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Preface

The development of pattern recognition methods on the basis of so-called Markov
models is tightly coupled to the technological progress in the field of automatic
speech recognition. Today, however, Markov chain and hidden Markov models are
also applied in many other fields where the task is the modeling and analysis of
chronologically organized data, for example genetic sequences or handwritten texts.
Nevertheless, in monographs, Markov models are almost exclusively treated in the
context of automatic speech recognition and not as a general, widely applicable tool
of statistical pattern recognition.

In contrast, this book puts the formalism of Markov chain and hidden Markov
models at the center of its considerations. With the example of the three main appli-
cation areas of this technology — namely automatic speech recognition, handwriting
recognition, and the analysis of genetic sequences — this book demonstrates which
adjustments to the respective application area are necessary and how these are real-
ized in current pattern recognition systems. Besides the treatment of the theoretical
foundations of the modeling, this book puts special emphasis on the presentation
of algorithmic solutions, which are indispensable for the successful practical appli-
cation of Markov model technology. Therefore, it addresses researchers and prac-
titioners from the field of pattern recognition as well as graduate students with an
appropriate major field of study, who want to devote themselves to speech or hand-
writing recognition, bioinformatics, or related problems and want to gain a deeper
understanding of the application of statistical methods in these areas.

The origins of this book lie in the author’s extensive research and development in
the field of statistical pattern recognition, which initially led to a German book pub-
lished by Teubner, Wiesbaden, in 2003. The present edition is basically a translation
of the German version with several updates and modifications addressing an inter-
national audience. This book would not have been possible without the encourage-
ment and support of my colleague Thomas Plötz, University of Dortmund, Germany,
whom I would like to cordially thank for his efforts.

Dortmund, July 2007 Gernot A. Fink
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1

Introduction

The invention of the first calculating machines and the development of the first uni-
versal computers was driven by the idea to liberate people from certain every-day
tasks. At that time one really thought of help in computations only and by no means
of helping hands in private homes. The computing machines developed thus should
take over tasks, which of course could be carried out by humans, too. However, these
tasks could be performed with substantially more perseverance by an automatic sys-
tem and thus more reliably and consequently also more cheaply.

The rapid progress in the development of computer technology soon allowed re-
searchers to dream of far more ambitious goals. In the endeavor of creating so-called
“artificial intelligence” (AI), one tried to outperform the capabilities of humans in
certain areas. In the early days of AI, primarily the solving of mathematical or other-
wise formally described problems by symbolic methods was regarded as intelligence.
Therefore, for a long time the prototypical area of research was the play of chess. The
victory of the chess computer Deep Blue over the world champion Kasparov in 1997
arguably meant an important public relations activity for IBM. However, in the end
it proved only that playing chess is probably not such a typical achievement of in-
telligence, as in this discipline even the best human expert can be defeated by rather
brute computing power. In the field of understanding language, which is central for
human capabilities, however, all symbolic and rule based methods, which originated
from the roots of AI research, could achieve moderate success only.

Meanwhile, a radical change in paradigms has been completed. Typical human
intelligence now is no longer considered to be manifest on the symbolic level, but
rather in the capabilities for processing various sensory input data. Among these are
the communication by spoken language, the interpretation of visual input, and the in-
teraction with the physical environment by motion, touch, and grasping. Both in the
area of automatic image and speech processing as well as in the field of robotics for
many years first solutions were developed from an engineering background. Since
it has been proven by the successful use of statistical methods, that automatically
trained systems by far outperform their “hard-wired” rule-based counterparts with
respect to flexibility and capabilities realized, the concept of learning receives spe-
cial attention in these areas of research. In this respect the human example still is



2 1 Introduction

unsurpassed. Therefore, currently one has to content oneself with reproducing the
respective human capabilities in strongly constrained settings within computing ma-
chines.

Central for all automatically learning methods is the availability of example data,
from which the parameters of the models to be created can be derived. Therefore, no
complex symbolic sets of rules are necessary to describe the typical properties of
the data considered. Rather, these are automatically extracted by learning algorithms
during the repeated presentation of training samples.

Probably the most well known class of learning methods are the so-called artifi-
cial neuronal networks. Their elementary building blocks correspond to largely sim-
plified models of human nerve cells — the neurons. As a universal function approx-
imator this formalism is very powerful, but also too general for some applications.
Therefore, other statistical formalisms could establish themselves, which are espe-
cially well adapted to certain application areas. Especially for the statistical modeling
of chronologically organized data Markov models are applied to a major extent.

The most common application area of this technology is the automatic recogni-
tion of speech. In the beginning of the respective research for quite a long time it
competed with symbolic approaches. However, the availability of large sample sets
of speech data heralded the triumph of statistical methods. Therefore, meanwhile
hidden Markov models for describing acoustic events in combination with Markov
chain models for the statistical modeling of word sequences on the symbolic level
represent the standard technology for building successful automatic speech recogni-
tion systems.

Only in recent years these methods entered a both thematically and sensorily re-
lated application area. The automatic recognition of handwritten texts — in the same
way as automatic speech recognition — can be considered a segmentation problem
of chronologically organized sensor data. There the time axis either runs along the
text line to be processed or along the line of writing itself. By this “trick” statistical
modeling techniques known from the field of automatic speech recognition usually
with minor changes only can be transferred to the problem of processing handwritten
documents.

A third important application area of Markov models takes us beyond the field of
man-machine interaction. Bioinformatics research is primarily concerned with cell-
biological processes and their simulation and analysis by means of computer science
techniques. Special attention currently lies on the analysis of the human genome.
From the view of statistical pattern recognition this genetic information — and cell
products like, e.g., RNA or proteins derived from it — essentially consists of linearly
organized symbol sequences. Though for quite some years statistical techniques are
used for the analysis of such biological sequences, the attention of bioinformatics
research was only recently drawn to Markov models. The success of the respective
methods in this application area was so convincing, that meanwhile several software
packages for the application of Markov models as well as libraries of ready-made
models for different analysis tasks are available.



1.2 Functional Principles of Markov Models 3

1.1 Thematic Context

The thematic context for the treatment of Markov models is defined by the research
area of pattern recognition (cf. [50, 170]). As patterns there primarily measurements
of certain sensors are regarded, e.g., images or speech signals. However, pattern
recognition methods can also be applied to different input data, e.g., the symboli-
cally represented genetic information in DNA strands.

In order to separate relevant properties of the data from interfering or irrelevant
ones, the patterns considered are transformed into a feature representation. In general
this includes several preprocessing steps, which serve the purpose of “improving” the
signals for future processing, e.g. by normalizing the illumination within an image
or the loudness of a spoken utterance.

After feature extraction follows the segmentation of the data. For images here,
e.g., regions of similar color or texture are determined. Those segments are subse-
quently mapped onto a certain pattern class by classification. On this level one thus
obtains for the first time a symbolic representation of the data. However, not for all
pattern recognition problems the tasks of segmentation and classification can be sep-
arated so clearly. In the processing of speech, e.g., it is not possible to generate a
segmentation without knowing what was actually spoken, as word boundaries are
not marked acoustically. Rather, not until the actual utterance is known, inferences
can be drawn on the boundaries between the units involved1. For the solution of such
pattern recognition tasks, therefore, integrated segmentation and classification meth-
ods are required. However, with respect to complexity such methods generally by far
exceed techniques that can be applied in isolation.

The flat symbolic representation of patterns that is available after the classifica-
tion step, is not sufficient for many pattern recognition applications, as no structural
properties are represented yet. Generating these is the goal of pattern analysis, which
tries to compute structured interpretations of patterns on the basis of the classification
results. For images this could be, e.g., a description of the observed scene, which be-
sides a classification of individual objects also specifies their relative positions with
respect to each other and their composition to more complex structures. In the field
of spoken language processing the analysis of an utterance usually consists in gen-
erating an internal representation of its meaning, which can serve as the basis for a
man-machine dialog or the automatic translation into a different language.

1.2 Functional Principles of Markov Models

The simplest form of Markov models are the so-called Markov chain models, which
can be used for the statistical description of symbol and state sequences. They were

1 In the first commercial dictation systems by the companies IBM and Dragon Systems this
dilemma was solved by a methodological trick. Users had to make small pauses between
words while talking. Thus by detecting the pauses utterances first could be segmented into
words and these could be classified subsequently.
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developed by the Russian mathematician Andrej Andrejewitsch Markov (1856 −
1922), after whom they are also named. At the beginning of the past century he
first applied them for the statistical analysis of the character sequences in the text of
“Eugene Onegin”, a novel in verse by Alexander Sergeyevich Pushkin [151].

The functional principle of this model variant can be explained well with the
example of texts. The states of the model then are identical with the words of a cer-
tain lexicon, from which the word sequences investigated are formed. Markov chain
models then indicate, how probable the occurrence of a word in a certain textual
context is. By evaluating this probability for a sequence of words one obtains a to-
tal probability for the text section considered. By choosing a suitable model thus,
e.g., plausible — i.e. highly probable — from implausible — i.e. less probable —
sentences of a certain language can be discriminated. In contrast to a formal lan-
guage definition this membership decision is not deterministic but probabilistic. If,
e.g, multiple models for different text categories are available, the generation proba-
bility can be used as the basis for a classification decision. In the simplest case one
decides for that text category, for which the associated model achieves the highest
probability on a certain text section.

In so-called hidden Markov models the concept of a state sequence, which is
modeled statistically, is augmented with state-specific outputs of the model. It is
assumed, that only these so-called emissions can be observed. The underlying state
sequence, however, is hidden, a fact, from which the name of this model variant
is derived. For the statistical regularities, which underlie the generation of the state
sequence and the emissions, strong limitations apply. In general a hidden Markov
model can be regarded as a finite-state automaton with outputs, which is augmented
statistically. Both the transitions between states and the generation of outputs occur
depending on certain probability distributions.

In order to be able to apply such a generative model for the analysis of data,
which is already available, a mental trick is necessary. First one assumes, that the data
to be analyzed were generated by a natural process, which obeys similar statistical
regularities. Then one tries to reproduce this process with the capabilities of hidden
Markov models as closely as possible. If this attempt is successful, on the basis of
the artificial model inferences can be drawn on the real process. On the one hand
this may concern the probability for generating the available data. On the other hand
the inference on the internal processes within the model is at least probabilistically
possible. In particular one can determine the state sequence that generated a certain
sequence of outputs with highest probability.

When associating the meaning of representing classes of patterns with complete
models, the formalism can be used for classification. The by far more widely used
procedure, however, is to identify parts of a larger total model — i.e. states or state
groups — with meaningful segments of the data to be analyzed. By uncovering the
state sequence then a segmentation of the data is possible with simultaneous classi-
fication into the chosen units.

In automatic speech recognition the outputs of the models correspond to the
acoustic signal or its parametric feature representation, respectively. In contrast, the
model states define elementary acoustic events, e.g., speech sounds of a certain lan-
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guage. Sequences of states then correspond to words and complete spoken utter-
ances. If one is able to reconstruct the expected internal state sequence for a given
speech signal, the — hopefully correct — sequence of words spoken can be associ-
ated with it and the segmentation and classification problem can thus be solved in an
integrated manner.

This possibility, to treat segmentation and classification within an integrated
formalism, constitutes the predominant strength of hidden Markov models. The
dilemma pointed out in the beginning, that classification requires prior segmentation
but segmentation often is possible only with knowledge about the classification re-
sult, thus can be circumvented elegantly. Because of this important property methods
on the basis of hidden Markov models are also referred to as being segmentation-free.

Both Markov chain and hidden Markov models as opposed to symbolic ap-
proaches have the important advantage, that the model parameters required can be
trained automatically from sample data. However, this possibility alone does not
yet guarantee the success of this modeling technique. Statistical parameter estima-
tion methods provide reliable results only, if sufficiently many training samples are
available. Powerful Markov models can thus be created only, if sample sets of con-
siderable size are available for the parameter training. Also, merely the parameters
of the models and not their configuration — i.e. the structure and the number of free
parameters — can be determined automatically by the training algorithms. For this
purpose even in the framework of statistical methods the experience of experts and
extensive experimental evaluations are required. Furthermore, almost all known esti-
mation methods require the availability of an initial model, which is then optimized
step by step. The choice of the stating point, therefore, can critically influence the
performance of the final Markov model. Finally, Markov chain and hidden Markov
models offer different modeling capabilities, so that they are often used in combi-
nation. In the technical implementation, however, this requires algorithmic solutions
that are substantially more complex than the simple combination of probabilities.

The successful application of Markov model-based techniques for pattern recog-
nition tasks, therefore, requires the solution of a number of methodological problems,
which go far beyond a mere technical implementation of the underlying mathemati-
cal theory.

1.3 Goal and Structure of the Book

The extensive application and simultaneously the substantial further development of
pattern recognition methods on the basis of Markov models took place in the field of
automatic speech recognition. There today the combination of hidden Markov mod-
els for the acoustic analysis and Markov chain models for the restriction of potential
word sequences is the predominant paradigm. This also explains the fact, that the
treatment of these methods in monographs is almost always coupled to the subject
of automatic speech recognition (cf. [81, 95, 97, 105, 181]).

In contrast, their use in different application areas such as, for example character
or handwriting recognition or the analysis of biological sequences, becomes accessi-
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ble only from the respective specialized technical literature. This is surprisingly true
also for the presentation of Markov chain models, which are usually referred to as
statistical language models. With the exception of the monograph by Huang and col-
leagues [97] the necessary foundations and algorithms are almost exclusively treated
in tightly focused articles that appear in conference proceedings or scientific jour-
nals. The situation is the same for questions, which appear in combination with the
practical application of Markov model technology. Among these are especially the
successful configuration of the models, the treatment of efficient algorithms, meth-
ods for the adaptation of the model parameters to changed task conditions, and the
combination of Markov chain and hidden Markov models in integrated search pro-
cesses.

Therefore, this book pursues two goals. First, Markov models will be presented
with respect to their nowadays extremely wide application context. Secondly, the
treatment will not be concentrating on the theoretical core of the modeling only, but
include all technological aspects that are relevant from today’s view.

At the beginning of the book an overview over potential application areas of
Markov model technology will be given in chapter 2. There as the prototypical ap-
plication area first the automatic recognition of speech will be considered, before the
two further main application areas character and handwriting recognition as well as
the analysis of biological sequences will be presented. The chapter closes with an
outlook onto some of the many further fields of application for Markov models.

Part I of this book provides the formal framework for the treatment of Markov
models. It starts with a short introduction of relevant fundamental concepts of prob-
ability theory and mathematical statistics. Furthermore, basic methods for vector
quantization and the estimation of mixture density models will be presented, which
are applied for the modeling of high dimensional data. Afterwards the two rep-
resentatives of Markov model technology are formally described, namely hidden
Markov models and Markov chain models, which are frequently also referred to as
n-gram models. There the focus is rather on presenting a sound general concept of
the theoretical foundations than on covering all possible variants of the respective
formalisms.

The subject of the second part are important aspects of the practical application
of methods on the basis of Markov models. At the beginning the robust handling
of probability quantities will be covered, which are omnipresent when dealing with
these statistical methods. Chapter 8 presents methods for the configuration of hidden
Markov models for certain application areas. Subsequently, the robust estimation of
the necessary model parameters will be explained. Chapter 10 introduces the most
important methods for the efficient processing of Markov models. The adaptation of
the models to different tasks is the topic of chapter 11. Part II of the book concludes
with the treatment of algorithms for the search in highly complex solution spaces,
which results from the joint application of Markov chain and hidden Markov models.

In part III we will come back to the applications of Markov models. Here selected
systems from the main application areas automatic speech recognition, character and
handwriting recognition, and the analysis of biological sequences are presented with
the focus on successfully realized combinations of different methods.
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Application Areas

2.1 Speech

The interaction by spoken language is the dominant modality of communication be-
tween humans. By means of speech emotions can be conveyed, irony can be ex-
pressed, simply “small talk” can be made, or information can be transmitted. The
last of these aspects is by far the most important for the automatic processing of
speech, even though also approaches for recognizing emotions in spoken utterances
are pursued. By means of spoken language information can be transmitted without
hardly any effort — at least for healthy humans — and with a rather high “data rate”
of up to 250 words per minute. Thus with respect to ease of use and efficiency this
modality principally outperforms all other means of communication used by humans,
as, e.g., gesture, handwriting, or typing on a keyboard. In the literature it is, therefore,
often concluded that speech were also the best solution for the communication with
technical systems. This may well be doubted, however, as an open-plan office, where
all employees talk to their computers, or a coffee machine, that can be controlled by
spoken language only and not by simply pushing a button, might not seem to be the
best ideas.

There are, however, a number of scenarios, in which man-machine communica-
tion by spoken language makes sense — if necessary including additional modalities
— and can be applied successfully. There the goal is either to control a certain de-
vice or to acquire information from an automatic system. Examples for the latter
are information systems, from which time-table or event information can be queried
over the telephone and also the respective train, cinema, or theater tickets can be
ordered, if necessary. Among the control applications are the operation of mobile
phones, which make the respective connection when the appropriate name or phone
number is called, the operation of machinery in an industrial context, where the use
of other modalities besides speech is not possible, and also the control of so-called
non-safety relevant functions in vehicles, as, e.g., the car stereo or the air condition.
As a very special case of device control the automatic transcription of texts by a dic-
tation system can be viewed. Though automatic dictation did not make it the “killer
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Fig. 2.1. Example of a digitized speech signal of the phrase “speech recognition” with
manually marked phone segments.

application” of speech technology, it has had a crucial influence on the developments
in the field.

In order to make spoken language man-machine communication possible, spoken
utterances need to be mapped onto a suitable computer-internal symbolic represen-
tation, on the basis of which then the actions of the system are carried out. For this
purpose first the physical correlate of speech — i.e. the minute changes in air pres-
sure caused by the radiation of sound — needs to be represented digitally. By means
of a microphone the sound pressure level is converted into a measurable electrical
quantity, the temporal progression of which corresponds to the acoustic signal. In
order to represent this signal with sufficient accuracy in digital form, it is sampled,
i.e. the analog values are measured at certain regular time intervals, and subsequently
quantized, i.e. the analog quantities are mapped onto a finite discrete domain of val-
ues. The combination of sampling and quantization is referred to as digitization. For
speech one usually works with sampling rates of 11 to 16 kHz and stores the quan-
tized measurements with a precision of 8 to 16 bits1.

Figure 2.1 exemplarily shows a digitized speech signal of the utterance “speech
recognition”. For extremely simple applications of speech processing this infor-

1 Representing speech sampled at 16 kHz with 16 bits per sample surely is not the best
possible digital representation of speech signals. However, by and large it is sufficiently
accurate for the automatic processing methods applied and has become standard in the
field.
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mation sometimes is already sufficient. Thus voice dialing in a mobile phone can be
achieved by the direct comparison of the current speech signal with a small set of
stored reference signals. In complex applications of spoken language processing,
however, it is indispensable to first create a suitable intermediate symbolic repre-
sentation, before an interpretation of the data in the context of the application is
attempted.

Besides the realization as an acoustic signal for speech also the dual representa-
tion in writing exists. Though a number of characteristics of speech, as, e.g., loud-
ness, speed, or timbre, can not be represented in written form, still the central in-
formation content can be specified orthographically. This “encoding” of the acoustic
signal can also easily be represented in and manipulated by digital computers. There-
fore, it is standard in more complex systems for spoken language processing, to first
map speech signals onto a textual representation. This processing step is referred
to as speech recognition. The process of speech understanding starts from the re-
sults of speech recognition, which, e.g., consist of a sequence of words, and tries
to derive on this basis a representation of the meaning for the utterance considered.
In information systems in this step the intention of the user is determined and the
relevant parameters of his query are extracted. An automatic dialog system of an
airline, e.g., needs to distinguish between a request for flight schedules and the ac-
tual order of a ticket. In both cases the airport of departure, the destination, and the
desired travel time must be determined. For the syntactic-semantic analysis of so-
called natural language, i.e. language input encoded in textual form, a multitude of
different approaches were proposed in the literature (cf. e.g. [248]). Therefore, for
the interpretation of utterances almost exclusively rule-based methods are applied,
which either start directly from linguistic theories or are motivated by these.

The mapping of a speech signal onto its textual representation, as it is the goal
of automatic speech recognition, however, can not be achieved with purely symbolic
methods. The main reason for this is the large variability in the realization of princi-
pally identical spoken utterances by different speakers or in different environments.
Furthermore, on the level of the speech signal boundaries between acoustic units are
generally not marked at all.

The elementary unit for describing speech events it the so-called phone, which
denotes a single speech sound. In contrast to a phoneme, — i.e. the smallest unit of
speech used to distinguish meaning — phones define “building blocks” of spoken
utterances that can be discriminated perceptually by listeners. The categories used
were developed on the basis of the articulation of the respective speech units (cf. e.g.
[7, 37]). The basis for this is a model of the speech production process, the principles
of which will be described briefly in the following.

First a stream of air from the lungs is created — usually by exhalation —, which
passes the phonation mechanism in the larynx formed by the vocal folds. If this so-
called glottis is closed, a series of periodic impulses of air pressure is generated,
while with the glottis opened the air passing by only causes something similar to
white noise. This voiced or un-voiced excitation signal is then modified in its spec-
tral content in the so-called vocal tract and a certain speech sound is formed. The
vocal tract consists of the oral and nasal cavities and the pharynx. It can be modified
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in shape depending on the opening of the jaw and the position of the tongue and the
soft palate. When putting it in simple terms, the two coarse classes of speech sounds
vowels and consonants can be distinguished by the gross type of sound modifica-
tion effected by the vocal tract. For vowels the excitation is always voiced and the
vocal tract merely forms a resonant space. With, e.g., the largest possible opening
one obtains a vowel as in the word “hot” (in phonetic transcription2 [hQt]). In
contrast, consonants result from a sort of constriction formed in the vocal tract being
combined with either a voiced or un-voiced excitation signal. If, e.g., the tip of the
tongue touches the back of the lower teeth, either a voiced or un-voiced S sound as
in “raise” or “race” is generated, respectively ([reIz] vs. [reIs]).

Spoken language utterances always develop as a sequence of such elementary
sounds. However, the units are not represented in isolation within these and, there-
fore, are by no means easy to segment. As the articulatory organs can not change their
positions instantaneously from one sound to the next, this is achieved by continuous
movements. Therefore, speech signals reflect the smooth transition between the char-
acteristic features of subsequent sounds. In strong idealization of the real situation
one may assume, that in deliberately articulated, slow speech the typical properties
of a speech sound are expressed at the center of its total duration. The border re-
gions of the respective signal segment, however, are influenced by the neighboring
sounds. This mutual influencing among sounds in the speech current is referred to
as coarticulation. In reality its effects can also extend across multiple neighboring
sounds. In figure 2.1 the segmentation of an example signal is shown. However, as
the segment boundaries can not even by experts be specified beyond any doubt, the
discrimination between the individual phones is not uniquely defined in general.

The inherent continuity of speech makes a purely data-driven segmentation with-
out any model knowledge practically impossible. Therefore, today exclusively so-
called “segmentation-free” methods on the basis of hidden Markov models are ap-
plied for the purpose of automatic speech recognition. Though the digitized speech
signal itself is already a linear sequence of samples, the statistical models of speech
always start from a suitable feature representation. This aims at numerically describ-
ing the characteristic properties of speech units, which are mainly defined by the
spectral composition of the signal. As no segmentation information is available on
this level, the feature extraction needs to be performed on sections, where the proper-
ties in question vary as little as possible over time. Therefore, on the one hand these
sections should be quite short. On the other hand they also need to be sufficiently
long, in order to make the computation of useful spectral characteristics possible.
Therefore, the speech signal is subdivided into sections of constant length of approx-
imately 16 to 25 ms, which are called frames. In order to avoid loosing important
information at the boundaries created by this elementary segmentation of the signal,
the frames usually overlap. A frame rate of 10 ms has virtually become a standard

2 If phonetic transcriptions of spoken utterances are given in this book, these use the symbol
inventory defined by SAMPA, which was developed as a machine-readable version of the
International Phonetic Alphabet (IPA) especially for the automated processing in digital
computers [233].
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in the field. With a frame length of 20 ms the signal sections would overlap by 50
percent. Figure 2.2 shows the subdivision of a speech signal into frames of 16 ms
length for part of the example signal known from figure 2.1.

For every frame features are calculated. Thus one obtains a sequence of high-
dimensional, continuous feature vectors, which are identified with the outputs of a
hidden Markov model. All feature extraction methods have in common, that they
use a measure for the signal energy and generate an abstract representation of the
spectral composition of the respective section of the signal. Originally developed for
the analysis of seismic data the so-called cepstral3 analysis has become the standard
feature extraction method in the field of automatic speech recognition ([20], cf. also
[97, pp. 306–318]). The so-called model spectrum implicitly characterizes the shape
of the vocal tract during the formation of speech and thus allows to draw inferences
on the speech sound articulated4. The combination of subdividing a speech signal
into frames and carrying out a local feature extraction is referred to as short-time
analysis. In figure 2.2 results of such a procedure are exemplarily shown. There the
computation of a model spectrum created by cepstral smoothing was used as the
hypothetical feature extraction method.

By the training of hidden Markov models for acoustic units one tries to repro-
duce the statistical properties of the feature vector sequences that were generated by
the short-term analysis. Usually, for this purpose a modular approach is applied for
the description of complex structures of speech. On the basis of models for elemen-
tary units, as, e.g., phones, models for words are constructed by concatenation. An
arbitrary sequence of models for words from a given lexicon then defines a model
for spoken utterances from a certain application domain. The overall model is again
a hidden Markov model. The segmentation of an utterance given by a sequence of
feature vectors into the respective word sequence can be obtained by computing the
optimal state sequence through the model. This passes through certain word models,
which by construction are part of the utterance model, and the corresponding optimal
textual representation can be given easily. However, in general this solution will only
be an approximation of what was really said.

In order to avoid the consideration of arbitrary word sequences during the search
for the solution, which might be quite implausible in the context of the respective
application, in addition to the modeling on acoustic level statistical restrictions on
a symbolic level can be introduced by means of Markov chain models. One then
says to be using a so-called language model. Principally for this purpose also purely
symbolic methods, as, e.g., formal grammars, can be used. However, the combination
of two statistical techniques in general leads to more powerful integrated systems.
Therefore, the combination of hidden Markov models for the acoustic modeling and
Markov chain models for the language modeling has become the standard procedure
within the field of automatic speech recognition.

3 Terms as cepstrum, saphe, and also alanysis were artificially derived by the authors from
their “equivalent” terms in the frequency domain, i.e. spectrum, phase, and analysis.

4 A detailed explanation of different methods for feature extraction is, e.g., given in [97,
Chap. 6 pp. 275–336]
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10 ms 16 ms

Fig. 2.2. Frame segmentation for the short example section marked in the speech signal known
from figure 2.1, which represents the transition from the vowel [i] through the plosive [t]
to the fricative [S]. As hypothetical feature representation the model spectrum is shown,
which was created by cepstral smoothing.

The difficulty of an actual speech recognition task can be estimated from the
restrictions, which apply for the spoken utterances to be expected. The more con-
strained, the simpler and the more diverse, the more difficult the necessary modeling
will be. The problem is considerably simplified, if the actual speech data originates
from only a single speaker. This is then said to be a speaker dependent recognition
task. In contrast, systems are referred to as speaker independent, which are approxi-
mately capable of processing utterances from a wide range of different persons. The
recognition problem can also be simplified by limiting the vocabulary considered.
If only a simple set of command words are to be recognized, this can be achieved
comparably easily and robustly. The decoding of a huge vocabulary of several 10 000
words, however, requires a dramatically increased effort. Therefore, off-the-shelf dic-
tation systems work in speaker dependent mode, in order to achieve an acceptable
recognition accuracy even for very large vocabularies. Information systems accessi-
ble over the telephone, in contrast, need to be speaker independent and generally use
vocabularies, which are constrained to the actual task.
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But not only the size of the lexicon influences the recognition performance
achievable. Usually for large vocabularies one uses statistical models for the restric-
tion of the potential or probable word sequences. Depending on how well these con-
straints can be brought to bear during model decoding, the recognition problem is
simplified. This can be achieved especially well for utterances from clearly defined
application areas, in which possibly even formalized language structures might be.
Therefore, the first dictation systems that were commercially available were aimed
at offices of attorneys and medical doctors.

In addition to the size of the space of potential solutions also the speaking style
critically influences the quality of the recognition results. In experiments in the lab-
oratory one often works with speech signals that were read from given text prompts
and which, therefore, exhibit considerably less variability in their acoustic realiza-
tion than can be observed in spontaneous speech. There in general the care taken
in the articulation decreases, and coarticulation effects between neighboring speech
sounds increase. In certain contexts individual phones or complete phone groups are
potentially not realized at all. Furthermore, spontaneous speech effects as, e.g., hes-
itations or false starts may occur, which, of course, need to be taken into account
when building the models required.

A further severe difficulty for speech recognition systems are changes in the en-
vironmental conditions, in which the signal data is captured. On the one hand these
might effect the recording channel itself, which is defined by the technical solutions
used for signal recording and the acoustic properties of the recording environment.
Therefore, in off-the-shelf dictation systems often the special microphone required
is sold together with the software package. Most systems also work in a quiet office
environment only and not in a large exhibition hall. In such public spaces addition-
ally interfering noises appear, which adversely affect the system performance in two
respects. On the one hand they overlay the actual speech signal and thus influence
the feature representations extracted. On the other hand also the speaker himself per-
ceives the interfering noises and in general modifies his articulation in consequence.
This phenomenon according to its discoverer is referred to as the Lombard effect
[146]. Therefore, the robust recognition of utterances spoken in a vehicle, where se-
vere noises occur, which are partly not predictable, is a considerable challenge for
current speech recognition systems.

Over decades of speech recognition research by further and further refinements
in the statistical methods as well as by special application specific techniques re-
spectable achievements were made in counteracting the manifold difficulties of au-
tomatically recognizing speech input. Nevertheless, even today no system exists, that
is able to recognize arbitrary utterances of an arbitrary person on an arbitrary subject
in an arbitrary environment — but these requirements are not even met by the human
example. But also for less ambitious goals as the building of speaker-dependent dic-
tation systems the actual system performances often fall short of the promises made
by the manufacturers [75]. The problem of automatic speech recognition, therefore,
is not solved at all, and also in the future considerable research efforts and potentially
radically new methods will be required for creating systems, that at least approxi-
mately achieve the capabilities of a human listener.
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2.2 Writing

When thinking about writing, in the Western world first character alphabets come
to mind and especially the widely used Roman alphabet, which was also used for
printing this book. Alphabetic writing systems in general follow the phonographic
principle, where the phonetic structure of the respective language is represented by
the comparably few symbols of the alphabet5. Even though a Western reader, due to
his cultural background, might consider this procedure to be the only one making
sense, today still completely different approaches for writing down spoken language
exist6. The most prominent example is the Chinese writing system, which mostly
works according to the logograhic principle. There each of the complex symbols
represents a certain word of the Chinese language. Therefore, at least a few thousand
symbols are required, in order to write texts in everyday Mandarin, e.g. in newspa-
pers. That such a form of writing, which in the eyes of Western people appears overly
complex, even in the computer age is not replaced by an alphabetic writing system,
is impressively demonstrated by the example of the Japanese writing, which as the
writing system of a high-technology nation naturally is used also in the interaction
with computers. Japanese texts are written in a mixture of Chinese symbols (so-
called kanji) for representing word stems and two syllabic writing systems that were
derived from it by simplification and which again follow the phonographic principle.
Hiragana symbols are used for writing grammatical elements. Names and foreign
words are written with the symbols of the katagana writing system.

Independently from the actual writing system written texts can either be pro-
duced by machine, i.e. printed, or by handwriting on paper by using a pen or brush.
In machine print the form of the individual symbols or characters in principle is not
constrained. In contrast, in handwriting one also aims at bringing these to paper as
easily and as fluently as possible. Therefore, besides the symbol set used for ma-
chine printing texts from a certain writing system also a cursive version adapted for
handwriting exists.

In contrast to the recognition of spoken language the automatic processing of
writing is only partly carried out in the context of man-machine interaction. Rather,
the origins of this technology to a major extent lie in industrially relevant applica-
tions in the field of automation technology. As this book does not aim at treating the
automatic processing of writing thoroughly for all existing writing systems, in the
following we will limit the considerations to the widely used alphabetic writing sys-
tems and there as a typical representative to the Roman alphabet. For a presentation
of techniques, which are used for processing, e.g., Japanese, Chinese, or Arabic texts,
the interested reader is referred to the respective specialized technical literature (cf.
e.g. [30, Chap. 10 to 15]). With the exception of highly logographic writing systems,
as, e.g., Chinese, the same principal approaches are applied. One only takes into ac-

5 Due to the historic development of languages the relationship to the respective pronuncia-
tion is more or less obviously preserved in their current writing.

6 A thorough overview over ancient writing systems and those still in use today together with
their historic development and relationships amongst each other is given in [40].
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count the respective special appearance of the image of the writing in the selection
of methods and the combination of processing steps.

The classical application of automatic processing of writing is the so-called op-
tical character recognition (OCR, cf. e.g. [160]). There the goal is to automatically
“read” machine printed texts, which were captured optically and digitized afterwards,
i.e. one aims at transforming the image of the writing into a computer-internal sym-
bolic representation of the text. Thus the underlying data is images of document
pages, as, e.g., the one at hand, which by means of a scanner are converted into a
digital image with a typical resolution of 300 to 2400 dots per inch. Therefore, due
to the very nature of the input data itself, methods for automatic image processing
are predominant in the field of OCR.

Before the beginning of the actual text recognition in any case an analysis of the
document layout is necessary. Here within the available page image text areas but
also other elements of the document structure, as, e.g., headlines or graphics, are
identified. Afterwards, the text areas can be segmented into paragraphs, individual
lines, and in general also single characters due to the usually high precision in the
production of machine-printed texts. As soon as the images of the written symbols
are isolated, they can be mapped onto a symbolic representation by arbitrary tech-
niques from pattern classification (cf. e.g. [30, 211]). The results of the classification
are generally subject to one or more post-processing steps. There it is tried, to correct
errors on the character level as far as possible by incorporating context restrictions,
e.g. in the form of a lexicon (cf. e.g. [44]).

The complexity of the processing task, as in the field of automatic speech recog-
nition, is defined by the variability of the input data to be expected. As the processing
mainly is performed on the character level and the word and document context is only
taken into account during post-processing, the size of the lexicon used is of subordi-
nate importance. The variability of the data on the one hand results from differences
in the respective image of the writing, as it is created by the printing process. On the
other hand distortions in the optical capturing of the documents may severely affect
the appearance of individual characters and text sections. In the printing process it-
self the type face (e.g. Times, Helvetica or Courier), the font family (e.g. regular,
bold, or italic), and the character size may vary. Considerably increased difficulties
for the automatic processing result, if the image of the writing could only be cap-
tured with poor quality. This can be due to, e.g., aging or a comparable degradation
as a contamination of the original document. But also the repeated reproduction or
transmission of a document, e.g. by fax or by means of copying machines, reduces
the quality of the source data for automatic character recognition. In such cases a
segmentation on character level is generally no longer possible with sufficient relia-
bility. Therefore, segmentation-free methods on the basis of Markov models exhibit
substantial advantages in the processing of such “degraded” documents as opposed
to classical OCR methods (cf. e.g. [60]).

The problem of automatic character recognition also becomes considerably more
challenging, if the texts considered were not printed by machine but written by hand.
Especially the use of cursive writing, which for alphabetic writing systems in general
links individual characters with connecting strokes, makes a reliable segmentation on
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character level practically impossible. Therefore, in this field today segmentation free
methods on the basis of Markov models are predominant. However, the automatic
reading of larger handwritten documents possibly due to the enormous difficulty
of the task currently is not a relevant application. Even in the scientific area today
only few respective research efforts exist. An example of a historic letter in cursive
writing is shown in figure 2.3. In contrast, figure 2.4 shows a typical document, as it
was used for building a large corpus of handwritten texts within a research initiative
of the University of Bern, Switzerland (cf. [152]).

The complexity in the processing of handwritten documents results from the
considerable larger variability in the image of the writing as opposed to machine-
printed texts. Similarly to sounds in spoken language, the individual characters differ
even when repeatedly realized by the same person, depending on their context, and
the most severely between different writers. As without suitable restrictions on the
potential character sequences no satisfactory results are achieved in the automatic
recognition of handwritten texts, here also the vocabulary used and comparable con-
textual knowledge is of great importance.

An especially important application of the automatic recognition of writing is the
automated reading of postal addresses in mail sorting machines. Here the essential
difficulty results from the part of handwritten addresses, which is large even today.
Therefore, in practice an automatic sorting of the mail pieces can be achieved only
partially, as recognition errors by wrongly dispatched mail cause enormous costs.
In order to be able to keep the error rate of such systems as low as possible, a quite
large rejection rate has to be accepted. The rejected mail pieces then need to be sorted
manually.

Powerful methods for the automatic analysis of addresses especially for machine-
printed postal addresses are applied in practice for many years. There the quality of
the results not only depends on the classification accuracy on character level being
as high as possible. Additionally, it is extremely important to exploit relations in
structure and content between the individual elements of a postal address — e.g.
city name, zip-code, street name, and house number — in a clever way. After the
introduction of a new automatic address reading system at the end of the last decade
in the U.S. more than half of the handwritten addresses were analyzed automatically,
while the estimated error rate was below 3 percent [39].

Methods for the automatic processing of forms are almost exclusively devoted to
the processing of handwritten input. There the complexity of the recognition task can
be considerably reduced by suitable technical measures for limiting the variability of
the character images. Always special fields for writing individual words or even short
phrases are used. Additionally, the writing style often is restricted to the exclusive use
of hand-printed characters, which frequently also means that only capital characters
may be used. The most restricted writing style is obtained, if additionally a single
field for writing each character is given. Figure 2.5 shows this with the example of
a form for bank transfers used in many countries sharing the Euro as currency in the
European Union.

In the U.S. in contrast to Europe checks play an especially important role in finan-
cial transactions. There exists a multitude of approaches for automatically analyzing
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Fig. 2.3. Example of a digitized handwritten document: Letter of Marie von Ebner-Eschenbach
to Herrman von Reischach, dated Vienna, January 30, 1876 (Brief der Marie von Ebner-
Eschenbach an Herrman von Reischach, Wien, 30. Jänner 1876 [155, p. 111], reprinted with
permission of Philipp Reclam Jun. Verlag, Stuttgart, Germany).
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Fig. 2.4. Example page from the corpus of handwritten documents created by the Institute for
Informatics and Applied Mathematics, University of Bern, Switzerland [152]. In the upper
part the text section to be written together with an identification code is printed. Below the
respective handwritten version was filled in by one of the subjects (reprinted with permission).
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Fig. 2.5. Example of a form for bank transfers in the European Union filled out manually.
Handwritten capital characters need to be written into the appropriate fields given.

the handwritten legal amount, its numeric equivalent, the so-called courtesy amount,
and the date of issue (cf. e.g. [133]). In this recognition task the lexicon is restricted
to only a few entries as numerals and digits. However, from these basic units longer
sequences may be constructed without appreciable sequencing restrictions. The writ-
ing style used also satisfies no constraints. Thus the use of hand-printed characters,
cursive writing, and an arbitrary mixture of those styles is possible, and one arrives
at so-called unconstrained handwriting.

All methods for processing writing presented so far have in common, that docu-
ments are captured digitally after they were completed and are then processed further
independently from their generation process, which is referred to as offline handwrit-
ing or character recognition. In contrast to that, for the processing of handwritten
documents also so-called online methods exist, where the motion of the pen is al-
ready captured during the process of writing. For this purpose special sensors, as,
e.g., pressure sensitive tablets or LC displays are required and in general also the use
of specialized tools for writing. As the digital representation of the written texts one
obtains in essence a sequence of two-dimensional measurements of the pen position,
which encode the trajectory of the pen during the writing process. In simple devices,
as they are, e.g., used in so-called personal digital assistants (PDAs), position mea-
surements are only obtained, if the pen touches the writing surface, resulting in so-
called pen-down strokes. However, if the pen is lifted, only more sophisticated graph-
ics tablets can still track the pen in so-called pen-up movements in the close vicinity
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Fig. 2.6. Example of a pen trajectory of the handwritten word “handwriting” captured online.
The size of the dots representing the pen positions encodes the pen pressure in pen-down
strokes (black) and the shading represents the distance to the writing surface during pen-up
movements.

of the writing surface by using inductive techniques and specialized pens. Such de-
vices usually also provide the pen pressure and the inclination of the pen with respect
to the writing surface in addition to the position measurements. Figure 2.6 shows a
potential pen trajectory by the example of the word “handwriting”. There the
pen pressure and the distance of the pen tip to the writing surface are encoded in the
size and shading, respectively, of the dots used to represent the pen positions.

Compared to the offline processing of handwriting, online methods have the ad-
vantage, that they can take into account during recognition the temporal organization
of the writing process, which is additionally available. Thus it is, e.g., not possible
that neighboring characters overlap in the image of the writing and, therefore, in the
automatic segmentation can hardly be separated or not at all. The dynamic informa-
tion is also essential for the verification of signatures. It represents a highly writer
dependent peculiarity of the signature, which can not be forged even by experts on
the basis of an available image of the signature.

However, the main application area for online handwriting recognition is man-
machine interaction. Especially for operating extremely small, portable computing
devices, which would not be reasonably possible with a keyboard, this form of text
entry has become standard for device control. Usually the problem is simplified as
much as possible, in order to achieve satisfactory results with the limited resources
of a PDA, organizer, or smart phone while at the same time reaching sufficiently
high reaction times. In the well known PalmPilot and its descendants only isolated
characters are captured in special input fields. Additionally, a special writing style
optimized for the purposes of automatic recognition needs to be used. On more pow-
erful devices usually also the input of complete handwritten words is possible.

Inspired by the success of Markov model-based methods in the field of auto-
matic speech recognition in recent years the principal approach of this technique
was also transferred to problems of automatic character and handwriting recogni-
tion. As segmentation-free methods these techniques are mostly applied where the



2.2 Writing 21

“classical” OCR approaches, that first segment on the level of characters and later
classify, are either not reliably enough or fail completely. Therefore, Markov models
are mainly used for the segmentation of handwritten documents in both online and
offline mode and only rarely for the processing of machine-printed texts. Similar to
automatic speech recognition hidden Markov models are applied for modeling the
appearance in writing of individual characters or whole words, and Markov chain
models are used for restricting potential sequences of elementary units on character
or word level.

The fundamental prerequisite for the applicability of these methods is, that the
signal data considered can be represented as a linear sequence. This is easily possible
in the field of online handwriting recognition. By the temporal progress of the writing
process itself a chronological order of the position measurements is given, which are
provided by the respective sensors. The time axis of the signal thus virtually runs
along the trajectory of the pen. As in the short-time analysis of speech signals, then
local characteristic properties can be described by feature vectors. For this purpose
mainly shape properties of the pen trajectory, as writing direction or curvature, are
evaluated. In contrast, the writing speed is usually normalized in pure recognition
systems, in order to avoid variations of the signal characteristics due to different
writers.

To define a comparable procedure for the linearization of offline documents is
considerably more difficult, as those are principally two-dimensional images. How-
ever, in general a segmentation of the document considered into individual text lines
can be generated with sufficient reliability. When analyzing forms, which usually
comprise only isolated words or phrases, the segmentation of the field contents is
possible even more easily. Then a hypothetical time axis can be defined in parallel
to the direction of the text. Along this axis it is then tried to describe properties of
the image of the writing by feature vectors. For this purpose the text line usually
is subdivided into a sequence of narrow overlapping image windows, which then in
principle correspond to the frames known from automatic speech recognition. For
each of these windows a feature representation is generated. However, in the field of
offline handwriting or character recognition for this no generally accepted method
exists. In many cases local structural properties are computed, as, e.g., the number
of line ends or arcs, which lie within a certain frame of writing. The sequence of the
feature vectors generated thus is then — similarly to automatic speech recognition
— identified with the outputs of hidden Markov models for characters or words.
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2.3 Biological Sequences

The genetic information of all living organisms, which influences their growth, their
metabolism, and to a major extent also their behavior, is encoded in a symbolic se-
quence. In the majority of cases this is the macro molecule deoxyribonucleic acid
(DNA), which consists of two strands intertwined in the form of a double helix. The
strands are built as sequences of so-called bases. There exist four different types of
bases (adenine, cytosine, guanine, and thymine), which are pairwise complementary
and, therefore, in addition to the chemical bonds within a DNA strand also estab-
lish pair bonds to bases from the other strand. Thus one obtains the “ladder-type”
structure of the double-stranded DNA. As the pairwise bonds are unique, already
a single DNA strand contains the complete genetic information. Therefore, in the
double strand it is encoded redundantly.

In higher developed organisms, as, e.g., mammals, the DNA is not available as
a single complete sequence, but distributed across so-called chromosomes. Human
cells contain 23 pairs of those, which represent the genetic information from maternal
and paternal side, respectively. The entirety of the DNA strands in all chromosomes
is referred to as the genome. Every cell of a living being contains an identical copy
of this total genetic information. The size of the genome is coarsely connected to
the complexity of the respective organism. While the genetic information of bacteria
contains only a few million bases, the human genome comprises approximately 3
billion base pairs.

However, the majority of the DNA sequence has no cell-biological function or
none that has been understood so far. In this additional “junk” material the elemen-
tary units of genetic information — the so-called genes — are embedded. Their rele-
vant information, which codes the function of a gene — the so-called coding region
— is generally split up into multiple exons, which are interrupted by introns. A few
years ago it was still assumed, that the human genome contains approximately 30 000
to 40 000 genes [101, 225], while more recent estimates propose a total number of
only approximately 25 000 coding regions [102].

For controlling most cell-biological functions genes are “transformed” into pro-
teins in a process called expression. The proteins created then influence the metabo-
lism and the growth of the cell and control its reproduction during cell division.

In order to express a certain gene, first the genetic information available on the
double-stranded DNA is read and transformed into the equivalent representation of
the single-stranded ribonucleic acid (RNA), which also represents a sequence of
bases. This process, which is referred to as transcription, begins in a so-called pro-
motor region before the actual DNA sequence, which contains the information of a
specific gene. In the resulting raw version of the RNA the coding region of a gene in
general is still interrupted by introns without known function. Therefore, the RNA
is “cleaned” in a subsequent modification process, where the introns are discarded.
The cleaned RNA is called messenger RNA or for short mRNA.

Finally, from mRNA in an additional transformation process, which is referred
to as translation, a certain protein is generated, which realizes the functionality of
the underlying gene. In contrast to DNA and RNA proteins consist of a sequence of
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Amino Acid Sequence

MALSAEDRALVRALWKKLGSNVGVYTTEALERTFLAFPATKTYFSHLDLS
PGSSQVRAHGQKVADALSLAVERLDDLPHALSALSHLHACQLRVDPASFQ
LLGHCLLVTLARHYPGDFSPALQASLDKFLSHVISALVSEYR

DNA Sequence

atggcgctgt ccgcggagga ccgggcgctg gtgcgcgccc
tgtggaagaa gctgggcagc aacgtcggcg tctacacgac
agaggccctg gaaaggacct tcctggcttt ccccgccacg
aagacctact tctcccacct ggacctgagc cccggctcct
cacaagtcag agcccacggc cagaaggtgg cggacgcgct
gagcctcgcc gtggagcgcc tggacgacct accccacgcg
ctgtccgcgc tgagccacct gcacgcgtgc cagctgcgag
tggacccggc cagcttccag ctcctgggcc actgcctgct
ggtaaccctc gcccggcact accccggaga cttcagcccc
gcgctgcagg cgtcgctgga caagttcctg agccacgtta
tctcggcgct ggtttccgag taccgctga

Fig. 2.7. Part of the amino acid sequence and the underlying DNA sequence of the protein
hemoglobin according the the SWISS-PROT database [9]. Individual amino acids are encoded
by capital letters and bases by lower case letters.

20 different amino acids. Within the mRNA sequence a triple of bases — a so-called
codon —- encodes a certain amino acid7. By special start and stop codons it is con-
trolled, what area of the mRNA is covered by the translation process. After the gen-
eration of the amino acid sequence proteins form a characteristic three-dimensional
structure by folding, which makes up a substantial part of their functionality. For
the example of hemoglobin figure 2.7 shows a part of the amino acid sequence of a
protein as well as its representation as a sequence of codons on the level of DNA.

In contrast to sensor data, which are always affected by measurement noise, the
symbolic representations of DNA sequences or proteins can in principle be given
exactly. Therefore, one might assume, that symbolic and rule-based methods are
completely sufficient for genome analysis. However, the sequencing of a genome
poses considerable difficulties in practice (cf. [61, Chap. 5]). Therefore, even after
the completion of the “Human Genome Project” [99] the genetic information of the
human cells investigated still can not be given completely and with absolute cer-
tainty. Furthermore, genetic information is not encoded uniquely in the sequence of
base pairs and is subject to a wide range of random variations within a family of
organisms and also within the same species. Therefore, for complex genomes the ac-
tual number and position of the individual genes can still be estimated only, even for
the extensively studied human genome. For the proteins expressed it is additionally
essential for the understanding of their function, to consider the so-called expression
pattern, i.e. under what conditions they are created from the respective genes, and

7 The relationship between codons and amino acids is not unique, as with 4 bases there exist
43 = 64 potential triples.
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to investigate the three-dimensional structure that is formed. The latter can result in
functional equivalent form from different amino acid sequences.

The variations within biological sequences pointed out above, which — accord-
ing to current scientific knowledge — are largely random, have helped statistical
methods to become predominant for their investigation and modeling.

Depending on which data basis the analysis of genetic material starts from, dif-
ferent processing steps are relevant. When starting from so-called genomic DNA, i.e.
virtually raw genetic information, first the coding regions of genes need to be found
and the DNA sequences present there subsequently need to be cleaned from introns
in the same way as in the creation of mRNA.

If for this purpose Markov model-based methods are applied, one creates indi-
vidual HMMs for promotor regions as well as exons and introns. A segmentation
of the DNA sequence considered then allows to localize genes and to extract their
coding region in a cleaned-up representation (cf. [90, 128]). But also on the basis
of Markov chain models, which define restrictions for the occurrence of individ-
ual bases within different genetic contexts, genes can be identified within DNA se-
quences (cf. [174, 202]).

When starting directly from mRNA this first processing step is not necessary, as
only a single gene is transcribed at a time and the final mRNA was already cleaned.
However, depending on the life cycle of a cell only a limited set of genes is expressed,
so that the investigation of a complete genome is virtually impossible on the basis of
mRNA only.

Often only the final product of the transcription and translation process itself is
considered, namely the proteins. There the goal is not a segmentation, but the find-
ing of similar sequences. The comparison of proteins is the most simple, if they are
only considered pairwise. In order to be able to capture statistical variations of the
sequences, long before the application of hidden Markov models probabilities for
the mapping between amino acids at certain positions of the sequence as well as for
their insertion and deletion were defined. Then an amino acid sequence can be asso-
ciated with another one position by position and one obtains a so-called alignment.
The logical positions within this mapping between two proteins are mostly directly
connected to the three-dimensional structure formed.

It is considerably more demanding, to apply the sequence alignment to multiple
proteins of a certain family. The results of such efforts are represented in the form of
so-called multiple alignments. From pre-existing multiple alignments the statistical
properties of the respective groups of similar sequences can be derived and then be
described by hidden Markov models (cf. [52, 54, 55, 129]). These so-called profiles
can then be used to search the respective databases automatically for further similar
proteins. Figure 2.8 shows a multiple alignment created by an expert for the example
of different goblins.

Of course the detection of new genes by the segmentation of a genome or the
extension of a family of proteins with new members by means of statistical compar-
isons can not show the cell biological functions of the newly found structures. In the
end this needs to be proved in biological experiments. However, from the structural
comparison of biological sequences and the similarities found hypotheses about the
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Helix AAAAAAAAAAAAAAAA BBBBBBBBBBBBBBBBCCCCCCCCCCC

DDDDDDDEE

HBA HUMAN ---------VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF-DLS-----HGSA

HBB HUMAN --------VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESFGDLSTPDAVMGNP

MYG PHYCA ---------VLSEGEWQLVLHVWAKVEA--DVAGHGQDILIRLFKSHPETLEKFDRFKHLKTEAEMKASE

GLB3 CHITP ----------LSADQISTVqASFDKVKG------DPVGILYAVFKADPSIMAKFTQFAG-KDLESIKGTA

GLB5 PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKFKGLTTADQLKKSA

LGB2 LUPLU --------GALTESQAALVKSSWEEFNA--NIPKHTHRFFILVLEIAPAAKDLFS-FLK-GTSEVPQNNP

GLB1 GLYDI ---------GLSAAQRQVIAATWKDIAGADNGAGVGKDCLIKFLSAHPQMAAVFG-FSG----AS---DP

Helix EEEEEEEEEEEEEEEEEEE FFFFFFFFFFFF FFGGGGGGGGGGGGGGGGGGG

HBA HUMAN QVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKL--RVDPVNFKLLSHCLLVTLAAHLPAE

HBB HUMAN KVKAHGKKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL--HVDPENFRLLGNVLVCVLAHHFGKE

MYG PHYCA DLKKHGVTVLTÄLGAILKK----K-GHHEAELKPLAQSHATKH--KIPIKYLEFISEAIIHVLHSRHPGD

GLB3 CHITP PFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG---VTHDQLNNFRAGFVSYMKAHT--D

GLB5 PETMA DVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSF--QVDPQYFKVLAAVIADTVAAG----

LGB2 LUPLU ELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG---VADAHFPVVKEAILKTIKEVVGAK

GLB1 GLYDI GVAALGAKVLAQIGVAVSHL--GDEGKMVAQMKAVGVRHKGYGNKRIKAQYFEPLGASLLSAMEHRIGGK

Helix HHHHHHHHHHHHHHHHHHHHHHHHHH

HBA HUMAN FTPAVHASLDKFLASVSTVLTSKYR------

HBB HUMAN FTPPVQAAYQKVVAGVANALAHKYH------

MYG PHYCA FGADAQGAMNKALELFRKDIAAKYKELGYQG

GLB3 CHITP FA-GAEAAWGATLDTFFGMIFSKM-------

GLB5 PETMA -----DAGFEKLMSMICILLRSAY-------

LGB2 LUPLU WSEELNSAWTIAYDELAIVIKKEMNDAA---

GLB1 GLYDI MNAAAKDAWAAAYADISGALISGLQS-----

Fig. 2.8. Multiple alignment of the amino acid sequence of seven goblins of different organ-
isms after [129] with the respective identifiers used in the SWISS-PROT database [9]. The
line designated by Helix defines the mapping onto the three-dimensional structure of the
proteins. Deletions of amino acids at certain positions are designated by -.

function of genes and proteins can be derived, which can then be verified experimen-
tally in a considerably more goal directed manner.

Such efforts are embedded in the endeavor of biologist and bioinformatics re-
searchers to be able to explain the function of biological organisms. Especially an ex-
act understanding of the human metabolism is of fundamental interest to the pharma-
ceutical industry. Substances constructed on the genetic level and especially adapted
to a certain individual — such is the hope of the researchers — might make a sub-
stantially improved treatment of diseases possible, without at the same time causing
the often dramatic side effects of classical medicines. Therefore, the sequencing of
more and more genetic material and its detailed analysis with respect to structure and
cell biological function is especially pushed by pharmaceutical companies.
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2.4 Outlook

Markov models represent a formalism, which has received substantial attention in
the field of pattern recognition and beyond due the the success of the technique in
the area of automatic speech recognition. Therefore, it would be a pointless endeavor
trying to list all problems that were ever tackled by applying these methods. There-
fore, we will focus on the most important topics besides automatic speech recog-
nition, character and handwriting recognition, and analysis of biological sequences,
for which Markov models were used to a larger extent.

Similarly to the processing of speech signals, which merely represent a sequence
of measurements of the sound pressure level, hidden Markov models can be applied
for the analysis of other series of measurements, as they are, e.g., obtained in material
testing (cf. e.g. [206, 230]).

Comparable to online handwriting recognition is the automatic recognition of hu-
man gestures (cf. e.g. [23, 58, 162, 219, 247]). However, the trajectories of the hands
and arms of a person and if necessary also the respective hand postures need to be ex-
tracted from the respective image sequences with costly image processing methods
before the statistical analysis of the motion sequences. In this respect these methods
are comparable in their structure to a video-based online handwriting recognition
system [72, 243] developed on the basis of a method for tracking pen movements
during writing in image sequences [161].

As a generalization of gesture recognition the recognition of human actions or
behavior can be regarded. Thus in, e.g., [253] motion sequences of tennis players
and in [25] of people walking are analyzed. As human gait is quite characteristic
for individuals, can easily be observed from a distance, and is hard to conceal, hid-
den Markov models are increasingly applied to gait recognition in the context of
surveillance applications (cf. e.g. [113, 145, 222]). In [93] human motion patterns
learned are used for mimicing them by a robot and thus having the demonstrated
action carried out by the machine. Extremely special human actions are changes in
facial expressions, as they are, e.g., analyzed in [92, 143]

In all these methods first linear sequences of feature vectors are created from
the input image sequences. The Markov model-based techniques then start from the
linearized feature representations. However, in the literature also methods were pro-
posed, which extend the formalism of hidden Markov models such, that a mod-
eling of two- or even three-dimensional input data is directly possible (cf. e.g.
[59, 110, 141, 142, 203]).

In practically all approaches mentioned so far hidden Markov models are used
in isolation and not in combination with Markov chain models. This is mainly due
to the fact, that for applications, as, e.g., gesture or action recognition only a rather
small inventory of segmentation units is used. Therefore, probabilistic restrictions on
the respective symbol sequences are not of immediate importance.

On the purely symbolic level Markov chain models, in contrast, are applied for
describing state sequences without being complemented by a hidden Markov model.
An important application area is the field of information retrieval, where statistical
models of texts are described by Markov chain models (cf. e.g. [191]). As a com-
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pact representation of documents in principle corresponds to a compression of their
content, the same principles also form the foundation of different methods for text
compression (cf. [14]). Markov chain models are also applied in slightly modified
form as so-called Markov decision processes for, e.g., the solution of planning tasks
(cf. e.g. [240]).





Part I

Theory



Introductory Remarks

In the following chapters 3 to 6 of the first part of this book the theoretical founda-
tions of Markov models will be presented. At the beginning a short overview is given
over the most important concepts of probability theory and mathematical statistics,
which are necessary for the understanding of the following explanations. Afterwards,
methods for the description of data distributions in high-dimensional vector spaces
will be presented within the topical framework of vector quantization. Virtually as
statistical extension of classical vector quantization techniques also methods for the
estimation of mixture models on the basis of normal densities are covered. In chap-
ter 5 follows the formal presentation of hidden Markov models and the algorithms
necessary for their application. There only typical members of this modeling tech-
nique will be dealt with. The most important variants of hidden Markov models will,
however, be presented shortly in section 5.8, where the interested reader will also find
further bibliographical references. The topic of chapter 6 are Markov chain models,
which are referred to as n-gram models in their specialized realization for pattern
recognition tasks. In contrast to hidden Markov models the theoretical background is
less extensive here. Therefore, the emphasis of the presentation lies on algorithmic
solutions, which allow a reliable estimation of the model parameters required. We
will concentrate on methods, which from today’s point of view can be regarded as
standard techniques, even provided that especially in this field a multitude of widely
differing methods were proposed. In the same way as in the presentation of hidden
Markov models important alternative modeling techniques will only be described
briefly at the end of the chapter.

Though a thorough understanding of the application of Markov models for pat-
tern recognition tasks is only possible when simultaneously considering aspects rel-
evant in practice, in the framework of the following formal treatment we will try to
present the theoretical core of these methods without disturbing cross-references in
a linear, consecutive way. The subsequent second part of this book is then devoted
intensively to problems that result from the practical application of hidden Markov
and n-gram models.



3

Foundations of Mathematical Statistics

Many events that can be observed in natural processes do not occur according to
some well defined law but rather exhibit a random behavior. Therefore, for a sin-
gle event no prediction about its outcome is possible. However, certain regularities
can be derived even for random processes, if their behavior is observed in frequent
repetitions and one abstracts from considering events in isolation. Probability theory
offers the necessary mathematical models for the treatment of regularities underlying
such random processes. Mathematical statistics additionally considers the problem,
how the parameters of probabilistic models can be derived from observations.

In the following some important fundamental concepts of probability theory and
mathematical statistics shall be introduced that are relevant for the further consid-
eration of Markov models. The goal of this presentation is to illustrate the relevant
terms. For a mathematical exact formal treatment and derivation of these concepts
the interested reader is referred to the extensive volume of specialized literature.

3.1 Random Experiment, Event, and Probability

Carrying out a procedure which can be repeated arbitrarily often and will produce a
random result from a well-defined set of possible outcomes is formally described as
a random experiment1. This can for example be the rolling of a die or the observation
of the development of the stock marked. The result of every single experiment is in
all those cases within the bounds of the given possibilities uncertain — the faces one
to six when rolling dice or the rising and falling of the stock marked indices. Regu-
larities can only be identified when abstracting from isolated events and considering
long-term observations only.

A random event2 A corresponds to a single result or a set of potential results of a
random experiment, e.g. the showing of the face six, any even-numbered face, or the
1 If the topic of mathematical statistics is clear from the context the additional word “random”

is usually omitted.
2 As with experiments also events are not labeled “random” if their nature is clear from the

context.
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rising of the stock market. Such an event A occurs, if for a particular trial the result
of the random experiment lies in the set A. The complete set of all possible results
of a random experiment is the so-called sample space Ω. Events that correspond to
exactly one result of the random experiment are called elementary events. The usual
set operations conjunction, disjunction, and complement (with respect to the sample
space Ω) can be applied to events.

The relative frequency f(A) of an event A that occurred m times during an N -
fold repetition of a random experiment is obtained as the quotient of its absolute
frequency (or count) c(A) = m and the total number of trials N :

f(A) =
c(A)

N
=

m

N

A pragmatic derivation of the notion of probability is directly based on the rela-
tive frequency of an event. If this concept is generalized in the way, that one abstracts
from the actual duration of the observation, the underlying regularity for the occur-
rence of the event A is defined as its probability P (A). It is immediately evident
that with an increasing number of observations the variation in the relative frequency
f(A) will constantly decrease and approach a uniform, constant value — the proba-
bility P (A). This relationship is supported by the so-called “law of large numbers”3.

If there is already the information available before the observation of A, that
event B occurred, one obtains the conditional probability P (A|B) of an event A.
This probability for the occurrence of A under the condition of B having occurred
before can be derived from the probability of A and B occurring jointly and the
unconditional probability of B as follows4:

P (A|B) =
P (A, B)

P (B)

As P (A|B) is determined after the observation of the event B this quantity is also
referred to as the posterior probability of A. In contrast, the unconditional probability
of an event, which is valid before the incorporation of additional restrictions, is called
prior probability.

If the observation of B provides no information about the occurrence of A, the
events A and B are said to be statistically independent. The conditional probability
is, consequently, equal to the unconditional one and the following equality holds:

P (A|B) = P (A) and P (B) = P (B|A) if A, B are statistically independent

The joint probability of statistically independent events can simply be determined
by the product of the individual probabilities:

3 The “law of large numbers”, which was stated by Bernoulli, says: The probability, that the
relative frequency of an event A will deviate more than an arbitrary but fixed threshold
ǫ from its probability P (A), will become arbitrarily small, if the number of observations
becomes arbitrarily large, i.e. approaches infinity.

4 Instead of the set notation for the joint probability P (A∩B) in the literature frequently the
simplified notation P (A,B) is used for the union or conjunctive combination of events.



3.2 Random Variables and Probability Distributions 35

P (A, B) = P (A)P (B) if A, B are statistically independent

An important relationship for computations involving conditional probabilities is
stated by Bayes’ rule:

P (B|A) =
P (A|B)P (B)

P (A)
(3.1)

It allows to compute the posterior probability P (B|A) of event B from the condi-
tional probability P (A|B) by taking into account model knowledge about the events
A and B in the form of the associated prior probabilities. The conditional dependence
in the probability expressions is thus virtually reversed.

When assuming that the sample space Ω is completely partitioned into pairwise
disjoint events B1, B2, . . . , Bn, then Bayes’ rule in its general from is given by:

P (Bj |A) =
P (A|Bj)P (Bj)

n∑

i=1

P (A, Bi)

=
P (A|Bj)P (Bj)

n∑

i=1

P (A|Bi)P (Bi)

(3.2)

3.2 Random Variables and Probability Distributions

A simplification of the mathematical treatment of random events can be achieved by
mapping them appropriately onto the set of real numbers IR. Random experiments
are then represented by so-called random variables that randomly take on certain
values from IR. A random variable X , which takes on a finite or countably infinite
number of values x1, x2, . . . , xN , is called discrete. In contrast, so-called continuous
random variables can take on arbitrary values x ∈ IR.

Random variables are characterized by means of their distribution function5. The
distribution function FX(x) of a random variable X specifies for every possible
value of x, how large the probability is, that values taken on by X are less than
or equal to x:

FX(x) = P (X ≤ x)

In the discrete case FX(x) can easily be computed from the individual probabilities
of the elementary events Ai, which are associated with the values xi of the random
variable. The distribution function is obtained by summing over all pi corresponding
to values less than or equal to x:

FX(x) =
∑

i:xi≤x

P (Ai) =
∑

i:xi≤x

pi

In the continuous case the sum in the above equation is turned into an integral and
the integrated continuous function pX(x) looses its interpretation as a probability of
elementary events.

5 The distribution function is frequently also referred to as cumulative distribution function.



36 3 Foundations of Mathematical Statistics

FX(x) =

x∫

−∞

pX(t) dt

The quantity pX(x) is called the probability density function or simply the density
of the random variable X . In the same way as probabilities density values are al-
ways non-negative. However, they may also take on values larger than 1. Only the
total area or probability mass under the density function must be equal to 1. The
probability of some event is obtained as the integral of the density function over an
appropriate interval of real numbers. The probability that an arbitrary continuous
random variable takes on a certain value is, therefore, always equal to zero.

The concept of random variables can be generalized to vector-valued quantities.
In order to simplify the treatment of the subject we will limit the following presenta-
tion to the most important continuous case. The relationships to the discrete versions
are obtained in complete analogy to one-dimensional or scalar random variables.

A vector-valued n-dimensional random variable X formally constitutes a ran-
dom vector6, which is composed of n individual random variables Xi. The distribu-
tion function of the random vector X , which is given by

FX(x) = P (X1 ≤ x1, X2 ≤ x2, . . . Xn ≤ xn)

is obtained on the basis of a joint probability density function pX(x) of the individual
random variables Xi:

FX(x) =

x1∫

−∞

x2∫

−∞

. . .

xn∫

−∞

pX(t1, t2, . . . tn)dt1, dt2, . . . dtn

The probability density function pXi
of an individual random variable can be com-

puted by integration over all remaining vector components as the marginal distribu-
tion of the joint density function pX according to:

pXi
(x) =

∫

(x1,...xi−1,xi+1,...xn)∈IRn−1

pX(x1, . . . xn)dx1, . . . dxi−1, dxi+1, . . . dxn

If the individual random variables Xi are statistically independent, the joint density
function of the random vector can be obtained simply as the product of all component
densities.

pX(x) = pX(x1, x2, . . . xn) =
n∏

i=1

pXi
(xi)

In any case, however, the joint density pX can in generalization of the notion of con-
ditional probabilities be represented as the product of conditional density functions.
In order to illustrate this procedure we will consider here the simple two-dimensional

6 Random vectors are frequently also referred to as multivariate random variables as op-
posed to the scalar or uni-variate case.
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case only. For the joint density of a random vector then the following relationships
hold:

pX(x) = pX(x1, x2)

= pX1
(x1) pX2|X1

(x2|x1)

= pX2
(x2) pX1|X2

(x1|x2)

In the general n-dimensional case, however, there exist n! different possibilities for
splitting up pX into one-dimensional conditional density functions.

3.3 Parameters of Probability Distributions

For the coarse characterization of probability distributions or the associated random
variables, respectively, the parameters expected value and variance are used, which
are derived from the actual probability density function. The expected value E{X} of
a random variable or the corresponding probability distribution denotes the value of
X that is taken on in the statistical average. If the distribution is completely known,
the expected value can be computed as the first moment of the probability density
function:

E{X} =

∞∫

−∞

xpX(x) dx

For discrete distributions one obtains the following relationship:

E{X} =

∞∑

i=1

xipi

When the expected value of a distribution is known, the variance characterizes the
expected scatter of values taken on by X around E{X}. It can be computed as the ex-
pected value of the squared difference between values of the random variable and its
expected value, which corresponds to the second central moment of the distribution
function:

Var{X} = E{(X − E{X})2} =

∞∫

−∞

(x − E{X})2pX(x) dx

In the discrete case one obtains the following rule in analogy to the calculation of the
expected value:

Var{X} =

∞∑

i=1

(xi − E{X})2pi

By means of simple algebraic transformations it can be shown that the variance of a
distribution can be alternatively determined using the following relationship, which
offers advantages especially in practical applications:
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Var{X} = E{X2} − (E{X})2 (3.3)

For random vectors, which in the following — for simplicity — we will be treat-
ing as vector-valued random variables, moments of the distribution can be defined
in the same way as for scalar quantities. The expected value of a random vector
is obtained as direct generalization of the one-dimensional case from the following
relationship:

E{X} =

∫

x∈IRn

x pX(x) dx

The variance of a multivariate distribution is described by the so-called covariance
matrix, which is defined as follows:

Var{X} = E{(X − E{X}) (X − E{X})T }

=

∫

x∈IRn

(x − E{X}) (x − E{X})T pX(x) dx

Instead of the squared difference between a scalar quantity and the expected value,
here the outer product of the respective vector difference is calculated. If the com-
ponents Xi of a random vector X are statistically independent, the main diago-
nal elements of the covariance matrix Var{X} correspond directly to the variances
Var{Xi} of the individual distributions and the remaining matrix elements vanish.

Similar to the case of uni-variate distributions the rule for calculating the covari-
ance matrix can be rewritten as follows:

Var{X} = E{X XT } − E{X} E{X}T (3.4)

3.4 Normal Distributions and Mixture Models

In the discrete case the distribution of a uni- or multivariate random variable can
— in principle — be defined by storing the probabilities P (x) for every outcome
x of the random variable in a table. For continuous distributions, however, such an
approach is not feasible, as the associated densities can be very general continuous
functions. Consequently, in this case it is only possible to work with parametrically
defined models, which also for discrete probability distributions yield considerably
more compact representations.

The most important parametric distribution in the context of Markov models —
and maybe even beyond — is the normal distribution7, which is defined for contin-

7 Frequently, the normal distribution is also referred to as the Gaussian distribution after the
German mathematician Carl Friedrich Gauss (1777 − 1855) who worked extensively on
the subject. The invention of the normal distribution, however, is attributed to the French
mathematician Abraham de Moivre (1667 − 1754).
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uous random variables only. For a uni-variate random variable satisfying a normal
distribution one obtains the following probability density function8:

N (x|μ, σ2) =
1√

2πσ2
e
− (x − μ)2

2σ2 (3.5)

The two parameters μ and σ2 of the probability density function correspond directly
to the expected value and the variance of the normal distribution. For n-dimensional
random vectors one obtains the multivariate Gaussian probability density function
by using a mean vector µ and a covariance matrix C according to:

N (x|µ, C) =
1

√

|2πC|
e
−1

2
(x − µ)T C−1(x − µ)

(3.6)

In this formula C−1 denotes the inverse and |2πC| the determinant of the covariance
matrix scaled by a factor of 2π.

Many natural processes can be described by means of the normal distribution, as
one can frequently assume, that after a sufficiently long time of observation they will
satisfy a Gaussian distribution. However, the normal distribution has only a single
mode — i.e. a global maximum — at the position of its mean and decays expo-
nentially from there on. Therefore, it is said to be a uni-modal probability density
function. When aiming at the parametric representation of distributions with multi-
ple local maxima — or modes — this simple model is no longer sufficient.

It can be shown, however, that even general continuous probability density func-
tions p(x) can be approximated with arbitrary precision by a linear combination of
an infinite number of normal distributions [252]:

p(x)=̂
∞∑

i=1

ci N (x|µi, Ci) with
∞∑

i=1

ci = 1

Generally, however, with such mixture density models only a finite sum of K com-
ponent densities is considered:

p(x) ≈ p(x|θ) =

K∑

i=1

ci N (x|µi, Ci) (3.7)

The parameters of this model — namely the mixture weights ci as well as the mean
vectors µi and covariance matrices Ci of the individual normal densities — are
collected within a parameter set θ. Here, the fact that such a simplified model is easily
manageable in practice by far outweighs the inevitable loss in precision caused by
the coarser density representation.

8 Prior to the introduction of the Euro as the standard currency in many European countries,
this formula together with a graph showing the typical bell-shape of the probability density
function was depicted on the 10-Deutschmark bank note.
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3.5 Stochastic Processes and Markov Chains

Though the results, that are generated by random variables over a longer period of
time vary randomly, the properties of the process generating these results — the
probability distribution associated with the random variable — remain unchanged.
In order to be able to treat a variation of these characteristics mathematically and to
describe the behavior of statistical procedures with time-varying properties, stochas-
tic processes are used.

A stochastic process is defined as a sequence of random variables S1, S2, . . .,
which take on values st from a discrete or continuous domain according to individ-
ual probability distributions. Depending on the type of domain one distinguishes be-
tween either continuous or discrete stochastic processes. As for the topic of this book
only discrete stochastic processes are relevant, all further treatment will be limited
to this simpler case. Additionally, one can also interpret the discrete values gener-
ated by such processes as discrete states being taken on. Therefore, in the context
of discrete stochastic processes one frequently talks about states and state sequences
generated by the processes.

The distribution function corresponding to the random variable St at time t can in
general be dependent on the actual time t itself and the values s1, . . . st−1, st+1, . . .,
which were taken on by the remaining random variables. This very powerful general
concept of a stochastic process is, however, usually restricted in a number of aspects.

A stochastic process is said to be stationary, if the absolute time t does not make
any difference for the behavior, i.e. if the probability distribution is the same for all
random variables St. The process is further said to be causal, if the distribution of the
random variable St is only dependent on past states s1, s2, . . . st−1. The probability
distribution for a discrete, stationary, and causal stochastic process can, therefore, be
written as follows:

P (St = st|S1 = s1, S2 = s2, . . . St−1 = st−1)

If the correspondence between actual values st and the associated random variables
St is uniquely defined by the context this property can be specified in simplified form
as:

P (st|s1, s2, . . . st−1)

The causality of the process constitutes a substantial restriction, which, however,
for processes evolving over time is immediately obvious. Still with time t advanc-
ing, and, therefore, increasing length of the state sequence an arbitrarily long set of
dependencies for the probability distribution can be generated.

The so-called Markov property represents the additional restriction that the de-
pendence of the properties of the process is limited to a finite history — in the case of
a simple stochastic process even to the immediate predecessor state only. The proba-
bility distribution of a discrete, simple, causal, and simple stochastic process, which
is also called a Markov chain of first order, can be written as:

P (st|s1, s2, . . . st−1) = P (st|st−1)
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If the total set of events — i.e. the state space considered — is finite, the necessary
conditional probabilities can be compactly combined into a matrix of state transition
probabilities, which completely describes the property of the process:

A = [aij ] = [P (St = j|St−1 = i)]

Higher-order Markov chains — i.e. with longer time dependencies of the distri-
butions — offer no principal advantages over first-order models. The longer influence
of the context can always be coded into a single state by an appropriate extension of
the state space. However, such a structural reorganization is not always desirable or
possible. Therefore, in the statistical modeling of symbol sequences also Markov
chains of higher order play an important role, as we will be seeing in chapter 6.

3.6 Principles of Parameter Estimation

In order to be able to use a statistical model for the description of certain natural
processes, the free parameters need to be determined in an appropriate manner. One
important prerequisite for this are expectations set up by experts, which essentially
determine the type of model to be used. The second important foundation are con-
crete observations of the process to be described. These can either be real measure-
ments or quantities derived from them.

By taking the selected model type as a basis, estimates of the model parame-
ters can then be computed on this set of sample data. The actual characteristics of
those parameter estimates are, however, also dependent on the kind of optimization
criterion that is applied by the selected estimation procedure.

3.6.1 Maximum Likelihood Estimation

The most widely used method for estimating parameters of statistical models is con-
stituted by the so-called maximum likelihood method (ML). On the basis of a given
set of samples ω = {x1, x2, . . .xT } and depending on the actual type of the model
sought, estimates θ̂ of the model parameters are determined, so that the probability
— or in the continuous case the probability density, respectively — for the observa-
tion of the data will be maximized.

In order to simplify the considerations in the following we will assume that
the sample set corresponds to a sequence of values generated by random variables
X1, X2, . . .XT satisfying an identical probability distribution, the parameters of
which are unknown and to be estimated. The individual random variables Xi are
furthermore assumed to be statistically independent. Therefore, the joint probability
of the data can be obtained as the product of all contributions from the identically
parametrized individual distributions:

p(ω|θ) = p(x1, x2, . . . xT |θ) =

T∏

t=1

p(xt|θ)
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When maximizing this quantity by a variation of the parameter θ not the values of
the random variables but the model parameters themselves represent the variables.
This is made explicit by introducing the so-called likelihood function:

L(θ|ω) = L(θ|x1, x2, . . .xT ) = p(ω|θ)

The goal of the maximum likelihood method is now to maximize the value of the
likelihood function for a given type of stochastic model and a given sample set ω
depending on the parameters θ:

θ̂ML = argmax
θ

L(θ|ω)

In order to solve this problem the standard approach for finding extreme values
of analytical functions can be applied. Here the derivative of L(θ|ω) with respect to
the model parameters θ is computed and equated to zero. In most practical cases one
obtains exactly one extremum, which then corresponds to the ML estimate for the
model parameters sought. In general, however, the result is not uniquely defined.

Often a mathematically simpler treatment of this extreme value problem can be
arrived at by not considering the likelihood function itself but is logarithm instead:

θ̂ML = argmax
θ

ln L(θ|ω)

By applying a monotonic function the extremum remains unchanged. But especially
for statistical models on the basis of exponential probability densities as, e.g., normal
distributions considerable simplifications are obtained.

In order to illustrate the principle of ML estimation we want to consider a simple
example. On a sample set ω = {x1, x2, . . . xT } the parameters of a one-dimensional
normal distribution shall be estimated. The logarithmic likelihood function is then
given by:

ln L(θ|ω) = ln
T∏

t=1

N (xt|μ, σ2) =
T∑

t=1

ln
1√

2πσ2
e
− (xt − μ)2

2σ2

= −T

2
ln(2πσ2) − 1

2σ2

T∑

t=1

(xt − μ)2

As derivatives of this function with respect to the two variables μ and σ2 one obtains:

∂

∂μ
ln L(θ|ω) =

1

σ2

T∑

t=1

(xt − μ)

∂

∂σ2
lnL(θ|ω) = − T

2σ2
+

T∑

t=1

(xt − μ)2

2σ4

By equating those formulas to zero one obtains the following values as estimates μ̂
for the mean and σ̂2 for the variance of the normal distribution sought as delivered
by the ML method:



3.6 Principles of Parameter Estimation 43

μ̂ML =
1

T

T∑

t=1

xt

σ̂2
ML =

1

T

T∑

t=1

(xt − μ̂ML)
2 =

1

T

T∑

t=1

x2
t − μ̂2

ML

Those two quantities are also referred to as the sample mean or the sample covari-
ance matrix of a probability distribution defined by a set of samples only.

In the multivariate case one obtains the following relationships for calculating
estimates of the mean vector µ̂ and the covariance matrix Ĉ of an n-dimensional
Gaussian density:

µ̂ =
1

T

T∑

t=1

xt (3.8)

Ĉ =
1

T

T∑

t=1

(xt − µ̂)(xt − µ̂)T =
1

T

T∑

t=1

xtx
T
t − µ̂µ̂

T (3.9)

If it can be safely assumed that the real distribution of the data corresponds to the
pre-specified model type and the available sample set is large enough, the ML esti-
mation has several advantageous properties. The parameter estimates θ̂ML calculated
for the unknown distribution parameters converge to the real parameters θ∗, if the
size of the sample set approaches infinity:

lim
T→∞

θ̂ML = θ∗

Additionally, the ML estimates exhibit the lowest variance of all possible estimates,
so that no other method can deliver an estimate that lies closer to the real parameters.

3.6.2 Maximum a posteriori Estimation

In contrast to maximum likelihood estimation the so-called maximum a posteriori
estimation (MAP) uses the posterior probability of the model parameters as opti-
mization criterion for a pre-specified type of model and a given sample set.

θ̂MAP = argmax
θ

p(θ|ω)

When rewriting this formula using Bayes’ rule one obtains the following relation-
ship:

θ̂MAP = argmax
θ

p(θ|ω) = argmax
θ

p(ω|θ) p(θ)

p(ω)

The density function p(ω) of the sample data itself is independent of the model pa-
rameters θ sought and can, therefore, be ignored in the maximization process. It
is, however, required to specify expectations about the actual characteristics of the
model parameters in the form of a suitable prior distribution p(θ).
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It is for this reason that the MAP estimation offers advantages over the ML
method if only a rather limited set of sample data is available. The ML estimation is
then still the optimal method for deriving parameter estimates from the data alone.
Due to the limited size of the sample set, however, the results obtained will in general
be rather unreliable, as no prior expectations are taken into account. When applying
the MAP principle those expectations are considered by making the prior distribution
p(θ) of the parameters part of the optimization criterion. Putting it in simple terms,
with this procedure one realizes an optimal combination of two principle strategies
for parameter estimation. Model parameters, for which only few training samples
are available, are mainly determined according to the expectations. Those parame-
ters, however, which can be estimated on large amounts of data, are mainly derived
from the sample data while largely ignoring the expectations.

3.7 Bibliographical Remarks

On the topic of mathematical and computational statistics a huge number of mono-
graphs exist, many of which are of introductory nature or even explicitly intended as
textbooks (cf. e.g. [36, 116, 183, 193, 223]).

Among the many monographs the book by Larsen & Marx [134] stands out be-
cause of its clear presentation and the many illustrative examples. Good introductions
to the fundamental concepts of statistics especially relevant for pattern recognition
tasks, furthermore, can be found in the classic books by Fukunaga [80], and Duda,
Hart, & Stork [50] as well as in [97, Chap. 3].
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Vector Quantization

When processing signal data with a digital computer one is always faced with the
problem that this data on the one hand needs to be stored as compactly as possible
and on the other hand must be represented with sufficient accuracy. As digital rep-
resentations are necessarily always also finite, it is, therefore, the goal of a so-called
vector quantizer to map vectors from the input data space onto a finite set of typ-
ical reproduction vectors. Through this mapping ideally no information should be
lost which is relevant for the further processing of the data. Therefore, one tries to
reduce the effort for storage and transmission of vector-valued data by eliminating
redundant information contained therein.

Such a coding is for example applied to speech signals before transmitting them
over low-bandwidth digital telephone networks. With image data one tries for exam-
ple to store these as compactly as possible in the memory of a digital camera or to
transmit them as feature-length movies to private homes.

Though the meaning of the data is principally not of interest during coding, the
most suitable representations are achieved, if “similar” vectors are grouped together
when encoding the data and “dissimilar” ones are represented separately. From this
point of view the goal of coding corresponds to the one of so-called cluster analysis,
which aims at finding areas of high density of an unknown data distribution and
representing those adequately. The approximate parametric representation of general
probability distributions is usually performed by means of mixture densities on the
basis of normal distributions (cf. section 3.4 p. 38). In this approach the individual
Gaussian densities model the different regions of high density in the data considered
— the so-called clusters. The corresponding mean vectors can then be viewed as the
reproduction vectors of a statistical quantization process.

In the following sections we will first formally define the concept of a vector
quantizer and derive conditions for its optimality. Subsequently, the most important
algorithms for building vector quantizers will be presented. Finally, in section 4.4
the unsupervised estimation of mixture densities will be treated as a generalization
of the vector quantization problem.



46 4 Vector Quantization

4.1 Definition

A vector quantizer — or for short quantizer — Q is defined as a mapping of a k-
dimensional vector space IRk onto a finite subset Y ⊂ IRk:

Q : IRk �→ Y

The set Y = y1, y2, . . . yN of reproduction or prototype vectors yi is also referred
to as the codebook. The size N of the codebook is the essential parameter for char-
acterizing a set of vector quantizers1.

With every vector quantizer Q of size N there always is associated a partition of
the considered vector space IRk into regions or cells R1, R2, . . . RN . In the cell Ri

lie all those vectors x ∈ IRk, which were mapped to the prototype or code word yi

by the quantizer. One obtains the respective cell as the inverse image of the prototype
vector under the mapping Q of the vector quantizer:

Ri = Q−1(yi) = {x ∈ IRk|Q(x) = yi}

As a quantizer Q maps every vector x from the input space to exactly one prototype
yi, it defines implicitly a complete and disjoint partition of IRk into cells Ri, i.e.:

N⋃

i=1

Ri = IRk and Ri ∩ Rj = ∅ ∀i, j with i �= j

The behavior of a quantizer Q is then uniquely defined by the specification of the
codebook Y used and the associated partition {Ri} of the vector space considered.

In practice a vector quantizer can be described as the composition of a coder C
and a decoder D. When introducing an index set I = {1, 2, . . .N} one obtains:

C : IRk �→ I and D : I �→ Y

The quantization rule Q is thus obtained as a concatenation of the coding and the
subsequent decoding step:

Q = D ◦ C

This representation is especially useful if the transmission of compactly coded
data is considered. Then it is in principle sufficient to use a matched pair of coder
and decoder and to transmit only the code word indices of the quantized data over
the channel2. As it needs to be ensured that the decoder uses the correct codebook for
the reconstruction of the data from the quantization indices, in practical applications

1 A vector quantizer with a codebook containing N prototypes is sometimes also referred to
as an N -level quantizer. This designation should, however, not be confused with the notion
of a multi-stage vector quantizer, which for increased efficiency generates the quantization
result in multiple subsequent processing steps.

2 Vector quantizers that use a variable data rate also transmit the quantized indices themselves
in compressed form, e.g., by applying a Huffman coding to them (cf. e.g. [85, Chap. 17,
pp. 631–633]).
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the codebook itself also needs to be communicated in the transmission of the data.
Therefore, the size of the codebook has to be taken into account when considering
the necessary capacity of the transmission channel and the total compression ratio to
be achieved.

A substantial “drawback” of the quantization process is that a vector x ∈ IRk

will be mapped onto a prototype vector y, which will in general be different from the
source vector. Therefore, from every single quantization operation results an individ-
ual quantization error ǫ(x|Q) depending on the quantization rule Q used. This error
can formally be described by using a suitable distance measure d(·, ·) for vector-
valued data3:

ǫ(x|Q) = d(x, Q(x))

General statements about the reproduction quality of a certain quantizer Q can, how-
ever, only be derived from a global consideration of the quantization error. There-
fore, the overall quantization error, which is to be expected in the statistical average,
is computed:

ǭ(Q) = E{ǫ(X |Q)} = E{d(X, Q(X))} =

∫

IRk

d(x, Q(x)) p(x) dx (4.1)

Here it is assumed that the statistical properties of the vectors x considered can be
described by a random variable X , the results of which satisfy a probability density
function p(x).

4.2 Optimality

Though the size of the codebook constitutes the essential configuration parameter
of vector quantizers in practice, conditions for the existence of optimal quantization
rules are always considered for a fixed number N of prototype vectors. Then the
achieved reproduction quality is the only factor determining the quality of the quan-
tizer. Therefore, the general goal of vector quantizer design is to create that quantizer
that with a given fixed codebook size achieves the minimal average quantization error
for a certain distribution of input data.

Since a quantizer — as mentioned above — is defined by specifying the code-
book and the associated partition, starting from both components criteria can be
formulated, how the respective other element has to be chosen in an optimal way. A
closed form description of optimality for both codebook and partition is, however,
not possible.

Nearest-Neighbor Condition

The so-called nearest-neighbor condition describes the optimal selection of the par-
tition {Ri} for a given codebook Y . Here every single cell needs to be determined in

3 When using the Euclidean distance here instead of a general distance measure one obtains
the quantization error ǫ(x|Q) = ||x − Q(x)||.
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such a way that it contains all those vectors x ∈ IRk, which have minimal distance
from the associated prototype vector yi:

Ri ⊆ {x|d(x, yi) ≤ d(x, yj) ∀j �= i} (4.2)

This means that the corresponding quantizer Q maps a vector x onto its nearest
neighbor in the codebook:

Q(x) = yi if d(x, yi) ≤ d(x, yj) ∀j �= i (4.3)

For the case that a vector x has equal distance from two (or more) codebook
vectors it can be mapped arbitrarily to any one of the candidate cells. The resulting
quantization error

d(x, Q(x)) = min
y∈Y

d(x, y) (4.4)

is not affected by the actual choice4.
It can easily be shown that the quantization of vectors by means of the nearest-

neighbor rule (4.3) minimizes the average expected quantization error for a given
codebook Y . Therefore, a lower bound for the term used to compute ǭ(Q) known
from equation (4.1) is derived as follows5:

ǭ(Q) =

∫

IRk

d(x, Q(x)) p(x) dx ≥
∫

IRk

{min
y∈Y

d(x, y)} p(x) dx

The comparison of this result with equation (4.4) shows that by means of the nearest-
neighbor condition exactly this lower bound of the average quantization error will be
reached. Therefore, the partition defined on the basis of equation (4.2) is optimal for
the given codebook.

Centroid Condition

The optimal choice of a codebook Y for a given partition {Ri} is defined by the
so-called centroid condition. For a cell Ri of the partition the optimal reproduction
vector is given by that prototype vector yi that corresponds to the centroid of the
cell:

yi = cent(Ri)

The centroid of a cell R here is defined as that vector y∗ ∈ R from that all other
vectors x ∈ R in the statistical average have minimal distance, i.e.:

4 For such cases it is suggested in [85, p. 350] to perform the mapping onto the codebook
vector with smallest index i.

5 Deriving the lower bound of the average quantization error in this way is possible because
both factors d(·, ·) and p(x) in the integral take on non-negative values. In order to mini-
mize the integral as a whole it is sufficient to chose d(·, ·) to be locally minimal for every
vector x of the input space.
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y∗ = cent(R) if E{d(X, y∗)|X ∈ R} ≤ E{d(X, y)|X ∈ R} ∀y ∈ R

The random variable X again serves to characterize the distribution of the data vec-
tors x in the input space.

If the centroid of R is uniquely defined6, it can be specified as follows:

cent(R) = argmin
y∈R

E{d(X, y)|X ∈ R} (4.5)

For the quite commonly used elliptic symmetric distance measures of the form
(x−y)T C−1(x−y), which contain the Euclidean distance ||x−y|| as a special case
if no scaling of the vector space with an inverse scatter matrix C−1 is performed, the
centroid of a cell is identical to the conditional expected value of the data vectors
limited to the region considered:

cent(R) = E{X |X ∈ R} =

∫

R

x p(x|x ∈ R)dx

As all vectors in the cell R have minimal average distance to the centroid, the use
of the centroid as prototype vector also minimizes the average quantization error for
the cell in question. If all codebook vectors are determined in this way, the quantiza-
tion by means of this codebook minimizes in the statistical average the error caused
by the quantization process for the given partition. The codebook is, therefore, cho-
sen optimally for the partition at hand.

This can easily be shown by calculating the average quantization error, which is
achieved by applying the centroid condition:

ǭ(Q) =
N∑

i=1

∫

Ri

d(x, yi)p(x)dx =

N∑

i=1

P (X ∈ Ri)

∫

Ri

d(x, yi)p(x|x ∈ Ri)dx

The total error is obtained by integration over all components resulting from the
respective cells and summation over all cells in the partition. This formula can be
rewritten by introducing the prior probabilities P (X ∈ Ri) of the cells and the
conditional probability densities p(x|x ∈ Ri) of vectors limited to a specific cell.

As all cells are disjoint and the sum runs over non-negative terms only, all N
partial error terms can be minimized independently:

∫

Ri

d(x, yi)p(x|x ∈ Ri)dx = E{d(X, yi)|X ∈ R} −→ min!

As the comparison with the definition of the centroid in equation (4.5) shows, this
minimization can exactly be achieved by choosing the centroid of every cell Ri as

6 Depending on the distribution of the vectors within the cell considered, it may happen that
the centroid in certain cases is not uniquely defined. The minimum of the mean distance
is then achieved in the same way for different prototype vectors. As with the choice of the
nearest neighbor the centroid can then be selected arbitrarily among the candidates without
affecting optimality.
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its associated prototype vector yi, because exactly this choice minimizes the average
distance to the other vectors in the cell.

Consequently, for an optimal quantizer codebook and partition are immediately
dependent on each other. For the parametrization of the procedure, therefore, the
specification of the codebook is sufficient. The partition of the input space results
implicitly from the optimal choice of the quantization operation by means of the
nearest-neighbor rule. In practice it is, therefore, quite common to conceptually iden-
tify the codebook with the associated vector quantizer.

4.3 Algorithms for Vector Quantizer Design

Though in the previous sections conditions were specified for the optimality of a par-
tition for a given codebook or of a codebook for a pre-defined partition, respectively,
no analytical closed form solution exists for deriving an optimal vector quantizer of
given size for some distribution of data vectors. Nevertheless, iterative methods can
be defined that starting from an initial quantizer optimize it step by step and thus
try to determine an approximately optimal vector quantizer. All those methods, how-
ever, can not guarantee to actually find the optimal solution of the problem. They are,
therefore, inherently sub-optimal.

Another problem in the design of vector quantizers lies in the fact, that the quality
of the quantizer depends on the probability density p(x) of the data vectors consid-
ered. In practice this distribution is, however, usually not known and can, therefore,
not be described exactly in parametric form. Yet one always assumes that a suitable
sample set ω = {x1, x2, . . . xT } of example vectors is available. Based on this data
the parameters of the actual distribution function can be approximated. In the fol-
lowing treatment of the algorithms for vector quantizer design this sample set will
always be considered instead of the total input space IRk.

Lloyd’s Algorithm

The idea behind the method known as Lloyd’s algorithm lies in the exploitation of the
dual view on vector quantizers. By means of the procedures defined in the previous
section alternatingly the partition and the codebook, respectively, are determined in
an optimal way. By applying one iteration of this method an optimal quantizer will
in general not be created. It can, however, be shown that an iterative application of
the method results in a sequence of vector quantizers, which achieve ever decreasing
average quantization errors.

The algorithm, which is summarized in figure 4.1, generates for a given sample
set a vector quantizer of size N , i.e. a codebook containing N prototype vectors.
At the beginning of the procedure a suitable initial codebook Y 0 is chosen, which,
however, needs to be done heuristically. Though the choice of this starting point
obviously influences the optimization, Useful results can be achieved in practice by
randomly selecting N vectors from the sample set. This disadvantage of Lloyd’s
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Given a sample set ω = {x1, x2, . . . xT } of example vectors, the desired code-
book size N , and a lower bound Δǫmin for the relative improvement of the quan-
tization error.

1. Initialization
choose a suitable initial codebook Y 0 of size N

(e.g. by randomly selecting N vectors y0
i from ω)

initialize iteration count m ← 0
2. Optimization of the Partition

for the current codebook Y m determine the optimal partition by classifying
all vectors xt with t = 1 . . . T into cells
Rm

i = {x|ym
i = argmin

y∈Y m

d(x,y)}

also determine the average quantization error

ǭ(Y m) = 1
T

T
P

t=1

min
y∈Y m

d(xt, y)

3. Codebook Update
for all cells Rm

i with i = 1 . . . N calculate new reproduction vectors
ym+1

i = cent(Rm
i )

these constitute the new codebook Y m+1 = {ym+1
i |1 ≤ i ≤ N}

4. Termination
calculate the relative decrease of the quantization error with respect to the last
iteration

Δǫm =
ǭ(Y m−1) − ǭ(Y m)

ǭ(Y m)
if the relative decrease was large enough, i.e. Δǫm > Δǫmin

set m ← m + 1 and continue with step 2
otherwise Stop!

Fig. 4.1. Lloyd’s Algorithm for the design of vector quantizers

algorithm is largely avoided by the algorithm that will be presented in the following
section.

In the next processing step the optimal partition of the sample set is computed for
the current codebook Y m. The mapping of every element xt ∈ ω onto a cell of the
partition corresponds to its classification into that class Rm

i , for which the data ele-
ment considered has minimal distance from the associated prototype vector ym

i . As
the termination of the procedure is decided based on the quantization error achieved,
this quantity is also computed during the classification step. Starting from the newly
computed partition subsequently the updating of the codebook can be performed.
The new codebook simply consists of all the centroids of the optimally chosen cells.
The algorithm terminates, if no sufficient relative improvement of the quantization
error is achieved any more by the optimization. Here the lower bound Δǫmin is a
parameter of the method, which needs to be specified by the user7.

7 Own experiments have shown that a relative improvement of the quantization error of less
than a thousandth does not result in an improvement of the codebook which is relevant for
practical applications.
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Given a sample set ω = {x1, x2, . . . xT } of example vectors, the desired code-
book size N , and a lower bound Δǫmin for the relative improvement of the quan-
tization error.

1. Initialization
choose a suitable initial codebook Y 0 of size N0

(e.g. trivially as Y 0 = {cent(ω)} with N0 = 1)
initialize iteration count m ← 0

2. Splitting
generate from the current codebook Y m a new codebook
with Nm+1 = 2 Nm reproduction vectors
Y m+1 = {y1 + ǫ, y1 − ǫ, y2 + ǫ, y2 − ǫ, . . . yNm + ǫ, yNm − ǫ}
using a suitable small distortion vector ǫ

3. Optimization
optimize the newly created codebook Y m+1 by applying Lloyd’s algorithm

4. Termination
if the desired number of codebook vectors is not yet reached

set m ← m + 1 and continue with step 2
otherwise Stop!

Fig. 4.2. LBG Algorithm for the design of vector quantizers

The by far major part of the effort caused by this method results from the clas-
sification of all vectors in the sample set during the optimization of the partition in
step 2. The effort necessary for the calculation of the updated codebook, however, is
negligible8. It, therefore, makes sense to carry out this step in any case, even though
the average quantization error computed corresponds to the previous codebook.

LBG Algorithm

The most problematic aspect of Lloyd’s algorithm is its initialization. It is, therefore,
a quite obvious goal to modify this part of the algorithm such that the results can
no longer be adversely affected by a bad choice of the initial codebook. The LBG
algorithm, which was named after the initials of its inventors Linde, Buzo & Gray
[144], therefore, does not construct the desired vector quantizer of size N directly,
but generates a sequence of quantizers with increasing number of codebook vectors.

The algorithm, which is summarized in figure 4.2, starts with the choice of an
initial codebook. As at this time the full set of reproduction vectors does not need
to be available, simple and robust possibilities exist for this choice to be made. An
optimal choice is possible when considering the use of a trivial quantizer which pos-
sesses a single reproduction vector only. As then the whole sample set corresponds

8 When using the Euclidean distance only the sample mean of the cells needs to be deter-
mined. One obtains the centroid, therefore, according to cent(R) = 1

|R|

P

x∈R
x. The

summation over the vectors contained in the respective cell can easily be performed incre-
mentally during the classification, so that finally only the normalization on the total number
of vectors is necessary.
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to the single cell of the associated partition, this trivial codebook consists of exactly
the centroid of the sample set9.

In order to reach the desired codebook size in the course of the procedure the
algorithm applies a method for splitting up existing codebook vectors into two re-
spective new prototypes. Therefore, a suitable distortion vector ǫ of small Euclidean
norm will be added to or subtracted from all former prototype vectors resulting in
two new codebook vectors yi +ǫ and yi −ǫ each that replace the original prototype.
In total this operation yields a codebook that contains twice as many reproduction
vectors as the original one10.

Of course it can not be expected that the codebook generated in this way is op-
timal with respect to the quantization error achieved. Therefore, in the third step
of the procedure the current codebook is optimized by applying Lloyd’s algorithm
(steps 2 to 4) known from the previous section. If the desired codebook size is not yet
reached, the splitting of codebook vectors is again applied to the optimized quantizer.

Compared to the method after Lloyd the LBG algorithm offers the important
advantage that the initialization process is clearly defined. Thus it is avoided that
a random but unfortunate choice of the initial codebook causes the iterative opti-
mization of the quantizer to reach an unsatisfactory local optimum only. Just the
distortion vector necessary for splitting codebook vectors needs to be specified in
a suitable way. The method also reduces the computational costs of the necessary
classification as increasingly large codebooks are created step by step. As long as
only rough estimates of the parameters of the vector quantizer are available in the
beginning of the optimization, the method works on very small codebooks. These
can be decoded much more efficiently than the final complete quantizer. During the
continuous growth of the codebook refined and more elaborate models are used only
when a better approximation of the desired quantization rule is already available.

k-Means Algorithm

Both Lloyd’s algorithm and the LBG algorithm are well suited for the design of vec-
tor quantizers. However, both require the repeated expensive classification of all data
vectors in the sample set during the necessary optimization steps. In contrast, with
the so-called k-means algorithm there exists a method that is able to generate an
approximately optimal codebook with only a single pass through the data to be pro-
cessed. The procedure that was developed by MacQueen [149] actually results from
the idea to use not a single sample mean but multiple means for the characterization
of some distribution of data vectors. Yet these mean vectors correspond directly to
the reproduction vectors of a vector quantizer of size k.

9 In order to speed up the procedure in the starting phase one can also choose a small code-
book containing N0 ≪ N randomly selected vectors without adversely affecting the final
result of the algorithm.

10 It is also possible to split up only so many prototypes that the desired codebook size is
reached, or only those ones generating an especially high local quantization error. In both
cases it needs to be assured, however, that the method does not create too small cells.
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Given a sample set ω = {x1, x2, . . . xT } of example vectors and the desired
codebook size N .

1. Initialization
choose the first N vectors of the sample set as initial codebook Y 0

Y 0 = {x1, x2, . . . xN}
initialize iteration count m ← 0

2. Iteration
for all vectors not yet processed xt, N < t ≤ T

a) Classification
for xt determine the optimal reproduction vector ym

i in the current
codebook Y m

ym
i = argmin

y∈Y m

d(xt, y)

b) Partition Update
determine the new partition by updating the cell of the codebook vector
selected

Rm+1
j =

j

Rm
j ∪ {xt} if j = i

Rm
j otherwise

c) Codebook Update
determine a new codebook by updating the prototype of the cell modi-
fied in the previous step

ym+1
j =

j

cent(Rm+1
j ) if j = i

ym
j otherwise

Fig. 4.3. k-means algorithm for the design of vector quantizers

Figure 4.3 shows the associated algorithm. In order to be consistent in notation
with the other methods presented, we will denote the size of the codebook by N and
not by k as in the original work.

As it is the goal of the method to process every data vector xt only once, one
obtains a surprisingly simple initialization rule. The initial codebook just consists of
the first N vectors of the sample set. The following processing steps remind us of
the two optimization phases of Lloyd’s algorithm. However, in the k-means method
they are applied to every vector independently. Thus a vector xt is first mapped onto
the optimal reproduction vector ym

i in the current codebook Y m according to the
nearest-neighbor rule. Immediately afterwards the parameters of the vector quantizer
are updated. Therein it is assumed that by mapping the vector xt onto Rm+1

i only
this very cell is changed. Therefore, it is sufficient to compute a new reproduction
vector ym+1

i for the modified cell. After a single pass through the sample set the
newly created codebook is available.

It might be suspected that such a codebook estimation procedure does not lead
to satisfactory results. In practice, however, the method is surprisingly powerful and
largely more efficient than Lloyd’s algorithm or the LBG method. When quality is
concerned the vector quantizers generated by the k-means algorithm are generally
not inferior to those created by the other methods. If the sample set consists of a
sequence of vectors generated randomly and independently of each other, it can be
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shown that the method converges asymptotically against the optimal solution, pro-
vided that the size of the sample set approaches infinity [149]. In practice this means
that the algorithm works especially well for large sample sets, which exhibit no or
only very limited correlation between subsequent vectors.

Though the k-means algorithm is fundamentally different from the method at-
tributed to Lloyd, the latter is frequently incorrectly referred to as the k-means al-
gorithm11. When efficiency is concerned the method largely outperforms all iterative
optimization methods as Lloyd’s algorithm or the LBG algorithm with its linear com-
plexity in the size of the sample set. Still the quality of the resulting vector quantizers
is comparable.

4.4 Estimation of Mixture Density Models

The result of a vector quantization method describes a given data distribution only by
means of the N reproduction vectors within the codebook created. A substantially
more precise representation is obtained when using a mixture density model, as then
also the characteristics of the local scatter of the data can be described. Because of
the rather simple mathematical treatment usually normal distributions are used as
components of such a model (cf. also section 3.4).

The simplest though also qualitatively worst method for the estimation of such
a mixture model for a given sample set directly builds upon the results of a vector
quantization process. After the codebook generation is finished just the parameters
of a normal distribution are estimated for all cells Ri of the final partition. The nec-
essary mean vector µi is identical to the centroid yi, which is already known. Merely
the sample covariance matrix needs to be calculated for the respective cell (cf. equa-
tion (3.9) page 43):

Ci =
∑

x∈Ri

(x − µi)(x − µi)
T

Considerably better results are achieved, if the distortion of the vector space
caused by the covariance matrix is already considered during the quantization pro-
cess. The so-called Mahalanobis distance represents the associated extension of the
Euclidean distance measure.

dMahalanobis(x, µ) = (x − µ)T C−1(x − µ)

As the comparison with equation (3.6) on page 39 shows, this formula is almost
identical with the exponential term of a normal density function. It is, therefore, only
a small step ahead to consider such a distribution directly in the quantization process.

As, however, a density function in contrast to a distance represents a measure of
membership, the rule for mapping vectors to codebook entries needs to be modified.
A vector xt is now mapped to that cell Ri, for which the corresponding normal
distribution N (x|µi, Ci) yields the maximal density value:

11 See also the bibliographical remarks in section 4.5 on page 59
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Ri = {x|i = argmax
j

N (x|µj , Cj)}

This modification of the quantization rule makes it possible that mixture density
models can be created with traditional methods for vector quantizer design. However,
the algorithms still assume that the average quantization error should be minimized,
which is not an appropriate optimization criterion for a probability distribution.

This can be made clear when considering the fact that for the calculation of the
parameters of the normal distributions only vectors from a limited region — the
respective cell — are used. The density function itself is, however, defined for the
complete vector space and for all possible vectors yields non-negative density valued,
which may become arbitrarily small though.

EM Algorithm

For the correct estimation of Gaussian mixture models the so-called EM algorithm
[42] is used. It defines a very general method for the iterative optimization of statis-
tical models with hidden states or variables. As the general treatment of this method
is rather cumbersome and sometimes not quite intuitive, we will focus here on the
concrete variant of the algorithm, which is used for estimating mixture models on
the basis of normal distributions. A model with N component densities is defined as
follows (cf. equation (3.7) page 39):

p(x|θ) =

N∑

i=1

ci N (x|µi, Ci)

Rather than representing a clearly bounded region or cell within the vector space
the normal distributions statistically represent the distribution of similar vectors or
patterns. The set of parameters consisting of the prior probabilities ci of the individ-
ual pattern classes and the associated density parameters µi and Ci will be taken
together and denoted by θ.

Principally the EM algorithm always has the goal of maximizing the probability
of the observed data ω = {x1, x2, . . .xT } depending on the respective model. The
fact that the dependent variable in this quantity is the set of parameters θ and not the
sample set is reflected by the transition to the likelihood function:

L′(θ|ω) = p(x1, x2, . . .xT |θ)

As the further application of a monotonic function does not alter the result of the
maximization and as the treatment of normal distributions is considerably simplified
by taking the logarithm, usually the logarithm of L′(θ|ω) is used, which for simplic-
ity we will be referring to as the likelihood function in the following:

L(θ|ω) = lnL′(θ|ω) = ln p(x1, x2, . . .xT |θ) =
∑

x∈ω

ln p(x|θ)
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Given a sample set ω = {x1, x2, . . . xT } of example vectors, the desired code-
book size N , and a lower bound ΔLmin for the relative improvement of the likeli-
hood.

1. Initialization
choose initial parameters θ0 = (c0

i , µ
0
i , C

0
i ) of the mixture model

initialize iteration count m ← 0
2. Estimation

for every vector x ∈ ω calculate estimates of the posterior probabilities of the
pattern classes using the current models θm

P (ωi|x, θm) =
c
m
i N (x|µm

i , C
m
i )

X

j

c
m
j N (x|µm

j , C
m
j )

calculate the likelihood of the data for the current model θm

L(θm|ω) = ln p(x1, x2, . . . , xT |θ
m) =

P

x∈ω

ln
P

j

cm
j N (x|µm

j , Cm
j )

3. Maximization
calculate updated parameters θm+1 = (cm+1

i , µm+1
i , Cm+1

i )

c
m+1
i =

X

x∈ω

P (ωi|x, θ
m)

|ω|

µ
m+1
i =

X

x∈ω

P (ωi|x, θ
m) x

X

x∈ω

P (ωi|x, θ
m)

C
m+1
i =

X

x∈ω

P (ωi|x, θ
m) xx

T

X

x∈ω

P (ωi|x, θ
m)

− µ
m+1
i (µm+1

i )T

4. Termination
calculate the relative change in the likelihood with respect to the previous
iteration

ΔLm =
L(θm|ω) − L(θm−1|ω)

L(θm|ω)
if the relative improvement was large enough, i.e. ΔLm > ΔLmin

let m ← m + 1 and continue with step 2
otherwise Stop!

Fig. 4.4. EM algorithm for the estimation of mixture models.

The name of the EM algorithm is derived from its two main processing steps.
First, the values of the non-observable probabilistic quantities are estimated depend-
ing on the current model and the given data. This step is called expectation or simple
E-step. Afterwards, new model parameters are calculated, which locally optimize the
objective function, i.e. the likelihood of the model. This second phase is referred to
as the maximization or M-step.

In order to be able to apply the EM algorithm for the estimation of mixture mod-
els a sample set of example data and the desired number of component distributions
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must be given. The hidden variables here consist of the unknown correspondences
between data vectors and normal distributions or pattern classes, respectively.

For the initialization of the procedure, which is summarized in figure 4.4, first
some suitable initial parameters of the mixture model need to be determined. As the
complexity of the model is significantly higher compared to a vector quantizer and,
therefore, the method is extremely sensitive to the choice of the initial model, a ran-
dom initialization is no longer possible. However, a suitable initial model can easily
be determined with one of the two simpler methods described earlier. Besides the
initial parameters of the component densities µ0

i and C0
i only the mixture weights

c0
i = |Ri|

P

j |Rj| need to be defined, which correspond to estimates of the prior proba-

bilities P (ωi) of the pattern classes ωi.
In the E-step probabilities for the mapping of every vector onto one of the code-

book classes ωi are derived depending on the current model θm. These posterior
probabilities can be calculated for arbitrary vectors x ∈ ω in the following way:

P (ωi|x, θm) =
P (ωi|θm) p(x|ωi, θ

m)

p(x|θm)
=

P (ωi|θm) p(x|ωi, θ
m)

∑

j P (ωj |θm) p(x|ωj, θm)

=
cm
i N (x|µm

i , Cm
i )

∑

j cm
j N (x|µm

i , Cm
i )

Here first Bayes’ rule is applied to rewrite the expression. As the overall density
function p(x|θm) is exactly described by the current model it can be substituted by
the mixture density itself in the second rewriting step.

Furthermore it makes sense to compute the likelihood of the current model as a
sum over the logarithmic density values of the mixture during the estimation of the
posterior probabilities.

Starting from these probabilities for the mapping between data vectors and pat-
tern classes, in the next step, the M-step, new parameters of the mixture density are
derived such, that the likelihood of the current model is maximized given the sample
data. One obtains the following relationships for computing estimates of the prior
probabilities ci, the mean vectors µi, and the associated covariance matrices Ci:

ci =

∑

x∈ω

P (ωi|x)

|ω|

µi =

∑

x∈ω

P (ωi|x)x

∑

x∈ω

P (ωi|x)

Ci =

∑

x∈ω

P (ωi|x)(x − µi)(x − µi)
T

∑

x∈ω

P (ωi|x)
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In the same way as in the design of vector quantizers it is also necessary to
decide in the EM algorithm about the termination of the procedure in a suitable way.
In analogy to the termination criterion used for Lloyd’s algorithm this decision can
be based on the relative improvement of the likelihood L(θ|ω), which is obtained for
the current model parameters given the sample set.

In contrast to classical vector quantization techniques the mapping of data vectors
to pattern classes — i.e. the individual component densities — is not performed via
the binary decision of a classifier but probabilistically instead. The estimation of
mixture densities with this method is, therefore, sometimes also referred to as “soft
vector quantization”.

4.5 Bibliographical Remarks

An in-depth treatment of the field of vector quantization can be found in the fun-
damental monograph by Gersho & Gray [85], which the presentation of the topic
in this chapter was partially based on [85, Chap. 10, pp. 309–340 and Chap. 11,
pp. 345–400]. A good summary of the most important aspects can also be found in
[97, Chap. 4.4, pp. 163–175].

The k-means algorithm for the design of vector quantizers was developed by
MacQueen [149]. After the initials of its inventors Linde, Buzo & Gray the LBG al-
gorithm was named [144]. Descriptions of this method can also be found in [85,
pp. 361–362], [81, pp. 395–396] or [97, pp. 169–170]. In contrast the origin of
Lloyd’s algorithm is not completely clear. Later descriptions of the method can be
found, e.g., in [144] or [85, pp. 362–370]. In the literature the method is frequently
incorrectly referred to as k-means algorithm (cf. e.g. [196, p. 125], [105, p. 11], [81,
pp. 394–395], and [97, pp. 166–169]) though it is fundamentally different from this
method (see also section 4.3 page 50). The EM algorithm for the parameter estima-
tion of statistical models with hidden variables goes back to work of Dempster, Laird
& Rubin [42]. Summarizing descriptions of this very general method and proofs of
its convergence can, e.g., be found in [95, pp. 29–35] and [97, pp. 170–175].





5

Hidden Markov Models

In the field of pattern recognition signals are frequently thought of as the product of
sources that act statistically. The goal of the analysis of such signals, therefore, is to
model the statistical properties of the assumed signal sources as exactly as possible.
As a basis of the model building merely the observed example data and assump-
tions about limitations in the model’s degrees of freedom are available. However, the
model to be determined should not only replicate the generation of certain data as
exactly as possible but also deliver useful information for segmenting the signals in
some meaningful units.

Hidden Markov models are able to treat both above-mentioned modeling aspects.
In a two-stage stochastic process information about the segmentation can be derived
from the internal states of the models, whereas the generation of the signal data itself
takes place in the second stage.

The great popularity of this modeling technique results from its successful appli-
cation and consequent further development in the field of automatic speech recog-
nition. In this area of research hidden Markov models have effectively superseded
all competing approaches and constitute the dominating processing paradigm. Their
ability to describe processes or signals evolving over time especially well has in par-
ticular caused that the also very successful technique of artificial neural networks
is only in very few cases used for speech recognition and comparable segmentation
problems. However, there exist a number of hybrid systems consisting of a combina-
tion of hidden Markov models and artificial neuronal networks that try to make use
of the advantages of both modeling techniques (see section 5.8.2).

5.1 Definition

Hidden Markov models (HMMs) describe a two-stage stochastic process. The first
stage consists of a discrete stochastic process, which is stationary, causal, and sim-
ple. The state space considered is finite. Thus the process probabilistically describes
the state transitions within a discrete, finite state space. It can be visualized as a finite
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state automaton with edges between any pair of states, which are labeled with tran-
sition probabilities. The behavior of the process at a given time t is only dependent
on the immediate predecessor state and can be characterized as follows:

P (St|S1, S2, . . . St−1) = P (St|St−1)

In the second stage then for every point in time t additionally an output or emission
Ot is generated. The associated probability distribution is only dependent on the
current state St and not on any previous states or emissions1.

P (Ot|O1 . . . Ot−1, S1 . . . St) = P (Ot|St)

This sequence of emissions is the only thing that can be observed of the behavior of
the model. In contrast, the state sequence taken on during the generation of the data
can not be observed. It is so to speak “hidden” from which the term hidden Markov
models is derived. From the outside view on the model — i.e. the observation of
its behavior — also the more common reference to the sequence O1, O2 . . .OT of
emissions as observation sequence is motivated. Individual elements of this sequence
we will be calling observations in the following.

In the pattern recognition literature the behavior of HMMs is always considered
for a finite time interval of length T . For the initialization of the model at the begin-
ning of that period additional start probabilities are used that describe the probability
distribution of the states at time t = 1. An equivalent termination criterion is usually
missing, however. The actions of the model are, therefore, terminated as soon as an
arbitrary state at time T is reached. Neither a statistically nor a declarative criterion
is used to specifically mark end states2.

A hidden Markov model of first order, which is usually denoted as λ, is, therefore,
completely described by

• a finite set of states {s|1 ≤ s ≤ N} that in the literature are usually only referred
to by their indices,

• a matrix A of state transition probabilities

A = {aij |aij = P (St = j|St−1 = i)}

• a vector π of start probabilities

π = {πi|πi = P (S1 = i)}

1 In the tradition of research at IBM HMMs are described in a slightly different way. There
emissions occur during state transitions, i.e. at the edges of the model (cf. e.g. [105, p. 17]).
With respect to its expressive power this formulation is, however, completely equivalent to
the one which is used in this book and also throughout the majority of the literature, as is
also shown in [105, p. 35–36].

2 In [95, p. 150] analogously to the start probabilities also termination probabilities are de-
fined. The HMM architectures used for analyzing biological sequences usually contain
special non-emitting start and end states (see also section 8.4 page 133).



5.2 Modeling Emissions 63

• and state specific probability distributions

{bj(ok) | bj(ok) = P (Ot = ok|St = j)} or {bj(x) | bj(x) = p(x|St = j)}

for the output of the model

However, the output distributions need to be distinguished depending on the type
of emissions the model is generating. In the simplest case the outputs are generated
from a discrete inventory {o1, o2, . . . oM} and, therefore, have a symbolic nature.
The quantities bj(ok) then represent discrete probability distributions which can be
grouped together in a matrix of output probabilities:

B = {bjk|bjk = P (Ot = ok|St = j)}

For this choice of output modeling one obtains so-called discrete HMMs.
If the observations are vector valued quantities x ∈ IRn instead, the output dis-

tributions are described on the basis of continuous probability density functions:

bj(x) = p(x|St = j)

Current applications of HMMs for problems of signal analysis exclusively use these
so-called continuous HMMs, even though the necessity to model continuous distri-
butions significantly increases the complexity of the formalism

5.2 Modeling Emissions

The description of the model’s emissions by discrete probability distributions is nor-
mally used in the literature for the introduction of HMMs. This variant is also applied
to the analysis of biological sequences, as there one can work with discrete symbolic
inventories of either the four bases used to build DNA strands or the 20 possible
amino acids (cf. e.g. [127]). For applications in the field of signal processing, how-
ever, discrete models are hardly considered any more, as they require the use of a
vector quantizer, which converts continuous feature representations of speech sig-
nals or handwritten script into discrete observation sequences prior to the analysis.

Avoiding this quantization step or including it into the model building process,
respectively, considerably increases the expressive power of the HMM formalism. In
order to achieve this it is, however, necessary to represent continuous distributions
over IRn in a suitable way. Here a direct representation by the empirically given dis-
tribution as in the discrete case is not possible. Parametric representations are, how-
ever, only known for a small number of families of distributions, as e.g. the normal
or Gaussian distribution. For the desired application area such “simple” models can
not be used, as — without exception — they represent uni-modal distributions. With
only a single region of high density in the area of the expected value only extremely
“well-behaved” data can be described.

In order to be able to nevertheless deal with arbitrary continuous distributions
with multiple modes or regions of high density in general, approximative techniques
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are applied. The most well known and most widely used method consists in the use
of mixture densities on the basis of Gaussian densities. It can be shown that every
general continuous probability distribution p(x) can be approximated to arbitrary
precision with a linear combination of, in general, infinitely many component normal
distributions [252]:

p(x) =̂

∞∑

k=1

ck N (x|µk, Ck) ≈
M∑

k=1

ck N (x|µk, Ck)

If a finite number M of mixtures is used for the approximation, an error results,
which, however, can be kept small by using a suitable number of component den-
sities. As a normalization constraint the mixture weights, which may vary between
zero and one, need to sum up to unity:

∑

k

ck = 1 with 0 ≤ ck ≤ 1 ∀k

The general form of continuous HMMs, therefore, uses one mixture density per state
j for the description of the output probability density function:

bj(x) =

Mj∑

k=1

cjk N (x|µjk, Cjk) =

Mj∑

k=1

cjk gjk(x) (5.1)

The number Mj of mixture components used may vary from state to state. Each of
the normal distributions, which will be denoted by gjk(x) in the following, further-
more possesses an individual set of parameters consisting of a mean vector µjk and
a covariance matrix Cjk .

A continuous HMM can thus also be considered as a discrete model with a state
specific “soft” quantization stage. The discrete output distributions can be found in
the mixture weights, and the component densities used define the quantization rule.
In contrast to a discrete HMM here no “hard” decisions are made, but the density
values of all normal distributions used are incorporated into the calculation.

As for continuous HMMs the number of parameters is drastically increased with
respect to the discrete case, a number of techniques was developed to reduce the
number of parameters by jointly using parts of the model. Such methods are usu-
ally referred to as the tying of parameters. They will be treated in greater detail in
section 9.2 from page 152 onward.

The most well-known of these approaches are the so-called semi-continuous
HMMs developed by Huang and colleagues, which are frequently referred to as tied-
mixture models [94, 95]. In such models only a single set of component densities is
used to construct all state-specific output probability densities:

bj(x) =

M∑

k=1

cjk N (x|µk, Ck) =

M∑

k=1

cjk gk(x) (5.2)
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This global set of mixture components gk(x) is frequently also referred to as the
codebook, as in this variant of the model the relationship to a discrete model with ini-
tial quantization stage becomes the most obvious. The definition of the output prob-
ability densities is completely analogous to the general continuous case. However,
there is no longer a state dependency of the parameters of the underlying normal dis-
tributions. Additionally, in semi-continuous HMMs every mixture density consists
of the same number M of baseline distributions.

5.3 Use Cases

The application of HMMs for pattern recognition tasks is always backed by the fun-
damental assumption that the patterns considered are — at least in principle — out-
puts of a comparable stochastic model and that the properties of this model can be
described reasonably well by HMMs.

A relevant question for a given model is, therefore, how well this model describes
some pattern — i.e. a certain observation sequence. For this purpose the production
probability P (O|λ) of the data for a known model — or a reasonable approximation
of it — needs to be computed. On the one hand this quantity indicates, how well some
model λ that was built for describing certain example data O = O1, O2, . . . OT is
capable of representing the statistical properties of this data. On the other hand it can
be used as the basis for a classification decision.

If two or more HMMs λi are available, which resemble the statistical properties
of patterns from different pattern classes Ωi, some given sequence of test data O can
be classified into that class Ωj , for which the posterior probability P (λj |O) becomes
maximum:

P (λj |O) = max
i

P (O|λi)P (λi)

P (O)
(5.3)

When evaluating this expression, the probability P (O) of the data itself represents
a quantity irrelevant for the classification — or the maximization of P (λi|O) —
because it is independent of λi and, therefore, constant. Thus for determining the
optimal class it is sufficient to consider the denominator of equation (5.3) only:

λj = argmax
λi

P (λi|O) = argmax
λi

P (O|λi)P (λi)

P (O)
= argmax

λi

P (O|λi)P (λi)

However, for this procedure in addition the prior probabilities P (λi) of the indi-
vidual models need to be specified. For the sake of simplicity these are, therefore,
frequently neglected, so that the classification decision is solely based on the produc-
tion probability P (O|λi).

Such an approach can be applied to the classification of isolated sample patterns
that do not need to be further segmented into smaller units. The models for describing
the different pattern classes are defined completely independently of each other. In
this way, e.g., isolated word recognition tasks can be solved or local similarities of
biological sequences can be analyzed (cf. [52, pp. 87–91]).
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The mere evaluation of the production probability makes, however, only classi-
fication decisions on completely segmented data possible. Therefore, in the context
of HMM technology a different model of usage is of greater importance, which al-
lows for the integrated segmentation and classification of sequences of sample data.
Therein one assumes that the possibility exists to associate individual meaningful
units of a larger observation sequence with partial structures within a larger model.
Usually this is achieved by a constructive approach. First, small models for certain
elementary segmental units are created, as e.g. for speech sounds, handwritten char-
acters, or short amino-acid sequences. These can then be combined to form larger
compound models taking into account certain restrictions about the sequencing pos-
sibilities. In automatic speech recognition thus from single speech sounds models for
words and finally whole spoken utterances are constructed. In the field of bioinfor-
matics models for families of proteins can be built in a similar way.

For such a complex HMM the production probability P (O|λ) yields hardly any
relevant information about the data considered. Instead the internal processes in-
volved in the generation of the observation sequence O = O1, O2, . . . OT using the
model λ need to be uncovered, i.e. the associated state sequence s = s1, s2, . . . sT .
On this basis inferences about the partial models involved and also a segmentation of
the observation sequence into these units can be achieved. In a stochastic formalism
inferences can, however, always be drawn in a probabilistic way only. Therefore
one determines that state sequence s∗ that maximizes the production probability
P (O, s∗|λ) of the data for a given model λ. This procedure is usually referred to
as the decoding of the model, as the generation of observations by the model can be
viewed as the coding of the internal state sequence into observable entities.

Finally, the important question needs to be clarified, how a model can be built
at all, that sufficiently enough resembles the statistical properties of certain data, in
order to be used for purposes of classification or recognition. Though it can be eval-
uated by considering the production probability, how well a certain model describes
given data, no algorithm is known, which could generate the optimal model for a
certain task on the basis of example data. It is merely possible to improve an existing
model λ such that the optimized model λ̂ better resembles — in the statistical sense
— the example data used. As with most iterative optimization methods also here the
choice of a suitable initial model is of essential importance.

The use cases outlined above are frequently described as three fundamental prob-
lems for HMMs in the literature3. The so-called evaluation problem is concerned
with the question, how for a given model the probability can be determined to gen-
erate a given observation sequence with this very model. The drawing of inferences
about the internal processes within HMMs is the aim of the so-called decoding prob-
lem. The challenging search for the model which will be optimal to represent the
properties of certain example data is finally called the training problem.

3 The idea of characterizing the possible use cases of HMMs in the form of three funda-
mental problems is said to be going back to Jack Ferguson, Institute for Defense Analyses,
Alexandria, VA, USA, as Rabiner states without further reference in [195].
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When following classical presentations of HMMs, which were influenced by
[195] in the majority of cases, for each of these problem there exists an algorithm for
its solution. In this view it is, however, totally ignored that in many cases alternative
methods exist and that some algorithms can also be used for the solution of different
tasks. Therefore, in the following we will break up the quite restrictive structuring
of HMM theory into pairs of problems and associated algorithms. Instead, the pre-
sentation will be oriented at the respective use case, i.e. we will present methods
for evaluation and decoding of HMMs as well as for the estimation of the models’
parameters.

5.4 Notation

In the literature a rather homogeneous notation can be found in formal descriptions
of HMMs. Starting and transition probabilities, the model itself, as well as many of
the derived quantities, which will be presented in the following sections, are denoted
with unique symbols. This “standardization” can probably be explained to the major
part by the influence of the classical article by Rabiner [195].

The consistence in notation stops, however, as soon as the transition from discrete
to continuous models is performed. Due to the very nature of the model emissions
now can no longer be described with discrete probability distributions, but need to be
represented by continuous density functions. As a further consequence many derived
probability quantities are transformed into densities.

In order to achieve an HMM notation with a maximum of uniformity we will
keep the “discrete” view on the models in the following, as long as a differentiation
or specialized treatment of continuous models is not necessary. This means that we
will always be talking about probabilities even if those would need to be eventually
densities in the continuous case. The emissions of the models will in these cases also
be uniformly denoted as a sequence O of elements O1, O2, . . .OT .

The discrimination between discrete and continuous models will exclusively be
made on the basis of the values that can be taken on by these random variables Ot.
In the discrete case we will be denoting the observation symbols as ok, in the contin-
uous case, however, as vectors x ∈ IRN . In analogy to the notation of probabilities
P (Ot = ok) we will use the notation p(Ot = x) or p(Ot = xt), respectively, for
densities. The latter can, by leaving away the explicit specification of the random
variable Ot, be transformed into the notation p(xt) for continuous model outputs of
an HMM that is commonly used in the literature.

These conventions will, however, not lead to an absolute consistency in the nota-
tion, but as Duda & Hart [49, p. 173] state quite pointedly4 ...

... we shall recall Emerson’s remark that a foolish consistency is the hob-
goblin of little minds and proceed.

4 Original quote from Ralph Waldo Emerson (American Philosopher, 1803−1882) from the
essay “Self Reliance” (1841).
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5.5 Evaluation

The most widely used measure for assessing the quality, with which an HMM de-
scribes the statistical properties of certain data, is the so-called production proba-
bility. It gives the probability that the observation sequence considered was in some
arbitrary way — i.e. along an arbitrary state sequence — generated by a certain
model. A similar but slightly modified evaluation criterion is obtained, if only that
state sequence is considered, which for the given data yields the maximal generation
probability.

5.5.1 The Production Probability

In order to calculate the production probability P (O|λ) of a certain observation se-
quence O for a given model λ we will first consider an intuitively simple but quite
inefficient method.

As the output of observation elements Ot can only result from the states of the
model, an observation sequence O1, O2, . . .OT needs to be generated along a cor-
responding state sequence s = s1, s2, . . . sT of the same length. The probability for
this happening is obtained as the product of the output probabilities along the state
sequence, as the model is given and also the concrete state sequence can be assumed
to be fixed:

P (O|s, λ) =

T∏

t=1

bst
(Ot) (5.4)

The probability that a given model λ runs through an arbitrary state sequence is in
turn simply obtained as the product of the respective state transition probabilities. At
the beginning of the sequence in principle the start probability πs1

needs to be used.
The notation can, however, be greatly simplified by the definition of a0i := πi and
s0 := 0:

P (s|λ) = πs1

T∏

t=2

ast−1,st
=

T∏

t=1

ast−1,st
(5.5)

By taking together equations (5.4) and (5.5) it can immediately be determined, with
which probability a given model λ generates a certain observation sequence O in a
specific way — i.e. along a certain state sequence s.

P (O, s|λ) = P (O|s, λ)P (s|λ) =
T∏

t=1

ast−1,st
bst

(Ot) (5.6)

By the interleaving of the calculation procedures an expression results that imme-
diately reflects the internal processes of the model: In turn state transitions are car-
ried out according to ast−1,st

and state-specific outputs are generated according to
bst

(Ot).
Due to their statistical nature HMMs are principally capable of generating a de-

sired observation sequence O along every arbitrarily chosen sequence of states s of
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Let αt(i) = P (O1, O2, . . . Ot, st = i|λ)
1. Initialization

α1(i) := πibi(O1)
2. Recursion

for all times t, t = 1 . . . T − 1:
αt+1(j) :=

P

i

{αt(i) aij} bj(Ot+1)

3. Termination

P (O|λ) =
N
P

i=1

αT (i)

Fig. 5.1. Forward algorithm for the calculation of the production probability P (O|λ) of an
observation sequence O for a given model λ.

the same length, though eventually with arbitrarily low probability. Therefore, for the
calculation of the production probability P (O|λ) of a certain observation sequence
O all state sequences of length T through the model need to be taken into account
as possible “causes”. The overall probability is then obtained as the sum over all
probabilities for jointly generating the observation sequence O and a specific state
sequence s:

P (O|λ) =
∑

s

P (O, s|λ) =
∑

s

P (O|s, λ)P (s|λ)

This “brute force” method thus consists in the enumeration of all possible state se-
quences of length T through the model, the calculation of the production probabil-
ity P (O|s, λ) along every specific sequence, and the summation of the results ob-
tained. The computational effort for this conceptionally simple method is, however,
with O(TNT ) exponential in the length of the observation sequence. Therefore, the
method is out of question for practical applications.

Forward Algorithm

The widespread use of HMM technology can essentially be attributed to the fact
that for this formalism efficient algorithms are known for the solution of the central
problems. All these methods use the Markov property valid for all HMMs, this is
their limited “memory” that only allows for the storing of a single internal state. If a
model λ has taken on a certain state j at time t it is totally irrelevant for the future
behavior of the model, on which path this state was arrived at and which outputs were
generated in this course. At the respective next point in time t + 1 it is, therefore,
sufficient to consider all possible states at time t only — this is the N states of the
model. Thus one can always carry out the elementary calculations for HMMs strictly
along the time axis in parallel for all model states.
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αt+1(j)

∑

αt(i)

bj(Ot+1)

states

time

i

j

t t + 1

Ot+1

aij

Fig. 5.2. Calculation scheme for determining the forward variables αt(i) by means of the
forward algorithm.

For the calculation of the production probability P (O|λ) this principle leads to
the so-called forward algorithm5, the actions of which are summarized in figure 5.1.
One defines as the so-called forward variables αt(i) the probability that for a given
model λ the first part of the observation sequence up to Ot is generated and at time t
the state i is reached.

αt(i) = P (O1, O2, . . . Ot, st = i|λ) (5.7)

Based on this quantity a recursive procedure for the calculation of the production
probability for the entire observation sequence can be formulated. As already out-
lined above, the method works in parallel for all model states in a strictly time-
synchronous manner. The resulting calculation scheme is graphically visualized in
figure 5.2.

For the initialization of the computations or the anchoring of the recursion, re-
spectively, the forward probabilities α1(i) at the beginning of the time axis, i.e. at
time t = 1 need to be determined. The probability for generating the first observa-
tion element O1 at the initial point in time and for reaching state i, is obtained as the

5 As the name indicates already there exists a matching counterpart of the forward algorithm,
which is referred to as the backward algorithm. Taken together they constitute the so-called
forward-backward algorithm, which will be presented in its entirety during the presentation
of the HMM parameter training in section 5.7
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product of the start probability πi for state i and the output probability bi(O1) of the
observation element in this state:

α1(i) = πi bi(O1)

For the further course of the calculations one can now assume that according to the
induction principle the calculation of the αt(i) is possible for all past times t. It
is, therefore, sufficient to specify a rule, how the forward variables αt+1(j) can be
computed from these quantities at the next point in time.

In order to generate the prefix of the observation sequence O1, O2, . . . , Ot, Ot+1,
which is extended by the observation element Ot+1, and to reach state j, all possi-
bilities need to be considered for generating O1, O2, . . . , Ot — which is equivalent
to αt(i) — and then proceeding by one further step in time. The forward variable
αt+1(j) is, therefore, obtained as the sum of the αt(i) over all possible predeces-
sor states i and inclusion of the respective transition probabilities aij to the current
state. Additionally, the observation element Ot+1 needs to be generated according to
bj(Ot+1):

αt+1(j) :=

{
∑

i

αt(i) aij

}

bj(Ot+1) (5.8)

At the end of the calculations at time T one obtains N different probabilities αT (i)
for generating the observation sequence O in an arbitrary way and finally reaching
state i. The overall production probability P (O|λ) is obtained by summation over
these partial probabilities.

P (O|λ) =

N∑

i=1

αT (i)

5.5.2 The “Optimal” Production Probability

For the mathematical exact determination of the total production probability is was
necessary to include all possible paths through the respective model into the com-
putations. For the evaluation of the modeling quality of an HMM this summarizing
consideration is, however, not necessarily the only procedure making sense. Therein
the possibility is lost to judge the specialization of partial models within the total
model. However, when considering only the respective optimal possibility to gener-
ate a certain observation sequence with a given model, a model, which is satisfactory
on the average, can be discriminated from another one, which works especially well
in certain cases.

When disregarding efficiency considerations the optimal production probability
P ∗(O|λ) — i.e. the optimal probability P (O, s∗|λ) for generating the observation
sequence along a specific path — can be determined by maximization over all indi-
vidual production probabilities given by equation 5.6:

P ∗(O|λ) = P (O, s∗|λ) = max
s

P (O, s|λ)
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Let δt(i) = max
s1,s2,...st−1

P (O1, O2, . . . Ot, s1, s2, . . . st−1, st = i|λ)

1. Initialization
δ1(i) = πibi(O1)

2. Recursion
for all times t, t = 1 . . . T − 1:
δt+1(j) = max

i
{δt(i)aij} bj(Ot+1)

3. Termination
P ∗(O|λ) = P (O, s∗|λ) = max

i
δT (i)

Fig. 5.3. Algorithm for the calculation of the maximal production probability P ∗(O|λ) of an
observation sequence O along the respective optimal path for a given model λ.

δt+1(j)

max

δt(i)

bj(Ot+1)

states

time

i

j

t t + 1

Ot+1

aij

Fig. 5.4. Calculation scheme for the computation of the partial path probabilities δt(i)

A much more efficient method for the calculation of this quantity is obtained as a
slight variation of the forward algorithm by again applying the considerations about
the finite memory of HMMs, which were already pointed out there. The resulting
method, for which the computation procedure is summarized in figure 5.3, is part of
the Viterbi algorithm, which, however, aims at determining the optimal path itself.
Therefore, only part of the complete procedure will be described here. The over-
all algorithm will be presented when treating the model decoding in the following
section 5.6.
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As an auxiliary quantity for this procedure one defines the maximal probability
δt(i) to produce the initial segment of the observation sequence up to time t along
an arbitrary path ending in state i:

δt(i) = max
s1,s2,...st−1

P (O1, O2, . . .Ot, s1, s2, . . . st−1, st = i|λ) (5.9)

The recursive scheme for the calculation of these partial path probabilities δt(i) then
works completely analogously to the computation of the forward probabilities αt(i)
in the forward algorithm. The resulting procedure is graphically visualized in fig-
ure 5.4. At time t = 1 one obtains the initial δ1(i) trivially as the product of the start
probability πi of the respective state and the output probability bi(O1) of the first
element of the observation sequence. An optimization over variable parts of the state
sequence is not necessary yet.

δ1(i) = πi bi(O1)

As the probabilities of the respective optimal partial paths δt(i) can be assumed to
be known for all past times according to the induction principle, merely the opti-
mal probabilities δt+1(i) of the paths extended by one element need to be computed.
Therefore, all possible predecessors i of the current state j are considered. The maxi-
mal probability is determined for continuing the paths ending in one of the predeces-
sor states up to the current state according to the transition probability aij . Finally,
the current observation element Ot+1 needs to be generated according to bj(Ot+1).

δt+1(j) = max
i

{δt(i)aij} bj(Ot+1)

The optimal production probability P ∗(O|λ) is obtained after finishing the calcula-
tions as the maximum over all optimal possibilities δT (i) to reach a certain state i at
the final time step T , as with HMMs usually all possible states can be considered as
the final states of a valid path6.

P ∗(O|λ) = P (O, s∗|λ) = max
i

δT (i)

Thus one obtains analogously to the forward algorithm a calculation scheme for de-
termining the quality of a model λ depending on example data O. In contrast to the
production probability therein only the optimal possibility for generating the obser-
vation sequence is taken into account. The optimal state sequence s∗ can, however,
not be determined based on the computation steps alone, which were presented so
far.

Especially in the field of speech recognition the probability P ∗(O|λ) of the op-
timal path is frequently used instead of the total production probability P (O|λ).
This approach can be justified by the observation that the probability for generating

6 If specially marked end states should be used (cf. e.g. [52, p. 51]), the maximization needs
to be restricted to the appropriate set. Alternatively also additional termination probabilities
can be considered when computing the final path probabilities (cf. e.g. [95, p. 150]).
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the data O along the optimal path s∗ will dominate the summation over all possi-
ble paths, which is necessary for the calculation of P (O|λ), and, therefore, will be
highly correlated with that quantity [157]. Additionally, the calculation of the par-
tial path probabilities δt(i) in practice is considerably more efficient compared to
the forward probabilities. As will be explained in more detail in chapter 7, when
carrying out computations for HMMs the probabilities are usually transformed into
the logarithmic domain. The multiplications necessary for determining the δt(i) are
then transformed into summations. The maximizations are not affected by such a
monotonic mapping. The summation necessary for the computation of the forward
probabilities, however, can only be realized with considerable computational effort
in the logarithmic domain.

5.6 Decoding

If the individual states of a larger model can be associated with certain meaning-
ful segments of the modeled data, the consideration of a global quality measure, as
e.g. the production probability, is no longer sufficient for the analysis. It is rather
necessary to uncover the internal processes during the generation of the observation
sequence. As this is in principle, however, possible along every arbitrary state se-
quence, such an inference is only possible in the probabilistic sense. Therefore, one
determines that state sequence s∗ that for a given model produces the observations
with maximal posterior probability.

s∗ = argmax
s

P (s|O, λ) (5.10)

The posterior probability of a certain state sequence s on the right hand side of
equation 5.10 can be rewritten as follows by applying Bayes’ rule:

P (s|O, λ) =
P (O, s|λ)

P (O|λ)
(5.11)

For a maximization of this quantity the contribution of the production probability
P (O|λ) is, however, irrelevant, as it is constant for a fixed model and a given ob-
servation sequence. By exploiting this fact equation (5.10) can be simplified and the
optimal state sequence can be determined as follows:

s∗ = argmax
s

P (s|O, λ) = argmax
s

P (O, s|λ)

This optimal path s∗ corresponds exactly to that state sequence, for which the max-
imal probability P ∗(O|λ) of generating the observation sequence is obtained. Thus
for determining s∗ one could in principle use the “brute force” approach for com-
puting the optimal production probability, which was outlined in the previous sec-
tion 5.5.2. After enumerating all possible state sequences of length T and calculating
the respective individual production probabilities using equation (5.6) one selects the
state sequence s∗ with maximal probability. As this method exhibits an exponential
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Let δt(i) = max
s1,s2,...st−1

P (O1, O2, . . . Ot, s1, s2, . . . st−1, st = i|λ)

1. Initialization
δ1(i) := πibi(O1) ψ1(i) := 0

2. Recursion
for all times t, t = 1 . . . T − 1:
δt+1(j) := max

i
{δt(i)aij} bj(Ot+1) ψt+1(j) := argmax

i

{δt(i)aij}

3. Termination
P ∗(O|λ) = P (O, s∗|λ) = max

i
δT (i)

s∗T := argmax
j

δT (j)

4. Back-Tracking of the Optimal Path
for all times t, t = T − 1 . . . 1:
s∗t = ψt+1(s

∗
t+1)

Fig. 5.5. Viterbi algorithm for computing the optimal state sequence s∗, which maximizes the
production probability P (O, s∗|λ) of an observation sequence O for a given model λ.

complexity O(TNT ) in the length of the state sequence, however, it is not suitable
for practical applications. Rather the method for efficiently calculating P (O, s∗|λ),
which was described in section 5.5.2, is extended such that not only the optimal score
but also the associated state sequence s∗ can be determined.

Viterbi Algorithm

The efficient computation of the optimal state sequence s∗ by means of the so-called
Viterbi algorithm uses a recursive procedure, which is quite similar to the forward
algorithm and which also exploits the Markov property. As already explained in sec-
tion 5.5.2, one defines probabilities δt(i) for partially optimal paths, which generate
the initial segment of the observation sequence up to Ot with maximal probability
and end in state i.

δt(i) = max
s1,s2,...st−1

P (O1, O2, . . .Ot, s1, s2, . . . st−1, st = i|λ)

The computation scheme for the δt(i) largely corresponds to the one for determin-
ing the forward variables αt(i). The only difference is that instead of a summation
over the probabilities associated with the predecessor states a maximization is per-
formed. The resulting algorithm for the computation of the optimal path is presented
in figure 5.5.

In a similar way as in dynamic time warping, which by a comparable scheme
computes an optimal path for mapping two patterns onto each other, (cf. e.g. [95,
pp. 71–78]), every decision in the computation of the δt(i) is only locally optimal.
The globally optimal probability of the optimal state sequence s∗ is only known after
the evaluation of the δT (i), i.e. after the observation sequence has been considered
in its entire length. That state, that maximizes δT (i) denotes the end of the optimal
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state sequence. The remaining members of the sequence now need to be determined
based on the decisions made during the computations of the δt(i). Therefore, one
defines so-called “backward pointers” ψt(j) along the partial paths, which for every
corresponding δt(j) store the associated optimal predecessor state.

ψt(j) = argmax
i

δt−1(i)aij

Starting from
s∗T = argmax

i

δT (i),

the optimal path can then be reconstructed recursively according to

s∗t = ψt+1(s
∗
t+1)

in reversed chronological order7.
For practical applications this reversing of the direction of the order of calcula-

tions means a significant limitation. The optimal state sequence can, therefore, only
be determined after the end of the observation sequence is reached, i.e. only after all
the data to be analyzed is known in its entirety. Especially for interactive systems it
is, however, frequently desirable to be able to generate feedback to the user in the
form of partial results — i.e. after a prefix of the optimal state sequence has been
decided for — already while the calculations are still ongoing. But such incremental
decoding methods can in general find sub-optimal solutions only (see also page 213).

5.7 Parameter Estimation

For all application areas of HMMs ideally models should be used, that resemble
the statistical properties of certain data as closely as possible. Unfortunately, as al-
ready pointed out in section 5.3, no method is known that for a given sample set is
able to create a model, which is optimal in some respect. If, however, by applying
know-how of experts one succeeds in defining a suitable model structure — i.e. the
number of states and the type of output distributions — and useful initial estimates
of the model’s free parameters, an iterative optimization of the model with respect to
the data considered can be performed. This step-by-step improvement of the model
parameters up to some quality which is sufficient for the respective task is usually
called training of the model.

5.7.1 Foundations

The methods presented in the following mainly differ with respect to the measure
used for judging the modeling quality of a certain model. In the so-called Baum-
Welch algorithm this is achieved by using the production probability P (O|λ). In

7 The decision for the optimal predecessor state is in general not unique. Multiple sequences
s∗

k with identical scores maximizing equation (5.6) might exist. In practical applications,
therefore, a rule for breaking up such ambiguities is necessary, which might e.g. be a pref-
erence for states with lower indices.
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Viterbi training only the probability P (O, s∗|λ) of the respective optimal state se-
quence is considered instead.

All these methods are based on the principle that the parameters of a given model
λ are subject to a growth transformation, i.e. the model parameters are modified such
that the score P (. . . |λ̂) of the changed model λ̂ exceeds the one achieved for the
original model. It is, however, possible that a certain model represents a fixed point
of the respective optimization method, so that an improvement of the quality mea-
sure is no longer possible and the respective score remains unchanged8. In general
the parameter estimation methods, therefore, guarantee a monotonic increase of the
modeling quality only:

P (. . . |λ̂) ≥ P (. . . |λ)

Considered intuitively the parameter estimation methods mentioned are based on the
idea to “observe” the actions of the model during the generation of an observation se-
quence. The original state transition and output probabilities are then simply replaced
by the relative frequencies of the respective events. But due to the statistical nature
of HMMs the inference of the internal processes is only possible in the probabilistic
sense — as already pointed out elsewhere. It is, however, possible to determine the
expected number of relevant events — i.e. of state transitions and emissions — de-
pending on the given model and the observation sequence considered. When for the
sake of simplicity only discrete models are considered9 and no separate estimation
formulas for the start probabilities are given10, the updated model parameters can in
principle be determined as follows:

âij =
expected number of transitions from i to j

expected number of transitions out of state i

b̂i(ok) =
expected number of outputs of ok in state i

total number of outputs in state i

In order to be able to infer the expected state transitions or outputs of the model,
respectively, it is necessary to determine the probability that at a given time t the
model was in a certain state i. This probability we want to be referring to as the state
probability in the following.

For its computation two fundamentally different possibilities exist. If the proba-
bility P (O, s∗|λ) to create the observation sequence along the optimal path only is
considered, it can be verified directly, whether or not a certain state i was present at
time t. The state probability P ∗(St = i|O, λ), therefore, takes on the values zero and
one only. It can be described by a characteristic function that operates on the optimal
state sequence s∗:

8 In practice this means that the chosen quality measure does not change any more within the
scope of the available computational accuracy.

9 Of course the optimization of general continuous mixture densities is possible with all
training methods. However, it always represents the most challenging part of the procedure.

10 The updated start probabilities π̂i can be considered as a special case of the transition
probabilities âij and can, therefore, be computed analogously.
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P ∗(St = i|O, λ) = χt(i) =

⎧

⎨

⎩

1 if s∗t = i and s∗ = argmax
s

P (s, O|λ)

0 otherwise
(5.12)

However, if the quality measure is the production probability P (O|λ), for which all
paths through the model are considered, the computation of the posterior probability
of a certain state at a given time becomes somewhat more demanding.

Forward-Backward Algorithm

In order to compute the posterior probability P (St = i|O, λ) of a state i at time t
for a given observation sequence O and a known model λ of course a “brute force”
approach could be used. However, with the forward variables αt(i) we already got to
know quantities in section 5.5, which to a limited extent make predictions about the
presence of a state at a given time. Merely the probability is missing for completing
the rest of the partial observation sequence from the current state onward.

This quantity is referred to as backward variable. It represents the probability
for generating the partial observation sequence Ot+1, Ot+2, . . .OT from time t + 1
onward starting at state j and given the model λ.

βt(j) = P (Ot+1, Ot+2, . . . OT |st = j, λ) (5.13)

It can be efficiently computed with the counterpart of the forward algorithm — the
so-called backward algorithm — and represents the companion piece to the forward
variable αt(i). Both algorithms taken together are frequently considered as a coher-
ent unit in the literature and are referred to as the forward-backward algorithm.

In order to compute the desired state probability P (St = i|O, λ) on the basis of
the forward and backward variables let us first rewrite this expression using Bayes’
rule as follows:

P (St = i|O, λ) =
P (St = i, O|λ)

P (O|λ)
(5.14)

The production probability P (O|λ) can be computed by means of the forward algo-
rithm. The numerator of the right hand side of equation (5.14) directly corresponds
to the product of the respective forward and backward variables (cf. equations (5.7)
and (5.13)):

P (St = i, O|λ) = P (O1, O2, . . . Ot, St = i|λ)P (Ot+1, Ot+2, . . . OT |St = i, λ) =

= αt(i)βt(i)

The posterior probability of the state i at time t, which is usually denoted as γt(i),
can, therefore, be calculated as follows:

γt(i) = P (St = i|O, λ) =
αt(i)βt(i)

P (O|λ)
(5.15)

The evaluation of the backward variable βt(i) — as already indicated by its name —
almost corresponds to a mirrored version of the forward algorithm. The anchoring
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Let
αt(i) = P (O1, O2, . . . Ot, st = i|λ) βt(i) = P (Ot+1, Ot+2, . . . OT |st = i, λ)

1. Initialization
α1(i) := πibi(O1) βT (i) := 1

2. Recursion
for all times t, t = 1 . . . T − 1: respectively t = T − 1 . . . 1:
αt+1(j) :=

P

i

{αt(i)aij} bj(Ot+1) βt(i) :=
P

j

aijbj(Ot+1)βt+1(j)

3. Termination

P (O|λ) =
N
P

i=1

αT (i) P (O|λ) =
N
P

i=1

πibi(O1)β1(i)

Fig. 5.6. Forward-backward algorithm for the joint computation of the forward and backward
variables, respectively.

of the inductive computation procedure takes place at time t, which is the end of the
time interval defined by the observation sequence. Trivially, the probability for not
generating any further observations from time T onward is equal to one.

βT (i) := 1

If according to the induction principle the βt+1(j) are assumed to be known for all
future times t + 1, a recursive computation rule for the backward variables βt(i) can
be derived by considering all possible continuations of a state sequence starting from
the current state i.

βt(i) :=
∑

j

aijbj(Ot+1)βt+1(j) (5.16)

At the termination of the procedure one obtains — similarly to the forward algorithm
— the production probability P (O|λ) by summation over all backward variables
β1(i) at time t = 1 taking into account the start probabilities and the generation of
the first observation element O1 in the respective state11:

P (O|λ) =

N∑

i=1

πibi(O1)β1(i)

In figure 5.6 both algorithms are presented together in order to illustrate the extraordi-
nary symmetry of the computational procedures. The computation scheme resulting
for the backward variables is graphically visualized in figure 5.7.

5.7.2 Training Methods

The probabilistic possibility for defining the state probability via γt(i) or its deter-
ministic variant χt(i), respectively, form the basis for the training methods treated

11 The fact that the production probability P (O|λ) may both be computed via the forward
and the backward algorithm can in practice be exploited to check the computations for
consistency and accuracy.
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βt(i)

βt+1(j)

∑

time

states

i

j

t t + 1

Ot+1

aij

Fig. 5.7. Computation scheme for determining the backward variables βt(i) via the backward
algorithm

in the following. By means of the chronological mapping between model states and
elements of the observation sequence not only state transition probabilities can be es-
timated but also the parameters of the state specific output distributions. In discrete
models thus also simple estimation formulas can be derived. The increased complex-
ity when using mixture densities for describing the output distributions is due to the
fact, that even when considered in isolation no closed form solutions exist for esti-
mating the parameters of such models. In fact iterative optimization strategies have
to be applied, which, however can be combined with the training methods applied
for HMMs as a whole.

Baum-Welch Algorithm

The most widely used method for the optimization of HMMs is given by the so-called
Baum-Welch algorithm. As the optimization criterion it uses the total production
probability P (O|λ). Thus the algorithm improves a given model λ depending on
certain example data O in such a way that the optimized model generates the training
set with equal or greater probability:

P (O|λ̂) ≥ P (O|λ)
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The equality of those both expressions is valid only if a local maximum with respect
to the optimization in the space of all possible models was already reached with the
parameters of the original model.

In this method all model parameters are replaced by their conditional expected
values with respect to the given original model λ and the training data O. The Baum-
Welch algorithm, therefore, represents a variant of the EM algorithm, which in gen-
eral optimizes parameters of multi-stage stochastic processes with hidden variables
following the maximum likelihood criterion ([42], see also section 4.4 page 55).

The foundations of the algorithm are represented by some quantities, which
based on the forward and backward variables allow in the statistical sense infer-
ences about the internal processes of the model λ when generating certain given data
O. Besides the posterior probability P (St = i|O, λ) for the occurrence of a state
i at time t, which is called γt(i), posterior probabilities for state transitions and —
for continuous models on the basis of mixture densities — also probabilities for the
selection of individual mixture components Mt at a given time are required.

The posterior probability P (St = i, St+1 = j|O, λ) of a transition from state i
to state j at time t, which is usually denoted as γt(i, j) in the literature12, can in the
style of equation (5.15) be calculated as follows:

γt(i, j) = P (St = i, St+1 = j|O, λ)

=
P (St = i, St+1 = j, O|λ)

P (O|λ)
=

αt(i) aij bj(Ot+1)βt+1(j)

P (O|λ)

The numerator of the final expression for γt(i, j) represents the probability for gen-
erating the observation sequence with the restriction that a transition from i to state j
occurs at time t. The merging of computation paths within the model is graphically
visualized in figure 5.8.

In the literature the state probability is frequently defined on the basis of the
posterior probabilities for state transitions. The probability γt(i) of some state i oc-
curring at all at time t can be obtained as the marginal distribution of γt(i, j) by
summation over all possible state successors.

γt(i) = P (St = i|O, λ) =

N∑

j=1

P (St = i, St+1 = j|O, λ) =

N∑

j=1

γt(i, j)

However, this relationship can only be exploited for times t < T , as γt(i, j) is only
defined for those points in time. In practice γt(i) will, therefore, be computed directly
via equation (5.15). Otherwise a suitable extension of the definition of γt(i, j) will
be required.

On the basis of the γt all updated parameters λ̂ for HMMs with discrete output
distributions can be computed. The number of state transitions from i to j that can be
expected in the statistical average is obtained as the sum of the individual transition

12 Due to the close connection in their meaning and in order not to unnecessarily make the
notation any more complex, the state probability is denoted with a single argument as γt(i)
and the state transition probability with two arguments as γt(i, j).
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aij

αt(i)

βt+1(j)

time

states

i

j

t t + 1

Ot+1

Fig. 5.8. Computation scheme for determining the γt(i, j)

probabilities γt(i, j) over all points in time t = 1, 2, . . . T − 1 to be considered13.
When normalizing this quantity on the expected total number of transitions out of
state i one obtains the improved estimates âij for the transition probabilities of the
model:

âij =

T−1∑

t=1
P (St = i, St+1 = j|O, λ)

T−1∑

t=1
P (St = i|O, λ)

=

T−1∑

t=1
γt(i, j)

T−1∑

t=1
γt(i)

(5.17)

As a special case of the transition probabilities one obtains the following simple
equation for determining improved start probabilities:

π̂i = P (S1 = i|O, λ) = γ1(i) (5.18)

The improved discrete output probabilities can in general be obtained in an analo-
gous way. First, the expected number of outputs of a specific symbol ok in state j
is calculated by checking for a match between ok and the corresponding element of
the observation sequence in addition to the occurrence of the respective state. When

13 As HMMs according to common opinion do not perform a state transition into a specially
marked end state when reaching the end of the observation sequence at time T , here the
restriction to all prior points in time is necessary.
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normalizing this quantity to the expected total number of emissions, which are gen-
erated by state j, one obtains estimates b̂j(ok) of the discrete output probabilities
according to:

b̂j(ok) =

T∑

t=1
P (St = j, Ot = ok|O, λ)

T∑

t=1
P (St = j|O, λ)

=

∑

t : Ot=ok

P (St = j|O, λ)

T∑

t=1
P (St = j|O, λ)

=

∑

t : Ot=ok

γt(j)

T∑

t=1
γt(j)

(5.19)
As it can be unambiguously determined whether a certain observation symbol ok was
present at a given time t or not, the probabilities P (St = j, Ot = ok|O, λ) contribute
positive portions to the sum in the numerator of equation (5.19) only for those points
in time. All other terms vanish and the summation can be restricted accordingly and
thus be simplified14.

When modeling output distributions by mixture densities it is necessary, in con-
trast, to optimize the parameters of the mixtures themselves — i.e. of the individual
normal distributions — and the associated mixture weights. If the evaluation of the
mixture densities is viewed as some sort of quantization, which realizes a probabilis-
tic mapping of the observations onto abstract but not yet meaningful symbolic units,
it becomes immediately evident that the computation of updated mixture weights can
be performed in analogy to the procedure for discrete output probabilities.

Therefore one defines, similarly to the state probability, an auxiliary quantity
ξt(j, k) which represents the probability of selecting in state j the k-th mixture com-
ponent at time15 t for generating the continuous observation Ot:

ξt(j, k) = P (St = j, Mt = k|O, λ) =

N∑

i=1

αt−1(i) aij cjk gjk(Ot)βt(j)

P (O|λ)
(5.20)

Based on equation (5.20) a formula for the estimation of the mixture weights can be
derived as follows:

ĉjk =

T∑

t=1
P (St = j, Mt = k|O, λ)

T∑

t=1
P (St = j|O, λ)

=

T∑

t=1
ξt(j, k)

T∑

t=1
γt(j)

(5.21)

The updating of the parameters of the k-th mixture component gjk(x) of state j —
i.e. of the mean vector µjk and the covariance matrix Cjk — is performed in anal-
ogy to the estimation formulas for mixture density models presented in section 4.4

14 As for a given time t the symbol ok was either present in the observation sequence or not,
the probability P (St = j, Ot = ok|O, λ) either takes on the value zero or is equal to
P (St = j|O, λ) which is simply γt(j).

15 For time t = 1 in equation (5.20) the term
N
P

i=1

αt−1(i)aij needs to be replaced by the

respective start probability πj of the associated state.
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page 55. The posterior probability P (ωi|x, θ) of the individual pattern class merely
needs to be replaced by the term ξt(j, k). In contrast to the estimation equations (3.8)
and (3.9) for individual normal distributions presented in section 3.6 page 41 ob-
servations are not incorporated deterministically but probabilistically into the com-
putation process. The probability that a certain observation vector xt is used for
the estimation of the parameters of gjk(x) exactly corresponds to the probability
P (St = j, Mt = k|O, λ) of selecting the respective mixture component for its gen-
eration at the time in question.

Therefore, one obtains the following formulas for the computation of updated
mean vectors µ̂jk and covariance matrices Ĉjk of the individual component densi-
ties:

µ̂jk =

T∑

t=1
P (St = j, Mt = k|O, λ)xt

T∑

t=1
P (St = j, Mt = k|O, λ)

=

T∑

t=1
ξt(j, k)xt

T∑

t=1
ξt(j, k)

(5.22)

Ĉjk =

T∑

t=1
P (St = j, Mt = k|O, λ) (xt − µ̂jk)(xt − µ̂jk)T

T∑

t=1
P (St = j, Mt = k|O, λ)

(5.23)

=

T∑

t=1
ξt(j, k) (xt − µ̂jk)(xt − µ̂jk)T

T∑

t=1
ξt(j, k)

The estimation formula for the covariance matrix Cjk of the mixture component
can be rewritten by exploiting the relationship given by equation (3.4) on page 38
in order to obtain the following computation scheme, which is simpler in practice,
because it only requires a single pass through the data:

Ĉjk =

T∑

t=1
P (St = j, Mt = k|O, λ)xtx

T
t

T∑

t=1
P (St = j, Mt = k|O, λ)

− µ̂jkµ̂T
jk (5.24)

=

T∑

t=1
ξt(j, k)xtx

T
t

T∑

t=1
ξt(j, k)

− µ̂jkµ̂T
jk

In semi-continuous models all states share a set of component densities gk(x) for
building the mixture models, as introduced in section 5.2. As the mixture weights are
still state specific, the respective estimation formula remains unchanged. In order to
estimate the parameters µk and Ck used jointly via the shared component densities it
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Let

γt(i) = P (St = i|O, λ) =
αt(i)βt(i)

P (O|λ)

γt(i, j) = P (St = i, St+1 = j|O, λ) =
αt(i) aij bj(Ot+1) βt+1(j)

P (O|λ)

ξt(j, k) = P (St = j, Mt = k|O, λ) =

N
P

i=1

αt(i) aij cjk gjk(Ot)βt(j)

P (O|λ)

1. Initialization
Choose a suitable initial model λ = (π, A, B) with initial estimates
• πi for starting and
• aij for transition probabilities as well as for
• mixture weights cjk and
• component densities gjk(x) = N (x|µjk, Cjk) for the definition of out-

put probability density functions bjk(x) =
P

k

cjk gjk(x).

2. Optimization
Compute updated estimates λ̂ = (π̂, Â, B̂) for all model parameters:

âij =

T−1
P

t=1

γt(i, j)

T−1
P

t=1

γt(i)
π̂i = γ1(i)

ĉjk =

T
P

t=1

ξt(j, k)

T
P

t=1

γt(j)

µ̂jk =

T
P

t=1

ξt(j, k) xt

T
P

t=1

ξt(j, k)
Ĉjk =

T
P

t=1

ξt(j, k)xtx
T
t

T
P

t=1

ξt(j, k)

−µ̂jkµ̂
T
jk

3. Termination
if the quality measure P (O|λ̂) was considerably improved by the updated
model λ̂ with respect to λ

let λ ← λ̂ and continue with step 2
otherwise Stop!

Fig. 5.9. Baum-Welch algorithm for estimating the parameters of general continuous HMMs.
For modifications necessary for discrete or semi-continuous models see the text.
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has to be taken into account that the probability for the selection of a certain density
at a given time is independent of some concrete state in semi-continuous models. It is
obtained from equation (5.20) as the marginal distribution of ξt(j, k) by summation
over all possible states:

P (Mt = k|O, λ) = ξt(k) =
∑

j

ξt(j, k)

If now the probability of the observation vectors is replaced by ξt(k) in equa-
tions (5.22) and (5.24) one obtains the following estimation formulas for µk and
Ck in semi-continuous models:

µ̂k =

T∑

t=1
P (Mt = k|O, λ)xt

T∑

t=1
P (Mt = k|O, λ)

=

T∑

t=1
ξt(k)xt

T∑

t=1
ξt(k)

(5.25)

Ĉk =

T∑

t=1
P (Mt = k|O, λ)xtx

T
t

T∑

t=1
P (Mt = k|O, λ)

− µ̂kµ̂T
k =

T∑

t=1
ξt(k)xtx

T
t

T∑

t=1
ξt(k)

− µ̂kµ̂T
k (5.26)

The updating of the model parameters according to the estimation equations
(5.17), (5.18), and (5.19) for discrete models, by applying equations (5.17), (5.18),
(5.21), (5.22), and (5.24) for models with continuous output distributions, and by
means of equations (5.17), (5.18), (5.21), (5.25), and (5.26) for semi-continuous
models corresponds to one step in an iteratively optimizing training process. Start-
ing from an initially given model λ0 the updating of the parameters needs to be
repeated until the resulting model reaches a sufficient descriptive quality or no fur-
ther improvements are to be expected any more. For “fully” continuous models the
complete algorithm is put together in figure 5.9.

Viterbi Training

In contrast to the Baum-Welch algorithm in the so-called Viterbi training only the
probability P ∗(O|λ) = P (O, s∗|λ) that the observation sequence is generated along
the best-scoring path s∗ is optimized during the training process. It can be shown
that the method realizes a growth transformation starting from an existing model λ,
so that the modified model λ̂ achieves a higher or at least equal probability for the
optimal path:

P ∗(O|λ̂) ≥ P ∗(O|λ)

The method follows the intuitive understanding of the principle of HMM training
proceeding in two working phases outlined at the beginning of the chapter. First, the
optimal state sequence s∗ for the training data is computed depending on the given
model parameters by means of the Viterbi algorithm. In the second step the estimates
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Let

χt(i) =

8

<

:

1 if s∗t = i and s∗ = argmax
s

P (s,O|λ)

0 otherwise

1. Initialization
Choose a suitable initial model λ = (π, A, B) with initial estimates of πi for
starting and aij for transition probabilities as well as discrete output probabil-
ities bj(ok).

2. Segmentation
Calculate by means of the Viterbi algorithm (see figure 5.5 page 75) the opti-
mal state sequence s∗ for generating the data O given the model λ.

3. Optimization
Compute updated estimates λ̂ = (π̂, Â, B̂) for all model parameters (except
π, explanations see text):

âij =

T−1
P

t=1

χt(i) χt+1(j)

T−1
P

t=1

χt(i)

b̂j(ok) =

P

t : Ot=ok

χt(j)

T
P

t=1

χt(j)

4. Termination
if the quality measure P ∗(O|λ̂) was considerably improved by the updated
model λ̂ with respect to λ

let λ ← λ̂ and continue with step 2
otherwise Stop!

Fig. 5.10. Viterbi training for parameter estimation of discrete HMMs. Extensions for contin-
uous models see text.

for updating the model parameters are determined on the basis of the empirical distri-
butions, which result from the explicit mapping of observations to individual model
states along the optimal state sequence.

Formally this mapping can be described via the state probability χt(i) known
from equation (5.12), which merely corresponds to the evaluation of a characteristic
function on the optimal state sequence s∗. When replacing the probabilistic version
γt(i) by the deterministic mapping using χt(i) in the Baum-Welch algorithm one ob-
tains the formulas necessary for computing updated parameters of discrete models by
means of the Viterbi training. Estimates for the state transition probabilities, which
can principally be obtained by counting state pairs in the optimal state sequences,
are obtained as:

âij =

T−1∑

t=1
P (St = i, St+1 = j|s∗, O, λ)

T−1∑

t=1
P (St = i|s∗, O, λ)

=

T−1∑

t=1
χt(i)χt+1(j)

T−1∑

t=1
χt(i)

(5.27)

Useful estimates for start probabilities are, however, not obtained by means of the
Viterbi training. As a special case of equation (5.27) one would obtain a value of one
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for the start probability πs∗
1

of the first state s∗1 of the optimal state sequence and zero
for all other states. As the start probabilities are hardly of any importance in practical
applications, this means no significant limitation of the method.

The discrete output probabilities are directly determined by the empirical dis-
tributions. The latter are obtained by simply counting all observation symbols ok,
which are mapped to a certain model state via the optimal state sequence:

b̂j(ok) =

∑

t : Ot=ok

P (St = j|s∗, O, λ)

T∑

t=1
P (St = j|s∗, O, λ)

=

∑

t : Ot=ok

χt(j)

T∑

t=1
χt(j)

(5.28)

The overall algorithm for the Viterbi training of discrete HMMs is summarized in
figure 5.10.

The estimation of continuous mixture models by means of the Viterbi training
is, however, considerably more demanding, as no analytical methods are known for
deriving optimal parameters of such models from training examples. It is usually
assumed, however, that the number Mj of the baseline distributions used remains
constant. Nevertheless an estimation of the mixture weights cjk as well as of the
parameters of the component densities gjk(x) can not be performed directly.

In [231] for this purpose the maximum likelihood criterion for the improvement
of the optimal production probability P (O, s∗|λ) depending on the model param-
eters λ is applied. This optimization can be carried out separately for the transition
probabilities aij , as in equation (5.27), and for the output probability densities bj(x).
Though one obtains a system of constraint equations, no explicit relationship for
computing updated model parameters can be derived. This must rather be achieved
in a complex embedded optimization process.

Segmental k-Means

With respect to its theoretical derivation the so-called segmental k-means algorithm
is identical with the Viterbi training presented in the preceding section [111]. As op-
timization criterion also the production probability P (O, s∗|λ) of the training data
along the optimal path through the model is used. In the practical application, how-
ever, the procedure offers a solution for the problem of estimating parameters of
mixture models on example data only with the embedding of a method for vector
quantization — namely the k-means algorithm. Though this practical aspect is men-
tioned in [111] it is not elaborated as e.g. in [135].

Similar to Viterbi training the method proceeds in two phases. In a first step a
segmentation of the training data is generated with the existing model. Subsequently
new output probability density functions can be estimated from the resulting map-
pings between feature vectors and model states without any further reference to the
original parameters. The resulting algorithm is summarized in figure 5.11.

As in all training procedures for HMMs suitable initial model parameters need to
be chosen before the optimization begins. However, the method can be extended such
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Given the number Mj of mixture components to be estimated per model state
(frequently Mj = M is chosen identically for all states j)

1. Initialization
Choose a suitable initial model λ = (π, A, B)

2. Segmentation
By means of the Viterbi algorithm (see figure 5.5 page 75) compute the opti-
mal state sequence s∗ for the generation of the data O given the model λ.
Compute updated transition probabilities âij :

âij =

T−1
P

t=1

χt(i)χt+1(j)

T−1
P

t=1

χt(i)

3. Estimation
For all states j, 0 ≤ j ≤ N :

a) Cluster Analysis
For the partial sample set X(j) compute a vector quantization codebook
Y = {y1, . . . yMj

} and the associated partition {R1, . . . RMj
},

e.g. using the k-means algorithm (see figure 4.3 page 54)
b) Updating the Model

Compute updated parameters of the output distributions:

ĉjk =
|Rk|

|X(j)|

µ̂jk = yk

Ĉjk =
1

|Rk|

X

x∈Rk

x x
T − µ̂jk µ̂

T
jk

4. Termination
if the quality measure P ∗(O|λ̂) was considerably improved by the updated
model λ̂ with respect to λ

let λ ← λ̂ and continue with step 2
otherwise Stop!

Fig. 5.11. Segmental k-means algorithm for estimating parameters of continuous HMMs.

that also an initialization is possible for HMMs with certain limited model structure.
This aspect of the segmental k-means algorithm will be presented in greater detail in
section 9.3 page 163.

In the next step the optimal state sequence of the observations considered is com-
puted by means of the Viterbi algorithm. As in the Viterbi training on the basis of
this already estimates for the transition probabilities of the updated model can be
computed (see equation (5.27)). Furthermore one obtains a mapping between feature
vectors xt and corresponding model states, which can formally be derived from the
discrete state probability χt(i) (see equation 5.12 page 78). We want to take together
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all vectors, which are mapped to a particular state i, to form a partial set X(i) of the
considered sample data:

X(i) = {xt|χt(i) = 1} = {xt|s∗t = i}

These form the basis for the estimation of new output probability density functions.
First a cluster analysis of the respective partial set X(i) is performed using a prin-
cipally arbitrary method for vector quantization16. The parameters of the output dis-
tribution of the corresponding model state then result in the same way as with the
simple estimation of mixture models (see section 4.4 page 55). As in vector quanti-
zation it is, however, necessary to specify the number of desired codebook classes or
mixture components, respectively.

When assuming that per model state j exactly one mixture density with Mj in-
dividual component densities is used for modeling the output distribution, the mean
vectors µjk correspond directly to the centroids of the Mj codebook classes, which
were determined by the vector quantization procedure for the partial sample set
X(j). The covariance matrices are computed as the sample covariances of the feature
vectors that were mapped to a specific reproduction vector. The necessary mixture
weights correspond to the prior probabilities of the individual codebook classes.

Since in the segmental k-means algorithm the parameters of an HMM including
the complex mixture density models are completely newly computed in every step
of the optimization on the basis of the example vectors only, the method converges
significantly faster than a comparable iterative estimation using the Baum-Welch
algorithm.

5.7.3 Multiple Observation Sequences

In general, sample sets that are used for parameter training are subdivided into in-
dividual segments — in automatic speech recognition in utterances or turns and in
the analysis of biological sequences into protein domains or motifs, respectively.
From the view of the HMM formalism these are considered individual observation
sequences. In order to be able to estimate model parameters also on such a set of iso-
lated sequences the training procedures do not need to be modified fundamentally.
Only the statistics gathered for the updating of the parameters need to be accumulated
across all the observation sequences considered. One then obtains modified estima-
tion formulas with an additional outer summation over the observation sequences,
which were, however, omitted in the presentation of the individual methods in the
preceding sections for the sake of clarity (cf. e.g. [95, pp. 157–158]).

The fundamental principle will now be explained for the estimation of the mean
vectors of continuous output probability densities. Therein we assume that for the

16 For reasons of efficiency it is rather obvious to use the k-means algorithm as vector quan-
tization method, as it achieves good results already within a single pass through the data.
However, principally any algorithms for vector quantizer design or the unsupervised esti-
mation of mixture densities could be applied.
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training of the models a sample set ω = {O1, O2, . . . OL} of L individual obser-
vation sequences Ol is available. In this case one obtains the updated mean vectors
according to:

µ̂jk =

L∑

l=1

T∑

t=1
ξl
t(j, k)xt

L∑

l=1

T∑

t=1
ξl
t(j, k)

The inner sums in the numerator and denominator, respectively, of this expression
correspond to the original estimation formula (5.22) page 84 that considered a single
observation sequence only. The mapping probability ξl

t(j, k) between feature vectors
and mixture components, however, needs to be calculated depending on the l-th ob-
servation sequence Ol. The accumulated statistics are finally summed over all partial
sequences of the sample set.

5.8 Model Variants

Due to their widespread use and their long-lasting development history for hidden
Markov models a number of variants in the algorithmic treatment or in the models
themselves were proposed. The most important of those aspects shall be outlined
shortly in the following. For a detailed treatment of the respective methods the inter-
ested reader is referred to the cited specialized literature.

5.8.1 Alternative Algorithms

All recognition systems with implicit segmentation that are based on HMMs in prin-
ciple use the Viterbi algorithm for decoding. Differences merely result from neces-
sary improvements in efficiency (see section 10.2 page 167) or the incorporation
of additional modeling parts as, e.g., statistical language models (cf. chapter 12
page 189).

In contrast for the estimation of model parameters besides the established meth-
ods, which were presented in the preceding section, a number of alternative ap-
proaches exist. The most well known group of methods applies techniques for dis-
criminative training. Similarly to Viterbi training the goal is therein to improve the
probability of the optimal path through the model for given data. However, this is not
achieved in isolation. Rather it is attempted to reduce the probability of all competing
paths at the same time. In this way a higher discriminative power of the models shall
be achieved, which, however, results in a substantially higher computational effort.
Mathematically a maximization of the mutual information is performed. Therefore,
these methods are frequently found under the topic of maximum mutual information
(MMI) in the literature (cf. e.g. [35], [95, pp. 213–214], [97, pp. 150–152]). Closely
related to these methods is a technique known as corrective training [8].
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5.8.2 Alternative Model Architectures

Besides the “classical” HMM architecture there exists a multitude of variants that by
using special modifications attempt to either avoid or at least compensate for the in-
herent limitations of the models. Especially the improvement of the modeling of du-
ration by HMMs, which is possible rather inadequately with simple transition prob-
abilities only, is the aim of several approaches (cf. e.g. [31, 140], [97, pp. 406–408]).
In the main application area of HMMs, however, transition probabilities constitute
a rather unimportant modeling aspect compared to output probability densities. For
that reason and because of the increased computational effort of alternative dura-
tion modeling approaches none of the proposed techniques could establish itself as a
standard method yet.

The most well known modification of the classical HMM architecture undoubt-
edly constitute hybrid systems with a combination of HMMs and artificial neuronal
networks (NN) (cf. e.g. [159], [97, p. 458-459]). The neuronal networks, which are
incorporated into the model, are used either as a vector quantizer in combination with
discrete HMMs [197], as a replacement of the modeling of output distributions on
the basis of mixture densities [201], or directly for the estimation of posterior proba-
bilities of individual model states [159]. The combination of the scores obtained such
with probabilities derived from the HMM formalism is, however, quite problematic
and requires special mapping rules.

Due to the increase in the models’ degrees of freedom, which results from the
omission of the restrictions to mixture density models, an improved potential can
be expected from such hybrid systems. This is also frequently demonstrated exem-
plarily in the literature. However, for this advantage the poor convergence properties
of the training of neuronal networks have to be accepted. Also the optimization of
those parameters is usually performed separately from the actual HMM and not in
an integrated training process, as with classical model architectures based on mix-
ture densities. As, furthermore, no standardized design strategies exist for hybrid
HMM/NN-systems those methods could not establish themselves to date as real or
even better alternatives alongside the standard architectures.

5.9 Bibliographical Remarks

Hidden-Markov-Models were named after the Russian mathematician Andrej An-
drejewitsch Markov (1856− 1922) [151]. Books and articles from the mathematical
literature mainly treat the theoretical aspects of these models. The primary applica-
tion area of HMMs, in which they were successfully applied and consequently fur-
ther developed, is the field of automatic speech recognition. Therefore, the treatment
of HMMs within monographs related to the field of pattern recognition is almost
always coupled with that complex of topics.

Especially convincing is the treatment of the topic in the monograph by Huang,
Acero, & Hon [97]. The core of the model building process is also treated in the
partially outdated book by Rabiner & Juang [196] as well as in the monograph by
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Jelinek [105]. A nice introduction to the use of HMMs in the domain of bioinformat-
ics is given by Durbin et al. [52].

In all the abovementioned works descriptions of the algorithms relevant for
HMMs can be found. A summary of those is also offered by the classical article
by Rabiner [195], which had a significant influence on the HMM literature and the
notation used therein.

The Viterbi algorithm was named after its inventor and goes back to his works in
the field of coding theory [226]. An in-depth early presentation and analysis of the
method is given by [76]. Later descriptions can be, e.g., found in [95, pp. 151–152] or
[97, pp. 387–389]. The most widely used method for estimating parameters of HMM
is the Baum-Welch algorithm, which was developed by Baum and colleagues [12].
Though the algorithm surely was named after its inventors there exists no accessible
publication with Welch as co-author. The method represents a variant of the EM
algorithm [42]. The relationship between the two algorithms is, e.g., presented in [97,
pp. 389–393]. A proof of the convergence of the Baum-Welch algorithm can besides
[12] also be found in, e.g. [95, pp. 158–164]. The principle method is furthermore
described in [195, pp. 342–348], [95, pp. 152–158], and [105, pp. 149–161]. The
Viterbi training as an alternative method for estimating parameters of HMMs is, e.g.,
described in [135]. Especially for continuous models the method was elaborated in
[231]. Principally comparable to this method is the segmental k-means algorithm,
which was developed by Juang & Rabiner [111]. A short description of the method
can also be found in [196, p. 427]
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n-Gram Models

A statistical language model in its most general form defines a probability distri-
bution over a set of symbol sequences from some finite inventory. Those methods
are referred to as “language models” because their origin, their development, and
their spreading in use is closely related to the statistical modeling of texts as well
as to the restriction of possible sequences of word hypotheses in automatic speech
recognition.

An especially simple yet very powerful concept for the formal description of
statistical language models is formed by their representation using Markov chains.
The most widely used version of these models today is based on this formalism,
the so-called n-gram models. The description of the statistical properties of symbol
sequences by stochastic grammars is also well understood but considerably more
complicated, as the parameter training of such models is technically extremely de-
manding. Additionally, the definition of the grammar rules needs to be done by ex-
perts, as no general inference methods are known for learning these automatically
from data. Therefore stochastic grammars have been used for pattern analysis tasks
to a rather limited extent only, which is why the term language model is mostly used
synonymously for n-gram models in the literature. These models shall, therefore,
be considered as the only class of statistical language modeling techniques in the
following. For different methods the interested reader is referred to the respective
specialized literature.

6.1 Definition

A statistical n-gram model corresponds to a Markov chain of order n-1. The proba-
bility P (w) of a certain symbol sequence w = w1, w2, . . . , wT of length T is first
decomposed according to Bayes’ rule into a product of conditional probabilities:

P (w) = P (w1)P (w2|w1) . . . P (wT |w1, . . . , wT−1) =

T∏

t=1

P (wt|w1, . . . , wt−1)
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During this factorization, however, with increasing length T of the symbol sequence
there possibly result conditional probabilities with arbitrary long dependencies — as
already pointed out when introducing stochastic processes. Therefore, for practical
applications the maximal length of the context is limited to n − 1 predecessor sym-
bols. Motivated by the chronological order of symbol or word sequences this context
is frequently also referred to as the history.

P (w) ≈
T∏

t=1

P (wt |wt−n+1, . . . , wt−1

︸ ︷︷ ︸

n symbols

)

The respective predicted symbol wt and the associated history form a tuple of n
symbols, which is the reason why the models are referred to as n-gram models. A
concrete n-tuple of symbol is called n-gram and is in the field of automatic speech
recognition usually referred to as an event.

Thus a given n-gram model defines probabilities for the prediction or evaluation
of the occurrence of symbols from a finite inventory within a sequence on the basis of
a context of n− 1 known predecessor elements. From these individual contributions
the probability of a certain sequence in total can be calculated directly. The entirety of
the conditional probability distributions forms the statistical language model, which
in contrast to HMMs is never denoted with an explicit mathematical symbol in the
literature. Therefore, in the further elaborations we also abstain from an explicit des-
ignation, as long as the implicit assignment of probabilities to the respective model
is clear.

As with increasing context length besides the principal difficulties to estimate
such a model and to apply it in practice also the required amount of memory in-
creases substantially, the most widely used variants of n-gram models are bi- and
tri-grams. Already 4-gram models are, in contrast, hardly used any more in statisti-
cal recognition systems, whereas in the field of automatic speech recognition bi-gram
models complementing the HMM modeling can be regarded as a standard procedure
today. In the more recently opened application areas of statistical modeling tech-
niques like the analysis of handwriting, gestures, or biological sequences, statistical
language models to date are used only to a very limited extent. This is mainly due to
the fact, that in those research areas in contrast to the field of speech recognition the
general availability of sufficiently large database is not yet granted.

6.2 Use Cases

In the same way as for HMMs the usage of statistical language models for the de-
scription of texts and other symbol sequences is based on the assumption that their
underlying generation principle obeys statistical rules, which can be described or at
least sufficiently be approximated using Markov chains.
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Therefore also for n-gram models it is a relevant question, how well a given
model is able to describe available data. For this purpose essentially the probability
of this symbol sequence — or some information theoretic measure derived from it
— needs to be computed by means of the model used. Then inferences about the
quality of the language model can be drawn or different models can be evaluated
with respect to their suitability for describing the respective data. On this basis, e.g.,
paragraphs of text can be assigned a certain category or a specific topic, if for each
of those a suitable model was built.

The second relevant question concerns the construction of the n-gram mod-
els themselves. In contrast to the necessary iteratively optimizing procedures used
for HMMs, for statistical language models methods are conceivable that com-
pute a model, which is in some sense optimal, directly depending on the sample
data. The naive, immediately obvious solution of the problem is to count within
the available sample set the absolute frequencies c(w1, w2, . . . , wn) of all sym-
bol tuples and all possible contexts w1, . . . , wn−1. The required conditional prob-
abilities P (wn|w1, w2, . . . , wn−1) can then be defined via the relative frequencies
f(wn|w1, w2, . . . , wn−1).

P (wn|w1, w2, . . . , wn−1) := f(wn|w1, w2, . . . , wn−1) =
c(w1, w2, . . . , wn)

c(w1, . . . , wn−1)
(6.1)

However, even for a moderately sized inventory of symbols and short context length
it must be assumed that the majority of the theoretically possible n-grams are not
contained in the sample set considered — even if this is rather large. Those events are
then said not to have been observed or to be “unseen”. According to equation (6.1)
all conditional probabilities related to such tuples will be defined to be zero. When
evaluating the resulting model on new data then necessarily a probability of zero
results for every sequence considered that contains a single of those unseen events.

Such a behavior of the model is, however, extremely undesirable, as it can be as-
sumed that the estimation of a vanishing probability is extremely unreliable and only
due to the limited size or representativity of the sample set considered. Therefore,
in n-gram models the probability distributions determined empirically are always
subject to a post-processing or smoothing operation, which is aimed at delivering
robust estimates especially for very small conditional probabilities. In those methods
lies the relevant algorithmic know-how for applying statistical language models to
pattern recognition tasks.

6.3 Notation

In the treatment of n-gram models mainly the terms for computing the individual
conditional probabilities are considered and not their evaluation on a longer text.
Therein the distinction between the predicted word and the current history is essen-
tial. In order to be able to also make this more explicit in the formal treatment, in the
following a notation will be used that is inspired by the one defined in [62].
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An arbitrary isolated n-gram we will be denoting as yz, where z stands for the
predicted symbol and y = y1, y2, . . . yn−1 for its history. In the notationally simple
case of tri- or bi-gram models, all symbols of a tri-gram can be denoted individually
— if this is required — as xyz and those of a bi-gram as yz. The conditional n-gram
probabilities we will in general be denoting as P (z|y) and as P (z|xy) for tri- and
P (z|y) for bi-gram models. That symbol within the n-gram, which is the last with
respect to the chronological order, will always be referred to as z.

Besides the frequency of occurrence c(yz) of an n-gram yz in the training set
considered, also several derived quantities are important, which either characterize
properties of n-gram contexts or provide meta information about the empirical fre-
quency distribution. The absolute frequency — or count — of all n-grams with his-
tory y we will denote as c(y ·) by using the joker symbol ’·’. It is in principle equal
to the frequency c(y) of the context y of an n-gram yz. Differences merely result
from border phenomena in the sample set considered. If, e.g., the training text or a
specially marked section therein end with y, then at this position no further event yz
exists having this very context and c(y) > c(y ·) holds. For this reason we will use
c(y ·) throughout the whole presentation, as this quantity always yields the correct
normalization in practical applications. By dk(y ·) we will be denoting, how many
events with context y occur exactly k times in the training data. Especially important
is the frequency d1(y ·) of so-called singletons, i.e. events that occur exactly once in
a given context. The number of different events occurring at all is in generalization
of this notation referred to as d1+(y ·). When also replacing the context restrictions
in this quantity by the joker symbol, one obtains the total number of all n-grams
c(· ·) or the number of events occurring k times in total dk(· ·). In order to simplify
the representation, in the two last cases mentioned the arguments (· ·) can be omitted
completely.

6.4 Evaluation

For the evaluation of a statistical language model — as in many fields of statistical
pattern analysis — its descriptive power on unknown data is determined, i.e. on test
data that was not used for creating the model. The so-called perplexity has established
itself as the relevant quality measure [108]. For a given test text w = w1, w2, . . . , wT

of length |w| = T or a test symbol sequence, respectively, one obtains the perplexity
P of the language model considered as the reciprocal value of the geometric mean
of the individual symbol probabilities1:

P(w) =
1

|w|
√

P (w)
=

1
T
√

P (w1, w2, . . . , wT )
= P (w1, w2, . . . , wT )−

1
T

1 In the literature the perplexity is usually defined via the entropy of a language or of an in-
formation source (cf. e.g. [95, pp. 97–100], [196, pp. 449-450], [97, pp. 560–562]). How-
ever, the introduction of a number of fundamental information theoretic concepts for this
derivation only, seems too demanding. Therefore, here precedence was given to a simplified
presentation.
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The wide-spread use of this measure in the literature is to a substantial extent due the
possibility of interpreting it in an intuitively illustrative way. For that one assumes
that the text considered was created by an information source, which generates with
some probability symbols from a finite vocabulary V . For purposes of the analysis
it is now desired to be able to predict this process as exactly as possible, i.e. only as
few as possible symbols should be considered for continuing a sequence. However,
such a deterministic statement is strictly speaking not possible due to the statistical
behavior of the source. In principle all symbols might occur at any time, even though
with an arbitrarily low probability. In the statistical average, however, a relationship
to the deterministic behavior can be established.

In the “worst” case the generation is performed according to a uniform distri-
bution over the lexicon V , which means that every additional symbol wt will be
generated with probability P (wt) = 1

|V | independently of the context. Then a pre-
diction of successor symbols is not possible, as all words of the lexicon can occur
equally likely. The probability of a text of length T is obtained as { 1

|V |}T and its
perplexity |V | is equal to the size of the lexicon used.

If the generation principle relies on any other probability distribution, which gen-
erates certain words with higher and others with lower frequency, always a lower
perplexity ρ < |V | is obtained compared to the case of the uniform distribution.
The precision of the prediction based on this model now can be related to the one of
an “uninformed” source, which acts according to a uniform distribution, with equal
perplexity. The vocabulary of that source, which is identical with respect to the eval-
uation criterion, would consist of exactly |V ′| = ρ < |V | words — i.e. less than
contained in the original lexicon. It can, therefore, be said that the perplexity of a
statistical language model specifies, how many words are in the statistical average
likely for the continuation of a symbol sequence, even if at every time from the sta-
tistical point of view an arbitrary continuation with eventually lower probability is
possible.

From this basic observation results the goal of language modeling, which is to
keep the perplexity of texts or symbol sequences to be expected as low as possible
by means of precise statistical models. Thereby the generalization capability of the
model is essential, as a model too specifically attuned to a certain training situation
is useless for practical applications2.

For n-gram models this is always achieved quite well, if sufficiently precise re-
strictions for possible successor words can be derived based on the considered con-
text of n − 1 words. However, it must be possible to estimate the parameters of
the conditional probabilities, which are necessary for describing these restrictions,
sufficiently robustly on the available training material.

An important task for automatic speech recognition is the recognition of se-
quences of digits for telephony applications. Due to the almost complete absence

2 By completely storing the training material of a language model always a perplexity of 1
can be achieved on this data. However, even with standard techniques arbitrarily low per-
plexities on the training set are possible, which, however, allow now predictions whatsoever
about the modeling quality on unknown texts.
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of restrictions for such symbol sequences, here the “worst case” perplexity of 10 can
hardly be reduced any more by techniques of statistical language modeling. For “nor-
mal” texts in natural languages, however, a significant reduction in perplexity below
the unrestricted case is always possible. Therefore, also the compression of texts is
an application area for statistical language models (cf. e.g. [14]).

n-gram models are applicable especially well for the English language — not
only because this language is probably among the most well studied in this respect.
The relatively linear sentence structure with reduced degrees of freedom in word
order and the almost complete missing of inflected forms offer ideal conditions for
statistical language modeling. Inflecting languages with rather free word order as
French or German are considered to be much more challenging. In German addi-
tionally the extremely productive creation of compound words is added, which ei-
ther requires the analysis of complex word constructs or a substantial increase of the
possible lexicon (cf. e.g. [2, 86, 229, 241]). A similar problem can be found in ag-
glutinative languages as, e.g., Turkish or Finnish, where many syntactic phenomena
are described by concatenating morphemes (cf. e.g. [32, 216]).

The basis of language modeling does, however, not necessarily have to be the
orthographic word definition in the respective language. In order to simplify the
modeling, e.g., a normalization of the lexicon used (cf. e.g. [1]) or a direct mod-
eling of morpheme sequences by the statistical model (cf. e.g. [32, 86, 242]) can be
considered.

6.5 Parameter Estimation

As n-gram models in contrast to HMMs usually contain no hidden state variables,
their parameters can in principle be computed directly — i.e. without the need of
some iterative optimization procedure — based on example data. Provided that one
is content with defining the conditional probabilities via the relative frequencies, the
model can directly be specified after counting the events observed in the sample set.

However, for a robust application of n-gram models it is essential, that the prob-
lem of events not observed in the data is dealt with. Therefore, in all approaches
to statistical language modeling known from the literature the empirical distribu-
tions are never used directly, but rather a suitable smoothing is applied to them. The
most important task of this smoothing is to replace vanishing probabilities of unseen
events by plausible and robust estimates. Due to the normalization conditions nec-
essary for probability distributions this can, however, not be performed in isolation,
but the estimates of the remaining events have to be included in the process.

The most widely used class of methods for solving this problem proceeds in
two steps. First the empirical distributions are modified such that a re-distribution
of probability mass from seen to unseen events takes place. As those manipulations
usually result in very small changes only, the probabilities of seen events are hardly
modified. The relevant effect of that approach is, therefore, the gathering of “proba-
bility mass”, in order to be able to define new, very small probabilities for n-grams
not observed in the sample set.
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In a second step then robust estimates are calculated on the basis of the modified
empirical distributions by incorporating one or even several more general distribu-
tions. For frequently observed events the influence of this modification can be kept
small or be omitted totally. For unseen n-grams it is, however, important not to dis-
tribute the gathered probability mass uniformly but on the basis of a more general
distribution — usually the one of the associated (n-1)-gram model. Otherwise all
unseen events would be assigned the same probability.

In practice also for (n-1)-grams robust estimates are not necessarily available
directly. Therefore, the two steps of the method outlined above are recursively ap-
plied to the resulting model hierarchy from the n-gram down to the uni-gram or
zero-gram, respectively. The term uni-gram model refers to the prior probability of
the words and the term zero-gram model is used to denote the uniform probability
distribution over a lexicon of given size.

6.5.1 Redistribution of Probability Mass

A quite intuitive possibility to get rid of the problem of non-observed events, con-
sists in raising their frequencies of occurrence, that were determined to be zero, to
some positive value. In order not to discard the differences between seen and unseen
events, this positive constant — usually 1 — is added to all n-gram counts. If one
uses the sum over all newly determined counts of individual events

∑

z c∗(yz) in-
stead of the frequency of the respective n-gram context c(y·) for the computation of
the relative frequencies, the normalization condition for probability distributions is
not violated by this manipulation.

This relatively old method is referred to as adding one or Laplace’s rule in the
literature. Though it is maximally simple on the algorithmic side, it unfortunately
achieves substantially worse results than the newer methods, which will be presented
in the following. This is due to the fact that the probability of rare events is system-
atically over-estimated (cf. [165]).

All other methods for redistributing probability mass are based on the principle to
first gather the counts, which are necessary for removing unseen events, at some other
position in the original probability distribution. Hereby not only the normalization
condition of the relative frequencies remains unaltered, but it is also possible that
a different amount of probability mass for unseen events is obtained depending on
the properties of the initial distribution considered and the redistribution strategy
applied. Thus it can be controlled to some extent, whether the observation of such an
event, which is assumed to be extremely rare, is more or less probable in a certain
context.

Discounting

In order to be able to gather probability mass for unseen events without a modifica-
tion of the occurrence frequencies in total, the empirical counts c(yz) of observed
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n-grams need to be reduced by a certain amount β(yz). Therefore, this class of meth-
ods is referred to as so-called discounting [117]. The modified relative frequencies
f∗(z|y) are obtained directly from the modified n-gram counts c∗(yz) according to:

f∗(z|y) =
c∗(yz)

c(y ·)
=

c(yz) − β(yz)

c(y ·)
∀yz, c(yz) > β(yz)

The discounting function β(yz) may be chosen such, that for certain events yz it will
become equal to their count c(yz). Then the effect can be observed, that these events
first contribute all their probability mass to the redistribution process, but themselves
belong to the effectively unseen events after the discounting.

The total probability mass one obtains for improving the empirical distribution
and especially for removing unseen events is referred to as the so-called zero prob-
ability λ(y). It depends on the respective n-gram context and is calculated as a sum
over the accumulated probability mass3:

λ(y) =

∑

yz:c(yz)>0

min{β(yz), c(yz)}

c(y ·)

In case that the modified relative frequency f∗(·) is directly used as an estimate for
the conditional probability of seen events, this quantity denotes, with which proba-
bility one of the unseen events can be expected to occur at all in a given context. As
will be elaborated in more detail in the following section 6.5.2 there also exist meth-
ods that perform a redistribution of the zero probability to all events in the respective
context. For both strategies, however, additional knowledge is required, as otherwise
the redistribution would only be possible according to a uniform distribution.

For the definition of a special discounting strategy — i.e. the choice of β(yz) —
the methods known from the literature can be divided into two groups. All methods,
which perform the reduction of a certain n-gram count proportional to its amount
c(yz), are referred to as linear discounting. If, however, a discounting constant β
is specified independently from the actual frequency of events, so-called absolute
discounting is applied.

In the simplest form of linear discounting β(yz) is defined by means of a pro-
portional factor α depending on c(yz).

β(yz) = α c(yz)

The modified relative frequencies f∗(yz) for all observed events are consequently
obtained as:

f∗(z|y) =
(1 − α)c(yz)

c(y ·)
= (1 − α)f(z|y) ∀yz, c(yz) > 0 and 0 < α < 1

3 In general the discounting function β(yz) can take on values larger than the absolute fre-
quencies c(yz), so that during the modification eventually only the minimum of the re-
spective values is gathered as probability mass.
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A good choice for α is given by the relative frequency of singletons, i.e. events
observed exactly once in the data [166]:

α =
d1(· ·)

c(· ·)
=

d1

c

A more general formulation results, if the proportional constant is not defined glob-
ally, but individually for every n-gram context. In this case it becomes equivalent
to the respective zero probability λ(y), so that one obtains the following modified
distribution of relative frequencies [62, 166]:

f∗(z|y) =
(1 − λ(y))c(yz)

c(y ·)
= (1 − λ(y))f(z|y) ∀yz, c(yz) > 0 (6.2)

The most serious drawback of linear discounting lies in the fact that the counts of
frequently observed events are modified the most. This does, however, not comply
with the basic statistical assumption backed up by the “law of large numbers” that
the more robust estimates are obtained, the more example data is available for a cer-
tain event. Furthermore, in the general formulation of equation (6.2) the choice or
optimization, respectively, of the zero probability λ(y) is required for all n-gram
contexts. Though this can be performed on additional data [166], the effort for com-
puting the n-gram model is in any case significantly increased.

Substantially easier in the application are, in contrast, methods for absolute dis-
counting. Also with respect to their effectiveness these are among the best meth-
ods known. Here large frequencies remain almost unchanged, and mainly events ob-
served rarely contribute to the gathering of probability mass. Therefore, these tech-
niques in general tend to assign smaller probabilities to unseen events than methods
for linear discounting do.

In absolute discounting every count c(yz) determined empirically is decreased
by a constant amount β. On the basis of the counts c∗(yz) modified such one obtains
the following new distribution of relative frequencies:

f∗(z|y) =
c∗(yz)

c(y ·)
=

c(yz) − β

c(y ·)
= ∀yz, c(yz) > β (6.3)

The zero probability λ(y) can in this case simply be given as:

λ(y) =

∑

yz:c(yz)>0

β

c(y ·)
= β

d1+(y ·)

c(y ·)

In all variants of absolute discounting the discounting constants β are always chosen
such, that they do not lie above the original frequencies. This is especially true for the
widely used choice of β ≤ 1, which already achieves very good results in practice.

Under certain marginal conditions the discounting constants can be chosen better
— though not necessarily optimal. If for every context length exactly one constant is
used, one obtains the following upper bound for its choice according to [165]:
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β ≤ d1(· ·)

d1(· ·) + 2d2(· ·)
=

d1

d1 + 2d2
< 1

In [34] even three different constants are proposed for events seen once, twice, or
more frequently. The improvements achieved with this refinement of the model are
in the majority of cases quite marginal, however.

6.5.2 Incorporation of More General Distributions

The gathering of probability mass alone is, however, not sufficient in order to deter-
mine suitable estimates for conditional n-gram probabilities. The redistribution of
the zero-probability for removing unseen events or also for the support of less robust
estimates always requires the incorporation of additional, more reliable knowledge.
As this knowledge can not be contributed by experts, but also needs to be determined
from the example data, for that purpose only probability distributions can be consid-
ered, which are less complex and, therefore, can be estimated more easily than the
n-gram model to be improved.

For tasks of language modeling the strategy most frequently applied for choosing
such more general distributions is the shortening of the context restriction of the n-
gram models by one word. The resulting (n-1)-gram distribution is less specific than
the initial model and, therefore, chances are also higher that its parameters can be
estimated robustly on the available data.

For the combination of the more general distributions with the smoothed empiri-
cal distributions two fundamental classes of methods exist. When applying interpo-
lation, a weighted averaging of the two parts of the model is performed. In the case
of the so-called backing off the more general distribution is only taken into account
for redistributing the gathered zero probability in a clever way onto unseen events.

Interpolation

A group of methods widely used in the field of language modeling for improving
empirically determined estimates f(z|y) of a special distribution P (z|y) are inter-
polation methods (cf. [106]). By a linear combination with a suitably chosen more
general distribution q(z|y) one obtains more robust estimates for the special proba-
bility distribution considered:

P (z|y) = (1 − α) f(z|y) + α q(z|y) 0 ≤ α ≤ 1 (6.4)

This approach is based on the assumption that principally all empirically determined
frequencies f(z|y) can be estimated better — i.e. more robustly — by also tak-
ing into account additional knowledge in the form of the more general distribution
q(z|y). Thus, vanishing frequencies and those that are based on a sufficient number
of samples are treated in the same way.

In this method the interpolation weight α needs to be chosen such, that on the
one hand the coarser information of the more general distribution does not dominate
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the special estimates too much, but on the other hand suitably supports less robust
or vanishing relative frequencies. On the basis of additional training material, which
was not used for determining the empirical distributions, the interpolation weight α
can either be determined experimentally or be optimized in a mathematically exact
way4.

As more general distribution in the context of language modeling almost always
the (n-1)-gram distribution P (z|ŷ) associated with the n-gram model P (z|y) con-
sidered is chosen. Thus the generalization lies in the shortening of the context re-
striction y = y1, y2, . . . yn−1 by one word to yield ŷ = y2, . . . yn−1, which achieves
a lower specificity of the model and at the same time a better trainability of its pa-
rameters.

q(z|y) = q(z|y1, y2, . . . yn−1) ← P (z|y2, . . . yn−1) = P (z|ŷ)

For tri- and bi-gram models with this strategy q(·) can easily be given as follows:

q(z|xy) ← P (z|y)
q(z|y) ← P (z)

As now the more general distribution q(·) again consists of an n-gram model, the
interpolation principle is in general applied recursively here:

P (z|y) = (1 − αn) f(z|y) + αn q(z|y)
= (1 − αn) f(z|y1 . . . yn−1)

+ αn [(1 − αn−1) f(z|y2 . . . yn−1)
+ αn−1 q(z|y2 . . . yn−1)]

= · · · ∀i : 0 ≤ αi ≤ 1

Thus by repeated shortening of the n-gram context for choosing the respective more
general distribution q(·) one obtains a linear combination5 of all empirically deter-
mined relative frequencies as the final model6.

P (z|y) = λn f(z|y)
+ λn−1 f(z|y2 . . . yn−1)
+ · · ·
+ λ1 f(z)

=
∑n

i=1λi f(z|yn−i+1 . . . yn−1) ∀i : 0 ≤ λi ≤ 1 and
∑

i λi = 1

4 For the optimal choice of the interpolation weight α the training material of the n-gram
model can not be used, as on this data the most special model — i.e. the empirical distri-
bution f(z|y) itself — would always be optimal. One, therefore, would obtain α = 0.0
[105, p. 63]. Rather, additional material needs to be available that is exclusively used for
the optimization of the interpolation weight.

5 For the sake of clarity here the resulting products of the pairwise interpolation weights αi

were replaced by new constants λi.
6 The incorporation of a zero-gram model usually is not necessary, if one assumes, that every

word of the lexicon V considered was observed at least once. However, if this is not the
case, as, e.g., the sample set and the lexicon were defined completely independently of each
other, the interpolation scheme can be extended by the additional term λ0

1
|V |

.
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From this the interpolation formula for robust tri-gram models developed by Jelinek
& Mercer and used in the tradition of research at IBM can be obtained as a special
case (cf. e.g. [105, pp. 60–61]):

P (z|xy) = λ3 f(z|xy) + λ2 f(z|y) + λ1 f(z)

In the formulation so far the interpolation method directly started from the empiri-
cally determined relative frequencies f(·) and made no use of the reduced frequency
distribution f∗(·) generated in the preparatory step described previously. The princi-
pal possibility for its incorporation into the interpolation becomes evident the most
easily, if linear discounting is used for obtaining f∗(z|y):

f∗(z|y) = (1 − α)f(z|y) ∀yz

This expression corresponds directly to the first term in the sum of the classical in-
terpolation equation (6.4). When distinguishing between sufficiently frequently ob-
served events, for which estimates f∗(z|y) exist, and effectively unseen n-grams,
one obtains a generalized interpolation rule. Therein the reduced frequency distribu-
tion f∗(z|y) is combined with the general distribution q(z|y) , with the interpolation
weight being equal to the gathered zero-probability λ(y):

P (z|y) =

{

f∗(z|y) + λ(y)q(z|y) c∗(yz) > 0

λ(y)q(z|y) c∗(yz) = 0
(6.5)

As in this case the interpolation weights are not defined for a distribution in general,
but are chosen depending on the context y, the method is also called non-linear
interpolation [165].

The crucial conceptual drawback of interpolation models is directly caused by
their very design principle. When assuming, that counts, which were determined on
a large basis of sample data, already represent robust estimates, it does not seem to
be useful to modify these by an interpolation with a coarser model. In the end this
leads to a smoothing of the resulting distributions, which at the same time also causes
a partial loss of their specificity.

Backing Off

The principle of backing off , which dates back to Katz [117], in contrast to inter-
polation methods incorporates the more general distribution only then into the com-
putation of the n-gram model, if the reduced frequencies f∗(·) vanish. In all other
cases those values are directly adopted as the conditional probabilities of the respec-
tive event. The redistribution of the gathered zero probability λ(y) onto the unseen
events is, however, performed proportional to the more general distribution q(·).

P (z|y) =

{

f∗(z|y) c∗(yz) > 0

λ(y)Kyq(z|y) c∗(yz) = 0
(6.6)
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In order to guarantee the normalization constraint for the distribution P (z|y) con-
structed such, an additional scaling factor Ky needs to be introduced. It makes sure,
that the zero probability is completely — i.e. with weight 1.0 — incorporated into the
resulting model according to a probability distribution Kyq(z|y) defined for unseen
events only. The scaling factor can, therefore, be computed as the reciprocal value of
the probability sum that is obtained for unseen events according to the more general
distribution:

Ky =
1

∑

yz : c∗(yz)=0

q(yz)
(6.7)

In the same way as with interpolation methods the more general distribution q(·) is
generally chosen by simply shortening the n-gram context. Likewise the principle of
backing off is recursively applied to the whole hierarchy of n-gram models. For a
back-off tri-gram model one thus obtains the following computation scheme:

P (z|xy) =

⎧

⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

f∗(z|xy)

λ(xy)Kxy

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

f∗(z|y)

λ(y)Ky

⎧

⎨

⎩

f∗(z)

λ(·)K
·

1
|V |

c∗(xyz) > 0

c∗(xyz) = 0 ∧ c∗(yz) > 0

c∗(yz) = 0 ∧ c∗(z) > 0

c∗(z) = 0

In combination with absolute discounting by backing off one obtains very easily
extremely powerful n-gram models for a wide spectrum of applications (cf. [34, 62]).
Even with considerably more expensive methods in general only marginally lower
perplexities can be achieved.

6.5.3 Optimization of Generalized Distributions

In the previous section it was assumed that the more general distributions necessary
for interpolation methods or backing off can be obtained by shortening the context
of the respective n-gram model. This heuristic definition is, however, not necessarily
the best possible strategy.

This can be made illustratively plausible with the example of a word z, which in
fact occurs very frequently in a given sample set, but only in a certain context y. De-
pending on the text category this could be for example “York” in the context “New”
or “machine” after the preceding phrase “support vector”. In all other contexts y′,
however, z was never observed and both in interpolation as in backing off the more
general distribution q(z|y′) is decisive for determining the conditional probability
P (z|y′). If one chooses q(z|y′) ← P (z), the predicted probability P (z|y′) is pro-
portional to the frequency of occurrence c(z) of the considered word z. Therefore,
one obtains a relatively high probability for its observation in a context y′, in which z
never occurred in the sample data. A relatively low probability would be more plausi-
ble, as in this situation the considered word is seen frequently in exactly one context,
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but was not observed in any other. A more general distribution, which comes close to
that intuitive idea, defines q(z|y′) proportional to the number of different contexts,
in which a certain word was observed. The more unique the context specificity of an
event is, the lower the respective predicted probability would be compared to other
events.

In the method proposed by Kneser & Ney for determining the more general dis-
tribution, q(·) is not defined heuristically, but derived in an analytical way [121].
Using two different optimization criteria principally comparable distributions q(·)
are obtained, which are not based on the absolute frequencies of events, but on the
number of contexts, in which a word was observed.

In the first approach proposed it is required, that the conditional (n-1)-gram dis-
tribution P (z|ŷ), which results from shortening the context, can also be obtained
as the marginal distribution of the joint distribution P (y, z|ŷ). The more general
distribution q(z|y) is then given by:

q(z|y) =
d1+(·ŷz)

d1+(·ŷ·)
=

d1+(·ŷz)
∑

z′

d1+(·ŷz′)
(6.8)

In the second derivation, which applies the principle of leaving-one-out — a special
technique of parameter estimation by means of cross validation (cf. [166] or [57]), a
similar formula for the computation of q(·) is obtained:

q(z|y) =
d1(·ŷz)

d1(·ŷ·)
=

d1(·ŷz)
∑

z′

d1(·ŷz′)
(6.9)

Thus in the first case q(z|y) is proportional to the number of different contexts ŷ, in
which the word z to be predicted is occurring. In the expression (6.9) determined by
leaving-one-out from these contexts only those are considered, in which z was ob-
served exactly once. In general this quantity d1(·ŷz) also accounts for a significant
portion of the total number of different contexts d1+(·ŷz), so that the two possibil-
ities for the choice of q(·) do not differ substantially. In practical applications fre-
quently cases occur, though, in which d1(·ŷz) vanishes for certain, mostly frequent
words, because these were always observed more than once in their respective con-
texts. Therefore, equation (6.8) is better suited for the robust estimation of optimized
more general distributions.

Though the principle of determining more general distributions for n-gram mod-
els in an optimal way is immediately convincing, the advantages of the method are
rather small in practice.

For the derivation of equations (6.8) and (6.9) the authors in fact rely on back-
ing off. In practice with the proposed smoothing technique significant improvements
in the modeling quality are, however, only obtained in combination with non-linear
interpolation7. As in backing off the more general distribution is used for the eval-
uation of unseen events only, this behavior is quite plausible. An optimization there

7 Inconsistently Kneser & Ney themselves use non-linear interpolation in order to demon-
strate the potential of their smoothing technique in experimental evaluations [121].
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has a conceivable effect only, if a large number of unseen events occur in the test set.
This means, however, that the n-gram model used is rather unsuitable for the task,
which will rarely happen in practice. In contrast, with non-linear interpolation the
more general distribution is always incorporated into the probability computations
and, therefore, has a significantly greater effect on the modeling quality.

The possible improvements are, however, obtained with an extremely high com-
putational effort, which already for tri-gram models by far dominates the other com-
putations necessary for building the model. Responsible for this is the repeated evalu-
ation of expressions of the form dk(·yz). These counts can not be determined locally
due to the leading joker symbol. Rather, always all contexts xy have to be taken into
account, which makes searching a large portion of the stored count data necessary.

6.6 Model Variants

In the literature besides the “classical” definition of n-gram models also several vari-
ants of the basic concept were proposed. These in general try to overcome limitations
or deficiencies of the standard formalism.

6.6.1 Category-Based Models

The most well known variant of the n-gram technique tries to exploit the fact, that
natural languages alongside a syntagmatic structure exhibit a paradigmatic structure,
too. This means that in different linguistic contexts not only a certain word, but a
whole group of words or phrases can occur likewise. In every case one obtains a
syntactically well formed utterance, even if its meaning in general will be altered by
such an exchange.

Thus in the sentence “I moved to Dortmund one year ago” the city name could
be replaced by an arbitrary one as, e.g. Los Angeles or Paris. Additionally the num-
ber could be in principle varied arbitrarily and the respective unit of time might be
exchanged. But also in many other positions paradigmatic replacements could be
made.

When trying to capture such a situation with an n-gram model, one will notice,
that then all possible combinations need to occur at least once in the sample set
considered. Still no paradigmatic rules can be represented in an abstract way. In order
to make, e.g., the occurrence of city names probable in all relevant contexts, all these
names would need to be observed in the respective context. Therefore, all words,
which should be exchangeable in a certain context, are grouped to form a word class
or category. Thus Dortmund, Los Angeles, and Paris would form the category of city
names in our small example.

The language models extended in this way are referred to as category-based
n-gram models or simply as class n-grams, provided that the thematic context is
unique. The categories used should comprise such words that — in the statistical
sense — occur in similar contexts or generate comparable restrictions for the joint
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occurrence of other words or categories. In [29, Sect. 3] Brown and colleagues de-
scribe this situation quite illustratively as follows:

“Clearly, some words are similar to other words in their meaning and syn-
tactic function. We would not be surprised to learn that the probability distri-
bution of words in the vicinity of Thursday is very much like that for words
in the vicinity of Friday. Of course, they will not be identical: we rarely hear
someone say Thank God it’s Thursday! or worry about Thursday the 13th.”

When using a categorial n-gram model for the computation of the probabilities
of word sequences the possible sequences of categories, which might correspond
to these, must be taken into account. As in general the mapping of words to cate-
gories is not unique, in principle any sequence C = C1, C2, . . . CT of length T can
be associated with a word sequence w = w1, w2, . . . wT with a certain probability
P (w1, w2, . . . wT |C1, C2, . . . CT ). The probability of the word sequence is then ob-
tained as the marginal distribution over all possible category sequences of the same
length:

P (w) = P (w1, w2, . . . wT )
=

∑

C1,C2,...CT

P (w1, w2, . . . wT , C1, C2, . . . CT )

=
∑

C1,C2,...CT

P (w1, w2, . . . wT |C1, C2, . . . CT )P (C1, C2, . . . CT )

As a first simplification one now defines, that the occurrence of a word at a spe-
cific position is not dependent on the total sequence of categories, but only on the
respective corresponding element. The probability of the word sequence can then be
rewritten as:

P (w1, w2, . . . wT |C1, C2, . . . CT ) =
T∏

t=1

P (wt|Ct)

Furthermore one describes the joint probability of the category sequence by approx-
imating it with an n-gram model:

P (C1, C2, . . . CT ) ≈
T∏

t=1

P (Ct|Ct−n+1, . . . , Ct−1)

The evaluation of a word sequence by means of a categorial language model
restricted in this respect is then obtained according to:

P (w) ≈
∑

C1,C2,...CT

T∏

t=1

P (wt|Ct)P (Ct|Ct−n+1, . . . , Ct−1) (6.10)

If also the category n-gram model used is restricted to consist of a bi-gram model
only, one obtains the following simplified computation rule:
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P (w) ≈
∑

C1,C2,...CT

T∏

t=1

P (wt|Ct)P (Ct|Ct−1) (6.11)

The comparison with equation (5.6) on page 68 immediately shows, that this model
is equivalent to a discrete HMM, the internal states of which correspond to the cat-
egories and which generates words from a certain lexicon as outputs. Unfortunately,
this also means, that the mere evaluation of the model is substantially more expensive
than in the case of an “ordinary” n-gram model. For the latter only the multiplication
of a sequence of conditional probabilities was necessary. For a categorial bi-gram
model, however, the probability of a word sequence can be computed only by means
of the forward algorithm. In contrast to the general formulation of a categorial n-
gram model in equation (6.10), where in principle category sequences of arbitrary
length are allowed as contexts, this nevertheless means a significant improvement in
efficiency.

The most dramatic reduction in the evaluation effort of categorial n-gram models
is achieved by the use of strictly disjoint categories. Then a unique mapping between
the word and the corresponding category sequence is possible. Equation (6.10) can
then be further simplified to:

P (w) ≈
T∏

t=1

P (wt|Ct)P (Ct|Ct−n+1, . . . , Ct−1) (6.12)

The main advantage of categorial models lies in the fact, that they require a sig-
nificantly smaller number of parameters as opposed to “ordinary” word-based n-
gram models. Therefore, they can be estimated robustly also on limited training ma-
terial and promise improved generalization capabilities on unknown data, provided
that the paradigmatic conditions were captured sufficiently well.

A “conventional” n-gram model is, however, always then superior to a categorial
model, if large amounts of training material are available. Therefore, category-based
n-gram models frequently are only used as a supplement to an existing word-based
model. They then serve the purpose to provide robust estimates for the more general
distributions required, for which it is the primary concern to define useful probabili-
ties for rare or completely unobserved events (cf. e.g. [171, 204]).

The need to specify a suitable category system, however, makes the application
of categorial models substantially more difficult. In some domains, which are also
analyzed on a syntactic-semantic level, the linguistic categories lend themselves to be
used directly for the purpose of language modeling (cf. e.g. [172]). In general more
powerful but also significantly more costly are, however, methods for automatically
determining a suitable category system on the basis of a sample set only (cf. e.g.
[29, 122, 172]).

6.6.2 Longer Temporal Dependencies

The most important limitation in the modeling capabilities of n-gram language mod-
els results from the fact, that in practice only rather short contexts of usually no more
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than two predecessor words can be taken into account. The training sets usually
available are not sufficient to robustly estimate parameters of more complex models.
Therefore, in the literature a number of methods was proposed, which allow to cap-
ture longer context dependencies while at the same time achieving a reduced model
complexity.

In so-called long-distance bi-grams pairs of words are considered in certain pre-
defined distances, in order to create language models, which are from a computa-
tional point of view similar to bi-gram models. The total model then results from a
linear combination of the component models [96]. A similar principle is also applied
by the so-called distance tri-grams where word triplets are generated by skipping one
context word at a time [153].

In contrast to such explicit techniques for taking into account longer contextual
restrictions are methods, which try to adapt an existing model in a suitable way to
a concrete textual or thematic context, respectively. Some methods of this group of
techniques will be described under the aspect of model adaptation in section 11.3
page 186.

6.7 Bibliographical Remarks

Markov chain models originated from the work of the Russian mathematician Andrej
Andrejewitsch Markov (1856 − 1922), after whom they were also named. He used
such a modeling the first time for the statistical analysis of the character sequences
in the text of “Eugene Onegin”, a novel in verse by Alexander Sergeyevich Pushkin
[151]. In the mathematical technical literature mainly theoretical aspects of Markov
chain models are covered. Their practical application occurs primarily in the field of
automatic speech recognition or the statistical modeling of texts, respectively, where
the models are referred to as n-gram or language models.

A very thorough treatment of the topic can be found in the monograph by Huang,
Acero & Hon [97, pp. 558–590]. The treatment of language models in [105] is, how-
ever, strongly limited to the view of the author on the topic. Bell et al. describe
n-gram models in the context of text compression [14]. A compact introduction into
the subject is given in the article by Federico et al. [62]. Especially the historical
perspective on the development of techniques for language modeling is covered by
Rosenfeld [200].

Stochastic grammars, which similarly as n-gram models can be used for the sta-
tistical description of sequencing constraints in symbol chains or texts, respectively,
are, e.g., described in [97, pp. 554–558]. An overview of language modeling tech-
niques in general can be found in [97, Chap. 11, pp. 545–553] or [181, p. 417].

The probably oldest method for removing vanishing probability estimates of un-
observed events is adding one (cf. e.g. [62], “Method A” in [249], “Jeffrey’s esti-
mate” in [165]). The method, which is also referred to as Laplace’s rule, is to date
still applied in the analysis of biological sequences [52, p. 108,115]. Considerably
better model parameters are obtained by interpolation methods, which date back to
works by Jelinek & Mercer ([106], cf. also [104] or [105, S. 62ff]). Ney, Essen &
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Kneser proposed the use of non-linear interpolation [165]. The principle of backing
off was developed by Katz [117]. The gathering of the probability mass required
is performed by means of linear discounting ([117], cf. also [62, 166]) or absolute
discounting (“Method B” in [249], [165, 166]). A method for the optimization of
the more general distributions required for both backing off and interpolation was
developed by Kneser & Ney [121]. Comparisons of different smoothing techniques
can be found in Federico et al. [62] and also in Chen & Goodman [33, 34], where
extensive experimental evaluations are reported. Category-based n-gram models are
described in, e.g., [29] or [97, pp. 565–570].





Part II

Practice



Introductory Remarks

In the chapters 3 to 6 of the preceding part of this book the theoretical foundations
of Markov models were introduced. Though they are extremely important for the
conceptional understanding of the properties of HMMs and n-gram models, they are
not sufficient for realizing working implementations of these techniques and systems
that are successful in practical applications. For this purpose additionally know-how
related to practice is necessary, the presentation of which, despite its great impor-
tance, is usually disregarded in the literature. In his monograph on statistical methods
for speech recognition Jelinek proceeds in a especially extreme way with respect to
practical aspects, by clarifying right at the beginning in a remark [105, p. 11]:

“As presented here, the algorithm contains the idea’s essence. In practice,
[...], many refinements are necessary that are the results of intensive exper-
imentation. [...] This is the case with the vast majority of algorithms pre-
sented in this book: We describe the basic idea that must then be worked out
in practice.”

Especially from a pioneer of automatic speech recognition and of statistical methods
in the field of pattern analysis one would have expected more than such a disappoint-
ing statement.

In contrast to that we want to put an emphasis of this book on the practical appli-
cations of Markov model technology. In the following chapters essential aspects of
HMMs and n-gram models relevant in practice will be covered, in order to achieve
not only a theoretical understanding of the reader, but to also enable him, to realize
his own applications of the techniques presented.

At the beginning methods will be presented for the numerically stable handling of
probabilities, which are ubiquitous when dealing with Markov models. Chapter 8 is
dedicated to the challenging problem of configuring Markov models, i.e. the choice
of a suitable model architecture. Different methods, which make a robust estimation
of parameters possible even for complex models are presented in chapter 9. In the
subsequent chapter 10 efficient algorithms for model utilization are described. Ad-
ditionally, techniques are presented, which achieve a gain in efficiency in practical
applications by a reorganization of the models’ representation. The topic of chap-
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ter 11 is the adaptation of models to the operating conditions, which will in general
be different from the ones of the training phase. Especially for hidden Markov mod-
els such methods have gained increased importance lately. In the last chapter of the
part on practical aspects of Markov models several methods for integrated search are
presented, which make the joint use of HMMs and n-gram models for challenging
tasks possible.

In a successful recognition system based on Markov models be it for spoken
language or handwritten script in general methods from all topics mentioned above
are implemented. In contrast, methods for model adaptation, integration of n-gram
models, and the robust estimation of continuous distributions hardly play a role in
the analysis of biological sequences.





7

Computations with Probabilities

The handling of probability values in real computing systems at first sight seems
to be a trivial problem, as the range of values of those quantities is limited to the
interval [0.0 . . .1.0]. Nevertheless problems arise especially in longer computational
procedures, as extremely small values lying close to zero need to be represented and
manipulated.

That such nearly vanishing probability values can appear quickly in computations
for Markov models, can be illustrated by the following example. The computation of
the probability P (s|λ) of a state sequence s = s1, s2, . . . sT for a given model λ is
performed by multiplying all transition probabilities involved (cf. equation (5.5)):

P (s|λ) =

T∏

t=1

ast−1,st

Even if in every state only two successor states with equal probability could occur,
i.e. all ast−1,st

are equal to 0.5, one obtains already from a length of the observa-
tion sequence of T > 100 onwards numerical values smaller than 5 · 10−100, which
can hardly be represented in today’s digital computers1. And yet in these consid-
erations strongly simplifying assumptions were made, which will never be met in
reality. Additionally, in usual situations the handling of considerably longer observa-
tion sequences will be required, as T = 100 in automatic speech recognition usually
corresponds to utterances of one second in length2 and in handwriting recognition of
only a few consecutive characters. Furthermore, scores for partial paths also include
output probabilities or probability densities, which themselves tend to become quite
small numerically.

1 On practically all modern computer architectures floating point numbers are represented in
formats, which were standardized in the framework of the ANSI/IEEE standard 854 [100].
With respect to their absolute value then single precision numbers can be represented in
the range of approximately 3.4 · 1038 to 1.4 · 10−45 and such with double precision in the
range of 1.8 · 10308 to 4.9 · 10−324 .

2 Feature vectors are extracted from the speech signal with a spacing of 10 ms in practically
all current speech recognition systems.
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In order to be able to effectively counteract the phenomenon of de facto vanishing
probabilities, in practice one banks on an improved representation of those quantities
and, if necessary, also on their algorithmic limitation to suitable lower bounds.

7.1 Logarithmic Probability Representation

The probably oldest method for improving the dynamic range of probability values
in computations consists in scaling these appropriately (cf. [195], [95, pp. 241–242]).

Unfortunately, this is only possible locally as especially in longer computations
the occurring quantities tend more and more to extremely small probability values.
The necessary scaling factors, therefore, need to be determined for every normaliza-
tion operation anew, which makes the method extremely costly and error prone.

Therefore, the representation on a negative logarithmic scale has become the
method of choice for handling even extremely small probability values (cf. [95,
pp. 243–244]). One no longer uses the real probability or density values p in compu-
tations but applies the following transformation:

p̃ = − logb p (7.1)

After this transformation the formerly multiplicative probability values can be inter-
preted as additive constants.

The choice of the base b of the logarithm used has no appreciable influence on the
representational possibilities. As the natural logarithm to base e, however, makes an
additional simplification of the evaluation of normal densities possible (cf. page 42),
it is mainly used for this purpose. Also in practically all standard computing libraries
efficient implementations of the natural logarithm and its inverse are available as
log() and exp(), respectively. In the following we will, therefore, use the pair of
functions lnx = loge x and ex for the transformation of probability values to and
from the logarithmic domain.

By this transformation the original range of values [0.0 . . .1.0] for probabili-
ties is mapped to the entire non-negative floating-point numbers that can be repre-
sented. As density values can also become larger than 1.0 — though only in rather
rare cases in practice — their logarithmic representation comprises principally even
the whole dynamic range of floating-point numbers. The resolution of the negative-
logarithmic representation is limited though due to the limited precision of today’s
floating-point formats. However, the accuracy is sufficient for the practical applica-
tion of the method.

In order to be able to fully exploit the advantages of the logarithmic representa-
tion it is necessary to carry out all computations on probabilities as continuously as
possible in this domain. This is achieved easily as long as only multiplications and
maximizations are involved in the calculations. Thus, e.g., the formula for computing
the partial path probabilities δt+1(i) in the Viterbi algorithms (cf. equation (5.9)) or
figure 5.5) is transformed from

δt+1(j) = max
i

{δt(i)aij} bj(Ot+1)
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in linear, i.e. “normal” probability representation, into

δ̃t+1(j) = min
i

{

δ̃t(i) + ãij

}

+ b̃j(Ot+1)

when using the negative-logarithmic representation.
It is, however, considerably more complex, to carry out computations with log-

arithmically represented probability quantities, if these require a summation. In the
most unfavorable of situations the quantities p̃1 and p̃2 involved would need to be
first converted to the linear domain, then to be added, and finally to be transformed
to the logarithmic domain again:

p̃1 +log p̃2 = − ln
(
e−p̃1 + e−p̃2

)

This extremely costly operation can be simplified considerably by applying the so-
called Kingsbury-Rayner formula ([118], see also [136, p. 29]) and thus saving one
exponentiation3:

p̃1 +log p̃2 = − ln(p1 + p2) = − ln(p1(1 + p2

p1
)) =

= −
{
ln p1 + ln(1 + eln p2−ln p1)

}

= p̃1 − ln(1 + e−(p̃2−p̃1))

(7.2)

When applying equation (7.2) in fact still an exponentiation and a computation of
the logarithms has to be performed4. However, sequences of computations involving
summations of probability values can then be carried out in the logarithmic domain
in an integrated manner.

The forward and backward variables αt(i) and βt(j) (cf. equations (5.7) and
(5.13) and figure 5.6) and also the probability sums for the normalization of n-gram
scores (cf. equation (6.7)) can be calculated with sufficient accuracy by applying the
method of Kingsbury & Rayner. The observable loss in efficiency in the training
phase of a model constitutes a negligible limitation only, compared to the extension
of the dynamic range.

However, the evaluation of output probability density functions described by
mixture models requires the summation over all component densities even when de-
coding the model (cf. equation (5.1)):

bj(x) =

M∑

k=1

cjk gjk(x)

In this case the application of the “logarithmic summation” after equation (7.2) is
not advisable, as per density calculation M exponentiations and computations of the

3 A computation can even be avoided completely, if one or both values p̃i already lie be-
low the smallest logarithmic probability value, that can be represented, or if the difference
between p̃1 and p̃2 is too large and, therefore, the term e−(p̃2−p̃1)) vanishes.

4 The precision of the “logarithmic summation” can even further be improved, if one uses,
e.g. the function log1p() available in the standard C-library for directly computing
ln(1 + x) also for small x.
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logarithm are necessary in addition to the computational effort in the linear domain.
If one is not able to work with “ordinary” probabilities in such cases (cf. section 7.3),
the output probability density bj(x) can be approximated by the respective maximum
of the component densities with slightly reduced accuracy:

bj(x) ≈ max
k

{cjk gjk(x)}

As for this approximative calculation no summations are necessary any more, the
computation of b̃j(x) can now completely be performed in logarithmic representa-
tion:

b̃j(x) ≈ min
k

{c̃jk + g̃jk(x)}

7.2 Lower Bounds for Probabilities

The logarithmic representation of probability values presented in the previous section
can, however, only transfer numerically vanishing quantities into a range of values
that can be manipulated by digital computers. If “‘real” zeros appear, e.g. probabili-
ties of unobserved events, these would need to be mapped to the largest representable
positive floating-point number5. In the same way as the equivalent quantities in lin-
ear representation, such values dominate all calculation processes, in which they are
used. Effectively this leads to situations where states or state sequences, in the eval-
uation of which a single vanishing probability occurs, can no longer be part of any
solution.

Similarly to the creation of statistical language models (cf. section 6.5), how-
ever, such a behavior is in general not desired in statistical models, as it can never
be safely assumed, that a probability computed as zero and the associated final re-
jection of certain solutions is reliable enough. Rather, one always assures that prob-
ability values as, e.g., transition or output probabilities, which were either defined
individually or computed, may never fall below a certain minimal value pmin. In
negative-logarithmic representation this means to use a respective maximal value
p̃max = − ln pmin. Such a lower bound is also referred to as the floor and the associ-
ated procedure as flooring.

As along paths through HMMs or n-gram models the accumulated scores grow
depending on the length of the path, no absolute limitation is introduced here. Rather,
one relies on the fact, that the use of suitably limited individual values in combination
with the increased dynamic range of the logarithmic representation always ensure the
computability and comparability of the results. In practice this assumption is de facto
justified as concrete observation or word sequences are always of finite length.

The limitation of bj(x) > bmin already proposed in [195] causes two effects in
the practical application. During the training phase of the model it is avoided that
certain states are not considered for parameter estimation, the current parameters of

5 When applying equation (7.1) in a naive way, even an error in the floating-point computa-
tion would result.
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which are still totally unsuitable for the generation of certain observations. In decod-
ing the limitation avoids that paths through states with vanishing output probabilities
are immediately discarded as possible solutions. A principally similar effect can be
achieved by limiting the mixture weights according to cjk > cmin.

Though this so-called flooring is a mandatory measure for the robust application
of Markov models, it has the crucial disadvantage, that the necessary bounds need
to be determined heuristically and, therefore, in general also need to be optimized in
the context of the application. Furthermore, always interactions with methods for the
limitation of the search space arise, as those try to eliminate less promising solutions
from the search space early.

7.3 Codebook Evaluation for Semi-Continuous HMMs

When using semi-continuous HMMs a method for the evaluation of the densities
within the commonly shared codebook has proven useful in practice, which can es-
sentially be viewed as a technique for reducing the dynamic range of all quantities
involved.

The output probability densities bj(x) of semi-continuous HMMs are defined
as mixture densities over a common inventory of component densities (cf. equa-
tion (5.2)):

bj(x) =

M∑

k=1

cjk gk(x) =

M∑

k=1

cjk p(x|ωk)

The individual mixtures gk(x) therein correspond to the class-conditional densities
p(x|ωk) of the features depending on the codebook classes ωk. Using Bayes’ rule
this quantity can be related to the posterior probability P (ωk|x) of the respective
class:

p(x|ωk)P (ωk) = p(x, ωk) = P (ωk|x) p(x)

In this expression still neither the prior probabilities P (ωk) of the codebook classes
nor the density p(x) of the data itself is known. However, the fact can be exploited
that in the semi-continuous modeling a global codebook is used. Ideally this should
approximate reasonably well the distribution of all feature vectors — namely p(x)
— with the baseline distributions contained therein. Therefore, p(x) can be approx-
imated by a mixture density as follows:

p(x) ≈
M∑

m=1

P (ωm) p(x|ωm)

When further assuming that the partitioning of the feature space into classes ωk gen-
erates regions of high density of approximately equal size, the prior probabilities
P (ωk) can be approximated by a uniform distribution. The conditional probability
P (ωk|x) of a class ωk can then be computed depending on the feature vectors x as
follows:
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P (ωk|x) =
p(x|ωk)P (ωk)

p(x)
≈ p(x|ωk)P (ωk)

∑M

m=1 P (ωm) p(x|ωm)
≈ p(x|ωk)

∑M

m=1 p(x|ωm)

In practice this corresponds to a scaling of the density values p(x|ωk) such that they
sum up to unity, a normalization operation which is widely used in the application
of semi-continuous HMMs [95, p. 200]. The definition of the output probabilities is
then achieved on the basis of the posterior probabilities of the codebook classes.

b′j(x) =

M∑

k=1

cjk P (ωk|x) =

M∑

k=1

cjk

p(x|ωk)
∑M

m=1 p(x|ωm)

The semi-continuous model can, therefore, be considered directly as the combination
of a “soft” vector quantization stage, which computes P (ωk|x), and a discrete HMM
with output probabilities bj(ωk) = cjk.

7.4 Probability Ratios

When decoding HMMs for biological sequences often a modification of the com-
putation of output probabilities is performed. The output probability bj(ok) for the
symbol ok in state j given by the model is normalized onto a suitable background
distribution, which is identical for all states:

b′j(ok) =
bj(ok)

P (ok)

In the simplest case P (ok) is assumed as a random model, i.e. as a uniform distribu-
tion over all K possible symbols of the output alphabet:

b′j(ok) ≈ bj(ok)
1
K

One obtains a modified probability P ′(O, s|λ) for the generation of the sequence
O1, O2, . . . OT considered and jointly running through a certain state sequence
s1, s2, . . . st for a given model λ (see also equation (5.6), page 68):

P ′(O, s|λ) =

T∏

t=1

ast−1,st

bst
(Ot)

P (Ot)
=

T∏

t=1

1

P (Ot)

T∏

t=1

ast−1,st
bst

(Ot) =
P (O, s|λ)
∏T

t=1 P (Ot)

The normalization of the original output probabilities bj(ok) onto a background
distribution causes a non-linear length normalization of the path score P ′(O, s|λ). If
only a random model is used, one obtains a linear length normalization by the factor

of
(

1
K

)T
.

As a logarithmic probability representation is also used in the analysis of biologi-
cal sequences, the concrete score for the output of a symbol ok in state j is computed
as follows:
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b̃′j(ok) = ln
bj(ok)

P (ok)
= ln bj(ok) − lnP (ok) (7.3)

The procedure is referred to as log-odds scoring in the literature (cf. [128], [52,
pp. 108–110]). By this normalization step it is assured that the scores of the opti-
mal state sequence determined for different biological sequences can be compared
directly. Otherwise these would vary largely depending on the length of the observa-
tion sequence considered and, consequently, could not constitute a useful basis for a
classification decision.

When for the purpose of simplification considering the decision over a single
sequence only, a rejection criterion can easily be defined by using log-odds scoring.
This approach in principle corresponds to the use of a very general separate HMM —
a so-called garbage model — for modeling in total the observation sequences to be
expected. If this model achieves a higher total probability than the model associated
with a special class of patterns, a rejection is performed.

In the field of automatic speech recognition the use of garbage models can be
found for the detection of unknown words. There one creates a general HMM, e.g. for
sequences of speech sounds of the language considered, in addition to the models for
words from the recognition lexicon. If the garbage model achieves the best score for a
certain acoustic event, it can be assumed, that this part-of-speech was not sufficiently
well described by the models of the “known” words and, therefore, is not part of the
recognition lexicon — in other words it is “unknown” (cf. [4, 91, 112, 256]).
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Configuration of Hidden Markov Models

For n-gram language models the vital configuration parameters are given by the size
of the lexicon used and the length of the context to be considered. When creating
HMMs for a certain application, in contrast, it is not immediately clear, what model
size should be chosen, which type of emission modeling should be used, and whether
the number of possible paths through the model could eventually be restricted in a
suitable way.

8.1 Model Topologies

In the main application areas of HMM-based modeling — automatic speech and
handwriting recognition as well as the analysis of biological sequences — the input
data to be processed exhibits a chronological or linear structure. Therefore, it does
not make sense for such applications to allow arbitrary state transitions within an
HMM, as it is the case for so-called ergodic models (see figure 8.1(d)).

Rather, one assumes, that the models are run through in causal chronological
sequence and, therefore, the model states can be sorted linearly. Transition probabil-
ities to states, that describe data segments lying backwards in time, are constantly set
to zero. In graphical representations of HMMs such edges, which are excluded from
possible state sequences, are omitted for the purpose of simplification.

The most simple model topology that can be derived from this assumption is
found in the so-called linear HMMs. As shown schematically in figure 8.1(a), in
these models only transitions to the respective next state and to the current state
itself are possible with some positive probability. By the self-transitions or loops one
achieves that the model is able to capture variations in the temporal extension of the
patterns described.

A larger flexibility in the modeling of duration is achieved, if also the skipping
of individual states within a sequence is possible. One then obtains so-called Bakis
models. This topology, which is widely used in the field of automatic speech and
handwriting recognition, is exemplarily depicted in figure 8.1(b). For the modeling of
acoustic events Bakis models offer the possibility to describe to some limited extent
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(a) linear (b) Bakis model

(c) left-to-right model (d) ergodic

Fig. 8.1. Schematic representation of different HMM topologies: (a) linear model, (b) Bakis
model, (c) left-to-right model, and (d) completely connected structure of an ergodic model.

articulatory reductions caused by mutual influences between neighboring segments,
which lead to the omission of short portions of the signal.

Larger variations in the temporal structure of the data can be described by so-
called left-to-right models. In this model topology, which is shown in figure 8.1(c),
longer parts of the data to be processed may be missing as an arbitrary number of
states may be skipped in forward direction within a sequence. Only jumping back to
“past” states within a model is not allowed.

The more freely the model topology is chosen the more parameters are to be
trained and the more variable are also the possible paths through the model. The
choice of a certain baseline topology, therefore, always represents a compromise be-
tween flexibility and tractability. As not only the parameter training becomes more
difficult for larger numbers of successors per model state, but also the effort in de-
coding is increased, linear models undoubtedly represent the most efficient model
topology. In contrast, the best compromise between number of parameters, decoding
cost, and flexibility is offered by Bakis models, which are used in many of today’s
systems (see also part III).



8.2 Modularization 129

8.2 Modularization

In the theoretical view on HMMs always exactly one model λ with N states exists,
which is considered as a unit. In practice it is, however, hardly possible to specify
overall models directly without any suitable measures of modularization. The most
obvious possibility for structuring larger HMMs is based on the segmentation units,
which are considered in the respective application domain. In the field of speech or
handwriting recognition these usually are spoken or written words from a certain
language1. As will be shown in the next section, on this basis complex models for
spoken utterances or written texts can be constructed.

The individual word model can in principle directly be created with one of the
topologies presented in the previous section. However, therein the problem arises,
that for every model as a whole sufficiently many training samples need to be avail-
able. For a system intended for the recognition of isolated digits or only a few com-
mand words a suitable sample set could still be created. However, for recognition
systems with large vocabularies such a whole-word modeling is totally unfeasible.

It is, therefore, necessary to consider a further modularization of the segmen-
tation units considered, in order to assure the trainability of the parameters of the
overall model by a suitable reuse of partial models. Simultaneously one obtains an
HMM, which is considerably more compact with respect to the number of inde-
pendent parameters used (see also section 9.2). As this technique was developed
and brought to perfection in the field of speech recognition, the resulting elementary
models, which describe certain segments of words, are also referred to as sub-word
units.

In recent years different methods for the definition of sub-word units were de-
veloped. The solutions found are frequently based on principles quite specific to the
application. Therefore, we do not attempt to give a complete overview of the pro-
posed approaches here. Rather, in the following sections methods shall be described,
which are applicable in a relatively general way. For the more detailed treatment
of the topic the interested reader is referred to the associated specialized literature
and the references given therein (cf. e.g. [136, Chap. 6, pp. 91–114], [105, Chap. 3,
pp. 39–56], [97, pp. 428–439]).

8.2.1 Context-Independent Sub-Word Units

The most simple methods for the definition of sub-word units are based on the seg-
mentation of words into a sequence of short segments. It is most natural to use the
orthographic representation for this purpose. One then obtains a segmentation into
a sequence of characters, which is used in many systems for automatic handwrit-
ing recognition. In the field of speech recognition, however, it makes sense to start
from a phonetic transcription of the words considered. The symbolically represented

1 When analyzing biological sequences a somewhat different philosophy is followed in struc-
turing HMMs. The most important of those techniques are described in section 8.4.
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sequence of speech sounds associated with a word gives a relatively good indica-
tion of its actual realization as an acoustic event2. In both cases one obtains a quite
compact inventory of approximately 50 to 100 units3, which is ideally suited for the
construction of arbitrary written or spoken words, and, therefore, can be used univer-
sally4. However, the accuracy of such a modeling is rather low in comparison, as the
realizations of the individual units are heavily influenced by their context and they,
therefore, may vary largely in their concrete realizations.

The correct number of states for context independent phone or character units re-
sults from the length of the associated signal segments to be expected. In linear topol-
ogy the number of model states, furthermore, corresponds to the minimal length of
possible events, as all states have to be passed through exactly once. Thus for speech
recognition applications one obtains three to six states and up to approximately 15
for character models in handwriting recognition.

8.2.2 Context-Dependent Sub-Word Units

The main drawback of simple phone or character models lies in the fact, that they can
not capture sufficiently the variability of the units described, which results from their
embedding in different contexts. In the early days of automatic speech recognition
one tried to tackle this problem among others by using longer sub-word units or by
defining segment boundaries between partial models in regions of the signal, which
were assumed to be approximately stationary (cf. e.g. [136, pp. 93–94]). An elegant
method, which became a standard procedure meanwhile, consists in discriminating
elementary units simply depending on their respective contexts. However, the con-
text itself is not included in the acoustic event modeled. Thus one obtains so-called
context-dependent sub-word units.

The most prominent representatives of this kind of models are the so-called tri-
phones, which date back to Schwartz and his colleagues at BBN ([212, 213], cf. also
[136, pp. 95–96]). They correspond to phone units in the context of the left and right
immediately neighboring speech sound, so that three phone symbols are necessary
to uniquely define a triphone. Thus a triphone in the same way as a monophone —
i.e. a context-independent phone model — describes the realization of only a single
speech sound, however, of a very special one.
2 In case that no phonetic transcription is available or its generation causes too much effort,

even in the field of automatic speech recognition satisfactory results can be achieved based
on an orthographic modeling of words [205, 209].

3 For English one uses — depending on the basis of definition — approximately 45 different
phonetic units, for German the size of the inventory ranges from 40 to 50. In character or
handwriting recognition for most languages models for all characters of the alphabet — in
upper and lower case, if necessary — and for digits have to be created. For English one,
therefore, obtains 62 elementary models and 69 for German including the umlauts.

4 For character or handwriting recognition the inventory of character and digit models needs
to be complemented by HMMs for punctuation symbols and white space. In speech recog-
nition systems it is likewise indispensable to define a model for speech pauses. Further-
more, it may make sense to use additional models for human and non-human noises, hesi-
tations, and other spontaneous speech effects in challenging applications (cf. e.g. [210]).
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We want to illustrate the resulting triphone modeling with the example of the
word speech. In the phonetic transcriptions this word corresponds to the sym-
bol sequence /spitS/, when using the SAMPA alphabet (cf. [233]). Without the
consideration of the context the necessary model for the speech sound /i/ would
not be distinguished from occurrences in, e.g., achieve (/@tSiv/), cheese
(/tSiz/), or reality (/riEl@ti/). The corresponding triphone p/i/t, how-
ever, restricts the use of this model quite exactly to the respective phonetic context.

The basic idea of the triphone modeling can be generalized in different ways. In
the case that one wants to describe contexts in even more detail, this can be achieved
by specifying a larger number of context phones. Principally arbitrarily long contexts
are allowed in the so-called polyphones [208]. Two left and right context phones
each are considered by so-called quinphones, as they are, e.g., used in the speech
recognition system BYBLOS (cf. [18], see also section 13.2).

The main advantage of context-dependent models, namely their high degree of
specialization achieved, also represents their main disadvantage. When starting from
an inventory of approximately 50 phonetic units one obtains a set of 125 000 potential
triphones. Even if not all of these phone combinations can actually occur in the
data, it is nevertheless hardly possible in practice to supply a sufficient amount of
training material for each of these highly specialized models. Therefore, comparable
models or similar model parameters need to be grouped together, in order to ensure
the trainability. Different methods for achieving this will be presented in section 9.2.
By the techniques applied in principle always the context restrictions are relaxed,
so that modeling units result that can be used more generally. In conjunction with
triphone models one then arrives at generalized triphones ([136, pp. 103–106], [137],
cf. also [97, pp. 432–436]).

Though context dependency is clearly an issue in any larger HMM architecture
built on the basis of elementary units, it has to date only been applied extensively in
the field of automatic speech recognition and to some extent also for the online recog-
nition of handwriting (cf. [125, 224]). The gains achieved for offline recognition of
handwriting are, however, quite small, as the nature of the contextual influence can
not be as clearly described yet for this task (cf. [69]).

8.3 Compound Models

Already in the subdivision of models for spoken or written words we have implicitly
assumed, that more complex models can be created from existing partial HMMs by
concatenation. Such construction principles are either explicitly or implicitly applied
in order to define compound models for different recognition tasks. This principle is
also the basis of Profile-HMMs, which will be the topic of the following section 8.4.
However, due to their rather special nature these models will be described separately.

When by concatenation of the respective sub-word units HMMs for all words of
the recognition lexicon were created, a total model for the recognition of isolated
spoken or written words can be defined by a parallel connection by all individual
word models. Figure 8.2(a) schematically shows the resulting model structure. All
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Fig. 8.2. Schematic representation of HMM structures for (a) isolated and (b) connected word
recognition. Model states are represented by circles and non-emitting states by squares.

start and end states, respectively, of the individual word models are also start and
end states of the total model. The representation of such complex HMMs can be
considerably simplified by the introduction of so-called non-emitting states, which
do not generate any outputs and have uniformly distributed transition probabilities to
their respective successor states. They merely serve for grouping together of edges,
so that the simplified total HMM has only one start and end state, respectively.

In automatic speech recognition the importance of systems for isolated word
recognition is constantly decreasing. For the automatic processing of forms, in con-
trast, one can frequently assume that the writing contained in a certain field should
correspond to exactly one word or phrase. Also in the recognition of machine-printed
or handwritten texts in many cases the text lines are first segmented into a sequence
of words. Subsequently an HMM for the recognition of words typed or written in
isolation can be applied.

However, for the recognition of continuously spoken speech using HMMs always
arbitrary sequences of words have to be processed by the statistical model. When
adding a looping edge to the isolated word recognition model, which connects the
end state of the model to the start state, a model structure results that is represented in
figure 8.2(b) . In order to restrict the search through such a model performed during
decoding to plausible word sequences, usually in addition to the HMM an n-gram
language model is used (see also chapter 12).

In case that the word or segment sequences to be expected in a certain domain
are heavily restricted or formalized, these can also be directly represented as a graph
of partial HMMs. Such a model architecture was first used successfully in the speech
recognition system HARPY [148]. Due to the inherent limitations of HMMs in this
way only regular languages can be captured, as the resulting total model also is just
another HMM. Figure 8.3 shows the example of a simple grammar, which is coded
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phone number

zero

radio

aircondition

temperature

nine

station

abort

switch on

louder

softer

switch on

warmer

colder

dial

switch off

switch off

degrees

sixteen

twenty five

Fig. 8.3. Example of a grammar coded into the structure of an HMM that could be used by a
speech recognition system for controlling non-safety-relevant functions in a car.

within the HMM structure. A similar model could be used in the near future in luxury
cars for the control of so-called non-safety-relevant vehicle functions — e.g. mobile
phone, radio, or air condition — by spoken language.

As during the decoding of grammar HMMs only word sequences can be found
which are valid in the respective domain, such models have difficulties in rejecting
invalid input. The probabilistic restriction of potential word sequences by a language
model is, in contrast, less vulnerable in this respect.

8.4 Profile HMMs

The most widely used HMM structure for applications in the domain of bioinfor-
matics consists in the so-called profile HMMs proposed by Krogh and colleagues
([129], cf. also [52, 55]). The structuring of the models is immediately derived from
the data, which form the basis of the parameter training. Similarities between pro-
teins are analyzed or represented, respectively, by a position-wise alignment of se-
quences of amino acids. One obtains so-called multiple alignments (see also sec-
tion 2.3 page 22). Within these the respective positions can be identified, where dif-
ferent sequences exhibit large similarities and thus form a so-called consensus for
all proteins considered. Figure 8.4 shows an example of a multiple alignment with
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HBA HUMAN ...VGA--HAGEY...
HBB HUMAN ...V----NVDEV...
MYG PHYCA ...VEA--DVAGH...
GLB3 CHITP ...VKG------D...
GLB5 PETMA ...VYS--TYETS...
LGB2 LUPLU ...FNA--NIPKH...
GLB1 GLYDI ...IAGADNGAGV...

*** *****

Fig. 8.4. Section from the multiple alignment of seven globins shown in figure 2.8 page 25.
The columns marked with * are treated as matches in the associated profile HMM (after [52,
p. 106]).

Dj

Ij

Mj TS

Fig. 8.5. Schematic representation of the structure of a profile HMM as it is obtained on
the basis of a multiple alignment. Match states are represented by squares, insert states by
rhombuses, and delete states by circles. Additionally, for the grouping together of edges one
non-emitting start and end state exist.

the respective consensus columns marked. Every row corresponds to the amino acid
sequence of a protein with similar biological function within a cell. As in concrete
sequences parts may be missing and others may appear in addition to the consensus,
also insertions and deletions must be allowed when building multiple alignments.

In a profile HMM now exactly three types of states exist, which directly corre-
spond to these possible distinctions. The so-called match states describe a position
within an amino acid sequence, which belongs to the consensus with respect to the
family of sequences considered, i.e. appears in very similar form in the majority of
training samples. In order to insert or delete symbols in or from a sequence, so-called
insert and delete states are used, respectively. Figure 8.5 shows a profile HMM as it
is obtained for the multiple alignment from figure 8.4. Additionally, the model con-
tains specially marked start and end states, which in the same way as delete states
do not generate emissions5. The possible state transitions within the model allow
for passing through from left to right. By means of the delete states it is possible to

5 In principle these are ordinary non-emitting states. However, in this case transition proba-
bilities are used, which are specially adapted to the model.
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Fig. 8.6. Schematic representation of the extended structure of a profile HMM for the detection
of eventually multiple partial sequences embedded into a longer sequence.

skip one or more match states. Additionally, between match states as well as at the
beginning and end of the model arbitrarily many amino acids can be inserted into a
sequence via the insert states. The required discrete output probability distributions
of the match states are estimated on the consensus positions of the multiple align-
ments, which defines the protein family to be modeled. In analogy the distributions
for modeling symbol insertions are obtained.

In a similar way as a model for the recognition of isolated words a profile HMM
can be used for determining the degree of similarity between an unknown sequence
and the protein family, which is described by the model6. Furthermore, an existing
multiple alignment can automatically be extended with alignments of new sequences
by using a profile HMM trained on it. Therefore merely the optimal state sequence
through the model needs to be determined, which then yields the association of the
individual sequence elements with the positions in the alignment.

The insert states at the beginning and the end of the model can describe a prefix
or suffix of a sequence to be analyzed. The corresponding output distributions are,
however, specialized on the actual initial and final sequences occurring in the respec-
tive multiple alignment. Therefore the finding of eventually more partial sequences,
that match the structure of the protein family, within a longer sequence of amino
acids is only possible with an extension of the model. This was proposed by Eddy
and colleagues and is part of the analysis tool HMMER ([55], see also section 15.1
page 222). The principle structure of such a model is shown in figure 8.6. It uses
additional insert states that serve to bridge partial sequences, which have nothing
in common with the amino acid sequences described by the core model. A looping
edge allows — in a similar way as in connected word recognition — to describe a
sequence of the data modeled. Thus it is possible to detect matches with members of

6 With PFAM there exists a library of ready-made profile HMMs which is available on the
Internet [10].



136 8 Configuration of Hidden Markov Models

the protein family considered a several positions within a longer sequence of amino
acids.

8.5 Modeling Emissions

After the structure of the HMMs to be used is specified for a certain application, it
remains to be decided, how the associated modeling of the model’s emissions is to
be achieved.

In the field of bioinformatics this decision is rather easy, as there the data to
be processed usually consist of discrete symbols of DNA base pairs or amino acids.
Unless additional properties of the data are considered (cf. e.g. [189]), discrete output
distributions using four or 20 different symbols, respectively, are sufficient.

When describing continuous feature vectors in the fields of speech and handwrit-
ing recognition, however, mixture models need to be used (see also section 5.2). Un-
fortunately no generally applicable method exists, though, for specifying the possible
degrees of freedom of the models to be used in a suitable way. Rather experience in
dealing with the respective data and frequently also the experimental evaluation of
different parametrizations are required.

In particular it is necessary to determine the degree of specialization of the output
probability densities, i.e. to specify, how many model states define mixtures based on
the same inventory of component densities. Additionally, the sizes of the respective
codebooks must be determined. These decisions in general represent a compromise
between the precision of the model, its generalization capabilities, and the effort
needed for decoding, i.e. the computation time.

In semi-continuous models usually some hundred up to a few thousand densities
are used for the common codebook shared by all states. The more individually mix-
ture densities are associated with model states, the less training samples are available
and the less component densities can be estimated. As a single normal density per
model state is, however, hardly appropriate, in continuous HMMs that do not use
mixture tying generally 8 to 64 component densities are used.

In the same way as in the use of context-dependent modeling units the danger
is also for HMMs on the basis of mixture models, that one tries to estimate too
many independent density models on limited data. However, also to output probabil-
ity densities comparable methods can be applied as they are used for the optimization
of HMM state spaces (see also section 9.2). How the modeling of emissions is con-
cretely done for typical recognition systems in different application scenarios will
also be covered in the course of the system descriptions in part III.
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Robust Parameter Estimation

When applying HMMs in practice one — as always in the field of statistical pattern
recognition — is faced with the problem to robustly estimate the parameters on the
available training samples. Yet the situation is not as severe as in the case of n-
gram models, for which no useful models could be created without suitable measures
(cf. section 6.5). However, also with HMMs one is confronted with the so-called
sparse data problem when working with more complex model architectures. Then
chances are high, that the model parameters can either no longer be computed due to
numerical reasons, or that an overfitting of the model to the sample data considered
occurs. This can in extreme cases lead to the situation that the models estimated
have learned the sample set “by heart”, i.e. they describe nothing but known samples.
Such a behavior can, however, be diagnosed by an accompanying evaluation on an
independent cross-validation set and the training procedure can then be stopped at a
suitable position.

Yet such a decision via “emergency break” is not helpful in order to modify
the configuration of the model purposefully for a simplified parameter estimation.
Therefore, it would be extremely useful in practice, to have a well-founded basis for
deciding, how much training material is necessary for dimensioning a given model.
Unfortunately, this question can be answered from the mathematical side only by the
law of large numbers, which was — from the view of statistical pattern recognition
— rephrased pointedly by Robert L. Mercer (IBM) [156]:

“There is no data like more data!”

A very rough estimate of the amount of data necessary can be derived from the
assumption, that there exists a linear relationship between the number of model pa-
rameters P and the minimal size T of the sample set, i.e. that P is directly propor-
tional to T :

T ∝ P (9.1)

Even though such a trivial model is hardly justified from a mathematical point-of-
view, it can nevertheless be used quite well in practice for approximately defining
lower bounds on the number of training samples that need to be available per model
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parameter1. Furthermore, the relationship can also be exploited in reverse for ap-
proximately defining, how many model parameters can be trained from a sample set
of given size. As the model quality in general increases with an increased number
of parameters, one is always interested in the most special model, which can still be
estimated robustly.

As soon as it is clear that a certain parameter set can hardly be trained in a sat-
isfactory way with the available sample data, the factors need to be considered that
cause such a situation of data sparseness. Primarily the following three reasons or a
combination of them have to be taken into consideration:

Model Complexity

It has been tried to estimate too many independent models or modeling parts on the
basis of the available data. In classification problems this number usually is bounded
from below by the number of pattern classes that need to be distinguished. Fre-
quently, however, many more considerably more specialized models are used for
representing variants of the patterns considered more precisely and thus improving
the model quality as a whole.

Dimensionality

The number of features used is too large. Especially if features are determined heuris-
tically, a large number of characteristic quantities can be computed, that – considered
in isolation – make a certain contribution for the solution of the problem. The adding
of new components to feature vectors, however, also leads to a considerably increase
in the demand for sample data. If this can not be satisfied, the modeling quality de-
creases despite the putatively improved description of the data, as the parameters
can no longer be estimated robustly — a situation which is often referred to as the
so-called curse of dimensionality (cf. e.g. [49, p. 95]).

Correlation

Mutual dependencies exist within the data to be modeled which need to be described
by additional parameters. Here the following considerations will concentrate on the
correlation between components of the feature vectors, as they are frequently found
in heuristically generated feature sets. Correlations over the temporal sequence of
the features, however, are not captured parametrically in HMMs, but approximately
via the model structure.

The effective size of the parameter set required consequently is defined by the
specificity of the model, the dimension of the feature space, and the need for de-
scribing correlations in the data. An improvement in the trainability can in general
be achieved by reducing the complexity with respect to one or more of these model-
ing aspects.

1 A proportionality factor of, e.g., 5 achieves good results in the estimation of mixture mod-
els. For establishing individual HMM states usually 50 to 100 samples are sufficient.
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In the following section we will at first consider analytical methods, which al-
low to optimize a given feature representation such, that the model built on top of
it requires less parameters without a change in its descriptive quality. For this pur-
pose either internal correlations are approximately eliminated or the dimension of
the feature vectors is reduced in total. Then methods for the reduction of model com-
plexity are presented in section 9.2. They are all based on the principle of identifying
“similar” parameters within the model, by applying expert knowledge or by means
of automatic procedures, and then merging these parameters during the training pro-
cess. Thus the number of parameters required is reduced, so that the trainability and
eventually also the quality of the model as a whole can be improved.

Additionally, for all iteratively optimizing training procedures, as they are used
for HMMs, it is of fundamental importance to start the optimization process with a
suitable initial estimate. Therefore, methods for determining initial model parameters
for HMMs will be presented at the end of the chapter.

9.1 Feature Optimization

The computation of features, which are most suitable for certain signal analysis tasks,
is the topic of countless publications in the field of pattern recognition. Here we want
to deal with this problem not in such fundamental form, however, but only consider
methods, which allow to optimize the properties of an existing feature representation
with respect to the model used.

Therefore, we will assume, that a feature extraction rule exists, which is prin-
cipally suited for the task at hand. This procedure, which will mostly consist of a
combination of heuristic methods, yields a baseline representation for the signals to
be analyzed in the form of n-dimensional feature vectors x ∈ IRn. The probability
distribution of this data is in general unknown. However, we also assume that the re-
quired distribution parameters can sufficiently accurately be determined on the basis
of a representative set of sample vectors:

ω = {x1, x2, . . . xN}
In general the statistical properties of these baseline features are not optimally

matched with the subsequent modeling. Therefore, in the following we will consider
a class of methods, which by a suitable transformation carry out an optimization of
the data representation with respect to the properties and capabilities of the subse-
quent modeling.

Therein, we will limit ourselves to linear transformations, which map every fea-
ture vector x from the baseline representation onto a corresponding feature vector y

with equal or smaller dimension. Such transformations are completely defined by a
transformation matrix T :

y = Tx with x ∈ IRn, y ∈ IRm, T ∈ IRm × IRn where m ≤ n

The limitation to linear transforms is made for reasons of simplicity and, because the
properties of such operations are especially well understood mathematically.



140 9 Robust Parameter Estimation

Furthermore, we always want to apply the feature transformation in a centered
way, i.e. after a compensation of the sample mean x̄:

y = T (x − x̄)

From this modification only translation of the transformed feature vectors by the
vector −T x̄ results, which can easily be corrected again, if necessary. The funda-
mental statistical properties of the data, however, are not affected by this operation,
and a centered feature transform is better suited as a starting point for the further
considerations.

After applying a certain transformation to the original data ω one obtains a trans-
formed sample set

ω̃ = {yk | yk = T (xk − x̄), 1 ≤ k ≤ N}

which replaces the original one in the further modeling process. The goal of all meth-
ods presented is to determine the transformation T such that “noise”, which is irrel-
evant for the modeling, will be eliminated from the data to the greatest possible
extent. Simultaneously, however, relevant differences shall be preserved and thus the
modeling process shall be simplified in the end.

9.1.1 Decorrelation

As the baseline representation of the features is in general the result of a heuristic
procedure, it has to be assumed, that statistical dependencies exist between the indi-
vidual components xi of the feature vectors x. Figure 9.1(a) illustrates this situation
with a simple two-dimensional example. In the distribution shown large values of
the first feature x1 mostly go along with the same of the second feature x2. The
data shown can be described by a two-dimensional normal distribution with mean

µ =

[
1
1

]

and covariance matrix K =

[
2 1
1 2

]

. When training the respective model

thus six parameters need to be estimated from the example data.
In the distribution shown in figure 9.1(b) the components of the feature vectors

are, in contrast, statistically independent and therefore in particular uncorrelated.
This data, therefore, can be described by a simplified model, which only uses a di-
agonal covariance matrix. Thus two model parameters can be saved and a robust
estimation of the remaining parameters — according to the rule-of-thumb put up
at the beginning in equation (9.1) — can be achieved on approximately 30% less
samples.

Of course such a reduction has a more notable effect in real systems, e.g. from the
domain of automatic speech recognition. With an inventory of M = 10 000 normal
distributions and a feature dimension of n = 39 one obtains 10 000 · 3n+n2

2 =
8.19 · 106 independent parameters for a system with full covariance matrices, but
only 10 000 · 2n = 7.8 · 105 degrees of freedom when using diagonal covariance
matrices. Thus when using “diagonal” models either a tenth of the training material
is sufficient or the ten-fold number of densities can be estimated.
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Fig. 9.1. Examples of a simple two-dimensional distribution with (a) correlated and (b) uncor-
related feature vector components.

However, statistical dependencies between components of a feature vector cannot
principally be excluded in practice. Though the possibility exists to at least achieve a
decorrelation of the features by a transformation of the feature space. In the case of
normally distributed data this is equivalent to the creation of statistically independent
feature vectors.

Principal Component Analysis I

The so-called principal component analysis2 (PCA) computes for a distribution of
data vectors given either parametrically or empirically a new coordinate system,
which is oriented such, that the correlation between the vector components vanishes.
Furthermore, the new coordinates are chosen such, that the largest variance of the
data in the transformed feature space occurs along the first coordinate and constantly
decreases for higher vector components (cf. e.g. [45, pp. 302ff], [50, pp. 115–117]).
Those vectors defining the coordinates of the transformed vector space are referred
to as principal components of the data analyzed.

The computation of principal components consists in an analysis of the scatter
characteristics of the data considered. These are characterized by the so-called scat-
ter matrix. In case that only a single distribution is considered this is equivalent to
its covariance matrix3. The total scatter matrix ST of a sample set x1, x2, . . . xN of
data vectors is defined as (cf. also equation (3.9)):

2 The method is also known as Karhunen-Loève transform in the literature. However, there
the transformation is not applied in a centered way, so that the Karhunen-Loève transform
is only completely equivalent to the principal component analysis for zero-mean data.

3 In presentations that assume zero-mean data or that compensate the sample mean during
the transformation, the so-called correlation matrix is used, which is defined as follows:

C := 1
N

N
P

i=1

xix
T
i
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Orthonormal Transformations

A special class of linear transformations is formed by the orthonormal trans-
forms. They are equivalent to the expansion of the data x ∈ IRn to be transformed
according to a system of orthonormal base vectors. Such a transform, therefore,
only causes a rotation of the original data onto a new system of orthogonal coor-
dinates.

The rows of the transformation matrix T correspond exactly to the vectors ti,
which form the new orthonormal basis of the IRn:

T = [t1, t2, . . . tn]T with tT
i tj =

{
1 i = j
0 otherwise

and ||ti|| = 1 ∀i, j

Due to the pairwise orthogonality of the row-vectors of T one obtains

T T T = I

from which it follows directly, that for orthonormal transforms the inverse T−1 of
the transformation matrix is identical with its transpose:

T−1 = T T

By exploiting this property it can easily be verified, that the norm of the vectors
is preserved by an orthonormal transformation:

||y|| =
√

yT y =
√

[Tx]T Tx =
√

xT T T Tx =
√

xT x = ||x||

This is equivalent to the fact, that Euclidean distances between data vectors are
not changed by the transformation.

ST :=
1

N

N∑

i=1

(xi − x̄)(xi − x̄)T (9.2)

Here x̄ denotes the sample mean (cf. also equation (3.8)):

x̄ :=
1

N

N∑

i=1

xi

After applying a transformation T one obtains for the transformed sample set ω̃ the
total scatter matrix:

S̃T =
1

N

N∑

i=1

T (xi − x̄)[T (xi − x̄)]T = TST T T

In order to decorrelate the data, therefore, a transformation T is sought, which “di-
agonalizes” ST , i.e. causes S̃T to become a diagonal matrix. However, the relative
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position of the data vectors with respect to each other should remain unchanged dur-
ing this operation. Therefore, the transformation in question needs to be orthonormal,
as by this class of transformations Euclidean distances in the vector spaces involved
are not affected (cf. sidebar Orthonormal Transformations on page 142).

Unfortunately, the property of the total scatter S̃T being a diagonal matrix cannot
be derived by formulating a criterion and analytically computing a suitable transfor-
mation. Rather, one needs to resort to the fact known from linear algebra, that every
non-singular matrix can be brought to diagonal form by a suitably chosen orthonor-
mal transform (cf. sidebar Diagonalization of Symmetric Matrices on page 145).

Thus the diagonalization of the total scatter matrix ST is achieved my means of
the transpose ΦT of its eigenvector matrix Φ, the columns of which consist of the n
normalized eigenvectors φi of ST . For the mere diagonalization of S̃T the arrange-
ment of these vectors to a matrix is in fact irrelevant. In the fact of the following
considerations, however, which also include a reduction of the dimensionality, Φ is
constructed such, that the eigenvectors are arranged according to the size of the as-
sociated eigenvalue. The first column of Φ thus corresponds to the eigenvector with
the largest associated eigenvalue and the last column to the one with the smallest.

Φ = [φ1, φ2, . . .φn] with ST φi = φiλi and λ1 ≥ λ2 ≥ . . . ≥ λn

(9.3)
When applying this transformation to zero-mean data vectors

y = ΦT (x − x̄)

one obtains the following transform of the scatter matrix:

S̃T = ΦT ST Φ = ΦT ΦΛΦT Φ = Λ =

⎡

⎢
⎢
⎢
⎢
⎣

λ1

λ2

0

. . .
0

λn

⎤

⎥
⎥
⎥
⎥
⎦

The total scatter matrix S̃T of the transformed sample set thus corresponds to the
eigenvalue matrix Λ of ST , as ΦT simultaneously is the inverse of Φ. In the trans-
formed space the variance of the data along the coordinates is thus given by the
eigenvalues λi. All correlations between vector components vanish, however. There-
fore, the goal of bringing the scatter matrix of the optimized feature representation
to diagonal form is achieved.

For the example used in the introduction one obtains

Φ =

[
1√
2
− 1√

2
1√
2

1√
2

]

and Λ =

[
3 0
0 1

]

as eigenvector and eigenvalue matrix. The transformation of the sample data accord-
ing to

yi = ΦT (xi − x̄)
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Fig. 9.2. Example for the decorrelation of a simple two-dimensional distribution: (a) original
data (see also figure 9.1(a)) and (b) after the decorrelation by means of PCA.

yields the distribution shown in figure 9.2(b). The diagonalized total scatter matrix
S̃T of the transformed data is given by the eigenvalue matrix Λ.

The decorrelation of a given feature set always causes the total scatter matrix to
become a diagonal matrix and thus, considered globally, the correlations between
the components of the transformed feature vectors to vanish. When assuming that
the data are approximately normally distributed, one even obtains features, which
are approximately statistically independent.

If such a data set is described by mixture models it is, therefore, justified —
within certain limits — to use only diagonal covariance matrices and thus save a
considerable number of model parameters. As, however, only global correlations are
eliminated by principal component analysis, nevertheless within individual regions
of high density within the data local statistical dependencies can occur, as shown
exemplarily in figure 9.3. By the simplified modeling these are captured only in-
adequately or not at all. Usually, however, one gives precedence to the considerable
reduction of the number of parameters over the possibility to model such class re-
gions more exactly. In the example shown simply more baseline densities need to be
estimated for the description of an “elongated” region in feature space when using
diagonal models only.

Whitening

In practical applications it is in general undesirable that the dynamic range numeri-
cally varies largely between individual components of the feature vector. Therefore,
it may make sense to also normalize the variance parts after the decorrelation of the
features by means of the principal component analysis in order to simplify the further
model building.
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Diagonalization of Symmetric Matrices

Every non-singular symmetric matrix Q can be brought to diagonal form by
means of a suitable orthonormal transformation T = ΦT (cf. e.g. [80, pp. 27–
28]). Here Φ corresponds to the so-called eigenvector matrix of Q:

Φ = [φ1, φ2, . . . φn] with φT
i φj =

{
1 i = j
0 otherwise

and ||φi|| = 1 ∀i, j

The column vectors φi of Φ are formed by the normalized eigenvectors4 of Q

with the associated eigenvalue λi and thus satisfy the eigenvalue equation:

Qφi = φiλi ∀i

On the basis of the eigenvalues λi the so-called eigenvalue matrix is defined in
correspondence to the eigenvector matrix as follows:

Λ =

⎡

⎢
⎢
⎢
⎢
⎣

λ1

λ2

0

. . .
0

λn

⎤

⎥
⎥
⎥
⎥
⎦

Thus as a generalization of the eigenvalue equation

QΦ = ΦΛ

holds, and one obtains the following decomposition into eigenvector and eigen-
value matrix for Q:

Q = ΦΛΦT

When applying the transformation ΦT to Q

ΦT QΦ = ΦT ΦΛΦT Φ = Λ

one obtains as a result the diagonal matrix of the eigenvalues of Q.

4 The computation of eigenvalues and eigenvectors of matrices is a challenging numerical
problem. Because of its relatively general applicability the most widely used method for
solving this problem is the so-called power method (cf. e.g. [109, p. 233]). For symmetric
matrices — as scatter matrices always are — in practice good results can also be achieved
by the so-called Jacobi method (cf. e.g. [109, p. 196], [194, p. 360]).
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Fig. 9.3. Example of a data distribution with multiple regions of high density and local corre-
lations (a) before and (b) after applying principal component analysis.

When additionally applying the transformation

Λ− 1
2 =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ
− 1

2

1

λ
− 1

2

2

0

. . .
0

λ
− 1

2
n

⎤

⎥
⎥
⎥
⎥
⎥
⎦

to the data decorrelated by PCA, this effects that the final total scatter matrix ŜT will
become the identity matrix I.

ŜT = Λ− 1
2 S̃T Λ− 1

2 = Λ− 1
2 ΦT ST ΦΛ− 1

2 = Λ− 1
2 ΛΛ− 1

2 = I

The total transformation of the data, which is necessary for achieving this, i.e. the
combination of decorrelation and subsequent variance normalization is referred to as
whitening:

z = Λ− 1
2 y = Λ− 1

2 ΦT (x − x̄)

The variances in all coordinates are normalized to 1 by this transformation. In par-
ticular this means that after a whitening the global scatter characteristics of the data
are invariant to additional orthonormal transformations, as the total scatter was made
to become an identity matrix.

In contrast to principal component analysis this transformation is not orthonor-
mal, so that Euclidean distances between the transformed vectors are not preserved.
Intuitively this is also immediately clear, as the feature space is scaled along the
coordinates by a factor of 1√

λi
, respectively.

A whitening of the example data from figure 9.4(a) results in the distribution
shown in figure 9.4(c). One obtains a radially symmetric point cloud, as the variance
of the distribution is equal to 1 in both coordinates.
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Fig. 9.4. Example for the combined decorrelation and variance normalization by whitening:
(a) original data, (b) after decorrelation, and (c) after variance normalization.

9.1.2 Dimensionality Reduction

As a second important method for optimizing feature representations in addition to a
decorrelation of the data frequently a reduction of the dimensionality is performed.
The methods applied build on top of each other, so that the decorrelation step is either
implicitly or explicitly performed in the preparation phase of the actual dimension-
ality reduction.

Principal Component Analysis II

The simplest method for reducing the dimension of the features consists in not using
all n eigenvectors of the scatter matrix ST for the construction of the transformation
matrix ΦT of the principal component analysis. Rather only the ones corresponding
to the m < n largest eigenvalues of ST are selected (see equation (9.3)). Thus one
obtains a mapping of the feature vectors x ∈ IRn onto a lower dimensional space, in
which the largest variance components of the original data are preserved.

Of course a certain error arises from this reduction of the vector dimension. This
can be described quantitatively, if for every original vector x its reconstruction

x′ =

m∑

i=1

yiφi
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on the basis of the lower dimensional representation y is generated and the resulting
average reconstruction error ǫ is calculated. It can be shown (cf. [45, p. 304-305])
that the expected error is given by the sum of the eigenvalues of those eigenvectors
of ST that were not considered for the construction of the transformation matrix ΦT :

ǫ = E{||x − x′||2} = E{||
n∑

i=m+1

yiφi||2} =

n∑

i=m+1

λi

Thus selecting the eigenvectors associated with the largest eigenvalues for the trans-
formation not only maximizes the variance preserved in the vector components but
also minimizes the reconstruction error resulting from the dimensionality reduction.
By considering the proportions of the eigenvalues λi it can be estimated, on which
dimension m < n the data available can be reduced with only negligible losses in
the accuracy of the representation.

A reduction of dimensionality by PCA is, however, mainly used when analyti-
cally generating features directly from signal data and hardly for the optimization of
existing feature representations with respect to mixture models or HMMs5. In fact,
the global maximization of the preserved variance does not take into account the
separability of the pattern classes considered.

Linear Discriminant Analysis

In contrast to a simple dimension reduction on the basis of global variance criteria the
so-called linear discriminant analysis (LDA) tries to determine a feature space trans-
form that improves the separability of the pattern classes considered while simulta-
neously reducing the dimensionality. (cf. e.g. [80, pp. 441–459], [50, pp. 117–124]).
For the computation of the transformation matrix, therefore, criteria are applied that
characterize the distribution of class regions and their separability on the basis of the
features available. Consequently, for applying LDA a labeled sample set is manda-
tory. Intuitively a transformation is sought that generates class regions, which are as
compact as possible, without at the same time modifying the total variance of the
data.

For the further considerations we will, therefore, assume, that within the available
sample set ω subsets ωκ are defined, which contain features of patterns originating
from a class Ωκ only:

ω =
⋃

κ

ωκ

The compactness of these classes can be described by the average variance of the
features within the respective regions. From this one obtains the so-called within
class scatter matrix SW :

5 In the field of automatic speech recognition a further important reason for this is, that the
cepstral coefficients used as features in the majority of systems can already be assumed to
be approximately decorrelated [158].
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SW :=
∑

κ

pκ

∑

x∈ωκ

(x − x̄κ)(x − x̄κ)T (9.4)

Here x̄κ denotes the mean of the respective class region, i.e. the conditional sample
mean of the feature vectors from class Ωκ. The class-conditional scatter matrices are
weighted according to the prior probabilities pκ of the respective classes, which can
be estimated from the proportion of feature vectors from Ωκ contained in the sample
set:

pκ =
|ωκ|
|ω|

By means of the so-called between class scatter matrix SB the relative position of
the individual class regions with respect to each other can be described. It is, however,
not completely clear, how SB should be defined. Therefore, different approaches can
be found in the literature (cf. e.g. [79, p. 260]). The simplest method is to compute a
scatter matrix on the basis of the individual class centers x̄κ:

SB :=
∑

κ

pκ(x̄κ − x̄)(x̄κ − x̄)T (9.5)

This definition also allows to derive an analytical relationship between the tree scatter
matrices introduced so far. The total scatter matrix is then obtained as the sum of the
between and the within class scatter matrix:

ST = SB + SW

As optimization criteria for the LDA different measures may be considered, all of
which basically try to capture the relation between within and between class scatter
in the sample set (cf. e.g. [80, pp. 446–447]). On the basis of such a compactness
criterion then a between class scatter as small as possible with a distance of the
pattern classes among each other being as large as possible at the same time can be
defined as the optimization task.

In the literature for this the following criterion is used most frequently6:

tr{S−1
W SB} → max!

After a quite lengthy mathematical derivation, which the interested reader can find
in the respective specialized literature (cf. e.g. [80, pp. 448–459]), it can be shown,
that this maximization problem — similar as in the case of the principal component
analysis — leads to the solution of an eigenvalue problem. The transformation matrix
ΦT of the LDA sought, is created from the m < n eigenvectors φi of the matrix
S−1

W SB corresponding to the largest eigenvalues:

Φ = [φ1, φ2, . . .φm] with S−1
W SBφi = φiλi and λ1 ≥ λ2 ≥ . . . ≥ λm

(9.6)

6 As shown in [87], this criterion can also be applied for the evaluation of different feature
sets with respect to their suitability for a certain modeling task.
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In order to avoid problems in the eigenvalue computation for S−1
W SB, which may

result from the necessary inversion of SW or from the fact, that S−1
W SB not neces-

sarily is a symmetric matrix, the solution can also be reduced to the simultaneous
diagonalization of the matrices SW and SB (cf. e.g. [80, pp. 31–34]).

In this method the computation of the transformation matrix for the LDA is per-
formed in two steps. First the between scatter matrix SW is transformed into an
identity matrix by applying a whitening. Therefore one calculates the eigenvalue and
eigenvector matrix of SW :

SW Φ = ΦΛ

Then the original data is transformed according to

y = Λ− 1
2 ΦT (x − x̄)

and as the new between class scatter matrix one obtains the identity matrix:

S̃W = Λ− 1
2 ΦT SW ΦΛ− 1

2 = I

Of course the between class scatter matrix SB is also modified by this process, but
in general it will not be brought to diagonal form:

S̃B = Λ− 1
2 ΦT SBΦΛ− 1

2

In the second step the fact is exploited, that the within class scatter, which has be-
come an identity matrix, is now invariant to further orthonormal transforms. There-
fore, one carries out a principal component analysis of the class centers and thus
diagonalizes S̃B . For this one computes the eigenvector matrix Ψ of S̃B and carries
out a second transformation step:

z = ΨT y = ΨT Λ− 1
2 ΦT (x − x̄)

It can be shown, that the resulting total transformation matrix ΨT Λ− 1
2 ΦT except

for the normalization of the eigenvectors is identical with the one that is obtained
from the direct solution of the eigenvalue problem for S−1

W SB (cf. e.g. [80, pp. 31–
33], [45, p. 330]). This means, that both transformations map the feature space to
the same new coordinate system with the difference, that in the two-stage method
additionally a scaling by Λ− 1

2 is performed.
The advantage of the second method — besides its greater clarity — lies in the

fact, that it exhibits a better numerical stability. Neither a matrix inversion nor the
calculation of eigenvalues for a not necessarily symmetric matrix need to be per-
formed.

The effects of the LDA transformation on a sample distribution with three pattern
classes is illustrated in figure 9.5. In the upper left the original distribution is shown
as well as its LDA transform after the application of the one-step method. For com-
parison the figure shows in the upper right the intermediate result, which is generated
by the whitening of the within class scatter matrix. The final result of the two-stage
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Fig. 9.5. Example of linear discriminant analysis: (a) original data, (b) after whitening the
within class scatter matrix, (c) result of the direct solution and (d) of the two-stage method.

LDA transformation, which is shown in the lower right, then results from this by the
application of a PCA to the between class scatter matrix. Except for a scaling and a
mirroring of the data it is identical with the result of the one-stage method.

A serious problem in the application of linear discriminant analysis, that should
not be overlooked when deriving mathematical solutions, lies in the fact that for
LDA a labeling of the sample set is mandatory. Therefore, the question arises, how
the underlying pattern classes should be chosen in a suitable way. In fact this choice
directly influences the between and within class scatter matrices and, in the end, the
result of the whole transformation.

From a more detailed analysis of the significance of the between class scatter
matrix at least a lower bound for the number of pattern classes can be derived. Be-
cause of its very definition (cf. equation (9.5)) SB has at most rank K − 1, where
K is the number of pattern classes used. As only the non-zero of the K class centers
xκ is taken into account in the construction of SB , at most K − 1 linearly inde-
pendent vector components can exist. The between class scatter matrix, therefore,
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spans a K − 1-dimensional sub-space and consequently only possesses K − 1 pos-
itive eigenvalues. In the two-stage computation of the LDA a diagonalization of SB

forms the last step, which then can only map to a sub-space with a dimension m
smaller than K − 1.

LDA was used extensively for purposes of automatic speech recognition in the
tradition of the Philips research systems (cf. [5, 88, 221] and [167]). There the under-
lying pattern classes are practically always defined on the basis of the model states
of the context independent sub-word unit HMMs used. Therefore, the number of
classes by far exceeds the feature dimension. The use of elementary segmental units
as, e.g., speech sounds — i.e. considerably fewer pattern classes — is agreed to be
considerably less powerful in comparison.

These results were also confirmed in extensive experiments of our own. They
suggest the assumption, that what matters most when choosing the class definition
is to ensure a robust estimation of the between class scatter matrix, as it cannot be
seriously expected, that a linear transform is actually capable of perfectly separating
a few hundred pattern classes. At the same time a more sophisticated class definition
also assures, that the within class scatter more precisely approximates the local situ-
ations within individual regions of high density. In total it can be concluded, that the
number of classes used for an LDA transformation should considerably exceed the
dimension of the feature vectors.

9.2 Tying

The methods presented in the previous section implicitly decrease the number of
model parameters by reducing the degrees of freedom present in the data — e.g. the
dimension of the feature vectors themselves. In contrast, methods that try to group
“similar” model parameters together work towards an explicit reduction of the num-
ber of parameters. As a consequence their estimation on the available sample data
is improved and finally the robustness of the model as a whole is increased. These
methods, which can be applied to many different parts of the modeling, usually are
referred to as tying. Three principal methods can be distinguished in such a procedure
for the merging of model parameters.

In constructive tying the merging of model parameters implicitly results from
the construction of more complex models from building blocks, which are given
by certain elementary models. All copies of those subunits reused then naturally
reference the same set of parameters.

In contrast to this the following two approaches take an already existing model
as a basis, the trainability of which is to be improved by parameter tying.

By generalization of modeling parts, which are realized in a very special way and
for which, therefore, only few training samples are available, more general units can
be derived. The parameters of these can be estimated on a broader basis of data and
thus also more robustly. The special models are then no longer used themselves, but
are replaced by suitable generalizations. The necessary generalization rules usually
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are set up by exploiting expert knowledge. The creation of the generalized models
themselves can, in contrast, be performed automatically.

A similar result can also be achieved by agglomerative tying. On the basis of
already existing model parameters similar parameters can be identified by a suit-
able distance measure. By applying an algorithm for cluster analysis to the param-
eter space groups of model parameters can be constructed, which serve a similar
“purpose” within the overall model and for which a sufficient number of training
samples is available. These methods have the big advantage of being able to com-
pute a suitable form of tying for an arbitrary model automatically in a data-driven
manner. However, it should not be forgotten that this method in fact proceeds in a
quite paradoxical way: The parameter clusters, which are supposed to ensure robust
trainability, are determined on the basis of initial parameters, which could just not
be estimated reliably. In practice one nevertheless achieves good results with data-
driven tying for a wide range of applications despite of this Munchhausen-like trick7.

How these principles of tying are applied to existing or yet to be constructed
models is of course left to the developer. Depending on the task at hand different pro-
cedures may make sense. Unfortunately, no strategy can be given, which would per-
form optimally in any case. Therefore, in the following we want to give an overview
over the most well known methods as an “aid to decision-making”. First we will
present such methods that apply tying at the level of partial models. Afterwards, we
will consider comparable methods that identify similar groups of model states or
merge parameters within the mixture models used.

9.2.1 Model Subunits

The creation of a complex HMM is generally not achieved by a direct training of all
parameters. Rather, one constructs larger models on the basis of smaller partial mod-
els with well defined descriptive potential. This procedure not only leads to a mod-
ularization of complex HMMs, but also allows the especially economic exploitation
of the available example data for the parameter training.

This method was developed and brought to perfection in the field of automatic
speech recognition. But also in recognition tasks structured similarly, as e.g. the
recognition of handwriting, the use of so-called sub-word units can be considered
state of the art (see section 8.2 page 129). In contrast, for the analysis of biological
sequences hardly any measures are taken, in order to build the models created in a
modular way on the symbolic level.

As described in section 8.2, HMMs for complex units, as e.g. whole words, spo-
ken utterances, or sections of a text, are created starting from a limited inventory of
baseline models. An implicit tying of model parameters results from the fact, that
though new model states originate from every replication of an elementary model,
these always share the same set of parameters as all other copies of the original
model.

7 In the fantastic stories about the supposed adventures of the German Baron Münchhausen
(1720 − 1797) he claims to have pulled himself from a swamp by his own hair.
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/m//m/ /A/

/E//d/ /d/ /i/

/i/

Fig. 9.6. Example of simple parameter tying on the level of elementary models, as it results
from the model construction process.

Figure 9.6 shows a simple example for this situation from the domain of au-
tomatic speech recognition. For the description of a simple “baby’s vocabulary” we
want to create models for the wordsmommy and daddy. As in the phonetic transcrip-
tions /mAmi/ and /dEdi/ two pairs of speech sounds appear at different positions,
one obtains already a word-internal tying of the respective models (/m/ and /d/).
Here it is assumed, of course, that for such a toy application speech sounds occurring
in different contexts can be modeled identically. When concatenating both words to
a primitive compound model it furthermore becomes clear, that the parameters of
the partial model for the speech sound /i/ are identical in the overall model and,
therefore, can also be tied.

In simple cases of model-driven tying thus parameters of partial models named
identically are shared within a complex overall model. When constructing HMMs
through composition of existing models this simply corresponds to a reuse of param-
eter sets. For the training phase this means, that all example sequences contained in
the sample set, that correspond to an arbitrary copy of a model, are taken into account
for the estimation of the shared set of parameters.

Model Generalization

Model-driven tying becomes more complex, if the similarity of partial models can
not be derived directly from their names, but must be determined by inference pro-
cesses. Such methods are mainly applied in conjunction with the use of context de-
pendent sub-word units (see also section 8.2.2 page 130). Then the variety of pos-
sible models usually is so large, that for the majority of those a direct estimation of
robust parameters can not be performed. Therefore, one tries to group similar models
together, in order to ensure their trainability.

A rule-based method for the generalization of context dependent sub-word units,
which are constructed according to the principle of triphones, was proposed in [208].
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 t/r/

/t/r/_  /r/

_ /r/

 /r/

  /r/_

 t/r/I

  /r/I

 _ /r/I

consonant

consonant

consonantvowel

vowel

vowel

Fig. 9.7. Example for the generalization of context restrictions of triphones

For such models the generalization of the context restriction on a symbolic level can
either be achieved by a shortening of the segmental extension of the context or by an
explicit introduction of contextual super-classes.

Figure 9.7 shows, starting from the triphone model t/r/I, a possible simple
generalization hierarchy. As every generalization of the context restriction applies
either to the left or to the right context, for every triphone model always two possible
generalizations exist. The generalization of an individual context is performed in
two steps in the example. First coarse phonetic classes as vowels, nasals, plosives
and the like are used and finally, the context restriction is omitted totally. At the end
of the generalization process thus the respective context independent phone model is
reached.

If the context restriction applies to more than only one neighboring unit as, e.g.,
in so-called polyphones, the generalization of the respective models is performed
by simple shortening of the context’s extension. At the end of the generalization
hierarchy again the context independent variant of the modeled unit is reached — for
polyphones the respective monophone.

In the resulting hierarchy of generalized models now those need to be selected,
which are sufficiently special and at the same time can be trained robustly. These are
then used for constructing more complex HMMs instead of the specialized original
context dependent units. A good indication of the trainability of HMMs is given by
the frequency of occurrence of the respective units in the available sample data. In
the generalization hierarchy one then chooses the most special models that occur
more frequently than a certain threshold in the training material. In practice good
results are achieved with minimal frequencies in the range of 50 to a few hundred
occurrences.
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Model Clustering

A different view on the generalization relation between HMMs for more or less spe-
cialized sub-word units results when methods are used on the basis of decision trees,
which are also known as classification and regression trees [26]. In contrast to the
definition of generalization relations between context dependent sub-word units cri-
teria are formulated that combine similar units into groups or clusters (cf. e.g. [131]).
Therefore, these techniques constitute methods for cluster analysis, which, however,
work on the symbolic representation of the models and within which similarity rela-
tions are defined by rules.

We want to explain the principal approach briefly using an example for the group-
ing of similar triphone models. Here, every node in the decision tree corresponds to a
possible group of triphones with identical central phone. A certain model is assigned
to such a model group by a sequence of binary decisions starting from the root node
of the tree. In every tree node, therefore, a criterion set up by experts is evaluated,
which tests for a certain property of the model context8. Depending on whether or
not the property is true for the triphone considered either the left or the right succes-
sor of the current tree node is reached. The individual leaf nodes of the decision tree
correspond to one HMM each, which is used for the actual modeling of all triphones
that are assigned to this node by the decision rules.

By means of this technique a grouping of context dependent sub-word units is
possible, which can be parametrized in a very detailed way. The main disadvantage
of the method is, however, that the necessary decision rules need to be set up by
experts. Furthermore, the respective rule sets tend to become quite large in practice
and are given only exemplarily or as quite limited abridgments in the literature (cf.
[131]).

The disadvantage, that for the grouping of models first expert knowledge needs
to be formalized suitably, is tried to be avoided by agglomerative techniques that de-
rive similarities between different partial models in a purely data-driven manner. Still
a suitable distance measure between the parameters of the HMMs considered needs
to be pre-specified for these methods. Then groups of models, which have similar
parameters and can thus be represented by a shared HMM, can be computed auto-
matically by applying a method for cluster analysis. As one of the first researchers
Kai-Fu Lee used such a purely data-driven method for determining suitable general-
ized triphones [136, pp. 103–106]. As the model structure of individual HMMs may
in general vary and as in the distance calculation at least multiple states of a model
have to be taken into account, automatic techniques for tying on the level of partial
models did not prevail. However, the application of equivalent methods on the level
of model states can be considered state of the art today. Therefore, we want to present
the respective techniques within the framework of the automatic generation of state
clusters in the following section.

8 In the literature it is said quite often that nodes “ask questions”, which is, however, a rather
inappropriate anthropomorphic description of this automatic procedure.
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9.2.2 State Tying

The tying of individual HMM states represents a generalization as opposed to the
merging of similar model subunits. There parameter groups may be chosen with
substantially increased granularity. At the same time the application of automatic
procedures becomes easier, as the structure of the units processed is considerably
simpler than the one of partial models.

Simple Duration Modeling

On the state level generally no constructive tying is applied, as in contrast to model
subunits no symbolic meaning within more complex models is associated with in-
dividual states. Only for the modification of the duration modeling of HMMs rarely
constructive state-based tying is applied. An individual model state describes data
segments, the duration of which satisfies a geometric distribution. The maximal prob-
ability is taken on for a segment length of a single time step independently from the
actual values of the transition probabilities. For longer segment durations the occu-
pancy probability decays exponentially (cf. [95, p. 218]). By linear concatenation of
multiple identical copies of a respective state this duration behavior can be modified
such, that it satisfies a binomial distribution. In linear models thus a minimal seg-
ment duration is specified, which corresponds to the number of replicated states. By
means of the transition probabilities the state group can be parametrized such, that
the maximal probability of occupancy is achieved for an arbitrary longer segment
duration.

It can be assumed, that a binomially distributed segment duration is better suited
for the modeling than an exponentially decaying distribution. However, such rather
moderate changes of the duration properties (cf. also section 5.8.2) hardly have a
decisive influence on the modeling quality in practice, as it is always dominated by
the substantially more important part of the output distributions.

State Clustering

In contrast, the rule-based or data-driven generation of state clusters has established
itself as state of the art. Such techniques are applied in many current systems in
order to achieve in a flexible and conceptual simple way an optimal exploitation of
the training data and simultaneously a high modeling quality.

Especially for the field of automatic speech recognition a number of rule based
methods were proposed. There linguistic-phonetic knowledge about similarities be-
tween the states within context dependent phone models is represented in the form
of decision trees (cf. [26], see also page 156). These can then be used to generate a
generalization hierarchy on possible groups of model states. Such state groups de-
scribe phonetic events, which appear in many different contexts as part of a speech
sound. Parameter sets are then trained for those clusters, for which sufficiently many
samples are available and which allow a modeling as specialized as possible (cf. e.g.
[78, 124, 173], [97, pp. 432–436]). The main disadvantage of those methods lies in
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Given the parameters of an HMM, for which the number of states shall be opti-
mized, a distance measure d(Ci, Cj) for model states or state clusters, respectively,
and a suitable termination criterion.

1. Initialization
Create an individual state cluster for all model states i

Ci = {i} ∀i, 0 ≤ i ≤ N

and combine these to form the initial set of clusters C:

C =
N
S

i=1

{Ci}

2. Selection
Choose from the current set C of state clusters that pair Cj , Ck that minimizes
the distance measure:
(Cj , Ck) = argmin

Cp,Cq∈C
d(Cp, Cq)

3. Reorganization
Construct a new state cluster C by merging Cj and Ck:
C ← Cj ∪ Ck

Remove the original clusters Cj and Ck from C and insert the newly created
cluster C instead:
C ← C \ {Cj , Ck} ∪ {C}

4. Termination
if the termination criterion is not yet satisfied for the current set C of state
clusters

continue with step 2
otherwise Stop!

Fig. 9.8. Algorithm for the automatic computation of a set of state clusters for a given HMM.

the fact, that it is necessary to acquire extremely specialized expert knowledge and
to represent it suitably for the application within an automatic clustering method.

This problem is avoided, if the state clusters are determined in a purely data
driven manner. Therefore first a similarity or distance measure between states needs
to be defined, which can be computed only on the basis of the state parameters or the
samples associated with the state. Subsequently state groups, for which parameters
can be trained robustly, can be identified by a principally arbitrary method for vector
quantization or cluster analysis.

Figure 9.8 shows a simple greedy algorithm for the automatic generation of state
clusters in HMMs of arbitrary structure. It proceeds similarly to the methods de-
scribed in [136, p. 104] or [255]. The algorithm assumes that for the parameter sets
of individual states or state groups Cj and Ck a suitable distance measure d(Cj , Ck)
was specified. Furthermore, a criterion must be given, which defines when the clus-
tering algorithm is to be terminated, as otherwise all states will be merged into a
trivial cluster.

In the initialization step first per given model state a simple state cluster is gen-
erated, which contains that state only. Taken together these form the initial set of
clusters. In every optimization phase now that pair of clusters Cj and Ck is selected
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that has minimal distance with respect to the chosen distance measure. Those two
clusters are subsequently merged. If the termination criterion is not yet satisfied for
the current set of clusters, the selection of the nearest neighboring state clusters will
be repeated. Otherwise the procedure is finished.

A simple and robust possibility for specifying a termination criterion can — sim-
ilarly to the tying of partial models — be defined on the basis of the frequency of the
clusters generated in the training data. Then it merely needs to be checked, whether
all state clusters generated so far cover a sufficient number of feature vectors. If this
condition is met for every cluster, one assumes that the modified model can be trained
robustly. The minimal number of training samples per state cluster is, however, ap-
plication dependent and in general needs to be determined empirically. Similarly to
the tying of partial models minimal frequencies from 50 up to a few hundred train-
ing samples achieve good results in practice, which could be confirmed in numerous
experiments of our own.

The most important model parameters of an HMM state consists in the respec-
tive output probability density function. Transition probabilities are, in contrast, of
inferior importance and are not taken into account when determining state clusters.
However, it is quite problematic to define a distance measure for general output dis-
tributions described by mixture density models. Therefore, in practice usually suit-
able simplifications are made.

The model parameters used to determine the state clusters do not need to corre-
spond to those, which are finally used for the modified model. This can be chosen
arbitrarily after the optimization of the model structure. Therefore, a simpler model-
ing can be used as the basis of the cluster analysis applied to the state space. In [255]
output distributions with only a single normal density are used to determine the state
clusters. As a distance measure between states or state clusters, respectively, then the
divergence can be used, which is defined for two multi-variate normal densities as
follows (cf. e.g. [80, pp. 458–459]):

ddivergence(Nj ,Nk) =
1

2
(µj − µk)T (K−1

j + K−1
k )(µj − µk) + (9.7)

+
1

2
tr{K−1

j Kk + K−1
k Kj − 2I}

A considerable simplification of this computation rule results if only diagonal co-
variance matrices are taken into account, as they are also used in [255]. There the
clustering is furthermore limited to model states, which occur in context dependent
models having the same base phone. As termination criterion a minimal number of
100 training samples per state group created is required. The HMM structure opti-
mized such then serves as a basis for the creation of a more complex model where
the output distributions are described by mixture density models. A comparable ap-
proach using a single normal density per state while clustering is described in [167].

A distance measure for mixture models, which can be evaluated easily, was pro-
posed in [51]. As the underlying modeling merely uses one global covariance, the
distance of two state clusters can be defined on the basis of the mean vectors of
the respective component densities only. The maximal distance between all possi-
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ble pairs of mean vectors µl and νm is taken to be the cluster distance and can be
computed as follows:

d(Cj , Ck) = max
µ

l
∈Cj,νm∈Ck

||µl − νm||

This distance measure is referred to as furthest neighbor criterion, as only the base
densities lying the furthest apart of each other are decisive of the clustering result.

For discrete HMMs and also for mixture models, which are based on shared
codebooks as, e.g., semi-continuous HMMs, state specific output distributions can
be compared in an especially simple way. As the underlying baseline densities are
not modified by the state clustering or are not even existing in the discrete case, the
distributions are completely defined by the mixture weights cjk or the discrete output
probabilities for individual symbols, respectively.

For such discrete distributions the entropy H(Cj) can be computed, which rep-
resents a measure for how special or how general the generation of outputs is per-
formed in the model state or state cluster Cj considered:

H(Cj) = −
K∑

k=1

cjk ln cjk

The entropy of a discrete distribution is non-negative and takes on its maximal value
ln K for a uniform distribution. It becomes zero, if the distribution of model outputs
is uniquely defined, i.e. exactly one discrete output probability or mixture weight
takes on the value one and all others vanish (cf. e.g. [50, pp. 630–631], [97, pp. 120–
122]).

The merging of states and the modeling of the respective outputs by a single
shared distribution causes an increase of the entropy. This can be used as a distance
measure for the generation of state clusters. In order to avoid, that large clusters,
which cover a huge number of feature vectors, dominate the grouping process, the
increase in entropy is weighted by the number of underlying training samples. For a
pair of clusters Ci and Cj , for which the output distributions are given by mixture
weights cik and cjk , the weighted increase in entropy is then defined as follows (cf.
[136, p. 105]):

d(Ci, Cj) = (Ni + Nj)H(Ci ∪ Cj) − NiH(Ci) − NjH(Cj)

Here Ni and Nj denote the number of training samples, which are assigned to the
respective cluster. The new mixture weights of a state cluster Cm, which was formed
from Ci and Cj , result as the weighted averages of the individual mixture weights
according to:

cmk =
Ni

Ni + Nj

cik +
Nj

Ni + Nj

cjk

They can, therefore, be computed very easily during the clustering process.
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9.2.3 Tying in Mixture Models

An even more fine-grained form of tying as compared to state clusters can be
achieved by merging similar parameters within the mixture models used to describe
the output distributions.

Mixture Tying

The most well known variant of tying on the level of mixture densities is repre-
sented by the so-called semi-continuous or tied-mixture HMMs (see also section 5.2
page 63). There for all mixture densities within an HMM a shared set of baseline
densities is used, i.e. the individual components of the mixtures are tied across all
distributions. One then obtains the following definition for the output probability
densities (cf. equation (5.2)):

bj(x) =

M∑

k=1

cjk N (x|µk, Kk) =

M∑

k=1

cjk gk(x)

Semi-continuous HMMs offer a number of practical advantages as opposed to “fully
continuous” models, where the state specific mixtures are described completely in-
dependently of each other.

By using a single shared codebook it can be assured in a simple way, that all
baseline densities can be reliably estimated on the sample data available. As vec-
tor quantization procedures often tend to produce class regions of similar size, when
computing an initial codebook for a semi-continuous HMM it only has to be assured,
that on average sufficiently many feature vectors per parameter of the baseline dis-
tributions are available in the sample set. By a subsequent training of the model the
individual densities are modified, though. But only in exceptional cases this causes
the parameter estimation to fail due to sparseness of example data. Additionally, in
semi-continuous models the dynamic range of the scores can effectively be limited
during the computation process by transforming the density values to posterior prob-
abilities (see section 7.3).

The principal idea of semi-continuous HMMs, namely to use shared baseline
densities for the modeling of mixture densities, can be generalized to the use of
multiple codebooks. Which model states share a common codebook, however, needs
to be specified by the developer. It makes sense to merge those states in this respect,
from which it can be expected that their output distributions describe similar data.

The most well known example of such a modeling are the so-called phonetically-
tied mixture HMMs. In this modeling developed for purposes of automatic speech
recognition all states of models share common codebooks, which from a phonetic
view belong to similar phones or phone classes. When using triphones as sub-word
units then, e.g., all models with the same central phone share an inventory of baseline
densities.



162 9 Robust Parameter Estimation

Clustering of Densities

Besides constructive techniques also automatic methods exist for the tying of base-
line densities of mixture models. As, however, for individual component densities
in general no symbolic description of the context of occurrence can be specified, no
methods on the basis of decision trees exist. In contrast, agglomerative techniques
can be applied in complete analogy to the automatic determination of state clusters,
as presented in the previous section. One thus obtains an even finer granularity in
the merging of similar model parameters. As distance measures between individual
densities, e.g., the divergence can be used similarly to the generation of state groups
(see equation (9.7)).

In [51] a measure is applied, which can be computed extremely easily. It only
evaluates the weighted Euclidean distance of the respective mean vectors µi and µj

of the density groups Ci and Cj :

d(Ci, Cj) =
Ni Nj

Ni + Nj

||µi − µj ||

Here Ni and Nj denote the number of training samples, which are associated with
the respective density. A more expensive method, which also takes into account the
covariance matrices of the densities involved, was proposed in [114].

In contrast to the generation of state clusters the merging of parameters on the
level of mixture densities in general does not aim at defining more general modeling
units, which can be estimated robustly on a given sample set. Rather, all methods
serve the primary purpose of speeding up the evaluation of the model by reducing its
complexity.

Tying of Covariance Matrices

In mixture density models the mean vector of a baseline density describes the center
of a region of high density in the data distribution considered. With respect to the
covariance matrices, which define the local distortion of the feature space, the mean
vectors, therefore, are of greater importance. Especially when using full covariance
matrices, however, these require considerably more training samples for a robust
estimation. Consequently, in larger mixture models the covariance matrices are tied
frequently, i.e. shared across multiple or all baseline densities.

The most radical approach of this type is applied in automatic speech recognition
systems, which originated from the tradition of Philips research (cf. e.g. [167, 221]).
In contrast to the usual definition of continuous HMMs there output probability den-
sities are defined on the basis of Laplacian densities with a position vector rjk and a
scaling factor v(l) per dimension of the feature space:

gjk(x|rjk, v) =
1

∏n
l=1 2v(l)

e
−

n∑

l=1

|x(l)−rjk(l)|
v(l)
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In essence this corresponds to the use of Gaussian densities with mean vectors rjk

and a commonly shared diagonal covariance matrix, the elements of which are given
by the scaling factors v(l). The success of such a drastic simplification of the co-
variance modeling is most likely due to the fact, that in the respective recognition
systems always also a linear discriminant analysis is applied. Its first computation
step consists in bringing the covariance matrices of the individual pattern classes to
the form of identity matrices approximately (see section 9.1.2 page 148). Thus the
modeling of the local distortion of the feature space considerably looses importance
and can also for mixture models with some 10 000 or several 100 000 densities be
successfully described by a single global diagonal covariance matrix.

9.3 Initialization of Parameters

The training methods for HMMs presented in section 5.7 always require the speci-
fication of a suitable initial model, the parameters of which are then iteratively im-
proved. How such a starting point of the optimization procedures should be chosen
is, however, hardly dealt with in the literature, though this decision fundamentally
influences the whole subsequent parameter training. For models with some practi-
cal relevance it is by no means sufficient, to choose initial parameters randomly or
according to a uniform distribution.

As the only formally defined method the segmental k-means algorithm offers the
possibility to define initial parameters for an HMM training [135]. This method for
parameter estimation alternatingly carries out a segmentation of the training data and
a computation of new model parameters on the basis of segmentation alone without
changing the model structure (see page 88). For the initialization of the method it
is, therefore, sufficient to specify a segmentation of the training set and the desired
model structure. The latter in general comprises a modularization into model sub-
units (see section 8.2), the choice of a suitable topology for the baseline models (see
section 8.1), and the specification of the number of baseline densities, which shall be
used for describing the output distributions.

In the segmental k-means algorithm the initial segmentation of the sample set
is derived from a reference annotation of the data. The manual mapping of feature
vectors to model states is, however, de facto not possible in practice and even a
manual segmentation of data into elementary description units as, e.g., phones or
characters requires an extraordinary effort, which can only be afforded in the rarest
of cases.

Therefore, a radically simplified approach for the initialization of linearly struc-
tured models was proposed in [135]. From the reference annotation first by con-
catenation of the respective HMMs a modeling framework for every section of the
training data can be derived. In the field of automatic speech recognition one, e.g.,
creates an overall HMM for the respective utterance by concatenation of word mod-
els according to the orthographic transcription. As one assumes a principally linear
passing through the respective model states, these can be assigned linearly to the
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available feature vectors in a very simple way. Though the initial segmentation cre-
ated thus will in general be quite inadequate, it is usually sufficient for the definition
of a starting point for the subsequent optimization of the model by the training pro-
cess.

Considerably better results can be achieved, if more accurate segmentation in-
formation is taken into account for the initialization of the model parameters. This
is usually derived from an already existing recognition system, which is used for
segmenting the training data into a sequence of words, phones, or characters9. The
linear mapping between feature vectors and model states is then merely performed
within those rather small segments, so that an acceptable accuracy is achieved.

As the choice of an initial model on the basis of an optimized segmentation in
general has a positive effect on the parameter training, even without changes in the
model structure, after such a second initialization phase an improvement in the mod-
eling quality will be achieved. However, with a sufficiently precise segmentation it
is in particular possible, to initialize the training of a complex model considerably
better than on the basis of an uninformed linear mapping. Therefore, large HMM
systems are frequently built in a sequence of design phases. One starts with a rather
simple model and refines its structure in a number of subsequent optimization steps.
The parameters of the next more complex model are then newly initialized with the
improved segmentation information derived from the previous model.

9 In the rare case that for a given sample set a manual segmentation on the level of elementary
units is available, this can of course be used alternatively in this phase of the method.
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Efficient Model Evaluation

With the Viterbi algorithm in section 5.6 a method for decoding HMMs was pre-
sented, and also for the evaluation of n-gram models algorithms exist as, e.g., the
so-called backing-off described on page 106. However, these methods only repre-
sent the basic foundations on which algorithms for the efficient integrated evaluation
and decoding of Markov models are developed in practice.

All these methods are based on the idea to save “unnecessary” computations as
much as possible. In some cases this can be achieved by a suitable reorganization of
the representation of the search space or of the model itself. In the majority of the
methods, however, “less promising” solutions are explicitly discarded early from the
further search process. Thus the search space is reduced to a tightly focused “promis-
ing” part. This procedure is frequently referred to as search space pruning. The prob-
lem with all those techniques is to find a method for identifying “less promising” so-
lutions. With absolute certainty this is only possible after the actual optimal solution
is known. Every premature decision holds the risk of possibly deleting the hypothesis
actually sought for from the search space. In many cases, however, its exact calcula-
tion is out of question anyway in practice because of the tremendous computational
costs. Therefore, one usually accepts that manageable efficient methods in general
only produce approximate solutions. Such methods are then also called suboptimal.

The following sections give an overview over the most important methods for
the efficient evaluation of Markov models. At the beginning methods for speeding
up the computation of output probability densities on the basis of mixture models
are presented. Then the standard method for the efficient application of Viterbi de-
coding to larger HMMs is described. In section 10.3 methods are explained that apply
techniques of search space pruning for the acceleration of the parameter training of
HMMs. The chapter concludes with a section on tree-like model structures, which
can be used both in HMMs and in n-gram models in order to increase the efficiency
when processing these models.
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10.1 Efficient Evaluation of Mixture Densities

In typical applications of continuous HMMs, where output distributions are approx-
imated by mixture densities, the evaluation of these models may dominate the total
resulting search effort. Especially if a large number of baseline densities is used for
representing the emissions as precisely as possible, perhaps more than half of the de-
coding effort results from the evaluation of probability density functions (cf. [182]).
Therefore, in most larger HMM-based systems methods for limiting the effort in the
mixture evaluation are applied. Unfortunately however, the actual procedures are not
always well documented in the literature.

All these methods are based on the principle to use some method, which can be
evaluated extremely fast, in order to identify a subset of baseline densities, which
make relevant contributions to the computation of the required output probability
densities. For all mixtures in this subset then the density is computed exactly. For all
remaining distributions, however, some constant value is used1 as an approximation
of the actual density value, which is expected to be quite small. The overall effort
in decoding the mixture density is reduced, as these nearly vanishing densities are
“inferred” rather than computed explicitly.

The most well known method for predicting the actual baseline densities to be
evaluated is the so-called Gaussian selection, which was first proposed in [19] (cf.
e.g. [41, 123, 182]). By means of a method for vector quantization first the available
Gaussian densities are put together into groups. In order to improve the subsequently
performed accelerated density evaluation overlaps between the density groups are
explicitly allowed. For every group of baseline densities furthermore the centroid is
calculated. During the decoding of the HMM then only those Gaussian densities are
computed exactly that lie in the density group, the centroid of which has minimal
distance to the current feature vector. As a group of densities in general defines only
a short list of those distributions, which seem promising for being evaluated exactly,
the technique is also referred to as the method of Gaussian short-lists in the literature.
Depending on the system configuration an acceleration of the density evaluation by
a factor of 3 to 10 can be achieved with this method.

A similar principle is the basis of the method proposed in [207], which uses a
sequence of vector quantization processes that are carried out more and more ex-
actly. First a coarse model of the available densities is evaluated, which results from
not using all available dimensions of the feature vectors in the representation. For
promising density candidates then in one or more subsequent processing steps more
exact and thus more costly computations are carried out.

In [77] a method was proposed, which is especially suited for baseline densities
with diagonal covariance matrices, as they are frequently used in larger HMM-based
systems. The regions, in which one of these densities contributes a relevant amount
to a mixture density, are approximated by hyper-cuboids. By representing the feature

1 The actual choice of this lower bound for vanishing density values is actually a quite critical
parameter for the overall performance of the system, which is, e.g., empirically investigated
in [123].
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space as an n-dimensional tree, then very efficiently those hyper-cuboids can be
determined, in which a certain feature vector lies. For the associated densities then
the actual values are computed exactly. The resulting error of the approximation
defined such can be controlled by a suitable choice of the extension of the hyper-
cuboids.

An extensive empirical investigation of different methods for accelerating the
evaluation of mixture densities is presented in [180]. As the best performing single
technique the method of Gaussian selection described above is identified, i.e. the
preselection of certain Gaussian densities by a vector quantization process. As a
modification with respect to the original method [19], however, the densities in the
three to five density groups lying closest to the current feature vector are evaluated
exactly. The authors report a reduction in the effort for evaluating mixture densities
by a factor of more than five and a overall reduction in the computational effort to
approximately 30 %.

10.2 Beam Search

The Viterbi algorithm for decoding HMMs represents with its linear time complexity
already a considerable improvement in efficiency as opposed to the naive computa-
tion scheme with exponential costs. However, the method still has quadratic com-
plexity in the number of model states. By choosing a suitable restricted model topol-
ogy (cf. section 8.1) it can be assured in fact, that per computation of a partial path
probability only a few possible predecessor states have to be considered in the normal
case. Nevertheless, the Viterbi matrix of the δt(i) grows linearly with the number of
model states, such that a complete evaluation in practice is possible for quite limited
problems only.

In a speech recognition system with large vocabulary the acoustic-phonetic
model usually consists of several 10 000 states, for which at every time partial path
scores would need to be computed when applying the Viterbi algorithm directly.
All these states, however, encode quite different acoustic events, wherefore one can
assume, that the majority of possible state sequences represents spoken utterances,
which hardly exhibit any similarities with the signal analyzed and, therefore, actually
would not need to be considered at all.

During the decoding process these “less promising” solutions need to be identi-
fied as early as possible but also sufficiently reliably. For this an absolute threshold of
the path score is certainly out of question, as the values of δt(i) in total vary largely in
dependence on the data considered and especially with the length of the observation
sequence. A real vanishing of the partial path probabilities is furthermore usually
avoided by the methods for flooring — i.e. the limitation of individual contributions
to the path score to certain minimal values — presented in section 7.2. Therefore,
only the differences in the scores can give indications for promising partial results or
for such paths, which could be eliminated.
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1. Initialization
initialize the set of active states with the non-emitting state 0
A0 ← {0}

2. Propagation
for all times t, t = 1 . . . T :

• initialize the locally optimal path score δ̃∗t ← ∞
• for all i ∈ At−1 and all j ∈ {j|j = succ(i)}

– compute the local path score from state i to its successor j

δ̃t(i, j) = δ̃t−1(i) + ãij + b̃j(Ot)
– update the partial path score for state j, if necessary

if δ̃t(j) has not yet been computed or δ̃t(i, j) < δ̃t(j)
δ̃t(j) ← δ̃t(i, j)
ψt(j) ← i

– update the locally optimal path score
if δ̃t(i, j) < δ̃∗t

δ̃∗t ← δ̃t(i, j)
• determine the set At of active states

– initialize the new set of active states At ← ∅
– add all successors j of active states i which lie within the beam

for all i ∈ At−1 and all j ∈ {j|j = succ(i)}
if δ̃t(j) <= δ̃∗t + B̃

At ← At ∪ {j}

3. Termination
determine the optimal end state
ŝ∗T := argmin

j∈AT

δ̃T (j)

4. Backtracking of the approximately optimal path
for all times t, t = T − 1 . . . 1:
ŝ∗t = ψt+1(ŝ

∗
t+1)

Fig. 10.1. Beam search algorithm for the efficient computation of the approximately optimal
state sequence ŝ∗ in HMMs with large numbers of states. Probability quantities are repre-
sented in the negative-logarithmic domain (cf. section 7.1).

In the so-called beam search algorithm developed by Lowerre ([148, pp. 25–
31], cf. also [147], [97, pp. 606–608])2 on the basis of the relative differences in
the partial path scores an extremely robust dynamic criterion for pruning the search
space is used. The search is thus virtually focused within a tight “beam” around the
currently best partial solution.

The basic idea of the method is to restrict the evaluation of the partial path scores
in the Viterbi matrix to so-called active states, that is to a rather limited set. As
active those states are defined, for which the scores δt(i) do not deviate too much
from the locally optimal solution δ∗t = maxj δt(j). The maximally admissible score

2 Despite the enormous practical relevance of the method hardly any descriptions of it can
be found in the relevant monographs and the interested reader is referred to the difficult to
access original work of Lowerre [148].
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difference is specified by a factor B proportional to the currently optimal score δ∗t .
The set of active states At at time t is, therefore, defined as follows:

At = {i|δt(i) ≥ B δ∗t } with δ∗t = max
j

δt(j) and 0 < B ≪ 1

In the further evaluation of the Viterbi matrix for the respective next time step t + 1
then only these active states are considered as potential predecessors when comput-
ing the local path scores (cf. equation (5.9)). One thus obtains the following modified
calculation rule:

δt+1(j) = max
i∈At

{δt(i)aij} bj(Ot+1) (10.1)

The proportionality factor B is chosen as a very small positive constant and typically
lies in the range of 10−10 to 10−20. The smaller B is the more states lie with their
scores in the interval [B δ∗t . . . δ∗t ] and thus are active, i.e. are considered in the search
process.

This concept can intuitively be understood better when using the negative-
logarithmic representation of probability quantities (cf. section 7.1). The proportion-
ality factor B then becomes an additive offset B̃, and one obtains the following rule
for determining the set of active states:

At = {i|δ̃t(i) ≤ δ̃∗t + B̃} with δ̃∗t = min
j

δ̃t(j) and B̃ > 0 (10.2)

Thus around the respective locally optimal path score δ̃∗t a “corridor” of constant
width is created, within which the optimal solution is sought for. The only free pa-
rameter B̃ of this search method, therefore, is usually referred to as the beam width.

For an implementation of the method it is, however, inconvenient to select from
the usually quite large total number of states a small part of active states as potential
predecessors, as given in equation (10.1). At time t + 1 nevertheless all possible
states j would need to be considered in order to check, whether their predecessors
lie in the set of active states At. Such a verification, however, is with respect to the
effort necessary almost comparable to an actual computation of the respective score.

Therefore, in the beam search one changes the “viewing direction” during the
recursive calculation of the partial path probabilities. Instead of considering all po-
tential predecessors the calculations are directly propagated from the respective ac-
tive states to the potential successors. In order to be able to formulate this procedure
exactly, we define a successor relation between states of an HMM as follows:

j = succ(i) ⇔ aij > 0

For “entering” into the model we, furthermore, introduce a non-emitting state 0,
which has all possible start states as successors:

j = succ(0) ⇔ πj > 0

The resulting algorithm, which is summarized in figure 10.1, now proceeds as fol-
lows: First the set of active states is initialized by the single non-emitting state 0.
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Afterwards follows the propagation of the path probabilities, which is carried out for
all times t = 1 . . . T .

At the beginning of every propagation step the locally optimal score δ̃∗t is not
yet known and is set to a suitable large value. Then for all active states i the respec-
tive possible successors j are considered. Given a certain fixed predecessor state i
one obtains the score δ̃t(i, j) for a path to state j. The optimal partial path score of
state j is now computed anew, if no solution was known so far, or updated, if an im-
proved score results from successor i. Simultaneously the pointers ψt(j) necessary
for tracking back the optimal path are updated. For the completion of a propagation
step then the set At of states is determined that will be further active.

As soon as this computation scheme reaches the end of the observation sequence,
i.e. time T , the approximately optimal path ŝ∗ can be determined starting from its
last sequence element ŝ∗T in principally the same way as in the Viterbi algorithm (cf.
also figure 5.5). The sub-optimal solution found by beam search will in general be
different from the theoretically optimal state sequence s∗. However, in practice the
exhaustive search of the whole Viterbi matrix necessary for determining s∗ exactly
is possible in the rarest of cases only due the computational effort required.

The beam search algorithm constitutes the core of every method for decoding
HMMs and can in slightly modified form also be applied to the search with n-gram
models (cf. chapter 12). In the realization of the algorithm presented here and shown
in figure 10.1 of course further improvements in efficiency are possible, that may
result from the chosen internal representation of the HMMs. Thus for example the
explicit computation of At can be avoided, if the decision about active states is made
only at the beginning of the respective next propagation step. Also the evaluation of
the output probabilities bj(Ot) is in fact not required until after the recombination of
the potential paths.

10.3 Efficient Parameter Estimation

The computational effort necessary for parameter estimation usually is not of pri-
mary concern in efficiency considerations, as the design and parametrization process
of HMMs can be performed in advance. However, in all methods applied for this
purpose an iterative optimization is required, which causes the running time of an
individual optimization step to contribute multiple times to the total effort. Further-
more, frequently different parametrizations or configurations need to be created in
order to select the best performing version after completed parameter training. It is,
therefore, quite obvious to also try to avoid “unnecessary” computations in train-
ing, unless this measures have some negative effects on the quality of the parameter
estimation.

10.3.1 Forward-Backward Pruning

In the Baum-Welch algorithm for every segment of the training data the complete
matrix of forward and backward probabilities needs to be evaluated. In fact the idea
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of the beam search can also be applied to this method in order to only carry out the
calculation for relevant parts of this search space (cf. [95, p. 244]).

One defines during the computation of the forward and backward variables for
every time t active states depending on the optimal value α∗

t = maxj αt(j) or β∗
t =

maxj βt(j) of the respective probability quantity.
The set of active states, which are considered during the computation process, is

then defined as

At = {i|αt(i) ≥ B α∗
t } with α∗

t = max
j

αt(j) and 0 < B ≪ 1

for the forward variable and as

Bt = {i|βt(i) ≥ B β∗
t } with β∗

t = max
j

βt(j) and 0 < B ≪ 1

for its counterpart in the backward algorithm (cf. also equation (10.2)). As in the
beam search algorithm the constant B specifies the beam width and thus implicitly
the size of the part of the total search space, which is searched for solutions.

Thus one obtains modified recursive computation rules for the forward and back-
ward variables, within which only the states active at the respective previous time
step are considered (cf. equations (5.8) and (5.16)):

αt+1(j) :=
∑

i∈At

{αt(i)aij} bj(Ot+1) (10.3)

βt(i) :=
∑

j∈Bt+1

aijbj(Ot+1)βt+1(j) (10.4)

The state probability γt(i), which is central for the parameter training and which
is essentially obtained as a product of the forward and backward probability (see
equation (5.15)), vanishes as a consequence of the search space pruning for all those
times t and states i, for which no calculation of αt(i) or βt(i) is performed. Espe-
cially at the beginning of the parameter training the proportionality factor B should
be chosen very small and the beam width consequently large (cf. page 169), such
that only a moderate limitation of the search is achieved and that possible solutions
are not excluded due to still unsatisfactory estimates of the model parameters.

A simplification of the method is obtained, if the principle of the beam search
algorithm is only applied within a modified forward algorithm. The calculation of
the backward variables then can be limited to those states, for which a non-vanishing
value of αt(i) was determined, without the need to compute Bt explicitly.

10.3.2 Segmental Baum-Welch Algorithm

A further possibility for limiting the search effort during Baum-Welch training re-
sults, if the chronological structure of the data is exploited for reorganizing the model
training. When assuming that the observation sequences to be processed represent
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signals, which evolve linearly in time, and using appropriately limited model topolo-
gies, “unnecessary” computations can be avoided. From the reference annotation,
which defines the sequence of meaningful units for every section O of the sample
set — e.g. the orthographic transcription of a spoken utterance —, one again obtains
a linearly organized HMM by concatenation of the corresponding partial models for,
e.g., words. Here interactions between the partial models can only occur to a limited
extent at model boundaries. In contrast, the association of a state of a partial model
with a far away segment of the data is extremely unlikely. Therefore, one may as-
sume, that the forward and backward probabilities will take on positive values only
“within” the segments, which are defined by the mapping between a partial model
and the corresponding data. Consequently, the associated forward and backward ma-
trices will approximately have a block-diagonal structure.

When neglecting the interactions across segment boundaries, the block structure
can be fixed before the beginning of the training and the evaluation of the probability
quantities can be limited accordingly. As the basis for this decision serves the seg-
mentation of the data by means of the current model. As this is not yet optimally
adapted to the sample set, one only obtains an approximate solution of the segmen-
tation problem.

Within the segments determined such one can then compute the statistics neces-
sary for the parameter estimation locally by means of the Baum-Welch algorithm.
The cumulative statistics for determining updated model parameters result in com-
plete analogy to the method for handling multiple observation sequences, which was
described in section 5.7.3 on page 90, as a suitable summation over all individual
contributions3.

The combination of a segmentation of the training data by means of the Viterbi
algorithm and a subsequent parameter training only on the individual segments found
corresponds to the evaluation of a block-diagonal matrix of forward and backward
probabilities. In [43] this method is called segmented training. However a certain loss
in the accuracy or flexibility, respectively, of the method may result from the strict
specification of the segment boundaries before the start of the parameter training.
In the so-called semi-relaxed training this disadvantage is avoided by working with
overlaps between the respective neighboring blocks or segments [43].

By means of a “pre-segmentation” of the data before the application of the train-
ing procedure especially on long observation sequences considerable improvements
in efficiency can be achieved. If, for example, an HMM with 100 states shall be
trained on a sequence of length T = 1000, for forward and backward probabilities
100 × 1000 matrices, i.e. 2 · 105 values each, need to be computed. In case that the
data is partitioned into 10 segments of an average length T ′ = 100, which are as-
sociated with partial models of on average 10 states each, in contrast, only matrices
of size 10 × 100 need to be processed ten times and thus only 2 · 104 probabilities
must be evaluated. Therefore, already in this simple case one obtains a considerable

3 In fact already the segmentation of a larger sample set into partial observation sequences
corresponds to this procedure.
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improvement in the efficiency by a factor of 10, which is the number of segments
used.

10.3.3 Training of Model Hierarchies

In HMM-based recognition systems one is principally always interested in the use
of models that are as specific as possible. However, for the description of rare events
usually also general HMMs are required, which then need to be trained in addition
to the special models. In the field of speech recognition it is, for example, common
practice to also include general context independent phone models besides the widely
used triphone models into an overall recognition system.

In order to be able to correctly estimate the parameters of different modeling
components, normally a separate training of the respective models would be required.
However, usually a generalization hierarchy exists between the HMMs. Therefore,
under certain conditions the parameters of more general models can approximately
be derived from the statistics gathered during the estimation of more special HMMs.

Let us assume, that not only a unique relation exists between special and general
models, but that also the states of specialized models can be uniquely associated
with the ones of the more general HMMs. In continuous HMMs furthermore the
output probability density functions of the corresponding model states need to be
“compatible”, i.e. they must use the same set of baseline densities. This is trivially
the case for semi-continuous HMMs, but can also be achieved in all other variants of
tied mixture models.

Under these conditions the statistics for the estimation of the parameters of the
respective general states are obtained by simple summation over the values, which
were computed for the associated special model states. As an example we want to
consider a triphone modeling, which uses the same number of states for all baseline
models. The respective n-th state of the triphone model x/a/y then corresponds
to the n-th state of the monophone model /a/. For updating the model parameters
of the context independent model all training samples have to be considered, which
are assigned to one of the associated special model states. Therefore, one obtains
the state probability γt(/a/n) for the n-th monophone state approximately as a sum
over all the state probabilities of the respective triphone states:

γt(/a/n) =
∑

x

∑

y
γt(x/a/yn)

In analogy to this the mapping probability ξt(j, k) for the mixture components can
be approximated. On the basis of those two quantities then estimates for the model
parameters of the general HMM can be computed in the usual way (cf. section 5.7
page 76).

However, the parameter estimates obtained such constitute only approximate so-
lutions. In fact the existing model parameters of the general model would need to
be used for correctly determining the state probability and all other statistics. As the
general models in practice are only used to complement the modeling with robust
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baseline models, it is mostly irrelevant, whether their parameter estimates were only
determined approximately.

10.4 Tree-like Model Organization

Besides the use of special algorithms also modifications of the model structure can
be used, in order to increase the processing efficiency of Markov models. Both for
HMMs and for n-gram models tree-like structures offer good possibilities here.

10.4.1 HMM Prefix Trees

In all larger HMM model structures the number of model states by far exceeds the
number of different state parameter sets used. Methods for tying of model parameters
either group similar parameter sets in a data-driven manner, in order to ensure their
robust trainability, Alternatively, they exploit structural properties of the models cre-
ated, in order to reuse partial models at different positions (cf. section 9.2, page 152).
However, tying alone can not reduce the size of the total model, as then in general
unwanted paths through the model would become possible.

In HMM systems with large inventories of segmentation units, as they are com-
mon in the fields of speech or handwriting recognition, a rather simple possibility
exists for deriving a compression of the model structure from the tying of partial
models. In such systems the necessary word models of the recognition lexicon are
usually built from a sequence of elementary sub-word units — e.g. phone or charac-
ter models. The total model then principally results from a parallel connection of the
respective individual models (cf. section 8.3, page 131). For the correct evaluation
of the path score however, it is, irrelevant, whether identical state sequences at the
beginning of a word model were passed through separately, or whether these were
combined into a single sequence. The structure of the overall model, therefore, can be
simplified considerably by merging identical model prefixes of the individual partial
models contained within the total recognition lexicon. The resulting tree-like model
structure is referred to as prefix tree or phonetic prefix tree, if identical sequences of
phone models are represented only once (cf. [163, 164, 175]).

In systems for speech or handwriting recognition that use large lexica this tech-
nique can be considered to be standard today. Depending on the application a com-
pression of the search space by a factor of 2 to 5 can be achieved. The gain in ef-
ficiency is even bigger, as the reduction of the model complexity mostly affects the
beginning of word models. In this area the biggest search effort arises, as the scores
of the partial paths are quite unsure after only a few feature vectors belonging to a
new segmentation unit [164]. However, when using such a “tree lexicon” it is not
known before a leaf node is reached, which word from the recognition lexicon was
hypothesized. This fact needs to be taken into account appropriately, if an n-gram
model shall be integrated into the search procedure (cf. section 12.3, page 194).

Figure 10.2 shows an example for the organization of the recognition lexicon of
a hypothetical speech recognition system in the form of a phonetic prefix tree. The
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. . .

.   .   .

.   .   .

.   .   .

.   .   .

eye

eyes

out

our

isle

/a/

/z/

/I/

words with prefix /aI/

/l/

/s/

/U/

/t/

/r//3/

/b/ /i/ /m/

/V/ /t/

/u/

beam

but

zoo

be

Fig. 10.2. Example of the tree-like organization of the recognition lexicon for a hypothetical
speech recognition system.

root node of the tree serves the purpose of merging paths and corresponds to a non-
emitting HMM state. From there now no longer all start nodes of all word models are
reached as within a linear organization of the lexicon. Rather, the successor nodes of
the root of the prefix tree collect the paths trough all word models, which start with
the same phone model, respectively. As soon as a phone sequence corresponds to a
complete word from the recognition lexicon, the path loops back to the root node.
However, such a word model can also be the prefix of additional paths in the lexicon
tree.

10.4.2 Tree-like Representation for n-Gram Models

At first sight n-gram models seem to have no appreciable structure at all. The con-
ditional probabilities P (z|y) for all combinations of predicted word z and history
y could principally be stored in a table. However, such a trivial representation is
manageable only for very small lexica and very limited context lengths in practice.
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For a tri-gram model with a lexicon of 20 000 words already 8 · 1012 probabilities
would need to be stored, which in 4-byte floating-point format would take up ap-
proximately 29 terra-bytes of memory. In order to be able to still work with such
models, therefore, an efficient representation is mandatory.

The possibilities for structuring the storage of n-gram models immediately result
from the scheme used to compute the model parameters. A dramatic reduction in
the amount of memory required already results, if only scores of observed events
are represented explicitly. The conditional probabilities of unseen n-grams can be
computed by backing off or interpolation when needed (cf. section 6.5.2, page 104).
As the majority of events is not observed in practice, thus a reduction in the storage
requirements to manageable sizes is achieved4. The necessary computational effort,
however, is almost negligible, as only a few multiplications are required.

However, for the computation of n-gram scores of unseen events the zero proba-
bility of the potential contexts as well as the parameters of the necessary more general
distributions need to be stored. Thus one obtains a hierarchical organization of the
model parameters. As the more general distributions are usually also represented by
n-gram models, this principle can be applied recursively.

The parameters of such an n-gram model hierarchy could principally be stored in
individual tables [237]. However, a much more flexible storage method results from
a tree-like representation of the overall model. Individual tree nodes then represent
different observed events. In every node the n-gram score and the normalized5 zero
probability is stored, which results for n + 1-grams with this history. The successor
relation in the tree corresponds to an extension of the event y by a word z to the
right. Thus the successors of node y are all n + 1-grams y·. When only considering,
how a certain n-gram is found in that representation, one deals with a prefix tree.

Figure 10.3 illustrates this representation of n-gram models with the example of
a tri-gram model. In order to be able to specify the score P (z|y) of an observed
event in a simple way, in the example the principle of backing off is applied. Then
the score is directly given by the respective value of the reduced frequency distribu-
tion f∗(z|y). Furthermore, for reasons of simplification the respective n − 1-gram
model shortened by one context symbol is used as the more general distribution. The
root note ⊥ of the tree, therefore, represents the zero-gram model, which assigns a
probability of 1

|V | to every event, where V denotes the lexicon used. As the recur-
sive computation procedure for n-gram scores terminates here, no zero probability
is stored in the root node. The successors of the tree root, i.e. the tree nodes on the
first level, store the parameters of the uni-gram model and at the same time define the

4 A further considerable compression of n-gram models can be achieved, if rare events are
neglected. For singletons — i.e. n-grams observed only once — this results from the appli-
cation of absolute discounting with a discounting constant β = 1. If the modeling quality
is not of primary concern but mostly a representation as compact as possible should be
generated, additionally also parameters of other rarely observed n-grams can be eliminated
from the model.

5 If the more general distributions are not combined with the special model by interpolation
but via backing off, the normalization factor Ky must be taken into account (cf. equa-
tion (6.7), page 107).
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λ(z) Kz

f ∗(y)

Fig. 10.3. Prefix tree for storing n-gram parameters exemplarily shown for a tri-gram model.

respective histories of the observed bi-grams. Over the tree nodes of the second level,
which contain the bi-gram parameters, one finally reaches nodes, which correspond
to observed tri-gram events. These will always be leaf nodes. However, depending
on the respective sample set also bi-gram or uni-gram nodes can result that have no
successors in the tree.

In a tree-like representation of an n-gram model, which is based on the recur-
sive computation scheme for the model parameters, three principally different access
types can be distinguished, which are summarized in figure 10.4. In the style of the
terminology used in conjunction with cache memories we will speak about an n-
gram hit, if the score of an observed event can be retrieved by a direct access to the
respective tree node. For unseen evens, however, one obtains an n-gram miss. This
can occur once or multiple times until a corresponding more general event is found.
For such an access to succeed, always the complete history of the event considered
needs to be represented. If this is not the case, we will call this a history miss. In this
case the longest suffix of the current history needs to be determined, for which still
model parameters exist. Consequently, a shortening of the n-gram context by at least
one, but eventually more symbols is performed.

The representation of an n-gram model by means of a prefix tree presented above
allows an efficient processing of n-gram hits. However, already for an n-gram miss a
second pass through the tree from the root is necessary in order to determine the score
of the respective n− 1-grams. If this does not exist either, the procedure might need
to be repeated multiple times. A similar problem arises for history misses. First, an
access with the complete history must be tried in order to find out, that this does not
exist in the current model. Afterwards the context can be shortened by one symbol
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n-gram hit :
The score of an observed event xyz is retrieved, i.e. c∗(xyz) > 0.

P (z|xy) ← f∗(z|xy)

n-gram miss (simple):
The event xyz was not observed, i.e. c∗(xyz) = 0, but there exist other n-
grams with history yz, i.e. c(yz) > 0.

P (z|xy) �← f∗(·|xy) ⇒ P (z|xy) ← λ(xy)KxyP (z|y)

history miss (simple):
The history xy of an n-gram does not exist in the current model, but only its
suffix y.

P (z|xy) �← f∗(·|x·) ⇒ P (z|xy) ← P (z|y)

Fig. 10.4. Possible access types for n-gram model parameters for the example of a tri-gram
model using backing off.

and another access can be tried. This procedure needs to be repeated until an existing
suffix of the original history is found.

For both n-gram as well as history misses unnecessary search effort results from
the prefix representation, which also increases considerably for n-gram models of
higher order. Therefore, it is quite evident to reorganize the tree representation such,
that the abovementioned access types can be processed efficiently. As within n-gram
contexts not their prefix but the respective last symbols, which lie closest to the
predicted word, have the most significance, it is obvious to store the n-gram histories
in a suffix tree. As the nodes for predicted words need to be accessible from the
respective history nodes, as in the simple prefix tree, we will call this representation
scheme of n-gram parameters a combined suffix-prefix tree.

As shown exemplarily for a tri-gram model in figure 10.5, a path from the tree
root encodes the history of an n-gram in reverse, i.e. starting from the direct succes-
sor of the word to be predicted. By traversing the tree from the root thus automati-
cally the longest existing suffix of a given n-gram history is found. A history miss,
therefore, causes no additional search effort at all. The scores of the words z, which
were observed in a certain context, are stored compactly as a table per tree node.
As at this point the passing through the symbol sequence of an n-gram is quasi re-
versed again, these scores can not be stored in the tree nodes themselves. These only
serve the purpose of representing n-gram contexts in a suffix coding. An n-gram hit
can be processed in the combined suffix-prefix representation as efficiently as in the
simple prefix tree. As the n-gram contexts become more special when proceeding
along a path from the root, one obtains the reversed sequence of the respective more
general n-gram histories. In case of an n-gram miss, therefore, the necessary param-
eters of the more general distributions can be found by simply backtracking the path
previously passed through from the root.
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Fig. 10.5. Combined suffix-prefix tree for storing the parameters of an n-gram model for the
example of a tri-gram model.
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Model Adaptation

Both HMMs and n-gram models are normally created by using some sample set for
training and are afterwards applied for the segmentation of new data. This is by defi-
nition not part of the training samples and can never be in practical applications. The
characteristic properties of this test data can thus only to a limited extent be predicted
on the basis of the training material. Therefore, in general differences between train-
ing and testing material will occur that can not be captured by the statistical models
created and in the end adversely affect the quality of the results achieved.

Such changes in the characteristics of the input data can be illustrated with ex-
amples from automatic speech recognition. Already rather simple deviations in the
conditions of the signal recording often lead to significantly increased error rates.
This can be caused by the use of a different microphone or be due to the fact, that the
training data was gathered in a quiet office environment, but the recognition system
is used out-doors or in a vehicle. Also unexpected interfering noises caused by wind,
cars driving by, or conversations of persons that can be heard in the background on a
party lead to a reduced system performance. But also changes in the characteristics
of the user of the system cause severe problems. Even so-called speaker-independent
recognition systems degrade in performance, if they are confronted with an unknown
dialect or if children use a speech recognition system that was trained for the speech
of adult persons.

All these changes concern the statistical properties of the data to be processed.
In contrast, we do not want to consider differences on the semantic-pragmatic level,
if, for example, it is tried to order pizza from a flight information system, or a speech
recognition system is fed with seismic data.

11.1 Basic Principles

It is the common goal of all methods presented in the following sections, to com-
pensate differences, which concern the statistical properties of the data, between the
training and testing conditions of a recognition system based on Markov models. A
seemingly obvious solution of the problem might be to train specialized models for
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every single purpose. However, this approach fails for two important reasons. On
the one hand, testing material is by its very nature unknown, as already pointed out
above, and only in a laboratory environment conditions can be set up, which ignore
this fact. On the other hand for the training of statistical models large amounts of
data are required. It should, therefore, not be hoped that for every special purpose a
complete representative training set can be collected anew.

To a quite limited extent, however, specialized material will always be available.
At the least the actual test data itself can be considered as an example for the current
properties of the input data to be expected. Often it is even possible to collect a few
up to date samples before the actual application of the recognition system. This so-
called adaptation set can then be used for adjusting the given system parameters to
the respective task. In standard dictation systems, for example, the user is required
to read some given texts as adaptation material, before the system is ready to use.

In contrast to the training of a model, its adaptation consists in the transformation
of a given general parametrization by means of an extremely limited adaptation set
into a special parameter set, which is better suited for the processing of the data
actually observed during the current application of the model. Therefore, by their
very nature also adaptation techniques are methods for parameter estimation. They
are different from classical estimation methods, because they need to cope with some
orders of magnitude fewer training samples.

If adaptation data is available in addition to training and testing material, the
adaptation of the models can be performed prior to their actual application. This
adaptation in the manner of batch processing is also called batch adaptation. In this
approach for simplification and for improving the results the correct annotation of
the adaptation set can be given and one obtains a supervised adaptation method. Of-
ten, however, this is not possible due to the effort required. Then the annotation of
the adaptation data needs to be determined automatically on the basis of the existing
general model. The procedure is then called unsupervised adaptation. An unsuper-
vised method also is the only possibility, if the adaptation can not be performed on
separate sample data but directly during the evaluation of the models on the test data
itself. Such so-called online adaptation methods are undoubtedly the most flexible
methods for model adaptation, as they do not require any changes in the natural use
of the respective system. Furthermore, the parameters can be continuously adapted
to changes in the characteristics of the data.

11.2 Adaptation of Hidden Markov Models

The adaptation of a general HMM to special changed characteristics of the data to
be processed can principally be performed by means of the training methods known
from section 5.7, page 76 (cf. e.g. [48]). However, then a quite large adaptation set
needs to be available, in order to be able to robustly estimate the specialized HMM
parameters. In the case of speaker adaptation, i.e. the adaptation of an existing speech
recognition system to a new user, then at least a few hundred utterances of the re-
spective person need to be available as adaptation material.
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If only quite few example data is available for the adaptation of a given model,
the parameter estimates, which are, e.g., obtained by applying the Baum-Welch algo-
rithm, are extremely unreliable. Therefore, these are not directly used as specialized
models, but are interpolated with the parameters of the general model in a suitable
way. The interpolation weights are usually dependent on the amount of sample data,
which are available for estimating certain model parameters. Thus it can be achieved,
that parameters, for which may adaptation examples are available, contribute to the
special model almost without modification. However, for rarely observed events the
known parameters of the general model prevail.

Formally this corresponds to a parameter estimation technique following the
principle of maximum a posteriori estimation (MAP, cf. section 3.6.2). In contrast
to the frequently applied maximum likelihood estimation (ML, cf. section 3.6.1),
which is also the basis of the Baum-Welch algorithm, here the posterior probability
of the model parameters θ is maximized for given data ω (cf. e.g. [97, pp. 445–446]):

θ̂ = argmax
θ

P (θ|ω) = argmax
θ

P (θ) p(ω|θ)

A model adaptation on the basis of the MAP principle offers the advantage, that
the estimates computed converge against the ones of an ML estimation with increas-
ing size of the adaptation set. Thus the MAP estimation becomes equivalent to the
result of a standard training procedure if truly large amounts of adaptation material
are available.

However, for the application of this principle it is necessary to define estimates
for the prior probability P (θ) of the parameters themselves. Furthermore, a fast spe-
cialization on only few example data should not be expected, as then the original
model parameters still dominate the MAP estimates. Especially for partial models,
states, or probability densities, for which no adaptation samples are available, no
improved parameters can be derived by this method1.

A radically different way for the specialization of models to certain application
areas is followed by methods, which were proposed for improving the modeling
of variations in speaking rate by automatic speech recognition systems [154, 215,
251]. There different specialized models, e.g. for slow, medium, and fast speech,
are created in advance by classifying the available training material accordingly and
splitting it up into separate sample sets. The adaptation to the actual task is then
performed in a relatively simple way by choosing the model, which matches the
data best. In the simplest case the speaking rate of the test data is determined by a
classifier, and then the respective model is used for the segmentation [154]. Better
results are obtained by a method, which, however, is considerably more demanding.
There all available models are used in parallel to generate a segmentation of the
test data. Afterwards one decides for the result — and consequently also for the
respective model — that achieved the best score [251].

Though in this method an adaptation of the HMMs is performed, it can princi-
pally only capture variations, which were anticipated in advance in the design process

1 This effect can be partially avoided in practice by a suitable tying of parameters (cf. sec-
tion 9.2, page 152).
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and which are covered by sample data from the training set. With this method it is
not possible to react upon an unknown variation of the test data.

Maximum-Likelihood Linear-Regression

The most successful method for the fast adaptation of HMM parameters on very
limited data is the so-called maximum likelihood linear regression (MLLR) [138,
139]. This technique meanwhile belongs to the set of standard methods for applying
HMMs to pattern recognition problems (cf. [97, pp. 447ff]).

In contrast to classical training methods, which attempt to compute new estimates
for all model parameters independently on the sample data, MLLR creates a special-
ized model by means of a transformation. As opposed to the adapted HMM itself this
has only quite few free parameters, which can be estimated robustly also on a small
adaptation set. As the transformation modifies all model parameters jointly, also such
parameters can be adapted, for which no adaptation samples were observed.

In order to simplify the method, MLLR assumes that the most important param-
eters of an HMM are the mean vectors of the probability densities used. In contrast
to transition probabilities, mixture weights, and also covariance matrices changes
in the statistical properties of the data affect these the most. By means of an affine
transformation the mean vectors of the general model are adapted to a modified data
distribution2. Every mean vector µ is transformed into an adapted mean vector µ′ by
the following formula:

µ′ = Aµ + b

Here A denotes the rotational part of the transformation and the vector b the as-
sociated translation in the feature space. When forming an extended mean vector
µ̃ = [1, µT ]T and a combined transformation matrix W = [b, A], the formula can
be compactly written with a single matrix multiplication only:

µ̃′ = W µ̃

The optimization criterion of the method is the production probability of the
data, analogously to the Baum-Welch algorithm. Therefore, the transformation of the
model parameters needs to be determined such, that the probability for generating the
adaptation data by the specialized model is maximized.

As far as the amount of available sample data permits, also multiple independent
transforms on different groups of probability densities can be applied to improve
the accuracy of the MLLR method. These groups of densities, for which a separate
parameter transformation is estimated, are called regression classes3. As all mean
vectors of densities from the same regression class are adapted in an identical way,

2 By means of suitable extensions of the MLLR method also the parameters of covariance
matrices can be adapted [83]. The rather moderate improvements, however, do usually not
justify the considerably increased additional effort in practice.

3 If all mean vectors are adapted by a single affine transformation only, a single regression
class comprising all densities is used.
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such distributions should be grouped, which describe similar parts of the model. An
obvious choice is, for example, to group all densities of a codebook jointly used by
multiple states into a regression class.

For computing estimates of the MLLR transformation of one or more regression
classes a mapping between feature vectors xt from the adaptation set and codebook
classes is required. In general this is performed probabilistically in the same way as
when estimating the distribution parameters of continuous HMMs by means of the
Baum-Welch algorithm (cf. page 80). The quantity ξt(j, k) represents the probability
for using the k-th mixture component of state j for generating the data at time t. It
can be computed on the basis of the forward and backward probabilities (cf. equa-
tion 5.20, page 83). Through a formal derivation, which essentially corresponds to
the one of the Baum-Welch algorithm, one obtains the following constraint equation
for determining the MLLR transformation:

T∑

t=1

∑

gjk∈R

ξt(j, k)K−1
jk xtµ̃

T
jk =

T∑

t=1

∑

gjk∈R

ξt(j, k)K−1
jk WRµ̃jkµ̃T

jk (11.1)

Here R represents the respective regression class, which consists of a set of baseline
densities gjk of the mixture densities used within the overall model. The associated
transformation matrix is denoted by WR. Additionally the feature vectors xt as well
as the inverse covariance matrices K−1

jk and the extended mean vectors µ̃jk of the
densities enter into the calculation.

However, for the constraint equation in the general form given above no closed
form solution exists. Frequently the covariance matrices of normal distributions are
described by diagonal covariances only in practical applications of HMMs. In this
constrained case the transformation matrices WR can be computed in a row-wise
procedure (cf. [139], [97, p. 449]).

A considerable simplification of the MLLR method for practical applications
results, if the mapping of codebook classes to adaptation samples is uniquely deter-
mined. In the same way as in Viterbi training or the segmental k-means algorithm
one used the Viterbi criterion to first establish a unique association between model
states and feature vectors. In case of a supervised adaptation for this the correct an-
notation of the sample data is given, e.g. the correct orthographic transcription of
an utterance in the case of automatic speech recognition. In contrast, if the MLLR
method is applied in an unsupervised manner, the segmentation can also be generated
without the respective restrictions by means of the existing model alone.

On the basis of the optimal state sequence the respective optimal codebook class
can then be determined easily as the baseline density WR of the output distribution
of the optimal state st, which has maximal posterior probability:

mt = argmax
k

cstk gstk(xt) = argmax
k

cstk N (xt|µstk, Kstk)

Furthermore one assumes, that the covariance matrices of the individual densities
can be neglected or can be assumed to be identity matrices, respectively. One then ob-
tains an estimation procedure, which determines the parameter transformation such,
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that the mean squared error between the feature vectors xt and the associated mean
vectors µstmt

is minimized ([139, Sect. 4.1: Least Squares Regression], [74]). When
using a single regression class only the following simple formula for computing the
transformation matrix results:

W =

{
T∑

t=1

xtµ̃
T
stmt

}{
T∑

t=1

µ̃stmt
µ̃T

stmt

}−1

(11.2)

If multiple regression classes are used the computation of the individual trans-
formation matrices follows the same scheme. Then only those adaptation vectors xt

are taken into account, for which the associated codebook class gstmt
belongs to the

respective regression class.
Doubtlessly the MLLR method offers the fastest possibility for the adaptation of

an existing HMM to changed task conditions. When using a single regression class
only with a feature dimension of 39, which is typical for speech recognition systems,
less than 1600 parameters need to be estimated for the global transformation matrix
W . In practice this can be achieved in satisfactory quality with less than a minute of
speech material.

Of course the quality of the adaptation method can principally be arbitrarily in-
creased by the use of many different regression classes. However, then also the de-
mand for adaptation data increases similarly, and in the end the method does not offer
any advantages as opposed to a traditional training procedure. In order to achieve an
optimal compromise between accuracy of the adaptation and robustness in the es-
timation of the transformations’ parameters, methods were proposed, which try to
optimally define the number of regression classes depending on the size of the adap-
tation set [22, 139], or which, starting from a single regression class only, increase
their number step by step, as soon as sufficient data becomes available [138].

An extension of the MLLR technique, where multiple independent transforma-
tions are combined, was proposed by Digalakis and colleagues [21, 22, 46, 47]. For
the purpose of speaker adaptation on the training material first adaptation transforms
are estimated for typical speaker groups. The number of regression classes used is
optimized depending on the available adaptation material. For the adaptation of a
general HMM to a specific test speaker then an optimal linear combination is com-
puted from all available transformations. The estimation of the combination weights
requires considerably less data than the computation of an MLLR adaptation rule.
Therefore, the method is suited very well for the fast adaptation of large models to
changed task conditions.

11.3 Adaptation of n-Gram Models

For n-gram models it is even more evident than for HMMs, that the estimation of
a completely new specialized model on a limited adaptation set cannot be achieved.
In fact even on large training sets it is absolutely necessary to determine useful esti-
mates for probabilities of unseen events by smoothing the empirical distributions (cf.
section 6.5, page 100).
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11.3.1 Cache Models

So-called cache n-gram models ([130], cf. also [38, 103]) are based on the idea, that
in texts such words or word combinations re-occur with high probability, that were
already used before. As it is practically impossible to update statistics for bi-grams
or n-grams of higher order with only a few adaptation samples, for the modeling of
this effect only special uni-gram statistics are gathered. In order to be able to better
predict the occurrence of a word wt at the position t in a text, one calculates the
frequency c(wt|wt−T , . . . wt−1) of its occurrence in a certain section of past text
material of length T , i.e. in the so-called cache. The uni-gram probability based on
the cache data is then obtained as follows:

Pcache(wt) =
c(wt|wt−T , . . . wt−1)

T

The simple cache uni-gram model estimated such is subsequently interpolated
with a standard n-gram model P (z|y):

Pcache(z|y) = λP (z|y) + (1 − λ)Pcache(z)

However, the required interpolation weight λ needs to be determined experimentally
or be specified heuristically.

In the work of Kuhn & De Mori [130], who coined the term cache n-gram model,
a category-based tri-gram model is used. On the basis of the cache memory merely
the probabilities P (wi|Cj) for mapping between categories and word symbols are
adapted, so that a good robustness of the model is achieved.

11.3.2 Dialog-Step Dependent Models

A completely different approach for the adaptation of the language modeling is pur-
sued by the so-called dialog-step dependent language models (cf. e.g. [53, 192, 236,
238]). In combination with a system for carrying out a natural language dialog it is
possible, to use the prediction of the dialog system for the selection of a language
model, which is adapted to the class of utterances to be expected. In fact no real
adaptation of the model parameters on the basis of example data is performed, but a
selection based on the internal state of the system.

By splitting up the training material into separate dialog-steps, however, the data
for the estimation of the individual n-gram models is considerably reduced [192].
Especially for rare types of dialog-steps possibly not enough material might be avail-
able for robustly estimating a specialized n-gram model. In such cases either a suit-
able grouping of the available dialog states needs to be performed [238], or the ro-
bustness of the dialog-step dependent models needs to be improved by interpolation
with a general language model [236].

11.3.3 Topic-Based Language Models

A similar basic idea as the dialog-step dependent modeling is followed by the so-
called topic-based language models (cf. e.g. [16, 38, 103]). In this modeling it is
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assumed, that within large text material certain topics can be identified and that the
associated text sections exhibit specific statistical properties. In order to better de-
scribe the overall material it is, therefore, quite obvious to use specialized partial
models for the individual topics.

As in contrast to dialog-step dependent language models the mapping of a certain
text section to a topic and thus to a specialized n-gram model can not be determined
uniquely, topic-based n-gram models are mostly used in the form of so-called topic
mixtures. All partial models P (z|y, Ti) created for a special topic Ti are subsumed
into an overall model by a linear combination. The most frequently used is a combi-
nation on the level of individual conditional probabilities for predicting the respective
following word:

Ptopic(z|y) =
∑

i

λi P (z|y, Ti) with
∑

i

λi = 1

In contrast to this, in [103] the overall probability of a test text w1, w2, . . . wT is
defined as a weighted sum of the probability contributions, which every individual
topic-dependent n-gram model produces for the total word sequence. When using
bi-gram models the following computation rule results:

Ptopic′(w1, w2, . . . wT ) =
∑

i

λi

T∏

t=1

P (wt|wt−1) with
∑

i

λi = 1

As opposed to the purely local interpolation of the models this definition can exclu-
sively be used for the re-scoring of segmentation hypotheses, which are completely
available in a multi-pass recognition system. A time-synchronous combination with
the partial path probabilities of an HMM is not possible for such a model.

As for dialog-step dependent n-gram models the individual topic models are
trained in advance on text material, which is representative for the respective topic.
The adaptation of the overall model to a particular task is then achieved by the adap-
tation of the interpolation weights λi. This can either be performed by an unsuper-
vised estimation procedure, as the EM algorithm [38], or on the basis of methods
for topic identification, as they are known from the field of information retrieval
[16, 150].
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Integrated Search Methods

The probably most challenging applications of Markov model technology are recog-
nition tasks with very large inventories of segmentation units. Typical examples are
dictation systems with lexica of some 10 000 or 100 000 words or systems for hand-
writing recognition with almost unlimited vocabulary. The modeling of the segmen-
tation units — i.e. the spoken or written words — by means of HMMs has quasi
become standard, as in less complex systems too. However, for such demanding
recognition tasks additional restrictions of the possible or plausible sequence of seg-
ments are indispensable, in order to keep the search effort manageable. The descrip-
tion of such restrictions by n-gram models offers the decisive advantage over other
methods, that two compatible formalisms are used and thus a combined application
is possible more easily and with greater success.

Linguistic Source Acoustic Channel Speech Recognition

Word
Articulation

Feature
Extraction

Statistical
Decoding

Text
Production

P (w) P (X|w) argmax
w

P (w|X)

Xw ŵ

Fig. 12.1. Information-theoretic channel model of speech generation and recognition.

Formally this procedure can be derived from a modeling assumption, which is
mainly used in the field of automatic speech recognition and presumably dates back
to Jelinek and colleagues [107, 108]. This integrated probabilistic model of signal
generation and decoding embeds the segmentation problem into the vocabulary of
concepts known from information theory. Figure 12.1 schematically shows the so-
called channel model, as it was formulated for the problem of speech generation and
recognition.
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There one assumes that first a hypothetical information source generates a se-
quence of symbolic units w = w1, w2, . . . wN with a certain probability P (w).
Thus, e.g., a human speaker or writer would formulate a word sequence in his brain
with the goal to later pronounce it or write it down. The actual realization is then per-
formed in a second step, where the symbolic information is transformed or encoded
into a signal representation. The thought of word sequence is thus pronounced as an
acoustic signal or realized as writing on a sheet of paper. The signal produced is now
transmitted over a potentially noisy channel, recorded by a sensor, and transformed
into a parametric representation as a sequence of feature vectors X = x1, x2, . . . xT .
For reasons of simplicity the last two steps are subsumed into one for the further con-
siderations. Consequently, a coding of the symbol sequence w into a feature vector
sequence X is performed with a certain probability P (X|w).

The process of decoding or recognition now tries to reconstruct the original
“ideal” word sequence on the basis of these features. Due to the probabilistic nature
of the generation, which also captures potential errors of the transmission channel,
this is not uniquely possible. Therefore, one decides for the solution ŵ, which max-
imizes the posterior probability P (w|X) of the word sequence given the observed
data X . Thus the following decoding rule results:

ŵ = argmax
w

P (w|X)

As parametric models for the direct description of the probability P (w|X) for in-
ferring the word sequence given the data are generally not known, the expression is
rewritten using Bayes’ rule as follows, in order to reduce the problem to probabilistic
quantities, which can actually be modeled:

ŵ = argmax
w

P (w|X) = argmax
w

P (w)P (X|w)

P (X)

A further simplification results from the fact, that the occurrence probability P (X)
of the data itself is constant with respect to the maximization and, therefore, can be
neglected when determining the optimal word sequence ŵ:

ŵ = argmax
w

P (w)P (X|w) (12.1)

Both probability expressions involved can now be associated with potential modeling
parts of a statistical recognition system.

The probability P (w) for generating a symbol sequence w can easily be repre-
sented by a Markov chain, i.e. by a statistical n-gram model. The quantity P (X|w),
in contrast, is interpreted as the probability to generate a certain observation sequence
X with a given model — i.e. the one corresponding to the word sequence w. This
part can thus be described by means of a hidden Markov model. Furthermore it can
be seen from equation (12.1) that the scores of both parts of the model can principally
be combined by simple multiplication.

At this point the considerations are discontinued in most presentations found in
the literature. Unfortunately, the integrated use of HMMs and n-gram models is not
quite so easily achieved in practice.
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On the one hand the dynamic ranges of the two score components usually differ
largely. Therefore, without a suitable compensation the HMM score P (X|w) prac-
tically always dominates the score P (w) of the language model1. Therefore, the two
quantities are combined in a weighted fashion using a constant ρ according to (cf.
e.g. [97, p. 610])2:

P (w)ρ P (X|w) (12.2)

In negative-logarithmic representation (cf. section 7.1) this corresponds to a weighted
sum of the scores, where the constant ρ, which is referred to as the linguistic match-
ing factor, serves the purpose of adjusting the usually significantly lower costs of
the language model to the magnitude of the HMM score. The choice of ρ, unfor-
tunately, is task specific and suitable values need to be determined in experimental
evaluations3.

On the other hand equation (12.1) only specifies, that the total score of a word
sequence w, which is completely available, can be computed by multiplying the
scores of the two model components. It is, however, not evident, how this should be
achieved within a search process. But without efficient search methods, as the Viterbi
or the beam search algorithm, the decoding of HMMs is not feasible in practice.
Therefore, instead of the evaluation of certain final solutions, partial path scores δt(i)
need to be combined with parts of the n-gram score during the Viterbi search. The
basis for this is the factorization of P (w) into individual conditional probabilities
P (z|y) for the prediction of a word z in the context of y (cf. sections 6.1 and 6.3).

Despite the great importance of respective solutions for more complex applica-
tions of Markov models, their presentation is frequently neglected in the literature.
For current systems for speech or handwriting recognition it is often difficult to find
out from the respective publications, which algorithmic solutions were chosen for
the problem of combining HMMs and n-gram models. The primary reason for this is
probably, that the descriptions are mostly spread across many quite short conference
publications and that the focus of those is more on details of the solution than on

1 This is mainly due to the fact, that probabilities on largely differing time-scales enter into
the calculations for P (w) and P (X |w), respectively. For determining the HMM score
state transition and output probabilities accumulate per frame, i.e. with the “clock pulse”
of the signal. The score of the word sequence, in contrast, is generated by multiplying one
conditional probability per word and, therefore, comprises one to two orders of magnitude
fewer probability components.

2 Frequently the reason for a weighted combination of n-gram and HMM scores being nec-
essary is said to be, that the models were generated on different data and, therefore, would
not be completely compatible. However, this is at most of marginal importance, as, e.g.,
experiments within the German Verbmobil project showed clearly. For the extensive eval-
uation 1996 the training data for HMMs and language model were identical. A weighting
of the scores was still necessary, though.

3 For the combination of n-gram models and semi-continuous HMMs in several speech and
handwriting recognition systems developed in our labs values of 4 ≤ ρ ≤ 7 achieved good
results.
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integrated approaches. Unfortunately, even in monographs on the topic hardly any
satisfactory treatments of the problem can be found4.

Therefore, we want to present the most important methods for the integration
of HMMs and n-gram models in the following. At the beginning the probably old-
est and also simplest technique is presented, where on the basis of partial models a
model network is created, in which the n-gram scores serve as transition probabil-
ities. In multi-pass search methods long-span n-gram restrictions are applied only
in a second search process in order to reduce the total search effort. In combination
with efficient representations of the recognition lexicon as a prefix tree it is necessary
to create copies of the resulting search space, in order to be able to integrate the n-
gram score directly into the search. The actual methods differ depending on whether
the replicated search trees are identified by the n-gram history or by the respective
starting time in the signal. The chapter concludes with a presentation of a flexible
technique for the integrated time-synchronous search in combined HMM/n-gram
models, which is also capable of handling long-span context restrictions efficiently.

12.1 HMM Networks

Technically the most simple and probably also the most obvious possibility for com-
bining n-gram models and HMMs offer the so-called HMM networks, which for
their origin in the field of speech recognition are also referred to as word networks
(cf. [105, pp. 81–82], [196, pp. 453–454]).

A comparable method was first used in the framework of the HARPY system,
yet without an integrated n-gram model [148]. All utterances accepted by the system
were encoded as sequences of the respective word HMMs within a model graph.

If an n-gram model is to be included into such a structure, this can principally
be achieved at the edges between consecutive words in the form of transition proba-
bilities. When using a bi-gram model a simple “looped” lexicon model is sufficient
for this. An example of such an HMM network is shown in figure 12.2. At the edges
between the partial models a and b the respective bi-gram score P (b|a) can be com-
bined with the path score of the underlying HMM. As no predecessor words are
available at the beginning of the search process, the uni-gram scores of the language
model are used as start probabilities of the model.

However, if n-gram restrictions with larger context lengths, as e.g. tri-gram mod-
els, are used, this is no longer possible in the framework of this model structure. Due
to its inherent limitations an HMM is only capable of considering exactly one context
during the search in the form of the current predecessor state. In the model structure
from figure 12.2 this encodes only the current predecessor word.

In order to be able to represent a longer sequence of context words uniquely,
therefore, suitable copies of the partial models need to be created, which are spe-
cialized to certain long-span context restrictions. Figure 12.3 schematically shows a

4 A notable exception is the book by Huang and colleagues, where a good overview over
possible techniques is given [97, Chap. 13, pp. 645–662].
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P (b|a)

P (a)

P (b)

P (c)

P (b|c)

b

c

a

Fig. 12.2. HMM network for a trivial lexicon {a, b, c} and the use of a bi-gram language
model. For clarity only two loop edges are shown explicitly.

simple example of an HMM network, which allows for the incorporation of a tri-
gram model. For every word model a copy exists per potential predecessor word.
The search starts — as in the case of the bi-gram model — with the uni-gram score.
After passing through a word model then bi-gram scores can be incorporated be-
fore the respective context dependent copies of the partial models are reached. These
now represent the two-symbol tri-gram context uniquely. Therefore, from here on
tri-gram scores can be used as transition probabilities provided that the transition is
made to the right context-coding copy of the successor word.

The comparison with the simpler HMM network from figure 12.2, which was
sufficient for the integrated decoding of a bi-gram model, shows, that a considerably
higher effort is necessary. In general the required number of copies of the word mod-
els involved grows exponentially with the length of the n-gram context. Therefore,
HMM networks are used almost exclusively in combination with bi-gram models in
practice.

12.2 Multi-Pass Search

In order to avoid the exponentially increasing effort required by HMM networks
for higher order n-gram models, but nevertheless to exploit their restrictions, meth-
ods for multi-pass search rely on an application of modeling parts with increasing
complexity in multiple subsequent steps. For that procedure one assumes that the
additional restrictions of an n+k-gram, as opposed to the ones of the n-gram model
being also available, mainly lead to a different sorting of the solutions found, but
not to completely new ones. If this assumption is fulfilled, the integrated search can
use a language model of lower complexity — usually a bi-gram model — for the
generation of a set of alternative solutions. These are subsequently re-scored with a



194 12 Integrated Search Methods

[c]a

[c]b

[c]c

[a]c

[a]b

[a]a

P (a|a c)

P (a|c c)

P (c|c)

P (a|a a)

a

b

c

P (c|a)

P (a)

P (b)

P (c)

Fig. 12.3. HMM network for a trivial lexicon {a, b, c} and a tri-gram language model. Per
word model y copies [x]y exist for coding the necessary context restrictions.

more demanding model (cf. e.g. [17, 84, 89]). The computational costs caused by
decoding an n-gram model of higher order is thus limited to “relevant” search areas,
which were already hypothesized in the first phase of decoding.

The main disadvantage of such a multi-pass strategy is that the data to be seg-
mented needs to be completely available before a substantial part of the computations
— i.e. the re-scoring steps — can be carried out. For batch processing applications,
as, e.g., the transcription of broadcast news or the search for interesting samples in
large genetic databases, this restriction can be neglected. This is different for in-
teractive applications, as, e.g., in multi-modal man-machine communication. With
a multi-pass analysis procedure, e.g., in the field of speech recognition demanding
computations can not be started before the end of the spoken utterance. A fast reac-
tion on inputs from the user, therefore, is hardly possible with such a method.

12.3 Search Space Copies

As already pointed out in section 10.4.1, a substantial increase in the efficiency of
HMM search within large lexica can result from a tree-like representation of the
models. However, the considerable compression of the HMM state space achieved
in this way also has a serious drawback. When a leaf node of the tree is reached,
which encodes the end of a word, the identity of the successor word is not known.
Therefore, in an integrated model the n-gram score can not merely be combined with
the HMM score in the form of a simple transition probability. Rather, the information
about the word context needs to be saved until after the prefix tree is passed through
anew and another leaf node is reached.
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Fig. 12.4. Example of the overall search space when using context-based search tree copies
and a tri-gram model with trivial lexicon L = {a, b, c}.

12.3.1 Context-Based Search Space Copies

In order to achieve the correct combination of an n-gram language model with an
HMM organized as a prefix tree, a method was proposed, where dynamic copies of
the search space are generated depending on the respective context to be encoded
[164]. The algorithm, which originally was developed for bi-gram models only, was
later extended to also handle tri-gram language models [178].

Essentially the method corresponds to the use of a compressed network of word
nodes. The resulting model graph is dynamically created as required, which, how-
ever, is principally also possible for HMM networks. Figure 12.4 exemplarily shows
the resulting overall search space when using a tri-gram model with trivial lexicon.
The comparison with figure 12.3 makes clear, that the language model score is inte-
grated in a principally similar way as in an HMM network. However, not before the
end of the model actually predicted the score can be evaluated. It is thus taken into
account in the search process with a delay of one word.

The resulting search procedure can in the same way as the method of HMM
networks be realized as a direct extension of the beam search algorithm. In contrast
to multi-pass search strategies it thus can be applied in a strictly time-synchronous
way.

However, also the use of search space copies becomes extremely demanding for
n-gram models of higher order. The exponential growth of the search space can
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Fig. 12.5. Example of the overall search space when using time-based search tree copies and
a bi-gram language model with trivial lexicon L = {a, b, c}.

not be counteracted arbitrarily even by a tree-like model organization or pruning
strategies. This can also be inferred from the fact, that the use of such methods is
only documented in the literature up to the complexity of trigram models (cf. e.g.
[6, 163, 178]). Still, this method probably is the most efficient technique for the
combined decoding of HMMs and bi-gram models.

12.3.2 Time-Based Search Space Copies

A variant of the method presented in the previous section was proposed in [178] and
independently of that also in [71]. There the search space copies are not generated
depending on the language model context, but on the starting time of the respective
hypothesis.

Figure 12.5 exemplarily shows a part of the resulting search space organization.
In contrast to the context-based creation of tree copies in this method different search
trees are reached from hypotheses of the same word, which end at different times.
On the other hand all hypotheses with the same end time t are continued in only a
single search tree with starting time t + 1, even though they were possibly created in
different search trees. Only the score δ∗t of the optimal hypothesis ending at time t
is taken into account. It serves as the starting score for the newly created search tree
copy.

In order to still be able to correctly integrate n-gram models into the search,
however, for the evaluation of the language model score in a word end node all
potential hypotheses ending in the predecessor tree have to be considered. As for the
partial path of the current solution the optimal score δ∗t was used up to time t, this
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Fig. 12.6. Schematic representation of the computation of the language-model look-ahead in
a hypothetical model tree.

score must be replaced by the path score δt(. . . z) of the respective predecessor node
for computing the optimal combined score.

In the form described above bi-gram models can be integrated into the search
using this method. Already for tri-gram language models, however, an additional
context symbol needs to be taken into account, which makes the formal presentation
of the method considerably more complex [176].

12.3.3 Language-Model Look-Ahead

The primary task of a statistical language model within an integrated search process
is to provide additional knowledge that allows to restrict the search to relevant areas
as tightly as possible. Therefore, it is a disadvantage that n-gram scores are evaluated
only with rather large temporal difference at the transitions between partial models
or words, respectively.

The goal of the so-called language-model look-ahead, therefore, is to be able
to incorporate language model restrictions already within a search space organized
as a prefix tree [62, 220]. As the identity of the respective successor model is only
known when a leaf node is reached, this can be achieved only approximately (cf. also
[175, 177, 179]).

For that purpose one determines for every model state in the prefix tree all leaf
nodes that can be reached from there. In order to create a hypothesis it is necessary
to reach any one of these and to then take into account the respective language model
score. The current path score is, therefore, at least augmented by the respective opti-
mum of these n-gram scores. Thus in every model state the n-gram score, which is
maximum for all reachable word ends, can be combined with the path score.

Figure 12.6 schematically shows a search tree, which was generated as a copy
of an HMM prefix tree within a larger search space. For reasons of simplicity we
assume, that the tree copies were created depending on the language model context.
In the example considered let this context be given by y.
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With language-model look-ahead for every model state the optimal achievable
n-gram score is determined depending on the current n-gram context. If from a state
only a single leaf node w can be reached, this is exactly given by P (w|y). However, if
multiple paths to a set of leaf nodes v1, v2 . . . vn exist, the optimal expected language
model score is obtained as:

max
z∈{v1,v2...vn}

P (z|y)

The preliminary n-gram score defined in this way, therefore, can be combined
with the HMM score already before a leaf node is reached. Consequently, in combi-
nation with pruning techniques a focusing of the search can be achieved, as language
model restrictions are taken into account as early as possible. As the set of reach-
able word end nodes is in general reduced by every state transition, the preliminary
language model score computed for the respective predecessor state needs to be re-
placed by its actual value after each state transition.

12.4 Time-Synchronous Parallel Model Decoding

In all integrated search algorithms on the basis of search tree copies we assumed so
far, that the scores contributed by the HMMs and the n-gram model, respectively,
were combined according to equation (12.2) and that all decisions of the search
method were taken on the basis of this combined score only. However, in practice
it is often desirable to be able to parametrize score-based search space restrictions
that follow the principle of beam search separately for HMM states and sequences
of segment hypotheses, respectively. Furthermore, the use of a combined score in all
areas of the search has the consequence, that the order of the n-gram models used
directly influences the complexity of the search on the level of HMM states.

Therefore, an integrated search technique was developed in [70], which allows
a separation of the state based search process from the level of hypotheses. It orig-
inated as a further development of the method presented in section 12.3.2, which
works on the basis of time-based search tree copies. The essential difference to the
latter method is, that partial path scores within all copies of the HMM search space
are scored without the influence of the language model. The combined score is only
evaluated during the search in the space of segmentation hypotheses. There princi-
pally n-gram models of arbitrary order can be used. The complexity of the respective
language model does not effect the HMM search, which is realized as beam search
extended to the processing of time-based tree copies.

One obtains a time-synchronous search method, which consists of two coupled
search processes running in parallel. In the first by means of HMMs segmentation
hypotheses are generated, which are passed on to the language model-based search
at every time step. In the second search process these are combined into sequences
of hypotheses and evaluated by incorporating the n-gram model.
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Fig. 12.7. Exemplary representation of hypotheses created by the HMM-based search with a
trivial recognition lexicon L = {a, b, c} at a given end time t1. The hypothesis c(t1 + 1, t2)
also shown represents a solution, which later needs to be integrated into the overall search
space.

12.4.1 Generation of Segment Hypotheses

The goal of the hypothesis generation is the creation of a dense lattice of segment
hypotheses without the influence of the language model context. Starting at times
ts = 1 . . . T all promising segment hypotheses ŵi(ts, te) are computed. Here prin-
cipally from all starting times ts to be considered a search with all HMMs of the
recognition lexicon needs to be carried out. Thus one obtains a copy of the HMM
search space for every ts. The search within these, however, is not performed in iso-
lation but strictly time-synchronously. The results of the hypothesis generation can
thus be collected for every end time te and be passed on to the integrated language
model search, as exemplarily illustrated in figure 12.7.

In order to eliminate less promising search paths the path hypotheses within all
search tree copies are subject to a joint beam pruning (see section 10.2, page 167).
For increased efficiency the models of the recognition lexicon are organized as a
prefix tree (see section 10.4.1, page 174). This means no limitation for the proposed
search method, as the language model scores are handled completely separately from
the HMM-based search. Therefore, it is absolutely sufficient, that the identities of
hypotheses are determined not before a leaf node of the prefix tree is reached. The
initial score for starting a new search tree copy at time ts results as the HMM-based
path score of the hypothesis chain that is optimal according to the integrated search
and ends at time ts–1. Thus it is assured, that the scores of all paths followed in



200 12 Integrated Search Methods

t1 t2t+11

a c

b c

a c

b c

c c

a c

c c

b cPa
th

 S
co

re

Fig. 12.8. Representation of the configuration known from figure 12.7 after the incorporation
of the hypothesis c(t1 + 1, t2) into the search space. The resulting search paths with final
hypothesis c are ordered from top to bottom according to a fictitious score. With dashed lines
those path extensions are drawn, which encode a language model context that is redundant for
the future search.

different search tree copies always stay comparable and can be used for the mutual
pruning of the search space.

12.4.2 Language Model-Based Search

The basis of the language model search is the generation of a search graph on the
level of hypotheses. It is created from the individual hypotheses, which are gener-
ated time-synchronously by the HMM-based search. Per hypothesis end time te con-
sidered, for all ŵi(ts, te) all possible concatenations with predecessor hypotheses
ŵj(. . . , ts–1) already found in the search space are created.

The goal of the method is to determine that path within this huge search space,
which is optimal with respect to the combined HMM and n-gram score. For this
purpose all path hypotheses are evaluated, which were newly created on the basis
of ŵi(ts, te). Here the evaluation of a language model score is possible with arbi-
trary context length, as the complete context of the preceding hypothesis sequence is
known.

In order to effectively avoid an explosion of the search space, a pruning strategy
is necessary, which can be applied in a strictly time-synchronous manner. Therefore,
all search paths scored by the language model, which were extended up to the current
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end time te by new hypotheses ŵi(. . . , te) are subject to a beam pruning. Depending
on the best path score determined for this set of hypotheses only paths within a
constant score window are considered by the future search. All remaining solutions
are discarded from the search space.

In order to ensure that all relevant n-gram contexts are also available for further
path expansions, it is sufficient to save only those of the “surviving” path hypotheses,
which differ in the respective n–1 final hypotheses. Figure 12.8 shows this exemplar-
ily for the configuration of segmentation hypotheses known from figure 12.7.

In the case of a bi-gram model, therefore, per time te only a single path with end
hypothesis ŵi(. . . , te) is generated for the i-th entry of the recognition lexicon. For
higher order n-grams, however, path hypotheses need to be discriminated according
to longer suffixes. In order to be able to manage this efficiently and without the
need for costly backtracking of the respective paths, for the n–2 predecessor nodes
of a path end a hash key is computed, which together with the identity of the last
hypothesis compactly encodes the n-gram history. As this coding is not necessarily
unique, not all different n-gram contexts can be discriminated. Informal experiments
have shown, however, that this substantial simplification does not lead to measurable
losses in quality of the results.

The important advantage of this integrated time-synchronous search method as
opposed to comparable approaches lies in the fact, that the scoring of the language
model context is not transferred into the HMM-based search, as, e.g., in [163]. The
complexity of the n-gram models used, therefore, does not put additional burden on
the already quite considerable cost of the search within the HMM state space.

The strict separation of HMM-based and language model based search besides
a good organizational separability of the internal processes also leads to a better
localization of measures for increasing efficiency. Thus the beam width used for the
search within the HMM state space, e.g., is completely independent of the relative
weighting of the two score components as well as of the method for search space
pruning used on the level of hypotheses.





Part III

Systems



Introductory Remarks

In the previous chapters both the theoretical foundations of Markov-model technol-
ogy were presented and the most important methods were explained, which allow
their successful application in practice. However, all these methods have configu-
ration parameters, which can only be optimized for a certain application scenario.
Furthermore, not every combination of individual techniques automatically leads to
an improved performance of the overall system

Therefore, in the following chapters we want to present successful systems for
speech and handwriting recognitions as well as for the analysis of biological se-
quences. They will serve as examples for demonstrating, which methods from the
wealth of available techniques are applied, how they are parametrized in the re-
spective application, and how their combination leads to a powerful overall system.
As for a certain application besides Markov model-based techniques also applica-
tion specific methods are of great importance, these system presentations partially
take us beyond the topic of this book. However, for application specific methods we
will limit ourselves to the explanation of the principal procedures and refer the in-
terested reader to the respective technical literature. The Markov model techniques
used, however, were mostly presented in the scope of the theory and practice parts of
this book. Therefore, for those we will always make references to the respective sec-
tions, in which they are further explained. Additionally, the configuration parameters
used are given and their combination with other methods is explained.

In the literature the efficiency of certain pattern analysis methods is proved by
presenting evaluation results. This procedure has an especially long tradition in the
field of automatic speech recognition (cf. [82, 254]), where several standardized test
scenarios were defined. Nevertheless, also in this area it is extremely difficult to com-
pare systems by the evaluation results documented. Frequently the evaluation con-
figurations considered are slightly different and the results often are hard to interpret
for someone less familiar with the respective application. Furthermore, performance
measurements once published are quickly outdated. Therefore, in the following we
do not want to attempt to compare the systems presented by evaluation results. The
interested reader can find those easily in the cited literature.
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The following chapters 13 to 15 are devoted to complete systems for one of
the three main application areas of Markov models, respectively: Automatic speech
recognition, handwriting recognition, and the analysis of biological sequences. As
the author’s experience in using Markov models is based on extensive research and
development of his own, also systems will be presented, which are based on ES-
MERALDA [63, 67] — an open-source software tool for the development of pattern
analysis systems based on Markov models. It allows the flexible configuration of
the models and offers concrete implementations for most of the methods relevant in
practice that were presented in the second part of this book.





13

Speech Recognition

Though a number of commercial speech recognition systems are available on the
market, the problem of automatic speech recognition should by no means be consid-
ered to be solved, even if the media and also some researchers sometimes make that
impression. As by now a multitude of techniques is required to build a competitive
speech recognition system, there are only a few systems left, which can sustain their
position at the top of the international research community.

The probably best documented research systems are the ones developed by Her-
mann Ney and colleagues at the former Philips research lab in Aachen, Germany, and
later at the RWTH Aachen University, Aachen, Germany. In the following presenta-
tions we want to put the emphasis on the newer works at RWTH Aachen University.
However, many aspects of the systems within the research tradition are identical with
those developed by Philips. Afterwards we want to present the speech recognizer of
BBN, which in contrast to most systems developed by private companies is docu-
mented by several scientific publications. The chapter concludes with the description
of a speech recognition system of our own developed on the basis of ESMERALDA.

13.1 Recognition System of RWTH Aachen University

The recognition system of RWTH Aachen University, which we will be shortly re-
ferring to as the Aachen recognizer in the following, is a speech recognition system
for large vocabularies, which as one of only a few systems of its kind works time-
synchronously. The models and algorithms used are not applied for the analysis of the
complete speech signal in multiple successive phases, but are evaluated progressively
in only one pass through the data on the utterance to be analyzed. The properties of
the system presented in the following are described in [115, 217] and [15].

Feature Extraction

As practically all modern speech recognition systems the Aachen recognizer uses
mel-frequency cepstral coefficients (MFCC) as features. During the frequency anal-
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ysis of short sections of the signal — so-called frames —, which are extracted from
the speech signal every 10 ms with a length of 25 ms, the frequency axis is warped
approximately logarithmically according to the melody scale following the process-
ing within the human auditory system (cf. [257, p. 112] or [97, p. 34]) Afterwards, by
means of a cosine transform of the power spectrum its coarse structure is represented
numerically (cf. e.g. [97, pp. 306–315]).

The system uses 15 cepstral coefficients as well as their time derivatives, which
are computed by a regression analysis over a few neighboring frames. Additionally,
the signal energy and its first and second time derivative are used as features.

In order to optimize the separability of the pattern classes, the initial fea-
ture representation is subject to a linear discriminant analysis (see section 9.1.2,
page 148). For this purpose three successive feature vectors are stacked to form a 99-
dimensional vector and subsequently are mapped onto a 35-dimensional sub-space.
The pattern classes used are defined by associating HMM states with feature vectors.

As a further improvement of the feature representation the Aachen recognizer
also uses a so-called vocal tract length normalization (VTLN). It consists in a scaling
of the frequency axis with the goal of eliminating spectral effects, which are caused
by the different lengths of the vocal tract — namely the oral and nasal cavities and
the pharynx — of different persons (cf. [232]).

Acoustic Modeling

The modeling of acoustic events in the Aachen recognizer is performed on the ba-
sis of continuous HMMs (see section 5.2, page 63). As sub-word units triphones
are used. Each of these models is realized as a Bakis model with three states (see
section 8.1, page 127). In order to ensure the trainability of the model parameters,
by means of decision trees model states are automatically grouped into clusters, for
which sufficiently many training samples are available (see section 9.2.2, page 157).
Additionally, in all mixture densities used for the modeling of output distributions
only a single shared diagonal covariance is estimated for the underlying normal dis-
tributions (see page 162).

The recognition lexicon is compactly represented as a phonetic prefix tree, in
order to be able to efficiently process also large vocabularies of up to 65 000 words
(see section 10.4, page 174). A model for speech pauses as well as different models
for human and non-human noises are also part of the lexicon.

Language Modeling

Refined techniques for language modeling and for its integrated use in the search sub-
stantially contribute to the success of the Aachen recognizer. In most configurations
tri-gram models with so-called non-linear interpolation are used. In the terminology
of this book this corresponds to the application of linear discounting for gathering
probability mass and the subsequent interpolation with the respective more general
distribution (see page 101 as well as section 6.5.2, page 104).
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Search

In order to be able to correctly combine an n-gram language model with a tree lexi-
con, the Aachen recognizer uses an extension of the time-synchronous beam search,
where depending on the respective word context copies of the lexicon tree are gener-
ated (see section 12.3, page 194). For tri-gram models, therefore, model states need
to be distinguished according to two predecessor words. Not before a word end node
is reached, the respective n-gram score can be determined and taken into account
by the search. For improving this combination of HMMs and n-gram models in the
Aachen recognizer additionally a so-called language-model look-ahead is used. With
this technique the maximal n-gram scores to be expected are already combined with
the path scores within the acoustic model tree, in order to make an early incorporation
of the language model restrictions possible and thus achieve an improved efficiency
of the search method (see section 12.3.3, page 197).

13.2 BBN Speech Recognizer BYBLOS

In contrast to the Aachen recognizer the BYBLOS system developed by BBN uses
a multi-pass search strategy. The modeling parts used are evaluated in subsequent
processing steps, which always use more exact and expensive models and thus more
and more restrict the potential final solution. The details of the system presented in
the following are taken from [18] and [169].

Feature Extraction

The feature extraction of BYBLOS similar to the Aachen recognizer computes 14
mel-cepstral coefficients every 10 ms for speech frames with a length of 25 ms.
Together with an energy feature and the first and second time derivatives of these
parameters one obtains a 45-dimensional feature vector. The modeling quality is
improved by applying a gender-dependent vocal tract length normalization. Further-
more, the cepstral coefficients are normalized to zero-mean1 and unit variance on a
per-utterance basis. The energy feature, in contrast, is normalized to the respective
energy maximum.

Acoustic Modeling

BYBLOS uses HMMs of different complexities for the subsequent decoding phases.
The basis forms a so-called phonetically-tied mixture HMM, in which all triphone
models with the same central phone use a shared codebook of 512 densities (see
section 9.2.3, page 161). Furthermore, quinphone models are estimated for phones

1 This corresponds to a quite simple variant of cepstral mean normalization, as it is also used
in the ESMERALDA system. Further explanations can, therefore, be found in section 13.3,
page 210.
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in the context of two left and right neighbors, respectively. In order to ensure the
trainability of these extremely specialized models, state clusters are formed automat-
ically. For all states of one of these clusters the mixture densities are then defined on
the basis of 80 normal distributions. The tri- and quinphones required are described
by Bakis models with five states. BBN achieves a further specialization of the mod-
eling by using gender-dependent HMMs. This means that both for triphones as well
as for the considerably more complex quinphone models to complete inventories for
male and female speakers are estimated.

Language Modeling

As most speech recognition systems BYBLOS also uses a tri-gram model for the
restriction of the search space on the level of words. The robustness of the model is
improved by defining a suitable category system, in order to be able to successfully
combine models that were estimated for different domains.

Search

In order to make an efficient evaluation of the complex HMMs and n-gram models
possible, BYBLOS uses multiple subsequent decoding phases. First, on the basis
of the triphone models and by using the so-called fastmatch method [168], which
only uses a bi-gram language model and a compressed phonetic prefix tree, an initial
restriction of the search space is determined2. Subsequently the quinphone models
are adapted on the basis of the current solution by applying MLLR (see section 11.2,
page 184). By means of the adapted models a refinement of the space of possible
solutions is computed. Afterwards another adaptation step is carried out, which also
takes into account sub-word units that extend across word boundaries. The acoustic
model already adapted twice is now used together with the tri-gram language model
for computing a first intermediate result. This then serves as the basis for another
complete pass through the decoding phases outlined above.

13.3 ESMERALDA

ESMERALDA3 is an integrated development environment for pattern recognition
systems based on Markov models. It implements4 most methods for the estimation
and application of HMMs and n-gram models presented in this book (cf. [63, 67]).
The core of the ESMERALDA architecture, which is shown in figure 13.1, is de-
fined by an incremental recognition system. In different parametrizations and in

2 The respective efficient decoding method was patented by BBN (cf. [168]).
3 Environment for Statistical Model Estimation and Recognition on Arbitrary Linear Data

Arrays
4 ESMERALDA is free software and distributed under the terms of the GNU Lesser General

Public License (LPGL) [68].
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Fig. 13.1. Architecture of the ESMERALDA system: Components of the incremental recog-
nition system are shown (feature extraction, codebook evaluation, path search) as well as the
knowledge sources used (HMMs, n-gram model, grammar) and the methods provided for the
design of the respective models.

a variety of scenarios it was applied for tasks of automatic speech recognition
[11, 24, 64, 70, 71, 119, 120, 132, 185, 205, 218, 227, 228, 234, 235, 250, 251],
for the analysis of prosodic structures [27, 28], for music segmentation [190], for
automatic handwriting recognition [65, 66, 72, 73, 243, 244, 245, 246] (see also sec-
tion 14.3), and for the analysis of biological sequences [186, 187, 188, 189] (see also
section 15.3).

In the following we want to present the important properties of the speech recog-
nition systems developed on the basis of ESMERALDA. For reasons of simplicity
we will always be talking about the ESMERALDA recognizer, even though there
exist many different system configurations and also other application areas for the
techniques used.

The ESMERALDA recognizer similarly to the Aachen recognizer works strictly
time-synchronously and also was conceptually influenced by the research at Philips
in its development. As important differences to related systems it offers the possibil-
ities to use a purely declarative grammar as a language model and to incrementally
generate recognition hypotheses already during the processing of spoken utterances
that are not yet completely available. The basic system features put together in the
following are documented in [63, 70, 71, 227].

Feature Extraction

The ESMERALDA recognizer, similarly to the systems presented in the previous
sections, computes mel-cepstral coefficients every 10 ms on frames with a length
of 16 ms. In order to eliminate adverse effects, which are caused by changes in the
signal recording conditions, as, e.g., by the use of a different microphone, a dynamic
cepstral mean subtraction is applied (cf. e.g. [199, 239] or [97, pp. 522–525]).
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For that purpose a moving cepstral average, which is computed on energetic parts
of the utterance, is subtracted from the current cepstrum. Thus changed properties of
the recording channel can be compensated well. To a quite limited extent also a form
of speaker adaptation is achieved. In addition to the cepstrum an energy feature is
computed. By estimating a histogram of the signal energies in a certain temporal
context it is possible, to map the energy coefficients to a an interval between 0.0 and
1.0 with respect to the current local minimum or maximum, respectively. In the same
way as the cepstral mean subtraction this normalization operation can be applied in a
strictly causal manner, i.e. without any knowledge about “future” parts of the signal.

The 39-dimensional feature vector is formed from 12 cepstral coefficients, the
normalized signal energy, as well as the first and second order time derivatives of
these parameters. The smoothed temporal derivatives are computed by means of re-
gression polynomials on a window of five neighboring frames.

Acoustic Modeling

The acoustic modeling in the ESMERALDA recognizer is performed by means of
semi-continuous HMMs (see section 5.2, page 63) with codebook sizes of some
hundred up to a few thousand densities with diagonal covariance matrices5.

As sub-word units triphones with linear model topology are used for all speech
recognition applications. The number of states of the individual models varies and
is determined by the shortest segment length found for a corresponding speech unit
in the sample set. In order to ensure the trainability of the triphone models, state
clusters are created automatically, which are supported by a certain minimal number
of feature vectors in the training set6. Only those states are clustered, which occur in
triphones for the same baseline phone and at the same model-internal position. The
distance between state clusters is determined by the increase in entropy caused by
merging the output distributions (see section 9.2.2, page 157).

The recognition lexicon is organized as a phonetic prefix tree. Besides the manda-
tory silence model it also contains models for human and non-human noises as well
as for hesitations.

Statistical and Declarative Language Modeling

The ESMERALDA recognizer uses statistical bi-gram models during the search by
default. However, also the time synchronous application of higher-order n-gram
models is possible. As the most important reduction in perplexity for word-based

5 ESMERALDA also supports the use of full covariance matrices. However, the large amount
of training samples required to estimate such models and the higher costs in decoding cause
the simpler diagonal models to become the more favorable alternative. The reduced capabil-
ities for describing correlations between feature vector components are usually outweighed
by the additional precision in modeling achieved when using larger numbers of densities.

6 Good results are achieved for a threshold of 75 samples. More compact and eventually also
more robust models are obtained by requiring a few hundred feature vectors to support a
state cluster.
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language models usually is achieved when moving from bi- to tri-gram models, the
dramatically increased computational cost for even more complex models can hardly
be justified in practice7. Even though ESMERALDA provides all techniques for the
robust estimation of word-based n-gram models presented in chapter 6, in prac-
tice absolute discounting in combination with backing off smoothing is used (see
page 101 and 106).

As an important extension compared to other recognition systems the ESMER-
ALDA recognizer offers the possibility to use a declarative grammar in much the
same way as a statistical language model to guide the recognition process. In this
way expert knowledge about utterances from a certain domain can be exploited with-
out the need to gather large amounts of text material for the training of an n-gram
model. An LR(1) parser (cf. e.g. [3, pp. 215–247]) derives pseudo-scores for word
sequences from the applications of rules defined by the grammar. Thus the restric-
tions of the grammar are not enforced, so that also ungrammatical utterances can be
recognized and the use of a grammar is also possible for domains, where no full cov-
erage can be achieved. The application of a grammar can always be combined with
a statistical language model, which is available additionally.

In integrated systems for automatic speech understanding it is further possible, to
output the grammatical structures determined during the recognition process directly
as structured recognition hypotheses. Thus the interface between speech recognition
and understanding is raised from the level of simple word hypotheses to the one of
domain-specific constituents (cf. [24, 184]).

Incremental Search

The ESMERALDA recognizer uses the strictly time-synchronous method for search-
ing combined HMM and n-gram models that was described in detail in section 12.4,
page 198. There search space copies of the acoustic model tree are created depending
on the respective starting time. The search on word hypothesis level is strictly sep-
arated from that, which principally makes it possible to take into account arbitrarily
long n-gram contexts.

In order to be able to generate results in interactive applications already while
the current utterance is still being processed, the ESMERALDA recognizer uses a
method for the incremental generation of recognition hypotheses. It assumes, that
hypotheses for a certain part of the signal become more and more stable, the farther
the time-synchronous decoding has proceeded beyond this point. Therefore, every
50 ms the currently optimal solution is tracked back a certain time interval into “his-
tory” and the prefix of the hypothesis sequence lying before that is output as a partial
recognition hypothesis. As the actual optimal solution can not be known before the
end of the utterance is reached, such a method necessarily will produce sub-optimal
results. With a time delay of two seconds the incremental generation achieves results,

7 In recognition experiments without the use of a lexicon only on the basis of phone se-
quences, however, substantial improvements in the accuracy of the results can be achieved
by using higher-order n-gram models [70].
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which are almost identical with those obtained by a completely optimizing method.
With 750 ms delay one obtains an acceptable reaction time to spoken language input
and only a rather low increase in the error rate by approximately 5% relative.
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Character and Handwriting Recognition

In contrast to the field of automatic speech recognition, where Markov model-based
methods currently represent the state-of-the-art, HMMs and n-gram models are still
a rather new approach for the recognition of machine-printed or handwritten texts.
This might be due to the fact, that data obtained from writing or print can in general
be segmented into manageable segments, as, e.g., words or characters, much more
easily than spoken language. Therefore, especially in the field of OCR, but also for
the processing of forms or for the reading of address fields, a number of well estab-
lished methods exists, that rely on the classic distinction between segmentation and
classification. Segmentation-free methods on the basis of Markov models, however,
are mainly applied by researchers, which previously gathered experiences with this
technology in the field of automatic speech recognition.

In the following we will first present the OCR system of BBN, which explicitly
uses the BYBLOS system originally developed for the purpose of automatic speech
recognition. It shows the principal approach for off-line processing, even though the
recognition of machine-printed characters is obviously easier than the recognition of
handwriting. Afterwards, we will present the online handwriting recognition system
developed by Rigoll and colleagues at the University of Duisburg, Germany, which
applies a number of well-know Markov model-based techniques. The chapter con-
cludes with a presentation of our own system for offline handwriting recognition,
which just like the speech recognition systems presented in section 13.3 was devel-
oped using the ESMERALDA tool-kit.

14.1 OCR System by BBN

The OCR system developed at BBN is a Markov model-based recognition system for
machine-printed text, which is capable of handling very large vocabularies and can
also work with “unlimited” vocabulary. As already mentioned above it is based on the
speech recognition system BYBLOS, which was presented in section 13.2, page 209.
In order to be able to apply this system to OCR problems, some modifications are
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required, which are documented in [13] and which will be presented briefly in the
following.

Feature Extraction

The basis of offline character recognition is the optical capturing of a complete doc-
ument page with a resolution of 300 to 600 dpi1. In order to convert such a document
image into a chronologically organized signal, first the individual text lines are seg-
mented. After a compensation of the rotation of the page image it is ensured, that
lines are oriented horizontally. They then can be identified by simply searching the
minima in a horizontal projection histogram of the gray level image. Then every
text line is subdivided into a sequence of small vertical stripes, which overlap each
other by two thirds. The width of the stripes is 1/15 of the line height, which was
normalized in order to compensate for different font sizes.

For feature extraction the individual text stripes are again subdivided into 20
overlapping cells, which correspond to small rectangular image regions. On the basis
of these cells now feature vectors are generated. Per cell first the average intensity
and its horizontal and vertical derivative are computed. In a quadratic window of four
cells furthermore the local derivative and the local correlation of the Gray values is
determined. For every text line one thus obtains a sequence of 80-dimensional feature
vectors, which are computed per stripe in the direction of the text.

This can be viewed as sliding a small analysis window, which has the width of
one text stripe, along the text line image — a method, which is referred to as the
sliding window approach. The technique was first applied to the problem of offline
character recognition by researchers at BBN [214]. It is fundamental for transform-
ing text image data into a chronological sequence of feature vectors, which can later
be fed into an HMM-based analysis system. Today the sliding window approach can
be found in the majority of HMM-based offline recognizers.

Modeling Machine Print

The statistical modeling of machine-printed text is performed on the basis of context
independent character models. Together with the models for punctuation symbols
and white space, BBN uses 90 elementary models for English texts and 89 for Arabic.
For each of these 14 states are defined, which are connected according to the Bakis
topology. Therefore, both a linear passing through the state sequence and a skipping
of individual states is possible (see section 8.1, page 127).

The output probability densities of the particular model states are defined on the
basis of a shared set of component densities similar to semi-continuous HMMs (see
section 5.2, page 63). However, this is performed separately for subsets of 10 features
from the total 80-dimensional feature vector. All partial output probability densities
use an inventory of 64 Gaussians. The total density for a feature vector is obtained
by multiplying all eight partial density values.

1 abbreviation for dots per inch
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The training of the models is achieved by means of the Baum-Welch algorithm
(see page 80), where in the same way as in automatic speech recognition only the
orthographic transcription of every text line — i.e. the actual character sequence — is
given. At the beginning of the training all HMM parameters are initialized uniformly.
Which initial parameters are used for the eight mixture codebooks, unfortunately, is
not documented in the literature. However, it may be assumed, that by means of a
method for vector quantizer design (see section 4.3, page 50) initial codebooks are
generated in an unsupervised manner.

Language Modeling and Search

Just in the same way as in automatic speech recognition for OCR a certain lexicon
can be given. The restriction of potential word sequences can then be achieved in the
usual way by a word-based n-gram model. BBN achieved with this method and a
lexicon of 30 000 words an error rate on the level of characters of less then 1% for
English texts and of a little more than 2% for Arabic documents.

However, if no constraints are to be imposed on the expected words, the recog-
nition needs to be performed on the basis of characters alone. Then it is said that an
“unlimited” lexicon is used. By applying an n-gram model on the level of characters
the missing restrictions of a fixed recognition lexicon can be compensated to some
extent. The error rates that can be achieved, however, increase by a factor of 2 to 3 if
merely a character tri-gram is used.

The combination of HMMs for individual characters and an n-gram model for
the restriction of the search space is achieved by a multi-pass search strategy in the
BYBLOS system (see page 210).

14.2 Online Handwriting Recognition System
of the University of Duisburg

The online handwriting recognition system developed at the University of Duisburg,
Germany, in the research group of Gerhard Rigoll2 is a writer dependent system for
the recognition of isolated words. The writing style, however, is not restricted. As one
of the very few systems in the field of handwriting or optical character recognition it
uses context dependent sub-word units, in order to achieve a modeling, which is as
precise as possible even for large vocabularies. The system’s details put together in
the following are taken from [126, 198] and [124].

Feature Extraction

In the Duisburg system the pen trajectories are captured by using a graphics tablet
by WACOM. Such devices typically provide measurements with a sampling rate of

2 Meanwhile Gerhard Rigoll heads the Institute for Human-Machine Communication at the
Technical University of Munich, Germany.
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approximately 200 Hz. Besides the pen position, which is determined with a preci-
sion of 2540 lpi3 and for an elevation of the pen of up to 5 mm over the tablet, the
data also comprises the pen pressure in 256 discretized levels. In order to compen-
sate for variations in writing speed, which are highly person specific, the raw data
is first re-sampled. In that process the new samples are usually placed equidistantly
along the pen trajectory. However, in the Duisburg system depending on the local
trajectory parameters the distance between the samples is optimized such, that even
for fast changes in the writing direction a sufficiently accurate resolution is ensured.

On the preprocessed trajectory data then four types of features are calculated:
The orientation α of the vector connecting two successive pen positions represented
as sin α and cosα, the difference of successive orientations sinΔα and cosΔα, the
pen pressure, and a local representation of the region surrounding the current pen
position in the form of a gray level image. For this so-called bitmap feature first
the pen trajectory is locally represented as a 30 × 30 binary image and then sub-
sampled in a raster of 3 × 3 pixels. The nine gray values defined such are then used
as additional features.

Modeling Handwriting

In the same way as in the system by BBN context independent models of characters
form the basis of the statistical modeling of handwriting in the Duisburg system. For
the German language 80 elementary models are used, which are defined as linear
HMMs with 12 states for characters and 4 for punctuation symbols.

In order to improve the precision of the representation, additionally so-called tri-
graph models are used, which are the character-based equivalent to triphones, i.e.
character models in the context of the respective left and right neighboring symbols.
As with a potential inventory of 803 trigraphs these models can not be trained ro-
bustly, on the one hand only those trigraphs are represented that sufficiently often
occur in the training data. On the other hand robust generalizations of parameters for
unseen states are generated by automatically computing state clusters by means of
decision trees (see section 9.2.2, page 157).

For the modeling of emissions discrete and continuous HMMs as well as a hybrid
approach, which incorporates neuronal networks, are investigated. The best results
for a recognition lexicon of 200 000 words are achieved by the hybrid system, which
combines discrete HMMs with a vector quantization stage on the basis of neuronal
networks. There the parameters of both parts of the model can be optimized jointly
by a method for discriminative training.

Search

As the Duisburg online recognition system is not used for the processing of word
sequences, no n-gram language model is applied in the decoding stage. In order

3 abbreviation for lines per inch
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to make the search in the extremely large recognition lexica of up to 200 000 en-
tries efficient, the necessary sub-word units are represented as a prefix tree (see sec-
tion 10.4.1, page 174).

14.3 ESMERALDA Offline Recognition System

In contrast to most approaches for offline handwriting recognition, which consider
isolated phrases, e.g., in postal addresses, or only isolated words written in certain
fields of a form, it is the goal of the system described in the following, to writer
independently recognize complete handwritten texts. The principal approach is com-
parable with the OCR system by BBN. A detailed description of the methods used
can be found in [246].

Preprocessing

As opposed to machine-printed texts a suitable preprocessing of optically captured
handwriting data is of fundamental importance. Similar to the system by BBN, after
a position normalization of the document page first a segmentation of the individual
text lines is performed by evaluating the horizontal projection histogram. However,
in handwritten texts the baseline of the writing in general is not strictly horizontal
— which is referred to as the skew of the line or the so-called baseline drift — and
individual characters or words are usually not written completely upright but with
some varying inclination with respect to the vertical — the so-called slant. Therefore,
it is tried to compensate these variabilities before the actual feature extraction by
normalization operations. After a global correction of the line orientation the skew is
corrected locally together with the slant of the writing, so that also variations within
a line can be captured approximately. As the ESMERALDA offline recognizer is
primarily intended for the recognition of texts in video data, then a local binarization
of the text line image is performed. Thus it is ensured, that intensity variations of both
writing and background do not adversely affect the subsequent feature extraction
process4. As a final preprocessing step, the text line image is normalized in size. For
this purpose first local extrema of the contour of the writing are determined. Then
the line image is re-scaled such, that the average distance between these matches a
predefined constant.

Feature Extraction

Just in the same way as in the OCR system by BBN the ESMERALDA offline recog-
nizer uses the sliding window technique to convert text line images into sequences of
feature vectors. Pre-segmented and normalized text line images are subdivided into

4 Informal experiments showed, that the purely gray level based features of the BBN system
could not be applied successfully to the processing of handwriting data. For the purpose of
OCR, however, those features immediately achieved a convincing system performance.
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small stripes or analysis windows, which are four pixels wide and overlap each other
by half. For each of these windows nine geometrical features are computed from the
associated stripe of the binarized text image. The first group of features describes
the coarse shape of the writing within the local analysis window. The average dis-
tance of the lower baseline to both the upper and the lower contour of the writing is
computed, and the distance of the center of gravity of the text pixels to the baseline.
These features are then normalized by the core size, i.e. the distance between upper
and lower baseline, in order to increase the robustness against variations in the size
of the writing. Furthermore, three local directional features are calculated describing
the orientation of the lower and upper contour as well as the gradient of the mean
of the column-wise pixel distributions. Finally, the average number of black-to-white
transitions per column, the average number of text pixels per column, and the average
number of text pixels between upper and lower contour are calculated.

In order to be able to consider a wider temporal context to some extent in the
feature representation , the 9-dimensional baseline feature set is complemented by a
discrete approximation of the temporal derivatives of the features, which is computed
over a context of five analysis windows by linear regression.

Handwriting Model

The statistical modeling of handwriting is performed on the basis of semi-continuous
HMMs (see section 5.2, page 63) with a shared codebook of approximately 2, 000
Gaussians with diagonal covariances. A total of 75 context independent HMMs are
created for modeling 52 letters, ten digits, twelve punctuation symbols, and white
space. The number of model states is automatically determined depending on the
length of the respective unit in the training material. All these models use the Bakis
topology in order to be able to capture a wider variability in the length of the charac-
ter patterns described. (see section 8.1, page 127).

Language Modeling and Search

In order to make handwriting recognition with “unlimited” lexicon possible only on
the basis of character models, sequencing restrictions between HMMs for individ-
ual symbols are represented by means of a character n-gram models of increasing
complexity5. For all models estimated the raw n-gram probabilities were smoothed
by applying absolute discounting and backing off (see pages 101 and 106). The in-
tegrated decoding of HMMs for describing the handwriting and n-gram language
models defining the sequencing restrictions is achieved in the ESMERALDA offline
recognizer by applying the time-synchronous search method described in detail in
section 12.4 on page 198.

5 In [246] lexicon free experiments are reported for bi-gram up to 5-gram models.



15

Analysis of Biological Sequences

When considering applications of HMMs in the field of bioinformatics one gets the
impression, that there people strive for influencing as many details of the models
as possible by expert knowledge, i.e. specifying them manually in a heuristic way.
Despite the almost finished sequencing of the human genome this might currently be
the only promising method for a discipline, which still suffers chronically from the
lack of data.

Here parallels can be drawn to the times when statistical speech recognition was
in its infancy. Then also substantial influence was exerted on the model structure.
With the availability of ever larger sample sets, that were annotated or could be an-
notated semi-automatically, such techniques, however, were applied to a ever lesser
extent and replaced by methods, which allowed to estimate the necessary configu-
rations from example data automatically. Usually also the former expensive model
structures, which needed to be optimized manually, gave way to drastically simpli-
fied structures with considerably increased degrees of freedom.

Furthermore, in the field of biological sequence analysis there still seems to be a
need for justifying the application of statistical methods on the basis of Markov mod-
els. In several publications on the subject, as, e.g., in [55], sections can be found, in
which it is explicitly pointed out, that HMMs principally achieve the same results
as older methods for score-based sequence comparison. Usually only the underlying
mathematical theory is given as their main advantage and less frequently the auto-
matic trainability of the model parameters required.

In the following we will first briefly present the two most important software
tools, which were developed for the analysis of biological sequences by means of
hidden Markov models. In these systems Markov chain models play just as little
a role as the detection of genes within a complete genome. In the final section of
the chapter we will present a system for the classification of proteins, which was
developed on the basis of ESMERALDA and which follows a radically different
approach in many respects.
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15.1 HMMER

The HMMER system (pronounced hammer) was developed by Eddy and colleagues,
first at Washington University, Saint Luis, and meanwhile at the Janelia Farm Re-
search Campus of the Howard Hughes Medical Institute, Chevy Chase, [56]. The
underlying techniques are described in detail in the monograph [52].

Model Structure

As model structure HMMER exclusively uses profile HMMs (see section 8.4,
page 133). Already in version 2.2 (current version is 2.3.2) their structure was ex-
tended such, that besides the detection of similar sequences also the search for similar
partial sequences was possible, which are embedded in longer sequences of amino
acids. The model structure denoted as “Plan 7” results from the one shown in fig-
ure 8.6 on page 135 by reducing the potential state transitions within a group of
match, insert, and delete states from 9 to 71. Then no transitions from delete to insert
states and vice versa are possible.

Parameter Estimation

The estimation of model parameters in HMMER is exclusively performed on the
basis of already available multiple alignments that are created by experts. As the
mapping between the columns of the alignment and model states is fixed and is not
modified, the empirical distributions of the amino acids can directly be given. In
order to improve the robustness of the estimates, prior probabilities of the parameter
values are incorporated following the principle of MAP estimation (see section 3.6.2,
page 43). For the necessary densities mixtures of Dirichlet distributions are used as
statistical models (cf. [52, pp. 116–117]). However, an iterative optimization of the
model created such by means of the Baum-Welch algorithm or a similar method is
not performed.

When searching for sequences the decision about the similarity to the sequence
family considered is made on the basis of the ratio between the score of the model
and an appropriately chosen background model (see section 7.4, page 124). There-
fore, HMMER offers the possibility to automatically adjust the parameters of the
background distribution and the necessary thresholds in a calibration step.

Interoperability

An essential aspect of HMMER is the interoperability with other systems. Ready-
made profile HMMs, which are available in a certain data format, as, e.g., the one

1 The name “Plan 7” for the structure improved with respect to the older “Plan 9” model
architecture is an allusion to the title of a science fiction movie — sometimes referred to as
the worst movie ever made. In the documentation of HMMER frequently similar humorous
cross references can be found.
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defined in the PFAM database [10], can be used directly for sequence analysis by the
software tools. Furthermore, for arbitrary models HMMER is capable of applying the
search algorithms provided to different sequence databases available on the Internet,
as e.g. the protein database SWISS-PROT [9].

15.2 SAM

The Sequence Alignment and Modeling System (SAM) resulted from works of
Hughey and colleagues at the University of California, Santa Cruz, CA [98]. From
the principal algorithmic capabilities it is very similar to HMMER. As model struc-
ture profile HMMs2 are used though without the modifications of the “Plan 7” archi-
tecture. The parameter estimation is performed on pre-existing multiple alignments
by default. In order to enable a purely score-based decision about the similarity of
sequences, also a calibration of models is provided. In the same way as HMMER,
SAM offers the possibility to import ready-made models from external data formats
and to directly apply models for the search on sequence databases.

The important difference between HMMER and SAM lies in the fact, that the lat-
ter system offers different iteratively optimizing training methods for profile HMMs.
By default the Baum-Welch algorithm is used (see page 80), which in the SAM
documentation, however, is only referred to as EM algorithm. In order to modify
the convergence properties and to avoid finding local maxima only during the op-
timization procedure, the parameter estimation can be overlaid by a noise process
following the principle of simulated annealing. There the parameter estimates are
randomly modified according to a statistical model, while the degree of the modi-
fication decreases with increasing number of training iterations. For a substantially
accelerated but also qualitatively less satisfactory parameter training SAM offers the
application of the Viterbi training (see page 86). Furthermore, in SAM there exist
various heuristic methods for optimizing the structure of the model to be estimated
during the training process depending on the current model parameters. However, all
these methods are highly specific to the problem of modeling protein sequences by
profile HMMs.

In contrast to HMMER, SAM furthermore offers the possibility to generate mul-
tiple alignments from initially un-aligned sequences in a purely data-driven manner.
For HMMER multiple alignments need to be pre-specified and can only be aug-
mented by additional members of the respective sequence family, which were found
during the similarity search in certain databases.

Despite these distinguishing features one may say, that from the purely discrete
view on sequence data both systems implement all relevant aspects of research on
the topic of profile HMMs. In contrast to the fields of speech and handwriting recog-
nition both HMMER as well as SAM are available on the Internet as software tools
for several system architectures and with detailed documentation.

2 The profile HMM structure with match, insert, and delete states is incorrectly referred to as
a “linear HMM” in the SAM documentation.
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15.3 ESMERALDA

Though it might seem obvious that sequence data, which can be described by a se-
ries of symbols taken from a small finite alphabet, is modeled using discrete HMMs,
alternative data representations can lead to considerably improved modeling capa-
bilities. The ESMERALDA-based system for modeling families of remotely homol-
ogous proteins, which was developed by Thomas Plötz and the author at Bielefeld
University, Germany, follows such a radically different approach. As the first system
of its kind it used a biologically motivated continuous multi-channel representation
of protein sequence data in conjunction with semi-continuous HMMs for describing
families of remotely homologous sequences [186, 187, 188, 189].

Feature Extraction

The function of the residues within a protein sequence — i.e. the individual amino
acids — can be abstractly characterized on a symbolic level, but it is actually realized
by their bio-chemical properties. Therefore, the symbolic sequence representation of
proteins is first mapped onto a suitable continuous representation of relevant bio-
chemical properties of amino acids. As it is not clear, which single property might
be the most relevant, multiple properties complementing each other — here 35 —
are considered, which are defined by so-called amino acid indices. Therefore, pro-
tein sequences are now represented as multi-channel real-valued signals, where each
channel encodes one bio-chemical property of amino acids.

This signal representation is then analyzed locally by sliding along a small analy-
sis window with a length of 16 residues and an overlap of 15. Thus for every position
in the original symbolic sequence representation a local analysis is performed. For
this purpose first a channel-wise discrete wavelet transform is applied using two-
stage multi-scale analysis. Secondly, after a first reduction of the dimension per
channel to 11 the collection of coefficients obtained such is subject to a principal
component analysis obtaining a 99-dimensional feature vector (cf. [186, 188]).

Statistical Models of Proteins

The statistical models of proteins are based on semi-continuous HMMs (see sec-
tion 5.2, page 63). When structured equivalently to profile HMMs the difference to
the classical modeling of proteins is completely concentrated in the modified data
representation. However, as continuous models based on mixture densities in con-
junction with a feature representation encoding local context information are much
more powerful than discrete models, the tight structural restrictions of profile HMMs,
which encode the prior expert knowledge, no longer are of fundamental importance.
Rather, the actual structures can be inferred from training data within the framework
of a greatly simplified model topology. Therefore, so-called bounded left-right mod-
els were introduced [189]. These are principally equivalent to ordinary left-to-right
models with the notable distinction, that the distance for skipping states forward in
the model is limited to a maximum number of states. As arbitrarily long forward
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skips are hardly necessary to represent sequential data, this measure ensures, that the
number of transition probabilities reduced thus can actually be trained on the sample
data available.

As the problem of data sparseness is especially extreme in the field of bioinfor-
matics, it is of fundamental importance to define robust procedures for parameter
training. Usually this is achieved by incorporating certain prior knowledge into the
estimation process or by heuristic methods for model regularization, i.e. suitable
modifications of the parameter estimates. In the ESMERALDA-based protein mod-
eling framework a training procedure was defined, which combines several estima-
tion steps producing more and more specialized models. As semi-continuous HMMs
are used for the initial estimation of the shared set of codebook densities annotated
data is not required. Therefore, this can be achieved on large databases of general
protein sequences. The remaining model parameters, namely transition probabilities
and mixture density weights, can then be estimated on family-specific data. As this
data usually is too limited to achieve a robust re-estimation of the codebook densities,
too, these are merely adapted to the special data by means of maximum likelihood
linear regression (see section 11.2, page 184).





References

[1] Adda G, Adda-Decker M, Gauvain JL, Lamel L (1997) Text normalization
and speech recognition in French. In: Proc. European Conf. on Speech Com-
munication and Technology, vol 5, pp 2711–2714

[2] Adda-Decker M (2001) Towards multilingual interoperability in automatic
speech recognition. Speech Communication 35(1–2):5–20

[3] Aho AV, Sethi R, Ullman JD (1986) Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, Massachusetts

[4] Asadi A, Schwartz R, Makhoul J (1990) Automatic detection of new words in
a large vocabulary continuous speech recognition system. In: Proc. Int. Conf.
on Acoustics, Speech, and Signal Processing, Albuquerque, pp 125–128

[5] Aubert X, Haeb-Umbach R, Ney H (1993) Continuous mixture densities and
linear discriminant analysis for improved context-dependent acoustic models.
In: Proc. Int. Conf. on Acoustics, Speech, and Signal Processing, Minneapolis,
vol II, pp 648–651

[6] Aubert X, Dugast C, Ney H, Steinbiss V (1994) Large vocabulary continuous
speech recognition of Wall Street Journal data. In: Proc. Int. Conf. on Acous-
tics, Speech, and Signal Processing, Adelaide, vol II, pp 129–132

[7] Avendaño C, Deng L, Hermansky H, Gold B (2004) The analysis and rep-
resentation of speech. In: Greenberg S, Ainsworth WA, Popper AN, Fay RR
(eds) BLA, Springer Handbook of Auditory Research, Springer, Berlin Hei-
delberg, pp 63–100

[8] Bahl LR, Brown PF, de Souza PV, Mercer RL (1993) Estimating Hidden
Markov Model parameters so as to maximize speech recognition accuracy.
IEEE Trans on Speech and Audio Processing 1(1):77–83

[9] Bairoch A, Apweiler R (2000) The SWISS-PROT protein sequence database
and its supplement TrEMBL in 2000. Nucleic Acids Research 28(1):45–48

[10] Bateman A, Birney E, Durbin R, Eddy SR, Howe KL, Sonnhammer
ELL (2000) The Pfam protein families database. Nucleic Acids Research
28(1):263–266

[11] Bauckhage C, Fink GA, Fritsch J, Kummert F, Lömker F, Sagerer G,
Wachsmuth S (2001) An integrated system for cooperative man-machine in-



228 References

teraction. In: IEEE International Symposium on Computational Intelligence
in Robotics and Automation, Banff, Canada, pp 328–333

[12] Baum L, Petrie T, Soules G, Weiss N (1970) A maximization technique oc-
curring in the statistical analysis of probabilistic functions of Markov chains.
Ann Math Statist 41:164–171

[13] Bazzi I, Schwartz R, Makhoul J (1999) An omnifont open-vocabulary OCR
system for English and Arabic. IEEE Trans on Pattern Analysis and Machine
Intelligence 21(6):495–504

[14] Bell TC, Cleary JG, Witten IHW (1990) Text Compression. Prentice Hall,
Englewood Cliffs, NJ

[15] Beyerlein P, Aubert XL, Haeb-Umbach R, Harris M, Klakow D, Wendemuth
A, Molau S, Pitz M, Sixtus A (1999) The Philips/RWTH system for transcrip-
tion of broadcast news. In: Proc. European Conf. on Speech Communication
and Technology, Budapest, vol 2, pp 647–650
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absolute discounting → discounting,
absolute

adaptation, 181–188
of n-gram models, 186–188
of hidden Markov models, 182–186
principles, 181–182

adding one, 101, 112

backing off, 106–108, 113, 176, 213, 220
backward algorithm, see forward-backward

algorithm
backward variable, 78, 81, 171

see also forward-backward algorithm
Bakis model, see hidden Markov model,

topology
Baum-Welch algorithm, 80–86, 90, 93, 170,

183, 185, 217, 223
segmental, 171–173

Bayes’ rule, 35, 58, 74, 123, 190
beam search, 167–170, 171, 191, 195, 198,

209
bi-gram model, 96, 105, 110, 112, 177, 192,

196
see also n-gram model

BYBLOS, 209, 215

category, see n-gram model, category-based
centroid, 48
cepstrum, 11, 148, 207, 209, 211
channel model, 189
classification and regression tree, → decision

tree
cluster analysis, see vector quantization
codebook, 46

see also vector quantization
correlation matrix, 141
covariance matrix, 38, 141
curse of dimensionality, 138

decision tree, 156, 157, 208, 218
density → probability density
Dirichlet distribution, 222
discounting, 102–104

absolute, 103–104, 107, 113, 176, 213,
220

linear, 102–103, 106, 113, 208
distribution function, 35
divergence, 159
dynamic time warping, 75

see also Viterbi algorithm

eigenvalue matrix, 145
eigenvector matrix, 145
EM algorithm, 56, 59, 81, 93, 188

for mixture densities, 56–59
see also Baum-Welch algorithm

ESMERALDA, 210, 219, 224–225
event

in language modeling, 96
random, 33

expected value, 37
experiment, 33

flooring, 122–123
forward algorithm, 69–71, 111

see also forward-backward algorithm
forward variable, 70, 75, 81, 171

see also forward algorithm
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forward-backward algorithm, 78–79
frame, 10, 21, 208, 209, 211
frequency

absolute, 97
relative, 34, 97

garbage model, see log-odds score
Gaussian distribution → normal distribution
Gaussian selection, 166
Gaussian short-lists → Gaussian selection
grammar

stochastic, 95, 112

hidden Markov model, 61–92, 190
compound models, 131–133
configuration, 127–136
continuous, 63
decoding, 74–76
definition, 61–63
discrete, 63
duration modeling, 92
ergodic, 127
evaluation, 68–74
hybrid, 92
linear, 212, 218
modeling of emissions, 63–65, 136
modularization, 129–131
notation, 67
parameter estimation, 76–91
production probability, 68–71
representation, tree-like, 174–175
semi-continuous, 64, 84, 123, 160, 161,

173, 212, 220, 224
topology, 127–128

Bakis model, 127, 208, 210, 216
bounded left-right model, 224
left-to-right model, 128, 224
linear, 127, 157

use cases, 65–67
history

of an n-gram, 96
see also n-gram model

HMM → hidden Markov model
HMM networks, 192–193
HMMER, 135, 222–223

independence
statistical, 34

interpolation, 176

non-linear, 106, 108, 113, 208
of n-gram models, 104–106, 112, 208

Jacobi method, 145

k-means algorithm, 53–55, 59, 88
see also segmental k-means

Karhunen-Loève transform, → principal
component analysis

Kingsbury-Rayner formula, 121

language model, 112
dialog-step dependent, 187

see also adaptation, of n-gram models
statistical, see n-gram model
topic-based, 187

see also adaptation, of n-gram models
language-model look-ahead, 197–198, 209
Laplacian density, 162
law of large numbers, 34, 137
LBG algorithm, 52–53, 59
LDA → linear discriminant analysis
leaving-one-out, 108
likelihood function, 42, 56
linear discounting → discounting, linear
linear discriminant analysis, 148–152, 163,

208
linguistic matching factor, 191
Lloyd’s algorithm, 50–52, 53, 59
log-odds score, 125
logarithmic

probability representation, 120–122
summation → Kingsbury-Rayner formula

Mahalanobis distance, 55
MAP → maximum a posteriori
marginal distribution, 36
Markov chain, 40, 95, 190

see also stochastic process
Markov chain model → n-gram model
Markov property, 40, 69, 75
maximum a posteriori estimation, 43, 183,

222
maximum likelihood estimation, 41, 81, 183
maximum likelihood linear regression,

184–186, 225
see also adaptation, of hidden Markov

models
maximum mutual information, see training,

discriminative
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mixture, see mixture density
mixture density, 39, 45, 64

parameter estimation, 56–59
ML → maximum likelihood
MLLR → maximum likelihood linear

regression, 210
monophone, 130, 155
multi-pass search, 193–194
multiple alignment, 24, 133, 222, 223

n-gram model, 95–113, 132, 190
cache, 187

see also adaptation, of n-gram models
category-based, 109–111, 113
definition, 95–96
evaluation, 98–100
notation, 97–98
parameter estimation, 100–109
representation, tree-like, 175–178
use cases, 96–97

neuronal networks, see hidden Markov
model, hybrid

non-emitting state, 132, 134
normal distribution, 38, 64, 141

multivariate, 39

observation, → element of an observation
sequence

observation sequence, 62
see also hidden Markov model

parameter estimation, 41–44
for n-gram models, 100–109
for hidden Markov models, 76–91
for mixture densities, 56–59
see also maximum likelihood estimation,

maximum a posteriori estimation
PCA → principal component analysis
perplexity, 98–100

see also n-gram model, evaluation
phone, 9
phoneme, 9
phonetically-tied mixture HMM, 161, 209
polyphone, 131, 155
power method, 145
prefix tree, 174, 176, 208, 219
principal component analysis, 141–144,

147–148, 150, 224
probability, 34

conditional, 34
posterior, 34
prior, 34

probability density, 36
production probability, see hidden Markov

model
profile HMM, 131, 133–136, 222, 224
pruning, 165

see also beam search

quantization error, see vector quantization
quinphone, 131, 209

random variable, 35–37
continuous, 35
discrete, 35
multivariate → random vector

random vector, 36
see also random variable

regression class, see maximum likelihood
linear regression

SAM, 223
scatter matrix, 141, 148, 149
search space copies, 194–197
segmental k-means, 88–90, 93, 163, 185
simulated annealing, 223
singleton, 98, 176
sparse data problem, 137
state probability, 77–79, 81, 89, 171, 173
statistical independence, → independence,

statistical
stochastic process, 40–41, 61
sub-word units, 129, 153

context-dependent, 130, 154
context-independent, 129
see also hidden Markov model,

modularization

tied-mixture HMM, → hidden Markov
model, semi-continuous

topic mixture, see language model,
topic-based

training, 76
corrective, 91
discriminative, 91, 218
see also hidden Markov model, parameter

estimation
transformation

orthonormal, 142
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tri-gram model, 96, 105
see also n-gram model

trigraph, 218
see also triphone

triphone, 130, 154, 173, 208, 209, 212
generalized, 131, 156

tying, 64, 152–163, 174

uni-gram model, 101, 176, 187
see also n-gram model

variance, 37

vector quantization, 45–59, 88, 166
Viterbi algorithm, 72, 75–76, 86, 89, 91, 93,

167, 172, 191
Viterbi training, 86–88, 93, 185, 223
vocal tract length normalization, 208, 209

whitening, 144–146, 150
word network → HMM network

zero probability, see discounting
zero-gram model, 101, 176

see also n-gram model


