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FOREWORD

The Institute for Mathematical Sciences at the National University of Sin-

gapore was established on 1 July 2000 with funding from the Ministry of

Education and the University. Its mission is to provide an international

center of excellence in mathematical research and, in particular, to pro-

mote within Singapore and the region active research in the mathematical

sciences and their applications. It seeks to serve as a focal point for scien-

tists of diverse backgrounds to interact and collaborate in research through

tutorials, workshops, seminars and informal discussions.

The Institute organizes thematic programs of duration ranging from one

to six months. The theme or themes of each program will be in accordance

with the developing trends of the mathematical sciences and the needs and

interests of the local scientific community. Generally, for each program there

will be tutorial lectures on background material followed by workshops at

the research level.

As the tutorial lectures form a core component of a program, the lec-

ture notes are usually made available to the participants for their immediate

benefit during the period of the tutorial. The main objective of the Insti-

tute’s Lecture Notes Series is to bring these lectures to a wider audience.

Occasionally, the Series may also include the proceedings of workshops and

expository lectures organized by the Institute. The World Scientific Pub-

lishing Company and the Singapore University Press have kindly agreed

to publish jointly the Lecture Notes Series. This volume, “Markov Chain

Monte Carlo: Innovations and Applications” is the seventh of this Series.

We hope that through regular publication of lecture notes the Institute will

achieve, in part, its objective of promoting research in the mathematical

sciences and their applications.

July 2005 Louis H. Y. Chen

Denny Leung

Series Editors
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PREFACE

The technique of Markov chain Monte Carlo (MCMC) first arose in statisti-

cal physics, marked by the celebrated 1953 paper of Metropolis, Rosenbluth,

Rosenbluth, Teller and Teller. The underlying principle is simple: if one

wishes to sample randomly from a specific probability distribution then

design a Markov chain whose long-time equilibrium is that distribution,

write a computer program to simulate the Markov chain, and run the pro-

grammed chain for a time long enough to be confident that approximate

equilibrium has been attained; finally record the state of the Markov chain

as an approximate draw from equilibrium. The Metropolis et al. paper used

a symmetric Markov chain; later developments included adaptation to the

case of non-symmetric Markov chains.

The technique has developed strongly in the statistical physics commu-

nity but also in separate ways and with rather different emphases in the

computer science community concerned with the study of random algo-

rithms (where the emphasis is on whether the resulting algorithm scales

well with increasing size of the problem), in the spatial statistics commu-

nity (where one is interested in understanding what kinds of patterns arise

from complex stochastic models), and also in the applied statistics commu-

nity (where it is applied largely in Bayesian contexts, enabling researchers

to formulate statistical models which would otherwise be intransigent to

effective statistical analyses).

Within the statistical physics community, the MCMC technique lies

at the heart of the tradition of “simulation physics”: understanding phase

transition and other physical behaviour by constructing careful simulation

experiments on the computer. A particular line of development for the past

10 years in the statistical physics community is that of extended ensemble

methods, beginning with Berg’s work on the multicanonical method, fol-

lowed by simulated tempering, parallel tempering, broad histogram Monte

Carlo, transition matrix Monte Carlo, etc. These methods substantially

ix



x Preface

extend the ability to simulate complicated systems that are very difficult

to deal with directly, such as spin-glasses, or protein models.

Within the statistics community, landmark papers include the famous

Geman–Geman 1984 paper on image restoration, work by Gelfand and

Smith in 1990 showing that MCMC can be applied effectively to Bayesian

problems, and Green’s (1995) work on dimension-varying problems. The

resulting impact on applied statistics has been truly revolutionary.

A recent theoretical development is that of perfect simulation, address-

ing the following central question: how long should one run the Markov

chain so as to ensure that it is close to equilibrium? This rather startling

development is as follows: in favourable cases one can adjust the Markov

chain Monte Carlo algorithm so as to generate exact draws from the target

distribution. It was given practical effect in two different ways in the semi-

nal papers of Propp and Wilson (1996) and of Fill (1998). Subsequent work

has filled out the mathematical picture by clarifying how recent develop-

ments relate to previous work (both the Propp–Wilson and Fill algorithms

relate in interesting ways to each other and to prior theoretical concepts,

while adding their own attractively empirical flavour).

The development of theory also benefits applications: simulation tech-

niques have been applied to develop practical statistical inferences for

almost all problems in (bio)statistics, for example, the problems in longitu-

dinal data analysis, image analysis, genetics, contagious disease epidemics,

random spatial pattern, and financial statistical models such as GARCH

and stochastic volatility. The techniques also constitute a major part of

today’s bioinformatics toolbox.

The expositions which make up this book arose from a desire to bring

together people who work on innovative developments and applications

across the range of statistics, physics, and bioinformatics, to encourage

cross-fertilization and to challenge each other with varied problems. The

Institute of Mathematical Sciences of the National University of Singapore

kindly and generously agreed to fund a month-long programme of activity

in March 2004, which allowed us to invite a number of distinguished lec-

turers from the different fields, to present courses at graduate level; this

resulted in a memorable and most productive month, greatly facilitated by

the kindness and efficiency of the IMS Director, Prof Louis Chen, and his

talented and able staff. The chapters of this book correspond to several of

these courses: in Chapter 1 Bernd Berg introduces Markov chain Monte

Carlo from the perspective of statistical physics, starting from simple ideas

of probability, and developing MCMC ideas right up to multicanonical en-
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sembles, illustrated using FORTRAN computer code available on the web.

Chapter 2 presents a complementary view from David Landau, with par-

ticular emphasis on issues of finite-size effects, the peculiarities of random

number generators, and a spectrum of ingenious techniques to assess phase

transition effects. In a change of pace, Wilfrid Kendall uses Chapter 3 to

describe the various ideas involved in the transformations of algorithms

known collectively as perfect simulation, which in favourable cases deliver

exact draws in random rather than deterministic runtimes. A very different

theme is treated by Rong Chen in Chapter 4: simulation algorithms that

process information sequentially (known as Sequential Monte Carlo), either

because this is natural to the algorithm itself, or because it is useful to de-

compose the problem in such a manner. Finally, in Chapter 5, Elizabeth

Thompson presents a careful study of how MCMC is put into practice in

the analysis of pedigrees in genetics.

It is our hope as editors that this ensemble of expositions, and the

diversity of ideas contained therein, will form an attractive invitation to

readers, to introduce them to the fascinating and various worlds of Markov

chain Monte Carlo in mathematical science. We trust you will enjoy this

book as much as we enjoyed the task of its compilation!

W. S. Kendall

F. Liang

J.-S. Wang
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GLOSSARY

Contributors to this volume come from several different fields, each with

their own preferred terminology, which can often overlap. To aid the reader,

we have therefore assembled the following glossary of terms and brief defi-

nitions, which we have organized under the titles of Probability, Statistical

Physics, and Mathematical Genetics.

1. Probability

• Bernoulli distribution: A random variable X has a Bernoulli distri-

bution if it has probability p of being equal to 1, probability 1 − p

of being equal to −1.

• coalescence: A family of random processes X , Y , Z, . . . are said to

coalesce if there is some random time T (the coalescence time) at

which they are all equal: X(T ) = Y (T ) = Z(T ) = . . .. Sometimes

called grand coupling, since two processes X , Y are said to couple

if X(T ) = Y (T ) for some random time T .

• conditional probability: The conditional probability P[A|B] of A

given B is the ratio P[A and B]/P[B] of the probability of both

A and B to the probability of B.

• coupling technique: The technique of constructing two random

processes X and Y such that (a) individually both X and Y have

specified statistical behaviour, but (b) the joint behaviour of X

and Y meets some useful requirement (perhaps X always lies be-

low Y , or perhaps X and Y couple with X(T ) = Y (T ) at some

random time T , or . . . ). Coupling from the Past (CFTP) uses

coupling techniques to convert favourable MCMC algorithms into

exact simulation algorithms.

• Gibbs sampler: A specific form of MCMC in which values Xn at

successive sites n are updated using the full conditional distribu-

tion of Xn given the values Xm at all other sites m �= n. Also

xiii



xiv Glossary

known as the heat bath sampler . Successive sites n may be chosen

systematically or randomly.

• Ising model: A random field, giving a random value or spin Xi,j =

±1 to each site (i, j). The probability distribution of the value

Xi,j = ±1 depends on the pattern of its neighbouring values.

• occlusion: A term used in image analysis when one item partially

covers or occludes another item.

• Poisson process: A random point pattern such that the number

X(A) of points falling in a region A has a Poisson distribution of

mean proportional to the size of A; numbers of points falling in

non-overlapping regions are statistically independent.

• posterior distribution: The conditional probability distribution of

an unknown parameter θ after data is observed, and hence con-

ditional on that data. Thus if we observe the result Y = y then

the posterior distribution of θ lying in the region A is given by the

conditional probability P[θ ∈ A|Y = y].

• prior distribution: The probability distribution of an unknown pa-

rameter θ before data is observed (in the Bayesian paradigm of

statistics, the prior distribution expresses one’s beliefs about what

value might be taken by θ).

• probability distribution: The probability measure obtained by con-

sidering the probabilities P[X ∈ A] of a random object X taking on

values in various regions A. Often abbreviated to the distribution

of X , used as shorthand to refer to the statistical behaviour of X

considered on its own.

• probability measure: The mathematical entity capturing the no-

tion of probability: informally, a probability measure P assigns a

probability P[A] to each of a family of possible events A. Probabil-

ity measures must obey additive and countably-additive laws, and

their values must lie between 0 (expressing almost impossibility)

and 1 (expressing almost certainty).

• random walk: A random process which moves by independent iden-

tically distributed jumps.

• resampling: Given a set of values obtained by drawing from a prob-

ability distribution (for example, the sample obtained at step n of

a sequential Monte Carlo scheme); resampling is the procedure of

drawing a new sample from these values, typically according to

appropriate resampling weights.
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2. Statistical Physics

• autocorrelation time: A typical time scale for the dynamical corre-

lation (time-displacement) function, 〈Q(t)Q(0)〉−〈Q(0)〉2, for some

observable Q.

• Boltzmann weight: When system is in thermal equilibrium, the

probability of a state is assumed to be proportional to e−E/(kBT ),

where E is the energy of the state, T is temperature, and kB Boltz-

mann constant. Such a distribution is also called the canonical

distribution.

• canonical (Gibbs) ensemble: see Boltzmann weight.

• coexisting phases: A particular set of model parameters or phys-

ical conditions, such that two or more phases exist, such as the

coexistence of water and ice.

• coupling constant: the constant J in Ising model where the energy

is given by −J
∑

〈i,j〉 σiσj .

• dynamic universality class: A class of models with the same static

and dynamic (time-dependent) critical exponents in a second-order

phase transition.

• energy function: The total energy of a system, also known as Hamil-

tonian.

• entropy: One of the most important thermal dynamic functions

related to the degree of disorder. It is given by Boltzmann’s famous

formula S = kB ln Ω where Ω is the number of microstates.

• equilibration: The Monte Carlo steps used to let the system reach

equilibrium or limiting distribution.

• external magnetic field: extra term of energy in the form e.g., −hσi,

in an Ising model; h is called the magnetic field.

• free energy: thermodynamical functions, defined, e.g. for Helmholtz

free energy, F = −kBT lnZ,where Z is partition function.

• Glauber dynamics: A Markov chain dynamics in continuous time,

with the transition rate σi → −σi (for the case of Ising model),

1

2

[

1 − σi tanh((kBT )−1
∑

j

Jijσj)
]

.

• Hamiltonian: (a) The energy function viewed as variables of

coordinates and momenta. This function H(p, q) gives the

Hamilton’s equation of motion, q̇ = ∂H/∂p, ṗ = −∂H/∂q. (b) the

operator in Schrödinger’s equation i�∂Ψ/∂t = ĤΨ. (c) Sometimes
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the terminology is used more loosely; the “Hamiltonian” can be

used to refer to the energy of a system.

• heat-bath sampler: See Gibbs sampler.

• heat-bath update: A single step of a heat bath or Gibbs sampler (see

elsewhere).

• Helmholtz free energy: see free energy.

• hysteresis: a metastable process where increasing a parameter of a

model slowly (say the magnetic field) from h0 to h1 traces out a

function f+(h) which does not agree with a reverse process of h1

to h0 in same observable f−(h).

• metastable: A state of a system which looks like in equilibrium for

finite period of times, but is in fact not in equilibrium in the limit

of time going to infinity.

• Metropolis update: A popular choice of a transition rate in Monte

Carlo dynamics, with a form min
[

1, exp
(

−(E′−E)/(kBT )
)]

, where

E′ is new energy and E is old energy.

• microcanonical temperature: defined as 1/T = ∂S/∂E where S is

entropy, and E is (internal) energy.

• microstate, configuration: A state described by a set of dynamical

variables, also known as a configuration.

• multicanonical simulation: A Monte Carlo simulation in an artifi-

cial ensemble with probability distribution of energy being a con-

stant.

• O(3) σ-model: the O(n) model with n = 3.

• O(n) model: a model with Hamiltonian −
∑

ij Jijσi ·σj , where σi

is an n-dimensional unit vector.

• observable: Average of any variables with respect to a distribution.

• partition function: The sum of the Boltzmann weights over all

states, or the normalization constant of the Boltzmann distribu-

tion function, commonly denoted by Z.

• Potts model, Potts spin: A generalization of the Ising model with

Hamiltonian −
∑

i,j Jijδσi,σj
, where σi = 1, 2, ..., q is known as

Potts spins.

• specific heat, heat capacity: Defined as d〈E〉/dT , where 〈E〉 is the

ensemble average of energy, and T is temperature.

• supercritical slowing down: is a process with correlation times that

depend on system dimensions exponentially, such as in a first-order

phase transition.
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3. Mathematical Genetics

• allele: One of two or more alternative forms of a gene, only one of

which can be present in a chromosome.

• Baum-Welch algorithm: An algorithm to estimate hidden Markov

model parameters with the maximum likelihood of generating the

given symbol sequence in the observation vector.

• centromere: A constricted region of a chromosome that joins the

two sister chromatids to each other during cell divisions. See also

chromatid.

• chromatid: A duplicated chromosome that is held together in the

middle. On each of the sides of the chromatid is an exact copy of

the original chromosome.

• crossover: The process of exchange of genetic material between

pairs of homologous chromosomes during meiosis. See also homol-

ogous and meiosis.

• DNA: An abbreviation for deoxyribonucleic acid. The material

inside the nucleus of cells that carries genetic information.

• genetic interference: The effect that the presence of one crossover

reduces the chance of another occurring in its vicinity.

• genetic marker: Sequence of DNA that can be easily identified and

which therefore can be used as a reference point for mapping other

genes.

• genome: The total genetic material of an organism, comprising the

genes carried on its chromosomes.

• genotype: The genetic information carried by a pair of alleles. See

also allele.

• hidden Markov Model: (in bioinformatics) A probabilistic model

used to align and analyze DNA or protein sequence datasets by

generalization from a sequence profile.

• homologous: (in genetics) Describing a pair of chromosomes having

identical gene loci. One member of the pair is derived from the

mother, the other from the father. See also locus.

• inheritance: The transmission of genetic characteristics from par-

ents to offspring.

• linkage: The tendency for certain genes to be inherited together

due to their physical proximity on the chromosome.

• locus: (in genetics) A position on a chromosome occupied by a gene.

• lod score: The likelihood (value) that two genes are linked.
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• MCMC: Abbreviation for Markov chain Monte Carlo.

• meiosis: A type of nuclear division such that each child nuclei

contains half the number of chromosomes of the parent.

• Metropolis-Hasting algorithm: A Markov chain Monte Carlo algo-

rithm that is used to simulate from a complex distribution. See also

Metropolis update.

• missing data: Missing data occur when some or all of the values

for a sampled unit are absent in the dataset.

• mitosis: A type of cell division in which a single cell produces two

genetically identical cells.

• pedigree: (in genetics) A digram showing the descent relationship

of a group of related individuals.

• peeling algorithm: (in bioinformatics) An algorithm for computing

the likelihood of an evolutionary tree.

• phenotype: Visible biochemical characteristics of an organism that

are produced by the interaction of the genes and the environment.

• quantitative trait: A phenotypic character associated with partic-

ular genes. The phenotype can be described with a continuous

(rather than a discrete) distribution. See also phenotype.

• Rao-Blackwellization: In statistics, it refers to the “Rao-Blackwell

theorem” by C. R. Rao (1945 Bull. Calcutta Math. Soc. 37, 81-91)

and David Blackwell (1947 Ann. Math. Stat., 18, 105-110).

• recombination: The process of exchange of DNA between homol-

ogous chromosomes in sexually reproducing organisms. See also

homologous.

• sequential imputation: A sequential Monte Carlo algorithm which

is used to impute the missing data.

• SNP: An abbreviation for Single Nucleotide Polymorphism, a sin-

gle basepair change in a sequence of DNA.
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1. Introduction

Markov chain Monte Carlo (MC) simulations started in earnest with the

1953 article by Nicholas Metropolis, Arianna Rosenbluth, Marshall Rosen-

bluth, Augusta Teller and Edward Teller [18]. Since then MC simulations

have become an indispensable tool with applications in many branches of

science. Some of those are reviewed in the proceedings [13] of the 2003

Los Alamos conference, which celebrated the 50th birthday of Metropolis

simulations.

The purpose of this tutorial is to provide an overview of basic concepts,

which are prerequisites for an understanding of the more advanced lectures

of this volume. In particular the lectures by Prof. Landau are closely related.

The theory behind MC simulations is based on statistics and the analy-

sis of MC generated data is applied statistics. Therefore, statistical concepts

are reviewed first in this tutorial. Nowadays abundance of computational

power implies also a paradigm shift with respect to statistics: Computation-

ally intensive, but conceptually simple, methods belong at the forefront. MC

simulations are not only relevant for simulating models of interest, but they

constitute also a valuable tool for approaching statistics.

The point of departure for treating Markov chain MC simulations is the

Metropolis algorithm for simulating the Gibbs canonical ensemble. The heat

bath algorithm follows. To illustrate these methods our systems of choice

are discrete Potts and continuous O(n) models. Both classes of models are

programmed for arbitrary dimensions (d = 1, 2, 3, 4, . . . ). On the advanced
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side we introduce multicanonical simulations, which cover an entire tem-

perature range in a single simulation, and allow for direct calculations of

the entropy and free energy.

In summary, we consider Statistics, Markov Chain Monte Carlo simu-

lations, the Statistical Analysis of Markov chain data and, finally, Multi-

canonical Sampling. This tutorial is abstracted from the author’s book on

the subject [7]. Many details, which are inevitably ommitted here, can be

found there.

2. Probability Distributions and Sampling

A sample space is a set of points or elements, in natural sciences called

measurements or observations, whose occurrence depends on chance.

Carrying out independent repetitions of the same experiment is called sam-

pling. The outcome of each experiment provides an event called data point.

In N such experiments we may find the event A to occur with frequency

n, 0 ≤ n ≤ N . The probability assigned to the event A is a number P (A),

0 ≤ P (A) ≤ 1, so that

P (A) = lim
N→∞

n

N
. (1)

This equation is sometimes called the frequency definition of probabil-

ity.

Let us denote by P (a, b) the probability that xr ∈ [a, b] where xr is a

continuous random variable drawn in the interval (−∞, +∞) with the

probability density f(x). Then,

P (a, b) =

∫ b

a

f(x) dx. (2)

Knowledge of all probabilities P (a, b) implies

f(x) = lim
y→x−

P (y, x)

x − y
≥ 0 . (3)

The (cumulative) distribution function of the random variable xr is

defined as

F (x) = P (xr ≤ x) =

∫ x

−∞

f(x) dx . (4)

A particularly important case is the uniform probability distribution

for random numbers between [0, 1),

u(x) =

{

1 for 0 ≤ x < 1;

0 elsewhere.
(5)
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Remarkably, the uniform distribution allows for the construction of general

probability distributions. Let

y = F (x) =

∫ x

−∞

f(x′) dx′

and assume that the inverse x = F−1(y) exists. For yr being a uniformly

distributed random variable in the range [0, 1) it follows that

xr = F−1(yr) (6)

is distributed according to the probability density f(x).

The Gaussian or normal distribution is of major importance. Its

probability density is

g(x) =
1

σ
√

2π
e−x2/(2σ2) (7)

where σ2 is the variance and σ > 0 the standard deviation. The

Gaussian distribution function G(x) is related to that of variance σ2 = 1

by

G(x) =

∫ x

−∞

g(x′) dx′ =
1

√
2π

∫ x/σ

−∞

e−(x′′)2/2 dx′′

=
1

2
+

1

2
erf

(

x

σ
√

2

)

. (8)

In principle we could now generate Gaussian random numbers according

to Eq. (6). However, the numerical calculation of the inverse error function

is slow and makes this an impractical procedure. Much faster is to express

the product probability density of two independent Gaussian distributions

in polar coordinates

1

2π σ2
e−x2/(2σ2) e−y2/(2σ2) dx dy =

1

2π σ2
e−r2/(2σ2) dφ rdr ,

and to use the relations

xr = rr cosφr and yr = rr sinφr . (9)

3. Random Numbers and Fortran Code

According to Marsaglia and collaborators [17] a list of desirable properties

for (pseudo) random number generators is:

(i) Randomness. The generator should pass stringent tests for randomness.

(ii) Long period.

(iii) Computational efficiency.
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(iv) Repeatability. Initial conditions (seed values) completely determine

the resulting sequence of random variables.

(v) Portability. Identical sequences of random variables may be produced

on a wide variety of computers (for given seed values).

(vi) Homogeneity. All subsets of bits of the numbers are random.

Physicists have added a number of their applications as new tests (e.g.,

see [22] and references therein). In our program package a version of the

random number generator of Marsaglia and collaborators [17] is provided.

Our corresponding Fortran code consists of three subroutines:

rmaset.f to set the initial state of the random number generator.

ranmar.f which provides one random number per call.

rmasave.f to save the final state of the generator.

In addition, rmafun.f is a Fortran function version of ranmar.f and

calls to these two routines are freely interchangeable. Related is also the

subroutine rmagau.f, which generates two Gaussian random numbers.

The subroutine rmaset.f initializes the generator to mutually indepen-

dent sequences of random numbers for distinct pairs of

−1801 ≤ iseed1 ≤ 29527 and − 9373 ≤ iseed2 ≤ 20708 . (10)

This property makes the generator quite useful for parallel processing.

3.1. How to Get and Run the Fortran Code

To download the Fortran code visit the website

http : //www.worldscibooks.com/physics/5602.html

click the download link and follow the instructions given there. If the above

link should be unavailable, visit the author’s homepage which is presently

located at

http://www.hep.fsu.edu/~berg .

After installation the directory tree shown in Fig. 1 is obtained. ForLib

contains a library of functions and subroutines which is closed in the sense

that no reference to non-standard functions or subroutines outside the li-

brary is ever made. Fortran programs are contained in the folder ForProg

and procedures for interactive use in ForProc. It is recommended to leave

the hyperstructure of program dependencies introduced between the levels

of the STMC directory tree intact. Otherwise, complications may result

which require advanced Fortran skills.
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STMC

ForProgAssignments ForLib ForProc Work

a0102_02 a0102_03 ... ... a0103_01 ... ...

Fig. 1. The Fortran routines are provided and prepared to run in the tree structure of

folders depicted in this figure. This tree unfolds from the downloaded file.

Assignment: Marsaglia random numbers. Run the program mar.f

to reproduce the following results:

RANMAR INITIALIZED. MARSAGLIA CONTINUATION.

idat, xr = 1 0.116391063 idat, xr = 1 0.495856345

idat, xr = 2 0.96484679 idat, xr = 2 0.577386141

idat, xr = 3 0.882970393 idat, xr = 3 0.942340136

idat, xr = 4 0.420486867 idat, xr = 4 0.243162394

extra xr = 0.495856345 extra xr = 0.550126791

Understand how to re-start the random number generator and how to

perform different starts when the continuation data file ranmar.d does

not exist. You find mar.f in ForProg/Marsaglia and it includes subrou-

tines from ForLib. To compile properly, mar.f has to be located two lev-

els down from a root directory STMC. The solution is given in the folder

Assignments/a0102 02.

4. Confidence Intervals and Heapsort

Let a distribution function F (x) and q, 0 ≤ q ≤ 1 be given. One defines

q-tiles (also called quantiles or fractiles) xq by means of

F (xq) = q . (11)

The median x 1
2

is often (certainly not always) the typical value of the

random variable xr.

Example: For the normal distribution the precise probability content of

the confidence intervals

[xq, x1−q] = [−nσ, nσ] for n = 1, 2

is p = 1 − 2q = 68.27% for one σ and p = 1 − 2q = 95.45% for two σ.
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Fig. 2. Gaussian peaked distribution function and estimates of xq for the 70%
(approximately 1 σ) and 95% (approximately 2 σ) confidence intervals.

The peaked distribution function

Fq(x) =

{

F (x) for F (x) ≤ 1
2 ,

1 − F (x) for F (x) > 1
2 .

(12)

provides a useful way to visualize probability intervals of a distribution. It

is illustrated in Fig. 2 for the Gaussian distribution.

Sampling provides us with an empirical distribution function and in

practice the problem is to estimate confidence intervals from the empiri-

cal data. Assume we generate n random numbers x1, ..., xn independently

according to a probability distribution F (x). The n random numbers con-

stitute a sample. We may re-arrange the xi in increasing order. Denoting

the smallest value by xπ1 , the next smallest by xπ2 , etc., we arrive at

xπ1 ≤ xπ2 ≤ · · · ≤ xπn
(13)

where π1, . . . , πn is a permutation of 1, . . . , n. Each of the xπi
is called an

order statistic. An estimator for the distribution function F (x) is the

empirical distribution function

F (x) =
i

n
for xπi

≤ x < xπi+1 , i = 0, 1, . . . , n − 1, n (14)

with the definitions xπ0 = −∞ and xπn+1 = +∞.
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To calculate F (x) and the corresponding peaked distribution function,

one needs an efficient way to sort n data values in ascending (or descending)

order. This is provided by the heapsort, which relies on two steps: First the

data are arranged in a heap, then the heap is sorted. A heap is a partial

ordering so that the number at the top is larger or equal than the two

numbers in the second row, provided at least three numbers xi exist. More

details are given in [7]. The computer time needed to succeed with this

sorting process grows only like n log2 n, because there are log2 n levels in

the heap, see Knuth [15] for an exhaustive discussion of sorting algorithms.

5. The Central Limit Theorem and Binning

How is the sum of two independent random variables

yr = xr
1 + xr

2 . (15)

distributed? We denote their probability density of yr by g(y). The corre-

sponding cumulative distribution function is given by

G(y) =

∫

x1+x2≤y

f1(x1) f2(x2) dx1 dx2 =

∫ +∞

−∞

f1(x) F2(y − x) dx

where F2(x) is the distribution function of the random variable xr
2. We take

the derivative and obtain the probability density of yr

g(y) =
dG(y)

dy
=

∫ +∞

−∞

f1(x) f2(y − x) dx . (16)

The probability density of a sum of two independent random variables is

the convolution of the probability densities of these random variables.

Example: Sums of uniform random numbers, corresponding to the sums

of an uniformly distributed random variable xr ∈ (0, 1]:

(a) Let yr = xr + xr, then

g2(y) =















y for 0 ≤ y ≤ 1,

2 − y for 1 ≤ y ≤ 2,

0 elsewhere.

(17)

(b) Let y r = xr + xr + xr, then

g3(y) =























y2/2 for 0 ≤ y ≤ 1,

(−2y2 + 6y − 3)/2 for 1 ≤ y ≤ 2,

(y − 3)2/2 for 2 ≤ y ≤ 3,

0 elsewhere.

(18)
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The convolution (16) takes on a simple form in Fourier space. In

statistics the Fourier transformation of the probability density is known

as characteristic function, defined as the expectation value of eitxr

:

φ(t) = 〈eitxr

〉 =

∫ +∞

−∞

eitx f(x) dx . (19)

A straightforward calculation gives

φ(t) = exp

[

−
1

2

σ2
x

N
t2
]

(20)

for the characteristic function of the Gaussian probability density (7). The

characteristic function is particularly useful for investigating sums of ran-

dom variables, yr = xr
1 + xr

2:

φy(t) = 〈e(itxr
1+itxr

2)〉 (21)

=

∫ +∞

−∞

∫ +∞

−∞

eitx1 eitx2 f1(x1) f2(x2) dx1 dx2 = φx1(t) φx2(t) .

The characteristic function of a sum of random variables is the

product of their characteristic functions. The result generalizes im-

mediately to N random variables yr = x
r
1 + · · · + xr

N . The characteristic

function of yr is

φy(t) =

N
∏

i=1

φxi
(t) (22)

and the probability density of yr is the Fourier back-transformation of this

characteristic function

g(y) =
1

2π

∫ +∞

−∞

dt e−ity φy(t) . (23)

The probability densitiy of the sample mean is obtained as follows:

The arithmetic mean of yr is x r = yr/N . We denote the probability density

of yr by gN (y) and the probability density of the arithmetic mean by ĝN (x).

They are related by

ĝN (x) = N gN(Nx) . (24)

This follows by substituting y = Nx into gN (y) dy:

1 =

∫ +∞

−∞

gN (y) dy =

∫ +∞

−∞

gN(Nx) 2dx =

∫ +∞

−∞

ĝN (x) dx .
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Fig. 3. Probability densities for the arithmetic means of two and three uniformly dis-

tributed random variables, ĝ2(x) and ĝ3(x), respectively.

Fig. 3 illustrates equation (24) for the sums of two (17) and three (18)

uniformly distributed random variables. This suggests that sampling leads

to convergence of the mean by reducing its variance. We use the character-

istic function φy(t) = [φx(t)]N to understand the general behavior. The

characteristic function for the corresponding arithmetic average is

φx(t) =

∫ +∞

−∞

dx eitx ĝN (x) =

∫ +∞

−∞

dy exp

(

i
t

N
y

)

gN(y) .

Hence,

φx(t) = φy

(

t

N

)

=

[

φx

(

t

N

)]N

. (25)

To simplify the equations we restrict ourselves to x̂ = 0. Let us consider a

probability density f(x) and assume that its moment exists, implying that

the characteristic function is at least two times differentiable, so that

φx(t) = 1 −
σ2

x

2
t2 + O(t3) . (26)
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The leading term reflects the normalization of the probability density and

the first moment is φ′(0) = x̂ = 0. The characteristic function of the mean

becomes

φx(t) =

[

1 −
σ2

x

2N2
t2 + O

(

t3

N3

)]N

= exp

[

−
1

2

σ2
x

N
t2
]

+ O

(

t3

N2

)

.

This is the central limit theorem: The probability density of the arith-

metic mean x r converges towards the Gaussian probability density with

variance (compare Eq. (20))

σ2(x r) =
σ2(xr)

N
. (27)

Binning: The notion of binning introduced here should not be confused

with histogramming. Binning means here that we group NDAT data into

NBINS bins, where each binned data point is the arithmetic average of

NBIN = [NDAT/NBINS] (Fortran integer division)

data points in their original order. Preferably NDAT is a multiple of NBINS.

The purpose of the binning procedure is twofold:

(1) When the the central limit theorem applies, the binned data will be-

come practically Gaussian, as soon as NBIN becomes large enough. This

allows to apply Gaussian error analysis methods even when the original

data are not Gaussian.

(2) When data are generated by a Markov process subsequent events are

correlated. For binned data these correlations are reduced and can in

practical applications be neglected, once NBIN is sufficiently large com-

pared to the autocorrelation time (see section 10).

6. Gaussian Error Analysis for Large and Small Samples

The central limit theorem underlines the importance of the normal distri-

bution. Assuming we have a large enough sample, the arithmetic mean of a

suitable expectation value becomes normally distributed and the calculation

of the confidence intervals is reduced to studying the normal distribution. It

has become the convention to use the standard deviation of the sample

mean

σ = σ(x r) with x r =
1

N

N
∑

i=1

xr
i (28)
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and its confidence intervals [x̂ − nσ, x̂ + nσ] (the dependence of σ on N is

suppressed). For a Gaussian distribution equation Eq. (8) yields the prob-

ability content p of the confidence intervals (28) to be

p = p(n) = G(nσ) − G(−nσ) =
1

√
2π

∫ +n

−n

dx e−
1
2 x2

= erf

(

n
√

2

)

. (29)

In practice the roles of x and x̂ are interchanged: One would like to know the

likelihood that the unknown exact expectation value x̂ will be in a certain

confidence interval around the measured sample mean. The relationship

x ∈ [x̂ − nσ, x̂ + nσ] ⇐⇒ x̂ ∈ [x − nσ, x + nσ] (30)

solves the problem. Conventionally, these estimates are quoted as

x̂ = x ±△x (31)

where the error bar △x is often an estimator of the exact standard

deviation.

An obvious estimator for the variance σ2
x is

(s′ rx )2 =
1

N

N
∑

i=1

(xr
i − x r)2 (32)

where the prime indicates that we shall not be happy with it, because we

encounter a bias. An estimator is said to be biased when its expectation

value does not agree with the exact result. In our case

〈(s′ rx )2〉 �= σ2
x . (33)

An estimator whose expectation value agrees with the true expectation

value is called unbiased. The bias of the definition (32) comes from re-

placing the exact mean x̂ by its estimator x r. The latter is a random vari-

able, whereas the former is just a number. Some algebra [7] shows that the

desired unbiased estimator of the variance is given by

(sr
x)2 =

N

N − 1
(s′ rx )2 =

1

N − 1

N
∑

i=1

(xr
i − x r)2 . (34)

Correspondingly, the unbiased estimator of the variance of the sample mean

is

(sr
x)2 =

1

N(N − 1)

N
∑

i=1

(xr
i − x r)2 . (35)
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Gaussian difference test: In practice one is often faced with the

problem to compare two different empirical estimates of some mean. How

large must D = x−y be in order to indicate a real difference? The quotient

dr =
Dr

σD
, σD =

√

σ2
x + σ2

y (36)

is normally distributed with expectation zero and variance one, so that

P = P (|dr| ≤ d) = G0(d) − G0(−d) = erf

(

d
√

2

)

. (37)

The likelihood that the observed difference |x− y| is due to chance

is defined to be

Q = 1 − P = 2 G0(−d) = 1 − erf

(

d
√

2

)

. (38)

If the assumption is correct, then Q is a uniformly distributed random

variable in the range [0, 1). Examples are collected in table 1. Often a 5%

cut-off is used to indicate a real discrepancy.

Table 1. Gaussian difference tests (compile and run the program provided in

ForProc/Gau dif, which results in an interactive dialogue).

x1 ± σx1 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.1 1.0 ± 0.05 1.000 ± 0.025

x2 ± σx2 1.2 ± 0.2 1.2 ± 0.1 1.2 ± 0.0 1.2 ± 0.00 1.200 ± 0.025

Q 0.37 0.16 0.046 0.000063 0.15 × 10
−7

Gosset’s Student Distribution: We ask the question: What happens

with the Gaussian confidence limits when we replace the variance σ2
x by its

estimator s2
x in statements like

|x − x̂|

σx
< 1.96 with 95% probability.

For sampling from a Gaussian distribution the answer was given by Gos-

set, who published his article 1908 under the pseudonym Student in

Biometrika [20]. He showed that the distribution of the random variable

tr =
x r − x̂

sr
x

(39)

is given by the probability density

f(t) =
1

(N − 1)B(1/2, (N − 1)/2)

(

1 +
t2

N − 1

)−N
2

. (40)
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Here B(x, y) is the beta function. The fall-off is a power law |t|−N for

|t| → ∞, instead of the exponential fall-off of the normal distribution.

Some confidence probabilities of the Student distribution are (assignment

a0203 01):

N \ S 1.0000 2.0000 3.0000 4.0000 5.0000

2 .50000 .70483 .79517 .84404 .87433

3 .57735 .81650 .90453 .94281 .96225

4 .60900 .86067 .94233 .97199 .98461

8 .64938 .91438 .98006 .99481 .99843

16 .66683 .93605 .99103 .99884 .99984

32 .67495 .94567 .99471 .99963 .99998

64 .67886 .95018 .99614 .99983 1.0000

INFINITY: .68269 .95450 .99730 .99994 1.0000

For N ≤ 4 we find substantial deviations from the Gaussian confidence

levels, whereas up to two standard deviations reasonable approximations

of Gaussian confidence limits are obtained for N ≥ 16 data. If desired,

the Student distribution function can always be used to calculate the exact

confidence limits. When the central limit theorem applies, we can bin a

large set of non-Gaussian data into 16 almost Gaussian data to reduce the

error analysis to Gaussian methods.

Student difference test: This test is a generalization of the Gaussian

difference test. It takes into account that only a finite number of events are

sampled. As before it is assumed that the events are drawn from a normal

distribution. Let the following data be given

x calculated from M events, i .e., σ2
x = σ2

x/M (41)

y calculated from N events, i .e., σ2
y = σ2

y/N (42)

and unbiased estimators of the variances are

s2
x = s2

x/M =

∑M
i=1(xi − x)2

M (M − 1)
and s2

y = s2
y/N =

∑N
j=1(yj − y)2

N (N − 1)
. (43)

Under the additional assumption σ2
x = σ2

y the probability

P (|x − y| > d) (44)

is determined by the Student distribution function in the same way as the

probability of the Gaussian difference test is determined by the normal

distribution.
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Examples for the Student difference test for x1 = 1.00 ± 0.05 from M

data and x2 = 1.20± 0.05 from N data are given in table 2. The Gaussian

difference test gives Q = 0.0047. For M = N = 512 the Student Q value is

practically identical with the Gaussian result, for M = N = 16 it has almost

doubled. Likelihoods above a 5% cut-off, are only obtained for M = N = 2

(11%) and M = 16, N = 4 (7%). The latter result looks a bit surprising,

because its Q value is smaller than for M = N = 4. The explanation is

that for M = 16, N = 4 data one would expect the N = 4 error bar to

be two times larger than the M = 16 error bar, whereas the estimated

error bars are identical. This leads to the problem: Data are assumed to be

sampled from the same normal distribution, when are two measured error

bars consistent and when not?

Table 2. Student difference test for the data x1 = 1.00 ± 0.05
and x2 = 1.20 ± 0.05 (compile and run the program provided in

ForProc/Stud dif, which results in an interactive dialogue).

M 512 32 16 16 4 3 2

N 512 32 16 4 4 3 2

Q 0.0048 0.0063 0.0083 0.072 0.030 0.047 0.11

6.1. χ
2 Distribution, Error of the Error Bar, F-Test

The distribution of the random variable

(χr)2 =

N
∑

i=1

(yr
i )2 , (45)

where each yr
i is normally distributed, defines the χ

2
distribution with N

degrees of freedom. The study of the variance (sr
x)2 of a Gaussian sample

can be reduced to the χ2-distribution with f = N − 1 degrees of freedom

(χr
f )2 =

(N − 1) (sr
x)2

σ2
x

=

N
∑

i=1

(xr
i − x r)2

σ2
x

. (46)

The probability density of χ2
per degree of freedom (pdf) is

fN(χ2) = Nf(Nχ2) =
a e−aχ2 (

aχ2
)a−1

Γ(a)
where a =

N

2
. (47)

The Error of the Error Bar: For normally distributed data the num-

ber of data alone determines the errors of error bars, because the χ2 distri-

bution is exactly known. Confidence intervals for variance estimates s2
x = 1

from NDAT data (assignment a0204 01) are:
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q q q 1-q 1-q

NDAT=2**K .025 .150 .500 .850 .975

2 1 .199 .483 2.198 27.960 1018.255

4 2 .321 .564 1.268 3.760 13.902

8 3 .437 .651 1.103 2.084 4.142

16 4 .546 .728 1.046 1.579 2.395

32 5 .643 .792 1.022 1.349 1.768

1024 10 .919 .956 1.001 1.048 1.093

16384 14 .979 .989 1.000 1.012 1.022

The variance ratio test or F-test: We assume that two sets of normal

data are given together with estimates of their variances:
(

s2
x1

, N1

)

and
(

s2
x2

, N2

)

. We would like to test whether the ratio F = s2
x1

/s2
x2

differs from

F = 1 in a statistically significant way. The probability (f1/f2)F < w,

where fi = Ni − 1, i = 1, 2, is known to be

H(w) = 1 − BI

(

1

w + 1
,
1

2
f2,

1

2
f1

)

. (48)

Examples are given in table 3. This allows us later to compare the efficiency

of MC algorithms.

Table 3. Examples for the F-test (use the program in ForProc/F test

or the one in ForProc/F stud).

△x1 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0

N1 16 16 64 1024 2048 32 1024 16

△x2 1.0 1.0 1.0 1.05 1.05 2.0 2.0 2.0

N2 16 8 16 1024 2048 8 256 16

Q 1.0 0.36 0.005 0.12 0.027 0.90 0.98 0.01

6.2. The Jackknife Approach

Jackknife estimators allow to correct for the bias and the error of the bias.

The method was introduced in the 1950s (for a review see [7]). It is rec-

ommended as the standard for error bar calculations. In unbiased situ-

ations the jackknife and the usual error bars agree. Otherwise the jackknife

estimates are more reliable.

The unbiased estimator of the expectation value x̂ is

x =
1

N

N
∑

i=1

xi
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Bias problems may occur when one estimates a non-linear function of x̂:

̂f = f(x̂) . (49)

Typically, the bias is of order 1/N :

bias (f) = ̂f − 〈f〉 =
a1

N
+

a2

N2
+ O(

1

N3
) (50)

where a1 and a2 are constants. But for the biased estimator we lost the

ability to estimate the variance σ2(f) = σ2(f)/N via the standard equation

s2(f) =
1

N
s2(f) =

1

N (N − 1)

N
∑

i=1

(fi − f)2 , (51)

because fi = f(xi) is not a valid estimator of ̂f . Further, it is in non-

trivial applications almost always a bad idea to use linear error propagation

formulas. Jackknife methods are not only easier to implement, but also more

precise and far more robust.

The error bar problem for the estimator f is conveniently overcome by

using jackknife estimators f
J
, fJ

i , defined by

f
J

=
1

N

N
∑

i=1

fJ
i with fJ

i = f(xJ
i ) and xJ

i =
1

N − 1

∑

k �=i

xk . (52)

The estimator for the variance σ2(f
J
) is

s2
J(f

J
) =

N − 1

N

N
∑

i=1

(fJ
i − f

J
)2 . (53)

Straightforward algebra shows that in the unbiased case the estimator of

the jackknife variance (53) reduces to the normal variance (51). Notably

only of order N (not N 2) operations are needed to construct the jackknife

averages xJ
i , i = 1, . . . , N from the orginal data.

7. Statistical Physics and Potts Models

MC simulations of systems described by the Gibbs canonical ensemble aim

at calculating estimators of physical observables at a temperature T . In

the following we choose units so that the Boltzmann constant becomes one,

i.e. β = 1/T . Let us consider the calculation of the expectation value of

an observable O. Mathematically all systems on a computer are discrete,
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because a finite word length has to be used. Hence, the expectation value

is given by the sum

̂O = ̂O(β) = 〈O〉 = Z−1
K
∑

k=1

O(k) e−β E(k)

(54)

where Z = Z(β) =

K
∑

k=1

e−β E(k)

(55)

is the partition function. The index k = 1, . . . , K labels the configura-

tions of the system, and E(k) is the (internal) energy of configuration k.

The configurations are also called microstates. To distinguish the config-

uration index from other indices, it is put in parenthesis.

We introduce generalized Potts models in an external magnetic field on

d-dimensional hypercubic lattices with periodic boundary conditions (i.e.,

the models are defined on a torus in d dimensions). Without being overly

complicated, these models are general enough to illustrate the essential

features we are interested in. In addition, various subcases of these models

are by themselves of physical interest.

We define the energy function of the system by

−β E(k) = −β E
(k)
0 + H M (k) (56)

where

E
(k)
0 = −2

∑

〈ij〉

δ(q
(k)
i , q

(k)
j ) +

2 dN

q
(57)

with δ(qi, qj) =

{

1 for qi = qj

0 for qi �= qj
and M (k) = 2

N
∑

i=1

δ(1, q
(k)
i ) .

The sum 〈ij〉 is over the nearest neighbor lattice sites and q
(k)
i is called

the Potts spin or Potts state of configuration k at site i. For the q-state

Potts model q
(k)
i takes on the values 1, . . . , q. The external magnetic field is

chosen to interact with the state qi = 1 at each site i, but not with the other

states qi �= 1. The case q = 2 becomes equivalent to the Ising ferromagnet.

See F.Y. Wu [25] for a detailed review of Potts models.

For the energy per spin our notation is

es = E/N . (58)
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A factor of two and an additive constant are introduced in Eq. (57), so that

es agrees for q = 2 with the conventional Ising model definition, and

β = βIsing =
1

2
βPotts . (59)

For the 2d Potts models a number of exact results are known in the infi-

nite volume limit, mainly due to work by Baxter [1]. The phase transition

temperatures are

1

2
βPotts

c = βc =
1

Tc
=

1

2
ln(1 +

√
q), q = 2, 3, . . . . (60)

At βc the average energy per state is

ec
s = Ec

0/N =
4

q
− 2 − 2/

√
q . (61)

The phase transition is second order for q ≤ 4 and first order for q ≥ 5.

The exact infinite volume latent heats △es and entropy jumps △s were

also found by Baxter [1], while the interface tensions fs were derived later

(see [9] and references therein).

8. Sampling and Re-weighting

For the Ising model it is straightforward to sample statistically indepen-

dent configurations. We simply have to generate N spins, each either up

or down with 50% likelihood. This is called random sampling. In Fig. 4

a thus obtained histogram for the 2d Ising model energy per spin is

depicted.

Note that it is very important to distinguish the energy measurements

on single configurations from the expectation value. The expectation value

ês is a single number, while es fluctuates. From the measurement of many

es values one finds an estimator of the mean, es, which fluctuates too.

The histogram entries at β = 0 can be re-weighted so that they corre-

spond to other β values. We simply have to multiply the entry correspond-

ing to energy E by exp(−βE). Similarly histograms corresponding to the

Gibbs ensemble at some value β0 can be re-weighted to other β values. Care

has to be taken to ensure that the arguments of the exponential function

do not become too large. This can be done by first calculating the mean

energy and then implementing re-weighting with respect to the difference

from the mean.

Re-weighting has a long history. For finite size scaling (FSS) investi-

gations of second order phase transitions its usefulness has been stressed
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Fig. 4. Energy histograms of 100 000 entries each for the Ising model on a 20×20 lattice:

Random Sampling gives statistically independent configurations at β = 0. Histograms

at β = 0.2 and β = 0.4 are generated with Markov chain MC. Re-weighting of the β = 0

random configurations to β = 0.2 is shown to fail (assignments a0301 02 and a0303 02).

by Ferrenberg and Swendsen [12] (accurate determinations of peaks of the

specific heat or of susceptibilities).

In Fig. 4 re-weighting is done from β0 = 0 to β = 0.2. But, by com-

parison to the histogram from a Metropolis MC calculation at β = 0.2, the

result is seen to be disastrous. The reason is easily identified: In the range

where the β = 0.2 histogram takes on its maximum, the β = 0 histogram

has not a single entry. Our random sampling procedure misses the impor-

tant configurations at β = 0.2. Re-weighting to new β values works only in

a range β0 ±△β, where △β → 0 in the infinite volume limit.

Important Configurations: Let us determine the important contri-

butions to the partition function. The partition function can be re-written

as a sum over energies

Z = Z(β) =
∑

E

n(E) e−β E (62)

where the unnormalized spectral density n(E) is defined as the number of

microstates k with energy E. For a fixed value of β the energy probability

density

Pβ(E) = cβ n(E) e−βE (63)
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is peaked around the average value ̂E(β), where cβ is a normalization con-

stant determined by
∑

E Pβ(E) = 1.

Away from first and second order phase transitions, the width of the

energy distribution is △E ∼
√

V . This follows from the fact that the fluc-

tuations of the N ∼ V lattice spins are essentially uncorrelated, so that the

magnitude of a typical fluctuations is ∼
√

N . As the energy is an extensive

quantity ∼ V , we find that the re-weighting range is △β ∼ 1/
√

V , so that

△βE ∼
√

V stays within the fluctuation of the system.

Interestingly, the re-weighting range increases at a second order phase

transition point, because critical fluctuations are larger than non-critical

fluctuations. Namely, one has △E ∼ V x with 1/2 < x < 1 and the require-

ment △βE ∼ V x yields △β ∼ V x−1.

For first order phase transitions one has a latent heat △V ∼ V , but

this does not mean that the re-weighting range becomes of order one. In

essence, the fluctuations collapse, because the two phases become separated

by an interface. One is back to fluctuations within either of the two phases,

i.e. △β ∼ 1/
√

V .

The important configurations at temperature T = 1/β are at the energy

values for which the probability density Pβ(E) is large. To sample them

efficiently, one needs a procedure which generates the configurations with

their Boltzmann weights

w
(k)
B = e−βE(k)

. (64)

The number of configurations n(E) and the weights combine then so that

the probability to generate a configuration at energy E becomes precisely

Pβ(E) as given by equation (63).

9. Importance Sampling and Markov Chain Monte Carlo

For the canonical ensemble importance sampling generates configura-

tions k with probability

P
(k)
B = cB w

(k)
B = cB e−βE(k)

(65)

where the constant cB is determined by the normalization condition
∑

k P
(k)
B = 1. The vector (P

(k)
B ) is called the Boltzmann state. When

configurations are stochastically generated with probability P
(k)
B , the ex-

pectation value becomes the arithmetic average:

̂O = ̂O(β) = 〈O〉 = lim
NK→∞

1

NK

NK
∑

n=1

O(kn) . (66)
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Truncating the sum at some finite value of NK , we obtain an estimator

of the expectation value

O =
1

NK

NK
∑

n=1

O(kn) . (67)

Normally, we cannot generate configurations k directly with the probabil-

ity (65), but they may be found as members of the equilibrium distribu-

tion of a dynamic process. A Markov process is a particularly simple

dynamic process, which generates configuration kn+1 stochastically from

configuration kn, so that no information about previous configurations

kn−1, kn−2, . . . is needed. The elements of the Markov process time se-

ries are the configurations. Assume that the configuration k is given. Let

the transition probability to create the configuration l in one step from k

be given by W (l)(k) = W [k → l]. The transition matrix

W =
(

W (l)(k)
)

(68)

defines the Markov process. Note, that this matrix is very big (never stored

in the computer), because its labels are the configurations. To generate

configurations with the desired probabilities, the matrix W needs to satisfy

the following properties:

(i) Ergodicity:

e−βE(k)

> 0 and e−βE(l)

> 0 imply : (69)

an integer number n > 0 exists so that (W n)(l)(k) > 0 holds.

(ii) Normalization:
∑

l

W (l)(k) = 1 . (70)

(iii) Balance:
∑

k

W (l)(k) e−βE(k)

= e−βE(l)

. (71)

Balance means: The Boltzmann state (65) is an eigenvector with eigen-

value 1 of the matrix W = (W (l)(k)).

An ensemble is a collection of configurations for which to each con-

figuration k a probability P (k) is assigned,
∑

k P (k) = 1. The Gibbs or

Boltzmann ensemble EB is defined to be the ensemble with the proba-

bility distribution (65).
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An equilibrium ensemble Eeq of the Markov process is defined by its

probability distribution Peq satisfying

W Peq = Peq , in components P (l)
eq =

∑

k

W (l)(k)P (k)
eq . (72)

Statement: Under the conditions (i), (ii) and (iii) the Boltzmann en-

semble is the only equilibrium ensemble of the Markov process.

For a proof the readers is referred to [7]. There are many ways to con-

struct a Markov process satisfying (i), (ii) and (iii). A stronger condition

than balance (71) is

(iii’) Detailed balance:

W (l)(k) e−βE(k)

= W (k)(l)e−βE(l)

. (73)

Using the normalization
∑

k W (k)(l) = 1 detailed balance implies bal-

ance (iii).

At this point we have succeeded to replace the canonical ensemble aver-

age by a time average over an artificial dynamics. Calculating averages over

large times, like one does in real experiments, is equivalent to calculating

averages of the ensemble. One distinguishes dynamical universality classes.

The Metropolis and heat bath algorithms discussed in the following fall

into the class of so called Glauber dynamics, model A in a frequently used

classification [10]. Cluster algorithms [21] constitute another universality

class.

9.1. Metropolis and Heat Bath Algorithm for Potts Models

The Metropolis algorithm can be used whenever one knows how to cal-

culate the energy of a configuration. Given a configuration k, the Metropolis

algorithm proposes a configuration l with probability

f(l, k) normalized to
∑

l

f(l, k) = 1 . (74)

The new configuration l is accepted with probability

w(l)(k) = min

[

1,
P

(l)
B

P
(k)
B

]

=

{

1 for E(l) < E(k)

e−β(E(l)−E(k)) for E(l) > E(k).
(75)

If the new configuration is rejected, the old configuration has to be counted

again. The acceptance rate is defined as the ratio of accepted changes
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over proposed moves. With this convention we do not count a move as

accepted when it proposes the at hand configuration.

The Metropolis procedure gives rise to the transition probabilities

W (l)(k) = f(l, k)w(l)(k) for l �= k (76)

and W (k)(k) = f(k, k) +
∑

l�=k

f(l, k) (1 − w(l)(k)) . (77)

Therefore, the ratio
(

W (l)(k)/W (k)(l)
)

satisfies detailed balance (73) if

f(l, k) = f(k, l) holds . (78)

Otherwise the probability density f(l, k) is unconstrained. So there is an

amazing flexibility in the choice of the transition probabilities W (l)(k). Also,

the algorithm generalizes immediately to arbitrary weights.

The heat bath algorithm chooses a state qi directly with the local

Boltzmann distribution defined by its nearest neighbors. The state qi can

take on one of the values 1, . . . , q and, with all other states set, determines

a value of the energy function (56). We denote this energy by E(qi) and

the Boltzmann probabilities are

PB(qi) = const e−β E(qi) (79)

where the constant follows from the normalization condition

q
∑

qi=1

PB(qi) = 1 . (80)

In equation (79) we can define E(qi) to be just the contribution of the

interaction of qi with its nearest neighbors to the total energy and absorb

the other contributions into the overall constant. Here we give a generic

code which works for arbitrary values of q and d (other implementations

may be more efficient).

We calculate the cumulative distribution function of the heat bath prob-

abilities

PHB(qi) =

qi
∑

q′

i
=1

PB(q′i) . (81)

The normalization condition (80) implies PHB(q) = 1. Comparison of these

cumulative probabilities with a uniform random number xr yields the heat

bath update qi → q′i. Note that in the heat bath procedure the original

value qin
i does not influence the selection of qnew

i .
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9.2. The O(3) σ Model and the Heat Bath Algorithm

We give an example of a model with a continuous energy function. Expec-

tation values are calculated with respect to the partition function

Z =

∫

∏

i

dsi e−βE({si}) . (82)

The spins �si =





si,1

si,2

si,3



 are normalized to (�si)
2 = 1 (83)

and the measure dsi is defined by

∫

dsi =
1

4π

∫ +1

−1

d cos(θi)

∫ 2π

0

dφi ,

(84)

where the polar (θi) and azimuth (φi) angles define the spin si on the unit

sphere. The energy is

E = −
∑

〈ij〉

�si�sj , (85)

where the sum goes over the nearest neighbor sites of the lattice and �si�sj

is the dot product of the vectors. The 2d version of the model is of interest

to field theorists because of its analogies with the four-dimensional Yang-

Mills theory. In statistical physics the d-dimensional model is known as the

Heisenberg ferromagnet (references can be found in [7]).

We would like to update a single spin �s. The sum of its 2d neighbors is

�S = �s1 + �s2 + · · · + �s2d−1 + �s2d .

Hence, the contribution of spin �s to the energy is 2d − �s�S. We propose a

new spin �s
′

with the measure (84) by drawing two uniformly distributed

random numbers

φr ∈ [0, 2π) for the azimuth angle and

cos(θr) = xr ∈ [−1, +1) for the cosine of the polar angle .

This defines the probability function f(�s
′

, �s) of the Metropolis process,

which accepts the proposed spin �s
′

with probability

w(�s → �s
′

) =

{

1 for �S�s
′

> �S�s ,

e−β(�S�s−�S�s
′

) for �S�s
′

< �S�s .

If sites are chosen with the uniform probability distribution 1/N per

site, where N is the total number of spins, it is obvious that the algorithm
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fulfills detailed balance. It is noteworthy that the procedure remains valid

when the spins are chosen in the systematic order 1, . . . , N . Balance (71)

still holds, whereas detailed balance (73) is violated (an exercise of Ref. [7]).

One would prefer to choose �s
′

directly with the probability

W (�s → �s
′

) = P (�s
′

; �S) = const eβ �s
′ �S .

The heat bath algorithm creates this distribution. Implementation of it

becomes feasible when the energy function allows for an explicit calculation

of the probability P (�s
′

; �S). This is an easy task for the O(3) σ-model. Let

α = angle(�s
′

, �S), x = cos(α) and S = β|�S| .

For S = 0 a new spin �s
′

is simply obtained by random sampling. We assume

in the following S > 0. The Boltzmann weight becomes exp(xS) and the

normalization constant follows from
∫ +1

−1

dx exS =
2

S
sinh(S) .

Therefore, the desired probability is

P (�s
′

; �S) =
S

2 sinh(S)
exS =: f(x)

and the method of Eq. (6) can be used to generate events with the prob-

ability density f(x). A uniformly distributed random number yr ∈ [0, 1)

translates into

xr = cosαr =
1

S
ln [ exp(+S) − yr exp(+S) + yr exp(−S)] . (86)

Finally, one has to give �s
′

a direction in the plane orthogonal to S. This

is done by choosing a random angle βr uniformly distributed in the range

0 ≤ βr < 2π. Then, xr = cosαr and βr completely determine �s
′

with

respect to �S. Before storing �s
′

in the computer memory, we have to cal-

culate coordinates of �s
′

with respect to a Cartesian coordinate system,

which is globally used for all spins of the lattice. This amounts to a linear

transformation.

9.3. Example Runs

Start and equilibration: Under repeated application of one of our up-

dating procedures the probability of states will approach the Boltzmann

distribution. However, initially we have to start with a microstate which

may be far off the Boltzmann distribution. Suppression factors like 10−10000
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Fig. 5. Two Metropolis time series of 200 sweeps each for a 2d Ising model on a 80×80

lattice at β = 0.4 are shown. Random updating for which the positions of the spins are

chosen with the uniform probability distribution was used. Measurements of the energy

per spin after every sweep are plotted for ordered and disordered starts. The exact mean

value ês = −1.10608 is also indicated (assignment a0303 01).

are possible. Although the weight of states decreases with 1/n where n is

the number of steps of the Markov process, one should exclude the initial

states from the equilibrium statistics. In practice this means we should

allow for a certain number of sweeps nequi to equilibrate the system. One

sweep updates each spin once or once in the average.

Many ways to generate start configurations exist. Two natural and easy

to implement choices are:

(1) Generate a random configuration corresponding to β = 0. This defines

a random or disordered start of a MC simulation.

(2) Generate a configuration for which all Potts spins take on the same

q-value. This is called an ordered start of a MC simulation.

Examples of initial time series are given in Fig. 5 and 6. Unless explic-

itly stated otherwise, we use here and in the following always sequential

updating, for which the spins are touched in a systematic order.

Consistency Checks: For the 2d Ising model we can test against the

exact finite lattice results of Ferdinand and Fisher [11]. We simulate a 202



28 B. A. Berg

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  50  100  150  200

e
s

Sweeps

Disordered starts

Ordered starts

Metropolis 1-hit
Metropolis 2-hit

Heat Bath

Fig. 6. q = 10 Potts model time series of 200 sweeps on a 80 × 80 lattice at β = 0.62.
Measurements of the energy per spin after every sweep are plotted for ordered and

disordered starts (assignment a0303 05).

lattice at β = 0.4, using a statistics of 10 000 sweeps for reaching equilib-

rium. The statistics for measurement is chosen to be 64 bins of 5 000 sweeps

each. The number 64 is taken, because according to the student distribution

the approximation to the Gaussian distribution is then excellent, and the

binsize of 5 000 (≫ 200) is argued to be large enough to neglect correlations

between the bins. A more careful analysis is the subject of our next section.

With our statistics we find (assignment a0303 06)

es = −1.1172 (14) (Metropolis) versus ês = −1.117834 (exact) . (87)

The Gaussian difference test gives a perfectly admissible value, Q = 0.66.

For the 2d 10-state Potts model at β = 0.62 we test our Metropolis

versus our heat bath code on a 20× 20 lattice. For the heat bath updating

we use the same statistics as for the 2d Ising model. For the Metropolis

updating we increase these numbers by a factor of four. This increase is

done, because we expect the performance of Metropolis updating for the

10-state model to be worse than for the 2-state model: At low temperature

the likelihood to propose the most probable (aligned) Potts spin is 1/2 for

the 2-state model, but only 1/10 for the 10-state model, and β = 0.62 is

sufficiently close to the ordered phase, so that this effect is expected to

be of relevance. The results of our simulations are (assignment a0303 08)
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Fig. 7. Histogram of the energy per spin for the 3d 3-state Potts model on a 24
3

latticed

at β = 0.275229525 (assignment a0303 10).

es = −0.88709 (30) (Metropolis) versus es = −0.88664 (28) (heat bath)

and Q = 0.27 for the Gaussian difference test. Another perfectly admissable

value.

To illustrate features of a first order phase transition for the 3d 3-state

Potts model, we use the 1-hit Metropolis algorithm on a 243 lattice and sim-

ulate at β = 0.275229525. We perform 20 000 sweeps for reaching equilib-

rium, then 64×10000 sweeps with measurements. From the latter statistics

we show in Fig. 7 the energy histogram and its error bars. The histogram ex-

hibits a double peak structure, which is typically obtained when systems

with first order transitions are simulated on finite lattices in the neigh-

borhood of so called pseudo-transition temperatures. These are finite

lattice temperature definitions, which converge with increasing system size

towards the infinite volume transition temperature. Equal heights of the

maxima of the two peaks is one of the popular definitions of a pseudo-

transition temperature for first order phase transitions. Equal weights (ar-

eas under the curves) is another, used in the lecture by Prof. Landau. Our β

value needs to be re-weighted to a slightly higher value to arrange for equal

heights (assignment a0303 10). Our mean energy per spin, corresponding

to the histogram of the figure is es = −1.397 (13). Due to the double peak

structure of the histogram the error bar is relatively large. Still, the cen-
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Fig. 8. Peaked distribution functions for the O(3) σ-model mean energy per link on

various lattices at β = 1.1 (assignment a0304 08).

tral limit theorem works and a Kolmogorov test shows that our statistics

is large enough to create an approximately Gaussian distribution for the

binned data (assignment a0303 11).

Self-Averaging Illustration for the O(3) model: We compare in

Fig. 8 the peaked distribution function of the mean energy per link el for

different lattice sizes. The property of self-averaging is observed: The

larger the lattice, the smaller the confidence range. The other way round,

the peaked distribution function is very well suited to exhibit observables

for which self-averaging does not work, as for instance encountered in spin

glass simulations [5].

10. Statistical Errors of Markov Chain Monte Carlo Data

In large scale MC simulation it may take months, possibly years, to collect

the necessary statistics. For such data a thorough error analysis is a must.

A typical MC simulation falls into two parts:

(1) Equilibration: Initial sweeps are performed to reach the equilibrium

distribution. During these sweeps measurements are either not taken

at all or they have to be discarded when calculating equilibrium ex-

pectation values.
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(2) Data Production: Sweeps with measurements are performed. Equi-

librium expectation values are calculated from this statistics.

A rule of thumb is: Do not spend more than 50% of your CPU

time on measurements! The reason for this rule is that one cannot be

off by a factor worse than two (
√

2 in the statistical error).

How many sweeps should be discarded for reaching equilibrium? In a

few situations this question can be rigorously answered with the Coupling

from the Past method (see the article by W. Kendall in this volume). The

next best thing to do is to measure the integrated autocorrelation time

and to discard, after reaching a visually satisfactory situation, a number of

sweeps which is larger than the integrated autocorrelation time. In practice

even this can often not be achieved.

Therefore, it is re-assuring that it is sufficient to pick the number of

discarded sweeps approximately right. With increasing statistics the con-

tribution of the non-equilibrium data dies out like 1/N , where N is the

number of measurements. This is eventually swallowed by the statistical

error, which declines only like 1/
√

N . The point of discarding the equilib-

rium configurations is that the factor in front of 1/N can be large.

There can be far more involved situations, like that the Markov chain

ends up in a metastable configuration, which may even stay unnoticed (this

tends to happen in complex systems like spin glasses or proteins).

10.1. Autocorrelations

We like to estimate the expectation value ̂f of some physical observable. We

assume that the system has reached equilibrium. How many MC sweeps are

needed to estimate ̂f with some desired accuracy? To answer this question,

one has to understand the autocorrelations within the Markov chain.

Given is a time series of N measurements from a Markov process

fi = f(xi), i = 1, . . . , N , (88)

where xi are the configurations generated. The label i = 1, . . . , N runs in

the temporal order of the Markov chain and the elapsed time (measured

in updates or sweeps) between subsequent measurements fi, fi+1 is always

the same. The estimator of the expectation value ̂f is

f =
1

N

∑

fi . (89)

With the notation

t = |i − j|



32 B. A. Berg

the definition of the autocorrelation function of the observable ̂f is

̂C(t) = ̂Cij = 〈 (fi−〈fi〉) (fj−〈fj〉) 〉 = 〈fifj〉−〈fi〉 〈fj〉 = 〈f0ft〉− ̂f 2 (90)

where we used that translation invariance in time holds for the equilibrium

ensemble. The asymptotic behavior for large t is

̂C(t) ∼ exp

(

−
t

τexp

)

for t → ∞, (91)

where τexp is called (exponential) autocorrelation time and is related to

the second largest eigenvalue λ1 of the transition matrix by τexp = −1/ lnλ1

under the assumption that f has a non-zero projection on the corresponding

eigenstate. Superselection rules are possible so that different autocorrelation

times reign for different operators.

The variance of f is a special case of the autocorrelations (90)

̂C(0) = σ2(f) . (92)

Some algebra [7] shows that the variance of the estimator f (89) for the

mean and the autocorrelation functions (90) are related by

σ2(f) =
σ2(f)

N

[

1 + 2

N−1
∑

t=1

(

1 −
t

N

)

ĉ(t)

]

with ĉ(t) =
̂C(t)

̂C(0)
. (93)

This equation ought to be compared with the corresponding equation for

uncorrelated random variables σ2(f) = σ2(f)/N . The difference is the fac-

tor in the bracket of (93), which defines the integrated autocorrelation

time

τint =

[

1 + 2

N−1
∑

t=1

(

1 −
t

N

)

ĉ(t)

]

. (94)

For correlated data the variance of the mean is larger by a factor τint than

the corresponding naive variance for uncorrelated data:

τint =
σ2(f)

σ2
naive(f)

with σ2
naive =

σ2(f)

N
. (95)

In most simulations one is interested in the limit N → ∞ and equation (94)

becomes

τint = 1 + 2

∞
∑

t=1

ĉ(t) . (96)
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The numerical estimation of the integrated autocorrelation time faces dif-

ficulties. Namely, the variance of the N → ∞ estimator of τint diverges:

τ int = 1 + 2

∞
∑

t=1

c(t) and σ2(τ int) → ∞ , (97)

because for large t each c(t) adds a constant amount of noise, whereas the

signal dies out like exp(−t/τexp). To obtain an estimate one considers the

t-dependent estimator

τ int(t) = 1 + 2

t
∑

t′=1

c(t′) (98)

and looks out for a window in t for which τ int(t) is flat.

To give a simple example, let us assume that the autocorrelation func-

tion is governed by a single exponential autocorrelation time

̂C(t) = const exp

(

−
t

τexp

)

. (99)

In this case we can carry out the sum (96) for the integrated autocorrelation

function and find

τint = 1 + 2

∞
∑

t=1

e−t/τexp = 1 +
2 e−1/τexp

1 − e−1/τexp
. (100)

For a large exponential autocorrelation time τexp ≫ 1 the approximation

τint = 1 +
2 e−1/τexp

1 − e−1/τexp

∼= 1 +
2 − 2/τexp

1/τexp
= 2 τexp − 1 ∼= 2 τexp (101)

holds.

10.2. Integrated Autocorrelation Time and Binning

Using binning the integrated autocorrelation time can also be estimated via

the variance ratio. We bin the time series (88) into Nbs ≤ N bins of

Nb = NBIN =

[

N

Nbs

]

=

[

NDAT

NBINS

]

(102)

data each. Here [.] stands for Fortran integer division, i.e., Nb = NBIN is

the largest integer ≤ N/Nbs, implying Nba · Nb ≤ N . It is convenient to

choose the values of N and Nbs so that N is a multiple of Nbs. The binned

data are the averages

fNb

j =
1

Nb

jNb
∑

i=1+(j−1)Nb

fi for j = 1, . . . , Nbs . (103)
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For Nb > τexp the autocorrelations are essentially reduced to those between

nearest neighbor bins and even these approach zero under further increase

of the binsize.

For a set of Nbs binned data fNb

j , (j = 1, . . . , Nbs) we may calculate the

mean with its naive error bar. Assuming for the moment an infinite time

series, we find the integrated autocorrelation time (95) from the following

ratio of sample variances

τint = lim
Nb→∞

τNb

int with τNb

int =

(

s2

f
Nb

s2
f

)

. (104)

In practice the Nb → ∞ limit will be reached for a sufficiently large, finite

value of Nb. The statistical error of the τint estimate (104) is, in the first

approximation, determined by the errors of s2

f
Nb

. The typical situation is

then that, due to the central limit theorem, the binned data are approxi-

mately Gaussian, so that the error of s2

f
Nb

is analytically known from

the χ2 distribution. Finally, the fluctuations of s2
f

of the denominator give

rise to a small correction which can be worked out [7].

Numerically most accurate estimates of τint are obtained for the finite

binsize Nb which is just large enough that the binned data (103) are prac-

tically uncorrelated. While the Student distribution shows that the con-

fidence intervals of the error bars from 16 uncorrelated normal data are

reasonable approximations to those of the Gaussian standard deviation,

about 1000 independent data are needed to provide a decent estimate of

the corresponding variance (at the 95% confidence level with an accuracy

of slightly better than 10%). It makes sense to work with error bars from

16 binned data, but the error of the error bar, and hence a reliable estimate

of τint, requires far more data.

10.3. Illustration: Metropolis Generation of Normally

Distributed Data

We generate normally distributed data according to the Markov process

x′ = x + 2 a xr − a (105)

where x is the event at hand, xr a uniformly distributed random number

in the range [0, 1), and the real number a > 0 is a parameter which relates

to the efficiency of the algorithm. The new event x′ is accepted with the
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Fig. 9. The autocorrelation function (90) of a Metropolis time series for the normal

distribution (upper data) in comparison with those of our Gaussian random number

generator (lower data). For t ≥ 11 the inlay shows the autocorrelations on an enlarged

ordinate. The straight lines between the data points are just to guide the eyes. The

curves start with C(0) ≈ 1 because the variance of the normal distribution is one.

Metropolis probability

Paccept(x
′) =

{

1 for x′ 2 ≤ x2;

exp[−(x′ 2 − x2)/2] for x′ 2 > x2.
(106)

If x′ is rejected, the event x is counted again. The Metropolis process in-

troduces an autocorrelation time in the generation of normally distributed

random data.

We work with N = 217 = 131072 data and take a = 3 for the Markov

process (105), what gives an acceptance rate of approximately 50%. The

autocorrelation function of this process is depicted in Fig. 9 (assignment

a0401 01). The integrated autocorrelation time (assignment a0401 02) is

shown in Fig. 10. We compare the τNb

int estimators with the direct estimators

τint(t) at

t = Nb − 1 . (107)

With this relation the estimators agree for binsize Nb = 1 and for larger

Nb the relation gives the range over which we combine data into either
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Fig. 10. The upper curves in the figure and its inlays display the estimators obtained

by direct calculation. The lowest curve is for the Gaussian random number generator.

The remaining curves are binning procedure estimators of the integrated autocorrelation

time with one standard deviation bounds. The main figure relies on 2
21

data and depicts

estimators up to t = 127. The first inlay relies on 2
17

data and depicts estimators up to

t = 31. The second inlay relies on 2
14

data and depicts estimators up to t = 15.

one of the estimators. The approach of the binning procedure towards the

asymptotic τint value is slower than that of the direct estimate of τint.

For our large NDAT = 221 data set τint(t) reaches its plateau before t =

20. All the error bars within the plateau are strongly correlated. Therefore,

it is not recommended to make an attempt to combine them. Instead, it

is safe to pick an appropriate single value and its error bar as the final

estimate:

τint = τint(20) = 3.962 ± 0.024 from 221 = 2, 097, 152 data. (108)

The binning procedure, on the other hand, shows an increase of τNb

int all the

way to Nb = 27 = 128, where the estimate with the one confidence level

error bounds is

3.85 ≤ τ128
int ≤ 3.94 from 214 = 16, 384 bins from 221 data. (109)

How many data are needed to allow for a meaningful estimate of the

integrated autocorrelation time?

For a statistics of NDAT = 217 the autocorrelation signal disappears for

t ≥ 11 into the statistical noise. Still, there is clear evidence of the hoped
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for window of almost constant estimates. A conservative choice is to take

t = 20 again, which now gives

τint = τint(20) = 3.86 ± 0.11 from 217 data. (110)

Worse is the binning estimate, which for the 217 data is

3.55 ≤ τ32
int ≤ 3.71 from 212 = 4, 096 bins from 217 = 131, 072 data. (111)

Our best value (108) is no longer covered by the two standard deviation

zone.

For the second inlay the statistics is reduced to NDAT = 214. With the

integrated autocorrelation time rounded to 4, this is 4096 times τint. For

binsize Nb = 24 = 16 we are then down to Nbs = 1024 bins, which are

needed for accurate error bars of the variance. To work with this number

we limit, in accordance with equation (107), our τint(t) plot to the range

t ≤ 15. Still, we find a quite nice window of nearly constant τint(t), namely

all the way from t = 4 to t = 15. By a statistical fluctuation (assignment

a0401 03) τint(t) takes its maximum value at t = 7 and this makes τint(7) =

3.54±0.13 a natural candidate. However, this value is inconsistent with our

best estimate (108). The true τint(t) increases monotonically as function of

t, so we know that the estimators have become bad for t > 7. The error bar

at t = 7 is too small to take care of our difficulties. One may combine the

t = 15 error bar with the t = 7 estimate. In this way the result is

τint = 3.54 ± 0.21 for 214 = 16, 384 data, (112)

which achieves consistency with (108) in the two error bar range. For binsize

Nb = 16 the binning estimate is

2.93 ≤ τ16
int ≤ 3.20 from 210 = 1, 024 bins from 214 data. (113)

Clearly, the binsize Nb = 16 is too small for an estimate of the integrated

autocorrelation time. We learn that one needs a binsize of at least ten times

the integrated autocorrelation time τint, whereas for its direct estimate it

is sufficient to have t about four times larger than τint.

11. Self-Consistent versus Reasonable Error Analysis

By visual inspection of the time series, one may get an impression about

the length of the out-of-equilibrium part of the simulation. On top of this

one should still choose

nequi ≫ τint , (114)
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to allow the system to settle down. That is a first reason, why it appears

necessary to control the integrated autocorrelation time of a MC simulation.

A second reason is that we have to control the error bars of the equilibrium

part of our simulation. Ideally the error bars are calculated as

△f =

√

σ2(f) with σ2(f) = τint
σ2(f)

N
. (115)

This constitutes a self-consistent error analysis of a MC simulation.

However, the calculation of the integrated autocorrelation time may

be out of reach. Many more than the about twenty independent data are

needed, which according to the Student distribution are sufficient to esti-

mate mean values with reasonably reliable error bars.

In practice, one has to be content with what can be done. Often this

means to rely on the binning method. We simply calculate error bars

of our ever increasing statistics with respect to a fixed number of

NBINS ≥ 16 . (116)

In addition, we may put 10% of the initially planned simulation time away

for reaching equilibrium. A-posteriori, this can always be increased. Once

the statistics is large enough, our small number of binned data become

effectively independent and our error analysis is justified.

How do we know that the statistics has become large enough? In practi-

cal applications there can be indirect arguments, like FSS estimates, which

tell us that the integrated autocorrelation time is in fact (much) smaller

than the achieved bin length. This is no longer self-consistent, as we perform

no explicit measurement of τint, but it is a reasonable error analysis.

12. Comparison of Markov Chain MC Algorithms

Is the 1-hit Metropolis algorithm more efficient with sequential updating

or with random updating? For 2d Ising lattices at β = 0.4 Fig. 11 illus-

trates that sequential updating wins. This is apparently related to the fact

that random updating may miss out on some spins for some time, whereas

sequential updating touches each spin with certainty during one sweep.

Figures 12 and 13 illustrate 2d Ising model simulations off and on the

critical point. Off the critical point, at β = 0.4, the integrated autocorre-

lation time increases for L = 5, 10 and 20. Subsequently, it decreases to

approach for L → ∞ a finite asymptotic value. On the critical point, at

β = βc = ln(1 +
√

2)/2, critical slowing down is observed, an increase
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τint ∼ Lz with lattice size, where z ≈ 2.17 is the dynamical critical ex-

ponent of the 2d Ising model. Estimates of z are compiled in the book by

Landau and Binder [16].

Using another MC dynamics the critical slowing down can be overcome.

Fig. 14 shows the major improvements for Swendsen-Wang [21] (SW) and

Wolff [24] (W) cluster updating.

Finally, Fig. 15 exhibit the improvements of heat bath over Metropolis

updating for the 10-state d = 2 Potts model at β = 0.62.

13. Multicanonical Simulations

One of the questions which ought to be addressed before performing a

large scale computer simulation is “What are suitable weight factors for the

problem at hand?” So far we used the Boltzmann weights as this appears

natural for simulating the canonical ensemble. However, a broader view of

the issue is appropriate.

Conventional, canonical simulations calculate expectation values at a

fixed temperature T and can, by re-weighting techniques, only be extrapo-

lated to a vicinity of this temperature. For multicanonical simulations this is
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different. A single simulation allows to obtain equilibrium properties of the

Gibbs ensemble over a range of temperatures. Of particular interest are two

situations for which canonical simulations do not provide the appropriate

implementation of importance sampling:

(1) The physically important configurations are rare in the canonical en-

semble.

(2) A rugged free energy landscape makes the physically important config-

urations difficult to reach.

MC calculation of the interface tension of a first order phase tran-

sition provide an example for the first situation. Let N = Ld be the

lattice size. For a first order phase transition pseudo-transition tem-

peratures βc(L) exist so that the energy distributions P (E) = P (E; L)

become double peaked and the maxima at E1
max < E2

max are of equal height

Pmax = P (E1
max) = P (E2

max). In-between the maximum values a minimum

is located at some energy Emin. Configurations at Emin are exponentially

suppressed like

Pmin = P (Emin) = cf Lp exp(−f sA) (117)

where f s is the interface tension and A is the minimal area between the

phases, A = 2Ld−1 for an Ld lattice, cf and p are constants (computations

of p have been done in the capillary-wave approximation). The interface

tension can be determined by Binder’s histogram method [8]. One has to

calculate the quantities

fs(L) = −
1

A(L)
lnR(L) with R(L) =

Pmin(L)

Pmax(L)
(118)

and to make a FSS extrapolation of f s(L) for L → ∞.

For large systems a canonical MC simulation will practically never visit

configurations at energy E = Emin and estimates of the ratio R(L) will be

very inaccurate. The terminology supercritical slowing down was coined

to characterize such an exponential deterioration of simulation results with

lattice size.

Multicanonical simulations [3] approach this problem by sampling,

in an appropriate energy range, with an approximation to the weights

w1/n(E(k)) =
1

n(E(k))
= exp

[

−b
(

E(k)
)

E + a
(

E(k)
)]

(119)

where n(E) is the number of states of energy E. The function b(E) defines

the inverse microcanonical temperature and a(E) the dimensionless,
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microcanonical free energy. The function b(E) has a relatively smooth

dependence on its arguments, which makes it a useful quantity when dealing

with the weight factors.

Instead of the canonical energy distribution P (E), one samples a new

multicanonical distribution

Pmu(E) = cmu n(E)wmu(E) ≈ cmu . (120)

The desired canonical probability density is obtained by re-weighting

P (E) =
cβ

cmu

Pmu(E)

wmu(E)
e−βE. (121)

This relation is rigorous, because the weights wmu(E) used in the simulation

are exactly known. Accurate estimates of the interface tension (118) become

possible.

The multicanonical method requires two steps:

(1) Obtain a working estimate ŵmu(k) of the weights ŵ1/n(k). Working

estimate means that the approximation to (119) has to be good enough

to ensure movement in the desired energy range.

(2) Perform a Markov chain MC simulation with the fixed weights ŵmu(k).

The thus generated configurations constitute the multicanonical en-

semble. Canonical expectation values are found by re-weighting to the

Gibbs ensemble and jackknife methods allow reliable error estimates.

It is a strength of computer simulations that one can generate artificial

(not realized by nature) ensembles, which enhance the probabilities of rare

events one may be interested in, or speed up the dynamics. Nowadays Gen-

eralized Ensembles (umbrella, multicanonical, 1/k, ...) have found many

applications. Besides for first order phase transitions they are in particular

usefull for complex systems such as biomolecules, where they accelerate the

dynamics. For a review see [14].

13.1. How to Get the Weights?

To get the weights is at the heart of the method. Some approaches are:

(1) Overlapping, constrained (microcanonical) MC simulations. A poten-

tial problem is to fulfill ergodicity.

(2) FSS Estimates. This appears to be best when it works, but there may

be no FSS theory for the system at hand.

(3) General Purpose Recursions. Problem: They tend to deteriorate with

increasing lattice size (large lattices).
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The Multicanonical Recursion (a variant of [4]): The multicanonical

parameterization of the weights is

w(a) = e−S(Ea) = e−b(Ea) Ea+a(Ea) ,

where (for ǫ being the smallest energy stepsize)

b(E) = [S(E + ǫ) − S(E)] /ǫ and a(E − ǫ) = a(E) + [b(E − ǫ) − b(E)] E .

The recursion reads then (see [6] for details):

bn+1(E) = bn(E) + ĝn
0 (E) [lnHn(E + ǫ) − lnHn(E)]/ǫ

ĝn
0 (E) = gn

0 (E) / [gn(E) + ĝn
0 (E)] ,

gn
0 (E) = Hn(E + ǫ)Hn(E) / [Hn(E + ǫ) + Hn(E)] ,

gn+1(E) = gn(E) + gn
0 (E), g0(E) = 0 .

The Wang-Landau Recursion [23]: Updates are performed with es-

timators g(E) of the density of states

p(E1 → E2) = min

[

g(E1)

g(E2)
, 1

]

.

Each time an energy level is visited, the estimator of g(E) is updated ac-

cording to

g(E) → g(E) f

where, initially, g(E) = 1 and f = f0 = e1. Once the desired energy range

is covered, the factor f is refined:

f1 =
√

f, fn+1 =
√

fn+1

until some value very close to one like f = 1.00000001 is reached. Afterwards

the usual multicanonical production runs may be carried out.

14. Multicanonical Example Runs (2d Ising and Potts

Models)

Most illustrations of this section are from Ref. [6].

For an Ising model on a 20 × 20 lattice the multicanonical recursion is

run in the range

namin = 400 ≤ iact ≤ 800 = namax . (122)
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The recursion is terminated after a number of so called tunneling events.

A tunneling event is defined as an updating process which finds its way

from

iact = namin to iact = namax and back . (123)

This notation comes from applications to first order phase transitions. An

alternative notation for tunneling event is random walk cycle. For most

applications 10 tunneling events lead to acceptable weights.

For the Ising model example run we find the requested 10 tunneling

events after 787 recursions and 64,138 sweeps (assignment a0501 01). In

assignment a0501 02 a similar example run is performed for the 2d 10-

state Potts model.

Performance: If the multicanonical weighting would remove all rele-

vant free energy barriers, the behavior of the updating process would be-

come that of a free random walk. Therefore, the theoretically optimal

performance for the second part of the multicanonical simulation is

τtun ∼ V 2 . (124)

Recent work about first order transitions by Neuhaus and Hager [19] shows

that the multicanonical procedure removes only the leading free energy

barrier, while at least one subleading barrier causes a residual supercritical

slowing done. Up to certain medium sized lattices the behavior V 2+ǫ gives

a rather good effective description. For large lattices exponential slowing

down dominates again. The slowing down of the weight recursion with the

volume size is expected to be even (slightly) worse than that of the second

part of the simulation.

Re-Weighting to the Canonical Ensemble: Let us assume that

we have performed a multicanonical simulation which covers the energy

histograms for a temperature range

βmin ≤ β =
1

T
≤ βmax . (125)

Given the multicanonical time series, where i = 1, . . . , n labels the gener-

ated configurations, the formula

O =

∑n
i=1 O

(i) exp
[

−β E(i) + b(E(i))E(i) − a(E(i))
]

∑n
i=1 exp

[

−β E(i) + b(E(i))E(i) − a(E(i))
] . (126)

replaces the multicanonical weighting of the simulation by the Boltzmann

factor. The denominator differs from the partition function Z by a constant

factor which drops out against the same constant factor in the numerator.
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For discrete systems it is sufficient to keep histograms when only func-

tions of the energy are calculated. For an operator O(i) = f(E(i)) equa-

tion (126) simplifies to

f =

∑

E f(E)hmu(E) exp [−β E + b(E)E − a(E)]
∑

E hmu(E) exp [−β E + b(E)E − a(E)]
(127)

where hmu(E) is the histogram sampled during the multicanonical produc-

tion run and the sums are over all energy values for which hmu(E) has

entries.

The computer implementation of these equations requires care. The

differences between the largest and the smallest numbers encountered in

the exponents can be really large. We can avoid large numbers by dealing

only with logarithms of sums and partial sums. For C = A+ B with A > 0

and B > 0 we can calculate ln C = ln(A + B) from the values lnA and

lnB, without ever storing either A or B or C (see [7] for more details):

lnC = ln

[

max(A, B)

(

1 +
min(A, B)

max(A, B)

)]

(128)

= max (lnA, lnB) + ln{1 + exp [min(ln A, lnB) − max(ln A, lnB)]}

= max (lnA, lnB) + ln{1 + exp [−| lnA − lnB|]} .

14.1. Energy and Specific Heat Calculation

We are now ready to produce multicanonical data for the energy per spin

of the 2d Ising model on a 20×20 lattice (assignment a0501 03). The same

numerical data allow to calculate the specific heat defined by

C =
d ̂E

dT
= β2

(

〈E2〉 − 〈E〉2
)

. (129)

The comparison of the multicanonical specific heat data with the exact

curve of Ferdinand and Fisher [11] is shown in Fig. 16 (error bars rely on

the jackknife method).

The energy histogram of this multicanonical simulation together its

canonically re-weighted descendants at β = 0, β = 0.2 and β = 0.4 is shown

in Fig. 17. The normalization of the multicanonical histogram is adjusted

so that it fits into the same figure with the three re-weighted histograms.

It is assignment a0501 06 to produce similar data for the 2d 10-state

Potts model and to re-weighted the multicanonical energy histogram to the

canonical distribution at β = 0.71, which is close to the pseudo-transition
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temperature. The multicanonical method allows then to estimate the inter-

face tension of the transition by following the minimum to maximum ratio

R(L) of Eq. (118) over many orders of magnitude [3] as is shown in Fig. 18.

14.2. Free Energy and Entropy Calculation

At β = 0 the Potts partition function is Z = qN . Therefore, multicanonical

simulations allow for proper normalization of the partition function, if β = 0

is included in the temperature range. The properly normalized partition

function allows to calculate the Helmholtz free energy

F = −β−1 ln(Z) (130)

and the entropy

S =
F − E

T
= β (F − E) (131)

of the canonical ensemble. Here E is the expectation value of the internal

energy and the last equal sign holds because of our choice of units for the
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Fig. 19. Entropies per spin, s = S/N , from multicanonical simulations of the Ising and

10-state Potts models on an 20 × 20 lattice (assignments a0501 03 and a0501 05). The

full line is the exact result of Ferdinand and Fischer for the Ising model.

temperature. For the 2d Ising model as well as for the 2d 10-state Potts

model, we show in Fig. 19 multicanonical estimates of the entropy density

per site

s = S/N . (132)

For the 2d Ising model one may also compare directly with the number

of states. Up to medium sized lattices these integers can be calculated to

all digits by analytical methods [2]. However, MC results are only sensitive

to the first few (not more than six) digits and, therefore, one finds no real

advantages over using other physical quantities.

14.3. Time Series Analysis

Typically, one prefers in continuous systems time series data over keeping

histograms, because one avoids then discretization errors [7]. Even in dis-

crete systems time series data are of importance, as one often wants to

measure more physical quantities than just the energy. Then RAM stor-

age limitations may require to use a time series instead of histograms. To

illustrate this point, we use the Potts magnetization.
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Fig. 20. The Potts magnetization squared per lattice site for the q = 2 and q = 10

Potts models on a 20 × 20 lattice (assignments a0501 08 and a0501 09).

In assignments a0501 08 and a0501 09 we create the same statistics on

20×20 lattices as before, including time series measurements for the energy

and for the Potts magnetization. For energy based observables the analysis

of the histogram and the time series data give consistent results.

For zero magnetic field, H = 0, the expectation value of the Potts

magnetization on a finite lattice is is simply

Mq0 = 〈 δqi,q0 〉 =
1

q
, (133)

independently of the temperature. For the multicanonical simulation it is

quite obvious that even at low temperatures each Potts state is visited with

probability 1/q. In contrast to this, the expectation value of the magneti-

zation squared

M2
q0 = q

〈(

1

N

N
∑

i=1

δqi,q0

)2〉

(134)

is a non-trivial quantity. At β = 0 its value is M 2
q0 = q (1/q)2 = 1/q, whereas

it approaches 1 for N → ∞, β → ∞. For q = 2 and q = 10 Fig. 20 shows

our numerical results and we see that the crossover of M 2
q0 from 1/q to 1

happens in the neighborhood of the critical temperature. A FSS analysis



Markov Chain Monte Carlo Simulations and their Statistical Analysis 51

would reveal that a singularity develops at βc, which is in the derivative of

M2
q0 for the second order phase transitions (q ≤ 4) and in M 2

q0 itself for the

first order transitions (q ≥ 5).
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1. Introduction

During the past half century there has been extensive study of phase transi-

tions in an extremely broad range of models in statistical physics. From the

theoretical perspective this has led to the development of relatively simple

models that are readily soluble and seek to capture the essential qualita-

tive features of real systems. To obtain the phase behavior of such models

a wide variety of analytical techniques have been developed, but more re-

cently, these approaches have been increasingly supplemented by computer

simulations.

The fundamentals for the determination of phase behavior have long

been understood–statistical mechanics tells us that all the equilibrium ther-

modynamic properties can be determined once the partition function is

known. However, the partition function is defined as a sum over all mi-

crostates of the system and is usually impossible to evaluate because the

number of microstates is huge for all but the very smallest systems. As a

consequence, exact enumeration of the partition function generally becomes

impossible. Only for few special models is it possible to solve the problem

exactly (at least for some quantities), and such models consequently serve as

testing grounds for more generally applicable analytical and computational

techniques.

Given the difficulty of solving most model systems exactly, Monte Carlo

(MC) simulation is often the tool of choice for obtaining information about

thermodynamic properties of model systems. MC methods have proven

themselves to be both powerful and flexible for the study of phase transi-

tions in various areas of statistical physics [1]. Nevertheless serious prob-

lems can arise. Specifically, in the neighborhood of a first order phase
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transition one encounters metastable states and hysteresis effects that lead

to extended sampling times and systematic errors in the estimation of phase

boundaries. Similarly, at a second order phase transition, critical slowing

down renders it difficult to attain the large system sizes necessary for the

accurate determination of critical point parameters.

In this article we shall review traditional MC simulation methods, de-

scribe theoretically based methods that allow us to understand the results,

and then describe a few of the approaches that have been developed to

circumvent difficulties associated with “standard” methods. Our treatment

shall be constrained to the simulation of classical systems, but the use of

clever transformations permits the study of quantum models and many of

the same considerations will be encountered. We wish to emphasize at the

outset that our presentation is only meant to be an introduction, and other

articles in this volume will surely present more detailed treatment of various

algorithms.

2. How Monte Carlo Methods can be Used in Statistical

Physics

2.1. The “Classical” Method: Metropolis Sampling

MC simulation methods have been used in statistical physics for over half

a century and are, in many respects, quite mature. The “classical” imple-

mentation, still in use today, was introduced by Metropolis et al [2] in 1953

and has been employed extensively for a wide range of simulation studies.

To illustrate the Metropolis algorithm we consider the “fruit fly” model of

magnetism, the simple Ising model on a lattice with Hamiltonian

H = −J
∑

<i,j>

σiσj , (1)

where J is the coupling constant, σ = ±1, and the sum extends over all

nearest neighbors. There are several variations of the Metropolis importance

sampling approach, but in the spirit of the original algorithm a randomly

chosen spin is flipped with a probability p depending on the associated

energy change ∆E.

p = min (1, exp(−∆E/kBT )) (2)

where T is the temperature and kB is Boltzmann’s constant. Averages over

the properties of the collection of resulting spin configurations provide good,

quantitative information about thermodynamic quantities. In addition, vi-

sual information about the nature of the clusters that develop as a phase
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transition is approached, (see Fig. 1 for the 2d Ising model near its critical

point) is quite illuminating.

Fig. 1. A typical configuration near the critical temperature of a two dimensional Ising

model of 1024 × 1024 spins (with periodic boundary conditions, as explained below).

White areas correspond to up spins and black areas to down spins.

The Metropolis method is not limited to “spin flip” transitions and dif-

fusion and other processes can be studied using “spin exchange” as well.

There is also no limitation to lattice systems, of course, and the method can

be straightforwardly applied to models with continuous degrees of freedom,

e.g. a fluid of hard particles. When systems with continuous symmetry are

simulated, the matter of the dynamical evolution of the system arises. The

sequence of states produced by the Metropolis algorithm constitutes a ran-

dom walk through the phase space of the system. Since it is designed to

yield configurations with the correct equilibrium (Boltzmann) probabilities,

it can be used to measure equilibrium ensemble averages of observables, e.g.

the magnetization of a spin model or the particle number density of a fluid.

Nonetheless, it must be realized that the resultant time dependence of ther-

modynamic properties does not necessarily bear any relation to the time

development that would occur in a physical system. Hence, these algorithms

are limited in cases where one is not interested in obtaining accurate dy-

namical information for “real” system, although the Monte Carlo kinetics

for simple models forms a topical area of great theoretical interest. Fortu-

nately, this disadvantage is potentially compensated for in several ways. In
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particular, with no restriction to maintaining realistic dynamics, we may

devise imaginative sampling schemes which go beyond the importance sam-

pling embodied by the Metropolis algorithm and which allow the system

to explore phase space much more efficiently than would be possible with

realistic dynamics. This feature of MC simulation will arise often as we

describe different methods below.

Another invaluable technique, for studying both first order and second

order transitions, is histogram extrapolation [3]. The method (which is out-

lined in Sec. 3.3) can be applied in the analysis of simulation data to increase

the amount of information that can be gleaned from it. However, in large

systems its applicability is limited by the statistical quality of the “wings”

of the histogram. This latter effect is quite important in systems with com-

peting interactions for which short range order effects occur over very broad

temperature ranges, or even give rise to frustration that produces a very

complicated energy landscape and makes equilibrium distributions quite

difficult to measure.

2.2. Choice of Boundary Conditions

2.2.1. Periodic boundary conditions (pbc)

Since simulations are performed on finite systems, the manner in which

the “edges” or boundaries of the lattice are considered is important. These

boundaries can be effectively eliminated by wrapping the d-dimensional

lattice on a (d+1)-dimensional torus. This boundary condition is termed a

“periodic boundary condition” (pbc) so that the first spin in a row “sees” the

last spin in the row as a nearest neighbor and vice versa. The same is true for

spins at the top and bottom of a column. Fig. 2 shows this procedure for a

Fig. 2. Commonly used boundary conditions: (left) periodic boundary conditions; (cen-

ter) mixed periodic - antiperiodic boundaries; (right) free edges.
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square lattice. This process effectively eliminates boundary effects, but the

system is still characterized by the finite lattice size L since the maximum

value of the correlation length is limited, and the resultant properties of the

system differ from those of the corresponding infinite lattice. Note that pbc

must be used with care, since if the ordered state of the system has spins

which alternate in sign from site to site, a “misfit seam” can be introduced

if the edge length is not chosen correctly.

2.2.2. Antiperiodic boundary conditions

If periodic boundary conditions (pbc) are imposed with the modification

that the sign of the coupling is reversed at the boundary, an interface is in-

troduced into the system. This procedure, known as antiperiodic boundary

conditions (apbc), is not useful for making the system seem more infinite

but allows us to work with a single interface in the system. (If pbc are used,

interfaces could only exist in pairs.) In this situation the interface is not

fixed at one particular location and may wander back and forth across the

boundary. Of course, an antiperiodic boundary condition is chosen in only

one direction and periodic boundary conditions in the other direction(s), so

a single interface results and interfacial properties can be studied without

a change in the hamiltonian.

In the above example the interface was parallel to one of the surfaces

whereas in a more general situation, the interface may be inclined with

respect to the surface. For this situation a tilted interface can be produced

by simply replacing one of the periodic boundaries by a skew boundary.

Spins on one side of the lattice will then see nearest neighbors on the other

side which are one or more rows below, depending on the tilt angle of the

interface. The resultant boundary conditions are different in each cartesian

direction and are themselves responsible for the change in the nature of

the problem being studied by a simple Monte Carlo algorithm. This is but

one example of the clever use of boundary conditions to simplify a problem

and indicates how important it is to consider the choice of the boundary

conditions before beginning a new study.

2.2.3. Free edge boundary conditions

Another type of boundary does not involve any kind of connection between

the end of a row and any other row on the lattice. Instead the spins at the

end of a row see no neighbor in that direction (see Fig. 2). This free edge

boundary not only introduces finite size smearing but also surface and cor-
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ner effects due to the “dangling bonds” at the edges. (Very strong changes

may occur near the surfaces and the behavior of the system is not homoge-

neous.) In some cases, however, the surface and corner behavior themselves

become the subjects of study. Sometimes free edge boundaries may be more

realistic, e.g. in modeling the behavior of nanoparticles or grains, but the

properties of systems with free edge boundaries usually differ from those of

the corresponding infinite system by a much greater amount than if some

sort of periodic boundary is used. In order to model thin films, one uses

pbc in the directions parallel to the film and free edge b.c. in the direction

normal to the film. In such cases, where the free edge boundary condition is

thought to model a physical free surface of a system, it may be appropriate

to also include surface fields, modified surface layer interactions, etc. In this

way, one can study diverse phenomena, e.g. wetting, interface localization-

delocalization transitions, surface induced ordering and disordering, etc.

2.3. Random Number Generators!

Monte Carlo methods rely on the fast, efficient production of sequences of

random numbers. Since computer algorithms that are used to generate ran-

dom numbers are actually deterministic, the sequences which are produced

are only “pseudo-random”, but these deterministic features actually have

some advantages. For example, during the testing of a code it is often useful

to compare the results with a previous run made using the identical ran-

dom numbers. It has been known for a long time that poor quality random

number generation can lead to systematic errors in Monte Carlo simula-

tion [4, 5] and a “standard” generator led to the development of improved

methods for producing pseudo-random numbers. Both the generation and

testing of random numbers remain an important challenge. In general, ran-

dom number sequences should be uniform, uncorrelated, and of quite long

period.

We now know that for optimum performance and accuracy, the random

number generator needs to be matched to the algorithm and the computer

[1]. No generator can be considered to be completely “safe” for use with a

new Monte Carlo simulation algorithm on a new problem. Usually floating

point numbers between 0 and 1 are needed; these are obtained by carrying

out a floating point divide by the largest integer Nmax which can fit into a

word.

A simple and popular method for generating random number sequences

is the congruential method. Here, a fixed multiplier c is chosen along with a
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given seed and subsequent numbers are generated by simple multiplication.

A “good” congruential generator is the 32-bit linear congruential algorithm

(CONG)

Xn = (16807 ∗ Xn−1)MOD(231 − 1) (3)

where Xn is an integer between 1 and Nmax. An earlier congruential gener-

ator produced troublesome correlation between consecutive triplets of ran-

dom numbers; nonetheless congruential generators are often acceptable and

are certainly easy to implement.

A fast method which was introduced to eliminate some of the problems

with a congruential method is the shift register or Tausworthe algorithm.

A table of random numbers is first produced and a new random number is

produced by combining two different existing numbers from the table:

Xn = Xn−p.XOR.Xn−q (4)

where p and q must be carefully chosen if the sequence is to have good

properties. (The .XOR. operator is the bitwise exclusive-OR operator.) Ex-

amples of pairs which satisfy this condition are (p=250; q = 103) – called

R250 [6] – and (p=1279; q = 216).

Other generators have been proposed, but because of the need to bal-

ance speed and “quality” no universally preferred generator has arisen. An

important point to be repeated, is that the quality of results obtained using

different generators depends strongly upon the algorithm being used!

3. Analyzing the Data

3.1. Finite Size Effects

In the above discussion we alluded to the fact that the effects of the finite-

ness of the system could be dramatic. For small lattices, interesting be-

havior, e.g. signals of a phase transition, can be completely smeared out!

Since our primary interest is often in determining the properties of the

corresponding infinite system, we need sound, theoretically based meth-

ods for extracting such behavior for the results obtained on finite system.

One fundamental difficulty which arises in interpreting simulational data,

stems from the fact that the equilibrium, thermodynamic behavior of a fi-

nite system is smooth as it passes through a phase transition for both 1st

order and 2nd order transitions. The differentiation between the two can

be accomplished using finite size scaling which we outline below.
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3.1.1. Finite size scaling and critical exponents

At a 2nd order transition the critical behavior of a system in the thermody-

namic limit can be extracted from the size dependence of the singular part

of the free energy which, according to finite size scaling theory [7, 8], is

described by a scaling ansatz similar to the scaling of the free energy with

thermodynamic variables T , H . Assuming homogeneity and using L and T

as variables, we find that

F (L, T ) = L−(2−α)/νF(ǫL1/ν) (5)

where ǫ = (T −Tc)/Tc. It is important to note that the critical exponents α

and ν assume their infinite lattice values. The choice of the scaling variable

x = (ǫL1/ν) is motivated by the observation that the correlation length,

which diverges as the transition is approached, is limited by the lattice

size L. Appropriate differentiation of the free energy yields the various

thermodynamic properties which have corresponding scaling forms, e.g.

M = L−β/νMo(ǫL
1/ν) (6)

χ = Lγ/νχo(ǫL
1/ν) (7)

C = Lα/νCo(ǫL
1/ν) (8)

where Mo(x), χo(x), and Co(x) are scaling functions appropriate to the

specific thermodynamic quantity. Note that the derivation of these relations

requires use of a second argument HL(γ+β)/ν in the scaling function F

in Eqn. 5, where H is the field conjugate to the order parameter and is

set to zero after the appropriate differentiation has been completed. The

validity of the finite size scaling ansatz is limited to sufficiently large L and

T sufficiently close to Tc, and corrections to scaling and finite size scaling

must be taken into account for smaller systems and temperatures away from

Tc. Because of the complexity of the origins of these corrections they are not

discussed in detail here; however, a more thorough presentation, including

discussions of how they affect the analysis of MC data, is available elsewhere

[9]. As an example of finite size behavior, in Fig. 3 we show data for the

spontaneous magnetization of L × L Ising square lattices with pbc. The

raw data are shown in the left hand portion of the figure, and a finite size

scaling plot, made with the exact values of Tc, β, and ν is shown in the right

hand portion of the figure. The scatter in the data is typical of early Monte

Carlo simulations, and the computation needed to produce these data [10]

can be done by a PC quite quickly today.
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Fig. 3. (left) Spontaneous magnetization for LxL Ising square lattices with pbc; (right)

finite size scaling plot for the data shown to the left. From Landau (1976).

At the transition the thermodynamic properties then all exhibit power

law behavior, since the scaling functions just reduce to proportionality con-

stants, i.e.

M ∝ L−β/ν (9)

χ ∝ Lγ/ν (10)

C ∝ Lα/ν (11)

which can be used to extract estimates for the ratio of certain critical expo-

nents. The power law behavior for the order parameter is verified in Fig. 3.

For small x all data approach a constant, which is then an estimate of

M0(0).

In addition to these quantities, which are basically just 1st or 2nd mo-

ments of the probability distribution of order parameter m or energy E, we

may obtain important, additional information by examining higher order

moments of the finite size lattice probability distribution. This can be done

quite effectively by considering the reduced 4th order cumulant of the order

parameter [11]. For an Ising model in zero field, for which all odd moments
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disappear by symmetry, the 4th order cumulant simplifies to

U4 = 1 −
< m4 >

3 < m2 >2
(12)

As the system size L → ∞ , U4 → 0 for T > Tc and U4 → 2/3 for

T < Tc. For large enough lattice sizes the curves for U4 as a function of

temperature cross at a “fixed point” value U ∗ (our terminology here is

used in a renormalization group sense, where the rescaling transformation

L = bL with a scale factor b > 1 is iterated) and the location of the crossing

“fixed point” is the critical point. Hence, by making such plots for different

size lattices one can make a preliminary identification of the universality

class from the value of U4
∗ and estimate Tc from the location of the crossing

point. Of course, correction terms will be present for small lattice size,

but there should be a systematic variation with increasing L towards a

common intersection. (For an Ising ferromagnet the order parameter is

simply the spontaneous magnetization and for an Ising antiferromagnet it

will be the staggered magnetization. Analogous behavior will also be seen

for appropriate order parameters for other models, although the locations

of the crossings and values of U4
∗ are model dependent.)

3.2. Finite Sampling Time Effects

The cpu time available for a simulation is always limited, so a choice needs

to be between performing long simulations of small systems or shorter sim-

ulations of larger systems. In order to use the available computer time as

efficiently as possible, it is important to know the sources of both system-

atic and statistical errors. One source of systematic error, finite size effects,

was treated in the previous section, and we now consider how errors depend

on the length of the run.

3.2.1. Statistical error

Suppose N successive observations Aµ are made of a quantity A with µ =

1, ..., N and N ≫ 1. The expectation value of the square of the statistical

error is

< (δA)2 >=< [(1/N)
∑

(Aµ− < A >)]2 > (13)

where the summation is over all N states. Successive states are correlated

and these correlations can be understood using the “dynamic interpreta-

tion” of Monte Carlo sampling in terms of the master equation [12]. The
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index µ which labels each successive configuration then plays the role of

“time”, but it is not necessarily related to physical time. Remember that

there is invariance with respect to the origin of “time”, and “Monte Carlo

time” can be introduced through t = µδt associated with the Monte Carlo

process where δt is the time interval between two successive measurements

Aµ , Aµ+1. It is possible to define a time t in terms of the time τs that is

used to convert the transition probability of the Metropolis method to a

transition probability per unit time. Since subsequent microstates are often

highly correlated with each other (e.g. for a single spin-flip Ising simula-

tion they differ at most by the orientation of one spin in the lattice), it

is usually more efficient to take data after time interval δt needed to at-

tempt to flip every spin once. (This time unit is generally termed “1 Monte

Carlo step/site [MCS]”). Near critical points where “critical slowing down”

[13] becomes evident, even subsequent states separated by δt = 1 MCS are

highly correlated, and it may then be preferable to take data less frequently.

Assuming, however, that the “correlation time” between subsequent

states is much larger than δt, the summation over the discrete “times”

t = δtµ may be transformed to an integration over time and the statistical

error will depend upon the integral of the normalized time autocorrelation

function (or “linear relaxation function”) φA(t) :

φA(t) =
< A(0)A(t) > − < A >2

< A2 > − < A >2
. (14)

Note that φA(t = 0) = 1, φA(t → ∞) = 0, and φA(t) decays monotonically

with increasing time t. If the time integral of φA(t) exists, i.e.

τA =

∫

φA(t)dt (15)

τA then can be interpreted as the “relaxation time” of the quantity A.

If the simulation can be carried out to very long times the statistical

error becomes [12]

< (δA)2 >= (1/N)[< A2 > − < A >2](1 + 2τA/δt). (16)

This means that the statistical error is independent of the choice of the time

interval δt, it only depends on the ratio of relaxation time τA to observation

time t. Conversely, if δt is chosen to be so large that subsequent states are

uncorrelated, the usual expression for the statistical error is obtained, i.e.

< (δA)2 >= [< A2 > − < A >2]/N . For many Monte Carlo algorithms

τA diverges at second order phase transitions (“critical slowing down”, and

it becomes very hard to obtain sufficiently high accuracy. Obviously, then,
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the construction of algorithms that reduce critical slowing down by a clever

choice of global moves (rather than single spin flips) is a valuable endeavor.

3.2.2. Biased sampling error

In addition to statistical error the finite sampling time can lead to sys-

tematic errors [9] in Monte Carlo sampling of response functions, i.e. a

systematic underestimation. This effect comes simply from the basic re-

sult of elementary probability theory that in estimating the variance s2

of a probability distribution using n independent samples, the expectation

value E(s2) of the variance thus obtained is systematically lower than the

true variance σ2 of the distribution, by a factor (1 − 1/n):

E(s2) = σ2(1 − 1/n) (17)

This means that for t >> τA there are effectively n = N/(1 + 2τA/δt)

independent “measurements”, and the calculated susceptibility χN of a

spin system may be related to that which we would obtain from a run of

infinite length by

χN = χ∞(1 −
1 + 2τM/δt

N
) (18)

where τM is the relaxation time for the magnetization. The “correction”

becomes particularly important at Tc, where the values of χ from different

system sizes (Ld in d dimensions, where L is the linear dimension) to esti-

mate the critical exponent ratio γ/ν . The systematic error will generally

vary with L, since the relaxation time τM may depend on the system size

quite dramatically ( τM ∝ Lz, with z being a new “dynamic exponent”

that characterizes critical slowing down).

While finite size scaling analyses are now routine, the estimation of

errors is non-trivial. To emphasize that neglect of this biased sampling error

is not always warranted, we briefly review here some results for the nearest-

neighbor Ising ferromagnet on a simple cubic lattice [9]. The Monte Carlo

simulations were performed at the “best estimate” critical temperature Tc

of the infinite lattice model for system sizes ranging from 16 ≤ L ≤ 96. Well

over 106 MCS were performed, taking data at intervals δt = 10 MCS, and

with the total number of observations Ntot divided into ng bins of “bin size”

N , with Ntot = ng×N , χN was calculated from the fluctuations. Of course,

in order to obtain reasonable statistics it was necessary to average the result

over all ng >> 1 bins. Fig. 4 shows the expected strong dependence of χN

on both N and L.
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Fig. 4. Variation of χN vs N for the susceptibility of L× L× L ferromagnetic nearest

neighbor Ising lattices at Tc as a function of the “bin length” N . From Ferrenberg et al.

(1991).

For L = 96, however, the asymptotic behavior is only reached for N ≥

105. This means that even for N = 104 a finite size scaling analysis would

systematically underestimate the true finite system susceptibility for large

L. This, in turn, would lead to an incorrect value of γ/ν in the relation

lnχ(L) = (γ/ν)lnL. However, if τM is measured for the different values

of L, the biased estimation formula can be used to extract a corrected

estimate.

The Metropolis method generally works well in single phase regions of

phase diagram but can become inefficient in the vicinity of a phase transi-

tion. The problems encountered (and the methods that lead to their resolu-

tion) depend qualitatively on whether the transition is second order or first

order in character. On approaching a second order phase transition (critical
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point), the correlation length ξ of order parameter fluctuations diverges like

ξ ∼ (T − Tc)
−ν , where T is the temperature, Tc is the critical temperature

and ν > 0 a critical exponent. The magnitude of the correlation length is

a measure of the degree of correlated configurational structure (essentially

the cluster diameter) and becomes very large near Tc (see Fig. 1). Since the

clusters are very large, autocorrelation times become long because many

steps of a local (single spin flip) algorithm are needed to produce a new

statistically independent configuration. This, in turn hinders accumulation

of unbiased statistics. This ‘critical slowing down’ can be quantified in terms

of a characteristic relaxation time τ which diverges as T → Tc:

τ = (T − Tc)
−νz (19)

where z is the dynamical critical exponent. Since the correlation length ξ is

bounded by the linear dimension of the system L as T → Tc, at the critical

point τ diverges as Lz. Consequently, we are limited in the closest approach

to Tc, or in how big a system we can simulate, because the correlations

begin to dominate and the amount of time required to produce uncorrelated

configurations becomes excessive (c.f. Fig. 5). Correlation times may differ

by a multiplicative factor for different quantities and may thus be quite

different even though z is the same.

At this point we wish to emphasize again that Monte Carlo time is not

real time because it describes a stochastic process rather than a determinis-

tic one. Of course, it is possible to determine true time dependent behavior,

including critical slowing down, using spin dynamics methods for magnetic

systems [15] or molecular dynamics methods for interacting particles in the

continuum [16]

At first order phase transitions the problems encountered in MC sim-

ulations arise from the free energy barriers which hinder the exploration

of the coexisting phases. In order to allow use of finite size scaling for ob-

taining accurate estimates for the location of a first order phase boundary,

a simulation must pass back and forth many times between the coexisting

phases in order to accurately estimate their relative weights. However, a

simulation begun near a first order coexistence point will not readily ex-

plore both coexisting phases but will tend to remain in the phase in which it

began. Transitions between the coexisting pure phases are suppressed due

to the low probability of the interfacial states (i.e. large free energy barrier)

through which the system must pass to move between pure phases and

metastability occurs. Consequently, long sampling times are needed, and
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Fig. 5. Divergence of the correlation times with increasing lattice size for the magneti-

zation (closed circles) and energy (open circles) for the simple cubic Ising model at Tc.

From Wansleben and Landau (1991).

this requirement grows rapidly with system size. For systems with “com-

plex” order, e.g. spin glasses, the problem is accentuated by the presence of

many competing, important regions of phase space, each separated by high

barriers from the others.

3.3. Histogram Reweighting

Histogram reweighting rests on the observation that the probability distri-

bution, approximated by a measured histogram, of an observable at one

set of model parameters (eg. β = 1/kBT and a field h conjugate to the

order parameter m) can be reweighted to provide estimates for other val-

ues of these parameters. The probability distribution of energy and order

parameter at the particular parameter values β = β0 and h = h0 is given

by
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pβ0,h0(m, E) =
1

Z0

∑

{σ}

g(E, m)e−β0H0 , (20)

where H0({σ}) ≡ E +h0m. It is easy to show that an estimate for the form

of p(m, E) at the parameter values β = β1, h = h1 can be obtained from

the measured pβ0,h0(m, E) by the simple reweighting:[3]

pβ1,h1(m, E) =
Z0

Z1
e−(β1H1−β0H0)pβ0,h0(m, E) , (21)

where the ratio Z0/Z1 is a constant that is effectively absorbed into the

normalization. If desired, this joint distribution can then be integrated to

yield the order parameter probability density function at β1, h1:

pβ1,h1(m) =

∫

dE pβ1,h1(m, E) . (22)

In principle, one simulation at one value of field and temperature pro-

vides information for all other state points; but, in practice, because of finite

sampling time, it is not possible to extrapolate a single histogram obtained

at β0, h0 to arbitrary values of β1, h1. Instead, the parameters to which ex-

trapolations are made must be fairly close to those at which the simulation

was actually performed or the procedure becomes inaccurate. One way of

dealing with this problem is to perform a sequence of separate simulations

at intervals across the range of model parameters of interest. Histogram

reweighting then interpolates to the regions of parameter space between

the simulation points. It is also possible to combine, self-consistently, the

results of a number of multiple simulations at different model parameters.

[3] [17]. Histogram extrapolation can be combined with the multicanon-

ical ensemble method to deliver a powerful method for tracking a phase

boundary through a multidimensional parameter space [18, 19].

3.4. How to Find the Free Energy

The free energy of a system can be found from appropriate thermodynamic

integrations of thermal properties, as long as the system is in equilibrium

when the measurements are being made. The intersection of branches of the

free energy for different phases then signals a phase transition, but standard

Monte Carlo methods have great difficulty in determining the free energy.

It is generally not directly accessible and must be found by appropriate

integrations of the specific heat and/or internal energy. This is often non-

trivial since the absolute free energy is not always known in both phases;
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moreover, the limitations in resolution sometimes make it difficult to deter-

mine just where free energy branches cross. Finite size scaling can be used

to determine a first order transition, but as mentioned in the preceding sec-

tion it is sometimes difficult to thoroughly sample coexisting phases. The

situation is illustrated schematically by viewing the configuration space of

some system with two phases, A and B. The sets of single phase configu-

rations are shown as disjoint “islands”. The region between the pure phase

states corresponds to interfacial configurations in which a portion of the

system is found in phase A, separated by an interface from the remainder

which is in phase B.

Typically the location of the system in configuration space is specified

in terms of a fluctuating order parameter m which distinguishes whether

the system is in phase A, phase B or somewhere in between. For example,

in a simple ferromagnet such as the Ising model, m is the magnetization,

while for a fluid undergoing a liquid-gas phase transition it is usually taken

to be the density difference.

The key to locating a first order phase transition is to measure the

free energy branches for the two coexisting phases. Unfortunately, a single

simulation cannot deliver the absolute free energy of a given phase; however,

it may be able to measure the free energy difference between two phases.

To see this, consider the canonical distribution of microstates,

p({σ}) =
e−βH({σ})

Z
, (23)

where {σ} denotes a microstate (i.e. a configuration), H({σ}) is the system

Hamiltonian, β is the inverse temperature and Z is the partition function.

If we sum over all microstates identifiable as belonging to phase ζ,

pζ =
1

Z

∑

{σ}∈ζ

e−βH({σ} (24)

≡
Zζ

Z
,

where the last step defines the configurational weight Zζ of the phase ζ.

The relative probabilities of two phases A and B is then

RAB ≡
pA

pB
=

ZA

ZB
(25)

≡
e−βFA

e−βFB

where Fζ denotes the free energy of phase ζ. It follows that the free en-

ergy difference between two phases A and B is simply proportional to the
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p(m)

m

Fig. 6. Schematic of the form of the order parameter distribution function at a first

order phase boundary.

logarithm of the ratio of their a-priori probabilities:

FA − FB = −
1

β
lnRAB , (26)

Clearly this equation implies that precisely at coexistence (FA = FB) the

system will be found with equal probability in each of the two phases.

In order to exploit Eq 26 we need to measure the probability ratio, i.e. a

scheme must be devised that will visit both phases frequently during a single

simulation. Monitoring the relative frequency with which the simulation is

found in each phase provides a direct estimate of RAB. In practice, this

can be done by appealing to the measured form of the order parameter

distribution function p(m). In a simulation this distribution is normally

accumulated in the form of a histogram, i.e.

p(m) =
1

Z

∑

{σ}

δ(m − m({σ}))e−βH{σ} , (27)

where the sum extends over all microstates of the system.

At a first order phase transition p(m) is strongly double peaked, as

shown schematically in Fig. 6. States having m values close to the peak

positions of p(m) correspond to pure phase configurations, while those in

the “valley” between the peaks correspond to mixed-phase (interfacial) con-

figurations. Compared to pure phase states, interfacial configurations have

an intrinsically small probability on account of their high surface tension.
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Accordingly such states are visited only rarely in the course of a simulation

at coexistence.

In principle, measurement of the ratio of the integrated weights (areas)

under the two peaks provide a direct estimate of RAB, whence the location

of coexistence can be estimated. Unfortunately, the strongly double peaked

character of p(m) complicates accurate measurement of its form. The low

probability of interfacial states renders spontaneous transitions between

the two coexisting phases very infrequent and results in greatly extended

correlation times. This in turn hinders the accumulation of statistics for

determining the relative peak weights and estimates for coexistence param-

eters. In the next subsection we discuss one effective method of bridging

this time scale gap, although others exist [20, 21].

4. Some “Advanced” Monte Carlo Algorithms

High resolution computer simulation studies require extensive data so per-

formance becomes a critical issue. A variety of methods have been devised

to “accelerate” the sampling process, and we will describe a few of these

below. For more information, the reader is referred elsewhere [1, 22].

4.1. “Optimized” Metropolis

In some cases it is possible to optimize the Metropolis method using clever

algorithms and computer coding methods. For example, in the case of lat-

tice spin models, instead of flipping a single spin at each MC step, one can

flip many spins. One such scheme, suitable for vector or massively parallel

computers, is “checkerboard updating” which decomposes the lattice into

two or more inter-penetrating sub-lattices that are considered alternately.

Historically, this decomposition allowed a very high degree of vectorization

to be achieved and resulted in quite high performance in vector supercom-

puters. In recent years this has faded in importance due to the emphasis

on parallel computers, but with the recent development of powerful new

vector platforms, e.g. the Earth Simulator in Japan and the Cray SX in

the United States, it is possible that we shall see the return of vectorized

codes as a “standard”. Further speed-ups can be achieved using “multi-

spin coding” in which several spins are packed into a single computer word

and are operated upon simultaneously. Unfortunately, such methods do not

generalize well to off-lattice models such as fluids. Moreover, their utility

remains limited even for lattice-based spins models because they do not

always allow increases in system sizes of the magnitude needed to overcome
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the growth of long timescales mentioned earlier. (Over the years a few spe-

cial purpose Ising model computers have been constructed, and although

these have provided enhanced performance they cannot solve the intrinsic

limitations of the Metropolis method.) The Metropolis method remains in

widespread use because of the ease of implementation and in its general

applicability.

4.2. Cluster Flipping Algorithms

Many of the MC simulation methods commonly deployed for the study of

phase transitions and critical phenomena, have been described elsewhere

[1]. Although the workhorse for many years was the Metropolis algorithm,

new, efficient algorithms have allowed simulation to achieve the resolution

which is needed to accurately locate and characterize phase transitions.

For the examination of second order transitions in spin models on lattices,

cluster-flip algorithms, beginning with the seminal work of Swendsen and

Wang [23], have been used to reduce critical slowing down near second or-

der transitions. Successive configurations generated by a MC simulation of

a spin model can be more rapidly decorrelated if each trial update involves

more than one spin flip at each trial update. The question of how to do

that intelligently was only discovered when a little known theorem in theo-

retical physics was used to design new methods that flip correlated clusters

of spins. The theorem, by Kasteleyn and Fortuin [24], showed that it was

possible to map a ferromagnetic Potts model onto a corresponding perco-

lation model. In the percolation problem states are produced by throwing

down particles, or bonds, in an uncorrelated fashion; hence there is no crit-

ical slowing down. The Fortuin-Kasteleyn transformation thus permits a

problem with slow critical relaxation to be mapped into one where such

effects are largely absent. The Swendsen-Wang approach [23] replaces each

like pair of interacting Potts spins on the lattice by a bond on an equivalent

lattice with probability p where

p = 1 − exp(−K) (28)

where the Hamitonian H =
∑

(δσiσj
− 1) includes a factor of 1/kBT . All

clusters of sites which are produced by a connected network of bonds are

identified, and then each cluster is randomly assigned a new spin value,

using a random number, i.e. each site in a cluster must have the same new

spin value.

Since the probability of placing a bond between pairs of sites depends

on temperature, the resultant cluster distributions will vary dramatically
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with temperature. Near a critical point a rich array of clusters is produced

and each resultant configuration differs substantially from its predecessor.

The dynamic critical exponent z is reduced from a value of just over 2

for Metropolis single-site spin flipping to a value of about 0 (actual log)

in 2-dim. and ∼ 0.5 in 3-dim. [25]. The overall performance of the algo-

rithm also depends strongly on the complexity of the code which is usually

much greater than for single spin-flip methods. Hence, for small lattices

the Swendsen-Wang technique may actually be slower in real time, but for

sufficiently large lattices it will eventually become more efficient.

A shortcoming of the Swendsen-Wang approach is that significant ef-

fort is expended in dealing with small clusters. These small clusters do not

contribute to the critical slowing down, so their consideration does not ac-

celerate the algorithm. In order to partially eliminate this constraint, Wolff

[26] proposed an alternative algorithm based on the Fortuin-Kasteleyn the-

orem in which single clusters are grown and flipped sequentially. The per-

formance of this algorithm generally exceeds that of the Swendsen-Wang

method. The algorithm begins with the (random) choice of a single site,

and bonds are then drawn to all nearest neighbors which are in the same

state using the same probability as for Swendsen-Wang sampling. One then

moves to all sites in turn which have been connected to the initial site and

places bonds between them and any of their nearest neighbors which are

in the same state with probability p. The process continues until no new

bonds are formed, and then the entire cluster of connected sites is flipped.

Another initial site is chosen and the process just described is repeated.

The Wolff dynamics has a smaller prefactor and smaller dynamic exponent

than does the Swendsen-Wang method. Of course the measurement of MC

time is more complicated since a different number of spins is altered by each

cluster flip. The generally accepted method of converting to MCS/site is to

normalize the number of cluster flips by the mean fraction of sites flipped

at each step.

4.3. Probability Changing Cluster Algorithm

Tomita and Okabe [27] proposed a very clever algorithm which relies upon

ideas of cluster flipping. The technique extends the Swendsen-Wang method

and uses a negative feedback mechanism to “locate” Tc. It starts by using

Swendsen-Wang sampling at some initial temperature to construct clusters

by connecting spins of the same type with probability p = 1− exp(J/kBT )

and to overturn clusters accordingly. If the system is percolating, the prob-
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Fig. 7. Finite size scaling plot for the “critical point” for L× L Ising square lattices.

The inset shows the distribution of p, i.e. f(p), for L = 64 for the probability changing

(PCC) and invaded cluster (IC) algorithms. (Note that their Hamiltonian differs from

the “usual” one by a factor of two so that Tc is only half as large as the “usual” value.

From Tomita and Okabe (2001).

ability p is decreased by some small amount ∆p, but if it is not percolating

p is increased by a small amount ∆p. Then, the modified value of p is used

to construct new clusters and the process continues. The progress of the

system is monitored and ∆p is decreased; as ∆p → 0 the estimate of pc,

and thus Tc , should become quite accurate. In Fig. 7 we show the results

of the application of this approach to the 2-dim Ising model [27]. The finite

size scaling behavior of the estimates for finite lattice Tc extrapolates quite

accurately to the exact value. The algorithm has also been successfully

applied to several other systems including those with classical spins.

4.4. The N-Fold Way and Extensions

A fairly old algorithm that takes a quite different approach has found new

utility through the development of powerful extensions. At very low tem-

peratures the flipping probability for the Metropolis method becomes quite

small and virtually nothing happens for a long time. In order to avoid this

wasteful procedure Bortz et al [28] introduced an event driven algorithm
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(the N-fold Way) in which a flip occurs at each step of the algorithm and

then the lifetime of the preceding state is calculated.

First we observe that there are only a small number of possible local

environments which a spin can possibly have and consequently a limited

number of different flipping probabilities. All spins are collected into lists,

in which each member has the identical energetic local environment. For

an Ising square lattice there are a total of 10 such environments, i.e. every

spin in the system belongs to one of only 10 classes. For other interactions

the number of classes may differ, but in general the number will be some

modest size integer N. Hence the name “N-fold way”.) The total probability

of any spin of class l flipping in a given step is

pl = nl exp (−∆El/kBT ) (29)

where nl is the number of spins which are in class l . The integrated proba-

bility QN of some event occurring in a given step is simply the sum of the

probabilities for all N classes. A random number is generated to determine

the class from which the next spin to be overturned will come, and once

the class has been chosen, another random number must be drawn to pick

a spin from among those in the class. Finally, a 3rd random number is

used to determine how much time has elapsed before this event has taken

place. When a spin flips it changes class and must be removed from the

list belonging to its original class and added to the new list corresponding

to its new class. In addition, all of its (interacting) near neighbors change

class so efficient bookkeeping is important. Treating the flipping event as a

stochastic process, we pick a random number ζ between 0 and 1 and find

that the “lifetime” of the state before flipping occurs is

∆t = −(τs/QN ) ln ζ (30)

where τs is a time constant used to convert the transition probability of the

flipping method to the the Monte Carlo transition rate. The thermodynamic

averages of properties of the system are then found from lifetime weighted

averages. The N-fold way is rather complicated to implement, but at low

temperatures the net gain in speed can be many orders of magnitude.

A generalization of the N-fold way algorithm, “absorbing Markov

chains” (or MCAMC) [29], offers still further advantage for the study of

magnetization switching in nanoscale ferromagnets and related problems.

At low temperatures a strongly magnetized ferromagnet will not immedi-

ately reverse when an oppositely directed magnetic field is applied because

of a large nucleation barrier to the formation of a cluster of overturned
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spins. With Metropolis sampling a very long time is then needed to see

the magnetization reversal. The MCAMC approach extends the N-fold way

algorithm to allow the simultaneous flipping of more than one spin to facil-

itate formation of a nucleation cluster. It offers a hierarchy of approaches

in which the “level” of the method determines how many spins may be

overturned in a single step. The level-1 MCAMC is essentially the N-fold

way [29] and is best used for an initial state in which all spins are in the

same direction. A random number R is used to determine the lifetime m

of the state, and a spin is then randomly chosen and overturned. Level-2

MCAMC is advantageous when the nucleation cluster size is at least two,

since it avoids the tendency to merely overturn those spins that have just

been flipped. The level-2 MCMAC begins with a fully magnetized state

and overturns 2 spins. Then a transient sub-matrix T is defined to describe

the single time step transition probabilities, i.e. for overturning one spin to

reach a transient (intermediate) state. A random number, R, is chosen and

the lifetime of the state is determined by νT
T

me < R < νT
T

m−1e where ν

is the vector describing the initial state and e is the vector with all elements

equal to one. Another random number is then generated to decide which

spins will actually flip. Following generation of this “initial cluster” , the

N-fold way may then be used to continue the simulation. This method may

be systematically extended to higher order when the size of the nucleation

cluster increases so that the process of flipping a cluster is “seeded”. Under

appropriate conditions, the MCAMC algorithms produce many orders of

magnitude of acceleration.

4.5. Phase Switch Monte Carlo

Methods devised to surmount the free energy barrier between coexisting

phases, and thus permit the study of first order phase transitions in sys-

tems ranging from simple lattice spin models to complex fluids are not

always effective, e.g. the case of freezing of a simple fluid. The difficulties

presented by the freezing transition arise from the distinctive symmetries

of the coexisting fluid (F) and crystalline solid (CS) phases. In a simulation

at the F-CS transition the crystal that forms from the fluid is often quite

imperfect and the defects do not normally anneal away on accessible time-

scales. The system is then trapped in states from which it cannot escape.

Because of this, computational studies for the freezing transition have relied

primarily on indirect approaches, e.g. thermodynamic integration [30, 17].

Here, instead of linking the two phases directly, the free energy of each
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phase is computed separately for states of a range of densities, using in-

tegration techniques, which connect their thermodynamic properties with

those of known reference states. The intersection of the two branches of the

free energy is then located to determine the coexistence parameters. This

method is tedious because many simulations are needed at different values

of the model parameters defining the integration path and the integration

path may even encounter other first order phase transitions.

A recently developed method [31, 32], known as Phase Switch Monte

Carlo (PSMC), has been extended to allow the freezing transition to be

studied. This approach [32] samples the disjoint configuration spaces of

two coexisting phases within a single simulation via a global coordinate

transformation or “phase switch” (implemented as a MC move) which maps

one pure phase onto the other. Biased sampling methods are employed to

enhance the probability of certain “gateway” states in each phase from

which the switch can be successfully launched (cf. Fig 8).

Phase B

m

Phase A

Fig. 8. Schematic illustration of phase switch method. The large shaded regions repre-

sent the portions of phase space corresponding to two different phases. The central white

regions are investigated using “standard” trial moves and the dashed line indicates the

phase switch moves.

To illustrate the method we consider the freezing transition of hard

spheres simulated within a constant-NpT simulation ensemble [17] with

pbc. The configurational weight of a phase is given by

Zζ(N, p) =

∫ ∞

0

dV e−pV Zζ(N, V ) (31)
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where N is the particle number, V the system volume and p the reduced

pressure. ζ (CS or F) labels the phase, while

Zζ(N, V ) =
1

N !

N
∏

i=1

∫

V,ζ

drie
−E({�r}) . (32)

E is the hard sphere configurational energy. (p, V and E are measured in

units of kBT/D3 and D3 and kBT respectively, where D is the hard sphere

diameter.) The factor of (N !)−1 corrects for indistinguishability. The ζ-label

on the integral stands for some constraint that picks out configurations {r}

that belong to phase ζ. In a MC simulation, this constraint is formulated

implicitly as follows. Let Rζ
1 . . . Rζ

N ≡ { R}ζ denote some representative con-

figuration of phase ζ; we shall refer to { R}ζ as the reference configuration.

Then the constraint picks out those configurations which can be reached

from { R}ζ on the simulation time-scale. This is presumed to be long enough

to allow exploration of one phase but still much less than the time required

to move between phases. This situation is realized for a freezing transition

of sufficiently strong first order character.

We denote the reference sites { R}ζ as the origins of the particle coor-

dinates via some arbitrary association between the N particles and the N

reference sites. The set of particle positions can then be written as

ri
ζ = Ri

ζ
+ ui ,

which serves to define the set of displacement vectors {u} (independent of

the phase label ζ) linking each particle i to its associated reference site Ri.

The Monte Carlo procedure for exploration of the space spanned by

the configuration variables {u}, V and ζ relies on four types of updates,

each of which is accepted with a probability defined by a Metropolis rule

[17] reflecting the associated change in the effective Hamiltonian H . The

first two –particle position updates and volume updates (implemented as

dilations)– are implemented in standard ways [17]. The third kind of update

also preserves the phase label; two sites are chosen at random (i and j say)

and the corresponding displacement vectors ui and uj are identified. The

trial configuration is defined by the replacements

ui → u′
i ≡ uj + Rj − Ri and uj → u′

j ≡ ui + Ri − Rj

This process can be thought of as an association update: the particle ini-

tially associated with (‘tethered to’) site j is subsequently associated with
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site i (and vice versa). It changes the representation of the configuration

(the coordinates {u}); but it leaves the physical configuration invariant. It

is only required in the fluid phase where particles diffuse far from the sites

with which they are initially associated and the associated tethers become

large. Association updates allow the tethers to respond efficiently to the

influence of the tether contribution. Finally, the phase switch involves re-

placing one set of representative vectors, { R}ζ by the other, { R}ζ′

, with

the volumes scaled appropriately and the displacement coordinates {u} held

fixed. In the switch, the volume is scaled by αv ≡ V̄ ζ′

/V̄ ζ where V̄ζ is the

equilibrium volume of phase ζ.

Simulations were performed using systems of N = 32, 108 and 256

particles. Suitable weights were obtained by iterative means using some of

the techniques described in Ref. [33]. In Fig. 9 we show a typical portion

of the evolution of the preweighted order parameter M as a function of

Monte Carlo time. For clarity of representation, states in the F phase are

denoted by positive values of M , while negative values correspond to CS

phase states. We note that the range of M values sampled in the CS phase

is quite small because particles are localized near their reference sites by

the suppression of the global translation mode. By contrast, much larger

values of M are explored in the CS phase because the particles can drift far

from the reference site to which they are associated. Nevertheless the whole

0 50000 1e+05 1.5e+05
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−250
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Fig. 9. The MC time evolution of the order parameter M for the N = 256 system.

Phase switches occur between M = 0 states. For further details, see text.
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range can be spanned relatively quickly by virtue of the highly efficient

associations updates which permit large-scale changes in tether lengths.

The density distribution p(ρ) was obtained from the measured joint

probability distribution and unfolding the effect of the weights [19]. The

distributions derive from histogram reweighting of simulation data obtained

at p = 11.18. Coexistence, identified by the equality of the area under each

peak, occurs for p = 11.23(3).

The coexistence pressure for three system sizes may be plotted as a

function of the scaling variable 1/N and are consistent with the presumed

scaling form and the extrapolated prediction (p = 11.49(9)) is, within error,

in agreement with [30] and [34].

4.6. Multicanonical Monte Carlo

The basic idea of Multicanonical Monte Carlo [35] is to preweight the sam-

pling probability so as to preferentially generate the interfacial configu-

rations of intrinsically low probability. This allows the simulation to pass

easily from one pure phase to the other, with much greater frequency than

with Metropolis sampling, hence improving the statistical quality of the

estimate for RAB. The effects of the preweighting bias is then corrected for

in the evaluation of canonical averages.

Instead of simulating with the original Hamiltonian of the system of

interest we define an “effective Hamiltonian” given by

H̃({σ}) = H({σ}) + η(m) , (33)

where η(m) is a preweighting function, which must be prescribed in

advance. Simulating with this effective Hamiltonian, we measure the

preweighted order parameter probability distribution function p̃(m), given

by

p̃(m) =
1

Z̃

∑

{σ}

δ(m − m({σ}))e−βH̃({σ}) . (34)

The canonical distribution p(m) is recovered by unfolding the effects of the

imposed weights:

p(m) = eη(m)p̃(m) . (35)

There may be a choice of η(m) for which p̃(m) is constant in the region of

m between the two peaks of p(m). Under these circumstances, the system

performs a one-dimensional random walk over the entire domain of m,

thereby permitting efficient accumulation of statistics for p̃(m). The effects
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Fig. 10. Results from multicanonical simulations of two different size q = 7, 2-dim-Potts

models at T = Tc in zero field. Both the preweighted form of the order parameter distri-

bution function p̃(m) and the unfolded (canonical) p(m) are shown. After Janke(1992).

of the bias are subsequently unfolded from p̃(m) (using eq. 35) to obtain

the desired unbiased function p(m). Figure 10 shows an example for the

2 − dim, 7 − state Potts model at the transition temperature [36].

The difficulty with this method is that a flat distribution, p̃(m) =

constant, is obtained if the preweighting function is given by η(m) =

ln p(m); however, p(m) is just the function we are trying to find so it is not

possible to immediately implement an optimal multicanonical preweighting.

Instead, a suitable weight function needs to be constructed from scratch via

an iterative procedure.

4.7. “Wang-Landau” Sampling

A quite different approach has been adopted by a new, efficient Monte

Carlo algorithm that offers substantial advantages over existing approaches

for statistical systems [37]. (Originally termed the “random walk in energy

space with a flat histogram” method, the technique is being referred to in

the simulational physics community as “Wang-Landau sampling” and this

is the terminology that we shall use.) In contrast to “traditional” Monte

Carlo methods that generate canonical distributions at a given temperature

g(E)e−E/kBT , this method estimates the density of states g(E) accurately

via a random walk which produces a “flat” histogram in energy space. Of

course, multiple random walks, each restricted to a different range of energy,

may be performed to further improve the efficiency. The resultant pieces

of g(E) can be joined together and used to produce canonical averages for

thermodynamic quantities at essentially any temperature.



An Introduction to Monte Carlo Methods in Statistical Physics 83

If a random walk in energy space is performed with a probability propor-

tional to the reciprocal of the density of states 1
g(E) , then a flat histogram

will be generated for the energy distribution. In practice, this is done by

modifying the estimated density of states systematically to produce a “flat”

histogram over the allowed range of energy and simultaneously making the

density of states converge to the correct value. Some initial estimate is made

for the density of states, e.g. g(E) = 1. The random walk in energy space

proceeds by flipping spins randomly; if E1 and E2 are energies before and

after a spin is flipped, the transition probability of a spin flip is

p(E1 → E2) = min(
g(E1)

g(E2)
, 1). (36)

Each time an energy level E is visited, g(E) is updated by multiplying

the existing value by a modification factor f > 1, i.e. g(E) → g(E) ∗ f .

The initial value of f must be large enough that g(E) grows quickly, e.g.

f0 = e1 ≃ 2.718. As part of the process a histogram of the energies that

are “visited” is maintained, and each time a state with energy E is visited

the histogram is incremented, i.e. H(E) → H(E) + 1. The random walk

continues until the accumulated histogram H(E) is approximately “flat”,

f is then reduced using some simple recipe, e.g. f1 =
√

f0, the histogram is

reset to H(E) = 0 for all E, and a new random walk is begun. This process

is repeated for n iterations, until fn is smaller than some predefined final

value (e.g. ffinal = exp(10−8) ≃ 1.00000001). Typically, the phrase “flat

histogram” means that the histogram H(E) for all possible E is not less

than ∼ 80% of the average value 〈H(E)〉. Since g(E) is modified each time

an energy is “visited”, only a relative density of states is produced and

the final results must be normalized, e.g. by using the condition that the

number of ground states for the Ising model is 2. If multiple walks are

performed within different energy ranges, they must be matched up at the

boundaries in energy.

During the early stages of iteration the algorithm does not satisfy de-

tailed balance since g(E) is modified continuously; however, after many

iterations f → 1 and detailed balance is recovered to high precision. Then,

1

g(E1)
p(E1 → E2) =

1

g(E2)
p(E2 → E1) (37)

where 1
g(E1) is the probability at the energy level E1 and p(E1 → E2) is the

transition probability from E1 to E2 for the random walk. Consequently, the

detailed balance condition is satisfied to within an accuracy proportional

to ln(f). A pedagogical description of the method (together with a simple
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Fig. 11. Density of states for two different size Ising square lattices. The inset shows

the relative error between the exact and Wang-Landau values.

program for an Ising model) [41] shows how straightforward its application

is.

The convergence and accuracy of this algorithm may be tested for a

system with a second order transition, the L × L Ising square lattice with

nearest neighbor coupling [3, 10, 38]. In Fig. 11, final results for the densities

of states for several finite lattice sizes are compared with exact results [39].

The quality of the data can best be assessed by looking at the relative error

ε(log(g(E))); and, as the inset shows, the error is extremely small. With

this algorithm g(E) can be estimated efficiently even for large systems;

moreover, the Gibbs free energy and the entropy are also accessible, unlike

in conventional MC simulations. The Gibbs free energy is given by

F (T ) = −kBT ln(Z) = −kBT ln(
∑

E

g(E)e−βE). (38)

A comparison between the simulational data and the exact free energy for

the Ising square lattice [40] for L = 256 is shown in Fig. 12. Here, too, the

agreement is excellent over the entire range of temperature!

A simple, oft-studied model in statistical physics that exhibits first order

transitions and serves as an ideal testing ground for diverse algorithms

is the 2-dimensional Q−state Potts model on L × L square lattice with

nearest-neighbor interactions and pbc. The Hamiltonian for this model can



An Introduction to Monte Carlo Methods in Statistical Physics 85

0 2 4 6 8

T

−6

−5

−4

−3

−2

−1

F
(T

)/
N

simulation

exact

2.271 2.272 2.273 2.274
−2.1112

−2.1109

−2.1106

−2.1103

256x256 Ising model

T
c

Fig. 12. Free energy for a large two dimensional Ising model. The inset shows an en-

largement of the region near the phase transition from which it is apparent that there is

no discontinuity in slope at the transition.

be written as:

H = −
∑

<ij>

δ(qi, qj) (39)

and q = 1, 2, ...Q. For Q = 10 the transition is strongly first order and long

time scales for tunneling between coexisting states pose severe problems

for standard methods. Wang-Landau sampling can be performed as for the

Ising model but integers are chosen randomly between [1 : Q] for possible

new Potts spin values. The maximum density of states generated in this

way for L = 200 is very close to 1040000!

A canonical distribution P (E, T ) can then be determined from

P (E, T ) ∝ g(E)e−E/kBT (40)

From the simulational result for the density of states, g(E), we can calculate

the canonical distribution, and in Fig. 13 we show the resultant double

peaked distribution [42] at the transition temperature Tc . Note that the

maxima of the distributions are normalized to 1 but the valley between the

two peaks is quite deep. The latent heat for this temperature driven first-

order phase transition can be estimated from the energy difference between

the double peaks.

Because of the double peak structure at a first-order phase transition,

conventional Monte Carlo simulations are not efficient since an extremely



86 D. P. Landau

−2 −1.5 −1 −0.5 0

E/N

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

P
(E

,T
c
) −2 −1

E/N

10
6

10
7

10
8

H
(E

)

−2 −1 0

E/N

10
4

10
6

10
8

H
(E

)

L=100L=60

L=100

L=150

L=200
L=200

Fig. 13. Probability distribution for the internal energy (normalized by the number of

sites N) of the 2-dim Q = 10 Potts model as determined from Wang-landau sampling.

The insets show final histograms for two different size systems.

long time is required for the system to travel from one peak to the other

in energy space. With “Wang-Landau sampling” all possible energy levels

are visited with equal probability, so the algorithm overcomes the tunnel-

ing barrier between the coexisting phases in the conventional Monte Carlo

simulations.

With this algorithm, if the system is not larger than 100 × 100, the

random walk on important energy regions (such as that which includes the

two peaks of the canonical distribution at Tc) can be carried out with a

single processor and will give an accurate density of states with about 107

visits per energy level. However, for larger systems it may be preferable to

use a parallel algorithm in which random walks in different energy regions

are performed on different processors. Final histograms from individual

random walks are shown in the inset of Fig. 13. For 200 × 200 lattices the

requirement is that the histogram of the random walk in the corresponding

energy segment is sufficiently flat without regard to the relative flatness

over the entire energy range. The results for large lattices show clear double

peaks for the canonical distributions at Tc(L) = 0.70127 for L = 150 and

Tc(L) = 0.701243 for L = 200. Since the valley for L = 200 is as deep as

9 × 10−10, it is obvious why conventional Monte Carlo algorithms cannot

overcome the tunneling barrier with available computational resources.

There are many systems in statistical physics that do not have sim-
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ple groundstates and conventional phase transitions, e.g. spin glasses [44]

for which the interactions between the magnetic moments produce frus-

tration because of structural disorder. One of the simplest such models is

the Edwards-Anderson model [45] (EA model). For such systems analytical

methods provide only limited information; and because of the rough energy

landscape, the relaxation times of conventional Monte Carlo simulations

are very long. Thus, simulations can be performed only on rather small

systems, and many properties of spin glasses are still uncertain.

Using a random walk in energy space, the ground state energy and g(E)

can be easily estimated. For spin glass systems an order parameter can be

defined by [45]

qEA(T ) ≡ lim
t→∞

lim
N→∞

q(T, t), q(T, t) ≡ 〈

N
∑

i=1

Si(0)Si(t)/N〉. (41)

Here, N = L3 is the total number of the spins in the system, L is the linear

size of the system, q(T, t) is the auto-correlation function, which depends on

the temperature T and the evolution time t, and q(T, 0) = 1. When t → ∞,

q(T, t) becomes the order parameter of the spin glass. This order parameter

is zero above the transition and begins to grow at Tc (if it exists). If there is

an ordered state, because of frustration the value at T = 0 can differ from

1, i.e. if the ground state is highly degenerate.

Again, temperature plays no role during the random walk. It is more

efficient to perform a random walk in single system than two replicas so an

order-parameter can be defined

q ≡ 〈

N
∑

i=1

S0
i Si/N〉. (42)

where {S0
i } is one of spin configurations at ground states and {Si} is any

configuration during the random walk. The behavior of q is essentially the

same as the order-parameter defined by the Edwards and Anderson [45]. (In

fact it is not quite the order-parameter defined by Edwards and Anderson,

but was used in early simulations [46, 47].)

After a bond configuration is generated, a one-dimensional random walk

in energy space is used to find a ground state spin configuration. To get a

good estimate of this quantity a two-dimensional random walk is best used

to obtain the density of states g(E, q). (In this way barriers in parameter

space, or configuration space, may be overcome using the same rule for

the 2D random walk as for a 1D random walk in energy space.) From the

density of states g(E, q), all quantities may then be determined.
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Fig. 14. Probability distribution for the Edwards-Anderson spin glass.

The probability distribution determined by weighting the density of

states appropriately is shown in Fig. 14. At low temperature there are over

30 orders of magnitude difference in the probability for neighboring values

of the order parameter. Standard methods could not possibly access all

states with such large differences in probability.

The energy landscape can also be extracted using the density of states:

< E(q, T ) >=

∑

E,q

Eg(E, q)e−βE

∑

E,q

g(E, q)e−βE
(43)

This landscape is very rough at low temperatures and is not accessible by

standard Monte Carlo methods. There is still discussion about the existence

of a phase transition in the 3d Ising spin glass as well as its nature if it does

exist, and we refer the reader elsewhere for more detailed comments and

references [37].
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5. Summary and Perspective

In this article we have seen how Monte Carlo studies of phase transitions

using Metropolis importance sampling can be easily implemented to exam-

ine a wide range of physical phenomena. Both finite size and finite sampling

time effects affect the data, but a sound foundation exists for understanding

each source of difficulty. These effects lead to problems near phase transi-

tions, and the manner in which time scale effects are important differs

qualitatively between continuous and first order transitions and different

algorithms can be used to circumvent the problems. In the continuous case,

the divergent correlation length causes critical slowing down, resulting in

extended correlation times for simple local update algorithms. In the case

of some spin models, this problem can be largely alleviated via the use of

collective coordinate (“cluster”) updating schemes.

For first order phase transitions and frustrated systems such as spin

glasses, multiple minima and maxima in the energy landscape produce long-

lived metastable states, i.e. long timescales hinder the sampling of all the

regions of phase space that are important for measurements of free ener-

gies or even for the determination of the ordered state. Because of the high

free energy of interfacial states that separate the pure phase regions, the

frequency of transitions between the coexisting pure phases becomes ex-

tremely low for large systems. Several approaches have been outlined that

may help overcome this problem e.g. multicanonical or “Wang-Landau”

sampling. In some cases in which one or more of the phases is crystalline

Phase Switch Monte Carlo may be used to map the phase space “volume”

of one pure phase onto that of another.

Computer speeds continue to increase and new simulational methods

are constantly appearing; hence the general outlook for Monte Carlo sim-

ulations is promising because of the flexibility it offers. New methods will

invariably lead to new computational problems, possibly with random num-

ber generators, but careful testing will allow us to determine many sources

of error. One should never forget that the most important computer that

we will ever use is the one between our ears.
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Perfect simulation refers to the art of converting suitable Markov Chain
Monte Carlo algorithms into algorithms which return exact draws from
the target distribution, instead of approximations based on long-time
convergence to equilibrium. The theoretical concepts underlying perfect
simulation have a long history, but they were first drawn together to
form a practical simulation technique in the ground-breaking paper of
Propp and Wilson [78], which showed how (for example) to obtain exact
draws from the critical Ising model on a finite lattice. These lecture notes
are organized around four main themes of perfect simulation: the orig-
inal or classic Coupling From The Past algorithm (CFTP); variations
which exploit regeneration ideas such as small-set or split-chain con-
structions from Markov chain theory (small-set CFTP); generalizations
of CFTP which deal with non-monotonic and non-uniformly ergodic ex-
amples (dominated CFTP); and finally some theoretical complements.
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Introduction

Perfect simulation refers to the art of converting suitable Markov Chain

Monte Carlo (MCMC ) algorithms into algorithms which return exact draws

from the target distribution, instead of long-time approximations. The the-

oretical concepts underlying perfect simulation have a long history, but they

were first drawn together to form a practical simulation technique in the

ground-breaking paper of Propp and Wilson [78], which showed how (for

example) to obtain exact draws from the critical Ising model on a finite

lattice.



Notes on Perfect Simulation 95

These notes derive from a series of four tutorial lectures given at the

Institute for Mathematical Sciences, National University of Singapore, in

March 2004, to an audience of PhD students and recent post-docs. The

aim of the lectures was to introduce the collection of ideas which have

developed around perfect simulation, since some of the audience might well

have occasion to use the technique, and since in any case exposure to these

ideas promotes useful lateral thinking about MCMC . I have tried to be

rigorous, in the sense of avoiding mis-statements, but have not attempted

to give a complete account. Some proofs and techniques are merely sketched,

while some are omitted. In the actual lectures it was possible to illustrate

many of the ideas using computer animations; this is not an option for

printed notes, but in partial recompense I have included illustrations where

possible. I have aimed the exposition at the level of a mathematically-

trained graduate student; so examples are chosen to be illustrative rather

than representative. It is possible to use CFTP for other than toy problems,

but such examples would require detailed descriptions which would obscure

intuition.

The lectures and these notes have alike been organized around four main

themes of perfect simulation: the original or classic Coupling From The Past

algorithm (CFTP) in §1; variations which exploit regeneration ideas such as

small-set or split-chain constructions from Markov chain theory (small-set

CFTP) in §2; generalizations of CFTP which deal with non-monotonic and

non-uniformly ergodic examples (dominated CFTP) in §3; and finally in §4

some striking results relating CFTP to an apparently different algorithm

due originally to Fill, as well as other theoretical complements.

The topic of perfect simulation is made up of a variety of interacting

ideas rather than a single grand theory: more of an orchestra of complemen-

tary techniques than a virtuoso prima donna of a Big Theory. I hope that

these notes will help to convey this variety, and to help others to engage

with, be stimulated by, and contribute to the topic.

Useful Reading

Here is a sample of useful resources concerning perfect simulation (partic-

ularly CFTP) and the underlying coupling ideas:

• Lindvall’s introduction to coupling [62] (now available as [63])

should be required reading for all applied probabilists, and lays

invaluable foundations for an appreciation of coupling theory;

• Thorisson’s monograph [92] gives a masterly exposition of the
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mathematical theory of coupling as well as a treatment of CFTP

itself; Häggström’s short undergraduate text [39] provides a most

accessible introduction at the level of discrete Markov chains; fi-

nally, the monograph [71] of Møller and Waagepetersen provides

significant material from the perspective of stochastic geometry (a

major consumer of CFTP !).

• It is not possible in the short space afforded by these notes to be

complete in assigning bibliographic credit, nor to give adequate

coverage to the various applications of CFTP . The online bibliog-

raphy developed by David Wilson should be the first port of call

when seeking references to CFTP :

http://research.microsoft.com/~dbwilson/exact/

• Finally, note that Wilson’s online bibliography links to various use-

ful tutorial essays; in particular we mention Casella et. al. [18],

Dimakos [26] and Thönnes [90].

1. CFTP: The Classic Case

We begin this section with a brief indication of how CFTP fits in to the

theory of MCMC . We then discuss one of the simplest possible examples of

coupling (§1.1), before describing classic CFTP as applied to the doubly-

reflecting random walk (§1.2). This serves as introduction to the funda-

mental theorem of CFTP (§1.3), which is further illustrated by two simple

applications: to the dead leaves model (§1.4) and to the Ising model (§1.5).

The section is completed by a rather less trivial application to point pro-

cesses (§1.6) and a discussion of CFTP in space and time (§1.7), and finally

a brief note on some historical and other complementary aspects of CFTP

(§1.8).

MCMC arises in a number of different areas of mathematical science,

with different emphases. (This makes interaction interesting and fruitful!)

Here are some examples, several of which are discussed at length in other

chapters in this volume:

• Statistical mechanics. Are there phase transition phenomena in

specific infinite-dimensional systems? How do they behave?

• Computer science. Approximate counting problems can be

solved in terms of algorithms which deliver approximately uniform

random samples, which in turn can be solved using MCMC . In this

area the key question is, how does the algorithm behave as the scale
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of the problem increases? Does the run-time increase exponentially,

or polynomially?

• Image analysis. Given a noisy picture with some kind of geomet-

ric content: can we clean it up using modelling by spatial random

fields? Can we identify significant features?

• Statistics.

– Bayesian. Can we draw accurately (and quickly if possible!)

from the posterior distribution on a space which may be low-

dimensional but not at all symmetric?

– Frequentist. What does the likelihood surface look like?

The paradigm for Markov chain Monte Carlo (MCMC ) runs as follows.

We want to understand the properties of a particular probability measure,

which may be linked to a complicated state space, or may be specified in

an indirect manner, or may in some other way be hard to deal with by

explicit calculation. So we design a suitable Markov chain whose long-run

equilibrium distribution is this probability measure. Sometimes this chain

will arise naturally from the application context (if for example we are in-

terested in the statistical equilibrium of a financial time series); sometimes

it is suggested by the specification (if for example the probability measure

is specified up to a normalization factor as for the Ising model, so that

we can use ideas of detailed balance and reversibility to design appropri-

ate Markov chains). However the chain arises, we require that the target

probability measure is the long-run equilibrium measure. We can then draw

samples whose distribution is at least approximately the target probability

measure, by running the chain for a time which is long enough for statistical

equilibrium to be established at least approximately.

Thus the paradigm runs as follows:

• specify the target distribution indirectly;

• realize it as the equilibrium of a Markov chain;

• sample approximately from the target distribution by running the

Markov chain for a long time (till it is near equilibrium).

A major question is, what is the length of the “burn-in” period, the period

till the chain is near equilibrium? Options for answering this question are:

Guess it or diagnose it from simulation output [15, 22];

Or estimate it, analytically [25, 80, 83, 84], or empirically [47].

The question is, whether it is ever possible to do better than the above?
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In a landmark paper, Propp and Wilson [78] showed how in in principle

one can modify MCMC algorithms so that they deliver exact draws from

the chain equilibrium distribution, at a price of random run-time length:

the technique of exact or perfect simulation. Moreover they showed how

such modifications can be constructed to provide exact draws in feasible

computation time for interesting and non-trivial examples. Since then there

has been a flood of work on the Propp-Wilson idea of Coupling from the Past

(CFTP). In this lecture we will introduce CFTP by describing simple cases,

which we will develop into examples of interest particularly in Bayesian

statistics and stochastic geometry (the study of random patterns).

Before beginning this task, we should note there is another important

issue to consider when undertaking MCMC : the best chains not only have

short or at least manageable burn-in periods, but also mix rapidly (time

series of [functions of] observations exhibit rapidly decaying correlation).

Perfect simulation does not address this issue directly – though the chal-

lenge of devising modifications to ensure perfect simulation may suggest

ways of improving the mixing rate.

1.1. Coupling and Convergence: The Binary Switch

We commence by introducing the fundamental idea of couplinga (see [63, 92]

for more on this large subject).

Consider the simplest possible case: a continuous-time Markov chain

with just two states, which makes transitions from one state to the other

at constant rate 1/α (the binary switch). With care, we can simulate si-

multaneously from different starting points in such a manner that the two

simulations couple (start to take the same values) from some random cou-

pling time T onwards.

Algorithm 1: Supply

(a) a Poisson process (rate 1/α) of 0 → 1 transitions,

(b) independently a Poisson process (rate 1/α) of 1 → 0 transitions.

a
Coupling, stochastic flows, also the notion of stochastic recursive sequences, arise in

different parts of probability and stochastic analysis, but all express the same idea: one

can realize the Markov chain of interest by a specific construction which allows one

to compare different copies of the Markov chain begun at different starting points; the

construction is not completely determined by the Markov chain but can be varied so

long as single trajectories have the right distribution.
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Fig. 1. Coupled binary switches X and Y (lower two rows), driven by the same se-

quences of 0 → 1 and 1 → 0 transitions (upper two rows).

Use the transitions to build coupled processes X , Y begun at 0, 1 (say).

Do this as follows: each time a 0 → 1 transition appears, set X to 1. Each

time a 1 → 0 transition appears, set X to 0. Do the same for Y . Clearly

X , Y are (coupled) copies of the binary switch, coupling at the time T of

the first Poisson incident, after which they evolve in lock-step.

Then the classic coupling inequality argument shows

distTV(Xt, π) = sup
A

{P [Xt ∈ A] − π(A)} =
1

2

∑

i

|P [Xt = i] − πi|

= sup
A

{E [I [Xt ∈ A] − I [X∗
t ∈ A]]} ≤ sup

A
{E [I [Xt ∈ A but X∗

t �= Xt]]}

= E [I [X∗
t �= Xt]] = P [T > t] (1)

(with I [A] representing the indicator random variable for the event A),

where

(1) π is the equilibrium distribution, so π(0) = π(1) = 1/2;

(2) X∗ is a (coupled) copy of the Markov chain X started off in equi-

librium (hence lying between X and Y , and continuing to do so if

driven by the construction above);

(3) and distTV is the total variation distance. (Note, this is a rather

strong measure of distance from equilibrium; two real-valued ran-

dom variables can almost surely have values very close together,

and yet have maximum distance in total variation if one takes only

rational values and the other takes only irrational values! Other

kinds of coupling relate to more metric notions of distance.)

The coupling argument generalizes to arbitrary Markov chains:
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(a) if we can couple a general Markov chain X to a version Y in sta-

tistical equilibrium, then such a coupling bounds the approach to

equilibrium through Equation (1);

(b) if we allow non-adapted couplings then the bound is sharp [36, 38];

(c) however, non-adapted couplings can be very difficult to construct!

Co-adapted couplings are typically easier to construct, and can

supply usable bounds but in many cases these will not be sharp.

(This point arises again in §4.4.)

Can we use such a coupling to draw from equilibrium? The binary switch

example is deceptive: X(T ) is in equilibrium in the case of the binary switch,

but not in general – a defect which becomes apparent even in one of the

simplest imaginable generalizations, which we will now discuss.

1.2. Random Walk CFTP

Consider the natural generalization of the above coupling, but applied

(in discrete rather than continuous time) to the random walk X on

{1, 2, . . . , N} which is reflected at the boundary points 1, N . Reflection here

is implemented as follows: if the random walk tries to move outside of the

range {1, 2, . . . , N} then the relevant transition is simply disallowed (this is

directly analogous to the way in which the binary switch behaves). We then

obtain synchronous coupling (synchronously coupled random walks move

up and down in parallel, except where prevented by barriers from moving

in synchronization): the coupled random walks can only meet together at

the barrier levels 1, N . Thus X(T ) cannot be a draw from equilibrium if

N > 2.

The Propp-Wilson idea circumvents this problem by drawing on a well-

established theme from ergodic theory: realize a Markov chain as a stochas-

tic flow and evolve it not into the future but from the past ! If we do this

then we need to consider coupled realizations of the Markov chain started

at all possible starting points. However if monotonicity is present then we

need only focus on maximal and minimal processes, as for the binary switch

in Section 1.1:

X lower,−n begun at 1 at time −n,

Xupper,−n begun at N at time −n;

since the synchronous coupling arranges for these to sandwich all other

realizations begun at time −n. We can therefore carry out an algorithm

which is summarized informally below, and which is illustrated in Figure 2.
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Algorithm 2:

• Run upper and lower processes from time −n.

• If the processes are coupled by time 0, return the common value.

• Otherwise, repeat but start at time −2n (say), re-using randomness

whenever possible.

It is informative to consider a crude implementation of CFTP for this

simple case, for example using the freely available statistical package R (see

http://cran.r-project.org/). First define a list innov of innovations

determining the evolution from time −2 to time 0.

innov <- 2*rbinom(2,1,1/2)-1

Now construct a function cycle which simulates maximal (upper)

and minimal (lower) reflecting random walks on the state space

{1, 2, 3, 4, 5, 6, 7, 8, 9, 10} using innov. This function returns the common

value if maximal and minimal processes coalesce; otherwise it returns NA.

cycle <- function (innov) {

upper <- 10

lower <- 1

for (i in 1:length(innov)) {

upper <- min(max(upper+innov[i],1),10)

lower <- min(max(lower+innov[i],1),10)

}

if (upper!=lower) return(NA)

upper

}

If cycle(innov) returns NA (and clearly in this example it has to do so at

least until the innovation length is sufficient to permit one of the maximal

and minimal processes to cross from one end of the state space to the other)

then further innovations must be inserted at the beginning of the innov

vector, and cycle(innov) invoked again. This is conveniently packaged in

a while loop.

while(is.na(cycle(innov)))

innov <- c(2*rbinom(length(innov),1,1/2)-1, innov)

cycle(innov)
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Fig. 2. Classic CFTP for a reflecting random walk. Coalescence occurs at time -16 for

this realization.

Of course R is not well-suited to this kind of algorithm, other than for

purely illustrative purposes: much better results can be obtained using mod-

ern scripting languages such as Python (http://www.python.org/), par-

ticularly with numarray extensions (http://www.stsci.edu/resources/

software_hardware/numarray).

Figure 2 shows the effect of four cycles, resulting in a common value at

time 0 on the third cycle.

Various issues are illustrated in this figure:

• The algorithm extends the common path backwards into the past,

not forwards into the future;

• One must use common randomness (in coupling random walks to-

gether) and re-use it (when coming from the past into a time in-

terval within which random walks have already been simulated);

• One samples at time 0, not at the coupling time;

• There is a simple rationale for doubling the start-time −n → −2n:

this essentially represents a binary search for the coalescence time.

It is informative to consider what goes wrong if one deviates from this

algorithm:

• suppose one runs the simulation into the future, not from the past,

stopping (say) at a specified time t after coupling has first occurred.

Since coupling occurs only at the boundaries, it can be shown in

this case that the approximation to the equilibrium distribution

is no better than if one had omitted the initial coupling phase

completely!
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• suppose one fails to re-use randomness. We expect this to bias

towards cases in which coalescence occurs earlier in algorithmic

time (since failure to re-use randomness would improve the chances

of fast coalescence, essentially by permitting repeated attempts to

coalesce over time intervals [−2kn, 0]), and this is indeed the case;

• Sampling at coupling time instead of time 0 is obviously a bad idea;

sampling an independent random walk at this time will still give a

biased result.

1.3. The CFTP Theorem

Morally the proof of classic CFTP is just 3 lines long. We express the

coupling for X in terms of random input-output maps F(−u,v] : X → X , so

F(−n,t](x0) is Xt begun at time −n with the value X−n = x0.

Theorem 3: [78] If coalescence is almost sure in Algorithm 2 (all inputs

x0 result in the same single output F(−n,0](x0) for large enough n) then

CFTP samples from equilibrium.

Proof: For each time-range [−n,∞) use the F(−n,t] to define

X−n
t = F(−n,t](0) for − n ≤ t .

Finite coalescence time −T is assumed. So

X−n
0 = X−T

0 whenever − n ≤ −T ;

L
(

X−n
0

)

= L
(

X0
n

)

.

If X converges to an equilibrium π in total variation distTV then

distTV(L
(

X−T
0

)

, π) = lim
n

distTV(L
(

X−n
0

)

, π)

= lim
n

distTV(L
(

X0
n

)

, π) = 0

hence the result.

There is a crucial step in the classic proof of uniqueness and existence of

long-run equilibrium for finite Markov chains which actually amounts to the

assertion that coalescence is almost sure even for the independent coupling

(chains evolve independently till they meet, then stick together). This is

the step which argues that under aperiodicity and irreducibility there is an
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n such that all the n-step transition probabilities p
(n)
ij are simultaneously

positive.

Remark 4: We are free to choose any “backwards random time” −T so

long as we can guarantee coalescence of F(−T,0]. The binary search approach

of random walk CFTP is deservedly popular, but there are alternatives: for

example the “block-by-block” strategy of read-once CFTP (§2.6).

Remark 5: Monotonicity of the target process is convenient for CFTP ,

but not essential. Propp and Wilson [78] use lattice theory to formalize

the use of monotonicity. In §3.6 below we describe the crossover trick [51]

for use in anti-monotonic situations.

1.4. The Falling Leaves of Fontainebleau

A very visual and geometric application of CFTP in mathematical geology

[55] was well-known to workers in the field well before the introduction of

CFTP itself: it concerns the “dead-leaves” model, inspired by the falling

leaves of Fontainebleau. The dead-leaves model describes a random mosaic

as the limiting distribution of the random pattern obtained by allowing

patterned tiles (“leaves”) to fall at random on a window. Figure 3 shows

the pattern beginning to build up. We can think of the “dead-leaves” process

as a Markov chain with states which are elements of some “pattern space”.

David Wilson has introduced the terminology occlusion CFTP for this

kind of CFTP : the algorithm builds up the result piece-by-piece with no

back-tracking, and the eventual perfect image is built up progressively, with

Fig. 3. The falling leaves of Fontainebleau.
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each new portion “occluding” further developments in the corresponding

region.

It is rather straightforward to make exact computations for the rate

at which this chain attains equilibrium. However one can do better, very

easily, by considering the pattern as it is built up, but from the perspective

of looking up from underneath, rather than from on top looking down!

Elementary probability arguments show, at any given time the pattern

distribution is the same from either perspective. On the other hand the

pattern viewed from below will stop changing as soon as complete coverage

is attained; and it is then a simple matter to conclude that at that time

(the time of complete occlusion) one obtains a draw from the required

equilibrium distribution (this argument is actually close to that of the proof

of Theorem 1.3: F(−n,t] now represents the superposition of random leaves

falling over the period (−n, t]). Hence

Corollary 6: Occlusion CFTP as described above delivers a sample from

the dead leaves distribution.

Example 7: Consider the process of simulating forwards in time till the

image is completely covered. This will result in bias.b

Remark 8: Web animations of perfect simulation for the dead leaves model

can be found at http://www.warwick.ac.uk/go/wsk/abstracts/dead/.

Remark 9: Other examples of occlusion CFTP include the Aldous-Broder

algorithm for generating random spanning trees [1, 14, 94, 97].

1.5. Ising CFTP

Propp and Wilson [78] showed how to make exact draws from the critical

Ising model on a finite lattice, using Sweeny’s [88] single-bond heat-bath

(Huber [46] has shown how to make this work for the full Swendsen-Wang

algorithm). A simpler application uses the single-site heat-bath sampler to

get exact draws from the sub-critical Ising model. Recall that the Ising

model has probability mass function proportional to

exp





J

2

∑ ∑

i∼j

σiσj



 ,

b
Hint: consider a field of view small enough for it to be covered completely by a single

leaf: argue by comparison that the forwards simulation is relatively more likely to result

in a pattern made up of just one large leaf!
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Fig. 4. Classic CFTP for a sub-critical Ising model. Maximal and minimal processes

occupy the upper and lower strips: the middle strip marks the sites at which maximal

and minimal processes disagree. As agreement is not total at the end of the simulation

(at time 0), it will be necessary to restart at an earlier time, re-using randomness when

available.

with spins σi = ±1, and indices i, j running through the nodes of a square

lattice. Here J is the inverse temperature of the system, while i ∼ j de-

notes that sites i and j are neighbours. The heat bath algorithm updates

nodes i (in systematic or in random order) according to the conditional

distribution of σi given the remainder of the configuration. We can cou-

ple evolutions of the heat-bath algorithm in a way which is similar to our

coupling of evolutions of the binary switch or the random walk: calculate

the conditional probability p that σi = −1, and determine the update by

drawing a Uniform(0, 1) random variable U , setting σi = +1 if U > p.

The resulting coupling is monotonic, and so we can derive classic CFTP

for the Ising model, by comparing maximal and minimal processes run from

the past (the broad details of implementation are the same as for the case

of the random walk CFTP illustrated in R code above). The heat-bath algo-

rithm works well in the sub-critical case: however as parameters approach

criticality so it takes progressively longer for coalescence to be attained.

Figure 4 shows snapshots taken from the approach to coalescence for a

systematic scan Gibbs sampler: snapshots of the upper process run along

the top, the lower along the bottom, and the difference is indicated in the

middle. Coalescence is nearly achieved in this run: according to the CFTP

algorithm one must then re-wind back to an earlier start-time and re-run

the coupled simulations, taking care to re-use randomness when available.

This CFTP algorithm adapts well to changes in the underlying graph

structure, so long as the model remains ferromagnetic and phase transi-
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Fig. 5. Classic CFTP for a conditioned Ising model. Maximal and minimal processes

occupy the upper and lower strips: the middle strip marks the sites at which maximal

and minimal processes disagree. Agreement is complete at the end of the simulation (at

time 0), so the CFTP algorithm is then complete.

tion phenomena are avoided.c For example consider the conditioned Ising

model,d as used in image analysis applications. In Figure 5 we show the

results when the Ising model is conditioned by a particular noisy image:

the conditioning can be balanced off against strong interactions between

sites, as could be predicted (of course) from theoretical considerations [58].

In this case coalescence is achieved already in the first run, though of course

this is not guaranteed!

Remark 10: Web animations of perfect simulations of conditioned Ising
models can be found at

http://www.warwick.ac.uk/go/wsk/ising-animations/.

1.6. Point Process CFTP

Classic CFTP is not limited to discrete models, as we have already seen

in the case of the falling leaves model. We describe one further example: a

perfect simulation procedure for attractive area-interaction point processes

due to Häggström et al. [42].

The area-interaction point processe was proposed by Baddeley and Van

c
Coding techniques will deal with the anti-ferromagnetic case for bi-partite graphs: as

noted above in Remark 5 we can use the crossover trick to deal with other cases.

d
Note: the statistician’s conditioning ≡ the physicist’s external magnetic field!

e
Known previously to physicists as the Widom-Rowlinson model [93].
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Lieshout [7] as a model for random point patterns which can exhibit both

clustering and repulsion. A succinct definition runs as follows: weight a

Poisson process realization according to the area of the region of locations

lying closer than r to some point of the pattern:

pattern density ∝ γ−area of region within distance r of pattern . (2)

Remark 11: If γ > 1 then the weighting favours patterns which group

points close together (so as to reduce the area of the region); if γ < 1 then

patterns are favoured which spread points away from each other.

If γ > 1 (attractive case only!), then the above density is proportional

to the probability that an independent Poisson process of suitable intensity

places no points within distance r of the pattern.

Hence the area-interaction point process may be represented as the ran-

dom pattern of red points generated by a point process of red and blue

points, where red and blue points are distributed as Poisson patterns con-

ditioned to be at least distance r from blue and red points respectively.

This can be implemented as a (typically impracticable) rejection sampler:

a more practical option is to use a Gibbs sampler, which is monotonic and

so lends itself to CFTP .

Here is an illustrated step-by-step account of the Gibbs sampler.

Construct a Poisson point process

(centres of crosses).

Construct a new Poisson process

(centres of discs), but censor all

points of the new process such that

a disc centred on the point overlaps

centres of crosses.

Discard the old points formed from

centres of crosses, construct a new

Poisson process (centres of new

crosses), but censor all points of the

new process which would fall on a

disc.

The Gibbs sampler cycles repeatedly through these last two steps, and

the evolving pattern of cross centres converges in distribution to an
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attractive area-interaction point process; this is a consequence of the

fact noted in Remark 11. Notice the duality between cross centres and

centres of disks!

The CFTP construction is based on the observations

• there is a partial order for state pairs

(point pattern from cross centres, point pattern from disk centres)

based on the order relationship (ξ1, η1) � (ξ2, η2) if ξ1 ⊆ ξ2 and η1 ⊇ η2;

• “highest” and “lowest” states under this ordering are (X , ∅) and (∅,X )

where X is the full ground space: Note that these are “pseudo-states”,

and are never achieved by the target pattern itself!

The fact that there are highest and lowest pseudo-states is the key to the

rather rapid rate of convergence exhibited by this algorithm (at least in

parameter regions where there is no phase-transition effect): the underlying

Markov chain is uniformly ergodic in a sense which we will make precise later

(Definition 28), but which can be summarized by noting that convergence

to equilibrium will always be at least as fast as convergence to equilibrium

from one of the two extreme pseudo-states.

Issues of re-use of randomness can be dealt with by recording the entire

new Poisson point pattern of disk centres or crosses introduced at each

stage, and re-using this when appropriate.

Neither the Gibbs sampler nor the CFTP construction work for the non-

attractive case. However we will see later (§3.4) how this may be overcome

using a generalization of classic CFTP .

1.7. CFTP in Space and Time

When interactions are sufficiently weak (certainly weak enough that phase

transitions cannot occur!) then the CFTP idea can be applied in space as

well as time. In effect, one aims to capture a fragment of a virtual simulation

in perfect equilibrium, for which the fragment is spatially limited as well

as temporally limited. One does this by extending the simulation not only

backwards in time, but also outwards in space [50]. In this case the binary

search rationale must be modified according to the computational cost of

extending the CFTP algorithm in both space and time. Interesting related

theory is to be found in [41].

It is clear that phase transition phenomena will cause problems when

we attempt to conduct CFTP in space as well as time; there will be a
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positive chance that the upper and the lower processes for the critical or

supercritical Ising model simply do not coalesce at all if the spatial grid

is being enlarged as well as extending the heat bath back in time. (Here

of course is where several of the other chapters of this monograph start

their story!) The BFA algorithm, described in §4.6, investigates further the

relationship between this issue and percolation phenomena.

1.8. Some Complements

“The conceptual ingredients of CFTP were in the air” [79] for a long time

before CFTP was formulated explicitly. For example consider:

• very early work by Kolmogorov [59]f discusses chains begun in the

indefinite past;

• the use of coupling between Markov chains by Doeblin [28];

• application of coupling from the past to study queueing and storage

systems (to establish very general equilibrium theorems) in [48, 64];

• use of evolution of stochastic flows into the past not the future in

[57, 61];

• the notion of stochastically recursive sequences (SRS) appearing in

stochastic systems theory [34, 9, 10];

• the use of occlusion-type constructions to deliver samples from equilib-

rium in [1, 14];

• and genuine coupling from the past constructions used for theoretical

ends in [91].

However, it was not until Propp and Wilson [78] that everything was put

together to show the then startling fact, that these ideas could produce

exact draws from equilibrium for non-trivial Markov chains.

As §1.7 indicates, CFTP ideas can be applied in space not only in time.

For another example, in [13] it is shown how to make perfect draws (with-

out edge effects) from clustered random patterns with long-range interac-

tions. Møller and Rasmussen [69] apply these ideas (together with notions

of domCFTP– see §3.4 below) to self-exciting point processes.

Coupling and simulation are theoretical and implementational coun-

terparts, with considerable twinning between techniques on the two areas.

CFTP brings the two areas together in a very practical way. Other practical

links are mentioned below in §2.7.

f
Thanks to Thorisson [92] for this reference.
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2. CFTP and Regeneration

An early misconception about CFTP was that it could be applied only to

monotonic Markov chains. We have already seen a mild counterexample:

monotonicity is not particularly evident in the “dead leaves” model (though

it can be forced into a monotonic framework using the notion of “region of

occlusion”). More general treatments use ideas of regeneration, which we

now introduce.

We begin by summarizing the theory of Markov chain small sets (§2.1),

a theoretical discretization method which allows us to perform small-set

CFTP for Markov chains on continuous state space (§2.2). We then sur-

vey variations on this theme: slice sampling (§2.3), the multi-shift sampler

(§2.4), catalytic CFTP (§2.5), read-once CFTP (§2.6). These variations are

all part of the tool-set for successful application of CFTP in practice. We

conclude with a brief discussions of some more technical complements to

small-set CFTP (§2.7).

2.1. Small Sets

Suppose we desire to construct a coupling between two random variables X ,

Y yielding a maximal positive chance of X = Y and otherwise not subject

to any constraint. (This is related to the notion of convergence station-

naire, or “parking convergence”, from stochastic process theory.) Clearly

this coupling is relevant to CFTP , where we aspire to coalescence!

Given two overlapping probability densities f and g, we can implement

such a coupling (X, Y ) as follows:

• Compute α =
∫

(f ∧ g)(x) d x.

• With probability α return a draw of X = Y from the density (f ∧g)/α.

• Otherwise draw X from (f−f∧g)/(1−α) and Y from (g−f∧g)/(1−α).

This is closely related to the method of rejection sampling in stochastic

simulation.

From Doeblin’s time onwards, probabilists have applied this to study

Markov chain transition probability kernels:

Definition 12: Small set condition: Let X be a Markov chain on a state

space X , transition kernel p(x,d y). The set C ⊆ X is a small set of order g

g
The notion of the order of a small set is understated in most textbook treatments, but

is important for the purposes of CFTP .
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k if for some probability measure ν and some α > 0

p(k)(x,d y) ≥ I [C] (x) × α ν(d y) . (3)

Here I [C] (x) is the indicator function for the set C.

It is helpful to contemplate the simple example of a Markov chain on

the unit interval whose transition density p(x, y) is triangular with peak

at x (Figure 6). Here the small set is the whole state space X = [0, 1], of

order k = 1, α = 1/2, and with probability measure ν given by the isoceles

triangle density over [0, 1].

Fig. 6. The triangular kernel for a Markov chain on the unit interval. The dark isoceles

triangle corresponds to an unnormalized version of the density of ν for the small set

property arising from application of Definition 12 to the entire interval.

Small sets are of major importance in the development of CFTP , so we

spend a little time discussing their theory.

It is a central result that (non-trivial) small sets (possibly of arbitrar-

ily high order) exist for any modestly regular Markov chain [66, 77]. Here

“non-trivial” means, has a positive chance of being hit by the Markov

chain started from a generic point. (We would need the language of φ-

irreducibility to make this precise, which would take us too far afield. See

either of the two references cited.)

The trouble with general Markov chains is that the chain may have zero

probability of returning to any fixed starting point. However if there is a

small set of order 1 then we may re-model the chain to fix this.

Theorem 13: Let X be a Markov chain on a (non-discrete) state space

X , transition kernel p(x,d y), with small set C of order 1. Then X can be
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represented using a new Markov chain on X ∪ {c}, for c a regenerative

pseudo-state.

For details see [5, 76]. Higher-order small sets can be used if we are

prepared to sub-sample the chain . . . .

Small sets (perhaps of higher order) can be used systematically to attack

general state space theory using discrete state space methods [66].h

A natural question is to ask whether we can go further, and use small

sets to re-model the chain as an entirely discrete affair. The answer is almost

affirmative!

Remark 14: Non-trivial small sets of order 1 need not exist: however they

do exist if (a) the kernel p(x, d y) has a measurable density and (b) chain

is sub-sampled at even times. (Both are needed: see the example in [54].)

Fig. 7. (a) A subset of the square which is free from non-null measurable rectangles;

(b) A kernel which is free of small sets of order 1.

Figure 7 shows (a) a randomized construction of a measurable subset

E of [0, 1]2, such that if A × B ⊆ E then Leb(A × B) = 0; (b) the support

of a measurable function based on transformed replications of this subset

which provides a transition density from [0, 1], to [0, 1], such that the density

admits no (non-trivial) small sets.

Theorem 15: [54] If the Markov chain has a measurable transition density

p(x, y) then the two-step density p(2)(x, y) can be expressed (non-uniquely)

h
Roberts and Rosenthal [82] also introduce “pseudo-small sets”, which relate to coupling

as small sets relate to CFTP .
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as a non-negative countable sum

p(2)(x, y) =
∑

i

fi(x)gi(y) .

Proof: [Sketch] The key part of this proof is a mild variation on Egoroff’s

Theorem:

Let p(x, y) be an integrable function on [0, 1]2. Then we can find subsets

Aε ⊂ [0, 1], increasing as ε decreases, such that

(a) for any fixed Aε the “L1-valued function” px is uniformly continuous

on Aε: for any η > 0 we can find δ > 0 such that

∫ 1

0

|px(z) − px′(z)| d z < η

for |x − x′| < δ and x, x′ ∈ Aε.

(b) every point x in Aε is of full relative density: as u, v → 0 so

Leb([x − u, x + v] ∩ Aε)/(u + v) → 1 .

We can use this result to show that p(2)(x, y) has just enough near-

continuity to supply a rich variety of small sets of order 2.

This result can be used to construct a latent discrete Markov chain Y

in even time which captures the time-dependence; the original chain X can

be re-constructed using functions X2n = h(Yn, Yn+1, εn), where the εn are

independent and identically distributed.

2.2. Murdoch-Green Small-set CFTP

Green and Murdoch [37] showed how to use small sets to carry out CFTP

when the state space is continuous with no helpful ordering.i

Example 16: It is helpful to consider small-set CFTP in nearly the sim-

plest possible case: recall the Markov chain triangular kernel on [0, 1] illus-

trated above.

i
Murdoch and Green use the term “multi-gamma sampler” instead of “small-set CFTP”.

This arises from Lindvall’s [62] nomenclature for the kind of coupling described in §2.1.

Why “gamma”? When asked, Lindvall explains this is because he had already used alpha

and beta in his exposition . . . .
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At any time-step there is regeneration probability 1/2 of drawing from

the isoceles kernel ν(d y); and we can couple all possible draws together

so that if one uses the isoceles kernel then so do they all. Now small-

set CFTP is easy to implement: start at time −n, at each step consider

whether or not one has drawn from the isoceles kernel. There is no need

to keep record of any draws until the first coupled draw from the isoceles

kernel: from then on one can evolve the chain using the full kernel until

time 0. If perchance one has failed to make a draw from the isoceles kernel,

then one repeats the procedure from time −2n; however one must then take

care to ensure that for steps from time −n onwards one re-uses the common

randomness, by drawing from the residual kernel obtained by renormalizing

p(x,d y) − (1/2)ν(d y).

In more usual cases the regeneration probability will be drastically

smaller than 1/2: Green and Murdoch describe a “partitioned multi-gamma

sampler”, which carries out a more efficient small-set CFTP using a parti-

tion of the state space by small sets.

Example 17: The result of small-set CFTP can be re-expressed as the

composition of Geometrically many kernels (conditioned to avoid the small-

set effect), with starting point randomized by small-set distribution ν.

We use the notation of Definition 12, so that the small set which is the

whole state space has associated regeneration probability α, and regenera-

tion distribution ν(d y). Then small-set CFTP gives the representation

π(d x) =

∞
∑

r=1

α(1 − α)r−1

∫

ν(d y)p̃(n)(y, d x) ,

where p̃(n)(y, d x) is the n-step kernel corresponding to the kernel p̃(y, d x)

conditioned on no regeneration:

p̃(y, d x) =
p(y, d x) − αν(d x)

1 − α
.

(See [6, 11, 43].)

2.3. Slice Sampler CFTP

Consider the simple task of drawing from a one-dimensional density f(x).

(Note, this method is only interesting because it can be made to work

in many dimensions . . . ) Suppose f is unimodal. We can define g0(y),

g1(y) implicitly by: the requirement that [g0(y), g1(y)] is the super-level set
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{x : f(x) ≥ y}. The slice sampler alternates between drawing y uniformly

from [0, f(x)] and drawing x uniformly from [g0(y), g1(y)] (see Figure 8).

Fig. 8. Slice sampler constructions.

There is rapid convergence (order of 530 iterations!) under a specific

variation of log-concavity [81] .

Example 18: Ideas of regeneration can be used to design a perfect slice

sampler for the case of a unimodal density f(x) with bounded support.

(The “bounded support” condition can be lifted: see [67].)

It is necessary to figure out how to make uniform choices for two versions

of the process simultaneously, so as to preserve the partial ordering

(x, y) � (x′, y′) if f(x) ≤ f(y) , (4)

but also so as to have positive chances of coalescing. Figure 9 sketches

out how to do this, exploiting the properties of the uniform distribution.

The example is completed by determining how to extend the simulation

backwards in time if coalescence has failed for the current cycle.

The technical issues in the above can all be resolved using the following

idea:

(a) Given U a Uniform([0, 1]) random variable, and 0 < θ < 1, we can

draw V a Uniform([0, θ]) random variable as follows: if U ≤ θ then set

V = U otherwise draw V from the Uniform([0, θ]) distribution. So we

have arranged a coupling with V ≤ U and P [U = V ] = θ.

(b) Now suppose we are given V ≤ U as above, and wish to draw W a

Uniform([0, ψ]) random variable, with θ < ψ < 1, such that V ≤ W ≤

U . If U ≤ ψ then set U = W , otherwise set W = V with probability

θ/ψ, otherwise draw W from the Uniform((θ, ψ]) distribution. So we

have arranged a coupling with V ≤ W ≤ U and P [U = W ] = ψ,

P [W = V ] = θ/ψ.
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Fig. 9. Perfect slice sampling: (a) first choose height for low point, next choose height

for top point, making the two heights identical if top point height falls in possible range

for low point height; then (b) first choose horizontal location for top point, next choose

horizontal location for low point, making the two locations identical if low point location

falls in possible range for top point location.

2.4. Multi-shift Sampler

The following question is a simple version of one which often arises in

implementation of CFTP :

Question 19: How can one draw Xx simultaneously from Uniform[x, x+1)

for all x ∈ R, and couple the draws to coalesce to a countable number of

different outcomes? [96].

The answer is to use a random unit span integer lattice, U + Z where U

is Uniform([0, 1)). Then set Xx to be the unique point in the intersection

[x, x + 1) ∩ (U + Z).

Wilson [96] also considers more general distributions! For example, we

can express a unimodal distribution as a mixture of uniform distributions,

in a manner reminiscent of slice sampler ideas, in several ways, as illustrated

in Figure 10. Once we have expressed the target distribution as a mixture

of uniforms, say

L (X) = L (Uniform([−L,+R)))

for random L and R, then we can draw simultaneously from the location

family of distributions L (X + x) by first drawing L, R, then constructing

the random lattice (U + Z) × (L + R), then finally setting Xx to be the

unique point in the intersection [x − L, x + R) ∩ ((U + Z) × (L + R)). The

method also deals with multivariate and even multi-modal cases.

Corcoran and Schneider [20] carry this even further, showing how to

couple draws from Uniform distributions with different ranges.
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Fig. 10. Two different ways of expressing a normal density as a mixture of uniform

densities.

2.5. Catalytic CFTP

Breyer and Roberts [12] have devised an “automatic” variation on small-

set CFTP : catalytic CFTP. The underlying idea is to perform simultane-

ous Metropolis-Hastings updates for all possible states, using a common

Uniform[0, 1] random variable U to determine rejection or acceptance. For

suitable proposal random fields Φx, it may be possible to identify when

the input-output map F(−t,0] coalesces into a finite range; moreover the

choice of construction for Φx can be varied from time point to time point.

Simulations can be viewed at

http://www.lbreyer.com/fcoupler.html.

2.6. Read-once CFTP

Wilson [95] noted the following: one can build the input-output maps

F(−n,0] of Theorem 3 from i.i.d. blocks

F(−nt,0] = F(−t,0] ◦ . . . ◦ F(−(n−1)t,(−(n−2)t] ◦ F(−nt,−(n−1)t] .

Let the blocking length t be chosen so that there is a positive chance of the

map B
D
= F(−t,0] being coalescent. By a simple computation, the resulting

CFTP procedure is identical to the following forwards procedure:

• Repeatedly draw independent realizations of B till a coalescent block

is obtained; note coalesced output x.

• Repeatedly draw independent realizations of B; while these are not

coalescent compute the update x ← B(x).

• When a coalescent realization of B is obtained, return x without up-

dating!

There are strong resonances with small-set CFTP (the possibility of

coalescent B corresponds to the whole state space being a small set of order

t), especially the representation discussed in Example 17, and with the dead
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leaves CFTP example (one can view Wilson’s argument as involving a re-

ordering in time).

Example 20: The validity of read-once CFTP follows by establishing that

the above forwards procedure produces a sequence of B maps which have

the same distribution as would be produced by carrying out classic CFTP ,

but checking for coalescence block-by-block.

The choice of the blocking length t is of course crucial! Wilson [95]

explains how this can be done, in such a way as to be competitive with

ordinary CFTP .

A feature of major importance of this method is that storage require-

ments are minimized: one needs only (a) to flag whether a block is coales-

cent, (b) to compute the output of a coalescent block, and (c) to track the

current state of the chain as the blocks are produced.

2.7. Some Complements

We remark briefly on precursors to this idea. We have already noted the

seminal nature of the split-chain construction [5, 76]. Regeneration ideas

are not new to simulation, and have been used specifically in simulation for

some time: see for example Asmussen et al. [4] and Mykland et al. [75].

The simple and direct construction of §2.2 is rather strongly limited by

the need to find a regenerative probability measure ν for the whole state

space (or a finite covering of the state space by small sets, in the case of the

partitioned version).j However it is a potentially important tool, whether

in its original form or in the variants described above, when combined with

other ideas such as the generalization of CFTP which we will describe in the

next section: small-set coalescence can be an important component of other

CFTP algorithms, especially when seeking to couple a pair of monotonic

processes which otherwise will draw closer at only an exponential rate!

Murdoch and Rosenthal [73] use regenerative ideas to develop a useful

perspective on how one might efficiently obtain repeated CFTP samples.

Craiu and Meng [23] show how to achieve efficiency gains by making mul-

tiple CFTP runs using antithetic sampling. Meng [65] also suggests use of

multistage sampling ideas to improve CFTP efficiency.

j
But Hobert and Robert [43] use the idea to investigate convergence for MCMC .
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3. Dominated CFTP

Up to this point all our CFTP methods and applications have applied only

to Markov chains which are in some sense “bounded” (strictly speaking,

uniformly ergodic in the sense of Definition 28). We now discuss how to lift

this restriction.

We begin by considering some precursor notions from queueing theory

(§3.1), and then define the important theoretical notions of uniform and

geometric ergodicity (§3.2) and discuss their relationship with classic CFTP

(§3.3). This leads straight to the idea of dominated CFTP (domCFTP),

introduced in §3.4, which can apply to geometrically ergodic (and hence

“unbounded”) Markov chains. We describe this idea carefully in the simple

but prototypical context of birth-death processes (§3.5) and present an

application to point processes (§3.6). We conclude by describing a general

theorem on the validity of domCFTP (§3.7).

3.1. Queues

Consider a GI/G/1 queue (intervals between customer arrivals are inde-

pendent and identically distributed, as are the service times required by

customers – though of course service time and inter-arrival time have dif-

ferent distributions). Lindley noticed a beautiful representation for waiting

time Wn of customer n in terms of services Sn and inter-arrivals Xn, based

on the observation that Sn −Xn+1 (if positive) is the extra amount of time

for which customer n + 1 must wait as compared to customer n.

Theorem 21: Lindley’s equation: Consider the waiting time identity

for the GI/G/1 queue.

Wn+1 = max{0, Wn + Sn − Xn+1} = max{0, Wn + ηn}

= max{0, ηn, ηn + ηn−1, . . . , ηn + ηn−1 + . . . + η1}

D
= max{0, η1, η1 + η2, . . . , η1 + η2 + . . . + ηn}

and thus we obtain the steady-state expression

W∞
D
= max{0, η1, η1 + η2, . . .} .
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It is an exercise in classical probability theory (SLLN / CLT / random

walks) to show that W∞ will be finite if and only if E [ηi] < 0 or ηi ≡ 0.

Remark 22: Coupling and CFTP ideas enter into Theorem 21 at the

crucial time-reversal step:

max{0, ηn, ηn + ηn−1, . . . , ηn + ηn−1 + . . . + η1} =

D
= max{0, η1, η1 + η2, . . . , η1 + η2 + . . . + ηn}

Compare Section 1.4 on falling leaves . . . .

Remark 23: The problem about applying the CFTP Theorem 21 in this

context is that we don’t know which η1+η2+ . . .+ηn attains the supremum

max{0, η1, η1 + η2, . . .}.

The point of this remark is, we could use the above to make a draw

from the equilibrium distribution W∞, if only we could tell at which n

the maximum is attained! Failing that, Theorem 21 suggests a simulation

algorithm which approximates W∞ from below by Wn for large n – the

issue of choice of n corresponds to the burn-in decision for MCMC ..

Notice that here we have a target distribution which is specified im-

plicitly, as with the dead leaves example, rather than explicitly up to a

normalizing constant.

Supposing we lose independence? Loynes [64] discovered a coupling ap-

plication to queues with (for example) general dependent stationary inputs

and associated service times, pre-figuring CFTP .

Theorem 24: Suppose queue arrivals follow a time-stationary point pro-

cess marked by service times, stretching back to time −∞. Denote the

arrivals and associated service times in (s, t] by Ns,t. The impact of sta-

tionarity is that the distribution of the process {Ns,s+u : u ≥ 0} does not

depend on the start-time s. Let Q−T denote the behaviour of the queue

observed from time 0 onwards if begun with 0 customers at time −T . The

queue converges to statistical equilibrium if and only if

lim
T→∞

Q−T exists almost surely.

Remark 25: Stoyan [87] develops this kind of idea. See also an application

to storage problems in [48].

Example 26: It is informative to use simple R statistical package scripts

and elementary calculations to investigation Lindley’s equation and the

Loynes coupling.
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3.2. Uniform and Geometric Ergodicity

There is a theoretical issue which forms a road block to the use of Lind-

ley’s representation in CFTP . Recall the notions of uniform ergodicity and

geometric ergodicity.

Definition 27: A Markov chain with transition kernel p(x, ·) possesses

geometric ergodicity if there are constants 0 < ρ < 1, R(x) > 0 with

‖π − p(n)(x, ·)‖TV ≤ R(x)ρn

for all n, for all starting points x.

So a chain exhibits geometric ergodicity if equilibrium is approached

at a geometric rate. Note that the geometric bound is moderated by a

multiplicative factor depending on the chain’s starting point. However . . .

Definition 28: A Markov chain with transition kernel p(x, ·) possesses

uniform ergodicity if there are constants ρ ∈ (0, 1), R > 0 not depending

on the starting point x such that

‖π − p(n)(x, ·)‖TV ≤ Rρn

for all n, and uniformly in all starting points x.

So a chain exhibits uniform ergodicity if the geometric rate is not af-

fected by the chain’s starting point.

3.3. Classic CFTP and Uniform Ergodicity

Uniform ergodicity corresponds loosely to “virtually finite state space”.

However chains may still be uniformly ergodic even if the state space is far

from finite: the Häggström et al. [42] chain in Section 1.6 is a good example

of this.

On the other hand Lindley’s theorem presents a class of examples which

in general will not be uniformly ergodic. Think for example of the case of

Uniform[0, 3] inter-arrival times, and service times deterministic and equal

to 1: a queue of length n will then take at least n units of time to disperse

completely, and this can be used as the basis of an argument to show failure

of uniform ergodicity.

Foss and Tweedie [35] show that the (theoretical) possibility of classic

CFTP is equivalent to uniform ergodicity. For classic CFTP needs vertical

coalescence: every possible start from time −T leads to the same result
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Fig. 11. Vertical coalescence (starred) for a finite-state-space Markov chain, starting

from a fixed initial time.

at time 0, and this implies a uniformly geometric rate of convergence to

equilibrium (Figure 11).

The converse, that uniform ergodicity implies the possibility in principle

of classic CFTP , follows from small set theory.

Theorem 29: (After Foss and Tweedie [35]) Suppose a Markov chain X

on a general state space X has positive probability of hitting a specified

small set C of order k, where the probability may depend on the starting

position but is always positive.k Then X is uniformly ergodic if and only

if classic CFTP is possible in principle (disregarding computational and

implementation issues!).

Proof: [Outline] It is clear from the CFTP construction that classic CFTP

forces uniform ergodicity.

On the other hand, uniform ergodicity means we can choose n such that

p(n)(x, ·) is close to equilibrium in total variation, uniformly in x. It follows

that in principle we can design a split chain which has positive chance of

applying regeneration every n+k time steps, and this permits construction

of small-set CFTP . For suppose C is the small set of order k as given in

Definition 12, with π(C) > 0. Then for ε → 0 as n → ∞ uniformly in x,

p(n)(x, C) ≥ (1 − ε)π(C) ,

p(n+k)(x, ·) ≥ (1 − ε)απ(C)ν(·) .

So we can apply small-set CFTP to the sub-sampled Markov chain Xn+k,

X2(n+k), . . . .

k
This small-set condition is essentially a consequence of φ-irreducibility [77], which itself

is implied by the much stronger condition of uniform ergodicity.
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Foss and Tweedie [35] also derive comparisons between moments of co-

alescent times and forward coupling times.

The practical obstacle here is that we will have to gain knowledge of

p(n)(x, ·) to build the split chain. But in general we may expect p(n)(x, ·)

to be less accessible than the equilibrium distribution itself!

3.4. Dominated CFTP

It follows from the very existence of CFTP constructions that all the chains

discussed so far have been uniformly ergodic. Can we lift this uniform er-

godicity requirement? CFTP almost works with horizontal coalescence as

exhibited in the Lindley representation and illustrated in Figure 12: all suf-

ficiently early starts from a specific location lead to the same result at time

0. But, as highlighted by the Lindley representation, the question is how

one can identify when this has happened.

Fig. 12. Horizontal coalescence starting from a fixed location: this will have occurred

if all earlier starts from this location will also coalesce by time 0.

The idea of dominated CFTP (domCFTP) is as follows: generate target

chains coupled to a dominating process for which equilibrium is known.

Domination allows us to identify horizontal coalescence by checking starts

from maxima given by the dominating process. We set this out in a formal

definition. For the sake of clarity we consider a rather simple case, that of

a discrete-time monotonic chain defined on [0,∞). (A much more general

formulation, allowing for general state space and non-monotonicity, is given

below in Theorem 32.)

Definition 30: (domCFTP) Consider X , an ergodic Markov chain on

[0,∞). Suppose it can be coupled as follows: for each x ≥ 0, −t < 0 we

can construct X(x,−t) to be X begun at x at time −t, such that if s ≥ −t,

s ≥ −u, then

X(x,−t)
s ≤ X(y,−u)

s implies X
(x,−t)
s+1 ≤ X

(y,−u)
s+1 .
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Suppose further we can build a dominating process Y on [0,∞), which is

stationary, defined for all time, and coupled to the X (x,−t) by

X(x,−t)
s ≤ Ys implies X

(x,−t)
s+1 ≤ Ys+1

whenever s ≥ −t. Then the following algorithm delivers a perfect sample

from the equilibrium distribution of X , so long as it terminates almost

surely:

(1) Draw Y0 from its equilibrium distribution;

(2) Simulate Y backwards in time to time −T ;

(3) Set y = Y−T , and simulate the upper-process X−T,y and the lower-

process X−T,0 forwards in time to time 0 (note: these must be coupled

to each other, to Y , and at later stages of the algorithm they must be

coupled to other simulations of X at the same process time);

(4) If X−T,y
0 = X−T,0

0 then return their common value as a perfect draw

from the equilibrium distribution of X . Otherwise extend the previous

simulation of Y back to time −2T , update −T to −2T , and repeat from

step (3).

If we can make this work then CFTP can be applied to Markov chains

which are merely geometrically ergodic [17, 51, 53, 55] or worse (geometric

ergodicity �= domCFTP !). The issues are:

(a) can one draw from the equilibrium of Y ?

(b) can one simulate Y backwards in time?

(c) can one simulate the upper- and lower-processes coupled both to other

simulations of X and to Y as required in the definition?

(d) and, of course, will coalescence (which is to say, termination of the

algorithm) occur almost surely, and will it occur with reasonable speed?

There is considerable freedom allowed in the choice of Y , so requirements

(a), (b) are not hard to meet. The implementation of requirement (c) typ-

ically needs care; on the other hand (d) is typically half obvious (whether

coalescence is almost sure) and half empirical (one investigates the speed

by trying it out in practice!).

Theorem 31: [51, 53] If coalescence is almost sure then domCFTP sam-

ples from equilibrium.

Proof: For simplicity we continue to suppose the target process X is mono-

tonic, and that it and the dominating process Y are non-negative.
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Let Xupper,−n, X lower,−n = X−n be versions of the target chain started

at time −n at Y (−n), 0 respectively. Let −T be the latest time such that

Xupper,−T (0) = X lower,−T (0) = X−T (0) (so −T is the coalescence time).

Now argue as in Theorem 3 for classic CFTP :

If X converges to an equilibrium π in total variation distTV then

distTV(L
(

X−T
0

)

, π) = lim
n

distTV(L
(

X−n
0

)

, π)

= lim
n

distTV(L
(

X0
n

)

, π) = 0

hence the result.

Fig. 13. Dominated CFTP . Coalescence is assured at the starred time, since all previous

starts below the dominating process are compelled to coalesce by time 0.

Thus we can use realizations of the target process started from the

dominating process to identify horizontal coalescence.

3.5. Non-linear Birth-death Processes

To illustrate domCFTP in detail, we describe a simple example taken from

[49]. Consider a continuous-time non-linear birth-death process X , with

transition rates

X → X + 1 at rate λX ,

X → X − 1 at rate Xµ ,

for positive λX , µ. We suppose the birth rate λX is bounded abovel by λ.

Of course it is possible to compute the equilibrium distribution using

detailed balance. However here the object of the exercise is to construct a

domCFTP method to draw exactly from the target distribution.

l
Monotonicity is required for λX in [49], which is unnecessarily restrictive!
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Note first that the non-linear birth-death process X can be bounded

above, or dominated by, the linear birth-death process Y with transition

rates

X → X + 1 at rate λ ,

X → X − 1 at rate Xµ .

Here domination means, if 0 ≤ X(0) ≤ Y (0) then we can construct coupled

copies of X and Y such that the relationship X ≤ Y is maintained for all

time.

Indeed we can go further: given the process Y then for any x, 0 ≤ x ≤

Y (0), we can construct a copy Xx of X begun at x such that 0 ≤ Xa ≤

Xb ≤ Y for all time whenever a ≤ b ≤ Y (0).

We do this as follows.

We construct X from Y by supposing, X can have a birth only if Y has

a birth, and similarly for deaths.

Suppose to each birth incident and each death incident of Y there is

attached an independent Uniform[0, 1] random mark U . So the construction

of X is specified by determining for each Y incident whether or not this

corresponds to an X incident.

• A birth incident Y → Y +1 at time t with mark U is allowed to generate

an X birth incident exactly when

U ≤
λX(t−)

λ
; (5)

• A death incident Y → Y − 1 at time t with mark U is allowed to

generate an X death incident exactly when

U ≤
µX(t−)

µY (t−)
=

X(t−)

Y (t−)
. (6)

It is apparent from X(t−) ≤ Y (t−) and the increasing nature of

λX ≤ λ that the U -based criteria above use probabilities λX(t−)/λ ≤ 1

and X(t−)/Y (t−) ≤ 1 respectively. This permits an inductive argument,

iterating through the birth and death incidents of Y , which shows X ≤ Y

for all time, and which indeed also demonstrates 0 ≤ Xa ≤ Xb ≤ Y if

0 ≤ Xa(0) ≤ Xb(0) ≤ Y (0).

Now carry out the CFTP construction, but making starts at times −n,

−2n, . . . using a stationary realization of the dominating process, as in

Definition 30, rather than the top-most state. To do this it is necessary to

be able to
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(1) draw from the equilibrium of the dominating process (easy here: de-

tailed balance identifies the equilibrium distribution as Geometric);

(2) simulate the reversed process in equilibrium (easy here: by detailed

balance the process is reversible).

The remaining requirements of Definition 30 are assured by the construction

given above. An illustration of the result is given in Figure 14.

Fig. 14. A birth-death example of domCFTP . Top curve is dominating process. Succes-

sive pairs of upper and lower processes generate shaded regions which sandwich earlier

realizations: the earliest pair in the diagram produces coalescence.

This example is rather trivial (in this case equilibrium is best simulated

using a formula for the equilibrium distribution derived from considerations

of detailed balance!). However similar examples can deal with cases where

no formula for equilibrium is known (for example, perpetuities); moreover

it is straightforward to introduce a spatial component to the birth-death

process, which we discuss next.

3.6. Point Processes

Dominated CFTP actually works on non-monotonic processes as well. For

example, it can be applied to both attractive and repulsive area-interaction

point processes [49, 51, 53]: using as target chain a spatial birth-and-death

process, which give birth to points at a rate determined by the local in-

teraction with pre-existent points, and which kills points at unit rate per

point. This allows the use of domCFTP in a manner very similar to that

of Section 3.5, but with Uniform[0, 1] marks replaced by geometric marks

which are Poisson clusters, as described in [49] and exploiting Exercise 11
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Fig. 15. Dominated CFTP for attractive area-interaction point process with geometric

marking using Poisson processes in disks. Dark disks are in both the lower process and

the upper process; lighter disks are in the upper process (there are also some pale and

ghostly disks corresponding to points which did not even get into the upper process!).

Interaction is expressed by marking each disk with a Poisson cluster: on birth the cluster

in a new disk must be covered by the current union of disks.

as well as an analogue for the case of repulsion.m See Figure 15 for an

illustration.

It is of interest in stochastic geometry that this expresses such point

processes as explicit but highly dependent thinnings of Poisson point pro-

cesses.

How exactly is the method of domCFTP (or indeed CFTP in gen-

eral) adapted to non-monotonic cases? We can use the crossover trick [51],

which we explain in the context of repulsive area interaction γ < 1. Create

two chains to bound the target chain X above (by Xupper) and below (by

X lower). Cross over the rules for birth: a proposed point is born in Xupper

if it would pass the test for X lower, and vice versa. Then automatically

X lower ⊆ X ⊆ Xupper

m
Sandeep Shah was the first to implement this, in his 2004 Warwick PhD thesis.
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so CFTP can be applied. A general formulation for point processes is given

in [53].

See also Huber’s [45] use of “swap moves” in the context of bound-

ing chains, which he uses to estimate a rapid-mixing regime. If the birth

proposal is blocked by just one point, then replace the blocking point by

the new proposal in a swap, with swap probability pswap which we are free

to choose; and adjust the bounding chains accordingly; this results in a

provable speed-up of the CFTP algorithm.

3.7. A General Theorem for domCFTP

Moving from CFTP to domCFTP suggests still further abstraction. This

is helpful, for example, when considering CFTP for conditioned point pro-

cesses as in [17]: it can be convenient to allow the upper- and lower-processes

to move out of the conditioned state space.

Let X be a Markov chain on X which is ergodic and in statistical equi-

librium.

Embed the state space X in a partially ordered space (Y,�) so that X

is at the bottom of Y, in the sense that for any y ∈ Y, x ∈ X ,

y � x implies y = x .

We may then use the methods of Theorem 3 (CFTP) and Theorem 31

(domCFTP) to show:

Theorem 32: Define a Markov chain Y on Y such that Y evolves as X

after it hits X ; let Y (−u, t) be the value at t of a version of Y begun at

time −u,

(a) of fixed initial distribution:

L (Y (−T,−T )) = L (Y (0, 0)), and

(b) obeying funnelling:

if −v ≤ −u ≤ t then Y (−v, t) � Y (−u, t).

Suppose coalescence occurs: P [Y (−T, 0) ∈ X ] → 1 as T → ∞. Then

limY (−T, 0) can be used for a CFTP draw from the equilibrium of X .

3.8. Some Complements

Murdoch [74] points out a MCMC algorithm can be forced to become uni-

formly ergodic by altering the move to allow a small chance of an indepen-

dence sampler move. This procedure forces the whole state-space to become
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small, and will be effective for suitable low-dimensional examples: however

it is not clear how to implement it for point processes, for instance.

The crossover trick is generalized in [53], to cover cases where mono-

tonicity is absent (see also Huber [46] on bounding chains); Häggström and

Nelander [40] apply the trick to lattice systems.

Ambler and Silverman [2, 3] describe a practical method for implement-

ing domCFTP for certain systems for which interaction is neither mono-

tonic nor anti-monotonic, and apply this to generalized area-interaction

point processes and thence to wavelet models with dependent coefficients.

See also Holmes and Mallick [44], who apply classic CFTP to the case of

models with independent coefficients.

4. Theory and Connections

CFTP is not the only method of perfect simulation. Here we describe a

different method, due to Fill. We begin by discussing a historical predeces-

sor, Siegmund duality (§4.1); we use this to explain Fill’s method (§4.2).

We then describe a striking relationship recently introduced between Fill’s

method and CFTP (§4.3), which shows the first is actually a conditioned

version of the second.

We then turn to questions of efficiency – whether CFTP can always be

competitive with an idealized MCMC implementation which somehow just

knows how long the burn-in period should be (§4.4). Finally we consider

the link between domCFTP and geometric ergodicity (§4.5), and briefly

present yet another variant on CFTP , the Backwards-Forwards Algorithm

(§4.6), which has strong links to domCFTP .

4.1. Siegmund Duality

An important alternative to CFTP makes fuller use of the notion of time

reversal, as in the dead-leaves example, and Section 3.1 on queues. We begin

with a beautiful duality.

Theorem 33: (Siegmund duality) Suppose X is a process on [0,∞). When

is there another process Y satisfying the following?

P [Xt ≥ y|X0 = x] = P [Yt ≤ x|Y0 = y] (7)

Answer: [86] Exactly when X is (suitably regular and) stochastically mono-

tone: x ≤ x′ implies

P [Xt ≥ y|X0 = x] ≤ P [Xt ≥ y|X0 = x′] .
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Proof: [Outline] Use Equation (7) to check monotonicity, and Fubini’s

Theorem to derive the Chapman-Kolmogorov equations.

Remark 34: If X is not stochastically monotone then Equation (7) will

yield negative transition probabilities for Y !

Remark 35: It is a consequence of Equation (7) that Y is absorbed at 0,

and X at ∞.

Remark 36: Intuition: think of the Siegmund dual this way. For fixed

T , represent the X(x) begun at different x in a coupling as a monotonic

stochastic flow (use stochastic monotonicity!) over the time interval [0, T ],

and consider Y in terms of a kind of time-reversed dual flow Z coupled to

X , using for example Z
(y)
t,0 = inf{u : X

(u)
t ≥ y} (see [19]).

4.2. Fill’s Method

This beautiful idea grew into a method of simulation, and then a method

of perfect simulation, Fill’s method [31], which is an alternative to CFTP .

It is based on the notion of a strong uniform time T [24] and associated

notions of set-valued duals. Fill’s method considered on its own is harder to

explain than CFTP : we describe it in the simplest context of monotonicity,

with state space the unit interval [0, 1].

As described in Remark 36, we can view Siegmund duality in terms of

a monotonic stochastic flow for X
(x)
t , and a time-reversed dual flow Z.

Run X from the minimal state 0 at time 0, forwards to time T .

Now run the coupled Siegmund dual Z from the maximal state 1 at

time T backwards in time and coupled to the previously realized path of

X , backwards to time 0.

If Z
(1)
T,0 = 0 (the minimal state) then return X(T ).

Otherwise repeat the algorithm.

In fact Z is really a set-valued process: Z
(y)
T,0 represents the set of all initial

values x which are mapped by the flow X to within the interval [0, y] at

time T . (This is the key to removing the monotonicity restriction.)

Despite its complexity, Fill’s method has advantages too:

• it can provide user-interruptibility, subject to suitable implementation

(perfect draws are not biased by censoring draws which take longer

than a specified threshold);
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• as we will see, it can be viewed as a conditional version of CFTP , and

the conditioning can be used to speed up the algorithm.

4.3. FMMR and CFTP

Fill’s method is at first sight quite different from CFTP . However Fill et al.

[33] establish a profound and informative link with CFTP– for which reason

it is now conventional to refer to Fill’s method as the FMMR method. We

explain this method using “blocks” as input-output maps for a chain, as in

our description of Read-once CFTP in §2.6.

First recall that CFTP can be viewed in a curiously redundant fashion

as follows:

Draw from equilibrium X(−T ) and run forwards;

continue to increase T until X(0) is coalesced;

return X(0); note that by construction T and X(0) are independent

of X(−T ).

Figure 16 illustrates this construction, in which we perversely draw from

the equilibrium (the very thing we are trying to achieve by this method),

only to discard the draw in the course of the algorithm!

Fig. 16. A representation of classic CFTP using a sequence of blocks.

Key observation: By construction, X(0) and T are independent of

X(−T ), so we can condition on their values!

Condition on a convenient X(0);

Run X backwards to a fixed time −T ;

Draw blocks conditioned on the X transitions;

If coalescence then return X(−T ) else repeat.

The construction is illustrated in Figure 17. Viewing this as a conditional

form of the perverse representation of CFTP above, it follows that the

returned value is a perfect draw from the desired equilibrium. Note that

in this formulation there is no need to assume the target process X is at

all monotonic. The set-valued dual flow Z is produced by the input-output
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Fig. 17. Illustrating FMMR using blocks. The top row represents the operation of

running X backwards in time from a fixed starting point. The second row represents

the procedure of extending this reversed path to a sequence of input-output blocks, for

which one must then test coalescence.

maps. Note that the flow of time is reversed with respect to the description

of Fill’s method in Section 4.2.

This makes it apparent that there are gains to be obtained over CFTP

by careful selection of the convenient X(0). These gains can be dramatic!

(See for example [27].)

It is natural to ask whether FMMR and domCFTP can somehow be

combined.

Question 37: Is there an effective dominated version of Fill’s method?

It is possible to devise such a combination in a rather straightforward man-

ner, but implementation appears to lead to substantial theoretical difficul-

ties in all but the most trivial of examples.

4.4. Efficiency and the Price of Perfection

How efficient might CFTP be? When there is strong enough monotonicity

then useful bounds have been derived – even as early as the Propp-Wilson

paper [78]. In the case of monotonic CFTP on a finite partially ordered

space, Propp and Wilson [78] present a strong bound. Let ℓ be the longest

chain in the space; let T ∗ be the coalescence time, let

d(k) = max
x,y

{P (k)
x − P (k)

y } .

Then

P [T ∗ > k]

ℓ
≤ d(k) ≤ P [T ∗ > k] , (8)

so CFTP is within a factor of being as good as possible.

In general CFTP has to involve coupling, usually co-adapted.n One

expects co-adapted coupling to happen at some exponential rate, and con-

n
But Huber has an example which uses non-co-adapted coupling!
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vergence to equilibrium (in total variation norm distTV!) likewise. From the

Coupling Inequality (1) we know that coupling cannot happen faster than

convergence to equilibrium. But can it happen at a strictly slower rate?

and for relatively simple Markov chains? Coupling can be used to find out

about this coupling problem [16]! Here is a sketch of the argument.

Suppose we have the following asymptotics for a continuous-time

Markov chain, holding large t:

|pt(x1, y) − pt(x2, y)| ≈ c2 exp(−µ2t)

while

P [τ > t|X(0) = (x1, x2)] ≈ c exp(−µt) .

(Such exponential rates are typical for many Markov chains.) The standard

coupling argument then leads to

|pt(x1, y) − pt(x2, y)| =

= |P [X1(t) = y|X1(0) = x1] − P [X2(t) = y|X2(0) = x2]| =

|P [X1(t) = y|τ > t, X1(0) = x1] − P [X2(t) = y|τ > t, X2(0) = x2]|

× P [τ > t|X(0) = (x1, x2)]

Now we proceed to a coupling of couplings! Let X∗ be a independently

coupled copy of X but transposed so as to begin at (x2, x1):

|P [X1(t) = y|τ > t, X1(0) = x1] − P [X2(t) = y|τ > t, X2(0) = x2] |

= |P [X1(t) = y|τ > t, X(0) = (x1, x2)]−

P [X∗
1 (t) = y|τ∗ > t, X∗(0) = (x2, x1)] |

≤ P [σ > t|τ > t, τ∗ > t, X(0) = (x1, x2)] (≈ c′ exp(−µ′t))

for σ the time when X , X∗ couple.

Thus µ2 ≥ µ′ + µ, with µ2 > µ if X , X∗ couple at exponential rate µ′.

Remark 38: So co-adapted coupling is strictly slower than convergence to

equilibrium when a pair of co-adapted coupled chains can transpose before

coupling (the opposite of monotonicity!).

See [16] for more on this. Figure 18 presents a continuous-time Markov

chain for which it may be shown that there are no co-adapted couplings

which occur as fast as the approach to equilibrium: Cranston and Mountford

[72] describes a still simpler example!
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Fig. 18. A Markov chain for which there is no efficient co-adapted coupling.

Remark 39: [60] gives a computer-science type example involving graph-

matchings: coupling becomes much slower than convergence to equilibrium

as problem-size increases.

Of course, this barrier may be overcome by using non-co-adapted cou-

plings: it is an interesting question as to how far it is practical to do this

in general.

4.5. Dominated CFTP and Foster-Lyapunov Conditions

An application which mixes domCFTP and small-set CFTP is described

in [21]. The upper envelope process must be formulated carefully: when

the dominating process visits a small set, then one can attempt small-set

coupling; however one must take care to ensure that the dominating process

remains dominating when small-set coupling is attempted and fails!

There are similarities to Foster-Lyapunov conditions for assessing geo-

metric ergodicity etc for Markov chains. Such conditions use a Lyapunov

function Λ to deliver a controlled supermartingale off a small set.

We begin by discussing a Foster-Lyapunov condition for positive-

recurrence.

Theorem 40: [66] Positive-recurrence on a set C holds if C is a small set

and one can find a constant β > 0, and a non-negative function Λ bounded

on C such that for all n > 0

E [Λ(Xn+1)|Xn] ≤ Λ(Xn) − 1 + β I [Xn ∈ C] . (9)
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Proof: Let N be the random time at which X first (re-)visits C. It sufficeso

to show E [N |X0] < Λ(X0)+constant < ∞ (then use small-set regeneration

together with the upper bound on the subsequent value of Λ(X) provided

by Inequality (9)).

By iteration of (9), we may deduce E [Λ(Xn)|X0] < ∞ for all n.

If X0 �∈ C then (9) tells us n �→ Λ(Xn∧N)+n∧N defines a nonnegative

supermartingale (I
[

X(n∧N) ∈ C
]

= 0 if n < N) . Consequently

E [N |X0] ≤ E [Λ(XN ) + N |X0] ≤ Λ(X0) .

If X0 ∈ C then the above can be used to show

E [N |X0] = E [1 × I [X1 ∈ C]|X0] + E [E [N |X1] I [X1 �∈ C]|X0]

≤ P [X1 ∈ C|X0] + E [1 + Λ(X1)|X0]

≤ P [X1 ∈ C|X0] + Λ(X0) + β

where the last step uses Inequality (9) applied when I [Xn−1 ∈ C] = 1.

Now we consider a strengthened Foster-Lyapunov condition for geomet-

ric ergodicity.

Theorem 41: [66] Geometric ergodicity holds if one can find a small set

C, positive constants λ < 1, β, and a function Λ ≥ 1 bounded on C such

that

E [Λ(Xn+1)|Xn] ≤ λΛ(Xn) + β I [Xn ∈ C] . (10)

Proof: Define N as in Theorem 40.

Iterating (10), we may deduce E [Λ(Xn)|X0] < ∞ and more specifically

we may infer that

n �→ Λ(Xn∧N )/λn∧N

is a nonnegative supermartingale. Consequently

E
[

Λ(XN)/λN |X0

]

≤ Λ(X0) .

Using the facts that Λ ≥ 1, λ ∈ (0, 1) and Markov’s inequality we deduce

P [N > n|X0] ≤ λnΛ(X0) ,

which delivers the required geometric ergodicity.

o
This martingale approach can be reformulated as an application of Dynkin’s formula.
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It is tempting to try to define a dominating process using Λ, especially

if one notes the work of Rosenthal [85] on quantitative convergence rates.

The expectation inequality of supermartingale-type,

E [Λ(Xn+1)|Xn] ≤ λΛ(Xn) + β I [Xn ∈ C] ,

is enough to control the rate at which X visits C, but for domCFTP based

on the ordering implied by Λ we require well-behaved distributional bounds

on the families of distributions

Dx = {L (Λ(Xn+1|Xn) : Xn = u, Λ(u) ≤ Λ(x)} ,

and it is easy to construct badly behaved examples.

Example 42: There is a Markov chain on [0,∞) which satisfies the con-

ditions of Theorem 41, using Λ(x) = x and C = {0}, but such that any

Λ-dominating process for X (a process U for which Λ(Un+1) ≥ Λ(Xn+1)

whenever Λ(Un) ≥ Λ(Xn)) must be transient! (see [52] .)

However this issue can be circumvented using sub-sampling.

Theorem 43: [52] If a Markov chain X is geometrically ergodic then it

is possible to construct a dominating process based on a Foster-Lyapunov

criterion (10), and hence to build a particular kind of domCFTP algorithm,

for some sub-sampled version Xk, X2k, . . . .

Of course, just as for the Foss-Tweedie Theorem 29, this algorithm will

not be practical! However it is of interest that the constructed dominating

process is in some sense “universal”: it can be chosen to be the work-load

process for a D/M/1 queue with parameters depending only on the λ in

the relevant Foster-Lyapunov condition (10).p

4.6. Backward-forward Algorithm

A careful look at domCFTP for the area-interaction process, or generaliza-

tions to other point processes as described in [53], shows that the construc-

tion is as follows:

• build a space-time Poisson process of free points;

p
It is natural to ask whether this result can be extended, by analogy with the Foss-

Tweedie Theorem 29, to show equivalence between suitable domCFTP algorithms and

some kind of ergodicity criterion: this is now being pursued at Warwick.
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• convert free points into initial points for time-like line segments, hence

constructing a space-time birth and death process;

• mark the free points independently;

• apply a causal thinning procedure in time order;

• domCFTP succeeds if the time-zero result (the set of points retained

under thinning at time zero) of this thinning procedure stabilizes when

thinning begins far enough back in time; apply a binary search pro-

cedure to capture a time early enough to ensure stabilization at time

zero.

Fernández et al. [30] describe a variant of perfect simulation (Backwards-

Forwards Algorithm, or BFA) which avoids the need to use binary search

to iterate back through successive starts −T , −2T , −4T , . . . .

• Conduct a recursive backwards sweep, identifying all the free points

(ancestors) which by thinning might conceivably influence subsequent

points already identified as potentially influencing points in the region

of interest;

• Work forwards through time in a forwards sweep,q thinning out ances-

tors to obtain the required perfect sample at time zero (assuming the

previous backwards sweep has generated only finitely many ancestors).

Instead of coalescence, we now require sub-criticality of the oriented

percolation implicit in the backwards sweep; computable conditions arise

from standard branching process comparisons, and these conditions will

generally apply under sufficiently weak interactions.

The BFA generalizes easily to deal with space windows of infinite volume

processes (compare the “space-time CFTP” mentioned in Section 1.7). r

An enlightening theoretical example arises if one reformulates the Ising

model using Peierls contours (lines separating ±1 values). As is well known,

these form a “non-interacting hard-core gas”, interacting by perimeter ex-

clusion, to which the Backwards-Forwards Algorithm may in principle be

applied: see [29].

Example 44: BFA can be used to implement a perfect simulation of the

Peierls contour model for low temperature Ising models.

q
The forwards sweep is deterministic given the free points and marks.

r
Fernández et. al. point out [30], especially for infinite volume processes there is a “user-

impatience” bias for which they estimate the effects.
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4.7. Some Complements

Thönnes [89] shows how to apply Fill’s method to the Häggström et al.

method (§1.6) for perfect simulation of the area-interaction point process.

Møller and Schladitz [70] demonstrate its application to random fields, in-

cluding anti-monotonic cases.

CFTP can also be used as a supplement to more empirical MCMC .

We have already mentioned the use of small set CFTP by Hobert and

Robert [43] (§2.7). Berthelsen and Møller [8] use domCFTP as a component

in a more conventional MCMC approach to analysis of interacting point

processes; [56] apply the idea of checking for coupling from maximal and

minimal states so as to assure oneself that equilibrium has been achieved.

CFTP , domCFTP , BFA, and FMMR should not be supposed to ex-

haust the possibilities of perfect simulation! Recently Fill and Huber have

introduced the randomness recycler [32], which allows a more systematic

scan of the stochastic system to be simulated.
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The sequential Monte Carlo (SMC) methodology is a family of Monte
Carlo methods that processes information sequentially. It has shown to
be able to solve a large class of highly complex inference and optimiza-
tion problems that can be formulated as stochastic dynamic systems.
By recursively generating random samples of the state variables of the
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1. Introduction

Stochastic systems are routinely encountered in science, engineering and

economics. Many of these systems have a natural dynamic structure; oth-

ers can often be viewed dynamically. For example, digital communication

signals are received sequentially in time; objects move continuously in time

in a tracking task; polymers are ‘built-up’ by adding one monomer at a time;

and a contingency table can be ’filled-up’ one column at a time. Proper sta-

tistical analysis which takes into consideration of the dynamic nature of the



Sequential Monte Carlo Methods and their Applications 149

systems has significant impacts on a wide range of important applications.

However, except for a few special cases such as the linear Gaussian models

or the discrete hidden Markov models, statistical analysis of these systems

still present major challenges to researchers. The sequential Monte Carlo

approach recently emerged in the fields of statistics and engineering shows

a great promise in solving a large class of nonlinear filtering/prediction

problems and general optimization problems, opening up new frontiers for

cross-fertilization between statistical science and a wide spectrum of appli-

cation areas such as telecommunications, bioinformatics, and business data

analysis.

Sequential Monte Carlo (SMC) is a family of methodologies that use

Monte Carlo simulation to deal with stochastic dynamic systems. Simple

and flexible SMC techniques achieve the estimation and optimization task

by recursively generating Monte Carlo samples of the state variables or

some other latent variables of the system. They are often more adaptive to

features of the target system because of the flexible nature of Monte Carlo

simulations. The basic principle behind SMC dates back to the “growth

Monte Carlo” method known in molecular physics in the 50’s [32, 72]. With

modern computing power, it has generated significant interests recently.

Liu and Chen (1998) [56] presented a complete theoretical framework for

the SMC.

In this tutorial, we first introduce the concept of stochastic dynamic

systems in section 2. They are the main focus of SMC. In section 3 we

introduce a general framework of SMC. The framework provides a founda-

tion of designing sophisticated and efficient SMC algorithms. It also unifies

many existing SMC algorithms. Under the framework, we discuss several

design issues, particularly the propagation issue (section 4), the resampling

issue (section 5), the marginalization issue (section 6) and the inference

issue (section 7). In section 8 we present an array of applications of SMC.

This tutorial does not intend to provide an exhaustive review of the vast

amount of literature on SMC methods and applications. Many important

topics and research results are not included, due to space limitation. More

complete coverage can be found in two excellent books on SMC [22, 53].

2. Stochastic Dynamic Systems

A stochastic dynamic system (SDS) can be abstractly defined as a sequence

of distributions

π1(x1), . . . , πt(xt), . . . , πn(xn)
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where xt is called the state variable. The distributions are interconnected

through the state variable and the distributions. In this note, we focus on

the situation where xt is of increasing dimension. That is,

xt = (xt−1, xt),

where xt itself can be of multi-dimensional. The distributions are related

through the slow moving condition:
∫

πt(xt−1, xt)dxt ≈ πt−1(xt−1). (1)

This condition maintains certain continuity in the system. When the new

component xt is independent of the history xt−1, then equation (1) becomes

an equality.

Note that here we only consider the situations that the distributions

πi’s are completely known. It is much more difficult to deal with systems

with unknown parameters. One possible solution is to assume certain priors

on the parameters and make them part of the state variable. However, in

many cases the performance of such an approach is poor. Some solutions

are provided in [27, 37, 52].

In the following we present two important examples of stochastic dy-

namic systems.

2.1. Generalized State Space Models

A generalized state space model is in the form

state equation: xt = st(xt−1, εt) or xt ∼ qt(· | xt−1),

observation equation: yt = ht(xt, et) or yt ∼ ft(· | xt),

where xt is the (unobservable) state variable and yt is the observation. The

underlying states evolve (uncontrolled) through the function st (assume

known) and the state innovation εt, with known distribution. Or equiva-

lently, xt evolves through the conditional distribution qt. On the other hand,

the information about the underlying states are observed by yt, through the

known function ht with observational noise et with known distribution. Or

equivalently, yt depends on xt through the conditional distribution ft.

A Markovian state space model assumes

xt = st(xt−1, εt) = st(xt−1, εt), and

yt = ht(yt−1, et) = ht(yt−1, et).

Hence xt forms a first order Markov chain, and yt is only related to the

current state xt.
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The objective for most of these systems is to, at each time t, obtain or

understanding the underlying states x1, . . . , xt, given the entire sequence of

observations y1, . . . , yt. Note that, all the information about x1, . . . , xt are

given in the posterior distribution

p(x1, . . . , xt | y1, . . . , yt) ∝

t
∏

s=1

fs(ys | xs)qs(xs | xs−1). (2)

In practice, specially in engineering, there are three main problems:

(i) Filtering: Obtain the marginal posterior distribution p(xt | y1, . . . yt),

of the current state xt given the observations up to time t, and

estimate the current state (concurrent estimation)

E(h(xt) | y1, . . . , yt),

given the observations up to time t, for some integratable function

h(·).

(ii) Prediction: Obtain the marginal posterior distribution p(xt+1 |

y1, . . . , yt), of the future state xt+1 given the observations up to

time t and make prediction

E(h(xt+1) | y1, . . . , yt).

(iii) Smoothing: Obtain the posterior distribution p(x1, . . . , xt−1 |

y1, . . . , yt) of the past state x1, . . . , xt−1 given the observations up

to time t. Particularly, obtain the delayed estimation:

E(h(xt−d) | y1, . . . , yt).

These objectives are often required to be carried out on-line in real time.

Hence, it is standard to use iterative procedures that can quickly update

the system when a new observation comes in. Such a model forms a SDS

with xt = (x1, . . . , xt), and

πt(xt) = p(x1, . . . , xt | y1, . . . , yt).

When the system is linear and Gaussian, it takes the form

xt = Htxt−1 + Wtwt

yt = Gtxt + Vtvt,

where Ht, Gt, Wt and Vt are known matrices, and wt ∼ N(0, I) and vt ∼

N(0, I). In this case, it can be easily seen that

p(xt | y1, . . . yt) ∼ N(µt, Σt).
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Hence, filtering only requires updating the mean and covariance matrix.

This can be easily done with Kalman Filter. Specifically, given µt−1 and

Σt−1, when the new observation yt comes in at time t, the mean and co-

variance matrix of the new state xt can be quickly obtained by

Pt = HtΣt−1H
′

t + WtW
′

t ,

St = GtPtG
′

t + VtV
′

t ,

µt = Htµt−1 + PtG
′

tS
−1
t (yt − GtHtµt−1),

Σt = Pt − PtG
′

tS
−1
t GtPt.

(3)

Prediction and smoothing can be carried out similarly [2, 33].

However, in most of the applications, the system is often nonlinear and

nonGaussian. Although p(x1, . . . , xt | yt) can often be written out explicitly,

as shown in (2), it is often almost impossible to obtain any meaningful

inferences, such as computing

E(xt | yt) =

∫

· · ·

∫

xtp(x1, . . . , xt | yt)dx1 . . . dxt,

where yt = (y1, . . . , yt), where high dimensional integrations are needed.

Traditional approaches to those systems are through approximations,

such as the Extended Kalman Filters [26], the Gaussian Sum Kalman Filters

[1, 2, 75] and many others.

We adopt a Monte Carlo approach, which generates a set of samples

x
(1)
t , . . . , x

(m)
t from the target distribution p(xt | yt). Then inferences, such

as estimating E(h(xt) | yt), can be obtained through the Monte Carlo

samples

E[xt | yt] ≈

∑m
i=1 x

(i)
t

m
,

to make the inference.

2.2. The Growth Principle

In many applications the problem itself is not dynamical in nature. How-

ever, it is often advantageous to formulate it as a dynamic system so that a

complex problem can be decomposed into a sequence of simpler ones. Specif-

ically, suppose a (target) distribution π(x) is of interest, where x can be de-

composed into n components with a natural ordering x=(x1, . . . , xn). Then,

we can construct a SDS by letting xt=(xt−1, xt) and choose a sequence of

suitable intermediate distributions πt(xt) with πn(xn)=π(x). This process
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sequentially builds up x, one component at a time. With a carefully de-

signed sequence of intermediate distributions, this sequential build-up can

be handled easily, hence effectively solve a high dimensional and complex

problem through a sequence of closely related but simpler problems.

This ‘growth’ approach was pioneered by Rosenbluth and Rosenbluth

[72], who studied geometric properties of chain polymers modelled as self-

avoiding walks (SAW) on lattice. To estimate parameters such as the av-

erage end-to-end distance among all possible SAW’s of length n, they

adopted the Monte Carlo approach and studied the problem of generat-

ing (importance) random samples from πn, the uniform distribution on

Ωn = {all possible SAWs of length n}. The approach they proposed was to

recursively and randomly ‘grow’ the SAW one monomer at a time. Specif-

ically, at time t + 1, a sample of SAWs of length t + 1 are obtained by

attaching one monomer to each of the sample obtained at time t (some

adjustments are needed, see section 8.4). This approach essentially forms a

SDS with the intermediate distribution πt being the uniform distribution

of all possible SAWs of length t. Because the difference between the consec-

utive distributions πt and πt+1 is relatively small and the updating is easy

to handle, this approach effectively decomposes a complex problem into a

sequence of easier problems. Such a principle has been shown to be very

effective in coping with computational difficulties typically found in high

dimensional problems (e.g. [49, 14].)

3. A General Framework of Sequential Monte Carlo

In this section we introduce a general framework of SMC. It unifies vari-

ous different SMC algorithms and provides a general foundation of design-

ing new ones, as well as guidelines for efficient implementation of SMC

algorithms. We first briefly discuss the important concept of importance

sampling, then build the SMC framework upon it.

3.1. Importance Sampling

One of the key components of SMC is importance sampling [62]. Suppose a

set of Monte Carlo samples, {x(j), j = 1, . . . , m}, has been generated from

a trial distribution g(·), which is different from the target distribution π(·).

And we wish to use the samples to estimate the expectation of h(X) with

respect to π. Note that

Eπ(h(X)) =

∫

h(x)π(x)dx =

∫

h(x)
π(x)

g(x)
g(x)dx = Eg(h(X)w(X)),
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where w(x) = π(x)/g(x). Hence, under mild conditions, we have

1

m

m
∑

j=1

w(j)h(x(j)) ≈ Eπ(h(X)),

where w(j) = π(x(j))/g(x(j)). That is, the expectation with respect to π

can be estimated using the samples generated from the distribution g, with

a proper weight.

Often, calculating the exact value of w(x) = π(x)/g(x) can be difficult,

involving the evaluation of the normalizing constants for both distributions.

It is noted that

Eg(w(x)) = Eg

[

π(x)

g(x)

]

= 1,

so Eg(
∑m

j=1 w(j)) = m. As a result, we often use the weighted average

1
∑

wi

m
∑

j=1

w(j)h(x(j)) ≈ Eπ(h(X)), (4)

for estimation. With this formulation, the weight w(x) only needs to be

evaluated up to a multiplicative constant, hence avoiding the evaluation of

the normalization constants in the distributions of π(x) and g(x).

Since the weights are independent of the function h(·), in a practical

sense we can think of π as being approximated by a discrete distribution

supported on the x(j) with probabilities proportional to the w(j).

We generalize this idea by introducing the following concept:

Definition: A sample (x(j), w(j)), j = 1, · · · , m is said to be properly

weighted with respect to distribution π if for all integrable function h, we

have

1
∑

w(j)

m
∑

j=1

w(j)h(x(j)) → Eπ(h(x)),

as m → ∞.

The efficiency of a Monte Carlo integration is often measured by the

estimation variation,

V arg





1

m

m
∑

j=1

wjh(xj)



 =
1

m

∫
[

h(x)π(x)

g(x)

]2

g(x)dx − µ2,

where µ = Eg(w(x)h(x)) = Eπ(h(x)).
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This quantity depends on the function h. In fact, one of the main pur-

poses of importance sampling is to use biased samples generated from a

carefully designed trial distribution g to improve the efficiency of the esti-

mation [62].

Kong et al. [46] proposed a general measure of efficiency that does not

depend on the function h. It is termed as the effective sample size

ESS =
m

1 + cv2(w)
. (5)

where

cv =

∑m
j=1(w

(j) − w)2

mw2 ,

and

w =
1

m

m
∑

j=1

w(j).

Heuristically, it represents the equivalent number of samples directly gen-

erated from π.

3.2. The SMC Framework

Based on this weighted-sample principle, Liu and Chen [56] formulated the

following SMC framework.

Suppose {πt(xt), t = 0, 1, . . .} is the SDS of interest, and (x
(j)
t , w

(j)
t ), j =

1, · · · , m, is properly weighted with respect to πt. When the system evolves

from stage t to t + 1, we define three operations that can be performed.

Note that not all three operations have to be performed, and the order of

the operations can also vary.

Sequential Importance Sampling (SIS) Step:

(A) For each j, j = 1, . . . , m, generate a x
(j)
t+1 (or multiple of them)

from a trial distribution gt+1(xt+1 | x
(j)
t ); attach it to x

(j)
t to form

x
(j)
t+1 = (x

(j)
t , x

(j)
t+1).

(B) Compute the ”incremental weight”

u
(j)
t+1 =

πt+1(x
(j)
t+1)

πt(x
(j)
t )gt+1(x

(j)
t+1 | x

(j)
t )

;

and let

w
(j)
t+1 = u

(j)
t+1w

(j)
t . (6)
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The resulting sample (x
(j)
t+1, w

(j)
t+1), j = 1, · · · , m, is properly weighted

with respect to πt+1. See section 4 for a more detailed discussion.

Resampling Step:

(A) Generate a new set of streams S
′

t from St according to a set of

priority scores α
(j)
t

(B) If stream x
(j)
t is sampled, assign it a new weight w

(j)
t /α

(j)
t .

The resulting sample S
′

t is properly weighted with respect to πt. See

section 5 for a more detailed discussion.

Inference Step:

• Estimation of Eπt
(h(xt)), for some integrable function h, using the

generated weighted samples (x
(j)
t , w

(j)
t ), j = 1, · · · , m.

See section 7 for a more detailed discussion.

SMC is achieved by recursively applying a proper combination of the

three steps to a SDS.

Gorden et al. (1993) [28] proposed the simplest form of SMC for Marko-

vian state space model, the bootstrap filter. This work generated a new wave

of interests in SMC methods. The method starts with equally weighted

samples at time t and uses the state equation, ft+1(· | xt) as the trial dis-

tribution. The incremental weight is then proportional to the likelihood of

the new observation, i.e., gt+1(yt+1 | x
(j)
t+1). Finally, one can resample so as

to obtain a set of equally weighted sample for time t + 1.

There are many important issues involving the design of an efficient

implementation of SMC. Specifically, the selection of the propagation trial

distribution gt(xt | xt−1) is critical. The basic principle here is to effectively

utilize as much as information as possible, while remaining reasonable com-

putational complicity. Another issue is the way of handling samples with

small weight in the sequential processing. Samples with very small weight

do not contribute much in the inference, as it is in the form of weighted

average, and keeping those samples updated is not an efficient utilization

of the computing resources. The third question is how to make inference

as efficient as possible. Rao-Blackwellization is one of the main tools that

can be used here. Finally, if the original problem is not dynamic by itself,

then we need to choose a sequence of intermediate distributions, under the
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growth principle. The choice of those intermediate distributions is of course

important for a successful of implementation of SMC to solve the original

problem.

4. Design Issues (I): Propagation

Choosing a good trial distribution gt is the critical first step in designing a

good SMC scheme. In [46, 55, 56], the trial distribution

gt+1(xt+1 | xt) = πt+1(xt+1 | xt) =
πt+1(xt, xt+1)

πt+1(xt)
, (7)

was recommended. It is based on the observation that

u
(j)
t+1 =

πt+1(x
(j)
t+1)

πt(x
(j)
t )gt+1(x

(j)
t+1 | x

(j)
t )

=

[

πt+1(x
(j)
t )

πt(x
(j)
t )

]

[

πt+1(xt+1 | xt)

gt+1(xt+1 | xt)

]

.

The first ratio does not depend on xt+1, and by (1) it should be relatively

close to 1. So one would naturally want the second ratio also be close to

1. The selection of gt+1 in (7) actually sets the second ratio to 1, hence in

general reducing the variation of the incremental weight u
(j)
t+1. With this

trial distribution, the incremental weight ut+1 ∝ πt+1(xt) does not depend

on xt+1. This results in some nice features shown later.

4.1. Propagation in State Space Models

Consider the state space model

state equation: xt = st(xt−1, εt) or xt ∼ qt(· | xt−1),

observation equation: yt = ht(xt, et) or yt ∼ ft(· | xt).

In state space models, the SIS step becomes

SIS Step in state space model:

At time t, for j = 1, . . . , m:

(A) Draw x
(j)
t+1 from a trial distribution gt(xt+1 | x

(j)
t , yt+1).

(B) Compute the incremental weight

u
(j)
t+1 ∝

qt(x
(j)
t+1 | x

(j)
t )ft(yt+1 | x

(j)
t+1)

g(x
(j)
t+1 | x

(j)
t , yt+1)

,

and the new weight

w
(j)
t+1 = w

(j)
t u

(j)
t+1.
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The bootstrap filter [28, 44] uses the state equation only, with

gt(xt | xt−1, yt) = qt(xt | xt−1),

and weight wt = wt−1ft(yt | xt).

Bootstrap Filter:

At time t + 1, for j = 1, . . . , m,

(i) Generate ε
(j)
t+1 and obtain x

(j)
t+1 = st(x

(j)
t , ε

(j)
t+1).

(ii) Calculate w
(j)
t+1 = w

(j)
t ft(yt+1 | x

(j)
t+1).

This algorithm is usually easy and fast when ε
(j)
t is easy to generate,

st and ft are easy to evaluate. However, it is often not efficient since the

generation of the new sample xt does not utilize the information in the

current information yt. This information is only used in calculating the

weight.

The other extreme is the Independent Particle Filters [51]. It uses the

observation equation only for the trial distribution. That is,

gt+1(xt+1 | xt, yt+1) ∝ ft(yt+1 | xt+1)

with weight wt+1 = qt(xt+1 | xt).

This choice is convenience when the information from the state equation

qt is weak and that from the observation ft is strong. It is called independent

particle filter because the samples x
(j)
t+1 are independent to each other and

to the past particles x
(i)
t . This unique feature allows for multiple matching

and achieve certain degree of discharging.

Independent Particle Filter:

At time t + 1, for j = 1, . . . , m,

(i) Generate x
(j)
t+1 from gt+1(xt+1 | Yt+1) ∝ ft+1(yt+1 | xt+1).

(ii) Select L different permutations of (1, · · · , m): Kl
.
= (kl,1, · · · , kl,m),

l = 1, · · · , L. Compute incremental weight

u
(kl,j,j)
t+1 ∝ qt+1(x

(j)
t+1|x

(kl,j)
t ),

for each permutation.

(iii) Compute multiple matching weight

w
(j)
t+1 =

1

L

L
∑

l=1

u
(kl,j ,j)
t+1 w

(kl,j)
t .
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Some extensions can be used to deal with more general models. As a

special case of the independent particle filter, Isard and Blake [42] proposed

to sample x
(j)
t+1 from ft+1(yt+1 | xt+1) and use

w
(j)
t+1 =

1

m

m
∑

i=1

w
(i)
t qt(x

(j)
t+1 | x

(i)
t ),

to update the weight. Another variation can be found in [25].

In the state space model, equation (7) is just the local posterior distri-

bution,

gt+1(xt+1 | xt, yt+1) = p(xt+1 | xt, yt+1)

∝ ft+1(yt+1 | xt+1)qt+1(xt+1 | xt),
(8)

with incremental weight ut+1 =
∫

ft+1(yt+1 | xt+1)qt+1(xt+1 | xt)dxt+1.

This utilizes both information from the state and observation equations,

hence termed as full information particle filter. This, if achievable, is ap-

parently better than the one used by the bootstrap filter. However, in many

cases this trial distribution requires complex computations and can be dif-

ficult to generate samples from.

To use this trial distribution while maintaining reasonable computa-

tional complexity, certain approximations can be used. For example, one

can use

gt+1(xt+1 | xt) ∝ q̂t+1(xt+1 | xt)f̂t+1(yt+1 | xt+1)

with incremental weight

ut+1 ∝
qt+1(xt+1 | xt)ft+1(yt+1 | xt+1)

q̂t+1(xt+1 | xt)f̂t+1(yt+1 | xt+1)

×

∫

q̂t+1(xt+1 | xt)f̂t+1(yt+1 | xt+1)dxt+1,

where q̂t+1, f̂t+1 are approximations of qt+1, ft+1, usually taking as normal

or mixture of normal so the sampling and weight calculations are simple.

Another algorithm is the Unscented particle filter [80]. It uses the un-

scented transformation (UT) to estimate the mean and variance of nonlin-

ear functions of random vectors. In state space model, the random vectors

rt = (εT
t , eT

t )T at step t has mean µr and covariance matrix Σr . UT choose

a set of weighted points {(ξl, ωl), l = 0, · · · , 2nr} as follows:














ξ0 = µr ω0 = κ/(2nr + κ), l = 0

ξl = µr +
√

2nr + κQl ωl = 1/(2nr + κ), l = 1, · · · , nr

ξl+nr
= µr −

√
2nr + κQl ωl+nr

= 1/(2nr + κ), l = 1, · · · , nr,
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where nr is the dimension of rt, Q is the square root matrix of ωl and Ql

is the l-th column of Q, κ is a constant. Because (xT
t+1, y

T
t+1)

T = g(rt) by

give x
(j)
t , where g(·) is a nonlinear function, the mean and covariance of

πt(xt+1, yt+1 | x
(j)
t ) can be estimated by:

µ̂ =

2nr
∑

l=0

ωlg(ωl),

̂Σ =

2nr
∑

l=0

ωl(g(ωl) − µ̂)(g(ωl) − µ̂)T .

By using N(µ, Σ) to approximate πt(xt+1, yt+1 | x
(j)
t ), we can sampling

from π̂t(xt+1 | x
(j)
t , yt+1).

Local MCMC method can also be used [9].

4.2. Delay Strategy (Look Ahead)

Dynamic systems often process strong ’memory’. Future observations can

reveal substantial information on the current state. Hence, it is often bene-

ficial if the inference on the current state xt is delayed until the observation

from t + 1 to t + δ become available. In practice, a slight delay is often

tolerable.

Specifically, if the inference on the state xt is to be made at time

t + d, with information y1, . . . , yt+d available, then the SDS becomes

{π∗
1(x1), . . . , π

∗
n(xn)}, where the intermediate distributions become

π∗
t (xt) =

∫

πt+d(xt, xt+1, . . . , xt+d)dxt+1 . . . xt+d.

In state space models, this becomes

π∗
t (xt) = p(xt | y1, . . . , yt, yt+1, . . . , yt+d).

This distribution is of course closer to the ultimate target distribution:

p(xt | y1, . . . , yn), when all observations are available.

If xt is discrete, then the intermediate distribution becomes

π∗
t (xt) =

∑

xt+1:t+δ

πt+δ(xt, xt+1:t+δ),

where xt+1:t+δ = (xt+1, . . . , xt+δ).
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4.2.1. Delayed weight method

If (x
(k)
t+d, w

(k)
t+d) is properly weighted with respect to p(xt+d | yt+d), then it

can be seen that the partial sample (x
(k)
t , w

(k)
t+d) is properly weighted with

respect to the marginal distribution p(xt | yt+d). Hence, inference on xt

can be made using (x
(k)
t , w

(k)
t+d), with standard SMC. That is

Eπt+d
(h(xt)) ≈

∑m
j=1 h(x

(j)
t )w

(j)
t+d

∑m
j=1 w

(j)
t+d

.

In implementation, we generate samples of xt at time t, based on

yt, with weight wt as concurrent SMC. But the inference on xt will

wait until time t + d, when weight wt+d become available. This weight

wt+d is calculated at time t + d, based on yt+d and the samples of

x1, · · · , xt, xt+1, . . . , xt+d. This approach only requires slight additional

buffer space and no additional computation. However, the future infor-

mation yt+1, · · · , yt+d is only utilized in the weight calculation, not in the

generation of the sample xt. For more information, see [83].

4.2.2. Delayed sample method: (exact)

In this method, we generate xt based on the full information yt+d. Hence,

at time t, the target distribution is πt(xt) = p(xt | yt+d).

Suppose at time t, (x
(j)
t , w

(j)
t ) is properly weighted with respect to p(xt |

yt+d). For t + 1,

(A) Draw x
(j)
t+1 from g(xt+1 | x

(j)
t , yt+d+1).

(B) Compute the incremental weight

u
(j)
t+1 =

p(x
(j)
t+1 | yt+d+1)

pt(x
(j)
t | yt+d)g(x

(j)
t+1 | x

(j)
t , yt+d+1)

,

and the new weight

w
(j)
t+1 = u

(j)
t+1w

(j)
t .

For example, in state space models, sampling distribution can be chosen

as

g(xt+1 | yt+d+1) = p(xt+1 | xt, yt+d, yt+d+1)

∝

∫

p(xt+d+1, yt+d+1)dxt+2 . . . dxt+d+1,
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and the weight becomes

wt+1 ∝ wt
p(yt+d+1, yt+d | xt)

p(yt+d | xt)
∝ wt

∫

p(xt+d+1, yt+d+1)dxt+1 · · ·dxt+d+1
∫

p(xt+d, yt+d)dxt+1 · · ·dxt+d
.

This is often computational intensive, since a d-dimensional integration

or summation is needed. For more information, see [83].

4.2.3. Delayed pilot sampling method

In delayed sample method, it is expensive to fully explore the space of future

states xt+1, . . . , xt+d+1. Sending pilots to partially explore the future space

can be a useful low-complexity algorithm.

Suppose at time t, a set of properly weighted samples (x
(j)
t , w

(j)
t ), j =

1, . . . , m with respect to πt(xt) are available. For t + 1, for each sample j,

j = 1, 2, · · · , m,

(A) Generate x
(i,j)
t+1 , i = 1, · · · , A from g(xt+1 | x

(j)
t , yt+1), calculate

the weight w̃
(i,j)
t+1

w̃
(i,j)
t+1 = w

(j)
t

p(x
(i,j)
t+1 | yt+1)

pt(x
(j)
t | yt)g(x

(i,j)
t+1 | x

(j)
t , yt+1)

.

(B) For each x
(i,j)
t+1 , send out K pilots to explore the space of

state xt+2, · · · , xt+d+1 by using a fast SMC method. Then we have

x
(i,j)
t+2 (k), · · · , x

(i,j)
t+d+1(k), k = 1, · · · , K with corresponding incremental

weight γ(i,j)(k).

(C) Draw I ∈ {1, · · · , A} with probability proportional to

w̃
(i,j)
t+1

∑K
k=1 γ(i,j)(k). Let x

(j)
t+1 = (x

(j)
t , x

(I,j)
t+1 ).

(D) The weight of x
(j)
t+1 w.r.t. p(xt+1 | yt+1) is

w
(j)
t+1 =

∑A
i=1 w̃

(i,j)
t+1

∑K
k=1 γ(i,j)(k)

A
∑K

k=1 γ(i,j)(k)
.

The choice of A and K can be a tradeoff between accuracy and compu-

tational cost. In finite state space that xt+1 takes |A| discrete values form

space A, we can simply choose A = |A| and x
(i,j)
t+1 , i = 1, · · · , |A| as the

enumeration of space A. In continuous space, we can just use K = 1.

In delay pilot sampling method, (x
(j)
t+1, w

(j)
t+1) is properly weighted w.r.t.

p(xt+1 | yt+1). But we can see that

w
(i,j)
t+1 =

w̃
(i,j)
t+1

K

K
∑

k=1

γ(i,j)(k),
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is the proper weight of (x
(j)
t , x

(i,j)
t+1 ) w.r.t p(xt+1 | yt+d+1). Therefore we

have

Eπt+d+1
(h(xt+1)) ∼=

∑

i,j w
(i,j)
t+1 h(x

(i,j)
t+1 )

∑

i,j w
(i,j)
t+1

.

This method has been successfully used in signal processing [83] and

bioinformatics [90].

5. Design Issues (II): Resampling

Resampling is an indispensable component of SMC. It is shown [46] that

variance of wt increases stochastically as t increases in SMC. Hence, as

the system evolves, it is preferable to insert a resampling/reallocation step

between SIS recursions in order to stabilize the weight distribution.

Some theoretical and heuristic arguments of resampling are given in

[55]. Note that if the weights w
(j)
t are nearly constant, resampling only re-

duces the number of distinctive samples for the past states and incurs extra

Monte Carlo variation when making inference about the past states. How-

ever, when the weights become very skewed, carrying many samples with

very small weights in an SIS setting is apparently wasteful. Resampling can

provide chances for the good (i.e., ”important”) samples to amplify them-

selves and hence ”rejuvenate” the sampler to produce better samples for

the future states. Frequent resampling can be shortsighted since resampling

can introduce strong dependency between the samples. It also reduces the

diversity among the samples. In addition, frequent resampling makes the

algorithm sensitive to outliers.

5.1. The Priority Score

The selection of the priority score αt is important. When it is chosen to be

the weight, α
(j)
t = w

(j)
t , all new weight become one, and the samples can be

viewed as roughly distributed following the target distribution πt. In many

cases, αt = wc
t for 0 < c < 1 works well, since it is less greedy.

In the prune-and-enrichment algorithm [29], αt’s are assigned as

α
(j)
t =











2 if w
(j)
t ≥ U

1 if U > w
(j)
t ≥ L

0.5 if L > w
(j)
t

where U and L are the upper and lower thresholds. With sample-by-sample

sampling scheme (see below), it allows the samples with high weight to
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duplicate (and reduce their weight by a half), and those with low weight to

either be eliminated, or their weights doubled (if retained).

In the auxiliary particle filters [70] for state space models, the priority

score αt is based on the future information yt+1. Specifically, for each j, j =

1, . . . , m, the predictive mean µ
(j)
t+1 = E(xt+1 | x

(j)
t , yt) is first calculated.

Then the priority score is set as

α
(j)
t = w

(j)
t p(yt+1 | µt+1, x

(j)
t , yt).

This score tries to evaluate the current sample x
(j)
t based on the future

information yt+1, without carrying out the sampling of xt+1.

A carefully selected priority scores α(j) can achieve some other objec-

tives. For example, if the final target distribution πn is a truncated distri-

bution on a smaller space C, while unrestricted growth is in a much large

space. Then it is difficult to grow SAWs so that most of them eventually

fall in the subspace C. A simple way is to discard all the generated samples

outside the space C (truncated). This of course reduces the efficiency sig-

nificantly. One approach [88] is still to first grow properly weighted samples

with respect to πt(xt), untruncated, and use rejection at the end to achieve

truncation. However, during the sequential sampling process, a targeted re-

sampling to increase acceptance rate. That is, assign large α for the samples

with better chance to grow into the subset C. More an application of this

method, see [53].

5.2. The Sampling Method

There are various ways of performing resampling. Some of them are listed

below.

1. Simple random sampling:

(A) Sample a new set of streams S
′

t from St with replacement, with proba-

bility α
(j)
t /

∑m
j=1 α

(j)
t

(B) If stream x
(j)
t is sampled, assign it a new weight w

(j)
t /α

(j)
t .

2. Residual sampling [56]:

(A) Obtain kj = [mα(∗j)] copies of x
(j)
t , where α(∗j) = α(j)/

∑m
j=1 α(j).

Let mr = m −
∑m

j=1 kj .

(B) Sample mr streams i.i.d from St (with replacement) with probabilities

proportional to mα(∗j) − kj.
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(C) If the stream x
(j)
t is sampled, assign it a new weight w

(j)
t /α

(j)
t .

3. Stratified sampling [44]:

(A) For normalized scores α
(j)
t /

∑m
j=1 α

(j)
t , set c0 = 0, cj = cj−1 + α

(j)
t ,

j = 1, · · · , m.

(B) Draw a start point u1 ∼ U [0, 1/m], ui = u1 + (i − 1)/m.

(C) If cj−1 ≤ ui < cj, then x̃
(i)
t = x

(j)
t and the new weight w̃

(i)
t = w

(j)
t /α

(j)
t .

The computational complexity of this resampling method is O(m).

4. Sample-by-Sample method [29]:

(A) For each sample j, obtain [α
(j)
t ] copies of sample x

(j)
t . In addition,

retain another copy of x
(j)
t with probability α

(j)
t − [α

(j)
t ].

(B) If the stream x
(j)
t is retained, assign it a new weight w

(j)
t /α

(j)
t .

This does not require αt to be normalized. The resulting sample may

not have the same size as the original one.

5. Local Monte Carlo method [56]:

(A) Use local Monte Carlo method to generate (Jk, xk
t+1) from distribution

p(J, xt+1) ∝
πt+1(x

(J)
t , xt+1)

πt(x
(J)
t )

α
(J)
t .

(B) Let the new set of streams S
′

t+1 = {(x
(Jk)
t , xk

t+1), k = 1, · · · , m}. The

weight for each stream k is w
(Jk)
t /α

(Jk)
t .

5.3. Resampling Schedule

When to resample is also important. A deterministic resampling schedule

performs resampling at time t0, 2t0, 3t0, .... A dynamic sampling schedule

tries to maintain the minimum the effective sample size. Specifically, given

a sequence of thresholds {ct < 1} in advance, do resampling when the

effective sample size is less than ctm, where the effective sample size [46] is

defined as (5). For more detailed information, see [55].

5.4. Rejection Control

In [57], a rejection method was proposed, instead of resampling.
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Rejection control

(A) For j = 1, · · · , m, accept stream x
(j)
t with probability min{1,

w
(j)
t

c }.

(B) If stream x
(j)
t is accepted, assign new weight

w̃
(j)
t = max{w

(j)
t , c}

∫

min{1,
wt(xt)

c
}gt(xt)dxt.

After the rejection control step, the weights of the accepted streams will

be greater than a certain value, so the weights will not be too skewed. For

more details, see [57].

6. Design Issues (III): Marginalization

When implementing Monte Carlo strategies, it is often a good practice to

carry out as much analytical computation as possible [31, 58, 60]. In impor-

tance sampling, it can be easily shown that the algorithm is more efficient

after some components of the system are integrated out (marginalization).

Following the marginalization principle and the spirit of mixture Gaus-

sian approximations, Chen & Liu (2000) [12] developed a mixture Kalman

filtering (MKF) approach which, by making use of special properties of

a conditional or partial conditional dynamic linear system, combines the

SMC with the efficient Kalman filter. West [86] pioneered the use of mix-

ture Gaussian approximation in nonlinear state space models.

6.1. Conditional Dynamic Linear Models

The conditional dynamic linear models (CDLM) has the form of

xt = HΛxt−1 + WΛwt

yt = GΛxt + VΛvt,

where wt ∼ N(0, I) and vt ∼ N(0, I) and independent. The indicator Λt

is an unobserved latent variable. Given Λt = λ, any possible value in the

support of Λ, the matrices Hλ, Gλ, Wλ and Vλ are known.

Note that, Given the trajectory of the indicator {Λ1, . . .Λt} =

{λ1, . . . , λt}, the system is linear and Gaussian, for which the Kalman filter

can be applied.

6.2. Mixture Kalman Filters (MKF)

Let yt = (y1, . . . , yt) and Λt = (Λ1, . . . ,Λt). Note that

p(xt |yt)=

∫

p(xt |Λt, yt)dF (Λt |yt), (9)
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in which

p(xt | Λt, yt) ∼ N(µt(Λt), σ
2
t (Λt)). (10)

Equation (10) is due to the fact that, given the trajectory of the indicator

{Λ1, . . .Λt}, the system is linear and Gaussian, hence p(xt | Λt, yt) follows

a Gaussian distribution. The µt(Λt) and σ2
t (Λt) in (10) can be readily

obtained through Kalman filter (3). For simplicity, we denote

KFt(Λt) ≡ (µt(Λt), σ
2
t (Λt)).

Because of (10), p(xt | y1, . . . yt) in (9) is a mixture Gaussian distri-

bution. Sampling from a mixture Gaussian distribution can be done with

discrete samples directly from the distribution, but a more efficient method

is to sample the Gaussian components. In our context, this is the same as

sampling the unobserved latent indication Λt. It can be shown that, if

{(λ
(1)
t , w

(1)
t ), . . . , (λ

(m)
t , w

(m)
t )}

is a properly weighted samples with respect to p(Λ | y1, . . . , yt), then we

have

E(h(xt) | y1, . . . , yt) =

∫

h(xt)p(xt | yt)dxt

=

∫ ∫

h(xt)p(xt | Λt, yt)dxtp(Λt | yt)dΛt

=

∫

E(h(xt) | Λt, yt)dΛt

≈

∑m
j=1 w

(j)
t E(h(xt) | λ

(j)
t , yt)

∑m
j=1 w

(j)
t

,

where

E(h(xt) | λ
(j)
t , yt) =

∫

h(x)φ(x; µt(λ
(j)
t ), σ2

t (λ
(j)
t ))dx,

due to equation (10).

Specially, we have

E(xt | y1, . . . , yt) =

∑m
j=1 w

(j)
t µt(λ

(j)
t )

∑m
j=1 w

(j)
t

,

which is the most encountered inference problem.
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Note that, this is equivalent to use a random mixture of Normal distri-

butions

m
∑

j=1

w
(j)
t N(µt(λ

(j)
t ), σ2

t (λ
(j)
t )),

to approximate the Gaussian mixture distribution p(xt | yt) in 9. This ap-

proximation is more efficient than the discrete approximation using samples

directly from the distribution. This can be seem from the fact that

V ar[h(xt) | yt] ≥ V ar[E(h(xt) | Λt, yt) | yt].

MKF Algorithm:

At time t, we have a properly weighted sample (λ
(j)
t , KF

(j)
t , w

(j)
t ) with

respect to π(λt | yt). For t + 1, j = 1, . . . , m,

(A) generate λ
(j)
t+1 from a trial distribution g(Λt+1 | λ

(j)
t , KF

(j)
t , yt+1)

(B) run one step Kalman filter conditioning on (λ
(j)
t+1, KF

(j)
t , yt+1) and

obtain KF
(j)
t+1.

(C) calculate the incremental weight

u
(j)
t+1 =

p(λ
(j)
t , λ

(j)
t+1 | yt+1)

p(λ
(j)
t | yt)g(λt+1 | λ

(j)
t , KF

(j)
t , yt+1)

,

and the new weight w
(j)
t+1 = w

(j)
t u

(j)
t+1.

7. Design Issues (IV): Inferences

Standard inference with importance sampling is in the form of equation (4)

Êπt
h(xt) =

∑m
j=1 w

(j)
t h(x

(j)
t )

∑m
j=1 w

(j)
t

.

However, there are several issues that may affect the efficiency of the

estimator.

(1) Estimation should be done before a resampling step. This is because

the resampling step does not bring in any extra information on the

current and past states. It only adds additional Monte Carlo variations

in the samples of the current and past states, though it is critical in

obtaining better samples of the future states. Hence, estimation should

be done before a resampling step is carried out.
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(2) Rao-Blackwellization should be carried out whenever possible. For ex-

ample, if wt+1 does not depend on xt+1, (as the case when (7) is used

as the propagation sampling distribution), then

Êπt+1h(xt+1) =

∑m
j=1 w

(j)
t+1Eπt+1(h(xt+1) | x

(j)
t )

∑m
j=1 w

(j)
t+1

.

Hence, if Eπt+1(h(xt+1) | x
(j)
t ) can be easily worked out, the estima-

tion of Eπt+1h(xt+1) should be carried out without using the samples

of xt+1. This removes the sampling variation in xt+1, achieving Rao-

Blackwellization.

(3) If possible, delayed estimation should be used. This is because estima-

tion of Eπt+δ
h(xt) at time t is usually more accurate since the estima-

tion is based on more information. It can be done with simple delay

weighted method which is based on

Êπt+δ
h(xt) =

∑m
j=1 w

(j)
t+δ(h(x

(j)
t ))

∑m
j=1 w

(j)
t+δ

,

or the delay sample method which is based on using

π∗
t (xt) =

∫

πt+δ(xt+δ)dxt+1 . . . dxt+δ

as the target distribution at time t (see section 4.2).

8. Applications

In this section we discuss some of the applications using SMC. There is

a vast literature on SMC applications. Here we will only be able to cover

a very small fraction of it. Due to space limitation, we only present the

problem, the stochastic dynamic system setting, and point out how SMC

can be used to solve those problems, without giving details and results.

Interesting readers can check out the related references, or use the examples

as excises.

8.1. Target Tracking

Designing sophisticated target tracking algorithm is an important task to

both civilian and military surveillance systems, particularly when a radar,

sonar, or optical sensor is operated in the present of clutter or when inno-

vations are non-Gaussian [6]. Using SMC for target tracking problems are

first proposed in [28, 5]. Here we show several examples of target tracking.
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8.1.1. Random (Gaussian) accelerated target in clutter

Suppose the target follows a linear and Gaussian state space model:

xt = Hxt−1 + Wwt

zt = Gxt + V vt,

where xt is the state variable (location and velocity) of the target and wt, vt

are white Gaussian with identity covariance matrix.

The state variable xt consists of the multidimensional location and ve-

locity vectors. For example, for a target moving on a straight line, we have

xt = (st, vt) where st is the true target location and vt is its current velocity.

In this case

H =

(

1 0

0 T

)

, W = σ2
w

(

T/2

1

)

, G = (1, 0) and V = σ2
v,

where T is the time duration between two observations and the random

acceleration is assumed to be constant in the period, with rate σ2
wwt/T .

For targets moving in two (three) dimensional space, the state variable

becomes xt = (st, vt) with st and vt being two (three) dimensional vectors.

The corresponding matrixes can be expanded similarly.

In a clutter environment, we observe mt signals {yt1, . . . , ytmt
} at time

t, with

mt ∼ Bernoulli(pd) + Poisson(λ∆),

where pd is the probability of a true signal zt being detected, λ is the rate of

a Poisson random field and ∆ is the surveillance region. In words, at time t

we observe the true signal with probability pd. We also observe false signals,

such as deceiving objects, electro-magnetic interferences, etc., distributed

as a Poisson process in the detection region.

This model can be easily formulated as a CDLM (section 6.1). Let Λt

be the identifier of the target at time t. That is, Λt = 0 if the target is

not observed, and Λt = i if the i-th object on the detection screen is the

true signal generated from the target, i.e. ytj = zt. Given the indicators,

the system is linear and Gaussian, and the remaining observations bear no

information. For more detailed information, see [56, 12].
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8.1.2. Random (non-Gaussian) accelerated target in a clean

environment

This situation is usually modelled as follows:

xt = Hxt−1 + Wwt

yt = Gxt + V vt,

with wt and vt are non-Gaussian errors. If wt and vt are mixture Gaussian

distributions, this model is clearly a CDLM.

An interesting case is when the errors distributions is a convolution of a

Gaussian distribution with another continuous distribution. For example, if

wt ∼ tk1 and vt ∼ tk2 , we can define Λt = (Λt1, Λt2) with prior distributions

as independent χ2
k1

and χ2
k2

respectively. Then the above model can be

rewritten as:

{

xt = Hxt−1 + (
√

k1/
√

λ1)Wet

yt = Gxt + (
√

k2/
√

λ2)V εt
if (Λt1, Λt2) = (λ1, λ2),

with et ∼ N(0, I) and εt ∼ N(0, I). This again becomes a CDLM. For more

information, see [12].

If V is relatively small, then independent particle filter [51] can be used

here.

8.1.3. Maneuvered target in a clean environment:

This situation is usually modelled as follows:

xt = Hxt−1 + Fut + Wwt

yt = Gxt + V vt,

where ut is the maneuvering acceleration. The prior structure of ut is the

key of this model. An often used model is the multi-level model [6]. First,

maneuvering can be classified into several categories, indicated by an indi-

cator. For example: in a three level model, It = 0 indicates no maneuvering

(ut = 0), and It = 1 and 2 indicate slow and fast maneuvering, respectively,

(ut ∼ N(0, σ2
i ), σ2

1 < σ2
2). One can also specify a transition probabilities

P (It = j | It−1 = i) = pij for the maneuvering status. Second, there are

different ways of modelling the serial correlation of the ut. In [6], the ut are

assumed independent. This approach has been used in [63, 12].

Another setting is shown in [38]. It is a 2-d maneuvering mobility model,
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which is the result of discretization of a continuous time mobility model.

State equation :





zt

vt

rt



 = A





zt−1

vt−1

rt−1



 + Bεt,

Observation equation :

(

yt,1

yt,2

)

=

(

tan−1(
zt,1

zt,2
)

√

z2
t,1 + z2

t,2

)

+ wηt.

Here zt, vt and rt are position, velocity vector and acceleration vectors, ǫt is

the random change of acceleration vector. Cauchy distribution for abrupt

maneuvering (acceleration). The observation noise ηt ∼ N(0, 1). and the

parameter w controls the variance of the observation noises.

The A and B are two matrices as follows:

A =



















1 0 T0 0 a1 0

0 1 0 T0 0 a1

0 0 1 0 a2 0

0 0 0 1 0 a2

0 0 0 0 e−αT0 0

0 0 0 0 0 e−αT0



















, B =

(

b1 0 b2 0 b3 0

0 b1 0 b2 0 b3

)T

,

where α is some constant.

a2 = b3 =
1

α
(1 − e−αT0),

a1 = b2 =
1

α
(T0 − a2),

b1 =
1

α
(
T 2

0

2
− a1).

8.1.4. Other tracking problems

Other SMC applications on tracking problems includes tracking multiple

targets [5, 35, 68]; tracking and discriminating multiple targets [77]; 2-d

tracking (tanks, cars) with radar [39]; 2-d tracking (cars, cellular phones)

in a cellular network, with or without the assistance of a map [59]; Tracking

and guidance [73]; 2-d tracking with GPS [30]; tracking with passive sonar

[69]; computer vision: tracking with a sequence of images [41, 10, 11, 79].

A tutorial on SMC applications on target tracking can be found in [4].

8.2. Signal Processing

Due to the dynamic nature of SMC, it has become a powerful tool

for sequential signal processing, specially in wireless communications.
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An overview of SMC applications in signal processing can be found in

[85, 21, 20]. Some recent works can be found in the special issue on Monte

Carlo methods for statistical signal processing, IEEE Transactions on Sig-

nal Processing, Volume 50, 2002. Here we present two examples.

8.2.1. Fading channels

Many mobile communication channels can be modelled as Rayleigh flat-

fading channels, which has the following form:

State Equations:







xt = Fxt−1 + Wwt

αt = Gxt

st ∼ p(· | st−1)

,

Observation Equation: yt = αtst + V vt,

where st are the input digital signals (symbols), yt are the received com-

plex signals, and αt are the unobserved (changing) fading coefficients. Both

wt and vt are complex (mixture) Gaussian with identity covariance matri-

ces. The fading coefficient αt = Gxt is assumed to follow the Butterworth

filter of order r = 3 i.e. an autoregressive and moving average model of

order (3, 3). The input signal st are either i.i.d. or following a Markovian

structure.

The objective there is to extracting digital signals s1, . . . , st transmitted

over such channels, given the observed sequence y1, . . . , yt, in real time. Note

that, the problem suffers the Phase Ambiguity:

p(αt, st | yt) = p(−αt,−st | yt).

To resolve the phase ambiguity, a differential coding is often utilized.

Specifically, if the information sequence is s1, . . . , st, then one transmits

the sequence: s∗1, . . . , s
∗
t , where s∗t−1s

∗
t = st, s∗1 = s1. Hence, on the receiver

side, it is only required to estimate st = s∗t−1s
∗
t , which does not have the

phase ambiguity.

A standard detector is the differential detector:

ŝt = sign(ytyt−1) = sign(αtαt−1st + αts
∗
t et−1 + αt−1s

∗
t−1et + et−1et).

This is based on the assumption that αt changes slowly and does not change

sign often. However, whenever αt changes the sign, the detector will tend

to make an error, no matter how small the noise et is. This results in a

error floor. As signal to noise ratio goes to ∞, the probability of making a

wrong detection goes to the frequency that αt changes the sign, which is a

constant.
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Clearly, this system is a CDLM, for which MKF can be used. A delay es-

timation has been shown to be useful. For more information, see [13, 84, 83].

8.2.2. Blind deconvolution

Consider the following system in digital communication

yt =

q
∑

i=1

θist−i + εt,

where st is a discrete process taking values on a known set S. In many cases

a training sequence is transmitted at the beginning of transmission so that

the receiver can estimate the channel coefficient θ first. In other cases, the

training sequence is not available to the receiver, then one has to estimate

the input signal st from the observed signals {y1, . . . , yt}, without knowing

the channel coefficients θi. This is termed as a blind deconvolution problem.

This system can be formulated as a partial CDLM. Let θt =

(θt1, . . . , θtq) and xt = (st, . . . , st−q)
′. We define

State Equation:

{

θt = θt−1

xt = Hxt−1 + Wst
,

Observation equation: yt = θtxt + εt,

where H is a q× q matrix with lower off-diagonal element being one and all

other elements being zero and W = (1, 0, . . . , 0)′. In this case, the unknown

system coefficients are part of the state variable, and is linear conditional

on the digital signal xt. In [55, 82], this problem is studied with a proce-

dure which is essentially an extended MKF as described in section 6. This

partial CDLM formulation can also be easily extended to deal with a blind

deconvolution problem with time-varying system coefficients.

8.3. Stochastic Volatility Models

Stochastic volatility models have been used to generalize the Black-Scholes

option pricing formula to allow volatility clustering in asset returns (e.g.

[36, 43, 74]).

Let Yt be the observed return of an asset at time t. Pitt & Shep-

hard (1999) [70] assumed that Yt follows a normal distribution with zero

mean. The variance of Yt, which is an unobservable state variable, follows

a stochastic process such as an AR(1) process. Hence we have the following

state space models
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State Equation: αt = φαt−1 + ηt,

Observation Equation: Yt ∼ N(0, β exp(αt)),

where ηt ∼ N(0, σ2), and β > 0.

Another form is

State Equation: αt = φαt−1 + ηt,

Observation Equation: log(Y 2
t ) = β∗ + αt + vt,

where vt = log(e2
t ), et ∼ N(0, 1).

This is a standard nonlinear/non-Gaussian state space model. SMC is

a nature tool for solving this kind of systems. The difficulty here is that

the system consists of unknown parameters φ and β. Some solutions can

be found in [70, 7].

8.4. Self-Avoiding Walks on Lattice

A simple lattice model is often used for studying biological polymers, spe-

cially proteins [81, 8, 19, 29, 47, 50]. That is, an unbranched chain polymer

can be viewed as the “trace” of a random walker on a d-dimensional lattice

space and each step in the trace represents a monomer’s position. The only

restriction is that the walker cannot cross the site it has visited before.

This is called a self-avoid (random) walk (SAW). A SAW can be recorded

as xN = (x0, . . . , xN ), where xj denotes the position of the jth monomer.

It is easy to sample, but it is able to capture the basic properties of protein

structures, such as chain connectivity and excluded volume. Hence it is often

used to test basic principles of protein folding. Of interest to researchers is

to estimate quantities such as the partition function and the mean squared

extension, τN = E(xN − x0)
2, where E(·) is taken with respect to the uni-

form distribution. Other features such as the geometric properties are also

interested.

For short chains, it is possible to enumerate all possible SAWs. But

longer chains are more interesting, but impossible to enumerate. The set of

all SAW is very large. For a chain of length 25, there are over 5.7 billion

such SAWs.

Monte Carlo method can be used for this problem. Depending on the

question, various target distributions can be used. One of them is πN (xN ) =

1/ZN , i.e. the uniform distribution on the set of all possible SAWs of length

N . In order to generate random samples of SAWs, Hammersley & Morton

(1954) [32] and Rosenbluth & Rosenbluth (1955)[72] proposed an elegant

method, termed as growth Monte Carlo. The key idea of this method is
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that one adds a single monomer at each time t by placing xt uniformly on

one of the kt−1 available neighbors of xt−1 (i.e., those lattice neighbors that

have not been occupied by any of x0, . . . , xt−2).

Mathematically, this procedure forms a stochastic dynamic system –

the chain of length n is the result of growing the chain one monomer at a

time. Specifically, let xt = (x1, . . . , xt) and the intermediate distribution:

πt(xt): uniform distributed among all possible SAWs of length t. The trial

distribution gt used at each step is xt ∼ gt(xt | xt−1) = 1
kt−1

.

Recent studies of SAWs and related protein structure analysis using

SMC can be found in [64, 65, 66, 78, 29, 49, 90, 88, 89].

8.5. Counting 0-1 Tables

Many ecology, education and sociology problems involve with large 0-1

tables. In order to calculate the exact p-value for various test statistics

on those tables, it is often required to count the total number of tables

with certain constraints, such as fixed margins.

Specifically, consider counting the total number Z of contingency tables

that contain only 0’s and 1’s and have the fixed row sums r1, · · · , rm and

column sums c1, · · · , cn. In [14], a SMC algorithm is proposed to solve this

problem, based on the growth principle. The basic approach is to treat

the values of entries in column t = 1, · · · , n as the state variable xt, and

use SMC to sequentially fill up the table one column at a time. That is,

sequentially generate samples x
(j)
t , j = 1, · · · , m following a sequence of

intermediate distributions πt(xt). Then we can use

̂Z =
1

m

m
∑

j=1

IS(x(j)
n )/πn(xn),

to estimate the total number Z. Here S is the set of all tables satisfying the

constraint, IS(·) is the indicator function and πn(xn) > 0 for all xn ∈ S.

For detailed information, see [14].

8.6. Other Applications

Efficient SMC algorithms have been successfully designed for many other

important problems, including speech recognition [71]; combinatorial op-

timizations [87]; genetics [40]; DNA sequence analysis [15]; DNA and pro-

tein sequence analysis [48, 54]; probabilistic expert systems [46, 76, 9]; target

recognition [77]; mobile robot localization [18, 24, 25]; freeway traffic vision
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(for vehicle control)[34]; dynamic Bayesian networks [45, 67]; on-line con-

trol of industrial production [61]; audio signal enhancing [23]; data network

analysis [16]; and neural networks [3, 17].
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1. Introduction

This chapter provides a tutorial introduction to the use of MCMC in the

analysis of data observed for multiple genetic loci on members of extended

pedigrees in which there are many missing data. In section 2, we introduce

the specification of pedigrees and inheritance, and then in section 3 discuss

structure of genetic models defining the dependence structure of data. In

section 4, we review exact computational algorithms which can provide a

partial solution, and can be used to improve MCMC sampling of inheri-

tance patterns (Section 5). In sections 6 and 7 we show how realizations of

inheritance patterns can be used in the Monte Carlo estimation of multilo-

cus linkage lod scores and thence used to find the location of a genetic locus

affecting a disease trait. Finally, in section 8 we provide a small illustrative

example using simulated data.

This chapter is based on previously published material. For earlier work,

readers may consult Thompson [21, 22, 23], in which many references to

the previous literature may be found: only a few key references will be

repeated here. More recent references will be given: one of these of particular

relevance to the efficient MCMC estimation of lod scores is that of George

& Thompson [6].

2. Pedigrees, Inheritance, and Genetic Models

A pedigree is a specification of the genealogical relationships among a set

of individuals. Each individual is given a unique identifier, and the two par-

ents of each individual are specified. Individuals with unspecified parents

are founders: the others are non-founders. Graphically, males are tradi-

tionally represented by squares, females by circles, while any individual of

unknown sex may be represented by a diamond. In the graphical repre-

sentation of a pedigree known as a marriage node graph individuals having

common offspring are connected to a marriage node, and the marriage node

is connected to each offspring. See the example in Figure 1. (Although this

pedigree structure may appear contrived, it derives from a real study [9].)

Each marriage node is connected upward to two parent individuals, and

downward to at least one (and possibly many) offspring individuals. Each

non-founder is connected upward to precisely one marriage node. A parent

individual may be connected to multiple marriage nodes. The shading of

individuals may represent affectation status for a particular trait, or other

specified information.
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Fig. 1. An example pedigree structure deriving from a real study.

Human individuals are diploid: every cell nucleus contains two haploid

copies of the DNA of the human genome. One of these copies derives from

the DNA in the individual’s mother (the maternal genome), and the other

from the DNA in the individual’s father (the paternal genome). Note that all

DNA is double-stranded. The double-stranded nature of DNA has nothing

to do with the haploid (single genome copy) or diploid (two copy) genome

content of a cell or organism. The biological process through which DNA in

parent cells is copied and transmitted to offspring is known as meiosis, and

Mendel’s First Law (1866) specifies this transmission marginally, at any

location in the genome. A genome location is known as a locus: the plural

is loci. In modern terminology, Mendel’s First Law states that the copy

transmitted from parent to offspring is a randomly chosen one of the two

parental copies, and that all meioses, whether to different offspring of a

single parent or in different parental individuals, are independent.

Segments of DNA in different genomes that are copies of the same ge-

nomic material in a recent common ancestor are said to be identical by

descent (ibd). Note that ibd is always defined relative to a founder popu-

lation. In the analysis of data on a fixed set of pedigree structures, ibd is
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Fig. 2. Identity by descent results in observable similarity among individuals.

defined relative to the founders of the pedigrees. By definition, the genomes

of founders are nowhere ibd. Identity by descent underlies all similarity

among relatives that results from the effects of their DNA. The different

possible allelic types of the DNA at a locus are known as the alleles at that

locus. The unordered pair of allelic types that an individual carries at a

locus is his genotype at that locus. The observable trait characteristics that

may be controlled or affected by an individual’s genotype at a locus is the

individual’s phenotype.

A small example of the transmission of genome at a single genetic lo-

cus is given in Figure 2. One pair of cousins share the “•” ibd from their

grandparent. The sibling cousin also carries a • symbol at this locus, per-

haps representing the same allele (the type of the DNA). However, it can

be seen that this • is not ibd to the ones in his sibling and cousin, relative

to the specified pedigree. Of course, further investigation might reveal that

the two founders carrying • symbols are related, and that these •’s are ibd

relative to a larger pedigree: ibd is always defined relative to the specified

pedigree. Given that I have a particular genetic characteristic or phenotype,

for example blood type O, the probability my cousins have blood type O is

increased, because with some probability they share DNA ibd with me at

this locus.

We can now specify more formally the inheritance of genome at any

specific genome location or locus. We provide unique identifiers to each

of the two haploid genomes of every founder. We call these the founder

genome labels or FGL. In the literature, these are often known as “founder
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Fig. 3. The inheritance of genome at a specific locus.

alleles” or “founder genes”, but these terms can become ambiguous. The

inheritance of the FGL at a particular locus j is specified by binary meiosis

indicators

Si,j = 0 or 1

as in meiosis i at locus j the maternal or paternal DNA (respectively) of

the parent is transmitted to the offspring.

In Figure 3, an example realization of the paternal and maternal meiosis

indicators of each non-founder individual are shown under each individual,

with the paternal indicator on the left and maternal indicator on the right.

The numbers 1 through 10 in the symbols representing founders are the

FGL identifiers. It is easily seen that application of the binary indicators to

the FGL enables the descent of FGL down the pedigree to be established.

The resulting FGL present in non-founder individuals are also shown in

Figure 3. These are the two numbers within the symbols representing each

individual, again with the paternally derived FGL on the left and the ma-

ternally derived FGL on the right. It is seen that ibd at a locus is equivalent

to presence of the same FGL at that locus.
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We can now specify the inheritance of genome at any set of discrete loci

indexed by j, j = 1, . . . , l:

Si,j = 0 if DNA at meiosis i locus j is parent′s maternal DNA,

= 1 if DNA at meiosis i locus j is parent′s paternal DNA.

For convenience we define the two sets of vectors each of which makes up

the array S = {Si,j}:

S
•,j = {Si,j ; i = 1, . . . , m}, j = 1, . . . , l,

Si,• = {Si,j ; j = 1, . . . , l}, i = 1, . . . , m.

where m is the number of meioses in the pedigree (twice the number of non-

founders), and l the number of loci under consideration. In the literature,

the vector S
•,j is known as the inheritance vector at locus j [14].

3. The Structure of a Genetic Model

In order to derive an appropriate probability model for the array of latent

meiosis indicators S, we first outline the events in the biological process of

meiosis. The DNA in each cell nucleus of an individual is packaged into 46

chromosomes, 23 of which derive from the DNA of the father, and 23 from

the mother. Only one pair differ between individuals of different sex (the

sex chromosomes). The two members of each of the other 22 pairs carry

essentially the same DNA, although of course at many locations along the

chromosome there may be allelic differences. Prior to meiosis, each chromo-

somes duplicates, but the two parts remain connected at the centromere.

The two chromosomes of a pair (the maternal and paternal ones in the

parental cell nucleus) then become tightly aligned, and may exchange DNA.

Through two successive meiotic divisions, the chromosomes separate, lead-

ing to four potential offspring gametes (Figure 4). Each gamete (sperm or

egg) cell contains a full haploid genome, and may pass to an offspring whose

observable genetic characteristics result from the combined diploid DNA of

their maternal and paternal gametes.

Each chromosome of the gamete cell consists of alternating segments

of the two parental chromosomes. These segments are large, comprising on

average about 108 base pairs (bp) of DNA. A location at which the DNA

switches from the parent’s maternal to paternal DNA, or from paternal to

maternal, is known as a crossover. Between any two loci, the genetic dis-

tance d (in Morgans) is defined as the expected number of crossover events
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Fig. 4. Meiosis and four resulting potential offspring chromosomes.

between them in an offspring gamete. Since, regardless of dependence, ex-

pectations are additive, this definition provides an additive measure of dis-

tance along the chromosome. Note that genetic distance is defined through

the meiosis process, not in terms of a physical distance such as number of

bp. The relationship between physical and genetic distance varies over the

genome, and depends on many factors. A key such factor is the sex of the

parent in whom the meiosis occurs. Genetic distances are normally reported

in centiMorgans (1 cM = 0.01 Morgans). As a rough average, 1 cM is about

1 megabase (106 bp).

In an offspring gamete resulting from a meiosis i, between any two loci

j and j′, a recombination is said to have occurred if the DNA at those

locations derived from two different parental chromosomes: Si,j �= Si,j′ .

The probability of this event is the recombination fraction ρ between the

two loci. The value ρ(d) of the recombination fraction at genetic distance

d is the map function. Under almost all models of meiosis, and apparently

in reality, ρ(0) = 0, ρ′(0) = 1, ρ(d) ր d, and ρ(∞) = 1
2 .

The above considerations are almost sufficient to define the probability

model for S. From Mendel’s First Law we have that the vectors Si,• are

independent, and that Pr(Si,j = 0) = Pr(Si,j = 1) = 1/2. Now we

have also Pr(Si,j−1 �= Si,j) = ρj−1, j = 2, ..., l, for all i, i = 1, ..., m. For

notational convenience we assume the recombination fraction is the same for

all meioses i, but in modeling real data it is important to allow at least for

different values in male and in female meioses. Our model now determines

the pairwise probability distribution for any two inheritance vectors:

Pr(S
•,j | S

•,j−1) = ρ
Rj−1

j−1 (1 − ρj−1)
m−Rj−1 , (1)
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where Rj−1 = (#i : Si,j �= Si,j−1). To define the joint distribution of all

the components of S an additional assumption is required. The simplest is

to assume the absence of genetic interference. This assumption implies that

crossovers arise as a Poisson process (rate 1 per Morgan), and hence that

the occurrences of recombination in disjoint intervals of the chromosome

are independent. In this case the inheritance vectors S
•,j are first-order

Markov in j:

Pr(S) = P (S
•,1)

l
∏

2

Pr(S
•,j | S

•,j−1)

or Pr(Si,j |S−(i,j)) = Pr(Si,j |Si,j−1, Si,j+1),

where S−(i,j) denotes the set of all components of S except Si,j .

We have specified a model for S, but S is not observed. The data consist

of the trait characteristics of individuals, which are determined by the allelic

types of their DNA at the relevant genetic loci. The simplest possible model

relating ibd to observable data at a single locus is that DNA segments that

are ibd are of the same allelic type, while non-ibd DNA segments are of

independent types. While this model ignores the possibility of mutation

within the pedigree, and of possible dependence at the population level

among founders of a pedigree, it is an adequate model for most purposes.

Use of more general models is possible, if desired. At locus j, we denote by

Aj an allocation of allelic types to the distinct FGL. Our model assumes

that the FGL g are independent in their types with, say, type probabilities

qj(g), and, more specifically, that each FGL g has type k independently

with some probability qj,k. Then

Pr(Aj) =
∏

g

qj(g) =
∏

g

q
nj(k)
j,k ,

where nj(k) is number of FGL g with type k at locus j. We shall also

assume independence of the allelic types of a FGL over loci j. Except in

very small genetic isolates, this is an accurate assumption for loci for which

ρ > 0.005. This is fortunate since this assumption is hard to generalize.

Thus we have now all the components of a genetic model, and the classes

of parameters involved. The population model, with parameters such as

q = {qj,k}, provides the probabilities for the latent A, the allelic types

of FGL at each j. The inheritance model, with parameters ρ, provides

probabilities for the latent S, the inheritance of FGL at j, jointly over

j. The genotype of an individual at a particular locus is the unordered
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Fig. 5. The dependence structure of pedigree data.

pair of allelic types of the DNA he carries at that locus. The (phased)

multilocus genotype of an individual is the unordered pair of collections of

allelic types in his maternal and paternal genomes. The ordered genotype

of an individual is the ordered pair of allelic types, conventionally ordered

(paternal, maternal). The ordered multilocus genotype is the set of ordered

single-locus genotypes, and is the most detailed specification. We will refer

to the set of ordered multilocus genotypes for all members of a pedigree

structure as G. G defines both phased multilocus genotypes and the set of

genotypes at each locus. Jointly over loci, note that G is in turn determined

by (S,A). At each locus j, the ordered genotypes G
•,j of pedigree members

are determined by S
•,j and Aj .

The final component of a genetic model is the part that connects the

latent genotypes to observable data Y. The penetrance model, with param-

eters β specifies the probability of trait data Y given the latent genotypes

G. For simplicity, we shall assume that our data Y can be partitioned into

{Y
•,j ; j = 1, ..., l}, with Y

•,j depending only on G
•,j . Each locus j may be

a DNA marker locus, for which this will naturally be true, or may corre-

spond to a trait. For a marker locus, parameters β may include a typing

error model or other factors causing the recorded marker data on an in-

dividual potentially to differ from the true latent genotype. For a more

general trait determined by locus j, the assumption is that the only locus

in this genome region affecting the trait is the locus j. In this case, the

penetrance probabilities Pβ(Y
•,j | G

•,j) may in general depend on observ-

able covariate information on individuals (age, gender, diet, ...) and also on

other heritable effects contributed by genes elsewhere in the genome, but

not linked to these l loci.
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The complete set of parameters will be denoted ξ = (q, ρ, β), and the

likelihood for the model may be written formally as

L(ξ) = Pξ(Y) =
∑

G

Pβ(Y | G)P(q,ρ)(G)

=
∑

(S,A)

Pβ(Y | G(S,A))Pρ(S)Pq(A). (2)

The dependence structure of the data Y in terms of the latent S is shown

in Figure 5. For S, the meioses i are independent, while loci j have first-

order Markov dependence. At each locus j, the data Y
•,j are determined

probabilistically by the latent inheritance pattern S
•,j. In the represen-

tation of Figure 5, the pedigree structure is implicit in the labeling of the

meioses. Additionally, the allelic types of the FGL Aj which also contribute

to G
•,j(S•,j ,Aj) and hence to Y

•,j are omitted. In most contexts, the latent

allelic types are nuisance variables which are integrated over (Section 4).

4. Exact Computations on Pedigrees: Peeling Algorithms

Before proceeding to MCMC, it is important to consider what parts of the

computation may be achieved exactly. Where a partial exact computation

is feasible, this may often be incorporated into a Monte Carlo sampling

procedure to improve Monte Carlo performance. Additionally, partial ex-

act computation may permit the use of Rao-Blackwellized estimators [5],

improving efficiency in the use of sampled realizations. Summations such

as those in equation (2), may, depending on the underlying dependence

structure, be accomplished via a variety of peeling algorithms [2] in which

the summation is performed sequentially over subsets of the variables. In

the context of signal processing, time series, and hidden Markov models

(HMMs) these methods date back to the 1960s and the work of Baum and

colleagues [1]. A few years later, similar methods were developed for simple

genetic models on pedigrees having a simple tree structure by Elston and

colleagues [4]. The methods were generalized to arbitrarily complex pedi-

gree structures and more complex models by Cannings and colleagues later

in the 1970s [2, 3, 20], and 10 years later to general graphical structures by

Lauritzen and Spiegelhalter [16].

In the current context we have three relevant structures. The first is

the linear structure along a chromosome shown in Figure 6. The second is

the undirected structure relating to the assignment of allelic types to FGL,

and the third is the directed graphical structure of a pedigree. We consider

first the computation of likelihoods on small pedigrees, using the Baum
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Fig. 6. Dependence structure of data along a chromosome.

algorithm. Note that Pr(Y) may be written

Pr(Y) =
∑

S

Pr(Y | S) Pr(S)

=
∑

S





l
∏

j=1

Pr(Y
•,j | S

•,j)





(

Pr(S
•,1)

l
∏

2

Pr(S
•,j | S

•,j−1)

)

.

We defer to below the computation of Pr(Y
•,j | S

•,j), and define

Y (j) = (Y
•,1, . . . , Y•,j), the data up to and including locus j, and

R∗
j (s) = P (Y (j−1), S

•,j). Then R∗
1(s) = Pr(S

•,1 = s) and

R∗
j+1(s) = Pr(Y (j), S

•,j+1 = s) (3)

=
∑

s∗

[

Pr(S
•,j+1 = s | S

•,j = s∗) Pr(Y
•,j | S

•,j = s∗) R∗
j (s

∗)
]

,

for j = 1, 2, . . . , l − 1, with

L = Pr(Y) =
∑

s∗

Pr(Y
•,l | S

•,l = s∗) R∗
l (s

∗).

Since S
•,j can take 2m values, where m is number of meioses, computation

using equation (4) is limited to small pedigrees.

To facilitate discussion of computation on directed graphs, it is conve-

nient to note an alternate form of equation (4) in which the computation

is done in the reverse direction along the chromosome, but the transition

probabilities are still used in the direction Pr(S
•,j+1 = s | S

•,j = s∗). Now

we define Rj(s) = Pr(Y
•,j+1, ..., Y•,l | S

•,j = s). Then

Rj−1(s) = Pr(Y
•,j, ...Y•,l | S

•,j−1 = s) (4)

=
∑

s∗

[Pr(S
•,j = s | S

•,j−1 = s∗) Pr(Y
•,j | S

•,j = s∗) Rj(s
∗)] .
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Of course, only one of equations (4) and (5) is needed in order to compute

the likelihood, and in any case the transition probabilities on a chromosome

may be considered in either direction. However, even for this undirected

linear case, both forms are useful, since then

Pr(S
•,j = s | Y) ∝ R∗

j (s) Rj(s) Pr(Y
•,j |S•,j = s). (5)

Thus if computation of likelihoods Pr(Y) is feasible, so too is computation

of the conditional probability of latent variables S
•,j given all the data Y.

We consider now the deferred computation of Pr(Y
•,j |S•,j):

Pr(Y
•,j |S•,j) =

∑

Aj

Pr(Y
•,j|G(S

•,j,Aj))Pr(Aj)

=
∑

Aj

(

∏

n

Pr(Yn,j |Gn,j(S•,j ,Aj))

) (

∏

g

qj(g)

)

, (6)

where here Yn,j denotes the phenotype of an observed individual n at locus

j, Gn,j is the genotype of individual n at locus j, and g is an FGL. Again

peeling is simply a reorganization of the joint summation over all Aj in order

to perform the summation sequentially. We illustrate this with an example

(Figure 7) taken from Thompson [24]. In the FGL graph, the nodes are

FGL and each edge corresponds to at least one observed individual. The

scenario corresponds to a pedigree in which there are presumably at least

8 founders, since the highest FGL label is 15 and each founder has two. At

the locus j in question, there are observed individuals A, B, C, ..., U, V, W.

It is supposed that under the specified inheritance pattern S
•,j , individual

� � � �

� � �

� 	 � 
 � �

� � � �

� � �

�

��

� �

��

Fig. 7. Peeling the FGL graph to compute Pr(Y•,j |S•,j).
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A receives FGL 2 and 9, both B and J receive FGL 2 and 13, and so on. An

edge joins the two FGL received by each observed individual. The parents

of individual C must be related, since C received two copies of FGL 6.

First, for an FGL such as 3 or 11, not present in any observed individual

under the S
•,j under consideration, any allelic type may be assigned, and

the contribution of the FGL to sum in equation (6) is a factor
∑

k qj,k = 1.

These FGL can thus be ignored. Second, where the FGL falls into two or

more disconnected components, as in Figure 7 the sum in equation (6)

factorizes into the contributions from summation over allelic allocations

to the FGL in each component. Thus each component may be considered

separately, and the results multiplied. Thus we will consider the summation

only on the larger component of Figure 7. Finally, FGL enter together into

a term in the sum, only through the probability of a phenotype Yn,j of an

individual given the allelic types assigned to the two FGL that he carries.

Thus, in our example, equation (6) becomes

Pr(Y
•,j |S•,j) =

∑

g

(

∏

n

Pr(Yn|gn,1, gn,2)

)

q(g2)q(g6)q(g4)q(g9)q(g13)q(g15)

=
∑

g6

q(g6)Pr(YC |g6)





∑

g15

q(g15) Pr(YH |g15, g6)

(

∑

g4

q(g4)Pr(YF |g15, g4)





∑

g13

q(g13)Pr(YE |g6, g13)Pr(YD|g4, g13)

(

∑

g2

q(g2)Pr(YB |g2, g13)Pr(YJ |g2, g13)Pr(YG|g2, g4)









∑

g9

q(g9)Pr(YA|g2, g9)























 .

Beginning with the final term, data YA is incorporated into the summation

over the allelic types assigned to FGL 9, for each value of the allelic type

of FGL 2. Then including data on B, J, and G, the summation over the

allelic types assigned to FGL 2 is done for each assignment to FGL 4 and

13, and so on through the graph. Of course, summations may be done in

any order: this example shows one sensible ordering.

Where there are many observed individuals in a pedigree, the FGL graph

may become complex, and even the best sequential summation may involve

consideration jointly of too many FGL for the method to be feasible. How-

ever, where data are relatively sparse, the FGL graph is often quite small
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Fig. 8. A pedigree without loops.

even on a large and complex extended pedigree. There is one case where the

summation of equation (6) is trivial, however much data or however large

and complex the pedigree. This is the case of a genotypic marker observed

without the possibility of error. In this case, on each disjoint component of

the FGL graph, there are 0, 1, or 2 allelic assignments consistent with the

data. Consider, for example, the smaller component of Figure 7. Suppose we

observe that each of K, U and W is of genotype ab at locus j, and suppose

that at this locus the population allele frequency of allele a is qa and of b

is qb. Considering first individual K, we see that there are two possibilities:

g(7) = a, g(1) = b or g(7) = b, g(1) = a. Including the information on U

and W, these two possibilities remain and

g(7) = a, g(1) = g(8) = g(10) = b; probability contribution qaq3
b

or g(7) = b, g(1) = g(8) = g(10) = a; probability contribution q3
aqb,

giving a total probability contribution qaq3
b + q3

aqb. Now suppose V is also

observed. If V has genotype aa, g(8) = g(10) = a and only the second

alternative remains: the probability is then q3
aqb. If V has genotype bb,

g(8) = g(10) = b and only the first alternative remains: the probability is

then qaq3
b . If V is observed to have any other genotype, there is no feasible

allelic assignment on this component of the FGL-graph, and the probability

of these data on the pedigree, under this particular inheritance pattern S
•,j ,

has probability 0.

Finally in this section, we consider peeling on the directed graph repre-

senting a pedigree structure. Figure 8 shows a marriage node graph repre-

sentation of a pedigree with no loops, but not a simple tree structure. The
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shaded individuals are assumed to have data, and the joint probability of

all the observed data under a specified genetic model is to be computed.

Conditional on genotypes of parents, data on each grandparent couple and

on each offspring are all mutually independent. Thus the idea of pedigree

peeling is to accumulate the probability sequentially over the pedigree, us-

ing these individual genotypes as the latent variables. In a pedigree without

loops, the part of the pedigree on which the probability has been accumu-

lated will either be connected to an individual B through his parents, and

will be denoted A(B) or through his descendants of spouses, in which case

it will be denoted D(B).

Analogously to the HMM case we define two R-functions for any indi-

vidual B,

RB(g) = Pr(YC , C ∈ D(B) | GB = g)

R∗
B(g) = Pr(YC , C ∈ A(B), GB = g). (7)

For the example of Figure 8 we see:

R1(g) = Pr(Y2, Y3 | G1 = g)

=
∑

g∗

Pr(G4 = g∗)





∑

g′

Pr(Y2|G2 = g′)Pr(G2 = g′|G1 = g, G4 = g∗)









∑

g′′

Pr(Y3|G3 = g′′)Pr(G3 = g′′|G1 = g, G4 = g∗)



 ,

and then

R∗
14(g) = Pr(Y2, Y3, G14 = g)

=
∑

g′

Pr(G12 = g′)





∑

g′′

Pr(G13 = g′′)Pr(G14 = g | G12 = g′, G13 = g′′)

(

∑

g∗

Pr(G1 = g∗ | G12 = g′, G13 = g′′)R1(g
∗)

))

.

Thus, using the R and R∗ functions we may accumulate the probability of

observed data over the entire pedigree. We refer the reader to [21] for de-

tails. Because the pedigree is a directed graph, in which the genetic model
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specifies probabilities of offspring genotypes given those of their parents,

both R and R∗ functions will generally be used in working through a pedi-

gree. In the two initial peeling steps shown here, a function R1(g) is used

in accumulating up to individual 1 from D(1) = {2, 3, 4} and a function

R∗
14 in accumulating down to individual 14 from A(14) = {12, 13, 1, 2, 3, 4}.

However, it is only the interpretation of the function as a conditional or

joint probability that is affected. The form of the sequential summation

equation is the same whether one is peeling up or down: one simply in-

serts the appropriate founder genotype probabilities (for 4 and then for

(12,13)), penetrances (for (2,3)), previously computed R-functions (R1(·)),

and transmissions from parents to offspring (from (1,4) to (2.3) and then

from (12,13) to (1,14)).

For the directed HMM, functions R∗(·) were used in peeling forward,

and R(·) in peeling backward, and equation (5) shows how these may be

combined to provide the probabilities Pr(S
•,j | Y). An analogous result

applies here. In peeling a pedigree in one order, from right to left in the

example of Figure 8 one obtains R for some individuals, such as 1, and R∗

for other individuals, such as 14. Reversing the peeling order, and working

from left to right, one would obtain the function R for 14, and R∗ for 1.

Thus by working in both directions, and storing the functions computed,

one has, for each individual B, the terms needed to compute

Pr(GB = g | Y) ∝ Pr(YC , C ∈ A(B), GB = g) Pr(YB | GB = g)

Pr(YC , C ∈ D(B) | GB = g)

= R∗
B(g) Pr(YB | GB = g) RB(g).

The same procedures, both with regard to peeling and the computation

of marginal genotype probabilities for each individual given the full data Y

apply also to pedigrees with loops. The only difference is that the genotypes

of several individuals may need to be considered jointly in peeling, as in

peeling the FGL-graph, and that the resulting R-functions may be partially

of type R∗ and partially of type R. That is, they are probabilities of data on

a peeled section of the pedigree, jointly with the genotypes of individuals

whose parents have been peeled, conditional on the genotypes of individuals

whose descendants have been peeled. Again this does not affect the form of

the equations for the R-functions, only the interpretation of the resulting

function. We refer to [21] and earlier literature cited therein for details.

Finally, we consider the form of genotypes that will be used. For peel-

ing multiple loci over a pedigree, phased genotypes are necessary. If locus j

has kj alleles, there are K =
∏l

j=1 kj possible haplotypes, and 1
2K(K + 1)
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possible phased genotypes for an individual. Since for each possible combi-

nation of genotypes of parents we consider the possible genotypes of each

child, peeling complexity (even on a pedigree without loops) is of order K6,

and hence exponential in the number of loci. For convenience in combining

with the meiosis patterns S, we often prefer to use ordered rather than un-

ordered genotypes. Thus there are K2 rather than 1
2K(K +1) genotypes to

consider for each individual. Extra store is then required (although still of

order K6), but of course the symmetries can be used to avoid extra compu-

tation. For complex pedigrees, more individuals must be considered jointly

both in storage and in computation. Thus the pedigree peeling algorithm

is linear in pedigree size, but exponential both in pedigree complexity and

number of loci, and can be computationally challenging even for a single

locus if the number of alleles is large.

5. MCMC on Pedigree Structures

We have seen how probabilities can be computed on small pedigrees for

multiple loci using the Baum algorithm, and on extended pedigrees for a

very few loci using pedigree peeling. However, when both the size of the

pedigree (as measured by the number of meioses m) and number of loci

(l) are large, exact computation is infeasible, and some form of Monte

Carlo or approximation must be used. We note that the computation of

Pr(Y
•,j | S

•,j) by peeling the FGL-graph is limited neither by pedigree size

nor number of linked loci, but may become computationally challenging if

there are large numbers of FGL and large numbers of combinations of FGL

possible in observed individuals. However, normally the FGL graph parti-

tions into manageable components, and we will focus on MCMC methods

for sampling S given data Y assuming Pr(Y
•,j | S

•,j) readily computable.

We note that even where exact computation is possible, peeling provides

only probabilities Pr(S
•,j = s | Y) for each j (equation (5)), or, at best,

probabilities Pr(S
•,j = s, S

•,j+1 | Y) for pairs of adjacent loci [21]. Monte

Carlo will provide realizations from Pr(S | Y), the full joint distribution of

S given all the data Y.

For the sampling of S, the dependence structure of Figure 5 immediately

suggests several possible block Gibbs samplers, each updating a subset Su

of S = {Si,j} conditional on Y and on the rest of S (Sf ). The first of these

is the locus-sampler or L-sampler [12, 10], in which each updating set Su is

S
•,j for some j. Now

Pr(S
•,j |{S•,j′ , j

′ �= j},Y) = Pr(S
•,j |S•,j−1, S•,j+1, Y•,j),
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and resampling from this distribution requires computation of

Pr(Y
•,j | S

•,j−1, S•,j+1) =
∑

S•,j

Pr(Y
•,j | S

•,j)Pr(S
•,j | S

•,j−1, S•,j+1).

This is simply a single-locus pedigree-peeling computation in which the

Mendelian transmission probabilities are replaced by the meiosis-specific

values Pr(Si,j |Si,j−1, Si,j+1). Thus the L-sampler can be implemented on

any pedigree on which single-locus peeling is feasible. Provided each inter-

locus recombination fraction is strictly positive, the sampler is clearly irre-

ducible. However, if the loci are tightly linked, mixing performance will be

poor.

An alternative block-Gibbs sampler is the M-sampler [26], in which each

updating set Su is a subset of the meiosis indicators Si,• for a set of meioses

i ∈ M∗ over all loci. Computation and resampling from the probabilities

Pr({Si,•; i ∈ M∗} | Y, {Si′,•; i
′ �∈ M∗})

requires peeling along the chromosome using the Baum algorithm, with

a state space of size 2|M∗|. In the basic M-sampler [26], each meiosis is

resampled separately (|M ∗| = 1). Proposals for joint updating of several

meiosis indicator vectors have been made [21, 19]: these can substantially

improve performance. Unfortunately, unless |M ∗| = m which is infeasible,

it is hard to show that the M-sampler is irreducible. Moreover, although it

is not affected by tight linkage, since the meiosis indicators over all loci are

updated jointly, it can perform poorly on extended pedigrees where there

are many missing data.

Each of our currently implemented L- and M-samplers does a random

scan of loci or meioses, respectively. That is, at each scan a random per-

mutation of loci [meioses] is formed, and then the vectors S
•,j [ Si,• ] are

updated from their full conditional distributions in the order specified by

the permutation. The L-sampler and M-sampler have somewhat orthogo-

nal performance characteristics, the L-sampler performing well on extended

pedigrees under loose linkage and the M-sampler on small pedigrees under

tight linkage. Of course, any valid MCMC samplers can be combined, and

our LM-sampler, which combines L- and M-sampler [26] usually has much

better mixing performance than either. In this case, before each scan, a

decision is made to do an L-sample or M-sample scan with probabilities p

and 1− p respectively, independently of past history or current state of the

system. Although the optimal p should depend on the linkage map, pedi-

gree structure, and extent of missing data, we have found little difference
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in performance provided 0.2 ≤ p ≤ 0.8, so typically we choose p = 0.2, 0.5

or 0.8, depending on which sampler, if either, is substantially more compu-

tationally intensive in the data set at hand.

Gibbs samplers, even block-Gibbs samplers, have a tendency to explore a

space locally, and not make large changes in the latent variables. Metropolis-

Hastings rejected restarts can be a way to make larger changes [27]. In the

current context, sequential imputation [13] provides a possible proposal

distribution for restarts as well as a way to obtain good initial starting con-

figurations [6]. Realizations S∗
•,j of the inheritance vectors S

•,j are obtained

sequentially, each one conditionally on the previously realized S∗
•,j−1 and

on Y
•,j . This leads to the sequential imputation sampling distribution for

data on extended pedigrees given by [11]:

P ∗(S∗) =

l
∏

j=1

Pξ0(S•,j | S∗(j−1), Y (j)) =
Pξ0(S

∗,Y)

Wl(S∗)
, (8)

where Wl(S
∗) =

∏l
j=1 wj and

wj = Pξ0(Y•,j | Y (j−1), S∗(j−1)) = Pξ0 (Y•,j | S∗
•,j−1).

Weights wj and hence Wl(S) can be computed: each predictive weight wj

is the conditional probability of data observations Y
•,j and is obtainable

by single-locus peeling, with meiosis-specific transition probabilities deter-

mined by the previously realized S∗
•,j−1.

If P ∗(·) is used as a proposal distribution q(·;S), then the Metropolis-

Hasting acceptance probability, for a proposal S
† when the current

configuration is S, becomes max(1, h) where the Hastings ratio h is given

by

h(S†;S) =
q(S;S†)Pξ(S

†,Y)

q(S†;S)Pξ(S,Y)

=
Pξ(S,Y)Wl(S

†)Pξ(S
†,Y)

Wl(S)Pξ(S†,Y)Pξ(S,Y)
=

Wl(S
†)

Wl(S)
. (9)

Thus the Hastings ratio is just the ratio of weights, which are easily com-

puted, and for S
† must be computed already in making the proposal. Al-

though these Metropolis-Hastings proposals are easily incorporated, accep-

tance probabilities may be low. In preliminary examples, the procedure

works well for up to about 5 loci, but for larger numbers of loci substantial

changes in S proposed by sequential imputation are rarely accepted [6].

Another area in which Metropolis-Hastings proposals may be used is

to allow for a general model of interference, I, while still using the HMM
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dependence structure which depends on the assumption of no interference

of the Haldane model, H [21]. Suppose the interference model provides

probabilities P (I)(Si,•) for meiosis i, in place of Haldane model P (H)(Si,•)

we have used so far. Of course, under either model, the vectors Si,• are

independent over i, i = 1, ..., m. Suppose the current configuration is S

and any block-Gibbs update of Su, keeping fixed Sf = S \ Su, under the

Haldane model is used as a Metropolis-Hastings proposal S†. The Hastings

ratio is

h(S†;S) =
P (I)(S†,Y)

P (I)(S,Y)

P (H)(Su | Sf ,Y)

P (H)(S†
u | Sf ,Y)

=
P (I)(S†,Y)P (H)(S,Y)

P (I)(S,Y)P (H)(S†,Y)

=
P (Y|S†)P (I)(S†)P (Y|S)P (H)(S)

P (Y|S)P (I)(S)P (Y|S†)P (H)(S†)

=
P (H)(S)

P (I)(S)

P (I)(S†)

P (H)(S†)

=

m
∏

k=1

P (H)(Sk,•)

P (I)(Sk,•)

P (I)(S†
k,•)

P (H)(S†
k,•)

.

In the case of the M-sampler, this is particularly straightforward, since only

one or a few meioses i ∈ M ∗ are updated, and the product reduces to

∏

k∈M∗

P (H)(Sk,•)

P (I)(Sk,•)

P (I)(S†
k,•)

P (H)(S†
k,•)

.

For moderate numbers of loci l ≤ 14 the ratios of the probabilities, under

interference (I) and Haldane (H) models, of the 2l−1 vectors of recombi-

nation and non-recombination indicators (equation (1)) may be computed

once and pre-stored. For larger numbers of loci, an interference model per-

mitting rapid computation of probabilities P (I)(·) is necessary. While this

Metropolis-Hastings algorithm is easily implemented, and performs well, it

is, of course, also possible to sample entirely under the Haldane model and

reweight realizations S with weights P (I)(S)/P (H)(S). Which procedure is

more computationally effective will depend on how close are probabilities

of configurations S under the two models.

6. Genetic Mapping and the Location Lod Score

In this section we introduce the framework and notation for likelihood-

based inference for the presence, linked to a set of genetic marker loci, of
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a genetic locus affecting a trait, and for estimation of the location of this

trait locus relative to the set of marker loci. Specifically, what is used is

the log-likelihood curve or lod score for the location of a locus underlying

a trait of interest.

The human genome consists of 3 × 109 base pairs (bp) of DNA. There

are now many known DNA variants that can be typed in individuals and

whose genomic locations are known. These DNA variants of known genomic

locations are known as genetic markers, and the objective is to determine

the locations of DNA variation underlying a trait relative to the known

marker positions. Current DNA markers are broadly of two types. There

are microsatellite marker loci. At each of these loci there are many potential

alleles that chromosomes may carry. However, in a typical study only several

hundred marker loci spread across the genome will be typed. Thus the

spacing of these markers is of order 107bp. The alternative are SNP markers:

each of these typically has only two alleles, but many more exist. There may

be as many as 3× 106 SNP variants in the human genome: potentially, one

could type a marker every 1000bp. For the purposes of linkage detection

and initial localization of trait loci, microsatellite markers are more readily

obtainable and more easily analyzed.

While the probability model for Si,• is defined in terms of recombination

fractions, in mapping it is convenient to represent the locations of mark-

ers and trait loci on an additive scale. Genetic distance d (in Morgans)

between two loci defines this additive metric, and is the expected number

of crossovers between the two loci in an offspring chromosome (Section 3).

Recall that the assumption of no genetic interference is equivalent to the

assumption that crossovers arise as a Poisson process of rate 1 (per Mor-

gan). In this case, the number of crossovers W (d) has a Poisson distribution

with mean d. Further, there is a recombination between two loci if W (d) is

odd. This gives rise to the Haldane map function

ρ(d) = (1/2)(1 − exp(−2d)).

Other meiosis models give rise to other map functions. The key thing is the

model: the map function just puts loci onto a linear location map.

While traits of biological or medical importance may be affected by DNA

at many loci and by environmental factors, and with complex interactions,

simple Mendelian genetics applies well to DNA markers. Thus we assume

a known genetic marker model, including the marker map. That is, we

have l genetic markers at known locations λi in the genome, and known

allele frequencies qi, i = 1, ..., l. The marker model is parametrized by
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M1 M2 M3 M4 M5

ΛM = ((qi, λi);

i = 1, ..., l)

•
γ

YT

β

Fig. 9. Defining the location lod score.

ΛM = {λi,qi}. For the purposes of lod score estimation, it is also necessary

to assume a trait model, parametrized by β, specifying how the trait is

determined by underlying genes. The linkage analysis objective is then,

given data on the trait phenotypes and marker genotypes for some of the

members of some number of pedigree structures, to estimate the location γ

of a locus (if any) affecting the trait, in this marker region of the genome.

The trait model may incorporate the effects of observable environmental

covariates, and even other genetic effects of genes unlinked to these markers,

but the question at issue concerns only the existence of linkage and the

location γ.

The data consist of both trait data and marker data, Y = (YM , YT ), and

the full model is now indexed by parameter ξ = (β, γ,ΛM ). The model is

shown schematically in Figure 9. The trait locus location γ is the parameter

of interest: γ = ∞ implies absence of linkage of the trait to these markers.

The statistical approach taken is then to compute a likelihood and hence a

location lod score::

lod(γ) = log10

(

Pr(Y; ΛM , β, γ)

Pr(Y; ΛM , β, γ = ∞)

)

. (10)

Note that the lod score is simply a log-likelihood difference, although tradi-

tionally in this area logs to base 10 are used rather than natural logarithms.

More importantly, note that the models in numerator and denominator dif-

fer only in γ. The likelihood of a particular location γ is compared to the

likelihood of no linkage (γ = ∞), under the same trait model (β) and

marker model (ΛM ).

We have seen that if a pedigree has too large a number of meioses m, or

joint analysis of a data at a large number l +1 of loci is desired, then exact

computation of likelihoods in infeasible. Thus we must now consider how

MCMC realizations S
(τ), τ = 1, ..., N sampled conditionally on marker
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and/or trait data can be used to provide a Monte Carlo estimate of the

relevant likelihoods, and hence of the location lod score curve (10).

7. Monte Carlo Likelihood on Pedigrees

Monte Carlo estimates expectations, and we have the general formula

L(ξ) = Pξ(Y) =
∑

S

Pξ(S,Y) = EP∗(Pξ(S,Y)/P ∗(S)), (11)

where P ∗ is any sampling distribution for S whose support includes that of

Pξ(S | Y). That is, P ∗(S) > 0 if Pξ(S, Y) > 0. If N realizations S
(τ), τ =

1, ..., N are made from P ∗(·) then N−1
∑N

τ=1 Pξ(S
(τ ),Y)/P ∗(S(τ )) is an

unbiased Monte Carlo estimator of the expectation (11). Of course, the

properties of this estimator, other than unbiasedness, will depend on the

joint distribution of the S
(τ). Using MCMC, the S

(τ) will normally be (pos-

sibly subsampled) successive realizations from an ergodic Markov chain.

The simplest possible sampling distribution is P ∗(S) = Pξ(S) leading

to the expression

L(ξ) = Eξ(Pξ(Y | S)).

However this form is generally not useful. Few realizations from Pξ(S) will

even give positive probabilities Pξ(Y | S). From equation (11), in accor-

dance with importance sampling principles, what is needed for effective

Monte Carlo estimation of L(ξ) is a sampling distribution P ∗(S) close to

proportional to the numerator Pξ(S,Y). That is, P ∗(·) should be close to

Pξ(·|Y).

Sequential imputation [13] is one attempt to find such a distribution

giving rise to the sampling distribution of equation (8). Now

L(ξ0) = Pξ0(Y) = EP∗

(

Pξ(S, Y)

P ∗(S)

)

= EP∗(Wl(S
∗)).

Given N realizations S
(τ) the estimate of L(ξ0) is N−1

∑

τ Wl(S
(τ)). For

moderate numbers of not too informative markers, sequential imputation

can perform well [11, 18], just as when used as a Metropolis-Hastings pro-

posal distribution for MCMC (equation (9)). However, for large numbers of

loci with multiple alleles, the sequential imputation sampling distribution

can differ widely from the target distribution Pξ(S|Y) and a very large

Monte Carlo sample size N would be required to achieve reasonable esti-

mates.
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Another attempt to obtain a good sampling distribution was pro-

posed by [25]. Since we want P ∗(S) close to Pξ(S,Y) we choose P ∗(S) =

Pξ0(S | Y), where ξ0 ≈ ξ and sample from this distribution using MCMC.

Then

Pξ(Y) =
∑

S

Pξ(Y,S) =
∑

S

Pξ(Y,S)

Pξ0(S | Y)
Pξ0(S | Y)

= Eξ0

(

Pξ(Y, S)

Pξ0(S | Y)
| Y

)

= Pξ0(Y) Eξ0

(

Pξ(Y,S)

Pξ0(Y,S)
| Y

)

.

Thus we have

L(ξ)

L(ξ0)
=

Pξ(Y)

Pξ0(Y)
= Eξ0

(

Pξ(Y,S)

Pξ0(Y,S)
| Y

)

. (12)

If S
(τ), τ = 1, ..., N , are realized from Pξ0(·|Y) then the likelihood ratio can

be estimated by

1

N

N
∑

τ=1

(

Pξ(Y,S(τ))

Pξ0(Y,S(τ))

)

.

The form for linkage lod score that follows directly from equation (12)

is

L(β, γ1, ΛM )

L(β, γ0, ΛM )
= Eξ0

(

Pξ1(YT ,YM ,ST ,SM )

Pξ0(YT ,YM ,ST ,SM )
| YT ,YM

)

,

for two hypothesized trait locus positions γ1 and γ0. Now Pξ(Y,S) =

Pβ(YT |ST )PΛM
(YM ,SM )Pγ(ST |SM ), so the likelihood ratio reduces to

L(β, γ1, ΛM )

L(β, γ0, ΛM )
= Eξ0

(

Pγ1(ST | SM )

Pγ0(ST | SM )
| YT ,YM

)

. (13)

This provides a very simple estimator. Consider for example two hy-

pothesized trait locations γ0 and γ1 within the same marker interval from

marker j to j′. Then, for each meiosis i, we score whether or not there is

recombination between the trait and marker j, and independently between

the trait and marker j′, using the recombination fractions appropriate to

the two hypothesized locations γ0 and γ1:

Pγ1(ST | SM )

Pγ0(ST | SM )
=

m
∏

i=1

[

(

ρ1j

ρ0j

)|Si,T−Si,j | (1 − ρ1j

1 − ρ0j

)1−|Si,T −Si,j|

(

ρ1j′

ρ0j′

)|Si,T −Si,j′ |
(

1 − ρ1j′

1 − ρ0j′

)1−|Si,T −Si,j′ |
]

,
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where ρ0j is the recombination fraction between trait and marker j under

hypothesized trait location γ0, and the other recombination fractions have

the analogous interpretations.

This likelihood ratio estimator only works well when γ1 ≈ γ0,

but of course local likelihood-ratio estimates may be multiplied to

accumulate a likelihood ratio between more distant hypotheses. Al-

though this will require MCMC to be performed at numerous

points, the procedure works very well when likelihood surfaces are

smooth. This is the procedure implemented in our MORGAN package

(www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml)

in our first MCMC lod score estimation program lm lods [21]. However,

it does not work well for estimating multipoint location lod scores with

highly informative markers, because the likelihoods are not smooth across

markers, and because the distributions Pγ(ST | SM ) change abruptly as γ

crosses a marker location.

An alternative approach was provided by Lange and Sobel [15]. They

write the likelihood in the form

L(β, γ,ΛM ) = Pβ,γ,ΛM
(YM ,YT ) ∝ Pβ,γ,ΛM

(YT | YM )

=
∑

SM

Pβ,γ(YT | SM )PΛM
(SM | YM )

= EΛM
(Pβ,γ(YT | SM ) | YM ). (14)

This provides an MCMC estimator based on sampling realizations of SM ,

S
(τ)
M , τ = 1, ..., N , given YM . For each realization S

(τ)
M , Pβ,γ(YT |S

(τ)
M ) is

computed for each γ (and for each β) of interest. The MCMC here is quite

efficient in that it need be done once only for the fixed marker data and

marker model. Also, note that ST are never even realized, and that the

estimator integrates over ST

Pβ,γ(YT | S
(τ)
M )) =

∑

ST

Pβ(YT | ST )Pγ(ST | SM )

in a form of Rao-Blackwellization [5]. The computation is again accom-

plished by single-locus peeling, with meiosis-specific transition probabili-

ties determined by the realized inheritance vectors at neighboring markers.

Since YT is not used in the Monte Carlo, this estimator can perform quite

poorly when the trait data provide information on inheritance patterns and

P (SM |YM ) differs substantially from P (SM |YM , YT ) [21]. Also, although

the sampling procedure is much simpler than for the likelihood ratio esti-

mator (13), multiple peeling operations given each realized S
(τ)
M are required
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to implement the estimate. This is computationally intensive on complex

pedigrees. However, for simple pedigrees, and where there are substantial

marker data on the pedigree, relative to trait data, the method works well.

We have implemented the estimator (14) in our MORGAN package un-

der the name lm markers, so named because we use our LM-sampler for

the MCMC, and because sampling is based on the marker data and model

only.

Other authors ([10] for example) have developed fully Bayesian MCMC

approaches to the problem of linkage detection and estimation. These ap-

proaches permit the use of more complex trait models, which are sampled

over, with priors being placed on parameters β. In the current notation

samples are obtained from the posterior distribution πΛM
(β, γ,S | Y). Of

course, this does not produce a lod score, and from a likelihood perspective

there are at least three main problems. First, the typically multidimensional

parameter β is confounded with locations γ in the posterior distribution:

for a likelihood we wish to compare alternative γ under a fixed β. Second, γ

is typically treated as a continuous variable, with values binned in order to

present posterior probabilities, whereas likelihood is a pointwise function of

γ. Third, in sampling posterior probabilities, low-probability areas are not

of interest, but in estimating a likelihood ratio relative to the trait locus

being unlinked, we require good sampling both of the unlinked and linked

locations. This can be hard if either there is a strong positive linkage signal,

or a strong negative linkage signal.

In [6] we have developed an approach that retains some of the advan-

tages of the Bayesian method in sampling over trait locations, but which

avoids the above three problems. First we fix θ = (ΛM , β), so that our full

model is now ξ = (θ, γ). Next note that, for any prior distribution π(γ), for

the single parameter γ

πθ(γ|Y) ∝ Pθ(Y; γ) π(γ) so L(γ) ∝ πθ(γ|Y)/π(γ).

Thus a likelihood may be regained from the posterior. To estimate L(γ) at

a set of discrete locations, it is only necessary that the prior distribution

π(γ) has support consisting of precisely that set of points. Further, since

π(γ) is arbitrary, it is chosen to improve the Monte Carlo estimate of the

likelihood. In this sense it is a pseudo-prior [8]. We would like to choose this

pseudo-prior so that the posterior distribution is approximately a discrete

uniform over the set of positions γ.

Thus our sampling procedure implemented in our lm bayes program is

as follows:
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(1) To update (SM , ST ), use the block-Gibbs LM-sampler as before.

(2) To update γ, use a Metropolis-Hastings proposal γ∗, with integrated

acceptance probability depending only on SM (not on ST ).

(3) Update ST given (γ,SM ), using the new γ∗ if it was accepted.

(Steps (2) and (3) are equivalent to a joint update of (γ,ST ).)

Additionally, sequential imputation is used both to provide a starting con-

figuration and also for Metropolis-Hastings rejected restarts, as described

in section 5. To choose the prior, we use either estimates from another anal-

ysis, perhaps using each marker separately, or a uniform prior, to obtain a

preliminary estimate of the posterior, and an order-of-magnitude estimate

of the likelihood. Then the prior is readjusted, to be the inverse of this

preliminary likelihood estimate, in order that in the main run sampling is

approximately uniform across values of γ.

Suppose now we have MCMC realizations (γ(τ),S(τ)) from the posterior

given Y = (YM , YT ), τ = 1, ..., N . A crude estimator of the likelihood is

then

L̂(γ)1 = N−1
N

∑

τ=1

I(γ(τ) = γ)/π(γ),

but a better estimator is obtainable by Rao-Blackwellization:

L̂(γ)2 = N−1
N

∑

τ=1

g(S
(τ)
M , γ),

where

g(SM , γ) = Eπθ

(

I(γ)

π(γ)

∣

∣

∣

∣

SM ,Y

)

.

Note than the crude estimator is function of only of the realized γ(τ), while

the improved estimator is a function only of the realized S
(τ)
M .

Now we may compute this Rao-Blackwellized estimator:

g(SM , γ) = Eπθ

(

I(γ)

π(γ)

∣

∣

∣

∣

SM ,Y

)

=
Pθ(γ, | SM ,YM , YT )

π(γ)

=
Pθ(YT | SM ,YM , γ)Pθ(SM ,YM )π(γ)

π(γ)
∑

γ∗ Pθ(YT | SM ,YM , γ∗)Pθ(SM ,YM )π(γ∗)

=
Pθ(YT | SM , γ)

∑

γ∗ Pθ(YT | SM , γ∗)π(γ∗)
. (15)

We can see some close similarities between the estimator based on (15) and

that of equation (14). In both cases, for each realized S
(τ)
M , Pξ(YT |S

(τ)
M ) is
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computed for the given values of ΛM and β and for each γ of interest, using

the same integration over ST given the realized S
(τ)
M ). The major difference

is in the sampling, where instead of sampling only SM given only YM , sam-

pling is of (SM , γ) given (YM , YT ) at given β. The sampling of γ provides

for better mixing, as in the Bayesian approaches, while conditioning on the

trait data YT in sampling provides for a sampling distribution closer to the

ideal target.

8. An Illustrative Example

We present here a small example using simulated data. For a more extensive

study of performance on simulated data see [6]. For a study of real data,

using tightly linked marker loci, and a variety of extended pedigree struc-

tures, including complex pedigrees, see [7]. As in the example here, even

where exact computations are feasible, accurate Monte Carlo estimates of

the lod score can be obtained with far less CPU time [6, 7].

Data were simulated on a simple tree-structure pedigree of 52 individu-

als over 5 generations (Figure 10). Inheritance patterns at 10 marker loci,

equally spaced at 10 cM distances, and at a trait locus at the mid-point

between markers 5 and 6, were simulated. Each marker locus was assumed

to have only four alleles, with population frequencies 0.4, 0.3, 0.2, and 0.1.

The trait locus had two alleles, each with frequency 0.5. The 32 individuals

shaded dark in Figure 10 were assumed fully observed for marker and trait

information. The simple pedigree structure and limited number of alleles

at each marker were chosen to facilitate comparisons with exact compu-

tations. The program VITESSE [17] can compute exact lod scores on this

pedigree using no more than four markers. For the purposes of illustration

here, we use only markers 1, 4, 6 and 10 (M1, M4, M6, M10). The choice

of which individuals were observed was made to give an overall proportion

(60%) typical of real data on extended pedigrees, with unobserved indi-

viduals predominantly in the earlier generations. However, the choice was

made to have missing data on many recent parent individuals, making this

slightly more challenging for the MCMC methods.

The trait locus was used to define three different traits. First, and most

simply, is was assumed that the genotype at the trait locus was known for

the 32 observed individuals: the genotypic trait. Next a quantitative trait

was created by assuming the three trait genotypes gave rise to observations

with mean 90.0, 100.0 and 110.0 respectively, with each observation having

an independent additive residual with variance 25.0. Finally, the quantita-
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Fig. 10. Pedigree with 52 members. The 32 shaded individuals are assumed observed

for simulated trait and marker data.

tive trait was dichotomized, with individuals with quantitative trait values

over 98.0 being denoted “affected”, and the remainder of the 32 observed

individuals “unaffected”. We refer to this affected/unaffected classification

as the (dichotomized) phenotypic trait. In the analysis model we used the

simulation values for all the trait and marker model parameters. For the

phenotypic trait, we used the approximate empirical values 0.05, 0.6, 0.95

for the probability that an individual of each of the three trait genotypes

would be observed as “affected”.

We have seen three methods for MCMC estimation of location

lod scores, each of which is implemented in the package MORGAN

(www.stat.washington.edu/thompson/Genepi/MORGAN/Morgan.shtml).

The likelihood-ratio method (equation (12)) is implemented in our older

MORGAN program lm lods, the Lange-Sobel estimator (equation (14))

is implemented in lm markers, and our new pseudo-Bayes estimator in

lm bayes. The prefix “lm” on each program indicates that the MCMC in

each case uses the LM-sampler. For the genotypic and phenotypic traits,

location lod scores were estimated using all three programs. As yet, a quan-
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titative trait is implemented only for the program lm markers. Lod scores

were estimated at approximately equally spaced locations in the map; 8

locations between M1 and M4, 5 between M4 and M6, and 11 between M6

and M10. Additionally, lod scores were estimated at 5 locations at each

end of the map, two quite close to each end marker (M1 and M10) and

the others ranging out to about 110 cM from the markers. Together with

the unlinked location, this provides 35 locations at which likelihoods or

likelihood ratios are to be estimated.

For each program, an L-sampler probability of 0.2 was used, and there

were 150 scans of burn-in. All runs were quite short: for lm markers, 3000

MCMC scans were used, for lm bayes the preliminary run was 1500 scans,

and the main run 3000 scans, and for lm lods only 300 scans were used at

each of the 35 evaluation points. For these short runs, results were obtained

in about 1 minute of CPU for each of the three programs, for the genotypic

trait, and in 3, 5 and 8.5 minutes respectively for lm markers, lm bayes,

and lm lods, for the dichotomized phenotypic trait. For the quantitative

trait, lm markers took 2 minutes. In a study of real data, substantially

longer runs would be used. Location lod scores were also computed at 16

positions within the marker map including the four marker positions using

VITESSE [17]. For each of the three traits, these runs took of the order of

several hours CPU on a comparable computer (Joe Rothstein: pers. comm.).

The computed VITESSE lods scores and the MCMC estimates for each of

the three traits are shown in Figure 11.

For the genotypic trait, we see the lod score is very well estimated by

lm markers and even better by lm bayes, except right at the markers. In

fact we do not attempt to estimate at marker locations: our closest positions

are 3cM from each marker. Moreover, at M1 and at M10 the true lod score

is −∞, which clearly cannot be estimated by MCMC. The lm lods program

provides a less accurate but still adequate estimate. Note in particular that

the shape within each marker interval is well estimated, but that this ap-

proach has difficulties in estimating across marker boundaries (Section 7).

For both genotypic and quantitative trait, the lod score is apparently max-

imized at M6, which is not surprising given the true trait location 5cM to

the left of M6. The quantitative trait provides less information for linkage,

but not much less: the main difference is that lod scores at marker locations

are no longer −∞, and indeed the lod score remains high at M10. Again,

lm markers provides an accurate estimate of the location lod score, given

the fact that it is based on only 3,000 MCMC scans. For the phenotypic

trait, there is little information for linkage, and in fact the maximum lod
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Fig. 11. Location lod scores for example pedigree, providing comparisons of MCMC-

based estimates using lm markers (MK), lm lods (LD), and lm bayes (BS) with exact

results using VITESSE (VT). The top graph compares results for the genotypic trait

(Ge), the center for the quantitative trait (Qu), and the bottom for the dichotomized

phenotypic trait (Ph).
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score of under 1.0 is at M10. Again, the program lm markers does an ex-

cellent job, and lm bayes an even better one. The lm lods curve shown is a

poor estimate, and the lm lods MCMC has clearly remained stuck in a part

of the space corresponding to the (now) unobserved trait genotypes. Other

lm lods runs (not shown) provided better results, but the results varied

widely over runs. Reliable estimation using the lm lods estimator requires

far more MCMC.

9. Conclusion

On large pedigrees with data at multiple linked loci, and with substantial

amounts of missing data, exact computation of probabilities and likelihoods

is infeasible. Although feasible in principle, sampling of latent inheritance

patterns given genetic data remains a challenging MCMC problem for these

problems. Likelihood and lod score estimators can be based on latent in-

heritance patterns realized using MCMC, but it is important to have good

estimators as well as good samplers. Lod scores based on multiple markers

provide additional information on gene localization: this improved estima-

tion is important for localizing the genes of complex traits. With good

MCMC samplers and good estimators, real-time MCMC estimation of mul-

tipoint lod scores for a trait locus position is both feasible and practical.

Even when exact computation is feasible, MCMC can provide an accurate

result with far less computational effort.
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sequential Monte Carlo, 153
shift register, 60
Siegmund duality, 131
signal processing, 172
simple random sampling, 164
(SIS) step, 155
slice sampler CFTP, 115
slow moving condition, 150
small set, 111
small-set CFTP, 114
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SNP, xviii
specific heat, xvi, 46
spectral density, 20
spin, xiv
standard deviation, 4, 11
stochastic dynamic system, 149
stochastic volatility models, 174
stratified sampling, 165
student difference test, 14
student distribution, 13
supercritical slowing down, xvi, 42
swap moves, 130
Swendsen-Wang approach, 73
synchronous coupling, 100

target tracking, 169

Tausworthe algorithm, 60
transition matrix, 22

uniform ergodicity, 122
uniform probability distribution, 3
unscented particle filter, 159
user-interruptibility, 132

variance, 4
vertical coalescence, 122

Wang-Landau recursion, 44
“Wang-Landau” sampling, 82
Widom-Rowlinson model, 107
Wolff dynamics, 74
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