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Preface

This text addresses the Source Separation problem from a Bayesian sta-
tistical approach. There are two possible approaches to solve the Source
Separation problem. The first is to impose constraints on the model and like-
lihood such as independence of sources, while the second is to incorporate
available knowledge regarding the model parameters. One of these two ap-
proaches has to be followed because the Source Separation model is what is
called an overparameterized model. That is, there are more parameters than
can be uniquely estimated. In this text, the second approach which does not
impose potentially unreasonable model and likelihood constraints is followed.
The Bayesian statistical approach not only allows the sources and mixing
coefficients to be estimated, but also inferences to be drawn on them.

There are many problems from diverse disciplines such as acoustics, EEG,
FMRI, genetics, MEG, portfolio allocation, radar, and surveillance, just to
name a few which can be cast into the Source Separation problem. Any
problem where a signal is believed to be made up of a combination of elemen-
tary signals is a Source Separation problem. The real-world source separation
problem is more difficult than it appears at first glance.

The plan of the book is as follows. First, an introductory chapter describes
the Source Separation problem by motivating it with a description of a cocktail
party. In the description of the Source Separation problem, it is assumed that
the mixing process is instantaneous and constant over time.

Second, statistical material that is needed for the Bayesian Source Sepa-
ration model is introduced. This material includes statistical distributions,
introductory Bayesian Statistics, specification of prior distributions, hyperpa-
rameter assessment, Bayesian estimation methods, and Multivariate Regres-
sion.

Third, the Bayesian Regression and Bayesian Factor Analysis models are
introduced to lead us to the Bayesian Source Separation model and then to the
Bayesian Source Separation model with unobservable and observable sources.

In all models except for the Bayesian Factor Analysis model which still
retains a priori uncorrelated factors from its Psychometric origins, the un-
observed source components are allowed to be correlated or dependent in-
stead of constrained to be independent. Models and likelihoods are described
with these specifications and then Bayesian statistical solutions are detailed
in which available prior knowledge regarding the parameters is quantified and
incorporated into the inferences.

Fourth, in the aforementioned models, it is specified that the observed
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mixed vectors and also the unobserved source vectors are independent over
time (but correlated within each vector). Models and likelihoods in which
the mixing process is allowed to be delayed and change over time are intro-
duced. In addition, the observed mixed vectors along with the unobserved
source vectors are allowed to be correlated over time (also correlated within
each vector). Available prior knowledge regarding the parameters is quantified
and incorporated into the inferences and then Bayesian statistical solutions
are described.

When quantifying available prior knowledge, both Conjugate and general-
ized Conjugate prior distributions are used. There may exist instances when
the covariance structure for the Conjugate prior distributions may not be
rich enough to quantify the prior information and thus generalized Conjugate
distributions should be used.

Formulas or algorithms for both marginal mean and joint modal or maxi-
mum a posteriori estimates are derived. In the Regression model, large sample
approximations are made in the derivation of the marginal distributions, and
hence, the marginal estimates when generalized Conjugate prior distributions
are specified. In this instance, a Gibbs sampling algorithm is also derived to
compute exact sampling based marginal mean estimates.

More formally, the outline of the book is as follows.
Chapter 1 introduces the Source Separation model by motivating it with the

“cocktail party” problem. The cocktail party is an easily understood example
of a Source Separation problem.

Part I is a succinct but necessary coverage of fundamental statistical knowl-
edge and skills for the Bayesian Source Separation model.

Chapter 2 contains needed background information on statistical distrib-
utions. Distributions are used in Statistics to model random variation and
uncertainty so that it can be understood and minimized. Several common
distributions are described which are also used in this text.

Chapter 3 gives a brief introduction to Bayesian Statistics. Bayesian Sta-
tistics is an approach in which inferences are made not only from information
contained in a set of data but also with available prior knowledge either from a
previous similar data set or from an expert in the form of a prior distribution.

Chapter 4 highlights the selection of different common types of prior dis-
tributions used in Bayesian Statistics. Knowledge regarding values of the
parameters from our available prior information is quantified through prior
distributions.

Chapter 5 elaborates on the assessment of hyperpameters of the prior dis-
tributions used in Bayesian Statistics to quantify our available knowledge.
Upon assessing the hyperparameters of the prior distribution, the entire prior
distribution is completely determined.

Chapter 6 describes two estimation methods commonly used for Bayesian
Statistics and in this text, namely, Gibbs sampling for marginal posterior
mean estimates and the iterated conditional modes algorithm for joint max-
imum a posteriori estimates. After quantifying available knowledge about
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parameter values in the form of prior distributions, this knowledge is com-
bined with the information contained in a set of data through its likelihood.
A joint posterior distribution is obtained with the use of Bayes’ rule. This
joint distribution is evaluated to determine estimates of the model parameters.

Chapter 7 builds up from the Scalar Normal model to the Multivariate
(Non-Bayesian) Regression model. The buildup includes Simple and Mul-
tiple Regression. The Regression model is preliminary knowledge which is
necessary to successfully understand the material of the text.

Part II considers the instantaneous constant mixing model where both the
observed vectors and unobserved sources are independent over time but al-
lowed to be dependent within each vector. The source components are corre-
lated or dependent.

Chapter 8 considers the sources to be known or observable for a description
of (Multivariate) Bayesian Regression. The Bayesian Regression model will
assist us in the progression toward the Bayesian Source Separation model.

Chapter 9 considers the sources to be unknown or unobservable and details
the Bayesian Factor Analysis model while pointing out its model differences
with Bayesian Regression.

Chapter 10 details the specifics of the Bayesian Source Separation model
and highlights its subtle but important differences from Bayesian Regression
and Factor Analysis.

Chapter 11 discusses the case when some sources are observed while others
are unobserved. This is a model which is a combination of Bayesian Regression
with observable sources and Bayesian Source Separation with unobservable
sources. Both the Bayesian Regression and Bayesian Source Separation mod-
els can be found by setting either the number of observable or unobservable
sources to be zero.

Chapter 12 consists of a case study example applying Bayesian Source Sep-
aration to functional magnetic resonance imaging (FMRI).

Part III details more general models in which sources are allowed to be
delayed and mixing coefficients to change over time. This corresponds to the
speakers at the party being a physical distance from the microphones, thus
their conversation is not mixed instantaneously, and to speakers at a party
moving around the room, thus their mixing coefficient increases and decreases
as they move closer or further away from the microphones. Also, observation
vectors as well as source vectors are allowed to be correlated over time. If a
person were talking (not talking) at a given time increment, then in the next
time increment this person is most likely talking (not talking).

Chapter 13 generalizes the model to delayed sources and dynamic mixing
as well as Regression coefficients. Occasionally the speakers are a physical
distance from the microphones and thus their conversations do not instanta-
neously enter into the mixing process. Although this Chapter is presented
prior to the Chapter 14 on correlated vectors which is due to mathematical
coherence, a reader may wish to read Chapter 14 before this one.
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Chapter 14 expands the model to allow the observed mixed conversation
vectors in addition to observed and unobserved source vectors to be correlated
over time. There may be instances where the observation vectors and also the
source vectors are not independent over time.

Chapter 15 brings the text to an end with some concluding remarks on the
material of the text.

Appendix A presents methods for determining activation in FMRI.
Appendix B outlines methods for assessing hyperparameters in the Bayesian

Source Separation FMRI case study.
This text covers the basics of the necessary Multivariate Statistics and linear

algebra before delving into the substantive material. For each model, I give
two distinct ways to estimate the parameters.

It is my hope that I have provided enough information for the reader to
learn the fundamental statistical material. It is assumed that the reader has a
good knowledge of linear algebra, multivariable calculus, and calculus-based
Statistics. Those with sufficient breath and depth in the fundamental material
may skip directly to Chapter 8 and use the fundamental chapters as reference
material.

It is my belief that the most important topic in statistics is statistical distri-
bution theory. Everything can be derived from statistical distribution theory.
This text has many different uses for many different audiences. A short course
on Classical Multivariate Statistics can be put together by considering Chap-
ter 2 and Chapter 7. A larger course on Multivariate Bayesian Statistics can
be assembled by considering Part I and Chapter 8 of Part II. A one year long
course on Multivariate Bayesian Statistics can be made by considering the
whole text.

Daniel B. Rowe
Biophysics Research Institute
Medical College of Wisconsin
Milwaukee, Wisconsin
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1

Introduction

1.1 The Co cktail Pa rty

The Source Separation model will be easier to explain if the mechanics of a
“cocktail party” are first described. The cocktail party is an easily understood
example of where the Source Separation model can be applied. There are
many other applications where the Source Separation model is appropriate. At
a cocktail party there are partygoers or speakers holding conversations while
at the same time there are microphones recording or observing the speakers
also called underlying sources. The cocktail party is illustrated in adapted
Figure 1.1. Partygoers, speakers, and sources will be used interchangeably as
will be recorded and observed. The cocktail party will be returned to often
when describing new concepts or material.

At the cocktail party there are typically several small groups of speakers
holding conversations. In each group, typically only one person is speaking
at a time. Consider the closest two speakers in Figure 1.1. In this group,
person one (left) speaks, then person two (right) speaks, then person one
again, and so on. The speakers are obviously negatively correlated. In the
Bayesian Source Separation model of this text, the speakers are allowed to be
correlated and not constrained to be independent.

At a cocktail party, there are p microphones that record or observe m
partygoers or speakers at n time increments. This notation is consistent
with traditional Multivariate Statistics. The observed conversations consist
of mixtures of true unobservable conversations. A given microphone is not
placed to a given speakers’ mouth and is not shielded from the other speakers.
The microphones do not observe the speakers’ conversation in isolation. The
recorded conversations are mixed. The problem is to unmix or recover the
original conversations from the recorded mixed conversations.

Consider the following example. There is a party with m = 4 speakers
and p = 3 microphones as seen in Figure 1.2. At time increment i, where
i = 1, . . . ,n, the conversation emitted from speaker 1 is si1, speaker 2 is si2,
speaker 3 is si3, and speaker 4 is si4. Then, the recorded conversation at
microphone 1 is xi1, at microphone 2 is xi2, and at microphone 3 is xi3.

There is an unknown function f as illustrated in Figure 1.3 called the mixing
function which takes the emitted source signals and mixes them to produce
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FIGURE 1.1

The cocktail party.

the observed mixed signals.

1.2 The Source Separation Model

The p microphones are recording mixtures of the m speakers at each of the
n time increments. What is emitted from the m speakers at time i are m
distinct values collected as the rows of vector si and presented as

si =






si1

...
sim




 (1.2.1)

and what is recorded at time i by the p microphones are p distinct values
collected as the rows of vector xi and presented as
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FIGURE 1.2

The unknown mixing process.

xi =






xi1

...
xip




 . (1.2.2)

Again, the goal is to separate or unmix these observed p-dimensional sig-
nal vectors into m-dimensional true underlying and unobserved source signal
vectors.

The process that mixes the speakers’ conversations is instantaneous, con-
stant, and independent over time. The number of speakers is known. Relax-
ation of these assumptions is discussed in Part III. The separation of sources
model for all time i is

(xi|si) = f(si) + ǫi,
(p×1) (p×1) (p×1)

(1.2.3)

where f(si) is a function which is depicted in Figure 1.3 that mixes the source
signals and ǫi is the random error. Using a Taylor series expansion [11], the
function f , with appropriate smoothness conditions can be expanded about
the vector c, written as
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FIGURE 1.3

Sample mixing process.

f(si) = f(c)+f ′(c)(si− c)+ . . . , (1.2.4)

and by considering the first two terms (as in the familiar Regression model)
becomes

f(si) = f(c)+f ′(c)(si− c)

= [f(c)−f ′(c)c]+f ′(c)si

= µ+Λsi, (1.2.5)

where f ′(c) and Λ are p×m matrices. This is called the linear synthesis
model. As implied in Figure 1.4, the source signal emitted from each of the
speakers’ mouths gets multiplied by a mixing coefficient which determines the
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strength of its contribution but there is also an overall mean background noise
level at each microphone and random error entering into the mixing process
which is recorded. More formally, the adopted model is

(xi|µ,Λ,si) = µ + Λ si + ǫi,
(p×1) (p×1) (p×m) (m×1) (p×1)

(1.2.6)

FIGURE 1.4

The mixing process.

where xi is as previously described,

µ=







µ1

...
µp






(1.2.7)

is a p-dimensional unobserved population mean vector,
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Λ =







λ′
1
...
λ′
p






(1.2.8)

is a p×m matrix of unobserved mixing coefficients, si is the i
th m-dimensional

unobservable source vector as previously described, and

ǫi =







ǫi1
...
ǫip






(1.2.9)

is the p-dimensional vector of errors or noise terms of the ith observed signal
vector.

The observed mixed signal xij is the jth element of the observed mixed
signal vector i, which may be thought of as the recorded mixed conversation
signal at time increment i, i = 1, . . . ,n for microphone j, j = 1, . . . ,p. The
observed signal xij is a mixture of the sources or true unobserved speakers
conversations si with error, at time increment i, i= 1, . . . ,n. The unobserved
source signal sik is the kth element of the unobserved source vector si, which
may be thought of as the unobserved source signal conversation of speaker k,
k = 1, . . . ,m at time increment i, i= 1, . . . ,n.

The model describes the mixing process by writing the observed signal xij
as the sum of an overall (background) mean part µj plus a linear combination
of the unobserved source signal components sik and the observation error ǫij .
Element j of xij may be found by simple matrix multiplication and addition
as the jth element of µ, µj ; plus the element-wise multiplication and addition
of the jth row of Λ, λ′

j and si; and the addition of the jth element of ǫi, ǫij .
This is written in vector notation as

(xij |µj ,λj ,si) = µj +

m
∑

k=1

λjk sik+ ǫij

= µj +λ′
j si+ ǫij . (1.2.10)

Simply put, the observed conversation for a given microphone consists of
an overall background mean at that microphone plus contributions from each
of the speakers and random error. The contribution from the speakers to a
recorded conversation depends on the coefficient for the speaker to the micro-
phone. The problem at hand is to unmix the unobserved sources and obtain
information regarding the mixing process by determining the remaining pa-
rameters in the model.
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Exercises

1. Describe in words xij , λjk, sik, µj , and ǫij including subscripts.

2. Assuming that the mixing process described in Equation 1.2.6 is known
to have values as listed in Table 1.1, where si is the vector valued speak-
ers signal at time i, compute the observed vector value xi.

TABLE 1.1

Sample data.
µ Λ si ǫi
1 5 5 3 1 2 3
2 3 5 5 3 4 4
3 1 3 5 5 6 5

8

3. Assume that a quadratic term is also kept in the Taylor series expansion.
Write down the model for xij with a quadratic term.
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Part I

Fundamentals
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2

Statistical Distributions

In this Chapter of the text, various statistical distributions used in Bayesian
Statistics are described. Although scalar and vector distributions can be found
as special cases of their corresponding matrix distribution, they are treated
individually for clarity.

2.1 Scalar Distributions

2.1.1 Binomial

A Bernoulli trial or experiment is an experiment in which there are two
possible outcomes, one labeled “success” with probability ̺, the other labeled
“failure” with probability 1− ̺. The Binomial distribution [1, 22] gives the
probability of x successes out of n independent Bernoulli trials, where the
probability of success in each trial is ̺. A Bernoulli trial is an experiment
such as flipping a coin where there are only two possible outcomes.

A random variable that follows a Binomial distribution is denoted

x|̺∼Bin(n,̺) (2.1.1)

where (n,̺) parameterize the distribution which is given by

p(x|̺) = n!

(n−x)!x!
̺x(1−̺)n−x (2.1.2)

with

x ∈ {x : 0,1, . . . ,n}, ̺ ∈ (0,1). (2.1.3)

Properties
The mean, mode, and variance of the Binomial distribution are

E(x|̺) = n̺ (2.1.4)

Mode(x|̺) = x0 (as defined below) (2.1.5)

var(x|̺) = n̺(1−̺) (2.1.6)

© 2003 by Chapman & Hall/CRC



which can be found by summation and differencing.
Since the Binomial distribution is a discrete distribution, differentiation in

order to determine the most probable value is not appropriate. However, it is
well known that the Binomial distribution increases monotonically and then
decreases monotonically [47]. The most probable value is when x= x0, where
x0 is an integer such that

(n+1)̺−1< x0 ≤ (n+1)̺ (2.1.7)

which can be found by differencing instead of taking the derivative.

2.1.2 Beta

The Beta distribution [1, 22] gives the probability of a random variable ̺
having a particular value between zero and one. The Beta distribution is often
used as the prior distribution (see the Conjugate procedure in Chapter 4) for
the probability of success ̺ in a Binomial experiment.

A random variable that follows a Beta distribution is denoted

̺|α,β ∼B(α,β), (2.1.8)

where (α,β) parameterize the distribution which is given by

p(̺|α,β) = Γ(α+β)

Γ(α)Γ(β)
̺α−1(1−̺)β−1, (2.1.9)

where

̺ ∈ (0,1), α ∈ (0,+∞), β ∈ (0,+∞) (2.1.10)

and Γ(·) is the gamma function which is given by

Γ(α) =

∫ +∞

0

tα−1e−t dt (2.1.11)

for α ∈ R
+, where R denotes the set of real numbers, R

+ the set of positive
real numbers,

Γ(α) = αΓ(α−1) (2.1.12)

and

Γ(α) = (α−1)! (2.1.13)

for α ∈ N, where N denotes the set of natural numbers. Another property of
the gamma function is that

Γ

(

1

2

)

= π
1
2 . (2.1.14)
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Properties
The mean, mode, and variance of the Beta distribution are

E(̺|α,β) =
α

α+β
, (2.1.15)

Mode(̺|α,β) =
α−1

α+β−2
, (2.1.16)

var(̺|α,β) =
αβ

(α+β)2(α+β+1)
, (2.1.17)

which can be found by integration and differentiation. The mode is defined
for α+β > 2. Note that the Uniform distribution is a special case of the Beta
distribution with α= β = 1.

Generalized Beta
A random variable ρ = (b− a)̺+ a (where ̺ ∼ B(α,β)) is said to have a

generalized Beta (type I) distribution [17, 41] given by

p(ρ|α,β) = Γ(α+β)

Γ(α)Γ(β)

(

ρ−a

b−a

)α−1 (

1− ρ−a

b−a

)β−1

, (2.1.18)

with

ρ ∈ (a,b), α ∈ (0,+∞), β ∈ (0,+∞). (2.1.19)

Note that the range of ρ is in the interval (a,b), and if (a,b) = (−1,1), then
this is a Beta distribution over the interval (−1,1), which has been used as
the prior distribution for a correlation. However, as shown in Chapter 4, a
Beta prior distribution is not the Conjugate prior distribution for the corre-
lation parameter ρ. The normalizing constant is often omitted in practice in
Bayesian Statistics.

Properties
The mean, mode, and variance of the generalized Beta (type I) distribution

are

E(ρ|α,β) = (b−a)
α

α+β
+a, (2.1.20)

Mode(ρ|α,β) =
(α−1)b− (β−1)a

α+β−2
, (2.1.21)

var(ρ|α,β) =
(b−a)2αβ

(α+β)2(α+β+1)
, (2.1.22)

which can be found by integration and differentiation. The mode is defined
for α+β > 2.
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2.1.3 Normal

The Normal or Gaussian distribution [1, 17, 22, 41] is used to describe
continuous real valued random variables.

A random variable that follows a Normal distribution is denoted

x|µ,σ2 ∼N(µ,σ2), (2.1.23)

where (µ,σ2) parameterize the distribution which is given by

p(x|µ,σ2) = (2πσ2)−
1
2 e

−
(x−µ)2

2σ2 (2.1.24)

with

x ∈ (−∞,+∞), µ ∈ (−∞,+∞), σ ∈ (0,+∞). (2.1.25)

Properties
The mean, mode, and variance of the Normal distribution are

E(x|µ,σ2) = µ, (2.1.26)

Mode(x|µ,σ2) = µ, (2.1.27)

var(x|µ,σ2) = σ2, (2.1.28)

which can be found by integration and differentiation.
The Normal distribution, also called the bell curve, is that distribution

which any other distribution with finite first and second moments tends to be
on average according to the central limit theorem [1].

2.1.4 Gamma and Scalar Wishart

A Gamma variate [1, 22] is found as a variate which is the sum of the
squares of ν0 centered independent Normal variates with common mean µ
and variance υ2, g = (x1−µ)2 + · · ·+(xν0 −µ)2. The variance of the Normal
random variates along with the number of random variates characterize the
distribution which is presented in a more familiar Multivariate parameteriza-
tion. A random variable that follows a Gamma distribution is denoted

g|α,β ∼G(α,β), (2.1.29)

where (α,β) parameterize the distribution which is given by

p(g|α,β) = gα−1e−g/β

Γ(α)βα
, (2.1.30)

with Γ(·) being the gamma function and
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g ∈ R
+, α ∈ R

+, β ∈ R
+, (2.1.31)

where R denotes the set of real numbers and R
+ the set of positive real

numbers.

Properties
The mean, mode, and variance of the Gamma distribution are

E(g|α,β) = αβ, (2.1.32)

Mode(g|α,β) = (α−1)β, (2.1.33)

var(g|α,β) = αβ2, (2.1.34)

which can be found by integration and differentiation. The mode is defined
for α > 1.

A more familiar parameterization used in Multivariate Statistics [17, 41]
which is the Scalar Wishart distribution is when

α=
ν0

2
, β = 2υ2. (2.1.35)

The Wishart distribution is the Multivariate (Matrix variate) generaliza-
tion of the Gamma distribution. A random variate g that follows the one-
dimensional or Scalar Wishart distribution is denoted by

g|υ2,ν0 ∼W (υ2,1,ν0), (2.1.36)

where (υ2,ν0) parameterize the distribution which is given by

p(g|υ2,ν0) =
(υ2)−

ν0
2 g

ν0−2
2 e

−
g

2υ2

Γ
(

ν0
2

)

2
ν0
2

, (2.1.37)

where

g ∈ R
+, υ2 ∈ R

+, ν0 ∈ R
+. (2.1.38)

Although the Gamma and Scalar Wishart distributions were derived from
ν0 (an integer valued positive number) Normal variates, there is no restriction
that ν0 in these distributions be integer valued.

Properties
The mean, mode, and variance of the Scalar Wishart distribution are

E(g|υ2,ν0) = ν0υ
2, (2.1.39)

Mode(g|υ2,ν0) = (ν0−2)υ2, (2.1.40)

var(g|υ2,ν0) = 2ν0υ
4, (2.1.41)
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which can be found by integration and differentiation. The mode is defined
for ν0 > 2.

This parameterization will be followed in this text. Note that the familiar
Chi-squared distribution with ν0 degrees of freedom results when

α=
ν0

2
, β = 2. (2.1.42)

2.1.5 Inverted Gamma and Scalar Inverted Wishart

An Inverted Gamma variate [1, 22] is found as a variate which is the recip-
rocal of a Gamma variate, σ2 = g−1. A random variable σ2 that follows an
Inverted Gamma distribution is denoted

σ2|α,β ∼ IG(α,β), (2.1.43)

where (α,β) parameterize the distribution which is given by

p(σ2|α,β) = (σ2)−(α+1)e
− 1
βσ2

Γ(α)βα
, (2.1.44)

with Γ(·) being the gamma function,

σ2 ∈ R
+, α ∈ R

+, β ∈ R
+. (2.1.45)

Properties
The mean, mode, and variance of the Inverted Gamma distribution are

E(σ2|α,β) =
1

(α−1)β
, (2.1.46)

Mode(σ2|α,β) =
1

(α+1)β
, (2.1.47)

var(σ2|α,β) =
1

(α−1)2(α−2)β2
, (2.1.48)

which can be found by integration and differentiation. The mean is defined
for α > 1 and the variance for α > 2.

A more familiar parameterization used in Multivariate Statistics [17, 41]
which is the scalar version of the Inverted Wishart distribution is

α=
ν−2

2

(

=
ν0

2

)

, β =
2

q

(

= 2υ2
)

. (2.1.49)

A random variable which follows a Scalar Inverted Wishart distribution is
denoted by

σ2|q,ν0 ∼ IW (q,1,ν), (2.1.50)
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where (q,ν) parameterize the distribution which is given by

p(σ2|q,ν) = (σ2)−
ν
2 q
ν−2
2 e

−
q

2σ2

Γ
(

ν−2
2

)

2
ν−2
2

, (2.1.51)

where

σ2 ∈ R
+, q ∈ R

+, ν ∈ R
+. (2.1.52)

Note: In the transformation of variable from g to σ2,

q = υ−2, ν0 = ν−2, (2.1.53)

and the Jacobian of the transformation is

J(g → σ2) = σ−4. (2.1.54)

Although the Scalar Inverted Wishart distribution was derived from ν−2
(an integer valued positive number) Normal variates, there is no restriction
that ν in the Scalar Inverted Wishart distribution be integer valued.

Properties
The mean, mode, and variance of the Scalar Inverted Wishart distribution

are

E(σ2|q,ν) =
q

ν−2−2
, (2.1.55)

Mode(σ2|q,ν) =
q

ν
, (2.1.56)

var(σ2|q,ν) =
2q2

(ν−2−2)2(ν−2−4)
, (2.1.57)

which can be found by integration and differentiation. The mean is defined
for ν > 4 and the variance for ν > 6. Note the purposeful use of “ν− 2− 2”
and “ν−2−4” which will become clear with the introduction of the Inverted
Wishart distribution.

This parameterization will be followed in this text. Note that the less
familiar Inverted Chi-squared distribution results when

α=
ν0

2
, β = 2. (2.1.58)

2.1.6 Student t

The Scalar Student t-distribution [1, 17, 22, 41] is used to describe contin-
uous real-valued random variables with slightly heavier tails than the Normal
distribution. It is derived by taking
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x∼N(µ,σ2) and g ∼W (σ−2,1,ν), (2.1.59)

transforming variables to

t= ν
1
2 g−

1
2 (x−µ)+ t0 and w = g, (2.1.60)

with Jacobian

J(x,g → t,w) = ν−
1
2w

1
2 , (2.1.61)

and then integrating with respect to w. In the derivation, x could be the av-
erage of independent and identically distributed Scalar Normal variates with
common mean and variance, while g could be the sum of the squares of devi-
ations of these variates about their average.

A random variable that follows a Scalar Student t-distribution is denoted

t|ν,t0,σ2,φ2 ∼ t(ν,t0,σ
2,φ2), (2.1.62)

where (ν,t0,σ
2,φ2) are degrees of freedom, location, scale, and spread para-

meters which parameterize the distribution given by

p(t|ν,t0,σ2,φ2) =
Γ( ν+1

2 )

(νπ)
1
2Γ( ν2 )

σ−1φ−ν

[

φ2 + 1
ν

(

t−t0
σ

)2
]
ν+1
2

, (2.1.63)

with

t ∈ R, ν ∈ R
+ t0 ∈ R, σ ∈ R

+, φ ∈ R
+. (2.1.64)

Properties
The mean, mode, and variance of the Scalar Student t-distribution are

E(t|ν,t0,σ2,φ2) = t0, (2.1.65)

Mode(t|ν,t0,σ2,φ2) = t0, (2.1.66)

var(t|ν,t0,σ2,φ2) =
ν

ν−2
φ2σ2, (2.1.67)

which can be found by integration and differentiation. Note that this para-
meterization is a generalization of the typical one used which can be found
when φ2 = 1.

The mean of the Scalar Student t-distribution only exists for ν > 1 and
the variance only exists for ν > 2. If ν ∈ (0,1], then neither the mean nor
the variance exists. When ν = 1, the Scalar Student t-distribution is the
Cauchy distribution whose mean and variance or first and second moments
do not exist. As the number of degrees of freedom increases, a random variate
which follows the Scalar Student t-distribution t ∼ t(ν,t0,σ

2,φ2) approaches
a Normal distribution t∼N(t0,φ

2σ2) [17, 41].
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2.1.7 F-Distribution

The F-distribution [1, 22, 66] is used to describe continuous random vari-
ables which are strictly positive. It is derived by taking

x1 ∼W (1,1,ν1) and x2 ∼W (1,1,ν2), (2.1.68)

and transforming variables to

x=
x1/ν1

x2/ν2
. (2.1.69)

In the derivation, x1 and x2 could be independent sums or squared deviations
of standard Normal variates.

A random variable that follows an F-distribution is denoted

x|ν1,ν2 ∼ F (ν1,ν2), (2.1.70)

where (ν1,ν2) referred to as the numerator and denominator degrees of free-
dom respectively, which parameterize the distribution given by

p(x|ν1,ν2) =
Γ

(

ν1+ν2
2

)

Γ
(

ν1
2

)

Γ
(

ν2
2

)

(

ν1

ν2

)

ν1
2

x
ν1
2 −1

(

1+
ν1

ν2
x

)−
ν1+ν2

2

, (2.1.71)

with

x ∈ R
+, ν1 ∈ N ν2 ∈ N. (2.1.72)

Properties
The mean, mode, and variance of the F-distribution are

E(x|ν1,ν2) =
ν2

ν2−2
, (2.1.73)

Mode(x|ν1,ν2) =
ν2(ν1−2)

ν1(ν2 +2)
, (2.1.74)

var(x|ν1,ν2) =
2ν2

2(ν1 +ν2−2)

ν1(ν2−2)2(ν2−4)
, (2.1.75)

which can be found by integration and differentiation.
The mean of the F-distribution only exists for ν2 > 2, and mode for ν1 > 2,

while the variance only exists for ν2 > 4. The square of a variate t which
follows a Scalar Student t-distribution, t∼ t(ν,0,0,1) is a variate which follows
an F-distribution with ν1 = 1 and ν2 = ν degrees of freedom. The result of
transforming a variate x which follows an F-distribution x ∼ F (ν1,ν2) by
1/[1+(ν1/ν2)x] is a Beta variate with α= ν2/2 and β = ν1/2.
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2.2 Vector Distributions

A p-variate vector observation x is a collection of p scalar observations, say
x1, . . . ,xp, arranged in a column.

2.2.1 Multivariate Normal

The p-variate Multivariate Normal distribution [17, 41] is used to simulta-
neously describe a collection of p continuous real-valued random variables.

A random variable that follows a p-variate Multivariate Normal distribution
with mean vector µ and covariance matrix Σ is denoted

x|µ,Σ∼N(µ,Σ), (2.2.1)

where (µ,Σ) parameterize the distribution which is given by

p(x|µ,Σ) = (2π)−
p
2 |Σ|− 1

2 e−
1
2 (x−µ)′Σ−1(x−µ) (2.2.2)

with

x ∈ R
p, µ ∈ R

p, Σ> 0, (2.2.3)

where R
p denotes the set of p-dimensional real numbers and Σ > 0 that Σ

belongs to the set of p-dimensional positive definite matrices.

Properties
The mean, mode, and variance of the Multivariate Normal distribution are

E(x|µ,Σ) = µ, (2.2.4)

Mode(x|µ,Σ) = µ, (2.2.5)

var(x|µ,Σ) = Σ, (2.2.6)

which can be found by integration and differentiation.
Since x follows a Multivariate Normal distribution, the conditional and

marginal distributions of any subset are Multivariate Normal distributions
[17, 41].

The p-variate Normal distribution is that distribution, which other with
finite first and second moments tend to on average according to the central
limit theorem.

2.2.2 Multivariate Student t

The Multivariate Student t-distribution [17, 41] is used to describe contin-
uous real-valued random variables with slightly heavier tails than the Multi-
variate Normal distribution. It is derived by taking
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x∼N(µ,φ−2) and G∼W (Σ,p,ν), (2.2.7)

transforming variables to

t= ν
1
2G− 1

2 (x−µ)+ t0 and W =G, (2.2.8)

with Jacobian

J(x,G→ t,W ) = ν−
p
2W

p
2 , (2.2.9)

and then integrating with respect to W . In the derivation, x could be the
average of of independent and identically distributed Vector Normal variates
with common mean vector and covariance matrix, while G could be the sum
of the squares of deviations of these variates about their average.

A random variable that follows a p-variate Multivariate Student t-distribution
[17, 41] is denoted

t|ν,t0,Σ,φ2 ∼ t(ν,t0,Σ,φ
2) (2.2.10)

where (ν,µ,Σ,φ2) parameterize the distribution which is given by

p(t|ν,t0,Σ,φ2) =
kt(φ

2)−
ν
2 |Σ|− 1

2

[φ2 + 1
ν (t− t0)′Σ−1(t− t0)]

ν+p
2

, (2.2.11)

where

kt =
Γ

(

ν+p
2

)

(νπ)
p
2 Γ

(

ν
2

)
(2.2.12)

with

t ∈ R
p, ν ∈ R

+, t0 ∈ R
p, Σ> 0, φ ∈ R

+. (2.2.13)

Properties
The mean, mode, and variance of the Multivariate Student t-distribution

are

E(t|ν,t0,Σ,φ2) = t0, (2.2.14)

Mode(t|ν,t0,Σ,φ2) = t0, (2.2.15)

var(t|ν,0 ,Σ,φ2) =
ν

ν−2
φ2Σ, (2.2.16)

which can be found by integration and differentiation. Note that this para-
meterization is a generalization of the typical one used which can be found
when φ2 = 1.
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The mean of the Multivariate Student t-distribution exists for ν > 1 and
the variance for ν > 2. When ν = 1, the Multivariate Student t-distribution
is the Multivariate Cauchy distribution whose mean and variance or first and
second moments do not exist.

As the number of degrees of freedom increases, a random variate which
follows the Multivariate Student t-distribution t∼ t(ν,t0,Σ,φ

2) approaches a
Normal distribution t∼N(t0,φ

2Σ) [17, 41].

2.3 Matrix Distributions

2.3.1 Matrix Normal

The n×p Matrix Normal distribution [17, 31] can be derived as a special
case of the np-variate Multivariate Normal distribution when the covariance
matrix is separable. Denote an np-dimensional Multivariate Normal distrib-
ution with np-dimensional mean µ and np×np covariance matrix Ω by

p(x|µ,Ω) = (2π)−
np
2 |Ω|− 1

2 e−
1
2 (x−µ)′Ω−1(x−µ). (2.3.1)

A separable matrix is one of the form Ω=Φ⊗Σ where ⊗ is the Kronecker
product which multiplies every entry of its first matrix argument by its entire
second matrix argument.

The Kronecker product of Φ and Σ which are n- and p-dimensional matrices
respectively, is

Φ⊗Σ =







φ11Σ · · · φ1nΣ
...

φn1Σ · · · φnnΣ






. (2.3.2)

Substituting the separable covariance matrix into the above distribution yields

p(x|µ,Σ,Φ) = (2π)−
np
2 |Φ⊗Σ|− 1

2 e−
1
2 (x−µ)′(Φ⊗Σ)−1(x−µ) (2.3.3)

which upon using the matrix identities

|Φ⊗Σ|− 1
2 = |Φ|−

p
2 |Σ|−n2 ,

and

(x−µ)′(Φ⊗Σ)−1(x−µ) = trΦ−1(X−M)Σ−1(X−M)′,

where x = (X ′) = (x′
1, ...,x

′
n)

′, X ′ = (x1, ...,xn), µ = vec(M ′) = (µ′
1, ...,µ

′
n)

′,
and M ′ = (µ1, ...,µn), then Equation 2.3.3 becomes
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p(X|M,Σ,Φ) = (2π)−
np
2 |Φ|−

p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−M)Σ−1(X−M)′ . (2.3.4)

The “vec” operator vec(·) which stacks the columns of its matrix argument
from left to right into a single vector has been used as has the trace opera-
tor tr(·) which gives the sum of the diagonal elements of its square matrix
argument.

A random variable that follows an n× p Matrix Normal distribution is
denoted

X|M,Σ,Φ∼N(M,Φ⊗Σ) (2.3.5)

where (M,Σ,Φ) parameterize the above distribution with

X ∈ R
n×p, M ∈ R

n×p, Σ,Φ> 0. (2.3.6)

The matrices Σ and Φ are commonly referred to as the within and between
covariance matrices. Sometimes they are referred to as the right and left
covariance matrices.

Properties
The mean, mode, and variance of the Matrix Normal distribution are

E(X|M,Σ,Φ) = M, (2.3.7)

Mode(X|M,Σ,Φ) = M, (2.3.8)

var(vec(X ′)|M,Σ,Φ) = Φ⊗Σ, (2.3.9)

which can be found by integration and differentiation.
Since X follows a Matrix Normal distribution, the conditional and marginal

distributions of any row or column subset are Multivariate Normal distribu-
tions [17, 41]. It should also be noted that the mean of the ith row of X,
x′
i is the corresponding ith row of M , µ′

i, and the covariance of the ith row
of X is φiiΣ, where φii is the element in the ith row and ith column of Φ.
The covariance between the ith and i′th rows of X is φii′Σ, where φii′ is the
element in the ith row and i′th column of Φ. Similarly, the mean of the jth

column of X is the jth column of M and the covariance between the jth and
j′th columns of X is σjj′Φ.

Simply put, if

X =







x′
1

...
x′
n






= (X1, . . . ,Xp), (2.3.10)

M =







µ′
1

...
µ′
n






= (M1, . . . ,Mp), (2.3.11)
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φii′ denotes the ii
′th element of Φ and σjj′ denotes the jj

′th element of Σ then

var(xi|µi,φii,Σ) = φiiΣ, (2.3.12)

cov(xi,xi′ |µi,µi′ ,φii′ ,Σ) = φii′Σ, (2.3.13)

var(Xj |Mj ,σjj ,Φ) = σjjΦ, (2.3.14)

cov(Xj ,Xj′ |Mj ,Mj′ ,σjj′ ,Φ) = σjj′Φ. (2.3.15)

2.3.2 Wishart

A Wishart variate is found as a variate which is the transpose product
G= (X−M)′(X−M), where X is a ν0×p Matrix Normal variate with mean
matrix M and covariance matrix Iν0 ⊗Υ. Note that if p= 1, this is the sum of
the squares of ν0 centered independent Normal variates with common mean
µ and variance υ2, g = (x1−µ)2 + · · ·+(xν0 −µ)2. The covariance matrix Υ
enters into the Wishart distribution as follows. A p× p random symmetric
matrix G that follows a Wishart distribution [17, 41] is denoted

G|Υ,p,ν0 ∼W (Υ,p,ν0), (2.3.16)

where (Υ,p,ν0) parameterize the distribution which is given by

p(G|Υ,p,ν0) = kW |Υ|−
ν0
2 |G|

ν0−p−1
2 e−

1
2 trΥ

−1G, (2.3.17)

where

k−1
W = 2

ν0p
2 π

p(p−1)
4

p
∏

j=1

Γ

(

ν0 +1− j

2

)

(2.3.18)

with

G> 0, ν0 ∈ R
+, Υ> 0, (2.3.19)

and “> 0” is used to denote that both G and Υ belong to the set of positive
definite matrices. Although the Wishart distribution was derived from ν0 (an
integer valued positive number) vector Normal variates, there is no restriction
that ν0 in the Wishart distribution be integer valued.

Properties
The mean, mode, and variance of the Wishart distribution are

E(G|ν0,Υ) = ν0Υ, (2.3.20)

Mode(G|ν0,Υ) = (ν0−p−1)Υ, (2.3.21)

var(gij |ν0,Υ) = ν0(υ
2
ij +υiiυjj), (2.3.22)

cov(gijgkl|ν0,Υ) = ν0(υikυjl+υilυjk), (2.3.23)
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which can be found by integration and differentiation, where gij and υij de-
note the ijth elements of G and Υ respectively. The mode of the Wishart
distribution is defined for ν0 > p+1.

The Wishart distribution is the Multivariate (Matrix variate) analog of the
univariate Gamma distribution.

2.3.3 Inverted Wishart

An Inverted Wishart variate Σ is found as a variate which is the reciprocal
of a Wishart variate, Σ = G−1. A p× p random matrix Σ that follows an
Inverted Wishart distribution [17, 41] is denoted

Σ|Q,p,ν ∼ IW (Q,p,ν), (2.3.24)

where (Q,p,ν) parameterize the distribution which is given by

p(Σ|ν,Q) = kIW |Q|
ν−p−1

2 |Σ|− ν2 e− 1
2 trΣ

−1Q, (2.3.25)

where

k−1
IW = 2

(ν−p−1)p
2 π

p(p−1)
4

p
∏

j=1

Γ

(

ν−p− j

2

)

(2.3.26)

with

Σ> 0, ν ∈ R
+, Q > 0. (2.3.27)

Note: In the transformation of variable from G to Σ,

Q=Υ−1, ν0 = ν−p−1, (2.3.28)

and the Jacobian of the transformation is

J(G→Σ) = |Σ|−(p+1). (2.3.29)

Although the Inverted Wishart distribution was derived from ν−p−1 (an
integer valued positive number) vector Normal variates, there is no restriction
that ν in the Inverted Wishart distribution be integer valued.

Properties
The mean, mode, and variance of the Inverted Wishart distribution are

E(Σ|ν,Q) =
Q

ν−2p−2
, (2.3.30)

Mode(Σ|ν,Q) =
Q

ν
, (2.3.31)
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var(σii|ν,Q) =
2q2

ii

(ν−2p−2)2(ν−2p−4)
, (2.3.32)

var(σii′ |ν,Q) =
qiiqi′i′ +

ν−2p
ν−2p−2q

2
ii′

(ν−2p−1)(ν−2p−2)(ν−2p−4)
, (2.3.33)

cov(σii′ ,σıı′ |ν,Q) =

2
ν−2p−2qiiqıı′ + qiıqi′ı′ + qiı′qıi′

(ν−2p−1)(ν−2p−2)(ν−2p−4)
(2.3.34)

which can be found by integration and differentiation. The mean is defined
for ν > 2p+2 while the variances and covariances are defined for ν > 2p+4.
The variances are defined for i = i′. Where σij and qij denote the ijth element
of Σ and Q respectively.

2.3.4 Matrix T

The Matrix Student T-distribution [17, 41] is used to describe continuous
random variables with slightly heavier tails than the Normal distribution. It
is derived by taking

X ∼N(M,In⊗Σ) and G∼W (Φ−1,p,ν), (2.3.35)

transforming variables to

T = ν
1
2G− 1

2 (X−M)+T0 and W =G, (2.3.36)

with Jacobian

J(X,G→ T,W ) = ν−
np
2 W

p
2 , (2.3.37)

and then integrating with respect to W . In the derivation, X could be the
average of independent and identically distributed Matrix Normal variates
with common mean and variance, while G could be the sum of the squares of
deviations of these variates about their average.

A random variable T follows a n×p Matrix Student T-distribution [17, 41]
is denoted

T |ν,T0,Σ,Φ∼ T (ν,T0,Σ,Φ), (2.3.38)

where (ν,T0,Σ,Φ) parameterize the distribution which is given by

p(T |ν,T0,Σ,Φ) = kT
|Φ| ν2 |Σ|−n2

|Φ+ 1
ν (T −T0)Σ−1(T −T0)′|

ν+p
2

, (2.3.39)

where

kT =

∏n
j=1Γ

(

ν+p+1−j
2

)

(νπ)
np
2

∏n
j=1Γ

(

ν+1−j
2

)
(2.3.40)
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with

T ∈ R
n×p, ν ∈ R

+, T0 ∈ R
n×p, Σ,Φ> 0. (2.3.41)

Properties
The mean, mode, and variance of the Matrix Student T-distribution are

E(T |ν,T0,Σ,Φ) = T0, (2.3.42)

Mode(T |ν,T0,Σ,Φ) = T0, (2.3.43)

var(vec(T ′)|ν,T0,Σ,Φ) =
ν

ν−2
(Φ⊗Σ) (2.3.44)

which can be found by integration and differentiation. Note that in typical
parameterizations [17, 41], the degrees of freedom ν and the matrix Φ are
grouped together as a single matrix.

Since T follows a Matrix Student T-distribution, the conditional and mar-
ginal distributions of any row or column of T are Multivariate Student t-
distribution [17, 41].

The mean of the Matrix Student T-distribution exists for ν > 1 and the
variance exists for ν > 2. When the hyperparameter ν =1, the Matrix Student
T-distribution is the Matrix Cauchy distribution whose mean and variance or
first and second moments do not exist. As the number of degrees of freedom
ν increases, a random matrix variate which follows the Matrix Student T-
distribution, T ∼ T (ν,T0,Σ,Φ) approaches the Matrix Normal distribution
T ∼N(T0,Φ⊗Σ) [17].

Multivariate generalizations of the Binomial and Beta distribution also ex-
ist. Since they are not used in this text, they have been omitted. For a
description of the Multivariate Binomial distribution see [30] or [33] and for
the Multivariate Beta see [17].
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Exercises

1. Compute the mean, mode, and variance of the Scalar Normal distribu-
tion.

2. Compute the mean, mode, and variance of the Scalar Student t-distribution.

3. Compute the mean, mode, and variance of the Gamma distribution.

4. Compute the mean, mode, and variance of the Inverted Gamma distri-
bution.

5. Look at the mean, mode, and covariance matrix for the Multivariate
Normal distribution. Reason that the mean, mode, and variance of the
Scalar Normal distribution follows by letting p= 1.

6. Look at the mean, mode, and covariance matrix of the Multivariate
Student t-distribution. Reason that the mean, mode, and variance of
the Scalar Student t-distribution follows by letting p= 1.

7. Look at the mean, mode, and covariance matrix for the Matrix Nor-
mal distribution. Reason that the mean, mode, and variance of the
Multivariate Normal distribution follows by letting n = 1 (and hence
the mean, mode, and variance of the Scalar Student t-distribution by
letting n= 1 and p= 1).

8. Look at the mean, mode, and covariance matrix of the Matrix Student
T-distribution. Reason that the mean, mode, and variance of the Mul-
tivariate Student t-distribution follows by letting n= 1 (and hence the
mean, mode, and variance of the Scalar Student t-distribution by letting
n= 1 and p= 1).

9. Look at the mean, mode, variances, and covariances of the Wishart
distribution. Reason that the mean, mode, and variance of the Gamma
distribution follows by letting p= 1.

10. Look at the mean, mode, variances, and covariances of the Inverted
Wishart distribution. Reason that the mean, mode, and variance of the
Gamma distribution follows by letting p= 1.

11. Look at the Multivariate Normal distribution. Reason that the Scalar
Normal distribution follows by letting p= 1.

12. Look at the Multivariate Student t-distribution. Reason that the Scalar
Student t-distribution follows by letting p= 1.
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13. Look at the Matrix Normal distribution. Reason that the Multivari-
ate Normal distribution follows by letting n = 1 (and hence the Scalar
Normal distribution by letting n= 1 and p= 1).

14. Look at the Matrix Student T-distribution. Reason that the Multivari-
ate Student t-distribution follows by letting n= 1 (and hence the Scalar
Student t-distribution by letting n= 1 and p= 1).

15. Look at the Wishart distribution. Reason that the Gamma distribution
follows by letting p= 1.

16. Look at the Inverted Wishart distribution. Reason that the inverse
Gamma distribution follows by letting p= 1.
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3

Introductory Bayesian Statistics

Those persons who have experience with Bayesian Statistics [3, 42] can
skip this Chapter. Bayesian Statistics quantifies available prior knowledge
either using data from prior experiments or subjective beliefs from substantive
experts. This prior knowledge is in the form of prior distributions which
quantify beliefs about various parameter values that are formally incorporated
into the inferences via Bayes’ rule.

3.1 Discrete Scalar Variables

3.1.1 Bayes’ Rule and Two Simple Events

Bayesian Statistics is based on Bayes’ rule or conditional probability. It
is well known that the probability of events A and B both occurring can be
written as the probability of A occurring multiplied by the probability of B
occurring given that A has occurred. This is written as

P (A and B) = P (A)P (B|A) (3.1.1)

which is the (general) rule for probability multiplication. If we rearrange the
terms then we get the formula for conditional probability

P (B|A) =
P (A and B)

P (A)
(3.1.2)

which is Bayes’ rule or theorem. Pictorially this is represented in Figure 3.1
in what is called a Venn diagram.

Example:
Consider a standard deck of 52 cards.

Let A = the event of a King chosen randomly.
Let B = the event of a Heart chosen randomly.

What is the probability of selecting a Heart given we have selected a King?

P (B|A) = P (A and B)
P (A)

We use conditional probability. Then the probability of event B given that
event A has occurred is
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FIGURE 3.1

Pictorial representation of Bayes’ rule.

P (B|A) =
1
52
4
52

=
1

4
.

3.1.2 Bayes’ Rule and the Law of Total Probability

Bayes’ rule can be extended to determine the probability of each of k events
given that event A has occurred. The probability of one of the k events
occurring, say event Bi, given that event A has occurred is

P (Bi|A) =
P (A and Bi)

P (A)
=

P (A and Bi)
∑k

i=1P (A and Bi)
=

P (Bi)p(A|Bi)
∑k

i=1P (Bi)p(A|Bi)
,

(3.1.3)
where the Bi’s are mutually exclusive events and

A⊆
k
⋃

i=1

Bi. (3.1.4)

The probabilities of the P (Bi)’s are (prior) probabilities for each of the k
events occurring.

The denominator of the above equation is called the Law of Total Proba-
bility. This version of Bayes’ rule is represented pictorially in Figure 3.2 as a
Venn diagram.

The law of total probability is defined to be

P (A) =

k
∑

i=1

P (Bi)p(A|Bi) (3.1.5)
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FIGURE 3.2

Pictorial representation of the Law of Total Probability.

which states that if we sum over the probabilities of event A occurring given
that a particular event Bi has occurred multiplied by the probabilities of the
event Bi occurring, this results in the probability of event A occurring. Where
again, the events Bi are mutually exclusive and exhaustive.

Example:
To evaluate the effectiveness of a medical testing procedure such as for

disease screening or illegal drug use, we will evaluate the probability of a false
negative or a false positive using the following notation

T+: The test is positive
T−: The test is negative
D+: The person has the disease
D−: The person does not have the disease.
The “sensitivity” of a test is the probability of a positive result given the

person has the disease. We will assume that a particular test has

P [T+|D+] = 0.99.

The “specificity” of the test is the probability the test is negative given the
person does not have the disease is

P [T−|D−] = 0.99.

If the proportion in the general public infected with the disease is 1 per
million or 0.000001, find the probability of a false positive P [D−|T+].

From Bayes’ rule

P [D−|T+] =
P (D−)P (T+|D−)

P (T+)
(3.1.6)
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and by the Law of Total Probability we get the probability of testing positive

P (T+) = P (D+)P (T+|D+)+P (D−)P (T+|D−)

= (0.000001)(0.99)+(0.999999)(0.01)

= 0.00000099+0.00999999

= 0.01000098.

The probability of a false positive or of the test for the disease giving a positive
result when the person does not in fact have the disease is

P [D−|T+] =
0.00999999

0.01000098
= 0.99990101.

3.2 Continuous Scalar Variables

Bayes’ rule also applies to continuous random variables. Let’s assume that
we have a continuous random variable x that is specified to come from a
distribution that is indexed by a parameter θ.

Prior
We can quantify our prior knowledge as to the parameter value and assess

a prior distribution

p(θ). (3.2.1)

Likelihood
That is, the distribution (or likelihood) of the random variable x is

p(x|θ). (3.2.2)

Posterior
We now apply Bayes’ rule to obtain the posterior distribution

p(θ|x) = p(θ)p(x|θ)
p(x)

, (3.2.3)

where the denominator is given by

p(x) =

∫

p(θ)p(x|θ) dθ (3.2.4)

which is the continuous version of the discrete Law of Total Probability. Infer-
ences can be made from the posterior distribution of the model parameter θ
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given the data x which includes information from both the prior distribution
and the likelihood instead of only from the likelihood. From the posterior
distribution, mean and modal estimators as well as interval estimates can be
obtained for θ by integration or differentiation. This will be described later.
(It might help to make an analogy of x to A and θ to B.)

This is generalized to a random sample of size n, x1, . . . ,xn from a distrib-
ution that depends on J parameters θ1, . . . ,θJ .

Prior
We quantify available prior knowledge regarding the parameters in the form

of a joint prior distribution on the parameters (before taking the random
sample)

p(θ1, . . . ,θJ ), (3.2.5)

where they are not necessarily independent.

Likelihood
With an independent sample of size n, the joint distribution of the obser-

vations is

p(x1, . . . ,xn|θ1, . . . ,θJ ) =

n
∏

i=1

p(xi|θ1, . . . ,θJ ). (3.2.6)

Posterior
We apply Bayes’ rule to obtain a posterior distribution for the parameters.

The posterior distribution is

p(θ1, . . . ,θJ |x1, . . . ,xn) =
p(θ1, . . . ,θJ )p(x1, . . . ,xn|θ1, . . . ,θJ )

p(x1, . . . ,xn)
, (3.2.7)

where the denominator is given by

p(x1, . . . ,xn) =

∫

p(θ1, . . . ,θJ )p(x1, . . . ,xn|θ) dθ1 . . . dθJ , (3.2.8)

where θ = (θ1, . . . ,θJ ). (It might help to make an analogy of x1, . . . ,xn to A
and θ1, . . . ,θJ to B.)

Example:
Let’s consider a random sample of size n that is specified to come from a

population that is Normally distributed with mean µ and variance σ2. This
is denoted as xi ∼N(µ,σ2), where i= 1, . . . ,n.

Prior
Before seeing the data, we quantify available prior knowledge regarding the

parameters µ and σ2 in the form of a joint prior distribution on the parameters
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p(µ,σ2), (3.2.9)

where µ and σ2 are not necessarily independent.

Likelihood
The likelihood of all the n observations is

p(x1, . . . ,xn|µ,σ2) = (2πσ2)−
n
2 e

−

∑n
i=1(xi−µ)

2

2σ2 , (3.2.10)

where x1, . . . ,xn are the data.

Posterior
We apply Bayes’ rule to obtain a joint posterior distribution

p(µ,σ2|x1, . . . ,xn) =
p(µ,σ2)p(x1, . . . ,xn|µ,σ2)

p(x1, . . . ,xn)
(3.2.11)

for the mean and variance. From this joint posterior distribution which con-
tains information from the prior distribution and the likelihood, we can obtain
estimates of the parameters. This will be described later.

Bayesian statisticians usually neglect the denominator of the posterior dis-
tribution, as alluded to earlier, to get

p(θ1, . . . ,θJ |x1, . . . ,xn) = kp(θ1, . . . ,θJ )p(x1, . . . ,xn|θ1, . . . ,θJ )

∝ p(θ1, . . . ,θJ )p(x1, . . . ,xn|θ1, . . . ,θJ ), (3.2.12)

where “∝” denotes proportionality and the constant k, which does not depend
on the variates θ1, . . . ,θJ , can be found by integration.

3.3 Continuous Vector Variables

We usually have several variables measured on an individual; thus, we
are rarely interested in a single random variable. We are interested in p-
dimensional vector observations x1, . . . ,xn where xi = (x1i, . . . ,xpi)

′ for i =
1, . . . ,n. The observations are specified to come from a distribution with
parameters θ1, . . . ,θJ where the θ’s may be scalars, vectors, or matrices.

Prior
We quantify available prior knowledge (before performing the experiment

and obtaining the data) in the form of a joint prior distribution for the para-
meters

p(θ1, . . . ,θJ ), (3.3.1)
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where they are not necessarily independent.

Likelihood
With an independent sample of size n, the joint distribution (likelihood)

of the observation vectors is the product of the individual distributions (like-
lihoods) and is given by

p(x1, . . . ,xn|θ1, . . . ,θJ ) =

n
∏

i=1

p(xi|θ1, . . . ,θJ ). (3.3.2)

Posterior
We apply Bayes’ rule to obtain a posterior distribution for the parameters.

The posterior distribution is

p(θ1, . . . ,θJ |x1, . . . ,xn) =
p(θ1, . . . ,θJ )p(x1, . . . ,xn|θ1, . . . ,θJ )

p(x1, . . . ,xn)
, (3.3.3)

where the denominator is given by

p(x1, . . . ,xn) =

∫

p(θ1, . . . ,θJ )p(x1, . . . ,xn|θ) dθ1 . . . dθJ , (3.3.4)

where θ = (θ1, . . . ,θJ ). (It might help to make an analogy of x1, . . . ,xn to A
and θ1, . . . ,θJ to B.)

Remember we neglect the denominator to get

p(θ1, . . . ,θJ |x1, . . . ,xn)∝ p(θ1, . . . ,θJ )p(x1, . . . ,xn|θ1, . . . ,θJ ) (3.3.5)

which states that the posterior distribution is proportional to the product of
the prior times the likelihood.

3.4 Continuous Matrix Variables

Just as we are able to observe scalar and vector valued variables, we can
also observe matrix valued variables X.

Prior
We can quantify available prior knowledge regarding the parameters with

the use of a joint prior distribution

p(θ1, . . . ,θJ ) (3.4.1)

where the θ’s are possibly matrix valued and are not necessarily independent.
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Likelihood
With an independent sample of size n, from the joint distribution p(X|θ1, . . . ,θJ )

of the observation matrices is

p(X1, . . . ,Xn|θ1, . . . ,θJ ) =

n
∏

i=1

p(Xi|θ1, . . . ,θJ ). (3.4.2)

Posterior
We apply Bayes’ rule just as we have done for scalar and vector valued

variates to obtain a joint posterior distribution for the parameters. The joint
posterior distribution is

p(θ1, . . . ,θJ |X1, . . . ,Xn) =
p(θ1, . . . ,θJ )p(X1, . . . ,Xn|θ1, . . . ,θJ )

p(X1, . . . ,Xn)
, (3.4.3)

where the denominator is given by

p(X1, . . . ,Xn) =

∫

p(θ1, . . . ,θJ )p(X1, . . . ,Xn|θ) dθ1 . . .dθJ . (3.4.4)

(It might help to make an analogy of X1, . . . ,Xn to A and θ1, . . . ,θJ to B.)
Remember we neglect the denominator of the joint posterior distribution

to get

p(θ1, . . . ,θJ |X1, . . . ,Xn)∝ p(θ1, . . . ,θJ )p(X1, . . . ,Xn|θ1, . . . ,θJ ) (3.4.5)

in which the joint posterior distribution is proportional to the product of the
prior distribution and the likelihood distribution.

From the posterior distribution, estimates of the parameters are obtained.
Estimation of the parameters is described later.
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Exercises

1. State Bayes’ rule for the probability of event B occurring given that
event A has occurred.

2. Assume that we select a Beta prior distribution

p(̺)∝ ̺α−1(1−̺)β−1

for the probability of success in a Binomial experiment with likelihood

p(x|̺)∝ ̺x(1−̺)n−x.

Write the posterior distribution p(̺|x) of ̺.

3. Assume that we select the joint prior distribution

p(µ,σ2)∝ p(µ|σ2)p(σ2),

where

p(µ|σ2) ∝ (σ2)−
1
2 e

−
(µ−µ0)2

2σ2 ,

p(σ2) ∝ (σ2)−
ν
2 e

−
q

2σ2 ,

and have a likelihood given by

p(x1, . . . ,xn|µ,σ2) ∝ (σ2)−
n
2 e

−
∑n
i=1

(xi−x̄)
2

2σ2 .

Write the joint posterior distribution p(µ,σ2|x1, . . . ,xn) of µ and σ2.
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4

Prior Distributions

In this Chapter, we discuss the specification of the form of the prior distri-
butions for our parameters which we are using to quantify our available prior
knowledge. We can specify any prior distribution that we like but our choice
is guided by the range of values of the parameters.

For example, the probability of success in a Binomial experiment has (0,1)
as its range of possible values, the mean of a Normal distribution has (−∞,+∞)
as its range of values, and the variance of a Normal distribution has (0,+∞)
as its range of values.

There are three common types of prior distributions.

1. Vague (uninformative or diffuse),

2. Conjugate, and

3. Generalized Conjugate.

Even though our choice is guided by the range of values for the parameters,
any distribution that is defined solely in that range of values can be used.
However, the choice of Conjugate prior distributions have natural updating
properties and can simplify the estimation procedure. Further, Conjugate
prior distributions are usually rich enough to quantify our available prior
information.

4.1 Vague Priors

4.1.1 Scalar Variates

The vague prior distribution can be placed on either a parameter that is
bounded (has a finite range of values) or unbounded (has an infinite range of
values).

If a vague prior is placed on a parameter θ that has a finite range of values,
over the interval (a,b), then the prior distribution is a Uniform distribution
over (a,b) indicating that all values in this range are a priori equally likely.
That is,
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p(θ) =

{

1
b−a , if a < θ < b

0, otherwise
, (4.1.1)

the Uniform distribution and we write

p(θ) ∝ (a constant). (4.1.2)

A vague prior is a little different when we place it on a parameter that is
unbounded.

Consider θ= µ to be the mean of a Normal distribution. If we wish to place
a Uniform prior on it, then we have

p(µ) =

{

1
2a , if −a < µ < a
0, otherwise,

(4.1.3)

where a→∞ and again we write

p(µ) ∝ (a constant). (4.1.4)

Principle of Stable Estimation
As previously stated [41], in 1962 it was noted [10] that the posterior distrib-

ution is proportional to the product of the prior and the likelihood. Therefore,
to be vague about a parameter θ, we only have to place a Uniform prior over
the range of values for θ where the likelihood is non-negligible.

If the parameter θ = σ2 is the variance of a Normal distribution, then we
take log(σ2) to be uniform over the entire real line and by transforming back
to a distribution on σ2 we have

p(σ2) ∝ 1

σ2
. (4.1.5)

A description of this can be found in [9]. Another justification [25] is based
on a prior distribution which expresses minimal information. The vague prior
distribution in Equation 4.1.5 is an “improper” prior distribution. That is,

∫ ∞

0

p(σ2) dσ2 (4.1.6)

is not finite.
It should be noted that estimability problems may arise when using vague

prior distributions.
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4.1.2 Vector Variates

A vague prior distribution for a vector-valued mean such as for a Multivari-
ate Normal distribution is the same as that for a Scalar Normal distribution

p(µ) ∝ (a constant), (4.1.7)

where µ= (µ1, . . . ,µp).

4.1.3 Matrix Variates

A vague prior distribution for a matrix-valued mean such as for a Matrix
Normal distribution is the same as for the scalar and vector versions

p(M) ∝ (a constant), (4.1.8)

where the matrix M is M = (µ1, . . . ,µn)
′. The rows of M are individual µ

vectors.

The generalization of the univariate vague prior distribution on a variance
to a covariance matrix is

p(Σ) ∝ |Σ|−
p+1
2 (4.1.9)

Which is often refered to as Jeffreys invariant prior distribution. Note that
this reduces to the scalar version when p= 1.

4.2 Conjugate Priors

Conjugate prior distributions are informative prior distributions. Conju-
gate prior distributions follow naturally from classical statistics. It is well
known that if a set of data were taken in two parts, then an analysis which
takes the first part as a prior for the second part is equivalent to an analy-
sis which takes both parts together. The Conjugate prior distribution for a
parameter is of great utility and is obtained by writing down the likelihood,
interchanging the roles of the random variable and the parameter, and “en-
riching” the distribution so that it does not depend on the data set [41, 42].
The Conjugate prior distribution has the property that when combined with
the likelihood, the resulting posterior is in the same “family” of distributions.
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4.2.1 Scalar Variates

Beta
The number of heads x when a coin is flipped n0 independent times with

y tails (n0 = x+y), follows a Binomial distribution

p(x|̺)∝ ̺x(1−̺)n0−x. (4.2.1)

We now implement the Conjugate procedure in order to obtain the prior
distribution for the probability of heads, θ = ̺. First, interchange the roles of
x and ̺

p(̺|x)∝ ̺x(1−̺)n0−x, (4.2.2)

and now “enrich” it so that it does not depend on the current data set to
obtain

p(̺)∝ ̺α−1(1−̺)β−1. (4.2.3)

This is the Beta distribution. This Conjugate procedure implies that a good
choice is to use the Beta distribution to quantify available prior information
regarding the probability of success in a Binomial experiment. The quantities
α and β are hyperparameters to be assessed. Hyperparameters are parameters
of the prior distribution.

As previously mentioned, the use of the Conjugate prior distribution has
the extra advantage that the resulting posterior distribution is in the same
family.

Example:
The prior distribution for the probability of heads when flipping a certain

coin is

p(̺)∝ ̺α−1(1−̺)β−1. (4.2.4)

and the likelihood for a random sample subsequently taken is

p(x|̺)∝ ̺x(1−̺)n0−x. (4.2.5)

When these are combined to form the posterior distribution of ̺, the result
is

p(̺|x) ∝ p(̺)p(x|̺)
∝ ̺(α+x)−1(1−̺)(β+n0−x)−1. (4.2.6)

The prior distribution belongs to the family of Beta distributions as does
the posterior distribution. This is a feature of Conjugate prior distributions.
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Normal
The observation can be specified to have come from a Scalar Normal distri-

bution, x|µ,σ2 ∼N(µ,σ2) with σ2 either known or unknown. The likelihood
is

p(x|µ,σ2)∝ (σ2)−
1
2 e

−
(x−µ)2

2σ2 , (4.2.7)

which is often called the“kernel” of a Normal distribution.
If we interchange the roles of x and µ, then we obtain

p(µ)∝ (σ2)−
1
2 e

−
(µ−x)2

2σ2 (4.2.8)

thus implying that we should select our prior distribution for µ from the
Normal family.

We then select as our prior distribution for µ to be

p(µ|σ2)∝ (σ2)−
1
2 e

−
(µ−µ0)2

2σ2 , (4.2.9)

where we have “enriched” the prior distribution with the use of µ0 so that
it does not depend on the data. The quantity µ0 is a hyperparameter to
be assessed. By specifying scalar quantities µ0 and σ2, the Normal prior
distribution is completely determined.

Inverted Gamma
If we interchange the roles of x and σ2 in the likelihood, then

p(σ2)∝ (σ2)−
1
2 e

−
(x−µ)2

2σ2 (4.2.10)

thus implying that we should select our prior distribution for σ2 from the
Inverted Gamma family.

We then select as our prior distribution for σ2

p(σ2)∝ (σ2)−
ν
2 e

−
q

2σ2 , (4.2.11)

where we have “enriched” the prior distribution with the use of q so that
it does not depend on the data. The quantity q is a hyperparameter to be
assessed. By specifying scalar quantities q and ν, the Inverted Gamma prior
distribution is completely determined.

Using the Conjugate procedure to obtain prior distributions, we obtain
Table 4.1.

4.2.2 Vector Variates

Normal
The observation can be specified to have come from a Multivariate or Vector
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TABLE 4.1

Scalar variate Conjugate priors.
Likelihood Parameter(s) Prior Family
Scalar Binomial p Beta
Scalar Normal σ2 known µ Normal
Scalar Normal µ known σ2 Inverted Gamma
Scalar Normal (µ,σ2) Normal-Inverted Gamma

Normal distribution, x|µ,Σ∼N(µ,Σ) with Σ either known or unknown. The
likelihood is

p(x|µ,Σ)∝ |Σ|− 1
2 e−

1
2 (x−µ)′Σ−1(x−µ). (4.2.12)

If we interchange the roles of x and µ, then

p(µ)∝ |Σ|− 1
2 e−

1
2 (µ−x)′Σ−1(µ−x) (4.2.13)

thus implying that we should select our prior distribution for µ from the
Normal family.

We then select as our prior distribution for µ to be

p(µ|Σ)∝ |Σ|− 1
2 e−

1
2 (µ−µ0)′Σ−1(µ−µ0), (4.2.14)

where we have “enriched” the prior distribution with the use of µ0 so that it
does not depend on the data. The vector quantity µ0 is a hyperparameter to
be assessed. By specifying the vector quantity µ0 and the matrix quantity Σ,
the Vector or Multivariate Normal prior distribution is completely determined.

Inverted Wishart
If we interchange the roles of x and Σ in the Vector or Multivariate Normal

likelihood and use the property of the trace operator, then

p(Σ)∝ |Σ|− 1
2 e−

1
2 trΣ

−1(x−µ)(x−µ)′ (4.2.15)

thus implying that we should select our prior distribution for Σ from the
Inverted Wishart family.

We then select as our prior distribution for Σ

p(Σ)∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (4.2.16)

where we have “enriched” the prior distribution with the use ofQ and ν so that
it does not depend on the data. The quantities ν and Q are hyperparameters
to be assessed. By specifying the matrix quantity Q and the scalar quantity
ν, the Inverted Wishart prior distribution is completely determined.

Using the Conjugate procedure to obtain prior distributions, we obtain
Table 4.2 where “IW” is used to denote Inverted Wishart.
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TABLE 4.2

Vector variate Conjugate priors.
Likelihood Parameter(s) Prior Family
Multivariate Normal Σ known µ Multivariate Normal
Multivariate Normal µ known Σ Inverted Wishart
Multivariate Normal (µ,Σ) Normal-IW

4.2.3 Matrix Variates

Normal
The observation can be specified to have come from a Matrix Normal Dis-

tribution, X|M,Φ,Σ∼N(M,Φ⊗Σ) with Φ and Σ either known or unknown.
The Matrix Normal likelihood is

p(X|M,Σ,Φ)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−M)Σ−1(X−M)′ . (4.2.17)

If we interchange the roles of X and M , then

p(M)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(M−X)Σ−1(M−X)′ (4.2.18)

thus implying that we should select our prior distribution for M from the
Matrix Normal family.

We then select as our prior distribution for M

p(M |Σ,Φ)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(M−M0)Σ−1(M−M0)′ , (4.2.19)

where we have “enriched” the prior distribution with the use of M0 so that
it does not depend on the data. The quantity M0 is a hyperparameter to be
assessed. By specifying the matrix quantity M0 and the matrix quantities Φ
and Σ, the Matrix Normal prior distribution is completely determined.

Inverted Wishart
If we interchange the roles of X and Σ in the Matrix Normal likelihood

and use the property of the trace operator, then

p(Σ)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΣ
−1(X−M)′Φ−1(X−M) (4.2.20)

thus implying that we should select our prior distribution for Σ from the
Inverted Wishart family.

We then select as our prior distribution for Σ

p(Σ)∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (4.2.21)

where we have “enriched” the prior distribution with the use ofQ and ν so that
it does not depend on the data. The quantities ν and Q are hyperparameters
to be assessed. By specifying the matrix quantity Q and the scalar quantity
ν, the Inverted Wishart prior distribution is completely determined.
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Taking the same Matrix Normal likelihood, and interchanging the role for
Φ,

p(Φ|X,M,Σ)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−M)Σ−1(X−M)′ (4.2.22)

thus implying that we should select our prior distribution for Σ from the
Inverted Wishart family

p(Φ|κ,Ψ)∝ |Φ|−
η
2 e−

1
2 trΦ

−1Ψ, (4.2.23)

where we have “enriched” the prior distribution with the use of Ψ and κ so that
it does not depend on the data. The quantities κ and Ψ are hyperparameters
to be assessed. By specifying the matrix quantity Ψ and the scalar quantity
κ, the Inverted Wishart prior distribution is completely determined.

Using the Conjugate procedure to obtain prior distributions, we obtain
Table 4.3 where “IW” is used to denote Inverted Wishart.

TABLE 4.3

Matrix variate Conjugate priors.
Likelihood Parameter(s) Prior Family
Normal (Φ,Σ) known M Matrix Normal
Matrix Normal (M,Φ) known Σ Inverted Wishart
Matrix Normal (M,Σ) known Φ Inverted Wishart
Matrix Normal (M,Φ,Σ) Normal-IW-IW

4.3 Generalized Priors

At times, Conjugate prior distributions are not sufficient to quantify the
prior knowledge we have about the parameter values [49]. When this is the
case, generalized Conjugate prior distributions can be used. Generalized Con-
jugate prior distributions are found by writing down the likelihood, inter-
changing the roles of the random variable and the parameter, “enriching” the
distribution so that it does not depend on the data set, and assuming that
the priors on each of the parameters are independent [41].

4.3.1 Scalar Variates

Normal
The observation can be specified to have come from a Scalar Normal dis-
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tribution, x|µ,σ2 ∼N(µ,σ2) with σ2 either known or unknown. The Normal
likelihood is given by

p(x|µ,σ2)∝ (σ2)−
1
2 e

−
(x−µ)2

2σ2 . (4.3.1)

If we interchange the roles of x and µ, then we obtain

p(µ)∝ (σ2)−
1
2 e

−
(µ−x)2

2σ2 (4.3.2)

thus implying that we should select our prior distribution for µ from the
Normal family.

We then select as our prior distribution for µ

p(µ)∝ (δ2)−
1
2 e

−
(µ−µ0)2

2δ2 , (4.3.3)

where we have “enriched” the prior distribution with the use of µ0 so that it
does not depend on the data and made it independent of the other parameter
σ2 through δ2. The quantities µ0 and δ2 are hyperparameters to be assessed.
By specifying scalar quantities µ0 and δ2, the Normal prior distribution is
completely determined.

Inverted Gamma
If we interchange the roles of x and σ2 in the Normal likelihood then

p(σ2)∝ (σ2)−
1
2 e

−
(x−µ)2

2σ2 (4.3.4)

thus implying that we should select our prior distribution for σ2 from the
Inverted Gamma family.

We then select our prior distribution for σ2 to be

p(σ2)∝ (σ2)−
ν
2 e

−
q

2σ2 , (4.3.5)

where we have “enriched” the prior distribution with the use of q so that it
does not depend on the data. The quantities q and ν are hyperparameters to
be assessed. By specifying the scalar quantities q and ν, the Inverted Gamma
prior distribution is completely determined. The generalized Conjugate pro-
cedure yields the same prior distribution for the variance σ2 as the Conjugate
procedure.

Using the generalized Conjugate procedure to obtain prior distributions, we
obtain Table 4.4 where “IG” is used to denote Inverted Gamma.

4.3.2 Vector Variates

Normal
The observation can be specified to have come from a Multivariate or vector
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TABLE 4.4

Scalar variate generalized Conjugate priors.
Likelihood Parameter(s) Prior Family
Scalar Normal σ2 known µ Generalized Normal
Scalar Normal µ known σ2 Inverted Gamma
Scalar Normal (µ,σ2) Generalized Normal-IG

Normal distribution, x|µ,Σ∼N(µ,Σ) with Σ either known or unknown. The
Multivariate Normal likelihood is

p(x|µ,Σ)∝ |Σ|− 1
2 e−

1
2 (x−µ)′Σ−1(x−µ). (4.3.6)

If we interchange the roles of x and µ in the likelihood, then

p(µ)∝ |Σ|− 1
2 e−

1
2 (µ−x)′Σ−1(µ−x) (4.3.7)

thus implying that we should select our prior distribution for µ from the
Normal family.

We then select as our prior distribution for µ

p(µ)∝ |∆|− 1
2 e−

1
2 (µ−µ0)′∆−1(µ−µ0), (4.3.8)

where we have “enriched” the prior distribution with the use of µ0 so that it
does not depend on the data and made it independent of the other parameter Σ
through ∆. The quantities µ0 and ∆ are hyperparameters to be assessed. By
specifying the vector quantity µ0 and the matrix quantity ∆, the Multivariate
Normal prior distribution is completely determined.

Inverted Wishart
If we interchange the roles of x and Σ and use the property of the trace

operator, then

p(Σ)∝ |Σ|− 1
2 e−

1
2 trΣ

−1(x−µ)(x−µ)′ (4.3.9)

thus implying that we should select our prior distribution for Σ from the
Inverted Wishart family.

We then select as our prior distribution for Σ

p(Σ)∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (4.3.10)

where we have “enriched” the prior distribution with the use ofQ and ν so that
it does not depend on the data. The quantities ν and Q are hyperparameters
to be assessed. By specifying the matrix quantity Q and the scalar quantity
ν, the Inverted Wishart prior distribution is completely determined. The
generalized Conjugate procedure yields the same prior distribution for Σ as
the Conjugate procedure.
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Using the generalized Conjugate procedure to obtain prior distributions, we
obtain Table 4.5 where “IW” is used to denote Inverted Wishart and “GMN,”
Generalized Matrix Normal.

TABLE 4.5

Vector variate generalized Conjugate priors.
Likelihood Parameter(s) Prior Family
Multivariate Normal Σ known µ GMN
Multivariate Normal µ known Σ Inverted Wishart
Multivariate Normal (µ,Σ) GMN-IW

4.3.3 Matrix Variates

Normal
The observation can be specified to have come from a Matrix Normal Dis-

tribution, X|M,Φ,Σ∼N(M,Φ⊗Σ) with Φ and Σ either known or unknown.
The Matrix Normal likelihood is

p(X|M,Σ,Φ)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−M)Σ−1(X−M)′ . (4.3.11)

If we interchange the roles of X and M , then

p(M)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(M−X)Σ−1(M−X)′ (4.3.12)

thus implying that we should select our prior distribution for M from the
Matrix Normal family.

We then select our prior distribution for M to be the Matrix Normal dis-
tribution

p(M)∝ |χ|−
p
2 |Ξ|−n2 e− 1

2 trχ
−1(M−M0)Ξ−1(M−M0)′ , (4.3.13)

where we have “enriched” the prior distribution with the use of M0 so that
it does not depend on the data X and made it independent of the other
parameters Φ and Σ through Ξ and χ. The quantities M0, Ξ, and χ are hy-
perparameters to be assessed. By specifying the matrix quantity M0 and the
matrix quantities Ξ and χ, the Matrix Normal prior distribution is completely
determined.

Inverted Wishart
If we interchange the roles of X and Σ in the Matrix Normal likelihood

and use the property of the trace operator, then

p(Σ)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΣ
−1(X−M)′Φ−1(X−M) (4.3.14)
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thus implying that we should select our prior distribution for Σ from the
Inverted Wishart family.

We then select our prior distribution for Σ to be the Inverted Wishart
distribution

p(Σ)∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (4.3.15)

where we have “enriched” the prior distribution with the use ofQ and ν so that
it does not depend on the data. The quantities ν and Q are hyperparameters
to be assessed. By specifying the matrix quantity Q and the scalar quantity
ν, the Inverted Wishart prior distribution is completely determined.

Taking the same Matrix Normal likelihood, and interchanging the role for
Φ, we have

p(Φ|X,M,Σ)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2Φ−1(X−M)trΣ−1(X−M)′ (4.3.16)

thus implying that we should select our prior distribution for Φ from the
Inverted Wishart family

p(Φ|κ,Ψ)∝ |Φ|−κ2 e− 1
2 trΦ

−1Ψ, (4.3.17)

where we have “enriched” the prior distribution with the use of Ψ and κ so that
it does not depend on the data. The quantities κ and Ψ are hyperparameters
to be assessed. By specifying the matrix quantity Ψ and the scalar quantity
κ, the Inverted Wishart prior distribution is completely determined.

Using the generalized Conjugate procedure to obtain prior distributions, we
obtain Table 4.6 where “IW” is used to denote Inverted Wishart and “GMN,”
Generalized Matrix Normal.

TABLE 4.6

Matrix variate generalized Conjugate priors.
Likelihood Parameter(s) Prior Family
Matrix Normal (Φ,Σ) known M GMN
Matrix Normal (M,Φ) known Σ Inverted Wishart
Matrix Normal (M,Σ) known Φ Inverted Wishart
Matrix Normal (M,Φ,Σ) GMN-IW-IW

4.4 Correlation Priors

In this section, Conjugate prior distributions are derived for the correlation
coefficient between observation vectors. In the context of Bayesian Factor
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Analysis, a Generalized Beta distribution has been used for the correlation
coefficient ρ in the between vector correlation matrix Φ [50]. This was done
when Φ was either the intraclass correlation matrix

Φ =















1 ρ ρ · · · ρ
1 ρ · · · ρ
. . .

...
ρ
1















= (1−ρ)In+ρene
′
n, (4.4.1)

where en is a column vector of ones and − 1
n−1 < ρ < 1 or the first order

Markov correlation matrix

Φ =











1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

ρn−1 ρn−2 · · · 1











, (4.4.2)

where 0< |ρ|< 1.
When the Generalized Beta prior distribution and the likelihood are com-

bined, the result is a posterior distribution which is unfamiliar. This unfamil-
iar posterior distribution required a rejection sampling technique to generate
random variates as outlined in Chapter 6. A Conjugate prior distribution can
be derived and the rejection sampling avoided.

Given X which follows a Matrix Normal distribution

p(X|M,Σ,Φ) = (2π)−
np
2 |Φ|−

p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−M)Σ−1(X−M)′ , (4.4.3)

where x = (X ′) = (x′
1, ...,x

′
n)

′, X ′ = (x1, ...,xn), µ = vec(M ′) = (µ′
1, ...,µ

′
n)

′,
M ′ =(µ1, ...,µn), and Φ is either an intraclass or first order Markov correlation
matrix; the Conjugate prior distribution for ρ in Φ is found as follows.

4.4.1 Intraclass

If we determine the intraclass structure in Equation 4.4.1 that has the
correlation between any two observations being the same, then we can use the
result that the determinant of Φ has the form

|Φ|= (1−ρ)n−1[1+ρ(n−1)] (4.4.4)

and the result that the inverse of Φ has the form

Φ−1 =
In

1−ρ
− ρene

′
n

(1−ρ) [1+(n−1)ρ]
(4.4.5)

which is again a matrix with intraclass correlation structure [41].
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With these results, the Matrix Normal distribution can be written as

p(X|M,Σ,Φ) ∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−M)Σ−1(X−M)′

∝ |Φ|−
p
2 e−

1
2 trΦ

−1Ψ

p(X|M,Σ,ρ) ∝ (1−ρ)−
(n−1)p

2 [1+(n−1)ρ]−
p
2

×e
− 1

2(1−ρ)

[
k1−

ρk2
1+(n−1)ρ

]
, (4.4.6)

where k1 = tr(Ψ), k2 = tr(ene
′
nΨ), and Ψ = (X−M)Σ−1(X−M)′. It should

be noted that k1 and k2 can be written as

k1 =
n

∑

i=1

Ψii and k2 =
n

∑

i′=1

n
∑

i=1

Ψii′ . (4.4.7)

We now implement the Conjugate procedure in order to obtain the prior
distribution for the between vector correlation coefficient ρ. If we interchange
the roles of X and ρ, then we obtain

p(ρ) ∝ (1−ρ)−
αβ
2 [1+αρ]−

β
2 e

− 1
2(1−ρ)

[
k1−

ρk2
1+αρ

]
, (4.4.8)

where α, β, and Ψ for k1 = tr(Ψ), k2 = tr(ene
′
nΨ) are hyperparameters to be

assessed. With appropriate choices of α and β, for example, α = n− 1 and
β = p, this prior distribution is Conjugate for ρ.

4.4.2 Markov

If we determine the first order Markov structure in Equation 4.4.2 that has
the correlation between observations decrease with the power of the difference
between the observation numbers, then we can use the results [41] that the
determinant of Φ has the form

|Φ|= (1−ρ2)n−1 (4.4.9)

and that the inverse of such a patterned matrix has the form

Φ−1 =
1

1−ρ2















1 −ρ 0
−ρ (1+ρ2) −ρ

. . .
. . .

. . .

(1+ρ2) −ρ
0 −ρ 1















. (4.4.10)

With these results, the Matrix Normal distribution can be written as
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p(X|M,Σ,Φ) ∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−M)Σ−1(X−M)′ ,

∝ |Φ|−
p
2 e−

1
2 trΦ

−1Ψ

p(X|M,Σ,ρ) ∝ (1−ρ2)−
(n−1)p

2 e
−
k1−ρk2+ρ2k3

2(1−ρ2) , (4.4.11)

where

Ψ1 = In, Ψ2 =















0 1 0
1 0 1
. . .

. . .
. . .

0 1
0 1 0















, Ψ3 =















0 0
1
. . .

1
0 0















, (4.4.12)

k1 = tr(Ψ1Φ) =
n

∑

i=1

Ψii, (4.4.13)

k2 = tr(Φ2Ψ) =

n−1
∑

i=1

(Ψi,i+1 +Ψi+1,i) , (4.4.14)

and

k3 = tr(Φ3Ψ) =
n−1
∑

i=2

Ψii. (4.4.15)

We now implement the Conjugate procedure in order to obtain the prior
distribution for the between vector correlation coefficient ρ. If we interchange
the roles of X and ρ, then we obtain

p(ρ) ∝ (1−ρ2)−
αβ
2 e

−
k1−ρk2+ρ2k3

2(1−ρ2) , (4.4.16)

where α, β, and Ψ for k1, k2, and k3 defined above are hyperparameters to
be assessed. With appropriate choices of α and β, for example, α= n−1 and
β = p, this prior distribution is Conjugate for ρ.

The vague priors are used when there is little or no specific knowledge as to
various parameter values. The Conjugate prior distributions are used when
we have specific knowledge as to parameter values either in the form of a pre-
vious similar experiment or from substantive expert beliefs. The generalized
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Conjugate prior distributions are used in the rare situation where we believe
that the Conjugate prior distributions are too restrictive to correctly assess
prior information. Vague prior distributions are not used in this text because
they may lead to nonunique solutions for every model except for the Bayesian
Regression model.
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Exercises

1. What is the family of Conjugate prior distributions for ̺ corresponding
to a Scalar Binomial likelihood p(x|̺)?

2. What are the families of Conjugate prior distributions for µ and σ2

corresponding to a Scalar Normal likelihood p(x|µ,σ2)?

3. What are the families of Conjugate prior distributions for µ and Σ cor-
responding to a Multivariate Normal likelihood p(x|µ,Σ)?
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5

Hyperparameter Assessment

5.1 Introduction

This Chapter describes methods for assessing the hyperparameters for prior
distributions used to quantify available prior knowledge regarding parameter
values. When observed data arise from Binomial, Scalar Normal, Multivariate
Normal, and Matrix Normal distributions as in this text, the prior distribu-
tions of the parameters of these distributions contain parameters themselves
termed hyperparameters. These prior distributions are quite often the Scalar
Beta, Scalar Normal, Multivariate Normal, Matrix Normal, Inverted Gamma,
and Inverted Wishart distributions. The hyperparameters of these prior dis-
tributions need to be assessed so that the prior distribution can be identified.
There are two ways the hyperparameters can be assessed, either in a pure sub-
jective way which expresses expert knowledge and beliefs or by use of data
from a previous similar experiment.

Throughout this chapter, we will be in the predata acquisition stage of an
experiment. We will quantify available prior knowledge regarding values of
parameters of the model which is specified with a likelihood. We will quantify
how likely the values of the parameters in the likelihood are, prior to seeing
any current data. This can be accomplished by using data from a previous
similar experiment or by using subjective expert opinion in the form of a
virtual set of data.

5.2 Binomial Likelihood

Before performing a Binomial experiment and gathering data, we have
foresight in knowing that a similar experiment has been carried out and data
exist in the form of n0 observations x1, . . . ,xn0 . The likelihood of these n0

random variates is

p(x1, . . . ,xn0 |̺) ∝ ̺
∑n0
i=1

xi(1−̺)n0−
∑n0
i=1

xi
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∝ ̺x(1−̺)n0−x, (5.2.1)

where the new variable x =
∑n0

i=1xi is the number of successes (heads) and
the new variable y = n0−x is the number of failures (tails). With the number
of successes x in n0 Bernoulli trials known, we now view ̺, the probability of
success, as the random variable with known parameters x and n0.

It can be recognized that the random variable ̺ is (Scalar) Beta distributed.

5.2.1 Scalar Beta

The probability of success ̺ has the Beta distribution

p(̺)∝ ̺x(1−̺)n0−x, (5.2.2)

which is compared to its typical parameterization

p(̺)∝ ̺α−1(1−̺)β−1 (5.2.3)

and it is seen that the hyperparameters α and β of the prior distribution for
the probability of success ̺ are α= x+1 and β = y+1.

The scalar hyperparameters α and β can also be assessed by purely sub-
jective means. A substantive field expert can assess them in the following
way.

Imagine that we are not able to visually inspect and have not observed any
realizations from the coin being flipped. As described in [50], if we imagine a
virtual flipping of the coin n0 times, then let x= α−1 denote the number of
virtual heads and y = β−1 the number of virtual tails such that x+y = n0.
If α= β = 1, then n0 = 0, implying the absence of virtual coin flipping or the
absence of specific prior information. This corresponds to a vague or Uniform
prior distribution with mean 1

2 . The parameter values α = 200 and β = 100
imply 199 heads and 99 tails which is strong prior information with a mean
of 2

3 . The larger the virtual sample size n0, the stronger the prior information
we have and the more peaked the prior is around its mean.

5.3 Scalar Normal Likelihood

Before performing an experiment in which Scalar Normal random variates
will result, we have foresight in knowing that a similar experiment has been
carried out and data exist in the form of n0 observations x1, . . . ,xn0 . The
likelihood of these n0 random variates is

p(x1, . . . ,xn0 |µ,σ2)∝ (σ2)−
n0
2 e

−
∑n0
i=1

(xi−µ)
2

2σ2 . (5.3.1)
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With the numerical values of the observations x1, . . . ,xn0 known, we now view
the parameters µ and σ2 of this distribution as being the random variables
with known parameters involving n0 and x1, . . . ,xn0 .

By rearranging and performing some algebra on the above distribution, it
can be seen that µ and σ2 are Scalar Normal and Inverted Gamma distributed.

5.3.1 Scalar Normal

The random parameter µ from a sample of Scalar Normal random variates
has a Scalar Normal distribution

p(µ|σ2)∝ (σ2)−
n0
2 e

−
(µ−x̄)2

2σ2/n0 (5.3.2)

which is compared to its typical parameterization (where σ is used generically)

p(µ|σ2)∝ (σ2)−
n0
2 e

−
(µ−µ0)2

2σ2 (5.3.3)

and it is seen that the hyperparameter µ0 of the prior distribution for the
mean is µ0 = x̄.

5.3.2 Inverted Gamma or Scalar Inverted Wishart

The random parameter σ2 from a sample of Scalar Normal random variates
has an Inverted Gamma distribution

p(σ2)∝ (σ2)−
n0
2 e

− 1
2

∑n0
i=1

(xi−x̄)
2

σ2 (5.3.4)

which is compared to its typical parameterization

p(σ2)∝ (σ2)−
ν
2 e

− 1
2
q

σ2 (5.3.5)

and it is seen that the hyperparameters ν and q of the Inverted Gamma
distribution given in Chapter 2, which here is a prior distribution for the
variance σ2, are ν = n0 and q =

∑n0
i=1(xi− x̄)2.

The scalar hyperparameters µ0, ν, and q can also be assessed by purely
subjective means. A substantive field expert can assess them in the following
way.

If we imagine a virtual sample of size n0, x1, . . . ,xn0 , then a substantive
expert can determine a value of the mean of the sample data µ0 = x̄ which
would represent the most probable value to be the average (also a value he
would expect since the mean and mode of the Scalar Normal distribution are
identical). The substantive expert can also determine the most probable value
for the variance of this virtual sample σ2

0 and the hyperparameters ν and q
are ν = n0 and q = n0σ

2
0 .
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5.4 Multivariate Normal Likelihood

Before performing an experiment in which Multivariate Normal random
variates will result, we have foresight in knowing that a similar experiment
has been carried out and data exist in the form of n0 vector valued observations
x1, . . . ,xn0 . The likelihood of these n0 random variates is

p(x1, . . . ,xn0 |µ,Σ)∝ |Σ|−
n0
2 e−

1
2

∑n0
i=1(xi−µ)′Σ−1(xi−µ) (5.4.1)

With the numerical values of the observations x1, . . . ,xn0 known, we now view
the parameters µ and Σ of this distribution as being the random variables with
known parameters involving n0 and x1, . . . ,xn0 .

By rearranging and performing some algebra on the above distribution,
it can be seen that µ and Σ are Multivariate Normal and Inverted Wishart
distributed.

5.4.1 Multivariate Normal

The random parameter µ from a sample of Multivariate Normal random
variates of dimension p has a Multivariate Normal distribution

p(µ|Σ)∝ |Σ|−
n0
2 e−

1
2 (µ−x̄)′(Σ/n0)−1(µ−x̄) (5.4.2)

which is compared to its typical parameterization (where Σ is used generically)

p(µ|Σ)∝ |Σ|−
n0
2 e−

1
2 (µ−µ0)′Σ−1(µ−µ0) (5.4.3)

and it is seen that the hyperparameter µ0 of the prior distribution for the
mean is µ0 = x̄.

5.4.2 Inverted Wishart

The random parameter Σ from a sample of Multivariate Normal random
variates has an Inverted Wishart distribution

p(Σ) ∝ |Σ|−
n0
2 e−

1
2 trΣ

−1∑n0
i=1

(xi−x̄)(xi−x̄)′ (5.4.4)

which is compared to its typical parameterization

p(Σ)∝ |Σ|− ν2 e− 1
2 trΣ

−1Q (5.4.5)

and it is seen that the hyperparameters ν and Q of the prior distribution for
the covariance matrix Σ are ν = n0 and Q=

∑n0
i=1(xi− x̄)(xi− x̄)′.
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The vector, scalar, and matrix hyperparameters µ0, ν, and Q can also be
assessed by purely subjective means. A substantive field expert can assess
them in the following way.

If we imagine a virtual sample of size n0, x1, . . . ,xn0 , then a substantive ex-
pert can determine a value of the mean of the sample data µ0 = x̄ which would
represent the most probable value to be the average (also a value he would
expect since the mean and mode of the Multivariate Normal distribution are
identical). The substantive expert can also determine the most probable value
for the covariance matrix of this virtual sample Σ0 and the hyperparameters
ν and Q are ν = n0 and Q= n0Σ0.

5.5 Matrix Normal Likelihood

Before performing an experiment in which Matrix Normal random vari-
ates will result, we have foresight in knowing that a similar experiment has
been carried out and data exist in the form of n0 matrix valued observations
X1, . . . ,Xn0 of dimension n1 by p1. The likelihood of these n0 random variates
is

p(X1, . . . ,Xn0 |M,Σ,Φ)∝ |Σ|−
n0n1

2 |Φ|−
n0p1

2 e−
1
2

∑n0
i=1

trΦ−1(Xi−M)Σ−1(Xi−M)′ .
(5.5.1)

With the numerical values of the observations X1, . . . ,Xn0 known, we now
view the parameters M , Σ, and Φ of this distribution as being the random
variables with known parameters involving n0 and X1, . . . ,Xn0 .

By rearranging and performing some algebra on the above distribution, it
can be seen that M , Σ, and Φ are Matrix Normal, Inverted Wishart, and
Inverted Wishart distributed.

5.5.1 Matrix Normal

The random parameterM from a sample of Matrix Normal random variates
has a Matrix Normal distribution

p(M |Σ,Φ)∝ e−
1
2 trΦ

−1(M−X̄)(Σ/n0)−1(M−X̄)′ (5.5.2)

which is compared to its typical parameterization (where Σ is used generically)

p(M |Σ,Φ)∝ e−
1
2 trΦ

−1(M−M0)Σ−1(M−M0)′ (5.5.3)

and it is seen that the hyperparameter M0 of the prior distribution for the
mean is M0 = X̄.
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5.5.2 Inverted Wishart

The random parameter Σ from a sample of Matrix Normal random variates
has an Inverted Wishart distribution

p(Σ) ∝ |Σ|−
n0n1

2 |Φ|−
n0p0

1 e−
1
2 trΣ

−1∑n0
i=1

(Xi−X̄)′Φ−1(Xi−X̄) (5.5.4)

which is compared to its typical parameterization

p(Σ)∝ |Σ|− ν2 e− 1
2 trΣ

−1Q (5.5.5)

and it is seen that the hyperparameters ν and Q of the prior distribution for
the covariance matrix Σ are ν = n0n1 and Q=

∑n0
i=1(Xi− X̄)′Φ−1(Xi− X̄).

Similarly, the random parameter Φ from a sample of Matrix Normal random
variates has an Inverted Wishart distribution

p(Φ) ∝ |Σ|−
n0n1

2 |Φ|−
n0p0

1 e−
1
2 trΦ

−1∑n0
i=1

(Xi−X̄)Σ−1(Xi−X̄)′ (5.5.6)

which is compared to its typical parameterization

p(Φ)∝ |Φ|−κ2 e− 1
2 trΦ

−1Ψ (5.5.7)

and it is seen that the hyperparameters κ and Ψ of the prior distribution for
the covariance matrix Φ are κ= n0p1 and Ψ =

∑n0
i=1(Xi− X̄)Σ−1(Xi− X̄)′.

Note that the equations for Q and Ψ are coupled. This means that there
is not a closed form analytic solution for estimating Φ and Σ. Their values
must be computed in an iterative fashion with an initial value similar to the
ICM algorithm which will be presented in Chapter 6.

The matrix, scalar, matrix, scalar, and matrix hyperparameters M0, ν, Q,
κ, Ψ, can also be assessed by purely subjective means. A substantive field
expert can assess them in the following way.

If we imagine a virtual sample of size n0, X1, . . . ,Xn0 , then a substantive
expert can determine a value of the mean of the sample data M0 = X̄ which
would represent the most probable value to be the average (also a value he
would expect since the mean and mode of the Matrix Normal distribution are
identical). The substantive expert can also determine the most probable value
for the covariance matrix of this virtual sample Σ0 and the hyperparameters ν
and Q are ν = n0n1 and Q= n0Σ0. The substantive expert can also determine
the most probable value for the covariance matrix of this virtual sample Φ0

and the hyperparameters κ and Ψ are κ= n0p1 and Ψ = n0Φ0.
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Exercises

1. Assume that we have n0 = 25 (virtual or actual data) observations from
a Binomial experiment with x = 15 successes. What values would you
assess for the hyperparameters α and β for a Conjugate Beta prior
distribution on ̺, the probability of success?

2. Assume that we have n0 = 30 (virtual or actual data) observations for
a Scalar Normal variate with sample mean and sample sum of square
deviates given by

x̄= 50,
30
∑

i=1

(xi− x̄)2 = 132.

What value would you assess for the hyperparameter µ0 of a Conjugate
Scalar Normal prior distribution for the mean µ and what hyperpara-
meters ν and q of the Conjugate Inverse Gamma prior distribution for
the variance σ2?

3. Assume that we have n0 = 50 (virtual or actual data) observations for a
Multivariate Normal variate with sample mean vector and sample sum
of square deviates matrix given by

x̄=





50
100
75



 ,

30
∑

i=1

(xi− x̄)(xi− x̄)′ =





50.000 12.500 3.125
12.500 50.000 12.500
3.125 12.500 50.000



 .

What value would you assess for the vector hyperparameter µ0 of a
Conjugate Multivariate Normal prior distribution for the mean vector µ
and what scalar and matrix hyperparameters ν and Q of the Conjugate
Inverse Gamma prior distribution for the covariance matrix Σ?
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6

Bayesian Estimation Methods

In this Chapter we define the two methods of parameter estimation which
are used in this text, namely, marginal posterior mean and joint maximum a
posteriori estimators. Typically these estimators are found by integration and
differentiation to arrive at explicit equations for their computation. There are
often instances where explicit closed form equations are not possible. In these
instances, numerical integration and maximization estimation procedures are
required. The typical explicit integration and differentiation procedures are
discussed as are the numerical estimation procedures used. The numerical
estimation procedures are Gibbs sampling for sampling based marginal pos-
terior means and the iterated conditional modes algorithm (ICM) for joint
maximum posterior (joint posterior modal) estimates.

6.1 Marginal Posterior Mean

Often we have a set of parameters, θ = (θ1, . . . ,θJ ) in our posterior distrib-
ution p(θ|X) where X represents the data which may be a collection of scalar,
vector, or matrix observations. The marginal posterior distribution of any of
the parameters, say θj , can be obtained by integrating p(θ|X) with respect to
all parameters except θj . That is, the marginal posterior distribution of θj is

p(θj |X) =

∫

p(θ1, . . . ,θJ |X) dθ1 . . .dθj−1 dθj+1 . . . dθJ (6.1.1)

where the integral is evaluated over the appropriate range of the set para-
meters. After calculating the marginal posterior distribution for each of the
parameters, marginal posterior estimators such as

θ̂j = E(θj |X) =

∫

θjp(θj |X)dθj (6.1.2)

can be calculated which is the marginal mean estimator.
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6.1.1 Matrix Integration

When computing marginal distributions [42], joint posterior distributions
are integrated with respect to scalar, vector, or matrix variates. Let’s consider
the variates to be of the matrix form and perform integration. Scalar and
vector analogs follow as special cases. Integration of a posterior distribution
with respect to a matrix variate is typically carried out first by algebraic
manipulation of the integrand and finally by recognition.

To motivate the integration with respect to matrices, consider the problem
of estimating the p dimensional mean vector µ and covariance matrix Σ from
a Multivariate Normal distribution p(x|µ,Σ). Available prior knowledge re-
garding the mean vector and covariance matrix is quantified in the form of the
joint (Conjugate) prior distribution p(µ,Σ) and a random sample x1, . . . ,xn is
taken with likelihood

p(x1, . . . ,xn|µ,Σ) =

n
∏

i=1

p(xi|µ,Σ). (6.1.3)

The posterior distribution is given by

p(µ,Σ|X)∝ p(µ,Σ)p(X|µ,Σ) (6.1.4)

and marginal posterior distributions

p(µ|X) =

∫

p(µ,Σ)p(X|µ,Σ) dΣ, (6.1.5)

p(Σ|X) =

∫

p(µ,Σ)p(X|µ,Σ) dµ, (6.1.6)

where the random sample denoted by X ′ = (x1, . . . ,xn). The first integral is
taken over the set of all p-dimensional positive definite symmetric matrices
and the second over p-dimensional real space.

In general, if we were presented with a joint posterior distribution p(θ|X)
that was a function of θ = (θ1,θ2), the marginal posterior distribution of θ1 is
found by integration with respect to θ2 as

p(θ1|X) =

∫

p(θ|X) dθ2. (6.1.7)

This integration is often carried out by algebraically manipulating the terms
in p(θ|X) to write it as

p(θ|X) = g(θ1|X)h(θ2|θ1,X), (6.1.8)

where h(θ2|θ1,X) is recognized as being a known distribution except for a
multiplicative normalizing constant with respect to θ2. The multiplicative

© 2003 by Chapman & Hall/CRC



normalizing constant k(θ1|X) can depend on the parameter θ1 and the data
X but not on θ2. The posterior distribution is such that

p(θ|X) =
g(θ1|X)

k(θ1|X)
k(θ1|X)h(θ2|θ1,X) (6.1.9)

and the integration is carried out by taking those terms that do not depend
on θ2 out of the integrand and then recognizing that the integrand is unity.
Mathematically this procedure is described as

p(θ1|X) =

∫

g(θ1|X)

k(θ1|X)
k(θ1|X)h(θ2|θ1,X) dθ2 (6.1.10)

=
g(θ1|X)

k(θ1|X)

∫

k(θ1|X)h(θ2|θ1,X) dθ2 (6.1.11)

=
g(θ1|X)

k(θ1|X)
. (6.1.12)

The integral will be the integral of a probability distribution function that
we recognize as unity.

Integration is similarly performed when integrating with respect to θ1 to
determine the marginal posterior distribution of θ2. This method also applies
when θ = (θ1,θ2, . . . ,θJ ).

In computing marginal posterior distributions for the mean vector and co-
variance matrix of a Multivariate Normal distribution with Conjugate priors,
integration of the joint posterior distribution will be carried out with respect
to the error covariance matrix Σ to find the marginal posterior distribution
p(µ|X) of the mean vector µ. The integration is as follows.

The joint posterior distribution of the mean vector and covariance matrix
is

p(µ,Σ|X) ∝ |Σ|−
(n+ν+1)

2 e−
1
2 trΣ

−1[(X−enµ
′)′(X−enµ

′)+(µ−µ0)(µ−µ0)′+Q],

(6.1.13)

which upon inspection is an Inverted Wishart distribution except for a nor-
malizing constant

k(µ|X) = |(X−enµ
′)′(X−enµ

′)+(µ−µ0)(µ−µ0)
′+Q|

ν∗−p−1
2 ,

(6.1.14)

where ν∗ = n+ν+1.

The joint posterior distribution is written as
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p(µ,Σ|X) ∝ |(X−enµ
′)′(X−enµ

′)+(µ−µ0)(µ−µ0)
′+Q|−

ν∗−p−1
2

×|(X−enµ
′)′(X−enµ

′)+(µ−µ0)(µ−µ0)
′+Q|

ν∗−p−1
2

×|Σ|− ν∗2 e−
1
2 trΣ

−1[(X−enµ
′)′(X−enµ

′)+(µ−µ0)(µ−µ0)′+Q].

(6.1.15)

Upon integrating this joint posterior distribution, the marginal posterior dis-
tribution of the mean vector µ is

p(µ|X) ∝
∫

p(µ,Σ|X) dΣ

∝ |(X−enµ
′)′(X−enµ

′)+(µ−µ0)(µ−µ0)
′+Q|−

ν∗−p−1
2

×
∫

|(X−enµ
′)′(X−enµ

′)+(µ−µ0)(µ−µ0)
′+Q|

ν∗−p−1
2

×|Σ|− ν∗2 e−
1
2 trΣ

−1[(X−enµ
′)′(X−enµ

′)+(µ−µ0)(µ−µ0)′+Q]dΣ

(6.1.16)

∝ 1

|(X−enµ′)′(X−enµ′)+(µ−µ0)(µ−µ0)′+Q| ν∗−p−1
2

,

(6.1.17)

where the integral was recognized as being an Inverted Wishart distribution
except for its proportionality constant which did not depend on Σ. Upon
performing some matrix algebra, the above yields a marginal posterior distri-
bution which is recognized as being a Multivariate Student t-distribution.

Similarly, integration is performed with respect to the mean vector µ.

6.1.2 Gibbs Sampling

Gibbs sampling [13, 14] is a stochastic integration method that draws ran-
dom variates from the posterior conditional distribution for each of the para-
meters conditional on fixed values of all the other parameters and the data X.
Let p(θ|X) be the posterior distribution of the parameters where θ is the set
of parameters and X is the data. Let θ be partitioned as θ = (θ1,θ2, . . . ,θJ )
into J groups of parameters. Ideally, we would like to perform the integration
of the joint posterior distribution to obtain marginal posterior distributions

p(θj |X) =

∫

p(θ1, . . . ,θJ |X) dθ1 . . . dθj−1 dθj+1 . . . dθJ (6.1.18)

and marginal posterior mean estimates

E(θj|X) =

∫

θjp(θj |X)dθj . (6.1.19)
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Unfortunately, these integrations are usually of very high dimension and not
always available in a closed form. This is why we need the Gibbs sampling
procedure. With the random variates drawn from the posterior conditional
distributions

p(θj |θ1, . . . ,θj−1,θj+1, . . . ,θJ ,X) =
p(θ1, . . . ,θj−1,θj ,θj+1, . . . ,θJ , |X)

p(θ1, . . . ,θj−1,θj+1, . . . ,θJ |X)

∝ p(θ1, . . . ,θj−1,θj ,θj+1, . . . ,θJ , |X)

(6.1.20)

we can determine the marginal posterior distributions (Equation 6.1.18) and
any marginal posterior quantities such as the marginal posterior means (Equa-
tion 6.1.19).

For the Gibbs sampling, we begin with an initial value for the parameters

θ̄(0) = (θ̄
(0)
1 , θ̄

(0)
2 , . . . , θ̄

(0)
J ),

and at the lth iteration define

θ̄(l+1) = (θ̄
(l+1)
1 , θ̄

(l+1)
2 , . . . , θ̄

(l+1)
J )

by the values from

θ̄
(l+1)
1 = a random variate from p(θ̄1|θ̄(l)

2 , θ̄
(l)
3 , . . . , θ̄

(l)
J ,X), (6.1.21)

θ̄
(l+1)
2 = a random variate from p(θ̄2|θ̄(l+1)

1 , θ̄
(l)
3 , . . . , θ̄

(l)
J ,X), (6.1.22)

...

θ̄
(l+1)
J = a random variate from p(θ̄J |θ̄(l+1)

1 , θ̄
(l+1)
2 , . . . , θ̄

(l+1)
J−1 ,X), (6.1.23)

that is, at each step l drawing a random variate from the associated condi-
tional posterior distribution. To apply this method we need to determine the
posterior conditional of each θj , the posterior distribution of each θj condi-
tional on the fixed values of all the other elements of θ and X from p(θ|X).

After drawing s+L random variates of each we will have θ̄(1), θ̄(2), . . . ,
θ̄(s+1), . . . , θ̄(s+L). The first s random variates called the “burn in” are dis-
carded and the remaining L variates are kept.

It has been shown [14] that under mild conditions the L randomly sampled
variates for each of the parameters constitute a random sample from the
corresponding marginal posterior distribution given the data and that for
any measurable function of the sample values whose expectation exists, the
average of the function of the sample values converges almost surely to the
expected value of the population parameter values.

The marginal posterior distributions (Equation 6.1.18) are computed to be
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p̄(θj |X) =
1

L

L
∑

l=1

δ
(

θj− θ̄
(s+l)
j

)

, j = 1, . . . ,J, (6.1.24)

where δ(·) denotes the Kronecker delta function

δ
(

θj− θ̄
(s+l)
j

)

=

{

1, θj = θ̄
(s+l)
j

0, otherwise
(6.1.25)

and the marginal posterior mean estimators of the parameters (Equation 6.1.19)
are computed to be θ̄ = (θ̄1, . . . , θ̄J ) where

θ̄j = Ē(θj |X)

=
1

L

L
∑

l=1

θ̄
(s+l)
j , j = 1, . . . ,J. (6.1.26)

The marginal posterior estimators of the variances of the parameter can be
similarly found as

var(θj |X) =
1

L

L
∑

l=1

(

θ̄
(s+l)
j

)2

−
(

1

L

L
∑

l=1

θ̄
(s+l)
j

)2

(6.1.27)

if θj is a scalar variate,

var(θj |X) =
1

L

L
∑

l=1

(

θ̄
(s+l)
j

)(

θ̄
(s+l)
j

)′

− θ̄j θ̄
′
j (6.1.28)

if θj is a vector variate, and

var(θj |X) =
1

L

L
∑

l=1

vec
(

θ̄
(s+l)
j

)

vec
(

θ̄
(s+l)
j

)′

−vec
(

θ̄j
)

vec
(

θ̄j
)′

(6.1.29)

if θj is a matrix variate. In fact, the posterior estimate of any function of the
parameters can be found.

Credibility interval estimates can also be found with the use of nonparamet-
ric techniques and all of the retained sample variates. In practice, a distribu-
tional specification can be used with appropriate marginal posterior moments
to define it. For example, instead of retaining L random matrix variates of
dimension p× (q+1) for the matrix of regression coefficients, the marginal
posterior mean and covariance matrices are used in a Normal distribution.
This is reasonable since the Conjugate prior and the posterior conditional
distributions for the matrix of Regression coefficients are both Normal.
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6.1.3 Gibbs Sampling Convergence

The Gibbs sampling procedure in the current form was developed [14, 19]
as a way to avoid direct multidimensional integration.

It is well known that the full posterior conditional distributions uniquely
determine the full joint distribution when the random variables have a joint
distribution whose distribution function is strictly positive over the sample
space [13]. Since the posterior conditionals uniquely determine the full joint
distribution, they also uniquely determine the posterior marginals. It was
shown that under mild conditions, the following results are true [14].

Result 1 (Convergence)
The randomly generated variates from the posterior conditional distribu-

tions, (θ̄
(l)
1 , θ̄

(l)
2 , . . . , θ̄

(l)
J ) converge in distribution to the true parameter values

(θ1,θ2, . . . ,θJ ). This convergence is denoted by

(θ̄
(l)
1 , θ̄

(l)
2 , . . . , θ̄

(l)
J )

d→ (θ1,θ2, . . . ,θJ )

and hence for each j, the average of the random variates θ̄
(l)
j converges to its

corresponding parameter value θj which has the distribution p(θj), written as

θ̄
(l)
j

d→ θj ∼ p(θj) as l→∞.

Result 2 (Rate)

Using the sup norm, the joint posterior distribution of (θ̄
(l)
1 , θ̄

(l)
2 , . . . , θ̄

(l)
J ) con-

verges to the true joint posterior distribution p(θ1,θ2, . . . ,θJ ) at a geometric
rate in l, when visiting in order.

Result 3 (Ergodic Theorem)
For any measurable function T of the parameter values (θ̄1, θ̄2, . . . , θ̄J ) whose
expectation exists, the average of the measurable functions of the sample
variates, as the number of sample variates tends toward infinity, converges
almost surely to its expected value. This is expressed as

lim
L→∞

1

L

L
∑

l=1

T (θ̄
(l)
1 , θ̄

(l)
2 , . . . , θ̄

(l)
J )

a.s.→ E(T (θ1,θ2, . . . ,θJ )).

converges almost surely [47] to its expectation.

With these results, we are guaranteed convergence of the Gibbs sampling
estimation method.

6.1.4 Normal Variate Generation

The generation of random variates from Normal distributions is described
in terms of the Matrix Normal distribution with vector and scalar distributions
as special cases. The mathematical symbols here are used generically.
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An n×p random Matrix Normal variate X with mean matrix MX and
covariance matrix Φ⊗Σ can be generated from np independent scalar stan-
dard Normal variates with mean zero and variance one. This is performed
with the following Matrix Normal property.

If YX is an n×p random matrix whose elements are independent standard
Normal scalar variates, written

YX ∼N(0,In⊗ Ip) (6.1.30)

and then using a transformation of variable result [17]

X =AXYXB′
X +MX ∼N(MX ,AXA′

X ⊗BXB′
X), (6.1.31)

where M is the mean matrix, Φ = AXA′
X , and Σ = BXB′

X . The covariance
matrices Σ and Φ have been factorized using a method such as a Cholesky
factorization also called decomposition [32] or a factorization by eigenvalues
and eigenvectors [53].

It was assumed that a method is available to generate standard Normal
scalar variates. If a Normal random variate generation method is not available,
these variates may be generated as follows [5, 22]. Generate two variates y1

and y2 which are Uniform on the unit interval. Define

x1 = (−2logy1)
1
2 cos(2πy2) (6.1.32)

x2 = (−2logy1)
1
2 sin(2πy2). (6.1.33)

Then, x1 and x2 are independent Scalar Normal variates with mean 0 and
variance 1. Now, only a method to generate Uniform random variates on the
unit interval is needed.

6.1.5 Wishart and Inverted Wishart Variate Generation

A p×p random Wishart matrix variateG or a p×p random Inverse Wishart
matrix variate Σ can be generated as follows. By generating a ν0×p standard
Matrix Normal variate YG as above and then using the transformation of
variable result [17], a Wishart distributed matrix variate

Y ′
GYG ∼W (Ip,p,ν0) (6.1.34)

can be generated. Upon using the transformation of variable result [41]

G=AG(Y ′
GYG)A′

G ∼W (AGA
′
G,p,ν0), (6.1.35)

where Υ = AGA
′
G has been factorized using technique such as the Cholesky

factorization [32] or using eigenvalues and eigenvectors [53].
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Inverted Wishart matrix variates can be generated by first generating a
ν0×p standard Matrix Normal variate YΣ as above and then using the trans-
formation of variable result [17]

(Y ′
ΣYΣ)−1 ∼ IW (Ip,p,ν) (6.1.36)

and finally the transformation of variable result [41]

Σ =AΣ(Y
′
ΣYΣ)−1A′

Σ ∼ IW (AΣA
′
Σ,p,ν), (6.1.37)

where ν0 = ν−p−1 and Q=AΣA
′
Σ has been factorized.

If the degrees of freedom ν0 is not an integer, then random Wishart vari-
ates can be generated with the use of independent Gamma (Scalar Wishart)
distributed variates with real valued parameters.

6.1.6 Factorization

In implementing the Gibbs sampling algorithm, matrix factorizations have
to be computed. Two possibilities are the Cholesky and Eigen factorizations.
In the following, assume that we wish to factor the p×p covariance matrix Σ.

6.1.6.1 Cholesky Factorization

Cholesky’s method for factorizing a symmetric positive definite matrix Σ
of dimension p is very straightforward. This factorization Σ = AΣA

′
Σ has the

property that AΣ be a lower triangular matrix. Denote the ijth element of Σ
and AΣ to be σij and aij respectively. Simple formulas [32] for the method
are

a11 =
√
σ11 (6.1.38)

aii =

√

√

√

√σii−
i−1
∑

k=1

a2
ik i= 2, . . . ,n (6.1.39)

ai1 =
σi1
a11

i= 1, . . . ,n (6.1.40)

aij =
1

ajj

(

σij−
j−1
∑

k=1

aikajk

)

i= j+1, . . . ,n;j ≥ 2. (6.1.41)

6.1.6.2 Eigen Factorization

The matrix Σ can also be factorized using eigenvalues and eigenvectors as

Σ = (WD
1
2
θ )(WD

1
2
θ )′ (6.1.42)

= AΣA
′
Σ, (6.1.43)
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where the columns of W are the orthonormal eigenvectors which sequentially
maximize the percent of variation and Dθ is a diagonal matrix with elements
θj which are the eigenvalues.

The vector w1 is now determined to be that vector that maximizes the
variance subject to w′

1w1 = 1. The method of Lagrange multipliers is applied

∂

∂w1
[w′

1Σw1−θ1(w
′
1w1−1)] = 2(Σ−θ1Ip)w1 = 0

and since w1 = 0, there can only be a solution if

|Σ−θ1Ip|= 0.

It is apparent that θ1 must be an eigenvalue of Σ, and w1 is a normalized
eigenvector of Σ. There are p such eigenvalues that satisfy the equation. The
largest is selected. The other rows of W are found in a similar fashion with
the additional constraints that they are orthogonal to the previous ones. For
a more detailed account of the procedure refer to [41]. Previous work [53]
used this Eigen factorization in the context of factorizing separable matrices
Ω = Φ⊗Σ in which the covariance matrices Φ and Σ were patterned with
exact known formulas for computing the eigenvectors and eigenvalues. Only
the eigenvalues and eigenvectors of Φ and Σ were needed and not of Ω.

Occasionally a matrix factorization will be represented as

Σ = (WD
1
2
θ )(WD

1
2
θ )′ (6.1.44)

= (Σ
1
2 )(Σ

1
2 )′ (6.1.45)

or the factorization of an inverse as

Σ−1 = (WD
− 1

2
θ )(WD

−1
2

θ )′ (6.1.46)

= (Σ− 1
2 )(Σ−1

2 )′. (6.1.47)

These are refered to as the square root matrices.

6.1.7 Rejection Sampling

Random variates can also be generated from an arbitrary distribution func-
tion by using the rejection sampling method [16, 40, 48]. Occasionally the
(posterior conditional) distribution of a model parameter is not recognized as
one of the well-known standard distributions from which we can easily gen-
erate random variates. When this is the case, a rejection sampling technique
can be employed.

Assume that we are able to generate a random variate from the distribution
f(x) whose support (range of x values for which the distribution function is
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nonzero) is the same as p(x). If the support of f(x) is not the same as that
of p(x), then a truncated distribution function which restricts the range of
values of f(x) to that of p(x) can be used. Further assume that p(x)≤ cf(x)
for all x and a positive constant c.

The random variate from f(x) can be used to generate a random variate
from p(x). We generate a random variate y0 from f(y) and can retain this
generated variate as being from p(y). The rejection sampling is a simple two
step process [48] which proceeds as follows.

Step 1: Generate a random variate y0 from convenient distribution f(y) and
independently generate u0 from a Uniform distribution on the unit interval.

Step 2: If the Uniform random variate u0 ≤ p(y0)
cf(y0) where c is a constant,

then let x0 = y0. If not repeat step 1.
The retained random variate x0 generated by the above rejection sampling

process is a random variate from p(x). This can be shown to be true in the
following manner.

Denote the retained variate by x0. Let N denote the number of iterations
of the above steps required to retain x0, and yN denote a variate which took
N iterations to be retained. The probability of the retained value x0 being
less than another value x is

P [x0 ≤ x] = P [yN ≤ x]

= P

[

y0 ≤ x|u0 ≤
p(y0)

cf(y0)

]

=
1

k
P

[

y0 ≤ x,u0 ≤
p(y0)

cf(y0)

]

=
1

k

∫ x

−∞

f(y)

∫

p(y)
cf(y)

0

du dy

=
1

k

∫ x

−∞

p(y)

cf(y)
f(y) dy

=
1

kc

∫ x

−∞

p(y) dy, (6.1.48)

where k = P [u0 ≤ p(y0)
cf(y0) ] (the probability of the event on the right side of

the conditioning in the second line of Equation 6.1.48). We can see that by
letting x→∞, k = 1

c . The constant c does not have to be 1
k . In fact, it can

be any number greater than 1
k , but the smaller the value of c, the greater the

probability of retaining a generated random variate.
The above concept is illustrated in the following example.

Example:
Let’s use the rejection sampling technique to generate a random variate

from the Beta distribution
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p(̺) = k̺α−1(1−̺)β−1, (6.1.49)

where α > 1, β > 1, 0 < ̺ < 1, and k is the proportionality constant. Note

that when α and β are integers, k = (α+β−1)!
(α−1)!(β−1)! .

Since the Beta distribution is confined to the unit interval, a good choice
for the convenient distribution from which we can generate random variates
is the Uniform distribution

f(̺) = 1, (6.1.50)

where 0< ̺ < 1.
Without knowing the proportionality constant for p(̺), we can determine

the rejection criteria u0 ≤ p(y0)
cf(y0) of step 2. This is done by finding the maxi-

mum value of

p(̺)

f(̺)
= k̺α−1(1−̺)β−1 (6.1.51)

by differentiation with respect to ̺ which yields

d

d̺

p(̺)

f(̺)
= k[(α−1)̺α−2(1−̺)β−1− (β−1)̺α−1(1−̺)β−2]. (6.1.52)

Upon setting this derivative equal to zero, the maximum is seen to be the
mode of the Beta distribution

α−1

α+β−2
(6.1.53)

which gives

p(̺)

f(̺)
≤ k

(

α−1

α+β−2

)α−1 (

1− α−1

α+β−2

)β−1

= c. (6.1.54)

Therefore the ratio,

p(̺)

cf(̺)
=

[

(

α−1

α+β−2

)α−1 (

1− α−1

α+β−2

)β−1
]−1

̺α−1(1−̺)β−1 (6.1.55)

and the rejection sampling procedure proceeds as follows.

Step 1: Generate random Uniform variates u1 and u2.
Step 2: If

u2 ≤
[

(

α−1

α+β−2

)α−1 (

1− α−1

α+β−2

)β−1
]−1

uα−1
1 (1−u1)

β−1, (6.1.56)
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then let the retained random variate from p(̺) be x0 = u1. If not repeat step
1.

The average number of times that step 1 will be performed is c given above.
Thus, the smaller the value of c, the fewer times step 1 will be performed on
average.

The rejection sampling procedure can be generalized to a Multivariate for-
mulation to generate random vectors [40].

6.2 Maximum a Posteriori

The joint posterior distribution may also be jointly maximized with re-
spect to the parameters. If again θ = (θ1, . . . ,θJ ), then maximum a posteriori
(MAP) estimators (the analog of maximum likelihood estimators for posterior
distributions) can be found by differentiation.

To determine joint maximum a posteriori estimators, differentiate the joint
posterior distribution

p(θ1, . . . ,θJ |X) (6.2.1)

with respect to each of the parameters, set the result equal to zero as

∂

∂θ1
p(θ1, . . . ,θJ |X)

∣

∣

∣θ1=θ̂1,...,θJ=θ̂J
= · · · ∂

∂θJ
p(θ1, . . . ,θJ |X)

∣

∣

∣θ1=θ̂1,...,θJ=θ̂J
= 0,

(6.2.2)

and solve the resulting system of J equations with J unknowns to find the
joint maximum a posteriori estimators

θ̂j =
Arg Max

θj p(θj |θ̂1, . . . , θ̂J ,X) (6.2.3)

= θ̂j(θ̂1, . . . , θ̂J ,X) (6.2.4)

for each of the parameters. In addition to the joint posterior modal estimates,
conditional maximum a posteriori quantities such as variances can also be
found as

var(θj |θ̂1, . . . , θ̂J ,X) =

∫

(θj− θ̄j)
2p(θj |θ̂1, . . . , θ̂J ,X) dθj , (6.2.5)

where θ̄j is the conditional posterior mean which is often the mode.
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6.2.1 Matrix Differentiation

When determining maxima of scalar functions of matrices by differentia-
tion, the logarithm and trace are often used because maximizing a function
is equivalent to maximizing its logarithm due to monotonicity. Some matrix
(vector) derivative results that are often used [18, 41, 46] are

1. For general θ, |θ|> 0,
∂
∂θ log |θ|= (θ−1)′.

2. For symmetric θ = θ′, |θ|> 0,
∂
∂θ log |θ|= [2θ−1−diag(θ−1)].

3. For general A and θ, |θ|> 0,
∂
∂θ tr

(

θ−1A
)

=−θ−1Aθ−1.

4. For symmetric A=A′ and θ = θ′, |θ|> 0,
∂
∂θ tr (θA) =−[2A−1−diag(A−1)].

5. For symmetric A=A′, A : q×q, B=B′, B : p×p, and general θ,θ0 : p×q,
then ∂

∂θ tr [A(θ−θ0)
′B(θ−θ0)] = 2B(θ−θ0)A.

where diag(·) denotes the diagonalization operator which forms a diagonal
matrix consisting only of the diagonal elements of its matrix argument and θ
has been used generically to denote either a matrix, a vector, or a scalar.

To verify that these estimators are maxima and not minima, the Hessian
matrix of second derivatives is computed. If the Hessian matrix is negative
definite, then the estimators are maxima and not minima.

6.2.2 Iterated Conditional Modes (ICM)

Iterated Conditional Modes [36, 40] is a deterministic optimization method
that finds the joint posterior modal estimators also known as the maximum a
posteriori estimates of p(θ|X) where θ denotes the collection of scalar, vector,
or matrix parameters, and X denotes the data. It is useful when the system of
J equations from differentiation does not yield closed form analytic equations
for each of the maxima.

Assume that θ = (θ1,θ2) where θ1 and θ2 are scalars and the posterior
distribution of θ is p(θ1,θ2|X). We have a surface in 3-dimensional space.
We have θ1 along one axis and θ2 along the other with p(θ1,θ2|X) being the
height of the surface or hill.

We want to find the top of the hill which is the same as finding the peak
or maximum of the function p(θ1,θ2|X) with respect to both θ1 and θ2. As
usual, the maximum of a surface is found by differentiating with respect to
each variable (direction) and setting the result equal to zero.

The maximum of the function p(θ1,θ2|X) with respect to each of the vari-
ables are

© 2003 by Chapman & Hall/CRC



θ̃
(l+1)
1 =

Arg Max

θ1 p(θ1|θ̃(l)
2 ,X) (6.2.6)

= θ̃1(θ̃
(l)
2 ,X) (6.2.7)

θ̃
(l+1)
2 =

Arg Max

θ2 p(θ2|θ̃(l+1)
1 ,X) (6.2.8)

= θ̃2(θ̃
(l+1)
1 ,X) (6.2.9)

which satisfies

∂

∂θ1
p(θ1,θ2|X)

∣

∣

∣θ1=θ̃1
=

∂

∂θ2
p(θ1,θ2)

∣

∣

∣θ2=θ̃2
= 0, (6.2.10)

which is the same as

∂

∂θ1
p(θ1|θ2,X)p(θ2|X)

∣

∣

∣θ1=θ̃1
=

∂

∂θ2
p(θ2|θ1,X)p(θ1|X)

∣

∣

∣θ2=θ̃2
= 0 (6.2.11)

or

p(θ2|X)
∂

∂θ1
p(θ1|θ2,X)

∣

∣

∣θ1=θ̃1
= p(θ1|X)

∂

∂θ2
p(θ2|θ1,X)

∣

∣

∣θ2=θ̃2
= 0 (6.2.12)

assuming that p(θ1|X) = 0 and p(θ2|X) = 0.
We can obtain the posterior conditionals (functions) p(θ1|θ2,X) and p(θ2|θ1,X)

along with their respective modes (maximum) θ̃1 = θ̃1(θ2,X) and θ̃2 = θ̃2(θ1,X).
We have the maximum of θ1, θ̃1 for a given value of (conditional on) θ2,

and the maximum of θ2, θ̃2 for a given value of (conditional on) θ1.

The optimization procedure consists of

1. Select an initial value for θ2; call it θ̃
(0)
2 .

2. Calculate the modal (maximal) value of p(θ1|θ̃(0)
2 ,X), θ̃

(1)
1 .

3. Calculate the modal (maximal) value of p(θ2|θ̃(1)
1 ,X), θ̃

(1)
2 .

4. Continue to calculate the remainder of the sequence θ̃
(1)
1 , θ̃

(1)
2 , θ̃

(2)
1 , θ̃

(2)
2 , . . .

until convergence is reached.

If the posterior conditional distributions are not unimodal, we may converge
to a local maximum and not the global maximum. If each of the posterior
conditionals are unimodal, then the Hessian matrix is negative definite and
the converged maximum is always the global maximum.

When convergence is reached, the point estimators (θ̃1, θ̃2) are the maximum
a posteriori estimators.
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This method can be generalized to more than two parameters [40]. If θ is
partitioned by θ = (θ1,θ2, . . . ,θJ ) into J groups of parameters, we begin with

a starting point θ̃(0) = (θ̃
(0)
1 , θ̃

(0)
2 , . . . , θ̃

(0)
J ) and at the lth iteration define θ̃(l+1)

by

θ̃
(l+1)
1 =

Arg Max

θ1 p(θ1|θ̃(l)
2 , . . . , θ̃

(l)
J ,X) (6.2.13)

= θ̃1(θ̃
(l)
2 , θ̃

(l)
3 , . . . , θ̃

(l)
J ,X) (6.2.14)

θ̃
(l+1)
2 =

Arg Max

θ2 p(θ2|θ̃(l+1)
1 , θ̃

(l)
3 , . . . , θ̃

(l)
J ,X) (6.2.15)

= θ̃2(θ̃
(l+1)
1 , θ̃

(l)
3 , . . . , θ̃

(l)
J ,X) (6.2.16)

...

θ̃
(l+1)
J =

Arg Max

θJ p(θJ |θ̃(l+1)
1 , . . . , θ̃

(l+1)
J−1 ,X) (6.2.17)

= θ̃1(θ̃
(l+1)
2 , θ̃

(l+1)
3 , . . . , θ̃

(l+1)
J−1 ,X) (6.2.18)

at each step computing the maximum or mode. To apply this method we
need to determine the functions θ̃j which give the maximum of p(θ|X) with
respect to θj , conditional on the fixed values of all the other elements of θ.

6.3 Advantages of ICM over Gibbs Sampling

We will show that when Φ is a general symmetric covariance matrix (or
known), each of the posterior conditional distributions are unimodal. Thus
we do not have to worry about local maxima; we will find global maxima.
The reason one would use a stochastic procedure like Gibbs sampling over a
deterministic procedure like ICM is to eliminate the possibility of converging
to a local mode when the conditional posterior distribution is multimodal.

ICM is slightly simpler to implement than Gibbs and less computationally
intensive because Gibbs sampling requires generation of random variates from
the conditionals which includes matrix factorizations. ICM simply has to cycle
through the posterior conditional modes and convergence is not uncertain as
it is with Gibbs sampling. With ICM, we can check for convergence, say every

1000 iterations, by computing the difference between θ
(1000l)
j and θ

(1000(l+1))
j

for every j, and if each element is the same to the third decimal, we can claim
convergence and stop. This reduces computation time.

ICM should be implemented cautiously when Φ is a correlation matrix
such as a first order Markov or an intraclass matrix with a single unknown
parameter. The posterior conditional is not necessarily unimodal. ICM might
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converge to a local maxima. This could however be combated by an exhaustive
search over the entire interval for which the single parameter is defined.

6.4 Advantages of Gibbs Sampling over ICM

When the posterior conditionals are not recognizable as unimodal distri-
butions, we might prefer to use a stochastic procedure like Gibbs sampling
to eliminate the possibility of converging to a local maxima. Although Gibbs
sampling is more computationally intensive than ICM, it is a more general
method and gives us more information such as marginal posterior point and
interval estimates. Gibbs sampling allows us to make inferences regarding a
parameter unconditional of the other parameters.
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Exercises

1. Use the following 12 independent random Uniform variates in the inter-
val (0,1) to generate 12 independent random N(0,1) variates.

TABLE 6.1

Twelve independent random Uniform variates.

0.9501 0.4565 0.2311 0.0185 0.6068 0.8214
0.4860 0.4447 0.8913 0.6154 0.7621 0.7919

2. Compute the Cholesky factorization AΣA
′
Σ of the positive definite sym-

metric covariance matrix

Σ =





2 0 1
0 4 2
1 2 3



 .

3. Using the first three independent random Scalar Normal variates (N(0,1)’s)
from Exercise 1, generate a 3-dimensional random Multivariate Normal
vector valued variate x with mean vector and covariance matrix

µ=





5
3
7



 Σ =AΣA
′
Σ,

where AΣ is computed from Exercise 2 above.

4. Compute the Eigen factorization AΣA
′
Σ of

Q=





100 10 10
10 100 10
10 10 100



 .

5. Using the last nine independent random Scalar Normal variates (N(0,1)’s)
from Exercise 1, generate a random 3×3 Inverse Wishart matrix vari-
ate Σ with scale matrix Q=AΣA

′
Σ given in Exercise 4 above and ν = 5

degrees of freedom.

6. Using the first two independent Uniformly distributed random variates
in Exercise 1, generate a random variate from a B(α= 2,β = 2) distri-
bution by using the rejection sampling technique.
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7. Assume that we have a posterior distribution

p(µ,σ2|x1, . . . ,xn)∝ (σ2)
n+ν+1

2 e
− g

2σ2 ,

where

g =
n∑

i=1

(xi − x̄)2+(µ−µ0)
2+ q.

Derive an ICM algorithm for obtaining joint maximum a posteriori es-
timates of µ and σ2.

© 2003 by Chapman & Hall/CRC



7

Regression

7.1 Intro duction

The purpose of this Chapter is to quickly review the Classical Multivariate
Regression model before the presentation of Multivariate Bayesian Regression
in Chapter 8. This is accomplished by a build up which starts with the Scalar
Normal Samples model through to the Simple and Multiple Regression models
and finally to the Multivariate Regression model. For each model, estimation
and inference is discussed. This is fundamental knowledge which is essential
to successfully understanding Part II of the text.

7.2 Normal Samples

Consider the following independent and identically distributed random
variables x1, . . . ,xn from a Scalar Normal distribution with mean µ and vari-
ance σ2 denoted by N(µ,σ2). This model can be written in terms of a linear
model similar to Regression. This is identical to the linear model

xi = µ + ǫi, (7.2.1)

where ǫi is the Scalar Normally distributed random error with mean zero and
variance σ2 denoted

ǫi ∼ N(0,σ2) (7.2.2)

for i = 1, . . . ,n. The joint distribution of the variables or likelihood is

p(x1, . . . ,xn|µ,σ2) =

n∏

i=1

p(xi|µ,σ2)

=

n∏

i=1

(2πσ2)−
1
2 e

−
(xi−µ)

2

2σ2
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= (2πσ2)−
n
2 e

− 1
2σ2

∑n
i=1(xi−µ)2

. (7.2.3)

This model can also be written in terms of vectors

x =






x1
...

xn




 , en =






1
...
1




 , ǫ =






ǫ1
...

ǫn




 , (7.2.4)

so that the model is

x = en µ + ǫ,
n×1 n×1 1×1 n×1

(7.2.5)

and likelihood is

p(x|µ,σ2) = (2πσ2)−
n
2 e

−
(x−enµ)

′(x−enµ)

2σ2 , (7.2.6)

where “ ′ ” denotes the transpose.
The natural logarithm of p(x|µ,σ2) can be taken and differentiated with

respect to scalars µ and σ2 in order to obtain values which maximize the
likelihood. These are maximum likelihood estimates. However, some algebra
on the exponent can also be performed to find the value of µ which yields the
maximal value of this likelihood.

(x−enµ)′(x−enµ) = x′x−x′µen −e′nµx+µe′nenµ

= µ[e′nenµ−e′nx]−x′enµ+x′x

= µ(e′nen)[µ− (e′nen)
−1e′nx]−x′enµ+x′x

= µ(n)[µ− (n)−1e′nx]−x′enµ+x′x

= µ(n)[µ− µ̂]− (n)µ̂µ+x′x

= (µ− µ̂)(n)(µ− µ̂)+(n)µ̂µ− µ̂(n)µ̂− (n)µ̂µ+x′x

= (µ− µ̂)(n)(µ− µ̂)− µ̂(n)µ̂+x′x

= (µ− µ̂)(n)(µ− µ̂)− (n)−1x′ene′nx+x′x

= (µ− µ̂)(n)(µ− µ̂)+x′(In −ene′n/n)x, (7.2.7)

where µ̂ = (n)−1x′en = x̄. This could have been written with the vector gen-
eralization µ′ but was not since µ′ = µ.

The likelihood is now

p(x|µ,σ2) = (2πσ2)−
n
2 e

− 1
2σ2

[n(µ−µ̂)2+x′

[
In−

ene
′

n
n

]
x]

. (7.2.8)

It is now obvious that the value of the mean µ which maximizes the likeli-
hood or minimizes the exponent in the likelihood is µ̂ = x̄.
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Upon differentiating the natural logarithm of the likelihood denoted by
LL = log[p(x|µ,σ2)] with respect to σ2, then evaluating it at the maximal
values of the parameters, and setting it equal to zero

∂

∂σ2
LL

∣
∣
∣
∣
µ=µ̂,σ2=σ̂2

= 0, (7.2.9)

we obtain the maximum likelihood estimate of the variance σ2,

σ̂2 =
(x−enµ̂)′(x−enµ̂)

n
. (7.2.10)

Consider the numerator of the estimate σ̂2.

NUM = (x−enµ̂)′(x−enµ̂)

= x′x−x′enµ̂− (enµ̂)′x+(enµ̂)′(enµ̂)

= µ̂′[e′nenµ̂−e′nx]−x′enµ̂+x′x

= µ̂′(e′nen)[µ̂− (e′nen)
−1e′nx]−x′enµ̂+x′x

= µ̂′(n)[µ̂− (n)−1e′nx]−x′enµ̂+x′x

= [µ̂− (n)−1e′nx]′(n)[µ̂− (n)−1e′nx]+ (n)−1x′en(n)µ̂

−(n)−1x′en(n)(n)
−1e′nx−x′enµ̂+x′x

= x′

[

In −
ene′n

n

]

x. (7.2.11)

This is exactly the g term in the likelihood. Now the likelihood can be
written as

p(x|µ,σ2) = (2πσ2)−
n
2 e

− 1
2σ2

[n(µ−µ̂)2+g]
. (7.2.12)

In the likelihood for Normal observations as written immediately above, if
the normalization coefficients are ignored by using proportionality, it can be
partitioned and viewed as a joint distribution of µ̂ and g. This then becomes

p(µ̂,g|µ,σ2) ∝ (σ2)−
1
2 e

−
(µ̂−µ)2

2σ2/n (σ2)−
n−1

2 g
n−1−2

2 e
− g

2σ2

=
e
−

(µ̂−µ)2

2σ2/n

(2πσ2/n)
1
2

︸ ︷︷ ︸

µ̂|µ,σ2∼N(µ,σ2/n)

(σ2)−
n−1

2 g
n−1−2

2 e
− g

2σ2

Γ
(

n−1
2

)
2
n−1

2

︸ ︷︷ ︸

g|σ2∼W (σ2,1,n−1)

. (7.2.13)
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It should be noted that the estimates of the mean µ̂ and the variance σ̂2 are
independent by the Neyman factorization criterion [22, 47]. This is proven by
showing that

p(µ̂,g|µ,σ2) = p(µ̂|µ,σ2)p(g|µ,σ2). (7.2.14)

If the joint distribution p(µ̂,g|µ,σ2) is integrated with respect to g, then

p(µ̂|µ,σ2) =

∫

p(µ̂,g|µ,σ2) dg

=

∫
e
−

(µ̂−µ)2

2σ2/n

(2πσ2/n)
1
2

(σ2)−
n−1

2 g
n−1−2

2 e
− g

2σ2

Γ
(

n−1
2

)
2
n−1

2

dg

=
e
−

(µ̂−µ)2

2σ2/n

(2πσ2/n)
1
2

∫
(σ2)−

n−1
2 g

n−1−2
2 e

− g

2σ2

Γ
(

n−1
2

)
2
n−1

2

dg

=
e
−

(µ̂−µ)2

2σ2/n

(2πσ2/n)
1
2

, (7.2.15)

and thus,

µ̂|µ,σ2 ∼ N
(
µ,σ2/n

)
. (7.2.16)

If the joint distribution p(µ̂,g|µ,σ2) is integrated with respect to µ̂, then

p(g|σ2) =

∫

p(µ̂,g|µ,σ2) dµ̂

=

∫
e
−

(µ̂−µ)2

2σ2/n

(2πσ2/n)
1
2

(σ2)−
n−1

2 g
n−1−2

2 e
− g

2σ2

Γ
(

n−1
2

)
2
n−1

2

dµ̂

=
(σ2)−

n−1
2 g

n−1−2
2 e

− g

2σ2

Γ
(

n−1
2

)
2
n−1

2

∫
e
−

(µ̂−µ)2

2σ2/n

(2πσ2/n)
1
2

dµ̂

=
(σ2)−

n−1
2 g

n−1−2
2 e

− g

2σ2

Γ
(

n−1
2

)
2
n−1

2

, (7.2.17)

and thus,

g|σ2 ∼ W (σ2,1,n−1). (7.2.18)
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The joint distribution of µ and g is equal to the product of their marginal
distributions. Note that g/σ2 has the familiar Chi-squared distribution with
n−1 degrees of freedom.

By changing variables from µ̂ and g to t = (n− 1)
1
2 g−1/2n

1
2 (µ̂− µ) and

w = g, the joint distribution of t and w becomes

p(t,w|µ,σ2) =
(σ2)−

n
2 w

n−2
2 e

− w
2σ2

(
t2

n−1+1
)

[(n−1)π]
1
2Γ

(
n−1
2

)
2
n
2

(7.2.19)

where the Jacobian of the transformation was

J(µ̂,g → t,w) = (n−1)−
1
2 w

1
2 n− 1

2 . (7.2.20)

Now integrate with respect to w to find the distribution of t (unconditional
on w). This is done by making the integrand look like the Scalar Wishart
distribution. It is seen that the integrand needs to be multiplied and divided
by the same factor.

p(t|µ) =

∫

p(t,w|µ,σ2) dw

∝

∫

(σ2)−
n
2 w

n−2
2 e

− w
2σ2

(
t2

n−1+1
)

dw

∝

(
t2

n−1
+1

)−n2
∫ (

t2

n−1
+1

)n
2

(σ2)−
n
2 w

n−2
2 e

− w
2σ2

(
t2

n−1+1
)

dw

∝

(
t2

n−1
+1

)−n2

(7.2.21)

and now transforming back while taking g to be known

p(µ̂|µ,g) ∝
[

1+ng−1 (µ̂−µ)2
]−n2

∝



1+
1

n−1

(

µ̂−µ

σ̂/
√

(n−1)

)2




−n2

∝



1+
1

n−1

(

µ̂−µ

σ̂/
√

(n−1)

)2




−
(n−1)+1

2

. (7.2.22)

Recall the Scalar Student t-distribution in the statistical distribution Chapter.
The estimate of the mean µ̂ given the estimated variance has the familiar
Scalar Student t-distribution with n−1 degrees of freedom.
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7.3 Simple Linear Regression

The Simple Linear Regression model is

xi = β0+β1ui1+ ǫi (7.3.1)

where ǫi is the Scalar Normally distributed random error term with mean zero
and variance σ2,

ǫi ∼ N(0,σ2) (7.3.2)

for i = 1, . . . ,n. The joint distribution of the variables or likelihood is

p(x1, . . . ,xn|β0,β1,σ
2,u11, . . . ,un1) =

n∏

i=1

p(xi|β0,β1,σ
2,ui1)

=
n∏

i=1

(2πσ2)−
1
2 e

−
(xi−β0−β1ui1)2

2σ2

= (2πσ2)−
n
2 e

− 1
2σ2

∑n
i=1(xi−β0−β1ui1)

2

.

(7.3.3)

This can be written in terms of vectors and matrices

x=






x1
...

xn




 , ui =

(
1

ui1

)

, U =






u′
1
...

u′
n




 , β =

(
β0
β1

)

, ǫ=






ǫ1
...
ǫn




 , (7.3.4)

so that the model is

x = U β + ǫ
n×1 n×2 2×1 n×1

(7.3.5)

and the likelihood is

p(x|β,σ2,U) = (2πσ2)−
n
2 e

−
(x−Uβ)′(x−Uβ)

2σ2 . (7.3.6)

The natural logarithm of p(x|β,σ2,U) can be taken and differentiated with
respect to the vector β and the scalar σ2 in order to obtain values of β and
σ2 which maximize the likelihood. These are maximum likelihood estimates.
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However, some algebra on the exponent can also be performed to find the
value of β which yields the maximal value of this likelihood.

(x−Uβ)′(x−Uβ) = x′x−x′Uβ−β′U ′x+β′U ′Uβ

= β′[U ′Uβ−U ′x]−x′Uβ+x′x

= β′(U ′U)[β− (U ′U)−1U ′x]−x′Uβ+x′x

= β′(U ′U)(β− β̂)−x′Uβ+x′x

= (β′− β̂′)(U ′U)(β− β̂)+ β̂′(U ′U)(β− β̂)

−x′Uβ+x′x

= (β− β̂)′(U ′U)(β− β̂)+ β̂′(U ′U)β− β̂′(U ′U)β̂

−x′Uβ+x′x

= (β− β̂)′(U ′U)(β− β̂)+x′U(U ′U)−1(U ′U)β

−x′U(U ′U)−1(U ′U)(U ′U)−1U ′x−x′Uβ +x′x

= (β− β̂)′(U ′U)(β− β̂)

−x′U(U ′U)−1(U ′U)(U ′U)−1U ′x+x′x

= (β− β̂)′(U ′U)(β− β̂)

+x′[In −U(U ′U)−1U ′]x, (7.3.7)

where β̂ = (U ′U)−1U ′x.
The likelihood is now

p(x|β,σ2,U) = (2πσ2)−
n
2 e

− 1
2σ2

{(β−β̂)′(U ′U)(β−β̂)+x′[In−U(U ′U)−1U ′]x}.
(7.3.8)

It is now obvious that the value of β which maximizes the likelihood or
minimizes the exponent in the likelihood is β̂ = (U ′U)−1U ′x.

Upon differentiating the natural logarithm of the likelihood denoted by
LL = log[p(x|β,σ2,U)] with respect to σ2, then evaluating it at the maximal
values of the parameters, and setting it equal to zero

∂

∂σ2
LL

∣
∣
∣
∣
β=β̂,σ2=σ̂2

= 0, (7.3.9)

we obtain

σ̂2 =
(x−Uβ̂)′(x−Uβ̂)

n
. (7.3.10)

Consider the numerator of the estimate σ̂2.
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NUM = (x−Uβ̂)′(x−Uβ̂)

= x′x−x′Uβ̂− β̂′U ′x+ β̂′U ′Uβ̂

= β̂′(U ′Uβ̂−U ′x)−x′Uβ̂+x′x

= β̂′(U ′U)(β̂− (U ′U)−1U ′x)−x′U ˆβBeta+x′x

= (β̂− (U ′U)−1U ′x)′(U ′U)(β̂− (U ′U)−1U ′x)

+x′U(U ′U)−1(U ′U)β̂−x′U(U ′U)−1(U ′U)(U ′U)−1U ′x

−x′Uβ̂+x′x

= x′x−x′U(U ′U)−1U ′x

= x′[In −U(U ′U)−1U ′]x, (7.3.11)

This is exactly the g term in the likelihood. Now let’s write the likelihood
as

p(x|β,σ2,U) = (2πσ2)−
n
2 e

− 1
2σ2

[(β−β̂)′(U ′U)(β−β̂)+g]
, (7.3.12)

where g = (x−Uβ̂)′(x−Uβ̂).
In the likelihood for the simple linear regression model as written immedi-

ately above, if the normalization coefficients are ignored by using proportion-
ality, it can be partitioned and viewed as a joint distribution of β̂ and g. This
then becomes

p(β̂,g|β,σ2) ∝ (σ2)−
(q+1)

2 e
−

(β−β̂)′(U′U)(β−β̂)

2σ2 (σ2)−
n−(q+1)

2 g
n−(q+1)−2

2 e
− g

2σ2

=
|σ2(U ′U)−1|

1
2

(2π)
(q+1)

2

e
−

(β−β̂)′(U′U)(β−β̂)

2σ2

︸ ︷︷ ︸

β̂|β,σ2∼N(β,σ2(U ′U)−1)

×
(σ2)−

n−(q+1)
2 g

n−(q+1)−2
2 e

− g

2σ2

Γ
(

n−(q+1)
2

)

2
n−(q+1)

2

︸ ︷︷ ︸

g|σ2∼W(σ2,1,n−(q+1))

, (7.3.13)

where q which is unity is generically used.
It should be noted that the estimates of the vector of regression coefficients

β̂ and the variance σ̂2 are independent by the Neyman factorization criterion
[22, 47]. This is proven by showing that

p(β̂,g|β,σ2) = p(β̂|β,σ2)p(g|β,σ2). (7.3.14)
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If the joint distribution p(β̂,g|β,σ2) is integrated with respect to g, then

p(β̂|β,σ2) =

∫

p(β̂,g|β,σ2) dg

=

∫
|σ2(U ′U)−1|

1
2

(2π)
(q+1)

2

e
−

(β−β̂)′(U′U)(β−β̂)

2σ2

×
(σ2)−

n−(q+1)
2 g

n−(q+1)−2
2 e

− g

2σ2

Γ
(

n−(q+1)
2

)

2
n−(q+1)

2

dg

=
|σ2(U ′U)−1|

1
2

(2π)
(q+1)

2

e
−

(β−β̂)′(U′U)(β−β̂)

2σ2

×

∫
(σ2)−

n−(q+1)
2 g

n−(q+1)−2
2 e

− g

2σ2

Γ
(

n−(q+1)
2

)

2
n−(q+1)

2

dg

=
|σ2(U ′U)−1|

1
2

(2π)
(q+1)

2

e
−

(β−β̂)′(U′U)(β−β̂)

2σ2 , (7.3.15)

and thus,

β̂|β,σ2 ∼ N
(
β,σ2(U ′U)−1

)
. (7.3.16)

If the joint distribution p(β̂,g|β,σ2) is integrated with respect to β̂, then

p(g|σ2) =

∫

p(β̂,g|β,σ2) dβ̂

=

∫
|σ2(U ′U)−1|

1
2

(2π)
(q+1)

2

e
−

(β−β̂)′(U′U)(β−β̂)

2σ2

×
(σ2)−

n−(q+1)
2 g

n−(q+1)−2
2 e

− g

2σ2

Γ
(

n−(q+1)
2

)

2
n−(q+1)

2

dβ̂

=
(σ2)−

n−(q+1)
2 g

n−(q+1)−2
2 e

− g

2σ2

Γ
(

n−(q+1)
2

)

2
n−(q+1)

2

×

∫
|(U ′U)−1|

1
2

(2πσ2)
(q+1)

2

e
−

(β−β̂)′(U′U)(β−β̂)

2σ2 dβ̂

=
(σ2)−

n−(q+1)
2 g

n−(q+1)−2
2 e

− g

2σ2

Γ
(

n−(q+1)
2

)

2
n−(q+1)

2

, (7.3.17)
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and thus,

g|σ2 ∼ W
(
σ2,1,n− (q+1)

)
. (7.3.18)

The joint distribution of β̂ and g is equal to the product of their marginal
distributions. Note that g/σ2 has the familiar Chi-squared distribution with
n− (q+1) degrees of freedom.

By changing variables from β̂ and g to t= [n−(q+1)]
1
2 g−1/2(U ′U)

1
2 (β̂−β)

and w = g, the joint distribution of t and w becomes

p(t,w|β,σ2) =
(σ2)−

n
2 w

n−2
2 e

− w
2σ2

[
t′t

n−(q+1)
+1

]

[(n− (q+1))π]
1
2Γ

(
n−(q+1)

2

)

2
n
2

, (7.3.19)

where the Jacobian of the transformation was

J(β̂,g → t,w) = [n− (q+1)]−
(q+1)

2 w
(q+1)

2 |U ′U |−
1
2 . (7.3.20)

Now integrate with respect to w to find the distribution of t (unconditional
on w). This is done by making the integrand look like the Scalar Wishart
distribution. It is seen that the integrand needs to multiplied and divided by
the same factor.

p(t|β) =

∫

p(t,w|β,σ2) dw

∝

∫

(σ2)−
n
2 w

n−(q+1)
2 e

− w
2σ2

(
t′t

n−(q+1)
+1

)
dw

∝

(
t′t

n− (q+1)
+1

)−n2

×

∫ (
t′t

n− (q+1)
+1

)n
2

w
n−2

2 e
− w

2σ2

(
t′t

n−(q+1)
+1

)
dw

∝

(
t′t

n− (q+1)
+1

)−n2

(7.3.21)

and now transforming back while taking g to be known

p(β̂|β,g)∝

[
g

n−(q+1) (U
′U)

]− 1
2

{

1+ 1
n−(q+1)

(

β̂−β
)′ [

g
n−(q+1) (U

′U)−1
]−1(

β̂−β
)}

n
2

. (7.3.22)
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Recall the Multivariate Student t-distribution in the statistical distribution
Chapter. The estimate of the vector of regression coefficients β̂ has the familiar
Multivariate Student t-distribution with n− (q+1) degrees of freedom.

7.4 Multiple Linear Regression

Similarly, the multiple Regression model

xi = β0+β1ui1+ · · ·+βquiq + ǫi, (7.4.1)

where ǫi is the Scalar Normally distributed random error with mean zero and
variance σ2,

ǫi ∼ N(0,σ2) (7.4.2)

for i = 1, . . . ,n. The joint distribution of these variables or likelihood is

p(x1, . . . ,xn|β,σ2,U) =
n∏

i=1

f(xi|β,σ2,ui)

=

n∏

i=1

(2πσ2)−
1
2 e

−
(xi−β0−β1ui1−···−βquiq)

2

2σ2

= (2πσ2)−
n
2 e

− 1
2σ2

∑n
i=1(xi−β0−β1ui1−···−βquiq)

2

.

(7.4.3)

This model can also be written in terms of vectors and matrices

x=






x1
...

xn




 , ui =








1
ui1

...
uiq








, U =






u′
1
...

u′
n




 , β =






β0
...

βq




 , ǫ=






ǫ1
...
ǫn




 , (7.4.4)

so that the model is

x = U β + ǫ
n×1 n× (q+1) (q+1)×1 n×1

(7.4.5)

and the likelihood is
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p(x|β,σ2,U) = (2πσ2)−
n
2 e

−
(x−Uβ)′(x−Uβ)

2σ2 . (7.4.6)

The value of β which maximizes the likelihood can be found the same way
as before, namely, β̂ = (U ′U)−1U ′x. The value of σ2 that makes the likelihood
a maximum can also be found, namely, σ2 = σ̂2 which is defined as before.

By the Neyman factorization criterion [22, 47], β̂ and σ̂2 are independent
in a similar way as in the Normal Samples and simple linear Regression mod-
els. Also in a similar way as in the Normal Samples model and the simple
linear Regression model, the distribution of β̂|β,σ2, g|σ2, and β̂|β can also be
similarly found.

7.5 Multivariate Linear Regression

The Multivariate Regression model is a generalization of the multiple Re-
gression model to vector valued dependent variable observations.

Previously for the simple linear Regression, (xi,ui) pairs were observed,
i = 1, . . . ,n, where xi was a scalar but ui was a (1+ 1) dimensional vector
containing a 1 and an observable u, ui1. We adopted the model

xi = β′ui + ǫi (7.5.1)

which was adopted where

β =

(
β0
β1

)

, ui =

(
1

ui1

)

, (7.5.2)

and then fit a simple line to the data.
In the multiple Regression model, (xi,ui) pairs were observed, i = 1, . . . ,n

where xi was a scalar but ui was a (q+1) dimensional vector containing a 1
and q observable u’s, ui1, . . . ,uiq. The model is

xi = β′ ui + ǫi

1×1 1× (q+1) (q+1)×1 1×1
(7.5.3)

which was adopted where

β =






β0
...

βq




 , ui =








1
ui1

...
uiq








, (7.5.4)
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and then fit a line in space to the data.
In the Multivariate Regression model, (xi,ui) pairs are observed, i=1, . . . ,n

where xi is a p-dimensional vector and ui is a (q + 1)-dimensional vector
containing a 1 and q observable u’s, ui1, . . . ,uiq. The model

xi = B ui + ǫi

p×1 p× (q+1) (q+1)×1 p×1
(7.5.5)

where ui is as in the multiple Regression model and

xi =






xi1

...
xip




 , βj =






βj0

...
βjq




 , B =






β′
1
...

β′
p




 , ǫi =






ǫi1

...
ǫip




 . (7.5.6)

Taking a closer look at this model,






xi1

...
xip




 =






β10 . . . β1q

...
βp0 . . . βpq













1
ui1

...
uiq








+






ǫi1

...
ǫip




 ,

p×1 p× (q+1) (q+1)×1 p×1

(7.5.7)

which means that for each observation, which is a row in the left-hand side of
the model, there is a Regression. Each row has its own Regression complete
with its own set of Regression coefficients.

Just like in the simple and multiple Regression models, we specify that the
errors are normally distributed. However, the Multivariate Regression model
has vector-valued observations and vector-valued errors. The error vector ǫi

has a Multivariate Normal distribution with a zero mean vector and positive
definite covariance matrix Σ

ǫi ∼ N(0,Σ) (7.5.8)

for i = 1, . . . ,n. The resulting distribution for a given observation vector has
a Multivariate Normal distribution

p(xi|B,Σ,ui) = (2π)−
p
2 |Σ|−

1
2 e−

1
2 (xi−Bui)

′Σ−1(xi−Bui), (7.5.9)

because the Jacobian of the transformation is unity.
Note: If each of the elements of vector xi were independent, then Σ would

be diagonal. Since we assume that each variable has its own distinct error
term (i.e., its own σ2

j = Σjj), Σ = diag(σ2
1 , . . . ,σ

2
p) and p(xi|B,Σ,ui) break

down into
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p(xi|B,Σ,ui) = p(xi1, . . . ,xip|β,σ2,ui)

=

p
∏

j=1

p(xij |βj ,σ
2
j ,uij). (7.5.10)

This is what we would get if we just collected independent observations from
the multiple Regression model. This means add a subscript j to the multi-
ple Regression model for each of the j = 1, . . . ,p variables and collect them
together.

Returning to the vector-valued observations with dependent elements, we
have observations for i = 1, . . . ,n whose likelihood is

p(x1, . . . ,xn|B,Σ,U) =
n∏

i=1

p(xi|B,Σ,U)

=
n∏

i=1

(2π)−
p
2 |Σ|−

1
2 e−

1
2 (xi−Bui)

′Σ−1(xi−Bui)

= (2π)−
np
2 |Σ|−

n
2 e−

1
2

∑n
i=1(xi−Bui)

′Σ−1(xi−Bui).

(7.5.11)

If all of the n observation and error vectors on p variables are collected
together as

X =






x′
1
...

x′
n




 , U =






u′
1
...

u′
n




 , E =






ǫ′1
...

ǫ′n




 , (7.5.12)

then the model can be written as

X = U B′ + E
n×p n× (q+1) (q+1)×p n×p

(7.5.13)

and the likelihood

p(X|B,Σ,U) = (2π)−
np
2 |Σ|−

n
2 e−

1
2 tr(X−UB′)Σ−1(X−UB′)′

= (2π)−
np
2 |Σ|−

n
2 e−

1
2 trΣ−1(X−UB′)′(X−UB′), (7.5.14)

where tr(·) is the trace operator which gives the sum of the diagonal elements
of its matrix argument.

The natural logarithm of p(X|B,Σ,U) can be taken and differentiated with
respect to the matrix B and the matrix Σ. But just as with the simple and
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multiple Regression models, some algebra on the exponent can be performed
to find the value of B which yields the maximal value of this likelihood.

(X −UB′)′(X −UB′) = X ′X −X ′UB′−BU ′X +BU ′UB′

= B[U ′UB′−U ′X]−X ′UB′+X ′X

= B(U ′U)[B′− (U ′U)−1U ′X]−X ′UB′+X ′X

= B(U ′U)(B′− B̂′)−X ′UB′+X ′X

= (B− B̂)(U ′U)(B− B̂)′+ B̂(U ′U)(B− B̂)′

−X ′UB′+X ′X

= (B− B̂)(U ′U)(B− B̂)′+ B̂(U ′U)B′− B̂(U ′U)B̂′

−X ′UB′+X ′X

= (B− B̂)(U ′U)(B− B̂)′+X ′U(U ′U)−1(U ′U)B′

−X ′U(U ′U)−1(U ′U)(U ′U)−1U ′X −X ′UB′+X ′X

= (B− B̂)(U ′U)(B− B̂)′

−X ′U(U ′U)−1(U ′U)(U ′U)−1U ′X +X ′X

= (B− B̂)(U ′U)(B− B̂)′+X ′[In −U(U ′U)−1U ′]X.

(7.5.15)

The likelihood is now

p(X|B,Σ,U) =

(2π)−
np
2 |Σ|−

n
2 e−

1
2 trΣ−1[(B−B̂)(U ′U)(B−B̂)′+X′[In−U(U ′U)−1U ′]X]. (7.5.16)

It is now obvious that the value of B which maximizes the likelihood or
minimizes the exponent in the likelihood is B̂′ = (U ′U)−1U ′X.

It is also now evident by making an analogy to the simple and multiple
Regression models that the value of Σ which maximizes the likelihood is

Σ̂ =
(X −UB̂′)′(X −UB̂′)

n
. (7.5.17)

This could have also been proved by differentiation.
Recall that when the univariate or Scalar Normal distribution was intro-

duced, the estimates of the mean µ̂ and the variance σ̂2 were independent.
Also in the simple and multiple linear Regression models the estimates of the
Regression coefficients and the variance were independent. A similar thing is
true in Multivariate Regression, namely, that B̂ and Σ̂ are independent.

Consider the numerator of the estimate of Σ, Σ̂.
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NUM = (X −UB̂′)′(X −UB̂′)

= X ′X −X ′UB̂′− B̂U ′X + B̂U ′UB̂′

= B̂(U ′UB̂′−U ′X)−X ′UB̂′+X ′X

= B̂(U ′U)(B̂′− (U ′U)−1U ′X)−X ′UB̂′+X ′X

= (B̂−X ′U(U ′U)−1)(U ′U)(B̂−X ′U(U ′U)−1)′

+X ′U(U ′U)−1(U ′U)B̂−X ′U(U ′U)−1(U ′U)(U ′U)−1U ′X

−X ′UB̂+X ′X

= X ′X −X ′U(U ′U)−1U ′X

= X ′[In −U(U ′U)−1U ′]X. (7.5.18)

This is exactly the G term in the likelihood. Now, the likelihood can be
written as

p(X|B,Σ,U) = (2π)−
np
2 |Σ|−

n
2 e−

1
2 trΣ−1[(B−B̂)(U ′U)(B−B̂)′+(X−UB̂′)′(X−UB̂′)],

(7.5.19)

where G = (X −UB̂′)′(X −UB̂′).
Just as in the Normal Samples and the multiple linear Regression models,

if we ignore the normalization coefficients by using proportionality, partition
the likelihood, and view this as a distribution of B̂ and G, then

p(B̂,G|B,Σ,U) ∝ |Σ|−
q+1
2 e−

1
2 tr(U ′U)(B̂−B)′Σ−1(B̂−B)

︸ ︷︷ ︸

B̂|B,Σ∼N(B,Σ⊗(U ′U)−1)

×|Σ|−
n−(q+1)

2 |G|
n−(q+1)−p−1

2 e−
1
2 trΣ−1G

︸ ︷︷ ︸

G|Σ∼W (Σ,p,n−(q+1))

, (7.5.20)

where the first term involves B̂ and the second G.
By the Neyman factorization criterion [22, 41, 47], B̂|B,Σ and G|Σ are

independent. This is proven by showing that

p(B̂,G|B,Σ) = p(B̂|B,Σ)p(G|B,Σ). (7.5.21)

If we integrate p(B̂,G|B,Σ) with respect to G, then

p(B̂|Σ,U) =

∫

p(B̂,G|B,Σ) dG

∝

∫

|Σ|−
q+1
2 e−

1
2 tr(U ′U)(B̂−B)′Σ−1(B̂−B)

© 2003 by Chapman & Hall/CRC



×|Σ|−
n−(q+1)

2 |G|
n−(q+1)−p−1

2 e−
1
2 trΣ−1G dG

∝ |Σ|−
q+1
2 e−

1
2 tr(U ′U)(B̂−B)′Σ−1(B̂−B)

×

∫

|Σ|−
n−(q+1)

2 |G|
n−(q+1)−p−1

2 e−
1
2 trΣ−1G dG

∝ |Σ|−
q+1
2 e−

1
2 tr(U ′U)(B̂−B)′Σ−1(B̂−B), (7.5.22)

where the matrix B̂ follows a Matrix Normal distribution

B̂|B,Σ∼ N(B,Σ⊗ (U ′U)−1). (7.5.23)

If we integrate p(B̂,G|B,Σ) with respect to B̂, then

p(G|Σ,U) =

∫

p(B̂,G|B,Σ) dB̂

∝

∫

|Σ|−
q+1
2 e−

1
2 tr(U ′U)(B̂−B)′Σ−1(B̂−B)

×|Σ|−
n−(q+1)

2 |G|
n−(q+1)−p−1

2 e−
1
2 trΣ−1G dB̂

∝ |Σ|−
n−(q+1)

2 |G|
n−(q+1)−p−1

2 e−
1
2 trΣ−1G

×

∫

|Σ|−
q+1
2 e−

1
2 tr(U ′U)(B̂−B)′Σ−1(B̂−B) dB̂

∝ |Σ|−
n−(q+1)

2 |G|
n−(q+1)−p−1

2 e−
1
2 trΣ−1G, (7.5.24)

where the matrix G = nΣ̂ = (X −UB̂′)′(X −UB̂′) follows a Wishart distrib-
ution

G|Σ∼ W (Σ,p,n− (q+1)). (7.5.25)

By changing variables from B̂ and G to T = [n−(q+1)]
1
2 G− 1

2 (B̂−B)(U ′U)
1
2

and W = G in a similar fashion as was done before, the distribution of
p(T,W |B,Σ,U) is

p(T,W |B,Σ,U) ∝ |Σ|−
n
2 |W |

n−p−1
2 e−

1
2 trΣ−1[ 1

n−q−1W
1
2 TT ′W

1
2 +W ]

∝ |Σ|−
n
2 |W |

n−p−1
2 e

− 1
2 tr

{
Σ−1[ 1

n−q−1TT ′+Ip]
}

W
, (7.5.26)

where the Jacobian of the transformation [41] was

J(B̂,G → T,W ) = [n− (q+1)]
p(q+1)

2 |W |
q+1
2 |U ′U |−

p
2 . (7.5.27)

The distribution of T unconditional of Σ is found by integrating p(T,W |B,Σ,U)
with respect to W ,
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p(T |B,U) ∝

∫

p(T,W |B,Σ,U) dW

∝

∫

|Σ|−
n
2 |W |

n−p−1
2 e

− 1
2 tr

{
Σ−1[ 1

n−q−1TT ′+Ip]
}

W
dW

∝

[
1

n− q−1
TT ′+ Ip

]−n2

×

∫

|Σ−1[
1

n− q−1
TT ′+ Ip]|

−n2 |W |
n−p−1

2

×e
− 1

2 tr
{
Σ−1[ 1

n−q−1TT ′+Ip]
}

W
dW

∝ [Ip +
1

n− q−1
TT ′]−

n
2 (7.5.28)

and now transforming back while taking G to be known

p(B̂|B,G,U)∝

∣
∣
∣
∣
G+

1

n− (q+1)
(B̂−B)[n− (q+1)](U ′U)(B̂−B)′

∣
∣
∣
∣

−n2

(7.5.29)
which is a Matrix Student T-distribution. That is,

B̂|B,G,U ∼ T
(

n− q−1,B, [(n− q−1)(U ′U)]
−1

,G
)

. (7.5.30)

Note that the exponent can be written as n−(q+1)+q+1 and compared to
the definition of the Matrix Student T-distribution given in Equation 2.3.39.
This is the conditional posterior distribution of B̂ given G. Conditional max-
imum a posteriori variance estimates can be found. The conditional modal
variance is

var(B̂|G,X,U) =
n− (q+1)

n− (q+1)−2
G⊗ [(n− q−1)(U ′U)]

−1
(7.5.31)

or equivalently

var(β̂|G,X,U) =
n− (q+1)

n− (q+1)−2
[(n− q−1)(U ′U)]

−1
⊗G (7.5.32)

= ∆̂, (7.5.33)

where β̂ = vec(B̂).
Hypotheses can be performed regarding the entire coefficient matrix, a sub-

matrix, a particular row or column, or a particular element.
Significance for the entire coefficient matrix can be evaluated with the use

of
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|I +G−1B̂(U ′U)B̂′|−1 (7.5.34)

which follows a distribution of the product of independent Scalar Beta vari-
ates [12, 41]. General simultaneous hypotheses (which do not assume indepen-
dence) can be performed regarding the entire Regression coefficient matrix.
A similar result holds for a submatrix.

The above distribution for the matrix of regression coefficients can be writ-
ten in another form

p(B̂|X,G,U,B)∝ |W +(B̂−B)′G−1(B̂−B)|−
(n−q−1)+(q+1)

2 . (7.5.35)

by using Sylvester’s theorem [41]

|In +Y IpY
′| = |Ip +Y ′InY |, (7.5.36)

where W = (U ′U)−1 has been defined.
It can be shown [17, 41] that the marginal distribution of any column, say

the kth of the matrix of B̂, B̂k is Multivariate Student t-distributed

p(B̂k|Bk,G,X,U)∝
1

[

Wkk +(B̂k −Bk)′G−1(B̂k −Bk)
] (n−q−p)+p

2

, (7.5.37)

where Wkk is the kth diagonal element of W , k = 0, . . . ,q.
It can be also be shown [17, 41] that the marginal distribution of any row,

say the jth of the matrix of B̂, β̂′
j is Multivariate Student t-distributed

p(β̂j |βj ,G,X,U)∝
1

[

Gjj +(β̂j −βj)′W−1(β̂j −βj)
] (n−q−p)+(q+1)

2

, (7.5.38)

where Gjj is the jth diagonal element of G, j = 1, . . . ,p.

With the marginal distribution of a column or row of B̂, significance can
be evaluated for the coefficient of a particular independent variable (column
of B̂) with the use of the statistic

Fp,n−q−p =
n− q−p

p
W−1

kk B̂′
kG−1B̂k, (7.5.39)

and for the coefficients of a particular dependent variable (row of B̂) with the
use of the statistic

Fq+1,n−q−p =
n− q−p

q+1
G−1

jj β̂′
jW

−1β̂j . (7.5.40)



It can be shown that these statistics follow F-distributions with (p,n−q−p) or
(q+1,n− q−p) numerator and denominator degrees of freedom respectively.
Significance can be determined for a subset of variables by determining the
marginal distribution of the subset within B̂k or β̂′

j which are also Multivariate
Student t-distributed.

It should also be noted that

b =

[

1+
ν1
ν2

Fν1,ν2

]−1

(7.5.41)

follows the Scalar Beta distribution B
(

ν2
2 , ν1

2

)
.

With the subset of variables being a singleton set, significance can be de-
termined for a particular independent variable with the marginal distribution
of the scalar coefficient which is

p(B̂kj|Bkj ,Gjj ,X,U)∝
1

[

Wkk +(B̂kj −Bkj)G
−1
jj (B̂kj −Bkj)

] (n−q−p)+1
2

,

(7.5.42)

where Gjj = (Xj −Uβ̂j)
′(Xj −Uβ̂j) is the jth diagonal element of G. The

above can be rewritten in the more familiar form

p(B̂kj|Bkj ,Gjj ,X,U)∝
1

[

1+ 1
(n−q−p)

(B̂kj−Bkj)
2

Wkk[Gjj/(n−q−p)]

] (n−q−p)+1
2

(7.5.43)

which is readily recognizable as a Scalar Student t-distribution. Note that
B̂kj = β̂jk and that

t =
(B̂kj −Bkj)

[WkkGjj(n− q−p)−1]
1
2

(7.5.44)

follows a Scalar Student t-distribution with n−q−p degrees of freedom, and
t2 follows an F distribution with 1 and n−q−p numerator and denominator
degrees of freedom, which is commonly used in Regression [1, 68], derived
from a likelihood ratio test of reduced and full models when testing a sin-
gle coefficient. By using a t statistic instead of an F statistic, positive and
negative coefficient values can be identified.

It should also be noted that

b =

[

1+
1

n− q−p
t2
]−1

(7.5.45)

follows the Scalar Beta distribution B
(

n−q−p
2 , 12

)
.
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Exercises

1. Assume that we perform an experiment in which we have a multiple
Regression, p = 1, n = 8, with the data vector and design matrix as
given in Table 7.1.

TABLE 7.1

Regression data vector and design matrix.
x 1 U en 1 2
1 12.0719 1 1 1 1
2 15.7134 2 1 2 1
3 20.2977 3 1 3 1
4 24.2973 4 1 4 1
5 15.9906 5 1 5 -1
6 20.0818 6 1 6 -1
7 24.0437 7 1 7 -1
8 27.9533 8 1 8 -1

We wish to fit the multiple Regression model

xi = β0+β1ui1+β2ui2+ ǫi

x = Uβ+ ǫ.

What is the estimate β̂ of β? What is the estimate σ̂2 of σ2?

2. What is the distribution and associated parameters of the vector of
Regression coefficients?

3. Compute

Fq+1,n−(q+1) =
β̂′(U ′U)β̂/(q+1)

g/(n− q−1)

and

tk =
β̂k

[Wkkg/(n− q−1)]
1
2

for k = 0, . . . ,q from the data in Exercise 1.

4. Assume that we perform an experiment in which p=3, q =2, and n=32
with data matrix X and design U matrix (including a column of ones
for the intercept term) as in Table 7.2.
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TABLE 7.2

Regression data and design matrices.
X 1 2 3 U en 1 2
1 12.1814 9.3538 20.9415 1 1 1 1
2 15.8529 11.7987 28.0296 2 1 2 1
3 20.5458 15.1322 35.0787 3 1 3 1
4 23.9659 18.0548 42.3609 4 1 4 1
5 28.0285 20.7695 48.9123 5 1 5 1
6 32.2667 23.4573 56.1558 6 1 6 1
7 36.0148 26.9852 63.1998 7 1 7 1
8 39.9761 29.7473 70.2352 8 1 8 1
9 31.7919 23.1536 58.7520 9 1 9 -1

10 36.0736 26.1269 66.0530 10 1 10 -1
11 39.6660 29.4231 73.0595 11 1 11 -1
12 44.1786 32.1478 79.7481 12 1 12 -1
13 48.4059 34.8391 86.8145 13 1 13 -1
14 51.8271 38.0951 94.2706 14 1 14 -1
15 56.2145 40.7477 100.9671 15 1 15 -1
16 60.3135 43.9951 108.0975 16 1 16 -1
17 75.6016 56.9879 133.0220 17 1 17 1
18 79.6398 60.0000 139.8411 18 1 18 1
19 84.1428 62.9205 146.8601 19 1 19 1
20 87.9000 66.2738 154.1109 20 1 20 1
21 92.1725 68.5315 160.7625 21 1 21 1
22 96.2039 72.1070 168.1953 22 1 22 1
23 100.1780 75.2239 175.1422 23 1 23 1
24 104.3226 78.1827 181.7946 24 1 24 1
25 96.1672 71.1445 170.9336 25 1 25 -1
26 100.2977 74.0101 177.7031 26 1 26 -1
27 103.6994 77.1693 184.4494 27 1 27 -1
28 107.9951 80.1422 192.2466 28 1 28 -1
29 111.9608 82.9361 198.8703 29 1 29 -1
30 115.5990 85.9056 206.0818 30 1 30 -1
31 120.0643 88.9260 213.0585 31 1 31 -1
32 123.7359 91.6312 220.0054 32 1 32 -1

We wish to fit the multiple Regression model

xi = Bui + ǫi

X = UB′+E.

What is the estimate B̂ of B? What is the estimate Σ̂ of Σ?

5. What is the distribution and associated parameters of the matrix of
Regression coefficients in Exercise 4?
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6. Compute

Fp,n−q−p =
n− q−p

p
W−1

kk B̂′
kG−1B̂k

for k=0, . . . ,q,

Fq+1,n−q−p =
n− q−p

q+1
G−1

jj β̂′
jW

−1β̂j .

for j = 1, . . . ,p, and

tkj =
B̂kj

[WkkGjj/(n− q−p)]
1
2

(7.5.46)

for all kj combinations from the data in Exercise 4.

7. Recompute the statistics in Exercise 6 assuming p = 1, i.e. the observa-
tions are independent. Compare your results to those in Exercise 6.
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Part II

Models
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8

Bayesian Regression

8.1 Intro duction

The Multivariate Bayesian Regression model [41] is introduced that re-
quires some knowledge of Multivariate as well as Bayesian Statistics. A concise
introduction to this material was presented in Part I. This Chapter consid-
ers the unobservable sources (the speakers conversations in the cocktail party
problem) to be observable or known. This is done so that the Bayesian Re-
gression model may be introduced which will help lead to the Bayesian Source
Separation models.

8.2 The Bayesian Regression Mo del

A Regression model is used when it is believed that a set of dependent
variables may be represented as being linearly related to a set of independent
variables. The model may be motivated using a Taylor series expansion to
represent a functional relationship as was done in Chapter 1 for the Source
Separation model.

The p-dimensional recorded values are denoted as xi’s and the q emitted
values along with the overall mean by the (q+1)–dimensional ui’s. The ui’s
are of dimension (q+1) because they contain a 1 as their first element for the
overall mean (constant or intercept). The q specified to be observable sources,
the uik’s are used for distinction from the m unobservable sources, the sik’s
in Chapter 1. The mixing coefficients are denoted by β’s to denote that they
are coefficients for observable variables (sources) and not λ’s for unobservable
variables (sources).

Given a set of independent and identically distributed vector-valued obser-
vations xi, i = 1, . . . ,n, on p possibly correlated random variables, the Multi-
variate Regression model on the variable ui is

(xi|B,ui) = B ui + ǫi,
(p×1) [p× (q+1)] [(q+1)×1] (p×1)

(8.2.1)
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where the matrix of Regression coefficients B is given by

B =






β′
1
...

β′
p




 , (8.2.2)

which describes the relationship between ui = (1,ui1, . . . ,uiq)
′ and xi while ǫi

is the p-dimensional Normally distributed error.
Note that if the coefficient matrix B were written as B = (µ,B⋆) and ui =

(1,u′
⋆i)

′, then

(xi|µ,B⋆,ui) = µ + B⋆ u⋆i + ǫi,
(p×1) (p×1) (p× q) (q×1) (p×1)

(8.2.3)

which is the same basic model as in Source Separation.
More specifically for the Regression model, a given element of xi, say the

jth is

(xij |βj ,ui) = β′
j ui + ǫij ,

(1×1) [1× (q+1)] [(q+1)×1] (1×1)
(8.2.4)

where β′
j = (βj0, . . . ,βjq). This is also represented as

(xij |βj ,ui) =

q
∑

t=0

βjt uit + ǫij . (8.2.5)

Gathering all observed vectors into a matrix, the Regression model may be
written as

(X|B,U) = U B′ + E,
(n×p) [n× (q+1)] [(q+1)×p] (n×p)

(8.2.6)

where the matrix of dependent variables (observed mixed sources) X, the
independent variables (observable sources) U , and the matrix of errors E are
defined to be

X =






x′
1
...

x′
n




 , U =






u′
1
...

u′
n




 , E =






ǫ′1
...
ǫ′n




 , (8.2.7)

while B is as above.
The ijth element of X is the ith row of U multiplied by the jth column of

B′ plus the ijth element of E. The model may also be written in terms of
columns by parameterizing the dependent variables (observed mixed sources)
X, the independent variables (observable source) matrix U , the matrix of
Regression coefficients B, and the matrix of errors E as
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X = (X1, . . . ,Xp), U = (en,U1, . . . ,Uq),

B′ = (β1,β1, . . . ,βp), E = (E1, . . . ,Ep), (8.2.8)

where en is an n-dimensional column vector of ones.

This leads to the model

(Xj |βj ,U) = U βj + Ei,
(n×1) [n× (q+1)] [(q+1)×1] (n×1)

(8.2.9)

which describes all the observations for a single microphone in the cocktail
party problem at all n time points.

8.3 Likeliho o d

In observing variables, there is inherent random variability or error which
statistical models quantify. The errors of observation are characterized to
have arisen from a particular distribution. It is specified that the errors of
observation are independent and Normally distributed random vectors with
p-dimensional mean 0 and p× p covariance matrix Σ. The Multivariate p-
dimensional Normal distribution for the errors described in Chapter 2 is de-
noted by

p(ǫi|Σ)∝ |Σ|−
1
2 e−

1
2 ǫ′iΣ

−1ǫi , (8.3.1)

where ǫi is the p-dimensional error vector. It is common in Bayesian Statistics
to omit the normalization constant and use proportionality.

From this Multivariate Normal error specification, the distribution of the
observation vectors is also Multivariate Normally distributed and given by

p(xi|B,ui,Σ)∝ |Σ|−
1
2 e−

1
2 (xi−Bui)

′Σ−1(xi−Bui), (8.3.2)

because the Jacobian of the transformation from ǫi to xi is unity.

With the matrix representation of the model given by Equation 8.2.6, the
distribution of the matrix of observations is a Matrix Normal distribution as
described in Chapter 2

p(X|B,Σ,U)∝ |Σ|−
n
2 e−

1
2 tr(X−UB′)Σ−1(X−UB′)′ , (8.3.3)

where “tr” denotes the trace operator which yields the sum of the diagonal
elements of its matrix argument.
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8.4 Conjugate Priors a nd Po sterior

In the Bayesian approach to statistical inference, available prior informa-
tion regarding parameter values is quantified in terms of prior distributions
to represent the current state of knowledge before an experiment is performed
and data taken. In this Section, Conjugate prior distributions are used to
characterize our beliefs regarding the parameters, namely, the Normal and
the Inverted Wishart which are described in Chapters 2 and 4. Later in this
Chapter, generalized Conjugate prior distributions will be used.

Using the Conjugate procedure given in Chapter 4, the joint prior distri-
bution is p(B,Σ) for the parameters B, and Σ is the product of the prior
distribution of B given Σ, p(B|Σ), and the prior distribution of Σ, p(Σ). This
is expressed as

p(B,Σ) = p(B|Σ)p(Σ), (8.4.1)

where the prior distribution for the Regression coefficients B|Σ is Matrix
Normally distributed as

p(B|Σ)∝ |D|−
p
2 |Σ|−

(q+1)
2 e−

1
2 trD−1(B−B0)

′Σ−1(B−B0) (8.4.2)

and the prior distribution for the error covariance matrix Σ is Inverse Wishart
distributed as

p(Σ)∝ |Σ|−
ν
2 e−

1
2 trΣ−1Q. (8.4.3)

The quantities D, B0, ν, and Q are hyperparameters to be assessed. By speci-
fying these hyperparameters, the entire joint prior distribution is determined.

The joint posterior distribution of the model parameters B and Σ with
specified Conjugate priors is

p(B,Σ|X,U)∝ p(Σ)p(B|Σ)p(X|B,Σ,U) (8.4.4)

and after inserting the aforementioned prior distributions and likelihood be-
comes

p(B,Σ|X,U) ∝ |Σ|−
(n+ν+q+1)

2

×e−
1
2 trΣ−1[(X−UB′)′(X−UB′)+(B−B0)D

−1(B−B0)
′+Q],

(8.4.5)

where the property of the trace operator that the trace of the product of two
conformable matrices is equal to the trace of their product in the reverse order
was used.
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8.5 Conjugate Estimation a nd Inference

The estimation of and inference on parameters as outlined in Chapter 6 in
a Bayesian Statistical procedure is often the most difficult part of the analysis.
Two different methods are used to estimate parameters and draw inferences.
The methods of estimation are marginal posterior mean and maximum a pos-
teriori estimates. Formulas for marginal mean and joint maximum a posteriori
estimates are derived.

8.5.1 Marginalization

Marginal posterior mean estimation of the parameters involves comput-
ing the marginal posterior distribution for each of the parameters and then
computing mean estimates from these marginal posterior distributions.

To find the marginal posterior distribution of the matrix of Regression co-
efficients B, the joint posterior distribution Equation 8.4.5 must be integrated
with respect to Σ. This can be performed easily by recognizing (as described
in Chapter 6) that the posterior distribution is exactly of the same form as
an Inverted Wishart distribution except for a proportionality constant. Inte-
gration can be easily performed using the definition of an Inverted Wishart
distribution. The marginal posterior distribution for the matrix of Regression
coefficients B after integrating with respect to Σ is given by

p(B|X,U)∝
1

|G+(B− B̄)(D−1+U ′U)(B− B̄)′|
(n+ν−p−1+q+1)

2

, (8.5.1)

where the matrix

B̄ = (X ′U +B0D
−1)(D−1+U ′U)−1, (8.5.2)

and B0 is the prior mean while the p×p matrix G (after some algebra) has
been written as

G = Q+X ′X +B0D
−1B′

0

− (X ′U +B0D
−1)(D−1+U ′U)−1(X ′U +B0D

−1)′ (8.5.3)

have been defined.

The mean and modal estimate of the matrix of Regression coefficients from
this exact marginal posterior distribution is B̄. The marginal posterior vari-
ance of the matrix of Regression coefficients is
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var(B|B̄,X,U) =
n− (q+1)

n− (q+1)−2
G⊗ [(n− q−1)(U ′U)]

−1
(8.5.4)

or equivalently

var(β|β̄,X,U) =
n+ν−p−1

n+ν−p−1−2
[(n− q−1)(U ′U)]

−1
⊗G, (8.5.5)

= ∆̂, (8.5.6)

where β = vec(B).
This marginal posterior distribution is easily recognized as being a Matrix

Student T-distribution as described in Chapter 2. That is,

B|B̄,U ∼ T
(

n+ν−p−1, B̄,
[
(n+ν−p−1)(D−1+U ′U)

]−1
,G

)

. (8.5.7)

Inferences such as tests of hypothesis and credibility intervals can be eval-
uated on B as in the Regression Chapter. Hypotheses can be performed re-
garding the entire coefficient matrix, a submatrix, a particular row or column,
or a particular element.

The above distribution for the matrix of regression coefficients can be writ-
ten in another form

p(B|X,U,B̄)∝
1

|W +(B− B̄)′G−1(B− B̄)|
(n∗−q−p)+(q+1)

2

(8.5.8)

by using Sylvester’s theorem [41]

|In +Y IpY
′| = |Ip +Y ′InY |, (8.5.9)

where W =
(
D−1+U ′U

)−1
and n∗ = n+ν−p+2q+1 have been defined.

It can be shown that the marginal distribution of any column, say the kth

of the matrix of B, Bk is Multivariate Student t-distributed

p(Bk|B̄k,X,U)∝
1

[
Wkk +(Bk − B̄k)′G−1(Bk − B̄k)

] (n∗−q−p)+p
2

, (8.5.10)

where Wkk is the kth diagonal element of W .
It can be also be shown that the marginal distribution of any row, say the

jth of the matrix B, β′
j is Multivariate Student t-distributed

p(βj |β̄j ,X,U)∝
1

[
Gjj +(βj − β̄j)′W−1(βj − β̄j)

] (n∗−q−p)+(q+1)
2

, (8.5.11)
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where Gjj is the jth diagonal element of G.
With the marginal distribution of a column or row of B, significance can

be evaluated for the coefficients of a particular independent variable (column
of B) with the use of the statistic

Fp,n∗−q−p =
n∗− q−p

p
W−1

kk B̄′
kG−1B̄k, (8.5.12)

or for the coefficients of a particular dependent variable (row of B) with the
use of the statistic

Fq+1,n∗−q−p =
n∗− q−p

q+1
G−1

jj β̄′
jW

−1β̄j . (8.5.13)

These statistics follow F-distributions with either (p,n∗−q−p) or (q+1,n∗−
q− p) numerator and denominator degrees of freedom respectively [39, 41].
Significance can be determined for a subset of coefficients by determining the
marginal distribution of the subset within Bk or β′

j which is also Multivariate
Student t-distributed.

With the subset of coefficients being a singleton set, significance can be
determined for a particular coefficient with the marginal distribution of the
scalar coefficient which is

p(Bkj|B̄kj ,X,U)∝
1

[
Wkk +(Bkj − B̄kj)G

−1
jj (Bkj − B̄kj)

] (n∗−q−p)+1
2

, (8.5.14)

where Gjj is the jth diagonal element of G. The above can be rewritten in
the more familiar form

p(Bkj|B̄kj ,X,U)∝
1

[

1+ 1
(n∗−q−p)

(Bkj−B̄kj)
2

Wkk[Gjj/(n∗−q−p)]

] (n∗−q−p)+1
2

(8.5.15)

which is readily recognizable as a Scalar Student t-distribution. Note that
B̄kj = β̄jk and that

t =
(Bkj − B̄kj)

[WkkGjj(n∗− q−p)−1]
1
2

(8.5.16)

follows a Scalar Student t-distribution with n∗−q−p degrees of freedom, and
t2 follows an F -distribution with 1 and n∗−q−p numerator and denominator
degrees of freedom. The F-distribution is commonly used in Regression [1, 68]
and derived from a likelihood ratio test of reduced and full models when
testing coefficients. By using a t statistic instead of an F statistic, positive
and negative coefficient values can be identified. Even for a modest sample
size, this Scalar Student t-distribution typically has a large number of degrees
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of freedom (n+ν−q−2p+1) so that it is nearly equivalent to a Scalar Normal
distribution as noted in Chapter 2.

Note that the mean of this marginal posterior distribution B̄ can be written
as

B̄ = X ′U(D−1+U ′U)−1+B0D
−1(D−1+U ′U)−1

= B̂[U ′U(D−1+U ′U)−1]+B0[D
−1(D−1+U ′U)−1], (8.5.17)

where we have defined the matrix B̂ = X ′U(U ′U)−1. This posterior mean is
a weighted combination of the prior mean B0 from the prior distribution and
the data mean B̂ from the likelihood.

The above mean for the matrix of Regression coefficients can be written as

B̄ = B̂
U ′U

n

[

(nD)−1+
U ′U

n

]−1

+B0(nD)−1

[

(nD)−1+
U ′U

n

]−1

,

(8.5.18)

and as the sample size n increases, (nD)−1 approaches the zero matrix, U ′U
n

approaches a constant matrix, and the estimate of the matrix of Regression
coefficients B is based only on the data mean B̂ from the likelihood. Thus,
the prior distribution has decreasing influence as the sample size increases.
This is a feature of Bayesian estimators.

To integrate the joint posterior distribution in order to find the marginal
posterior distribution of Σ, rearrange the terms in the exponent of the poste-
rior distribution as in Chapter 6, and complete the square to find

p(B,Σ|X,U) ∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ−1G

×|Σ|−
(q+1)

2 e−
1
2 trΣ−1(B−B̄)(U ′U+D−1)(B−B̄)′ , (8.5.19)

where B̄ and G are as previously defined. In the above equation, the last line
with an additional multiplicative constant is a Matrix Normal distribution
(Chapter 2). Using the definition of a Matrix Normal distribution for the
purpose of integration as in Chapter 6, the marginal posterior distribution for
Σ is

p(Σ|X,U)∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ−1G, (8.5.20)

where the p×p matrix G is as defined above. It is easily seen that the mean
of this marginal posterior distribution is

Σ̄ =
G

n+ν−2p−2
, (8.5.21)
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while the mode is

Σ̄mode =
G

n+ν
. (8.5.22)

The mean and mode of an Inverted Wishart distribution are given in Chap-
ter 2.

Since exact marginal estimates were found, a Gibbs sampling algorithm for
computing exact sampling based marginal posterior means and variances does
not need to be given.

8.5.2 Maximum a Posteriori

The joint posterior distribution may also be maximized with respect to B
and Σ by direct differentiation as described in Chapter 6 to obtain maximum
a posteriori estimates

B̃ =
Arg Max

B p(B|Σ̃,X,U) (8.5.23)

= B̃(Σ̃,X,U) (8.5.24)

Σ̃ =
Arg Max

Σ p(Σ|B̃,X,U) (8.5.25)

= Σ̃(B̃,X,U). (8.5.26)

The maximum a posteriori estimators are analogous to the maximum like-
lihood estimates found for the classical Regression model.

Upon performing some simplifying algebra, taking the natural logarithm,
differentiating the joint posterior distribution in Equation 8.5.19 with respect
to B, the result is

∂

∂B
log(p(B,Σ|X)) =

∂

∂B
tr(U ′U +D−1)(B− B̃)′Σ−1(B− B̃)

= 2Σ−1(B− B̃)(U ′U +D−1) (8.5.27)

which upon evaluating this at (B,Σ) = (B̃,Σ̃) and setting it equal to the null
matrix yields a maxima of B̃ = B̄ as given in Equation 8.5.2. Note that a
matrix derivative result as in Chapter 6 was used.

Upon differentiating the joint posterior distribution in Equation 8.5.19 with
respect to Σ, the result is

∂

∂Σ
log(p(B,Σ|X)) = −

(n+ν + q+1)

2

∂

∂Σ
log |Σ|+

∂

∂Σ
trΣ−1G

= −
(n+ν + q+1)

2
[2Σ−1−diag(Σ−1)]

+
1

2
[2G−1−diag(G−1)], (8.5.28)
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which upon setting this expression equal to the null matrix and evaluating at
(B,Σ) = (B̃,Σ̃) yields a maxima of

Σ̃ =
G

n+ν + q+1
. (8.5.29)

Note that the estimator of B̃ is identical to that of the marginal mean
B̄, but the one of Σ, Σ̃ is different by a multiplicative factor. Conditional
maximum a posteriori variance estimates can also be found. The conditional
modal variance of the Regression coefficients is

var(B|B̃,Σ̃,X,U) = Σ̃⊗ (D−1+U ′U)−1

(8.5.30)

or equivalently

var(β|β̃,Σ̃,X,U) = (D−1+U ′U)−1⊗ Σ̃,

= ∆̃,

where β = vec(B).
Conditional modal intervals may be computed by using the conditional

distribution for a particular parameter given the modal values of the others.
The posterior conditional distribution of the matrix of Regression coefficients
B given the modal values of the other parameters and the data is

p(B|B̃,Σ̃,U,X) ∝ |(D−1+U ′U)|
p
2 |Σ̃|−

q+1
2

×e−
1
2 trΣ̃−1(B−B̃)(D−1+U ′U)(B−B̃)′ , (8.5.31)

which may be also written in terms of vectors as

p(β|β̃,Σ̃,U,X) ∝ |(D−1+U ′U)−1⊗ Σ̃|−
1
2

×e−
1
2 (β−β̃)′[(D−1+U ′U)−1⊗Σ̃]−1(β−β̃). (8.5.32)

It can be shown [17, 41] that the marginal distribution of any column of
the matrix of B, Bk is Multivariate Normal

p(Bk|B̃k,Σ̃,U,X)∝ |WkkΣ̃|
− 1

2 e−
1
2 (Bk−B̃k)

′(WkkΣ̃)
−1(Bk−B̃k), (8.5.33)

where W = (D−1+U ′U)−1 and Wkk is its kth diagonal element.
With the marginal distribution of a column of B, significance can be deter-

mined for the set of coefficients of an independent variable. Significance can
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be determined for a subset of coefficients by determining the marginal distri-
bution of the subset within Bk which is also Multivariate Normal. With the
subset being a singleton set, significance can be determined for a particular
coefficient with the marginal distribution of the scalar coefficient which is

p(Bkj |B̃kj ,Σ̃jj ,U,X)∝ (WkkΣ̃jj)
− 1

2 e
−

(Bkj−B̃kj )
2

2WkkΣ̃jj , (8.5.34)

where Σ̃jj is the jth diagonal element of Σ̃. Note that B̃kj = β̃jk and that

z =
(Bkj − B̃kj)
√

WkkΣ̃jj

(8.5.35)

=
(Bkj − B̃kj)

√

WkkGjj/(n+ν + q+1)
(8.5.36)

follows a Normal distribution with a mean of zero and variance of one.

8.6 Generalized Priors and Posterior

Using the generalized Conjugate procedure given in Chapter 4, the joint
prior distribution p(β,Σ) for the parameters β = vec(B) and Σ, “vec” being
the vectorization operator that stacks the columns of its matrix argument, is
given by the product of the prior distribution p(β) for the Regression coeffi-
cients and that for the error covariance matrix p(Σ)

p(β,Σ) = p(β)p(Σ). (8.6.1)

These prior distributions are found from the generalized Conjugate procedure
in Chapter 4 and given by

p(β)∝ |∆|−
1
2 e−

1
2 (β−β0)

′∆−1(β−β0) (8.6.2)

and

p(Σ)∝ |Σ|−
ν
2 e−

1
2 trΣ−1Q, (8.6.3)

where the quantities ∆, β0, ν, and Q are hyperparameters to be assessed. The
matrices ∆, Σ, and Q are all positive definite. By specifying the hyperpara-
meters, the entire joint prior distribution is determined.

By Bayes’ rule, the joint posterior distribution for the unknown model pa-
rameters with specified generalized Conjugate priors is given by
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p(β,Σ|X,U)∝ p(Σ)p(β)p(X|B,Σ,U), (8.6.4)

which becomes

p(β,Σ|X,U) ∝ |∆|−
1
2 e−

1
2 (β−β0)

′∆−1(β−β0)

×|Σ|−
(n+ν)

2 e−
1
2 trΣ−1[(X−UB′)′(X−UB′)+Q] (8.6.5)

after inserting the generalized Conjugate prior distributions and the likeli-
hood.

Now the joint posterior distribution is to be evaluated in order to obtain
estimates of the parameters of the model.

8.7 Generalized Estimation and Inference

8.7.1 Marginalization

Marginal estimation of the parameters involves computing the marginal
posterior distribution for each of the parameters then computing estimates
from these marginal distributions.

To find the marginal posterior distribution of B or β, the joint posterior
distribution Equation 8.6.5 must be integrated with respect to Σ. Integration
of the joint posterior distribution is performed as described in Chapter 6 by
first multiplying and dividing by

|(X −UB′)′(X −UB′)+Q|−
(n+ν−p−1)

2

and then using the definition of the Inverted Wishart distribution given in
Chapter 2 to get

p(β|X,U) ∝
|∆|−

1
2 e−

1
2 (β−β0)

′∆−1(β−β0)

|(X −UB′)′(X −UB′)+Q|−
(n+ν−p−1)

2

. (8.7.1)

The above expression for the marginal distribution of the vector of Regression
coefficients can be written as

p(β|X,U) ∝
|∆|−

1
2 e−

1
2 (β−β0)

′∆−1(β−β0)

|Ip +Q− 1
2 (X −UB′)′In(X −UB′)Q− 1

2 |−
(n+ν−p−1)

2

(8.7.2)

by performing some algebra.
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Sylvester’s theorem [41]

|In +Y IpY
′| = |Ip +Y ′InY | (8.7.3)

is applied in the denominator of the marginal posterior distribution to obtain

p(β|X,U) ∝
|∆|−

1
2 e−

1
2 (β−β0)

′∆−1(β−β0)

|In +(X −UB′)Q−1(X −UB′)′|−
(n+ν−p−1)

2

. (8.7.4)

Note the change that has occurred in the denominator. The large sample
approximation that |I +Ξ|α ∼= eαtrΞ is used [41] where α is a scalar and Ξ is
an n×n positive definite matrix with eigenvalues which lie within the unit
circle to obtain the approximate expression

p(β|X,U) ∝ e−
1
2 (β−β0)

′∆−1(β−β0)e−
1
2 tr[(X−UB′)( Q

n+ν−p−1 )
−1(X−UB′)′]

(8.7.5)

for the marginal posterior distribution of the vector of Regression coefficients.
After some algebra, the above is written as

p(β|X,U) ∝ e
− 1

2 (β−β̆)′
[
U ′U⊗

(
Q

n+ν−p−1

)
−1+∆−1

]
(β−β̆)

, (8.7.6)

where the vector β̆ is defined to be

β̆ =

[

∆−1+U ′U ⊗

(
Q

n+ν−p−1

)−1
]−1

×

[

∆−1β0+U ′U ⊗

(
Q

n+ν−p−1

)−1

β̂

]

(8.7.7)

and the vector β̂ to be

β̂ = vec(B̂)

= vec(X ′U(U ′U)−1). (8.7.8)

The exact marginal mean and modal estimator for β from this approximate
marginal posterior distribution is β̆. Note that β̆ is a weighted average of the
prior mean from the prior distribution and the data mean from the likelihood.

To find the marginal posterior distribution of Σ, rearrange the terms in the
exponent of the joint posterior distribution to arrive at
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p(β,Σ|X,U) ∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ−1Q

×e−
1
2 [(β−β0)

′∆−1(β−β0)+(β−β̂)′(U ′U⊗Σ−1)(β−β̂)], (8.7.9)

where the vector β̂ is as previously defined.
Continuing on, complete the square of the terms in the exponent of the

term involving β to find

p(β,Σ|X,U) ∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ−1[Q+(X−UB̂′)′(X−UB̂′)]

×e−
1
2 [(β−β̃)′(∆−1+U ′U⊗Σ−1)(β−β̃)], (8.7.10)

where again the vector β̃ has been defined as

β̃ = [∆−1+U ′U ⊗Σ−1]−1[∆−1β0+(U ′U ⊗Σ−1)β̂]. (8.7.11)

Now, integration will be performed by recognition as in Chapter 6. Multiply
and divide by the quantity

|∆−1+U ′U ⊗Σ−1|−
1
2 (8.7.12)

and by integrating with the definition of a Multivariate Normal distribution
as in Chapter 6, the marginal posterior distribution for Σ is given by

p(Σ|X,U)∝
|Σ|−

(n+ν)
2 e−

1
2 trΣ−1{Q+(X−UB̂′)′(X−UB̂′)}

|∆−1+U ′U ⊗Σ−1|−
1
2 ,

(8.7.13)

which by using a large sample result [41],

|∆−1+U ′U ⊗Σ−1|= |Σ|−(q+1)|U ′U |−p (8.7.14)

is approximately for large samples

p(Σ|X,U)∝ |Σ|−
(n+ν−q−1)

2 e−
1
2 trΣ−1{Q+(X−UB̂′)′(X−UB̂′)}. (8.7.15)

From this approximate marginal posterior distribution which can easily be
recognized as an Inverted Wishart distribution, the exact marginal posterior
mean is

Σ̆ =
Q+(X −UB̂′)′(X −UB̂′)

n+ν− q−1−2p−2
, (8.7.16)

while the exact mode is

Σ̆mode =
Q+(X −UB̂′)′(X −UB̂′)

n+ν− q−1
. (8.7.17)
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8.7.2 Posterior Conditionals

Since approximations were made when finding the marginal posterior dis-
tributions for the vector of Regression coefficients β and the error covariance
matrix Σ, a Gibbs sampling algorithm is given for computing exact sampling
based quantities such as marginal mean and variance estimates of the para-
meters. The posterior conditional distributions of β and Σ are needed for the
algorithm. The posterior conditional distribution for β is found by consider-
ing only those terms in the joint posterior distribution which involve β and is
given by

p(β|Σ,X,U) ∝ p(β)p(X|B,Σ,X,U)

∝ e−
1
2 (β−β̃)′(∆−1+U ′U⊗Σ−1)(β−β̃). (8.7.18)

This is recognizable as a Multivariate Normal distribution for the vector of
Regression coefficients for β whose mean and mode is

β̃ = [∆−1+U ′U ⊗Σ−1]−1[∆−1β0+(U ′U ⊗Σ−1)β̂], (8.7.19)

where the vector β̂ is

β̂ = vec(X ′U(U ′U)−1) (8.7.20)

which was found by completing the square in the exponent. Note that this is
a weighted combination of the prior mean from the prior distribution and the
data mean from the likelihood.

The posterior conditional distribution of the error covariance matrix Σ is
similarly found by considering only those terms in the joint posterior distrib-
ution which involve Σ and is given by

p(Σ|β,X,U) ∝ p(Σ)p(X|B,Σ,X,U)

∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ−1[(X−UB′)′(X−UB′)+Q]. (8.7.21)

This is easily recognized as being an Inverted Wishart distribution with mode

Σ̃ =
(X −UB′)′(X −UB′)+Q

n+ν
(8.7.22)

as described in Chapter 2.

8.7.3 Gibbs Sampling

To obtain marginal mean and variance estimates for the model parameters
using the Gibbs sampling algorithm as described in Chapter 6, start with
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an initial value for the error covariance matrix Σ, say Σ̄(0), and then cycle
through

β̄(l+1) = a random variate from p(β|Σ̄(l),X,U)

= AβYβ +Mβ (8.7.23)

Σ̄(l+1) = a random variate from p(Σ|B̄(l+1),X,U)

= AΣ(Y
′
ΣYΣ)

−1A′
Σ, (8.7.24)

where

β̄(l+1) = vec(B̄(l+1))

AβA′
β = (∆−1+U ′U ⊗ Σ̄−1

(l) )
−1

Mβ = [∆−1+U ′U ⊗ Σ̄−1
(l) ]

−1[∆−1β0+(U ′U ⊗ Σ̄−1
(l) )β̂]

AΣA′
Σ = (X −UB̄′

(l+1))
′(X −UB̄′

(l+1))+Q

while Yβ is a p(q+1)× 1 dimensional vector and YΣ is an (n+ ν + p+1)×
p, dimensional matrix whose respective elements are random variates from
the standard Scalar Normal distribution. The formulas for the generation of
random variates from the conditional posterior distributions are easily found
from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of each of the parameters

β̄ =
1

L

L∑

l=1

β̄(l) and Σ̄ =
1

L

L∑

l=1

Σ̄(l)

which are the exact sampling based marginal mean parameters estimates from
the posterior distribution. Exact sampling based marginal estimates of other
quantities can also be found. Of interest is the estimate of the marginal
posterior variance of the regression coefficients

var(β|X,U) =
1

L

L∑

l=1

β̄(l)β̄
′
(l)− β̄β̄′

= ∆̄.

The covariance matrices of the other parameters follow similarly. With
a specification of Normality for the marginal posterior distribution of the
Regression coefficients, their distribution is

p(β|X,U) ∝ |∆̄|−
1
2 e−

1
2 (β−β̄)′∆̄−1(β−β̄), (8.7.25)
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where β̄ and ∆̄ are as previously defined.
To determine statistical significance with the Gibbs sampling approach, use

the marginal distribution of the vector of Regression coefficients given above.
General simultaneous hypotheses can be evaluated on the entire vector or a
subset of it. Significance regarding the coefficient for a particular indepen-
dent variable can be evaluated by computing marginal distributions. It can
be shown that the marginal distribution of the kth column of the matrix of
Regression coefficients B, Bk = β′

k is Multivariate Normal

p(Bk|B̄k,X,U)∝ |∆̄k|
− 1

2 e−
1
2 (Bk−B̄k)

′∆̄−1
k

(Bk−B̄k), (8.7.26)

where ∆̄k is the covariance matrix of Bk found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

Significance can be determined for a subset of coefficients of the kth column
of B by determining the marginal distribution of the subset within Bk which is
also Multivariate Normal. With the subset being a singleton set, significance
can be determined for a particular Regression coefficient with the marginal
distribution of the scalar coefficient which is

p(Bkj|B̄kj ,X,U)∝ (∆̄kj)
− 1

2 e
−

(Bkj−B̄kj)
2

2∆̄kj , (8.7.27)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that B̄kj = β̄jk and that

z =
(Bkj − B̄kj)

√

∆̄kj

(8.7.28)

follows a Normal distribution with a mean of zero and variance of one.

8.7.4 Maximum a Posteriori

The joint posterior distribution may also be maximized with respect to the
vector of Regression coefficients β and the error covariance matrix Σ to obtain
maximum a posteriori estimates. For maximization of the posterior, the ICM
algorithm is used. Using the posterior conditional distributions found for the
Gibbs sampling algorithm, the ICM algorithm for determining maximum a
posteriori estimates is to start with an initial value for the estimate of the
matrix of Regression coefficients B̃(0) and cycle through

β̃(l+1) =
Arg Max

β p(β|Σ̃(l),X,U)

= [∆−1+U ′U ⊗ Σ̃−1
(l) ]

−1[∆−1β0+(U ′U ⊗ Σ̃−1
(l) )β̂]

Σ̃(l+1) =
Arg Max

Σ p(Σ|β̃(l+1),X,U)

=
(X −UB̃′

(l+1))
′(X −UB̃′

(l+1))+Q

n+ν
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until convergence is reached. The variables B̂ = X ′U(U ′U)−1, β̂ = vec(B̂),
and β̃ = vec(B̃) have been defined in the process. Conditional maximum
a posteriori variance estimates can also be found. The conditional modal
variance of the regression coefficients is

var(β|β̃,Σ̃,X,U) = (∆−1+U ′U ⊗ Σ̃−1)−1

= ∆̃,

where β̃ and Σ̃ are the converged value from the ICM algorithm.
Conditional modal intervals may be computed by using the conditional

distribution for a particular parameter given the modal values of the others.
The posterior conditional distribution of the vector of Regression coefficients
β given the modal values of the other parameters and the data is

p(β|β̃,Σ̃,X,U) ∝ |∆̃|−
1
2 e−

1
2 (β−β̃)′∆̃−1(β−β̃). (8.7.29)

To determine statistical significance with the ICM approach, use the mar-
ginal conditional distribution of the vector of Regression coefficients given
above. General simultaneous hypotheses can be performed on the entire vec-
tor or a subset of it. Significance regarding the coefficient for a particular
independent variable can be evaluated by computing marginal distributions.
It can be shown that the marginal conditional distribution of the kth column
of the matrix of Regression coefficients B, Bk is Multivariate Normal

p(Bk|B̃k,Σ̃,X,U)∝ |∆̃k|
− 1

2 e−
1
2 (Bk−B̃k)

′∆̃−1
k

(Bk−B̃k), (8.7.30)

where ∆̃k is the covariance matrix of Bk found by taking the kth p×p sub-
matrix along the diagonal of ∆̃.

Significance can be evaluated for a subset of coefficients of the kth column of
B by determining the marginal distribution of the subset within Bk which is
also Multivariate Normal. With the subset being a singleton set, significance
can be evaluated for a particular Regression coefficient with the marginal
distribution of the scalar coefficient which is

p(Bkj|B̄kj ,X)∝ (∆̃kj)
− 1

2 e
−

(Bkj−B̃kj )
2

2∆̃kj , (8.7.31)

where ∆̃kj is the jth diagonal element of ∆̃k. Note that B̃kj = β̃jk and that

z =
(Bkj − B̃kj)

√

∆̃kj

(8.7.32)

follows a Normal distribution with a mean of zero and variance of one.
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8.8 Interpretation

The main results of performing a Bayesian Regression are estimates of the
matrix of Regression coefficients and the error covariance matrix. The results
of a Bayesian Regression are described with the use of an example.

TABLE 8.1

Variables for Bayesian Regression example.
X Variables U Variables

X1 Concentration at Time 0 U1 Insulin Type
X2 Concentration at Time 1 U2 Dose Level
X3 Concentration at Time 2 U3 Insulin∗Dose Interaction
X4 Concentration at Time 3
X5 Concentration at Time 4
X6 Concentration at Time 5

As an illustrative example, consider data from a bioassay of insulin. The
blood sugar concentration in 36 rabbits was measured in mg/100 ml every hour
between 0 and 5 hours after administration of an insulin dose. There were
two types of insulin preparation (“standard,” U1 = −1 , and “test,” U1 = 1)
each with two dose levels (0.75 units, U2 =−1, and 1.50 units, U2 = 1), from a
study [67]. It is also believed that there is an interaction between preparation
type and dose level so the interaction term U3 = U1 ∗U2 is included.

The problem is to determine the relationship between the set of indepen-
dent variables (the U ’s) and the dependent variables (the X’s) described in
Table 8.1. There are n = 36 observations of dimension p = 5 along with the
q = 3 independent variables.

The data X and the design matrix U (including a column of ones for the
intercept term) are given in Table 8.2. Hyperparameters for the prior distri-
butions were assessed by performing a regression on a previous data set X0

obtained from the same population on the previous day.
The estimate of the Regression coefficient matrix B defines a “fitted” line.

The fitted line describes the linear relationship between the independent vari-
ables (the U ’s), and the dependent variables (the X’s). The coefficient matrix
has the interpretation that if all of the independent variables were held fixed
except for one uij , which if increased to u∗

ij , the dependent variable xij in-
creases to an amount x∗

ij given by

x∗
ij = βi0+ · · ·+βiju

∗
ij + · · ·+βiquiq. (8.8.1)

Regression coefficients are evaluated to determine whether they are statis-
tically “large” meaning that the associated independent variable contributes
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TABLE 8.2

Bayesian Regression data and design matrices.
X 1 2 3 4 5 6 U en 1 2 3
1 96 37 31 33 35 41 1 1 1 1 1
2 90 47 48 55 68 89 2 1 1 1 1
3 99 49 55 64 74 97 3 1 1 1 1
4 95 33 37 43 63 92 4 1 1 1 1
5 107 62 62 85 110 117 5 1 1 1 1
6 81 40 43 45 49 55 6 1 1 1 1
7 95 49 56 63 68 88 7 1 1 1 1
8 105 53 57 69 103 106 8 1 1 1 1
9 97 50 53 59 82 96 9 1 1 1 1

10 97 54 57 66 80 89 10 1 1 -1 -1
11 105 66 83 95 97 100 11 1 1 -1 -1
12 105 49 54 56 70 90 12 1 1 -1 -1
13 106 79 92 95 99 100 13 1 1 -1 -1
14 92 46 51 57 73 91 14 1 1 -1 -1
15 91 61 64 71 80 90 15 1 1 -1 -1
16 101 51 63 91 95 96 16 1 1 -1 -1
17 87 53 55 57 78 89 17 1 1 -1 -1
18 94 57 70 81 94 96 18 1 1 -1 -1
19 98 48 55 71 91 96 19 1 -1 1 -1
20 98 41 43 61 89 101 20 1 -1 1 -1
21 103 60 56 61 76 97 21 1 -1 1 -1
22 99 36 43 57 89 102 22 1 -1 1 -1
23 97 44 51 58 85 105 23 1 -1 1 -1
24 95 41 45 49 59 78 24 1 -1 1 -1
25 109 65 62 72 93 104 25 1 -1 1 -1
26 91 57 60 61 67 83 26 1 -1 1 -1
27 99 43 48 52 61 86 27 1 -1 1 -1
28 102 51 56 81 97 103 28 1 -1 -1 1
29 96 57 55 72 85 89 29 1 -1 -1 1
30 111 84 83 91 101 102 30 1 -1 -1 1
31 105 57 67 83 100 103 31 1 -1 -1 1
32 105 57 61 70 90 98 32 1 -1 -1 1
33 98 55 67 88 94 95 33 1 -1 -1 1
34 98 69 72 89 98 98 34 1 -1 -1 1
35 90 53 61 78 94 95 35 1 -1 -1 1
36 100 60 63 67 77 104 36 1 -1 -1 1

to the dependent variable or statistically “small” meaning that the associated
independent variable does not contribute to the dependent variable.

Table 8.4 contains the matrix of regression coefficients from an implemen-
tation of the aforementioned Conjugate prior model and used the data in Ta-
ble 8.2. Exact analytic equations to compute marginal mean and maximum
a posteriori estimates are used. The marginal mean and conditional modal
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TABLE 8.3

Bayesian Regression prior data and design matrices.
X0 1 2 3 4 5 6 U0 en 1 2 3
1 96 54 61 63 93 103 1 1 1 1 1
2 98 57 63 75 99 104 2 1 1 1 1
3 104 77 88 91 113 110 3 1 1 1 1
4 109 63 60 67 85 109 4 1 1 1 1
5 98 59 65 72 95 103 5 1 1 1 1
6 104 59 62 74 89 97 6 1 1 1 1
7 97 63 70 72 101 102 7 1 1 1 1
8 101 54 64 77 97 100 8 1 1 1 1
9 107 59 67 61 69 99 9 1 1 1 1

10 96 63 81 97 101 97 10 1 1 -1 -1
11 99 48 70 94 108 104 11 1 1 -1 -1
12 102 61 78 81 99 104 12 1 1 -1 -1
13 112 67 76 100 112 112 13 1 1 -1 -1
14 92 49 59 83 104 103 14 1 1 -1 -1
15 101 53 63 86 104 102 15 1 1 -1 -1
16 105 63 77 94 111 107 16 1 1 -1 -1
17 99 61 74 76 89 92 17 1 1 -1 -1
18 99 51 63 77 99 103 18 1 1 -1 -1
19 98 53 62 71 81 101 19 1 -1 1 -1
20 103 62 65 96 101 105 20 1 -1 1 -1
21 102 54 60 57 64 69 21 1 -1 1 -1
22 108 83 67 80 106 108 22 1 -1 1 -1
23 92 56 60 61 73 79 23 1 -1 1 -1
24 102 61 59 71 91 101 24 1 -1 1 -1
25 94 51 53 55 86 83 25 1 -1 1 -1
26 95 55 58 59 71 85 26 1 -1 1 -1
27 103 47 59 64 92 100 27 1 -1 1 -1
28 120 46 44 58 118 108 28 1 -1 -1 1
29 95 65 75 85 96 95 29 1 -1 -1 1
30 99 59 73 82 109 109 30 1 -1 -1 1
31 105 50 58 84 107 107 31 1 -1 -1 1
32 97 67 89 104 118 118 32 1 -1 -1 1
33 97 46 50 59 78 91 33 1 -1 -1 1
34 102 63 67 74 83 98 34 1 -1 -1 1
35 104 69 81 98 104 105 35 1 -1 -1 1
36 101 65 69 72 93 95 36 1 -1 -1 1

posterior distributions are known and as described previously in this Chapter.
With these posterior distributions, credibility intervals and hypotheses can be
evaluated to determine whether the set or a subset of independent variables
describe the observed relationship.

The prior mode, marginal mean, and maximum a posteriori values of the
observation error variances and covariances are the elements of Table 8.5.

In terms of the Source Separation model, if a coefficient is statistically
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TABLE 8.4

Prior, Gibbs, and ICM Bayesian Regression coefficients.
B0 0 1 2 3
1 101.0000 0.0556 -0.3889 0.8889
2 58.6944 0.2500 0.5833 1.0278
3 66.3889 2.5556 -2.8889 0.6111
4 76.9444 3.0556 -6.6111 -0.9444
5 95.5278 2.6944 -6.3056 1.5278
6 100.2222 2.6111 -2.5556 2.7222

B̄ 0 1 2 3
1 99.6250 -0.6806 -0.5972 0.4861
2 55.9306 -0.4583 -2.5417 0.6806
3 62.0694 1.0417 -5.1806 -0.0417
4 72.4444 0.4722 -7.8889 -0.1389
5 88.9306 -0.4306 -6.4861 0.9306
6 96.7917 -0.3194 -2.5972 1.0139

B̃ 0 1 2 3
1 99.6250 -0.6806 -0.5972 0.4861
2 55.9306 -0.4583 -2.5417 0.6806
3 62.0694 1.0417 -5.1806 -0.0417
4 72.4444 0.4722 -7.8889 -0.1389
5 88.9306 -0.4306 -6.4861 0.9306
6 96.7917 -0.3194 -2.5972 1.0139

“large,” then the associated observed source contributes significantly to the
observed mixture of sources.

Table 8.6 contains the matrix of individual marginal statistics for the co-
efficients. From this table, it is apparent which coefficients are statistically
significant.

8.9 Discussion

Returning to the cocktail party problem, the matrix of Regression coeffi-
cients B where B = (µ,B⋆) contains the matrix of mixing coefficients B⋆ for
the observed conversation (sources) U , and the population mean µ which is a
vector of the overall background mean level at each microphone.
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TABLE 8.5

Prior, Gibbs, and ICM Regression covariances.
Q/ν 1 2 3 4 5 6

1 30.3333 8.1327 -5.9198 2.8488 19.1790 18.5802
2 64.8086 55.9815 55.6574 29.8735 22.7747
3 80.3765 74.8858 29.8148 20.8056
4 128.1173 82.6636 57.0432
5 132.9506 75.2963
6 69.0247

Ψ̄ 1 2 3 4 5 6
1 45.6351 29.9234 25.0795 36.3755 56.8027 47.6303
2 115.7423 110.1676 104.0680 85.9636 57.8525
3 141.7941 139.9377 114.5536 76.4875
4 205.5766 188.4320 122.8870
5 277.5163 184.3142
6 171.0833

Ψ̃ 1 2 3 4 5 6
1 34.8268 22.8363 19.1396 27.7602 43.3494 36.3494
2 88.3297 84.0753 79.4203 65.6038 44.1506
3 108.2113 106.7946 87.4225 58.3721
4 156.8874 143.8034 93.7822
5 211.7887 140.6608
6 130.5636

TABLE 8.6

Statistics for coefficients.
t65 0 1 2 3
1 125.1369 -0.8548 -0.7502 0.6106

2 44.1133 -0.3615 -2.0047 0.5368

3 44.2298 0.7423 -3.6916 -0.0297

4 42.8731 0.2795 -4.6687 -0.0822

5 45.2974 -0.2193 -3.3037 0.4740

6 62.7914 -0.2072 -1.6849 0.6577

z 0 1 2 3
1 143.2445 -0.9785 -0.8587 0.6989

2 50.4966 -0.4138 -2.2947 0.6144

3 50.6300 0.8497 -4.2258 -0.0340

4 49.0769 0.3199 -5.3443 -0.0941

5 51.8520 -0.2510 -3.7818 0.5426

6 71.8775 -0.2372 -1.9287 0.7529

© 2003 by Chapman & Hall/CRC



Exercises

1. Write the likelihood for all of the observations as

p(X|B,Σ,U) =
n∏

i=1

p(xi|B,Σ,ui)

and use the facts that tr(ΥΞ) = tr(ΞΥ) to derive Equation 8.3.3. Note
that the trace of a scalar is the scalar.

2. Given the posterior distribution, Equation 8.4.5, derive Gibbs sampling
and ICM algorithms. Show that for the ICM algorithm, convergence is
reached after one iteration when iterating in the order B,Σ.

3. Specify the prior distribution for the Regression coefficients B and the
error covariance matrix Σ to be the vague priors

p(B)∝ (a constant)

and

p(Σ)∝ |Σ|−
(p+1)

2 .

Combine these prior distributions with the likelihood in Equation 8.3.3
to obtain a posterior distribution and derive equations for marginal pa-
rameter estimates.

4. Using the priors specified in Exercise 2, derive Gibbs sampling and ICM
algorithms.

5. Specify the prior distribution for the Regression coefficients and the
error covariance matrix to be the vague and Conjugate priors

p(B)∝ (a constant)

and

p(Σ)∝ |Σ|−
ν
2 e−

1
2Σ

−1Q.

Combine these prior distributions with the likelihood in Equation 8.3.3
to obtain a posterior distribution and derive equations for marginal pa-
rameter estimates.
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6. Using the priors specified in Exercise 4, derive Gibbs sampling and ICM
algorithms.

7. Derive the ICM algorithm for maximizing the posterior distribution,
Equation 8.4.5. Do this by taking the logarithm and differentiating
with respect to B using the result [41] given in Chapter 6 that

∂tr(ΞB′ΥB)

∂B
= 2ΥBΞ

and either differentiating with respect to Σ or using the mode or maxi-
mum value of an Inverted Wishart distribution.

8. In the Conjugate prior model, exact marginal mean estimates were com-
puted. Derive the Gibbs sampling algorithm for the Conjugate prior
model.
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9

Bayesian Factor Analysis

9.1 Introduction

Now that the Bayesian Regression model has been discussed, the Bayesian
Factor Analysis model is described. The Bayesian Factor Analysis model is
similar to the Bayesian Source Separation model in that the factors, analogous
to sources, are unobservable. However, there are differences that outline the
Psychometric method.

The Factor Analysis model uses the correlations or covariances between a set
of observed variables to describe them in terms of a smaller set of unobservable
variables [50]. The unobserved variables called factors describe the underlying
relationship among the original variables.

There are two main reasons why one would perform a Factor Analysis. The
first is to explain the observed relationship among a set of observed variables
in terms of a smaller number of unobserved variables or latent factors which
underlie the observations. This smaller number of variables can be used to
find a meaningful structure in the observed variables. This structure will aid
in the interpretation and explanation of the process that has generated the
observations.

The second reason one would carry out a Factor Analysis is for data reduc-
tion. Since the observed variables are represented in terms of a smaller number
of unobserved or latent variables, the number of variables in the analysis is
reduced, and so are the storage requirements. By having a smaller number of
factors (vectors of smaller dimension) to work with that capture the essence
of the observed variables, only this smaller number of factors is required to be
stored. This smaller number of factors can also be used for further analysis
to reduce computational requirements.

The structure of the Factor Analysis model is strikingly similar to the Source
Separation model. However, its genesis comes from psychology and retains
some of the specifics for the Psychometric model. In reading about the Fac-
tor Analysis model, the unobservable factors correspond to the unobservable
sources.
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9.2 The Bayesian Factor Analysis Model

The development of Bayesian Factor Analysis has been recent. Here is
a description of the Factor Analysis model and a Bayesian approach which
builds upon previous work [43, 44, 51, 54, 55, 65].

In the Bayesian Factor Analysis model, the p-dimensional observed values
are denoted as xi’s just as in the Bayesian Regression model and the m-
dimensional unobserved factor score vectors analogous to sources are denoted
by fi’s. The fi’s are used to distinguish the unobservable factors from the
observable regressors, the ui’s, and the unobservable sources, the si’s.

Given a set of independent and identically distributed vector-valued obser-
vations xi, i = 1, . . . ,n, on p possibly correlated random variables, the Multi-
variate Factor Analysis model on the m < p, unobserved variable fi, is

(xi|µ,Λ,fi) = µ + Λ fi + ǫi,
(p×1) (p×1) (p×m) (m×1) (p×1)

(9.2.1)

where the p-dimensional overall population mean vector is

µ =






µ1

...
µp




 , (9.2.2)

the matrix Λ of unobserved coefficients called “factor loadings” (analogous to
the Regression coefficient matrix B⋆ in the Regression model and the mixing
matrix Λ in the Source Separation model) describing the relationship between
fi and xi,

Λ =






λ′
1
...

λ′
p




 , (9.2.3)

while ǫi is the error vector at time i is given by

ǫi =






ǫi1

...
ǫip




 . (9.2.4)

More specifically, a given element xij of observed vector xi is represented
by the model

(xij |µij ,λj ,fi) = µij + λ′
j fi + ǫij ,

(1×1) (1×1) (1×m) (m×1) (1×1)
(9.2.5)
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where λ′
j = (λj1, . . . ,λjm) is a vector of factor loadings that connects the m

unobserved factors to the jth observation variable at observation number or
time i, xij . This is also represented as

(xij |µj ,λj ,fi) = µj +

m∑

k=1

λjk fik + ǫij . (9.2.6)

Gathering all observed vectors into a matrix X, the Factor Analysis model
may be written as

(X|µ,Λ,F ) = enµ′ + F Λ′ + E,
(n×p) (n×p) (n×m) (m×p) (n×p)

(9.2.7)

where the matrix of observed vectors, the matrix of unobserved factors scores,
and the matrix of error vectors are given by

X =






x′
1
...

x′
n




 , F =






f ′
1
...

f ′
n




 , and E =






ǫ′1
...

ǫ′n




 . (9.2.8)

The ijth element of the observed matrix X is given by the jth element of
µ, µj plus the ith row of F multiplied by the jth column (row) of Λ′ (Λ) plus
the ijth element of E.

9.3 Likeliho o d

In statistical models, there is inherent random variability or error which
is characterized as having arisen from a distribution. As in the Regression
model [1, 41] it is specified that the errors of observation are independent
and Multivariate Normally distributed and represented by the Multivariate
Normal distribution (Chapter 2)

p(ǫi|Σ)∝ |Σ|−
1
2 e−

1
2 ǫ′iΣ

−1ǫi , (9.3.1)

where ǫi is the ith p-dimensional error vector, and Σ is the p×p error covari-
ance matrix.

From this Multivariate Normal error specification, the distribution of the
ith observation vector is the Multivariate Normal distribution

p(xi|µ,Λ,fi,Σ)∝ |Σ|−
1
2 e−

1
2 (xi−µ−Λ′fi)

′Σ−1(xi−µ−Λ′fi). (9.3.2)
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With the matrix representation of the model, the distribution of the matrix
of observations is given by the Matrix Normal distribution

p(X|µ,Λ,F,Σ)∝ |Σ|−
n
2 e−

1
2 tr(X−enµ′−FΛ′)Σ−1(X−enµ′−FΛ′)′ , (9.3.3)

where the observations are X ′ = (x1, . . . ,xn) and the factor scores are F ′ =
(f1, . . . ,fn). The notation “tr” is the trace operator which yields the sum of
the diagonal elements of its matrix argument.

The Factor Analysis model can be written in a similar form as the Bayesian
Regression model. The overall mean vector µ and the factor loading matrix
Λ are joined into a single matrix as

C = (µ,Λ) = (C1, . . . ,Cm+1) =






c′1
...
c′p




 . (9.3.4)

An n-dimensional vector of ones en and the factor scores matrix F are also
joined as Z = (en,F ).

Having joined these vectors and matrices, the Factor Analysis model is now
written in the matrix formulation

(X|C,Z) = Z C ′ + E
n×p n× (m+1) (m+1)×p (n×p)

(9.3.5)

and the associated likelihood is the Matrix Normal distribution given by

p(X|C,Z,Σ)∝ |Σ|−
n
2 e−

1
2 tr(X−ZC′)Σ−1(X−ZC′)′ , (9.3.6)

where all variables are as defined above.
Both Conjugate and generalized Conjugate distributions are used to quan-

tify our prior knowledge regarding various values of the model parameters.

9.4 Conjugate Priors and Posterior

In the model immediately described based on [60], which advances previous
work [43, 44, 51, 54, 55, 65], Conjugate families of prior distributions for
the model parameters are used. The joint prior distribution for the model
parameters C = (µ,Λ) the matrix of coefficients, F the factor score matrix,
and Σ the error covariance matrix is the product of the prior distribution
for the factor score matrix multiplied by the prior distribution for the matrix
of coefficients C given the error covariance matrix Σ multiplied by the prior
distribution for the error covariance matrix Σ
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p(F,C,Σ) = p(F )p(C|Σ)p(Σ), (9.4.1)

where the prior distribution for the model parameters from the Conjugate
procedure outlined in Chapter 4 are the Matrix Normal distribution for the
matrix of coefficients C, the Inverted Wishart distribution for the error covari-
ance matrix Σ, and the Matrix Normal distribution for the matrix of factor
scores F are given by

p(C|Σ) ∝ |D|−
p
2 |Σ|−

m+1
2 e−

1
2 trD−1(C−C0)

′Σ−1(C−C0), (9.4.2)

p(Σ) ∝ |Σ|−
ν
2 e−

1
2 trΣ−1Q, (9.4.3)

p(F ) ∝ e−
1
2 trF ′F , (9.4.4)

with Σ, D, and Q positive definite symmetric matrices. Thus, C conditional
on Σ has elements which are jointly Normally distributed, and (C0,D) are
hyperparameters to be assessed; Σ follows an Inverted Wishart distribution,
and (ν,Q) are hyperparameters to be assessed. The factor score vectors are
independent and normally distributed random vectors with mean zero and
identity covariance matrix which is consistent with the traditional orthogonal
Factor Analysis model. The distributional specification for the factor scores is
also present in non-Bayesian models as a model assumption [41, 50]. Note that
Q and consequently E(Σ) are diagonal, to represent traditional Psychometric
views of the factor model containing “common” and “specific” factors.

If the vector of coefficients c is given by c= vec(C), then from the prior spec-
ification, var(c|Σ) = D⊗Σ. By Bayes’ rule, the joint posterior distribution
for the unknown model parameters F , C, and Σ is given by

p(F,C,Σ|X) ∝ e−
1
2 trF ′F |Σ|−

(n+ν+m+1)
2 e−

1
2 trΣ−1G, (9.4.5)

where the p×p matrix variable G has been defined to be

G = (X −ZC ′)′(X −ZC ′)+(C−C0)D
−1(C−C0)

′+Q.

The joint posterior distribution must now be evaluated in order to obtain
estimates of the matrix of factor scores F , the matrix containing the over-
all mean µ with the factor loadings Λ, and the error covariance matrix Σ.
Marginal posterior mean and joint maximum a posteriori estimates of the
parameters F , C, and Σ are found by the Gibbs sampling and iterated con-
ditional modes (ICM) algorithms.
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9.5 Conjugate Estimation and Inference

With the above joint posterior distribution from the Bayesian Factor Analy-
sis model, it is not possible to obtain all or any of the marginal distributions
and thus marginal estimates in closed form or explicit formulas for maximum
a posteriori estimates from differentiation. For this reason, marginal mean
estimates using the Gibbs sampling algorithm and maximum a posteriori es-
timates using the ICM algorithm are found.

9.5.1 Posterior Conditionals

Both the Gibbs sampling and ICM estimation procedures require the pos-
terior conditional distributions. Gibbs sampling requires the posterior con-
ditionals for the generation of random variates while ICM requires them for
maximization by cycling through their modes or maxima.

The conditional posterior distribution of the matrix of factor scores F is
found by considering only those terms in the joint posterior distribution which
involve F and is given by

p(F |µ,Λ,Σ,X) ∝ p(F )p(X|µ,F,Λ,Σ)

∝ e−
1
2 trF ′F |Σ|−

n
2 e−

1
2 trΣ−1(X−enµ−FΛ′)′(X−enµ−FΛ′)

∝ e−
1
2 trF ′F e−

1
2 tr(X−enµ′−FΛ′)Σ−1(X−enµ′−FΛ′)′

which after performing some algebra in the exponent can be written as

p(F |µ,Λ,Σ,X) ∝ e−
1
2 tr(F−F̃ )(Im+Λ′Σ−1Λ)(F−F̃ )′ , (9.5.1)

where the matrix F̃ has been defined to be

F̃ = (X −enµ′)Σ−1Λ(Im +Λ′Σ−1Λ)−1. (9.5.2)

That is, the matrix of factor scores given the overall mean µ, the matrix of
factor loadings Λ, the error covariance matrix Σ, and the data X is Matrix
Normally distributed.

The conditional posterior distribution of the matrix C of factor loadings Λ
and the overall mean µ is found by considering only those terms in the joint
posterior distribution which involve C and is given by

p(C|F,Σ,X) ∝ p(C|Σ)p(X|F,C,Σ)

∝ |Σ|−
m+1

2 e−
1
2 trΣ−1(C−C0)D

−1(C−C0)
′
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×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′)

∝ e−
1
2 trΣ

−1[(C−C0)D−1(C−C0)′+(X−ZC′)′(X−ZC′)]

which after performing some algebra in the exponent becomes

p(C|F,Σ,X) ∝ e−
1
2 trΣ

−1(C−C̃)(D−1+Z′Z)(C−C̃)′ , (9.5.3)

where the matrix C̃ has been defined to be

C̃ = [C0D
−1 +X ′Z](D−1 +Z ′Z)−1.

Note that C̃ can be written as

C̃ = C0[D
−1(D−1 +Z ′Z)−1]+ Ĉ[(Z ′Z)(D−1 +Z ′Z)−1],

a weighted combination of the prior mean C0 from the prior distribution and
the data mean Ĉ =X ′Z(Z ′Z)−1 from the likelihood.

That is, the conditional posterior distribution of the matrix C (containing
the mean vector µ and the factor loadings matrix Λ) given the factor scores F ,
the error covariance matrix Σ, and the data X is Matrix Normally distributed.

The conditional posterior distribution of the disturbance covariance matrix
Σ is found by considering only those terms in the joint posterior distribution
which involve Σ, and is given by

p(Σ|F,C,X) ∝ p(Σ)p(C|Σ)p(X|F,C,Σ)

∝ |Σ|− ν2 e− 1
2 trΣ

−1Q|Σ|−m+1
2 e−

1
2 trΣ

−1(C−C0)D−1(C−C0)′

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′)

∝ |Σ|−
(n+ν+m+1)

2 e−
1
2 trΣ

−1G, (9.5.4)

where the p×p matrix G has been defined to be

G = (X−ZC ′)(X−ZC ′)′+(C−C0)D
−1(C−C0)

′+Q. (9.5.5)

That is, the conditional distribution of the error covariance matrix Σ given
the overall mean µ, the matrix of factor scores F , the matrix of factor loadings
Λ, and the data X has an Inverted Wishart distribution.

The modes of these posterior conditional distributions are as described in
Chapter 2 and are given by F̃ , C̃, (both as defined above) and

Σ̃ =
G

n+ν+m+1
, (9.5.6)

respectively.
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9.5.2 Gibbs Sampling

To find marginal mean estimates of the model parameters from the joint
posterior distribution using the Gibbs sampling algorithm, start with initial
values for the matrix of factor scores F and the error covariance matrix Σ,
say F̄(0) and Σ̄(0), and then cycle through

C̄(l+1) = a random variate from p(C|F̄(l),Σ̄(l),X)

= ACYCB
′
C +MC , (9.5.7)

Σ̄(l+1) = a random variate from p(Σ|F̄(l), C̄(l+1),X)

= AΣ(Y
′
ΣYΣ)−1A′

Σ, (9.5.8)

F̄(l+1) = a random variate from p(F |C̄(l+1),Σ̄(l+1),X)

= YFB
′
F +MF , (9.5.9)

where

ACA
′
C = Σ̄(l),

BCB
′
C = (D−1 + Z̄ ′

(l)Z̄(l))
−1,

Z̄(l) = (en, F̄(l)),

MC = (X ′Z̄(l) +C0D
−1)(D−1 + Z̄ ′

(l)Z̄(l))
−1,

AΣA
′
Σ = (X− Z̄(l)C̄

′
(l+1))

′(X− Z̄(l)C̄
′
(l+1))

+(C̄(l+1)−C0)D
−1(C̄(l+1)−C0)

′+Q,

BFB
′
F = (Im+Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1,

MF = (X−enµ̄
′
(l+1))Σ̄

−1
(l+1)Λ̃(l+1)(Im+Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1

while YC , YΣ, and YF are p× (m+1), (n+ ν+m+1+p+1)×p, and n×m
dimensional matrices respectively, whose elements are random variates from
the standard Scalar Normal distribution. The formulas for the generation of
random variates from the conditional posterior distributions are easily found
from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of each of the parameters

F̄ =
1

L

L
∑

l=1

F̄(l) C̄ =
1

L

L
∑

l=1

C̄(l) Σ̄ =
1

L

L
∑

l=1

Σ̄(l)

which are the exact sampling-based marginal posterior mean estimates of the
parameters. Exact sampling-based estimates of other quantities can also be
found. Similar to Regression, there is interest in the estimate of the marginal
posterior variance of the matrix containing the means and factor loadings
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var(c|X) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄,

where c= vec(C) and c̄= vec(C̄).

The covariance matrices of the other parameters follow similarly. With a
specification of Normality for the marginal posterior distribution of the vector
containing the mean vector and factor loadings, their distribution is

p(c|X) ∝ |∆̄|− 1
2 e−

1
2 (c−c̄)′∆̄−1(c−c̄), (9.5.10)

where c̄ and ∆̄ are as previously defined.

To evaluate statistical significance with the Gibbs sampling approach, use
the marginal distribution of the matrix containing the mean vector and factor
loading matrix given above. General simultaneous hypotheses can be evalu-
ated regarding the entire matrix containing the mean vector and the factor
loading matrix, a submatrix, or the mean vector or a particular factor, or
an element by computing marginal distributions. It can be shown that the
marginal distribution of the kth column of the matrix containing the mean
vector and factor loading matrix C, Ck is Multivariate Normal

p(Ck|C̄k,X)∝ |∆̄k|−
1
2 e−

1
2 (Ck−C̄k)

′∆̄−1
k

(Ck−C̄k), (9.5.11)

where ∆̄k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

Significance can be determined for a subset of coefficients of the kth column
of C by determining the marginal distribution of the subset within Ck which
is also Multivariate Normal. With the subset being a singleton set, signifi-
cance can be determined for a particular mean or loading with the marginal
distribution of the scalar coefficient which is

p(Ckj |C̄kj ,X)∝ (∆̄kj)
− 1

2 e
−

(Ckj−C̄kj)
2

2∆̄kj , (9.5.12)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that C̄kj = c̄jk and that

z =
(Ckj− C̄kj)

√

∆̄kj

(9.5.13)

follows a Normal distribution with a mean of zero and variance of one.
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9.5.3 Maximum a Posteriori

The joint posterior distribution can also be maximized with respect to the
matrix of coefficients C, the matrix of factor scores F , and the error covariance
matrix Σ by using the ICM algorithm. To jointly maximize the joint posterior
distribution using the ICM algorithm, start with an initial value for the matrix
of factor scores F̃ , say F̃(0), and then cycle through

C̃(l+1) =
Arg Max

C p(C|F̃(l),Σ̃(l),X)

= (X ′Z̃(l) +C0D
−1)(D−1 + Z̃ ′

(l)Z̃(l))
−1,

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l+1), F̃(l),X)

= [(X− Z̃(l)C̃
′
(l+1))

′(X− Z̃(l)C̃
′
(l+1))

+(C̃(l+1)−C0)D
−1(C̃(l+1)−C0)

′+Q]/(n+ν+m+1),

F̃(l+1) =
Arg Max

F p(F |C̃(l+1),Σ̃(l+1),X)

= (X−enµ̃
′
(l+1))Σ̃

−1
(l+1)Λ̃(l+1)(Im+Λ̃′

(l+1)Σ̃
−1
(l+1)Λ̃(l+1))

−1,

where the matrix Z̃(l) = (en, F̃(l)) has been defined and cycling continues until
convergence is reached with the joint modal estimator for the unknown para-
meters (F̃ , C̃,Σ̃). Conditional maximum a posteriori variance estimates can
also be found. The conditional modal variance of the matrix containing the
means and factor loadings is

var(C|C̃, F̃ ,Σ̃,X) = Σ̃⊗ (D−1 + Z̃ ′Z̃)−1 (9.5.14)

or equivalently

var(c|c̃, F̃ ,Σ̃,X) = (D−1 + Z̃ ′Z̃)−1⊗ Σ̃ (9.5.15)

= ∆̃, (9.5.16)

where c= vec(C), while C̃, F̃ , and Σ̃ are the converged value from the ICM
algorithm.

To determine statistical significance with the ICM approach, use the condi-
tional distribution of the matrix containing the mean vector and factor loading
matrix which is

p(C|C̃, F̃ ,Σ̃,X)∝ |D−1 + Z̃ ′Z̃| 12 |Σ̃|− 1
2 e−

1
2 trΣ̃

−1(C−C̃)(D−1+Z̃′Z̃)(C−C̃)′ .
(9.5.17)

That is,
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C|C̃, F̃ ,Σ̃,X ∼N
(

C̃,Σ̃⊗ (D−1 + Z̃ ′Z̃)−1
)

. (9.5.18)

General simultaneous hypotheses can be evaluated regarding the entire ma-
trix containing the mean vector and the factor loading matrix, a submatrix, or
the mean vector or a particular factor, or an element by computing marginal
conditional distributions.

It can be shown [17, 41] that the marginal conditional distribution of any
column of the matrix containing the means and factor loadings C, Ck is
Multivariate Normal

p(Ck|C̃k, F̃ ,Σ̃,U,X)∝ |WkkΣ̃|−
1
2 e−

1
2 (Ck−C̃k)

′(WkkΣ̃)−1(Ck−C̃k), (9.5.19)

where W = (D−1 +U ′U)−1 and Wkk is its kth diagonal element.
With the marginal distribution of a column of C, significance can be eval-

uated for the mean vector or a particular factor. Significance can be deter-
mined for a subset of coefficients by determining the marginal distribution
of the subset within Ck which is also Multivariate Normal. With the subset
being a singleton set, significance can be evaluated for a particular mean or
loading with the marginal distribution of the scalar coefficient which is

p(Ckj|C̃kj , F̃ ,Σ̃jj ,U,X)∝ (WkkΣ̃jj)
− 1

2 e
−

(Ckj−C̃kj)
2

2WkkΣ̃jj , (9.5.20)

where Σ̃jj is the jth diagonal element of Σ̃. Note that C̃kj = c̃jk and that

z =
(Ckj− C̃kj)
√

WkkΣ̃jj

(9.5.21)

follows a Normal distribution with a mean of zero and variance of one.

9.6 Generalized Priors and Posterior

The Conjugate prior distributions can be expanded to generalized Conju-
gate priors which permit greater freedom of assessment [56]. This extends
previous work [51] in which available prior information regarding the parame-
ter values was quantified using these generalized Conjugate prior distributions;
however, independence was assumed between the overall mean and the factor
loadings matrix.
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The joint prior distribution p(F,c,Σ) for the matrix of factor scores F , the
vector containing the overall mean and factor loadings c = vec(C), and the
error covariance matrix Σ is given by the product of the prior distribution p(F )
for the factor loading matrix F with the prior distribution p(c) for the vector
of coefficients c and with the prior distribution p(Σ) for the error covariance
matrix Σ and is given by

p(F,c,Σ) = p(F )p(c)p(Σ). (9.6.1)

These prior distributions are found from the generalized Conjugate procedure
outlined in Chapter 4 and are given by

p(c) ∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0), (9.6.2)

p(Σ) ∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (9.6.3)

p(F ) ∝ e−
1
2 trF

′F . (9.6.4)

The hyperparameters ∆, c0, ν, and Q are hyperparameters to be assessed.
The matrices ∆, Σ, and Q are positive definite. By specifying these hyperpa-
rameters the joint prior distribution is determined.

By Bayes’ rule, the joint posterior distribution for the unknown model pa-
rameters with specified generalized Conjugate prior distributions is given by

p(F,c,Σ|X) ∝ p(F )p(c)p(Σ)p(X|F,C,Σ) (9.6.5)

which is

p(F,c,Σ|X) ∝ e−
1
2 trF

′F |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0)

×|Σ|−
(n+ν)

2 e−
1
2 trΣ

−1[(X−ZC′)′(X−ZC′)+Q] (9.6.6)

after inserting the joint prior distribution and the likelihood.
The joint posterior distribution must now be evaluated in order to obtain

estimates of the parameters.

9.7 Generalized Estimation and Inference

With the generalized Conjugate prior distributions, it is not possible to
obtain all or any of the marginal distributions and thus marginal mean esti-
mates in closed form. It is also not possible to obtain explicit formulas for
maximum a posteriori estimates. For these reasons, marginal posterior mean
and joint maximum a posteriori estimates are found using the Gibbs sampling
and ICM algorithms.
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9.7.1 Posterior Conditionals

Both the Gibbs sampling and ICM algorithms require the posterior condi-
tionals. Gibbs sampling requires the conditionals for the generation of random
variates while ICM requires them for maximization by cycling through their
modes.

The conditional posterior distribution of the matrix of factor scores F is
found by considering only those terms in the joint posterior distribution which
only involve F and is given by

p(F |µ,Λ,Σ,X) ∝ p(F )p(X|µ,F,Λ,Σ)

∝ e−
1
2 trF

′F |Σ|−n2 e− 1
2 trΣ

−1(X−FΛ′)′(X−FΛ′)

∝ e−
1
2 trF

′F e−
1
2 tr(X−enµ

′
−FΛ′)Σ−1(X−enµ

′
−FΛ′)′

which after performing some algebra in the exponent can be written as

p(F |µ,Λ,Σ,X) ∝ e−
1
2 tr(F−F̃ )(Im+Λ′Σ−1Λ)(F−F̃ )′ , (9.7.1)

where the matrix F̃ has been defined to be

F̃ = (X−enµ
′)Σ−1Λ(Im+Λ′Σ−1Λ)−1. (9.7.2)

That is, the matrix of factor scores F given the overall mean µ, the factor
loading matrix Λ, the error covariance matrix Σ, and the data X is Matrix
Normally distributed.

The conditional posterior distribution of the vector of means and factor
loadings is found by considering only those terms in the joint posterior distri-
bution which involve c or C and is given by

p(c|F,Σ,X) ∝ p(c)p(X|F,C,Σ)

∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0)

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′) (9.7.3)

which after performing some algebra in the exponent becomes

p(c|F,Σ,X) ∝ e−
1
2 (c−c̃)′[∆−1+Z′Z⊗Σ−1](c−c̃), (9.7.4)

where the vector c̃ has been defined to be

c̃= [∆−1 +Z ′Z⊗Σ−1]−1[∆−1c0 +(Z ′Z⊗Σ−1)ĉ] (9.7.5)

and the vector ĉ has been defined to be
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ĉ= vec[X ′Z(Z ′Z)−1]. (9.7.6)

Note that this is a weighted combination of the prior mean c0 from the
prior distribution and the data mean ĉ from the likelihood.

That is, the conditional posterior distribution of the vector containing the
overall mean vector µ and the factor loading vector λ = vec(Λ) given the
matrix of factor scores F , the error covariance matrix Σ, and the data X is
Multivariate Normally distributed.

The conditional posterior distribution of the error covariance matrix Σ is
found by considering only those terms in the joint posterior distribution which
involve Σ and is given by

p(Σ|F,C,X) ∝ p(Σ)p(X|F,C,Σ)

∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ

−1[(X−ZC′)′(X−ZC′)+Q]. (9.7.7)

That is, the posterior conditional distribution of the error covariance matrix
Σ given the matrix of factor scores F , the overall mean µ, the matrix of factor
loadings Λ, and the data X has an Inverted Wishart distribution.

The modes of these conditional posterior distributions are as described in
Chapter 2 and given by F̃ , c̃, (both as defined above) and

Σ̃ =
(X−ZC ′)′(X−ZC ′)+Q

n+ν
, (9.7.8)

respectively.

9.7.2 Gibbs Sampling

To find marginal mean estimated of the parameters from the joint posterior
distribution using the Gibbs sampling algorithm, start with initial values for
the matrix of factor scores F and the error covariance matrix Σ, say F̄(0) and
Σ̄(0), and then cycle through

c̄(l+1) = a random variate from p(c|F̄(l),Σ̄(l),X)

= AcYc+Mc, (9.7.9)

Σ̄(l+1) = a random variate from p(Σ|F̄(l), c̄(l+1),X)

= AΣ(Y
′
ΣYΣ)

−1A′
Σ, (9.7.10)

F̄(l+1) = a random variate from p(F |c̄(l+1),Σ̄(l+1),X)

= YFB
′
F +MF , (9.7.11)

where
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ĉ(l) = vec[X ′Z̄(l)(Z̄
′
(l)Z̄(l))

−1],

c̄(l+1) = [∆−1 + Z̄ ′
(l)Z̄(l)⊗ Σ̄−1

(l) ]
−1[∆−1c0 +(Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )ĉ(l)],

AcA
′
c = (∆−1 + Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )

−1,

Mc = [∆−1 + ¯Z̄ ′
(l)Z̄(l)⊗ Σ̄

−1

(l)
]−1[∆−1c0 +(Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )ĉ],

AΣA
′
Σ = (X− Z̄(l)C̄

′
(l+1))

′(X− Z̄(l)C̄
′
(l+1))+Q,

BFB
′
F = (Im+Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1,

MF = (X−enµ̄
′
(l+1))Σ̄

−1
(l+1)Λ̄(l+1)(Im+Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1

while Yc, YΣ, and YF are p(m+1)× 1, (n+ ν + p+1)× p, and n×m di-
mensional matrices whose respective elements are random variates from the
standard Scalar Normal distribution. The formulas for the generation of ran-
dom variates from the conditional posterior distributions are easily found from
the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of each of the parameters

F̄ =
1

L

L
∑

l=1

F̄(l) c̄=
1

L

L
∑

l=1

c̄(l) Σ̄ =
1

L

L
∑

l=1

Σ̄(l)

which are the exact sampling-based marginal posterior mean estimates of the
parameters. Exact sampling-based estimates of other quantities can also be
found. Similar to Regression, there is interest in the estimate of the marginal
posterior variance of the vector containing the means and factor loadings

var(c|X) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄.

The covariance matrices of the other parameters follow similarly. With a
specification of Normality for the marginal posterior distribution of the vector
containing the means and factor loadings, their distribution is

p(c|X) ∝ |∆̄|− 1
2 e−

1
2 (c−c̄)′∆̄−1(c−c̄), (9.7.12)

where c̄ and ∆̄ are as previously defined.
To evaluate statistical significance with the Gibbs sampling approach, use

the marginal distribution of the vector c containing the means and factor
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loadings given above. General simultaneous hypotheses can be evaluated re-
garding the entire coefficient vector of means and loadings, a subset of it, or
the coefficients for a particular factor by computing marginal distributions. It
can be shown that the marginal distribution of the kth column of the matrix
containing the means and factor loadings C, Ck is Multivariate Normal

p(Ck|C̄k,X,U)∝ |∆̄k|−
1
2 e−

1
2 (Ck−C̄k)

′∆̄−1
k

(Ck−C̄k), (9.7.13)

where ∆̄k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

Significance can be evaluated for a subset of means or coefficients of the kth

column of C by determining the marginal distribution of the subset within
Ck which is also Multivariate Normal. With the subset being a singleton set,
significance can be determined for a particular mean or coefficient with the
marginal distribution of the scalar coefficient which is

p(Ckj|C̄kj ,X,U)∝ (∆̄kj)
− 1

2 e
−

(Ckj−C̄kj)
2

2∆̄kj , (9.7.14)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that C̄kj = c̄jk and that

z =
(Ckj− C̄kj)

√

∆̄kj

(9.7.15)

follows a Normal distribution with a mean of zero and variance of one.

9.7.3 Maximum a Posteriori

The joint posterior distribution can also be maximized with respect to the
vector of coefficients c, the matrix of factor scores F , and the error covariance
matrix Σ using the ICM algorithm. To maximize the joint posterior distrib-
ution using the ICM algorithm, start with initial values for the estimates of
the matrix of factor score matrix F̃ and the error covariance matrix Σ, say
F̃(0) and Σ̃(0), and then cycle through

ĉ(l) = vec[X ′Z̃(l)(Z̃
′
(l)Z̃(l))

−1],

c̃(l+1) =
Arg Max

c p(c|F̃(l),Σ̃(l),X)

= [∆−1 + Z̃ ′
(l)Z̃(l)⊗ Σ̃−1

(l) ]
−1[∆−1c0 +(Z̃ ′

(l)Z̃(l)⊗ Σ̃−1
(l) )ĉ(l)],

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l+1), F̃(l),X)

=
(X− Z̃(l)C̃

′
(l+1))

′(X− Z̃(l)C̃
′
(l+1))+Q

n+ν
,

F̃(l+1) =
Arg Max

F p(F |C̃(l+1),Σ̃(l+1),X)
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= (X−enµ̃
′
(l+1))Σ̃

−1
(l+1)Λ̃(l+1)(Im+Λ̃′

(l+1)Σ̃
−1
(l+1)Λ̃(l+1))

−1

where the matrix Z̃(l) = (en, F̃(l)) has been defined. Continue cycling until
convergence is reached with the joint modal estimator for the unknown pa-
rameters (F̃ , c̃,Σ̃). Conditional maximum a posteriori variance estimates can
also be found. The conditional modal variance of the matrix containing the
means and factor loadings is

var(c|F̃ ,Σ̃,X,U) = [∆−1 + Z̃ ′Z̃⊗ Σ̃−1]−1 (9.7.16)

= ∆̃, (9.7.17)

where c = vec(C), while F̃ and Σ̃ are the converged value from the ICM
algorithm.

Conditional modal intervals may be computed by using the conditional
distribution for a particular parameter given the modal values of the others.
The posterior conditional distribution of the matrix containing the means and
factor loadings C given the modal values of the other parameters and the data
is

p(c|F̃ ,Σ̃,X,U) ∝ |∆̃|− 1
2 e−

1
2 (c−c̃)′∆̃−1(c−c̃). (9.7.18)

To determine statistical significance with the ICM approach, use the mar-
ginal conditional distribution of the matrix containing the means and factor
loadings given above. General simultaneous hypotheses can be performed re-
garding the mean vector or the coefficient for a particular factor by computing
marginal distributions. It can be shown that the marginal conditional distrib-
ution of the kth column Ck of the matrix C containing the overall mean vector
and factor loading matrix is Multivariate Normal

p(Ck|C̄k,Σ̃,X,U)∝ |∆̃k|−
1
2 e−

1
2 (Ck−C̄k)

′∆̃−1
k

(Ck−C̄k), (9.7.19)

where ∆̃k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̃.

Significance can be determined for a subset of means or loadings of the kth

column of C by determining the marginal distribution of the subset within
Ck which is also Multivariate Normal. With the subset being a singleton set,
significance can be determined for a particular mean or factor loading with
the marginal distribution of the scalar coefficient which is

p(Ckj|C̃kj , F̃ ,Σ̃jj ,X)∝ (∆̃kj)
− 1

2 e
−

(Ckj−C̄kj)
2

2∆̃kj , (9.7.20)

where ∆̃kj is the jth diagonal element of ∆̃k. Note that C̃kj = c̃jk and that
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z =
(Ckj− C̃kj)

√

∆̃kj

follows a Normal distribution with a mean of zero and variance of one.

9.8 Interpretation

The main results of performing a Factor Analysis are estimates of the factor
score matrix, the factor loading matrix, and the error covariance matrix. The
results of a Factor Analysis are described with the use of an example.

Data are extracted from an example in [26] and have been used before in
Bayesian Factor Analysis [43, 44]. Applicants for a particular position have
been scored on fifteen variables which are listed in Table 9.1.

The aim of performing this Factor Analysis is to determine an underlying
relationship between the original observed variables which is of lower dimen-
sion and to determine which applicants are candidates for being hired based
on these factors.

TABLE 9.1

Variables for Bayesian Factor Analysis example.
X Variables
X1 Form of letter application X2 Appearance
X3 Academic ability X4 Likeabiliy
X5 Self-confidence X6 Lucidity
X7 Honesty X8 Salesmanship
X9 Experience X10 Drive
X11 Ambition X12 Grasp
X13 Potential X14 Keenness to join
X15 Suitability

The applicants were scored on a ten-point scale on fifteen characteristics.
There are n= 48 observations on applicants which consists of p= 15 observed
variables. Table 9.2 contains the data for the applicant example. Note that
there are only X’s and not any U ’s.

Tables 9.3 and 9.4 contain the Gibbs sampling and ICM estimates of the
factor scores. These are the new variables the applicants are rated on.

In a typical Factor Analysis, the sample size is usually large enough to esti-
mate the variances of the x’s as σ̂2

1 , . . . , σ̂
2
p, the maximum likelihood estimates,
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and scale the x’s to have unit variance. Having done this helps with the in-
terpretation of the factor loading matrix. The matrix of coefficients, Λ which
was previously a matrix of covariances between x and f is now a matrix of
correlations.

Table 9.5 contains prior along with estimated Gibbs sampling and ICM
mean vectors with factor loading matrices. The analysis implemented the
aforementioned Conjugate prior model. It has previously been determined to
use a model with m= 4 factors [43]. The rows of the factor loading matrices
have been rearranged for interpretation purposes. It is seen that factor 1
“loads heavily” for variables 5, 6, 8, 10, 11, 12, and 13; factor 2, heavily on
variable 3; factor 3, heavily on variables 1, 9, and 15; while factor 4 loads
heavily on variables 4 and 7.

Since the observed vectors were scaled by their standard deviations and the
orthogonal factor model was used, the factor loading matrix is a matrix of
correlations between the p observed variables and the m unobserved factors.
For example, the correlation between observable variable 10 and unobservable
factor 1 is 0.6898 when estimated by Gibbs sampling.
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TABLE 9.2

Bayesian Factor Analysis data.
X 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 6 7 2 5 8 7 8 8 3 8 9 7 5 7 10
2 9 10 5 8 10 9 9 10 5 9 9 8 8 8 10
3 7 8 3 6 9 8 9 7 4 9 9 8 6 8 10
4 5 6 8 5 6 5 9 2 8 4 5 8 7 6 5
5 6 8 8 8 4 5 9 2 8 5 5 8 8 7 7
6 7 7 7 6 8 7 10 5 9 6 5 8 6 6 6
7 9 9 8 8 8 8 8 8 10 8 10 8 9 8 10
8 9 9 9 8 9 9 8 8 10 9 10 9 9 9 10
9 9 9 7 8 8 8 8 5 9 8 9 8 8 8 10

10 4 7 10 2 10 10 7 10 3 10 10 10 9 3 10
11 4 7 10 0 10 8 3 9 5 9 10 8 10 2 5
12 4 7 10 4 10 10 7 8 2 8 8 10 10 3 7
13 6 9 8 10 5 4 9 4 4 4 5 4 7 6 8
14 8 9 8 9 6 3 8 2 5 2 6 6 7 5 6
15 4 8 8 7 5 4 10 2 7 5 3 6 6 4 6
16 6 9 6 7 8 9 8 9 8 8 7 6 8 6 10
17 8 7 7 7 9 5 8 6 6 7 8 6 6 7 8
18 6 8 8 4 8 8 6 4 3 3 6 7 2 6 4
19 6 7 8 4 7 8 5 4 4 2 6 8 3 5 4
20 4 8 7 8 8 9 10 5 2 6 7 9 8 8 9
21 3 8 6 8 8 8 10 5 3 6 7 8 8 5 8
22 9 8 7 8 9 10 10 10 3 10 8 10 8 10 8
23 7 10 7 9 9 9 10 10 3 9 9 10 9 10 8
24 9 8 7 10 8 10 10 10 2 9 7 9 9 10 8
25 6 9 7 7 4 5 9 3 2 4 4 4 4 5 4
26 7 8 7 8 5 4 8 2 3 4 5 6 5 5 6
27 2 10 7 9 8 9 10 5 3 5 6 7 6 4 5
28 6 3 5 3 5 3 5 0 0 3 3 0 0 5 0
29 4 3 4 3 3 0 0 0 0 4 4 0 0 5 0
30 4 6 5 6 9 4 10 3 1 3 3 2 2 7 3
31 5 5 4 7 8 4 10 3 2 5 5 3 4 8 3
32 3 3 5 7 7 9 10 3 2 5 3 7 5 5 2
33 2 3 5 7 7 9 10 3 2 2 3 6 4 5 2
34 3 4 6 4 3 3 8 1 1 3 3 3 2 5 2
35 6 7 4 3 3 0 9 0 1 0 2 3 1 5 3
36 9 8 5 5 6 6 8 2 2 2 4 5 6 6 3
37 4 9 6 4 10 8 8 9 1 3 9 7 5 3 2
38 4 9 6 6 9 9 7 9 1 2 10 8 5 5 2
39 10 6 9 10 9 10 10 10 10 10 8 10 10 10 10
40 10 6 9 10 9 10 10 10 10 10 10 10 10 10 10
41 10 7 8 0 2 1 2 0 10 2 0 3 0 0 10
42 10 3 8 0 1 1 0 0 10 0 0 0 0 0 10
43 3 4 9 8 2 4 5 3 6 2 1 3 3 3 8
44 7 7 7 6 9 8 8 6 8 8 10 8 8 6 5
45 9 6 10 9 7 7 10 2 1 5 5 7 8 4 5
46 9 8 10 10 7 9 10 3 1 5 7 9 9 4 4
47 0 7 10 3 5 0 10 0 0 2 2 0 0 0 0
48 0 6 10 1 5 0 10 0 0 2 2 0 0 0 0
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TABLE 9.3

Gibbs sampling estimates of factor scores.

F̄ 1 2 3 4
1 0.3077 -3.3603 -0.2125 -0.5730
2 0.7924 -1.6057 0.1965 0.2117
3 0.5037 -2.7629 -0.0012 -0.1239
4 -0.7681 0.4642 -0.2068 0.1312
5 -1.1131 0.1111 -0.1170 0.6952
6 -0.2053 -0.1476 0.3176 0.5089
7 0.3489 0.2003 0.7723 0.0877
8 0.5909 0.8982 0.7203 0.0415
9 0.1043 -0.4084 0.7848 0.1326

10 1.7144 2.1089 -0.1417 -1.3574
11 1.2927 1.9320 -0.7402 -2.8422
12 1.3329 2.0431 -0.6587 -0.7475
13 -1.2701 0.2614 -0.5932 1.0057
14 -1.1671 0.3324 -0.1722 0.6009
15 -1.1925 0.3136 -0.4554 0.8168
16 0.2348 -1.0655 0.1624 -0.1061
17 -0.0942 -0.0641 0.1559 0.0120
18 -0.5280 0.7515 -0.9473 -1.2914
19 -0.5392 0.6903 -0.6783 -1.3880
20 0.1663 -0.1587 -0.8480 0.7384
21 0.1888 -0.8514 -0.8602 0.8835
22 0.8396 -0.1468 -0.2744 0.6413
23 0.7156 -0.3827 -0.8944 0.6872
24 0.5293 -0.2395 -0.4618 1.1675
25 -1.4216 -0.2283 -1.1918 0.3591
26 -1.1812 -0.2195 -0.4864 0.4257
27 -0.1117 -0.2813 -1.6328 1.0079
28 -1.9465 -0.9311 -1.5140 -1.2838
29 -2.4544 -1.9705 -2.2364 -2.6975
30 -1.2091 -1.0386 -1.6438 0.3865
31 -0.9775 -1.8423 -1.4264 0.7280
32 -0.3479 -1.1174 -1.3412 1.1795
33 -0.6294 -1.0550 -1.5186 1.1185
34 -1.8538 -0.5416 -1.7054 -0.2570
35 -2.3996 -1.9346 -1.0801 -0.4663
36 -1.0747 -1.3773 -0.5516 -0.2966
37 0.5600 -0.5530 -1.7533 -0.7706
38 0.3733 -0.7114 -2.0248 -0.6473
39 0.8246 1.0423 1.0749 1.3483
40 0.9801 1.0611 1.0504 1.3164
41 -2.4371 0.5326 2.0433 -2.8728
42 -2.7783 0.7600 2.2499 -3.1261
43 -2.1129 1.1138 -0.3480 -0.0329
44 0.5688 -0.1781 -0.1073 -0.0994
45 -0.2459 2.1388 -0.0444 1.5419
46 0.1637 1.9385 -0.3786 1.6403
47 -2.0181 2.2786 -2.4526 -0.0478
48 -1.9193 2.4105 -2.2961 -0.4600
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TABLE 9.4

ICM estimates of factor scores.

F̃ 1 2 3 4
1 0.1606 -3.5584 -0.3575 -0.5349
2 0.7575 -1.6808 0.2195 0.3713
3 0.3921 -2.9206 -0.1091 -0.0416
4 -0.8869 0.5279 -0.4046 0.0312
5 -1.0895 0.2790 -0.1725 0.6625
6 -0.3319 -0.1462 0.1647 0.4682
7 0.3905 0.2531 0.8603 0.1704
8 0.6483 0.9351 0.8176 0.1400
9 0.1116 -0.3768 0.8034 0.2049

10 1.4590 2.0559 -0.4261 -1.3752
11 1.0815 1.9658 -0.9212 -2.9114
12 1.0971 2.0434 -0.9648 -0.8000
13 -1.2880 0.3323 -0.6155 1.0498
14 -1.2535 0.4241 -0.2638 0.6192
15 -1.2975 0.4498 -0.6034 0.7697
16 0.2113 -1.0312 0.1744 -0.0367
17 -0.2017 -0.1779 0.0809 0.0221
18 -0.7106 0.6368 -1.1290 -1.2534
19 -0.7226 0.6290 -0.9075 -1.4296
20 0.0829 -0.1970 -1.0102 0.8057
21 0.0443 -0.8392 -1.0544 0.9045
22 0.8245 -0.2741 -0.3225 0.7138
23 0.7634 -0.4100 -0.8217 0.8613
24 0.5545 -0.3338 -0.4949 1.2228
25 -1.5303 -0.2132 -1.3128 0.3743
26 -1.2976 -0.2034 -0.6532 0.3946
27 -0.2345 -0.2079 -1.7420 1.0966
28 -2.2280 -1.2265 -1.8600 -1.5166
29 -2.5958 -2.1770 -2.4250 -2.9581
30 -1.4420 -1.2948 -1.8597 0.3869
31 -1.1459 -2.0788 -1.6079 0.6640
32 -0.5964 -1.2671 -1.7646 0.9369
33 -0.8973 -1.2243 -1.9410 0.9053
34 -2.0689 -0.6754 -2.0180 -0.4497
35 -2.6429 -2.0414 -1.3609 -0.5105
36 -1.2520 -1.4339 -0.7874 -0.3159
37 0.2833 -0.6483 -1.9382 -0.6854
38 0.2040 -0.7895 -2.1215 -0.5485
39 0.8801 1.0039 1.0739 1.3098
40 1.0284 1.0084 1.0633 1.2868
41 -2.6775 0.6079 1.7383 -3.0415
42 -3.0521 0.7185 1.8513 -3.4691
43 -2.2026 1.1547 -0.5726 -0.2761
44 0.4625 -0.1958 -0.1921 -0.1354
45 -0.4851 2.0908 -0.4240 1.3945
46 -0.0210 1.9787 -0.6763 1.5681
47 -2.3946 2.2267 -2.7794 -0.1245
48 -2.3430 2.3154 -2.6884 -0.5719
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TABLE 9.5

Prior, Gibbs, and ICM means and loadings.
C0 0 1 2 3 4
5 7.5 .7 0 0 0

6 7.5 .7 0 0 0

8 7.5 .7 0 0 0

10 7.5 .7 0 0 0

11 7.5 .7 0 0 0

12 7.5 .7 0 0 0

13 7.5 .7 0 0 0

3 7.5 0 .7 0 0

1 7.5 0 0 .7 0

9 7.5 0 0 .7 0

15 7.5 0 0 .7 0

4 7.5 0 0 0 .7
7 7.5 0 0 0 .7
2 7.5 0 0 0 0

14 7.5 0 0 0 0

C̄ 0 1 2 3 4
5 7.5851 0.7867 -0.0494 -0.1259 0.0099

6 7.4334 0.7396 -0.0335 0.0362 0.1036

8 6.3612 0.7841 -0.0739 0.0834 -0.0483

10 6.6714 0.6898 -0.0519 0.1883 0.0413

11 7.0915 0.7839 -0.0725 0.0183 -0.0640

12 7.4275 0.6937 0.0126 0.1423 0.1298

13 7.0281 0.6432 0.0613 0.1839 0.2076

3 7.2963 0.0292 0.6941 0.0875 0.0335

1 7.1472 0.0460 -0.0934 0.7389 0.0590

9 5.9576 0.0276 0.0211 0.7905 0.0069

15 7.4903 0.2225 -0.0688 0.7138 0.0465

4 6.7395 0.0980 -0.0685 0.1495 0.6966
7 7.9370 0.1019 -0.0121 -0.1473 0.6985
2 7.4223 0.2957 -0.0158 0.0523 0.1103

14 6.4301 0.3017 -0.2900 0.1879 0.2995

C̃ 0 1 2 3 4
5 7.6941 0.7828 -0.0472 -0.1676 -0.0111

6 7.6225 0.7315 -0.0212 -0.0087 0.0742

8 6.6418 0.7869 -0.0664 0.0645 -0.0738

10 6.9201 0.6839 -0.0439 0.1716 0.0120

11 7.3092 0.7885 -0.0630 0.0004 -0.0844

12 7.6515 0.6792 0.0356 0.1070 0.1103

13 7.2853 0.6247 0.0887 0.1609 0.1898

3 7.3538 0.0277 0.7191 0.0638 0.0270

1 7.3959 0.0049 -0.0942 0.7606 0.0622

9 6.3038 -0.0090 0.0423 0.8184 -0.0002

15 7.8412 0.1817 -0.0526 0.7233 0.0453

4 6.8584 0.0557 -0.0544 0.1834 0.7227
7 7.9147 0.0499 -0.0016 -0.1483 0.7339
2 7.5305 0.2822 0.0111 0.0836 0.1548

14 6.5979 0.2903 -0.2993 0.2279 0.3115
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These factors which are based on Table 9.5 may be loosely interpreted as
factor 1 being a measure of personality, factor 2 being a measure of academic
ability, factor 3 being a measure of position match, and factor 4 being a
measure of what can be described as charisma as presented in Table 9.6.

TABLE 9.6

Factors in terms of strong observation loadings.
Factor 1: 5 Self-confidence, 6 Lucidity, 8 Salesmanship, 10 Drive,

11 Ambition, 12 Grasp, 13 Potential
Factor 2: 3 Academic ability
Factor 3: 1 Form of letter application, 9 Experience, 15 Suitability
Factor 4: 4 Likeabiliy, 7 Honesty

The Gibbs sampling marginal values of the observation error variances and
covariances are the elements of Table 9.7 while the ICM values of the observa-
tion error variances and covariances are the elements of Table 9.8. Note that
the estimates from the two methods similar but with minor differences.

Table 9.9 contains the statistics for the individual posterior means and
loadings. Inspection can reveal which are “large.”
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TABLE 9.7

Gibbs estimates of Factor Analysis covariances.

Ψ̄ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 .2166 .0603 -.0014 .0681 .0116 .0063 -.0274 .0215 -.0359 .0148 .0527 .0151 .0227 .1258 -.0357
2 .4472 .0458 .0637 .0154 -.0270 .0589 .0462 .0268 -.0247 .0874 .0459 .0487 .0185 .0909
3 .0504 0246 -.0138 -.0005 -.0107 .0126 .0315 .0137 .0144 .0165 .0303 .0084 .0143
4 .1451 -.0165 .0307 -.0595 .0513 .0419 .0325 .0537 .0258 .0534 .1035 .0452
5 .0876 -.0093 .0303 .0023 .0043 -.0123 .0138 -.0293 -.0320 .0181 -.0198
6 .0986 -.0317 .0112 .0003 -.0302 -.0240 .0439 -.0002 .0205 -.0051
7 .1206 -.0161 -.0115 -.0117 -.0189 -.0104 -.0303 -.0188 .0055
8 .1231 .0496 .0486 .0319 -.0083 .0067 .0773 .0538
9 .2205 .0511 .0424 .0194 .0398 .0710 .0220

10 .1771 .0297 -.0212 .0417 .1036 .0561
11 .1103 .0079 .0303 .0713 .0154
12 .1072 .0417 .0371 .0057
13 .1167 .0422 .0247
14 .2939 .0364
15 .1565
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TABLE 9.8

ICM estimates of Factor Analysis covariances.

Ψ̃ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
1 .1731 .0287 .0009 .0359 .0097 .0028 -.0265 -.0017 -.0799 -.0100 .0315 .0043 .0040 .0808 -.0715
2 .4147 .0209 .0184 .0087 -.0425 .0318 .0275 -.0107 -.0481 .0718 .0214 .0166 -.0128 .0551
3 .0078 .0159 -.0093 -.0035 -.0101 .0085 .0123 .0091 .0086 .0029 .0098 .0185 .0054
4 .1006 -.0288 .0166 -.0830 .0271 .0104 .0100 .0306 .0042 .0263 .0643 .0090
5 .0817 -.0155 .0320 -.0088 .0002 -.0231 .0036 -.0352 -.0398 -.0033 -.0214
6 .0855 -.0250 -.0075 -.0081 -.0459 -.0404 .0312 -.0142 -.0035 -.0110
7 .0838 -.0087 -.0047 -.0029 -.0130 -.0086 -.0289 -.0300 .0048
8 .0882 .0186 .0162 .0047 -.0297 -.0198 .0384 .0271
9 .1531 .0186 .0147 .0000 .0099 .0300 -.0251

10 .1397 .0006 -.0419 .0140 .0634 .0277
11 .0827 -.0127 .0046 .0366 -.0070
12 .0867 .0189 .0085 -.0087
13 .0839 .0107 .0005
14 .2327 -.0080
15 .1136
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TABLE 9.9

Statistics for means and loadings.
zGibbs 0 1 2 3 4

5 121.1806 16.5189 -1.1570 -2.4151 0.1896

6 113.8556 14.7298 -0.7452 0.6357 1.9246

8 85.5536 15.2162 -1.5884 1.3252 -0.7857

10 81.8379 10.5490 -0.9250 2.6814 0.5879

11 100.1574 16.0036 -1.4903 0.2825 -1.0762

12 110.8510 13.0914 0.2640 2.4543 2.3607

13 99.0115 11.2402 1.2095 3.1098 3.8215

3 98.4057 0.5196 16.2240 1.5184 0.5861

1 75.5597 0.5372 -1.3360 8.4302 0.6707

9 57.7264 0.3361 0.3013 10.2866 0.0884

15 84.6348 3.0311 -1.0764 10.4162 0.6551

4 82.3772 1.2793 -1.1176 2.0990 10.7559
7 105.5962 1.5913 -0.2195 -2.2840 11.2131
2 70.1764 2.9582 -0.1531 0.4033 0.9846

14 67.9739 3.5476 -4.3737 1.9789 3.4330
zICM 0 1 2 3 4

5 73.3077 22.3229 -1.6097 -4.6372 -0.3237

6 54.3596 20.3900 -0.7057 -0.2361 2.1094

8 42.5136 21.5955 -2.1822 1.7176 -2.0642

10 41.3721 14.9170 -1.1464 3.6325 0.2657

11 57.0133 22.3481 -2.1352 0.0103 -2.4375

12 56.3954 18.8087 1.1811 2.8743 3.1123
13 52.0442 17.5842 2.9896 4.3949 5.4445
3 276.2472 2.5567 79.5316 5.7244 2.5460

1 43.7899 0.0962 -2.2092 14.4615 1.2418

9 32.0644 -0.1868 1.0536 16.5418 -0.0045

15 46.4278 4.3946 -1.5214 16.9757 1.1163

4 50.7638 1.4320 -1.6729 4.5750 18.9345
7 71.0275 1.4054 -0.0556 -4.0504 21.0602
2 39.1745 3.5729 0.1679 1.0275 1.9980

14 33.8990 4.9054 -6.0528 3.7362 5.3657

9.9 Discussion

There has been some recent work related to the Bayesian Factor Analysis
model. In a model which specifies independence between the overall mean
µ vector and the factor loading matrix Λ with a vague prior distribution for
the overall mean µ, robustness of assessed hyperparameters was investigated
[34, 35] and the hyperparameters were found to be robust but most sensitive to
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the prior mean on the factor loadings Λ0. This indicates that the most care
should be taken when assessing this hyperparameter. For the same model,
methods for assessing the hyperparameters were presented [20, 21]. A prior
distribution was placed on the number of factors and then estimated a poste-
riori [45, 50]. For the same model, the process of estimating the overall mean
by the sample mean was evaluated [55] and the parameters were estimated
by Gibbs sampling and ICM [65]. The same Bayesian Factor Analysis model
was extended to the case of the observation vectors and also the factor score
vectors being correlated [50]. Bayesian Factor Analysis models which specified
independence between the overall mean vector and the factor loadings matrix
but took Conjugate and generalized Conjugate were introduced [51, 54].

Returning to the cocktail party problem, the matrix of factor loadings Λ is
the mixing matrix which determines the contribution of each of the speakers
to the mixed observations. The matrix of factor scores F is likened to the
matrix of unobserved conversations S. The overall population mean µ is the
overall background mean level at the microphones.
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Exercises

1. Specify that the overall mean µ and the factor loading matrix Λ are
independent with the prior distribution for the overall mean µ being the
vague prior

p(µ)∝ (a constant),

the distribution for the factor loading matrix being the Matrix Normal
distribution

p(Λ|Σ)∝ |A|−
p
2 |Σ|−m2 e− 1

2 trΣ
−1(Λ−Λ0)A−1(Λ−Λ0)′ ,

and the others as in Equations 9.4.3–9.4.4.

Combine these prior distributions with the likelihood in Equation 9.3.3
to obtain a joint posterior distribution. Integrate the joint posterior dis-
tribution with respect to Σ then Λ to obtain a marginal posterior distri-
bution for the matrix of factor scores. Use the large sample approxima-

tion F ′F
n = Im to obtain an approximate marginal posterior distribution

for the matrix of factor scores which is a Matrix Student T-distribution.
Estimate the matrix of factor scores to be the mean of the approximate
marginal posterior distribution, the matrix of factor loadings given the
above mentioned factor scores, and then the error covariance matrix
given the factor scores and loadings [43, 44].

2. Specify that the overall mean µ and the factor loading matrix Λ are
independent with the prior distribution for the overall mean µ being the
vague prior

p(µ)∝ (a constant),

the prior distribution for the factor loading matrix being the Matrix
Normal distribution

p(Λ|Σ)∝ |A|−
p
2 |Σ|−m2 e− 1

2 trΣ
−1(Λ−Λ0)A−1(Λ−Λ0)′ ,

and the others as in Equations 9.4.3-9.4.4.

Combine these prior distributions with the likelihood in Equation 9.3.3
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal posterior mean and joint maximum a posteriori
parameter estimates [65].
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3. Specify that the overall mean µ and the factor loading matrix Λ are
independent with the prior distribution for the overall mean µ being the
Conjugate Normal prior

p(µ|Σ)∝ |hΣ|− 1
2 e−

1
2 trΣ

−1(µ−µ0)(hΣ)−1(µ−µ0)′ ,

the distribution for the factor loading matrix being

p(Λ|Σ)∝ |A|−
p
2 |Σ|−m2 e− 1

2Σ−1(Λ−Λ0)A−1(Λ−Λ0)′ ,

and the others as in Equations 9.4.3-9.4.4.

Combine these prior distributions with the likelihood in Equation 9.3.3
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal mean and joint maximum a posteriori parameter
estimates [54].

4. Specify that µ and Λ are independent with the prior distribution for the
overall mean µ to be the generalized Conjugate prior

p(µ)∝ |Γ|− 1
2 e−

1
2 (µ−µ0)′Γ−1(µ−µ0),

the distribution for the factor loading matrix being

p(λ)∝ |∆|− 1
2 e−

1
2 (λ−λ0)′∆−1(λ−λ0),

where λ= vec(Λ) and the other distributions are as in Equations 9.4.3–
9.4.4.

Combine these prior distributions with the likelihood in Equation 9.3.3
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal posterior mean and joint maximum a posteriori
parameter estimates [51].
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10

Bayesian Source Separation

10.1 Introduction

The Bayesian Source Separation model is different from the Bayesian Re-
gression model in that the sources are unobserved and from the Bayesian
Factor Analysis model in that there may be more or less sources than the
observed dimension (the number of microphones). Further, in the Bayesian
Factor Analysis model, the variance of the unobserved factor score vectors
is a priori assumed to be unity and diagonal for Psychologic reasons. The
Bayesian Source Separation model [52, 57, 58, 59, 60, 62, 63] allows the co-
variance matrix for the unobserved sources to have arbitrary variances. That
is, the covariance matrix for the sources is not required to be diagonal and
also the sources are allowed to have a mean other than zero.

With a general covariance matrix (one that is not constrained to be diago-
nal), the sources or speakers at the cocktail party are allowed to be dependent
or correlated. There are other models which impose either the constraint of
orthogonal sources [23] or the constraint of independent sources [6]. If the
sources are truly orthogonal or independent, then such models would be ap-
propriate (independent sources can be obtained here by imposing constraints).
However, if the sources are not independent as in the “real-world” cocktail
party problem, then an independence constraint would not be appropriate.

10.2 Source Separation Model

In the Bayesian approach to statistical inference, available prior informa-
tion either from subjective expert experience, or prior experiments, is incor-
porated into the inferences. This prior information yields progressively less
influence in the final results as the sample size increases, thus allowing the
data to “speak the truth.” The components of the source vectors are free to
be correlated, as is frequently the case and not constrained to be statistically
independent.

The constraint of independent sources models the situation where speakers
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at the cocktail party are talking without regard to the others at the party. The
independent source model implies that the people are “babbling” incoherently.
This is the case when we press play on several tape recorders with one speaker
on each and record on others. This is not how conversations work. This does
not model the true dynamics of a real cocktail party. Referring to Figure 1.1,
focus on the two people in the left foreground. When they speak, they do
not speak irrespective of each other. They speak interactively. For instance,
the person on the left will speak and then fade out while the person on the
right fades in to speak. They are not speaking at the same time. They are
obviously negatively correlated or dependent in a negative fashion.

The linear synthesis Source Separation model which was motivated in Chap-
ter 1 is given by

(xi|µ,Λ,si) = µ + Λ si + ǫi,
(p×1) (p×1) (p×m) (m×1) (p×1)

(10.2.1)

where for observations xi at time increment i, i=1, . . . ,n; xi = a p-dimensional
observed vector, xi = (xi1, . . . ,xip)

′; µ is an overall unobserved mean vector,
µ = (µ1, . . . ,µp)

′; Λ = a p×m matrix of unobserved mixing constants, Λ =
(λ′

1, . . . ,λ
′
p)

′; si = the ith m-dimensional true unobservable source vector, si =
(si1, . . . ,s1m)′; and ǫi = the p-dimensional vector of errors or noise terms of
the ith observed signal vector ǫi = (ǫi1, . . . , ǫip)

′.

Taking a closer look at the model, element (microphone) j in observed
vector (at time) i is represented by the model

(xij |µj ,λj ,si) = µj + λ′
j si + ǫij ,

(1×1) (1×1) (1×m) (m×1) (1×1)
(10.2.2)

in which the recorded or observed conversation xij for microphone j at time
increment i is a linear mixture of the m true unobservable conversations at
time increment i plus an overall (background) mean for microphone j and a
random noise term ǫij . This is also represented as

(xij |µj ,λj ,si) = µj +

m
∑

k=1

λjk sik+ ǫij . (10.2.3)

Analogous to the Regression and Factor Analysis models, the Source Sep-
aration model can be written in terms of matrices as

(X|µ,Λ,S) = enµ
′ + S Λ′ + E,

(n×p) (n×p) (n×m) (m×p) (n×p)
(10.2.4)

where X ′ =(x1, . . . ,xn), en is an n-dimensional vector of ones, µ= (µ1, . . . ,µp),
S′ = (s1, . . . ,sn), Λ

′ = (λ1, . . . ,λp), and E′ = (ǫ1, . . . , ǫn).
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10.3 Source Separation Likelihood

Regarding the errors of the observations, it is specified that they are inde-
pendent Normally distributed random vectors with mean zero and full positive
definite covariance matrix Σ. From this error specification, it is seen that the
observation vector xi given the overall background mean µ, the mixing ma-
trix Λ, the source vector si, and the error covariance matrix Σ is Multivariate
Normally distributed with likelihood given by

p(xi|µ,Λ,si,Σ)∝ |Σ|− 1
2 e−

1
2 (xi−µ−Λsi)

′Σ−1(xi−µ−Λsi). (10.3.1)

With the previously described matrix representation, the joint likelihood of
all n observation vectors collected into the matrix X is given by

p(X|µ,S,Λ,Σ)∝ |Σ|−n2 e− 1
2 tr(X−enµ

′
−SΛ′)Σ−1(X−enµ

′
−SΛ′)′ , (10.3.2)

where the variables are as previously defined.
The overall background mean vector µ and the mixing matrix Λ are joined

into a single matrix as C = (µ,Λ). An n-dimensional vector of ones en and the
source matrix S are also joined as Z = (en,S). Having joined these vectors
and matrices, the Source Separation model is now in a matrix representation
given by

(X|C,Z) = Z C ′ + E,
n×p n× (m+1) (m+1)×p (n×p)

(10.3.3)

and its corresponding likelihood is given by the Matrix Normal distribution

p(X|C,Z,Σ)∝ |Σ|−n2 e− 1
2 tr(X−ZC′)Σ−1(X−ZC′)′ , (10.3.4)

where all variables are as previously defined and tr(·) denotes the trace oper-
ator.

Again, the objective is to unmix the sources by estimating the matrix con-
taining them S, and to obtain knowledge about the mixing process by esti-
mating the overall mean µ, the mixing matrix Λ, and the error covariance
matrix Σ.

The advantage of the Bayesian statistical approach is that available prior
information regarding parameters are quantified through probability distrib-
utions describing degrees of belief for various values. This prior knowledge
is formally brought to bear in the problem through prior distributions and
Bayes’ rule. As stated earlier, the prior parameter values will have decreasing
influence in the posterior estimates with increasing sample size, thus allowing
the data to “speak the truth.”
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10.4 Conjugate Priors a nd Po sterior

In the Bayesian Source Separation model [60] available information re-
garding values of the model parameters is quantified using Conjugate prior
distributions. The joint prior distribution for the model parameters which are
the matrix of coefficients C, the matrix of sources S, the covariance matrix
for the sources R, and the error covariance matrix Σ is given by

p(S,R,C,Σ) = p(S|R)p(R)p(C|Σ)p(Σ), (10.4.1)

where the prior distribution for the parameters from the Conjugate procedure
outlined in Chapter 4 are as follows

p(S|R) ∝ |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′ , (10.4.2)

p(R) ∝ |R|−
η
2 e−

1
2 trR

−1V , (10.4.3)

p(Σ) ∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (10.4.4)

p(C|Σ) ∝ |D|−
p
2 |Σ|−m2 e− 1

2 trΣ
−1(C−C0)D−1(C−C0)′ , (10.4.5)

where Σ, R, V , Q, and D are positive definite matrices. The hyperparameters
S0, η, V , ν, Q, C0, and D are to be assessed and having done so, completely
determine the joint prior distribution.

The prior distributions for the combined matrix containing the overall mean
µ with the mixing matrix Λ, the sources S, the source covariance matrix R,
and the error covariance matrix Σ follow Normal, Normal, Inverted Wishart,
and Inverted Wishart distributions respectively.

Note that both Σ and R are full positive definite symmetric covariance
matrices which allow both the observed mixed signals (elements in the xi’s)
and also the unobserved source components (elements in the si’s) to be cor-
related. The prior mean of the sources is often taken to be constant for all
observations and thus without loss of generality taken to be zero. Here an
observation (time) varying source mean is adopted.

Upon using Bayes’ rule, the joint posterior distribution for the unknown
parameters is proportional to the product of the joint prior distribution and
the likelihood and given by

p(S,R,C,Σ|X) ∝ |Σ|−
(n+ν+m+1)

2 e−
1
2 trΣ

−1G

×|R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ], (10.4.6)

where the p×p matrix variable G has been defined to be
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G = (X−ZC ′)′(X−ZC ′)+(C−C0)D
−1(C−C0)

′+Q. (10.4.7)

This joint posterior distribution must now be evaluated in order to obtain
parameter estimates of the sources S, the overall background mean/mixing
matrix C, the source covariance matrix R, and the observation errors covari-
ance matrix Σ. Marginal posterior mean and joint maximum a posteriori
estimates of the parameters S, R, C, and Σ are found by the Gibbs sampling
and ICM algorithms.

10.5 Conjugate Estimation and Inference

With the above joint posterior distribution for the Bayesian Source Separa-
tion model, it is not possible to obtain all or any of the marginal distributions
and thus marginal estimates of the parameters in an analytic closed form.
It is also not possible to obtain explicit formulas for maximum a posteriori
estimates from differentiation. It is possible to use both Gibbs sampling, to
obtain marginal parameter estimates and the ICM algorithm for maximum
a posteriori estimates. For both estimation procedures, the posterior condi-
tional distributions are required.

10.5.1 Posterior Conditionals

From the joint posterior distribution we can obtain the posterior condi-
tional distributions for each of the model parameters.

The conditional posterior distribution for the overall mean/mixing matrix
C is found by considering only the terms in the joint posterior distribution
which involve C and is given by

p(C|S,R,Σ,X) ∝ p(C|Σ)p(X|C,S,Σ)

∝ |Σ|−m+1
2 e−

1
2 trΣ

−1(C−C0)D−1(C−C0)′

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′)

∝ e−
1
2 trΣ

−1[(C−C0)D−1(C−C0)′+(X−ZC′)′(X−ZC′)]

∝ e−
1
2 trΣ

−1(C−C̃)(D−1+Z′Z)(C−C̃)′ , (10.5.1)

where the variable C̃, the posterior conditional mean and mode, has been
defined and is given by

C̃ = (C0D
−1 +X ′Z)(D−1 +Z ′Z)−1 (10.5.2)
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= C0[D
−1(D−1 +Z ′Z)−1]+ Ĉ[(Z ′Z)(D−1 +Z ′Z)−1]. (10.5.3)

Note that the matrix C̃ can be written as a weighted combination of the
prior mean C0 from the prior distribution and the data mean Ĉ =X ′Z(Z ′Z)−1

from the likelihood.
The posterior conditional distribution for the matrix of coefficients C given

the matrix of sources S, the source covariance matrix R, the error covariance
matrix Σ, and the data matrix X is Matrix Normally distributed.

The conditional posterior distribution of the error covariance matrix Σ is
found by considering only those terms in the joint posterior distribution which
involve Σ and is given by

p(Σ|S,R,C,X) ∝ p(Σ)p(C|Σ)p(X|S,C,Σ)

∝ |Σ|− ν2 e− 1
2 trΣ

−1Q|Σ|−m+1
2 e−

1
2 trΣ

−1(C−C0)D−1(C−C0)′

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′)

∝ |Σ|−
(n+ν+m+1)

2 e−
1
2 trΣ

−1G, (10.5.4)

where the p×p matrix G has been defined to be

G = (X−ZC ′)′(X−ZC ′)+(C−C0)D
−1(C−C0)

′+Q (10.5.5)

with a mode as described in Chapter 2 given by

Σ̃ =
G

n+ν+m+1
. (10.5.6)

The posterior conditional distribution of the observation error covariance
matrix Σ given the matrix of sources S, the source covariance matrix R, the
matrix of coefficients C, and the data X is an Inverted Wishart.

The conditional posterior distribution for the sources S is found by consid-
ering only those terms in the joint posterior distribution which involve S and
is given by

p(S|µ,R,Λ,Σ,X) ∝ p(S|R)p(X|µ,Λ,S,Σ)

∝ |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′

×|Σ|−n2 e− 1
2 trΣ

−1(X−enµ
′
−SΛ′)′(X−enµ

′
−SΛ′)

∝ e−
1
2 tr(S−S̃)(R−1+Λ′Σ−1Λ)(S−S̃)′ , (10.5.7)

where the matrix S̃ has been defined which is the posterior conditional mean
and mode given by

S̃ = [S0R
−1 +(X−enµ

′)Σ−1Λ](R−1 +Λ′Σ−1Λ)−1. (10.5.8)
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The conditional posterior distribution for the sources S given the overall
mean vector µ, the source covariance matrix R, the matrix of mixing coef-
ficients Λ, the error covariance matrix Σ, and the data matrix X is Matrix
Normally distributed.

The conditional posterior distribution for the source covariance matrix R
is found by considering only those terms in the joint posterior distribution
which involve R and is given by

p(R|µ,Λ,S,Σ,X) ∝ p(R)p(S|R)p(X|µ,Λ,S,Σ)

∝ |R|−
η
2 e−

1
2 trR

−1V |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′

∝ |R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ], (10.5.9)

with the posterior conditional mode as described in Chapter 2 given by

R̃=
(S−S0)

′(S−S0)+V

n+η
. (10.5.10)

The conditional posterior distribution for the source covariance matrix R
given the matrix of sources S, the error covariance matrix Σ, the matrix of
means and mixing coefficients C, and the data matrix X is Inverted Wishart
distributed.

10.5.2 Gibbs Sampling

To find marginal posterior mean estimates of the model parameters from
the joint posterior distribution using the Gibbs sampling algorithm, start with
initial values for the matrix of sources S and the error covariance matrix Σ,
say S̄(0) and Σ̄(0), and then cycle through

C̄(l+1) = a random variate from p(C|S̄(l), R̄(l),Σ̄(l),X)

= ACYCB
′
C +MC , (10.5.11)

Σ̄(l+1) = a random variate from p(Σ|S̄(l), R̄(l), C̄(l+1),X)

= AΣ(Y
′
ΣYΣ)

−1A′
Σ, (10.5.12)

R̄(l+1) = a random variate from p(R|S̄(l), C̄(l+1),Σ̄(l+1),X)

= AR(Y
′
RYR)

−1A′
R, (10.5.13)

S̄(l+1) = a random variate from p(S|R̄(l+1), C̄(l+1),Σ̄(l+1),X)

= YSB
′
S +MS , (10.5.14)

where

ACA
′
C = Σ̄(l),
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BCB
′
C = (D−1 + Z̄ ′

(l)Z̄(l))
−1,

Z̄(l) = (en, S̄(l)),

MC = (X ′Z̄(l) +C0D
−1)(D−1 + Z̄ ′

(l)Z̄(l))
−1

AΣA
′
Σ = (X− Z̄(l)C̄

′
(l+1))

′(X− Z̄(l)C̄
′
(l+1))

+(C̄(l+1)−C0)D
−1(C̄(l+1)−C0)

′+Q,

ARA
′
R = (S̄(l)−S0)

′(S̄(l)−S0)+V,

BSB
′
S = (R̄−1

(l+1) +Λ̄′
(l+1)Σ̄

−1
(l+1)Λ̄(l+1))

−1,

MS = [S0R
−1
(l+1)(X−enµ̄

′
(l+1))Σ̄

−1
(l+1)Λ̃(l+1)]

×(R̄−1
(l+1) +Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1

while YC , YΣ, YR, and YS are p× (m+1), (n+ ν+m+1+ p+1)× p, (n+
η+m+1)×m, and n×m dimensional matrices respectively, whose elements
are random variates from the standard Scalar Normal distribution. The for-
mulas for the generation of random variates from the conditional posterior
distributions are easily found from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of each of the parameters

S̄ =
1

L

L
∑

l=1

S̄(l) R̄=
1

L

L
∑

l=1

R̄(l) C̄ =
1

L

L
∑

l=1

C̄(l) Σ̄ =
1

L

L
∑

l=1

Σ̄(l)

which are the exact sampling-based marginal posterior mean estimates of the
parameters. Exact sampling-based estimates of other quantities can also be
found. Similar to Bayesian Regression and Bayesian Factor Analysis, there
is interest in the estimate of the marginal posterior variance of the vector
containing the means and mixing coefficients

var(c|X) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄,

where c= vec(C).
The covariance matrices of the other parameters follow similarly. With a

specification of Normality for the marginal posterior distribution of the matrix
containing the mean vector and mixing matrix, their distribution is

p(c|X) ∝ |∆̄|− 1
2 e−

1
2 (c−c̄)∆̄−1(c−c̄)′ , (10.5.15)

where c̄ and ∆̄ are as previously defined.
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To determine statistical significance with the Gibbs sampling approach, use
the marginal distribution of the matrix containing the mean vector and mix-
ing matrix given above. General simultaneous hypotheses can be evaluated
regarding the entire matrix containing the mean vector and the mixing ma-
trix, a submatrix, or the mean vector or a particular source, or an element by
computing marginal distributions. It can be shown that the marginal distrib-
ution of the kth column of the matrix containing the mean vector and mixing
matrix C, Ck is Multivariate Normal

p(Ck|C̄k,X)∝ |∆̄k|−
1
2 e−

1
2 (Ck−C̄k)

′∆̄−1
k

(Ck−C̄k), (10.5.16)

where ∆̄k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

Significance can be evaluated for a subset of coefficients of the kth column of
C by determining the marginal distribution of the subset within Ck which is
also Multivariate Normal. With the subset being a singleton set, significance
can be evaluated for a particular mean or mixing coefficient with the marginal
distribution of the scalar coefficient which is

p(Ckj |C̄kj ,X)∝ (∆̄kj)
− 1

2 e
−

(Ckj−C̄kj)
2

2∆̄kj , (10.5.17)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that C̄kj = c̄jk and that

z =
(Ckj− C̄kj)

√

∆̄kj

(10.5.18)

follows a Normal distribution with a mean of zero and variance of one.

10.5.3 Maximum a Posteriori

The joint posterior distribution can also be maximized with respect to the
matrix of coefficients C, the matrix of sources S, the source covariance matrix
R, and the error covariance matrix Σ by the ICM algorithm. To maximize
the joint posterior distribution using the ICM algorithm, start with an initial
value for the matrix of sources S, say S̃(0), and then cycle through

C̃(l+1) =
Arg Max

C p(C|S̃(l), R̃(l),Σ̃(l),X)

= [X ′Z̃(l) +C0D
−1](D−1 + Z̃ ′

(l)Z̃(l))
−1,

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l+1), R̃(l), S̃(l),X)

= [(X− Z̃(l)C̃
′
(l+1))

′(X− Z̃(l)C̃
′
(l+1))

+(C̃(l+1)−C0)D
−1(C̃(l+1)−C0)

′+Q]/(n+m+ν+1),
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R̃(l+1) =
Arg Max

R p(R|S̃(l), C̃(l+1),Σ̃(l+1),X)

=
(S̃(l)−S0)

′(S̃(l)−S0)+V

n+η
,

S̃(l+1) =
Arg Max

S p(S|C̃(l+1), R̃(l+1),Σ̃(l+1),X)

= [S0R̃
−1
(l+1) +(X−enµ̃

′
(l+1))Σ̃

−1
(l+1)Λ̃(l+1)]

×(R̃−1
(l+1) +Λ̃′

(l+1)Σ̃
−1
(l+1)Λ̃(l+1))

−1,

where the matrix Z̃(l) = (en, S̃(l)) until convergence is reached. The converged

values (S̃, R̃, C̃,Σ̃) are joint posterior modal (maximum a posteriori) estima-
tors of the parameters. Conditional maximum a posteriori variance estimates
can also be found. The conditional modal variance of the matrix containing
the means and mixing coefficients is

var(C|C̃, S̃, R̃,Σ̃,X) = Σ̃⊗ (D−1⊗ Z̃ ′Z̃)−1

or equivalently

var(c|c̃, S̃, R̃,Σ̃,X) = (D−1⊗ Z̃ ′Z̃)−1⊗ Σ̃

= ∆̄,

where c = vec(C), while S̃, R̃, and Σ̃ are the converged value from the ICM
algorithm.

To evaluate statistical significance with the ICM approach, use the con-
ditional distribution of the matrix containing the mean vector and mixing
matrix which is

p(C|C̃, S̃, R̃,Σ̃,X,∝ |D−1 + Z̃ ′Z̃| 12 |Σ̃|− 1
2 e−

1
2 trΣ̃

−1(C−C̃)(D−1+Z̃′Z̃)(C−C̃)′ .
(10.5.19)

That is,

C|C̃, S̃, R̃,Σ̃,X,∼N
(

C̃,Σ̃⊗ (D−1 + Z̃ ′Z̃)−1
)

. (10.5.20)

General simultaneous hypotheses can be evaluated regarding the entire ma-
trix containing the mean vector and the mixing matrix, a submatrix, or the
mean vector or a particular source, or an element by computing marginal
conditional distributions.

It can be shown [17, 41] that the marginal conditional distribution of any
column of the matrix containing the means and mixing coefficients C, Ck is
Multivariate Normal

p(Ck|C̃k, S̃,Σ̃,U,X)∝ |WkkΣ̃|−
1
2 e−

1
2 (Ck−C̃k)

′(WkkΣ̃)−1(Ck−C̃k), (10.5.21)
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where W = (D−1 +U ′U)−1 and Wkk is its kth diagonal element.
With the marginal distribution of a column of C, significance can be evalu-

ated for the mean vector or a particular source. Significance can be evaluated
for a subset of coefficients by determining the marginal distribution of the
subset within Ck which is also Multivariate Normal. With the subset being a
singleton set, significance can be determined for a particular mean or mixing
coefficient with the marginal distribution of the scalar coefficient which is

p(Ckj|C̃kj , S̃,Σ̃jj ,U,X)∝ (WkkΣ̃jj)
− 1

2 e
−

(Ckj−C̃kj)
2

2WkkΣ̃jj , (10.5.22)

where Σ̃jj is the jth diagonal element of Σ̃. Note that C̃kj = c̃jk and that

z =
(Ckj− C̃kj)
√

WkkΣ̃jj

(10.5.23)

follows a Normal distribution with a mean of zero and variance of one.

10.6 Generalized Priors and Posterior

Generalized Conjugate prior distributions are assessed in order to quantify
available prior information regarding values of the model parameters.

The joint prior distribution for the sources S, the source covariance matrix
R, the error covariance matrix Σ, and the matrix of coefficients c= vec(C) is
given by

p(S,R,Σ, c) = p(S|R)p(R)p(Σ)p(c), (10.6.1)

where the prior distribution for the parameters from the generalized Conjugate
procedure outlined in Chapter 4 are as follows

p(S|R) ∝ |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′ , (10.6.2)

p(R) ∝ |R|−
η
2 e−

1
2 trR

−1V , (10.6.3)

p(Σ) ∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (10.6.4)

p(c) ∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0), (10.6.5)

where Σ, R, V , Q, and ∆ are positive definite matrices. The hyperparameters
S0, η, V , ν, Q, c0, and ∆ are to be assessed, and having done so, completely
determine the joint prior distribution.
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The prior distribution for the matrix of sources S is Matrix Normally dis-
tributed, the prior distribution for the source vector covariance matrix R is
Inverted Wishart distributed, the vector c= vec(C), C = (µ,Λ) containing the
overall mean µ and the mixing matrix Λ is Multivariate Normal, and the prior
distribution for the error covariance matrix Σ is Inverted Wishart distributed.

Note that both Σ and R are full positive definite covariance matrices allow-
ing both the observed mixed signals (microphones) and also the unobserved
source components (speakers) to be correlated. The mean of the sources is
often taken to be constant for all observations and thus without loss of gener-
ality taken to be zero. An observation (time) varying source mean is adopted
here.

Upon using Bayes’ rule the joint posterior distribution for the unknown
parameters with generalized Conjugate prior distributions for the model pa-
rameters is given by

p(S,R,C,Σ|X) = p(S|R)p(R)p(Σ)p(c)p(X|C,S,Σ), (10.6.6)

which is

p(S,R,C,Σ|X) ∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ

−1[(X−ZC′)′(X−ZC′)+Q]

×|R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ]

×e−
1
2 (c−c0)′∆−1(c−c0) (10.6.7)

after inserting the joint prior distribution and the likelihood.

This joint posterior distribution must now be evaluated in order to obtain
parameter estimates of the sources S, the overall mean/mixing matrix C,
the covariance matrix for the sources R, and the observation error covariance
matrix Σ.

10.7 Generalized Estimation and Inference

With the generalized Conjugate prior distributions for the parameters, it is
not possible to obtain all or any of the marginal distributions or explicit maxi-
mum a posteriori estimates and thus marginal mean or maximum a posteriori
estimates in closed form. For these reasons, marginal mean and maximum a
posteriori estimates are found using the Gibbs sampling and ICM algorithms.
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10.7.1 Posterior Conditionals

Both Gibbs sampling and ICM require the posterior conditionals. Gibbs
sampling requires the conditionals for the generation of random variates while
ICM requires them for maximization by cycling through their modes.

The conditional posterior distribution of the matrix of sources S is found by
considering only those terms in the joint posterior distribution which involve
S and is given by

p(S|µ,R,Λ,Σ,X) ∝ p(S|R)p(X|µ,S,Λ,Σ)

∝ e−
1
2 tr(S−S0)′R−1(S−S0)

×e−
1
2 tr(X−enµ

′
−SΛ′)Σ−1(X−enµ

′
−SΛ′)′ , (10.7.1)

which after performing some algebra in the exponent can be written as

p(S|µ,R,Λ,Σ,X) ∝ e−
1
2 tr(S−S̃)(R−1+Λ′Σ−1Λ)(S−S̃)′ , (10.7.2)

where the matrix S̃ has been defined to be

S̃ = [S0R
−1 +(X−enµ

′)Σ−1Λ](R−1 +Λ′Σ−1Λ)−1. (10.7.3)

That is, the matrix of sources S given the source covariance matrix R, the
overall mean µ, the mixing matrix Λ, the error covariance matrix Σ, and the
data matrix X is Matrix Normally distributed.

The conditional posterior distribution of the source covariance matrix R is
found by considering only those terms in the joint posterior distribution which
involve R and is given by

p(R|µ,S,Λ,Σ,X) ∝ p(R)p(S|R)

∝ |R|− ν2 e− 1
2 trR

−1V |R|−n2 e− 1
2 trR

−1(S−S0)′(S−S0)

×|R|−
(n+ν)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ]. (10.7.4)

That is, the posterior conditional distribution of the source covariance ma-
trix R given the overall mean µ, the matrix of sources S, the error covariance
matrix Σ, the mixing matrix Λ, and the data matrix X has an Inverted
Wishart distribution.

The conditional posterior distribution of the coefficient vector c containing
the overall mean µ and mixing matrix Λ is found by considering only those
terms in the joint posterior distribution which involve c or C and is given by

p(c|S,R,Σ,X) ∝ p(c)p(X|S,C,Σ)

∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0)

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′), (10.7.5)

© 2003 by Chapman & Hall/CRC



which after performing some algebra in the exponent becomes

p(c|S,R,Σ,X) ∝ e−
1
2 (c−c̃)′(∆−1+Z′Z⊗Σ−1)(c−c̃), (10.7.6)

where the vector c̃ has been defined to be

c̃= (∆−1 +Z ′Z⊗Σ−1)−1[∆−1c0 +(Z ′Z⊗Σ−1)ĉ], (10.7.7)

and the vector ĉ has been defined to be

ĉ= vec[X ′Z(Z ′Z)−1]. (10.7.8)

Note that c̃ has been written as a weighted combination of the prior mean
c0 from the prior distribution and the data mean ĉ from the likelihood.

The conditional posterior distribution of the vector c containing the overall
mean µ and the mixing matrix Λ given the matrix of sources S, the source
covariance matrix R, the error covariance matrix Σ, and the data matrix X
is Multivariate Normally distributed.

The conditional posterior distribution of the error covariance matrix Σ is
found by considering only those terms in the joint posterior distribution which
involve Σ and is given by

p(Σ|S,R,C,X) ∝ p(Σ)p(X|S,C,Σ)

∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ

−1[(X−ZC′)′(X−ZC′)+Q]. (10.7.9)

That is, the conditional distribution of the error covariance matrix Σ given
the matrix of sources S, the source covariance matrix R, the overall mean
µ, the mixing matrix Λ, and the data matrix X has an Inverted Wishart
distribution.

The modes of these posterior conditional distributions are as described in
Chapter 2 and given by S̃, c̃, (both as defined above)

R̃ =
(S−S0)

′(S−S0)+V

n+η
, (10.7.10)

and

Σ̃ =
(X−ZC ′)′(X−ZC ′)+Q

n+ν
, (10.7.11)

respectively.
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10.7.2 Gibbs Sampling

To find marginal posterior mean estimates of the parameters from the joint
posterior distribution using the Gibbs sampling algorithm, start with initial
values for the matrix of sources S and the error covariance matrix Σ, say S̄(0)

and Σ̄(0), and then cycle through

c̄(l+1) = a random variate from p(c|S̄(l),Σ̄(l), R̄(l+1),X)

= AcYc+Mc, (10.7.12)

Σ̄(l+1) = a random variate from p(Σ|S̄(l), R̄(l+1), C̄(l+1),X)

= AΣ(Y
′
ΣYΣ)

−1A′
Σ, (10.7.13)

R̄(l+1) = a random variate from p(R|S̄(l), C̄(l+1),Σ̄(l+1),X)

= AR(Y
′
RYR)

−1A′
R, (10.7.14)

S̄(l+1) = a random variate from p(S|R̄(l+1), C̄(l+1),Σ̄(l+1),X)

= YSB
′
S +MS , (10.7.15)

where

ĉ(l) = vec[X ′Z̄(l)(Z̄
′
(l)Z̄(l))

−1],

c̄(l+1) = [∆−1 + Z̄ ′
(l)Z̄(l)⊗ Σ̄−1

(l) ]
−1[∆−1c0 +(Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )ĉ(l)],

AcA
′
c = (∆−1 + Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )

−1,

Mc = [∆−1 + ¯Z̄ ′
(l)Z̄(l)⊗ Σ̄

−1

(l)
]−1[∆−1c0 +(Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )ĉ],

AΣA
′
Σ = (X− Z̄(l)C̄

′
(l+1))

′(X− Z̄(l)C̄
′
(l+1))+Q,

ARA
′
R = (S̄(l)−S0)

′(S̄(l)−S0)+V,

BSB
′
S = (R̄−1

(l+1) +Λ̄′
(l+1)Σ̄

−1
(l+1)Λ̄(l+1))

−1,

MS = [S0R
−1
(l+1)(X−enµ̄

′
(l+1))Σ̄

−1
(l+1)Λ̄(l+1)]

×(R̄−1
(l+1) +Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1

while Yc, YΣ, YR, and YS are p(m+1)×1, (n+ν+p+1)×p, (n+η+m+1)×
m, and n×m dimensional matrices whose respective elements are random
variates from the standard Scalar Normal distribution. The formulas for the
generation of random variates from the conditional posterior distributions is
easily found from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of each of the parameters

S̄ =
1

L

L
∑

l=1

S̄(l) R̄ =
1

L

L
∑

l=1

R̄(l) c̄=
1

L

L
∑

l=1

c̄(l) Σ̄ =
1

L

L
∑

l=1

Σ̄(l)
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which are the exact sampling-based marginal posterior mean estimates of
the parameters. Exact sampling-based estimates of other quantities can also
be found. Similar to Regression and Factor Analysis, there is interest in the
estimate of the marginal posterior variance of the matrix containing the means
and mixing coefficients

var(c|X) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄.

The covariance matrices of the other parameters follow similarly. With a
specification of Normality for the marginal posterior distribution of the vector
containing the means and mixing coefficients, their distribution is

p(c|X) ∝ |∆̄|− 1
2 e−

1
2 (c−c̄)′∆̄−1(c−c̄), (10.7.16)

where c̄ and ∆̄ are as previously defined.
To evaluate statistical significance with the Gibbs sampling approach, use

the marginal distribution of the vector c containing the means and mixing
coefficients given above. General simultaneous hypotheses can be evaluated
regarding the entire coefficient vector of means and mixing coefficients, a
subset of it, or the mean vector or the coefficients for a particular source
by computing marginal distributions. It can be shown that the marginal
distribution of the kth column of the matrix containing the means and mixing
coefficients C, Ck is Multivariate Normal

p(Ck|C̄k,X)∝ |∆̄k|−
1
2 e−

1
2 (Ck−C̄k)

′∆̄−1
k

(Ck−C̄k), (10.7.17)

where ∆̄k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

Significance can be determined for a subset of means or coefficients of the
kth column of C by determining the marginal distribution of the subset within
Ck which is also Multivariate Normal. With the subset being a singleton set,
significance can be determined for a particular mean or coefficient with the
marginal distribution of the scalar coefficient which is

p(Ckj |C̄kj ,X)∝ (∆̄kj)
− 1

2 e
−

(Ckj−C̄kj)
2

2∆̄kj , (10.7.18)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that C̄kj = c̄jk and that

z =
(Ckj− C̄kj)

√

∆̄kj

(10.7.19)

follows a Normal distribution with a mean of zero and variance of one.
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10.7.3 Maximum a Posteriori

The joint posterior distribution can also be maximized with respect to the
vector of coefficients c, the matrix of sources S, the source covariance matrix
R, and the error covariance matrix Σ using the ICM algorithm. To maximize
the joint posterior distribution using the ICM algorithm, start with initial
values for the matrix of sources S̃ and the error covariance matrix Σ, say S̃(0)

and Σ̃(0), and then cycle through

ĉ(l) = vec[X ′Z̃(l)(Z̃
′

(l)Z̃(l))
−1],

c̃(l+1) =
Arg Max

c p(c|S̃(l), R̃(l+1),Σ̃(l),X)

= [∆−1 + Z̃ ′

(l)Z̃(l)⊗ Σ̃−1
(l) ]−1[∆−1c0 +(Z̃ ′

(l)Z̃(l)⊗ Σ̃−1
(l) )ĉ(l)],

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l+1), R̃(l), S̃(l),X)

=
(X − Z̃(l)C̃

′

(l+1))
′(X − Z̃(l)C̃

′

(l+1))+Q

n+ν
,

R̃(l+1) =
Arg Max

R p(R|S̃(l), C̃(l+1),Σ̃(l+1),X)

=
(S̃(l)−S0)

′(S̃(l)−S0)+V

n+η

S̃(l+1) =
Arg Max

S p(S|C̃(l+1), R̃(l+1),Σ̃(l+1),X)

= [S0R̃
−1
(l+1) +(X −enµ̄′

(l+1))Σ̃
−1
(l+1)Λ̃(l+1)]

×(R̃−1
(l+1) +Λ̃′

(l+1)Σ̃
−1
(l+1)Λ̃(l+1))

−1,

where the matrix Z̃(l) = (en, S̃(l)) until convergence is reached with the joint
modal (maximum a posteriori) estimator for the unknown model parameters
(R̃, S̃, c̃,Σ̃). Conditional maximum a posteriori variance estimates can also be
found. The conditional modal variance of the matrix containing the means
and mixing coefficients is

var(c|S̃, R̃,Σ̃,X,U) = [∆−1 + Z̃ ′Z̃ ⊗ Σ̃−1]−1

= ∆̃,

where c = vec(C), while S̃, R̃, and Σ̃ are the converged values from the ICM
algorithm.

Conditional modal intervals may be computed by using the conditional
distribution for a particular parameter given the modal values of the others.
The posterior conditional distribution of the matrix containing the means and
mixing coefficients C given the modal values of the other parameters and the
data is
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p(c|S̃,Σ̃,X,U) ∝ |∆̃|−
1
2 e−

1
2 (c−c̃)′∆̃−1(c−c̃). (10.7.20)

To evaluate statistical significance with the ICM approach, use the mar-
ginal conditional distribution of the matrix containing the means and mixing
coefficients given above. General simultaneous hypotheses can be evaluated
regarding the mean vector or the coefficient for a particular source by com-
puting marginal distributions. It can be shown that the marginal conditional
distribution of the kth column Ck of the matrix C containing the overall mean
vector and mixing matrix is Multivariate Normal

p(Ck|C̃k,Σ̃,X,U) ∝ |∆̃k|
−

1
2 e−

1
2 (Ck−C̃k)′∆̃−1

k
(Ck−C̃k), (10.7.21)

where ∆̃k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̃.

Significance can be determined for a subset of means or mixing coefficients
of the kth column of C by determining the marginal distribution of the sub-
set within Ck which is also Multivariate Normal. With the subset being a
singleton set, significance can be determined for a particular mean or mixing
coefficient with the marginal distribution of the scalar coefficient which is

p(Ckj|C̃kj , S̃,Σ̃jj ,X) ∝ (∆̃kj)
−

1
2 e

−

(Ckj−C̃kj)2

2∆̃kj , (10.7.22)

where ∆̃kj is the jth diagonal element of ∆̃k. Note that C̃kj = c̃jk and that

z =
(Ckj − C̃kj)

√

∆̃kj

follows a Normal distribution with a mean of zero and variance of one.

10.8 Interpretation

Although the main focus after having performed a Bayesian Source Sepa-
ration is the separated sources, there are others. The mixing coefficients are
the amplitudes which determine the relative contribution of the sources. A
“small” coefficient indicates that the particular source does not significantly
contribute to the observed mixed signal. A “large” coefficient indicates that
the particular source significantly contributes to the observed mixed signal.
Whether a mixing coefficient is large or small depends on its associated sta-
tistic.

© 2003 by Chapman & Hall/CRC



TABLE 10.1

Variables for Bayesian Source Separation example.
X Variables
X1 Species 1 X2 Species 2
X3 Species 3 X4 Species 4
X5 Species 5 X6 Species 6
X7 Species 7 X8 Species 8
X9 Species 9

Consider the following data which consist of a core sample taken from the
ocean floor [24]. In the core sample, plankton content is measured for p = 9
species listed as species 1-9 in Table 10.1 at one hundred and ten depths. (The
seventh species has been dropped from the original data because nearly all
values were zero.)

FIGURE 10.1

Mixed and unmixed signals.
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The plankton content is used to infer approximate climatological conditions
which existed on Earth. The many species which coexist at different times
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(core depths) consist of contributions from several different sources. The
Source Separation model will tell us what the sources are, and how they
contribute to each of the plankton types.

TABLE 10.2

Covariance hyperparameter for coefficients.
D 1 2 3 4 5 6
1 0.0182 -0.0000 0.0000 -0.0000 0.0000 0.0000
2 0.0004 -0.0000 0.0000 -0.0000 -0.0000
3 0.0007 -0.0000 -0.0000 -0.0000
4 0.0018 -0.0000 0.0000
5 0.0054 -0.0000
6 0.0089

The n0 = 55 odd observations which are in Table 10.9 were used as prior
data to assess the model hyperparameters for the analysis of the n = 55 even
observations in Table 10.8. The plankton species in the core samples are
believed to be made up from m = 5 different sources. The first five normalized
scores from a principal component analysis were used for the prior mean of
the sources. The remaining hyperparameters were assessed from the results
of a Regression of the prior data on the prior source mean.

TABLE 10.3

Prior mode, Gibbs, and ICM source covariance.
V/η 1 2 3 4 5

1 42.1132 0.0000 -0.0000 0.0000 0.0000
2 25.0674 0.0000 0.0000 0.0000
3 10.2049 0.0000 -0.0000
4 3.3642 0.0000
5 2.0436

R̄ 1 2 3 4 5
1 36.8064 -1.0408 0.1357 -0.0161 -0.1414
2 21.1973 -0.5267 -0.1098 -0.0124
3 8.4600 -0.0989 0.0238
4 3.0521 0.0015
5 1.9396

R̃ 1 2 3 4 5
1 25.5538 -0.0001 0.1350 -0.0783 0.2615
2 15.9102 -0.0426 0.0012 -0.0506
3 6.3911 0.0188 -0.0199
4 2.1210 0.0312
5 1.1658
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The assessed prior hyperparameter C0 for the mean vector and mixing
matrix was assessed from C0 = XZ0(Z

′

0Z0)
−1 where Z0 = (en,S0). The as-

sessed prior covariance matrix D for the coefficient matrix was assessed from
D = (Z ′

0Z0)
−1 and presented in Table 10.2. The assessed values for η was

η = n0 = 55. The scale matrix Q for the error covariance matrix was assessed
from Q = (X −UC ′

0)
′(X −UC ′

0) in Table 10.5 and ν = n0 = 55.
The observed mixed signals in Tables 10.8 and 10.9 along with the estimated

sources in Tables 10.11 and 10.12 are displayed in Figure 10.1.
Refer to Table 10.3 which contains the (top) prior mode, (middle) Gibbs,

and (bottom) ICM source covariance matrices. We can see the variances of
the sources are far from unity as is specified in the Factor Analysis model.

Table 10.4 has the matrix containing the prior mean vector and mixing ma-
trix along with the Gibbs sampling and ICM estimated ones using Conjugate
prior distributions. From the estimated mixing coefficient values, it is difficult
to discern which are “large” and which are “small.”

This motivates the need for relative mixing coefficient statistics which are
a measure of relative size. In order to compute the statistics for the mixing
coefficients, the error covariance matrices are needed.

The (top) prior mode, (middle) Gibbs, and (bottom) ICM error covariance
matrices are displayed in Table 10.5. The covariance values have been rounded
to two decimal places for presentation purposes. If these covariance matrices
were converted to correlation matrices, then it can be seen that several of the
values are above one half.

The statistics for the mean vector and mixing coefficients are displayed in
Table 10.6. The rows of the mean/coefficient matrix have been rearranged
for increased interpretability. It is seen that Species 3 primarily is made up
of Source 1, Species 7 contains a positive mixture of Source 3 and negative
mixtures of Sources 1 and 2, Species 5 consists primarily of Source 3, Species 2
consists of negative mixtures of Sources 3 and 4, Species 6 consists of Source
4 and possibly 5, Species 4 consists of a negative mixture of Source 5 and
possibly a negative one of 4, and Species 8 consists of Source 5. Table 10.7
lists the species which correspond to the sources.

© 2003 by Chapman & Hall/CRC



TABLE 10.4

Prior, Gibbs, and ICM mixing coefficients.
C0 0 1 2 3 4 5
1 1.6991 -0.0248 0.0361 -0.0718 0.1107 0.0962
2 1.5746 -0.0455 0.0609 -0.2164 -0.4228 -0.0158
3 38.9093 0.9288 -0.0066 0.3409 0.0027 0.0184
4 1.6265 0.0116 -0.0689 0.0112 0.2694 -0.6050
5 13.1707 -0.1431 0.8980 0.3874 0.0870 0.0557
6 2.2433 -0.0111 -0.0807 -0.1280 0.8041 0.4115
7 3.3637 -0.3376 -0.4087 0.8122 0.0039 -0.0174
8 1.4693 -0.0025 -0.1012 0.0732 -0.2828 0.6719
9 0.2135 -0.0017 0.0030 -0.0170 0.0467 -0.0002

C̄ 0 1 2 3 4 5
1 1.6804 -0.0241 0.0105 -0.0530 0.1297 -0.0360
2 1.6143 -0.0363 0.0500 -0.2098 -0.3291 -0.0128
3 38.6167 0.6343 -0.0391 0.1755 -0.0121 0.4518
4 1.6694 -0.0040 -0.0163 -0.0064 0.1581 -0.3663
5 13.2820 -0.0676 0.7008 0.3610 0.0802 -0.0502
6 2.4086 -0.0004 -0.0447 -0.1226 0.5575 0.3451
7 3.1186 -0.2359 -0.2633 0.5060 0.0289 -0.1600
8 1.4778 -0.0119 -0.0576 0.0405 -0.1631 0.2755
9 0.2297 0.0033 -0.0037 0.0089 -0.0089 -0.0222

C̃ 0 1 2 3 4 5
1 1.6746 -0.0308 0.0152 -0.0695 0.1736 -0.0490
2 1.6040 -0.0469 0.0713 -0.2691 -0.4442 -0.0171
3 38.6004 0.8555 -0.0619 0.1944 0.0150 0.5738
4 1.6701 -0.0045 -0.0231 -0.0081 0.2130 -0.4976
5 13.2669 -0.1088 0.8972 0.4302 0.0958 -0.0596
6 2.3959 0.0015 -0.0580 -0.1567 0.7543 0.4597
7 3.1709 -0.3219 -0.3504 0.6878 0.0248 -0.1853
8 1.4857 -0.0153 -0.0751 0.0578 -0.2199 0.3809
9 0.2306 0.0042 -0.0049 0.0109 -0.0104 -0.0303
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TABLE 10.5

Prior, Gibbs, and ICM covariances.
Q
ν

1 2 3 4 5 6 7 8 9
1 1.53 -0.01 0.52 -0.34 0.21 0.05 -0.68 -0.03 0.12
2 2.03 -1.27 -0.45 1.23 -0.43 -0.74 -0.22 -0.02
3 54.94 0.46 -12.81 -0.60 -8.33 -2.27 -0.96
4 2.12 -1.67 0.31 0.60 -0.89 0.01
5 18.71 -2.00 -3.36 -0.84 -0.07
6 4.80 0.74 -0.32 0.25
7 12.95 1.81 -0.03
8 3.23 -0.09
9 0.27

Ψ̄ 1 2 3 4 5 6 7 8 9
1 1.43 -0.01 0.80 -0.28 0.08 -0.00 -0.61 -0.06 0.11
2 1.76 -0.86 -0.37 0.97 -0.26 -0.55 -0.24 -0.01
3 47.42 0.20 -10.86 -0.43 -6.97 -2.15 -0.85
4 1.78 -1.35 0.24 0.53 -0.66 0.02
5 15.53 -1.71 -2.75 -0.65 -0.09
6 4.15 0.74 -0.30 0.22
7 10.63 1.44 0.02
8 2.76 -0.07
9 0.24

Ψ̃ 1 2 3 4 5 6 7 8 9
1 1.33 -0.01 1.05 -0.30 -0.02 -0.11 -0.52 -0.01 0.11
2 1.38 -0.31 -0.28 0.68 -0.04 -0.16 -0.24 -0.00
3 38.67 0.34 -9.08 -0.49 -4.76 -2.17 -0.84
4 1.56 -1.18 0.19 0.41 -0.51 0.01
5 10.97 -1.28 -1.99 -0.34 -0.07
6 3.38 0.83 -0.25 0.22
7 7.72 1.17 0.01
8 2.50 -0.07
9 0.23
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TABLE 10.6

Statistics for means and loadings.
zGibbs 0 1 2 3 4 5

3 54.8773 5.6098 -0.2840 0.7928 -0.0318 0.9182

7 9.1505 -4.4542 -3.8932 4.6551 0.1601 -0.6934

5 31.8876 -1.0324 8.2695 2.7367 0.3548 -0.1722

2 11.7241 -1.6765 1.8071 -4.8271 -4.3483 -0.1311

6 11.6744 -0.0118 -1.0876 -1.8774 4.8424 2.3436

4 12.6162 -0.1925 -0.6144 -0.1538 2.1872 -3.8858
8 9.0991 -0.4708 -1.7873 0.7872 -1.8362 2.3665

1 14.3622 -1.2867 0.4391 -1.4076 1.9977 -0.4199

9 4.8283 0.4346 -0.3866 0.5967 -0.3387 -0.6567

zICM 0 1 2 3 4 5
3 65.0052 8.6843 -0.4979 0.9815 0.0443 1.3159

7 11.9498 -7.3128 -6.3027 7.7711 0.1638 -0.9512

5 41.9351 -2.0735 13.5378 4.0770 0.5316 -0.2563

2 14.2853 -2.5192 3.0324 -7.1856 -6.9418 -0.2071

6 13.6452 0.0506 -1.5773 -2.6756 7.5374 3.5650
4 13.9991 -0.2264 -0.9248 -0.2048 3.1326 -5.6794
8 9.8461 -0.6123 -2.3762 1.1479 -2.5572 3.4372
1 15.1846 -1.6856 0.6574 -1.8882 2.7613 -0.6056

9 5.0139 0.5510 -0.5104 0.7078 -0.3982 -0.8961

TABLE 10.7

Sources in terms of strong mixing coefficients.

Source 1: Species 3, 7
Source 2: Species 5, 7
Source 3: Species 2, 7, 5

Source 4: Species 2, 6, 4

Source 5: Species 6, 8
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TABLE 10.8

Plankton data.
X 1 2 3 4 5 6 7 8 9
1 3.203 0.712 37.722 0.356 30.961 0.712 0.356 0.000 0.000
2 1.124 0.562 47.191 1.124 12.360 2.247 3.933 0.562 0.562
3 1.149 0.766 52.874 0.766 12.261 0.000 0.383 2.299 0.000
4 2.222 2.222 45.926 2.222 13.333 2.963 1.481 1.481 1.481
5 0.621 0.621 36.025 2.484 10.519 0.621 1.242 1.863 0.000
6 0.000 0.000 38.298 0.709 11.348 2.837 1.418 5.674 0.000
7 1.379 1.034 42.069 0.690 8.621 2.069 2.759 1.724 0.690
8 3.429 1.143 45.714 1.143 14.286 1.714 0.571 3.429 0.571
9 1.198 1.796 50.299 1.198 8.383 2.994 0.599 0.599 0.599

10 5.143 2.857 38.286 0.000 13.714 1.143 1.143 1.143 0.000
11 1.961 2.614 41.830 3.268 11.765 1.307 1.307 0.654 0.000
12 1.422 2.844 38.389 1.422 16.114 0.948 0.000 0.474 0.000
13 1.571 1.571 37.696 1.571 10.995 4.188 2.094 2.618 1.047
14 0.926 3.241 28.241 0.463 12.037 0.926 0.463 1.852 0.463
15 1.036 6.218 34.197 1.036 14.508 0.518 0.000 1.554 0.518
16 1.485 7.426 29.208 2.475 15.842 1.485 2.970 1.485 0.000
17 3.404 0.426 32.766 4.255 13.191 2.128 3.830 0.851 1.700
18 1.449 3.623 36.957 0.000 15.942 3.623 0.725 1.449 0.720
19 0.772 0.386 40.927 0.772 15.444 2.703 0.000 0.772 0.380
20 3.627 0.518 41.451 1.554 16.580 0.518 2.591 1.554 0.000
21 3.509 2.456 42.105 2.105 12.281 1.053 2.456 0.000 0.000
22 1.449 0.483 43.961 3.865 12.560 1.449 2.899 0.000 0.000
23 0.000 0.741 33.333 2.222 22.222 2.222 0.741 0.000 0.000
24 1.026 0.513 42.051 2.051 16.410 2.051 0.513 2.051 0.000
25 1.523 0.000 34.518 2.030 20.305 2.030 1.523 1.015 0.000
26 0.000 2.703 28.649 1.622 24.324 3.784 2.162 3.243 0.000
27 0.800 2.400 50.400 1.600 11.200 2.400 4.800 0.000 0.000
28 0.000 0.543 32.609 1.087 11.413 4.891 3.804 2.717 0.000
29 1.762 0.000 33.921 0.000 16.740 2.643 9.251 2.643 0.000
30 1.136 2.841 49.432 2.273 11.932 2.273 0.568 0.000 0.000
31 3.636 1.212 35.758 2.424 6.061 6.061 3.030 0.000 0.000
32 1.342 2.685 34.228 3.356 12.081 2.685 2.685 4.027 0.000
33 2.158 2.158 34.532 2.158 15.826 5.036 0.719 2.158 0.000
34 1.235 0.000 41.975 0.000 12.346 1.852 0.617 2.469 0.000
35 3.550 2.367 47.337 2.367 5.917 10.059 0.000 0.592 0.000
36 5.455 0.606 43.636 1.818 10.303 7.273 0.605 0.000 0.000
37 2.609 1.304 33.043 1.739 9.130 3.913 3.478 0.435 0.000
38 1.899 0.000 34.177 2.532 12.025 4.430 2.532 1.266 0.000
39 0.595 2.976 50.000 0.000 7.738 6.548 2.381 0.595 0.000
40 0.372 5.576 37.918 0.372 15.613 0.743 0.000 0.372 0.000
41 2.362 2.362 36.220 3.150 14.173 1.969 0.787 1.575 0.000
42 2.381 3.175 32.143 1.190 17.460 1.587 0.397 1.190 0.000
43 0.858 3.863 31.760 1.717 21.888 7.296 4.721 0.858 0.000
44 0.658 1.316 52.632 0.000 3.289 1.974 3.947 0.658 0.000
45 1.689 0.676 26.689 2.027 8.108 4.392 13.176 2.027 1.689
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X 1 2 3 4 5 6 7 8 9
46 1.064 0.000 40.957 1.596 6.915 2.660 3.723 2.660 0.000
47 0.000 0.000 35.533 1.015 13.706 7.614 3.553 0.000 0.000
48 1.471 2.206 34.559 2.941 15.441 1.471 0.000 0.735 0.000
49 0.000 0.498 44.776 2.488 19.900 0.995 1.990 0.995 0.498
50 2.717 0.000 32.065 3.261 15.761 1.087 6.522 1.087 0.000
51 1.342 2.013 24.161 3.356 11.409 1.342 9.396 0.000 0.671
52 1.548 0.310 31.269 1.548 9.288 0.000 9.288 4.644 0.000
53 2.183 1.747 33.188 0.437 13.974 0.437 4.367 1.747 1.747
54 2.286 2.286 37.143 1.714 8.000 1.714 8.000 4.571 0.000
55 0.658 0.658 34.868 4.605 15.789 1.316 3.947 1.974 0.000
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TABLE 10.9

Plankton prior data.
X0 1 2 3 4 5 6 7 8 9

1 1.792 0.489 43.485 0.814 25.570 0.651 0.163 0.000 0.163
2 2.364 1.709 47.009 0.855 20.513 1.709 1.282 0.427 0.000
3 0.671 1.007 43.624 3.020 15.436 1.007 0.336 0.671 0.336
4 1.990 0.498 53.234 3.980 6.965 0.000 0.498 0.995 0.000
5 1.786 1.190 49.405 1.786 10.714 1.786 0.595 0.595 0.000
6 1.418 0.000 46.099 2.837 9.220 4.255 0.709 2.836 0.000
7 0.498 0.498 48.756 0.000 5.970 1.990 0.498 2.985 0.000
8 0.662 0.000 46.358 0.000 11.921 0.000 1.987 3.311 0.000
9 2.899 2.899 42.995 0.000 14.010 1.449 2.415 2.415 0.483

10 1.887 2.516 38.994 3.145 7.547 2.516 1.258 1.258 0.000
11 3.067 0.613 37.423 1.227 13.497 2.761 1.227 0.000 0.307
12 1.515 2.020 37.374 1.010 12.626 2.020 0.000 0.505 0.000
13 1.630 1.630 36.957 2.174 10.870 2.174 0.000 0.000 0.000
14 1.826 3.196 36.073 0.913 12.329 2.283 0.457 0.913 0.457
15 1.379 2.414 35.517 0.345 11.679 0.345 0.000 4.828 0.000
16 0.649 3.896 39.610 3.896 13.636 1.299 0.543 0.649 0.000
17 1.087 0.000 42.391 1.630 15.761 1.630 2.174 1.087 0.000
18 1.429 0.476 42.381 2.857 10.952 1.905 0.476 0.952 1.900
19 1.685 1.685 48.315 2.809 10.674 1.124 1.124 1.124 0.000
10 1.266 1.266 37.975 2.532 18.143 3.376 2.110 0.422 0.000
21 1.869 1.402 37.850 2.804 12.617 2.336 9.813 0.467 0.930
22 0.904 0.904 44.578 1.205 14.759 0.602 1.506 0.602 0.000
23 1.299 0.649 38.961 0.325 17.208 1.945 4.545 1.948 0.000
24 2.513 4.523 35.176 1.005 20.603 0.000 0.000 0.000 0.000
25 0.565 0.565 44.068 3.955 10.169 1.695 9.605 3.390 0.000
26 0.508 0.000 40.609 0.508 21.827 0.508 3.046 0.000 0.000
27 0.629 4.403 39.623 0.629 10.063 3.145 5.660 5.031 0.000
28 1.630 0.543 54.348 2.174 7.609 3.804 1.630 2.717 0.000
29 1.622 1.081 32.973 2.162 11.892 3.784 9.780 0.541 0.000
30 1.418 0.000 36.879 0.709 11.348 4.255 4.965 4.965 0.709
31 0.893 3.561 33.036 5.357 13.393 2.679 4.464 0.893 0.893
32 3.448 1.478 29.064 3.448 14.778 4.433 2.955 0.000 0.000
33 4.435 2.419 33.468 0.806 17.742 3.226 0.000 4.032 0.000
34 0.000 4.545 38.636 0.000 15.152 1.515 2.273 2.273 0.758
35 1.508 1.508 38.191 0.503 3.518 1.508 1.508 2.010 0.503
36 5.344 0.000 39.695 1.527 13.740 6.870 0.763 0.000 0.000
37 0.000 0.000 38.095 3.571 4.762 9.524 3.571 0.000 1.190
38 1.604 1.604 33.690 0.000 19.251 2.139 3.209 3.209 0.535
39 2.041 0.816 36.327 2.041 20.000 2.449 2.449 1.224 0.408
40 0.000 6.130 35.249 0.000 10.728 0.000 0.383 0.383 0.000
41 3.582 5.373 38.209 0.896 17.015 0.896 0.000 0.896 0.299
42 2.105 4.211 26.842 1.053 13.684 4.737 5.263 2.105 0.000
43 0.455 0.909 37.273 0.455 24.091 3.182 0.455 0.455 0.909
44 2.769 1.231 43.385 1.231 2.769 4.000 6.462 3.077 0.000
45 3.448 0.575 35.632 1.149 14.368 0.000 4.598 0.575 0.000
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X0 1 2 3 4 5 6 7 8 9
46 1.533 0.000 35.249 0.383 9.195 2.682 13.793 1.533 0.000
47 1.394 0.348 36.585 1.045 8.014 3.833 6.969 1.394 0.000
48 1.970 2.463 39.901 0.493 15.764 3.941 0.985 0.493 0.493
49 1.613 0.403 42.742 1.210 16.129 2.823 2.823 0.403 0.000
50 0.448 0.448 40.359 4.484 12.556 2.242 6.278 0.897 0.000
51 1.887 1.887 34.906 1.415 12.264 1.415 3.302 1.415 0.472
52 1.633 0.816 24.898 2.449 6.531 0.408 12.245 2.041 0.000
53 1.093 0.546 31.694 1.639 14.208 0.000 19.672 4.372 0.000
54 1.878 0.469 24.883 1.878 14.085 1.408 9.390 0.939 0.000
55 3.911 2.793 32.961 1.117 14.525 1.117 2.793 0.559 0.000
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Plankton prior data.  (continued)



TABLE 10.10

Prior sources.
S0 1 2 3 4 5
1 3.6149 12.6825 4.0799 0.4612 -0.2944
2 7.1521 7.6238 3.8249 0.3161 0.2023
3 5.1598 3.2538 0.3356 -0.0632 -1.7127
4 15.2554 -4.4849 0.6459 -1.0708 -2.6534
5 11.0592 -1.0505 0.4543 -0.1117 -0.7537
6 8.2063 -3.0009 -1.0149 1.8473 0.9696
7 11.2025 -5.4905 -1.3124 -1.3693 1.6291
8 7.6609 -0.6361 1.7594 -2.3160 1.3145
9 3.8920 1.3196 0.7227 -1.6788 1.5253

10 1.5624 -4.2317 -4.1069 -0.1962 -1.2202
11 -0.7028 1.3016 -2.1855 1.3025 -0.3576
12 -0.2300 1.0737 -3.5947 -0.3564 -0.3915
13 -0.3380 -0.5615 -4.3846 0.2477 -1.4599
14 -1.6171 0.6572 -4.0716 -0.7554 0.0124
15 -1.8337 -0.0017 -4.1467 -3.3739 2.1201
16 1.4962 1.6719 -2.2090 -0.9924 -2.3625
17 3.3596 2.7586 1.6629 0.4339 -0.3165
18 4.5899 -0.9119 -1.7738 0.5243 -1.2499
19 9.8718 -1.3394 0.5319 -0.7428 -1.3385
20 -1.1304 4.9008 0.4796 1.9486 -0.5406
21 -3.0642 -3.1156 4.6031 0.7750 -1.4913
22 5.7309 2.3271 1.3865 -0.8565 -0.8441
23 -0.8891 3.1361 2.8324 -0.0328 1.1677
24 -3.5279 8.6545 -1.6456 -2.0993 -1.0984
25 3.2165 -5.6941 6.2049 -0.2878 -0.6181
26 0.5586 8.1180 4.2066 -0.0011 -0.5954
27 0.2002 -3.9653 0.5069 -2.1345 3.0200
28 15.7550 -4.7438 1.8297 1.0191 1.1627
29 -7.4803 -3.8323 2.5490 1.7341 -0.6052
30 -2.1294 -2.8353 0.2431 0.8822 3.5626
31 -5.8898 -0.3510 -1.4622 0.6291 -2.6885
32 -9.2742 1.5786 -3.5336 3.0033 -1.1024
33 -4.7051 5.3833 -3.1385 0.1500 3.0859
34 -0.2758 2.4375 -0.6078 -2.5024 1.1381
35 1.3419 -7.8329 -5.3471 -1.8751 0.2044
36 1.4589 1.3861 -2.2417 5.2097 1.4438
37 0.4345 -8.3575 -3.9381 6.5848 0.2063
38 -5.6870 5.5015 0.5682 -0.5077 2.3459
39 -3.0381 6.4700 1.1192 1.2976 0.0628
40 -2.1995 -0.3325 -5.2858 -4.2932 -1.0557
41 -0.2766 5.3482 -2.3177 -2.1927 -0.1166
42 -12.0879 -0.2870 -3.2471 0.6110 1.5717
43 -2.0622 11.0301 1.3244 1.8362 0.9329
44 4.5609 -10.8968 -0.0979 0.2247 1.5995
45 -3.6077 0.8983 0.6598 -0.9732 -1.0658
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S0 1 2 3 4 5
46 -6.2946 -7.8674 5.9732 0.3227 0.5144
47 -2.5983 -6.2559 0.2136 1.1774 0.5527
48 1.2758 3.3990 -1.1071 1.2221 0.9443
49 3.3661 2.8668 2.1198 1.3968 0.0288
50 0.5678 -2.0059 2.9503 1.2206 -2.2747
51 -3.5799 -0.6490 -1.7519 -0.8967 -0.3592
52 -14.9961 -9.5153 0.3231 -1.6923 -1.6445
53 -12.2752 -5.8850 11.9566 -2.1282 0.6192
54 -15.1326 -1.5071 0.7682 0.0891 -1.1288
55 -5.6267 1.8602 -2.3135 -0.9663 -0.5969
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Prior sources.  (continued)



TABLE 10.11

Gibbs estimated sources.

S̄ 1 2 3 4 5
1 0.9807 15.6149 4.9057 1.1081 -0.1951
2 7.6055 2.8646 3.9698 -0.0716 0.2639
3 9.6302 1.6182 1.4932 -0.8031 -1.0248
4 15.2314 -1.0222 1.2876 -1.1253 -2.3789
5 8.0468 -3.0071 -0.7450 -0.2822 -1.0089
6 8.6775 -3.0436 -0.6280 1.0225 1.6290
7 9.4814 -6.0544 -0.2174 -1.3684 1.3358
8 7.7334 1.2350 1.6243 -1.5465 1.1107
9 7.2569 -1.0552 0.2612 -1.5892 1.3960

10 -1.9127 -1.9787 -3.9417 0.0928 -0.9757
11 0.0741 1.2153 -2.6727 0.6031 -0.9816
12 0.1553 2.7110 -2.9621 -0.7201 -0.4769
13 2.4942 -0.6772 -2.8096 0.1257 -0.8011
14 -2.8384 -0.9523 -4.7943 -1.6783 0.1043
15 -2.6866 2.4285 -4.9798 -4.3689 1.4187
16 -4.2748 3.8976 -5.1482 -2.3088 -2.3416
17 1.9142 1.6006 1.5756 0.6781 -1.5672
18 3.9248 1.3067 -2.0418 -0.2850 -0.3889
19 9.8123 -0.1879 0.9218 -0.1547 -0.6778
20 -1.1903 4.1789 1.1927 1.6698 -0.7015
21 -3.1564 -2.1541 1.5573 0.4897 -1.6518
22 5.2444 1.2583 1.3740 -0.0676 -1.4785
23 -0.6582 6.0503 2.4677 0.4769 0.7760
24 0.6486 7.1883 -0.3399 -1.0240 -0.6335
25 1.9693 -0.2651 4.5535 0.7289 -0.5858
26 -1.4475 10.4732 2.0957 0.0082 0.1105
27 2.0043 -2.3173 1.8399 -1.9020 2.3047
28 9.2866 -5.1963 0.3418 1.2520 1.4795
29 -7.7186 -2.3700 4.6203 1.5911 0.2233
30 1.4263 -0.4446 -0.3194 0.0516 2.5013
31 -6.4891 -4.1211 -4.0640 2.2281 -1.9756
32 -6.3127 1.8598 -3.9654 1.6800 -0.9687
33 -4.9825 5.7280 -3.6544 0.9995 2.6256
34 2.1692 0.2236 0.0881 -1.5464 1.5986
35 2.3613 -5.0694 -6.6207 1.2189 0.9052
36 -0.5200 0.0357 -3.7793 5.9551 1.2934
37 -2.4959 -7.6663 -4.1741 5.1509 -0.0393
38 -5.5737 2.0416 -0.7126 0.9923 1.8707
39 0.9322 1.2373 -0.9587 0.7867 1.3443
40 -1.5557 2.3431 -4.8692 -4.4719 -0.6164
41 -1.5259 4.6410 -3.1214 -1.1761 -0.5867
42 -10.5555 2.8372 -3.4738 0.1699 1.1763
43 -5.6385 11.3828 -0.1632 1.9829 1.3539
44 6.9574 -11.8097 0.5968 -0.6437 1.6987
45 -6.4213 -4.3600 2.7961 -0.6655 -0.9720
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S̄ 1 2 3 4 5
46 -2.3506 -8.5414 3.2495 0.3405 0.7791
47 -1.4567 -3.9941 0.3060 2.5545 1.4352
48 -0.2274 3.5452 -2.3818 0.7657 0.1226
49 6.9381 5.5400 4.1900 0.5332 -0.2802
50 -3.0303 -1.1452 2.8620 1.6998 -2.5665
51 -8.5665 -2.8726 -0.5945 -0.8719 -1.3653
52 -12.1401 -8.6555 1.9367 -1.5648 -1.1537
53 -7.6439 -4.2261 8.3341 -2.8372 0.4667
54 -11.8889 -3.4816 0.3105 -0.6313 -0.6106
55 -3.6070 3.3189 -0.4605 -0.2526 -1.2679

© 2003 by Chapman & Hall/CRC

TABLE 10.11
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TABLE 10.12

ICM estimated sources.

S̃ 1 2 3 4 5
1 0.4899 14.5145 4.5071 1.0927 -0.2315
2 6.9053 1.8323 3.5958 -0.1215 0.2405
3 9.7792 1.2122 1.4778 -0.8028 -1.0118
4 14.4503 -0.5136 1.2786 -0.9314 -2.4179
5 7.0907 -3.0951 -0.8586 -0.2755 -1.0750
6 8.2539 -2.8721 -0.5496 0.8661 1.4973
7 8.3046 -5.4934 0.0080 -1.2320 1.2450
8 7.0406 1.4542 1.4681 -1.3204 1.1038
9 6.8416 -1.1500 0.1584 -1.4614 1.4064

10 -1.8991 -1.3645 -3.5401 0.1384 -1.0253
11 0.1033 1.0660 -2.4731 0.4460 -0.9366
12 0.1227 2.7583 -2.5841 -0.6775 -0.4761
13 2.9057 -0.6468 -2.3662 0.2029 -0.8006
14 -2.7731 -0.9990 -4.4835 -1.6639 0.0846
15 -2.9552 2.7171 -4.5537 -4.1590 1.4409
16 -4.2508 3.7226 -5.0439 -2.2657 -2.3691
17 1.2587 1.2114 1.3578 0.6423 -1.4816
18 3.9268 1.5191 -1.9320 -0.2931 -0.4898
19 9.3672 -0.0612 0.8758 -0.0257 -0.7625
20 -1.0664 3.6590 1.1118 1.4867 -0.6761
21 -2.4913 -1.7258 0.8635 0.3771 -1.5980
22 4.6917 0.8820 1.3025 0.0330 -1.4372
23 -0.8445 5.9142 2.1302 0.4665 0.7865
24 1.1053 6.3389 -0.1244 -0.7830 -0.5295
25 1.9905 0.5701 3.8052 0.7934 -0.6001
26 -1.3647 9.6680 1.5065 0.0127 0.0810
27 1.6113 -1.6881 1.9844 -1.7399 2.3240
28 7.8789 -4.9566 0.1180 1.1929 1.2565
29 -6.8021 -1.9096 4.3907 1.4590 0.1934
30 1.2311 0.1059 -0.3359 -0.1058 2.5217
31 -5.6701 -4.3043 -4.1307 2.2532 -1.9239
32 -5.2401 1.6640 -3.7472 1.3927 -0.9051
33 -5.1508 5.3068 -3.3875 0.9692 2.6413
34 2.2469 0.0121 0.1681 -1.3107 1.6087
35 2.5091 -4.1341 -6.0621 1.5724 0.8760
36 -0.8734 -0.2395 -3.7032 5.5596 1.2169
37 -2.5916 -6.9029 -3.8893 4.5502 -0.1520
38 -5.6731 1.4270 -0.8668 1.0290 1.9274
39 1.5083 0.3557 -1.2108 0.6666 1.3105
40 -1.2330 2.6784 -4.2421 -4.0828 -0.6014
41 -1.6943 4.1259 -2.9150 -0.9705 -0.5250
42 -9.7477 3.2048 -3.2242 0.0645 1.2387
43 -5.7349 10.1939 -0.3842 1.8287 1.2970
44 6.7774 -10.7151 0.7029 -0.7140 1.6126
45 -6.3299 -4.7704 2.8196 -0.5370 -0.9357
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S̃ 1 2 3 4 5
46 -1.4643 -7.7089 2.4053 0.2631 0.8422
47 -1.0564 -3.2776 0.2526 2.5518 1.3459
48 -0.6876 3.1744 -2.3780 0.6098 0.1191
49 6.7672 5.3878 4.0594 0.4279 -0.2528
50 -2.9901 -0.9787 2.5267 1.6197 -2.5275
51 -8.8425 -2.9188 -0.3269 -0.7978 -1.3129
52 -10.4148 -7.5808 1.9425 -1.4108 -1.0169
53 -6.2772 -3.3309 6.7783 -2.7691 0.6239
54 -10.2317 -3.3483 0.1529 -0.6803 -0.4715
55 -3.2689 3.2464 -0.1322 -0.1348 -1.1372
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ICM estimated sources.  (continued)



10.9 Discussion

After having estimated the model parameters, the estimates of the sources
as well as the mixing matrix are now available. The estimated matrix of
sources corresponds to the unobservable signals or conversations emitted from
the mouths of the speakers at the cocktail party. Row i of the estimated source
matrix is the estimate of the unobserved source vector at time i and column j
of the estimated source matrix is the estimate of the unobserved conversation
of speaker j at the party for all n time increments.
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Exercises

1. Specify that µ and Λ are independent with the prior distribution for the
overall mean µ being the vague prior

p(µ) ∝ (a constant),

the distribution for the factor loading matrix being

p(Λ|Σ) ∝ |A|−
p
2 |Σ|−

m
2 e−

1
2 trΣ−1(Λ−Λ0)A−1(Λ−Λ0)′ ,

and the others as in Equations 10.4.2-10.4.4.

Combine these prior distributions with the likelihood in Equation 10.3.2
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal mean and joint maximum a posteriori parameter
estimates [52, 59].

2. Specify that µ and Λ are independent with the prior distribution for the
overall mean µ being the Conjugate prior

p(µ|Σ) ∝ |hΣ|−
1
2 e−

1
2 (µ−µ0)(hΣ)−1(µ−µ0)′ ,

the distribution for the factor loading matrix being

p(Λ|Σ) ∝ |A|−
p
2 |Σ|−

m
2 e−

1
2 trΣ−1(Λ−Λ0)A−1(Λ−Λ0)′ ,

and the others as in Equations 10.4.2-10.4.2.

Combine these prior distributions with the likelihood in Equation 10.3.2
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal mean and joint maximum a posteriori parameter
estimates [61].

3. Specify that µ and Λ are independent with the prior distribution for the
overall mean µ being the generalized Conjugate prior

p(µ) ∝ |Γ|−
1
2 e−

1
2 (µ−µ0)′Γ−1(µ−µ0),

the distribution for the factor loading matrix being

p(λ) ∝ |∆|−
1
2 e−

1
2 (λ−λ0)′∆−1(λ−λ0),
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and the others as in Equations 10.4.2-10.4.4.

Combine these prior distributions with the likelihood in Equation 10.3.2
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal mean and joint maximum a posteriori parameter
estimates [61].

4. Specify that the prior distribution for the matrix of sources S is

p(S) =

{

1 S = S0

0 S = S0
, (10.9.1)

and as a result there is no variability or covariance matrix R and thus
no p(R). Show that by taking the (en,S0) = U , (µ,Λ) = B, and the
Conjugate prior distributions for the unknown model parameters, the
resulting model is the Bayesian Regression model given in Chapter 8.
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11

Unobservable and Observable Source Separation

11.1 Introduction

There may be instances where some sources may be specified to be observ-
able while others are not. An example of such a situation is when we recognize
that a stereo at a cocktail party is tuned to a particular radio station. We
record the radio station in isolation; thus the source is said to be observable,
but the associated mixing coefficients for this source are still unknown. The
following model allows for such situations. The following model is a combi-
nation of the Bayesian Regression model for observable sources introduced in
Chapter 8 and the Bayesian Source Separation model for unobservable sources
described in Chapter 10. Either model may be obtained as a special case by
setting either the number unobservable or observable sources to be zero.

11.2 Model

Consider the model at time i, in which p-dimensional vector-valued obser-
vations xi, on p possibly correlated random variables are observed as well as
(q+1)-dimensional vector-valued sources (including a vector of ones for the
overall mean) on ui, but m sources, at each time increment si, i = 1, . . . ,n,
are unobservable. The (q+1)-dimensional observable sources are denoted by
ui as in Regression with coefficients denoted by B and the m-dimensional un-
observable sources by si with coefficients given by Λ. The mixing coefficients
for the observable sources denoted by B will be referred to as Regression
coefficients or the matrix of Regression coefficients. The unobservable and
observable Source Separation model is given by

(xi|B,ui,Λ,si) = B ui + Λ si + ǫi,
(p×1) [p× (q+1)] [(q+1)×1] (p×m) (m×1) (p×1)

(11.2.1)

where the variables are as previously defined.
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That is, the observed signal xij for microphone j at time (observation) i
contains a linear combination of the (q+1) observable sources 1,ui1, . . . ,uiq
(where the first element of the ui’s is a 1 for the overall mean µj) in addition
to a linear combination of the m unobserved source components si1, . . . ,sim
with amplitudes or mixing coefficients λj1, . . . ,λjm. This combined model can
be written in terms of vectors to describe the observed signal at microphone
j at time i as

xij = β′
jui+λ′

jsi+ ǫij , (11.2.2)

where ui = (1,ui1, . . . ,uiq)
′, βj = (βj0, . . . ,βjq)

′, λj = (λj1, . . . ,λjm)′, and si =
(si1, . . . ,sim)′. If any or all of the unobservable sources were specified to
be observable, they could be grouped into the u’s and their Regression or
observed mixing coefficients computed. This is also represented as

(xij |µj ,λj ,si,ui) = µj +

q
∑

t=1

βjt uit+

m
∑

k=1

λjk sik+ ǫij . (11.2.3)

The recorded or observed conversation for microphone j at time increment
i is a linear mixture of the (q+1) observable sources and the m unobservable
sources at time increment i and a random noise term. The observed sources
contains a 1 for an overall mean for microphone j.

The unobservable and observable Source Separation model that describes
all observations for all microphones can be written in terms of matrices as

(X|B,U,Λ,S) = U B′ + S Λ′ + E,
(n×p) [n× (q+1)] [(q+1)×p] (n×m) (m×p) (n×p)

(11.2.4)
where X ′ = (x1, . . . ,xn), U

′ = (u1, . . . ,un), Λ′ = (λ1, . . . ,λp) S′ = (s1, . . . ,sn),
and E′ = (ǫ1, . . . , ǫn).

11.3 Likelihood

Regarding the errors of the observations, it is specified that they are in-
dependent Multivariate Normally distributed random vectors with mean zero
and full positive definite symmetric covariance matrix Σ. From this error
specification, it is seen that the observation vector xi given the source vector
si, the Regression coefficient matrix B, the observable source vector ui, the
mixing matrix Λ, and the error covariance matrix Σ is Multivariate Normally
distributed with likelihood given by
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p(xi|B,ui,Λ,si,Σ)∝ |Σ|− 1
2 e−

1
2 (xi−Bui−Λsi)

′Σ−1(xi−Bui−Λsi). (11.3.1)

With the previously described matrix representation, the joint likelihood of
all n observation vectors collected into the observations matrix X is given by
the Matrix Normal Distribution

p(X|U,B,S,Λ,Σ)∝ |Σ|−n2 e− 1
2 tr(X−UB′

−SΛ′)Σ−1(X−UB′
−SΛ′)′ , (11.3.2)

where the variables are as previously defined.
The Regression and the mixing coefficient matrices B and Λ are joined into

a single coefficient matrix as C = (B,Λ). The observable and unobservable
source matrices U and S are also joined as Z = (U,S). Having joined these
matrices, the unobservable and observable Source Separation model is now in
a matrix representation given by

(X|C,Z) = Z C ′ + E,
n×p n× (m+ q+1) (m+ q+1)×p (n×p)

(11.3.3)

and its corresponding likelihood is given by the Matrix Normal distribution

p(X|C,Z,Σ)∝ |Σ|−n2 e− 1
2 tr(X−ZC′)Σ−1(X−ZC′)′ , (11.3.4)

where all variables are as defined above and tr(·) denotes the trace operator.
Again, the objective is to unmix the unobservable sources by estimating

the matrix containing them S and to obtain knowledge about the mixing
process by estimating the Regression coefficients (coefficients for the observ-
able sources) B, the matrix of mixing coefficients (coefficients for the unob-
servable sources) Λ, and the error covariance matrix Σ.

Both Conjugate and generalized Conjugate distributions are utilized in or-
der to quantify our prior knowledge regarding value of the parameters.

11.4 Conjugate Priors a nd Po sterior

The unobservable and observable Bayesian Source Separation model that
was just described, is based on previous work [52, 57, 59].

When quantifying available prior information regarding the parameters of
interest, Conjugate prior distributions are specified as described in Chapter 4.
The joint prior distribution for the model parameters which are the matrix
of (Regression/mixing) coefficients C, the matrix of sources S, the source
covariance matrix R, and the error covariance matrix Σ is given by
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p(S,R,C,Σ) = p(S|R)p(R)p(C|Σ)p(Σ), (11.4.1)

where the prior distributions for the model parameters from the Conjugate
procedure outlined in Chapter 4 are given by

p(S|R) ∝ |R|−n2 e− 1
2 trR

−1(S−S0)′(S−S0), (11.4.2)

p(R) ∝ |R|−
η
2 e−

1
2 trR

−1V , (11.4.3)

p(Σ) ∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (11.4.4)

p(C|Σ) ∝ |D|−
p
2 |Σ|−

m+q+1
2 e−

1
2 trΣ

−1(C−C0)D−1(C−C0)′ , (11.4.5)

where the matrices Σ, R, V , D, and Q are positive definite. The hyperpa-
rameters S0, η, V , C0, D, ν, and Q are to be assessed and having done so
completely determines the joint prior distribution. The prior distributions for
the parameters are Matrix Normal for the matrix of sources where the source
components are free to be correlated, Matrix Normal for the matrix of Re-
gression/mixing coefficients, while the observation error and source covariance
matrices are taken to be Inverted Wishart distributed.

Note that both Σ and R are full positive definite symmetric covariance
matrices allowing both the observed mixed signals (the elements in the xi’s)
and also the unobserved source components (the elements in the si’s) to be
correlated. The mean of the sources is free to be general but often taken to
be constant for all observations and thus without loss of generality taken to
be zero. Here, an observation (time) varying source mean is adopted.

Upon using Bayes’ rule, the joint posterior distribution for the unknown
parameters is proportional to the product of the joint prior distribution and
the likelihood and is given by

p(S,R,C,Σ|U,X) ∝ |Σ|−
(n+ν+m+q+1)

2 e−
1
2 trΣ

−1G

×|R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ], (11.4.6)

where the p×p matrix G has been defined to be

G = (X−ZC ′)′(X−ZC ′)+(C−C0)D
−1(C−C0)

′+Q. (11.4.7)

This joint posterior distribution must now be evaluated in order to obtain
parameter estimates of the sources S, the Regression/mixing matrix C, the
errors of the sources R, and the errors of observation Σ. Marginal posterior
mean and joint maximum a posteriori estimates of the parameters S, R, C,
Σ are found by the Gibbs sampling and ICM algorithms.
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11.5 Conjugate Estimation a nd Inference

With the above posterior distribution, it is not possible to obtain marginal
distributions and thus marginal estimates for any of the parameters in an
analytic closed form. It is also not possible to obtain explicit formulas for
maximum a posteriori estimates. It is possible to use both Gibbs sampling,
as described in Chapter 6 to obtain marginal parameter estimates and the ICM
algorithm for finding maximum a posteriori estimates. For both estimation
procedures, the posterior conditional distributions are needed.

11.5.1 Posterior Conditionals

From the joint posterior distribution we can obtain the posterior condi-
tional distribution for each of the model parameters.

The conditional posterior distribution for the Regression/mixing matrix C
is found by considering only the terms in the joint posterior distribution which
involve C and is given by

p(C|S,R,Σ,U,X) ∝ p(C|Σ)p(X|C,S,Σ,U)

∝ |Σ|−
m+q+1

2 e−
1
2 trΣ

−1(C−C0)D−1(C−C0)′

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′)

∝ e−
1
2 trΣ

−1[(C−C0)D−1(C−C0)′+(X−ZC′)′(X−ZC′)]

∝ e−
1
2 trΣ

−1(C−C̃)(D−1+Z′Z)(C−C̃)′ , (11.5.1)

where the variable C̃, the posterior conditional mean and mode, has been
defined and is given by

C̃ = [C0D
−1 +X ′Z](D−1 +Z ′Z)−1 (11.5.2)

= C0[D
−1(D−1 +Z ′Z)−1]+ Ĉ[(Z ′Z)(D−1 +Z ′Z)−1]. (11.5.3)

Note that the matrix C̃ can be written as a weighted combination of the
prior mean C0 from the prior distribution and the data mean Ĉ =X ′Z(Z ′Z)−1

from the likelihood.
The conditional distribution for the matrix of Regression and mixing coef-

ficients C given the matrix of unobservable sources S, the source covariance
matrix R, the error covariance matrix Σ the matrix of observable sources U ,
and the data matrix X is Matrix Normally distributed.

The conditional posterior distribution of the observation error covariance
matrix Σ is found by considering only the terms in the joint posterior distri-
bution which involve Σ and is given by
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p(Σ|S,R,C,U,X) ∝ p(Σ)p(Λ|Σ)p(X|C,S,Σ,U)

∝ |Σ|− ν2 e− 1
2 trΣ

−1Q|Σ|−
m+q+1

2 e−
1
2 trΣ

−1(C−C0)D−1(C−C0)′

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′)

∝ |Σ|−
(n+ν+m+q+1)

2 e−
1
2 trΣ

−1G, (11.5.4)

where the p×p matrix G has been defined to be

G = (X−ZC ′)′(X−ZC ′)+(C−C0)D
−1(C−C0)

′+Q, (11.5.5)

with a mode as discussed in Chapter 2 given by

Σ̃ =
G

n+ν+m+ q+1
. (11.5.6)

The posterior conditional distribution of the observation error covariance
matrix Σ given the matrix of unobservable sources S, the source covariance
matrix R, the matrix of Regression/mixing coefficients C, the observable
sources U , and the data X is an Inverted Wishart.

The conditional posterior distribution for the sources S is found by consid-
ering only those terms in the joint posterior distribution which involve S and
is given by

p(S|B,Λ,R,Σ,U,X) ∝ p(S|R)p(X|B,Λ,S,Σ,U)

∝ |R|−n2 e− 1
2 trR

−1(S−S0)′(S−S0)

×|Σ|−n2 e− 1
2 trΣ

−1(X−UB′
−SΛ′)′(X−UB′

−SΛ′)

∝ e−
1
2 tr(S−S̃)(R−1+Λ′Σ−1Λ)(S−S̃)′ , (11.5.7)

where the matrix S̃ has been defined which is the posterior conditional mean
and mode and is given by

S̃ = [S0R
−1 +(X−UB′)Σ−1Λ](R−1 +Λ′Σ−1Λ)−1. (11.5.8)

The conditional posterior distribution for the sources S given the matrix
of Regression coefficients B, the matrix of mixing coefficients Λ, the source
covariance matrix R, the error covariance matrix Σ, the matrix of observable
sources U , and the matrix of data X is Matrix Normally distributed.

The conditional posterior distribution for the source covariance matrix R is
found by considering only the terms in the joint posterior distribution which
involve R and is given by
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p(R|C,S,Σ,U,X) ∝ p(R)p(S|R)p(X|C,S,Σ,U)

∝ |R|−
η
2 e−

1
2 trR

−1V |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′

∝ |R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ], (11.5.9)

with the posterior conditional mode as described in Chapter 2 given by

R̃=
(S−S0)

′(S−S0)+V

n+η
. (11.5.10)

The conditional posterior distribution for the source covariance matrix R
given the matrix of Regression/mixing coefficients C, the matrix of sources
S, the error covariance matrix Σ, the matrix of observable sources U , and the
matrix of data X is Inverted Wishart distributed.

11.5.2 Gibbs Sampling

To find marginal posterior mean estimates of the parameters from the joint
posterior distribution using the Gibbs sampling algorithm, start with initial
values for the matrix of sources S and the error covariance matrix Σ, say S̄(0)

and Σ̄(0), and then cycle through

C̄(l+1) = a random variate from p(C|S̄(l), R̄(l),Σ̄(l),U,X)

= ACYCB
′
C +MC , (11.5.11)

Σ̄(l+1) = a random variate from p(Σ|S̄(l), R̄(l), C̄(l+1),U,X)

= AΣ(Y
′
ΣYΣ)−1A′

Σ, (11.5.12)

R̄(l+1) = a random variate from p(R|S̄(l), C̄(l+1),Σ̄(l+1),U,X)

= AR(Y
′
RYR)

−1A′
R, (11.5.13)

S̄(l+1) = a random variate from p(S|R̄(l+1), C̄(l+1),Σ̄(l+1),U,X)

= YSB
′
S +MS , (11.5.14)

where

ACA
′
C = Σ̄(l),

BCB
′
C = (D−1 + Z̄ ′

(l)Z̄(l))
−1,

Z̄(l) = (U,S̄(l)),

MC = (X ′Z̄(l) +C0D
−1)(D−1 + Z̄ ′

(l)Z̄(l))
−1

AΣA
′
Σ = (X− Z̄(l)C̄

′
(l+1))

′(X− Z̄(l)C̄
′
(l+1))+

(C̄(l+1)−C0)D
−1(C̄(l+1)−C0)

′+Q,
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ARA
′
R = (S̄(l)−S0)

′(S̄(l)−S0)+V,

BSB
′
S = (R̄−1

(l+1) +Λ̄′
(l+1)Σ̄

−1
(l+1)Λ̄(l+1))

−1,

MS = [S0R̄
−1
(l+1) +(X−UB̄′

(l+1))Σ̄
−1
(l+1)Λ̄(l+1)]

×(R̄−1
(l+1) +Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1

while YC , YΣ, YR, and YS are p× (m+ q+1), (n+ ν +m+1+ p+1)× p,
(n+η+m+1)×m, and n×m dimensional matrices respectively, whose ele-
ments are random variates from the standard Scalar Normal distribution. The
formulas for the generation of random variates from the conditional posterior
distributions are easily found from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of the parameters

S̄ =
1

L

L
∑

l=1

S̄(l) R̄=
1

L

L
∑

l=1

R̄(l) C̄ =
1

L

L
∑

l=1

C̄(l) Σ̄ =
1

L

L
∑

l=1

Σ̄(l)

which are the exact sampling-based marginal posterior mean estimates of
the parameters. Exact sampling-based estimates of other quantities can also
be found. Similar to Bayesian Regression, Bayesian Factor Analysis, and
Bayesian Source Separation, there is interest in the estimate of the marginal
posterior variance of the matrix containing the Regression and mixing coeffi-
cients

var(c|c̄,X,U) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄,

where c= vec(C).
The covariance matrices of the other parameters follow similarly. With a

specification of Normality for the marginal posterior distribution of the vector
containing the Regression and mixing coefficients, their distribution is

p(c|c̄,X,U) ∝ |∆̄|− 1
2 e−

1
2 (c−c̄)∆̄−1(c−c̄)′ , (11.5.15)

where c̄ and ∆̄ are as previously defined.
To evaluate statistical significance with the Gibbs sampling approach, use

the marginal distribution of the matrix containing the Regression and mixing
coefficients given above. General simultaneous hypotheses can be evaluated
regarding the entire matrix containing the Regression and mixing coefficients,
a submatrix, or a particular independent variable or source, or an element
by computing marginal distributions. It can be shown that the marginal
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distribution of the kth column of the matrix containing the Regression and
mixing coefficients C, Ck is Multivariate Normal

p(Ck|C̄k,X,U)∝ |∆̄k|−
1
2 e−

1
2 (Ck−C̄k)

′∆̄−1
k

(Ck−C̄k), (11.5.16)

where ∆̄k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

Significance can be evaluated for a subset of coefficients of the kth column of
C by determining the marginal distribution of the subset within Ck which is
also Multivariate Normal. With the subset being a singleton set, significance
can be evaluated for a particular coefficient with the marginal distribution of
the scalar coefficient which is

p(Ckj|C̄kj ,X,U)∝ (∆̄kj)
− 1

2 e
−

(Ckj−C̄kj)
2

2∆̄kj , (11.5.17)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that C̄kj = c̄jk and that

z =
(Ckj− C̄kj)

√

∆̄kj

(11.5.18)

follows a Normal distribution with a mean of zero and variance of one.

11.5.3 Maximum a Posteriori

The joint posterior distribution can also be maximized with respect to the
matrix of coefficients C, the error covariance matrix Σ, the matrix of sources
S, and the source covariance matrix R by using the ICM algorithm. To jointly
maximize the joint posterior distribution using the ICM algorithm, start with
an initial value for the matrix of sources S, say S̃(0), and then cycle through

C̃(l+1) =
Arg Max

C p(C|S̃(l), R̃(l),Σ̃(l),X)

= (X ′Z̃(l) +C0D
−1)(D−1 + Z̃ ′

(l)Z̃(l))
−1,

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l+1), R̃(l), S̃(l),X)

= [(X− Z̃(l)C̃
′
(l+1))

′(X− Z̃(l)C̃
′
(l+1))

+(C̃(l+1)−C0)D
−1(C̃(l+1)−C0)

′+Q]/(n+ν+m+ q+1),

S̃(l+1) =
Arg Max

S p(S|C̃(l+1), R̃(l),Σ̃(l+1),X)

= [S0R̃
−1
(l) +(X−UB̃′

(l+1))Σ̃
−1
(l+1)Λ̃(l+1)]

×(R̃−1
(l) +Λ̃′

(l+1)Σ̃
−1
(l+1)Λ̃(l+1))

−1,

R̃(l+1) =
Arg Max

R p(R|S̃(l+1), C̃(l+1),Σ̃(l+1),X)
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=
(S̃(l+1)−S0)

′(S̃(l+1)−S0)+V

n+η
,

where the matrix Z̃(l) = (U,S̃(l)) until convergence is reached. The converged

values (S̃, R̃, C̃,Σ̃) are joint posterior modal (maximum a posteriori) estimates
of the parameters. Conditional maximum a posteriori variance estimates can
also be found. The conditional modal variance of the matrix containing the
Regression and mixing coefficients is

var(C|C̃, S̃, R̃,Σ̃,X,U) = Σ̃⊗ (D−1⊗ Z̃ ′Z̃)−1

or equivalently

var(c|c̃, S̃, R̃,Σ̃,X,U) = (D−1⊗ Z̃ ′Z̃)−1⊗ Σ̃

= ∆̃,

where c = vec(C), S̃, R̃, and Σ̃ are the converged value from the ICM algo-
rithm.

To evaluate statistical significance with the ICM approach, use the condi-
tional distribution of the matrix containing the Regression and mixing coeffi-
cients which is

p(C|C̃, S̃, R̃,Σ̃,X,U)∝ |D−1 + Z̃ ′Z̃| 12 |Σ̃|− 1
2 e−

1
2 trΣ̃

−1(C−C̃)(D−1+Z̃′Z̃)(C−C̃)′ ,
(11.5.19)

That is,

C|C̃, S̃, R̃,Σ̃,X,U ∼N
(

C̃,Σ̃⊗ (D−1 + Z̃ ′Z̃)−1
)

. (11.5.20)

General simultaneous hypotheses can be evaluated regarding the entire ma-
trix containing the Regression and mixing coefficients, a submatrix, or the
coefficients of a particular independent variable or source, or an element by
computing marginal conditional distributions.

It can be shown [17, 41] that the marginal conditional distribution of any
column of the matrix containing the Regression and mixing coefficients C, Ck

is Multivariate Normal

p(Ck|C̃k, S̃,Σ̃,U,X)∝ |WkkΣ̃|−
1
2 e−

1
2 (Ck−C̃k)

′(WkkΣ̃)−1(Ck−C̃k), (11.5.21)

where W = (D−1 + Z̃ ′Z̃)−1 and Wkk is its kth diagonal element.
With the marginal distribution of a column of C, significance can be de-

termined for a particular independent variable or source. Significance can be
determined for a subset of coefficients by determining the marginal distrib-
ution of the subset within Ck which is also Multivariate Normal. With the

© 2003 by Chapman & Hall/CRC



subset being a singleton set, significance can be determined for a particular
coefficient with the marginal distribution of the scalar coefficient which is

p(Ckj|C̃kj , S̃,Σ̃jj ,U,X)∝ (WkkΣ̃jj)
− 1

2 e
−

(Ckj−C̃kj)
2

2WkkΣ̃jj , (11.5.22)

where Σ̃jj is the jth diagonal element of Σ̃. Note that C̃kj = c̃jk and that

z =
(Ckj− C̃kj)
√

WkkΣ̃jj

(11.5.23)

follows a Normal distribution with a mean of zero and variance of one.

11.6 Generalized Priors and Posterior

Generalized Conjugate prior distributions are assessed in order to quantify
available prior information regarding values of the model parameters. The
joint prior distribution for the sources S, the source covariance matrix R, the
vector of coefficients c = vec(C), and the error covariance matrix Σ is given
by

p(S,R,Σ, c) = p(S|R)p(R)p(Σ)p(c), (11.6.1)

where the prior distribution for the parameters from the generalized Conjugate
procedure outlined in Chapter 4 are as follows

p(S|R) ∝ |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′ , (11.6.2)

p(R) ∝ |R|−
η
2 e−

1
2 trR

−1V , (11.6.3)

p(Σ) ∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (11.6.4)

p(c) ∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0), (11.6.5)

where Σ, R, V , Q, and ∆ are positive definite matrices. The hyperpara-
meters S0, η, V , ν, Q, c0, and ∆ are to be assessed. Upon assessing the
hyperparameters, the joint prior distribution is completely determined.

The prior distribution for the matrix of sources S is Matrix Normally dis-
tributed, the prior distribution for the source vector covariance matrix R is
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Inverted Wishart distributed, the vector of combined Regression/mixing coef-
ficients c= vec(C), C = (B,Λ) is Multivariate Normally distributed, the prior
distribution for the error covariance matrix Σ is Inverted Wishart distributed.

Note that both Σ and R are full covariance matrices allowing both the
observed mixed signals (microphones) and the unobserved source components
(speakers) to be correlated. The mean of the sources is often taken to be
constant for all observations and thus without loss of generality taken to be
zero. An observation (time) varying source mean is adopted here.

Upon using Bayes’ rule the joint posterior distribution for the unknown
parameters with generalized Conjugate prior distributions for the model pa-
rameters is given by

p(S,R,c,Σ|U,X) ∝ p(S|R)p(R)p(Σ)p(c)p(X|C,Z,Σ), (11.6.6)

which is

p(S,R,c,Σ|U,X) ∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ

−1[(X−ZC′)′(X−ZC′)+Q]

×|R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ]

×|∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0), (11.6.7)

after inserting the joint prior distribution and the likelihood.
This joint posterior distribution must now be evaluated in order to ob-

tain parameter estimates of the matrix of sources S, the vector of Regres-
sion/mixing coefficients c, the sources covariance matrix R, and the error
covariance matrix Σ.

11.7 Generalized Estimation and Inference

With the generalized Conjugate prior distributions, it is not possible to ob-
tain all or any of the marginal distributions or explicit expressions for maxima
and thus marginal mean and joint maximum a posteriori estimates in closed
form. For these reasons, marginal mean and joint maximum a posteriori esti-
mates are found using the Gibbs sampling and ICM algorithms.

11.7.1 Posterior Conditionals

Both the Gibbs sampling and ICM require the posterior conditionals. Gibbs
sampling requires the conditionals for the generation of random variates while
ICM requires them for maximization by cycling through their modes or max-
ima.
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The conditional posterior distribution of the matrix of sources S is found
by considering only the terms in the joint posterior distribution which involve
S and is given by

p(S|B,R,Λ,Σ,U,X) ∝ p(S|R)p(X|B,S,Λ,Σ,U)

∝ e−
1
2 tr(S−S0)′R−1(S−S0)

×e−
1
2 tr(X−UB′

−SΛ′)Σ−1(X−UB′
−SΛ′)′ ,

which after performing some algebra in the exponent can be written as

p(S|B,R,Λ,Σ,U,X) ∝ e−
1
2 tr(S−S̃)(R−1+Λ′Σ−1Λ)(S−S̃)′ , (11.7.1)

where the matrix S̃ has been defined to be

S̃ = [S0R
−1 +(X−UB′)Σ−1Λ](R−1 +Λ′Σ−1Λ)−1. (11.7.2)

That is, the matrix of sources S given the matrix of Regression coefficients
B, the source covariance matrix R, the mixing coefficients Λ, the error covari-
ance matrix Σ the matrix observable sources U , and the matrix of observed
data X is Matrix Normally distributed.

The conditional posterior distribution of the source covariance matrix R is
found by considering only the terms in the joint posterior distribution which
involve R and is given by

p(R|C,S,Σ,U,X) ∝ p(R)p(S|R)

∝ |R|− ν2 e− 1
2 trR

−1V |R|−n2 e− 1
2 trR

−1(S−S0)′(S−S0)

∝ |R|−
(n+ν)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ]. (11.7.3)

That is, the posterior conditional distribution of the source covariance ma-
trix R given the matrix of Regression/mixing coefficients C, the matrix of
sources S, the error covariance matrix Σ, the matrix of observable sources U ,
and the matrix of data X has an Inverted Wishart distribution.

The conditional posterior distribution of the vector c containing the Re-
gression coefficients B and the matrix of mixing coefficients Λ is found by
considering only the terms in the joint posterior distribution which involve c
or C and is given by

p(c|S,R,Σ,U,X) ∝ p(c)p(X|S,C,Σ,U)

∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0)

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′(X−ZC′), (11.7.4)
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which after performing some algebra in the exponent becomes

p(c|S,R,Σ,U,X) ∝ e−
1
2 (c−c̃)′(∆−1+Z′Z⊗Σ−1)(c−c̃), (11.7.5)

where the vector c̃ has been defined to be

c̃= (∆−1 +Z ′Z⊗Σ−1)−1[∆−1c0 +(Z ′Z⊗Σ−1)ĉ] (11.7.6)

and the vector ĉ has been defined to be

ĉ= vec[X ′Z(Z ′Z)−1]. (11.7.7)

Note that the vector c̃ can be written as a weighted combination of the prior
mean c0 from the prior distribution and the data mean ĉ from the likelihood.

The conditional posterior distribution of the vector c containing the matrix
of Regression coefficients B and the matrix of mixing coefficients Λ given the
matrix of sources S, the source covariance matrix R, the error covariance
matrix Σ, the matrix of observable sources U , and the matrix of observed
data X is Multivariate Normally distributed.

The conditional posterior distribution of the error covariance matrix Σ is
found by considering only the terms in the joint posterior distribution which
involve Σ and is given by

p(Σ|S,R,C,U,X) ∝ p(Σ)p(X|S,C,Σ,U)

∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ

−1[(X−ZC′)′(X−ZC′)+Q].

(11.7.8)

That is, the conditional posterior distribution of the error covariance ma-
trix Σ given the matrix of sources S, the source covariance matrix R, the
matrix of coefficients C, the matrix of observable sources U , and the matrix
of observable data X has an Inverted Wishart distribution.

The modes of these posterior conditional distributions are as described in
Chapter 2 and given by S̃, c̃, (both as defined above)

R̃ =
(S−S0)

′(S−S0)+V

n+η
, (11.7.9)

and

Σ̃ =
(X−ZC ′)′(X−ZC ′)+Q

n+ν
, (11.7.10)

respectively.
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11.7.2 Gibbs Sampling

To find marginal mean estimates of the parameters from the joint posterior
distribution using the Gibbs sampling algorithm, start with initial values for
the matrix of sources S and the error covariance matrix Σ,say S̄(0) and Σ̄(0),
and then cycle through

c̄(l+1) = a random variate from p(c|S̄(l),Σ̄(l), R̄(l+1),U,X)

= AcYc+Mc, (11.7.11)

Σ̄(l+1) = a random variate from p(Σ|S̄(l), R̄(l+1), c̄(l+1),U,X)

= AΣ(Y
′
ΣYΣ)

−1A′
Σ, (11.7.12)

R̄(l+1) = a random variate from p(R|S̄(l), c̄(l+1),Σ̄(l+1),U,X)

= AR(Y
′
RYR)

−1A′
R, (11.7.13)

S̄(l+1) = a random variate from p(S|R̄(l+1), c̄(l+1),Σ̄(l+1),U,X)

= YSB
′
S +MS , (11.7.14)

where

ĉ(l) = vec[X ′Z̄(l)(Z̄
′
(l)Z̄(l))

−1],

c̄(l+1) = [∆−1 + Z̄ ′
(l)Z̄(l)⊗ Σ̄−1

(l) ]
−1[∆−1c0 +(Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )ĉ(l)],

AcA
′
c = (∆−1 + Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )

−1,

Mc = [∆−1 + ¯Z̄ ′
(l)Z̄(l)⊗ Σ̄

−1

(l)
]−1[∆−1c0 +(Z̄ ′

(l)Z̄(l)⊗ Σ̄−1
(l) )ĉ],

AΣA
′
Σ = (X− Z̄(l)C̄

′
(l+1))

′(X− Z̄(l)C̄
′
(l+1))+Q,

ARA
′
R = (S̄(l)−S0)

′(S̄(l)−S0)+V,

BSB
′
S = (R̄−1

(l+1) +Λ̄′
(l+1)Σ̄

−1
(l+1)Λ̄(l+1))

−1,

MS = [S0R̄
−1
(l+1) +(X−UB̄′

(l+1))Σ̄
−1
(l+1)Λ̄(l+1)]

×(R̄−1
(l+1) +Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1

while Yc, YΣ, YR, and YS are p(m+1)×1, (n+ν+p+1)×p, (n+η+m+1)×
m, and n×m dimensional matrices whose respective elements are random
variates from the standard Scalar Normal distribution. The formulas for the
generation of random variates from the conditional posterior distributions is
easily found from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of each of the parameters

S̄ =
1

L

L
∑

l=1

S̄(l) R̄ =
1

L

L
∑

l=1

R̄(l) c̄=
1

L

L
∑

l=1

c̄(l) Σ̄ =
1

L

L
∑

l=1

Σ̄(l)
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which are the exact sampling-based marginal posterior mean estimates of the
parameters. Exact sampling-based estimates of other quantities can also be
found. Similar to Regression, Factor Analysis, and Source Separation, there
is interest in the estimate of the marginal posterior variance of the matrix
containing the Regression and mixing coefficients

var(c|c̄,X,U) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄,

where c= vec(C).
The covariance matrices of the other parameters follow similarly. With a

specification of Normality for the marginal posterior distribution of the vector
containing the Regression and mixing coefficients, their distribution is

p(c|c̄,X,U) ∝ |∆̄|− 1
2 e−

1
2 (c−c̄)′∆̄−1(c−c̄), (11.7.15)

where c̄ and ∆̄ are as previously defined.
To evaluate statistical significance with the Gibbs sampling approach, use

the marginal distribution of the vector c containing the Regression and mixing
coefficients given above. General simultaneous hypotheses can be evaluated
regarding the entire coefficient vector of Regression and mixing coefficients, a
subset of it, or the coefficients for a particular independent variable or source
by computing marginal distributions. It can be shown that the marginal
distribution of the kth column of the matrix containing the Regression and
mixing coefficients C, Ck is Multivariate Normal

p(Ck|C̄k,X,U)∝ |∆̄k|−
1
2 e−

1
2 (Ck−C̄k)

′∆̄−1
k

(Ck−C̄k), (11.7.16)

where ∆̄k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

Significance can be evaluated for a subset of means or coefficients of the kth

column of C by determining the marginal distribution of the subset within
Ck which is also Multivariate Normal. With the subset being a singleton set,
significance can be evaluated for a particular mean or coefficient with the
marginal distribution of the scalar coefficient which is

p(Ckj|C̄kj ,X,U)∝ (∆̄kj)
− 1

2 e
−

(Ckj−C̄kj)
2

2∆̄kj , (11.7.17)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that C̄kj = c̄jk and that

z =
(Ckj− C̄kj)

√

∆̄kj

(11.7.18)

follows a Normal distribution with a mean of zero and variance of one.
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11.7.3 Maximum a Posteriori

The joint posterior distribution can also be maximized with respect to the
vector of coefficients c, the matrix of sources S, the source covariance matrix
R, and the error covariance matrix Σ using the ICM algorithm. To jointly
maximize the joint posterior distribution using the ICM algorithm, start with
initial values for the matrix of sources S̃ and the error covariance matrix Σ,
say S̃(0) and Σ̃(0), and then cycle through

ĉ(l) = vec[X ′Z̃(l)(Z̃
′
(l)Z̃(l))

−1],

c̃(l+1) =
Arg Max

c p(c|S̃(l), R̃(l),Σ̃(l),X,U)

= (∆−1 + Z̃ ′
(l)Z̃(l)⊗ Σ̃−1

(l) )
−1[∆−1c0 +(Z̃ ′

(l)Z̃(l)⊗ Σ̃−1
(l) )ĉ(l)],

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l+1), R̃(l), S̃(l),X,U)

=
(X− Z̃(l)C̃

′
(l+1))

′(X− Z̃(l)C̃
′
(l+1))+Q

n+ν
,

R̃(l+1) =
Arg Max

R p(R|S̃(l), C̃(l+1),Σ̃(l+1),X,U)

=
(S̃(l)−S0)

′(S̃(l)−S0)+V

n+η
,

S̃(l+1) =
Arg Max

S p(S|C̃(l+1), R̃(l+1),Σ̃(l+1),X,U)

= [S0R̃
−1
(l+1) +(X−UB̃′

(l+1))Σ̃
−1
(l+1)Λ̃(l+1)]

×(R̃−1
(l+1) +Λ̃′

(l+1)Σ̃
−1
(l+1)Λ̃(l+1))

−1,

where the matrix Z̃(l) = (U,S̃(l)) has been defined until convergence is reached
with the joint modal (maximum a posteriori) estimates for the unknown model
parameters (S̃, R̃, c̃,Σ̃). Conditional maximum a posteriori variance estimates
can also be found. The conditional modal variance of the matrix containing
the Regression and mixing coefficients is

var(c|c̃, S̃, R̃,Σ̃,X,U) = [∆−1 + Z̃ ′Z̃⊗ Σ̃]−1

= ∆̃,

where c = vec(C), while S̃, R̃, and Σ̃ are the converged value from the ICM
algorithm.

Conditional modal intervals may be computed by using the conditional
distribution for a particular parameter given the modal values of the others.
The posterior conditional distribution of the matrix containing the Regression
and mixing coefficients C given the modal values of the other parameters and
the data is
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p(c|c̃, S̃,Σ̃,X,U) ∝ |∆̃|− 1
2 e−

1
2 (c−c̃)′∆̃−1(c−c̃). (11.7.19)

To evaluate statistical significance with the ICM approach, use the marginal
conditional distribution of the matrix containing the Regression and mixing
coefficients given above. General simultaneous hypotheses can be evaluated
regarding the entire vector, a subset of it, or the coefficients of a particular
independent variable or source by computing marginal distributions. It can
be shown that the marginal conditional distribution of the kth column Ck of
the matrix C containing the Regression and mixing coefficients is Multivariate
Normal

p(Ck|C̃k,Σ̃,X,U)∝ |∆̃k|−
1
2 e−

1
2 (Ck−C̃k)

′∆̃−1
k

(Ck−C̃k), (11.7.20)

where ∆̃k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̃.

Significance can be evaluated for a subset of Regression or mixing coeffi-
cients of the kth column of C by determining the marginal distribution of the
subset within Ck which is also Multivariate Normal. With the subset being
a singleton set, significance can be evaluated for a particular coefficient with
the marginal distribution of the scalar coefficient which is

p(Ckj|C̃kj , S̃,Σ̃jj ,X)∝ (∆̃kj)
− 1

2 e
−

(Ckj−C̃kj)
2

2∆̃kj , (11.7.21)

where ∆̃kj is the jth diagonal element of ∆̃k. Note that C̃kj = c̃jk and that

z =
(Ckj− C̃kj)

√

∆̃kj

follows a Normal distribution with a mean of zero and variance of one.

11.8 Interpretation

Although the main focus after having performed a Bayesian Source Sep-
aration is the separated sources, there are others. One focus as in Bayesian
Regression is on the estimate of the Regression coefficient matrix B which de-
fines a “fitted” line. Coefficients are evaluated to determine whether they are
statistically “large” meaning that the associated independent variable con-
tributes to the dependent variable or statistically “small” meaning that the
associated independent variable does not contribute to the dependent variable.
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The coefficient matrix also has the interpretation that if all of the indepen-
dent variables were held fixed except for one uij which if increased to u∗

ij , the
dependent variable xij increases to an amount x∗

ij given by

x∗

ij = βi0 + · · ·+βiju
∗

ij + · · ·+βiquiq. (11.8.1)

Another focus after performing a Bayesian Source Separation is in the esti-
mated mixing coefficients. The mixing coefficients are the amplitudes which
determine the relative contribution of the sources. A particular mixing co-
efficient which is relatively “small” indicates that the corresponding source
does not significantly contribute to the associated observed mixed signal. If
a particular mixing coefficient is relatively “large,” this indicates that the
corresponding source does significantly contribute to the associated observed
mixed signal.

11.9 Discussion

Returning to the cocktail party problem, the matrix of Regression coeffi-
cients B where B = (µ,B⋆) contains the matrix of mixing coefficients B⋆ for
the observed conversation (sources) U , and the population mean µ which is a
vector of the overall background mean level at each microphone.

After having estimated the model parameters, the estimates of the sources
as well as the mixing matrix are now available. The estimated matrix of
sources corresponds to the unobservable signals or conversations emitted from
the mouths of the speakers at the cocktail party. Row i of the estimated source
matrix is the estimate of the unobserved source vector at time i and column j
of the estimated source matrix is the estimate of the unobserved conversation
of speaker j at the party for all n time increments.
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Exercises

1. Specify that B and Λ are independent with the prior distribution for
Regression coefficients B being the vague prior

p(B) ∝ (a constant),

the distribution for the mixing matrix being

p(Λ|Σ) ∝ |A|−
p

2 |Σ|−
m

2 e−
1
2 trΣ−1(Λ−Λ0)A−1(Λ−Λ0)′ ,

and the others as in Equations 11.4.2-11.4.4.

Combine these prior distributions with the likelihood in Equation 11.3.2
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal posterior mean and joint maximum a posteriori
parameter estimates [52, 59].

2. Specify that B and Λ are independent with the prior distribution for
the vector of Regression coefficients β to be the Conjugate prior

p(B|Σ) ∝ |Σ|−
1
2 e−

1
2 trΣ−1(B−B0)H−1(B−B0)′ ,

the distribution for the vector of mixing coefficients λ to be

p(Λ|Σ) ∝ |A|−
p

2 |Σ|−
m

2 e−
1
2 trΣ−1(Λ−Λ0)A−1(Λ−Λ0)′ ,

and the others to be as in Equations 11.4.2–11.4.4.

Combine these prior distributions with the likelihood in Equation 11.3.2
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal mean and joint maximum a posteriori parameter
estimates [57].

3. Specify that B and Λ are independent with the prior distribution for
the overall mean µ being the generalized Conjugate prior

p(β) ∝ |Γ|−
1
2 e−

1
2 (β−β0)′Γ−1(β−β0),

the distribution for the mixing matrix being

p(λ) ∝ |∆|−
1
2 e−

1
2 (λ−λ0)′∆−1(λ−λ0),
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and the others as in Equations 11.4.2–11.4.4.

Combine these prior distributions with the likelihood in Equation 11.3.2
to obtain a posterior distribution. Derive Gibbs sampling and ICM
algorithms for marginal mean and joint maximum a posteriori parameter
estimates [57].

4. Show that by (a) setting the number of observable sources q to be equal
to zero, the resulting model is the Source Separation model of Chapter 10
and (b) by setting the number of unobservable sources m to be equal to
zero, the resulting model is the Regression model of Chapter 8.
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12

FMRI Case Study

12.1 Introduction

Functional magnetic resonance imaging (FMRI) is a designed experiment
[15] which often consists of a patient being given a sequence of stimuli AB
or ABC. Imaging takes place while the patient is responding either passively
or actively to these stimuli. A model is used which views the observed time
courses as being made up of a linear (polynomial) trend, responses (possibly
zero valued) due to the presentation of the stimuli, and other cognitive ac-
tivites that are typically termed random and grouped into the error term. The
association between the observed time course in each voxel and the sequence
of stimuli is determined. Different levels of activation (association) for the
stimuli are colored accordingly. This chapter focuses on block designs but is
readily adapted to event-related designs.

In computing the activation level in a given voxel, a standard method [68]
is to assume known reference functions (independent variable) corresponding
to the responses of the different stimuli, often square waves based on the ex-
perimental sequence (but sometimes sine waves and functions which mimic
the “hemodynamic” response), and then to perform a multiple Regression of
the observed time courses on them, a linear trend, and any other independent
variables. In the multiple Regression, t or F Statistics are computed for the
coefficient associated with the reference function and voxels colored accord-
ingly. But the most important question is: How do we choose the reference
functions? What if they change (possibly nonlinearly) over the course of the
experiment? What if we’re interested in observing an “ah ha” moment? An a
priori fixed reference functions are not capable of showing an “ah ha” moment.

The choice of the reference functions in computing the activation of FMRI
has been somewhat arbitrary and subjective. This chapter uses a coherent
Bayesian statistical approach to determine the underlying responses (or refer-
ence functions) to the presentation of the stimuli and determine statistically
significant activation. In this approach, all the voxels contribute to “telling
us” the underlying responses due to the experimental stimuli. The model
is presented and applied to a simulated FMRI data in which available prior
information is quantified and dependent contributions (components) to the
observed hemodynamic response are determined (separated).
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The utility of the Bayesian Source Separation model for FMRI can be moti-
vated by returning to the classic “cocktail party” problem [27, 28, 52]. At the
cocktail party, there are microphones scattered about that record partygoers
or speakers at a given number of time increments. The observed conversa-
tions consist of mixtures of true unobservable conversations. The objective
is to separate these observed signal vectors into true unobservable source sig-
nal vectors. As previously mentioned, there may be instances where some
sources may be specified to be observable while others are not. This situation
in which some sources are observable while others are unobservable is exactly
the problem we are addressing in FMRI.

The Bayesian Source Separation model decomposes the observed time course
in a voxel into a linear (or polynomial) trend and a linear combination of
unobserved component sequences. The linear (or polynomial) trend corre-
sponds to the observable sources and the (unobservable) sources that make
up the observed time course corresponds to the unobservable speakers. If the
sources were assumed to be known and no priors specified for the remaining
parameters, then the Bayesian approach reduces to the standard model and
activations determined accordingly. In practice we do not know the true un-
derlying hemodynamic time response (source reference) functions due to the
presentation of the experimental stimuli.

The Bayesian Source Separation model assesses a prior distribution for the
response functions as well as for the other parameters, and combines them
with the data to form a joint posterior distribution. From the posterior dis-
tribution, values for the source response functions as well as for the other
parameters are computed and statistically significant activation determined.
The Bayesian Source Separation model allows the source reference functions
to be correlated and can incorporate incidental cognitive processes (blood
flow) such as that due to cardiac activity and respiration. Modeling them
instead of grouping them into the error term could prove useful.

12.2 Model

In describing the model, sometimes it will be parameterized in terms of
rows while other times in terms of columns. Considering the observed time
course in voxel j at time t, the model is

xtj = βj0 +βj1ut1 + · · ·+βjmutq +λj1st1 + · · ·+λjmstm + ǫtj , (12.2.1)

in which the observed signal in voxel j at time t, xtj is made up of an overall
mean βj0 (the intercept); a linear combination of q observed source reference
functions ut1 + · · ·+utq (the time trend and other conative processes) which
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characterize a change in the observed time course over time and includes other
observable source reference functions; in addition to a linear combination of
the m unobserved source reference functions st1, . . . ,stm which characterize
the contributions due to the presentation of the stimuli that make up the
observed time course; and random error ǫtj . Coefficients of the observed
source reference functions are called Regression coefficients and those of the
unobserved source reference functions called mixing coefficients. This model
can be written in terms of vectors as

xtj = β′

jut +λ′

jst + ǫtj , (12.2.2)

where a linear trend is specified to be observable so that ut = (1, t)′, βj =
(βj0,βj1)

′, λj = (λj1, . . . ,λjm)′, and st = (st1, . . . ,stm)′. If any or all of the
sources were assumed to be observable, they could be grouped into the u’s
and their coefficients computed.

Each voxel has its own slope and intercept in addition to a set of mixing
coefficients that do not change over time. In contrast, the unobserved un-
derlying source reference functions are the same for all voxels (with possibly
zero-valued coefficients) at a given time but do change over time.

Now, considering p voxels at time t, the model can be written as

xt = But +Λst + ǫt, (12.2.3)

where xt is a p× 1 vector of observed values at time t, B = (β1, . . . ,βp)
′ =

(B0, . . . ,Bq) is the p× (q +1) matrix of Regression coefficients (slopes and in-
tercepts), and Λ = (λ1, . . . ,λp)

′ = (Λ1, . . . ,Λm) is the p×m dimensional matrix
of mixing coefficients.

Alternatively, considering a given voxel j, at all n time points, the model
can be written as

Xj = Uβj +Sλj +Ej , (12.2.4)

where Xj is an n× 1 vector of observed values for voxel j, U = (en, cn) =
(u1, . . . ,un)′ = (en,U1), en is a n× 1 vector of ones, cn = (1, . . . ,n)′, S =
(s1, . . . ,sn)′ = (S1, . . . ,Sm), Ej is an n× 1 vector of errors, while βj and λj

are as previously defined.
The model which considers all of the voxels at all time points can be written

in terms of matrices as

X = UB′ +SΛ′ +E, (12.2.5)

where X = (x1, . . . ,xn)′ = (X1, . . . ,Xp), E = (ǫ1, . . . , ǫn)′ = (E1, . . . ,Ep) while
B, Λ, U , and S are as before.

Motivated by the central limit theorem, the errors of observation at each
time increment are taken to be Multivariate Normally distributed, as (ǫt|Σ)∼
N(0,Σ); thus the observations are also Normally distributed as
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p(X|U,B,S,Λ,Σ) ∝ |Σ|−
n

2 e−
1
2 trΣ−1(X−UB′

−SΛ′)′(X−UB′
−SΛ′), (12.2.6)

where Σ is the error covariance matrix and the remaining variables are as
previously defined.

By letting Z = (U,S) = (z1, . . . ,zn)′ = (Z0, . . . ,Zm+q) and C = (B,Λ) =
(c1, . . . , cn)′ = (C0, . . . ,Cm+q), the model and likelihood become

X = ZC ′ +E (12.2.7)

and

p(X|U,B,S,Λ,Σ) ∝ |Σ|−
n

2 e−
1
2 trΣ−1(X−ZC′)′(X−ZC′). (12.2.8)

12.3 Priors and Posterior

The method of subjectively assigning source reference functions and per-
forming a multiple Regression is equivalent to assigning degenerate prior dis-
tributions for them and vague priors for the remaining parameters. That is
equivalent to assuming that the probability distribution for the source refer-
ence functions is equal to unity at these assigned values and zero otherwise.

Instead of subjectively choosing the source reference functions as being
fixed, prior information as to their values in the form of prior distributions
are assessed as are priors for any other observable contributing source refer-
ence functions to the observed signal. These prior distributions are combined
with the data and the source reference functions are determined statistically
using information contributed from every voxel. In addition, prior distri-
butions are assessed for the covariance matrix for the (dependent) source
reference functions, the Regression coefficients (slopes and intercepts), the
mixing coefficients, and the covariance matrix for the observation error. The
prior distribution for the source reference functions, the covariance matrix for
source reference functions, the Regression coefficients, the mixing coefficients,
and the error covariance matrix are taken to be Normal, Inverted Wishart,
Normal, Normal, and Inverted Wishart distributed respectively.

The prior distributions for the parameters are the Normal and Inverted
Wishart distributions

p(S|R) ∝ |R|−
n

2 e−
1
2 trR−1(S−S0)′(S−S0), (12.3.1)

p(R) ∝ |R|−
η

2 e−
1
2 trR−1V , (12.3.2)

p(C|Σ) ∝ |D|−
p

2 |Σ|−
(m+q+1)

2 e−
1
2 trΣ−1(C−C0)D−1(C−C0)′ , (12.3.3)

© 2003 by Chapman & Hall/CRC



p(Σ) ∝ |Σ|−
ν

2 e−
1
2 trΣ−1Q, (12.3.4)

where the prior mean for the source component reference functions is S0 =
(s01, . . . ,s0n)′ = (S01, . . . ,S0m) and R is the covariance matrix of the source
reference functions. The hyperparameters S0, V , η, M , C0 = (B0,Λ0), Q, and
ν which uniquely define the remaining prior distributions are to be assessed
(see Appendix B).

Note that both Σ and R are full covariance matrices allowing the observed
mixed signals (the voxels) and also the unobserved source reference functions
to be correlated. The Regression and mixing coefficients are also allowed to
be correlated by specifying a joint distribution for them and not constraining
them to be independent.

Upon using Bayes’ rule the posterior distribution for the unknown para-
meters is written as being proportional to the product of the aforementioned
priors and likelihood

p(B,S,R,Λ,Σ|U,X) ∝ |Σ|−
(n+ν+m+q+1)

2 e−
1
2 trΣ−1G

×|R|−
(n+η)

2 e−
1
2 trR−1[(S−S0)′(S−S0)+V ], (12.3.5)

where

G = (X −ZC ′)′(X −ZC ′)+(C−C0)D
−1(C−C0)

′ +Q. (12.3.6)

This posterior distribution must now be evaluated in order to obtain para-
meter estimates of the source reference functions, the covariance matrix for
the source reference functions, the matrix of mixing coefficients, the matrix
of Regression coefficients, and the error covariance matrix. In addition, sta-
tistically significant activation is determined from the posterior distribution.

12.4 Estimation and Inference

As stated in the estimation section of the Unobservable and Observable
source Separation model, the above posterior distribution cannot be inte-
grated or differentiated analytically to obtain marginal distributions for mar-
ginal estimates or maxima for maximum a posteriori estimates. Marginal
and maximum a posteriori estimates can be obtained via Gibbs sampling and
iterated conditional modes (ICM) algorithms [13, 14, 36, 40, 52, 57]. These
algorithms use the posterior conditional distributions and either generate ran-
dom variates or cycle through their modes.
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The posterior conditional distributions are as in Chapter 11 with Conjugate
prior distributions.

From Chapter 11, the estimates

S̄ =
1

L

L∑

l=1

S̄(l) R̄ =
1

L

L∑

l=1

R̄(l) C̄ =
1

L

L∑

l=1

C̄(l) Σ̄ =
1

L

L∑

l=1

Σ̄(l)

are sampling-based marginal posterior mean estimates of the parameters which
converge almost surely to their population values.

Interval estimates can also be obtained by computing marginal covariance
matrices from the sample variates. The marginal covariance for the matrix of
Regression/mixing coefficients is

var(c|X,U) =
1

L

L∑

l=1

c̄(l)c̄
′

(l)− c̄c̄′

= ∆̄,

where c = vec(C), c̄ = vec(C̄), and c̄(l) = vec(C̄(l)).
The covariance matrices of the other parameters follow similarly. With a

specification of Normality for the marginal posterior distribution of the mixing
coefficients, their distribution is

p(c|X,U) ∝ |∆̄|−
1
2 e−

1
2 (c−c̄)∆̄−1(c−c̄)′ , (12.4.1)

where c̄ and ∆̄ are as previously defined.
The marginal posterior distribution of the mixing coefficients is

p(λ|X,U) ∝ |Ῡ|−
1
2 e−

1
2 (λ−λ̄)Ῡ−1(λ−λ̄)′ , (12.4.2)

where λ̄ = vec(Λ̄) and Ῡ is the lower right pm×pm (covariance) submatrix in
∆̄.

From Chapter 11, the ICM estimates found by cycling through the modes

C̃ = [X ′Z̃ +C0D
−1](D−1 + Z̃ ′Z̃)−1,

Σ̃ = [(X − Z̃C̃ ′)′(X − Z̃C̃ ′)+(C̃−C0)D
−1(C̃−C0)

′

+ Q]/(n+ν +m+ q +1),

R̃ =
(S̃−S0)

′(S̃−S0)+V

n+η
,

S̃ = (X −UB̃′)Σ̃−1Λ̃(R̃−1 +Λ̃′Σ̃−1Λ̃)−1

are maximum a posteriori estimates via the ICM estimation procedure [36, 40].
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Conditional modal intervals may be computed by using the conditional dis-
tribution for a particular parameter given the modal values of the others. The
posterior conditional distribution of the matrix of Regression/mixing coeffi-
cients C given the modal values of the other parameters and the data is

p(C|C̃, S̃, R̃,Σ̃,U,X) ∝ |(D−1 + Z̃ ′Z̃)|
p

2 |Σ̃|−
m

2

×e−
1
2 trΣ̃−1(C−C̃)(D−1+Z̃′Z̃)(C−C̃)′ , (12.4.3)

which may be also written in terms of vectors as

p(c|c̃, S̃, R̃,Σ̃,U,X) ∝ |(D−1 + Z̃ ′Z̃)−1⊗ Σ̃|−
1
2

×e−
1
2 (c−c̃)′[(D−1+Z̃′Z̃)−1

⊗Σ̃]−1(c−c̃). (12.4.4)

The marginal posterior conditional distribution of the mixing coefficients
λ = vec(Λ) which is the last mp rows of c written in terms of vectors as

p(λ|λ̃, S̃, R̃,Σ̃,U,X) ∝ |Γ̃⊗ Σ̃|−
1
2 e−

1
2 (λ−λ̃)′(Γ̃⊗Σ̃)−1(λ−λ̃) (12.4.5)

and in terms of the matrix Λ is

p(Λ|Λ̃, S̃, R̃,Σ̃,U,X) ∝ |Γ̃|−
p

2 |Σ̃|−
m

2 e−
1
2 trΣ̃−1(Λ−Λ̃)Γ̃−1(Λ−Λ̃)′ , (12.4.6)

where Γ̃ is the lower right m×m portion of (D−1 + Z̃ ′Z̃)−1.
After determining the test statistics, a threshold or significance level is set

and a one to one color mapping is performed. The image of the colored voxels
is superimposed onto an anatomical image.

12.5 Simulated FMRI Experiment

For an example, data were generated to mimic a scaled down version of a
real FMRI experiment. The simulated experiment was designed to have three
stimuli, A, B, and C, but this method is readily adapted to any number of
stimuli and to event related designs. Stimuli A, B, and C were 22, 10, and
32 seconds in length respectively, and eight trials were performed for a total
of 512 seconds as illustrated in Figure 12.1.

A single trial is focused upon in Figure 12.2 which shows stimulus A lasting
22 seconds, stimulus B lasting 10 seconds, and stimulus C lasting 32 sec-
onds. As in the real FMRI experiment in the next section, observations are
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FIGURE 12.1

Experimental design: white task A, gray task B, and black task C in seconds.

16 32 48 64 80 96 112 128

taken every 4 seconds so that there are n = 128 in each voxel. The simulated
functional data are created with true source reference functions. These true
reference functions, one trial of which is given in Figure 12.3, both start at −1
when the respective stimulus is first presented, increasing to +1 just as the
first quarter of a sinusoid with a period of 16 seconds and amplitude of 2. The
reference functions are at +1 when each of the respective stimuli are removed
and decrease to −1 just as the third quarter of a sinusoid with a period of 16
seconds and amplitude of 2. This sinusoidal increase and decrease take 4 sec-
onds and is assumed to simulate hemodynamic responses to the presentation
and removal of each of the stimuli.

FIGURE 12.2

One trial: +1 when presented, -1 when not presented.

A simulated anatomical 4×4 image is determined as in Figure 12.4. Statis-
tically significant activation is to be superimposed onto the anatomical image.

The voxels are numbered from 1 to 16 starting from the top left, proceeding
across and then down. The functional data for these 16 voxels was created
according to the Source Separation model

xtj = β′
Tj uTt + λ′

Tj sTt + ǫtj ,

(1×1) (1×2) (2×1) + (1×3) (3×1) (1×1)
(12.5.1)

where j denotes the voxel, t denotes the time increment, ǫtj denotes the ran-
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FIGURE 12.3

True source reference functions.
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dom error term, and the T subscript denotes that these are the true values. In
each voxel, the simulated observed data at each time increment was generated
according to the above model with random error added to each of the parame-
ters as follows. The random errors were generated according to ǫtj ∼N(0,10).
Noise was added to the sources reference functions and the mixing coefficients
according to st ∼ N(sTt,0.2I2), λj ∼ N(λTj ,0.25I2), and βj ∼ N(βTj ,0.1I2)
where I2 is the 2×2 identity matrix. The true sources were sampled every 4
seconds from those in Figure 12.3.

TABLE 12.1

True Regression and mixing coefficients.
BT 1 2 3 4 ΛT 1 2 3 4

1 .2, .5 .7, .1 .4, .9 .3, .2 1 15, 5 2, 1 1, 15 2, 15
2 .9, .6 .4, .8 .5, .3 .2, .7 2 1, 2 15, 1 -2, 1 2, 15
3 .9, .1 .1, .3 .5, .5 .1, .6 3 1, 15 -1, 2 15, 1 2, 2
4 .6, .4 .4, .2 .4, .5 .8, .9 4 1, 15 2, 15 1, 2 15, 1

The true slopes and intercepts for the voxels along with the true source
amplitudes (mixing coefficients) are displayed in their voxels location as in
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FIGURE 12.4

Simulated anatomical image.
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Table 12.1.

All hyperparameters were assessed according to the methods in Appendix B
and an empirical Bayes, approach was taken that uses the current data as the
prior data. For presentation purposes, all values have been rounded to either
one or two digits.

For the prior means of the source reference functions, square functions are
assessed with unit amplitude. Note that observations are taken at 20 and 24
seconds while the point where stimulus A ends and stimulus B begins is at
22 seconds. The prior means for the source reference function associated with
stimulus A is at +1 until 20 seconds (observation 5), 0 at 24 seconds (obser-
vation 6) and then at −1 thereafter; and the one associated with stimulus B
is at −1 until 20 seconds (observation 5), 0 at 24 seconds (observation 6), and
then +1 thereafter. Both are at −1 between 32 seconds and 64 seconds. The
prior, Gibbs, and ICM sources are displayed in Figure 12.5.

The assessed prior values for D were as in Table 12.2 while Q was as in
Table 12.6 and ν = n. The assessed values for η and v0 were η = 6 and
v0 = 0.13.

The Regression and mixing coefficients are as in Tables 12.3 and 12.4. The
top set of values are the prior means, the middle set are the Gibbs sampling
estimates, and the bottom set are the ICM estimates.

© 2003 by Chapman & Hall/CRC



FIGURE 12.5

Prior −−, Gibbs estimated −−, and ICM estimated ·· reference functions for
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(b) source two.

TABLE 12.2

Covariance hyperparameter for coefficients.
D 1 2 3 4
1 0.0405 -0.0004 0.0036 0.0124
2 0.0000 0.0000 0.0000
3 0.0100 0.0033
4 0.0179

TABLE 12.3

Prior, Gibbs, and ICM Regression coefficients.
B0 1 2 3 4

1 -3.95, 0.50 0.95, 0.04 1.81, 0.83 -2.20, 0.23
2 3.56, 0.58 -4.09, 0.83 3.99, 0.26 1.90, 0.68
3 2.50, 0.08 2.00, 0.26 -6.38, 0.55 1.81, 0.58
4 2.31, 0.39 3.59, 0.17 -3.68, 0.57 -3.46, 0.89

B̄ 1 2 3 4
1 -3.93, 0.50 0.95, 0.04 1.81, 0.83 -2.19, 0.22
2 3.58, 0.57 -4.08, 0.83 3.99, 0.26 1.90, 0.68
3 2.52, 0.08 2.00, 0.26 -6.40, 0.55 1.82, 0.58
4 2.31, 0.39 3.60, 0.17 -3.68, 0.57 -3.45, 0.89

B̃ 1 2 3 4
1 -3.95, 0.50 0.95, 0.04 1.82, 0.83 -2.19, 0.22
2 3.57, 0.57 -4.08, 0.83 3.98, 0.26 1.91, 0.68
3 2.51, 0.08 2.00, 0.26 -6.38, 0.55 1.81, 0.58
4 2.32, 0.38 3.60, 0.17 -3.67, 0.57 -3.46, 0.89
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TABLE 12.4

Prior, Gibbs, and ICM mixing coefficients.
Λ0 1 2 3 4
1 10.32, -1.63 0.48, 1.28 -2.28, 12.28 0.40, 12.61
2 2.65, 3.35 12.69, -0.07 -1.10, 2.09 0.52, 12.75
3 -1.45, 13.50 -1.47, 1.24 11.53, -1.84 1.82, 2.69
4 -0.83, 14.27 1.58, 15.18 1.39, 0.71 12.13, 0.37

Λ̄ 1 2 3 4
1 10.35, -1.62 0.48, 1.29 -2.28, 12.30 0.39, 12.60
2 2.66, 3.36 12.71, -0.07 -1.10, 2.10 0.54, 12.78
3 -1.45, 13.53 -1.47, 1.24 11.55, -1.85 1.82, 2.70
4 -0.83, 14.29 1.59, 15.21 1.39, 0.70 12.15, 0.397

Λ̃ 1 2 3 4
1 10.32, -1.63 0.48, 1.29 -2.28, 12.29 0.40, 12.62
2 2.65, 3.35 12.70, -0.07 -1.10, 2.09 0.53, 12.76
3 -1.45, 13.51 -1.47, 1.24 11.54, -1.84 1.82, 2.69
4 -0.83, 14.28 1.58, 15.52 1.39, 0.71 12.14, 0.38

The (left) prior mode along with the Bayesian (center) Gibbs sampling
marginal and Bayesian (right) ICM maximum a posteriori source covariance
matrices for the source reference functions are displayed in Table 12.5.

TABLE 12.5

Prior, Gibbs, and ICM source covariances.

V/η 1 2 R̄ 1 2 R̃ 1 2
1 0.02 0 1 0.04 0.00 1 0.35 0.05
2 0.02 2 0.03 2 0.30

The prior mode along with the Bayesian Gibbs sampling marginal and
Bayesian ICM maximum a posteriori error covariance matrices are displayed
in Tables 12.6-12.8.
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TABLE 12.6

Error covariance prior mode.
Q
ν

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 159.3 25.2 12.7 29.0 3.1 35.8 -11.2 19.0 15.6 10.2 45.7 66.1 13.8 6.1 -0.7 26.6

2 148.8 -.1 13.7 15.8 5.3 -7.3 8.9 3.8 -9.7 10.4 3.4 -10.9 7.8 -9.3 25.9

3 193.4 44.3 -18.3 29.1 12.2 23.9 18.9 7.4 29.8 32.9 21.2 18.9 -30.6 -9.8

4 174.7 -.7 3.5 -6.4 31.6 30.2 15.5 35.3 19.8 23.6 9.7 8.4 2.4

5 135.7 -23.8 1.9 8.3 23.2 -3.8 -2.2 -3.0 2.5 9.7 29.2 16.0

6 186.3 19.7 12.9 5.7 1.2 60.9 17.4 -30.0 .0 -22.6 19.4

7 105.7 -1.9 5.4 15.6 5.5 -11.3 .5 2.7 -9.9 -13.4

8 126.9 14.8 7.8 11.4 37.3 32.9 4.6 17.7 20.6

9 192.4 17.7 0.5 26.8 45.9 37.7 -15.0 -3.0

10 145.4 20.7 6.5 3.4 23.2 32.7 -2.1

11 188.3 16.8 1.7 14.0 11.9 7.3

12 170.8 14.3 -10.6 -3.1 -8.6

13 193.5 45.4 37.2 -4.7

14 208.2 7.2 14.1

15 145.9 5.1

16 191.2
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TABLE 12.7

Gibbs estimates of covariances.

Ψ̄ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 158.6 25.3 13.3 29.4 2.8 34.4 -11.1 19.1 16.2 10.4 44.3 66.1 14.1 6.12 -0.9 25.2

2 149.3 -0.3 13.6 15.9 5.2 -7.3 8.72 3.7 -9.7 10.4 3.4 -11.1 7.6 -9.3 26.0

3 192.5 42.7 -18.8 29.6 12.1 22.3 17.1 7.23 30.4 32.7 19.3 16.9 -30.9 -9.6

4 173.5 -1.1 3.5 -6.7 29.9 28.5 15.4 35.6 19.6 21.6 7.6 8.34 2.3

5 136.0 -24.3 1.9 7.8 22.8 -3.8 -2.5 -3.2 2.0 9.1 29.3 15.78

6 185.0 20.0 12.8 6.0 1.3 59.3 17.2 -30.0 -0.3 -23.0 17.6

7 106.0 -2.1 5.0 15.6 5.7 -11.3 0.3 2.4 -9.9 -13.2

8 125.5 13.1 7.6 11.4 37.0 31.0 2.4 17.6 20.4

9 191.2 17.5 1.0 26.6 44.0 35.5 -15.2 -2.8

10 145.8 20.9 6.5 3.34 23.1 32.9 -1.9

11 187.3 16.6 2.0 14.2 11.7 5.7

12 171.3 14.0 -11.2 -3.1 -9.0

13 191.9 43.1 37.24 -4.7

14 206.4 7.0 13.7

15 146.5 4.8

16 190.2
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TABLE 12.8

ICM estimates of covariances.

Ψ̃ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 157.4 24.9 12.6 28.7 3.0 35.3 -11.1 18.8 15.5 10.1 45.0 65.3 13.6 6.1 -0.7 26.1

2 147.0 -0.2 13.6 15.6 5.2 -7.2 8.8 3.7 -9.6 10.3 3.4 -10.8 7.7 -9.2 25.6

3 191.0 43.6 -18.1 28.8 12.1 23.5 18.5 7.3 29.5 32.5 20.8 18.5 -30.3 -9.7

4 172.5 -0.7 3.5 -6.4 31.1 29.7 15.3 34.9 19.5 23.1 9.4 8.3 2.3

5 134.2 -23.5 1.9 8.1 22.9 -3.8 -2.2 -3.0 2.4 9.6 28.9 15.8

6 184.0 19.5 12.8 5.6 1.2 60.1 17.2 -29.6 -0.0 -22.4 19.1

7 104.5 -1.9 5.3 15.4 5.4 -11.1 0.5 2.6 -9.8 -13.3

8 125.3 14.4 7.7 11.3 36.8 32.3 4.3 17.5 20.3

9 190.0 17.5 0.6 26.4 45.2 37.1 -14.9 -3.0

10 143.7 20.4 6.4 3.4 22.9 32.3 -2.0

11 186.0 16.6 1.7 13.9 11.7 7.1

12 168.8 14.1 -10.5 -3.0 -8.6

13 191.0 44.7 36.8 -4.6

14 205.6 7.1 13.9

15 144.2 5.0

16 188.8
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Activation as shown in Table 12.9 was determined using (top) Regression
with the prior source reference functions in addition to using (middle) Gibbs
sampling and (bottom) ICM estimation methods.

TABLE 12.9

Prior, Gibbs, and ICM coefficient statistics.
tReg 1 2 3 4

1 8.04, -0.95 0.38, 0.77 -1.61, 6.49 0.30, 7.02
2 2.24, 2.11 9.14, -0.04 -1.06, 1.50 0.46, 8.33
3 -1.03, 7.16 -1.20, 0.76 8.26, -0.99 1.37, 1.51
4 -0.59, 7.54 1.08, 7.74 1.13, 0.43 8.63, 0.20

zGibbs 1 2 3 4
1 11.46, -1.36 0.55, 1.12 -2.34, 9.26 0.43, 10.08
2 3.23, 3.04 13.11, -0.05 -1.52, 2.16 0.67, 11.94
3 -1.47, 10.35 -1.73, 1.09 11.89, -1.42 1.97, 2.20
4 -0.84, 10.78 1.56, 11.15 1.62, 0.61 12.34, 0.29

zICM 1 2 3 4
1 11.64, -1.37 0.55, 1.12 -2.33, 9.40 0.43, 10.16
2 3.23, 3.06 13.22, -0.05 -1.53, 2.16 0.67, 12.06
3 -1.48, 10.36 -1.74, 1.10 11.95, -1.42 1.98, 2.190
4 -0.85, 10.92 1.56, 11.20 1.63, 0.62 12.48, 0.29

The Regression activations follow Scalar Student t-distributions with n−
m−q−1 = 124 degrees of freedom which is negligibly different than the corre-
sponding Normal distributions. As by design, positive activations for source
reference function 1 are along the diagonal from upper left to lower right and
those for source reference function 2 are on the upper right and lower left. A
threshold was set at 5 and illustrated in Figure 12.6.

The same threshold is used for the Gibbs sampling and ICM activations.
For Gibbs sampling, all diagonal activations in Figure 12.7 are present and
more pronounced than those by the standard Regression method. The acti-
vation along the diagonal of the image increased by an average of 3.62 from
the standard Regression method while those for the corners increased by an
average of 3.13. For the ICM activations in Figure 12.8, all activations are
present and more pronounced than those by the standard Regression method.
The activation along the diagonal of the image increased by an average of 5.08
from the standard Regression method while those for the corners increased
by an average of 4.03.

These functional activations are to be superimposed onto the previously
shown anatomical image. In this example, the Bayesian statistical Source
Separation model outperformed the common method of multiple Regression
for both estimation methods and ICM was the best.

© 2003 by Chapman & Hall/CRC



FIGURE 12.6

Activations thresholded at 5 for prior reference functions.
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FIGURE 12.7

Activations thresholded at 5 for Bayesian Gibbs reference functions.
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FIGURE 12.8

Activations thresholded at 5 Bayesian ICM reference functions.

−15

−10

−5

0

5

10

15

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

11.5

13.1

11.9

12.3

(a) one

−15

−10

−5

0

5

10

15

0.5 1 1.5 2 2.5 3 3.5 4 4.5

0.5

1

1.5

2

2.5

3

3.5

4

4.5

9.3

10.1 11.9

10.3 10.8

11.2

(b) two

© 2003 by Chapman & Hall/CRC



It can be seen that the Bayesian method of determining the reference func-
tion for computation of voxel activation performed well especially with only
sixteen voxels.

12.6 Real FMRI Experiment

Due to the fact that the number of voxels is large and that the ICM and
Gibbs sampling procedures requires the inversion of the voxels large covari-
ance matrix and additionally the Gibbs sampling procedure requires a matrix
factorization, spatial independence is assumed for computational simplicity.
The Gibbs sampling procedure is also very computationally intensive and
since the ICM procedure produced nearly identical simulation results, only
the ICM procedure is implemented. The software package AFNI [7] is used
to display the results.

The current FMRI data [59] provides the motivation for using Bayesian
Source Separation to determine the true underling unobserved source refer-
ence functions. These reference functions are the underlying responses due to
the presentation of the experimental stimuli. The data were collected from
an experiment in which a subject was given eight trials of stimuli A, B, and
C. The timing and trials were exactly the same as in the simulated example.
Experimental task A was an implementation of a common experimental eco-
nomic method for determining participants’ valuation of objects in the setting
of an auction [4]. The participant was given an item and told that the item
can be kept or sold. If the item is kept, the participant retains ownership at
the end of the experiment and is paid the items stated value.

Task A consisted of the participant reading text from a screen, determin-
ing a number, and entering the number using button response unit all in 22
seconds. Task B consisted of the subject receiving feedback displayed on a
screen for 10 seconds. Task C was a control stimulus which consisted of a
blank screen for 32 seconds.

For the functional data, 24 axial slices of size 64× 64 were taken. Each
voxel has dimensions of 3× 3× 5 mm. Scanning was performed using a 1.5
Tesla Siemens Magneton with TE = 40 ms. Observations were taken every
4 seconds so that there are 128 in each voxel. All hyperparameters were as-
sessed according to the Regression technique in Appendix A with an empirical
Bayes’ approach. For the prior mean, a square function was assessed with unit
amplitude as discussed in the simulation example which mimics the experi-
ment. Due to space limitations, the prior and posterior parameter values for
the 98,304 voxel’s have been omitted.

In Figure 12.9 are the prior square and ICM Bayesian source reference func-
tions corresponding to the (a) first and (b) second source reference functions.
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FIGURE 12.9

Prior −· and Bayesian ICM −− reference functions.
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The activations corresponding to the first prior square reference function
was computed and displayed in Figure 12.10 (a). It is evident that the acti-
vation in Figure 12.10 (a) is buried in the noise. The threshold is set at 1.885
and if raised, the activation begins to disappear while noise remains.

The activations corresponding to the first Bayesian ICM reference function
was computed and displayed in Figure 12.10 (b). It is evident that the acti-
vation in Figure 12.10 (b) is larger and is no longer buried in the noise. The
activations stand out above the noise. The threshold is set at 12.63 and if
raised, the activation begins to disappear.

The activations corresponding to the second prior square reference function
was computed and displayed in Figure 12.11(a). It is evident that the activa-
tion in Figure 12.11 (a) is buried in the noise. The threshold is set at 3.205
and if raised, the activation begins to disappear while noise remains.

The activations corresponding to the second ICM Bayesian square reference
function was computed and displayed in Figure 12.11 (b). It is evident that
the activation in Figure 12.11 (b) is much larger and is no longer buried in
the noise. Further, the activation is more localized. The activations stand
out above the noise. The threshold is set at 20.58 and if raised, the activation
begins to disappear.

The activations that were computed using the underlying reference func-
tions from Bayesian Source Separation were much larger and more distinct
than those using the prior square reference functions.
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FIGURE 12.10

Activations for first reference functions.

(a) prior thresholded at 1.885 (b) Bayesian thresholded at 12.63

FIGURE 12.11

Activations for second reference functions.

(a) prior thresholded at 3.205 (b) Bayesian thresholded at 20.58

12.7 FMRI Conclusion

In computing the activations in FMRI, the choice of the source reference
function is subjective. It has been shown that the reference function need
not be assigned but may be determined statistically using Bayesian methods.
A dynamic (nonstatic or fixed) source reference function can be determined
for each FMRI participant. It was further found in the simulation example,
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that when computing activations, the iterated conditional modes and Gibbs
sampling algorithms performed similarly.
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Part III

Generalizations
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13

Delayed Sources and Dynamic Coefficients

13.1 Introduction

In Part II, the mixing of the sources was specified to be instantaneous and
the Regression/mixing coefficients were specified to be constant over time.
In this Chapter, the sources are allowed to be delayed through the Regres-
sion/mixing coefficients and the Regression/mixing coefficients are allowed
to change over time. Delayed sources and nonconstant or dynamic mixing
coefficients take into account the facts that speakers at a cocktail party are
a physical distance from the microphones, thus the sound from them taking
time to travel to the various microphones at different distances, and that the
speakers at the party may be moving around.

13.2 Model

The observation and source vectors xi and si are stacked into single vectors
x and s which are np× 1 and nm× 1 respectively. The Source Separation
model is written

(x|B,u,L,s) = B u + L s + ǫ,
(np×1) [np×n(q +1)] [n(q +1)×1] (np×nm) (nm×1) (np×1)

(13.2.1)

where the observation vector x, the observed source vector u, the unobserved
source vector s, and the error vector ǫ given by

x =







x1

...
xn






, u =







u1

...
un






, s =







s1

...
sn






, ǫ =







ǫ1
...

ǫn






, (13.2.2)

have been defined. The matrices B and L are generalized Regression and
mixing coefficients. The vectors x, u, s, and ǫ contain each of the observation,
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observed source, unobserved source, and error vectors stacked in time order
into single vectors.

Taking a closer look at the general mixing matrix L (similarly for B), it
is evident that it can be partitioned into p×m blocks and has the lower
triangular form

L =

















L11 0 · · · 0
L21 L22

. . .
...

... 0
Ln1 · · · Lnn

















, (13.2.3)

where the blocks above the diagonal are p×m zero matrices and each Lii′ are
p×m mixing matrices. Only blocks below the diagonal are nonzero because
only current and past sources that are delayed can enter into the mixing and
not future sources. Upon multiplying the observed source vector u by the
generalized Regression coefficient matrix B and the observed source vector s
by the generalized mixing coefficient matrix L or upon mixing the observed
and unobserved sources, the observed mixed signal vectors are

xi =
∑i

i′=1 (Bii′ui′ +Lii′si′)+ ǫi. (13.2.4)

The matrix Lii is the instantaneous mixing matrix at time i and the ma-
trix Li,(i−d) is the mixing matrix at time i for signals delayed d time units.
The same is true for the generalized Regression coefficient matrix B for the
observed sources.

For example, assume that there are m = 2 unobserved speakers’ and p = 1
microphones. Let Ds be a matrix of time delays for the unobservable sources
where djk is element (j,k) indicating the delay of unobserved source k to
microphone j. The general mixing matrix L for the case where the delays
are known to be described by Ds = (0,2) and the mixing process for the
unobserved sources which is allowed to vary over time is

L =























L11 0 0 · · · 0
0 L22 0

L31 0 L33 0
...

0 L42 0 L44 0
...

0 0 L53 0 L55 0
...

. . .























, (13.2.5)

where at time increment i, Lii = (lii,0) indicating that the signal from speaker
1 is instantaneously mixed and the signal from speaker 2 has not yet reached
the microphone (thus not mixed), Li,(i−1) = (0,0) indicating that neither of
the speakers signals are delayed 1 time increment, and Li,(i−2) = (0, li,(i−2))
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indicating that the signal from speaker 2 takes 2 time units to enter the mixing
process, Lii′ = 0 for (i− i′) > 2. The same procedure for delayed mixing of
observed sources is true for the generalized Regression coefficient matrix B.

The above very general delayed nonconstant mixing model can be divided
into three general cases. The first is a delayed constant mixing process, the
second is a delayed nonconstant mixing process, and the third is an instanta-
neous nonconstant mixing process.

13.3 Delayed Constant Mixing

It is certainly reasonable that in many instances a delayed nonconstant
mixing process can be well approximated by a delayed constant one over
“short” periods of time. The mixing matrix L (similarly for B) for the delayed
constant mixing process is given by the matrix with n row and column blocks

L =























L0 0 0 · · · 0
L1 L0 0

L2 L1 L0 0
...

L3 L2 L1 L0 0
...

L4 L3 L2 L1 L0 0
...

. . .























, (13.3.1)

where Ld, d = 0,1,2, ...,n−1 describes the delayed mixing process at d time
increments. The observed mixed vectors xi at time i are represented as linear
combinations of the observed and unobserved source vectors ui′ and si′ mul-
tiplied by the appropriate Regression and mixing coefficient matrices Bi′−1

and Li′−1 (where i′ ranges from 1 to i) plus a random error vector ǫi which
is given by

xi =
∑i

i′=1(Bi′−1 ui′ + Li′−1 si′) + ǫi. (13.3.2)

In the above example with (m = 2) two unobserved speakers and (p = 1)
one microphone, the generalized mixing matrix L for the unobservabe sources
with a delayed constant mixing process is given by
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L =























L0 0 0 · · · 0
L1 L0 0

L2 L1 L0 0
...

0 L2 L1 L0 0
...

0 0 L2 L1 L0 0
...

. . .























. (13.3.3)

Note that at any given time increment i, a given source sik enters into
the mixing through only one mixing coefficient lk in Lk, k = 1, . . . ,m. For the
above example with p = 1 microphone and m = 2 speakers, the general mixing
matrix L has the form

L =























(l1,0) 0 0 · · · 0
(0,0) (l1,0) 0

(0, l2) (0,0) (l1,0) 0
...

0 (0, l2) (0,0) (l1,0) 0
...

0 0 (0, l2) (0,0) (l1,0) 0
...

. . .























, (13.3.4)

(similarly for B) and the contribution of the unobserved source signals to the
observed mixed signals is

Ls =

























(l1, l2)(s1,1,s1−2,2)
′

(l1, l2)(s2,1,s2−2,2)
′

(l1, l2)(s3,1,s3−2,2)
′

...
(l1, l2)(si,1,si−2,2)

′

...
(l1, l2)(sn,1,sn−2,2)

′

























, (13.3.5)

where s1−2,2 and s2−2,2 are zero. With general delays, the elements are

(l1, l2)
′(si−d11,1,si−d12,2)

′, (13.3.6)

where djk is the delay of source k to microphone j.
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13.4 Delayed Nonconstant Mixing

The mixing matrix L for the delayed nonconstant mixing process can be
divided a part that contains the mixing coefficients In ⊗Λ and a part that
contains the delays Ps as L= (In⊗Λ)Ps. The part that contains the delays Ps

is a permutation-like matrix. For the example, the permutation-like matrix
Ps

Ps =





























{

1 0 0 0 0 0 0 0 0 0 · 0
0 0 0 0 0 0 0 0 0 0 · 0

{

0 0 1 0 0 0 0 0 0 0 · 0
0 0 0 0 0 0 0 0 0 0 · 0

{

0 0 0 0 1 0 0 0 0 0 · 0
0 1 0 0 0 0 0 0 0 0 · 0

{

0 0 0 0 0 0 1 0 0 0 · 0
0 0 0 1 0 0 0 0 0 0 · 0
· · · · · · · · · · · ·





























, (13.4.1)

where for the ith set of m rows, the rows are shifted (from the identity matrix)
kdk columns to the left, where k is the row number, m is the number of sources,
and dk is the delay for the kth source, so that

Pss =































s11

0
s21

0
s31

s32

s41

s42

...































. (13.4.2)

This can easily be generalized to p microphones and m speakers.
With the generalized mixing coefficient matrix L written as (In⊗Λ)Ps and

the generalized Regression coefficient matrix B written as (In ⊗B)Pu, the
linear synthesis model becomes

(x|B,u,Λ,s) = (In ⊗B) Puu + (In ⊗Λ) Pss + ǫ,
(np×1) [np×n(q +1)] [n(q +1)×1] (np×nm) (nm×1) (np×1)

(13.4.3)
where Pu and Ps are [n(q+1)×n(q+1)] and (nm×nm) matrices respectively.

If the delays were known or specified to be well explained by a given constant
delayed process, then the delayed constant mixing process is the instantaneous
constant one where Pss is generically replaced by s, Puu by u, and written as
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(x|B,u,Λ,s) = (In ⊗B) u + (In ⊗Λ) s + ǫ.
(np×1) [np×n(q +1)] [n(q +1)×1] (np×nm) (nm×1) (np×1)

(13.4.4)

Then the model can be written in the matrix formulation

(X|U,B,Λ,S) = U B′ + S Λ′ + E,
(n×p) [n× (q +1)] [(q +1)×p] (n×m) (m×p) (n×p)

(13.4.5)

and also the combined formulation

(X|C,Z) = Z C ′ + E,
(n×p) n× (m+ q +1) (m+ q +1)×p (n×p)

(13.4.6)

which is the previously model described from Part II.

The matrix of sources for the previous example with two sources and one
microphone is

S =















s11 0
s21 0
s31 s32

s41 s42

...
...















. (13.4.7)

For this model, the parameters are estimated as before; then the columns
of U and S are shifted down by the appropriate amounts. If the delays were
unknown, an instantaneous constant mixing process could be assumed. Then
the estimates of the sources s would actually be Pss and similarly for the
mixing process for Puu, observed sources u. The mixing process is estimated
correctly except for shifts in the columns of U and S.

A model could constrain the appropriate number of rows in a column to
be zero and shift the columns, but this is not necessary with the current
robust model. Shifts are not necessary because we incorporate our prior be-
liefs regarding the values of the sources and the shifts by assessing a prior
mean for the sources S0 with the appropriate number of zeros in each column
representing our prior belief regarding the sources delays.

It has been shown that the delayed constant mixing process can be trans-
formed into the instantaneous constant one. The likelihood, prior distribu-
tions, joint posterior distribution, and estimation methods are as in Chap-
ter 11.
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13.5 Instantaneous Nonconstant Mixing

A delayed nonconstant mixing process can sometimes be approximated
by an instantaneous constant one due to the length of time it takes for a
given source component (signal from a speaker) to be observed (recorded
by the microphone). Let r be the distance from a source (speaker) to an
observing device (microphone), v the speed that the source signal travels
in the medium (air for instance), and t be the number of time increments
per second (sampling rate). Then, the distance a signal can be from the
recorder before there is a delay of 1 time increment is v/t. For example, if the
microphone sampled at 100 times per second with the speed of sound v = 343
m/s, then the speaker can be 3.43 m or 11.25 ft from the source before there
is a delay of 1 time increment.

The generalized mixing matrix L (similarly for the generalized Regression
coefficient matrix B) for the instantaneous nonconstant mixing process is

L =























L1 0 0 · · · 0
0 L2 0

0 0 L3 0
...

0 0 0 L4 0
...

0 0 0 0 L5 0
...

. . .























, (13.5.1)

which yields observed mixed signals xi at time increment i of the form

xi = Biui +Lisi + ǫi (13.5.2)

xi = Cizi + ǫi, (13.5.3)

where Ci = (Bi,Li), zi = (u′
i,s

′
i)

′. For the usual instantaneous constant mixing
process of the unobserved and observed Source Separation model, described
in Part II, B = Bi and Λ = Li for all i.

The general Source Separation model describing the instantaneous noncon-
stant mixing process for all observations at all time increments is

(x|c,z) = C z + ǫ,
(np×1) [np×n(m+ q +1)] [n(m+ q +1)×1] (np×1)

(13.5.4)

where the general Regression/mixing coefficient matrix C is given by
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C =























C1 0 0 · · · 0
0 C2 0

0 0 C3 0
...

0 0 0 C4 0
...

0 0 0 0 C5 0
...

. . .























, (13.5.5)

Ci = (Bi,Li), z = (z1, . . . ,zn), and the remaining variables are as previously
defined in this Chapter.

13.6 Likelihood

As in Part II, the observation vectors errors ǫi are specified to be indepen-
dent and Multivariate Normally distributed with mean zero and covariance
matrix Σ. The Multivariate Normal distributional likelihood for the instan-
taneous nonconstant model is given by

p(x|C,z,Σ) ∝ |In ⊗Σ|−
1
2 e−

1
2 (x−Cz)′(In⊗Σ)−1(x−Cz), (13.6.1)

which can be written by performing some algebra in the exponent and using
a determinant property of Kroneker products as

p(x|C,z,Σ) ∝ |Σ|−
n
2 e−

1
2 trΣ−1∑n

i=1(xi−Cizi)(xi−Cizi)
′

, (13.6.2)

where the variables are as previously defined.

To quantify available prior knowledge regarding our prior beliefs about the
model parameter values, both Conjugate and generalized Conjugate prior dis-
tributions are utilized.

13.7 Conjugate Priors and Posterior

When quantifying available prior information regarding the parameters of
interest, Conjugate prior distributions are specified as described in Chapter 4.
The joint prior distribution for the model parameters which are the matrix of
Regression/mixing coefficients C, the matrix of sources S, the source covari-
ance matrix R, and the error covariance matrix Σ is given by
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p(S,R,C,Σ) = p(S|R)p(R)p(C|Σ)p(Σ), (13.7.1)

where the prior distribution for the model parameters from the Conjugate
procedure outlined in Chapter 4 are given by

p(S|R) ∝ |R|−
n
2 e−

1
2 tr(S−S0)R−1(S−S0)′ , (13.7.2)

p(Σ) ∝ |Σ|−
ν
2 e−

1
2 trΣ−1Q, (13.7.3)

p(R) ∝ |R|−
η
2 e−

1
2 trR−1V , (13.7.4)

p(C|Σ) ∝ |Σ|−
n(m+q+1)

2 e−
1
2 trΣ−1(C−C0)(In⊗D−1)(C−C0)′ , (13.7.5)

where the p× n(m + q + 1) matrix of coefficients is C = (C1, . . . ,Cn). The
matrices Σ, R, Q, V , and D are positive definite. The hyperparameters S0,
ν, Q, η, V , D, and C0 are to be assessed and having done so completely
determine the joint prior distribution.

The prior distributions for the parameters are Matrix Normal for the ma-
trix of Regression/mixing coefficients C, Matrix Normal for the matrix of
sources S, Inverted Wishart distributed for the source covariance matrix R,
and Inverted Wishart distributed for the error covariance matrix.

Upon using Bayes’ rule, the likelihood of the observed mixed signals and
the joint prior distribution for the unknown model parameters are combined
and their product is proportional to the joint posterior distribution

p(S,R,C,Σ|u,x) ∝ |Σ|−
ν+n(m+q+2)

2 e−
1
2 trΣ−1G

×|R|−
(n+η)

2 e−
1
2 trR−1[V +(S−S0)′(S−S0)], (13.7.6)

where the p×p matrix G has been defined to be

G =
n

∑

i=1

(xi −Cizi)(xi−Cizi)
′ +(C −C0)(In ⊗D−1)(C−C0)

′ +Q. (13.7.7)

Note that the second term in G can be rewritten as

(C −C0)(In⊗D−1)(C−C0)
′ =

n
∑

i=1

(Ci −C0i)D
−1(Ci −C0i)

′. (13.7.8)

This joint posterior distribution must now be evaluated in order to obtain
our parameter estimates of the matrix of sources S, the matrix of instan-
taneous nonconstant Regression/mixing coefficients C, the source covariance
matrix R, and the error covariance matrix Σ. Marginal posterior mean and
joint maximum a posteriori estimates of the parameters S, R, C, and Σ are
found by the Gibbs sampling and ICM algorithms.
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13.8 Conjugate Estimation and Inference

With the above posterior distribution, it is not possible to obtain mar-
ginal distributions and thus marginal estimates for any of the parameters
in an analytic closed form or explicit maximum a posteriori estimates from
differentiation. It is possible to use both Gibbs sampling to obtain marginal
posterior parameter estimates and the ICM algorithm for joint modal or max-
imum a posteriori estimates. For both estimation procedures, the posterior
conditional distributions are required.

13.8.1 Posterior Conditionals

From the joint posterior distribution we can obtain the posterior condi-
tional distribution for each of the model parameters.

The conditional posterior distributions for the matrix of instantaneous non-
constant Regression/mixing coefficients C is found by considering only the
terms in the joint posterior distribution which involve C and is given by

p(C|S,R,Σ,U,X) ∝ p(C|Σ)p(X|S,C,Σ,U)

∝ |Σ|−
n(m+q+1)

2 e−
1
2 trΣ−1∑n

i=1(Ci−C0i)D
−1(Ci−C0i)

′

×|Σ|−
n
2 e−

1
2 trΣ−1∑n

i=1(xi−Cizi)(xi−Cizi)
′

, (13.8.1)

which after performing some algebra in the exponent can be written as

p(C|S,R,Σ,U,X) ∝ e−
1
2

∑n
i=1 trΣ−1(Ci−C̃i)(D

−1+ziz
′

i)(Ci−C̃i)
′

, (13.8.2)

where the variable C̃, the posterior conditional mean and mode, has been
defined and is given by

C̃i = [C0iD
−1 +xiz

′
i](D

−1 +ziz
′
i)

−1 (13.8.3)

for all i, i = 1, . . . ,n.
The posterior conditional distribution for the matrix of combined instanta-

neous nonconstant Regression/mixing coefficients Ci can be written as

p(Ci|Si,R,Σ,ui,xi) ∝ |Σ|−
m+q+1

2 e−
1
2 trΣ−1(Ci−C̃i)(D

−1+ziz
′

i)(Ci−C̃i)
′

. (13.8.4)

for all i, i = 1, . . . ,n.
That is, the matrix of instantaneous nonconstant Regression/mixing Ci

coefficients given the source vector si, the source covariance matrix R, the
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error covariance matrix Σ, the observed source vector ui, and the observed
data vector xi is Multivariate Normally distributed.

The conditional posterior distribution of the observation error covariance
matrix Σ is found by considering only the terms in the joint posterior distri-
bution which involve Σ and is given by

p(Σ|S,R,C,U,X) ∝ p(Σ)p(C|Σ)p(X|Z,C,Σ)

∝ |Σ|−
ν
2 e−

1
2 trΣ−1Q

×|Σ|−
n(m+q+1)

2 e−
1
2 tr
∑n

i=1 Σ−1(Ci−C0i)D
−1(Ci−C0i)

′

×|Σ|−
n
2 e−

1
2

∑n
i=1(xi−Cizi)

′Σ−1(xi−Cizi)

∝ |Σ|−
ν+n(m+q+2)

2 e−
1
2 trΣ−1G, (13.8.5)

where the p×p matrix G has been defined to be

G =
n

∑

i=1

[(xi −Cizi)(xi −Cizi)
′ +(Ci −C0i)D

−1(Ci −C0i)
′]+Q (13.8.6)

with a mode as described in Chapter 2 given by

Σ̃ =
G

ν +n(m+ q +2)
. (13.8.7)

The conditional posterior distribution of the observation error covariance
matrix Σ given the matrix of sources S, the source covariance matrix R,
the matrix of instantaneous nonconstant Regression/mixing coefficients C,
the matrix of observed sources U , and the matrix of data X is an Inverted
Wishart distribution.

The conditional posterior distribution for the matrix of sources S is found
by considering only the terms in the joint posterior distribution which involve
S and is given by

p(S|B,L,R,Σ,U,X) ∝ p(S|R)p(X|B,L,S,Σ,U)

∝ |R|−
n
2 e−

1
2 tr(S−S0)R−1(S−S0)′

×|Σ|−
n
2 e−

1
2

∑n
i=1(xi−Biui−Lisi)

′Σ−1(xi−Biui−Lisi),

(13.8.8)

which after performing some algebra in the exponent can be written as

p(S|B,L,R,Σ,U,X) ∝ e−
1
2

∑n
i=1(si−s̃i)

′(R−1+L
′

iΣ
−1

Li)(si−s̃i), (13.8.9)

© 2003 by Chapman & Hall/CRC



where the vectors si have been defined which are the posterior conditional
mean and mode as described in Chapter 2 and given by

s̃i = (R−1 +L′
iΣ

−1Li)
−1[L′

iΣ
−1(xi−Biui)+R−1s0i]. (13.8.10)

The posterior conditional distribution for the vectors of sources si can also
be written as

p(si|Bi,Li,R,Σ,ui,xi) ∝ |R−1 +L′
iΣ

−1Li|
− 1

2 e−
1
2 (si−s̃i)

′(R−1+L
′

iΣ
−1

Li)(si−s̃i)

(13.8.11)

for all i, i = 1, . . . ,n.
The conditional posterior distribution for the sources si given the instanta-

neous nonconstant Regression coefficients Bi, the instantaneous nonconstant
mixing coefficients Li, the source covariance matrix R, the error covariance
matrix Σ, the observed source vector ui, and the vector of data xi is Multi-
variate Normally distributed.

The conditional posterior distribution for the source covariance matrix R is
found by considering only the terms in the joint posterior distribution which
involve R and is given by

p(R|C,S,Σ,U,X) ∝ p(R)p(S|R)p(X|B,L,S,Σ,U)

∝ |R|−
η
2 e−

1
2 trR−1V |R|−

n
2 e−

1
2 tr(S−S0)R−1(S−S0)′

∝ |R|−
(n+η)

2 e−
1
2 trR−1[(S−S0)′(S−S0)+V ], (13.8.12)

with the posterior conditional mode as described in Chapter 2 given by

R̃ =
(S−S0)

′(S−S0)+V

n+η
. (13.8.13)

The conditional posterior distribution for the source covariance matrix R
given the instantaneous nonconstant matrix of Regression/mixing coefficients
C, the matrix of sources S, the error covariance matrix Σ, the matrix of
observed sources U , and the matrix of data X is Inverted Wishart distributed.

13.8.2 Gibbs Sampling

To find the marginal posterior mean estimates of the parameters from the
joint posterior distribution using the Gibbs sampling algorithm, start with
initial values for the matrix of sources S and error covariance matrix Σ, say
S̄(0) and Σ̄(0), and then cycle through

C̄ = a random variate from p(C|S̄(l), R̄(l),Σ̄(l),U,X)
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C̄i,(l+1) = ACi
YCi

B′
Ci

+MCi
, i= 1, . . . ,n, (13.8.14)

Σ̄(l+1) = a random variate from p(Σ|S̄(l), R̄(l), C̄(l+1),U,X)

= AΣ(Y
′
ΣYΣ)

−1A′
Σ, (13.8.15)

R̄(l+1) = a random variate from p(R|S̄(l), C̄(l+1),Σ̄(l+1),U,X)

= AR(Y
′
RYR)

−1A′
R, (13.8.16)

S̄(l+1) = a random variate from p(S|C̄(l+1),Σ̄(l+1), R̄(l+1),U,X),

si,(l+1) = AsiYsi +Msi , i= 1, . . . ,n, (13.8.17)

where

ACi
A′

Ci
= Σ̄(l),

BCi
B′

Ci
= (D−1 + z̄i,(l)z̄

′
i,(l))

−1,

z̄i,(l) = (u′
i,(l), s̄

′
i,(l))

′,

MCi
= [C0iD

−1 +xiz̄
′
i,(l)](D

−1 + z̄i,(l)z̄
′
i,(l))

−1,

AΣA
′
Σ =

n
∑

i=1

[(xi−C̄i,(l+1)z̄i,(l))(xi−C̄i,(l+1)z̄i,(l))
′

+(C̄i,(l+1)−C0i)D
−1(C̄i,(l+1)−C0i)

′]+Q,

ARA
′
R = (S̄(l)−S0)

′(S̄(l)−S0)+V,

AsiA
′
si

= (R̄−1
(l+1) + L̄′

i,(l+1)Σ̄
−1
(l+1)L̄i,(l+1))

−1,

Msi = (R̄−1
(l+1) + L̄′

i,(l+1)Σ̄
−1
(l+1)L̄i,(l+1))

−1

×[L̄′
i,(l+1)Σ̄

−1
(l+1)(xi−B̄i,(l+1)ui)+ R̄−1

(l+1)s0i],

while YCi
, YΣ, YR, and Ysi are p× (m+ q+1), (ν+n(m+ q+2)+p+1)×p,

(n+η+m+1)×m, and (m×1)-dimensional matrices respectively, whose ele-
ments are random variates from the standard Scalar Normal distribution. The
formulas for the generation of random variates from the conditional posterior
distributions are easily found from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of the parameters

S̄ =
1

L

L
∑

l=1

S̄(l) R̄=
1

L

L
∑

l=1

R̄(l) C̄ =
1

L

L
∑

l=1

C̄(l) Σ̄ =
1

L

L
∑

l=1

Σ̄(l)

which are the exact sampling-based marginal posterior mean estimates of the
parameters. In the above, C = (C1, . . . ,Cn). Exact sampling-based estimates
of other quantities can also be found. Similar to Bayesian Regression and
Bayesian Factor Analysis there is interest in the estimate of the marginal pos-
terior variance of the matrix containing the Regression and mixing coefficients
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var(c|X,U) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′,

= ∆̄,

where c= vec(C) and c̄= vec(C̄).
The covariance matrices of the other parameters follow similarly.

13.8.3 Maximum a Posteriori

The joint posterior distribution can also be jointly maximized with respect
to the matrix of instantaneous nonconstant coefficients C, the error covariance
matrix Σ, the matrix of sources S, and the source covariance matrix R by using
the ICM algorithm. To maximize the joint posterior distribution using the
ICM algorithm, start with an initial value for the matrix of sources S, say
S̃(0), and then cycle through

C̃(l+1) =
Arg Max

C p(C|S̃(l), R̃(l),Σ̃(l),X,U),

C̃i,(l+1) = (D−1 + z̃i,(l)z̃
′
i,(l))

−1[D−1C0i+ z̃i,(l)x
′
i], i= 1, . . . ,n,

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̄(l+1), R̃(l), S̃(l),X,U)

=

n
∑

i=1

[(xi−C̃i,(l+1)z̃i,(l))(xi−C̃i,(l+1)z̃i,(l))
′

+ (C̃i,(l+1) −C0i)D
−1(C̃i,(l+1)−C0i)

′]+Q]/[ν+n(m+ q+2)],

R̃(l+1) =
Arg Max

R p(R|S̃(l), C̄(l+1),Σ̃(l+1),X,U)

=
(S̃(l)−S0)

′(S̃(l)−S0)+V

n+η
,

S̃(l+1) =
Arg Max

S p(S|C̃(l+1), R̃(l+1),Σ̃(l+1),X,U),

s̃i,(l+1) = (R̃−1
(l+1) + L̃′

i,(l+1)Σ̃
−1

(l+1)L̃i,(l+1))
−1

×[L̃′
i,(l+1)Σ̃

−1

(l+1)(xi−B̃i,(l+1)ui)+ R̃−1
(l+1)s0i], i= 1, . . . ,n,

where the vector z̃i = (u′
i, s̃

′
i)

′ has been defined, until convergence is reached.
The converged values (S̃, R̃, C̃,Σ̃) are joint posterior modal (maximum a poste-
riori) estimators of the parameters. Conditional maximum a posteriori vari-
ance estimates can also be found. The conditional modal variance of the
matrix containing the Regression and mixing coefficients is

var(Ci|C̃i, S̃, R̃,Σ̃,X,U) = Σ̃⊗ (D−1 + z̃iz̃
′
i)

−1, i= 1, . . . ,n
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or equivalently

var(ci|c̃i, S̃, R̃,Σ̃,X,U) = (D−1 + z̃iz̃
′
i)

−1⊗ Σ̃, i= 1, . . . ,n

= ∆̃i,

where ci = vec(Ci), c̃, S̃, R̃, and Σ̃ are the converged value from the ICM
algorithm.

To determine statistical significance with the ICM approach, use the con-
ditional distribution of the matrix containing the Regression and mixing co-
efficients which is

p(Ci|C̃i, S̃, R̃,Σ̃,X,U)∝ |D−1 + z̃iz̃
′
i|

1
2 |Σ̃|− 1

2 e−
1
2 trΣ̃

−1(Ci−C̃i)(D
−1+z̃iz̃

′
i)(Ci−C̃i)

′

.
(13.8.18)

That is,

Ci|C̃i, S̃, R̃,Σ̃,X,U ∼N
(

C̃i,Σ̃⊗ (D−1 + z̃iz̃
′
i)

−1
)

. (13.8.19)

General simultaneous hypotheses can be evaluated regarding the entire ma-
trix containing the Regression/mixing coefficients, a submatrix, or the coeffi-
cients of a particular independent variable or source, or an element by com-
puting marginal conditional distributions.

It can be shown [17, 41] that the marginal conditional distribution of any
column of the matrix containing the Regression and mixing coefficients Ci,
Ci,k is Multivariate Normal

p(Ci,k|C̃i,k, S̃,Σ̃,U,X)∝ |Wi,kkΣ̃|−
1
2 e−

1
2 (Ci,k−C̃i,k)

′(Wi,kkΣ̃)−1(Ci,k−C̃i,k),
(13.8.20)

where Wi = (D−1 + z̃iz̃
′
i)

−1 and Wi,kk is its kth diagonal element.
With the marginal distribution of a column of Ci, significance can be de-

termined for a particular independent variable or source. Significance can be
determined for a subset of coefficients by determining the marginal distrib-
ution of the subset within Ci,k which is also Multivariate Normal. With the
subset being a singleton set, significance can be determined for a particular
coefficient with the marginal distribution of the scalar coefficient which is

p(Ci,kj |C̃i,kj , S̃,Σ̃jj ,U,X)∝ (Wi,kkΣ̃jj)
− 1

2 e
−

(Ci,kj−C̃i,kj)
2

2Wi,kkΣ̃jj , (13.8.21)

where Σ̃jj is the jth diagonal element of Σ̃. Note that C̃i,kj = c̃i,jk and that

z =
(Ci,kj−C̃i,kj)
√

Wi,kkΣ̃jj

(13.8.22)
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follows a Normal distribution with a mean of zero and variance of one.

13.9 Generalized Priors and Posterior

Generalized Conjugate prior distributions are assessed in order to quantify
available prior information regarding values of the model parameters. The
joint prior distribution for the sources S, the source covariance matrix R,
the vector of instantaneous nonconstant Regression/mixing coefficients c =
vec(C), and the error covariance matrix Σ is given by

p(S,R,Σ, c) = p(S|R)p(R)p(Σ)p(c), (13.9.1)

where the prior distribution for the parameters from the generalized Conjugate
procedure outlined in Chapter 4 are as follows

p(S|R) ∝ |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′ , (13.9.2)

p(Σ) ∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (13.9.3)

p(R) ∝ |R|−
η
2 e−

1
2 trR

−1V , (13.9.4)

p(c) ∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0), (13.9.5)

where c = vec(C), R, Σ, Q, V , and ∆ are positive definite matrices. The
hyperparameters S0, ν, Q, η, V , ∆, and c0 are to be assessed. Upon assessing
the hyperparameters, the joint prior distribution is completely determined.

The prior distribution for the matrix of sources S is Matrix Normally dis-
tributed, the prior distribution for the source vector covariance matrix R is
Inverted Wishart distributed, the vector of combined Regression/mixing co-
efficients c = vec(C), C = (B,Λ) is Multivariate Normally distributed, and
the prior distribution for the error covariance matrix Σ is Inverted Wishart
distributed.

Using Bayes’ rule the joint posterior distribution for the unknown parame-
ters with generalized Conjugate prior distributions for the model parameters
is given by

p(c,S,R,Σ|U,X) = p(S|R)p(Σ)p(R)p(c)p(X|Z,C,Σ), (13.9.6)

which is

p(c,S,R,Σ|u,x) ∝ |Σ|−
(n+ν)

2 |R|−
(n+η)

2 e−
1
2 trΣ

−1Ge−
1
2 (c−c0)′∆−1(c−c0)

×e−
1
2 trR

−1[V+(S−S0)′(S−S0)], (13.9.7)
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where the p×p matrix G has been defined to be

G =

n
∑

i=1

(xi−Cizi)(xi−Cizi)′+Q (13.9.8)

after inserting the prior distributions and the likelihood.

This joint posterior distribution must now be evaluated in order to ob-
tain estimates of the sources S, the vector of instantaneous nonconstant Re-
gression/mixing coefficients c, the source covariance matrix R, and the error
covariance matrix Σ.

13.10 Generalized Estimation and Inference

With the above joint posterior distribution that uses generalized Conjugate
prior distributions, it is not possible to obtain marginal distributions and thus
marginal estimates for all or any of the parameters in an analytic closed form
or explicit maximum a posteriori estimates from differentiation. It is possible
to use both Gibbs sampling, to obtain marginal mean parameter estimates and
the ICM algorithm for maximum a posteriori estimates. For both estimation
procedures, the posterior conditional distributions are required.

13.10.1 Posterior Conditionals

Both the Gibbs sampling and ICM algorithms require the posterior conditional
distributions. Gibbs sampling requires them for the generation of random
variates while the ICM algorithm requires them for maximization by cycling
through their modes or maxima.

The conditional posterior distribution of the observation error covariance
matrix Σ is found by considering only those terms in the joint posterior dis-
tribution which involve Σ and is given by

p(Σ|S,R,C,U,X) ∝ p(Σ)p(X|S,C,Σ,U)

∝ |Σ|− ν2 e− 1
2 trΣ

−1Q

×|Σ|−n2 e− 1
2

∑n
i=1(xi−Cizi)

′Σ−1(xi−Cizi)

∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ

−1G, (13.10.1)

where the p×p matrix G has been defined to be
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G =
n

∑

i=1

(xi−Cizi)(xi−Cizi)′+Q (13.10.2)

and the mode of this posterior conditional distribution is as described in
Chapter 2 and is given by

Σ̃ =
G

n+ν
. (13.10.3)

The posterior conditional distribution of the observation error covariance
matrix Σ given the matrix of sources S, the source covariance matrix R, the
matrix of instantaneous nonconstant Regression/mixing coefficients C, the
matrix of observable sources U , and the matrix of data X is an Inverted
Wishart distribution.

The conditional posterior distribution for the matrix of sources S is found by
considering only those terms in the joint posterior distribution which involve
S and is given by

p(S|B,R,L,Σ,U,X) ∝ p(S|R)p(X|B,L,S,Σ,U)

∝ |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′

×|Σ|−n2 e− 1
2

∑n
i=1(xi−Biui−Lisi)

′Σ−1(xi−Biui−Lisi)

∝ e−
1
2

∑n
i=1(si−s̃i)

′(R−1+L
′
iΣ

−1
Li)(si−s̃i), (13.10.4)

where the vector s̃i has been defined to be

s̃i = (R−1 +L′
iΣ

−1Li)
−1[L′

iΣ
−1(xi−Biui)+R−1s0i] (13.10.5)

which is the posterior conditional mean and mode.
The posterior conditional distribution for the vectors of sources si can also

be written as

p(si|Bi,Li,R,Σ,ui,xi) ∝ |R−1 +L′
iΣ

−1Li|−
1
2

×e−
1
2 (si−s̃i)

′(R−1+L
′
iΣ

−1
Li)(si−s̃i) (13.10.6)

for all i, i= 1, . . . ,n.
The conditional posterior distribution for the sources si given the instanta-

neous nonconstant Regression coefficients Bi, the instantaneous nonconstant
mixing coefficients Li, the source covariance matrix R, the error covariance
matrix Σ, the observed source vector ui, and the vector of data xi is Multi-
variate Normally distributed.
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The conditional posterior distribution for the source covariance matrix R
is found by considering only those terms in the joint posterior distribution
which involve R and is given by

p(R|B,L,S,Σ,U,X) ∝ p(R)p(S|R)p(X|B,L,S,Σ,U)

∝ |R|−
η
2 e−

1
2 trR

−1V |R|−n2 e− 1
2 tr(S−S0)R−1(S−S0)′

∝ |R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′(S−S0)+V ], (13.10.7)

with the posterior conditional mode as described in Chapter 2 given by

R̃=
(S−S0)

′(S−S0)+V

n+η
. (13.10.8)

The conditional posterior distribution for the source covariance matrix R
given the matrix of sources S, the instantaneous nonconstant Regression co-
efficients B, the matrix of instantaneous nonconstant mixing coefficients L,
the error covariance matrix Σ, the matrix of observable sources U , and the
matrix of data X is Inverted Wishart distributed.

The conditional posterior distribution of the vector of instantaneous non-
constant Regression/mixing coefficients is found by considering only those
terms in the joint posterior distribution which involve c, C, or C and is given
by

p(c|S,R,Σ,U,X) ∝ p(c)p(X|C,S,Σ,U)

∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0)

×|Σ|−n2 e− 1
2

∑n
i=1(xi−Cizi)

′Σ−1(xi−Cizi), (13.10.9)

which after performing some algebra in the exponent can be written as

p(c|S,R,Σ,U,X) ∝ e−
1
2 (c−c̃)′(∆−1+I⊗Σ−1)(c−c̃), (13.10.10)

where the vector c̃ has been defined to be

c̃= (∆−1 + I⊗Σ−1)−1(∆−1c0 + I⊗Σ−1ĉ), (13.10.11)

and the vector ĉ has been defined by first defining Ĉ to be

Ĉ = (ĉ′1, . . . , ĉ
′
n)

′, (13.10.12)

where

ĉi = xiz
′
i(ziz

′
i)

−1 (13.10.13)
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and then ĉ= vec(Ĉ). That is, the vector of instantaneous nonconstant Regres-
sion/mixing coefficients c given the matrix of sources S, the source covariance
matrix R, the error covariance matrix Σ, the matrix of observed sources U ,
and the matrix of data X is Multivariate Normally distributed.

13.10.2 Gibbs Sampling

To find marginal mean estimates of the parameters from the joint posterior
distribution using the Gibbs sampling algorithm, start with initial values for
the matrix of sources S and the error covariance matrix Σ, say S̄(0) and Σ̄(0),
and then cycle through

c̄(l+1) = a random variate from p(c|S̄(l), R̄(l),Σ̄(l),U,X)

= AcYc+Mc, (13.10.14)

Σ̄(l+1) = a random variate from p(Σ|S̄(l), R̄(l), C̄(l+1),U,X)

= AΣ(Y
′
ΣYΣ)−1A′

Σ, (13.10.15)

R̄(l+1) = a random variate from p(R|S̄(l), C̄(l+1),Σ̄(l+1),U,X)

= AR(Y
′
RYR)

−1A′
R, (13.10.16)

S̄(l+1) = a random variate from p(S|R̄(l+1), C̄(l+1),Σ̄(l+1),U,X)

si,(l+1) = AsiYsi +Msi , (13.10.17)

where

AcA
′
c = (∆−1 + I⊗ Σ̄−1

(l) )
−1,

Mc = (∆−1 + I⊗ Σ̄−1
(l) )

−1(∆−1c0 + I⊗ Σ̄−1
(l) ĉ(l)),

ĉi,(l) = xiz̄
′
i,(l)(z̄i,(l)z̄i,(l))

−1, i= 1, . . . ,n,

ĉ(l) = (ĉ1,(l), . . . , ĉi,(l))
′,

AΣA
′
Σ =

n
∑

i=1

[(xi−C̄i,(l+1)z̄i,(l))(xi−C̄i,(l+1)z̄i,(l))
′+Q,

ARA
′
R = (S̄(l)−S0)

′(S̄(l)−S0)+V,

AsiA
′
si

= (R̄−1
(l+1) + L̄′

i,(l+1)Σ̄
−1
(l+1)L̄i,(l+1))

−1,

Msi = (R̄−1
(l+1) + L̄′

i,(l+1)Σ̄
−1
(l+1)L̄i,(l+1))

−1

×[L̄′
i,(l+1)Σ̄

−1
(l+1)(xi−B̄i,(l+1)ui)+ R̄−1

(l+1)s0i],

while Yc, YΣ, YR, and Ysi are np(m+q+1)×1, (ν+n(m+q+2)+p+1)×p,
(n+η+m+1)×m, and (m×1)-dimensional matrices respectively, whose ele-
ments are random variates from the standard Scalar Normal distribution. The
formulas for the generation of random variates from the conditional posterior
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distributions is easily found from the methods in Chapter 6. The formulas for
the generation of random variates from the conditional posterior distributions
are easily found from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of each of the parameters

S̄ =
1

L

L
∑

l=1

S̄(l) R̄ =
1

L

L
∑

l=1

R̄(l) c̄=
1

L

L
∑

l=1

c̄(l) Σ̄ =
1

L

L
∑

l=1

Σ̄(l)

which are the exact sampling-based marginal posterior mean estimates of the
parameters. Exact sampling-based estimates of other quantities can also be
found. Similar to Bayesian Regression and Bayesian Factor Analysis, there
is interest in the estimate of the marginal posterior variance of the matrix
containing the Regression and mixing coefficients

var(c|X,U) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄,

where c= vec(C) and c̄= vec(C̄).
The covariance matrices of the other parameters follow similarly.

13.10.3 Maximum a Posteriori

The distribution can be maximized with respect to vector of instantaneous
nonconstant Regression/mixing coefficients c, the matrix of sources S, the
source covariance matrix R, and the error covariance Σ using the ICM al-
gorithm. To jointly maximize the posterior distribution using the ICM al-
gorithm, start with initial values for the matrix of sources S̃, and the error
covariance matrix Σ, say S̃(0), and Σ̃(0), and then cycle through

c̃(l+1) =
Arg Max

c p(c|S̃(l), R̃(l),Σ̃(l),X,U),

ĉi,(l) = xiz̃
′
i,(l)(z̃i,(l)z̃i,(l))

−1, i= 1, . . . ,n,

ĉ(l) = (ĉ1,(l), . . . , ĉi,(l))
′,

c̃(l+1) =
(

∆−1 + I⊗ Σ̃−1
(l)

)−1 [

∆−1c0 +
(

I⊗ Σ̃−1
(l)

)

ĉ(l)

]

,

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l+1), R̃(l), S̃(l),X,U)

=

∑n
i=1(xi−C̃i,(l+1)z̃i,(l))(xi−C̃i,(l+1)z̃i,(l))

′+Q

n+ν
,

R̃(l+1) =
Arg Max

R p(R|S̃(l), C̃(l+1),Σ̃(l+1),X,U)
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=
(S̃(l)−S0)

′(S̃(l)−S0)+V

n+η
,

S̃(l+1) =
Arg Max

S p(S|C̃(l+1), R̃(l+1),Σ̃(l+1),X,U),

s̃i,(l+1) = (R̃−1
(l+1) + L̃′

i,(l+1)Σ̃
−1
(l+1)L̃(l+1))

−1

×[L̃′
i,(l+1)Σ̃

−1
(l+1)(xi−B̃i,(l+1)ui)+ R̃−1

(l+1)s0i], i= 1, . . . ,n

until convergence is reached. The converged values (S̃, R̃, c̃,Σ̃) are joint poste-
rior modal (maximum a posteriori) estimates of the unknown model parame-
ters. Conditional maximum a posteriori variance estimates can also be found.
The conditional modal variance of the matrix containing the Regression and
mixing coefficients is

var(c|c̃, S̃, R̃,Σ̃,X,U) = [∆−1 + Z̃ ′Z̃⊗ Σ̃]−1

= ∆̃,

where c = vec(C), while S̃, R̃, and Σ̃ are the converged value from the ICM
algorithm.

Conditional modal intervals may be computed by using the conditional
distribution for a particular parameter given the modal values of the others.

13.11 Interpretation

Although the main focus after having performed a Bayesian Source Sep-
aration is the separated sources, there are others. One focus as in Bayesian
Regression is on the estimate of the Regression coefficient matrix B which de-
fines a “fitted” line. Coefficients are evaluated to determine whether they are
statistically “large” meaning that the associated independent variable con-
tributes to the dependent variable or statistically “small” meaning that the
associated independent variable does not contribute to the dependent variable.
The coefficient matrix also has the interpretation that if all of the indepen-
dent variables were held fixed except for one uij which if increased to u∗

ij , the
dependent variable xij increases to an amount x∗

ij given by

x∗
ij = βi0 + · · ·+βiju

∗
ij + · · ·+βiquiq. (13.11.1)

Another focus after performing a Bayesian Source Separation is in the esti-
mated mixing coefficients. The mixing coefficients are the amplitudes which
determine the relative contribution of the sources. A particular mixing co-
efficient which is relatively “small” indicates that the corresponding source
does not significantly contribute to the associated observed mixed signal. If
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a particular mixing coefficient is relatively “large,” this indicates that the
corresponding source does significantly contribute to the associated observed
mixed signal.

A useful way to visualize the changing mixing coefficients is to plot their
value over time for each of the sources.

13.12 Discussion

Returning to the cocktail party problem, the matrix of Regression coeffi-
cients B where B = (µ,B⋆) contains the matrix of mixing coefficients B⋆ for
the observed conversation (sources) U , and the population mean µ which is a
vector of the overall background mean level at each microphone.

After having estimated the model parameters, the estimates of the sources
as well as the mixing matrix are now available. The estimated matrix of
sources corresponds to the unobservable signals or conversations emitted from
the mouths of the speakers at the cocktail party. Row i of the estimated source
matrix is the estimate of the unobserved source vector at time i and column j
of the estimated source matrix is the estimate of the unobserved conversation
of speaker j at the party for all n time increments.
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Exercises

1. Show that in the instantaneous nonconstant mixing process model for
both Conjugate and generalized Conjugate prior distributions that by
setting Bi=B and Ci=Λ, the resulting model is the unobservable/observable
Source Separation model of Chapter 11.

2. Derive a model in which up to time i0 the Regression and mixing coeffi-
cients are constant and after time i0, they are also constant but different.
Assume an instantaneous constant mixing process.
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14

Correlated Observation and Source Vectors

14.1 Intro duction

In Part II, the observed mixed source as well as the observed and unob-
served source vectors were specified to allow correlation within the vectors at
a given time, but to be uncorrelated over time. In the previous Chapter, the
sources were allowed to be delayed; in addition, the Regression and mixing
coefficients were allowed to change over time. In this Chapter, the observed
mixed vectors as well as the unobserved source vectors are allowed to be cor-
related over time; in addition, the mixing is assumed to be instantaneous and
constant over time.

14.2 Mo del

Just as in the previous Chapter, the observed mixed vectors, the observed
source vectors, and unobserved source vectors are stacked into singleton vec-
tors and the correlated vector Source Separation model is written as

(x|B,u,Λ,s) = (In⊗B) u + (In⊗Λ) s + ǫ,
(np×1) [np×n(q+1)] [n(q+1)×1] (np×nm) (nm×1) (np×1)

(14.2.1)
where the vector of observations x, the vector of observed sources u, the vector
of unobserved sources s, and the vector of errors ǫ are

x=







x1

...
xn






, u=







u1

...
un






, s=







s1

...
sn






, ǫ=







ǫ1
...
ǫn






, (14.2.2)

B and Λ are Regression and mixing coefficients respectively, and an instanta-
neous constant mixing process has been assumed.

The errors of observation ǫ are specified to have distribution p(ǫ|Ω) with
mean zero and covariance matrix Ω which induces a distribution on the ob-
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servations x, namely, p(x|B,u,Λ,s) with mean (In⊗B)u+(In⊗Λ)s and co-
variance matrix Ω.

The above is a very general model. The covariance matrix Ω defines a
model in which all observations (xij and xi′j′) are distinctly correlated. With
this model in its full covariance generality, there are an enormous number of
distinct covariance parameters. To be exact, there are

np(np+1)

2
(14.2.3)

distinct error covariance parameters [50]. The full error covariance matrix for
the observation vector can be represented by the block partitioned matrix

Ω =















Ω11 Ω12 · · · Ω1n

Ω22

. . .
...

Ωn−1,n

Ωnn















, (14.2.4)

where only the diagonal and superdiagonal submatrices Ωii and Ωii′ are dis-
played. The subdiagonal submatrices are found by reflection. The variance
of observation vector i is given by the p×p submatrix

var(xi|B,ui,si,Λ,Ωii) = Ωii (14.2.5)

and the covariance between observation vectors i and i′ is given by the p×p
submatrix

cov(xi,xi′ |B,ui,ui′ ,si,si′ ,Λ,Ωii′) = Ωii′ . (14.2.6)

This generality is rarely needed. A simplified error covariance matrix is
usually rich enough to capture the covariance structure. The error covariance
matrix can be simplified by specifying a particular structure, thereby reducing
the number of distinct parameters and the required computation. In the con-
text of Bayesian Factor Analysis, separable and matrix intraclass covariance
matrices have been considered [50].

A separable covariance matrix for the errors is

Ω =















φ11Σ φ12Σ · · · φ1nΣ
φ22Σ

.. .
...

φnnΣ















=Φ⊗Σ (14.2.7)

which is exactly the structure of a Matrix Normal distribution.
The covariance matrix Φ will be referred to as the between vector covari-

ance matrix and Σ the within vector covariance matrix. Separable covariance
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matrices have a wide variety of applications such as in time series. In applica-
tions such as the previous FMRI example, spatial vector valued observations
xi are observed over time. In such applications, Φ could be referred to as the
“temporal” covariance matrix and Σ as the “spatial” covariance. Previous
work has also considered matrix intraclass covariance structures, but points
out that the matrix intraclass covariance can be transformed to an indepen-
dent covariance model by an orthogonal transformation [50]. The covariance
matrix Φ has

n(n+1)

2
(14.2.8)

distinct covariance parameters. The number of distinct covariance parameters
has been reduced to

n(n+1)

2
+

p(p+1)

2
. (14.2.9)

Covariance structures such as intraclass and first order Markov (also known
as an AR(1)) which depend on a single parameter have been considered for Φ
to further reduce the number of parameters and computation [50].

The motivation to model covariation among the observations and also the
source vectors is that they are often taken in a time or spatial order, thus
possibly not independent. This covariance structure allows for both spatial
and temporal correlation.

The correlated vector Bayesian Source Separation model with the separable
matrix specifications can be written in the matrix form

(X|U,B,Λ,S) = U B′ + S Λ′ + E,
(n×p) [n× (q+1)] [(q+1)×p] (n×m) (m×p) (n×p)

(14.2.10)
which is the previously model described from Part II where X ′ = (x1, . . . ,xn),
U ′ = (u1, . . . ,un), S

′ = (s1, . . . ,sn), and E′ = (ǫ1, . . . , ǫn).

14.3 Likeliho o d

The variability among the observations is specified to have arisen from a
separable Multivariate Normal distribution. A Multivariate Normal distribu-
tion with a separable covariance structure Ω = Φ⊗Σ can be simplified to the
Matrix Normal distribution form (as in Chapter 2)

p(X|U,B,Λ,S,Φ,Σ)∝ |Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−UB−SΛ′)Σ−1(X−UB′

−SΛ′)′ ,
(14.3.1)
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where X ′ = (x1, . . . ,xn), S
′ = (s1, . . . ,sn), and E′ = (ǫ1, . . . , ǫn). If the between

vector covariance matrix Φ were specified to be the identity matrix In, then
this likelihood corresponds to the uncorrelated observation vector one as dis-
cussed in Chapter 11.

With the separable covariance matrix structure which is a Matrix Normal
distribution, the marginal likelihood of any row of the matrix of data X, say
x′
i, is Multivariate Normally distributed with mean

E(xi|B,ui,φii,Σ,si,Λ) =Bui+Λsi, (14.3.2)

and the variance is given by

var(xi|B,ui,φii,Σ,si,Λ) = φiiΣ, (14.3.3)

while the covariance between any two rows (observation vectors) xi and xi′ is
given by

cov(xi,xi′ |B,ui,ui′ ,si,si′ ,Λ,φii′ ,Σ) = φii′Σ, (14.3.4)

where φii′ is the ii′th element of Φ.
The model may also be written in terms of columns as in Chapter 8 by

parameterizing the data matrixX, the observable source matrix U , the matrix
of Regression coefficients B, and the matrix of errors E in terms of columns
as

X = (X1, . . .Xp), U = (en,U1, . . .Uq),

B = (B0,B1, . . .Bq), E = (E1, . . .Ep). (14.3.5)

This leads to the Bayesian Source Separation model being also written as

(Xj |U,Bj ,S,Λj) = U Bj + S Λj + Ej ,
(n×1) [n× (q+1)] [(q+1)×1] (n×m) (m×1) (n×1)

(14.3.6)
which describes all the observations for a single microphone j at all n time
points.

With the column representation of the Source Separation model, the mar-
ginal likelihood of any column of the matrix of data X, say Xj , is also Mul-
tivariate Normally distributed with mean

E(Xj|U,Bj ,Φ,σjj ,S,Λj) = UBj +SΛj , (14.3.7)

and variance given by

var(Xj |U,Bj ,Φ,σjj ,S,Λj) = σjjΦ, (14.3.8)
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while the covariance between any two columns (observation vectors) Xj and
Xj′ is given by

cov(xj ,xj′ |B,uj ,uj′ ,sj ,sj′ ,Λ,Φ,σjj′) = σjj′Φ, (14.3.9)

where σjj′ is the jj′th element of Σ.

The Regression and the mixing coefficient matrices are joined into a single
matrix as C = (B,Λ). The observable and unobservable source matrices are
also joined as Z = (U,S).

Having joined these matrices, the correlated vector Source Separation model
is now

(X|C,Z) = Z C ′ + E,
n×p n× (m+ q+1) (m+ q+1)×p (n×p)

(14.3.10)

and the corresponding likelihood is

p(X|C,Z,Σ)∝ |Σ|−n2 |Φ|−
p
2 e−

1
2 trΦ

−1(X−ZC′)Σ−1(X−ZC′)′ , (14.3.11)

where all variables are as previously defined.

Available prior knowledge regarding the parameter values are quantified
through both Conjugate and generalized Conjugate prior distributions. For
the Conjugate prior distribution model, different structures will be specified
for Φ along with prior distributions.

14.4 Conjugate Priors a nd Po sterior

When quantifying available prior information regarding the parameters of
interest, Conjugate prior distributions can be specified. For the between vec-
tor covariance matrix Φ, structures will be considered along with the cor-
responding prior distribution.The joint posterior distribution for the model
parameters which are the matrix of Regression/mixing coefficients C, the ma-
trix of sources S, the source covariance matrix R, the within observation
vector covariance matrix Σ, and the between vector covariance matrix Φ is
given by

p(S,R,C,Σ,Φ) = p(S|R,Φ)p(R)p(C|Σ)p(Σ)p(Φ), (14.4.1)

where the prior distributions for the model parameters are from the Conjugate
procedure outlined in Chapter 4 and are given by
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p(S|R,Φ) ∝ |R|−n2 |Φ|−m2 e− 1
2 trΦ

−1(S−S0)R−1(S−S0)′ , (14.4.2)

p(Σ) ∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (14.4.3)

p(R) ∝ |R|−
η
2 e−

1
2 trR

−1V , (14.4.4)

p(C|Σ) ∝ |D|−
p
2 |Σ|−

m+q+1
2 e−

1
2 trΣ

−1(C−C0)D−1(C−C0)′ , (14.4.5)

p(Φ) as below, (14.4.6)

where Σ, Φ, R, Q, V , D, and Ψ, are positive definite matrices. The hy-
perparameters S0, ν, Q, η, V , D, C0, and any for p(Φ) are to be assessed.
Upon assessing the hyperparameters, the joint prior distribution is completely
determined.

The Conjugate prior distributions are Matrix Normal for the combined
matrix of Regression/mixing coefficients C, Matrix Normal for the matrix of
sources S, where the source vectors and components are free to be correlated,
while the observation within Σ and between Φ, as well as source covariance
matrices R are taken to be Inverted Wishart distributed.

Upon using Bayes’ rule, the joint posterior distribution for the unknown
model parameters is proportional to the product of the joint prior distribution
and the likelihood and given by

p(S,C,Σ,Φ|X) ∝ |Σ|−
(n+ν+m+q+1)

2 e−
1
2 trΣ

−1G|R|−
(n+η)

2 e−
1
2 trR

−1V

× |Φ|−
(p+m)

2 e−
1
2 trΦ

−1(S−S0)R−1(S−S0)′p(Φ), (14.4.7)

where the p×p matrix G has been defined to be

G= (X−ZC ′)′Φ−1(X−ZC ′)+(C−C0)D
−1(C−C0)

′+Q. (14.4.8)

Again, the objective is to unmix the unobservable sources by estimating S
and to obtain knowledge about the mixing process by estimating B, Λ, Σ,
and Φ.

This joint posterior distribution must now be evaluated in order to obtain
our parameter estimates of the matrix of sources S, the matrix of Regres-
sion/mixing coefficients C, the within vector source covariance matrix R, the
within observation vector covariance matrix Σ, and the between vector co-
variance matrix Φ. Marginal posterior mean and joint maximum a posteriori
estimated of the parameters S, R, Φ, C, and Σ are found by the Gibbs sam-
pling and ICM algorithms.

There are four cases which will be considered for the between vector covari-
ance matrix Φ: (1) Φ, a known general covariance matrix with no unknown
parameters, (2) Φ, a general unknown covariance matrix with n(n+1)/2 un-
known parameters (3) Φ, an intraclass structured covariance matrix with one

© 2003 by Chapman & Hall/CRC



unknown parameter, and (4) Φ, a first order Markov structured covariance
matrix with one unknown parameter.

Φ Known
In some instances, we know Φ, are able to assess Φ, or can estimate Φ using

previous data, so that

p(Φ) =

{

1, if Φ = Φ0

0, if Φ =Φ0,
(14.4.9)

a degenerate distribution. If the observation vectors were independent, then
Φ0 = In.

For Gibbs sampling, we will need the conditional posterior distributions.
When the covariance matrix Φ is known to be Φ0, then the only change in
posterior conditional distributions for the parameters Σ, S, and C is that Φ
will be replaced by Φ0.

Φ General Covariance
If we determine that the observations are correlated according to a gen-

eral covariance matrix, then we assess the Conjugate Inverted Wishart prior
distribution

p(Φ) ∝ |Φ|−κ2 e− 1
2 trΦ

−1Ψ, (14.4.10)

where Ψ and κ are hyperparameters to be assessed which completely deter-
mine the prior.

Φ Unknown Structured
It is often the case that Φ is unknown but structured. When Φ is un-

known, the conditionals for Σ, S, and C do not change from when Φ is known
or unknown and general. Once the structure is determined, we need to as-
sess the prior distributions for the unknown parameters in Φ and calculate
the posterior conditional distribution for the unknown parameters in Φ. We
will specify that the observations are homoscedastic and consider Φ to be a
structured correlation matrix.

There are many possible structures that we are able to specify for Φ that
apply to a wide variety of situations. Given that we have homoscedasticity of
the observation vectors, then

Ω = Φ⊗Σ =















Σ φ12Σ · · · φ1nΣ
Σ

.. .
...

Σ















,
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where Φ is a correlation matrix.

One possibility is that there is a structure in the correlation matrix Φ so
that its elements only depend on a single parameter ρ; then the covariance
matrix becomes

Ω = Φ⊗Σ =















Σ φ12(ρ)Σ · · · φ1n(ρ)Σ
Σ

. . .
...

Σ















.

Two well-known examples of possible correlation structures for Φ are in-
traclass and first order Markov. We will state these correlation structures
and derive the posterior conditionals for both of these correlations assuming
a Generalized Scalar Beta prior distribution.

Φ Intraclass Correlation

It could be determined that the observations are correlated according to an
intraclass correlation. An intraclass correlation is used when we have a set of
variables and we believe that any two are related in the same way. Any two
variables have the same correlation. Then the between observation correlation
matrix Φ is

Φ =















1 ρ ρ · · · ρ
1 ρ · · · ρ
. . .

...
ρ
1















= (1−ρ)In+ρene
′
n, (14.4.11)

where en is a column vector of ones and − 1
n−1 < ρ < 1.

If we determine that the observations are correlated according to an intra-
class correlation matrix, then the Conjugate prior distribution

p(ρ) ∝ (1−ρ)−
(n−1)(p+m)

2 [1+(n−1)ρ]−
β
2 e

− 1
2(1−ρ)

[
k1−

ρk2
1+αρ

]
(14.4.12)

is specified, where Ψ for

k1 =

n
∑

i=1

Ψii and k2 =

n
∑

i′=1

n
∑

i=1

Ψii′ (14.4.13)

is a hyperparameter to be assessed which completely determines the prior.

Φ First Order Markov Correlation
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It could be determined that the observations are correlated according to a
first order Markov structure. In a first order Markov structure, the observa-
tions are related according to a vector auto regression with a time lag of one,
V AR(1). With this structure, the between observation correlation matrix Φ
is

Φ =











1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
...

...
...

ρn−1 ρn−2 · · · 1











, (14.4.14)

where 0< |ρ|< 1.
If it is determined that the observations are correlated according to a first

order Markov correlation matrix, then the Conjugate prior distribution

p(ρ) ∝ (1−ρ2)−
(n−1)(p+m)

2 e
−
k1−ρk2+ρ2k3

2(1−ρ2) (14.4.15)

is specified, where Ψ for

k1 =

n
∑

i=1

Ψii, k2 =

n−1
∑

i=1

(Ψi,i+1 +Ψi+1,i) , and k3 =

n−1
∑

i=2

Ψii (14.4.16)

is a hyperparameter to be assessed which completely determines the prior.

14.5 Conjugate Estimation a nd Inference

With the above posterior distribution, it is not possible to obtain marginal
distributions and thus marginal estimates for all or any of the parameters
in an analytic closed form or explicit maximum a posteriori estimates from
differentiation. It is possible to use both Gibbs sampling to obtain marginal
parameter estimates and the ICM algorithm to find maximum a posteriori
estimates. For both estimation procedures which are described in Chapter 6,
the posterior conditional distributions are required.

14.5.1 Posterior Conditionals

From the joint posterior distribution we can obtain the posterior condi-
tional distribution for each of the model parameters.

The conditional posterior distributions for the Regression/mixing matrix
C is found by considering only the terms in the joint posterior distribution
which involve C and is given by

© 2003 by Chapman & Hall/CRC



p(C|S,R,Σ,Φ,U,X) ∝ p(C|Σ)p(X|C,Z,Σ,Φ)

∝ |Σ|−
m+q+1

2 e−
1
2 trΣ

−1(C−C0)D−1(C−C0)′

× |Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′Φ−1(X−ZC′)

∝ e−
1
2 trΣ

−1[(C−C0)D−1(C−C0)′+(X−ZC′)′Φ−1(X−ZC′)]

∝ e−
1
2 trΣ

−1(C−C̃)(D−1+Z′Φ−1Z)(C−C̃)′ , (14.5.1)

where the vector C̃, the posterior conditional mean and mode, has been de-
fined and is given by

C̃ = [C0D
−1 +X ′Φ−1Z](D−1 +Z ′Φ−1Z)−1 (14.5.2)

= [C0D
−1 + Ĉ(Z ′Φ−1Z)](D−1 +Z ′Φ−1Z)−1. (14.5.3)

Note that the matrix of coefficients C can be written as a weighted com-
bination of the prior mean C0 from the prior distribution and the data mean
Ĉ =X ′Φ−1Z(Z ′Φ−1Z)−1 from the likelihood.

The conditional distribution for the combined Regression mixing matrix
given the matrix of unobservable sources S, the within vector source covari-
ance matrixR, the within observation vector covariance matrix Σ, the between
vector covariance matrix Φ, the matrix of observed sources U , and the matrix
of data X is Matrix Normally distributed.

The conditional posterior distribution of the within observation vector co-
variance matrix Σ is found by considering only the terms in the joint posterior
distribution which involve Σ and is given by

p(Σ|B,S,R,Λ,Φ,U,X) ∝ p(Σ)p(Λ|Σ)p(X|Z,C,Σ,Φ)

∝ |Σ|−
m+q+1

2 e−
1
2 trΣ

−1(C−C0)D−1(C−C0)′

×|Σ|− ν2 e− 1
2 trΣ

−1Q

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′Φ−1(X−ZC′)

∝ |Σ|−
(n+ν+m+q+1)

2 e−
1
2 trΣ

−1G, (14.5.4)

where the p×p matrix G has been defined to be

G = (X−ZC ′)′Φ−1(X−ZC ′)+(C−C0)D
−1(C−C0)

′+Q (14.5.5)

with a mode as described in Chapter 2 given by

Σ̃ =
G

n+ν+m+ q+1
. (14.5.6)
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The posterior conditional distribution of the within observation vector co-
variance matrix Σ given the matrix of unobservable sources S, the within
source vector covariance matrix R, the matrix of Regression/mixing coeffi-
cients C, the between vector covariance matrix Φ, the matrix of observable
sources U , and the matrix of data X is an Inverted Wishart distribution.

The conditional posterior distribution for the matrix of sources S is found
by considering only the terms in the joint posterior distribution which involve
S and is given by

p(S|B,R,Λ,Σ,Φ,U,X) ∝ p(S|R,Φ)p(X|B,Λ,S,Σ,Φ,U)

∝ |Φ|−m2 |R|−n2 e− 1
2 trΦ

−1(S−S0)R−1(S−S0)′

×|Σ|−n2 e− 1
2 trΣ

−1(X−UB′
−SΛ′)′Φ−1(X−UB′

−SΛ′)

∝ e−
1
2 trΦ

−1(S−S̃)(R−1+Λ′Σ−1Λ)(S−S̃)′ , (14.5.7)

where the matrix S̃ has been defined which is the posterior conditional mean
and mode as described in Chapter 2 and is given by

S̃ = [S0R
−1 +(X−UB′)Σ−1Λ](R−1 +Λ′Σ−1Λ)−1. (14.5.8)

The conditional posterior distribution for the matrix of sources S given
the matrix of Regression coefficients B, the within source vector covariance
matrix R, the matrix of mixing coefficients Λ, the within observation vector
covariance matrix Σ, the between vector covariance matrix Φ, the matrix of
observable sources U , and the matrix of data X is Normally Matrix distrib-
uted.

The conditional posterior distribution for the within source vector covari-
ance matrix R is found by considering only the terms in the joint posterior
distribution which involve R and is given by

p(R|C,Z,Σ,Φ,X) ∝ p(R)p(S|R,Φ)p(X|C,Z,Σ,Φ)

∝ |R|−
η
2 e−

1
2 trR

−1V |Φ|−m2 |R|−n2 e− 1
2 trΦ

−1(S−S0)R−1(S−S0)′

∝ |R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′Φ−1(S−S0)+V ], (14.5.9)

with the posterior conditional mode as described in Chapter 2 given by

R̃=
(S−S0)

′Φ−1(S−S0)+V

n+η
. (14.5.10)

The conditional posterior distribution for the within source vector covari-
ance matrix R given the matrix of Regression/mixing coefficients C, the ma-
trix of unobservable sources S, the within observation vector covariance matrix
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Σ, the between vector covariance matrix Φ, the matrix of observable sources,
and the matrix of X data is Inverted Wishart distributed.

Φ Known
The conditional posterior distribution for the between vector covariance ma-

trix Φ is found by considering only the terms in the joint posterior distribution
which involve Φ and is given by

p(Φ|C,Z,R,Σ,X) ∝ p(Φ)p(S|R,Φ)p(X|C,Z,Σ,Φ)

∝ 1Φ=Φ0 |Φ|−
m
2 e−

1
2 trΦ

−1(S−S0)R−1(S−S0)′

×|Φ|−
p
2 e−

1
2 trΦ

−1(X−ZC′)Σ−1(X−ZC′)′

= 1Φ=Φ0 , (14.5.11)

where 1Φ=Φ0 is used to denote the prior distribution for Φ which is one at Φ0

and zero otherwise.

Φ General Covariance
The conditional posterior distribution for the between vector covariance ma-

trix Φ is found by considering only the terms in the joint posterior distribution
which involve Φ and is given by

p(Φ|C,Z,R,Σ,X) ∝ p(Φ)p(S|R,Φ)p(X|C,Z,Σ,Φ)

∝ |Φ|−κ2 e− 1
2 trΦ

−1Ψ|Φ|−m2 e− 1
2 trΦ

−1(S−S0)R−1(S−S0)′

×|Φ|−
p
2 e−

1
2 trΦ

−1(X−ZC′)Σ−1(X−ZC′)′ , (14.5.12)

with the posterior conditional mode as described in Chapter 2 given by

Φ̃ =
(X−ZC ′)Σ−1(X−ZC ′)′+(S−S0)R

−1(S−S0)
′+Ψ

p+m+κ
. (14.5.13)

The conditional posterior distribution for the between vector covariance
matrix Φ given the matrix of Regression/mixing coefficients C, the matrix of
unobservable sources S, the matrix of observable sources U , the within source
vector covariance matrix R, the within observation vector covariance matrix
Σ, and the matrix of data X is Inverted Wishart distributed.

Φ Intraclass Correlation
As previously stated, the exact form of the conditional posterior distribution

depends on which structure is determined for the correlation matrix Φ. If
the intraclass structure that has the covariance between any two observations
being the same is determined, then we can use the result that the determinant
of Φ has the form
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|Φ|= (1−ρ)n−1[1+ρ(n−1)] (14.5.14)

and the result that the inverse of Φ has the form

Φ−1 =
In

1−ρ
− ρene

′
n

(1−ρ)[1+(n−1)ρ]
, (14.5.15)

which is again a matrix with intraclass correlation structure. Using the afore-
mentioned likelihood, priors, and forms above the posterior conditional dis-
tribution is

p(ρ|S,C,Ψ,X,U) ∝ p(ρ)p(S|Φ)p(X|Φ,S,C,Σ,U)

∝ (1−ρ)−
(n−1)(p+m)

2 [1+(n−1)ρ]−
(p+m)

2

∝ e
− 1

2(1−ρ)

[
tr(Ψ)−

ρtr(ene
′
nΨ)

1+(n−1)ρ

]

×|Φ|−m2 |R|−n2 e− 1
2 trΦ

−1(S−S0)R−1(S−S0)′

×|Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−ZC′)Σ−1(X−ZC′)′

∝ (1−ρ)−(n−1)(p+m)[1+ρ(n−1)]−(p+m)

×e
− 1

2

[
k1

1−ρ−
k2ρ

(1−ρ)[1+(n−1)ρ]

]
, (14.5.16)

where

Ξ = (X−ZC ′)Σ−1(X−ZC ′)′+(S−S0)R
−1(S−S0)

′+Ψ, (14.5.17)

k1 = tr(Ξ) =

n
∑

i=1

Ξii, and k2 = tr(ene
′
nΞ) =

n
∑

i′=1

n
∑

i=1

Ξii′ . (14.5.18)

This is not recognizable as a common distribution.

Φ First Order Markov Correlation
If the first order Markov structure is determined, then the result that the

determinant of a matrix with such structure has the form

|Φ|= (1−ρ2)n−1 (14.5.19)

and the result that the inverse of such a patterned matrix has the form

Φ−1 =
1

1−ρ2















1 −ρ 0
−ρ (1+ρ2) −ρ

. . .
. . .

. . .

(1+ρ2) −ρ
0 −ρ 1















. (14.5.20)
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These results are used along with the aforementioned likelihood and prior
distributions to obtain

p(ρ|S,C,Σ,X,U) = p(ρ)p(S|Φ)p(X|Φ,S,C,Σ,U)

∝ (1−ρ2)−
(n−1)(p+m)

2 e
−
k1−ρk2+ρ2k3

2(1−ρ2)

×|Φ|−m2 |R|−n2 e− 1
2 trΦ

−1(S−S0)R−1(S−S0)′

×|Φ|−
p
2 |Σ|−n2 e− 1

2 trΦ
−1(X−ZC′)Σ−1(X−ZC′)′

∝ (1−ρ2)−(n−1)(p+m)e
−
k1−ρk2+ρ2k3

2(1−ρ2) , (14.5.21)

where the matrices and constants used are Ξ as defined previously,

Ψ1 = In, Ψ2 =















0 1 0
1 0 1
. . .

. . .
. . .

0 1
0 1 0















, Ψ3 =















0 0
1
. . .

1
0 0















,

k1 = tr(Ψ1Ξ) =
n

∑

i=1

Ξii, (14.5.22)

k2 = tr(Ψ2Ξ) =

n−1
∑

i=1

(Ξi,i+1 +Ξi+1,i) , (14.5.23)

and

k3 = tr(Ψ3Ξ) =

n−1
∑

i=2

Ξii. (14.5.24)

Again, this is not recognizable as a common distribution.
These are two simple possible structures. There may be others that also

depend on a single parameter or on several parameters. The rejection sam-
pling technique is needed and is simple to carry out because one only needs
to generate random variates from a univariate distribution.

14.5.2 Gibbs Sampling

To find marginal mean estimates of the model parameters from the joint
posterior distribution using the Gibbs sampling algorithm, start with initial
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values for the matrix of sources S, the within observation vector covariance
matrix Σ and the between vector covariance matrix Φ, say S̄(0), Σ̄(0), and Φ̄(0)

or ρ̄(0), then cycle through

C̄(l+1) = a random variate from p(C|S̄(l), R̄(l),Σ̄(l),Φ̄(l),U,X)

= ACYCB
′
C +MC , (14.5.25)

Σ̄(l+1) = a random variate from p(Σ|S̄(l), R̄(l), C̄(l+1),Φ̄(l),U,X)

= AΣ(Y
′
ΣYΣ)−1A′

Σ, (14.5.26)

R̄(l+1) = a random variate from p(R|S̄(l), C̄(l+1),Σ̄(l+1),Φ̄(l),U,X)

= AR(Y
′
RYR)

−1A′
R, (14.5.27)

S̄(l+1) = a random variate from p(S|R̄(l+1), C̄(l+1),Σ̄(l+1),Φ̄(l),U,X)

= ASYSB
′
S +MS , (14.5.28)

Φ̄(l+1) = a random variate from p(Φ|S̄(l+1), R̄(l+1), C̄(l+1),Σ̄(l+1),U,X)

Φ̄(l+1) =

{

Φ0 if known
AΦ(Y

′
ΦYΦ)

−1A′
Φ if general,

(14.5.29)

or

ρ̄(i+1) = a random variate from p(ρ|S̄(l+1), R̄(l+1), C̄(l+1),Σ̄(l+1),U,X),

where

ACA
′
C = Σ̄(l),

BCB
′
C = (D−1 + Z̄ ′

(l)Φ̄
−1
(l) Z̄(l))

−1,

Z̄(l) = (U,S̄(l)),

MC = (X ′Φ̄−1
(l) Z̄(l) +C0D

−1)(D−1 + Z̄ ′
(l)Φ̄

−1
(l) Z̄(l))

−1,

AΣA
′
Σ = (X− Z̄(l)C̄

′
(l+1))

′Φ̄−1
(l) (X− Z̄(l)C̄

′
(l+1))

+ (C̄(l+1)−C0)D
−1(C̄(l+1)−C0)

′+Q,

ARA
′
R = (S̄(l)−S0)

′Φ̄−1
(l) (S̄(l)−S0)+V,

ASA
′
S = Φ̄(l),

BSB
′
S = (R̄−1

(l+1) +Λ̄′
(l+1)Σ̄

−1
(l+1)Λ̄(l+1))

−1,

MS = [S0R̄
−1
(l+1) +(X−UB̄′

(l+1))Σ̄
−1
(l+1)Λ̄(l+1)]

×(R̄−1
(l+1) +Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))

−1,

AΦA
′
Φ = (X− Z̄(l+1)C̄

′
(l+1))Σ̄

−1
(l+1)(X− Z̄(l+1)C̄

′
(l+1))

′+

(S̄(l+1)−S0)R̄
−1
(l+1)(S̄(l+1)−S0)

′+Ψ,

while YC , YΣ, YR, YS , and YΦ are p×(m+q+1), (n+ν+m+q+1+p+1)×p,
(n+η+m+1)×m, n×m, and (p+m+κ+n+1)×n dimensional matrices

© 2003 by Chapman & Hall/CRC



respectively, whose elements are random variates from the standard Scalar
Normal distribution. The formulas for the generation of random variates from
the conditional posterior distributions are easily found from the methods in
Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of the parameters

S̄ =
1

L

L
∑

l=1

S̄(l) R̄=
1

L

L
∑

l=1

R̄(l) C̄ =
1

L

L
∑

l=1

C̄(l)

Σ̄ =
1

L

L
∑

l=1

Σ̄(l) Φ̄ =
1

L

L
∑

l=1

Φ̄(l) or ρ̄=
1

L

L
∑

l=1

ρ̄(l)

which are the exact sampling-based marginal posterior mean estimates of
the parameters. Exact sampling-based estimates of other quantities can also
be found. Similar to Bayesian Regression, Bayesian Factor Analysis, and
Bayesian Source Separation, there is interest in the estimate of the marginal
posterior variance of the matrix containing the Regression and mixing coeffi-
cients

var(c|X,U) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄,

where c = vec(C) and c̄ = vec(C̄). The covariance matrices of the other pa-
rameters follow similarly. With a specification of Normality for the marginal
posterior distribution of the vector containing the Regression and mixing co-
efficients, their distribution is

p(c|X,U) ∝ |∆̄|− 1
2 e−

1
2 (c−c̄)′∆̄−1(c−c̄), (14.5.30)

where c̄ and ∆̄ are as previously defined.
To determine statistical significance with the Gibbs sampling approach, use

the marginal distribution of the matrix containing the Regression and mixing
coefficients given above. General simultaneous hypotheses can be evaluated
regarding the entire matrix containing the Regression and mixing coefficients,
a submatrix, or a particular independent variable or source, or an element
by computing marginal distributions. It can be shown that the marginal
distribution of the kth column of the matrix containing the Regression and
mixing coefficients C, Ck is Multivariate Normal

p(Ck|C̄k,X,U)∝ |∆̄k|−
1
2 e−

1
2 (Ck−C̄k)

′∆̄−1
k

(Ck−C̄k), (14.5.31)
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where ∆̄k is the covariance matrix of Ck found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

Significance can be determined for a subset of coefficients of the kth column
of C by determining the marginal distribution of the subset within Ck which is
also Multivariate Normal. With the subset being a singleton set, significance
can be determined for a particular coefficient with the marginal distribution
of the scalar coefficient which is

p(Ckj|C̄kj ,X,U)∝ (∆̄kj)
− 1

2 e
−

(Ckj−C̄kj)
2

2∆̄kj , (14.5.32)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that C̄kj = c̄jk and that

z =
(Ckj− C̄kj)

√

∆̄kj

(14.5.33)

follows a Normal distribution with a mean of zero and variance of one.

14.5.3 Maximum a Posteriori

The joint posterior distribution can also be maximized with respect to the
model parameters. To maximize the joint posterior distribution using the
ICM algorithm, start with initial values for S, and Φ, say S̃(0) and Φ̃(0), and
then cycle through

C̃(l+1) =
Arg Max

C p(C|S̃(l), R̃(l),Σ̃(l),Φ̃(l),U,X)

= [X ′Φ̃−1
(l) Z̃(l) +C0D

−1](D−1 + Z̃ ′
(l)Φ̃

−1
(l) Z̃(l))

−1,

Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l+1), S̃(l), R̃(l),Φ̃(l),U,X)

= [(X− Z̃(l)C̃
′
(l+1))

′Φ̃−1
(l) (X− Z̃(l)C̃

′
(l+1))

+ (C̃(l+1)−C0)D
−1(C̃(l+1)−C0)

′+Q]/(n+ν+m+ q+1),

R̃(l+1) =
Arg Max

R p(R|C̃(l+1), Z̃(l),Σ̃(l+1),Φ̃(l),X)

=
(S̃(l)−S0)

′Φ̃−1
(l) (S̃(l)−S0)+V

n+η
,

S̃(l+1) =
Arg Max

S p(S|B̃(l+1), R̃(l+1), Λ̃(l+1),Σ̃(l+1),Φ̃(l),U,X),

= [S0R̃
−1
(l+1) +(X−UB̃′

(l+1))Σ̃
−1
(l+1)Λ̃(l+1)]

×(R̃−1
(l+1) +Λ̃′

(l+1)Σ̃
−1
(l+1)Λ̃(l+1))

−1,

Φ̃(l+1) =
Arg Max

Φ p(Φ|C̃(l+1), Z̃(l+1), R̃(l+1),Σ̃(l+1),X),

Φ̃(l+1) = [(X− Z̃(l+1)C̃
′
(l+1))Σ̃

−1
(l+1)(X− Z̃(l+1)C̃

′
(l+1))

′
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+ (S̃(l+1)−S0)R̃
−1
(l+1)(S̃(l+1)−S0)

′+Ψ]/(p+m+κ),

or

ρ̃(l+1) =
Arg Max

ρ p(ρ|C̃(l+1), Z̃(l+1), R̃(l+1),Σ̃(l+1),X),

where the matrix Z̃(l) = (U,S̃(l)) until convergence is reached. The converged

values (C̃, S̃, R̃,Σ̃,Φ̃) are joint posterior modal (maximum a posteriori) esti-
mates of the model parameters. Conditional maximum a posteriori variance
estimates can also be found. The conditional modal variance of the matrix
containing the Regression and mixing coefficients is

var(C|C̃, S̃, R̃,Σ̃,Φ̃, ,X,U) = Σ̃⊗ (D−1⊗ Z̃ ′Φ̃−1Z̃)−1

or equivalently

var(c|c̃, S̃, R̃,Σ̃,Φ̃,X,U) = (D−1⊗ Z̃ ′Φ̃−1Z̃)−1⊗ Σ̃

= ∆̃,

where c = vec(C), S̃, R̃, and Σ̃ are the converged value from the ICM algo-
rithm.

To determine statistical significance with the ICM approach, use the con-
ditional distribution of the matrix containing the Regression and mixing co-
efficients which is

p(C|C̃, S̃, R̃,Σ̃,Φ̃,X,U) ∝ |D−1 + Z̃ ′Φ̃−1Z̃| 12 |Σ̃|− 1
2

×e−
1
2 trΣ̃

−1(C−C̃)(D−1+Z̃′Φ̃−1Z̃)(C−C̃)′ .

(14.5.34)

That is,

C|C̃, S̃, R̃,Σ̃,Φ̃,X,U ∼N
(

C̃,Σ̃⊗ (D−1 + Z̃ ′Φ̃−1Z̃)−1
)

. (14.5.35)

General simultaneous hypotheses can be evaluated regarding the entire ma-
trix containing the Regression and mixing coefficients, a submatrix, or the
coefficients of a particular independent variable or source, or an element by
computing marginal conditional distributions.

It can be shown [17, 41] that the marginal conditional distribution of any
column of the matrix containing the Regression and mixing coefficients C, Ck

is Multivariate Normal

p(Ck|C̃k, S̃,Σ̃,Φ̃,U,X)∝ |WkkΣ̃|−
1
2 e−

1
2 (Ck−C̃k)

′(WkkΣ̃)−1(Ck−C̃k), (14.5.36)
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where W = (D−1 + Z̃ ′Φ̃−1Z̃)−1 and Wkk is its kth diagonal element.
With the marginal distribution of a column of C, significance can be de-

termined for a particular independent variable or source. Significance can be
determined for a subset of coefficients by determining the marginal distrib-
ution of the subset within Ck which is also Multivariate Normal. With the
subset being a singleton set, significance can be determined for a particular
coefficient with the marginal distribution of the scalar coefficient which is

p(Ckj|C̃kj , S̃,Σ̃jjΦ̃,U,X)∝ (WkkΣ̃jj)
− 1

2 e
−

(Ckj−C̃kj)
2

2WkkΣ̃jj , (14.5.37)

where Σ̃jj is the jth diagonal element of Σ̃. Note that C̃kj = c̃jk and that

z =
(Ckj− C̃kj)
√

WkkΣ̃jj

(14.5.38)

follows a Normal distribution with a mean of zero and variance of one.

14.6 Generalized Priors and Posterior

Generalized Conjugate prior distributions are assessed in order to quantify
available prior information regarding values of the model parameters. The
joint prior distribution for the matrix of sources S, the within source vector
covariance matrix R, the between source vector covariance matrix χ, the vec-
tor of Regression/mixing coefficients c= vec(C), the within observation vector
covariance matrix Σ, and the between observation vector Φ is given by

p(S,R,χ,c,Σ,Φ) = p(S|R,χ)p(R)p(χ)p(c)p(Σ)p(Φ), (14.6.1)

where the prior distribution for the parameters from the generalized Conjugate
procedure outlined in Chapter 4 are as follows

p(S|R,χ) ∝ |R|−n2 |χ|−m2 e− 1
2 trχ

−1(S−S0)R−1(S−S0)′ , (14.6.2)

p(R) ∝ |R|−
η
2 e−

1
2 trR

−1V , (14.6.3)

p(Σ) ∝ |Σ|− ν2 e− 1
2 trΣ

−1Q, (14.6.4)

p(c) ∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0), (14.6.5)

p(Φ) ∝ |Φ|−κ2 e− 1
2 trΦ

−1Ψ, (14.6.6)

p(χ) ∝ |χ|−
ξ
2 e−

1
2 trχ

−1Ξ, (14.6.7)



where χ, Ξ, Σ, R, V , Q, ∆, Φ, and Ψ are positive definite matrices. The
hyperparameters S0, η, V , ν, Q, c0, ∆, ξ, and Ξ are to be assessed. Upon
assessing the hyperparameters, the joint prior distribution is completely de-
termined.

The prior distribution for the matrix of sources S is Matrix Normally dis-
tributed, the prior distribution for the within source vector covariance matrix
R is InvertedWishart distributed, the prior distribution for the between source
vector covariance matrix χ is Inverted Wishart distributed, the prior distrib-
ution for the vector of Regression/mixing coefficients c= vec(C), C = (B,Λ)
is Multivariate Normally distributed, the prior distribution for the error co-
variance matrix Σ is Inverted Wishart distributed, and the prior distribution
for the between observation vector covariance matrix Φ is Inverted Wishart
distributed.

Note that R, χ, Σ, and Φ, are full covariance matrices allowing within and
between correlation for the observed mixed signals vectors (microphones) and
also for the unobserved source vectors (speakers). The mean of the sources
is often taken to be constant for all observations and thus without loss of
generality taken to be zero. An observation (time) varying source mean is
adopted here.

Upon using Bayes’ rule the joint posterior distribution for the unknown
parameters with generalized Conjugate prior distributions for the model pa-
rameters is given by

p(S,R,χ,c,Σ,Φ) = p(S|R,χ)p(R)p(χ)p(c)p(Σ)p(Φ), (14.6.8)

which is

p(S,R,χ,c,Σ,Φ|U,X) ∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ

−1[(X−ZC′)′Φ−1(X−ZC′)+Q]

×|R|−
(n+η)

2 e−
1
2 trR

−1[(S−S0)′χ−1(S−S0)+V ]

×e−
1
2 (c−c0)′∆−1(c−c0)|Φ|−

(p+κ)
2 e−

1
2 trΦ

−1Ψ

×|χ|−
ξ
2 e−

1
2 trχ

−1Ξ (14.6.9)

after inserting the joint prior distribution and likelihood.

This joint posterior distribution is now to be evaluated in order to ob-
tain parameter estimates of the matrix of sources S, the vector of Regres-
sion/mixing coefficients c, the within source vector covariance matrix R, the
between source vector covariance matrix χ, the within observation covariance
matrix Σ, and the between observation covariance matrix Φ.
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14.7 Generalized Estimation and Inference

With the above posterior distribution, it is not possible to obtain marginal
distributions and thus marginal estimates for all or any of the parameters
in an analytic closed form or explicit maximum a posteriori estimates from
differentiation. It is possible to use both Gibbs sampling to obtain marginal
parameter estimates and the ICM algorithm for maximum a posteriori esti-
mates. For both estimation procedures, the posterior conditional distributions
are required.

14.7.1 Posterior Conditionals

Both the Gibbs sampling and ICM algorithms require the posterior condi-
tional distributions. Gibbs sampling requires the conditionals for the genera-
tion of random variates while ICM requires them for maximization by cycling
through their modes or maxima.

The conditional posterior distribution of the matrix of sources S is found
by considering only the terms in the joint posterior distribution which involve
S and is given by

p(S|B,R,χ,Λ,Σ,Φ,U,X) ∝ p(S|R,χ)p(X|B,S,Λ,Σ,Φ,U)

∝ e−
1
2 trχ

−1(S−S0)R−1(S−S0)′

×e−
1
2 trΦ

−1(X−UB′
−SΛ′)Σ−1(X−UB′

−SΛ′)′ ,

(14.7.1)

which after performing some algebra in the exponent can be written as

p(s|B,R,χ,Λ,Σ,Φ,u,x) ∝ e−
1
2 (s−s̃)′(χ−1

⊗R−1+Φ−1
⊗Λ′Σ−1Λ)(s−s̃), (14.7.2)

where the vector s̃ has been defined to be

s̃ = [χ−1⊗R−1 +Φ−1⊗Λ′Σ−1Λ]−1

×[(χ−1⊗R−1)s0 +(Φ−1⊗Λ′Σ−1Λ)ŝ], (14.7.3)

and the matrix Ŝ has been defined to be

Ŝ = (X−UB′)Σ−1Λ(Λ′Σ−1Λ)−1, (14.7.4)

with the vector ŝ has been defined to be

ŝ = vec(Ŝ′). (14.7.5)

© 2003 by Chapman & Hall/CRC



That is, the matrix of sources S given the matrix of Regression coefficients
B, the within source vector covariance matrix R, the between source vector
covariance matrix χ, the matrix of mixing coefficients Λ, the within observa-
tion vector covariance matrix Σ, the between observation vector covariance
matrix Φ, the matrix of observable sources U , and the matrix of data is Matrix
Normally distributed.

The conditional posterior distribution of the within source vector covari-
ance matrix R is found by considering only the terms in the joint posterior
distribution which involve R and is given by

p(R|B,S,χ,Λ,Σ,Φ,U,X) ∝ p(R)p(S|R,χ)
∝ |R|− ν2 e− 1

2 trR
−1V |R|−n2 e− 1

2 trR
−1(S−S0)′χ−1(S−S0)

∝ |R|−
(n+ν)

2 e−
1
2 trR

−1[(S−S0)′χ−1(S−S0)+V ]. (14.7.6)

That is, the conditional posterior distribution of the within source vector
covariance matrix R given the the matrix of Regression coefficients B, the
matrix of sources S, the between source vector covariance matrix χ, the matrix
of mixing coefficients Λ, the within observation vector covariance matrix Σ,
the between observation vector covariance matrix Φ, the matrix of observable
sources U , and the matrix of data X has an Inverted Wishart distribution.

The conditional posterior distribution of the vector of Regression/mixing
coefficients c matrix is found by considering only the terms in the joint pos-
terior distribution which involve c or C and is given by

p(c|S,R,χ,Σ,Φ,U,X) ∝ p(c)p(X|Z,C,Σ,U)

∝ |∆|− 1
2 e−

1
2 (c−c0)′∆−1(c−c0)

×|Σ|−n2 e− 1
2 trΣ

−1(X−ZC′)′Φ−1(X−ZC′), (14.7.7)

which after performing some algebra in the exponent becomes

p(c|S,R,χ,Σ,Φ,U,X) ∝ e−
1
2 (c−c̃)′[∆−1+Z′Φ−1Z⊗Σ−1](c−c̃), (14.7.8)

where the vector c̃ has been defined to be

c̃= [∆−1 +Z ′Φ−1Z⊗Σ−1]−1[∆−1c0 +(Z ′Φ−1Z⊗Σ−1)ĉ], (14.7.9)

and the vector ĉ has been defined to be

ĉ= vec[X ′Z(Z ′Φ−1Z)−1]. (14.7.10)

The conditional posterior distribution of the vector of Regression/mixing
coefficients given the matrix of sources S, the within source vector covariance
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matrix R, the between source vector covariance matrix χ, the within obser-
vation vector covariance matrix Σ, the between observation vector covariance
matrix Φ, the matrix of observable sources U , and the matrix of data X is
Multivariate Normally distributed.

The conditional posterior distribution of the within observation vector co-
variance matrix Σ is found by considering only the terms in the joint posterior
distribution which involve Σ and is given by

p(Σ|C,Z,R,χ,Φ,U,X) ∝ p(Σ)p(X|S,C,Z,Σ)

∝ |Σ|−
(n+ν)

2 e−
1
2 trΣ

−1[(X−ZC′)′Φ−1(X−ZC′)+Q].

(14.7.11)

That is, the conditional distribution of the within observation vector covari-
ance matrix Σ given matrix of Regression/mixing coefficients C, the matrix of
sources S, the within source vector covariance matrix R, the between source
covariance matrix χ, the between observation covariance matrix Φ, the matrix
of observable sources U , and the matrix of data X has an Inverted Wishart
distribution.

The conditional posterior distribution for the between observation vector
covariance matrix Φ is found by considering only the terms in the joint pos-
terior distribution which involve Φ and is given by

p(Φ|S,C,R,χ,Σ,U,X) ∝ p(Φ)p(X|S,C,Σ,Φ)

∝ |Φ|−κ2 e− 1
2 trΦ

−1Ψ

×|Φ|−
p
2 e−

1
2 trΦ

−1(X−ZC′)Σ−1(X−ZC′)′

∝ |Φ|−
p+κ

2 e−
1
2 trΦ

−1[(X−ZC′)Σ−1(X−ZC′)′+Ψ].

(14.7.12)

The conditional posterior distribution for the between observation vector
covariance matrix Φ given the matrix of sources S, the matrix of Regres-
sion/mixing coefficients C, the within source vector covariance matrix R, the
between source vector covariance matrix χ, the within observation vector co-
variance matrix Σ, the matrix of observable sources U , and the matrix of data
X is Inverted Wishart distributed.

The conditional posterior distribution for the between observation vector
covariance matrix χ is found by considering only the terms in the joint pos-
terior distribution which involve χ and is given by

p(χ|S,C,R,Σ,Φ,U,X) ∝ p(χ)p(S|R,χ)
∝ |χ|−

ξ
2 e−

1
2 trχ

−1Ξ
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×|χ|−m2 e− 1
2 trχ

−1(S−S0)R−1(S−S0)′

∝ |χ|−
m+ξ

2 e−
1
2 trχ

−1[(S−S0)R−1(S−S0)′+Ξ].

(14.7.13)

The conditional posterior distribution for the between source vector covari-
ance matrix χ given the matrix of sources S, the matrix of Regression/mixing
coefficients C, the within source vector covariance matrix R, the within obser-
vation vector covariance matrix Σ, the between observation vector covariance
matrix Φ, the matrix of observable sources U , and the matrix of data X is
Inverted Wishart distributed.

The modes of these conditional distributions are S̃, c̃, (both as defined
above)

R̃ =
(S−S0)

′χ−1(S−S0)+V

n+η
, (14.7.14)

Σ̃ =
(X−ZC ′)′Φ−1(X−ZC ′)+Q

n+ν
, (14.7.15)

Φ̃ =
(X−ZC ′)Σ−1(X−ZC ′)′+Ψ

p+κ
, (14.7.16)

and

χ̃=
(S−S0)R

−1(S−S0)
′+Ξ

m+ ξ
(14.7.17)

respectively.

14.7.2 Gibbs Sampling

To find marginal mean estimates of the parameters from the joint posterior
distribution using the Gibbs sampling algorithm, start with initial values for
the vector of sources s, the within source vector covariance matrix R, and the
within observation vector covariance matrix Σ, say s̄(0), R̄(0) and Σ̄(0), and
then cycle through

R̄(l+1) = a random variate from p(R|S̄(l), C̄(l),Σ̄(l),Φ̄(l), χ̄(l),U,X)

= AR(Y
′
RYR)

−1A′
R, (14.7.18)

c̄(l+1) = a random variate from p(c|S̄(l), R̄(l+1),Σ̄(l),Φ̄(l), χ̄(l),U,X)

= AcYc+Mc, (14.7.19)
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Σ̄(l+1) = a random variate from p(Σ|S̄(l), R̄(l+1), C̄(l+1),Φ̄(l), χ̄(l),U,X)

= AΣ(Y
′
ΣYΣ)

−1A′
Σ, (14.7.20)

s̄(l+1) = a random variate from p(s|R̄(l+1), C̄(l+1),Σ̄(l+1),Φ̄(l), χ̄(l),u,x)

= AsYs+Ms, (14.7.21)

Φ̄(l+1) = a random variate from p(Φ|S̄(l+1), R̄(l+1), C̄(l+1),Σ̄(l+1), χ̄(l),U,X)

= AΦ(Y
′
ΦYΦ)

−1A′
Φ, (14.7.22)

χ̄(l+1) = a random variate from p(χ|S̄(l+1), R̄(l+1), C̄(l+1),Σ̄(l+1),Φ̄(l+1),U,X)

= Aχ(Y
′
χYχ)

−1A′
χ, (14.7.23)

where

Z̄(l) = (U,S̄(l)),

ĉ(l) = vec[X ′Z̄(l)(Z̄
′
(l)Φ̄

−1
(l+1)Z̄(l))

−1],

c̄(l+1) = [∆−1 + Z̄ ′
(l)Φ̄

−1
(l+1)Z̄(l)⊗ Σ̄−1

(l) ]
−1[∆−1c0 +(Z̄ ′

(l)Φ̄
−1
(l+1)Z̄(l)⊗ Σ̄−1

(l) )ĉ(l)],

AcA
′
c = (∆−1 + Z̄ ′

(l)Φ̄
−1
(l+1)Z̄(l)⊗ Σ̄−1

(l) )
−1,

Mc = [∆−1 + Z̄ ′
(l)Φ̄

−1
(l+1)Z̄(l)⊗ Σ̄−1

(l) ]
−1[∆−1c0 +(Z̄ ′

(l)Φ̄
−1
(l+1)Z̄(l)⊗ Σ̄−1

(l) )ĉ],

AΣA
′
Σ = (X− Z̄(l)C̄

′
(l+1))

′Φ̄−1
(l) (X− Z̄(l)C̄

′
(l+1))

+ (C̄(l+1)−C0)D
−1(C̄(l+1)−C0)

′+Q,

ARA
′
R = (S̄(l)−S0)

′Φ̄−1
(l) (S̄(l)−S0)+V,

AsA
′
s = (χ̄−1

(l) ⊗ R̄−1
(l+1) +Φ̄−1

(l) ⊗ Λ̄′
(l+1)Σ̄

−1
(l+1)Λ̄(l+1))

−1,

ŝ(l) = vec[(Λ̄′
(l+1)Σ̄

−1
(l+1)Λ̄(l+1))

−1Λ̄′
(l+1)Σ̄

−1
(l+1)(X−UB̄′

(l+1))
′,

Ms = [χ̄−1
(l) ⊗ R̄−1

(l+1) +Φ̄−1
(l) ⊗ Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1)]

−1,

×[(χ̄−1
(l) ⊗ R̄−1

(l+1))s0 +(Φ̄−1
(l) ⊗ Λ̄′

(l+1)Σ̄
−1
(l+1)Λ̄(l+1))ŝ(l)]

AΦA
′
Φ = (X− Z̄(l+1)C̄

′
(l+1))Σ̄

−1
(l+1)(X− Z̄(l+1)C̄

′
(l+1))

′+Ψ,

AχA
′
χ = [(S̄(l+1)−S0)R̄

−1
(l+1)(S̄(l+1)−S0)

′+Ξ,

while YC , YΣ, YR, YS , YΦ, and Yχ are p× (m+q+1), (n+ν+m+q+1+p+
1)×p, (n+η+m+1)×m, n×m, (p+m+κ+n+1)×n, and (m+ξ+n+1)×n
dimensional matrices respectively, whose elements are random variates from
the standard Scalar Normal distribution. The formulas for the generation of
random variates from the conditional posterior distributions are easily found
from the methods in Chapter 6.

The first random variates called the “burn in” are discarded and after doing
so, compute from the next L variates means of the parameters

s̄=
1

L

L
∑

l=1

s̄(l) R̄=
1

L

L
∑

l=1

R̄(l) c̄=
1

L

L
∑

l=1

c̄(l)
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Σ̄ =
1

L

L
∑

l=1

Σ̄(l) Φ̄ =
1

L

L
∑

l=1

Φ̄(l) χ̄=
1

L

L
∑

l=1

χ̄(l)

which are the exact sampling-based marginal posterior mean estimates of the
parameters.

Exact sampling-based estimates of other quantities can also be found. Sim-
ilar to Bayesian Regression, Bayesian Factor Analysis, and Bayesian Source
Separation, there is interest in the estimate of the marginal posterior variance
of the matrix containing the Regression and mixing coefficients

var(c|X,U) =
1

L

L
∑

l=1

c̄(l)c̄
′
(l)− c̄c̄′

= ∆̄

where c= vec(C) and c̄= vec(C̄).
The covariance matrices of the other parameters follow similarly.

14.7.3 Maximum a Posteriori

The joint posterior distribution can also be maximized with respect to the
vector of coefficients c, the vector of sources s, the within source vector co-
variance matrix R, the between source vector covariance matrix χ, the within
observation vector covariance matrix Σ, and the between observation vector
covariance matrix Φ, using the ICM algorithm. To maximize the joint poste-
rior distribution using the ICM algorithm, start with initial values for S, Σ,
c, and R, say S̃(0), Σ̃(0), c̃(0), R̃(0), and then cycle through

χ̃(l+1) =
Arg Max

χ p(χ|C̃(l), Z̃(l), R̃(l),Σ̃(l),Φ̃(l),X)

=
[(S̃(l)−S0)R̃

−1
(l) (S̃(l)−S0)

′+Ξ

m+ ξ
,

Φ̃(l+1) =
Arg Max

Φ p(Φ|C̃(l), Z̃(l), R̃(l),Σ̃(l), χ̃(l+1),X)

=
(X− Z̃(l)C̃

′
(l))Σ̃

−1
(l) (X− Z̃(l)C̃

′
(l))

′+Ψ

p+κ
,

S̃(l+1) =
Arg Max

S p(S|B̃(l), R̃(l), Λ̃(l),Σ̃(l),Φ̃(l+1), χ̃(l+1),U,X),

ŝ(l) = vec[(Λ̃′
(l)Σ̃

−1
(l) Λ̃(l))

−1Λ̃′
(l)Σ̃

−1
(l) (X−UB̃′

(l))
′],

s̃(l+1) = [χ̃−1
(l+1)⊗ R̃−1

(l) +Φ̃−1
(l+1)⊗ Λ̃′

(l)Σ̃
−1
(l) Λ̃(l)]

−1

×[(χ̃−1
(l+1)⊗ R̃−1

(l) )s0 +(Φ̃−1
(l+1)⊗ Λ̃′

(l)Σ̃
−1
(l) Λ̃(l))ŝ(l)],
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Σ̃(l+1) =
Arg Max

Σ p(Σ|C̃(l), S̃(l+1), R̃(l),Φ̃(l+1), χ̃(l+1),U,X)

=
(X− Z̃(l+1)C̃

′
(l))

′Φ̃−1
(l+1)(X− Z̃(l+1)C̃

′
(l))+Q

n+ν
,

c̃(l+1) =
Arg Max

c p(c|S̃(l+1), R̃(l),Σ̃(l+1),Φ̃(l+1), χ̃(l+1)U,X),

ĉ(l) = vec[X ′Z̃(l+1)(Z̃
′
(l+1)Φ̃

−1
(l+1)Z̃(l+1))

−1],

c̃(l+1) = [∆−1 + Z̃ ′
(l+1)Φ̃

−1
(l+1)Z̃(l+1)⊗ Σ̃−1

(l+1)]
−1

×{∆−1c0 +(Z̃ ′
(l+1)Φ̃

−1
(l+1)Z̃(l+1)⊗ Σ̃−1

(l+1))ĉ(l)},

R̃(l+1) =
Arg Max

R p(R|C̃(l+1), Z̃(l+1),Σ̃(l+1),Φ̃(l+1), χ̃(l+1),X)

=
(S̃(l+1)−S0)

′χ̃−1
(l+1)(S̃(l+1)−S0)+V

n+η
,

until convergence is reached with the joint modal estimator for the unobserv-
able parameters (c̃, S̃, R̃, χ̃,Σ̃,Φ̃).

14.8 Interpretation

Although the main focus after having performed a Bayesian Source Sepa-
ration is on the separated sources, there are others. One focus as in Bayesian
Regression is on the estimate of the Regression coefficient matrix B which de-
fines a “fitted” line. Coefficients are evaluated to determine whether they are
statistically “large” meaning that the associated independent variable con-
tributes to the dependent variable or statistically “small” meaning that the
associated independent variable does not contribute to the dependent variable.
The coefficient matrix also has the interpretation that if all of the indepen-
dent variables were held fixed except for one uij which if increased to u∗

ij , the
dependent variable xij increases to an amount x∗

ij given by

x∗
ij = βi0 + · · ·+βiju

∗
ij + · · ·+βiquiq. (14.8.1)

Another focus after performing a Bayesian Source Separation is on the es-
timated mixing coefficients. The mixing coefficients are the amplitudes which
determine the relative contribution of the sources. A particular mixing co-
efficient which is relatively “small” indicates that the corresponding source
does not significantly contribute to the associated observed mixed signal. If
a particular mixing coefficient is relatively “large,” this indicates that the
corresponding source does significantly contribute to the associated observed
mixed signal.
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14.9 Discussion

Note that particular structures for Φ have been specified as has been done in
the context of Bayesian Factor Analysis [50] in order to capture more detailed
covariance structures and reduce computational complexity. This could have
also been done for Σ and χ.
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Exercises

1. For the Conjugate model, specify that Φ is a first order Markov corre-
lation matrix with ii′th element given by ρ|i−i′|. Assess a generalized
Beta prior distribution for ρ. Derive Gibbs sampling and ICM algo-
rithms [50].

2. For the Conjugate model, specify that Φ is an intraclass correlation
matrix with off diagonal element given by ρ. Assess a generalized Beta
prior distribution for ρ. Derive Gibbs sampling and ICM algorithms
[50].

3. Specify that Φ and χ have degenerate distributions,

p(Φ) =

{

1, if Φ = Φ0

0, if Φ =Φ0,
(14.9.1)

and

p(χ) =

{

1, if χ= χ0

0, if χ = χ0,
(14.9.2)

which means that Φ and χ are known. Derive Gibbs sampling and ICM
algorithms.
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15

Conclusion

There is a lot of material that needed to be covered in this text. The
first part on fundamential material was necessary in order to properly un-
derstand the Bayesian Source Separation model. I have tried to provide a
coherent description of the Bayesian Source Separation model and how it can
be understood by starting with the Regression model.

Throughout the text, Normal likelihoods with Conjugate and generalized
Conjugate prior distributions have been used. The coherent Bayesian Source
Separation model presented in this text provides the foundation for general-
izations to other distributions.

As stated in the Preface, the Bayesian Source Separation model incorporates
available prior knowledge regarding parameter values and incorporates it into
the inferences. This incorporation of knowledge avoids model and likelihood
constraints which are necessary without it.
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Appendix A

FMRI Activation Determination

A particular source reference function is deemed to significantly contribute
to the observed signal if its (mixing) coefficient is “large” in the statistical
sense. Statistically significant activation is determined from the coefficients
for source reference functions. If the coefficient is “large,” then the associated
source reference function is significant; if it is “small,” then the associated
source reference function is not significant. The linear Regression model is
presented in its Multivariate Regression format as in Chapter 7 where voxels
are assumed to be spatially dependent.

Statistically significant activation associated with a particular source ref-
erence function is found by considering its corresponding coefficient. Signif-
icance of the coefficients for the linear model is discussed in which spatially
dependent voxels are assumed (with independent voxels being a specific case)
when the source reference functions are assumed to be observable (known).
The joint distribution of the coefficients for all source reference function for
all voxels is determined. From the joint distribution, the marginal distribu-
tion for the coefficients of a particular source reference function for all voxels
is presented so that significance of a particular source reference function can
be determined for all voxels. The marginal distribution of a subset of voxels
for a particular source reference functions coefficients can be derived so that
significant activation in a set of voxels can be determined for a given source
reference function. With the above mentioned subset consisting of a single
voxel, the marginal distribution is that of a particular source reference func-
tion coefficient in a given voxel. From this significance corresponding to a
particular source reference function in each voxel can be determined.

A.1 Regression

Consider the linear multiple Regression model

xtj = cj0 + cj1zt1 + cj2zt2 + · · ·+ cjτztτ + ǫtj (A.1.1)

in which the observed signal in voxel j at time t is made up of a linear
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combination of the τ observed (known) source reference functions zt1, . . . ,ztτ

plus an intercept term. In terms of vectors the model is

xtj = c′jzt + ǫtj , (A.1.2)

where for the Source Separation model c′j = (β′
j ,λ

′
j) and z′t = (u′

t,s
′
t).

The linear Regression model for a given voxel j at all n time points is
written in vector form as

Xj = Zcj +Ej , (A.1.3)

where Xj = (x1j , . . . ,xnj)
′ is a n× 1 vector of observed values for voxel j,

Z = (z1, . . . ,zn)
′ is an n× (τ +1) design matrix, cj = (cj0, cj1, . . . , cjτ )

′ is a
(τ +1)× 1 matrix of Regression coefficients, and Ej is an n× 1 vector of
errors. The model for all p voxels at all n time points is written in its matrix
form as

X = ZC ′+E, (A.1.4)

where X = (X1, . . . ,Xp) = (x1, . . . ,xn)
′ is an n×p matrix of the observed val-

ues, C = (c1, . . . , cp)
′ is a p× (τ +1) matrix of Regression coefficients, and

E = (E1, . . . ,Ep) = (ǫ1, . . . , ǫn)
′ is an n×p matrix of errors.

With the distributional specification that ǫt ∼N(0,Σ) as in the aforemen-
tioned Source Separation model, the likelihood of the observations is

p(X|Z,C,Σ)∝ |Σ|−
n
2 e−

1
2 trΣ−1(X−ZC′)′(X−ZC′). (A.1.5)

It is readily seen by performing some algebra in the exponent of the afore-
mentioned likelihood that it can be written as

p(X|Z,C,Σ)∝ |Σ|−
n
2 e−

1
2 trΣ−1[(C−Ĉ)Z′Z(C−Ĉ)′+(X−ZĈ′)′(X−ZĈ′)], (A.1.6)

where Ĉ =X ′Z(Z ′Z)−1. By inspection or by differentiation with respect to C
it is seen that Ĉ is the value of C which yields the maximum of the likelihood
and thus is the maximum likelihood estimator of the Regression coefficients
C. It can further be seen by differentiation of Equation A.1.5 with respect to
Σ that

Σ̂ =
(X−ZĈ ′)′(X−ZĈ ′)

n
(A.1.7)

is the maximum likelihood estimate of Σ.
It is readily seen that the matrix of coefficients follows a Matrix Normal

distribution given by
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p(Ĉ|X,Z,C,Σ)∝ |Z ′Z|
p
2 |Σ|−

(τ+1)
2 e−

1
2 trΣ−1(Ĉ−C)Z′Z(Ĉ−C)′ (A.1.8)

and that G= nΣ̂ = (X−ZĈ ′)′(X−ZĈ ′) follows a Wishart distribution given
by

p(G|X,Z,Σ)∝ |Σ|−
(n−τ−1)

2 |G|
(n−τ−1−p−1)

2 e−
1
2 trΣ−1G. (A.1.9)

It can also be shown as in Chapter 7 that Ĉ|Σ and G|Σ are independent.

The distribution of Ĉ unconditional of Σ as in Chapter 7 is the Matrix
Student T-distribution given by

p(Ĉ|X,Z,C)∝ |G+(Ĉ−C)(Z ′Z)(Ĉ−C)′|−
(n−τ+1)+(τ+1))

2 (A.1.10)

which can be written in the more familiar form

p(Ĉ|X,Z,C)∝
1

|W +(Ĉ−C)′G−1(Ĉ−C)|
(n−τ+1)+(τ+1)

2

, (A.1.11)

where W = (Z ′Z)−1.

General simultaneous hypotheses (which do not assume spatial indepen-
dence) can be performed regarding the coefficient for a particular source ref-
erence function in all voxels (or a subset of voxels) by computing marginal
distributions. It can be shown [17, 41] that the marginal distribution of any
column of the matrix of Ĉ, Ĉk is Multivariate Student t-distributed

p(Ĉk|Ck,X,Z)∝
1

|Wkk +(Ĉk −Ck)′G−1(Ĉk −Ck)|
(n−τ−p)+p

2

(A.1.12)

where Wkk is the kth diagonal element of W . With the marginal distribution
of a column of Ĉ, significance can be determined for the coefficient of a par-
ticular source reference function for all voxels. Significance can be determined
for a subset of voxels for a particular source reference function by determining
the marginal distribution of the subset within Ĉk which is also Multivariate
Student t-distributed. With the subset of voxels being a singleton set, signifi-
cance can be determined for a particular source reference function for a given
voxel with the marginal distribution of the scalar coefficient which is

p(Ĉkj|Ckj ,X,Z)∝
1

|Wkk +(Ĉkj −Ckj)G
−1
jj (Ĉkj −Ckj)|

(n−τ−p)+(τ+1)
2 ,

(A.1.13)
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where Gjj = (Xj −Zĉj)
′(Xj −Zĉj) is the jth diagonal element of G. The

above can be rewritten in the more familiar form

p(Ĉkj|Ckj ,X,Z)∝
1

[

(n− τ −p)+
(Ĉkj−Ckj)2

(n−τ−p)−1WkkGjj

]

n−(τ−1)+1
2

(A.1.14)

which is readily recognizable as a Scalar Student t-distribution. Note that
Ĉkj = cjk and that

t=
(Ĉkj −Ckj)

√

WkkGjj(n− τ −p)−1
(A.1.15)

follows a Scalar Student t-distribution with n− τ −p degrees of freedom and
t2 follows an F distribution with 1 and n−τ −p numerator and denominator
degrees of freedom which is commonly used in Regression [39, 64, 68] derived
from a likelihood ratio test of reduced and full models when testing a single
coefficient, thus allowing a t statistic instead of an F statistic.

To determine statistically significant activation in voxels with the Source
Separation model using the standard Regression approach, join the Regression
coefficient and source reference function matrices so that C = (B,Λ) are the
coefficients and Z = (U,S) are the (observable or known) source reference
functions and τ =m+ q. The model and likelihood are now in the standard
Regression formats given above.

A.2 Gibbs Sampling

To determine statistically significant activation with the Gibbs sampling
approach, use the marginal distribution of the mixing coefficients given in
Equation 12.4.2. General simultaneous hypotheses (which do not assume spa-
tial independence) can be performed regarding the coefficient for a particular
source reference function in all voxels by computing marginal distributions.
It can be shown [17, 41] that the marginal distribution of the kth column of
the mixing matrix Λ̄, Λ̄k is Multivariate Normal

p(Λk|Λ̄k,X,U)∝ |∆̄k|
− 1

2 e−
1
2 (Λk−Λ̄k)′∆̄−1

k
(Λk−Λ̄k), (A.2.1)

where ∆̄k is the covariance matrix of Λ̄k found by taking the kth p×p sub-
matrix along the diagonal of ∆̄.

With the marginal distribution of a column of Λ̄, significance can be de-
termined for the coefficient of a particular source reference function for all
voxels. Significance can be determined for a subset of voxels for a particular
source reference function by determining the marginal distribution of the sub-
set within Λ̄k which is also Multivariate Normal. With the subset of voxels
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being a singleton set, significance can be determined for a particular source
reference function for a given voxel with the marginal distribution of the scalar
coefficient which is

p(Λ̄kj|Λkj ,X,U)∝ (∆̄kj)
− 1

2 e
−

(Λkj−Λ̄kj)2

2∆̄kj , (A.2.2)

where ∆̄kj is the jth diagonal element of ∆̄k. Note that Λ̂kj = λ̂jk and that

z =
(Λ̄kj −Λkj)

√

∆̄kj

(A.2.3)

follows a Normal distribution with a mean of zero and variance of one.

A.3 ICM

To determine statistically significant activation with the iterated condi-
tional modes (ICM) approach, use the conditional posterior distribution of
the mixing coefficients given in Equation 12.4.6.

General simultaneous significance (which does not assume spatial indepen-
dence) can be determined regarding the coefficient for a particular source
reference function in all voxels by computing marginal distributions. It can
be shown [17, 41] that the marginal distribution of any column of the matrix
of Λ̃, Λ̃k is Multivariate Normal

p(Λk|Λ̃k, B̃, S̃, R̃,Σ̃,U,X)∝ |WkkΣ̃|
− 1

2 e−
1
2 (Λk−Λ̃k)′(WkkΣ̃)−1(Λj−Λ̃j), (A.3.1)

where W = (D−1 + Z̃ ′Z̃)−1 and Wkk is its kth diagonal element.
With the marginal distribution of a column of Λ̃, significance can be de-

termined for the coefficient of a particular source reference function for all
voxels. Significance can be determined for a subset of voxels for a particular
source reference function by determining the marginal distribution of the sub-
set within Λ̃k which is also Multivariate Normal. With the subset of voxels
being a singleton set, significance can be determined for a particular source
reference function for a given voxel with the marginal distribution of the scalar
coefficient which is

p(Λkj |Λ̃kj , B̃, S̃, R̃,Σ̃jj ,U,X)∝ (WkkΣ̃jj)
− 1

2 e
−

(Λ̃kj−Λkj)2

2WkkΣ̃jj , (A.3.2)

where Σ̃jj is the jth diagonal element of Σ̃. Note that Λ̃kj = λ̃jk and that
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z =
(Λ̃kj −Λkj)
√

WkkΣ̃jj

(A.3.3)

follows a Normal distribution with a mean of zero and variance of one.
After determining the test Statistics, a threshold or significance level is set

and a one to one color mapping is performed. The image of the colored voxels
is superimposed onto an anatomical image.
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Appendix B

FMRI Hyperparameter Assessment

The hyperparameters of the prior distributions could be subjectively as-
sessed from a substantive field expert, or by use of a previous similar set of
data from which the hyperparameters could be assessed as follows. Denote
the previous data by the n0 × p matrix X0 which has the same experimen-
tal design as the current data. The source reference functions corresponding
to the experimental stimuli are chosen to mimic the experiment with peaks
during the experimental stimuli and valleys during the control stimulus, typ-
ically a square, sine, or triangle wave function with unit amplitude and the
same timing as the experiment. Other source reference functions could be as-
sessed from a substantive field expert or possibly from a cardiac or respiration
monitor.

Reparameterizing the prior source reference matrix in terms of columns
instead of rows as S0 = (S01, . . . ,S0m), each of these column vectors is the
time course associated with a source reference function.

Using these a priori values for the source reference functions, the model for
the previous data is

X0 = UB′+S0Λ
′+E (B.1)

= Z0C
′+E (B.2)

with Z0 = (U,S0), C = (B,Λ), and other variables as previously defined. The
likelihood of the previous data is

p(X0|Z0,C,Σ)∝ |Σ|−
n0
2 e−

1
2 trΣ−1(X−Z0C′)′(X−Z0C′) (B.3)

which after rearranging the terms in the exponent becomes

p(X0|Z0,C,Σ)∝ |(Z ′
0Z0)

−1|−
(τ+1)

2 |Σ|−
n0
2 e−

1
2 trΣ−1(C−Ĉ)(Z′

0Z0)(C−Ĉ)′ , (B.4)

where τ = m+ q and Ĉ = X ′
0Z0(Z

′
0Z0)

−1. The above can be viewed as the
distribution of C (which is Normal) given the data and the other parameters
with

E(C|X0,Z0,Σ) = Ĉ (B.5)

var(c|X0,Z0,Σ) = (Z ′
0Z0)

−1⊗Σ, (B.6)
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where c= vec(C). The likelihood can also be viewed as the distribution of Σ
(which is Inverted Wishart) given the data and the other parameters

p(X0|Z0,C,Σ)∝ |Σ|−
n0
2 e−

1
2 trΣ−1G, (B.7)

where G= (X−Z0C
′)′(X−Z0C

′) with

E(Σ|X0,Z0,C) =
G

n0−2p−2
, (B.8)

var(Σjj |X0,Z0,C) =
Gjj

(n0−2p−2)2(n0−2p−4)
. (B.9)

Other second order moments are possible and slightly more complicated [41]
but are not be needed.

Hyperparameters are assessed from the previous data using the means and
variances given above, namely,

C0 = (B0,Λ0) (B.10)

= X ′
0Z0(Z

′
0Z0)

−1 = Ĉ, (B.11)

D = (Z ′
0Z0)

−1, (B.12)

Q = (X−Z0Ĉ
′)′(X−Z0Ĉ

′) =G, (B.13)

ν = n0. (B.14)

Under the assumption of spatially independent voxels,

cj0 = (βj0,λj0) (B.15)

= (Z ′
0Z0)

−1Z ′
0Xj = ĉj , (B.16)

Qjj = (Xj −Z0ĉj)
′(Xj −Z0ĉj) =Gjj , (B.17)

while D, and ν are as defined above.
The hyperparameters η and V which quantify the variability of the source

reference functions around their mean S0 must be assessed subjectively. The
mean and variance of the Inverted Wishart prior distribution as listed in
Chapter 2 for the covariance matrix of the source reference functions are

E(R) =
V

η−2m−2
, var(rkk) =

2v2
kk

(η−2m−2)2(η−2m−4)
. (B.18)

For ease of assessing these parameters V is taken to be diagonal as V = v0Im

thus rkk = r and vkk = v0.
The above means and variances becomes
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E(r) =
v0

η−2m−2
, var(r) =

2v2
0

(η−2m−2)2(η−2m−4)
, (B.19)

a system of two equations with two unknowns. Solving for η and v0 yields

η =
[E(r)]2

2var(r)
+6, v0 = E(r)(η−4) (B.20)

and the hyperparameter assessment has been transformed to assessing a prior
mean and variance for the variance of the source reference functions.
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