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Preface: edition 2008

The main aim of this book is to show that probability theory as well as geometry is
characterized by a huge diversity of mathematical models. Various probabilistic mod-
els are induced by various interpretations of probability. Unfortunately, during last
70 years one special probabilistic model, namely, the measure-theoretic model [133]
(Kolmogorov, 1933) became totally dominating in science – in mathematics, physics,
biology, psychology, economics. The aim of this book is not to criticize the Kol-
mogorovean model. We recognize that it is an important probabilistic model which
demonstrated tremendous success in many domains of science. The main problem is
not that this model is bad. The problem is totality of the use of this model. Such a to-
tality may induce improper applications. It would be too naive for a modern scientist
to hope that any model might describe all possible natural and social phenomena. Any
model has its own domain of application. Hence, the Kolmogorovean model also has
its domain of validity. An attempt to apply it outside such a domain might induce para-
doxical consequences for the corresponding science (to which this model is applied).1

We would like to show that unsatisfactory situation in quantum foundations is a con-
sequence of improper application of the Kolmogorovean model.2 The main problem
is an attempt to embed quantum probabilistic data collected in a few experiments into
a single Kolmogorov probability space – to manipulate with the absolute probability
P without taking care about its coupling to special experimental contexts. Roughly
speaking for any fixed experimental context a Kolmogorov space can be used. Prob-
abilistic data collected in a fixed experiment in quantum (as well as classical) physics
can be described by the conventional measure-theoretic model, but not data collected
for a few incompatible observables. If one understood this, then such mystical things
as e.g. interference of probabilities (which Feynman considered as as exhibition of
violation of laws of classical probability, namely, its additivity) or violation of Bell’s
inequality can be easily explained in the classical approach, but based on intelligent
taking into account context-dependence of probabilities.

1In the same way the Euclidean model plays the fundamental role in geometry. However, nowadays
everybody understands well terrible consequences of an attempt to reduce the use of geometry in physics
(especially relativity theory) to the Euclidean model. Since discovery of the first of non-Euclidean model
by Nikolay Lobachevsky, nobody tries to find the ‘best geometric model’ which might be used in all
applications.

2Total absence of natural realistic grounds for quantum mechanics, the common use of Copenhagen
interpretation by which it is simply forbidden to try to create such grounds, the idea that quantum prob-
ability is totally different from classical probability, consideration of interference of probabilities (e.g. in
the famous two slit experiment) and violation of Bell’s inequality as violations of rules of classical prob-
ability theory. Recently (in connection with Bell’s inequality) the ‘state of health of the quantum patient’
became even worse. Nowadays people (especially in quantum information theory) openly speak about
such things as quantum nonlocality or quantum teleportation.
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We remark that Andrei Nikolaevich Kolmogorov understood well this contextual
story. He emphasized that each complex of experimental physical conditions is de-
scribed by its own probability space [133]. Unfortunately, he was not able to explain
this crucial point to simple users of his axiomatics. If one takes randomly a book
on probability theory, a single probability space presentation would be found with
probability one. We also remark that Niels Bohr pointed out that all experimental ar-
rangement should be taken into account [19]. In particular, in this way he explained for
called Einstein–Podolsky–Rosen paradox [58] in quantum foundations. Unfortunately,
Bohr never tried to present his arguments in the probabilistic framework.

One of the basic classical probabilistic models which is different from the measure-
theoretic one is the frequency model. Here one starts not directly with probabilities,
but with random sequences, collectives. Probabilities are defined as limits of relative
frequencies. This model was developed by Richard von Mises [169–171] in 1919
(see even Venn, 1866 – [165]). Kolmogorov used in [133] the Misesian model as the
intuitive basis of his model. The main distinguishing feature of the Misesian model is
its fundamental contextuality expressed in the form of dependence of probabilities on
corresponding collectives. Therefore it would be natural to use in quantum theory not
the Kolmogorovean model, but the Misesian model.3 We shall do this in this book.
It will be shown that one can proceed without mysteries and paradoxes if quantum
probability is considered as classical, but frequency probability.

We are well aware about difficulties in definition of collective (random sequence).4

This is an extremely complicated problem. Nowadays it is commonly accepted that
random sequences can be defined either via Kolmogorov’s algorithmic complexity or
via Martin-Löf’s theory of recursive statistical tests. However, as was pointed out
by Van Lambalgen [163] such a viewpoint is not totally justified. It should recog-
nized that we still do not have a satisfactory mathematically rigorous definition of
random sequence.

We would like to escape difficulties related to the notion of random sequence in ap-
plication of the frequency probability model in quantum theory. At least at the moment
quantum physicists are not interested in study of randomness of sequences of results
of measurements. It is assumed that quantum nature is intrinsically random. Hence it
automatically produces ‘random sequences’ (even if mathematicians were not able to
define them rigorously). The main aim is to find relative frequencies for results of ob-
servations. Thus we can proceed by using, instead of von Mises collectives, so called
S -sequences: sequences of results of observations in which relative frequencies have

3As was already mentioned, one can proceed even in contextual Kolmogorovean framework. But
dependence on an experimental context is not present in the Kolmogorov axiomatics. It is an implicit
assumption which was clear for Kolmogorov, but it was practically forgotten. In the Misesian model
contextual dependence of probabilities is really intrinsic.

4Von Mises – [169–171], see also Ville – [166], Wald – [173], Tornier – [162], Church – [39] as
well as latter attempts Kolmogorov – [135], [134], [159], Chaitin [38], Solomonoff – [160], Martin-Löf
– [142–144], Schnorr – [158], Zvonkin and Levin – [162], Van Lambalgen – [163], Khrennikov and
Yamada [130], see Chapter 1, Section 8, of this book for a short introduction.
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limits when the number of trials goes to infinity. We are not interested in randomness
of such sequences. It is sufficient for our purposes that we can define frequency prob-
abilities and identify them with probabilities provided by the mathematical formalism
of quantum mechanics.

More details about book’s content can be found in the preface for 1999-edition (in
particular, about ‘exotic probabilities’ such as negative and p-adic probabilities). We
just point to main changes which have been done comparing with previous editions.
The first part of Chapter 2 was essentially rewritten. Probabilistic interpretations of the
wave function are presented in clearer way: ensemble realist (Einsteinian, which is also
known as Ballentine’s ‘statistical interpretation’ [20]), ensemble empiricist (Bohrian),
ensemble realist observational (Växjö interpretation), individual realist and empiricist
(versions of the Copenhagen interpretation). The chapter devoted to information and
probability was cancelled, because it did not match completely to the main stream of
presentation. The book was completed by two new chapters, Chapters 6, 7, devoted to
the detailed presentation of contextual realistic probabilistic model (Växjö model) and
its representation in complex Hilbert space. The main aim of these chapters is to show
that quantum-like representations of probability in complex (and more general) linear
spaces can be created by starting with a classical probability model. We present an
algorithm – quantum-like representation algorithm (QLRA) – which transfers proba-
bilistic data of any origin into complex probability amplitudes (normalized vectors in
complex Hilbert space).

By applying QLRA one can transform data obtained in any domain of science,
e.g. in psychology or economics, into probabilistic vectors and then operate with this
data by using the mathematical formalism of quantum mechanics (e.g. to apply quan-
tum computational algorithms).

Växjö–Copenhagen, May 2008.
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The modern axiomatics of probability theory was created by Andrei Nikolaevich Kol-
mogorov in 1933. This axiomatics is based on the measure-theoretical approach to
probability. The main advantage of the Kolmogorov probabilistic formalism is the
high level of abstractness. The use of abstract probability spaces gives the possibility
to develop general probabilistic calculus in that structures of concrete spaces of ele-
mentary events do not play any role. The Kolmogorov probabilistic formalism was
successfully developed in many directions. This formalism is now the mathematical
basis for numerous probabilistic models in physics, technique, biology, finance. Ev-
erything is perfect in the landscape of Kolmogorov probability theory except for one
dark cloud obscuring the horizon.

This cloud is the probability foundation of quantum mechanics. This cloud was gen-
erated by A. Einstein, B. Podolsky and N. Rosen (EPR) in 1935 (just two years after
creation of the axiomatics of probability theory). EPR started the discussion on com-
pleteness of quantum mechanics.5 In fact, the problem of completeness has the close
connection with foundations of probability theory. EPR proposed some arguments
that can be interpreted as the evidence of incompleteness of quantum mechanics. The
following discussion on the EPR arguments demonstrated that quantum mechanics
has quite marshy foundations. Often the EPR arguments are even considered as the
paradox in foundations of quantum mechanics. During following thirty years dark
quantum cloud obscuring the landscape of the Kolmogorov probability theory was
rather small. The probabilistic roots of the EPR paradox were not so evident. Nobody
tried to connect the paradox in foundations of quantum mechanics with foundations of
probability theory. The first attempt to provide the probabilistic representation of the
EPR considerations was done by J. Bell who found in 1964 famous Bell’s inequality
for covariations of physical observables involved in the EPR experiment. The black
quantum cloud became quite large. Even in 1964 it is not only blotted out the sun of
the Kolmogorov landscape, but it was gathering to obscure the beautiful idea of unique
and general probability theory. However, nothing occurred in 1964. Moreover, noth-
ing occurred in the following thirty years. And it seems to be that nothing is gathering
to occur with unique and general Kolmogorov probability theory.

The great Kolmogorov probability community is still working in the standard
measure-theoretical formalism. They do not pay attention to quantum clouds. On
the other hand, the majority of the physical community observes this cloud. However,
physicists do not understand the hidden probabilistic structure of this cloud. Some of

5N. Bohr and W. Heisenberg as well as Pauli, Landau, Fock were sure that quantum mechanics is
complete, i.e., the wave function provides the complete description of the state of a quantum system. For
them it was totally impossible to go beyond quantum mechanics, i.e., to provide a finer description of the
state than given by quantum mechanics.
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them support the idea of the death of reality. They think that it is impossible to use
realism in quantum considerations. And if there is no reality at all, they do not afraid
this non-real cloud. Other physicists support the idea of nonlocality. They think that
physical reality is nonlocal. Thus by doing some measurement for a quantum system
in Moscow we change the quantum state of the correlated quantum system which is lo-
cated in Vladivostok. The adherents of nonlocality also do not observe the black cloud:
this cloud is distributed everywhere and, hence, such a cloud could not induce storm.

There are many reasons for this strange situation. One of them is purely psycholog-
ical. Mathematicians are not interested in quantum physics (mainly because they still
do not know quantum theory). Physicists are not interested in foundations of prob-
ability theory (mainly because they know not so much even about the standard Kol-
mogorov measure-theoretical approach). In principle, even J. Bell in 1964 could pay
attention that Bell’s inequality is connected not only with such properties of physical
observables as realism and locality, but also with the way of the probabilistic descrip-
tion. However, this was not done6. Bell’s inequality was not considered as a sign for
reconsideration of the foundations of probability theory. In the opposite to geometry
probability theory was not transformed in an elastic formalism containing numerous
probabilistic models which can be used for descriptions of different physical phenom-
ena. Probability theory is still a rigid structure. This structure can be compared with
the rigid Euclidean cub. Attempts to use the unique Kolmogorov model for describing
all physical phenomena can be compared with attempts to represent all geometrical
models by Euclidean cubs. However, geometric reality is not restricted to reality of
cubs as well as probabilistic reality is not restricted to reality of Kolmogorov probabil-
ity spaces.

In this book we demonstrate that ‘pathological behaviour’ of ‘quantum probabilities
is a consequence of the use of Kolmogorov’s approach. The high level of abstractness
does not give the possibility to control connection between probabilities and statisti-
cal ensembles or random sequences (collectives). Formal manipulations with abstract
Kolmogorov probabilities produce such monsters as Bell’s inequality (in fact, this idea
was already discussed by L. de Broglie and later improved by G. Lochak).

First attempts to reduce the EPR paradox to the use of one concrete probability
model, namely, the Kolmogorov model, were the works of L. Accardi and I. Pitowsky.
L. Accardi proposed rather formal non-Kolmogorovean model which did not contain
Bayes’ formula. I. Pitowsky proposed to consider events which are described by non-
measurable sets. The latter formalism was strongly improved by S. Gudder who devel-
oped the theory of probability manifolds. The main disadvantage of all these models is
that they have even higher level of abstractness than Kolmogorov’s model. Therefore
they provide merely a new description of quantum phenomena. They could not ex-
plain probabilistic roots of quantum behaviour. The same can be said about so called
quantum probabilities. Of course, quantum probability calculus gives the useful and

6I had numerous discussions with scientists worked with J. Bell. Unfortunately the general opinion is
that J. Bell had never been interested in probability theory.
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convenient description of quantum phenomena. However, quantum probability has
no direct connection with probability. This is just rather speculative use of the word
‘probability’ in some formal mathematical constructions.

In this book we explain quantum probabilistic behaviour by using two basic inter-
pretations of probability: ensemble and frequency. We demonstrate that (despite of the
common opinion) the ensemble and frequency probability models are not in general
equivalent to Kolmogorov’s model.

The frequency model is von Mises’ theory of collectives (random sequences), 1919.
In this model probabilities are defined as limits of relative frequencies, �N D n=N ,
in a collective x. This model was intensively studied in probability theory to find
a reasonable definition of a random sequence (Kolmogorov algorithmic complexity
and Martin-Löf theory of tests for randomness). It is the common opinion that fre-
quency probabilities can be reduced to Kolmogorov probabilities. We explain (using
the original arguments of R. von Mises) that such a viewpoint is totally wrong. In
particular, the law of large numbers does not describe the statistical stabilization of
relative frequencies, �N D n=N , in a collective x. It will be shown that the fre-
quency probability model has many features which extremely differ from features of
Kolmogorov’s model. The most important feature of frequency probability is depen-
dence of probabilities on a collectives x. In particular, the careful control of such a
dependence gives the possibility to eliminate Bell’s inequality from considerations.
The frequency model also differs from Kolmogorov’s model in the approach to condi-
tional probabilities and independence. Such a difference also plays the important role
in quantum considerations.

The ensemble model, as well as the frequency model, is one of basic ‘pre-Kolmo-
gorov’ models. For example, the well-known Bernoulli theorem is, in fact, a theorem
for ensemble probabilities. It is commonly supposed that the definition of ensemble
probability (as a proportion in an ensemble) is just a particular case of Kolmogorov’s
measure-theoretical definition. It is not right. The ensemble probability model cannot
be reduced to Kolmogorov’s one. The most important feature of ensemble proba-
bilities is dependence on an ensemble. In particular, the careful control of such a
dependence gives the possibility to eliminate Bell’s inequality from considerations.
It is impossible to use Kolmogorov’s measure-theoretical approach for describing en-
semble probabilities for infinite ensembles. In fact, Kolmogorov’s measures are not
proportional distributions of properties of ensembles of physical systems. These are
measures on ensembles of all possible sequences of results of measurements. To ob-
tain the adequate mathematical description of ensemble (proportional) probabilities
for infinite ensembles (and quantum states describe such ideal ensembles), we have
to leave the domain of Kolmogorov’s probability model and, moreover, the domain
of real analysis. We have to use number systems which contain actual infinities. In
this book we use systems of so called p-adic numbers Qp (where p > 1 are prime
numbers) for the description of some infinite statistical ensembles (Qp contains actual
infinities).



xiv Preface-1999

The origin of p-adic ensemble probabilities can be illustrated by the following ex-
ample. Let S be an infinite ensemble of balls. Each ball has some colour c 2 C D
f0; 1; 2; : : : ; k; : : : g (countable system of colours). The S has the following colour
structure: there are nk D 2k balls with the colour k 2 C in S . The ‘volume’ N D jS j
of S can be easily found:

N D
1
X

kD0

nk D
1
X

kD0

2k :

Of course, this series diverges in the field of real numbers R. But it converges in the
field of 2-adic numbers Q2. The sum of this series Q2 can be found by using ordinary
formula for the sum of infinite geometric progression (because 2k ! 0, k ! 1,
in Q2/:

N D
1
X

kD0

2k D 1

1 � 2 D �1:

We can now find the proportion of balls with the colour k 2 C in the ensemble S :

PS .k/ D
nk

N
D �2k :

We remark that, as nk D 2k is a finite number and N D �1 is an infinite number, the
probability PS .k/ is infinitely small probability. And such a probability is represented
by a negative number. This approach induces the rigorous mathematical theory of
negative probabilities.

In fact, negative probabilities is other cloud obscuring the Kolmogorov probabil-
ity landscape. Negative probabilities (which could not be justified by Kolmogorov’s
model) arise with the strange regularity in practically all quantum models. The most
famous are Wigner distribution on the phase space and Dirac’s negative probability
distributions in the formalism of relativistic quantization. Such ‘probability distribu-
tions’ are considered as monsters of quantum theory. For example, physicists always
underline that Wigner distribution is not really a probability distribution. At the same
time they continue to use it for describing probabilistic phenomena. In this book neg-
ative probabilities (in particular, the Wigner distribution) are realized as probabilities
with respect to infinitely large statistical ensembles. In many physical models these
probability have the interpretation of infinitely small probabilities. Negative probabil-
ities can also be obtained in the frequency approach as limits of relative frequencies,
�N D n=N , with respect to some topology on the set rational numbers Q which dif-
fers from the standard real topology (and frequencies �N D n=N always belong to
Q/. For example, in the p-adic topology the probability P D �1 can be obtained as
the limit of frequencies:

P D �1 D lim �N :

Typically in the frequency approach the presence of negative probabilities is the ex-
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hibition of the violation of the principle of the statistical stabilization for relative fre-
quencies with respect to the real topology. Negative frequency probabilities can also
appear via, for example, p-adic splitting of conventional probability P D 0. In the lat-
ter case negative probabilities can be again interpreted as infinitely small probabilities.

The last chapter of the book has purely mathematical character. Here we develop
a p-adic analogue of the Martin-Löf theory of tests for randomness (to find a p-adic
analogue of a random sequence). p-adic theory strongly differs from the real one.
There is no universal test for randomness (at least for the uniform p-adic probability
distribution). In this sense the p-adic theory of randomness is similar to Schnorr’s
theory for Kolmogorov probabilities. We also obtained a large class of limit theorems
for p-adic probabilities. In particular, these limit theorems can be applied to negative
probabilities. We remark that the first limit theorem for negative probabilities was
proved by M. Barnett in 1944.

Main consequences of the book:

1. Kolmogorov’s probability theory (measure-theoretical approach) is just one of
many probability models.

2. Two fundamental interpretations of probability, namely, the ensemble and fre-
quency interpretations, can be used as the basis for numerous non-Kolmogorovean
models.

3. Negative probabilities are well defined on the mathematical level of rigorousness.

4. Pathological (or nonclassical) behaviour of ‘quantum probabilities’ (and, in partic-
ular, Bell’s inequality) is a consequence of the formal use of Kolmogorov’s prob-
ability model.

5. Bell’s inequality could not be used as an argument for nonlocality or nonreality. In
may be that physical reality nonlocal or nonobjective. However, Bell’s inequality
has nothing to do with these problems.

6. The Wigner distribution is well defined both in the ensemble and frequency
frameworks.

7. From the frequency viewpoint non-Kolmogorovean probabilistic behaviour is (typ-
ically) the exhibition of the violation of the law of large numbers.

8. From the ensemble viewpoint non-Kolmogorovean probabilistic behaviour is a
consequence of the use of ensembles of infinitely large ‘volume’. There is no
statistical reproducibility of properties for finite approximations of these infinite
ensembles.

9. Quantum states (wave functions) describe such infinite (ideal) ensembles with sta-
tistical nonreproducibility of properties.

A large number of mathematicians and physicists took part in the discussion of
results exposed in this book. I want to use the opportunity to express my deepest gra-
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titude to all of them. I feel myself especially indebted to L. Accardi, S. Albeverio,
H. Atmanspacher, Z. Hradil, W. de Muynck, H. Rauch, J. Summhammer for fruitful
discussions.

Växjö–Clermont-Ferrand–Tokyo, 1998–99.
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1 Foundations of probability theory

There is no ‘general probability theory’. There exist an incredible number of different
mathematical probabilistic formalisms [132–136], [33], [34], [63], [44], [62], [75],
[169–171], [2], [66], [148], [80], and, moreover, each of these formalisms has a few
different interpretations. We shall discuss some of these theories which will be useful
in further physical considerations.

1 A few words about measures

We recall some notions of measure theory. A system F of subsets of a set � is called
an algebra if the sets ¿; � belong to F and the union, intersection and difference of
two sets of F also belong to F . In particular, for any A 2 F , a complement NA D �nA
of A belongs to F . Denote by F� the family of all subsets of �. This is the simplest
example of an algebra.

Let F be an algebra. A map � W F ! RC is said to be a measure if �.A [ B/ D
�.A/ C �.B/ for A;B 2 F , A \ B D ¿. A measure � is called � -additive if, for
every sequence fAng1nD1 of sets An 2 F such that their union A DS1

nD1An belongs
to F , �.A/ DP1

nD1 �.An/.
An algebra F is said to be a � -algebra if, for every sequence fAng1nD1 of sets

An 2 F , their union A DS1
nD1An belongs to F .

Let �1, �2 be arbitrary sets and let G1, G2 be some systems of subsets of �1
and �2, respectively. A map � W �1 ! �2 is called measurable (or more precisely
..�1; G1/; .�2; G2//-measurable) if, for any set A 2 G2, the set ��1.A/ 2 G1. We
shall use the notation � W .�1; G1/! .�2; G2/ to indicate the dependence onG1,G2.
Typically we shall consider measurability of maps in the case in that Gj , j D 1; 2, are
algebras or � -algebras.

Let A be a set. A characteristic function IA of the set A is defined as IA.x/ D 1,
x 2 A, and IA.x/ D 0, x 2 NA.

Let A D fa1; : : : ; ang be a finite set. We shall denote the cardinality n of A by the
symbol jAj.

2 Classical and ensemble definitions of probability

2.1 Classical definition of probability

The theory of probability originated from the study of problems connected with ordi-
nary games of chance. In all these games the results that are a priori possible may
be arranged in a finite number of cases assumed to be perfectly symmetrical, such as
the cases represented by the six sides of a dice, the 52 cards in an ordinary pack of
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cards, and so on. This fact seemed to provide a basis for a rational explanation of the
observed stability of statistical frequencies, and the 18th century mathematicians were
thus led to the introduction of the famous principle of equally possible cases. Accord-
ing to this principle, a division into equally possible cases is possible in all random
experiments, and the probability of an event is defined as the ratio between the number
of cases favorable to the event, and the total number of possible cases. The main dis-
advantage of this probability theory is that the idea of symmetry cannot be applied to
all random phenomena. For example, the classical definition of probability describes
only a symmetric coin or dice. This definition cannot be used in the case of a violation
of symmetry (see von Mises [88] for an extended critique of the classical definition).
Denote by C the set of all possible cases. The classical theory operated on finite sets
C D fc1; : : : ; cN g. For example, if a dice is considered, then C D f1; : : : ; 6g. Let
E belong to the algebra FC of all subsets of the set C . Then classical probability is
defined by the equality

P.E/ D jEj=jC j: .2:1/

The map P W FC ! TC � RC, where TC D fx D k=N W k D 0; 1; : : : ; N g; N D
jC j, is a measure and P.C / D 1. This measure is uniform: P.fcj g/ D 1=N and
P.E/ D 1

N

P

cj 2E 1.

We could not use (2.1) for infinite sets C in the framework of real analysis (there
are no actual infinities in R). This problem seems to be solved on the basis of the
Kolmogorov measure-theoretic approach. But the classical definition (2.1) is not pre-
served in that approach. There are other possibilities to extend the classical definition
of probability to infinite sets C . In principle we need not identify the set TC of values
of the classical probability with a subset of the set R of real numbers. It can be consid-
ered as just a subset of the set Q of rational numbers. It would be possible to extend
the classical definition of probability by identifying TC with a subset of other number
system X such that Q � X , see Chapter 4.

2.2 Ensemble (proportional) definition of probability

We start with the following classical example. There is an urn which contains balls of
two colours, black and white. Let Nb and Nw be respectively the numbers of black
and white balls; N D Nb C Nw is the total number of balls in the urn. By definition
a probability is the coefficient of the proportion between the number of balls of the
concrete colour and the total number of balls: P.b/ D Nb

N
and P.w/ D Nw

N
: In

the general case we have a finite set S (an ensemble). Elements s of S have some
properties. Denote the set of these properties by �S . Each property � 2 �S can be
described as a map � W S ! K� , whereK� D f1; 2; : : : ; k�g is a finite set (a numerical
cod of the property �/. We set S.� D j / D fs 2 S W �.s/ D j g; denote by F.�S /
the collection of all these sets. By definition these are events and their probability is
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defined by

P.S.� D j // D jS.� D j /jjS j : .2:2/

If we assume that F.�S / is an algebra of sets then the map P W F.�S / ! TS � RC,
where TS D fx D k=N W k D 0; 1; : : : ; N g andN D jS j, is a measure and P.S/ D 1.
If all one point sets s belong to the algebra F.�S /, then F.�S / is the algebra of all
subsets of S (i.e., F.�S / D FS / and P is the uniform distribution: P.fsg/ D 1=N .
In this case we can connect the ensemble (proportional) definition with the classical
definition: the elements of the ensemble S can be interpreted as equally possible cases.

The conditional probabilities will play an essential role in further quantum con-
siderations. Now we demonstrate how these probabilities are introduced in the en-
semble approach. Let B D S.� D l/, A D S.� D k/, �; � 2 �S . Let the set
C D A \ B 2 F.�S /. This means that there exists a property 	 2 �S such that
C D S.	 D m/. Conditional probability of the event B under the condition A is
defined as

PS .B=A/ � PA.B/ D jB \ Aj=jAj
(we must extract from the ensemble S the sub-ensemble A and find the proportion of
elements s 2 A which has the property �.s/ D l/. Thus we can easily obtain that

PS .B=A/ D PS .B \ A/=PS .A/; PS .A/ > 0: .2:3/

This is the well-known Bayes’ formula. We note that in the ensemble framework it is
a theorem. In standard textbooks the ensemble index is omitted:

P.B=A/ D P.B \ A/=P.A/; P.A/ > 0: .2:4/

Remark 2.1. If F.�S / is not an algebra, then A;B 2 F.�S / need not imply that
C D A \ B 2 F.�S /. In this case we could not use Bayes’ formula (2.4). Moreover,
in such a case it is insensible to speak about conditional probabilities. There is no
property 	 of elements s of S such that C D S.	 D m/. Thus the set C D fs 2 S W
�.s/ D lg\fs 2 S W � D kg cannot be described by properties of S . From the physical
viewpoint it means that we could not verify two properties � and � simultaneously. If
we try to extract the sub-ensemble A from S by verifying the property �, then we
change the property � of s 2 S .

As a simple consequence of (2.4) we obtain another important formula:

P.A \ B/ D P.B=A/P.A/: .2:5/

By symmetry we find
P.A \ B/ D P.A=B/P.B/: .2:6/

Thus we have:

P.A=B/ D P.B=A/P.A/
P.B/

: .2:7/
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To be more careful, we have to indicate the dependence of probabilities on correspond-
ing ensembles: PB.A/ D PA.B/PS .A/

PS .B/
.

In further quantum considerations we shall often use the following consequence of
Bayes’ formula. Let Ak 2 F.�S /, k D 1; : : : ; m,

Sm
kD1Ak D S and Ak \ Al D ¿,

k ¤ l . Then, for every C 2 F.�S / such that C \ Ak 2 F.�S /, we have:

PS .C / D
m
X

kD1

PS .Ak/PAk
.C /:

It is the well-known formula of total probability. In standard textbooks this formula is
written as

P.C / D
m
X

kD1

P.Ak/P.C=Ak/:

Thus concrete ensembles which are used to define left and right hand sides probabili-
ties are not taken into account. We shall see that in quantum formalism this manipula-
tion with the ensemble index will imply such unexpected consequences as non-locality
of space-time and super-luminal signals and death of reality.

The direct generalization of proportional formula (2.2) for ensemble probabilities to
infinite ensembles S is impossible in the framework of real analysis, because there are
no actual infinities (infinitely large numbers) in the field of real numbers R. A measure-
theoretical approach (see Section 4) provides some indirect generalization. However,
this measure-theoretical approach is not the unique possibility to extend the propor-
tional definition of probability to infinite ensembles. In Chapter 4 we shall consider
ensembles which have structures of trees with an infinite number of vertexes (with p
branches leaving each vertex; there p > 1 is a prime number). For such ensembles we
can directly use (2.2) to define ensemble probabilities (thereN D jS j can be an infinite
large number belonging to the field of so called p-adic numbers). Another possibility
for extending (2.2) to infinite ensembles S is to use nonstandard analysis (see [10]).

3 Frequency theory of probability

This theory was the first where the principle of the stabilization of statistical frequen-
cies was realized on a mathematical level. In fact, this principle was used as the defi-
nition of probability. Let us recall the main notions of a frequency theory of probabil-
ity [169–171] of Richard von Mises (1919).1 This theory is based on the notion of a
collective. Consider a random experiment S and denote by L D fs1; : : : ; smg the set
of all possible results of this experiment. The set L is said to be the label set, or the set
of attributes. We consider only finite sets L. Let us consider N realizations of S and

1In fact, already in 1866 John Venn, see [165], tried to define a probability explicitly in terms of
relative frequencies.
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write a result xj after each realization. Then we obtain the finite sample:

x D .x1; : : : ; xN /; xj 2 L: .3:1/

A collective is an infinite idealization of this finite sample:

x D .x1; : : : ; xN ; : : : /; xj 2 L; .3:2/

for which the following two von Mises’ principles are valid.
The first is the statistical stabilization of relative frequencies of each attribute ˛ 2 S

in the sequence (3.2). Let us compute frequencies �N .˛I x/ D nN .˛I x/=N where
nN .˛I x/ is the number of realizations of the attribute ˛ in the first N tests. The
principle of the statistical stabilization of relative frequencies says: the frequency
�N .˛I x/ approaches a limit as N approaches infinity for every label ˛ 2 L. This
limit P.˛/ D lim �N .˛I x/ is said to be the probability of the label ˛ in the frequency
theory of probability. Sometimes this probability will be denoted by Px.˛/ (to show a
dependence on the collective x).

“We will say that a collective is a mass phenomenon or a repetitive event, or sim-
ply a long sequence of observations for which there are sufficient reasons to believe
that the relative frequency of the observed attribute would tend to a fixed limit if the
observations were infinitely continued. This limit will be called the probability of the
attribute considered within the given collective” [170].

The second principle is the so-called principle of randomness. Heuristically it is ev-
ident that we cannot consider, for example, the sequence z D .0; 1; 0; 1; : : : ; 0; 1; : : : /
as a random object (generated by a statistical experiment). However, the principle of
the statistical stabilization holds for z and P.0/ D P.1/ D 1=2. Thus, we need an
additional restriction for sequences (3.2). This condition was proposed by von Mises:
The limits of relative frequencies have to be stable with respect to a place selection (a
choice of a subsequence) in (3.2).

In particular, z does not satisfy this principle. For example, if we choose only even
places, then we obtain the zero sequence z0 D .0; 0; : : : / where P.0/ D 1;P.1/ D 0.

However, this very natural notion was the hidden bomb in the foundations of von
Mises’ theory. The main problem was to define a class of place selections which
induces a fruitful theory. The main and very natural restriction is that a place selection
in (3.2) cannot be based on the use of attributes of elements. For example, we cannot
consider a subsequence of (3.2) constructed by choosing elements with the fixed label
˛k 2 L. Von Mises proposed the following definition of a place selection:

(PS) “a subsequence has been derived by a place selection if the decision to retain
or reject the nth element of the original sequence depends on the number n and
on label values x1; : : : ; xn�1 of the .n� 1/ preceding elements, and not on the
label value of the nth element or any following element”,

see [170], p. 9. Thus a place selection can be defined by a set of functions f1, f2.x1/,
f3.x1; x2/, f4.x1; x2; x3/, : : : , each function yielding the values 0 (rejecting the nth
element) or 1 (retaining the nth element).
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Here are some examples of place selections: (1) choose those xn for which n is
prime; (2) choose those xn which follow the word 01; (3) toss a (different) coin;
choose xn if the nth toss yields heads. The first two selection procedures may be
called lawlike, the third random. It is more or less obvious that all of these procedures
are place selections: the value of xn is not used in determining whether to choose xn.

The principle of randomness ensures that no strategy using a place selection rule
can select a subsequence that allows different odds for gambling than a sequence that
is selected by flipping a fair coin. This principle can be called the law of excluded
gambling strategy.

The definition (PS ) induced some mathematical problems. If a class of place se-
lections is too extended then the notion of the collective is too restricted (in fact, there
are no sequences where probabilities are invariant with respect to all place selections).
This was the main point of criticism of von Mises’ theory. This problem has been in-
vestigated since the 1930s and solved only in the 1970s on the basis of Kolmogorov’s
notion of algorithmic complexity [135].

However, von Mises himself was satisfied by the following operational solution of
this problem. He proposed [171] to fix for any collective a class of place selections
which depends on the physical problem described by this collective. Thus he removed
this problem outside the mathematical framework.

The frequency theory of probability is not, in fact, the calculus of probabilities, but
it is the calculus of collectives which generates the corresponding calculus of proba-
bilities. We briefly discuss some of the basic operations for collectives (see [171] for
the details).

As probability is defined on the basis of the principle of the statistical stabilization
of relative frequencies, it is possible to develop quite fruitful probabilistic calculus by
using only this principle. Sequence (3.2) which satisfies the principle of the statistical
stabilization of relative frequencies is said to be a S -sequence. Thus limits of relative
frequencies in a S -sequence x need not be invariant with respect to some class of place
selections2.

(a) Mixing and additivity. Let x be a collective with the (finite) label space Lx and
let E D f˛i1 ; : : : ; ˛il g be a subset of Lx . The sequence (3.2) of x is transformed into
a new sequence yE by the following rule. If xj 2 E then we write 1; if xj 62 E then
we write 0. Thus the label set LyE

D f0; 1g. It is easy to show that this sequence has
the property of statistical stabilization for its labels. For example,

PyE
.1/ D lim �N .EI x/ D lim

l
X

kD1

�N .˛ik I x/ D
l
X

kD1

Px.˛ik /; .3:3/

2Of course, the use of S-sequences contradicts to the philosophy of the modern probability theory
which is based on generalizations of Mises’ principle of randomness (such as Kolmogorov complex-
ity [135] and Martin-Löf [142] theory of statistical tests). However, it seems that all this machinery
of randomness is not used in quantum physics. Experimentalists are only interested in the statistical
stabilization of relative frequencies.



Section 3 Frequency theory of probability 7

where �N .EI x/ � �N .1I yE / D nN .1I yE /=N is the relative frequency of 1 in yE .
To obtain (3.3) we have only used the fact that the addition is a continuous operation
on the field of real numbers R. We can show that the sequence yE also satisfies the
principle of randomness, see [171]. Hence this is a new collective. By this operation
any collective x generates a probability distribution on the algebra FLx

of all subsets
of Lx W P.E/ D PyE

.1/. Sometimes it will be convenient also to denote this prob-
ability distribution by Px.E/ to distinguish probabilities corresponding to different
collectives. Now we find the properties of this probability. As P.E/ D lim �N .EI x/
and 0 � �N .E/ � 1, then (by the elementary theorem of real analysis) 0 � P.E/ � 1.
Hence the probability must yield values in the segment Œ0; 1
. Further, as the collec-
tive yLx

corresponding to the whole label set Lx does not contain zeros, we obtain
that �N .LxI x/ � �N .1I yLx

/ � 1 and, consequently, P.Lx/ D 1. Finally by (3.3)
we find that the set function P W FLx

! Œ0; 1
 is additive. Thus P is a normalized
measure on the algebra FLx

which yields values in Œ0; 1
. We remark that all these
considerations can be repeated for S -sequences.

(b) Partition and conditional probabilities. Let x be a collective and let A 2 FLx

and P.A/ 6D 0. We derive a new sequence z.A/ by retaining only those elements of x
which belong to A and discarding all other elements (thus the label set Lz.A/ D A/.
This operation is obviously not a place selection, since the decision to retain or reject
an element of x depends on the label of just this element. The sequence z.A/ is again
a collective, see [171]. Suppose that j̨ 2 A and let yA be the collective generated by
x with the aid of the mixing operation. Then Pz.A/. j̨ / D limN!1 �N . j̨ I z.A// D
limk!1 �Nk

. j̨ I z.A//, where Nk !1 is an arbitrary sequence. As P.A/ 6D 0 then
Mk D nk.1I yA/!1 (this is the number of labels belonging to A among the first k
elements of x). Thu

Pz.A/. j̨ / D lim
k!1

�Mk
. j̨ I z.A// D lim

k!1
nMk

. j̨ I z.A//=Mk

D lim
k!1

ŒnMk
. j̨ I z.A//=k
 W ŒMk=k


D Px. j̨ /=Px.A/:

We have used the property that nMk
. j̨ I z.A//, the number of j̨ among first Mk

elements of z.A/, is equal to nk. j̨ I x/, the number of j̨ among first k elements of
x. The probability Pz.A/. j̨ / is the conditional probability of the label j̨ if we know
that a label belongs to A. It is denoted by P. j̨ =A/ � Px. j̨ =A/. As a consequence
of this formula we obtain Bayes’ formula:

Pz.A/.B/ D
X

j̨ 2B\A

Px. j̨ =A/

D
X

j̨ 2B\A

Px. j̨ /=Px.A/ D Px.B \ A/=Px.A/: (3.4)
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In fact, this formula connects probabilities defined with respect to different collectives.
The left hand side probability is Pz.A/ and the right hand side probabilities are Px .
As in the case of the ensemble probability, sometimes we shall use the symbol PA.B/
instead of P.B=A/. It useful to remark that PA W FLx

! Œ0; 1
 is a measure normalized
by 1. In particular, the probability P may be written as the conditional probability PLx

.
As in the ensemble framework, here we can also obtain the formula of total prob-

ability (2.8). Formula (2.8) is often applied in the wrong way: probabilities P.Ak/
are found with respect to one collective and conditional probabilities P.C=Ak/ with
respect to other collective. To apply this formula in the right way we have to use the
index of a collective:

Px.C / D
m
X

kD1

Px.Ak/Px.C=Ak/: .3:5/

Formulas (2.5)–(2.7) can be also easily obtained in the frequency framework.

Remark 3.1. The Bayes formula in the frequency framework is a consequence of the
possibility of using the operation of partition for collectives. It should be noticed that
from the physical point of view the operation of partition is a physical condition, which
means that by extracting the collective z.A/ from the original collective x we do not
change the property of belonging to B or not. If the physical system does not satisfy
this condition, we cannot use the Bayes formula (3.4). This does not mean that we
cannot define the conditional probability PA.B/. But we cannot use (3.4) to find this
probability.

It is important to remark that the conditional probabilities in (2.7) are defined with
respect to different collectives, z.A/ and z.B/. From the physical point of view
the connection (2.7) between these probabilities is possible only for physical systems
which satisfy conditions discussed in Remark 3.1.

It is evident that we can also consider countable sets of attributesLx D f˛1; ˛2; : : : ;
˛m; : : : g. If we use the additional condition

P1
jD1 P. j̨ / < 1 for the probabilities

of labels then P is a (discrete) measure on FLx
. Moreover, this measure is � -additive.

However, the generalization of the frequency theory of probability to ‘continuous’ sets
of attributes is a nontrivial mathematical problem, see [171], [162].

4 Kolmogorov’s measure-theoretical theory

The axiomatics of the modern probability theory was proposed by Andrei Nikolaevich
Kolmogorov [133] in 1933 to provide a reasonable mathematical description of this
theory. The basis of Kolmogorov axiomatics was prepared at the beginning of this
century in France by investigations of Borel [33, 34] and Fréchet [63] on the measure-
theoretic approach to probability. At the same time Kolmogorov used ideas of von
Mises [169] about the frequency definition of probability (see remarks in [133]).
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By the Kolmogorov axiomatics the probability space is defined as the triple P D
.�;F ;P/, where� is an arbitrary set (points ! of� are said to be elementary events),
F is an arbitrary � -algebra of subsets of � (elements of F are said to be events), P
is a � -additive measure on F which yields values in the segment Œ0; 1
 of the real line
and normalized by the condition P.�/ D 1.

Random variables on P are defined as measurable functions � W .�;F /! .R;B/,
where B is the Borel � -algebra on the real line3. We shall use the symbol RV.P / to
denote the space of random variables over P . Probability distribution of � 2 RV.P /
is defined as P�.B/ D P.��1.B// for B 2 B. This is a � -additive measure on the
Borel � -algebra.

A. N. Kolmogorov motivated additivity of probability by additivity of frequency
probability (see formula (3.3)); he also used frequency reasons to take the segment
Œ0; 1
 as the range of values of a probabilistic measure. On the other hand, the con-
dition of � -additivity was considered by Kolmogorov as an additional mathematical
(technical) condition to provide a fruitful integration theory based on the Lebesgue
integral. In fact, Kolmogorov started with finite additive probabilities defined on al-
gebras of sets. The spaces with � -additive probabilities defined on � -algebras were
called generalized probability space.

The Kolmogorov theory also contains the additional axiomatic definition of condi-
tional probabilities. By definition P.B=A/ is defined by formula (2.4). Kolmogorov
did not give any motivation for this definition in his book [133]. However, as he gave a
clear motivation of all other properties of P on the basis of the von Mises frequency the-
ory, it seems to be that he used the same frequency reasons for (2.4). In Kolmogorov’s
model two events A and B are said to be independent if

P.A \ B/ D P.A/P.B/ .4:1/

or
P.B=A/ D P.B/; P.A/ > 0: .4:2/

In the standard framework of Lebesgue integration we start with a � -additive mea-
sure � defined on some algebra F and then � is extended over the � -algebra F gen-
erated by F (Borel � -algebra). This extension procedure, which is well defined from
the mathematical point of view, is not so innocent from the probabilistic point of view.
Kolmogorov remarked: “Even if the sets (events) A of F can be interpreted as actual
and (perhaps only approximately) observed events, it does not, of course, follow from
this that the sets of F reasonably admit of such an interpretation. Thus there is the
possibility that while a field of probability .F;P/ may be regarded as the image (ide-
alized, however) of actual random events, the extended field of probability .F ;P/ will
still remain merely a mathematical structure. Thus sets of F are merely ideal events
to which nothing corresponds in the outside world. However, if reasoning which uti-
lizes probabilities of such ideal events leads us to a determination of the probability

3Thus ��1.B/ 2 F for every B 2 B.
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of an actual event of F , then, from an empirical point of view also, this determination
will automatically fail to be contradictory”, see [133], p. 17. It should be noticed that
the adherents of Kolmogorov’s measure-theoretical approach to probability theory did
not pay large attention to these ideas of Kolmogorov. This implied that manipulations
with abstract probabilities belonging to F were considered as real probabilistic inves-
tigations. Moreover, if we need not pay attention to the difference between real and
abstract probabilities, we could in principle omit the concrete probabilistic model from
our considerations and operate with ‘events’ belonging to abstract � -algebras. This is
the main problem of worldwide use of Kolmogorov’s measure-theoretical approach.

Remark 4.1. For example, Cramer, who used the Kolmogorov axiomatics to create
the mathematical theory of statistics, had another point of view on the problem of
verification: “any probability assigned to a specific event must, in principle, be liable
to verification” [44]. The question of verification was the cornerstone of the von Mises
theory for the continuous label set S . He showed that in the case Lx D R (or Rn) a
probability measure of an event E has the frequency interpretation iff the measure of
the boundary of E is equal to 0, [171].

On the other hand, Kolmogorov himself developed actively the viewpoint that prob-
ability theory is a purely mathematical theory. Therefore the concrete structure of set
algebra (or � -algebra) does not play any role in probabilistic considerations. In his
manifest “General Measure Theory and Probability Calculus”, 1929 (see [159]), he
wrote: “To outline the context of theory, it suffices to single out from probability the-
ory those elements that bring out its intrinsic logical structure, but have nothing to do
with the specific meaning of theory.”

Finally we remark that in Kolmogorov’s approach Bayes’ formula (2.4) is just
the definition of a conditional probability. I like to underline this fact. I have the
experience that many scientists working in applications of probability are sure that
Bayes’ formula is a theorem. But this is right only for ensemble and frequency ap-
proaches. On the other hand, the formula of total probability (2.8) is a theorem of
the Kolmogorov’s theory. Here it holds true for a countable family of sets Ak 2 F ,
P.Ak/ > 0, k D 1; : : : , such that

S1
kD1Ak D � and Ak \ Al D ¿, k ¤ l : for

every C 2 F , P.C / D P1
kD1 P.Ak/P.C=Ak/: To obtain this formula, we need to

use the � -additivity of probability and the definition (Bayes’ formula) of conditional
probabilities.

5 Kolmogorov’s ideas on probability

It should be noticed that before to create the system of axioms of probability theory,
A. N. Kolmogorov discussed ([159], 1929) some examples of ‘generalized probabili-
ties’ which could not be described by his axiomatics. Moreover, probably we need not
call these objects ‘generalized probabilities’. It seems more natural to call ordinary
probabilities (described by Kolmogorov’s axiomatics) ‘restricted probabilities’.
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There is other side of the common use of Kolmogorov’s approach which is not so
visible as the disappearance of concrete probabilistic spaces. This is the idea that
only Lebesgue measurable sets could play some role in probabilistic considerations.
Of course, this is a consequence of the fact that Kolmogorov discussed merely the
Lebesgue extension [159] (or the Borel extension [133]). However, in principle some
sets which are not Lebesgue measurable may appear in probabilistic models connected
with some natural phenomena. We shall discuss such a model in Chapter 2. On
the other hand, Kolmogorov discussed in [159] non-Lebesgue extension of the lin-
ear Lebesgue measure � on the segment Œ0; 1
, namely, the result of Banach that � can
be extended to a measure N� defined on the (� -)algebra FŒ0;1� all subsets of Œ0; 1
. It
seems to be that Kolmogorov considered this measure as a good candidate to be prob-
ability. He also considered multidimensional case and pointed out that an extension N�
on FŒ0;1�n of the Lebesgue measure � on Œ0; 1
n can be obtained by using the metric
equivalence of a cube Œ0; 1
n, n D 2; 3; : : : , and the segment Œ0; 1
. Then he mentioned
that in the case n > 2 such a measure does not satisfy the principle of equality of the
measure of congruent sets. This is a consequence of example on the decomposition of
a sphere into three sets being congruent to the sum of two others to within a countable
set (see, for example, [73] for the proof):

Theorem 5.1. A sphere S can be decomposed into disjoint sets S D A [ B [ C [Q
such that: (i) the sets A, B , C are congruent to each other; (ii) the set B [ C is
congruent to each of the sets A, B , C ; (iii) Q is countable.

We continue to study the question on a domain of definition of probability. As
we have seen, the ensemble approach does not imply automatically that the system
of sets (events) F.�S / (corresponding to properties �S of the ensemble S/ must be
an algebra. On the other hand, if Kolmogorov’s axiomatics is used, then we have to
start with (at least) an algebra. However, there may be random phenomena which do
not possess the structure of an algebra. Why the union A [ B of two events A, B
must always be an event? Why the complement D D � n C of an event C must
always be an event? It is interesting that, before to propose the general axiomatics
of probability theory [133] (1933), Kolmogorov discussed the problem of a domain
of definition of probability [159] (1929). At that time he had the viewpoint which
coincided with our viewpoint: “It is also doubtful if a measure connected with some
problem in probability calculus need be closed” (i.e., defined on an algebra). In [159]
Kolmogorov pointed out that “one should not assume, however, that the existence of
measures of two intersecting sets implies the existence of measure for their sum or
difference: there are certain important measures without this property.” In particular,
he discussed the following example.

Example 5.1 (density of natural numbers; see, for example, [69], [147] for the details).
For a subset A � N the quantity

ı.A/ D lim
N!1

jA \ f1; : : : ; N gj
N

;
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is called the density of A if the limit exists. Let Gd denote the collection of all subsets
of N which admit density. It is evident that each finite A � N belongs to Gd and
ı.A/ D 0. It is also evident that each subset B D N n A, where A is finite, belongs to
Gd and ı.B/ D 1 (in particular, P.N/ D 1/. The reader can easily find examples of
sets A 2 Gd such that 0 < ı.A/ < 1.

Proposition 5.1. Let A1; A2 2 Gd and A1 \ A2 D ¿. Then A1 [ A2 2 Gd and

P.A1 [ A2/ D P.A1/C P.A2/: .5:1/

Proof. As A1\A2 D ¿, then j.A1[A2/\f1; : : : ; N gj D jA1\f1; : : : ; N gjCjA2\
f1; : : : ; N gj.
Proposition 5.2. Let A1; A2 2 Gd . The following conditions are equivalent:

.1/ A1 [ A2 2 Gd I .2/ A1 \ A2 2 Gd I

.3/ A1 n A2 2 Gd I .4/ A2 n A1 2 Gd :

There are standard formulas:

P.A1 [ A2/ D P.A1/C P.A2/ � P.A1 \ A2/I (5.2)

P.A1 n A2/ D P.A1/ � P.A1 \ A2/: (5.3)

Proof. We have

j.A1 [ A2/ \ f1; : : : ; N gj D jA1 \ f1; : : : ; N gj C jA2 \ f1; : : : ; N gj
� j.A1 \ A2/ \ f1; : : : ; N gj:

Therefore, if, for example, A1 \ A2 2 Gd then there exists a limit of the right hand
side. It implies A1 [ A2 2 Gd and (5.2) holds. Other implications are proved in the
same way.

It is possible to find sets A;B 2 Gd such that, for example, A \ B 62 Gd . Let A be
the set of even numbers. Take any subset C � A which has no density. In fact, you
can find C such that

1

N
jC \ f1; 2; : : : ; N gj

is oscillating. There happen two cases: C \ f2ng D f2ng or D ¿. Set

B D C [ f2n � 1 W C \ f2ng D ¿g

Then, both A and B have densities one half. But A\B D C has no density. Thus Gd

is not a set algebra.

In 1929 A. N. Kolmogorov wrote [159]: “It is not known whether every measure is
closable. If closure is possible, then it is not necessarily closable in only one way. It
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would seem that it is very difficult to find a measure that closes the measure given by
the density of natural numbers.”

We can prove that the density of natural numbers can be closed (extended on the
algebra FN of all subsets of N), see Theorem 5.4. To formalize our considerations on
the density of natural numbers, we propose the following definition.

Definition 5.1. A system of subsets G of a set �, which has the properties described
by Proposition 5.2 and contains ¿ and �, is called semi-algebra.

Definition 5.2. A function P W G ! Œ0; 1
, where G is semi-algebra, is said to be a
probability semi-measure if it satisfies the additivity condition (5.1) and P.�/ D 1.

Definition 5.3. The system P D .�;G ;P/, where P is a probability semi-measure on
semi-algebra G , is called a semi-probability space.

Unfortunately we could not say anything more about such a generalization of a
probability space, because the theory of integration with respect to probability semi-
measures is not well developed.

We present the simplest construction of an extension of a measure � on the algebra
of all subsets. This construction is based on a representation of � by a continuous
linear functional on some space of functions and the application of the Hahn–Banach
theorem.

Theorem 5.2. Let � be a (finite additive) measure on an algebra F of subsets of �.
Then there exists a finite-additive extension N� of � on the algebra F� of all subsets
of �.

To prove this theorem, it is sufficient to apply the following well-known theorem of
functional analysis (but we would like to escape such a functional analytic considera-
tion):

Theorem 5.3 (Hahn–Banach). Let E be a normed linear space and let U be a linear
subspace. Every continuous linear functional l W U ! R can be extended to a contin-
uous linear functional L W E ! R in such a way that norms of the functionals l and
L coincide:

kLk D klk: .5:4/

On the other hand, the N� may be not � -additive even if � is � -additive. It seems
that an answer to the question

“Is it possible in the general case to construct a � -additive extension N� on the algebra
F� of a � -additive measure �‹”

is unknown.
Another difficulty is that the proof of the Hahn–Banach theorem is based on the

axiom of choice. Therefore we also have to use this axiom to obtain an extension of
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probability. However, the place of the axiom of choice in quantum physics is not clear.
Thus it is not easy to find the range of possible applications of probabilities extended
on F� with the aid of the Hahn–Banach theorem.

It seems that in general case it is impossible to obtain the existence of an extension
N� of � without the axiom of choice.

However, the main problem is non-uniqueness of an extension N�. By our construc-
tion N� is determined by an extension L� of the functional l�. In general such an
extension is not unique.

Corollary 5.1. Let P be a probabilistic measure on an algebra F of subsets of�. Then
there exists a finite-additive extension NP of P on the algebra F� of all subsets of �.

In some physical models we may use ‘probabilities’ defined on the algebra F� of all
subsets of�which are obtained via the Hahn–Banach theorem. As it has been noticed,
in general these probabilities are not � -additive. However, finite-additivity is merely a
mathematical problem. The real problem is non-uniqueness of an extension NP.

For instance, we start with a � -additive probability P defined on a � -algebra F .
Let us assume that some events A 2 F� n F have a physical meaning. Let NP1 and
NP2 be different extensions of P to the algebra F�. In principle, NP1.A/ ¤ NP2.A/. As
mathematical arguments are not sufficient to fix a ‘probability’, we need to use some
additional physical arguments to obtain the ‘right extension’.

It seems that the situation with nonuniqueness is even more complicated. As in
the above considerations, let us start with a � -additive probability P defined on a � -
algebra F . Let PL be the Lebesgue extension of P on the � -algebra FL of Lebesgue
measurable sets. The PL is the unique � -additive extension of P on FL. On the other
hand, there may exist finite-additive extensions NP of P on FL which do not coincide
with PL. As we have discussed many times, the condition of � -additivity is a purely
mathematical condition. Therefore from the physical viewpoint there are no reasons to
choose only the � -additive extension. Thus the standard choice, PL.A/, of probability
for eventsA 2 FL does not seem so natural from the physical viewpoint. We think that
some paradoxes in quantum formalism are a consequence of the common opinion that
only the Lebesgue extension PL gives ‘right physical probability’. In particular, the
proof of famous Bell’s inequality is based on such an assumption. Thus the Einstein–
Podolsky–Rosen paradox (see Chapter 2) might be a consequence of the conventional
(but probably non-physical) choice of an extension of probability.

We have discussed norm-preserving extensions of probability obtained via the
Hahn–Banach theorem. In principle there may exist extensions of linear functionals
which increase the norm. If we define an extension of a measure � W F ! RC with
the aid of such a functional extension, then we could not be sure that N� is non-negative.
In this way starting with probability P W F ! Œ0; 1
 we may obtain generalized prob-
abilities NP W F� ! R with negative values as well as with values which extend one.
We shall see in Chapter 3 that such generalized probabilities may have physical mean-
ing. We note that if P W F ! Œ0; 1
 is a � -additive probability, then it may be that a
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(norm-increasing) extension NP W F� ! R is also � -additive. In such a case we obtain
a signed probability measure (a charge), see Chapter 3.

We turn back to the density of natural numbers.

Theorem 5.4. The density of natural numbers ı W Gd ! Œ0; 1
 can be extended to a
finite-additive measure Nı W FN ! Œ0; 1
.

Proof. We apply again the Hahn–Banach theorem. Denote by LIM.N/ the subspace
of the normed space B.N/ (of all bounded functions f W N ! R/ consisting of all
functions f for which there exists the mean value:

lı.f / D lim
n!1

1

n
.f .1/C � � � C f .n//:

The map

lı W LIM.N/! R

is a continuous linear functional and lı.IA/ D ı.A/ for each A 2 Gd . By the Hahn–
Banach theorem lı can be extended to a continuous linear functional Lı W B.N/! R

and 1 D ı.N/ D klık D kLık. We set Nı.A/ D Lı.IA/ for A 2 FN. The linearity of
Lı implies that Nı W FN ! R is additive. One can show that Nı is non-negative.

If A 2 FN n Gd , then

Nı.A/ 6D lim
n!1

jA \ f1; 2; : : : ; ngj
n

:

Thus the frequency verification of the event A is impossible (the principle of the sta-
tistical stabilization is violated; compare with Chapters 2 and 4).

An extension of ı from semi-algebra Gd on the � -algebra FN given by Theorem 5.3
is not unique. If in some physical model some sets A 2 FN n Gd are considered as
physical events, then there must be special physical reasons to choose one or another
extension of ı. And we have to remember that the principle of the statistical stabiliza-
tion is violated for eventsA 2 FNnGd . As in the case of measures defined on algebras,
there may exist extensions Lı of lı which do not preserve the norm: kLık > 1. In
such a case an extension Nı corresponding to Lı can take negative values.

In principle we might consider Theorem 5.4 as the answer to the question of
A. N. Kolmogorov on a possibility to close the density of natural numbers ı. However,
Kolmogorov wanted to find a measure which closes ı. Theorem 5.4 is not constructive
(it is based on the axiom of choice). Really it does not give the answer to Kolmogorov’s
question. The construction which has been used in Theorem 5.4 could not be applied
to an arbitrary semi-measure �. Thus we do not know the answer to the question: “Is
it possible to close an arbitrary semi-measure?” (compare with Kolmogorov, 1929).
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6 Measure-theoretical approach and interpretations
of probability

Now we are going to discuss possible probability interpretations of the Kolmogorov
measure-theoretical approach (the mathematical theory of a special class of measures).
As we have seen, the probabilistic measures can be associated with all probability
models (classical, ensemble, and frequency). Therefore it is in principle possible to use
the measure-theoretical formalism and classical, ensemble or frequency interpretation.
However, A. N. Kolmogorov proposed not only a mathematical formalism but also an
interpretation of this formalism. We shall start with this interpretation.

6.1 Ensemble-frequency interpretation

Kolmogorov interpreted a probability in the following way: “[. . . ] we may assume
that to an event A which may or may not occur under conditions † is assigned a real
number P.A/ which has the following characteristics: (a) one can be practically cer-
tain that if the complex of conditions † is repeated a large number of times, N , then
if n be the number of occurrences of event A, the ratio n=N will differ very slightly
from P.A/; (b) if P.A/ is very small, one can be practically certain that when condi-
tions † are realized only once the event A would not occur at all”. This interpretation
is a mixture of the frequency and ensemble interpretations. In fact, (a) is the frequency
interpretation and (b) is the ensemble interpretation. However, we cannot identify Kol-
mogorov’s interpretation with any of these interpretations (for example, we may not
assume (see [171], p. 5) that each infinite repetition of † will generate a collective).
This mixture of interpretations generated some problems and played a negative role in
applications of probability theory. Kolmogorov did not separate the proportion (mea-
sure) in ensemble and the frequency of realizations. Moreover, it seems to be that he
often reduced the proportion in an ensemble to the proportion (2.1) for possible cases4.
For example, he considered the experiment of tossing a coin twice and obtained a fi-
nite space of elementary events� D fHH;HT; TH; T T g, where the labelsH , T are
used for the sides of a coin. I think that Kolmogorov understood very well the weak-
ness of his interpretation. For this reason he considered this problem again 30 years
later and proposed the theory of algorithmic complexity of random sequences [135].
However, the latter theory is nothing other than the attempt to justify the frequency
probability theory of von Mises.

Remark 6.1. As the ensemble-frequency interpretation is based on both frequency and
proportional arguments, the range of applications of Bayes’ formula (2.4) is restricted
by Remarks 2.1 and 3.1. In fact the Bayes formula is the additional postulate of the
Kolmogorov axiomatics. In principle we can use the Kolmogorov theory (probability
spaces) without Bayes’ formula (2.4). This theory will describe the physical systems

4There Kolmogorov followed the historical tradition.
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with a violation of (2.4). This framework was developed by Accardi [2]; we shall
discuss it in the connection with quantum theory.

As we have seen, there are two (essentially different) contributions of Kolmogorov
to probability theory. The first is the measure-theoretical approach and the second is
the ensemble-frequency interpretation. The first is purely mathematical and the sec-
ond is phemenological. Of course, it is possible to combine Kolmogorov’s measure-
theoretical formalism with other interpretations of probability. However, we have to
pay attention to the problem that the use of a specific interpretation induces some re-
strictions to Kolmogorov’s measure-theoretical approach. We start with the ensemble
probability.

6.2 Measure-theoretical approach and the ensemble interpretation

Let S be an arbitrary (probably infinite) ensemble. Let PS D .S;F ;PS / be Kol-
mogorov’s probability space based on S . This space can be used for probabilistic
analysis on S . However, we have to remember that the set �S of properties can
differ from the set of random variables RV.PS /. There can exist random variables
� 2 RV.PS / (and, in particular, sets A 2 F / which are not properties of s 2 S . As it
was mentioned by Kolmogorov, analysis based on � 2 RV.PS / can give some results
for elements � 2 �S which have no real physical meaning. On the other hand, there
can exist properties � 2 �S which are not random variables (these are non-measurable
maps � on PS /. Other important thing is that all probability distributions depend on
the ensemble S .

Let us consider the following example. Let Pj D .�j ;Fj ;Pj /, j D 1; 2, be
Kolmogorov’s probability spaces and let �j W �j ! R be random variables with
probability distributions P�j . Then in Kolmogorov’s formalism it is always possible to
construct a probability space P D .�;F ;P/ such that there are well defined random
variables N�j 2 RV.P /, j D 1; 2, such that P N�j

D P�j . We can simply set � D
�1 ��2, F D F1 ˝ F2, P D P1 ˝ P2 and N�j .!1; !2/ D �j .!j /. However, it does
not sound reasonable that we can do the same thing in the ensemble framework. Let
�1 D �2 D S and �j 2 �S , j D 1; 2. In general it does not sensible to use the
ensemble � D S � S for representing properties of the original ensemble S .

6.3 Measure-theoretical approach and frequency probability

The original viewpoint of R. von Mises was that Kolmogorov’s probability measure is
nothing other than the probability distribution Px (on the label setLx/ of a collective x.
The Kolmogorov probability space in Mises’ theory is chosen as Px D .Lx;FLx

;Px/
where in general case FLx

is some � -algebra of subsets of Lx . As we have already
pointed out, in the continuous case not all sets A 2 FLx

have the frequency meaning.
In particular, if the measure-theoretical approach is used for the description of the
frequency phenomena, then the possibility of the frequency verification for events A 2
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FLx
must be controlled. However, it is even more important to control continuously

the dependence of a probability space on a collective.
Let us consider the following example (which is similar to the example considered

in the ensemble framework). Let xj , j D 1; 2, be two collectives with the label
sets Lj and probability distributions Pxj . Let Pj D .Lj ;FLj

;Pxj /, j D 1; 2, be
the corresponding Kolmogorov’s probability spaces. Let Aj 2 FLj

. Suppose that
somewhere we need to use conditional probability P.A1=A2/. What is the meaning of
Bayes’ formula (2.4) in this case?

6.4 Measure-theoretical approach and ensemble-frequency
interpretation

As we have already mentioned, typically Kolmogorov’s measure-theoretical formal-
ism on abstract probability spaces is used together with the ensemble-frequency in-
terpretation of probability. However, as in the cases of the ensemble and frequency
theories, we must be careful with applications of the abstract measure-theoretical for-
malism. We study the question of a choice of a probability space for the concrete
probability experiment.

The part (a) of the ensemble-frequency interpretation of probability implies that the
space � must describe occurrences of events in very long sequences of repetitions of
some condition † (in the mathematical formalism sequences can have infinite length).
It seems that collectives can be used for the description of such a phenomenon. How-
ever, the part (b) is related to occurrences of events under a single realization of con-
ditions †. Probability of a single realization is nonsense for collectives. Let us try
to solve the contradiction between probability in a long sequence of repetitions of †
and a single realization of †. We may consider the space C of all possible collectives
which can be induced by repetitions of †. Then we may introduce on C a probabil-
ity measure P (which seems to have the meaning of an ensemble probability for the
ensemble C/ that would provide a mathematical description of the part (b). The latter
would mean that if P.A/ is very small, then a single realization of A (in one of collec-
tives x 2 C/ is practically impossible (from the ensemble viewpoint). However, in the
standard formalism the space C of all collectives is not used as a space of elementary
events �.5 Instead of C , there is used the space � D L1 of all infinite sequences
of labels ˛ 2 L. Such a choice gives measure-theoretical advantages. However, this
implies the consideration of sequences which have no probabilistic meaning.

We construct now Kolmogorov’s probability measure PKol on the space of sequences
� which gives (as it is commonly accepted) the mathematical realization for (a) and
(b). We start with the consideration of a symmetric coin (with sides denoted by sym-
bols 0 and 1), L D f0; 1g. Here we can use the classical definition of probabilities as
the starting point for the construction of PKol. As there are two equally possible cases,

5The constructive probability theory (see, for example, [137]) can be considered as an attempt to
realize on the mathematical level of rigorousness the idea to use C as a space of elementary events.
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the classical probabilities Pcl.0/ D Pcl.1/ D 1=2. Now consider m trials of the coin
and write all possible samples (3.2). At this point it seems that the formalism is devel-
oped in the same way as in the von Mises theory. However, the next step demonstrates
the crucial difference between two the approaches. Denote by Sm D Lm the set of
all vectors of length m with coordinates 0; 1. This set is considered as a statistical
ensemble. Thus, for i D .i1; : : : ; im/ 2 Sm; Pens.i/ � PSm

.i/ D 1=jSmj D 1=2m.
Bernoulli proved the following mathematical result for these ensemble probabilities:

Theorem 6.1 (Bernoulli). The largerm is, the larger is the proportion of those vectors
in Sm in which the relative number of zeros (or of ones) deviates from 1/2 by less than
a given �.

Obviously this is the result for proportional probability. But Bernoulli and most
authors state this result as the result for the frequency probability: if one throws a ‘true’
coin long enough it is almost certain that the relative number of heads will deviate by
less than � from 1/2.

The Kolmogorov probability measure PKol on the space of elementary events

� D f! D .!1; : : : ; !n; : : : / W !j 2 Lg;
where L D f0; 1g, will be defined with the aid of the ensemble probabilities PSm

.
For i D .i1; : : : ; im/ 2 Sm, a cylindrical subset of � with the base i is defined as
Bi D f! 2 � W !1 D i1; : : : ; !m D img. We set PKol.Bi/ D PSm

.i/ D 1=2m. Denote
the � -algebra generated by all cylindrical subsets by F (i.e., this is the minimal � -
algebra which contains all cylindrical subsets of �/. PKol is extended as a � -additive
measure on the � -algebra F .

It is typically assumed that the frequency part (a) of the interpretation can be de-
scribed by following mathematical result for the measure PKol.

Theorem 6.2 (Law of large numbers). For any � > 0,

PKol.f! 2 � W j�m.1I!/ � 1=2j > �g/! 0; m!1;
where �m.1I!/ D nm.1I!/=m and nm.1I!/ D

Pm
jD1 !j .

However, like the classical Bernoulli theorem, the law of large numbers is not con-
nected with the frequency approximation of probabilities. This is the statement on the
approximation of classical probabilities Pcl.0/ D Pcl.1/ D 1=2 by ensemble probabil-
ities. On the other hand, we could use the so called strong law of large numbers.

Theorem 6.3 (Strong law of large numbers). There exists a subset �0 2 F such that
PKol.�0/ D 1 and �m.1; !/! 1=2, m!1, for all sequences ! 2 �0.

But on the basis of this statement we could not say anything about the statistical sta-
bilization of �m.1I!/ for any concrete sequence ! 2 �. The strong law of large num-
bers do not say anything about a frequency approximation of ensemble probabilities;
this is the statement about the frequency approximation of the classical probabilities
Pcl.0/ D Pcl.1/ D 1=2 in the sense of the ensemble probabilities.
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Conclusion. The laws of large numbers cannot be applied for describing the statistical
stabilization of frequencies in sampling experiments.

We construct now Kolmogorov’s measure PKol in the general case. The classical
definition of probability cannot be used for nonsymmetrical coin. We use the fre-
quency definition. The statistical experiments for coin’s tossing produce collectives x
with the label sets L D f0; 1g. Let us assume that all these collectives have the same
probability distribution: q0 D Pfr.0/ and q1 D 1 � q0 D Pfr.1/. For cylindric set
Bi D f! 2 � W !1 D i1; : : : ; !k D ikg, i D .i1; : : : ; ik/, il 2 L D f0; 1g, the
probability is defined as

PKol.Bi/ D qjij
1 q

k�jij
0 ; .6:1/

where jij D i1 C � � � C ik .
In the symmetric case (q0 D q1 D 1=2/ the origin of formula (6.1) has been ex-

plained in the ensemble framework. In the general case we could not apply the en-
semble framework. Here we can apply frequency arguments. Let x.j / D .x

.j /
t /1tD1,

j D 1; 2; : : : ; k, be collectives having the same label space L D f0; 1g and probability
distribution Px.j /.0/ D q0, Px.j /.1/ D q1. We form a new collective x D .xt /

1
tD1

with the label space Lk D L � � � � � L by setting xt D .x
.j /
t /kjD1, t D 1; 2; : : : .

We assume that collectives x.j / are independent (see sections 9,10 for the details). In
particular, this imply the factorization of the probability distribution Px in a product of
probability distributions Px.j / . Thus, for each i D .i1; : : : ; ik/, il D 0; 1, there exists

Px.i/ D lim
M!1

�M .iI x/ D
k
Y

lD1

lim
M!1

�M .il I x.l// D
k
Y

lD1

Px.l/.il /; .6:2/

where �M .iI x/ D nM .iI x/=M and �M .il I x.l// D nM .il I x.l//=M are relative fre-
quencies for labels i 2 Lk and il 2 L (in collectives x and x.l/, respectively). Formula
(6.2) can be used as the motivation for definition (6.1) of probability of a cylindric sub-
set Bi of �.

The PKol defined on cylindric subsets by (6.2) can be extended to a probability
measure on the � -algebra F of � generated by cylindric subsets.

We analyse now how the PKol serves to purposes (a) and (b). Here we can also use
the strong law of large numbers:

Theorem 6.4 (Strong law of large numbers for nonsymmetrical distributions). There
exists a subset�0 2 F such that PKol.�0/ D 1 and �M .˛I!/ D nM .˛I!/=M ! q˛ ,
M !1, ˛ D 0; 1, for all sequences ! 2 �0.

It seems that (with the same remarks as in the symmetric case) this is the mathemati-
cal realization of (a). The part (b) can be interpreted in the following way. If, for exam-
ple, q0 � 1 then, for each j , PKol.! W !j D 0/ D q0 � 1. Thus ‘probability to obtain
0 in the j th test is practically zero.’ In fact, the problem is more complicated. In the
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nonsymmetrical case we could not interpret sequences ! 2 � (even some of them) as
collectives generated by the statistical experiment6. The construction of Kolmogorov’s
measure PKol demonstrates that ! 2 � have the meaning of (infinite) ‘multi-labels’
for the collective x D .xl/

1
lD1

, where xl D .x
.j /

l
/1jD1 2 �, which is obtained on

the basis of a sequence fx.j /g, j D 1; 2; : : : , of independent collectives having the
same probability distribution q˛; ˛ D 0; 1 (i.e., a sequence (for j D 1; 2; : : : / of par-
allel running sequences (for l D 1; 2; : : : / of coins’ tossings). Thus the strong law
of large numbers says that ‘practically all’ these ‘multi-labels’ have the property of
the statistical stabilization and limits of relative frequencies (accidentally!) coincide
with probabilities q˛ corresponding to collectives. Thus the probability measure PKol

describes the frequency approximation of probabilities only indirectly.
The PKol describes only random phenomena which have the property of ergodicity.

The ergodicity has the following meaning. First we consider the statistical experiment
in that one person makes a long run of coin’s tossings, u D .u1; : : : ; uM ; : : : /, and
obtains the relative frequencies �M .˛Iu/ D nM .˛Iu/=M , ˛ D 0; 1. Then we con-
sider another statistical experiment in that all persons belonging to a large statistical
ensemble S (population) make simultaneously just one coin’s tossing. As the result of
the latter experiment we obtain the proportions (in S ), �S .˛/ D jS.˛/j=jS j, ˛ D 0; 1,
of persons who have obtained the label ˛. Then �M .˛Iu/ 	 �S .˛/ for large M and
jS j. Of course, we could not assume that all random phenomena have the property of
ergodicity. Thus in general the ensemble and frequency interpretations of probability
must be separated.

Remark 6.2. Let collectives x.j / be independent, but not in general equally distri-
buted: Px.j /.˛/ D q j̨ , ˛ D 0; 1. Then we obtain that Px.i/ D

QN
lD1 qil l . This

can be used as the motivation to define a probability of a cylindric subset of � by
PKol.Bi/ D

QN
lD1 qil l . We underline again that there we could not use ensemble

arguments to define probabilities of cylindric subsets.

Conclusion. Kolmogorov’s ensemble-frequency interpretation can be used only for
ergodic random phenomena.

7 Subjective (Bayesian) probability theory

According to the subjective interpretation of probability, it is the degree of belief in the
occurrence of an event attributed by a given person at a given instant and with given
set of information that is important. It is very important for our further quantum me-
chanical considerations that changing information changes probabilities. We illustrate
this by an example.

6Thus in the nonsymmetrical case the strong law of large numbers could not be interpreted in the
same way as in the symmetric case. Only in the symmetric case we can interpret some of ‘elementary
events’ ! 2 � as collectives generated by coin’s tossing.
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Example 7.1. I have forgotten something: Have I sent a letter to my friend or not? I
can propose my subjective probabilities q1 (the letter was sent), q2 (it was not sent),
q1 C q2 D 1; qj 2 Œ0; 1
. Suppose that we have an ideal postal system, i.e., a letter
could not disappear in the postal service. If I telephone to my friend and he tells me
that he has received the letter, then at that moment the probabilities will immediately
change: q1 ! 1 and q2 ! 0, in the opposite case: q1 ! 0 and q2 ! 1.7

In fact the subjective theory of probability is a sufficiently good theory from the
operational point view. The main problem of this approach is how to choose the sub-
jective probabilities in a concrete case. In this theory it is postulated that the prob-
ability depends on the status of information which is available to whoever evaluates
probability. Thus the evaluation of probability is conditioned by some a priori (‘theo-
retical’) prejudices and by some facts (‘experimental data’). However, in applications
all this information is nothing other than information about frequency or proportional
probabilities.

It must be noted that the subjective probability theory is described mathematically
by the Kolmogorov probability space .�;F ;P/. The Bayes formula (2.4) is the cor-
nerstone of this theory (therefore, it is also called Bayesian theory). As we have
discussed, in principle we can exclude (2.4) from the Kolmogorov theory and con-
sider a more general formalism which describes violations of (2.4). Such an approach
is impossible in the subjective framework. The subjective probability theory is ap-
plied in the following form. There is a fixed set of hypotheses (events) Hi 2 F :
S

i Hi D �;Hi \Hj D ¿, i 6D j . Let E 2 F be an event. Suppose that we know
conditional probabilities P.E=Hi /. Then we find P.Hi=E/ by (3.8) and the formula
of total probability: P.E/ DPi P.E=Hi /P.Hi /; i.e.,

P.Hi=E/ D
P.E=Hi /P.Hi /

P

j P.E=Hj /P.Hj /
: .7:1/

This is the standard form of Bayes’ theorem.

Remark 7.1. Of course, Bayes’ formula plays a great role in probability theory. How-
ever, as we have seen, there are restrictions for using this formula. These also are
restrictions for using Bayesian probability theory. According to Bayesian theory
PH .E/ D P.E=H/ is a subjective probability (a measure of an individual belief)
on the basis of the known set of conditions H ; in particular, P.E/ D P.E=�/ corre-
spond to the set of all conditions. Therefore it is assumed that we can always extract
the information H from the total amount of information �.

The main positive consequence of the subjective approach to probability theory is
the connection between probability and information. The idea that probability is a
measure of information on a random phenomenon (for example, a statistical ensemble)

7In quantum formalism such a reduction of subjective probabilities is nothing other than so called
collapse of a wave function (� D pq1�1 Cpq2�2/.
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looks attractive. Typically such an information is reduced to our subjective knowledge
about a random phenomenon. This information probability is coded by real number
qinf/pr 2 Œ0; 1
. Intuitively it is identified with the classical probability (based on the
proportion of equally possible cases) or with the ensemble probability. However, the
relation between subjective probability and classical or ensemble probabilities is indi-
rect. The subjective probability approach claims that qinf/pr is chosen on the basis of
‘subjective reasons’ of an individual.

The subjective probability approach can be strongly improved if we assume that
‘subjective reasons’ are nothing other than the calculation of probability with respect
to an ensemble of ideas S (in the brain of an individual) which are connected with
the concrete random phenomenon. Thus qinf/pr.˛/ D jS.˛/j=jS j, where S.˛/ is the
sub-ensemble of ideas which imply the property ˛.

8 Foundations of randomness

We study some special questions of the frequency probability theory connected with
the principle of randomness (see, for example, [137], [163], [18] for the details).

8.1 Existence of collectives; Kamke’s objection

As we have already remarked, the principle of randomness based on the invariance of
limits of relative frequencies with respect to the set of all possible place selections is
too general. In fact, there are no sequences which satisfy this principle. To show this,
we follow arguments of E. Kamke [74] (see also [137]).

Let L D f0; 1g and x D .xj /
1
jD1, xj 2 L, be a collective which induces the

probability distribution P.˛/ D 1=2, ˛ D 0; 1. Consider the set SI of all strictly
increasing sequences of natural numbers. This set can be formed independently of x;
but, among elements of SI, we have the strictly increasing sequence fn W xn D 1g. This
sequence define a place selection which selects the subsequence .11 : : : 1 : : :/ from x.
Hence x is not a collective after all!

The reader may well feel uncomfortable with the mathematical structure of the ar-
gument. Kamke claims to have shown that for every putative collection x there exists a
place selection � that disturbs the statistical stabilization of frequencies to probability
1=2. The use of the existential quantifier here classical (Platonistic). Indeed, it seems
impossible to exhibit explicitly a procedure which satisfies von Mises’ criterion (inde-
pendence on value xn) and at the same time selects the subsequence .11 : : : 1 : : :/ from
x. The interesting analysis of this problem can be found in the review of M. van Lam-
balgen [163]. He is convinced that a satisfactory treatment of random sequences is
possible only in set theories lacking the set power axiom, in which random sequences
“are not already there.” However, even we uncritical accept classical mathematics,
Kamke’s argument is somewhat beside the mark in that it fails to appreciate the pur-
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pose of von Mises’ axiomatization. It refers to what could happen, whereas Mises’
axioms are rooted in experience and refer to what does happen.

Remark 8.1. In various places von Mises likens the principle of randomness to the
first law of thermodynamics. Both are statements of impossibility: the principle of
randomness is the principle of the excluded gambling strategy, while the first law (con-
servation of energy) is equivalent to the impossibility of a perpetuum mobile of the first
kind. I think that such an analogy is not so natural. It would be more natural to connect
the first law of thermodynamics with the first von Mises principle, the principle of the
statistical stabilization of relative frequencies. The impossibility to perform precise
measurements implies that the law of conservation of energy is only a statistical law.
Thus it is just one of exhibitions of the principle of the statistical stabilization of rel-
ative frequencies. M. van Lambalgen compared the principle of randomness with the
second law of thermodynamics, the law of increase of entropy or the impossibility of
a perpetuum mobile of the second kind. Indeed, Kamke’s objection is reminiscent of
Maxwell’s celebrating demon, that “very observant and neat-fingered being”, invented
to show that entropy decreasing evolutions may occur. Maxwell’s argument of course
in no way detracts from the validity of the second law, but serves to highlight the fact
that statistical mechanics cannot provide an absolute foundation for entropy increase,
since it does not talk about what actually happens (see [163] for further mathematical
details).

The early attempts to formalize Mises’ principle of randomness were based on con-
siderations of different classes of lawlike place selection. The idea was to fix some
class of lawlike place selections and then construct a set of collectives with respect
to that class. Various authors (e.g. Popper, Reichenbach, Copeland) independently ar-
rived at the so called Bernoulli selections. To discuss this class of place selections, it
is convenient to formalize the definition of place selection.

Denote by L� the set of all finite words x D .x1; : : : ; xm/, xj 2 L, m D 1; 2; : : :

in the alphabet (label set) L D f˛0; ˛1; : : : ; ˛lg, l > 1; as usual the symbol L1

is used to denote the set of all infinite sequences x D .x1; : : : ; xm; : : :/; xj 2 L.
Set x1Wn D .x1; : : : ; xn/ for x 2 L1 (this is the initial segment of the length n of the
sequence x). A place selection � is defined on the basis of a function f W L� 7! f0; 1g.
The domain of definition of a place selection � corresponding to f is the set

dom � D fx 2 L1 W 8n 9k 
 n W f .x1Wk/ D 1g � L1:

For x 2 dom �, we set �.x/ DTn
N�.x1Wn/, where the map N� W L� 7! L� is defined as

N�.u˛/ D N�.u/˛ if f .u/ D 1 and N�.u˛/ D N�.u/ if f .u/ D 0 (here u D .u1; : : : ; um/
and u˛ D .u1; : : : ; um; ˛/, uj ; ˛ 2 L). Thus a place selection � is a partial function
� W L1 7! L1.

Example 8.1 (Bernoulli sequences). Let w D .w1; : : : ; ws/, wj 2 L, be a fixed word.
For a sequence x 2 L1, we choose all xn such that w is a final segment of x1Wn.
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The domain of this place selection, �w , is the set of all sequences x 2 L1 which
contain infinitely many occurrences of the word w. Formally �w is defined on the
basis of the function fw W L� 7! f0; 1g, fw.u/ D 1, if w is a final segment of u,
fw.u/ D 0, if not. A Bernoulli sequence (with respect to a probability distribution
P. j̨ / D pj , j D 1; : : : ; l , L D f˛1; : : : ; ˛lg) is a sequence x 2 L1 such that
limn!1 �n. j̨ I x/ D pj ; j D 1; : : : ; l , and for all words w 2 L�

lim
n!1

�n. j̨ I�wx/ D pj ; j D 1; : : : ; l; .8:1/

where �n. j̨ I�wx/ is the relative frequency of occurrence of the label j̨ in the initial
segment of length n of the sequence �wx. If L D f0; 1g is the binary alphabet and
Px.1/ D p;Px.0/ D 1 � p, then (8.1) has the form

lim
n!1

1

n

n
X

jD1

.�wx/j D p

for all words w 2 f0; 1g�.

The sets of Bernoulli place selections and sequences are denoted by symbols UB

and XB , respectively.
A. Church [39] suggested to consider the set UCh of place selections which are gen-

erated by total recursive functions f W L� ! f0; 1g (functions which can be computed
by using algorithms). Church’s collectives (random sequences) are sequences x 2 L1

which satisfy the principle of the statistical stabilization and the principle of random-
ness for the set of place selections UCh. Denote the set of Church’s collectives by the
symbol XCh.

Both the sets UB and UCh are countable. The existence of Bernoulli sequences and
Church’s collectives is a consequence of the general result of A. Wald [173].

Let p D .pj /: pj D P. j̨ /, j D 1; : : : ; l , L D f˛1; : : : ; ˛lg, be a probability
distribution on the label set L. Let U be a set of place selections. We set

X.U; p/ D fx 2 L1 W 8� 2 U lim
n!1

�n. j̨ I�x/ D pj ; j D 1; : : : ; lg:

Theorem 8.1 (Wald). For any countable set U of place selections and any probability
distribution p on the label set L, the set of sequences X.U; p/ has the cardinality of
the continuum.

Thus at least for countable sets of place selections U Mises’ frequency theory
of probability can be developed on the mathematical level of rigorousness. R. von
Mises was completely satisfied by this situation (see [171]). However, he was strongly
against the idea to fix once and for all a set of place selections. By Mises the concrete
set of place selections is determined by a physical problem. But mathematicians prefer
to consider fixed classes of place selections. In particular, the large part of mathemati-
cal community consider Church’s choice as the most reasonable. The author does not
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think that the choice of total recursive functions as place selections can be justified by
some physical arguments. The idea that reality which can be studied by human mind
can be reduced to reality produced by Turing machines looks rather primitive in the
light of modern investigations of the processes of thinking. It seems that the brain uses
transformations N� W L� ! L� which based on non-recursive functions, [88], [90].

8.2 Geometric and frequency spaces

According to the modern ideology of geometry, geometric model is a pair .X;G/,
where X is a set of points andG is a group of transformations of X . Such an approach
is closely connected with von Mises’ approach to probability theory. Here we have a
system of place selections U (which plays the role of a group of transformations G/
and the space X.U; p/ of ‘probabilistic points’. The pair .X.U; p/;U/ can be called
a frequency probability model. Moreover, as in geometry, we have to consider some
algebraic structure on the system of transformations U. We shall demonstrate that we
have to use semigroups (with unit) of transformations U.

Let U be a system of place selections containing the identity transformation. If
x 2 X.U; p/, it is natural to assume that, for each � 2 U, y D �x 2 X.U; p/:
each element � of U transforms an U-collective x in a new U-collective. Thus, for
each  2 U, the sequence z D  y D  ı �x satisfies the principle of the statistical
stabilization. Let f D  ı � 62 U. Then we can extend the system of transformations
U by setting U

0 D U[ff g. It is evident that (under our assumption) the set of points
X.U0; p/ coincides with the set X.U; p/. Therefore it would be natural to assume
from the beginning that U is a semigroup.

One of nice examples of frequency probability spaces is the space .XCh;UCh/ based
on the system of totally recursive functions.

8.3 Ville’s objection

Although Wald’s reformulation of von Mises’ ideas solved the problem of consistency,
it lead to an objection of entirely different kind.

Theorem 8.2 (Ville, [166]). Let L D f0; 1g and let U D f�ng1nD1 be a countable set
of place selections. Then there exists x 2 L1 such that

(a) for all n, lim
N!1

1

N

N
X

jD1

.�nx/j D
1

2
;

(b) for all N ,
1

N

N
X

jD1

.�nx/j 

1

2
.

Such an x is a collective with respect to U (x 2 X.U; 1=2//, but seems to be far too
regular to be called random. Formally, x’s with property .b/ form a set of Lebesgue
measure 0 (this is a consequence of the law of iterated logarithm).
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8.4 Ensemble probability approach to randomness

Ville and Fréchet used Theorem 8.2 to argue that collectives in the sense of von Mises
and Wald do not necessarily satisfy all intuitively required properties of randomness.
Ville introduced a new way of characterizing random sequences, based on the follow-
ing idea: a random sequence should satisfy all properties of probability one. Strictly
speaking, this is of course impossible: we have to choose countably many from among
those properties. It must be underlined that Ville’s idea is really completely foreign to
von Mises. For von Mises, a collective x 2 L1 induces a probability on the set of la-
belsL, not on the set of all sequences L1. Hence there is no connection at all between
properties of probability one in L1 and properties of individual collectives.

Per Martin-Löf [142, 144] proposed to consider ‘recursive properties of probabil-
ity one’ (i.e., properties which can be tested with the aid of algorithms). Such an
approach induces the fruitful theory of recursive tests for randomness (see, for exam-
ple, [137], [175]). Similar approach was developed by Schnorr [158]. We underline
that approaches of Martin-Löf and Schnorr (as well as Ville and Fréchet) have nothing
to do with the justification of Mises’ frequency probability theory.

8.5 Kolmogorov complexity

A. N. Kolmogorov tried to find foundations of randomness by reducing this notion to
the notion of complexity. Let L D f0; 1g and x 2 L�.

Definition 8.1 (Kolmogorov). Let A be an arbitrary algorithm. The complexity of a
word x with respect to A is KA.x/ D min l.�/; where f�g are the programs which
are able to realize the word x with the aid of A.

Here l.�/ denotes the length of a program � . This definition depends on the struc-
ture of an algorithm A. Later Kolmogorov proved the following theorem:

Theorem 8.3. There exists an algorithm A0 (optimal algorithm) such that

KA0
.x/ � KA.x/ .8:2/

for every algorithm A.

As usual, (8.2) means that there exists a constantC such thatKA0
.x/ � KA.x/CC

for all words x. An optimal algorithm A0 is not unique.

Definition 8.2. The complexity K.x/ of the word x is equal to the complexity KA0

with respect to one fixed (for all considerations) optimal algorithm A0.

The original idea of Kolmogorov [135], [134] was that complexityK.x1Wn/ of initial
segments x1Wn of a random sequence x has to have the asymptotic K.x1Wn/ � n,
n ! 1, i.e., we might not find a short code for x1Wn. However, this nice idea was
rejected due to an objection of Per Martin-Löf [144]. To discuss this objection and
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connection of Kolmogorov complexity with Martin-Löf randomness, it is better to use
conditional Kolmogorov complexityK.xIn/ instead of complexityK.x/. Complexity
KA.xIn/ is defined as the length of a minimal program � which produces the output
x on the basis of information that the length of the output x is equal to n.

Theorem 8.4. Let f be a total recursive function such that
P1
nD1 2

�f .n/ D1: Then,
for every sequence x, K.x1WnIn/ < n � f .n/ for infinitely many n.

In particular, we can choose f .n/ D log2 n. Thus, for any binary sequence x,
K.x1WnIn/ < n�log2 n for infinitely many n. Hence ‘Kolmogorov random sequences’
do not exit.

P. Martin-Löf obtained also an estimate of K.x1WnIn/ from below:

Theorem 8.5. Let f be such that
P1
nD1 2

�f .n/ < 1: Then, with probability one,
K.x1WnIn/ 
 n � f .n/ for all but finitely many n.

In particular, we can choose f .n/ D 2 log2 n. Thus, for almost all binary sequences
x,K.x1WnIn/ 
 n�2 log2 n for all but finitely many n. Therefore for almost all binary
sequences Kolmogorov complexity �.n/ D K.x1WnIn/ oscillates between graphs of
the functions gmax.n/ D n and gmin.n/ D n�2 log2 n (with finitely many intersections
with gmin.n//. The graph of the function �.n/ has infinitely many intersections with
the graph of the function fmid.n/ D log2 n.

The following two theorems [144] give the connection between high Kolmogorov
complexity (for infinitely many initial segments) and Martin-Löf randomness:

Theorem 8.6. Let f be a total recursive function such that
P1
nD1 2

�f .n/ is recursively
convergent. Then, if x is random in the sense of Martin-Löf, then K.x1WnIn/ 
 n �
f .n/ for all but finitely many n.

That
P1
nD1 2

�f .n/ is recursively convergent means that there is a recursive se-
quence n1; n2; : : : ; nk; : : : such that

1
X

nmC1

2�f .n/ � 2�m; m D 1; 2; : : : :

Theorem 8.7. If there exists a constant c such that K.x1WnIn/ 
 n � c for infinitely
many n, then the sequence x is random in the sense of Martin-Löf.

Critical remarks

1) Despite of the great success of Kolmogorov and Martin-Löf approaches, it is doubt-
ful that these approaches provide the adequate description of randomness in physical
reality. The main objection is against the use of recursive functions (algorithms). On
one hand, there are no reasons to suppose that random sequences produced by physical
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phenomena must pass all recursive tests for randomness (even the law of large num-
bers). On the other hand, ‘randomness’ of such sequences may be characterized by
some systems of non-recursive transformations.

2) It seems impossible to reduce Martin-Löf randomness to Mises’ randomness. De-
note the class of Martin-Löf random sequences (with respect to the uniform distribu-
tion) by the symbol RM. The reduction of Martin-Löf randomness to Mises’ random-
ness must be given by the equality RM D X.U; 1=2/ for some class U of place selec-
tions. However, it seems impossible to find such a class U: For example, let U D UCh

be the class (semigroup) of Church place selections. Then, as each � 2 UCh gives a
recursive property of probability one, we have RM � X.U; 1=2/. Ville’s result, com-
bined with the observation that the Martin-Löf random sequences satisfy the law of the
iterated logarithm, shows that the inclusion is strict. Moreover, it can be shown (see
M. van Lambalgen [163]) that the set of sequences X.U; 1=2/ n RM is rather large.

Therefore approaches of Martin-Löf–Ville–Fréchet and von Mises give totally dif-
ferent viewpoints to the notion of randomness. The first approach is based on the
ensemble interpretation of probability and the second approach is based on the fre-
quency interpretation of probability. As we have already noticed, these interpretations
could not be unified in one (mixed) ensemble-frequency interpretation.

9 Operation of combining of collectives

In the three basic operations discussed in Section 3, one single collective x served each
time as point of departure for the construction of a new collective. We consider the
problem of combining of two or more given collectives. We start with S -sequences
(sequences which satisfy the principle of the statistical stabilization).

Let x D .xj / and y D .yj / be two S -sequences with label sets Lx and Ly , respec-
tively. We define a new sequence

z D .zj /; zj D .xj ; yj /: .9:1/

(in general z is not an S -sequence with respect to the label set Lz D Lx � Ly/. Let
a 2 Lx and b 2 Ly . Among the firstN elements of z there are nN .aI z/ elements with
the first component equal to a. As nN .aI z/ D nN .aI x/ is a number of xj D a among

the first N elements of x, we obtain that limN!1
nN .aIz/
N

D Px.a/. Among these
nN .aI z/ elements, there are a number, say nN .b=aI z/ whose second component is
equal to b. The frequency �N .a; bI z/ of elements of the sequence z labeled .a; b/ will
then be

nN .b=aI z/
N

D nN .b=aI z/
nN .aI z/

nN .aI z/
N

:

We set �N .b=aI z/ D nN .b=aIz/
nN .aIz/

. Let us assume that, for each a 2 Lx , the subsequence

y.a/ of y which is obtained by choosing yj such that xj D a is an S -sequence8. Then,

8In general such a choice of the subsequence y.a/ of y is not a place selection.
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for each a 2 Lx , b 2 Ly , there exists

Pz.b=a/ D lim
N!1

�N .b=aI z/ D lim
N!1

�N .bIy.a// D Py.a/.b/:

We have
X

b2L2

Pz.b=a/ D 1: .9:2/

The existence of Pz.b=a/ implies the existence of Pz.a; b/ D limN!1 �N .a; bI z/.
Moreover, we have

Pz.a; b/ D Px.a/Pz.b=a/ .9:3/

and Pz.b=a/ D Pz.a; b/=Px.a/; if Px.a/ ¤ 0. By (9.2) and (9.3) we obtain
X

a2La

X

b2L2

Pz.a; b/ D 1:

Thus in this case the sequence z is an S -sequence with the probability distribution
Pz.a; b/ defined by (9.3). The S -sequence y is said to be combinable with the S -
sequence X . This relation is denoted by �xy. The relation of combining is a symmetric
relation on the set of pears of S -sequences with strictly positive probability distribu-
tions. To show this, we write

�N .a=bI z/ D
�N .a; bI z/
�N .bI z/

;

a 2 Lx , b 2 Ly . If �xy and Px.a/ > 0, Py.b/ > 0, a 2 Lx , b 2 Ly , then, for each
b 2 Ly , a 2 Lx , there exists

Pz.a=b/ D lim
N!1

�N .a=bI z/ D
Pz.a; b/
Py.b/

D Pz.b=a/Px.a/
Py.b/

:

Thus we obtain that �yx. On the other hand, if, for example, Py.b/ D 0 and Pz.a; b/ D
0, then in principle �N .a=bI z/ may fluctuate. In that case x is not combinable with y.
The previous considerations can be summarized as the following proposition.

Proposition 9.1. Let x and y be two S -sequences with strictly positive probability
distributions. Then the following conditions are equivalent: (1)  �xy; (2)  �yx; (3) the
sequence z defined by (9.1) is an S -sequence.

If  �yx and �!xy, then x and y are said to be combinable. This relation is denoted
by xy. If  �xy, then the conditional probabilities Pz.b=a/ are well defined even if
Px.a/ D 0. Typically such probabilities do not play any role in probabilistic con-
siderations. We say that y is .mod Px/–combinable with x,  �xy .mod Px/, if, for
each a 2 Lx , Px.a/ > 0, the sequence y.a/ is an S -sequence. By Proposition 9.1
we have �yx .mod Px/ , z is an S -sequence,  �xy .mod Py/. Thus we need not
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use the arrow to denote this relation of combining. This relation will be denoted as
xy .mod Pz/.

We introduce the operation of combining for collectives. We start with some pre-
liminary considerations on place selections. Let x D .xj /, xj 2 Lx , and y D .yj /,
yj 2 Ly , be two arbitrary sequences and let z D .zj /, zj D .xj ; yj /. Let ˆ1, ˆ2 and
G be some systems of place selections operated in x, y and z, respectively. Let � be-
longs to G: �z D .zn1

; zn2
; : : : ; znk

; : : : /. We set �.1/x D .xnj
/ and �.2/y D .ynj

/.
It should be noticed that in general �.1/ and �.1/ are not place selections in x and y,
respectively9. We set G1 D ff D �.1/ W � 2 Gg, G2 D fg D �.2/ W � 2 Gg.
Let x D .xj / and y D .yj / be ˆ1 and ˆ2 collectives, respectively. Let G be a sys-
tem of place selections operated in z D .zj /, zj D .xj ; yj /, such that, ˆ1 � G1
and ˆ2 � G2. If x and y are mod P-combinable as S -sequences, then they are
said to be .mod P; G/-combinable collectives if: (1) the limits Px.a/, a 2 Lx , and
Py.b/, b 2 Ly , are insensitive to transformations belonging to G1 and G2, respec-
tively; (2) the limits Pz.b=a/, Px.a/ > 0, and Pz.a=b/, Py.b/ > 0, are insensitive to
place selections belonging to G. We can easily prove that x and y are .mod P; G/-
combinable collectives iff z is the G-collective.

Proof. (1) Let x and y be .mod P; G/-combinable. Let � 2 G. For Px.a/ > 0, we
have:

P�z.a; b/ D lim
N!1

�N .a; bI�z/ D lim
N!1

�N .b=aI�z/�N .aI�z/

D lim
N!1

�N .b=aI�z/�N .aI�.1/x/ D Pz.b=a/Px.a/ D Pz.a; b/:

For Px.a/ D 0 we have: �N .a; bI�z/ � �N .aI�z/ D �N .aI�.1/x/. But

lim
N!1

�N .aI�.1/x/ D lim
N!1

�N .aI x/ D Px.a/ D 0:

Thus P�z.a; b/ D 0 D Pz.a; b/.
(2) Let z be the G-collective. Then we obtain

P�.1/x.a/ D
X

b2Ly

P�z.a; b/ D
X

b2Ly

Pz.a; b/ D Px.a/:

In the same way we obtain that P�.2/y.b/ D Py.b/. Finally, we have

P�z.a=b/ D P�z.a; b/=P�.1/x.a/ D Pz.a; b/=Px.a// D Pz.b=a/;

for Px.a/ > 0.

9Let � be defined by a function f D .f1; f2.z1/; f3.z1; z2/; : : : /, where fj D 0; 1. If we
have fn.z1; z2; : : : ; zn�1/ D 1, then the element zn is chosen for a new sequence. Let x D
.x1; x2; : : : ; xn; : : : / be a sequence and let y D .xm; xmC1; : : : /, m > 1. Here z D .zj / has the
form: z1 D .x1; xm/; z2 D .x2; xmC1/; : : : . Thus, in particular, f2.z1/ depends (in general) not only
on x1 but also on xm. Therefore �.1/ is not a place selection for x.
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The reader can easily define for the collectives x and y the relations  �yx,  �xy and
xy with respect to the G which are not based, respectively, on mod Px , mod Py and
mod P factorizations. In general �yx does not imply �xy or that the sequence z is the
G-collective (and vice versa).

Probabilities Pz.a=b/, Pz.b=a/, a 2 Lx , b 2 Ly , have the meaning of condi-
tional probabilities. If Sx and Sy are statistical experiments which generate x and y,
respectively, then, for example, Pz.b=a/ is nothing other than the conditional proba-
bility of the result b for Sy if we knew that a was the result of Sx . It is easy to show
that probabilities Pz.a; b/ (or Pz.a=b/) can be obtained on the basis of the general
definition of conditional probabilities based on the operation of partition. For each
a 2 Lx , we consider the set Aa D fu D .a; b/; b 2 Lyg � Lx �Ly and the point set
Ba;b D .a; b/ � Aa. Let z be an S -sequence (in particular, a collective). It easy to see
that the conditional probability P.Ba;b=Aa/ (for P.Aa/ > 0) defined on the basis of
the operation of partition for z coincides with the probability Pz.b=a/. However, the
approach based on the operation of combining seems more attractive than the approach
based on the operation of partition. In the first case the conditional probabilities have
the natural interpretation as a measure of dependence between collectives x and y.

10 Independence of collectives

Let x and y be S -sequences and let  �yx. The y is said to be independent from x if
all S -sequences y.a/, a 2 Lx , have the same probability distribution which coincides
with the probability distribution Py of y. This implies that

Pz.b=a/ D lim
N!1

�N .b=aI z/ D lim
N!1

�N .bIy.a//:

Hence

Pz.a; b/ D Px.a/Py.b/; a 2 Lx; b 2 Ly : .10:1/

Thus the independence implies the factorization of the two dimensional probability
Pz.a; b/. However, in general the multiplication rule (10.1) does not imply indepen-
dence. If (10.1) holds, but Px.a/ D 0, then in principle Pz.b=a/ may depend on a
(or it may be that Pz.b=a/ D Const ¤ Py.b//. By similar reasons the condition “y
is independent from x” does not imply that x is independent from y. Dependence
on a such that Px.a/ D 0 (or b, Py.b/ D 0) does not play any role in probabilistic
considerations10. Therefore it is natural to consider .mod P)-independence.

Let x and y be two (mod P)-combinable S -sequences (or collectives). They are
said to be (mod P)-independent if (a) Py.a/ � Py for all a 2 Lx , Px.a/ > 0 and
(b) Px.b/ � Px for all b 2 Ly , Py.b/ > 0. In fact, (a) implies (b) and vice versa. For

10Of course, we could not completely exclude the possibility that there may exist physical phenomena
in that the dependence on labels having zero probabilities plays some rule.
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instance, let (a) take place. Then for Py.b/ > 0, we have

Pz.a=b/ D Pz.a; b/=Py.b/ D Pz.b=a/Px.a/=Py.b/

D Py.a/.b/Px.a/=Py.b/ D Px.a/:

It is evident that the multiplication rule (10.1) holds for (mod P)-independent se-
quences. On the other hand, if xy.mod P/ and the multiplication rule .10:1/ hold,
then x and y are (mod P)-independent.

Remark 10.1. The reader can easily generalize the frequency approach to conditional
probabilities and independence to countable sets of labels. Non-countable sets of la-
bels were considered in [162].

Example 10.1. Assume that two coins are tossed simultaneously, the corresponding
sequences being x and y (with Lx D Ly D f0; 1g). Our experience says that in
mathematical models we can assume that x and y are collectives with probability
distributions Px.a/, Py.b/, a; b D 0; 1. We choose two subsequences of y: (1)
y.0/ D .yjl

/, where, for the first coin, xjl
D 0; (2) y.1/ D .yjl

/, where, for the
first coin, xjl

D 1. Our experience says that in the mathematical model (for ordi-
nary coins) we can assume that there exist P.b=0/ D limN!C1 �N .bIy.0// and
P.b=1/ D limN!1 �N .bIy.1//, b D 0; 1. If tossing of the second coin does not
depend in any way on the tossing of the first coin, then the relative frequencies in
y.0/ and y.1/ have the same behaviour as relative frequencies in y (this is again the
experimental fact). Thus we can assume that collectives x and y are independent.

Example 10.2. Assume that an urn contains balls each marked with a number a, where
a belongs to the set S D fa1; : : : ; ang. The sequence x is induced by the experiment
Sx: we draw a ball from the urn, write its label and return it into the urn. The sequence
y is induced by the experiment Sy : after drawing the first ball and before returning
it, a second ball is drawn from the urn and its label is written. As usual, we define
subsequences y.aj /; j D 1; : : : ; n, of y. Our experience says that in the mathematical
model we can assume that x, y and y.aj / are collectives and x and y are combinable.
Thus the conditional probabilities P.bj =ai / D Py.ai /.bj / are well defined. However,
if the distribution of balls in the urn is not symmetric, then P.bj =a/ depends on a.
Thus the collectives x and y are not independent.

11 Frequency and measure – theoretical viewpoints
on independence

If we use the frequency approach and take combining as our starting point, then the
mathematical and physical conditions for independence concern the interconnection
of the two one-dimensional collectives x and y (two statistical experiments Sx and
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Sy) or in terms of Pz.a; b/, the type of this two-dimensional distribution: factoriza-
tion (10.1); they are not concerned with properties on each single collective (statistical
experiment). On the other hand, measure-theoretical definition (4.1), (4.2) of indepen-
dence does not relate in any way to two-dimensional distribution. Of course, defini-
tion (4.1), (4.2) can be considered as a generalization of the factorization rule (10.1).
However, (4.1), (4.2) extends (10.1) too much. In general (4.1), (4.2) has no relation
with original physical motivations of independence. We wish to consider this problem
carefully. Consider the following example [171]: The label space S consists of six
points 1; : : : ; 6 with distribution pi , i D 1; : : : ; 6; the event (or set) A consists of the
three points 2; 3; 4, the event C of the two points 1; 2; the intersection A \ C is the
point 2, and P.C=A/ D p2=.p2 C p3 C p4/ (due to measure-theoretical definition
(2.4) or frequency definition (3.4) which is based on the operation of partition). Now
the following question is asked: Under what conditions is P.C=A/ equal to P.C / (or
P.C \ A/ D P.A/P.C /)? In our example p2=.p2 C p3 C p4/ D p1 C p2? The
example is so chosen that this is true for pi D 1=6, ; i D 1; : : : ; 6. The statement is
then made that, in this case, the events A and C are independent. Let us analyze this
statement.

Let us consider a set A consisting of the points 2; 3; 4 and a set C of point 2; here
C � A. Then P.2=A/ D p2=.p2Cp3Cp4/. Here P.2=A/ certainly does not remain
unchanged if we vary the set A, and certainty for no A, P.A/ ¤ 1, is P.2=A/ equal
to p2. Now, however, in order to make such an equality possible, one consider other
sets, C , such that A \ C D f2g but C 
 A \ C . Such subsets of S are, for example,
C1 D f1; 2g, C2 D f2; 5g, C3 D f1; 2; 5; 6g, C4 D f1; 2; 5g. Then, for each of these
Ci , P.Ci=A/ D p2=.p2 C p3 C p4/. Thus, having the choice of sets Ci one may ask
whether for one or more of them, and with some given distribution, P.C=A/ D P.C /.
If all pi D 1=6, this holds true for C1 D f1; 2g or for C2 D f2; 5g but not for C3
or C4. If we take p1 D p5 D 1=12, p2 D p3 D p4 D 1=6, p6 D 1=3, then
the above equality holds for C4 D f1; 2; 5g but no longer for C1 and C2, and so on. It
seems that the measure-theoretical definition allows the possibility to purely numerical
accidents. From the physical point of view, it is not clear: What is the meaning of the
statement that, for a given distribution “the events A D f2; 3; 4g and C D f2; 5g are
independent” while “the events f2; 3; 4g and f1; 2; 5g are dependent” or “events f1; 6g
and f2; 3; 4g are dependent”?

One may say that the intersection of two sets A and C has the ‘property’ of be-
longing to A and the ‘property’ of belonging to C (and many others). Nevertheless,
the label “2” – the result of the ordinary tossing of one die – is not a two-dimensional
label like “blond hair, blue eyes” or “first die 3, second die 5”. Therefore a concept
of independence of two ‘properties’ which may or may not influence each other is
meaningful. However, this concept must be discussed on the basis of the procedure of
combining of collectives corresponding to measurements of these properties.

Conclusion. Independence should be defined for collectives rather than for isolated
events.
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12 Generalization of the operation of combining

In fact, to consider the relation of combining �xy we need not start with two collectives
(or S -sequences) x and y. It suffices to have one collective x and a family fy.a/ga2Lx

of collectives having the same label set Ly . We denote the system .x; fy.a/ga2Lx
/

by the symbol Uxy . In this framework we can also define conditional probabilities
PUxy

.b=a/ D Py.a/.b/, a 2 Lx , b 2 Ly , and two-dimensional probability distribu-
tion

PUxy
.a; b/ D PUxy

.b=a/Px.a/; a 2 Lx; b 2 Ly :
In fact, a sequence z D .zj / corresponding to measurements of pears zj D .xj ; yj /

may be not defined. Such a situation is common for measurements of so called incom-
patible observables in quantum mechanics (i.e., observables represented by noncom-
muting operators), see Chapter 2. In that case it is impossible to perform a simultane-
ous measurement of two observables x and y (i.e., we could not form the collective z).
Nevertheless, we could speak about two properties A and B of the physical system.
The conditional probability PUxy

.b=a/ has the following meaning: if the result of a
measurement of the property A is equal a, then the probability to obtain the value b of
the property B is equal PUxy

.b=a/.
We suppose now that it is also possible to perform a measurement of the property

B and, for each B D b, to perform a measurement of the property A. Mathematically
such measurements are described by a collective y (corresponding to a measurement
of B) and a system fx.b/gb2Ly

of collectives (corresponding to measurements of A
under the condition B D b). Thus we have the system Uyx D .y; fx.b/gb2Ly

/.
Here we can also define the conditional probabilities PUyx

.b=a/ and two-dimensional
probability distribution

PUyx
.b; a/ D PUyx

.a=b/Py.b/; a 2 Lx; b 2 Ly :
It may be that PUxy

.a; b/ ¤ PUyx
.b; a/. In such a case the two-dimensional probabil-

ity distribution P.a; b/ corresponding to pears .A D a;B D b/ does not exist.

13 Comparative probability

All probability models discussed in the previous sections are called quantitative prob-
ability models. Terse the quantitative statement “P.A/ D p” read “the probability of
A is p” is the basis of these theories11. On the other hand, the modal or classificatory
statement “A is probable” or “A is likely” seems to be most common in ordinary dis-
course. To formalize such an approach, we can consider, for example, a binary relation
P2 in the setD�D, whereD is the set of events. This relation can be read as follows:
If .A;B/ 2 P2, then A is at least as probable as B , A 
 B . Such a formalization gives
so called comparative probability formalism (see, for example, T. Fine [62]).

11There arises natural question Why do we consider only real numbers p as quantities?
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Comparative probability induces more extended class of probability models (with
larger domains of application) than quantitative probability.

For example, having observed that 10 tosses of a strange coin resulted in 7 heads,
we are more justified in asserting that “heads are more probable than tails” then assert-
ing that “the probability of heads is 0:7”. There exist relatively simple mathematical
models in that we consider to be valid comparative probability statements that, are
incompatible with any representation in quantitative theory12.

However, my opinion is that comparative probability models have to be considered
as “derivatives” of the three fundamental models (classical, frequency and ensemble).
To define the binary relation P2, we need to use one of fundamental models (or their
generalizations).

Typically it is assumed that the binary relation P2 satisfies the following axioms
(see T. Fine [62], p. 17):

C0. (Nontriviality) � � ¿, where ¿ is the null or empty set.

C1. (Comparability) A % B or B % A.

C2. (Transitivity) A % B , B % C ) A % C .

C3. (Improbability of impossibility) A % ¿.

C4. (Disjoint unions) A \ .B [ C/ D ¿) .B % C , A [ B % A [ C/.
Axiom C1 and C2 establish that the relation % is a linear complete order. The require-
ment that all events be comparable is not insignificant and as been denied by some
authors [62]. To illustrate the latter possibility, we consider the following example.
There is an ensemble S , jS j D N , of coins having different centers of mass. The first
coin tossing experiment (for all coins s 2 S ) gaveN1 heads and the second experiment
give N2 heads. If N1 > M1 D N � N1, but N2 < M2 D N � N2, then we cannot
assert neither “heads are least as probable as tails” (A % B) nor “tails are at least as
probable as heads”.

In Chapter 4 we construct a quantitative probability model (with the field of p-adic
numbers as quantitative space) that induces a comparative probability model in that
there exist noncomparable events. In this model the axiom (C4) is also violated.

Remark 13.1 (Subjective probability as comparative probability). It seems that the
comparative interpretation is the one of possible interpretation of subjective proba-
bility. We remark that is does not sound reasonable to use the fixed ordered set (the
segment Œ0; 1
) for quantitative representation of subjective probabilities. The use of
Œ0; 1
 is the root of misunderstandings related to subjective probability. This implies
that numbers p 2 Œ0; 1
 are often interpreted as frequency of ensemble probabilities.

12At least if R is used as a “quantitative space”.
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In this chapter various interpretations of quantum mechanics will be discussed. Com-
parative analysis of statistics of results of measurements for classical and quantum
physical systems will be performed. We shall see that (at least formally) quantum
statistics differs crucially from classical one. We present classical (but in general non-
Kolmogorovean) probabilistic analysis of this situation

1 Classical and quantum probability rules

1.1 Properties of physical systems

The notion of a property of a physical system will play an important role in our anal-
ysis. Therefore we shall start with a discussion on this notion. We shall use not only
physical, but also philosophic arguments. Those who are not interested in such dis-
cussions may start directly with probability interpretations of the wave function (see
Subsection 2).

Before to start, we consider following simple examples of physical properties.

Example 1.1. Let S be an ensemble of bodies. Suppose that these bodies have one of
two colors, black or white, and one of two forms, ball or cube. The color and form
are properties of s 2 S . Numerically these properties, A and B , can be described by
quantities A D 0; 1 for black and white bodies, respectively, and B D 0; 1 for ball and
cube, respectively.

Example 1.2. Let a be a particle (classical or quantum). The position q and mo-
mentum p of a are properties of a. Numerically these properties are described by
continuous spectrum of values (by the field of real numbers R). In what follows we
shall mainly study properties which are described by discrete spectra of values. In the
case of the position and momentum we can make the following discretization. Let Dq
and Dp be domains in R3. We set A D 1 if q 2 Dq and A D 0 if q 62 Dq; B D 1 if
p 2 Dp and B D 0 if p 62 Dp . The quantities A and B are properties of a.

The physical community is characterized by huge diversity of views on the notion
of a property of a quantum physical system (see, for example, [58], [67], [172], [20],
[21], [26–28], [31], [30], [49], [48], [54] [71], [45], [70], [50], [51], [139], [1, 4–9,
12–15, 17, 19, 22, 23, 25, 36, 37, 57, 60, 65, 97, 100, 102–105, 107, 108, 114–126] for the
details).

1.2 Realism

Some scientists keep to realism. They assume that a property is an objective charac-
teristic of a quantum system. Thus any property is a property of an object (as well as
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it is assumed in classical physics). Such a property has no direct relation to acts of
measurement. In particular, adherents of realism (de Broglie [49], [48], Einstein [58],
Bohm [31], [30], Bell [26], [28], . . . ) assume that both classical and quantum particles
have well-defined positions and momentums or vectors of spin or polarizations.

Adherents of realism can be split in two subgroups. This splitting is based on two
different answers to the following question:

Does the quantum formalism operate with initial values of properties (i.e., values be-
fore acts of measurements) or final values of properties (i.e., values after acts of mea-
surements)?

This question is very important in quantum mechanics, because here a measurement
can change crucially values of properties of physical systems. Roughly speaking a
quantum systems is extremely small and a measurement device is huge (comparing to
a system).

We shall call adherents of the initial values hypothesis i -realists and adherents of
the final values hypothesis f -realists1. For example, Einstein, Podolsky and Rosen
were i -realists. In their famous work [58] on the EPR-paradox they proved (at least
they were sure that they did this) that a quantum particle has definite position and
momentum2, see also [57].

1.3 Empiricism

Other part of the physical community supports (following Bohr) the ideas of empiri-
cism, see e.g. De Muynck’s book [53] – the Bible of modern empiricism. They assume
that the quantum formalism does not describe microreality such as it is.3 Properties
obtained via quantum measurements are not properties of quantum systems (not prop-
erties of objects). They are merely properties of measurement phenomena (properties

1For example, any measurement of the position of a quantum particle should change the localization
of this particle. I -realists suppose that a quantum measurement gives the initial value of the position,
q D qi . Thus, although the post-measurement value of position qf may differ essentially from qi ,
nevertheless, a detector gives the pre-measurement value qi . On the other hand, f -realists suppose that
a quantum measurement gives the final value of the position, q D qf .

2Since in quantum mechanics position and momentum are incompatible observables and hence they
could not be measured simultaneously, Einstein, Podolsky and Rosen concluded that quantum mechanics
is not complete. They also pointed [58] that the only alternative to incompleteness is quantum nonlo-
cality: measurement on one quantum particle changes the state of not only this particle, but also of any
particle which is entangled with it (and which can be located far away). However, Einstein, Podolsky and
Rosen considered [58] quantum nonlocality as a totally absurd alternative to their i -realism. Surprisingly
nowadays quantum nonlocality became well established in quantum mechanics, especially in quantum
information theory.

3In philosophy people speak about ontic reality: reality as it is when nobody performs measurement,
see [17] for discussion on the ontic and epistemological levels of descriptions of reality. The famous
question of Einstein to Pauli: ‘Does Moon exists when nobody looks at it?’ - is related to this problem.
Empiricists do not consider quantum mechanics as a story about ontic reality. It is an epistemological
story.
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of instruments and physical circumstances in that these instruments are used). In par-
ticular, adherents of empiricism (N. Bohr, P. Dirac, J. von Neumann, . . . ) claim that
positions and momentums of quantum particles are not objective. For example, an
electron has no definite position before the act of a measurement.

Some adherents of empiricism think that a property depends not only on a measure-
ment procedure M, but also on so called preparation procedure E (see Section 2 for
the details) which is used to prepare quantum systems for acts of measurements. We
call the adherents of the latter viewpoint Bohrian empiricists.

N. Bohr was father of the latter form of empiricism: “all experimental arrangement
should be taken into account” as we have learned from him.

Example 1.3 (Bohrian property). Let us keep to Bohrian empiricism. As cats cannot
fly, the velocity of flying v cannot be considered as an objective property of a cat.
We consider the following procedure E preparing cats to fly: each cat is placed in
front of the pilot-desk of an airplane which is equipped with a system of autopilot.
By manipulations by buttons a cat can change the velocity v of the airplane. A large
statistical ensemble S of cats in airplanes is prepared. The measurement procedure M

is a measurement of average (for e.g. one hour of flying) of the velocity v of a randomly
chosen airplane with a cat. The v is not a property of the cat (on the other hand, it is
neither a property of the airplane). It is a property of the preparation and measurement
procedures. Nevertheless, nobody would deny reality of cats and airplanes. If cats can
choose only a finite set of speeds v1; : : : ; vk , then the measurement M will produce
discrete probability distribution P.v D vi /, i D 1; 2; : : : ; k.

1.4 Idealism

Empiricism is sometimes identified with idealism. By idealists viewpoint quantum
systems have no objective properties at all. This approach immediately implies a
death of realism (not only reality of the microworld, but also reality of macroworld
which is composed of microsystems). However, in principle empiricism need not im-
ply idealism. It is very well possible to believe in the objective existence of atoms
and electrons without being committed to the thesis that this reality is described by the
quantum mechanical formalism. It was Bohr’s position.

Of course, one should not forget that Bohr’s position was time-dependent (views of
everybody may change crucially during his life). Early Bohr’s wrote about positions
and momentums of quantum particles. He could be considered as f -realist: measure-
ment devices change values of positions and momentums of quantum particles. How-
ever, from the very beginning he claimed that quantum mechanics is complete. One
could not expect creation of new (more fundamental) theory which would provide an
access to e.g. positions and momentums (at least simultaneously). This is a result of
uncontrollable exchange of momentum between a particle and a measurement device.
Late Bohr did not write more about properties of quantum systems, but solely about
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results of measurements. Thus he moved from the camp of f -realists and he became
pure empiricist.

1.5 Comparing realism and empiricism

The realist philosophy is very attractive for scientists working in classical physics.
However, we shall see that the realist viewpoint induces some problems, e.g. Einstein–
Podolsky–Rosen paradox [58] in the foundations of quantum physics.

The empiricists approach seems to be free of such problems. However, empiricism
is not so attractive as the philosophic basis for the investigation of reality. If we even
do not keep to idealism – not deny existence of objective reality (which is independent
to our observations), then by the empiricists ideology we still have to assume that
the quantum formalism describes not objective reality of microworld, but reality of
equipment in our laboratories.

In principle, the empiricists ideology were not be so bad, if it would not deny (fol-
lowing Bohr) a possibility to go beyond quantum mechanics, i.e., to create of a new
more fundamental theory for which quantum mechanics would play the role of an
approximation. However, such thoughts were totally forbidden in Bohr’s kingdom.
Nowadays some leading empiricists, e.g. already mentioned De Muynck as well as De
Baere, see [52,53], and Ballentine [21], do not exclude a possibility of construction of
a subquantum model with mentioned features. We point out that in his early works,
e.g. the fundamental paper [20], Ballentine presented the realist position, but later he
kept to the empiricist one [21].

1.6 Probability interpretation of a quantum state

We discuss now a probability interpretation of quantum mechanics. We may restrict
our considerations to two-dimensional quantum systems. Already such quantum sys-
tems demonstrate all delicate features of this problem. Let us consider a large statisti-
cal ensemble S of quantum systems. Suppose that each system s has two properties,
A and B . Let H D C � C be the two-dimensional complex linear space with the
inner product .�; �/ W H �H ! C. In the quantum formalism a statistical ensemble
of identically prepared systems S is described by a normalized vector � 2 H (i.e.,
k�k2 D .�; �/ D 1/. This vector is called a (pure) quantum state. The properties
(physical observables) A and B are described by symmetric operators bA and bB , re-
spectively. Let eA D .�0; �1/ and eB D . 0;  1/ be two orthonormal bases in H

consisting of eigenvectors of the operators bA and bB , respectively. The quantum state
� can be represented in two ways:

� D c0�0 C c1�1; where c0; c1 2 C; jc0j2 C jc1j2 D 1I (1.1)

� D d0 0 C d1 1; where d0; d1 2 C; jd0j2 C jd1j2 D 1: (1.2)
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By the probability interpretation of expansion (1.1) of the quantum state � the proba-
bility P.A D ˛/.� P�.A D ˛// that s 2 S has the property A D ˛ is equal to jc˛j2
(Born’s rule):

P�.A D ˛// D j.�; �˛/j2:
In the same way expansion (1.2) gives that P.B D ˇ/.� P�.B D ˇ// D jdˇ j2. The
possibility to expand one basis with respect to other basis induces connection between
the probabilities P.A D ˛/ and P.B D ˇ/. Let us expend the vectors �0 and �1 with
respect to the basis eB :

�0 D u00 0 C u01 1; where u0˛ 2 C; ju00j2 C ju01j2 D 1I (1.3)

�1 D u10 0 C u11 1; where u1˛ 2 C; ju10j2 C ju11j2 D 1: (1.4)

Thus d0 D c0u00 C c1u10; d1 D c0u01 C c1u11 and we obtain the quantum rule for
transformation of probabilities due to transition from one orthogonal basis in complex
Hilbert space to another (from the a-representation to the b-representation):

P.B D ˇ/ D jc0u0ˇ C c1u1ˇ j2; ˇ D 0; 1: .1:5/

This rule is often interpreted as an exhibition of quantum interference. In the next sec-
tion we shall compare (1.5) with the classical formula of total probability, see Chap-
ter 1. We shall see that (1.5) can be considered as a quantum generalization of this
classical probabilistic law.

1.7 Contradiction between classical and quantum formulas of
total probability

On the other hand, by the probability interpretation of expansions (1.3), (1.4) we obtain
that

P.B D ˇ=A D ˛/ D ju˛ˇ j2:
Indeed, in (1.3), (1.4) the quantum states �˛, ˛ D 0; 1, describe statistical ensembles
NS.A D ˛/ of physical systems which have the property A D ˛. Therefore the ex-

pansion of the �˛ with respect to the basis eB gives corresponding probabilities for
B D ˇ (under the condition that A D ˛). Hence, the formula of total probability, see
Chapter 1, implies:

P.B D ˇ/ D
X

˛D0;1

P.A D ˛/P.B D ˇ=A D ˛/

D jc0j2ju0ˇ j2 C jc1j2ju1ˇ j2:
(1.6)

Thus in general ‘quantum rule’ (1.5) – the quantum formula of total probability –
differs from ‘classical rule’ (1.6) – the classical formula of total probability. The stan-
dard viewpoint to the contradiction between (1.5) and (1.6) is that it is the exhibition
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of ‘violation of laws of classical probability’. Such a position stimulated mystification
of quantum mechanics. Typically people think: ‘If laws of quantum probability are so
different from laws of classical probability, then even quantum physical laws should be
very different from classical physical laws,’ see Feynman [60] for presentation of such
a sort of interpretation of violation of the formula of total probability (he considered
it as violation of the law of additivity of probability). Finally, people are looking for
solutions such as quantum nonlocality and death of realism. However, careful anal-
ysis will show that this contradiction is a consequence of formal manipulations with
Kolmogorov probabilities.

Remark 1.1. The reader can easily understand that (1.5) differs from (1.6) only if
the operators bA and bB do not commute. Observables (properties) A, B which are rep-
resented by noncommuting operators bA, bB are said to be incompatible. By the quan-
tum formalism incompatible observables cannot be measured simultaneously. Hence,
for incompatible, observables A, B the two-dimensional probability distribution
P.˛; ˇ/ D P.A D ˛;B D ˇ/ cannot be defined on the basis of real physical mea-
surements.

2 Interpretations of wave function

The wave function has many different physical interpretations.4 We discuss the most
important of them.

2.1 Ensemble realist interpretation – Einsteinian interpretation

This interpretation is often called a statistical interpretation (following to L. Ballen-
tine, [20]).5 It is assumed that � describes a statistical ensemble S of identically pre-
pared systems (a system is denoted by the symbol s, may be with indexes). Properties
of any s are its objective properties. On the basis of this interpretation, it is possible
to keep both to i -realism and f -realism. However, the main part of investigations is
based on i -realism. As was mentioned, A. Einstein was one of creators of the statisti-
cal interpretation (in the i -realists framework). We call this interpretation Einsteinian
interpretation.

Here the wave function � (given by a normalized vector of complex Hilbert space)
describes probabilistic distributions of properties of elements s of a statistical ensem-
ble S . If we keep to i -realism, then these are distributions of initial properties of
these elements; if we keep to f -realism, then these are distributions of final properties

4Of course, such a proliferation of paradigms is characteristic of a crisis in the development of quan-
tum theory, see [51], [54] for the details.

5However, such a terminology might be misleading. Since in all interpretations the experimental
verification is performed via statistical verification of Born’s rule, some adherents of other interpretations,
e.g., the orthodox Copenhagen interpretation are sure that they use ‘statistical interpretation’.
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(obtained via measurements) of these elements. In any event these are objective prop-
erties. Einsteinian interpretation is an attempt to generalize directly classical statistical
mechanics to quantum systems.

2.2 Individual realists interpretation – ‘Leningrad interpretation’

It is assumed that � describes not the probabilistic features of a statistical ensemble S ,
but the state of an individual physical system s. Properties of s are considered as being
objective. This is one of forms of the orthodox Copenhagen interpretation. Nowa-
days this interpretation is widely used in quantum information theory. By taking into
account violation of Bell’s inequality (Section 6), we shall see that this interpretation
can be consistent only in combination with quantum nonlocality. Although assigning
of the wave function to an individual quantum system (e.g. an electron) is associated
with Copenhagen, Bohr had never told anything about the individual interpretation of
the wave function. It seems that this interpretation was elaborated by Vladimir Fock,
so it would be more natural to call it the Leningrad interpretation.6

2.3 Ensemble empiricists interpretation – Bohrian interpretation

Here it is assumed that � describes the probabilistic features of a statistical ensemble
of quantum systems produced by a preparation procedure. ‘Properties’ of quantum
systems are simply results of measurements. Probabilistic distributions which are re-
lated to this statistical ensemble are merely (see Example 1.3) probabilities associated
with preparation and measurement procedures.

The problem of objectivity of measured properties is either not discussed or it is
claimed that they are not objective – in the sense that they cannot be assigned solely
to quantum systems. The latter is Bohrian (at least late Bohrian) interpretation of
quantum mechanics. We emphasize that Bohrian interpretation is very different from
the interpretation which is called the orthodox Copenhagen interpretation!

As was already pointed out, early Bohr kept to the statistical f -realist interpretation.
Thus early Bohr’s interpretation was not so much different from the Einsteinian: one
kept f -realism, another i -realism.7

6Among modern supporters of this interpretation I can mention Paul Busch, Marian Grabowski, Pekka
Lahti [65], [37]. Majority of experimenters (especially working in quantum computing and quantum
cryptography) use this interpretation. It is not easy for them to abandon reality of parameters that they
measure. As the price of realism, they get quantum nonlocality. Of course, they are sure that this version
of the Copenhagen interpretation is the original Bohr’s interpretation. They are extremely surprised to
hear that Bohr would never support such ideas.

7The main reason for their debates was Bohr’s claim that quantum mechanics could not be improved:
uncontrollable perturbations induced by measurements could not provide pre-measurement values of
quantum variables, e.g. position and momentum. Since Bohr by himself was at the position of f -realism,
it was not easy to explain why one could not determine (via development of measurement technology)
pre-measurement values, in particular, to perform simultaneous measurements. I think it was one of the
reasons why later Bohr took the purely empiricist position.
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2.4 Växjö interpretation

As was pointed out, Bohr emphasized the completeness of quantum mechanics – im-
possibility to create a finer description of micro-processes. In fact, this Bohr’s claim is
merely of the philosophic value. There are no reasons which forbid to combine statis-
tical (ensemble) interpretation of the wave function and interpretation of ‘properties’
of quantum systems as results of observations with possible existence of ‘subquantum
models’, models with ‘hidden variables.’ Last years such an interpretation became
known as the Växjö interpretation of quantum mechanics: subquantum realist statisti-
cal observational interpretation of quantum mechanics, see e.g. [6,7,97,100,102–105,
107, 108]:

(a) A wave function (as well as a density matrix) describes probabilistic features of
an ensemble prepared by a preparation procedure;

(b) Self-adjoint operators describe observables. Results of observations could not
be assigned solely to prepared systems: parameters of measurement devices play
the crucial role.

(c) The Bohr principle of complementarity takes place.

(d) There might exist subquantum models with ‘hidden variables’ which induce
probabilities given by the quantum formalism (but need not the values of quan-
tum observables).

Concerning (c) we remark that it implies that one could not expect creation of
a theory with hidden variables, say 
, such that incompatible quantum observables
described by noncommuting operators bA, bB would be represented by random vari-
ables A.
/, B.
/ defined on the same Kolmogorov probability space. In particular,
Växjönese is not looking for the joint probability distribution for the position and mo-
mentum. It does not exist, because observations of them are based on incompatible
experimental arrangements.

Concerning (d) we remark that Växjönese is looking for subquantum variables,
say 
, such that so called quantum randomness can be reduced to classical random-
ness of such variables. However, such a reduction has essentially more complicated
structure than the representation by random variables 
! A.
/, B.
/, see e.g. [114–
120, 122–126].

However, this book is not devoted to the problem of creation of subquantum models,
see e.g. [114–120, 122–126] for an attempt. In this book we shall merely keep to the
statistical empiricist interpretation. Thus we shall not take care about (c) and (d).

Finally, we remark that known so called ‘no-go’ theorems against hidden variables
such as Bell’s theorem are directed against Einsteinian interpretation, i.e., statistical
realist interpretation, or the orthodox Copenhagen interpretation in the form of indi-
vidual realists interpretation. The empiricist interpretation in general and the Växjö in-
terpretation in particular do not contradict to these theorems [121].
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2.5 Individual empiricists interpretation – Dirac–von Neumann inter-
pretation

Here it is assumed that � describes the state of an individual quantum system s. Many
adherents of this interpretation keep to idealism and suppose that s has no objective
properties at all. ‘Properties’ of s are solely based on specific acts of measurements.
This is also a form of the orthodox Copenhagen interpretation. I can mention Dirac and
von Neumann as main supporters of this interpretation. The latter developed [172] the-
ory of irreducible quantum randomness, i.e. randomness which could not be reduced
to ensemble randomness.

2.6 Individual interpretation and subjective probability – Fuchsian in-
terpretation

In this book we shall not consider individual interpretations of �. In particular, we
shall not deal with various forms of the orthodox Copenhagen interpretation.

It seems that the use of subjective probability is the only reasonable way to give the
probabilistic foundation to these interpretations. Recently Christopher Fuchs formal-
ized this idea in the form of so called Fuchsian interpretation of quantum mechanics. It
is clear that the Fuchsian interpretation is totally opposite to the Växjö interpretation.
Therefore sometimes the Fuchsian interpretation is called anti-Växjö interpretation,
see [121].

However, it would be rather strange to use such an argument as a ‘measure of the
personal belief’ as the cornerstone of the fundamental physical theory. As it has been
mentioned in Section 7, Chapter 1, at the moment the only real possibility to justify the
use of subjective probabilities is to reduce them to ensemble or frequency probabilities.

Let the wave function � describe the measure of our belief that, for example, the
position q of an (individual) electron would be observed in a domain D. But how can
this measure of our belief be found? The only way is to use our ensemble or frequency
experience8.

We recall that Jaynes [29] strongly criticized both the Copenhagen and ensemble
interpretation for using objective probabilities. He was sure that all problems, includ-
ing violation of Bell’s inequality could be immediately eliminated by using subjective
interpretation of quantum probabilities.

In this book we shall concentrate our studies on ensemble (statistical) interpreta-
tions. These interpretations can be used on the basis of ensemble and frequency prob-
ability theories. Ensemble probability theory provides the basis of the statistical inter-
pretation in the framework of i -realism. Frequency probability theory must be used as
the basis of the statistical interpretation in the f -realists framework and the ensemble
empiricists interpretation.

8Another possibility to deal with subjective probabilities is to consider them as measures of informa-
tion. However, even if probability is considered as subjective information, then it can be again reduced
to ensemble or frequency probability for distribution of ideas in the brain.
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2.7 Preparation and measurement procedures

Many physicists imagine a quantum measurement process as it is split in two proce-
dures:

(1) a preparation procedure E ,

(2) a measurement procedure M.

A preparation procedure E produces an ensemble S � SE of ‘identically prepared’
systems: s 2 S .

The next step is a measurement procedure M. The M is used for a measurement of
some property B of systems prepared via E .9

The values of B obtained via a measurement procedure M are considered (depend-
ing on a viewpoint) as Bi (objective initial values), Bf (objective final values) or
Bohrian (values determined by the preparation procedure E and the measurement M/.

The main feature of the quantum mechanical formalism is that theoretically the
probability distribution of B can be found on the basis of the purely algebraic compu-
tations via representation (1.2), Born’s rule.

The statement that quantum systems are ‘identically prepared’ by a preparation pro-
cedure is not verifiable experimentally. It is a metaphysical proposition. What can be
experimentally verified?

The fact that a preparation procedure determines the definite probability distribu-
tions for any property of a system which can be described by quantum mechanics (for
any quantum observable). Thus by definition a preparation procedure induces stabi-
lization of relative frequencies of results of observations for any quantum observable.10

Depending on interpretation any property B can be considered either as an objective
property of a quantum system s 2 S – realism or as merely a property of preparation
and measurement procedures – empiricism. Probabilities P.B D ˇ/ have different
meanings in different approaches to quantum mechanics.

By the statistical (ensemble realists) interpretation in the i -realists framework

P.B D ˇ/ D PS .Bi D ˇ/

is the distribution of initial values Bi of the property B in the ensemble S . By the
same statistical interpretation, but in the f -realists framework

P.B D ˇ/ D Pb.Bf D ˇ/
9It is more or less commonly accepted that it is meaningless to perform a measurement without a

preparation procedure. First one should determine conditions of ensemble preparation and only after this
a measurement procedure can be run.

10Typically stabilization of relative frequencies for observations is considered as a law of nature. How-
ever, in practice we simply select preparation procedures and measurement procedures in a consistent
way. If experimenters find that the principle of statistical stabilization (the law of large numbers in the
Kolmogorov measure-theoretic model) is violated, they would simply consider such an experiment as
badly performed (instability of parameters, nonreproducibility of results of measurements and so on).
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is the distribution of final values Bf of the property B in the collective

b D .ˇ1; ˇ2; : : : ; ˇk; : : : /

induced by measurements M of B for systems s 2 S . If we keep to the ensemble em-
piricists interpretation, then probabilities P.B D ˇ/ have also the frequency meaning.

2.8 Filters – preparation via selection

A preparation procedure E often consists of a source and a filter (a selection procedure)
with respect to values of some property of emitted systems, say A (observable in the
empiricist approach). It is common to consider filters which determine completely
probabilistic features of the output ensemble. Thus for two different types of sources,
say I1 and I2, probabilistic features of ensembles obtained via such a filtration, say S1
and S2, are indistinguishable. In the quantum formalism such a property (observable)
used for filtration is represented by an operator bA having nondegenerate spectrum.

Let A D 0; 1 be a property of systems. Consider filters F˛ corresponding to fixed
values of A W F˛ selects only systems for which A D ˛. Here it is assumed that
A is represented by operator in two-dimensional Hilbert space. Statistical ensembles
NS.A D ˛/, ˛ D 0; 1, results of selection with respect to corresponding values of A are

represented by pure states �˛, eigenvectors of bA:

bA�˛ D ˛�˛:

2.9 Preparation and measurement procedures in quantum formalism

In the simplest case the formalism of quantum mechanics works in the following way.
A preparation procedure E is represented by a pure state � (in general preparation
procedures could correspond to so called mixed states). For any quantum observableB
represented by a self-adjoint operator bB with purely discrete nondegenerate spectrum
(the latter we assume for simplicity) the probability to obtain the value ˇ is given by
Born’s rule:

P�.B D ˇ/ D j.�;  ˇ /j2;
where ˇ is an eigenvector of bB corresponding to the eigenvalue ˇ. In other words one
should use the expansion (1.2) of � with respect to the orthonormal basis consisting
of eigenvectors of bB . We remind that one may use various interpretations for the
probability in the left-hand side of Born’s rule. The well-known conflict between
‘classical probability’ and ‘quantum probability’ arises only if one tries to proceed
in the Kolmogorov framework. By using the frequency (von Mises) framework we
escape any problem.

Let us consider now a property (observable) A D ˛1; ˛2 represented by an opera-
tor bA acting in two-dimensional Hilbert space. Consider two preparation procedures
based on corresponding filtration, F˛i

, i D 1; 2. They produce ensembles NS.A D ˛i /.
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We now consider another property (‘measure another observable’) B D ˇ1; ˇ2 for
elements of the ensemble NS.A D ˛i / (for the fixed i/. We obtain probabilities
P NS.AD˛i /

.B D ǰ / for j D 1; 2.

The ensembles NS.A D ˛i / are represented by eigenvectors �˛i
of bA. The property

(observable) B is represented by an operator bB having eigenvectors  
ǰ

. Born’s rule
gives prediction for probabilities:

P NS.AD˛i /
.B D ǰ / � P�˛i

.B D ǰ / D j.�˛i
;  

ǰ
/j2:

As was pointed out, the problem arises if one interpret these probabilities in the Kol-
mogorov framework as conditional probabilities P.B D ǰ =A D ˛i / (given by Bayes’
rule).

3 ‘Contradiction’ between quantum and
classical probability calculi

We now come back to our comparative analysis of the conventional formula of total
probability, see Chapter 1, with quantum formula of total probability, see Section 1.6,
formula (1.5). In this section we demonstrate that:

R1). One of possible roots of the contradiction between quantum rule (1.5) and clas-
sical rule (1.6) is the identification of conditional probabilities P.B D ˇ=A D
˛/ for an ensemble S of quantum systems represented by the quantum state
�, see (1.2), with probabilities P�˛

.B D ˇ/ for ensembles NS.A D ˛i / repre-
sented by the quantum states �˛, ˛ D 0; 1, see (1.4).

R2). Another possible root is a possibility that conditional probabilities P.B D
ˇ=A D ˛/ do not exist at all.

In the R1-case one simply put probabilities related to three different preparations (of
ensembles S and NS.A D ˛i /) into a single probability space. And what is the reason
for this?

In the R2-case one considers the possibility that

(a) conditional probabilities given by any filtration are well defined;

(b) but micro-parameters may fluctuate in such a way that conditional probabilities
P.B D ˇ=A D ˛/ for an ensemble S do not exist.11

As we have already discussed, A. N. Kolmogorov eliminated the concrete structures
of probabilistic spaces from his model.12 People manipulate with rather mystical sym-
bol P of abstract probability which was not related to any concrete statistical ensemble

11These are ontic probabilities. We are never able to find them on the basis of observational results.
12In his book [133] he emphasized the role of experimental context in determination of an appropriative

probability space. Unfortunately, we did not make this point sufficiently clear for ordinary users of his
axiomatics.
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S or collective x. It seems that in quantum physics Kolmogorov’s abstract probabil-
ities are often used formally. This implies identification of (conditional) probabilities
which are related to different ensembles or collectives. However, such probabilities
need not be equal. On the other hand, Kolmogorov’s definition of conditional proba-
bilities via Bayes’ formula induces the opinion that (at least in ‘classical probability
theory’) existence of probabilities P.Ej /, j D 1; 2, with P.E2/ > 0 must automat-
ically imply existence of conditional probability P.E1=E2/. However, such an as-
sumption need not be true for all statistical phenomena. In the ensemble probability
framework (see Section 2, Chapter 1) we need not assume that the family of all events
F.�S / (determined by the family �S of properties of elements s 2 S/ is an algebra.
ThusE1; E2 2 F.�S / need not implyE1\E2 2 F.�S /. Here conditional probability
P.E1=E2/ could not be defined by Bayes’ formula.

3.1 Ensemble approach: disturbance effects

Let us try to keep even to i -realism. Here both properties A and B are objective
properties of elements of the statistical ensemble S represented by the quantum state
�. Measurements give initial values of these properties, A � Ai , B � Bi . We can
consider sub-ensembles S.A D ˛/ and S.B D ˇ/, ˛; ˇ D 0; 1, of S which consist of
elements s having the properties A D ˛ and B D ˇ, respectively.

By the ensemble definition of probability

PS .A D ˛/ D jS.A D ˛/j=jS j

and
PS .B D ˇ/ D jS.B D ˇ/j=jS j

and by the ensemble definition of the conditional probability

PS .B D ˇ=A D ˛/ D PS.AD˛/.B D ˇ/ D
jS.A D ˛/ \ S.B D ˇ/j

jS.A D ˛/j : .3:1/

We can use Bayes’ formula (and the formula of total probability) for these probabil-
ities. It seems that we should obtain the above contradiction. However, there is one
delicate point.

In general we cannot assume that the conditional probabilities PS .B D ˇ=A D
˛/ D PS.AD˛/.B D ˇ/; ˛; ˇ D 0; 1, can be obtained from expansions (1.3), (1.4).
We cannot identify the sub-ensembles S.A D ˛/, S.B D ˇ/ of S with ensembles
NS.A D ˛/; NS.B D ˇ/ which are described by the quantum states �˛ and �ˇ , respec-

tively.
There are different preparation procedures E , E.A D ˛/, E.B D ˇ/, ˛; ˇ D

0; 1. They produce ensembles S , NS.A D ˛/, NS.B D ˇ/, respectively, which are
represented by quantum states �, �˛ ,  ˇ , respectively. We cannot identify the sub-
ensembles S.A D ˛/, S.B D ˇ/ of S with ensembles NS.A D ˛/, NS.B D ˇ/. For
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instance, the preparation procedures E.A D ˛/; ˛ D 0; 1, can be realized as filters F˛:
only systems with property property A D ˛ can pass F˛. However, such a filtration
changes the value of the property B for s.

Thus in general we have:

PS .B D ˇ=A D ˛/ D PS.AD˛/.B D ˇ/ 6D P NS.AD˛/.B D ˇ/:

Moreover, PS .B D ˇ=A D ˛/ may be not well defined. Despite of the fact that
A;B 2 �S , it may be that the set fA D ˛g\fB D ˇg is not described by any property
C 2 �S .

Such a phenomenon is not essentially nonclassical. An example of the selection
of a sub-ensemble on the basis of one fixed property which can change the probabil-
ity distribution of other property can be easily found for classical systems. We can
illustrate this problem by Example 1.1. Let S be an ensemble of bodies having dif-
ferent colours, A D 0; 1, and forms, B D 0; 1. There are sub-ensembles S.A D ˛/,
˛ D 0; 1, corresponding to fixed colours and S.B D ˇ/, ˇ D 0; 1, corresponding to
different forms. To extract elements of the S having the fixed colour ˛, we use a device
D˛ which changes randomly the form of a body (some bodies of the form B D 0 are
transformed in bodies of the form B D 1 and vice versa). By this procedure we obtain
new ensembles NS.A D ˛/, ˛ D 0; 1. Of course, the distributions of B in NS.A D ˛/,
˛ D 0; 1, may differ from the initial distributions of B in the ensembles S.A D ˛/,
˛ D 0; 1.

Conclusion. The contradiction between ‘quantum and classical probabilistic rules’
(1.5), (1.6) need not be regarded to the specific (‘nonclassical’) behaviours of sta-
tistical ensembles of quantum systems. The possible root of this contradiction is the
formal use of Kolmogorov’s measure-theoretical approach in that we do not control the
relation between probabilities and statistical ensembles. The identification of proba-
bilities corresponding to different statistical ensembles implies (in general) the use of
wrong values, ju˛ˇ j2, for conditional probabilities P.B D ˇ=A D ˛/ (which, in fact,
must be calculated on the basis of (3.1)). This induces the illusion of the violation of
Bayes’ formula (and the formula of total probability) in the quantum formalism.

3.2 Ensemble approach: no conditional probabilities

It must be pointed out that any quantum state � represents not a finite statistical ensem-
ble consisting of N quantum systems, but an infinite ideal statistical ensemble S . For
any property C , probabilities P�.C D �/ are, in fact, probabilities PS .C D �/ with
respect to this infinite ensemble S . Of course, in each concrete run R D f1; 2; : : : ; N g
of experiments we can obtain only a finite statistical ensemble S .R/ and ‘experimental
ensemble probabilities’ are probabilities (relative frequencies) with respect to S .R/:

Pexp
� .C D �/ D PS.R/.C D �/ D jfs 2 S

.R/ W C D �gj
jS .R/j :
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For different runs R and R0, these probabilities are rather different. The main feature
of quantum systems (as many other physical systems) is that these probabilities have
the property of the statistical stabilization, namely, limjRj!1 PS.R/.C D �/ D jd� j2;
where d� are coefficients in the expansion of � with respect to the system of eigen-
vectors of the operator bC . These limiting probabilities are probabilities with respect to
the infinite ideal ensemble S :

jd� j2 D P�.C D �/ D
jfs 2 S W C D �gj

jS j : .3:2/

However, as the field of real numbers R does not contain actual infinities, formula
(3.2) has no meaning in the framework of real analysis. Instead of (3.2), mathe-
maticians (and, as a consequence, physicists) use the measure-theoretical approach.
However, (despite of the common opinion) this approach cannot be used as a justi-
fication of the ensemble probability theory even in the case of a countable ensemble
S D fs1; s2; : : : ; sk; : : : g. For example, let us try to define the uniform � -additive
probability on S W P.fs1g/ D P.fs2g/ D � � � D P.fskg/ D � � � 6D 0. Then P.S/ D
P1
jD1 P.fsj g/ D1.
Such ‘pathological’ properties of the field of real numbers (the absence of actual

infinities) is one the reasons to use the ensemble-frequency interpretation instead of
the purely ensemble interpretation. By the ensemble-frequency interpretation a Kol-
mogorov probability space is based not on the ensemble S of quantum systems, but
(roughly speaking) on the ensemble � of all possible (ideal infinite) runs of experi-
ments. However, this approach to the definition of a probability space was, in fact,
never used by physicists. They typically assume that a Kolmogorov probability space
gives the mathematical representation of an ensemble of quantum systems. One of the
main reasons to do so and to reject the ensemble-frequency approach is the impos-
sibility to construct a probability measure on the space of all runs for measurements
corresponding incompatible properties.

One of problems of the Kolmogorov axiomatics is that probability P must be closed
(defined on the � -algebra or at least algebra of sets). Thus if probabilities of events
fA D ˛g and fB D ˇg are well defined, then automatically probability of the event
fA D ˛g \ fB D ˇg must be well defined. Hence the conditional probability
P.B D ˇ=A D ˛/ must be well defined in Kolmogorov’s framework. However,
such conditional probabilities are not observed. In principle, there are no reasons to
assume that they are even well defined for each quantum state �. For example, why
we cannot assume that the ensemble S D N and ‘probability’ P D ı, where ı is the
density of natural numbers? In such situations there is no Bayes’ formula at all and the
problem of difference between ‘quantum and classical probability rules’ is meaning-
less. Of course, these are non-Boolean models. However, this non-Boolean structure
of probabilities has no special nonclassical features.

Detailed analysis of the problem of existence of conditional probabilities will be
presented in Section 4.
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3.3 Frequency probability viewpoint to quantum probabilistic rule

The frequency approach to probability gives more freedom than the ensemble ap-
proach. Here we need not assume that properties of quantum systems are objective13.
Thus in principle we can consider various combinations of objective and nonobjective
properties of quantum systems.

We start with the general scheme in that we do not suppose that any of properties
A.D 0; 1/ and B.D 0; 1/ has an objective character. Let � 2 H be a quantum state.
As in Section 1, we consider the two-dimensional Hilbert space H . Properties A
and B are represented by symmetric operators bA and bB; eA D .�0; �1/ and eB D
. 0;  1/ are orthonormal bases in H consisting of eigenvectors of operatorsbA and bB ,
respectively. Thus we have: � D c0�0Cc1�1 D d0 0Cd1 1, where c0; c1; d0; d1 2
C, and jc0j2 C jc1j2 D 1, jd0j2 C jd1j2 D 1.

A quantum state � represents an ideal infinite ensemble S of quantum systems. This
ensemble is characterized in the following way: frequency probability distribution of
any property C.D 0; 1/ is given by squares of absolute values of coefficients in the
expansion of � with respect to the system of eigenvalues of the operator bC representing
C . In particular, we have:

(1) Any series of measurements N of the property A for elements sj 2 S , j D
1; 2; : : : , induces a collective

aN D .˛1; ˛2; : : : ; ˛k; : : : /; j̨ D 0; 1;

such that frequency probabilities PaN
.˛/ D limk!1 �k.˛I aN / are equal to jc˛j2,

˛ D 0; 1. Here, as usual, �k.˛I aN / D nk.˛I aN /=k is the relative frequency of
realizations of the value A D ˛.

(2) Any series of measurements M of the property B for elements sj 2 S , j D
1; 2; : : : , induces a collective

bM D .ˇ1; ˇ2; : : : ; ˇk; : : : /; ǰ D 0; 1; .3:3/

such that frequency probabilities PbM
.ˇ/ D limk!1 �k.ˇI bM/ are equal to jd˛j2,

˛ D 0; 1. Here, as usual, �k.ˇI bM/ D nk.ˇI bM/=k is the relative frequency of
realizations of the value B D ˇ.

Remark 3.1. As we have already discussed, infinite statistical ensembles could not
arise in any real physical experiment. We always operate with finite statistical ensem-
bles (samples of finite lengths) SN which are prepared by some preparation procedure
E after N steps. However, a quantum state � D �E (corresponding to this preparation
procedure) cannot be considered as a representation of any of these finite ensembles
SN . A measurement for elements of SN gives only a relative frequency, but not a

13We recall (see Section 2) that nonobjective character of some properties (creation of these properties
in the process of a measurement) does not imply ‘essentially quantum features’ of systems.
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probability. These frequencies may fluctuate when N is changed. Only asymptoti-
cally frequencies in SN approach probabilities in S . Different properties may have
different behaviour of fluctuations of frequencies before stabilization14.

In the same way quantum states �˛ D u˛0 0 C u˛1 1, ˛ D 0; 1 describe some
ideal infinite statistical ensembles NS.A D ˛/ of quantum systems. In particular, these
ensembles have the following frequency properties:

.1˛/ Any series of measurements N of the property A for elements sj 2 NS.A D
˛/; j D 1; 2; : : : , induces a collective

w˛N D .	1; 	2; : : : ; 	k; : : : /; 	j D 0; 1;

such that frequency probabilities Pw˛N
.˛/ D limk!1 �k.˛Iw˛N / D 1 and

Pw˛N
.1 � ˛/ D limk!1 �k.1 � ˛Iw˛N / D 0, ˛ D 0; 1.

.2˛/ Any series of measurements M of the property B for elements sj 2 NS.A D
˛/; j D 1; 2; : : : , induces a collective

b˛M D .
1; 
2; : : : ; 
k; : : : /; 
j D 0; 1; .3:4/

such that frequency probabilities Pb˛M
.ˇ/ D limk!1 �k.ˇI b˛M/ are equal to

ju˛ˇ j2, ˇ D 0; 1.

As we have already seen, by quantum calculus Pb.ˇ/ D jdˇ j2 D jc0u0ˇCc1u1ˇ j2,
ˇ D 0; 1. As in the case of ensemble probabilities, if we forget about dependence of
probabilities on collectives and identify in the formula of total probability conditional
probabilities P.ˇ=˛/ � P.B D ˇ=A D ˛/, ˛; ˇ D 0; 1, with probabilities Pb˛M

.ˇ/

(of the property B D ˇ in the collectives b˛M; ˛ D 0; 1/, then we arrive to the
contradiction (between classical and quantum probability calculi). However, in the
frequency approach there are even less reasons for such identification of probabilities
than in the ensemble approach. Moreover, there immediately arises the problem of the
correct frequency definition of conditional probabilities P.ˇ=˛/.

These conditional probabilities can be defined on the basis of the operation of com-
bining of collectives, see Section 9, Chapter 1. However, it is not clear which collec-
tives

Na D .˛1; ˛2; : : : ; ˛n; : : : /; A D j̨ D 0; 1;

and

Nb D .ˇ1; ˇ2; : : : ; ˇn; : : : /; B D ǰ D 0; 1;
14I do not agree with the viewpoint of A. N. Kolmogorov: “The frequency concept based on the notion

of limiting frequency as the number of trials increases to infinity does not contribute anything to substan-
tiate the application of the results of probability theory to real practical problems where we always have
to deal with a finite number of trials.”
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we have to combine to obtain conditional probabilities P.ˇ=˛/ (which must be equal
to probabilities Pb˛M

.ˇ/ for observed collectives (3.4)). In any case the direct combi-
nation of observed collectives aN and bM would not produce such conditional prob-
abilities, because these collectives are independent and here P.ˇ=˛/ D PbM

.ˇ/ 6D
Pb˛M

.ˇ/.
Moreover, we have shown (see Section 9, Chapter 1), that (in the case of strictly pos-

itive probabilities) the condition of combining of Na and Nb is equivalent to the existence
of a two-dimensional collective

z D .z1; z2; : : : ; zn; : : : /; zj D . j̨ ; ǰ /;

where j̨ and ǰ are elements of Na and Nb, respectively. Hence the two-dimensional
probability distribution

Pz.˛; ˇ/ � Pz.A D ˛;B D ˇ/ D lim
k!1

�k..˛; ˇ/I z/

must be well defined. Here �k..˛; ˇ/I z/ D nk..˛; ˇ/I z/=k, ˛; ˇ D 0; 1, are relative
frequencies of the realization of two-dimensional labels � D .˛; ˇ/ in the collective
z. We recall that the two-dimensional probability distribution Pz.˛; ˇ/ and condi-
tional probabilities are connected as Pz.˛; ˇ/ D Pz.ˇ=˛/P Na.˛/: Thus if we assume
that probabilities P Na.˛/ and conditional probabilities Pz.ˇ=˛/ are obtained on the
basis of observed quantities, then we must assume that the two-dimensional proba-
bility distribution Pz.˛; ˇ/ can be also obtained on the basis of observed quantities.
Hence we have to assume the possibility of the simultaneous measurement of the pair
.A D ˛;B D ˇ/. However, if the properties A and B are incompatible (represented
by noncommuting operators bA;bB/, then the existence of the simultaneous distribution
for .A D ˛;B D ˇ/ contradicts to the quantum formalism.

Conclusion. In the frequency probability framework it seems to be impossible to de-
fine conditional probabilities Pz.B D ˇ=A D ˛/ on the basis of combining of collec-
tives generated by some observations of incompatible properties A and B . Therefore
the formula of total probability cannot be used for frequency physical probabilities.

3.4 Kolmogorov formalism and quantum measurements

We consider now Kolmogorov’s (ensemble-frequency) interpretation of ‘quantum
probabilities’. If we use the abstract measure-theoretical formalism, then we might
identify some probabilities related to different probability spaces. This imply the con-
tradiction between ‘classical’ and ‘quantum’ probabilities. In fact, different prepara-
tion procedures E are described by different probability spaces .�E ;FE ;PE/.

The quantum state � D c0�0 C c1�1, see (1.1), which describes the ensemble S
(consisting of a statistical mixture of quantum systems with property A D ˛ D 0; 1

with probabilities P�.A D ˛/ D jc˛j2/ is prepared via a preparation procedure E . It
is described by a Kolmogorov probability space P D .�E ;FE ;PE/. The states �˛ ,
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˛ D 0; 1, which describe ensembles NS.A D ˛/ (consisting of quantum systems with
the definite value ˛ of the propertyA/ are prepared via other preparation procedures E˛

(filters with respect to A D ˛/. These states must be described by other Kolmogorov
probability spaces .�E˛

;FE˛
;PE˛

/.
Typically physicists apply the formula of the total probability by mixing condi-

tional probabilities PE.ˇ=˛/ with respect to the probability space P with probabilities
PE˛

.ˇ/, ˛ D 0; 1. Such a manipulation induces the contradiction between ‘classical’
and ‘quantum’ probabilities.

3.5 Interference

Here we do not present statistical models which might explain the interference phe-
nomena on the basis of the corpuscular picture (see [91], [89], [92]). We want just
to illustrate our analysis of the notion of probability in quantum formalism by the ex-
ample of the two slit experiment. This is the simplest experiment for demonstrating
interference of light. There is a point source of light O and two screens L and L0.
The screen L contains two slits h0 and h1. Light passes through S (through slits) and
finally reaches the screen L0 where the interference fringes are observed. The wave
explanation of the existence of interference fringes is well known: the light reaching
L0 can travel by one of two routes–either through h0 or through h1; but the distances
travelled by lights waves following these two paths are not equal and the light waves
do not generally arrive at the screen ‘in step’ with each other.

On the other hand, O is a source of quantum particles, photons. To exclude the
interaction between photons in a beam, we perform the experiment with very weak
light, so that at any time there is only one photon in the region between O and L.
The screen L0 is replaced by a photographic plate or film (also denoted by L0). In-
dividual spots appear on L0 more or less chaotically. However, there appear standard
interference fringes for a sufficiently long exposure. By this experiment we can com-
pute the probability distribution of spots on L0. Here the property A D 0; 1, is given
by a slit which is passed by a photon. The property B is obtained by the discretiza-
tion of a measurement of the position on the screen L0. Let D be a domain on the
plane L0. We set B D 1 if a photon is observed in D and B D 0 if a photon is ob-
served in L0 nD. The formal application of the formula of total probability gives that
P.B D ˇ/ D P.A D 0/P.B D ˇ=A D ˛/C P.A D 1/P.B D ˇ=A D 1/. However,
experimental data demonstrates the violation of this equality. Mainly physicists inter-
pret this violation as ‘nonclassical behaviour’ of photons. They claim that a photon
does not pass one fixed slit.

Our ensemble analysis of the quantum formalism implies that we have to consider
three ensembles:

(1) S consists of all particles that pass through the screenLwhen both slits are open;

(2) NS0 consists of all particles that pass through the screenLwhen the slit h0 is open
and the slit h1 is closed;



56 Chapter 2 Quantum probabilities

(3) NS1 consists of all particles that pass through the screenLwhen the slit h1 is open
and the slit h0 is closed.

These ensembles of particles are represented by quantum states � and �0; �1, re-
spectively. In fact, probabilities which physicists use in the formula of the total proba-
bility for the two slit experiment are related to different ensembles of particles:

P.A D ˛/ D PS .A D ˛/
and

P.B D ˇ=A D ˛/ D P NS˛
.B D ˇ/:

Of course, the formula of total probability must hold true if instead of probabilities
P NS˛

.B D ˇ/ we would use probabilities PS .B D ˇ=A D ˛/. However, to find latter
probabilities, we have to use sub-ensembles S˛ , ˛ D 0; 1, of the ensemble S consist-
ing of particles that pass slits h˛. These sub-ensembles could not be found without to
disturb the property B (because to find a slit, we have to perform the additional mea-
surement, which, of course, change the distribution of B). Therefore it is insensible
to discuss experimental verification of the formula of total probability for the two slit
experiment.

In the following frequency analysis we shall use the framework of preparation/mea-
surement. We consider preparation procedures E , E0, E1 corresponding to the fol-
lowing configurations of open slits: h0 and h1 are open, h0 is open and h1 is closed,
h1 is open and h0 is closed. The measurement procedure M is a measurement of the
position B on the screen L0. Our frequency analysis of the quantum formalism implies
that we have to consider three different collectives bM, b0M, b1M which are obtained
by the measurement M for particles prepared by E , E0, E1, respectively. There are no
reasons to identify probabilities P.B D ˇ=A D ˛/ with frequency probabilities in the
collectives b˛M, ˛ D 0; 1 (but typically they are identified). Moreover, probabilities
P.B D ˇ=A D ˛/ may be not well defined in the standard frequency framework.

3.6 Non-ergodic interpretation of quantum mechanics

We discuss now another delicate problem in the probabilistic foundations of quantum
mechanics. As it has been pointed out, Kolmogorov’s (ensemble-frequency) interpre-
tation of probability implies identification of the ensemble and frequency approaches
to probability. As a consequence, it is always assumed that frequency probabilities in
the collective bM, see (3.3), can be identified with probabilities with respect to the en-
semble S of pairs .a; u/, where a is a quantum particle and u is an equipment which is
used to measure the property B of a.15 However, this postulate has never been tested
experimentally16. Brazilian physicist N. Buonumano proposed a non-ergodic inter-

15Despite of the fact that in all real experiments this collective is generated by the long chain of suc-
cessive experiments with the same equipment ufix.

16The group of H. Rauch at Atominstitute in Vienna did some indirect experiments in this direction,
see [156] (the most interesting experiment was performed by J. Summhammer, [161]).
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pretation of quantum mechanics, [35]. By this interpretation frequency probabilities
need not coincide with S-ensemble probabilities. This imply that in principle trials
need not be independent (see [91], [89]). Thus there may be correlations between xi
and xj , i 6D j , in x (of course, in this case x would not be Mises’ collective).

4 Probabilities with respect to objective conditions

The formalism of quantum mechanics implies that it is impossible to perform ex-
periments for a simultaneous measurement .A D ˛;B D ˇ/ of two incompatible
properties A and B of a quantum system17. Therefore two-dimensional probabilities
P.A D ˛;B D ˇ/ (or equivalently conditional probabilities P.B D ˇ=A D ˛/ for
P.A D ˛/ > 0/ could not be found on the experimental basis.

However, it is still sensible to discuss the existence of such probabilities if it is
supposed that properties A;B are objective. Of course, the simultaneous existence
of two objective properties does not imply automatically the possibility to perform a
simultaneous measurement of these properties.

We shall study the most general situation. It is supposed that B is some observed
property (it may be objective or created by the act of a measurement) and A is some
objective property which cannot be observed simultaneously with B . We shall study
the problem of existence of conditional probabilities P.B D ˇ=A D ˛/ in the fre-
quency and ensemble frameworks. The present scheme covers different approaches to
properties of quantum systems:
.i/ We may keep to i -realism. Here the observed value of B coincides with its

initial value. Thus we study probabilities P.Bi D ˇ=Ai D ˛/ where Ai and Bi are
initial values of properties.

.f / We may keep to f -realism. Here the observed value Bf of the property B can
differ from its initial value Bi . Thus we study probabilities P.Bf D ˇ=Ai D ˛/.
.e/ We may keep to empiricism (or even idealism). Here the property B is created

by the act of a measurement. It is meaningless to speak about values of B before a
measurement.

In fact, f -realism seems to be the most attractive. Here we can use the prepa-
ration/measurement approach. Some preparation procedure E produces a statistical
ensemble S of particles with the definite probability distribution for the property A
(which is typically supposed to be objective). Then a measurement M of other prop-
erty B is performed for particles s 2 S . This measurement gives final values Bf of
the property B .

17In fact, on the physical level incompatible properties are defined as properties for which it is impos-
sible to perform a simultaneous measurements. The representation of such properties by noncommuting
operators in a Hilbert space of quantum states is only a consequence of such impossibility of simultaneous
measurements.
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The main result of our considerations is that conditional probabilities P.B D ˇ=AD
˛/ and two-dimensional probabilities P.A D ˛;B D ˇ/ may be not exist (both in fre-
quency and ensemble approaches). This result seems to be rather strange from the
Kolmogorov probability viewpoint.

Our models in that P.B D ˇ=A D ˛/ do not exist give examples of (non-Kolmogo-
rovean) probabilistic models without conditional probabilities (probabilities are well
defined, but conditional probabilities could not be defined). Here probability is not
closed. It is defined on the system of events which do not form a set algebra.

4.1 Frequency probabilities

To define frequency conditional probabilities P.B D ˇ=A D ˛/, we must combine
two collectives a and b corresponding to values of A and B . We choose a collective
b D bM, see (3.3), induced by a measurement M of the property B as one of collec-
tives for combining. As the property A is objective, then each element sj 2 S has this
property. Hence parallel to the constructing of the collective bM we can imagine the
process of construction of a ‘hidden sequence’

ah D .˛1; ˛2; : : : ; ˛n; : : : /; j̨ D 0; 1;

where j̨ D ˛ if the property A has the value ˛ for a quantum system sj . Suppose that
the sequence ah is a collective. We choose a D ah as another collective for combining.
Suppose that probability distributions Pb.ˇ/ and Pa.˛/ are strictly positive. Finally
we suppose that collectives a and b are combinable. Therefore the two-dimensional
sequence

z D .z1; z2; : : : ; zj ; : : : /; zj D . j̨ ; ǰ /;

corresponding to these collectives is also a collective. Hence frequency conditional
probabilities Pz.ˇ=˛/ � Pz.B D ˇ=A D ˛/ are defined via the standard scheme:

Suppose that there areMk.˛I z/ elements with the first coordinate ˛ among the first
k elements of z, and there are nk.ˇ=˛I z/ elements with the first coordinate ˇ among
these Mk.˛I z/ elements. We introduce the relative frequencies:

�k.˛I z/ D
Mk.˛I z/

k
and �k.ˇ=˛I z/ D

nk.ˇ=˛I z/
Mk.˛I z/

:

Conditional probability is defined as

Pz.ˇ=˛/ D lim
k!1

�k.ˇ=˛I z/:

This definition can be reformulated in the following way. For each fixed ˛ D 0; 1, we
choose a subsequence

b˛ D .ˇ1; ˇ2; : : : ; ˇn; : : : /; ǰ D 0; 1;
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of the sequence z consisting of second coordinates of zj D . j̨ ; ǰ / with j̨ D ˛.
Then Pz.ˇ=˛/ D limk!1 �k.ˇI b˛/ :

The conditional probability Pz.ˇ=˛/ has the following meaning: it is probability to
observe the value ˇ of the property B under the condition that the hidden (but objec-
tively existing) value of the property A is equal to ˛. The two-dimensional probability
distribution Pz.˛; ˇ/ D Pa.˛/Pz.ˇ=˛/ is also well defined. This probability has the
following physical meaning: it is probability that the hidden property A D ˛ and the
observed property B D ˇ.

4.2 No conditional probabilities, no Bayes’ formula

In principle there may be some frequency ‘pathologies’. It may be that the hidden
sequence a D ah is not a collective or it is a collective, but the collectives a and b are
not combinable (physical experience implies that the sequence b D bM is always a
collective). Let us analyze such a situation more carefully. To simplify our considera-
tions, we start with the case in that a D ah is a collective. Here frequency probabilities
Pa.˛/ D limk!1 �k.˛I a/ are well defined. However, we do not more assume that
the collectives a and b are combinable.

We have nk.ˇI b/ D nk.ˇ=0I z/C nk.ˇ=1I z/: Thus we obtain

�k.ˇI b/ D
nk.ˇ=0I z/
Mk.0I z/

Mk.0I z/
k

C nk.ˇ=1I z/
Mk.1I z/

Mk.1I z/
k

:

Thus we have

�k.ˇI b/ D �k.ˇ=0I z/�k.0I a/C �k.ˇ=1I z/�k.1I a/ : .4:1/

We also note that by our assumptions there exist Pb.ˇ/ D limk!1 �k.ˇI b/ and
Pa.˛/ D limk!1 �k.˛I a/. We ask the following question:

Is it possible that (despite of the existence of the above limits and despite of equality
(4.1)) limk!1 �k.ˇ=˛I z/ does not exist?

Yes, it is surely possible!

Example 4.1. Let Pa.˛/ D limk!1 �k.˛I a/ D 1=2 for ˛ D 0; 1. As always
�k.0=˛I z/ C �k.1=˛I z/ D 1 for ˛ D 0; 1, it is possible to represent conditional
frequencies in the form

�k.0=˛I z/ D sin2 �˛;k; �k.1=˛I z/ D cos2 �˛;k;

where the phase �˛;k D arcsin
p

�k.0=˛I z/. In the case of regular conditional be-
haviour angles �˛;k stabilize (mod 2�/ to some values �˛ when k ! 1. Here con-
ditional probabilities are well defined: Pz.0=˛/ D sin2 �˛ and Pz.1=˛/ D cos2 �˛ .
Equality (4.1) implies the formula of total probability:

Pb.0/ D
1

2
.sin2 �0 C sin2 �1/; Pb.1/ D

1

2
.cos2 �0 C cos2 �1/:
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Let us consider now the case of irregular conditional behaviour. Here angles �˛;k do
not stabilize (mod 2�/ when k !1. But by (4.1) we have that limits

Pb.0/ D
1

2
lim
k!1

.sin2 �0;k C sin2 �1;k/; Pb.1/ D
1

2
lim
k!1

.cos2 �0;k C cos2 �1;k/

must exist. For example, these conditions can be satisfied if we choose �1;k 	 �
2
�

�0;k; k ! 1. Thus there is no contradiction between nonexistence of frequency
conditional probabilities and formula (4.1).

What is a physical meaning of fluctuations of conditional relative frequencies
�k.ˇ=˛/ (nonexistence of conditional probabilities Pz.ˇ=˛//‹

A quantum state � contains only information on asymptotic behavior of frequen-
cies for observations of each fixed property. However, � does not contain information
on statistical relations between different properties. This relation is given by condi-
tional frequencies which are not determined by the quantum formalism. Therefore in
principle behavior of relative frequencies in the statistical ensemble S (represented by
�) may be extremely irregular. But these fluctuations of conditional frequencies may
compensate one another and give well-defined frequency probabilities for observed
properties.

A real preparation procedure E can produce (after N steps) only a finite approxi-
mation SN of the (ideal infinite) ensemble S represented by �. Fluctuations of con-
ditional frequencies imply that the statistical relation between two properties A and
B (or more precisely the reaction of a quantum system s with the fixed (hidden)
value ˛ of the property A to a measurement of the property B) may strongly de-
pend on the number N of experiments N . Let us consider again Example 4.1 and let
�0;k 	 �k

2m
; �1;k 	 �

2
� �k
2m
; k !1, where m > 1 is the fixed natural number. Here

‘conditional probabilities’

Pk.0=0/ � �k.0=0I z/ 	 sin2
�k

2m
; Pk.1=0/ � �k.1=0I z/ 	 cos2

�k

2m
;

Pk.0=1/ � �k.0=1I z/ 	 cos2
�k

2m
; Pk.1=1/ � �k.1=1I z/ 	 sin2

�k

2m

oscillate with the period T D 2m, when k ! 1. Let m be very large. Then, for
k D 2mj C 1, Pk.0=0/ D Pk.1=1/ 	 0 and Pk.1=0/ D Pk.0=1/ 	 1. Therefore in
the ensemble Sk practically every quantum system s having the property A D 0 will
exhibit the propertyB D 1 and practically every quantum system s having the property
A D 1 will exhibit the property B D 0 (in the measurement M of B:/ However, after
.m � 1/ steps statistical conditional behavior changes crucially. For k0 D 2mj C
m;Pk.0=0/ D Pk.1=1/ 	 1 and Pk.1=0/ D Pk.0=1/ 	 0. Therefore in the ensemble
Sk0 practically every quantum system s having the property A D 0 will exhibit the
property B D 0 and practically every quantum system s having the property A D 1

will exhibit the property B D 1. At the same time observed ‘probabilities’ Pk.B D
ˇ/ D �k.ˇI b/ do not depend on these oscillations of conditional probabilities.
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Remark 4.1 (On fluctuations of ensemble conditional probabilities). The above argu-
ments can be used for ensemble conditional probabilities. A quantum state � repre-
sents an infinite ideal ensemble S of quantum systems. As we have already discussed
in Section 3, real analysis does not give a possibility to use the proportional definition
of probability with respect to S . Typically probabilities PS .B D ˇ/ with respect to
S are considered as limits of probabilities PSN

.B D ˇ/ with respect to finite approx-
imations SN of S . Such an approach to probabilities PS .B D ˇ/ is justified by the
incredible number of quantum experiments. However, it is often supposed that condi-
tional probabilities PS .B D ˇ=A D ˛/ can be also defined as limits of probabilities
PSN

.B D ˇ=A D ˛/ with respect to finite approximations SN of S . Such an assump-
tion has not been (and probably it will never be) verified experimentally. Example
4.1 (which can be used in the ensemble framework) demonstrates that in principle
conditional probabilities PSN

.B D ˇ=A D ˛/ may oscillate with the increasing of
N . In such a case conditional probabilities PS .B D ˇ=A D ˛/ cannot be defined.
Therefore Bayes’ formula and the formula of total probability cannot be used for such
quantum states.

Finally we remark that it may be that the sequence a D ah is not collective.
For example, if we keep to f -realism, then the statistical stabilization of frequencies
�k.Af D ˛/ need not imply the statistical stabilization of frequencies �k.Ai D ˛/.
Example 4.2 (Fluctuating probabilities and stabilized conditional probabilities). Sup-
pose that �k.0; a/ 	 sin2 �k and �k.1; a/ 	 cos2 �k; k ! 1. If phases �k do not
stabilize .mod 2�/ when k !1, then frequencies �k.˛I a/ fluctuate when k ! 1.
Thus frequency probabilities Pa.˛/ do not exist. Suppose that, however, frequency
conditional probabilities Pz.ˇ=˛/ D limk!1 �k.ˇ=˛I z/ exist and they are equal to
1/2. Therefore sizes of populations SN;˛ with the fixed value A D ˛ fluctuate, but
reactions of quantum systems s 2 SN;˛ to the measurement M of the B are stable. In
this case we find that the limit in (4.1) exists

Pb.ˇ/ D lim
k!1

.�k.0I a/�k.ˇ=0I z/C �k.1I a/�k.ˇ=1I z// D 1=2; ˇ D 0; 1:

Thus there is no contradiction between nonexistence of frequency probabilities Pa.˛/
and formula (4.1).

5 Einstein–Podolsky–Rosen paradox: probability, reality
and locality

In the previous sections we have shown that there is no principal difference between
‘quantum’ and ‘classical’ probabilities and as consequence between classical and
quantum systems. We can use ensemble or frequency definitions of probability. How-
ever, we have to control the relation between probabilities and ensembles or collec-
tives. On the other hand, we cannot use the conventional Kolmogorov formalism in
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that the structure of an ensemble or a collective does not play any role. In principle,
it is possible to consider ‘quantum properties’ as objective properties (by using both
i -realism and f -realism). Of course, probabilistic distributions of these properties
depend on ensembles or collectives.

However, there are some quantum experiments which seem to demonstrate that
there is a large difference between classical and quantum systems. All such experi-
ments are based on the idea to eliminate disturbance effects by separating quantum sys-
tems in space-time (and to use correlations between these separated quantum systems).
The starting point was the famous Einstein–Podolsky–Rosen (EPR) experiment [58].
We present a brief description of this experiment. We start with the definition of Ein-
steinian separability:

Two space-time regions U and V are said to be spatially separated, if the real factual
situation within V is independent of what is done in U .

We recall that A. Einstein was an adherent of i -realism. Thus values of physical
properties which will be discussed later (namely, positions q and momentums p) are
initial values of this properties.

It should be noticed that the study of distinguishing features of ‘quantum proba-
bilities’ was not the original aim of EPR’s considerations. EPR wanted to show that
quantum mechanics is not a complete physical theory. The completeness means that
quantum mechanics provides a complete description of the atomic and subatomic phe-
nomena. The opinion that quantum mechanics is complete (and hence we need not
more detailed description of reality than quantum mechanics) was, already at that time
(1933), so much engrained in the mind of physicists that the EPR arguments against
the completeness was soon referred as a paradox. EPR wanted to demonstrate that
there exist elements of reality which could not be described by a quantum state. Of
course, in this framework the question on the meaning of an element of reality arose
immediately. EPR thought that it would be impossible to propose the exact definition
of an element of reality. However, they proposed the following criterion of reality:

“If, without in any way disturbing a system we can predict with certainty (i.e., with
probability equal to unity) the value of a physical quantity, then there exists an element
of physical reality corresponding to this physical quantity.”

EPR proposed the following arguments based on this criterion for elements of reality
and the notion of separability for two space-time regions U and V .

Let us consider a statistical ensemble S of pairs .a1; a2/ of correlated particles. For
example, these are pairs of particles which are emitted by excited atoms. We consider
the one-dimensional model with particles moving in the opposite directions. For each
pair the correlation implies the conservation of the momentum, p.1/ C p.2/ D 0, and
the relative position, q.1/ � q.2/ D 0 (correlations between properties of particles).
For any pair .a1; a2/ of correlated particles, we can measure the position q.1/ of a1 in
U which (due to the correlation) gives the position q.2/ of a2 (without to disturb a2).
Thus the position q.2/ of a2 is an element of reality. By the similar considerations we
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obtain that the momentum p.2/ of a2 is an element of reality. On the other hand, the
quantum formalism implies the Heisenberg uncertainty relation

�q�p 
 h=2

for any quantum state �. Thus the definite values of the position and momentum of a
quantum particle cannot be simultaneously elements of reality for the same quantum
state. EPR interpreted this as the evidence of the incompleteness of quantum mechan-
ics: in the EPR experiment two elements of reality (the position and momentum) exist
simultaneously, but they could not be described by any quantum state (thus the for-
malism of quantum mechanics does not provide the description of the whole physical
reality).

The EPR considerations (which are often regarded as the paradox in the foundations
of quantum mechanics) induced great debates (which were initiated by A. Einstein and
N. Bohr). Numerous arguments were used by both sides. It is interesting to remark
that at the first stage of these debates probability reasons were not used. There was
no analysis of the probability basis of the EPR considerations. In particular, nobody
tried to study the problem of difference between ‘classical and quantum probabilities’
to disprove the simultaneous reality of the position and momentum. However, later
such analysis has been done and one of the results of this analysis was famous Bell’s
inequality (see Section 6).

I support the viewpoint that quantum mechanics is not complete. The incomplete-
ness of quantum mechanics is rather a consequence of all physical experience which
demonstrated that no physical theory (at least before quantum mechanics) turned out
to be universally valid. Every single theory was valid only if applied to a restricted
part of reality, its domain of application. Do we have any reason to believe that quan-
tum mechanics is different, and will hold true for whatever future experiments we may
be able to think of? But at the same time I think that EPR arguments do not imply
the conclusion that quantum mechanics is not complete. I am not satisfied by EPR’s
criterion of reality. There are strong probabilistic arguments against this criterion. The
meaning of ‘unit probability’ in this criterion is unclear. In fact, this ‘unit probability’
must depend on an ensemble or a collective. We shall see that it is impossible to find
the same ensemble or collective for the positions and momentums of particles a2 (or
particles a1/.

To save completeness of quantum mechanics, some physicists accept nonlocality of
space-time. They claim that, for example, a measurement of the position of the parti-
cle a1 located in Moscow changes properties of the particle a2 located in Vladivostok.
Some of them assume the possibility of the faster-than-light-influences (of course,
such an assumption contradicts to theory of relativity). Other adherents of nonlocality
consider this nonlocality as only information nonlocality. They think that, for exam-
ple, a measurement of the position q.1/ of the particle a1 does not change objective
properties of the particle a2, but such a measurement changes our information about
the particle a2. Hence they need not use the faster-than-light-influences.
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Another group of physicists thinks that the root of the problem is the realist view-
point of EPR. If we reject realism and keep to empiricism (or even idealism), then we
could not assign any physical meaning to values of the position q.2/ and momentum
p.2/ of the particle a2 which are predicted on the basis of measurements for the par-
ticle a1. Adherents of empiricism have also some differences in views. One part of
them think that the root of the problem is the impossibility to perform a simultaneous
measurement of the position q.1/ and momentum p.1/ for the same particle a1 (and
thus obtain the ‘simultaneous prediction’). Other keep to the rigid empiricists line.
They think that the root of the problem is the impossibility to perform a simultaneous
measurement of the position q.2/ and momentum p.2/ for the same particle a2.

As I have already mentioned, it seems that EPR arguments do not imply incom-
pleteness, nonlocality or impossibility to keep to realism. EPR considerations imply
only that we could not manipulate with formal (abstract) probabilities which are not
related to concrete ensembles or collectives.

By fixing a value ˛ 2 R of q.1/ we can construct an ensemble NS˛ of particles a2j
for that q.2/ D ˛ and the distribution of the momentums is the same as in the original
ensemble. Of course, probability P NS˛

.q.2/ D ˛/ D 1. Thus q.2/ D ˛ is an element of

reality for the ensemble NS˛ . However, P NS˛
.p.2/ D ˇ/ 6D 1 for any fixed value ˇ 2 R.

Thus p.2/ D ˇ is not an element of reality for this ensemble.
In the same way by fixing the value ˇ 2 R of p.1/ we can construct an ensemble
NRˇ of particles a2j for that p.2/ D ˇ and the distribution of the positions is the same

as in the original ensemble. Probability P NRˇ
.p.2/ D ˇ/ D 1. Thus p.2/ D ˇ is an

element of reality for the ensemble NRˇ . However, P NRˇ
.q.2/ D ˛/ 6D 1 for any fixed

value ˛ 2 R. Thus q.2/ D ˛ is not an element of reality for this ensemble. EPR did
not present any idea how we could construct an ensemble W˛ˇ of particles a2j such

that PW˛ˇ
.q.2/ D ˛/ D 1 and PW˛ˇ

.p.2/ D ˇ/ D 1. Therefore the EPR arguments
give no reason to conclude that quantum mechanics is not complete. There are no
reasons to use nonlocality or to reject realism to explain the EPR arguments. It must
be pointed out that EPR arguments could not be used as a ‘proof’ that i -realism can (or
even must ) be used to describe quantum phenomena18. In fact, from the mathematical
point of view the only ‘argument’ of EPR was that the notion of the unit probability
can be used without connection to concrete ensembles.

Our previous considerations can be repeated in the frequency framework. Here we
can keep not only to i -realism, but also to f -realism in the EPR scheme19. Let us
perform a measurement N of q.1/ and a measurement M of p.2/ and save only the
results for that q.1/ D ˛, where ˛ 2 R, is some fixed value. We obtain the two-

18EPR obtained incompleteness of quantum mechanics by presenting the experiment which demon-
strates that both the position and momentum of a quantum particle can be elements of reality for the same
quantum state. This is often interpreted as a proof of the possibility to use i -realists approach in quantum
mechanics.

19In the latter case q.l/ � q.l/
f

and p.l/ � p.l/
f

, l D 1; 2, and q.1/
f
� q.2/

f
D 0, p.1/

f
C p.2/

f
D 0.
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dimensional collective:

x˛ D .x1; x2; : : : ; xk; : : : /; xj D .q.1/j ; p
.2/
j /;

where q.1/j � ˛.

As q.2/j D q
.1/
j � ˛, we can (parallel to the construction of x˛) construct another

two-dimensional collective

x0
˛ D .x0

1; x
0
2; : : : ; x

0
k; : : : /; x0

j D .q.2/j ; p
.2/
j /;

where q.2/j � ˛.
In the same way, for each fixed value ˇ 2 R of the momentum, we construct two-

dimensional collectives

y˛ D .y1; y2; : : : ; yk; : : : /; yj D .q.2/j ; p
.1/
j /;

where p.1/j � ˇ, and

y0
˛ D .y0

1; y
0
2; : : : ; y

0
k; : : : /; y0

j D .q.2/j ; p
.2/
j /;

where p.2/j � ˇ. Of course,

Px0
˛
.q.2/ D ˛/ D 1

and q.2/ D ˛ is the element of reality for the collective x0
˛ and

Py0
ˇ
.p.2/ D ˇ/ D 1

and p.2/ D ˇ is the element of reality for the collective y0
ˇ

. However, EPR did not
present any idea how we can construct a collective z˛ˇ such that

Pz˛ˇ
.q.2/ D ˛/ D 1; and Pz˛ˇ

.p.2/ D ˇ/ D 1:

In fact, the presented argument against the EPR-paper is the probabilistic version
of Bohr’s argument in his reply [72] to Einstein. Unfortunately, Bohr did not use
probabilities in his response. He proceeded with complementarity principle. But the
absence of a collective z˛ˇ is simply von Misesian version of Bohr’s complementarity
principle.

6 Bell’s inequality

The EPR idea to consider statistical ensembles of correlated spatially separated parti-
cles was developed by D. Bohm. He proposed a simpler example in that it is possible
to use discrete variables.
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6.1 EPR experiment for measurement of spin projections:
Bohm’s experiment

Instead of the position and momentum of a quantum particle, Bohm considered its
spin20 components. Let s 2 R3 be the spin of a quantum particle. For any axis n 2 R3

we denote the projection of s to this axis by the symbol sn:

sn D
.s; n/n
ksk ;

where .�; �/ and k � k are, respectively, the inner product and norm on R3. Consider
a measurement device Mn for measuring the spin projection sn. It is Stern–Gerlach
magnet with the orientation n.

By keeping to realism we can say: such a measurement disturbs a quantum particle
and changes its spin. However, by keeping empiricism one cannot speak about vector
of spin before measurement. Our aim is to test realism.

A measurement deviceMn;n0 which can measure two components fsn; sn0g, n 6D n0,
simultaneously does not exist. However, for correlated particles .a1; a2/ (with spins
s1; s2/ we can use the conservation law for the spins of these particles:

s1 C s2 D 0:

Hence the measurement M 1
n for a1 gives automatically the value s2n of the spin of a2.

As usual, it is assumed that particles a1 and a2 satisfy the condition of Einsteinian
separability. By the EPR reality criterion we obtain that there exists an element of
reality corresponding to the spin component s2n (and by symmetry for the s1n/ for any
axis n 2 R3. Therefore the spin s is an element of reality. However, by probabilistic
reasons (discussed in the previous section) we do not want to apply the EPR reality
criterion. We (following Bell) can study the following problem:

Is it possible to keep to realism to describe spin measurements for correlated particles?

We restrict our consideration to two-dimensional model. Here each direction n can
be characterized by an angle � W n D n� . We set

s� D sign.s; n�/:

In the real physical model we have to use probabilities of simultaneous measurements
of s1�j

and s2�l
for three angles �j , j D 1; 2; 3.21 It is possible to obtain some inequality

for these probabilities, namely, Bell’s inequality in the probabilistic form – Wigner’s
inequality. As there are two particles a1 and a2, to describe the model, we must use

20The scientists whose interests are far from quantum mechanics may imagine spin as an arrow s 2 R3

which is associated with each quantum particle indicating the ‘internal rotation’ of the particle. Of course,
it is a realistic model of spin. It would be tested.

21In fact, in experiments we need to use even four angles.
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the four-dimensional Hilbert space. However, we can obtain the same results on the
basis of the two-dimensional Hilbert space by using the following toy-model.

Let H be the two-dimensional Hilbert space and let e� D .e�;C; e�;�/, � 2 Œ0; 2�/,
be orthonormal bases in H which are connected by the following unitary transforma-
tion:

e�;C D cos.	 � �/e	;C C i sin.	 � �/e	;�; (6.1)

e�;� D i sin.	 � �/e	;C C cos.	 � �/e	;�: (6.2)

We introduce the quantum state

‰ D ei�p
2
e�;C C

ei�p
2
e�;� :

We consider observables (properties) s� corresponding to bases e� W bs�e� D ˙e� . By
the probability interpretation of the quantum state ‰ we have P‰.s� D ˙1/ D 1=2.

Since we want to keep to realism, we consider a possibility to represent quantum
observables for spin-projections by classical random variables s	 .!/; ! 2 �, where
� is the space of chance parameters (hidden variables). Thus we identify ‘quantum
probabilities’ with classical ones:

P‰.s� D ˙1/ D P.! 2 � W s�.!/ D ˙1/ D 1=2:
If conditional probabilities P.! 2 � W s	 .!/ D �=s�.!/ D ı/; �; ı D ˙1, are

identified with quantum probabilities given by expansions (6.1), (6.2), then we obtain:

P.! 2 � W s	 .!/ D C1=s�.!/ D �1/ D sin2.	 � �/

and

P.! 2 � W s	 .!/ D C1=s�.!/ D C1/ D cos2.	 � �/:
Now by using Bayes’ formula for classical probabilities we obtain:

P.! 2 � W s	 .!/ D C1; s�.!/ D �1/
D P.! 2 � W s�.!/ D �1/P.! 2 � W s	 .!/ D C1=s�.!/ D �1/

D 1

2
sin2.	 � �/

(6.3)

and

P.! 2 � W s	 .!/ D C1; s�.!/ D C1/
D P.! 2 � W s�.!/ D C1/P.! 2 � W s	 .!/ D C1=s�.!/ D C1/

D 1

2
cos2.	 � �/:

(6.4)
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6.2 Bell’s inequality for probabilities (Wigner’s inequality)

We prove now some inequality for events defined by three variables s� .!/, � D
0; �; 	 . In fact, this inequality does not depend on the form of the probability dis-
tributions of random variables s� .!/. We shall use only the fact that there exists the
Kolmogorov probability space P D .�;F ;P/ on which these random variables are
defined:

P.! 2 � W s0.!/ D C1; s�.!/ D C1/
D P.! 2 � W s0.!/ D C1; s�.!/ D C1; s	 .!/ D C1/ (6.5)

C P.! 2 � W s0.!/ D C1; s�.!/ D C1; s	 .!/ D �1/;
P.! 2 � W s�.!/ D �1; s	 .!/ D C1/

D P.! 2 � W s0.!/ D C1; s�.!/ D �1; s	 .!/ D C1/ (6.6)

C P.! 2 � W s0.!/ D �1; s�.!/ D �1; s	 .!/ D C1/;

and

P.! 2 � W s0.!/ D C1; s	 .!/ D C1/
D P.! 2 � W s0.!/ D C1; s�.!/ D C1; s	 .!/ D C1/ (6.7)

C P.! 2 � W s0.!/ D C1; s�.!/ D �1; s	 .!/ D C1/:

If we add together the equations (6.5) and (6.6) we obtain

P.! 2 � W s0.!/ D C1; s�.!/ D C1/C P.! 2 � W s�.!/ D �1; s	 .!/ D C1/
D P.! 2 � W s0.!/ D C1; s�.!/ D C1; s	 .!/ D C1/

C P.! 2 � W s0.!/ D C1; s�.!/ D C1; s	 .!/ D �1/
C P.! 2 � W s0.!/ D C1; s�.!/ D �1; s	 .!/ D C1/
C P.! 2 � W s0.!/ D �1; s�.!/ D �1; s	 .!/ D C1/:

(6.8)

But the first and the third terms on the right hand side of this equation are just those
which when added together make up the term P.! 2 � W s0.!/ D C1; s	 .!/ D C1/
(Kolmogorov probability is additive). It therefore follows that:

P.! 2 � W s0.!/ D C1; s�.!/ D C1/C P.! 2 � W s�.!/ D �1; s	 .!/ D C1/
D P.! 2 � W s0.!/ D C1; s	 .!/ D C1/

C P.! 2 � W s0.!/ D C1; s�.!/ D C1; s	 .!/ D �1/
C P.! 2 � W s0.!/ D �1; s�.!/ D �1; s	 .!/ D C1/

(6.9)
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By using nonnegativity of probability we obtain the inequality:

P.! 2 � W s0.!/ D C1; s�.!/ D C1/
C P.! 2 � W s�.!/ D �1; s	 .!/ D C1/


 P.! 2 � W s0.!/ D C1; s	 .!/ D C1/
(6.10)

which is a variant of Bell’s inequality (for probabilities).
We turn back to physics and apply the inequality (6.10) to the ‘quantum probabil-

ities’ Pq , see (6.3), (6.4), which were computed in the framework of quantum me-
chanics. We obtain: cos2 � C sin2.	 � �/ 
 cos2 	: Now set � D 3	 . We obtain:
g.	/ D cos2 3	 C sin2 2	 � cos2 	 
 0: However, the latter inequality holds only
for sufficiently large angles 	 W 	 
 �=6. Thus for 	 < �=6 the inequality (6.10) is
violated.

7 Bell’s mystification

First of all we remark that the violation of Bell’s inequality for ‘quantum probabilities’
may be in principle interpreted as an evidence of violations of quantum mechanical
laws for the spin model. However, numerous experiments were performed in the con-
nection with this problem, see, for example, [16], [40–42], [71]. All these experiments
demonstrated that quantum mechanical laws hold true: experimental probabilities co-
incide (of course, with some precision) with quantum probabilities Pq.s	 D �; s� D
ı/, �; ı D ˙1, computed via (6.3), (6.4). Bell’s inequality for experimental probabili-
ties is violated.

7.1 Probability and reality

It is widely accepted by a part of physical community that the violation of Bell’s
inequality has demonstrated that the realists philosophy cannot be used for the de-
scription of quantum phenomena: the spin is not an objective property of a quantum
particle.

Remark 7.1. Other part of the physical community connects Bell’s inequality and
nonlocality of space-time: in the real physical experiments observables s	 D s1

	
and

s� D s2� correspond to two particles which are separated in space. However, our
probabilistic analysis will demonstrate that there are no traces of nonlocality in Bell’s
framework. Therefore we will mainly concentrate our considerations on connection
between Bell’s inequality and realism.

The problem of existence (reality) of spin is often mixed with the problem of exis-
tence of random variables s�.!/, � 2 Œ0; 2�
, defined on some Kolmogorov probabil-
ity space. However, these are two different problems. Kolmogorov’s model is just one
of possible models of reality. Besides Kolmogorov’s model, there exist frequency and
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ensemble models. We shall demonstrate that Bell’s inequality does not present in the
latter models. Thus there is no problem with experimental violations of this inequality.
The spin can be in principle considered as an objective property of a quantum system.
We shall show that we can even keep to ‘real realism’, namely, i -realism.

7.2 Realism and Bell’s inequality

Let s� , � 2 Œ0; 2�
, be initial values. We use the ensemble approach to probability.
The main distinguishing feature of this approach is that all probabilities in (6.5)–(6.7)
depend on corresponding ensembles. There are three ensembles SN0� , SN

�	
, SN

0	
(of

cardinality N/ which are used to obtain observed probabilities PSN
0�
.s0 D ˙1, s� D

˙1/, PSN
��
.s� D ˙1; s	 D ˙1/, PSN

0�
.s0 D ˙1, s	 D ˙1/.22

Remark 7.2. Formally we could introduce an infinite ensemble S of particles and
define ensemble probabilities with respect to S :

PS .s˛1
D �1; s˛2

D �2; : : : ; s˛n
D �n/

D jfs 2 S W s˛1
D �1; s˛2

D �2; : : : ; s˛n
D �ngj

jS j ;
(7.1)

where �i D ˙1, n 2 N. Of course, the calculations of Section 6 can be repeated for
such probabilities. However, this can be done only formally. As we have already men-
tioned, the proportional definition of probability is meaningless for infinite ensembles
in the framework of real analysis. Thus we could not perform these formal calculations
on the mathematical level of rigorousness.

Remark 7.3. The proportional ensemble definition (7.1) can be used on the mathe-
matical level of rigorousness on the basis of non-Archimedean analysis. For example,
in Chapter 4 we study p-adic ensemble probabilities. All arithmetical calculations
(6.5)–(6.9) can be performed in the field of p-adic numbers. But (6.9) does not imply
(6.10)! Some of probabilities PS .s˛1

D �1; s˛2
D �2; s˛3

D �3/ can be negative! In
fact, there is some hidden (and still unclear) logic in such an appearance of negative
probabilities in models in that the formal use of infinite statistical ensembles is not
justified (see Chapter 3).

Therefore we have to operate with finite ensembles SN
˛ˇ

. The three-dimensional
probabilities used in (6.5)–(6.7) must be also considered as probabilities with respect
to these ensembles. Thus in (6.5)–(6.7) we use probabilities PSN

0�
.: : : /; : : : ;PSN

0�
.: : : /.

22In Kolmogorov’s model ensemble indexes are omitted. In fact, this manipulation which looks quite
innocent is the origin of Bell’s mystification.



Section 7 Bell’s mystification 71

Hence (6.5) and (6.6) give

PSN
0�
.s0 D C1; s� D C1/C PSN

��
.s� D �1; s	 D C1/

D PSN
0�
.s0 D C1; s� D C1; s	 D C1/C PSN

0�
.s0 D C1; s� D C1; s	 D �1/

C PSN
��
.s0 D C1; s� D �1; s	 D C1/C PSN

��
.s0 D �1; s� D �1; s	 D C1/:

But in the opposite to calculations with abstract Kolmogorov probabilities in Section 6
the first and the third terms on the right hand side of this equation are not those which
when added together make up the term

PSN
0�
.s0 D C1; s	 D C1/ D PSN

0�
.s0 D C1; s� D C1; s	 D C1/
C PSN

0�
.s0 D C1; s� D �1; s	 D C1/:

To obtain (6.9), we have to identify PSN
0�
.s0 D C1; s� D C1; s	 D C1/ and

PSN
0�
.s0 D C1; s� D C1; s	 D C1/, PSN

��
.s0 D C1; s� D �1; s	 D C1/ and

PSN
0�
.s0 D C1; s� D �1; s	 D C1/. But (and this is the crucial point!) there are no

reasons to do this in the general case.
For example, in quantum experiments with correlated particles it is possible to mea-

sure only two-dimensional probabilities PSN
˛1˛2

.s˛1
D ˙1; s˛2

D ˙1/ (by using cor-

relations between particles). The physical experience is that this ensemble probabil-
ities stabilize when N ! 1. However, there are no reasons that three-dimensional
probabilities PSN

˛1˛2

.s˛1
D ˙1; s˛2

D ˙1; s˛3
D ˙1/ must also stabilize when

N !1. They could depend essentially on statistical ensembles. Therefore the iden-
tification of probabilities with respect to different ensembles is not justified at all.

Practically the same considerations can be repeated in the framework of von Mises’
frequency theory. There we have to consider three different collectives, x0� ; x�	 ; x0	 ,
instead of ensembles SN0� ; S

N
�	
; SN
0	

. These are collectives for two-dimensional labels
.s0; s�/; .s� ; s	 /; .s0; s	 /. The principle of statistical stabilization can be applied only
to these labels. The frequencies �N .s˛ D ˙1; sˇ D ˙1I x˛ˇ / stabilize when N !
1. However, the frequencies �N .s˛ D ˙1; sˇ D ˙1; s� D ˙1I x˛ˇ / need not
stabilize when N !1. Moreover, they may be not defined at all. Therefore there is
no Bell’s inequality in von Mises probability model.

If we keep to f -realism, we have to use von Mises’ frequency probability theory.
Therefore we could not obtain Bell’s inequality. There are no problems with violations
of this inequality.

Remark 7.4. Typically Bell’s inequality is associated with the use of so called hid-
den variables, see Section 9. As it has been noticed in [51], [54], it can be de-
rived without any reference to hidden variables. As the reader has seen, it was only
supposed that there exists a Kolmogorov probability space P D f�;F ;P/ such
that three spin projections s0, s� , s	 can be represented by random variables on this
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space. Under this assumption it is possible to define the joint probability distribution
Pijk D P.s0 D i; s� D j; s	 D k/, i; j; k D ˙1. On the other hand, the existence of
the joint probability distribution Pijk implies the existence of the Kolmogorov space
with P D fPijkg. This connection between Bell’s inequality and existence of joint
probability distribution was discussed by A. Fine [61], P. Rastall [155], W. de Muynck
and H. Martens [53] (see also [54]). Typically nonexistence of the joint probability
distribution is interpreted as the impossibility to use the objective realism (at least its
i -version). From our viewpoint this is just the impossibility to apply the Kolmogorov
model of probability theory (i.e., to use abstract symbolic probabilities without to re-
gard to concrete ensembles or collectives). In the frequency approach such nonexis-
tence only demonstrates the absence of the statistical stabilization for relative frequen-
cies �N .s0 D i; s� D j; s	 D k/ for three different projections of spin. However,
there are no (!) experimental reasons to suppose such a stabilization. In the ensemble
approach such nonexistence only demonstrates the absence of the reproducibility of
the ‘property’ .s0 D i; s� D j; s	 D k/ in statistical ensembles used for quantum
experiments. However, there are no(!) reasons to suppose such a reproducibility.

8 Bell’s inequality for covariations

We have considered Bell’s inequality for probabilities. The original Bell’s inequality
[26], [27] was proved for covariations.

Theorem 8.1. Let P D .�;F ;P/ be a Kolmogorov probability space and A;B;C 2
RV.P / be discrete random variables, A;B;C D ˙1. Then Bell’s inequality

jhA;Bi � hC;Bij � 1 � hA;C i .8:1/

holds true.

Proof. Set � D hA;Bi � hC;Bi. By linearity of Lebesgue integral we obtain

� D
Z

�

A.!/B.!/ dP.!/ �
Z

�

C.!/B.!/ dP.!/

D
Z

�

ŒA.!/ � C.!/
B.!/ dP.!/:
(8.2)

As A.!/2 D 1,

j�j D j
Z

�

Œ1 � A.!/C.!/
A.!/B.!/ dP.!/j (8.3)

�
Z

�

Œ1 � A.!/C.!/
 dP.!/ D 1 � hA;C i: (8.4)
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Of course, this is the rigorous mathematical proof of (8.1) for Kolmogorov proba-
bilities. However, as we have mentioned, Kolmogorov’s model does not provide the
adequate description of some quantum measurements. The root of ‘Bell–Kolmogorov
mystification’ is again the identification of probabilities corresponding to different sta-
tistical ensembles or collectives.

Let us consider von Mises’ approach. The ensemble approach will be considered
in Section 9 in connection with so called hidden variables. In the frequency formal-
ism the covariations hA;Bi and hC;Bi are covariations with respect to two different
collectives, xAB and xCB : hA;Bi � hA;BixAB

and hC;Bi � hC;BixCB
. Thus

hA;BixAB
D 1

N

N
X

iD1

aibi ; hC;BixCB
D 1

N

N
X

iD1

cib
0
i

and

hA;BixAB � hC;BixCB D
1

N

N
X

iD1

Œaibi � cib0
i 
:

There are no reasons to suppose that

1

N

N
X

iD1

Œaibi � cib0
i 
 D

1

N

N
X

iD1

Œai � ci 
bi : .8:5/

Hence Bell made the mistake on the first step, (8.2), of the proof by using the linearity
of mean value with respect to two different collectives (or statistical ensembles).

As physicists (with a few exceptions) did not see probabilistic roots of Bell’s mis-
understanding, they try to find some explanations of experimental violations of Bell’s
inequality:

1. Death of realism. It is impossible to keep to realism and suppose that quantum
systems have objective properties.

2. Nonlocality. As in quantum experiments, covariations are found via measure-
ments for correlated particles which are separated in space, it can be supposed
that ‘nonclassical’ behavior of these covariations is a consequence of the depen-
dence of the state of one particle on the state of other particle.

Of course, these ideas could not be denied on the basis of our probability analysis.
But our analysis has demonstrated that Bell’s arguments have no relation to these ideas.

9 Hidden variables and Bell’s inequality

9.1 Incompleteness of quantum mechanics

Theories based on so called hidden variables were developed starting with the hypoth-
esis on incompleteness of quantum mechanics. Typically incompleteness of quantum
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mechanics is considered as a consequence of the EPR arguments. By these arguments
both position and momentum (or projections of spin to different axes) of each quantum
particle are elements of reality for the system of two correlated particles. However, the
quantum formalism does not describe the simultaneous existence of these elements of
reality. Thus quantum mechanics is not complete. However, we have demonstrated
that the EPR arguments are based on the formal use of Kolmogorov abstract probabil-
ities. Of course, such ‘arguments’ could not be considered as the proof of incomplete-
ness of quantum mechanics. Nevertheless, incompleteness of quantum mechanics can
be directly obtained as a consequence of keeping to realist philosophy.

9.2 Hidden variables

Let us suppose that quantum mechanics is not complete. There could be finer descrip-
tion of reality than given by quantum mechanics. In principle there could exist some
additional variables 
, hidden variables, such that by specifying the value 
 D 
0
of 
 we could determine the values of all physical observables: 
0 ! A.
0/; 
0 !
B.
0/; : : : . Compatibility or incompatibility of physical observables A;B; : : : , do not
play any role.

Typically Bell’s inequality is considered in the framework of hidden variables. The
Kolmogorov probability space P D .�;F ;P/ which was used in Section 8 has the
following interpretation: � D ƒ is the set of hidden variables, ! D 
, P is the proba-
bility distribution of hidden variables. The experimental violations of Bell’s inequality
are interpreted as the evidence that such hidden variables do not exists. Other authors
use nonlocality arguments. They think that, despite of nonexistence of local hidden
variables, nonlocal hidden variables can exist.

However, all our probability arguments against Bell’s inequality can be repeated for
hidden variables. Let us use von Mises’ frequency approach. As we have already seen
in Section 8, Bell’s mistake is the assumption on the validity of equality (8.5).

9.3 Deterministic hidden variables model and
generalized Bell’s inequality

To simplify our considerations, we suppose that the set of hidden variables is finite:

ƒ D f
1; : : : ; 
M g:

For each physical observable U , the value 
 of hidden variables determines the value

U D U.
/:

Here we keep to realism. It is possible to keep i -realism or f -realism. If we keep to
i -realism in this model, we have to assume that the result of measurement does not
depend on fluctuations of an internal state ! of a measurement device MU (see the
next section for the model with such a dependence).
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Let U and V be physical observables, U; V D ˙1. We start with the consideration
of the frequency (experimental) covariation hU; V ixU V

with respect to a collective
xUV induced by measurements of the pair .U; V /. The xUV is obtained by mea-
surements for an ensemble SUV of physical systems (for example, pairs of correlated
quantum particles). Our aim is to represent experimental covariation hU; V ixU V

as
ensemble covariation hU; V iSU V

. Then we shall demonstrate that in the general case
it is impossible to perform for ensemble covariations Bell’s calculations, (8.2)–(8.4),
which have been performed for Kolmogorov covariations. Let SUV D fd1; : : : ; dN g,
where i th measurement is performed for the system di . Define a function i ! 
.i/,
the value of hidden variables for di . We set nk.SUV / D jfdi 2 SUV W 
.i/ D 
kgj
and pUV

k
D PSU V

.
 D 
k/ D nk.SU V /
N

. We have

hU; V ixU V
D 1

N

N
X

iD1

U.
.i//V .
.i// D 1

N

M
X

kD1

nk.SUV /ukvk

D
M
X

kD1

pUVk ukvk D hU; V iSU V
;

where uk D U.
k/; vk D V.
k/. Thus

� D hA;BixAB
� hC;BixCB

D hA;BiSAB
� hC;BiSCB

D
M
X

kD1

.pABk ak � pCBk ck/bk

and

hA;C ixAC
D hA;C iSAC

D
M
X

kD1

pACk akck :

We suppose now that probabilities of 
k do not depend on statistical ensembles:

pk D pABk D pCBk D pACk .9:1/

(later we shall modify this condition to obtain statistical coincidence of probabilities,
instead of the precise coincidence). Hence

� D
M
X

kD1

pk.ak � ck/bk and hA;C ixAC
D

M
X

kD1

pkakck :

We can now apply Theorem 8.1 for the discrete probability distribution fpkgMkD1
and

obtain Bell’s inequality.
However, if condition (9.1) does not hold true, then equality (8.2) and, as a conse-

quence, Bell’s inequality can be violated. The violation of condition (9.1) is the exhi-
bition of unstable (with respect to the real metric) statistical structure on the level of
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hidden variables of (at least some) quantum ensembles. In particular, the principle of
the statistical stabilization (‘the law of the large numbers’) can be violated for hidden
variables: limN!1 �N .
l/ do not exist. Thus we could not introduce the probability
distribution on the set of hidden labels ƒ.23

Nevertheless, we obtained the following mathematical result:

Theorem 9.1. Let statistical ensembles satisfy condition (9.1). Then Bell’s inequality
(8.1) holds true.

We introduce now a statistical analogue of the precise coincidence of ensemble
probabilities for hidden variables. Let E1, E2 be two ensembles of physical systems
and let � be a property of elements of these ensembles. The � has values .˛1; : : : ; ˛m/.
We define

ı�.E1;E2/ D
M
X

iD1

jPE1
.˛i / � PE2

.˛i /j;

where PE.˛i / D jfd2EW�.d/D˛i gj
jEj

are ensemble probabilities. We remark that the
function ı� is a pseudometric on the set of all ensembles which elements have the
property � : (1) ı�.E1;E2/ 
 0I (2) ı�.E1;E2/ D ı�.E2;E1/; (3) ı�.E1;E2/ �
ı�.E1;E3/C ı�.E3;E2/. The distance ı�.E1;E2/ D 0 iff ensembles E1 and E2 have
the same probability distribution of property � W PE1

.˛i / D PE2
.˛i /; i D 1; 2; : : : ; m.

In our model we set � D 
, hidden variables. The precise repeatability of the
probability distribution of hidden variables (9.1) can be written as

ı.SAB ; SCB/ D ı.SAB ; SAC / D 0;

where ı D ı
. Of course, we need not use such a precise coincidence in probabilistic
considerations.

Theorem 9.2. Let statistical ensembles satisfy condition

ı.SAB ; SCB/; ı.SAB ; SAC / � �:

Then Bell’s inequality

jhA;BiSAB
� hC;BiSCB

j � .1C 2�/ � hA;C iSAC
.9:2/

holds true.

23All our considerations were based on the statistical stabilization with respect to the real metric. In
Chapter 4 we shall consider the statistical stabilization with respect to a p-adic metric. It may be that
some ensembles of hidden variables which are unstable with respect to the real metric are stable with
respect to the p-adic metric, see [80, 82, 83].
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Proof. We have

j�j � j
M
X

kD1

pABk .ak � ck/bkj C j
M
X

kD1

.pABk � pCBk /ckbkj

� � C
M
X

kD1

pABk jakbkj.1 � akck/

� .1C �/ � hA;C iSAC
C

M
X

kD1

jpACk � pABk jjakckj

� .1C 2�/ � hA;C iSAC
:

We use the index N to denote the cardinality of a statistical ensemble. If probabili-
ties PSN

U V
.
k/ stabilize when N !1,

lim
N!1

PSN
U V
.
k/ D P.
k/;

then ı.SAB ; SCB/; ı.SAB ; SAC / ! 0, N ! 1. This imply precise Bell’s inequality
(8.1). On one hand, experimental violations of the latter inequality can demonstrate
that probabilities of hidden variables with respect to the ideal infinite ensemble do not
exist at all (they fluctuate when N !1/. On the other hand, these violations can be a
consequence of the fact that we do not know the value of a constant � in (9.2). It might
be that, despite of the stabilization of probabilities for N ! 1, this constant is quite
large for statistical ensembles which are used in quantum physics. In fact, ‘right Bell’s
inequality’ (9.2) could not be experimentally verified.

9.4 Stochastic hidden variables model, generalized Bell’s inequality

Here we keep to f -realism. Thus, for each physical observable U , its value Uf D
U.
/ is the final value of U after a measurement. Such a result of a measurement
depends not only on the value 
 of hidden variables, but also on the state of an
equipment MU which is used for measuring of U . A measurement device MU is
a complex macroscopic system which state depends on the huge number of fluctuating
parameters. Denote the ensemble of all possible states of MU by the symbol †U :
†U D f!U1 ; : : : ; !ULU

g. The final value Uf of an observable U depends on both 
 and
!:

Uf D U.!; 
/:
We call such a model stochastic hidden variables model. Our definition of a stochastic
hidden variables model differs from the standard one, see Section 9.5. The standard
definition is strongly connected with Kolmogorov’s model.

LetU and V be physical observables, U; V D ˙1. We start again with the consider-
ation of the frequency covariation hU; V ixU V

with respect to a collective xUV induced
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by the measurement of the pair .U; V /. The xUV is obtained by measurements for an
ensemble SUV of physical systems. Our aim is again to represent the experimental co-
variation hU; V ixU V

as ensemble covariation hU; V iSU V
. Then we shall demonstrate

that in the general case it is impossible to perform for ensemble covariations Bell’s
calculations, (8.2)–(8.4).

Let SUV D fd1; : : : ; dN g, where i th measurement is performed for the system
di . Define functions i ! 
.i/ (the same function as above) and i ! !U .i/, i !
!V .i/, states of apparatus MU and MV , respectively, at the instances, tUi and tVi , of
measurements of U and V for i th system. We have

hU; V ixU V
D 1

N

N
X

iD1

U.!U .i/; 
.i//V .!V .i/; 
.i//:

Set DU
ks
D fi W 
.i/ D 
k; !U .i/ D !Us g and DV

ks
D fi W 
.i/ D 
k; !V .i/ D !Vs g,

1 � k �M , 1 � s � LU , 1 � q � LV . Set lUV
ksq
D jDU

ks
\DV

kq
j. It is evident that

M
X

kD1

LU
X

sD1

LV
X

qD1

lUVksq D N:

Hence

hU; V ixU V
D 1

N

X

ksq

lUVksq uksvkq;

where uks D U.!Us ; 
k/; vkq D V.!Vq ; 
k/. We show that hU; V ixU V
can be repre-

sented as ensemble covariation for an appropriative ensemble of physical systems and
states of measurement devices.

First we note that hU; V ixU V
6D hU; V iƒ�†A�†B

(compare with Section 9.5). For
the latter covariation, we have

hU; V iƒ�†A�†B
D 1

MLALB

M
X

kD1

LU
X

sD1

LV
X

qD1

uksvkq

and in general Pƒ�†A�†B
.
 D 
k; !

U D !Us ; !
V D !Vq / D 1

MLALB
6D lksq

N
even

approximately for M;N;LA; LB !1.
It is also evident that hU; V ixU V

6D hU; V iSU V
. The latter covariation is simply not

well defined, because the ‘properties’ !U .i/ D !Us , !V .i/ D !Vq are not objective
properties of elements of the ensemble SUV . These ‘properties’ are determined by
fluctuations of parameters in the apparatus MU and MV .

To find the right ensemble, we have to introduce two new ensembles, namely, en-
sembles of states of the apparatus MU and MV (in the process of measurements for
the ensemble of physical systems SUV /:

SMU
D f˛U1 ; : : : ; ˛UN g; ˛Uj 2 †U ; SMV

D f˛V1 ; : : : ; ˛VN g; ˛Vj 2 †V ;
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where ˛Ui D !U .i/; ˛Vi D !V .i/ are states of MU and MV at the instances of i th
measurements. We set

SUV D diag.SUV � SMU
� SMV

/ D fD1; : : : ;DN g; Dj D .dj ; ˛Uj ; ˛Vj /:

Then �.Dj / D .
.j /; !U .j /; !V .j // is an objective property of elements of the
ensemble SUV and

hU; V ixU V
D hU; V iSU V

D 1

N

N
X

iD1

U.!U .i/; 
.i//V .!V .i/; 
.i//:

We set

pUVksq D PSU V
.Dj W �.Dj / D .
k; !Us ; !Vs //

D jfDj 2 SUV W �.Dj / D .
k; !Us ; !Vs /gj
jSUV j

:

Hence we obtained that

hU; V ixU V
D hU; V iSU V

D
X

ksq

pUVksq uksvkq :

Thus in the general case we have

� D hA;BixAB
� hC;BixCB

D hA;BiSAB
� hC;BiSCB

D
X

ksq

pABksq askbkq �
X

ksq

pCBksq cksbkq

and
hA;C ixAC

D hA;C iSAC
D
X

ksq

pACksq aksckq :

We suppose now that probabilities pUV
ksq

do not depend on ensembles:

pksq D pABksq D pCBksq D pACksq: .9:3/

In particular, we suppose that all measurement devices have the same set of states (of
parameters):

† D †A D †B D †C .and L D LA D LB D LC /: .9:4/

Then we obtain
� D

X

ksq

pksq.aks � cks/bkq:
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However, we could not repeat trick (8.3) of the proof of Bell’s inequality. The equality
a2
ks
D 1 does not give the possibility to proceed the proof. Of course, we have

j�j D j
X

ksq

pksq.aks � a2kscks/bkqj �
X

ksq

pksqjaksbkqj.1 � akscks/

� 1 �
X

ksq

pksqakscks:

But in general
P

ksq pksqakscks is not larger than hA;C ixAC
DPksq pksqaksckq .

Therefore, if we keep to f -realism, even stability condition (9.3) (for combined
ensembles of physical systems and states of measurement apparatus) does not imply
Bell’s inequality. A new source of violation of Bell’s inequality is the inconsistency of
random fluctuations for two measurement devices MU and MV . In general !U .i/ 6D
!V .i/.

Suppose that it could be possible to control states of MU and MV and choose ! for
MU and MV in the consistence way:

! D !U .i/ D !V .i/:

Then the ensemble SUV would contain only triples of the form .
k; !s; !s/ and

pUVksq D PSU V
.
k; !

U
s ; !

V
q / D 0; s 6D q: .9:5/

In such a case we obtain covariations:

hU; V iIdeal D
1

N

N
X

iD1

U.!U .i/; 
.i//V .!V .i/; 
.i// D
X

ks

pUVks uksvks;

where pUV
ks
D pUV

kss
. If we also suppose the validity of (9.3), we obtain

j�Idealj D j
X

ks

pks.aks � cks/bksj

� 1 �
X

ks

pksakscks D 1 � hA;C iIdeal:

However, ideal covariations have no direct connection to experimental frequency co-
variations.

Nevertheless, we can formulate the following mathematical theorem:

Theorem 9.3. Let statistical ensembles (physical systems/measurement apparatus)
satisfy conditions (9.3) and (9.5). Then Bell’s inequality (8.1) holds true for covaria-
tions with respect to these ensembles.
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Therefore, to obtain Bell’s inequality in the framework of f -realism, we have to
suppose: (1) statistical repeatability of ensemble distribution of hidden variables 
 in
ensembles which are used for measurements; (3) statistical repeatability of fluctua-
tions of states ! in ensembles of an equipment; (3) consistency of fluctuations of all
measurement devices.

If the reader even deny the possibility of violations of (1) or (2), he must agree that
condition (3) seems to be nonphysical: we could never control fluctuations of the huge
number of parameters in the equipment.

Instead of precise coincidence (9.3), it is possible to consider (under the assumption
(9.4)) the statistical coincidence based on the quantity:

ı.SAB ; SCB/ D
M
X

kD1

L
X

sD1

L
X

qD1

jpABksq � pCBksqj:

Here ı D ı� for the property �.i/ D .
.i/; !U .i/; !V .i//. We remark that condition
(9.3) of the precise coincidence can be written as

ı.SAB ; SCB/ D 0
for every two pairs of observable .A;B/ and .C;B/. We also introduce a new quantity
which is a statistical measure of inconsistency of ensembles SMU

and SMV
:

�.SUV / D
X

s 6Dq

PSU V
.!U D !s; !V D !q/ D

X

k

X

s 6Dq

pUVksq :

Condition (9.5) of the precise consistency for states of MU and MV can be written in
the form:

�.SUV / D 0:
Theorem 9.4. Let statistical ensembles (physical systems/measurement apparatus)
satisfy conditions:

ı.SAB ; SCB/; ı.SAB ; SAC / � � and �.SAB/; �.SCB/; �.SAC / � �0:

Then inequality

jhA;BiSAB
� hC;BiSCB

j � .1C 2� C 3�0/ � hA;C iSAC

holds true.

Proof. We have

j�j � � C j
X

ksq

pABksq.aks � cks/bkqj

� � C 2�0 C
X

ks

pABks j.aks � cks/bksj � � C 2�0 C
X

ks

pABks .1 � akscks/

� � C 4�0 C
X

ksq

pABksq.1 � aksckq/ � .1C 2� C 4�0/ �
X

ksq

pACksqaksckq :
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9.5 Right choice of probability distributions for stochastic hidden
variables models

Typically stochastic hidden variables models are defined as models with probabilities
.� D ˙1/

P.U D �/ D
Z

ƒ

P.U D �=
/ d�.
/; .9:6/

where �.
/ is the probability distribution of hidden variables and P.U D �=
/ is the
conditional probability to measure the value U D � for the quantum system having
the hidden state 
. Then the joint probability distribution can be defined (at least
mathematically) as

P.U1 D �1; U2 D �2; U3 D �3/

D
Z

ƒ

P.U1 D �1=
/P.U2 D �2=
/P.U3 D �3=
/ d�.
/:
(9.7)

In fact, to derive Bell’s inequality in the Kolmogorov framework, it is sufficient to
use the existence (on the mathematical level) of the joint probability distribution (9.7).
However, considerations in the framework of the ensemble probability theory demon-
strated that ‘probabilities’ (9.6) has no physical meaning. These are probabilities with
respect to the ensemble ƒ � †U . However, physical probabilities are probabilities
with respect to the ensemble SU D diag.SU � SMU

/, where SU D fd1; : : : ; dN g is
the ensemble of quantum system used in the measurement.

9.6 Individual and ensemble nonreproducibilities

Our hypothesis on the nonreproducibility of the probability distribution of hidden vari-
ables in statistical ensembles used in quantum experiments is related to De Baere’s
[46], [47] hypothesis on the individual nonreproducibility. He mentioned that there
are reasons (see also [54]) that it would be impossible to prepare the quantum system
with the same value 
 for measurements of different observables. Thus probabilities
P.Uj D �j =
/, j D 1; 2; 3, could not be defined for the same 
. The latter implies
that joint probability distribution (9.7) does not exist and Bell’s inequality could not be
derived. We remark that deterministic hidden variables models satisfy the condition of
the individual reproducibility. However, the ensemble reproducibility can be violated.

9.7 Other probabilistic models which do not contradict to local realism

L. Accardi [2] used non-Kolmogorovean model without Bayes’ formula to eliminate
Bell’s inequality from considerations related to spin’s model. Recently he also devel-
oped a new non-Kolmogorovean model which gives an explanation of violations of
Bell’s inequality, see [3].

I. Pitowsky [148], [149] discussed the possibility that some nonmeasurable sets can
be physical events, i.e, some physical observables may be nonmeasurable. There is no
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Bell’s inequality in this approach. Thus there is no problem with violations of Bell’s
inequality. This model is consistent with known polarization phenomena and the ex-
istence of macroscopic magnetism. He also proposed a thought experiment which
indicates a deviation from the predictions of quantum mechanics. We noted that al-
ready A. N. Kolmogorov discussed ‘generalized probabilities’ on the algebra F� of all
subsets of �. Pitowsky discussed the relation of ‘Banach–Tarski paradox’ (Theorem
5.1, Chapter 1) to foundations of probability theory. It seems that Kolmogorov sus-
pected that ‘nonmeasurable events’ could play some role in probability theory. The
model of Pitowsky gives the interesting application of such ‘generalized probabilities.’
I. Pitowsky noticed:

“This so called ‘Banach–Tarski paradox’ is not a paradox at all. The pieces into
which the ball is cut are nonmeasurable sets, that is, one cannot assign them numbers
that indicate their volume since this will clearly violate the additivity or invariance of
‘volume’. In spite of this explanation and in spite of independent proofs that nonmea-
surable sets exist, the Banach-Tarski result was taken as an unfortunate consequence
of the axiom of choice (which is nevertheless, essential in some fields of ‘good’ math-
ematics). Suppose, however, that we reverse this attitude and maintain that the subsets
into which the ball is decomposed exist in physical reality. These hidden pieces could
be detected in two ‘states’. The first is a ‘one-ball state’ and the second a ‘two-ball
state’. In each state the pieces do have a ‘volume’ which depends, however, on their
mutual configuration. Assume that we have a source that emits five balls in the first
state. On the way from the source to a counter two of the balls spontaneously transform
to the second state. The counter, which does not distinguish between the states, will
detect seven ball. This rather simplistic example serves to indicate that one can ‘per-
form miracles’ if one is willing to accept the physical reality of some highly abstract
set-theoretical objects. In particular, if such assumptions are made, it is possible to
account for interference effects in a completely mechanistic way without introducing
wavelike nonlocal components to the theory.

Mathematicians, in particular applied mathematicians, where reluctant to take non-
measurable sets seriously. As a result there exists no mathematical theory that relates
nonmeasurable distributions with relative frequencies.”

Such an extension of probability theory was created by I. Pitowsky and then strongly
mathematically improved by S. P. Gudder [66]. He introduced the concept of a proba-
bility manifold M . The global properties of M inherited from its local structure were
then considered. It was shown that a deterministic spin model due to Pitowsky falls
within this general framework. Finally, Gudder constructed a phase-space model for
nonrelativistic quantum mechanics. These two models give the same global descrip-
tion as conventional quantum mechanics. However, they also give a local descriptions
which is not possible in conventional quantum mechanics.

Remark 9.1. Non-Kolmogorovean probabilistic models of Accardi, Pitowsky and
Gudder have higher level of abstraction than the original Kolmogorov model. This
is one of explanations why these models are not so popular in quantum physics. On
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the other hand, we showed that Bell’s inequality does not contradict to local realism on
the basis of the primary (rather primitive from mathematical viewpoint) probabilistic
models, namely, the ensemble and frequency models. It seems that our models have
more close relation to physical reality.

We shall discuss in Chapter 3 the use of negative probabilities and in Chapter 4 the
use of p-adic probabilities to eliminate Bell’s inequality from considerations.

Conclusion. ‘Bell’s inequality’ does not imply nonexistence of local hidden variables.
Physical reality may be nonlocal. It may be a realistic description of quantum phe-
nomena is impossible. However, both these features of physical reality could not be
determined via Bell’s inequality.



3 Negative probabilities

In this chapter we study possibilities to extend the probability theory to describe nu-
merous physical models with negative probabilities. Of course, negative probabilities
could not appear in Kolmogorov’s probability theory in that the probabilities of events
must be positive real numbers. Therefore we have to turn back to the original proba-
bility formalisms, namely, ensemble and frequency.

1 The origin of negative probabilities in the ensemble and
frequency theories

1.1 Ensemble approach: fluctuations of finite approximations

In the ensemble framework negative probabilities could not appear for finite statistical
ensembles SN D fs1; s2; : : : ; sN g. However, such generalized probabilities can natu-
rally appear for infinite statistical ensembles S as the results of the limit procedure:

PS .A D ˛/ D lim
N!1

jS.A D ˛/ \ SN j
jS j ; .1:1/

where a sequence of finite ensembles fSN g gives an approximation of the infinite
ensemble S . If this limit does not exist in R, then some regularization procedures (for
example, the summation of divergent series or integrals) can induce negative values
for PS .A D ˛/. Of course, in such a situation it would be natural to leave the domain
of real analysis and consider some non-Archimedean number systems which contain
actual infinities. In this case the probability PS .A D ˛/ can be defined directly as the
proportion:

PS .A D ˛/ D
jS.A D ˛/ \ SN j

jS j : .1:2/

In Chapter 4 we shall use the system of p-adic numbers Qp for such a purpose (another
natural possibility is to use nonstandard numbers, [10]). In Qp proportion (1.2) can be
a negative rational number (as well as a rational number which is larger than 1).

1.2 Ensemble approach: split of conventional probabilities

Nonexistence of limits (1.1) is not the unique source of negative probabilities for in-
finite ensembles S . It may be situations (see, for example, the p-adic framework)
such that limit (1.1) (for some ˛/ exists and equal to zero (from the viewpoint of
the real analysis). For example, for the uniform distribution on S D N, we have
PS .A D n/ D limN!1

1
N
D 0 for all n D 1; 2; : : : . However, some regularization

of this limit procedure can produce nonzero coefficients Preg
S .˛/. In the mentioned
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p-adic framework such coefficients (defined by (1.1) with respect to the p-adic topol-
ogy or directly by (1.2) with the aid of actual infinities) are always negative (rational)
numbers1. Thus regularizations of (1.1) can induce the split of zero conventional prob-
abilities in a set of new labels which can be negative numbers. These new labels can
be interpreted as infinitely small probabilities. Such a split of conventional probabil-
ities is not a feature of only zero probabilities. For example, probability one can be
also split in a set of new labels which are interpreted as probabilities which differ from
probability one by infinitely small probabilities. These are ‘practically one probabil-
ities’. In all p-adic examples such new probabilities are given by rational numbers
which are larger than one2. Similar splits can be obtained for other rational proba-
bilities q 2 .0; 1/. If 0 < q < 1, q 2 Q, then we have two sets of labels L<q and
L>q . They denote, respectively, probabilities a D q � 
 and a D q C 
, where 

is infinitely small probability. In p-adic examples we have L<q � Q \ .�1; 0/ and
L>q � Q \ .1;C1/ (see Chapter 4 for the details).

On one hand, probabilities q < 0 (and q > 1/ demonstrate irregular behaviour
(N !1) of approximations of probabilities PS with respect to an infinite ensemble S
by probabilities PSN

with respect to finite sub-ensembles SN . On the other hand, they
can describe the fine internal structure of S (via split of conventional probabilities).
We note that from the physical point of view the irregularity of approximations means
that it is impossible to prepare for all measurements for a quantum state � (describing
S/ finite ensembles SN with identical statistical properties.

1.3 Frequency approach: irregularity of behaviour of frequencies

In the frequency framework negative probabilities could not appear in the classical
theory of R. von Mises which is based on the principle of the statistical stabilization
of frequencies with respect to the real metric. However, if we assume that for some
‘quasi-random sequences’ x D .x1; x2; : : : ; xn; : : : / this principle can be violated,
namely, the limit

Px.˛/ D lim
N!1

�N .˛I x/ .1:3/

does not exist in R, then some regularization procedures Rfr for (1.3) can produce neg-
ative values (as well as values which are larger than 1) for Px . One of the possibilities
for such a regularization is to change the topology on the set of rational numbers Q in
that we study the convergence of relative frequencies. In Chapter 4 we shall use the
p-adic topology for such a purpose.

1In fact, we could not prove such a general theorem in the framework of p-adic analysis. But numer-
ous examples demonstrate this feature of the p-adic split of zero conventional probabilities.

2This is natural: if P.A/ D q < 0 is infinitely small probability, then P. NA/ D 1 � P.A/ D 1 � q > 1
is probability which negligibly differs from 1 and vice versa.



Section 1 The origin of negative probabilities in the ensemble and frequency theories 87

1.4 Frequency approach: split of Mises’ probabilities

Another source of frequency probabilities q < 0 and q > 1 is the split of Mises’ proba-
bilities. For example, the fact that frequency probability PMises

x .A/ D limn!1�n.AIx/
D 0 does not imply that the event A should never occur. Therefore it is reasonable to
take such events into account by using new labels.

Let us consider two events A and B which have zero frequency probabilities:

PMises
x .A/ D lim

n!1
�n.AI x/ D 0; PMises

x .B/ D lim
n!1

�n.BI x/ D 0; .1:4/

in R. We are interested in the problem: What event, A or B , has larger probability?
Of course, this question is meaningless from the viewpoint of the Mises’ probabil-
ity theory. However, this problem can be solved by extending the set of labels for
probabilities.

In the frequency framework we can obtain new sets of labels automatically by using
new topologies for the statistical stabilization (by finding limits (1.3) with respect to
new topologies)3. Each topology of the statistical stabilization induces its own set of
labels for split Mises’ probabilities. For example, it may be that, despite of (1.4) in R,
we have

P�x.A/ D lim
n!1

�n.AI x/ 6D 0; P�x.B/ D lim
n!1

�n.BI x/ 6D 0 .1:5/

for some topology � on Q. If we choose the p-adic topology � D �p , then in examples
studied by the author p-adic probabilities (1.5) are represented by negative rational
numbers. Thus by using negative probabilities we can split zero (Mises’) probability.
The same split can be obtained for all Mises’ probabilities q 2 Œ0; 1
 \Q.

On one hand, probabilities q < 0 and q > 1 demonstrate the violation of the
principle of the statistical stabilization (the law of large numbers) for some ‘quasi-
random’ sequences. On the other hand, they describe (with the aid of new topologies
on Q/ the fine internal structure of some Mises’ collectives.

1.5 Where are negative probabilities?

However, the reader may ask: Why could we not find negative probabilities in physi-
cal experiments? One of reasons is that, in fact, we have never tried to find them. All
our experimental methodology is based on the principle of the statistical stabilization
(the law of large numbers). All experiments are prepared in such circumstances that
relative frequencies must stabilize. This is the result of our cognitive evolution. In
the process of evolution the brain extracted from the chaotic and (lawless) reality phe-
nomena which satisfy the principle of the statistical stabilization (repeatability in the
average). These and only these phenomena are considered by the brain as real physical

3The real topology is only one of many topologies on the set of rational numbers Q which contains
frequencies �N D n=N .
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phenomena. Negative probabilities give the possibility to extend the range of physical
phenomena by considering phenomena which violate the principle of the statistical
stabilization. Another reason of the absence of negative probabilities in the experi-
mental framework is the common use of real analysis for the study of the experimental
statistical data. However, this data is always rational and in principle other topologies
on Q (different from the real one) can be used for studying of this data. In particu-
lar, we have to pay more attention to events A with zero conventional (Kolmogorov
or Mises) probabilities, PConv.A/ D 0. From our viewpoint such events are not less
physical than events with positive probabilities. By using negative probabilities we can
consider in analytical calculations events A such that PConv.A/ D 0. In this way we
can clarify the hidden internal structure of some events B with positive conventional
probabilities. We shall study this question carefully in the next section.

1.6 The formula of total probability as an average procedure

We consider a quantum measurement for quantum systems prepared in a state �. We
suppose that each quantum system s which is taken for this measurement has a hidden
state 
 which determines (with some probability) a result of the measurement for the
s (see Chapter 2). The set of hidden states is denoted by ƒ. The number of hidden
states may be infinite.

Remark 1.1. Of course, in a laboratory we can produce only a finite ensemble
SN D fs1; : : : ; sN g of quantum systems which have a finite number of hidden states

1; : : : ; 
n, n � N . However, different finite ensembles SN ; QSM ; : : : are used in
different experiments. It is natural to assume that these finite ensembles are sub-
ensembles of one infinite ensemble S . The quantum state � describes this infinite
ensemble. The infinite cardinality of S induces the impression that S is just an ideal
mathematical abstraction. However, suppose, for example, that each electron s has the
extremely complex internal structure. Then, in fact, each s must be described by its
own (individual) internal state 
. In this case the number of all possible states (for all
electrons in the universe) is really infinite.

The (hidden) probability for 
 in S is denoted by the symbol p
. On the basis of
our previous considerations (see Chapter 2) it is natural to suppose that some of p

may be nonconventional probabilities; in particular, they may be negative4.

4In particular, they may be infinitely small probabilities. For example, if each electron in the universe
has its own state 
, then p
 D lim 1

N
D 0 (from the viewpoint of real analysis). Negativity of p
 can

also be a consequence of the violation of the law of large numbers. Such a violation for hidden states

 is quite natural if jƒj D 1. For the concrete 
, behaviour of frequencies �N .
I x/ can strongly
depend on a sample x. There are no reasons to assume that two different samples of quantum systems
SN D fs1; : : : ; sN g and QSM D fQs1; : : : ; QsM g must produce samples x D .
1; : : : ; 
N / and Qx D
. Q
1; : : : ; Q
M / having the same probability distribution (because our macro equipment could not control
statistical behaviour of hidden parameters).
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In the process of a measurement each state 
 is transformed into a new state 
0

(due to an interaction between the quantum system and the equipment). Denote prob-
abilities of this transition by p

0 . Some of these probabilities can be negative (in
particular, the law of large numbers can be violated for some transitions 
 ! 
0/. In
the measurement we observe events A consisting of some sets of states 
0 (in principle
these sets can be infinite). By the formula of total probability we obtain:

P.A/ D
X


2ƒ

p

X


02A

p

0 : .1:6/

In fact, this is the average procedure with respect to the ensemble ƒ of hidden states

, transitions 
 ! 
0 and states 
0 which are identified in the observed event A.
The result of this procedure can be a conventional (Kolmogorov or Mises) probability,
despite of the possibility that some of probabilities p
; p

0 < 0 or p
; p

0 > 1.

The ensemble and frequency explanations of this phenomenon have been already
presented in Section 4, Chapter 2. For example, in the frequency framework fluctua-
tions of frequencies �N .
/ and (or) �N .
0=
/ can compensate each other and produce
the statistical stabilization. Examples 4.1 and 4.2 showed that such a behaviour can be
demonstrated even in the case of a finite setƒ. Thus one of the sources of conventional
probabilities in (1.6) is that simultaneous (chaotic) fluctuations can produce in aver-
age the statistical stabilization. Another source are infinite statistical ensembles with
infinitely small initial probabilities p
 < 0 and (or) transition probabilities p

0 < 0.
Infinite sums of infinitely small (negative) probabilities might produce conventional
positive probabilities.

In all previous considerations the formula of total probability must be regularized
via some procedure (for example, by using a new number system to find the limits
of fluctuating frequencies, see Chapter 4). In general we could not even suppose the
validity of the Bayes’ formula (even for one fixed state 
 and transition 
! 
0/.

Example 1.1. Example 4.1 (Chapter 2) can be generalized by considering the infinite
set of hidden states 
 2 Œ0; �
. We choose the uniform probability distribution on
Œ0; �
 as the initial probability distribution p
 (these are infinitely small probabilities).
However, in the framework of real analysis we could not represent p
 as proportional
probabilities (1.2). The only thing which we can do is to use normalized Lebesgue
measure on Œ0; �
 to represent p
. Let us consider an observable B D 0; 1 (
0 D B/

with conditional frequencies

�k.0=
/ 	 sin2 k
; �k.1=
/ 	 cos2 k
; k !1; 
 2 Œ0; �
:

If 
 6D �l , l D 0; 1; 2; : : : , then conditional frequency probabilities Pfr.B D 0=
/ D
limk!1 sin2 k
 and Pfr.B D 1=
/ D limk!1 cos2 k
 do not exist. But the aver-
age procedure based on the (integral) formula of total probability gives well-defined
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conventional probabilities for values of B:

P.B D 0/ D lim
k!1

Z �

0

sin2 k
 dp
 D
1

2
;

P.B D 1/ D lim
k!1

Z �

0

cos2 k
 dp
 D
1

2
:

In Section 3 we shall study examples in that nonexistence of conventional condi-
tional probabilities implies negativity of generalized conditional probabilities.

Example 1.2. The previous example can be easily modified to obtain a model in that
probabilities Pfr.
/ D p
 do not exist. Let d�k.
/ 	 2

�
sin2 k
 d
; k !1, and let

�k.B D ˇ=
/ 	 1
2
; k ! 1. Then the frequency probability distribution p
 do not

exist. But via the formula of total probability we obtain in the average:

P.B D 0/ D lim
k!1

1

2

Z �

0

d�k.
/ D
1

2
;

P.B D 1/ D lim
k!1

1

2

Z �

0

d�k.
/ D
1

2
:

1.7 Negative probabilities and the principle of complementarity

The considerations of the previous section on the formula of total probability as an av-
erage procedure are based on ideas of P. Dirac [55] and R. Feynman [59]. In particular,
R. Feynman considered a roulette which has two internal (non-observed) states 
1 and

2 and three observed states 1,2,3. By simple numerical examples (that the reader
can produce by himself) he demonstrated that observed events can have positive con-
ventional probabilities pj > 0, j D 1; 2; 3, despite of negativity of some hidden
probabilities p
1

, p
2
or conditional probabilities p
1j , p
2j , j D 1; 2; 3. However,

neither Dirac nor Feynman could propose a mathematical explanation of the origin of
negative probabilities (they considered negative probabilities as just formal quantities
which could be useful in some calculations). I have found the frequency and ensem-
ble roots of negative probabilities. For example, we can build Feynman’s roulette by
using ‘quasi-random’ generators for states 
1 and 
2 or for transitions 
1 ! j and

2 ! j which simulate the statistical models of Examples 4.1 and 4.2 (Chapter 2),
respectively.

On the basis of our interpretation of negative probabilities it would be interesting to
discuss the idea of R. Feynman on a connection between negative probabilities and the
principle of complementarity in quantum mechanics, see [59]. As I could understood,
R. Feynman is an adherent of i -realism (at least in this paper).

In the framework of Subsection 1.6 we consider two physical properties A and B .
Thus (despite of possible fluctuations of frequencies and conditional frequencies for
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hidden variables) frequencies

�N .A˛/ D
X


2ƒ

�N .
/
X


02A˛

�N .

0=
/; where A˛ D fA D ˛g; (1.7)

�N .Bˇ / D
X


2ƒ

�N .
/
X


02Bˇ

�N .

0=
/; where Bˇ D fB D ˇg; (1.8)

stabilize (when N !1) to conventional probabilities PConv.A˛/;PConv.Bˇ /.
However, in general there are no reasons to suppose that the frequency

�N .A˛ \ Bˇ / D
X


2ƒ

�N .
/
X


02A˛\Bˇ

�N .

0=
/ .1:9/

also stabilize (when N ! 1/5. If (1.9) does not stabilize, then conventional proba-
bility PConv.A D ˛;B D ˇ/ is not defined.

Remark 1.2. Suppose that we could find some procedure Rfr to regularize fluctuating
frequencies �N .
/ and (or) �N .
0=
/. By Rfr we obtain generalized probabilities
p
 and (or) p

0 (which in principle can be negative numbers). Suppose that (in the
case of the infinite set ƒ/ we could find some procedure Rconv to regularize (probably
diverging) series

X


2ƒ

p

X


02A˛

p

0 ;
X


2ƒ

p

X


02Bˇ

p

0 .1:10/

in such a way that their sums coincide with conventional probabilities PConv.A˛/ and
PConv.Bˇ /, respectively. We now apply Rconv to series

X


2ƒ

p

X


02A˛\Bˇ

p

0 : .1:11/

In principle there may be different variants: (1) the procedure Rconv does not work
for series (1.11); here we could not assign any real number to (1.11); (2) despite of
fluctuations of frequencies (1.9), the Rconv still works for series (1.11) and gives a real
number; but this number is not related to the statistical limit of frequencies (1.9) (in
particular, it may be a negative number).

This simple statistical consideration explains the origin of difficulties with ‘simulta-
neous existence’ of incompatible properties of quantum systems. Therefore the pres-
ence of incompatible properties does not demonstrate some essentially new ‘quantum’

5If jƒj D 1, then events A˛ and Bˇ may differ rather slightly: �N .A=
/ 	 �N .B=
/ for each

 2 ƒ. But the infinite average over ƒ can produce behaviour of frequencies (1.9) which essentially
differs from behaviour of frequencies (1.7) and (1.8).
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properties of reality. It only demonstrates that the law of large numbers is violated for
internal (hidden) properties of so called quantum systems (mainly because we could
not control the statistical behaviour of these properties in our (macro) preparation pro-
cedures). For some events fluctuations on the microlevel can compensate each other
and produce the statistical stabilization of observed frequencies (1.7) and (1.8). At
the present time such events are called physical events. For other events fluctuations
on the microlevel cannot compensate each other; there is no statistical stabilization of
observed frequencies (1.9). At the present time such events are called nonphysical.

There are also no reasons to suppose that (in general generalized) initial probability
distribution p
 and conditional probabilities p

0 can be chosen in such a way that
fluctuations in both expressions (1.7) and (1.8) could be compensated so that, for some
values A D ˛0 and B D ˇ0, both frequencies �N .A˛0

/ and �N .Bˇ0
/ stabilize to

probability 1. This is nothing than the statistical explanation of the principle of the
complementarity. It seems that (rather unclear) considerations of R. Feynman [59] can
be interpreted in such a way.

Thus we proposed the purely statistical explanation of the phenomenon of incom-
patibility for some quantum observables. Here the problem of disturbance effects of
measurements is totally excluded from considerations. Our approach implies that even
the possibility to perform measurements on quantum systems without any disturbance
effect would not imply that incompatible properties can be measured simultaneously6.
Different structure of sets f
0 2 A˛g, f
0 2 Bˇ g and f
0 2 A˛ \Bˇ gmight still imply
fluctuations of frequencies (1.9).

Thus the careful probabilistic considerations show that there may exist physical (in
the sense of the verification by the law of large numbers) properties A;B such that
the simultaneous existence of these properties could not be verified on the physical
level. In such a situation one of the possibilities is to exclude pairs C D .A;B/ of
incompatible properties from considerations (this is the modern quantum viewpoint)7.
However, there is another possibility, namely, consider some regularization procedure
R for (1.9). If (1.9) could be regularized via R, then C can be considered as R-
physical property. Thus we can essentially extend physical reality by considering new
R-elements of reality. As we have already remarked, in many cases one of the sim-
plest ways to regularize (1.9) is to use the p-adic topology, instead of the real. Here
frequencies �N .A˛\Bˇ /may have the limit in Qp , despite of fluctuations in R. How-
ever, the possibility of a p-adic (and any other) regularization of (1.9) need not imply
the possibility to use the same regularization for (1.7) and (1.8). In principle A and B
need not be elements of new reality (despite of the fact that C D .A;B/ is an element

6The idea that the presence of incompatible observables in the quantum formalism (and, in particu-
lar, the Heisenberg uncertainty relation) is not a consequence of disturbance effects of the process of a
measurement, but a consequence of the internal statistical structure of a quantum state (or a preparation
procedure), has been intensively discussed in quantum physics (Prugovecki [154], Ballentine [21]).

7E. Prugovecki pointed out [154] that, far from restricting simultaneous measurements of noncom-
muting observables, quantum theory does not deal with them at all; its formalism being capable only of
statistically predicting the results of measurements of one observable (or a commuting set of observables).
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of this reality). Nevertheless, there may be coincidences such that all series

PR.A˛/ D
X


2ƒ

p

X


02A˛

p

0 ; PR.Bˇ / D
X


2ƒ

p

X


02Bˇ

p

0 ; (1.12)

PR.A˛ \ Bˇ / D
X


2ƒ

p

X


02A˛\Bˇ

p

0 (1.13)

converge with respect to R. In such a situation all events, A˛, Bˇ , A˛ \ Bˇ are R-
physical events. It could be that R-probabilities PR.A˛/ and PR.Bˇ / coincide with
conventional probabilities PConv.A˛/ and PConv.Bˇ /. However, in general PR.A˛/ 6D
PConv.A˛/, and (or) PR.Bˇ / 6D PConv.Bˇ /. In the ensemble framework the previous
considerations can be interpreted in the following way. The system of events F.�S /
for the ensemble S need not be an algebra. The sets C˛ˇ D A˛ \Bˇ need not belong
to F.�S /. However, we may try to extend the ensemble probability to larger class
of sets by using some regularization procedures. Sometimes it is possible and some-
times it is impossible to define ensemble probabilities for C˛ˇ and preserve ensemble
probabilities for sets A˛ and Bˇ .

Thus the modern physics is based the Kolmogorov physical reality. This model of
physical reality can be extended by considering non-Kolmogorov physical realities.
We conclude our considerations by the equality:

Model of Reality = Model of Probability.

We now consider the principle of complementarity in the framework of f -realism.
The main difference between i -realism and f -realism is that in the first case we can
assume that conditional probabilities p

0 do not depend on a measured property and
in the second case a measurement of a property D produces p

0 D pD



0 . Here

�N .A˛/ D
X


2ƒ

�N .
/
X


02A˛

�N .

0=
IA/; (1.14)

�N .Bˇ / D
X


2ƒ

�N .
/
X


02Bˇ

�N .

0=
IB/; (1.15)

�N .A˛ \ Bˇ / D
X


2ƒ

�N .
/
X


02A˛\Bˇ

�N .

0=
IC/; C D .A;B/: (1.16)

Here (even for finite setsƒ of hidden variables) the statistical stabilization of frequen-
cies (1.14) and (1.15) need not imply the statistical stabilization of frequencies (1.16).

1.8 History of negative probabilities in physics

The possibility to obtain negative probabilities via a regularization of ensemble and
frequency approximations (1.1) and (1.3), respectively, is so natural that the negative
attitude against negative probabilities in physics can be only explained by the com-
mon use of Kolmogorov’ theory of probability. From the frequency viewpoint this use
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imply the common viewpoint that relative frequencies must always stabilize; from the
ensemble viewpoint this use imply that statistical ensembles of physical systems must
always have a homogeneous structure with respect to all their nonobserved properties.
A negative psychological reaction to the appearance of negative probabilities in phys-
ical models implies the desire to forget papers in that negative probabilities play the
fundamental role.

Although it is well known, for instance, that P. A. M. Dirac was the first to introduce
explicitly the concept of negative energy, the number of those who know his investiga-
tions [55] about negative probability – closely related to negative energy and invented
simultaneously-seems to be very restricted. This concept is used with reservations but,
as it seems, not without a certain kind of sympathy. Said paper (see Section 4 for the
details) is not the only one on this topic meanwhile has been forgotten, at least as far
as negative probability is concerned.

Another example is the famous Wigner distribution [174] W.q; p/ which had been
introduced as a probability distribution (see Section 4). And it has no other physi-
cal interpretation than a probability distribution. However, the appearance of negative
probabilities for some quantum states implies that Wigner’s distribution is not more in-
terpreted as a probability distribution (many physicists prefer to callW.q; p/Wigner’s
function).

In the framework of the EPR experiments violations of Bell’s inequality could be
easily explained if we suppose that there exist negative probability distributions. How-
ever, papers on negative probability description of the EPR experiments (see, for ex-
ample, the review of W. Mückenheim [146]) did not play large role in the polemics
on the EPR experiments. Physicists prefer to accept the death of reality (namely, the
impossibility to use realism in quantum world; thus, in fact, the absence of objective
laws in reality) or nonlocality of space-time than to use negative probabilities.

The existence of quantum observables with continuous spectra is in the evident con-
tradiction with the discreteness of results of real physical measurements. E. Prugov-
ecki [154] developed a theory of quantum measurements with a finite precision (which
takes into account reading errors of individual measurements). One of the great ad-
vantages of this theory is the possibility to describe simultaneous measurements of
incompatible observables. However, there appear again negative probabilities8. As
always, this implied the extremely strong critic of the theory.

2 Signed ‘probabilistic’ measures and
Einstein–Podolsky–Rosen paradox

We start this section with brief mathematical introduction to the theory of signed
measures (charges). Let � be a set and let F be a � -algebra of its subsets. A

8This has the natural explanation on the basis of our interpretation of negative probabilities: the
violation of the law of large numbers for such measurements.
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� -additive function � W F ! R is said to be a signed measure (charge). Thus
�.
S1
nD1An/ D

P1
nD1 �.An/ for any sequence An 2 F , Aj \ Ai D ¿, i 6D j .

Example 2.1 (Discrete measures). Let � D fx1; x2; : : : ; xn; : : : g be a countable set
and let F be a � -algebra of all subsets of �. Let fang1nD1 be a sequence of real num-
bers such that

P1
nD1 janj < 1. We set �.fxng/ D an and �.A/ D P

xn2A �.fxng/
for A 2 F . The � W F ! R is a signed measure. On the basis of this simple
example we illustrate some important notions of the general theory of signed mea-
sures. Set �� D fxj 2 � W �.fxj g/ < 0g; �C D fxj 2 � W �.fxj g/ > 0g and
�0 D fxj 2 � W �.fxj g/ D 0g. It is evident that for any E 2 F :

�.E \��/ � 0 and �.E \�C/ 
 0: .2:1/

Let U; V 2 F , U \ V D ¿ and let �0 D U [ V . Set �0
� D �� [ U and

�0
C D �C [ V (thus � D �0

� [�0
C/. Then the sets �0

� and �0
C has same property

(2.1) as the sets �� and �C. Set

��.E/ D ��.E \�0
�/ D

X

xn2E\�0
�

janj

and

�C.E/ D �.E \�0
C/ D

X

xn2E\�0
C

an:

Then �.E/ D �C.E/ � ��.E/. This representation of � is unique (in spite of
nonuniqueness of a representation � D �0

� [ �0
C). We can associate with a signed

measure � the positive measure j�j D �C C ��, �.A/ DPxn2A janj.
In fact, this particular example demonstrated all main features of signed measures.

We consider now the general case.

Definition 2.1. Let � be a signed measure defined on a � -algebra F of subsets of a
space �. Then the set A � � is said to be negative with respect to � if E \ A 2 F

and �.E \ A/ � 0 for every E 2 F . Similarly, A is said to be positive with respect
to � if E \ A 2 F and �.E \ A/ 
 0 for every E 2 F .

Theorem 2.1 (Hahn–Jordan). Given a signed measure � on a � -algebra F of subsets
of�, there exists a set�� 2 F such that�� is negative and�C D �n�� is positive
with respect to �.

Proof. Let a D inf�.A/ where the greatest lower bound is taken over all negative
sets A 2 F . Let An 2 F , n D 1; 2; : : : , be a sequence of negative sets such that
limn!1 �.An/ D a. Then the set �� D

S1
nD1An 2 F is a negative set such

that �.��/ D a (this is a consequence of � -additivity of �/. To show that �� is
the required set, we must only show that �C D � n �� is positive. It is possible
to show that the assumption �C is not positive will imply the contradiction (see, for
example, [136] for the details).
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Thus we can represent � as a union

� D �C [�� .2:2/

of two disjoint measurable sets �C and ��, where �C is positive and �� is negative
with respect to the signed measure �. The representation (2.2) is called the Hahn
decomposition of �, and may be not unique. However, if

� D �1C [�1�; � D �2C [�2�
are two distinct Hahn decompositions of �, then

�.E \�1�/ D �.E \�2�/; �.E \�1C/ D �.E \�2C/ .2:3/

for every E 2 F . In fact, E \ .�1� n�2�/ � E \�1� and at the same time E \ .�1� n
�2�/ � E \�2C. This imply that

�.E \ .�1� n�2�// � 0 and �.E \ .�1� n�2�// 
 0:
Thus �.E \ .�1� n�2�// D 0, and similarly �.E \ .�2� n�1�// D 0. Therefore

�.E \�1�/ D �.E \ .�1� n�2�//C �.E \ .�1� \�2�//
D �.E \ .�2� n�1�//C �.E \ .�1� \�2�// D �.E \�2�/;

which proves the first of the formulas (2.3). The second formula is proved in exactly
the same way.

Thus a signed measure � on the space � uniquely determines two nonnegative set
functions, namely

�C.E/ D �.E \�C/; ��.E/ D ��.E \��/

called the positive variation and negative variation of �, respectively. It is clear that

1) � D �C � ��;

2) �C and �� are nonnegative � -additive set functions, i.e., measures;

3) The set function j�j D �C C ��, called the total variation of �, is also a
measure.

The representation � D �C � �� is called the Jordan decomposition of �.
We can present a formal generalization of Kolmogorov measure-theoretical ap-

proach. We define a signed probability space as the triple P D .�;F ;P/, where
� is an arbitrary set (points ! of � are said to be elementary events), F is an arbi-
trary � -algebra of subsets of� (elements of F are said to be events), P is a � -additive
signed measure (a charge) on F normalized by the condition P.�/ D 1.

It is a generalization of probability. There can be events which have negative prob-
abilities and probabilities which are larger than 1. However, our consideration in Sec-
tion 1.1 give strong motivations to use signed probability spaces in physics. Moreover,
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there are analogues of the law of large numbers and central limit theorem for signed
probabilities (see [24], [76], [95]) which also improve the use of signed probability
spaces.

There are no physical reasons to assume that even in the case of signed probabilities
the system of events has the structure of a set algebra (see also Chapter 4). It is natural
to consider signed probability semi-measures defined on set semi-algebras (the reader
can obtain the definition of signed probability semi-measure by analogue to Definition
5.2 of Chapter 1). However, it seems that the corresponding mathematical formalism
is not yet developed. In particular, I do not know anything about the possibility to
obtain the Jordan decomposition for signed semi-measures.

As it has been already mentioned, some physicists (see, for example, [146]) assume
that probability distributions involved in Bell’s considerations are signed probability
measures. This assumption implies that we could not use the standard probabilistic es-
timates. Therefore there is no Bell’s inequality at all. From this viewpoint experiments
for testing Bell’s inequality can be considered as experiments for testing foundations
of probability theory.

We discuss now carefully the origin of negative probabilities in the EPR framework.
Let us follow the ideology of hidden variables. Consider a number N of particles pre-
pared in a pure quantum state and possessing hidden variables 
k , k D 0; : : : ; n.
Assume that the different values 
k are taken with (probably generalized) probabili-
ties pk . By an interaction (the nature of which need not be specified) the values of
these hidden variables change from 
i to 
0

j , j D 0; : : : ; m, the transition probabil-
ity being denoted by pkj . By this interaction the pure state may split into l � m

experimentally distinguishable states. Let A be one of such states. The set of val-
ues of j such that 
0

j form the state A is denoted by the symbol j.A/. The result of
a measurement exhibits N.A/ particles in the state A and gives relative frequencies
�N .A/ D N.A/

N
. By statistical stabilization of these frequencies we obtain frequency

probabilities: PMises.A/ D limN!1 �N .A/. The combined transition probability for
the state A can be found with the aid of the formula of total probability:

Pcom.A/ D lim
n!1

n
X

kD0

pk
X

j2j.A/

pkj D
1
X

kD0

pk
X

j2j.A/

pkj : (2.4)

All probabilistic considerations on Bell’s inequality are based on the assumption that
the observed frequency probabilities PMises.A/must coincide with combined transition
probabilities Pcom.A/ (defined by (2.4)). By this assumption we can use hidden prob-
abilities pk; pkj , in calculations related to Bell’s inequality. However, as it has been
already mentioned in Section 1, the formula of total probability (2.4) can contain some
pathologies. These pathologies could be in principle eliminated by some regularization
procedure R.9 However, R can produce nonconventional probabilities pj , pij .

9In fact, the R consists of two regularization procedures: 1) Rfr gives a regularization .N ! 1/
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The problem of fluctuating of frequencies �N .
k/ and (or) �N .
0
j =
k/ have been

already discussed in Section 1 (see also Chapter 2). We pay now attention to the
average over an infinite set of hidden variables ƒ. So let jƒj D 1. We have

PMises.A/ D lim
N!1

�N .A/ D lim
N!1

lim
n!1

n
X

kD1

�N .
k/
X

j2j.A/

�N .

0
j =
k/ ; .2:5/

where 
1; : : : ; 
n, n D nN are hidden states of particles s1; : : : ; sN . On the other
hand, we have

Pcom.A/ D lim
n!1

n
X

kD1

lim
N!1

�N .
k/
X

j2j.A/

lim
N!1

�N .

0
j =
k/

D lim
n!1

lim
N!1

n
X

kD1

�N .
k/
X

j2j.A/

�N .

0
j =
k/:

To obtain the equality PMises.A/ D Pcom.A/, we have to change the order of limits

lim
N!1

lim
n!1

! lim
n!1

lim
N!1

:

However, we could not do this in the general case. First of all, as we have already
discussed, it may be that PMises.A/ D limN!1 �N .A/ exists but some of limits
limN!1 �N .
k/ or limN!1 �N .


0
j =
k/ do not exists. On the other hand, it may

be that, for example, all pMises
k
D limN!1 �N .
k/ D 0, i.e.,

lim
n!1

lim
N!1

n
X

kD1

�N .
k/
X

j2j.A/

�N .

0
j =
k/ D 0:

But at the same time PMises.A/ 6D 0. However, it is possible to justify (in some cases)
the change of the order of limits with the aid of some regularization procedure.

We now consider the ensemble approach to find the origin of negative probabilities.
Let us start with the following example.

Example 2.2 (Negative distribution of hidden variables). The hidden variable 
 has
the infinite number of values 
 D 
0; : : : ; 
n; : : : . A statistical ensemble S contains
n.
l / D 2l , l D 0; 1; : : : , particles with 
 D 
l . Let us consider the sub-ensemble
S .n/ of S which contains all particles with 
 2 f
0; : : : ; 
ng. Thus jS .n/j D 1C� � �C
2n D 2nC1 � 1 and p.n/

k
D PS.n/.
k/ D 2k

2nC1�1
, 0 � k � n. The formula of total

probability for the ensemble S .n/ has the form:

PS.n/.A/ D
n
X

kD0

p.n/
k

X

j2j.A/

pkj

(here it is assumed that conditional probabilities pkj depend only on the interaction;

of (in general fluctuating) frequencies; 2) Rconv gives a regularization .n ! 1/ of (in general infinite)
average over ƒ.
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they do not depend on n/. If n ! 1, then S .n/ ! S and limn!1 PS.n/.A/ D
PS .A/. However, for probabilities pk with respect to the ensemble S , we have pk D
limn!1 p.n/

k
D 0. Thus, in general,

PS .A/ D lim
n!1

n
X

kD0

p.n/
k

X

j2j.A/

pkj 6D
1
X

kD0

lim
n!1

p.n/
k

X

j2j.A/

pkj D 0:

We make some formal computations (which, of course, has no meaning in the frame-
work of real analysis). First, we find the ‘number of particles’ in S :

jS j D
1
X

kD0

2k D 1

1 � 2 D �1: .2:6/

Then we find probabilities

pk D
jS.
 D 
k/j
jS j D �2k : .2:7/

Here
P1
kD0 pk D 1. Thus we obtained negative ensemble probabilities. We can apply

the ensemble formula of total probability to these probabilities:

PS .A/ D
1
X

kD0

pk
X

j2j.A/

pkj .2:8/

(at the moment we assume that conditional probabilities are ordinary positive prob-
abilities, pkj 
 0/. Let, for example, pkj D qj 
 0 do not depend on k. Then
PS .A/ D .

P1
kD0 pk/.

P

j2j.A/ qj / D
P

j2j.A/ qj 
 0 is ordinary probability (in
spite of the presence of negative probabilities). We can also consider k-dependent
conditional probabilities pkj . Let, for example, A D f
0

0g and pk0 D 0, k D 2l C 1,
pk0 D 1=2lCs; k D 2l , where s D 0; 1; : : : is some (fixed) parameter of the model.
Then

PS .A/ D
1
X

lD0

�22l
2lCs

D � 1
2s

1
X

lD0

2l D 1

2s

is the ordinary probability.
Let pk0 be the same as above and let pk1 D 1, k D 2l C 1, pk1 D .1 � 1=2lCs/,

k D 2l . Set B D f
0
1g. Then

PS .B/ D
1
X

lD0

p2lC1p.2lC1/1 C
1
X

lD0

p2lp.2l/1

D �
� 1
X

lD0

22lC1 C
1
X

lD0

22l
�

1 � 1

2lCs

�

�

D �
�

� 2
3
� 1
3
C 1

2s

�

D 1 � 1

2s
:

Of course, these ‘generalized probabilities’ have some properties which are in con-
tradiction with the common probability intuition. For example, let s D 0. Then
PS .A/ D 1, P.B/ D 0 (despite of the fact that pk1 D 1 and pk 6D 0, k D 2l C 1).
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In Chapter 4 we shall see that all these formal manipulations can be realized on the
mathematical level of rigorousness in the p-adic probabilistic framework. In particu-
lar, from the p-adic viewpoint probabilities pk D �2k are infinitely small probabili-
ties. Thus in the ensemble S the proportion of systems having the fixed value 
j of 

is infinitely small. All these infinitely small probabilities must be identified with zero
probability in the conventional probability theory.

Example 2.3 (Negative conditional probabilities and negative probabilities for hid-
den variables). Negative conditional probabilities pkj may also appear in quite natural
statistical ensembles. We assume that the interaction which determines the transition

k ! 
0

l
can be represented as a finite chain of steps (trajectory), .x/n and at each

step a particle can have one of two states, 0 or 1. Thus a trajectory of the interac-
tion with n steps has the form .x/n D .u1; : : : ; un/, uj D 0; 1. In our model we
simply assume that the transition 
k ! 
0

l
is realized via a trajectory of the length l

(thus, for fixed l , conditional probabilities pkl do not depend on k/. Consider the sta-
tistical ensemble Gl of trajectories having the length l , where l D 0; 1; 2; : : : (we
consider also a ‘trajectory’ of the length l D 0, which describes direct transition

k ! 
0

0/. Set G.n/ D S

l�nGl . Then jGl j D 2l and jG.n/j D 2nC1 � 1 and

jGj D limn!1 jG.n/j D
P1
kD0 2

k D �1. Thus

pkl D
jGl j
jGj D �2

l :

Suppose that as in the above examples pk D �2k and that an experimentally
distinguishable state A is determined by values 
0

2k
, k D 0; 1; : : : , i.e., A D f
0

0; : : : ;


0
2k
; : : : g. By the formula of total probability we have

PS .A/ D
� 1
X

lD0

�2l
�� 1

X

jD0

�22j
�

D 1

3
;

PS . NA/ D
� 1
X

lD0

�2l
�� 1

X

jD0

�22jC1

�

D 2

3
:

However, for Aj D f
0
j g, PS .Aj / D �2j < 0.

We shall see in the p-adic framework that such probabilities can be interpreted as
infinitely small (but nonzero!) quantities. Thus in this model not only probability to
obtain 
 D 
j for fixed j is infinitely small, but also probability of each transition

k ! 
0

l
is infinitely small.

We can easily modify the above example and introduce conditional probabilities
pkj which depend on k.

Example 2.4 (Negative conditional probabilities and positive probabilities for hidden
variables). Assume that the interaction which determines the transition 
k ! 
0

l
can
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be represented as a chain of the length l of steps (trajectory), .x/l . Assume that at
each step a particle can have one of the states d 2 Dl D fd1; : : : ; dlg and each
state d 2 Dl can appear in a trajectory .x/l only one time. Thus a trajectory for the
transition 
k ! 
0

l
has the form .x/l D .u1; : : : ; ul/, uj 2 Dl , ui 6D uj , i 6D j , i.e.,

.x/n D �.d1; : : : ; dl/ is a permutation of elements of the set Dl . It is also assumed
that sets of states Dl satisfy the condition of consistency: DlC1 D Dl [ fdlC1g. We
consider now the following statistical ensembles: Gl , l D 1; 2; : : : (all trajectories of
the length l); G.n/ D [n

lD0
Gl (all trajectories of the length � n); G D [1

lD0
Gl (all

trajectories of a finite length). Then jGl j D lŠ, jG.n/j D P1
kD0 kŠ. Therefore we

obtain that in the framework of real analysis

PG.n/.
0
l=
k/ D

jGl j
jG.n/j ! 0; n!1;

i.e., PG.
0
l
=
k/ D 0 in the convectional probability theory. In such a situation (even if

hidden variable 
 has the ordinary Kolmogorov probability distribution; for example,
pk D 1=2kC1; k D 0; 1; : : : / we obtain (of course, only formally) that

PS .A/ D lim
n!1

n
X

kD0

pk
X

l2l.A/

PS.n/
.
0
l=
k/

D
1
X

kD0

pk
X

l2l.A/

lim
n!1

PG.n/.
0
l=
k/ D 0:

However, if we justify (via some summation procedure) the calculation jGj D
P1
kD0 kŠ (in particular, in the p-adic framework), then (nonconventional) probabil-

ities

pkl D
lŠ

P1
kD0 kŠ

6D 0 .2:9/

are well defined and the formula of total probability can be applied to these probabili-
ties.

3 Wigner phase-space distribution and
negative probability

Even in non-relativistic quantum mechanics negative probabilities creep into the pic-
ture. To formulate a conventional (Maxwellian) probability distribution of the coordi-
nates x and momenta p, similarly to statistical mechanics, is plainly excluded by the
corresponding uncertainty relation which prevents at least the simultaneous knowledge
of these quantities. Wigner and Szilard, however, found a distribution function which
for the first time was applied by Wigner in order to calculate the quantum correction
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to the gas pressure formula. If a wave function  .x1; : : : ; xn/, abbreviated by  .x/,
is given, the corresponding Wigner function reads

P.x; p/ D .�h/�n
Z 1

�1

dny N .xC y/ .x � y/ expf2i.p; y/=hg; .3:1/

with x; y and p vectors having as many components as has the configuration space of
the  , namely n; where .p; y/ denotes the scalar product. In order to demonstrate
the fundamental features of the Wigner function, relevant for the present purpose, it
is sufficient to consider a single particle in linear motion. Thus n D 1 and the vec-
tor symbols will be dropped henceforth. The Wigner function exhibits remarkable
similarities to a probability distribution in that it leads to the correct probabilities for
the coordinates when integrated with respect to the momenta (the integration range is
always understood to be .�1;1/ unless indicated otherwise),

Z

P.x; p/ dp D j .x/j2; .3:2/

and, vice versa, it gives the proper probabilities for the momenta when integrated over
the coordinates,

Z

P.x; p/ dx D .2�h/�1
ˇ

ˇ

ˇ

Z

dx .x/ expf�ipx=hg
ˇ

ˇ

ˇ

2
: .3:3/

Although Wigner calls it the probability function of the simultaneous values for the
coordinates and momenta (in more recent papers the notation ‘quasi-probability’ is
adopted) he stresses in the same context, that it cannot really be interpreted in this way
“as is clear from the fact, that it may take negative values. But of course this must not
hinder the use of it in calculations as an auxiliary function which obeys many relations
we would expect from such a probability” [174]. The existence of Wigner functions
taking negative values is firmly proved by imposing two very general conditions on P
which can be said to define this type of probability distributions, namely:

(i) P.x; p/ should be a Hermitian form of the state vector  .x/, i.e., with OM.x; p/

a self-adjoint operator,
P.x; p/ D . ; OM.x; p/ /: .3:4/

This condition makes P.x; p/ a real number.
(ii) P.x; p/ should give the proper expectation values for all operators which are

sums of a function of p and a function of x,

“

P.x; p/Œf .p/C g.x/
 dp dx D
�

 ;

�

f

�

h

i

@

@x

�

C g.x/
�

 

�

: .3:5/

This condition is a somewhat milder form of (3.2) and (3.3) which properly have to
be understood as axioms of the Wigner function and, in any case, must be satisfied.
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Further, it suffices to consider such  which are linear combinations  D a 1C b 2
of any two fixed functions, vanishing in certain intervals of x. Now, by requiring

P.x; p/ 
 0 for all x and p .3:6/

for all x and p for every such  , Wigner obtains a contradiction which in short runs
as follows:

Consider an interval I , inside of which  .x/ D 0 and g.x/ 
 0, while g.x/ D 0

outside and f .p/ � 0 everywhere. Then (3.5) leads to
“

P.x; p/g.x/ dp dx D 0: .3:7/

Thus
Z

P.x; p/g.x/ dx D 0 .3:8/

for all p (except a set of measure zero).
From (3.6) and the condition imposed on g.x/ we obtain (Wigner’s lemma): If

 .x/ vanishes in an interval I , the corresponding P.x; p/ vanishes (except for a set
of measure zero) for all values of x in that interval. Now, consider two functions
 1.x/ and  2.x/ which vanish outside of two non-overlapping intervals I1, and I2,
respectively. Because of (3.4) P.x; p/ corresponding to  D a 1Cb 2 will have the
form

P D jaj2 P1 C Nab P12 C a Nb P21 C jbj2 P2: .3:9/

By setting b D 0 it is obvious that P1, is the Wigner function of  1, (and P2 of  2/.
The meaning of P12 and P21 is less obvious, but we need not bother, because both
must be identically zero. This can be seen by considering any interval I 0 outside I1.
Since, according to the above lemma, P, vanishes almost everywhere in interval I 0,
(3.9) cannot be positive for every choice of a and b unless P12 D P21 D 0 outside I1.
The same proof applies to I2. Thus, instead of (3.9) we have

P D jaj2P1 C jbj2P2 .3:10/

almost everywhere. In order to complete the contradiction, let us denote the Fourier
transforms of  1 and  2 by �1.p/ and �2.p/, respectively. Equation (3.3) then reads

jaj2
Z

P1.x; p/ dx C jbj2
Z

P2.x; p/ dx D jaj2j�2.p/j2 C jbj2j�2.p/j2

C 2<Œa Nb�1.p/�2.p/
:

Since this must be valid for all a and b, we must have identically in p W �1.p/ N�2.p/ D
0. This is, however, impossible since �1 and �2, being Fourier transforms of functions
restricted to finite intervals, are analytic functions of their arguments and cannot vanish
over any finite interval.
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In order to illustrate this result, the Wigner function formalism may be applied to
the paradigm of quantum theory, the linear harmonic oscillator (see W. Mückenheim
[146]). From its Hamiltonian

H.x; p/ D p2=2mCm!2x2=2 .3:11/

and the equation for eigenfunctions of this Hamiltonian:

OH
�

x;
h

i

@

@x

�

 .x/ D E .x/: .3:12/

It is easy to find the wave function of the ground state

 0.x/ D .m!=h/1=4 exp.�x2m!=2h/ .3:13/

corresponding to the energy E0 D h!=2. Inserting (3.13) in (3.1) and integrating out
in y leads to

P0.x; p/ D .�h/�1 exp.�x2m!=h � p2=m!h/; .3:14/

which does not exhibit any anomaly in that it is non-negative and, when integrated
with respect to x, supplies the proper distribution of the momentum

Z

P0.x; p/ dx D .m!�h/�1=2 exp.�p2=m!h/; .3:15/

which is a Gaussian distribution with expectation zero and standard deviation .�p/2 D
m!h=2. Integrating with respect to p yields, as expected, the square of (3.13),

Z

P0.x; p/ dp D .m!=�h/�1=2 exp.�x2m!=h/; .3:16/

also a Gaussian distribution with expectation zero and standard deviation .�x/2 D
h=2m!. Gaussian distributions satisfy Heisenberg’s uncertainty relation in its mar-
ginal form, i.e., as an equality. From (3.15) and (3.16) we obtain .�x/.�p/2 D h=2.
It may also be noted that the distributions of momentum and position are statistically
independent, because

R

P0 dp
R

P0 dx D P0. A fortiori, the covariance coefficient is
zero. Clearly, this example does not contradict Wigner’s ‘negativity proof’ because
the latter only says that there are state functions for which the corresponding P.x; p/
cannot be everywhere non-negative. One of those is the first excited state of the har-
monic oscillator. Using the state function of the first excited level, the same formalism
as described above will lead to the corresponding Wigner function.

WithH the Hamiltonian of (3.11) and Ln the nth Laguerre polynomial, the Wigner
function corresponding to the nth excited state can be expressed by

Pn.x; p/ D .�h/�1.�1/n exp.�2H=h!/Ln.4H=h!/ .3:17/
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or, using (3.14),
Pn.x; p/ D .�1/nP0.x; p/Ln.4H=h!/: .3:18/

As P0 was found to be non-negative everywhere, we have to examine the remaining
expression

Pn=P0 D .�1/nLn.4H=h!/: .3:19/

The first-order Laguerre polynomial is

L1.u/ D 1 � u: .3:20/

Hence, P1.x; p/ goes negative for

H � p2=2mCm!2x2=2 < h!=4: .3:21/

Therefore the Wigner distribution P1.x; p/ becomes negative only in the extremely
small domain (ellipse (3.21)). As the energy of the first excited state E1 D 3

2
h!,

probability of an energy measurement P.E < h!=4/ (where E is the energy of quan-
tum harmonic oscillator) is equal zero. Hence in this example negative values of the
Wigner distribution P1.x; p/ correspond to events which have zero conventional prob-
ability. The use of the Wigner distribution can be interpreted as a kind of splitting of
conventional zero probabilities by using negative numbers (as a class of labels to de-
note probabilities of events which are identified in the conventional framework with
the label ‘0’).

We now consider the Wigner function of the second excited state. The second-order
Laguerre polynomial is

L2.u/ D 2 � 4uC u2: .3:22/

Using (3.19) we obtain that P2.x; p/ goes negative for

1

2
h!.1 � 2�1=2/ < H <

1

2
h!.1C 2�1=2/: .3:23/

As the energy of the second excited state E2 D 5
2
h!, probability of an energy mea-

surement P.E < 1
2
h!.1 C 2�1=2// is equal zero. Hence in this example negative

values of the Wigner distribution P1.x; p/ can be also interpreted as additional labels
for probabilities (which are identified with the label ‘0’ in the conventional probability
theory) corresponding to events which have zero conventional probability. For H D 0
and H !1 however, P2.x; p/ is non-negative.

We will not leave this illustrative example without noting some general features of
Wigner functions of the linear harmonic oscillator. From the asymptotic equivalence
of Ln.u/ and .�1/nun for u ! 1 and from (3.17) we find Pn being positive and
asymptotically approaching zero forH going to infinity. In the special case ofH D 0,
Ln.0/ D nŠ together with (3.17) makes even-order Pn being positive and odd-order
Pn being negative at H D 0.
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Most interesting in the present context is, however, that all these Wigner functions
of nonzero order unavoidably will take positive as well as negative values. This can
easily be seen from the orthogonality relation

1

nŠ

1

mŠ

Z 1

0

e�uLn.u/Lm.u/ du D ınm: .3:24/

Cohen (see, for example, review [146] for the details) could show that a wide class
of probability distribution functions is supplied by the rather general expression

P.x; p/ D

.2�/�2
•

f .	; �/ exp.�i	x � i�p C i	u/ �.u � �h=2/ .uC �h=2/ d	 d� du:

Herein f is simply a smearing function. By setting f � 1, substituting � by �2y=h
and integrating over 	 and u, we obtain the original Wigner function (3.1). Other
distribution functions may be built with different functions f , if only f satisfies the
condition f .0; �/ D f .	; 0/ D 1 in order to yield the correct quantum mechanical
marginal distributions.

Cohen imposed the following conditions on a general distribution function P.x; p/:
(i) those given by (3.2) and (3.3); (ii) if the quantum mechanical mean value of the
Hermitian operator OM is h OM i, then there should exist a function gM .x; p/ such that

h OM i D
“

gM .x; p/P.x; p/ dp dxI .3:25/

and, for any function K,

hK. OM/i D
“

K.gM .x; p//P.x; p/ dp dx: .3:26/

And he found, that, irrespective of whether P is positive semidefinite or not, condi-
tion (ii) can never be satisfied. The Wigner function P, of the harmonic oscillator,
e.g., yields the correct expectation value for the mean energy, but fails to supply the
zero-standard deviation, which one should expect from a quantum mechanical energy
eigenstate. He concludes: “Of course, it can be argued that the classical formalism
does go through as long as we do not insist that the function which must be used to
obtain the mean value of a function, K, of g is not identical to K.g/. But this would
carry us even further from the conceptual basis of classical probability theory than
does quantum mechanics itself!”.

Finally we note that the equality (3.25) is the direct consequence of the formula of
total probability. Let OM be an orthogonal projector in the Hilbert space of quantum
states. It represents the physical observable M D 0; 1. Here P.M D 1/ D h OM i
and (3.25) is nothing than the formula of total probability for the initial probability
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distribution P.x; p/ and conditional probabilities P.M D 1=.x; p// D gM .x; p/. If
we follow to our interpretation of negative probabilities, then we obtain that Hermitian
operators represent all physical observables which permit measurements having the
property of the statistical stabilization. Non-Hermitian operators represent a new class
of physical observables which do not permit measurements with the property of the
statistical stabilization. Here we could obtain (for some states) the negative mean
value for an observable with positive values.

On the basis of our interpretation of negative probabilities we can finish this section
by

Conclusion. From the frequency viewpoint negative values of Wigner’s probability
distribution is nothing else than the exhibition of the absence of the statistical stabi-
lization of relative frequencies �N ..x; p/ 2 U / for some domains U of the phase
space; from the ensemble viewpoint negative values of Wigner probability distribu-
tion is nothing else than the exhibition of nonregular structure of infinite statistical
ensembles of hidden properties which determine the point .x; p/ of the phase space.

4 Dirac’s world with negative probabilities

The necessity of extended probabilities becomes most distinct if a Lorentz-invariant
formulation of quantum theory is attempted. The special role that time plays in non-
relativistic theory can, e.g., in the most simple case of particles with no charge and
spin, be removed by means of the Klein–Gordon equation which for a single free
particle of rest mass m is given by

 

@2

@x20
C @2

@x21
C @2

@x22
C @2

@x23
Cm2

!

 D 0;

where .h D c D 1/. Born’s notion, however, according to which the square of the
wave function has to be interpreted as probability density, necessarily must fail in this
context, because j j2 as a scalar violates conservation of total probability. On the
other hand, the density proposed by Gordon and Klein

P.x0; x1; x2; x3/ D
1

2im

�

@ �

@x0
 �  � @ 

@x0

�

; .4:1/

satisfies as time component of a four-vector the conservation law, and thus (4.1) is
evidently the correct mathematical form to use, but, clearly, it can go negative.

This is not the only difficulty. If the wave function of a plane wave

 D expŒ�i.p0x0 � p1x1 � p2x2 � p3x3/
; p0 � E;
is transformed to the momentum and energy variables, the Klein–Gordon expression
(4.1) goes over

j .p0; p1; p2; p3/j2p�1
0 dp1dp2dp3 .4:2/
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as the probability of the momentum having a value within the small domaindp1dp2dp3
about a value p1, p2, p3 with the energy having the value p0, which must be connected
with p1, p2, p3 by

p20 � p21 � p22 � p23 �m2 D 0:
The weight factor p�1

0 appears in (4.2) and makes it Lorentz invariant, since  .p/ is
a scalar – it is defined in terms of  .x/ to make it so – and the differential element
p�1
0 dp1dp2dp3 is Lorentz invariant. This weight factor may be positive or negative,

and makes the probability positive or negative accordingly. Thus the two undesirable
things, negative energy and negative probability, always occur together. By our inter-
pretation of negative probabilities one of possible explanations of this fact is that the
probability to observe a particle with a negative energy is infinitely small.

Dirac formulates an alternative approach to quantum electrodynamics which allows
for a conventional treatment of particles with half-odd integral spin, but unavoidably
entails negative probabilities when applied to particles with integral spin, in special
cases even demanding probabilities of plus or minus 2, distinctly outside the usual
range. On the other hand, this relativistic theory has great advantages over the usual
method in that it avoids the most artificial process of renormalization. With respect to
the latter, Dirac never changed his mind, qualifying it as a ‘working rule’ and consider-
ing its results, in spite of their accuracy, as not reliable. Indeed, the commonly applied
method of renormalization is a thing between artificial and nonphysical. We are left
between Scylla and Charybdis, in that our equations contain either probabilities as
large as plus or minus 2 or electron masses exceeding that of the whole universe. Ob-
viously, also Dirac was very sceptical about those “undesirable things, negative energy
and negative probability”, but he asserts: “Negative energies and probabilities should
not be considered as nonsense. They are well-defined concepts mathematically, like
a negative sum of money, since the equations which express the important properties
of energies and probabilities can still be used when they are negative. Thus negative
energies and probabilities should be considered simply as things which do not appear
in experimental results. The physical interpretation of relativistic quantum mechanics
that one gets by a natural development of the non-relativistic theory involves these
things and is thus in contradiction with experiment. We therefore have to consider
ways of modifying or supplementing this interpretation” [55].

To delete the divergences Dirac proposed considering the representation including
positive and negative energies. Then to resolve the problem of negative energies he
proposed considering operators of emission of photons with negative energy as ab-
sorption operators of photons with positive energy. But this picture contains negative
probabilities of absorption of any odd number of photons.

Let A1.x/ be operators of the quantum electrodynamics of Heisenberg and Pauli
referring to emission and absorption of photons into positive energy states:

A1.x/ D
•

.Rke
.k;x/ C NRke�.k;x//k�1

0 dk1 dk2 dk3; .4:3/
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where k0 D C
q

k21 C k22 C k23 and Rk being the emission operator and NRk the

absorption operator. In the same way we introduce the operators A2.x/ referring
to the negative energy; there is the representation similar to (4.3) but with k0 D
�
q

k21 C k22 C k23 . Dirac considered operators A3 D .1=
p
2/.A1 C A2/ which are

expended with respect to operators Rk and NRk corresponding to positive and negative
energies.

The idea was to solve all divergence problems in the symmetric A3.x/ representa-
tion. Then we can obtain some information about the A1.x/ representation. But we
cannot apply the linear transformation betweenA3.x/ andA1.x/ representations to the
wave function of the A3.x/ representation. There would arise the same divergences.
But we can do this with the initial Gibbs ensemble of A3.x/ representation.

It is convenient to consider with A3.x/ additional fields

B3.x/ D 1p
2
.A1.x/ � A2.x//;

which commute with A3.x/, so they are redundant variables. Now let us take B equal
to the initial value ofA3. Then for the initial wave function  , .B3.x/�A3.x// D 0
or NRk D 0 with k0 either positive or negative. Thus any absorption operator applied
to the initial wave function gives the result zero, which means that the corresponding
state is one with no photons present.

The following natural interpretation of the wave function at some later time now
appears. That part corresponding to m photons of positive energy and n photons of
negative energy can be interpreted as corresponding tom photons having been emitted
and n photons having been absorbed.

Dirac then considered the momentum representation ofA3.x/ and B3.x/ operators.
Let k be a momentum-energy vector, k2 D 0, and �k�, ��

k�
be operators of emission

and absorption. There k0 D ˙
q

k21 C k22 C k23 . Then set �k� D ��k� for k0 > 0 and
consider the wave function  as  D  .�; �/, k0 > 0. The following commutation
relations take place: Œ��; �
 D c and Œ��; �
 D �c, c > 0.

The variables � correspond to the emission of photons of positive energy k0 > 0 and
the � correspond to the absorption of photons of positive energy k0 > 0. Let us denote
the space of states  .�; �/ by the symbol H . The inner product in H has the form:

.f; g/ D
1
X

m;nD0

fmn NgnmmŠcmnŠ.�c/n

for the functions

f .�; �/ D
X

mn

fmn�
m�n; g.�; �/ D

X

mn

gmn�
m�n:
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Now for the wave function  .�; �/, normalized by j j2 D . ; / D 1, the prob-
ability of there having been m photons emitted into momentum and energy state k
(corresponding to � ) and n photons absorbed from this state is

P.m; n/ D j mnj2cmmŠ.�c/nnŠ:

It gives a negative probability for an odd number of photons having been absorbed. But
this statistical interpretation has no meaning in the framework of the ordinary theory
of probability. Nevertheless, we can explain the appearance of such ‘generalized’
probabilities. On one hand, they may appear as a consequence of the violation of the
law of large numbers. On the other hand, they demonstrate that Dirac’s formalism
gives a fine internal structure of theory which could not be described by conventional
probabilities.

5 Negative probabilities and localization

One reason for the difficulties with quantum electrodynamics is the general Lorentz
condition, according to which the four-divergence of the electromagnetic potential A
must vanish

@A0

@x0
C @A1

@x1
C @A2

@x2
C @A3

@x3
� @�A� D 0:

A photon density obtained from this continuity equation suffers from the same prob-
lems as the Klein–Gordon conserved density (4.1) in that it is not positive semidefinite,
or, according to the opinion of the respective referee, it does not exist. This problem
might be related to the fact that photons cannot be sharply localized. If they could, we
could define the photon density as the number of photons per unit volume in some ar-
bitrary small volume. However, in a relativistic field, we cannot define such a density.

Therefore it seems that there are two ways for the description of reality: (1) to
assume that physical systems could not be localized with arbitrary precision and use
Kolmogorov’s axiomatic of probability theory; (2) to assume that physical systems
could be localized with arbitrary precision, but to change Kolmogorov’s axiomatic
and create probability theories, where negative probabilities (as well as probabilities
which are larger than 1) are mathematically well defined.

If we follow (1), then we have to deny the ‘continuous’ model of space-time based
on real numbers. The system of real numbers R describes reality with an infinite
precision. Here a physical quantity a is represented by the real number:

a D � � � C ˛�k

mk
C � � � C ˛�1

m
C ˛0C � � � C ˛lml D ˛l : : : ˛0; ˛�1 : : : ˛�k : : : ; .5:1/

where j̨ D 0; 1; : : : ; m�1, and a natural numberm > 1 gives the scale of a measure-
ment. All digits in (5.1) can be measured (at least theoretically), thus a ‘exists with
the infinite precision.’ It would be natural to consider other number systems based on
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expansions which are similar to (5.1) and describe reality with a finite precision. Here
we could use a system of m-adic numbers Qm which is well known in number theory
(mainly in the case m D p is a prime number). These are quantities of the form

a D ˛�k

mk
C � � � C ˛�1

m
C ˛0 C � � � C ˛lml C � � � ;

where j̨ D 0; 1; : : : ; m� 1 (thus there is only a finite number of terms corresponding
to negative powers of m/. A physical formalism based on an m-adic ‘finite-precision
world’ has been developed in [87], [88] (in fact, such a viewpoint is closely connected
with the theory of measurements based on nonorthogonal operator valued measures
[45], [70], [139]).

If we follow (2), then we can assume that a physical system (in particular, photon)
can be localized with an arbitrary precision (i.e., we can still use the real space in quan-
tum theory). However, we could not assume that we should obtain the ordinary (Kol-
mogorov or Mises) probabilities if we measure statistical distributions corresponding
to a ‘real localization’.

Our consideration of precision of measurements of physical quantities and negative
probabilities can be illustrated by the formalism of quantum theoretical description of
radiation. It is given by extending (see the review [146]) the work of Weisskopf and
Wigner who calculated the natural linewidth of radiative decay of an excited atom.
The corresponding transition amplitude may be rewritten

A.E; t/ 	 e�t=2 � eiEt
i=2 �E

with E denoting the difference between actual photon energy and mean state energy
E0 in units of the natural width of the excited state, and t denoting the time interval
between excitation and decay in units of the mean lifetime of the state.

It is now very interesting to consider the spectral distribution of photons emitted in
finite time intervals. For the time interval .0; t/ we have

jA.E; t/j2 D 1

2�

1 � 2e�t=2 cos.Et/C e�t

E2 C 1=4
which undoubtedly is non-negative for everyE and t . The spectral distribution emitted
at time t , however, I.E; t/ D d jA.E; t/j2=dt , entails negative values, as easily can
be seen from

I.E; t/ D 1

2�

.2E sin.Et/C cos.Et//e�t=2 � e�t

E2 C 1=4 :

Further, if the quantity jA.E; t !1/j2

Inorm.E; t/ D
1

2�

e�t

E2 C 1=4
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is used to normalize I.E; t/, we obtain the normalized decay probability density
�.E; t/ D I.E; t/=Inorm.E; t/, which can take on negative values as well as values
exceeding unity, and, if integrated over suited domains �E�t , small compared to
unity .D h/, the normalized probability �.E; t/�E�t , which is an observable quan-
tity, may violate both the lower and the upper limit of Kolmogorov’s axiom. These
results have been verified by experiments.

As it has been pointed out, if the quantities E and t are measured with extremely
high precision, �E�t < h=2, then it quite natural that there appear negative proba-
bilities.



4 p-adic probability theory

The development of a non-Archimedean (especially, p-adic) mathematical physics
[168], [167], [64], [77–84,87], [93,94,96], [11] induced some new mathematical struc-
tures over non-Archimedean fields. In particular, probability theory with p-adic valued
probabilities was developed in [79], [80], [86], [88], [130], [131]. This probability the-
ory appeared in connection with a model of quantum mechanics with p-adic valued
wave functions [78]. The main task of this probability formalism was to present the
probability interpretation for p-adic valued wave functions.

The first theory with p-adic probabilities was the frequency theory in which proba-
bilities were defined as limits of relative frequencies �N D n=N in the p-adic topol-
ogy1.This frequency probability theory was a natural extension of the frequency prob-
ability theory of R. von Mises [169–171]. One of the most interesting features of the
p-adic frequency theory of probability is the possibility to obtain negative (rational)
probabilities as limits of relative frequencies. Thus negative probabilities which has
been considered in Chapter 3 can be obtained on the mathematical level of rigorous-
ness as p-adic probabilities. Typically p-adic frequency negative probabilities (as well
as probabilities which are larger than 1) appear in the cases of violation of the ordinary
Mises statistical stabilization (with respect to the real metric). In fact, in this chapter
we shall only consider a p-adic generalization of Mises’ principle of the statistical
stabilization. Thus we shall only study a p-adic generalization of the notion of the S -
sequence. The next natural step is to find a p-adic generalization of Mises’ principle
of randomness. This problem will be studied in Chapter 6 (on the basis of a p-adic
generalization of Martin-Löf’s theory of statistical tests).

The next step was the creation of p-adic probability formalism on the basis of a
theory of p-adic valued probability measures. It was natural to do this by follow-
ing the fundamental work of A. N. Kolmogorov [133] in which he had proposed the
measure-theoretical axiomatics of probability theory. Kolmogorov used properties of
the frequency (Mises) probability (non-negativity, normalization by 1 and additivity)
as the basis of his axiomatics. Then he added the technical condition of � -additivity for
using Lebesgue’s integration theory. In works [79], [80] we tried to follow A. N. Kol-
mogorov. p-adic frequency probability has also the properties of additivity, it is nor-
malized by 1 and the set of possible values of this probability is the whole field of
p-adic numbers Qp . Thus it was natural to define p-adic probability as a Qp-valued
measure normalized by 1.

However, it was rather complicated problem to propose a p-adic analogue of the
condition of � -additivity. It is the well-known fact that all � -additive Qp-valued mea-
sures defined on � -rings are discrete measures [157], [164]. Therefore the creators of

1The following trivial fact is the cornerstone of this theory: the relative frequencies belong to the field
of rational numbers Q; we can study their behaviour not only in the real topology on Q, but also in some
other topologies on Q and, in particular, in the p-adic topologies on Q.
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non-Archimedean integration theory (A. Monna and T. Springer [145]) did not try to
develop abstract measure theory, but they proposed an integration formalism via Bour-
baki based on integrals of continuous functions. This integration theory has been used
for creating p-adic probability theory in the measure-theoretical framework [80]. The
main disadvantage of this probability model is the strong connection with the topolog-
ical structure of a sample space. This is quite similar to the old probability formalisms
of Kolmogorov [132], Fréchet [63] and Cramer [44] in which the topological structure
of the sample space played the important role.

An abstract theory of non-Archimedean measures has been developed by A. van
Rooji [164]. The basic idea of this approach is to study measures defined on rings
which in principle cannot be extended to measures on � -rings. This gives the possi-
bility for constructing non-discrete p-adic valued measures. On the other hand, the
condition of continuity for measures in [164] implies the � -additivity in all natural
cases2.

In this chapter we develop a p-adic probability formalism based on measure the-
ory of [164]. By probabilistic reasons we use the special case of this measure theory:
measures defined on algebras (such measures have some special properties). How-
ever, probabilistic applications stimulate also the development of the general theory
of non-Archimedean measures defined on rings. We prove the formula of the change
of variables for these measures and use this formula for developing the formalism of
conditional expectations for p-adic valued random variables (see also [131]).

The use of p-adic valued probabilistic measures gives the possibility to work on the
mathematical level of rigorousness with all signed ‘probabilities’ (for example, with
Wigner’s distribution).

As the fields of p-adic numbers are non-Archimedean there exist infinitely large
p-adic numbers (in particular, infinitely large natural numbers) in Qp . Thus p-adic
analysis gives the possibility to use actual infinities and consider statistical ensembles
with an infinite number of elements. Probabilities with respect to such ensembles are
defined via the standard proportion (used in Chapter 1 for finite ensembles). One of the
main features of such ensemble probabilities is the appearance of negative (rational)
probabilities (as well as probabilities which are larger than 1). In this approach the
origin of such ‘pathological’ (from the real viewpoint) probabilities is very clear. In
particular, we shall see that a large set of negative probabilities is naturally interpreted
as a set of infinitely small probabilities (giving the split of the conventional probabil-
ity 0). We shall also see that a large set of probabilities which are larger than 1 is
naturally interpreted as a set of probabilities which are negligibly differ from 1. Other
interesting property of p-adic ensemble probability is that the corresponding proba-
bilistic measure is not well defined on a set algebra. The system of events is only a set
semi-algebra.

2Thus the � -additivity is not a problem. The problem is find the right domain of definition of p-adic
probabilistic measures.
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1 Non-Archimedean number systems; p-adic numbers

Here we present a brief introduction to non-Archimedean and, in particular, p-adic
analysis (see, for example, [157], [164], [167], [80], [88]).

Let F be a ring3 (a set where addition, subtraction and multiplication are well de-
fined). Recall that a norm is a mapping j � jF W F ! RC satisfying the following
conditions:

jxjF D 0” x D 0; and j1jF D 1; (1.1)

jxyjF � jxjF jyjF ; (1.2)

jx C yjF � jxjF C jyjF : (1.3)

The ring F with the norm j � jF is called a normed ring. Set jF j D fr 2 RC W r D
jxjF ; x 2 F g.

The inequality (1.3) is the well-known triangle axiom. A norm is said to be non-
Archimedean if the strong triangle axiom is valid, i.e.,

jx C yjF � max.jxjF ; jyjF /: .1:4/

A ring F with a non-Archimedean norm is said to be a non-Archimedean ring. We
shall use the following property of a non-Archimedean norm:

jx C yjF D max.jxjF ; jyjF /; if jxjF 6D jyjF : .1:5/

In order to prove (1.5) we may assume jxjF < jyjF . By (1.4) we find jyjF �
max.jx C yjF ; jxjF / � max.jxjF ; jyjF /. The assumption jxjF < jyjF gives
max.jxjF ; jyjF / D jyjF . Hence jyjF D max.jx C yjF ; jxjF /. From jxjF < jyjF ,
we deduce jyjF D jx C yjF . This gives (1.5).

If a norm j � jF has the property: jxyjF D jxjF jyjF , then it is called a valuation
(sometimes a norm is called a pseudo-valuation). A ring F with the valuation j � jF
is called a valued ring. The absolute value j � j � j � jR on the field of real numbers
R is an example of a valuation. This valuation does not satisfy the strong triangle
inequality (it satisfies only (1.3)). Valuations and norms with such a property are
called Archimedean. Another example of an Archimedean valuation is the absolute
value j � j � j � jC on the field of complex numbers C.

Denote by Z.F / the ring generated in F by its unity element. If F has zero charac-
teristic (i.e., n � 1 D 1C � � � C 1 6D 0 for any n D 1; 2; : : : ), then Z.F / is isomorphic
to the ring of integers Z. Therefore in this case we can consider Z as a subring of F .
In what follows we consider only normed rings F which have zero characteristic.

To illustrate how we can work with the strong triangle inequality we present two
simple results.

3By a ring we always mean a commutative ring with identity 1.
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Proposition 1.1. Let j � jF be a non-Archimedean norm. Then jnjF � 1 for all ele-
ments n 2 Z.

Proof. By the strong triangle inequality (1.4) we have:

jnjF D j1C � � � C 1jF � j1jF D 1:
Proposition 1.2. A valuation j � jF is a non-Archimedean valuation if and only if
jnjF � 1 for all elements n 2 Z.

Proof. Let jnjF � 1 for all n D 1; 2; : : : . Denote by
�

n
k

	

the binomial coefficients,
i.e.,

 

n

k

!

D nŠ

kŠ.n � k/Š ; k � n:

As these coefficients are integers, j�n
k

	jF � 1 for all n and k. Hence we have:

j.x C y/njF D
ˇ

ˇ

ˇ

n
X

kD0

 

n

k

!

xkyn�k
ˇ

ˇ

ˇ

F

�
n
X

kD0

jxjkF jyjn�k
F � .nC 1/.max jxjF ; jyjF /n;

i.e.,
jx C yjF � lim

n!1
.1C n/1=n max.jxjF ; jyjF / D max.jxjF ; jyjF /:

Let j � jF be a norm on a ring F . Then the function �F .x; y/ D jx�yjF is a metric
on F . It is a translation invariant metric, i.e. �F .xCh; yCh/ D �F .x; y/. As usual in
metric spaces we define ‘closed’ and ‘open’ balls in F : Ur.a/ D fx 2 F W �F .x; a/ �
rg, U�

r .a/ D fx 2 F W �F .x; a/ < rg, r 2 RC. We set Ur � Ur.0/. It should be
noted that any ball Ur.a/, r 2 RC, coincides with some ball Us.a/, s 2 jF j, s � r . In
what follows we consider only balls Ur.a/ with r 2 jF j. The spheres in F are defined
by Sr .a/ D fx 2 F W �F .x; a/ D rg; r 2 RC. Of course, if r 62 jF j then Sr .a/ D ¿.
Therefore it is meaningful to consider only spheres of radius r 2 jF j. The normed
ring F is complete if it is a complete metric space with respect to the metric �F .

Let j � jF be a non-Archimedean norm. Then the corresponding metric �F satisfies
the strong triangle inequality:

�F .x; y/ � max.�F .x; z/; �F .z; y//: .1:6/

Such a kind of metric is called an ultrametric. We note that any ‘open’ or ‘closed’
ball in an ultrametric space is a simultaneously closed and open subset. Such sets are
called ‘clopen’ sets. Spheres in F are also clopen. It seems strange from the point
of view of our Euclidean intuition. The balls Ur are additive subgroups of F : if
jxjF ; jyjF � r , then jx C yjF � max .jxjF ; jyjF / � r . Moreover, the ball U1 is a
ring: if jxjF ; jyjF � 1 then jxyjF � jxjF jyjF � 1.
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We shall continuously use the following simple result.

Lemma 1.1 (‘The dream of a bad student’). Let F be a complete non-Archimedean
normed ring. The series

P1
nD1 an, an 2 F , converges in F if and only if an ! 0,

n!1.

To prove this result we use the Cauchy theorem in complete metric spaces (a se-
quence fSng converges iff it is a fundamental sequence, i.e., jSn � SmjF ! 0,
n;m!1) and the estimate jPm

kDnC1 akjF � maxnC1�k�m jakjF .
One of the most important non-Archimedean fields, a system of p-adic numbers Qp ,

was constructed by K. Hensel [68]. In fact, it was the first example of a commutative
number field (a system where the operations of addition, subtraction, multiplication
and division are well defined) which was different from the fields of real and complex
numbers. Practically during 100 years p-adic numbers were considered only as objects
in pure mathematics. In recent years these numbers have been intensively used in
theoretical physics see, for example, the books [167], [80], [88], [95] and papers [168],
[64], [10], [77,89,91], [78,82,83], in the theory of probability [79], [88], as well as in
investigations of chaos and dynamical systems [85], [88] and applications to cognitive
sciences and psychology [88], [90], [94], [96].

The field of real numbers R is constructed as the completion of the field of rational
numbers Q with respect to the metric �R.x; y/ D jx � yj , where j � j is the usual
valuation given by the absolute value. The fields of p-adic numbers Qp are constructed
in a corresponding way, by using other valuations. For any prime number the p-
adic valuation j � jp is defined in the following way. First we define it for natural
numbers. Every natural number n can be represented as the product of prime numbers:
n D 2r23r3 � � �prp � � � . Then we define jnjp D p�rp , we set in addition j0jp D 0

and j � njp D jnjp. We extend the definition of the p-adic valuation j � jp to all
rational numbers by setting for m 6D 0: jn=mjp D jnjp=jmjp. The completion of Q
with respect to the metric �p.x; y/ D jx � yjp is the locally compact field of p-adic
numbers Qp . It is well known (Ostrovsky’s theorem), see [157], that j � j and j � jp are
the only possible valuations on Q. The p-adic valuation satisfies the strong triangle
inequality:

jx C yjp � max.jxjp; jyjp/:
Thus the field of p-adic numbers Qp is non-Archimedean and the p-adic metric �p is
an ultrametric. Thus any p-adic ball Ur.0/ is an additive subgroup of Qp and the ball
U1.0/ is also a ring. It is called the ring of p-adic integers and denoted by Zp .

For any x 2 Qp we have a unique canonical expansion (converging in the j � jp-
norm) of the form

x D ˛�n=p
n C � � � C ˛0 C � � � C ˛kpk C � � � ;

where j̨ 2 f0; 1; : : : ; p � 1g, are the “digits” of the p-adic expansion. The elements
n 2 Zp have the expansion:

n D ˛0 C ˛1p C � � � C akpk C � � � ; .1:7/
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i.e., they can be identified with sequences of digits

n D .˛0; : : : ; ˛k; : : : /; j̨ 2 f0; 1; : : : ; p � 1g: .1:8/

If n 2 Zp, n 6D 0, and canonical expansion (1.7) contains only a finite number of
nonzero digits j̨ , than n is natural number (and vice versa). It is natural to interpret a
number n 2 Zp such that expansion (1.7) contains an infinite number of nonzero digits
j̨ as an infinitely large natural number. Thus the ring of p-adic integers contains

actual infinities n 2 Zp nN, n 6D 0. This is one of the most important features of non-
Archimedean number systems (compare with nonstandard numbers [10]). In Section 3
we introduce a partial order structure on Zp which extends the standard order structure
on N: for n1; n2 2 N n1 � n2 in N iff n1 � n2 in Zp. Each finite natural number is
less than any infinite number: n � m for n 2 N and m 2 Zp n N, m 6D 0. This order
structure will be used to compare p-adic probabilities.

If, instead of a prime number p, we start from an arbitrary natural number m > 1,
we construct the system of the so called m-adic numbers Qm (by completing Q with
respect to the m-adic metric �m.x; y/ D jx � yjm/. However, this system is not in
general a field. There exist in general divisors of zero in Qm, thus Qm is only a ring.
Elements of Zm D U1.0/ can be identified with sequences (1.8) with the digits ˛k D
0; 1; : : : ; m � 1. We can also use more complicated number systems corresponding
to non-homogeneous scales: M D .m1; m2; : : : ; mk; : : : /, where mj > 1 are natural
numbers. In this case we obtain the number system QM . The elements x 2 ZM D
U1.0/ can be presented as sequences (1.8) with digits aj D 0; 1; : : : ; mj � 1. The
structure of QM is rather complicated from the mathematical point of view. In general
the number system QM is not a ring. However, ZM is always a ring.

Number systems Qm and QM can be also used to develop new non-Kolmogorovean
probabilistic models. However, the absence of the well-developed mathematical for-
malism does not give such a possibility.

Let K be a non-Archimedean field with the valuation j � jK . Here the function
n! 1=jnŠjK increases (as jnjK � 1). The following estimate holds in the field Qp:

.1=np/pn=.p�1/ � 1

jnŠjp
� p.n�1/=.p�1/: .1:9/

This estimate is a consequence of the following mathematical fact:

Lemma 1.2. Let the natural number n be written in the base p

n D a0 C a1p C � � � C ampm; aj D 0; 1; : : : ; p � 1:

Define the sum of the digits of n by Sn D
Pm
jD0 aj . Then

jnŠjp D p.Sn�n/=.p�1/: .1:10/
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Proof. There are Œn=p
 numbers in f1; 2; : : : ; ng that are divisible by p. Here, as usual,
Œa
 is the integer part of a. Then there are Œn=p2
 numbers that are divisible by p2,
etc. By definition jnŠjp D p��.n/, where �.n/ DPm

jD0Œn=p
j 
. For j D 1; 2; : : : ; m

we have

Œn=pj 
 D aj C ajC1p C � � � C ampm�j D p�j
m
X

iDj

aip
i :

Thus,

�.n/ D
m
X

jD1

p�j
m
X

iDj

aip
i D

m
X

iD1

aip
i
i
X

jD1

p�j

D
m
X

iD1

aip
i .p

i � 1/
pi .p � 1/ D .p � 1/

�1
m
X

iD1

ai .p
i � 1/

D .p � 1/�1.n � Sn/:

By Ostrovsky’s theorem the restriction of the valuation j � jK to Q is equivalent to
one of p-adic valuations: there exists p such that jxjK D jxjlp, l > 0, for x 2 Q. Thus
(1.9) implies that

an � 1

jnŠjK
� bn; .1:11/

where a D a.p; l/ > 0 and b D b.p; l/ > 0.
The exponent in K is defined by the standard power series ex D P1

nD0 x
n=nŠ:

This series converges if jxjK < b�1. In particular, in the p-adic case it converges if
jxjp < p1=.1�p/. This is equivalent to jxjp � rp , where rp D 1=p for p 6D 2 and
r2 D 1=4. Trigonometric functions over the field K are defined by the standard power
series: sin x D P

.�1/nx2nC1=.2n C 1/Š and cos x D P

x2n=.2n/Š. These series
have the same radius of convergence as the series for the exponential function.

2 Frequency probability theory

Let us provide a generalization of the von Mises frequency theory of probability. Our
main idea is very clear and it is based on the following two remarks: (1) relative
frequencies �N D n=N always belong to the field of rational numbers Q; (2) there
exist many topologies � on Q which are different from the usual real topology �R
(corresponding to the real metric �R.x; y/ D jx � yj).

As in ordinary Mises’ theory, we also consider infinite sequences

x D .x1; : : : ; xN ; : : : /; xj 2 L; .2:1/

of observations (here L D f˛1; : : : ; ˛kg is a label set). But a new topological prin-
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ciple of the statistical stabilization of relative frequencies is proposed: The statistical
stabilization of relative frequencies �N .˛i I x/ can be considered not only in the real
topology on the field of rational numbers Q but also in any other topology � on Q.

This topology is said to be the topology of statistical stabilization. Limiting values
P.˛i / � P�x.˛i / of �N .˛i I x/, i D 1; : : : ; k, are said to be � -probabilities. These
probabilities belong to the completion Q� of Q with respect to the topology � . The
choice of the topology � of statistical stabilization is connected with the concrete prob-
abilistic model. Sequence (2.1), for which the principle of statistical stabilization of
relative frequencies for the topology � is valid, is said to be a .S; �/-sequence (in par-
ticular, .S; �R/-sequences, where �R is the real topology, are ordinary (von Mises)
S -sequences which were considered in Chapter 1). At the moment we do not use any
� -analogue of the principle of randomness.

We are mainly interested in the following situation. The real topology �R is not a
topology of statistical stabilization for the sequence (2.1), but another topology � is.
In this case we cannot consider (2.1) as a von Mises S -sequence. But there is a new
possibility for studying (2.1) as a .S; �/-sequence.

Set UQ D fq 2 Q W 0 � q � 1g: We denote the closure of the set UQ in the
completion Q� by UQ�

. The following theorem is an evident consequence of the
topological principle of the statistical stabilization:

Theorem 2.1. The probabilities P.˛i / belong to the set UQ�
for an arbitrary .S; �/-

sequence x.

As usual, let us consider the algebra FL of all subsets of L. As in the frequency
theory of von Mises we define probabilities P.A/ D P

˛i 2A P.˛i / for A 2 FL. By
Theorem 2.1 the probability P.A/ belongs to the set UQ�

for every A 2 FL.

Theorem 2.2. Let the completion Q� of Q with respect to the topology of statistical
stabilization � be an additive topological group. Then for every .S; �/-sequence x the
probability is an additive function on FL: P.A [ B/ D P.A/ C P.B/, A;B 2 FL,
A \ B D ¿.

Here we have used only lim.uNCvN / D limuNClim vN in an additive topological
group.

Theorem 2.3. The probability P.L/ D 1 for every topology of the statistical stabiliza-
tion � on Q.

As in Chapter 1 we define a conditional frequency probability P.A=B/.

Theorem 2.4. Let Q� be a multiplicative topological group. Then for arbitraryA;B 2
FL, P.B/ 6D 0, the Bayes formula P.A=B/ D P.A \ B/=P.B/ holds.

Here we have used limuN =vN D limuN = lim vN if lim vN 6D 0 in a multiplicative
topological group.
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However, we may choose the topology of statistical stabilization � such that Q�
is not an additive group. In this case we obtain non-additive probabilities. Further,
Q� may be not a topological multiplicative group. In this case we have violations of
Bayes’ formula for conditional probabilities4. Moreover, there are possibilities of dif-
ferent combinations of these properties. For example, there exist additive probabilities
without Bayes’ formula.

Now (following to Kolmogorov) we can present an axiomatics corresponding to the
properties of frequency probabilities. Of course, this axiomatics depends on the topol-
ogy � . Thus we have an infinite set of axiomatic theories A.�/. The simplest case (and
the one most similar to the Kolmogorov axiomatics) is that Q� is a topological field.
There, by definition, a � -probability is a UQ�

-valued measure with the normalization
condition P.�/ D 1. There should be technical restrictions on P to provide a fruitful
theory of integration (compare with Kolmogorov’s condition of � -additivity).

We obtain a large class of non-Kolmogorov probabilistic models if we choose a
metrizable topology � such that the corresponding metric has the form �� .x; y/ D
jx � yj� , where j � j� is a valuation on Q. According to the Ostrovsky theorem, every
valuation on Q is equivalent to the ordinary real absolute value j � jR or one of the p-
adic valuations j�jp. Therefore we may obtain only two classes of probabilistic models:
1) the ordinary theory of probability (with the topology of the statistical stabilization
�R/; 2) one of the p-adic valued probabilistic models (with topologies of the statistical
stabilization �p/.

The most interesting property of p-adic probabilities is that UQp
D Qp , see [80].

To prove this fact we need only to show that every x 2 Qp can be realized as a limit
of frequencies �N D n=N , where n, N are natural numbers, n � N . Thus any p-adic
number x may be a p-adic probability.

For example, every rational number may be taken as a p-adic probability. There
are such ‘pathological’ probabilities (from the point of view of the usual theory of
probability) as P.A/ D 2, P.A/ D 100, P.A/ D 5=3, P.A/ D �1. If p D 1 mod 4,
then i D p�1 belongs to Qp . Thus ‘complex quantities’ can be obtained as frequency
probabilities; for example, P.A/ D i D p�1 or P.A/ D 1˙ i .

Thus negative (and even complex) probabilities can be realized as p-adic frequency
probabilities.

We have presented [80] a large number of statistical models where frequencies os-
cillate with respect to the real metric �R and stabilize with respect to one of p-adic
metrics �p . There p is a parameter of the statistical model. The corresponding statis-
tical simulation was carried out on a computer.

Thus Mises’ principle of the statistical stabilization of frequencies can be essentially
extended by considering .S; �/-sequences for topologies � on Q. It would be natural to
extend second Mises’ principle, namely, the principle of randomness and introduce an
analogue of Mises’ collective, namely, a � -collective. However, I could not obtain any
meaningful extension of the principle of randomness for p-adic topologies �p. It is still

4A simple realization of Accardi’s idea.
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not clear how we can define a class of place selections which would not disturb the p-
adic statistical stabilization. On the other hand, it is well known that in ordinary (real)
probability theory it is possible to develop the mathematical theory of randomness by
using Martin-Löf statistical recursive tests [142–144]. In Chapter 6 we shall follow to
P. Martin-Löf and develop a p-adic theory of recursive statistical tests5.

3 Ensemble probability

Our interpretation of p-adic numbers

N D l0 C l1p C � � � C lsps C � � � ; .3:1/

where ls D 0; 1; : : : ; p � 1, with an infinite number of nonzero digits ns as infinitely
large numbers gives the possibility of considering numerous actual infinities. There-
fore we can study ensemble probabilities on ensembles of an infinite volume or con-
sider classical probabilities for an infinite number of equally possible cases.

3.1 Ensembles of infinite volumes

We shall study some ensembles S D SN which have a p-adic ‘volume’ N , where N
is the p-adic integer (3.1). If N is finite then S is the ordinary finite ensemble, if N is
infinite then S has essentially p-adic structure. Consider a sequence of ensembles Mj
having volumes ljpj , j D 0; 1; : : : . Set

S D
1
[

jD0

Mj :

Then jS j D N . This split of S will play the crucial role in our probabilistic consider-
ations. Thus S is not just an arbitrary ensemble of the cardinality N . It is an ensemble
of the cardinality N constructed via the hierarchical structure corresponding to this
split. We may imagine an ensemble S as being the population of a tower T D TS ,
which has an infinite number of floors with the following distribution of population
through floors: population of j th floor is Mj . Set Tk D

Sk
jD0Mj . This is population

of the first k C 1 floors.
Let A � S and let there exist:

n.A/ D lim
k!1

nk.A/; where nk.A/ D jA \ Tkj: .3:2/

The quantity n.A/ is said to be a p-adic volume of the set A.

5Of course, we understood that Martin-Löf’s theory does not give the fruitful notion of randomness
for an individual sequence of trials.
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We define the probability of A by the standard proportional relation:

P.A/ � PS .A/ D
n.A/

N
: .3:3/

Denote the family of all A � S , for which (3.3) exists, by GS . The sets A 2 GS are
said to be events. Later we shall study some properties of the family of events. First we
consider the set algebra F which consists of all finite subsets and their complements.

Proposition 3.1. F � GS .

Proof. Let A be a finite set. Then n.A/ D jAj and (3.3) has the form:

P.A/ D jAjjS j : .3:4/

Now let B D NA. Then jB \ Tkj D jTkj � jA\ Tkj. Hence there exists limk!1 jB \
Tkj D N � jAj. This equality implies the standard formula:

P. NA/ D 1 � P.A/: (3.5)

In particular, we have : P.S/ D 1.

Proposition 3.2. Let A1; A2 2 GS and A1 \ A2 D ¿. Then A1 [ A2 2 GS and

P.A1 [ A2/ D P.A1/C P.A2/: .3:6/

Proposition 3.3. Let A1; A2 2 GS . The following conditions are equivalent:

.1/ A1 [ A2 2 GS I .2/ A1 \ A2 2 GS I

.3/ A1 n A2 2 GS I .4/ A2 n A1 2 GS :

There are standard formulas:

P.A1 [ A2/ D P.A1/C P.A2/ � P.A1 \ A2/I (3.7)

P.A1 n A2/ D P.A1/ � P.A1 \ A2/: (3.8)

Proof. We have nk.A1 [ A2/ D nk.A1/ C nk.A2/ � nk.A1 \ A2/: Therefore, if,
for example, A1 \ A2 2 GS then there exists a limit of the right hand side. It implies
A1 [ A2 2 GS and (3.7) holds. Other implications are proved in the same way.

Corollary 3.1. The family GS is a semi-algebra.

In generalA1; A2 2 GS does not implyA1[A2 2 GS . To show this, by Proposition
3.3 it suffices to find A1; A2 2 GS such that A1 \ A2 62 GS . It is easy to do: let
A1; A2 2 GS are such that jA1 \ A2 \Ml j D 1 for nonempty Ml (there is only one



124 Chapter 4 p-adic probability theory

element x 2 A1\A2 on each nonempty floor). If N is infinite then limk!1 nk.A1\
A2/ does not exist. Thus

GS is not a set algebra.

It is closed only with respect to a finite unions of sets which have empty intersections.
However, GS is not closed with respect to countable unions of such sets: in general
.Aj 2 GS , j D 1; 2; : : : , Ai \ Aj D ¿, i 6D j / does not imply

S1
jD1Aj 2 GS .

The natural additional assumptions (A)
P1
jD1 P.Aj / converges in Qp or (more strong

assumption), (B)
P1
jD1 jP.Aj /jp <1, also do not imply A 2 GS .

Example 3.1. Let m D 2, N D �1 D 1C 2C 22 C � � � C 2n C � � � . Suppose that the
sets Aj have the following structure: jAj \M3.j�1/j D 1, jAj \M3j�1j D 23j�1�1
and Aj \Mi D ¿, i 6D 3.j � 1/, 3j � 1, i.e., the set Aj is located on two floors of
the tower T . In particular, Ai \ Aj D ¿, i 6D j . As Aj 2 F , then Aj 2 GS I the
probability P.Aj / D �23j�1, j D 1; 2; : : : . The series

P1
jD1 jP.Aj /j2 < 1. We

show that A DS1
jD1Aj 62 GS . We have:

n3.j�1/.A/ D jAj \ T3.j�1/j C
ˇ

ˇ

ˇ

ˇ

j�1
[

sD1

As \ T3.j�1/

ˇ

ˇ

ˇ

ˇ

D 1C �;

where j� j2 < 1. Thus jn3.j�1/.A/j2 D 1. But jn3j�1.A/j2 < 1.

We note the following useful formula for computing probabilities:

P.A/ D
1
X

jD0

P.A \Mj /

(probability to find in the tower T an inhabitant I with the property A is equal to the
sum of probabilities to find an inhabitant with this property on the fixed floor).

Definition 3.1. The system P D .S;GS ;PS / is called a p-adic ensemble probability
space for the ensemble S .

If N is a finite natural number then we obtain the ensemble probability space which
was considered in Chapter 1 (with GS D FS /. In fact, any ensemble probability space
P can be approximated by ensemble probability spaces Pk having ensembles of finite
volumes. Set

nk D l0 C l1p C � � � C lkpk
forN which has the expansion (3.1). Let ls be the first nonzero digit in (3.1). Consider
finite ensembles Snk

, jSnk
j D nk .k D s; sC1; : : : /, and ensemble probability spaces

Pnk
D .Snk

;GSnk
;PSnk

/. There GSnk
coincides with the algebra FSnk

of all subsets
of the finite ensemble Snk

and definition (3.3) of ensemble probability coincides with
the definition of Chapter 1:

PSnk
.A/ D jAj

jSnk
j ; A 2 FSnk

: .3:9/

We identify Snk
with the population of the first k C 1 floors of the tower TS .
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Proposition 3.4. Let A 2 GS . Then

PS .A/ D lim
k!1

PSnk
.A \ Snk

/: .3:10/

To prove (3.10) we have only used that Qp is a topological group. This approx-
imation depends essentially on the rule of a measurement, which is defined by the
sequence fnkg which gives an approximation of the infinite ensemble S by finite en-
sembles fSnk

g. In principle the change of this rule may change the limiting result
(see [80] for the details).

Proposition 3.5 (The image of ensemble probability). The probability P maps GS into
the ball UrS

.0/, where rS D 1=jN jp .

To study conditional probabilities we have to extend the notion of the p-adic en-
semble probability to consider more general ensembles.

Let S be the population of the tower TS with an infinite number of floors Mj ,
j D 0; 1; : : : , and the following distribution of population: there are mj elements on
the j th floor, mj 2 N and the series

P1
jD1mj converges in Zp to a nonzero number

N D jS j. We define the p-adic ensemble probability of a set A � S by (3.2), (3.3);
GS is the corresponding family of events. It is easy to check that Propositions 3.1–3.5
hold for this more general ensemble probability.

Let A 2 GS and P.A/ 6D 0. We can consider A as a new ensemble with the p-adic
hierarchical structure A D S1

jD0MAj , where MAj D A \ Mj , and introduce the
corresponding family of events GA.

Proposition 3.6 (Conditional probability). Let A 2 GS ;P.A/ 6D 0 and B 2 GA. Then
B 2 GS and Bayes’ formula

PA.B/ D
PS .B/
PS .A/

.3:11/

holds true.

Proof. The tower TA of the A has the following population structure: there are MAj
elements on the j th floor. In particular, TAk D Tk \ A. Thus

nAk.B/ D jB \ TAkj D jB \ Tkj D nk.B/ .3:12/

for each B � A. Hence the existence of nA.B/ D limk!1 nAk.B/ implies the
existence of nS .B/ D limk!1 nk.B/. Moreover, nS .B/ D nA.B/. Therefore,

PA.B/ D
nA.B/

nS .A/
D nA.B/=jS j
nS .A/=jS j

:

By (3.12) we obtain the following consequence:

Corollary 3.2. Let A;B 2 GS , P.A/ 6D 0, and B � A. Then B 2 GA.
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Thus we obtain
GA D fB 2 GS W B � Ag:

Let A;B;A\B 2 GS ;P.A/ 6D 0. We set by definition PA.B/ D PA.A\B/. Then

PA.B/ D
PS .B \ A/

PS .A/
: .3:13/

If we set PA.B/ D P.B=A/ and omit the index S for the probabilities for an ensem-
ble S , then we obtain Bayes’ formula.

Remark 3.1. We have discussed many times the domain of applications of Bayes’
formula. This question has the exact and simple mathematical answer in the p-adic
ensemble probability theory. We can use Bayes’ formula for events A and B iff A\B
is also the event, i.e., A \ B 2 GS .

Remark 3.2. It is important for our physical considerations that GS is not a set algebra
and PS can in principle take any value x 2 UrS

. The manipulations which were
used to prove Bell’s inequality (Chapter 2) are not legal for the ensemble probability
space P D .S;GS ;PS /. For instance, if there are tree sets B� ; B	 ; B0 2 GS , then in
principle it may be that B� \B	 , B� \B0, B0 \B	 2 GS , but B� \B	 \B0 62 GS .
Moreover, probabilities can in principle be negative. In this case we cannot use the
standard estimate for Kolmogorov probabilities.

3.2 The rules for working with p-adic probabilities

One of the main tools of the ordinary theory of probability is based on the order struc-
ture on the field of real numbers R. It gives the possibility of comparing probabilities
of different events; events E with probabilities P.E/ � 1 are considered as negligi-
ble and events E with probabilities P.E/ 	 1 are considered as practically certain.
However, the use of these relations in concrete applications is essentially based on our
(real) probability intuition. What is a large probability? What is a small probability?
Moreover, it is not easy to compare two arbitrary probabilities. For instance, do you
prefer to win with the probability P.E1/ D 11

17
or P.E2/ D 13

19
. Formally, because

P.E1/ < P.E2/ it would be better to choose E2. But in practice this choice does not
give many advantages. Thus ordinary probability intuition is based more on centuries
of human experiment than on exact mathematical theory.

If we want to work with p-adic probabilities we have to develop some kind of a p-
adic probability intuition. However, there arises a mathematical problem which does
not give the possibility of generalizing the real scheme directly. This is the absence
of an order structure on Qp . Of course, we can also do something without an order
structure. For example, we can classify (split) different events with the aid of their
p-adic probabilities. For instance, it works sufficiently successful in the frequency
probability theory. If there are two sequences x and y (generated by some statistical
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experiment) which are not S -sequences in the ordinary von Mises’ frequency theory,
then we could not split properties of x and y. Both these sequences seem to be totally
chaotic from the real point of view. However, if they are .S; �p/-sequences, then it
would be possible to classify them with the aid of p-adic probability distributions,
Px.˛i /, Py.˛i /. In the ensemble approach different p-adic probabilities, PS .E1/ 6D
PS .E2/, mean that the events E1 and E2 have different p-adic volumes.

However, we could do much more with p-adic probabilities by using the partial
order structure which exists on the ring of p-adic integers.
.O/ Let x D x0x1 : : : xn : : : and y D y0y1 : : : yn : : : be the canonical expansions

of two p-adic integers x; y 2 Zp. We set x < y if there exists n such that xn < yn
and xk � yk for all k > n.

This partial order structure on Zp is the natural extension of the standard order
structure on the set of natural numbers N. It is easy to see that x < y for any x 2 N

and y 2 Zp nN, i.e., any finite natural number is less that any infinite number. But we
could not compare any two infinite numbers.

Example 3.2. Let p D 2 and let x D �1=3 D 10101 : : : 1010 : : : , z D �2=3 D
0101 : : : 0101 : : : and y D �16 D 0001 : : : 1111 : : : . Then x < y and z < y, but the
numbers x and z are incompatible.

It is important to remark that there exists the maximal numberNmax 2 Zp. It is easy
to see:

Nmax D �1 D .p � 1/C .p � 1/p C � � � C .p � 1/pn C � � � :
Therefore the ensemble S�1 is the largest ensemble which can be considered in the

p-adic framework.

Remark 3.3. It seems to be natural to suppose that the volume of the ensemble in-
creases with the increase of p, i.e., jSp�1j < jSq�1j, p < q.

Proposition 3.7. Let N 2 Zp; N 6D 0. Then SN 2 GS�1
and

PS�1
.SN / D

jSN j
jS�1j

D �N: .3:14/

Corollary 3.3. Let N 2 Zp, N 6D 0. Then GSN
� GS�1

and probabilities PSN
.A/

are calculated as conditional probabilities with respect to the sub-ensemble SN of
ensemble S�1:

PSN
.A/ D PS�1

.A=SN / D
PS�1

.A/

PS�1
.SN /

; A 2 GSN
: .3:15/

But A 2 GS�1
does not imply A \ SN 2 GSN

.
By Corollary 3.3 we can, in fact, restrict our considerations to the case of the maxi-

mal ensemble S�1. Therefore we shall study this case S � S�1.
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The (partial) order O on the set of p-adic integers Zp gives the possibility to com-
pare p-adic volumes n.A/ of sets A 2 GS . It is natural to say that probability P.B/
is larger than probability P.A/ if the p-adic volume n.B/ of B is larger than the p-
adic volume n.A/ of A. Thus we obtain the following (partial) order on the set of
probabilities:

( QO) P.B/ > P.A/ iff n.B/ > n.A/.

We use the same symbols >, < for this new order on Zp . We hope that the reader
would not mix these two orders on Zp: O-order is used to compare p-adic volumes,
QO-order is used to compare probabilities. For example, let p D 2 and let n.B/ D
�2.D 011 : : : 1 : : : /, n.A/ D �3.D 1011 : : : 1 : : : /. Then n.B/ > n.A/ (with respect
to O/ and consequently P.B/ D 2 > P.A/ D 3 (with respect to QO/.

We study some properties of probabilities.

(1) As we have only a partial order structure we cannot compare probabilities of
arbitrary two events A and B .

(2) As x � �1 with respect to O for any x 2 Zp , we have P.A/ � 1 D P.S/ for
any A 2 GS .

(3) As x 
 0 with respect to O for any x 2 Zp , we have P.A/ 
 0 for any A 2 GS .

To illustrate further properties of p-adic probabilities, we shall use the third order
structure, namely, the usual real order structure on the set Zp\Q. In this case we shall
say r-increase or r-decrease. This r-order on Zp\Q has no probabilistic meaning. We
consider this order, because we want to use the ‘real intuition’ to imagine the location
of rational probabilities P.A/, A 2 GS , on the real line. We shall use the symbols
Œa; b
; : : : ; .a; b/ for corresponding intervals of the real line. For example, let p D 2

and let P.B/ D 2 and P.A/ D 3. Then P.B/ > P.A/, but from the viewpoint of the
r-order P.B/ is less than P.A/.

(4) Set F f D fA 2 GS W n.A/ 2 Ng.6
The restriction of the order O on the set of natural numbers N coincides with the

standard (real) order on N. Thus n.A/ < n.B/, A;B 2 F f , iff the natural number
n.A/ is less than the natural number n.B/. This implies (by definition of the order QO
on the set of probabilities) that P W F f ! .�1; 0/\Z and P.A/ is increasing if P.A/
is r-decreasing. Therefore, for example, probabilities P.A/ D �1 or �3 are rather
small with respect to probabilities P.B/ D �100 or �300.

(5) Set NF f D fB D NA W A 2 F f g (in particular, NF f contains complements of
all finite subsets of �/. Then P W NF f ! N and P.B/ is decreasing if P.B/
is r-increasing. Therefore, for example, probabilities P.E/ D 100 or 200 are
rather small with respect to probabilities P.C / D 1 or 2.

6In particular, F f contains all finite subsets of S . The F f contains also some infinite subsetsA 2 GS

which have finite p-adic volumes. For example, let jA\Tk j D 1Cpk , k D 1; 2; : : : (1Cpk inhabitants
of the first .k C 1/ floors have the property A/. Then n.A/ D 1 and hence A 2 F f .
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We can use these rules for conditional probabilities. For example, let P.B/ D 100,
P.B 0/ D 200, P.A/ D 2 and B;B 0 � A. Then P.B=A/ D 50 > P.B 0=A/ D 100.

By (4) and (5) we can work with probabilities belonging to F f [ NF f .

(6) Now consider events A 62 F f [ NF f . We can develop our intuition only by
examples.

Example 3.3. Let p D 2. Let jA \M2kj D 22k and A \M2kC1 D ¿, k D 0; 1; : : : .
Then n.A/ D �1=3 .D 1010 : : : 10 : : : / and P.A/ D 1=3. LetB � A andB\M4k D
A\M4k , B \Mj D ¿, j 6D 4k. Then n.B/ D �1=15.D 100010001 : : : 10001 : : : /
and P.B/ D 1=15. It is evident that �1=15 < �1=3 in Z2. Hence P.B/ D 1=15 <

P.A/ D 1=3.

Thus it seems to be that the probabilistic order relation on the set Œ0; 1
\Q coincides
with the standard real order. Moreover, it seems to be reasonable to use this relation
also in the case where the numbers n.A/ and n.B/ are incompatible in Z2.7

Example 3.4. Let p and A be the same as above. Let jC \M2kC1j D 22kC1, C \
M2k D ¿, k D 0; 1; : : : . Then n.C / D �2=3 and P.C / D 2=3. The numbers
n.A/ D �1=3 and n.C / D �2=3 are incompatible in Z2. But heuristically it seems to
be evident that we can use the r-order structure on Œ0; 1
 to compare the probabilities
of the events A and C . Therefore the probability of ! 2 C is two times larger than the
probability ! 2 A. These heuristic reasons were also confirmed by some frequency
statistical models, see [80] for the details.

Further we have that a probability x 2 .�1; 0/ \ Z is practically negligible with
respect to any probability y 2 .0; 1
 \ Q. The intuitive argument is the following.
A probability P.A/ 2 .�1; 0/ \ Z is probability of an event A with a finite p-adic
volume in the infinitely large ensemble S . Probability P.A/ 2 .0; 1
\Q is probability
of an event A with an infinite p-adic volume in the infinitely large ensemble S .

Therefore, p-adics gives the possibility to split probability 0 to a set of probabilities,
0! DC

0 ; in particular, .�1; 0/ \ Z � DC
0 .

Remark 3.4. A probability P on a Boolean algebra A is non-degenerated: P.A/ D 0,
A 2 A iff A D ¿. The p-adic split of probability 0 can be considered as a step in
the direction to Boolean probabilities. The set of new labels DC

0 gives the possibility
to split many probabilities which must be equal to probability 0 from the viewpoint
of real analysis. However, we still have not obtained a Boolean probability. There
are numerous events A 2 GS , A 6D ¿, which have probability 0. For example, let
jA \ Tkj D pk , k D 1; 2; : : : . Then P.A/ D 0.

We can also use these rules for conditional probabilities. For example, let P.B/ D
1=15 < P.B 0/ D 2=15, P.A/ D 1=5 and B;B 0 � A. Then P.B=A/ D 1=3 <

7However, probably it is the wrong extrapolation and we must assume existence of events with in-
compatible probabilities.
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P.B 0=A/ D 2=3. Moreover, for example, let P.B/ D �1 < P.B 0/ D �5, P.A/ D
�100 and B;B 0 � A. Then P.B=A/ D 1=100 < P.B 0=A/ D 1=20. Thus the r-order
structure on .0; 1
 \Q reproduces the rule (4).

Proposition 3.8. If P.B/ 2 N, then n. NB/ 2 f0g [ N; if P.B/ 2 .0; 1/ \ Q then
n. NB/ 2 Zp n N.

Proof. If k D P.B/ 2 N, then n.B/ D �k, k D 1; 2; : : : , and n. NB/ D �1 C k. If
a D P.B/ 2 .0; 1/ \Q then n.B/ D �a and n. NB/ D a � 1 62 N.

Thus if P.B/ 2 N, then the set NB has a finite p-adic volume, n. NB/. On the other
hand, if P.B/ 2 .0; 1/ \ Q, then the set NB has an infinite p-adic volume, n. NB/. It
is natural to assume that probability P.B/ 2 N is larger than any probability P.C / 2
.0; 1/ \Q.

Therefore, p-adics gives the possibility to split probability 1 to a set of probabilities,
1 ! D�

1 . In particular, N � D�
1 . However, the probability 1 is still not totally split.

There are numerous events A 6D ¿ with P.A/ D 1. For example, let jA \Mkj D
pŒ.kC1/=2��1, k D 1; 2; : : : (here Œx
 denotes the integer part of x/. Then n.A/ D �1
and P.A/ D 1. But NA 6D ¿.

We can also split all probabilities x D P.A/ 2 .0; 1/ \Q.
Let A 2 GS , x D P.A/ 2 .0; 1/ \ Q, C 2 F f , A \ C D ¿, and let B D A [ C .

Then 
 D P.B/ D P.A/C P.C / D x � k, where P.C / D �k, k 2 N. As the p-adic
volume of the set C is finite (and the ensemble S is infinite) probability P.C / D �k is
infinitely small. Thus the probability x can be split in a set of probabilities DC

x . Each
probability 
 2 DC

x is larger than probability x and probability � D 
 � x D �k is
infinitely small.

Let B 2 GS , C 2 F f , B \ C D ¿, and let A D B [ C , x D P.A/ 2 .0; 1/ \Q.
Then 
 D P.B/ D P.A/ � P.C / D x C k, where P.C / D �k, k 2 N, is infinitely
small probability. Thus the probability x can be split in a set of probabilitiesD�

x . Each
probability 
 2 D�

x is less than probability x and probability � D x � 
 D �k is
infinitely small.

Thus probability x is split in a set of probabilities Dx D D�
x [DC

x .
We now consider probabilities with respect to an ensemble SN for an arbitrary N 2

Zp , N 6D 0. By using formula (3.15) we can translate to the general case results
obtained for the ensemble S D S�1. In the general case probability 0 is split in a set
DC
0 which contains the set f
 D k

N
W k 2 Ng; probability 1 is split in a set D�

1 which

contains the set f
 D 1 � k
N
W k 2 Ng; probability x 2 .0; 1/ \ Q is split in a set

Dx D D�
x [DC

x , where D�
x , in particular, contains the set f
 D x � k

N
W k 2 Ng and

DC
x , in particular, contains the set f
 D x C k

N
W k 2 Ng.

3.3 Negative probabilities and p-adic ensemble probabilities

Let us consider Example 2.2 of Chapter 3 from the p-adic viewpoint. The series
jS j D 1 C 2 C � � � C 2k C � � � D �1 converges in Q2. Thus the statistical ensemble
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S of Example 2.2 has the 2-adic maximal volume -1. Probabilities pk D jS.
 D

k/j=jS j D �2k are infinitely small probabilities. p-adic approach implies that the
distribution of quantum systems regarding to values 
 D 
j of hidden variables has
the 2-adic hierarchical structure. The ensemble S has the form of a tower in that
the j th floor is ‘populated’ by quantum systems s with the property 
 D 
j . If we
assume that a preparation procedure E produces portions of quantum systems in the
accordance to this tower structure, then there will be extremely unstable behaviour of
properties 
 D 
j in quantum data which will be used in an experiment (compare
with [93]).

The summation in the formula of total probability

PS .A/ D
1
X

kD0

pk
X

j2j.A/

pkj .3:16/

is meaningful from 2-adic viewpoint for conditional probabilities pkj which do not
depend on k (for finite sets A/.

We now consider Example 2.3 of Chapter 3. Here conditional probabilities pkl D
�2l are well defined in Q2. These are infinitely small probabilities. The summation
in (3.16) is meaningful. For example, for A D f
0

0; : : : ; 

0
2k
; : : : g we have

PS .A/ D
� 1
X

lD0

�2l
�� 1

X

jD0

�22j
�

D 1

3
;

PS . NA/ D
� 1
X

lD0

�2l
�� 1

X

jD0

�22jC1

�

D 2

3
:

All above series converge in Q2.
Finally we consider Example 2.4 of Chapter 3. By equality (1.10) the factorial series

P1
kD0 kŠ converges in each field Qp . Thus conditional probabilities

pkl D
lŠ

P1
kD0 kŠ

are well defined in each Qp .

4 Measures

Let X be an arbitrary set and let R be a ring of subsets of X . The pair .X;R/ is called
a measurable space. The ring R is said to be separating if for every two distinct
elements, x and y, of X there exists an A 2 R such that x 2 A, y 62 A. We shall
consider measurable spaces only over separating rings which cover X .
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Every ring R can be used as a base for the zero-dimensional topology8 which we
shall call the R-topology. This topology is Hausdorff iff R is separating.

Throughout this section, R is a separating covering ring of a set X .
A subcollection S of R is said to be shrinking if the intersection of any two elements

of S contains an element of S . If S is shrinking, and if f is a map R! K or R! R,
we say that limA2S f .A/ D 0 if for every � > 0, there exists an A0 2 S such that
jf .A/j � � for all A 2 S , A � A0.

Let K be a non-Archimedean field with the valuation j � jK .
A measure on R is a map � W R! K with the properties:

(i) � is additive;

(ii) for all A 2 R, kAk� D supfj�.B/jK W B 2 R; B � Ag <1;

(iii) if S � R is shrinking and has empty intersection, then limA2S �.A/ D 0.

We call these conditions respectively additivity, bounded, continuity. The latter con-
dition is equivalent to the following: limA2S kAk� D 0 for every shrinking collection
S with empty intersection.

Condition (iii) is the replacement for � -additivity. Clearly (iii) implies � -additivity.
Moreover, we shall see that for the most interesting cases (iii) is equivalent to � -
additivity. Of course, we could in principle restrict our attention to these cases and
use the standard condition of � -additivity. However, in that case we should use some
topological restriction on the space X . This implies that we must consider some topo-
logical structure on a p-adic probability space. We do not like to do this. We shall de-
velop the theory of p-adic probability measures in the same way as A. N. Kolmogorov
(1933) developed the theory of real valued probability measures by starting with an
arbitrary set algebra.

Further, we shall briefly discuss the main properties of measures, see [164] for the
details. As in Chapter 1, for any set D, we denote its characteristic function by the
symbol ID . For f W X ! K and � W X ! Œ0;1/, put

kf k� D sup
x2X

jf .x/jK�.x/:

We set
N�.x/ D inf

U2R;x2U
kU k�

for x 2 X . Then kAk� D kIAkN�
for any A 2 R. We set kf k� D kf kN�

.
A step function (or R-step function) is a function f W X ! K of the form f .x/ D

PN
kD1 ckIAk

.x/ where ck 2 K and Ak 2 R, Ak \ Al D ¿; k 6D l . We set for such a
function

Z

X

f .x/�.dx/ D
N
X

kD1

ck�.Ak/:

8A topological space .X I �/ is zero-dimensional if each point x 2 X has a basis of clopen (i.e., at the
same time open and closed) neighborhoods.
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Denote the space of all step functions by the symbol S.X/. The integral f !
R

X f .x/�.dx/ is the linear functional on S.X/ which satisfies the inequality

ˇ

ˇ

ˇ

Z

X

f .x/�.dx/
ˇ

ˇ

ˇ

K
� kf k�: .4:1/

A function f W X ! K is called �-integrable if there exists a sequence of step
functions ffng such that limn!1 kf � fnk� D 0. The �-integrable functions form a
vector space L1.X;�/ (and S.X/ � L1.X;�//. The integral is extended from S.X/

on L1.X;�/ by continuity. The inequality (4.1) holds for f 2 L1.X;�/.
Let R� D fA W A � X; IA 2 L1.X;�/g. This is a ring. Elements of this ring

are called �-measurable sets. By setting �.A/ D R

X IA.x/ �.dx/ the measure � is
extended to a measure on R�. This is the maximal extension of �, i.e., if we repeat
the previous procedure starting with the ring R�, we will obtain this ring again.

Set X� D fx 2 X W N�.x/ 
 �g, X0 D fx 2 X W N�.x/ D 0g, XC D X n X0.
Every A � X0 belongs to R�. We call such sets �-negligible.

Now we construct product measures. Let �j , j D 1; 2; : : : ; n, be measures on
(separating) rings Rj of subsets of sets Xj . The finite unions of the sets A1�� � ��An,
Aj 2 Rj , form a (separating) ring R1�� � ��Rn of X1�� � ��Xn. Then there exists a
unique measure �1�� � ���n on R1�� � ��Rn such that �1�� � ���n.A1�� � ��An/ D
�1.A1/ � � � � � �n.An/. We have

N�1������n
.x1; : : : ; xn/ D N�1

.x1/ � � � � �N�n
.xn/:

Let X be a zero-dimensional topological space9. We denote the ring of clopen (i.e.,
at the same time open and closed) subsets of X by the symbol B.X/ (in fact, this is an
algebra). We denote the space of continuous bounded functions f W X ! K by the
symbol Cb.X/. We use the norm kf k1 D supx2X jf .x/jK on this space.

First we remark that if X is compact and R D B.X/ then the condition (iii) in the
definition of a measure is redundant. If X is not compact then there exist bounded
additive set functions which are not continuous.

Let X be zero-dimensional N-compact topological space, i.e., there exists a set S
such that X is homeomorphic to a closed subset of NS . We remark that every product
of N-compact spaces is N-compact; every closed subspace of an N-compact space is
N-compact. Then every bounded � -additive function� W B.X/! K is a measure. On
the other hand, if X is a zero-dimensional space such that every bounded � -additive
function B.X/! K is a measure, then X is N-compact.

In the theory of integration a crucial role is played by the R�-topology, i.e., the
(zero-dimensional) topology that has R� as a base. Of course, R�-topology is
stronger that R-topology. Every �-negligible set is R�-clopen. The following two
theorems [164] will be important for our considerations.

9We consider only Hausdorff spaces.
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Theorem 4.1. (i) If � is a measure on R, thenN� is R-upper semicontinuous, (hence,
R�-upper semicontinuous) and for every A 2 R� and � > 0 the set A� D A \ X� is
R�-compact.

(ii) Conversely, let � W R ! K be additive. Assume that there exists an R-upper
semicontinuous � W X ! Œ0;1/ such that j�.A/jK � supx2A �.x/, A 2 R, and
fx 2 A W �.x/ 
 �g is R-compact .A 2 R; � > 0/. Then � is a measure and
N� � �.

Theorem 4.2. Let � W R ! K be a measure. A function f W X ! K is �-integrable
iff it has the following two properties: (1) f is R�-continuous; (2) for every � > 0,
the set fx W jf .x/jKN�.x/ 
 �g is R�-compact.

We shall also use the following fact.

Theorem 4.3. Let f 2 L1.X;�/ and let
Z

A

f .x/�.dx/ D 0 for every A 2 R: .4:2/

Then supp f � X0.

Proof. Let us assume that f satisfies (4.2) and there exists x0 2 XC (henceN�.x0/ D
˛ > 0) such that jf .x0/jK D c > 0. Let ffkg be a sequence of R-step functions
which approximates f . For every � > 0 there exist N� such that kf � fkk� < ˛� for
all k 
 N�. In particular, this implies that jfk.x0/jK 
 c � �, k 
 N�. Then we have

�B;k D
ˇ

ˇ

ˇ

Z

B

fk.x/ �.dx/
ˇ

ˇ

ˇ

K

D
ˇ

ˇ

ˇ

Z

B

fk.x/ �.dx/ �
Z

B

f .x/�.dx/
ˇ

ˇ

ˇ

K
< ˛�; B 2 R:

Let

fk.x/ D
X

j

ckj IBkj
.x/; ckj 2 K; Bkj 2 R; Bkj \ Bki D ¿; i 6D j;

and let x0 2 Bkj0
. If B � Bkj0

, B 2 R, then we have �B;k D jckj jK j�.B/jK D
jfk.x0/jK j�.B/jK < ˛�. On the other hand, as kBkj0

k� 
 ˛, then for every ı > 0,
there exists B � Bkj0

, B 2 R, such that j�.B/jK 
 .˛ � ı/. Thus we obtain for this
B: �B;k 
 .˛ � ı/.c � �/. By choosing � > 0, ı > 0, such that .˛ � ı/.c � �/ > ˛�
arrive to the contradiction.

We shall use the following simple fact.

Lemma 4.1. Let .Xj ;Rj /, j D 1; 2, be measurable spaces and let f W X1 ! X2 be
measurable. If S is shrinking in R2 then f �1.S/ is shrinking in R1. If S has empty
intersection, then f �1.S/ has also empty intersection.



Section 4 Measures 135

Lemma 4.2. Let .Xj ;Rj /, j D 1; 2, be measurable spaces and let � W X1 ! X2 be a
measurable function. Then, for every measure � W R1 ! K, the function �
 W R2 !
K defined by the equality �
.A/ D �.��1.A// is a measure on R2 and, for every
R2-continuous function, h W X2 ! K the following inequality holds:

khk��
� kh ı �k�: .4:3/

Proof. We have for every A 2 R2,

kAk��
D supfj�.��1.B// W B 2 R2; B � Ag � k��1.A/k� <1: .4:4/

Thus �
 is bounded. We now prove that �
 is continuous on R2. Let S be shrinking
in R2 which has the empty intersection. By Lemma 4.1 ��1.S/ is shrinking in R1

which has also the empty intersection. By (4.4) we obtain that limA2S kAk��
D 0.

We prove inequality (4.3). Let h W X2 ! K be R2-continuous. We wish to prove
that jh.b/jKN��

.b/ � kh ı �k� for all b 2 X2. So we choose b 2 X2 with h.b/ 6D 0.
Then the set Cb D fy 2 X2 W jh.y/jK D jh.b/jKg is R2-open. Hence there is a
B 2 R2 with b 2 B � Cb . Then

jh.b/jKN��
.b/ � jh.b/jKkBk��

� jh.b/jKk��1.B/k�
D sup
x2
�1.B/

jh.b/jKN�.x/ � sup
x2
�1.B/

j.h ı �/.x/jKN�.x/

� kh ı �k�:
The following theorem on the change of variables will be important in our proba-

bilistic considerations.

Theorem 4.4 (Khrennikov–van Rooij). Let .Xj ;Rj /, j D 1; 2, be measurable spaces
and let � W X1 ! X2 be a measurable function, and let � W R1 ! K be a measure.
If f W X2 ! K is an R2-continuous function such that the function f ı � belongs to
L1.X1; �/, then f 2 L1.X2; �
/ and

Z

X1

f .�.x// �.dx/ D
Z

X2

f .y/�
.dy/:

Proof. It suffices to prove that for every � > 0 there exists a R2-step function g such
that kf � gk��

� � and kf ı � � g ı �k� � �. By (4.3) the first follows from the
second. So we fix � > 0.

By Theorem 4.2 the set

A D fx 2 X1 W j.f ı �/.x/jKN�.x/ 
 �g
is R1-compact and therefore contained in an element of R1. But N� is bounded on
every element of R1, so N� is bounded on A. We choose ı > 0 so that

ıN�.x/ � � for all x 2 A:
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As A is compact, f .�.A// is also compact. We can cover f .�.A// by disjoint closed
balls of radius ı: f .�.A// � Uı.˛0/ [ � � � [ Uı.˛N /, where ˛0 is chosen to be 0 in
order to obtain:

j˛njK � jt jK for t 2 Uı.˛n/; n D 0; 1; : : : ; N: .4:5/

For each n, Cn D fC 2 R2 W C � f �1.Uı.˛n//g is a collection of open sets covering
the compact set �.A/ \ f �1.Uı.˛n//. Thus, for each n there is a Cn 2 Cn such that
�.A/ \ f �1.Uı.˛n// � Cn. We now have

C0; : : : ; CN 2 R2;

Cn � f �1.Uı.˛n//; n D 0; 1; : : : ; N;
�.A/ � C0 [ � � � [ CN :

Put g.x/ DPN
nD0 ˛nICn

.x/. Then g is a R2-step function. We wish to show that,
for all a 2 X ,

�.a/ D j.f ı �/.a/ � .g ı �/.a/jKN�.a/ � �:
Thus, take a 2 X :

(1) If a 2 A, then there is a unique n with �.a/ 2 Cn. Then �.a/ D j.f ı �/.a/ �
˛njKN�.a/ � ıN�.a/ � �.

(2) If a 62 A, but �.a/ 2 Cn for some n, then by (4.5) we obtain that �.a/ D
j.f ı �/.a/ � ˛njKN�.a/ � j.f ı �/.a/jKN�.a/ � �.

(3) If a 62 C0[� � �[CN , then g.�.a// D 0. Thus�.a/ D j.f ı�/.a/jKN�.a/ � �
(as a 62 A).

Open Problem. Find a condition for functions f which is weaker than continuity, but
implies the formula of the change of variables.

Further we shall obtain some properties of measures which are specific for measures
defined on algebras.

Throughout this section, A is a separating algebra of a setX . First we remark that if
we start with a measure� defined on the algebra A then the system A� of�-integrable
sets is again an algebra.

Proposition 4.1. Let � W A ! K be a measure. Then for each � > 0, the set X� is
A�-compact.

This fact is a consequence of Theorem 4.1.

Proposition 4.2. Let � W A! K be a measure. Then the algebra B.X/ of A�-clopen
sets coincides with the algebra A�.
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Proof. We use Theorem 4.2 and the previous proposition. Let B 2 B.X/. Then IB is
A�-continuous and fx W jIB.x/jKN�.x/ 
 �g D B \ X�. As B is closed and X� is
compact, B \X� is compact. Thus B.X/ � A�.

As a consequence of Proposition 4.2, we obtain that Cb.X/ � L1.X;�/ (for the
space X endowed with A�-topology) and the following inequality holds:

ˇ

ˇ

ˇ

Z

X

f .x/�.dx/
ˇ

ˇ

ˇ

K
� kf k1kXk�; f 2 Cb.X/:

LetX be a zero-dimensional topological space. A measure � defined on the algebra
B.X/ of the clopen sets is called a tight measure. Thus by Proposition 4.2 every
measure � W A! K is extended to a tight measure on the space X endowed with the
A�-topology.

Proposition 4.3. Let � W A ! K be a measure and let f 2 L1.X;�/. Then f is
.A�; B.K//-measurable.

Proof. By Theorem 4.2 f is A�-continuous. Thus f �1.B.K// � B.X/. But by
Proposition 4.2 we have that A� D B.X/.

5 p-adic probability space

Let � W A! Qp be a measure defined on a separating algebra A of subsets of the set
� which satisfies the normalization condition �.�/ D 1. We set F D A� and denote
the extension of � on F by the symbol P. A triple .�;F ;P/ is said to be a p-adic
probability space (� is a sample space, F is an algebra of events, P is a probability).

As in general measure theory we set

�˛ D f! 2 � W NP.!/ 
 ˛g; ˛ > 0; �C D
[

˛>0

�˛; �0 D � n�C:

If a property „ is valid on the subset �C we say that „ is valid a.e. .mod P/.
Everywhere below .G; �/ denotes a measurable space over the algebra � . Functions

� W �! G which are .F ; �/-measurable are said to be random variables.
Everywhere below Y is a zero-dimensional topological space. We consider Y as the

measurable space over the algebra B.Y /. Every random variable � W �! Y is contin-
uous in the F -topology. In particular, Qp-valued random variables are .F ; B.Qp//-
measurable functions. If � 2 L1.�;P/, we introduce an expectation of this random
variable by setting E� D R� �.!/P.d!/. We note that every bounded random variable
� W �! Qp belongs to L1.�;P/.

Let � W � ! G be a random variable. The measure P
 is said to be a distribution
of the random variable. By Theorem 4.4 we have that

Ef .�/ D
Z

Qp

f .y/P
.dy/ .5:1/
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for every �-continuous function f W G ! Qp such that f ı � 2 L1.�;P/. In
particular, we have the following result.

Proposition 5.1. Let � W � ! Y be a random variable and let f 2 Cb.Y /. Then the
formula (5.1) holds.

We shall also use the following technical result.

Proposition 5.2. Let � W �! Y be a random variable and let � 2 L1.�;P/, and let
f 2 Cb.Y /. Then �.!/ D �.!/f .�.!// belongs L1.�;P/ and

E� D
Z

Qp�Y

xf .y/Pz.dxdy/; z.!/ D .�.!/; �.!//:

Proof. We have only to show that � 2 L1.�;P/. This fact is a consequence of Theo-
rem 4.2.

The random variables �; � W �! G are called independent if

P.� 2 A; � 2 B/ D P.� 2 A/P.� 2 B/ for all A;B 2 �: .5:2/

Proposition 5.3. Let �; � W � ! Y be independent random variables and functions
f; g 2 Cb.Y /. Then we have:

Ef .�/g.�/ D Ef .�/Eg.�/: .5:3/

Proof. If f and g are locally constant functions then (5.3) is a consequence of (5.2).
Arbitrary functions f; g 2 Cb.Y / can be approximated by locally constant functions
(with the convergence of corresponding integrals) by using the technique developed in
the proof of Theorem 4.4.

Remark 5.1. In fact, the formula (5.3) is valid for the continuous f; g such that the
random variables f .�/, g.�/ and f .�/g.�/ belong L1.�;P/.

Proposition 5.4. Let � and � be independent random variables. Then the random
vector z D .�; �/ has the probability distribution Pz D P
 � P� .

This fact is the direct consequence of (5.2).
Let � and � be respectively Qp and G valued random variables and � 2 L1.�;P/.

A conditional expectation EŒ�j� D y
 is defined as a function m 2 L1.G;P
/ such
that

Z

f!2�W
.!/2Bg

�.!/P.d!/ D
Z

B

m.y/P
.dy/ for every B 2 �:

Proposition 5.5. The conditional expectation is defined uniquely a.e. mod P
.
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Proof. We assume that there exist two conditional expectations mj 2 L1.G;P
/ and
m1.x0/ 6D m2.x0/ at some point x0 and NP�

.x0/ > 0. Set m.x/ D m1.x/ �m2.x/.
We have:

R

B m.x/P
.dx/ D 0 for every B 2 � . To obtain the contradiction, it is
sufficient to use Theorem 4.3.

As there is no analogue of the Radon–Nikodym theorem in the non-Archimedean
case [164], it may happens that a conditional expectation does not exist. Everywhere
below we assume that m.y/ D EŒ�j� D y
 is well defined and moreover, that it
belongs to the class Cb.Y /.

Proposition 5.6. Let � W � ! Qp , � W � ! Y be random variables, and � 2
L1.�;P/. The equality

Ef .�/� D Ef .�.!//EŒ�.!/j� D �.!/


holds for every function f 2 Cb.Y /.
Proof. By Proposition 5.2 we obtain E�f .�/ D R

Qp�Y xf .y/Pz.dxdy/, where
z.!/ D .�.!/; �.!//. Set for A 2 B.Y /,


.A/ D
Z

Qp�Y

xIA.y/Pz.dxdy/:

As 
.A/ D R
�1.A/ �.!/P.d!/ D RY m.y/P
.dy/, it is a tight measure on Y . Then

Z

Qp�Y

xf .y/Pz.dxdy/ D
Z

Y

f .y/ 
.dy/ D
Z

Y

f .y/m.y/P
.dy/

D Ef .�/m.�/:



5 Tests for randomness for p-adic
probability theory

The first p-adic probability models [79], [80] were attempts to extend R. von Mises
frequency probability theory to the p-adic case (see Chapter 4, Section 2). As relative
frequencies �N D n

N
2 Q, we can study their behavior not only in R, but also in Qp .

It is well know that von Mises’ theory is based on two principles: (1) the principle of
the statistical stabilization of relative frequencies and (2) the principle of randomness.

As we have seen, the first principle can be naturally generalized to the p-adic case
and p-adic probabilities are defined as limits of relative frequencies with respect to
p-adic topology. However, as in the ordinary real probability theory, there is the large
problem with the principle of randomness. In the p-adic case the situation with sta-
bility of limits of relative frequencies with respect to place selections is even worse
than in the real case, because the p-adic metric is very unstable: if jnjp D " < 1,
then jnC 1jp D 1. In the p-adic case we have not even the possibility to restrict our
considerations to a countable number of place selections (as we can do in the real case
by Tornier theorem). To obtain the reasonable definition of p-adic randomness, we
tried also to apply the theory of algorithmic complexity (see, for example, [38], [135],
[134], [160], [137]). However, there was no large progress, see [80], [91], [89]. We
present now a p-adic generalization of Martin-Löf’s theory [142–144] based on tests
for randomness1. Such a generalization looks as the most natural approach to p-adic
randomness. Here we find natural tests for randomness for p-adic valued uniform
probability distribution. Each test for randomness induces a series of limit theorems.
On the other hand, individual limit theorems are not good candidates for test for ran-
domness, because each theorem describes behavior of a subsequence Snk

.!/ of the
sequence Sn.!/ D �1.!/ C � � � C �n.!/ of independent equally distributed random
variables.

We proved that it is possible to enumerate effectively all p-adic test for randomness.
However, in the opposite to Martin-Löf’s theorem for real probabilities we proved that
a universal p-adic test for randomness does not exist.

We shall use the standard terminology of the book of M. Li and P. Vitànyi [137].
The abbreviation r.e. is used for “recursive enumeration.”

1 p-adic probability measures on the space
of binary sequences

We setX D f0; 1g, Xn D fx D .x1; : : : ; xn/ W xj 2 Xg,X� DSnX
n,X1 D f! D

.!1; : : : ; !n; : : : /W!j 2 Xg. For x 2 Xn, we set l.x/ D n. For x 2 X�, l.x/ D n, we

1This theory was developed by A. Khrennikov and S. Yamada [130].
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define a cylinder Ux with basis x by Ux D f! 2 X1 W !1 D x1; : : : ; !n D xng. We
denote by the symbol Fcyl an algebra of subsets of X1 generated by all cylinders.

The map j WX1 ! Z2, j.!/ D P1
jD0 !j 2

j , gives one to one correspondence
between X1 and Z2. Thus we can identify these sets. The algebra of cylindric sets
Fcyl coincides with the algebra B.Z2/ of all clopen subsets of Z2 (see Chapter 4).

A function �WFcyl ! Qp is a p-adic (valued) measure if the following properties
holds true: (i) additivity: �.A [ B/ D �.A/ C �.B/, A \ B D ¿, A;B 2 Fcyl;
(ii) boundedness: k�kp D supfj�.A/jp W A 2 Fcylg < 1. As it has been noticed in
Chapter 4, the condition of continuity (iii) is redundant as Fcyl D B.Z2/.

A function f WX� ! Qp is said to be recursive iff there is a recursive function
gWX� �N! Q such that jf .x/� g.x; k/jp < 1

k
. A p-adic measure �WFcyl ! Qp is

said to be recursive iff the function fpWX� ! Qp , fp.x/ D �.Ux/, is recursive.
The uniform p-adic measure �p .p ¤ 2/ on X1 is defined by

�p.Ux/ D
1

2l.x/
; x 2 X�: .1:1/

If X� is realized as Z2 and Fcyl as B.Z2/, then �p is the p-adic valued Haar measure
(translation invariant measure) on Z2.

As
ˇ

ˇ

1
2l.x/

ˇ

ˇ

2
D 2l.x/, the additive set function �2 defined by (1.1) is not bounded.

Therefore we shall consider only the case p 6D 2.
The simple considerations show that the function

N�p
.x/ D inffkU k� W x 2 U 2 B.Z2/g D 1

for all x 2 Z2. This implies that L1.Z2; �p/ D C.Z2/ (because all B.Z2/-step
functions are continuous and each continuous function can be uniformly approximated
by a sequence of B.Z2/-step functions). This implies that the algebra .B.Z2//�p

D
fA � Z2 W IA 2 L1.Z2; �p/g D B.Z2/. Thus the Haar measure �p cannot be
extended from the algebra B.Z2/ to any larger algebra. In particular, the �p cannot be
extended on the Borel � -algebra generated by the algebra of clopen subsets B.Z2/.

Let a measure � W Fcyl ! Qp be normalized: �.X1/ D 1. Then we can consider
the p-adic probability space P D .�;F ;P/, where � D X1, F D .Fcyl/�(the set
algebra which is obtained via the �-extension of Fcyl/, P D N� is a p-adic probability
measure. As for the p-adic uniform measure �p (the Qp-valued Haar measure on Z2/

the extension .Fcyl/�p
coincides with Fcyl and the extension N�p coincides with �p , the

corresponding probability space is P D .�;F ;Pp/, where � D X1, F D Fcyl and
Pp D �p. The Pp is called a uniform p-adic probability distribution. We remark that
values of Pp on cylinders coincide with values of the standard (real-valued) uniform
probability distribution P1 on X1. As Q � R and Q � Qp , we can interpret rational
numbers 1

2l.x/ both as real and as p-adic numbers.
In fact, we shall not use general recursive p-adic probabilities (see only definitions).

We shall consider only the uniform p-adic probability distribution Pp, p ¤ 2 (which
is, of course, recursive).
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2 Some technical p-adic results

The results which are obtained in this section will be used to construct p-adic tests and
prove limit theorems for p-adic probabilities.

For any n; k 2 N, .n; k/ denotes the greatest common divisor of n and k; for any
n 2 N, Mp.n/ denotes the mod p residue of n: n DMp.n/ mod p. We set

‚p.n/ D

 jn �Mp.n/jp; n 
 p;
1; 1 � n � p � 1:

Lemma 2.1. Let n; k 2 N, k � n and let Mp.n/ 
Mp.k/. Then
ˇ

ˇ

ˇ

ˇ

ˇ

 

n

k

!

ˇ

ˇ

ˇ

ˇ

ˇ

p

D ‚p.n/

‚p.k/
:

Proof. Let n D ˛ C ipN , k D ˇ C jpl , where 0 � ˛; ˇ � p � 1, i; j; N; l 2 N and
.i; p/ D .j; p/ D 1. We have:
ˇ

ˇ

ˇ

ˇ

ˇ

 

n

k

!

ˇ

ˇ

ˇ

ˇ

ˇ

p

D
ˇ

ˇ

ˇ

ˇ

ˇ

.ipN / � .ip
N � p/
p

� .ip
N � 2p/
2p

� � � .ip
N � jpl C p/
.jpl � p/ � 1

.jpl /

ˇ

ˇ

ˇ

ˇ

ˇ

p

D
ˇ

ˇ

ˇ

ˇ

ˇ

pN

pl

ˇ

ˇ

ˇ

ˇ

ˇ

p

D pl�N :
(2.1)

To obtain (2.1), we have used that n � k C 1 D ipN � jpl C .˛ C 1 � ˇ/ and
0 < ˛ C 1 � ˇ � p; hence the last term in the nominator of

�

n
k

	 D n���.n�kC1/
1���k

, which
is divisible by p is .ipN � jpl C p/. The cases in that n D ˛ or k D ˇ, 0 � ˛,
ˇ � p � 1 are considered in the same way.

Lemma 2.2. Let n; k 2 N, k � n, and let Mp.n/C 1 �Mp.k/. Then
ˇ

ˇ

ˇ

ˇ

ˇ

 

n

k

!

ˇ

ˇ

ˇ

ˇ

ˇ

p

D ‚p.n/:

Proof. Let n D ˛C ipN , k D ˇCjpl , where .i; p/ D .j; p/ D 1, 0 � ˛, ˇ � p�1.
We have

ˇ

ˇ

ˇ

ˇ

ˇ

 

n

k

!

ˇ

ˇ

ˇ

ˇ

ˇ

p

D
ˇ

ˇ

ˇ

ˇ

ˇ

.ipN / � .ip
N � p/
p

� .ip
N � 2p/
2p

� � � .ip
N � jpl /
.jpl /

ˇ

ˇ

ˇ

ˇ

ˇ

p

D
ˇ

ˇ

ˇ

pN
ˇ

ˇ

ˇ

p
D p�N :

(2.2)

To obtain (2.2), we have used that n � k C 1 D .ipN � jpl / � .ˇ � ˛ � 1/ and
0 � ˇ � ˛ � 1 < p; hence the last term in the nominator of

�

n
k

	 D n���.n�kC1/
1���k

which
is divisible by p is .ipN � jpl /. The cases in that n D ˛ or k D ˇ, 0 � ˛, ˇ � p� 1,
are considered in the same way.
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3 p-adic tests for randomness

We use the following notations. For each set M � X�, we set M .n/ D fx 2 M W
l.x/ D ng, n D 1; 2; : : : . For each setW � X��N, we setWm D fx 2 X�W .x;m/ 2
W g. Thus W .n/

m D fx 2 X� W l.x/ D n; .x;m/ 2 W g.
Everywhere in this chapter the cardinality of a (finite) set A is denoted by the sym-

bol �.A/. We do not use the standard symbol jAj, because we do not want to use
expressions of the form j jAj jp.

The following definition of a p-adic test for randomness is a natural generalization
of Martin-Löf’s definition of a test for randomness for ordinary real probabilities (in
fact, in our particular case for the uniform distribution).

Definition 3.1. Let P be a p-adic recursive probability. A recursively enumerable (r.e.)
set V � X��N is called a p-adic P-test (p-adic test for randomness for the probability
distribution P) if it possesses the following two properties: for all n;m 2 N, we have:

VmC1 � Vm;
ˇ

ˇ

ˇ

ˇ

X

x2V
.n/

m

P.Ux/

ˇ

ˇ

ˇ

ˇ

p

� 1

pm
: (3.1)

The use of p-adic tests for randomness gives the possibility to formalize (in fact, to
create) p-adic statistics. We are given the sample space X� with an associated p-adic
probability distribution P. Given an element x of the sample space, we want to test
hypothesis “x is a typical outcome”. Practically speaking, the property of being typical
is the property of belonging to reasonable majority. To ascertain whether a given
element of the sample space belongs to a particular reasonable majority we use the
notation of a test. As in the ordinary probability theory, a test is given by a prescription
that, for every level of significance " D 1

pm , tells us for what elements x 2 X� the
hypothesis “x belongs to majority M in X�” should rejected where " D 1 � P.M/.
The set Vm is a critical region on the significance level " D 1

pm . If x 2 Vm then the
hypothesis “x belongs to majority M ” is rejected with the significance level ". We
say that x fails the test at the level of critical region Vm. Of course, there is a large
difference between ‘p-adic majority’ and the ordinary ‘real majority’. Populations
which are very large from the point of view of ordinary real probability may be very
small from the point of view of p-adic probability and vice versa.

We shall study only the uniform p-adic probability distribution. Everywhere below
P D Pp, p ¤ 2. Tests for randomness for this probability distribution we shall simply
call p-adic test. Here condition (3.1) can be reformulated in the following way:

ˇ

ˇ

ˇ

�.V .n/m /
ˇ

ˇ

ˇ

p
� 1

pm
.3:2/

(as P.Ux/ D 1
2n for x 2 V

.n/
m and j2njp D 1 for p ¤ 2, (3.1) has the form

ˇ

ˇ

P

x2V
.n/

m
1
ˇ

ˇ

p
� 1
pm /.
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Proposition 3.1. Let V be a p-adic test. Then, for each .x;m/ 2 V , we have

l.x/.logp 2/ > m 
 1: .3:3/

Proof. Set n D l.x/. As x 2 Vm, we have V .n/m ¤ ¿ and by (3.2) �.V .n/m / is divisible
by pm. Thus 2n D �.Xn/ 
 �.V .n/m / 
 pm. This implies inequality (3.3).

Proposition 3.2. Let V be a p-adic test. Then, for each k 
 m, n 2 N,

ˇ

ˇ

ˇ

�.V .n/m n V .n/
k
/
ˇ

ˇ

ˇ

p
� 1

pm
:

Proof. As V .n/
k
� V .n/m , we have:

�.V .n/m / D �.V .n/
k
/C �.V .n/m n V .n/

k
/:

By the strong triangle inequality we get:

j�.V .n/m n V .n/
k
/jp � max.j�.V .n/m /jpj�.V .n/k

/jp/ D
1

pm
:

As usual, we denote the integer part of a real number x by Œx
. Condition (3.3) can
be rewritten in the form

Œl.x/ logp 2
 
 m:
The function 
.n/ D Œn logp 2
, n 2 N, will play the important role in our further
considerations. For any p-adic test V and n 2 N, only sets V .n/m , m D 1; : : : ; 
.n/,
can be nonempty.

We give now a few examples of p-adic tests for randomness. All these tests are
related to behavior of sums:

S.x/ D x1 C � � � C xn; x 2 X�; n D l.x/:

Example 3.1. We set

Vm D fx 2 X� W ‚p.S.x// 
 pm‚p.l.x//; S.x/ 6D 0 and

Mp.S.x// �Mp.l.x//g:
(3.4)

To show that the set V D f.x;m/ W x 2 Vmg is a p-adic test, we need only to show
that (3.2) holds true. We have:

�.V .n/m / D
X

k

 

n

k

!

;

where 0 � k � n and Mp.k/ � Mp.n/, ‚p.n/

‚p.k/
� 1

pm . To obtain (3.2), it is sufficient
to use the strong triangle inequality and Lemma 2.1.
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Example 3.2. We set

V m D



x 2 X� W ‚p.l.x// �
1

pm
and Mp.S.x// 
Mp.l.x//C 1

�

: .3:5/

By using Lemma 2.2 we obtain that (3.2) holds true for V m. Thus the set V D
f.x;m/ W x 2 V mg is a p-adic test.

Example 3.3 (Finite tests). Let n 2 N be a fixed number. Let T be some subset of Xn,
�.T / D p�
.n/. We set W .n/

m D T for m D 1; : : : ; 
.n/ and V .n/j D ¿, j > 
.n/,
and V .n/j D ¿, k ¤ n, for all j D 1; 2; : : : . Then V D f.x;m/ W x 2 Vmg,
Vm D

S1
kD1 V

.k/
m is a finite p-adic test.

To illustrate the statistical meaning of tests (3.4) and (3.5), it is useful to consider
some subsets of them corresponding to fixed values of Mp.n/ and Mp.S.x//.

We start with test (3.4). We set

Vm.1; 0/ D fx 2 Vm WMp.l.x// D 1 and Mp.S.x// D 0g and

V.1; 0/ D f.x;m/ W x 2 Vm.1; 0/g:
(3.6)

This test is connected with samples of the form

x D .x1; : : : ; x1CjpN /; j; N 2 N; .j; p/ D 1: .3:7/

Such a sample must be rejected with the level of significance " D 1
pm if 1 > jS.x/jp 


pmjl.x/ � 1jp D pm�N . Thus the test V.1; 0/ rejects all samples of the form x D
.x1; : : : ; x1CjpN /, .j; p/ D 1, in that the sum S.x/ D x1 C � � � C x1CjpN is not
divisible by a sufficiently high degree of p (but divisible by p1).

A sample x of form (3.7) with S.x/ D ipk , .i; p/ D 1; k 
 1, is rejected with the
level of significance � D 1=pm if k < N �m.

For test (3.4) and Mp.l.x// D 1, we can also fix Mp.S.x// D 1 and obtain a new
test:

Vm.1; 1/ D fx 2 Vm WMp.l.x// D 1 and Mp.S.x// D 1g and

V.1; 1/ D f.x;m/ W x 2 Vm.1; 1/g:

A sample x of the form (3.7) must be rejected with the level of significance " D 1
pm if

1 > jS.x/ � 1jp 
 pmjl.x/ � 1jp D pm�N :

Thus the test V.1; 1/ rejects all samples x of the form (3.7) for that S.x/ � 1 is not
divisible by a sufficiently high degree of p (but divisible by p1).

In the same way by fixing Mp.n/ D s 2 f0; : : : ; p � 1g we obtain tests Vm.s; q/,
q D 0; : : : ; s. The V.s; q/ rejects some samples of the form

x D .x1; : : : ; xsCjpN /; j; N 2 N; .j; p/ D 1; .3:8/
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namely, samples for which S.x/ � q is not divisible by a sufficiently high degree of
p (but divisible by p1). A sample x of form (3.8) with S.x/ D q C ipk , .i; p/ D 1,
k 
 1, is rejected with the level of significance � D 1=pm if k < N �m.

We study now test (3.5). The condition Mp.S.x// 
 Mp.l.x// C 1 
 0 implies
that this test is used to reject (with some level of significance) some samples for that
the sum S.x/ is not divisible by p (compare with (3.6)). We set

V m.0; 1/ D fx 2 V m WMp.l.x// D 0 and Mp.S.x// D 1g and

V .0; 1/ D f.x;m/ W x 2 V m.0; 1/g:

By this test we reject with the level of significance " D 1
pm all samples of the form

x D .x1; : : : ; xjpN /, .j; p/ D 1, for that N < m and Mp.S.x// D 1. We can
compare the test V .0; 1/ with the test V.0; 0/. The latter test is used to reject samples
of the same form, but with S.x/ divisible by p: S.x/ D ipk , .i; p/ D 1, k 
 1. A
sample is rejected with the level of significance " D 1

pm if k < N �m.

It is possible to introduce a p-adic test O which covers all cases of divisibility by p
of S.x/. We start with the following simple fact:

Proposition 3.3. Let ˆ and ‰ be two p-adic tests such that ˆ\‰ D ¿. Then the set
� D ˆ [‰ is a p-adic test with critical regions �m D ˆm [‰m on the significance
level " D 1

pm .

Proof. We need only to prove that (3.2) holds true: We have j�.�.n/m /jp D j�.ˆ.n/m /C
�.‰

.n/
m /jp � max.j�.ˆ.n/m /jp; j�.‰.n/m /jp/ � 1

pm .

We now turn back to tests V and V defined in Examples 3.1, 3.2. It is evident that
Vm \ V m D ¿ for all m. Thus sets †m D Vm [ V m give critical regions (with
" D 1

pm ) of a p-adic test † D f.x;m/ W x 2 †mg.

4 Some limit theorems

As in ordinary real probability theory tests V and V of Examples 3.1, 3.2 are related
to some limit theorems for p-adic probability. Let P D .�;Fcyl;P/ be the probability
space based on the uniform p-adic distribution P on algebra Fcyl of cylindric subsets
of � D X1, p ¤ 2. For ! 2 �, we set Sn.!/ D !1 C � � � C !n.

Theorem 4.1. For each l 2 N the probability

P
�


! 2 � W jSn.!/ �Mp.Sn.!//jp D
1

pl
;Mp.Sn.!// �Mp.n/

��

! 0

in Qp , when jn �Mp.n/jp ! 0, n ¤Mp.n/.
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Proof. By using considerations of Example 3.1 we obtain that

P
�


! 2 � W jSn.!/ �Mp.Sn.!//jp D
1

pl
;Mp.Sn.!// �Mp.n/

��

� pl jn �Mp.n/jp:
In particular, we obtain the following limit theorems:

Corollary 4.1. For each l 2 N, the probability

P
�


! 2 � W Sn.!/ 2 S 1

pl
.0/

��

! 0

in Qp ,when jnjp ! 0.

Corollary 4.2 (see [88]). For each l 2 N, the probabilities

P
�


! 2 � W Sn.!/ 2 S 1

pl
.0/

��

and P
�


! 2 � W Sn.!/ 2 S 1

pl
.1/

��

tend to zero in Qp , when jn � 1jp tends to zero.

Formally we can interpret Corollary 4.2 in the following way. The sum Sn.!/ can
be considered as the sum Sn.!/ D �1.!/C � � � C �n.!/ of independent equally dis-
tributed random variables �j .!/ D 0; 1 with probabilities 1=2. By Corollary 4.2 the
probability distribution of random variable Slim.!/ D limn!1 Sn.!/ is concentrated
at the points a0 D 0 and a1 of Qp . By symmetry reasons PSlim.fa0g/ D PSlim.fa1g/ D
1=2. Of course, this is just a formal statement, because Corollary 4.2 gives conver-
gence only for spheres of Qp .

Theorem 4.2. The probability

P.f! 2 � WMp.Sn.!// 
Mp.n/C 1g/! 0

when jn �Mp.n/jp ! 0.

As in the case of Theorem 4.1, we can, for example, put Mp.n/ D 0 or Mp.n/ D 1
and obtain the following consequences of Theorem 4.2:

Corollary 4.3. The probability

P.f! 2 � WMp.Sn.!// 
 1g/! 0

in Qp , when jnjp ! 0.

Corollary 4.4. The probability

P.f! 2 � WMp.Sn.!// 
 2g/! 0

when jn � 1jp ! 0.
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We note that

P.f! 2 � WMp.Sn.!// 
 1g/ D P.f! 2 � W Sn.!/ 2 S1.0/g/:

Thus by Corollaries 5.1 and 5.3 we obtain that

P.f! 2 � W Sn.!/ 2 U 1
pm
.0/g/! 1;

jnjp ! 0, for any m 2 N. Hence formally we obtain that the probability distribu-
tion PSlim of Slim.!/ D limn!0 Sn.!/ is concentrated at the point a0 D 0 2 Qp ,
PSlim.f0g/ D 1.

It seems that in the p-adic case it is more natural to use tests for randomness than
limit theorems. In the opposite to ordinary real probability theory in the p-adic case
we have no general limit theorems for n ! 1 (in the sense of the order on N). All
limit theorems give the convergence of probabilities for some sequences nk ! 1,
k ! 1. For example, jnkjp ! 0, nk ¤ 0, implies that nk D jpN , .j; p/ D 1,
N ! 1, and jnk � 1jp ! 0, nk ¤ 1, implies that nk D 1 C jpN , .j; p/ D 1,
N !1, and so on.

5 Recursive enumeration of the set of p-adic tests

Here we shall prove that the set of all p-adic tests is recursively enumerable. The
general scheme of the proof is the same as in the case of real probabilities. However,
the main part of the proof (an algorithm for constructing a p-adic test on the basis of a
partial recursive function) strongly differs from the standard one (see [137]).

We start with the following well-known lemma (see, for example, [137]).

Lemma 5.1. There exists a partial recursive function f WN � N ! X� � N with the
following properties:

(a1) for all i; j 2 N such that f .i; j / ¤1, we have f .i; k/ ¤1, for all k � j ;

(a2) a set A � X� � N is r.e. iff A D ff .i; j / W j D 1; 2; : : :g n f1g, for some
i 
 1.

Theorem 5.1. The set of all p-adic tests is r.e.

Proof. Through the proof we shall use the fixed partial recursive function ' D 'i D
f .i; �/ given by Lemma 5.1. We set A' D '.N/. As in the standard case, we shall
construct for each ' some total recursive function gWN ! X� � N such that T D
Ag D g.N/ is a p-adic test and if ' is a p-adic test by itself, then T D A' . We
construct T step by step using an algorithm which produces a p-adic test at each step.
In the following algorithm we shall use sets D

.n/
m which give approximations for sets

T
.n/
m in the process of building of T (as usual Tm D fx 2 X� W .x;m/ 2 T g and
T
.n/
m D fx 2 Tm W l.x/ D ng/. We shall also use sets R.n/m which are registers for
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collecting elements of .A'/
.n/
m . The main difference with the standard algorithm is

due to the fact that we cannot increase sets D
.n/
m at each step when ' produces a value

'.j / 2 .A'/.n/m D fx W �.j / D .x;m/ for some j and l.x/ D ng (because the p-adic
metric is changed discontinuously: jxjp � 1

pm ) jx C 1jp D 1, m 
 1). We collect

(in R.n/m ) elements of .A'/
.n/
m until �.R.n/m / becomes divisible by pm. After this we

set D
.n/
m D R.n/m .

To be sure that the result of our construction will be a r.e. set, we construct parallel
a function gWN ! X� � N such that T D g.N/ and g is a total recursive function if
T is an infinite set.

Algorithm

1 Put T D ¿, D
.n/
m D R.n/m D ¿; put j D 0, i D 0, t .n/m D 0.

% j is the argument of ', i is the argument of g; t .n/m D �.R.n/m /.

2 Put j D j C 1
3 If '.j / D1 continual indefinitely.

4 Find '.j / D .x;m/ and n D l.x/.
5 If m > Œn logp 2
, then T D ¿ and stop.

6 Put R.n/m D R.n/m [ fxg and t .n/m D t .n/m C 1.

7 If jt .n/m jp > 1
pm , then go to step 2.

8 If m 
 2 and D
.n/
m�1 6
 R.n/m , then go to step 2.

9 Put D
.n/
m D R.n/m .

% We must make step 8 before step 9 to get Tm�1 
 Tm.

10 (a) Enumerate elements if D
.n/
m D fz1; : : : ; zt.n/

m
g;

(b) for l D 1; : : : ; t .n/m , put g.i C l/ D .zl ; m/;
(c) put i D i C t .n/m .

% The previous step is not related to the construction if T ; here we construct the
function g which gives recursive enumeration for T .

11 Put s D m.

12 Put s D s C 1.

13 If s > Œn logp 2
, go to 18.
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14 If jt .n/s jp > 1
ps , go to 18.

15 If D
.n/
s�1 6
 R.n/s , go to 18.

16 Put D
.n/
s D R.n/s .

% We explain the meaning of steps 11–16. By step 9 the set D
.n/
m has been

increased. Thus condition 8 must be reconsidered for sets D
.n/
s with s > m. It

can be that occasionally some of sets R.n/s has the number of elements which is
divisible by ps . If they pass step 15, then we increase sets D

.n/
j by 16.

17 Repeat step 10 for m D s.

18 Put T D T Sm�s�Œn logp 2�
D
.n/
s � fsg and go to step 2.

We prove now that the set T which is constructed by the algorithm is a p-adic test.

(A1) We use the parameter j to denote the step (determined by 2) of the algorithm. We
have T .n/m D S1

jD1D
.n/
m .j /. As D

.n/
m .j C 1/ 
 D

.n/
m .j / and �.D.n/

m .j // is

divisible by pm, we get that �.T .n/m / is divisible by pm. Thus j�.T .n/m /jp � 1
pm .

(A2) By step 8 and 15 we get that D
.n/
m 
 D

.n/
mC1, n;m 2 N. Thus T .n/m 
 T

.n/
mC1,

n;m 2 N.

(A3) If steps 10 and 16 are passed an infinite number of times, then g is the total
recursive function and, hence, T D A' is r.e. If the steps 10 and 16 are passed
only a finite number of times, then the set T is finite and, hence, r.e.

We prove now that if V D A' is a p-adic test, then T D A' .
It is evident that T � A' . We have only to prove that V � T . It is sufficient to

prove that, for each n, V .n/m � fmg � T .n/m � fmg for all m � Œn logp 2
.

For each n, the set V .n/ D f.x;m/ 2 V W l.x/ D ng is finite (since m � Œn logp 2
).

Thus ' produces all elements of V .n/ after a finite numbers of steps J D J.n; '/.2 Let
'.J / D .xJ ; mJ / (here l.xJ / D n and mJ � Œn logp 2
). We have: D

.n/
1 
 D

.n/
2 


� � � 
 D
.n/
M and j�.D.n/

s /jp � 1
ps for s D 1; : : : ;M D Œn logp 2
. We also have:

R
.n/
s D V

.n/
s (because V .n/ � '.f1; 2; : : : ; J g/ and '.f1; 2; : : : ; J g/.n/s D R

.n/
s ).

Thus, for all s, j�.R.n/s /jp � 1
ps . In particular, this holds for s D mJ . Hence, for

m D mJ , step 7 is passed.
We prove that D

.n/
s D R.n/s D V .n/s for all s D 1; : : : ; mJ �1. As j�.R.n/1 /jp � 1

p
,

R
.n/
1 has passed step 7. But step 8 is trivial for m D 1. Thus by step 9 we get

D
.n/
1 D R

.n/
1 D V

.n/
1 . For s D 2, we have j�.R.n/2 /jp � 1

p2 and step 7 is passed. As

2Of course, some points .x;m/ 2 V .n/ can appear again on some steps J 0 > J .



Section 6 No p-adic universal test 151

D
.n/
1 D V

.n/
1 and R.n/2 D V

.n/
2 , we have D

.n/
1 
 R.n/2 and step 8 is passed. By step

9 we get D
.n/
2 D R.n/2 D V .n/2 . We can repeat such considerations until s takes value

mJ � 1.
As D

.n/
mJ �1 D V

.n/
mJ �1 
 V

.n/
mJ
D R

.n/
mJ

, step 8 is passed for m D mJ and we get

D
.n/
mJ
D R

.n/
mJ
D V

.n/
mJ

. Thus we arrive to step 11 with m D mJ . For all mJ < s �
M D Œn logp 2
, step 14 is passed automatically. For s D mJ C 1 we have D

.n/
mJ
D

V
.n/
mJ

 V .n/mJ C1 D R.n/mJ C1. Hence step 15 is passed and we put D

.n/
mJ C1 D R.n/mJ C1 D

V
.n/
mJ C1. Repeating these considerations, we prove that D

.n/
s D R

.n/
s D V

.n/
s for all

s D mJ ; : : : ;M . Hence V .n/ D T .n/.

6 No p-adic universal test

A natural generalization of the definition of a universal test for randomness is the
following one:

Definition 6.1. A p-adic test U is said to be universal if for every p-adic test V we
can effectively find c 2 N (depending upon U and V ) such that VmCc � Um for allm.

It is well known that in the ordinary real probability theory there exists a universal
test for randomness (which is, of course, not unique). We shall show that in p-adic
probability theory there is no universal recursive tests. We start with some technical
considerations. We have to study more carefully properties of the function 
.n/ D
Œn logp 2
. As p > 2, we have logp 2 < 1. We set Lk D

�

k
logp 2




. If 0 < n � L1,

then n logp 2 < 1 and 
.n/ D 0; in the same way we have: if Lk�1 < n � Lk , then

.n/ D k � 1, k 
 2. We set nk D Lk C 1.

Lemma 6.1. The inequality
p
.nk/ > 2nk�1 .6:1/

holds true for all k D 1; 2; : : : .

Proof. We have 
.nk/ D k and 
.nk � 1/ D k � 1. By definition 
.n/ D maxfl W
pl < 2ng. Hence, for all n, p
.n/C1 > 2n. In particular, p
.nk�1/C1 D pk > 2nk�1.
Hence pk D p
.nk/ > 2nk�1.

We construct now two p-adic tests W and eW by using the following procedure.
For k D 1; 2; : : : and j D 1; : : : ; 
.nk/, we set

W
.nk/
j D W .nk/


.nk/
D fx1; : : : ; xp�.nk/g

and

eW
.nk/
j D eW

nk


.nk/
D fx2nk �p�.nk/C1; : : : ; x2nk g
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and W .nk/

l
D eW

.nk/

l
D ¿ for n ¤ nk and l D 1; 2; : : : . Here we have used the

lexicographic enumeration of elements of Xnk , k D 1; 2; : : :: x1; x2; : : : ; x2nk . Since
�.W

.nk/
j / D �.eW

.nk/
j / D p
.nk , j D 1; 2; : : : ; 
.n/, by (6.1) we obtain W .nk/

j \
eW
.nk/
j ¤ ¿ and hence

Xnk D W .nk/
j [ eW .nk/

j ; j D 1; : : : ; 
.nk/:
Theorem 6.1. A universal p-adic test does not exist.

Proof. Let us suppose that there exists a universal p-adic test U . Thus we can effec-
tively find c1; c2 2 N such that WmCc1

� Um and eW mCc2
� Um, where W and eW

are p-adic tests constructed before this theorem. Let k be so large that 
.nk/� c1 
 1
and 
.nk/ � c2 
 1. Thus W .nk/

1Cc1
D W

.nk/


.nk/
, eW .nk/

1Cc2
D eW

.nk/


.nk/
. Hence U .nk/

1 

W
.nk/
1Cc1

[ eW
.nk/
1Cc2

D Xnk . This implies that j�.U .nk/
1 /jp D j�.Xnk /jp D 1. This

contradicts to (3.2).

7 Randomness of infinite sequences

Let V � X��N be a p-adic P-test, where P is an arbitrary p-adic recursive probabil-
ity. We set

Om D [fUy W y 2 Vmg � X1 and O D f.!;m/ W ! 2 Omg � X1 � N: .7:1/

If the set Vm is infinite, then in general Om does not belong to the set algebra Fcyl.
Therefore probability P.Om/ may be not defined.

Thus we could not generalize the standard condition for real probabilities (namely
P.Om/ � 1

pm ) to define a p-adic sequential test. It seems that the only possibility
to define a p-adic sequential test is to use all tests O obtained via (7.1) from p-adic
P-tests V � X� � N.

Definition 7.1. Let PWFcyl ! Qp be a recursive probability and let V � X� � N be
a p-adic P-test. The set O defined on the basis of V via (7.1) is said to be a p-adic
sequential P-test.

Definition 7.2. LetO be a p-adic sequential test. A sequence ! is said to be P-random
with respect to the test O if

! 62 O1 D
1
\

mD1

Om:

In general, the set O1 62 Fcyl and P cannot be extended on the � -algebra B.X1/

containing O1. Therefore in general P.O1/ is not defined.
A sequence ! 2 O1 is considered as non-random with respect to P.
As usual, we restrict our considerations to the case of the uniform p-adic distribu-

tion P D Pp, p ¤ 2.
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Example 7.1. Let O be the p-adic sequential test based on the p-adic test V of Ex-
ample 3.1. We consider a few examples of sequences ! 2 X1 which are random or
non-random with respect to O:

(1) Let only a finite number k 
 1 of coordinates of ! D .!j / be equal to 1: !j1
D

� � � D !jk
D 1. We show that ! is not non-random with respect to O . We have to

show that for each m there exist n such that !1Wn 2 V .n/m where !1Wn D .!1; : : : ; !n/.
Let k D ˇ D 1; : : : ; p � 1. We set n D ˇ C pN , where N 
 m, N > logp.jk � ˇ/.
Then ‚p.n/=‚p.k/ D p�N � p�m and !1Wn 2 V .n/m . Let k D ˇ C jpl , j; l 2 N,
.j; p/ D 1. We set n D ˇ C pN , where N 
 m C l , N > logp.jk � ˇ/. Then

‚p.n/=‚p.k/ D p�NCl � p�m and !1Wn 2 V .n/m .
(2) The sequence ! D .0; : : : ; 0; : : :/ is random with respect to O , because ! 62 O1

(!1Wn 62 V .n/1 for all n); the sequence ! D .1; : : : ; 1; : : :/ is random with respect to O ,

because k D S.!1Wn/ D n and ‚p.n/=‚p.k/ D 1 and hence !1Wn 62 V .n/1 for all n.
(3) Here we present an example of a random sequence ! 2 X1 with respect to

O which contains the infinite number both of zeros and ones. Any ! 2 X1 can
be represented as a sequence of blocks ! D b1b2 : : : bm : : :, where l.bj / D p2j .
Let S.b1/ D p and S.bj / D pj � pj�1, j > 1. Set x D b1 : : : bm; m 
 1. Then

x 2 V .p2m/
m . Here l.x/ D p2m and S.x/ D pC.p2�p/C� � �C.pm�pm�1/ D pm,

thus: ‚p.l.x//=‚p.S.x// D p�m.

Example 7.2. Let O be a p-adic sequential test based on the p-adic test NV of Exam-
ple 3.2.

(1) We consider the same sequence ! as in (1) of Example 7.1.
(a) Let k D ˇ or k D ˇ C jpl , .j; p/ ¤ 1 and ˇ D 1; : : : ; p � 1. We show that

such an ! 2 X1 is non-random with respect to O . Let n D .ˇ � 1/ C pN , where
N 
 m and N > logp.jk � ˇ C 1/. Then S.!1Wn/ D k and hence Mp.S.!1Wn// D
ˇ 
Mp.n/C 1 and ‚p.n/ D p�N � p�m. Thus !1Wn 2 V .n/m and ! 2 Om.

(b) Let k D jpl , .j; p/ ¤ 1. We show that if pm 
 jk , then !1Wn 62 V
.n/
m ,

n 
 1 (the condition ‚p.l.x// � p�m implies that l.x/ 
 pm; but, for !1Wn with
n 
 pm, we have S.!1Wn/ D k and, as Mp.S.!1Wn// D 0, there is no n such that
Mp.S.!1Wn// 
Mp.n/C1). Thus in the opposite to the testO any sequence ! 2 X1

in that only a finite number k D pt , t D 1; 2; : : :, of coordinates are equal to 1 is
considered as random with respect to O .

(2) The sequence ! D .0; : : : ; 0; : : :/ is random with respect to O (because, for all
x D .0; : : : ; 0/, 0 D Mp.S.x// < Mp.l.x// C 1; the sequence ! D .1; : : : ; 1; : : :/

is also random with respect to O (because, for all x D .1; : : : ; 1/, Mp.S.x// D
Mp.l.x//).

(3) We consider the same sequence as in (3) of Example 7.1. We show that some
of such sequences are random with respect to O and some are non-random. Let ! D
b1b2 : : : bm : : : and in each block bj the first pj � pj�1 elements are equal 1 and
!1 D � � � D !p D 1 in b1 (other elements in each block are equal to 0). If, for !1Wn,
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‚p.n/ � 1
pm , then Mp.n/ D 0 and, hence, Mp.S.!1Wn// D 0. Thus !1Wn 62 V .n/m .

Let ! D b1b2 : : : bm : : : and the distribution of ones in blocks have the following
structure. For b1 D .x1; : : : ; xp2/, x1 D � � � D xp�1 D 1, xp D 0, xpC1 D 1; for
bj D .x1; : : : ; xp2j /, x1 D � � � D xpj �pj �1�1 D 1, xpj �pj �1 D 0, xpj Cpj �1C1 D
1. Then!1Wp 2 V .p/1 (sinceMp.S.!1Wp// D p�1 > 1CMp.p/ D 1); !1Wn 2 V .n/p�j C1

for n D p2jCpj�pj�1 (since S.!1Wn/ D pj�pj�1�1 impliesMp.S.!1Wn// D 1).

As consequence of Theorem 5.1 we obtain the following theorem:

Theorem 7.1. The set of all p-adic sequential tests is r.e.

A p-adic sequential test D is said to be universal if, for every p-adic sequential test
O , we can effectively find c 2 N (depending upon D and O) such that OmCc � Dm

for all m.
At first sight, it seems to be natural to consider the set

Omax
1 D

1
[

iD1

O.i/;1; .7:2/

where O.i/, i D 1; 2; : : :, is a recursive enumeration of p-adic sequential tests, as
the maximal set of p-adic non-random sequences (with respect to the p-adic uniform
distribution) and call a sequence ! 2 X1nOmax

1 a p-adic random sequence. However,
Theorem 6.1 (nonexistence of universal p-adic test) is the sign that such a procedure
could not be successful.

Proposition 7.1. The set Omax
1 defined as (7.2) is equal to X1.

Proof. LetW and eW be p-adic tests defined in Section 6 and letO and eO be the corre-
sponding p-adic statistical tests. We have that W .n/

j [ eW .n/
j D Xn, j D 1; : : : ; 
.n/,

for all n. As 
.n/ ! 1, n ! 1, then 8l; m 2 N 9N D N.l;m/W
.N / 
 l; m.
As we also have that W .n/

j D W
.n/


.n/
and eW

.n/
j D eW

.n/


.n/
, j D 1; : : : ; 
.n/, then, for

N D N.l;m/, we obtain W .N/

l
[ eW .N/

m D XN . We also have:

O1 [ eO1 D
�

1
\

lD1

Ol

�

[
�

1
\

mD1

eOm

�

D
1
\

lD1

1
\

mD1

.Ol [ eOm/:

Finally we show that Ol [ eOm D X1 for every l and m:

Ol [ eOm 

[

fUx W x 2 W .N/
m [ eW .N/

l
g D X1;

where N D N.l;m/.
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Thus in the opposite the real case the existence of the recursive enumeration of the
set of all p-adic sequential tests does not imply the possibility of the fruitful devel-
opment of the theory of randomness based on the maximal constructive set of non-
random sequences. In some sense the situation here is similar to the ordinary (real)
nonconstructive probability theory where any B � X1, P.B/ D 1, may be consid-
ered as a ‘law of randomness’ (thus the maximal set of non-random sequences coin-
cides with X1).

Definition 7.3. A p-adic sequential test O is said to be a universal if for every p-adic
sequential test O we can effectively find c 2 N such that OmCc � Om for all m.

Lemma 7.1. Let nj , j D 1; 2; : : :, be numbers associated with the function 
. Then,
for mj D 
.nj /,

Nj D .2nj � pmj /2nj C1�nj < pmj C1; j D 1; 2; : : : :

Proof. By (6.1) we obtain: pmj 2�nj > 1=2. Thus .1 � pmj 2�nj / < 1=2 and hence

Nj D .1 � pmj 2�nj /2nj C1 <
2nj C1

2
:

But by (6.1) we also have pmj C1 > 2
nj C1

2
.

Proposition 7.2. The trivial p-adic sequential test O with Om D X1, m 
 1, is the
(unique) universal p-adic sequential test.

Proof. We prove that the O with Om D X1 for all m 
 1 is a p-adic sequential
test: there exists a p-adic test V � X� � N such that V induces O. Let nj be natural
numbers associated with 
 and let mj D 
.nj /.

We representXnj D A.nj /
mj
[B.nj /

mj
, A

.nj /
mj
\B.nj /

mj
D ¿ and �.A

.nj /
mj

/ D pmj (and,

consequently, �.B
.nj /
mj

/ D 2nj �pmj ), where the setsA
.nj /
mj

are constructed by the fol-

lowing procedure. We set A.n1/
m1
D fx1; : : : ; xpm1 g, where Xn1 D fx1; : : : ; xpm1 ; : : : ;

x2n1 g. Suppose that the set A
.nj /
mj

has been constructed. We set

C
nj C1

mj C1
D ˚x 2 Xnj W x has a prefix y belonging to the set B

.nj /
mj
D Xnj n A.nj /

mj

�

D B.nj /
mj
�Xnj C1�nj :

The set A
.nj C1/
mj C1

is the union of the set C
nj C1

mj C1
and pmj C1 � �.C nj C1

mj C1
/ D pmj C1 �Nj

(where Nj D .2nj � pmj /2nj C1�nj ) first elements of Xnj C1 D .x1; : : : ; x2nj C1 /

which do not belong to C
nj C1

mj C1
. By (7.2) pmj C1 � Nj > 0 for all j 
 1. Thus this

procedure define sets A
.nj /
mj

for all j 
 1.

We set Vmk
D S1

jDk A
.nj /
mj

and Vm D Vmk
for mk�1 < m � mk . We prove that

V D f.x;m/ W x 2 Vmg is a p-adic test. The set V is r.e. and Vm 
 VmC1 by the
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procedure of construction. We also have: V
.nj /
mk

D A
.nj /
mj

, j 
 k, and V .n/mk
D ¿,

n ¤ nj , j 
 k. Thus

j�.V .nj /
mk

/jp D j�.A.nj /
mj

/jp D p�mj � p�mk :

On the other hand, for each mk , we have:
�

[

fUx W x 2 A.nk/
mk
g
�

[
�

[

fUx W x 2 A.nkC1/
mkC1

g
�



�

[

fUx W x 2 A.nk/
mk
g
�

[
�

[

fUya W y 2 Bnk
mk
; a 2 XnkC1�nkg

�

D
�

[

fUx W x 2 A.nk/
mk
g
�

[
�

[

fUy Wy 2 Bnk
mk
g
�

D X1:

The previous result implies that in the p-adic case (similar to Schnorr’s theory of
randomness [158]) the only reasonable approach to randomness of infinite sequences
is to use randomness with respect to the concrete p-adic sequential test O . Of course,
the use of O-randomness has extremely different origins in our theory and Schnorr’s
theory. It seems that in the p-adic case this situation is a consequence of the impos-
sibility to define � -additive (non-discrete) probability on the � -algebra generated by
Fcyl. Thus we have no other possibility than to identify a sequential tests O with tests
V � X� � N. In Schnorr’s theory this situation is a consequence of the use of total
recursive null-sets.



6 Contextual probability and interference

In the classical Kolmogorov or von Mises theory the formula of total probability holds,
see Chapter 1. We recall that in the case of two dichotomous random variables a D
˛1; ˛2 and b D ˇ1; ˇ2 it has the form:

P.b D ˇi / D P.a D ˛1/ P.b D ˇi=a D ˛1/C P.a D ˛2/ P.b D ˇi=a D ˛2/: (0.1)

On the other hand, we have a quantum analogue of this formula, see Chapter 2, (1.5).
We call it the formula of total probability with the interference term. It can be written
in the form of a perturbation of the classical formula of total probability:

P.b D ˇi /
D P.a D ˛1/ P.b D ˇi=a D ˛1/C P.a D ˛2/ P.b D ˇi=a D ˛2/
C 2 cos 	

p

P.a D ˛1/P.b D ˇi=a D ˛1/P.a D ˛2/P.b D ˇi=a D ˛2/;
(0.2)

where 	 is the phase angle. This formula was derived, see Chapter 2, in the formalism
of complex Hilbert space on the basis of the Born’s postulate.

The Hilbert space derivation of the formula (0.2) might induce the impression that
we deal with something rather strange and impossible from the point of view of clas-
sical probability theory. The appearance of the interference term has led to the use of
the term “quantum probability” in contradiction to what could be called “regular” or
“classical” probability.

However, there is only one type of physical probability and it is one that is subject
to measurement via counting and the generation of relative frequencies. It is the rel-
ative frequency probability (of von Mises) that is directly connected with data from
experiment.

In this chapter we provide contextual probabilistic analysis making a contribution
to the understanding of probability, the formula of total probability and its violation,
cf. Chapter 2.

Our analysis begins with the contextual definition of the relevant probabilities. The
probability for the value of one observable is then expressed in terms of the conditional
(contextual) probabilities involving the values of a second (“supplementary”) observ-
able. In this way the interference term in the generalized formula of total probability
gives a measure of supplementarity of information which can be obtained through
measurements of observables a and b.1

1Of course, it should be better to use the terminology “complementarity of information”. However,
N. Bohr had already reserved the notion of complementarity in quantum physics. The crucial in the
Bohr’s complementarity (Copenhagen complementarity) [72] is mutual exclusivity (incompatibility), see
A. Plotnitsky [32, 150–152] for an extended discussion. And in our approach supplement information
which need not be based on incompatibility plays the crucial role, see Section 4 of this chapter. The
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The perturbing term in the generalized formula of total probability is then expressed
in terms of a coefficient 
 (probabilistic measure of supplementarity) whose absolute
value can be less or equal to one, or it can be greater than one for each of the values of
the observable. This range of values for the coefficient 
 then introduces three distinct
types of perturbations2:

a) trigonometric,

b) hyperbolic,

c) hyper-trigonometric.

Each case is then examined separately. Classical (
 D 0/ and quantum cases (j
j �
1/ are then special cases of more general results. Later it will be shown that in the
quantum case it is possible to reproduce a Hilbert space in which the probabilities are
found in the usual way, but there is a case in which this is not possible, though the
space is linear it is not a Hilbert space. In general it is not a complex linear space. In
the case of hyperbolic probabilistic behavior we have to use linear representation of
probabilities over so called hyperbolic numbers.

1 Växjö model: contextual probabilistic description
of observables

A general statistical realistic model for observables based on the contextual viewpoint
on probability will be presented. It will be shown that classical as well as quantum
probabilistic models can be obtained as particular cases of our general contextual
model, the Växjö model. Realism is one of the main distinguishing features of the
Växjö model. Despite the presence of such essentially quantum effects as, e.g., the in-
terference of probabilities and violation of Bell’s inequality, there is still a possibility
to go beyond quantum mechanics, see Chapter 2.

From the mathematical point of view our probabilistic model is quite close to the
well-known Mackey’s model. George Mackey [153] presented a program of huge
complexity and importance:

To deduce the probabilistic formalism of quantum mechanics starting with a system of
natural probabilistic axioms.

(Here “natural” has the meaning of a natural formulation in classical probabilistic
terms.) Mackey tried to realize this program starting with a system of 8 axioms –

Bohr’s principle of complementarity is the basis for the Copenhagen interpretation of quantum mechanics
which is not a realistic interpretation. Our principle of supplementarity (or to say the Växjö principle of
complementarity) is compatible with any realistic interpretation of quantum mechanics and in particular
with the so called the Växjö interpretation – the contextual statistical realistic interpretation [100, 103,
105], see Section 2.

2In this book “perturbation” has the meaning of perturbation of a probability distribution and not
perturbation of an individual system.
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Mackey axioms, see [153]. This was an important step in clarification of the proba-
bilistic structure of quantum mechanics. However, he did not totally succeed, see [153]
for details. The crucial axiom (about the complex Hilbert space) was not formulated
in natural (classical) probabilistic terms.

In [98, 99, 101, 109–111, 113, 140] I presented a new attempt of realization of
the Mackey’s program, see also [112, 127–129] for further developments. In my
approach the probabilistic structure of quantum mechanics (including the complex
Hilbert space) can be derived on the basis of two axioms formulated in classical con-
textual probabilistic terms. My variant of realization of Mackey’s program gives the
possibility to combine realism and quantum or better to say quantum-like (QL) proba-
bilistic behavior.

As Mackey [153] pointed out, probabilities cannot be considered as abstract quan-
tities defined outside any reference to a concrete complex of physical conditions C .
All probabilities are conditional or better to say contextual.3 Mackey did a lot to
unify classical and quantum probabilistic description and, in particular, demystify
quantum probability. One crucial step is however missing in Mackey’s work. In his
book Mackey [153] introduced the quantum probabilistic model (based on the com-
plex Hilbert space) by means of a special axiom (Axiom 7, p. 71) that looked rather
artificial in his general conditional probabilistic framework.

Mackey’s model is based on a system of eight axioms, when our own model requires
only two axioms. Let us briefly mention the content of Mackey’s first axioms. The
first four axioms concern conditional structure of probabilities, that is, they can be
considered as axioms of a classical probabilistic model. The fifth and sixth axioms
are of a logical nature (about questions). We reproduce below Mackey’s “quantum
axiom”, and Mackey’s own comments on this axiom (see [153], pp. 71–72):

Axiom 7 (Mackey). The partially ordered set of all questions in quantum mechanics
is isomorphic to the partially ordered set of all closed subsets of a separable, infinite-
dimensional Hilbert space.4

Our activity can be considered as an attempt to find a list of physically plausible
assumptions from which the Hilbert space structure can be deduced. We show that
this list can consist in two axioms (see our Axioms 1 and 2) and that these axioms can
be formulated in the same natural probabilistic manner as Mackey’s Axioms 1–4.

3We remark that the same point of view can be found in the works of A. N. Kolmogorov and R. von
Mises. However, it seems that Mackey’s book [153] was the first thorough presentation of a program of
conditional probabilistic description of measurements, both in classical and quantum physics.

4“This axiom has rather a different character from Axioms 1 through 4. These all had some degree
of physical naturalness and plausibility. Axiom 7 seems entirely ad hoc. Why do we make it? Can we
justify making it? What else might we assume? We shall discuss these questions in turn. The first is the
easiest to answer. We make it because it “works”, that is, it leads to a theory which explains physical
phenomena and successfully predicts the results of experiments. It is conceivable that a quite different
assumption would do likewise but this is a possibility that no one seems to have explored. Ideally one
would like to have a list of physically plausible assumptions from which one could deduce Axiom 7.”
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1.1 Contexts

We start with the basic definition:

Definition 1.1. Context C is a complex of conditions.5

In particular, a physical context C is a complex of physical conditions. We consider
contexts as basic elements of reality. To construct a concrete model M of reality, we
should fix some set of contexts C , see Definition 1.2.

Remark 1.1 (Contextuality). Before having a closer look at our model, it is perhaps
necessary to discuss the meaning of the term contextuality, as it can obviously be inter-
preted in many different ways. The most common meaning (in QM and quantum logic
and especially in consideration of Bell’s inequality) is that the outcome for a measure-
ment of an observable u under a contextual model is calculated using a different (albeit
hidden) measure space, depending on whether or not compatible observables v;w; : : :
were also made in the same experiment. We remark that the well-known “no-go” the-
orems (of e.g. Bell) cannot be applied to such contextual models. In our approach the
term contextuality has an essentially more general meaning. Physical context is any
complex of physical conditions preceding measurement.6

1.2 Observables

A set of contexts C which will be used in our model was already fixed. Now also a set
of observables O is given. We shall denote observables by Latin letters, a; b; : : : , and
their values by Greek letters, ˛; ˇ; : : : . We suppose that any observable a 2 O can be
measured under a complex of physical conditions C for any C 2 C .

We remark that our general Växjö-representation of reality does not contain physical
systems. At the moment we do not (and need not) consider observables as observables
on physical systems. It is only supposed that if a context C is fixed then for any instant
of time t we can perform a measurement of any observable a 2 O.

For an observable a 2 O, we denote the set of its possible values (“spectrum”) by
the symbol Xa.

We do not assume that all observables or even pairs of them can be measured si-
multaneously; so they need not be compatible. To simplify considerations, we shall
consider only discrete observables and, moreover, all concrete investigations will be
performed for dichotomous observables.

5In principle, the notion of context can be considered as a generalization of a widely used notion
of preparation procedure, see Chapter 2. However, identification of context with preparation procedure
would restrict essentially our theory. In applications outside physics (e.g., in psychology and cognitive
science) we will consider mental contexts. Such contexts are not simply preparation procedures. The
same can be said about economical, political and social contexts. In this book we shall not provide a
deeper formalization of the notion of context. In our model the notion of context is basic and irreducible.

6In particular, one can create a context by fixing the values of observables v;w; : : : which are com-
patible with u we determine some context. However, in this way we can obtain only a very special class
of contexts.
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1.3 Probabilistic representation of contexts

Axiom 1. For any context C 2 C and any observable a 2 O contextual probabilities
P.a D ˛=C/, ˛ 2 Xa, are well defined.

For any observable a 2 O and its value ˛ 2 Xa, we define the Œa D ˛
-selection
context C˛ as such that

P.a D ˛=C˛/ D 1:
Observable a under the context C˛ takes the value ˛ with the unit probability, “prac-
tically always”. Such a context can be obtained via completing measurement of the
observable a by the procedure of selection of results coinciding with the value a D ˛.
Families of observables and contexts are coupled in the following way:

Axiom 2. For any observable a 2 O and any its value ˛ 2 Xa, the system of contexts
C contains one (and only one) selection context C˛.

Postulated uniqueness of the selection context C˛ (inside a system of contexts C

which was chosen for a model) is an analogue of nondegeneration of spectrum of an
observableba in QM, cf. Example 1.2.

We prefer to call probabilities P.b D ˇ=C/ with respect to a context C 2 C con-
textual probabilities. Of course, it would be also possible to call them conditional
probabilities, but the latter term was already used in other approaches (e.g., Bayes–
Kolmogorov, von Mises).

In contrast to the Bayes–Kolmogorov model, the contextual probability is not prob-
ability that an event, say B , occurs under the condition that another event, say C , oc-
curred. The contextual probability P.b D ˇ=C/ is probability to get the result b D ˇ
under the complex of physical conditions C . We can say that this is the probability
that the event Bˇ D fb D ˇg occurs under the complex of physical conditions C .
Thus in our approach not event, but context should be considered as a condition.

Let a; b 2 O and let ˛ 2 Xa, ˇ 2 Xb . We consider the Œa D ˛
-selection context
C˛. The contextual probability

pb=a.ˇ=˛/ � P.b D ˇ=C˛/
is not probability that the event Bˇ D fb D ˇg occurs under the condition that the
event A˛ D fa D ˛g occurred. To find probability pb=a.ˇ=˛/, it is not sufficient
to observe the event Bˇ following the event A˛ . It should be verified that the com-
plex of physical conditions C˛ was really created. Then there should be performed
measurements of the observable b under this context.

At the moment we do not fix a definition of probability. Depending on the choice of
a probability theory we can obtain different models. By Axiom 1 the set of probabili-
ties

W.O; C / D fP.a D ˛=C/ W a 2 O; ˛ 2 Xag
is well defined for any context C 2 C .
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We remark that in general the probabilistic data W.O; C / does not contain the joint
probability distributions for pairs of observables belonging to O (because for a; b 2
O the vector-observable c D .a; b/ need not belong to the O/. The data W.O; C /
provides a probabilistic image of the context C through the system of observables O.

The matrices of probabilities, “transition probabilities”, for pairs of observables
a; b 2 O

Pb=a D .pb=a.ˇ=˛//

will play the fundamental role in our further studies.
For any context C 2 C , we complete the probabilistic data W.O; C / by the data

contained in the matrices Pb=a for all pairs a; b 2 O. We obtain a collection of con-
textual probabilities which will be denoted by the symbol D.O; C / � D.O; C /.

We remark that in further considerations we shall mainly consider the set of observ-
ables O containing only two observables: O D fa; bg. By exploring analogy with
classical and quantum mechanics one may call them “position” and “momentum.”
Here

D.O; C / D fP.a D ˛=C/;P.b D ˇ=C/;P.a D ˛=Cˇ /;P.b D ˇ=C˛/g;

where ˛ D ˛1; ˛2 and ˇ D ˇ1; ˇ2. Thus the statistical data about the context C
collected with the aid of the observables a and b is completed by the “transition prob-
abilities” for these observables.

In the general case we denote by the symbol D.O;C/ the collection of probabilistic
data D.O; C / for all possible contexts C 2 C . In general, the map

� W C ! D.O;C/; �.C / D D.O; C /: (1.1)

is not one-to-one. Thus the �-image of contextual reality is very rough:

In general, contexts can not be distinguished with the aid of probabilistic data pro-
duced by the class of observables O.

Mathematically such probabilistic data can be represented in various ways. For
some (“classical-like” – CL) contexts data D.O;C/ can be represented by a probabil-
ity distribution on the phase-space. But there exist contexts (non-CL or we can say QL)
for which data D.O;C/ cannot be represented in such a way. For some QL contexts
this data can be represented by complex amplitudes, Chapter 7. In this way we obtain,
in particular, the probabilistic formalism of quantum mechanics. However, one can
find examples of QL contexts for which data D.O;C/ can not be represented by com-
plex amplitudes. However, it is possible to represent this data by so called hyperbolic
amplitudes (taking values in the algebra of hyperbolic numbers – two-dimensional
Clifford algebra). In this case we obtain the probabilistic formalism of “hyperbolic
quantum mechanics”.



Section 1 Växjö model: contextual probabilistic description of observables 163

1.4 Växjö model

Definition 1.2. A contextual statistical model of reality is a triple

M D .C ;O;D.O;C// (1.2)

where C is a set of contexts and O is a set of observables which satisfy to Axioms 1,
2, and D.O;C/ is probabilistic data about contexts belonging to C which is obtained
with the aid of observables belonging to O.

We call observables belonging to the set O � O.M/ reference observables. Inside a
modelM observables belonging to O give the only possible references about a context
C 2 C .

Definition 1.3. Two contexts C1; C2 2 C are probabilistically equivalent (with respect
to the family of observables O/ if for any observable b 2 O:

P.b D ˇ=C1/ D P.b D ˇ=C2/; ˇ 2 Xb: (1.3)

Hence, W.O; C1/ D W.O; C2/ for two equivalent contexts. Two equivalent con-
texts are indistinguishable inside the chosen Växjö model M . However, they could be
distinguished inside another modelM 0 which is endowed with another set of reference
observables O.

Example 1.1 (Växjö models induced by a Kolmogorov probability space). Let P D
.�;F ;P/ be a Kolmogorov probability space. It induces various Växjö models via
various choices of collections of contexts C and observables O. Here the collection of
contexts C can be chosen as some sub-family (which need not be a sub � -algebra) of
F consisting of sets of positive probability: P.C / > 0, C 2 C . The crucial point is
that “physically realizable” contexts need not form a � -algebra or algebra (even in this
very special case when they have the set-representation). The collection of reference
variables O can be chosen as a subset of the space of random variables RV.P /. At the
moment we consider only discrete random variables. The crucial point is that not all
random variables can be observed. Therefore in general O is only a proper subset of
RV.P /. Contextual probabilities are given by the Bayes’ formula. For an observable
(random variable) a and its value ˛ the Œa D ˛
-selection context C˛ can be chosen
as C˛ D f! 2 � W a.!/ D ˛g – “maximal selection context.” By Axiom 2 to get the
Växjö model we should assume that all selection contextsC˛ 2 C . We remark that two
contexts C1 and C2 such that P.C1�C2/ D 0, where the symmetric difference of two
sets is defined by C1�C2 D .C1 nC2/[ .C2 nC1/, are equivalent with respect to any
system of observables O. However, this is not a necessary condition of equivalence of
contexts. For some systems of observables two contexts can be equivalent even if the
symmetric difference of the sets representing these contexts has nonzero probability.
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Example 1.2 (Växjö models induced by QM). Here the set of contexts C can be chosen
as a subset of the unit sphere S of complex Hilbert space H . Thus each context C 2 C

is encoded by a vector  2 S : C � C . The set of observables O can be chosen as
a subset of the set of self-adjoint operators having purely discrete7 nondegenerate8

spectra. Contextual probabilities are defined by Born’s rule. Let an operator ba 2
O have the spectrum Xa D f˛1; : : : ; ˛N ; : : : g, ˛i 6D j̨ and let ea˛; ˛ 2 Xa, be
corresponding eigenvectors. The Œa D ˛
-selection contexts C˛ are represented by
these eigenvectors: C˛ � Cea

˛
. Suppose now that H is the two-dimensional Hilbert

space, O D fba;bbg, where self-adjoint operators ba and bb do not commute. Take a
context which is represented by a normalized vector  . If one knows the probabilistic
data

D.O;  / W P.a D ˛i=C / D jh ; ea˛i
ij2; P.b D ˇi=C / D jh ; ebˇi

ij2;
P.b D ˇi=C j̨

/ D P.a D j̨ =Cˇi
/ D jhea

j̨
; ebˇi
ij2; i; j D 1; 2;

he can easily reconstruct the vector  (up to the complex factor c W jcj D 1/. Our
aim is to show that the same reconstruction, C !  C , can be done for any contextual
statistical model, i.e., in the case when a priori we do not have any Hilbert space or op-
erators, but only probabilities. One of the problems in realization of this program is to
find a purely probabilistic contextual analogue of the condition of noncommutativity.
This condition is crucial in reconstruction of a state on the basis of probabilistic data
in ordinary QM. Suppose now that we do not have any Hilbert space, nor operators.
We have only physical observables and probabilistic data. Which restriction on this
data will induce the complex Hilbert space representation and noncommutativity of
corresponding operators?9

1.5 Role of reference observables

The reader has already understood that the reference observables play the special role
in our model. We interpret the set O as a family of observables which represent some
fixed class of properties of contexts belonging to the class C .

Consider a class of observers (e.g., a class of cognitive systems or measurement
devices). Suppose that they collect only the O-properties of contexts belonging to
the class C . It can happen, because those observers are able to measure only ob-
servables belonging to the family O. However, it may be that those observers simply

7We recall that at the moment we defined the Växjö model only for discrete observables.
8We consider nondegenerate spectra to escape the problem of non-unique choice of selection contexts.
9We emphasize that in opposite to e.g. Heisenberg we do not want to operate with such a notion

as incompatibility of observables, i.e., impossibility of simultaneous measurement. Incompatibility is a
metaphysical concept. How could one know that two observables could be never measured simultane-
ously? We shall proceed in the really physical framework. A physical analog of incompatibility will be
formulated as the condition of statistical supplementarity. The latter could be checked on the basis of
experimental statistical data.
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ignore information about the C -contexts which cannot be obtained with help of the
O-observables. There can exist other properties of the C -contexts which are not rep-
resented by the O-observables.

The same set of contexts C can be basic for a few models of contextual reality
corresponding to different choices of families of observables OiR;Ri D 1; 2; : : : :
Mi D .C ;Oi ;D.Oi ;C//. For example, human beings operates with one family of
observables, but bats with another.

Remark 1.2. In both most important physical models – in classical and quantum – the
set O of reference observables consists of two observables: position and momentum.

1.6 Växjö model in biology, sociology, and economy

Our contextual statistical realistic models can be used not only in physics, but in any
domain of natural and social sciences. Instead of complexes of physical conditions,
we can consider complexes of biological, social, economic,. . . conditions – contexts
– as elements of reality. Such elements of reality are represented (roughly) by prob-
abilistic data obtained with the aid of some reference observables (biological, social,
economic,. . . ).

In some special cases it is possible to encode such data by complex amplitudes (as
it was done in QM). In this way we obtain representations of some biological, social,
economic,. . . models in complex Hilbert spaces. We call them complex QL-models.
These models describe the usual cos-interference of probabilities, see [106].

In other cases it is possible to encode probabilistic data D.O;C/ by hyperbolic
amplitudes. These are amplitudes taking values in so called hyperbolic algebras –
two-dimensional Clifford algebras. In this way we obtain representations of some
biological, social, economic,. . . models in hyperbolic Hilbert spaces. We call them
hyperbolic QL-models. These models describe the cosh-interference of probabilities.

Remark 1.3 (On macroscopic quantum systems). The study of macroscopic quantum
systems is the subject of the greatest interest for foundations of quantum mechanics
as well as its applications. However, it is not clear: “What kind of a system can be
called a macroscopic quantum system?” Of course, this question is closely related to
the old question: “What kind of a system can be called a quantum system?” We point
out that there is no common point of view on such notions as quantization, quantum
theory. For me, opposite to N. Bohr, the presence of quanta (of, e.g., action) is not
the main distinguishing feature of quantum theory. The presence of observables with
discrete spectra is an important feature of quantum theory. However, the basic quantum
observables, the position and the momentum, still have continuous ranges of values.
In this sense there is no difference between classical and quantum mechanics.

I think that the crucial point is that quantum theory is a statistical theory. There-
fore it should be characterized in statistical terms. We should find the basic feature of
quantum theory which distinguishes this theory from classical statistical mechanics.
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The interference of probabilities is such a basic statistical feature of quantum theory.
Therefore any system (material or not) which exhibits for some observables the inter-
ference of probabilities should be considered as a QL system.

1.7 Choice of probability model

As was mentioned, any Växjö model M should be based on some concrete mathe-
matical probabilistic formalism describing probabilistic data D.O;C/. Of course, the
Kolmogorov measure-theoretical approach dominates in modern physics. However, it
is not the only possible mathematical theory of probability, see Chapter 1.

I like the contextual frequency approach to probability – the contextual extension
of the classical von Mises approach. In this book we shall show that this frequency
formalism can be used to describe probabilistic data obtained via measurements of
“supplementary of observables.”

In the next section we shall present the frequency probabilistic description of data
D.O; C /.

2 S -sequences (collectives)
and corresponding probabilities

We shall consider everywhere in this book a set of reference observables O D fa; bg
consisting of two observables a and b. Another important assumption is that reference
observables are dichotomous:

a D ˛1; ˛2; and b D ˇ1; ˇ2:

In fact, the representation of probabilistic data by complex or hyperbolic amplitudes
in the case of observables taking a finite number of values can be reduced to the case
of dichotomous observables.

Let C be some context. In a series of observations of b under this context we obtain
a sequence of values of b:

x � x.b=C / D .x1; x2; : : : ; xN ; : : : /; xj D ˇ1; ˇ2: (2.1)

In a series of observations of a under this context we obtain a sequence of values of a:

y � y.a=C / D .y1; y2; : : : ; yN ; : : : /; yj D ˛1; ˛2: (2.2)

It is not assumed that the observables b and a can be measured simultaneously under
the context C . Moreover, each measurement of a or b can disturb the C . To produce
the sequence (2.1) or the sequence (2.2), one should be able to reproduce C many (in
theory infinitely many) times.
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We suppose – Axiom 1 completed by the frequency probabilistic model – that these
are S -sequences (or even von Mises collectives). Thus the principle of statistical sta-
bilization holds and the frequency probabilities are well defined:

pb.ˇ/ � Px.b D ˇ/ D lim
N!1

�N .ˇI x/; ˇ D ˇ1; ˇ2I (2.3)

pa.˛/ � Py.a D ˛/ D lim
N!1

�N .˛Iy/; ˛ D ˛1; ˛2; (2.4)

where �N .ˇI x/ D n.ˇ Ix/
N

, �N .˛I x/ D n.˛Ix/
N

are relative frequencies of realizations
of labels b D ˇ and a D ˛ in sequences of observations x and y, respectively (relative
frequencies of observations of the results b D ˇ and a D ˛ under the context C ).

Let C˛1
and C˛2

be two contexts corresponding to Œa D ˛1
 and Œa D ˛2
-
selections, see Axiom 2. By observation of b under the context C˛ we obtain a se-
quence:

x˛ � x.b=C˛/ D .x1; x2; : : : ; xN ; : : : /; xj D ˇ1; ˇ2: (2.5)

It is also assumed (see Axiom 1) that the x˛, ˛ D ˛1; ˛2, are von Mises collectives or
at least S -sequences. Thus the frequency probabilities with respect to the x˛ are well
defined:

pb=a.ˇ=˛/ � Px˛ .b D ˇ/ D lim
N!1

�N .ˇI x˛/; (2.6)

where �N .ˇI x˛/ D n.ˇ Ix˛/
N

are relative frequencies of realizations of the label ˇ in
x˛ (relative frequencies of observations of the result b D ˇ under the context C˛/.
One has four different S -sequences (collectives), x; y; x˛1 ; x˛2 which produce four
different probability distributions:

Px.ˇ/; Py.˛/I Px˛1 .ˇ/; Px˛2 .ˇ/: (2.7)

We can repeat all previous considerations by changing b=a-conditioning to a=b-con-
ditioning. We consider contexts Cˇ corresponding to the selections with respect to
the values of the observable b (see Axiom 2) and the corresponding S -sequences (col-
lectives) yˇ � y.a=Cˇ / induced by observations of a in contexts Cˇ . There are
well-defined probabilities pa=b.˛=ˇ/ � Pyˇ .˛/, see Axiom 1.

3 Formula of total probability and measures
of supplementarity

Let M D .C ;O;D.O;C// be a Växjö model such that the set of observables O D
fa; bg and a, b are dichotomous observables. Let C 2 C . There are no reasons to
assume that all probability distributions in D.a; b; C / should be described by a single
Kolmogorov probability space P D .�;F ;P/. Thus the classical (Kolmogorovean)
formula of total probability, Chapter 1:

P.b D ˇ/ D
X

˛

P.a D ˛/P.b D ˇ=a D ˛/ (3.1)
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can be violated. We explain this point in more detail. In fact, all probabilities in (3.1)
are contextual. In (3.1) we omitted the indexes of contexts. However, in reality three
different contexts were involved. There was chosen a (reproducible) context C for
observations of a or b. Here

P.a D ˛/ � PC .a D ˛/ D P.a D ˛=C/;
P.b D ˇ/ � PC .b D ˇ/ D P.b D ˇ=C/:

There are also involved the selection contexts C˛1
and C˛2

. The correct contextual
definition of conditional probabilities in (3.1) is given by

P.b D ˇ=a D ˛/ D P.b D ˇ=C˛/:

In general there are no reasons to assume that probabilities with respect to the different
contexts C , C˛1

and C˛1
can be mathematically described by the same Kolmogorov

probability space. We recall that in the conventional (noncontextual) Kolmogorov
framework it is assumed that all probabilities are taken with respect the same space of
elementary events �. This � plays the role of a common context:

P.a D ˛/ D P�.A˛/;

P.b D ˇ/ D P�.Bˇ /;

P.b D ˇ=a D ˛/ D P�.Bˇ=A˛/

D P�.! 2 � W ! 2 A˛ \ Bˇ /=P�.! 2 � W ! 2 A˛/;

where Bˇ D f! 2 � W b.!/ D ˇg, A˛ D f! 2 � W a.!/ D ˛g.
In the same way, in the von Mises framework the formula of total probability holds

for a partition fAkg of the label set L of a fixed S -sequence (collective) u:

Pu.b D ˇ/ D
X

˛

Pu.a D ˛/Pu.b D ˇ=a D ˛/: (3.2)

This formula can not be derived in the contextual frequency approach, where the
conditional probabilities P.b D ˇ=a D ˛/ are defined as contextual probabilities
P.b D ˇ=C˛/. In this approach, see Section 2, four different S -sequences (collec-
tives) are involved:

x D x.b=C /; y D y.a=C /; x˛ D x.b=C˛/; ˛ D ˛1; ˛2:

In the contextual Kolmogorov and frequency approaches one could not exclude the
possibility that the following statistical coefficient:

ı.ˇ=a; C / D Px.ˇ/ �
X

˛

Py.˛/Px˛ .ˇ/ 6D 0 (3.3)
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As was mentioned, in the noncontextual Kolmogorov or von Mises models, see (3.1),
(3.2), we have:

ı.ˇ=a; C / D 0: (3.4)

Hence, in the noncontextual Kolmogorov or von Mises models by using the
Bayesian sum of the probabilities P.a D ˛/ and the conditional probabilities P.b D
ˇ=a D ˛/ we find nothing new, but the original probabilities P.b D ˇ/. However,
in the contextual approach we obtain new information via conditional observations:
the Bayesian sum of the probabilities P.a D ˛/ and the contextual probabilities
P.b D ˇ=a D ˛/ does not coincide with P.b D ˇ/. Here conditional observations
give us supplementary information.10

Definition 3.1. The quantity ı.ˇ=a; C / is said to be a probabilistic measure of b=a-
supplementarity in the context C .

We can write the equality (3.3) in the form which is similar to the classical formula
of total probability:

Px.ˇ/ D
X

˛

Py.˛/Px˛ .ˇ/C ı.ˇ=a; C /; (3.5)

or by using shorter notations:

pb.ˇ/ D
X

˛

pa.˛/pb=a.ˇ=˛/C ı.ˇ=a; C /: (3.6)

This formula has the same structure as the quantum formula of total probability:

[classical part] + additional term,

cf. (0.2). To write the additional term in the same form as in the quantum represen-
tation of statistical data, we perform the normalization of the probabilistic measure of
supplementarity by the square root of the product of all probabilities:


.ˇ=a; C / D ı.ˇ=a; C /

2

q

Q

˛ p
a.˛/pb=a.ˇ=˛/

: (3.7)

The coefficient 
.ˇ=a; C / also will be called the probabilistic measure of supple-
mentarity.

By using this coefficient we rewrite (3.6) in the QL form:

pb.ˇ/ D
X

˛

pa.˛/pb=a.ˇ=˛/C 2
.ˇ=a; C /
s

Y

˛

pa.˛/pb=a.ˇ=˛/: (3.8)

10We remark again that information need not be complementary in the sense of N. Bohr’s definition of
complementarity (i.e., mutually exclusive).
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The coefficient 
.ˇ=a; C / is well defined only in the case when all probabilities
pa.˛/, pb=a.ˇ=˛/ are strictly positive. We consider the matrix

Pb=a D .pb=a.ˇ=˛//:

Traditionally this matrix is called the matrix of transition probabilities. In our approach
pb=a.ˇ=˛/ � Px˛ .b D ˇ/ is the probability to obtain the value b D ˇ for the
collective x˛. Thus in general we need not speak about states of physical systems and
interpret pb=a.ˇ=˛/ as the probability of the transition from the state ˛ to the state ˇ.
We remark that the matrix Pb=a is always stochastic:

X

ˇ

pb=a.ˇ=˛/ D 1 (3.9)

for any ˛ 2 Xa, because for any S -sequence (collective) x˛:
X

ˇ

Px˛ .b D ˇ/ D 1;

see Chapter 1. We defined a nondegenerate S -sequence (collective) y as such as

pa.˛/ � Py.˛/ 6D 0 for all ˛:

Definition 3.2. A context C is said to be a-nondegenerate (b-nondegenerate) if the
corresponding collective y � y.a=C / (x � x.b=C // is nondegenerate.

We remark that the contexts C˛ (collectives x˛/ are b-nondegenerate iff

pb=a.ˇ=˛/ 6D 0: (3.10)

The representation (3.8) is the basis of transition to a (complex or hyperbolic)
Hilbert space representation of probabilistic data D.a; b; C /. The representation (3.8)
can be used only for nondegenerate contexts C and C˛.

We can repeat all previous considerations by changing b=a-conditioning to a=b-
conditioning. We consider contexts Cˇ corresponding to selections with respect to
values of the observable b and the corresponding collectives yˇ � y.a=Cˇ /. There
can be defined probabilistic measures of supplementarity ı.˛=b; C / and 
.˛=b; C /,
˛ 2 Xa. We remark that the contexts Cˇ (collectives yˇ / are a-nondegenerate iff

pa=b.˛=ˇ/ 6D 0: (3.11)

For nondegenerate contexts C and Cˇ , we have:

pa.˛/ D
X

ˇ

pb.ˇ/pa=b.˛=ˇ/C 2
.˛=b; C /
s

Y

ˇ

pb.ˇ/pa=b.˛=ˇ/: (3.12)
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Definition 3.3. Reference observables a and b are called (statistically) conjugate if
(3.10) and (3.11) hold.

Theorem 3.1. Let reference observables be conjugate and let a context C 2 C be both
a- and b-nondegenerate. Then quantum-like formulas of total probability (3.8) and
(3.12) hold.

4 Supplementary physical observables

Definition 4.1. Reference observables a and b are called b=a-supplementary in a con-
text C if

ı.ˇ=a; C / ¤ 0 for some ˇ 2 Xb: (4.1)

Lemma 4.1. For any context C 2 C , we have:

X

ˇ2Xb

ı.ˇ=a; C / D 0: (4.2)

Proof. We have

1 D
X

ˇ2Xb

pb.ˇ/ D
X

ˇ2Xb

X

˛2Xa

pa.˛/pb=a.ˇ=˛/C
X

ˇ2Xb

ı.ˇ=a; C /:

Since Pb=a is always a stochastic matrix, we have for any ˛ 2 Xa:

X

ˇ2Xb

pb=a.ˇ=˛/ D 1:

By using that
P

˛2Xa
pa.˛/ D 1 we obtain (4.2).

We point out that by Lemma 4.1 the coefficient ı.ˇ1=a; C / D 0 iff ı.ˇ2=a; C / D 0.
Thus b=a-supplementarity is equivalent to the condition ı.ˇ=a; C / 6D 0 both for ˇ1
and ˇ2.

Definition 4.2. Reference observables a and b are called supplementary in a context
C if they are b=a or a=b supplementary:

ı.ˇ=a; C / ¤ 0 or ı.˛=b; C / ¤ 0 for some ˇ 2 Xb; ˛ 2 Xa: (4.3)

By Lemma 4.1 observables are supplementary iff the coefficient ı.ˇ=a; C / 6D 0 for
all ˇ 2 Xb or the coefficient ı.˛=b; C / 6D 0 for all ˛ 2 Xa.

Let us consider a contextual model M with the set of contexts C . Observables a
and b are said to be supplementary in the model M if there exists C 2 C such that
they are supplementary in the context C .
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Reference observables a and b are called nonsupplementary in the context C if they
are neither b=a nor a=b-supplementary:

ı.ˇ=a; C / D 0 and ı.˛=b; C / D 0 for all ˇ 2 Xb; ˛ 2 Xa: (4.4)

Thus in the case of b=a-supplementarity we have ( for ˇ 2 Xb/:

pb.ˇ/ ¤
X

˛

pa.˛/pb=a.ˇ=˛/I (4.5)

in the case of a=b-supplementarity we have (for ˛ 2 Xa/:

pa.˛/ ¤
X

ˇ

pb.ˇ/pa=b.˛=ˇ/I (4.6)

in the case of supplementarity we have (4.5) or (4.6). In the case of nonsupplementarity
we have both representations:

pb.ˇ/ D
X

˛

pa.˛/pb=a.ˇ=˛/; ˇ 2 Xb; (4.7)

pa.˛/ D
X

ˇ

pb.ˇ/pa=b.˛=ˇ/; ˛ 2 Xa: (4.8)

5 Principle of supplementarity

At the first stage of development of the Växjö model I used (following Heisenberg)
the terminology incompatible observables. However, after a careful analysis of dis-
cussions between N. Bohr and W. Heisenberg on the difference between principles
of complementarity and uncertainty, I decided to choose the side of N. Bohr and
to use complementarity instead of incompatibility. I think that N. Bohr was totally
right by underlying complementarity of information given by some quantum observ-
ables. However, after more careful study of Bohr’s views to complementarity and
especially discussions with A. Plotnitsky (see also his works on Bohr’s complemen-
tarity [32, 150–152], I found that by complementarity N. Bohr understood comple-
mentarity based on mutual exclusivity. In the Växjö approach mutual exclusivity of
experimental conditions is not important. The crucial role is played by supplementar-
ity of information in the sense of “additional information.”

Finally, we remark that observables are incompatible if they cannot be measured
simultaneously (e.g., because of the mutual disturbance). However, this need not imply
that such observables should be supplementary. The impossibility to be measured
simultaneously does not imply the presence of supplementary information about a
physical context C . We formulate the following principle:
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THE PRINCIPLE OF SUPPLEMENTARITY:

There exist physical observables, say a and b, such that for some context C they pro-
duce supplementary statistical information; in the sense that the contextual probability
distribution of, e.g., the observable, b could not be reconstructed on the basis of the
probability distribution of a. The classical formula of total probability is violated.
Supplementarity of the observables a and b under the context C induces interference
of probabilities P.b D ˇ=C/ and P.a D ˛=C/.

We remark that, opposite to Bohr’s principle of complementarity which is a purely
philosophic statement, our principle of supplementarity is experimentally testable for
pairs of observables.

6 Supplementarity and Kolmogorovness

Let us consider a Växjö model with the set of observables O D fa; bg, where a and b
are dichotomous.

Definition 6.1. Probabilistic data D.a; b; C / is said to be Kolmogorovean if there ex-
ists a Kolmogorov probability space P D .�;F ;P/ and random variables �a and �b
on P such that:

pa.˛/ D P.�a D ˛/; pb.ˇ/ D P.�b D ˇ/I (6.1)

pb=a.ˇ=˛/ D P.�b D ˇ=�a D ˛/; pa=b.˛=ˇ/ D P.�a D ˛=�b D ˇ/: (6.2)

Here the conditional probabilities are defined by the Bayes’ formula.
If data D.a; b; C / is Kolmogorovean then the observables a and b can represented

by Kolmogorovean random variables �a and �b . We remark that Kolmogorovness
of statistical data in the sense of Definition 6.1 is not so natural from the physical
viewpoint. In fact, probabilities pa, pb , pb=a, pa=b correspond to different complexes
of physical conditions (contexts) C , C˛, Cˇ . It would be more natural to assume
that each context determines its own Kolmogorov probability measure. Nevertheless,
Kolmogorovean data appear in many models, e.g., in classical statistical physics.

Definition 6.2. Data D.a; b; C / is Kolmogorovean if and only if

pa.˛/pb=a.ˇ=˛/ D pb.ˇ/pa=b.˛=ˇ/: (6.3)

Proof. a) If data D.a; b; C / is Kolmogorovean then (6.3) is reduced to the equality
P.O1 \O2/ D P.O2 \O1/ for O1; O2 2 F .

b) Let (6.3) holds true. We set� D Xa�Xb , whereXa D f˛1; ˛2g,Xb D fˇ1; ˇ2g.
We define the probability distribution on � by

P.˛; ˇ/ D pb.ˇ/pa=b.˛=ˇ/ D pa.˛/pb=a.ˇ=˛/I
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and define the random variables �a.!/ D ˛; �b.!/ D ˇ for ! D .˛; ˇ/. We have

P.a D ˛/ D
X

ˇ

P.˛; ˇ/ D
X

ˇ

pa.˛/pb=a.ˇ=˛/

D pa.˛/
X

ˇ

pb=a.ˇ=˛/ D pa.˛/:

Analogously, it follows P.b D ˇ/ D pb.ˇ/. Thus

P.a D ˛=b D ˇ/ D P.a D ˛; b D ˇ/
P.b D ˇ/ D pb.ˇ/pa=b.˛=ˇ/

pb.ˇ/
D pa=b.˛=ˇ/:

And in the same way we prove that pb=a.ˇ=˛/ D P.b D ˇ=a D ˛/.

We now investigate the relation between Kolmogorovness and nonsupplementarity.
If D.a; b; C / is Kolmogorovean then the formula of total probability holds true and
we have (4.4). Thus observables a and b are nonsupplementary (in the context C/.
Thus:

Kolmogorovness implies nonsupplementarity

or as we also can say:

Supplementarity implies non-Kolmogorovness.

However, in the general case nonsupplementarity does not imply that probabilistic
data D.a; b; C / is Kolmogorovean. Let us investigate in more detail the case when
both matrices Pa=b and Pb=a are doubly stochastic. We recall that a matrix Pb=a D
.pb=a.ˇ=˛// is doubly stochastic if it is stochastic (so (3.9) holds) and, moreover,

X

˛

pb=a.ˇ=˛/ D 1; ˇ D ˇ1; ˇ2: (6.4)

Remark 6.1 (Doubly stochasticity as the law of statistical balance). As was mentioned,
the equality (3.9) holds automatically. This is a consequence of additivity and normal-
ization by 1 of the probability distribution of any collective x˛. But the equality (6.4)
is an additional condition on the observables a and b. Thus by considering doubly
stochastic matrices we choose a very special pair of reference observables. I propose
the following physical interpretation of the equality (3.9). Since

pb=a.ˇ=˛2/ D 1 � pb=a.ˇ=˛1/;

the C˛1
and C˛2

contexts compensate each other in “preparation of the property” b D
ˇ. Thus the equation (6.4) could be interpreted as the law of statistical balance for the
property b D ˇ. If both matrices Pb=a and Pa=b are doubly stochastic then we have
laws of statistical balance for both properties: a D ˛ and b D ˇ.
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Definition 6.3. Observables a and b are said to be statistically balanced if both matri-
ces Pb=a and Pa=b are doubly stochastic.

It is useful to recall the following well-known result about double stochasticity for
Kolmogorovean random variables:

Lemma 6.1. Let �a and �b be random variables on a Kolmogorov space P D
.�;F ;P/. Then the following conditions are equivalent:

(1) The matrices Pa=b D .P.�a D ˛=�b D ˇ//, Pb=a D .P.�b D ˇ=�a D ˛// are
doubly stochastic.

(2) Random variables are uniformly distributed:

P.�a D ˛/ D P.�b D ˇ/ D
1

2
:

(3) Random variables are “symmetrically conditioned” in the following sense:

P.�a D ˛=�b D ˇ/ D P.�b D ˇ=�a D ˛/; (6.5)

so Pa=b D Pb=a.

Proof. We set Ai D f! 2 � W �a.!/ D ˛ig and Bj D f! 2 � W �b.!/ D ǰ g,
j D 1; 2 (we recall that we consider dichotomous random variables). First we prove
that (3) is equivalent to (2):

(a1). Let P.Ai=Bj / D P.Bj =Ai /. Then

P.A1B1/
P.B1/

D P.B1A1/
P.A1/

;
P.A2B2/

P.B2/
D P.B2A2/

P.A2/
;

P.A1B2/
P.B2/

D P.B2A1/
P.A1/

: (6.6)

Thus we obtain: P.B1/ D P.A1/, P.A2/ D P.B2/, P.B2/ D P.A1/. Thus

P.B1/ D P.B2/ D 1=2 and P.A1/ D P.A2/ D 1=2: (6.7)

(b1). Starting with (6.7) we obtain (6.6) and consequently a; b-symmetry of transi-
tion probabilities.

We now prove that (1) is equivalent to (2):
(a2). Let P.B1=A1/ D P.B2=A2/;P.B1=A2/ D P.B2=A1/. Then

P.B1A1/
P.A1/

D P.B2A2/
P.A2/

;
P.B1A2/

P.A2/
D P.B2A1/

P.A1/
I (6.8)

P.A1B1/
P.B1/

D P.A2B2/
P.B2/

;
P.A1B2/

P.B2/
D P.A2B1/

P.B1/
: (6.9)

By these equations we obtain:

P.B1/
P.A1/

D P.B2/
P.A2/

;
P.B2/
P.A1/

D P.B1/
P.A2/

:

So P.A2/
P.A1/

D P.A1/
P.A2/

. Thus we obtain (6.7).
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(b2). Let (6.7) hold true. Then we have already proved that transition probabilities
are symmetric. Thus

P.Bi=A1/C P.Bi=A2/ D P.A1=Bi /C P.A2=Bi / D 1
(since every matrix of transition probabilities is always stochastic).

In general the Kolmogorovean characterization of statistically balanced random
variables is not valid for observables of a Växjö model – contextual statistical model.

Proposition 6.1. A Kolmogorov model for data D.a; b; C / need not exist even in the
case of nonsupplementary statistically balanced observables having the uniform prob-
ability distribution (for the context C ).

Proof. Let us consider probabilistic data D.a; b; C / such that pa.˛/ D pb.ˇ/ D 1=2
(here pa.˛/ � P.a D ˛=C/, pb.ˇ/ � P.b D ˇ=C/) and both matrices Pa=b and
Pb=a are doubly stochastic. Let us assume that pa=b.˛=ˇ/ ¤ pb=a.ˇ=˛/. Then by
Lemma 6.1 data D.a; b; C / is non-Kolmogorovean, but

2ı.˛=ˇ; C / D 1�
X

ˇ

pa=b.˛=ˇ/ D 0; 2ı.ˇ=˛; C / D 1�
X

˛

pb=a.ˇ=˛/ D 0:

It seems to be that symmetrical conditioning plays the crucial role in these consid-
erations. Let M be a Växjö model.

Definition 6.4. Observables a; b 2 O are called symmetrically conditioned if

pa=b.˛=ˇ/ D pb=a.ˇ=˛/: (6.10)

Lemma 6.2. If observables a and b are symmetrically conditioned, then they are sta-
tistically balanced (so the matrices Pa=b and Pb=a are doubly stochastic).

Proof. We have
X

ˇ

pa=b.˛=ˇ/ D
X

ˇ

pb=a.ˇ=˛/ D
X

ˇ

Px˛ .b D ˇ/ D 1I

X

˛

pb=a.ˇ=˛/ D
X

˛

Pyˇ .a D ˛/ D 1:

As we have seen in Proposition 6.1, statistically balanced observables need not be
symmetrically conditioned, cf. Lemma 6.2.

Proposition 6.2. Let observables a and b be symmetrically conditioned. Probabilistic
data D.a; b; C / is Kolmogorovean iff the observables a and b are nonsupplementary
in the context C .

Proof. Suppose that a and b are nonsupplementary. We set

pb=a.1=1/ D pb=a.2=2/ D p and pb=a.1=2/ D pb=a.2=1/ D 1 � p
(we recall that by Lemma 6.3 the matrix Pb=a is doubly stochastic).
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By (4.7), (4.8) we have

pa.˛i / D
X

ˇ

pb.ˇ/pa=b.˛i=ˇ/ D
X

ˇ

X

˛

pa.˛/pb=a.ˇ=˛/pa=b.˛i=ˇ/

D
X

˛

pa.˛/
X

ˇ

pb=a.ˇ=˛/pb=a.ˇ=˛i /:

Let us consider the case i D 1:

pa.˛1/ D pa.˛1/.p2 C .1 � p/2/C 2pa.˛2/p.1 � p/
D pa.˛1/.1 � 4p C 4p2/C 2p.1 � p/:

Thus pa.˛1/ D 1=2. Hence pa.˛2/ D 1=2. In the same way we get that pb.ˇ1/ D
pb.ˇ2/ D 1=2. Thus the condition (6.3) holds true and there exist a Kolmogorov
model P D .�;F ;P/ for probabilistic data D.a; b; C /.

Conclusion. In the case of symmetrical conditioning Kolmogorovness is equivalent to
nonsupplementarity.

Corollary 6.1. For symmetrically conditioned observables probabilistic data
D.a; b; C / is Kolmogorovean iff the observables a and b are uniformly distributed:

pa.˛1/ D pa.˛2/ D 1=2I pb.ˇ1/ D pb.ˇ2/ D 1=2:
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As was pointed out in Chapter 6, starting with the formula of total probability with
the interference term we can construct the representation of a special class of con-
texts of the Växjö model, so called trigonometric contexts, in complex Hilbert space.
Then we obtain the Born’s rule and the representation of the reference observables by
(noncommutative) self-adjoint operatorsba andbb. (Noncommutativity of operators is
equivalent to consideration of statistically conjugate reference observables.) Thus the
quantum probabilistic formalism can be derived from the Växjö model on the basis
of the formula of total probability with the interference term. In this chapter we shall
realize this program of derivation of the quantum probabilistic formalism.

We shall present a simple algorithm for transferring the probabilistic dataD.a; b; C /
about a context C into a complex probabilistic amplitude: quantum-like representation
algorithm, QLRA. The main distinguishing feature of QLRA is that classical proba-
bilistic data is coupled with its QL-image by the Born’s rule.

1 Trigonometric, hyperbolic,
and hyper-trigonometric contexts

Let M D .C ;O;D.O;C// be a contextual statistical model such that O D fa; bg.
Here a and b are dichotomous reference observables. The formula of total probability
with the interference term, Chapter 6, plays the fundamental role in further considera-
tions. It was shown that for reference observables a; b and a context C such that

(Na): all elements of the matrix of Pb=a are strictly positive: pb=a.ˇ=˛/ > 0,

(Nb): the context C is a-nondegenerate, i.e, pa.˛/ � P.a D ˛=C/ > 0 for all
˛ 2 Xa,

we have the following interfering-representation of probabilities

pb.ˇ/ D
X

˛

pa.˛/pb=a.ˇ=˛/C 2
.ˇ=˛; C /
s

Y

˛

pa.˛/pb=a.ˇ=˛/; (1.1)

where 
.ˇ=˛; C / is the coefficient of b=a-supplementarity with respect to the context
C . Depending on the magnitude of this coefficient the generalized formula of total
probability can be rewritten either in the form of the well-known trigonometric cos-
interference or in the form of so called hyperbolic cosh-interference.

(1) Suppose that the coefficients of b=a-supplementarity 
.ˇ=˛; C / with respect to
the context C are relatively small:

j
.ˇ=a; C /j � 1; ˇ 2 Xb: (1.2)
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In this case we can introduce new statistical parameters (“probabilistic angles”)
	.ˇ=˛; C / 2 Œ0; 2�
 and represent the coefficients in the trigonometric form:


.ˇ=a; C / D cos 	.ˇ=a; C /:

Parameters 	.ˇ=˛; C / are said to be b=a-relative phases with respect to the context
C . In this case we obtain the following interference formula of total probability:

pb.ˇ/ D
X

˛

pa.˛/pb=a.ˇ=˛/C 2 cos 	.ˇ=˛; C /

s

Y

˛

pa.˛/pb=a.ˇ=˛/: (1.3)

This is nothing else than the famous formula of interference of probabilities. Typically
this formula is derived by using the Hilbert space (unitary) transformation correspond-
ing to the transition from one orthonormal basis to another and Born’s probability pos-
tulate, see Chapter 2. The orthonormal basis under quantum consideration consist of
eigenvectors of operators Oa and Ob (noncommutative) corresponding to quantum phys-
ical observables a and b. We demonstrated that, opposite to the common (especially
in quantum physics) opinion, nontrivial interference of probabilities is not related to
some special (and even mystical) “quantum features” of a model (observables a and
b and a context C/. In the Växjö approach all probabilistic considerations are purely
classical. We shall not consider waves or appeal to wave-particle duality. Interference
of probabilities for observables a and b in a context C is a consequence of the presence
in these observables some supplementary information about the context C . The coef-
ficient 
 gives the measure of this supplementarity. Thus by the Växjö interpretation
the interference of probabilities is exhibition of the presence in b-observations some
additional information which could not be obtained on the basis of a-observations.

Definition 1.1. Let C be an a-nondegenerate context and let (1.2) hold. Such a context
is called b=a- trigonometric.

For a trigonometric context C , starting from (1.3) and applying the QLRA we shall
construct a complex probability amplitude  C . We shall introduce a Hilbert space
structure on the space of complex amplitudes, and represent the reference observables
a, b by noncommutative operators Oa, Ob in this Hilbert space. The QLRA is consistent
with the Born’s rule.

(2) Suppose that the coefficients of b=a-supplementarity 
.ˇ=˛; C / with respect to
the context C are relatively large:

j
.ˇ=a; C /j 
 1; ˇ 2 Xb: (1.4)

In this case we can introduce new statistical parameters (“hyperbolic probabilistic an-
gles”) 	.ˇ=a; C / 2 .�1;C1/ and represent the coefficients in the hyperbolic form:


.ˇ=a; C / D ˙ cosh 	.ˇ=a; C /:
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Parameters 	.ˇ=a; C / are said to be (hyperbolic) b=a-relative phases with respect to
the context C . In this case we obtain the following hyperbolic interference formula of
total probability:

pb.ˇ/ D
X

˛

pa.˛/pb=a.ˇ=˛/˙ 2 cosh 	.ˇ=˛; C /

s

Y

˛

pa.˛/pb=a.ˇ=˛/: (1.5)

Definition 1.2. Let C be an a-nondegenerate context and let (1.4) hold. Such a context
is called hyperbolic.

For a hyperbolic context C , starting from (1.5) and applying the hyperbolic version
of QLRA we shall construct a hyperbolic probability amplitude  C taking values in
the hyperbolic algebra G – the two-dimensional Clifford algebra with the basis e1 D 1
and e2 D j , where j 2 D C1, see [140], [110].

(3) Suppose that the coefficients of b=a-supplementarity 
.ˇ=˛; C / with respect to
the context C are relatively small for some ˇ and relatively large for another. In this
case we obtain the hyper-trigonometric interference of probabilities. This case has not
yet been studied in detail.

2 Quantum-like representation algorithm – QLRA

2.1 Probabilistic data about context

We denote the set of trigonometric contexts by the symbol C
tr. We emphasize that C

tr

depends on the reference observables a, b:

C
tr � C

tr
b=a;a:

Here the index b=a points to the definition of the coefficients of supplementarity
through b=a- conditioning, and the index a points to consideration of contexts which
are a-nondegenerate. Everywhere below we assume that the reference observables a
and b are statistically conjugate. Hence pb=a.ˇ=˛/ > 0 for all ˛ 2 Xa and ˇ 2 Xb .

Let a context C 2 C
tr. We would like to notice the dependence of probabilities on

the context C :

pa.˛/ � paC .˛/; pb.ˇ/ � pbC .ˇ/; ˛ 2 Xa; ˇ 2 Xb:

We rewrite the generalized formula of total probability (1.3) in the context dependent
form:

pbC .ˇ/ D
X

˛

paC .˛/p
b=a.ˇ=˛/C 2 cos 	.ˇ=˛; C /

s

Y

˛

paC .˛/p
b=a.ˇ=˛/: (2.1)
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2.2 Construction of complex probabilistic amplitudes

By using the elementary formula:

D D AC B C 2
p
AB cos 	 D j

p
AC ei	

p
Bj2;

for real numbers A;B > 0, 	 2 Œ0; 2�
, we can represent the probability pbC .ˇ/ as the
square of the complex amplitude (Born’s rule):

pbC .ˇ/ D j C .ˇ/j2: (2.2)

Here

 .ˇ/ �  C .ˇ/

D
q

paC .˛1/p
b=a.ˇ=˛1/C ei	C .ˇ/

q

paC .˛2/p
b=a.ˇ=˛2/; ˇ 2 Xb;

(2.3)

where 	C .ˇ/ � 	.ˇ=˛; C /.
The formula (2.3) gives the QL representation algorithm – QLRA. For any trigono-

metric context C by starting with the probabilistic data – pbC .ˇ/; p
a
C .˛/, p

b=a.ˇ=˛/

– QLRA produces the complex amplitude  C . This algorithm can be used in any
domain of science to create the QL-representation of probabilistic data (for a special
class of contexts).1

We point out that QLRA contains the reference observables as parameters. Hence
the complex amplitude give by (2.3) depends on a; b:  C �  b=aC .

Remark 2.1 (Choice of probabilistic phases). For each ˇ 2 Xb the phase 	C .ˇ/ can
be chosen in two ways – by taking signs C or �. Hence, the representation of con-
texts by complex amplitudes is not uniquely defined by the formula (2.3). In general
each trigonometric context can be represented by four complex probability amplitudes
based on the same formula (2.1). Suppose that we have chosen two fixed probabilistic
angles:

Choice 1: 	C .ˇ1/ D 	1, 	C .ˇ2/ D 	2.

Then we can also make following choices:

Choice 2: 	C .ˇ1/ D �	1, 	C .ˇ2/ D 	2,

Choice 3: 	C .ˇ1/ D 	1, 	C .ˇ2/ D �	2,

Choice 4: 	C .ˇ1/ D �	1, 	C .ˇ2/ D �	2.

For each of the complex probability amplitudes corresponding to these choices of
the phase, we obtain the Born’s rule. Denote the corresponding amplitudes by the
symbols  C;j , j D 1; : : : ; 4. Then  C;1 D  C;4 as well as  C;2 D  C;3. Thus

1I was even thinking to get a patent for QLRA, but then I decided that QLRA should be free for all
users.
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the choices one and four are conjugately-equivalent as well as the choices two and
three. In future we shall see that only the choices one and four induce a natural QL-
representation. But, at the moment we just fix, for any trigonometric context C , one
of four possible probability amplitudes.

We denote the space of functions  W Xb ! C by the symbol

Eb � ˆ.Xb;C/;
where C is the field of complex numbers. Since the observable b takes only two values
– Xb D fˇ1; ˇ2g, the Eb is the two-dimensional complex linear space. The Dirac’s ı-
functions fı.ˇ�ˇ1/; ı.ˇ�ˇ2/g form the canonical basis in this space. Each  2 Eb
can be expanded with respect to this basis:

 .ˇ/ D  .ˇ1/ı.ˇ � ˇ1/C  .ˇ2/ı.ˇ � ˇ2/:
By using the representation (2.3) we construct the map

J b=a W C tr ! Eb: (2.4)

The J b=a maps contexts (complexes of, e.g., physical conditions) into complex ampli-
tudes. The representation (2.2) of probability as the square of the absolute value of the
complex b=a-amplitude is nothing else than the famous Born rule.

Remark 2.2 (Role of reference observables). We repeat that the complex linear space
representation (2.3) of the set of contexts C

tr is based on a pair .a; b/ of statistically
conjugate observables. By choosing another pair we shall get a different representa-
tion.

Remark 2.3 (Origin of complex numbers). The appearance of complex numbers is one
of mysteries of QM. In our contextual approach complex numbers appeared as just a
special representation of the formula of total probability with trigonometric interfer-
ence term. Instead of the formula (2.1) and a collection of contextual probabilities, we
preferred to work with Born’s rule (2.2) and complex probability amplitudes.

Definition 2.1. The complex amplitude  C .ˇ/ produced by QLRA is called a QL
wave function (of the complex of physical conditions, context C ) or a QL state.

Thus by the Växjö interpretation the wave function does not provide the (complete)
description of the state of an individual system. The wave function is a special (in-
complete) representation of context.

In fact, the multi-value structure of QLRA is even more complicated than it was
pointed out in Remark 2.1. We might represent each context C 2 C

tr by a family of
complex amplitudes:

 .x/ �  C .ˇ/ D
X

˛2Xa

q

paC .˛/p
b=a.ˇ=˛/ei�C .ˇ=˛/ (2.5)
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such that
�C .ˇ=˛1/ � �C .ˇ=˛2/ D 	C .ˇ/:

For such complex amplitudes we also have Born’s rule (2.2). Thus QLRA could be
realized as a map from the set of trigonometric contexts into QS (the set of equivalent
classes with respect to the equivalent relation: � D eiu ). However, to simplify con-
siderations we shall consider only the representation (2.3) and the map (2.4) induced
by this representation.

3 Hilbert space representation of b-observable

3.1 Born’s rule

We consider the following basis in the space Eb .ˇ 2 Xb/:
ebˇ .x/ D ı.x � ˇ/:

The Born’s rule for complex amplitudes (2.2) can be rewritten in the following form:

pbC .ˇ/ D jh C ; ebˇ ij2; ˇ 2 Xb: (3.1)

Here the scalar product in the complex linear space Eb is defined by the standard
formula:

h 1;  2i D
X

ˇ2Xb

 1.ˇ/ 2.ˇ/: (3.2)

The system of functions feb
ˇ
gx2Xb

is an orthonormal basis in the Hilbert space

H � H
b=a

b
D .Eb; h�; �i/: (3.3)

In the symbolic notation H
b=a

b
the upper index b=a notices that the representation

of contexts was created through b=a-supplementarity, the low index b notices that
the observable b plays the fundamental role. Contexts are represented by functions
defined on the range of valuesXb of the observable b. We emphasize that the reference
observables a and b are involved into the H

b=a

b
-representation in the asymmetric way.

3.2 Fundamental physical observable: views of De Broglie and Bohm

L. De Broglie permanently emphasized [49], [48] the exceptional role of the position
observable q in QM. Similar views can be found in works of D. Bohm. In our approach
the b-observable plays the role of the position observable q. The a-observable (which
is chosen as statistically conjugate to b/ plays the role of the momentum observable
p. L. De Broglie wrote in [49], p. 55: “A consideration of foregoing examples, and
others which we could imagine, necessary leads us to the conclusion that it is the rep-
resentation in space and time which is objective, and not the Fourier analysis which
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only exists in the mind of the theoretician. The various Fourier components can only
be observed by means of devices which change completely the initial state of affairs
and modify the phase relationships. In the language of the Theory of Transforma-
tions, this can be expressed by saying that the q-representation is the only objective
representation, whilst the p-representation – the abstract representation in momentum
space – exists only in the mind of the theoretician. This shows, contrary to what the
Theory of Transformations usually asserts, that the two representations – q and p –
are by no means equivalent. It is the wave function that describes the physical reality
and not the coefficients ci considered separately. Moreover, this conclusion is the con-
sequence of the obvious fact that the three-dimensional space is a physical reality and
the essential framework of our experiment, whilst momentum space is only an abstract
mathematical representation.” Here “Theory of Transformations” is theory of unitary
transformations performing transition from one orthonormal basis in complex Hilbert
space to another.

3.3 b-observable as multiplication operator

Let Xb � R (so we assume that the results of measurements of the observable b are
given by real numbers). By using the Hilbert space representation (3.1) of the Born’s
rule we obtain the Hilbert space representation of the expectation of the observable b
given by the von Mises frequency model for the collective (or S -sequence) x.b=C /.
Here x.b=C / is induced by measurements of the b-observable under the context C .
We also remark that this expectation can be considered as the Kolmogorov measure-
theoretic expectation with respect to the probability measure Px.b=C/ corresponding
to the collective (or the S -sequence) x.b=C /. We have:

EŒb=C 
 D
X

ˇ2Xb

ˇpbC .ˇ/ D
X

ˇ2Xb

ˇj C .ˇ/j2

D
X

ˇ2Xb

ˇh C ; ebˇ ih C ; ebˇ i D h Ob C ;  C i: (3.4)

Here the (self-adjoint) operator Ob W H ! H is determined by its eigenvectors:

Obebˇ D ˇebˇ ; ˇ 2 Xb:

This is the multiplication operator in the linear space of complex-valued functions
Eb D ˆ.Xb;C/:

Ob .ˇ/ D ˇ .ˇ/:

It is natural to represent the b-observable by the operator Ob in the Hilbert state space.
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3.4 Interference

We set

uaj D
q

paC . j̨ /; ubj D
q

pbC . ǰ /; p
b=a
ij D pb=a. ǰ =˛i /;

uij D
q

p
b=a
ij ; 	j D 	C . ǰ /:

(3.5)

We remark that the coefficients uaj , ubj depend on a context C ; so

uaj D uaj .C /; ubj D ubj .C /:

We consider the matrix Pb=a D .pb=aij /. We have, see (2.5), that

 C D vb1ebˇ1
C vb2ebˇ2

; where vbj D ua1u1j C ua2u2j ei	j : (3.6)

Hence
pbC . ǰ / D jvbj j2 D jua1u1j C ua2u2j ei	j j2: (3.7)

This is the interference representation of probabilities that is used, e.g., in the quantum
formalism.2

4 Hilbert space representation of a-observable

We would like to have the Born’s rule and the Hilbert space representation not only
for the b-observable, but also for the a-observable. Therefore we should introduce
in a natural way a basis ea D fea˛g˛2Xa

corresponding to the a-observable in the

Hilbert space H
b=a

b
. The formula of interference of probabilities written in the form

of superposition (3.6) will play the crucial role in introduction the a-basis in H
b=a

b
.

4.1 Conventional quantum and quantum-like representations

As we shall see, we cannot be lucky in the general case. In fact, by starting from
two arbitrary (statistically conjugate) observables a and b we constructed the complex
Hilbert space representation for the b-observable which was more general than the
standard quantum representation. In our (more general) representation the “dual ob-
servable” a need not be mapped into a symmetric operator in the same Hilbert space
H
b=a

b
which was generated by the b=a-conditioning of the b-observable, see Sec-

tion 6.3 We recall that in quantum mechanics both reference observables (the position

2By starting with the general representation (2.5) we obtain vbj D ua1u1j ei�1j Cua2u2j ei�2j and the

interference representation pb
C
. ǰ / D jvbj j2 D jua1u1j ei�1j C ua2u2j ei�2j j2.

3We constructed the Hilbert space H
b=a
b

by introducing the natural scalar product on the space Eb D
ˆ.Xb ;C/ of functions  W Xb ! C. Here Xb is the range of values of b.
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observable and the momentum observable) are represented in the same Hilbert space.
Thus we should find conditions which would guarantee the possibility to represent
both reference observables in the same Hilbert space H

b=a

b
and to have the Born’s rule

for both of them.
We recall that QM implies that for any pair of observables a and b which are rep-

resented by self-adjoint operators Oa and Ob the corresponding transition probabilities
are symmetrically conditioned, see Chapter 6: pb=a.ˇ=˛/ D pa=b.˛=ˇ/. In the
Växjö model we do not assume that in general probabilities are symmetrically condi-
tioned. It can be that for some probabilistic data which was collected e.g. in sociology
or psychology we shall have:

pb=a.ˇ=˛/ � P.b D ˇ=C˛/ 6D pa=b.˛=ˇ/ � P.a D ˛=Cˇ /:

Here C˛ and Cˇ are contexts corresponding to selections with respect to fixed values
a D ˛ and b D ˇ. Really there are no reasons to expect symmetrical conditioning
for any pair of reference observables. In QM the reference observables were chosen in
very special way to guarantee symmetrical conditioning. Nevertheless, starting with
the Växjö model we can apply QLRA for any pair of statistically conjugate observables
and represent the set of contexts C

tr
b=a;a

in the complex Hilbert space H
b=a

b
where the

b-observable is represented by a self-adjoint operator and Born’s rule holds.
We now would like to find conditions for the matrix Pb=a which would provide

a possibility to represent the a-observable by a self-adjoint operator in such a way
that the Born’s rule would hold. The easiest way is to borrow the QM-condition,
namely, symmetric conditioning. We shall see that this condition is really sufficient to
construct representation for which we are looking for, see Section 8. However, we do
not borrow directly the QM-condition. We would like to derive a natural necessary and
sufficient condition internally from the Växjö model. We shall see that this condition
is essentially weaker than symmetric conditioning.

4.2 a-basis from interference

For any (trigonometric) context C0, we can represent (by using the expansion (3.6))
the corresponding wave function  D  C0

in the form:

 D ua1ea˛1
C ua2ea˛2

; (4.1)

where

ea˛1
D
�

u11
u12

�

; ea˛2
D
�

ei	1u21
ei	2u22

�

: (4.2)

The system of vectors fea˛i
g will be used to represent the a-observable in the Hilbert

space H � H
b=a

b
.4

4We recall that our construction is not symmetric with respect to the reference observables a and b.
The observable b is the “fundamental observable” and a is its dual, cf. views of De Broglie and Bohm.
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We suppose that vectors fea˛i
g are linearly independent, so fea˛i

g is a basis in H . We
have:

ea˛1
D v11ebˇ1

C v12ebˇ2
; ea˛2

D v21ebˇ1
C v22ebˇ2

Here

V � V b=a
b!a
D .vij / D

�

u11 u12
ei	1u21 ei	2u22

�

;

is the matrix corresponding to the transformation from the b-basis to the a-basis:
�

ea˛1

ea˛2

�

D V
 

eb
ˇ1

eb
ˇ2

!

:

It is interesting to notice the expressions of the scalar products for basis vectors:

V D .vij / D
 

hea˛1
; eb
ˇ1
i hea˛1

; eb
ˇ2
i

hea˛2
; eb
ˇ1
i hea˛2

; eb
ˇ2
i

!

D
 

p

pb=a.ˇ1=˛1/
p

pb=a.ˇ2=˛1/

ei	1

p

pb=a.ˇ1=˛2/ ei	2

p

pb=a.ˇ2=˛2/

!

: (4.3)

The crucial point is that the matrix V b=a
b!a

can be constructed by using only probabilistic
data, even phases are purely probabilistic phases.

4.3 Necessary and sufficient conditions for Born’s rule

We would like to find a class of matrices V b=a
b!a

such that the Born’s rule also holds for
the a-basis:

paC .˛/ D jh C ; ea˛ij2: (4.4)

We have the Born’s rule (4.4) iff fea˛g was an orthonormal basis, i.e., the V b=a
b!a

was a
unitary matrix.

Remark 4.1 (On the origin of unitarity). In our model unitarity appeared as a conse-
quence of the Born’s rule. To construct a representation in which the Born’s rule holds
for both reference observables a and b, we should choose these observables in such a
way that the matrix V b=a

b!a
will be unitary.

We recall that a matrix P D .pij / is called doubly stochastic if it is stochastic, i.e.,

p
b=a
j1 C pb=aj2 D 1, and, moreover,

p
b=a
1j C pb=a2j D 1; j D 1; 2: (4.5)

We remark that any matrix of transition probabilities Pb=a is stochastic:

pb=a.b D ˇ1=˛1/C pb=a.b D ˇ2=˛1/ D 1;
pb=a.b D ˇ1=˛2/C pb=a.b D ˇ2=˛2/ D 1
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(these are simply consequences of additivity of contextual probabilities P.�=C˛/). But
in general it is not doubly stochastic. Thus the condition of double stochasticity

pb=a.b D ˇ1=˛1/C pb=a.b D ˇ1=˛2/ D 1; (4.6)

pb=a.b D ˇ2=˛1/C pb=a.b D ˇ2=˛2/ D 1 (4.7)

could be violated. We recall, see Chapter 6, that any symmetrically conditioned ma-
trix Pb=a is doubly stochastic. But in general double stochasticity does not imply
symmetrical conditioning. The following proposition can be easily proved by direct
calculations.

Proposition 4.1. In the two-dimensional case (i.e., for dichotomous observables), the
matrix V b=a

b!a
is unitary iff the matrix Pb=a is doubly stochastic and additionally:

ei	1 D �ei	2

or

	C0
.ˇ1/ � 	C0

.ˇ2/ D � mod 2�: (4.8)

We remark that the constraints (4.8) on phases and the double stochasticity con-
straint (4.6) are not independent:

Lemma 4.1. Let the matrix of transition probabilities Pb=a be doubly stochastic. Then:

cos 	C .ˇ2/ D � cos 	C .ˇ1/ (4.9)

for any context C 2 C
tr.

Proof. By Lemma 4.1, Chapter 6, we have:

X

ˇ2Xb

cos 	C .ˇ/
q

…˛2Xa
paC .˛/p

b=a.ˇ=˛/ D 0:

But, for a doubly stochastic matrix Pb=a D .pb=a.˛=ˇ//, we have:

…˛2Xa
paC .˛1/p

b=a.ˇ1=˛/ D …˛2Xa
paC .˛2/p

b=a.ˇ2=˛/:

Since we work with statistically conjugate reference observables a; b and the con-
text C is a-nondegenerate, all probabilities are strictly positive. Therefore we obtain
(4.9).
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4.4 Choice of probabilistic phases

By Lemma 4.1 we have two different possibilities to choose phases:

	C0
.ˇ1/C 	C0

.ˇ2/ D � or 	C0
.ˇ1/ � 	C0

.ˇ2/ D � mod 2�:

By (4.8) to obtain the Born’s rule for the a-observable we should choose phases
	C0

.ˇi /, i D 1; 2, in such a way that

	C0
.ˇ2/ D 	C0

.ˇ1/C �: (4.10)

If 	C0
.ˇ1/ 2 Œ0; �
 then 	C0

.ˇ2/ 2 Œ�; 2�
 and vice versa.

Lemma 4.1 is very important: if the matrix Pb=a is doubly stochastic we can always
choose 	C0

. ǰ /, j D 1; 2, satisfying (4.10). Hence we can always assume that QLRA
produces complex amplitudes of the form:

 .ˇ1/ D
q

paC .˛1/p
b=a.ˇ1=˛1/C ei	C .ˇ1/

q

paC .˛2/p
b=a.ˇ1=˛2/; (4.11)

 .ˇ/ D
q

paC .˛1/p
b=a.ˇ2=˛1/ � ei	C .ˇ1/

q

paC .˛2/p
b=a.ˇ2=˛2/: (4.12)

We now come back to Remark 2.1. Suppose that, for a context C0, we have chosen
the phases 	C0

.ˇ1/ and 	C0
.ˇ2/ satisfying (4.10). We denote this representation of C0

by a complex probability amplitude by Choice 1. In Remark 2.1 we presented three
other choices created by varying the signs of phases. We see that only phases given
by the Choice 4 also satisfy the condition (4.10). Thus if we want to have a natural
representation (with the Born’s rule for both reference observables) we should take
away Choices 2, 3. So the arbitrariness in choosing a complex amplitude for a fixed
context is essentially reduced.

4.5 Contextual dependence of a-basis

The delicate feature of the presented construction of the a-representation is that the
basis fea˛g depends on the context C0:

ea˛ D ea˛.C0/:

And the Born’s rule, in fact, has the form:

paC0
.˛/ D jh C0

; ea˛.C0/ij2; ˛ 2 Xa:

We would like to use (as in the conventional quantum formalism) one fixed a-basis for
all contexts C 2 C

tr. We may try to use for all contexts C 2 C
tr the basis ea˛ � ea˛.C0/

corresponding to one fixed context C0. We shall see that this is really the fruitful
strategy.
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Lemma 4.2. Let the matrix of transition probabilities Pb=a be doubly stochastic and
let for any context C 2 C

tr phases 	C .ˇ/, ˇ 2 Xb , be chosen as

	C .ˇ2/ D 	C .ˇ1/C � mod 2�: (4.13)

Then for any context C 2 C
tr we have the Born’s rule for the basis ea˛ � ea˛.C0/

constructed for a fixed context C0:

paC .˛/ D jh C ; ea˛ij2; ˛ 2 Xa: (4.14)

Proof. Let C0 be some fixed context. We take the basic fea
j̨
.C0/g (and the matrix

V.C0/) corresponding to this context. For any C 2 C
tr, we would like to represent the

wave function  C as

 C D va1 .C /ea˛1
.C0/C va2 .C /ea˛2

.C0/; where jvaj .C /j2 D paC . j̨ /: (4.15)

It is clear that, for any C 2 C
tr, we can represent the wave function as

 C .ˇ1/ D ua1.C /v11.C0/C eiŒ	C .ˇ1/�	C0
.ˇ1/�ua2.C /v12.C0/;

 C .ˇ2/ D ua1.C /v21.C0/C eiŒ	C .ˇ2/�	C0
.ˇ2/�ua2.C /v22.C0/:

Thus to obtain (4.15) we should have:

	C .ˇ1/ � 	C0
.ˇ1/ D 	C .ˇ2/ � 	C0

.ˇ2/ mod 2� (4.16)

for any pair of contexts C0 and C1. By using the relations (4.13) between phases
	C .ˇ1/, 	C .ˇ2/ and 	C0

.ˇ1/, 	C0
.ˇ2/ we obtain:

	C .ˇ2/�	C0
.ˇ2/ D .	C .ˇ1/C� �	C0

.ˇ1/��/ D 	C .ˇ1/�	C0
.ˇ1/ mod 2�:

The constraint (4.13) essentially restricted the class of complex amplitudes which
can be used to represent a context C 2 C

tr. Any C can be represented only by two
amplitudes  .x/ and N .x/ corresponding to the two possible choices of 	C .ˇ1/: in
Œ0; �
 or .�; 2�).

4.6 Existence of quantum-like representation with Born’s rule for both
reference observables

By Lemma 4.2 we obtain the following result playing the fundamental role in our
approach:

Theorem 4.1. We can construct the QL (complex Hilbert space) representation of the
set of trigonometric contexts C

tr such that the Born’s rule holds true for both reference
observables a; b (which are assumed to be statistically conjugate) iff the matrix Pb=a

is doubly stochastic.
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If the matrix Pb=a is doubly stochastic, then we have the QL representation not
only for the conditional expectation of the observable b, see (3.4), but also for the
observable a:

EŒa=C 
 D
X

˛2Xa

˛paC .˛/

D
X

˛2Xa

˛jh C ; ea˛ij2 D hOa C ;  C i; (4.17)

where the self-adjoint operator (symmetric matrix) Oa W Eb ! Eb is determined by its
eigenvectors:

Oaea˛ D ˛ea˛ :
By (4.17) it is natural to represent the observable a by the operator Oa.

We also remark that in the case of doubly stochastic Pb=a the scalar products for
basis vectors have the form:

v11 D hea˛1
; ebˇ1
i D

q

pb=a.ˇ1=˛1/;

v12 D hea˛1
; ebˇ2
i D

q

pb=a.ˇ2=˛1/;

v21 D hea˛2
; ebˇ1
i D ei	

q

pb=a.ˇ1=˛2/;

v22 D hea˛2
; ebˇ2
i D �ei	

q

pb=a.ˇ2=˛2/:

As always, we denote the unit sphere in the Hilbert space H by the symbol S . In
general, i.e., for an arbitrary contextual statistical model of reality, there are no reasons
to expect that the representation map J b=a W C

tr ! S should to be one-to-one, i.e.,
surjection and injection. We shall study the question about injectivity of the map J b=a

in Section 5.2.
Regarding surjectivity we can say that in principle in some physical (or mental, or

economic) model the set of context C may be not large enough to cover the whole unit
sphere S of the complex Hilbert space. However, in the conventional quantum model
it is claimed that each quantum state can be prepared on the basis of some complex of
physical conditions.

4.7 “Pathologies”

We remark that, although Theorem 4.1 guarantees existence of the QL representation
with Born’s rule for both reference observables, this representation may have features
which differ essentially from features of the conventional quantum representation.

In particular, contexts Cˇ need not belong to the family of trigonometric contexts.
In such a case, although the scalar product heb

ˇ
; ea˛i is well defined and, moreover,

jheb
ˇ
; ea˛ij2 D pb=a.ˇ=˛/, we cannot write the Born’s rule in our contextual form:
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jh Cˇ
; ea˛ij2 D pb=a.ˇ=˛/ (because QLRA cannot be applied to the context Cˇ /.

In principle, one might just formally extend the domain of application of QLRA by
setting

J b=a.Cˇ / D ebˇ : (4.18)

Situation is even worse for contexts C˛, ˛ 2 Xa. They are not a-nondegenerate:
P.a D ˛i=C j̨

/ D 0, i 6D j . Therefore QLRA cannot be applied to C˛. Thus the
image J b=a.C˛/ cannot be defined by (2.3). In principle, one might just formally
extend the domain of application of QLRA by setting

J b=a.C˛/ D ea˛: (4.19)

However, if the model is not symmetrically conditioned, then such a definition would
imply the following pathology:

jhJ b=a.C˛/; ebˇ ij2 D jhea˛; ebˇ ij2 D jhebˇ ; ea˛ij2 D pb=a.ˇ=˛/:

Hence:
jhJ b=a.C˛/; ebˇ ij2 6D pa=b.˛=ˇ/: (4.20)

It is clear that the latter problem would disappear if one considers only Växjö mod-
els with symmetrically conditioned reference observables. It is surprising that such
a restriction would also eliminate the problem with non-trigonometrical behavior of
contexts Cˇ , see Section 8.

5 Properties of mapping of trigonometric contexts into
complex amplitudes

5.1 Classical-like contexts

Suppose that, for some context C 2 C
tr, the reference observables are not b=a-

supplementary with respect to C . Thus:

ı.ˇ=a; C / D 0; ˇ 2 Xb:

Thus even

.ˇ=a; C / D 0; ˇ 2 Xb:

Hence: 	C .ˇ1/ D �
2

or 	C .ˇ1/ D 3
2
� . In the first case we have

 C .ˇ1/ D
q

paC .˛1/p.ˇ1=˛1/C i
q

paC .˛2/p.ˇ1=˛2/;

 C .ˇ2/ D
q

paC .˛1/p.ˇ2=˛1/ � i
q

paC .˛2/p.ˇ2=˛2/: (5.1)
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The second choice of phases gives the representation of C by the complex amplitude
�C which is conjugate to (5.1): �C D  C . We set

C
tr
CL D fC 2 C

tr W ı.ˇ=a; C / D 0g:

These are trigonometric contexts for which the reference observables are not b=a-
supplementary. We call them CL-contexts.

5.2 Non-injectivity of representation map

Let C1; C2 2 C
tr be contexts such that the probability distributions of the reference

observables a and b under C1 and C2 coincide:

paC1
.˛/ D paC2

.˛/; ˛ 2 Xa; pbC1
.ˇ/ D pbC2

.ˇ/; ˇ 2 Xb:

In such a case 
.ˇ=a; C1/ D 
.ˇ=a; C2/ and 	.ˇ=a; C1/ D ˙	.ˇ=a; C2/. If the
probability distributions coincide only for a pair of contexts .C1; C2/, then we can
represent C1 and C2 by two different complex amplitudes,  C1

and  C2
D N C1

. But
if the probability distributions coincide for a triple of contexts .C1; C2; C3/, then it
is impossible to represent them by different complex amplitudes. We should choose
 C3

D  C1
or  C3

D  C2
; so J b=a.C3/ D J b=a.C1/ or J b=a.C3/ D J b=a.C2/.

Thus in general the map J b=a is not injective.

6 Non-doubly stochastic matrix:
quantum-like representations

Of course, for arbitrary (statistically conjugate) observables a and b the matrix Pb=a

need not be doubly stochastic. Therefore the matrix V b=a
b!a

for transition from the b-
observable (which could be interpreted, cf. De Broglie and Bohm in Section 3.2, as
the fundamental observable) to the “dual observable” a can be nonunitary. In this
case we could not obtain Born’s rule in the Hilbert space H

b=a

b
both for the b and a

observables.
We now assume that the Pb=a is not doubly stochastic. For each reference observ-

able we should introduce its own scalar product and corresponding Hilbert space in
that the Born’s rule holds true:

H
b=a

b
D .Eb; h�; �ib/;Hb=a

a D .Eb; h�; �ia/; (6.1)

where scalar products on the complex linear spaces Eb are given by

h ; ib D
X

j

vbj Nwbj for  D
X

j

vbj e
b

ǰ
;  D

X

j

wj e
b

ǰ
;
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and
h ; ia D

X

j

vaj Nwaj for  D
X

j

vaj e
a

j̨
;  D

X

j

waj e
a

j̨
:

We have Born’s rules with respect to these scalar products:

pbC .ˇ/ D jh C ; ebˇ ibj2; paC .˛/ D jh C ; ea˛iaj2:

The reference observables b and a are represented by symmetric matrices in the Hilbert
spaces H

b=a

b
and H

b=a
a , respectively. Thus we do not have even mathematical equiv-

alence (in the sense of unitary equivalence) of representations of a and b, cf. with the
discussion on physical nonequivalence for the position and momentum representations
in QM, cf. Section 3.2. But the appearance of different Hilbert spaces (6.1) is not the
end of mathematical difficulties in the case in that the Pb=a is not doubly stochastic.

As we have already discussed, the crucial difficulty is that ea˛ D ea˛.C0/. In fact,
for any context C0 2 C

tr we constructed its own Hilbert space representation for the
a-observable: H

b=a
a D H

b=a
a .C0/. In the same way as in Section 3 we obtain that we

would be able to use the same representation for contexts C and C0 if the condition
(4.16) holds true. Thus we should have:

	C .ˇ2/ D 	C .ˇ1/C ˛ and 	C0
.ˇ2/ D 	C0

.ˇ1/C � mod 2�;

where � is some phase (if Pb=a is doubly stochastic then � D �).

Theorem 6.1. Suppose that Pb=a is not doubly stochastic and C
tr ¤ C

tr
0 . Then there is

no such an � that
	C .ˇ2/ D 	C .ˇ1/C � (6.2)

for all contexts C 2 C
tr.

To prove this theorem we need the following generalization of Lemma 4.1 for the
case in that the Pb=a is not doubly stochastic:

Lemma 6.1. For any context C 2 C
tr, the following equality holds true:

cos 	C .ˇ2/ D �k cos 	C .ˇ1/ (6.3)

where

k � kb=a D
v

u

u

t

p
b=a
11 p

b=a
21

p
b=a
12 p

b=a
22

:

It is also easy to obtain:

Proposition 6.1. The coefficient kb=a D 1 iff Pb=a is doubly stochastic.
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Proof of Theorem 6.1. By Lemma 6.1 we have: �k cos 	C .ˇ1/ D cos.	C .ˇ1/C �/.
We take C D � and obtain: cos.	�.ˇ1/ C �/ D 0. But 	�.ˇ1/ D ˙�2 . Thus
	�.ˇ1/C � D ˙�2 and � D 0; � mod 2� .

Since C
tr ¤ C

tr
0 there exists a context C such that cos 	C .ˇ1/ ¤ 0. If � D 0

then cos 	C .ˇ1/.k C 1/ D 0. This contradicts to the positivity of k. Let � D � .
Then cos 	C .ˇ1/.k � 1/ D 0. Thus k D 1. But this implies that Pb=a is doubly
stochastic.

Despite Theorem 6.1, we can still hope that there can be found some extended
family of contexts such that (6.2) would hold true for contexts from that family. But it
is impossible:

Proposition 6.2. Let condition (6.2) hold true for two contexts C1, C2 such that

j
.ˇ1=a; C1/j ¤ j
.ˇ1=a; C2/j: (6.4)

Then Pb=a is doubly stochastic.

Proof. We set 	 D 	C1
.ˇ1/ and 	 0 D 	C2

.ˇ1/. We have: �k cos 	 D cos.	 C �/,
�k cos 	 0 D cos.	 0 C �/. Thus

�k cos
	 C 	 0

2
cos

	 � 	 0

2
D cos

�

	 C 	 0

2
C �

�

cos
	 � 	 0

2
:

By (6.4) we have that cos 	�	 0

2
¤ 0 and hence �k cos 	C	 0

2
D cos.	C	 0

2
C �/. We

also have

k sin
	 C 	 0

2
sin

	 � 	 0

2
D � sin

�

	 C 	 0

2
C ˛

�

sin
	 � 	 0

2
:

By (6.4) we have that sin 	�	 0

2
¤ 0 and hence �k sin 	C	 0

2
D sin.	C	 0

2
C �/. Thus

k2 D 1 and hence k D 1. Hence the matrix Pb=a is doubly stochastic.

Thus if Pb=a is not doubly stochastic then each surfaceMt D fC 2 C
tr W j
.ˇ1=˛; C /j

D tg, 0 � t � 1, in the space of contexts is represented in its own Hilbert space Ha.t/.
We remark that such a complicated picture arises only if we represent the dichoto-

mous reference observables in the two-dimensional Hilbert. By using the quantum
terminology we can say that we proceed under the assumption that these observables
have nondegenerate spectra. By considering Hilbert spaces of higher dimensions we
could proceed with matrices of transition probabilities which are not doubly stochastic.
However, it would be a more general QL story.
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7 Non-commutativity of operators
representing observables

Let the matrix of probabilities Pb=a be doubly stochastic. We consider in this section
the case of real valued observables. Here the ranges of observables b and a are subsets
of R. We set

q1 D
q

p
b=a
11 D

q

p
b=a
22

and

q2 D
q

p
b=a
12 D

q

p
b=a
21 :

Thus the vectors of the a-basis, see (4.2), have the following form:

ea˛1
D
�

q1
q2

�

; ea˛2
D
�

ei	1q2
ei	2q1

�

:

Since 	2 D 	1 C � , we get

ea˛2
D ei	2

��q2
q1

�

:

We now find matrices of operators Oa and Ob in the b-representation. The latter one is
diagonal. For Oa we have:

Oa D V ?diag.˛1; ˛2/V;

where V is the matrix of transition from the b-basis to the a-basis. Thus

Oa D
�

˛1q
2
1 C ˛2q22 .˛1 � ˛2/q1q2

.˛1 � ˛2/q1q2 ˛1q
2
2 C ˛2q21

�

:

We remark that by varying the matrix Pb=a we can obtain any symmetric matrix with
real coefficients. We do not obtain matrices with complex coefficients (as a conse-
quence of the special choice of a- and b-bases).

Hence

Œ Ob; Oa
 D Om;

where

Om D
�

0 .˛1 � ˛2/.ˇ2 � ˇ1/q1q2
.˛1 � ˛2/.ˇ2 � ˇ1/q1q2 0

�

:

Since ˛1 6D ˛2, ˇ1 6D ˇ2 and qj 6D 0, we have Om 6D 0.
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8 Symmetrically conditioned observables

We recall that in quantum mechanics matrices Pb=a and Pa=b always satisfy the fol-
lowing condition of the interchange symmetry:

pb=a.ˇ=˛/ D pa=b.˛=ˇ/: (8.1)

This is a consequence of symmetry of the scalar product. We recall that in Chapter 6
we called arbitrary reference observables a and b (i.e., having no direct relation to QM)
satisfying this condition symmetrically conditioned. We recall that by Lemma 8.2,
Chapter 6, symmetrically conditioned reference observables are always statistically
balanced, i.e., both matrices Pb=a and Pa=b are doubly stochastic. In this section
we would like to study some special features of our representation of trigonometric
contexts in this case.

8.1 b-selections are trigonometric contexts

Theorem 8.1. Let the matrix Pb=a be doubly stochastic. The contexts Cˇ , ˇ 2 Xb ,
belong to C

tr iff the reference observables a and b are symmetrically conditioned.

Proof. A). We have


.ˇ2=a; Cˇ1
/ D ��

2
1 C �22
2�1�2

;

where�j D
q

paCˇ1

. j̨ /pb=a.ˇ2= j̨ /. So 
.ˇ2=a; Cˇ1
/ 
 1 and we have the trigono-

metric behavior only in the case �1 D �2. Thus:

paCˇ1
.˛1/p

b=a.ˇ2=˛1/ D paCˇ1
.˛2/p

b=a.ˇ2=˛2/:

In this case 
.ˇ2=a; Cˇ1
/ D �1 and hence 	.ˇ2=a; Cˇ1

/ D � , and consequently
	.ˇ1=a; Cˇ1

/ D 0. We point out that paCˇ
.˛/ D pa=b.˛=ˇ/. Thus we have:

pa=b.˛1=ˇ1/p
b=a.ˇ2=˛1/ D pa=b.˛2=ˇ1/pb=a.ˇ2=˛2/: (8.2)

In the same way by using conditioning with respect to Cˇ2
we obtain:

pa=b.˛1=ˇ2/p
b=a.ˇ1=˛1/ D pa=b.˛2=ˇ2/pb=a.ˇ1=˛2/:

By using double stochasticity of Pb=a we can rewrite the last equality as

pa=b.˛1=ˇ2/p
b=a.ˇ2=˛2/ D pa=b.˛2=ˇ2/pb=a.ˇ2=˛1/: (8.3)

Thus by (8.2) and (8.3) we have:

pa=b.˛1=ˇ2/

pa=b.˛2=ˇ1/
D pa=b.˛2=ˇ2/

pa=b.˛1=ˇ1/
:
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Hence pa=b.˛1=ˇ2/ D tpa=b.˛2=ˇ1/ and pa=b.˛2=ˇ2/ D tpa=b.˛1=ˇ1/, t > 0.
But 1 D pa=b.˛1=ˇ2/ C pa=b.˛2=ˇ2/ D t Œpa=b.˛2=ˇ1/ C pa=b.˛1=ˇ1/
 D t . We
proved that the matrix P a=b is also doubly stochastic. Thus the reference observables
a and b are statistically balanced. We now prove even more: they are symmetrically
conditioned. By the equality (8.2) there exists k > 0 such that

pa=b.˛1=ˇ1/

pa=b.˛2=ˇ1/
D pb=a.ˇ2=˛2/

pb=a.ˇ2=˛1/
D k: (8.4)

Thus
pa=b.˛1=ˇ1/ D kp.˛2=ˇ1/; pb=a.ˇ2=˛2/ D kpb=a.ˇ2=˛1/:

But 1 D pa=b.˛1=ˇ1/ C pa=b.˛2=ˇ1/ D .k C 1/pa=b.˛2=ˇ1/ (because P a=b is a
stochastic matrix) and 1 D pb=a.ˇ2=˛2/ C pb=a.ˇ2=˛1/ D .k C 1/pb=a.ˇ2=˛1/

(because P b=a is a doubly stochastic matrix). Thus:

pa=b.˛2=ˇ1/ D pb=a.ˇ2=˛1/ D pb=a.ˇ1=˛2/; (8.5)

pa=b.˛1=ˇ1/ D pb=a.ˇ2=˛2/ D pb=a.ˇ1=˛1/ (8.6)

(we have used again that P b=a is doubly stochastic). Finally, by using double stochas-
ticity of P a=b we obtain

pa=b.˛1=ˇ2/ D pa=b.˛2=ˇ1/ D pb=a.ˇ2=˛1/; (8.7)

pa=b.˛2=ˇ2/ D pa=b.˛1=ˇ1/ D pb=a.ˇ2=˛2/: (8.8)

B). Now let the reference observables a and b be symmetrically conditioned. Lem-
ma 8.2, Chapter 6, implies that they are statistically balanced. Therefore:

pa=b.˛1=ˇ1/p
b=a.ˇ2=˛1/ D pa=b.˛2=ˇ2/pb=a.ˇ1=˛2/

D pa=b.˛2=ˇ1/pb=a.ˇ2=˛2/: (8.9)

Thus we obtained the equality (8.2). It implies that Cˇ1
belongs to C

tr. In the same
way we prove that Cˇ2

belongs to C
tr.

Lemma 8.1. Let the reference observables a and b be symmetrically conditioned.
Then:


.ˇ=a; Cˇ / D 1; ˇ 2 Xb: (8.10)

Proof. Here ı.ˇ=a; Cˇ / D 1�pb=a.ˇ=˛1/pa=b.˛1=ˇ/�pb=a.ˇ=˛2/pa=b.˛2=ˇ/ D
1 � pa=b.˛1=ˇ/2 � pa=b.˛2=ˇ/2 D 2pa=b.˛1=ˇ/pa=b.˛2=ˇ/. Hence:


.ˇ=a; Cˇ / D
ı.ˇ=a; Cˇ /

2
q

pCˇ
.˛1/pCˇ

.˛2/pb=a.ˇ=˛1/pb=a.ˇ=˛2/
:

We now remark that a and b symmetrically conditioned. Thus 
.ˇ=a; Cˇ / D 1.
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By (8.10) we have


.ˇi=a; C ǰ
/ D �1; i 6D j:

Thus

	.ˇi=a; Cˇi
/ D 0 and 	.ˇi=a; C ǰ

/ D �; i 6D j:

Proposition 8.1. Let the reference observables a and b be symmetrically conditioned.
Then

J b=a.C
ǰ
/.ˇ/ D ı. ǰ �ˇ/; ˇ 2 Xb; and J a=b.C

j̨
/.˛/ D ı. j̨ �˛/; ˛ 2 Xa:

Proof. Since 	.ˇ1=a; Cˇ1
/ D 0 we have:

J b=a.Cˇ1
/.ˇ1/ D

q

pa=b.˛1=ˇ1/pb=a.ˇ1=˛1/C ei0
q

pa=b.˛2=ˇ1/pb=a.ˇ1=˛2/

D pa=b.˛1=ˇ1/C pa=b.˛2=ˇ1/ D 1:

Since 	.ˇ2=a; Cˇ1
/ D � we have

J b=a.Cˇ1
/.ˇ2/ D

q

pa=b.˛1=ˇ1/pb=a.ˇ2=˛1/C ei�
q

pa=b.˛2=ˇ1/pb=a.ˇ2=˛2/

D
q

pa=b.˛1=ˇ1/.

q

pb=a.ˇ2=˛1 �
q

pa=b.˛2=ˇ1// D 0:

Thus in the case of symmetrically conditioned reference observables a and b we
have:

J b=a.Cˇ / D ebˇ ; ˇ 2 Xb;

and the Born’s rule has the form:

pbC .ˇ/ D jh C ;  Cˇ
ij2: (8.11)

8.2 Extension of representation map

We can formally extend the map J b=a to contexts C˛ by (4.19). We set

C tr D C
tr
[

˛2Xa

C˛:

Thus we have constructed the Hilbert space representation: J b=a W C tr ! S .
The domain of definition of QLRA contains now the selection contexts for both

reference observables.
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9 Formalization of the notion of
quantum-like representation

We have constructed the QL-representation for a special class of contextual statisti-
cal models (Växjö models), namely, for the case O D fa; bg. It would be interest-
ing to construct such QL representations for more complicated models, e.g., having
larger sets of observables O. We start with formalization of the notion of the QL-
representation5. As usual, P u� denotes the spectral projector onto the eigenspace of
the operatorbu corresponding to its eigenvalue � .

Definition 9.1. Let M D .C ;O;D.O;C// be a contextual statistical model with two
fixed observables a; b 2 O – the reference observables. A QL representation of this
model (corresponding to these reference observables) is defined by a pair of maps with
the domains of definition CJ1

� C and OJ2
� O, respectively: J1 W CJ1

! QS , and
J2 W OJ2

! Ls.H /. These maps have the following properties:

AV). For any observable d 2 OJ2
and any context C 2 CJ1

the contextual and quan-
tum averages coincide:

EŒd=C 
 D hJ2.d/J1.C /; J1.C /i (9.1)

(if J1.C / belongs to the domain of definition of the operator J2.d/).

RO). Both reference observables u D a; b belong to OJ2
, the corresponding selection

contexts C u� , � 2 Xu, belong to CJ1
. Moreover,

a) the range of values Xu of the observable u coincides with the spectrum of the
corresponding operator Ou;

b) the contextual probability distribution coincides with the corresponding quantum
probability distribution given by the Born rule:

P.u D �=C / D jP u� J1.C /j2; C 2 CJ1
: (9.2)

If the operator Ou D J2.u/ has nondegenerate (purely discrete) spectrum, then

P u� D J1.C u� /˝ J1.C u� /; � 2 Xu: (9.3)

If a) and b) hold for any observable d 2 OJ2
(and not only for the reference ob-

servables u D a; b/, then the QL representation is called strong. From consideration
in Section 8, we obtain:

5For the unit sphere S of complex Hilbert space H , the set of equivalent classes C D f� D ei� W
� 2 Œ0; 2�/g,  2 S , is denoted by the symbol QS ; the set of self-adjoint operators,bd W H ! H , is
denoted by the symbol Ls.H /.
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Theorem 9.1. Let the reference observables a and b be symmetrically conditioned (as
well as statistically conjugate and dichotomous). Then the pair of maps J1 � J a=b W
C tr ! QS and J2 W fa; bg ! Ls.H

b=a

b
/, J2.a/ D Oa, J2.b/ D Ob, where the operators

Oa, Ob were defined in Section 7, give the strong QL representation.

Of course, we would be more happy to construct strong representations. However,
simple examples with OJ2

larger than just the set of reference observables fa; bg show
that, for an arbitrary observable d 2 OJ2

, one cannot expect more than coincidence
of the contextual (“classical”) and QL averages. Only for the reference observables a
and b the probability distributions are also preserved.

We now proceed with statistically conjugate and symmetrically conditioned di-
chotomous reference observables. We also assume that all observables belonging to
O take values in R. We would like to extend the QL-representation given by Theo-
rem 9.1.

Proposition 9.1. For any map f W R! R, we have:

EŒf .a/=C 
 D hf . Oa/i C
� hf . Oa/J a=b.C /; J a=b.C /i; (9.4)

EŒf .b/=C 
 D hf . Ob/i C
� hf . Ob/J a=b.C /; J a=b.C /i (9.5)

for any context C 2 C tr.

Proof. Since in the b-representation the Born rule holds, we obtain:

EŒf .b/=C 
 D
X

ˇ2Xb

f .ˇ/pbc .ˇ/ D
X

ˇ2Xb

f .ˇ/jh C ; ebˇ ij2 D hf . Ob/i C
;

where  C D J a=b.C /. The same result we have for the f . Oa/, since we have the Born
probability rule both for b and a (because the matrix Pb=a is doubly stochastic).

Proposition 9.2. Let f; g W R! R be two arbitrary functions. Then

EŒf .a/C g.b/=C 
 D hf . Oa/C g. Ob/i C
(9.6)

for any context C 2 C tr.

Proof. By using linearity of the mathematical expectation and linearity of the Hilbert
space scalar product we obtain:

EŒf .a/C g.b/=C 
 D EŒf .a=C 
CEŒg.b/=C 

D hf . Oa/i C

C hg. Ob/i C
D hf . Oa/C g. Ob/i C

:
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We recall that the frequency definition of probabilities is used. Therefore contex-
tual averages are defined on the basis of corresponding collectives or S -sequences.
Suppose that we have a collective (or just an S -sequence) xC .d/ corresponding to
measurements of the observable d under the context C :

xC .d/ D .x1; : : : ; xN ; : : : /; xj 2 Xd :

Then for any function f we can easily construct the collective xC .f .d// correspond-
ing to measurements of the observable f .d/ under the context C :

xC .f .d// D .f .x1/; : : : ; f .xN /; : : : /; xj 2 Xd :

The average EŒf .d/=C 
 is by definition the average with respect to the latter collec-
tive.

Therefore it would be natural to assume that for any observable d belonging to
O any functions f .d/ of this observable also belongs O (we recall that we consider
discrete observables).

However, to define the average EŒf .a/C g.b/=C 
 in the frequency framework we
should assume that collectives xC .a/ and xC .b/ are combinable, Chapter 1. Thus
there should exist the simultaneous probability distribution for these collectives:

xC .a/ D .a1; : : : ; aN ; : : : /; aj 2 Xa; (9.7)

xC .b/ D .b1; : : : ; bN ; : : : /; bj 2 Xb; (9.8)

and

PC .a D ˛; b D ˇ/ D lim
N!1

nN .˛; ˇ/

N
(9.9)

exists. Here, for any pair .˛; ˇ/ 2 Xa �Xb , nN .˛; ˇ/ is the number of realizations of
this pair in the first N measurements.

This is a very strong restriction. We could not make such an assumption in the
general case. Nevertheless, in some contextual statistical models it could happen for
collectives corresponding the reference observables. The reader should not be aston-
ished that we speak about existence of the joint probability distribution for observables
which are represented in the QL-model by noncommutative operators!

We proceed under the assumption that collectives (9.7), (9.8) are combinable. Thus
limit (9.9) always exists.

Denote the linear space of all observables of the form d D f .a/ C g.b/ by the
symbol OC.a; b/. We assume that

OC.a; b/ � O: (9.10)

Proposition 9.3. The map

J
a=b
2 W OC.a; b/! Ls.H

b=a

b
/; d D f .a/C g.b/! Od D f . Oa/C g. Ob/; (9.11)
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preserves the conditional expectation:

EŒd=C 
 D hJ a=b2 .d/i C
� hJ a=b.d/J a=b.C /; J a=b.C /i (9.12)

for any context C 2 C tr.

As a consequence of this proposition, we have:

Theorem 9.2. Let the reference observables a and b be symmetrically conditioned
(as well as statistically conjugate and dichotomous) and let (9.10) take place. Then
maps J1 � J a=b W C tr ! QS and J2 � J

a=b
2 W OC.a; b/ ! Ls.H

b=a

b
/ give the QL

representation.

The transformation J a=b2 preserves the conditional expectation for observables d 2
OC.a; b/. In general we cannot expect anything more, since in general J a=b2 does not
preserve probability distributions. It preserves them only for the reference observables.

The important problem is to extend the map J a=b2 to even a larger class of observ-
ables with preserving (at least) the averages. It might be natural to define (as we always
do in the conventional quantum formalism):

J
a=b
2 .f /. Oa; Ob/ D f . Oa; Ob/

where f . Oa; Ob/ is the pseudo-differential operator with the Weyl symbol f .a; b/.
It is possible to show that already for the function

f .a; b/ D ab ! f . Oa; Ob/ D . Oa Ob C Ob Oa/=2

even the equality (9.12) is violated.
Finally, we remark that, of course, the Definition 9.1 of a QL representation is lit-

tle bit complicated. However, this complexity is reality of interrelation between the
contextual statistical and quantum models. In any event our framework is essentially
simpler than Mackey’s one.

10 Domain of application of quantum-like
representation algorithm

In this section we collect conditions providing the possibility to apply QLRA and
obtain a natural QL representation of probabilities.

R1). The reference observables a and b are symmetrically conditioned6:

pb=a.ˇ=˛/ D pa=b.˛=ˇ/:
6This condition induces symmetry of the scalar product and the equivalence of the b=a and a=b

representations.
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R2). The reference observables a and b are statistically conjugate (mutually nonde-
generate)7:

pa=b.˛=ˇ/ > 0; pb=a.ˇ=˛/ > 0:

R2a). Context C is nondegenerate with respect to both reference observables a and b:

pbC .ˇ/ > 0; paC .˛/ > 0:

Suppose that also the following conditions hold:

R3). Coefficients of supplementarity are bounded by one8:

ˇ

ˇ

ˇ

pbC .ˇ/ �
P

˛ p
a
C .˛/p

bja.ˇ=˛/

2
q

Q

˛ p
a
C .˛/p

b=a.ˇ=˛/

ˇ

ˇ

ˇ

� 1;

ˇ

ˇ

ˇ

paC .˛/ �
P

ˇ p
b
C .ˇ/p

a=b.˛=ˇ/

2

q

Q

˛ p
b
C .ˇ/p

a=b.˛=ˇ/

ˇ

ˇ

ˇ

� 1:

Under these conditions we can apply QLRA (to probabilistic data). The QL repre-
sentation H

b=a

b
, see (3.3), is unitary equivalent to the representation H

b=a
a , see (6.1).

Thus we can identify these two representations. In the same way we can identify the
representations H

a=b
a and H

a=b

b
.

Moreover, the condition R1) implies that even the order of conditioning can be
changed peacefully. The representation H

b=a

b
is equivalent the representation H

a=b
a .

All these representations are identified in the conventional quantum mechanics. We
denote the result of such a unitary identification by Hab . In this symbol the order of a
and b does not play any role, in the same way we could use the symbol Hba.

7This condition induces noncommutativity of operators Oa and Ob representing these observables.
8This condition induces the QL-representation of the context C in the complex Hilbert space. Thus

complex numbers appear due to this condition.
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http://www.vxu.se/msi/forskn/publications.html.

[26] Bell J. S., On the Einstein–Podolsky–Rosen paradox, Physics 1 (1964), 195–200.

[27] Bell J. S., On the problem of hidden variables in quantum mechanics, Rev. Mod. Phys.
38 (1966), 447–452.

[28] Bell J. S., Speakable and unspeakable in quantum mechanics, Cambridge Univ. Press,
1987.



Bibliography 207
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Press., Paris, 1937–1938.

[64] Freund P. G. O. and Witten E., Adelic string amplitudes, Phys. Lett. B 199 (1987), 191–
195.



Bibliography 209
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[137] Li M. and Vitànyi P., An introduction to Kolmogorov complexity and its applications,
Springer-Verlag, Berlin-Heidelberg-New York, 1997.



Bibliography 213

[138] Lochak G., De Broglie’s initial conception of de Broglie waves, in: The wave-particle
dualism. A tribute to Louis de Broglie on his 90th Birthday, edited by S. Diner, D. Far-
gue, G. Lochak and F. Selleri, pp. 1–25, D. Reidel Publ. Company, Dordrecht, 1970.

[139] Ludwig G., Foundations of quantum mechanics, Springer-Verlag, Berlin, 1983.

[140] Mackey G. W., Mathematical Foundations of Quantum Mechanics, W. A. Benjamin
Inc., New York, 1963.

[141] Maddox J., Can chance be less than zero?, Nature 320 (1986), 481.
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