. Let us introduce the following notations:

• F0(s0, s1, s2, s12; t) is the joint pgf of the numbers of cells of all types, present
at time t in the process initiated by a type-0 cell. This particular subprocess is
identical, in distribution, with the entire process.

• F1(s0, s1, s2, s12; t) is the joint pgf of the numbers of cells of all types, present
at time t in the process initiated by a type-1 cell.

• F2(s0, s1, s2, s12; t) is the joint pgf of the numbers of cells of all types, present
at time t in the process initiated by a type-2 cell.

• F12(s0, s1, s2, s12; t) is the joint pgf of the numbers of cells of all types, present
at time t in the process initiated by a type-12 cell.

We obtain the following system of ordinary differential equations for the
probability generating functions F0, F1, F2, and F12:

dF0

dt
� −λF0 + λ[(1 − α1 − α2)F 2

0 + α1F0F1 + α2F0F2], (4.21)

dF1

dt
� −λF1 + λ[(1 − α12)F 2

1 + α12F1F12], (4.22)

dF2

dt
� −λF2 + λ[(1 − α21)F 2

2 + α21F2F12], (4.23)

dF12

dt
� −λF12 + λF 2

12. (4.24)

The initial conditions are Fi(s; 0) � si , i � 0, 1, 2, 12, where s � (s0, s1, s2, s12).
It is a little surprising that there exists a semiexplicit solution of this problem.

Equation (4.24) can be solved by separation of variables. It yields

F12(s; t) � 1

1 − (1 − s−1
12 )eλt

. (4.25)

Substituting expression (4.25) into Eqs. (4.22) and (4.23) and solving the resulting
differential equations by separation of variables or application of Theorem 12,
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yields, respectively,

F1(s; t) � e−λt [e−λt s12 + (1 − s12)]−α12

s−1
1 + {[e−λt s12 + (1 − s12)]1−∝12 − 1}s−1

12

, (4.26)

F2(s; t) � e−λt [e−λt s12 + (1 − s12)]−α21

s−1
1 + {[e−λt s12 + (1 − s12)]1−α12 − 1}s−1

12

. (4.27)

Following the substitution of Eqs. (4.25)–(4.27), Eq. (4.21) assumes the form
which is solvable using Theorem 12. Accordingly, we calculate

e
∫ t

0 f (u) du � e−λt {1 + {[e−λt s12 + (1 − s12)]1−α12 − 1}s1s
−1
12 }α1/(1−α12)

× {1 + {[e−λt s12 + (1 − s12)]1−α21 − 1}s2s
−1
12 }α2/(1−α21). (4.28)

Unfortunately,
∫ t

0 e
∫ u

0 f (v)dv du cannot be obtained in a closed form. However, we
are mainly interested in the probability that no doubly resistant cells emerge before
t in the subprocess initiated by a sensitive cell,

P12(t) � P{N12(t) � 0} � F0(1, 1, 1, 0; t). (4.29)

In this special case, expression (4.28) is reduced to

e
∫ t

0 f (u) du � e−λt [α12 + (1 − α12)e−λt ]α1/(1−α12)

× [α21 + (1 − α21)e−λt ]α2/(1−α21). (4.30)

The closed-form solution is still not available, although numerical quadrature is
straightforward. However, there exists a special case of interest in which the closed-
form solution is available.

• Suppose that all the mutation probabilities are equal (i.e. α1 � α2 � α12 �
α21 � α).

In this case,

P12(t) � e−λt [α + (1 − α)e−λt ]−2α/(1−α)

1 − [(1 − 2α)/(1 − 3α)]{1 − [α + (1 − α)e−λt ](1−3α)/(1−α)} . (4.31)

Conclusions

Based on the model, the following observations can be made:

• For different mutation rates α, with α small, the plots of P (t) are merely
shifted.

• The time interval in which cross-resistance is likely to emerge [i.e., in which
P12(t) falls from near 1 to near 0, e.g., from 0.95 to 0.05], constitutes a relatively
short “window,” similar to that in Figure 4.3.

• It can be proved, similarly to the one-mutation model, that the average num-
ber of cells resistant to any of the agents separately increases exponentially.
Suppose that we have, at our disposal, agents 1 and 2 and that we can use them
according to any time schedule, provided they are not used simultaneously.
Because in practice, only periodic chemotherapy protocols are administered,
the question is, should the two drugs be alternated frequently or infrequently?



76 4. The Age-Dependent Process: The Markov Case

The probability of double resistance emerging from cells resistant to agent 1
strongly depends on the total number of these cells. Therefore, while using
agent 1, the number of cross-resistant cells should be kept in check. This is
more difficult if agent 1 is used for a long period without a break. The rea-
son is that the cells resistant to agent 1 grow to large numbers, increasing the
probability of cross-resistance.

• Summarizing, the two agents should be alternated as frequently as possible.
This is the conclusion of Goldie et al. (1982). For a discussion, see Kuczek
and Chan (1988).

The original analysis of Goldie et al. (1982), replicated in this section, made
use of the simplifying assumption that the two agents were equivalent in their cell
killing efficiency (i.e., α1 � α2 � α12 � α21 � α). Day (1986a) confirmed the
results of Goldie et al. (1982) and extended their analysis by relaxing the sym-
metry assumption. He analyzed the relative effect of strategies that use agents
with different kill efficiencies by using a continuous-time stochastic birth–death
multitype branching process model (Day, 1986b) and simulation. The strategies
he analyzed included alternating agents, interweaving but not strictly alternating
strategies, and one-agent strategies. With each strategy, a wide range of parameters
were considered, including treatment scheduling times, cell doubling times, cell
mutation rates, drug kill efficiencies, and single resistance or cross-resistance. The
simulation results suggest two surprising conclusions: (1) When using two drugs,
it is best to use the least effective drug first, or for a longer duration; (2) for some
values of tumor kinetics and drug kill parameters, nonalternating treatment can
out perform alternation and combination treatment schedules. Practical applica-
tion of these analyses depends on knowing the appropriate drug kill parameters
for each tumor of each patient, although simulation results provide guidelines in
the absence of a knowledge of exact parameter values. A different approach to
optimization of chemotherapy can be found in Kimmel and Swierniak (1982),
Polanski et al. (1993, 1997), Swierniak and Kimmel (1984, 1991), and Swierniak
et al. (1996).

4.3 Genealogies of Branching Processes

One of the interesting issues concerning a branching process is that of its genealogy.
In broad terms, given a sample of individuals alive at given time t , we trace their past
epochs of branching (i.e., the nearest common ancestors of the sample). This exer-
cise is nontrivial because the sample we deal with consists of individuals with pos-
itively biased life lengths. This latter effect is due to length-biased sampling analo-
gous to that known from renewal processes. Our treatment is based on the article by
O’Connell (1995) (also, see O’Connell, 1993). It concerns the processes close to the
critical process, in which the random effects are most pronounced. The theoretical
results developed here are illustrated in Section 4.4 by an application concerning
the estimation of the age of the common female ancestor of modern humans.
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4.3.1 “Near-critical” processes

We consider a family of time-continuous Markov branching processes (age-
dependent processes with exponential lifetimes) parameterized by t ≥ 0. Let
Zt (u) be such a process with mean lifetime 1 and offspring distribution ξt with
E(ξt ) � 1 +α/t + o(1/t) and Var(ξt ) � σ 2 + o(1/t) < ∞, where α ∈ R\{0}. We
assume that α � 0 for notational convenience only; the corresponding results for
the critical case can be extrapolated by letting α → 0. For this reason, we refer
to it as the near-critical case. We will consider the genealogy of this process for
fixed α and large t . A general reference on near-critical branching processes is
the book of Jagers (1975, pp. 63–70, 199–206). We denote by Px �Px

t the law of
the process Zt started at x, suppressing the subscript for notational convenience,
and write Ex for the corresponding expectations. Set ft (s) � E1(sZt (1)). It is im-
portant to note (see, e.g., Harris, 1963) that the embedded (discrete-time) process
{Zt (n), n ∈ Z+} is a Galton–Watson process with offspring mean 1+α/t+o(1/t),
variance σ 2 +o(1/t), and pgf ft (s). For r > 0, set px,r,t �Px[Zt (rt) > 0]. We will
assume throughout this section that (Z2

t (1)|Zt (0) � 1) is uniformly integrable in t .
The first result describes the rate at which px,r,t → 0 when t → ∞ and an

exponential limit law for near-critical Markov branching processes.

Theorem 13.

1. As t → ∞, px,r,t ∼ arx/t, where

ar � 2α

σ 2
(1 − e−αr )−1.

2. If Zt (0)/t ⇒ 0 as t → ∞, then for λ > 0, x ∈ Z+\{0},

Ex[exp

(−λZt (rt)

t

)
|Zt (rt) > 0] → br

br + λ
, t → ∞;

That is,

P

{[
Zt (rt)

t

]
> z|Zt (rt) > 0

}
→ exp(−brz), t → ∞,

where br � e−αrar . The limit law is exponential with parameter br .

The proof of the theorem is based on a direct diffusion approximation of the
branching process. The next result concerns the process reduced to individuals
having living descendants.

For each t and 0 ≤ u < t , define the reduced process Nt (u) to be the number of
individuals in the process Zt alive at time u and having descendants alive at time
t . Note that for each t , Nt is a time-inhomogeneous Markov branching process. In
the statement of the theorem, DZ+[0, 1) denotes the space of càdlàg (continuous
from the right, bounded from the left) paths in Z+, parameterized by the unit
interval; the weak convergence in this case requires only convergence of finite-
dimensional distributions. The linear pure birth process with jump rate b(t) is a
time-continuous Markov chain {N (t), t ≥ 0}, in which P[N (t+t) � N(t)+1] �
b(t)N (t) + o(t), where o(t)/t → 0, when t → 0.
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Theorem 14. As t → ∞, the sequence of processes {Nt (rt), 0 ≤ r < 1} con-
verges in distribution inDZ+ [0, 1) to a linear pure birth process {N (r), 0 ≤ r < 1}
with jump rate b(α, r)N (r) at time r, where

b(α, r) � α(1 − e−α)−1(1 − r)−1,

provided Nt (0) ⇒ N (0). In particular, as t → ∞,

Px[Nt (rt) � k | Nt (0) � 1] → qr(1 − qr )
k−1,

where qr � [exp(−r) − exp(−α)]/[1 − exp(−α)].

The result which is of most interest to us describes the degree of relationship of
two randomly chosen individuals at time t. Let Dt denote the latest time, counting
from the beginning of the process, at which the common ancestor of the two
individuals exists. The following theorem provides the asymptotic distribution of
this time.

Theorem 15. For 0 ≤ r < 1, x ∈ Z+\{0},

lim
t→∞ P[Dt > rt | Nt (0) � x] � 2qx

r

(x − 1)!
{(x − 1)!(qr − 1)−x − F (x − 1, 1 − qr )}

(4.32)
where F : Z+ × (0, 1) → R is defined by

F (n, y) � ∂n

∂yn

{
log(1 − y)

y2

}
.

Proof. The original proof in O’Connell (1995) is a modification of the corre-
sponding result in Durrett (1978) for the critical case. The current proof is a slight
modification of O’Connell (1995), which rectifies some inaccuracies in the original
version of expression (4.32). Let Pt,u,k denote the probability that two individuals
chosen randomly at time t have the same ancestor at time u, given Nt (u) � k. Let
X1(u, t), . . . , Xk(u, t) be independent and identically distributed random variables
with the same distribution as (Zt (u)|Zt (u) > 0). If we let

Sk(u, t) � X1(u, t) + · · · + Xk(u, t),

then

Pt,u,k � kE{[X1(u, t)/Sk(u, t)]2}.
By Theorem 13(1), for each i and 0 ≤ r < 1, Xi(rt, t) converges in distribution,
as t → ∞, to an exponentially distributed random variable with mean b−1

r , which
we denote by Xi(r). So, by bounded convergence, we have

Pt,rt,k → kE{[X1(r)/Sk(r)]2}.
as t → ∞, where

Sk(r) � X1(r) + · · · + Xk(r).

Random variable X1(r)/Sk(r) can be represented as Z � X/(X+ Y ), where X ∼
exp(ψ) and Y ∼ gamma (ψ, k−1), and X and Y are independent. Independently
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of constant ψ , this ratio has distribution with density fZ(z) � (k − 1)(1 − z)k−2,
z ∈ [0, 1], and, consequently, E(Z)2 � 2/[k(k + 1)]. This yields

E

[
kX1(r)

Sk(r)

]2

� 2k

k + 1
.

Combining this with Theorem 14, we have, as t → ∞,

P[Dt > rt | Nt (0) � x] �
∞∑
k�1

Pt,rt,kP[Nt (rt) > k | Nt (0) � x]

→
∞∑
k�1

2

k + 1
P[N(r) > k | N (0) � x]

→
∞∑
k�1

2

k + 1

(
k − 1

x − 1

)
qx
r (1 − qr )

k−x,

However, by the definition of F (y, n), we have

F (y, n) � ∂n

∂yn

[
ln(1 − y)

y2

]
� −

∑
k≥1

∂n

∂yn

(
yk−2

k

)

� (−1)n+1n!

yn+1
−
∑
k≥2

(k − 2)!

(k − 2 − n)!(k + 1)
yk−2−n

and, consequently,

F (1 − qr, x − 1) � (x − 1)!(qr − 1)−x −
∑
k≥1

(k − 1)!

(k − x)!(k + 1)
(1 − qr )

k−x,

and the result follows.

Remarks

1. The limiting process in Theorem 14 can be represented as a deterministic
time change of a (time-homogeneous) Yule process (in this case, a Markov
age-dependent branching process, with progeny number equal to two and
lifelength being a random variable distributed exponentially with parameter
λ). If {Y (t), t ≥ 0} is a Yule process with branching rate 1, then the process
{Y [ln((1 − e−α)(e−rα − e−α))], 0 ≤ r < 1} has the same law as N .

2. It is instructive to derive explicit expressions for O’Connell’s (1995) limit
distributions �x(r) � limt→∞ P [Dt/t > r | Nt (0) � x]. We obtain

�1(r) � 2qr
(1 − qr )2

(qr − 1 − ln qr ),

�2(r) � 2qr
(1 − qr )3

(1 − q2
r − 2qr ln qr),

where r ∈ [0, 1]. Let us note that �1(1) � �2(1) � 0, but �2(0) � 2
3 and

�1(0) � 1. The reason is that in case of the process started by x � 2 ancestors,
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there is a probability equal to 1
3 that two randomly selected descendants are

traced to different ancestors.
3. Similar and related results for general branching processes can be found in

Sagitov (1989), Taı̈b (1987), and Zubkov (1975), for branching diffusion pro-
cesses in Durrett (1978) and Sawyer (1976), and for superprocesses in Dawson
and Perkins (1991) and Etheridge (1992). For an excellent review of the vast
literature on genealogical processes in population genetics models, see Tavaré
(1984).

4.4 Application: Estimation of the Age of the
Mitochondrial Eve

4.4.1 Population genetic model

One of the applications of O’Connell’s (1995) results is the estimation of the age
of the process, which is not observable, based on statistics describing the ages
of most recent common ancestors (mrca) of the pairs of extant (contemporary)
individuals sampled from the process. The time from mrca of two individuals can
be measured using divergence (mismatch) between DNA sequences ascertained
in these individuals. O’Connell (1995) presents such an analysis leading to an
estimate of the time when the female ancestor of modern humans (mitochondrial
Eve, mtEve) lived. We provide an account of his methodology. The estimates
which were obtained differ from those obtained using more accepted methods like
the coalescence theory (Griffiths and Tavaré 1999). However, the originality of
O’Connell’s (1995) approach is sufficient to justify this presentation.

Wilson and Cann (1992) and Vigilant et al. (1989, 1991) were the first to hy-
pothesize that a female ancestor of modern humans probably lived in Africa about
200,000 years ago. Hasegawa and Horai (1990) estimate the age to be equal to
280,000 years. Stoneking et al. (1992) published an estimate of 135,000 years.
For other more recent examples of estimation of past demographic trends, see, for
example, Harpending et al. (1998) and Kimmel et al. (1998).

The data used by O’Connell (1995) are a collection of aligned nucleotide se-
quences, each approximately 600 base pairs (sites) in length, sampled from the
hypervariable segment in the control region of the human mitochondrial genome,
of 189 individuals from around the world. There are four nucleotides: adenine,
thymine, guanine, and cytosine. A typical sequence might be coded as follows:

TTCTTTCCATGGGGAAGCAGA · · · CCTAACCAGA.

It is accepted that mitochondrial sequences are maternally inherited and that mi-
tochondrial DNA (mtDNA) in the control region is neutral from the standpoint of
natural selection. In other words, the specific makeup of mtDNA does not influence
an individual’s reproductive fitness.
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The following model of mutation is known as the Infinite Sites Model (ISM). A
substitution occurs if one of the nucleotides in the sequence is replaced by another,
and the new sequence is inherited. According to the molecular clock hypothesis,
substitutions occur randomly along lineages at a constant rate, and rates along
different lineages are the same. The genetic distance, or divergence, between two
such sequences is defined to be the proportion of sites at which the sequences differ.
Among humans, this is typically less than 5% in the control region of mtDNA.
Vigilant et al. (1989) found the average divergence between the humans in their
sample and a sample chimpanzee to be about 15%. The divergence rate is very
small, so over the time period we are considering here (the post-Eve period), we
can assume that each substitution produces a new type (i.e., reverse substitutions
do not occur). Thus, if the most recent common ancestor of two individuals died u

million years ago, the number of differences between their mtDNA types will be
a random variable with distribution approximated by the Poisson distribution with
mean 2uµ, where µ is the substitution rate (in units of number of substitutions per
million years).

Now, suppose that two individuals are sampled randomly from the current pop-
ulation and δ denotes the rate of divergence (in units of percentage divergence per
million years). Note that if l denotes the sequence length, then δ � 2µ/l. If we
have a model for the genealogical structure of the population, then the expected
amount of divergence between the mtDNA sequences of the two individuals will
be equal to the expected time back to the common ancestor of the two individuals
(under our model, in units of millions of years), multiplied by the divergence rate, δ.

Assume that the female population size follows a Markov branching process
ZT with mean number of offspring 1 + α/T , where T � Ta/λ; Ta is the time to
the most recent common ancestor, λ is the mean effective lifetime (or generation
time), and α ∈ R is the growth parameter.

To obtain an indication of how fast the population might have been growing,
suppose that the estimate of 200,000 years was correct. Then, a straightforward
moment calculation based on this model with offspring variance σ 2 � 2, mean
(effective) lifetime 25 years, and current (effective) female population size 1 billion
yields the rough estimate α̂ � 13.7 [cf. Eq. (4.33]. The estimate α̂ is quite insen-
sitive to apparently large adjustments in these values and remains in the “slightly
supercritical” framework for quite a wide range.

We will slightly depart from the original method of estimation in O’Connell
(1995). We will use the process with the single ancestor, Eve (i.e., with x �
1), whereas O’Connell (1995) used processes generated by the (almost surely)
two direct descendants of Eve (x � 2). The results are almost identical and our
method seems simpler. If we start time at the birth of Eve, then NT (0) � 1. Then,
ZT (T ) is the current (effective) female population size. Using the approximation
results in Theorems 13–15, we can simultaneously estimate α and T , based on the
observations ZT (T ) and the average pairwise divergence in a random sample of n
contemporary individuals d̄n. We will assume for the moment that the divergence
rate δ is known. Denote by λ the mean effective lifetime of an individual. By
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Theorem 13(2),

E[ZT (T ) | NT (0) � 1] � Tα/λ

br
� σ 2Ta

2λα
(eα − 1) . (4.33)

We also have, by Theorem 15,

E[d̄n | NT (0) � 1] � δλE[T − DT | NT (0) � 1]

� δTa

{
1 −

∫ 1

0
P[DT > rT | NT (0) � 1]dr

}
� δTaγ1(α),

(4.34)

where

γ1(α) � 1 −
∫ 1

0
�1(r)dr � 1 − 2

∫ 1

0

qr

(1 − qr )2
(qr − 1 − ln qr ) dr. (4.35)

One can simplify Eq. (4.35) to get

γ1(α) � 1 − 2α−1
∫ 1

0

v

(1 − v)2(v + κ)
(v − 1 − ln v) dv, (4.36)

where

κ � e−α

1 − e−α
. (4.37)

Note that γ1(α) is positive and increasing in α and that γ1(α) ↑ 1 as α → ∞. For
the simplest moment-based estimates, assuming that δ, σ 2, and λ are known, just
set

ZT (T ) � σ 2T̂a

λα̂
(eα̂ − 1), (4.38)

T̂a � d̄n

δγ1(α̂)
(4.39)

and solve for (α̂, T̂a). Although σ 2 is unknown, when α is sufficiently large the
actual value (within reason) will not affect the estimates considerably. [This is due
to the dominating exponential term in Eq. (4.38).] The same is true for λ.

Remarks concerning performance of the estimators can be found in O’Connell
(1995).

4.4.2 Numerical estimates

Of the 189 individuals considered by Vigilant et al. (1989), O’Connell (1995)
picked a subsample of 19, without being deliberately biased in any way; the sample
consists of 6 Asians, 1 Native Australian, 1 Papua New Guinean, 6 Europeans, and
5 Africans. A histogram of the 171 pairwise differences in this sample is shown
in Figure 4 of O’Connell (1995). The average divergence was found to be 2.8%.

In June 1992, according to the Population Reference Bureau Estimates, the
human population size was approximately 5.412 billion. This gives about 1 billion
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TABLE 4.1. Estimates of the Parameters of O’Connell (1995) Model

λZT (T )/σ 2 δ α̂ T̂a/103

12.5 × 109 1.8 12.062 1741
2.7 12.508 1156
4 12.939 777

5 × 109 1.8 11.047 1761
2.7 11.497 1168
4 11.932 785

30 × 109 1.8 13.023 1726
2.7 13.465 1147
4 13.893 772

as a rough estimate for the 1992 effective female population size, assuming that
about half the population is female and that the current female population represents
approximately 2.7 generations. The estimates are quite insensitive to variations in
this figure.

Note that the estimates α̂ and T̂a are functions of λZT (T )/σ 2 and δ; these are
shown in Table 4.1, for various different values of λZT (T )/σ 2 and δ.

These estimates differ only slightly from the original O’Connell (1995) numbers.
If ZT (T ) = 1 billion, σ 2 � 2, and λ � 25, then λZT (T )/σ 2 � 12.5 billion.
Although these choices seem somewhat arbitrary, we can see from Table 4.1 that
any kind of realistic deviations from these values will have little or no effect on
the estimates. The most important parameter is δ, the rate of divergence.

To derive the estimates for the growth rate, α̂, and the age of Eve, T̂a , we simply
calculated the expected current population size and the expected average pairwise
divergence in a sample of contemporary individuals and assumed that the other
parameters were known. We are therefore not fully utilizing the information con-
tained in the sample. It might be helpful to know more about the joint distribution
of the pairwise divergences (dij ) or the joint distribution of the respective frequen-
cies of distinct types, in a finite sample. The latter would be analogous to Ewens’
sampling formula for the infinite-alleles Wright–Fisher model for neutral evolu-
tion (Nagylaki, 1990), which is not applicable to the Eve problem because it is
based on the assumption that the population size is constant over time.

4.5 Other Works and Applications

An important application of a branching process involving mutations, similar to
the model of Coldman and Goldie (Section 4.2), is the fluctuation test introduced
by Luria and Delbrück in 1943 (Luria and Delbrück, 1943). The model and some
refinements will be considered in detail in Section 6.1. Here, we will describe the
principle and provide a bibliography.

The progeny of a cell may exhibit a new trait that differs from their parent and
may pass on the new trait to their own progeny. Let us suppose that the change is
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due to a single irreversible mutation event. The mutation rate is expressed as the
average number of mutations per cell division. Experimentally, a small number
of cells is used to seed a series of independent cultures, cells in each culture are
allowed to grow, and then the total number of cells in each culture is determined
and the number of mutant cells is determined in each culture. The number of cell
divisions is estimated from the number of cells in each culture at the beginning
and the end of the experiment.

Given parameter values, these models predict the distribution of the number of
nonmutant and mutant cells at time t in a population started at time 0 by a single
nonmutant cell. In particular, the following observable variables are of interest:

• N (t), the expected total number of non-mutant and mutant cells at time t

• r(t), the expected number of mutant cells at time t .
• P0(t), the probability of mutant cells being absent from the population at time

t

Conversely, given experimental values of N (t), r(t), and P0(t), it is possi-
ble to estimate the parameters of the models – in particular, mutation rates and
probabilities.

Models in Section 6.1 illustrate how the estimates obtained differ if alterna-
tive assumptions are employed in addition to those originally used by Luria and
Delbrück (1943). The literature of the subject includes many more refinements
(Kendall and Frost 1988). A review of probability distributions of the number of
mutants under differing assumptions can be found in Stewart et al. (1990). Ma et
al. (1992), expanded these distributions into a series involving discrete convolution
powers. Cell death and differential growth rates were considered in a series of arti-
cles by Jones and co-workers (Jones et al. 1994, Jones 1994). Bayesian procedures
of estimation of mutation rates were considered by Asteris and Sarkar (1996).

Examples of applications, beyond the original data considered in Luria and
Delbrück (1943), will be provided in Section 6.1. They mainly concern mutations
to drug resistance in bacteria and cancer cells. One application in a different context
is that by Hästbacka et al. (1992), who used a branching process of the Luria and
Delbrück type to model the evolution of genetic disease and estimate the location
of the disease gene.

An excellent review of various mathematical properties and approximations
for the Luria and Delbrück distributions arising from the fluctuation analysis is
provided by Angerer (2001). Other, approaches to modeling and estimation of
mutation rates are Crump and Hoel (1974) and Tan (1982, 1983).

4.6 Problems

1. Cells with Exponentially Distributed Lifetimes. Consider the Markov time-
continuous branching process with mean particle lifetime 1/λ. Assume that
at its death, each particle produces two specimens of progeny and that each
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of them survives, independently, with probability p. Find h(s) and F (s; t).
Consider the critical case separately.

2. Problem 1 Continued. In the critical case, find the limit distribution of
{Z(t ;ω)

t
|Z(t ;ω) > 0}, as t → ∞. Compare the result with the correspond-

ing general result for the Galton–Watson process. Hint: Consider the Laplace
transform

F (e−u/t ; t) − F (0; t)

1 − F (0; t)

and use the results of the preceding problem.
3. Explosions. Consider the following branching process:

• A single particle is born at t � 0. It lives one unit of time.
• Each successive generation of particles lives three times shorter than the

preceding one.
• The pgf of progeny number in each generation is f (s) such that f ′(1−) <

∞.
• Usual independence hypotheses are verified.

Find the pgf F (s, t) of Z(t), the number of particles present in the process at
time t ≥ 0. At what time could the process explode? What is the distribution
of Z(t) at that time? Hint. Consider separately the cases f ′(1−) ≤ 1 and
f ′(1−) > 1.

4. {Xn; n � 1, 2, . . .} is a sequence of iid non-negative random variables. Using
the weak law of large numbers, demonstrate that

lim
n→∞ P{X1 + X2 + · · · + Xn > t} � 1 for any t > 0.

Hint: Assume first that E(X1) < ∞. If E(X1) � ∞, consider truncated rv’s
Yn � min{a,Xn}, where a is a constant.

5. Clonal Resistance Revisited. Consider the following version of the clonal
resistance theory.

a. In the process, there exist two types of particles, labeled 0 (sensitive) and
1 (resistant).

b. The process is initiated by a single type-0 particle.
c. The life spans of particles are exponentially distributed independent

random variables, with parameter λ.
d. Each particle, at death, gives birth to exactly two progeny particles:

• A 0-particle produces either two 0-particles, wp 1 − α, or two 1-
particles, wp α.

• A 1-particle produces two 1-particles.

Find the equations for the pgf’s F0(s0, s1; t) and F1(s1; t). Find and solve the
equations for the expected counts of sensitive and resistant cells at time t

in the population started at time 0 by a single sensitive cell. Find and solve
the equation for P (t), the probability of no resistant cells at time t . Does the
change in hypotheses alter the predictions of the theory?
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6. Serial Mutations. Consider the following branching process:

a. In the process, there exist three types of particles, labeled 0, 1, and 2.
b. The process is initiated by a single type-0 particle.
c. The life spans of particles are exponentially distributed independent

random variables, with parameter λ.
d. Each particle, at death, gives birth to exactly two progeny particles:

• Each i-particle, i � 0, 1, produces either two i-particles, wp 1 − α,
or one i particle and one i + 1-particle, wp α.

• A 2-particle produces two 2-particles.

The equations for the pgf’sF0(s0, s1, s2; t),F1(s1, s2; t), andF2(s2; t) (the joint
pgf’s of the numbers of the 0-, 1-, and 2-particles, in the process initiated by
a single 0-, 1-, and 2-particle, respectively have the following form:

Ḟ0 � −λF0 + λ[αF0F1 + (1 − α)F 2
0 ],

Ḟ1 � −λF1 + λ[αF1F2 + (1 − α)F 2
1 ],

Ḟ2 � −λF2 + λF 2
2 ,

with initial conditions F0(s0, s1, s2; 0) � s0, F1(s1, s2; 0) � s1 and F2(s2; 0) �
s2. Find and solve the systems of equations forP1(t) andP2(t), the probabilities
of no 1- and 2-cells at time t , respectively, in the process initiated by a single
0-particle. Draft the plots of P1(t) and P2(t). Conclusions?

7. Consider the time-continuous branching process with particle lifetimes dis-
tributed exponentially with expectation 1/λ, started by a single ancestor.
Assume that at its death, each particle produces two specimens of progeny
with probability p and no progeny with probability 1 − p.

a. Find f (s).
b. In the critical case, find F (s; t) and P (t) � P{Z(t, ω) � 0}.
c. In the critical case, find the limit distribution of{

Z(t;ω)

t
|Z(t ;ω) > 0

}
,

as t → ∞. Compare the result with the corresponding general result for
the Galton–Watson process. Hint: Consider the Laplace transform

F (e−u/t ; t) − F (0; t)

1 − F (0; t)
.



CHAPTER 5

The Bellman–Harris Process

The Bellman–Harris branching process is more general than the processes con-
sidered in the preceding chapters. Lifetimes of particles are non-negative random
variables with arbitrary distributions. It is described as follows. A single ancestor
particle is born at t � 0. It lives for time τ , which is a random variable with cumu-
lative distribution function G(τ ). At the moment of death, the particle produces a
random number of progeny according to a probability distribution with pgf f (s).
Each of the first-generation progeny behaves, independently of each other and the
ancestor, as the ancestor particle did [i.e., it lives for a random time distributed
according to G(τ ) and produces a random number of progeny according to f (s)].
If we denote the particle count at time t by Z(t), we obtain a stochastic process
{Z(t), t ≥ 0}. This so-called age-dependent process is generally non-Markovian,
but two of its special cases are Markovian: the Galton–Watson process and the
age-dependent branching process with exponential lifetimes. The Bellman–Harris
process is more difficult to analyze, but it has many properties similar to these two
processes.

Frequently, it is assumed that the distribution of lifetimes does not have an
atom at τ � 0 [i.e., that G(0+) � 0, which is satisfied, among others, when
the distribution has a density g(τ )]. This assumption prevents the process from
producing infinitely many generations of particles in zero time. The assumption is
not always required.

5.1 Integral Equations for the pgf and Basic Properties

We provide a heuristic derivation of the integral equation for the pgf of the
number of particles in the Bellman–Harris process Z(t). Because this is one
of the most important equations in the theory of branching processes and be-
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cause it has ramifications in some other branches of applied mathematics (renewal
theory, deterministic population dynamics, and others), we also provide a complete
derivation in Appendix B.2.

Let us assume that the ancestor’s lifetime is equal to τ . Then, for times t < τ,

the process consists of a single particle, the ancestor. For times t ≥ τ, the number
of particles in the process is equal to the sum of the numbers of particles in all
subprocesses started by the first-generation progeny of the ancestor; that is,

Z(t) �

⎧⎪⎨⎪⎩
1 t < τ

X∑
i�1

Z(i)(t − τ ), t ≥ τ,

whereX is the number of the first-generation progeny of the ancestor andZ(i)(t−τ )
are the iid copies of the process, started by these progeny particles at time τ .
Denoting the pgf of Z(t) by F (t, s), we obtain in terms of pgf’s, conditional on τ :

F (s, t) �
{

s, t < τ

f [F (s, t − τ )], t ≥ τ.
(5.1)

Removing conditioning (i.e., integrating with respect to the distribution G), we
obtain

F (s, t) � s[1 − G(t)] +
∫

[0,t]
f [F (s, t − u)] dG(u). (5.2)

This latter equation is identical to Eq. (B.6) in Appendix B.2.
In general, it is impossible to find explicit solutions of the integral equation

(5.2). However, some special cases of interest are described by simpler equations.

Example 1. Galton–Watson process. Suppose that G(t) � χ (t − T ), where χ (t)
is the unit step function at 0 (i.e., lifelengths of all particles are identical and equal
to T ). Equation (5.1) [as well as the integral Eq. (B.6)] now assumes the form

F (s, t) �
{

s, t ∈ [0, T )

f [F (s, t − T )], t ∈ [T ,∞).
(5.3)

This implies that F (s, t) � fn(s) if t ∈ [nT , (n+1)T ) and also that {Z(nT ), n �
0, 1, . . .} is a Galton–Watson process with progeny generating function f (s).

Example 2. Markov age-dependent branching process. If we consider the pro-
cess with life-length distributions G(u) � 1 − exp(−λu) (i.e., the Markov
age-dependent process), then the resulting integral equation can be differentiated
side-by-side with respect to t , yielding (after some algebra) the differential equation
(4.6).
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5.2 Renewal Theory and Asymptotics of the Moments

The theory of the renewal equation plays a major role in investigation of the
asymptotic behavior of the Bellman–Harris process. The reason is that the moments
of the process are solutions of renewal-type linear integral equations. However,
the theory is also important for the nonlinear Eq. (5.2). We will follow Athreya
and Ney (1972). Another source is the book by Feller (1971).

5.2.1 Basics of the renewal theory

Let us define the renewal function

Um(t) �
∞∑
n�0

mnG∗n(t), t ≥ 0, (5.4)

where G is a distribution on [0,∞), [i.e., G(t) is non-negative and nondecreasing,
G(∞) � 1, and m is a positive constant]. G∗n(t) denotes an n-fold convolution
of function G(t) by itself [i.e., G∗n(t) � G(t) ∗ · · · ∗ G(t)︸ ︷︷ ︸

n factors

, where F (t) ∗ G(t) �∫
[0,t] F (t − τ ) dG(τ ) and F (t) and G(t) are bounded nondecreasing functions on

[0,∞].

Lemma 4 (Athreya and Ney 1972). If mG(0+) < 1, then Um(t) < ∞ for all
t < ∞ and is bounded on finite t-intervals.

Let us consider the renewal equation

H (t) � ξ (t) + m

∫ t

0
H (t − y) dG(y), t ≥ 0, (5.5)

which also can be written as

H (t) � ξ (t) + m(H ∗ G)(t),

where ξ (t) is a given bounded measurable function on [0,∞) and H (t) is the
unknown function. Let (ξ ∗Um)(t) ≡ ∫ t

0 ξ (t − y) dUm(y) be the convolution of ξ
and Um, which is well defined because Um is nondecreasing and bounded.

Lemma 5. H ≡ ξ ∗ Um is the unique solution of Eq. (5.5), which is bounded on
finite intervals.

The following theorem can be found in Feller’s (1971) book. We call a distri-
bution a lattice if its points of increase (or atoms of the corresponding probability
measure) occupy isolated points separated by distances being integer multiples of
a positive number a. Let us note that if a distribution is nonlattice, then G(0+) < 1
is satisfied. The definition of direct Riemann integrability can be found in Feller
(1971).

Theorem 16. Assume m � 1 and let γ � ∫∞
0 t dG(t) ≤ ∞.

1. If ξ0 � limt→∞ ξ (t) exists, then the solution of Eq. (5.5) satisfies

lim
t→∞

H (t)

t
� ξ0

γ
. (5.6)
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2. If ξ is directly Riemann integrable and G(t) is nonlattice, then

lim
t→∞H (t) � 1

γ

∫ ∞

0
ξ (y) dy. (5.7)

Definition 4. The Malthusian parameter for m and G is the root, unique provided
it exists, of the equation

m

∫ ∞

0
e−αy dG(y) � 1. (5.8)

We denote it by α � α(m,G).

Let us note that when m ≥ 1, the Malthusian parameter always exists and is
non-negative. If m < 1, then α may not exist (if it does, it is negative).

When the Malthusian parameter exists, we can multiply Eq. (5.5) by e−αt , and
letting

Hα(t) � e−αtH (t), dGα(t) � me−αt dG(t), ξα(t) � e−αt ξ (t),

we obtain

Hα(t) � ξα(t) +
∫ t

0
Hα(t − y) dGα(y), t ≥ 0, (5.9)

Based on the above, part 2 of Theorem 16 can be used to obtain results of the
following type.

Theorem 17. If the Malthusian parameter α(m,G) exists, if e−αt ξ (t) is directly
Riemann integrable, and if G is nonlattice and mG(0+) < 1, then the solution H

of Eq. (5.5) satisfies

H (t) ∼ eαt
(∫ ∞

0
e−αyξ (y) dy

)(
m

∫ ∞

0
ye−αydG(y)

)−1

. (5.10)

5.2.2 The moments

In order to derive an equation for the expected number of particles in the process

E[Z(t)] � µ(t) � ∂F (s, t)

∂s

∣∣∣∣
s�1

,

it is necessary to justify differentiation under the integral in Eq. (5.2). When this
is accomplished, the following result is obtained.

Theorem 18. Suppose mG(0+) < 1. E[Z(t)] ≡ µ(t) is the unique solution of

µ(t) � m

∫ t

0
µ(t − y)dG(y) + 1 − G(t), (5.11)

which is bounded on finite t-intervals.

Differentiating the pgf F (s, t) more than once with respect to s, one obtains
equations of similar type for higher moments of Z(t). The equation for [Z(t)] ≡
µ(t) is of the renewal type. Theorem 17, applied to Eq. (5.11) yields the following
asymptotic result.
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Theorem 19. Suppose mG(0+) < 1.

1. If m � 1, then µ(t) � 1.
2. If m > 1 and G is nonlattice, then

µ(t) ∼ ceαt , t → ∞, (5.12)

where α is the Malthusian parameter for (m,G) and

c �
∫∞

0 e−αy[1 − G(y)] dy

m
∫∞

0 ye−αy dG(y)
� m − 1

αm2
∫∞

0 ye−αy dG(y)
. (5.13)

3. Ifm < 1, if the Malthusian parameterα(m,G) exists, and if
∫∞

0 ye−αy dG(y) <
∞, then relations (5.12) and (5.13) hold, with α < 0.

5.3 Asymptotic Properties of the Process in the
Supercritical Case

In the supercritical case, when the Malthusian parameter exists, the asymptotic
behavior of the Bellman–Harris process is similar to the behavior of its expected
valueµ(t) and to the behavior of the Galton–Watson process. We define the random
variable W (t) as

W (t) � Z(t)

n1eαt
, n1 � m − 1

αm2
∫∞

0 ue−αu dG(u)
, (5.14)

whereα is the Malthusian parameter (cf. Definition 4). We see that E[W (t)] −→ 1,
as t → ∞ (cf. Theorem 19).

Theorem 20 (Athreya and Ney 1972). Suppose that m > 1, f ′′(1−) < ∞,
mG(0+) < 1 and G is not a lattice distribution. Then, W (t) converges with
probability 1 and in mean squares to a random variable W, as t → ∞, and

E(W ) � 1, (5.15)

Var(W ) � [m + f ′′(1−)]
∫∞

0 e−2αu dG(u) − 1

1 − m
∫∞

0 e−2αu dG(u)
. (5.16)

The variance of W is positive.

5.4 Application: Analysis of the Stathmokinetic
Experiment

5.4.1 Age distributions

It is frequently necessary to consider the number of particles (objects) not only in
the whole process, Z(t), but also in variously defined subsets of the process.
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Suppose that for each object in the process, the lifetime τ is the sum of two
independent random variables τ1 and τ2. This implies G � G1 ∗ G2, where Gi

is the distribution function of τi . More specifically, let us assume that the object’s
life is composed of phase 1 followed by phase 2, with respective durations τ1 and
τ2. Suppose that we are interested in the number X(u, t, ω) of objects, at time t ,
which are in phase 1 and which have time > u remaining to leave phase 1.

An analog of Eq. (5.2) is satisfied by the the pgf F (s;u, t) � E[sX(u,t)]:

F (s; u, t) �
∫ t+

0−
f [F (s;u, t−τ )] dG(τ )+s[1−G1(t+u)]+[G1(t+u)−G(t)],

(5.17)
where t, u ≥ 0, and s ∈ [0, 1]. Equation (5.17) is of the same type as Eq. (5.2).
For a derivation, see Kimmel (1985).

5.4.2 The stathmokinetic experiment

The stathmokinetic experiment (Puck and Steffen 1963) was employed by re-
searchers to estimate parameters of cell cycle kinetics [see Darzynkiewicz et al.
(1986), for a review]. Basic notions concerning the cell cycle and cell cycle ki-
netics are explained in Section 2.2. When cell division is blocked by a specific
class of external agents, the cells gradually accumulate in mitosis, emptying the
postmitotic phase G1, and with time, also empty the S phase (Fig. 5.1). The pattern
of accumulation in mitosis (M) depends on the kinetic parameters of the cell cycle
and is used for estimation of these parameters.

The following experimental law is observed in exponentially growing cell pop-
ulations. Suppose that the cell population grows exponentially as eλt . Let us define
the collection function g(t) by

g(t) � ln[1 + fM(t)], (5.18)

FIGURE 5.1. Generally accepted subdivision of the cell cycle. After division, the daughter
cells enter phase G1, then traverse the phases S, G2, and M, and then divide. The residence
times in all the phases are treated as random. In the stathmokinetic experiment, the divi-
sions are blocked, so that all the cells finally accumulate in M. Source: Kimmel, M. 1985.
Nonparametric analysis of stathmokinesis. Mathematical Biosciences 74: 111–123. Figure
1, page 112. Copyright: 1985 Elsevier Science Publishing Co., Inc.
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FIGURE 5.2. Typical collection function g(t). S is the minimum residence time in phase
1. For times from the interval [0, S], the collection function is linear with slope λ. Source:
Kimmel, M. 1985. Nonparametric analysis of stathmokinesis. Mathematical Biosciences
74: 111–123. Figure 2, page 113. Copyright: 1985 Elsevier Science Publishing Co., Inc.

where fM (t) is the fraction of the cells in mitosis at time t after starting the exper-
iment. It is frequent that the initial portion of the graph of g(t) is a straight line,
the slope of which is equal to λ (Fig. 5.2). Based on this, the growth rate parameter
λ, inversely related to the duration of the cell cycle, can be found in an experiment of
relatively short duration, in which only the fraction of cells in mitosis is followed. In
more sophisticated versions of the stathmokinetic experiment, using the technique
called flow cytometry, it is possible to follow fractions of cells in each of the cell
cycle phases and, consequently, to estimate more parameters of the cell cycle.

We present a model of the cell cycle based on the Bellman–Harris process.
Based on this model, we derive a method of analysis of the stathmokinetic exper-
iment which is independent of the particular functional form of the cell lifetime
distribution. The approach follows Kimmel and Traganos (1986) and it is based
on previous work by, among others, Jagers and Staudte and their co-workers.

5.4.3 Model

It is assumed that proliferating cells follow the rules of a Bellman–Harris process
with progeny pgf f (s) � s2. The lifetimes of cells are iid rv’s with a generic name
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FIGURE 5.3. Cell cycle subdivision into two “phases.” Ti is the random residence time in
phase i (i � 1, 2); pi is its distribution density; fi(t) is the fraction of the initially cycling
cells that are present in phase i at time t after the experiment is started. Source: Kimmel, M.
1985. Nonparametric analysis of stathmokinesis. Mathematical Biosciences 74: 111–123.
Figure 3, page 114. Copyright: 1985 Elsevier Science Publishing Co., Inc.

T . T is assumed to be equal to the sum of two independent rv’s T1 and T2, with
densities p1 and p2, respectively (Fig. 5.3).

After mitosis, each of the progeny cells enters phase 1, staying there for the
random time T1. Upon leaving phase 1, the cell enters phase 2 with duration T2.
Then, the cell divides and both progeny reenter phase 1. It is assumed that by the
beginning of the experiment (time t � 0), when the divisions have been blocked by
application of a chemical agent, the cells have been growing in constant conditions
for a very long time t0.

After t0, when the divisions have been blocked, the total number of cells stays
unchanged but the transition from phase 1 to phase 2 continues. Therefore, the
number of cells remaining in phase 1 at time t after t0 is equal to X(t, t0), as
defined in Section 5.4.1. The fraction f1(t) defined as

f1(t) � E[X(t, t0)]

E[Z(t0)]
, (5.19)

whereZ(t0) is the number of cells present at time t0 (i.e., the number of objects in the
Bellman–Harris process), is called the exit curve from phase 1. The accumulation
curve in phase 2 is simply f2(t) � 1 − f1(t).

Proposition 1. The exit curve from phase 1 has the asymptotic form

f1(t) � lim
t0→∞

E[X(t, t0)]

E[Z(t0)]
� 2[1 − P1(t) − α1(t)], (5.20)

where P1(t) is the tail distribution function P [T1 > t] of rv T1 and

α1(t) � eλt
∫ ∞

t

p1(u)e−λu du.

Here, λ is the Malthusian parameter being the unique real root of the equation

2
∫ ∞

0
e−λy d(P1 ∗ P2)(y) � 1.
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FIGURE 5.4. Typical f1(t) exit curve. F0 is the Exponential Steady State (ESS) cell frac-
tion in phase 1; F1 is the area under f1(t); F2 is the coordinate of the mass center of the
graph. Source: Kimmel, M. 1985. Nonparametric analysis of stathmokinesis. Mathematical
Biosciences 74: 111–123. Figure 4, page 115. Copyright: 1985 Elsevier Science Publishing
Co., Inc.

A detailed proof of Proposition 1 can be found in Kimmel (1985). Briefly, to find
asymptotics of f1(t), we have to find the asymptotics of E[X(t, t0)], as t0 → ∞.
This is done by finding the integral equation for E[X(t, t0)], which, in turn, is done
by employing the pgf equation (5.17). Then, application of the renewal Theorem
17 yields the required asymptotics. An alternative proof could be carried out by
using an appropriate random characteristic and Eq. (C.2) of Appendix C.

The following two corollaries describe properties of the exit and collection
functions (Fig. 5.4). Proofs can be found in Kimmel (1985). The first corrolary
shows that first two moments of the random duration T1 can be found as solutions
of equations involving quantities F0, F1, and F2, which can be computed from the
graph of the exit function f1(t). Also, it shows how to invert the relationship (5.20)
in order to compute the tail distribution of T1, given the exit function. The second
corollary demonstrates that the Malthusian parameter is equal to the slope of the
linear portion of the accumulation curve g(t).
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Corollary 1. Suppose that the density p1 exists and is bounded and that its two
first moments exist. Then,

F0 ≡ f1(0) � 2(1 − q), (5.21)

F1 ≡
∫ ∞

0
f1(u) du � 2

[
E(T1) − 1 − q1

λ

]
, (5.22)

F2 ≡
[∫ ∞

0
uf1(u) du

]
F−1

1 �
[

E(T 2
1 ) − 2

λ
E(T1) + 2

λ2
(1 − q1)

]
F−1

1 , (5.23)

P1(t) � 1 − f1(t) − [df1(t)/dt]λ−1

2
, (5.24)

where q1 � α1(0). The exit curve is assumed in its asymptotic form as in
Proposition 1.

Corollary 2. g(t) � λt + ln(2q1), t ≤ Tmin, if and only if p1(t) � 0, t ≤ Tmin.

5.4.4 Estimation

Corollary 2 provides means of estimation of the Malthusian parameter of popula-
tion growth. The parameter λ is equal to the slope of the initial straight-line interval
of the collection curve g(t).

Knowing λ and having the exit curve data for phase 1 [i.e., the values
f1(0), f1(t1), . . . , f1(tn), for a sequence of time points 0, t1, . . . , tn], it is possi-
ble to employ Corollary 1 to estimate the duration of phase 1. It can be done in
two ways:

1. Calculate from data the “moments” F0, F1, and F2 of the exit curve and solve
the three first equations in Corollary 1 for E(T1), E(T 2

1 ), and q1.
2. Use the last equation in Corollary 1 to construct a nonparametric estimate

of the cumulative distribution P1(t), based on experimentally recorded values
f1(0), f1(t1), . . . , f1(tn), and approximated values df1(0)/dt, df1(t1)/dt, . . . ,
df1(tn)/dt .

A further discussion of applicability of these two methods can be found in
Darzynkiewicz et al. (1986) and Kimmel (1985).

The decomposition of the cell cycle into abstract phases 1 and 2 can be carried
out in various ways enabling analysis of stathmokinetic data in various biologi-
cal compartments of the cell cycle (Fig. 5.1). Figure 5.5 depicts the estimation
of the first moments of transit times through phases of the cell cycle of the
Friend erythroleukemia cells (Kimmel 1985). Figure 6.10a (see Chapter 6) de-
picts the estimation of the distributions of transit times. For further approaches
and applications, see Kimmel et al. (1983, 1986, 1990), and Staiano-Coico et al.
(1988).
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FIGURE 5.5. Analysis of stathmokinetic data for cultured Friend erythroleukemia cells.
The first panel depicts the collection curves in phases M and G2 + M. The (identical)
slopes of the straight-line portions of these curves provide the estimate of the Malthusian
parameter λ � 0.062. The second panel depicts the nonparametric estimation of the mean
duration of G1 and S phases. G1 (closed squares) and G1 + S (open squares) exit data
are depicted in linear scale. The estimate of the mean duration of G1 is calculated as
E(T1) � (AG1 + fG1/λ)/2 � (0.82 + 0.38/0.062)/2 � 3.5 h, where fG1 � 0.38 is the
fraction of G1 cells at the beginning of stathmokinesis and AG1 � 0.824 is the area under
the G1 exit curve computed from the graph in the second panel based on piecewise linear
approximation of the data. The estimate of the mean duration of G1 + S is calculated as
E(T1 + TS) � (AG1+S + fG1+S/λ)/2 � (3.83 + 0.83/0.062)/2 � 8.6 h, where fG1 � 0.83
is the fraction of G1 + S cells at the beginning of stathmokinesis and AG1+S � 3.83 is the
area under the G1 +S exit curve. E(TS ) � E(T1 +TS)−E(T1) � 8.6−3.5 � 5.1 h provides
the estimate of the S transit time. Source of first panel: Traganos, F. and Kimmel, M. 1990.
The stathmokinetic experiment: A single-parameter and multiparameter flow cytometric
analysis. Ch. 25, pp. 249–270. In Methods in Cell Biology, volume 33, Flow Cytometry.
(eds) Z. Darzynkiewicz and H.A. Crissman. Academic Press, Inc. San Diego. Figure 3c,
page 259. Copyright: 1990 Academic Press, Inc. Source of second panel: Traganos, F. and
Kimmel, M. 1990. The stathmokinetic experiment: A single-parameter and multiparameter
flow cytometric analysis. Ch. 25, pp. 249–270. In Methods in Cell Biology, volume 33,
Flow Cytometry. (eds) Z. Darzynkiewicz and H.A. Crissman. Academic Press, Inc. San
Diego. Figure 4, page 261. Copyright: 1990 Academic Press, Inc.

5.5 Other Works and Applications

5.5.1 Cell populations

Cell populations are among natural objects that can be modeled using branching
processes and this explains the great number and variety of publications devoted to
this subject. A uniform presentation is difficult because different authors employed
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branching processes at different levels ofor even branching processes disguised as
deterministic models. The following account is chronological.

One of the earliest articles reviewing stochastic approaches to cell kinetics is
Jagers (1983). Essentially, this is a treatment using general branching processes
counted by random characteristics (Section C.1.2). Using this approach, it is
possible to provide a condensed mathematical description as well as to use the
asymptotics of the supercritical process to describe the exponential growth of a
population. The review also includes models with periodically varying coefficients
and one of the earliest rigorous treatments of the stathmokinetic experiment (Sec-
tion 5.4). Other early papers are Bertuzzi and Gandolfi (1983) and Bertuzzi et al.
(1981).

Another theoretical approach, quasistochastic (i.e., limited to expected-value
processes) is the article by Staudte et al. (1984). It concerns models of regulatory
mechanisms of cells cycle. As such, it may be considered a precursor of the ap-
proach treated in detail in Section 7.7.1. Articles by Cowan (1985) and Cowan
and Morris (1986) belong to the tradition of modeling of the cell cycle using a
Bellman–Harris process [also, see Jagers’ 1975 book, and Kimmel (1980a, 1980b,
1983)]. To be strict, this should be a multitype process, because cells in differ-
ent phases of the cell cycle should be considered separately. However, due to the
cyclical nature of the problem, it is possible to consider the interdivision time as a
convolution of the durations of the successive cell cycle phases. Technically, this
is carried out in a way similar to that described in Section 5.4.3.

One of the practical problems for which a mathematical answer is required is
how to relate the doubling time td of an exponentially growing population (i.e.,
the time interval needed to increase the mean number of cells by a factor of 2), to
the expected life length E(T ) of an individual cell. The exact relationship has the
form

td � ln 2

α
,

where α is the Malthusian parameter defined as the positive root of the equation

mf̂ (α) � 1

and f̂ (α) is the Laplace transform of the density f (t) of the cell life length (Cowan
1985). There is no direct functional relationship between td and E(T ). Similarly,
there is no direct functional relationship between fractions of cells residing in
distinctive phases of the cell cycle and the residence times of cells in these phases.
The article by Cowan (1985) provides approximations of the doubling time and of
the proportions of cells in different phases in terms of moments of the life length
of cells and of the times of residence in cell cycle phases. This leads to a greater
insight into the theory and some simple formulas which account for the variability.

In a subsequent article, Cowan and Morris (1986) extend the analysis to the case
of cells having different life-length distributions in subsequent generations and
becoming quiescent with some probability (possibly different in each generation).
This allows modeling of transient effects in differentiating tissues and also of the
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embryonic phase of the organism’s growth [also, see Morris and Cowan (1984)
and Morris and Taylor (1985)].

The short book by Knolle (1988) presents the basic ideas of cell proliferation and
some mathematical models of population growth. The main application is a cell
cycle model with periodic coefficients used for modeling of cancer chemotherapy.

Axelrod et al. (1993) and Gusev and Axelrod (1995) use simulation of branching
models to quantify the persistence of cell cycle times of ras oncogene-transformed
and nontransformed cells over many generations. The experimental system in-
cludes primary colonies of cells and secondary colonies grown from cells collected
from primary colonies. Persistence of cell cycle times is determined by the heri-
tability of colony sizes (number of cells per colony). The problem of heritability
was subsequently studied in more mathematically oriented papers, see Section
6.9.1.

Taı̈b (1995) studied the functional equation of the form y ′(x) � ay(λx) + b(x),
which arises in limiting cases of branching models of cell populations. The
solution, important for applications, also has an intuitive interpretation as the
probability density function of an infinite sum of independent but not identically
distributed random variables.

5.5.2 Estimation of cell lifetimes

Estimation of cell lifetimes can be carried out by employing various consequences
of the asymptotic balanced exponential growth of the supercritical Bellman–Harris
process. The general principle is that the information accumulated in measurable
characteristics of the cell population can be disentangled to extract the moments
of cell lifetimes, probability of cell death, and so forth. One of the examples is the
stathmokinetic experiment of Section 5.4, but other methods also can be used.

Jagers and Norrby (1974) propose a method which involves sampling random
cells from an exponentially growing population and following them to division or
death. As the sampled cells will usually be of an age greater than 0, the mean tc of
these times is less than the expected cell cycle duration Tc. Indeed,

Tc � 1 − 2p

2(1 − p)

(
tc − Td

ln 2

)
,

where Td is the doubling time of the population and p is the probability of cell
death at division. Analogous expressions can be derived for variances. The authors
provide statistics to estimate the moments of the cell cycle duration and provide
examples of calculations for virally transformed and nontransformed human fetal
cell lines. The conclusion is that the transformed cells have longer cell cycle times
in spite of shorter population doubling times.

The subject can be treated in more generality. If residence times in different cell
cycle phases are random but not independent, then it is necessary to consider the
joint probabilities (Macdonald 1978)

ψi(u1, . . . , ui−1, x, y, ui+1, . . . , up)·du1 · · · dui−1 ·dx ·dy ·dui+1 · · · dup (5.25)
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that a cell chosen randomly from the population at time t is in phase i has already
spent times u1, . . . , ui−1 in phases 1, . . . , i−1, time x in phase i, and is destined to
spend an additional time y in phase i and times ui+1, . . . , up in phases i+1, . . . , p.
Although these probabilities are population dependent, the conditional distribution
of y + u2 + · · · + up, given i � 1 and x � 0, is population independent and is
the distribution of the life length of a newborn cell. On the contrary, both the
backward life length u1 + · · · + ui−1 + x and its forward counterpart y + ui+1 +
· · ·+up, as well as their sum, are population dependent. Distributions ψi(·) can be
computed under a variety of assumptions. These include the exponential balanced
growth, corresponding to the asymptotic behavior of a supercritical process, but
also nonstationary cases (varying environment). A review is given by Macdonald
(1978). Relationships of this kind allow one to construct correct estimators of
quantities more general than those considered by Jagers and Norrby (1974).

An analysis of estimation of mean cell cycle time, based on sample growth
trajectories can be found in Hoel and Crump (1974).

Expression (5.25), in the balanced exponential growth version, was used by
Cowan and Culpin (1981) to estimate the distribution function of cell residence
times in subphases of the cell cycle. The experimental setup was a combination of
in vivo fraction-labeled mitoses and arrested division (stathmokinesis) techniques.
More specifically, chicken embryo cells were exposed to the 5-bromodeoxyuridine
(BUdR), which is incorporated by cells in the S phase of the cell cycle. The amount
of BUdR present in the cell is related to the number of times the cell underwent
DNA synthesis (i.e., traversed the S phase) during the exposure. Just before the
cells were removed from the embryo for measurement, colcemid or colchicine
were injected to block further divisions. In this way, more cells accumulate in the
the prophase and metaphase (subphases of the M phase) in which the chromosomes
can be resolved under the microscope. On the other hand, Macdonald’s expression
(5.25) makes it possible to calculate the expected numbers of cells that went through
a given number of S phases and accumulated in the prophase and metaphase.
Using this expression, the model was fitted to observed cell counts, which allowed
determining an optimum set of parameters characterizing the durations of cell
cycle phases.

A different type of problem is considered in the articles by Axelrod and his
co-workers. The main theme is the estimation of parameters of the cell cycle and
the modes of dependence between related individuals, based on careful experi-
ments with cell colonies (i.e., clonal cell populations). The first of this series of
articles (Axelrod et al. 1986) concerned the distributions of cell life lengths of
Friend erythroleukemia cells. In addition to estimates of the α and β curves (tails
of the distribution of life lengths and of the distribution of differences between
life lengths of sib cells, respectively) the article considers the issue of how de-
pendencies between related cells are altered when cells are treated by cytotoxic
agents (in this case, the differentiating agent DMSO). In Friend cells, the α curves
become more elongated (i.e., life lengths longer and more dispersed), and the β

curves are not altered. This is interpreted as consistent with sib–sib life lengths
correlations being increased in treated cells. In later articles, the main subject is the
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heterogeneity between colonies and its influence on estimated parameters such as
correlations between lifetimes of related cells (Kuczek and Axelrod 1986). Kuczek
and Axelrod (1987) and Axelrod et al. (1997) introduced a divided colony assay to
reduce the influence of heterogeneity on estimations of the influence of cytotoxic
drugs on growth of cell colonies [also, see Axelrod and Kuczek (1989)].

5.5.3 Bifurcating autoregression

A particularly successful method of estimating parameters of cell proliferation
is the bifurcating autoregression developed by Cowan and Staudte (1986). The
method applies to branching populations with correlations between relatives de-
fined in an autoregressive manner. In a genealogy of cells, if cell death is excluded,
the progeny of a cell m with generation time xm can be labeled 2m and 2m+1 and
their generation times x2m and x2m+1, respectively. The ancestral cell is denoted 1.
It is assumed that x1 ∼ N (µ, σ 2) and that, given xm, the sib times x2m and x2m+1

satisfy the relationships

x2m − µ � θ (xm − µ) + e2m,

x2m+1 − µ � θ (xm − µ) + e2m+1,

where (e2m, e2m+1) are bivariate Normally distributed with common mean zero,
common variance λ2, and correlation coefficient φ. From these assumptions, the
moments of xm can be calculated, including the parent–progeny and sib–sib cor-
relations. Consequently, a likelihood function of an observed pedigree can be
calculated and numerically maximized to obtain the maximum likelihood estimates
of µ, λ2, and φ. The method was modified to accommodate relaxed assumptions
and successfully employed to diverse data sets (Staudte 1992, Staudte et al. 1997
and references therein).

5.6 Problems

1. Geometric Bellman–Harris Process. Suppose that the particle lifetime distri-
bution is geometric; that is, that Pr{τ � i} � (1 − p)pi, i ≥ 0 [progeny
pgf is a general h(s)]. Prove that {Zi, i � 0, 1, . . .}, where Zi � Z(i) is a
Galton–Watson process with some progeny pgf f (s) (and consequently that
{Zi, i � 0, 1, . . .} is Markov). Find f (s). Hint: Write the equation for pgf
of Zi and proceed by induction. Another proof is possible using the lack of
memory of the geometric distribution.

2. The Inverse Problem. Find the necessary and sufficient condition for a Galton–
Watson process with progeny pgf f (s) to be representable as a geometric
Bellman–Harris process. Hint: Check if h(s) corresponding to a given f (s) is
a pgf.
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3. Age Distributions. Find the integral equation for the pgf F (s; y, t) of Z(y, t)
(number of particles at time t , with ages ≤ y). Use the property

Z(y, t) �
X∑

k�1

Z(k)(y, t − τ ) if τ ≤ t

and reasoning as in the heuristic derivation of Eq. (5.2).
4. Expected Age Distributions. Prove that if the Malthusian parameter ex-

ists, then, as t → ∞, the normed expected age distribution A(y, t) �
E[Z(y, t)]/E[Z(t)] tends to the limit

A(y) �
∫ y

0 e−αz[1 − G(z)] dz∫∞
0 e−αz[1 − G(z)] dz

.

Hint: Find the integral equation for µ(y, t) ≡ E[Z(y, t)] and use the
asymptotics of Theorem 17.

5. TheA → B Transition Model of the Cell Cycle. Suppose that in a proliferating
cell population, a newborn cell, with probability p, stays dormant until it is
prompted into further growth by a random “hit,” which occurs (independently
for each cell) with probability βτ + o(τ ) in any short time interval of duration
τ . After this “hit,” the cell requires a fixed time T to grow and divide. Cells
which do not require the “hit” start growing at the moment of birth. No cell
death occurs. Find the limit age distribution A(y). If, for a cell population
growing long enough, the empirical age distribution can be found, can it help
in establishing the value of p (which is a biologically important parameter)?

6. Bellman–Harris Process, the Lattice Case. Consider the age-dependent
branching process {Zn, n � 0, 1, . . .} with progeny pgf h(s) and the life-
time distribution {gi, i � 1, ..., k}. Prove that the pgf fn(s) of Zn is equal to
f 1
n (s, . . . , s), where f 1

n (s) is the pgf of the k-type Galton–Watson process Zn

(initiated by a single type-1 particle), with the following progeny pgf’s:

f i(s) � (1 − γi)h(s1) + γisi+1, i � 1, . . . , k − 1,

f k(s) � (1 − γk)h(s1),

where γi � Ḡi+1/Ḡi . (In other words, the total number of particles of all
types in this k-type Galton–Watson process is equal to the number of particles
in the lattice Bellman–Harris process. What is the interpretation of particle
type here?)

7. Perron-Frobenius Root. Assume h′(1−) > 1. Find the determinant equation
for the maximum real eigenvalue ρ of matrix M. Proceed by induction with
respect to k. Check that the process is supercritical (i.e., that ρ > 1). Find the
left eigenvector ν corresponding to ρ.

8. Show that the age distribution of particles in the process Zn (i.e., the vector
(Zn1, . . . , Znk), where Zni is the number of particles with age i at time n), has
pgf f 1

n (s). Based on this and the limit law for the multitype supercritical posi-
tive regular Galton–Watson process, state the limit law for the age distribution
of the lattice Bellman–Harris process.



CHAPTER 6

Multitype Processes

In the present chapter, we present models involving branching processes with
many types of particle. Multitype models were sporadically employed in previous
chapters. Here, we offer a systematic treatment of asymptotic properties of the
multitype Galton–Watson process in the supercritical case. However, we start with
a motivating application, involving several multitype approaches to the fluctuation
experiment analysis, which is one of the oldest but still useful tests of mutagenesis.
Other applications follow.

6.1 Application: Two-Stage Mutations and Fluctuation
Analysis

The progeny of a cell may exhibit a new trait that differs from their parent and may
pass on the new trait to their own progeny. Such a change is usually considered
to be due to a single irreversible mutation event. However, a possibility exists that
the observed change may be due to an event that has a finite probability of being
reversible or may be the result of more than one mutational event.

The rate at which mutations occur in populations of cells has been estimated
using the fluctuation test introduced by Luria and Delbrück in 1943. The mutation
rate is defined as the average number of mutations per cell division. Experimentally,
a small number of cells is used to seed a series of independent cultures, cells in
each culture are allowed to grow, and then the total number of cells in each culture
is determined and the number of mutant cells is determined in each culture. The
number of cell divisions is estimated from the total number of cells in each culture
at the beginning and the end of the experiment. The mutation rate can be calculated
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in two ways (viz. from the total number of mutant cells or from the proportion of
cultures with no mutant cells).

The two methods of calculating the mutation rate in the Luria and Delbrück
fluctuation test do not always agree. This has motivated the investigation of mod-
els for determining mutation rates based on the possibility that some changes in
inherited traits are due to more than one mutation event and that some events may
be reversible.

We present a series of models of cell growth and mutation. The purpose is to
model the fluctuation experiment as applied to the analysis of data on the drug
resistance of cells. The material is based on the article by Kimmel and Axelrod
(1994). The classical fluctuation analysis is based on a model of cell proliferation
and single-stage irreversible mutation introduced in Luria and Delbrück (1943).
We summarize the hypotheses and predictions of that model and of four other
models employing different hypotheses. These models are modifications of the
Luria–Delbrück model, including random cell interdivision time, cell death, and
two-stage mutations with the first stage being reversible.

Given parameter values, these models predict the distribution of the number of
nonmutant and mutant cells at time t in a population started at time 0 by a single
nonmutant cell. In particular, the following observable variables are of interest:

• N (t), the expected total number of nonmutant and mutant cells at time t

• r(t), the expected number of mutant cells at time t

• P0(t), the probability of mutant cells being absent from the population at time
t

Conversely, given experimental values of N (t), r(t), and P0(t), it is possi-
ble to estimate the parameters of the models – in particular, mutation rates and
probabilities.

6.1.1 Luria–Delbrück model

The hypotheses are as follows (see Fig. 6.1a and Table 6.1):

1. Two types of cells exist in the population: type-0 nonmutant cells and type-1
mutant cells.

2. All cells in the population have interdivision times equal to ln 2.
3. Each cell, at the moment of division, gives birth to two daughter cells. The

type of each of these daughters is the same as that of the mother cell.
4. During its lifetime, independently of any other events, a type-0 cell undergoes

an irreversible transformation into a type-1 cell with probability at + o(t)
in any brief lifetime interval (t, t +t). The constant a is called the transition
or mutation rate. This implies that if the time from birth to mutation is denoted
by T , then P[T > t] � max[exp(−at), exp(−a ln 2)] [i.e., the mutation may
not occur at all wp exp(−a ln 2) � 2−a].

The analysis of the model carried out originally in Luria and Delbrück (1943)
and reworked in Lea and Coulson (1949) is based on the assumption that the
population as a whole is large enough to be treated deterministically, whereas
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TABLE 6.1. Summary of Hypotheses of the Models Considered

Model Interdiv. Probability of Number of Probability of
Time Cell Death Stages Mutation

Luria–Delbrück ln(2) 0 1 at

in (t, t + t)
(irreversible)

Markov branching 1 0 1 at

(expected) in (t, t + t)
(irreversible)

Galton–Watson 1 0 1 α

per daughter cell
(irreversible)

Galton–Watson 1 δ 1 α

with cell death per daughter cell
(irreversible)

Galton–Watson 1 0 2 0 → 1 : α01

two-stage 1 → 0 : α10

(reversible)
1 → 2 : α12

(irreversible)

FIGURE 6.1. Schematics of transitions admitted in (a) the one-stage models and (b) the
two-stage model. Source: Kimmel, M. and D. Axelrod. 1994. Fluctuation test for two-stage
mutations: application to gene amplification. Mutation Research 306: 45–60. Figure 1, page
48. Copyright: 1994 Elsevier Science B.V.

the mutation events are rare and, therefore, the mutants have to be counted in a
probabilistic manner. Solutions, which were derived in Lea and Coulson (1949),
are listed in the first row of Table 6.2. We do not provide derivations, referring the
reader to Kimmel and Axelrod (1994).
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TABLE 6.2. Expressions for the Expected Total Count of Cells N(t), for the Expected
Count of Mutant Cells r(t) and for the Probabilities of No Mutant Cells P0(t) in the Models
Considered.

Model N (t) r(t) P0(t)

Luria–Delbrück et atet exp(−aet )

Markov branching process et et (1−e−at )
a + 1

ae(a+1)t + 1

Galton–Watson process 2t 2t [1−(1−α)t ] (1−α)2(t+1)−2

Galton–Watson with cell
death

[2(1−δ)]t [2(1−δ)]t
[

1−
(

1−α−δ

1−δ

)t]
Eqs. (6.23)–(6.24)

Galton–Watson two-stage 2t 2t − ρt
1

A1
− ρt

2

A2
Eqs. (6.25)–(6.27)

and (6.33)

6.1.2 The Markov branching process model

In this model, the interdivision time is not constant but is random with exponential
distribution. Hypothesis 2 is therefore replaced by the following (cf. Table 6.1 and
Fig. 6.1a).

2. All cells in the population have exponentially distributed interdivision times
with mean (expected) value equal to 1.

The distributions of the numbers of nonmutant and mutant cells are characterized
by the following pgf’s:

F0(s0, s1; t) � E[Z0(t)s0Z1(t)s1 |Z0(0) � 1, Z1(0) � 0], (6.1)

F1(s0, s1; t) � E[Z0(t)s0Z1(t)s1 |Z0(0) � 0, Z1(0) � 1], (6.2)

where t ≥ 0, s1, s2 ∈ [0, 1]. Z0(t) [respectively Z1(t)] is the number of nonmutant
(respectively mutant) cells at time t . The function F0 is the pgf of the population
started by a single nonmutant cell, whereas the function F1 is the pgf of a clone
started by a single mutant cell. We will writeFi(s; t) orFi(t) instead ofFi(s0, s1; t).

The model is a two-type age-dependent Markov branching process and the
following differential equations are satisfied by the pgf’s F0(t) and F1(t) (cf.
Section 4.2.1):

d

dt
F0(t) � −(a + 1)F0(t) + (a + 1)

[
1

a + 1
F0(t)2 + a

a + 1
F1(t)

]
, (6.3)

d

dt
F1(t) � −F1(t) + F 2

1 (t), t ≥ 0. (6.4)

The initial conditions are Fi(t) � si , i � 0, 1. The form of Eqs. (6.3) and (6.4)
can be understood by comparison with Eqs. (4.10) and (4.11). Under the new
Hypothesis 2, after a time, which is distributed exponentially with parameter a+1,
either two type-0 cells are produced [wp 1/(a + 1)] or a single type-1 cell [wp
a/(a + 1)]. This latter cell is a “type-1 continuation” of the type-0 cell.
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We are interested in evaluating N (t), r(t), and P0(t). They can be expressed as

N (t) � E[Z0(t) + Z1(t)|Z0(0) � 1, Z1(0) � 0]

�
(

∂

∂s0
+ ∂

∂s1

)
F0(s; t)

∣∣∣∣
s0�s1�1

, (6.5)

r(t) � E[Z1(t)|Z0(0) � 1, Z1(0) � 0] � ∂

∂s1
F0(s; t)

∣∣∣∣
s0�s1�1

, (6.6)

P0(t) � F0(1, 0; t). (6.7)

Solving the resulting equations yields the results displayed in Table 6.2.

6.1.3 The Galton–Watson process model

In this model, cells mutate immediately following division. Hypotheses 3 and 4
are therefore replaced by the following (cf. Table 6.1 and Fig. 6.1a):

3. Each cell, at the moment of division, gives birth to two daughter cells. The
type of each of the daughters may or may not be the same as that of the mother
cell.

4. Following division, a type-0 daughter cell undergoes irreversible transforma-
tion into a type-1 cell with probability α. The constant α is now called the
transition or mutation probability.

The distributions of nonmutant and mutant cells can be characterized by the
pgf’s F0(s0, s1; t) and F1(s0, s1; t) as defined in Eqs. (6.1) and (6.2), except that
the time variable t now assumes only non-negative integer values, equal to the
multiples of the interdivision time.

The pgf’s F0(t) and F1(t) satisfy a system of recurrence equations, stemming
from the following vector generalization of the backward iteration (3.2):

F (s, t) � h[F (s, t − 1)],

where

F � (F0, F1), h � (h0, h1),

h0(s0, s1) � [(1 − α)s0 + αs1]2, h1(s0, s1) � s2
1 .

Substituting h0 and h1 as given above, we obtain

F0(s; t) � [(1 − α)F0(s; t − 1) + αF1(s; t − 1)]2, (6.8)

F1(s; t) � [F1(s; t − 1)]2, (6.9)

where s � (s0, s1), t � 1, 2, . . . , with initial conditions Fi(s; 0) � si , i � 0, 1.
Recurrences (6.8) and (6.9) cannot be solved explicitly, but differentiation side-
by-side of (6.8) and (6.9) with respect to s0 and setting s0 � s1 � 1 yields

E[Z0(t)|Zi(0) � δ0i] � 2{(1 − α)E[Z0(t − 1)|Zi(0) � δ0i]

+ αE[Z0(t − 1)|Zi(0) � δ1i]}, (6.10)

E[Z0(t)|Zi(0) � δ1i] � 2E[Z0(t − 1)|Zi(0) � δ1i], t � 1, 2, . . . , (6.11)
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with initial conditions E[Z0(0)|Zi(0) � δ0i] � 1, and E[Z0(0)|Zi(0) � δ1i] � 0.
This yields E[Z0(t)|Zi(0) � δ1i] � 0, t � 0, 1, 2, . . . , and

E[Z0(t)|Zi(0) � δ0i] � [2(1 − α)]t , t � 0, 1, 2, . . . , (6.12)

as expected. Because there is no cell death assumed,

N (t) � E[Z0(t) + Z1(t)|Zi(0) � δ0i] � 2t , t � 0, 1, 2, . . . . (6.13)

Equations (6.12) and (6.13) yield

r(t) � E[Z1(t)|Zi(0) � δ0i] � 2t − [2(1 − α)]t , t � 0, 1, 2, . . . , (6.14)

as displayed in Table 6.2.
To obtain P0(t), we use the definition (6.7) and also denote P1(t) � F1(1, 0; t).

Substitution of s0 � 1, and s1 � 0 in Eqs. (6.8) and (6.9) yields

P0(t) � [(1 − α)P0(t − 1) + αP1(t − 1)]2, (6.15)

P1(t) � [P1(t − 1)]2, t � 1, 2, . . . , (6.16)

with initial conditions P0(0) � 1 and P1(0) � 0. Therefore,

P0(t) � (1 − α)2t+1−2, t � 0, 1, 2, . . . , (6.17)

as displayed in Table 6.2

6.1.4 The Galton–Watson process model with cell death

In this model, each of the daughter cells (mutant or nonmutant) may also die
with some probability. Hypothesis 4 is therefore replaced by the following (cf.
Table 6.1).

4. Following division, a type-0 daughter cell either undergoes irreversible trans-
formation into a type-1 cell with probability α, or dies with probability δ, or
stays type-0 with probability 1 − α − δ. The type-1 daughter cell may either
die with probability δ or stay alive with probability 1 − δ.

The presence of cell death leads to the following modification of Eqs. (6.8) and
(6.9):

F0(s; t) � [(1 − α − δ)F0(s; t − 1) + αF1(s; t − 1) + δ]2, (6.18)

F1(s; t) � [(1 − δ)F1(s; t − 1) + δ]2, t � 1, 2, . . . , (6.19)

with initial conditions Fi(s; 0) � si , i � 0, 1. We obtain

E[Z0(t)|Zi(0) � δ0i] � [2(1 − α − δ)]t , t � 0, 1, 2, . . . , (6.20)

and

N (t) � E[Z0(t) + Z1(t)|Zi(0) � δ0i] � [2(1 − δ)]t , t � 0, 1, 2, . . . , (6.21)
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which yields

r(t) � E[Z1(t)|Zi(0) � δ0i] � [2(1−δ)]t
[

1 −
(

1 − α − δ

1 − δ

)t]
, t � 0, 1, 2, . . . ,

(6.22)
as displayed in Table 6.2. Substitution of s0 � 1 and s1 � 0 in Eqs. (6.18) and
(6.19) yields

P0(t) � [(1 − α − δ)P0(t − 1) + αP1(t − 1) + δ]2, (6.23)

P1(t) � [(1 − δ)P1(t − 1) + δ]2, t � 1, 2, . . . , (6.24)

with initial conditions P0(0) � 1, and P1(0) � 0, where P0(t) is the probability of
no mutant cells at time t in the population derived from a nonmutant cell, whereas
P1(t) is the extinction probability (by time t) of a clone started by a mutant. This
recurrence has to be solved numerically.

6.1.5 Two-stage Galton–Watson process model

In this model, two stages of mutant cells are present: type 1 and type 2. Mutation
from type 0 to type 1 is reversible, whereas mutation from type 1 to type 2 is
irreversible. Hypothesis 4 is therefore replaced by the following (cf. Table 6.1 and
Fig. 6.1b).

4. Following division:

• A type-0 daughter cell undergoes transformation into a type-1 cell, with
probability α01.

• A type-1 daughter cell undergoes a reverse transformation into a type-0 cell,
with probability α10.

• A type-1 daughter cell undergoes irreversible transformation into a type-2 cell,
with probability α12.

The two-stage mutation model is a three-type Galton–Watson process. Its dis-
tributions are described by pgf’s Fi(s0, s1, s2; t), i � 0, 1, 2, where F0 is the joint
pgf of the numbers of cells of types 0, 1, and 2 in the population started by a single
nonmutant cell, F1 is the joint pgf in the population started by a single stage-1 mu-
tant cell, and F2 is the pgf of the stage-2 mutant clone started by a single stage-2
irreversible mutant. The hypotheses of the model lead to the following recurrent
equations for the pgf’s:

F0(s; t) � [(1 − α01)F0(s; t − 1) + α01F1(s; t − 1)]2, (6.25)

F1(s; t) � [α10F0(s; t−1)+(1−α10−α12)F1(s; t−1)+α12F2(s; t−1)]2, (6.26)

F2(s; t) � [F2(s; t − 1)]2, t � 1, 2, . . . , (6.27)
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with initial conditions Fi(s; 0) � si , i � 0, 1, 2. Let us denote M(t) �
(Mij (t))i,j�0,1,2, the matrix of expected cell counts

Mij � E[Zj (t)|Zk(0) � δik, k � 0, 1, 2] � ∂Fi(1; t)

∂sj
. (6.28)

Differentiating system (6.25)–(6.27), we obtain

M(t) � µM(t − 1), t � 1, 2, . . . , (6.29)

where µ is the expected progeny matrix

µ � 2

⎛⎜⎝ 1 − α01 α01 0

α10 1 − α10 − α12 α12

0 0 1

⎞⎟⎠ . (6.30)

The initial condition is M(0) � I (the identity matrix). We obtain

M(t) � µt , t � 0, 1, 2, . . . . (6.31)

Involved but standard calculations consisting of finding the eigenvalues and
eigenvectors of matrix µ lead to the following explicit expression for r(t):

r(t) � M01(t) + M02(t) � 2t − ρt
1

A1
− ρt

2

A2
, t � 0, 1, 2, . . . , (6.32)

where

ρi � (2 − α01 − α10 − α12) + (−1)i
√

(α10 + α12 − α01)2 + 4α01α10

and

Ai � 1 + [2(1 − α01) − ρi]2

4α01α10
, i � 1, 2.

Recurrent equations for

P0(t) � F0(1, 0, 0; t) (6.33)

are obtained from the system (6.25)–(6.27) using the substitutions s0 � 1, and
s1 � s2 � 0.

6.1.6 The single-stage models versus data

The question considered in this section is whether the single-stage models can
simultaneously reproduce the r and P0 values obtained from experimental data.
Each single-stage model yields, for a given value of mutation rate a or mutation
probability α and for a given sample size N(t), a uniquely determined pair of
values r(t) and P0(t). We will call the r − P0 plot the set of all such points in the
r − P0 plane. The equation of the r − P0 plot can be found by eliminating a (or
α) from the expressions for r(t) and P0(t) in Table 6.2. For example, the r − P0
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FIGURE 6.2. Bacterial phage resistance data from Experiment 23 of (Luria and Delbrück
1943) and the r − P0 plots (N � 2.4 × 108) of the Galton–Watson, Luria–Delbrück, and
Markov branching process models. Source: Kimmel, M. and D. Axelrod. 1994. Fluctuation
test for two-stage mutations: application to gene amplification. Mutation Research 306:
45–60. Figure 2, page 51. Copyright: 1994 Elsevier Science B.V.

plot of the Luria–Delbrück model has the following equation:

P0 � exp

( −r

ln(N)

)
.

By graphing the experimentally obtained estimates of r and P0 together with the
corresponding r − P0 plot for an appropriate N , we can verify whether the model
can fit the data.

The first series of comparisons includes the original data on bacterial resistance
to phage from Luria and Delbrück (1943), almost perfectly matched by the single-
stage models. In Figure 6.2 we present the r − P0 plot and the data point of
experiment 23 of Luria and Delbrück (1943). Note that the data point interpolates
between the models with constant lifetime and exponentially distributed lifetime,
two extreme alternatives of lifetime distributions. Experiment 22 provides a similar
match. For these classical data, the single-stage models seem perfectly satisfactory.

As a contrast, we analyze the gene amplification data from Tlsty et al. (1989)
and Murnane and Yezzi (1988) [details in Kimmel and Axelrod (1994)].

Figures 6.3 and 6.4 demonstrate that the r and P0 values obtained in this way
are not matched by the r–P0 plots of the Luria–Delbrück, Galton–Watson, and
Markov branching process models (from left to right). The overall tendency of
these three models is to overestimate either r or P0. Taking into account cell death
makes the match even worse (Fig. 6.5).
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FIGURE 6.3. The gene amplification data for WB20 and GN5 cells from (Tlsty et al.
(1989) and the r − P0 plots (N � 2 × 105) of the Galton–Watson, Luria–Delbrück, and
Markov branching process models (from left to right). Source: Kimmel M. and D. Axelrod.
1994. Fluctuation test for two-stage mutations: application to gene amplification. Mutation
Research 306: 45–60. Figure 3, page 52. Copyright: 1994 Elsevier Science B.V.

Figures 6.6 and 6.7 show data on drug resistance due to the loss of HGPRT
enzyme activity with the r-P0 plots. Figure 6.6 includes the data of Morrow (1970)
and Figure 6.7 shows the data of Varshaver et al. (1983). Figures 6.6 and 6.7
demonstrate that the r and P0 values obtained in this way are not matched by the
r–P0 plots of the Luria–Delbrück, Galton–Watson, and Markov branching process
models (from left to right).

To visualize the extent of separation of data from the single-stage models, we
carried out confidence interval analysis of data. The results are depicted in Figures
6.3–6.7. The vertical error bars are the exact 0.95 confidence intervals for P0

based on binomial distribution and corrected for plating efficiency. It is difficult
to carry out exact analysis for r because its distribution is complicated. Therefore,
we only plotted horizontal bars, the right ends of which correspond to the upper
0.95 quantile of the sample. This analysis shows systematic departures from the
single-stage model.

6.1.7 The two-stage model versus data

Kimmel and Axelrod (1994) demonstrated that the two-stage model better explains
the experimental data concerning drug resistance. The typical estimates of the
first-stage forward mutation rate are α01 ≈ 10−6. The corresponding reversal
rates are α10 ≈ 0.2–0.95. Finally, the second-step forward mutation rates are
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FIGURE 6.4. The gene amplification data for LM205 cells from Murnane and Yezzi (1988)
and the r −P0 plots (N � 1.1 × 107) of the Galton–Watson, Luria–Delbrück, and Markov
branching process models. The three experimental points were obtained using three different
hypothetical values of plating efficiency. Source: Kimmel M. and D. Axelrod. 1994. Fluc-
tuation test for two-stage mutations: application to gene amplification. Mutation Research
306: 45–60. Figure 4, page 52. Copyright: 1994 Elsevier Science B.V.

FIGURE 6.5. The effect of cell death on the r −P0 plots of the Galton–Watson model with
cell death (N � 2 × 105). Delta is the probability of cell death. Source: Kimmel, M. and D.
Axelrod. 1994. Fluctuation test for two-stage mutations: application to gene amplification.
Mutation Research 306: 45–60. Figure 7, page 52. Copyright: 1994 Elsevier Science B.V.
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FIGURE 6.6. The drug resistance data for M − Mc mouse cells from experiment 1 of
Morrow (1970) and the r−P0 plots (N � 105) of the Galton–Watson, Luria–Delbrück, and
Markov branching process models (from left to right). Source: Kimmel, M. and D. Axelrod.
1994. Fluctuation test for two-stage mutations: application to gene amplification. Mutation
Research 306: 45–60. Figure 5, page 52. Copyright: 1994 Elsevier Science B.V.

α12 ≈ 0.01–0.15. Detailed explanations and a discussion can be found in the
original article. However, let us note that the use of a two-stage model is justified
only after the possibilities of fitting the data using the simpler single-stage models
were exhausted.

Together, these results suggest that some cases of drug resistance do not result
from a single irreversible mutation, but may result from two mutations, the first of
which is reversible.

6.2 The Positive Regular Case of the Multitype
Galton–Watson Process

In this section, we study the variant of the multitype Galton–Watson process, the
behavior of which is a direct extension of the single-type case. We proceed as
in Chapter 2 of Harris (1963). In the previous section, we used some of these
results based on intuitive generalizations. An authoritative and advanced source
on multitype classical processes is the book by Mode (1971), which can be used
as a reference for most of this chapter.

We follow evolution of a population composed of particles of k types. An an-
cestral particle of type i lives for a unit time interval, and in the moment of death,
it produces a random number of progeny particles of generally all k type. The
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FIGURE 6.7. The drug resistance data for Chinese hamster 237 − 4 cells from replicate
cultures 1, 2, and 3, HPRT− (Varshaver et al. 1983) and the r − P0 plots (N � 105) of
the Galton–Watson, Luria–Delbrück, and Markov branching process models (from left to
right). Source: Kimmel, M. and D. Axelrod. 1994. Fluctuation test for two-stage muta-
tions: application to gene amplification. Mutation Research 306: 45–60. Figure 6, page 52.
Copyright: 1994 Elsevier Science B.V.

numbers of its progeny of all types constitute a random vector with non-negative
integer entries, characterized by pgf f i(s1, . . . , sk). A progeny of type j starts,
independently of all other progeny, a subprocess with itself as the ancestor, by
producing at the moment of death, a random vector of progeny of all types, char-
acterized by pgf f j (s1, . . . , sk). The distribution of this subprocess depends only
on the type of the ancestral particle.

The counts of particles of all types existing at time n in the process started by an
ancestor of a fixed type constitute a random vector denoted Zn � (Z1

n, . . . , Z
k
n).

The distribution of this vector depends on the type of the ancestral particle of
the process. We provide a definition and a theorem stating that in the multitype
process, the pgf’s of Zn are functional iterates of the progeny pgf’s, as it was the
case for the single-type Galton–Watson process.

6.2.1 Basics

The following definition uses a forward approach to the process by relating the
numbers of particles in generation n + 1 to those in the preceding generation, n.
In this way, it underscores the Markov character of the multitype Galton–Watson
process.
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Definition 5. Let T denote the set of all k-dimensional vectors whose compo-
nents are non-negative integers. Let ei , 1 ≤ i ≤ k, denote the vector whose ith
component is 1 and whose other components are 0.

The multitype (or vector) Galton–Watson process is a temporally homogeneous
vector-valued Markov process Z0,Z1,Z2, . . ., whose states are vectors in T . We
shall assume that Z0 is nonrandom. We interpret Zi

n, the ith component of Zn, as
the number of objects of type i in the nth generation.

The transition law for the process is as follows. If Z0 � ei , then Z1 will have
the generating function

f i(s1, . . . , sk) �
∞∑

r1,...,rk

pi(r1, . . . , rk) sr1
1 · · · srkk , |s1|, . . . , |sk| ≤ 1, (6.34)

where pi(r1, . . . , rk) is the probability that an object of type i has r1 children of
type 1, . . . , rk of type k. In general, if Zn � (r1, . . . , rk) ∈ T , then Zn+1 is the sum
of r1 +· · ·+ rk independent random vectors, r1 having the generating function f 1,
r2 having the generating function f 2, . . . , rk having the generating function f k . If
Zn � 0, then Zn+1 � 0.

The generating function of Zn, when Z0 � ei , will be denoted by
f i
n(s1, . . . , sk) � f i

n (s) i � 1, . . . , k n � 0, 1, . . .. Then, f i
1 is the function f i

of Eq. (6.34). The vector (f 1
n (s), . . . , f k

n (s)) will be frequently denoted by fn(s).

Directly from this definition, we can deduce the following theorem. We omit
the details, as they are an extension of those in Section 3.1.2. They can be obtained
by a direct application of Theorem 30, part 6 (see Appendix A).

Theorem 21. The generating functions f i
n are functional iterates, defined by the

relations

f i
n+1(s) � f i[f 1

n (s), . . . , f k
n (s)], n � 0, 1, . . . ,

f 0
n (s) � si , i � 1, 2, . . . , k. (6.35)

More generally, we have, in vector form

fn+N (s) � fn[fN (s)], n,N � 0, 1, 2, . . . . (6.36)

We define M � (mij ) to be the matrix of expected numbers of progeny of
all types of parent particles of all types. Specifically, mij � E(Zj

1 |Z0 � ei) �
∂f i(1, . . . , 1)/∂sj , i, j � 1, . . . , k, is the expected number of progeny of type j

of a particle of type i. It is assumed that all the first moments mij are finite and not
all equal to 0. By using the chain rule in (6.35), we obtain E(Zn+1|Zn) � ZnM.
More generally,

E(Zn+N |ZN ) � ZNMn. (6.37)

Analogous expressions for variances are more complicated (see Harris 1963, Mode
1971).
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6.2.2 Positivity properties

The following are the essentials of the Perron–Frobenius theory of positive ma-
trices. This theory demonstrates that iterates of positively regular non–negative
matrices can be approximated using the powers of the dominating eigenvalue of
the matrix, which is shown to be positive. As a consequence, the asymptotic prop-
erties of the multitype Galton–Watson process in the positive regular case can be
expressed using powers of this eigenvelue.

We shall call a vector or a matrix positive, non-negative, or 0 if all of its com-
ponents have these properties. If u and v are vectors or matrices, then u > v
(u ≥ v) means that u − v is positive (non-negative). Absolute value signs enclos-
ing a vector or a matrix denote the sum of the absolute values of the elements (e.g.,
|Zn| �∑i |Zi

n|).
Theorem 22. Let M be a non-negative matrix of order k, which is irreducible
(i.e., such that MN is positive for some positive integer N). Then, M has a positive
eigenvalueρ that is simple and greater in absolute value than any other eigenvalue;
ρ corresponds to positive right and left eigenvectors µ � (µi) and ν � (νi),
respectively, which are the only non-negative eigenvectors. Moreover, we have

Mn � ρnM1 + Mn
2, n � 1, 2, . . . , (6.38)

where M1 � (µiνj ), with the normalization
∑

i µiνi � 1. Hence, M1M1 � M1.
Furthermore:

1. M1M2 � M2M1 � 0.
2. |Mn

2 | � O(αn) for some α ∈ (0, ρ).
3. If j is a positive integer, then ρj corresponds to Mj in the same manner as ρ

corresponds to M.

A multitype Galton–Watson process is called positively regular or irreducible
if Mn is positive for some positive integer N .

6.2.3 Asymptotic behavior in the supercritical case

The following result is a direct extension of the analogous result for the single-type
process (Theorems 5 and 6).

Theorem 23. Suppose that the process is positively regular withρ > 1 and that all
the second moments of progeny distributions are finite. Then, the random vectors
Zn/ρ

n converge with probability 1 to a random vector W. Vector W is nonzero
except for trivial cases of all covariance matrices Vi � Cov (Z1|Z0 � ei) being
zero or Z0 � 0. If W is nonzero, then with probability 1 its direction coincides
with that of ν, the left eigenvector of M.

One of the consequences of the theorem is that the limit law in the positively
regular case is strictly one dimensional. Although the total number of particles is
subject to wide dispersion, their proportions become constant with probability 1.
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6.2.4 Probability of extinction

It is understandable that the probability of extinction of a multitype process depends
on the type of its ancestral particle. Otherwise, the rule is analogous as in the single-
type case (Section 3.3). Let qi be the extinction probability if initially there is one
object of type i � 1, 2, . . . , k; that is, qi �P{Zn � 0 for some n|Z0 � ei). The
vector (q1, . . . , qk) is denoted by q.

Theorem 24. Suppose that the process is positively regular and not singular
(which would mean that each object has exactly one progeny). If ρ ≤ 1, then
q � 1. If ρ > 1, then 0 ≤ q < 1 and q satisfies the equation

q � f(q). (6.39)

6.3 Application: A Model of Two Cell Populations

The example we present is a simplified version of the model considered in Kimmel
and Arino (1991). It is motivated by an experiment described in Sennerstam and
Strömberg (1984).

Let us consider two cell populations evolving according to the following rules:

1. Both populations have fixed interdivision times equal to 1.
2. In both populations, the divisions are entirely effective (i.e., each parent cell

produces exactly two progeny initially of the same type).
3. After division each type-1 progeny (independent of the other) switches to type

2 with probability p12 and remains type 1 with probability p11 � 1 − p12.
4. Analogously, each type-2 progeny (independent of the other) switches to type

1 with probability p21 and remains type 2 with probability p22 � 1 − p21.

The known biological example is the population of cultured transformed em-
bryonic cells maintained by Sennerstam. The “normal” embryonic cells have a
program to switch irreversibly from one developmental stage to the next. The
transformed cells are maintained indefinitely because they switch back and forth
between two stages, named 1 and 2 by us. Under the simplified assumptions
specified above, their proliferation is described by a 2-type Galton–Watson process.

The progeny pgf’s of the process are

f 1(s1, s2) � (p11s1 + p12s2)2, (6.40)

f 2(s1, s2) � (p21s1 + p22s2)2. (6.41)

The expected progeny matrix of the process is equal to

M �
(

2p11 2p12

2p21 2p22

)
. (6.42)

The eigenvalues of matrix M are found from the equation

ρ2 − ρ(2p11 + 2p22) + 4(p11p22 − p12p21) � 0.
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The greater of the two real roots of this equation (the Perron–Frobenius root or
eigenvalue) is equal to ρ � 2. The left eigenvector ν corresponding to the Perron–
Frobenius root is the row vector satisfying the matrix equation ν(M − 2Id) � 0,
or

2(ν1, ν2)

(
−p12 p12

p21 −p21

)
� 0. (6.43)

We obtain
ν1

ν2
� p21

p12
.

The process is positively regular. Theorem 23 yields that with probability 1,

(Z1
n, Z

2
n) ∼ 2n(ν1, ν2)W, n → ∞,

where W is a scalar random variable.
The meaning of this result is that the proportion of the type-1 and type-2 cells is

asymptotically determined by the ratio ν1/ν2 � p21/p12. The interesting feature
is that both p21 and p12 can be very small (i.e., that the switching between both
types is not frequent), and still the proportion is maintained. For the experimental
data, it was estimated that p12 and p21 are of the order of 0.1 (Arino and Kimmel
1991).

6.4 Application: Stochastic Model of the Cell Cycle
with Chemotherapy

The current application does not draw on the theory in the previous section. Instead,
it is an example of a model using a multitype Bellman–Harris process.

The goal of cancer chemotherapy is to stop tumor cells from dividing and to
kill them while sparing normal cells. Some chemotherapy protocols depend on
the differential effect of drugs on cells in different compartments of the cell cycle.
For instance, combination drug chemotherapy may utilize two drugs which affect
cells in different compartments of the cell cycle with different efficiencies. Such
combination chemotherapy is expected to be more effective in tumor cell popula-
tions than in normal cell populations. The rationale is that tumor cell populations
have a larger fraction of cells progressing through the cell cycle than normal cells.
This approach requires knowledge of the “drug action curve,” the percentage of
cells affected depending on their position in the cell cycle. In Section 5.4, we de-
veloped a method of estimating the duration of cell cycle compartments, based on
stathmokinetic experiments. This method is now extended to determine the relative
effects of a drug on cells in different compartments of the cell cycle.

Modern technology allows the determination of the amount of DNA per cell by
measuring the fluorescence of stained DNA excited by a laser in a flow cytometer.
This has lead to an improved stathmokinetic method that utilizes the amount of
DNA per cell, rather than the number of cells in mitosis, as a function of time for
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which the cells are exposed to the statmokinetic agent. The means and variances
of durations of each of the cell cycle compartments can then be estimated using
the mathematical methods described in Section 5.4.

Additional mathematical methods are required to obtain the estimates of the cell-
cycle-specific effects of anticancer drugs. We develop a model which describes the
flow of cells through successive compartments of the cell cycle. The model allows
the estimation of the fraction of cells blocked in each cell cycle compartment by
an anticancer agent.

This application is mainly based on the article by Kimmel and Traganos (1986).
It is the continuation of the stathmokinetic analysis example of Section 5.4. The
mathematical tool we use is the multitype Bellman–Harris process. We do not
develop a rigorous theory, but employ intuition and analogies with the Galton–
Watson branching process. For a related, more mathematical approach, see Crump
(1970).

We want to model the long-term in vitro effects of an anticancer drug, acting with
a different strength on cells in different phases of the cell cycle, based on the short-
term observations collected using the stathmokinetic experiment. For this purpose,
we decompose the cell cycle into a sequence of compartments differing with respect
to sensitivity to the drug. These compartments may be different from individual
cell cycle phases. Specifically, in the current model, the S phase is subdivided into
a number of smaller compartments, to account for different sensitivities of cells in
different stages of DNA synthesis.

6.4.1 Model of drug-perturbed stathmokinesis

The following model is employed to analyze the drug action (Fig. 6.8): The cell
cycle is divided into M disjoint compartments. The cell residence time in the mth
compartment is an independent random variable with distribution density pm(·).
The conditions of the stathmokinetic experiment are satisfied, by assuming that
there is no cell inflow into the first compartment nor cell outflow from the last
(Mth) compartment. In each compartment, exposure to a given concentration of
the drug causes a permanent block for a fraction 1 − um of cells, which would
otherwise leave this compartment. By choosing a sufficiently dense subdivision of
the cell cycle into compartments, it is possible to construct a curve of drug action,
the coordinates of which are the quantities 1 − um.

Let us denote by Nm(t) the expected cell count in the mth compartment and by
xm(t) the expected cell outflow rate from the mth compartment, at time t . We have

N1(t) � N1(0) −
∫ t

0
x1(s) ds,

Nm(t) � Nm(0) +
∫ t

0
[xm−1(s) − xm(s)] ds, m � 2, ...,M − 1,

NM (t) � NM (0) +
∫ t

0
xM−1(s) ds.

(6.44)
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FIGURE 6.8. (a) The model of blocking drug action. The cell cycle is divided into M

compartments. There is no cell flow into the first compartment, nor cell outflow from the
last compartment. Notation: pm(t), distribution density of the residence time; xm(t), outflow
rate; Nm(t), cell count: um, cell fraction in the mth compartment not blocked by the drug. (b)
Correspondence between compartment number and cell cycle phase. Source: Kimmel, M.
and Tranganos, F. 1986. Estimation and prediction of cell cycle specific effects of anticancer
drugs. Mathematical Biosciences 80: 187–208. Figure 1, page 191. Copyright: 1986 Elsevier
Science Publishing Co., Inc.

It is assumed that before the beginning of stathmokinesis (i.e., for t < 0), the cell
population was in the exponential steady state (ESS) (i.e., expected cell counts in
all the cell cycle compartments were proportional to ebt ). The constant b is the
Malthusian parameter of exponential growth.

Balancing of expected ESS cell flows from one cell cycle compartment to
another, as described in more detail in Kimmel (1980 a, 1980 b), we obtain

N1(0) � 2(1 − p̂1),

Nm(0) � 2p̂1 · · · p̂m−1(1 − p̂m), (6.45)

where p̂m is the Laplace transform of the distribution pm(·), evaluated at b:

p̂m �
∫ ∞

0
pm(t)e−bt dt. (6.46)

Computation of the outflows xm(·) perturbed by the drug is more complicated.
Except for x1(·), the cell outflow is the sum of a component from the outflow of
the preceding compartment and another component from the initial distribution
(at t � 0) of cells in this compartment:

xm(t) � um
[
xm−1(t) ∗ pm(t) + x0

m(t)
]
, m � 2, ...,M − 1, (6.47)

where the asterisk denotes the convolution of functions (f ∗ g)(t) � ∫ t

0 f (t −
τ )g(τ ) dτ . The flow x0

m(t) can be calculated in the following way: Let us denote
by p1m(t) the distribution of the sum of residence times in compartments 1 through
m, and by P1m(t) the corresponding cumulative distribution. Also, let us denote

a1m(t) � ebt
∫ ∞

t

p1m(s)e−bs ds � ebt p̂1m − ebt ∗ p1m(t), (6.48)
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FIGURE 6.9. Stathmokinetic data (low drug concentration) fitted by the model curves: (a) S
(circles) and G1 (squares) phases, (b) early (channels 27–30, squares), mid (channels 32–35,
circles), and late (channels 37–40, triangles) S-phase “windows.” Source: Kimmel, M. and
Tranganos, F. 1986. Estimation and prediction of cell cycle specific effects of anticancer
drugs. Mathematical Biosciences 80: 187–208. Figure 4, page 198. Copyright: 1986 Elsevier
Science Publishing Co., Inc.
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am(t) � ebt
∫ ∞

t

pm(s)e−bs ds � ebt p̂m − ebt ∗ pm(t). (6.49)

We have p̂1m � a1m(0) and p̂m � am(0). In Proposition 1, we found the asymp-
totics of the number of cells in phase 1 of the cell cycle, when the cell cycle is
subdivided into two phases, under normal conditions in a stathmokinetic exper-
iment not perturbed by any other agent. We can consider our compartments 1
through m as a phase 1, and by doing so, we obtain, by Proposition 1,

N̄1m(t) � 2 [1 − P1m(t) − a1m(t)] . (6.50)

Let us note that, by Eq. (6.48), we have d[a1m(t)]/dt � ba1m(t) − p1m(t), which
implies

d[N̄1m(t)]

dt
� −2ba1m(t). (6.51)

The outflow x0
m(t) from the initial distribution of cells in compartment m is the

same whether or not a perturbing agent (other than the stathmokinetic agent) is
applied. It is equal to the total outflow from compartments 1 through m, minus a
component due to the outflow from compartments 1 through m − 1:

x0
m(t) � d[−N̄1m(t)]

dt
− d[−N̄1,m−1(t)]

dt
∗ pm(t)

� 2b[a1m(t) − a1,m−1(t) ∗ pm(t)]

� 2b{ebt p̂1m − ebt ∗ p1m(t)]

−[ebt p̂1,m−1 − ebt ∗ p1,m−1(t)] ∗ pm(t)}
� 2b{ebt p̂1,m−1p̂m − ebt ∗ p1m(t)]

−[ebt ∗ pm(t)p̂1,m−1 − ebt ∗ p1,m−1(t) ∗ pm(t)]}
� 2bp̂1,m−1am(t).

(6.52)

Combining Eqs. (6.47) and (6.52), we write the following recurrence:

x1(t) � 2ba1(t),

xm(t) � um[xm−1(t) ∗ pm(t) + 2bp̂1,m−1am(t)], m � 2, ...,M − 1.
(6.53)

Based on Eqs. (6.53), an explicit expression is derived:

xm(t) � 2b

{
m∑
i�1

(
i−1∏
j�1

p̂j

)(
m∏
j�i

uj

)
ai(t) ∗ [pi+1(t) ∗ pi+2(t) ∗ · · · ∗ pm(t)]

}
,

m � 1, ...,M − 1. (6.54)

6.4.2 Model parameters

It is generally true that the structure of a model depends on the precision of the
measurements. In the present case, we divide the cell cycle into smallest compart-
ments in which it is possible to follow the cell count. A fine subdivision is possible
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in the S phase: We can consider the cells ascending from lower to higher DNA
content. Therefore, the model has structure as depicted in Figure 6.8b: Compart-
ment 1 is the G1 phase, compartments 2–16 cover the S phase, compartment 17 is
G2, and compartment 18 is M.

The main source of variability in the cell’s generation time is its transit through
the G1 phase. In practice, the durations of all the other cell cycles phases can be
considered nonrandom. The distribution of cell residence time in G1 was estimated
(Fig. 6.10) with the aid of a nonparametric procedure presented in Section 5.4.

The deterministic residence times in the remaining cell cycle compartments were
assessed based on the ESS cell counts in these compartments. Their estimation as
well as estimation of the coefficients um characterizing drug action is described in
Kimmel and Traganos (1986).

6.4.3 Prediction of the effects of continuous exposure to the drug

Figure 6.11 presents the model used to predict effects of continuous exposure to
the drug. It is assumed that once a cell is blocked, it does not progress further
through the cell cycle. In the model, the blocked cells pass to the “primed” com-
partments: G′

1, S′, or (G2 + M)′. The (G2 + M)′ compartment also contains those
G2 cells which progressed to M but did not divide; instead, they increased their
ploidy by, for example, defective cytokinesis.

Simulation of the effects of continuous exposure to the drug based on this model
was carried out analogously to similar simulations in Kimmel and Traganos (1985)
or in Darzynkiewicz et al. (1984); for a more theoretical treatment, see Kimmel
(1980c).

6.4.4 Results

The estimates of the basic parameters of the cell cycle of exponentially growing
Friend erythroleukemia cells are as follows: The average residence time in G1,
E(TG1 ) � 3.43 h; the residence time in S, TS � 5.08 h; in G2, TG2 � 2.21 h; in
M, TM � 0.60 h; and the growth rate (Malthusian parameter), b � 0.062 h−1,
corresponds to the doubling time of 11.22 h.

The fractions of cells blocked by the drug in the cell cycle compartments defined
in the previous section were computed from the drug-perturbed stathmokinetic
data. They are presented in Figure 6.12, for low (10 nM) and high (50 nM)
concentration of the drug. As evident from this graph, the blocking action of the
drug is higher for cells more advanced in their progression through S. The durations
(Tj ) of the 15 successive subcompartments of the S phase are not very different
from each other (mean duration: 0.34 h; coefficient of variation: 0.13)

Fits to the stathmokinetic data obtained using the low-concentration drug action
curve of Figure 6.12 are presented in Figure 6.9. For the high drug concentration,
the quality of the fit is similar.

Modeling of cell kinetics under continuous exposure to the drug, employing the
drug action curves estimated from the stathmokinetic experiment (Fig. 6.12), is
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FIGURE 6.10. Example of nonparametric estimation of distribution P1(t) based on exit
curve f1(t). (a) Friend erytholeukemia cells: circles, G1A; triangles G1; squares, G1 + S.
(b) L-cells: circles, G1; triangles G1 + S. Source: Kimmel, M. and Tranganos, F. 1986.
Estimation and prediction of cell cycle specific effects of anticancer drugs. Mathematical
Biosciences 80: 187–208. Figure 8, page 205. Copyright: 1986 Elsevier Science Publishing
Co., Inc.
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FIGURE 6.11. Modeling continuous exposure to the drug. Numbering of the basic model
compartments is the same as in Figure 6.8. It is assumed that cells blocked in given phase
do not progress further. Instead, they are trapped in the additional “primed” compartments
[G′

1, S′, and (G2 + M)′]. Compartment (G2 + M)′ includes some of the blocked G2 cells
that had progressed to M before they underwent ineffective division which increased their
ploidy. Source: Kimmel, M. and Tranganos, F. 1986. Estimation and prediction of cell cycle
specific effects of anticancer drugs. Mathematical Biosciences 80: 187–208. Figure 2, page
191. Copyright: 1986 Elsevier Science Publishing Co., Inc.

depicted in Figure 6.13. For the low drug concentration, the model of Figure
6.11 provides an excellent prediction of the observed G1 cell count fraction, Fig-
ure 6.13a. The S and G2+M cell count fractions are not so well modeled, although
the general trend is reproduced. Modeling of the high-drug-concentration effects
is not as successful, Figure 6.13b.

6.4.5 Discussion

In theory, it should be possible to improve chemotherapeutic treatment of cancer
by appropriately scheduling the administration of cytotoxic agents . An optimum
schedule could, for example, take advantage of differences in cell cycle length
of tumor and “critical” (sensitive) normal tissues, to affect the malignant cells
concentrated in a different part of the cell cycle. However, interest in such proposals
has diminished. As early as two decades back, Tannock (1978) has commented
that “enthusiasm for this approach has varied from euphoria to despair.”

It appears however that the problem might be reconsidered. Theoretical calcu-
lations (Dibrov et al. 1983, 1985, and references therein) indicate that the potential
for improvement in treatment outcome due to chemotherapy scheduling may be
considerable. One of the difficulties is in obtaining estimates of numerical pa-
rameters characterizing cell kinetics under the action of cytotoxic agents. It seems
probable that abandoning the efforts to find the optimum scheduling of chemother-
apy was caused largely by the inability to find good estimates of the parameters
mentioned earlier.

The failure to predict effects of the long-term (continuous) exposure to the drug
at the higher concentration (see Fig. 6.13b) is probably related to considerable cell
damage at this concentration. This damage is not apparent in the course of the
stathmokinetic experiment (in fact, the drug action curves for the two drug con-
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FIGURE 6.12. Drug action curves for the low (10 nM , squares) and high (50 nM , circles)
drug concentrations. Fractions of cells blocked by the drug in given cell cycle compartments
are plotted against corresponding numbers of the flow cytometer channels. The G2 fractions
(channel ≥ 42) are depicted on a different scale. Source: Kimmel, M. and Tranganos, F.
1986. Estimation and prediction of cell cycle specific effects of anticancer drugs. Mathe-
matical Biosciences 80: 187–208. Figure 3, page 197. Copyright: 1986 Elsevier Science
Publishing Co., Inc.

centrations differ only slightly), but it probably manifests itself during subsequent
cell divisions.

6.5 Application: Cell Surface Aggregation Phenomena

This model is taken from the book by Macken and Perelson (1985). Molecules
on the cell surface (receptors ) are activated by contact with molecules in the
extracellular medium (ligands). The activated receptors initiate signaling pathways
within cells resulting in cell proliferation and cell differentiation. The strength of
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FIGURE 6.13. Observed versus measured cell count fractions in different phases of the
cell cycle, under continuous exposure to the drug: (a) low concentration (10 nM), (b) high
concentration (50 nM). Measurements: circles, G1; squares, S; triangles, G2 + M. Source:
Kimmel, M. and Tranganos, F. 1986. Estimation and prediction of cell cycle specific effects
of anticancer drugs. Mathematical Biosciences 80: 187–208. Figure 5, page 199. Copyright:
1986 Elsevier Science Publishing Co., Inc.
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the signals depends on the specificity of the interaction between a ligand and its
receptor, and the number of activated receptors per cell.

Examples of ligands are hormones such as insulin and growth factors and anti-
gens such as proteins on the surface of bacteria and viruses. Some receptors and
some ligands are multivalent (e.g., the receptor molecules can react with more than
one ligand at a time and the ligands can react with more than one receptor at a
time). Multivalency may result in clusters of ligand–receptor complexes. It is of
interest to determine the size distribution of the aggregates and the probability that
they will continue to increase in size or stop increasing in size.

6.5.1 Relationship between the Galton–Watson process and the
aggregation process

Let us suppose for the beginning that we are given a collection ofm-valent particles
of single type (an m-valent particle is one that can bind m other particles). We
restrict our attention to the aggregates of these particles that contain no loops and,
hence, have the topological form of a tree. We equate the probability of k particles
being bound to a given particle, with pk , the probability of this particle having
k offspring. The particle valency in the aggregation process is accounted for in
the Galton–Watson process by imposing a restriction on the maximum possible
number of offspring contributed by a single parent to the next generation. Thus,
a parent in generation 0 can have at most m offspring, whereas a parent in later
generations can have at most m − 1 offspring, because one particle site is used to
attach the particle to its own parent (Fig. 6.14).

FIGURE 6.14. A typical family tree representing the aggregation of f -valent particles.
Here, f � 3. Note that particles in generation n � 0 can have at most f offspring, whereas
in all later generations, a particle can have at most f − 1 offspring. Source: Macken,
C.A. and Perelson, A.S. 1985. Branching Processes Applied to Cell Surface Aggregation
Phenomena. A Multitype Branching Process Model. Lecture Notes in Biomathematics 58.
Springer-Verlag. Berlin. Figure 2.2, page 16. Copyright: 1985 Springer-Verlag.
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To summarize, the analogy between Galton–Watson process and aggregation
processes is that an n-mer is represented by a rooted tree containing n nodes, with
the degree of the root being at most m and the degree of all other nodes being at
most m − 1.

The purpose of the mathematical representation is to find the distribution of
the sizes of aggregates. The total size Y of the aggregate is equal to the summary
number of objects produced in all generations of the Galton–Watson process:

Y �
∞∑
n�0

Zn. (6.55)

We are interested in the distribution of random variable Y including cases when Y

is infinite. This last possibility corresponds to the so-called gelation in which the
aggregation process escapes control and utilizes all the particles suspended in the
medium. Let us note that Y can be finite only if the process {Zn, n � 1, 2, . . .} dies
out with probability 1, (i.e., in the subcritical and critical cases). In the supercritical
process, there exists the nonzero probability 1 − q that the number of generations
is infinite. This latter is the probability of gelation.

6.5.2 Progeny distributions

We have to specify pk , the probability that k sites of a randomly chosen m-
valent particle are bound. Let p be the probability that a randomly chosen site is
bound. Then, because sites act independently, pk is given by the binomial formula.
Consequently, the progeny pgf in the 0th generation is

f0(s) � (ps + 1 − p)m,

whereas in the succeeding generations, it is

f (s) � (ps + 1 − p)m−1.

6.5.3 Antigen size distribution on a cell surface

We consider a model for multivalent antigens binding to and cross-linking bivalent
cell surface receptors, following Macken and Perelson (1985). The model describes
the production of antibody by antigen-stimulated B-lymphocytes.

Antigen particles (Fig. 6.15) present in the solution surrounding a population
of cells can bind at any of ma � 3 (out of six existing) binding sites to one free
site of a cell surface receptor. Receptors are bivalent; they have two binding sites
(i.e., mr − 1 � 1). The antigen, once bound to a receptor, may bind another
single receptor site at any out of remaining ma − 1 � 2 sites or it may bind two
free sites of two receptors. In the model, the two antigen sites are not allowed
to bind to two sites of a single receptor, as this would violate the tree structure.
Repeated binding creates patches of antigen particles cross-linking receptors on
the cell surface. Gelation is equivalent to formation of “infinite-size” (very large)
antibody-receptor clusters on cell surface.
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FIGURE 6.15. A model for multivalent antigens binding to and cross-linking bivalent cell
surface receptors. The antigen, present in the solution surrounding a population of cells,
can bind at any of f � 3 (out of six existing) binding sites to one site of a free cell surface
receptor. Receptors are bivalent (i.e., have two binding sites). The antigen, once bound to a
receptor, may bind another receptor at any out of remaining f − 1 � 2 sites and so forth.
(Modified from Macken and Perelson, 1985.) Source: Macken, C.A. and Perelson, A.S.
1985. Branching Processes Applied to Cell Surface Aggregation Phenomena. A Multitype
Branching Process Model. Lecture Notes in Biomathematics 58. Springer-Verlag. Berlin.
Figure 4.2, page 51. Copyright: 1985 Springer-Verlag.

The special type of aggregate described is distinguished by the fact that antigens
and antibodies alternate along any path through the aggregate. Consequently, the
model is described by a two-type Galton–Watson process Zn � (Z1

n, Z
2
n), n �

1, 2, . . ., in which the offspring of the type-1 object (receptor particle) is of type-2
only and the offspring of the type-2 object (antigen particle) is of type 1 only, that is,

f 1(s) � f 1(s2) � (p1s2 + 1 − p1), (6.56)

f 2(s) � f 2(s1) � (p2s1 + 1 − p2)2. (6.57)

We suppose that the process (aggregate) is started by a single receptor particle and,
therefore, for the 0th generation,

f 1
0 (s2) � (p1s2 + 1 − p1)2. (6.58)

Calculations based on Eqs. (6.56)–(6.58) show that the pgf Fn(s) of the vector (Y 1
n ,

Y 2
n ) of the counts of all particles of both types up to generation n,

(Y 1
n , Y

2
n ) �

n∑
i�0

(Z1
i , Z

2
i ),
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is equal to

Fn(s) � s1f
1
0 {s2f

2[s1f
1(s2 · · ·)]}. (6.59)

The consequence of Eq. (6.59) is that the pgf F (s) of the vector (Y 1, Y 2) �
limn→∞(Y 1

n , Y
2
n ) of the aggregate totals of particles of both types is equal to

F (s) � s1f
1
0 [�(s)],

where �(s) is the solution of the equation

�(s) � s2f
2{s1f

1[�(s)]}. (6.60)

The pgf solution of Eq. (6.60) always exists because of the monotone convergence.
It may correspond to infinite particle count (i.e., gelation), if �(1, 1) < 1.

Obtaining an explicit expression for �(s) is possible. It is left as an exercise. We
will derive the condition of supercriticality and the probability of gelation for the
supercritical process. The expected progeny matrix

( 0 p1

2p2 0

)
is not positively regu-

lar (it has period 2) but it has a dominating root ρ � (2p1p2)1/2. Thus, the criticality
parameter is proportional to the geometric mean of the reactivities p1 and p2. The
probability of gelation is equal to 1−(1−p1)2q2, where q2 � (1−p1p2)2/(p1p2)2

is obtained by solving equation (q1, q2) � [f 1(q1, q2), f 2(q1, q2)].
The above expressions are valid in the supercritical case.

6.6 Sampling Formulas for the Multitype
Galton–Watson Process

The literature on multitype branching processes is mostly focused on asymptotic
theory. In comparison, relatively little has been done to address problems of sam-
pling in finite time from a branching process. This is a problem which is relevant
in many biological applications. In PCR, the polymerase chain reaction, genetic
material is amplified and sampled after a fixed number of cycles. In cell cultures,
cells are grown and harvested after a fixed number of population doublings. Also,
many branching processes arising in these applications are intrinsically reducible
in the sense that some types can only have certain other types in their ancestries.
In such processes, limiting distributions on the type space are typically degenerate
and of no practical use.

In this section, we will present recent results by Olofsson and Shaw (2001)
concerning sampling distributions in the multitype Galton–Watson process. These
results allow one to find the expectation and variance of the frequency of particles
of a given type in generation n of the multitype Galton–Watson process. These are
given in terms of the probability generating function of the offspring distribution.
Furthermore, given that a particle of some type is sampled in generation n, the
sequence of types of its parent particles in generations n − 1, n − 2, . . ., 2, 1, 0
is a discrete inhomogeneous Markov chain with different transition probabilities
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at each step. These results simplify simulations of genealogies and accumulated
mutations in at least two interesting biological models (Sections 6.7 and 6.8).

The approach taken in Olofsson and Shaw (2001) is similar to that used in a
sequence of articles by Waugh (1981) and Joffe and Waugh (1982, 1985, 1986),
who addressed the so-called kin number problem in Galton–Watson populations.
They establish exact formulas for the probability distributions of family trees of a
randomly sampled individual in a fixed generation. The most extensive treatment
is of the single-type case (Joffe and Waugh, 1982); the multitype case is addressed
in Joffe and Waugh (1985, 1986).

We will use the notation ψn for the probability generating function of
(Z0

n, . . . , Z
r
n) when there is an arbitrary number of ancestors (Z0

0 , . . . , Z
r
0),

reserving the notation f i
n for the case of one single ancestor of type i.

6.6.1 Formulas for mean and variance

The following result gives the mean and variance of the proportion of type-i indi-
viduals in the nth generation, conditioned on this generation being nonempty. We
use the notation |Zn| for the total number of individuals in the nth generation (i.e.,
|Zn| �∑r

k�0 Z
k
n).

Theorem 25. Let u be a vector with all u entries except for a v in the ith po-
sition [u � (u, . . . v, . . . , u), and 0 � (0, 0, . . . , 0)] and denote by ψn the joint
probability generating function of (Z1

n, . . . , Z
r
n). Then,

E

[
Zi
n

|Zn|
∣∣∣∣ |Zn| > 0

]
� 1

1 − ψn(0)

∫ 1

0

∂

∂v
ψn(u)

∣∣∣∣
u�v�s

ds

and

Var

[
Zi
n

|Zn|
∣∣∣∣|Z]

� 1

1 − ψn(0)

∫ 1

0
− log s

(
s
∂2

∂v2
ψn(u)

∣∣∣∣
u�v�s

+ ∂

∂v
ψn(u)

∣∣∣∣
u�v�s

)
ds

−
(

1

1 − ψn(0)

∫ 1

0

∂

∂v
ψn(u)

∣∣∣∣
u�v�s

ds

)2

.

The methods of proof are inspired by those of Joffe and Waugh (1985, 1986).
Details of the proof are described in Olofsson and Shaw (2001).

6.6.2 The Markov property

Next, we investigate the dependence structure in the sequence of types in the
lineage of a particle in the nth generation. We may think of this particle as sampled
at random and denote its type by Tn. Because

P(Tn � i) � E

[
Zi
n

|Zn|
∣∣∣∣ |Zn| > 0

]
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the probability P(Tn � i) can be obtained from Theorem ??. Denote the type of
this particle’s parent by Tn−1, its grandparent’s type by Tn−2, and so on; we thus
obtain a sequence of types Tn, Tn−1, . . . , T0, the type of the ancestor. It turns out
that, conditional on nonextinction, this sequence is a nonhomogeneous Markov
chain with transition probabilities given by a formulas invoking the probability
generating function of the offspring distribution. This can be utilized for simula-
tions to assess the type variation in lineages of sampled particles. Let ϕij denote
the probability generating function of the number of j -type offspring of an i-type
parent; that is,

ϕij (s) � Ei[s
X(j )

] � f i(1, . . . , s, . . .︸ ︷︷ ︸
j th argument

, 1).

Let ψk be as in Theorem 25.

Theorem 26. The sequence of types Tn, . . . , T0 in the genealogy of an individual
randomly sampled from generation n is a nonhomogeneous Markov chain with
transition probabilities

P(Tk � i|Tk+1 � j )

� 1

1 − P
(
Z

(j )
k+1 � 0

) ∫ 1

0

∂

∂v
ψk

(
ϕ0j (u), . . . , ϕij (v), . . . , ϕrj (u)

) ∣∣∣∣
u�v�s

ds

where

P
(
Z

(j )
k+1 � 0

)
� ψk

(
ϕ0j (0), ϕ1j (0), . . . , ϕ

rj
(0)
)
.

Note that there is a v in the ith position and u in the other positions in the argument
of ψk .

Details of the proofs of both theorems are described in Olofsson and Shaw
(2001). If the branching process is irreducible, the backward Markov chain be-
comes asymptotically homogeneous in the sense that as n → ∞, the transition
probabilities converge to limiting distributions. This follows from the convergence
theorem of Jagers (1991), where convergence toward the so-called stable popula-
tion is investigated. In the PCR application in Section 6.8, this can be observed
empirically already for low values of n.

6.7 Application: Deletions in Mitochondrial DNA

Mitochondria are organelles in cells carrying their own DNA. Just like nuclear
DNA, mitochondrial DNA (mtDNA for short) is subject to mutations which may
take the form of base substitutions, duplications, or deletions. This application
focuses on one particular mutation, the mtDNA4977 deletion. This is a mutation
which causes a deletion of about one-third of the mitochondrial genome, thus
causing a DNA molecule which is significantly smaller than normal. It has been
observed that high levels of deletions are associated with certain degenerative
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diseases – for example, Kearns–Sayre syndrome (Chinnery and Turnbull 1999).
These levels may be as high as 40–50%. Low levels (0.5–12%) have been observed
in different regions of the brain of healthy humans. There is a wide variety of issues
involved, such as different levels in different types of tissue, but we will not attempt
to address any of these. Instead, we focus on how the process of replication of
mitochondrial DNA can be described as a multitype Galton–Watson process and
how the sampling formulas of the previous sections can be applied to explore
how deletions accumulate over time. The idea to use branching processes in this
application was first described in Shenkar et al. (1996) and in the unpublished
work of Navidi et al. (1996).

The population of mitochondrial DNA is modeled as a two-type process where
the types are 0 (normal) and 1 (mutant). A normal can give birth to either two
normals or, if there is a mutation, one normal and one mutant. The latter happens
with probability λ and we refer to λ as the mutation rate. Mutants can only give
birth to mutants. A DNA molecule also may die without reproducing [so-called
mitochondrial turnover; see Arking (1998)] and we let the survival probabilities be
p and q for normals and mutants, respectively. This gives the following offspring
distributions:

p0(0, 0) � 1 − p, p0(2, 0) � p(1 − λ), p0(1, 1) � pλ

for normals and

p1(0, 0) � 1 − q, p1(0, 2) � q

for mutants. This gives the joint probability generating functions

ϕ0(u, v) � 1 − p + pλuv + p(1 − λ)u2 (6.61)

and

ϕ1(u, v) � 1 − q + qv2. (6.62)

The proportion of mutants in the nth generation is

Z(0)
n

Z
(0)
n + Z

(1)
n

and we can use Theorem 25 to compute its expectation and variance. Further details
are described in Olofsson and Shaw (2001).

6.8 Application: Polymerase Chain Reaction

This application can be understood as a sequel to Section 1.2. As described in
that section, a DNA molecule in any given cycle of PCR either existed before the
cycle or is newly created (this is the essence of the semiconservative replication).
The process is modeled as a two-type process where the type space is {0, 1}, 0 for
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“old” and 1 for “new.” The distinction is crucial to mutation studies since because
mutations only arise on newly created particles. The offspring distribution is

p0(1, 0) � 1 − p, p0(1, 1) � p,

p1(1, 0) � 1 − p, p1(1, 1) � p,

wherep is the cycle efficiency (i.e., the probability that a given molecule replicates
successfully in a given PCR cycle). This leads to joint probability generating
functions

ϕ0(u, v) � ϕ1(u, v) � (1 − p)u + puv.

For the simulations, Theorem 25 was used to compute the distribution of a ran-
domly sampled particle in generation n, and Theorem 26 was used to compute
the transition probabilities. Simulations were then performed in which a particle
was sampled at random from generation n and the sequence of types in its lineage
back to the ancestor generated. Each time a particle of type 1 appeared, it was
independently assigned a new mutation with probability λ. The values n � 30,
p � 0.7, and λ � 0.05 were used [see Section 1.2, where, however a slightly
different notation, consistent with the Weiss and von Haeseler (1997) article, was
used].

Olofsson and Shaw (2001) show a histogram of the number of mutations in
the lineage of a randomly sampled particle in generation 30, based on 100,000
simulation runs of the Markov chain. The transition probabilitiesP (Tk � i|Tk+1 �
j ) converge to a limiting distribution as n → ∞, and in this particular application,
the convergence is rapid. The limiting transition probabilities can be computed as

P (Tk � i|Tk+1 � j ) � ν(i)M(i, j )

ρν(j )
,

where M(i, j ) � Ei[X(j )], the (i, j )th entry in the mean reproduction matrix

M �
(

M(0, 0) M(0, 1)

M(1, 0) M(1, 1)

)
�
(

1 p

1 p

)
,

ρ is the largest eigenvalue of M , and ν is the left eigenvector of M corresponding
to ρ. In this case,

ρ � 1 + p, ν(0) � p

1 + p
, ν(1) � 1

1 + p
,

which gives, in the limit,

P(Tk � 1|Tk+1 � j ) � p

1 + p
≈ 0.41

for both j � 0 and j � 1. The computations reveal that this limit is reached
after less than 10 generations. Still further details may be found in the unpublished
dissertation by Shaw (2000).
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6.9 Other Works and Applications

6.9.1 Hemopoiesis and clonal cell populations

Multitype branching processes are the natural tool to model the proliferation of
cells undergoing differentiation (i.e., changing gene expression, morphology, and
biological function). Usually, as it is the case in the hemopoietic (blood-production)
system, populations of differentiating cells are organized in nets. The top popula-
tion of the net is formed by stem cells, which can either produce progeny of its own
type or of any other type. Each next population is committed to differentiation in
some direction (i.e., it can produce progeny of its own type or of a limited subset
of types, usually just one type of more mature cells). The bottom population(s)
are not capable of proliferation. This type of multitype branching process is called
reducible. Early articles employing branching-type models are Till et al. (1964)
and Vogel et al. (1969). A simulation model was developed by Rittgen (1983).

The stochastic model of mast cells proliferation developed by Pharr et al. (1985)
assumed a two-type Galton–Watson process including proliferative and nonprolif-
erative cells. Each proliferative cell gives rise to either two proliferative progeny,
or to two nonproliferative progeny, or it may die. Each nonproliferative cell may
either survive (i.e., produce one progeny) or die. In principle, this model is iden-
tical to that of Section 3.2. Predictions of the model by Pharr et al. (1985) were
fitted to colony size data, with a good agreement. In a further article (Nedelman
et al. 1987), the model was extended to a Bellman–Harris process and maximum
likelihood was used to estimate parameters.

A more general model including a chain of maturing cell populations, of the
type described above, was designed by Ciampi et al. (1986) to model proliferation
of human ovarian carcinoma cells. Modeling, using a multitype Galton–Watson
process, involved calculating the asymptotic distributions of colony sizes and data-
based estimation of the self-renewal probability of stem cells. This latter is the
conditional probability of a stem cell producing two stem cells (as opposed to
producing two differentiated cells), given that it does not die or rest. The self-
renewal probability is a parameter of potential diagnostic value (also, see Loeffler
and Wichmann 1980). Another related reference is the book by Macken and Perel-
son (1988), which considers multitype Galton–Watson models of the hemopoietic
(blood-production) system although without much reference to data. Therneau et
al. (1989) modeled early stages of development of cell colonies using symbolic
calculations to iterate the probability generating functions of the process.

Articles by Stivers and Kimmel (1996a, 1996b) and Stivers et al. (1996) con-
cerned the observed inheritance of sizes of primary and secondary colonies in
experiments by Axelrod et al. (1993) and Gusev and Axelrod (1995), discussed
in Section 5.5.1. The main question is to determine what modes of inheritance of
cell lifetimes are consistent with the observed correlations of the sizes of primary
and secondary colonies, which are positive, equal to approximately 0.6, and, at
the same time, consistent with the observed variances in colony sizes. Various
modes are considered, including “clonal,” in which the life-length distribution of
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the secondary colony is affected by the lifetime of its founder drawn at random
from a primary colony (Stivers and Kimmel 1996a, 1996b). Another variant is
generational inheritance in a model in which two types of cells, with differing
proliferative potential, can differentiate into each other (Stivers et al. 1996). This
latter model provides a fit to the observations.

Abkowitz et al. (1996) used experimental data and branching process simula-
tions to demonstrate that hemopoiesis, the process of blood cell production, has a
random nature. They use results of irradiation experiments carried out on Safari
cats, a race being a cross between domestic cats and wild Geoffroy cats. These two
species of cats have evolved independently and have electrophoretically distinct
phenotypes of the X-chromosome-linked enzyme glucose-6-phosphate dehydro-
genase (G6PDH). Female Safari cats are generally balanced heterozygotes with,
on average, equal numbers of progenitor and differentiated blood cells of each
parental phenotype. However, females deprived of their bone marrow by irradia-
tion and then given autologous transplants of 30 quiescent hematopoietic cells end
up, after a period of fluctuations, with variable proportions of progenitors of each
parental phenotype. The pattern of variability is consistent with simulations based
on a multitype branching process model. This article, although it contains no math-
ematics, provides important arguments concerning the applicability of branching
processes.

6.9.2 Gene amplification

The biological introduction to gene amplification can be found in Section 2.1.6.
Mathematical models are described in Sections 3.6, 6.1, 7.1, and 7.4. Other au-
thors considered diverse aspects of gene amplification (Seneta and Tavaré 1983).
Harnevo and Agur (1991) constructed a comprehensive model of gene amplifi-
cation in the form of a multitype branching process, in the context of resistance
of cancer cells to cytotoxic drugs. The number of types is finite, as these authors
assume limits to the number of copies of the amplified gene. Theoretical con-
siderations are followed by a modeling study in which the dynamics of growth of
cells with amplified phenotype (drug resistant) is followed. A similar mathematical
model was employed by Harnevo and Agur (1992) to explore various strategies
of cancer chemotherapy, assuming that the main mechanism of drug resistance
was gene amplification. Harnevo and Agur (1993) contains a critical discussion of
approaches to modeling of the gene amplification process, including the model of
Kimmel et al. (1992), described in Section 7.1. Kimmel (1994) is a review.

Finally, we should mention the article by Peterson (1984). This is an article
in which evidence is collected suggesting that expression of many proteins in
cells occurs at levels which form an arithmetic or geometric progression. Peter-
son (1984) postulated that this may be due to the variable number of copies of
respective genes, present in a given cell (Quantitative Shift Model). Although this
article does not contain mathematics, a multitype branching process is implicitly
involved.
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6.9.3 Modeling in varying environments

Modeling of multitype branching processes in varying environments is important
when we consider populations of biological cells subject to external controls.
The usual backward (retrospective) technique of decomposition into subprocesses
generated by first-generation progeny leads to pgf and moment equations which
tie together processes started at different times and therefore different, so that self-
recurrence cannot be used. This is inconvenient if the solution is to be extended
step-by-step, (e.g., by numerical procedures), as it is the case in modeling of cancer
chemotherapy. For this reason, it is desirable to develop a forward (prospective)
technique, which would provide a recurrence or equation allowing to continue
the pgf or moment characterization of the process in time. In Kimmel (1982), it is
demonstrated that an equivalent (dual) set of integral equations exists, which allows
prospective continuation of the expectations of the process in time. In Kimmel
(1983), it is shown that a prospective equation of a kind can be written not for
the probability generating functions, but for the probability generating functional
which describe the multivariate point process of births and deaths in the branching
process.

Klein and Macdonal (1980) consider a multitype Markov process in periodic
environment.





CHAPTER 7

Branching Processes with
Infinitely Many Types

In this chapter, we consider a number of examples of branching processes with
infinite-type spaces. No systematic theory can be presented. However, in Sec-
tion 7.6, we review various approaches generalizing the denumerable case. Also,
general processes (Appendix C.1) include the denumerable-type space as a spe-
cial case. We will base considerations on an analogy with the finite mutitype case
whenever possible. However, the stress is on interesting and diverse properties,
which are different from the finite multitype setup, and on biologically motivated
examples.

We will begin by presenting an example of a stable process, using another
variant of the gene amplification model (Section 7.1). The subsequent example
is the reducible process of loss of telomere endings, which displays polynomial
dynamics (Section 7.2). Sections 7.3–7.5 deal with the problem of quasistationarity
in the context of branching random walks and branching-within-branching. These
examples can be understood as generalizations of Yaglom’s Theorem (Theorem 7).
Finally, in Section 7.7, we develop a series of structured population models, which
can be classified as branching processes with continuous-type spaces.

7.1 Application: Stable Gene Amplification

This is a model for a variant of the process of gene amplification different from the
one considered in the chapter on the Galton–Watson process. The previous model
accounted for the instability of some amplified genes by their loss from cells during
cell division. The loss of these extrachromosomal elements was associated with
the lack of centromeres which are found on chromosomes and are required for
faithful segregation at cell division.
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The model developed here accounts for situations in which gene amplification
can be either stable or unstable. It is based on different experimental observations
and a more extensive biological model (Windle et al., 1991). It describes the ini-
tiation of amplification as the breakage of a piece of a chromosome releasing a
fragment containing a gene or genes but not a centromere. Genes on these acen-
tric extrachromosomal fragments may replicate and recombine, forming increased
numbers of tandemly repeated genes. As in the previous model, the extrachromo-
somal elements may segregate, although their segregation is not faithful because
they do not have the required centromeres.

A new aspect of the model is that it also includes the possibility of stabilization
of the number of amplified genes following their reintegration into chromosomes.
This is because reintegration links the amplified genes to the centromeres on
chromosomes, allowing them to be faithfully segregated at cell division.

From the mathematical viewpoint, this model is an example of a decomposable
process. Decomposable processes include a subclass of transient types which are
irreversibly lost from the process. Processes limited to the remaining types may
behave variously. In this particular application, as we will see, it will reach a
limit distribution. A decomposable process cannot be positive regular, as a whole,
although the persistent subprocess may be.

7.1.1 Assumptions

The following is the list of model hypotheses (Fig. 7.1):

1. All acentric (extrachromosomal) elements evolve independently of each other.
2. Types:

a. Acentric elements containing i � 1, 2, . . . gene copies
b. Chromosomes with one or more sites containing reintegrated elements,

each containing i � 1, 2, . . . gene copies.

3. In each cell generation, three types of events can occur for each acentric
extrachromosomal element:

a. Element replicates and breaks at a random site, and the pieces segregate
b. Element replicates and does not break
c. Element reintegrates into a chromosome.

4. With probability a, the element with i gene copies replicates and yields a single
element with 2i gene copies and then breaks at a random site producing two
pieces with lengths j and 2i− j , where j � 1, . . . , 2i− 1. The probability of
breakage at each site is the same and equal to 1/(2i−1). The pieces segregate
so that they both pass to the same progeny cell with probability α and pass to
different progeny cells with probability 1 − α.

5. With probability b, the element with i gene copies replicates to yield a sin-
gle element with 2i gene copies, but it does not break. It then passes with
probability 1

2 to one of the two progeny.
6. With probability c, the element containing i copies of the gene, is integrated

into a chromosome with a centromere and then replicates and segregates with
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FIGURE 7.1. Schematic representation of the events in the gene amplification model.
Source: Kimmel, M., Axelrod, D.E. and Wahl, G.M. 1992. A branching process model
of gene amplification following chromosome breakage. Mutation Research 276: 225–239.
Figure 1, page 229. Copyright: 1992 Elsevier Science Publishers B.V.

the chromosome. This results in progeny cells with equal number of gene
copies. No further breakage or increase or decrease in gene copy number
occurs at this site at subsequent cell divisions. The probability of reintegration
is equal to c � 1 − (a + b).

Initial conditions

At the beginning of the process, a single cell contains a single extrachromosomal
element with one gene copy, i � 1. It is understood that this element was formed
in the past by deletion of one copy of a chromosomal gene in a founder cell.

Remarks

1. Breakage can be understood as imperfect resolution of replicated DNA.
2. If breakage occurs, a randomly chosen progeny cell will contain both pieces

with probability α/2, no piece with probability α/2, a single piece of size j

with probability (1 − α)/2, and a single piece of size 2i − j with probability
(1 − α)/2.
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Consequences

1. In successive cell generations, cells with no gene copies are produced. These
are killed by a selective agent.

2. Among cells with at least one gene copy, there will be an initial increase in
number of extrachromosomal elements per cell and in the number of gene
copies per extrachromosomal element. Subsequently, as the acentric elements
become reintegrated, their number per cell will decrease and the proportion
of cells with stably integrated copies will increase (as observed).

3. An eventual consequence will be a population of cells containing only one or
more integrated elements with a spectrum of gene copy numbers. It is possible
to compute this distribution.

7.1.2 Probability generating functions and expectations

The process includes an infinite spectrum of chromosomal and extrachromosomal
elements with 1, 2, . . . copies of the gene. We consider a randomly selected line
of descent of cells. We define the following random variables:

• Xi
n, the number of extrachromosomal elements with i copies of the gene, in

the nth cell generation
• Y i

n, the number of elements reintegrated into chromosomes, with i copies of
the gene, in the nth cell generation

The sequence {{(X1
n, Y

1
n ), (X2

n, Y
2
n ), . . .}, n � 0, 1, 2, . . .} is a multitype Galton–

Watson process with a denumerable infinite number of particle types.
Let us consider the aggregated process {(Xn, Yn), n � 0, 1, 2, . . .}, where

Xn �
∞∑
i�1

Xi
n, Yn �

∞∑
i�1

Y i
n

are the total number of the extrachromosomal elements and elements reintegrated
into chromosomes, in generationn. Following the rules of the process (see Fig. 7.1),
the pgf of the number of progeny of an extrachromosomal element is equal to

f 1(s1, s2) � aα

2
s2

1 +
[
a(1 − α) + b

2

]
s1 + aα + b

2
+ cs2. (7.1)

The coefficient of the quadratic term reflects the fact that two extrachromosomal
elements are produced from a single one only if breakage occurs (wp a), both
elements segregate into one progeny (wp α), and this progeny belongs to the
lineage followed (wp 1

2 ). The remaining coefficients are derived analogously.
The pgf of the number of progeny of a reintegrated element is simply f 2(s2) �

s2, as such element is stable. Let us denote by f 1
n (s1, s2) the joint pgf of

{(Xn, Yn)|(X0, Y0) � (1, 0)}. The following relationship can be derived using the
backward approach as in Section 3.2:

f 1
n+1(s1, s2) � aα

2
[f 1

n (s1, s2)]2 +
[
a(1−α)+ b

2

]
f 1
n (s1, s2)+ aα + b

2
+cs2. (7.2)
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This equation provides a recursive procedure for finding distributions of the
process.

The process tends to a nontrivial limit with probability 1,

(Xn, Yn) −→ (0, Y∞) wp 1, as n → ∞. (7.3)

To demonstrate it, let us first note that Yn+1(ω) ≥ Yn(ω), which yields the almost
sure convergence of Yn, with the limit being possibly an improper random variable.
However, passing to infinity with n in Eq. (7.2) yields the following quadratic
equation for the pgf of Y∞:

aα

2
[f 1

∞(1, s2)]2 +
(
a(1 − α) + b

2
− 1

)
f 1

∞(1, s2) + aα + b

2
+ cs2 � 0. (7.4)

The pgf solution of Eq. (7.4) verifies f 1
∞(1, s2)|s2�1 � 1, which means that Y∞ is

a proper random variable. On the other hand, if we set s2 � 1 in Eq. (7.1), we see
that {Xn} is a subcritical Galton–Watson process, which yields P{limn→∞ Xn �
0} � 1. This completes the proof of the property in expression (7.3).

Let us note that in an experimental setting, only cells with a nonzero number
of elements (extrachromosomal or reintegrated) are observed, as only these cells
survive under drug selection pressure. Therefore, all distributions should be con-
ditional on nonextinction of the process [i.e., on the event {(Xn, Yn) � (0, 0)}].
In particular, the conditional probability that, in generation n, extrachromosomal
elements are still present in the lineage is

rn � P{Xn > 0|(Xn, Yn) � (0, 0)} � 1 − f 1
n (0, 1)

1 − f 1
n (0, 0)

. (7.5)

Let us consider the expectations of the complete process {{(X1
n, Y

1
n ), (X2

n, Y
2
n ), . . .},

n � 0, 1, 2, . . .},
µi
n � E(Xi

n), νin � E(Y i
n), i ≥ 1, n ≥ 0. (7.6)

It is not difficult to verify that the infinite vector µn � {µ1
n, µ2

n, . . .} satisfies the
recurrence

µn+1 � µnM, n ≥ 0, µi
0 � δ1i , (7.7)

where M is an infinite matrix of the form

M �

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a b/2 0 0

a/3 a/3 a/3 b/2 0

a/5 a/5 a/5 a/5 a/5 b/2 0

a/7 a/7 a/7 a/7 a/7 a/7 a/7 b/2 0
...

...
...

...
...

...
...

...
...

...
...

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (7.8)

The expectations of Y i
n satisfy

νin+1 � νin + cµi
n, n ≥ 0, νi0 � 0. (7.9)
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Let us note that νin+1 ≥ νin. Using this and an analysis involving Eq. (7.4), we
obtain limn→∞

∑∞
i�1 νin � limn→∞ E(Yn) < ∞. Therefore, limn→∞ νin exists

and is finite (i ≥ 1).
The expectations µi

n � E(Xi
n) and νin � E(Y i

n), properly normed, can be under-
stood as distributions of the sizes of extrachromosomal and reintegrated elements
in the lineage. To calculate these expectations, it is convenient to introduce the
generating functions

Mn(z) �
∞∑
i�1

µi
nz

i, Nn(z) �
∞∑
i�1

νinz
i, z ∈ [0, 1].

Equations (7.7) and (7.9) yield the following relationships for the generating
function

Mn+1(z) � b

2
Mn(z2) + az

1 − z

∫ 1

z

Mn(u2)

u2
du, n ≥ 0,

where M0(z) � z, and

Nn(z) � c

n−1∑
k�0

Mk(z).

After carrying out differentiations with respect to z in the first of the above re-
lationships, we obtain that the mean size of the extrachromosomal elements in
generation n is equal to

M ′
n(1−)

Mn(1)
�
(
b + a
b
2 + a

)n

,

which tends to ∞ as n → ∞. The expected size of reintegrated elements has a
finite limit

N ′
∞(1−)

N∞(1)
� 1 − a − b/2

1 − a − b
.

7.1.3 Model versus data

Parameters of the model for a single experimental system can be deduced based
on experiments by Geoffrey Wahl and colleagues of the Salk Institute (Windle et
al. 1991). From their results, it is possible to estimate the following quantities:

1. The fraction of nonextinct cells still containing extrachromosomal elements
after nine generations (r9 ∼ 0.39)

2. The fraction of nonextinct cells still containing extrachromosomal elements
after 35 generations (r35 ∼ 0.02, highly inaccurate)

3. The fraction of nonextinct cells with one or two elements extrachromosomal
and/or reintegrated (as opposed to cells containing ≥ three elements), after
nine generations (p12 ∼ 0.54).
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The theoretical relationships (7.5) and (7.2), with parameter values

α � 1, a � 0.92, b � 0.035,

yield

r9 � 0.39, r35 � 0.05, p12 � 0.63,

in approximate agreement with the experiment.
The expected size of reintegrated elements predicted by the model is rather

low, equal to 4
3 . However, this is based on the assumption that the initial

extrachromosomal element in generation 0 is of a unit size.

7.2 Application: Mathematical Modeling of the Loss of
Telomere Sequences

7.2.1 Stochastic model

Telomeres are structures at the ends of chromosomes. They consist of repeated
DNA sequences which play a role in replication of the ends of DNA and in pre-
venting the ends of chromosomes from sticking together. The number of repeat
sequences of the telomeres is variable and, on the average, declines with the in-
creasing number of divisions of normal cells in culture and of somatic cells in
organisms (Larson et al. 1987). Reviews on the biology of telomeres include Black-
burn (1991), Greider and Blackburn (1996), Greider (1996), Harley (1991), and
Zakian (1995, 1996).

Cellular senescence, the loss of capacity to proliferate, seems to be associated
with the inability to maintain a minimum number of telomere sequences. In con-
trast, immortalized cells such as cancer cells, seem to be able to maintain a low but
effective number of telomere sequences. The first researcher who noted the rela-
tionship between telomere endings and cell senescence was Olovnikov (1973). He
correctly attributed this loss to the end-replication problem, which arises because
of the inability of the DNA polymerase to replicate the downstream end of the
DNA molecule. The effect is that each successive DNA replication results in a
copy, which is shorter at one end.

Our model (Arino et al., 1995) describes shortening of telomeres by incomplete
replication. The two uses of the model are predictions of (1) the expected telomere
length and (2) of the fraction of viable cells in aging cell populations. For these
purposes, it is first necessary to describe the dynamics of telomere loss from a
single chromosome. For simplicity, we proceed as if the process of telomere loss
ended when all the telomere deletion units, each containing possibly more than a
single DNA repeat, are lost. The same mathematics applies to telomere loss until
a particular checkpoint is encountered.

A chromosome is an entity with a centromere, whereas a chromatid is a double
helix composed of two single strands of DNA. In the G1 phase of the cell cycle,
before DNA replication, a chromosome is composed of one chromatid, whereas
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FIGURE 7.2. Transition rules for deletion and segregation of telomere ends on a chromo-
some in G1. DNA strands 1 and 2 replicate and segregate into different daughter cells A and
B, resulting in chromatids (1A, 2A) and (1B, 2B), respectively. Due to the end-replication
problem, one DNA strand on each of the newly created chromatids contains additional dele-
tion at its right or left end, depending on its orientation and presence of the deletion on the
corresponding strand of the mother chromatid. For additional explanations, compare Fig. 1
in Levy et al. (1992). Source: Arino, O., Kimmel, M., and Webb, G.F. 1995. Mathematical
modeling of the loss of telomere sequences. Journal of Theoretical Biology 177: 45–57.
Figure 1, page 46. Copyright: 1995 Academic Press Limited.

in the G2 and M phases, after DNA replication, a chromosome is composed of two
chromatids. Levy et al. (1992) described telomere loss in terms of what happens
to single DNA strands in G1. We follow that description. Figure 7.2 depicts the
scheme of deletion and segregation of telomere sequences on chromosome ends.
It can be summarized mathematically as follows:

• Each chromatid is composed of two strands named upper or 5′ → 3′, and lower
or 3′ → 5′, each of which has two ends named left and right. The numbers
of telomeric deletion units on both ends of both strands are symbolically
represented by quadruples of the form (a, b; c, d), where a and c correspond to
the left and right ends of the upper strand, respectively, and b and d correspond
to the left and right ends of the lower strand, respectively. The only important
combinations of a, b, c, and d are of the form (n−1, n;m,m) or (n, n;m,m−1)
because they always arise after a single replication round (details not shown).
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• Cells containing chromatids described by the quadruple (n− 1, n;m,m) give
birth to two progeny containing chromatids of the types (n − 1, n;m,m) and
(n− 1, n− 1;m,m− 1), respectively. This transition rule as well as the dual
rule for the other admissible type are depicted symbolically below. Let us note
that one progeny is always of the same type as the parent cell, whereas the
other is missing two sequences, each on a different end of a different strand:

(n − 1, n;m,m)

{
→ (n − 1, n;m,m)

→ (n − 1, n − 1;m,m − 1),

(n, n;m,m − 1)

{
→ (n, n;m,m − 1)

→ (n − 1, n;m − 1,m − 1).

• Proliferation ends when the telomere ends become short enough. Without
a loss of generality, we assume that cells of the types (n − 1, n; 0, 0) and
(0, 0;m,m − 1) have a single progeny of the type identical to that of the
parent cell; that is,

(n − 1, n; 0, 0) → (n − 1, n; 0, 0),

(0, 0;m,m − 1) → (0, 0;m,m − 1).

If we renumber states in such way that index k � 0, 1, . . . is equal to the sum
of numbers of deletion units on the left ends of the upper and lower strand
and index l � 0, 1, . . . is equal to the sum of numbers of deletion units on the
right ends of the upper and lower strand:

k �

⎧⎪⎨⎪⎩
2n if (n, n;m,m − 1) occurs

or

2n − 1 if (n − 1, n;m,m) occurs,

(7.10)

l �

⎧⎪⎨⎪⎩
2m if (n − 1, n;m,m) occurs

or

2m − 1 if (n, n;m,m − 1) occurs,

(7.11)

then the admissible transitions become

(k, l)

{
→ (k, l)

→ (k − 1, l − 1),
(7.12)

(k, 0) → (k, 0), (7.13)

(0, l) → (0, l). (7.14)

In the array (k, l), where k and l are non-negative integers, the admissible transitions
belong to disjoint paths which can be numbered by k − l (path number assuming
values from −∞ through ∞). Each of these paths can be treated separately. The
state number within each path can be taken as i � min(k, l). Biologically, it is
the number of deletion units on the shorter, and therefore limiting, end. Now the
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transitions have the form

i

{
→ i

→ i − 1,
(7.15)

0 → 0. (7.16)

7.2.2 Branching process

Let us assume that life lengths of cells are independent identically distributed
random variables with distribution with density g(t) and cumulative distribution
G(t). Let us denote by

Xij (t), t ∈ [0,∞), i, j � 0, 1, . . . ,

the family of random variables equal to the number of cells in state j at time t , in
the process started at time 0 by a single cell in state i.

Our process can be described as a branching random walk. In our case, this
means that the type of the progeny object (chromosome) is either identical with
the parental type or it is shortened by a single unit. We have

Xij (t) �
{

Xij (t − τ ) + Xi−1,j (t − τ ), τ ≤ t

δij , τ > t
(7.17)

for all j � 0, 1, . . ., i � 1, 2, . . . and t ∈ [0,∞). The above equation expresses
the fact that the number of cells in state j at time t , in a process started at time 0
by a single cell in state i, is either equal to δij if the ancestor cell is still alive or it
is equal to the sum of the numbers of cells in state j at time t in two subprocesses
started at time τ (i.e., at the moment of the ancestor’s death) by the two progeny
of the ancestor, one of which is in state i and the other in state i − 1. Another
equation,

X0j (t) �
{

X0j (t − τ ), τ ≤ t

δ0j , τ > t
(7.18)

for all j � 0, 1, . . . and t ∈ [0,∞) expresses the fact that cells in state 0 do not
proliferate.

Let

Mij (t) � E[Xij (t)] (7.19)

denote the expected count of cells in state j at time t in a process started by an
ancestor of type i. We obtain the following equation for the matrixM(t) � [Mij (t)]:

M(t) � Ag(t) ∗ M(t) + Ḡ(t)I, (7.20)

where Ḡ(t) � 1−G(t) and the symbol “∗” denotes convolution of matrix functions
on [0,∞), g(t)∗M(t) � ∫ t

0 g(t − τ )M(τ ) dτ , I is the infinite identity matrix, and
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the infinite matrix, A has the form

A �

⎛⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 · · ·
1 1 0 0 · · ·
0 1 1 0 · · ·
0 0 1 1 · · ·
...

...
. . .

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

The solution of this backward equation can be represented as an infinite series

M �
[∑

k≥0

(Ag)∗k
]

∗ ḠI � ḠI ∗
[∑

k≥0

(Ag)∗k
]
.

The second series is the solution of a dual forward equation

M(t) � M(t) ∗ Ag(t) + Ḡ(t)I, (7.21)

which is equivalent to the system

Mij (t) � g(t) ∗ [Mij (t) + Mi,j+1(t)] + δij Ḡ(t), j � 0, 1, . . . , t ≥ 0, (7.22)

which can be examined separately for each ancestor’s state i. This would not be
possible with the backward system.

7.2.3 Analysis in the Markov case

If the cell life length distributions are exponential [i.e., the density has the form
g(t) � α exp(−αt)], the system of convolution equations (7.22) is equivalent to
the following infinite system of differential equations:

Ṁij (t) � αMi,j+1(t), Mij (0) � δij , j � 0, 1, . . . , t ≥ 0. (7.23)

This system has an explicit solution

Mij (t) �
⎧⎨⎩

αi−j t i−j

(i − j )!
, 0 ≤ j ≤ i

0, j > i.

(7.24)

Let Mj (t) denote the expected number of cells in state j at time t if the initial
expected counts of cells in states 0, 1, . . . were M0(0),M1(0), . . .. Expressions for
Mj (t) are obtained by combining solutions of Eq. (7.23).

If the initial cells belong to finitely many different states, so that

Mj (0) � 0, j > N, (7.25)

then

Mj (t) �
N∑
k�j

Mk(0)
αk−j tk−j

(k − j )!
. (7.26)
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We may note that the polynomial dynamics of the expected values is a consequence
of the one-way means of communication between types in the process. This is
known as reducibility of the process. Biologically, it is a consequence of the fact
that loss of telomere repeats is irreversible.

7.2.4 Model versus data

The Markov branching process model was employed to reproduce experimental
data on telomere loss. Let us suppose that the number of telomeric repeats in a
given chromosome at the time the clonal population growth is initiated (t � 0)
exceeded the critical (checkpoint) length by d deletion units; that is,

Mj (0) � δjdN0. (7.27)

As Levy and co-workers (1992) pointed out, it is likely that telomeres on different
chromosomes differ in their initial number of TTAGGG repeats. Because only the
chromosomes with the shortest telomeres are relevant to replicative senescence,
only the deletions on the shorter of these chromosomes’ 2 telomeres need to be
considered. Suppose that there are k such chromosomes with the same critical d
and that they segregate independently and that only one critically short telomere
is sufficient to signal the cell cycle exit.

We identified two sources of data useful for modeling. One is the article by
Harley and Goldstein (1980) in which fractions F (d, t) of proliferating cells were
measured at different times after a clonal culture had been established. These data
have been used for modeling by Levy and co-workers (1982) (see their Fig. 6).

Another source is the article by Counter and co-workers (1992) which in-
cludes experimental data on the expected telomere lengths (mean number of excess
deletion units) n(t).

Our expressions for the expected frequencies of telomere repeat counts on a
single chromosome can be combined to yield expressions for F (d, t) and n(t)
(details in Arino et al., 1995).

Figure 7.3 depicts the results of modeling of the fraction of viable cells as a
function of the number of cell doublings of a clonal culture. Experimental data for
two independent cultures of a human fibroblast strain (Harley and Goldstein, 1980;
after Levy et al., 1992, Figure 6, modified) are compared to predictions using the
Markov branching process model.

The fit has been obtained with parameters d � 65 and k � 40. Note that the
number of chromosomes has to be set equal to k � 40 to achieve an acceptable
fit, otherwise the decrease in F (d, t) is not sharp enough. This number is not very
different from the number of human chromosomes (equal to 2 × 23 � 46), which
may be taken to mean that all chromosomes have the same critical d-value.

Figure 7.4 depicts the results of modeling the mean length of terminal restriction
fragments (TRFs) in the function of the number of cell doublings. Experimental
data for a number of cultures of normal and transfected cells, up to the crisis
time (from Counter et al., 1992) are compared to predictions using the Markov
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FIGURE 7.3. Fraction of viable cells versus the number of cell doublings. Experimental
data for two independent cultures of a human fibroblast strain represented by triangles and
squares, are compared to predictions using the Markov branching process model (continuous
line) with parameters d � 65 and k � 40) and with a correction for growth fraction of
0.95. (From Harley and Goldstein, 1980; after Levy et al., 1992, Figure 6, modified.) Source:
Arino, O., Kimmel, M., and Webb, G.F. 1995. Mathematical modeling of the loss of telomere
sequences. Journal of Theoretical Biology 177: 45–57. Figure 2a, page 53. Copyright: 1995
Academic Press Limited.

branching process model. The fit has been obtained using parameters d � 65 and
k � 40.

7.2.5 Further work on telomere modeling

More recently, Olofsson and Kimmel (1999) and Olofsson (2000) considered
models of telomere shortening involving the possibility of cell death, with the
probability of the latter depending on cell type. These models exhibit a variety
of limit behaviors, being the consequence of reducibility. The basic tools are the
Tauberian theorems for probability generating functions.

7.3 Branching Random Walk with an Absorbing Barrier

In this section, we consider a different branching random walk model, leading
to different dynamics (see the remarks at the end of this section). We consider a
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FIGURE 7.4. Mean length of terminal restriction fragments (TRFs) versus the number of
cell doublings. Experimental data for a number of cultures of normal and transfected cells,
up to the crisis time (from Counter et al., 1992), represented using differing symbols for
different experiments, are compared to predictions using the Markov branching process
model (continuous line) with parameters d � 65 and k � 40. Source: Arino, O., Kimmel,
M., and Webb, G.F. 1995. Mathematical modeling of the loss of telomere sequences. Journal
of Theoretical Biology 177: 45–57. Figure 3a, page 54. Copyright: 1995 Academic Press
Limited.

population of abstract particles categorized into a denumerable quantity of types,
denoted by j � 0, 1, 2, . . . and evolving according to the following rules:

1. The life spans of all particles are independent identically distributed
exponential random variables with mean 1/λ.

2. At the moment of death, a particle of type j ≥ 1 produces two progeny
particles each belonging to type j + 1 with probability b, to type j − 1 with
probability d, and to type j with probability 1 − b − d. However, a particle
of type j � 0 produces two progeny of type 0.

3. The process is initiated at time t � 0 by a single particle of given type i > 0.

We consider the infinite vector Z(t) � (Z0(t), Z1(t), . . .), where Zj (t) is the
number of particles of type j at time t .

The main results obtained are as follows:

• Exact expressions for the expectations of the process, in the terms of modified
Bessel functions

• Asymptotic expressions for the expectations, exponential modified by negative
power terms
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The distribution of Z(t) is determined by the probability generating functions

(pgf’s). Let Fi(s, t) denote the pgf of the infinite vector
(
Z

(i)
0 (t), Z(i)

1 (t), . . .
)

of

particle counts at time t , given that at time t � 0, there was exactly one particle of
type i. As detailed in Kimmel and Stivers (1994), the pgf’s satisfy the following
infinite system of ordinary differential equations:

∂F0(s, t)
∂t

� λ[F 2
0 (s, t) − F0(s, t)],

∂Fi(s, t)
∂t

� λ[f (Fi−1(s, t), Fi(s, t), Fi+1(s, t)) − Fi(s, t)], i ≥ 1, (7.28)

where f (si−1, si, si+1) � ds2
i−1 + (1 − b − d)s2

i + bs2
i+1. The initial condition is

Fi(s, 0) � si .
Let Mij (t) denote the mean number of particles of type j at time t generated

by a process starting with a single particle of type i at t � 0. Differentiating Eq.
(7.28) with respect to sj , we obtain

d

dt
Mij (t) � λ

{
2dMi−1,j (t) + [1 − 2(b + d)]Mij (t) + 2bMi+1,j (t)

}
, i ≥ 1,

(7.29)
and M0j � eλt δ0j . Equation (7.29) is a system of linear differential equations.

One way to solve Eq. (7.29) is to construct a generating function of the Mij ’s:

Mj (u, t) �
∑
i≥0

uiMij (t), j ≥ 0.

Proceeding from the definition of Mj , we obtain from Eq. (7.29),

d

dt
Mj (u, t) �

[
2(b + d) − 2b

u

]
λeλt δ0j

+ λ

{
2du + [1 − 2(b + d)] + 2b

u

}
Mj (u, t) − 2λbM1j (t).

If j � 0, then δ0j (t) � 0, so

d

dt
Mj (u, t) � A(u)Mj (u, t) − 2bλM1j (t), j ≥ 1, (7.30)

where

A(u) � λ

[
2du + 1 − 2(b + d) + 2b

u

]
.

Denoting the Laplace transform of M by M̂, we transform Eq. (7.30) with respect
to t (Doetsch 1974):

pM̂j (u, p) − Mj (u, 0) � A(u)M̂j (u, p) − 2bλM̂1j (p).

Clearly, Mij (0) � δij , so Mj (u, 0) � uj . Therefore, we obtain

M̂j (u, p) � − u(uj − 2bλM̂1j (p))

2dλu2 + ([1 − 2(b + d)]λ − p)u + 2bλ
. (7.31)
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M̂j (u, p) is analytic in p for any u ∈ [0, 1). Therefore, if û � 0 solves u[A(u) −
p] � 0, then ûmust also be a root ofuj−2bλM̂1j (p), which implies that M̂1j (p) �
ûj /(2bλ). The roots of the denominator are

ûi � p−λ[1−2(b+d)]+(−1)i
√

(λ[1−2(b+d)]−p)2−16bdλ2

4dλ
, i � 1, 2.

(7.32)
Substituting û � û1 into M̂1j (p) � ûj /(2bλ), we obtain limp→∞ M̂1j (p) � 0 (p
real). The other root yields limp→∞ M̂1j (p) � ∞, inconsistent with the properties
of the Laplace transform. Using M̂1j (p) � û

j

1/(2bλ), we obtain

M̂1j (p) � 1

2λb
ĝ

(
p

4λd
− λ[1 − 2(b + d)]

4λd

)
, (7.33)

where

ĝ(x) �
{
x −

√
x2 − b

d

}j

.

The counterimage of M̂1j (p) is

M1j (t) � jeλ[1−2(b+d)]t

2bλt

(√
b

d

)j

Ij (4
√
bdλt), (7.34)

where Ij (z) is the modified Bessel function of order j (Abramowitz and Stegun
1972).

The following theorem describing the asymptotic behavior ofM1j (t) was proved
in Kimmel and Stivers (1994).

Theorem 27. Suppose that b < d. Then,

M1j (t) ∼ Kj

eλ[1−2(
√
b−√

d)2]t

t3/2
, as t → ∞,

where

Kj � j
(√

b/d
)j

4λ3/2
√

2πb(bd)1/4
, j ≥ 1,

and ∑
j≥1

M1j (t) ∼ KS

eλ[1−2(
√
b−√

d)2]t

t3/2
as t → ∞,

where

KS � d
√
π

4λ3/2
√

2π (bd)1/4(
√
b − √

d)2
.

Moreover, ∑
j≥1

Kj

KS

� 1.
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The consequence of Theorem 27 is that this branching random walk exhibits a
property known as quasistationarity [mentioned in the context of Yaglom’s The-
orem (Theorem 7)]. We see that the entire population

∑
j≥0 M1j (t) grows as

exp(λt). Because
∑

j≥1 M1j (t) grows only as t−3/2eλ[1−2(
√
b−√

d)2]t , this means
that M10(t) grows as exp(λt) [i.e., that type 0 is absorbing in the sense that
M10(t)/

∑
j≥0 M1j (t) → 1, as t → ∞]. However, M1i(t)/

∑
j≥1 M1j (t) →

Ki/KS [i.e., the distribution of types conditional on nonabsorption tends to a limit
(i.e., it reaches the quasistationary distribution)]. This quasistationary behavior of
the random walk with an absorbing barrier is similar to that exhibited by the pro-
cess of division-within-division (Section 7.5). In the next section, Theorem 27 will
be applied to a model of unstable gene amplification, which may be considered an
extension of the model of Section 3.6.

7.4 Application: A Model of Unstable Gene
Amplification

This model is a time-continuous generalization of the random walk model from
Kimmel and Axelrod (1990). No particular mechanism of gene amplification is
assumed. It is only postulated that from one generation to another the number of
gene copies on extrachromosomal elements may double or half. This model is
based on the so-called Quantitative Shift Model described by Peterson (1984).

Hypotheses:

1. The life spans of cells are independent random variables distributed
exponentially with mean 1/λ.

2. a. The progeny of a cell having at least two gene copies may have twice as
many gene copies per cell, the same number of gene copies per cell, or half
as many gene copies per cell, with respective probabilities b, 1 − b − d,
and d.

b. The progeny of a cell having a single copy of the gene may have two gene
copies per cell, one gene copy per cell, or no gene copies per cell, with
respective probabilities b, 1 − b − d, and d.

c. The progeny of a cell having no gene copies will also have no gene copies.

The constants b and d are the probabilities of gene amplification and deam-
plification. The asymptotic results of Theorem 27 apply directly if the following
definition is used: A cell belongs to type j ≥ 1 if it contains 2j−1 gene copies. A
cell belongs to type j � 0 if it contains no gene copies.

Kimmel and Stivers (1994) employed this model to estimate probabilities of
gene amplification and deamplification in cultured cells. Further analysis can be
found, among others, in Bobrowski and Kimmel (1999).
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7.5 Quasistationarity in a Branching Model of
Division-Within-Division

Branching-within-branching occurs in various settings in cell and molecular
biology. Examples include tightly regulated phenomena like replication of chro-
mosomal DNA, but also processes in which the number of objects produced in
each biological cell is a random variable. These are gene amplification in can-
cer cells, plasmid dynamics in bacteria, and proliferation of viral particles in host
cells.

The general motivating idea is stability arising from selection superimposed
on a random mechanism. We consider a set of large particles (biological cells),
following a binary fission process. Each of the large particles is born containing
a number of small particles (genes, viruses, organelles), which multiply or decay
during the large particle’s lifetime. The arising population of small particles is then
split between the two progeny of the large particle and the process continues in
each of them.

Let us suppose that the presence of at least one small particle is necessary to
ensure the viability of the large particle. This can be due to a selection factor
existing in the environment. One example of such selection factor is a cytotoxic
drug, which eliminates cells (large particles) devoid of resistance genes (small
particles), as in the gene amplification model of Section 7.4. We are interested
in the behavior of the population of large particles surviving selection (i.e., large
particles having at least one small particle inside).

We show that if the smaller particles follow a subcritical process, the number of
smaller particles contained in a nonextinct large particle tends to a limit distribu-
tion. The result, in its present form (Kimmel 1997), depends on several detailed
hypotheses, but these can be relaxed.

7.5.1 Definition of the process

Rules (schematically depicted in Fig. 7.5):

1. The population of large particles evolves according to a binary-fission time-
continuous Markov branching process (Yule process) (i.e., each particle lives
for a random time τ , exponential with parameter λ, and then splits into two
progeny, each of which independently follows the same scenario).

2. Each large particle contains X small particles at its birth. Each of these
proliferates, producing

Y (1), Y (2), . . . , Y (X) (7.35)

small particle progeny at the end of the large particle’s lifetime.
3. Each of the Y (k) progeny of the initial kth small particle is independently

split between the progeny of the large particle, so that large progeny 1 and 2
receive correspondingly Y (k)

1 and Y
(k)
2 small progeny. The joint distributions of

the pairs (Y (k)
1 , Y

(k)
2 ) are identical and independent for all (k), and symmetric in
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FIGURE 7.5. A large particle containing X small particles lives for a random time τ expo-
nentially distributed with parameter λ and then splits into two progeny. During its lifetime,
each of the X small particles proliferate, producing correspondingly Y (1), Y (2), . . . , Y (X)

small particles. Each of these Y (k)’s is split independently among the two progeny of the
large particle, so that large progeny 1 and 2 receive

∑X

k�1 Y
(k)
1 and

∑X

k�1 Y
(k)
2 small particles,

respectively. The joint distributions of the pairs (Y (k)
1 , Y

(k)
2 ) are identical and symmetric.

Y
(k)
1 and Y

(k)
2 . They are described by the joint probability generating function

f12(s1, s2) � E[s
Y

(1)
1

1 s
Y

(1)
2

2 ]. (7.36)

4. As a result, each of the large progeny receives the total of

X1 �
X∑
k�1

Y
(k)
1 and X2 �

X∑
k�1

Y
(k)
2 (7.37)

small progeny particles.

The resulting branching process can be described as a Markov time-continuous
process with a denumerable infinity of types of large particle. The large par-
ticle is of type i if it contains i copies of small particles at its birth. Let
us denote the vector of counts of large particles of all types at time t by
Z(t) � [Z0(t), Z1(t), Z2(t), . . .] and the infinite matrix of expected values
M(t) � [Mij (t)] by Mij (t) �E[Zj (t)|Zi(0) � 1, Zk(0) � 0, k � i].

Let us define coefficients anm(i) using the expansion of the pgf of the sums in
Eq. (7.37) given X � i,

[f12(s1, s2)]i �
∑
n,m≥0

anm(i)sn1 s
m
2 . (7.38)
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anm(i) is equal to the probability that among the progeny of the i small particles
present at birth of the large particle, n will end in large progeny 1 and m will end
in large progeny 2.

The expected value equations are obtained in a way analogous to that in
Section 4.2.1 (Kimmel 1997):

d

dt
M(t) � λ(2A − I )M(t), M(0) � I, (7.39)

where A � [Aij ] � [aj (i)] is the matrix of coefficients of the marginal pgf of X1

given X � i,

[f (s1)]i � [f12(s1, 1)]i �
∑
j,l≥0

ajl(i)s
j

1 �
∑
j≥0

aj (i)sj1 , (7.40)

and I is the infinite identity matrix. aj (i) is equal to the probability that of the
progeny of the i small particles present in the large particle at its birth, j will end
in large progeny 1 (or in large progeny 2).

Equations (7.39) can be explicitly solved using the Laplace transform
techniques. The solution can be expressed in the form of generating function

Mk(u, t) �
∑
l≥0

Mkl(t)u
l, u ∈ [0, 1]. (7.41)

We obtain

Mk(u, t) �
∑
j≥0

(2λt)j

j !
[fj (u)]ke−λt , k ≥ 0, (7.42)

where fj (u) is the j th iterate of the marginal pgf of Y (1)
1 .

7.5.2 Quasistationarity

We begin with stating several facts concerning the Galton–Watson process with
progeny pgf f (u) (see Section 3.5.2).

If f ′(1−) < 1 (the subcritical case), then, as j → ∞,

fj (u) − fj (0)

1 − fj (0)
→ B(u); (7.43)

that is, conditionally on nonextinction, the process tends to a limit distribution,
with pgf B(u) such that B(0) � 0, B(1) � 1 (cf. Athreya and Ney 1972, Corollary
1.8.1). This behavior is known as quasistationarity. Moreover, as j → ∞,

fj (u) − 1 ∼ ρjQ(u), (7.44)

where ρ � f ′(1−) and the function Q(u) satisfies

Q(0) − Q(u)

Q(0)
� B(u), (7.45)

with Q(1) � 0, Q′(1−) � 1, Q(u) ≤ 0, and Q(u) increasing for u ∈ [0, 1].
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Functions B(u) and Q(u) are unique solutions of certain functional equations
(Section 3.5.2). The following results are proved in Kimmel (1997).

Theorem 28. Let us consider the process defined in Section 7.5.1 started by a
large ancestor of type k and let ρ � f ′(1−) < 1. Then, as t → ∞,

eλt − Mk(u, t) ∼ −kQ(u)e(2ρ−1)λt (7.46)

for all k ≥ 1.

Corollary 3. The expected frequencies {µkl(t), l ≥ 1} of large particles of type
l among the particles of nonzero type tend, as t → ∞, to a limit distribution
independent of k, characterized by the pgf B(u).

7.5.3 Gene amplification

The process considered serves as another model of gene amplification. It is a
direct generalization of the Galton–Watson process models of Section 3.6.2. Let
us assume that large particles are cells and the small ones are copies of the gene
conferring drug resistance located on extrachromosomal elements. Cells without
any copies of the gene are eliminated by the drug (the selective agent). We accept
the following specific hypotheses, similar to those in Kimmel and Axelrod (1990)
and Kimmel and Stivers (1994):

• During the cell’s lifetime, each extrachromosomal copy of the gene is
successfully replicated with probability β, less than 1.

• The resulting two copies are segregated to the same progeny cell with proba-
bility α and to two different progeny cells with probability 1 − α. α may be
called the probability of cosegregation and has been showed to be close to 1,
using data from Kimmel and Axelrod (1990).

The above hypotheses yield

f12(s1, s2) � β
[
(1 − α)s1s2 + α

2
(s2

1 + s2
2 )
]

+ (1 − β) (7.47)

and

f (u) � βα

2
u2 + β(1 − α)u +

(
βα

2
+ 1 − β

)
, (7.48)

with ρ � f ′(1−) � β < 1. Therefore, our theorem and its corollary apply.
Qualitatively, all of the above experimental observations are explained by our

results: The stable quasistationary distribution of gene copy count is predicted by
the corollary.

If the type-0 cells are not removed by the drug, then the theorem proves that
they dominate the population. Indeed, by the theorem the resistant cells grow as∑

l≥1

Mkl(t) � Mk(1, t) − Mk(0, t) ∼ −kQ(0)e(2ρ−1)λt , ρ < 1, (7.49)

whereas the entire population grows as eλt .
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If ρ > 1
2 , then in the presence of the drug, resistant cells grow as e(2ρ−1)λt (i.e.,

exponentially but slower than in the nonselective conditions).

7.6 Galton–Watson and Bellman–Harris Processes with
Denumerably Many Types and Branching Random
Walks

One of the questions arising when a multitype process is generalized to a denumer-
able infinity of types is, Which of the simple properties of the finite case remain
valid? The answer is of importance for the applications, as it helps to decide what
new properties are expected from a model if the constraint on the number of types
is released. Applications in several sections in the present chapter demonstrate
that, in general, a variety of asymptotic behaviors can be expected.

One of the articles devoted to this issue is Spătaru (1989). This article considers
the extension of the multitype Galton–Watson process to countably many types
indexed by N. Let Zn � (Znα) be the vector of generation sizes; Znα is the number
of α types in generation n (α ∈ N). Let M � [Mαβ], where Mαβ �E(Z1β |Z0β �
δαβ ,β ∈ N), be the mean matrix and letf (s) � (fα(s)), where, for s ∈ C � [0, 1]N,
fα(s) �E(sZn|Z0β � δαβ , β ∈ N). The author shows that the nonzero states are
transient if M is irreducible and f (s) � Ms for some s ∈ C. It is asserted that
transience does not imply the property P(Zn → 0 or |Zn| → ∞) � 1, valid when
the number of types is finite.

Let q denote the vector of extinction probabilities. If fn(s) denotes the vector-
valued n-fold functional iterate of f (s) [i.e., fαn(s) � fα(fn−1(s))], then q �
limn→∞ fn(0). For which s is it true that fn(s) → q? He shows that it is true if
s ≤ q (coordinatewise), but not true for all s ∈ C\{1}, where 1 � (1, 1, . . .), if
S � {s ∈ C : s � f (s)} has number of elements exceeding 2. If M is irreducible
and f is not affine, then number of elements of S is equal to 2 and q � 1 or q < 1.

Another article on a related subject is by Moy (1967). A denumerable-type
Galton–Watson process is considered, with mean progeny matrix M � (mij ),
where mij �E[Zn+1(j )|Zn � ei]. The principal role is played by the Perron–
Frobenius root r of M , in this case equal to the radius of convergence of the power
series

∑
i M

isi . The Perron–Frobenius root plays the role of the reciprocal of the
Malthusian parameter. Two cases are possible: (I)

∑
i M

iri finite and (II)
∑

i M
iri

is infinite. In Case I, there exist two strictly positive infinite sequences v and u,
unique up to multiplicative constants, satisfying rvM � v and rMu � u (i.e.,
left and right eigenvectors corresponding to eigenvalue r−1). In Case II, under an
additional condition

∑
i u(i)v(i) < ∞ and if the process is supercritical (i.e., if

r−1 > 1), Znr
n converges in mean square to vY , where Y is a scalar random

variable. In the remaining cases, Znr
n converges to 0.

It seems that the conditions for asymptotic behavior of the supercritical process
can be obtained as conclusions from the conditions for the general branching pro-
cess of Appendix C.1. In the case of the branching process with denumerable-type



7.6 Galton–Watson and Bellman–Harris Processes with Denumerably Many Types 163

space, these conditions seem to be a nontrivial extension of the positive regularity
conditions sufficient in the finite multitype case (see Theorem 22). Indeed, the
branching random walk of Section 7.3, conditional on not entering the 0-state, is
a supercritical branching process. Its expected progeny matrix is irreducible in the
sense of two arbitrary states communicating in a finite number of steps. However,
as seen from Theorem 27, the asymptotics conditional on not entering the 0 state is
exponential, modified by a negative power multiplier, and not a pure exponential.
This means that the reproductive kernel of this process cannot be conservative, in
the sense of condition (C.4), although a direct proof seems nontrivial.

Kesten (1989) proves a limit theorem for the rate of growth of a supercritical
multitype branching process with countably many types. He proves, under appro-
priate conditions, that both the growth rate and the direction of growth in type
space are essentially deterministic. The principal motivation for this work is to
extend branching process theory to a problem arising in the study of random frac-
tals (i.e., properties of the projections of random Cantor sets in d dimensions onto
subspaces of small dimensions).

A large number of articles were written on the subject of branching random
walks (i.e., denumerable-type branching processes with type-space transitions hav-
ing the form of random walk). The typical problems considered include the rate of
spread and growth of the branching random walk (Biggins 1977, 1995, 1997) and
the Seneta–Heyde norming (Biggins and Kyprianou, 1996). A surprisingly small
number of articles are devoted to branching random walks with restrictions, of the
type considered in Section 7.3 or others. One example is Biggins et al. 1991, con-
sidering a supercritical branching random walk on the real line commencing with
a single ancestor at the origin. All individuals reproduce according to the same law
with mean family size b > 1. Each progeny is given an iid displacement from its
parent with distribution F having negative mean and an exponentially decaying
right tail [i.e.,

∫∞
−∞ est dF (t) < ∞ for some s]. The process is then attenuated by

deleting all individuals below −x and their descendants. Each remaining line of
descent is just a random walk, starting at 0, with a barrier at −x, where x > 0.
Results concerning the extinction probability and the expected population size de-
pend on the parameter h � supθ (− log

∫∞
−∞ eθt dF (t)). Specifically, if b < eh, the

probability that the process becomes extinct is 1, and if b > eh, the probability of
nonextinction is strictly positive. In the case b < eh and F nonlattice, the expected
size of the total population, denoted by f (x), satisfies limx→∞ e−αxf (x) � C,
where α is the smallest positive solution of the equation b

∫∞
−∞ eαt dF (t) � 1 and

C is a positive constant which can be estimated.

7.6.1 Biological models with a denumerable infinity of types

An example of such application is the paper by Taı̈b (1993), where a branching
model is proposed for the behavior of populations of the budding yeast Sac-
charomyces cerevisiae (also, see Gyllenberg 1986). Using the idea of branching
processes counted by random characteristics (Section C.1.2), explicit expressions
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are obtained describing different aspects of the asymptotic composition of such
populations. Using the author’s words, “The main purpose of this note is to show
that the branching process approach is an alternative to deterministic population
models based on differential equation methods.”

A complementary reading to the material of Section 7.2 is an article by Kowald
(1997) which concerns the possible mechanisms for the regulation of telomere
length. As mentioned in Section 7.2, because DNA polymerases can only synthe-
size a new DNA strand in the 5′–3′ direction and need a primer that provides a
free 3′ end, the cellular replication machinery is unable to duplicate the 3′ ends
of linear chromosomes unless special mechanisms are operative. Although the
telomeres seem to shorten continuously in human somatic cells because of the
“end-replication” problem, it appears that telomere length is maintained in can-
cer cells, the germline, and unicellular organisms like yeast and Tetrahymena by
a mechanism involving the enzyme telomerase, which elongates the 3′ ends of
telomeres. However, telomerase must be part of a more complicated mechanism
to ensure that there is no net gain or loss of telomeric ends. Kowald (1997) de-
scribed a simple theoretical model being, in essence, a denumerable-type branching
process that can explain several experimental findings. The simulations show that
(i) the proposed mechanism is able to maintain telomeres at a constant length,
(ii) this length constancy is independent of the initial telomere length, (iii) muta-
tions of the telomeric sequence lead to an elongation of telomeres, (iv) inhibition
of telomerase causes telomeric shortening, and (v) it reproduces and explains the
experimental result that the addition of oligonucleotides to the culture medium
leads to an increase of telomere length. Although no formal mathematical analysis
is carried out by Kowald (1997), the model may lead to interesting applications.

7.7 Application: Structured Cell Population Models

Structured population models describe proliferation of populations taking into ac-
count distributions of variables characterizing individuals. In the context of cell
populations, examples of structural variables are cell mass, levels of biochemical
constituents such as RNA or proteins, degree of cell maturation or differentiation,
and so forth (Kimmel 1987). A frequently used method of modeling structured cell
populations is by means of partial differential equations (PDE) of transport type.
One of the most general models of this type was analyzed by Webb (1987, 1989).
Another comprehensive reference is the book by Metz and Diekmann (1986). An
alternative approach employs branching processes and more general stochastic
processes (Arino and Kimmel 1993). Type space should be rich enough to accom-
modate a structure variable x, varying in a continuum [e.g., in an interval or another
subset of the real line (Pakes and Trajstman 1985)]. This can be accomplished using
general branching processes.

Another class of models describes the expected values of stochastic (branching)
processes of cell proliferation. These models employ integral equations of renewal
type, including type-transition laws in the kernel functions under the integral sign.
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FIGURE 7.6. A schematic representation of the cell cycle model. A cell of size � at its birth
grows during a single generation to size Y � φ(�) + V , where φ is an increasing function
and V is a non-negative random variable with cumulative distribution G. In mitosis, the cell
divides into two daughters of unequal sizes X and Y − X according to the rule X � UY ,
where U is a random variable on [0, 1] (independent of V ) with a symmetric distribution
H . Each of the daughter cells, independently, starts growing with probability p2, dies with
probability p0, or becomes quiescent with probability p1 (p0 + p1 + p2 � 1).

Examples of such models are those by Tyson (1987), Tyson and Hannsgen (1985a,
1985b, 1986), Kimmel et al. (1984), Arino and Kimmel (1987), Arino et al. (1991),
and others. Related ideas are explored in Alt and Tyson (1987) and Tyson et al.
(1979).

7.7.1 A model of unequal division and growth regulation in cell
colonies

The model introduced by Kimmel and Axelrod (1991) unifies features of a time-
discrete Galton–Watson branching process and those of a deterministic model of
cell cycle regulation introduced by Kimmel et al. (1984). It is a generalization of
the example in Section 3.2. A schematic representation is depicted in Figure 7.6.

Cell growth.

A cell of size (mass, volume) X0 at its birth grows during a single generation
to size Y � φ(X0) + V , where V is a non-negative random variable with given
cumulative distribution G. Function φ represents the size regulation mechanism; it
is assumed nondecreasing, which means that progeny cells larger at birth are also
larger at division. However, specific assumptions on φ ensure that any deviation
from the average size, if present at the birth of the cell, decreases during cell growth.
For mathematical simplicity, it is assumed that proliferating cells have identical
lifetimes and that the lifetimes of the quiescent cells are infinite.
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Unequal division.

In mitosis, the parent cell of size Y divides into two progeny of unequal sizesX and
Y −X. It is assumed that the size of one of the progeny cells is equal to X � UY ,
where U is a random variable with values in [0, 1], independent of Y and V, with
a symmetric distribution H . Formally,

P{U ≤ u} � H (u) � 1 − H (1 − u), H (0) � 0, H (1) � 1.

The size of the other progeny is (1 − U )Y .

Proliferation.

Each of the progeny cells chooses its own pathway, independent of its parent’s
size, of its own size, and of the pathway chosen by the other progeny, based on
a purely random rule. With probability p2, the cell starts growing and initiates a
pedigree, with probability p0 it dies, or with probability p1 it becomes quiescent
(i.e., continues to exist without either growing or dying).

Independence.

Due to the assumed independence of cell death and quiescence from growth regula-
tion and unequal division, one prediction of the present model is that the distribution
of number of cells per colony does not depend on the birth size of the initial cell.
In particular, this implies independence between number of cells within a colony
and birth sizes of cells within the colony, at any time after the initiation. This is
consistent with experimental observations (see Fig. 7.7 and Kimmel and Axelrod
1991).

Let us note that because of independence between cell proliferation, quiescence
and death on one hand, and cell growth and unequal division on the other, the
total count of proliferating and quiescent cells obey the laws of the Galton–Watson
process in the example in Section 3.2. Therefore, we focus here on the size structure
of the process.

Let

Mi(x, x0) � E[Ni(x, x0)],

Ri(x, x0) � E[Qi(x, x0)]

denote the expected numbers of proliferating and quiescent cells with birth sizes not
exceeding x, in the ith generation of the process started by a single cell with birth
size x0. These counting functions describe the cell size structure of the population.

Theorem 29. Under suitable hypotheses (Kimmel and Axelrod 1991), the
following recurrences are satisfied:

Mi+1(x, x0) � 2p2

∫ ∞

0

∫ ∞

x

H

(
x

y

)
dyMi[φ

−1(y − v), x0] dG(v),

M0(x, x0) � 1(x − x0) (7.50)
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FIGURE 7.7. Size at division of cells in colonies with different number of cells. Colonies
were grown for 4 days from single cells. Then, for each colony, cells were counted and the
sizes of pairs of cells after division were determined. Up to three pairs of dividing cells per
colony were recorded. The sum of the volumes of daughter cells is given as the volume of
the mother cell. No dependence of cell size at division on colony size is apparent. Source:
Kimmel, M. and D.E. Axelrod 1991. Unequal cell division, growth regulation and colony
size of mammalian cells: A mathematical model and analysis of experimental data. Journal
of Theoretical Biology 153: 157–180. Figure 2, page 161. Copyright: 1991 Academic Press
Limited.

and

Ri(x, x0) � p1

p2

i∑
j�1

Mj (x, x0),

R0(x, x0) � 0. (7.51)

Dynamics of cell size distributions.

The experimental data available for comparison with the model are the empirical
distributions of cell size (understood as volume) in the same experimental system
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FIGURE 7.8. Distributions of cell sizes for NIH cells. Cell sizes were microscopically de-
termined immediately after division. Symbols represent the observed cumulative frequency
of the daughter cell sizes. Continuous lines are expected size distributions generated by the
model, after one and eight generations, starting with a single founder cell of size 1 unit. The
modeled distribution of cell sizes after eight generations closely resembles the empirically
observed distribution. Source: Kimmel, M. and D.E. Axelrod 1991. Unequal cell division,
growth regulation and colony size of mammalian cells: A mathematical model and analysis
of experimental data. Journal of Theoretical Biology 153: 157–180. Figure 4, page 164.
Copyright: 1991 Academic Press Limited.

as presented in the chapter concerning the Galton–Watson process. Figure 7.8
depicts the cumulative distribution of sizes of the measured NIH progeny cells.
The corresponding distribution of the NIH(ras) cells is indistinguishable.

The question to answer by mathematical modeling is the following: Using the
empirical distribution H of inequality of cell division and a mathematical form of
the growth function φ, is it possible to reproduce the observed size distribution at
the end of the experiment?

Figure 7.8 also depicts the evolution of distributions of cell size modeled using
Eqs. (7.50) and (7.51). To obtain cumulative distributions, the counting functions
have been normed. If it is assumed that the size of the founder cell of the colony
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was x0 � 1, the modeled colony size distribution at generation 8 (end of exper-
iment) is close both to the limit distribution and to the empirical distribution. If
the founder cell size is assumed very small or very large, the convergence to the
limit distribution is still satisfactory within 10 generations (not shown). The fit
provided by the model is satisfactory for cell size distributions as well as colony
size distributions (Section 3.2).

7.7.2 Cell cycle model with cell size control, unequal division of
cells, and two cell types

Among many laboratory and mathematical models of structured cell populations,
the system introduced by Sennerstam (1988) stands out because it encompasses
almost all features encountered in such systems. Also, it gave rise to a series of
studies ranging from laboratory investigation, through theorizing and computer
modeling, to mathematically advanced models in the form of renewal equations
and general branching processes.

Similar to the model in the preceding section, Sennerstam’s (1988) studies were
motivated by the observation made in the 1960s that the partition of mass to
daughter cells at mitosis is asymmetric. Furthermore, it was suggested that such
an unequal distribution of metabolic constituents at mitosis contributes to the dis-
persion of cell generation times and cell masses in a population [for other examples
of unequal division, see Birky and Skavaril (1984), Czerniak et al. (1992), Kotenko
et al. (1987) and Lapidus (1984)]. Various theories were proposed concerning the
mechanisms of regulation of generation time and cell growth rate, given the cell’s
birth mass and other factors (among them Darzynkiewicz et al. 1979, 1982, Cooper
1984, Kimmel et al. 1984).

In Sennerstam (1988), cultured PCC3 embryonal carcinoma (EC) cells were
studied in order to evaluate their protein content. There exists a considerable intra-
clonal intermitotic time heterogeneity found in undifferentiated PCC3 EC cells. It
was concluded that the postmitotic difference in mass (protein) between sister cell
pairs has an influence upon the variation in cell cycle time duration when com-
paring sister cell pairs. This offered an explanation for the randomly distributed
difference repeatedly found between sister cell generation times. In spite of this,
there was no correlation seen between the mass difference found between sister
cell pairs postmitotically and the mass of the mother cell.

In subsequent articles, Sennerstam and Strömberg (1988) reported the discov-
ery of an intraclonal bimodal-like cell cycle time variation within the multipotent
embryonal carcinoma (EC) PCC3 N/1 line. The variability was found to be lo-
calized in the G1 period. Furthermore, an inverse relation between cell mass and
cell generation time was found in the cell system analyzed. It was suggested that
the bimodal intraclonal time variability previously reported was attributable to an
intraclonal shift between two types of cell-growth-rate cycles.

To explain the findings, Sennerstam and Strömberg (1995, 1996) used the so-
called continuum model (Cooper 1979, 1984, 1991). The model is based on the
idea that DNA replication and cell growth are two loosely coupled subcycles.
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After division (generally asymmetric), a cell proceeds through the G1 phase until
it reaches a checkpoint characterized by a threshold mass. At this moment, the
DNA synthesis is triggered and the time to division and further mass increase (or
a growth rate) are determined. The growth continues after division at the same
rate and so forth. In this way, the division cycle (from one cell division to another)
is only partly coupled with the growth cycle, because adjustments to the growth
rate are made only at the G1/S boundary checkpoints. Thresholds and rates have
stochastic components and, consequently, the mass-at-division regulation is not
perfect [also, see Kuczek (1984)].

Sennerstam’s measurements described above were used by Kimmel and Arino
(1991) to build a mathematical model, equivalent to expected value equations for
a branching process. An extremely simplified version was already mentioned in
Section 6.3. The model takes into account cell size regulation (cells grow between
divisions, at certain mass they decide to divide), unequal division (some cell con-
stituents do not split equally between progeny cells), and differentiation (cells
switch off/on some of their genes, to specialize in a required direction).

The following detailed observations were listed in Sennerstam (1988) describing
growth characteristics of immortalized embryonic cells:

• Using mitotic detachment technique, it was established that the coefficient of
variation of the mass of progeny cells exceeded the coefficient of variation of
parent cells by about 4%, that is,

cvparent mass/cvprogeny mass
∼� 1.04.

• Using time-lapse measurements, the distributions of the generation times of re-
lated cells were determined. The indexation of generation (interdivision) times
and other variables describing cell pedigrees is explained by the following
diagram:

↗ 0000

000 ↘ 0001

↗
00 ↗ 0010

↗ ↘ 001 ↘ 0011

0

↘ ↗ 010 ↗ 0100

01 ↘ 0101

↘
011 ↗ 0110

↘ 0111

α curve � fT0 (τ ), the distribution of cell life lengths, was found to be
bimodal.
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β1 curve � f|T00−T01|(τ ), the distribution of differences of sib cells life
lengths, was found to be unimodal.
β2 curve � f|T000−T011|(τ ), the distribution of differences of the first cousin
cells life lengths, was found to be bimodal.
β3 curve � f|T0000−T0111|(τ ), the distribution of differences of the second
cousin cells life lengths, was found to be unimodal.

• Furthermore, correlation coefficients between generation times of related cells
were estimated:

Parent–progeny, ρT0,T00 � 0.77
Sib–sib, ρT00,T01 � 0.95
Cousin–cousin, ρT000,T011 � 0.41

Kimmel and Arino (1991) proposed the following model, also based on Cooper’s
(1984) continuum hypothesis, to explain the observations listed above:

• There exist two types of cells: type 1 , smaller and faster cycling; type 2 ,
larger and slower cycling.

• Growth of cell mass between divisions proceeds at a constant rate r .
Specifically,

A cell of type i and initial mass y, grows in the G1-phase to a random
threshold size

wi ∼ hi(·), w1
(d)
< w2,

where the stochastic inequality betweenw1 andw2 is defined as the relation
between their tail distributions (i.e., P[w1 > x] < P[w2 > x]);
Then, it continues through phases S+G2+M for a constant time τ (that is,
the total duration of the cell cycle is equal to

T � wi − y

r
+ τ.

It grows to the predivision mass x,

x � wi + rτ.

• Switching between types: At the checkpoint on the G1/S boundary, it is decided
whether the type of progeny (both) is the same as the parent:

Pr[i → j ] � pij .

This is the “supramitotic regulation” (i.e., decisions are made at a checkpoint
inside the division cycle).

• Unequal division: Parental cell of mass x0 divides into progeny of masses y00

and y01. Asymmetry of division can be represented by multiplication of x0 by
a random variable u0, with distribution with support in [0, 1], as represented
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in the following diagram:

↗ j| · · ·
00

y00 � u0x0

i|j
0

↘ j| · · ·
01

y01 � (1 − u0)x0

,

u0 � f0(u), f0 (u) � f0(1 − u).

The model explains the observations of Sennerstam (1988). Let us assume that
the cell population is in the state of asynchronous exponential growth; that is,(

N1(t)

N2(t)

)
� C

(
p̃1

p̃2

)
exp(λt),

where Ni(t) is the number of cells of type i at time t . To address the bimodality of
the α curves, let us suppose that a cell of type i is the progeny of a cell of type j .
This occurs with probability

p̃jpji .

Then,

T0|i ∼ τ + wi − yj

r
� τ + wi − (wj + rτ )u

r
.

This latter, under equal division, u � 1/2, reduces to
τ

2
+ wi − wj

2
.

Now, let us assume that the distribution of u is tightly concentrated around 1/2. If
in addition, p̃1

∼� p̃2
∼� 1/2,and p12 and p21 are small, then the two dominating

modes of the distribution of random variable T0 are approximately located at
τ

2
+ wi

2
, i � 1, 2.

Unimodality of distributions of differences of life lengths of sib cells (the β1-
curves) follows because

T00 − T01 �
[
τ + w00 + (w0 + rτ )u0

r

]
−
[
τ + w01 + (w0 + rτ )(1 − u0)

r

]
,

which, under u � 1/2, is equal to

w00 − w01

r
,

so that |T00 − T01| has the only mode at zero.
Bimodality of first-cousin life length difference distributions (the β2 curves)

follows because

T000 − T010 � 1

r
[(w000 − w010) − rτ (u00 − u01) − (w00u00 − w01u01)] .
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Again, under u � 1/2, this is equal to

1

r

⎡⎢⎣(w000 − w010)︸ ︷︷ ︸
wi−wj

−1

2
(w00 − w01)︸ ︷︷ ︸
same distribution

⎤⎥⎦ ,

so the distribution of |T000 − T010| has one mode at 0 and another (smaller) at
|w1 − w2|.

In addition to the above, Kimmel and Arino (1991) carried out computations
of the correlations of related cells, under assumption p11 � p22, with all other
parameters fitted to data. The conclusions are as follows:

• The parent–progeny correlation is negative if p11 is small (frequent switching
of type) and positive if p11 is large.

• The sib–sib correlation is more or less stable (same w).
• The cousin–cousin correlation is large if p11 is large (type rarely changed) and

if p11 is small (type likely to be the same for each second generation).

An important theoretical problem concerns the dynamics of cell proliferation
in this case: How to reconcile the division cycle with the growth cycle and with
unequal division and the random decisions to switch cell type (these latter assumed
to be taken at the G1/S checkpoint)? It seems convenient to introduce four types
of cells, indexed by pairs (i, j )i,j�1,2:

i j � type i that decided on progeny type j.

Transitions reduced to “decision taken at birth” are depicted in the following
diagram:

p11
�

1 1
p12−→ 1 2

↑
p12↗ p22

p11 ↙
p21

↓

2 1 ←−
p21

2 2

�

p22

Using these transitions allows writing straightforward balance equations for
expected densities of flow rates between types. Suppose that

nij (t, y) dt dy

is the expected flow of (i, j ) progeny of size in (y, y + dy) into the growth phase,
in the time interval (t, t + dt); then,

n(t, y) � 2r
∫

f (x, y)H (x − rτ )
∫

n[t − (τ + σ ), x − r(τ + σ )] dσdx,
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where

n(t, y) �

⎛⎜⎜⎜⎝
n11(t, y)

n12(t, y)

n21(t, y)

n22(t, y)

⎞⎟⎟⎟⎠ ,

H (w) �

⎛⎜⎜⎜⎝
p11h1(w) 0 p11h2(w) 0

p12h1(w) 0 p12h2(w) 0

0 p21h1(w) 0 p21h2(w)

0 p22h1(w) 0 p22h2(w)

⎞⎟⎟⎟⎠ .

As demonstrated in Kimmel and Arino (1991), this evolution equation generates
a semigroup of operators on X � L1(E), the space of functions integrable on E

[i.e., such that n(t) � ∫
y∈E n(t, y) dy < ∞], where the set E of admissible sizes

of progeny is defined by specific assumptions on distributions h1(w) and h2(w):

G(t) : X � n0 −→ nt .

The main mathematical problem is to show that asynchronous exponential growth
exists. It is sufficient to show that spectrum of G(t) has a dominating eigenvalue
exp(λt) and that the corresponding generalized eigenspace is one dimensional.
This is true because G(t) is eventually compact. The projection of solution nt on
the generalized eigenspace dominates all other solutions and yields

n(t) ∼ exp(λt)

and

N (t) ∼ exp(λt)

as desired.
Alexandersson (1999) proposed a largely equivalent description in the form of

a general branching process (Section C.1). The process has type space

{11, 12, 21, 22} × {R+}
with reproduction measure determined by the transition rules above. Finding
Malthusian parameter for the process is equivalent to solving the characteristic
equation for the dominant eigenvalue in the model by Kimmel and Arino (1991).
Then, the problem is to demonstrate conservativeness of the reproduction mea-
sure. This is in some sense equivalent to proving results concerning the eigenspace
corresponding to the dominant eigenvalue of the semigroup G(t).

Alexandersson (1999) considers various versions of the regulation mechanism
of the cell growth, some of them involving variable growth rates. These who ven-
ture to read both Kimmel and Arino (1991) and Alexandersson (1999) will see that
the general branching process methodology makes the modeling process concep-
tually more straightforward. A discussion of Alexandersson (1999) is provided in
Appendix C (Section C.2).
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7.8 Application: Yule’s Evolutionary Process

We paraphrase the branching process model of evolution of Yule (1924), as cited
in Harris (1963). The model concerns the evolution of two basic taxonomic units,
species and genera, within a single family. The following assumptions define the
model:

1. Two types of objects are considered.

a. Species. This is the smallest taxonomic unit. Different species are repro-
ducively separated (i.e., if individuals belonging to different species are
crossed, they do not produce fertile progeny).

b. Genus. Species are grouped in genera. The biological distance separating
different genera is larger than that separating different species.

2. Within a single genus, the collection of species evolves as an age-dependent
branching process with exponential lifetime distributions with parameter λ
and the pgf of the number of progeny equal to h(s) � s2 (i.e., each speciation
event produces exactly two new species).

3. The collection of genera evolves as an age-dependent branching process with
exponential lifetime distributions with parameter γ. However, at each ramifi-
cation, a new genus evolves which has exactly one species and the old genus
continues unchanged. This asymmetry is caused by the fact that a new genus
arises from a major evolutionary rearrangement within a single species of the
old genus.

The object defined is a sort of a “branching process within a branching process”
(Fig. 7.9).

Let N (t) denote the number of genera existing at time t and let Mi(t) denote the
number of species existing at t in the ith genus. Then, the process can be defined
as the vector

Z(t) � {M1(t),M2(t), . . . ,MN(t)(t)}, t ≥ 0.

Finding a comprehensive description for Z(t) is quite complicated because it is
an age-dependent branching process with infinitely many particle types. However,
we are interested in answering a very particular question regarding the process:
What is the rate of evolution of new genera compared to evolution of new species,
as measured by the ratio of γ to λ?

Let us note (see Fig. 7.9) that a high γ /λ ratio yields a relatively high fre-
quency of monotypes, (i.e., genera with one species). Therefore, by examining
the population-based proportion of monotypes at given time t , it seems possible
to estimate the γ /λ ratio. This gives a chance to infer about the dynamics of the
evolutionary process without actually observing it. It is particularly important in
view of patchiness and discontinuity of paleontological evidence.

We develop a model with only two classes of genera: class 1 containing mono-
types and class 2 genera with more than one species. The number, at time t ,
of genera of class i is denoted by Zi(t), t � 1, 2. The joint pgf of the pair
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FIGURE 7.9. Two sample paths of the Yule’s process: low and high value of the γ /λ

ratio. Branching of species is represented by continuous lines. Boundaries of genera are
represented by dotted line “tubes” and branching of genera is represented by arrows.

(Z1(t), Z2(t)) in the process started by a single class i genus is denoted by
Fi(s1, s2; t). We show the process is a two-type Markov age-dependent process.

The lifetime distribution of a class 2 genus is G2(τ ) � 1 − e−γ τ . The joint pgf
of the class 1 and 2 progeny of such genus is h2(s1, s2) � s1s2.

A class 1 (monotype) genus transforms into a class 2 genus after a time τ ′

distributed exponentially with parameter λ, because of a speciation event; inde-
pendently, it splits into two genera after a time τ ′′ distributed exponentially with
parameter γ . The minimum of these two times is τ distributed exponentially with
parameter λ + γ . If τ ′ < τ ′′, which happens with probability λ/(λ + γ ), then the
“progeny” pgf is s2. Otherwise, it is s2

1 . Eventually, G1(τ ) � 1 − e−(λ+γ )τ and

h1(s1, s2) � λ

λ + γ
s2 + γ

λ + γ
s2

1 .

For a two-type age-dependent branching process, the pgf equations are a
straightforward generalization of Eq. 4.6:

∂Fi(s; t)

∂t
� λi{hi[F1(s, t), F2(s, t)] − Fi(s, t)}, t ≥ 0, Fi(s; 0) � si , i � 1, 2.

(7.52)
This yields, in our case,

∂F1

∂t
� γF 2

1 + λF2 − (λ + γ )F1, (7.53)
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∂F2

∂t
� γF1F2 − γF2. (7.54)

Using methods similar as in the application to clonal resistance theory and, in
particular, a variant of Theorem 12, an explicit solution of the above system is
obtained:

F2 � s2(λ + γ )e−γ t

[λ(1 − s2) + γ (1 − s1)] + s2(λ + γ )e−γ t + (s1 − s2)γ e−(γ+λ)t
,

F1 �
(

1 + s1 − s2

s2
e−λt

)
F2.

Suppose the process (i.e., given family of genera) was started at time 0 by a
monotypic genus. Then, the expected numbers of monotypic and polytypic genera
at time t are given by

M11(t) � ∂F1(s; t)

∂s1

∣∣∣∣
s�(1,1)

� γ

λ + γ
eγ t + λ

λ + γ
e−λt , (7.55)

M12(t) � ∂F1(s; t)

∂s2

∣∣∣∣
s�(1,1)

� λ

λ + γ
(eγ t − e−λt ). (7.56)

Eventually, the expected proportion of monotypic genera in the family which is
old enough is equal to

p � lim
t→∞

M11(t)

M11(t) + M12(t)
� γ

λ + γ
. (7.57)

In the book of Harris (1963), an example is quoted of a family of beetles with 627
genera comprising 9997 species, p � 34.29% of the genera being monotypes.
From this, it can be estimated that λ/γ � 1.9.
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APPENDIX A

Multivariate Probability
Generating Functions

In this section, we will collect some results which are referred to throughout the
book. Suppose X � (X1, . . . , Xn) ∼ {pi1i2...in

}
i1,i2,...,in≥0

is a finite vector of non-
negative random variables, or a Zn

+-valued rv.

Definition 6 (Definition of the multivariate pgf). The pgf fX of a Zn
+-valued rv

X is the function

fX (s) � E
(
s
X1
1 s

X2
2 · · · sXn

n

)
�

∑
i1,i2,...,in≥0

pi1i2···in s
i1
1 s

i2
2 · · · sinn , (A.1)

well defined if s � (s1, s2, . . . , sn) ∈ Un ≡ [0, 1]n.

Theorem 30 (Multivariate pgf theorem). Suppose X is a Zn
+-valued rv with pgf

fX. Let us denote by (Ni) the nontriviality condition for the ith coordinate of X,
that is, P[Xi ≤ 1] < 1.

1. fX is non-negative and continuous with all derivatives. Under (Ni), it is
increasing and convex as a function of si .

2. The marginal laws for subsets ofXi’s can be obtained by setting respective ar-
guments of the pgf equal to 1 [e.g., fX(s)|sj�1, j �i � fXi

(si), etc.]; fX(e) � 1,
where e � (1, . . . , 1).

3. ∂k1+···+knfX(0)/∂sk1
1 · · · ∂sknn � k1! · · · kn! pk1···kn .

4. The (k1, . . . , kn)th mixed factorial moment of X,

µk1,...,kn � E
[∏n

i�1

∏ki−1
j�0 (Xi − j )

]
, is finite if and only if

∂k1+···+knfX (e−) /∂sk1
1 · · · ∂sknn � lims↑e ∂k1+···+knfX (s) /∂sk1

1 · · · ∂sknn is fi-
nite. In such a case, µk1,...,kn � ∂k1+···+knfX (e−) /∂sk1

1 · · · ∂sknn .
5. If X and Y are two independent Zn

+-valued rv’s, then fX+Y (s) � fX(s)fY (s).
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6. If Y is a Zn
+-valued rv and

{
X

(i)
j ; i ≥ 1

}
, j � 1, . . . , n, are sequences of

Zm
+-valued rv’s, then V � ∑n

j�1

∑Yj
ij�1 X

(ij )
j is a Zm

+-valued rv with pgf

fV (s) � fY

[
fX(1)

1
(s) , . . . , fX(1)

n
(s)
]
, s ∈ Um.

7. Suppose {Xi ; i ≥ 1} is a sequence ofZn
+-valued rv’s. The limit limi→∞ fXi

(s) �
fX (s) exists for each s ∈ Un if and only if the sequence {Xi ; i ≥ 1} converges
in distribution (i.e., when limi→∞ P [Xi,1 � k1, . . . , Xi,n � kn] � P [X1 �
k1, . . . , Xn � kn]). Then, fX(s) is the pgf of the limit rv X.

A further generalization to the denumerable infinite case is possible. Suppose

that X � (X1, . . . , Xn, . . .) ∼
{{

pi1i2···in
}
i1,i2,...,in≥0

}
n≥1

is an infinite vector

of non-negative random variables, with the σ -algebra generated by the finite-
dimensional truncations of the sequence. Also, we may consider X a Z∞

+ -valued
rv.

Definition 7 (Denumerable pgf definition). The pgf fX of a Z∞
+ -valued rv X is

a function

fX (s) � E
(
s
X1
1 s

X2
2 · · · sXn

n · · ·
)

�
∑

i1,i2,..,in≥0

pi1i2···in s
i1
1 s

i2
2 · · · sinn (A.2)

defined for

s ∈
⋃

n≥1
Un ≡

⋃
n≥1

{(s1, s2, . . . , sn, 1, 1, . . .) : s1, s2, . . . , sn ∈ [0, 1]}
(A.3)

(i.e., for arguments s ∈ [0, 1]∞ with only finite number of coordinates not equal
to 1).

Properties 1 through 5 stated in the multivariate pgf theorem carry over to the
finite-dimensional restrictions of the denumerable pgf. An important difference is
that Property 6 does not necessarily hold for infinite n, as the resulting sum may
be improper (if it is proper, then Property 6 holds). Also, the convergence property
(Property 7) requires an additional continuity requirement:

Denumerable pgf convergence. Suppose {Xi, i ≥ 1} is a sequence ofZ∞
+ -valued

rv’s. A necessary and sufficient condition for convergence in distribution of this
sequence to a Z∞

+ -valued rv X is that limi→∞ fXi
(s) � fX(s) exists for each

s ∈ ⋃n≥1 Un, and that fX is pointwise continuous for all sequences {s(i), i ≥ 1}
with s(i) ∈ Un. Then, fX(s) is the pgf of the limit rv X.



APPENDIX B

Probability Distributions for
the Bellman–Harris Process

B.1 Construction

We start with a rigorous construction of the probability space of the process,
following Chapter 6 of Harris (1963). The elements of the probability space are
family histories of the particles.

B.1.1 The families

Let I be the collection of elements ι, where ι is either 0 or a finite sequence
of positive integers i1, i2, . . . , ik . The collection I is denumerably infinite. The
elements ι are enumerated in a sequence ι1, ι2, . . . , starting, for example, with
0, 1, 2, 11, 3, 21, 12, 111, . . . . The ancestor or founder is denoted by < 0 >,
whereas < i1, i2, . . . , ik > denotes the ikth child of the ik−1th child of . . . , of the
i2th child of the i1th child of the ancestor.

The family history ω is the sequence ω � (l, ν; l1, ν1; l2, ν2; l11, ν11; . . .), where
lι is a non-negative real and represents the length of life of ι, and νι is a non-
negative integer and represents the number of children of ι. The collection of all
family histories is denoted by �. Family history is a redundant description of the
particles pedigree in the sense that it enumerates even “nonexistent” children; for
example, if νij � 5 (the j th child of the ith child of the ancestor has five children),
then none of the pairs lijk, νijk for k > 5 corresponds to any members of the
pedigree.

For each ω ∈ �, we define a sequence I0(ω), I1(ω), . . . , where Ik is a collection
of objects < ι > called the kth generation. The 0th generation I0(ω) is the ancestor
< 0 > and I1(ω) is the set of all objects < i > with 1 ≤ i ≤ ν(ω). The succeeding
generations are defined inductively: Ik(ω) is the set of all objects < i1i2 . . . ik >

such that < i1i2 . . . ik−1 > belongs to Ik−1(ω) and ik ≤ νi1i2...ik−1 (ω). The set of
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objects
⋃∞

k�0 Ik(ω) is called the family I (ω). In view of remarks in the preceding
paragraph, more than one family history ω may, in general, correspond to the same
family I (ω).

B.1.2 The number of objects at given time

If the object < ι >�< i1 · · · ik > belongs to the family I (ω), it is born at the time
t ′ � l + li1 + · · · + li1i2···ik−1 and dies at the time t ′′ � t ′ + li1i2···ik ; if t ∈ [t ′, t ′′),
then the age of the object at t is t − t ′. Thus, if at time t we count the objects that
are alive and have ages ≤ y, then < ι > is counted if and only if the following
conditions hold (with obvious modifications if ι � 0)

i1 ≤ ν, i2 ≤ νi1, . . . , ik ≤ νi1i2...ik−1 ,

t − y ≤ l + li1 + · · · + li1i2...ik−1 ≤ t, (B.1)

l + li1 + · · · + li1i2...ik−1 + li1i2 ...ik > t.

The first line in conditions (B.1) means that < ι > belongs to the kth generation;
the second line says that < ι > was born between t − y and t ; the third line says
that < ι > dies after time t .

For each object, ι, let us define Zι(y, t, ω) to be 1 if conditions (B.1) hold and
to be 0 otherwise. Define

Z(y, t, ω) �
∑
ι∈I

Zι(y, t, ω)

and

Z(t, ω) � Z(∞, t, ω) �
∑
ι∈I

Zι(∞, t, ω).

Thus,Zι(y, t, ω) is 1 if< ι > is alive and of age ≤ y at t and 0 otherwise;Z(y, t, ω)
is the total number of objects of age ≤ y at t ; Z(t, ω) is the total number of objects
at t . The possibility Z(y, t, ω) � ∞ for some values of y, t, ω is admitted.

Let us note that if Z(t0, ω0) � 0 for some t0 and ω0, then Z(t, ω0) � 0 for all
t > t0.

B.1.3 Probability measure

Definition 8. The probability measure P is built on the space � of family histories
ω in the following way.

1. The random variables lι are iid with distribution

P{lι ≤ t} � G(t),

where G is a right-continuous probability distribution function for which
G(0+) � 0.
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2. The νι’s are independent of each other and of the l’s, and iid with the pgf

f (s) �
∞∑
r�0

prs
r �

∞∑
r�0

P{νι � r}sr ,

with the trivial cases excluded and m ≡ f ′(1−) < ∞.

We denote the kth convolution of G with itself by G∗k (G∗1 � G). Thus

G∗k(t) �
∫ t+

0−
G∗(k−1)(t − y) dyG(y).

Because ω corresponds to a denumerable family of independent real-valued
random variables, the basic theorem of Kolmogorov ensures that the above as-
sumptions determine uniquely a countably additive probability measure P on the
σ -algebra generated by the cylinder sets in �. From the definition of Z(t, ω), it
is seen that Z is measurable in (t, ω), where the measurable (t, ω) sets are those
generated by rectangles A×B, A being a Borel t-set and B a measurable set in �.
This conclusion is equivalent to a statement that the family of rv’s {Z(t, ω), t ≥ 0}
is a stochastic process.

B.1.4 The embedded Galton–Watson process and extinction
probability

Let ζk � ζk(ω) be the number of objects in the kth generation Ik, k � 0, 1, . . . .
It can be verified that the sequence of random variables {ζk, k � 0, 1, . . .} is a
Galton–Watson branching process with generating function f (s) (usually called
the embedded Galton–Watson process). The essence of the proof is to verify the
property

E(sζk+1 |ζ1, ζ2, . . . , ζk) � [f (s)]ζk , (B.2)

which characterizes the Galton–Watson process. Equation (B.2) is a version of the
forward pgf equation (3.5), conditional on ζk .

The embedded Galton–Watson process is helpful in proving that the probability
of extinction for the Bellman–Harris process is subject to the same rules which
govern the Markov versions. Let us note, for example, that if the embedded process
becomes extinct for some ω, then the time-continuous process does too, as there
is only a finite number of nonvoid generations Ik(ω) which may last for only a
finite time. Thus, limk→∞ ζk(ω) � 0 implies limt→∞ Z(t, ω) � 0. The opposite
is, in general, not true. An example can be a situation when all the objects in the
kth generation have life lengths ≤ 2−k and, consequently, Z(t) � 0, t > 2. The
following result demonstrates that such occurrences have probability 0.

Theorem 31. Let A be the event {ζn > 0, for each n} and let B be the event
{Z(t) > 0, for each t ≥ 0}. If P{A} > 0, then P {B|A} � 1.

Corollary 4. The probability of extinction [i.e., of the event B̄ ≡ {Z(t) � 0, for all
sufficiently large t}], is equal to the probability of the event Ā [i.e., to the smallest
non-negative root q of the equation s � f (s)].
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B.2 Integral Equation

B.2.1 Decomposition into subfamilies

If the initial object dies at or before time t , then the objects present at t are its chil-
dren or their descendants. For a family history ω � (l, ν; l1, ν1; l2, ν2; l11, ν11; . . .)
and each i � 1, 2, . . ., let us define ωi � (li , νi ; li1, νi1; li2, νi2; li11, νi11; . . .). The
ωi may be interpreted as the family history of < i > and its descendants, although
if ν < i, then this family is not actually realized.

For the family history ωi , let us define the random variables Zι(y, t, ωi),
Z(y, t, ωi), and Z(t, ωi) in a way analogous to that in which, for ω, the rv’s
Zι(y, t, ω), Z(y, t, ω), and Z(t, ω) were previously defined. Suppose that l(ω) ∈
[0, t] and ν(ω) > 0. It can be formally shown using the above definitions that

Z(t, ω) �
ν∑

i�1

Z(t − l, ωi). (B.3)

In view of the fact that

I (ω) � < 0 > ∪
ν(ω)⋃
i�1

I (ωi),

the proof of Eq. (B.3) is reduced to careful “bookkeeping” of the indicator functions
Zι(y, t − l, ωi) and Ziι(y, t, ω).

B.2.2 Generating functions

Let

F (s, t) �
∞∑
r�0

P{Z(t) � r}sr . (B.4)

Because the case Z(t) � ∞ has not yet been eliminated, it can be F (1, t) < 1.
However, also in this case, the basic properties of the pgf’s are verified. Let us note
the alternative expression

F (s, t) � E[sZ(t)] ≡
∫
�

sZ(t,ω) dP (ω), (B.5)

where 00 � 1 and s∞ � 0, even if s � 1.

Theorem 32. The generating function F satisfies the integral equation

F (s, t) � s[1 − G(t)] +
∫ t+

0−
f [F (s, t − u)] dG(u), (B.6)

where t ≥ 0 and s ∈ [0, 1].

Proof. Based on Eq. (B.5), let us write

F (s, t) �
∫
�

sZ(t,ω) dP (ω) �
∫

{l>t}
sZ dP +

∞∑
k�0

∫
{l≤t,ν�k}

sZ dP. (B.7)
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Because Z(t, ω) � 1 if l > t , we have
∫
{l>t} s

Z dP � s Pr{l > t} � s[1 − G(t)].
Let us consider � as a product space �′ × �1 × �2 × · · · of points

(l, ν;ω1, ω2, . . .). Let P ′ be the probability measure on the pair (l, ν) and let Pi

be the probability measure on �i . Now, it is possible to use Eq. (B.3). If l is fixed,
then Z(t − l, ωi) is a function on �i and hence, if k is any positive integer, we have∫

{l≤t,ν�k}
sZ dP �

∫
{l≤t,ν�k}

dP ′(l, ν)
∫
�1

sZ(t−l,ω1) dP1 . . .

∫
�k

sZ(t−l,ωk ) dPk.

Now, each of the integrals
∫
�i
sZ(t−l,ωi ) dPi is equal toF (s, t−l), as the probability

measure dPi(ωi) is exactly the same as dP (ω). Hence, the last equation is equal
to pk

∫ t+
0− [F (s, t − u)]k dG(u). The same can be seen directly true if k � 0.

Substitution into the right-hand side of Eq. (B.7) yields the desired result.

B.2.3 Uniqueness of F (s, t) and finiteness of Z(t)

Theorem 32 states that the pgf of Z(t) satisfies Eq. (B.6), but it does not state that
this solution is unique, nor that lims↑1 F (s, t) � 1 [i.e., that Z(t) < ∞]. We will
outline here the arguments proving both these properties.

Regarding uniqueness, let us assume that there exists another pgf solution F̃ (s, t)
of Eq. (B.6). Then,

|F (s, t) − F̃ (s, t)| ≤
∫ t

0
|F (s, t − y) − F̃ (s, t − y)| dG(y). (B.8)

We see that because both F and F̃ are pgf’s, |F (s, t) − F̃ (s, t)| ≤ 1. Substituting
into the right-hand side of Eq. (B.8), we obtain |F − F̃ | ≤ G(t). Substituting this
and repeating the estimate, we obtain that |F − F̃ | ≤ G∗i(t) for any i. However,
limi→∞ G∗i(t) � 0 for any t (see Lemma 4), which yields |F − F̃ | � 0.

Finiteness of Z(t, ω) may be obtained by estimating another random variable
Z̄(t, ω) equal to the total number of objects in family I (ω) that are born up to and
including time t (i.e., the counting function of births). Of course,Z(t, ω) ≤ Z̄(t, ω).
We will consider the expected value of Z̄. If it is finite, then Z̄ is finite and so is Z
[and, consequently, F (1−, t) � 1].

For the argument, let us consider an object < ι > �< 0 >, where ι � i1i2 · · · ik .
Let uι be a random variable that is 1 if < ι > is in the family I (ω) (i.e., if
it is ever born), and 0 otherwise, and let vι be a random variable that is 1 if
l + li1 + · · · + li1i2···ik−1 ≤ t and 0 otherwise. Then, < ι > is born at or before t if
and only if uιvι � 1, and

Z̄(t) � 1 +
∞∑
k�1

∞∑
i1i2 ···ik�1

ui1i2···ik vi1i2 ···ik .

The expected value E(vι) is equal to G∗k(t). The rv uι is the indicator function of
the event that object < ι > is ever born and, therefore, its expectation is equal to
the probability of this event; that is, to

E(uι) � P{u ≥ i1, ui1 ≥ i2, . . . , ui1···ik−1 ≥ ik}
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� P{u ≥ i1}P{ui1 ≥ i2} . . .P{ui1···ik−1 ≥ ik}.
The uι’s and vι’s are independent, so that

E[Z̄(t)] � 1 +
∞∑
k�1

G∗k(t)
∑
i1

P{u ≥ i1}
∑
i2

P{ui1 ≥ i2} . . .
∑
ik

P{ui1...ik−1 ≥ ik}

� 1 +
∞∑
k�1

G∗k(t)[f ′(1−)]k.

Lemma 4 states that this sum is < ∞ for all t and so E[Z̄(t)] < ∞.



APPENDIX C

General Processes

C.1 Introduction to the Jagers–Crump–Mode Process

This section is a useful reference, but it can be omitted at first reading. Its aim is
to introduce the reader in an informal way to the basics of the general branching
processes. In most part, the book is concerned with less general processes; therefore
the subject can be postponed to a later reading. However, there are issues that are
best expressed when phrased in terms of general processes. An example is an
application of a general process to cell populations in Section C.2. Another recent
example is an application of the general process in the genetics of aging (Olofsson
et al. 2001). This latter work is also, to our knowledge, the only such application
based on real-life data.

C.1.1 Definition of the general branching process

A basic source concerning general branching processes is the book by Jagers
(1975). Our account is also based on Taı̈b (1992).

Individuals

We consider development in time of a population started by a single individual.
The individuals can be considered elements of the set

I �
∞⋃
n�0

Nn,

called the Ulam–Harris space, whereN � {1, 2, . . .} andN0 � {0}. Individual 0 is
the ancestor of the population. Each element ofNn is of the form x � (x1, . . . , xn).
The meaning of this notation is that the individual belongs to the nth generation
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and is the xnth progeny of the xn−1st progeny, . . . , of the x1st progeny of the
ancestor. This description is redundant, as not all these individuals will come to
existence in a given realization of the process. Each of the individuals evolves in
a space �, which is large enough to allow for all possible life spans and progeny-
bearing processes of this individual. An element ω ∈ �, is this individual’s life.
The probability measure on a σ -algebra F of � is called Q.

Lives

For each individual, τ (ω, k), k � 1, 2, . . ., denotes successive ages at childbear-
ing. In particular, τ (ω, k) is the age at which the individual has its kth progeny.
These ages are organized as epochs of a point process, a random collection of
time moments or equivalently a random collection of non-negative integer-valued
measures, denoted ξ . Mathematically,

ξ (ω, [0, t]) � ξ (t) � #{k : τ (ω, k) ≤ t}
is the counting function of births (i.e., the number of progeny begotten before or
at the age of t). In addition, λ, the duration of life ω of an individual, is a random
variable λ : � → R+.

The time evolution of the individuals is governed by the connections between
their times of births. Let σx denote the moment of birth of individual x (σ0 � 0,
for the ancestor). Then, if we denote by xk the individual being the kth progeny
of x, we set

σxk � σx + τx(k).

In this latter expression, the argument ω is dropped, as it will be frequently done.

Construction of the process

If the space � is a Polish space (i.e., it is metric, complete, and separable), then
the σ -algebra F can be selected as the class of Borel sets of �. The triplet (�, F ,
Q) is the probability space of a single individual. If we assume that the lives of
individuals are independent, then the space of the process can be constructed as a
product space of the form (�I , F I ,QI ), where I is the collection of all individuals.
From now on, we will write P instead of QI and ω instead of {ωx, x ∈ I }.

The model presented can be specialized to include the classical branching pro-
cesses, by assuming that all τ (ω, k), k � 1, 2, . . . , are concentrated at λ(ω) (i.e.,
all progeny are born at the same time). Then, if λ(ω) � 1, we obtain the Galton–
Watson process. If λ(ω) is a non-negative rv, we obtain the Bellman–Harris process
and so forth.

C.1.2 Random characteristics and basic decomposition

The method of random characteristics makes it possible to account for individuals
existing in the process, individuals being born during a given time interval, individ-
uals with ages from a given interval, individuals with a given number of progeny
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and so forth. The random characteristic is a random function χx(a) defined on an
individual’s life. It defines the contribution, of a desired type, of individual x, from
its birth until it reaches age a. The summary contribution of all individuals at a
given time t , is equal to

Z
χ
t �

∑
x∈I

χx(t − σx).

Z
χ
t is called the process counted by random characteristic χx(a). For example, if

χx(a) �
{

1 if a ≥ 0

0 otherwise,

then Z
χ
t counts all individuals born until time t . If

χx(a) �
{

1 if a ∈ [0, λx)

0 otherwise,
(C.1)

then Z
χ
t counts all individuals alive at time t . If

χx(a) �
{

1 if a ∈ [0, λx) ∩ [τx(k),∞)

0 otherwise,

then Z
χ
t counts all individuals alive at time t , with at least k progeny born before

t .
For the process counted by random characteristics, it possible to write a

backward decomposition, analogous to Eq. (1.1):

Z
χ
t � χ0(t) +

X∑
i�1

(i)

Z
χ

t−τ0(i),

where X is the number of progeny effectively begotten by the ancestor and
superscript (i) denotes the ith iid copy of the process.

C.1.3 Expectations, Malthusian parameter, and exponential
growth

Reproductive measure is the expectation of the point process of progeny births,

µ(A) � E[ξ (ω,A)].

It is characterized by the reproductive counting function µ(a) � µ([0, a]). The
expectation of the process, mt � E(Zχ

t ) counted by characteristic χ(a) with
expectation g(a) �E[χ(a)], can be represented by the expression

mt �
∞∑
n�0

∫ t

0
g(t − u) dµ∗n(u) �

∫ t

0
g(t − u) dν(u),

where ν(u) �∑∞
n�0 µ

∗n(u). The nth convolution power of the reproductive mea-
sure, µ∗n, counts the expected number of progeny born to the nth-generation
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individuals in the process. Then, each of µ∗n has to be convolved with the ex-
pectation of the random characteristic, to account for proper bookkeeping, and the
result summed over all generations of the process. Under mild conditions (e.g., no
concentration of births at age 0 and expected total progeny of an individual finite),
this sum is finite. Expectation mt satisfies a renewal-type integral equation:

mt �
∫ t

0
mt−u dµ(u) + g(t). (C.2)

A major role in the theory is played by the Malthusian parameter, which determines
(if it exists) the asymptotic rate of growth of mt . The Malthusian parameter is the
real solution of the equation

µ̂(α) ≡
∫ ∞

0
e−αu dµ(u) � 1.

This solution, if it exists, is unique. In what follows, we will limit ourselves to
the supercritical case {i.e., when µ([0,∞)) > 1} [see the classification (1.5)]. In
this case the Malthusian parameter exists and is positive. The renewal theorem
demonstrates, in the same way as was explained in Section 5.2 for the Bellman–
Harris process, that mt behaves asymptotically like eαt ;

e−αtmt −→
∫∞

0 g(u)e−αu du∫ ∞

0
ue−αu dµ(u)︸ ︷︷ ︸

β

≡ c(χ) as t → ∞. (C.3)

If we assume that all progeny are born at the same time τ in the life of the individual,
so that µ(u) � mG(u), where m is the mean count of progeny and G(·) is the
cumulative distribution of τ, and that this is exactly the moment of individual’s
death (i.e., that λ � τ ), we obtain the Bellman–Harris process of Chapter 5.
If we wish to account for individuals alive at time t , then we use the random
characteristics of the form χx(a) � 1 if a ∈ [0, τ ), and χx(a) � 0, otherwise, as
in Eq. (C.1). This means that g(u) � 1−G(u). Substituting into expression (C.3),
we obtain the expression derived for the Bellman–Harris process [Eq. (5.13)].

Without getting into more detail, we state that in the supercritical case, the entire
process counted by a random characteristic behaves very much the same way as
its expectation. Indeed, there exists a random variable W , with E(W ) � 1, such
that

Z
χ
t e

−αt −→ c(χ)W

as t → ∞, with probability 1.

C.1.4 Abstract type spaces and composition of the process

Let us suppose that each newborn individual is endowed, at birth, with a type
selected from a measurable space (�, G), where G is a σ -algebra of subsets of �. In
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other words, there exist measurable mappings ρ(j ) : � → �, which determine the
types of newborn individuals. The point process ξ , which describes reproduction,
is now defined by

ξ (A × B) � #{i ∈ N ; ρ(i) ∈ A, τ (i) ∈ B}.
Intuitively, ξ (A × B) is the number of progeny of an individual, born in time set
B, with types in set A. The population of individuals can be defined on (� ×�I ),
where� describes the type of the ancestor. The theorem of Ionesco–Tulcea enables
one to construct a unique probability measure Pγ on (� × �I ,G × AI ) for the
process with a type-γ ancestor. Similarly as before, a major role is played by the
reproduction kernel µ(γ,A × B) �Eγ [ξ (A × B)]. For each real λ, we define

µλ(γ, dγ ′ × du) � e−λuµ(γ, dγ ′ × du)

and

µ̂λ(γ, dγ ′) �
∫ ∞

0
µλ(γ, dγ ′ × du).

The Malthusian parameter α is selected so that the kernel µ̂α(γ, dγ ′) has a Perron–
Frobenius eigenvalue equal to 1 (assuming this latter exists). The Perron–Frobenius
eigenvalue is the real eigenvalue strictly dominating absolute values of all remain-
ing eigenvalues. If we set να(γ, dγ ′ × du) � ∑

n≥0 µ
n
α(γ, dγ ′ × du), where

µn
α(γ, dγ ′ × du) is the n-fold convolution of measure µα(γ, dγ ′ × du) with

respect to elements dγ ′ × du, we can write

Eγ [e−αtZ
χ
t ] �

∫
�×R+

Eγ [e−α(t−u)χ(t − u)]να(γ, dγ ′ × du).

So, we see that Eγ [Zχ
t ] is of the form R ∗ g(γ, t), where R � να and

g(γ, t) � Eγ [e−αtχ (t)].

Asymptotic behavior of the expectation of the process and of the process itself
in the supercritical case (α > 0) depends on the conservativeness of the kernel
µ̂α(γ, dγ ′). For countably generated G, the kernel is conservative if its potential
ν̂α(γ, dγ ′) �∑n≥0 µ̂

n
α(γ, dγ ′) has the property that there exists aσ -finite measure

m on (�,G) such that

m(A) > 0 �⇒ ν̂α(γ,A) � ∞ (C.4)

for all γ ∈ �. This property is a generalization of positive regularity of matrices.
If the kernel µ̂α is conservative, there exists an eigenfunction h satisfying

h(γ ) �
∫
R+

∫
�

e−αuh(γ ′)µ(γ, dγ ′ × du)

�
∫
�

h(γ ′)µα(γ, dγ ′).
(C.5)

So, e−αu[h(γ ′)/h(γ )]µ(γ, dγ ′ × du) has total mass on � × R+ equal to 1 and
it is a probability measure. h(γ ) is the reproductive value of individuals of type
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γ . It indicates the relative long-term contribution of individuals of this type to the
population.

If the kernel µ̂α is conservative, there also exists a probability measure π , which
satisfies

π (dγ ′) �
∫
�

µ̂α(γ, dγ ′)π(dγ ). (C.6)

This equation can also be written in the following manner:

h(γ ′)π (dγ ′) �
∫
�

h(γ ′)
h(γ )

µ̂α(γ, dγ ′)h(γ )π (dγ )

if inf h(γ ) > 0. We can then normalize the equation so that we obtain∫
�
h(γ )π (dγ ) � 1. The measure π , defined above, can be interpreted as a stable

distribution of the types of the newborn. Consequently, an individual drawn at ran-
dom from a very old population is of a random type decided by π , independently
of the initial conditions.

Another interesting expression,

β �
∫
�

∫
�

∫
R+

te−αth(γ ′)µ(γ, dγ ′ × dt)π(dγ ),

can be considered the expected age at reproduction.
Similarly as in the single-type case, in the supercritical case (α > 0) a gen-

eralization of the key renewal theorem makes it possible to calculate the limit of
E[e−αtZ

χ
t ].We will denote Eπ (X) � ∫

�
E[X]π (dγ ), the expectation in the process

with the type of ancestor being randomly drawn according to measure π . Then,
we have

E[e−αtZ
χ
t ] −→ E[χ̂(α)]

αβ
h(γ )

as t → ∞, for all γ except sets of π -measure 0. The process behaves in the
supercritical case very much like its expectation (also, see Berndtsson and Jagers
1979).

The multitype formulation provides a great generality and was used in
applications, particularly concerning evolution theory (Taı̈b 1992).

C.2 Application: Alexandersson’s Cell Population
Model Using a General Branching Process

An elegant example of modeling using general processes and counting char-
acteristics (Section C.1) is a part of Alexandersson’s (1999) thesis. This
application demonstrates how a branching process approach complements ex-
isting deterministic approaches while the construction of the process is very
straightforward.
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C.2.1 The model

Let us consider a cell population, where each cell inherits a type at birth, grows
during a stochastic time span, and when its cell cycle is completed, it divides into
two not necessarily equal daughter cells. The type of the individual is the birth size
of the cell expressed as mass, volume, DNA content, and so forth. Because cells
have only two progeny, the Ulam–Harris space of all possible cells reduces to

I �
∞⋃
n�0

{1, 2}n,

where {1, 2}0 � {0}.
The type space is an interval S � (0,M] of the real line, where M < ∞ is the

largest possible birth size of a cell and S is the Borel-σ -algebra on S. A cell with
birth size r ∈S chooses a life ω from (�,A) using P (r, ·), the life law of cells of
type r .

We construct the population space (S ×�I , S × AI ) as in Section C.1. Under
the assumption that the daughter processes of different cells are conditionally
independent, there exists a unique probability measure Pr on the entire population
process, where r ∈ S is the type of the ancestor.

The size of a cell with initial size r increases with time according to a deter-
ministic growth function g. We let m(r, t) denote the size of an r-type cell at age
t . The functions m and g are related by the initial value problem

dm

dt
� g(m), m(r, 0) � r.

The cell grows and, after division, the daughter cells do not necessarily have the
same size (type) at birth. Note that we do not allow cell death in this model, so our
branching population is supercritical. Let λ denote the age of the cell at division
(the cell cycle time) and let the distribution of λ be defined by its hazard rate
function b(s), s∈ (0, 2M] {i.e., P[λ > s] � exp[− ∫ s

0 b(u) du]}.
A cell of type r divides into fractions δ and 1 − δ, where δ is a random variable

on (0, 1) with density function fδ(m,p), p1 ≤p≤p2, where p1 � 1 −p2 ∈ (0, 1)
depends on m � m(r, λ), the cell size at division. We will assume that fδ is
unimodal and that δ is symmetrically distributed around 1/2 {i.e., for all r ∈ S,

fδ(m,p) � fδ(m, 1 − p), and Er [δ] � 1/2}.
Let T (x) � ∫ x

0 [1/g(y)] dy, x∈S. To see how to interpret this function, consider

T (x) − T (r) �
∫ x

r

1

g(y)
dy. (C.7)

Making a change of variable y � m(r, t) yields dy � dm(r, t) � g(m(r, t)) dt
and Eq. (C.7) becomes ∫ u

0

g(m(r, t))

g(m(r, t))
dt �

∫ u

0
dt � u,

where u is the time it takes for a cell to grow from size r to size x. Consequently,
T (x)−T (r) is precisely this time. BecauseT (m(r, t))−T (r) � t , we havem(r, t) �
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T −1(T (r) + t). Further, let C(x) � ∫ x

0 [b(y)/g(y)] dy and Q(x) � b(x)/[xg(x)],
and assume that each cell has to divide before it reaches size 2M ; that is, b is such
that for ε > 0,∫ 2M

0

b(y)

g(y)
dy � ∞ and

∫ 2M−ε

0

b(y)

g(y)
dy < ∞.

The reproduction kernel µ(r, ds × dt), which is the expected number of children
with birth sizes in ds to a cell of type r with age in dt , takes the form

µ(r, ds × dt) � Er[ξ (ds × dt)]

� Er[1(λ ∈ dt)(1(δm(r, λ) ∈ ds) + 1((1 − δ)m(r, λ) ∈ ds))]

� 2
∫ ∞

0
1(u ∈ dt)

∫ 1

0
1(pm(r, u) ∈ ds)fδ(m(r, u), p) dp

× b(m(r, u)) exp

[
−
∫ u

0
b(m(r, v)) dv

]
du,

where the factor 2 comes from the fact that δ and (1−δ) are identically distributed.
The inner integral is zero everywhere except when p � s/m(r, u) and dp �

ds/m(r, u), so we have

µ(r, ds × dt) � 2
∫ ∞

0
1(u ∈ dt)fδ(m(r, u), s/m(r, u))

b(m(r, u))

m(r, u)

× exp

[
−
∫ u

0
b(m(r, v)) dv

]
du ds. (C.8)

Making a change of variable in the same manner as above, with x � m(r, u), we
get that du � [dx/g(x)] and the kernel becomes

µ(r, ds × dt) � 2
∫ 2M

r

1(T (x) − T (r) ∈ dt)fδ(x, s/x)Q(x)e−(C(x)−C(r)) dx ds.

C.2.2 Existence of the stable birth size distribution

If the Malthusian parameter α exists such that µ̂α is conservative, then the Perron–
Frobenius theorem gives the existence of a functionh [see Eq. (C.5)] and a measure
π [see Eq. (C.6)]. By requiring a strong or positive α-recurrence (Jagers and
Nerman, 1996) and inf h > 0 we can norm to∫

S

h(s)π (ds) � 1,
∫
S

π(ds) � 1.

The measure π is then called the stable-birth-type-distribution. Hence, we want
to prove the existence of the Malthusian parameter [i.e., prove the existence of a
number α > 0 such that the Perron root ρ(µ̂α) � 1], where

µ̂α(r, A) �
∫

R+
e−αtµ(r, A × dt)

and also that µ̂ is conservative.
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Theorem 33. Under the assumptions stated in Section C.2.1 on the reproduction
kernel µ, the Malthusian parameter α exists and the kernel µ̂α is conservative.

C.2.3 Asymptotics of the cell model

We discuss the asymptotics of our cell model. When looking at a population,
one can either consider all cells alive at the moment or all cells born into the
population up until now. Even if it seems more natural to look at all cells alive,
it is mathematically more convenient to consider all born. In this chapter, we will
concentrate on all born cells, but we will also show that all the results presented
can easily be obtained for all cells alive as well. When calculating the asymptotics
of our model, we construct random characteristics used to count the population
with respect to some property. An alternative way, described in Jagers and Nerman
(1996) is to sample an individual at random in an already stabilized population and
consider the population with time centered around this individual. The individual
sampled at random is called ego.

The α curve is the graph of the function α(a) describing the proportion of cells
still undivided at age a. An alternative interpretation is that α(a) is the probability
that the age at division of a cell sampled at random, ego is larger than a. In order to
find an expression for α(a), we define a random characteristic χ (cf. Section C.1)
such that zχt counts the number of cells born up to time t with respect to χ . Then,
if yt denotes the number of all cells born up to time t , we can use the result that
under suitable conditions

z
χ
t

yt
→ Eπ [χ̂ (α)] as t → ∞

in probability (on the set of nonextinction), where Eπ [X] � ∫
S
Es[X]π(ds),

χ̂ (α) � ∫R+
αe−αtχ (t) dt , and π is the stable-birth-type distribution.

The random characteristic that gives score one for each cell x born up to time t
and with life length λx longer than a can be written as

χx(t) � 1R+ (t − τx)1(λx > a),

where τx is the birth time for cell x. Making a change of variable u � t − τx gives

χ (u) � 1R+(u)1(λ > a).

This yields

α(a) � Eπ [χ̂ (α)] �
∫
S

Er [χ̂(α)]π (dr)

�
∫
S

Er

[∫
R+

αe−αuχ(u)du

]
π (dr)

�
∫
S

∫
R+

αe−αu du Er [1(λ > a)]π(dr)

�
∫
S

Pr(λ > a)π(dr)
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�
∫
S

exp

[
−
∫ a

0
b(m(r, v)) dv

]
π (ds).

The β curves are used to describe the proportions of sister cells, cousin cells, and so
on with life lengths that differ by more than a time units. The β1 curve describes
this proportion for sister cells, β2 for cousin cells, and so on. Alexandersson’s
(1999) thesis includes further asymptotic results for the β curves and numerical
computations for the model we outlined. Furthermore, it also deals with a much
more complicated example of cell proliferation, which we consider, using different
methods, in Section 7.7.2.



APPENDIX D

Glossaries

D.1 Biological Glossary for Mathematicians

Cross-references to other glossary terms are italicized.
Amino acids The 20 different basic units of proteins.
Amplification (Gene Amplification) The increase in the number of copies of a

gene. May result from errors in DNA replication or recombination.
Antibody A protein produced by the immune system in response to a foreign

molecule (antigen) that interacts specifically with the foreign molecule.
Antigen A molecule that induces an antibody.
bp Base pair(s), usually used as a unit of length of a DNA strand, spanning one

pair of complementary nucleotides.
Bacteria Cells of a lower form of life without a nuclear membrane.
Cancer A population of cells that continue to divide and survive under condi-

tions in which normal cells would stop dividing or die. The cancer cell population
usually is initiated from a single cell (clonal origin). As the progeny of the single
cell multiply they accumulate mutations and acquire new characteristics (tumor
progression). They may invade adjacent tissues and travel to distant sites to form
secondary tumors (metastases).

Cell The basic unit of life. Cells of higher forms of life have an outer membrane
surrounding the cytoplasm and the nucleus. In the cytoplasm there are proteins
(enzymes) that carry out biochemical functions, machinery (ribosomes) for making
proteins, and compartments (organelles) such as mitochondria. Higher forms of
life, such as mammalian cells, which have a membrane surrounding their nucleus,
are referred to as eukaryotes. Lower forms of life, such as bacteria, which do not
have a membrane surrounding their nucleus, are referred to as prokaryotes.

Cell cycle The stages of cell growth and division. Includes the following stages
(phases): division of one cell to produce two cells (cytokinesis), a gap of time (G1
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phase) between cytokinesis and the initiation of DNA synthesis (S phase), a gap of
time (G2 phase) between the end of DNA synthesis and the formation of visible
chromosomes, and mitosis (M phase). In mitosis, the duplicated chromosomes
(chromatids) containing replicated DNA are partitioned to new cells at cell division.
The time between one cell division and another is referred to as the cell lifetime.

Centromere A part of the chromosome required for proper movement of the
daughter chromosomes (chromatids) to daughter cells. A piece of DNA that is not
part of a chromosome and does not contain a centromere DNA sequence is referred
to as an acentric extrachromosomal element or double minute chromosome. Such
acentric extrachromosomal elements do not segregate properly into daughter cells.

Chemotherapy The treatment of cancer cells with chemicals that kill them. In
combination drug therapy, two or more chemicals with different modes of action
are used to increase the efficiency of killing cancer cells.

Chromosome The linear structure containing DNA and protein that is visible
under a microscope at mitosis. Chromosomes contain DNA sequences (genes) that
code for proteins and DNA sequences that do not code for proteins. Among the
noncoding DNA sequences, there are centromeres necessary for the separation of
daughter chromosomes (chromatids) during mitosis and telomeres, which function
to maintain the integrity of the ends of chromosomes.

Colony A population of cells that are the progeny of a single cell.
DNA Deoxyribonuleic acid; the genetic material. A long double helix with

a structure similar to a twisted ladder. The backbones of the ladder are strands
composed of alternating sugar (deoxyribose) and phosphate groups. The rungs of
the ladder are pairs of nucleotide subunits. The nucleotide subunits are abbreviated
A, T, G, and C. A is paired with T, and G is paired with C. The genetic information
in DNA is stored in the sequence of nucleotides. The information is transcribed
into complementary copies of a sequence of nucleotides in messenger RNA and is
then translated into a sequence of amino acids in protein. During DNA replication,
the two strands of a double helix separate and each acts as a template to synthesize
a new complementary strand. Each of the two double helices (one new strand and
one old strand) is contained in each one of a pair of sister chromatids (the daughters
of chromosomes). The sister chromatids segregate into daughter cells at mitosis.

Drug resistance The continued survival of cells in the presence of chemicals
(drugs) intended to kill them. Resistance to two or more drugs is referred to as
double resistance or cross-resistance.

Eve The hypothetical common human female ancestor of all extant humans.
Suggested by some common genetic features of individuals in current human
populations.

Flow cytometry A method for the analysis of the distribution of the amount of
a molecule (such as DNA or protein) in a population of cells. Cells are stained and
pumped through a thin tube between a light source and a detector. Measurements
of the amount of DNA per cell are used to indicate the number of cells in each
phase of the cell cycle. Measurements of the amount of a specific protein per cell
are used to indicate overproduction of the protein as a result of, for instance, gene
amplification.
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Fluctuation analysis Also, Luria and Delbrück fluctuation analysis. A method
to determine mutation rates of bacteria or mammalian cells. Parallel cultures of
cells are grown for a number of generations and then the number of mutants in
each culture, the average number of mutants per culture, and the number of cultures
containing no mutants are determined. This information can be used to calculate
the number of mutations per cell per generation.

Gene A sequence of bases in DNA that codes for a protein and influences the
inherited characteristics of a cell or organism.

Genome All of the DNA in an organism, including the DNA that codes for
proteins and the DNA that does not code for proteins.

Heterogeneity (Tumor Heterogeneity) Populations of cancer cells that contain
subpopulations with different characteristics, such as relative resistance to drugs.

Meiosis The formation of gametes (sex cells) by two successive cell divisions
and only one round of DNA synthesis. This results in the segregation of nonidentical
forms of genes (alleles) into different gametes. The gametes are haploid, containing
half as much DNA as diploid body cells.

Mitochondria Organelles in the cytoplasm of cells of higher organisms needed
for generating energy. Mitochondria contain DNA. They are inherited only from
the mother, hence the term “maternal inheritance.”

Mitosis The stage of the cell cycle of somatic (body) cells in which replicated
chromosomes (chromatids) are separated into daughter cells. The result of mitosis is
two daughter cells that have identical sets of genes. Daughter cells may be different
in size as a result of asymmetric division of the cytoplasm at cell division.

Molecular clock hypothesis The assumption that mutations in a gene occur
randomly and at an approximately equal rate over long time intervals during
evolution.

Mutant An organism or cell that has a different inherited characteristic than
the remainder of the cells in a population. Usually the result of a change in DNA
sequence.

Mutation A change in DNA sequence. Usually detected by a sudden and inher-
ited change in an observed characteristic (phenotype) of a cell or of an organism.
However, a mutation may be detected directly by determining a change in the
DNA sequence, even though there is no visible characteristic change in the cell
or organism. The progeny of the mutant may revert to the previous phenotype, in
which case the new mutation is referred to as a reverse mutation or back mutation.
A phenotype resulting from a series of two mutations is referred to as a two-stage
mutation. The rate of mutation may be determined by fluctuation analysis.

Nucleus The part of a cell containing DNA. The part of the cell outside of the
nucleus is referred to as the cytoplasm.

Oncogene A gene (DNA sequence) associated with cancer. An oncogene can
be detected and mapped by its pattern of inheritance in cancer-prone families. A
piece of DNA containing an oncogene can be detected by the ability of the DNA
to induce cancer-like changes when transferred into cells growing in culture.

Organelle A part of a cell which carries out a specialized function. An example
is a mitochondrion (plural: mitochondria). A mitochondrion is a DNA-containing,
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membrane-enclosed structure located in the cytoplasm. It functions to produce
high-energy molecules for cell metabolism. During cell division, mitochondria
may or may not be distributed to daughter cells in equal numbers.

Phenotype The visible characteristics of a cell or organism; as opposed to
genotype, the genetic information of a cell.

Plasmid In bacteria, a circular piece of DNA that is separate from the major
(chromosomal) piece of DNA. Plasmids replicate and segregate at cell division
independently of the chromosomal DNA. Each bacterial cell may contain multiple
numbers of plasmids which may be randomly distributed at cell division.

Polymerase chain reaction An experimental procedure for obtaining a large
number of copies of a piece of DNA. The procedure employs short pieces of
DNA complementary to the ends of the desired sequence and the enzyme DNA
polymerase to exponentially increase the number of copies of the desired DNA
sequence.

Protein A polymer molecule consisting of monomer subunits of amino acids.
The linear sequence of amino acids in a protein is determined by the corresponding
sequence of nucleotides in DNA (gene). Some proteins (enzymes) function to
encourage chemical reactions; other proteins have a structural function.

Quiescence A phase when cells are pausing before the initiation of DNA syn-
thesis rather than actively progressing through the cell cycle. Most cells of higher
organisms are quiescent rather than actively dividing.

Recombination The formation of new combinations of genes by the exchange
of genetic information between chromosomes.

Repeat DNA Sequences of DNA nucleotides that are tandemly iterated. In some
diseases, the number of repeats may vary between individuals, and the number may
change from parents to progeny.

Replication The duplication of DNA. Two strands of DNA separate, like a zip-
per, at a moving replication fork. Each strand acts as a template to code for a
complementary sequence of nucleotides in a new strand. The result is two new
pieces of DNA, each double stranded, each piece containing one new strand and
one old strand. This is referred to as semiconservative replication. Errors may
occur during DNA replication, slippage at the replication fork or redundant repli-
cation forks, resulting in sequences that are added or deleted (amplification or
deamplification).

RNA Ribonucleic acid. A molecule similar to DNA, but with a different sugar
(ribose rather than deoxyribose), one different nucleotide (U instead of T), and
mostly single stranded (rather than double stranded). There are several kinds of
RNA. One of these, messenger RNA (mRNA), is transcribed as a complemen-
tary copy of the sequence of nucleotides in DNA and functions to determine the
sequence of amino acids in protein.

Segregation The separation of different forms of genes (alleles) into sex cells
(gametes) at meiosis. Also, the distribution of double minute chromosomes to
daughter cells during mitosis.

Senescence The inability of some normal cell populations to continue to divide
indefinitely when grown in culture. Some cancer cell populations can continue



D.2 Mathematical Glossary for Biologists 219

to divide indefinitely in culture and are therefore referred to as immortal. Senes-
cence has been related to the continued activity of molecules that control cell
cycle progression and to the maintenance of the length of telomeres at the ends of
chromosomes.

Telomeres The ends of chromosomes. The DNA at the ends of chromosomes
contains repeated sequences (terminal restriction fragments, TRF) that are nec-
essary for replicating DNA at the ends of chromosomes and for maintaining the
structural integrity of chromosomes.

Virus An intracellular parasite of cells. There are viruses of bacteria and of
higher cells, including mammalian cells. They replicate within cells and can be
transferred between cells. The extracellular forms contain genetic material (DNA
or RNA), proteins, and some contain membranes. Within cells, the viral genetic
material may subvert the machinery of the host cells and alter the host cell’s
properties. The genetic material of some viruses will actively replicate within a
cell and produce new viruses. The genetic material of other viruses will integrate
a DNA copy into the DNA of the host cell and replicate the viral genetic material
along with the DNA of the host cell once per cell cycle.

D.2 Mathematical Glossary for Biologists

Cross-references to other glossary terms are italicized.
Abel’s equation One of the classical functional equations of calculus. For a

supercritical branching process, the characteristic function of the limit random
variableW equal to the standardized particle count satisfies Abel’s equation (3.19).

Age-dependent branching process A branching process in which the lifetimes
of particles are non-negative random variables. In the special case when the life-
times are exponentially distributed, the number of particles existing in the process,
as a function of time, is a time-continuous Markov chain.

Asymptotic behavior Behavior of a time-dependent process (or a biological or
physical phenomenon) after a sufficiently long time.

Backward approach Decomposition of the branching process into subpro-
cesses started by direct progeny of the ancestor. By the branching property (a
form of self-recurrence), these latter are distributed identically as the whole pro-
cess. This decomposition provides the means to derive recurrent relationships or
equations for the distributions of the process.

Bellman–Harris branching process A branching process in which the life-
times of particles are non-negative random variables (age-dependent process) and
the progeny is born exactly at the moment of the death of the parent.

Branching diffusion process A branching process, with a continuum type
space, in which the type of the particle is defined as its position in a subset of
real numbers (or points in higher-dimensional space) and the transitions in the
type space are translations by a real-valued random variable (or a vector), with
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special rules on the boundary. The type may be understood as a spatial coordinate
of the particle.

Branching process A random collection of individuals (particles, objects, cells),
proliferating according to rules involving various degrees of randomness of the life
length and the number of progeny of an individual. The unifying principle is the so-
called branching property, which states that the life length and type of progeny of
a newborn particle, conditional on the current state of the process, are independent
of any characteristics of other particles present at this time or in the future. The
branching property is a form of self-recurrence.

Branching random walk A branching process, with a denumerable-type space,
in which the type of the particle is defined as its position in the set of integers (or
non-negative integers) and the transitions in the type space are translations by an
integer random variable, with special rules on the boundary. An example is the
process of gene amplification in proliferating cells. In this process, the type of cell
is the number of copies of a gene present in the cell’s DNA. Progeny cells may
gain or lose copies of this gene, inherited from the parent cell. So, if the number
of gene copies in the parent is equal to i; then in the progeny, it may be equal to
i − 1, i, or i + 1.

Càdlàg path Function of time continuous from the right and bounded from the
left of each point (French: continue à droite, limitée à gauche).

Chapman–Kolmogorov equation Fundamental relationship governing the
time evolution of Markov chains. It is represented in various forms {e.g.,P (s+t) �
P (s)P (t) or Pij (s + t) � ∑

k Pik(s)Pkj (t), where P (s) � (Pij (s)) is the matrix
(finite or infinite) of transition probabilities between states, Pij (s) �P[Xt+s �
j |Xt � i]}. Intuitively, to calculate the probability of the chain moving from i to
j in time t + s, it is necessary to add the probabilities of moving from i to k in
time t and from k to j in time s, over all states k.

Criticality Branching process is critical if the expected (mean) count of progeny
of a particle is equal to 1. It is supercritical if the mean count of progeny of
a particle is greater than 1 and subcritical if it is less than 1. This classification
leads to profound differences in asymptotic properties of the process. In particular,
critical processes behave in a counterintuitive way because they become extinct
with probability 1 while the expected number of particles stays constant.

Denumerable A set is called denumerable (or countable) if it is infinite but its
elements can be indexed by non-negative integers. Other categories of infinite sets
include continuum (i.e., a set the elements of which can be indexed by real numbers
from an interval). The set of all rational numbers (ratios of integers) is countable;
the set of all infinite sequences of zeros and ones is a continuum (because such
sequences are just binary expansions of real numbers from the [0, 1] interval).

Exponential Steady State For idealized populations growing without spatial or
nutritional constraints, the condition in which the number of individuals increases
or decreases exponentially while the proportions of individuals in distinct age
classes and any other identifiable categories remain constant. Usually attained
asymptotically.
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Extinction The event of all particles (individuals) of the branching process
dying out.

Forward approach An approach dual to the backward approach, easiest to
explain for the Galton–Watson branching process. Particles existing in generation
t of the process are traced to their parents in generation t − 1. Therefore, if the
number Zt−1 of particles in generation t − 1 is known, the number Zt of particles
in generation t is equal to the sum Zt � X1 + X2 + · · · + XZt−1 , where Xk is the
number of progeny of the kth out of Zt−1 particles of generation t − 1. This leads
to a recurrence for the pgf’s of the particle counts.

Galton–Watson branching process Arguably, the simplest branching process.
It evolves in discrete time measured by non-negative integers. At time 0, an ancestor
individual (particle, cell, object) is born. At time 1, the ancestor dies, producing a
random number of progeny. Each of these becomes an ancestor of an independent
subprocess, distributed identically as the whole process. This definition implies
that the numbers of progeny produced by each particle ever existing in the process
are independent identically distributed random variables and that all particles live
for one time unit. Discrete-time moments coincide with generations of particles.
The number of particles existing in the Galton–Watson branching process, as a
function of time, constitutes a time-discrete Markov chain.

Gelation In a model of aggregation of chemical molecules, the idealized process
of infinite aggregation, resulting in disappearance of finite aggregates of molecules.
In Macken and Perelson’s branching model of aggregation, gelation is represented
by escape of the branching process to infinity (possible only in the supercritical
case).

Genealogies Branching (tree-like) graphs, usually random with respect to struc-
ture and branch lengths, representing ancestry of a sample of individuals from a
branching process or, more generally, from an abstract or real-life population of
molecules, genes, cells, or other objects. The process of reducing the number of
distinct ancestors of the sample, followed in the reverse time, is called coalescence.

Genetic distance Distance between biological organisms, computed based on
genetic characteristics. An example is the distance between relevant subsequences
of DNA of the two individuals, computed as the number of nucleotides different
in these two individuals (number of mismatches). For example, if in individual 1
the DNA sequence is ATGGACGA and in individual 2 it is ATcGgCGt, then the
genetic distance is equal to 3.

iid Independent, identically distributed (random variables). The most frequently
encountered assumption concerning a family of random variables. Makes proofs
of theorems easier, when it can be assumed. In statistics, the so-called random
samples are assumed to be iid.

Instability of branching processes The fact that, as time tends to infinity, the
branching process either becomes extinct or infinitely large. Instability is due to
the independence assumptions inherent in the definition of a branching process
(i.e., that the number of progeny and life length of a newborn particle, conditional
on the current state of the process are independent of any characteristics of other
particles present at this time or in the future).
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Jagers–Crump–Mode process The general branching process. The difference
with respect to the classical branching processes, such as the Galton–Watson
branching process or the Bellman–Harris branching process is that in the gen-
eral process, the progeny may be produced before the death of the individual. The
ages at which the individual begets progeny are random. Also, the type space may
be of a very general form. The theory, developed for general processes, allows
finding distributions of the process counted by random characteristics [i.e. of the
weighted counts of events associated with a desired subclass of individuals (e.g.,
the number of first-born progeny of all individuals born after January 1, 1980,
etc.)].

Kolmogorov theorem In the theory of stochastic processes, a fundamental
result ensuring the existence of the stochastic process, given that for all finite
collections of times, there exist joint distributions of random variables, being the
values of the process at these times. These finite-dimensional distributions have to
satisfy consistency conditions.

Linear-fractional case An important case of the Galton–Watson branching
process, in which the number of progeny of an individual is a random variable
with modified geometric distribution {i.e., P[X � 0] � 1 − bp/(1 − p) and
P[X � k] � bpk , for k � 1, 2, . . .. The name is derived from the fact that the pgf of
such random variable is a ratio of two linear functions. In the linear-fractional case,
the number of particles existing at any time has a modified geometric distribution,
with parameters, which can be explicitly computed.

Malthusian parameter For a branching process, a parameter α such that the
number Z(t) of particles present in the process, normalized by dividing it by
exp(αt), converges to a limit random variable, as time tends to infinity. The Malthu-
sian parameter always exists for the supercritical processes and is positive in this
case.

Markov branching process A type of time-continuous branching process. At
time 0, an ancestor individual (particle, cell, object) is born. The ancestor lives
for time τ , which is an exponentially distributed random variable, and then the
ancestor dies, producing a random number of progeny. Each of these becomes an
ancestor of an independent subprocess, distributed identically as the whole process.
The number of particles existing in the Markov branching process, as a function
of time, is a time-discrete Markov chain (hence the name). Interestingly, if the
Markov branching process is observed at times equal to multiples of a constant
interval t , the numbers of particles at these observation times are distributed
identically as in a Galton–Watson branching process.

Markov process A stochastic process with a limited memory (the Markov
property). Intuitively, given the state of the process at time t , the future of the
process depends only on this state and not on its states at times before t (time can
be discrete or continuous). Mathematically,

P[Xt+s ∈ A|Xs � xs, 0 ≤ s ≤ t] � P[Xt+s ∈ A|Xt � xt ],

where A is a subset of the state space of the process (space of values assumed by
the process). The probabilityP (s; x → A) �P[Xt+s ∈ A|Xt � x] is the transition
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probability from state x to set of states A, in time s. If the states of the process
form a finite or denumerable set, then the process is called a Markov chain. In this
case, it is possible to define a matrix (finite or infinite) of transition probabilities
between states P (s) � (Pij (s)), where Pij (s) � P[Xt+s � j |Xt � i]. For discrete
time, P (s) � P (1)s , where P (1) is the single-step transition probability matrix.
For continuous time (under some additional assumptions if the number of states
is infinite), P (s) � exp(Qs), where Q is called the transition intensity matrix.

Martingale In the discrete-time case, a stochastic process, having the property
that its expected value at time t+1, conditional on its values at all times before t+1,
is equal to the process value at time t . Mathematically, E(Xt+1|X1, X2, . . . , Xt ) �
Xt . Martingales, under some additional conditions, converge to limits (which are
random variables). For this reason, proving that a process is a martingale allows
an insight into its asymptotic behavior. Continuous-time martingales behave in a
similar way, but they are technically more involved.

Maximum likelihood Statistical methodology of estimating parameters of mod-
els, based on observations. It consists of expressing the probability of observations
as a function of parameters. This function is known as the likelihood function,
L(θ ) � fX(x; θ), where fX(·) is the density of the distribution of random variable
X, x is the vector of observations of random variable (known), and θ is the vec-
tor of parameters of the distribution (unknown). The values of parameters, which
maximize L(θ ), are called the maximum likelihood estimates of the parameters
and are denoted θ̂ .

Moments Expected values of powers of a random variable X. Absolute mo-
ments of order k (or kth absolute moments) are defined as E(Xk), central moments
as E{[X−E(X)]k}, and factorial moments as E[X(X − 1)(X − 2) · · · (X − k)].
The first absolute moment, E(X), represents the central tendency of the ran-
dom variable, the second central moment, Var(X) �E{[X−E(X)]2}, represents
the dispersion of the random variable around the expected value.

Multitype Galton–Watson process (positive regular) Generalization of the
usual (single-type) Galton–Watson branching process. It evolves in discrete time
measured by non-negative integers. Each individual belongs to one of a finite num-
ber of types. At time 0, an ancestor individual (particle, cell, object), of some type,
is born. Processes started by individuals of different types are generally different.
At time 1, the ancestor dies, producing a random number of progeny of various
types. The distribution of progeny counts depends on the type of parent. Each of
the first-generation progeny becomes an ancestor of an independent subprocess,
distributed identically as the whole process (modulo ancestor’s type). In the mul-
titype process, asymptotic behavior depends on the matrix of expected progeny
count. Rows of this matrix correspond to the parent types and columns correspond
to the progeny types. The largest positive eigenvalue of this matrix (the Perron–
Frobenius eigenvalue) is the Malthusian parameter of the process, provided the
process is supercritical (the Perron–Frobenius eigenvalue larger than 1) and pos-
itive regular. This latter means that parent of any given type will have among its
(not necessarily direct) descendents, individuals of all possible types, with nonzero
probability.
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Parsimony method in phylogenetics A method of inferring the phylogenetic
tree. In this method, taxonomic units are represented by their DNA sequences
(most commonly, from the mitochondrial genome). The method looks for the
tree that requires the minimum number of changes between the extant and inferred
ancestral sequences. The outcome may be equivocal and, also, because the number
of possible tree structures is extremely large, the optimal tree is frequently not
found.

Perron–Frobenius theory Collection of results concerning eigenvalues and
eigenvectors of positive (or non-negative) matrices and operators. Important as-
sumptions include irreducibility (positive regularity) (i.e., a strict positivity of
iterates of the matrix or operator). A generic result states the existence of a strictly
positive simple eigenvalue dominating all other eigenvalues and of a correspond-
ing strictly positive eigenvector. The importance of these results is that they lead
to characterizations of the asymptotic behavior of iterates of positive matrices or
operators, in terms of dominant eigenvalues and eigenvectors. Mathematically,
m0M

i ∼ λiν, as i → ∞, where Mi is the ith iterate of the positive matrix M ,
m0 is the initial vector of states, λ is the dominant positive eigenvalue, and ν is
the corresponding eigenvector. Results of this type are important in mathematical
population dynamics, including the theory of branching processes.

pgf Probability generating function.
Phylogenetic tree The set of ancestry relationships between extant (contem-

porary) taxonomic or demographic units (species, populations, haplotypes, and
others), usually in the form of a binary tree graph (at most three branches out of
each node). The nodes of the phylogenetic tree represent extant and ancestral units,
whereas the branches represent the intervals of evolutionary time separating them.
Depending on the method of reconstruction, the graph may be rooted [i.e. having a
uniquely defined common ancestor (and consequently, the direction of time spec-
ified in all branches), or unrooted (it is then sometimes called a network)]. The
most commonly used methods of reconstruction are parsimony, distance matrix,
and maximum likelihood.

Poisson process One of the most important stochastic processes. Random col-
lection of time points (epochs) having the properties of complete randomness (the
counts of events in any two disjoint time intervals are independent) and stationarity
[the probability of an event occurring in a short time interval (t, t + dt) is equal
to λdt + o(dt), where, o(dt) is small with respect to dt , i.e., o(dt)/dt → 0 as
dt → 0]. The constant λ is called the intensity of the process. The number N of
epochs of the Poisson process in an interval of length t has Poisson distribution
with parameter λt [i.e., P[N � n] � exp(−λt)(λt)n/n!, for n � 0, 1, 2, . . .], and
the time intervals T between any two epochs have exponential distribution with
parameter λ (i.e., the density of distribution of T is equal to fT (t) � λ exp(−λt),
for t ≥ 0).

Population genetic models Models of inheritance, mutation, and selection of
genetic material in populations of individuals. Classically, these models assume
a constant number of individuals related to each other through common ancestry
(Fisher–Wright model). Although very different from the branching processes
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some of these models can be approximated by branching processes (e.g., when an
expanding subpopulation of mutants arises within the large population). Such a
situation arises when some genetic diseases are studied.

Positivity In general, the property of being positive. A matrix is positive if all
elements of the matrix are positive; it is positive regular if all elements are non-
negative and some power of the matrix is positive. If the matrix is a transition
probability matrix of a Markov process, positive regularity means that there exist
paths between all pairs of states of the process. Similarly, if the matrix is the mean
progeny matrix of a multitype branching process, then positive regularity means
that any particle has, among its descendants, particles of all types.

Probability generating function (pgf) The function fX(s) of a symbolic argu-
ment s, which is an equivalent of the distribution of a non-negative-integer-valued
random variable X. If numbers p0, p1, p2, . . . constitute the distribution of ran-
dom variable X (i.e., P[X � k] � pk), then the pgf of random variable X is
defined as fX(s) � E(sX) � ∑∞

i�0 pis
i , for s ∈ [0, 1]. Use of the pgf simplifies

mathematical derivations involving non-negative integer-valued random variables.
Quasistationarity State ia of a Markov chainX(t) is called absorbing if the pro-

cess cannot exit ia once ia has been visited (i.e., P[X(t + s) � ia|X(t) � ia] � 0).
Under certain additional conditions, the probability of eventual absorption in state
ia is equal to 1 (i.e., P[limt→∞ X(t) � ia] � 1). Then, the only stationary distribu-
tion is the one that assigns probability 1 to state ia . Because such a distribution is not
informative, it is usual to consider a distribution, which is stationary conditional on
non-absorption. Such a distribution, if it exists, is called the quasistationary distri-
bution. Mathematically, π̃ � (π̃0, π̃1, π̃2, . . .) is the quasistationary distribution, if
P[X(t+s) � j |X(t+s) � ia] � π̃j (all j ) provided P[X(t) � j |X(t) � ia] � π̃j

(all j ). An example of a quasistationary distribution is the limit distribution of the
subcritical branching process conditional on nonextinction.

Random variable (rv) Intuitively, a numerical result of observation which dis-
plays random variation. Mathematically, a random variable X(ω) is a function
mapping the elements ω of a probability space � (space of outcomes of a random
experiment) into the set of real numbers. For technical reasons, this function has
to be measurable (i.e., the counter image of an interval through X has to be a
measurable set of elements of �).

Random walk A time-discrete Markov chainX(t), such thatX(t+1) � X(t)+
U (t), where the integer random variables U (t) are independent and identically
distributed.

Recurrent state See transient state.
Renewal theory A branch of probability concerned with renewal processes. The

renewal process is a collection of random time points (called renewals) such that
the intervals between these points are independent identically distributed random
variables. A special case in which the intervals between renewals are exponentially
distributed is the Poisson process.

rv Random variable
Self-recurrence Consider a random (stochastic) process X(t) evolving from

an initial value X(0) � x0 on time interval [0,∞). Suppose that at some time
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t0, the process is stopped and then restarted. Then, suppose that given the value
X(t0) � x0, the continuation process on the interval [t0,∞), which is a subprocess
of the original process, is identical (it has the same distributions), as the original
process shifted by t0. A process with such property is called self-recurrent. Self-
recurrence may be considered a rephrasing of a causality principle. It leads to
recurrent relationships for a wide class of processes, including Markov processes,
renewal processes, and branching processes.

Stathmokinesis An experimental technique in which cell divisions are blocked,
ideally without damage to cells. Cells traversing successive phases of their lives are
accumulating in the predivision state (mitosis). The time pattern of accumulation
depends on the demography of the cell population and kinetic parameters of the
cell cycle. Therefore, it is possible to estimate some of these parameters based on
observed accumulation patterns.

Stationarity The Markov chain X(t) is said to be stationary if its distribution
over the state space is invariant in time (this distribution is called the stationary
distribution). Mathematically, π � (π0, π1, π2, . . .) is the stationary distribution
if P[X(t + s) � j ] � πj (all j ) provided P[X(t) � j ] � πj (all j ).

Stochastic process Intuitively, a function of time with a random component.
Mathematically, a family of random variables parameterized by time. It has to
satisfy so-called measurability conditions, which prevent certain mathematical
problems from occurring.

Transient state States of a Markov chain can be classified into transient and
recurrent. For a recurrent state, the probability of eventually returning to this state
is equal to 1, whereas for a transient state, there is a nonzero probability of never
returning.

Type space A collection of possible particle types existing in a branching
process. If there is more than one but finitely many types, the process is called
multitype. If the type space is denumerable or continuous, the behavior of the
branching process can differ considerably from the multitype case. An example is
a branching random walk, in which the asymptotic behavior can be, for example,
exponential multiplied by a fractional power function, which does not occur in the
finite case.

wp With probability (common abbreviation)
Yaglom’s theorem Result stating that for subcritical branching processes, there

exists a quasistationary distribution, conditional on nonextinction.
Yule process Markov age-dependent branching process in which a particle can

have at most two progeny (the binary-fission process). An important class of pro-
cesses because the pgf of the distribution of particle count can be explicitly found.
Also, the Yule process frequently serves as a model for populations of proliferat-
ing cells, although by its definition it is limited to exponentially distributed cell
lifetimes.
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Decomposable process, 142
decomposition into subprocesses, 9
deletion, 134
deletion unit, 147
dermography, 15
dependence, Markov, 17
diabetes, 16
differential equations

ordinary, 11
partial, 11

dihydrofolate reductase (DHFR), 48
division cycle, 170
division-within-division, 158
DNA, 19, 143

mitochondrial, 134
noncoding, 21
polymerase, 4
repeat, 21

expansion, 51
triplet, 52

replication, 3
fork, 23
slippage, 24

semiconservative replication, 23
sequence, 16

double minute, 48
drug resistance, 22, 68
dynamics

of cell-size distributions, 167
polynomial, 152
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Embedded Galton–Watson process, 201
embryonal carcinoma cells, 169
environment, 16
equation

Abel’s, 45
Chapman–Kolmogorov, 11
Riccatti-type, 70

evolution, artificial, 8
exit curve, 94
Exponential Steady State, 124
extinction, 14, 16, 201
extrachromosomal element, 141, 143,

161

Family history, 199
flow cytometry, 48
fluctuation

analysis, 103
test, 29

forensics, 4
fragile X syndrome, 52
free reproduction, 15
Friend erythroleukemia, 124
function, convex, 14

Gelation, 130, 132
gene, 1, 19, 158

amplification, 50, 62, 138, 161
stable, 141
unstable, 157

mapping, 18
genealogy, 18
generation, 199
genome, 19, 20

mammalian, 20
genotype, 17
genus, 175

Hidden Markov Models, 16
human fibroblasts, 152
human genome sequencing, 16

Immortality, 28
instability of the branching process, 43
integral equation of the Bellman–Harris

process, 202
interdivision time, 104
ISM (infinitely many sites model), 5, 81

Kearns–Sayre syndrome, 135
kin number problem, 133
Kolmogorov theorem, 201

Laplace transform, 155, 160
lifetime, 13
ligand, 129
Luria–Delbrück model, 111

Macroevolution, 56
Malthusian

law, 44
parameter, 17, 90, 121, 207

Markov
chain, backward, of ancestral type,

134
process, time-continuous, 1

martingale, 44
matrix

irreducible, 117
positive regular, 117

meiosis, 24
membrane, 25
methotrexate (MTX), 48
mitochondrial Eve, 80
mitosis, 24, 27
mitotic detachment, 170
model of cell cycle with chemotherapy,

119
molecular biology, 16
molecular clock, 81
moment, factorial, 12

mixed, 197
most recent common ancestor (mrca), 5,

80
mutation, 20

rate, 21, 104
two-stage, 103

mutations, desirable, 4
myotonic dystrophy, 52

Nontriviality, 12
nucleotide, 43
nucleus, 25

Organelle, 158
ovarian carcinoma cells, 137
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PCR (polymerase chain reaction)
amplification, 4, 132
mutagenic, 8
product, 5
simulations, 136

Perron–Frobenius
eigenvalue, 209
theory, 117

phenotype, 20
plasmid, 158
point process, 17
Poisson process, 5
Polish space, 206
positivity, 117
probability

generating function (pgf), 12
multivariate, 197

generating functional, 139
measure, 200
space, 199

probability generating function (pgf),
marginal, 37

proportion of mutants, 135
protein, 20

Quasistationarity, 26, 62, 157, 160
quiescence, 37, 138

Random
characteristic, 17, 206
walk

branching with absorbing barrier,
29, 153

with absorbing boundary, 21
ras oncogene, 40
receptor, 127
recurrence, 40
reductionism, 16
remission, 68
renewal

equation, 89
function, 89
process, 76

RNA, 20

Sampling formulas, 132
segregation, 142
selective agent, 144

self-recurrence, 10
senescence, 28

cellular, 147
sequence, 5
species, 175
stable process, 141
state

recurrent, 43
transient, 43, 62

stathmokinesis, 27
stathmokinetic

data, 96
drug-perturbed, 124

experiment, 91, 119
stem cells, 137
stochastic process, 5, 17, 201
structured cell population, 164

Tauberian theorems, 153
telomere, 21, 22

loss of, 147
template, 5
terminal restriction fragments, 152
theorem, Yaglom’s, 46, 51
time

doubling, 124
residence, 124

transformation
irreversible, 109
reverse, 109

tumor, 28
cell, 119
kinetics, 76

two cell populations, 118
type space, 1, 13

denumerable, 1

Ulam-Harris space, 205
unequal cell division, 166, 169

Valency of a molecule, 129
viral particles, 158
virus, 129, 158

Yule
evolutionary process, 175
process, 79, 158
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