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Preface

The aim of this book is to show that the nonparametric regression can be successfully applied to system
identification and how much can be achieved in this way. It gathers what has been done in the area so far,
presents main ideas, results, and some new recent developments.

The study of nonparametric regression estimation began with works published by Cencov, Watson, and
Nadaraya in the early sixties of the past century. The history of nonparametric regression in system identifica-
tion began about ten years later. Such methods have been applied to the identification of composite systems
consisting of nonlinear memoryless systems and linear dynamic ones. Therefore the approach is strictly con-
nected with so called block-oriented methods developed at least since Narendra and Gallman work published
in 1966. Hammerstein and Wiener structures are most popular and have received the greatest attention
with numerous applications. Fundamental for nonparametric methods is the observation that the unknown
characteristic of the nonlinear subsystem or its inverse can be represented as regression functions.

In terms of the a priori information, standard identification methods and algorithms work when it is
parametric, i.e., when our knowledge about the system is rather large, e.g., when we know that the nonlinear
subsystem has a polynomial characteristic. In this book, the information is much smaller, nonparametric.
The mentioned characteristic can be, e.g., any integrable or bounded or, even, any Borel function.

It can thus be said that this book associates block oriented system identification with nonparametric
regression estimation, shows how to identify nonlinear subsystems, i.e., to recover their characteristics when
the a priori information is small. Owe to this, the approach should be of interest not only for researchers
but also for people interested in applications.

Chapters 2–7 are devoted to discrete-time Hammerstein systems. Chapter 2 presents the basic ideas
behind nonparametric methods. The kernel algorithm is presented in Chapter 3, its semirecursive versions
are examined in Chapter 4 while Chapter 5 deals with fully recursive modifications derived from the idea
of stochastic approximation. Then, next chapter is on the orthogonal series method. Algorithms using
trigonometric, Legendre, Laguerre and Hermite series are investigated. Some place is devoted to estimation
methods based on wavelets. Algorithms based on ordered observations are presented and examined in
Chapter 7. Chapter 8 discusses the algorithms when applied to continuous-time systems.

The Wiener system is identified in Chapters 9–11. Chapter 9 presents the motivation for nonparametric
algorithms which are studied in the next two chapters devoted to the discrete and continuous-time Wiener
systems, respectively. Chapter 12 is concerned with the generalization of our theory to other block-oriented
nonlinear systems. This includes, among others, parallel models, cascade-parallel models, sandwich models,
and generalized Hammerstein systems possessing local memory. In Chapter 13 the multivariate versions
of block-oriented systems are examined. The common problem of multivariate systems, i.e., the curse of
dimensionality is cured by using low-dimensional approximations. With respect to this issue models of
the additive form are introduced and examined. In Chapter 14 we develop identification algorithms for
a semiparametric class of block-oriented systems. Such systems are characterized by a mixture of finite
dimensional parameters and nonparametric functions, this normally being a set of univariate functions.

The reader is encouraged to look into appendices in which fundamental information about tools used in
the book is presented in detail. Appendix A is strictly related to kernel algorithms while B is tied with the
orthogonal series ones. Appendix C recalls some facts from probability theory and presents results from the
theory of order statistics used extensively in Chapter 7.

Over the years, our work has benefited greatly from the advice and support of a number of friends and
colleagues with interest in ideas of non-parametric estimation, pattern recognition and nonlinear system
modeling. There are too many names to list here, but special mention is due to Adam Krzyżak, as well
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as Danuta Rutkowska, Leszek Rutkowski, Alexander Georgiev, Simon Liao, Pradeepa Yahampath, Vu-Luu
Nguyen and Yongqing Xin our past Ph.D. students, now professors at universities in Canada, the United
States, and Poland. Cooperation with them has been a great pleasure and given us a lot of satisfaction. We
are deeply indebted to Zygmunt Hasiewicz, Ewaryst Rafaj lowicz, Uli Stadtmüller, Ewa Rafaj lowicz, Hajo
Holzmann, Andrzej Kozek who have contributed greatly to our research in the area of nonlinear system
identification, pattern recognition, and nonparametric inference.
Finally, but by no means least, we would like to thank Mount-first Ng for helping us with a number of
typesetting problems. Ed Shwedyk and January Gnitecki have provided support for correcting English
grammar.
We also thank Ms. Anna Littlewood, from Cambridge Press, for being a very supportive and patient editor.
Research presented in this monograph was partially supported by research grants from Wroc law University
of Technology, Wroc law, Poland and NSERC of Canada.

Wroc law, Winnipeg W lodzimierz Greblicki, Miro lsaw Pawlak
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Chapter 1

Introduction

System identification, as a particular process of statistical inference, exploits two types of information. The
first is experiment, the other, called a priori, is known before making any measurements. In a wide sense, the
a priori information concerns the system itself and signals entering the system. Elements of the information
are, e.g.:

• the nature of the signals which may be random or nonrandom, white or correlated, stationary or not,
their distributions can be known in full or partially (up to some parameters) or completely unknown,

• general information about the system which can be, e.g., continuous or discrete in the time domain,
stationary or not,

• the structure of the system which can be of the Hammerstein or Wiener type, or other,

• the knowledge about subsystems, i.e., about nonlinear characteristics and linear dynamics.

In other words, the a priori information is related to the theory of the phenomena taking place in the
system (a real physical process) or can be interpreted as a hypothesis (if so, results of the identification
should be necessarily validated) or can be abstract in nature.

This book deals with systems consisting of nonlinear memoryless and linear dynamic subsystems, i.e.,
Hammerstein and Wiener ones. With respect to them the a priori information is understood in a narrow
sense since it relates to the subsystems only and concerns the a priori knowledge about their descriptions.

The characteristic of the nonlinear subsystem is recovered with the help of nonparametric regression
estimates. The kernel and orthogonal series methods are used. Ordered statistics are also applied. Both
off-line and on-line algorithms are investigated. We examine only these estimation methods and nonlinear
models for which we are able to deliver fundamental results in terms of consistency and convergence rates.
There are techniques, e.g., neural networks, which may exhibit a promising performance but their statistical
accuracy is mostly unknown.

For the nonparametric regression as such the reader is referred to Györfi , Kohler, Krzyżak and Walk [204],
Härdle [219], Prakasa Rao [340], Simonoff [388] or Wand and Jones [425]. Wavelet estimates are discussed
in Walter [424].

Parametric methods are beyond the scope of this book, nevertheless, we mention Brockwell and Davies
[38], Ljung [288], Norton [315], Zhu [451] or Söderstrom and Stoica [391].

Nonlinear system identification within the parametric framework is studied by Nells [312], Westwick
and Kearney [432] , Marmarelis and Marmarelis [299], and Bendat [18]. A comprehensive list of references
concerning nonlinear system identification and applications has been given by Giannakis and Serpendin [120].
A modern statistical inference for nonlinear time series is presented in Fan and Yao [105].

It should be stressed that nonparametric and parametric methods are supposed to be applied in different
situations. The first are used when the a priori information is nonparametric. Clearly, in such a case,
parametric ones can only approximate, but not estimate, the unknown characteristics. When the information
is parametric, parametric methods are the natural choice. If, however, the unknown characteristic is a
complicated function of parameters convergence analysis gets difficult and. Moreover, serious computational
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4 CHAPTER 1. INTRODUCTION

problems can occur. In such circumstances one can resort to nonparametric algorithms since, from the
computational viewpoint, they are not discouraging. On the contrary, they are simple but, however, consume
computer memory, since, e.g., kernel estimates require all data to be stored. Nevertheless it can be said that
the two approaches do not compete with each other since they are designed to be applied in quite different
situations. The situations differ from each other by the amount of the a priori information about the
identified system. A compromise between these two separate worlds can be, however, made by restricting
a class of nonparametric models to such which consist of a finite dimensional parameter and nonlinear
characteristics which run through a nonparametric class of univariate functions. Such semiparametric models
can be efficiently identified and the theory of semiparametric identification is examined in this book.

For two number sequences an and bn, an = O(bn) means that an/bn is bounded in absolute value as
n→∞. In particular, an = O(1) denotes that an is bounded, i.e., that supn |an| <∞. Writing an ∼ bn we
mean that an/bn has a nonzero limit as n→∞.

Throughout the book, “almost everywhere” means “almost everywhere with respect to the Lebesgue
measure” while “almost everywhere (µ)” means “almost everywhere with respect to the measure µ”.



Chapter 2

Discrete-time Hammerstein systems

2.1 The system

A Hammerstein system, shown in Fig. 2.1, consists of a nonlinear memoryless subsystem with a characteristic
m followed by a linear dynamic one with an impulse response λn. The output signal Wn of the linear part
is disturbed by Zn and Yn = Wn + Zn is the output of the whole system. Neither Vn nor Wn are available
to measurement. Our goal is to identify the system, i.e., to recover both m and λn, from observations

(U1, Y1) , (U2, Y2) , . . . , (Un, Yn) , . . . (2.1)

taken at the input and output of the whole system.
Signals coming to the system, i.e., the input {. . . , U−1, U0, U1, . . .} and disturbance {. . . , Z−1, Z0, Z1, . . .}

are mutually independent stationary white random signals. The disturbance has zero mean and finite
variance, i.e., EZn = 0 and var [Zn] = σ2

Z <∞.
Regarding the nonlinear subsystem we assume that m(•) is a Borel measurable function. Therefore, Vn

is a random variable. The dynamic subsystem is described by the state equation{
Xn+1 = AXn + bVn

Wn = cTXn,
(2.2)

where Xn is a state vector at time n, A is a matrix, b and c are vectors. Thus

λn =

{
0, for n = 0,−1,−2, . . .
cTAn−1b, for n = 1, 2, 3, . . .

and

Wn =
n∑

i=−∞
λn−im(Ui). (2.3)

Neither b nor c is known. The dimension of A and A itself are also unknown. Nevertheless the matrix A is
stable, all its eigenvalues lie in the unit circle. Therefore assuming that

Em2(U) <∞, (2.4)

Zn

YnUn WnVn

{λn}m(•)

Figure 2.1: The discrete-time Hammerstein system.
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6 CHAPTER 2. DISCRETE-TIME HAMMERSTEIN SYSTEMS

the time index at U is dropped, we conclude that bothXn as well asWn are random variables. Clearly random
processes {. . . , X−1, X0, X1, . . .} and {. . . ,W−1,W0,W1, . . .} are stationary. Consequently the output process
{. . . , Y−1, Y0, Y1, . . .} is also a stationary stochastic process. Therefore, the problem is well posed in the sense
that all signals are random variables. In the light of this we estimate both m(•) and {λn} from random
observations (2.1).

Above restrictions imposed on the signals entering the system and both subsystems apply whenever the
Hammerstein system is concerned. They will not be repeated in further considerations, neither lemmas nor
theorems.

Input random variables Un’s may have a probability density denoted by f(•) or may be distributed quite
arbitrarily. Nevertheless (2.4) holds. It should be emphasized that, apart from few cases, (2.4) is the only
restriction, the nonlinearity is involved in.

Assumption (2.4) is irrelevant to identification algorithms and has been imposed for only one reason,
to guarantee that both Wn and Yn are random variables. Nevertheless it certainly has an influence on the
restrictions imposed on both m(•) and the distribution of U to meet (2.4). If, e.g., U is bounded, (2.4) is
satisfied for any m(•). The restriction also holds, if EU2 < ∞ and |m(u)| ≤ α + β|u| with any α, β. In
yet another example EU4 < ∞ and |m(u)| ≤ α + βu2. For Gaussian U and |m(u)| ≤ W (u), where W
is an arbitrary polynomial, (2.4) is also met. Anyway the a priori information about the characteristic is
nonparametric since m(•) can’t be represented in a parametric form. This is because the fact that the class
of all possible characteristics is very wide.

The family of all stable dynamic subsystems also can’t be parameterized, since its order is unknown.
Therefore the a priori information about the impulse response is nonparametric, too. Concluding we infer
about both subsystems under nonparametric a priori information.

In the following chapters, for simplicity, U,W, Y, and Z stand for Un,Wn, Yn, and Zn, respectively.

2.2 Nonlinear subsystem

2.2.1 The problem and the motivation for algorithms

Fix p ≥ 1 and observe that, since Yp = Zp +
∑p
i=−∞ λp−im (Ui) and {Un} is a white process,

E {Yp|U0 = u} = µ(u),

where
µ(u) = λpm (u) + αp

with αp = Em(U)
∑∞
i=1,i6=p λi. Estimating the regression E {Yp|U0 = u} we thus recover m(•) up to some

unknown constants λp and αp. If Em(U) = 0, which is the case, e.g., when the distribution of U is
symmetrical with respect to zero and m(•) is an even function then αp = 0 and we estimate m(•) only up
to the multiplicative constant λp.

Since Yp+n = µ(Un)+ξp+n+Zp+n with ξp+n =
∑p+n
i=−∞,i6=n λp+n−im(Ui), it can be said that we estimate

µ(u) from pairs
(U0, Yp), (U1, Yp+1), . . . , (Un, Yp+n), . . .

and that the regression µ(u) is corrupted by the noise Zp+n + ξp+n. The first component of noise is white
with zero mean. Because of dynamics the other noise component is correlated. Its mean Eξn = αp is usually
nonzero and the variance is equal to var[m(U)]

∑∞
i=1,i6=p λ

2
i . Thus main difficulties in the analysis of any

estimate of µ(•) are caused by the correlation of {ξn}, i.e., the system itself but not by the white disturbance
Zn coming from outside.

Every algorithm estimating the nonlinearity in Hammerstein systems studied in this book, the estimate
is denoted here as µ̂(U0, . . . , Un;Yp, . . . , Yp+n), is linear with respect to output observations which means
that

µ̂(U0, . . . , Un; θp + ηp, . . . , θp+n + ηp+n) = µ̂(U0, . . . , Un; θp, . . . , θp+n) + µ̂(U0, . . . , Un; ηp, . . . , ηp+n) (2.5)

and has a natural property that, for any number θ,

µ̂(U0, . . . , Un; θ, . . . , θ)→ θ as n→∞ (2.6)
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Zn

YnUn Wn
ρ

Vn

{λn}
Sn

β

Figure 2.2: The equivalent Hammerstein system.

in an appropriate stochastic sense. This property, or rather its consequence, is exploited when proving
consistency. To explain this observe that, with respect to Un and Yn, the identified system shown in Fig. 2.1
is equivalent to that in Fig. 2.2 with nonlinearity ρ(u) = m(u) − Em(U) and an additional disturbance
β = Em(U)

∑∞
i=1 λi. In the equivalent system, Eρ(U) = 0 and E{Yp|U0 = u} = µ(u). From (2.5) and (2.6),

it follows that

µ̂(U0, . . . , Un;Yp, . . . , Yp+n) = µ̂(U0, . . . , Un;Sp + β, . . . , Sp+n + β)
= µ̂(U0, . . . , Un;Sp, . . . , Sp+n) + µ̂(U0, . . . , Un;β, . . . , β)

with µ̂(U0, . . . , Un;β, . . . , β)→ β as n→∞. Hence if

µ̂(U0, . . . , Un;Sp, . . . , Sp+n)→ E{Sp|U0 = u}, as n→∞,

we have
µ̂(U0, . . . , Un;Yp, . . . , Yp+n)→ E{Yp|U0 = u}, as n→∞,

where convergence is understood in the same sense as that in (2.6).
Thus if the estimate recovers the regression E{Sp|U0 = u} from observations

(U0, Sp), (U1, S1+p), (U2, S2+p), . . . ,

it also recovers E{Yp|U0 = u} from

(U0, Yp), (U1, Y1+p), (U2, Y2+p), . . . .

We can say that if the estimate works properly when applied to the system with input Un and output Sn
(in which Eρ(U) = 0) it behaves properly also when applied to the system with input Un and output Yn (in
which Em(U) may be nonzero).

The result of the reasoning is given in the following remark:

Remark 2.1 Let an estimate have properties (2.5) and (2.6). If the estimate is consistent for Em(U) = 0,
then it is consistent for Em(U) 6= 0, too.

Owing to the remark, with no loss of generality, in all proofs of consistency of algorithms recovering the
nonlinearity we assume that Em(U) = 0.

In parametric problems the nonlinearity is usually a polynomial m(u) = α0 +α1u+ · · ·+αqu
q of a fixed

degree with unknown true values of parameters α0, . . . , αq. Therefore to apply parametric methods we must
have a great deal more a priori information about the subsystem. It seems that in many applications, it is
impossible to represent m(•) in a parametric form.

Since the system with the following ARMA type difference equation:

wn + ak−1wn−1 + · · ·+ a0wn−k = bk−1m(un−1) + · · ·+ b0m(un−k)

can be described by (2.2), all presented methods can be used to recover the nonlinearity m(•) in the above
ARMA system.

It will be convenient to denote
φ(u) = E

{
W 2
p |U0 = u

}
. (2.7)
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Zn

YnUn
{λn}m(•)

ξn

Figure 2.3: Possible generalization of the system shown in Fig. 2.1.

Figure 2.4: The characteristic m and 200 pairs of input-utput observations; a = 0.5.

Since Wp =
∑p−1
i=−∞ λim(Ui), denoting c0 = Em2(U)

∑∞
i=1,i6=p λ

2
i +E2m(U)(

∑∞
i=1,i6=p λi)

2, c1 = 2λpEm(U)∑∞
i=1,i6=p λi, and c2 = λ2

p, we find
φ (u) = c0 + c1m(u) + c2m

2(u).

To avoid complicated notation we do not denote explicitly the dependence of the estimated regression and
other functions on p and simply write µ(•) and φ(•).

Results presented in further chapters can be easily generalized on the system shown in Figure 2.3 where
{. . . , ξ0, ξ1, ξ2, . . .} is another zero mean noise. Moreover, {Zn} can be correlated, i.e., it can be the output
of a stable linear dynamic system stimulated by white random noise. So can {ξn}.

2.2.2 Simulation example

In chapters devoted to the Hammerstein system the behavior of the identification algorithms presented in
this book is illustrated with results of simulation examples. In all examples the system is described by the
following scalar equation:

Xn+1 = aXn +m(Un),

where
m(u) = (1− e−|u|) sign(u),

see Fig. 2.4. The input signal has a normal density with zero mean and variance 1. In all algorithms p = 1
which means that µ(u) = m(u). For a = 0.5 an example of a cloud of 200 input-output observations we infer
from is presented in Fig. 2.4. The quality of each estimate, denoted here by m̂(u), is measured with

MISE =
∫ 3

−3

(m̂(u)−m(u))2du.

2.3 Dynamic subsystem identification

Passing to the dynamic subsystem we use (2.3) and recall EZn = 0 to notice E {YiU0} =
∑i
j=−∞ λi−jE {m(Ui)U0} =

λiE{m(U)U}. Denoting κi = λiE {Um(U)} we obtain

κi = E {YiU0}
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which can be estimated in the following way:

κ̂i =
1
n

n−i∑
j=1

Yi+jUj .

Theorem 2.1 For any i,
lim
n→∞

E(κ̂i − κi)2 = 0.

Proof. The estimate is unbiased, i.e., Eκ̂i = E{YiU0} = κi. Moreover, var [κ̂i] = Pn +Qn +Rn with

Pn =
1
n2

var

 n∑
j=1

Zi+jUj

 =
1
n2

n∑
j=1

var [Zi+jUj ] =
1
n
σ2
ZEU

2,

Qn =
1
n

var [WiU0] ,

and

Rn =
1
n2

n∑
j=1

n∑
j=1,j 6=i

cov [Wi+jUj ,Wi+mUm]

=
1
n2

n∑
j=1

(n− j) cov [Wi+jUj ,WiU0] .

Since Wi =
∑i
j=−∞ λi−jm(Uj), Qn = n−1λ2

i var [m(U)U ]. For the same reason, for j > 0,

cov [Wi+jUj ,WiU0] =
i+j∑

p=−∞

i∑
q=−∞

λi+j−pλi−q cov
[
m(Up)Uj ,m(Uq)U0

]
= E2{Um(U)}λi+jλi−j

see Lemma C.3, which leads to

|Rn| ≤
1
n2
E2{Um(U)}

n∑
j=1

(n− j)|λi+jλi−j | ≤
1
n
E2{Um(U)}max

s
|λs|

∞∑
j=1

|λj |.

Thus

E(κ̂i − κi)2 = var [κ̂i] = O

(
1
n

)
(2.8)

which completes the proof.
The theorem establishes convergence of the local error E(κ̂i − κi)2 to zero as n→∞. As an estimate of

the whole impulse response {κ1, κ2, κ3, . . .} we take a sequence {κ̂1, κ̂2, κ̂3, . . . , κ̂N(n), 0, 0, . . .} and find the
mean summed square error (MSSE for short) equal to

MSSE(κ̂) =
N(n)∑
i=1

E(κ̂i − κi)2 +
∞∑

i=N(n)+1

κ2
i .

From (2.8), it follows that the error is not greater than

O

(
N(n)
n

)
+

∞∑
i=N(n)+1

κ2
i .

Therefore if N(n)→∞ as n→∞ and N(n)/n→ 0 as n→∞,

lim
n→∞

MSSE(κ̂) = 0.
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2.4 Bibliographic notes

Various identification algorithms have been studied by Narendra and Gallman [310], Haist, Chang and
Luus [207], Thatchachar and Ramaswamy [401], Kaminskas [249], Gallman [109], Billings [22], Billings
and Fakhouri [23, 29], Shih and Kung [385], Kung and Shih [272], Liao and Sethares [283], Verhaegen
and Westwick [413], Giri, Chaoui, and Rochidi [121]. The analysis of such systems and, in particular,
Hammerstein ones, useful for identification can be found in Brillinger [36] and Bendat [18].

Sometimes results concerning Hammerstein systems are given, however not explicitly, in works devoted to
more complicated Hammerstein-Wiener or Wiener-Hammerstein structures, see, e.g., Gardiner [111], Billings
and Fakhouri [26, 28], Fakhouri, Billlings and Wormald [102], Hunter and Korenberg [240], Korenberg and
Hunter [254], Emara-Shabaik, Moustafa and Talaq [92], Boutayeb and Darouach [32], Vandersteen, Rolain
and Schoukens [408], Zhu [452].

The nonparametric approach offers a number of algorithms to recover the characteristic of the nonlinear
subsystem. The most popular kernel estimate can be used in the off-line version, see Chapter 3, semire-
cursive, Chapter 4, or fully recursive forms, Chapter 5. Orthogonal series algorithms, see Chapter 6, apply
trigonometric, Legendre, Laguerre, Hermite functions or wavelets. Both classes of estimates can be modified
to use ordered input observations, Chapter 7, which makes them insensitive to the roughness of the input
density.

The Hammerstein model has been used in various and diverse areas. Eskinat, Johnson and Luyben [97]
applied it to describe processes in distillation columns and heat exchangers. The hysteresis phenomenon
in ferrites was analyzed by Hsu and Ngo [237], pH processes by Patwardhan, Lakshminarayanan and Shah
[322], a biological system was studied by Hunter and Korenberg [240], Emerson, Korenberg and Citron [93]
described some neuronal processes .



Chapter 3

Kernel algorithms

The kernel algorithm is just the kernel estimate of a regression function, the most popular and very convenient
from the computational viewpoint. In Section 3.1, an intuitive motivation for the algorithm is presented and
in the next section its pointwise consistency is shown. Some results hold for any input signal density, i.e.,
are density-free, some, are even distribution-free, i.e., they hold for any distribution of the input signal. In
Section 3.3 the attention is focused on the applicable kernel function. The convergence rate is studied in
Section 3.4.

3.1 Motivation

It is obvious that

lim
h→0

1
2h

∫ u+h

u−h
µ(v)f(v)dv = µ(u)f(u)

at every continuity point u ∈ R of both m(•) and f(•), since µ(u) = λpm(u) + αp. As the formula can be
rewritten in the following form:

lim
h→0

∫
µ(v)f(v)

1
h
K

(
u− v
h

)
dv = µ(u)f(u), (3.1)

where

K(u) =


1
2
, for |u| < 1

0, otherwise,
(3.2)

is the rectangular, sometimes called window, kernel, see Fig. 3.1, one can expect that the convergence holds
also for other kernel functions. This expectation is justified by the fact that, for a suitably selected K(•),

1
h
K

(
u− v
h

)
gets close to the Dirac impulse δ((•)) located at the point u and that∫

µ(v)f(v)
1
h
K

(
u− v
h

)
dv

converges to
∫
µ(v)f(v)δ(u− v)dv = µ(u)f(u) as h→ 0.

Because µ(u) = E {Yp|U0 = u} we get∫
µ(u)f(v)

1
h
K

(
u− v
h

)
dv =

1
h

∫
E {Yp|U0 = v}K

(
u− v
h

)
f(v)dv

=
1
h
E

{
YpK

(
u− U0

h

)}
11
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Figure 3.1: Rectangular kernel (3.2).

which suggests the following estimate of µ(u)f(u):

1
nh

n∑
i=1

Yp+iK

(
u− Ui
h

)
.

For similar reasons
1
nh

n∑
i=1

K

(
u− Ui
h

)
is a good candidate for an estimate of ∫

f(v)
1
h
K

(
u− v
h

)
dv

which converges to f(u) as h→ 0. Thus

µ̂(u) =

n∑
i=1

Yp+iK

(
u− Ui
hn

)
n∑
i=1

K

(
u− Ui
hn

) (3.3)

with hn tending to zero, is a kernel estimate of µ(u). The parameter hn is called a bandwidth. Note that
the above formula is of the ratio form and we always treat the case 0/0 as 0.

In the light of this, crucial problems are the choice of the kernel K(•) and the number sequence {hn}.
From now on, we denote g(u) = µ(u)f(u).

It is worth mentioning that there are wide range of kernel estimates [104, 204, 245] available for finding
a curve in data. The most prominent are: the classical Nadaraya-Watson estimator, defined in (3.3) ,
local linear and polynomial kernel estimates, convolution type kernel estimates, and various recursive kernel
methods. Some of these techniques will be thoroughly examined in this book.

3.2 Consistency

On the kernel function, the following restrictions are imposed:

sup
−∞<u<∞

|K(u)| < ∞, (3.4)∫
|K(u)|du < ∞, (3.5)

|u|1+εK(u) → 0 as |u| → ∞ (3.6)

where the parameter ε ≥ 0 controls the tail decay of the kernel function. The sequence {hn} of positive
numbers is such that

hn → 0 as n→∞, (3.7)
nhn → ∞ as n→∞. (3.8)

Convergence results presented in Theorems 3.1 and 3.2 are density-free since the density f of the input
signal can be of any shape. The proof is given is Section 3.7.1.
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Theorem 3.1 Let U have a density f(•) and let Em2(U) < ∞. Let the Borel measurable kernel K(•)
satisfy (3.4), (3.5) and (3.6) with ε = 0. Let the sequence {hn} satisfy (3.7) and (3.8). Then

µ̂(u)→ µ(u) as n→∞ in probability (3.9)

at every u ∈ R where both m(•) and f(•) are continuous and f(u) > 0.

Taking Remark A.2 into account and arguing as in the proof of Theorem 3.1 we easily obtain the result
given in the following remark.

Remark 3.1 Let U have a probability density f(•) such that supu |f(u)| < ∞. Let supu |m(u)| < ∞. Let
the Borel measurable kernel satisfy (3.4) and (3.5). If, moreover, (3.7) and (3.8) hold, then convergence
(3.9) takes place at every u where both m(•) and f(•) are continuous and f(u) > 0.

The next theorem is the “almost everywhere” version of Theorem 3.1. The restriction imposed on the
kernel and number sequence are the same as in Theorem 3.1 with the only exception that (3.6) holds with
some ε > 0 but not with ε = 0.

Theorem 3.2 Let U have a probability density f(•) and let Em2(U) <∞. Let the Borel measurable satisfy
(3.4), (3.5), and (3.6) with some ε > 0. Let the sequence {hn} of positive numbers satisfy (3.7) and (3.8).
Then convergence (3.9) takes place at every Lebesgue point u ∈ R of both m(•) and f(•) where f(u) > 0,
and, a fortiori, at almost every u where f(u) > 0, i.e., at almost every u belonging to support of f(•).

Proof. The proof is very much like that of Theorem 3.1. The difference is that we apply Lemma A.9 rather
than Lemma A.8.

The algorithm converges also when the input signal has not a density, when the distribution of U is of
any shape. The proof of the theorem is in Section 3.7.1.

Theorem 3.3 Let Em2(U) <∞. Let H(•) be a nonnegative nonincreasing Borel function defined on [0,∞),
continuous and positive at t = 0 and such that

tH(t)→ 0 as t→∞.

Let, for some c1 and c2,
c1H(|u|) ≤ K(u) ≤ c2H(|u|).

Let the sequence {hn} of positive numbers satisfy (3.7) and (3.8). Then convergence (3.9) takes place at
almost every (ζ) u ∈ R, where ζ is the probability measure of U .

Restrictions (3.7) and (3.8) are satisfied by a wide class of number sequences. If hn = cn−δ with c > 0,
they are satisfied for 0 < δ < 1. The problem of kernel selection is discussed in Section 3.3.

3.3 Applicable kernels

In Theorems 3.1 and 3.2, U has a probability density denoted by f(•). The first theorem establishes
convergence at every u where m(•) and f(•) are continuous and, moreover, f(u) > 0. The other does it for
every Lebesgue point of both m(•) and f(•), i.e., for almost every (with respect to the Lebesgue measure) u
where f(u) > 0, i.e., at almost every (ζ) point. In Theorem 3.3 the kernel satisfies restrictions (3.4), (3.5),
and (3.6) with ε = 0. In Theorems 3.1 and 3.2 (3.6) holds with ε > 0.

If both m(•) and f(•) are bounded and continuous, we can apply kernels satisfying only (3.4) and (3.5),
see Remark 3.1. In Theorem 3.3, U has an arbitrary distribution, which means that it may not have a
density.

In the light of this to achieve convergence at Lebesgue points and, a fortiori, continuity points, we can
apply the following kernel functions:

• rectangular kernel (3.2),
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Figure 3.2: Gauss-Weierstrass kernel (3.10).

Figure 3.3: Fejér kernel (3.11).

• the triangle kernel

K(u) =

{
1− |u|, for |u| < 1
0, otherwise,

• the parabolic kernel

K(u) =


3
4
(
1− u2

)
, for |u| < 1

0, otherwise,

• the Gauss-Weierstrass kernel, see Fig. 3.2,

K(u) =
1√
2π
e−u

2/2, (3.10)

• the Poisson kernel
K(u) =

1
π

1
1 + u2

,

• the Fejér kernel, see Fig. 3.3,

K(u) =
1
π

sin2 u

u2
, (3.11)

• the Lebesgue kernel

K(u) =
1
2
e−|u|.

All satisfy (3.4), (3.5), and (3.6) for some ε > 0. The kernel

K(u) =


1
4e
, for |u| ≤ e

1
4|u| ln2 |u|

, otherwise,
(3.12)
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Figure 3.4: Kernel (3.13).

Figure 3.5: Kernel (3.14).

satisfies (3.4), (3.5), and (3.6) with ε = 0 only. In turn kernels

K(u) =
1
π

sinu
u

, (3.13)

see Fig. 3.4, and

K(u) =

√
2
π

cosu2, (3.14)

see Fig. 3.5, satisfy (3.4), and (3.5), but not (3.6), even with ε = 0. For all presented kernels
∫
K(u)du = 1.

Observe that they can be continuous or not, can have compact or unbounded support.
Notice that Theorem 3.3 admits the following one:

K(u) =


1
e
, for |u| ≤ e

1
|u| ln |u|

, otherwise,

for which
∫
K(u)du =∞. Restrictions imposed by the theorem are illustrated in Fig. 3.6.

Figure 3.6: A kernel satisfying restrictions of Theorem 3.3.
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3.4 Convergence rate

In this section both the characteristic m(•) and an input density f(•) are smooth functions and have q
derivatives. Proper selection of the kernel and number sequence increases the speed where the estimate
converges. We now find the convergence rate.

In our considerations the kernel satisfies the following additional restrictions:∫
viK(v)dv = 0, for i = 1, 2, . . . , q − 1, (3.15)

and ∫
|vq−1/2K(v)|dv <∞, (3.16)

see the analysis in Section A.2.2. For simplicity of notation, moreover,
∫
K(v)dv = 1. For a fixed u we get

Ef̂(u) =
1
hn

∫
f(v)K

(
u− v
hn

)
dv =

∫
f(u+ vhn)K(−v)dv

which yields

bias[f̂(u)] = Ef̂(u)− f(u) =
∫

(f(u+ vhn)− f(u))K(−v)dv.

Assuming that f (q)(•) is square integrable and applying (A.17) we find bias[f̂(u)] = O(hq−1/2
n ). We next

recall (3.27) and write var[f̂(u)] = O(1/nhn) which leads to

E(f̂(u)− f(u))2 = O(h2q−1
n ) +O

(
1
nhn

)
.

Thus selecting
hn ∼ n−1/2q (3.17)

we finally obtain
E(f̂(u)− f(u))2 = O(n−1+1/2q).

Needless to say that if the qth derivative of g(u) is square integrable, for the same reasons, E(ĝ(u)− g(u))2

is of the same order. Hence applying Lemma C.9 we finally obtain the following convergence rate:

P {|µ̂(u)− µ(u)| > εµ(u)} = O(n−1+1/2q)

for any ε > 0, and
|µ̂(u)− µ(u)| = O(n−1/2+1/4q) as n→∞ in probability.

If f (q)(u) is bounded, bias[f̂(u)] = O(hqn), see (A.18), and, for

hn ∼ n−1/(2q+1)′,

E(f̂(u)− f(u))2 = O(n−1+1/(2q+1)).

If, in addition, the qth derivative of g(u) is bounded, E(ĝ(u)−g(u))2 is of the same order and, in consequence,

P {|µ̂(u)− µ(u)| > εµ(u)} = O(n−1+1/(2q+1))

for any ε > 0, and
|µ̂(u)− µ(u)| = O(n−1/2+1/(4q+2)) as n→∞ in probability

which means that the rate is slightly better.
It is not difficult to construct kernels satisfying (3.15) such that

∫
K(v)dv = 1. For example, starting from

Gauss-Weierstrass (3.10) denoted now asG(•) we observe that
∫
uiG(u)du = 0 for odd i, and 1×3×· · ·×(i−1)

for even. Thus for
G2(u) = G(u) =

1√
2π
e−u

2/2
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Figure 3.7: Kernel G4.

(3.15) satisfied for q = 2. For the same reasons, for

G4(u) =
1
2

(3− u2)G(u) =
1

2
√

2π
(3− u2)e−u

2/2, (3.18)

see Fig. 3.7, and

G6(u) =
1
8

(15− 10u2 + u4)G(u) =
1

8
√

2π
(15− 10u2 + u4)e−u

2/2

(3.15) hold for q = 4 and q = 6, respectively.
In turn for rectangle kernel (3.2) denoted now as W (•),

∫
uiW (u)du equals zero for odd and 1/(i + 1)

for even i. Thus for W2(u) = W (u), (3.15) holds with q = 2 while for

W4(u) =
1
4

(9− 15u2)W (u) =

{
1
8 (9− 15u2), for |u| ≤ 1

0, otherwise,
(3.19)

with q = 4. For q = 6, we find

W6(u) =
5
64

(45− 210u2 + 189u4)W (u) (3.20)

=


5

128
(
45− 210u2 + 189u4

)
, for |u| ≤ 1

0, otherwise.

Kernels W4(u) and W6(u) are shown in Figs. 3.8 and 3.9, respectively.
There is a formal way of generating kernel functions satisfying Conditions (3.15) and (3.16) for an

arbitrary value of q. This technique relies on the theory of orthogonal polynomials which is examined
in Chapter 6. In particular, if one wishes to obtain kernels defined on a compact interval then we can
utilize a class of Legendre orthogonal polynomials, see Section 6.3 for various properties of this class.
Hence, let {p`(u); 0 ≤ ` ≤ ∞} be a set of the orthonormal Legendre polynomials defined on [−1, 1], i.e.,∫ 1

−1
p`(u)pj(u)du = δ`j , δ`j being the Kronecker delta function and p`(u) =

√
2`+1

2 P`(u), where P`(u) is the
`-th order Legendre polynomial.

The following lemma describes the procedure for generation of a kernel function of order q with a support
defined on [−1, 1].

Lemma 3.1 A kernel function

K(u) =
q−1∑
j=0

pj(0)pj(u), |u| ≤ 1 (3.21)

satisfies Condition (3.15).
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Figure 3.8: Kernel W4.

Proof of Lemma 3.1 : For i ≤ q − 1 consider
∫ 1

−1
uiK(u)du. Since ui can be expanded into the Legendre

series, i.e., ui =
∑i
`=0 a`p`(u), where a` =

∫ 1

−1
uip`(u)du then for K(u) defined in (3.21) we have∫ 1

−1

uiK(u)dv =
i∑

`=0

q−1∑
j=0

a`pj(0)
∫ 1

−1

p`(u)pj(u)du

=
i∑

`=0

a`p` = 0i =
{

1 if i = 0
0 if i = 1, 2, . . . , q − 1 .

The proof of Lemma 3.1 has been completed. �

It is worth noting that P`(0) = 0 for ` = 1, 3, 5, . . . and P`(−u) = P`(u) for ` = 0, 2, 4, . . .. Consequently
the kernel in (3.21) is symmetric and all terms in (3.21) with odd values of j are equal zero.

Since p0(u) =
√

1
2 and p2(u) =

√
5
2

(
3
2u

2 − 1
2

)
then it is easy to verify that the kernel in (3.21) with q = 4

is given by

K(u) =
(

9
8
− 15

8
u2

)
, |u| ≤ 1.

This confirms the form of the kernel W4(v) given in (3.19).
The result of Lemma 3.1 can be extended to a larger class of orthogonal polynomials defined on the set

S, i.e., when we have the system of functions {p`(u); 0 ≤ ` ≤ ∞} defined on S which satisfies∫
S

p`(u)pj(u)w(u)du = δ`j ,

where w(u) is the weight function being positive on S and such that w(0) = 1. Then formula (3.21) takes
the following modified form

K(u) =
q−1∑
j=0

pj(0)pj(u)w(u). (3.22)

In particular, if w(u) = e−u
2
, −∞ < u < ∞ and {p`(u)} is the orthonormal Hermite polynomials, see

Section 6.5, then for q = 4 we can obtain the kernel in (3.18).
The rate depends on the smoothness of both m(•) and f(•), the bandwidth hn, and the kernel. It is

not surprising that the smoother curves, i.e., the more derivatives of m(•) and f(•) exist, the greater speed
can be achieved. If the number q increases to infinity, the derived rate becomes close to n−1/2, i.e., the rate
typical for parametric inference.

As far as the bandwidth and kernel, the rate depends heavier on hn. Deeper analysis left to the reader
shows that, for hn = cn−δ, the choice of δ is much more important than c.

3.5 Local error

In this section, we assume that both the nonlinearity m(•) and the noise Z are bounded, i.e., that

sup
u
|m(u)|+ |Z| ≤ C
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Figure 3.9: Kernel W6.

Figure 3.10: Realizations of the estimate; a = 0.5, hn = n−2/5, (example in Section 3.6).

for some C. Applying (C.2) we get

E(µ̂(u)− µ(u))2 ≤ 2
1

f(u)2
E(ĝ(u)− µ(u)g(u))2 + 2C2 1

f2(u)
E(f̂(u)− f(u))2.

Going through the proof of Theorem 3.1 we recall that E(f̂n(u) − f(u))2 converges to zero as n → ∞.
Arguing as in the proof we verify that so does E (ĝn(u)− g(u))2. Finally

lim
n→∞

E(µ̂(u)− µ(u))2 = 0.

For the kernel satisfying (3.4), (3.5), and (3.6) with ε = 0, the convergence holds at every u where both m(•)
and f(•) are continuous and f(u) > 0. If ε > 0, it holds the error vanishes at almost every u.

Moreover, for m(•) and f(•) having q bounded derivatives, the kernel satisfying (3.15), and hn as in
(3.17), we have

E(µ̂(u)− µ(u))2 = O(n−1+1/(2q+1)),

see Lemma C.10.

3.6 Simulation example

In the simulation example the system is as that in Section 2.2.2. The rectangular kernel is applied. To
show the contribution of the dynamics to the identification error we set Zn ≡ 0. For a = 0.5 realizations of
the estimate are shown in Fig. 3.10. The MISE versus n, for a = 0.0, 0.25, 0.5, and a = 0.75, is shown in
Fig. 3.11. It is clear that the greater a is the greater error becomes. The influence of the variance of output
noise is shown in Fig. 3.12.

For a = 0.0, 0.25, 0.5, and a = 0.75, the MISE versus h(n) is presented in Figs. 3.13, 3.14, 3.15, and 3.16,
respectively. Results suggest that a too small h(n) should be avoided. For hn = n−δ with δ in the interval
[−0.25, 1.2], the MISE is shown in Figure 3.17.
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Figure 3.11: MISE versus n, various a; hn = n−2/5, (example in Section 3.6).

Figure 3.12: MISE versus n, various var(Z); hn = n−2/5, (example in Section 3.6).

Figure 3.13: MISE versus hn, various n; a = 0.0, (example in Section 3.6).
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Figure 3.14: MISE versus hn, various n; a = 0.25, (example in Section 3.6).

Figure 3.15: MISE versus hn, various n; a = 0.5, (example in Section 3.6).

Figure 3.16: MISE versus hn, various n; a = 0.75, (example in Section 3.6).
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Figure 3.17: MISE versus δ, hn = n−δ, various n; a = 0.5, (example in Section 3.6).

3.7 Lemmas and proofs

3.7.1 Lemmas

In Lemma 3.2 U has a density, in Lemma 3.3 the distribution of U is arbitrary.

Lemma 3.2 Let U have a probability density. Let Em(U) = 0, var[m(U)] <∞. Let the kernel K(•) satisfy
(3.4), (3.5). If (3.6) holds with ε = 0, then, for i 6= 0,

sup
h>0

∣∣∣∣cov
[
Wp+i

1
h
K

(
u− Ui
h

)
,Wp

1
h
K

(
u− U0

h

)]∣∣∣∣ ≤ (|λpλp+i|+ |λpλp−i|+ |λp+iλp−i|)ω(u),

where ω(u) is finite at every continuity point u of both m(•) and f(•). If ε > 0, the property holds at almost
every u ∈ R.

Proof. We prove the continuous version of the lemma. The ”almost everywhere” one can be verified in a
similar way.

Since Wp+i =
∑p+i
q=−∞ λp+i−qm(Uq) and Wp =

∑p
r=−∞ λp−rm(Ur), the covariance in the assertion equals

p+i∑
q=−∞

p∑
r=−∞

λp+i−qλp−r cov
[
m(Uq)

1
h
K

(
u− Ui
h

)
,m(Ur)

1
h
K

(
u− U0

h

)]
.

Applying Lemma C.2 we find it equal to

(λpλp+i + λpλp−i)
1
h
E

{
K

(
u− U
hn

)}
1
h
E

{
m2(U)K

(
u− U
h

)}
+ λp+iλp−i

1
h2
E2

{
m(U)K

(
u− U
h

)}
.

Let u be a point where both m(•) and f(•) are continuous. It suffices to apply Lemma A.8 and A.9 to find

sup
h>0

∣∣∣∣ 1hEK
(
u− U
h

)∣∣∣∣ , sup
h>0

E

∣∣∣∣m(U)
1
h
K

(
u− U
h

)∣∣∣∣ , sup
h>0

E

∣∣∣∣m2(U)
1
h
K

(
u− U
h

)∣∣∣∣
all finite.

In the next lemma U has an arbitrary distribution.
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Lemma 3.3 Let Em(U) = 0 and var[m(U)] < ∞. If the kernel satisfies the restrictions of Theorem 3.3,
then

lim sup
h→0

∣∣∣∣∣∣∣∣
cov

[
Wp+iK

(
u− Ui
h

)
,WpK

(
u− U0

h

)]
E2K

(
u− U
h

)
∣∣∣∣∣∣∣∣ ≤ (|λpλp+i|+ |λpλp−i|+ |λp+iλp−i|)θ(u),

where some θ(u) is finite at almost every (ζ) u ∈ R, where ζ is the distribution of U .

Proof. The proof is similar to that of Lemma 3.2. Lemma A.10 rather than Lemmas A.8 and A.9 should
be employed.

3.7.2 Proofs

Proof of Theorem 3.1

For the sake of the proof Em(U) = 0, see Remark 2.1. Observe that µ̂(u) = ĝ(u)/f̂(u) with

ĝ(u) =
1
nhn

n∑
i=1

Yp+iK

(
u− Ui
hn

)
(3.23)

and

f̂(u) =
1
nhn

n∑
i=1

K

(
u− Ui
hn

)
. (3.24)

Fix u ∈ R and suppose that both m(•) and f(•) are continuous at the point.
We shall now show that

ĝ(u)→ g(u)
∫
K(v)dv → 0 as n→∞ in probability, (3.25)

where, we recall, g(u) = µ(u)f(u). Since

Eĝ(u) =
1
hn
E

{
E {Yp|U0}K

(
u− U0

hn

)}
=

1
hn
E

{
µ(U)K

(
u− U
hn

)}
,

applying Lemma A.8 we conclude that

Eĝ(u)→ g(u)
∫
K(v)dv as n→∞.

In turn, since Yn = Wn + Zn,

var[ĝ(u)] = Pn(u) +Qn(u) +Rn(u),

where

Pn(u) =
1
nhn

σ2
Z

1
hn
EK2

(
u− U
hn

)
,

Qn(u) =
1
nhn

1
hn

var
[
WpK

(
u− U0

hn

)]
,

and

Rn(u) =
1

n2h2
n

n∑
i=1

n∑
j=1
j 6=i

cov
[
Wp+iK

(
u− Ui
hn

)
,Wp+jK

(
u− Uj
hn

)]

=
2

n2h2
n

n∑
i=1

(n− i) cov
[
Wp+iK

(
u− Ui
hn

)
,WpK

(
u− U0

hn

)]
.
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In view of Lemma A.8
nhnPn(u)→ σ2

Zf(u)
∫
K2(v)dv as n→∞.

Since

var
[
WpK

(
u− U0

hn

)]
= E

{
W 2
pK

2

(
u− U0

hn

)}
− E2

{
WpK

(
u− U0

hn

)}
= E

{
φ (U)K2

(
u− U
h

)}
− E2

{
µ(U)K

(
u− U
h

)}
, (3.26)

where φ(•) is as in (2.7), by the mentioned Lemma A.8,

nhnQn(u)→ φ (u) f(u)
∫
K2(v)dv as n→∞.

Passing to Rn(u) we apply Lemma 3.2 to obtain

|Rn(u)| ≤ 2ω(u)
1
n2

n∑
i=1

(n− i)(|λpλp+i|+ |λpλp−i|+ |λp+iλp−i|)

≤ 6ω(u)(max
n
|λn|)

1
n

∞∑
i=1

|λi| = O

(
1
n

)
.

Finally

nhn var[ĝ(u)]→ (σ2
Z + φ(u))f(u)

∫
K2(v)dv as n→∞.

In this way we have verified (3.25).
Using similar arguments we show that Ef̂(u)→ f(u)

∫
K(v)dv as n→∞ and

nhn var[f̂(u)]→ f(u)
∫
K2(v)dv as n→∞, (3.27)

and then conclude that f̂(u)→ f(u)
∫
K(v)dv → 0 as n→∞ in probability. The proof has been completed.

Proof of Theorem 3.3

In general the idea of the proof is similar to that of Theorem 3.1. Some modifications, however, are necessary.
Recalling Remark 2.1, with no loss of generality, we assume that Em(U) = 0 and begin with the

observation that µ̂(u) = ξ̂(u)/η̂(u), where

ξ̂(u) =
1

nEK
(
u−U
hn

) n∑
i=1

Yp+iK

(
u− Ui
hn

)

and

η̂(u) =
1

nEK
(
u−U
hn

) n∑
i=1

K

(
u− Ui
hn

)
.

Obviously

Eξ̂(u) =
E

{
Y1K

(
u− U0

hn

)}
EK

(
u− U
hn

) =
E

{
µ(U)K

(
u− U
hn

)}
EK

(
u− U
hn

) ,

which, by Lemma A.10, converges to µ(u) as n→∞ for almost every (ζ) u ∈ R.
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Since Yn = Wn + Zn, var[ξ̂(u)] = Pn(u) +Qn(u) +Rn(u), where

Pn(u) = σ2
Z

EK2

(
u− U
hn

)
nE2K

(
u− U
hn

) ,

Qn(u) =
var
[
WpK

(
u− U0

hn

)]
nE2K

(
u− U
hn

) ,

and

Rn(u) = 2
n∑
i=1

(n− i)
cov

[
Wp+iK

(
u− Ui
hn

)
,WpK

(
u− U0

hn

)]
E2K

(
u− U
hn

) .

Since,

Pn(u) ≤ 1
nhn

σ2
Z

hn

EK

(
u− U
hn

) sup
v
K(v),

applying Lemma A.11 we find Pn(u) = Ou(1/nhn) as n→∞ for almost every (ζ) u.
Lemmas A.10 and A.11, together with

Qn(u) =
1
nhn

hn

EK
(
u−U
hn

) ×
E

{
φ (U)K2

(
u− U
hn

)}
EK

(
u− U
hn

) − EK
(
u− U
hn

) E2

{
µ(u)K

(
u− U
hn

)}
E2K

(
u− U
hn

)
 ,

entail Qn(u) = Ou(1/nhn) as n→∞ for almost every (ζ) u.
Application of Lemma 3.3 leads to the conclusion that, at almost every (ζ) u ∈ R,

|Rn(u)| ≤ 2θ(u)
1
n2

n∑
i=1

(n− i)(|λpλp+i|+ |λpλp−i|+ |λp+iλp−i|)

≤ 6θ(u)(max
n
|λn|)

1
n

∞∑
i=1

|λi| = O

(
1
n

)
.

Finally var[ξ̂(u)] = O(1/nhn) at almost every (ζ) u.
In this way we have shown that E(ξ̂(u) − µ(u))2 → 0 as n → ∞ at almost every (ζ) u. Since, for the

same reasons E(ξ̂(u)− 1)2 → 0 at almost every (ζ) u, the theorem follows.

3.8 Bibliographic notes

The kernel regression estimate has been proposed independently by Nadaraya [308] and Watson [427] and was
the subject of studies performed by Rosenblatt [358], Collomb [64], Greblicki [133], Greblicki and Krzyżak
[167], Fan [103], Müller and Song [305], and a lot of others. At first, the density of U was assumed to exist.
Since Stone [395], consistency for any distribution has been examined. Later, distribution-free properties
have been studied by Spiegelman and Sacks [393], Devroye and Wagner [83, 84], Devroye [81], Hall [211],
Krzyżak and Pawlak [267,269], Greblicki, Krzyżak and Pawlak [169], Kozek and Pawlak [255], among others.

The regression estimate has been derived in a natural way from the kernel estimate (3.24) of a probability
density function introduced by Parzen [321], generalized to multivariate cases by Cacoullos [43] and examined
by a number of authors, see, e.g., Rosenblatt [357], Van Ryzin [409,410], Deheuvels [74], Wahba [419], Devroye
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and Wagner [82], Devroye and Györfi [77], Csörgo and Mielniczuk [67]. We refer the reader to Györfi, Kohler,
Krzyżak and Walk [204], Härdle [219], Prakasa Rao [340], or Silverman [387] and papers cited therein.

In all mentioned works, however, the estimate is of form (3.3) with p = 0, while independent observations
(Ui, Yi)’s come from a model Yn = m(Un) + Zn. In the context of the Hammerstein system it means that
dynamics is just missing since the linear subsystem is reduced to a simple delay.

The estimate has been applied to recover the nonlinear characteristic in a Hammerstein system by Gre-
blicki and Pawlak [181]. In their [186] the input signal has an arbitrary distribution. Not a state equation
but a convolution to describe the dynamic subsystem has been applied in Greblicki and Pawlak [183]. The
estimate has been also studied by Krzyżak [260,261], as well as Krzyżak and Partyka [265]. For very specific
distributions of the input signal the estimate has been studied by Lang [277]. A polynomial approach has
been applied by him in [275,276].



Chapter 4

Semi-recursive kernel algorithms

This chapter is devoted to semirecursive kernel algorithms, modifications of these examined in Chap. 3. Their
numerators and denominators can be calculated on-line. We show consistency and examine convergence rate.

4.1 Introduction

We examine the following semirecursive kernel estimates:

µ̃n(u) =

n∑
i=1

1
hi
Yp+iK

(
u− Ui
hi

)
n∑
i=1

1
hi
K

(
u− Ui
hi

) (4.1)

and

µ̄n(u) =

n∑
i=1

Yp+iK

(
u− Ui
hi

)
n∑
i=1

K

(
u− Ui
hi

) , (4.2)

modifications of (3.3). To demonstrate recursiveness we observe that µ̃n(u) = g̃n(u)/f̃n(u), where

g̃n(u) =
1
n

n∑
i=1

Yp+i
1
hi
K

(
u− Ui
hi

)
and

f̃n(u) =
1
n

n∑
i=1

1
hi
K

(
u− Ui
hi

)
.

Therefore

g̃n(u) = g̃n−1(u)− 1
n

(
g̃n−1(u)− Yp+n

1
hn
K

(
u− Un
hn

))
and

f̃n(u) = f̃n−1(u)− 1
n

(
f̃n−1(u)− 1

hn
K

(
u− Un
hn

))
.

For the other estimate, µ̄n(u) = ḡn(u)/f̄n(u) with

ḡn(u) =
1∑n
i=1 hi

n∑
i=1

Yp+iK

(
u− Ui
hi

)

27
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and

f̄n(u) =
1∑n
i=1 hi

n∑
i=1

K

(
u− Ui
hi

)
.

Both ḡn(u) and f̄n(u) can be calculated with the following recurrence formulas:

ḡn(u) = ḡn−1(u)− hn∑n
i=1 hi

(
ḡn−1(u)− 1

hn
Yp+nK

(
u− Un
hn

))
and

f̄n(u) = ḡn−1(u)− hn∑n
i=1 hi

(
f̄n−1(u)− 1

hn
K

(
u− Un
hn

))
.

In both estimates the starting points

g̃1(u) = ḡ1(u) =
1
h1
Yp+1K

(
u− U1

h1

)
and

f̃1(u) = f̄1(u) =
1
h1
K

(
u− U1

h1

)
are the same.

Thus, both estimates are semirecursive because their numerators and denominators can be calculated
recursively, but not they themselves.

4.2 Consistency and convergence rate

In Theorems 4.1 and 4.2 the input signal has a density, in Theorem 4.3 its distribution is arbitrary.

Theorem 4.1 Let U have a density f(•) and let Em2(U) < ∞. Let the Borel measurable kernel K(•)
satisfy (3.4), (3.5), and (3.6) with ε = 0. Let the sequence {hn} satisfy the following restrictions

hn → 0 as n→∞, (4.3)

1
n2

n∑
i=1

1
hi
→ 0 as n→∞. (4.4)

Then
µ̃n(u)→ µ(u) as n→∞ in probability. (4.5)

at every u ∈ R where both m(•) and f(•) are continuous and f(u) > 0. If, (3.6) holds for some ε > 0, then
the convergence takes place at every Lebesgue point u ∈ R of both m(•) and f(•), such that f(u) > 0; a
fortiori, at almost every u belonging to support of f(•).

Theorem 4.2 Let U have a density f(•) and let Em2(U) < ∞. Let the Borel measurable kernel K(•)
satisfy (3.4), (3.5), and (3.6) with ε = 0. Let the sequence {hn} satisfy (4.3) and

∞∑
n=1

hi =∞. (4.6)

Then
µ̄n(u)→ µ(u) as n→∞ in probability. (4.7)

at every u ∈ R where both m(•) and f(•) are continuous and f(u) > 0. If, (3.6) holds for some ε > 0, then
the convergence takes place at every Lebesgue point u ∈ R of both m(•) and f(•), such that f(u) > 0; a
fortiori, at almost every u belonging to support of f(•).
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Estimate (4.2) is consistent not only for U having a density but also for any distribution. In the next
theorem the kernel is the same as in Theorem 3.3.

Theorem 4.3 Let Em2(U) < ∞. Let the kernel K(•) satisfy the restrictions of Theorem 3.3. Let the
sequence {hn} of positive numbers satisfy (4.3) and (4.6). Then convergence (4.7) takes place at almost
every (ζ) point u ∈ R, where ζ is the probability measure of U .

Estimate (4.1) converges if the number sequence satisfies (4.3) and (4.4) while (4.2) if (4.3) and (4.6)
hold. Thus, for hn = cn−δ with c > 0, both converge if 0 < δ < 1. Selecting δ we decide on the speed
where the estimates converge. As in Section 3.4, in addition to the standard restrictions, the kernel satisfies
restrictions (3.15) and (3.16). Both f(•) and m(•) have q derivatives. Moreover, f (q)(•) and g(q)u)(•) are
square integrable. To study convergence rate we write

1
h
EK

(
u− U
h

)
=

1
h

∫
f(v)K

(
u− v
h

)
dv =

∫
f(u+ vh)K(−v)dv.

Beginning with (4.1) we have

Ef̃n(u) =
1
n

n∑
i=1

1
hi
EK

(
u− U
hi

)
=

1
n

n∑
i=1

1
hi

∫
f(v)K

(
u− v
hi

)
dv

=
1
n

n∑
i=1

∫
f(u+ vhi)K(−v)dv

and find

bias[f̃n(u)] = Ef̃n(u)− f(u)
∫
K(v)dv =

1
n

n∑
i=1

∫
(f(u+ vhi)− f(u))K(−v)dv.

Applying (A.17) we obtain

bias[f̃n(u)] =
1
n

n∑
i=1

O
(
h
q−1/2
i

)
= O

(
1
n

n∑
i=1

h
q−1/2
i

)
.

Recalling (4.11) we find

E(f̃n(u)− f(u))2 = O

 1
n2

(
n∑
i=1

h
q−1/2
i

)2
+O

(
1
n2

n∑
i=1

1
hi

)

with the first term incurred by squared bias and the other by variance. Hence for

hn ∼ n−1/2q (4.8)

i.e., the same as in (3.17) applied in the off-line estimate,

E(f̂(u)− f(u))2 = O(n−1+1/2q),

Since the same rate holds for ḡn(u), i.e., E(ĝ(u)− g(u))2 = O(n−1+1/2q), we finally obtain

P {|µ̃(u)− µ(u)| > εµ(u)} = O
(
n−1+1/2q

)
for any ε > 0, and

|µ̃(u)− µ(u)| = O(n−1/2+1/4q) as n→∞ in probability.

Considering estimate (4.2) next, for obvious reasons, we write

bias[f̄n(u)] =
1∑n
i=1 hi

n∑
i=1

O(hq+1/2
i ) = O

(∑n
i=1 h

q+1/2
i∑n

i=1 hi

)
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Figure 4.1: Estimate (4.9); MISE versus δ, various n; hn = n−δ , (Section 4.3).

and, due to (4.12),

E(f̄n(u)− f(u))2 = O


(∑n

i=1 h
q+1/2
i

)2

(
∑n
i=1 hi)

2

+O

(
1∑n
i=1 hi

)
which, for hn selected as in (4.8), becomes

E(f̄n(u)− f(u))2 = O(n−1+1/2q).

Since E(ḡn(u)− g(u))2 = O(n−1+1/2q), we come to a conclusion that

P {|µ̄n(u)− µ(u)| > εµ(u)} = O(n−1+1/2q)

for any ε > 0, and
|µ̄n(u)− µ(u)| = O(n−1/2+1/4q) as n→∞ in probability

If the qth derivatives of both f(u) and g(u) are bounded, using (A.18) we obtain

P {|µ̃(u)− µ(u)| > εµ(u)} = O(n−1+1/(2q+1))

for any ε > 0, and
|µ̃(u)− µ(u)| = O(n−1/2+1/(4q+2)) as n→∞ in probability,

i.e., somewhat faster convergence. The same rate holds also for µ̄n(u).

4.3 Simulation example

In the system as in Sect. 2.2.2, a = 0.5 and Zn = 0. Since µ(u) = m(u) we just estimate m(u) and rewrite
them in the following forms:

m̃n(u) =

n∑
i=1

1
hi
Y1+iK

(
u− Ui
hi

)
n∑
i=1

1
hi
K

(
u− Ui
hi

) , (4.9)

and

m̄n(u) =

n∑
i=1

Y1+iK

(
u− Ui
hi

)
n∑
i=1

K

(
u− Ui
hi

) . (4.10)
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Figure 4.2: Estimate (4.10); MISE versus δ, various n; hn = n−δ, (Section 4.3).

For the rectangular kernel and hn = n−1/5, the MISE for both estimates is shown in Figure 5.5 in
Section 5.4. For hn = n−δ with δ varying in the interval [−0.25, 1.5], the error is shown in Figs. 4.1 and 4.2.

4.4 Proofs and lemmas

4.4.1 Lemmas

The system

Lemma 4.1 Let U have a probability density f(•). Let Em(U) = 0 and var[m(U)] < ∞. Let n 6= 0. Let
kernel satisfy (3.4), (3.5). If (3.6) holds with ε = 0, then,

sup
h>0,H>0

∣∣∣∣cov
[
Wp+i

1
h
K

(
u− Ui
h

)
,Wp

1
H
K

(
u− U0

H

)]∣∣∣∣
≤ (|λpλp+i−j |+ |λpλp−i+j |+ |λp+i−jλp−i+j |)ρ(u),

where ρ(u) is finite at every continuity point u of both m(•) and f(•). If ε > 0, the property holds at almost
every u ∈ R.

Proof. As Wp+i =
∑p+i
q=−∞ λp+i−qm(Uq) and Wp =

∑p
r=−∞ λp−rm(Ur), the covariance in the assertion

equals, see Lemma C.2,

p+i∑
q=−∞

p∑
r=−∞

λp+i−qλp−r cov
[
m(Uq)

1
h
K

(
u− Ui
h

)
,m(Ur)

1
H
K

(
u− U0

H

)]
which is equal to

= λpλp+i−j
1
h
E

{
K

(
u− U
h

)}
1
H
E

{
m2(U)K

(
u− U
H

)}
+ λpλp−i+j

1
h
E

{
K

(
u− U
h

)}
1
h
E

{
m2(U)K

(
u− U
h

)}
+ λp+i−jλp−i+j

1
h
E

{
m(U)K

(
u− U
h

)}
1
H
E

{
m(U)K

(
u− U
H

)}
.

Let u be a point where both m(•) and f(•) are continuous. It suffices to apply Lemma A.8 to find

sup
h6=0

∣∣∣∣ 1hEK
(
u− U
h

)∣∣∣∣ ,
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sup
h6=0

E

∣∣∣∣m(U)
1
h
K

(
u− U
h

)∣∣∣∣ ,
sup
h6=0

E

∣∣∣∣m2(U)
1
h
K

(
u− U
h

)∣∣∣∣
all finite at every continuity point of both m(•) and f(•). The ”almost everywhere” version of the lemma
can be verified in a similar way.

In the next lemma U has an arbitrary distribution.

Lemma 4.2 Let Em(U) = 0 and var[m(U)] < ∞. If the kernel satisfies the restrictions of Theorem 3.3,
then

sup
h>0,H>0

∣∣∣∣∣∣∣∣
cov

[
Wn+pK

(
u− Un
h

)
,WpK

(
u− U0

H

)]
EK

(
u− U
h

)
EK

(
u− U
H

)
∣∣∣∣∣∣∣∣

≤ (|λpλp+i−j |+ |λpλp−i+j |+ |λp+i−jλp−i+j |)η(u)

where η(u) is finite at almost every (ζ) u ∈ R, where ζ is the distribution of U .

Proof. It suffices to apply arguments used in the proof of Lemma 3.3.

Number sequences

Lemma 4.3 If (4.3) and (4.4) hold, then

lim
n→∞

1
n

1
n2

n∑
i=1

1
hi

= 0.

Proof. From

n2 =

(
n∑
i=1

h
1/2
i

1

h
1/2
i

)2

≤
n∑
i=1

hi

n∑
i=1

1
hi

it follows that
1
n

1
n2

n∑
i=1

1
hi

≤ 1
n

n∑
i=1

hi

which converges to zero as n→∞.

Lemma 4.4 (Toeplitz) If
∑n
i=1 an →∞ and xn → x as n→∞, then

n∑
i=1

anxn

n∑
i=1

an

→ x as n→∞.

Proof. The proof is immediate. For any ε > 0, there exists N such that |xn| < ε for n > N . Hence∑n
i=1 anxn∑n
i=1 an

− x =
∑N
i=1 an(xn − x)∑n

i=1 an
+
∑n
i=N+1 an(xn − x)∑n

i=1 an
,

where the first term is bounded in absolute value by c/
∑n
i=1 an for some c, and the other by ε.
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4.4.2 Proofs

Proof of Theorem 4.1

We give the continuous version of the proof. To verify the ”almost everywhere” version, it suffices to apply
Lemma A.9 rather than A.8.

Suppose that both m(•) and f(•) are continuous at u ∈ R. We start from the observation that

Eg̃n(u) =
1
n

n∑
i=1

1
hi
E

{
E {Yp|U0}K

(
u− U0

hi

)}

=
1
n

n∑
i=1

1
hi
E

{
µ(U)K

(
u− U
hi

)}
.

Since
1
hi
E

{
µ(U)K

(
u− U
hi

)}
→ g(u)

∫
K(v)dv as i→∞,

see Lemma A.8, we conclude that Eg̃n(u) → g(u)
∫
K(v)dv as n → ∞, where, according to our notation,

g(u) = µ(u)f(u).
To examine variance we write var[g̃n(u)] = Pn(u) +Qn(u) +Rn(u) with

Pn(u) = σ2
Z

1
n2

n∑
i=1

1
h2
i

var
[
K

(
u− U
hi

)]
,

Qn(u) =
1
n2

n∑
i=1

var
[
Wp

1
hi
K

(
u− U0

hi

)]
,

and

Rn(u) =
1
n2

n∑
i=1

n∑
j=1
j 6=i

cov
[
Wp+i

1
hi
K

(
u− Ui
hi

)
,Wp+j

1
hj
K

(
u− Uj
hj

)]

=
1
n2

n∑
i=1

n∑
j=1
j 6=i

cov
[
Wp+i−j

1
hi
K

(
u− Ui−j

hi

)
,Wp

1
hj
K

(
u− U0

hj

)]

Since

Pn(u) = σ2
Z

1
n2

n∑
i=1

1
hi

[
1
hi
EK2

(
u− U
hi

)
− hi

1
h2
i

E2K

(
u− U
hi

)]
,

using Lemma A.8 we find the quantity in square brackets converges to f(u)
∫
K2(v)dv as i→∞. Noticing

that
∑∞
n=1 h

−1
n =∞ and applying Toeplitz Lemma 4.4, we conclude that

1
1
n2

∑n
i=1

1
hi

Pn(u)→ σ2
Zf(u)

∫
K2(v)dv as n→∞.

For the same reasons observing

Qn(u) =
1
n2

n∑
i=1

1
hi

(
1
hi
E

{
φ(U)K2

(
u− U
hi

)}
− hi

1
h2
i

E2K

(
u− U
hi

))
,

where φ(•) is as in (2.7), we obtain

1
1
n2

∑n
i=1

1
hi

Qn(u)→ φ(u)f(u)
∫
K2(v)dv as n→∞.
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Moreover, by Lemma 4.1,

|Rn(u)| ≤ 1
n2
ρ(u)

n∑
i=1

n∑
j=1

(|λpλp+i−j |+ |λpλp−i+j |+ |λp+i−jλp−i+j |)

≤ 1
n
ρ(u)(max

n
|λn|)

∞∑
n=1

|λn| = O

(
1
n

)
.

Using Lemma 4.3 we conclude that Rn(u) vanishes faster than both Pn(u) and Qn(u) and then obtain

1
1
n2

∑n
i=1

1
hi

var[g̃n(u)]→ (σ2
Z + φ(u)f(u))

∫
K2(v)dv as n→∞. (4.11)

For similar reasons Ef̃n(u)→ f(u)
∫
K(v)dv as n→∞, and

1
1
n2

∑n
i=1

1
hi

var[f̃n(u)]→ f(u)
∫
K2(v)dv as n→∞

which completes the proof.

Proof of Theorem 4.2

Suppose that both m(•) and f(•) are continuous at a point u ∈ R. Evidently

Eḡn(u) =
1∑n
i=1 hi

n∑
i=1

hi
1
hi
E

{
E {Yp|U0}K

(
u− U0

hi

)}

=
1∑n
i=1 hi

n∑
i=1

hi
1
hi
E

{
µ(U)K

(
u− U
hi

)}
.

Since (4.6) holds and
1
hi
E

{
µ(U)K

(
u− U
hi

)}
→ g(u)

∫
K(v)dv as n→∞,

see Lemma A.8, an application of Toeplitz Lemma 4.4 gives

Eḡn(u)→ g(u)
∫
K(v)dv as n→∞.

To examine variance, we write var[ḡn(u)] = Pn(u) +Qn(u) +Rn(u), where

Pn(u) = σ2
Z

1

(
∑n
i=1 hi)

2

n∑
i=1

var
[
K

(
u− U
hi

)]
,

Qn(u) =
1

(
∑n
i=1 hi)

2

n∑
i=1

var
[
WpK

(
u− U0

hi

)]
,

and

Rn(u)

=
1

(
∑n
i=1 hi)

2

n∑
i=1

n∑
j=1
j 6=i

cov
[
Wp+iK

(
u− Ui
hi

)
,Wp+jK

(
u− Uj
hj

)]

=
1

(
∑n
i=1 hi)

2

n∑
i=1

n∑
j=1
j 6=i

cov
[
Wp+i−jK

(
u− Ui−j

hi

)
,WpK

(
u− U0

hj

)]
.
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Since
Pn(u) = σ2

Z

1∑n
i=1 hi

P1n(u)

with

P1n(u) =
1∑n
i=1 hi

n∑
i=1

hi

(
1
hi
EK2

(
u− U
hi

)
− hi

1
h2
i

E2K

(
u− U
hi

))
converging, due to (4.6) and Toeplitz Lemma 4.4, to the same limit as

1
hn
EK2

(
u− U
hn

)
− hn

1
h2
n

E2K

(
u− U
hn

)
,

we get Pn(u)
n∑
i=1

hi → σ2
Zf(u)

∫
K2(v)dv as n→∞.

For the same reasons observing

Qn(u)

=
1∑n
i=1 hi

n∑
i=1

hi

(
1
hi
E

{
φ(U)K2

(
u− U
hi

)}
− hi

1
h2
i

E2K

(
u− U
hi

))
,

where φ(•) is as in (2.7), we obtain Qn(u)
n∑
i=1

hi → φ(u)f(u)
∫
K2(v)dv as n→ ∞.

Applying Lemma 4.1 we get

Rn(u)
n∑
i=1

hi

≤ ρ(u)
1∑n
i=1 hi

n∑
i=1

hi

n∑
j=1

hj(|λpλp+i−j |+ |λpλp−i+j |+ |λp+i−jλp−i+j |)

≤ 3ρ(u)(max
n

hn)(max
n
|λn|)

1∑n
i=1 hi

n∑
i=1

hiαi

where αi =
∑∞
j=i−p |λi|. Since limi→∞ αi = 0, applying Toeplitz Lemma 4.4 we get limn→∞Rn(u)

∑n
i=1 hi =

0 which means that Rn(u) vanishes faster than both Pn(u) and Qn(u). Finally

var[ḡn(u)]
n∑
i=1

hi → (σ2
Z + φ(u)f(u))

∫
K2(v)dv as n→∞. (4.12)

Since, for the same reasons, Ef̄n(u)→ f(u)
∫
K(v)dv as n→∞ and var[f̄n(u)]

∑n
i=1 hi → f(u)

∫
K2(v)dv

as n→∞, the proof has been completed.

Proof of Theorem 4.3

Each convergence in the proof holds for almost every (ζ) u ∈ R. In a preparatory step we show that

∞∑
n=1

EK

(
u− U
hn

)
=∞. (4.13)

Since, by Lemma A.5,
1
hi
EK

(
u− U
hi

)
converges to a nonzero limit or increases to infinity, as i→∞, in view of (4.6),

∞∑
n=1

EK

(
u− U
hn

)
=
∞∑
n=1

hn
1
hn
EK

(
u− U
hn

)
=∞. (4.14)
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Thus (4.13) holds.
In general, the construction of the proof is the same as those in the previous section. We thus begin with

the observation that µ̄n(u) = ξ̂n(u)/η̂n(u), where

ξ̂n(u) =

n∑
i=1

Yp+iK

(
u− Ui
hi

)
n∑
i=1

EK

(
u− U
hi

)
and

η̂n(u) =

n∑
i=1

K

(
u− Ui
hi

)
n∑
i=1

EK

(
u− U
hi

) .
To examine the bias of ξ̂n(u) observe that

Eξ̂n(u) =

n∑
i=1

E

{
µ(U)K

(
u− U
hi

)}
n∑
i=1

EK

(
u− U
hi

) =

n∑
i=1

ai(u)EK
(
u− U
hi

)
n∑
i=1

EK

(
u− U
hi

)
with

ai(u) =
E

{
µ(U)K

(
u− U
hi

)}
EK

(
u− U
hi

)
converging to µ(u) as i→∞. Since (4.13) holds, an application of Toeplitz Lemma 4.4 yields Eξ̂n(u)→ µ(u)
as n→∞.

Passing to variance we obtain

var[ξ̂n(u)] = Pn(u) +Qn(u) +Rn(u)

with

Pn(u) = σ2
Z

1(
n∑
i=1

EK
(
u−U
hi

))2

n∑
i=1

var
[
K

(
u− U
hi

)]

Qn(u) =
1(

n∑
i=1

EK
(
u−U
hi

))2

n∑
i=1

var
[
WpK

(
u− U0

hi

)]

and

Rn(u)

=
1(

n∑
i=1

EK
(
u−U
hi

))2

n∑
i=1

n∑
j=1
j 6=i

cov
[
Wp+iK

(
u− Ui
hi

)
,Wp+jK

(
u− Uj
hj

)]

=
1(

n∑
i=1

EK
(
u−U
hi

))2

×
n∑
i=1

n∑
j=1
j 6=i

cov
[
Wp+i−jK

(
u− Ui−j

hi

)
,WpK

(
u− U0

hj

)]
.
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Rewriting

Pn(u) = σ2
Z

1
n∑
i=1

EK
(
u−U
hi

)
n∑
i=1

bi(u)EK
(
u− U
hi

)
n∑
i=1

EK

(
u− U
hi

)
with

bi(u) =
var
[
K

(
u− U
hi

)]
EK

(
u− U
hi

) ≤
EK2

(
u− U
hi

)
EK

(
u− U
hi

) ≤ κ,
where κ = supvK(v), and applying (4.13), we find Pn(u) converging to zero as n→∞. For similar reasons
Qn(u) converges to zero, too.

Clearly

Rn(u)
n∑
i=1

EK

(
u− U
hi

)
=

1
n∑
i=1

EK
(
u−U
hi

) n∑
i=1

n∑
j=1
j 6=i

E2K

(
u− U
hi

)

×
cov

[
Wp+i−jK

(
u− Ui−j

hi

)
,WpK

(
u− U0

hj

)]
E2K

(
u− U
hi

)
which is bounded by

κη(u)
1

n∑
i=1

EK
(
u−U
hi

)
×

n∑
i=1

n∑
j=1

EK

(
u− U
hi

)
(|λpλp+i−j |+ |λpλp−i+j |+ |λp+i−jλp−i+j |)

≤ 3κη(u)(max
n

hn)(max
n
|λn|)

1
n∑
i=1

EK
(
u−U
hi

) n∑
i=1

γiEK

(
u− U
hi

)
,

where γi =
∑∞
j=i−p |λi|. Since (4.14) holds and limi→∞ γi = 0, using Toeplitz Lemma 4.4 we find Rn(u)

converging to zero as n→∞.
Finally

E(ξ̂n(u)− µ(u))2 → 0 as n→∞.

This and the fact that E(η̂n(u)− 1)2 → 0 as n→∞ complete the proof.

4.5 Bibliographic notes

Recursive kernel estimates were applied to recover a probability density by Wolverton and Wagner [442,443],
Yamato [445], Davies [71], Rejtö and Révész [352], Davies and Wegman [72], Wegman and Davies [430],
Hosni and Gado [235]. They have lead to semirecursive regression estimates, see Greblicki [133], Ahmad and
Lin [1], Devroye and Wagner [84], Krzyżak and Pawlak [266,267], Greblicki and Pawlak [185]. Greblicki and
Pawlak [187] applied them to recover the nonlinear characteristic in Hammerstein systems. A semirecursive
algorithm of the stochastic approximation type was examined by Greblicki in [159].
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Chapter 5

Recursive kernel algorithms

5.1 Introduction

In this chapter to recover µ(u) we use the following two recursive estimates:

µ̂n(u) = µ̂n−1(u)− γn
1
hn
K

(
u− Un
hn

)
[µ̂n−1(u)− Yn+p] (5.1)

with

µ̂0(u) = Yp
1
h0
K

(
u− U0

h0

)
,

and

µ̃n(u) = µ̃n−1(u)− γnK
(
u− Un
hn

)
[µ̃n−1(u)− Yn+p] (5.2)

with

µ̃0(u) = YpK

(
u− U0

h0

)
.

Both are closely related to the kernel estimate and its semirecursive versions studied in Chaps. 3 and 4,
respectively. They are, however, fully recursive. In addition, contrary to them, they are not of a quotient
form.

5.2 Relation to stochastic approximation

We shall now present the relationship between the examined algorithms and the stochastic approximation
framework, see Section C.3 and, e.g., Wasan [426].

Rewriting (5.1) as below

µ̂n(u) = µ̂n−1(u)− γn
[
µ̂n−1(u)

1
hn
K

(
u− Un
hn

)
− Yn+p

1
hn
K

(
u− Un
hn

)]
, (5.3)

we notice that the algorithm is founded on the obvious expectation that

|µ̂n(u)− µn(u)| → 0 as n→∞, (5.4)

where

µn(u) =

1
hn
E

{
Yn+pK

(
u− Un
hn

)}
1
hn
EK

(
u− Un
hn

)
39
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is the solution of the following time-varying equation:

E

{
µn(u)

1
hn
K

(
u− Un
hn

)
− Yn+p

1
hn
K

(
u− Un
hn

)}
= 0. (5.5)

The quantity under the sign of expectation on the left hand side is just the expression in square brackets in
(5.3) with µ̂n−1(u) replaced by µn(u). To examine µn(u) observe that

µn(u) =

1
hn
E

{
E{Yp|U0}K

(
u− U
hn

)}
1
hn
EK

(
u− U
hn

)

=

1
hn
E

{
µ(U)K

(
u− U
hn

)}
1
hn
EK

(
u− U
hn

) .

Therefore if the kernel is well chosen and hn → 0 as n→∞,

1
hn
K

(
u− v
hn

)
gets close to the Dirac impulse located at u = v as n → ∞, i.e., to δ (u− v)

∫
K(v)dv, and we thus can

expect that
1
hn
E

{
m(U)K

(
u− U
hn

)}
→ g(u)

∫
K(v)dv as n→∞,

where, as usual, g(u) = µ(u)f(u), and

1
hn
EK

(
u− U
hn

)
→ f(u)

∫
K(v)dv as n→∞.

It justifies our expectation that µn(u)→ µ(u) as n→∞. Combining this with (5.4) we finally obtain

µ̂n(u)→ µ(u) as n→∞,

i.e., the desired convergence of procedure (5.1).
In the light of this, we can say that (5.1), and, a fortiori (5.3), solves the nonstationary regression equation

(5.5). The estimate is just a stochastic approximation procedure. Observe, moreover, that the equation is
nonstationary despite the fact that the system is time invariant. It is caused by the fact that

1
h
K

(
u− U0

h

)
and

1
h
YpK

(
u− U0

h

)
are only asymptotically unbiased estimates of

f(u)
∫
K(v)dv and g(u)

∫
K(v)dv,

respectively.
The procedure has yet another specific feature which leads to analytical difficulties and requires special

attention. Its gain, i.e.,

γnK

(
u− Un
hn

)
,

is random. In the classical stochastic approximation, the gain is deterministic.
Clearly all above remarks refer also to (5.2).
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5.3 Consistency and convergence rate

Depending on the estimate nonnegative number sequences {γn} and {hn} satisfy some of the following
restrictions:

hn → 0 as n→∞, (5.6)

γn → 0 as n→∞, (5.7)
∞∑
n=1

γn =∞, (5.8)

γn
hn
→ 0 as n→∞, (5.9)

and
∞∑
n=1

γnhn =∞. (5.10)

As such sequences one can apply, e.g., hn ∼ n−δ and γn ∼ n−γ . Algorithm (5.1) converges if restrictions
(5.6)-5.9) are satisfied, i.e., if 0 < δ < γ ≤ 1, while (5.2) does if (5.6), (5.7), and (5.10) hold, i.e., if 0 < δ,
0 < γ, γ + δ ≤ 1.

We shall now examine estimate (5.1). Its bias and variance are studied in Lemmas 5.5 and 5.7, respec-
tively. Owing to them, we are in a position to give

Theorem 5.1 Let U have a probability density f(•) and let Em2(U) <∞. Let the kernel K satisfy (3.4),
(3.5), and (3.6) with ε = 0. Let number sequences {hn} and {γn} satisfy (5.6)–(5.9). Then

E(µ̂n(u)− µ(u))2 → 0 as n→∞, (5.11)

at every u ∈ R where both m(•) and f(•) are continuous and f(u) > 0.

Our next theorem deals with algorithm (5.2). Its proof is in Sect. 5.5.

Theorem 5.2 Let U have a probability density f(•) and let Em2(U) < ∞. Let the kernel K(•) satisfy
(3.4), (3.5), and (3.6) with ε = 0. Let number sequences {hn} and {γn} satisfy (3.7), (5.7), and (5.10).
Then

E(µ̃n(u)− µ(u))2 → 0 as n→∞, (5.12)

at every point u ∈ R where both m(•) and f(•) are continuous and f(u) > 0.

It is obvious that if ε = 0 is replaced by ε > 0, both algorithms converge at every Lebesgue point u ∈ R
of both m(•) and f(•) at which f(u) > 0, and, a fortiori, at every u ∈ R where both m(•) and f(•) are
continuous and f(u) > 0.

Imposing some smoothness restrictions onm(•) and f(•) we give the convergence rate for both algorithms.
We assume that both m(•) and f(•) have q derivatives and that, in addition, f (q)(•) and the qth derivative
of f(u)m(u) are square integrable. Moreover,

hn ∼ n−δ and γn ∼ n−γ .

In addition to those in Theorem 5.1, the kernel satisfies the assumptions in Sect. 3.4. Denoting rn(u) =
Kn(u)− f(u)

∫
K(v)dv and Rn(u) = Ln(u)− µ(u)f(u)

∫
K(v)dv, and then using (5.18) we get

bias[µ̂n(u)] = (1− γnKn(u))bn−1(u) + γn[Rn(u)− µ(u)rn(u)],

whereKn(u) and Ln(u) are as in (5.19) and (5.20), respectively. Applying (A.17) we find rn(u) = O(hq−1/2
n ) =

O(n−δq+δ/2) and, for the same reasons, Rn(u) = O(n−δq+δ/2). Hence

|bias[µ̂n(u)]| = |1− cn−γKn(u)| |bias[µ̂n−1(u)]|+ n−γn−δq+δ/2O(1).
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Assuming that f(u) > 0 we find Kn(u) converging to a positive limit as n→∞ and get, for n large enough,

|bias[µ̂n(u)]| ≤ (1− cn−γKn(u))|bias[µ̂n−1(u)]|+ n−γn−δq+δ/2O(1).

Application of Lemma 5.2 yields
bias[µ̂n(u)] = O(n−δq+δ/2).

Since, by Lemma (5.4),
∑n
i=1 γi

∥∥An−i∥∥ = O(n−γ), from (5.25) it follows that

var[µ̂n(u)] ≤ (1− can(u)n−γ) var[µ̂n−1(u)] + n−2γ+δO(1).

Applying Lemma 5.2 again we find
var[µ̂n(u)] = O(nδ−γ).

Combining results concerning bias and variance we get

E(µ̂n(u)− µ(u))2 = O(n−2δq+δ) +O(nδ−γ).

Setting γ = 1− ε, i.e.,
γn ∼ n−1+ε

and selecting δ = 1/2q, i.e.,
hn ∼ n−1/2q

we find
E(µ̂n(u)− µ(u))2 = O(n−1+1/2q+ε).

Therefore to obtain fast convergence a small ε should be chosen. For the same γn and hn, the rate holds
also for the other estimate, i.e.,

E(µ̃n(u)− µ(u))2 = O(n−1+1/2q+ε).

If the qth derivatives of f(u) and f(u)m(u) are bounded, we use (A.18) and obtain a better rate for bias,
see also Sects. 3.4 and 4.2. Hence owing to that we obtain

E(µ̂n(u)− µ(u))2 = O(n−1+1/(2q+1)+ε)

and
E(µ̃n(u)− µ(u))2 = O(n−1+1/(2q+1)+ε).

It is interesting to compare this rate by comparison with semirecursive and off-line algorithms. The
comparison is made under the assumption that the appropriate qth derivatives are bounded, i.e., for the
case when the better rate holds. First observe that from the result concerning the mean squared error it
follows that both algorithms converge in probability as fast as O(n−1/2+1/(4q+2)+ε/2), where ε > 0 can be
selected arbitrarily small, see Lemma C.9. The off-line algorithm (3.3) as well as semirecursive (4.1) and
(4.1) converge in probability at the rate O(n−1/2+1/(4q+2)), see Sects. 3.4 and 4.2, i.e., somewhat faster. The
nε/2 is just the price paid for full recursiveness.

We want, however, to recall and stress here that, contrary to fully recursive, semirecursive and off-line
algorithms are of a quotient form. Besides, in the semirecursive case only numerators and denominators are
calculated in a recursive way.

5.4 Simulation example

In the simulation example the system is the same as in Sect. 2.2.2 but Zn = 0 and a = 0.5. In estimates
(5.1) and (5.2), the kernel is rectangular, p = 1, hn = n−δ, and γn = n−γ . Clearly µ(u) = m(u). For γ = 0.8
and various δ, the MISE is shown in Figs. 5.1 and 5.2. For δ = 0.2 and various γ, the error is in Figs. 5.3
and 5.4. The fact that (5.1) converges if γ + δ < 1 is well apparent. The MISE for both estimates as well
as for kernel ones studied earlier, i.e., for (3.3), (4.1), (4.2), is shown in Figure 5.5. All behave similarly,
nevertheless, some price is paid for semirecursiveness and full recursiveness.
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Figure 5.1: MISE versus γ for estimate (5.1) with γn = n−0.8 and hn = n−γ , various n; (example in Sect.
5.4).

Figure 5.2: MISE versus γ for estimate (5.2) with γn = n−0.8 and hn = n−γ , various n; (example in Sect.
5.4).

Figure 5.3: MISE versus δ for estimate (5.1) with hn = n−0.2 and γn = n−γ , various n; (example in Sect.
5.4).
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Figure 5.4: MISE versus δ for estimate (5.2) with hn = n−0.2 and γn = n−γ , various n; (example in Sect.
5.4).

Figure 5.5: MISE versus n for kernels estimates, a) – (3.3), b) – (4.1), c) – (4.2), d) – (5.1), e) – (5.2);
hn = n−2/5, γn = n−4/5 for (5.1) and γn = n−1/2 for (5.2), (example in Section 5.4).
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5.5 Auxiliary results, lemmas and proof

5.5.1 Auxiliary results

Lemma 5.1 Let (5.7) and (5.8) hold. Let for n = 1, 2, . . .,

ξn = (1− γnAn)ξn−1 + γnBn

with ξ0 = B0/A0, where An → A, A 6= 0, Bn → B, as n→∞. Then,

ξn →
B

A
as n→∞.

Proof. Denoting cn = γnAn, n = 1, 2, · · · , we get

ξn = (1− cn)ξn−1 + cnDn

with Dn = Bn/An. Therefore ξn =
∑n
i=0 di(n)Di, where

di(n) =

{
ci
∏n
j=i+1(1− cj), for i = 0, 1, ..., n− 1

cn, for i = n.

with c0 = 1. Denoting sn =
∑n
i=0 di(n) we get sn = (1− cn)sn−1 + cn. Observing s1 = 1 we obtain

n∑
i=0

di(n) = 1. (5.13)

Now let

ρi =


c0, for i = 0
ci∏i

j=1(1− cj)
, for i = 1, 2, . . . . (5.14)

Using (5.13) we obtain
∑n
i=1 ρi

∏n
j=1(1− cj) = 1. Thus di(n) = ρi/

∑n
j=1 ρj which leads to

ξn =

n∑
i=0

ρiDi

n∑
j=0

ρj

. (5.15)

Observing
∑∞
n=0 cn =

∑∞
n=0 γnAn, recalling that An converges to a positive limit as n → ∞ and using

(5.8), we find
∑∞
n=0 cn =∞. On the other hand, from (5.14) we conclude that, since cn → 0 as n→∞, we

have cn ≤ ρn for n large enough. Finally
∑∞
n=0 ρn =∞. Owing to that, (5.15) and Toeplitz Lemma 4.4, ξn

and Dn have the same limit as n→∞. Now because Dn → B/A as n→∞ we obtain ξn → B/A as n→∞
and complete the proof.

The lemma given below can be found in Chung [60] or Fabian [101]. The final part of our proof is
somewhat simpler since we apply our Lemma 5.1.

Lemma 5.2 Let

ξn =
(

1− An
nα

)
ξn−1 +

Bn
nα+β

, (5.16)

where 0 < α ≤ 1, 0 < β, and where An → A, A 6= 0, Bn → B, as n → ∞. Let C equal A for 0 < α < 1,
and A− β for α = 1, respectively. If C > 0, then, for any ξ0,

nβξn →
B

C
as n→∞.
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Proof. Observe that (1 + n−1)β = 1 + βnn
−1 with βn → β as n→∞. Thus(

1 +
1
n

)β (
1− An

nα

)
= 1− An

nα
+
βn
n

+
Anβn
n1+α

= 1− Cn
nα

with Cn → C as n → ∞. Multiplying left and right hand sides of (5.16) by (n + 1)β and nβ(1 + n−1)β ,
respectively, and denoting λn = (n+ 1)βξn, we obtain

λn = (1− γn)λn−1 + γn
bn
Cn

with bn = Bn(1 + n−1)β and γn = Cnn
−α. Since bn/Cn → B/C as n → ∞, an application of Lemma 5.1

yields λn → B/C as n→∞, and completes the proof.

Lemma 5.3 Let limn→∞ γn = 0 and let
∑∞
n=1 |βn| <∞. Then

lim
n→∞

n∑
i=1

γiβn−i = 0.

Proof. Fix a positive ε. Since γn converges to zero, there exists N such that |γn| < ε for n > N . Therefore
the examined quantity equals

∑N
i=1 γiβn−i+

∑n
i=N+1 γiβn−1. The first term is bounded in absolute value by

(supn |βn|)
∑N
i=1 |γn−i| and converges to zero as n increases to infinity since γn−i → 0 as n→∞. Observing

that the absolute value of the other term is not greater than ε
∑∞
i=1 |βi| and noticing that ε can be arbitrarily

small, we complete the proof.

Lemma 5.4 Let 0 < q < 1. Then
n∑
i=1

1
iα
qn−i = O

(
1
nα

)
.

Proof. It suffices to notice that
n∑
i=1

1
iα
qn−i =

1
nα

n−1∑
i=0

nα

(n− i)α
qi ≤ 1

nα

n−1∑
i=0

iαqi ≤ c

nα
,

where c =
∑∞
i=0 i

αqi.

5.5.2 Lemmas

Lemma 5.5 (bias of (5.3)) Let U have a probability density and let Em2(U) < ∞. Let the kernel K(•)
satisfy (3.4), (3.5), and (3.6) with ε = 0. Let number sequences {hn} and {γn} satisfy (5.6)–(5.8). Then

Eµ̂n(u)→ µ(u) as n→∞

at every u ∈ R where both m(•) and f(•) are continuous, and f(u) > 0.

Proof. As usual, for the sake of the proof, Em(U) = 0. Let u ∈ R be a point where both m(u) and f(u)
are continuous, and f(u) > 0. We begin by rewriting (5.1) in the following form:

µ̂n(u) =
[
1− γn

hn
K

(
u− Un
hn

)]
µ̂n−1(u) +

γn
hn
Yn+pK

(
u− Un
hn

)
. (5.17)

Since µ̂n−1(u) and Un are independent,

Eµ̂n(u) = (1− γnKn(u))Eµ̂n−1(u) + γnLn(u), (5.18)

with

Kn(u) =
1
hn
E

{
K

(
u− U
hn

)}
, (5.19)
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and

Ln(u) =
1
hn
E

{
µ(U)K

(
u− U
hn

)}
. (5.20)

Now, applying (5.6) and Lemma A.8, we find that Ln(u) and Kn(u) converge to f(u)µ(u)
∫
K(v)dv and

f(u)
∫
K(v)dv as n→∞, respectively. Using then (5.7), (5.8), and Lemma 5.1, we find Eµ̂n(u) converging

to the same limit as Ln(u)/Kn(u) as n→∞. Since the limit equals µ(u), we have completed the proof.

Lemma 5.6 Let U have a probability density and let Em2(U) <∞. Let the kernel K(•) satisfy (3.4), (3.5),
and (3.6) with ε = 0. Let number sequences {hn} and {γn} satisfy (5.6)–(5.9). Then

cov[µ̂n(u), cTAXn+1] = O(1)
n∑
i=1

γi
∥∥An−i∥∥

at every u ∈ R where both m(•) and f(•) are continuous. If (3.6) holds with some ε > 0, the convergence
takes place at every Lebesgue u ∈ R point of both m(•) and f(•).

Proof. In the proof, u ∈ R is a point where both m(u) and f(u) are continuous and f(u) > 0. Since
(5.6) holds Kn(u) → f(u)

∫
K(v)dv and Ln(u) → f(u)µ(u)

∫
K(v)dv as n → ∞, see Lemma A.8, where

f(u)
∫
K(v)dv > 0. We recall that Kn(u) and Ln(u) are defined in (5.19) and (5.20), respectively. Moreover,

since (5.7) is satisfied, for the sake of simplicity we assume that

ε < 1− γnKn(u) < 1, (5.21)

for all n, for some ε > 0. We define

βi(u;n) =


n∏

j=i+1

(
1− γj

hj
K

(
u− Uj
hj

))
, for i = 0, ..., n− 1

1, for i = n

with γ0 = 1, and observe that, for i < j,

cov[m(Uj), βi(u;n)] = −γj cov
[
m(U),

1
hj
K

(
u− U
hj

)] n∏
p=i+1
p 6=j

(1− γpKp(u)).

By (5.21) and the fact that the covariance in the expression converges as j →∞, we get

cov[m(Uj), βi(u;n)] = γjOj(1)
n∏

p=i+1

(1− γpKp(u)). (5.22)

We now pass to the main part of the proof. Iterating (5.17) we get

µ̂n(u) =
n∑
i=0

γiβi(u;n)Yi+1
1
hi
K

(
u− Ui
hi

)
,

which leads to

cov [Xn+1, µ̂n(u)] = cT
n∑
i=0

γi cov
[
Xn+1, βi(u;n)Yi+1

1
hi
K

(
u− Ui
hi

)]
= S1(u) + S2(u)

with

S1(u) =
n∑
i=0

γic
TAn−i cov

[
Xi+1, βi(u;n)Yi+1

1
hi
K

(
u− Ui
hi

)]
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and

S2(u) =
n∑
i=0

γi

n∑
j=i+1

cTAn−jb cov
[
m(Uj), βi(u;n)Yi+1

1
hi
K

(
u− Ui
hi

)]
.

We have used here the fact that Xn+1 = An−iXi+1 +
∑n
j=i+1A

n−jbm(Uj).
As βi(u;n) is independent of both Ui and Xi+1 we obtain

S1(u) =
n∑
i=1

γic
TAn−iCi(u)Eβi(u;n)

with

Ci(u) = cov
[
cTXi+1, Yi+1

1
hi
K

(
u− Ui
hi

)]
.

Having Yi+1 = cTXi+1 + Zi+1 we find Ci(u) = Ki(u) cov [X,X] c converging as i → ∞. Therefore, since
|Eβi(n;u)| ≤ 1, we get

||S1(u)|| = O(1)
n∑
i=1

γi
∥∥An−i∥∥ .

Since, for i < j, Yi+1 and Ui are independent of both βi(u;n) and Uj we have

S2(u) =
n∑
i=1

γiLi(u)
n∑

j=i+1

cTAn−jb cov[m(Uj), βi(u;n)].

Using (5.22), we find the quantity equal to

O(1)
n∑
i=1

Li(u)
Ki(u)

γiKi(u)
n∏

p=i+1

(1− γpKp(u))

 n∑
j=i+1

cTAn−jbγj

= O(1)
n∑
i=1

Li(u)
Ki(u)

δi(n;u)
n∑

j=i+1

cTAn−jbγj .

where δi(n;u) = γiKi(u)Eβi(u;n)}. Since Ln(u)/Kn(u)→ µ(u) as n→∞, we obtain

S2(u) = O(1)
n∑
i=1

δi(n;u)
n∑

j=i+1

γj
∥∥An−j∥∥ = O(u)

n∑
i=1

γi
∥∥An−i∥∥

since, by (5.13),
∑n
i=1 δi(n;u) = 1. The proof has thus been completed.

Lemma 5.7 (variance of (5.3)) Let U have a probability density and let Em(U) = 0 and Em2(U) <∞.
Let the kernel K(•) satisfy (3.4), (3.5), and (3.6) with ε = 0. Let number sequences {hn} and {γn} satisfy
(5.6)–(5.9). Then

var[µ̂n(u)]→ 0 as n→∞

at every u ∈ R where both m(•) and f(•) are continuous, and f(u) > 0.

Proof. Fix u ∈ R and assume that both m(u) and f(u) are continuous at the point u and that f(u) > 0.
From (5.17) we get

var[µ̂n(u)] = V1(u) + V2(u) + 2V3(u),

where

V1(u) = var
[(

1− γn
hn
K

(
u− Un
hn

))
µ̂n−1(u)

]
,

V2(u) =
γ2
n

h2
n

var
[
Yn+1K

(
u− Un
hn

)]
,
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and

V3(u) = cov
[(

1− γn
hn
K

(
u− Un
hn

))
µ̂n−1(u),

γn
hn
Yn+pK

(
u− Un
hn

)]
.

For independent X,Y , we have var[XY ] = EX2 var[Y ] + E2Y var[X]. Thus since Un is independent of
µ̂n−1(u), we obtain

V1(u) = (1− γnan(u)) var[µ̂n−1(u)] +
γ2
n

hn
(Mn(u)− hnK2

n(u))E2µ̂n−1(u),

where

Mn(u) =
1
hn
EK2

(
u− U
hn

)
,

and
an(u) = 2Kn(u)− γn

hn
Mn(u). (5.23)

In view of Lemma A.8 and (5.9), we find Mn(u) convergent as n→∞ and get

an(u)→ a(u) as n→∞ (5.24)

with a(u) = 2f(u)
∫
K(v)dv > 0. Since, moreover, by Lemma 5.5, Eµ̂n−1(u) also converges as n → ∞, we

finally obtain

V1(u) = (1− γnan(u)) var[µ̂n−1(u)] +
γ2
n

hn
O(1).

In turn V2(u) = (γ2
n/hn)Pn(u) with

Pn(u) =
1
hn

var
[
Y1K

(
u− U0

hn

)]
converging as n→∞, see Lemma A.8 again. Thus

V2(u) =
γ2
n

hn
O(1).

Passing to V3 we observe that Yn+p = cTApXn + cTAp−1bm(Un) + ξn+1 + Zn+p with

ξn+1 =
n+p−1∑
i=n+1

cTAn+p−1−ibm(Ui).

Since Zn+p is independent of both Un and µ̂n−1(u), we have V3(u) = V31(u) + V32(u) + V33(u) with

V31(u)

= γn cov
[(

1− γn
hn
K

(
u− Un
hn

))
µ̂n−1(u),

1
hn
K

(
u− Un
hn

)
cTApXn

]
,

V32(u) = cTAp−1bγn

× cov
[(

1− γn
hn
K

(
u− Un
hn

))
µ̂n−1(u),

1
hn
K

(
u− Un
hn

)
m(Un)

]
,

and

V33(u) = γn cov
[(

1− γn
hn
K

(
u− Un
hn

))
µ̂n−1(u),

1
hn
K

(
u− Un
hn

)
ξn

]
.

For any random variables X,Y, V,W such that pairs (X,Y ) and (V,W ) are independent, we have
cov [XV, YW ] = E{XY } cov [V,W ] + cov [X,Y ]EV EW . Owing to this and the fact that EX = 0, we
obtain

V31(u) = γn

(
Kn(u)− γn

hn
Mn(u)

)
cov[µ̂n−1(u), cTApXn].
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Since both Kn(u) and Mn(u) converge as n→∞, recalling (5.9) and applying Lemma 5.6, we find

V31(u) = γnO(1)
n∑
i=1

γi
∥∥An−i∥∥+

γ2
n

hn
O(1).

Using again the fact that µ̂n−1(u) and Un are independent we get

V32(u) = −cTAp−1bγnEµ̂n−1(u)

× cov
[
γn
hn
K

(
u− Un
hn

)
,

1
hn
K

(
u− Un
hn

)
µ(Un)

]
= −cTAp−1b

γ2
n

hn
(Sn(u)− hnKn(u)Ln(u))Eµ̂n−1(u)

with

Sn(u) =
1
hn
E

{
µ(U)K2

(
u− U
hn

)}
converging as n→∞, see Lemma A.8. Hence

V32(u) = O(1)
γ2
n

hn
.

Since ξn+1 is independent of both Un and µ̂n−1(u), we obtain V33(u) = 0. Thus

V3(u) = O(1)γn
n∑
i=1

γi
∥∥An−i∥∥+

γ2
n

hn
O(1).

In this way we have finally shown that

var[µ̂n(u)] ≤ (1− γnan(u)) var[µ̂n−1(u)] + γndn(u), (5.25)

where

dn(u) = O(1)

(
γn
hn

+
n∑
i=1

γi
∥∥An−i∥∥) .

We now apply (5.9) and Lemma 5.3 to find that dn(u) → 0 as n → ∞. Thus in view of (5.7), (5.8), and
(5.24), an application of Lemma 5.1 completes the proof.

5.5.3 Proof

Proof of Theorem 5.2

Since the proof is very similar to that of Theorem 5.1, we focus our attention on main points only. As far as
bias is concerned we have

Eµ̃n(u) = (1− γnhnKn(u))Eµ̃n−1(u) + γnhnLn(u)

and easily verify that Eµ̃n(u) → µ(u) as n → ∞. Examining variance we employ the ”almost everywhere”
version of Lemma A.8 and obtain

var[µ̃n(u)] ≤ (1− γnhnAn(u)) var[µ̃n−1(u)] + γnhnBn(u), (5.26)

where

Bn(u) = O(1)

(
γn +

n∑
i=1

γihi
∥∥An−i∥∥)

with some An(u) → a(u) as n → ∞, where a(u) is as in (5.23). Application of Lemma 5.1 completes the
proof.
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5.6 Bibliographic notes

Estimate (5.1) has been studied by Györfi [202], Révész [351], Györfi and Walk [205]. All those authors
have, however, assumed that Yi and Yj are independent for i 6= j. In other words, in their works A = 0, i.e.,
the dynamic subsystem is a simple delay which means that the whole system is just memoryless. Dynamics
is present in Greblicki [158], where both (5.1) as well as (5.2) were examined.
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Chapter 6

Orthogonal series algorithms

6.1 Introduction

We begin with the presentation of the idea behind the class of orthogonal series algorithms. Suppose that
the values of the input signal are in a set D which can be an interval or a half real line [0,∞) or the whole
real line R.

Let ϕ0, ϕ1, . . . be a system of orthonormal functions in D, i.e., let∫
D

ϕi(u)ϕj(u)du =
{

1, for i = j
0, otherwise.

Assuming that
∫
D
|f(u)|du <∞ we expand f in the series, i.e., write

f(u) ∼
∞∑
k=0

βkϕk(u) (6.1)

with
βk =

∫
D

f(u)ϕk(u)du = Eϕk(U).

The expression SN (u) =
∑N
k=0 βkϕk(u) is a partial sum of the expansion. Estimating coefficients βk’s in a

natural way, i.e., defining its estimate as

β̂k =
1
n

n∑
i=1

ϕk(Ui)

we take

f̂(u) =
N(n)∑
k=0

β̂kϕk(u)

as an estimate of f(u) where N(n) is a sequence of integers increasing to infinity with n.
Denoting g(u) = µ(u)f(u) and assuming that

∫
D
|g(u)| <∞, i.e., that

∫
D
|m(u)f(u)|du = E|m(U)| <∞,

for similar reasons, we write

g(u) ∼
∞∑
k=0

αkϕk(u),

where
αk =

∫
D

ϕk(u)µ(u)f(u)du = E{µ(U)ϕk(U)} = E{Ypϕk(U0)}.

Therefore we define

ĝ(u) =
N(n)∑
k=0

α̂kϕk(u),

53
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where

α̂k =
1
n

n∑
i=1

Yp+iϕk(Ui),

as an estimate of g(u) = µ(u)f(u).
In the light of this,

µ̂(u) =

n∑
i=1

Yp+iϕk(Ui)

n∑
i=1

ϕk(Ui)

is an orthogonal series estimate of µ(u). The function

KN (u, v) =
N∑
k=0

ϕk(u)ϕk(v)

is called a kernel function of the series while the number N is the order of the kernel. Using the kernel we
can rewrite the estimate in the following form:

µ̂(u) =

n∑
i=1

Yp+iKN(n)(u, (Ui))

n∑
i=1

KN(n)(u, (Ui))

close to the kernel estimate examined in Chap. 3.
Different orthogonal series should be applied for different D, for D = [−π, π] and D = [−1, 1], the

Fourier and Legendre series are obvious choices. For D = [0,∞) the Laguerre system can be applied, for
D = (−∞,∞) we can use the Hermite functions. We can also employ wavelets, e.g., for D = [−1/2, 1/2], we
use Haar ones. Fundamental properties of these orthogonal systems are presented in consecutive sections of
Appendix B. Also useful lemmas are derived therein.

Basic results concerning the rate of pointwise convergence of estimates with various orthogonal systems are
given in Table 6.1. In the fourth column the mean square error (MSE for brevity) defined as E(f̂(u)−f(u))2,
where f̂ is the estimate of the denominator in the appropriate estimate, is given. We recall that the rate
holds also for ĝ(u), i.e., the estimate of the denominator g(u) = µ(u)f(u). In the last row we give properties
of the kernel estimate. It follows from the table that the overall quality of all estimates is very much the
same.

Table 6.1: Convergence rate for numerators and denominators of various estimates.
estimate bias variance MSE f (q) and g(q)

Fourier O(N−q+
1
2 (n)) O

(
N(n)
n

)
square

Legendre O(N−q+
1
2 (n)) O

(
N(n)
n

)
integrable

Laguerre O(N−
q
2 + 1

4 (n)) O

(
N

1
2 (n)
n

)
O(n−1+ 1

2q ) or

Hermite O(N−
q
2 + 1

4 (n)) O

(
N

1
2 (n)
n

)
similar

kernel O(hq−
1
2

n ) O

(
1
nhn

)
property

O(hqn) O

(
1
nhn

)
O(n−1+ 1

2q+1 ) bounded
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6.2 Fourier series estimate

Here D = [−π, π] and |U | ≤ π. To estimate the characteristic we apply the trigonometric orthonormal
system

1√
2π
,

1√
π

cosu,
1√
π

sinu,
1√
π

cos 2u,
1√
π

sin 2u, . . . ,

see Section B.2. We assume that
∫ π
−π |f(u)|du <∞ and

∫ π
−π |g(u)|du <∞. Clearly

g(u) ∼ a0 +
∞∑
k=1

ak cos ku+
∞∑
k=1

bk sin ku,

where

a0 =
1

2π

∫ π

−π
g(u)du,

and, for k = 1, 2, . . .,

ak =
1
π

∫ π

−π
g(u) cos(ku)du, bk =

1
π

∫ π

−π
g(u) sin(ku)du.

For the same reasons

f(u) ∼ 1
2π

+
∞∑
k=1

αk cos ku+
∞∑
k=1

βk sin ku

where

αk =
1
π

∫ π

−π
f(u) cos(ku)du, βk =

1
π

∫ π

−π
g(u) sin(ku)du.

Therefore the trigonometric series estimate of µ(u) has the following form:

µ̂(u) =

â0 +
N(n)∑
k=1

âk cos ku+
N(n)∑
k=1

b̂k sin ku

1
2π

+
N(n)∑
k=1

α̂k cos ku+
N(n)∑
k=1

β̂k sin ku

with

â0 =
1

2πn

n∑
i=1

Yp+i, âk =
1
πn

n∑
i=1

Yp+i cos kUi,

b̂k =
1
πn

n∑
i=1

Yp+i sin kUi,

and

α̂k =
1
πn

n∑
i=1

cos kUi, β̂k =
1
πn

n∑
i=1

sin kUi.

Applying the complex version of the Fourier system, see Section B.2, we get

g(u) ∼
∞∑

k=−∞

cke
iku and f(u) ∼

∞∑
k=−∞

dke
iku,

where

ck =
1

2π

∫ π

−π
e−ikvg(v)dv and dk =

1
2π

∫ π

−π
e−ikvf(v)dv,
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and rewrite the estimate as

µ̂(u) =

N(n)∑
k=−N(n)

ĉke
iku

N(n)∑
k=−N(n)

d̂keiku

,

where

ĉk =
1

2πn

n∑
j=1

Yp+je
−ikUj and d̂k =

1
2πn

n∑
j=1

e−ikUj .

Using the Dirichlet kernel, see Section B.2,

Dn(u) =
sin
(
n+ 1

2

)
u

2π sin 1
2u

,

we can also write

µ̂(u) =

n∑
i=1

Yp+iDN(n)(Ui − u)

n∑
i=1

DN(n)(Ui − u)

.

Theorem 6.1 Let Em2(U) <∞. Let
∫ π
−π |f(u)|du <∞. If

N(n)→∞ as n→∞ (6.2)

and
N(n)
n
→ 0 as n→∞, (6.3)

then
µ̂(u)→ µ(u) as n→∞ in probability

at every u ∈ (−π, π) where both m(•) and f(•) are differentiable and f(u) > 0.

The proof of the theorem, in which Corollary B.2 has been applied, is given in Section 6.9. Using Corollary
B.2 rather than B.1, we easily verify the next result in which f(•) is a Lipschitz function. Its proof, like all
of the other theorems, is also in Section 6.9.

Theorem 6.2 Under the restrictions of Theorem 6.1,

µ̂(u)→ µ(u) as n→∞ in probability

at every u ∈ (−π, π) where both f(•) and m(•) satisfy a Lipschitz condition, and f(u) > 0.

In turn, making use of Carleson and Hunt result, see Theorem B.2, we get a result on convergence at
almost every point

Theorem 6.3 Let Em2(U) < ∞. Let, moreover,
∫ π
−π |f(u)|sdu < ∞ and

∫ π
−π |g(u)|sdu < ∞ with some

s > 1. If (6.2) and (6.3) hold, then

µ̂(u)→ µ(u) as n→∞ in probability

at almost every u ∈ (−π, π) where f(u) > 0.
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To establish the speed where the estimate converges we apply (B.14). Assuming that m(i)(±π) =
f (i)(±π) = 0, for i = 0, 1, . . . , (q − 1), and that

∫ π
−π(f (q)(v))2dv <∞ and

∫ π
−π(g(q)(v))2dv <∞, we find

bias[ĝ(u)] = Eĝ(u)− g(u) = O(N−q+1/2(n)).

Recalling (6.9) we thus write

E(ĝ(u)− g(u))2 = bias2[ĝ(u)] + var[ĝ(u)]

= O(N−2q+1(n)) +O

(
N(n)
n

)
and selecting

N(n) ∼ n1/2q, (6.4)

obtain E(ĝ(u)−g(u))2 = O(n−1+1/2q). Since the same rate holds for f̂(u), applying Lemma C.7, we conclude
that

|µ̂(u)− µ(u)| = O(n−1/2+1/4q) in probability

and
P{|µ̂(u)− µ(u)| > εµ(u)} = O(n−1+1/2q)

for every ε > 0.

6.3 Legendre series estimate

In this section |U | ≤ 1 and D = [−1, 1]. Legendre orthogonal polynomials P0(u), P1(u), . . . satisfy Rodrigues’
formula

Pk(u) =
1

2kk!
dk

duk
(u2 − 1)k,

see Section B.3. The system p0(u), p1(u), . . ., where

pk(u) =

√
2k + 1

2
Pk(u),

is orthonormal. Making use of the system we obtain the following estimate:

µ̃(u) =

N(n)∑
k=0

ãkpk(u)

N(n)∑
k=0

b̃kpk(u)

,

where

ãk =
1
n

n∑
i=1

Yp+ipk(Ui) and b̃k =
1
n

n∑
i=1

pk(Ui)

are estimates of

ak =
∫ 1

−1

µ(v)f(v)pk(v)dv = E{Yppk(U0)}

and

bk =
∫ 1

−1

f(v)pk(v)dv = E{pk(U)},

respectively.
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The estimate can be rewritten in the so called kernel form:

µ̃(u) =

n∑
i=1

Yp+ikN(n)(u, Ui)

n∑
i=1

kN(n)(u, Ui)

,

where

kn(u, v) =
n∑
k=0

pk(u)pk(v) =
n+ 1

2
Pn(u)Pn+1(v)− Pn+1(u)Pn(v)

v − u

is the kernel of the Legendre system.

Theorem 6.4 Let Em2(U) <∞. Let
∫ 1

−1
|f(u)|(1− u2)1/4du <∞ and

∫ 1

−1
|f(u)m(u)|(1− u2)1/4du <∞.

If (6.2) and (6.3) hold, then
µ̂(u)→ µ(u) as n→∞ in probability

at every u ∈ (−1, 1) where both m(•) and f(•) are differentiable and f(u) > 0.

The next two theorems are obvious if we refer to Corollaries B.4 and B.5. Applying Corollary B.2 rather
than Corollary B.1, we easily verify the next result.

Theorem 6.5 Under the restrictions of Theorem 6.4,

µ̃(u)→ µ(u) as n→∞ in probability

at every u ∈ (−1, 1) where both f(•) and m(•) satisfy a Lipschitz condition, and f(u) > 0.

Theorem 6.6 Let
∫ 1

−1
|f(u)|sdu <∞ with any s > 1. Under the restrictions of Theorem 6.4,

µ̃(u)→ µ(u) as n→∞ in probability

at almost every u ∈ (−1, 1) where f(u) > 0.

Assuming that both f(•) and m(•) have q derivatives,
∫ 1

−1
(f (q)(v))2dx < ∞,

∫ 1

−1
(g(q)(v))2dv < ∞ and

f (i)(±1) = 0 = g(i)(±1) = 0, i = 0, 1, . . . , q − 1, we observe that bias[g̃(u)] = O(N−q+1/2), see (B.26).
Applying (6.10) we thus find E(g̃(u) − g(u))2 = O(N−2q+1) + N(n)/n. Therefore, for N(n) as in (6.4),
E(g̃(u)−g(u))2 and, for similar reasons, E(f̃(u)−f(u))2 are of order O(n−1+1/2q). Finally applying Lemma
C.7 we conclude that

|µ̃(u)− µ(u)| = O(n−1/2+1/4q) in probability,

and
P{|µ̃(u)− µ(u)| > εµ(u)} = O(n−1+1/2q)

for every ε > 0. The convergence rate is the same as that obtained for the Fourier series estimate.

6.4 Laguerre series estimate

Now U ≥ 0 and D = [0,∞). We apply Laguerre orthonormal functions l0(u), l1(u), . . ., where

lk(u) = e−u/2Lk(u)

with Laguerre polynomials L0(u), L1(u), . . . defined by Rodrigues’ formula

Lk(u) = eu
1
k!

dk

duk
(uke−u),
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see Section B.4, to obtain the following estimate:

µ̄(u) =

N(n)∑
k=0

āklk(u)

N(n)∑
k=0

b̄klk(u)

,

where

āk =
1
n

n∑
i=1

Yp+ilk(Ui) and b̄k =
1
n

n∑
i=1

lk(Ui).

The kernel representation has the following form:

µ̄(u) =

n∑
i=1

Yp+ikN(n)(u, Ui)

n∑
i=1

kN(n)(u, Ui)

,

where

kn(u, v) =
n∑
k=0

lk(u)lk(v) = (n+ 1)
ln(u)ln+1(v)− ln+1(u)ln(v)

v − u

is the kernel of the Laguerre system.

Theorem 6.7 Let Em2(U) <∞. If (6.2) holds and√
N(n)
n

→ 0 as n→∞, (6.5)

then
µ̄(u)→ µ(u) as n→∞ in probability

at every u ∈ (0,∞) where both m(•) and f(•) are differentiable and f(u) > 0.

Theorem 6.8 Under the restrictions of Theorem 6.7,

µ̄(u)→ µ(u) as n→∞ in probability

at every u ∈ (0,∞) where both m(•) and f(•) satisfy a Lipschitz condition and f(u) > 0.

Theorem 6.9 Let
∫ 1

−1
|f(u)|sdu <∞ with any s > 1. Under the restrictions of Theorem 6.7,

µ̄(u)→ µ(u) as n→∞ in probability

at almost every u ∈ (0,∞) where f(u) > 0.

Suppose that some integral g(q)(•) is involved in is finite, see Sect. B.4, and further that limu→∞ g(u)e−u/2+δ =
0 and limu→0 u

ig(i)(u) = 0,for i = 0, 1, 2, . . . , q − 1. Then, see (B.33a), bias[ḡ(u)] = O(N−q/2+1/4). This
combined with (6.11) yields E(ḡ(u)− g(u))2 = O(N−q+1/2) + O(N1/2(n)/n). Thus, for

N ∼ n1/q, (6.6)

we get E(ḡ(u)− g(u))2 = O(n−1+1/2q). For similar reasons, the rate holds for f̄(u) which leads to

|µ̄(u)− µ(u)| = O(n−1/2+1/4q) in probability,

and
P{|µ̄(u)− µ(u)| > εµ(u)} = O(n−1+1/2q)

for every ε > 0, i.e., the same rate as that derived for the Fourier and Legendre series estimates.
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6.5 Hermite series estimate

For any U , we can use the Hermite orthonormal system h0(u), h1(u), . . . where

hk(u) =
1√

2kk!
√
π
Hk(u)e−u

2/2,

with the Hermite polynomials satisfying Rodrigues’ formula

Hk(u) = (−1)keu
2 dk

duk
e−u

2
,

see Section B.5. The system is orthonormal over the whole real line (−∞,∞).
The estimate is of the following form:

µ̌(u) =

N(n)∑
k=0

ǎkhk(u)

N(n)∑
k=0

b̌khk(u)

,

where

ǎk =
1
n

n∑
i=1

Yp+ihk(Ui) and b̌k =
1
n

n∑
i=1

hk(Ui).

Using the kernel function

kn(u, v) =
n∑
k=0

hk(u)hk(v) = (n+ 1)
hn(u)hn+1(v)− hn+1(u)hn(v)

v − u

we write

µ̌(u) =

n∑
i=1

Yp+ikN(n)(u, Ui)

n∑
i=1

kN(n)(u, Ui)

.

Theorem 6.10 Let Em2(U) <∞. If (6.2) and (6.5) hold, then

µ̌(u)→ µ(u) as n→∞ in probability

at every u ∈ (−∞,∞) where both m(•) and f(•) are differentiable and f(u) > 0.

If, for i = 0, 1, . . . , q−1, lim|u|→∞ g(i)(u)e−u
2/2+δ = 0, with some δ > 0, and some integral g(q) is involved

in is finite, bias[ǧ(u)] = O(n−q/2+1/4), see (B.46). As var[ǧ(u)] = O(N1/2(n)/n), for N(n) selected as in
(6.6), E(ǧ(u)− g(u))2 = O(n−1+1/2q). For similar reasons, under appropriate restrictions imposed on f(•),
E(f̌(u)− f(u))2 = O(n−1+1/2q). Therefore

|µ̌(u)− µ(u)| = O(n−1/2+1/4q) in probability

and
P{|µ̌(u)− µ(u)| > εµ(u)} = O(n−1+1/2q)

for every ε > 0. The rate is the same as that derived for the Fourier, Legendre, and Hermite series estimates.
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6.6 Wavelet estimate

In this section, we apply Haar wavelets, see Sect.B.6. Now −1/2 ≤ U ≤ 1/2 and D = [−1/2, 1/2]. For each
m, wavelets

φm,0, φm,1, φm2, . . . , φm,2m−1

are defined as
φmn(x) = 2m/2φ (2mx− n) ,

where φmn(x) = IAmn(x) and, where

Amn =
[
−1

2
+

n

2m
,−1

2
+
n+ 1
2m

)
.

We define the following wavelet expansions:

Sm(g) = 2m
2m−1∑
k=0

amkφmk(u)

with amk =
∫ 1/2

−1//2
g(u)φmk(u)du = E{Ypφmk(U0)} and

Sm(f) = 2m
2m−1∑
k=0

bmkφmk(u)

with bmk =
∫ 1/2

−1/2
f(u)φmk(u)du = Eφmk(U) of g(•) and f(•), respectively. Therefore the estimate of µ(u)

has the following form:

µ̆(u) =

2M(n)−1∑
k=0

ăM(n),kφM(n),k(u)

2M(n)−1∑
k=0

b̆M(n),kφM(n),k(u)

with

ăM(n),k =
1
n

n∑
i=1

Yp+iφM(n),k(Ui)

and

b̆M(n),k =
1
n

n∑
i=1

φM(n),k(Ui).

Theorem 6.11 Let
∫ 1

0
|m(u)|du <∞. If

M(n)→∞, as n→∞,

2M(n)

n
→ 0 as n→∞,

then
µ̆(u)→ µ(u) as n→∞ in probability

at every u ∈ (−1, 1) where both f(•) and m(•) are continuous and f(u) > 0.

Assuming that both m(•) and f(•) satisfy a Lipschitz inequality, i.e., that |m(u) − m(v)| ≤ c1|u − v|
and |f(u) − f(v)| ≤ c2|u − v| for all u, v ∈ [0, 1], where c1 and c2 are some constants, we notice that
bias[f̆(u)] = O(1/2M(n)), see (B.47). As var[f̆(u)] = O(2M(n)/n), we thus get

E(f̆(u)− f(u))2 = O

(
1

22M(n)

)
+O

(
2M(n)

n

)
.
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Thus, selecting 2M(n) ∼ n1/3, e.g.,

M(n) =
1 + εn
3 log 2

log n,

where limn→∞ εn = 0, and we obtain E(f̆(u)− f(u))2 = O(n−2/3). Since E(ğ(u)− g(u))2 diminishes at the
same speed,

|µ̆(u)− µ(u)| = O(n−1/3) in probability
and

P{|µ̆(u)− µ(u)| > εµ(u)} = O(n−2/3)
for every ε > 0. The rate is the same as that of the kernel estimate obtained for both m(•) and f(•) with
bounded derivatives, i.e., under very similar restrictions, see Table 6.1.

6.7 Local and global errors

In previous sections we examined local properties of estimates employing Fourier, Legendre, Laguerre and
Hermite series estimates. Their properties are very much alike. Roughly speaking, for f(•) and m(•) having
q derivatives,

|µn(u)− µ(u)| = O(n−1/2+1/4q) in probability,
and

P{|µn(u)− µ(u)| > εµ(u)} = O(n−1+1/2q)
for every ε > 0, where µn(u) is any of those four estimates. The rate holds, however, if f(•) and m(•) behaves
appropriately not only in a neighborhood of the point u but also in the whole set D, and, in particular, at
its ends, where D is understood as in Section 6.1.

Assuming that both m(•) and Z are bounded we apply Lemma C.10 and, for the Fourier estimate, obtain

E(µ̂(u)− µ(u))2

≤ 2
1

f(u)2
E(ĝ(u)− g(u))2 + 2C2 1

f2(u)
E(f̂(u)− f(u))2. (6.7)

Apart from the conclusion that
lim
n→∞

E(µ̂(u)− µ(u))2 = 0

at points specified in Theorems 6.1, 6.2, 6.3, we observe that

E(µ̂(u)− µ(u))2 = O(n−1+1/2q),

provided that N(n) satisfies (6.4) and both f and m have q derivatives and satisfy some additional restrictions
mentioned in Sect. 6.2. The rate holds also for the other estimates if N(n) is selected in the way suggested
in consecutive sections.

6.8 Simulation example

In the simulation example, as usual, the system is the same as that in Sect. 2.2.2 with a = 0.5. Since we
estimate not on the interval [−π, π] we apply the system

1√
6
,

1√
6

cos
π

3
u,

1√
3

sin
π

3
u,

1√
3

cos
2π
3
u,

1√
3

sin
2π
3
u, . . .

orthonormal over the interval [−3, 3]. This adaptation and the fact that p = 1 lead to the following estimate:

m̂(u) =

n∑
i=1

Y1+iDN(n)

(π
3

(Ui − u)
)

n∑
i=1

DN(n)

(π
3

(Ui − u)
) .

Results are shown in Figure 6.1, 6.2, and 6.3. The MISE versus N , i.e., for N(n) fixed and equal to N , are
shown in Figure 6.1. It is clear that large N is not recommended. For N(n) = n1/4, the MISE varying with
n is presented in Figure 6.2. Examples of the estimate are in Fig. 6.3.
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Figure 6.1: The MISE versus N ; (example in Sect. 6.8).

Figure 6.2: The MISE versus n, N(n) = n1/4; (example in Section 6.8).

Figure 6.3: Realizations of the estimate; (example in Section 6.8).
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6.9 Lemmas and proofs

6.9.1 Lemmas

Lemma 6.1 Let Em(U) = 0 and var[m(U)] <∞ and let i 6= 0. If
∫ π
−π |f(v)|dv <∞, then

sup
N
|cov [Wp+iDN (Ui − u),WpDN (U0 − u)]|

≤ (|λpλp+i|+ |λpλp−i|+ |λp+iλp−i|)ρ(u),

where ρ(u) is finite at every u ∈ (−π, π) where both m(•) and f(•) are differentiable, or satisfy a Lipschitz
condition. If

∫ π
−π |f(v)|pdv <∞ with p > 0, then the inequality holds at almost every u ∈ (−π, π).

Proof. The proof is similar to that of Lemma 3.2. Bearing in mind that Wp+i =
∑p+i
q=−∞ λp+i−qm(Uq) and

Wp =
∑p
r=−∞ λp−rm(Ur), we find the covariance in the assertion equal to

p+i∑
q=−∞

p∑
r=−∞

λp+i−qλp−r cov [m(Uq)DN (Ui − u),m(Ur)DN (U0 − u)]

= (λpλp+i + λpλp−i)E {DN (U − u)}E
{
m2(U)DN (U − u)

}
+ λp+iλp−iE

2DN (U − u),

see Lemma C.2. An application of Corollaries B.1 and B.2 as well as Theorem B.2 completes the proof.
In a similar way, for the Legendre, Laguerre and Hermite series, we can show that, under appropriate

restrictions,

sup
N
|cov [Wp+ikN (u, Ui),WpkN (u, U0)]|

≤ (|λpλp+i|+ |λpλp−i|+ |λp+iλp−i|)ψ(u), (6.8)

where kN (•, •) is the kernel of the series, and where ψ(u) is finite at specific points, i.e., at every u where
both m(•) and f(•) are differentiable, or satisfy a Lipschitz condition or at almost every u.

6.9.2 Proofs

Proof of Theorem 6.1

Fix u ∈ (−π, π) and suppose that both m(•) and f(•) are differentiable at the point u. Denoting g(u) =
µ(u)f(u) and

ĝ(u) =
1
n

n∑
i=1

Yp+iDN(n)(Ui − u),

we get

Eĝ(u) = E{YpDN(n)(U0 − u)} = E{E{Yp|U0}DN(n)(U0 − u)}

= E{µ(U)DN(n)(U − u)} =
∫ π

−π
DN(n)(v − u)µ(v)f(v)dv

=
∫ π

−π
DN(n)(v − u)g(v)dv.

Thus, by Corollary B.1 and (6.2),

lim
n→∞

∫ π

−π
DN(n)(v − u)g(v)dv = g(u).

In turn
var[ĝ(u)] = Pn(u) +Qn(u)
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with

Pn(u) =
1
n

var
[
YpDN(n)(U0 − u)

]
,

and, since disturbance Zn is independent of the input signal,

Qn(u) =
1
n2

n∑
i=1

n∑
j=1,j 6=i

cov
[
Yp+iDN(n)(Ui − u), Yp+jDN(n)(Uj − u)

]
=

1
n2

p∑
i=1

(n− i) cov
[
Yp+iDN(n)(Ui − u), YpDN(n)(U0 − u)

]
+

1
n2

n∑
i=p+1

(n− i) cov
[
Yp+iDN(n)(Ui − u), YpDN(n)(U0 − u)

]
.

As πD2
n(u) = (n+ 1/2)F2n+1(u), where Fn is the Fejèr kernel, and E{Y 2

p |U0 = u} = σ2
Z +φ(u), see (2.7)

and (B.7), we have

nPn(u)

= E
{
Y 2
p D

2
N(n)(U0 − u)

}
− E2

{
YpDN(n)(U0 − u)

}
=

2N(n) + 1
2π

E
{

(σ2
Z + φ(U))F2N(n)+1(U − u)

}
− E2

{
µ(U)DN(n)(U − u)

}
.

By Corollary B.1 and Lebesgue’s Theorem B.3,

E
{

(σ2
Z + φ(U))FN (U − u)

}
=
∫ π

−π
(σ2
Z + φ(v))f(v)FN (v − u)dv

and

E {µ(U)DN (U − u)} =
∫ π

−π
µ(v)f(v)DN (v − u)dv

converge respectively to (σ2
Z + φ(u))f(u) and µ(u)f(u) as N →∞ . Hence

n

N(n)
Pn(u)→ (σ2

Z + φ(u))f(u) as n→∞.

To examine Qn(u) we apply Corollary B.1 once again and find that EDN (U − u), E{m(U)DN (U −u)},
and E{m2(U)DN (U − u)} all are bounded as N →∞. From this and Lemma 6.1, it follows that

|Rn(u)| ≤ 2ρ(u)
1
n2

n∑
i=1

(n− i)(|λpλp+i|+ |λpλp−i|+ |λp+iλp−i|)

≤ 6ρ(u)(max
n
|λn|)

1
n

∞∑
i=1

|λi| = O

(
1
n

)
.

Thus

lim
n→∞

n

N(n)
var[ĝ(u)] = (σ2

Z + φ(u))f(u) (6.9)

and finally

E(ĝ(u)− g(u))2 → 0, as n→∞.

Since, for similar reasons, E(f̂(u)− f(u))2 → 0, the theorem follows.
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Proof of Theorem 6.4

The proof is similar to that of Theorem 6.1. Fix u ∈ (−1, 1) and suppose that both mrespectively and
frespectively are differentiable at the point u. Denoting g(u) = µ(u)f(u) and

g̃(u) =
1
n

n∑
i=1

Yp+ikN(n)(u, Ui),

we get

Eg̃(u) = E{YpkN(n)(u, U0)} = E{µ(U)kN(n)(u, U)}

=
∫ 1

−1

kN(n)(u, v)µ(v)f(v)dv =
∫ 1

−1

kN(n)(u, v)g(v)dv

which, by Corollary B.3, converges to g(v) = µ(u)f(u).
In turn

var[g̃(u)] = Pn(u) +Qn(u)
with

Pn(u) =
1
n

var
[
YpkN(n)(u, U0)

]
,

and, since disturbance Zn is independent of the input signal,

Qn(u) =
1
n2

n∑
i=1

n∑
j=1,j 6=i

cov
[
Yp+ikN(n)(u, Ui), Yp+jkN(n)(u, Uj)

]
=

1
n2

p∑
i=1

(n− i) cov
[
Yp+ikN(n)(u, Ui), YpkN(n)(u, U0)

]
+

1
n2

n∑
i=p+1

(n− i) cov
[
Yp+ikN(n)(u, Ui), YpkN(n)(u, U0)

]
.

Clearly

nPn(u) = E
{
Y 2
p k

2
N(n)(u, U0)

}
− E2

{
YpkN(n)(u, U0)

}
= E

{
(σ2
Z + φ(U))k2

N(n)(u, U)
}
− E2

{
µ(U)kN(n)(u, U)

}
.

By Corollary B.3 and Lemma B.3,

E {µ(U)kN (u, U)} =
∫ 1

−1

kN (u, v)g(v)dv

converges and
1
N
E
{

(σ2
Z + φ(U))k2

N (u, U)
}

=
1
N

∫ 1

−1

(σ2
Z + φ(v))f(v)k2

N (u, v)dv

converges to π−1(1− u2)1/2(σ2
Z + φ(u))f(u) as N →∞. Thus

n

N(n)
Pn(u)→ 1

π
√

1− u2
(σ2
Z + φ(u))f(u) as n→∞.

Proceeding as in the proof of Theorem 6.1 and using (6.8), we find

Qn(u) = O

(
1
n

)
and conclude that

lim
n→∞

n

N(n)
var[ĝ(u)] =

1
π
√

1− u2
(σ2
Z + φ(u))f(u). (6.10)

Hence
E(g̃(u)− g(u)2 → 0 as n→∞.

Since also E(f̃(u)− f(u))2 → 0 as n→∞, the proof is completed.
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Proof of Theorem 6.7

The proof is similar to that of Theorems 6.1 and 6.4. We only focus our attention on differences. Now

1√
N
E
{

(σ2
Z + φ(U))k2

N (u, U)
}

=
1
N

∫ 1

−1

(σ2
Z + φ(v))f(v)k2

N (u, v)dv

converges to π−1u−1/2f(u) as n→∞, see (B.4). Thus

n√
N(n)

Pn(u)→ 1
π
√
u

(σ2
Z + φ(u))f(u) as n→∞,

and, as a consequence,

n√
N(n)

var[ḡ(u)]→ 1
π
√
u

(σ2
Z + φ(u))f(u) as n→∞. (6.11)

Hence
E(ḡ(u)− g(u)2 → 0 as n→∞.

Since also E(f̄(u)− f(u))2 → 0 as n→∞, the proof is completed.

Proof of Theorem 6.10

The proof is similar to that of Theorems 6.1 and 6.4. The difference is that now

1√
N
E
{

(σ2
Z + φ(U))k2

N (u, U)
}

=
1
N

∫ 1

−1

(σ2
Z + φ(v))f(v)k2

N (u, v)dv

converges to
√

2π−1f(u) as N →∞, see (B.5). Thus

n√
N(n)

Pn(u)→ 1√
2π

(σ2
Z + φ(u))f(u) as n→∞,

and, consequently,
n√
N(n)

var[ǧ(u)]→ 1√
2π

(σ2
Z + φ(u))f(u) as n→∞.

Hence
E(ǧ(u)− g(u)2 → 0 as n→∞.

Since also E(f̌(u)− f(u))2 → 0 as n→∞, the proof is completed.

Proof of Theorem 6.11

Denoting

ğ(u) = 2M(n)
2M(n)−1∑
k=0

ăM(n),kφM(n),k(u)

and

f̆(u) = 2M(n)
2M(n)−1∑
k=0

b̆M(n),kφM(n),k(u)

we observe µ̆(u) = ğ(u)/f̆(u). Clearly Eb̆M(n),k = bM(n),k and thus

Ef̆(u) = 2M(n)
2M(n)−1∑
k=0

bM(n),kφM(n),k(u)
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is the M(n)th partial sum of the expansion of f(•). Therefore, by Theorem B.15,

Ef̆(u)→ f(u) as n→∞

at every continuity point u of f(•).
Furthermore,

f̆(u) =
1
n

n∑
n=1

kM(n)(u, Ui),

where

kn(u, v) = 2m
2m−1∑
n=0

φn(v)φn(v)

is the kernel function. Thus

var[f̆(u)] =
1
n2

var

[
n∑
n=1

kM(n)(u, Ui)

]
=

1
n

var
[
kM(n)(u, U)

]
≤ 1
n
Ek2

M(n)(u, U) =
2M(n)

n

1
2M(n)

∫ 1/2

−1/2

k2
M(n)(u, v)f(v)dv.

Applying Lemma B.6, we come to a conclusion that E(f̆(u) − f(u))2 → 0 as n → ∞ at every point where
f(•) is continuous.

Leaving the verification of the fact that E(ğ(u) − g(u))2 → 0 as n → ∞ at every point where g(•) is
continuous, to the reader, we complete the proof.
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Chapter 7

Algorithms with ordered observations

7.1 Introduction

In this chapter we assume that the input signal is bounded, i.e., that support of the input density f(•) is
an interval, say [a, b]. Therefore it can be said that input observations U1, U2, . . . , Un, i.e., points randomly
scattered over the interval [a, b], split the interval into subintervals. We rearrange the sequence U1, U2, . . . , Un
of input observations into a new one U(1), U(2), . . . , U(n), in which U(1) < U(2) < · · · < U(n). Ties, i.e., events
that U(i) = U(j), for i 6= j, have zero probability, since Un’s have a density. Moreover, we define U(0) = a
and U(n+1) = b. The sequence U(1), U(2), . . . , U(n) is called the order statistics of U1, U2, . . . , Un. We then
rearrange the sequence

(U1, Yp+1), (U2, Yp+2), . . . , (Un, Yp+n) (7.1)

of input-output observations into the following one:

(U(1), Y[p+1]), (U(2), Y[p+2]), . . . , (U(n), Y[p+n]). (7.2)

Observe that Y[p+i]’s are not ordered, but just paired with U(i)’s. Clearly

µ(u) = E
{
Y[p+i]|U(i) = u

}
= E {Yp+j |Uj = u} . (7.3)

Algorithms examined in this chapter use ordered sequence (7.2) rather than (7.1). It makes possible
for us to approximate some integrals by referring to the Riemann definition. As a result we can obtain
nonparametric estimates which do not suffer instability due to the ratio form of the previously introduced
methods.

We assume that a density f(•) of the input signal exists and that

0 < δ ≤ f(u), (7.4)

for all u ∈ [a, b] and some δ > 0. The characteristic m is a Lipschitz function, i.e.,

|m(u)−m(v)| ≤ cm|u− v| (7.5)

for some cm and all u, v ∈ [a, b], and, a fortiori, bounded. For convenience we denote

max
a≤u≤b

|m(u)| = M. (7.6)

Unless otherwise stated all integrals are taken over the whole real line R.

7.2 Kernel estimates

In this section −1 ≤ U ≤ 1, i.e., [a, b] = [−1, 1].

69
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7.2.1 Motivation and estimates

The motivation for the kernel estimate studied in Chap. 3 is based on the expectation that, for the kernel
such that

∫
K(v)dv = 1,

lim
h→0

∫ 1

−1

µ(v)
1
h
K

(
u− v
h

)
dv = µ(u) (7.7)

since
1
h
K

(
u− v
h

)
gets close to a Dirac delta located at the point u as h → 0. The idea of the kernel estimates examined in
this chapter is based on the numerical evaluation of the integral in (7.7) from the rearrange version of the
training sequence. Hence, according to the Riemann definition

Sn(u;h) =
n∑
i=1

µ(U(i))
1
h
K

(
u− U(i)

h

)
(U(i) − U(i−1))

is a natural approximation of the integral in (7.7). Thus since

max
1≤i≤n+1

(U(i) − U(i−1))→ 0 as n→∞ almost surely,

see Darling [68] and the Slud Lemma C.11, then

Sn(u;h)→
∫ 1

−1

µ(v)
1
h
K

(
u− v
h

)
dv as h→ 0

almost surely, as well. This, (7.3) and (7.7) suggest the following estimate of µ(u):

µ̂(u) =
n∑
i=1

Y[p+i]
1
hn
K

(
u− U(i)

hn

)
(U(i) − U(i−1))

=
n∑
i=1

Y[p+i]
1
hn

∫ U(i)

U(i−1)

K

(
u− U(i)

hn

)
dv (7.8)

and its modification

µ̃(u) =
n∑
i=1

Y[p+i]
1
hn

∫ U(i)

U(i−1)

K

(
u− v
hn

)
dv (7.9)

which is expected to behave even better. Some improvement is also possible by application of symmetrical
spacings, i.e., (Ui+1 − Ui−1)/2 instead of (Ui − Ui−1)/2.

7.2.2 Consistency and convergence rate

The kernel satisfies the standard restriction

sup
−∞<u<∞

|K(u)| <∞ (7.10)

and is such that ∫
K(u)du = 1. (7.11)

Since
Yp+n = µ(Un) + ξp+n + Zp+n (7.12)

with ξp+n =
∑p+n
i=−∞,i6=n c

TAp+n−i−1bm(Ui), observations of µ(Un) are disturbed by external white noise
Zp+n and by the correlated ξp+n noise which is incurred by the system itself. We recall that, after ordering,

(Ui, ξp+i, Zp+i, Yp+i)
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becomes
(U(j), ξ[p+j], Z[p+j], Y[p+j])

with some j, i.e., that Ui = U(j), ξp+i = ξ[p+j], Zp+i = Z[p+j],Yp+i = Y[p+j]. Indices at ξ[p+j], Z[p+j], Y[p+j]

are induced by that of U(j). Consisteny of the algorithm is established in the following theorem whose proof,
like all the others, is in Section 7.4.

Theorem 7.1 Let f(•) satisfy (7.4). Let m(•) satisfy (7.5). Let the kernel K(•) satisfy (7.10) and (7.11).
Let the number sequence be such that

hn → 0, as n→∞, (7.13)

nhn →∞ as n→∞. (7.14)

Then
lim
n→∞

E

∫
(µ̃(u)− µ(u))2du = 0.

Estimate (7.8) behaves slightly worse since we do not take full advantage of the fact that K(•) is known.
In (7.9) the integral ∫ U(i)

U(i−1)

K

(
u− v
hn

)
dv

appears while, in (7.8), only its approximation

K

(
u− U(i)

hn

)
(U(i) − U(i−1))

is used.

Theorem 7.2 Let f(•) satisfy (7.4). Let m(•) satisfy (7.5). Let the kernel K(•) satisfy (7.10), (7.11) and
a Lipschitz inequality

|K(u)−K(v)| ≤ cK |u− v| (7.15)

for some ck, for all u, v ∈ R. Let the number sequence satisfy (7.13) and

nh2
n → 0 as n→∞.

Then
E

∫
(µ̂(u)− µ(u))2du→ 0 as n→∞.

We now assume that m(•) has q derivatives. The kernel K(•) has bounded support, i.e., that K(u) > 0
on a bounded set, and satisfies restrictions (3.15) and (3.16), i.e., the same as those in Sect. 3.4.

Let ε > 0 and let u ∈ (−1 + ε, 1− ε). Since, for h small enough, support of K(•) is a subset of[
−1− u
h

,
1− u
h

]
,

we can write

µ(u) = µ(u)
∫ 1

−1

K(v)dv = µ(u)
∫ (1−u)/h

−(1+u)/h

K(−v)dv.

Since

µh(u) =
∫ 1

−1

µ(v)
1
h
K

(
u− v
h

)
dv =

∫ (1−u)/h

−(1+u)/h

µ(u+ hv)K(−v)dv,

we thus get

µh(u)− µ(u) =
∫ (1−u)/h

−(1+u)/h

[µ(u+ hv)− µ(u)]K(−v)dv.
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Figure 7.1: MISE versus hn; a = 0.5; various n.

Expanding µ(u) in a Taylor series, assuming that
∫

(m(q)(u))2du < ∞, and making use of (A.17) we find
|µh(u)− µ(u)| ≤ chq−1/2 for some c which yields

∫ 1−ε

−1+ε

(µh(u)− µ(u))2du = O
(
h2q−1

)
.

Recalling (7.25) we conclude that

E

∫ 1−ε

−1+ε

(µ̃(u)− µ(u))2du = O(h2q−1
n ) +O

(
1
nhn

)
.

Therefore, for hn ∼ n1/2q,

E

∫ 1−ε

−1+ε

(µ̃(u)− µ(u))2du = O(n−1+1/2q).

If m(q)(•) is bounded, we apply (A.18) to get |µh(u)− µ(u)| ≤ chq, select hn ∼ n−1/(2q+1) and obtain

E

∫ 1−ε

−1+ε

(µ̃(u)− µ(u))2du = O(n−1+1/(2q+1)). (7.16)

Contrary to other kernel algorithms, the rate is independent of the shape of the probability density f(•)
of the input signal, provided that the density is bounded from zero. Irregularities of f(•) do not worsen the
rate. It depends however on the number q of existing derivatives of m(•). The larger q, i.e., the smoother
characteristic, the greater speed of convergence. For large q, the rate gets very close to n−1, i.e., the rate
typical for the parametric inference.

7.2.3 Simulation example

The system is the same as that in Sect. 2.2.2. We assume that a = 0.5 and Zn = 0. The estimate of m(u)
is of the following form:

m̂(u) =
n∑
i=1

Y[1+i]
1
hn
K

(
u− U(i)

hn

)
(U(i) − U(i−1)). (7.17)

The MISE versus hn is shown in Figure 7.1. Realizations of the estimate are in Figure 7.2.
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Figure 7.2: Realizations of estimate (7.17) in which hn = 0.25n−2/5.

7.3 Orthogonal series estimates

7.3.1 Motivation

Let {ϕ0, ϕ1, ϕ2, . . .} be an orthonormal complete system of functions over the interval [a, b], see Appendix
B. Since EY 2 <∞,

∫ b
a
|µ(v)|dv <∞ we write

µ(u) ∼
∞∑
k=0

akϕk(u),

where

ak =
∫ b

a

µ(u)ϕk(u)du,

k = 0, 1, 2, . . .. Because µ(u) = E{Y[p+i]|U(i) = u}, the coefficient ak, i.e., the integral can be estimated in
the following way:

āk =
n∑
i=1

Y[p+i]ϕk(U(i))(U(i) − U(i−1)).

Therefore

µ̄(u) =
N(n)∑
k=0

âkϕk(u),

is the estimate of µ(u). Denoting by

kN (u, v) =
N∑
k=0

ϕk(u)ϕk(v),

the kernel of the orthogonal series we obtain an alternative form of the estimate

µ̄(u) =
n∑
i=1

Y[p+i]k(u, U(i))(U(i) − U(i−1)).

Another, and better estimate, is of the following form:

µ̃(u) =
N(n)∑
k=0

ãkϕk(u) =
n∑
i=1

Y[p+i]

∫ U(i)

U(i−1)

k(u, v)dv,

where

ãk =
n∑
i=1

Y[p+i]

∫ U(i)

U(i−1)

ϕk(v)dv.
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7.3.2 Fourier series estimate

In this subsection |U | ≤ π, [a, b] = [−π, π] and we apply the trigonometric series, see Section B.2. Clearly

µ(u) ∼ 1
2
a0 +

∞∑
k=1

(ak cos ku+ bk sin ku),

where
a0 =

1
π

∫ π

−π
µ(v)dv,

and
ak =

1
π

∫ π

−π
µ(v) cos(kv)dv, bk =

1
π

∫ π

−π
µ(v) sin(kv)dv,

k = 1, 2, . . .. In the estimate

µ̄(u) =
1
2
ā0 +

N(n)∑
k=1

(āk cos ku+ b̄k sin ku),

ā0 =
n∑
i=1

Y[p+i]

∫ U(i)

U(i−1)

dv

and

āk =
n∑
i=1

Y[p+i]

∫ U(i)

U(i−1)

cos(kv)dv, b̄k =
n∑
i=1

Y[p+i]

∫ U(i)

U(i−1)

sin(kv)dv.

Using the Dirichlet kernel we rewrite the estimate as follows:

µ̄(u) =
n∑
i=1

Y[p+i]

∫ U(i)

U(i−1)

DN(n)(v − u)dv.

Referring to the complex version of the series we get

µ(u) ∼
∞∑

k=−∞

cke
iku

with
ck =

1
2π

∫ π

−π
µ(v)e−ikvdv.

Therefore the estimate can be represented in yet another form

µ̄(u) =
N(n)∑

k=−N(n)

c̄ke
iku,

where

c̄k =
1

2π
Y[p+i]

∫ U(i)

U(i−1)

e−ikvdv.

Theorem 7.3 Let f(•) satisfy (7.4). Let m(•) satisfy (7.5). If

N(n)→∞ as n→∞, (7.18)

N(n)
n
→ 0 as n→∞, (7.19)

then
lim
n→∞

E

∫ π

−π
(µ̄(u)− µ(u))2du = 0.
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Assuming that m(p)(±π) = 0, for p = 1, . . . , q − 1 and
∫ π
−π(m(q)(u))2du <∞, we find∫ π

−π
(µN (u)− µ(u))2du = O(N−2q),

see (B.13). Note first that

E

∫ π

−π
(µ̄(u)− µ(u))2du

≤ 2E
∫ π

−π
(µ̄(u)− µN (u))2du+ 2

∫ π

−π
(µN (u)− µ(u))2du.

Then recalling the result established in (7.28) (see the proof of Theorem 7.3) we have

E

∫ π

−π
(µ̄(u)− µ(u))2du = O(N−2q) +O

(
N(n)
n

)
.

Therefore selecting
N(n) ∼ n1/(1+2q) (7.20)

we obtain
E

∫ π

−π
(µ̄(u)− µ(u))2du = O(n−1+1/(2q+1)),

i.e., the same rate as that of the kernel estimate, see (7.16).

7.3.3 Legendre series estimate

For |U | ≤ 1, i.e., for [a, b] = [−1, 1] we apply the Legendre series, see Section B.3. In such a case,

µ(u) ∼
∞∑
k=0

akpk(u),

where

ak =
∫ 1

−1

µ(v)pk(v)dv,

k = 0, 1, 2, . . .. The estimate is of the following form:

µ̌(u) =
N(n)∑
k=0

ǎkpk(u),

where

ǎk =
n∑
i=1

Y[p+i]

∫ U(i)

U(i−1)

pk(v)dv.

Using the kernel we get

µ̌(u) =
n∑
i=1

Y[p+i]

∫ U(i)

U(i−1)

k(u, v)dv.

The next theorem and a result concerning convergence rate are given without proofs, since it suffices to
repeat arguments used in the proof of Theorem 7.3 and apply facts presented in Sect. B.3.

Theorem 7.4 Let f(•) satisfy (7.4). Let m(•) satisfy (7.5). If N(n) satisfies (7.18) and (7.19), then

lim
n→∞

E

∫ 1

−1

(µ̌(u)− µ(u))2du = 0.

Assuming that m(p)(±1) = 0, for p = 1, . . . , q − 1 and
∫ 1

−1
(m(q)(u))2du <∞, we obtain

E

∫ 1

−1

(µ̌(u)− µ(u))2du = O(n−2q/(2q+1)),

provided that (7.20) holds.
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7.4 Lemmas and proofs

7.4.1 Lemmas

Lemma 7.1 Let m(•) be a Borel function satisfying (7.6) and let Em(U) = 0. Then, for any nonnegative
Borel function g(•) and any i, j, k, m, all different,

E
{
ξ2
[p+i]

∣∣g(U(i), U(j))
}
≤ 1
n
λM2E

{
g(U(i), U(j))

}
,

and

E
{
|ξ[p+i]ξ[p+j]

∣∣g(U(i), U(j), U(k), U(m))
}

≤ 1
n
ρM2E

{
g(U(i), U(j), U(k), U(m))

}
with some λ and ρ dependent on A, b, and c only.

The lemma is an immediate consequence of the next one in which, for any matrix P = [pij ], |P | denotes a
matrix [|pij |], for two matrices P and Q, P ≤ Q means that the inequality holds for each pair of corresponding
elements of the matrices, respectively.

Lemma 7.2 Let m(•) be a Borel function satisfying restrictions of Lemma 7.1. Let 0 ≤ p, and let

ηp+n =
p+n−1∑
i=−∞
i 6=n

Ap+n−i−1m(Ui)

Then, for i, j, k, m, all different,

E
{
|η[p+i]η

T
[p+i]|

∣∣U(i), U(j), U(k), U(m)

}
≤ 1
n
M2P,

E
{
|η[p+i]η

T
[p+j]|

∣∣U(i), U(j), U(k), U(m)

}
≤ 1
n
M2Q,

where matrices P and Q depend only on A only.

Proof. We verify the second part of the assertion. Let r 6= s. Let i, j, k, and m be all different. In the first
part of the proof, we show that

E
{
|η[p+r]η

T
[p+s]|

∣∣U(i), U(j), U(k), U(m)

}
≤ Γrstv (7.21)

for some matrix Γrstv such that

n∑
r=1

n∑
s=1

n∑
t=1

n∑
v=1

r,s,t,v all different

Γrstv = O(n3)M2DDT .

where D =
∑∞
n=0 |An|.

Suppose that s < r. Since ηp+s =
∑p+s−1
k=−∞,k 6=sA

p+s−k−1m(Uk) and

ηp+r =
p+s−1∑
m=−∞
m 6=r

Ap+r−m−1m(Um) +
p+r−1∑
m=p+s
m6=r

Ap+r−m−1m(Um)

= Ar−s
p+s−1∑
m=−∞
m 6=r

Ap+s−m−1m(Um) +
p+r−1∑
m=p+s
m 6=r

Ap+r−m−1m(Um),
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we get
E{ηp+rηTp+s|Ur, Us, Ut, Uv} = Prstv +Qsrtv

with

Prstv = Ar−s
p+s−1∑
m=−∞
m 6=r

p+s−1∑
k=−∞
k 6=s

Ap+s−m−1(AT )p+s−k−1

× E{m(Um)m(Uk)|Ur, Us, Ut, Uv}

and

Qrstv =
p+r−1∑
m=p+r
m 6=r

p+s−1∑
k=−∞
k 6=s

Ap+r−m−1(AT )p+s−k−1

× E{m(Um)m(Uk)|Ur, Us, Ut, Uv}.

For any r and s, |Prstv| ≤M2A|s−r|DDT , where D =
∑∞
n=0 |An|. For p ≤ r− s, |Qrstv| ≤M2DDT . Let

r − s < p. Because, for m 6= k,

E{m(Um)m(Uk)|Ur, Us, Ut, Uv}
= E{m(Um)|Ur, Us, Ut, Uv}E{m(Uk)|Ur, Us, Ut, Uv}

we obtain

Qrstv =
p+r−1∑
m=p+r
m6=r

Ap+r−m−1E{m(Uk)|Ur, Us, Ut, Uv}

×
p+s−1∑
k=−∞
k 6=s

(AT )p+s−k−1E{m(Um)|Ur, Us, Ut, Uv}

=
p+r−1∑
m=p+r
m6=r

Ap+r−m−1E{m(Uk)|Us, Ut, Uv}

×
p+s−1∑
k=−∞
k 6=s

(AT )p+s−k−1E{m(Um)|Ut, Uv}.

Thus

|Qrstv| ≤ (δm−t + δm−v)
p+r−1∑
m=p+r
m 6=r

|Ap+r−m−1||E{m(Uk)|Us, Ut, Uv}|

≤ (δm−t + δm−v)M2DDT .

Finally
n∑
r=1

n∑
s=1

n∑
t=1

n∑
v=1

r,s,t,v all different

(Prstv +Qrstv) = O(n3)M2DDT

and (7.21) follows.
Define the following event:

Arstv =
{
Ur = U(i), Us = U(j), Ut = U(k), Uv = U(m)

}
= {Ur is ith, Us is jth, Ut is kth, and Uv is mth in order}
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and observe that (7.21) implies

E
{
|η[p+i]η

T
[p+j]|

∣∣Arstv, U(i), U(j), U(k), U(m)

}
≤ Γrstv,

for i 6= j. Therefore,

E
{
|η[p+i]η

T
[p+j]|

∣∣U(i), U(j), U(k), U(m)

}
=

n∑
r=1

n∑
s=1

n∑
t=1

n∑
v=1

r,s,t,v all different

E
{
|η[p+i]η

T
[p+j]|

∣∣Arstv, U(i), U(j), U(k), U(m)

}
P {Arstv}

≤
n∑
r=1

n∑
s=1

n∑
t=1

n∑
v=1

r,s,t,v all different

ΓrstvP {Arstv} ,

and the given fact that

P {Arstv} =
1

n(n− 1)(n− 2)(n− 3)

yields the assertion. To verify the last equality observe that

P
{
Ur = U(i)

∣∣Us = U(j), Ut = U(k), Uv = U(m)

}
=

1
n− 3

,

implies

P {Arstv} =
1

n− 3
P
{
Us = U(j), Ut = U(k), Uv = U(m)

}
.

In turn
P
{
Us = U(j)

∣∣Ut = U(k), Uv = U(m)

}
=

1
n− 2

implies

P {Arstv} =
1

(n− 3)(n− 2)
P
{
Us = U(k), Ut = U(m)

}
and so on. The proof is completed.

For a density f(•) satisfying (7.4) observe

U(i) − U(i−1) =
∫ U(i)

U(i−1)

dv ≤ 1
δ

∫ U(i)

U(i−1)

f(v)dv.

Therefore applying results presented in Section C.4.2, we obtain

Lemma 7.3 For any f(•) satisfying (7.4),

E(U(i) − U(i−1))p =
p!

(n+ 1) · · · (n+ p)
,

and, a fortiori,

E(U(i) − U(i−1)) =
2

n+ 1
,

E(U(i) − U(i−1))2 =
8

(n+ 1)(n+ 2)
,

and
E(U(i) − U(i−1))3 =

48
(n+ 1)(n+ 2)(n+ 3)

.

Moreover
E(U(i) − U(i−1))(U(j) − U(j−1)) =

4
(n+ 1) (n+ 2)

.
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7.4.2 Proofs

Proof of Theorem 7.1

To prove consistency we show that

lim
n→∞

E

∫
(µ̃(u)− µhn(u))2du = 0,

where

µhn(u) =
∫ 1

−1

µ(v)
1
hn
K

(
u− v
hn

)
dv,

and that also
lim
n→∞

∫
(µhn(u)− µ(u))2du = 0. (7.22)

From (7.12) it follows that

(µ̃(u)− µhn(u))2 ≤ 3P 2
n(u) + 3Q2

n(u) + 3R2
n(u),

where

Pn(u) =
n∑
i=1

Z[p+i]
1
hn

∫ U(i)

U(i−1)

K

(
u− v
hn

)
dv,

Qn(u) =
n∑
i=1

ξ[p+i]
1
hn

∫ U(i)

U(i−1)

K

(
u− v
hn

)
dv,

and

Rn(u) =
n∑
i=1

1
hn

∫ U(i)

U(i−1)

µ(U(i))K
(
u− v
hn

)
dv − µhn(u).

Since

EP 2
n(u) = σ2

Z

1
h2
n

n∑
i=1

E

(∫ U(i)

U(i−1)

K

(
u− v
hn

)
dv

)2

and ∫ ∣∣∣∣∣
∫ U(i)

U(i−1)

1
h
K

(
u− v
h

)
dv

∫ U(i)

U(i−1)

1
h
K

(
u− w
h

)
dw

∣∣∣∣∣ du
≤ κ

h

∫ U(i)

U(i−1)

dv

∫ U(i)

U(i−1)

[∫ ∣∣∣∣ 1hK
(
u− w
h

)∣∣∣∣ du] dw = γκ
1
h

(U(i) − U(i−1))2, (7.23)

where κ = supv |K(v)| and γ =
∫
|K(v)|dv. Applying Lemma 7.3 we get

E

∫
P 2
n(u)du ≤ γκσ2

Z

1
hn

n∑
i=1

E(U(i) − U(i−1))2 = O

(
1
nhn

)
.

In turn EQ2
n(u) = EQ1n(u) + EQ2n(u) with

Q1n(u) =
1
h2
n

n∑
i=1

ξ2
[p+i]

(∫ U(i)

U(i−1)

K

(
u− v
hn

)
dv

)2

and

Q2n(u)

=
1
h2
n

n∑
i=1

n∑
j=1,j 6=i

ξ[i]ξ[j]

∫ U(i)

U(i−1)

K

(
u− v
hn

)
dv

∫ U(j)

U(j−1)

K

(
u− v
hn

)
dv.
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Applying Lemma 7.1 and using (7.23) again we find

E

∫
Q1n(u)du ≤ λκM2 1

nhn

n∑
i=1

E(U(i) − U(i−1))2 = O

(
1
nhn

)
.

Another application of Lemma 7.1 gives

EQ2n(u)

≤ ρM2 1
nh2

n

n∑
i=1

n∑
j=1
j 6=i

E

{∫ U(i)

U(i−1)

K

(
u− v
hn

)
dv

∫ U(j)

U(j−1)

K

(
u− w
hn

)
dw

}

which, after yet another application of (7.23) and Lemma 7.3, yields

E

∫
Q2n(u)du ≤ ρκM2 1

nhn

n∑
i=1

n∑
j=1
j 6=i

E(U(i) − U(i−1))E(U(j) − U(j−1))

= O

(
1
nhn

)
.

Hence

E

∫
Qn(u)du = O

(
1
nhn

)
.

Passing to Rn(u) we observe

µh(u) =
n∑
i=1

∫ U(i)

U(i−1)

µ(v)
1
h
K

(
u− v
h

)
dv + rh(u)

with

rh(u) =
∫ 1

U(n)

µ(v)
1
h
K

(
u− v
h

)
dv.

Thus Rn(u) = R1n(u) + rhn(u) with

R1n(u) =
n∑
i=1

∫ U(i)

U(i−1)

(µ(U(i))− µ(v))
1
hn
K

(
u− v
hn

)
dv

Applying (7.23) again and (7.5), we get∫
R2

1n(u)du

≤ γκ 1
hn

n∑
i=1

n∑
j=1

∫ U(i)

U(i−1)

|µ(U(i))− µ(v)|dv
∫ U(j)

U(j−1)

|µ(U(j))− µ(v)|dv

≤ γκc2m
1
hn

n∑
i=1

n∑
j=1

∫ U(i)

U(i−1)

(U(i) − v)dv
∫ U(j)

U(j−1)

(U(j) − v)dv

= γκc2m
1

4hn

n∑
i=1

(U(i) − U(i−1))2
n∑
j=1

(U(j) − U(j−1))2
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which equals

γκc2m
1

4hn

(
n∑
i=1

(U(i) − U(i−1))2

)2

= γκc2m
1

4hn

(
n∑
i=1

(U(i) − U(i−1))1/2(U(i) − U(i−1))3/2

)2

≤ γκc2m
1

4hn

n∑
i=1

(U(i) − U(i−1))3. (7.24)

Hence

E

∫
R2

1n(u)du = O

(
1

n2hn

)
.

Since the verification that E
∫
r2
hn

(u)du = O(1/n2) is easy, we can write

E

∫
R2
n(u)du = O

(
1

n2hn

)
.

Thus

E

∫
(µ̃(u)− µhn(u))2du = O

(
1
nhn

)
. (7.25)

To complete the proof it suffices to verify (7.22). It holds, thanks to Lemma A.7.

Proof of Theorem 7.2

Since the proof is very similar to that of Theorem 7.1, we point out the main differences. Clearly

E

∫
(µ̂(u)− µhn(u))2du = O

(
1

n2hn

)
as n→∞.

Moreover, (µ̂(u)− µ(u))2 ≤ 3S2
n(u) + 3T 2

n(u) + 3V 2
n (u), where

Sn(u) =
n∑
i=1

Z[p+i]
1
hn
K

(
u− U(i)

hn

)
(U(i) − U(i−1)),

Tn(u) =
n∑
i=1

ξ[p+i]
1
hn
K

(
u− U(i)

hn

)
(U(i) − U(i−1)),

and

Vn(u) =
n∑
i=1

1
hn

∫ U(i)

U(i−1)

µ(U(i))K
(
u− U(i)

hn

)
dv − µhn(u).

Examining Vn(u) we get Vn(u) = V1n(u) + rhn(u) with

V1n(u) =
1
hn

n∑
i=1

∫ U(i)

U(i−1)

[
µ(U(i))K

(
u− U(i)

hn

)
dv − µ(v)K

(
u− v
hn

)]
dv

Since both µ and K are Lipschitz,∣∣∣∣µ(U(i))K
(
u− U(i)

h

)
− µ(v)K

(
u− v
h

)∣∣∣∣
≤
∣∣∣∣µ(U(i))K

(
u− U(i)

h

)
− µ(v)K

(
u− U(i)

h

)∣∣∣∣∣∣∣∣µ(v)K
(
u− U(i)

h

)
− µ(v)K

(
u− v
h

)∣∣∣∣
≤ cm|U(i) − v|

∣∣∣∣K (u− U(i)

h

)∣∣∣∣+M

∣∣∣∣K (u− U(i)

h

)
−K

(
u− v
h

)∣∣∣∣ .



82 CHAPTER 7. ALGORITHMS WITH ORDERED OBSERVATIONS

Defining

Wn(u) =
1
hn

n∑
i=1

∫ U(i)

U(i−1)

∣∣∣∣K (u− U(i)

hn

)
−K

(
u− v
hn

)∣∣∣∣ dv
and using (7.23) and (7.15) we get∫

W 2
n(u)du = 2

1
h2
n

∫
|K(v)|dv

n∑
i=1

n∑
i=1

(Ui − v)
∫ U(j)

U(j−1)

dv

=
1
h2
n

∫
|K(v)|dv

n∑
i=1

n∑
j=1

(U(i) − U(i−1))2(U(j) − U(j−1))

=
1
h2
n

∫
|K(v)|dv

n∑
i=1

(U(i) − U(i−1))2.

Hence

E

∫
W 2
n(u)du = O

(
1

n2hn

)
which results in slower convergence rate.

Proof of Theorem 7.3

From (7.12) it follows that

(µ̄(u)− µ(u))2 ≤ 3P 2
n(u) + 3Q2

n(u) + 3R2
n(u),

where

Pn(u) =
n∑
i=1

Z[p+i]

∫ U(i)

U(i−1)

DN(n)(v − u)dv,

Qn(u) =
n∑
i=1

ξ[p+i]

∫ U(i)

U(i−1)

DN(n)(v − u)dv,

and

Rn(u) =
n∑
i=1

∫ U(i)

U(i−1)

µ(U(i))
∫ U(i)

U(i−1)

DN(n)(v − u)dv − µN(n)(u),

where
µN (u) =

∫ π

−π
µ(v)DN (v − u)dv.

By the Schwartz inequality, (B.7), the equality
∫ π
−π Fn(u)du = 1, see Section B.2, we get

∫ π

−π

(∫ U(i)

U(i−1)

DN(n)(v − u)dv

)2

du

≤ (U(i) − U(i−1))
∫ π

−π

(∫ U(i)

U(i−1)

D2
N(n)(v − u)dv

)
du

=
(
N(n) +

1
2

)
(U(i) − U(i−1))

∫ U(i)

U(i−1)

(∫ π

−π
FN(n)(v − u)du

)
dv

= N(n)(U(i) − U(i−1))2. (7.26)

Applying Lemma 7.3 we thus obtain

E

∫ π

−π
P 2
n(u)du = O(N(n))

n∑
i=1

E(U(i) − U(i−1))2 = O

(
N(n)
n

)
.
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In turn

EQ2
n(u) = EQ1n(u) + EQ2n(u)

with

Q1n(u) =
n∑
i=1

ξ2
[p+i]

(∫ U(i)

U(i−1)

DN(n)(v − u)dv

)2

and

Q2n(u) =
n∑
i=1

n∑
j=1,j 6=i

ξ[i]ξ[j]

∫ U(i)

U(i−1)

DN(n)(v − u)dv
∫ U(j)

U(j−1)

DN(n)(v − u)dv.

Applying Lemma 7.1 and using (7.26), we find

E

∫ π

−π
Q1n(u)du ≤ λM2

n∑
i=1

E(U(i) − U(i−1))2 = O

(
N(n)
n

)
.

Since ∣∣∣∣∫ π

−π
DN (v − u)DN (w − u)du

∣∣∣∣
≤
(∫ π

−π
D2
N (v − u)du

)1/2(∫ π

−π
D2
N (w − u)du

)1/2

=
(
N +

1
2

)(∫ π

−π
F2N+1(v − u)du

)1/2(∫ π

−π
F2N+1(w − u)du

)1/2

= O(N), (7.27)

an application of Lemma 7.1 gives

E

∫ π

−π
Q2n(u)du = O(N(n))

n∑
i=1

n∑
j=1,j 6=i

E

{∫ U(i)

U(i−1)

dv

∫ U(j)

U(j−1)

dw

}

= O(N(n))
n∑
i=1

E(U(i−1) − U(i))2 = O

(
N(n)
n

)
.

Turning to Rn(u) we observe

µN (u) =
n∑
i=1

∫ U(i)

U(i−1)

µ(v)DN (v − u)dv + rN(n)(u)

with

rN(n)(u) =
∫ π

U(n)

µ(v)DN (v − u)dv.

Thus

Rn(u) = R1n(u) + rN(n)(u)

with

R1n(u) =
n∑
i=1

∫ U(i)

U(i−1)

(µ(U(i))− µ(v))DN (v − u)dv
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Applying (7.27) again and (7.5), we get∫ π

−π
R2

1n(u)du

= O(N(n))
n∑
i=1

n∑
j=1

∫ U(i)

U(i−1)

|µ(U(i))− µ(v)|)dv
∫ U(j)

U(j−1)

|µ(U(j))− µ(v)|dv

≤ O(N(n))c2m
n∑
i=1

n∑
j=1

∫ U(i)

U(i−1)

(U(i) − v)dv
∫ U(j)

U(j−1)

(U(j) − v)dv

= O(N(n))c2m
n∑
i=1

(U(i) − U(i−1))2
n∑
j=1

(U(j) − U(j−1))2

= O(N(n))c2m
n∑
i=1

(U(i) − U(i−1))3.

see (7.24). Hence

E

∫ π

−π
R2

1n(u)du = O

(
N(n)
n2

)
.

Since the verification that E
∫ π
−π r

2
N(n)(u)du = O(1/n2) is easy, we get

E

∫ π

−π
R2
n(u)du = O

(
N(n)
n2

)
.

We have thus come to the conclusion that

E

∫ π

−π
(µ̄(u)− µN (u))2du = O

(
N(n)
n

)
as n→∞. (7.28)

Since µN is the partial sum of the Fourier expansion of µ,

lim
N→∞

∫ π

−π
(µN (u)− µ(u))2du = 0,

see Section B.2, which completes the proof.

7.5 Bibliographic notes

The idea of estimating a regression function via the approximation of the integral in (7.7) stems from
Priestley and Chao [341] and has been developed by Benedetti [19], Clark [61], Schuster and Yakowitz [380],
Cheng and Lin [56], Georgiev [113–118], Georgiev and Greblicki [112], Müller and Stadtmüller [306], Isogai
[243]. Orthogonal series estimates have been studied by Rutkowski [363–365,368–371], Ga lkowski and Rut-
kowski [106], Rafaj lowicz [345, 346], Rutkowski and Rafaj lowicz [372], Eubank, Hart and Speckman [100],
Rafaj lowicz and Skubalska-Rafaj lowicz [348], Rafaj lowicz and Schwabe [347], among others.

In all those works the regression is estimated from pairs (u1, Y1), . . . , (un, Yn) such that

Yn = m(un) + Zn,

where nonrandom points u1, u2, . . . , un, such that ui−1 < ui, are usually scattered uniformly. Mack and
Müller [292] showed that kernel estimates work properly also when the points are random. Since such inputs
Ui’s are independent random variables, the operation of ordering is necessary.

The idea of applying ordered input observations to the identification of the nonlinear part of the Ham-
merstein system has been proposed in Greblicki and Pawlak [192] in the context of the orthogonal series
estimate. The kernel estimate of this type has been studied in Greblicki [149].



Chapter 8

Continuous-time Hammerstein
systems

8.1 Identification problem

A continuous-time Hammerstein system shown in Figure 8.1 consists of a nonlinear subsystem with a char-
acteristic m(•) and a linear dynamic one with the impulse response λ(t). Our goal is to recover both m and
λ(t) from observations (U(t), Y (t)) taken on the real half line [0,∞).

The input signal {U(t)} is a stationary zero mean white random process with autocovariance function
σ2
Uδ(t). The nonlinear characteristic is a Borel function such that

Em2(U) <∞,

compare with (2.4). The dynamic subsystem described by the following state equation:{
Ẋ(t) = AX(t) + bV (t)
W (t) = cTX(t)

(8.1)

has the impulse response λ(t) = cT eAtb and is stable, all eigenvalues of A have negative real parts. Clearly

W (t) =
∫ t

−∞
λ(t− τ)m(U(τ))dτ. (8.2)

Since
∫∞

0
λ2(t)dt < ∞, W (t) is a random variable while {W (t)} a stationary random process. The distur-

bance {Z(t)} is a stationary zero mean random process independent of {U(t)}.
Neither the functional form of m(•) nor the matrix A nor vectors b, c, are known. Thus the a priori

information about both the subsystems is nonparametric.
For simplicity, U,W, Y, and Z stand for U(t),W (t), Y (t), and Z(t), respectively. Proofs of all theorems

are in Section 8.4.

m(•)
U(t) V (t)

λ(t)
W (t)

Z(t)

Y (t)

Figure 8.1: The continuous-time Hammerstein system.
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8.1.1 Nonlinear subsystem identification

We now present the idea behind the identification methods used in this chapter to recover the nonlinear
characteristic. From Lemma 8.1 it follows that for any fixed s > 0

E{Y (t+ s)|U(t) = u} = µ(u),

where µ(u) = λ(s)m(u) +Em(U)
∫∞

0
λ(τ)dτ . Therefore to identify the subsystem it suffices to estimate the

regression.
Like those used to identify discrete systems, each algorithm estimating the nonlinearity in continuous-time

ones, denoted here as µ̂(U(t), Y (t)), is linear with respect to output observations which means that

µ̂(U(t), θ(t) + η(t)) = µ̂(U(t), θ(t)) + µ̂(U(t), η(t)) (8.3)

and has a natural property that, for any number θ,

µ̂(U(t), θ)→ θ as t→∞ (8.4)

in an appropriate stochastic sense. Arguing as in Sect. 2.2 we come to a conclusion presented in the following
remark:

Remark 8.1 Let an estimate have properties (8.3) and (8.4). If the estimate is consistent for Em(U) = 0,
then it is consistent for Em(U) 6= 0, also.

Thus, with no loss of generality, in all proofs of consistency of algorithms recovering the nonlinearity, we
assume that Em(U) = 0.

We notice that a system with the following differential equation:

w(k) + ak−1w
(k−1) + · · ·+ a0w = bk−1m(u(k−1)) + · · ·+ b0m(u)

can be described by (8.1). Thus our methods can be used to recover its nonlinearity m(•).

8.1.2 Dynamic subsystem identification

Passing to the dynamic subsystem we use (8.2) and recall EZ = 0 to notice

E {Y (τ + t)U(t)} =
∫ τ+t

−∞
λ(τ + t− τ)E {m(U(τ))U(t)} dτ

= λ(τ) {Em(U)U} .

Denoting κ(τ) = λ(τ)E {Um(U)} we obtain

κ(τ) = E {Y (τ + t)U(t)}

which can be estimated as follows:

κ̂(τ) =
1
t

∫ t

0

Y (τ + ξ)U(ξ)dξ.

Theorem 8.1 For a fixed τ ,
lim
t→∞

E(κ̂(τ)− κ(τ))2 = 0.

As an estimate of the whole impulse response we take

κ̂T (t)(τ) =
{
κ̂(τ), for 0 ≤ τ ≤ T (t)
0, otherwise.
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The mean integrated square error (MISE) between the functions κ(•) and κ̂T (t)(•) can be defined as:

MISE =
∫ T (t)

0

(κ̂T (t)(τ)− κ(τ))2dτ.

From (8.11) it follows that

MISE = O

(
T (t)
t

)
+
∫ ∞
T (t)

κ(τ)2dτ.

Hence if
T (t)→∞ as t→∞

and
T (t)
t
→∞ as t→∞,

lim
t→∞

MISE = 0.

8.2 Kernel algorithm

A kernel estimate

µ̂(u) =

∫ t

0

Y (τ + τ)K
(
u− U(τ)
h(t)

)
dτ∫ t

0

K

(
u− U(τ)
h(t)

)
dτ

as well as its semirecursive modifications

µ̃t(u) =

∫ t

0

Y (τ + τ)
1

h(τ)
K

(
u− U(τ)
h(τ)

)
dτ∫ t

0

1
h(τ)

K

(
u− U(τ)
h(τ)

)
dτ

and

µ̄t(u) =

∫ t

0

Y (τ + τ)K
(
u− U(τ)
h(τ)

)
dτ∫ t

0

K

(
u− U(τ)
h(τ)

)
dτ

are continuous-time versions of those studied in Chapters 3 and 4.
Denoting

ĝt(u) =
1
t

∫ t

0

Y (s+ τ)
1

h(τ)
K

(
u− U(τ)
h(τ)

)
dτ,

f̂t(u) =
1
t

∫ t

0

1
h(τ)

K

(
u− U(τ)
h(τ)

)
dτ

and noticing that µ̂t(u) = ĝt(u)/f̂t(u) we can write

d

dt
ĝt(u) = −1

t

[
ĝt(u)− Y (s+ t)

1
h(t)

K

(
u− U(t)
h(t)

)]
,

d

dt
f̂(u) = −1

t

[
f̂t(u)− 1

h(t)
K

(
u− U(t)
h(t)

)]
,

with ĝ0(u) = f̂0(u) = 0. Similarly we denote

ḡt(u) =
1∫ t

0
h(τ)dτ

∫ t

0

Y (s+ τ)K
(
u− U(τ)
h(τ)

)
dτ,
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f̄t(u) =
1∫ t

0
h(τ)dτ

∫ t

0

K

(
u− U(τ)
h(τ)

)
dτ

Then observe that µ̄t(u) = ḡt(u)/f̄t(u) and write

d

dt
ḡt(u) = −γ(t)

[
ḡt(u)− Y (s+ t)

1
h(t)

K

(
u− U(t)
h(t)

)]
,

d

dt
f̄t(u) = −γ(t)

[
f̄t(u)− 1

h(t)
K

(
u− U(t)
h(t)

)]
,

with γ(t) = h(t)/
∫ t

0
h(ξ)dξ and ḡ0(u) = f̄0(u) = 0.

Theorem 8.2 Let U have a density f(•) and let Em2(U) <∞. Let

sup
−∞<u<∞

|K(u)| <∞, (8.5)∫
|K(u)|du <∞, (8.6)

|u|1+εK(u)→ 0 as |u| → ∞ (8.7)

with ε = 0. Let
h(t)→ 0 as t→∞ (8.8)

th(t)→∞ as t→∞. (8.9)

Then
µ̂(u)→ µ(u) as t→∞ in probability (8.10)

at every u ∈ R where both m(•) and f(•) are continuous and f(u) > 0.

The next theorem is analogous with Theorem 3.2.

Theorem 8.3 Let U have a probability density f(•) and let Em2(U) <∞. Let the Borel measurable satisfy
(8.5), (8.6), and (8.7) for some ε > 0. Let h(t) satisfy (8.8) and (8.9). Then convergence (8.10) takes place
at every Lebesgue point u ∈ R of both m(•) and f(•) where f(u) > 0, and, a fortiori, at almost every u
where f(u) > 0, i.e., at almost every u belonging to the support of f(•).

Next two theorems correspond with Theorems 4.1 and 4.2, respectively.

Theorem 8.4 Let U have a density f(•) and let Em2(U) < ∞. Let the Borel measurable kernel K(•)
satisfy (8.5), (8.6) and (8.7) with ε = 0. Let h(t) satisfy (8.8) and let

1
t2

∫ t

0

1
h(τ)

dτ → 0 as t→∞.

Then
µ̃t(u)→ µ(u) as t→∞ in probability.

at every u ∈ R where both m(•) and f(•) are continuous and f(u) > 0. If, (8.7) holds for some ε > 0, then
the convergence takes place at every Lebesgue point u ∈ R of both m(•) and f(•), such that f(u) > 0; a
fortiori, at almost every u belonging to support of f(•).

Theorem 8.5 Let U have a density f(•) and let Em2(U) < ∞. Let the Borel measurable kernel K(•)
satisfy (8.5), (8.6) and (8.7) with ε = 0. Let h(t) satisfy (8.8) and let∫ ∞

0

h(t)dt =∞.

Then
µ̄t(u)→ µ(u) as t→∞ in probability.

at every point u ∈ R where both m(•) and f(•) are continuous and f(u) > 0. If, (8.7) holds with some ε > 0,
then the convergence takes place at every Lebesgue point u ∈ R of both m(•) and f(•), such that f(u) > 0;
a fortiori, at almost every point belonging to support of f(•).
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Using arguments used in Sects. 3.4 and 4.2 we easily come to a conclusion that if both f (q)(u) and g(q)(u)
are square integrable, K(•) is selected to satisfy restrictions imposed in Sect. 3.4, and h(t) ∼ t−1/2q, we get

P {|µ̂(u)− µ(u)| > εµ(u)} = O(t−1/2+1/4q))

with any ε > 0, and
|µ̂(u)− µ(u)| = O(t−1+1/2q) as t→∞ in probability.

The rate is true also for µ̃t(u) and µ̄t(u). If the derivatives are bounded and h(t) ∼ t−1/(2q+1), the rate is
O(t−1/2+1/(4q+2)) and O(t−1+1/(2q+1)), respectively.

8.3 Orthogonal series algorithms

We now show how to apply the orthogonal series approach presented in Chap. 6. The trigonometric series
estimate serves as an example. To estimate the characteristic, we apply the trigonometric orthonormal
system

1√
2π
,

1√
π

cosu,
1√
π

sinu,
1√
π

cos 2u,
1√
π

sin 2u, . . . ,

see also Section B.2. As in Section 6.2, we assume that
∫ π
−π |f(u)|du <∞ and

∫ π
−π |g(u)|du <∞, where, as

usual, g(u) = µ(u)f(u). Clearly

g(u) ∼ a0 +
∞∑
k=1

ak cos ku+
∞∑
k=1

bk sin ku

where

a0 =
1

2π

∫ π

−π
g(u)du,

and, for k = 1, 2, . . .,

ak =
1
π

∫ π

−π
g(u) cos(ku)du, bk =

1
π

∫ π

−π
g(u) sin(ku)du.

For the same reasons

f(u) ∼ 1
2π

+
∞∑
k=1

αk cos ku+
∞∑
k=1

βk sin ku,

where

αk =
1
π

∫ π

−π
f(u) cos(ku)du, βk =

1
π

∫ π

−π
g(u) sin(ku)du.

The trigonometric series estimate of µ(u) has the following form:

µ̂(u) =
â0 +

N(t)∑
k=1

âk cos ku+
N(t)∑
k=1

b̂k sin ku

1
2π

+
N(t)∑
k=1

α̂k cos ku+
N(t)∑
k=1

β̂k sin ku

with

â0 =
1

2πt

∫ t

0

Y (s+ τ)dτ, âk =
1
πt

∫ t

0

Y (s+ τ) cos[kU(τ)]dτ,

b̂k =
1
πt

∫ t

0

Y (s+ τ) sin[kU(τ)]dτ,

and

α̂k =
1
πt

∫ t

0

cos[kU(τ)]dτ, β̂k =
1
πt

∫ t

0

sin[kU(τ)]dτ.
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Using the Dirichlet kernel Dn(u), see Section B.2, we can also write

µ̂(u) =

∫ t

0

Y (s+ τ)DN(t)(U(τ)− u)dτ∫ t

0

DN(t)(U(τ)− u)dτ
.

The proof of the next theorem is omitted.

Theorem 8.6 Let Em2(U) <∞. Let
∫ π
−π |f(u)|du <∞. If

N(t)→∞ as t→∞,

N(t)
t
→ 0 as t→∞,

then
µ̂(u)→ µ(u) as t→∞ in probability

at every u ∈ (−π, π) where both m(•) and f(•) are differentiable and f(u) > 0.

Assume thatm(i)(−π) = m(i)(π) = f (i)(−π) = f (i)(π) = 0, for i = 0, 1, . . . , (q−1), that
∫ π
−π(f (q)(v))2dv <

∞ and
∫ π
−π(g(q)(v))2dv <∞. Then proceeding as in Section 6.2, we verify that

|µ̂(u)− µ(u)| = O(t−1/2+1/4q) in probability,

and, for any ε > 0,
P{|µ̂(u)− µ(u)| > εµ(u)} = O(t−1+1/2q),

provided that N(t) ∼ t1/2q.

8.4 Lemmas and proofs

8.4.1 Lemmas

Lemma 8.1 In the system,
E{W (t+ s)|U(t) = u} = µ(u),

where µ(u) = λ(s)m(u) +
∫∞

0
λ(τ)dτEm(U).

Proof. Let µ(u) = λ(s)m(u) +
∫∞

0
λ(τ)dτEV , ρ(U(t)) = E{W (t+ s) |U(t)}. For any Borel function φ(•),

we get

E{ρ(U(t))φ(U(t))} = E{E{W (t+ s)|U(t)}φ(U(t))}
= E{W (t+ s)φ(U(t))}.

Moreover, since W (t+ s) =
∫ t+s
−∞ λ(t+ s− τ)m(U(τ))dτ and {U(t)} is white noise, we get

E{W (t+ s)φ(U(t))} =
∫ t+s

−∞
λ(t+ s− τ)E{U(τ))φ(U(t))}dτ

= λ(s)E{m(U)φ(U)}+
∫ ∞

0

λ(τ)dτEm(U)Eφ(U).

Thus, for any φ(•),

E{ρ(U)φ(U)} = λ(s)E{m(U)φ(U}+
∫ ∞

0

λ(τ)dτEm(U)Eφ(U).

From this and
E{µ(U)φ(U)} = λ(s)E{m(U)φ(U)}+

∫ ∞
0

λ(τ)dτEm(U)Eφ(U),

it follows that, for any φ(•), E{ρ(U)φ(U)} = E{µ(U)φ(U)}. Hence ρ(u) = µ(u) with probability 1.
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Lemma 8.2 Let {U(t)} be a stationary white random process, EU(t) = 0, and Em(U) = 0. For any ϕ(•)
and ψ(•),

cov [W (s+ ξ)ϕ(U(ξ)),W (s+ η)ψ(U(η))]

= δ(ξ − η)λ2(s) cov [m(U)ϕ(U),m(U)ψ(U)]

+ δ(ξ − η)
∫ ∞

0

λ2(t)dt var [m(U)]E {ϕ(U)ψ(U)}

+ λ(s)λ(s+ ξ − η)λ(s)Eϕ(U)E
{
m2(U)ψ(U)

}
+ λ(s)λ(s+ η − ξ)Eψ(U)E

{
m2(U)ϕ(U)

}
+ λ(s+ ξ − η)λ(s+ η − ξ)E {m(U)ψ(U)}E {m(U)ϕ(U)}

Proof. It suffices to observe that the covariance in the assertion is equal to∫ s+ξ

−∞

∫ s+η

−∞
λ(s+ ξ − t)λ(s+ η − τ)

× cov [m(U(t))ϕ(U(ξ)),m(U(τ))ψ(U(η))] dtdτ

and apply Lemma C.5.

Lemma 8.3 Let EU = 0. Then

cov [W (ξ + s)U(ξ),W (η + s)U(η)]

= δ(ξ − η)λ2(s) var [m(U)U ] + δ(ξ − η)
∫ ∞

0

λ2(ξ)dξ var [m(U)]σ2
U

+ λ(ξ + s− η)λ(η + s− ξ)E2{m(U)U}.

8.4.2 Proofs

Proof of Theorem 8.1

The estimate is unbiased, i.e., Eκ̂(τ) = κ(τ). Moreover,

var [κ̂(τ)] =
1
t
σ2
ZEU

2 + Pt,

where

Pt =
1
t2

var
[∫ t

0

W (τ + ξ)U(ξ)dξ
]

=
1
t2

∫ t

0

∫ t

0

cov [W (τ + ξ)U(ξ),W (τ + η)U(η)] dξdη

which, by Lemma 8.3, is equal to

1
t
λ2(τ) var [m(U)U ] +

1
t

∫ ∞
0

λ2(ξ)dξ var [m(U)]σ2
U

+
1
t2
E2{m(U)U}

∫ t

0

∫ t

0

λ(τ + ξ − η)λ(τ + η − ξ)dξdη.

Since ∫ ∞
0

∫ ∞
0

|λ(τ + ξ − η)λ(τ + η − ξ)|dξdη

=
∫ ∞

0

|λ(τ + v)λ(τ − v)|dv ≤ max
t
|λ(t)|

∫ ∞
0

|λ(v)|dv,
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we get

|Pt| ≤
1
t
λ2(τ) var [m(U)U ] +

1
t

∫ ∞
0

λ2(ξ)dξ var [m(U)]σ2
U

+
1
t2
E2{m(U)U}max

t
|λ(t)|

∫ ∞
0

|λ(v)|dv.

Therefore

E(κ̂(τ)− κ(τ))2 = O

(
1
t

)
(8.11)

which completes the proof.

Proof of Theorem 8.2

The proof is similar to that of Theorem 3.1. For its sake we assume that Em(U) = 0, see Remark 8.1.
Observe that µ̂(u) = ĝ(u)/f̂(u) with

ĝ(u) =
1

th(t)

∫ t

0

Y (τ + τ)K
(
u− U(τ)
h(τ)

)
dτ

and

f̂(u) =
1

th(t)

∫ t

0

K

(
u− U(τ)
h(τ)

)
dτ.

Fix a point u ∈ R and suppose that both m(u) and f(u) are continuous at the point u.
Since

Eĝ(u) =
1
h(t)

E

{
E {Y (t+ s)|U(t)}K

(
u− U(t)
h(t)

)}
=

1
h(t)

E

{
µ(U)K

(
u− U
h(t)

)}
,

applying Lemma A.8 and remembering that g(u) = µ(u)f(u) we conclude that

Eĝ(u)→ g(u)
∫
K(v)dv as t→∞.

In turn since Y (t) = W (t) + Z(t),

var[ĝ(u)] = Pt(u) +Rt(u),

where

Pt(u) =
1

th(t)
σ2
Z

1
h(t)

EK2

(
u− U
h(t)

)
,

Rt(u) =
1

t2h2(t)

×
∫ t

0

∫ t

0

[
covW (ξ + s)K

(
u− U(ξ)
h(t)

)
,W (η + s)K

(
u− U(η)
h(t)

)]
dξdη.

In view of Lemma A.8
th(t)Pt(u)→ σ2

Zf(u)
∫
K2(v)dv as t→∞.

Turning to Rt(u) we apply Lemma 8.2 to obtain Rt(u) =
∑5
i=1Rit(u) with

R1t(u) = λ2(s) var
[
m(U)K

(
u− U
h(t)

)]
,
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R2t(u) =
1

th(t)

∫ ∞
0

λ2(τ)dτ var [m(U)]
1
h(t)

EK2

(
u− U
h(t)

)
,

R3t(u) = R4t(u)

=
1

t2h2(t)
λ(s)EK

(
u− U
h(t)

)
E

{
m2(U)K

(
u− U)
h(t)

)}
×
∫ t

0

∫ t

0

λ(s+ η − ξ)dξdη

= |λ(s)|
∫ ∞

0

|λ(τ)|dτO
(

1
t

)
,

and

R5t(u)

=
1
t2

1
h2(t)

E2

{
m(U)K

(
u− U
h(t)

)}∫ t

0

∫ t

0

λ(s+ ξ − η)λ(s+ η − ξ)dξdη

= max
τ
|λ(τ)|

∫ ∞
0

|λ(τ)|dτO
(

1
t

)
.

Since
th(t)R1t(u)→ λ2(s)m2(u)f(u)

∫
K2(v)dv as t→∞

and
th(t)R2t(u)→

∫ ∞
0

λ2(τ)dτ var [m(U)] f(u)
∫
K2(v)dv as t→∞,

see Lemma A.1, we obtain

th(t)Rt(u)→ ϕ(u)f(u)
∫
K2(v)dv as t→∞,

where ϕ(u) = λ2(s)m2(u) +
∫∞

0
λ2(τ)dτ var[m(U)]. Finally

th(t) var[ĝ(u)]→ (σ2
Z + ϕ(u))f(u)

∫
K2(v)dv

In this way we have verified that

E(ĝ(u)− µ(u)f(u))2 → 0 as t→∞.

Using similar arguments we show that Ef̂(u)→ f(u) as t→∞,

th(t) var[f̂(u)]→ f(u)
∫
K2(v)dv as t→∞

and come to the conclusion that E(f̂(u)− f(u))2 → 0 as t→∞. The proof is completed.

8.5 Bibliographic notes

Continuous-time estimates recovering the nonlinearity have been examined in Greblicki [155, 157]. The
problem of nonparametric estimation of a continuous-time Hammerstein system from observation sampled
in time has been studied in [161].
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Chapter 9

Discrete-time Wiener systems

9.1 The system

A Wiener system shown in Figure 9.1 comprises a linear dynamic subsystem with an impulse response kn
and a nonlinear memoryless subsystem with a characteristic m(•) connected in a cascade. The output signal
Wn of the linear part is disturbed by Zn and Vn = Wn + Zn is the input of the nonlinear part while

Yn = m(Vn)

is the output of the whole system. Neither Wn nor Vn are available to measurement. The goal is to identify
the system, i.e., to recover both λn and m(•), from observations

(U1, Y1) , (U2, Y2) , . . . , (Un, Yn) , . . . (9.1)

taken at the input and output of the whole system.
The input {. . . , U−1, U0, U1, . . .} and disturbance {. . . , Z−1, Z0, Z1, . . .} are mutually independent Gaus-

sian stationary white random signals. The disturbance has zero mean and finite variance, i.e., EZn = 0 and
var [Zn] = σ2

Z <∞.
The dynamic subsystem is described by the state equation{

Xn+1 = AXn + bUn

Wn = cTXn,
(9.2)

where Xn is a state vector, A is a matrix, b and c are vectors. Therefore

λn =

{
0, for n = 0,−1,−2, . . .
cTAn−1b, for n = 1, 2, 3, . . .

and

Wn =
n∑

i=−∞
λn−iUi. (9.3)

⊕ YnUn Wn Vn

m(•)

Zn

{λn}

Figure 9.1: The discrete-time Wiener system.
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Neither the dimension of A, nor A itself, nor b, nor c are known. Nevertheless the matrix A is stable, all its
eigenvalues lie in the unit circle. Therefore both Xn and Wn are random variables and {. . . , X−1, X0, X1, . . .}
as well as {. . .W−1,W0,W1, . . .} are stationary correlated random processes. So is {. . . Y−1, Y0, Y1, . . .}. Thus
all signals are random variables and we estimate both λn and m(•) from random observations (9.1).

All the above restrictions concerning the input signal and disturbance as well as the system hold through-
out all chapters devoted to Wiener systems and will not repeated in relevant lemmas nor theorems. In par-
ticular, we underline the assumptions concerning Gaussian and stationary properties of the signals coming
to the system, and stability of the dynamic subsystem.

Essential results on consistency of identification algorithms hold under an additional assumption that the
nonlinear characteristic satisfies the Lipschitz inequality, i.e., that

|m(v)−m(w)| ≤ cm |v − w| (9.4)

with some unknown cm.
For simplicity of the notation, U,W, V, Y, and Z stand for Un,Wn, Vn, Yn, and Zn, respectively.

9.2 Nonlinear subsystem

9.2.1 The problem and the motivation for algorithms

Let

α =
σ2
U

σ2
U

∑∞
i=0 λ

2
i + σ2

Z

and
αp = λpα. (9.5)

The basis for algorithms recovering the nonlinear characteristic is the following lemma:

Lemma 9.1 For any Borel measurable m(•),

E {Un|Vp+n = v} = αpv.

Proof. Since the pair (Un, Vp+n) has a Gaussian distribution such that EUn = 0 and EVn = 0,

E {Un|Vp+n = v} = cov [Un, Vp+n]
1
σ2
V

v.

As

cov [Un, Vp+n] = cov

[
U0,

p∑
i=−∞

λp−iUi

]
=

p∑
i=−∞

λp−i cov [U0, Ui]

= λpσ
2
U ,

and σ2
V = σ2

U

∑∞
i=0 λ

2
i + σ2

Z , we easily complete the proof.
By m(R) we denote the image of the real line R under the mapping m(•) and assume that m(•) is

invertible in the Cartesian product R ×m(R). The inversion will be denoted by m−1(•). Obviously values
of m−1(•) lie in R while m(R) is its domain.

Lemma 9.2 Let m(•) be invertible in the Cartesian product R×m(R). For every y ∈ m(R),

E {Un|Yp+n = y} = αpm
−1(y).

Proof. Since
E {Un|Yp+n = y} = E

{
Un|Vp+n = m−1(y)

}
,

an application of Lemma 9.1 completes the proof.
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The lemma suggests that to recover m−1(y) we can just estimate the regression E {Un|Yp+n = y}. This
goal can be, however, achieved only up to an unknown multiplicative constant αp. For simplicity we denote

ν(y) = αpm
−1(y).

In further chapters we discuss a variety of estimates of the regression and show that they recover ν(y), i.e.,
that

ν̂(y)→ ν(y) as n→∞

in an appropriate stochastic sense, where ν̂(y) denotes such an estimate. Therefore assuming that ν̂(y) is
invertible we can expect that ν̂−1(v) converges to ν−1(v) = m(v/αp), i.e., that

ν̂(y)→ m(v/αp) as n→∞

in the same manner. Thus we can recover m(•) up to some unknown dilation coefficient α−1
p .

For m(•) satisfying Lipschitz inequality (9.4) Yn may not have a density. Some results, however, require
the density to exist. To assure that an additional restriction on m(•) should be imposed. In such cases we
assume that

m(•) is strictly monotonous and has a bounded derivative. (9.6)

Obviously such an m(•) satisfies (9.4). Owing to (9.6) the density denoted by f(•) exists and

f(y) =

 fV (m−1(y))
/∣∣∣∣ ddym−1(y)

∣∣∣∣ , for y ∈ m(R)

0, otherwise,

where fV (•) is the density of V , i.e., a normal density with zero mean and unknown variance σ2
V .

Observe that (9.6) entails continuity of m−1(•) in the set m(R). Since fV (v) = (1/
√

2πσV )e−1/2σ2
V and

ν(y) = αpm
−1(y), fV (ν(y)) is continuous at every point where m−1(•) is continuous, i.e., in the whole set

m(R). Observing that

d

dy
ν(y) = αp

d

dy
m−1(y) =

αp
d

dv
m(v)

∣∣∣∣
v=m−1(y)

=
αp

m′(m−1(y))

we conclude that ν′(y) is also continuous in m(R), provided that m′(v) 6= 0 for all v ∈ (−∞,∞). Therefore
if (9.6) holds and m′(•) is nonzero in the whole real line, f(•) is continuous at every point y ∈ m(R).

If m′(v0) = 0, ν′(•) is not continuous at a point y0 such that m−1(y0) = v0, i.e., at the point y0 where
y0 = m(v0). Also f(•) is not continuous at this point.

9.2.2 Possible generalizations

In Section 9.2.1 the system is driven with zero mean random signal. If the mean is nonzero,

E {Un|Vn+p = v} = EU + αp

(
v − EU

∞∑
i=0

λi

)

which leads to
E {Un|Yn+p = y} = βp + αpm

−1(y) = βp + ν(v)

with βp = (1 − αp
∑∞
i=0 λi)EU . In such a case estimating the regression E {Un|Yn+p = y} we recover

βp + αpm
−1(y), where both βp and αp are unknown.

Moreover, results presented in further chapters can be extended to the system shown in Figure 9.2 in
which {ξn} is a white random Gaussian noise.
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Un Yn

Zn
ξn

{kn} m(•)

Figure 9.2: The Wiener system with an additional disturbance ξn.

9.2.3 Monotonicity preserving algorithms

In many practical applications the non-linear characteristics characterizing the Wiener and Hammerstein
system are known a priori to be non-decreasing. This assumption has been made in this chapter as the
nonlinearity m(•) is assumed to be invertible. Unfortunately, common curve estimation methods are not very
amenable to incorporate the monotonicity constraint. In fact, no estimation method can guarantee that the
estimated characteristic is invertible. To include the monotone case in the particular identification algorithm
one can simply add constraints forcing the solution to meet the monotonicity requirement. This framework
can be easily incorporated in the classical parametric least squares approach to system identification by
minimizing a penalized sum of squares. To illustrate our main ideas, let us consider the the parametric
version of the Hammerstein system:

Xn+1 = AXn + bVn,

Yn = cTXn + Zn,

where Zn is the output noise process. Let also

Vn = m(Un) =
r∑
i=1

αigi(Un) (9.7)

be the parametric representation of the non-linear characteristic, i.e., the basis functions (e.g., polynomials)
gi(•) are selected in advance and the parameter r is assumed to be known. We can rewrite the above
input-output description in the following equivalent form:

Xn+1 = AXn + ΘUn,

Yn = cTXn + Zn,

where Θ = bαT is the d× r matrix and Un is the r× 1 known vector of the transformed input signal Un via
the basis functions gi(•), i = 1, . . . , r.

An identification procedure starts with the initial estimates (obtained virtually by any linear system
identification method) of A, c,Θ yielding the estimates Â, ĉ, Θ̂. Then the estimates of hidden parameters b, α
are derived as the solution of the following least squares problem:

(b̂, α̂) = arg min
b,α
‖Θ̂− bαT ‖2.

All these derivations lead to the following estimate of the system nonlinearity

m̂(u) =
r∑
i=1

α̂igi(u).

The identical procedure applied to the Wiener system gives an estimate of the inverse function m−1(•), i.e.,
for the Wiener system we have

m̂−1(u) =
r∑
i=1

α̂igi(u).

It is clear that the monotonicity of m(u) does not imply the monotonicity of m̂(u). Therefore it is an
important issue to construct the constrained solution m̄(u) which is non-decreasing function of u. To do so
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let us define the standardized form of the constrained solution

mc(u) =
r∑
i=1

(α̂i + βi)gi(u),

where {βi} is a new set of unknown parameters. Clearly, if the unconstrained solution m̂(u) meets the
monotonicity requirement then we should have βi = 0, i = 1, . . . , r . The monotonicity of mc(u) gives the
following condition for {βi}

r∑
i=1

βig
(1)
i (u) ≥ −

r∑
i=1

α̂ig
(1)
i (u),

where g(1)
i (u) is the derivative of gi(u). The above formula can be written in the following vector notation

form
βTh(u) ≥ a(u), (9.8)

where β = (β1, . . . , βr)T , h(u) = (g(1)
1 (u), . . . , g(1)

r (u))T and a(u) = −
∑r
i=1 α̂ig

(1)
i (u). Often one needs to do

some normalization of the vector h(u) such that hT (u)h(u) = 1. Now we are in a position to reformulate
the aforementioned parametric identification procedure that takes into account the monotonicity constraint.
Hence we seek a solution of the following minimization problem

β̂ = arg min
β
‖Θ̂− b̂(α̂+ β)T ‖2

subject to the constraint in (9.8). Since Θ̂, b̂, α̂ are already specified the above question is equivalent to the
quadratic programming problem with linear constraints. It is worth noting that the constraint in (9.8) is
required to hold for all u. The weaker requirement would ask for (9.8) to be satisfied only at the training
input data points Ui, i = 1, . . . , n.

All the aforementioned discussion would lead to the following algorithm for finding β̂.

1. If a(u) ≤ 0, for all u, i.e.,
∑r
i=1 α̂ig

(1)
i (u) ≥ 0 then set β̂ = 0. This is the case when the unconstrained

solution m̂(u) meets the monotonicity constraint.

2. If a(u) > 0 for some u then β̂ = 0 is not the solution. In this case define

a(u∗) = maxua(u)

and define
β∗ = a(u∗)h(u∗).

Verify whether β∗ satisfies (9.8). This can be done either for all u or for the input data points
Ui, i = 1, . . . , n. If (9.8) holds then set β̂ = β∗. The case if β∗ does not meet (9.8) requires some
further investigation and some suggestions can be found in [90], [353].

3. Exit the algorithm with the following monotonicity constrained estimate of m(u)

m̄(u) =
r∑
i=1

(α̂i + β̂i)gi(u).

The consistency of this parametric estimate m̄(u) of m(u) can be established using standard tools of the
parametric statistical inference.

Thus far we have assumed the parametric knowledge of the system nonlinearity defined by formula (9.7).
Hence both the basis functions gi(u), i = 1, . . . , r and the parameter r are assumed to be known. The
first step into the nonparametric extension of the proposed approach would be to allow the parameter r
to be selected adaptively for known class of basis functions. A challenging issue would be to incorporate
the monotoncity constraint into the nonparametric framework. A projection type approach for constrained
nonparametric estimation [298] could be utilized here and this topic is left for future studies.
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9.3 Dynamic subsystem identification

9.3.1 The motivation

Denote

β = αE{V m(V )} =
σ2
U

σ2
U

∑∞
i=0 λ

2
i + σ2

Z

E{V m(V )}.

Lemma 9.3 If E|V m(V )| <∞, then
E {U0Yi} = βλi.

Proof. From Lemma 9.1, it follows that E {U0|Vi} = αλiVi. Therefore since

E {U0Yi|Vi} = E {U0m(Vi)|Vi} = m(Vi)E {U0|Vi} ,

we get E {U0Yi|Vi} = αλiVim(Vi) which completes the proof.
Since we can recover only βλi, it will be convenient to denote κi = βλi.

9.3.2 The algorithm

Lemma 9.3 suggests the following estimate of κi:

κ̂i =
1
n

n∑
j=1

UjYi+j .

Observe that if (9.4) holds, there exist c1 and c2 such that |m(v)| ≤ c1 + c2|v|. Hence

E|V m(V )| ≤ c1E|V |+ c2EV
2 <∞. (9.9)

For similar reasons, for any i,
E
{
U2

0m
2(Vi)

}
<∞. (9.10)

Theorem 9.1 If m(•) satisfies (9.4), then, for every i,

lim
n→∞

E (κ̂i − κi)2 = 0.

Proof. Since the estimate is unbiased, we pass to the variance and get var [κ̂i] = Pn + Qn + Rn, where
Pn = n−1 var [U0Yi],

Qn =
1
n2

i∑
j=1

(n− j) cov [U0m(Vi), Ujm(Vi+j)] ,

and

Rn =
1
n2

n∑
j=i+1

(n− j) cov [U0m(Vi), Ujm(Vi+j)] .

Clearly |Pn| ≤ n−1E1/2U2E1/2Y 2 = O(n−1) and

|Qn| ≤
1
n

i∑
j=1

|cov [U0m(Vi), Ujm(Vi+j)]|

≤ 1
n

i∑
j=1

E |U0m(Vi)Ujm(Vi+j)|+
1
n

i∑
j=1

E2 {U0m(Vi)}

≤ i

n
E
{
U2

0m
2(Vi)

}
+
i

n
E2 {U0m(Vi)} = O

(
1
n

)
,
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see (9.9) and (9.10). Thus |Qn| = O(n−1). Moreover, by Lemma 9.4,

|Rn| ≤
1
n

n∑
j=i+1

|cov [U0m(Vi), Ujm(Vi+j)]| ≤ γ
1
n

n∑
j=i+1

∥∥Aj∥∥
= O

(
1
n

)
,

since
∑∞
j=0

∥∥Aj∥∥ <∞. Finally

E (κ̂i − κi)2 = var [κ̂i] = O

(
1
n

)
(9.11)

which completes the proof.
Sequence {κ̂1, κ̂2, κ̂3, . . . , κ̂N(n), 0, 0, . . .} is defined as an estimate of the whole impulse response {κ1, κ2, κ3, . . .}.

Defining the mean summed square error (MSSE for short) as

MSSE =
N(n)∑
i=1

E(κ̂i − κi)2 +
∞∑

i=N(n)+1

κ2
i ,

we apply (9.11) to find that the error is not greater than

O

(
N(n)
n

)
+

∞∑
i=N(n)+1

κ2
i .

Therefore if N(n)→∞ as n→∞ and N(n)/n→ 0 as n→∞, limn→∞MSSE = 0.

9.4 Lemmas

Lemma 9.4 If (9.4) holds, then, for 0 < i < j,

|cov [U0m(Vi), Ujm(Vi+j)]| ≤ γ
∥∥Aj∥∥

with a finite γ.

Proof. Suppose 0 < i < j. Clearly Vi+j = cTAjXi+ ξi+j , where ξi+j =
∑i+j−1
q=i cTAj−1−qbUq +Zi+j . Since

pairs (U0, Vi) and (Uj , ξi+j) are independent, cov [U0m(Vi), Ujm(ξi+j)] = 0. Hence

cov [U0m(Vi), Ujm(Vi+j)] = cov [U0m(Vi), Uj [m(Vi+j)−m(ξi+j)]]
= E {U0Ujm(Vi)[m(Vi+j)−m(ξi+j)]}
− E {U0m(Vi)}E {U0[m(Vi+j)−m(ξi+j)]}

Applying (9.4) we get

|m(Vi+j)−m(ξi+j)| ≤ cm |Vi+j − ξi+j | ≤ cm
∣∣cTAjXi

∣∣ ≤ cm ‖c‖ ∥∥Aj∥∥ ‖Xi‖ .

Thus

|cov [U0m(Vi), Ujm(Vi+j)]|
≤ cm ‖c‖

∥∥Aj∥∥ (E |U0Ujm(Vi) ‖Xi‖|+ |E {U0m(Vi)}|E |U0 ‖Xi‖|)
= cm ‖c‖

∥∥Aj∥∥ (E |U0m(Vi) ‖Xi‖|E |U |+ |E {U0m(Vi)}|E |U0 ‖Xi‖|)
= γ

∥∥Aj∥∥
with a finite γ.

We denote ψn(y) = E
{
U2

0 |Yn = y
}

.
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Lemma 9.5 In the system,

ψn(y) = σ2
U

(
1− λ2

n

σ2
U

σ2
V

)
+ λ2

n

σ4
U

σ4
V

ν2(y),

where ν(y) = m−1(y). Moreover,
sup
n
|ψn(y)| ≤ α+ βν2(y),

where α = σ2
U (1 + (maxn λ2

n)σ2
U/σ

2
V ) and β = (maxn λ2

n)σ4
U/σ

4
V .

Proof. Since the pair (U0, Vn) has a Gaussian distribution such that EU0 = 0, EVn = 0 and cov [U0, Vn] =
λnσ

2
U , the conditional density of U0 conditioned on Vn = v is Gaussian with mean λn(σ2

U/σ
2
V )v and variance

σ2
U [1− λ2

n(σ2
U/σ

2
V )]. Thus

E
{
U2

0 |Vn = v
}

= σ2
U

(
1− λ2

n

σ2
U

σ2
V

)
+ λ2

n

σ4
U

σ4
V

v2

which completes the proof.
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and Schoukens [408], Nordsjö [311], Lacy, Erwin, and Bernstein [273].

Larger classes of block systems including, in particular, Wiener systems, have attracted the attention of
Billings and Fakhouri [24,26,28,29], Fakhouri, Billings, and Wormald [102], Boutayeb and Darouach [32].

The Wiener system has been applied by den Brinker [75], Emerson, Korenberg and Citron [93] to describe
visual systems. Kalafatis, Afirin, Wang and Cluett [247], Kalafatis, Wang and Cluett [248], as well as
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Chapter 10

Kernel and orthogonal series
algorithms

10.1 Kernel algorithms

10.1.1 Introduction

By Lemma 9.2 to recover ν(y) = αpm
−1(y), it suffices to estimate the regression E {Un|Yp+n = y}. This

goal can be achieved with the following kernel estimate:

ν̂(y) =

n∑
i=1

UiK

(
y − Yp+i
hn

)
n∑
i=1

K

(
y − Yp+i
hn

) (10.1)

and its semirecursive versions

ν̃n(y) =

n∑
i=1

1
hi
UiK

(
y − Yp+i

hi

)
n∑
i=1

1
hi
K

(
y − Yp+i

hi

) (10.2)

and

ν̄n(y) =

n∑
i=1

UiK

(
y − Yp+i
hn

)
n∑
i=1

K

(
y − Yp+i

hi

) . (10.3)

Like those investigated in Chap. 4 their numerator and denominator can be calculated recursively, see
Section 4.1.

We study two cases. In one the nonlinear characteristic is so smooth, strictly monotonic and differentiable,
that the output density f(•) of Y exists. In the other the characteristic is not differentiable but only a
Lipschitz function. The density may not exist. All proofs are in Sect. 10.4.

10.1.2 Differentiable characteristic

In this section we show that if the nonlinear characteristic is differentiable, i.e., if the density f(•) of
the output signal exists then all three kernel estimates are consistent. The presented theorems assume that
|y|1+εK(y)→ 0 as |y| → ∞, where ε = 0, and establish the convergence at continuity points. The verification
of the consistency at almost every point holding for ε > 0 is left to the reader.
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Off-line estimate

We now show that off-line estimate (10.1) is consistent.

Theorem 10.1 Let m(•) satisfy (9.6). Let the kernel satisfy the following restrictions:

sup
y
|K(y)| <∞, (10.4)

∫
|K(y)|dy <∞, (10.5)

yK(y)→ 0 as |y| → ∞, (10.6)

and, moreover,
|K(y)−K(x)| ≤ cK |y − x| (10.7)

with some cK , for all x, y ∈ (−∞,∞). If

hn → 0 as n→∞ (10.8)

and
nh2

n →∞ as n→∞, (10.9)

then
ν̂(y)→ ν(y) as n→∞ in probability (10.10)

at every y ∈ m(R) where f(•) is continuous and f(y) > 0.

Remark 10.1 Notice that in Theorem 10.1, the kernel satisfies not only all the appropriate restrictions
imposed by Theorem 3.1 and others dealing with the Hammerstein system but also (7.15). As a result, the
rectangular kernel is not admitted. Concerning the number sequence, (10.8) and (10.9) are more restrictive
than (3.7) and (3.8). A hypothesis is that (10.9) can be replaced by (3.8).

Semirecursive estimates

In the two theorems presented in this section the convergence of semirecursive estimates (10.2) and (10.3) is
shown.

Theorem 10.2 Let the kernel satisfy (10.4), (10.5), (10.6), and (10.7). If the positive number sequence
{hn} satisfies (10.8) and

1
n2

n∑
i=1

1
h2
i

→ 0 as n→∞,

then
ν̃(y)→ ν(y) as n→∞ in probability

at every point y ∈ m(R) where f(•) is continuous and f(y) > 0.

Theorem 10.3 Let the kernel satisfy the appropriate restrictions of Theorem 10.2. If the positive monotonous
number sequence {hn} satisfies (10.8) and

hn

n∑
i=1

hi →∞ as n→∞,

then
ν̄(y)→ ν(y) as n→∞ in probability

at every y ∈ m(R) where f(•) is continuous and f(y) > 0.
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10.1.3 Lipschitz characteristic

In this section the nonlinear characteristic m(•) is invertible, see Sect. 9.2.1, and satisfies Lipschitz inequality
(9.6) but may not be differentiable. Because of that, the output random variable Y may not have a density.
In further considerations the probability measure of Y is denoted by ζ(•).

Theorem 10.4 Let m(•) be invertible in the Cartesian product R ×m(R) and satisfy Lipschitz inequality
(9.4). Let H(•) be a nonnegative nonincreasing Borel function defined on [0,∞), continuous and positive at
t = 0 and such that

tH(t)→ 0 as t→∞.
Let, for some c1 and c2,

c1H(|y|) ≤ K(y) ≤ H(|y|)c2.
Let, moreover, K(•) satisfy Lipschitz inequality (10.7). Let the sequence {hn} of positive numbers satisfy
(10.8) and (10.9). Then convergence (10.10) takes place at almost every (ζ) y ∈ m(R).

10.1.4 Convergence rate

Like in Section 3.4 we assume that f(•) and g(•) have q derivatives bounded in a neighborhood of a point
y ∈ m(R). Selecting the kernel as described in Section 3.4, in view of (10.12), we obtain

E(f̂(y)− f(y))2 = O(h2q
n ) +O

(
1
nh2

n

)
.

If m−1(•) has the same number of bounded derivatives, the same holds for E(ĝ(y) − g(y))2. Finally, for
hn ∼ n−1/(2q+2),

P {|ν̂(y)− ν(y)| > εν(y)} = O(n−1+1/(q+1))

with any ε > 0, and
|ν̂(y)− ν(y)| = O(n−1/2+1/(2q+2))

in probability. Similar results can be obtained for semirecursive estimates.

10.2 Orthogonal series algorithms

10.2.1 Introduction

The nonlinear characteristicmmaps the whole real line R into the setm(R). Assuming that the characteristic
is smooth, i.e., satisfies (9.6), we apply orthogonal series estimates.

10.2.2 Fourier series algorithm

For simplicity we assume that m(R) = [−π, π] and to recover ν(y) = αpm
−1(y) easily observe that ν(y) =

g(y)/f(y), where g(y) = ν(y)f(y) = E{U0|Yp = y}f(y). Expanding g(•) in the Fourier series we get

g(y) ∼ a0 +
∞∑
k=0

ak cos ky +
∞∑
k=0

bk sin ky

with
a0 =

1
2π

∫ π

−π
g(y)dy =

1
2π
EU,

and, for k = 1, 2, . . .,

ak =
1
π

∫ π

−π
g(y) cos(ky)dy =

1
π
E{U0 cos(kYp)},

and
bk =

1
π

∫ π

−π
g(y) sin(ky)dy =

1
π
E{U0 sin(kYp)}.
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For f(•), we obtain

f(y) ∼ 1
2π

+
∞∑
k=1

αk cos ky +
∞∑
k=1

βk sin ky

where

αk =
1
π

∫ π

−π
f(y) cos(ky)dy =

1
π
E cos(kY ),

and

βk =
1
π

∫ π

−π
f(y) sin(ky)dy =

1
π
E sin(kY ),

k = 1, 2, . . .. Therefore the estimate of ν(y) has the following form:

ν̂(y) =

â0 +
N(n)∑
k=1

âk cos ky +
N(n)∑
k=1

b̂k sin ky

1
2π

+
N(n)∑
k=1

α̂k cos ky +
N(n)∑
k=1

β̂k sin ky

,

where

â0 =
1

2πn

n∑
i=1

Ui, âk =
1
πn

n∑
i=1

Ui cos kYp+i,

b̂k =
1
πn

n∑
i=1

Ui sin kYp+i,

and

α̂k =
1
πn

n∑
i=1

cos kYi, β̂k =
1
πn

n∑
i=1

sin kYi.

In an alternative representation of the estimate we employ the Dirichlet kernel, see (B.2), and get

ν̂(y) =

n∑
i=1

UiDN(n)(Yp+i − y)

n∑
i=1

DN(n)(Yp+i − y)

.

Theorem 10.5 Let (9.6) be satisfied. Let
∫ π
−π(m−1(y)f(y))2dy <∞ and

∫ π
−π f(y)2dy <∞. Let, moreover,

(9.6) be satisfied. If

N(n)→∞ as n→∞

and
N2(n)
n

→ 0 as n→∞.

then

ν̂(y)→ ν(y) as n→∞ in probability

at every y ∈ (−π, π) where both m−1(•) and f(•) are differentiable and f(y) > 0.
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10.2.3 Legendre series algorithm

Assuming that m(R) = [−1, 1] we can employ the Legendre series and get the following estimate:

ν̃(y) =

n∑
i=1

UikN(n)(y, Yp+i)

n∑
i=1

kN(n)(y, Yi)

where

kn(y, x) =
n∑
k=0

pk(y)pk(x) =
n∑
k=0

2k + 1
2

Pk(y)Pk(x)

=
n+ 1

2
Pn(y)Pn+1(x)− Pn+1(y)Pn(x)

x− y
(10.11)

is the kernel of the Legendre system, see Section B.3.

Theorem 10.6 Let (9.6) be satisfied. Let
∫ 1

−1
|f(y)|(1−y2)1/4dy <∞ and

∫ 1

−1
|f(y)m−1(y)|(1−y2)1/4dy <

∞. If (6.2) is satisfied and
N7/2(n)

n
→ 0 as n→∞,

then
ν̃(y)→ ν(y) as n→∞ in probability

at every y ∈ (−1, 1) where both m−1(•) and f(•) are differentiable and f(y) > 0.

10.2.4 Hermite series algorithm

For m(R) = (−∞,∞) we can employ the Legendre series and get the following estimate:

ν̌(y) =

n∑
i=1

UikN(n)(y, Yp+i)

n∑
i=1

kN(n)(y, Yi)

,

where

kn(x, y) =
n∑
k=0

hk(x)hk(y) =

√
n+ 1

2
hn+1(x)hn(y)− hn(x)hn+1(y)

y − x
,

is the kernel of the Hermite system, see Section B.5.

Theorem 10.7 Let (9.6) be satisfied. If (6.2) holds and

N13/6(n)
n

→ 0 as n→∞,

then
ν̌(y)→ ν(y) as n→∞ in probability

at every y ∈ (−∞,∞) where both m−1(•) and f(•) are differentiable and f(y) > 0.
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Figure 10.1: The nonlinear characteristic in the simulation example (Sect. 10.3).

10.3 Simulation example

In the simulation example the dynamic subsystem, see Figure 9.1, is described by the following equation:
Xn+1 = aXn + Un with a = 1/2. The nonlinear characteristic is of the following form:

m(w) =
{

2w, for w ≥ 0
w, for w < 0,

see Figure 10.1. The input signal Un has a Gaussian distribution with zero mean and variance 1. Therefore

E{Un|Yn+1} = α1m
−1(y)

with

α1 =
1− a2

1 + (1− a2)σ2
Z

.

Since the outer noise is absent, i.e., Zn ≡ 0, we have α1 = 1− a2. As a = 1/2,

E{Un|Yn+1} =
3
4
m−1(y).

The accuracy of estimates is measured with

MISE =
∫ 3

−3

(
ν̂(y)− 3

4
m−1(y)

)2

dy,

where ν̂(y) stands for the involved estimate.
For off-line estimate (10.1) the MISE is shown in Figure 10.2. The estimate behaves very much like its

appropriate version applied to the identification of Hammerstein systems.

10.4 Lemmas and proofs

10.4.1 Lemmas

Lemma 10.1 Let the density f(•) of Y exist. If the kernel satisfies the appropriate restrictions of Theorem
10.2, then, ∣∣∣∣cov

[
UiK

(
y − Yp+i

hi

)
, UjK

(
y − Yp+j

hj

)]∣∣∣∣
≤


√
hjhjη(y), for 0 ≤ |i− j| ≤ p

hj
hi

∥∥Ai−j∥∥ η(y) for p < i− j
hi
hj

∥∥Aj−i∥∥ η(y) for p < j − i

with some η(y) finite at every y ∈ m(R) where both m−1(•) and f(•) are continuous.
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Figure 10.2: MISE versus hn for estimate (10.1); various n.

Proof. Fix y ∈ m(R) and suppose that both m−1(•) and f(•) are continuous at the point y.
For any i and j, the covariance in the assertion is equal to Q1(y)−Q2(y), where

Q1(y) = E

{
UiK

(
y − Yp+i

hi

)
UjK

(
y − Yp+j

hj

)}
,

and

Q2(y) = E

{
UiK

(
y − Yp+i

hi

)}
E

{
UjK

(
y − Yp+j

hj

)}
.

Since

|Q1(y)|

≤ E1/2

{
U2
i K

2

(
y − Yp+i

hi

)}
E1/2

{
U2
jK

2

(
y − Yp+j

hj

)}
=
√
hihjE

1/2

{
ψp(Y )

1
hi
K2

(
y − Y
hi

)}
E1/2

{
ψp(Y )

1
hj
K2

(
y − Y
hj

)}
with ψp(•) as in Lemma 9.5. Recalling Lemma A.8 we find that the quantity is not greater than

√
hihjη1(y)

for some finite η1(y). For the same reasons, |Q2(y)| ≤ hihjη2(y) for some finite η2(y). For 0 ≤ |i − j| ≤ p,
the desired inequality follows.

Suppose that p+ j < i. Obviously Vp+i =
∑p+j−1
n=−∞ λp+i−nUn + ξp+i, where ξp+i =

∑p+i
n=p+j λp+i−nUn +

Zp+i. As pairs (Uj , Yp+j) and (Ui, ξp+i) are independent,

cov
[
UiK

(
y −m(ξp+i)

hi

)
, UjK

(
y − Yp+j

hj

)]
= 0.

Hence, denoting

φ(y, Yp+i, ξp+i) = K

(
y − Yp+i

hi

)
−K

(
y −m(ξp+i)

hi

)
we find the examined covariance equal to

cov
[
Uiφ(y, Yp+i, ξp+i), UjK

(
y − Yp+j

hj

)]
= S1(y)− S2(y),

where

S1(y) = E

{
UiUjφ(y, Yp+i, ξp+i)K

(
y − Yp+j

hj

)}
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and

S2(y) = E

{
UjK

(
y − Yp+j

hj

)}
E {Uiφ(y, Yp+i, ξp+i)}

= hj
1
hj
E

{
ν(Y )K

(
y − Y
hj

)}
E {Uiφ(y, Yp+i, ξp+i)} .

Since both K(•) and m(•) are Lipschitz functions, see (7.15) and (9.4),

|φ(y, Yp+i, ξp+i)| ≤ cKcm
1
hi
|Yp+i −m(ξp+i)| = cKcm

1
hi

∣∣∣∣∣
p+j−1∑
n=−∞

λp+i−nUn

∣∣∣∣∣
which yields

|S1(y)|

≤ γ 1
hi

p+j−1∑
n=−∞

|λp+i−n|E
∣∣∣∣UiUjUnK (y − Yp+jhj

)∣∣∣∣
≤ γE|U | 1

hi

p+j−1∑
n=−∞

|λp+i−n|E
∣∣∣∣UjUnK (y − Yp+jhj

)∣∣∣∣
≤ γ 1

hi
E1/2

{
U2
jK

2

(
y − Yp+j

hj

)} p+j−1∑
n=−∞

|λp+i−n|E1/2

{
U2
nK

2

(
y − Yp+j

hj

)}
which equals

γ
1
hi
E1/2

{
ψp(Y )K2

(
y − Y
hj

)}
×
p+j−1∑
n=−∞

|λp+i−n|E1/2

{
ψp+j−n(Y )K2

(
y − Y
hj

)}

≤ γ hj
hi

1
hj
E

{
ψ(Y )K2

(
y − Y
hj

)} p+j−1∑
n=−∞

|λp+i−n| ≤ γ
hj
hi
η3(y)

p+j−1∑
n=−∞

|λp+i−n|

with ψp(•) and ψ(•) as in Lemma 9.5. As
p+j−1∑
n=−∞

|λp+i−n| =
p+j−1∑
n=−∞

∥∥cTAp+i−n−1b
∥∥ ≤ ‖c‖ ‖b‖ p+j−1∑

n=−∞

∥∥Ap+i−n−1
∥∥

≤ ‖c‖ ‖b‖
∥∥Ai−j∥∥ ∞∑

n=0

‖An‖ = δ
∥∥Ai−j∥∥ ,

where δ = ‖c‖ ‖b‖
∑∞
n=0 ‖An‖, we get

|S1(y)| ≤ hj
hi

∥∥Ai−j∥∥ η3(y),

with finite η3(y).
Passing to S2(y) we observe that

|E {Uiφ(y, Yp+i, ξp+i)}| ≤ cKcm
1
hi

p+j−1∑
n=−∞

|λp+i−n|E|UiUn|

≤ cKcmEU2 1
hi

p+j−1∑
n=−∞

|λp+i−n|

≤ cKcmδEU2 1
hi

∥∥Ai−j∥∥
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which yields

|S2(y)| ≤ cKcmδEU2hj
hi

∥∥Ai−j∥∥ =
hj
hi

∥∥Ai−j∥∥ η4(y),

where η4(y) is finite. The proof is completed.

Corollary 10.1 Let the density f(•) of Y exist. If the kernel satisfies the appropriate restrictions of Theorem
10.1, then, ∣∣∣∣cov

[
UiK

(
y − Yp+i

h

)
, UjK

(
y − Yp+j

h

)]∣∣∣∣
≤
{
hη(y), for 0 ≤ |i− j| < p∥∥A|i−j|∥∥ η(y) for p < |i− j|

with some η(y) finite at every y ∈ m(R) where both m−1(•) and f(•) are continuous.

Lemma 10.2 If the kernel satisfies the restrictions of Theorem 10.4, then

lim sup
h→0

∣∣∣∣∣∣∣∣h
cov

[
UiK

(
y − Yp+i

h

)
, U0K

(
y − Yp
h

)]
EK

(
y − Y
h

)
∣∣∣∣∣∣∣∣

≤
{
ω(y), for i < p∥∥Ai−1

∥∥ω(y), for i ≥ p,

where some ω(y) is finite at almost every (ζ) y ∈ R, where ζ is the distribution of Y .

Proof. Let i < p. Since∣∣∣∣cov
[
UiK

(
y − Yp+i

h

)
, U0K

(
y − Yp
h

)]∣∣∣∣ ≤ 2E
{
U2

0K
2

(
y − Yp
h

)}
,

we find the quantity in the assertion bounded in absolute value by

2
E

{
U2

0K
2

(
y − Yp
h

)}
EK

(
y − Y
h

) = 2
E

{
ψp(Y )K2

(
y − Y
h

)}
EK

(
y − Y
h

) ,

where ψp(•) is as in Lemma 9.5. By virtue of Lemma A.11 the quantity converges to 2ψp(y) at almost every
(ζ) y ∈ m(R) and the first part of the lemma follows.

Let p ≤ i. Arguing as in the proof of Lemma 10.1 and taking into account that now h = hj = hi we get

h

cov
[
UiK

(
y − Yp+i

h

)
, U0K

(
y − Yp
h

)]
EK

(
y − Y
h

)

= h

cov
[
Uiφ(y, Yp+i, ξp+i), U0K

(
y − Yp
h

)]
EK

(
y − Y
h

)
=

hS1(y)

EK

(
y − Y
h

) − hS2(y)

EK

(
y − Y
h

) ,
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where S1(y) and S2(y) are as in the proof of the lemma. Making use of the proof we obtain∣∣∣∣∣∣∣∣
S1(y)

EK

(
y − Y
h

)
∣∣∣∣∣∣∣∣ ≤ γ

∥∥Ai−1
∥∥E|U |E ‖X‖ E

∣∣∣∣ν(Y )K
(
y − Y
h

)∣∣∣∣
EK

(
y − Y
h

)
and ∣∣∣∣∣∣∣∣

hS2(y)

EK

(
y − Y
h

)
∣∣∣∣∣∣∣∣ ≤ δ

∥∥Ai−1
∥∥
∣∣∣∣E{ν(Y )K

(
y − Y
h

)}∣∣∣∣
EK

(
y − Y
h

) .

Applying Lemma A.11 we complete the proof.

10.4.2 Proofs

Proof of Theorem 10.1

Remembering that ν(•) is continuous in m(R), see Section 9.2.1, we fix y ∈ m(R) and suppose that f(•) is
continuous at the point y. We notice that ν̂(y) = ĝ(y)/f̂(y), where

ĝ(y) =
1
nhn

n∑
i=1

UiK

(
y − Yp+i
hn

)
and

f̂(y) =
1
nhn

n∑
i=1

K

(
y − Yi
hn

)
.

Since

Eĝ(y) =
1
hn
E

{
U0K

(
y − Yp
hn

)}
=

1
hn
E

{
ν(Y )K

(
y − Y
hn

)}
,

applying Lemma A.8 we get

Eĝ(y)→ ν(y)f(y)
∫
K(x)dx as n→∞.

In turn
var
[
ξ̂(y)

]
= Pn(y) +Qn(y),

where

Pn(y) =
1
nh2

n

var
[
U0K

(
y − Yp
hn

)]
and

Qn(y) =
1

n2h2
n

n∑
i=1

n∑
j=1,j 6=i

cov
[
UiK

(
y − Yp+i
hn

)
, UjK

(
y − Yp+j

hn

)]

=
1

n2h2
n

n∑
i=1

(n− i) cov
[
U0K

(
y − Yp
hn

)
, UiK

(
y − Yp+i
hn

)]
.

Clearly

nhnPn(y)

=
1
hn
E

{
U2

0K
2

(
y − Yp
hn

)}
− 1
hn
E2

{
U0K

(
y − Yp
hn

)}
=

1
hn
E

{
ψp(Y )K2

(
y − Y
hn

)}
− 1
hn
E2

{
ν(Y )K

(
y − Y
hn

)}
,
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where ψp(y) is as Lemma 9.5. Applying Lemma A.8 we observe that

1
hn
E

{
ψp(Y )K2

(
y − Y
hn

)}
→ ψp(y)f(y)

∫
K2(x)dx as n→∞

and
1
hn
E

{
ν(Y )K

(
y − Y
hn

)}
→ ν(y)f(y)

∫
K(x)dx as n→∞.

Therefore Pn(y) = O(1/nhn).
Furthermore

|Qn(y)| ≤ 1
nh2

n

n∑
i=1

∣∣∣∣cov
[
U0K

(
y − Yp
hn

)
, UiK

(
y − Yp+i
hn

)]∣∣∣∣
=

1
nh2

n

p∑
i=1

∣∣∣∣cov
[
U0K

(
y − Yp
hn

)
, UiK

(
y − Yp+i
hn

)]∣∣∣∣
+

1
nh2

n

n∑
i=p+1

∣∣∣∣cov
[
U0K

(
y − Yp
hn

)
, UiK

(
y − Yp+i
hn

)]∣∣∣∣ .
Due to (9.6), m(•) satisfies Lipschitz inequality, since it has a bounded derivative. Thus applying Corollary
10.1 we find the quantity bounded by

1
nh2

n

pη(y) +
1
nh2

n

η(y)
n∑

i=p+1

∥∥Ai−1
∥∥ =

1
nh2

n

η(y)

(
p+

∞∑
i=1

∥∥Ai∥∥) .
Hence Qn(y) = O(1/nhn) which leads to the conclusion that

var [ĝ(y)] = O

(
1
nh2

n

)
. (10.12)

Finally

ĝ(y)→ ν(y)f(y)
∫
K(x)dx as n→∞ in probability.

Since, for similar reasons, f̂(y)→ f(y)
∫
K(x)dx as n→∞ in probability, the proof is completed.

Proof of Theorem 10.2

We begin our reasoning observing that ν̃n(y) = g̃n(y)/f̃n(y), where

g̃n(y) =
1
n

n∑
i=1

1
hi
UiK

(
y − Yp+i

hi

)
and

f̃n(y) =
1
n

n∑
i=1

1
hi
K

(
y − Yi
hi

)
.

Clearly

Eg̃n(y) =
1
n

n∑
i=1

1
hi
E

{
U0K

(
y − Yp
hi

)}
=

1
n

n∑
i=1

1
hi
E

{
ν(Y )K

(
y − Y
hi

)}
.

Since
1
hi
E

{
ν(Y )K

(
y − Y
hi

)}
→ ν(y)f(y)

∫
K(x)dx as i→∞,

see Lemma A.8,

Eg̃n(y)→ ν(y)f(y)
∫
K(x)dx as n→∞.
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Furthermore var[g̃n(y)] = Rn(y) + Sn(y) with

Rn(y) =
1
n2

n∑
i=1

1
h2
i

var
[
U0K

(
y − Yp
hi

)]
,

and

Sn(y) =
1
n2

n∑
i=1

n∑
j=1
j 6=i

1
hihj

cov
[
UiK

(
y − Yp+i

hi

)
, UjK

(
y − Yp+j

hj

)]
.

As

Rn(y)

=
1
n2

n∑
i=1

1
hi

[
1
hi
E

{
ψp(Y )K2

(
y − Y
hi

)}
− hi

1
h2
i

E2

{
ν(Y )K

(
y − Y
hi

)}]
,

where ψp(•) is as in Lemma 9.5, we obtain

Rn(y) = O

(
1
n2

n∑
i=1

1
hi

)
.

Moreover, by Corollary 10.1,

|Sn(y)| = 1
n2
η(y)

[
n∑
i=1

n∑
j

0≤|i−j|≤p

1
hihj

√
hihj

+
n∑
i=1

n∑
j

p<i−j

1
hihj

hj
hi

∥∥Ai−j∥∥+
n∑
i=1

n∑
j

p<j−i

1
hihj

hi
hj

∥∥Aj−i∥∥]

which is bounded by

1
n2
η(y)

 n∑
i=1

1√
hi

n∑
j=1

1√
hj

+ 2
∞∑
j=0

∥∥Aj∥∥ n∑
i=1

1
h2
i


≤ 1
n2
η(y)

 n∑
i=1

1
hi

+ 2
∞∑
j=0

∥∥Aj∥∥ n∑
i=1

1
h2
i

 .
As the quantity converges to zero as n→∞, we obtain

g̃n(y)→ ν(y)f(y)
∫
K(x)dx as n→∞ in probability.

Since f̃n(y)→ f(y)
∫
K(x)dx as n→∞ in probability, the proof is completed.

Proof of Theorem 10.3

Clearly ν̄n(y) = ḡn(y)/f̄n(y), where

ḡn(y) =
1∑n
i=1 hi

n∑
i=1

UiK

(
y − Yp+i

hi

)
and

f̄n(y) =
1∑n
i=1 hi

n∑
i=1

1
hi
K

(
y − Yi
hi

)
.
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Because

Eḡn(y) =
1∑n
i=1 hi

n∑
i=1

hi
1
hi
E

{
ν(Y )K

(
y − Y
hi

)}
,

an application of Lemma A.8 and that of Toeplitz 4.4 leads to the conclusion that

Eḡn(y)→ ν(y)f(y)
∫
K(x)dx as n→∞.

Passing to variance we get var[ḡn(y)] = Rn(y) + Sn(y) with

Rn(y) =
1

(
∑n
i=1 hi)

2

n∑
i=1

var
[
U0K

(
y − Yp
hi

)]
,

and

Sn(y) =
1

(
∑n
i=1 hi)

2

n∑
i=1

n∑
j=1
j 6=i

cov
[
UiK

(
y − Yp+i

hi

)
, UjK

(
y − Yp+j

hj

)]
.

Since

Rn(y)
n∑
i=1

hi =
1∑n
i=1 hi

n∑
i=1

hi

[
1
hi
E

{
ψp(Y )K2

(
y − Y
hi

)}
− hi

1
h2
i

E2

{
ν(Y )K

(
y − Y
hi

)}]
,

another application of the two mentioned lemmas yields

Rn(y) = O

(
1∑n
i=1 hi

)
.

Moreover,

|Sn(y)| = η(y)

(
∑n
i=1 hi)

2

[
n∑
i=1

n∑
j

0≤|i−j|<p

√
hihj +

n∑
i=1

n∑
j

p<i−j

hj
hi

∥∥Ai−j∥∥
+

n∑
i=1

n∑
j

p<j−i

hi
hj

∥∥Aj−i∥∥]

which is bounded by

η(y)

(
∑n
i=1 hi)

2

×

[
n∑
i=1

√
hi

n∑
j=1

√
hj +

n∑
i=1

n∑
j

p<i−j

hj
hi

∥∥Ai−j∥∥+
n∑
i=1

hi

n∑
j

p<j−i

1
hj

∥∥Aj−i∥∥]

which in turn is not greater than

η(y)

(
∑n
i=1 hi)

2

[
n∑
i=1

hi +
n∑
i=1

n∑
j

p<i−j

hj
hi

∥∥Ai−j∥∥+
n∑
i=1

hi

n∑
j

p<j−i

1
hj

∥∥Aj−i∥∥] .
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Since {hn} is monotonic, the quantity is bounded by

η(y)

(
∑n
i=1 hi)

2

 n∑
i=1

hi +
2
hn

∞∑
j=0

∥∥Aj∥∥ n∑
i=1

hi


=

η(y)∑n
i=1 hi

1 +
2
hn

∞∑
j=0

∥∥Aj∥∥


which converges to zero as n→∞. Thus,

ḡn(y)→ ν(y)f(y)
∫
K(x)dx as n→∞ in probability.

Since, moreover, f̄n(y)→ f(y)
∫
K(x)dx as n→∞ in probability, the proof is completed.

Proof of Theorem 10.4

We have ν̂(y) = ξ̂(y)/η̂(y), where

ξ̂(y) =
1

nEK

(
y − Y
hn

) n∑
i=1

UiK

(
y − Yp+i
hn

)

and

η̂(y) =
1

nEK

(
y − Y
hn

) n∑
i=1

K

(
y − Y
hn

)
.

Since

Eξ̂(y) =
E

{
U0K

(
y − Yp
hn

)}
EK

(
y − Y
hn

) =
E

{
ν(Y )K

(
y − Y
hn

)}
EK

(
y − Y
hn

) ,

applying Lemma A.10 we get
Eξ̂(y)→ ν(y) as n→∞

for almost every (ζ) y ∈ R.
For the variance, we have

var[ξ̂(y)] = Pn(y) +Qn(y),

where

Pn(y) =
1

nE2K

(
y − Y
hn

) var
[
U0K

(
y − Yp
hn

)]

and

Qn(y)

=
1

n2E2K

(
y − Y
hn

) n∑
i=1

(n− i) cov
[
U0K

(
y − Yp
hn

)
, UiK

(
y − Yp+i
hn

)]
.
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Furhermore

nhn|Pn(y)| ≤ hn

E2K

(
y − Y
hn

)E{U2
0K

2

(
y − Yp
hn

)}

≤ hn

EK

(
y − Y
hn

) E
{
ψp(Y )K2

(
y − Y
hn

)}
EK

(
y − Y
hn

) ,

where ψp((•)) is as in Lemma 9.5. Due to Lemmas A.10 and A.11, the quantity converges to a finite limit
as n→∞ at almost every (ζ) y ∈ R. Thus, Pn(y) = O(1/nh2

n) at almost every (ζ) y ∈ R.
Clearly

nh2
n|Qn(y)|

≤ hn

EK

(
y − Y
hn

) n∑
i=1

hn

∣∣∣∣cov
[
U0K

(
y − Yp
hn

)
, UiK

(
y − Yp+i
hn

)]∣∣∣∣
EK

(
y − Y
hn

)

≤ hn

EK

(
y − Y
hn

) p∑
i=1

hn

∣∣∣∣cov
[
U0K

(
y − Yp
hn

)
, UiK

(
y − Yp+i
hn

)]∣∣∣∣
EK

(
y − Y
hn

)

+
hn

EK

(
y − Y
hn

) n∑
i=p+1

hn

∣∣∣∣cov
[
U0K

(
y − Yp
hn

)
, UiK

(
y − Yp+i
hn

)]∣∣∣∣
EK

(
y − Y
hn

) .

Application of Lemma A.11 and then Lemma 10.2 leads to the conclusion that Qn(y) = O(1/nh2
n) at almost

every (ζ) y ∈ R. Thus

var[ξ̂(y)] = O

(
1
nh2

n

)
at almost every (ζ) y ∈ R. Finally

ξ̂(y)→ ν(y) as n→∞ in probability,

at almost every (ζ) y ∈ R.
Since, for similar reasons, ξ̂(y)→ 1 as n→∞ in probability, the proof has been completed.

Proof of Theorem 10.5

In the proof of consistency we apply the same arguments as in the proof of Theorem 10.1 dealing with the
kernel estimate. The only essential difference is that we use

|DN (y)−DN (x)| ≤ 1
π
N |y − x|

rather than (10.7). To verify this it suffices to notice that

d

dx
DN (x) =

d

dx

1
π

(
1
2

+
N∑
k=1

cos kx

)
= − 1

π

N∑
k=1

sin kx

which is bounded in absolute value by N/π.
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Proof of Theorem 10.6

The proof is similar to that of Theorem 10.1. Examining the appropriate covariance we take into account
that the kernel is a Lipschitz function in the sense that, for any x ∈ (−1, 1) and all x, ξ ∈ [−1, 1], it satisfies
the following inequality:

|kN (y, x)− kN (y, ξ)| = O(N5/2)|x− ξ|.

To verify the above we begin with (10.11) to get

∂

∂x
kN (y, x) =

N∑
k=0

2k + 1
2

Pk(y)P ′k(x)

and use the inequality (B.19), to obtain∣∣∣∣ ∂∂xkN (y, x)
∣∣∣∣ ≤ N∑

k=0

2k + 1
2

k|Pk(y)| =
N∑
k=0

O(k2)|Pk(y)|.

Since, moreover,

Pk(cos ξ) =
√

2
πk sin ξ

cos
[(
k +

1
2

)
ξ +

π

4

]
+O(k−3/2),

for any ξ ∈ (−π + ε, π − ε), any ε > 0, see Szegö [400, Theorem 8.21.8], we conclude that Pk(y) = O(k−1/2)
for any y ∈ (−1, 1). Hence for any such y∣∣∣∣ ∂∂xkN (y, x)

∣∣∣∣ ≤ N∑
k=0

O(k3/2) = O(N5/2)

which leads to the desired inequality.

Proof of Theorem 10.7

Since
∂

∂x
kN (y, x) =

n∑
k=0

hk(y)h′k(x),

using (B.42) and (B.43) we obtain, for any fixed y,

max
−∞<x<∞

∂

∂x
|kN (y, x)| ≤

N∑
k=0

O(k−1/4)O(k5/12) = O(N7/6).

Hence for any x and all x, ξ ∈ (−∞,∞),

|kN (y, x)− kN (y, ξ)| = O(N7/6)|x− ξ|.

which completes the proof.

10.5 Bibliographic notes

The off-line kernel estimate has been examined in Greblicki [145,151], and Krzyżak [262] while semirecursive
versions, all with p = 1, have been studied by Greblicki, [156]. Orthogonal series estimates have been studied
by Greblicki [146], Krzyżak [262], Krzyżak, Sąsiadek and Kégl [271]. Algorithms are consistent also when
the input signal is correlated, see Greblicki [160].



Chapter 11

Continuous-time Wiener system

11.1 Identification problem

In this chapter we identify a continuous-time Wiener system shown in Fig. 11.1. The input random process
{U(t); t ∈ (−∞,∞)} is stationary, white, Gaussian, has zero mean and the autocovariance function σ2

Uδ(t),
where δ(t) is the Dirac impulse. The system consists of two subsystems. The first is a linear dynamic system
and the second a memoryless nonlinearity. The dynamic subsystem is described by the following state-space
equation: {

Ẋ(t) = AX(t) + bU(t)
W (t) = cTX(t)

in which A, b, and c are all unknown. Therefore λ(t) = cT eAtb, where λ is the impulse response of the
subsystem. The dynamic subsystem is asymptotically stable which means that all eigenvalues of A have
negative real parts. Thus

∫∞
0
λ2(t)dt < ∞ and, consequently, both {X(t); t ∈ (−∞,∞)} and {W (t);

t ∈ (−∞,∞)} are stationary Gaussian processes.
The output of the subsystem is disturbed by additive noise {Z(t); t ∈ (−∞,∞)}. Therefore, V (t) = W (t)

+ Z(t). The noise {Z(t)} is a zero-mean stationary white Gaussian random process with autocovariance
function σ2

Zδ(t). The process is independent of {U(t)}; t ∈ (−∞,∞)}. The other subsystem is nonlinear,
memoryless and has a characteristic m(•). Hence Y (t) = m(V (t)). The characteristic is a Borel measurable
function satisfying the following Lipschitz condition:

|m(x)−m(y)| ≤ cm|x− y| (11.1)

for some cm and all x, y in R, the same as (9.4) for discrete systems. Moreover, the characteristic m(•) is
invertible and its inverse is denoted by m−1(•).

We identify both subsystems, i.e., estimate the characteristic m(•) of the nonlinear part, and the impulse
response λ(•) of the linear subsystem from observations taken at input and output of the whole system, i.e.,
from {U(t), Y (t); t ∈ (0,∞)}.

⊕ m(•)
U(t) W (t)

Z(t)

V (t) Y (t)
λ(t)

Figure 11.1: The continuous-time Wiener system.

119



120 CHAPTER 11. CONTINUOUS-TIME WIENER SYSTEM

11.2 Nonlinear subsystem

Obviously V (t) has zero mean and variance σ2
V = σ2

U

∫∞
0
λ2(t)dt + σ2

Z . Observe now that the pair (U(t −
τ), V (t)) has a Gaussian distribution with marginal variances σ2

U , σ2
V , and the correlation coefficient (σU/σV )λ(τ).

Therefore, E{U(t− τ)|V (t)} = (σ2
U/σ

2
V )λ(τ)V (t). In this way we have verified the following result.

Lemma 11.1 In the Winer system,

E{U(t− τ)|Y (t) = y} = ατm
−1(y),

where ατ = (σ2
U/σ

2
V )λ(τ).

The discussion in Section 9.2.1 concerning the existence of a density f(•) of Y in a discrete-time system
also applies in this situation. Since some results also require the density to exist, we assume sometimes that

m(•) is strictly monotonous and has a bounded derivative. (11.2)

Lemma 11.1 suggests the following estimate of ατm−1(y):

ν̂(y) =

∫ t

0

U(ξ − τ)K
(
y − Y (ξ)
h(t)

)
dξ∫ t

0

K

(
y − Y (ξ)
h(t)

)
dξ

where K(•) is a suitably selected Borel measurable kernel function and h(•) is a positive bandwidth function,
respectively. The choice of the kernel depends on the fact that f(•) exists or not.

Semirecursive forms of the estimate are as follows

ν̃(y) =

∫ t

0

U(ξ − τ)
1

h(ξ)
K

(
y − Y (ξ)
h(ξ)

)
dξ∫ t

0

1
h(ξ)

K

(
y − Y (ξ)
h(ξ)

)
dξ

ν̄(y) =

∫ t

0

U(ξ − τ)KK
(
y − Y (ξ)
h(ξ)

)
dξ∫ t

0

K

(
y − Y (ξ)
h(ξ)

)
dξ

Theorem 11.1 Let m(•) satisfy (11.2). Let the kernel satisfy the following restrictions:

sup
y
|K(y)| <∞,

∫
|K(y)|dy <∞,

yK(y)→ 0 as |y| → ∞,

and, moreover,
|K(y)−K(x)| ≤ cK |y − x|

for some cK , for all x, y ∈ (−∞,∞). If
h(t)→ 0 as t→∞ (11.3)

and
th2(t)→∞ as t→∞, (11.4)

then
ν̂(y)→ ν(y) as t→∞ in probability (11.5)

at every y ∈ m(R) where f(•) is continuous and f(y) > 0.
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Theorem 11.2 Let the kernel satisfy the appropriate restrictions of Theorem 11.1. If the bandwidth function
h(•) satisfies (11.3) and

t

∫ t

0

h(τ)dτ →∞ as t→∞,

then
ν̄(y)→ ν(y) as n→∞ in probability

at every y ∈ m(R) where f(•) is continuous and f(y) > 0.

Theorem 11.3 Let the kernel satisfy the appropriate restrictions of Theorem 11.1. If the positive bandwidth
function h(•) satisfies (11.3) and

1
t2

∫ t

0

1
h2(τ)

dτ → 0 as t→∞,

then
ν̃(y)→ ν(y) as n→∞ in probability

at every y ∈ m(R) where f(•) is continuous and f(y) > 0.

11.3 Dynamic subsystem

Since E{U(t − τ)Y (t)} = E{Y (t)E{U(t − τ)|Y (t)}}, applying Lemma 11.1 we find the quantity equal to
ατE{Y (t)V (t)}. This verifies the following result.

Lemma 11.2 In the system,
E{U(t)Y (τ + t)} = βλ(τ),

where β = (σU/σV )E{V (t)Y (t)}.

Having proved the lemma, we propose the following algorithm to estimate κ(τ) = βλ(τ):

κ̂(τ) =
1
t

∫ t

0

U(ξ)Y (τ + ξ)dξ.

Theorem 11.4 Let m(•) satisfy (11.1). For any τ ∈ [0,∞),

E(κ̂(τ)− κ(τ))2 → 0 as t→∞.

Proof. We have, E{κ̂(τ)} = E{U(0)Y (t)} which, by Lemma 11.2, is equal to κ(τ). Thus κ̂(τ) is an unbiased
estimate of βλ(t) and its variance equals

1
t2

∫ t

0

∫ t

0

cov[U(ξ)Y (τ + ξ), U(η)Y (τ + η)]dξdη

=
1
t2

∫ t

0

(t− ξ) cov[U(0)Y (τ), U(ξ)Y (τ + ξ)]dξ

which, by Lemma 11.3, is bounded from above by

1
t2
γ

∫ t

0

(t− ξ)
∥∥e−Aξ∥∥ dξ ≤ 1

t
γ

∫ ∞
0

∥∥e−Aξ∥∥ dξ.
The proof is completed.
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Lemmas

Lemma 11.3 If (11.1) hold, then, for 0 < τ < t,

|cov [U(0)m(V (τ)), U(t)m(V (τ + t))]| ≤ γ
∥∥e−At∥∥

with a finite γ.

Proof. Let 0 < τ < t. Clearly V (τ+t) = cT e−AtX(τ)+ξ(τ+t), where ξ(τ+t) =
∫ τ+t

τ
cT e−AtbU(τ)dτ+Z(τ+

t). Since pairs (U(0), V (τ)) and (U(t), ξ(τ + t)) are independent, cov [U(0)m(V (τ)), U(t)m(ξ(τ + t))] = 0.
Hence the covariance in the assertion is equal to

cov [U(0)m(V (τ))U(t)[m(V (τ + t))−m(ξ(τ + t))]]
= E {U(0)U(t)m(V (τ))[m(V (τ + t))−m(ξ(τ + t))]}
− E {U(0)m(V (τ))}E {U(0)[m(V (τ + t))−m(ξ(τ + t))]} .

Applying (11.1) we get

|m(V (τ + t))−m(ξ(τ + t))| ≤ cm |V (τ + t)− ξ(τ + t)| ≤ cm
∣∣cT e−AtX(τ)

∣∣
≤ cm ‖c‖

∥∥e−At∥∥ ‖X(τ)‖ .

Thus the absolute value of the variance is not greater than

cm ‖c‖
∥∥e−At∥∥ (E |U(0)U(t)m(V (τ)) ‖X(τ)‖|

+ |E {U(0)m(V (τ))}|E |U(0) ‖X(τ)‖|)
= cm ‖c‖

∥∥e−At∥∥ (E |U(0)m(V (τ)) ‖X(τ)‖|E |U |
+ |E {U(0)m(V (τ))}|E |U(0) ‖X(τ)‖|)
= γ

∥∥e−At∥∥
with a finite γ.

Our next lemmas are given without proofs since they are very similar to those presented in Section 10.4.

Lemma 11.4 Let the density f(•) of Y exist. If the kernel satisfies the appropriate restrictions of Theorem
10.2, then, ∣∣∣∣cov

[
U(ξ)K

(
y − Y (τ + ξ)

h(ξ)

)
, U(η)K

(
y − Y (τ + η)

h(η)

)]∣∣∣∣
≤



√
h(ξ)h(η)ω(y), for 0 ≤ |ξ − η| ≤ τ

h(η)
h(ξ)

∥∥eA(ξ−η)
∥∥ η(y) for τ < ξ − η

h(ξ)
h(η)

∥∥eA(η−ξ)
∥∥ η(y) for τ < η − ξ

for some ω(y) finite at every y ∈ m(R) where both m−1(•) and f(•) are continuous.

Corollary 11.1 Let the density f(•) of Y exist. If the kernel satisfies the appropriate restrictions of Theorem
10.1, then, ∣∣∣∣cov

[
U(ξ)K

(
y − Y (τ + ξ)

h

)
, U(η)K

(
y − Y (τ + η)

h

)]∣∣∣∣
≤
{
hη(y), for 0 ≤ |ξ − η| ≤ τ∥∥e−A|ξ−η|∥∥ η(y) for τ < |ξ − η|

for some η(y) finite at every y ∈ m(R) where both m−1(•) and f(•) are continuous.

11.4 Bibliographic notes

Off-line and semirecursive kernel estimates have been examined in Greblicki [153,154].



Chapter 12

Other block-oriented nonlinear
systems

Thus far we have examined block-oriented systems of the cascade form, namely the Hammerstein and Wiener
systems. The main tool that was used to recover the characteristics of the systems was based on the theory
of nonparametric regression and correlation analysis. In this chapter we show that this approach can be
successfully extended to a class of block oriented systems of the series-parallel form as well as systems with
nonlinear dynamics. The latter case includes generalized Hammerstein and Wiener models. We highlight
some of these systems and present identification algorithms which can use various nonparametric regression
estimates.

12.1 Series-parallel block-oriented systems

The cascade nonlinear systems presented in the previous chapters define the fundamental building blocks
for defining general models of series-parallel forms. Together, all of these models may create a useful class
of structures for modeling various physical processes. The choice of a particular model depends crucially on
physical constraints and needs.

In this section we present a number of nonlinear models of series-parallel forms for which we can relatively
easily develop identification algorithms based on the regression approach utilized throughout the book.

12.1.1 Parallel nonlinear system

Our first example concerns a model in which the nonlinear memoryless element and the linear dynamic
system are connected in parallel, see Fig. 12.1. That is, we have the following input-output relationship:

Yn = m(Un) + Vn + Zn, (12.1)

where Vn is the output of the linear subsystem. In general we have

Vn =
∞∑
i=0

λi Un−i, (12.2)

where the impulse response function {λi} satisfies
∑∞
i=0 λ

2
i <∞.

More specifically the state-space equation for the linear subsystem can be used, i.e.,{
Xn+1 = AXn + bUn
Vn = cTXn + dUn

. (12.3)

This corresponds to (12.2) with λ0 = d and λj = cTAj−1b, j ≥ 1. The noise process {Zi} in (12.1) is white
with zero mean and finite variance σ2

Z . Let the input process {Un} be iid with the density f(•) and let,
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Wn

Zn

YnUn

m(•)

Vn

{λi}

Figure 12.1: The parallel nonlinear system.

additionally, EU2
n < ∞ and Em2(Un) < ∞. These conditions can assure that the output signal {Yn} is a

second order stationary stochastic process. The parallel nonlinear system can be interpreted as a system
where the linear part plays the role of the load or nuisance parameter that influences the signal to noise ratio
of the output signal. Indeed, (12.1) can be written as follows

Yn = µ(Un) + ξn + Zn, (12.4)

where

µ(Un) = m(Un) + λ0Un + E{U0}
∞∑
i=1

λi (12.5)

and

ξn =
∞∑
i=1

λi[Un−i − EUn−i]. (12.6)

Thus, the parallel system can be expressed in the signal-plus-noise form with the signal µ(u) and the noise
ξn + Zn, where ξn can be called the internal system noise. The total noise {ξn + Zn} has zero mean and
finite variance

var(U0)
∞∑
i=1

λ2
i + σ2

Z , (12.7)

but it is not white anymore since ξi and ξj are correlated for i 6= j.
From (12.4) we can readily obtain that E{Yn|Un = u} = µ(u), and one can recover the nonlinearity m(u)

from µ(u) up to an unknown linear function. However, if λ0 = 1 and E{U0} = 0 then

m(u) = µ(u)− u (12.8)

and a full recovery of m(u) from the regression function µ(u) is possible. Indeed, due to (12.8) an estimate
of m(u) can be defined as

m̂(u) = µ̂(u)− u, (12.9)

where as µ̂(u) we can use any nonparametric regression estimate (see Chapter 3–7), derived from the input-
output data {(U1, Y1), . . . , (Un, Yn)} generated from the model in (12.1).

Remark 12.1 In Chapter 2 we observed that the cascade Hammerstein system can also be written in the
form of (12.4). In this case we have

µ(Un) = m(Un) + E {m(U0)}
∞∑
i=1

λi

and

ξn =
∞∑
i=1

λi [m(Un−i)− Em(Un−i)] .
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We can now compare the influence of noise on both systems. Since the measurement noise is the same for
both systems it suffices to consider var(ξn). In fact we have

var(ξn) =
{ ∑∞

i=1 λ
2
i var(U0) for parallel system∑∞

i=1 λ
2
i var(m(U0)) for cascade system .

Thus the influence of the noise is greater for the parallel system than for the cascade one if

var(m(U0)) ≤ var(U0). (12.10)

Since it is known that var(m(U0)) can be closely approximated by (m(1)(EU0))2 var(U0) then we can conclude
that (12.10) holds for all the nonlinearities when |m(1)(EU0)| ≤ 1. Since we often have EU0 = 0 then the
latter criterion is equivalent to |m(1)(0)| ≤ 1. A large class of practical nonlinearities meet the following
constraint:

c1u ≤ m(u) ≤ c2u.
If c2 ≤ 1 we can conclude that (12.10) holds. On the other hand if c1 > 1, then the opposite inequality to
(12.10) is true and we may conclude that the cascade Hammerstein system is more influenced by the noise
than the corresponding parallel connection.

The generic formula in (12.9) allows us to form different nonparametric estimates of the nonlinearity
m(u). To focus our attention let us consider the generalized kernel estimate

m̂(u) =
n−1

∑n
i=1 Yi kb(u, Ui)

n−1
∑n
i=1 kb(u, Ui)

− u, (12.11)

where kb(u, v) is the kernel function indexed by the smoothing parameter b = b(n).

Remark 12.2 It is worth noting that kb(u, v) = bk(b(u − v)) gives the classical convolution kernel esti-
mate with the kernel k(u) and with the window width b−1. On the other hand kb(u, v) =

∑b
`=0 ϕ`(u)ϕ`(v)

defines the orthogonal series estimate with respect to the orthonormal basis {ϕ`(u)} and with the trunca-
tion parameter b. Next, kb(u, v) = bk(bu, bv) defines the multiresolution class of kernel functions. Here
k(u, v) =

∑∞
j=−∞ φ(u− j)φ(v − j) is the kernel corresponding to the scaling function φ(u).

To establish the asymptotic properties of the estimate m̂(u) let us observe that under the condition
b(n)→∞ as n→∞, and for a large class of kernel functions (examined in the previous chapters) we have

E

{
n−1

n∑
i=1

Yi kb(u, Ui)

}
=
∫ ∞
−∞

µ(x)f(x) kb(u, x)dx→ µ(u)f(u), (12.12)

at every point u where both µ(u) and f(u) are continuous. It is worth noting that the smoothness of µ(u) is
determined by the smoothness of the nonlinearity m(u). In fact, if, e.g., m(u) is Lipschitz continuous, i.e.,

|m(u)−m(v)| ≤ L|u− v|,

then
|µ(u)− µ(v)| ≤ (L+ 1)|u− v|.

Regarding the variance of n−1
∑n
i=1 Yi kb(u, Ui) we have

var

{
n−1

n∑
i=1

Yi kb(u, Ui)

}
= n−1 var{Yn kb(u, Un)}

+ 2n−1
n−1∑
s=1

(
1− s

n

)
cov {Ys kb(u, Us), Y0 kb(u, U0)} . (12.13)

The first term in (12.13) is bounded by

n−1

∫ ∞
−∞

ψ(x)f(x) k2
b (u, x)dx,
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where ψ(u) = E{Y 2
n |Un = u} is a finite function if E{m2(Un)} <∞ and E{U2

n} <∞. Also for a large class
of kernel functions we can assume that∫ ∞

−∞
g(x)k2

b (u, x)dx ≤ c(u, b)b, (12.14)

at every point u where g(u) is continuous.

Remark 12.3 The function c(u, b) appearing in (12.14) is bounded and its particular form depends on the
particular kernel function. For the convolution kernel, c(u, b) is independent of b. On the other hand, for
the multiresolution kernels (see Remark 12.2), c(u, b) = c(ub), where c(u) is given as follows:

c(u) =
∞∑

j=−∞
φ2(u− j).

Thus, c(u) is a periodic function with the period equal to one. Note that for the Haar scaling function we
have c(u) = 1. The figure below depicts c(u) for the Daubechies scaling functions of order p ≥ 2. Note that
the amplitude of c(u) decreases as p increases.

-6 -4 -2 0 2 4 6
0.5

0.75

1

1.25

1.5

1.75

2

Figure 12.2: Function c(u) for the Daubechies scaling functions of order p = 2 (thin line) and p = 6 (thick
line).

Regarding the second term in (12.13) we note that the covariance in this term can be written as follows:

cov{Yskb(u, Us), Y0kb(u, U0)} = λsE{kb(u, U0)}E{U0µ(U0)kb(u, U0)}

+
s−1∑
i=−∞

−1∑
j=−∞

λs−iλ−j cov{Uikb(u, Us), Ujkb(u, U0)}.

The first term in the above formula tends to λsf2(u)µ(u)u as b→∞. The second term can be decomposed
as follows:

−1∑
i=−∞

−1∑
j=−∞

λs−iλ−j cov{Uikb(u, Us), Ujkb(u, U0)}

+
s−1∑
i=0

−1∑
j=−∞

λs−iλ−j cov{Uikb(u, Us), Ujkb(u, U0)}. (12.15)

Note that the covariance in the second term in (12.15) is equal to zero. In turn, the first term in (12.15)
converges to E{U2

0 }f2(u)
∑∞
j=1 λs+jλj . All of these considerations show that the second term in (12.13) is

not greater than

a(u)
n


∞∑
s=1

|λs|+
∞∑
s=1

∞∑
j=1

|λs+j | |λj |

 ,
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where a(u) is a finite function independent of n. Note that the second term in the brackets is finite if∑∞
s=1 |λs| < ∞. The denominator in (12.11) represents a classical kernel density estimate that is known

to converge to f(u) as n → ∞ in probability. The convergence in probability will be abbreviated as (P ),
whereas the rate in the probability sense (see Appendix C) as OP (•). We can summarize the aforementioned
discussion by stating the following theorem.

Theorem 12.1 Let m̂(u) be the generalized kernel estimator defined in (12.11) with the kernel function
which meets (12.14). Let E{m2(U0)} <∞ and E{U2

0 } <∞. Suppose that
∑∞
s=1 |λs| <∞. If

b(n)→∞ and
b(n)
n
→ 0 as n→∞

then
m̂(u)→ m(u)(P ) as n→∞,

at every point u where m(u) and f(u) are continuous.

Arguing in the similar fashion as in Chapter 3 we can also show that for twice differentiable nonlinearities
we have the usual convergence rate

m̂(u) = m(u) +OP

(
n−2/5

)
.

Regarding the problem of identification of the linear subsystem (we assume that λ0 = 1) of the parallel
model let us observe that

RY U (s) = τ2λs, s = 1, 2, . . . (12.16)

where RY U (s) = cov(Yn, Un−s) and τ2 = var(Un). Now λs can be estimated by

λ̂s =
R̂Y U (s)
τ̂2

, (12.17)

where R̂Y U (s) and τ̂2 are the standard estimates of RY U (s) and τ2, respectively; see Section 2.3.
The above results allow us to form a nonparametric estimate of the linear subsystem in the frequency

domain. Indeed, formation of the Fourier transform of formula (12.16) yields

SY U (ω) = τ2Λ(ω), |ω| ≤ π, (12.18)

where SY U (ω) =
∑∞
s=−∞RY U (s)e−isω is the cross-spectral density function of the processes {Yn} and {Un}.

Moreover,

Λ(ω) =
∞∑
s=0

λse
−isω (12.19)

is the transfer function of the linear subsystem.
Owing to (12.18) and the standard spectral estimation theory we can propose the following generic

nonparametric estimate of Λ(ω):

Λ̂(ω) = τ̂−2
∑
|s|≤N

w(s/N)R̂Y U (s)e−isω, (12.20)

where w(t) is called a convergence factor (data window) that is a function defined on [−1, 1] and usually
satisfies w(0) = 1, and |w(t)| ≤ 1. The popular choices are:

w(t) = {0.54 + 0.46 cos(t)}1(|t| ≤ 1) (Tukey-Hamming window)

and
w(t) = {1− 6|t|2 + 6|t|3}1(|t| ≤ 1/2) + 2(1− |t|)31(1/2 ≤ |t| ≤ 1) (Parzen window).

In (12.20) N is the truncation parameter that can be chosen by the user or more objectively by the
asymptotic analysis of the estimate Λ̂(ω). In fact, such analysis shows that for a large class of data windows
and if N = N(n)→∞ with N(n)/n→ 0 then the estimate Λ̂(ω) converges to Λ(ω). The data-driven choice
of N in (12.20), and generally in the context of nonlinear system identification, would be an interesting issue
to pursue.

To gain insights on the above introduced estimation techniques, let us consider the following example.
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Example 12.1 Consider the parallel model with the first-order stable autoregressive dynamic subsystem

Xn = aXn−1 + Un,

Yn = Xn +m(Un) + Zn, n = 0,±1,±2, . . . .

where |a| < 1. In our simulations we assume that the noise Zn is uniformly distributed over [−0.1, 0.1] and
the input Un is uniform on [0, 10]. The nonlinearity m(u) = (5u3 − 2u2 + u)e−x. Simple algebra shows that
the regression function µ(u) = E{Yn|Un = u} is equal to

µ(u) = m(u) + u+ E(U)γ,

where γ = a(1− a)−1. Hence, m(u) can be estimated from an estimate µ̂(u) of the regression function µ(u)
as follows:

m̂(u) = µ̂(u)− u− Ūnγ̂, (12.21)

where Ūn is the standard empirical mean estimate of E(U), and γ̂ is an estimate of the factor γ. There are
two possible estimates of γ. In fact, note first that λj = aj and therefore a = λ1. Using the estimate proposed

in (12.17) we can estimate the parameter a by â = R̂Y U (1)
τ̂2 . Then γ̂ = â(1− â)−1 is the plug-in estimate of

γ. For values of a close to ±1 this can be an unstable estimate. Another estimate can be constructed based
on the fact that γ =

∑∞
i=1 λi and then on the observation that, see (12.19),

γ = Λ(0)− 1.

Hence we have γ̂ = Λ̂(0)− 1, where Λ̂(ω) is defined in (12.20).
To assess the performance of m̂(u) we use the following criterion measure:

Error = E

n−1
n∑
j=1

|m̂(Uj)−m(Uj)|2
 ,

where 30 repetitions of the input-output data were used to evaluate the average operator. The generalized
kernel estimate of µ(u) (see (12.11)) was used and applied in formula (12.21). The kernel kb(u, v) was
generated by the Laguerre orthonormal polynomials, i.e.,

kb(u, v) =
b∑
i=0

`i(u) `i(v),

where {`i(u)} is a Laguerre orthonormal polynomials basis. The property of such an estimate was extensively
studied in Section 6.4, where it was shown that for s differentiable nonlinearities and input densities we can
choose the truncation parameter b as b = cn1/s with the corresponding mean squared error being of order
O(n−(2s−1)/2s). Figure 12.3 depicts the Error versus n for the parallel system with a = 0.1. The plug-in
estimate of γ in (12.21) was used.

For each n the value of b minimizing the Error was chosen. The selection of b is an important issue and
Figure 12.4 shows the Error versus b for n = 100. The optimal b∗ = 19 with the corresponding Error = 0.16
was observed. Figure 12.5 displays the plot of m(u) and m̂(u) for n = 100, b = 19. The behavior of the
estimate at the boundary u = 0 is clearly revealed. The relatively large bias of the estimate for u → 0
is due to the fact that the Laguerre series does not generally converge at u = 0. To fix this problem we
can consider the Cesàro summation modification of our expansion which is known to converge at u = 0,
see [400]. If the value of m(0+) is known then we can use the boundary corrected version of (12.21), i.e.,
m̂(u) = m(0+) + µ̂(u)− u− µ̂(0) which converges to m(u) for u > 0 and to m(0+) for u = 0.

Analogous experiments were performed for the Hammerstein system with the parameters identical to those
of the parallel model. The optimal b∗ = 23 with the corresponding Error = 0.083 was observed. Hence the
Error for the parallel model is larger than that of the cascade connection. This phenomenon was discussed
in Remark 12.1 and in this particular case we can verify that the condition in (12.10) is satisfied.
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Figure 12.3: Error versus n for the parallel system.
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Figure 12.4: Error versus b for the parallel system, n = 100, optimal b∗ = 19.
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Figure 12.5: The characteristic m(u) = (5u3− 2u2 +u)e−u, u ≥ 0 (dashed line) and its estimate m̂(u) (solid
line) for the parallel system, n = 100, b = 19.

12.1.2 Series-parallel models with nuisance characteristics

The Hammerstein cascade plays a fundamental role in numerous applications. Nevertheless, the departure
from its basic structure can often appear in practice. In this section we consider block-oriented systems that
are combinations of series and parallel connections. We consider either a linear dynamical subsystem or a
nonlinear element as nuisance parameters that disturb standard identification procedures of the Hammerstein
system.

Let us first begin with the Hammerstein system with known nuisance dynamical subsystem {ξi} con-
nected in parallel with the nonlinear element m(•). This system is depicted in Fig. 12.6. The input-output
relationship of this system is given by

Yn =
∞∑
i=0

λiVn−i + Zn, (12.22)

where

Vn = m(Un) +
∞∑
j=0

ξjUn−j . (12.23)

Under assumptions that are identical to those in the previous section, i.e., that {Un} is an iid input process
with EUn = 0 and that λ0 = 1, we can obtain the following formula for the regression function µ(u) =
E{Yn|Un = u}:

µ(u) = m(u) + u+ γ, (12.24)

where γ = E{m(U0)}
∑∞
j=1 λj is the constant which has already appeared in the Hammerstein system.
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Figure 12.6: Parallel-series system with nuisance dynamics.

Formula (12.24) suggests that the nuisance dynamics {ξi} has a limited influence on the problem of recovering
the nonlinearity m(u).

On the other hand, the dynamical system {ξi} has a critical influence on recovery of the impulse response
{λi} of the second dynamical subsystem. Indeed, it can be easily shown that the correlation RY U (s) =
cov(Yn, Un−s) can be expressed in terms of {ξi} and {λi} by the following formula:

RY U (s) = aλs + τ2
s∑
j=0

λj ξs−j , (12.25)

where τ2 = var(U0) and a = cov(m(U0), U0). Since λ0 = 1 and τ2 can be estimated from the input signal,
the constant a can be determined as a = RY U (0)− τ2.

Since {ξi} is known, the formula in (12.25) gives a set of linear equations which can be solved with respect
to {λi}. Plugging standard estimates for τ2 and RY U (s) we can easily form the corresponding estimate of
{λi}. The convolution structure of (12.25) makes the solution of the identification problem particularly
simple in the frequency domain. Hence, formation of the Fourier transform of (12.25) yields

SY U (ω) = aΛ(ω) + τ2Λ(ω) Ξ(ω), (12.26)

where Ξ(ω) =
∑∞
s=0 ξse

−isω is the transfer function of the linear subsystem {ξi}. Solving (12.26) for Λ(ω)
and then replacing SY U (ω) by a lag window estimator (see (12.19)) we can form a nonparametric estimate
of Λ(ω).

A system that is a complement to the one examined above is the parallel-series system with nuisance
nonlinearity θ(•), see Fig. 12.7. Here we have

Yn =
∞∑
i=0

λiVn−i + θ(Vn) + Zn, (12.27)

where Vn = m(Un). In this case the regression function µ(u) = E{Yn|Un = u} is given by

µ(u) = m(u) + θ(m(u)) + α, (12.28)

where α = E{m(U0)}
∑∞
i=1 λi. Hence the presence of θ(•) critically influences the recovery of the system

nonlinearity m(•). An approximate solution of (12.28) (with respect to m(u)) for given θ(u) and µ(u) is
required in order to form an estimate of m(u). For instance, the method of steepest descent can be used
with the initial solution m(0)(u) = µ(u) and the consecutive iterations

m(`+1)(u) = m(`)(u)− γ`
{
m(`)(u) + θ

(
m(`)(u)

)
− µ(u)

}
for ` = 0, 1, . . .. Here, {γ`} is the sequence controlling the step size in the iteration process. Concerning the
linear subsystem we can easily conclude from (12.27) that for s ≥ 1 we have

cov(Yn, Un−s) = λs cov(m(U0), U0).

This with λ0 = 1 allows us to recover the linear subsystem {λi} in the presence of the nuisance nonlinearity
in the identical way as for the standard Hammerstein system.
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Figure 12.7: Parallel-series system with nuisance nonlinearity.

12.1.3 Parallel-series models

A system of that finds application in mechanical engineering, e.g., engine transmission modeling, is pictured
in Fig. 12.8. The system consists of the Hammerstein series model connected in parallel with another
dynamical system having the characteristic {ξi}. Unlike in the previous section both linear subsystems are
unknown.

The input-output description of the system is the following:

Yn = Wn + Vn + Zn, (12.29)

where

Wn =
∞∑
i=0

λim(Un−i) and Vn =
∞∑
i=0

ξi Un−i. (12.30)

It is readily seen that the regression µ(u) = E{Yn|Un = u} is given in this case by

Zn

YnUn

{λi}m(•)
Wn

{ξi}
Vn

Figure 12.8: Parallel-series system with two linear subsystems.

µ(u) = m(u) + u+ α, (12.31)

where α = E{m(U0)}
∑∞
j=1 λj +E{U0}

∑∞
j=1 ξj . Hence the standard nonparametric regression approach is

applicable in this case with an easily formulated estimate of the nonlinearity m(•).
Concerning the linear subsystems we must use the higher order covariance functions (cumulants see

Section 12.2) in order to recover {λi} and {ξi}. Let us assume, without loss of generality that the density
function of the input signal is symmetric around zero and that m(•) is an odd function. Then we have

E{YnUn−s} = λsE{U0m(U0)}+ ξsE{U2
0 } (12.32)

and
E{YnU3

n−s} = λsE{U3
0 m(U0)}+ ξsE{U4

0 } (12.33)

for s = 1, 2, . . .. Note that under our assumptions E{U0m(U0)} 6= 0 and E{U3
0 m(U0)} 6= 0. In addition,

since λ0 = ξ0 = 1 then we have E{U0m(U0)} = E{YnUn}−E{U2
0 } and E{U3

0m(U0)} = E{YnU3
n}−E{U4

0 }.
This combined with (12.32) and (12.33) allows us to find closed-form formulas for λs and ξs in terms of
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the cross covariance and the third order cross cumulants of the stochastic processes {Un} and {Yn}. See
Section 12.2 for a discussion on properties of cumulants.

The extension of the system shown in Fig. 12.8 to the case of a parallel model that consists of Hammerstein
models in each path is named the Uryson model. This connection is shown in Fig. 12.9 and is described by
the following input-output relationship:

Yn = Wn + Vn + Zn, (12.34)

where

Wn =
∞∑
i=0

λim(Un−i) and Vn =
∞∑
i=0

ξi g(Un−i). (12.35)

It is clear that this system is not identifiable and one must assume that one of the components of the system

Zn

YnUn

{λi}m(•)
Wn

{ξi}
Vn

g(•)

Figure 12.9: Uryson parallel-series system.

is known. For instance if g(•) is given, then analogous to (12.32) and (12.33) we have

E{YnUn−s} = λsE{U0m(U0)}+ ξsE{U0g(U0)} (12.36)

and
E{YnU3

n−s} = λsE{U3
0m(U0)}+ ξsE{U3

0 g(U0)}. (12.37)

The normalization λ0 = ξ0 = 1 and the knowledge of g(•) yield the closed-form solution for {λi} and {ξi}.
Furthermore, we can represent the nonlinearity m(u) in terms of the regression function µ(u) = E{Yn|Un =
u} as follows:

m(u) = µ(u)− g(u) + α, (12.38)

where α = −E{m(U0)}
∑∞
j=1 λj − E{g(U0)}

∑∞
j=1 ξi.

Hence, the formulas in (12.36), (12.37), and (12.38) provide building blocks in forming nonparametric
estimates of the characteristics of the Urson system.

12.1.4 Generalized nonlinear block-oriented models

It has already been observed that the majority of systems introduced in the previous sections (see, e.g.,
(12.4)) can be written in the signal-plus-noise form. The signal part characterizes the nonlinearity we wish
to estimate, whereas the noise part includes all dynamics present in the system plus other nuisance nonlin-
earities. This observation motivates the introduction of a more general class of nonlinear composite models
which includes most of the previously defined connections. The system is characterized by a nonlinearity
which is embedded in a block oriented structure containing dynamic linear subsystems and other “nuisance”
nonlinearities.

The structure of the system is depicted in Fig. 12.10 and is given by:

Yn = µ(Un) + η(Un−1, Un−2, . . .) + Zn, (12.39)

where µ(•) is a nonlinearity to be identified. The process {ηn = η(Un−1, Un−2, . . .)} is the “system noise”
that is induced by the system dynamics, i.e., by past input signals (Un−1, Un−2, . . .). For most practical
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Figure 12.10: Generalized block-oriented system.

systems it is sufficient to assume that the system noise has the following additive form:

ηn = η1,n + η2,n + · · ·+ ηJ,n, (12.40)

for some finite J . Furthermore, an individual component ηr,n of ηn is of the form of a Hammerstein system,
i.e.,

ηr,n =
∞∑
t=1

λr,t sr(Un−t),

where sr(•) are measurable functions such that Esr(U0) = 0, var{sr(U0)} < ∞, and
∑∞
t=1 λ

2
r,t < ∞,

r = 1, . . . , J . Fig. 12.11 depicts the structure of the system noise. Let us note that under the above

s1(•) {λ1,t}

{λJ,t}

•
•
•

Un

+
ηn

sJ(•)

Figure 12.11: The structure of the system noise process {ηn}.

conditions, the system noise {ηn} is a well defined stationary stochastic process with with Eηn = 0 and
var{ηn} <∞. The following remark illustrates some of the aforementioned concepts.

Remark 12.4 The linear form of the system noise allows us to put all the previously studied structures
within the framework of the system in (12.39) and (12.40). In fact, for the Hammerstein system we have
J = 1 with {λ1,j} = {λj} and s1(u) = m(u) − E{m(U0)}, and for the parallel system, s1(u) = u − E{U0}.
Also for these systems we have µ(u) = m(u) + E{m(U0)}

∑∞
i=1 λi and µ(u) = m(u) + u + E{U0}

∑∞
i=1 λi,

correspondingly.
For the parallel-series system depicted in Fig. 12.8 we note that (see (12.29) and (12.30)) µ(u) is given

by (12.31). The system noise is defined by two components, i.e., J = 2 with {λ1j} = {λj}, {λ2j} = {ξj},
and s1(u) = m(u)− E{m(U0)}, s2(u) = u− E{U0}. Hence, the integer J reflects the number of dynamical
subsystems which are present in the given composite nonlinear structure.

The structure of the system in (12.39) and (12.40) reveals that

µ(u) = E{Yn|Un = u}. (12.41)

Hence, one can recover the nonlinearity µ(u) from the regression function of Yn on Un. Let us apply the
generalized kernel method (see (12.11)) for estimating µ(u), i.e., we have

µ̂(u) =
n−1

∑n
i=1 Yikb(u, Ui)

n−1
∑n
i=1 kb(u, Ui)

. (12.42)
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We have already noted that in order to study the asymptotic behavior of µ̂(u) it suffices to examine the
expression ĝ(u) = n−1

∑n
i=1 Yikb(u, Ui). We know that Eĝ(u) → µ(u)f(u) as b → ∞. The covariance

structure of ĝ(u) is more involved and the following lemma helps to tackle this problem.

Lemma 12.1 Let {Yn} be an output process of the system defined in (12.39) and (12.40). Then for any
measurable function a(•) and for m < n we have

cov(Yna(Un), Yma(Um)) = E{a(U0)}
J∑
r=1

λr,n−m cov(sr(U0), µ(U0)a(U0))

+ E2{a(U0)}
J∑
r=1

∞∑
`=1

λr,`λr,`+n−mE{s2
r(U0)}.

The proof of this lemma is straightforward and is left to the reader. It is worth noting that the covariance
depends only on the difference n −m and this plays an important role in the evaluation of the covariance
structure of the estimate µ̂(u).

Let us now evaluate var{ĝ(u)}. It is clear that

var{ĝ(u)} = n−1 var{Ynkb(u, Un)}+ 2n−2
n∑
i=2

i−1∑
`=1

cov(Yikb(u, Ui), Y`kb(u, U`))

= T1(u) + T2(u). (12.43)

Owing to (12.39) we obtain

T1(u) = n−1 var{µ(Un)kb(u, Un)}+ n−1(var{ηn}+ σ2
Z)E{k2

b (u, Un)}, (12.44)

where σ2
Z = var{Z0}. Thus by virtue of the assumption in (12.14) the term T1(u) is not greater than

c(u, b)n−1b(µ2(u) + var{ηn}+ σ2
Z)f(u), (12.45)

where the role of the factor c(u, b) was discussed in Remark 12.3. Application of Lemma 12.1 to the covariance
in T2(u) (see (12.43)) yields

cov(Yikb(u, Ui), Y`kb(u, Ui)) = E{kb(u, U0)}
J∑
r=1

λr,i−` cov(sr(U0), µ(U0)kb(u, U0))

+ E2{kb(u, U0)}
J∑
r=1

∞∑
ν=1

λr,νλr,ν+i−`E{s2
r(U0)}.

The right-hand-side converges (as b→∞) to

f2(u)µ(u)
J∑
r=1

λr,i−`sr(u) + f2(u)
J∑
r=1

∞∑
ν=1

λr,νλr,ν+i−`E{s2
r(U0)} = ψi−`(u).

Then due to the fact that
n∑
i=2

i−1∑
`=1

ψi−`(u) = n

n−1∑
i=1

(
1− i

n

)
ψi(u)

we find that the term T2(u) does not exceed

2n−1
n−1∑
i=1

(
1− i

n

)
|ψi(u)|.

The Cesàro summation formula and the fact that
∑∞
i=1 |ψi(u)| <∞ imply that T2(u) = O(n−1).

All these considerations prove the following theorem.
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Theorem 12.2 Let µ̂(u) be the generalized kernel estimator defined in (12.42) with the kernel function
which satisfies (12.14). Let E{s2

r(U0)} <∞ and
∑∞
s=1 |λr,s| <∞, r = 1, . . . , J . If

b(n)→∞ and
b(n)
n
→ 0 as n→∞

then
µ̂(u)→ µ(u)(P ) as n→∞,

at every point u where µ(u) and f(u) are continuous.

Writing the estimate µ̂(u) in (12.42) in the ratio form ĝ(u)/f̂(u) and using the “ratio trick”, i.e., writing

µ̂(u) = µ(u) +
ĝ(u)− µ(u)f̂(u)

f(u)
+ (µ̂(u)− µ(u))

f(u)− f̂(u)
f(u)

(12.46)

we can see that the asymptotic behavior of µ̂(u) is controlled by the second term in the above representation.
Then the evaluation of the variance of this term in a similar fashion as in the proof of Theorem 12.2 shows
that

var{µ̂(u)} = c(u, b)n−1b

(
var{ηn}+ σ2

Z

)
f(u)

+O
(
n−1

)
. (12.47)

The Taylor’s expansion argument applied to the term E
{
ĝ(u)−µ(u)f̂(u)

f(u)

}
(for twice differentiable nonlineari-

ties and input densities) gives Eµ̂(u) = µ(u) +O(b−2). This combined with (12.47) yields the usual optimal
rate

µ̂(u) = µ(u) +OP (n−2/5),

where the asymptotically optimal choice of the bandwidth b(n) is b∗(n) = an1/5.
It is worth noting that this asymptotic b∗(n) does not depend on the correlation structure of the system

noise {ηn}. In fact, owing to (12.47) it depends only on the overall noise variance var{ηn}+σ2
Z . In practice,

however, one must specify b(n) based only on the available training data. Such an automatic choice of
the bandwidth can be conducted by two main strategies. The first one (called often the plug-in technique)
involves utilizing an asymptotic formula for the optimal b∗(n) and then estimating unknown quantities that
appear in the formula by some pilot estimates. To be more specific, let us consider a version of (12.42) as a
standard kernel estimate. Hence, let

µ̂(u) =
n∑
j=1

YjKh(u− Uj)/
n∑
j=1

Kh(u− Uj), (12.48)

where Kh(u) = h−1K(h−1u). Here h is the bandwidth and K(•) is an admissible kernel function (see
Chapter 3). Proceeding as in the proof of Theorem 12.2 (see also Chapter 3 and Appendix A) we can show
that

var{µ̂(u)} = (nh)−1 (var{ηn}+ σ2
Z)

f(u)

∫ ∞
−∞

K2(u)du(1 + o(1))

and

Eµ̂(u)− µ(u) = h2ϕ(u)
2

∫ ∞
−∞

u2K(u)du(1 + o(1)),

where ϕ(u) = µ(2)(u)+2µ
(1)(u)f(1)(u)

f(u) . Hence, by forming the mean-squared error var{µ̂(u)}+(Eµ̂(u)−µ(u))2,
we can readily obtain an expression for the asymptotically best local bandwidth that minimizes the error,
i.e.,

h∗(u) = C(K)
{

var{ηn}+ σ2
Z

nϕ2(u)f(u)

}1/5

, (12.49)

where C(K) =
{∫∞
−∞K2(u)du

(∫∞
−∞ u2K(u)du

)−2
}1/5

is the factor that depends only on the kernel K(u).

For example, the standard Gaussian kernel gives C(K) = 0.7763 . . ..
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The prescription in (12.49) gives a local choice of the bandwidth which could be difficult to implement in
practice as one must recalculate h∗(u) at every point within the support of µ(u). Nevertheless, in a similar
way (see Appendix A), one can derive a formula for the asymptotically best bandwidth that minimizes the
global integrated mean-squared error, i.e., we have

h∗ = C(K)

{
var{ηn}+ σ2

Z

n
∫∞
−∞ ϕ2(u)f(u)du

}1/5

. (12.50)

In order to use (12.50), we must determine two unknown quantities, σ2 = var{ηn}+σ2
Z and θ =

∫∞
−∞ ϕ2(u)f(u)du =

E{ϕ2(U0)}. To estimate θ we can first simplify the formula for ϕ(u) by using a standard family of distribu-
tions of the input signal {Un} and a simple parametric model for µ(u). For example, let the density function
of the input signal be Gaussian N(0, τ2). Then since f (1)(u)/f(u) = −u/τ2 we can replace ϕ(u) by

ψ(u) = µ(2)(u)− 2µ(1)(u)u/τ2.

Next a quick parametric model (for instance the fourth order polynomial) can be applied to obtain an
estimate of µ(u) and its first two derivatives. A standard estimate of τ2 along with the estimates of µ(1)(u)
and µ(2)(u) give an empirical version of ψ(u). As a result

θ̂ = n−1
n∑
i=1

ψ̂2(Ut)

can serve as an estimate of θ.
Regarding the variance σ2 we can use the approximate residuals êt = Yt − µ̃(Ut) to form a standard

estimate of σ2. Here µ̃(u) is a version of (12.48) using a preliminary bandwidth value, e.g.,hp = n−1/5. Yet
another method is to estimate σ2 directly from the output data using difference-type methods. This requires
ordering the input data. Thus we use the rearranged training set

(U(1), Y[1]), (U(2), Y[2]), . . . , (U(n), Y[n]),

where U(1) < U(2) < · · · < U(n), and Y[i]’s are paired with U(i)’s; see Chapter 7 for such concepts. The
simplest difference-type estimates of the variance σ2 are

σ̂2 =
1

2(n− 1)

n−1∑
t=1

(
Y[t+1] − Y[t]

)2
and

σ̃2 =
1

6(n− 2)

n−1∑
t=2

(
Y[t+1] − 2Y[t] + Y[t−1]

)2
.

A detailed overview of difference-based methods for inference in nonparametric regression with correlated
errors is given in [213, 307]. Note, however, that the difference techniques have been mostly studied in the
fixed design estimation framework, i.e., when the variable Ui is a fixed deterministic point.

All the aforementioned considerations and (12.50) lead to the following plug-in estimate of the bandwidth

ĥPI = C(K)
{
σ̂2

nθ̂

}1/5

. (12.51)

The plug-in methods are tailored to specific estimation algorithms and they require a large amount of prior
information about the smoothness of unknown nonlinearities. They, however, reveal a good performance in
many studies concerning nonparametric regression with correlated errors.

Fully automatic methods for selecting smoothing parameters in nonparametric regression are based on
various resampling strategies. A popular choice is a cross-validation principle that seeks the bandwidth ĥCV
for (12.48) that minimizes

CV (h) = n−1
n∑
i=1

{Yi − µ̂−i(Ui)}2w(Ui), (12.52)
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where µ̂−i(u) denotes the version of (12.48) obtained by omitting the sample (Ui, Yi). The weight function
w(u) is used to alleviate the behavior of the estimate at boundary points. It is known that the accuracy of
ĥCV is acceptable if data are independent. In the case of correlated errors the standard cross-validation rule
breaks down as it tends to select a value of h which is much smaller than the optimal one. The criterion
CV (h) can be modified to adapt to correlated errors by dropping out blocks of samples instead of single
samples. Yet another method is to construct a preliminary estimate µ̃(u) with a large value of h. Then, we
form the residuals êt = Yt − µ̃(Ut) in order to obtain a modified version of the cross-validation criterion. A
minimizer of this criterion is, in turn, used as a next value of h. Further references and additional details on
the problem of selecting smoothing parameters in the presence of correlated errors can be found in [318]. It
is worth noting these contributions are dealing mostly with a specific parametric class of correlated errors
(like ARMA type errors) being additionally independent of the regression function. In our case the errors are
defined by a general linear process with the correlation structure depending on the unknown nonlinearity,
see Remark 12.4.

Example 12.2 To evaluate the accuracy of our identification algorithms for small and moderate sample sizes
we perform some simulation studies. In all our experiments the input signal {Un} is uniformly distributed
over the interval [−3, 3]. The measurement noise {Zn} is also uniformly distributed in [−0.1, 0.1]. We apply
the generalized kernel estimate as in Example 12.1 with the multiresolution kernel kb(u, v) =

∑∞
j=−∞ φ(u−

j)φ(v − j), where the scaling function φ(u) is obtained from the Haar multiresolution analysis, i.e., φ(u) =
1(0 ≤ u < 1). The range of the input signal implies that we can specify the truncation parameter b as
b = 3 × 2J , where J is the resolution level. The efficacy of the identification procedure µ̂(u) is measured by
the criterion Error introduced in Example 12.1.

In the first experiment a nonlinearity (see Figure 12.12 (a))

m(u) =

 1 if u ∈ [0.125, 0.25] ∪ [0.375, 0.5] ∪ [0.875, 1]
−1 if u ∈ [−0.125,−0.25] ∪ [−0.375,−0.5] ∪ [−0.875,−1]
0 otherwise

(12.53)

is used in three different settings, i.e., for the memoryless, cascade and parallel models. Since m(u) in (12.53)
is piecewise constant, this is an example of the nonlinearity well adapted to the Haar multiresolution basis.
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Figure 12.12: Nonlinear characteristics, (a) the nonlinearity in (12.53), (b) the nonlinearity in (12.56).

The cascade and parallel models are described by the following state equations, respectively:{
Xn = −0.2Xn−1 +m(Un)
Yn = Xn + Zn

, (12.54)

{
Xn = −0.2Xn−1 + Un
Yn = Xn +m(Un) + Zn

. (12.55)

It is worth nothing that we have Em(Un) = EUn = 0 and therefore µ̂(u) and µ̂(u)−u are consistent estimates
of the nonlinearity m(u) in the cascade and parallel models, respectively. Figure 12.13 depicts the Error
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as a function of the sample size n. It is seen that the Error for the memoryless model is the smallest.
Surprisingly the Error for the cascade model is about 2–3 times smaller than that of the parallel structure.
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Figure 12.13: Error versus n for the nonlinearity in (12.53), (a) memoryless system, (b) cascade system, (c)
parallel system.

The value of the resolution level J has been set to 3 in all three cases. This is due to the fact that this
value minimizes the Error for a small and moderate number of observations. In fact Figure 12.14 displays
the Error versus J for n = 150 observations. A clear global minimum at J = 3 is seen. Hence the optimal
partition of the u-axis is 1/2J = 1/8. Note that this agrees with the structure of the nonlinearity in (12.53)
which is constant on the intervals of the size 1/8.
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Figure 12.14: Error versus J for nonlinearity in (12.53), (a) memoryless system, (b) cascade system, (c)
parallel system.

In the second experiment a nonlinearity in (12.54), (12.55) that is not well adapted to the Haar basis has
been selected, i.e.,

m(u) =
{

10 exp(−10u) + 2 for 0 ≤ u ≤ 0.5
3 cos(10πu) for u > 0.5 (12.56)

and −θ(−u) for u < 0. Figure 12.12 (b) displays this nonlinearity. Figure 12.15 depicts the Error versus
m for the cascade and parallel structures based on n = 150 observations. Since the nonlinearity is not well
suited for the Haar basis, larger values of J are required; the optimal J equals 5 for the cascade model and
6 for the parallel model. For the memoryless model the value of J is even larger and equals 10. The overall
performance of µ̂(u) is now considerably poorer.

Finally the model with the nuisance nonlinearity has been taken into account, i.e., the model represented
by the following equation: {

Xn = −0.2Xn−1 +m(Un) +m0(Un−1)
Yn = Xn + Zn

, (12.57)

where m0(u) = 0.1u3 is the nuisance nonlinearity and m(u) is defined as in (12.56). Figure 12.16 displays
the Error versus J . An optimal resolution level is equal to 5 for n = 150 observations. In the same figure
(Fig. 12.16 (b)) we show the Error of the version of (12.57) where the dynamical subsystem is set to zero
(i.e., the value −0.2 in (12.57) is replaced by 0). Let us observe that the optimal J is now considerably
greater and equals 9. This reveals that the presence of dynamical subsystems in composite models to some
extent helps in identification and it greatly influences the accuracy of identification algorithms for recovering
nonlinear elements.
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Figure 12.15: Error versus J for the nonlinearity in (12.56), (a) cascade system, (b) parallel system.
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Figure 12.16: Error versus J for the system with two nonlinearities.

12.2 Block-oriented systems with nonlinear dynamics

Thus far we have considered nonlinear systems where the dynamics and the nonlinearity were clearly sepa-
rated. In particular we have extensively studied the cascade models of the Hammerstein type. There are,
however, certain qualitative limitations to the dynamics of cascade models with memoryless nonlinearities,
just as with linear models. For example, the chemical reactor considered in [97] exhibits an underdamped
oscillatory response to positive step perturbations. The static nonlinearity in the Hammerstein model can
only influence the magnitude of the step input to the linear subsystem and not its dynamic character. Thus,
positive-going and negative-going step responses for Hammerstein models may be different in magnitude,
but they will be the same in character.

In this section we propose a new model structure that generalizes the Hammerstein model by including a
nonlinearity that has its own dynamics with a finite memory in front of a linear dynamical system. Hence a
nonlinear element is no longer memoryless and it possesses its own “local” memory typically of a short length;
the linear dynamic system is in charge of long range effects. The primary advantage of our model is that it
is very flexible while still retaining considerable structural simplicity. This model structure is described in
detail in the next section and important special cases are discussed to illustrate its relationship to the other
structures mentioned and examined in the previous chapters. By relating the identification problem to a
certain equation involving regression functions we present a class of nonparametric identification algorithms
for determining the dynamic nonlinearity from input-output data. The issue of linear subsystem identification
is also addressed. Here the theory of cumulants is utilized. An important case with a Gaussian input process is
also examined. Special attention is given to structures which play an important role in selected applications.
These structures include the additive Hammerstein model with the nonlinear memory, and the sandwich
system with the input linear subsystem possessing a finite memory. Consistent nonparametric estimates of
these system nonlinearities and linear subsystems are developed.

12.2.1 Nonlinear models

Let us begin by recalling the Hammertein system with the nonlinearity m(•) and the linear subsystem {λi},
i.e.,

Yn =
∞∑
i=0

λim(Un−i) + Zn. (12.58)
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As previously mentioned, the Hammerstein model has a number of shortcomings in capturing important
dynamic features of the dynamical nonlinear system. In order to alleviate these problems we propose the
nonlinear dynamic model of the form shown in Fig. 12.17, where ∆ is the unit-time delay operator. Hence,
the model has a cascade structure and it consists of a dynamic nonlinear element with a memory of length p
followed by a linear dynamic system with the impulse response function {λi}. The characteristic of the first

Yn

Un

WnVn {λi}

∆ Un−1

Zn

∆
Un−2

m(•, •, . . . , •)

•
•
•

Un−p

Figure 12.17: The Hammerstein system with the nonlinear dynamics of order p.

subsystem is denoted by m(•, •, . . . , •) and it maps p + 1 consecutive input variables (Un, Un−1, . . . , Un−p)
into the scalar output Vn, i.e.,

Vn = m(Un, Un−1, . . . , Un−p), (12.59)

where m(•, •, . . . , •) is a measurable function of p + 1 variables. The output signal of the linear subsystem
{λi} is disturbed by a stationary white random noise sequence Zn yielding

Yn =
∞∑
i=0

λiVn−i + Zn. (12.60)

Throughout this section we shall assume that the linear subsystem is stable, i.e.,
∑∞
i=0 |λi| <∞. Moreover,

we assume that Em2(Un, Un−1, . . . , Un−p) <∞, σ2
Z = varZn <∞, and the input signal {Un} is a sequence

of iid random variables. By virtue of Lemma 12.5 (see Section 12.2.6 ) the output {Yn} is a stationary
stochastic process with

var{Yn} ≤ (p+ 1) var{Vn}
∞∑
i=0

|λi|2 + σ2
Z . (12.61)

The nonparametric identification problem for the system in (12.59) and (12.60) consists of estimating the
nonlinearity m(•, •, . . . , •) and the linear subsystem {λi} without any further assumptions on the system
characteristics. It is worth noting that the memory length of the nonlinear dynamics, i.e., p, should also be
estimated. A large value of p is, however, not advisable due to the curse of dimensionality, i.e., the precision
of estimating the p+ 1 function m(•, •, . . . , •) is generally very poor (see Chapter 13 for a discussion of the
problem of estimating multivariate functions).

There is a large class of practical block-oriented nonlinear models which fall into the description given in
(12.59) and (12.60) and we will illustrate this by a series of specific examples.

Example 12.3 (Hammerstein system with a delay). This is the most obvious special case of our model that
has already been extensively discussed in previous chapters. However, using formula (12.59) and defining

m(Un, Un−1, . . . , Un−p) = g(Un−d), 0 ≤ d ≤ p, (12.62)

we obtain the Hammerstein model with the static nonlinearity g(•) applied to the input signal delayed by d-
time units. This is depicted in Fig. 12.18, where the ∆d is the d-time units delay operator, i.e., ∆dUn = Un−d.
The standard identification problem for this model is to recover g(•) and {λi} from the input-output data
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YnUn WnVn
{λi}

Zn

g(•)∆d

Un−d

Figure 12.18: The Hammerstein system with the delayed input.

{(U1, Y1), . . . , (Un, Yn)}. For the iid input we can follow (recall that λ0 = 1) the developments of Chapter 2
and obtain the following relationships

λj =
cov(Yn, Un−d−j)
cov(Yn, Un−d)

, j = 1, 2, . . . (12.63)

and
E{Yn|Un−d = u} = g(u) + c0, (12.64)

where c0 = E{g(U0)}
∑∞
j=1 λj.

Formula (12.63) allows us to form a correlation type estimate of the impulse response sequence of the dy-
namical subsystem and the corresponding transfer function. On the other hand (12.64) leads to the regression
type nonparametric estimate of g(u).

It is worth noting that such obtained estimates of the system characteristics assume knowledge of the
time delay d. If this is not the case, one should estimate d from the training data. For a system without the
linear part, i.e., when Yn = Vn−d + Zn, we can use the classical correlation theory and estimate d as

d̂ = arg max
0≤s≤p


∣∣∣∣∣∣n−1

n∑
j=s+1

YjUj−s

∣∣∣∣∣∣
 .

The expression under the absolute value is the consistent estimate of cov(Yn, Un−s) which is equal to zero if
s 6= d. It is worth noting that the issue of estimating the time delay in discrete time stochastic nonlinear
systems has rarely been addressed in the literature.

Example 12.4 (Additive model). Power amplifiers utilized in communication systems work at the saturation
point with a non-flat gain over the frequency band and hence must be modeled as a nonlinear dynamical system
with a short memory depth. A popular model [360] for this is described by (12.59) and (12.60) with p = 1
and

m(Un, Un−1) = g1(Un) + g2(Un−1), (12.65)

where the static nonlinearities g1(•) and g2(•) are to be estimated from the training data. The system is
depicted in Fig. 12.19.
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Figure 12.19: The Hammerstein system with the nonlinear dynamics of the additive form.

In [450] a special case of (12.65) of the following semiparametric form

m(Un, Un−1) = aUn + g(Un−1) (12.66)
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has been studied in the context of modeling chemical reactors. Here one wishes to estimate the parameter a
as well as the nonparametric nonlinearity g(•). Note that in [450] the nonlinearity g(•) has been specified to
have the parametric polynomial form.

Example 12.5 (Multiplicative model). An alternative to the additive structure introduced in the previous
example is the multiplicative model

m(Un, Un−1) = g1(Un) g2(Un−1). (12.67)

This model can be more suited in applications where the inputs are multiplied (like mixing and modulation
processes) rather than added. From the approximation theory point of view, the additive function g1(u)+g2(v)
defines a linear approximation of the function m(u, v), whereas g1(u)g2(v) is a bilinear, hence, nonlinear
approximation. The latter can often be more accurate.

Example 12.6 (Sandwich model). The model corresponding to (12.59) and (12.60) with

m(Un, Un−1, . . . , Un−p) = g

(
p∑
i=0

aiUn−i

)
(12.68)

is commonly referred to as a sandwich model. In fact, in this model the univariate nonlinearity g(•) is
sandwiched between two linear systems. This system plays an important role in a number of applications
ranging from communication technology to biological systems. In our case the first linear subsystem is of a
finite memory with the characteristic {ai, 0 ≤ i ≤ p}, whereas the second one is of an infinite order with the
characteristic {λi}. This system is depicted in Fig. 12.20. The nonparametric identification problem here
is to identify the linear subsystems and the nonlinearity g(•) without any parametric assumptions on the
system characteristics. It is clear that if g(•) is a linear function then one cannot individually identify each

YnUn {ai, 0 ≤ i ≤ p} g(•)
Wn{λi}

Vn

Zn

Xn

Figure 12.20: The sandwich system with the input linear subsystem of the memory length p.

linear subsystem. As we will see in this section the presence of the nonlinearity in the sandwich system helps
us to identify all the components of the internal structure from input-output measurements alone.

In the next section we describe a method for nonparametric identification of the system in (12.59) and
(12.60). For simplicity of notation we will mostly focus on the case with p = 1. This case is advisable since
systems with short input memory depth are probably the most useful due to the already mentioned curse of
dimensionality.

As well, in the next two sections we also describe the basic strategies for recovering the nonlinearity
m(•, •, . . . , •) and the impulse response function {λi} of the Hammerstein system with nonlinear dynamics.
We begin with the problem of recovering the nonlinearity followed by the linear subsystem identification.

12.2.2 Identification algorithms: Nonlinear system identification

Let us begin with the case p = 1, i.e., we wish to recover the function m(u, v) from the statistical character-
istics of the input-output process {(Un, Yn)}. To do so let us define the following regression functions

r1(u) = E{Yn|Un = u}, (12.69)

and
r2(u, v) = E{Yn|Un = u, Un−1 = v}. (12.70)

The following theorem gives a fundamental relationship between the nonlinearity m(u, v) appearing in the
system defined in (12.59) and (12.60) and the regression functions r1(u) and r2(u, v).



12.2. BLOCK-ORIENTED SYSTEMS WITH NONLINEAR DYNAMICS 143

Theorem 12.3 Let us consider the system in (12.59) and (12.60) with p = 1. Let the input signal {Un} be
a sequence of iid random variables. Then we have

m(u, v) = r2(u, v)− λ1r1(v) + c, (12.71)

where

c = E{m(U1, U0)}

{
λ1 + (λ1 − 1)

∞∑
i=1

λi

}
. (12.72)

Proof of Theorem 12.3 : By (12.60) and the fact that {Un} is a sequence of independent random variables
we have

E{Yn|Un = u, Un−1 = v} = m(u, v) + λ1E{m(v, U0)}+ E{m(U1, U0)}
∞∑
i=2

λi

and

E{Yn|Un = v} = E{m(v, U0)}+ E{m(U1, U0)}
∞∑
i=1

λi.

Eliminating the common term E{m(v, U0)} from the above equations yields the formula in (12.71). The
proof of Theorem 12.3 is thus complete. �

Remark 12.5 Similar derivations as in the proof of Theorem 12.3 can be, in principle, carried out for the
system with a longer input memory. Indeed, some algebra shows that for p = 2 we have

m(u0, u1, u2) = r3(u0, u1, u2)− λ1r2(u1, u2)− (λ2 − λ2
1)r1(u2) + c1,

where r3(u0, u1, u2) = E{Yn|Un = u0, Un−1 = u1, Un−2 = u2} and

c1 = E{m(U2, U1, U0)}

{
1 + (λ1(1− λ1) + λ2 − 1)

∞∑
i=0

λi

}
.

The determination (up to a constant) of the system nonlinearity m(u0, u1, u2) requires the evaluation of three
regression functions and the knowledge of λ1 and λ2. Generally, one can conjecture that for the system with
the memory length p we have

m(u0, u1, . . . , up) = rp+1(u0, u1, . . . , up) +
p∑
j=1

δjrj(up−j+1, . . . , up−1, up) + cp,

where δj depends on λ1, . . . , λj and rj(u0, u1, . . . , uj) is the j-dimensional regression function of Yn on
(Un, Un−1, . . . , Un−j+1).

The result of Theorem 12.3 explains that m(u, v) can be determined from a linear combination of two
regression functions. The knowledge of λ1 and the constant c is also required. This result (which is similar
to the requirements of the standard Hammerstein system) is a simple consequence of the cascade nature of
the system and the fact that the signal {Vn} interconnecting the subsystems is not accessible. The constant
c is equal zero if E{m(U1, U0)} = 0. This takes place if the density of Un is even, whereas m(u, v) is an
odd function with respect to one of the variables, i.e., either m(−u, v) = −m(u, v) or m(u,−v) = −m(u, v).
Furthermore, often in practice we have m(0, 0) = 0 and then we can eliminate the constant c in (12.71), i.e.,
we have

m(u, v) = {r2(u, v)− r2(0, 0)} − λ1{r1(v)− r1(0)}.

Hence, we now need to calculate the regression functions in two points, i.e., (u, v) and (0, 0). It is also
informative to evaluate the factor

γ = λ1 + (λ1 − 1)
∞∑
i=1

λi, (12.73)
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that determines the constant c in (12.72), for some simple dynamical subsystems. Hence for the AR(1)
model

Wn = aWn−1 + Vn, |a| < 1

we have λi = ai and
∑∞
i=1 λi = a(1− a)−1 giving γ = 0. Consequently the constant c is zero. On the other

hand for the AR(2) model
Wn = aWn−1 + bWn−2 + Vn, |a|+ |b| < 1,

we have γ = −b(1− a− b)−1. Similar calculations for the ARMA(1, 1) process

Wn = aWn−1 + Vn + bVn−1, |a| < 1

yield γ = (a+ b)b(1− a)−1.
Let us now reexamine the formula in (12.71) for the special cases discussed in Examples 12.3–12.6 in

Section 12.2.1. In Example 12.3 we introduced the Hammerstein system with the delayed input. Formulas
(12.63) and (12.64) provide an explicit prescription for recovering the system characteristics from the cross
covariance and the regression function of the output and input signals. This readily yields consistent non-
parametric estimates of the system characteristics. The details of these developments can easily be found
by the reader. Let us now turn to Example 12.4 concerning an additive nonlinearity.

Example 12.7 (Additive model). Owing to Theorem 12.3 and (12.65) we can write

g1(u) + g2(v) = r2(u, v)− λ1r1(v) + c (12.74)

where c = {Eg1(U0)+Eg2(U0)}γ, γ being defined in (12.73). The problem which we face is how to extract the
individual nonlinearities in (12.74) from the knowledge of the right-hand-side of (12.74). In Chapter 13 we
shall introduce the general concept of marginal integration for additive models. Nevertheless, the simplicity
of the method allows us to apply it in the present situation. Hence, denoting by f(•) the density of the input
signal {Un}, the marginal integration strategy begins with integrating formula (12.74) with respect to f(v),
i.e., we have ∫ ∞

−∞
{g1(u) + g2(v)}f(v)dv =

∫ ∞
−∞
{r2(u, v)− λ1r1(v) + c}f(v)dv. (12.75)

By this and noting that
∫∞
−∞ r2(u, v)f(v)dv = E{Yn|Un = u}, and

∫∞
−∞ r1(v)f(v)dv = E{Yn} = {Eg1(U0) +

Eg2(U0)}
∑∞
i=0 λi we obtain

g1(u) = E{Yn|Un = u}+ α1, (12.76)

where

α1 = −

{
Eg1(U0)

∞∑
i=1

λi + Eg2(U0)

( ∞∑
i=1

λi − 1

)}
.

Integration, as in (12.75), with respect to f(u), and the observation that
∫∞
−∞ r2(u, v)f(u)du = E{Yn|Un−1 =

v} yield
g2(v) = E{Yn|Un−1 = v} − λ1E{Yn|Un = v}+ α2, (12.77)

where
α2 = Eg1(U0)(γ − 1) + Eg2(U0)γ

and γ is defined in (12.73).
Thus, (12.76) and (12.77) provide a simple prescription for recovering the system nonlinearities from the

regression functions E{Yn|Un = u} and E{Yn|Un−1 = v}. The constants α1 and α2 can be set equal to zero
if, e.g., Eg1(U0) = Eg2(U0) = 0. The latter holds under some symmetry properties of g1(•), g2(•), and f(•).
Also if g1(0) = g2(0) = 0 (the case often met in practice) then we can eliminate the constants in (12.76) and
(12.77) and write

g1(u) = E{Yn|Un = u} − E{Yn|Un = 0}, (12.78)

and
g2(v) = E{Yn|Un−1 = v} − E{Yn|Un−1 = 0} − λ1[E{Yn|Un = u} − E{Yn|Un = 0}]. (12.79)
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The estimates for g1(u) and g2(v) are now straightforward to obtain: estimate the regression functions
E{Yn|Un = u} and E{Yn|Un−1 = v} by using, e.g., a kernel type estimator, and then plug them into (12.78)
and (12.79).

An interesting semiparametric case of the additive system is defined in (12.66), i.e., here g1(u) = au
and g2(u) = g(v). Let EU0 = 0 and Eg(U0) = 0 without loss of generality. Then g(v) can be recovered by
(12.77), where α2 = 0. Also

au = r1(u),

where we recall that r1(u) = E{Yn|Un = u}. This readily implies that

a =
E{r1(U0)U0}

E{U2
0 }

. (12.80)

This gives the following generic estimate of a

â =
n−1

∑n
i=1 Uir̂1(Ui)

n−1
∑n
i=1 U

2
i

, (12.81)

where r̂1(u) is a nonparametric estimate (e.g., the kernel estimate) of r1(u). Note that the averaging in
(12.81) drastically reduces the variance of the nonparametric estimate and allows us to show that â converges
to the true a with the

√
n rate.

Example 12.8 (Multiplicative model). For the multiplicative model introduced in Example 12.5, formula
(12.71) of Theorem 12.3 takes the following form:

g1(u)g2(v) = r2(u, v)− λ1r1(v) + c.

Reasoning as in Example 12.7, i.e., by taking the marginal integration of the above equation with respect to
f(v) and f(u), respectively, we can easily obtain

g1(u) = a1E{Yn|Un = u}+ β1,

g2(v) = a2[E{Yn|Un−1 = v} − λ1E{Yn|Un = v}] + β2,

where a1 = 1/Eg2(U0), a2 = 1/Eg1(U0), β1 = −Eg1(U0)
∑∞
i=1 λi, β2 = Eg2(U0)γ. Here we must assume

that Eg1(U0) 6= 0 and Eg2(U0) 6= 0.
Hence, we recover the nonlinearities up to multiplicative and additive constants. Some a priori knowledge

about g1(u) and g2(v) allows us to eliminate some of these constants.

Example 12.9 (Sandwich model). For the sandwich model in (12.68) with p = 1 and a0 = 1, we can write
formula (12.71) of Theorem 12.3 in the following form

g(u+ av) = r2(u, v)− λ1r1(v) + c

or equivalently
g(u) = r2(u− av, v)− λ1r1(v) + c, (12.82)

where c = γE{g(U1 + aU0)}, γ being defined in (12.73).
The formula in (12.82) holds for any v and one could choose v = 0, i.e., we have

g(u) = r2(u, 0)− λ1r1(0) + c.

Under the commonly met condition
g(0) = 0, (12.83)

this gives the following reconstruction formula

g(u) = r2(u, 0)− r2(0, 0). (12.84)

This seems to be an attractive and simple way of estimating g(u) via the two dimensional regression function
r2(u, v). Nevertheless, the statistical efficiency of such an approach is reduced since we can show that for twice
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differentiable nonlinearities we have the rate OP
(
n−1/3

)
, instead of the optimal univariate rate OP

(
n−2/5

)
(see Chapter 13 for a discussion of the problem of estimating multivariate functions). In order to obtain an
improved rate we must apply the average operation in (12.82). In fact, integrating (12.82) with respect to
f(v), we obtain

g(u) = E{r2(u− aU0, U0)} − λ1E{r1(U0)}+ c

= E{r2(u− aU0, U0)}+ c1, (12.85)

where c1 = −Eg(U1 + aU0)
∑∞
i=1 λi.

Note also that under condition (12.83) we can rewrite the formula in (12.85) as follows:

g(u) = E{r2(u− aU0, U0)} − E{r2(−aU0, U0)}. (12.86)

The theoretical average operation appearing in (12.85) (or (12.86)) can easily be replaced by an empirical
average, i.e., E{r2(u− aU0, U0)} is estimated by

n−1
n∑
i=1

r̂2(u− aUi, Ui),

where r̂2(u, v) is a certain nonparametric estimate of the regression function r2(u, v).
We shall demonstrate in Chapter 13 that the average operation is able to reduce the variance of a nonpara-

metric estimate of a multivariate regression function and therefore improve the rate of convergence. Summing
up we can fully recover the nonlinearity in the sandwich system (under condition (12.83)) by applying the
following estimate:

ĝ(u) = n−1
n∑
i=1

{r̂2(u− âUi, Ui)− r̂2(−âUi, Ui)}, (12.87)

where â is a consistent estimate of the parameter a. We shall discuss in Section 12.2.3 how to estimate the
linear subsystems of the generalized Hammerstein system with dynamic nonlinearity. It is worth noting that
the formula for g(u) in (12.84) does not depend on the characteristics of the linear subsystems. We can
conjecture that the estimate in (12.87) can have the proper OP

(
n−2/5

)
rate of convergence.

Thus far we have considered a simple case of the sandwich model when the input dynamical subsystem is
of the FIR(1) type. Remark 12.5 provides the solution which covers the FIR(2) type subsystem. In fact, we
have that

g(u0 + a1u1 + a2u2) = r3(u0, u1, u2)− λ1r2(u1, u2)− (λ2 − λ2
1)r1(u2) + c1, (12.88)

where the constant c1 is defined in Remark 12.5. Similarly as in (12.85) we can apply the average operation
(with respect to f(u1)f(u2)) to (12.88), i.e., we can obtain

g(u) = E{r3(u− a1U1 − a2U2, U1, U2)} − λ1E{r2(U1, U2)} − (λ2 − λ2
1)E{r1(U2)}+ c1.

Next, using E{r2(U1, U2)} = E{r1(U2)} = E{Yn} and simple algebra yield

g(u) = E{r3(u− a1U1 − a2U2, U1, U2)}+ c2, (12.89)

where c2 = −E{g(U0 + a1U1 + a2U2)}
∑∞
i=1 λi. Hence, the solution is a direct analog of the case in which

p = 1 given in (12.85). This allows us to form the following fundamental result concerning the recovery of
the nonlinearity in the sandwich system with the input linear subsystem of the memory length p.

Theorem 12.4 Let us consider the sandwich system
Xn = Un +

p∑
t=1

atUn−t,

Vn = g(Xn),

Yn =
∞∑
j=0

λjVn−j + Zn
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with 1 ≤ p <∞. Let the input signal {Un} be a sequence of iid random variables. Then we have

g(v) = Erp+1

(
v −

p∑
t=1

atUn−t, Un−1, . . . , Un−p

)
+ cp, (12.90)

where

cp = −Eg (Xn)
∞∑
i=1

λi

and
rp+1(u0, u1, u2, . . . , up) = E{Yn|Un = u0, Un−1 = u1, . . . , Un−p = up}

is the p+ 1-dimensional regression function.

The procedure for estimating g(u) is now clear. Using (12.90) in Theorem 12.4 and assuming that
condition (12.83) is met, we have the following analog of (12.87)

ĝ(u) = n−1
n∑

`=p+1

{
r̂p+1

(
u−

p∑
i=1

âiU`−i, U`−1, . . . , U`−p

)

− r̂p+1

(
−

p∑
i=1

âiU`−i, U`−1, . . . , U`−p

)}
, (12.91)

where r̂p+1(u0, u1, . . . , up) is a nonparametric estimate of the regression function rp+1(u0, u1, u2, . . . , up), and
{âi, 1 ≤ i ≤ p} is an estimate of the input linear subsystem {ai, 1 ≤ i ≤ p}. Again the average operation can
alleviate the variance of r̂p+1(u0, u1, . . . , up) such that ĝ(u) can have the univariate optimal rate OP

(
n−2/5

)
independent of the input subsystem memory length p.

Remark 12.6 The special case of the sandwich system is the Wiener model. In fact we have λj = δj0 and
the corresponding input-output relationship is the following:

Yn = g

(
Un +

p∑
i=1

aiUn−i

)
+ Zn. (12.92)

In this case the constant cp in (12.90) is equal zero and, due to (12.90), we have

g(u) = Erp+1

(
u−

p∑
i=1

aiUi, U1, U2, . . . , Up

)
.

It should be noted that this formula can be directly derived from (12.92). Consequently, the estimate of g(u)
is given (from (12.91)) by

ĝ(u) = n−1
n∑

`=p+1

r̂p+1

(
u−

p∑
i=1

âiU`−i, U`−1, . . . , U`−p

)
. (12.93)

This gives the estimate of the system nonlinearity that is believed to have the optimal rate of convergence.
Note that the estimate in (12.93) does not assume that g(u) is invertible, that the input signal is Gaussian,
and that the measurement noise Zn is zero. These are important assumptions which were employed in
the inverse regression strategy examined thoroughly in Chapters 9–11. Nevertheless, the inverse regression
method was applied for a general linear subsystem, whereas the estimate in (12.93) works only for the p-th
order moving average process. In Chapter 14 we will propose much more efficient methods for estimation of
the Wiener system being parametrized by an univariate nonparametric function g(•) and a finite dimensional
vector of parameters {ai, 1 ≤ i ≤ p}. This semiparametric nature of the system will be greatly exploited and
extended to a large class of semiparametric nonlinear systems.
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12.2.3 Identification algorithms: Linear system identification

In this section we wish to address the issue of identification of the linear subsystem {λj} of the generalized
Hammerstein model defined in (12.59) an and (12.60). This is the part of our system that gives infinite
memory effects and its recovery is an important problem. We will make use of the theory of cumulants
which is thoroughly examined in [37].

Let X = (X1, . . . , Xp)T be a p-dimensional random vector. The p-th order cumulant, cum(X1, . . . , Xp),
of X is the coefficient of the term ipt1t2 · · · tp in the Taylor series expansion of the cumulant-generating

function logE
{
eit

TX
}

, where t = (t1, t2, . . . , tp)T . The cumulants can be viewed as a generalization of
classical moments but they have a number of useful invariant properties which are not shared by classical
moments. Here we list the properties that are the most useful and directly applicable for the nonlinear
system under consideration.

1. If a1, . . . , ap are constants then we have

cum(a1X1, . . . , apXp) = a1 · · · ap cum(X1, . . . , Xp).

2. If any subset of the vector (X1, . . . , Xp)T is independent of those remaining, then

cum(X1, . . . , Xp) = 0.

3. Cumulants are additive in their arguments, i.e., for any random variables U and V we have

cum(U + V,X1, . . . , Xp) = cum(U,X1, . . . , Xp) + cum(V,X1, . . . , Xp).

In particular
cum(X1 + U, . . . ,Xp) = cum(X1, . . . , Xp) + cum(U,X2, . . . , Xp)

and
cum(X1 + a, . . . ,Xp) = cum(X1, . . . , Xp),

where a is a constant.

4. If (X1, . . . , Xp)T is independent of (Z1, . . . , Zp)T , then

cum(X1 + Z1, . . . , Xp + Zp) = cum(X1, . . . , Xp) + cum(Z1, . . . , Zp).

Note that cum(X1, . . . , Xp) is well defined if E|X1 · · ·Xp| < ∞, which is implied by E|Xi|p < ∞,
i = 1, . . . , p. It is also worth noting that cum(X1, . . . , Xp) is symmetric in its arguments. The second-,
third-, and fourth- order cumulants are given by

cum(X1, X2) = E{(X1 − EX1)(X2 − EX2)},
cum(X1, X2, X3) = E{(X1 − EX1)(X2 − EX2)(X3 − EX3)}, (12.94)

cum(X1, X2, X3, X4) = E{(X1 − EX1)(X2 − EX2)(X3 − EX3)(X4 − EX4)}
− cum(X1, X2) cum(X3, X4)− cum(X1, X3) cum(X2, X4)
− cum(X1, X4) cum(X2, X3).

Hence, the second-order cumulant is just the covariance between two random variables, whereas the third-
order cumulant is the third-order centered moment of three random variables.

An important special case of the aforementioned discussion occurs when Xj = X for all j. It is also well
known that cumulants can measure the degree of nonnormality since the cumulants of degree greater than
two for a Gaussian random process vanish.

For the stationary random process {Xn} recorded at the time instants t, t− τ1, . . . , t− τp we have

cum(Xt, Xt−τ1 , . . . , Xt−τp) = RX...X(τ1, τ2, . . . , τp). (12.95)
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Hence the p-th order cumulant is a function of p− 1 variables. In particular, we obtain

cum (Xt, Xt−τ ) = RXX(τ), cum (Xt, Xt−τ1 , Xt−τ2) = RXXX(τ1, τ2), (12.96)

where RXX(τ) and RXXX(τ1, τ2) are the covariance function and the third-order cumulant function of the
stationary stochastic process {Xn}, respectively.

Let us now apply (without loss of generality) the cumulant theory to our system of order p = 1. Hence
let us consider cum(Yn+`, Un, Un−1) for ` ≥ 1. Since Yn = Wn + Zn and due to properties 2 and 3 (listed
above) we have

cum(Yn+`, Un, Un−1) = cum(Wn+`, Un, Un−1).

By this formula, properties 2 and 3, and the fact that Wn =
∑∞
j=0 λjm(Un−j , Un−j−1) we obtain

cum(Yn+`, Un, Un−1) = cum(λ`−1m(Un+1, Un), Un, Un−1) + cum(λ`m(Un, Un−1), Un, Un−1)
+ cum(λ`+1m(Un−1, Un−2), Un, Un−1). (12.97)

Since Un−1 is independent of (Un, Un+1) then due to property 2, the first term in (12.97) is equal to zero.
Similarly, the independence of Un of (Un−1, Un−2) sets the last term in (12.97) to zero. The application of
property 1 to the second term in (12.97) yields

cum(Yn+`, Un, Un−1) = λ` cum(m(Un, Un−1), Un, Un−1). (12.98)

Note that the above formula is well defined if E|U0U1m(U1, U0)| <∞, or E|U0|3 <∞ and E|m(U1, U0)|3 <
∞, which is a stronger requirement.

In order to eliminate the multiplicative constant in (12.98) let us recall that λ0 = 1. Then, by analogous
considerations to those presented above, we get

cum(Yn, Un, Un−1) = cum(m(Un, Un−1), Un, Un−1). (12.99)

It is, however, important to note that under typical symmetry assumptions on m(•, •) (if it is an odd function
in both arguments) and f(•) (if it is an even function) the expression on the right-hand-side of (12.99) is
equal to zero. To circumvent this difficulty we observe that (12.98) holds also for nonlinear transformations of
Un−1 and Un. For the most practical situations the quadratic transformation is sufficient. Hence, assuming
that EU2

n <∞ we have

cum(Yn+`, U
2
n, U

2
n−1) = λ` cum(m(Un, Un−1), U2

n, U
2
n−1), ` ≥ 0.

This gives the following formula for λ`:

λ` =
cum(Yn+`, U

2
n, U

2
n−1)

cum(Yn, U2
n, U

2
n−1)

. (12.100)

For a general nonlinear subsystem with a memory length of order p we have, by analogous considerations,
the following formula for λ`:

λ` =
cum(Yn+`, U

2
n, . . . , U

2
n−p)

cum(Yn, U2
n, . . . , U

2
n−p)

. (12.101)

The aforementioned developments are summarized in the following theorem.

Theorem 12.5 Let us consider the nonlinear system in (12.59) and (12.60). Let the input signal {Un} be
a sequence of iid random variables. If

E
{
|m(Un, . . . , Un−p)|U2

n · · ·U2
n−p
}
<∞ (12.102)

then we have

λ` =
cum(Yn+`, U

2
n, . . . , U

2
n−p)

cum(Yn, U2
n, . . . , U

2
n−p)

, ` = 1, 2, . . . .
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Note that the condition in (12.102) is implied by

E
{
|m(Un, . . . , Un−p)|p+2

}
<∞ and E|Un|2p+4 <∞. (12.103)

Theorems 12.3 and 12.5 give a complete solution for the identification problem of the nonlinear system defined
in (12.59) and (12.60) in the case of p = 1. The extension to the nonlinearity with larger memory length is
possible by combining the result of Theorems 12.4 and the result shown in Remark 12.5. Nevertheless, as we
have already mentioned, it is not recommended to use the nonlinearity with large memory length due to the
curse of dimensionality. In most practical cases the use of p = 1 or p = 2 is sufficient to grasp the essential
nonlinearity effects of the underlying physical system. In the case p = 1, see (12.71), the nonlinear recovery
needs the knowledge of λ1. Owing to the result of Theorem 12.4, we have

λ1 =
cum(Yn+1, U

2
n, U

2
n−1)

cum(Yn, U2
n, U

2
n−1)

. (12.104)

Note that due to (12.94)

cum(Yn+1, U
2
n, U

2
n−1) = E

{
(U2

n−1 − EU2
n−1)(U2

n − EU2
n)(Yn+1 − EYn+1)

}
.

Hence, to form an estimate of {λ`} based on the result of Theorem 12.4 is straightforward. Indeed, we ought
to replace the moments appearing in the formula for cumulants by their empirical counterparts. In fact, an
estimate of λ` resulting from Theorem 12.4 takes the following form:

λ̂` =
n−1

∑n−`
t=2 (U2

t−1 − Ū2
n)(U2

t − Ū2
n)(Yt+` − Ȳn)

n−1
∑n
t=2(U2

t−1 − Ū2
n)(U2

t − Ū2
n)(Yt − Ȳn)

,

where Ū2
n and Ȳn are empirical counterparts of the mean values EU2

n and EYn, respectively.
Hence Theorems 12.3 and 12.5 lead to fully nonparametric methods for estimating the system character-

istics. Nevertheless, in the examples introduced in Section 12.2.1 we have faced the semiparametric problem
of estimating additional parameters which specify the low dimensional form of the system nonlinearity. This
is a particularly important issue for the case of the sandwich system and its special case, the Wiener system.
An important case study which follows concerns the sandwich system. Here the p + 1-dimensional system
nonlinearity, see (12.68), is characterized by the one dimensional function g(•) and the linear projection
of the last p observations of the input signal, i.e., Un +

∑p
j=1 ajUn−j . The latter defines the input linear

subsystem of the sandwich model with the memory length p.

Example 12.10 (Sandwich system). In Theorem 12.4 we provided a full characterization of the sandwich
system nonlinearity in terms of the p-dimensional projection (obtained via the process of marginal integration)
of the p + 1-dimensional regression function, see formula (12.90). This formula, however, depends on the
characteristic of the input linear system {ai, 0 ≤ i ≤ p}. The semiparametric nature of the problem allows
us to use the methodology which will be thoroughly studied in Chapter 14. The main idea of this approach,
however, can now be easily illustrated for the sandwich system.

For simplicity of presentation let us assume that p = 1 and Eg(Xn) = 0, i.e., the constant c1 in (12.85)
is equal to zero. Then we have (see (12.85))

g(v) = Er2(v − a∗Un−1, Un−1),

where a∗ denotes the true value of the impulse response of the input linear system, i.e., Xn = Un + a∗Un−1.
Also let us recall that r2(u, v) = E{Yn|Un = u, Un−1 = v}. Denoting

g(v, a) = Er2(v − aUn−1, Un−1), (12.105)

for some a we observe that g(v, a∗) = g(v). Let also Xn(a) = Un + aUn−1 such that Xn(a∗) = Xn. The
semiparametric strategy begins with forming a pilot estimate of the function g(v, a) for a given a, i.e., we
pretend that the parameter a is known. A generic estimate of g(v, a) can easily be written as follows (see
(12.87)):

ĝ(v, a) = n−1
n∑
i=2

r̂2(v − aUi−1, Ui−1), (12.106)
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where r̂2(u, v) is any consistent nonparametric estimate of the regression function r2(u, v).
The estimate ĝ(v, a) in (12.106) can be used to form the prediction of the output of the system nonlinearity

g(•), i.e., the process {V̂t(a) = ĝ(Xt(a), a)} predicts (for a given a) the signal {Vt}. Unfortunately, the process
{Vt} is not observed and in order to form the predictive error criterion we must pass {V̂t(a)} through the
linear system {λj}. This leads to the following definition of the predictive error:

Q̂n(a) = n−1
n∑
t=2

{Yt − Ŷt(a)}2, (12.107)

where

Ŷt(a) =
∞∑
j=0

λj V̂t−j(a). (12.108)

It is natural now to estimate a∗ as follows:

â = arg min
a
Q̂n(a).

Note that in the above formulation of the estimation problem we used the true value {λj} of the impulse
response function of the output linear system. Theorem 12.5 describes the cumulant based method for esti-
mating {λj} that is entirely independent of the remaining characteristics of the system. This could lead to
the modified version of Ŷt(a) in (12.108) , i.e.,

Ŷt(a) =
N∑
j=0

λ̂j V̂t−j(a), (12.109)

where N is the truncation parameter defining how many λj’s should be taken into account.
It is worth noting that the aforementioned semiparametric approach can easily be extended to the case of

the input linear system with the memory length p. In fact, we must use the formula in (12.90) in Theorem 12.4
instead of (12.105), i.e., we can write (12.90) in the following vector form:

g(v,a) = Erp+1(v − aTUn,Un), (12.110)

where Un = (Un−1, . . . , Un−p)T . Here the parameter a = (a1, . . . , ap)T characterizes the class of input linear
systems such that a∗ is the true value of the impulse response of the linear system. Consequently, we can
form the prediction error as in (12.107) and (12.109) with the estimate in (12.106) taking the following
form:

ĝ(v,a) = n−1
n∑

i=p+1

r̂p+1(v − aTUi,Ui).

Also note that in this case the process {V̂t(a), p + 1 ≤ t ≤ n} is given by V̂t(a) = ĝ(Xt(a),a) with Xt(a) =
Ut + aTUt. An estimate of a∗ is then obtained as the minimizer of the predictive error Q̂n(a) defined
analogously to (12.107). This type of the semiparametric least squares error estimate is generally difficult
to calculate since we need a numerical optimization procedure for minimizing the criterion Q̂n(a) which is
typically not a convex function of a.

In Section 14.7.3 we propose a direct estimate of a∗ utilizing the theory of the average derivative estimate
of the multiple regression function.

12.2.4 Identification algorithms: the Gaussian input signal

In Chapters 9–11 we have developed efficient nonparametric estimates of the Wiener system based on the
assumption that the input signal is Gaussian. This restriction can also be efficiently utilized in the context of
the Hammerstein system with nonlinear dynamics. Indeed, thus far we have assumed the white noise input
signal and we have proposed the cumulant based approach to identify the linear part of the system. On the
other hand, the nonlinear part was recovered by the regression method and has mostly been confined to the
system with short memory length.
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In this section we wish to take an advantage of a restricted class of input signals, i.e., we assume that the
input signal {Un} to the system pictured in Fig. 12.17 is a stationary Gaussian process with the covariance
function RUU (τ). We will examine both linear and nonlinear parts of our system and we start with the
former.

Linear system identification

The development of identification algorithms for the linear part of the system in (12.59) and (12.60) will make
use of several identities which relate the cross-covariance of input and output signals with the covariance
of the input signal alone. We begin with the following important result due, originally, to Brillinger [36].
This result concerns an identity for the cumulant function of a Gaussian random vector and its nonlinear
transformations.

Lemma 12.2 (Brillinger) Let (X1, . . . , XJ , Y1, . . . , YK)T be a nonsingular Gaussian random vector with
X1, . . . , XJ being independent of each other. Let G : RJ → R be a measurable function of J variables such
that

E{|G(X1, . . . , XJ)Y1 · · ·YK |} <∞.

Then we have

cum(G(X1, . . . , XJ), Y1, . . . , YK) =
J∑
s=1

αs
cov(Xs, Y1) · · · cov(Xs, YK)

(var(Xs))K
, (12.111)

where αs = cum(G(X1, . . . , XJ), Xs, . . . , Xs).

Proof of Lemma 12.2 : We will make use of Properties 1–4 of cumulants listed at the beginning of this
section. Also let us recall the following property of the multivariate normal distribution. For Z ∼ Nd(m,Σ)
there exists a nonsingular d × d matrix C such that Σ = CCT and Z = Ce + m, where e ∼ Nd(0, I), i.e.,
the components of e are independent with the N(0, 1) distribution. Moreover, C can be specified as a lower
triangular matrix.

First let us note that since the cumulants are blind to an additive constant (see Property 3), we can
assume, without loss of generality, that (X1, . . . , XJ , Y1, . . . , YK)T is of a zero mean random vector with the
J + K × J + K covariance matrix Σ. Then we can represent the random variables Xr(r = 1, . . . , J) and
Ys(s = 1, . . . ,K) in terms of the J +K × J +K matrix C = {ci,j} and the vector (e1, e2, . . . , eJ+K)T with
independent N(0, 1) elements, as follows

Xr = cr,rer (12.112)

and

Ys =
J+s∑
`=1

cJ+s,`e`. (12.113)

Owing to Properties 2 and 3 of cumulants, independence of {ej}, and (12.112) and (12.113) we can write

cum(G(X1, . . . , XJ), Y1, . . . , YK) =
J∑
s=1

cum(G(X1, . . . , XJ), cJ+1,ses, . . . , cJ+K,ses)

=
J∑
s=1

cum
(
G(X1, . . . , XJ),

cJ+1,s

cs,s
Xs, . . . ,

cJ+K,s

cs,s
Xs

)
.(12.114)

Let us write the matrix C in an explicit form

C =
[

C1 0
D C2

]
,

where C1 and C2 are J × J and K ×K lower triangular matrices, whereas D is the K × J matrix. Then we
note that C1 = diag{cs,s, 1 ≤ s ≤ J} and due to the representation Σ = CCT we obtain

cov{(X1, . . . , XJ), (Y1, . . . , YK)} = C1DT .
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Thus we have that cJ+1,scs,s = cov(Xs, Y1), . . ., cJ+K,scs,s = cov(Xs, YK) and consequently we can rewrite
(12.114) as follows:

J∑
s=1

cum(G(X1, . . . , XJ), Xs, . . . , Xs)
cov(Xs, Y1) · · · cov(Xs, YK)

(c2s,s)K
.

Noting that c2s,s = var(Xs) we can arrive to the formula in (12.111).
The proof of Lemma 12.2 is thus complete. �

It is worth noting that the K + 1 order cumulant on the left-hand-side of (12.111) measures the multi-
linear dependence between the Gaussian vector (Y1, . . . , YK)T and the nonlinearity G(X1, . . . , XJ), which is
a transformation of the another Gaussian vector (X1, . . . , XJ)T . Hence, the formula in (12.111) says that
the cumulant is proportional to the product of the covariance functions between the Gaussian vectors. The
sequence {αs} appearing in (12.111) is a combination of the moments of the form E{G(X1, . . . XJ)Xq

s},
1 ≤ q ≤ K and can be explicitly evaluated in terms of the average derivatives of G(X1, . . . , XJ). In the
context of the nonlinear system analysis, the result of Lemma 12.2 is particularly useful for block-oriented
nonlinear systems which have single variable nonlinearities. This will be explained in the remarks given
below.

Remark 12.7 The result of Lemma 12.2, established by Brillinger [36], generalizes a number of known
identities concerning correlation properties of a stochastic process observed as an output of a nonlinear
system fed by a stationary Gaussian process. In this remark we give the most classical version of (12.111)
often referred to as Bussgang’s Theorem.

Hence let {Un} be an univariate stationary Gaussian process with the covariance function RUU (τ). Let
also

Vn = g(Un) + Zn,

where {Zn} is independent, but otherwise arbitrary, of {Un} stochastic process, and g(•) is a measurable
function. Consider the cross-covariance of {Vn} and {Un}

RV U (τ) = cov(Vn, Un−τ ) = cov(g(Uτ ), Un−τ ). (12.115)

Recalling that the second order cumulant is the covariance function we recognize that the right-hand-side of
(12.115) is the simplest version of (12.111) corresponding to J = K = 1, where Y1 is identified as Un−τ ,
whereas X1 as Un. Thus, we can readily obtain

RV U (τ) = cov(g(U0), U0, )
RUU (τ)
var(U0)

. (12.116)

Let {Un} have the marginal density f(u) ∼ N(0, σ2
U ). The following identity can be easily verified

uf(u) = −σ2
Uf

(1)(u). (12.117)

This allows us to evaluate the coefficient cov(g(U0), U0) = E{g(U0U0)} in (12.116). Indeed, assuming that
the nonlinearity g(•) is differentiable, and using (12.117) along with integration by parts we obtain

E{g(U0)U0} = σ2
UE{g(1)(U0)}.

Consequently we have the following version of (12.116)

RV U (τ) = αRUU (τ), (12.118)

where α = E{g(1)(U0)}.
Formula (12.118) is a classic result due to Bussgang; see [320] for a direct proof of this identity. This is

also called the invariance property, meaning that regardless of the nonlinearity applied, the input and input-
output covariance functions are identical up to a scale factor. In [16] and [278] various extensions of (12.118)
to non-Gaussian processes were given. This theory is based on the concept of diagonal expansions of bivariate
densities with respect to an orthonormal complete system of functions. In the case of a bivariate Gaussian
distribution the Hermite polynomials appear in the orthogonal representation. In [316] the most general class
of stochastic processes (separable processes) for which the invariance property holds was established.
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Remark 12.8 In considerations concerning the sandwich system and other nonlinear problems based on the
third order cumulants we need the version of Lemma 12.2 corresponding to J = 1 and K = 2. Thus (12.111)
takes the form

cum(G(X1), Y1, Y2) = cum(G(X1), X1, X1)
cov(X1, Y1) cov(X1, Y2)

(var(X1))2
. (12.119)

Application of this identity to the static system Vn = g(Un) + Zn, in Remark 12.7 yields

RV UU (τ1, τ2) = cum(Vn, Un−τ1 , Un−τ2)

= cum(g(U0), U0, U0)
cov(Un, Un−τ1) cov(Un, Un−τ2)

(var(U0))2
.

For {Un} being the zero mean stationary Gaussian process with var(U0) = σ2, we can find that

cum(g(U0), U0, U0) = σ4E
{
g(2)(U0)

}
,

provided that g(u) is twice differentiable. In fact, the twice application of (12.117) and integration by parts
gives

E{g(U0)U2
0 } = σ4E

{
g(2)(U0)

}
+ σ2E {g(U0)} .

This provides the following generalization of Bussgang’s theorem, see (12.118),

RV UU (τ1, τ2) = βRUU (τ1)RUU (τ2),

where β = E
{
g(2)(U0)

}
.

Hence, the third order cumulant is invariant with respect to nonlinear transformations possessing two
derivatives. It is natural to conjecture that the p+ 1 order cumulant cum(Vn, Un−τ1 , Un−τ2 , . . . , Un−τp) will
be invariant for all nonlinearities g(•) with p derivatives.

The main shortcoming of the identity in (12.111) is that the random variables X1, . . . , XJ are assumed
to be independent. This prevents us , from using (12.111) directly for nonlinear systems with multivariate
nonlinearities.

Nevertheless, in the case when the vector X = (X1, . . . , XJ)T is dependent, the matrix C1 appearing in
the decomposition of the covariance matrix is fully lower triangular; see the proof of Lemma 12.2. There-
fore, instead of (12.112) we have X = C1eJ , where eJ = (e1, . . . , eJ)T .Then reasoning as in the proof of
Lemma 12.2 we obtain

cum(G(X1, . . . , XJ), Y1, . . . , YK) =
J∑
s=1

cum(G(X), cJ+1,ses, . . . , cJ+K,ses). (12.120)

We can now substitute each es by using the solution eJ = C−1
1 X. Since C1 is lower triangular the solution

is easily written as

es =
Xs −

∑s−1
`=1 cs,`e`
cs,s

, s = 1, . . . , J.

Then recalling that
C1CT

1 = cov(X) and C1DT = cov(X,Y)

we can find cJ+j,ses, 1 ≤ j ≤ K appearing in (12.120) in terms of cov(X) and cov(X,Y). The solution of
these matrix equations gives a formula for cum(G(X1, . . . , XJ), Y1, . . . , YK) in terms of

{cum(G(X1, . . . , XJ), Xs, . . . , Xs), 1 ≤ s ≤ J},
{cov(Xs, Yj), 1 ≤ j ≤ K, 1 ≤ s ≤ J)},

as well as {cov(Xs, Xr), 1 ≤ s, r ≤ J}. The last term makes the resulting formula more complicated than
the one established in Lemma 12.2.
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As an example of the procedure outlined above, let us consider the case J = 2 and K = 1 with
(X1, X2, Y )T being a Gaussian vector with zero mean and covariance matrix Σ such that var(X1) =
var(X2) = σ2, and correlation ρ = cov(X1, X2)/σ2. Then some algebra (left to the reader) gives

cov(G(X1, X2), Y ) = cov(G(X1, X2), X1)a1 + cov(G(X1, X2), X2)a2, (12.121)

where

a1 = σ−2 cov(X1, Y )− ρ cov(X2, Y )
1− ρ2

and a2 = σ−2 cov(X2, Y )− ρ cov(X1, Y )
1− ρ2

.

Note that if ρ = 0 we can arrive to the identity in (12.111).
There is a way of dealing with the case of the dependent random vector X = (X1, . . . , XJ)T based on the

covariance matrix decomposition and a formula for differentiation of composite functions. Since the case of
K = 1 is the most common in applications let us examine the version of Lemma 12.2 with J > 1 and K = 1,
i.e., let us consider cov(G(X1, . . . , XJ), Y ) with (X1, . . . , XJ , Y )T being the J + 1-dimensional nonsingular
Gaussian vector with zero mean and covariance matrix Σ. The following lemma gives an expression for
cov(G(X1, . . . , XJ), Y ) in terms of the average derivative of the nonlinearity G(•, . . . , •) and covariance
between X and Y .

Lemma 12.3 Let (X1, . . . , XJ , Y )T be a nonsingular Gaussian random vector with zero mean and covari-
ance matrix Σ. Let G : RJ → R be a measurable function of J variables such that

E{|G(X1, . . . , XJ)Y |} <∞

and

E

{∣∣∣∣∂G(X1, . . . , XJ)
∂Xs

∣∣∣∣} <∞, s = 1, . . . , J.

Then we have

cov(G(X1, . . . , XJ), Y ) =
J∑
s=1

bs cov(Xs, Y ), (12.122)

where bs = E
{
∂G(X1,...,XJ )

∂Xs

}
.

Proof of Lemma 12.3 : Similarly as in the proof of Lemma 12.2 let us start with the decomposition of
the matrix Σ as Σ = CCT , such that

C =
[
C1 0
dT c

]
,

and C1d = cov(X, Y ). Here C1 is the J × J - lower triangular matrix, d is the J × 1 vector, and c is a
number. Then we have

X = C1e and Y = dTe + cε,

where
(
e
ε

)
∼ NJ+1(0, I), and I is the unit diagonal matrix. Hence we obtain

cov(G(X1, . . . , XJ), Y ) = cov(G(C1e),dTe) = dTE{G(C1e)e}, (12.123)

where the expectation is taken with respect to the random vector e. Without loss of generality let us
consider the first component of the J × 1 vector E{G(C1e)e}. Hence we wish to evaluate E{G(C1e)e1}.
Since e ∼ NJ(0, I), it suffices to examine the integral∫ ∞

−∞
G(C1z)z1f(z1)dz1, (12.124)

where z = (z1, . . . , zJ)T and f(z1) is the standard normal density function. The fact that z1f(z1) = −f (1)(z1)
and integration by parts give the following version of the integral in (12.124)∫ ∞

−∞

{
∂

∂z1
G(C1z)

}
f(z1)dz1.
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To evaluate ∂
∂z1

G(C1, z) note that due to the formula for differentiation of composite functions we have for
x = C1z

∂

∂z1
G(C1z) =

∂G(x1, . . . , xJ)
∂x1

∂x1

∂z1
+ · · ·+ ∂G(x1, . . . , xJ)

∂xJ

∂xJ
∂z1

=
∂G(x1, . . . , xJ)

∂x1
c1,1 + · · ·+ ∂G(x1, . . . , xJ)

∂xJ
cJ,1,

where v1 = (c1,1, . . . , cJ,1)T is the first column of the matrix C1.
Denoting by ∇G(x) the gradient vector of G(x) we have shown that

E{G(C1e)e1} = E{∇TG(X)}v1.

Repeating the above calculations for each component of the vector E{G(C1e)e}, we obtain the following
representation for (12.123):

dT (E{∇TG(X)}v1, . . . , E{∇TG(X)}vJ)T , (12.125)

where v1, . . . ,vJ are the column vectors of the matrix C1. By changing the order of summation we see that
(12.125) is equal to

E{∇TG(X)}(dT c1, . . . ,dT cJ)T ,

where c1, . . . , cJ are the J × 1 vectors representing the rows of matrix C1. Noting finally that dT ci =
cov(Xi, Y ), 1 ≤ i ≤ J we can complete the proof of Lemma 12.3 �

Remark 12.9 The version of (12.111) which can be useful for the generalized Hammerstein system corre-
sponds to the case when K = 1 and J > 1. Hence, (12.111) reads as

cov(G(X1, . . . , XJ), Y1) =
J∑
s=1

cov(G(X1, . . . , XJ), Xs)
cov(Xs, Y1)

var(Xs)
, (12.126)

provided that X1, . . . , XJ are uncorrelated Gaussian random variables.
In the context of nonlinear systems this formula can be interpreted as follows. Let

Vn = g(Un, Un−1, . . . , Un−p) + Zn (12.127)

be a nonlinear finite memory system, where {Zn} is independent of {Un} - a zero mean white Gaussian
process with the variance σ2. Note that for the independent input the covariance RV U (τ) = cov(Vn, Un−τ )
is nonzero only for 0 ≤ τ ≤ p. Then according to (12.126) and for 0 ≤ τ ≤ p we have

RV U (τ) = cov(g(Un, Un−1, . . . , Un−p), Un−τ )

=
p∑
s=0

cov(g(Un, Un−1, . . . , Un−p), Un−s)
cov(Un−s, Un−τ )

var(Un−s)

= cov(g(Un, Un−1, . . . , Un−p), Un−τ )

for n+ τ − p ≤ n ≤ n+ τ .
For differentiable g(•, •, . . . , •) we can apply (12.117) and integration by parts, i.e., we obtain

E{g(Un, Un−1, . . . , Un−p)Un−τ} = σ2E

{
∂g(Un, Un−1, . . . , Un−p)

∂Un−τ

}
.

Hence we have

RV U (τ) = σ2E

{
∂g(Un, Un−1, . . . , Un−p)

∂Un−τ

}
(12.128)

for 0 ≤ τ ≤ p.
It is worth noting that there is no further information contained in higher order moments with respect to

the input process. In fact, we have cum(Vn, Un−τ1 , Un−τ2) = 0 for all τ1 6= τ2.
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In order to generalize (12.128) to the correlated input process {Un} we can apply Lemma 12.3. Hence by
virtue of (12.122) we readily obtain

RV U (τ) =
p∑
s=0

bsRUU (τ − s), (12.129)

where

bs = E

{
∂g(Un, Un−1, . . . , Un−p)

∂Un−s

}
, 0 ≤ s ≤ p. (12.130)

It is seen that for RUU (s) = σ2δs0, i.e., when {Un} is independent we can confirm formula (12.128).
The formula in (12.129) can be interpreted as a linear time-invariant approximation of the nonlinear

system in (12.127). In fact, it is straightforward to verify that a solution of the following minimization
problem

E

{
Vn −

p∑
s=0

λsUn−s

}2

→ min
{λs}

(12.131)

must satisfy the equations in (12.129). That is, the optimal mean-square error linear time-invariant system
which approximates the nonlinear system in (12.127) is given by the FIR(p) model with the characteristic
{bs, 0 ≤ s ≤ p}, where bs is defined in (12.130).

The results of Lemmas 12.2 and 12.3 and the discussion in Remark 12.9 allow us to establish a simple
relationship between the correlation functions RY U (τ), RUU (τ) and the impulse response function {λj} of
the linear subsystem of the Hammerstein system with nonlinear dynamics defined in (12.59) and (12.60).
Hence, let the input signal {Un} be a zero mean stationary Gaussian process with the covariance function
RUU (τ).

Let us first note for the linear part of the system

Yn =
∞∑
j=0

λjVn−j + Zn,

we have the following convolution formula:

RY U (τ) = cov(Yn, Un−τ ) =
∞∑
j=0

λj cov(Vn−j , Un−τ ) =
∞∑
j=0

λjRV U (τ − j). (12.132)

We can now directly apply the result of Remark 12.9, see (12.129), and evaluate the cross-covariance shown
above (12.132). Indeed, by virtue of (12.129), RV U (τ) is also given in the form of the convolution between
the sequence {bs} and {RUU (s)}, i.e., we have

RV U (τ) =
p∑
s=0

bsRUU (τ − s).

This and (12.132) yield the following theorem.

Theorem 12.6 Let (12.59) and (12.60) define the Hammerstein system with the nonlinear dynamics m(Un,
Un−1, . . . , Un−p). Let the input signal {Un} be a zero mean stationary Gaussian process with the covariance
function RUU (τ). Suppose that

E{|m(Un, Un−1, . . . , Un−p)Un−j |} <∞, j = 0, 1, . . . , p,

and that m(•, •, . . . , •) is a differentiable function. Then we have the following convolution relationship

RY U (τ) = {λ ∗ b ∗RUU}(τ) (12.133)

where

bj = E

{
∂m(Un, Un−1, . . . , Un−p)

∂Un−j

}
, j = 0, 1, . . . , p.
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Analogous to Remark 12.9 we can argue (see (12.131)) that {λs∗bs} defines the impulse response function
of the optimal mean-square error linear time-invariant system which approximates the Hammerstein system
with nonlinear dynamics. The problem of best linear time-invariant approximations of nonlinear systems
and their application to system identification has been an active area in recent years; see [294] [379] for
recent results and further references on this important issue.

Formation of the Fourier transform of (12.133) gives

SY U (ω) = Λ(ω)B(ω)SUU (ω). (12.134)

This formula reveals that one can recover (up to a multiplicative factor) the spectral characteristic of the
linear subsystem from the spectral densities SY U (ω) and SUU (ω).

In an important case of p = 1 we can explicitly write

SY U (ω) = Λ(ω)SUU (ω){b0 + b1e
−iω} (12.135)

where

b0 = E

{
∂m(Un, Un−1)

∂Un

}
and b1 = E

{
∂m(Un, Un−1)

∂Un−1

}
.

It is quite straightforward to evaluate the coefficients (b0, b1) for some specific nonlinearities. Hence for the
polynomial nonlinearity of order not greater than 3, i.e., when

m(u, v) =
∑

0≤k+`≤3

ak`u
kv`,

one can calculate that
b0 = a10 + (a12 + 3a30)σ2 + 2a21RUU (1)

and
b1 = a01 + (a21 + 3a03)σ2 + 2a12RUU (1),

where σ2 = var(U0).
For the cubic nonlinearity

∑
k+`=3 ak`u

kv` the terms a10, a01 in the above formula should be set to
zero. If there exists an identification procedure which can recover the nonlinearity m(u, v) independently
of the linear subsystem then one can estimate the numbers (b0, b1). This is, however, a rare case since the
cascade nature of the system allows us to recover its characteristics only up to some unknown constants.
Nevertheless, in Theorem 12.5 we have described the p+ 2- order cumulant based method for recovering the
linear subsystem characteristic {λj}. This method is very inefficient and complicated to implement. Indeed,
the formula for λ` given in Theorem 12.5 requires the p+ 2 - order cumulants and becomes highly inefficient
for ` greater than p.

The main assumption employed in Theorem 12.5 is that the input signal is white but not necessarily
Gaussian. In the following remark we wish to find out what can be gained if the input is a white Gaussian
process.

Remark 12.10 For the input signal being a white Gaussian process, we can write formula (12.133) as
follows

RY U (τ) = σ2
τ∑
`=0

λτ−`b`, (12.136)

where σ2 = var(U0).
Without loss of generality let us consider the second order nonlinearity (p = 1). Then due to (12.136)

we readily have
b0 = σ−2RY U (0) and b1 = σ−2RY U (1)− λ1b0.

These explicit formulas can lead to a direct estimation technique for the numbers (b0, b1), and consequently
a nonparametric estimate of Λ(ω). In fact by virtue of (12.135) and the fact that SUU (ω) = σ2, we have

Λ(ω) =
SY U (ω)

a0 + a1e−iω
, (12.137)
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where a0 = RY U (0) and a1 = RY U (1)− λ1RY U (0).
Note that in the formula for a1 we still need to know λ1. Here, we can recall expression (12.104) which

determines λ1 from the third-order cumulant of the input-output signals, i.e., λ1 can be obtained from the
following formula:

λ1 =
cum(Yn+1, U

2
n, U

2
n−1)

cum(Yn, U2
n, U

2
n−1)

.

Hence, a nonparametric estimate of Λ(ω) that can be derived from the cross-spectra SY U (ω) requires limited
additional help from higher order statistics. Generally, for the p-order nonlinearity the nonparametric recov-
ery of Λ(ω) in terms of SY U (ω) needs the values of λ1, . . . , λp, that can be obtained from the p + 2 - order
cumulants given in Theorem 12.5.

Thus, the computational saving in estimating the linear subsystem in the case of an uncorrelated Gaussian
input is very essential for small and moderate values of p. In typical cases when p = 1, 2 the aforementioned
considerations lead to much more efficient identification algorithms which essentially employ only the second
order statistics of input-output data.

The aforementioned considerations point out that there can be some benefits in using higher order spectra
even in the case of independent Gaussian input. If the input is correlated and there are several linear systems
present in the overall nonlinear structure then it is necessary to go beyond the second order spectra. This will
be transparent in the case of the sandwich system (see Example 12.6) where we have two linear subsystems
separated by the nonlinearity. Since this structure plays an important role in many applications it is treated
separately in the section below.

Nonlinear system identification

For Gaussian inputs, it is natural to employ Hermite polynomials to represent the system nonlinearities. In
fact, as we mentioned in Section 6.6 (see also Appendix B.5) the Hermite polynomials constitute an orthonor-
mal basis with respect to the weight function e−x

2
. In order to obtain Hermite polynomials orthogonal with

respect to the standard normal density function, we need to slightly modify the definition of the Hermite
polynomial. Hence let

H̄k(x) = (−1)ke−x
2/2
(
e−x

2/2
)(k)

be the k-th modified Hermite polynomial. Then it is easy to show that H̄(x) is related to the classical
Hermite polynomial Hk(x) (see Appendix B.5) by the following formula

H̄k(x) = 2−k/2Hk(x/
√

2).

Consequently the system
{
h̄k(x) = (2kk!)−1/2Hk(x/

√
2)
}

defines the orthonormal basis with respect to the
standard normal density. Here is a list of a few Hermite polynomials h̄k(x):

h̄0(x) = 1,
h̄1(x) = x,

h̄2(x) = − 1√
2

+
1√
2
x2,

h̄3(x) = −
√

3
2
x+

1√
6
x3,

h̄4(x) =
3

2
√

6
− 3√

6
x2 +

1
2
√

6
x4, . . .

It is also worth noting that the scaled version h̄k(x/σ) of h̄k(x) defines the the orthonormal Hermite poly-
nomials with respect to the N(0, σ2) density function. We wish to propose an estimate of the nonlinearity
m(u, v) that defines the system in (12.59) and (12.60) using the polynomials

{
h̄k(x)

}
.

Hence, without loss of generality, let us assume that the input signal {Un}, exciting the system depicted
in Fig. 12.17, is a zero mean uncorrelated Gaussian process with unit variance. Let us also consider the



160 CHAPTER 12. OTHER BLOCK-ORIENTED NONLINEAR SYSTEMS

system in (12.59) and (12.60) corresponding to p = 1. Then, by virtue of the result of Theorem 12.3 we have

m(u, v) = r2(u, v)− λ1r1(v), (12.138)

where additionally we have assumed that E{m(U1, U0)} = 0. Since EY 2
n < ∞ (see (12.61)), then we can

expand the regression functions r2(u, v) and r1(v) in terms of the Hermite polynomials {h̄k(x)}. In the case
of r1(v) this is standard orthogonal functions representation, whereas for r2(u, v) we need a two-dimensional
extension. The latter can be easily done by using a product basis {h̄k(u)h̄`(v) : k, ` = 0, 1, . . .}; see also
Chapter 13 for representations of multivariate functions. Hence, we have the following representations:

r2(u, v) ≈
∞∑
k=0

k∑
`=0

ak−`,`h̄k−`(u)h̄`(v) (12.139)

and

r1(v) ≈
∞∑
k=0

bkh̄k(v), (12.140)

where
ak,` =

∫ ∞
−∞

∫ ∞
−∞

r2(u, v)h̄k(u)h̄`(v)f(u)f(v)du dv

and
bk =

∫ ∞
−∞

r1(v)h̄k(v)f(v)dv,

respectively. Noting that f(u) is the density of Un it is important to observe that

ak,` = E
{
Ynh̄k(Un)h̄`(Un−1)

}
and bk = E

{
Ynh̄k(Un)

}
. (12.141)

This and (12.138)-(12.140) readily lead to the following orthogonal series estimate (see Chapter 6) of m(u, v):

m̂(u, v) = r̂2(u, v)− λ̂1r̂1(v), (12.142)

where λ̂1 is estimated via the third cumulant formula in (see (12.104)) and

r̂2(u, v) =
N∑
k=0

k∑
`=0

âk−`,`h̄k−`(u)h̄`(v), r̂1(v) =
N∑
k=0

b̂kh̄k(v) (12.143)

with

âk,` = n−1
n∑
j=2

Yj h̄k(Uj)h̄`(Uj−1), b̂k = n−1
n∑
j=1

Yj h̄(Uj). (12.144)

The formulas (12.143) and (12.144) define standard orthogonal series estimates with the truncation parameter
N . Note that âk,` and b̂k are unbiased estimates of ak,` and bk, respectively. We have already noted (see
Chapter 6) that N controls the bias-variance tradeoff. In fact, let us consider the estimate r̂2(u, v). By virtue
of Parsevals formula the mean integrated squared error (MISE) of r̂2(u, v) can be decomposed as follows:

MISE(r̂2) = E

∫ ∞
−∞

∫ ∞
−∞

(r̂2(u, v)− r2(u, v))2f(u)f(v)dudv

=
N∑
k=0

k∑
`=0

var(âk−`,`) +
∞∑

k=N+1

k∑
`=0

a2
k−`,`. (12.145)

The first term represents the integrated variance of r̂2(u, v) and is an increasing function of N . The second
term in (12.145) is an integrated bias of r̂2(u, v) and it decreases with N . Arguing as in Section 12.2.4 (see
also Section 6.5) we can show that the first term in (12.145) is of order O

{
N5/3

n

}
. On the other hand, the

second term in (12.145) tends to zero as N →∞ for all nonlinearities which satisfy

E{m2(U1, U0)} <∞. (12.146)

An analogous analysis for the estimate r̂1(v) shows that MISE(r̂1) if N → ∞ and N5/6

n → 0. Since λ̂1 →
λ1(P ) then we have the following theorem.
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Theorem 12.7 Let us consider the nonlinear system in (12.59) and (12.60). Let the input signal {Un} be
a zero mean uncorrelated Gaussian process with unit variance. If (12.146) holds and if

N(n)→∞ and
N5/3(n)

n
→ 0

then for the estimate m̂(u, v) in (12.142) we have

MISE(m̂)→ 0

as n→∞.

It should be also noted that if m(u, v) is defined on a finite interval then we can replace the condition
N5/3(n)

n → 0 by N(n)
n → 0.

Regarding the rate of convergence it suffices to examine the bias terms, i.e., we wish to evaluate the rate
at which

∑∞
k=N+1

∑k
`=0 a

2
k−`,` and

∑∞
k=N+1 b

2
k tend to zero as N →∞. This analysis is independent of the

dependence structure of data generated by our system and can be done along the lines of the analysis in
Appendix B.5, see also [190].

Hence let

m(i,j)(u, v) =
∂i+jm(u, v)

∂uivj

be the partial derivative of m(u, v) of order i+ j. We can show that if

E

{(
m(i,j) (U1, U0)

)2
}
<∞, for all 0 ≤ i+ j ≤ s (12.147)

holds, then we have
∞∑

k=N+1

k∑
`=0

a2
k−`,` = O(N−s) and

∞∑
k=N+1

b2k = O(N−s).

Combining this with the result of Theorem 12.7 we can conclude that under condition (12.120) and if

N(n) = n
3

3s+5 (12.148)

then we have
MISE(m̂) = O

(
n−

3s
3s+5

)
. (12.149)

For the nonlinearity m(u, v) which is defined on a finite interval and meets (12.147) we have a faster rate,
i.e.,

MISE(m̂) = O
(
n−

s
s+1
)

(12.150)

with the asymptotically optimal selection of the truncation parameter N(n) = n
1
s+1 . For s = 1 the rate in

(12.149) is O
(
n−

3
8

)
, whereas the rate in (12.150) is O

(
n−

1
2

)
.

It is worth noting that the rate in (12.150) is known to be the best possible rate of convergence for
recovering a bivariate function possessing s derivatives.

12.2.5 Sandwich systems with a Gaussian input signal

In this section we illustrate the theory developed in the previous section in the important case of the sandwich
system. We shall see that the restriction put on the input signal to be a Gaussian process allows us to relax
the assumption that the input linear system is of a finite memory.

Let us consider the sandwich system introduced in Example 12.6 (see also Fig. 12.20). The system has
the input linear subsystem with the impulse response function {aj , 0 ≤ j ≤ p}, and is excited by a zero-mean
stationary Gaussian process. Recalling that

m(Un, . . . , Un−p) = g

Un +
p∑
j=1

ajUn−j

 ,
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we can easily find that the sequence bj in Theorem 12.6 is given by

bj = ajE{g(1)(Xn)},

where Xn = Un +
∑p
j=1 ajUn−j . This yields

RV U (τ) = α

p∑
j=0

ajRUU (τ − j), (12.151)

where α = E{g(1)(X0)}. This applied to formula (12.133) gives the following counterpart of (12.134):

SY U (ω) = αA(ω)Λ(ω)SUU (ω). (12.152)

Since we wish to identify both A(ω) and Λ(ω), then it is seen that this single equation is not sufficient to
construct individual estimates of A(ω) and Λ(ω). With the help of the third-order cumulants we can form
another equation involving the unknown A(ω) and Λ(ω).

Hence let us consider

RY UU (τ1, τ2) = cum(Yn, Un−τ1 , Un−τ2)

=
∞∑
`=0

λ` cum(g(Xn−`), Un−τ1 , Un−τ2),

where properties 1 and 3 of cumulants have been used. By virtue of Lemma 12.2 (applied with J = 1 and
K = 2) we can obtain

cum(g(Xn−`), Un−τ1 , Un−τ2) =
cum(g(X0), X0, X0)
{var(X0)}2

cov(Xn−`, Un−τ1) cov(Xn−`, Un−τ2).

This combined with the fact that the cross-covariance function RXU (τ) between {Xn} and {Un} is given by

RXU (τ) =
p∑
`=0

a`RUU (τ − `) (12.153)

allows us to write the following relationship:

RY UU (τ1, τ2) = β

∞∑
`=0

λ`RXU (τ1 − `)RXU (τ2 − `), (12.154)

where β = cum(g(X0), X0, X0)/{var(X0)}2.
Let us now define the cross-bispectrum of the processes {Yn} and {Un} as the two-dimensional Fourier

transform of RY UU (τ1, τ2), i.e.,

SY UU (ω1, ω2) =
∞∑

τ1=−∞

∞∑
τ2=−∞

RY UU (τ1, τ2)e−i{ω1τ1+ω2τ2}.

Hence, formation of the two-dimensional Fourier transform of the formulas (12.154) and (12.153) gives

SY UU (ω1, ω2) = βA(ω1)A(ω2)Λ(ω1 + ω2)SUU (ω1)SUU (ω2). (12.155)

This is the second expression besides (12.152) which involves the unknown characteristics A(ω) and Λ(ω)
expressed in terms of the spectral characteristics of the input-output signals of the sandwich system.

It is worth noting that formula (12.152) was derived from the general result described in Theorem 12.6.
This result restricts the input nonlinearity to be of finite memory. Direct calculations easily show that we
can admit an infinite memory input linear subsystem, i.e., the formula in (12.153) takes the following form:

RXU (τ) =
∞∑
`=0

a`RUU (τ − `).
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Next we have RY U (τ) =
∑∞
`=0 λ`RV U (τ − `), where due to the Bussgang identity (see Remark 12.7) we

obtain RV U (τ) = α′RXU (τ), α′ = cov(g(X0), X0)/ var(X0). Reasoning as in Remark 12.7 we can show
α′ = E{g(1)(X0)}, provided that g(•) is a differentiable function, i.e., α′ = α, where α was introduced in
(12.151).

All these considerations lead to the following theorem.

Theorem 12.8 Let us consider the sandwich system
Xn = Un +

∑∞
t=1 atUn−t,

Vn = g(Xn),
Yn =

∑∞
j=0 λjVn−j + Zn

with the input signal {Un} being a stationary Gaussian process with the covariance function RUU (τ). Suppose
that

E{|X2
0g(X0)|} <∞. (12.156)

Then we have the following relationships

SY U (ω) = αA(ω)Λ(ω)SUU (ω) (12.157)

and
SY UU (ω1, ω2) = βA(ω1)A(ω2)Λ(ω1 + ω2)SUU (ω1)SUU (ω2), (12.158)

where α = cov(g(X0), X0)/ var(X0) and β = cum(g(X0), X0, X0)/{var(X0)}2.

We should note that if g(•) is a twice differentiable function then the condition in (12.156) is equivalent
to E{|g(2)(X0)|} <∞. In fact (see Remarks 12.7 and 12.8), we have

α = E{g(1)(X0)} and β = E{g(2)(X0)}. (12.159)

It is worth noting that the formulas in (12.159) hold for not necessarily zero-mean Gaussian input process.
Indeed, this is an important issue since it is required that α, β 6= 0 for the result in Theorem 12.8 to be
meaningful. For the zero mean input process, the Gaussian density of X0 is an even function and consequently
we have α 6= 0 and β = 0 for the nonlinearity g(•) that is an odd function, or vice versa α = 0 and β 6= 0
for the nonlinearity g(•) that is an even function. Hence, a practical recommendation is to use the input
Gaussian process with EUn = µ 6= 0. Then we have EXn = µ

∑∞
`=0 a` 6= 0, provided that

∑∞
`=0 a` 6= 0.

The latter is equivalent to A(0) 6= 0, and this is met for a large number of linear systems. It should be
noted, however, that for high-pass filters we have A(0) = 0; see [254] for a detailed discussion of this issue.
Furthermore, as we have already noted if g(•) is a linear function then there is no chance of separately
identifying A(ω) and Λ(ω).

The formulas in (12.157) and (12.158) allow us to develop a fully nonparametric strategy for estimating
the linear subsystems of the sandwich model. In fact, owing to (12.157) and (12.158) we have

SY UU (ω1, ω2)SUU (ω1 + ω2)
SY U (ω1 + ω2)SUU (ω1)SUU (ω2)

=
β

α

A(ω1)A(ω2)
A(ω1 + ω2)

. (12.160)

By noting that A(ω)A(−ω) = |A(ω)|2 and then by setting ω2 = −ω1 = −ω, we have

|A(ω)| = L
|SY UU (ω,−ω)|1/2

SUU (ω)
, (12.161)

where L =
∣∣∣αA(0)SUU (0)

βSY U (0)

∣∣∣1/2, and it is known that SUU (ω) ≥ 0 for all ω. Next (12.157) yields

Λ(ω) =
1
α

SY U (ω)
A(ω)SUU (ω)

. (12.162)
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Formula (12.161) gives a prescription for the recovery of the amplitude of A(ω). Since SUU (ω) ≥ 0 , (12.160)
the phase of A(ω) is determined by the phase of SY UU (ω1,ω2)

SY U (ω1+ω2) . Hence let

ψ(ω1, ω2) = arg
{
SY UU (ω1, ω2)
SY U (ω1 + ω2)

}
and θ(ω) = arg{A(ω)}.

Then due to (12.160), we readily obtain

θ(ω1) + θ(ω2)− θ(ω1 + ω2) = ψ(ω1, ω2). (12.163)

This is a functional equation with respect to θ(ω) for a given ψ(ω1, ω2). Note that if ψ(ω1, ω2) = 0, then
(12.163) is the classical Cauchy functional equation with a general unique solution θ(ω) = cω, c being an
arbitrary constant. Differentiating (12.163) with respect to ω1 and ω2, we get

θ(2)(ω) = −∂2ψ(ω1, ω2)/∂ω1∂ω2,

where ω = ω1 + ω2. For many practical systems θ(ω) is linear for ω → 0+. Hence we can assume that
θ(0+) = 0 and θ(1)(0+) = −n0, which is given. These initial conditions allow us to express θ(ω) in terms of
ψ(ω1, ω2). It is worth noting that for a class of systems commonly referred to as minimum-phase systems
the phase θ(ω) can be determined from the magnitude |A(ω)|.

Summing up we have obtained the following procedure for recovering the transfer functions A(ω) and
Λ(ω) of the linear subsystems. First we determine the amplitude of A(ω) from formula (12.161). This is
followed by the recovery of the phase of A(ω) using (12.163) and the above outlined procedure for extracting
θ(ω) = arg{A(ω)}. Having A(ω) = |A(ω)|eiθ(ω) we can finally get Λ(ω) from (12.162). This gives the
procedure for reconstructing A(ω) and Λ(ω) being virtually independent on the form of the nonlinearity
g(•). The multiplicative constants appearing (12.161) and (12.162) can be determined if some a priori
knowledge about A(ω) and Λ(ω) is known, e.g., that the gain factors A(0), Λ(0) are known.

Formulas (12.157) and (12.158) allow us to discriminate between two important special cases of the
sandwich system. Indeed, if Λ(ω) is all-pass filter, i.e., Λ(ω) = 1, we obtain the Wiener system, and then
(12.157) and (12.158) yield

SY UU (ω1, ω2)
SY U (ω1)SY U (ω2)

=
β

α2
. (12.164)

On the other hand, if A(ω) = 1, i.e., we have the Hammerstein system, and from (12.157) and (12.158)

SY UU (ω1, ω2)SUU (ω1 + ω2)
SY U (ω1 + ω2)SUU (ω1)SUU (ω2)

=
β

α
. (12.165)

Hence, the constancy of the expressions on the left-hand-side of (12.164) and (12.165) can be utilized (once
the formulas are estimated from training data) to form test statistics to verify the plausibilities of the
respective systems.

Regarding the nonlinear part of the sandwich system we can combine the general solution given in Theo-
rem 12.4 and the estimation technique from Section 12.2.4 that employs the Hermite orthogonal polynomials.
Unfortunately, the result of Theorem 12.4 forces us to assume that the input signal is white Gaussian. More-
over, the input linear system must be of finite memory. Hence, without loss of generality, let p = 1, i.e., we
have Xn = Un+aUn−1. Then an estimate of g(•) can be obtained by averaging an estimate of the regression
function r2(u0, u1) = E{Yn|Un = u0, Un−1 = u1}. Thus, we have (see Theorem 12.4)

ĝ(x) = n−1
n∑
i=1

{r̂2(x− âUi, Ui)− r̂2(−âUi, Ui)} , (12.166)

where â is a certain estimate of the parameter a of the input linear system. Note that in this case A(ω) =
1 + aeiω, i.e., a = A(0)− 1 and a can easily be determined from the aforementioned algorithm for recovering
A(ω); see the discussion following (12.161).

Furthermore, since the input is Gaussian we can apply in (12.166) the estimate r̂2(u0, u1) defined in
(12.143), i.e., we have

r̂2(u0, u1) =
N∑
k=0

k∑
`=0

âk−`,`h̄k−`(u0)h̄`(u1) (12.167)
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and

âk,` = n−1
n∑
j=2

Yj h̄k(Uj)h̄`(Uj−1).

Since the averaging operation reduces the variance of a nonparametric estimate (see Chapter 13 for further
discussion of this issue), we can conclude (see the discussion below Theorem 12.7) that estimate ĝ(x) in
(12.166) can reach the optimal rate of convergence Op(n−2/5) for twice differentiable nonlinearities defined
on a finite interval. The extension of the estimate in (12.166) to the input linear system with the memory
length p > 1 is straightforward. In fact, we can apply the result of Theorem 12.4 and then an orthogonal series
estimate of the p + 1-dimensional regression function rp+1(u0, . . . , up) = E{Yn|Un = u0, . . . , Un−p = up}.
The latter is a multivariate extension of (12.167) , i.e.,

r̂p+1(u0, . . . , up) =
∑

0≤k≤N

âkh̄k0(u0) · · · h̄kp(up)

with

âk = n−1
n∑

j=p+1

Yj h̄k0(Uj) · · · h̄kp(Uj−p),

where we used the multi-index notation k = (k0, . . . , kp).

12.2.6 Convergence of identification algorithms

In this section we establish conditions for convergence of a nonparametric identification algorithm for recov-
ering the system nonlinearity m(•, •) of the system depicted in Fig. 12.17. We use the result of Theorem 12.3
which allows us to propose the following plug-in estimate of m(u, v):

m̂(u, v) = r̂2(u, v)− λ̂1r̂1(v) + c, (12.168)

where the constant c is specified in Theorem 12.3. Moreover, r̂2(u, v) and r̂1(v) are certain nonparametric
estimates of the regression functions r2(u, v) and r1(v), respectively. Next, λ̂1 is the cumulant based estimate
of λ1 discussed in Section 12.2.3, see formula (12.104). The constant c in (12.168) can be eliminated if either
E{m(U1, U0)} = 0 or m(0, 0) = 0. In the latter case one must modify the estimate m̂(u, v) in (12.168) as
follows

m̂(u, v) = {r̂2(u, v)− r̂2(0, 0)} − λ̂1 {r̂1(v)− r̂1(0)} . (12.169)

In this section we make use of the standard kernel regression estimate (see Chapter 3) although other
nonparametric techniques can be easily applied. Hence, we define

r̂2(u, v) =
n−1

∑n
j=2 YjKh(u− Uj)Kh(v − Uj−1)

n−1
∑n
j=2Kh(u− Uj)Kh(v − Uj−1)

, (12.170)

and

r̂1(v) =
n−1

∑n
j=1 YjKh(v − Uj)

n−1
∑n
j=1Kh(v − Uj)

, (12.171)

as the kernel estimates of the regression functions r2(u, v) and r1(v), respectively. HereKh(u) = h−1K(h−1u),
where h is the bandwidth (smoothing parameter) and K(u) is an admissible kernel function (see Chapter 3).
Note that r̂2(u, v) in (12.170) is the two-dimensional version of the kernel estimate, where the bivariate kernel
Kh(u, v) is of the product form, i.e., Kh(u, v) = Kh(u)Kh(v). See Chapter 13 for a further discussion on the
issue of estimating multivariate functions.

The goal of this section is to provide a detailed proof of the convergence of the estimate m̂(u, v) to
the true nonlinearity m(u, v). We also examine the issue of the convergence rate and show that the kernel
estimate m̂(u, v) tends to m(u, v) with the optimal rate. Let f(•) denote the density function of the input
signal {Un}. For our future developments we need the following technical lemma.
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Lemma 12.4 Let {(Vi,Ki)} be a sequence of independent and identically distributed random vectors in R2

such that E(V 2
0 ) + E(K2

0 ) <∞. Let

Wn =
n∑

i=−∞
χn−iVi

be a linear process with
∑∞
i=0 |χi| <∞. Then for t ≥ 1

cov(WtKt,W0K0) = E2(K0) var(V0)
∞∑
i=1

χiχi+t

+ E(K0)E(V0) cov(K0, V0)χt
∞∑
i=1

χi + E(K0) cov(V0K0, V0)χ0χt.

The proof of this result can be obtained by straightforward algebra.
We shall also employ the general fact that for a stationary stochastic process {Xi} with a finite second

moment we have

var(X1 + · · ·+Xn) = n var(X1) + 2
n−1∑
j=1

(n− j) cov(X0, Xj). (12.172)

The next result provides the way of handling the variance of the sum of a p-dependent random sequence,
i.e., any two terms of the sequence are independent if the difference between their subscripts is larger than
p.

Lemma 12.5 Let ξ1, ξ2, . . . be a sequence of random variables such that Eξi = 0, Eξ2
i < ∞, i = 1, 2, . . ..

Assume that for a nonnegative integer p the random variables ξi and ξj are independent whenever |i−j| > p.
Then for n > p

E

 n∑
j=1

ξj

2

≤ (p+ 1)
n∑
j=1

Eξ2
j .

Proof of Lemma 12.5 : Let us block the process {ξj} into groups of independent random variables, i.e.,

n∑
j=1

ξj = {ξ1 + ξp+2 + · · · }+ {ξ2 + ξp+3 + · · · }+ · · · {ξp+1 + ξ2p+2 + · · · } ,

where each block has
⌊

n
p+1

⌋
elements. Then

E

 n∑
j=1

ξj

2

≤ (p+ 1)
[
E (ξ1 + ξp+2 + · · · )2 + E (ξ2 + ξp+3 + · · · )2 + · · ·E (ξp+1 + ξ2p+2 + · · · )2

]

= (p+ 1)
n∑
j=1

Eξ2
j .

This concludes the proof of Lemma 12.5. �

We need the following assumptions on the system nonlinearity m(•, •) and the linear subsystem charac-
teristic {λj}:

E{m2(U1, U0)} < ∞, (12.173)
∞∑
j=0

λ2
j < ∞. (12.174)
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Furthermore, we employ a class of bounded kernels that meets the following condition (see Chapter 3 for
further facts about admissible kernels):∫ ∞

−∞
|K(u)|du <∞, |u| |K(u)| → 0 as |u| → ∞. (12.175)

For such kernels we can establish, as shown in Appendix A (see also Chapter 13 for a further discussion on
multivariate kernels), that if

∫∫
R2 |ϕ(u, v)|du dv <∞ then

h−2

∫∫
R2
ϕ(ξ1, ξ2)K

(
u− ξ1
h

)
K

(
v − ξ2
h

)
dξ1 dξ2 → ϕ(u, v)

{∫ ∞
−∞

K(u)du
}2

as h→ 0, (12.176)

at every point (u, v) of continuity of ϕ(•, •).
Now we are in a position to form the theorem concerning the consistency of the kernel estimate m̂(u, v)

of m(u, v).

Theorem 12.9 Let the assumptions of Theorem 12.3 be satisfied. Suppose that conditions (12.173)- (12.175)
hold. Let m(•, •) and f(•) be bounded and continuous functions. If

h→ 0 and nh2 →∞ (12.177)

then
m̂(u, v)→ m(u, v), (P ) as n→∞,

for every point (u, v) at which f(u)f(v) > 0.

Proof of Theorem 12.9 : Owing to Theorem 12.3 let us first note that

r2(u, v) = m(u, v) + λ1

∫ ∞
−∞

m(u, z)f(z)dz + c1 (12.178)

and
r1(v) =

∫ ∞
−∞

m(v, z)f(z)dz + c2, (12.179)

where the constants c1 and c2 can easily be derived from the proof of Theorem 12.3. Hence by (12.178) and
(12.179) the smoothness of the regression functions r2(u, v) and r1(v) is determined by the smoothness of
the nonlinearity m(u, v) and the input density f(u). In fact, if m(u, v) is a continuous and bounded function
on R2 then by Lebesgue’s dominated convergence theorem we can conclude that the integral∫ ∞

−∞
m(v, z)f(z)dz

is a continuous function in v. Consequently, both regression functions r2(u, v) and r1(v) are continuous. By
virtue of (12.168) it suffices to consider the convergence of the estimate r2(u, v) in (12.170). The estimate
r̂2(u, v) is of the ratio form, i.e.,

r̂2(u, v) =
an(u, v)
bn(u, v)

, (12.180)

where

an(u, v) = n−1
n∑
j=2

YjKh(u− Uj)Kh(v − Uj−1),

and bn(u, v) is defined by the denominator of (12.170). First note that

E{an(u, v)} = E{YnKh(u− Un)Kh(v − Un−1)}

=
∫∫

R2
r2(u1, u0)Kh(u− u1)Kh(v − u0)f(u0)f(u1)du0du1. (12.181)
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By (12.176) we can readily conclude that the integral in (12.181) tends to

r2(u, v)f(u)f(v)
{∫ ∞
−∞

K(u)du
}2

as h→ 0. (12.182)

Let us express an(u, v) in the following form:

an(u, v) = n−1
n∑
j=2

YjKj ,

where Kj = Kh(u − Uj)Kh(v − Uj−1). We need to show that var an(u, v) → 0. First, it follows from
Yn = Wn + Zn that

an(u, v)− Ean(u, v) = n−1
n∑
j=2

{WjKj − E (WjKj)}+ n−1
n∑
j=2

ZjKj . (12.183)

The second term in (12.183) has a zero mean. Next, the second moment of this term is equal to

n−2(n− 1)E(Z2
1 )E(K2

1 ) ≤ E(Z2
1 )(nh2)−1h−2E

{
K2

(
u− U1

h

)
K2

(
v − U0

h

)}
.

By virtue of (12.176) we have

h−2E

{
K2

(
u− U1

h

)
K2

(
v − U0

h

)}
→ f(u)f(v)

{∫ ∞
−∞

K2(u)du
}2

as h→ 0.

Thus, under the condition (12.177) we have shown that the second term in (12.183) tends (P ) to zero as
n→∞.

Let us now consider the first term in (12.183). We begin with the observation that Wj =
∑∞
t=0 λtVj−t

defines the linear stationary process with 1-dependent residuals {Vt = m(Ut, Ut−1)}. Let us assume, without
loss of generality, that EVt = 0. Then, due to Lemma 12.5 we get

EW 2
j ≤ 2EV 2

1

∞∑
t=0

λ2
t .

By this, the stationarity of {Wj}, and (12.172), we can express the second moment of the first term in
(12.183) in the following way:

n−2(n− 1) var(WnKn) + n−2
n−2∑
t=1

(n− 1− t) cov(WtKt,W0K0) = Pn(u, v) +Rn(u, v). (12.184)

To evaluate the term Pn(u, v) let us denote ηn =
∑∞
j=2 λjVn−j . Then, we have

Pn(u, v) ≤ 2n−1 var{(λ0Vn + λ1Vn−2)Kn}+ 2n−1 var{ηnKn}
≤ 4λ2

0n
−1 var{VnKn}+ 4λ2

1n
−1 var{Vn−1Kn}+ 2n−1 var{ηnKn}

≤ 4λ2
0n
−1E{V 2

nK
2
n}+ 4λ2

1n
−1E{V 2

n−1K
2
n}+ 2n−1 var{ηn}EK2

n, (12.185)

where we note that ηn is independent of Kn. Owing to (12.176) we have

n−1E{V 2
nK

2
n} = (nh2)−1h−2E

{
m2(Un, Un−1)K2

(
u− Un
h

)
K2

(
u− Un−1

h

)}
≈ (nh2)−1m2(u, v)f(u)f(v)

{∫ ∞
−∞

K2(u)du
}2

as h→ 0.
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By analogous derivations the second and third terms in (12.185) are of order

(nh2)−1f(u)f(v)E{m2(v, U0)}
{∫ ∞
−∞

K2(u)du
}2

and

(nh2)−1f(u)f(v)
{∫ ∞
−∞

K2(u)du
}2

,

respectively. Hence, we have shown that

Pn(u, v) = O
((
nh2

)−1
)
. (12.186)

In order to evaluate the term Rn(u, v) in (12.184) let us write

Wt = W e
t +W o

t , (12.187)

where W e
t =

∑t
j=−∞ λt−2jV2j and W o

t =
∑t
j=−∞ λt−(2j+1)V2j+1. Analogously let W0 = W e

0 + W o
0 . It is

important to note that W e
t , W o

t , W e
0 , and W o

0 are linear processes with independent residuals. Using the
decomposition in (12.187) we can represent the covariance cov(WtKt,W0K0) in (12.184) as follows

cov(WtKt,W0K0) = cov(W e
t Kt,W

e
0K0) + cov(W e

t Kt,W
o
0K0)

+ cov(W o
t Kt,W

e
0K0) + cov(W o

t Kt,W
o
0K0). (12.188)

The terms in the above formula can be directly evaluated by the application of Lemma 12.4. In fact, for
cov(W e

t Kt,W
e
0K0) we have

cov(W e
t Kt,W

e
0K0) = E(K0)E(V 2

0 K0)ξ0ξt + E2(K0)E(V 2
0 )
∞∑
i=1

ξiξi+t,

where ξi = λ for i = 0, 2, 4, . . ., and ξi = 0 otherwise. Hence the covariance cov(W e
t Kt,W

e
0K0) is a function

of the time lag t. Moreover, by virtue of (12.176)

E(V 2
0 K0)→ m2(u, v)f(u)f(v)

{∫ ∞
−∞

K2(u)du
}2

as h→ 0

and

E(K0)→ f(u)f(v)
{∫ ∞
−∞

K2(u)du
}2

as h→ 0.

The remaining terms in (12.188) can be treated in the identical way. As a result

Rn(u, v) = n−2(n− 1)
n−2∑
t=1

(
1− t

n− 1

)
γ(t),

where the sequence γ(t) can be written in an explicit way and due to (12.174)
∑∞
t=1 |γ(t)| < ∞. Then, by

Cesàro’s summability theorem we can conclude that Rn(u, v) = O(n−1). Thus, we have shown that

an(u, v)→ r2(u, v)f(u)f(v)
{∫ ∞
−∞

K(u)du
}2

(P ) as n→∞.

Moreover, we have
var{an(u, v)} = O

((
nh2

)−1
)
. (12.189)

By analogous considerations we can prove that the term bn(u, v) in (12.180) tends (P ) to

f(u)f(v)
{∫ ∞
−∞

K(u)du
}2

.
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This proves that
r̂2(u, v)→ r2(u, v)(P ) as n→∞.

In the identical way we can obtain r̂1(v)→ r1(v)(P ) as n→∞. Furthermore, we know that λ̂1 → λ1(P ) as
n→∞. Then recalling (12.168) and Theorem 12.3 we can conclude the proof of Theorem 12.9. �

The result of Theorem 12.9 can be used to evaluate the rate at which m̂(u, v) converges to m(u, v).
Indeed, by virtue of (12.168) we note that

m̂(u, v)−m(u, v) = (r̂2(u, v)− r2(u, v))− λ1(r̂1(v)− r1(v))− (λ̂1 − λ1)r̂1(v). (12.190)

Since λ̂1−λ tends to zero with the parametric rate OP (n−1/2), it is sufficient to examine the first two terms
in (12.190). The most critical is the first term since it represents the error of estimating a function of two
variables, whereas the second term concerns a function of a single variable. Hence, let us evaluate the rate
at which r̂2(u, v)− r2(u, v)→ 0. To do so, we use the representation of r̂2(u, v) in (12.180) and the following
identity (we called this the “ratio-trick” in (12.46)):

r̂2(u, v)− r2(u, v) =
an(u, v)− r2(u, v)bn(u, v)

f(u)f(v)
+ (r̂2(u, v)− r2(u, v))

f(u)f(v)− bn(u, v)
f(u)f(v)

, (12.191)

where, without loss of generality, we assumed that
∫∞
−∞K(u)du = 1. Owing to Theorem 12.9, the rate at

which r̂2(u, v) − r2(u, v) → 0 is controlled by the first term in (12.191). First, the proof of Theorem 12.9
reveals (see (12.189)) that the variance of the first term is of order O((nh2)−1). Regarding the bias we know
that some smoothness conditions on m(•, •) and f(•) must be assumed. Hence, let m(•, •) and f(•) have
two continuous and bounded derivatives on their support sets. Let for a general kernel function K(•, •) on
R2 consider the following convolution integral

h−2

∫∫
R2
ϕ(ξ1, ξ2)K

(
u− ξ1
h

,
v − ξ2
h

)
dξ1 dξ2, (12.192)

where ϕ(•, •) has two continuous and bounded derivatives. The kernel K(•, •) is a symmetric function with
respect to both arguments and

∫∫
R2 K(u, v)du dv = 1,

∫∫
R2(u2 + v2)K(u, v)du dv < ∞. Then by Taylor’s

formula the convolution in (12.192) is given by

ϕ(u, v) +
h2

2

[
∂2ϕ(u, v)
∂u2

∫∫
R2
ξ2
1K(ξ1, ξ2)dξ1 dξ2 +

∂2ϕ(u, v)
∂v2

∫∫
R2
ξ2
2K(ξ1, ξ2)dξ1 dξ2

]
+ o(h2). (12.193)

If K(•, •) is a product kernel then (12.193) takes the following form:

ϕ(u, v) +
h2

2

[
∂2ϕ(u, v)
∂u2

+
∂2ϕ(u, v)
∂v2

] ∫ ∞
−∞

ξ2K(ξ)dξ + o(h2). (12.194)

Application of (12.194) to the first term in (12.191) with ϕ(u, v) = r2(u, v)f(u)f(v) (for the evaluation of
the term an(u, v)) and ϕ(u, v) = f(u)f(v) (for the evaluation of the term bn(u, v)) yields

Er̂2(u, v)− r2(u, v) = O(h2). (12.195)

Hence, by the aforementioned discussion, (12.190), and the fact that var r̂2(u, v) = O((nh2)−1) we obtain
the next theorem on the convergence rate of the estimate m̂(u, v).

Theorem 12.10 Let all the assumptions of Theorem 12.9 hold. Let m(•, •) and f(•) have two continuous
and bounded derivatives on their support sets. Suppose that the kernel function K(•) is symmetric and∫∞
−∞ u2K(u)du <∞. If

h = cn−1/6

then
m̂(u, v) = m(u, v) +OP (n−1/3), (12.196)

for every point (u, v) at which f(u)f(v) > 0.
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It is worth noting that the second term in (12.190) tends to zero with the rate OP (n−2/5). The rate
in (12.196) is known to be optimal for estimating functions of two variables possessing two continuous
derivatives. It is clear that this is a faster rate than that in (12.196). Furthermore, our method of proof is
based on the “ratio-trick” which immediately gives the mean squared error rate, i.e., we have

E{m̂(u, v)−m(u, v)}2 = O(n−2/3).

The result in (12.196) can be extended to the case when m(•, •) and f(•) have s, s ≥ 1, continuous and
bounded derivatives. To do so we need (in addition to the conditions of Theorem 12.9) the kernel function
K(•) of the sth order, i.e., K(•) meets the following restrictions:∫ ∞

−∞
uiK(u)du = 0, i = 1, 2, . . . , s− 1

and ∫ ∞
−∞
|usK(u)|du <∞.

In Chapter 3 (see also Appendix A) we provide a simple method for obtaining kernel functions of higher
order. Under the above conditions we can show (using the technique identical to that used in the proof of
Theorem 12.10) that if

h = cn−
1

2(s+1)

then
m̂(u, v) = m(u, v) +OP

(
n−

s
2(s+1)

)
(12.197)

for every point (u, v) at which f(u)f(v) > 0. Clearly the mean squared error is O
(
n−

2s
2(s+1)

)
. It is also

worth noting that the rate OP (n−1/4) for s = 1 corresponds to the case when m(•, •) and f(•) are Lipschitz
continuous functions.

The technical arguments used in proving Theorems 12.9 and 12.10 can be carried over to the case of
the system with nonlinear dynamics of order p. Then (see Remark 12.5) one must estimate the p + 1-
dimensional regression function resulting in the following rate for recovering the system nonlinearity (for
twice differentiable nonlinearities and input density functions):

OP

(
n−

2
p+5

)
. (12.198)

This rate reveals an apparent increase of the estimation error with p. This is the well-known curse of
dimensionality that is present in any multivariate estimation problem. To appreciate this phenomenon let
us calculate the sample size N ≥ n required for the system with nonlinear dynamics of order p > 1 to
have the identical accuracy as the system of order p = 1. Hence owing to (12.196) and (12.198) we have
N−

2
p+5 = n−

1
3 , i.e., N = nαp, where α = (p + 5)/6p. Since 1/6 < α ≤ 1 we can conclude that to obtain

a given degree of precision of a nonparametric estimate, the sample size must grow exponentially with the
system order p. Hence, as we have already mentioned, the system with the input memory length p = 1, 2 is
sufficient for most practical cases. The long memory effects are taken care of by the linear subsystem which
we allow to have an infinite memory.

12.3 Concluding remarks

In Section 12.2 we examined the generalization of the Hammerstein system that includes the nonlinearity
possessing its own memory. This model has been shown to be very fruitful since it generalizes a number of
important structures, e.g., the Wiener and sandwich systems. One can also propose a generalized Wiener
model being a counterpart of the system in Fig. 12.17, i.e., the model depicted in Fig. 12.21. Here the
input-output description of the system is given by

Yn = m(Vn, . . . , Vn−p) + Zn, (12.199)
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Yn

Un

Wn

∆ Zn

∆ m(•, •, . . . , •)

•
•
•

{λi}
Vn

Vn−1

Vn−2

Vn−p

Figure 12.21: The Wiener system with the nonlinear dynamics of order p.

where Vn =
∑∞
j=0 λjUn−j .

This seems to be an attractive alternative to the system in Fig. 12.17 with the input nonlinear dynamics.
Unfortunately, the system in (12.199) is not identifiable for most common cases. Indeed, by taking

m(Vn, Vn−1, . . . , Vn−p) = g

Vn +
p∑
j=1

ajVn−j

 ,

we have
Yn = g(an ∗ λn ∗ Un) + Zn,

i.e., there are two linear systems in a series connection and this defines a non-identifiable system.
There exists a broad class of nonlinear systems which can be tackled by the nonparametric regression

approach. These systems do not have a block-oriented structure and their interpretability and flexibility to
use in practice can be very limited. In particular, one can consider the following nonlinear counterpart of
ARMA models :

Yn = m(Yn−1, Yn−2, . . . , Yn−q, Un, Un−1, . . . , Un−p) + Zn, (12.200)

where m(•, . . . , •) is a p+ q + 1 - dimensional function and {Zn} is a measurement noise. The nonlinearity
m(•, . . . , •) is a regression function of Yn on the past outputs Yn−1, Yn−2, . . . , Yn−q and the current and past
inputs Un, Un−1, . . . , Un−p. Thus, it is a straightforward task to form a multivariate nonparametric regression
estimate of m(•, . . . , •), see (12.170) and Chapter 13. The convergence analysis of such an estimate will
strongly depend on the stability conditions of the nonlinear recursive difference equation

yn = m(yn−1, yn−2, . . . , yn−q, un, un−1, . . . , un−p).

With this respect, a fading-memory type assumption along with the Lipschitz continuity of m(•, . . . , •) seem
to be sufficient for the consistency of nonparametric regression estimates. Nevertheless, the accuracy of
nonparametric regression estimates will be greatly limited by the apparent curse of dimensionality. In fact,
for m(•, . . . , •) being a Lipschitz continuous function the best possible rate can be

OP

(
n−

1
3+p+q

)
.

For the second order system (q = p = 2) this gives a very slow rate of OP (n−1/7). To improve the accuracy
we can apply the system introduced in Section 12.2 which can be viewed as a parsimonious approximation
of the system (12.200). An alternative approach could be based on an additive approximation of (12.200),
i.e., one can consider the following additive system:

Yn = m1(Yn−1) +m2(Yn−2) + · · ·+mq(Yn−q) + g0(Un) + g1(Un−1) + · · ·+ gp(Un−p) + Zn, (12.201)

where mi(•)’s and gj(•)’s are univariate functions. The estimation of such a system is much simpler than
the model in (12.200) and consists of estimating the individual one-dimensional components {mi(•), gj(•)}.
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In fact, we can expect (assuming that all of the nonlinearities in (12.201) are Lipschitz) the optimal rate
OP (n−1/3) (independent of p and q) for recovering the additive system. Furthermore, in (12.201) the
nonlinear contribution of input signals Un, Un−1, . . . , Un−p and the past outputs Yn−1, Yn−2, . . . , Yn−q can
easily be monitored and displayed. Nonlinear autoregressive time series models have been extensively studied
in the statistical literature; see [105,402,403] for a review of this topic. In particular, nonparametric inference
for these models has been initiated by Robinson [356]. Nonlinear additive time series structures have been
considered in [52]. We examine additive systems of the block-oriented form in Chapter 13.

Thus far it has been assumed that during the time of data measuring, the set of generating units and the
structure of receivers do not change, hence nonlinearities and dynamic characteristics of the underlying sys-
tem remain unchanged. An interesting extension of the aforementioned systems would relax this assumption
and examine time-varying counterparts of block-oriented systems.

12.4 Bibliographical remarks

Series-parallel connections introduced in Section 12.1 have been examined in the parametric framework in a
number of contributions, see [22], [299], [51], [18], [432], and the references cited therein. The nonparametric
regression approach to identifying the parallel system was proposed in [192], and next studied in [195].
Nonparametric kernel and orthogonal series algorithms were examined and their convergence properties were
established. Nonparametric techniques for series-parallel models with nuisance characteristics were studied
in [230], see also [232]. In [349] a parallel-series model with polynomial nonlinearities was investigated,
whereas the Uryson model was discussed in [108].

Generalized nonlinear block-oriented models of Section 12.1.4 were first introduced in [331], see also [230],
[232], [231], and [332] for further studies.

Block-oriented systems with nonlinear dynamics examined in Section 12.2 generalize a number of previ-
ously examined connections and have been mentioned and applied by several authors [360], [97], [195], [450],
[334], and recently re-examined in [95] . No consistent estimates of the system characteristics have been
established. A fully nonparametric approach to the identification of these generalized models has been de-
veloped and thoroughly examined in [326]. The theory of cumulants and its use in nonlinear system analysis
and nonlinear signal processing is presented in [37], [313], [300]. Bussgang’s invariance theorem, originally
proved for a single input nonlinear static element excited by a stationary Gaussian process, was extended
to the multivariate case by Brillinger [36] . This seminal paper has been largely overlooked in work that
followed [377], [95]. The extension of Bussgang’s theorem to non Gaussian processes has been presented
in [16], [278], [316].

The sandwich system plays an important role in numerous applications [343], [432], and has been exam-
ined in [22], [254], [36], [452]. A parametric class of nonlinearities has been assumed. The basic theorem
assuring that from input-output measurements alone, we can extract information about the internal struc-
ture of the sandwich system, was proved in [33]. A fully nonparametric method for recovering the system
nonlinearity is presented in [327].

The problem of finding optimal linear approximations of nonlinear systems has been recently tackled
in [294], [95], [379].

The class of nonlinear systems defined in (12.200) has been examined in the control engineering literature
under the name NARMAX models [53,54]. Mostly parametric estimation techniques have been investigated,
see, however, [338] for a nonparametric approach to such systems. The nonparametric inference of nonlinear
autoregressive type time series models has been thoroughly studied in the statistical literature [52,105,356,
402,403].
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Chapter 13

Multivariate nonlinear block-oriented
systems

Thus far we have examined the identification problem for block-oriented systems of various forms which
are characterized by a one-dimensional input process. In numerous applications we confront the problem
of identifying a system which has multiple inputs and multiple interconnecting signals. The theory and
practical algorithms for identification of multivariate linear systems have been thoroughly examined in the
literature [451]. On the other hand, the theory of identification of multivariate nonlinear systems has
been far less explored. This is mainly due to the mathematical and computational difficulties appearing
in multivariate problems. In this chapter, we examine some selected multivariate nonlinear models which
are natural generalizations of the previously introduced block-oriented connections. An apparent curse of
dimensionality that takes place in high-dimensional estimation problems forces us to focus on low-dimensional
counterparts of the classical block-oriented structures. In particular, we examine a class of additive models
which provide a parsimonious representation for multivariate systems. Indeed, we show that the additive
systems provide simple and interpretable structures which also give a reasonable trade-off between the
systematic modeling error and the estimation error of an identification algorithm. The theory of finding an
optimal additive model is examined.

13.1 Multivariate nonparametric regression

As in all the previous chapters we will make use of the notion of a regression function. We need the
extension of this concept to the multidimensional case. Hence, let (U, Y ) be a random vector taking values
in Rd × R. Then the conditional moment m(u) = E{Y |U = u} is referred to as the regression function of
Y on the random vector U. If E|Y | <∞ then m(u) is a well defined unique measurable function such that
E|m(U)| < ∞. If, in addition, EY 2 < ∞ then m(U) can be interpreted as the orthogonal projection of Y
onto the closed subspace of all random variables Z = ψ(U) such that EZ2∞. In particular, m(u) solves the
problem of the minimum mean squared error prediction of Y given ψ(U), i.e.,

m(•) = arg min
ϕ
E(Y − ψ(U))2,

where the minimum is taken with respect to all measurable functions ψ(•) from Rd to R, such that Eψ2(U) <
∞. If there is not any a priori information about the form of m(•) then we are dealing with the case of
nonparametric regression which can be estimated by a number of local smoothing techniques. Hence, let
{(U1, Y1), . . . , (Un, Yn)} be a training set drawn from the same distribution as (U, Y ). Throughout this
chapter we assume that the process {Un, Yn} is stationary and therefore the regression function E{Yn|Un =
u} does not vary with time.

A generic form of a general class of kernel methods for estimating m(u) can be written as follows:

m̂(u) =
n−1

∑n
i=1 YiKB(u,Ui)

n−1
∑n
i=1KB(u,Ui)

, (13.1)

175



176 CHAPTER 13. MULTIVARIATE NONLINEAR BLOCK-ORIENTED SYSTEMS

where KB(u,v) is a kernel function defined on Rd × Rd and B is a smoothing “parameter” that scales the
kernel. The parameter B can have various multidimensional forms, i.e., B can be a symmetric positive-
definite matrix which allows us to adapt to the linear dependence structure between the coordinates of u
and {Ui}. A simpler form of the bandwidth assumes that B is a diagonal matrix with elements (b1, . . . , bd).
Such a choice provides adjustment for different scales in the coordinates of u and {Ui}. The simplest choice
specifies a single global bandwidth b for all the coordinates.

There are numerous forms of kernel functions in the d-dimensional space. A common choice is the
convolution kernel

KB(u,v) = KB(u− v), (13.2)

where the scaling provided by the bandwidth matrix B, is such that KB(u− v) = |B|K(B(u− v)), where
K(•) is the “scale-free” kernel function. The convolution kernels are invariant to translations in an input
space and they define the classical kernel regression estimate.

Two common forms of K(•) in (13.2) are radial and product types of kernels. In the former choice a
kernel depends on the distance between the arguments, i.e., K(u− v) = K(‖u− v‖). In the latter a kernel
is a product of univariate kernels applied to the individual coordinates of the vector u = (u1, . . . , ud)T , i.e.,

K(u) = K1(u1) · · ·Kd(ud), (13.3)

where K1(•), . . . ,Kd(•) are various admissible kernel functions (see Chapter 3 and Appendix A). It is
worth mentioning that the kernel estimate m̂(u) in (13.1) equipped in the convolution kernel of the product
form (13.3) is invariant under different scaling factors of the input random vector U. This property is
desirable from the practical point of view, since the components of U may represent various incommensurable
characteristics.

Figure 13.1 shows the bivariate kernel of the product form Kh(u1, u2) = h−1
1 K1(h−1

1 u1)h−1
2 K2(h−1

2 u2)
scaled by the bandwidth vector h = (h1, h2). Here K1(u) = (2π)−1/2e−u

2/2 is the Gaussian kernel and
K2(u) = 3

4 (1− u2)1(|u| ≤ 1) is the optimal Epanechnikov kernel (see Chapter 3). The bandwidth vector is
set to the following values:

(h1, h2) = {(1, 1), (1, 0.25); (0.25, 1), (0.25, 0.25)}.
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Figure 13.1: Two-dimensional product kernels for (h1, h2) ∈ {(1, 1), (1, 0.25); (0.25, 1), (0.25, 0.25)}.

A rich class of non convolution kernels can be obtained from orthogonal representations of a multivariate
functions, see Appendix B for a related discussion on the one-dimensional case. The kernel function KB(u,v)
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generated by an orthonormal system {wk(u)} is of the form

KB(u,v) =
∑
|k≤B

wk(u)wk(v), (13.4)

where B is the truncation parameter vector, and {wk(u),k ≥ 0} is an orthonormal basis with respect to
some weight function λ(u) defined on the set Ω ⊆ Rd. Hence,∫

Ω

wk(u)wr(u)λ(u)du = δkr.

The notation |k| for the multi-index k = (k1, . . . , kd) denotes the norm. The vector summation in (13.4)
may have different meanings depending on the notion of the norm used for the multi-index k. For example,
the norm |k| = max(k1, . . . , kd) yields the cubic summation with a single truncation parameter B. Other
summation types may need a several truncation parameters. The choice of the weight function λ(u) is
essential for generating various forms of orthonormal systems in Ω ⊆ Rd. The simplest choice is to use a
product weight, i.e.,

λ(u) = λ1(u1) · · ·λd(ud), (13.5)

where {λi(u), 1 ≤ i ≤ d} are well-defined univariate weight functions. This yields the concept of the tensor
product orthonormal systems, i.e., then we have

wk(u) = w1
k1(u1) · · ·wdkd(ud), (13.6)

where {wik(u), k ≥ 0} defines an orthonormal basis on Ωi ⊆ R, i = 1, . . . , d (with respect to the weight λi(u)),
such that Ω = Ω1× · · · ×Ωd. This is a particularly simple way of generating multivariate orthonormal bases
and corresponding kernel functions. This also allows us to design an appropriate support for the input
variable u. For example, in two dimensions, we can define the following orthonormal system:

wk1k2(u1, u2) = pk1(u1)lk2(u2), k1, k2 ≥ 0, (13.7)

where {pk(u)} and {lk(u)} are Legendre and Laguerre orthonormal polynomials, respectively (see Ap-
pendix B). This defines the orthonormal basis on the set Ω = [−1, 1] × [0,∞). In Fig. 13.2 we depict
a collection of the polynomials in (13.7) for (k1, k2) ∈ {(2, 0), (2, 2), (3, 1); (4, 0), (4, 2), (8, 4)}. It is also pos-
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Figure 13.2: Density plots of the polynomials pk1(u1)lk2(u2), −1 ≤ u1 ≤ 1, 0 ≤ u2 ≤ 10.

sible to construct non-product orthogonal systems by using a general weight function. For example, a radial
weight function of the form wk(u) = c(1 − ‖u‖2)1(‖u‖ ≤ 1) yields a class of orthogonal Appell polynomi-
als within the unit ball {u : ‖u‖ ≤ 1}, see [89] for an extensive study of the theory of multidimensional
orthogonal polynomials.
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Let us now turn to the problem of the statistical accuracy of nonparametric regression estimates. The
consistency of nonparametric regression estimates can be obtained under very general conditions. In fact,
there exists an elegant and powerful result due originally to Stone [395], which allows us to verify the global
consistency of all nonparametric local averaging regression estimates, i.e.,

m̂(u) =
n∑
i=1

vin(u)Yi, (13.8)

where the weights {vin(u)} depend on the input data {Ui} and are often such that
∑n
i=1 vin(u) = 1. The

weights provide local smoothing and can be generated by various techniques, e.g., kernel methods, partition
type estimates or nearest neighbor rules. In fact, the kernel estimate m̂(u) in (13.1) takes the form (13.8)
with the weights

vin =
KB(u,Ui)∑n
i=1KB(u,Ui)

, i = 1, . . . , n.

Assuming that the training set {(U1, Y1), . . . , (Un, Yn)} is a sequence of independent random variables one
can show that under some general conditions on {vin(u)} the estimate (13.8) can converge to m(u) in the
L2 sense, i.e.,

lim
n→∞

E{(m̂(U)−m(U))}2 = 0. (13.9)

This is a deep result since the consistency holds for all possible distributions of (U, Y ) and no smoothness
of the regression function is required. Such distribution-free (universal) results have been verified for various
nonparametric estimates. As well, the pointwise universal properties have been established; see [204] for
extensive studies on the distribution-free theory of nonparametric regression. The situation becomes less
ideal if one relaxes the assumption of the data independence; this case is important for dynamical system
identification. Here it is known (see [204]) that if {(Un, Yn)} is a stationary and ergodic process then there
is no universally consistent regression estimate (in the sense as in (13.9)).

Yet another issue in the multivariate regression problem is the inverse relationship between the accuracy
of nonparametric estimates and the dimension. To illustrate this point, let us consider the problem of the
convergence rate for a classical kernel estimate with product type kernel functions. Let

m̂(u) =
n−1

∑n
i=1 YiKh(u−Ui)

n−1
∑n
i=1Kh(u−Ui)

, (13.10)

where
Kh(u) = h−1

1 K(h−1
1 u1) · · ·h−1

d K(h−1
d ud). (13.11)

Hence, we use a single kernel function K(u) for all coordinates and the smoothing factor varies in each
direction. We will find this kind of kernel function very versatile in our additive modeling of nonlinear
system (see Section 12.2).

For our subsequent developments concerning the convergence rate of m̂(•) in (13.10) we need the following
multidimensional counterpart of the result in Appendix A (see Section A.2.2).

Lemma 13.1 Let
ϕh(u) =

∫
Rd
Kh(u− v)ϕ(v)dv

be the convolution integral with Kh(u) =
(∏d

i=1 hi

)−1

K(h−1
1 u1, . . . , h

−1
d ud), where K(u1, . . . , ud) is the

d-dimensional kernel function such that∫
Rd
uiK(u)du = 0, i = 1, . . . , d

and ∫
Rd
uiujK(u)du =

{
0 if i 6= j
µi(K) if i = j

,

with µi(K) =
∫
Rd
u2
iK(u)du <∞.
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Suppose that ϕ(u) has two bounded derivatives. Then we have

ϕh(u) = ϕ(u) +
1
2

d∑
i=1

∂2ϕ(u)
∂u2

i

h2
iµi(K) + o

(
max

1≤i≤d

(
h2
i

))
. (13.12)

The proof of this result is standard and is based on Taylor’s expansion. Note that for the product kernel
(13.11) the factor µi(K) is equal to

∫
R
u2K(u)du <∞ for all i = 1, . . . , d.

Let the kernel function K(u) in (13.11) be a symmetric function which satisfies the conditions of
Lemma A.1 in Appendix A. Let us assume that the data {(U1, Y1), . . . , (Un, Yn)} are iid. Arguing along
the lines of the analysis given in Chapter 3 (see also the proof of Theorem 12.10) we can show that if the
regression function m(u) and the input density f(u) are continuos then

var{m̂(u)} =
1

nh1 · · ·hd
ν(K)

σ2(u)
f(u)

(1 + o(1)) (13.13)

at every point u where f(u) > 0. Here σ2(u) = var{Y |U = u} and ν(K) =
(∫
R
K2(z)dz

)d.
To evaluate the bias of m̂(u) we can decompose m̂(u) as in (12.46) in Chapter 12 and then apply

Lemma 13.1. Hence, assuming that m(u) and f(u) have two bounded derivatives, then at every point u
where f(u) > 0 we have

Em̂(u) = m(u) +
1
2
µ(K)

d∑
i=1

ψi(u)h2
i + o

(
max

1≤i≤d

(
h2
i

))
, (13.14)

where µ(K) =
∫
R
u2K(u)du and ψi(u), i = 1, . . . , d, are some bounded functions.

Combination of (13.13) and (13.14) can readily lead to a formula for the mean squared error. This can
be minimized with respect to the bandwidth vector h = (h1, . . . , hd) yielding the optimal choice

h∗i = ain
−1/(4+d), (13.15)

for some positive constants ai, i = 1, . . . , d.
Hence, the asymptotic choice of the different bandwidths is almost identical (up to the multiplicative

constant). Plugging (13.15) into the mean squared error gives the rate

E{m̂(u)−m(u)}2 = O
(
n−

4
4+d

)
. (13.16)

This is rather a pessimistic result since the convergence rate is inversely proportional to the dimensionality
of the input variable. In the next section we examine low dimensional approximations of fully nonparametric
regression in order to mitigate the dimensionality problem.

13.2 Additive modeling and regression analysis

Fully nonparametric regression models in multivariate systems suffer the curse of dimensionality. In order
to ease this phenomenon we consider a class of nonparametric additive models where a multidimensional
regression function is approximated by the sum of univariate functions. We begin with a function approxi-
mation result that describes how to find an orthogonal projection of a function of several variables onto the
subspace of additive functions.

13.2.1 Approximation by additive functions

Let us consider a class of measurable functions m(•) defined on Rd and such that∫
Rd
m2(u)w(u)du <∞, (13.17)
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where w(•) is a positive and integrable function on Rd. Let us denote a class of functions satisfying (13.17)
as L2(w). We wish to characterize a low-complexity approximation of m(•) ∈ L2(w) by means of functions
of the additive form, i.e., we seek the orthogonal projection of m(•) onto the following linear subspace:

A = {g ∈ L2(w) : g(u) = g1(u1) + · · ·+ gd(ud)}, (13.18)

where the additive components {gi(ui), 1 ≤ i ≤ d} are univariate functions. It is clear that the additive
representation is not unique since the model g(u) = g1(u1) + g2(u2) + · · · + gd(ud) is not distinguishable
from g̃(u) = {g1(u1)− c}+ g2(u2) + · · ·+ {gd(ud) + c} for any constant c. Thus we need some identifiability
conditions on {gi(ui), 1 ≤ i ≤ d} in order to find an unique additive approximation of m(•) ∈ L2(w). For
identifiability we may assume that ∫

R

gi(ui)wi(ui)dui = 0, i = 1, . . . , d. (13.19)

Here wi(•) is the marginal function of w(•), i.e.,

wi(ui) =
∫
Rd−1

w(u)du−i

where du−i denotes the integration with respect to all variables but the ith. Yet another way of making the
additive approximation unique is to require that the weighted area under the additive function g(u) is equal
to the weighted area of m(u), i.e., ∫

Rd
m(u)w(u)du =

∫
Rd
g(u)w(u)du. (13.20)

It is worth noting that (13.20) makes the choice of g(u) unique but not the choice of the individual components
{gi(ui), 1 ≤ i ≤ d}. The constrains in (13.19) give the unique choice of the individual components.

The error of the additive approximation is the squared distance in the L2(w) space. Hence let

J(m; g) =
∫
Rd

[m(u)− g(u)]2w(u)du (13.21)

for g(•) ∈ A, be the measure of the additive approximation of m(•). We wish to find g(•) ∈ A which
minimizes J(m; g). Such a solution is the orthogonal projection of m(•) onto the subspace A. The following
theorem is fundamental for our subsequent considerations as it characterizes the optimal additive model.

Theorem 13.1 Let m(•) ∈ L2(w). Suppose that w(•) is a positive and integrable function on Rd. The
unique additive function g∗(u) = g∗1(u1) + · · · + g∗d(ud) which minimizes J(m; g) is characterized by the
following system of equations:

g∗r (ur) =
∫
Rd−1

m(u)
w(u)
wr(ur)

du−r −
d∑
i6=r

∫
Rd−1

g∗i (ui)
w(u)
wr(ur)

du−r, (13.22)

subject to the constraints ∫
R

g∗r (ur)wr(ur)dur = 0, (13.23)

for r = 1, . . . , d.

It is worth noting that because g∗(•) is the orthogonal projection of m(•) onto the subspace A therefore

J(m; g∗) =
∫
Rd
m2(u)w(u)du−

∫
Rd
g∗2(u)w(u)du. (13.24)

The optimal additive approximation of m(•) is thus given by

m(u) ≈ g∗1(u1) + · · ·+ g∗d(ud),



13.2. ADDITIVE MODELING AND REGRESSION ANALYSIS 181

where {g∗r (ur)} are characterized by the solution given in (13.22) and (13.23).
It is informative to write the system of equations (13.22) in the case of functions of two variables. Hence

we have

g∗1(u1) =
∫
R

m(u1, u2)
w(u1, u2)
w1(u1)

du2 −
∫
R

g∗2(u2)
w(u1, u2)
w1(u1)

du2,

g∗2(u2) =
∫
R

m(u1, u2)
w(u1, u2)
w2(u2)

du1 −
∫
R

g∗1(u1)
w(u1, u2)
w2(u2)

du1,

with the identifiability condition
∫
R
g∗r (ur)wr(ur)dur = 0, r = 1, 2.

Proof of Theorem 13.1 : In the proof we make use of the calculus of variations. Hence, let us consider
variations in the components {gr(ur)} of the additive function g(u):

gr(ur) = g∗r (ur) + εrδr(ur), r = 1, . . . , d (13.25)

where {εr} are small positive numbers and {δr(ur)} are arbitrary functions. Inserting (13.25) in J(m; g)
we get a function J(ε1, . . . , εd) depending on (ε1, . . . , εd). The functional J(m; g) has a minimum value for
g∗(•) if

∂J(ε1, . . . , εd)
∂εr

= 0 for (ε1, . . . , εd) = (0, . . . , 0), r = 1, . . . , d.

This is equivalent to ∫
Rd

(
m(u)−

d∑
i=1

g∗i (ui)

)
δr(ur)w(u)du = 0, r = 1, . . . , d.

Because this must hold for an arbitrary choice of functions {δr(ur), r = 1, . . . , d}, it follows that

∫
Rd−1

m(u)w(u)du−r =
d∑
i=1

∫
Rd−1

g∗i (ui)w(u)du−r, r = 1, . . . , d. (13.26)

Noting that the right-hand-side of (13.26) is equal to

g∗r (ur)
∫
Rd−1

w(u)du−r +
d∑
i6=r

∫
Rd−1

g∗i (ui)w(u)du−r

we can conclude the proof of Theorem 13.1. �

A particularly simple solution of equations (13.22) and (13.23) takes place for the weight function w(u) of
the product form. Hence, if w(u) =

∏d
i=1 wi(ui) then we can observe that due to the identifiability condition

(13.23) the integral ∫
Rd−1

g∗i (ui)
w(u)
wr(ur)

du−r

appearing in (13.22) is equal to zero. This readily yields the following important result.

Theorem 13.2 Let all the conditions of Theorem 13.1 hold. Moreover, let the weight function w(u) be of
the product form w(u) =

∏d
i=1 wi(ui). Then, an unique additive function g∗(u) = g∗1(u1) + · · · + g∗d(ud)

which minimizes J(m; g) is given by the following equations:

g∗r (ur) =
∫
Rd−1

m(u)w−r(u)du−r, r = 1, . . . , d, (13.27)

where w−r(u) =
∏d
i 6=r wi(ui).
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The solution in (13.27) can be interpreted as the weighted marginal integration of the function m(u) with
respect to d − 1 variables. The identifiability condition (13.23) required for the solution (13.27) is satisfied
if the weight function w(u) is even and all the additive components are odd. This is often unrealistic for
functions m(u) which are positive on the support of w(u). Then, we can modify the solution in (13.27) by
subtracting a constant such that the global constraint in (13.20) is met. Hence, we can use

g∗r (ur) =
∫
Rd−1

m(u)w−r(u)du−r − c, (13.28)

where c = (1− d−1)
∫
Rd
m(u)w(u)du. It is easy to verify that for such a choice of c, the condition (13.20) is

satisfied. Note that we assumed, without loss of generality, that
∫
R
wr(v)dv = 1, r = 1, . . . , d. The following

examples shed some light on further aspects of additive modeling.

Example 13.1 Let us consider the function m(u) = u1 · · ·ud. Let w(u) = 1[0,1]d(u), i.e., the weight
function is supported on the hypercube [0, 1]d. Simple algebra resulting from (13.27) shows that the following
functions

g∗r (ur) = 2−d{2ur − 1}, r = 1, . . . , d

give the unique solution of the equations (13.22) and (13.23). Note that the solution consists of linear
functions symmetrical with respect to the point u = 1/2.

Due to (13.24) the corresponding error is J(m; g∗) = 3−d − d
3 2−2d. On the other hand, we can apply the

strategy in (13.28) which leads to non-symmetrical solution

ḡ∗r (ur) = 2−d{2ur − (1− 1/d)}.

The corresponding error is 3−d − 2−2d
(
d
3 + 1

)
, which is smaller than that for the symmetrical additive

approximation. Note that m(u) is positive on the support of w(u) and the solution ḡ∗r (ur) is less negative
than g∗r (ur). Figure 13.3 plots both solutions for d = 3. In Fig. 13.4, we depict the approximation error
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Figure 13.3: The components of the additive approximation of m(u) = u1u2u3 : g∗r (•) (thick line), and
ḡ∗r (•).

as a continuous curve of d. Surprisingly, the additive approximations improve exponentially fast with the
dimensionality of the input vector u.

Example 13.2 In this example we consider a concrete two-dimensional function of the form m(u, v) =
v3 arctan(u+ v3). The shape of m(u, v) is shown in Fig. 13.5. The weight function w(u, v) is of the product
form and is assumed to be a uniform density on [−1, 1]2. A numerical integration algorithm has been applied
to obtain the additive components corresponding to the identifiability condition (13.23), i.e.,

g∗1(u) =
1
2

∫ 1

−1

m(u, v)dv and g∗2(v) =
1
2

∫ 1

−1

m(u, v)du. (13.29)



13.2. ADDITIVE MODELING AND REGRESSION ANALYSIS 183

4 6 8 10 12
0

0.005

0.01

0.015

0.02

Figure 13.4: The error of additive approximations g∗(•) (thick line) and ḡ∗(•) versus d for m(u) = u1 · · ·ud.
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Figure 13.5: Function m(u, v) = v3 arctan(u+ v3).

These functions are displayed in Fig. 13.6. Interestingly, the functions are concave and convex, whereas
the original nonlinearity m(u, v) is not . The error 4−1

∫ 1

−1
(m(u, v) − g∗1(u) − g∗2(v))2du dv of the addi-

tive approximation was evaluated giving the value 0.0332693. The modified version of (13.28) (satisfy-
ing the global constraint (13.20)) was also evaluated. Hence, the functions g∗1(u) − α, g∗2(u) − α, where
α = 8−1

∫ 1

−1

∫ 1

−1
m(u, v)du dv, were generated and are plotted in Fig. 13.7. The error of this approximation

is 0.0220564 and is lower than that for the solution in (13.29).

13.2.2 Additive regression

The analysis in the previous section can be carried over to the problem of additive modeling of a multivariate
regression function m(u) = E{Y |U = u}. In this case it seems to be natural to choose the weight function
w(•) in (13.22) as the probability distribution of the random vector U = (U1, . . . , Ud)T .

Since our additive approximation has been established with respect to the squared error we must assume
that EY 2 <∞. Suppose also that U has a density f(•). The approximation error (13.21) is now equal to

J(m; g) = E{(m(U)− g(U))2}.

Let us examine the solution in (13.22) when w(u) = f(u). Note that the first term on the right-hand-side
of (13.22) has a simple statistical interpretation, i.e., we have∫

Rd−1
m(u)

f(u)
fr(ur)

du−r = E{m(U)|Ur = ur} = E{Y |Ur = ur}, (13.30)



184 CHAPTER 13. MULTIVARIATE NONLINEAR BLOCK-ORIENTED SYSTEMS

-1 -0.5 0 0.5 1

0.08

0.09

0.1

0.11

0.12

(a)

-1 -0.5 0 0.5 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(b)

Figure 13.6: The components g∗1(u) and g∗2(v) of the additive approximation of m(u, v).
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Figure 13.7: The modified components g∗1(u)− α and g∗2(u)− α of the additive approximation of m(u, v).

where fr(ur) is the marginal density for Ur. Hence we have obtained a proper one-dimensional regression
function of Y on the rth coordinate of the vector U. Regarding the second term on the right-hand-side of
(13.22) we observe that∫

Rd−1
g∗i (ui)

f(u)
fr(ur)

du−r =
∫
R

g∗i (ui)
fri(ur, ui)
fr(ur)

dui = E{g∗i (Ui)|Ur = ur}, (13.31)

where fri(ur, ui) is the joint density function of (Ur, Ui). This equation shows that the second term in
(13.22) is controlled entirely by two-dimensional densities of the marginals of the input vector U. On the
other hand, owing to (13.30) the first term in (13.22) needs a full d-dimensional density of U. All these
considerations yield the following theorem.

Theorem 13.3 Let (U, Y ) be a random vector in Rd×R with the regression function m(u) = E{Y |U = u}.
Let E{Y 2} <∞. The unique additive function g∗(u) = g∗1(u1) + · · ·+ g∗d(ud) which minimizes E{(m(U)−
g(U))2} is characterized by the following system of equations:

g∗r (ur) = E{Y |Ur = ur} −
d∑
i 6=r

E{g∗i (Ui)|Ur = ur}, (13.32)

subject to the constraints
E{g∗r (Ur)} = 0, (13.33)

for r = 1, . . . , d.
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Remark 13.1 The solution given in Theorem 13.3 becomes particularly simple if the vector U has statis-
tically independent components. Then, due to the identifiability condition (13.33), the second term on the
right-hand-side of (13.32) is equal to zero and we obtain

g∗r (ur) = E{Y |Ur = ur}.

Hence in this case the orthogonal projection of m(u) onto the subspace of additive functions g1(u1) + · · · +
gd(ud) such that E{g2

r(Ur)} <∞ , r = 1, . . . , d, is given by the sum of univariate regression functions

d∑
r=1

E{Y |Ur = ur}.

This fact is known in the statistical literature as Hájek projection [407].

The case of independent components described in the above remark is very restrictive in practice and
one would like to find a complete solution of the equations (13.32), (13.33). Observing that (13.32) can be
written as

g∗r (ur) = E

Y −
d∑
i 6=r

g∗i (Ui)|Ur = ur

 ,

we can propose an iterative procedure for finding g∗r (ur). We start with initial guesses for gi(ui), i = 1, . . . , d
and then improve our choice by computing the regression function of Y −

∑d
i 6=r gi(Ui) on Ur, r = 1, . . . , d.

This process is repeated until some convergence is reached. This is a basic idea of a simple and yet powerful
algorithm for finding components of additive models. It is often referred to as the backfitting algorithm due
originally to Breiman and Friedman [35], see also [233]. Formally we have the following iterative procedure:

• Set initial guesses g(0)
r (•), r = 1, . . . , d.

• Obtain new evaluations g(t)
r (•) by computing the regression function of Y −

∑d
i6=r g

(t−1)
i (Ui) on Ur,

r = 1, . . . , d.

• Iterate the above for t = 1 until convergence.

The stopping rule for the backfitting algorithm can be defined by some objective fitting measure or just
by monitoring changes in the individual components. In practical implementations of this algorithm we
use a certain nonparametric estimate of the regression function. In fact, we can use different estimates for
different components of the additive model. The backfitting procedure is very general and can be applied to
a large class of additively separable models. The main shortcoming of the backfitting method is that it has
unknown basic statistical properties like consistency, convergence rates, and limit theorems.

An alternative approach for finding the individual components of the additive model can be based The-
orem 13.2. This result allows us to find an optimal solution with respect to the product weight function
w(u) =

∏d
i=1 wi(ui). Hence, we can obtain the components of the optimal additive approximation of the

regression function m(u) via the marginal integration

g∗r (ur) =
∫
Rd−1

m(u)w−r(u)du−r, r = 1, . . . , d, (13.34)

subject to the conditions ∫
R

g∗r (ur)wr(ur)dur = 0, r = 1, . . . , d. (13.35)

Alternatively, we can ignore (13.35) (see (13.28) ) and determine g∗r (ur) by

g∗r (ur) =
∫
Rd−1

m(u)w−r(u)du−r − c, (13.36)

with c = (1− d−1)
∫
Rd
m(u)w(u)du.
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It is important to note that in order for the solutions (13.34) or (13.36) to be valid we need to assume
that m(u) satisfies the following restriction:∫

Rd
m2(u)w(u)du <∞. (13.37)

This is not a very restrictive requirement since the weight function w(•) can be specified by the user.
Nevertheless, we should emphasize that natural weight for m(u) is the density f(•) of U since the regression
function “lives” in the space L1(f) or L2(f) if the mean squared error theory is employed.

All the aforementioned considerations have been based on the knowledge true regression functions and
input densities. This is a non workable approach since the only information we can use is the training set
. Nevertheless, to construct estimates of the individual components of an additive model we can use the
fundamental result of Theorems 13.3. First of all, we could apply the empirical counterpart of the iterative
backfitting algorithm with all conditional means replaced by their empirical counterparts. The convergence
of such an estimate is rather difficult to establish. Yet another strategy can directly employ the formula
(13.32) by writing

g∗r (ur) = mr(ur)−
d∑
i 6=r

∫
R

g∗i (v)fi|r(v|ur)dv, (13.38)

where mr(ur) is the regression function on Y on Ur, and fi|r(v|ur) is the conditional density of Ui on Ur. All
these functions can be easily estimated from the data set {(U, Y1), . . . , (Un, Yn)}. For example, the kernel
estimates of these functions are:

m̂r(ur) =
n−1

∑n
t=1 YtKhr (ur − Ur,t)

n−1
∑n
t=1Khr (ur − Ur,t)

,

f̂i|r(v|ur) =
n−1

∑n
t=1Khi(v − Ui,t)Khr (ur − Ur,t)
n−1

∑n
t=1Khr (ur − Ur,t)

.

Here Ur,t and Ui,t denote the rth and ith components of the random vector Ut. Note that we use the
separate bandwidth for each coordinate, i.e., we employ the vector bandwidth h = (h1, . . . , hd). Plugging
these estimates into (13.38) gives the following implicit estimates for g∗r (•):

ĝr(ur) = m̂r(ur)−
d∑
i6=r

∫
R

ĝi(v)f̂i|r(v|ur)dv, (13.39)

with the constraints
∫
R
ĝr(v)f̂r(v)dv = 0, r = 1, . . . , d, where f̂r(v) is the kernel estimate of the marginal

density function of Ur. A practical solution of (13.39) can be obtained through some iteration process. Note
also that the solution in (13.39) needs one-dimensional integration and this can be done accurately by some
numerical formulas.

Statistical properties of the estimate in (13.39) have been be established in the case of iid data [297].
The existing theory, however, assumes that the regression function m(u) can be exactly expressed as the
additive function, i.e.,

m(u) =
d∑
r=1

gr(ur). (13.40)

Under this critical assumption it can be shown that

var{ĝr(ur)} =
νr(ur)
fr(ur)

1
nhr

(1 + o(1)),

where νr(ur) = var(Y |Ur = ur)
∫
R
K2(z)dz. Furthermore, for the twice differentiable additive components

{gr(•)} in (13.40) and the input density we have

E{ĝr(ur)} = g∗r (ur) + β(ur)h2
r + o(h2

r),
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where the function β(ur) depends on the second derivatives of all gr(•), r = 1, . . . , d. This result readily
leads to the fact that the kernel estimate of the additive model, i.e.,

ĝ(u) =
d∑
r=1

ĝr(ur), (13.41)

converges to m(u) in (13.40) with the one-dimensional optimal rate OP
(
n−2/5

)
. Although this is a desired

property, the estimate in (13.39) must be obtained by some numerical algorithm.
A competitive approach can utilize the result of Theorem 13.2. This is based on the subjective choice

of the weight function of the product form w(u) =
∏d
i=1 wi(ui). This yields the marginal integration.

strategy for obtaining the individual components of the optimal additive approximation. Hence, taking the
modification (13.36) into account we can estimate g∗r (•) via

ĝr(ur) =
∫
Rd−1

m̂(u)w−r(u)du−r − ĉ, (13.42)

where ĉ = (1 − d−1)
∫
Rd
m̂(u)w(u)du, and we assume that w(u) is a density function on Rd. In (13.42)

m̂(u) is a pilot nonparametric estimate of the d-dimensional regression function. Although any such esti-
mate has a common d-dimensional behavior, i.e., its accuracy deteriorates with d, the marginal integration
process reduces the estimate variance and “maps” its accuracy to the one-dimensional situation. In fact, the
integration process projects the d-dimensional estimate onto the one- dimensional subspace.

The implementation of (13.42) requires multidimensional integration and this can be done by various
methods. The simplest one is to use Monte Carlo integration, i.e., determine ĝr(ur) via

g̃r(ur) =
1
L

L∑
j=1

m̂(ur,V−rj )− (1− d−1)
1
L

L∑
j=1

m̂(Vj), (13.43)

where {Vj} are random vectors generated from the density w(u), whereas {V−rj } are simulated from the
density w−r(u). Since w(u) is of the product form, simulation of these vectors can be performed very
efficiently. It is known that this simple Monte Carlo method gives an unbiased estimate of ĝr(ur) with
the variance of order O(L−1). There are improved sampling methods achieving the the variance of order
O(L−4) [444]. The complexity of a direct evaluation of the integral in (13.42) originates from the fact that
common nonparametric regression estimates are in the ratio form. In fact, we can write the kernel estimate
in (13.10) as follows :

m̂(u) =
n−1

∑n
i=1 YiKh(u−Ui)

f̂(u)
, (13.44)

where f̂(u) = n−1
∑n
i=1Kh(u−Ui) is the kernel density estimate. In order to eliminate the dependence of

m̂(u) on the argument in the denominator we can move f̂(u) inside the summation sign by replacing u by
Ui. Thus we can define

m̃(u) = n−1
n∑
i=1

Yi

f̂(Ui)
Kh(u−Ui). (13.45)

This estimate (called often an internally corrected kernel estimate) was originally proposed in [293] as a
flexible method for estimating derivatives of m(u). In fact, the derivative of m̃(u) has a much simpler form
than the derivative of m̂(u). See also [245, 292, 305] for a further discussion on the internally corrected
regression estimates. In the context of estimating the components of the additive model via the marginal
integration in (13.42), the estimate (13.45) is especially useful.

First, let us try to express the formula in (13.42) in some more explicit form for both kernel estimates, i.e.,
the classical kernel method m̂(u) in (13.44) and the modified one in (13.45). Note that throughout of this
chapter we use the product kernel, i.e., Kh(u) = Kh1(u1) · · ·Khd(ud). Hence, without loss of generality, let
us focus on the first component of the additive function. Partition each d dimensional vector u as u = (x,v),
v ∈ Rd−1. Then, we can express (13.42) in the following way:

ĝ1(x) =
∫
Rd−1

m̂(x,v)w̄(v)dv − ĉ, (13.46)
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where w̄(v) =
∏d
i=2 wi(ui). Also the kernel function can be written as:

Kh(u) = Kh1(x)Kb(v), (13.47)

where b = (h2, . . . , hd). Plugging formula (13.44) into (13.46) and using (13.47) we obtain

ĝ1(x) =
n−1

∑n
i=1Oi(x)Kh1(x− U1,i)

n−1
∑n
i=1Kh1(x− U1,i)

− ĉ. (13.48)

where

Oi(x) = Yi

∫
Rd−1

Kb(v −Vi)

f̂(v|x)
w̄(v)dv. (13.49)

Here

f̂(v|x) =
n−1

∑n
i=1Kh1(x− U1,i)Kb(v −Vi)
n−1

∑n
i=1Kh1(x− U1,i)

is the kernel estimate of the conditional density of V on U1.
Thus, we can interpret (13.48) as the standard univariate kernel estimate with the transformed output

variable from Yi to Oi(x). The fact that we have d − 1-dimensional complex function f̂(v|x) appearing in
the integral formula in (13.49) makes this method difficult to use. This is not the case with the internally
modified estimate in (13.45). Indeed, plugging (13.45) into (13.46) we have

g̃1(x) = n−1
n∑
i=1

QiKh1(x− U1,i)− c̃, (13.50)

where
Qi =

Yi

f̂(Ui)

∫
Rd−1

Kb(v −Vi)w̄(v)dv (13.51)

is independent of x. Here c̃ is an estimate of the constant c in (13.36) utilizing the estimate m̃(u).
The integral in (13.51) is completely defined in terms of two functions that we can control, i.e., the kernel

and weight functions. This integral is easy to evaluate in many cases. For the small value of the bandwidth
b we can approximate the integral in (13.51) as w̄(Vi). This give a very simple estimate to compute

g̃1(x) = n−1
n∑
i=1

Yi

f̂(Ui)
w̄(Vi)Kh1(x− U1,i)− c̃. (13.52)

Also the constant c̃ in (13.52) can be determined by

c̃ = (1− d−1)n−1
n∑
i=1

Yi

f̂(Ui)
w(Ui).

An exact formula for the integral in (13.51) can also be derived. For example, let us assume that both K(u)
and wi(ui) are Gaussian. Hence, let K(u) be the N(0, 1) density function, whereas wi(u) be N(0, τ2

i ). Then,
the fact that (13.51) is the convolution integral between the kernel and weight functions, we readily obtain∫

Rd−1
Kb(v −Vi)w̄(v)dv =

d∏
r=2

1
ar
φ

(
Vr,i
ar

)
,

where φ(•) is the N(0, 1) density function and ar =
√
h2
r + τ2

r , r = 2, . . . , d. In the special case when all
ar = a for r = 2, . . . , d we can write (13.50) in a very simple way:

g̃1(x) = n−1
n∑
i=1

Yi
Kh1(x− U1,i)ξi

f̂(Ui)
− c̃,

where ξi =
(√

2πa
)−1

exp
(
−
∑d
r=2 V

2
r,i/2a

2
)

.
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In order to asses the statistical accuracy of the estimate g̃1(x) in (13.50) we need to establish some basic
statistical properties of the internally normalized kernel estimate. To do so, let us consider the idealized case
when the input density f(•) is completely known. Then (13.45) takes the form

m̃(u) = n−1
n∑
i=1

Yi
f(Ui)

Kh(u−Ui).

For iid samples the variance of m̃(u) is equal to

var{m̃(u)} = n−1 var
{

Yn
f(Un)

Kh(u−Un)
}
. (13.53)

The convolution property of the kernel function and standard analysis (see Chapters 3 and 12) reveal that
the variance of m̃(u) is of order

(nhd)
σ2(u) +m2(u)

f(u)

∫
Rd
K2(u)du,

where σ2(u) = var{Y |U = u}. This formula includes the term m2(u) which is absent in the expression for
the variance of the standard kernel regression estimate. Since an identical result can be obtained for the
estimate m̃(u) in (13.45), we can conclude that

var{m̃(u)} ≥ var{m̂(u)}. (13.54)

Hence the internally modified estimate has an increased variability.
Concerning the structure of the bias of m̃(u) we can show by some more involved analysis (use Lemma 13.1

and (13.14)) that

Em̃(u) = m(u) +
1
2
µ(K)

d∑
i=1

∂2m(u)
∂u2

i

h2
i + o

(
max

1≤i≤d
(h2
i )
)
. (13.55)

This result is only possible if we use different smoothing strategy for the term f̂(•) appearing in (13.45).
That is, one should use different bandwidths and kernel functions to form an estimate of the input density.
The expression in (13.55) should be compared to the formula for the bias (see (13.14)) of the classical kernel
estimate. It should be noted that the bias of m̃(u) has a very simple structure as it merely depends on the
assumed smoothness of the regression function.

An interesting issue emerges is how the aforementioned properties of the classical and internally modified
kernel estimates are preserved in the problem of estimating the components of additive models. We shed
some light on this problem in the next section which is dealing with the question of recovering nonlinear
characteristics of multichannel block-oriented systems.

13.3 Multivariate systems

In all the previous chapters we have focused on identification of single-input-single-output nonlinear systems.
In Chapter 12, however, we have already used some multivariate nonparametric estimation concepts in order
to capture the memory effect embedded in a nonlinear function. In this section we give a brief introduction
to the problem of nonparametric identification of multivariate nonlinear systems. Such systems are char-
acterized by the existence of several nonparametric characteristics. The theory of additive approximations
examined in Section 13.2 will be employed. We should, however, emphasize that the problem of identifica-
tion of multivariate nonlinear systems has received a little attention in the literature and many fundamental
issues remain open.

We begin with the multivariate counterpart of the Hammerstein system which is depicted in Fig. 13.8. The
input {Un} is the d-dimensional random vector which is mapped to d-dimensional interconnected signal Vn

via the nonlinear vector-valued function m(•), i.e., m(•) = (m1(•), . . . ,md(•))T , where mi(•), i = 1, . . . , d
are measurable functions from Rd to R. The dynamical subsystem is characterized by the impulse response
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Un Vn Wn Yn

Zn

m(•) {Λj}

Figure 13.8: Multiple-input- multiple-output Hammerstein system.

q× d-matrix sequence {Λj}. Hence, the output process Yn is the q-dimensional random vector disturbed by
the noise process Zn. Thus, we have:  Yn = Wn + Zn

Wn =
∑∞
i=0 ΛiVn−i

Vn = m(Un)
. (13.56)

Let us assume, similarly as in Chapter 3, that the input process is iid. Let the linear subsystem be stable ,
i.e.,.

∑∞
j=0 ‖Λj‖ < ∞, where ‖Λj‖ denotes a norm of the matrix Λj , and let Λ0 = Γ, be the q × d-matrix

having all elements equal to one. Then, arguing as in Chapter 3 we obtain

E{Yn|Un = u} = Γm(u) + C, (13.57)

where C =
∑∞
i=1 ΛiE{m(U0)} is the q-dimensional vector.

It is clear from (13.57) that we cannot recover m(u) from the q regression functions defined on the left-
hand-side of (13.57). Therefore, we have to put further restrictions on the structure of the system in order
to be able to recover its characteristics.

The simplest case is the multiple-input Hammerstein system (depicted in Fig. 13.9) with the one dimen-
sional interconnecting signal Vn. For this system we can readily obtain

Un Vn Wn Yn

Zn

m(•) {λj}

Figure 13.9: Multiple-input-single-output Hammerstein system.

E{Yn|Un = u} = m(u) + c, (13.58)

where c = E{m(U0)}
∑∞
i=1 λi.

Hence, the multivariate nonlinearity m(u) can be recovered from the d-dimensional regression function
E{Yn|Un = u}. A kernel regression estimate can be applied and then by the analysis given in Chapter 3 com-
bined with Lemma 13.1 (see 13.16)) we can demonstrate that the accuracy of such a method is OP

(
n−

2
4+d

)
for twice differentiable nonlinearity m(u). For a large value of d this is unacceptably slow rate. By virtue
of the theory discussed in Section 13.2 we may alleviate this problem by projecting m(•) onto the class of
additive functions. This leads to an additive Hammerstein system depicted in Fig. 13.10. The components
of this additive structure can be specified in such a way that the system in Fig. 13.10 can be viewed as the
best additive approximation of the system in Fig. 13.9. In fact, the formula in (13.58) proves that m(•) is
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the regression function of Yn on Un. Then, a direct application of Theorem 13.3 shows that there is a unique
solution minimizing

E{(m(Un)− g(Un))2} (13.59)

with respect to all functions g(u) = g1(u1) + · · ·+ gd(ud) such that E{gi(Ui)} = 0, i = 1, . . . , d.
It is worth noting that the criterion in (13.59) can be equivalently expressed as E{(Yn − Y An )2}, where

Yn is the output of the system in Fig. 13.9, whereas Y An is the output of the system in Fig. 13.10. The
solution minimizing (13.59) is characterized in (13.32) and can be efficiently obtained via the marginal
integration strategy discussed thoroughly in Section 13.2.2. For example, one can use the simplified solution

Vn Wn Yn

Zn

{λj}

g1(•)

gd(•)

•  •  •

Correlated

Sources

U1,n

Ud,n

Figure 13.10: Additive Hammerstein system.

described in (13.52) and estimate the nonlinearity g1(•) in Fig. 13.10. Hence, let us write u−1 for the version
of the vector u with its first element dropped. Then, for a given product type weight function w(u) let
w̄(u−1) =

∏d
i=2 wi(ui). Consequently, owing to (13.52), we have

g̃1(x) = n−1
n∑
i=1

Yi

f̂(Ui)
w̄(U−1,i)Kh1(x− U1,i)− c̃, (13.60)

where the normalizing constant c̃ is defined in (13.52). In this algorithm the user must specify the bandwidth
defining the estimate f̂(•) of the input density f(•). Note that this factor has to be determined only once for
all additive components of the system. On the other hand, the bandwidth h1 must be tailored to the given
additive element. In Chapter 12 we have discussed the problem of choosing the bandwidth for nonparametric
regression estimation. Nevertheless, this issue requires further investigation in the present situation.

Further extension of the additive methodology can be carried over to the version of the multivariate
Hammerstein system in Fig. 13.8 which takes the additive form with respect to both nonlinear and linear
subsystems. This structure is depicted in Fig. 13.11 and is often referred to as the multichannel Hammerstein
system. On one hand, the multichannel Hammerstein system can be viewed as a more powerful additive
approximation of the system (13.56). On the other hand, this model has appeared as a natural structure
for a number of applications like multi-sensor systems, multiuser detection, and physiological and neural
systems [42,46,217,398,412,417,440]. Surprisingly there has been a very little research done for the problem
of identification of multichannel nonlinear models, see [65] for an early contribution on a parametric identifi-
cation of a two-channel Hammerstein model and its application to chemical engineering. The nonparametric
identification of the multichannel Hammerstein system has been carried out in [332]. The kernel estimate of
the internally modified form (see (13.45)) has been applied. Then the marginal integration approach was uti-
lized to obtain nonparametric estimates of the individual components of the system in Fig. 13.11. Thus, the
estimate g̃1(x) in (13.50) (see also (13.60)) was obtained based on the training data {(U1, Y1), . . . , (Un, Yn)}
generated by the truly additive model in Fig. 13.11.

Under usual conditions on the kernel function and the proper choice of the bandwidth vector h =
(h1, . . . , hd), it can be shown [234, 332] that the asymptotic variance of the estimate g̃1(x) of the first
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Yn

Zn

g1(•)

gd(•)

•  •  •

Correlated

Sources

U1,n

Ud,n

•  •  •

{λ1,i}

{λd,i}

V1,n

Vd,n

Figure 13.11: Multichannel Hammerstein system.

component g1(x) is of order
ϕ(x)
f1(x)

1
nh1

∫
R

K2(u)du, (13.61)

where ϕ(x) is the bounded function depending on the input density of the vector U, nonlinear and linear
characteristics of all channels, and the weight function w(•). Here f1(•) is the marginal density of the first
component of U. Regarding the bias term of the estimate g̃1(x) it can be demonstrated [234,332] that

Eg̃1(x) = g1(x) + c

{
g

(2)
1 (x)
f1(x)

−
∫
R

g1(t)w(2)
1 (t)dt

}
, (13.62)

some positive constant c.
This is rather a surprising result since the bias does not depend on the smoothness of the nonlinearities

in other channels neither on the input density of U. It merely depends on the smoothness (here expressed by
the second derivative) of the nonlinearity being estimated, marginal density of the input signal of the given
channel, and the smoothness of the first component of the weight function. The latter is not very restrictive
requirement since the user can select a smooth weight function. The above useful property is not shared if
standard kernel estimates are applied in the process of the marginal integration. The bias of such obtained
estimates depends on the smoothness of the nonlinearities in other channels as well as on the input density
of U. Hence the correlation structure of the input signal influences not only the statistical variability of the
estimate but also its systematic error. This is clearly undesirable property.

The results in (13.61) and (13.62) yield the optimal one dimensional rate OP (n−2/5) for recovering
the nonlinearity g1(x). It is important to note that the bandwidth h1 used for estimating g1(x) must be
specified as h1 = n−1/5, whereas the remaining bandwidths h2, . . . , hd must be selected larger than it is
usually recommended, see (13.15). In fact, for the consistency of the kernel estimates the following condition
(see (13.13))

nh1 · · ·hd →∞ (13.63)

is necessary. Therefore, if one decides to use a single bandwidth h for all d channels, then the desirable rate
OP (n−2/5) holds if d ≤ 4. Indeed, for hi = n−1/5 for all i, the condition (13.63) holds if d ≤ 4. Such an
improper choice of the bandwidth can drastically reduce the quality of the marginal integration method.
This is illustrated in the following simulation example.

Example 13.3 Let us consider the two-channel Hammerstein system excited by the Gaussian input signal
(Un, Vn) with zero mean and the covariance matrix of the following form:(

1/4 ρ/16
ρ/16 1/4

)
,

where ρ is the correlation coefficient. The measurement noise Zn is white Gaussian with zero mean and
variance 0.01. The nonlinearity in the first channel is of the polynomial form, i.e., g1(u) = 4

3u
3 − 1

3u,
whereas the linear subsystem is the FIR(4) model with the transfer function L1(z) = 1 + 0.2z−1 + 0.1z−2 +
0.05z−3 + 0.05z−4. The nonlinearity g1(u) is estimated by the marginal integration method with a pilot two
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dimensional kernel regression estimate utilizing Gaussian kernel and a single bandwidth for both variables.
The product weight function of the Gaussian N(0, 1/9) form is applied. In Fig. 13.12 we depict the mean
integrated squared error (MISE) versus ρ with the sample size n = 320. The second channel is assumed
to have the same charcertics as the first one. The dotted line corresponds to internally modified kernel
estimate, whereas the solid line is the error of the classical kernel estimate. An efficiency lost, due to
increasing correlation between inputs, is clearly seen. Moreover, the accuracy of the internal estimate is
drastically reduced compared to the classical kernel estimate. This is due to the use of a single bandwidth
for both variables. In this case the independence (see (13.62)) of the internal estimate on the correlation of
the input signal is not valid any more. In Fig. 13.13 we show the same phenomenon which is additionally
amplified by the fact that the nonlinearity in the second channel is a quantizer with six levels. The lack of
smoothness of this characteristic increases the error for both estimates.
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Figure 13.12: MISE versus ρ for recovering the polynomial characteristic in the two-channel Hammerstein
system. The internal estimate (dotted line) and classical kernel estimate (solid line).

13.4 Concluding remarks

In the considerations examined in this chapter we have touched on the difficult issue of low dimensional
representations of fully nonparametric nonlinear systems. The main tool we have introduced and examined
was based on the theory of additive approximations of multivariate functions. This allows us to develop a
powerful and general additive modeling strategy for nonparametric identification of multivariate nonlinear
block-oriented systems. Hence, one should replace all multivariate functions present in the system by their
additive approximations. An important remaining issue, however, is whether one can recover efficiently the
individual components of these additive structures. We have demonstrated that this is the case for the
multiple-input and multichannel Hammerstein systems. Furthermore, to achieve a complete low dimensional
representation of a nonlinear multivariate dynamical system we must also incorporate similar representations
for linear dynamical parts of the system.

There are further ways to improve the flexibility of the additive approximation by allowing terms with
interactions, i.e.,

g(u1, . . . , ud) = g12(u1, u2) + g23(u2, u3) + · · ·+ gd−1d(ud−1, ud) + gd1(ud, u1). (13.64)

The marginal integration method in Section 13.2 can be extended to this case as well. Here we must estimate
bivariate functions and this can be done with the acceptable accuracy. An interesting issue is to find optimal
interaction pairs (ui1 , ui2), 1 ≤ i1, i2 ≤ d in order to reduce the approximation error.
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Figure 13.13: MISE versus ρ for recovering the polynomial characteristic in the two-channel Hammerstein
system. The internal estimate (dotted line) and classical kernel estimate (solid line). The second channel
nonlinearity is a quantizer.

In this chapter we have mostly focused on the Hammerstein system. It should be clear, however, that
similar considerations can be carry over to series-parallel structures examined in Chapter 12. For example,
one could consider the parallel nonlinear system (Section 12.1.1) with a multidimensional nonlinearity and
its corresponding additive approximation.

Yet another class of low complexity representations can be based on the combination of parametric and
nonparametric inference. For example, the following

g(u) =
N∑
i=1

gi(aTi u)

can be used to approximate a multivariate function m(u) in terms of univariate nonlinearities gi(•) and
vectors ai, i = 1, . . . , N . Such semiparametric structures will be examined in Chapter 14. This includes
the multivariate counterparts of Wiener and sandwich systems. A finite dimensional parametrization of
dynamical subsystems will define semiparametric models for which we propose some efficient identification
algorithms.

13.5 Bibliographic notes

A few studies exist concerning the identification problem of multi-input-multi-output nonlinear systems.
Early methods rely on Wiener and Volterra expansions and lead to complex algorithms. Moreover, smooth
(parametric) nonlinearities have been assumed and Gaussian input process was mostly applied [431–433,
451].More recent contributions use parametric models for nonlinearities and apply the subspace methods
for recovering linear subsystems. [49, 123]. The nonparametric approach for estimating the multiple-input
Hammerstein system was proposed in [183]. An additive class of block-oriented nonlinear systems is studied
in [332]. This includes a number of connections introduced in Section 12.1.

The use of additive models in various problems of the statistical inference is summarized in [222, 233].
The backfitting algorithm was proposed in [35] and further examined in [233]. The marginal integration
strategy for recovering individual components in the additive model was given in [286], see also [105] for
further discussion of this method. In [297] a fundamental issue of finding the best additive model has been
addressed. The proposed theory utilizes a weight function being a kernel estimate of the input variable.
In [234] a detailed analysis of the marginal integration method is given. The internally normalized kernel



13.5. BIBLIOGRAPHIC NOTES 195

estimate is employed. The most of the aforementioned studies are dealing with independent data. The use
of additive models in time series analysis is discussed in [105, 402]. The extension of additive modeling to
nonlinear system identification has been done in [332].

The internally normalized kernel estimate was proposed in [293] and further examined in [245,292,305],
and [304].
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Chapter 14

Semiparametric identification

In this chapter we discuss the problem of identification of a class of semiparametric block-oriented systems.
This class of block-oriented systems can be restricted to a parameterization that includes a finite dimensional
parameter and nonlinear characteristics which run through a nonparametric class of mostly univariate func-
tions. The parametric part of a semiparametric model defines characteristics of linear dynamical subsystems
and low-dimensional projections of multivariate nonlinearities. The nonparametric part of the model com-
prises all static nonlinearities defined by functions of a single variable. A general methodology for identifying
semiparametric block-oriented systems is developed. This includes a semiparametric version of least squares
and a direct method utilizing the concept of the average derivative of a regression function. These general
approaches are applied in cases of semiparametric versions of Wiener, Hammerstein and parallel systems.

14.1 Introduction

In the preceding chapters we have examined various fully nonparametric block-oriented systems. Indeed,
we have not imposed any a priori knowledge about characteristics of the nonlinear systems under study.
Hence, the system was represented by the pair (λ,m(•)), where λ ∈ R∞ is an infinite-dimensional param-
eter representing impulse response sequences of linear dynamical subsystems, whereas m(•) is a vector of
nonparametric multidimensional functions describing nonlinear elements. Such a fully nonparametric model
does not suffer from risk of misspecification. However, corresponding nonparametric estimators exhibit low
convergence rates due to the complexity of an assumed block-oriented structure and the multidimensional na-
ture of interconnecting signals. In contrast, a parametric model carries a risk of incorrect model specification,
but if it is correct it will typically enjoy a fast O(n−1) parametric rate of convergence.

In practice we can accept an intermediate model which lies between parametric and fully nonparametric
cases when a linear subsystem can be parameterized by a finite dimensional parameter, whereas nonlinear
characteristics run through a nonparametric class of low dimensional functions. This semiparametric model
allows one to design practical identification algorithms which share the efficiency of parametric modeling
while preserving the high flexibility of the nonparametric case. In fact, in many cases, as it will be shown,
we are able to identify linear and nonlinear parts of a block-oriented system under much weaker conditions
on the system characteristics and on the probability distribution of the input signal.

An estimation strategy used for semiparametric systems is based on the concept of interchanging para-
metric and nonparametric estimation methods. The basic idea is to first analyze the parametric part of
the block-oriented structure as if all static nonlinearities were known. To eliminate the dependence of a
parametric fitting criterion on the nonlinearities we form pilot nonparametric estimates of the nonlinearities
being indexed by a finite dimensional vector of the admissible value of the parameter. Then this is used to es-
tablish a parametric fitting criterion (such as least squares) with random functions representing all estimated
nonparametric nonlinearities. On the other hand, nonparametric regression estimates of the nonlinearities
use estimates of the parametric part. As a result of this interchange we need some data resampling schemes
in order to achieve some statistical independence between the estimators of parametric and nonparametric
parts of the system. This improves the efficiency of the estimates and facilitates the mathematical analysis
immensely.

197
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In our case studies on the identification of semiparametric systems we utilize the least squares method
with a data splitting strategy where the training set is divided into two non-overlapping parts. The first
part plays the role of a testing sequence which defines the least squares fitting function, whereas the other
part is used as a training sequence to form preliminary nonparametric regression estimates.

We establish sufficient conditions for the convergence of our identification algorithms for a general class of
semiparametric block-oriented systems. Then, this general theory is illustrated in the case of semiparametric
Wiener, Hammerstein and parallel systems of various forms. In the Wiener system case, the semiparametric
approach leads to an identification algorithm which is consistent (with the optimal rate) for non-invertible
nonlinearities. Furthermore the method can be applied in the presence of an output measurement noise and
when an input signal is not necessarily Gaussian. These practical conditions were not applicable for the
nonparametric algorithms presented in Chapters 9, 10, and 11. This two-stage semiparametric least squares
method also has the advantage of a unified approach for a large class of input distributions and complex
block-oriented systems.

In addition, we present an alternative approach for estimating the parametric part of specific semipara-
metric block-oriented systems which does not need any optimization procedures. This direct strategy relies
on the concept of the average derivative estimation of a regression function. This may be an appealing
method in many applications since it is simple and noniterative. However, it is important to note that the
method requires smooth density functions of input signals and can be applicable to only a limited class of
block-oriented nonlinear systems.

14.2 Semiparametric models

In the previous sections we have examined various block-oriented models with general linear subsystems and
nonparametric nonlinearities. In such a setting, a number of nonparametric estimates of system nonlinearities
have been proposed and their convergence rates have been evaluated. These estimates are very robust to
any model misspecification, but unfortunately suffer low convergence rates due to the model complexity and
the dimensionality of interconnecting signals. For example, in the problem of Wiener system identification,
discussed in Chapter 9, our inverse regression estimation strategy yielded the rate OP (n−1/3) instead of the
optimal rate OP (n−2/5). As shown in Chapter 13 , for the Hammerstein system with a d-dimensional input
signal, a nonparametric estimate of the system nonlinearity has the optimal rate OP (n−2/(d+4)), i.e., as d
increases the convergence rate deteriorates. In the following section we list a number of semiparametric
systems which provide a high degree of modeling flexibility while improving on the convergence rate. A
semiparametric model has a natural parameterization (θ,g(•)), where θ is a finite dimensional parameter
and g(•) is a vector of univariate nonparametric functions. This defines a semiparametric model in which
we aim at estimating θ and g(•). In our future considerations we will often denote by θ∗ and g∗(•) the true
characteristics of the underlying semiparametric model.

14.2.1 Semiparametric Hammerstein models

In Chapter 13, see Fig. 13. xx, we examined the Hammerstein model with a d-dimensional input, i.e., we
have the following input-output description:

Yn =
∞∑
l=0

λlm(Un−l) + Zn, (14.1)

where m(u), u = (u1, . . . , ud)T ∈ Rd, is the d-dimensional nonlinearity, whereas λ = {λl, 0 ≤ l ≤ ∞} defines
the impulse response function of the linear subsystem.

It has been demonstrated (under common smoothing conditions), see Chapter 13, that the kernel regres-
sion estimate m̂(u) of m(u) has the following rate:

m̂(u) = m(u) +OP (n−2/(d+4)). (14.2)

It is apparent that the rate OP (n−2/(d+4)) gets slower as d increases. In order to alleviate this “curse of



14.2. SEMIPARAMETRIC MODELS 199

Zn

Yn

γ1

γ2

U1,n

U2,n
g(•) {λi, 0 ≤ i ≤ p}

Figure 14.1: The semiparametric Hammerstein model with d = 2.

dimensionality”, we have proposed to approximate the nonlinearity m(u) by an additive function, i.e.,

m(u) '
d∑
i=1

mi(ui),

where mi(•), i = 1, . . . , d are univariate functions. This representation allows us to improve the rate in (14.2)
to OP (n−2/5) independent of d, provided that sufficient over-smoothing of the additive components is made
(see Chapter 13 for details). Although this approach partially eliminates the curse of dimensionality, it may
introduce the involved problem of estimating additive components.

To recover the linear part, λ, of the Hammerstein system we can use the correlation method (see Chap-
ter 13). Hence, we can estimate λ by

λ̂i =
n−1

∑n−i
j=1 Yi+jη(Uj)

n−1
∑n
j=1 Yjη(Uj)

, (14.3)

for i = 1, . . . , where it is assumed that λ0 = 1. In the above formula, η : Rd → R is a known function chosen
by the user such that Eη(Un) = 0 and E{m(Un)η(Un)} 6= 0.

It should be noted that the estimate in (14.3) is very inefficient for large values of i. In order to overcome
the high dimensionality nature of the nonparametric Hammerstein system (14.1) we propose the following
semiparametric low complexity approximation of the Hammerstein system

Yn =
p∑
l=0

λl g(γTUn−l) + Zn, (14.4)

where g(•) is an univariate function; the parameter γ = (γ1, . . . , γd) ∈ Rd defines a projection of the
input signal Un onto an one-dimensional subspace; and p defines the memory length of the model which is
assumed to be finite and often known. Hence, in this case the model is defined by the pair (θ, g(•)), where
θ = (λ, γ) ∈ Rp+d+1 is the parametric part of the semiparametric system. The objective is to estimate
λ = {λl, 0 ≤ l ≤ p}, γ = {γi, 1 ≤ i ≤ d} and g(•). Fig. 14.1 depicts this semiparametric version of the
Hammerstein system for d = 2.

It is worth noting that some normalization of the model in (14.4) is necessary in order to uniquely
identify (θ, g(•)). First of all, θ cannot be identified if g(•) is constant. Next, the scaling effect of the cascade
Hammerstein model forces us to normalize γ in order to be able to recover g(•). Hence we should assume,
e.g., that γ1 = 1. We also require that the input signal {Un} has a density function. This assures that
the probability of the event {δTUn = c} is not equal to one for some constant c and δ ∈ Rd. This fact is
necessary for the identifiability of γ. By virtue of the discussions in Chapters 2 and 12 we also know that
in order to uniquely recover g(•) we need λ0 = 1 and E{g(γTUn)} = 0. The latter assumption can be
replaced by the requirement that g(0) = 0, see Chapter 2. The aforementioned conditions are sufficient for
identification of (λ, γ) and g(•) and are likely to be satisfied in most practical applications.

The problem of estimating (λ, γ) and g(•) will be examined in the remaining part of this chapter. We
should note, however, that one can recover the impulse response function {λl, 0 ≤ l ≤ p} independent of γ
and g(•). In fact, under the aforementioned normalization conditions and the assumption that the input
signal {Un} is white we have

λ̂i =
n−1

∑n−i
j=1 Yi+j η(Uj)

n−1
∑n
j=1 Yj η(Uj)

, (14.5)
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for i = 1, . . . , p.
The consistency of λ̂i can be easily established, see Chapter 13. Indeed, the variance of the estimate in

(14.5) is of order O((n− p)/n2), which makes this estimate more efficient than of (14.3) by the fact that p is
finite. The problem of estimating γ and g(•) is non-standard and this issue will be examined in Section 14.5.

14.2.2 Semiparametric Wiener models

In Chapter 9 we introduced and examined the identification problem of the Wiener system with an infinite
memory, i.e., the system described by the following input-output equation:

Yn = m

( ∞∑
l=0

λl Un−l

)
. (14.6)

Under the conditions that the input process is Gaussian (white or color) we have shown that the impulse
response function {λl, 0 ≤ l ≤ ∞} can be consistently estimated by the correlation method, resulting in the
following estimate:

λ̂i =
n−1

∑n−i
j=1 Yi+j Uj

n−1
∑n
j=1 Yj Uj

, (14.7)

for i = 1, . . . , where it is assumed that λ0 = 1.
As noted for the estimate in (14.3) this estimate is very inefficient for large values of i. Furthermore,

for invertible nonlinearities we have proved that several nonparametric regression estimates can consistently
recover the inverse m−1(y). For twice differentiable nonlinearities the rate of convergence of the estimates
was shown to be,

m̂−1(y) = m−1(y) +OP (n−1/3). (14.8)

Since the optimal rate of convergence is OP (n−2/5), the rate given in (14.8) is suboptimal. In Section 14.4
we will examine the following counterpart of the model given in (14.6),

Yn = m

(
p∑
l=0

λl Un−l

)
+ Zn, (14.9)

where the model order p is finite and known.
Note that in the above model we allow measurement noise which was absent in (14.6). The model

in (14.9) is of the semiparametric form with the parameterization (λ,m(•)). Using the semiparametric
estimation methodology developed in this chapter we propose estimates of λ and m(•) which are consistent
for a large class of not-necessarily Gaussian input signals and non-invertible nonlinearities. Also, estimates
of m(•) exhibit the optimal rate OP (n−2/5).

The semiparametric restriction of the classical Wiener model allows us to examine the following two-
channel version of this model:

Yn = m1

(
p1∑
l=0

λ1,l U1,n−l

)
+m2

(
p2∑
l=0

λ2,l U2,n−l

)
+ Zn. (14.10)

Here {λ1,l, 0 ≤ l ≤ p1}, {λ2,l, 0 ≤ l ≤ p2} are the impulse response functions of the linear subsystems, and
m1(•), m2(•) are the characteristics of the nonlinear subsystems. The multi-channel extension of the above
system can also be easily derived. Fig. 14.2 shows the structure of the two-channel Wiener system with the
input signal {(U1,n, U2,n)}.

It is worth mentioning that the multi-channel Wiener system has a number of important applications in
biomedical systems and communication engineering. It is also known that this system can approximate any
nonlinear system with fading memory. Other semiparametric models can be defined in a similar fashion, i.e.,
models which are characterized by a finite dimensional parameter and nonparametric functions of several
variables.
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Zn

Yn

U1,n

U2,n

W1,n

W2,n{λ2,i, 0 ≤ i ≤ p}

{λ1,i, 0 ≤ i ≤ p} m1(•)

m2(•)

Figure 14.2: The additive Wiener model.

14.3 Statistical inference for semiparametric models

In this section we give a general approach to semiparametric statistical inference which later we will apply to
concrete nonlinear block-oriented systems. In particular, we shall examine the Wiener system identification
problem within the introduced framework.

Let (U, Y ) be a random vector distributed according to the law P(•, •). In system identification U is
usually identified with the input signal, and Y with the output signal. In parametric modeling the distribution
P(•, •) is known up to a finite dimensional parameter θ∗, i.e., P(•, •) = P(•, •; θ∗). Given a training set
T = {(U1, Y1), . . . , (Un, Yn)} of the input-output signals, an estimator θ̂ of θ∗ can be found by minimizing a
criterion function

Qn(θ) =
1
n

n∑
i=1

Ψθ(Ui, Yi), (14.11)

where Ψθ(•, •) is a known function for every θ ∈ Θ, and Θ is an admissible set of parameters such that
θ∗ ∈ Θ.

An example of Ψθ(•, •) is a maximum likelihood estimate for which

Ψθ(U, Y ) = − log
P(U, Y ; θ)
P(U, Y ; θ∗)

. (14.12)

In system identification the maximum likelihood estimate is usually difficult to implement. In fact, we
usually deal with dependent data and, moreover, a distribution of the noise process is unknown making it
difficult to find an analytical formula for P(U, Y ; θ). Indeed, an estimation strategy depends critically on
the selected model relating the output signal with past values of the input signals. Thus, for a given model
the least squares type estimators are more adequate. Hence, let the input-output relationship of a nonlinear
dynamical system be given by

Yn = g(Un, Un−1, . . . , Un−p; θ) + Zn, (14.13)

where Zn is the measurement noise and p is the system memory. Then, one can choose

Ψθ(Ui, Yi) = M(Yi − g(Ui, Ui−1, . . . , Ui−p; θ)), (14.14)

where Ui = (Ui, Ui−1, . . . , Ui−p)T and M(•) is a criterion function.
The special cases M(t) = t2 and M(t) = |t| correspond to least squares and least absolute deviation

estimators, respectively. Other choices are: M(t;α) = t21(|t| ≤ α) + (2α|t| − α2)1(|t| > α), and M(t;β) =
−(2πβ2)e−t

2/2β2
. The criterion M(t;α) yields a class of robust estimation methods due to Huber, whereas

M(t;β) gives an alternative scheme to deal with outliers. Parametric estimates which are obtained with
respect to the criterion function M(•) are often called M -estimators. These estimators play an important
role in the parametric statistical inference as they define robust statistical methods.

In the nonparametric setting, the distribution P(•, •) is completely unknown, and therefore an input-
output mapping such as (14.13) cannot be parameterized. Consequently, the minimization of the criterion in
(14.11) is not well defined and the classical parametric M -estimators cannot be directly applied. In order to
circumvent this difficulty one must constrain a class of admissible functions to a certain functional space in
which size must be carefully controlled. This leads to the concept of the penalized M -estimators. However,
these nonparametric estimators are rarely given in the explicit form and this issue will not be covered here.
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In the previous chapters we have studied the nonparametric setup in the context of particular block-oriented
systems with infinite memory. All of our nonparametric estimates have been given in the explicit form.

In many block-oriented models we have an intermediate situation between the parametric and fully non-
parametic cases. As mentioned above, this takes place when linear subsystems can be parameterized by a
finite dimensional parameter, whereas nonlinear characteristics run through a nonparametric class of func-
tions. Furthermore, in the multivariate setting we would like to eliminate the curse of dimensionality and
this can be achieved by projecting multivariate nonparametric functions onto a low dimensional nonpara-
metric subspace. This introduces additional “projection” parameters, see Section 14.2 for examples of such
a situation.

In this so-called semiparametric (intermediate) case, we have a natural parameterization

(θ,m(•)) 7→ Pθ,m(•)(•, •), (14.15)

where θ ∈ Θ ⊂ Rs is a finite-dimensional parameter representing impulse response sequences of linear
dynamical subsystems and projection parameters. Here, Θ is a subset of Rs which defines a class of admissible
parameters. and m(•) is a nonparametric function describing the characteristic of a nonlinear subsystem.
Generally m(•) = (m1(•), . . . ,mq(•)), i.e., m(•) is a vector of functions representing all static nonlinearities
of the underlying model. Typically, mi(•) are required to be functions of a single variable. For our further
considerations we denote by (θ∗,m∗(•)) the true characteristics of the underlying block-oriented system such
that θ∗ ∈ Θ.

In semiparametric modeling we first aim at estimating the parameter θ in the presence of an infinite
dimensional “nuisance parameter” m(•) followed by a recovery of m(•). This two-step procedure can be
efficiently implemented and yields high accuracy estimation algorithms. In fact, the criterion in (14.11), due
to the parameterization in (14.15), now takes the following form:

Qn(θ,m(•)) =
1
n

n∑
i=1

Ψθ,m(•)(Ui, Yi). (14.16)

The basic idea in finding an estimate θ̂ of the true value θ∗ is to eliminate the dependence of Qn(θ,m(•)) on
the nonparametric functions m(•). Hence, we wish to analyze the parametric parts of the semiparametric
system as if the nonparametric parts were given.

Let us assume that one can estimate m(•) for a given θ. This leads to an estimate m̂(•; θ) which
itself depends on θ. In the limit m̂(•; θ) tends to a function m(•; θ) which is a regression function of the
corresponding output and input signals, i.e., it is an orthogonal projection of all system nonlinearities onto
the space spanned by θ ∈ Θ. Clearly if θ = θ∗ then m(•; θ∗) = m∗(•). This important concept is illustrated
in Fig. 14.3 where εn = On − E{On|Wn(θ)} is the residual error. We can substitute m̂(•; θ) in Qn(θ,m(•))

Parametric Part θ
Wn(θ)

m(•; θ)

εn

On

Nonlinear System

Figure 14.3: The regression function m(•; θ) = E{On|Wn(θ)} such that m(•; θ∗) = m∗(•).

for m(•) to obtain the following criterion depending solely on θ

Q̂n(θ) =
1
n

n∑
i=1

Ψθ,m̂(•;θ)(Ui, Yi). (14.17)
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It is worth noting that in the case of nonlinear dynamical systems with the memory size p we ought modify
our criterion Qn(θ,m(•)) to the following form

Qn(θ,m(•)) =
1
n

n∑
i=p+1

Ψθ,m(•)(Ui, Yi), (14.18)

where Ui = (Ui, Ui−1, . . . , Ui−p)T . The criterion Q̂n(θ) is then modified accordingly.
It is now natural to define an estimate θ̂ of θ∗ as the minimizer of Q̂n(θ), i.e.,

θ̂ = arg min
θ∈Θ

Q̂n(θ). (14.19)

This approach may lead to an effective estimator of θ∗ subject two conditions. First, as we have already
noted, we should be able to estimate the nonlinearities m(•; θ) for a given θ ∈ Θ. The difficulty of this step
depends on the complexity of the studied nonlinear system, i.e., whether nonlinear components can be easily
estimated as if the parametric part of the system were known. We will demonstrate that this is the case
for a large class of block-oriented nonlinear systems. Second we must minimize the criterion Q̂n(θ) which
may be an expensive task mostly if θ is highly dimensional and if the gradient vector of Q̂n(θ) is difficult
to evaluate. To partially overcome these computational difficulties we can use the following generic iterative
method.

Step 1 Select an initial θ̂(0) and set m̂(•; θ̂(0)).

Step 2 Minimize

Q̃n(θ) =
1
n

n∑
i=1

Ψθ,m̂(•;θ̂(0))(Ui, Yi)

with respect to θ and use the obtained value θ̂(1) to update m̂(•; θ), i.e., go to Step 1 to get m̂(•; θ̂(1)).

Step 3 Iterate between the above two steps until a certain stopping rule is satisfied.

Note that in the above algorithm the criterion Q̃n(θ) has a weaker dependence on θ than the original
criterion Q̂n(θ). In fact, in Q̃n(θ) the nonlinearities m̂(•; θ) are already specified. Nevertheless, minimization
of Q̃n(θ) still requires an optimization algorithm and this can be obtained via one of many possible versions
of the steepest descent method. We will illustrate the efficiency of this algorithm in Section 14.4.

Once the estimate θ̂ is specified one can plug it back into our pilot estimate m̂(•; θ) to obtain an estimate
of m∗(•). Hence let

m̂(•) = m̂(•; θ̂) (14.20)

be a nonparametric estimate of the system nonlinearities m∗(•).
It is worth noting that in the above two-step scheme the estimate m̂(•; θ) and the criterion function

Q̂n(θ) which is used to obtain θ̂ share the same training data. This is usually not the recommended strategy
since it may lead to estimates with unacceptably large variance. Indeed, some resampling schemes would
be useful here which would partition the training data into the testing and training sequences. The former
should be used to form the criterion in (14.17), whereas the latter to obtain the estimate m̂(•; θ). This will
facilitate the mathematical analysis of the estimation algorithms. This issue will be revisited in Section 14.4.

14.3.1 Consistency of semiparametric estimates

In the previous section we described a general scheme of deriving estimates of characteristics of the linear
dynamical parts and nonlinear elements of a class of semiparametric block-oriented systems. In this section,
we examine the issue of consistency of these estimates.

Let us recall that (θ∗,m∗(•)) stands for the true characteristics of the nonlinear system. Throughout
this whole chapter we assume that θ∗ is a finite dimensional vector, i.e., that θ∗ ∈ Rs. On the other hand
we do not make any parametric assumptions about m∗(•).

Prior to outlining the problem of consistency of the estimates defined in (14.19) and (14.20), a fundamental
issue that warrants consideration is whether the underlying nonlinear system is identifiable. Since we have
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not assumed any specific structure of the system this question is impossible to answer. In fact, the problem of
identifiability can only be verified for specific classes of systems and this issue will addressed in Section 14.4.

The consistency of the estimates defined in (14.19) and (14.20) can be examined separately, i.e., we can
first determine the consistency of θ̂ in (14.19) and then of the resulting estimate m̂(•) in (14.20). However,
the dependence of m̂(•; θ) on θ plays a critical role for the consistency of θ̂. In turn, the accuracy of m̂(•)
also depends on the quality of the parametric estimate θ̂.

Ideally we would like to estimate θ∗ as efficiently as if the nonlinear nonparametric part m∗(•) were known
and vice versa to estimate m∗(•) as accurately as if the parametric component θ∗ were known. Estimates
with such ideal efficiency are labeled as having an oracle property.

In the following two subsections, we shall establish sufficient conditions for the consistency of the paramet-
ric θ̂ and nonparametric m̂(•) estimates. We recall the notation that ηn

n→ η, (P ) stands for the convergence
in probability of the random sequence {ηn} to the limit random variable η as n→∞. Also ηn = η+OP (an),
some an

n→ 0, stands for the fact that δna−1
n (ηn − η) n→ 0 (P ) for δn

n→ 0 arbitrarily slow. It is then said
that ηn − η tends to 0 (P ) at the rate an.

A: Parametric estimation

The minimization of the random criterion Q̂n(θ) in (14.17) can be viewed as the problem of finding parametric
M -estimators. This is, however, a nonstandard case since Q̂n(θ) depends on a random function m̂(•; θ).
Hence, the consistency of θ̂ depends critically on the smoothness of the mapping:

θ 7→ m̂(•; θ). (14.21)

In fact, the consistency of the estimate θ̂ requires the continuity of the mapping in (14.21). This requirement
can usually be easily verified if a specific nonparametric estimate m̂(•; θ) is used.

The first step required to establish the consistency of θ̂ is to determine the limit deterministic criterion
function Q(θ) such that,

Q̂n(θ) n→ Q(θ), (P ), for every θ ∈ Θ. (14.22)

The above limit exists if the mapping m̂(•; θ) 7→ Ψθ,m̂(•;θ)(•, •) is continuous, which is usually the case, and
if,

m̂(•; θ) n→ m(•; θ), (P ), for every θ ∈ Θ. (14.23)

The limit function m(•; θ) is a regression function of corresponding output and input signals of the underlying
nonlinear system in which the parametric part has the value θ ∈ Θ, see Fig. 14.3. It is clear that m(•; θ∗) =
m∗(•), the true characteristics of the nonlinear elements.

By the above discussion we may conclude that,

Q(θ) = EΨθ,m(•;θ)(U, Y ). (14.24)

It is also expected that the minimizer θ̂ of Q(θ) should well characterize the true value θ∗, and indeed in
many cases we have

θ∗ = arg min
θ∈Θ

Q(θ). (14.25)

Nevertheless, θ∗ need not be a unique minimum of Q(θ).
The minimum in (14.25) exists if the set Θ is compact and if the mapping

θ 7→ Ψθ,m(•;θ)(•, •)

is continuous. This, due to (14.24), is implied by the continuity of θ 7→ Ψθ,•(•, •) and θ 7→ m(•; θ). The
latter properties can only be verified in concrete cases and we will illustrate this in Section 14.4.

The above discussion reveals that it is reasonable to expect that the minimizer θ̂ of Q̂n(θ) converges to
the minimizer θ̄ of Q(θ). As we have already noted the value θ̄ can often be identified with the true value
θ∗ and this will be assumed throughout this chapter.
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Note that the criterion Q̂n(θ) is not a convex function of θ and therefore need not achieve a unique min-
imum. This, however, is of no serious importance for the consistency since we may weaken our requirement
on the minimizer θ̂ and define θ̂ as any estimator that nearly minimizes Q̂n(θ), i.e.,

Q̂n(θ̂) ≤ inf
θ∈Θ

Q̂n(θ) + εn, (14.26)

for any random sequence {εn} such that εn
n→ 0, (P ). It is clear that (14.26) implies that Q̂n(θ̂) ≤ Q̂n(θ∗)+εn

and this is sufficient for the convergence of θ̂ defined in (14.26) to θ∗.
Since θ̂ depends on the whole mapping θ 7→ Q̂n(θ), the convergence of θ̂ to θ∗ requires uniform consistency

of the corresponding criterion function, i.e., we need

sup
θ∈Θ
|Q̂n(θ)−Q(θ)| n→ 0, (P ). (14.27)

This uniform convergence is the most difficult step in proving the consistency result. First we observe that
(14.27) is implied by

sup
θ∈Θ
|Q̂n(θ)− EQ̂n(θ)| n→ 0, (P ), (14.28)

and
sup
θ∈Θ
|EQ̂n(θ)−Q(θ)| n→ 0. (14.29)

The uniform convergence of Q̂n(θ) to its average required in (14.28) can be analyzed by the well established
theory of empirical processes. The main requirement of this theory is that the following set of functions,

{Ψθ,m̂(•;θ)(•, •); θ ∈ Θ}, (14.30)

defines the so-called Glivenko-Cantelli class. When Θ is compact, which is assumeed throughout this chapter,
simple sufficient conditions for the class in (14.30) to be the Glivenko-Cantelli set of functions are:

(a) The mapping θ 7→ Ψθ,m̂(•;θ)(U, Y ) is continuous for every (U, Y ).

(b) There exists a function α(U, Y ) such that

Ψθ,m̂(•;θ)(U, Y ) ≤ α(U, Y ) for every θ ∈ Θ (14.31)

and E{α(U, Y )} <∞.

Conditions (14.31) assure that the class of functions in (14.30) satisfy a uniform law of large numbers in
(14.28). On the other hand, the convergence in (14.29) is equivalent to,

sup
θ∈Θ

E|Ψθ,m̂(•;θ)(U, Y )−Ψθ,m(•;θ)(U, Y )| n→ 0. (14.32)

This property can be deduced from the continuity of the mappings θ 7→ Ψθ,m̂(•,θ)(•, •), θ 7→ Ψθ,m(•;θ)(•, •),
condition (14.31), and the compactness of Θ.

In summary, the uniform convergence in (14.27) is essential for establishing the convergence of θ̂, defined
in (14.26), to θ∗. It should be noted, however, that this requirement is not necessary and weaker conditions
can be formulated. The following theorem summarizes our discussion on the consistency of θ̂. The proof of
this result is short and useful for our future developments and is also given below.

Theorem 14.1 Let Q̂n(θ) be a random criterion function given in (14.17) and defined for θ ∈ Θ where
Θ is a compact subset of Rs. Let the limit criterion Q(θ) given in (14.22) be a continuous function on Θ.
Suppose that condition (14.31) is met. Then for any sequence of estimators θ̂ that satisfy (14.26) we have

θ̂
n→ θ∗, (P ).
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Proof of Theorem 14.1 : By the definition of θ̂, we have Q̂n(θ̂) ≤ Q̂n(θ∗) + εn. By virtue of (14.31), the
compactness of Θ, and the continuity of Q(θ) we have (14.27), and consequently Q̂n(θ∗) n→ Q(θ∗)(P ). As a
result we get Q̂n(θ̂) ≤ Q(θ∗) + ε

′

n where ε
′

n
n→ 0(P ). This yields

Q(θ̂)−Q(θ∗) ≤ Q(θ̂)− Q̂n(θ̂) + ε
′

n

≤ sup
θ∈Θ
|Q̂n(θ)−Q(θ)|+ ε

′

n
n→ 0, (P ).

The above result and the facts that Θ is compact and Q(θ) is a continuous function imply that there exists
for every δ > 0 a number η > 0 such that if ‖θ̂ − θ∗‖ ≥ δ then Q(θ̂)−Q(θ∗) > η. Hence,

P (‖θ̂ − θ∗ ≥ δ‖) ≤ P (Q(θ̂)−Q(θ∗) > η) n→ 0.

This completes the proof of Theorem 14.1. �

Often the function a : θ → Ψθ,m(•), which defines the criterion in (14.16), and the mapping θ 7→ m̂(•; θ)
are differentiable. Then it is more convenient to examine zeros of the criterion,

q̂n(θ) =
∂

∂θ
Q̂n(θ) =

1
n

n∑
i=1

ψθ,m̂(•;θ)(Ui, Yi), (14.33)

where ψθ,m̂(•;θ)(•, •) = ∂
∂θΨθ,m̂(•;θ)(•, •). Note that we can efficiently evaluate this derivative in the following

way:
∂

∂θ
Ψθ,m̂(•;θ)(•, •) =

∂Ψθ,m̂(•;θ)(•, •)
∂a

1 +
∂Ψθ,m̂(•;θ)(•, •)

∂m̂(•; θ)
∂m̂(•; θ)
∂θ

, (14.34)

where 1 = (1, 1, . . . , 1) is the s-dimensional vector.
Similarly, as in Theorem 14.1 we can use the zeros of q̂n(θ) as a definition of our estimate θ̂. Then,

the zeros of the limit criterion q(θ) = E{ψθ,m(•;θ)(U, Y )} can be identified with the true value θ∗ of the
parameter.

The consistency θ̂ n→ θ∗ (P ) and differentiability of the mapping θ 7→ Ψθ,m̂(•;θ)(•, •) allow us to consider
the problem of the convergence rate. In fact, one can determine a formal Taylor series expansion of Q̂n(θ)
around θ∗,

Q̂n(θ̂) = Q̂n(θ∗) + q̂n(θ∗)T (θ̂ − θ∗) +
1
2

(θ̂ − θ∗)TVθ̄(θ̂ − θ∗), (14.35)

where Vθ is the s × s matrix of second derivatives of Q̂n(θ) and θ̄ is a point between θ̂ and θ∗. By taking
the derivative of the expansion in (14.35) and noting that q̂n(θ̂) = 0 we can obtain that

√
n(θ̂ − θ∗) = −Dn(θ∗)

√
nq̂n(θ∗), (14.36)

for some matrix Dn(θ).
With regards to (14.36) note first that

√
nq̂n(θ∗) = n−1/2

∑n
i=1 ψθ∗,m̂(•;θ∗)(Ui, Yi). Next, we have

ψθ∗,m̂(•;θ∗)(•, •)
n→ ψθ∗,m∗(•)(•, •) (P ) and then Eψθ∗,m∗(•)(U, Y ) = q(θ∗). Since q(θ∗) = 0 and var(

√
nq̂n(θ∗))

tends to a constant, we can conclude that
√
nq̂n(θ∗) is bounded (P ). The examination of the asymptotic

behavior of the matrix Dn(θ) is more delicate. It can be shown, however, that Dn(θ) tends (P ) to some
non-singular matrix.

The following theorem gives some sufficient conditions for the
√
n convergence rate of the estimate θ̂. We

omit, however, technical details yielding the proof of this theorem.

Theorem 14.2 Let Q̂n(θ) be a random criterion function given in (14.17) defined for θ ∈ Θ where Θ is a
compact subset of Rs. Let the limit criterion Q(θ) given in (14.22) admit the second-order Taylor expansion
at a point of minimum θ∗ with a non-singular symmetric second derivative matrix. Furthermore, assume
that the mapping θ 7→ Ψθ,m̂(•;θ)(•, •) is differentiable at θ∗ with the derivative ψθ,m̂(•;θ)(•, •) satisfying,

‖ψθ,m̂(•;θ)(U, Y )‖≤ β(U, Y ),
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for all θ ∈ Θ, with Eβ2(U, Y ) <∞. Then for any sequence of estimators θ̂ that satisfy (14.26) with nεn
n→ 0

(P) and such that θ̂ n→ θ∗ (P) we have
θ̂ = θ∗ +OP (n−1/2).

In Sections 14.4 , 14.5, and 14.6 we shall illustrate the universality of the aforementioned approach to
the problem of identifying semiparametric versions of the Wiener, Hammerstein, and parallel systems.

B: Nonparametric estimation

The result of Theorem 14.1 assures that θ̂ n→ θ∗, (P ). Therefore, it is reasonable to expect that the estimate
m̂(•) in (14.20) converges to m(•; θ∗) = m∗(•). The following decomposition will facilitate this claim

m̂(•)−m∗(•) = {m̂(•)− m̂(•; θ∗)}+ {m̂(•; θ∗)−m∗(•)}. (14.37)

The convergence (P ) of the second term to zero in the above decomposition represents a classical problem
in nonparametric estimation. This convergence depends on the nature of the dependence between random
signals within the underlying system. If the system has a finite memory, the random processes are outputs of
finite impulse response filters, and the convergence property can easily be established. For general dependence
structures, i.e., for systems with infinite memory, the convergence can be a difficult issue to verify.

Concerning the first term in (14.37), note that m̂(•) = m̂(•; θ̂) and we can apply the linearization
technique, i.e., we have

m̂(•; θ̂)− m̂(•; θ∗) =
{
∂

∂θ
m̂(•; θ)|θ=θ∗

}T (
θ̂ − θ∗

)
+ o

(
‖θ̂ − θ∗‖2

)
. (14.38)

To show the convergence (P ) of the first term to zero it suffices to prove that ∂
∂θ m̂(•; θ)|θ=θ∗ has a finite

limit (P ) as n→∞. This fact can be directly verified for a specific estimate m̂(•; θ) of m(•; θ). There exists
a general result which allows one to determine the convergence of the derivatives of an estimate from the
convergence of the estimate itself, see the Appendix.

The decomposition in (14.37) combined with the result of Theorem 14.2 allows us also to examine the
problem of the convergence rate of the estimate m̂(•). First of all, since the derivative term in (14.38)
tends (P ) to a finite value, due to Theorem 14.2 the first term on the right-hand-side of (14.37) is of
order OP (n−1/2). Next, for most nonparametric regression estimates m̂(•; θ∗) we usually have m̂(•; θ∗) =
m∗(•) +OP (n−α), where typically 1/3 ≤ α < 1. Consequently, we obtain,

m̂(•) = m∗(•) +OP (n−α). (14.39)

With respect to α, if m̂(•) is a kernel regression estimate and m∗(•) is Lipschitz continuous then (14.39)
holds with α = 1/3. For twice differentiable nonlinearities, this takes place with α = 2/5.

14.4 Statistical inference for semiparametric Wiener models

In this section we will illustrate the semiparametric methodology developed in the previous sections by the
examination of the constrained Wiener system introduced in Chapter 14.2. The system is shown in Fig. 14.4
and is characterized by the pair (λ∗,m∗(•)), where λ∗ ∈ Rp+1 is the vector representing the impulse response
function of the linear subsystem. The identification problem of the Wiener system examined in Chapters 9,

Zn

YnUn Wn
m∗(•){λ∗

i , 0 ≤ i ≤ p}

Figure 14.4: The identified semiparametric Wiener system.

10, and 11 is based on the concept of the inverse regression and has certain apparent limitations. Indeed, it
has been assumed that:
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• The input signal {Un} is either a white or color Gaussian process.

• The measurement noise Zn is absent, i.,e., Zn = 0.

• The nonlinear characteristic m∗(•) is invertible, i.e., m∗−1(•) exists.

On the other hand, in the previous algorithms it was possible to define the memory of the linear subsystem
as infinite. On the contrary in the semiparametric approach introduced in Section 14.3 we need a finite
dimensional parameterization of the dynamical subsystem. Hence, let us consider the semiparametric case of
the Wiener system which is parameterized by a finite memory linear subsystem. Thus, we have the following
input-output relationship:  Wn =

p∑
l=0

λ∗l Un−l

Yn = m∗(Wn) + Zn

, (14.40)

where the order p of the dynamical subsystem is assumed to be known.
As we have already noted, the tandem nature of the Wiener system yields the scaling effect, i.e., one can

only estimate λ∗ up to a multiplicative constant. Let us consider a Wiener system with the characteristics
m̄∗(w) = m∗(w/c) and λ̄∗ = cλ∗, c being an arbitrary nonzero constant. Then it is easy to see that the new
system is indistinguishable from the original one. Thus, in order to get around this identifiability problem
we need some normalization of the sequence λ∗ = {λ∗l , 0 ≤ l ≤ p}. A simple normalization is to assume that
λ0 = 1.

To proceed further it is necessary to introduce the space Λ of all admissible impulse response functions
λ = {λl, 0 ≤ l ≤ p} of order p which satisfy the normalization constraint λ0 = 1. Hence let Λ = {λ ∈ Rp+1 :
λ0 = 1} such that λ∗ ∈ Λ. By virtue of the semiparametric methodology of Section 14.3 we first wish to
characterize the system nonlinearity for a given λ ∈ Λ. Hence let,

Wn(λ) =
p∑
l=0

λl Un−l, (14.41)

be the interconnecting signal of the Wiener system corresponding to λ ∈ Λ. Consequently, it is natural to
use the following regression function,

m(w;λ) = E{Yn|Wn(λ) = w}, (14.42)

as the best approximate of m∗(w) for a given λ ∈ Λ. Note that m(w;λ) is the best predictor of the output
signal for a given λ ∈ Λ. It is clear that Wn(λ∗) = Wn and m(w;λ∗) = m∗(w). The smoothness of
m(w;λ) plays an important role in the statistical analysis of our identification algorithms. Since m(w;λ) =
E{m∗(Wn)|Wn(λ) = w}, the smoothness of m(w;λ) is controlled by the smoothness of m∗(w) and the
conditional distribution of Wn on Wn(λ).

Example 14.1 To illustrate the dependence of m(w;λ) on m∗(w) in terms of smoothness, let {Un} be an
i.i.d. sequence with a normal distribution N(0, σ2). Then, denoting by φ(•) the N(0, 1) density and after
some algebra we have,

m(w;λ) =
∫ ∞
−∞

m∗(µ(λ)w + vσ(λ))φ(v)dv, (14.43)

where

µ(λ) =
λTλ∗

‖λ‖2
, σ2(λ) = σ2

[
‖λ∗‖2 − (λTλ∗)2

‖λ‖2

]
.

In Fig. 14.5 we plot m(w;λ) in (14.43) as a function of w with λ = (1, λ1)T , λ∗ = (1, 1)T , σ2 = 1,
and the discontinuous nonlinearity m∗(w) = sgn(w). Values λ1 = −0.9, 0, 0.9 are used. Note that the value
λ1 = 0 indicates that there is no dynamical subsystem in the Wiener model. The continuity of m(w;λ) is
apparent.

In Fig. 14.6, we plot m(w;λ) versus λ for a few selected values of w, i.e., w = −1,−0.1, 0.1, 1. The
sensitivity of m(w;λ) with respect to λ is small for points which lie far from the point of discontinuity w = 0.
On the other hand we observe a great influence of λ at the points which are close to the discontinuity.
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Figure 14.5: The regression function m(w;λ) in (14.43) versus w, with λ = (1, λ1)T , λ∗ = (1, 1)T , m∗(w) =
sgn(w). Values λ1 = −0.9, 0, 0.9.
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Figure 14.6: The regression function m(w;λ) in (14.43) versus λ1, with λ = (1, λ1)T , λ∗ = (1, 1)T , m∗(w) =
sgn(w). Values w = −1,−0.1, 0.1, 1.

Generally it can be observed that for a very large class of nonlinearities and distributions of (Wn,Wn(λ))
which are not necessarily continuous, m(w;λ) is a continuous function provided that ‖λ− λ∗‖ > 0.

Our principle issue is to recover the pair (λ∗,m∗(•)) from the the training set

T = {(U1, Y1), . . . , (Un, Yn)}, (14.44)

where {Ui} is an i.i.d. sequence of random variables with the density function fU (•). Owing to the semipara-
metric methodology discussed in Section 14.3 we first must estimate (for a given λ) the regression function
m(w;λ). This can easily be done using any previously studied regression estimates applied to synthetic data
parametrized by λ :

{(Wp+1(λ), Yp+1), . . . , (Wn(λ), Yn)}. (14.45)

This yields an estimate m̂(w;λ) which allows one to define a predictive error as a function of only the linear
subsystem coefficients λ.

Let us choose the criterion function shown in (14.14). Then, we can write the prediction error as follows:

Q̂n(λ) =
1
n

n∑
j=p+1

M(Yj − m̂(Wj(λ);λ)). (14.46)

The strategy of estimating λ∗ is now based on the minimization of Q̂n(λ). In this respect, the choice
M(t) = t2 is the most popular and this error function will be used throughout this section. It is worth
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noting that the formula in (14.46) is the counterpart of (14.17) which is now specialized to the Wiener
system and the M -type criterion function.

14.4.1 Identification algorithms

The criterion Q̂n(λ) in (14.46) utilizes the same data to form the pilot estimate m̂(w;λ) and to define Q̂n(λ).
This is not generally a good strategy and some form of resampling scheme should be applied in order to
separate the data into the testing and training sequencs. The former should be used to form the criterion
in (14.17), whereas the latter to obtain the estimate m̂(w;λ). This will facilitate not only the mathematical
analysis of the estimation algorithms but also gives a desirable separation of parametric and nonparametric
estimation problems, which allows one to evaluate parametric and nonparametric estimates more efficiently.

Consider the partition strategy which reorganizes a set of training data T into two non overlapping subsets
that are statistically independent. Owing to the fact that the observations Yn and Yn+p+1 are statistically
independent, we define T1 as the subset of training set T consisting of n1 observations after deleting the
first p data points due to the memory effect. Similarly let T2 be the remaining part of T separated from
T1 by the distance of length p. By construction we note that T1 and T2 are independent random subsets of
T . This is the key property which allows us to design efficient estimates of λ∗, m(w;λ), and consequently
m∗(•). We use the subset T1 to estimate the regression function m(w;λ) whereas T2 is used as a testing
sequence to form the least-squares criterion to recover the impulse response sequence λ∗. Also, let I1 and
I2 denote the indices of data points {(Ui, Yi), 1 ≤ i ≤ n} which belong to T1 and T2, respectively. Fig. 14.7
shows an example of the partition of T into T1 and T2. Here we have n2 = n2p− n1.

p n1 p n2

T1 T2

Figure 14.7: An example of the partition of the training set T into independent subsets T1 and T2.

It is clear that there other possible partitions of a training data set. In fact, the machine learning theory
principle says the testing sequence T2 should consists of independent observations, whereas the training
sequence T1 can be arbitrary. In our situation this strategy can be easily realized by choosing the testing
observations which are p + 1 positions apart from each other. Fig. 14.8 shows such a partition where only
T2 is indicated, with the remaining part of the data set (except for the first p observations) defining T1. In
this case the testing set T2 is a sequence of independent random variables and n2 = n/p. Note, however,
that for a linear subsystem with a long memory size p, the testing sequence can be unacceptably small.

p p p p

T2

Figure 14.8: An example of the partition of the training set T into subsets T1 and T2 which provides the
testing set T2 as a sequence of i.i.d. random variables. Only the subset T2 is shown; the remaining part of
the data set (except for the first p observations) defines T1.

In the analysis that follows, we employ the partition which divides the training set into two statistically
independent subsets, as shown in Fig. 14.7.

A number of nonparametric estimates of the regression function m(w;λ) can be proposed. In Chapter 3
we studied the classical Nadaraya-Watson estimate which, when applied to the subset T1 of the data set in



14.4. STATISTICAL INFERENCE FOR SEMIPARAMETRIC WIENER MODELS 211

(14.45), takes the following form:

m̂(w;λ) =

∑
j∈I1 YjK

(
w−Wj(λ)

h

)
∑
j∈I1 K

(
w−Wj(λ)

h

) , (14.47)

for a given λ ∈ Λ.
The recursive and semi-recursive kernel estimates which were introduced in Chapters 4 and 5 can also be

used to estimate m(w;λ). The order statistics kernel estimate of Chapter 7 is particularly attractive under
the present circumstances since it is not of the ratio form. The order statistics kernel estimate is defined as
follows:

m̃(w;λ) =
∑
j∈I1

Y[j]h
−1

∫ W(j)(λ)

W(j−1)(λ)

K

(
w − v
h

)
dv, (14.48)

where, for a given λ ∈ Λ, {W(j)(λ), j ∈ I1} is the order statistic of the data set in (14.45) confined to
observations from T1. In addition, {Y[j], j ∈ I1} is a set of the corresponding output observations paired
with {W(j)(λ), j ∈ I1}.

A less accurate but computationally more attractive version of m̃(w;λ) is

m̃(w;λ) =
∑
j∈I1

Y[j](W(j)(λ)−W(j−1)(λ))h−1K

(
w −W(j)(λ)

h

)
. (14.49)

The aforementioned pilot estimates of m(w;λ) can now be used to form the least-squares approach to recover
the impulse response λ∗ of the Wiener system. Thus, the least-squares version of the criterion function in
(14.17) or (14.46) confined to the data set T2 takes the following form

Q̂n(λ) =
1
n2

∑
i∈I2

{Yi − m̂(Wi(λ);λ)}2, (14.50)

where the classical kernel estimate (14.47) can be replaced by virtually any other nonparametric estimate,
e.g., the estimates in (14.48) and (14.49).

A natural estimate of λ∗ is the minimizer of Q̂n(λ), i.e., let

λ̂ = arg min
λ∈Λ

Q̂n(λ). (14.51)

Once the estimate λ̂ is obtained, one can define the following estimate of the nonlinear characteristic m∗(•)
of the Wiener system

m̂(w) = m̂(w; λ̂), (14.52)

where m̂(w;λ) is virtually any nonparametric estimate of m(w;λ). Let us note that we can use one non-
parametric estimate in the definition of Q̂n(λ) and another one (according to the prescription in (14.52)) to
recover the nonlinearity.

It is clear that the criterion Q̂n(λ) need not possess a unique minimum and, moreover, an efficient
procedure to find the minimum of Q̂n(λ) is required. One numerical method to determine λ̂ is to evaluate
the gradient vector of Q̂n(λ), which is necessary for the application of steepest descent algorithms. Hence,
let us define the n2-dimensional vector ϕ(λ) = (ϕi(λ), i ∈ I2)T , where,

ϕi(λ) = Yi − m̂(Wi(λ);λ). (14.53)

Owing to our normalization imposed on λ ∈ Λ we may identify λ as a vector inRp. Then, direct differentiation
of Q̂n(λ) yields,

∂Q̂n(λ)
∂λ

= 2n−1
2 GT (λ)ϕ(λ), (14.54)

where G(λ) is the n2×p matrix with the (i, j) entry given by ∂ϕi(λ)/∂λj , i ∈ I2, j = 1, . . . , p. The evaluation
of the function ϕi(λ) in (14.53) and its derivative,

∂ϕi(λ)
∂λj

= −∂m̂(Wi(λ);λ)
∂λj

,
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can be conducted for specific nonparametric estimates m̂(w;λ). It is a relatively easy task to evaluate the
derivative for the order statistics kernel estimate in (14.49) and it is a bit more complicated for the classical
kernel estimator in (14.47).

To ease the computational burden we can apply the iterative algorithm introduced Section 14.3. This
requires determining for a given λ̂(old) the minimum of the partially specified criterion,

Q̃n(λ) =
1
n2

∑
i∈I2

{
Yi − m̂

(
Wi(λ); λ̂(old)

)}2

. (14.55)

The gradient of Q̃n(λ) is given by formula (14.54) where,

ϕi(λ) = Yi − m̂
(
Wi(λ); λ̂(old)

)
, (14.56)

and,

∂ϕi(λ)
∂λ

= −
∂m̂

(
Wi(λ); λ̂(old)

)
∂λ

. (14.57)

Calculation of the derivative of ϕi(λ) is now straightforward. Indeed, for the estimate m̂(w;λ) in (14.47) we
have

∂ϕi(λ)
∂λ

= −m̂(1)
(
Wi(λ); λ̂(old)

)
Ũi, (14.58)

where m̂(1)(w;λ) = ∂m̂(w;λ)/∂w and Ũi = (Ui−1, . . . , Ui−p)T .
Concerning the order statistics estimate m̃(w;λ) in (14.49) we have,

∂ϕi(λ)
∂λ

= −m̃(1)
(
Wi(λ); λ̂(old)

)
Ũi,

where

m̂(1)(w;λ) =
∂m̃(w;λ)

∂w
=
∑
j∈I1

Y[j](W(j)(λ)−W(j−1)(λ))h−2K(1)

(
w −W(j)(λ)

h

)
. (14.59)

Summarizing, we can propose the following efficient algorithm to minimize Q̂n(λ):

Step 1 For a selected estimate m̂(w;λ) of the regression function m(w;λ) specify an initial value λ̂(old) and
set m̂(w; λ̂(old)).

Step 2 Choose λ(0) and iterate for t = 0, 1, 2, . . .

λ(t+1) = λ(t) − γtGT (λ(t))ϕ(λ(t)),

where ϕ(λ) is the n2-dimensional vector such that

ϕi(λ) = Yi − m̂(Wi(λ); λ̂(old)), i ∈ I2

and G(λ) is the n2 × p matrix with the (i, j) entry given by

∂ϕi(λ)
∂λj

= −m̂(1)(Wi(λ); λ̂(old))Ui−j , i ∈ I2, j = 1, . . . , p.

Stop iterations once two successive values of Q̃n(λ) in (14.55) differ insignificantly (quantified by a
given small number ε = 10−4). This produces a new λ̂(new).

Step 3 Use the obtained λ̂(new) from Step 2 to update m̂(w; λ̂(old)), i.e., we get m̂(w; λ̂(new)).

Step 4 Iterate between the above steps until the criterion function Q̂n(λ) in (14.50) does not change signif-
icantly.
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There are various ways to refine the above procedure, and some additional comments on the implemen-
tation are provided below.

Remark 14.1 We can speed up the algorithm by employing some preliminary estimate of λ∗, rather than
selecting an arbitrary λ̂(old). For instance, we can use the following correlation estimate of λ∗, as shown in
Chapter 9,

λ̂(old)
s =

∑n
j=s+1 Uj−sYj∑n
j=1 UjYj

, s = 1, . . . , p.

It is worth noting that λ̂(old)
s is a consistent estimate of λ∗s provided that the input signal is a white Gaussian

process (see Chapter 9). If the input process is at least close to being Gaussian, this choice for λ̂(old)
s may

drastically reduce the number of iterations required in the algorithm.

Remark 14.2 The algorithm uses a kernel estimate which, in turn, needs the selection of the bandwidth
parameter h. Due to the splitting strategy, our criterion Q̂n(λ) or its simplified form Q̃n(λ) are already in
the form of a predictive error, and we can incorporate the bandwidth into the definition of our criterion.
Hence, we can use

Q̃n(λ;h) =
1
n2

∑
i∈I2

{
Yi − m̂(Wi

(
λ); λ̂(old)

)}2

as the criterion for selecting both λ̂ and h.
Then, in Step 1 of the algorithm we should select an initial value of h, and in Step 2 apply a simple

search algorithm (not necessarily based on the derivative ∂Q̃n(λ;h)/∂h) to find an improved value of h. A
value of h obtained in this manner can serve as the bandwidth for the final estimate in (14.52) of the system
nonlinearity.

Remark 14.3 The above procedure needs the derivative ∂m̂(w;λ)/∂w of the kernel estimates. This can
easily be obtained as, e.g., in (14.59). Nevertheless, smooth kernel functions are required here. The following
are the second order kernels (see Chapter 3) which have two, three and infinity number of derivatives,
respectively:

K1(x) =
15
16

(1− x2)2 1(|x| ≤ 1),

K2(x) =
35
32

(1− 3x2 + 3x4 − x6) 1(|x| ≤ 1),

K3(x) = (2π)−1/2 e−x
2/2.

Fig. 14.9 depicts these kernels.

14.4.2 Convergence analysis

This section is concerned with the convergence analysis of the identification algorithms λ̂ and m̂(•) proposed
in (14.51) and (14.52), respectively. We will employ the basic methodology established in Section 14.3.1.

Let fW (•) and fW (•;λ) be density functions of random processes {Wn} and {Wn(λ)}, respectively. Note
that fW (•) and fW (•;λ) always exist since are they are obtained by the (p+1)-fold convolution of the scaled
version of fU (•) – the probability density function of the input process. In the subsequent sections we give
sufficient conditions for the convergence of λ̂ and m̂(•).

A: Parametric estimation

Owing to the results in Section 14.3.1 we can extend a definition of the least-squares estimate to a class of
minimizers that nearly minimize Q̂n(λ), i.e. (see (14.26)),

Q̂n(λ̂) ≤ inf
λ∈Λ

Q̂n(λ) + εn, (14.60)
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Figure 14.9: Smooth kernel functions.

for any random sequence {εn} such that εn
n→ 0, (P ). As we have already noted, (14.60) implies that

Q̂n(λ̂) ≤ Q̂n(λ∗) + εn and this is sufficient for the convergence of λ̂ in (14.60) to λ∗.
The decomposition of Q̂n(λ) into the terms defined in (14.28) and (14.29) needs an average of Q̂n(λ).

Due to the independence of the sample sets T1 and T2 we have,

Q̄(λ) = E{Q̂n(λ)|T1} = E{(Yt − m̂(Wt(λ);λ))2|T1}, (14.61)

where (Wt(λ), Yt) is a random vector which is independent of T1. The definition of m(w;λ) in (14.42) and
the fact that the noise is independent of {Yn} yield:

Q̄(λ) = EZ2
t + E{(m(Wt(λ);λ)−m∗(Wt))2}

+ E{(m̂(Wt(λ);λ)−m(Wt(λ);λ))2|T1}. (14.62)

The last term in the above decomposition represents the integrated squared error between the kernel estimate
m̂(w;λ) and the regression function m(w;λ). Using Lemma 14.5 of Section 14.8 and the techniques developed
in Chapter 3 we can easily show that under the standard assumptions on the kernel function and the
bandwidth sequence {hn} (see Assumptions A4 and A5 listed below), the last term in (14.62) tends (P ) to
zero. Since, moreover, Q̂n(λ) converges (P ) to its average Q̄(λ) for every λ ∈ Λ then we may conclude that:

Q̂n(λ) n→ Q(λ), (P ) for every λ ∈ Λ, (14.63)

where,
Q(λ) = EZ2

t + E{(m(Wt(λ);λ)−m∗(Wt))2}. (14.64)

This asymptotic criterion can be now used to characterize the true impulse response function λ∗. In fact,
since Q(λ∗) = EZ2

t , we have Q(λ∗) ≤ Q(λ), λ ∈ Λ. Nevertheless, λ∗ need not be a unique minimum of
Q(λ). Indeed, the second term in (14.64) is equal to zero for such λ values which belong to the following set:

S = {λ ∈ Λ : P{m∗(Wt) = E(m∗(Wt)|Wt(λ))} = 1}. (14.65)

This set defines all possible values minimizing Q(λ) and it is clear that λ∗ ∈ S.
The property P{m∗(Wt) = E(m∗(Wt)|Wt(λ))} = 1 may hold for other λ values, but this happens in very

rare cases. Note, however, that S = Rp+1 if m∗(•) is a constant function. Excluding this singular situation
we may certainly assume that Q(λ) has the unique global minimum at λ∗. This assumption will be applied
throughout our convergence theory.

The following formal assumptions are required for consistency:

A1 Let the density fU (•) of the input process be a continuous function bounded away from zero on some
small neighborhood of the point u = 0.
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A2 Let m∗(•) be a non-constant continuous function defined on the support of the random process {Wn}
such that E|m∗(Wn)|2 <∞.

A3 Let the space Λ = {λ ∈ Rp+1 : λ0 = 1} of all admissible impulse response functions be a compact
subset of Rp+1.

A4 Let the kernel function K(•) be continuous and satisfy the following restriction:

k11[−r,r](w) ≤ K(w) ≤ k21[−R,R](w),

for some positive constants r ≤ R, k1 ≤ k2.

A5 Let the smoothing sequence {hn} be such that hn → 0 and nhn → 0 as n→∞.

The kernel function satisfying Assumption A4 is called a boxed kernel and there is a large class of kernels
that may be categorized as such.

The following theorem gives conditions for the convergence of the identification algorithm defined in
(14.60) to the true impulse response function λ∗. The formal proof of this result relies on the verification of
conditions (14.31) and can be found in Section 14.8.

Theorem 14.3 Let λ̂ be any estimate defined in (14.60) and let λ∗ be a unique minimizer of the limit
criterion Q(λ). Suppose that Assumptions A1–A5 hold. Then we have,

λ̂
n→ λ∗, (P ).

The critical part in proving this theorem is to show the uniform convergence of Q̂n(λ) to its average
Q̄(λ), i.e., that,

sup
λ∈Λ
|Q̂n(λ)− Q̄(λ)| → 0, (P ) as n→∞.

Such a property is often called Glivienko-Cantelli. This is the property of a set of functions,

{(Y − m̂(W (λ);λ))2 : λ ∈ Λ}, (14.66)

which defines the criterion Q̂n(λ). In (14.31), simple sufficient conditions for the class to be defined as
Glivienko-Cantelli are given.

If stronger requirements are imposed on (14.66), e.g., that the nonlinearity m∗(•) and the noise process
{Zn} are bounded, then the set in (14.66) is of the Vapnik-Chervonenkis type. This allows one to show the
following exponential inequality:

P

{
sup
λ∈Λ
|Q̂n(λ)− Q̄(λ)| ≥ δ|T1

}
≤ c(n)e−αn2δ

2
, (14.67)

for every δ > 0 and some α > 0. The sequence c(n) is known to not grow faster than a polynomial in n. It
is worth noting that bound (14.67) holds uniformly over all training sequences T1 of size n1. The important
consequence of this is that the accuracy of the estimate λ̂ does not depend critically on the training sequence
T1. Hence, the training sequence can be quite arbitrary, whereas the testing part T2 of the training set should
be as independent as possible. This observation would favour the resampling scheme shown in Fig. 14.8.

Theorem 14.2 gives the general result concerning the rate of convergence of generalized least-squared
type estimates of unknown parameters of a semiparametric system. This, combined with the consistency
λ̂

n→ λ∗(P ) obtained in Theorem 14.5, allows us to evaluate the rate of convergence of the estimate λ̂.
In fact, first we must verify that the asymptotic criterion Q(λ) in (14.64) admits the second-order Taylor

expansion at λ = λ∗. It is clear that by the optimality of λ∗ we have ∂Q(λ∗/∂λ = 0. Then the second
derivative of Q(λ) at λ = λ∗ exists if additional smoothness conditions are placed on the input density fU (•)
and nonlinearity m∗(•). This can be formally verified using Lemma 14.3 from Section 14.8. As a result we
must strengthen Conditions A1 and A2 and assume that fU (•) and m∗(•) have two continuous bounded
derivatives.
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Yet another requirement in Theorem 14.2 is that the mapping λ 7→ (Yi − m̂(Wi(λ);λ))2, i ∈ I2 is
differentiable at λ = λ∗. Note that the derivative of the mapping is given by,

−2(Yi − m̂(Wi(λ);λ))
∂m̂(Wi(λ);λ)

∂λ
. (14.68)

A bound for the term |Yi− m̂(Wi(λ);λ)| in (14.68) that is uniform with respect to λ can be found using the
technique which was used in the proof of Theorem 14.3, see Section 14.9.3.

Furthermore, to bound the term ∂m̂(Wi(λ);λ)/∂λ in (14.68) we note that

∂m̂(Wi(λ);λ)
∂λ

= m̂(1)(Wi(λ);λ)Ui +
∑
j∈I1

Dj(Wi(λ);λ)Uj ,

where m̂(1)(w;λ) = ∂m̂(w;λ)/∂w and Ui = (Ui, Ui−1, . . . , Ui−p)T . The formula for Dj(w;λ) is given in
(14.71) with λ∗ and Wj replaced by λ and Wj(λ), respectively. Then we can proceed as in the proof of
Theorem 14.5 and conclude that the conditions of Theorem 14.2 are met. All these informal considerations
lead to the following theorem.

Theorem 14.4 Let all the assumptions of Theorem 14.3 be satisfied. Let the derivative K(1)(•) of the kernel
function exist and be bounded. Suppose that fU (•) and m∗(•) have two continuous bounded derivatives.

Then for any sequence of estimators λ̂ that satisfy (14.60) with nεn
n→ 0(P ) and such that λ̂ n→ λ∗(P )

we have
λ̂ = λ∗ +OP (n−1/2).

This result shows that the semiparametric least-squares estimation method can reach the usual
√
n

parametric rate of convergence. Nevertheless, additional smoothness conditions on the input density and
system nonlinearity are required. On the contrary, the correlation type estimators of λ∗ can reach the

√
n rate

without virtually any assumptions on the nonlinearity and the system memory. The critical assumption,
however, was that the input signal is Gaussian. In Remark 14.1 we discuss how to combine these two
estimation methods in order to reduce the computational cost of the least-squares estimate. It is also worth
noting that the correlation estimate is given by an explicit formula whereas the least-squares method is not.
In Section 14.7 we give another class of parameter estimators which can be given by direct formulas. They
can be applied to only a limited class of semiparametric models but their ease of use make them an attractive
alternative.

B: Nonparametric estimation

The estimate λ̂ of the linear subsystem found in the preceding section allows one to define an estimate of
m̂∗(•) as in (14.52), i.e., m̂(•) = m̂(•; λ̂), where m̂(•;λ) is the kernel estimate defined in (14.47). The first
step in proving the consistency result for m̂(•) is to apply the decomposition in (14.38). The convergence of
the second term in this decomposition, i.e.,

m̂(•; λ̂)−m∗(•) n→ 0, (P ), (14.69)

represents the classical problem in nonparametric estimation. In our case the output process is p-dependent,
i.e., the random variables Yi and Yj are independent as long as |i− j| > p. This observation and the result
of Lemma 14.5 in Section 14.8 yield (14.69); see the proof of Theorem 14.5 in Section 14.8.

Concerning the first term in (14.38), note that we wish to apply the linearization trick with respect to
λ̂− λ∗. To do so, let us write the kernel estimate m̂(w;λ) in (14.47) as follows:

m̂(w;λ) =
r̂(w;λ)

f̂(w;λ)
, (14.70)

where r̂(w;λ) = n−1
1 h−1

∑
j∈I1 YjK

(
w−Wj(λ)

h

)
and f̂(w;λ) = n−1

1 h−1
∑
j∈I1 K

(
w−Wj(λ)

h

)
. Note that

f̂(w;λ) is the kernel estimate of the density function f(w;λ), whereas m̂(w;λ) is the kernel estimate of
m(w;λ)f(w;λ).
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Now using (14.70) and recalling that Wj(λ∗) = Wj we can express the derivative of m̂(w;λ∗) with respect
to Wj , j ∈ I1 as follows:

Dj(w) = n−1
1 h−2K(1)

(
w −Wj

h

)
· r̂(w;λ∗)− Yj f̂(w;λ∗)

f̂2(w;λ∗)
, (14.71)

where r̂(w;λ∗), f̂(w;λ∗) are defined as in (14.70) with λ = λ∗. Here K(1)(w) denotes the derivative of the
kernel function.

Next, let us note that

Wj(λ̂)−Wj(λ∗) =
p∑
t=1

(λ̂t − λ∗t )Uj−t, j ∈ I1.

Then we can approximate m̂(w)− m̂(w;λ∗) by the first term of Taylor’s formula,

∑
j∈I1

Dj(w)(Wj(λ̂)−Wj(λ∗)) =
p∑
t=1

(λ̂t − λ∗t )At,n(w),

where,
At,n(w) =

∑
j∈I1

Dj(w)Uj−t,

for 1 ≤ t ≤ p.
Since by Theorem 14.3 we have that λ̂t − λ∗t

n→ 0(P ) it is sufficient to show that the stochastic term
At,n(w) tends (P ) to a finite function as n → ∞. Let us note that by the technical considerations (see
Section 14.8) that lead to the consistency result in (14.69), we have that f̂(w;λ∗) and r̂(w;λ∗) converge (P )
to fW (w) and m∗(w)fW (w), respectively. By these convergences and (14.71) we see that the term At,n(w)
is determined by the following two expressions

J1(w) = n−1
1 h−2

∑
j∈I1

K(1)

(
w −Wj

h

)
Uj−t,

J2(w) = n−1
1 h−2

∑
j∈I1

K(1)

(
w −Wj

h

)
YjUj−t.

Since the term J2(w) is more general (setting Yj ≡ 1 gives J1(w)) it suffices to examine that term. Let us
start by noting that

J2(w) =
∂

∂w
J̄2(w), (14.72)

where,

J̄2(w) = n−1
1 h−1

∑
j∈I1

K

(
w −Wj

h

)
YjXj−t.

In Section 14.8 we show that,
J̄2(w) n→ m∗(w)a(w), (P ), (14.73)

where a(w) is some finite function. The convergence (P ) of J̄2(w) implies the convergence (P ) of the
derivative due to the general result presented in Lemma 14.3, i.e., (14.72) and (14.73) yield

J2(w) n→ ∂

∂w
{m∗(w)a(w)}, (P ).

The aforementioned discussion explains the main steps used to prove the convergence of the estimate m̂(w)
defined in (14.52) to the true nonlinearity m∗(w). More technical considerations necessary for establishing
the results in (14.69) and (14.73) can be found in Section 14.8.

Note that the linearization technique requires some differentiability conditions both on the system char-
acteristics and the kernel function. Hence we need the following additional assumptions:
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A6 Let fU (•) have a bounded and continuous derivative.

A7 Let m∗(•) have a bounded and continuous derivative.

A8 Let the derivative K(1)(•) of the kernel function exist and be bounded.

All these considerations lead to the following convergence result for the nonlinear subsystem identification
algorithm.

Theorem 14.5 Let m̂(•) = m̂(•; λ̂), where m̂(•;λ) is the kernel regression estimate defined in (14.47). Let
all of the assumptions of Theorem 14.3 hold. If, further, Assumptions A6, A7, and A8 are satisfied then
we have,

m̂(w)→ m∗(w), (P ), as n→∞

at every point w ∈ R where fW (w) > 0.

The conditions imposed in Theorem 14.5 are by no means the weakest possible and it may be conjectured
that the convergence holds at a point where fW (w) and m∗(w) are continuous.

In the proof of Theorem 14.5 we have already shown that m̂(w)− m̂(w, λ∗) is of order,

p∑
t=1

(λ̂t − λt)At,n(w),

where At,n(w) n→ At(w)(P ), some finite function At(w). Then due to Theorem 14.4 we have that

m̂(w)−m∗(w) = {m̂(w;λ∗)−m∗(w)}+OP (n−1/2). (14.74)

Hence, the rate of convergence of m̂(w) to m∗(w) depends merely on the speed at which the first term on the
right-hand-side of (14.74) tends to zero. This is, however, an usual problem in nonparametric estimation.
Indeed, the rate is controlled by the smoothness of the nonlinearity m∗(w) and density fW (•). Note that
the smoothness of fW (•) can be inferred by the smoothness of fU (•). The smoothness required to get the
second term in (14.74) is described in Theorem 14.4. Since we have assumed that fU (•) and m∗(•) have two
continuous bounded derivatives, then by standard analysis described in Chapter 2 we may readily obtain
that m̂(w;λ∗) −m∗(w) = OP (n−2/5), provided that the kernel function is even. Consequently, we come to
the following theorem.

Theorem 14.6 Let all the assumptions of Theorem 14.4 and Theorem 14.5 be satisfied. Suppose that the
kernel function is even. Then we have

m̂(w) = m∗(w) +OP (n−2/5).

14.4.3 Simulation examples

In order to illustrate the practical usefulness of the theoretical results obtained in the preceding section, this
section gives some simulation examples. We use the Wiener model in which the linear dynamic subsystem
is given by,

Wn = Un + 0.8Un−1 − 0.6Un−2 + 0.4Un−3. (14.75)

The nonlinear part of the model is represented by the characteristics m∗1(w) = arctan(2w) and m∗2(w) = bwc,
where b·c denotes the rounding function. Hence, two different Wiener models are taken into consideration,
one with a smooth nonlinearity (m∗1(w)) and the other with a nonlinearity having discontinuities (m∗2(w)).
The input excitation {Un} is a uniformly distributed random sequence on the interval [−3, 3]. The output is
corrupted by a noise signal which is uniformly distributed on [−c, c], where c is selected such that c = 0.1·gmax,
in which gmax is the maximum of the nonlinear characteristic. Both the pilot kernel estimate (14.47) and
the final estimate in (14.52) utilize the Gaussian kernel K(w) = (2π)−1/2 exp(−w2/2) and the bandwidth
sequence h = n

−1/5
1 . In order to assess the accuracy of our estimation algorithms we employ two kinds of

estimations errors:
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• The error assessing the accuracy of the identification algorithm of the linear subsystem,

Err(λ̂) =
1
L

L∑
i=1

∥∥∥λ̂[i] − λ∗
∥∥∥

‖λ∗‖
, (14.76)

where L is the number of experimental runs and λ̂[i] is the value of the estimate λ̂ obtained in the i-th
experiment.

• The global estimation error of the nonlinear part

MISE(m̂) =
1
LT

L∑
i=1

T∑
j=1

(m∗(wj)− m̂[i](wj ; λ̂))2, (14.77)

where {wj : j = 1, . . . , T} are points equally spaced in the interval [−8.4; 8.4]. The number 8.4 is
selected because |Wn| ≤ 8.4. In all experiments we use L = 10 and T = 1000. In all our numerical
results the error MISE(m̂) is given using a logarithmic scale.

In the first simulation example we study the rate of convergence of both of the errors, i.e., the speed at
which Err(λ̂) and MISE(m̂) tend to zero as the sample size n increases. The results are shown in Fig. 14.10
where n ranges from 10 to 200. The subsets T1, T2 of the training set T are of equal size, i.e., they each have
0.5n−3 data points. It is apparent that the smoothness of the nonlinearity has a significant influence on the
accuracy of the proposed identification algorithms. Indeed, the smoother the nonlinearity is the faster is the
speed at which Err(λ̂) and MISE(m̂) tend to zero. It is worth noting that in the case of characteristic m∗2(w)
the estimation error Err(λ̂) for the linear part tends to zero faster than the error MISE(m̂) assessing the
nonlinearity estimate. This is consistent with our convergence results. In fact, m∗2(w) meets the conditions
of Theorem 14.3 (see comments that were presented below Theorem 14.3), whereas it does not satisfy
Assumption A7 .

In the next experiment we investigate the issue of data splitting, i.e., how to choose n1 and n2 for a fixed
value of n. The subsets T1 and T2 are arranged as in Fig. 14.7. Actually, this is not an optimal partition
of the training set and this interesting issue will be examined elsewhere. Fig. 14.11 shows the errors Err(λ̂)
and MISE(m̂) versus n1, the size of the training subset T1, where n1 ranges from 5 to 195. The size of the
whole training set is n = 200. Note that n2 = n − 2p − n1, where p = 3 in our case. It is clear from our
results that there is a wide range of n1 for which the quality of the estimate λ̂ does not change. On the other
hand, a large value of n1 can reduce the accuracy of λ̂; a large n1 improves the precision of the pilot kernel
estimate in (14.47) but it results in the small value of n2 yielding a poor least-squares estimate as defined
in (14.51). A small n1 also has a negative influence on the pilot kernel estimate used in (14.50) and as a
result gives a large value of the criterion Q̂n(λ). An analogous trade-off can be observed for the nonlinear
characteristic estimation. As a practical recommendation we can use n1 = n2 = 0.5n− p, which is equal to
97 in our experimental set up.

14.4.4 Extensions

Thus far we have examined the one channel Wiener system with a finite memory and the univariate non-
linearity. We have employed the semiparametric approach to identify the parametric and nonparametric
parts of the system. This strategy can be further extended to other types of Wiener systems. Among many
possible alternatives we single out a multiple-channel model with separate dynamical parts and a common
nonlinearity. A two-channel version of this particular class of Wiener systems is shown in Fig. 14.12. This
model is important since it can be shown that any general class of nonlinear systems, which satisfy the so-
called fading memory property, can be approximated by the aforementioned multiple-channel Wiener model.
A system has fading memory if two input signals which are close in the recent past, but not necessarily close
in the remote past, yield present outputs which are close. This property aims at strengthening the concept
of system continuity and assures us that the system “forgets“ initial conditions. Clearly any system with a
finite memory meets this property.

It is worth mentioning that the inverse regression approach examined in Chapters 9–11 would be difficult
apply to the multiple-channel Wiener model. On the other hand, this model can be easily identified within
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Figure 14.10: Estimation errors Err(λ̂), MISE(ĝ) versus n.
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Figure 14.11: Estimation errors Err(λ̂) and MISE(m̂) versus n1 with a fixed value of n, n = 200.

the semiprametric framework examined in Section 14.3. Hence, without loss of generality, let us consider
the two-channel system depicted in Fig. 14.12 , i.e., we have,

Yn = m∗

 p∑
i=0

λ∗1,i Un−i,

p∑
j=0

λ∗2,j Un−j

+ Zn, (14.78)

where λ∗1 = {λ∗1,i, 0 ≤ i ≤ p} and λ∗2 = {λ∗2,i, 0 ≤ i ≤ p} are unknown parameters and m∗(•, •) is an unknown
nonlinearity.

The first important issue, similar to that studied for the single input Wiener model, is whether the
parameter λ∗ = (λ∗1, λ

∗
2) ∈ Rs, s = 2p + 2, is identifiable. The previous normalization λ1,0 = λ2,0 = 1

is not sufficient in this case; we must further restrict a class of admissible impulse response sequences and
nonlinearities. Concerning the parameter space of all admissible impulse response functions we assume that
λ ∈ Λ ⊂ Rs for Λ being a compact subset of Rs, where λ = (λ1, λ2).

Generally we can only identify a linear subspace spanned by (λ∗1, λ
∗
2). To be able to identify the individual

parameters we can assume that λ∗1 and λ∗2 are not collinear. Furthermore, assume that m∗(•, •) is not a
constant function and that the derivatives of m∗(w1, w2) with respect to each of the variables are not linearly
dependent. This assures us that the nonlinearity is sufficiently far from being constant and linear.

The solution of the identification problem for the model (14.78) is now straightforward. Indeed, we can
follow the ideas developed in Section 14.4 starting with an important concept of the optimal predictor of the
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{λ∗1,i, 0 ≤ i ≤ p}

{λ∗2,i, 0 ≤ i ≤ p}

m∗(•, •)Un

Figure 14.12: The generalized two-channel Wiener model.

output signal for a given λ ∈ Λ,

m(w1, w2;λ) = E{Yn|W1,n(λ1) = w1,W2,n(λ2) = w2}, (14.79)

where W1,n(λ1) =
∑p
i=0 λ1,i Un−i and W2,n(λ2) =

∑p
j=0 λ2,j Un−j . We have the obvious constraints

W1,n(λ∗1) = W1,n, W2,n(λ∗2) = W2,n and m(w1, w2;λ∗) = m∗(w1, w2). Next, using the partition strat-
egy of the training set shown in Fig. 14.7 , the regression function m(w1, w2;λ) can be estimated by the
two-dimensional version of the kernel estimate,

m̂(w1, w2;λ) =

∑
j∈I1 Yj K

(
w1−W1,j(λ1)

h

)
K
(
w2−W2,j(λ2)

h

)
∑
j∈I1 K

(
w1−W1,j(λ1)

h

)
K
(
w2−W2,j(λ2)

h

) , (14.80)

for a given λ = (λ1, λ2) ∈ Λ. See (14.47) for the one-dimensional version of this estimate. This allows us to
form the least-squares criterion for the estimation of λ; hence we have,

λ̂ = arg min
λ∈Λ

1
n2

∑
i∈I2

{Yi − m̂(W1,i(λ1),W2,i(λ2);λ)}2. (14.81)

The corresponding estimate of m∗(w1, w2) is defined as follows:

m̂(w1, w2) = m̂(w1, w2; λ̂). (14.82)

An efficient computational algorithm, identical to that in Section 14.4.1, for finding λ̂ can be easily worked
out.

The convergence analysis analogous to that given in the proof of Theorem 14.3 and Theorem 14.4 leads
to the result,

λ̂1 = λ∗1 +Op(n−1/2), λ̂2 = λ∗2 +Op(n−1/2),

where we need to assume that fU (•) and m∗(•, •) are twice continuously differentiable. Then the reasoning
leading to the results of Theorem 14.5 and Theorem 14.6 readily yields,

m̂(w1, w2) = m∗(w1, w2) +Op(n−1/3), (14.83)

where fU (•) and m∗(•, •) are twice continuously differentiable. Note that the rate in (14.83) is slower that
that for the one channel Wiener system, see Theorem 14.6. This is due to the fact that we are estimating a
bivariate function for which the rate is slower than for an univariate one, see Chapter 13.

The following general d-channel Wiener system,

Yn = m∗

 p∑
i=0

λ∗1,iUn−i, . . . ,

p∑
j=0

λ∗d,jUn−j

+ Zn, (14.84)

can be tackled in the identical way. It is worth noting that the system in (14.84) corresponds to the network
which, as we have already mentioned, can approximate any nonlinear system with the fading memory
property. In this theory, the choice of the order d is controlled by the fading memory assumption and
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generally, the larger value of d, the smaller the approximation error. However, this is true only in the
deterministic theory, whereas in the case of random data we must estimate the parameters (λ∗1, . . . , λ

∗
d) and

the d-dimensional function m∗(•, . . . , •). The model order d should also be a part of the estimation problem
since an optimal order is expected to exist for training data coming from an arbitrary nonlinear system which
meets the fading memory assumption. This is an example of the modeling-estimation tradeoff quantified by
the balance between the approximation error and the variance of the estimates.

In fact, due to the curse of dimensionality, the general model (14.84) is unlikely to be useful when d
is large. As a matter of fact, the function m∗(•, . . . , •) can be estimated at the rate OP

(
n−2/4+d)

)
(see

Chapter 13), and this is a very slow rate for large d. A possible remedy to overcome this dimensionality
problem is to examine an additive approximation of (14.84), i.e.,

Yn =
d∑
r=1

m∗r

(
p∑
i=0

λ∗r,iUn−i

)
+ Zn, (14.85)

where {m∗r(•), 1 ≤ r ≤ d} are univariate functions.
The model in (14.85) is a dynamical counterpart of projection pursuit models extensively studied in the

statistical literature for low dimensional representations of multivariate regression. In this static set up it has
been demonstrated that the projection pursuit regression can approximate any d-dimensional function [85]
which is sufficiently smooth. To the best of the authors‘ knowledge, there is not such a result in the context of
dynamical systems. The system in (14.85), however, is difficult to identify, i.e., to estimate all {λ∗r , 1 ≤ r ≤ d}
and {m∗r(•), 1 ≤ r ≤ d}. We explain this issue in the next generalization of the semiparametric Wiener model.

As we have already mentioned in Chapter 13 it is an interesting issue to examine various multivariate
extensions of block-oriented models. Here, we consider the following counterpart of the Wiener model (14.78)
with two-dimensional input {(U1,n, U2,n)} (see Fig. 13. xxx),

Yn = m∗(
p∑
i=0

λ∗1,iU1,n−i,

p∑
j=0

λ∗2,jU2,n−j) + Zn. (14.86)

An estimation method for recovering (λ∗1, λ
∗
2) and m∗(•, •) is identical to the algorithm outlined above.

The d dimensional generalization of (14.86) can be easily written down. A practical strategy is to consider
a one-dimensional additive approximation of (14.86) (or its d− dimensional version) depicted in Fig. 14.2.
Using our modified notation that emphasizes the true value of the model characteristics, we write the input-
output formula for the additive system as follows:

Yn = m∗1

(
p∑
i=0

λ∗1,iU1,n−i

)
+m∗2

 p∑
j=0

λ∗2,jU2,n−j

+ Zn. (14.87)

Now we wish to estimate (λ∗1, λ
∗
2) and m∗1(•), m∗2(•).

This identification problem can be solved by mixing the semiparametric methodology and the marginal
integration method used for additive models in Chapter 13. In fact, we begin with the projection function,

m(w1, w2;λ) = E{Yn|W1,n(λ1) = w1,W2,n(λ2) = w2}, (14.88)

where we used the standard notation,

W1,n(λ1) =
p∑
i=0

λ1,iU1,n−i, W2,n(λ2) =
p∑
j=0

λ2,jU2,n−j . (14.89)

It is worth noting that, due to the dependence between {U1,n} and {U2,n}, we cannot write m(w1, w2;λ)
as an additive function. This, however, does not bother us since W1,n(λ∗1) = W1,n, W2,n(λ∗2) = W2,n, and
therefore,

m(w1, w2;λ∗) = m∗1(w1) +m∗2(w2). (14.90)

This fundamental identity allows us to recover all the components of the model in (14.87).
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The parametric part of (14.87), i.e., estimating λ∗ = (λ∗1, λ
∗
2), is done in exactly the same way as in

(14.81), where the kernel estimate m̂(w1, w2;λ) of m(w1, w2;λ) is defined in (14.80) with W1,j(λ1) and
W2,j(λ2) being defined in (14.89). This yields the least squares estimate λ̂ of λ∗.

The consistency λ̂
n→ λ∗ (P ) can be established along the lines of the proof of Theorem 14.3. If this is

the case we can anticipate (see the proof of Theorem 14.5) that,

m̂(w1, w2; λ̂) n→ m(w1, w2;λ∗)(P ). (14.91)

Owing to (14.90) the limit function is equal to m∗1(w1)+m∗2(w2). Hence, it remains to recover the individual
components m∗1(•) and m∗2(•) of the additive form. This can be achieved by the marginal integration method
discussed in Chapter 13. We can define the following marginal integration estimates of m∗1(w1) and m∗2(w2),

m̂1(w1) =
∫ ∞
−∞

m̂(w1, w2; λ̂)ψ(w2)dw2,

m̂2(w2) =
∫ ∞
−∞

m̂(w1, w2; λ̂)ψ(w1)dw1, (14.92)

for a given weight function ψ(w).
Using the results of Chapter 13 along with (14.90) and (14.91) we can prove that the estimates in (14.92)

converge to m∗1(•) and m∗2(•), respectively. This leads to a complete solution of the identification problem
of the additive Wiener model using the semiparametric least squares method combined with the marginal
integration technique for resolving additive models. Nevertheless, in Section 14.7.3 we present another
identification method that gives direct estimates of λ∗.

14.5 Statistical inference for semiparametric Hammerstein mod-
els

In Section 14.2.1 we introduced a semiparametric low-dimensional version of the multiple input Hammerstein
system, see Fig. 14.1. The input-output relationship for this d-dimensional system, see (14.4), is given by,

Yn =
p∑
`=0

λ∗`g
∗(γ∗TUn−`) + Zn, (14.93)

where λ∗ = {λ∗i , 0 ≤ i ≤ p} and γ∗ = {γ∗j , 1 ≤ j ≤ d} are unknown parameters, and g∗(•) is a single variable
function representing the nonlinearity of the system. The identifiability of the system forces us to normalize
the parameters (see Section 14.2.1) such that λ∗0 = 1 and γ∗1 = 1. Furthermore, g∗(•) need not be a constant
function and E{g∗(γ∗TUn)} = 0. We also assume that the input signal {Un} constitutes a sequence of iid
random vectors with the density function fU(•) defined on Rd.

As we have already noted in Section 14.2.1 the impulse response function λ∗ of the linear subsystem can
be estimated via the correlation method (see (14.5)) independent of γ∗ and g∗(•). On the other hand the
problem of recovering γ∗ and g∗(•) can be treated by the semiparametric method.

Let Θ = {(λ, γ) : λ0 = 1, γ1 = 1} be a parameter space which is assumed to be a compact subset of
Rp+d+1. For a given (λ, γ) ∈ Θ let us define the regression function,

g(w; γ) = E{Yn|γTUn = w}. (14.94)

This, due our normalization, is equal to,

E{g∗(γ∗TUn)|γTUn = w}.

Note that g(w; γ) is independent of λ and also that g(w; γ∗) = g∗(w). Hence, for a given (λ, γ) ∈ Θ we
can eliminate the dependence of the estimation problem on g∗(•) by estimating g(w; γ) using the kernel
regression method,

ĝ(w; γ) =

∑
j∈I1 Yj K

(
w−γTUj

h

)
∑
j∈I1 K

(
w−γTUj

h

) , (14.95)
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Yn

ZnWn{λ∗i , 0 ≤ i ≤ p}

m∗(•)

Un

Figure 14.13: Semiparametric nonlinear parallel model.

where we again used the partition scheme to divide the training set into two independent subsets (see
Fig. 14.7).

Employing the kernel regression estimate allows us to form the least squares criterion for selecting the
parameter (λ, γ) ∈ Θ. Hence, we have,

Q̂n(λ, γ) =
1
n2

∑
i∈I2

(
Yi −

p∑
`=0

λ`ĝ(γTUi; γ)

)2

. (14.96)

Thus, we define the estimate of the system parameters as follows:

(λ̂, γ̂) = arg min
(λ,γ)∈Θ

Q̂n(λ, γ). (14.97)

Once the estimates (λ̂, γ̂) are obtained we can define the following nonparametric estimate of the system
nonlinearity:

ĝ(w) = ĝ(w; γ̂).

Since we can show that (λ̂, γ̂) tends to (λ∗, γ∗) (P ) (see Section 14.3.1) it is expected that ĝ(w) tends to
g∗(w). We leave it to the reader to fill in the missing points in the consistency proofs.

It is worth noting that if we use the correlation based type of estimate for λ∗ then we can simplify
Q̂n(λ, γ) in (14.96), as follows:

Q̂n(γ) =
1
n2

∑
i∈I2

(
Yi −

p∑
`=0

λ̂` ĝ(γTUi; γ)

)2

,

where λ̂ is the correlation estimate of λ∗. The estimate of γ∗ is now defined as the minimizer of Q̂n(γ).

14.6 Statistical inference for semiparametric parallel models

In our final example concerning the use of the semiparametric least-squares method let us consider the
parallel system introduced in Section 12.1.1. In the current framework, this system (shown in Fig. 14.13)
has the following input-output description:

Yn = m∗(Un) +
p∑
j=0

λ∗jUn−j + Zn. (14.98)

The identifiability condition for this system is that λ∗0 = 1 (see Chapter 12). Hence, let Λ = {λ ∈ Rp+1 :
λ0 = 1} be a set of all admissible parameters that is assumed to be the compact subset of Rp+1.

The semiparametric least squares strategy begins with the elimination of the nonlinear characteristic
from the optimization process. To this end let,

Wn(λ) =
p∑
j=0

λjUn−j , (14.99)
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be the output of the linear subsystem for a given λ ∈ Λ. Clearly Wn(λ∗) = Wn. Next, let

m(u;λ) = E{Yn −Wn(λ)|Un = u} (14.100)

be the best model (regression function) of m∗(u) for a given λ ∈ Λ. Indeed, the signal Yn −Wn(λ)− Zn is
the output of the nonlinear subsystem for λ ∈ Λ. Noting that,

m(u;λ) = m∗(u) +
p∑
j=0

(λ∗j − λj) E{Un−j |Un = u},

we can conclude that m(u;λ∗) = m∗(u). For a given training set T = {(U1, Y1), . . . , (Un, Yn)} we can easily
form a nonparametric estimate of the regression function m(u;λ). Hence let,

m̂(u;λ) =
(nh)−1

∑n
t=p+1(Yt −Wt(λ))K

(
u−Ut
h

)
(nh)−1

∑n
t=1K

(
u−Ut
h

) , (14.101)

be the kernel regression estimate of m(u;λ).
The mean-squared criterion for estimating λ∗ can now be defined as follows:

Q̂n(λ) = n−1

p∑
t=p+1

(Yt − m̂(Ut;λ)−Wt(λ))2
. (14.102)

The minimizer of the prediction error Q̂n(λ) defines an estimate λ̂ of λ∗. As soon as λ̂ is determined we can
estimate m∗(u) by the two-stage process, i.e., we have,

m̂(u) = m̂(u; λ̂). (14.103)

Thus far we have used the same data for estimating the pilot regression estimate m̂(u;λ) and the criterion
function Q̂n(λ). This may lead to consistent estimates but the mathematical analysis of such algorithms is
lengthy. In Section 14.4 we employed the partition resampling scheme which gives a desirable separation of
the training and testing data sets and reduces the mathematical complications. This strategy can be easily
applied here, i.e., we can use the subset T1 of T to derive the kernel estimate in (14.101) and then utilize
the remaining part of T for computing the criterion function Q̂n(λ).

For estimates of λ̂ and m̂(u) obtained as outlined above, we can follow the technical arguments given
in Section 14.4.2 and show that λ̂ n→ λ∗(P ) and consequently m̂(u; λ̂) n→ m(u;λ∗) = m∗(u)(P ). We omit
details of this convergence analysis but this should now be easily accomplished by the reader.

The minimization procedure required to obtain λ̂ can be involved due to the highly nonlinear nature of
Q̂n(λ). A reduced complexity algorithm can be developed based on the general iterative scheme described
in Section 14.3. Hence, for a given λ̂(old), set m̂(u; λ̂(old)). Then we form the modified criterion,

Q̃n(λ) = n−1

p∑
t=p+1

(
Yt − m̂(Ut; λ̂(old))−Wt(λ)

)2

, (14.104)

and find
λ̂(new) = arg min

λ∈Λ
Q̃n(λ).

Next, we use λ̂(new) to get m̂(u; λ̂(new)) and iterate the above process until the criterion Q̂n(λ) does not
change significantly.

It is worth noting that Wt(λ) in (14.104) is a linear function of λ and therefore we can explicitly find
λ̂(new) that minimizes Q̃n(λ). Indeed, this is the classical linear least squares problem with the following
solution

λ̂(new) = (UTU)−1UTO, (14.105)

where O is the (n− p)× 1 vector with the t-th coordinate being equal to Yt− m̂(Ut; λ̂(old)), t = p+ 1, . . . , n.
U is a (n− p)× (p+ 1) matrix, U = (UT

p+1, . . . ,U
T
n )T , where Ut = (Ut, . . . , Ut−p)T .
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We should note that the above algorithm can work with the dependent input process {Un}. However, if
{Un} is a sequence of iid random variables, then the result of Chapter 12 gives a simple way of recovering
λ∗ and m∗(u). Hence, we observed that,

λ∗j =
cov(Yn, Un−j)

var(U0)
; j = 1, . . . , p,

and
m∗(u) = E{Yn|Un = u} − u.

Empirical counterparts of cov(Yn, Un−j), var(U0), and the regression function E{Yn|Un = u} define the
estimates of the system characteristics (see Chapter 12). Although these are explicit estimates, they are
often difficult to generalize in more complex cases. On the other hand, the semiparametric approach can
easily be extended to a large class of interconnected complex systems.

14.7 Direct estimators for semiparametric systems

The least squares estimates of the parametric part of a semiparametric model require solving highly nonlinear
and multidimensional optimization problems. In addition, the estimates are not given in an explicit form and
therefore are difficult to use. Nevertheless, the least squares semiparametric approach is very general and
can be applied to a broad class of nonlinear systems. Furthermore, input signals with general distributions
are admitted.

There is, however, a need for finding direct estimates of parameters of nonlinear systems, even at the
expense of putting stronger assumptions on the underlying characteristics. In this section we derive such
explicit estimates based on the theory of average derivative estimation. We begin with the fundamental
concept of average derivative estimation and then we will illustrate this approach in the case of some nonlinear
semiparametric models.

14.7.1 Average derivative estimation

Given random variables U ∈ Rd and Y ∈ R with the regression function M(u) = E{Y |U = u}, the average
derivative of M(u) is the average slope of M(u), i.e.,

δ = E{DM(U)}, (14.106)

where DM(u) = ∂M(u)
∂u is the gradient of M(u).

The following elementary, yet very useful, identity relates the average derivative δ with the average
of corresponding input-output signals and the input density function. This fact will be very helpful in
constructing direct estimates of the parametric part of semiparametric nonlinear models.

Theorem 14.7 Let (U, Y ) ∈ Rd×R be a pair of random vectors such that U has a density f(•) defined on
the set S ⊆ Rd. Suppose that f(•) has a continuous derivative and f(•) is zero on the boundary ∂S of S.
Assume that the regression function M(u) = E{Y |U = u} has a derivative DM(u). Then we have,

δ = E{DM(U)} = −E
{
Y
Df(U)
f(U)

}
. (14.107)

Proof: Using integration by parts we have,

E{DM(U)} =
∫
S

(DM(u))f(u)du = M(u)f(u)|∂S −
∫
S

M(u)Df(u)du

= −
∫
S

M(u)Df(u)du.

Then let us note that,∫
S

M(u)Df(u)du = E

{
M(U)

Df(U)
f(U)

}
= E

{
E

{
Y
Df(U)
f(U)

|U
}}

= E

{
Y
Df(U)
f(U)

}
.
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This proves the claim of Theorem 14.7. �
One can easily generalize the above result to the case of the weighted average derivative of δw =

E{w(U)DM(U)} of M(u). Indeed, for a smooth weight function w(•) defined on S we can easily show
that

δw = E{w(U)DM(U)} = −E{YDw(U)} − E
{
Y w(U)

Df(U)
f(U)

}
. (14.108)

The choice w(u) = f(u) is particularly interesting since we obtain a formula for the weighted average
derivative of M(u) which is not in the ratio form. In fact, for w(u) = f(u) we have the following version of
(14.108):

δw = E{f(U)DM(U)} = −2E{YDf(U)}. (14.109)

Nonparametric average derivative estimation tries to estimate δ (or δw) from the training data T =
{(U1, Y1), . . . , (Un, Yn)} without any knowledge of the regression function M(u) and the input density
f(u). Owing to (14.107) it is natural to estimate the vector δ by,

δ̂ = − 1
n

n∑
i=1

Ŷi ˆ̀(Ui), (14.110)

where ˆ̀(u) is a certain nonparametric estimate of the following function:

`(u) =
Df(u)
f(u)

. (14.111)

A plug-in strategy for `(u) would give,

ˆ̀(u) =
Df̂(u)

f̂(u)
, (14.112)

where f̂(u) and Df̂(u) are nonparametric estimates of f(u) and Df(u), respectively. For instance one can
use the kernel density estimate

f̂(u) =
1
nhd

n∑
j=1

K

(
u−Uj

h

)
(14.113)

with a d-dimensional kernel function K(u). Then, the derivative of the kernel estimate f̂(u) is given by the
following formula

Df̂(u) =
1

nhd+1

n∑
j=1

DK
(

u−Uj

h

)
, (14.114)

where DK(u) stands for the derivative of K(u). This yields the following kernel estimate of `(u)

ˆ̀(u) =

(
nhd+1

)−1∑n
j=1DK

(
u−Uj

h

)
(nhd)−1∑n

j=1K
(

u−Uj

h

) . (14.115)

It should be emphasized that in (14.115) we use the plug-in estimate of Df(u), i.e., the derivative Df(u) is
estimated by Df̂(u).

There are two fundamental problems with the estimate δ̂ defined in (14.110). First, we use the same data
both to compute the average and to evaluate the nonparametric estimate ˆ`(u). This issue can be overcome
by using some resampling schemes. For instance, one can apply the partition strategy to the training data
T (see Section 14.4.1), i.e., we can write,

δ̂ = − 1
n2

∑
i∈I2

Yi
Df̂(Ui)

f̂(Ui)
, (14.116)
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with f̂(u) = 1
n1hd

∑
j∈I1 K

(
u−Uj

h

)
. Hence, we calculate the average using the testing set T2, whereas the

kernel estimate is derived from the training set T1. Since we can often choose T2 to be independent of T1,
the estimate (14.116) has a simple bias, i.e.,

Eδ̂ = −E

{
Y
Df̂(U)

f̂(U)

}
,

where (U, Y ) is independent of the training set T1.
The second issue concerning the estimate δ̂ in (14.110) as well as the one in (14.116) is that they involve

dividing by f̂(•) and a refined estimator employing the truncation term is advisable in practice. Thus, we
may define the following modified version of δ̂,

δ̃ = − 1
n

n∑
i=1

Yi ˆ̀(Ui)1(f̂(Ui) > ϑ), (14.117)

where ϑ is a sequence of positive numbers (the cutoff parameter). In the asymptotic analysis of the estimate
δ̃ we should require that ϑ = ϑn → 0 as n→∞.

Another option to eliminate the ratio problem is to use the weighted average derivative defined in (14.108).
In particular, for δw = E{w(U)DM(U)} with w(u) = f(u) we have (see (14.109)),

δw = −2E{YDf(U)}.

This suggests the following estimate of δw:

δ̂w = − 2
n

n∑
i=1

YiDf̂(Ui). (14.118)

We should note again that some resampling scheme would be required here to improve the statistical accuracy
of the estimate δ̂w. An advantage of (14.118) over (14.110) is that the estimate δ̂w is not in the ratio form,
yielding more stability and an easier to implement estimation algorithm. Nevertheless, when the average
derivative estimates are applied to the block-oriented semiparametric systems, we find the estimate δ̂ in
(14.110) to be more flexible. This is illustrated in the next three subsections.

Concerning the asymptotic behavior of the estimates δ̂ and δ̂w, we first note that the expected limit
values, i.e., δ and δw represent linear functionals of the nonparametric function M(u). Therefore we can
expect that the rate of convergence for δ̂ and δ̂w is faster than the pointwise rate of nonparametric estimates
of f(u) and DM(u). In fact, the parametric O(n−1) rate can be anticipated. This is true depending on the
smoothness of f(u) and M(u), and on the dimensionality of the input random process {Un}.

An involved analysis shows that the mean-squared error for the kernel type estimates δ̂ and δ̂w of δ and
δw respectively is of the following order:

E‖δ̂ − δ‖2 = c1n
−1 + c2n

−2h−d−2 + c3h
2s + o2, (14.119)

for some constants c1, c2andc3, with o2 representing the other smaller order terms. It is assumed that the
training set {(U, Y1), . . . , (U, Yn)} comprises a sequence of iid random variables. Furthermore, the functions
Df(u), DM(u) are s− times differentiable, s > 1, and the kernel K(u) is of the s-th order, see Chapter 13
for the definition of the order of multivariate kernels.

In (14.119) the first two terms represent an asymptotic variance. The first one describes the standard
parametric O(n−1) decay of the variance, whereas the second one depends on the dimensionality and reflects
the semiparametric nature of the multidimensional estimation problem, i.e., the fact that we estimate the
finite dimensional parameter δ that is a linear functional of the nonparametric function M(u). The last term
in (14.119) is the standard evaluation of the bias for s differentiable functions.

Formula (14.119) allows us to specify the asymptotical optimal h and the corresponding rate. Indeed,
balancing the second and third terms in (14.119) we obtain,

h∗ = an−
2

2s+d+2 , (14.120)
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and consequently,
E‖δ̂ − δ‖2 = c1n

−1 + c4n
− 4s

2s+d+2 . (14.121)

Hence, for
d ≤ 2(s− 1), (14.122)

we obtain the parametric rate E‖δ̂− δ‖2 = O(n−1); otherwise, the rate is slower and is equal to E‖δ̂− δ‖2 =
O
(
n−

4s
2s+d+2

)
. Alternatively, the choice of the smoothing parameter as h = an−α for 1/2s ≤ α ≤ 1/(d+ 2)

gives the parametric rate O(n−1).
Thus, for all symmetric kernels (such as Gaussian) and for f(u) and M(u) being three-times differentiable

we have s = 2 and consequently the O(n−1) rate is only possible for a one- or two-dimensional regression
function M(u).

14.7.2 The average derivative estimate for the semiparametric Wiener model

In this section we illustrate the theory developed in Section 14.7.1 to derive a direct estimate of the impulse
response function of the single input semiparametric Wiener system. Recalling the notation of Section 14.4,
we can write the input-output relationship of the Wiener system as follows:

Yn = M(Un) + Zn, (14.123)

where Un = (Un, Un−1, . . . , Un−p)T and,

M(Un) = m∗

 p∑
j=0

λ∗jUn−j

 . (14.124)

We can easily note that M(u) = E{Yn|Un = u} is the regression function of Yn on Un. Let us now consider
the average derivative E{DM(Un)} of M(u). We begin with the following fundamental identity:

E{DM(Un)} = λ∗E
{
m∗(1)(Wn)

}
, (14.125)

where m∗(1)(•) is the derivative of m∗(•) and Wn =
∑p
j=0 λ

∗
jUn−j . Owing to the result of Theorem 14.7,

the left-hand-side of (14.125) is equal to,

−E
{
Yn
Df(Un)
f(Un)

}
, (14.126)

where f(•) is the density function of the vector Un.
Consequently, by (14.125), (14.126) and the fact that λ∗0 = 1 we arrive at the following formula for λ∗j :

λ∗j =
E

{
Yn

∂
∂Un−j

f(Un)

f(Un)

}
E

{
Yn

∂
∂Un

f(Un)

f(Un)

} , j = 1, 2, . . . , p (14.127)

provided that,
E{m∗(1)(Wn)} 6= 0. (14.128)

The formula in (14.127) can be greatly simplified for the input process {Un} which is an iid random sequence.
In fact, we have,

f(Un) =
p∏
i=0

fU (Un−i),

and,
∂

∂Un−j
f(Un) = f

(1)
U (Un−j)

p∏
i=0,i6=j

fU (Un−i). (14.129)
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Consequently, under condition (14.128), we can readily obtain the following basic formula for λ∗j :

λ∗j =
E {Yn`(Un−j)}
E {Yn`(Un)}

, j = 1, 2, . . . , p, (14.130)

where,

`(u) =
f

(1)
U (u)
fU (u)

. (14.131)

All of these considerations are summarized in the following theorem.

Theorem 14.8 Let the Wiener system be given by the input-output mapping in (14.123) and (14.124). Let
the input signal {Un} be a sequence of iid random variables with the density fU (u) that is a differentiable
function on its support. Assume that E{m∗(1)(Wn)} 6= 0. Then we have,

λ∗j =
E {Yn`(Un−j)}
E {Yn`(Un)}

, j = 1, 2, . . . , p,

where `(u) = f
(1)
U (u)

fU (u) .

We can draw a number of interesting conclusions from the above theorem. First of all, note that if the
input {Un} is iid Gaussian N(µ, σ2) then we have,

`(u) = −u− µ
σ2

. (14.132)

This (for µ = 0) readily yields the following formula for λ∗j :

λ∗j =
E {YnUn−j}
E {YnUn}

, j = 1, 2, . . . , p. (14.133)

We easily recognize that this is the correlation method introduced in Chapter 9 for recovering the impulse
response sequence of the fully nonparametric Wiener system excited by theiid Gaussian input signal. Hence,
the formula presented in Theorem 14.8 can be viewed as the generalized correlation method defined by the
correlation between the output process {Yn} and the process {`(Un)}. The latter is a nonlinear function of
the input signal {Un}, where the nonlinearity `(•) is completely determined by the input density function
fU (•). It is worth noting that if fU (•) is symmetric then f

(1)
U (•) is an odd function and consequently we

have,
`(−u) = −`(u). (14.134)

Thus the nonlinearity `(•) is an odd function.
The function `(•) plays important role in our future developments and it is worth finding other general

properties of `(•). This can be achieved by restricting a class of input densities and we discuss this in the
following remark.

Remark 14.4 A rich family of density functions is the class of log-concave densities, i.e., densities for
which log fU (u) is a concave function on R. Noting that,

`(u) = (log fU (u))(1),

we can conclude that for log-concave densities `(u) is a non-increasing function.
Log-concave densities have all moments and are known to be unimodal. Furthermore, the convolution of

two log-concave densities is again log-concave; see [11] for properties and applications of log-concave densities.
These facts have interesting consequences in the context of Wiener system identification. In fact, the

density function fW (w) of the interconnecting signal {Wn} is the convolution of scaled versions of the input
density fU (u). Thus, if fU (u) is log-concave then fW (w) is also log-concave and therefore unimodal.
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Figure 14.14: Function `(u) for the generalized Gaussian density with α = 1, 1.2, 2 and logistic distribution.

The class of log-concave densities comprises many well-known parametric distributions such as Gaussian,
exponential, Gamma, Gumbel, logistic, Laplace and many others. The generalized Gaussian density,

fU (u;α) = a(α) exp (−|b(α)u|α) ,

is log-concave if α ≥ 1. Here a(α) and b(α) are normalized constants such that E{U} = 0 and var{U} = 1.
It can be demonstrated that for the density fU (u;α), we have,

`(u;α) = −αbα(α)|u|p−1 sgn(u),

where b(α) = (Γ(3/α)/Γ(1/α))1/2.
In Fig. 14.14 we plot `(u;α) for α = 1 (Laplace distribution), α = 1.2, and α = 2 (Gaussian distribution).

Also, we consider the normalized (var{U} = 1) logistic distribution, i.e., when,

fU (u;β) =
βe−βu

(1 + e−βu)2
,

with β = π/
√

3. Here it can be shown that `(u;β) = β(e−βu− 1)(1 + e−βu)−1. We observe the monotonicity
and continuity of `(u;α) for α > 1. For α = 1 we have the discontinues function `(u; 1) = − sgn(u).

It is worth noting that the monotonicity property is lost for non log-concave densities. For instance,
the unimodal Gaussian mixture 0.8N(0, 1) + 0.2N(0, 0.04) has the function `(u) shown in Fig. 14.15. The
monotonicity property of `(u) for log-concave densities suggests that it would be worthwhile to construct an
estimate of `(u) which is also monotonic. This seems to be workable by employing a penalized (with respect
to the log-convexity property) maximum likelihood estimate of fU (u) [298]. We should also note that the

formula in (14.130) fails for input densities that are non-smooth. In particular, if fU (u) is uniform then
(14.130) cannot be used. In this case the least squares method presented in Section 14.4 can still be applied.

We can also obtain alternative formulas to that given in (14.127) using the concept of the weighted
average derivative. Indeed, using (14.109) we can readily obtain that,

λ∗j =
E
{
Yn

∂
∂Un−j

f(Un)
}

E
{
Yn

∂
∂Un

f(Un)
} , j = 1, 2, . . . , p (14.135)

subject the condition,
E{f(Un)m∗(1)(Wn)} 6= 0. (14.136)
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Figure 14.15: Function `(u) for the Gaussian mixture 0.8N(0, 1) + 0.2N(0, 0.04).

Note that this is a weaker requirement than that in (14.128).
For the independent input signal, (14.135) can be written as follows:

λ∗j =
E
{
Ynf

(1)
U (Un−j)

∏p
i=0,i6=j fU (Un−i)

}
E
{
Ynf

(1)
U (Un)

∏p
i=1 fU (Un−i)

} . (14.137)

No further simplification of this formula seems to possible and therefore we can conclude that the weighted
average derivative strategy is not very useful for Wiener system identification.

The aforementioned considerations allow us to estimate λ∗j based on a sample analogue of the equation
in Theorem 14.8. This direct estimate does not require any computational techniques for minimization. A
sample analog of (14.130) is,

λ̂j =
n−1

∑n
t=j+1 Yt

ˆ̀(Ut−j)

n−1
∑n
t=1 Yt

ˆ̀(Ut)
, (14.138)

where ˆ̀(u) is a nonparametric estimate of `(u). Specifically one can apply the kernel estimate, see (14.130),
and obtain,

ˆ̀(u) =
(nh2)−1

∑n
t=1K

(1)
(
u−Ut
h

)
(nh)−1

∑n
t=1K

(
u−Ut
h

) . (14.139)

Thus (14.138) with (14.139) defines the kernel type density estimate of the impulse response sequence of the
Wiener system.

As we have already mentioned the ratio form of the estimate ˆ̀(u) may lead to some instabilities. A simple
correction would use the cutoff parameter ϑ > 0; see (14.117). This would give the following numerically
stable version of λ̂j :

λ̂j =
n−1

∑n
t=j+1 Yt

ˆ̀(Ut−j) 1(f̂U (Ut−j) > ϑ)

n−1
∑n
t=1 Yt

ˆ̀(Ut) 1(f̂U (Ut) > ϑ)
, (14.140)

where f̂U (u) is the kernel estimate of the input density fU (u).
To improve further small sample properties of the estimate λ̂j , we can utilize some resampling schemes

which aim at separating data used to estimate ˆ̀(u) and to determine an empirical mean for E{Yn`(Un−j)}.
We have already examined the partition strategy which, due its simplicity, can be universally used in many
nonparametric/semiparametric circumstances, and allows us to reduce mathematical analysis immensely.
The data splitting, however, does not utilize data in an optimal way and can result in reduced accuracy
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for small sample sizes. A more efficient strategy is the leave-one-out resampling scheme that results in the
following estimate:

λ̃j =
n−1

∑n
t=j+1 Yt

ˆ̀−(t−j)(Ut−j)

n−1
∑n
t=1 Yt

ˆ̀−t(Ut)
,

where,

ˆ̀−t(u) =
((n− 1)h2)−1

∑n
j=1,j 6=tK

(1)
(
u−Uj
h

)
((n− 1)h)−1

∑n
j=1,j 6=tK

(
u−Uj
h

) ,

is the version of ˆ̀(u) with the t-th observation deleted. This method may have better small sample properties
than the partition scheme but at the expense of increased computational cost and more involved mathematical
analysis.

Asymptotically, all of the aforementioned methods are equivalent, and we can use the result presented
in (14.119). The main difference in proving this result is that we now have to cope with dependent data.
However, the final asymptotic formula for the mean squared error remains the same. Hence, noting that we
now have a single input, i.e., d = 1, we obtain from (14.119),

E(λ̂j − λ∗j )2 = c1n
−1 + c2n

−2h−3 + c3h
2s + o2, j = 1, . . . , p.

This readily leads to the following theorem.

Theorem 14.9 Let all of the assumptions of Theorem 14.8 be met. Let f (1)
U (u) and m∗(1)(w) be s− times

differentiable, s > 1, and let the kernel function K(u) be of order s. If,

h∗ = an−
2

2s+3 ,

then
E(λ̂j − λ∗j )2 = O(n−1), j = 1, 2, . . . , p.

Note that the parametric O(n−1) rate is also obtained for h = an−α, 1/2s ≤ α ≤ 1/3.
For all symmetric kernels we have s = 2, and if fU (u) and m∗(w) are three-times differentiable, then the

asymptotically optimal choice of the smoothing parameter is h∗ = an−2/7. Note that the asymptotically
optimal choice for estimating the derivative of fU (u) or m∗(w) is h ≈ n−1/7. This is a larger value than that
needed for estimating the average derivative which corresponds to the choice in Theorem 14.9.

The parametric O(n−1) rate in Theorem 14.9 holds for a large class of nonparametric methods used
to form an estimate ˆ̀(u) as well as for various resampling schemes. There is an interesting issue which
estimator is the best one. The theory presented above does not distinguish between these estimators and the
second-order asymptotics is needed. Hence, we wish to obtain the asymptotic representation for E(λ̂j−λ∗j )2

of the form O(n−1) + O(n−γ), γ > 1, where O(n−γ) represents the second-order asymptotic term of the
estimation error. An estimator with the largest γ could be called the most efficient one.

14.7.3 The average derivative estimate for the additive Wiener model

In Section 14.4.4 we considered the multiple-input Wiener system of the additive form which is described by
(14.87) and depicted in Fig. 14.2. Once again we use the notation λ∗1, λ∗2, m∗1(•), and m∗2(•) to indicate the
true characteristics of the system.

It has been demonstrated in Section 14.4.4 that if the inputs between channels are independent, then the
combination of the least squares semiparametric method with the marginal integration strategy yields the
consistent estimates of the system characteristics. We wish to extend this result to the case of dependent
inputs between individual channels, employing the flexibility of the average derivative approach.

Let us rewrite the description in (14.87) in the following equivalent form:

Yn = M(U1,n,U2,n) + Zn, (14.141)
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where M(U1,n,U2,n) = m∗1(W1,n) +m∗2(W2,n), with W1,n =
∑p
j=0 λ

∗
1,jU1,n−j and W2,n =

∑p
j=0 λ

∗
2,jU2,n−j .

The vectors U1,n and U2,n are defined as U1,n = (U1,n, U1,n−1, . . . , U1,n−p)T and U2,n = (U2,n, U2,n−1, . . . , U2,n−p)T ,
respectively. Let fU1U2(u1, u2) be the joint density function of the input process {(U1,n, U2,n)}. It is then
easy to observe that,

E
{
DU1,nM(U1,n,U2,n)

}
= λ∗1E

{
m
∗(1)
1 (W1,n)

}
, (14.142)

and,
E
{
DU2,nM(U1,n,U2,n)

}
= λ∗2E

{
m
∗(1)
2 (W2,n)

}
, (14.143)

where λ∗1 and λ∗2 are the vectors of the impulse response sequences of the linear subsystems. In the above
formulas DU1,nM(U1,n,U2,n) and DU2,nM(U1,n,U2,n) denote the partial derivatives of M(U1,n,U2,n) with
respect to U1,n and U2,n, respectively.

Denoting by f(u1,u2) the joint density function of the random vector (U1,n,U2,n) and recalling Theo-
rem 14.7 we note that the left-hand-sides of (14.142) and (14.143) are equal to,

−E
{
Yn
DU1,nf(U1,n,U2,n)
f(U1,n,U2,n)

}
, and− E

{
Yn
DU2,nf(U1,n,U2,n)
f(U1,n,U2,n)

}
,

respectively.
The normalization λ∗1.0 = λ∗2.0 = 1 and the decomposition

f(U1,n,U2,n) =
p∏
i=0

fU1U2(U1,n−i, U2,n−i)

combined with the above results lead promptly to the following formulas for λ∗1 and λ∗2:

λ∗1,j =
E {Yn`1 (U1,n−j , U2,n−j)}
E {Yn`1 (U1,n, U2,n)}

, (14.144)

λ∗2,j =
E {Yn`2 (U1,n−j , U2,n−j)}
E {Yn`2 (U1,n, U2,n)}

, (14.145)

j = 1, 2, . . . , p, where,

`1(u1, u2) =
∂
∂u1

fU1U2(u1, u2)
fU1U2(u1, u2)

, `2(u1, u2) =
∂
∂u2

fU1U2(u1, u2)
fU1U2(u1, u2)

. (14.146)

The assumption required for the existence of formulas (14.144) and (14.145) is that,

E
{
m
∗(1)
1 (W1,n)

}
6= 0 and E

{
m
∗(1)
2 (W2,n)

}
6= 0. (14.147)

This is equivalent to the result in Theorem 14.8 generalized, to the two-channel Wiener system with depen-
dent channels. Note that the assumption in (14.147) is always met if the nonlinearities are odd functions
and the density functions of the interconnecting signals W1,n and W2,n are symmetric.

Example 14.2 To get further insight into the above formulas let us consider the zero mean Gaussian input
process with the parameters var(U1) = σ2

1, var(U2) = σ2
2 and corr(U1, U2) = ρ, |ρ| < 1. Then, simple algebra

shows that

`1(u1, u2) = −(1− ρ2)−1

(
u1

σ2
1

− ρ u2

σ1σ2

)
, `2(u1, u2) = −(1− ρ2)−1

(
u2

σ2
2

− ρ u1

σ1σ2

)
.

This leads to the following formulas for λ∗1,j and λ∗2,j:

λ∗1,j =
E{Ynω1(U1,n−j , U2,n−j)}
E{Ynω1(U1,n, U2,n)}

, λ∗2,j =
E{Ynω2(U1,n−j , U2,n−j)}
E{Ynω2(U1,n, U2,n)}

,
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Figure 14.16: Multiple input additive Wiener model.

where ω1(u1, u2) = u1
σ1
− ρu2

σ2
and ω2(u1, u2) = u2

σ2
− ρu1

σ1
. Hence λ∗1,j depends on the linear combination of

the correlation between the output {Yn} and the inputs {U1,n} and {U2,n}. This linear combination is given
by,

1
σ1
E{YnU1,n−j} −

ρ

σ2
E{YnU2,n−j}.

For small values of the correlation coefficient ρ, the second term is negligible.
In the case of independent inputs, λ∗1,j is determined merely by the correlation between {Yn} and {U1,n}.

Since an analogous discussion can be carried out for the second channel we have

λ∗1,j =
E{YnU1,n−j}
E{YnU1,n}

, λ∗2,j =
E{YnU2,n−j}
E{YnU2,n}

.

This is a generalization of the result obtained in Chapter 9 for the one-channel Wiener system with a Gaussian
input.

The aforementioned theory can easily be generalized to the d-input additive Wiener system. Fig. 14.16
depicts such a system with the input process {Un = (U1,n, . . . , Ud,n)T } that possesses the density function
fU(u), u = (u1, . . . , ud)T . The dynamical subsystems are of a finite impulse response type and denoted
by FIRi(p), i = 1, . . . , d. Then we can write the analogue of formula (14.144) which relates the impulse
response sequence of the r-th channel with the nonlinear correlation of the input and output processes, i.e.,

λ∗r,j =
E{Yn`r(Un−j)}
E{Yn`r(Un)}

, j = 1, . . . , p, (14.148)

where,

`r(u) =
∂
∂ur

fU(u)
fU(u)

, (14.149)

for r = 1, . . . , d. Owing to formulas (14.148) and (14.149) it is straightforward to propose various estimators
of the linear subsystem {λ∗r,j , j = 1, . . . , p} characterizing the r-th channel.

Let {(U1, Y1), . . . , (Un, Yn)} be the training set of the input-output signals. Then, the counterpart of
the estimate λ̂j in (14.138) and (14.139) takes the following form (for the d−input Wiener system):

λ̂r,j =
n−1

∑n
t=j+1 Yt

ˆ̀
r(Ut−j)

n−1
∑n
t=1 Yt

ˆ̀
r(Ut)

, j = 1, . . . , p (14.150)

where,

ˆ̀
r(u) =

(nhd+1)−1
∑n
t=1Kr

(
u−Ut

h

)
(nhd)−1

∑n
t=1K

(
u−Ut

h

) .

The kernel function Kr(u) is defined as,

Kr(u) =
∂

∂ur
K(u). (14.151)
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For the product type kernel K(u) =
∏d
j=1 k(uj), where k(u) is some univariate kernel, the derivative can be

easily evaluated as,

Kr(u) = k(1)(ur)
d∏

j=1,j 6=r

k(uj).

The asymptotic theory of the average derivative kernel estimates presented in Section 14.7.1 can be carried
over to the present case, with further refinements due to the dependent nature of the output process.
Nevertheless, the result in (14.119) (see also the discussion leading to formula (14.121)) can be fully applied
here. This yields the following theorem.

Theorem 14.10 Suppose that E{m∗(1)
r (Wr,n)} 6= 0, r = 1, . . . , d. Let DfU(u) and m

∗(1)
r (w), r = 1, . . . d,

be s times differentiable, s > 1 and let the kernel function K(u) be of order s. If

h∗ = an−
2

2s+d+2 ,

then,

E
(
λ̂r,j − λ∗r,j

)2

= O
(
n−min(1, 4s

2s+d+2 )
)
, j = 1, . . . , p; r = 1, . . . , d. (14.152)

This theorem says that in order to estimate the characteristic of the linear subsystem of the r-th channel
we need to apply smoothing conditions to the input density as well as the nonlinear characteristics in all
of the channels. Thus there is a strong dependence between the accuracy in recovering individual channels.
Hence, the smoothness degree, s, required in Theorem 14.10 could be a reflection of the smoothness of the
roughest nonlinearity present in the system. The rate in Theorem 14.10 reveals (see (14.122)) that s must
be no smaller than 1 + d/2 in order to achieve the parametric rate O(n−1).

Having established the estimates of the linear part of the additive Wiener system, we can proceed to the
problem of recovering the nonlinearities in the additive structure. This can be done in the manner outlined
in Section 14.4. Hence, first we have to form the d-dimensional pilot kernel regression estimate,

M̂(w;λ1, . . . , λd) =
(nhd)−1

∑n
j=1 YjK

(
w−Wj(λ1,...,λd)

h

)
(nhd)−1

∑n
j=1K

(
w−Wj(λ1,...,λd)

h

) ,

where Wj(λ1, . . . , λd) = (W1,j(λ1), . . . ,Wd,j(λd))T is the vector of the interconnecting signals when the
impulse response functions are λ1, . . . , λd (see (14.89)).

Under standard assumptions the estimate M̂(w;λ1, . . . , λd) can converge to the regression function
M(w;λ1, . . . , λd) = E{Yn|Wn(λ1, . . . , λd) = w}. It is also clear that,

M(w;λ∗1, . . . , λ
∗
d) =

d∑
j=1

m∗j (wj).

Since λ∗1, . . . , λ
∗
d can be consistently estimated by λ̂1, . . . λ̂d given in (14.150), we can expect (see the ar-

guments given in Section 14.4.2 B) that M̂(w; λ̂1, . . . , λ̂d) tends to M(w;λ∗1, . . . , λ
∗
d). Hence, the estimate

M̂(w; λ̂1, . . . , λ̂d) can recover the additive function
∑d
j=1m

∗
j (wj). In order to extract the individual compo-

nents of the system we can apply the marginal integration method discussed in Chapter 13. Thus, we can
define the following estimate of m∗1(w1) (other components are estimated in an analogous way):

m̂1(w1) =
∫
Rd−1

M̂(w; λ̂1, . . . , λ̂d), ψ(w2, . . . , wd)dw2 . . . dwd

for some given (d− 1)-dimensional weight function ψ(w2, . . . , wd).
Under the assumptions of Theorem 14.10 we can establish the asymptotic rate for m̂1(w1). This is an

involved process requiring the techniques developed in Chapter 13 concerning the marginal integration esti-
mate and the linearization method used in Section 14.4.2 B. This combined with the result of Theorem 14.10
gives the following formula for the mean squared error of m̂1(w1):

E(m̂1(w1)−m∗1(w1))2 = c1n
−min(1, 4s

2s+d+2 ) + c2n
− 2s

2s+1 + o2. (14.153)
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The first expression in the above formula comes from the linearization term and therefore is equal to the
mean squared error of the estimates λ̂1, . . . , λ̂d. The second term in (14.153), on the other hand, describes
the usual rate for recovering the one dimensional function having s derivatives. The comparison of these two
terms implies that if d ≤ 2s then we have the optimal rate,

E(m̂1(w1)−m∗1(w1))2 = O
(
n−

2s
2s+1

)
.

On the other hand if d > 2s we have,

E(m̂1(w1)−m∗1(w1))2 = O
(
n−

4s
2s+d+2

)
.

Thus, we lose the dimension-independent rate for the characteristics (and input density) possessing the
smoothness s < d/2.

In Chapter 13 we analyzed the additive Hammerstein system and we found that there is an estimation
method exhibiting the separation property, i.e., we can estimate a nonlinearity in a given channel with
the optimal rate O

(
n−

2s
2s+1

)
regardless of d and independent of the roughness of the nonlinearities in

the remaining channels. This is in stark contrast to the estimation problem examined in this section,
demonstrating again that Wiener type systems are much more complicated to identify than Hammerstein
cascades.

14.7.4 The average derivative estimate for semiparametric multivariate Ham-
merstein models

In this section we wish to consider the application of the average derivative estimation method to a multiple
input semiparametric Hammerstein system (depicted in Fig. 14.1 in the case of two inputs). Thus let the
system have the input-output relationship given in (14.93).

In Section 14.5 the semiparametric least squares method for estimating the system parameters (λ∗, γ∗)
was examined. It has been noted that the parameter γ∗ is more difficult to identify. In fact, the impulse
response sequence λ∗ of the linear subsystem can be estimated via the correlation method, independently
of γ∗ and the system nonlinearity g∗(•). Hence, let us focus on a direct method for estimating γ∗ using the
average derivative method proposed in Section 14.7.1.

To this end let us write (14.93) in the following form:

Yn =
p∑
t=0

λ∗tM(Un−t) + Zn, (14.154)

where M(u) = g∗(γ∗Tu), u ∈ Rd. Let us assume that the input process {Un} is an iid sequence with the
density fU (u). Then, since λ∗0 = 1, M(u) = E{Yn|Un = u}. Next we observe that,

E{DM(Un)} = γ∗E{g∗(1)(Wn)},

where Wn = γ∗TUn. Owing to Theorem 14.7 we obtain,

γ∗E{g∗(1)(Wn)} = −E
{
Yn
DfU(Un)
fU(Un)

}
. (14.155)

The normalization γ∗1 = 1 and the assumption,

E
{
g∗(1)(Wn)

}
6= 0, (14.156)

yield the following formula for γ∗j :

γ∗j =
E{Yn`j(Un)}
E{Yn`1(Un)}

, (14.157)

where,

`j(u) =
∂
∂uj

fU(u)

fU(u)
, (14.158)

for j = 2, . . . , d.
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Example 14.3 Let us consider the input process {Un} having the d-dimensional Gaussian distribution
Nd(0,Σ). Simple algebra reveals that,

DfU(u)
fU(u)

= −Σ−1u.

This gives the following formula for γ∗j :

γ∗j =
E{Yn(Σ−1Un)j}
E{Yn(Σ−1Un)1}

, (14.159)

where (Σ−1Un)j denotes the j-th coordinate of the vector Σ−1Un.
It is worth noting that for independent inputs, i.e., when Σ = diag(σ2

1 , . . . , σ
2
d), formula (14.158) takes

the form,

γ∗j =
σ2

1

σ2
j

E{YnUj,n}
E{YnU1,n}

.

The above formulas for γ∗j hold subject to the condition in (14.156). Let us note that the random variable
Wn = γ∗TUn is Gaussian N(0, τ2), τ2 = γ∗TΣγ∗. Integration by parts yields,

E{g∗(1)(Wn)} =
1
τ2
E{Wng

∗(Wn)}.

Therefore, (14.156) is equivalent to the requirement that E{Wng
∗(Wn)} 6= 0. This always holds if g∗(w) is

an odd function.

The estimation theory can now be easily developed starting with the formulas in (14.157) and (14.158).
Similarly to what was done in Section 14.7.3 we can estimate γ∗j by,

γ̂j =
n−1

∑n
t=1 Yt

ˆ̀
j(Ut)

n−1
∑n
t=1 Yt

ˆ̀
1(Ut)

, (14.160)

where,

ˆ̀
j(u) =

(nhd+1)−1
∑n
t=1Kj

(
u−Ut

h

)
(nhd)−1

∑n
t=1K

(
u−Ut

h

) .

The d-dimensional kernel Kj(u) is the derivative of the kernel K(u) with respect to the variable uj ; see
(14.151) for further comments on such kernels.

Following now the discussion in Section 14.7.1 (see (14.119)) and that leading to Theorem 14.10, we can
easily arrive at the following rate of convergence theorem.

Theorem 14.11 Suppose that E{g∗(1)(Wn)} 6= 0. Let DfU(u) and g∗(1)(w) be s times differentiable, s > 1,
and let the kernel function K(u) be of order s. If,

h∗ = an−
2

2s+d+2 ,

then,
E(γ̂j − γ∗j )2 = O

(
n−min(1, 4s

2s+d+2 )
)
, (14.161)

j = 1, 2, . . . , d.

The conclusions that can be drawn from this theorem are identical to those obtained in Theorem 14.10.
Hence, we can estimate the parameter γ∗, which characterizes the nonlinear subsystem of the d-dimensional
input of the semiparametric Hammerstein model, with a precision that depends on the smoothness of the
nonlinearity g∗(w) and input density fU(u). The dimensionality of the input has a critical impact on the
accuracy of the estimate γ̂. In fact, for d > 2(s − 1), the rate O

(
n−

4s
2s+d+2

)
deteriorates with d. For

symmetric kernels the rate is O
(
n−

8
d+5

)
and it becomes half, i.e., O

(
n−

1
2

)
, of the optimal parametric rate

O(n−1) for d = 11.
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The remaining problem of estimation of the nonlinearity g∗(w) can easily be tackled by our basic two-
stage strategy which, in the context of the semiprametric Hammerstein system, has already been discussed
in Section 14.5. The first step is to form the pilot kernel estimate of the regression function g(w; γ) =
E{Yn|γTUn = w} (see (14.96)), i.e., we define,

ĝ(w; γ) =

∑n
t=1 YtK

(
w−γTUt

h

)
∑n
t=1K

(
w−γTUt

h

) .

In the second step we plug the estimate γ̂ into ĝ(w; γ), i.e., we estimate g∗(w) by ĝ(w) = ĝ(w; γ̂). Using the
arguments leading to (14.153) we can obtain the following theorem concerning the rate of convergence for
ĝ(w).

Theorem 14.12 Let all of the assumptions of Theorem 14.11 be satisfied. Then, for d ≤ 2s and if,

h∗ = an−
1

2s+1

we have,
E(ĝ(w)− g∗(w))2 = O

(
n−

2s
2s+1

)
. (14.162)

If in turn d > 2s and if,
h∗ = an−

2
2s+d+2

then we have,
E(ĝ(w)− g∗(w))2 = O

(
n−

4s
2s+d+2

)
. (14.163)

Once again we observe that the rate of convergence for estimating the univariate function g∗(w) depends
on the dimensionality of the input signal. In fact, it is known that for symmetric kernels, and g∗(w) and
fU(u) possessing three derivatives, the optimal rate for recovering g∗(w) is O

(
n−

4
5

)
. If, however, d > 4,

the rate obtained in Theorem 14.12 is O
(
n−

8
d+6

)
. This is clearly a much slower rate, and it is reduced to

O
(
n−

2
5

)
– half of the optimal rate O

(
n−

4
5

)
for d = 14.

14.7.5 The average derivative estimate for semiparametric multivariate parallel
models

In this final section on the average derivative estimates we briefly examine the parallel multivariate block-
oriented system, which was had been examined in Chapter 13. Fig. 14.17 depicts the system being governed
by the following input-output formula:

Yn = m∗(Un) +
p∑
j=0

λ∗jVn−j + Zn, (14.164)

where Un is the d-dimensional random vector and λ∗0 = 1. Using the usual notation Vn = (Vn, . . . , Vn−p)T

and λ∗ = (λ∗0, . . . , λ
∗
p)
T , let us note that the first two terms on the right-hand-side of (14.164) can be written

as M(Un,Vn) = m∗(Un) + λ∗TVn, i.e., M(Un,Vn) is the regression function of Yn on (Un,Vn).
Another important observation is that the average derivative of M(Un,Vn) with respect to Vn is equal

to λ∗, i.e.,
E {DVn

M (Un,Vn)} = λ∗. (14.165)

Recalling the result of Theorem 14.7 we can readily obtain our basic formula for λ∗ resulting from (14.165),

λ∗ = −E
{
Yn
DVnf (Un,Vn)
f(Un,Vn)

}
, (14.166)

where f(u,v) is the joint density function of (Un,Vn).
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Yn

ZnWn{λ∗i , 0 ≤ i ≤ p}

m∗(•)

Vn

Un

Figure 14.17: Semiparametric multiple-input parallel model.

Let us now assume that the input process {(Un, Vn)} is iid with the joint density function fUV (u, v).
Let also fV (v) be the marginal density of the input {Vn}. Then we can obtain the following decomposition
for the density f(u,v)

f(Un,Vn) = fU,V (Un, Vn)
p∏
i=1

fV (Vn−i).

Also for j ≥ 1 we have

∂

∂Vn−j
f(Un,Vn) = fU,V (Un, Vn)

p∏
i=1
i6=j

fV (Vn−i)f
(1)
V (Vn−j).

This and (14.166) yield,
λ∗j = −E {Yn` (Vn−j)} , (14.167)

where `(v) = f
(1)
V (v)

fV (v) . It is interesting to note that the solution for λ∗j does not depend on the input signal
{Un} though {Vn} and {Un} are statistically dependent.

It can easily be calculated that for Vn being Gaussian N(0, τ2) we have `(v) = −v/τ2 and the formula
in (14.167) reads as,

λ∗j =
E{YnVn−j}

τ2
. (14.168)

Recall this formula had been obtained in Chapter 12 in the direct way without using the concept of the
average derivative of the regression function.

The aforementioned developments readily yield corresponding estimates of λ∗j . Replacing the expected
value in (14.167) by its empirical counterpart and then plugging into (14.167) an estimate of `(v) we can
define,

λ̂j = − 1
n

n∑
t=j+1

Yt ˆ̀(Vt−j), (14.169)

where ˆ̀(v) is a nonparametric estimate of `(v); see Section 14.7.2 for various estimates of `(v). The asymptotic
theory of the estimate λ̂j in (14.169) can be established by following the discussion leading to the result in
Theorem 14.8. The estimate can reach the parametric O(n−1) rate subject to the conditions similar to those
in Theorem 14.8. The main difference is that we do not need the differentiability of m∗(u).

Regarding the nonlinear part of the system this can be directly obtained via the following identity (see
Chapter 13):

m∗(u) = E{Yn|Un = u} − E{Vn|Un = u}. (14.170)

Hence, two regression functions are to be estimated in order to recover m∗(u). This leads to a nonparametric
estimate of m∗(u). Note that (14.170) holds independently of λ∗ and estimating the projection m(u;λ) =
E{Yn − λTVn|Un = u}, see (14.100), is not required in this case. This decoupling property, between the
problem of estimating linear and nonlinear parts, holds if the input process {(Un, Vn)} is independent. If
this is not the case, our two-stage strategy may be found to be useful.
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14.8 Concluding remarks

In this chapter we have examined semiparametric block-oriented models, which are intermediate cases be-
tween fully parametric and fully nonparametric models. The semiparametric model is usually obtained
by restricting a class of linear dynamical subsystems and nonlinear characteristics to the representation
(θ∗,g∗(•)), where θ∗ is a finite dimensional parameter and g∗(•) are nonparametric functions, normally
being a set of univariate nonlinearities.

Throughout this chapter we have confined linear dynamics to finite impulse response filters, i.e., we have
dealt with block-oriented systems with finite memory. The general state-space parameterization of an infinite
memory linear system, {

Xn+1 = Aθ∗Xn + bθ∗Un

Wn = cTθ∗Xn,

would also be possible to use in our considerations. In fact, there is not any difficulty in implementing
a version of our two-stage least squares based algorithm for estimating θ∗ and system nonlinearities. The
asymptotic theory of such estimates would require extensions of our technical arguments to the case of general
dependent processes with fast decaying correlation functions. This seems to be feasible, since there exists
generalization of the least squares method to dependent data [274]. In addition, nonparametric estimates
have been proven to be consistent for mixing, Markov, and long-range dependent stochastic processes [203],
[31], [105].

The least squares method commonly used in our approach to identification of semiparametric models can
also be formally applied in the case of dependent input signals. Again, the asymptotic theory of the resulting
estimates would need to be augmented. It is worth noting that the direct identification method based on
the average derivative estimation has explicitly exploited the independence of the input signal. Nevertheless,
the average derivative method has been found to be very useful since it avoids any optimization procedures
and its accuracy depends mostly on the smoothness of the input density. In the case of multivariate systems
the average derivative estimates suffer somewhat from the curse of dimensionality. The dependence of the
accuracy of the estimators on the dimensionality of the input signal is seen at a certain critical dimension,
the value of which is determined by the smoothness of the input density and system nonlinearities as well
as the order of the kernel function. The latter limitation can easily be avoided by applying kernels of higher
order.

Let us finally comment that the semiparametric method can be applied to a larger class of block-oriented
systems than those examined in this chapter. One such challenging case would be the sandwich system,
introduced in Chapter 12.

14.9 Auxilary results, lemmas and proofs

Before proving Theorems 14.3 and 14.5 we need some auxiliary results obtained from various sources in the
literature. They can be found useful in various problems involving nonparametric and parametric compo-
nents.

14.9.1 Auxiliary Results

Lemma 14.1 (Scheffes theorem). Let {fn(x)} be a sequence of probability density functions defined on the
set A ⊆ Rd. Suppose that f(x) is a density function on A such that,

fn(x)→ f(x), almost all x ∈ A as n→∞.

Then, ∫
A

|fn(x)− f(x)|dx→ 0 as n→∞.

This is a classical result due to Scheffe [378], see also [80].
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The lemma below involves the concept of lower semicontinuous functions. We say that the function
f : R→ R is lower semicontinuous if

lim inf
z→x

f(z) ≥ f(x), x ∈ R.

Note that the class of lower semicontinuous functions may include some discontinuous functions.

Lemma 14.2 Consider for any bounded function h : R→ R the following mapping

g(x) =
∫ ∞
−∞

h(y)f(y|x)dy,

where {f(y|x) : x ∈ R} is a class of density functions parametrized by x ∈ R. Then g(x) is continuous on R
if and only if the function,

x 7→
∫
O

f(y|x)dy,

is lower semicontinuous for every measurable set O.

This lemma is a special case of the general result in [301] (Proposition 6.1.1) where the conditional density
f(y|x) can be replaced by a general conditional probability measure. It is worth noting that the continuity
of g(x) is implied by the continuity of x 7→

∫
O
f(y|x)dy.

In our studies of the convergence rate of parametric estimates of semiparametric models, we need the
following lemma concerning the existence of derivatives of integrals depending on a vector of parameters.
Hence let g : R×Θ→ R be a measurable function defined on R×Θ, where Θ is a compact subset of Rd.

Lemma 14.3 Let g(•, •) be a function defined on R×Θ that satisfies the following conditions:

(a1) For each fixed θ ∈ Θ, the mapping z 7→ g(z, θ) is measurable and
∫∞
−∞ |g(z, θ0)|dz <∞ for some θ0 ∈ Θ.

(a2) The partial derivative ∂g(z,θ)
∂θ exists for every (z, θ) ∈ R×Θ.

(a3) There is a nonnegative function w(z) with
∫∞
−∞ w(z)dz <∞ and such that,∥∥∥∥∂g(z, θ)

∂θ

∥∥∥∥ ≤ w(z) for all (z, θ) ∈ R×Θ.

Then the function,

G(θ) =
∫ ∞
−∞

g(z, θ)dz

is differentiable at every point θ ∈ Θ.

It is worth noting that this result holds also for higher derivatives with appropriate changes. The proof
of this lemma can found in [9].

The next lemma gives a general result regarding the estimation of the derivatives of a function with the
derivatives of an estimate. Let us denote ‖f‖q = {

∫ b
a
|f(x)|qdx}1/q, 1 ≤ q ≤ ∞, −∞ ≤ a < b ≤ ∞.

Lemma 14.4 (Yatracos theorem). Let m(x) be a real valued function defined on an interval [a, b]. Let
m̂n(x) be an estimate of m(x) based on a training set of size n. Let both m(x) and m̂n(x) have p continuous
derivatives on [a, b]. Then for 1 ≤ q ≤ ∞ and 1 ≤ s ≤ p we have,

‖m̂(s)
n −m(s)‖q ≤ c1βp−s+εn + c2β

−s
n ‖m̂n −m‖q,

where c1, c2 are constants, limn→∞ βn = 0 and ε > 0 is an arbitrary small number.
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The above lemma is a version of a slightly more general statement proved in [447]. An important
consequence of this result is that if one chooses,

βn = c2 {‖m̂n −m‖q}
1
p+ε ,

then we have,
‖m̂(s)

n −m(s)‖q = O
(
{‖m̂n −m‖q}

p−s+ε
p+ε

)
.

This fact allows one to determine the convergence and rate of convergence of the derivatives of the estimate
m̂n(x) from the corresponding results of the estimate m̂n(x) itself. Indeed, note that the above result holds
for s = p.

14.9.2 Lemmas

In this section we give some specific results related directly to problems examined in this chapter. The
following lemma concerns the smoothness of the regression function m(w;λ) defined in (14.42). Note that
since Wn(λ) = λTUn, Un = (Un, . . . , Un−p)T , m(w;λ) is a function of a single variable w = λTu.

Lemma 14.5 Let Assumptions A1 and A2 hold. Then m(w;λ) is a continuous function in w.

Proof of Lemma 14.5 : Let f(w;λ) and f(z|w;λ) be the probability density functions of Wn(λ) and Wn

conditional on Wn(λ), respectively. Due to Lemma 14.2 and Assumption A2 we may conclude that

m(w;λ) =
∫ ∞
−∞

m∗(z)f(z|w;λ)dz

is continuous if
w 7→

∫
O

f(z|w;λ)dz (14.171)

is lower continuous for every measurable set O. The continuity of the mapping in (14.171) results from
Assumption A1 and Lemma 14.1. �

The next result has already been proved in Section 12.2.6, see Lemma 12.5.

Lemma 14.6 Let ξ1, ξ2, . . . , ξn a sequence of random variables such that E{ξi} = 0 and Eξ2
i <∞ for all i.

Assume that for a nonnegative integer p the random variables ξi and ξj are independent whenever |i−j| > p.
Then for n > p

E

 n∑
j=1

ξj

2

≤ (p+ 1)
n∑
j=1

Eξ2
j . (14.172)

We also need the following elementary lemma.

Lemma 14.7 Let X and η be independent random variables with density functions fX(•) and fη(•), respec-
tively. Then,

E{X|X + η = v} =

∫∞
−∞ xfη(v − x)fX(x)dx∫∞
−∞ fη(v − x)fX(x)dx

.

14.9.3 Proofs

Proof of Theorem 14.3 : Owing to the general result of Theorem 14.1 we first need to verify that the
limit criterion Q(λ) is a continuous function. Assumptions A1 and A2 and Lemma 14.5 yield the continuity
of m(w;λ). This readily implies the continuity of Q(λ).

As we have already pointed out (see Theorem 14.1), the consistency λ̂ n→ λ∗(P ) results from the following
uniform convergence:

sup
λ∈Λ
|Q̂n(λ)−Q(λ)| n→ 0, (P ).
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This, in turn, is implied by,
sup
λ∈Λ
|Q̂n(λ)− Q̄(λ)| n→ 0, (P ), (14.173)

and
sup
λ∈Λ
|Q̄(λ)−Q(λ)| n→ 0, (P ), (14.174)

where Q̄(λ) is an average of Q̂n(λ); see (14.62).
The uniform convergence in (14.173) can be analyzed by the general theory of empirical processes and

this entails verification of the Glivienko-Cantteli condition for the following class of functions:

{Ψ(U, Y ;λ) : λ ∈ Λ} , (14.175)

where Ψ(U, Y ;λ) = (Y − m̂(W (λ);λ))2, W (λ) = λTU. The sufficient conditions for this requirement are
given in (14.31). First of all, we need to verify that λ 7→ Ψ(U, Y ;λ) is continuous. This is guaranteed by
the continuity of the kernel function (Assumption A4) provided that the denominator in formula (14.47) is
not zero, which can easily be achieved by using some truncation arguments in (14.47), e.g., by adding the
factor 1/n to the denominator. Furthermore, due to Assumption A4 and Lemma 14.5 we can show that

P

∑
j∈I1

K

(
w −Wj(λ)

h

)
= 0

 ≤ e−c(w;λ)n1
p+1 ,

where c(w;λ) =
∫ w+rh

w−rh f(v;λ)dv = 2rhf(w;λ)+o(1) as h→ 0. Hence, the probability that the denominator
in (14.47) is equal to zero decays exponentially fast.

To check the integrability condition of (14.31), let us observe that for every (U, Y ) from T2 we have,

Ψ(U, Y ;λ) ≤ 2Z2 + 2(m∗(W )− m̂(W (λ);λ))2

≤ 2Z2 + 4m∗2(W ) + 4m̂2(W (λ);λ). (14.176)

Recalling the definition of m̂(w;λ) (see (14.47)), we readily obtain by Jensen’s inequality that the last term
on the right-hand-side of (14.176) is bounded by,

4
∑
j∈I1

Y 2
j K

(
W (λ)−Wj(λ)

h

)
/
∑
j∈I1

K

(
W (λ)−Wj(λ)

h

)
. (14.177)

Since the kernel weights are smaller than one, we can bound (14.177) by 4
∑
j∈I1 Y

2
j . Noting next that

Yj = m∗(Wj) + Zj and by virtue of (14.176) we can readily conclude that Ψ(U, Y ;λ) has the following
uniform bound:

Ψ(U, Y ;λ) ≤ 2Z2 + 4m∗2(W ) + 8
∑
j∈I1

m∗2(Wj) + 8
∑
j∈I1

Z2
j .

Since EZ2
j <∞ and E|m∗(Wj)|2 <∞, the integrability condition is thus met.

Concerning the convergence in (14.174) let us observe that by virtue of (14.62) we wish to verify whether

E
{
|m̂(W (λ);λ)−m(W (λ);λ)|2|T1

} n→ 0, (P )

converges uniformly over λ ∈ Λ. This convergence can be deduced from the aforementioned results, i.e., the
continuity of the mappings λ 7→ m̂(W (λ);λ), λ 7→ m(W (λ);λ) and the fact that E|m̂(W (λ);λ)|2 ≤ c for
some constant depending on EZ2 and E|m∗(W )|2.

The proof of Theorem 14.3 has been completed. �

Proof of Theorem 14.5 : Owing to the discussion in Section 14.4.2 it suffices to prove the validity of (14.69)
and (14.73). Let us begin by proving (14.69). First we write m̂(w;λ∗) as m̂(w;λ∗) = r̂(w;λ∗)/f̂(w;λ∗), see
(14.70). It is clear that we need only to examine the term

r̂(w;λ∗) = (n−1
1 h−1)

∑
j∈I1

YjK

(
w −Wj

h

)
.
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Let us first observe that

Er̂(w;λ∗) = h−1E

{
m∗(Wn)K

(
w −Wn

h

)}
.

Then due to Lemma 14.1 we obtain that

lim
h→0

Er̂(w;λ∗) = m∗(w)fW (w),

at every point w where both m∗(w) and fW (w) are continuous. The continuity is guaranteed by Assumptions
A1 and A2. It remains now to evaluate var{r̂(w;λ∗)}. By virtue of Lemma 14.6 we get,

var{r̂(w;λ∗)} ≤ (p+ 1)(n1h
2)−1 var

{
YnK

(
w −Wn

h

)}
.

Then by the fact that EY 2
n <∞, we obtain

var{r̂(w;λ∗)} = O
(
(n1h)−1

)
at every point w where both m∗(w) and fW (w) are continuous. This proves the claim in (14.69).

In order to prove (14.73) we first note that

EJ̄2(w) = h−1E

{
m∗(Wn)Un−tK

(
w −Wn

h

)}
= h−1E

{
m∗(Wn)a0(Wn)K

(
w −Wn

h

)}
,

where
a0(w) = E{Un−t|Wn = w}. (14.178)

Since E|Un| <∞ and E|Yn| <∞, we obtain

lim
h→0

EJ̄2(w) = m∗(w)a0(w)fW (w) (14.179)

at every point w where m∗(w), fW (w), and a0(w) are continuous. The continuity is implied by Assumptions
A1 and A2. To see that, let us write a0(w) as follows:

a0(w) =
1
λ∗t
E{Ūn|Ūn + ηn = w},

where Ūn = λ∗tUn−t and ηn = Un+
p∑
s=1
s6=t

λ∗sUn−s. Since Ūn and ηn are independent we can apply Lemma 14.7,

i.e., we obtain after some simple algebraic manipulations that

a0(w) =

∫∞
−∞ xfηn(w − λ∗tx)fU (x)dx

fW (w)
,

where fηn(w) is a density function of the random variable ηn. Due to Assumption A1 we see that a0(w)
is a continuous function at every w ∈ R where fW (w) > 0. To complete our proof it remains to consider
var{J̄2(w)}. Since Yj = m∗(Wj) + Zj it suffices to consider the variance of the following term:

B(w) = n−1
1 h−1

∑
j∈I1

K

(
w −Wj

h

)
m∗(Wj)Uj−t. (14.180)

By virtue of Lemma 14.6 we have

var{B(w)} ≤ (p+ 1)n−1
1 h−2 var

{
K

(
w −Wn

h

)
m∗(Wn)Un−t

}
.

Then, reasoning as in the first part of the proof we can easily show that

var{B(w)} = O
(
(n1h)−1

)
,

at every point w where both m∗(w) and fW (w) are continuous.
This completes the proof of Theorem 14.5. �
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14.10 Bibliographical remarks

Semiparametric models have been extensively examined in the econometric literature, e.g., [222], [361],
and [446]. There, they have been introduced as more flexible extension of the standard linear regression
model and popular models include partial linear and multiple-index models. These are static models; this
chapter can be viewed as the generalization of these types of models to dynamic nonlinear block-oriented
systems. In fact, the partially linear models fall into the category of parallel models, whereas multiple-
index models correspond to Hammerstein/Wiener connections. Semiparametric models have recently been
introduced in the nonlinear time series literature [105], [110]. Some empirical results on the identification of
the partially linear model have been reported in [98]; see also [39] for the parametric version of such models.
Comprehensive studies of semiparametric Hammerstein/Wiener models have been given in [333], [325], and
[229].

The basics of M -estimators and their extension to the semiparametric inference are described in [407].
The theory of the uniform convergence of empirical processes and its importance in statistical learning
and nonparametric inference can be found in [78], [411], and [204]. Various resampling schemes and their
applications are presented in [76], [80], and [453].

The generalization of the nonlinear least squares method [244], [274] to semiparametric models is examined
in the seminal paper of Ichimura [242]. In [339] the average derivative approach for estimating semiparametric
models was introduced; see also [223] and [236] for further advances of this method. Derivative estimation
in nonparametric inference is discussed in [380], [447], and [293].

The use of the average derivative method for nonlinear system identification is studied in [325].
The approximation property of multi-channel Wiener models as a faithful representation for fading mem-

ory nonlinear systems has been elaborated on in [34], [373], and [375]. The importance of multi-channel and
additive Wiener models in modeling of biological, physiological,and mechanical systems has been pointed
out in [299], [18], [413], [431], and [432].



Appendix A

Convolution and kernel functions

A.1 Introduction

In this appendix both ϕ(•) and K(•) are Borel measurable functions defined over the whole real line R. Our
first purpose is to examine the following convolution:

ϕh(x) =
1
h

∫
ϕ(ξ)K

(
x− ξ
h

)
dξ.

The function K(•) is called a kernel. We are interested in kernels for which

lim
h→0

ϕh(x) = ϕ(x)
∫
K(ξ)dξ. (A.1)

One may expect that also the integrated error vanishes, i.e., that

lim
h→0

∫
(ϕh(x)− ϕ(x))2dx = 0, (A.2)

provided that
∫
K(ξ)dξ = 1.

Since

ϕh(x) =
1
h

∫
ϕ(x− ξ)K

(
ξ

h

)
dξ

and

ϕ(x)
∫
K(ξ)dξ =

1
h

∫
ϕ(x)K

(
ξ

h

)
dξ,

we can write

ϕh(x)− ϕ(x)
∫
K(ξ)dξ =

1
h

∫
(ϕ(x− ξ)− ϕ(x))K

(
ξ

h

)
dξ. (A.3)

Therefore to prove (A.1) it suffices to show that the quantity in (A.3) converges to zero as h→ 0.

A.2 Convergence

A.2.1 Pointwise convergence

Lemma A.1 Let
∫
|ϕ(x)|dx <∞. Let the kernel K(•) satisfy the following restrictions:

sup
x
|K(x)| <∞, (A.4)∫
|K(x)|dx <∞, (A.5)

xK(x)→ 0 as |x| → ∞. (A.6)

Then (A.1) holds at every point x of continuity of ϕ(•).

247
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Proof. With no loss of generality, let h > 0. Let ϕ(•) be continuous at x. Thus for any η > 0 there exists
δ > 0 such that |ϕ(x− ξ)− ϕ(x)| < η if |ξ| < δ. Since the absolute value of the quantity on the right hand
side in (A.3) is bounded by

1
h

∫
|ξ|≤δ

|ϕ(x− ξ)− ϕ(x)|
∣∣∣∣K ( ξh

)∣∣∣∣ dξ +
1
h

∫
|ξ|>δ

|ϕ(x− ξ)− ϕ(x)|
∣∣∣∣K ( ξh

)∣∣∣∣ dξ (A.7)

we thus find it is not greater than

η

∫
|K(ξ)|dξ +

1
h

∫
|ξ|>δ

|ϕ(x− ξ)|
∣∣∣∣K ( ξh

)∣∣∣∣ dξ + |ϕ(x)| 1
h

∫
|ξ|>δ

∣∣∣∣K ( ξh
)∣∣∣∣ dξ.

Since η can be arbitrarily small, so can the first term. The second one is not greater than

1
h

sup
|ξ|>δ

∣∣∣∣K ( ξh
)∣∣∣∣ ∫

|ξ|>δ
|ϕ(x− ξ)|dξ ≤ 1

δ

[
δ

h
sup
|ξ|>δ/h

|K(ξ)|

]∫
|ϕ(ξ)|dξ

≤ 1
δ

[
sup
|ξ|>δ/h

|ξK(ξ)|

]∫
|ϕ(ξ)|dξ

and, due to (A.6), converges to zero as h→ 0. The last term is bounded by |ϕ(x)|
∫
|ξ|>δ/h |K(ξ)|dξ and, by

(A.5), also converges to zero as h→ 0. The lemma follows.
For a bounded ϕ(•), the class of possible kernels can be enlarged by dropping (A.6) which is shown in

the following lemma:

Lemma A.2 Let supx |ϕ(x)| <∞. Let the kernel K(•) satisfy (A.4) and (A.5). Then (A.1) takes place at
every point x of continuity of ϕ(•).

Proof. The quantity in (A.7) is not greater than

η
1
h

∫
|ξ|≤δ

∣∣∣∣K ( ξh
)∣∣∣∣ dξ + 2 sup

ξ
|ϕ(ξ)| 1

h

∫
|ξ|>δ

∣∣∣∣K ( ξh
)∣∣∣∣ dξ

≤ η
∫
|K(ξ)|dξ + 2 sup

ξ
|ϕ(ξ)|

∫
|ξ|≥δ/h

|K(ξ)|dξ.

Since η can be arbitrarily small and, due to (A.5),
∫
|ξ|≥δ/h |K(ξ)|dξ → 0 as h → 0, the proof has been

completed.
The next lemma says that the examined convergence can take place not only at continuity points but

also at every Lebesgue point of ϕ(•), i.e., at almost every (with respect to the Lebesgue measure) point x.
We recall that x is said to be a Lebesgue point of ϕ(•) if

lim
h→0

1
2h

∫ h

−h
|ϕ(x− ξ)− ϕ(x)|dξ = 0. (A.8)

If ϕ(•) is locally integrable, almost every point is a Lebesgue point of ϕ(•). Every continuity point of ϕ(•)
is also its Lebesgue point.

Lemma A.3 Let
∫
|ϕ(x)|dx <∞. Let the kernel K(•) satisfy (A.4) and let

|x|1+εK(x)→ 0 as |x| → ∞ (A.9)

for some ε > 0. Then (A.1) takes place at every Lebesgue point of ϕ(•), and, a fortiori, at almost every
(with respect to the Lebesgue measure) point x and at every continuity point of ϕ(•), as well.
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Proof. For simplicity, h > 0. From (A.4) and (A.9), it follows that

|K(x)| ≤ κ

(1 + |x|)1+ε

for some κ. Let x be a Lebesgue point of ϕ(•), i.e., a point at which (A.8) holds. With no loss of generality
we assume that x = 0 and ϕ(x) = 0, i.e., that

lim
h→0

1
2h

∫ h

−h
|ϕ(ξ)|dξ = 0.

Denote F (ξ) =
∫ ξ

0
|ϕ(ζ)|dζ and observe that, since x is a Lebesgue point of ϕ(•),

lim
ξ→0

F (ξ)− F (−ξ)
2ξ

= 0.

It means that, for any η > 0, there exists δ > 0 such that |F (ξ)− F (−ξ)| ≤ 2ξη if |ξ| ≤ δ.
Since x = 0 and ϕ(x) = 0, the quantity in (A.3), i.e.,

1
h

∫
ϕ(ξ)K

(
ξ

h

)
dξ,

is bounded in absolute value by

κ

∫
|ϕ(ξ)| hε

(h+ |ξ|)1+ε
dξ

≤
∫ δ

−δ
|ϕ(ξ)| hε

(h+ |ξ|)1+ε
dξ +

∫
|ξ|>δ

|ϕ(ξ)| hε

(h+ |ξ|)1+ε
dξ. (A.10)

Integrating the first term by parts we find it equal to

hε

(h+ δ)1+ε [F (δ)− F (−δ)] + (1 + ε)
∫ δ

−δ
F (ξ)

ξ

|ξ|
hε

(h+ |ξ|)2+ε
dξ.

The first term in the obtained expression converges to zero as h→ 0 while the other is bounded by

2η (1 + ε)
∫ δ

0

ξ
hε

(h+ ξ)2+ε
dξ = 2η (1 + ε)

∫ δ/h

0

ξ

(1 + ξ)2+ε
dξ ≤ 2η (1 + ε) c,

where

c =
∫ ∞

0

ξ

(1 + ξ)2+ε
dξ <∞,

and can be made arbitrarily small by selecting η small enough. The other integral in (A.10) is bounded by

hε

δ1+ε

∫
|ϕ(ξ)|dξ

and converges to zero as h→ 0. Thus the lemma follows.
In Lemmas A.1 and A.2, convergence at the continuity points of ϕ(•) is shown while Lemma A.3 shows

convergence at almost every point. To shed some light on the relation between the sets where the lemmas
hold we refer to the following theorem, see Wheeden and Zygmund [434, Theorem (5.54)].

Theorem A.1 A bounded function ϕ(•) is almost everywhere continuous in a finite interval (a, b) if and
only if it is Riemann integrable on the interval.
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In particular, from the theorem, it follows that a Lebesgue integrable function may not be continuous
almost everywhere.

Denoting the Lebesgue measure by λ we can write

ϕh(x) =

∫
ϕ(ξ)K

(
x− ξ
h

)
dξ∫

K

(
x− ξ
h

)
dξ

=

∫
ϕ(ξ)K

(
x− ξ
h

)
λ(dξ)∫

K

(
x− ξ
h

)
λ(dξ)

.

The next lemma which can be found in Greblicki, Krzyżak and Pawlak [169] shows that the quantity converges
to ϕ(x) even if the Lebesgue measure is replaced by any general probability measure. This proves useful
when examining distribution-free properties of our estimates. The probability measure µ is arbitrary, i.e., it
may or may not have a density.

Lemma A.4 Let H(•) be a nonnegative nonincreasing Borel function defined on [0,∞), continuous and
positive at t = 0 and such that

tH(t)→ 0 as t→∞. (A.11)

Let, for some c1 and c2,
c1H(|u|) ≤ K(u) ≤ H(|u|)c2.

Let µ be any probability measure. Then,

lim
h→0

∫
ϕ(ξ)K

(
x− ξ
h

)
µ(dξ)∫

K

(
x− ξ
h

)
µ(dξ)

= ϕ(x) (A.12)

for almost every (µ) x ∈ R.

Proof. It will be convenient to denote Sx (h) = {ξ : |x− h| ≤ ξ}. Thus, in particular, λ (Sx (h)) = 2h.
For the sake of simplicity let h > 0. Clearly∣∣∣∣∣∣∣∣

∫
ϕ(ξ)K

(
x− ξ
h

)
µ(dξ)∫

K

(
x− ξ
h

)
µ(dξ)

− ϕ(x)

∣∣∣∣∣∣∣∣ ≤
c2
c1

∫
H

(
|x− ξ|
h

)
|ϕ(x)− ϕ(y)|µ(dξ)∫

H

(
|x− ξ|
h

)
µ(dξ)

. (A.13)

Since H(t) =
∫∞

0
I{H(t)>s}(s)ds, we can write∫

H

(
|x− ξ|
h

)
µ(dξ) =

∫ ∞
0

µ(At,h)dt

and ∫
H

(
|x− ξ|
h

)
|ϕ(x)− ϕ(ξ)|µ(dξ) =

∫ ∞
0

[∫
At,h

|ϕ(x)− ϕ(ξ)|µ(dξ)

]
dt,

where

At,h =
{
ξ : H

(
|x− ξ|
h

)
> t

}
is an interval centered at x. Owing to this we can rewrite the second quotient on the right hand side in
(A.13) in the following form:∫ ∞

0

[∫
At,h

|ϕ(x)− ϕ(ξ)|µ(dξ)

]
dt∫ ∞

0

µ(At,h)dt
= V1(x) + V2(x),



A.2. CONVERGENCE 251

where

V1(x) =

∫ δ

0

[∫
At,h

|ϕ(x)− ϕ(ξ)|µ(dξ)

]
dt∫ ∞

0

µ(At,h)dt

and

V2(x) =

∫ ∞
δ

[∫
At,h

|ϕ(x)− ϕ(ξ)|µ(dξ)

]
dt∫ ∞

0

µ(At,h)dt

for any δ > 0. In the remaining part of the proof δ = εh with ε > 0.
Observe that ∫ δ

0

[∫
At,h

|ϕ(x)− ϕ(ξ)|µ(dξ)

]
dt ≤ (c3 + |ϕ(x)|)δ

with c3 =
∫
|ϕ(x)|µ(dx). Since H(•) is positive and continuous at the origin, there exist r > 0 and c > 0

such that

H(|x|) ≥
{
c, for |x| ≤ r
0, otherwise,

which implies ∫ ∞
0

µ(At,h)dt =
∫
H

(
|x− ξ|
h

)
µ(dξ) ≥ cµ (Sx (rh)) .

Thus

V1(x) ≤ δ c3 + |ϕ(x)|
λ (Ix (rh))

λ (Ix (rh))
µ (Ix (rh))

=
δ

h

c3 + |ϕ(x)|
2r

λ (Sx (rh))
µ (Sx (rh))

.

Finally, recalling the definition of δ, we find the quantity bounded by

ε
c3 + |ϕ(x)|

2r
λ (Ix (rh))
µ (Ix (rh))

.

Applying Lemma A.13 in Section A.4 we conclude that the above quantity, and consequently V1(x), can be
made arbitrarily small for almost all (µ) x by selecting ε small enough.

In turn

V2(x) ≤ sup
t≥δ

∫
At,h

|ϕ(x)− ϕ(ξ)|µ(dξ)∫
At,h

µ(dξ)
. (A.14)

It is clear that H(•) is majorized by a function G(•) invertible in the product [0,∞) × (0,∞) such that
tG(t)→ 0 as t→∞. The last property is equivalent to the following: vG−1(v)→ 0 as v → 0. Thus the radii
of intervals At,h, t ≥ δ, are not greater than hG−1 (δ) which, by the definition of δ, is equal to hG−1 (εh)
and converges to zero as h → 0. Therefore, by Lemma A.12, V2(x) → 0 as h → 0 for almost every (µ) x.
The lemma follows.

The lemma leads to next result.

Lemma A.5 Let the kernel K(•) satisfy the restrictions of Lemma A.4. Then, for any random variable X,

lim
h→0

h∫
K

(
x− ξ
h

)
µ(dξ)

is finite

for almost every (µ) x ∈ R, where µ is probability measure of X.
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Proof. From the fact that K(•) is positive and continuous at the origin it follows that there exist r > 0 and
c > 0 such that

K(x) ≥
{
c, for |x| ≤ r
0, otherwise,

which implies ∫
K

(
x− ξ
h

)
µ(dξ) ≥ cµ (Sx (rh)) ,

where Sx (h) = {ξ : |x− ξ| < h}. Thus

h∫
K

(
x− ξ
h

)
µ(dξ)

≥ 1
2cr

λ(Sx(rh))
µ(Sx(rh))

.

Application of Lemma A.13 completes the proof.

A.2.2 Convergence rate

By imposing smoothness restrictions on ϕ(•) and selecting an appropriate kernel we examine the speed
of convergence. In this section ϕ(•) has q derivatives and its qth derivative is square integrable, i.e.,∫

(ϕ(q)(x))2dx < ∞. In addition to those in Lemma A.1, the kernel satisfies the following additional re-
strictions: ∫

xiK(x)dx = 0, for i = 1, 2, . . . , q − 1, (A.15)

and ∫
|xq−1/2K(x)|dx. (A.16)

It follows from (A.3) that

ϕh(x)− ϕ(x)
∫
K(ξ)dξ =

1
h

∫
(ϕ(x+ ξh)− ϕ(x))K(−ξ)dξ.

As ϕ(•) has q derivatives, expanding the function in a Taylor series we get

ϕ(x+ hξ)− ϕ(x) =
q−1∑
j=1

(hξ)j

j!
ϕ(j)(x) +

1
(q − 1)!

∫ x+hξ

x

(x+ hξ − η)q−1ϕ(q)(η)dη

and using (A.16) obtain

ϕh(x)− ϕ(x)
∫
K(ξ)dξ

=
1

(q − 1)!

∫ [∫ x+hξ

x

(x+ hξ − η)q−1ϕ(q)(η)dη

]
K(−ξ)dξ.

Since, by the Schwartz inequality, the inner integral is not greater than

M

(∫ x+hξ

x

(x+ hnξ − η)2q−2dη

)1/2

= M

(∫ hξ

0

η2q−2dη

)1/2

=
M

(2q − 1)1/2
(hξ)q−1/2

where M = (
∫

(ϕ(q)(x))2dx)1/2, bearing (A.15) in mind we get∣∣∣∣ϕh(x)− ϕ(x)
∫
K(ξ)dξ

∣∣∣∣ ≤ Mhq−1/2

(2q − 1)1/2(q − 1)!

∫
|ξq−1/2K(ξ)|dξ.
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Finally ∣∣∣∣ϕh(x)− ϕ(x)
∫
K(ξ)dξ

∣∣∣∣ = O(hq−1/2) (A.17)

as h→ 0, where the bound is independent of x.
If ϕ(q)(•) is bounded convergence is faster. In such a case we write

ϕ(x+ hξ)− ϕ(x) =
q−1∑
j=1

(hξ)j

j!
ϕ(j)(x) +

(hξ)q

(q − 1)!
ϕ(q)(x+ θhξ)

with 0 < θ < 1. Thus if supx |ϕ(q)(x)| <∞,∣∣∣∣ϕh(x)− ϕ(x)
∫
K(ξ)dξ

∣∣∣∣ ≤ hq

(q − 1)!
sup
x

∣∣∣ϕ(q)(x)
∣∣∣ ∫ |ξpK(ξ)| dξ.

Hence ∣∣∣∣ϕh(x)− ϕ(x)
∫
K(ξ)dξ

∣∣∣∣ = O (hq) , (A.18)

provided that
∫
|ξpK(ξ)| dξ <∞.

The improved rate of convergence of the convolution integral ϕh(x) requires higher order kernels. In
Section 3.3 we have discussed direct methods for generating higher order kernels. Yet another simple way of
obtaining such kernels is based on the concept of kernel twicing. Hence, it can be easily shown that if K(•)
is a kernel of order q then 2K(•)− (K ∗K)(•) is of order 2q. Thus, starting with a basic kernel of order two
we can generated kernels of higher order by convolving the kernel with itself.

A.2.3 Integrated error

Before showing that the integrated error converges to zero we verify the following lemma:

Lemma A.6 If
∫
ϕ2(x)dx <∞, then

lim
h→0

∫
(ϕ(x+ h)− ϕ(x))2dx = 0.

Proof. Every simple function can be represented as a linear combination of characteristic functions of a
finite number of some intervals. Thus the hypothesis holds for any such function. Moreover, for any square
integrable ϕ(•) there exists a sequence of simple functions ϕn(•) such that

∫
(ϕn(x)−ϕ(x))2 → 0 as n→∞.

Since each ϕn(•) is simple,
∫

(ϕn(x+ h)− ϕn(x))2dx→ 0 as h→ 0. From this and the inequality∫
(ϕ(x+ h)− ϕ(x))2dx

≤
∫

(ϕ(x+ h)− ϕn(x+ h))2dx+
∫

(ϕn(x+ h)− ϕn(x))2dx

+
∫

(ϕn(x)− ϕ(x))2dx

=
∫

(ϕn(x+ h)− ϕn(x))2dx+ 2
∫

(ϕn(x)− ϕ(x))2dx

it follows that
lim sup
h→0

∫
(ϕ(x+ h)− ϕ(x))2dx ≤ 2

∫
(ϕn(x)− ϕ(x))2dx

for every n. Letting n tend to infinity completes the proof.

Lemma A.7 Let
∫
ϕ2(x)dx < ∞. If the kernel satisfy (A.4) and, moreover,

∫
K(x)dx = 1, then (A.2)

holds.
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Proof. It follows from (A.3) that

|ϕh(x)− ϕ(x)| ≤
∫

(ϕ(x− ξ)− ϕ(x))
[

1
h
K

(
ξ

h

)]1/2 [ 1
h
K

(
ξ

h

)]1/2

dξ.

Squaring both sides and using the Schwartz inequality we get

(ϕh(x)− ϕ(x))2 ≤
∫

(ϕ(x− ξ)− ϕ(x))2

∣∣∣∣ 1hK
(
ξ

h

)∣∣∣∣ dξ ∫ ∣∣∣∣ 1hK (ηh)
∣∣∣∣ dη

which leads to ∫
(ϕh(x)− ϕ(x))2dx ≤

∫
|K(η)|dη

∫∫
(ϕ(x− ξ)− ϕ(x))2 1

h
K

(
ξ

h

)
dξdx.

Changing the order of integration we find the double integral in the expression equal to∫
φ(ξ)

∣∣∣∣ 1hK
(
ξ

h

)∣∣∣∣ dξ =
∫
|ξ|<δ

φ(ξ)
∣∣∣∣ 1hK

(
ξ

h

)∣∣∣∣ dξ +
∫
|ξ|≥δ

φ(ξ)
∣∣∣∣ 1hK

(
ξ

h

)∣∣∣∣ dξ
with φ(ξ) =

∫
(ϕ(x−ξ)−ϕ(x))2dx and some δ > 0. Since from Lemma A.6 it follows that φ(ξ)→ 0 as ξ → 0

for any ε > 0, there exists δ > 0 such that |φ(ξ)| ≤ ε if |ξ| < δ. For such δ the first integral is bounded by

ε

∫
|ξ|<δ

∣∣∣∣ 1hK
(
ξ

h

)∣∣∣∣ dξ ≤ ε.
Since φ(•) is bounded, the other is not greater than supt φ(t)

∫
|ξ|≥δ/h |K(ξ)|dξ which converges to zero as

h→ 0. The lemma follows.

A.3 Applications to probability

Suppose that X is a random variable and has a probability density f(•). We now rewrite some results
presented earlier in a new context. From Lemma A.1 we obtain

Lemma A.8 Let E|ϕ(X)| <∞. If K(•) satisfies the appropriate assumptions of Lemma A.1, then

lim
h→0

1
h
E

{
ϕ(X)K

(
x−X
h

)}
= ϕ(x)f(x)

∫
K(ξ)dξ

and

sup
h>0

1
h
E

∣∣∣∣ϕ(X)K
(
x−X
h

)∣∣∣∣ is finite

at every x where both ϕ(•)i and f(•) are continuous. In particular,

lim
h→0

1
h
EK

(
x−X
h

)
= f(x)

∫
K(ξ)dξ

and

sup
h>0

1
h
E

∣∣∣∣K (x−Xh
)∣∣∣∣ is finite

at every x where f(•) is continuous.

Lemma A.9 Let E|ϕ(X)| <∞. If K(•) satisfies the appropriate assumptions of Lemma A.3, then

lim
h→0

1
h
E

{
ϕ(X)K

(
x−X
h

)}
= ϕ(x)f(x)

∫
K(ξ)dξ
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and

sup
h>0

1
h
E

∣∣∣∣ϕ(X)K
(
x−X
h

)∣∣∣∣ is finite.

at every Lebesgue point x of both f(•) and ϕ(•), and, a fortiori, at almost every (with respect to the Lebesgue
measure) x, and at every continuity point x of both f(•) and ϕ(•), as well. In particular,

lim
h→0

1
h
EK

(
x−X
h

)
= f(x)

∫
K(ξ)dξ

and

sup
h>0

1
h
E

∣∣∣∣K (x−Xh
)∣∣∣∣ is finite

at every Lebesgue point of f(•), and, a fortiori, at almost every (with respect to the Lebesgue measure) point
x and at every continuity point of f(•), as well.

In the next two lemmas X has an arbitrary distribution and, in particular, may not have a density. The
probability measure of X is denoted by µ.

Lemma A.10 Let E|ϕ(X)| < ∞ and let K(•) satisfy the assumptions of Lemma A.4. Then, at almost
every (µ) point x,

lim
h→0

E

{
ϕ(X)K

(
x−X
h

)}
EK

(
x−X
h

) = ϕ(x)

and

lim sup
h→0

∣∣∣∣∣∣∣∣
E

{
ϕ(X)K

(
x−X
h

)}
EK

(
x−X
h

)
∣∣∣∣∣∣∣∣ is finite.

From Lemma A.5 we obtain

Lemma A.11 If K(•) satisfies assumptions of Lemma A.4, then

lim
h→0

h

EK

(
x−X
h

) is finite

at almost (µ) point x.

A.4 Lemmas

In the next two lemmas which can be found in Wheeden and Zygmund [434, Theorem 10.49 and Corollary
10.50], µ is any probability measure.

Lemma A.12 If
∫
|ϕ(x)|µ(dx) <∞, then

lim
h→0

∫
Sx(h)

ϕ(ξ)µ(dξ)

µ (Sx (h))
= ϕ(x) (A.19)

for almost every (µ) x.
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Lemma A.13 For almost every (µ) x,

lim
h→0

λ (Sx (h))
µ (Sx (h))

is finite.

Observe that (A.19) can be rewritten in the following form:

lim
h→0

∫
Sx(h)

ϕ(ξ)µ(dξ)∫
Sx(h)

µ(dξ)
= ϕ(x)

equivalent to

lim
h→0

∫
ϕ(ξ)W

(
x− ξ
h

)
µ(dξ)∫

ϕ(ξ)W
(
x− ξ
h

)
µ(dξ)

= ϕ(x),

with

W (x) =

{
1, for |x| < 1
0, otherwise.

Since ∫
ϕ(ξ)W

(
x− ξ
h

)
µ(dξ) = E

{
ϕ(X)W

(
x−X
h

)}
and ∫

W

(
x− ξ
h

)
µ(dξ) = E

{
W

(
x−X
h

)}
,

we finally conclude that (A.12) takes place almost everywhere (µ). Therefore, compared to Lemma A.13,
Lemma A.4 significantly enlarges the class of applicable kernels.



Appendix B

Orthogonal functions

B.1 Introduction

In this chapter we present Fourier (i.e., trigonometric), Legendre, Laguerre, and Hermite orthogonal functions
and discuss some properties of orthogonal expansions. In Section B.6 we show fundamental properties of
Haar wavelets.

Legendre, Laguerre, and Hermite polynomials, particular cases of Jacobi polynomials, denoted temporar-
ily as Wk(x), k = 0, 1, . . ., are orthogonal, each with respect to some nonnegative weight function λ(x) on
some interval, say (a, b). It means that∫ b

a

Wm(x)Wn(x)λ(x)dx =
{

0, for n 6= m,
cn, for n = m,

with cn 6= 0. For

• a = −1, b = 1, and λ(x) = 1, Wn(x) is the Legendre polynomial denoted by Pn(x),

• a = 0, b =∞, and λ(x) = e−x, Wn(x) is the Laguerre polynomial Ln(x),

• a = −∞, b =∞, and λ(x) = e−x
2
, Wn(x) is the Hermite polynomial Hn(x).

Clearly, functions wn(x) = c
−1/2
n λ1/2(x)Wn(x) are orthonormal, i.e.,∫ b

a

wm(x)wn(x)dx =
{

0, for n 6= m,
1, for n = m.

The set {wk(x); k = 0, 1, . . .} of functions is also called an orthonormal system.
For any integrable ϕ(•) such that

∫ b
a
|ϕ(x)|dx <∞, writing

ϕ(x) ∼
∞∑
k=0

akwk(x)

we mean that ak =
∫ b
a
ϕ(y)wk(y)dx and call

∑∞
k=0 akwk(x) an orthogonal expansion of the function. The

sum

σn(x) =
n∑
k=0

akwk(x)

is a partial sum of the expansion. Each orthogonal system we deal with is complete which means that

lim
n→∞

∫ b

a

(σn(x)− ϕ(x))2dx = 0

257
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for any ϕ(•) such that
∫ b
a
ϕ2(x)dx <∞.

The partial sum can be rewritten in the following form:

σn(x) =
∫ b

a

Kn(x, y)ϕ(y)dx,

where

Kn(x, y) =
n∑
k=0

wk(x)wk(y)

is the corresponding kernel of the orthogonal system.
An important problem is the pointwise convergence of the expansion, i.e., convergence

lim
n→∞

σn(x) = ϕ(x)

at a fixed point x ∈ (a, b). The convergence of the expansion in the Hermite system at a point is strictly
related to the expansion of the function in the trigonometric system in an arbitrarily small neighborhood of
the point. Though not exactly the same, a similar property holds for the other orthogonal systems. These
facts are presented in consecutive sections in so called equiconvergence theorems.

By imposing some smoothness restrictions on ϕ(•) we present upper bounds for the Fourier coefficient
ak and also for pointwise

σn(x)− ϕ(x) =
∞∑

k=n+1

akwk(x)

and global ∫ b

a

(σn(x)− ϕ(x))2dx =
∞∑

k=n+1

a2
k

errors. Consecutive sections are devoted to expansions in the trigonometric, Legendre, Laguerre, and Hermite
orthogonal systems. For ϕ(•) having q derivatives and satisfying some additional restrictions, the results are
summarized in Table B.1.

Table B.1: Pointwise and global errors for various orthogonal systems

σn(x)− ϕ(x)
∫

(σn(x)− ϕ(x))2dx

Fourier O(n−q+1/2) O(n−2q)

Legendre O(n−q+1/2) O(n−2q+1)

Laguerre O(n−q/2+1/4) O(n−q)

Hermite O(n−q/2+1/4) O(n−q)

B.2 Fourier series

The system of trigonometric functions

1√
2π
,

1√
π

cosx,
1√
π

sinx,
1√
π

cos 2x,
1√
π

sin 2x, . . .
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is complete and orthonormal over the interval [−π, π]. For an integrable function ϕ(•),

Sn(x) =
1
2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx)

with

a0 =
1
π

∫ π

−π
ϕ(x)dx,

and

ak =
1
π

∫ π

−π
ϕ(x) cos(kx)dx, bk =

1
π

∫ π

−π
ϕ(x) sin(kx)dx,

k = 1, 2, . . ., is the partial sum of the Fourier expansion in the trigonometric series

ϕ(x) ∼ 1
2
a0 +

∞∑
k=1

(ak cos kx+ bk sin kx). (B.1)

Since the system is complete,

lim
n→∞

∫ π

−π
(Sn(x)− ϕ(x))2dx = 0

for any ϕ(•) such that
∫ π
−π ϕ

2(x)dx <∞.
For the partial sum we get

Sn(x)

=
1

2π

∫ π

−π
ϕ(y)dy +

1
π

n∑
k=1

∫ π

−π
ϕ(x)(cos ky cos kx+ sin ky sin kx)dy

=
1
π

∫ π

−π
ϕ(y)

(
1
2

+
n∑
k=1

cos(k(x− y))

)
dy

=
1
π

n∑
k=1

∫ π

−π
ϕ(x+ y)

(
1
2

+
n∑
k=1

cos ky

)
dy.

Since
1
π

(
1
2

+
n∑
k=1

cos kx

)
= Dn(x),

where

Dn(x) =
sin
(
n+ 1

2

)
x

2π sin 1
2x

(B.2)

is the Dirichlet kernel, see Figure B.1, we finally obtain

Sn(x) =
∫ π

−π
Dn(y)ϕ(x+ y)dy =

∫ π

−π
Dn(y − x)ϕ(y)dy. (B.3)

In passing, we notice
∫ π
−πDn(x)dx = 1.

According to Riemann’s principle of localization, see Sansone [376, Chap. II, Theorem 14] or Davis [73,
Theorem 12.1.13], the convergence of Sn(x0) to ϕ(x0) depends only upon the behavior of ϕ(•) in an arbitrarily
small neighborhood of x0. Continuity of ϕ(•) at x0 doesn’t guarantee, however, the convergence. An example
presented by du Bois-Reymond, see Davis [73, Theorem 14.4.15], shows that there exist continuous functions
whose Fourier series are divergent at a point.

There are a number of various sufficient conditions yielding the convergence of Sn(x0) to ϕ(x0). We
present Dini’s theorem, see Sansone [376, Chap. II, Theorem 16].
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Figure B.1: Dirichlet kernel D5(x).

Theorem B.1 (Dini) Let
∫ π
−π |ϕ(x)|dx <∞. If there exists ε > 0 such that∫ ε

0

∣∣∣∣ϕ(x+ t) + ϕ(x− t)− 2ϕ(x)
t

∣∣∣∣ dt <∞,
then

lim
n→∞

S(x) = ϕ(x). (B.4)

As a corollary from Dini’s theorem we get the following:

Corollary B.1 If
∫ π
−π |ϕ(x)|dx <∞, then (B.4) holds at every x ∈ (−π, π) where ϕ(•) is differentiable.

To present another corollary, we recall that ϕ(•) is said to satisfy a Lipschitz condition at x if there exists
a constant c such that

|ϕ(x)− ϕ(y)| ≤ c|x− y|r,

0 < r ≤ 1, in some neighborhood of x.

Corollary B.2 If
∫ π
−π |ϕ(x)|dx <∞, then (B.4) holds at every x ∈ (−π, π) where ϕ(•) satisfies a Lipschitz

condition.

The result given below is due to Carleson [45] and Hunt [239], for s = 2 and s > 1, respectively.

Theorem B.2 If
∫ π
−π |ϕ(x)|sdx <∞ for some s > 1, then (B.4) holds at almost every x ∈ (−π, π).

Restriction s > 1 can’t be weakened to s = 1, since there exist integrable functions whose trigonometric
series diverge at every point, see Kolmogoroff [252].

The expression

sn(x) =
S0(x) + S1(x) + · · ·+ Sn−1(x)

n

is called the Cesàro mean of partial sums. Since

1
n

n−1∑
k=0

Dk(x) =
1
n

n−1∑
k=0

sin
(
k + 1

2

)
x

2π sin 1
2x

= Fn(x),

where

Fn(x) =
sin2 n

2x

2πn sin2 1
2x

(B.5)

is the Fejér kernel (see Figure B.2 ) we get

sn(x) =
∫ π

−π
Fn(y)ϕ(x+ y)dy =

∫ π

−π
Fn(y − x)ϕ(y)dy. (B.6)
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Figure B.2: The Fejér kernel.

Observe that
∫ π
−π Fn(x)dx = 1 and

D2
n(x) =

(
n+

1
2

)
1
π
F2n+1(x). (B.7)

The next theorem on Cesàro summability of the Fourier expansion is rather well known.

Theorem B.3 (Lebesgue) If
∫ π
−π |ϕ(x)|dx <∞, then

lim
n→∞

sn(x) = ϕ(x)

at every point where (B.4) holds, at every continuity point x of ϕ(•), and at almost every x ∈ (−π, π).

The next lemma is a simple consequence of the aforementioned results.

Lemma B.1 If
∫ π
−π |ϕ(x)|dx <∞, then

lim
n→∞

1
n

∫ π

−π
D2
n(y − x)ϕ(y)dy =

1
π
ϕ(x)

at every point where (B.4) holds, at every continuity point x of ϕ(•), and at almost every x ∈ (−π, π).

Let

Dn(x) =
sin
(
n+ 1

2

)
x

πx
(B.8)

and

Fn(x) =
2 sin2 n

2x

πnx2
. (B.9)

Clearly

D2
n(x) =

(
n+

1
2

)
1
π

Fn(x). (B.10)

Let, moreover,

Sn(x) =
∫ π

−π
Dn(y)ϕ(x+ y)dy (B.11)

and
sn(x) =

∫ π

−π
Fn(y)ϕ(x+ y)dy. (B.12)

Compare (B.8), (B.9), (B.10), (B.11), and (B.12) with (B.2), (B.5), (B.7), (B.3), and (B.6) respectively.

Lemma B.2 Let
∫ π
−π |ϕ(x)|dx <∞. Then

lim
n→∞

(Sn(x)− Sn(x)) = 0

and
lim
n→∞

(sn(x)− sn(x)) = 0.
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Proof. Since

Dn(x)−Dn(x) =
1
π
g(x) sin

(
n+

1
2

)
x,

where
g(x) =

1
2 sin 1

2x
− 1
x

with g(0) = limx→0 g(x) = 0, to verify the first part of the lemma it suffices to show that

lim
N→∞

∫ π

−π
ϕ(x+ y)g(y) sin(Ny)dy = 0.

Since g(x) is continuous in the interval [−π, π], to do that we apply the Riemann-Lebesgue theorem, see
Sansone [376, Chap. II, Section 4, Theorem 12] or Davis [73, Theorem 12.1.10], according to which

lim
n→∞

∫ b

a

ϕ(x) sin(nx)dx = 0

if
∫ b
a
|ϕ(x)|dx <∞.

The verification of the other part of the lemma is similar since

Fn(x)− Fn(x) =
1
πn

h(x) sin2 n

2
x,

where
h(x) =

1
2 sin2 1

2x
− 2
x2
.

Thus the lemma follows.
Owing to Lemma B.2 we can make the following two remarks.

Remark B.1 Dini’s Theorem B.1, as well as Corollaries B.1, B.2, and B.2, all remain true if Sn(x) is
replaced by Sn(x).

Remark B.2 The Lebesgue Theorem B.3 on Cesàro summability of the Fourier expansion and Lemma B.1
are still true if sn(x) is replaced by sn(x). In particular, if

∫ π
−π |ϕ(x)|dx <∞, then

lim
n→∞

1
n

∫ π

−π
D2
n(y − x)ϕ(y)dy =

1
π
ϕ(x)

at every x where (B.4) holds, at every continuity point x of ϕ(•), and at almost every x ∈ (−π, π).

At every x where (B.4) holds we have

Sn(x)− ϕ(x) =
∞∑

k=n+1

(ak cos kx+ bk sin kx).

Thus the quality of the pointwise approximation of ϕ(x) with Sn(x) depends upon the speed where coefficients
ak and bk diminish with k increasing to infinity. Assuming that ϕ(−π) = ϕ(π) = 0 and ϕ(•) is differentiable
and then integrating by parts, we get

ak = − 1
πk

∫ π

−π
ϕ′(x) sin(kx)dx = −1

k
γ1k

and

bk =
1
πk

∫ π

−π
ϕ′(x) cos(kx)dx =

1
k
δ1k,
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where
γ1k =

1
π

∫ π

−π
ϕ′(x) sin(kx)dx,

δ1k =
1
π

∫ π

−π
ϕ′(x) cos(kx)dx.

In general, if ϕ(m)(−π) = ϕ(m)(π) = 0 for m = 1, . . . , q − 1, and
∫ π
−π(ϕ(q)(x))2dx <∞,

|ak| =
1
kq
|γqk| and |bk| =

1
kq
|γqk|,

where γqk and δqk are Fourier coefficients of ϕ(q)(x) such that
∑∞
k=0 γ

2
qk < ∞ and

∑∞
k=0 δ

2
qk <∞. Therefore

∞∑
k=n+1

(a2
k + b2k) =

∞∑
k=n+1

k−2q(γ2
qk + δ2

qk) = O(n−2q)

which means that ∫ π

−π
(Sn(x)− ϕ(x))2dx =

∞∑
k=n+1

(a2
k + b2k) = O(n−2q). (B.13)

Moreover, ∣∣∣∣∣
∞∑

k=n+1

(ak cos kx+ bk sin kx)

∣∣∣∣∣ ≤
∞∑

k=n+1

(|ak|+ |bk|) ≤
∞∑

k=n+1

k−q(|γqk|+ |δqk|)

≤

( ∞∑
k=n+1

k−2q

)1/2( ∞∑
k=n+1

(γ2
qk + δ2

qk)

)1/2

.

Thus at every x where (B.4) holds,

|Sn(x)− ϕ(x)| = O(n−q+1/2). (B.14)

For any ϕ(•) such that
∫ π
−π |ϕ(x)|dx <∞, applying the Schwartz inequality and (B.7) we get(∫ π

−π
Dn(y − x)ϕ(y)dy

)2

≤
(∫ π

−π
|Dn(y − x)|

√
|ϕ(y)|

√
|ϕ(y)|dy

)2

≤
(
n+

1
2

)
1
π

∫ π

−π
Fn(y − x)|ϕ(y)|dy

∫ π

−π
|ϕ(y)|dy

which gives ∫ π

−π
Dn(y − x)ϕ(y)dy = O(n1/2).

For similar reasons, ∫ π

−π
Dn(y − x)ϕ(y)dy = O(n1/2). (B.15)

Sometimes, it is convenient to apply the complex form of the trigonometric series. The system of functions

1√
2π
eikx =

1√
2π

cos kx+ i
1√
2π

sin kx,

k = 0,±1,±2, . . ., is orthonormal over the interval [−π, π]. Hence

ϕ(x) ∼
∞∑

k=−∞

cke
ikx
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with
ck =

1
2π

∫ π

−π
eikxϕ(x)dx =

1
2π

∫ π

−π
e−ikxϕ(x)dx.

The relation between coefficients ak, bk and ck is of the following form:

1
2
a0 = c0, ak = ck + c−k, bk = i(ck − c−k).

Thus
1
2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx) = c0 +
n∑
k=1

cke
ikx +

n∑
k=1

c−ke
−ikx

which implies

Sn(x) =
n∑

k=−n

cke
ikx. (B.16)

B.3 Legendre series

Legendre polynomials P0(x), P1(x), . . . are complete and orthogonal over the interval [−1, 1], see, e.g., Sansone
[376] or Szegö [400]. They satisfy Rodrigues’ formula

Pk(x) =
1

2kk!
dk

dxk
(x2 − 1)k.

First a few are

P0(x) = 1,
P1(x) = x,

P2(x) =
1
2

(3x2 − 1),

P3(x) =
1
2

(5x3 − 3x),

P4(x) =
1
8

(35x4 − 30x2 + 3).

Moreover, for |x| ≤ 1,
|Pk(x)| ≤ 1, (B.17)

Pk(1) = (−1)kPk(−1) = 1, (B.18)

and
|P ′k(x)| ≤ k, (B.19)

see Sansone [376, Chap. III, Sects. 11 and 17]. The polynomials have the following property:

(2k + 1)Pk(x) = P ′k+1(x)− P ′k−1(x). (B.20)

Since
∫ 1

−1
P 2
k (x)dx = 1/(2k + 1), the system

p0(x), p1(x), p2(x), . . . ,

where

pk(x) =

√
2k + 1

2
Pk(x),

is orthonormal over the interval [−1, 1].
Denoting

kn(x, y) =
n∑
k=0

pk(x)pk(y)
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we write the Christoffel-Darboux formula

kn(x, y) =
n+ 1

2
Pn(x)Pn+1(y)− Pn+1(x)Pn(y)

y − x
. (B.21)

Clearly,

σn(x) =
n∑
k=0

akpk(x)

with

ak =
∫ 1

−1

ϕ(x)pk(x)dx

is the partial expansion of ϕ(•) in the Legendre system.
The next theorem due to Hobson, see Szegö [400, Theorem 9.1.2] or Sansone [376, Chap. III, Section 14],

is on pointwise convergence of σn(x) to ϕ(x). The convergence is strictly related to the convergence of the
trigonometric expansion of ϕ(cos ξ)

√
sin ξ at a point ξ = arccosx, 0 < ξ < π. In the theorem Sn(cos ξ) is the

nth partial sum of the trigonometric series of ϕ(cos ξ)
√

sin ξ in any open interval containing ξ = arccosx,
i.e.,

Sn(cos ξ) =
∫ ξ0+δ

ξ0−δ
Dn(η − ξ)ϕ(cos η)

√
sin ηdη

with any δ > 0.

Theorem B.4 (equiconvergence) Let
∫ 1

−1
|ϕ(x)|dx <∞ and

∫ 1

−1

1
4
√

1− x2
|ϕ(x)|dx <∞. (B.22)

Then

lim
n→∞

(
σn(x)− 1

4
√

1− x2
Sn(x)

)
= 0 (B.23)

at every x ∈ (−1, 1) such that Sn(x) converges.

Since (∫ 1

−1

1
4
√

1− x2
|ϕ(x)|dx

)2

≤
∫ 1

−1

1√
1− x2

dx

∫ 1

−1

ϕ2(x)dx = π

∫ 1

−1

ϕ2(x)dx,

restriction (B.22) is satisfied if
∫ 1

−1
ϕ2(x)dx < ∞. On the other hand, (B.22) implies

∫ 1

−1
|ϕ(x)|dx < ∞.

Notice, moreover, that
∫ 1

−1
(1− x2)−1/4|ϕ(x)|dx =

∫ π
0
|ϕ(cos ξ)|

√
sin ξdξ.

From the theorem, Corollaries B.1, B.2, and Theorem B.2, the following three corollaries follow.

Corollary B.3 If ϕ(•) satisfies the restrictions of Theorem B.4, then

lim
n→∞

σn(x) = ϕ(x) (B.24)

at every x ∈ (−1, 1) where ϕ(•) is differentiable.

Corollary B.4 If ϕ(•) satisfies the restrictions of Theorem B.4, then (B.24) holds at every x ∈ (−1, 1)
where ϕ(•) satisfies a Lipschitz condition.

Corollary B.5 If ϕ(•) satisfies the restrictions of Theorem B.4 and, in addition,
∫ 1

−1
|ϕ(x)|sdx < ∞ with

some s > 1, then (B.24) holds at almost every x ∈ (−1, 1).
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Applying (B.20), bearing (B.18) in mind, assuming
∫ 1

−1
(ϕ′(x))2dx < ∞ and ϕ(−1) = ϕ(1) = 0, we

integrate by parts to get∫ 1

−1

ϕ(x)Pk(x)dx = − 1
2k + 1

∫ 1

−1

ϕ′(x)(Pk+1(x)− Pk−1(x))dx.

Hence
ak = − 1

2k + 1
(bk+1 − bk−1) = − 1

2k + 1
b1k,

where bk =
∫ 1

−1
ϕ′(x)pk(x)dx and b1k = bk+1 − bk−1, which leads to ak = O(k−1)b1k, where

∑∞
k=0 b

2
1k <∞.

Assuming that further derivatives exists we can repeat the reasoning. In general, if ϕ(•) has q derivatives,∫ 1

−1
(ϕ(q)(x))2dx < ∞, and ϕ(i)(−1) = ϕ(i)(1) = 0, i = 0, 1, . . . , q − 1, we obtain ak = O(k−q)bqk with some

bqk’s such that
∑∞
k=0 b

2
qk <∞. Consequently,∫ 1

−1

(σn(x)− ϕ(x))2dx =
∞∑

k=n+1

a2
k = O(n−2q+1).

At every x ∈ (−1, 1) where (B.24) holds we have

|σn(x)− ϕ(x)| ≤
∞∑

k=n+1

|akpk(x)| =
∞∑

k=n+1

O
(
k−q+1/2

)
|bqk||Pk(x)|

=
∞∑

k=n+1

O(k−q)|bqk|,

since

|Pn(x)| ≤ 4

√
2
π

1√
n

1
4
√

1− x2
(B.25)

for −1 ≤ x ≤ 1, see Sansone [376, Chap. III, Section 10, Stieltjes formula (14)]. As the obtained quantity is
of order (

∑∞
k=n+1 k

−2q)1/2(
∑∞
k=n+1 b

2
qk)1/2, we finally get

|σn(x)− ϕ(x)| = O(n−q+1/2). (B.26)

Lemma B.3 Let ϕ(•) satisfy the restrictions of Theorem B.4. Then

lim
n→∞

1
n

∫ 1

−1

k2
n(x, y)ϕ(y)dy =

1
π
√

1− x2
ϕ(x),

for almost every x ∈ (−1, 1), and at every continuity point x of ϕ(•).

Proof. Defining x = cos ξ and y = cos η, we begin with the following equality:

kn(cos ξ, cos η)

=
1√

sin ξ sin η

[
sin [(n+ 1)(η − ξ)]

2π sin 1
2 (η − ξ)

+
sin
[
(n+ 1)(ξ + η)− π

2

]
2π sin 1

2 (η + ξ)
+Rn(ξ, η)

]
holding for 0 < ξ < π, 0 < η < π, where Rn(ξ, η) = O(1), see Szegö [400, (9.3.5)]. The bound for Rn(ξ, η) is
uniform for ε < ξ < π − ε and ε < η < π − ε, any ε > 0. Therefore

kn(cos ξ, cos η) =
1√

sin ξ sin η

[
Dn+1/2(ξ − η) + rn(ξ, η)

]
,

where rn(ξ, η) = O(1), and, as a consequence, see (B.7),

k2
n(cos ξ, cos η)

=
1

sin ξ sin η
(n+ 1)

[
1
π
F2n+2(ξ − η) + 2rn(ξ, η)Dn+1/2(ξ − η) + r2

n(ξ, η)
]
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which gives ∫ |x|+ε
−|x|−ε

k2
n(x, y)ϕ(y)dy =

∫ π−δ

δ

k2
n(cos ξ, cos η)ϕ(cos η) sin ηdη

= (n+ 1)
1

π sin ξ

∫ π−δ

δ

F2n+2(ξ − η)ϕ(cos η)dη

+
2

sin ξ

∫ π−δ

δ

rn(ξ, η)Dn+1/2(ξ − η)ϕ(cos η)dη

+
1

sin ξ
O(1)

∫ π

0

|ϕ(cos η)|dη,

where δ = arccos(|x| + ε). By Theorem B.3 on Cesàro summability of the Fourier expansion, for almost
every ξ, and for every continuity point of ϕ(cos ξ),

lim
n→∞

∫ π−δ

δ

F2n+2(ξ − η)ϕ(cos η)dη = ϕ(cos ξ). (B.27)

In turn ∣∣∣∣∣
∫ π−δ

δ

rn(ξ, η)Dn+1/2(ξ − η)ϕ(cos η)dη

∣∣∣∣∣
= O(1)

∫ π−δ

δ

|Dn+1/2(ξ − η)||ϕ(cos η)|dη.

Moreover, ∫ π

0

|Dn+1/2(ξ − η)||ϕ(cos η)|dη

≤
(∫ π

0

D2
n+1/2(ξ − η)|ϕ(cos η)|dη

)1/2(∫ π

0

|ϕ(cos η)|dη
)1/2

=

√
n+ 1
π

(∫ π

0

F2n+2(ξ − η)|ϕ(cos η)|dη
)1/2(∫ π

0

|ϕ(cos η)|dη
)1/2

= O(n1/2)

at every ξ where (B.27) holds. Since

1
sin ξ

ϕ(cos ξ) =
1√

1− x2
ϕ(x),

we have shown that

lim
n→∞

1
n

∫ |x|+ε
−|x|−ε

k2
n(x, y)ϕ(y)dy =

1
π
√

1− x2
ϕ(x)

for almost every x.
To complete the proof, we need to examine∫ 1

|x|+ε
k2
n(x, y)ϕ(y)dy and

∫ −|x|−ε
−1

k2
n(x, y)ϕ(y)dy. (B.28)

Recalling Christoffel-Darboux formula (B.21) and using (B.25), we get

kn(x, y) =
n+ 1

2

(
Pn(x)

Pn+1(y)
y − x

− Pn+1(x)
Pn(y)
y − x

)
= O(n1/2)

(∣∣∣∣Pn+1(y)
y − x

∣∣∣∣+
∣∣∣∣Pn(y)
y − x

∣∣∣∣) = O(n1/2)(|Pn+1(y)|+ |Pn(y)|),
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since |x− y| > 0. Thus, using (B.25) again, we find∫ 1

1−ε
k2
n(x, y)ϕ(y)dy = O(n)

∫ 1

1−ε
(P 2
n+1(y) + P 2

n(y))|ϕ(y)dy

= O(1)
∫ 1

1−ε

1
4
√

1− y2
|ϕ(y)|dy.

Since the other integral in (B.28) is of the same order, the proof is completed.
The Legendre polynomials are members of larger class of orthogonal polynomials. The ultraspherical

(Gegenbauer) polynomials consists of polynomials orthogonal on [−1, 1] with respect to the weight function
λ(x, α) = (1 − x2)α−1/2, where α > −1/2. The case α = 1/2 gives the Legendre polynomials, whereas
α = 0 corresponds to the Chebyshev polynomials of the first kind. It is an interesting fact that among of
all orthogonal polynomials with the weight λ(x, α), the Chebyshev polynomials of the first kind are optimal
in the sense of the uniform metric on [−1, 1] , i.e., they give the lowest uniform error for any continuous
function on [−1, 1]. This result is due to Rivlin and Wilson, see [400].

B.4 Laguerre series

Laguerre polynomials L0, L1, . . . satisfy the following Rodrigues’ formula:

e−xLk(x) =
1
k!

dk

dxk
(xke−x).

It is not difficult to check that

L0(x) = 1,
L1(x) = −x+ 1,

L2(x) =
1
2
x2 − 2x+ 1,

L3(x) = −1
6
x3 +

3
2
x2 − 3x+ 1,

L4(x) =
1
24
x4 − 2

3
x3 + 3x2 − 4x+ 1,

and so on. In general

Lk(x) =
k∑
i=0

(−1)i
1
i!

(
k

i

)
xi. (B.29)

The system of functions
lk(x) = Lk(x)e−x/2,

k = 0, 1, . . ., is complete and orthonormal on the real half line [0,∞).
The Christoffel-Darboux summation formula is of the following form:

kn(x, y) = (n+ 1)e−x/2e−y/2
Ln+1(x)Ln(y)− Ln(x)Ln+1(y)

y − x

= (n+ 1)
ln+1(x)ln(y)− ln(x)ln+1(y)

y − x
,

where

kn(x, y) = e−x/2e−y/2
n∑
k=0

Lk(x)Lk(y) =
n∑
k=0

lk(x)lk(y)

is the kernel of the system.
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Let

σn(x) =
n∑
k=0

aklk(x)

where

ak =
∫ ∞

0

ϕ(x)lk(x)dx.

In Szegö [400, Theorem 9.1.5] or Sansone [376, Chap. IV, Section 11], see also Uspensky [406], we find a
result relating pointwise convergence of the Fourier and Laguerre expansions. In the next theorem

Sn(
√
x) =

1
π

∫ √x+δ

√
x−δ

ϕ(y2)DN (
√
x− y)dy

where N = 2
√
n− 1/2, and where D is as in (B.8). Clearly,

Sn(
√
x) =

1
π

∫ √x+δ

√
x−δ

ϕ(y2)DN (
√
x− y)dy

is the Nth partial sum of the trigonometric expansion of ϕ(y2) in the trigonometric series in the interval
(
√
x − δ,

√
x + δ) with any δ > 0. Relations between asymptotic properties of Sn(

√
x) and Sn(

√
x) are

explained in Lemma B.2.

Theorem B.5 (equiconvergence) Let
∫
|ϕ(x)|e−x/2dx <∞. Then, at any x > 0,

lim
n→∞

(σn(x)−Sn(
√
x)) = 0.

Applying Lemma B.2, we obtain

Theorem B.6 (equiconvergence) Let
∫
|ϕ(x)|e−x/2dx <∞. Then, at any x > 0,

lim
n→∞

(σn(x)− Sn(
√
x)) = 0.

According to the theorem, at any point x0, x0 > 0, the Laguerre expansion of ϕ(•) behaves like the
Fourier expansion of ϕ(x2) in an arbitrarily small neighborhood of

√
x0.

Recalling Theorem B.1, we obtain next two.

Theorem B.7 Let
∫∞

0
|ϕ(x)|e−x/2dx <∞. At every x ∈ (0,∞) where ϕ(•) is differentiable,

lim
n→∞

σn(x) = ϕ(x). (B.30)

Theorem B.8 Let
∫∞

0
|ϕ(x)|e−x/2dx <∞. At every x ∈ (0,∞) where ϕ(•) satisfies a Lipschitz condition,

(B.30) holds.

Applying Theorem B.2 we get

Theorem B.9 If
∫∞

0
|ϕ(x)|e−x/2dx <∞, then (B.30) holds for almost every x ∈ (0,∞).

Now, assuming that ϕ(•) is smooth we determine the expansion coefficients. To achieve this goal we
apply associated Laguerre polynomials L(α)

k (x), where for α > −1,L(α)
k (x) is defined as follows:

L
(α)
0 (x) = 1

and

e−xxαL
(α)
k (x) =

1
k!

x d

dx
(xk+αe−x), for k = 1, 2, . . . ,
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or in a more explicit form

L
(α)
k (x) =

k∑
i=0

(−1)i
1
i!

(
k + α

k − i

)
xi.

The above formula allows to define the associated Laguerre polynomials to any α.
In the sequel we use the integer values of α, i.e., let m = 0, 1, 2, . . .. Functions

l
(m)
k (x) =

1√
(k + 1) · · · (k +m)

xm/2e−x/2L
(m)
k (x),

k = 0, 1, . . ., constitute a complete orthonormal system over the half real line [0,∞). Clearly L(0)
k (x) = Lk(x).

Notice that the symbol (m) doesn’t denote a derivative. To avoid misunderstandings not (q) but dq/dxq stands
for a derivative.

The polynomials {L(m)
k (x)} satisfy the following differential equation:

x
d2

dx2
L

(m)
k (x) + (m− x+ 1)

d

dx
L

(m)
k (x) + kL

(m)
k (x) = 0,

see Sansone [376, Chap. IV, Section 1], which can be written as

−1
k

d

dx

(
xm+1e−x

d

dx
L

(m)
k (x)

)
= −e−xxmL(m)

k (x). (B.31)

We assume that, for some δ > 0,
lim
x→∞

ϕ(x)e−x/2+δ = 0 (B.32)

and limx→0 xϕ(x) = 0. The latter, together with the fact that

Lk(0) =
(k +m)!
k!m!

= O(km)

as k →∞, implies
lim
x→0

xϕ(x)L(m+1)
k−1 (x) = 0.

We begin writing ∫ ∞
0

ϕ(x)l(m)
k (x)dx

=
1√

(k + 1) · · · (k +m)

∫ ∞
0

ϕ(x)xm/2e−x/2L(m)
k (x)dx

=
1√

(k + 1) · · · (k +m)

∫ ∞
0

(
ϕ(x)x−m/2ex/2

)(
xme−xL

(m)
k (x)

)
dx.

Integrating by parts, using (B.31) and the fact that

d

dx
L

(m)
k (x) = −L(m+1)

k−1 (x),

we find the integral is equal to

1
k

∫ ∞
0

[
d

dx

(
ϕ(x)x−m/2ex/2

)](
xm+1e−x

d

dx
L

(m)
k (x)

)
dx

=
1
k

∫ ∞
0

(
xϕ′(x) +

1
2
xϕ(x)−mϕ(x)

)
xm/2e−x/2

d

dx
L

(m)
k (x)dx

=
1
k

∫ ∞
0

(
xϕ′(x) +

1
2
xϕ(x)−mϕ(x)

)
xm/2e−x/2L

(m+1)
k−1 (x)dx

=

√
k(k + 1) · · · (k +m)

k

∫ ∞
0

(
xϕ′(x) +

1
2
xϕ(x)−mϕ(x)

)
l
(m+1)
k−1 (x)dx.
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Finally ∫ ∞
0

ϕ(x)l(m)
k (x)dx =

1√
k

∫ ∞
0

(
xϕ′(x) +

1
2
xϕ(x)−mϕ(x)

)
l
(m+1)
k−1 (x)dx.

Thus denoting

Φmϕ(x) = x1+m/2e−x/2
d

dx

(
ϕ(x)x−m/2ex/2

)
we find

Φmϕ(x) = xϕ′(x) +
1
2
xϕ(x)−mϕ(x) =

1
2

(2xD + x− 2m)ϕ(x),

where D stands for d/dx, and write∫ ∞
0

ϕ(x)l(m)
k (x)dx =

1√
k

∫ ∞
0

(Φmϕ(x)) l(m+1)
k−1 (x)dx

=
1

2
√
k

∫ ∞
0

[(2xD + x− 2m)ϕ(x)] l(m+1)
k−1 (x)dx.

Therefore

ak =
∫ ∞

0

ϕ(x)lk(x)dx

=
1√

k(k − 1) · · · (k − q + 1)

∫ ∞
0

(Φq−1 · · ·Φ1Φ0ϕ(x)) l(q)k−q(x)dx,

provided that (B.32) holds and limx→0 x
sϕ(i)(x) = 0, for i = 0, 1, 2, . . . , q − 1. Hence

ak =
1√

k(k − 1) · · · (k − q + 1)
b
(q)
k−q = O(1)

1
kq/2

b
(q)
k−q,

where

bqk =
∫ ∞

0

(Φq−1 · · ·Φ0g(x)) l(q)k (x)dx

=
1

2q
√
k

∫ ∞
0

[(
q−1∏
s=0

(2xD + x− 2s)

)
ϕ(x)

]
l
(q)
k (x)dx

is the appropriate coefficient of the expansion of

Φq−1 · · ·Φ0ϕ(x) =

(
q−1∏
s=0

(2xD + x− 2s)

)
ϕ(x)

in the series l(q)k (x).
If
∫∞

0
(Φq−1 · · ·Φ0g(x))2dx <∞,

∑∞
k=0(bqk)2 <∞ then

∞∑
k=n+1

a2
k = O(1)

∞∑
k=n+1

1
kq

(bq,k−q)2 = O(1)
1
nq

∞∑
k=0

(bqk)2.

Consequently ∫ ∞
0

(σn(x)− ϕ(x))2dx = O(n−q).

Moreover
∞∑

k=n+1

|ak||lk(x)| = O(1)
∞∑

k=n+1

1
kq/2+1/4

|bq,k−q|

≤ O(1)

( ∞∑
k=n+1

1
kq+1/2

)1/2( ∞∑
k=n+1

(bq,k−q)2

)1/2

= O(n−q/2+1/4)
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which means that at every point x ∈ (0,∞) where the expansion converges to ϕ(x),

|σn(x)− ϕ(x)| = O(n−q/2+1/4). (B.33a)

For our next developments we need some inequalities for Laguerre polynomials. On the interval 0 < x < a,
any a, we have

Ln(x) = x−1/4O(n−1/4), (B.34)

L(−1)
n (x) = O(n−3/4), (B.35)

Szegö [400, (7.6.9) and (7.6.10)]. On the interval a ≤ x <∞, any a > 0,

e−x/2Ln(x) = x−1/4O(n−1/12), (B.36)

e−x/2L(−1)
n (x) = x1/4O(n−7/12), (B.37)

Szegö [400, (8.91.2)]. Moreover,
Ln(x) = Ln+1(x)− L(−1)

n+1 (x), (B.38)

see also Szegö [400, (5.1.13)].
Passing to the next lemma we notice that if

∫∞
0
|ϕ(x)|dx <∞ and limx→0 ϕ(x) is finite then

∫ 1

0
x−1/2|ϕ(x)|dx <

∞.

Lemma B.4 If
∫∞

0
|ϕ(x)|dx <∞ and

∫ 1

0
x−1/2|ϕ(x)|dx <∞, then

lim
n→∞

1√
n

∫ ∞
0

k2(x, y)ϕ(y)dy =
1

π
√
x
ϕ(x)

at every x > 0 where ϕ(•) is continuous and at almost every x ∈ (0,∞).

Proof. We recall the Christoffel-Darboux formula and write kn(x, y) = e−x/2e−y/2Kn(x, y), where

Kn(x, y) = (n+ 1)
Ln+1(x)Ln(y)− Ln(x)Ln+1(y)

y − x

= (n+ 1)
Ln+1(x)L(−1)

n+1 (y)− L(−1)
n+1 (x)Ln+1(y)

x− y
.

We substituted Ln+1(x)− L(−1)
n+1 (x) for Ln(x) and did similarly for Ln(y), see (B.38).

Further considerations hold for every x > 0 where ϕ(•) is continuous and for almost every x > 0. Let
0 < ε < x.

On the interval |x− y| ≤ ε

Kn(x, y) = ex
1

2
√
y
DN

(√
y −
√
x
)

+O(1)

with N = 2
√
n− 1/2, where D is as in (B.8), see Szegö [400, (9.5.6)]. Hence

K2
n(x, y) = e2x 1

4π

(
N +

1
2

)
1
y
FN
(√
y −
√
x
)

+O(1)ex
1
√
y
DN

(√
y −
√
x
)

+O(1),

see (B.10). Since∫
|x−y|≤ε

ϕ(y)e−y
1
y
FN
(√
y −
√
x
)
dy = 2

∫ √x+ε

√
x−ε

1
v
ϕ(v2)e−v

2
FN
(
v −
√
x
)
dv
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converges to 2x−1/2e−xϕ(x) as N →∞, applying (B.15) we obtain

lim
n→∞

1√
n

∫
|x−y|≤ε

k2(x, y)ϕ(y)dy =
1

π
√
x
ϕ(x).

Let 0 < y ≤ x − ε. Using (B.34) and (B.35), we obtain Kn(x, y) = O(1)
(
1 + y−1/4

)
which leads to∫ ε

0
k2
n(x, y)ϕ(y)dy = O(1)

∫ ε
0
y−1/2|ϕ(y)|dy. Hence

lim
n→∞

1√
n

∫ x−ε

0

ϕ(y)k2(x, y)dy = 0.

For x+ ε ≤ y, we apply (B.36) and (B.37), to obtain

e−x/2e−y/2
L

(−1)
n+1 (x)Ln+1(y)

x− y
= y−1O(n−7/12)y1/4O(n−1/12) = O(n−2/3)

and

e−x/2e−y/2
L

(−1)
n+1 (x)Ln+1(y)

x− y
= y−1O(n−7/12)y−1/4O(n−1/12) = O(n−2/3).

Hence

lim
n→∞

1√
n

∫ ∞
x+ε

k2
n(x, y)ϕ(y)dy = 0

which completes the proof.

B.5 Hermite series

A function Hk(x) satisfying Rodrigues’ formula

e−x
2
Hk(x) = (−1)k

dk

dxk
e−x

2
,

n = 0, 1, . . ., is the kth Hermite polynomial, see Szegö [400, Chap. V], or Sansone [376, Chap. IV]. Notice,
however, that definitions in these references differ by the factor (−1)n. One can easily calculate

H0(x) = 1,
H1(x) = 2x,

H2(x) = 4x2 − 2,

H3(x) = 8x3 − 12x

H4(x) = 16x4 − 48x2 + 12,

H5(x) = 32x5 − 160x3 + 120x,

and so on. Functions
hk(x) =

1√
2kk!
√
π
Hk(x)e−x

2/2,

k = 0, 1, 2, . . ., constitute a Hermite system which is complete and orthonormal on the entire real line R. For
Hermite functions the following inequalities hold, see Szegö [400, Theorem 8.91.3],

max
−∞<x<∞

|hk(x)| ≤ c

(k + 1)1/12
, (B.39)

max
−a≤x≤a

|hk(x)| ≤ d(a)
(k + 1)1/4

, (B.40)
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for any a ≥ 0. Moreover,
H ′k(x) = 2kHk−1(x), (B.41)

see Szegö [400, (5.5.10)], which leads to

h′k(x) =

√
k

2
hk−1(x)−

√
k + 1

2
hk+1(x).

Thus
max

−∞<x<∞
|h′k(x)| = O(k5/12) (B.42)

and
max
−a≤x≤a

|h′k(x)| = O(k1/4) (B.43)

for any a ≥ 0.
According to the Christoffel-Darboux formula,

n∑
k=0

1
2kk!

Hk(x)Hk(y) =
Hn+1(x)Hn(y)−Hn(x)Hn+1(y)

2n+1n!(y − x)

which is equivalent to

kn(x, y) =

√
n+ 1

2
hn+1(x)hn(y)− hn(x)hn+1(y)

y − x
, (B.44)

where

kn(x, y) =
n∑
k=0

hk(x)hk(y)

is the kernel of the Hermite system.
Let

Sn(x) =
n∑
k=0

akhk(x)

where

ak =
∫ ∞
−∞

ϕ(x)hk(x)dx

The next result is due to Uspensky [406], see also see Szegö [400, Theorem 9.1.6] or Sansone [376, Chap. IV,
Section 10]. In the next theorem

Sn(x) =
1
π

∫ x+δ

x−δ
ϕ(y)DN (x− y)dy

where N = 2
√
n− 1/2, and where D is as in (B.8). Clearly

Sn(x) =
1
π

∫ x+δ

x−δ
ϕ(y)DN (x− y)dy

is the Nth partial sum of the trigonometric expansion of ϕ(y) in the trigonometric series in the interval
(x− δ, x+ δ) for any δ > 0. Relations between asymptotic properties of Sn(x) and Sn(x) are established in
Lemma B.2.

Theorem B.10 (equiconvergence) Let
∫∞
−∞ |ϕ(x)|e−x2/2dx <∞. Then, at every x ∈ (−∞,∞),

lim
n→∞

(σn(x)−Sn(x)) = 0.

Application of Lemma B.2 yields
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Theorem B.11 (equiconvergence) Let
∫∞
−∞ |ϕ(x)|e−x2/2dx <∞. Then, at every x ∈ (−∞,∞),

lim
n→∞

(σn(x)− Sn(x)) = 0.

Thus at any point the Hermite expansion of ϕ(•) behaves like the Fourier expansion of ϕ(•) in an
arbitrarily small neighborhood of the point.

Recalling Theorem B.1, we obtain the next two theorem.

Theorem B.12 Let
∫∞
−∞ |ϕ(x)|e−x2/2dx <∞. At every point x ∈ R where ϕ(•) is differentiable,

lim
n→∞

σn(x) = ϕ(x). (B.45)

Theorem B.13 Let
∫∞
−∞ |ϕ(x)|e−x2/2dx <∞. At every point x where ϕ(•) satisfies a Lipschitz condition,

(B.45) holds.

Revoking Theorem B.2, we get

Theorem B.14 If
∫∞
−∞ |ϕ(x)|e−x2/2dx <∞, then (B.45) holds for almost every x ∈ R.

To evaluate the expansion coefficients for smooth functions, we use (B.41) and obtain∫ ∞
−∞

ϕ(x)Hk(x)e−x
2/2dx =

1
2(k + 1)

∫ ∞
−∞

ϕ(x)e−x
2/2H ′k+1(x)dx.

Assuming that lim|x|→∞ ϕ(x)e−x
2/2Hk+1(x) = 0 and integrating by parts, we find that the quantity is equal

to

1
2(k + 1)

∫ ∞
−∞

(
ϕ(x)e−x

2/2
)′
Hk+1(x)dx

= − 1
2(k + 1)

∫ ∞
−∞

(ϕ′(x)− xϕ(x))e−x
2/2Hk+1(x)dx

Thus
ak = − 1√

2(k + 1)
b1,k+1,

where b1,k = −
∫∞
−∞[(D − x)ϕ(x)]hk(x)dx with D standing for d/dx.

In general, if, for m = 0, 1, . . . , q − 1, lim|x|→∞ ϕ(m)(x)e−x
2/2+δ = 0 with some δ > 0,

ak = (−1)q
1

2q/2
√

(k + 1)(k + 2)(k + q)
bq,k+q = O

(
1
kq/2

)
bq,k+q,

where bq,k =
∫∞
−∞[(D − x)q ϕ(x)]hk(x)dx. If, moreover,∫ ∞

−∞
[(D − x)q ϕ(x)]2dx <∞

we have
∑∞
k=0 b

2
q,k <∞ and consequently we obtain

∞∑
k=n+1

a2
k =

∞∑
k=n+1

O(k−q)b2q,k+q = O(1)
1
nq

∞∑
k=n+1

b2q,k+q.

Thus ∫ ∞
−∞

(σn(x)− ϕ(x))2dx = O(n−q).



276 APPENDIX B. ORTHOGONAL FUNCTIONS

Moreover,
∞∑

k=n+1

|akhk(x)| =
∞∑

k=n+1

O

(
1

kq/2+1/4

)
|bq,k+q|.

Since the sum is bounded by

O(1)

( ∞∑
k=n+1

1
kq+1/2

)1/2( ∞∑
k=n+1

b2q,k+q

)1/2

= O(1)

( ∞∑
k=n+1

1
kq+1/2

)1/2

,

at every x where (B.45) holds, we get

|σn(x)− ϕ(x)| = O(n−q/2+1/4). (B.46)

Lemma B.5 Let
∫∞
−∞ |ϕ(x)|dx <∞. Then

lim
n→∞

1√
n

∫ ∞
−∞

k2
n(x, y)ϕ(y)dy =

√
2
π
ϕ(x)

at every continuity point x of ϕ(•) and at almost every x ∈ (−∞,∞).

Proof. The considerations hold for every continuity point x of ϕ(•) and for almost every point x. For any
fixed x and any ε > 0, in the interval x− ε ≤ y ≤ x+ ε

kn(x, y) = DN−1/2(y − x) +
1
N
O(1)

with 2N =
√

2n+ 3 +
√

2n+ 1, where DN (x) is as in (B.8), see Sansone [376, Chap. IV, Section 10].
Consequently,

k2
n(x, y) =

N

π
F2N (y − x) +

1
N
O(1)DN−1/2(y − x) +

1
N2

O(1),

see (B.7). Thus recalling Remark B.2 and noticing that N/n1/2 →
√

2 as n→∞, we get

lim
n→∞

1√
n

N

π

∫
|x−y|≤ε

F2N (y − x)ϕ(y)dy =
√

2
π
ϕ(x).

Applying (B.15) we come to the conclusion that

lim
n→∞

1√
n

∫
|x−y|≤ε

k2
n(x, y)ϕ(y)dy =

√
2
π
ϕ(x).

Moreover, by (B.39) and (B.40),

max
|x−y|>ε

|kn(x, y)| ≤ 1
ε
√

2
(n+ 1)1/2 max

|x−y|>ε
|hn+1(y)hn(x)− hn(y)hn+1(x)|

≤ 1
ε
√

2
(n+ 1)1/2 2d(x)c

(n+ 1)1/4+1/12
=

1
ε
O(n1/6)

which yields

lim
n→∞

1√
n

∫
|x−y|>ε

k2
n(x, y)ϕ(y)dy = 0

and completes the proof.
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B.6 Wavelets

In this section we discuss orthogonal wavelets. From a certain viewpoint there is some basic difference
between wavelets and orthogonal Fourier, Legendre, Laguerre and Hermite orthogonal polynomials. All
polynomial expansions behaves very similarly. Convergence of Legendre, Laguerre and Hermite expansions
to expanded functions at a point is strictly related to those of the Fourier one in a neighborhood of the point,
see equiconvergence Theorems B.4, B.6, and B.11. This is not the case with wavelets.

In our considerations we deal with Haar wavelets. Let φ(x) = I[0,1)(x), where I is the indicator function,
i.e., where

IA(x) =
{

1, for x ∈ A,
0, otherwise.

For a fixed m being a nonnegative integer and n = 0, 1, . . . , 2m−1, we define

φmn(x) = 2m/2φ (2mx− n) .

Clearly
φmn(x) = IAmn(x),

where

Amn =
[
n

2m
,
n+ 1
2m

)
The set Amn is the support of φmn(•). For n 6= k, Amn ∩ Amk = ∅, which means that φmn(•) and φmk(•)
do not overlap. Thus, for n 6= k, ∫ 1

0

φmn(x)φmk(x) = 0.

Hence functions φmn(•) and φmk(•) are, for n 6= k, orthogonal. Since ∪2m−1
n=0 Amn = [0, 1), then

∑2m−1
n=0 φmn(x) =

φ(x) = I[0,1)(x). Observe that, for each m, we have 2m functions

φm0, φm1, . . . , φm,2m−1.

The number of functions increases with m as shown below:

φ00,
φ10, φ11,
φ20, φ21, φ22 φ23,
φ30, φ31, φ32, φ33, φ34, φ35, φ36, φ37,
...

...
...

...
...

...
...

...
φm0, φm1, φm2, φm3, φm4, φm5, φm6, φm7, · · · φm,2m−1.

Since support of φmn(•), i.e., Amn has the length 1/2m, we have∫ 1

−1

φ2
mn(x)dx =

1
2m

.

Therefore the system
ϕm0, ϕm1, . . . , ϕm,2m−1

with ϕmn(x) = 2m/2φmn(x) is orthonormal.
For obvious reasons

σm(x) =
2m−1∑
n=0

cmnϕmn(x)

with

cmn =
∫ 1

0

ϕ(x)ϕmn(x)dx
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is the mth partial expansion of ϕ(•) into the wavelet series. Clearly

σm(x) = 2m
2m−1∑
n=0

amnφmn(x)

with

amn =
∫ 1

0

ϕ(x)φmn(x)dx.

Theorem B.15 If
∫ 1

0
|ϕ(x)|dx <∞, then

σm(x)→ f(x) as m→∞

at every point x ∈ (0, 1) where ϕ(•) is continuous.

Proof. Fix x ∈ (0, 1) and assume that ϕ(•) is continuous at the point. The points belongs to exactly one
of the intervals Amn, n = 0, 1, . . . , 2m − 1. Denoting the interval by Amnx we can write

σm(x) = 2mamnx =
1

2−m

∫
Amnx

ϕ(y)dy.

Since the length of Anmx is 2−m, by the mean-value theorem,

σm(x)→ ϕ(x) as m→∞

which completes the proof.
If, ϕ(•) satisfies the Lipschitz condition, i.e., if

|ϕ(x)− ϕ(y)| ≤ c|x− y|

for all x, y ∈ [0, 1], then

|σm(x)− ϕ(x)| ≤ 1
2−m

∫
Amnx

|ϕ(y)− ϕ(x)|dy ≤ c

2−m

∫
Amnx

|x− y|dy ≤ c

2m
.

Hence

|σm(x)− ϕ(x)| = O

(
1

2m

)
as m→∞. (B.47)

Let

km(x, y) =
2m−1∑
n=0

ϕn(x)ϕn(y) = 2m
2m−1∑
n=0

φn(x)φn(y)

denote the wavelet kernel function.

Lemma B.6 If
∫ 1

0
|ϕ(x)|dx <∞, then

lim
m→∞

1
2m

∫ 1

0

k2
m(x, y)ϕ(y)dy = ϕ(x)

at every point x ∈ (0, 1) where ϕ(•) is continuous.

Proof. Fix x ∈ (0, 1). Bearing in mind that φmn(x) = IAmn(x) we can write

km(x, y) = 2m
2m−1∑
n=0

φn(x)φn(y) = 2m
2m−1∑
n=0

IAmn(x)IAmn(y).
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Since x belongs to exactly one of the intervals Amn, n = 0, 1, . . . , 2m − 1, denoting the interval by Amnx we
find the kernel equal to 2mIAmnx (y). Thus

1
2m

∫ 1

0

k2
m(x, y)ϕ(y)dy = 2m

∫ 1

0

IAmnx (y)ϕ(y)dy = 2m
∫
Amnx

ϕ(y)dy

which converges to ϕ(x) as m → ∞ at every continuity point of ϕ(•), see the proof of Theorem B.15. The
proof is completed.

For other wavelets we refer the reader to Daubechies [69], Chui [59], Walter [424], Ogden [317] or Mallat
[296].
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Appendix C

Probability and statistics

C.1 White noise

C.1.1 Discrete time

Lemma C.1 If {Un} is a stationary white random process, then, for any functions f(•), g(•), ϕ(•), and
ψ(•),

cov [f(Uq)ϕ(Ui), g(Ur)ψ(Uj)]

=



cov [f(U)ϕ(U), g(U)ψ(U)] , for q = i = r = j,
Eϕ(U) cov [f(U), g(U)ψ(U)] , for q = r = j, q 6= i,
Eψ(U) cov [f(U)ϕ(U), g(U))] , for q = i = r, q 6= j,
Eg(U) cov [f(U)ϕ(U), ψ(U)] , for q = i = j, q 6= r,
Ef(U) cov [ϕ(U), g(U)ψ(U)] , for i = r = j, q 6= i,
E {f(U)g(U)}E {ϕ(U)ψ(U)}
−Ef(U)Eg(U)Eϕ(U)Eψ(U), forq = r, i = j, q 6= i,
E {f(U)ψ(U)}E {ϕ(U)g(U)}
−Ef(U)Eg(U)Eϕ(U)Eψ(U), for q = j, i = r, q 6= i,
0, otherwise.

Proof. The proof is straightforward.
The next lemma is a simple consequence of the above result.

Lemma C.2 Let {Un} be a stationary white random process such that Em(U) = 0. For any functions ϕ(•),
and ψ(•),

cov [m(Uq)ϕ(Ui),m(Ur)ψ(Uj)]

=



cov [m(U)ϕ(U),m(U)ψ(U)] , for q = i = r = j,
Eϕ(U)E

{
m2(U)ψ(U)

}
, for q = r = j, q 6= i,

Eψ(U)E
{
m2(U)ϕ(U)

}
, for q = i = r, q 6= j,

var [m(U)]E {ϕ(U)ψ(U)} , for q = r, i = j, q 6= i,
E {m(U)ψ(U)}E {m(U)ϕ(U)} , for q = j, i = r, q 6= i,
0, otherwise.

Owing to the lemma, we can verify the following.

Lemma C.3 Let {Un} be a stationary white random process such that EU = 0 and Em(U) = 0. Then

cov [m(Uq)Ui,m(Ur)Uj ] =


var [Um(U)] , for q = i = r = j,
σ2
U var [m(U)] , for q = r, i = j, q 6= i,
E2 {Um(U)} , for q = j, i = r, q 6= i,
0, otherwise.

281
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C.1.2 Continuous time

Lemma C.4 If {U(t)} is a stationary white random process, then, for any functions f(•), g(•), ϕ(•), and
ψ(•),

cov [f(U(t))ϕ(U(ξ)), g(U(τ))ψ(U(η))]
= δ(t− ξ)δ(ξ − τ)δ(τ − η) cov [f(U)ϕ(U), g(U)ψ(U)]
+ δ(t− τ)δ(τ − η)Eϕ(U) cov [f(U), g(U)ψ(U)]
+ δ(t− ξ)δ(ξ − τ)Eψ(U) cov [f(U)ϕ(U), g(U))]
+ δ(t− ξ)δ(ξ − η)Eg(U) cov [f(U)ϕ(U), ψ(U)]
+ δ(ξ − τ)δ(τ − η)Ef(U) cov [ϕ(U), g(U)ψ(U)]
+ δ(t− τ)δ(ξ − η) [E {f(U)g(U)}E {ϕ(U)ψ(U)}
− Ef(U)Eg(U)Eϕ(U)Eψ(U)]
+ δ(t− η)δ(ξ − τ) [E {f(U)ψ(U)}E {ϕ(U)g(U)}
− Ef(U)Eg(U)Eϕ(U)Eψ(U)] .

Lemma C.5 Let {U(t)} be a stationary white random process such that Em(U) = 0. For any functions
ϕ(•), and ψ(•),

cov [m(U(t))ϕ(U(ξ)),m(U(τ))ψ(U(η))]
= δ(t− ξ)δ(ξ − τ)δ(τ − η) cov [m(U)ϕ(U),m(U)ψ(U)]

+ δ(t− τ)δ(τ − η)Eϕ(U)E
{
m2(U)ψ(U)

}
+ δ(t− ξ)δ(ξ − τ)Eψ(U)E

{
m2(U)ϕ(U)

}
+ δ(t− τ)δ(ξ − η) var [m(U)]E {ϕ(U)ψ(U)}
+ δ(t− η)δ(ξ − τ)E {m(U)ψ(U)}E {ϕ(U)m(U)} .

Lemma C.6 Let {U(t)} be a stationary white random process such that Em(U) = 0. Then

cov [m(U(t))U(ξ),m(U(τ))U(η)]
= δ(t− ξ)δ(ξ − τ)δ(τ − η) var [Um(U)]

+ δ(t− τ)δ(ξ − η)σ2
U var [m(U)]

+ δ(t− η)δ(ξ − τ)E2 {Um(U)} .

C.2 Convergence of random variables

Definition C.1 A sequence {Xn} of random variables is said to converge to zero in probability if

lim
n→∞

P {|Xn| > ε} = 0,

for every ε > 0.

We write
Xn = O(αn) in probability as n→∞

and say that Xn converges to zero in probability as fast as O(an) if

λn
1
αn
|Xn| → 0 in probability as n→∞

for every number sequence λn converging to zero.
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Lemma C.7 If E(Xn − a)2 = O(αn), then, for any ε > 0,

P {|Xn − a| > ε} = O(αn) as n→∞

and
|Xn − a| = O(

√
αn) in probability as n→∞.

Proof. Fix ε > 0. Since EXn → a as n→∞, |EXn − a| < ε/2 for n large enough. Thus

P{|Xn − a| > ε} ≤ P{|Xn − EXn|+ |EXn − a| > ε}
≤ P{|Xn − EXn| > ε/2}

which, by Chebyshev’s inequality, is not greater than

4 var[Xn]
ε2

≤ 4
ε2
E(Xn − a)2 = O(αn).

For the same reasons, for n large enough,

P

{
λn√
αn
|Xn − a| > ε

}
= P

{
|Xn − a| > ε

√
αn
λn

}
≤ 4
ε2

λ2
n

αn
E(Xn − a)2

= λ2
nO(1)

which converges to zero as n→∞.
We shall now examine a quotient Yn/Xn of random variables. The next lemma, in part, can be found in

Greblicki and Krzyżak [167] or Greblicki and Pawlak [179].

Lemma C.8 If, for any ε > 0,
P {|Yn − a| > ε} = O(αn),

P {|Xn − b| > ε} = O(βn)

with b 6= 0, then

P

{∣∣∣∣ YnXn
− a

b

∣∣∣∣ > ε
∣∣∣a
b

∣∣∣} = O(γn)

and ∣∣∣∣ YnXn
− a

b

∣∣∣∣ = O(
√
γn) in probability as n→∞,

where γn = max(αn, βn).

Proof. Fix ε > 0. For simplicity, let a ≥ 0 and b > 0. We begin with the following inequality:∣∣∣∣ YnXn
− a

b

∣∣∣∣ ≤ ∣∣∣∣ YnXn

∣∣∣∣ ∣∣∣∣Xn − b
b

∣∣∣∣+
∣∣∣∣Yn − ab

∣∣∣∣ . (C.1)

Hence
|Yn − a| ≤

ε

2 + ε
a

and
|Xn − b| ≤

ε

2 + ε
b

imply ∣∣∣∣ YnXn
− a

b

∣∣∣∣ ≤ εab .
Thus

P

{∣∣∣∣ YnXn
− a

b

∣∣∣∣ > ε
a

b

}
≤ P

{
|Yn − a| >

ε

2 + ε
a

}
+ P

{
|Xn − b| >

ε

2 + ε
b

}
.

Applying Lemma C.7 we complete the proof.
Combining Lemmas C.7 and C.8, we get
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Lemma C.9 If E(Yn − a)2 = O(αn), and E(Xn − b)2 = O(βn) with b 6= 0, then

P

{∣∣∣∣ YnXn
− a

b

∣∣∣∣ > ε
∣∣∣a
b

∣∣∣} = O(γn)

and ∣∣∣∣ YnXn
− a

b

∣∣∣∣ = O(
√
γn) in probability as n→∞

with γn = max(αn, βn).

From (C.1) it follows that(
Yn
Xn
− a

b

)2

≤ 2
(
Yn
Xn

)2 1
b2

(Xn − b)2 + 2
1
b2

(Yn − b)2.

Thus if |Yn/Xn| ≤ c,

E

(
Yn
Xn
− a

b

)2

≤ 2
1
b2
E(Yn − b)2 + 2c2

1
b2
E (Xn − b)2

, (C.2)

which leads to the following lemma.

Lemma C.10 If E(Yn − a)2 = O(αn), E(Xn − b)2 = O(βn) with b 6= 0, and∣∣∣∣ YnXn

∣∣∣∣ ≤ c
for some c, then

E

(
Yn
Xn
− a

b

)2

= O(γn),

with γn = max(αn, βn).

In this book we have encountered the problem of dealing with an estimate m̂ being of the ratio form, i.e.,
m̂ = ĝ

f̂
. For such estimates we can show that m̂ tends (in probability) to a limit value m. This is done by

proving that ĝ and f̂ converge to g and f , respectively, such that m = g
f . In order to evaluate the variance

and bias of m̂ we have often used the following decomposition

m̂ = m+
ĝ −mf̂

f
+

(m̂−m)(f − f̂)
f

.

Since the second term is the product of two tending to zero expressions, the leading terms in the asymptotic
variance and bias of m̂ are controlled by the first expression in the above decomposition, i.e., we can write

var{m̂} ≈ var{ ĝ −mf̂
f

}

and

E{m̂} ≈ m+ E{ ĝ −mf̂
f

}.

If one wishes to find the the higher order contributions to the variance and bias of m̂ = ĝ

f̂
it may apply the

following identity [323]:
1
u

=
p∑
i=0

(−1)i
(u− u0)i

ui+1
0

+ (−1)p+1 (u− u0)p+1

uup+1
0

,

for p ≥ and any u0 6= 0. A simple consequence of this identity is the following useful inequality

var{Y
X
} ≤ var{Y }

E2(X)
,

for any random variables X and Y such that the ratio is well defined.



C.3. STOCHASTIC APPROXIMATION 285

C.3 Stochastic approximation

Let Y (ξ) be a random variable whose distribution depends on a nonrandom parameter ξ. To find ξ∗ which
solves a regression equation

EY (ξ) = a

with given a, Robbins and Monro [355] have proposed the following stochastic approximation procedure:

ξn = ξn−1 − γn(Y (ξn−1)− a)

for some ξ0, where {γn} is a number sequence and γn is called gain. Denoting Y (ξ) = m(ξ) + Z(ξ) with
Z(ξ) = Y (ξ) − EY (ξ) having zero mean and interpreted as disturbance, we can say that the equation
m(ξ) = a is solved with a procedure

ξn = ξn−1 − γn[m(ξn−1) + Z(ξn−1)− a]

in which observations of the regression m(•) are corrupted by Z.
In particular, to find EY one can apply the procedure

ξn = ξn−1 − γn(ξn−1 − Yn). (C.3)

For γn = n−1, ξn = n−1
∑n
i=1 Yi is just the mean of observations.

In turn, to estimate EY/EX the following modified procedure can be employed:

ξn = ξn−1 − γn(Xnξn−1 − Yn). (C.4)

One can expect that ξn converges to ξ for which E{Xnξ − Yn} = 0. The ξ solving the equation is cer-
tainly equal to EY/EX. Observe that the procedure finds a quotient but performs operations of adding,
subtracting, and multiplying only, but not dividing.

Rewriting (C.4) as

ξn = ξn−1 − γnXn

(
ξn−1 −

Yn
Xn

)
we can say that, whereas the gain is deterministic in (C.3), in (C.4) is random.

C.4 Order statistics

In the process of ordering random variables

X1, X2, . . . , Xn

are arranged in increasing order to yield a new sequence

X(1), X(2), . . . , X(n)

where X(1) ≤ X(2) ≤ · · · ≤ X(n). These new random variables are called order statistics, X(i) is called the
ith order statistics. The intervals

(−∞, X(1)), (X(1), X(2)), . . . , (X(n),∞)

are called sample blocks, whereas the length X(I+1) −X(i) is named spacing. Numbers

F (X(1)), F (X(2))− F (X(1)), . . . , F (X(n−1))− F (X(n−2)), F (X(n)),

where F is the distribution function of Xi’s, are called coverages.
In this section X1, X2, . . . , Xn are independent random variables distributed uniformly over the interval

(0, 1). In such a case P{X(i−1) = X(i)} = 0 and X(1) < X(2) < · · · < X(n) almost surely. We give some facts
concerning distributions and moments of X(i)’s and spacings (X(i+1) −X(i))’s.

The theory of order statistics can be found in Arnold, Balakrishnan and Nagaraya [10], Balakrishnan
and Cohen [15], David [70] or Wilks [439]. An analysis of spacings is in Darling [68] or Pyke [342].
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C.4.1 Distributions and moments

Denoting by Fi(x) the distribution function of X(i), for x ∈ [0, 1], we get

Fi(x) = P{X(i) < x}
= P{at least i of X1, X2, . . . , Xn are in the interval (0, x)}

=
n∑
j=i

P{exactly j of X1, X2, . . . , Xn are in the interval (0, x)}

=
n∑
j=i

(
n

j

)
xj(1− x)n−j

=
∫ x

0

n!

(i− 1)!(n− i)!
ti−1(1− t)n−idt.

Hence denoting the density of X(i) as fi(x) we can write

fi(x) =
n!

(i− 1)!(n− i)!
xi−1(1− x)n−i

for x ∈ [0, 1]. After some calculations we can obtain

EXm
(i) =

n!
(n+m)!

(i+m− 1)!
(i− 1)!

and, a fortiori,

EX(i) =
i

n+ 1
,

EX2
(i) =

i(i+ 1)
(n+ 1)(n+ 2)

,

and
var[X(i)] = i

n+ 1− i
(n+ 2) (n+ 1)2 .

Denoting by Fij(x, y) the joint distribution of (X(i), X(j)), with i < j, we obtain, for x ≥ y,

Fij(x, y) = Fj(x)

and, for x < y,

Fij(x, y) = P
{
X(i) ≤ x,X(j) ≤ y

}
= P {at least i of X1, . . . , Xn are in [0, x]
and at least j of X1, . . . , Xn are in [0, y]}

=
n∑
p=j

p∑
q=i

P {exactly i of X1, . . . , Xn are in [0, x]

and exactly j of X1, . . . , Xn are in [0, y]}

=
n∑
p=j

p∑
q=i

n!

q!(p− q)!(n− p)!
x(y − x)p−q(1− y)n−p

which, for 0 ≤ x < y ≤ 1, is equal to∫ x

0

∫ y

t

n!
(i− 1)!(j − i− 1)!(n− j)!

ti−1(τ − t)j−i−1(1− τ)dτdt.
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Hence, the density denoted as fij(x, y) has the following form:

fij(x, y) =
n!

(i− 1)!(j − i− 1)!(n− j)!
xi−1(y − x)j−i−1(1− y)n−j .

After rather arduous calculations we obtain

E
{
Xp

(i)X
q
(j)

}
=

n!
(n+ p+ q)!

(i+ p− 1)!
(i− 1)!

(j + p+ q − 1)!
(j + q − 1)!

for i < j. Hence, in particular,

E
{
X(i)X(j)

}
=

i(j + 1)
(n+ 1)(n+ 2)

, for i < j

and
cov

[
X(i), X(j)

]
= i

n+ 1− j
(n+ 2) (n+ 1)2 , for i < j.

C.4.2 Spacings

Uniform spacings

Setting X(0) = 0 and X(n+1) = 1, we define n+ 1 intervals (X(i−1), X(i)) called sample blocks. Their lengths
di = X(i)−X(i−1) are called spacings. Certainly d1 + d2 + · · ·+ dn+1 = 1. We can say that the interval [0, 1]
is split into n+ 1 subintervals of random length.

It is obvious that the distribution function of di is independent of i and that the distribution of (di, dj)
with i 6= j is the same as of (d1, d2). In general, the uniform spacings are interchangeable random variables.
Therefore denoting by Fd(x) the distribution function of di we find, for 0 ≤ x ≤ 1,

Fd(x) = P{di < x} = P{d1 < x} = P{X(1) < x}
= P{at least one of X1, X2, . . . , Xn is in the interval (0, x)}
= 1− P{all X1, X2, . . . , Xn are outside the interval (0, x)}
= 1− Pn{X1 is outside the interval (1− x, 1)}
= 1− (1− x)n.

Thus

Fd(x) =
{

1− (1− x)n−1, for 0 ≤ x ≤ 1
0, otherwise

and

fd(x) =
{
n (1− x)n−1

, for 0 ≤ x ≤ 1
0, otherwise,

where fd(x) is the density of di. Therefore the random variable di has a beta distribution Be(1, n).
Observe that if X1, . . . , Xn−1 are distributed uniformly over the interval (0, 1 − y), the distribution

function of di is

1−
(

1− x

1− y

)n−1

= 1− (1− x− y)n−1

(1− y)n−1

for x ∈ (0, 1− y), and the density equals
n− 1

(1− y)n−1
(1− x− y)n−2, for 0 ≤ x ≤ 1− y

0, otherwise.

From this and the fact that the conditional density of di conditioned on dj = y is the same as that of spacings
from n−1 random variables distributed uniformly on (0, 1−y), it follows that the conditional density equals

fdi|dj (x|y) =


n− 1

(1− y)n−1
(1− x− y)n−2, for 0 ≤ x ≤ 1− y

0, otherwise.
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Thus denoting the joint density of (di, dj) by fdidj (x, y) we write

fdidj (x, y) =
{
n(n− 1)(1− x− y)n−2, for 0 ≤ x, 0 ≤ y, 0 ≤ x+ y ≤ 1
0, otherwise.

It is not difficult to compute

Edpi =
p!

(n+ 1) · · · (n+ p)

and, a fortiori,

Edi =
1

n+ 1
,

Ed2
i =

2
(n+ 1)(n+ 2)

,

and
Ed3

i =
6

(n+ 1)(n+ 2)(n+ 3)
.

Moreover, for i 6= j,

E{didj} =
1

(n+ 1) (n+ 2)
.

Clearly

E
{

(X(i) −X(i−1))|X(i)

}
= E

{
di|X(i)

}
=

1
i
X(i)

and
E
{

(X(i) −X(i−1))2|X(i)

}
= E

{
d2
i |X(i)

}
=

2
i(i+ 1)

X2
(i) (C.5)

Denote by
Mn = max

1≤i≤n+1
(X(i) −X(i−1)) = max

1≤i≤n+1
di

the longest of the subintervals the interval (0, 1) is split in. In probability and almost sure convergence of
Mn to zero has been shown by Darling [68] and Slud [390], respectively.

Lemma C.11 For uniform spacings,

lim
n→∞

n

log n
Mn = 1 almost surely,

and, a fortiori,
lim
n→∞

Mn = 0 almost surely.

Proof. The lemma follows immediately from Slud [390] who showed that nMn− log n = O(log log n) almost
surely.

General spacings

In this subsection X1, X2, . . . , Xn are independent random variables with a distribution function F (x) and
a probability density f(x).

Since F (x) is monotonic, F (X(1)) ≤ F (X(2)) ≤ · · · ≤ F (X(n)). Moreover, since f(x) exists, ties, i.e.,
events that X(i−1) = X(i) have zero probability. Hence F (X(1)) < F (X(2)) < · · · < F (X(n)). Denoting
X(0) = −∞ and X(n+1) = +∞, we can say that the real line is split into intervals (X(i) −X(i−1)) while the
interval [0, 1] into corresponding subintervals (F (X(i))− F (X(i−1))).

Let bi = F (X(i))− F (X(i−1)) be the length of the subinterval. Since F (X) is distributed uniformly over
the interval (0, 1), bi’s are just uniform spacings, i.e., are distributed like di’s in the previous section. Thus,
for any density f(x),

bi =
∫ X(i)

X(i−1)

f(x)dx
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has a beta distribution Be(1, n). Hence

Ebpi =
m!

(n+ 1) · · · (n+ p)

and, a fortiori,

Ebi =
1

n+ 1
,

Eb2i =
2

(n+ 1)(n+ 2)
.

Eb3i =
6

(n+ 1)(n+ 2)(n+ 3)
.

Moreover, for i 6= j,

E{bibj} =
1

(n+ 1) (n+ 2)
.

C.4.3 Integration and random spacings

Let ϕ(x) be a Riemann integrable function over the interval [0, 1], let 0 < x1 < x2 < · · · < xn and let, in
addition, x0 = 0, xn+1 = 1. It is very well known that if max1≤i≤n+1(xi+1 − xi)→ 0 as n→∞,

lim
n→∞

n∑
i=0

(xi+1 − xi)ϕ(xi) =
∫ 1

0

ϕ(x)dx.

Therefore, for a uniform order statistics X(1), X(2), . . . , X(n), defining Sn =
∑n
i=0(X(i+1)−X(i))ϕ(X(i)) and

applying Lemma C.11, we obtain

lim
n→∞

Sn =
∫ 1

0

ϕ(x)dx almost surely.
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[64] M. G. Collomb, Quelques proprietés de la méthode du noyau pour l’estimation non paramétrique de
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[67] S. Csörgö and J. Mielniczuk, Density estimation in the simple proportional hazards model, Statistics
and Probability Letters, 6:419–426, 1988.

[68] D. A. Darling, On a class of problems related to the random division of an interval, Annals of Mathe-
matical Statistics, 24:239–253, 1953.

[69] I. Daubechies, Ten Lectures on Wavelets, Philadelphia: SIAM, 1992.

[70] H. A. David, Order Statistics, New York: Wiley, 1981.

[71] H. I. Davies, Strong consistency of a sequential estimator of a probability density function, Bulletin of
Mathematical Statistics, 16:49–54, 1973.

[72] H. I. Davies and E. J. Wegman, Sequential nonparametric density estimation, IEEE Transactions on
Information Theory, IT-21:619–628, 1975.

[73] P. J. Davis, Interpolation and Approximation, New York: Blaisdell Publishing Company, 1963.

[74] P. Deheuvels, Sur une famille d’estimateurs de la densité d’une variable al eatoire, Comptes Rendus de
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[199] W. Greblicki and P. Śliwiński, Orthogonal series algorithms to identify Hammerstein systems, in Pro-
ceedings of the Seventh International Symposium on Methods and Models in Automation and Robotics,
pages 1009–1014, Miedzyzdroje, Poland, August 2001.

[200] W. Greblicki, A. Stanisz, K. Czechowicz, J. Mielcarek, and J. P. a, Struktura oprogramowania systemu
sterowania produkcja szlamu w cementowni, Podstawy Sterowania, 3(3):199–208, 1973.

[201] D. H. Greene and D. E. Knuth, Mathematics for the Analysis of Algorithms, Boston: Birkhuser, third
edition, 1990.

[202] L. Györfi, Recent results on nonparametric regression estimate and multiple classification, Problems
of Control and Information Theory, 10:43–52, 1977.
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[259] A. Krzyżak, Identification of discrete Hammerstein systems by the Fourier series regression estimate,
Internationa Journal of Systems Science, 20:1729–1744, 1989.
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[262] A. Krzyżak, On nonparametric estimation of nonlinear dynamic systems by the Fourier series estimate,
Signal Processing, 52:299–321, 1996.
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[265] A. Krzyżak and M. A. Partyka, On identification of block orientated systems by non-parametric tech-
niques, International Journal of Systems Science, 24(6):1049–1066, 1993.
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[391] T. Söderström and P. Stoica, System Identification, New York: Prentice Hall, 1989.

[392] D. F. Specht, Series estimation of a probability density function, Technometrics, 13:409–424, 1971.

[393] C. Spiegelman and J. Sacks, Consistent window estimation in nonparametric regression, Annals of
Statistics, 8:240–246, 1980.

[394] W. J. Staszewski, Identification of non-linear systems using multi-scale ridges and skeletons of the
wavelet transform, Journal of Sound and Vibration, 214:639–658, 1998.

[395] C. J. Stone, Consistent nonparametric regression, Annals of Statistics, 47:595–645, 1977.

[396] C. J. Stone, Optimal rates of convergence for nonparametric estimators, Annals of Statistics, 8:1348–
1360, 1980.

[397] C. J. Stone, Optimal global rates of convergence for nonparametric regression, Annals of Statistics,
10:1040–1053, 1982.

[398] A. Sugiyama, Y. Joncour, and A. Hirano, A stereo echo canceler with correct echo-path identification
based on input-sliding techniques, IEEE Trans. on Signal Processing, 49:2577–2587, Nov 2001.

[399] N. Sureshbabu and J. A. Farrel, Wavelet-based system identification for non-linear control, IEEE
Trans. on Automatic Control, 44:412–417, 1999.
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