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Preface

The study of the subgroup growth of infinite groups is an area of mathematical
research that has grown rapidly since its inception at the Groups St. Andrews
conference in 1985. It has become a rich theory requiring tools from and having
applications to many areas of group theory. Indeed, much of this progress is
chronicled by Lubotzky and Segal within their book [42].

However, one area within this study has grown explosively in the last few
years. This is the study of the zeta functions of groups with polynomial sub-
group growth, in particular for torsion-free finitely-generated nilpotent groups.
These zeta functions were introduced in [32], and other key papers in the de-
velopment of this subject include [10, 17], with [19, 23, 15] as well as [42]
presenting surveys of the area.

The purpose of this book is to bring into print significant and as yet
unpublished work from three areas of the theory of zeta functions of groups.

First, there are now numerous calculations of zeta functions of groups by
doctoral students of the first author which are yet to be made into printed form
outside their theses. These explicit calculations provide evidence in favour of
conjectures, or indeed can form inspiration and evidence for new conjectures.
We record these zeta functions in Chap. 2. In particular, we document the
functional equations frequently satisfied by the local factors. Explaining this
phenomenon is, according to the first author and Segal [23], “one of the most
intriguing open problems in the area”.

A significant discovery made by the second author was a group where
all but perhaps finitely many of the local zeta functions counting normal
subgroups do not possess such a functional equation. Prior to this discovery,
it was expected that all zeta functions of groups should satisfy a functional
equations. Prompted by this counterexample, the second author has outlined
a conjecture which offers a substantial demystification of this phenomenon.
This conjecture and its ramifications are discussed in Chap. 4.

Finally, it was announced in [16] that the zeta functions of algebraic groups
of types Bl, Cl and Dl all possessed a natural boundary, but this work is
also yet to be made into print. In Chap. 5 we present a theory of natural
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boundaries of two-variable polynomials. This is followed by Chap. 6 where
the aforementioned result on the zeta functions of classical groups is proved,
and Chap. 7, where we consider the natural boundaries of the zeta functions
attached to nilpotent groups listed in Chap. 2.

The first author thanks Zeev Rudnick who first informed him of Con-
jecture 1.11, Roger Heath-Brown who started the ball rolling and Fritz
Grunewald for discussions which helped bring the ball to a stop. The first
author also thanks the Max-Planck Institute in Bonn for hospitality during
the preparation of this work and the Royal Society for support in the form of
a University Research Fellowship. The second author thanks the EPSRC for
a Research Studentship and a Postdoctoral Research Fellowship, and the first
author for supervision during his doctoral studies.

Oxford, Marcus du Sautoy
January 2007 Luke Woodward
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1

Introduction

1.1 A Brief History of Zeta Functions

Zeta functions are analytic functions with remarkable properties. They have
played a crucial role in the proof of many significant theorems in mathematics:
Dirichlet’s theorem on primes in arithmetic progressions, the Prime Number
Theorem, and the proofs of the Weil conjectures and the Taniyama–Shimura
conjecture to name just a few.

Many different types of zeta function have been defined. We summarise
below some of the more significant ones.

1.1.1 Euler, Riemann

In the eighteenth century a number of mathematicians were interested in
determining the precise value of the infinite series

1 +
1
4

+
1
9

+
1
16

+ · · · + 1
n2

+ · · · , (1.1)

the sum of the squares of the harmonic series. Daniel Bernoulli suggested 8/5
as an estimate for its value, but it was Leonhard Euler who first gave the
precise value of this sum. To do this, Euler defined the zeta function

ζ(s) =
∞∑

n=1

n−s

for s ∈ R, s > 1. The infinite sum (1.1) is then the zeta function evaluated at
s = 2. However Euler was able to do more than just give the value of ζ(2).
He gave a formula for the zeta function at every even positive integer:

ζ(2m) =
22m−1π2m|B2m|

(2m)!
.
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As an acknowledgement of the support the Bernoulli family had given him,
he was able to identify the rational constants B2m as the Bernoulli numbers
discovered by Daniel’s uncle Jacob. Since B2 = 1/12, it follows that ζ(2) =
π2/6. To this day, nobody has been able to find a comparable expression for
the zeta function at odd integers. It is not even known if ζ(3) is transcendental.

Euler also discovered the Euler product identity. If one sets

ζp(s) =
∞∑

n=0

p−ns =
1

1 − p−s
,

then

ζ(s) =
∏
p

ζp(s) ,

where the product is over all primes p. This identity is fundamental to the
connection between the zeta function and the primes. As well as encapsulating
the Fundamental Theorem of Arithmetic, it also offers a simple analytic proof
of a classical result on primes: the fact that the harmonic series 1+1/2+ · · ·+
1/n + · · · diverges means that there must be infinitely many primes.

The zeta function converges for s > 1 but diverges at s = 1. Later,
Bernhard Riemann, inspired by Cauchy’s work on functions of a complex
variable, considered the zeta function as a function on C. By doing so, he
could analytically continue the zeta function around the pole at s = 1, and
obtain a function meromorphic on the whole complex plane. The pole at
s = 1 is simple and is the only singularity of the zeta function. Furthermore,
Riemann showed that this zeta function satisfies a functional equation. If one
sets ξ(s) = Γ (s/2)π−s/2ζ(s), where Γ (s) is the gamma function, then

ξ(s) = ξ(1 − s) . (1.2)

This analytically-continued function is now known as the Riemann zeta func-
tion in honour of Riemann’s achievements with it.

Since the zeta function is nonzero for �(s) ≥ 1, the only zeros of the
Riemann zeta function with �(s) ≤ 0 are the trivial zeros at negative even
integers. Hence the only other zeros are those within the critical strip, 0 <
�(s) < 1. Riemann famously hypothesised that all the zeros lie on the critical
line �(s) = 1

2 . Hardy and Littlewood [33] have since proved the existence of
infinitely many zeros on the critical line and Conrey [3] has proved that more
than 40% of the zeros lie on the line. At the time of writing, the most recent
computer calculation [27] seems to have confirmed that the first ten trillion
(1013) Riemann zeros are on the line. Despite all this evidence, it is still not
known whether a zero lies off the line.

Such is the importance of this Hypothesis that there is a considerable
body of mathematical work which depends on the truth of this Hypothesis.
Its proof would simultaneously prove numerous other theorems for which its
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truth has had to be assumed. Furthermore, its status as one of the Clay
Mathematics Institute Millennium Prize Problems would also earn its author
a million-dollar prize.

Hadamard and de la Vallée Poussin were also able to utilise the power
of the Riemann zeta function. By showing that the Riemann zeta function is
nonzero on �(s) = 1, they independently proved the Prime Number Theorem,
that

lim
n→∞

π(n) log n

n
= 1 ,

where π(n) is the number of primes no larger than n.

1.1.2 Dirichlet

In the meantime, Dirichlet was taking the concept of the zeta function in a
new direction. His major innovation was to attach a coefficient an to each
term n−s. Recall that the Riemann zeta function is defined for �(s) > 1 by

ζ(s) =
∞∑

n=1

n−s .

A Dirichlet character with period m is a function χ : N>0 → C that has the
following properties:

• χ is totally multiplicative, i.e. χ(1) = 1 and χ(n1)χ(n2) = χ(n1n2) for all
n1, n2 ∈ N>0.

• χ(m + n) = χ(n) for all n ∈ N>0.
• χ(n) = 0 if gcd(n,m) > 1.

The Dirichlet L-function of χ is defined by

L(s, χ) =
∞∑

n=1

χ(n)n−s .

Using these L-functions, Dirichlet proved that if gcd(r,N) = 1, the arithmetic
progression r, r + N , r + 2N , . . . contains infinitely many primes. Further-
more, his proof yields the additional result that the primes are in some sense
evenly distributed amongst the congruence classes of integers coprime to N .
In honour of this achievement, any function of the form f(s) =

∑∞
n=1 ann−s

is called a Dirichlet series.
If m = 1 then χ is the trivial character, hence L(s, χ) = ζ(s), the Riemann

zeta function once again, which we know can be meromorphically continued
to C. If m > 1, L(s, χ) can be analytically continued to an entire function on
C. Indeed, the fact that L(s, χ) is nonzero at s = 1 for nontrivial characters
χ plays a key part in Dirichlet’s proof. A functional equation of L(s, χ) which
takes a similar shape to (1.2) can also be given, however its statement is
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less succinct than that satisfied by the Riemann zeta function. We refer the
interested reader to the section on Dirichlet L-functions in [37].

The multiplicativity of the characters χ leads easily to an Euler product
for the Dirichlet L-function,

L(s, χ) =
∏
p

1
1 − χ(p)p−s

.

Indeed, it is easy to see that any Dirichlet series where the sequence (an) grows
at most polynomially in n and is totally multiplicative (i.e. aman = amn for
all m, n ∈ N) satisfies such an Euler product.

1.1.3 Dedekind

The zeta functions described above have had predominantly number-theoretic
applications. It was Dedekind who was perhaps the first to use zeta functions
for an algebraic purpose. For K a finite extension of the rational numbers Q,
the Dedekind zeta function of the field K is defined by

ζK(s) =
∑

a

|ϑK : a|−s ,

where |ϑK : a| is the index of the ideal a in the ring of integers ϑK and the
sum is over all nonzero ideals a in ϑK . Again, this zeta function extends to a
meromorphic function on C, with a simple pole at s = 1.

Perhaps one of the most remarkable properties of the Dedekind zeta func-
tion is the class number formula, which encodes the class number of the field
in the residue of the pole of ζK(s) at s = 1. If ∆(K) is the discriminant of the
field K, RK the regulator of K, u the order of the group of roots of unity within
the ring of integers ϑK , r1 (resp. r2) is the number of real (resp. the number
of pairs of complex conjugate) embeddings of K and hK the class-number of
K, then

Ress=1(ζK(s)) =
2r1(2π)r2hKRK

u
√|∆(K)| .

As with the Riemann zeta function and Dirichlet L-functions, the Dedekind
zeta function satisfies a functional equation. Let n = |K : Q|, the degree of
the field extension, and put

ΞK(s) =

(√|∆(K)|
2r2πn/2

)s

Γ
(s

2

)r1

Γ (s)r2ζK(s) .

Then ΞK(s) = ΞK(1 − s).
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1.1.4 Artin, Weil

Dedekind’s zeta function considers finite extensions of the rational numbers
Q. E. Artin considered zeta functions connected to finite extensions of global
fields of characteristic p. One particular example he considered was the field
K = Fp(x)(

√
x3 − x), i.e. the field of rational functions with coefficients in

Fp(x) extended by adjoining
√

x3 − x. Let R be the integral closure of Fp[x]
in K. Artin considered the zeta function

ζR(s) =
∑
a�R

|R : a|−s .

If one sets y =
√

x3 − x, then quite clearly we have an elliptic curve y2 =
x3 − x. Artin found that the zeta function ζR(s) was encoding the number of
points on this elliptic curve. In particular,

ζR(s) = (1 − p−s) exp

( ∞∑
m=1

Npmp−ms

m

)
,

where

Npm = |{ (a, b) ∈ F2
pm : b2 = a3 − a }| + 1 .

The extra term is necessary to count the point at infinity in projective space.
Furthermore, Artin could show, for this elliptic curve and about 40 others,
that

exp

( ∞∑
m=1

Npmp−ms

m

)
=

(1 + πpp
−s)(1 + π̄pp

−s)
(1 − p−s)(1 − p1−s)

for a certain pair of complex conjugate numbers πp and π̄p which depend on
the elliptic curve. Hasse later extended this result to all elliptic curves, and
Weil to all smooth projective curves of arbitrary genus. Indeed, this property
that the zeros of the zeta function satisfy |π| = p1/2 is known as the analogue
of the Riemann Hypothesis for the zeta function.

Weil was inspired by his work to consider the zeta function of an arbitrary
smooth projective variety X defined over a finite field Fq. This is defined
analogously to Artin’s zeta function, but omitting the factor (1 − p−s), by

ζX(s) = exp

( ∞∑
m=1

Nqmq−ms

m

)
,

where Nqm is the number of points on X over the field Fqm . In particular,
ζX(s) was conjectured to always be a rational function in q−s, and to satisfy
the functional equation ζX(n − s) = ±q( 1

2 n−s)CζX(s), for some constant C
which can be given explicitly in terms of geometrical invariants of X. Weil was
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also able to formulate a strategy for proving these conjectures. He observed
that if one has a suitable cohomology theory similar to that for varieties
defined over C, the conjectures follow from various standard properties of
this cohomology theory. This observation motivated the development of vari-
ous cohomology theories and eventually led to the development of the l-adic
cohomology by Grothendieck and M. Artin, successfully employed by Deligne
to confirm these conjectures.

1.1.5 Birch, Swinnerton-Dyer

If one has a polynomial equation over Z, one can reduce it modulo p to give a
variety defined over a finite field. So, given the zeta functions for the reductions
mod p, what do we get when we multiply them all together? Does this ‘global’
zeta function tell us anything about the solutions of the original polynomial
over Q or Z?

In the case where X is an elliptic curve defined over Q, such a global zeta
function has been defined. If E is an elliptic curve over Q, the L-function of
E is defined by1

L(E, s) =
∏
p�2∆

1
1 − app−s + p1−2s

,

where ∆ is the discriminant of E, Np is the number of points on E mod p
and ap = p − Np. This Dirichlet series converges for �(s) > 3

2 and thanks
to the complete proof of the Taniyama–Shimura conjecture [1], it is known
that L(E, s) can be analytically continued to an entire function. A functional
equation relating L(E, s) and L(E, 2−s) also follows from Taniyama–Shimura.
It was conjectured by Birch and Swinnerton-Dyer that E has infinitely many
rational points if and only if L(E, s) is zero at s = 1, and furthermore the
torsion-free rank of the Mordell–Weil group of points on E over Q is the order
of the zero at s = 1. Coates and Wiles [2] have proved that if L(E, 1) �= 0
then E has only finitely many rational points, and it has since been shown
that the conjecture is true for r ≤ 1 [5]. However the rest of the conjecture
remains open. Like the Riemann Hypothesis, the Clay Foundation offers a
million-dollar prize for the proof of this conjecture.

1.2 Zeta Functions of Groups

By no means is the above a complete list of zeta functions. We have omitted
more than we have included, for we simply do not have the space to list them
all. The final chapter of the Encyclopedic Dictionary of Mathematics [37] is

1 There are factors associated to the primes p | 2∆ but for simplicity we ignore
them.
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a good place to start for those keen to know more about the panoply of zeta
functions.

Furthermore, the Encyclopedic Dictionary also lists four basic properties
a zeta function should ideally satisfy:

(ZF1) It should be meromorphic on the whole complex plane
(ZF2) It should have a Dirichlet series expansion
(ZF3) There should be some natural Euler product expansion
(ZF4) It should satisfy a functional equation

All the zeta functions we listed above satisfy all four of these properties. It
may also be of interest to determine the residue of the zeta function at a pole,
whenever such a singularity exists.

In this book, we consider these criteria for a relative newcomer to the
family of zeta functions, zeta functions of groups and rings. We cannot expect
that these zeta functions will reach the same lofty heights as the zeta functions
presented above, but we do hope the reader agrees with our viewpoint that
there is interesting mathematics concerning zeta functions of groups.

1.2.1 Zeta Functions of Algebraic Groups

The first example of a zeta function of a group is associated to a Q-algebraic
group G with a choice of some Q-rational representation ρ : G → GLn. The
zeta function ZG,ρ(s) of G has been defined as the Euler product over all
primes p of the following local zeta functions defined by p-adic integrals with
respect to the normalised Haar measure µG on G(Zp):

ZG,ρ,p(s) =
∫

G+
p

|det(ρ(g))|sp dµG(g) ,

where G+
p = ρ−1 (ρ (G(Qp)) ∩ Mn(Zp)) and | · |p denotes the p-adic norm.

The definition of the zeta function of an algebraic group goes back to the
work of Hey [35] who recognised that the zeta function attached to the alge-
braic group GLn could be used to encode the subalgebra structure of central
simple algebras. In the 1960s, Tamagawa established in [56] the meromorphic
continuation of the zeta functions of Hey attached to GLn. Subsequently,
Satake [50] and Macdonald [43] considered zeta functions of other reductive
groups. But it is the work of Igusa [36] in the 1980s that established explicit
expressions for the local factors of Chevalley groups which allow for some
analysis of the analytic behaviour of the global zeta functions. In particular
his work shows that the zeta function is built from Riemann zeta functions
and functions of the form

Z(s) =
∏

p prime

W (p, p−s) , (1.3)
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where W (X,Y ) ∈ Z[X,Y ], with W (X, 0) = 1. Further development of Igusa’s
work was made by the first author and Lubotzky [21] and [9] to more general
algebraic groups. The motivation for our work came from the observation in
[32] that zeta functions of algebraic groups were in fact counting subgroups
in nilpotent groups, thus extending Hey’s original motivation for the investi-
gation of these functions.

In [32] Grunewald, Segal and Smith proposed a definition of a ‘zeta func-
tion of a group G’:

ζ≤G (s) =
∑

H≤G

|G : H|−s .

The function may be viewed as a non-commutative version of the Dedekind
zeta function of a number field where we sum over subgroups instead of ideals.
The superscript ≤ in the zeta function emphasises that we are counting all
subgroups within G; we shall define variants of this zeta function later. If the
group is finitely generated (either as an abstract group or profinite group)
then the following invariant is finite for every natural number n:

a≤
n (G) = |{H : H ≤ G and |G : H| = n }| .

We can then write the zeta function as a Dirichlet series satisfying condi-
tion (ZF2):

ζ≤G (s) =
∞∑

n=1

a≤
n (G)n−s .

These zeta functions were first introduced in the 1980s by Grunewald,
Segal and Smith in [32] and studied in the particular case that G is a torsion-
free finitely generated nilpotent group (a T-group for short). The nilpotency
of G lends itself to a natural Euler product, thus satisfying condition (ZF3):

ζ≤G (s) =
∏

p prime

ζ≤G,p(s) ,

where ζG,p(s) =
∑∞

n=0 a≤
pn(G)p−ns.

One can also consider variants of these zeta functions in which one only
counts subgroups H with a particular property, for example normal subgroups,
whose associated zeta functions we denote by ζ�

G (s) and ζ�
G,p(s). One type of

subgroup deserves special mention, namely those H whose profinite comple-
tions are isomorphic to the profinite completion Ĝ of G. When G is nilpotent
the associated zeta function counting these subgroups, denoted by ζ∧G(s), is
(up to finitely many local factors) the same as the first zeta function of the
algebraic group G of automorphisms of G (or its associated Lie algebra) with
an appropriate representation.
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1.2.2 Zeta Functions of Rings

As well as introducing zeta functions of groups, Grunewald, Segal and Smith
defined the zeta function of a not-necessarily-associative ring L additively
isomorphic to Zd for some d, by

ζ≤L (s) =
∑
H≤L

|L : H|−s .

Zeta functions only counting ideals in L, and the corresponding local zeta
functions, can be defined in a similar way, with the obvious notation. We can
also define analogues of the pro-isomorphic zeta functions. ζ∧L(s) counts all
subrings H ≤ L such that H ⊗ Ẑ ∼= L⊗ Ẑ, where Ẑ is the profinite completion
of Z, with the corresponding local zeta functions ζ∧L,p(s) counting subrings H
of p-power index such that H ⊗ Zp

∼= L ⊗ Zp.
Since these zeta functions are defined in an analogous way to those count-

ing in groups, it is clear that these zeta functions have Dirichlet series expan-
sions. Moreover, these zeta functions satisfy the Euler product

ζ∗L(s) =
∏

p prime

ζ∗L,p(s)

for all ∗ ∈ {≤,�,∧}, regardless of whether L is nilpotent (or even soluble).
The motivating reason for introducing zeta functions of rings is to provide

an alternative way of calculating zeta functions of groups. In [51], the Mal’cev
correspondence between a T-group G and a nilpotent Lie ring L is detailed. In
particular it is noted that L is additively isomorphic to Zh, where h = h(G) is
the Hirsch length of G, i.e. the number of infinite factors in any composition
series of G. In [32] this correspondence was extended to show that

ζ∗G,p(s) = ζ∗L,p(s) (1.4)

for ∗ ∈ {≤,�,∧} and for all but finitely many primes p depending only on
the Hirsch length of G. For every calculation of a zeta function ζ∗L(s) for L a
nilpotent Lie ring, we obtain a zeta function (up to finitely many local factors)
of the zeta function of the corresponding T-group. The linearity of the rings
makes it considerably less difficult to calculate ζ∗L,p(s) than ζ∗G,p(s), although
it cannot be said that these calculations are in general easy.

In the case that G is nilpotent of class 2, then we can short-circuit the
Mal’cev correspondence. We define a Lie ring on G by setting L = G/Z(G)⊕
Z(G), where Z(G) is the centre of G, with the Lie bracket on L induced by the
commutator on G. It is not difficult to see in this case that ζ∗G,p(s) = ζ∗L,p(s)
for all primes p.

Since there is no requirement that the rings are nilpotent, we may consider
non-nilpotent Lie rings. Indeed, the first author and Taylor calculated in [24]
the zeta function of the Lie ring sl2(Z). Furthermore, Chap. 3 is devoted to a
family of soluble Lie rings.
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1.2.3 Local Functional Equations

Many examples of local zeta functions of T-groups and Lie rings satisfy a local
functional equation of the form

ζ∗G,p(s)
∣∣
p→p−1 = (−1)rpb−asζ∗G,p(s) (1.5)

for ∗ ∈ {≤,�,∧}, a, b, r ∈ N, and for at least all but finitely many primes p.
For ∗ = ∧ it is known that the local zeta functions satisfy a functional

equation of the form (1.5). This was proved by the first author and Lubotzky
in [21]. This functional equation has its origins in symmetries for the associated
building of the algebraic group [21].

In [59], Voll proves that the zeta functions counting all subgroups also
satisfy functional equations. Voll also proves that the local ideal zeta functions
of T-groups of nilpotency class 2 also satisfy functional equations. However,
this result is best possible, as the following result demonstrates.

Theorem 1.1. Let the Lie ring L(3,2) be given by the presentation

〈z, w1, w2, x1, x2, y1 : [z, w1] = x1, [z, w2] = x2, [z, x1] = y1〉 ,

where, up to antisymmetry, all unlisted Lie brackets of basis elements are
zero. For all primes p, the local zeta function ζ�

L(3,2),p
(s) satisfies no functional

equation of the form (1.5).

Via the Mal’cev correspondence, we obtain a T-group G(3,2) of nilpotency
class 3. For all but finitely many primes p, ζ�

G(3,2),p
(s) satisfies no functional

equation. The zeta function ζ�
L(3,2),p

(s) is given explicitly on p. 49.
Chapter 4 is concerned with a reciprocity conjecture for p-adic integrals,

‘Conjecture 4.5’. This conjecture can be used to predict when local zeta func-
tions should satisfy functional equations, and the shape of the functional equa-
tion satisfied. It agrees with the results of Voll mentioned above. However, we
have been unable to formulate this conjecture rigorously. There are techni-
cal preconditions which need to be satisfied, but we do not know what these
preconditions are. However, we do believe that these conditions are always
satisfied by the p-adic integrals representing local zeta functions of nilpotent
Lie rings.

Assuming this conjecture, we list below the most significant consequences
of it:

Theorem 1.2. Let L be a Lie ring additively isomorphic to Zd for some d ∈
N. Assume Conjecture 4.5.

1. Under no further assumptions on the Lie ring L,

ζ≤L,p(s)
∣∣∣
p→p−1

= (−1)dp(d
2)−dsζ≤L,p(s)

for all but finitely many primes p.
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2. Suppose L is nilpotent of class c. Let σi(L) denote the ith term of the
upper-central series of L, and put

N =
c∑

i=0

rank(L/σi(L)) .

Then either
(i) For all but finitely many primes p,

ζ�
L,p(s)

∣∣
p→p−1 = (−1)dp(d

2)−Nsζ�
L,p(s)

or
(ii) For all but finitely many primes p, ζ�

L,p(s) satisfies no such functional
equation.

In particular, alternative (ii) only occurs if L has nilpotency class ≥ 3.

Equation (1.4) yields corresponding results for the local zeta functions of
T-groups.

We also define a subset of nilpotent Lie rings within which we can de-
termine whether alternative (i) or (ii) holds. This subset contains all class-2
nilpotent Lie rings, L(3,2) mentioned above, and many of the examples pre-
sented in Chap. 2. It also contains the free nilpotent Lie rings:

Theorem 1.3. For c, d ≥ 2, let Fc,d be the free class-c-nilpotent Lie ring on
d generators. Assume Conjecture 4.5. Then ζ�

Fc,d,p(s) satisfies a functional
equation of the form (1.5) for all but finitely many primes p.

In Chap. 2 we document experimental evidence concerning the existence
of these local functional equations. All this evidence counts in favour of
Conjecture 4.5.

We also present a partial proof of a significant special case of this conjec-
ture. This proof is not intended to be rigorous, merely to give some reason
why the conjecture may be true.

1.2.4 Uniformity

Many of the examples of zeta functions of nilpotent groups calculated in
[32, 28, 57, 64] can be written in terms of Riemann zeta functions and zeta
functions of type (1.3). The remaining examples had local factors that de-
pended on some finite division of primes. Indeed speculation in [32] hinted
that the following could plausibly have a positive answer:

Question 1.4. Let G be a finitely generated nilpotent group and ∗ ∈ {≤,�}.
Do there exist finitely many rational functions W1(X,Y ), . . . , Wr(X,Y ) ∈
Q(X,Y ) such that for each prime p there is an i for which

ζ∗G,p(s) = Wi(p, p−s) ?



12 1 Introduction

Such zeta functions are called finitely uniform. If additionally r = 1, we say
the zeta function is uniform.

In [13] and [14] the first author has shown that this question in fact has a
negative answer as the following Proposition indicates:

Proposition 1.5. For each elliptic curve E = y2 − x3 + x, define a class-2-
nilpotent group GE by the following presentation, where all unlisted commu-
tators are trivial:

GE =

〈
x1, . . . , x6, y1, y2, y3 :

[x1, x4] = y3, [x1, x5] = y1, [x1, x6] = y2,
[x2, x4] = y1, [x2, x5] = y3,
[x3, x4] = y2, [x3, x6] = y1

〉

Then there exist two non-zero rational functions P1(X,Y ) and P2(X,Y ) ∈
Q(X,Y ) such that for almost all primes p,

ζ�
GE ,p(s) = P1(p, p−s) + |E(Fp)|P2(p, p−s) , (1.6)

where |E(Fp)| is the number of points on E mod p.

The non-uniform behaviour therefore arises from the term |E(Fp)|. To see
where the elliptic curve is hiding in the presentation, take the determinant of
the matrix with entries [xi, xj+3] and you’ll get the projectivised version of E.

1.2.5 Analytic Properties

We have so far considered zeta functions of groups and rings purely as formal
beasts. So what of the convergence of this series as a function in the complex
variable s? Such a Dirichlet series converges on some right half of the complex
plane if and only if the invariant an(G) grows polynomially in n. We now
have a characterisation of groups of so called polynomial subgroup growth or
PSG groups. In the category of abstract finitely generated groups, these are
the virtually soluble groups of finite rank [41]. For pro-p groups, they are the
p-adic analytic groups [40]. For profinite groups the description is slightly more
complicated but the groups are essentially extensions of pro-soluble groups of
finite rank by products of simple groups of Lie type with bounds on the rank
and field degrees of the Lie groups involved [52]. These are the classes of
groups for which our function defines an analytic function on the right half
complex plane { s ∈ C : �(s) > αG } where αG is the abscissa of convergence:

αG = lim sup
n→∞

log(a1(G) + · · · + an(G))
log n

.

It is clear that the zeta function of a ring L additively isomorphic to Zd has
polynomial subring growth. This follows from the fact that subrings of L are
subgroups of Zd. We shall use the notation α≤

G and α�
G for the abscissae of

convergence of ζ≤G (s) and ζ�
G (s), and similarly for Lie rings.
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In Chap. 5, we consider the situations where we can analytically continue
these analytic functions beyond their radius of convergence to meromorphic
functions on the whole complex plane, so satisfying (ZF1). In the category of
pro-p groups or for the local zeta functions ζG,p(s) this is possible because in
general these are rational functions in p−s:

Proposition 1.6 ([10]). Let G be a finitely generated PSG pro-p group (i.e.
a p-adic analytic group). Then ζG(s) is rational in p−s and can be continued
to a meromorphic function on the whole complex plane.

Proposition 1.7 ([10]). Let G be a finitely generated PSG group (i.e. a vir-
tually soluble group of finite rank). Then, for all primes p, ζG,p(s) is a rational
function in p−s and can be continued to a meromorphic function on the whole
complex plane.

Combining these results for the local factors of zeta functions of algebraic
groups and nilpotent groups, the local zeta functions score reasonably well
against the conditions (ZF1)–(ZF4) for a zeta function.

Let us now return to the global zeta functions which are Euler products of
these rational functions. Using the explicit expression (1.7), the first author
and Grunewald [17] show that zeta functions of nilpotent groups always admit
some analytic continuation beyond the region of convergence. The key to their
analysis is the proof of an explicit expression for local factors which depends
on counting points mod p on a system of varieties, and the use of Artin L-
functions. This work also establishes the useful result that the abscissa of
convergence of these zeta functions is always a rational number.

This analytic continuation allows us to apply the following Tauberian
Theorem (see for example the Corollary on p. 121 of [47]) to zeta func-
tions of groups and rings. This allows us to deduce the precise rate of sub-
group/subring growth:

Theorem 1.8. Let the Dirichlet series f(s) =
∑∞

n=1 ann−s with non-negative
coefficients be convergent for �(s) > α > 0. Assume in its domain of conver-
gence, f(s) = g(s)(s − α)−w + h(s) holds, where g(s), h(s) are holomorphic
functions in the closed half-plane �(s) ≥ α, g(α) �= 0 and w > 0. Then for x
tending to infinity, we have∑

n≤x

an =
(

g(α)
αΓ (w)

+ o(1)
)

xα(log x)w−1 .

In [14] the explicit expression of [17] together with the formalism of motivic
zeta functions developed in [20] is used to establish a hierarchy in the class of
nilpotent groups according to the complexity of the varieties that arise in the
explicit expression. The analysis of the following chapter can then be seen to
apply to nilpotent groups at the bottom of this hierarchy where the varieties
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involved are nothing more complicated that Q-rational varieties and hence
the zeta functions are of type (1.3). Specifically we see how the general theory
developed here applies to the early examples of [32] and [28] that led to the
speculation of Grunewald, Segal and Smith that all nilpotent groups were at
the bottom of such a hierarchy.

1.3 p-Adic Integrals

p-adic integrals are an immensely powerful tool used in the study of zeta func-
tions of groups and Lie rings. Indeed, we have already seen them used to define
the zeta function of an algebraic group. There are many other applications
that these important tools have.

We shall introduce these integrals below. Before we do this, we must intro-
duce a notion of ‘size’ of subsets of Zp. Let µ be the additive Haar measure on
subsets Zp normalised so that µ(Zp) = 1. The key properties of this measure
are that:

1. µ is additive, in that if S1 and S2 are disjoint measurable sets, then µ(S1∪
S2) = µ(S1) + µ(S2).

2. µ is translation invariant, in that if S is measurable and a ∈ Zp, µ(a+S) =
µ(S).

As a consequence of these two properties, µ(pmZp) = p−m for any m ∈ N.
There are pm pairwise disjoint additive cosets of pmZp, all of which have
the same measure, and the sum of the measures of all pm cosets must be 1.
Furthermore, all open subsets of Zp are measurable, since the additive cosets
of the form a + pmZp form a base of neighbourhoods for the topology of Zp.
Finally, by abuse of notation, we can extend µ to a Haar measure on Zn

p for
n ∈ N>0.

With a Haar measure in hand, we can now define the p-adic integral of
a constant function. Let x = (x1, . . . , xn) be n commuting indeterminates. If
f(x) takes the constant value c on the measurable set S ⊆ Zn

p , then∫
S

|f(x)|sp dµ = µ(S)|c|sp .

In other words, we simply multiply the constant value by the measure of the
set on which the function is constant. For a nonconstant function f(x), we
split the domain of integration into pieces on which |f(x)|p is constant, and
then sum the measure of each piece. In other words, if v(x) denotes the p-adic
valuation of x and Vf (k) = {x ∈ Zn

p : v(f(x)) = k }, then∫
Zn

p

|f(x)|sp dµ =
∞∑

k=0

µ(Vf (k))p−ks .
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These integrals can easily be generalised to include a factor |g(x)|p in-
dependent of s in the integrand, or to integrate over a (measurable) subset
of Zn

p .
One particular type of p-adic integrals, cone integrals, are especially im-

portant. Let fi(x), gi(x) be polynomials in x for 0 ≤ i ≤ l. The cone integral
with cone data D = {f0(x), g0(x), . . . , fl(x), gl(x)} is defined to be

ZD(s, p) =
∫

Ψ(D)

|f0(x)|sp|g0(x)|p dµ ,

where

Ψ(D) = {x ∈ Zm
p : v(fi(x)) ≤ v(gi(x)) for i = 1, . . . , l } .

The first application of p-adic integrals came with the proof that the local
zeta functions ζ∗G,p(s) and ζ∗L,p(s) for ∗ ∈ {≤,� ∧} are rational functions in
p−s for all primes p. To prove this, Grunewald, Segal and Smith then showed
that these local zeta functions can be expressed as ‘definable’ p-adic integrals.
A deep theorem due to Denef [6] yields the required rationality.

Definable integrals were also employed by the first author in [11] to prove
two significant results on enumerating p-groups:

• Firstly, let f(n, p, c, d) be the number of finite groups of order pn of nilpo-
tency class c generated by d elements. Then f(n, p, c, d) satisfies a linear
recurrence relation with constant coefficients as n varies and p, c and d
remain fixed.

• Secondly, the qualitative part of Newman and O’Brien’s ‘Conjecture P’ [48]
is confirmed.

Whilst the rationality of definable p-adic integrals is undoubtedly a sig-
nificant theoretical advance, it is sadly of little help if one actually wishes to
compute such an integral explicitly. This is due to the model-theoretic ‘black-
box’ at the heart of the proof. For a set of cone integral data D, the first author
and Grunewald [17] considered the resolution of singularities attached to the
polynomial F =

∏l
i=0 fi(x)gi(x). Using this approach they give an explicit

expression for a cone integral ZD(s, p) in terms of the data attached to the
resolution. The resolution of F in some sense ‘breaks it up’ into irreducible
smooth projective varieties Ei as i runs through some finite indexing set T .
It is then proved that

ZD(s, p) =
∑
I⊆T

cp,IPI(p, p−s) , (1.7)

where cp,I is the number of points mod p on all Ei for i ∈ I and on no other
Ei, and PI(p, p−s) are rational functions. It is then proved [17, Corollary 5.6]
that if L is a ring additively isomorphic to Zd for d ∈ N, and ∗ ∈ {�,≤}, then

ζ∗L,p(s) = (1 − p−1)−dZD∗(s − d, p)
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for suitable cone data D∗; indeed we shall explicitly construct the polynomials
comprising the cone data in Proposition 2.1.

The explicit expression (1.7) yields immediately another proof of the ra-
tionality of the local factors ζ∗L,p(s). We mentioned above that the global zeta
function ζ∗L(s) of every Lie ring L additively isomorphic to Zd has rational
abscissa of convergence and always admits some analytic continuation beyond
this abscissa, their proofs employ a variation of (1.7).

Expression (1.7) is also of interest when studying the uniformity the local
zeta functions of a ring L. Since the factors PI(p, p−s) are uniform in p, the
variation of ζ∗L,p(s) as p varies is controlled by the variation of the coefficients
cp,I mod p. This of course raises the question of what varieties can be encoded
by a nilpotent group. Some progress in answering this question has been made
by Griffin [29].

The explicit expression is also of practical use in evaluating p-adic integrals.
Guided by the resolution of singularities of the appropriate polynomial, the
first author and Taylor compute in [24] the zeta function counting all subrings
of the Lie ring sl2(Z). Numerous further such calculations have been performed
by Taylor [57] and the second author [64] in their theses.

A further application of cone integrals is the conjecture due to the second
author alluded to above and presented in Chap. 4. This conjecture is essen-
tially a reciprocity conjecture involving cone integrals. It may be viewed as an
attempt to generalise a theorem due to Denef and Meuser [8] on Igusa-type
zeta functions, i.e. those defined by p-adic cone integrals for which l = 0 and
g0(x) = 1.

1.4 Natural Boundaries of Euler Products

We mentioned above that local zeta functions of groups have meromorphic
continuation to C. However, the same is not true in general for the global zeta
functions. In Chap. 5, we turn to the general analytic character of functions
of the form

Z(s) =
∏
p

W (p, p−s) (1.8)

defined as Euler products of two-variable polynomials. This includes the zeta
functions of algebraic groups and many of the examples of zeta functions of
groups and rings listed in Chap. 2.

We begin Chap. 5 by considering a particular example which arises in the
zeta function of the algebraic group G = GSp6 and a corresponding zeta
function of type ζ∧G,p(s) for a nilpotent group. In particular we prove:

Proposition 1.9. Let

Z(s) =
∏

p prime

ZGSp6,p(s) .
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Then Z(s) (1) converges for �(s) > 5; (2) has meromorphic continuation to
�(s) > 4; but (3) has a natural boundary at �(s) = 4 beyond which no further
meromorphic continuation is possible.

As far as we can establish, this is the first place to document the failure of the
global zeta function of an algebraic group to have meromorphic continuation
to the whole complex plane. The proof of the natural boundary depends on
showing that every point on the line �(s) = 4 can be realised as a limit point
of zeros of the local factors W (p, p−s) which all crucially lie on the right of
�(s) = 4 (i.e. in the region of meromorphic continuation established in (2)
above).

Throughout the remainder of Chap. 5, we generalise these ideas to prove a
general result about the existence of natural boundaries for functions defined
via Euler products of two-variable polynomials. This can be seen as con-
tributing to a project begun by Estermann in the 1920s [25] and continued
by Kurokawa [38, 39]. Estermann proved the following (see [25]):

Proposition 1.10. Let h(X) = 1 + a1X + · · · adX
d =

∏
(1 − αiX) ∈ Z[X].

Set L(s) =
∏

p h(p−s) which converges for �(s) > 1. Then

1. L(s) can be meromorphically continued to �(s) > 0.
2. If |αi| = 1 for i = 1, . . . , d (in which case we say that h(X) is unitary)

then L(s) can be meromorphically continued to the whole complex plane.
Otherwise �(s) = 0 is a natural boundary.

In our case where we are dealing with polynomials in two variables, the
following has been conjectured:

Conjecture 1.11. Let

W (X,Y ) = 1 +
r∑

i=1

(ai0 + ai1X + · · · + aini
Xni)Y i ∈ Z[X,Y ] .

Set L(s) =
∏

p W (p, p−s). Then L(s) can be meromorphically continued to
the whole complex plane if and only if for i = 1, . . . , n there exist unitary
polynomials gi(Z) and integers bi, ci such that

W (X,Y ) = g1(Xb1Y c1)±1 . . . gn(XbnY cn)±1 .

One direction of the conjecture follows easily from Estermann’s Theorem.
We can view our result in Chap. 5 as a contribution to the other half of this
conjecture. To explain our result we suppose firstly that any unitary factors
of W (X,Y ) have been removed and that W (X,Y ) �= 1 (otherwise Z(s) is
meromorphic).

Let

α = max
{

nk + 1
k

: k = 1, . . . , r

}
,

β = max
{ nk

k
: k = 1, . . . , r

}
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and put

W̃1(X,Y ) =
∑

j/i=β

aijX
jY i .

This is one factor of something that we have called the ghost of W (X,Y )
(see [16] and [18]). We express W (X,Y ) as a unique cyclotomic expansion

W (X,Y ) =
∏

(n,m)∈N2

(1 − XnY m)cn,m (1.9)

with cn,m ∈ Z. Using this cyclotomic expansion we can prove:

Theorem 1.12. Z(s) converges on { s ∈ C : �(s) > α } and can be meromor-
phically continued to { s ∈ C : �(s) > β }.

We conjecture that �(s) = β will be the natural boundary for meromorphic
continuation of Z(s). We are able to prove the following:

Theorem 1.13. Suppose that W (X,Y ) �= 1 and has no unitary factors. Sup-
pose that either

1. W̃1(X,Y ) is not unitary; or
2. For each N there exists a prime p > N and zeros of W (p, Y ) with |Y | <

pβ, and there are finitely many pairs (n,m) with cn,m > 0; or
3. For each N there exists a prime p > N and zeros of W (p, Y ) with |Y | <

pβ, and there are infinitely many pairs (n,m) with cn,m > 0 and the
Riemann Hypothesis holds.

Then �(s) = β is a natural boundary for Z(s).

In case 1 we show that we are guaranteed local zeros on the right of
�(s) = β. In cases 2 and 3 we must assume the existence of such zeros. As
we shall explain, this actually covers the majority of polynomials. In case 2
we can get away without the Riemann Hypothesis, but in case 3 we must have
some control over the zeros of the Riemann zeta function to be able to prove
that their zeros won’t kill the zeros of the local factors we will be using to
realise our natural boundary.

A useful observation (see Corollaries 5.8 and 5.9) is that whenever β is an
integer we can’t be in case 3.

In Sect. 5.3 we explain some subcases of case 3 where we can avoid the
Riemann Hypothesis by using current estimates for the number of zeros off
the critical line. In Sect. 5.4 we speculate on some strategies for dealing with
polynomials with all their local zeros to the left of �(s) = β. One case in
which we are successful requires a strong assumption about the zeros of the
Riemann zeta function:
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Theorem 1.14. Suppose that W (X,Y ) �= 1 and has no unitary factors. Sup-
pose that there are an infinite number of pairs (n,m) with cn,m �= 0 and
(n + 1

2 )/m > β. Under the assumption that Riemann zeros are rationally in-
dependent (i.e. if ρ = τ +σi and ρ′ = τ ′ +σ′i are zeros of ζ(s) then σ/σ′ /∈ Q)
then �(s) = β is a natural boundary for Z(s).

In Chap. 5 we introduce two hypotheses which can easily be checked in
any individual case to determine whether the polynomial W (X,Y ) satisfies
the conditions of Theorem 1.13.

In Chaps. 6 and 7 we return to the motivating examples of zeta functions of
algebraic groups and nilpotent groups. All these examples satisfy the hypoth-
esis of Theorem 1.13 that there exist local zeros to the right of the candidate
natural boundary.

Let G be one of the classical groups GO2l+1, GSp2l or GO+
2l of type Bl, Cl

or Dl. Let W be the corresponding Weyl group and λ(w) denote the length
of an element w ∈ W , Φ the root system with fundamental roots α1, . . . , αl,
Φ+ the set of positive roots of Φ, and ai integers defined by

∏
α∈Φ+

α =
l∏

i=1

αai
i .

In [36], Igusa proved that ZG(s) could be expressed in terms of Riemann zeta
functions and a function of type (1.8) where

W (X,Y ) = PG(X,Y ) =

⎛⎝∑
w∈W

X−λ(w)
∏

αj∈w(Φ−)

Xaj Y bj

⎞⎠ ,

where bi are integers defined by expressing the dominant weight of the natural
representation in terms of the basis for the root system.

By analysing this explicit expressions of Igusa and the root systems in each
particular case we apply in Chap. 6 the work of Chap. 5 to prove the following
result which was first announced in [18]:

Theorem 1.15. Let G be one of the classical groups GO2l+1, GSp2l or GO+
2l

of type Bl, Cl or Dl respectively. Then ZG(s) has abscissa of convergence al+1
and has a natural boundary at �(s) = β where

1. β = l2 − 1 = al−1 if G = GO2l+1,
2. β = l(l + 1)/2 − 2 = al−2/2 + 1 if G = GSp2l, and
3. β = l(l − 1)/2 − 2 = al−2/2 if G = GO+

2l.

Here we are taking the natural representation in the definition of ZG(s).
The proof of the Theorem in the case of GSp2l and GO+

2l requires an applica-
tion of a natural factorisation of the polynomial PG(X,Y ) which we establish
in Appendix B to remove various unitary factors which initially interfere with
the analysis.
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In Chap. 7 we consider the natural boundaries of the zeta functions of
nilpotent groups presented in Chap. 2.

We mentioned earlier the concept of the ghost zeta function attached to
W (X,Y ). This partly grew out of the analysis of Chap. 5. The philosophy of
this book is that natural boundaries occur because the local zeros of W (p, p−s)
are shifted away from the candidate natural boundary but as p tends to in-
finity, these zeros tend to points on the boundary. The concept of the ghost
polynomial grew out of this observation. The ghost polynomial W̃ (X,Y ) is
defined so that its zeros are in some sense the limit of the zeros of W (p, p−s)
as p tends to infinity. In some philosophical sense W̃ (X,Y ) is the polynomial
that W (X,Y ) is trying to be. This removes the first obstruction then to mero-
morphic continuation. So the interesting question is: does the zeta function
defined by the ghost polynomial W̃ (X,Y ) have meromorphic continuation? If
it does we say the ghost is friendly. For more details we refer the reader to
[16] and [18] where the ghosts of the classical groups are proved to be friendly.

The ghost zeta functions attached to nilpotent groups are mostly friendly
too. However there are a number that are unfriendly, in that they too fail
to have meromorphic continuation to C. In Chap. 7, we mention whether the
ghosts of the zeta functions of nilpotent Lie rings calculated in Chap. 2 are
friendly.
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Nilpotent Groups: Explicit Examples

In this chapter we list some of the (now numerous) calculations of zeta func-
tions of T-groups and Lie rings. The primary emphasis is on bringing into print
explicit calculations that have yet to be published. However, we aim this chap-
ter to be more than just a gallery of results. Hence we begin the chapter with
some details about how these zeta functions have been calculated.

2.1 Calculating Zeta Functions of Groups

Zeta functions of groups have been calculated using a number of different
methods. The first examples counted ideals in T-groups of class 2 and were
calculated by Grunewald, Segal and Smith in [32]. A key part of their work is
the formula [32, Lemma 6.1]

ζ�
G,p(s) = ζZn,p(s)

∑
B≤A

|A : B|n−s|G : X(B)|−s , (2.1)

where A = γ2(G), G/A ∼= Zd and X(B)/B = Z(G/B). Their calculations are
made by evaluating (2.1) for each group in turn. Although there are a few
general lemmas proved which help speed matters along, their methods are to
some extent tailored to each group individually. Nonetheless, their methods
suffice to calculate all but perhaps finitely many of the local factors ζ�

G,p(s)
for every T-group G of class 2 and Hirsch length at most 6.

In [60], Voll uses (2.1) and the Bruhat-Tits building of SLn(Qp) to compute
normal zeta functions of T-groups whose centres are free abelian of rank 2 or
3. In particular, Voll computes the normal zeta function of all T-groups whose
centre is of rank 2, and confirms the functional equation (1.5). This work is
based on the classification of such groups by Grunewald and Segal [31]. For
centres of rank 3, the geometry of the associated Pfaffian hypersurface comes
into play. Provided the singularities of this hypersurface are in some sense
not too severe, Voll gives a formula for the local normal zeta function of L
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depending on the number of points on the Pfaffian hypersurface. A highlight
of this work is explicit expressions for the rational functions P1(X,Y ) and
P2(X,Y ) in the local normal zeta function of the ‘elliptic curve example’
(1.6).

A more general approach is used by Voll in [61], where he considers the case
where the Pfaffian hypersurface has no lines. Indeed this occurs generically
if the abelianisation has rank greater than 4r − 10, where r is the dimension
of the centre. Provided this Pfaffian is smooth and absolutely irreducible, the
functional equation (1.5) holds. Voll also gives in [61] an explicit formula for
the normal zeta functions of the class-2 nilpotent groups known as ‘Grenham
groups’, using a combinatorial formula for the number of points on flag vari-
eties. This formula is also employed by Voll in [58], where he gives an explicit
formula for the local zeta functions counting all subgroups in the Grenham
groups.

One key assumption Voll makes in [61] is that the associated Pfaffian
hypersurface has no lines. A forthcoming paper by Paajanen [49] presents
the first step in overcoming this obstacle. She considers the normal zeta
function of a class-2 nilpotent group GS which encodes the Segre surface
S : x1x4 − x2x3 = 0. In particular, she calculates that

ζ�
GS ,p(s) = W0(p, p−s) + (p + 1)2W1(p, p−s) + 2(p + 1)W2(p, p−s)

for explicit rational functions Wi(p, p−s), i = 0, 1, 2. The coefficients (p + 1)2

and 2(p + 1) arise from the geometry of S reduced mod p: being isomorphic
to P1(Fp) × P1(Fp) it has (p + 1)2 points and 2(p + 1) lines.

Voll has also used combinatorial methods to yield an explicit expression
for the local normal zeta functions of the class-2 free nilpotent groups [62].
One key ingredient is an explicit expression for a sum of certain Hall polyno-
mials. Whilst there seems to be no simple formula for the Hall polynomials
themselves, a polynomial expression for the sum has been known for some
time.

One approach common to the work of Voll and Paajanen is to decom-
pose the local normal zeta function as a sum of rational functions with coeffi-
cients corresponding to invariants of a suitable algebraic variety. They are then
able to deduce functional equations by virtue of the fact that each individual
rational function with its coefficient satisfies the same functional equation.
In particular,

ζ�
GS ,p(s)

∣∣
p→p−1 = p28−12sζ�

GS ,p(s) ,

with the three rational functions above satisfying

W0(X−1, Y −1) = X28Y 12W0(X,Y ) ,

W1(X−1, Y −1) = X26Y 12W1(X,Y ) ,

W2(X−1, Y −1) = X27Y 12W2(X,Y ) .

The ‘missing’ powers of X are provided by the coefficients (p+1)2 and 2(p+1).
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2.2 Calculating Zeta Functions of Lie Rings

Most of the zeta functions presented in this chapter have been calculated by
the method of Lie rings, p-adic integrals and ad-hoc resolutions of singularities.
In particular, the zeta functions calculated in the theses of Taylor [57] and the
second author [64] were calculated this way. In particular, we shall work with
Lie rings instead of groups, and leave the reader to obtain the corresponding
results concerning groups via the Mal’cev correspondence. We shall also make
the assumption that our Lie rings are additively isomorphic to either Zd or
Zd

p, i.e. (additively) finitely generated and torsion-free.
Recall that ζ∗L,p(s) = ζ∗L⊗Zp

(s). Given a Zp-Lie ring L with basis B =

(e1, . . . , ed) for L, calculating either of the zeta functions ζ≤L,p or ζ�
L,p is essen-

tially a four-stage calculation:

1. Constructing the cone integral.
2. Breaking the integral into a sum of monomial integrals.
3. Evaluating the monomial integrals.
4. Summing the resulting rational functions.

2.2.1 Constructing the Cone Integral

Let M be an upper-triangular d × d matrix M = (mi,j) with entries in Zp.
We may consider the rows m1,. . . ,md of this matrix to be additive generators
of a submodule of L. This submodule will be a subring if

[mi,mj ] ∈ 〈m1, . . . ,md〉Zp
for all 1 ≤ i < j ≤ d (2.2)

and an ideal if

[ei,mj ] ∈ 〈m1, . . . ,md〉Zp
for all 1 ≤ i, j ≤ d . (2.3)

The following proposition and its proof gives us an explicit description of
the cone conditions, i.e. the conditions of the form v(fi(x)) ≤ v(gi(x)) for
1 ≤ i ≤ l. It is essentially Theorem 5.5 of [17].

Proposition 2.1. Let L be a Z-Lie ring with basis B = (e1, . . . , ed). Let V �
p

be the set of all upper-triangular matrices over Zp such that Zd
p · M � L ⊗

Zp, and V ≤
p the set of such matrices such that Zd

p · M ≤ L ⊗ Zp. Then V �
p

and V ≤
p are defined by the conjunction of polynomial divisibility conditions

v(fi(x)) ≤ v(gi(x)) for 1 ≤ i ≤ l. Furthermore, the conditions defining V �
p

satisfy deg fi(x) = deg gi(x), and those defining V ≤
p satisfy deg fi(x) + 1 =

deg gi(x).

Proof. Let m1, . . . ,md denote the rows of the matrix M , Cj the matrix whose
rows are ci = [ei, ej ]. Let M ′ denote the adjoint matrix of M and
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M � = M ′ diag(m−1
2,2 . . . m−1

d,d, m
−1
3,3 . . . , m−1

d,d, . . . , m
−1
dd , 1) .

Since M is upper-triangular, the (i, k) entry of M � is a homogeneous polyno-
mial of degree k − 1 in the variables mr,s with 1 ≤ r ≤ s ≤ k − 1.

The rows of M generate an ideal if we can solve, for each 1 ≤ i, j ≤ d, the
equation

miCj = (yi,j,1, . . . , yi,j,d)M

for (yi,j,1, . . . , yi,j,d) ∈ Zd
p. This rearranges to

miCjM
� = (m1,1yi,j,1, . . . , m1,1 . . . md,dyi,j,d)

for (yi,j,1, . . . , yi,j,d) ∈ Zd
p. Set g�

i,j,k(x) to be the kth entry of the d-tuple
miCjM

�. g�
i,j,k(x) is a homogeneous polynomial of degree k in the mr,s, and

if we set fi,j,k(x) = m1,1 . . . mk,k, we obtain the conditions v(fi,j,k(x)) ≤
v(g�

i,j,k(x)) with deg(fi,j,k(x)) = deg(g�
i,j,k(x)).

Similarly, the rows of M generate a subring if we can solve, for 1 ≤ i <
j ≤ d,

mi

⎛⎝ d∑
r=j

mj,rCr

⎞⎠M � = (m1,1yi,j,1, . . . , m1,1 . . . md,dyi,j,d)

for (yi,j,1, . . . , yi,j,d) ∈ Zd
p. Again, we set g�

i,j,k(x) to be the kth entry of the

d-tuple mi

(∑d
r=j mj,rCr

)
M �. However, this time g�

i,j,k(x) is a homogeneous

polynomial of degree k +1, so we obtain conditions v(fi,j,k(x)) ≤ v(g�
i,j,k(x)).

Furthermore, deg(fi,j,k(x)) + 1 = deg(g�
i,j,k(x)). ��

Whilst every subring or ideal H has a matrix M whose rows additively
generate H, these matrices are by no means unique. Multiplying a row by
a p-adic unit or adding a multiple of a row to another row above it may
change the matrix but does not alter the subring additively generated by
the rows. Each diagonal entry mi,i is unique up to multiplication by p-adic
units, hence the measure of values it can take is (1 − p−1)|mi,i|p. Each off-
diagonal entry mi,j is only unique modulo |mj,j |−1

p . Hence the measure of
upper-triangular matrices generating H is (1−p−1)d|m1,1|p|m2,2|2p . . . |md,d|dp.
Note that although mi,i may vary, |mi,i|p is uniquely determined by H.

Finally, we note that the index of H is |m1,1m2,2 . . . md,d|−1
p . Hence we

may write

ζ∗L,p(s) = (1 − p−1)−d

∫
V ∗

p

|m1,1 . . . md,d|sp|m1
1,1 . . . md

d,d|−1
p dµ , (2.4)

or
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ζ∗L,p(s + d) = (1 − p−1)−d

∫
V ∗

p

|m1,1 . . . md,d|sp|md−1
1,1 . . . m1

d−1,d−1|p dµ . (2.5)

Note that the translation in (2.5) is necessary. Equation (2.4) is not a cone inte-
gral since the constant (independent of s) term in the integrand has a negative
exponent. We complete the set of cone data by setting f0(x) = m1,1 . . . md,d,
g0(x) = md−1

1,1 . . . md−1,d−1 and D = {f0(x), g0(x), . . . , fl(x), gl(x)}. We there-
fore obtain the following result.

Proposition 2.2. Let L be a Lie ring additively isomorphic to Zd, ∗ ∈ {≤,�}.
There exists a set of cone integral data D = {f0, g0, . . . , fl, gl such that, for
all primes p,

ζ∗L,p(s + d) = (1 − p−1)−dZD(s, p) .

Furthermore, deg f0 = d, deg g0 =
(
d
2

)
.

2.2.2 Resolution

Once we have constructed the cone integral, the next step is to break the
integral into a sum of integrals with monomial conditions. As mentioned in
the Introduction, resolution of singularities gives us one way of doing this, and
more importantly guarantees that this can always be done. Hironaka’s proof
of resolution of singularities of any singular variety defined over a field of char-
acteristic 0 has been refined by Villamayor, Encinas, Bierstone and Milman,
and Hauser amongst others to produce an explicit constructive procedure.
In particular, Bodnár and Schicho have implemented a computer program to
calculate resolutions. We refer the reader wanting to know more to Hauser’s
accessible article on resolution [34] and its comprehensive bibliography.

However, we shall not use resolution of singularities, for a number of rea-
sons. Firstly, the computer program of Bodnár and Schicho works best in
small dimensions, and we shall typically require resolutions of a polynomial
with a large number of variables. Secondly, we shall find that we do not need
to resolve all the singularities of the polynomial F =

∏l
i=0 fi(x)gi(x). Singu-

larities lying outside V ∗
p do not need to be resolved. Thirdly, there are ‘tricks’

that can be applied to simplify the polynomial conditions and speed up the
process of decomposing the integral as a sum of monomial integrals. Some of
these will take advantage of the fact we are working over Qp, whereas reso-
lution is a general procedure for arbitrary fields of characteristic 0. A further
disadvantage of resolution is the highly technical language it is most rigor-
ously formulated in. We do not wish to alienate readers unfamiliar with this
advanced machinery.

Therefore, we resolve singularities in an elementary and ‘ad-hoc’ manner.
A collection of ‘tricks’ are used to simplify the conditions under the integral,
and when the conditions can be simplified no further we bisect the integral.
This bisection is achieved by choosing a pair of variables and splitting the
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domain of integration into two parts depending on which variable has the
larger valuation. Further ‘tricks’ and bisections may then be necessary to
reduce the integral into smaller and smaller pieces until all the pieces become
monomial.

The idea of bisecting the integral as described above has its origins in the
concept of a blow-up, an operation fundamental to the process of resolution
of singularities. Indeed, we shall refer to our bisections as ‘blow-ups’. Fur-
thermore, we can use ideas originating from algebraic geometry to provide
motivation for our choices of blow-ups. For example, suppose a non-monomial
factor of one of the cone conditions is of the form Pxj + Qxk for variables xj

and xk and nonzero polynomials P and Q. Let us also assume xj and xk have
nontrivial integrand exponent or feature somewhere in a monomial condition.
The polynomial F , being the product of all the cone data polynomials, has the
factors xj , xk and Pxj +Qxk, and therefore has a singularity with non-normal
crossings at xj = xk = 0. A blow-up involving xj and xk will then replace
this polynomial factor with xj(P + Qx′

k) (where xk = xjx
′
k) or xk(Px′

j + Q)
(where xj = x′

jxk) on the two sides of the blow-up. If P and Q are both
independent of xj and xk, then this trick reduces the sum of the total degrees
of the terms of the non-monomial factor. This trick is even more useful when
one of xj and xk divides the other side of the condition, since the monomial
factor xj or xk introduced above will cancel out. Algebraic geometry therefore
provides inspiration for our method, but we do not totally rely on it.

Initially, the integrand and the left-hand side of each condition v(fi(x)) ≤
v(gi(x)) is monomial, and this is something we preserve. For brevity we also
write fi(x) | gi(x) instead of v(fi(x)) ≤ v(gi(x)).

Examples of ‘Resolution’

To illustrate the concepts in the previous section, we present two example
calculation, where we construct the p-adic integral corresponding to a Lie ring
and in each case apply some ‘tricks’ and blow-ups to split it into monomial
integrals. The first example will illustrate the basic ideas, with some more
unusual and less obvious tricks employed in the second.

For the first example, we shall choose to count all subrings of the Lie ring

L = 〈x1, x2, x3, x4, y1, y2 : [x1, x2] = y1, [x1, x3] = y2, [x2, x4] = y2〉 .

In this case, the set V ≤
p is given by

V ≤
p = { (m1,1,m1,2 . . . , m6,6) ∈ Z21

p : fi(x) ≤ gi(x) for 1 ≤ i ≤ 6 } ,

where the six1 conditions fi(x) | gi(x) are listed below:

1 It is mere coincidence that there are six conditions in this case. Generally the
number of conditions obtained bears no relation to the rank of the underlying Lie
ring.
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m5,5 | m1,1m2,2 ,

m6,6 | m1,2m4,4 ,

m6,6 | m2,2m3,4 ,

m6,6 | m2,2m4,4 ,

m6,6 | m1,1m3,3 + m1,2m3,4 ,

m5,5m6,6 | m1,1m2,2m5,6 − m1,1m2,3m5,5 − m1,2m2,4m5,5 + m1,4m2,2m5,5 .

These conditions are independent of m1,3 and mi,j for 1 ≤ i ≤ 4, 5 ≤ j ≤ 6.
For the sake of clarity, we shall relabel the remaining 12 variables as a, b, . . . , l.
Thus,

ζ≤L,p(s) = (1 − p−1)−6I ,

where

I =
∫

W

|a|s−1
p |d|s−2

p |g|s−3
p |i|s−4

p |j|s−5
p |l|s−6

p dµ

and W is the subset of (a, b, . . . , l) ∈ Z12
p defined by the conditions

j | ad , l | bi , l | dh , l | di , l | ag + bh , jl | adk − aej − bfj + cdj .

We perform a blow-up with l and d to remove the variable c. On one side of
the blow-up it disappears altogether, on the other its coefficient dj divides the
sum of the other terms of the polynomial:

1. v(l) ≤ v(d): set d = d′l. The conditions l | dh and l | di become trivially
true, and we can also remove the term cd′jl from the last condition. Thus

I1 =
∫

j|ad′l
l|bi

l|ag+bh
jl|ad′kl−aej−bfj

|a|s−1
p |d′|s−2

p |g|s−3
p |i|s−4

p |j|s−5
p |l|2s−7

p dµ .

Note that the exponent of |l|p is 2s − 7, as opposed to 2s − 8 = (s − 2) +
(s− 6). The discrepancy is caused by the dilation of the measure that the
change d = d′l brings about. By dividing the l out of d, we have allowed
d′ to take a greater measure of values in Zp than d. Hence we introduce a
Jacobean |l|p into the integrand to balance out the dilation.

2. v(l) > v(d): set l = dl′ with v(l′) ≥ 1. This then implies l′ | h and l′ | i.
To remove these two variable-divides-variable conditions, set h = h′l′ and
i = i′l′.

I2 =
∫

j|ad
d|bi′

dl′|ag+bh′l′

djl′|adk−aej−bfj+cdj
v(l′)≥1

|a|s−1
p |d|2s−7

p |g|s−3
p |i|s−4

p |j|s−5
p |l′|s−4

p dµ .
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The last condition implies

dj | adk − aej − bfj (2.6)

and thus l | c + (adk− aej − bfj)/dj, so we shall set c = c′ − (adk− aej −
bfj)/dj. After this substitution, the conditions no longer imply (2.6), so
to avoid altering the value of the integral, we must explicitly enforce (2.6).
We can also set c′ = c′′l to remove the condition l | c′. Hence

I2 =
∫

j|ad

d|bi′

dl′|ag+bh′l′

dj|adk−aej−bfj
v(l′)≥1

|a|s−1
p |d|2s−7

p |g|s−3
p |i′|s−4

p |j|s−5
p |l′|2s−7

p dµ .

In both cases we have removed c or c′′ from the conditions and the number
of terms in the last condition has dropped from 4 to 3.

We play a similar trick on I1 and I2 to remove f . By a stroke of luck it
turns out to also eliminate h from I1 and h′ from I2:

1.1. v(l) ≤ v(b): set b = b′l. Terms b′hl and −b′fjl disappear from the last
two conditions:

I1.1 =
∫

j|ad′l
l|ag

jl|a(d′kl−ej)

|a|s−1
p |d′|s−2

p |g|s−3
p |i|s−4

p |j|s−5
p |l|2s−6

p dµ .

1.2. v(l) > v(b): set l = bl′ with v(l′) ≥ 1, and i = i′l′. Now b | ag and
bj | a(bd′kl′ − ej) are implied by the last two conditions, so we set h =
h′l − ag/b and f = f ′l + a(bd′kl′ − ej)/bj. Again, we must introduce
explicitly the implied conditions.

I1.2 =
∫

j|abd′l′

b|ag
bj|a(bd′kl′−ej)

v(l′)≥1

|a|s−1
p |b|2s−6

p |d′|s−2
p |g|s−3

p |i′|s−4
p |j|s−5

p |l′|3s−8
p dµ .

2.1. v(d) ≤ v(b): set b = b′d:

I2.1 =
∫

j|ad

dl′|ag
dj|a(dk−ej)

v(l′)≥1

|a|s−1
p |d|2s−6

p |g|s−3
p |i′|s−4

p |j|s−5
p |l′|2s−7

p dµ .
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2.2. v(d) > v(b): set d = bd′ with v(d′) ≥ 1, i′ = d′i′′. Also bl′ | ag and bj |
a(bd′k−ej), so we can set h′ = d′h′−ag/bl′ and f = df ′+a(bd′k−ej)/bj:

I2.2 =
∫

j|abd′

bl′|ag
bj|a(bd′k−ej)

v(l′)≥1
v(d′)≥1

|a|s−1
p |b|2s−6

p |d′|3s−8
p |g|s−3

p |i′′|s−4
p |j|s−5

p |l′|2s−7
p dµ .

All four of these integrals are very similar, and can be reduced to monomials
in the same way. For simplicity we shall consider only I1.1.

1.1.1. v(j) ≤ v(d′kl): in this case, d′kl/j is an integer, so we may set e =
e′ + d′kl/j:

I1.1.1 =
∫

j|ad′l
l|ag

j|d′kl
l|ae′

|a|s−1
p |d′|s−2

p |g|s−3
p |i|s−4

p |j|s−5
p |l|2s−6

p dµ .

1.1.2. v(j) > v(d′kl): set j = j′d′kl with v(j′) ≥ 1:

I1.1.2 =
∫

j′k|a
l|ag

j′l|a(1−ej′)
v(j′)≥1

|a|s−1
p |d′|2s−6

p |g|s−3
p |i|s−4

p |j′|s−5
p |k|s−4

p |l|3s−10
p dµ .

Since v(j′) ≥ 1, v(1 − ej′) = 0. Thus

I1.1.2 =
∫

j′k|a
l|ag
j′l|a

v(j′)≥1

|a|s−1
p |d′|2s−6

p |g|s−3
p |i|s−4

p |j′|s−5
p |k|s−4

p |l|3s−10
p dµ .

In this case we can break up the initial integral into eight monomial integrals,
however larger examples may need to be broken up into many more integrals.
Evaluating these monomial integrals and summing gives us the local zeta
function counting all subrings in g6,4, which can be found below on p. 44.

The second example is more involved, and demonstrates some other tricks
which sometimes come in useful. We count ideals in the free class-3 2-generator
nilpotent Lie ring F3,2. This has presentation

〈x1, x2, y, z1, z2 : [x1, x2] = y, [x1, y] = z1, [x2, y] = z2〉 .
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Now

I := ζ�
F3,2,p(s) = (1 − p−1)−5

∫
W

|m1,1|s−1
p . . . |m5,5|s−5

p dµ ,

where W is defined by the conjunction of the following conditions:

m3,3 | m1,1 , m3,3 | m1,2 , m3,3 | m2,2 , m4,4 | m1,1 , m4,4 | m3,3 ,
m5,5 | m2,2 , m5,5 | m2,3 , m5,5 | m3,3 , m3,3m4,4 | m1,1m3,4 ,

m4,4m5,5 | m3,3m4,5 , m3,3m4,4 | m1,2m3,4 − m1,3m3,3 ,
m3,3m4,4 | m2,2m3,4 − m2,3m3,3 , m4,4m5,5 | m1,1m4,5 − m1,2m4,4 ,

m3,3m4,4m5,5 | m1,2m3,4m4,5 − m1,2m3,5m4,4 − m1,3m3,3m4,5 ,
m3,3m4,4m5,5 | m2,2m3,4m4,5 − m2,2m3,5m4,4 − m2,3m3,3m4,5 ,
m3,3m4,4m5,5 | m1,1m3,4m4,5 − m1,1m3,5m4,4 − m1,3m3,3m4,4 .

We start by setting m1,1 = m′
1,1m3,3, m1,2 = m′

1,2m3,3, m2,2 = m′
2,2m3,3,

m3,3 = m′
3,3m4,4 and m2,3 = m′

2,3m5,5. Doing so ‘uses up’ five of the first
eight conditions. These conditions, and the changes that eliminate them, are
typical when calculating local ideal zeta functions. Variables m1,4, m1,5, m2,4

and m2,5 don’t feature among the above conditions. Relabelling the remainder
from a to k tells us that

I = (1 − p−1)−5

∫
W ′

|a|s−1
p |d|s−2

p |f |3s−3
p |i|4s−6

p |k|s−4
p dµ ,

where W is the subset of all (a, . . . , k) ∈ Z11
p satisfying

i | ag , k | fi , k | fj , i | bg − c , i | dg − ek , ik | agj − ahi − ci ,
ik | bgj − bhi − cj , ik | dgj − dhi − ekj .

Our focus is on the conditions and how to perform blow-ups to reduce the
conditions to monomials. We shall therefore neglect to track the changes to
the integrand.

We started the last calculation by aiming to remove a variable from the
integral. We cannot do the same here. Instead, we choose a blow-up between
i and j. Note that each term of the right-hand side of each of the last three
conditions above contains an i or a j. Where v(i) ≤ v(j), we set i = i′j and
then h = h′ + gj′ to obtain that

W1 :=
{

(a, . . . , k) ∈ Z11
p :

i | ag , k | fi , k | dh′ , i | bg − c ,
i | dg − ek , k | ah′ + c , k | bh′ + cj′

}
.

A blow-up with k and c is the thing to do here. Where v(k) ≤ v(c), two
of the binomial conditions drop to monomial and a blow-up with i and k
will suffice to reduce to monomials. However, more interesting things happen
when v(k) > v(c). Firstly, let’s set k = ck′ with v(k′) ≥ 1, and then set
j′ = j′′k − bh′/c:
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W1.2 :=

⎧⎨⎩ (a, . . . , k′) ∈ Z11
p :

c | bh′ , i | ag , ck′ | fi , ck′ | dh′ ,
i | bg − c , i | dg − eck′ , ck′ | ah′ + c ,

v(k′) ≥ 1

⎫⎬⎭ .

Consider the last condition, ck′ | ah′ + c. Since v(k′) ≥ 1, v(ck′) > v(c). This
implies that v(ah′) = v(c), so that ah′ | c. Set c = ac′h′:

W1.2 =

⎧⎨⎩ (a, . . . , k′) ∈ Z11
p :

a | b , i | ag , ac′h′k′ | fi , ac′k′ | d ,
i | bg − ac′h′ , i | dg − ac′eh′k′ ,

c′k′ | 1 + c′ , v(k′) ≥ 1

⎫⎬⎭ .

c′k′ | 1 + c′ and v(k′) ≥ 1 imply that c′ ≡ −1 (mod p), in particular c′ is a
unit. We set c′ = c′′k− 1 as well as b = ab′ and d = ad′k′. After some tidying,
we end with the following monomial conditions:

W1.2 =
{

(a, . . . , k′) ∈ Z11
p : i | ag , ah′k′ | fi , i | ah′ , v(k′) ≥ 1

}
.

We now return to the second half of the initial blow-up. We have

W2 :=

⎧⎨⎩(a, . . . , k) ∈ Z11
p :

k | fj , i′j | ag , i′j | bg − c , j | dh − e′′k ,
k | d(g − hi′) , i′k | bg − bhi′ − c ,

i′k | ag − ahi′ − ci′ , v(i′) ≥ 1

⎫⎬⎭.

It is best not to do a blow-up at this point. Instead, we do a couple of changes
of variable. Firstly, we set g = g′ + hi′. Note that this change will make two
conditions longer. Setting c = c′+bg′ and then c′ = c′′i′k gives us the binomial
conditions

W2 =

⎧⎨⎩ (a, . . . , k) ∈ Z11
p :

k | dg′ , k | fj , j | bh − c′′k ,
j | dh − e′′k , i′j | a(g′ + hi′) ,

i′k | g′(a − bi′) , v(i′) ≥ 1

⎫⎬⎭ .

A blow-up between j and k will remove the first two binomial conditions. It
is then routine (although not trivial) to split the two parts into monomials.
Evaluating the resulting monomial integrals and summing yields ζ�

F3,2,p(s), on
p. 51.

2.2.3 Evaluating Monomial Integrals

A p-adic cone integral with monomial conditions can be expressed as a sum
of integral points within a polyhedral cone in Rn, and there are algorithms
for evaluating such sums. One such example is the Elliott–MacMahon algo-
rithm described in [54]. However, the second author considered an alternative
approach, which appears to be more efficient for the monomial cone integrals
arising from zeta functions of Lie rings, but is not guaranteed to terminate.

This approach is to continue applying ‘blow-ups’ to further decompose
the monomial integrals until the conditions become trivial. One strategy for
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choosing blow-ups is to choose the two variables which appear most frequently
on opposite sides of conditions without appearing on the same side. It is not
difficult to automate this strategy, and in practice it has worked well, but it
is not difficult to construct integrals for which this strategy will fail.

Most of the ‘tricks’ described in the previous section are aimed at reducing
non-monomial conditions to monomials and so cannot be applied. The excep-
tion is that any conditions fi(x) | gi(x) where gi(x) is a single variable xj can
be removed by setting xj = x′

jfi(x).

2.2.4 Summing the Rational Functions

The final stage is to sum the rational functions resulting from the trivial
integrals. Whilst being the most elementary, it can also be the most compu-
tationally intensive. Given a perhaps large collection of rational functions in
two variables, we must add them up. This sort of summation can easily be
performed by a computer algebra system such as Maple or Magma. Indeed
this is the approach used by Taylor [57]. However, we can make use of the fact
that these rational functions are of the form

P (X,Y )∏r
i=1(1 − XaiY bi)

for some bivariate polynomial P (X,Y ) with ai, bi ∈ N. Typically, many of
the factors of the denominator will cancel out once all the terms have been
summed. If there are a large number of rational functions, it is advantageous
to pick factors we believe will cancel, sum all the rational functions with
this factor in the denominator and then hope that the factor cancels in this
partial sum. We may then replace the rational functions we summed with the
partial sum and continue. With less factors in the denominator, the remaining
rational functions should sum more quickly.

2.3 Explicit Examples

For the rest of this chapter we give explicit expressions for the local zeta
functions of many Lie rings. We also list the functional equation satisfied by
these local zeta functions (where applicable), and the abscissae of convergence
of the corresponding global zeta functions. We also give the order of the pole
on the abscissa of convergence when it is not a simple pole. Unless we state
otherwise, the local zeta functions we present are uniform, i.e. are given by
the same rational function in p and p−s for all primes p.

It may be noted that there are more zeta functions counting ideals than
all subrings. There are usually more conditions under a p-adic integral count-
ing ideals than under one counting all subrings, but the cone conditions for
counting ideals are simpler.
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The calculations involved are frequently long and tedious and were often
performed with computer assistance. Therefore we shall not provide proofs of
the calculations. This contrasts with the approach of Taylor [57], who does
provide proofs of his calculations in his thesis. One such proof runs to 40
pages. There are several zeta functions of comparable or greater complexity
presented in this chapter, and we simply don’t have the space to present the
proofs. Nonetheless we believe that all the zeta functions listed below are
correct. In particular, there shouldn’t have been any errors in transcription
since the LATEX source for each zeta function was generated from the computer
calculations.

The advent of computer calculations has also led to zeta functions with
the numerator and denominator of large degree. We have confined some of
the larger numerator polynomials to Appendix A. However, there are four
excessively large polynomials which we have chosen not to include since we
do not feel the extra 23 pages they would require would be justified. Further
details may be obtained from the authors on request.

Many of the examples will satisfy a functional equation of the form

ζ∗L,p(s)
∣∣
p→p−1 = (−1)cpb−asζ∗L,p(s) (2.7)

for all but perhaps finitely many primes p. However, there are a small number
that don’t. When we say that a local zeta function ‘satisfies no functional
equation’, we mean that it satisfies no functional equation of the form (2.7).

The Lie rings we shall be considering can be presented conveniently by
giving a basis and the nontrivial Lie brackets of the basis elements. Most
of these Lie brackets will be zero, so we make the convention that, up to
antisymmetry, any Lie bracket not listed is zero.

2.4 Free Abelian Lie Rings

Let L = Zd, the free abelian Lie ring of rank d. Then

ζ�
L (s) = ζ≤L (s) =

d−1∏
i=0

ζ(s − i) ,

where ζ(s) is the Riemann zeta function. Hence this function is meromorphic
on the whole of C. In particular, the Tauberian Theorem (Theorem 1.8) men-
tioned in the Introduction allows us to deduce that if an is the number of
subgroups of index n in Z2, then

n∑
i=1

ai ∼ π2

12
n2 ,

a result which seems remarkably difficult to obtain without the machinery of
zeta functions.
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In [22] it is shown that for any finite extension G of the free abelian group
Zd, the zeta functions ζ∗G(s) are all meromorphic. This is proved by relating
the zeta functions to classical L-functions that arise in the work of Solomon,
Bushnell and Reiner. The zeta functions of the 17 plane crystallographic
groups, also known as the ‘wallpaper groups’, were calculated by McDermott
and are listed in [22].

We shall see that many of the zeta functions have a factor similar to the
local factor of ζZd(s). It is therefore convenient to use the notation

ζZn,p(s) =
n−1∏
i=0

ζp(s − i) , (2.8)

where ζp(s) = (1 − p−s)−1 is the p-factor of the Riemann zeta function.

2.5 Heisenberg Lie Ring and Variants

Let H be the free class two, two generator nilpotent Lie ring. This is the Lie
ring of strictly upper-triangular matrices

U3(Z) =

⎛⎝ 0 Z Z
0 0 Z
0 0 0

⎞⎠ .

It is given by the presentation

H = 〈x, y, z : [x, y] = z〉 ,

where, as mentioned above, [x, z] = [y, z] = 0. For n ≥ 2, let Hn denote the
direct product of n copies of the Heisenberg Lie ring.

Theorem 2.3 ([32]).

ζ�
H,p(s) = ζZ2,p(s)ζp(3s − 2) ,

ζ≤H,p(s) = ζZ2,p(s)ζp(2s − 2)ζp(2s − 3)ζp(3s − 3)−1 .

These zeta functions satisfy the functional equations

ζ�
H,p(s)

∣∣
p→p−1 = −p3−5sζ�

H,p(s) ,

ζ≤H,p(s)
∣∣∣
p→p−1

= −p3−3sζ≤H,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
H =

α≤
H = 2, with ζ≤H(s) having a double pole at s = 2.
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Theorem 2.4 ([32, 57]).

ζ�
H2,p(s) = ζZ4,p(s)ζp(3s − 4)2ζp(5s − 5)ζp(5s − 4)−1 ,

ζ≤H2,p(s) = ζZ4,p(s)ζp(2s − 4)2ζp(2s − 5)2ζp(3s − 5)ζp(3s − 7)ζp(3s − 8)

× W≤
H2(p, p−s) ,

where W≤
H2(X,Y ) is

1 − X4Y 3 − 3X5Y 3 − X7Y 3 + X5Y 4 − X9Y 4 − X8Y 5 + 3X9Y 5 − 2X11Y 5

+ X10Y 6 + 3X11Y 6 + 3X12Y 6 + 2X13Y 6 + X14Y 6 − X14Y 7 + X15Y 7

− X14Y 8 + X15Y 8 − X15Y 9 − 2X16Y 9 − 3X17Y 9 − 3X18Y 9 − X19Y 9

+ 2X18Y 10 − 3X20Y 10 + X21Y 10 + X20Y 11 − X24Y 11 + X22Y 12

+ 3X24Y 12 + X25Y 12 − X29Y 15 .

These zeta functions satisfy the functional equations

ζ�
H2,p(s)

∣∣∣
p→p−1

= p15−10sζ�
H2,p(s) ,

ζ≤H2,p(s)
∣∣∣
p→p−1

= p15−6sζ≤H2,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
H2 =

α≤
H2 = 4.

Theorem 2.5 ([57]).

ζ�
H3,p(s) = ζZ6,p(s)ζp(3s − 6)3ζp(5s − 7)ζp(7s − 8)ζp(8s − 14)W�

H3(p, p−s) ,

where W�
H3(X,Y ) is

1 − 3X6Y 5 + 2X7Y 5 + X6Y 7 − 2X7Y 7 + X12Y 8 − 2X13Y 8 + 2X13Y 12

− X14Y 12 + 2X19Y 13 − X20Y 13 − 2X19Y 15 + 3X20Y 15 − X26Y 20 .

This zeta function satisfies the functional equation

ζ�
H3,p(s)

∣∣∣
p→p−1

= −p36−15sζ�
H3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H3 = 6.

Theorem 2.6 ([64]).

ζ�
H4,p(s) = ζZ8,p(s)ζp(3s − 8)4ζp(5s − 9)ζp(7s − 10)ζp(8s − 18)ζp(9s − 11)

× ζp(10s − 20)ζp(11s − 27)W�
H4(p, p−s) ,
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where the polynomial W�
H4(X,Y ) is given in Appendix A on p. 179. This zeta

function satisfies the functional equation

ζ�
H4,p(s)

∣∣∣
p→p−1

= p66−20sζ�
H4,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H4 = 8.

Theorem 2.7. Let (K : Q) = 2, R be the ring of integers of K and L =
U3(R). Then

1. If p is inert (of which there are possibly infinitely many) then

ζ�
L,p(s) = ζZ4,p(s)ζp(5s − 5)ζp(6s − 8)(1 + p4−5s) .

2. If p is ramified (of which there are only finitely many) then

ζ�
L,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5) .

3. If p is split then U3(R ⊗ Zp) = U3(Zp) × U3(Zp) and we already have a
calculation of this factor from Theorem 2.4 above.

For all split or inert primes p, this zeta function satisfies the functional equa-
tion

ζ�
L,p(s)

∣∣
p→p−1 = p15−10sζ�

L,p(s) ,

whereas for p ramified,

ζ�
L,p(s)

∣∣
p→p−1 = p15−12sζ�

L,p(s) .

The corresponding global zeta function has abscissa of convergence α�
L = 4.

Taking the Euler product of all these factors we can represent the global
zeta function in terms of the Riemann zeta function and the Dedekind zeta
function ζK(s) of the underlying quadratic number field K (as observed in
Corollary 8.2 of [32]):

Corollary 2.8.

ζ�
L (s) = ζZ4(s)ζ(5s − 4)ζ(5s − 5)ζK(3s − 4)/ζK(5s − 4) . (2.9)

Theorem 2.9 ([32, 57]). Let L = U3(R3) be the Lie ring of 3 × 3 upper
triangular matrices over the ring of integers R3 of a algebraic number field K
of degree 3 over Q.

1. If p is inert in R3, then

ζ�
L,p(s) = ζZ6,p(s)ζp(7s − 8)ζp(8s − 14)ζp(9s − 18)W�

L,in(p, p−s)

where

W�
L,in(X,Y ) = 1 + X6Y 7 + X7Y 7 + X12Y 8 + X13Y 8 + X19Y 15 .
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2. If p ramifies completely in R3 (i.e. if (p) = p3 for some prime ideal p),
then

ζ�
L,p(s) = ζZ6,p(s)ζp(3s − 6)ζp(7s − 8)ζp(8s − 14)(1 + p7−5s) .

3. If p ramifies partially in R3 (i.e. if (p) = p2q for prime ideals p �= q),

ζ�
L,p(s) = ζZ6,p(s)ζp(3s − 6)2ζp(5s − 7)ζp(7s − 8)ζp(8s − 14)W�

L,rp(p, p−s),

where

W�
L,rp(X,Y ) = 1 − X6Y 5 + X7Y 5 − X7Y 7 − X13Y 8 + X13Y 10

− X14Y 10 + X20Y 15 .

4. If p splits completely in R3:

ζ�
L,p(s)= ζZ6,p(s)ζp(3s − 6)3ζp(5s − 7)ζp(7s − 8)ζp(8s − 14)W�

L,sc(p, p−s),

where W�
L,sc = W�

H3(X,Y ) given above on p. 35.

5. If p splits partially in R3 (i.e. (p) = pq for prime ideals p �= q):

ζ�
L,p(s) = ζZ6,p(s)ζp(3s − 6)ζp(5s − 7)ζp(7s − 8)ζp(6s − 12)ζp(8s − 14)

× W�
L,sp(p, p−s) ,

where

W�
L,sp(X,Y ) = 1 + X6Y 5 − X6Y 7 − X12Y 8 − X14Y 12 − X20Y 13

+ X20Y 15 + X26Y 20 .

For all primes that do not ramify, this zeta function satisfies the functional
equation

ζ�
L,p(s)

∣∣
p→p−1 = −p36−15sζ�

L,p(s) .

The corresponding global function has abscissa of convergence α�
L = 6.

Remark 2.10. 1. Cases 3 and 5 can only occur if the field K is not a normal
extension of Q.

2. As with the case with a quadratic number field, the p-local normal zeta
function does satisfy a functional equation even when p ramifies. If fp is
the ramification degree of p in K, then

ζ�
L,p(s)

∣∣
p→p−1 = −p36−(13+2fp)sζ�

L,p(s)

for all primes p.
It is possible to write the global zeta function of L in terms of Riemann

zeta functions, the zeta function of the number field and Euler products of
these two variable polynomials. However, the end result is not as neat as (2.9):
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Proposition 2.11. If (K : Q) = 3, R is the ring of integers of K and L =
U3(R) then

ζ�
L (s) = ζZ6(s)ζ(5s − 7)ζ(7s − 8)ζ(8s − 14)ζK(3s − 6)

∏
p

W�
L,p(p, p−s) ,

where

W�
L,p(X,Y ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

W�
L,in(X,Y )(1 − X7Y 5) if p is inert in R,

1 − X14Y 10 if p ramifies completely in R,
W�

L,rp(X,Y ) if p ramifies partially in R,
W�

L,sc(X,Y ) if p splits completely in R,
W�

L,sp(X,Y ) if p splits partially in R.

2.6 Grenham’s Lie Rings

The next examples are calculations made by Grenham in his D.Phil. thesis [28]
of zeta functions of Lie rings Gn with the following presentation:

Gn = 〈z, x1, . . . , xn−1, y1, . . . , yn−1 : [z, xi] = yi (1 ≤ i ≤ n − 1)〉 .

These Lie rings are class-2 nilpotent. G2
∼= H, the Heisenberg Lie ring

again. Grenham calculated ζ�
Gn,p(s) and ζ≤Gn,p(s) for n ≤ 5. They all have the

form of products of local Riemann zeta functions together with one of the
palindromic polynomials.

Theorem 2.12 ([32, 28]).

ζ�
G3,p(s) = ζZ3,p(s)ζp(3s − 3)2ζp(3s − 4)ζp(5s − 6)ζp(6s − 6)−1 ,

ζ≤G3,p(s) = ζZ3,p(s)ζp(2s − 4)ζp(2s − 5)ζp(3s − 6)W≤
G3

(p, p−s) ,

where

W≤
G3

(X,Y ) = 1 + X3Y 2 + X4Y 2 − X4Y 3 − X5Y 3 − X8Y 5 .

These zeta functions satisfy the functional equations

ζ�
G3,p(s)

∣∣
p→p−1 = −p10−8sζ�

G3,p(s) ,

ζ≤G3,p(s)
∣∣∣
p→p−1

= −p10−5sζ≤G3,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
G3

=
α≤
G3

= 3, with ζ≤G3
(s) having a double pole at s = 3.
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Theorem 2.13 ([28]).

ζ�
G4,p(s) = ζZ4,p(s)ζp(3s − 6)ζp(5s − 10)ζp(7s − 12)W�

G4
(p, p−s) ,

where

W�
G4

(X,Y ) = 1 + X4Y 3 + X5Y 3 + X8Y 5 + X9Y 5 + X13Y 8 ,

and

ζ≤G4,p(s) = ζZ4,p(s)ζp(2s − 5)ζp(2s − 6)ζp(2s − 7)ζp(3s − 10)ζp(4s − 12)

× W≤
G4

(p, p−s)

where W≤
G4

(X,Y ) is

1 + X4Y 2 + X5Y 2 + X6Y 2 − X5Y 3 − X6Y 3 − X7Y 3 + X8Y 3 + X9Y 3

− X9Y 4 − X10Y 4 − X11Y 4 − X14Y 6 − X15Y 6 − X16Y 6 + X16Y 7 + X17Y 7

− X18Y 7 − X19Y 7 − X20Y 7 + X19Y 8 + X20Y 8 + X21Y 8 + X25Y 10 .

These zeta functions satisfy the functional equations

ζ�
G4,p(s)

∣∣
p→p−1 = −p21−11sζ�

G4,p(s) ,

ζ≤G4,p(s)
∣∣∣
p→p−1

= −p21−7sζ≤G4,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
G4

=
α≤
G4

= 4, with ζ≤G4
(s) having a double pole at s = 4.

Theorem 2.14 ([28]).

ζ�
G5,p(s) = ζZ5,p(s)ζp(3s − 8)ζp(5s − 14)ζp(7s − 18)ζp(9s − 20)W�

G5
(p, p−s)

where W�
G5

(X,Y ) is

1 + X5Y 3 + X6Y 3 + X7Y 3 + X10Y 5 + X11Y 5 + 2X12Y 5 + X13Y 5 + X15Y 7

+ X16Y 7 + X17Y 7 + X17Y 8 + X18Y 8 + X19Y 8 + X21Y 10 + 2X22Y 10

+ X23Y 10 + X24Y 10 + X27Y 12 + X28Y 12 + X29Y 12 + X34Y 15 ,

and

ζ≤G5,p(s) = ζZ5,p(s)ζp(2s − 6)ζp(2s − 8)ζp(2s − 9)ζp(3s − 14)ζp(4s − 18)

× ζp(5s − 20)ζp(s − 2)−1W≤
G5

(p, p−s) ,

where W≤
G5

(X,Y ) is
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1 + X2Y + X4Y 2 + X5Y 2 + X6Y 2 + 2X7Y 2 + X8Y 2 + X9Y 3 + 2X10Y 3

+ X11Y 3 + 2X12Y 3 + X13Y 3 + X12Y 4 + 2X14Y 4 + 2X15Y 4 + X16Y 4

+ X17Y 4 + 2X17Y 5 + X18Y 5 + 2X19Y 5 + X20Y 5 − X18Y 6 − X20Y 6

+ X21Y 6 + 2X22Y 6 + 2X23Y 6 + 2X24Y 6 + X25Y 6 − X22Y 7 − 2X23Y 7

− 2X24Y 7 − 2X25Y 7 − X26Y 7 + X27Y 7 + X29Y 7 − X27Y 8 − 2X28Y 8

− X29Y 8 − 2X30Y 8 − X30Y 9 − X31Y 9 − 2X32Y 9 − 2X33Y 9 − X35Y 9

− X34Y 10 − 2X35Y 10 − X36Y 10 − 2X37Y 10 − X38Y 10 − X39Y 11

− 2X40Y 11 − X41Y 11 − X42Y 11 − X43Y 11 − X45Y 12 − X47Y 13 .

These zeta functions satisfy the functional equations

ζ�
G5,p(s)

∣∣
p→p−1 = −p36−14sζ�

G5,p(s) ,

ζ≤G5,p(s)
∣∣∣
p→p−1

= −p36−9sζ≤G5,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
G5

=
α≤
G5

= 5, with ζ≤G5
(s) having a triple pole at s = 5.

In [61], Voll has given an explicit expression for ζ�
Gn,p(s), and in a forthcoming

paper, gives a similar expression for ζ≤Gn,p(s). In particular, he proves that

Theorem 2.15. Let n > 1. Then for all primes p, ζ�
Gn,p(s) and ζ≤Gn,p(s) satisfy

the functional equations

ζ�
Gn,p(s)

∣∣
p→p−1 = −p(2n−1

2 )−(3n−1)sζ�
Gn,p(s) ,

ζ≤Gn,p(s)
∣∣∣
p→p−1

= −p(2n−1
2 )−(2n−1)sζ≤Gn,p(s) .

Grenham proved that the abscissa of convergence of ζ�
Gn

(s) is n. Voll gives in
[61] an expression for the abscissa of convergence of ζ≤Gn

(s), which agrees with
an expression previously derived by Paajanen. In particular, α≤

G6
(s) = 19/3.

2.7 Free Class-2 Nilpotent Lie Rings

Let F2,n denote the free nilpotent Lie ring of class two on n generators. F2,2

is the Heisenberg Lie ring once again.

2.7.1 Three Generators

Theorem 2.16 ([32, 57]). Let the Lie ring F2,3 have presentation
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〈x1, x2, x3, y1, y2, y3 : [x1, x2] = y1, [x1, x3] = y2, [x2, x3] = y3〉 .

Then

ζ�
F2,3,p(s) = ζZ3,p(s)ζp(3s − 5)ζp(5s − 8)ζp(6s − 9)W�

F2,3
(p, p−s) ,

where

W�
F2,3

(X,Y ) = 1 + X3Y 3 + X4Y 3 + X6Y 5 + X7Y 5 + X10Y 8 ,

and

ζ≤F2,3,p(s) = ζZ3,p(s)ζp(2s − 4)ζp(2s − 5)ζp(2s − 6)ζp(3s − 6)ζp(3s − 7)

× ζp(3s − 8)ζp(4s − 8)−1W≤
F2,3

(p, p−s) ,

where W≤
F2,3

(X,Y ) is

1 + X3Y 2 + X4Y 2 + X5Y 2 − X4Y 3 − X5Y 3 − X6Y 3 − X7Y 4 − X9Y 4

− X10Y 5 − X11Y 5 − X12Y 5 + X11Y 6 + X12Y 6 + X13Y 6 + X16Y 8 .

These zeta functions satisfy the functional equations

ζ�
F2,3,p(s)

∣∣∣
p→p−1

= p15−9sζ�
F2,3,p(s) ,

ζ≤F2,3,p(s)
∣∣∣
p→p−1

= p15−6sζ≤F2,3,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
F2,3

= 3,

α≤
F2,3

= 7/2.

The zeta function counting all subrings is interesting since the abscissa
of convergence is not an integer and is strictly greater than the rank of the
abelianisation of G. This was the first such example calculated at nilpotency
class 2.

2.7.2 n Generators

In [62], Voll gives an explicit formulae for the local ideal zeta functions of F2,n

for all n. We shall not replicate Voll’s explicit formulae for these functions,
but we shall state some corollaries he deduces. Put h(n) = 1

2n(n + 1), the
rank of F2,n.

Corollary 2.17. The local zeta functions ζ�
F2,n,p(s) are uniform, i.e. are given

by the same rational function in p and p−s for all primes p.
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Corollary 2.18. The local ideal zeta function of F2,n satisfies the local func-
tional equation

ζ�
F2,n,p(s)

∣∣∣
p→p−1

= (−1)h(n)p(h(n)
2 )−(h(n)+n)sζ�

F2,n,p(s)

for all primes p.

Corollary 2.19. The abscissa of convergence of ζ�
F2,n

(s) is

α�
F2,n

= max

{
n,

((
n
2

)− j
)
(n + j) + 1

h(n) − j

∣∣∣∣∣ j ∈ {1, . . . ,
(
n
2

)− 1}
}

and ζ�
F2,n

(s) has a simple pole at s = α�
F2,n

.

In particular, F2,5 has abscissa of convergence α�
F2,5

= 51/10. Indeed, this
is the first Lie ring whose local ideal zeta function is known to have abscissa
of convergence strictly greater than the rank of the abelianisation.

2.8 The ‘Elliptic Curve Example’

Theorem 2.20 ([60]). Let E denote the elliptic curve y2 = x3 − x. Define
the nilpotent Lie ring LE by the presentation

LE =

〈
x1, . . . , x6, y1, y2, y3 :

[x1, x4] = y3, [x1, x5] = y1, [x1, x6] = y2,
[x2, x4] = y1, [x2, x5] = y3,
[x3, x4] = y2, [x3, x6] = y1

〉
.

Then, for all but finitely many primes p, the local zeta function of LE is given
by

ζ�
LE ,p(s) = ζZ6,p(s)ζp(5s − 7)ζp(7s − 8)ζp(9s − 18)ζp(8s − 14)

× (P1(p, p−s) + |E(Fp)|P2(p, p−s)) ,

where

|E(Fp)| =
∣∣{ (x : y : z) ∈ P2(Fp) : y2z = x3 − xz2

}∣∣ ,
P1(X,Y ) = (1 + X6Y 7 + X7Y 7 + X12Y 8 + X13Y 8 + X19Y 15)(1 − X7Y 5) ,

P2(X,Y ) = X6Y 5(1 − Y 2)(1 + X13Y 8) .

In [13] it was shown that this zeta function is not finitely uniform, thus an-
swering in the negative a question posed by Grunewald, Segal and Smith in
[32] that seemed ‘plausible’. However, there was some doubt as to whether
this zeta function would satisfy a functional equation similar to that satisfied
by other local ideal zeta functions of Lie rings of class 2. The dependency on
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the number of points mod p on an elliptic curve did cast some doubt on this.
However, it can easily be checked that

P1(X−1, Y −1) = X−26Y −20P1(X,Y ) ,

P2(X−1, Y −1) = X−25Y −20P2(X,Y ) .

Together with the functional equation of the Weil zeta function applied to
|E(Fp)|, this yields

Corollary 2.21 (Voll [60]). For all but finitely many primes p,

ζ�
LE ,p(s)

∣∣
p→p−1 = −p36−15sζ�

LE ,p(s) .

2.9 Other Class Two Examples

We start with a number of Lie rings which appear in [32].

Theorem 2.22 ([32]). Let G(m, r) denote the direct product of Zr with the
central product of m copies of the Heisenberg Lie ring H. Then G(m, r) has
Hirsch length 2m + r + 1.

ζ�
G(m,r),p(s) = ζZ2m+r,p(s)ζp((2m + 1)s − (2m + r)) .

For m ≤ 2,

ζ≤G(1,r),p(s) = ζZr+2,p(s)ζp(2s − (r + 2))ζp(2s − (r + 3))ζp(3s − (r + 3))−1 ,

ζ≤G(2,r),p(s) = ζZr+4,p(s)ζp(3s − (r + 4))ζp(3s − (r + 6))ζp(3s − (r + 7))

× W≤
G(2,r)(p, p−s) ,

where

W≤
G(2,r)(X,Y ) = 1 + Xr+5Y 3 − Xr+5Y 4 − Xr+6Y 4 − Xr+7Y 4 − Xr+8Y 4

+ Xr+8Y 5 + X2r+13Y 8 .

These zeta functions satisfy the functional equations

ζ�
G(m,r),p(s)

∣∣∣
p→p−1

= (−1)2m+r+1p(2m+r+1
2 )−(4m+r+1)sζ�

G(m,r),p(s) ,

ζ≤G(m,r),p(s)
∣∣∣
p→p−1

= (−1)2m+r+1p(2m+r+1
2 )−(2m+r+1)sζ≤G(m,r),p(s) (m = 1, 2) .

The corresponding global zeta functions have abscissa of convergence α�
G(m,r) =

2m + r for all m ∈ N>0, r ∈ N and α≤
G(m,r) = 2m + r for m ∈ {1, 2}, r ∈ N.
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Theorem 2.23 ([32]). For r ∈ N,

ζ�
G3×Zr,p(s) = ζZr+3

p
(s)ζp(3s − (r + 4))ζp(5s − (2r + 6))(1 + pr+3−3s) ,

ζ≤G3×Zr,p(s) = ζZr+3
p

(s)ζp(2s − (r + 4))ζp(2s − (r + 5))ζp(3s − (2r + 6))

× W≤
G3×Zr (p, p−s) ,

where

W≤
G3×Zr (p, p−s) = 1 + Xr+3Y 2 + Xr+4Y 2 − Xr+4Y 3 − Xr+5Y 3 − X2r+8Y 5 .

These zeta functions satisfy the functional equations

ζ�
G3×Zr,p(s)

∣∣∣
p→p−1

= (−1)r+5p(r+5
2 )−(r+8)sζ�

G3×Zr,p(s) ,

ζ≤G3×Zr,p(s)
∣∣∣
p→p−1

= (−1)r+5p(r+5
2 )−(r+5)sζ≤G3×Zr,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
G3×Zr =

α≤
G3×Zr = r + 3.

The calculations of the ideal zeta functions were made by Grunewald, Segal
and Smith in [32]. Note that they use the more cumbersome notation F2,3/〈z〉
in place of G3.

Theorem 2.24 ([32, 64]). Let

g6,4 = 〈x1, x2, x3, x4, y1, y2 : [x1, x2] = y1, [x1, x3] = y2, [x2, x4] = y2〉 .

Then

ζ�
g6,4,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5)ζp(6s − 9)ζp(8s − 9)−1 ,

ζ≤g6,4,p(s) = ζZ4,p(s)ζp(2s − 5)ζp(3s − 5)ζp(3s − 7)ζp(3s − 8)ζp(4s − 9)

× ζp(4s − 11)ζp(5s − 12)W≤
g6,4

(p, p−s) ,

where W≤
g6,4(X,Y ) is given in Appendix A on p. 180. These zeta functions

satisfy the functional equations

ζ�
g6,4,p(s)

∣∣∣
p→p−1

= p15−10sζ�
g6,4,p(s) ,

ζ≤g6,4,p(s)
∣∣∣
p→p−1

= p15−6sζ≤g6,4,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
g6,4

=
α≤

g6,4 = 4.
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In [32], this Lie ring is given the more cumbersome name F2,3/〈z〉 · Z. For
brevity we have changed the name. The new name is borrowed from the
classification of nilpotent Lie algebras of dimension 6 mentioned in Sect. 2.14
below.

Let Tn denote the maximal class-two quotient of the Lie ring of unitrian-
gular n × n matrices. Tn has presentation

〈x1, . . . , xn, y1, . . . , yn−1 : [xi, xi+1] = yi for 1 ≤ i ≤ n − 1〉 .

T2 is the Heisenberg Lie ring once again, and T3
∼= G3, whose zeta functions

are given in Sect. 2.6.

Theorem 2.25 ([57, 64]).

ζ�
T4,p(s) = ζZ4,p(s)ζp(3s − 5)2ζp(5s − 6)ζp(5s − 8)ζp(6s − 10)ζp(7s − 12)

× W�
T4

(p, p−s) ,

where W�
T4

(X,Y ) is

1 + X4Y 3 − X5Y 5 + X8Y 5 − X8Y 6 − X9Y 6 − X10Y 8 − X12Y 8 − X13Y 9

+ X13Y 10 − 2X14Y 10 + X14Y 11 + X15Y 11 − X16Y 11 − X17Y 11 + 2X17Y 12

− X18Y 12 + X18Y 13 + X19Y 14 + X21Y 14 + X22Y 16 + X23Y 16 − X23Y 17

+ X26Y 17 − X27Y 19 − X31Y 22 ,

and

ζ≤T4,p(s) = ζZ4,p(s)ζp(2s − 5)2ζp(2s − 6)2ζp(3s − 6)ζp(3s − 8)2ζp(3s − 9)

× ζp(4s − 12)ζp(5s − 14)W≤
T4

(p, p−s) ,

where the polynomial W≤
T4

(X,Y ) is given in Appendix A on p. 180. These zeta
functions satisfy the functional equations

ζ�
T4,p(s)

∣∣
p→p−1 = −p21−11sζ�

T4,p(s) ,

ζ≤T4,p(s)
∣∣∣
p→p−1

= −p21−7sζ≤T4,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
T4

=
α≤

T4
= 4.

2.10 The Maximal Class Lie Ring M3 and Variants

The most well-understood zeta functions of Lie rings are those for Lie rings
of nilpotency class 2. However, as we move to higher nilpotency classes, there
is much less in the way of theory to help us. In particular, as we mentioned
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in Chap. 1, the Mal’cev correspondence can be avoided for nilpotency class 2.
There is no such shortcut in higher nilpotency classes.

Taylor [57] was the first to calculate the zeta functions of a class-3-nilpotent
Lie ring, and since then the second author has greatly enlarged the stock of
examples at class 3.

In some sense, the ‘simplest’ Lie rings of nilpotency class n are the Lie
rings Mn, with presentation

Mn = 〈z, x1, x2, . . . , xn : [z, xi] = xi+1 for i = 1, . . . , n − 1〉 .

In particular, H = M2. We now consider M3 and some variations.

Theorem 2.26. For r ∈ Z,

ζ�
M3×Zr,p(s) =

ζZr+2,p(s)ζp(3s − (r + 2))ζp(4s − (r + 2))ζp(5s − (r + 3))
ζp(5s − (r + 2))

,

and

ζ≤M3×Zr,p(s) = ζZr+2,p(s)ζp(2s − (r + 3))ζp(3s − (r + 5))ζp(3s − (2r + 4))

× ζp(4s − (2r + 6))W≤
M3×Zr(p, p−s) ,

where

W≤
M3×Zr (p, p−s) = 1 + Xr+2Y 2 + Xr+3Y 2 − Xr+3Y 3 − Xr+5Y 4 + X2r+6Y 4

− 2X2r+6Y 5 − 2X2r+7Y 5 + X2r+7Y 6 − X3r+8Y 6

− X3r+10Y 7 + X3r+10Y 8 + X3r+11Y 8 + X4r+13Y 10 .

These zeta functions satisfy the functional equations

ζ�
M3×Zr,p(s)

∣∣∣
p→p−1

= (−1)r+4p(r+4
2 )−(r+9)sζ�

M3×Zr,p(s) ,

ζ≤M3×Zr,p(s)
∣∣∣
p→p−1

= (−1)r+4p(r+4
2 )−(r+4)sζ≤M3×Zr,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
M3×Zr =

α≤
M3×Zr = r + 2, with ζ≤M3

(s) having a quadruple pole at s = 2.

The zeta functions counting ideals or all subrings in M3 were first calculated
by Taylor in [57]. The second author generalised the results to M3 × Zr for
r ∈ N.

Theorem 2.27 ([64]).

ζ�
H×M3,p(s) = ζZ4,p(s)ζp(3s − 4)2ζp(4s − 4)ζp(5s − 5)ζp(6s − 5)ζp(7s − 6)

× ζp(9s − 10)W�
H×M3

(p, p−s) ,



2.10 The Maximal Class Lie Ring M3 and Variants 47

where W�
H×M3

(X,Y ) is

1 − 2X4Y 5 + X5Y 5 − X4Y 6 + X4Y 7 − 2X5Y 7 + X8Y 9 − 2X9Y 9 + 3X9Y 11

− 2X10Y 11 + X9Y 12 + X10Y 13 + X13Y 14 + X14Y 15 − 2X13Y 16 + 3X14Y 16

− 2X14Y 18 + X15Y 18 − 2X18Y 20 + X19Y 20 − X19Y 21 + X18Y 22

− 2X19Y 22 + X23Y 27 .

This zeta function satisfies the functional equation

ζ�
H×M3,p(s)

∣∣
p→p−1 = −p21−14sζ�

H×M3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H×M3

= 4.

Theorem 2.28.

ζ�
H2×M3,p(s) = ζZ6,p(s)ζp(3s − 6)3ζp(4s − 6)ζp(5s − 7)ζp(6s − 7)ζp(7s − 8)

× ζp(8s − 8)ζp(8s − 14)ζp(9s − 9)ζp(9s − 14)ζp(10s − 15)

× ζp(11s − 16)ζp(12s − 21)W�
H2×M3

(p, p−s)

for some polynomial W�
H2×M3

(X,Y ) of degrees 113 in X and 85 in Y . This
zeta function satisfies the functional equation

ζ�
H2×M3,p(s)

∣∣∣
p→p−1

= p45−19sζ�
H2×M3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H2×M3

= 6.

Theorem 2.29.

ζ�
M3×M3,p(s) = ζZ4,p(s)ζp(2s − 2)ζp(3s − 4)2ζp(4s − 4)ζp(5s − 5)ζp(6s − 5)

× ζp(7s − 5)ζp(7s − 6)ζp(8s − 6)ζp(9s − 7)ζp(9s − 10)

× ζp(10s − 10)ζp(11s − 11)ζp(12s − 12)ζp(13s − 15)

× W�
M3×M3

(p, p−s)

for some polynomial W�
M3×M3

(X,Y ) of degrees 84 in X and 95 in Y . This
zeta function satisfies the functional equation

ζ�
M3×M3,p(s)

∣∣
p→p−1 = p28−18sζ�

M3×M3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
M3×M3

=4.
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Theorem 2.30. Let the Lie ring M3 ×Z M3 have presentation

〈z1, z2, w1, w2, x1, x2, y : [z1, w1] = x1, [z2, w2] = x2, [z1, x1] = y, [z2, x2] = y〉 .

Then

ζ�
M3×ZM3,p(s) = ζZ4,p(s)ζp(3s − 4)2ζp(5s − 5)ζp(7s − 4)ζp(8s − 5)ζp(9s − 6)

× ζp(12s − 10)W�
M3×ZM3

(p, p−s) ,

where W�
M3×ZM3

(X,Y ) is

1 − X4Y 5 − 2X4Y 8 + X5Y 8 + X4Y 9 − 2X5Y 9 + X8Y 12 − 2X9Y 12

+ 3X9Y 13 − 2X10Y 13 + X10Y 14 + X9Y 17 + X14Y 17 + X13Y 20 − 2X13Y 21

+ 3X14Y 21 − 2X14Y 22 + X15Y 22 − 2X18Y 25 + X19Y 25 + X18Y 26

− 2X19Y 26 − X19Y 29 + X23Y 34 .

This zeta function satisfies the functional equation

ζ�
M3×ZM3,p(s)

∣∣
p→p−1 = −p21−17sζ�

M3×ZM3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
M3×ZM3

=4.

2.11 Lie Rings with Large Abelian Ideals

As we saw in Sect. 2.6, Voll has calculated ζ�
Gn,p(s) and ζ≤Gn,p(s) for all n ≥ 2.

The Lie rings Gn have an abelian ideal of corank 1 (and thus of infinite index),
and it is likely that this large ideal makes it easier to get a grasp on the
structure of the lattices of ideals/subrings. Indeed the Lie rings Mn have this
property too. In this section we consider some further Lie rings of nilpotency
class 3 with this property.

Theorem 2.31 ([64]). Let the Lie ring L(3,3) have presentation

〈z, w1, w2, x1, x2, y1, y2 : [z, w1] = x1, [z, w2] = x2, [z, x1] = y1, [z, x2] = y2〉 .

Then

ζ�
L(3,3),p

(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 5)ζp(5s − 6)ζp(6s − 7)ζp(7s − 6)

× ζp(8s − 10)ζp(9s − 12)ζp(11s − 12)ζp(4s − 4)−1

× W�
L(3,3)

(p, p−s) ,



2.11 Lie Rings with Large Abelian Ideals 49

where W�
L(3,3)

(X,Y ) is

1 + X3Y 3 + 2X4Y 4 − X4Y 5 + X6Y 5 + X6Y 6 − X6Y 7 + X9Y 7 − X6Y 8

+ 2X8Y 8 − X8Y 9 − X10Y 9 − X9Y 10 + X12Y 10 − X10Y 11 − X12Y 11

− X13Y 12 − X12Y 13 − X14Y 13 − 2X16Y 13 − 2X15Y 14 − X14Y 15 − X16Y 15

− X18Y 15 + 2X16Y 16 − X18Y 16 − X19Y 16 − X18Y 17 − 2X20Y 17 + X18Y 18

+ X20Y 18 − X21Y 18 + X19Y 19 − X20Y 19 − X22Y 19 + 2X20Y 20 + X22Y 20

+ X21Y 21 + X22Y 21 − 2X24Y 21 + X22Y 22 + X24Y 22 + X26Y 22 + 2X25Y 23

+ 2X24Y 24 + X26Y 24 + X28Y 24 + X27Y 25 + X28Y 26 + X30Y 26 − X28Y 27

+ X31Y 27 + X30Y 28 + X32Y 28 − 2X32Y 29 + X34Y 29 − X31Y 30 + X34Y 30

− X34Y 31 − X34Y 32 + X36Y 32 − 2X36Y 33 − X37Y 34 − X40Y 37 .

This zeta function satisfies the functional equation

ζ�
L(3,3),p

(s)
∣∣∣
p→p−1

= −p21−15sζ�
L(3,3),p

(s) .

The corresponding global zeta function has abscissa of convergence α�
L(3,3)

= 3.

The second author also considered what happens when you delete generator
y2 from the presentation above:

Theorem 2.32 ([64]). Let L(3,2) be given by the presentation

〈z, w1, w2, x1, x2, y : [z, w1] = x1, [z, w2] = x2, [z, x1] = y〉 .

Then

ζ�
L(3,2),p

(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 5)ζp(5s − 6)ζp(6s − 6)

× ζp(9s − 11)W�
L(3,2)

(p, p−s) ,

where W�
L(3,2)

(X,Y ) is

1 + X3Y 3 − X4Y 5 − X6Y 7 − X7Y 7 + X8Y 7 − X8Y 8 − X9Y 9 − X10Y 9

+ X10Y 10 − X11Y 10 + X10Y 11 − X11Y 11 + X11Y 12 − X14Y 12 + X13Y 13

− X14Y 13 + X14Y 14 + X15Y 14 + X17Y 16 + X18Y 17 + X20Y 18 − X21Y 21

− X24Y 23 ,

and

ζ≤L(3,2),p
(s) = ζZ3,p(s)ζp(2s − 4)ζp(2s − 5)2ζp(3s − 7)ζp(3s − 8)ζp(4s − 10)

× ζp(5s − 12)W≤
L(3,2)

(p, p−s) ,
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where W≤
L(3,2)

(X,Y ) is

1 + X3Y 2 + X4Y 2 − X4Y 3 − X5Y 3 + X6Y 3 + X7Y 3 − 2X7Y 4 − 2X8Y 4

+ X9Y 5 − 2X10Y 5 − 3X11Y 5 + X11Y 6 + X12Y 6 − 2X13Y 6 − 3X14Y 6

+ X13Y 7 + X14Y 7 + 3X15Y 7 − 2X16Y 7 − X17Y 7 + X16Y 8 + X17Y 8

+ 2X18Y 8 + 2X18Y 9 + 2X21Y 9 + 2X21Y 10 + X22Y 10 + X23Y 10 − X22Y 11

− 2X23Y 11 + 3X24Y 11 + X25Y 11 + X26Y 11 − 3X25Y 12 − 2X26Y 12

+ X27Y 12 + X28Y 12 − 3X28Y 13 − 2X29Y 13 + X30Y 13 − 2X31Y 14

− 2X32Y 14 + X32Y 15 + X33Y 15 − X34Y 15 − X35Y 15 + X35Y 16 + X36Y 16

+ X39Y 18 .

The local zeta function counting all subrings satisfies the functional equation

ζ≤L(3,2),p
(s)
∣∣∣
p→p−1

= p15−6sζ≤L(3,2),p
(s) .

However, the local ideal zeta function satisfies no such functional equation.
The corresponding global zeta functions have abscissa of convergence α�

L(3,2)
=

α≤
L(3,2)

= 3, with ζ≤L(3,2)
(s) having a quadruple pole at s = 3.

The zeta function counting ideals was the first calculated which satisfied no
functional equation of the form (2.7).

A couple of Lie rings similar to L(3,2) were also considered. Their ideal
zeta functions also satisfy no functional equation of the form seen numerous
times before.

Theorem 2.33.

ζ�
H×L(3,2),p

(s) = ζZ5,p(s)ζp(3s − 5)ζp(3s − 6)ζp(4s − 6)ζp(5s − 7)ζp(5s − 10)

× ζp(6s − 7)ζp(6s − 10)ζp(7s − 8)ζp(7s − 12)ζp(8s − 12)
× ζp(9s − 14)ζp(9s − 17)ζp(11s − 19)ζp(13s − 20)
× ζp(13s − 23)W�

H×L(3,2)
(p, p−s)

for some polynomial W�
H×L(3,2)

(X,Y ) of degrees 150 in X and 97 in Y . This
local zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

H×L(3,2)
= 5.

Theorem 2.34. Let the Lie ring L(3,2,2) have presentation〈
z, w1, w2, w3, x1, x2, x3, y :

[z, w1] = x1, [z, w2] = x2,
[z, w3] = x3, [z, x1] = y

〉
.

Then

ζ�
L(3,2,2),p

(s) = ζZ4,p(s)ζp(2s − 3)ζp(3s − 6)ζp(5s − 7)ζp(5s − 10)ζp(6s − 10)

× ζp(7s − 12)ζp(8s − 12)ζp(9s − 17)ζp(13s − 23)

× W�
L(3,2,2)

(p, p−s) ,
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where W�
L(3,2,2)

(X,Y ) is given in Appendix A on p. 181. This local zeta func-
tion satisfies no functional equation. The corresponding global zeta function
has abscissa of convergence α�

L(3,2,2)
= 4.

2.12 F3,2

On p. 40 we considered the zeta functions of the free class-2 nilpotent Lie rings.
The second author has added the zeta functions of the class-3, 2-generator
nilpotent Lie ring.

Theorem 2.35 ([64]). Let the Lie ring F3,2 have presentation

〈x1, x2, y1, z1, z2 : [x1, x2] = y1, [x1, y1] = z1, [x2, y1] = z2〉 .

Then

ζ�
F3,2,p(s) = ζZ2,p(s)ζp(3s − 2)ζp(4s − 3)ζp(5s − 4)2ζp(7s − 6)W�

F3,2
(p, p−s) ,

where W�
F3,2

(X,Y ) is

1 + X2Y 4 − X2Y 5 − X4Y 7 − X6Y 9 − X8Y 11 + X8Y 12 + X10Y 16 ,

and

ζ≤F3,2,p(s) = ζZ2,p(s)ζp(2s − 3)ζp(2s − 4)ζp(3s − 6)ζp(4s − 8)ζp(5s − 8)

× ζp(5s − 9)W≤
F3,2

(p, p−s) ,

where W≤
F3,2

(X,Y ) is

1 + X2Y 2 + X3Y 2 − X3Y 3 + X4Y 3 + 2X5Y 3 − 2X5Y 4 + 2X7Y 4 − 2X7Y 5

− 2X8Y 5 − X9Y 5 − X10Y 6 − X11Y 6 − X10Y 7 − X13Y 7 − 2X12Y 8

− X13Y 8 − X14Y 8 − X15Y 8 + X13Y 9 − X16Y 9 + X14Y 10 + X15Y 10

+ X16Y 10 + 2X17Y 10 + X16Y 11 + X19Y 11 + X18Y 12 + X19Y 12 + X20Y 13

+ 2X21Y 13 + 2X22Y 13 − 2X22Y 14 + 2X24Y 14 − 2X24Y 15 − X25Y 15

+ X26Y 15 − X26Y 16 − X27Y 16 − X29Y 18 .

These zeta functions satisfy the functional equations

ζ�
F3,2,p(s)

∣∣∣
p→p−1

= −p10−10sζ�
F3,2,p(s) ,

ζ≤F3,2,p(s)
∣∣∣
p→p−1

= −p10−5sζ≤F3,2,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
F3,2

= 2,

α≤
F3,2

= 5/2.
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Theorem 2.36 ([64]).

ζ�
F3,2×Z,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(4s − 4)ζp(5s − 5)ζp(5s − 6)ζp(7s − 8)

× W�
F3,2×Z(p, p−s) ,

where W�
F3,2×Z(X,Y ) is

1 + X3Y 4 − X3Y 5 − X6Y 7 − X8Y 9 − X11Y 11 + X11Y 12 + X14Y 16 .

This zeta function satisfies the functional equation

ζ�
F3,2×Z,p(s)

∣∣∣
p→p−1

= p15−11sζ�
F3,2×Z,p(s) .

The corresponding global zeta function has abscissa of convergence α�
F3,2×Z = 3.

2.13 The Maximal Class Lie Rings M4 and Fil4

We saw above that M3 is in some sense the simplest Lie ring of nilpotency
class 3. The Lie ring M4 can be defined in a similar way, and in some sense it
is the simplest of nilpotency class 4. The Mn family of Lie rings are filiform,
in that the nilpotency class is maximal given the rank.

Theorem 2.37 ([57]). Let the Lie ring M4 have presentation

〈z, x1, x2, x3, x4 : [z, x1] = x2, [z, x2] = x3, [z, x3] = x4〉 .

Then

ζ�
M4,p(s) = ζZ2,p(s)ζp(3s − 2)ζp(5s − 2)ζp(7s − 4)ζp(8s − 5)ζp(9s − 6)

× ζp(11s − 6)ζp(12s − 7)ζp(6s − 3)−1W�
M4

(p, p−s) ,

where W�
M4

(X,Y ) is

1 + X2Y 4 − X2Y 5 + X3Y 5 − X2Y 6 + 2X3Y 6 − X3Y 7 − X5Y 9 + X6Y 10

− 2X5Y 11 − X7Y 13 − X8Y 13 + X7Y 14 − X8Y 14 − X8Y 15 − X9Y 15

+ X9Y 16 − X9Y 17 − X10Y 17 + 2X9Y 18 − X10Y 18 + X10Y 19 − 2X11Y 19

+ X10Y 20 + X11Y 20 − X11Y 21 + X11Y 22 + X12Y 22 + X12Y 23 − X13Y 23

+ X12Y 24 + X13Y 24 + 2X15Y 26 − X14Y 27 + X15Y 28 + X17Y 30 − 2X17Y 31

+ X18Y 31 − X17Y 32 + X18Y 32 − X18Y 33 − X20Y 37

and

ζ≤M4,p(s) = ζZ2,p(s)ζp(2s − 3)ζp(2s − 4)ζp(3s − 6)ζp(4s − 7)ζp(4s − 8)

× ζp(7s − 12)W≤
M4

(p, p−s) ,
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where W≤
M4

(X,Y ) is

1 + X2Y 2 + X3Y 2 − X3Y 3 + X4Y 3 + 2X5Y 3 − 2X5Y 4 + X7Y 4 − 2X7Y 5

− X8Y 5 + X9Y 5 − 2X9Y 6 − 2X10Y 6 − X11Y 6 + X10Y 7 − 2X12Y 7

− X13Y 7 + X13Y 8 − X14Y 8 − X16Y 9 + X15Y 10 + X17Y 11 − X18Y 11

+ X18Y 12 + 2X19Y 12 − X21Y 12 + X20Y 13 + 2X21Y 13 + 2X22Y 13

− X22Y 14 + X23Y 14 + 2X24Y 14 − X24Y 15 + 2X26Y 15 − 2X26Y 16

− X27Y 16 + X28Y 16 − X28Y 17 − X29Y 17 − X31Y 19 .

These zeta functions satisfy the functional equations

ζ�
M4,p(s)

∣∣
p→p−1 = −p10−14sζ�

M4,p(s) ,

ζ≤M4,p(s)
∣∣∣
p→p−1

= −p10−5sζ≤M4,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
M4

= 2,
α≤

M4
= 5/2.

Theorem 2.38 ([64]).

ζ�
M4×Z,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(5s − 3)ζp(7s − 5)ζp(8s − 7)ζp(9s − 8)

× ζp(11s − 8)ζp(12s − 9)ζp(6s − 4)−1W�
M4×Z(p, p−s) ,

where W�
M4×Z(X,Y ) is

1 + X3Y 4 − X3Y 5 + X4Y 5 − X3Y 6 + 2X4Y 6 − X4Y 7 − X7Y 9 + X8Y 10

− 2X7Y 11 − X9Y 13 − X11Y 13 + X10Y 14 − X11Y 14 − X11Y 15 − X12Y 15

+ X12Y 16 − X12Y 17 − X13Y 17 + 2X12Y 18 − X13Y 18 + X14Y 19 − 2X15Y 19

+ X14Y 20 + X15Y 20 − X15Y 21 + X15Y 22 + X16Y 22 + X16Y 23 − X17Y 23

+ X16Y 24 + X18Y 24 + 2X20Y 26 − X19Y 27 + X20Y 28 + X23Y 30 − 2X23Y 31

+ X24Y 31 − X23Y 32 + X24Y 32 − X24Y 33 − X27Y 37 .

This zeta function satisfies the functional equation

ζ�
M4×Z,p(s)

∣∣∣
p→p−1

= p15−15sζ�
M4×Z,p(s) .

The corresponding global zeta function has abscissa of convergence α�
M4×Z = 3.

M4 is not the only filiform Lie ring of nilpotency class 4, up to isomorphism:

Theorem 2.39 ([64]). Let the Lie ring Fil4 have presentation

〈z, x1, x2, x3, x4 : [z, x1] = x2, [z, x2] = x3, [z, x3] = x4, [x1, x2] = x4〉 .
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Then

ζ�
Fil4,p(s) = ζZ2,p(s)ζp(3s − 2)ζp(5s − 2)ζp(7s − 4)ζp(8s − 5)ζp(9s − 6)

× ζp(10s − 6)ζp(12s − 7)W�
Fil4

(p, p−s) ,

where W�
Fil4

(X,Y ) is

1 + X2Y 4 − X2Y 5 + X3Y 5 − X2Y 6 + X3Y 6 − X3Y 7 − X5Y 9 − X5Y 10

− X6Y 11 − X6Y 12 + X6Y 13 − X7Y 13 − X8Y 13 − X8Y 14 + X7Y 15

+ X8Y 15 − 2X9Y 15 + X8Y 17 + X9Y 17 − X10Y 17 + X9Y 19 + X10Y 19

+ X11Y 20 + 2X11Y 21 − X11Y 22 + 2X12Y 22 + 2X13Y 23 − X13Y 24

+ X14Y 24 − X13Y 25 + X14Y 25 + X15Y 25 − 2X14Y 27 + 2X15Y 27

− 2X15Y 28 + X16Y 28 − X15Y 29 − X16Y 29 + X17Y 29 − 2X17Y 30 + X18Y 30

− X18Y 31 − X18Y 32 − X18Y 33 − X20Y 35 + X20Y 36 − X21Y 36 + X20Y 37

− X21Y 37 + X21Y 38 + X23Y 42 .

This local zeta function satisfies no functional equation. The corresponding
global zeta function has abscissa of convergence α�

Fil4
= 2.

Despite repeated efforts, we have been unable to calculate ζ≤Fil4,p(s). M4 is the
only Lie ring of nilpotency class 4 whose zeta function counting all subrings
we have calculated.

Theorem 2.40 ([64]).

ζ�
Fil4×Z,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(5s − 3)ζp(7s − 5)ζp(8s − 7)ζp(9s − 8)

× ζp(10s − 8)ζp(12s − 9)W�
Fil4×Z(p, p−s) ,

where W�
Fil4×Z(X,Y ) is

1 + X3Y 4 − X3Y 5 + X4Y 5 − X3Y 6 + X4Y 6 − X4Y 7 − X7Y 9 − X7Y 10

− X8Y 11 − X8Y 12 + X8Y 13 − X9Y 13 − X11Y 13 − X11Y 14 + X10Y 15

+ X11Y 15 − 2X12Y 15 + X11Y 17 + X12Y 17 − X13Y 17 + X12Y 19 + X14Y 19

+ X15Y 20 + 2X15Y 21 − X15Y 22 + 2X16Y 22 + X17Y 23 + X18Y 23 − X18Y 24

+ X19Y 24 − X18Y 25 + X19Y 25 + X20Y 25 − 2X19Y 27 + 2X20Y 27

− 2X20Y 28 + X21Y 28 − X20Y 29 − X22Y 29 + X23Y 29 − 2X23Y 30 + X24Y 30

− X24Y 31 − X24Y 32 − X24Y 33 − X27Y 35 + X27Y 36 − X28Y 36 + X27Y 37

− X28Y 37 + X28Y 38 + X31Y 42 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

Fil4×Z = 3.
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2.14 Nilpotent Lie Algebras of Dimension ≤ 6

A complete classification of the nilpotent Lie algebras over R of dimension
≤ 6 is given in [44].2 We cannot hope to classify nilpotent Lie rings additively
isomorphic to Zd for some d ≤ 6, but we can at least use a classification over
R to produce Lie rings over Z which are guaranteed be non-isomorphic. For
each Lie algebra, Magnin gives an R-basis and a list of nonzero Lie brackets
of the basis elements. The structure constants of each nilpotent Lie algebra
L listed in [44] are (fortunately) all in Z. Hence we can form Lie rings over Z
(or Zp) by taking the Z-span (or Zp-span) of the basis given.3

This approach has led to many new calculations of ideal zeta functions of
Lie rings of rank 6, and some others arising from a Lie ring of rank 5:

Theorem 2.41 ([64]). Let the Lie ring g5,3 have presentation

〈x1, x2, x3, x4, x5 : [x1, x2] = x4, [x1, x4] = x5, [x2, x3] = x5〉 .

Then

ζ�
g5,3×Zr,p(s) = ζZr+3,p(s)ζp(3s − (r + 3))ζp(5s − (r + 4)) ,

ζ≤g5,3,p(s) = ζZ3,p(s)ζp(2s − 4)ζp(3s − 4)ζp(3s − 6)ζp(6s − 11)ζp(6s − 12)

× W≤
g5,3

(p, p−s) ,

where W≤
g5,3(X,Y ) is

1 + X3Y 2 − X4Y 3 + X5Y 3 − X5Y 4 + X7Y 4 + X8Y 4 − 2X7Y 5 − 2X8Y 5

− X9Y 5 + X8Y 6 + X9Y 6 + X10Y 6 − X10Y 7 − 2X11Y 7 − 2X12Y 7 + X11Y 8

+ X12Y 8 − X14Y 8 − X15Y 8 + X15Y 10 + X16Y 10 − X18Y 10 − X19Y 10

+ 2X18Y 11 + 2X19Y 11 + X20Y 11 − X20Y 12 − X21Y 12 − X22Y 12 + X21Y 13

+ 2X22Y 13 + 2X23Y 13 − X22Y 14 − X23Y 14 + X25Y 14 − X25Y 15 + X26Y 15

− X27Y 16 − X30Y 18 .

These zeta functions satisfy the functional equations

ζ�
g5,3×Zr ,p(s)

∣∣∣
p→p−1

= (−1)r+5p(r+5
2 )−(r+11)sζ�

g5,3×Zr ,p(s) ,

ζ≤g5,3,p(s)
∣∣∣
p→p−1

= −p10−5sζ≤g5,3,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
g5,3

=
α≤

g5,3 = 3.

2 The classification was first given in [46], but we refer to [44] as this article is likely
to be more accessible.

3 We have permuted some of the bases of the Lie algebras from [44]; the bases we
give are those that make the calculations of the zeta functions easiest.
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Theorem 2.42.

ζ�
H×g5,3,p(s) = ζZ5,p(s)ζp(3s − 5)2ζp(5s − 6)2ζp(7s − 7)ζp(5s − 5)−1

× ζp(7s − 6)−1 .

This zeta function satisfies the functional equation

ζ�
H×g5,3,p(s)

∣∣∣
p→p−1

= p28−16sζ�
H×g5,3,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H×g5,3

= 5.

Theorem 2.43.

ζ�
G3×g5,3,p(s) = ζZ6,p(s)ζp(3s − 6)ζp(3s − 7)ζp(5s − 7)ζp(5s − 8)ζp(5s − 12)

× ζp(7s − 9)ζp(7s − 14)ζp(9s − 15)ζp(11s − 16)

× W�
G3×g5,3

(p, p−s) ,

where W�
G3×g5,3

(X,Y ) is given in Appendix A on p. 182. This zeta function
satisfies the functional equation

ζ�
G3×g5,3,p(s)

∣∣∣
p→p−1

= p45−19sζ�
G3×g5,3,p(s) .

The corresponding global function has abscissa of convergence α�
G3×g5,3

= 6.

We write g6,n for a Lie ring whose presentation is taken from that of the
nth Lie algebra in the list in [44]. We have already seen several examples of
rank 6, g6,1 = L(3,2), g6,3 = F2,3, g6,4 = F2,3/〈z〉 · Z and g6,5 = U3(R2) where
R2 is the ring of integers of a quadratic number field. g6,2 = M5, whose local
zeta functions we have been unable to calculate.

Theorem 2.44 ([64]). Let the Lie ring g6,6 have presentation

〈x1, . . . , x6 : [x1, x2] = x4, [x1, x3] = x5, [x1, x4] = x6, [x2, x3] = x6〉 .

Then

ζ�
g6,6,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(5s − 5)ζp(5s − 6)ζp(6s − 6)ζp(7s − 8)

× ζp(9s − 11)W�
g6,6

(p, p−s) ,

where W�
g6,6

(X,Y ) is

1 + X3Y 3 − X6Y 7 − X8Y 8 − X9Y 9 − 2X11Y 10 − X14Y 12 + X14Y 14

− X15Y 14 + X15Y 15 + X17Y 16 + X17Y 17 + X19Y 17 + X20Y 19 + X21Y 19

− X21Y 20 + X22Y 20 − X25Y 24 − X28Y 26 .

This local zeta function satisfies no functional equation. The corresponding
global zeta function has abscissa of convergence α�

g6,6
= 3.
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Theorem 2.45 ([64]). Let the Lie ring g6,7 have presentation

〈x1, . . . , x6 : [x1, x3] = x4, [x1, x4] = x5, [x2, x3] = x6〉 .

Then

ζ�
g6,7,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 3)ζp(5s − 5)ζp(5s − 6)ζp(6s − 6)

× ζp(7s − 7)W�
g6,7

(p, p−s) ,

where W�
g6,7

(X,Y ) is

1 + X3Y 3 − X3Y 5 − 2X6Y 7 − X7Y 8 − X9Y 9 − X10Y 10 + X9Y 11 − X10Y 11

+ 2X10Y 12 + X12Y 14 + X13Y 14 + X13Y 15 + X16Y 16 − X16Y 19 − X19Y 21 .

This local zeta function satisfies no functional equation. The corresponding
global zeta function has abscissa of convergence α�

g6,7
= 3.

Theorem 2.46 ([64]). Let the Lie ring g6,8 have presentation

〈x1, . . . , x6 : [x1, x2] = x3 + x4, [x1, x3] = x5, [x2, x4] = x6〉 .

Then

ζ�
g6,8,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(4s − 3)ζp(5s − 5)ζp(6s − 6)ζp(7s − 7)

× ζp(8s − 8)(1 + p1−s)W�
g6,8

(p, p−s) ,

where W�
g6,8

(X,Y ) is

1 − XY + X2Y 2 − X3Y 3 + X3Y 4 + X4Y 4 − 2X3Y 5 − X5Y 5 + 2X4Y 6

+ X6Y 6 − 2X5Y 7 − 2X6Y 7 + 3X6Y 8 − 4X7Y 9 + 4X8Y 10 − 4X9Y 11

− X10Y 11 + X9Y 12 + 4X10Y 12 − 4X11Y 13 + 4X12Y 14 − 3X13Y 15

+ 2X13Y 16 + 2X14Y 16 − X13Y 17 − 2X15Y 17 + X14Y 18 + 2X16Y 18

− X15Y 19 − X16Y 19 + X16Y 20 − X17Y 21 + X18Y 22 − X19Y 23 .

This zeta function satisfies the functional equation

ζ�
g6,8,p(s)

∣∣∣
p→p−1

= p15−12sζ�
g6,8,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,8

= 3.

Theorem 2.47 ([64]). Let the Lie ring g6,9 have presentation

〈x1, . . . , x6 : [x1, x2] = x4, [x1, x4] = x5, [x1, x3] = x6, [x2, x4] = x6〉 .
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Then

ζ�
g6,9,p(s) = ζZ3,p(s)ζp(5s − 5)ζp(6s − 6)ζp(8s − 7)ζp(8s − 8)ζp(14s − 15)

× W�
g6,9

(p, p−s) ,

where W�
g6,9

(X,Y ) is

1 + X3Y 3 + X3Y 4 − X3Y 5 + X4Y 5 + X6Y 6 + X7Y 7 − X6Y 8 − X7Y 9

+ X9Y 9 + X10Y 10 − X9Y 11 − X10Y 11 + X11Y 11 − X10Y 12 − X11Y 12

+ X12Y 12 − X11Y 13 + X13Y 13 − X12Y 14 − X13Y 14 − X13Y 15 + X13Y 16

− X14Y 16 − X15Y 16 + X16Y 16 − X16Y 17 − X16Y 18 − X17Y 18 + X16Y 19

− X18Y 19 + X17Y 20 − X18Y 20 − X19Y 20 + X18Y 21 − X19Y 21 − X20Y 21

+ X19Y 22 + X20Y 23 − X22Y 23 − X23Y 24 + X22Y 25 + X23Y 26 + X25Y 27

− X26Y 27 + X26Y 28 + X26Y 29 + X29Y 32 .

This zeta function satisfies the functional equation

ζ�
g6,9,p(s)

∣∣∣
p→p−1

= p15−12sζ�
g6,9,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,9

= 3.

Theorem 2.48 ([64]). Let γ ∈ Z \ {0, 1} be a squarefree integer. Let the Lie
ring g6,10(γ) have presentation〈

x1, . . . , x6 :
[x1, x2] = x4, [x1, x4] = x6, [x1, x3] = x5,

[x2, x3] = x6, [x2, x4] = αx5 + βx6

〉
,

where

αx5 + βx6 =

{
γx5 if γ ≡ 2, 3 (mod 4),
1
4 (γ − 1)x5 + x6 if γ ≡ 1 (mod 4).

Then, if p is inert in Q(
√

γ),

ζ�
g6,10(γ),p(s) = ζZ3,p(s)ζp(3s − 3)ζp(5s − 4)ζp(5s − 5)ζp(6s − 6)

× ζp(8s − 8)ζp(8s − 6)−1ζp(10s − 8)−1 .

If p splits in Q(
√

γ) and either

• γ ≡ 1 (mod 4) and p � 1
4 (γ − 1), or

• γ �≡ 1 (mod 4),

then

ζ�
g6,10(γ),p(s) = ζZ3,p(s)ζp(3s − 3)ζp(4s − 3)ζp(5s − 5)ζp(6s − 6)ζp(7s − 7)

× ζp(8s − 8)(1 + p1−s)W�
g6,8

(p, p−s) ,
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where W�
g6,8

(X,Y ) is given above on p. 57. For all but finitely many primes,
the local zeta function satisfies the functional equation

ζ�
g6,10(γ),p(s)

∣∣∣
p→p−1

= p15−12sζ�
g6,10(γ),p(s) .

Theorem 2.49 ([64]). Let the Lie ring g6,12 have presentation

〈x1, . . . , x6 : [x1, x3] = x5, [x1, x5] = x6, [x2, x4] = x6〉 .

Then

ζ�
g6,12,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(6s − 4)ζp(7s − 5)ζp(7s − 4)−1 ,

ζ≤g6,12,p(s) = ζZ4,p(s)ζp(2s − 5)ζp(3s − 5)ζp(3s − 6)ζp(4s − 8)ζp(4s − 9)

× ζp(5s − 12)ζp(6s − 12)ζp(6s − 13)ζp(7s − 16)ζp(s − 2)−1

× W≤
g6,12

(p, p−s) ,

where W≤
g6,12(X,Y ) is given in Appendix A on p. 183. These zeta functions

satisfy the functional equations

ζ�
g6,12,p(s)

∣∣∣
p→p−1

= p15−13sζ�
g6,12,p(s) ,

ζ≤g6,12,p(s)
∣∣∣
p→p−1

= p15−6sζ≤g6,12,p(s) .

The corresponding global zeta functions have abscissa of convergence α�
g6,12

=
α≤

g6,12 = 4.

It can easily be seen that g6,12 is the direct product with central amalgamation
of H with M3.

Theorem 2.50.

ζ�
H×g6,12,p(s) = ζZ6,p(s)ζp(3s − 6)2ζp(5s − 7)ζp(6s − 6)ζp(7s − 7)ζp(8s − 7)

× ζp(9s − 8)ζp(11s − 14)W�
H×g6,12

(p, p−s) ,

where W�
H×g6,12

(X,Y ) is

1 − X6Y 5 − X6Y 7 − X6Y 8 + X6Y 9 − 2X7Y 9 + X12Y 11 − 2X13Y 11

+ 2X13Y 12 − X14Y 12 + 2X13Y 13 − X14Y 13 + X14Y 14 + 2X13Y 15

− X14Y 15 + X14Y 16 + X20Y 16 + X14Y 17 + X20Y 18 + X20Y 19 − 2X19Y 20

+ 2X21Y 20 − X20Y 21 − X20Y 22 − X26Y 23 − X20Y 24 − X26Y 24 + X26Y 25

− 2X27Y 25 − X26Y 26 + X26Y 27 − 2X27Y 27 + X26Y 28 − 2X27Y 28

+ 2X27Y 29 − X28Y 29 + 2X33Y 31 − X34Y 31 + X34Y 32 + X34Y 33 + X34Y 35

− X40Y 40 .
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This zeta function satisfies the functional equation

ζ�
H×g6,12,p(s)

∣∣∣
p→p−1

= −p36−18sζ�
H×g6,12,p(s) .

The corresponding global zeta function has abscissa of convergence α�
H×g6,12

=6.

Theorem 2.51 ([64]). Let the Lie ring g6,13 have presentation

〈x1, . . . , x6 : [x1, x2] = x5, [x1, x3] = x4, [x1, x4] = x6, [x2, x5] = x6〉 .

Then

ζ�
g6,13,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(5s − 6)ζp(6s − 4)ζp(7s − 5)ζp(9s − 8)

× W�
g6,13

(p, p−s) ,

where W�
g6,13

(X,Y ) is

1 + X3Y 3 − X4Y 7 − X7Y 9 − X8Y 10 − X11Y 12 + X12Y 16 + X15Y 19 .

This zeta function satisfies the functional equation

ζ�
g6,13,p(s)

∣∣∣
p→p−1

= p15−14sζ�
g6,13,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,13

= 3.

Theorem 2.52 ([64]). Let γ ∈ Z be a nonzero integer, and let g6,14(γ) have
presentation

〈x1, . . . , x6 : [x1, x3] = x4, [x1, x4] = x6, [x2, x3] = x5, [x2, x5] = γx6〉 .

Then, for all primes p not dividing γ,

ζ�
g6,14(γ),p

(s) = ζZ3,p(s)ζp(3s − 3)ζp(3s − 4)ζp(5s − 6)ζp(6s − 3)ζp(7s − 5)

× ζp(6s − 6)−1ζp(7s − 3)−1 .

If p � γ, the local zeta function satisfies the functional equation

ζ�
g6,14(γ),p(s)

∣∣∣
p→p−1

= p15−14sζ�
g6,14(γ),p(s) .

For γ = ±1, the corresponding global zeta function has abscissa of convergence
α�

g6,14(±1) = 3.

The following proposition has a routine proof which we do not repeat.

Proposition 2.53. For γ1, γ2 �= 0, let g6,14(γ1) and g6,14(γ2) be defined over
any integral domain or field R. Then g6,14(γ1) ∼= g6,14(γ2) iff γ1 = u2γ2 for
some u ∈ R∗.
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It can also be shown that the local zeta functions depend only on the power
of p dividing γ. We therefore have the following

Corollary 2.54. Let γ ∈ Z be a nonzero integer. Then g6,14(γ) � g6,14(−γ)
but ζ�

g6,14(γ)(s) = ζ�
g6,14(−γ)(s).

The classification of six-dimensional Lie algebras has also given rise to
some new calculations in nilpotency class 4. In particular, the second author
found the following:

Theorem 2.55 ([64]). Define the two Lie rings g6,15 and g6,17 by the pre-
sentations

g6,15 =
〈

x1, x2, x3, x4, x5, x6 :
[x1, x2] = x3 + x4, [x1, x4] = x5,

[x1, x5] = x6, [x2, x3] = x6

〉
,

g6,17 =
〈

x1, x2, x3, x4, x5, x6 :
[x1, x2] = x4, [x1, x4] = x5,
[x1, x5] = x6, [x2, x3] = x6

〉
.

Then

ζ�
g6,15,p(s) = ζ�

g6,17,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(4s − 3)ζp(6s − 4)ζp(7s − 5)

× ζp(9s − 8)W�
g6,15

(p, p−s) , (2.10)

where W�
g6,15

(X,Y ) is

1 − X3Y 5 + X4Y 5 − X4Y 7 − X7Y 9 + X7Y 11 − X8Y 11 + X11Y 16 .

This zeta function satisfies the functional equation

ζ�
g6,15,p(s)

∣∣∣
p→p−1

= p15−16sζ�
g6,15,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,15

= 3.

It follows from the classification [44] that g6,15 � g6,17, but an appeal to a
classification is not an enlightening proof. To be sure, we verify

Proposition 2.56. g6,15 and g6,17 are not isomorphic.

Proof. The rank of the centraliser of the derived subring is invariant under iso-
morphism. Firstly, g′6,15 = 〈y3+y4, y5, y6〉, which has centraliser 〈y3, y4, y5, y6〉.
Secondly, g′6,17 = 〈x4, x5, x6〉, which is centralised by 〈x2, x3, x4, x5, x6〉. Thus
g6,15 � g6,17. ��

The only other calculation at nilpotency class 4 this classification leads to
is the following:
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Theorem 2.57 ([64]). Let the Lie ring g6,16 have presentation〈
x1, x2, x3, x4, x5, x6 :

[x1, x3] = x4, [x1, x4] = x5, [x1, x5] = x6,
[x2, x3] = x5, [x2, x4] = x6

〉
.

Then

ζ�
g6,16,p(s) = ζZ3,p(s)ζp(3s − 3)ζp(5s − 4)ζp(6s − 3)ζp(7s − 5)ζp(7s − 3)−1 .

This zeta function satisfies the functional equation

ζ�
g6,16,p(s)

∣∣∣
p→p−1

= p15−17sζ�
g6,16,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g6,16

= 3.

2.15 Nilpotent Lie Algebras of Dimension 7

The Lie algebras of dimension 7 over algebraically closed fields and R were
first classified successfully by Gong [26]. Once again, the structure constants of
each Lie algebra are all rational integers. This includes the six one-parameter
families, providing we restrict the parameter to Z. Hence we can also use this
classification to obtain presentations of Z-Lie rings of rank 7.

We write gname for the Z-Lie ring corresponding to the Lie algebra with the
label (name) in [26]. For example, g1357F corresponds to (1357F) in [26]. The
digits are the dimensions of the terms in the upper-central series, and the suffix
letter (when shown) distinguishes non-isomorphic Lie algebras with the same
upper-central series dimensions. We have encountered some of these Lie rings
before, in particular g17

∼= G(3, 0), g37A
∼= G4, g37B

∼= T4, g137A
∼= M3 ×Z M3

and g247A
∼= L(3,3). Furthermore, some of them arise as direct products with

central amalgamation: g157, g257K, g1457A and g1457B are the direct products
with central amalgamation of H with g5,3, F3,2, M4 and Fil4 respectively.

We saw above that g6,15 and g6,17 are non-isomorphic yet their ideal zeta
functions are equal. Amongst those calculations in rank 7 we have so far com-
pleted, there are no less than seven pairs of normally isospectral Lie rings. We
do not provide proof that the Lie rings are non-isomorphic, instead referring
the curious reader to [26].

Theorem 2.58. Let the Lie ring g27A have presentation

〈x1, x2, x3, x4, x5, x6, x7 : [x1, x2] = x6, [x1, x4] = x7, [x3, x5] = x7〉 .

Then

ζ�
g27A,p(s) = ζZ5,p(s)ζp(3s − 5)ζp(5s − 6)ζp(7s − 10)ζp(8s − 10)−1 .

This zeta function satisfies the functional equation

ζ�
g27A,p(s)

∣∣
p→p−1 = −p21−12sζ�

g27A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g27A

= 5.



2.15 Nilpotent Lie Algebras of Dimension 7 63

Theorem 2.59. Let the Lie ring g27B have presentation

〈x1, . . . , x7 : [x1, x2] = x6, [x1, x5] = x7, [x2, x3] = x7, [x3, x4] = x6〉 .

Then

ζ�
g27B,p(s) = ζZ5,p(s)ζp(5s − 5)ζp(5s − 6)ζp(7s − 10)ζp(10s − 10)−1 .

This zeta function satisfies the functional equation

ζ�
g27B,p(s)

∣∣
p→p−1 = −p21−12sζ�

g27B,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g27B

= 5.

Theorem 2.60. Let the Lie ring g37C have presentation

〈x1, . . . , x7 : [x1, x2] = x5, [x2, x3] = x6, [x2, x4] = x7, [x3, x4] = x5〉 .

Then ζ�
g37C,p(s) = ζ�

T4,p(s) (p. 45).

Theorem 2.61. Let the Lie ring g37D have presentation

〈x1, . . . , x7 : [x1, x2] = x5, [x1, x3] = x7, [x2, x4] = x7, [x3, x4] = x6〉 .

Then

ζ�
g37D,p(s) = ζZ4,p(s)ζp(3s − 5)ζp(5s − 6)ζp(6s − 10)ζp(7s − 12)W�

g37D
(p, p−s) ,

where W�
g37D

(X,Y ) is

1 + X4Y 3 + X8Y 6 + X9Y 6 − X9Y 8 − X10Y 8 − X14Y 11 − X18Y 14 .

This zeta function satisfies the functional equation

ζ�
g37D,p(s)

∣∣
p→p−1 = −p21−11sζ�

g37D,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g37D

= 4.

Theorem 2.62. Let the Lie ring g137B have presentation〈
x1, x2, x3, x4, x5, x6, x7 :

[x1, x2] = x5, [x1, x5] = x7, [x2, x4] = x7,
[x3, x4] = x6, [x3, x6] = x7

〉
.

Then ζ�
g137B,p(s) = ζ�

M3×ZM3,p(s) (p. 48).

Theorem 2.63. Let the Lie rings g137C and g137D have presentations

g137C =
〈

x1, . . . , x7 :
[x1, x2] = x5, [x1, x4] = x6, [x1, x6] = x7,

[x2, x3] = x6, [x3, x5] = −x7

〉
,

g137D =
〈

x1, . . . , x7 :
[x1, x2] = x5, [x1, x4] = x6, [x1, x6] = x7,
[x2, x3] = x6, [x2, x4] = x7, [x3, x5] = −x7

〉
.
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Then

ζ�
g137C,p(s) = ζ�

g137D,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5)ζp(6s − 9)ζp(7s − 4)

× ζp(9s − 6)ζp(11s − 10)ζp(12s − 10)

× ζp(16s − 11)W�
g137C

(p, p−s) ,

where W�
g137C

(X,Y ) is

1 − X4Y 8 + X5Y 8 − X9Y 8 − X5Y 9 − X9Y 11 − X10Y 12 + X9Y 13 − X10Y 13

+ X13Y 15 − X14Y 15 − X10Y 16 + X14Y 16 − X15Y 16 + X10Y 17 − X11Y 17

+ X15Y 17 + X14Y 19 − X15Y 19 + X19Y 19 + X15Y 20 + X19Y 20 + X14Y 21

+ X15Y 21 − X16Y 21 − X15Y 22 + X16Y 22 + X18Y 23 + X19Y 23 − X20Y 23

− X18Y 24 − X19Y 24 + 3X20Y 24 + X15Y 25 − X23Y 26 + X24Y 26 + X19Y 27

− X19Y 28 + X20Y 28 + X21Y 28 − X23Y 28 − X24Y 28 + X25Y 28 − X25Y 29

− X20Y 30 + X21Y 30 − X29Y 31 − 3X24Y 32 + X25Y 32 + X26Y 32 + X24Y 33

− X25Y 33 − X26Y 33 − X28Y 34 + X29Y 34 + X28Y 35 − X29Y 35 − X30Y 35

− X25Y 36 − X29Y 36 − X25Y 37 + X29Y 37 − X30Y 37 − X29Y 39 + X33Y 39

− X34Y 39 + X29Y 40 − X30Y 40 + X34Y 40 + X30Y 41 − X31Y 41 + X34Y 43

− X35Y 43 + X34Y 44 + X35Y 45 + X39Y 47 + X35Y 48 − X39Y 48 + X40Y 48

− X44Y 56 .

This zeta function satisfies the functional equation

ζ�
g137C,p(s)

∣∣
p→p−1 = −p21−17sζ�

g137C,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g137C

= 4.

Theorem 2.64. Let the Lie rings g147A and g147B have presentations

g147A =
〈

x1, . . . , x7 :
[x1, x2] = x4, [x1, x3] = x5, [x1, x6] = x7,

[x2, x5] = x7, [x3, x4] = x7

〉
,

g147B =
〈

x1, . . . , x7 :
[x1, x2] = x4, [x1, x3] = x5, [x1, x4] = x7,

[x2, x6] = x7, [x3, x5] = x7

〉
.

Then

ζ�
g147A,p(s) = ζ�

g147B,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(3s − 5)ζp(5s − 8)ζp(7s − 6)

× ζp(6s − 8)−1 .

This zeta function satisfies the functional equation

ζ�
g147A,p(s)

∣∣
p→p−1 = −p21−16sζ�

g147A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g147A

= 4.
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Theorem 2.65. Let g157 have presentation

〈x1, . . . , x7 : [x1, x2] = x3, [x1, x3] = x7, [x2, x4] = x7, [x5, x6] = x7〉 .

Then

ζ�
g157,p(s) = ζZ5,p(s)ζp(3s − 5)ζp(7s − 6) .

This zeta function satisfies the functional equation

ζ�
g157A,p(s)

∣∣
p→p−1 = −p21−15sζ�

g157A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g157

= 5.

Theorem 2.66. Let the Lie ring g247B have presentation

〈x1, . . . , x7 : [x1, x2] = x4, [x1, x3] = x5, [x1, x4] = x6, [x3, x5] = x7〉 .

Then

ζ�
g247B,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 3)ζp(5s − 5)ζp(5s − 6)ζp(6s − 5)

× ζp(6s − 6)ζp(7s − 6)ζp(7s − 7)ζp(8s − 7)ζp(8s − 8)
× ζp(9s − 10)ζp(9s − 11)ζp(10s − 9)ζp(10s − 11)ζp(11s − 10)

× ζp(11s − 12)ζp(12s − 12)ζp(13s − 13)ζp(s − 1)−2

× ζp(2s − 2)−1W�
g247B

(p, p−s)

for some polynomial W�
g247B

(X,Y ) of degrees 123 in X and 128 in Y . This
zeta function satisfies the functional equation

ζ�
g247B,p(s)

∣∣
p→p−1 = −p21−15sζ�

g247B,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g247B

= 3.

Theorem 2.67. Let the Lie rings g257A and g257C have presentations

g257A = 〈x1, . . . , x7 : [x1, x2] = x3, [x1, x3] = x6, [x1, x5] = x7, [x2, x4] = x6〉 ,

g257C = 〈x1, . . . , x7 : [x1, x2] = x3, [x1, x3] = x6, [x2, x4] = x6, [x2, x5] = x7〉 .

Then

ζ�
g257A,p(s) = ζ�

g257C,p(s) = ζZ4,p(s)ζp(3s − 5)ζp(5s − 6)ζp(5s − 8)ζp(7s − 9)

× W�
g257A

(p, p−s) ,

where

W�
g257A

(X,Y ) = 1 + X4Y 3 − X9Y 8 − X13Y 10 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

g257A
= 4.



66 2 Nilpotent Groups: Explicit Examples

Theorem 2.68. Let the Lie ring g257B have presentation

〈x1, . . . , x7 : [x1, x2] = x3, [x1, x3] = x6, [x1, x4] = x7, [x2, x5] = x7〉 .

Then

ζ�
g257B,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 6)ζp(6s − 9)ζp(7s − 9)

× ζp(8s − 10)ζp(12s − 15)W�
g257B

(p, p−s) ,

where W�
g257B

(X,Y ) is

1 − X4Y 5 + X5Y 5 − 2X9Y 8 − X9Y 9 − X13Y 10 + X13Y 11 − X14Y 11

+ 2X13Y 12 − 2X14Y 12 + X14Y 13 − X15Y 13 + 2X18Y 15 − X19Y 15

+ X18Y 16 + 2X19Y 17 − X20Y 17 + X23Y 18 − X22Y 19 + X23Y 19 − X23Y 20

+ 2X24Y 20 + X24Y 21 + X28Y 22 − X27Y 23 − X28Y 23 + X29Y 23 − 2X28Y 24

+ X29Y 24 − X33Y 27 − X33Y 28 − X33Y 29 − X38Y 30 + X37Y 32 + X42Y 35 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

g257B
= 4.

Theorem 2.69. Let g257K have presentation

〈x1, . . . , x7 : [x1, x2] = x5, [x1, x5] = x6, [x2, x5] = x7, [x3, x4] = x7〉 .

Then

ζ�
g257K,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 5)ζp(6s − 5)ζp(7s − 6)

× ζp(7s − 8)ζp(9s − 10)W�
g257K

(p, p−s) ,

where W�
g257K

(X,Y ) is

1 − X4Y 5 − X5Y 7 − X8Y 9 − X8Y 10 + X8Y 11 − X10Y 11 + X9Y 12

+ X12Y 13 − X13Y 13 + X13Y 14 + 2X13Y 15 − X14Y 15 − X13Y 16 + 2X14Y 16

+ X14Y 17 − X14Y 18 + X15Y 18 + X18Y 19 − X17Y 20 + X19Y 20 − X19Y 21

− X19Y 22 − X22Y 24 − X23Y 26 + X27Y 31 .

This zeta function satisfies the functional equation

ζ�
g257K,p(s)

∣∣
p→p−1 = −p21−14sζ�

g257K,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g257K

= 4.

Theorem 2.70. Let the Lie ring g1357A have presentation〈
x1, . . . , x7 :

[x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x7,
[x2, x3] = x5, [x2, x6] = x7, [x3, x4] = −x7

〉
.
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Then

ζ�
g1357A,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5)ζp(7s − 6) .

This zeta function satisfies the functional equation

ζ�
g1357A,p(s)

∣∣
p→p−1 = −p21−19sζ�

g1357A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g1357A

= 4.

Theorem 2.71. Let the Lie rings g1357B and g1357C have presentations

g1357B =
〈

x1, . . . , x7 :
[x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x7

[x2, x3] = x5, [x3, x4] = −x7, [x3, x6] = x7

〉
,

g1357C =

〈
x1, . . . , x7 :

[x1, x2] = x4, [x1, x4] = x5, [x1, x5] = x7,
[x2, x3] = x5, [x2, x4] = x7,
[x3, x4] = −x7, [x3, x6] = x7

〉
.

Then

ζ�
g1357B,p(s) = ζ�

g1357C,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(5s − 5)ζp(7s − 4)ζp(9s − 6)

× ζp(11s − 10)ζp(16s − 11)W�
g1357B

(p, p−s) ,

where W�
g1357B

(X,Y ) is

1 − X4Y 8 + X5Y 8 − X5Y 9 − X9Y 11 + X9Y 12 − X10Y 12 − X10Y 16

+ X10Y 17 − X11Y 17 + X14Y 19 − X15Y 19 + X15Y 20 + X15Y 25 + X19Y 27

− X19Y 28 + X21Y 28 − X25Y 36 .

This zeta function satisfies no functional equation. The corresponding global
zeta function has abscissa of convergence α�

g1357B
= 4.

Theorem 2.72. Let the Lie rings g1357G and g1357H have presentations

g1357G =
〈

x1, . . . , x7 :
[x1, x2] = x3, [x1, x4] = x6, [x1, x6] = x7

[x2, x3] = x5, [x2, x5] = x7

〉
,

g1357H =

〈
x1, . . . , x7 :

[x1, x2] = x3, [x1, x4] = x6, [x1, x6] = x7,
[x2, x3] = x5, [x2, x5] = x7, [x2, x6] = x7,

[x3, x4] = −x7

〉
.

Then

ζ�
g1357G,p(s) = ζ�

g1357H,p(s) = ζZ3,p(s)ζp(3s − 4)ζp(4s − 3)ζp(5s − 5)ζp(5s − 6)

× ζp(6s − 6)ζp(7s − 4)ζp(7s − 7)ζp(8s − 5)
× ζp(9s − 6)ζp(10s − 9)ζp(11s − 8)ζp(12s − 10)

× ζp(12s − 11)W�
g1357G

(p, p−s)

where W�
g1357G

(X,Y ) is given in Appendix A on p. 184. This zeta function
satisfies no functional equation. The corresponding global zeta function has
abscissa of convergence α�

g1357G
= 3.
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Theorem 2.73. Let g1457A have the presentation

〈x1, . . . , x7 : [x1, x2] = x5, [x1, x5] = x6, [x1, x6] = x7, [x3, x4] = x7〉 .

Then

ζ�
g1457A,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 5)ζp(7s − 4)ζp(9s − 6)

× ζp(10s − 9)ζp(11s − 10)ζp(12s − 10)ζp(15s − 10)

× ζp(16s − 11)W�
g1457A

(p, p−s) ,

where W�
g1457A

(X,Y ) is given in Appendix A on p. 186. This zeta function
satisfies the functional equation

ζ�
g1457A,p(s)

∣∣
p→p−1 = −p21−18sζ�

g1457A,p(s) .

The corresponding global zeta function has abscissa of convergence α�
g1457A

= 4.

Theorem 2.74. Let g1457B have presentation〈
x1, . . . , x7 :

[x1, x2] = x5, [x1, x5] = x6, [x1, x6] = x7,
[x2, x5] = x7, [x3, x4] = x7

〉
.

Then

ζ�
g1457B,p(s) = ζZ4,p(s)ζp(3s − 4)ζp(4s − 4)ζp(5s − 5)ζp(7s − 4)ζp(9s − 6)

× ζp(10s − 9)ζp(11s − 10)ζp(12s − 10)ζp(16s − 11)

× W�
g1457B

(p, p−s) ,

where W�
g1457B

(X,Y ) is given in Appendix A on p. 187. This zeta function
satisfies no functional equation. The corresponding global zeta function has
abscissa of convergence α�

g1457B
= 4.



3

Soluble Lie Rings

3.1 Introduction

In this chapter, we present some calculations of zeta functions of soluble (but
non-nilpotent) Lie rings over Z. Since these Lie rings are not nilpotent, the
Mal’cev correspondence cannot be used, and so there is no corresponding T-
group whose local zeta functions we are also calculating. We prove that the
zeta functions we consider behave in a similar fashion to those of nilpotent
Lie rings. What is remarkable is that the uniform behaviour is ‘stronger’ than
that seen with the nilpotent Lie rings.

Theorem 3.1. For n ∈ N>0, let trn(Z) denote the set of upper-triangular
n×n matrices, with the Lie bracket given by the familiar commutator [x, y] =
xy − yx. For each n ∈ N>0 there exists a univariate rational function Rn(Y ),
with Rn(0) = 1, such that

ζ�
trn(Z),p(s) = ζ�

Zn,p(s)Rn(p−s)

for all primes p. Furthermore,

ζ�
trn(Z),p(s)|p→p−1 = (−1)

1
2 n(n+1)p(n

2)− 1
6 (2n3+3n2−5n+6)sζ�

trn(Z),p(s) (3.1)

for all primes p.

We note in passing the following corollary of Theorem 3.1.

Corollary 3.2. The abscissa of convergence of ζ�
trn(Z)(s) is α�

trn(Z) = n, with
a simple pole at s = n.

Proof. We have that

ζ�
trn(Z)(s) = ζ�

Zn(s)
∏
p

Rn(p−s) .

It is well-known that ζ�
Zn(s) has abscissa of convergence n with a simple pole at

s = n. tr1(Z) ∼= Z, so the result is clear for n = 1, and for n ≥ 2,
∏

p Rn(p−s)
converges for �(s) > 1. ��
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The proof of Theorem 3.1 is combinatorial. The following result, due to
Stanley [55, Proposition 7.1], plays a crucial part in the proof:

Theorem 3.3. Let E be a system of homogeneous linear equations in k vari-
ables a = (a1, . . . , ak) with coefficients in Z. Let SE be the solution set
of E over N and S̄E the solution set over N>0. Let X = (X1, . . . , Xk) be
k commuting indeterminates and use the notation Xa = Xa1

1 . . . Xak

k and
1/X = (1/X1, . . . , 1/Xk). Define the generating functions

F (E;X) =
∑
a∈SE

Xa , F̄ (E;X) =
∑
a∈S̄E

Xa .

Then F and F̄ are rational functions in X. Furthermore, if S̄E �= ∅, then

F (E; 1/X) = (−1)κF̄ (E;X) , (3.2)

where κ = κ(E) is the corank of E.

Stanley’s theorem applies to systems of linear equations, and it can easily be
generalised to linear inequalities:

Corollary 3.4. Let I be a system of k − r homogeneous linear inequalities in
r variables b = (b1, . . . , br) with coefficients in Z. Let SI be the solution set
of I over N, and let Y = (Y1, . . . , Yr) be r commuting indeterminates. There
exists a system of linear equations E of corank r such that we may write

F (I;Y) :=
∑
b∈SI

Yb = F (E;X)

for suitable X = (X1, . . . , Xk) depending on Y. In particular, F (I;Y) is a
rational function in Y.

Proof. The system of equations E is obtained from I by adding a distinct slack
variable to the inferior side of each inequality. Clearly, there is a bijective
correspondence between SI and SE. Since each equation in E has a unique
slack variable, the corank κ(E) = r. Hence we may consider the generating
function of SE, F (E;X), where X = (X1, . . . , Xk) is a vector of commuting
indeterminates. To obtain F (I;Y) from F (E;X), we set Xi = Yi for 1 ≤ i ≤ r
and Xi = 1 for r + 1 ≤ i ≤ k.

However, we must check that setting Xi = 1 for r + 1 ≤ i ≤ k gives us a
well-defined rational function. F (E; (0, . . . , 0, Xr+1, . . . , Xk)) is the generating
function of all solutions to E with a1 = · · · = ar = 0. Clearly this counts
only the trivial solution 0, i.e. F (E; (0, . . . , 0, Xr+1, . . . , Xk)) = 1. Hence the
denominator of F (E;X) can have no factors of the form (1−Xc) with ci = 0
for all 1 ≤ i ≤ r, so by setting Xi = Yi for 1 ≤ i ≤ r and Xi = 1 for
r + 1 ≤ i ≤ k, we obtain a well-defined rational function in Y. ��
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Corollary 3.5. Assume the notation of Theorem 3.3. Suppose in addition
that 1 = (1, 1, . . . , 1) ∈ S̄E. Then

F (E; 1/X) = (−1)κX1F (E;X) . (3.3)

Proof. If a ∈ Nk
>0, then a ∈ S̄E if and only if a − 1 ∈ SE. Hence

F̄ (E;X) =
∑
a∈S̄E

Xa =
∑

a−1∈SE

Xa =
∑
a∈SE

Xa+1 = X1F (E;X) .

Clearly S̄E �= ∅, so Theorem 3.3 implies the result. ��

3.2 Proof of Theorem 3.1

We prove Theorem 3.1 by representing ζ�
trn(Z),p(s) as a generating function of

the form F (I;Y) for the ideals of trn(Z) of p-power index in trn(Z). The proof
is broken up into a number of stages.

3.2.1 Choosing a Basis for trn(Z)

The most obvious basis for trn(Z) is the N := 1
2n(n + 1) elementary n × n

matrices whose nonzero entries are on or above the leading diagonal. However,
this basis is unsuitable for our purposes. We therefore present an alternative
choice of basis.

Let Ej,k denote the elementary matrix with a 1 in the (j, k) entry and zeros
elsewhere. Let f be any bijection f : { (j, k) : 1 ≤ j ≤ k ≤ n } → {1, . . . , N}
such that for all 1 ≤ j1 ≤ k1 ≤ n, 1 ≤ j2 ≤ k2 ≤ n with k2 − j2 > k1 − j1,
f(j2, k2) > f(j1, k1). We choose the basis for trn(Z) to be (e1, . . . , eN ), where

ei =

{∑n
j=i Ej,j if 1 ≤ i ≤ n,

Ej,k if n + 1 ≤ i ≤ N , where (j, k) = f−1(i) .
(3.4)

Intuitively, the n diagonal basis elements are followed by the n−1 elementary
matrices whose nonzero entry is on the first superdiagonal, and then the n−2
elementary matrices with nonzero entry on the second superdiagonal, and so
on. This basis has the property that if 1 ≤ j1 ≤ j2 < k2 ≤ k2 ≤ n and
(j1, k1) �= (j2, k2), then Ej2,k2 precedes Ej1,k1 . Also, e1 is the identity matrix.

The following lemma provides justification for our choice of diagonal basis
elements:

Lemma 3.6. Let 1 ≤ j < k ≤ n, 1 ≤ i ≤ n. Then

[Ej,k, ei] =

{
Ej,k if j < i ≤ k ,

0 otherwise.
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Proof. We split into three cases:

1. i ≤ j < k: [Ej,k, ei] = [Ej,k, Ej,j ] + [Ej,k, Ek,k] = 0,
2. j < i ≤ k: [Ej,k, ei] = [Ej,k, Ek,k] = Ej,k,
3. j < k < i: [Ej,k, ei] = 0.

��
Corollary 3.7. Suppose 1 ≤ j < k ≤ n, 1 ≤ j1 < k1 ≤ n. Then

[Ej1,k1 , ej+1, ek] =

{
Ej′,k′ if 1 ≤ j1 ≤ j < k ≤ k1 ≤ n ,

0 otherwise .

Proof. Immediate from Lemma 3.6. ��

3.2.2 Determining the Conditions

Any additive submodule of ZN of finite index can be additively generated by
m1, . . . ,mN , where

mi =
N∑

j=i

mi,jej

and mi,j ∈ Z for 1 ≤ i ≤ j ≤ N . If we additionally stipulate that mi,i > 0
for all 1 ≤ i ≤ N and 0 ≤ mi,j < mj,j for 1 ≤ i < j ≤ N , then each addi-
tive submodule has a unique such generating set. The index of this additive
submodule is

∏N
i=1 mi,i, the determinant of the N × N matrix with the mi,j

as entries. We require the index to be a power of p, and this is achieved by
ensuring that mi,i is a power of p for each 1 ≤ i ≤ N .

For the additive submodule to be an ideal, we must also ensure that

[mi, ej ] ∈ 〈m1, . . . ,mN 〉Z (3.5)

for 1 ≤ i, j ≤ N . These requirements give rise to a number of polynomial
divisibility conditions amongst the mi,j . Our next task is to determine these
conditions explicitly.

Lemma 3.8. mi,j = 0 for all 1 ≤ i < j ≤ N , j > n.

Proof. We prove by reverse induction on j that mi,j = 0 for all 1 ≤ i < j. The
base case is j = N . Suppose 1 ≤ i < N . By Corollary 3.7,

[mi, e2, en] = mi,NeN .

This must lie within the Z-span of m1, . . . ,mN , and so mN,N | mi,N . Since
we are assuming 0 ≤ mi,N < mN,N , mi,N = 0.

By the inductive hypothesis, assume mi1,j1 = 0 for all i1, j1 such that
j < j1 ≤ N , 1 ≤ i1 < j1. In particular, this implies that mj = mj,jej . Let
(a, b) = f−1(j). Since j > n, a < b. By Corollary 3.7,
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[mi, ea+1, eb] = mi,jej .

Since mj = mj,jej , we once again have mj,j | mi,j and 0 ≤ mi,j < mj,j , so
mi,j = 0 for all 1 ≤ i < j. This establishes our induction. ��

Lemma 3.8 implies that [mi, ej ] ∈ {0,mi} for 1 ≤ i ≤ N , 1 ≤ j ≤ n, so
we have now satisfied (3.5) for 1 ≤ j ≤ n. It also implies that mi = mi,iei

for n + 1 ≤ i ≤ N . Recall that each such ei is the elementary matrix Ej,k

where (j, k) = f−1(i). These elementary matrices are more naturally indexed
by the pair (j, k) than by the ordering imposed by the bijection f , so we
shall relabel the coefficients of the off-diagonal basis elements accordingly. Set
nj,k = mf(j,k),f(j,k) for 1 ≤ j < k ≤ n, so that mf(j,k) = nj,kEj,k.

We now determine the conditions the nj,k must satisfy among themselves.
These arise from ensuring that

[nj1,k1Ej1,k1 , Ej2,k2 ] ∈ 〈nj,kEj,k : 1 ≤ j < k ≤ n〉 (3.6)

for 1 ≤ j1 < k1 ≤ n, 1 ≤ j2 < k2 ≤ n.

Lemma 3.9. Suppose 1 ≤ j1 < k1 ≤ n, 1 ≤ j2 < k2 ≤ n. Then

[Ej1,k1 , Ej2,k2 ] =

⎧⎪⎨⎪⎩
Ej1,k2 if k1 = j2 ,
−Ej2,k1 if j1 = k2 ,
0 otherwise .

In particular, if k1 �= j2 and j1 �= k2, [nj1,k1Ej1,k1 , Ej2,k2 ] = 0.

Proof. Routine matrix calculations. ��
Lemma 3.10. Suppose that 1 ≤ j1 < k1 ≤ n and 1 ≤ j2 < k2 ≤ n. If either
j1 = j2 and k2 < k1, or k1 = k2 and j1 < j2, then nj1,k1 | nj2,k2 .

Proof. If j1 = j2, k2 < k1, then [nj2,k2Ej2,k2 , Ek2,k1 ] = nj2,k2Ej1,k1 , and if
k1 = k2, j1 < j2, then [nj2,k2Ej2,k2 , Ej1,j2 ] = −nj2,k2Ej1,k1 . Either way, to
satisfy (3.6) we require nj1,k1 | nj2,k2 . ��
Corollary 3.11. If 1 ≤ j1 ≤ j2 < k2 ≤ k1 ≤ n, then nj1,k1 | nj2,k2 .

Proof. Using Lemma 3.10 at most twice, nj1,k1 | nj2,k1 | nj2,k2 . ��
We therefore require the conditions nj,k | nj,k−1 for 1 ≤ j < k − 1 < n

and nj−1,k | nj,k for 2 ≤ j < k < n. All other conditions that the nj,k satisfy
among themselves are implied by these conditions.

Finally, we consider Lie brackets of the form [mi, Ej,k] for i ≤ n, 1 ≤ j <

k ≤ n. By Lemma 3.6, [mi, Ej,k] = −
(∑k

r=j+1 mi,r

)
Ej,k, and this gives rise

to the condition
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nj,k

∣∣∣∣∣∣
k∑

r=j+1

mi,r . (3.7)

If k = j + 1, (3.7) reduces to the monomial condition nj,j+1 | mi,j+1. If
j < k − 1, the monomial conditions of the form (3.7) and Corollary 3.11
together imply that nj,k | nj1,j1+1 | mi,j1+1 for j ≤ j1 < k. Hence we shall
only need to enforce the conditions (3.7) for k = j + 1.

3.2.3 Constructing the Zeta Function

Collecting together all the conditions we derived in the previous section, we
have

mi,i is a power of p for 1 ≤ i ≤ n, (3.8)
nj,k is a power of p for 1 ≤ j < k ≤ n, (3.9)

0 ≤ mi,j < mj,j for 1 ≤ i < j ≤ n, (3.10)
nj,j+1 | mi,j+1 for 1 ≤ i ≤ j + 1 ≤ n, (3.11)

nj,k | nj,k−1 for 1 ≤ j < k ≤ n, k − j ≥ 2, (3.12)
nj,k | nj+1,k for 1 ≤ j < k ≤ n, k − j ≥ 2. (3.13)

Substituting mi,i = pAi and nj,k = pBj,k for 1 ≤ i ≤ n, 1 ≤ j < k ≤ n, with
each Ai, Bj,k ∈ N eliminates (3.8) and (3.9) and splits (3.11) into two separate
sets of conditions (3.15) and (3.16):

0 ≤ mi,j+1 < pAj+1 for 1 ≤ i < j + 1 ≤ n, (3.14)
Bj,j+1 ≤ Aj+1 for 1 ≤ j ≤ n − 1, (3.15)

pBj,j+1 | mi,j+1 for 1 ≤ i < j + 1 ≤ n, (3.16)
Bj,k ≤ Bj,k−1 for 1 ≤ j < k ≤ n, k − j ≥ 2, (3.17)
Bj,k ≤ Bj+1,k for 1 ≤ j < k ≤ n, k − j ≥ 2. (3.18)

Let W denote the set of all

(A1, . . . , An,m1,2,m1,3, . . . , mn−1,n, B1,2, B1,3, . . . , Bn−1,n) ∈ Nn2

satisfying (3.14)–(3.18). We therefore have

ζ�
trn(Z),p(s) =

∑
W

⎛⎝ n∏
i=1

p−Ais
∏

1≤j<k≤n

p−Bj,ks

⎞⎠ . (3.19)

3.2.4 Transforming the Conditions

As they stand, the conditions (3.14)–(3.18) are not sufficient to deduce our
results. Some changes of variable are necessary to transform the conditions.
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For 1 ≤ i < j + 1 ≤ n, set mi,j+1 = m′
i,j+1p

Bj,j+1 . and for 1 ≤ j ≤ n − 1,
set Aj+1 = A′

j+1 + Bj,j+1. For notational simplicity, we also set A1 = A′
1.

These changes eliminate the conditions (3.15) and (3.16), and (3.14) becomes

0 ≤ m′
i,j+1 < pA′

j+1 for 1 ≤ i < j + 1 ≤ n .

Since there are no other restrictions on the m′
i,j , we may sum over the m′

i,j

for 1 ≤ i < j ≤ n to obtain

ζ�
trn(Z),p(s) =

∑
W ′

⎛⎜⎜⎝ n∏
i=1

pA′
i(i−1−s)

∏
1≤j<n

p−2Bj,j+1s
∏

1≤j<k≤n
k−j≥2

p−Bj,ks

⎞⎟⎟⎠ ,

where W ′ is the set of all (A1, . . . , An, B1,2, B1,3, . . . , Bn−1,n) ∈ NN sat-
isfying the conditions (3.17) and (3.18). Furthermore, these conditions are
independent of the A′

i, so we sum the A′
i to obtain a factor ζ�

Zn,p(s) =∏n
i=1 ζp(s − (i − 1)). Thus

ζ�
trn(Z),p(s) = ζ�

Zn,p(s)
∑
W ′′

⎛⎜⎜⎝ ∏
1≤j<n

p−2Bj,j+1s
∏

1≤j<k≤n
k−j≥2

p−Bj,ks

⎞⎟⎟⎠ , (3.20)

where W ′′ is the set of all (B1,2, B1,3, . . . , Bn−1,n) ∈ N
1
2 n(n−1) satisfying (3.17)

and (3.18). Set

Rn(Y ) =
∑
W ′′

⎛⎜⎜⎝ ∏
1≤j<n

Y 2Bj,j+1
∏

1≤j<k≤n
k−j≥2

Y Bj,k

⎞⎟⎟⎠ ,

so that ζ�
trn(Z),p(s) = ζ�

Zn,p(s)Rn(p−s). Rn(Y ) is clearly independent of p, and
so the first part of Theorem 3.1 now follows from Corollary 3.4.

3.2.5 Deducing the Functional Equation

There is still work to do to prove the functional equation (3.1). The next step is
to eliminate the conditions (3.17). For 1 ≤ j < k < n, set Bj,k = B′

j,k+Bj,k+1.
For the sake of notational simplicity, we also set B′

j,n = Bj,n for 1 ≤ j < n.
Inductively, Bj,k = B′

j,k + B′
j,k+1 + · · · + B′

j,n. Equation (3.20) becomes

ζ�
trn(Z),p(s) = ζ�

Zn,p(s)
∑
W ′′′

⎛⎝ ∏
1≤j<k≤n

p−(k−j+1)B′
j,ks

⎞⎠ , (3.21)
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where W ′′′ is the set of all (B′
1,2, B

′
1,3, . . . , B

′
n−1,n) ∈ N

1
2 n(n−1) satisfying

B′
j,k + B′

j,k+1 + · · · + B′
j,n ≤ B′

j+1,k + B′
j+1,k+1 + · · · + B′

j+1,n (3.22)

for 1 ≤ j < k ≤ n, k − j ≥ 2.
When k = n in (3.22), we have

B′
j,n ≤ B′

j+1,n for 1 ≤ j ≤ n − 2 .

Set B′
j,n = B′′

j,n + B′
j−1,n for 2 ≤ j ≤ n − 1 so that B′

j,n = B′′
j,n + B′′

j−1,n +
· · ·+ B′′

1,n. For notational simplicity, we also set B′
1,n = B′′

1,n and B′
j,k = B′′

j,k

for 1 ≤ j < k < n. Equation (3.21) now becomes

ζ�
trn(Z),p(s) = ζ�

Zn,p(s)
∑
W ′′′′

⎛⎝ ∏
1≤j<k≤n

p−ej,kB′′
j,ks

⎞⎠ , (3.23)

where

ej,k =

{
k − j + 1 if 1 ≤ j < k < n,
1
2 (n − j + 1)(n − j + 2) − 1 if k = n, 1 ≤ j < n,

(3.24)

and W ′′′′ is the set of all solutions (B′′
1,2, B

′′
1,3, . . . , B

′′
n−1,n) ∈ N

1
2 n(n−1) satis-

fying

B′′
j,k + B′′

j,k+1 + · · · + B′′
j,n−1 ≤ B′′

j+1,k + B′′
j+1,k+1 + · · · + B′′

j+1,n (3.25)

for 1 ≤ j < k < n, k − j ≥ 2.
Each condition in (3.25) has one less term on the inferior side than on the

superior. Hence, when these inequalities are replaced with linear equations
by adding a slack variable to the inferior side, each such linear equation will
have the same number of terms on each side, all with coefficient 1. The all-1
vector 1 is always a solution of such systems of linear equations. Hence, by
Corollaries 3.4 and 3.5,

ζ�
trn(Z),p(s)|p→p−1

= ζ�
Zn,p(s)|p→p−1(−1)

1
2 n(n−1)

∏
1≤j<k≤n

p−ej,ks
∑
W ′′′′

⎛⎝ ∏
1≤j<k≤n

p−ej,kB′
j,ks

⎞⎠
= (−1)np(n

2)−ns(−1)
1
2 n(n−1)

⎛⎝ ∏
1≤j<k≤n

p−ej,ks

⎞⎠ ζ�
trn(Z),p(s)

= (−1)Np
(n
2)−ns−

(∑
1≤j<k≤n

ej,k

)
s
ζ�
trn(Z),p(s) .
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It remains to evaluate the sum
∑

1≤j<k≤n ej,k. For 1 ≤ j < n,

n∑
k=j+1

ej,k =
n−1∑

k=j+1

(k − j + 1) + 1
2 (n − j + 1)(n − j + 2) − 1

= 1
2 (n − j)(n − j + 1) + 1

2 (n − j + 1)(n − j + 2) − 2

= (n − j + 1)2 − 2 .

So ∑
1≤j<k≤n

ej,k =
n−1∑
j=1

((n − j + 1)2 − 2)

=

⎛⎝ n∑
j=1

j2

⎞⎠− (2n − 1)

= 1
6n(n + 1)(2n + 1) − (2n − 1)

= 1
6 (2n3 + 3n2 − 11n + 6) .

Hence

ζ�
trn(Z),p(s)|p→p−1 = (−1)Np(n

2)− 1
6 (2n3+3n2−5n+6)sζ�

trn(Z),p(s) ,

and this completes the proof of Theorem 3.1.

3.3 Explicit Examples

Theorem 3.1 gives us some idea of the overall shape of these zeta functions.
However, it is worthwhile to calculate a few of them to see what they actually
look like. Straightforward calculations give us

Proposition 3.12.

ζ�
tr1(Z),p(s) = ζZ,p(s) ,

ζ�
tr2(Z),p(s) = ζZ2,p(s)ζp(2s) ,

ζ�
tr3(Z),p(s) = ζZ3,p(s)ζp(2s)2ζp(5s) ,

ζ�
tr4(Z),p(s) = ζZ4,p(s)ζp(2s)3ζp(5s)2ζp(8s)ζp(9s)ζp(10s)−1 .

The above results can be obtained by hand with little difficulty. However, a
computer was used to obtain the following result.

Theorem 3.13.

ζ�
tr5(Z),p(s) = ζZ5,p(s)ζp(2s)3ζp(5s)2ζp(8s)ζp(9s)

(
14∏

k=11

ζp(ks)

)
P (p−s) ,
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where

P (Y ) = 1+ Y 2 + Y 4 + Y 5 +Y 6 +Y 7 + 2Y 8 + 2Y 9 + Y 10 + 2Y 11 + 2Y 12 +Y 13

+ Y 14 + Y 15 + Y 16 + Y 17 − Y 20 − Y 21 − Y 22 − Y 23 − Y 24 − 2Y 25

− 2Y 26 −Y 27 − 2Y 28 − 2Y 29 −Y 30 − Y 31 − Y 32 − Y 33 − Y 35 − Y 37.

ζ�
tr6(Z),p(s) and ζ�

tr7(Z),p(s) have also been calculated with the help of a
computer.

Theorem 3.14.

ζ�
tr6(Z),p(s) = ζZ6,p(s)ζp(2s)3ζp(5s)2ζp(8s)ζp(9s)

(
20∏

k=11

ζp(ks)

)
W�

tr6(Z)(p
−s) ,

ζ�
tr7(Z),p(s) = ζZ7,p(s)ζp(2s)3ζp(4s)ζp(5s)2ζp(9s)

(
27∏

k=11

ζp(ks)

)
W�

tr7(Z)(p
−s) ,

where W�
tr6(Z)(Y ) and W�

tr7(Z)(Y ) are given in Appendix A from, p. 188
onwards.

3.4 Variations

3.4.1 Quotients of trn(Z)

Fix some n ∈ N>0. Let S be a nonempty subset of { (j, k) : 1 ≤ j < k ≤ n }
such that if (j, k) ∈ S and 1 ≤ j1 ≤ j < k ≤ k1 ≤ n then (j1, k1) ∈ S. Let
IS = 〈{Ej,k : (j, k) ∈ S }〉Z, the ideal generated by off-diagonal basis elements
of trn(Z) indexed by S. It is not difficult to see that IS � trn(Z), so we may
consider the quotient of trn(Z) by IS .

Quotienting out by IS does not destroy the uniformity property of the local
zeta functions of trn(Z). Before we prove this, we give the following lemma
which is more-or-less an adaptation of Lemma 3.10:

Lemma 3.15. Suppose that 1 ≤ j1 < k1 ≤ n, 1 ≤ j2 < k2 ≤ n and (j1, k1) /∈
S. If either j1 = j2 and k2 < k1, or k1 = k2 and j1 < j2, then nj1,k1 | nj2,k2 .

Proof. The proof is identical to that of Lemma 3.10 once we ensure Ej2,k2 /∈ IS

if j1 ≤ j2 < k2 ≤ k1, Ek2,k1 /∈ IS if k2 < k1 and Ej1,j2 /∈ IS if j1 < j2. This
follows since, under the above circumstances, (j2, k2), (k2, k1), (j1, j2) /∈ S. ��
Theorem 3.16. There exists a univariate rational function RS(Y ) such that
for all primes p,

ζ�
trn(Z)/IS ,p(s) = ζ�

Zn,p(s)RS(p−s) .
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Proof. We may apply the proof of Theorem 3.1 with a few modifications. We
omit any basis elements Ej,k for (j, k) ∈ S, and the bijection f must be
adjusted. In particular, it is now a map

f : { (j, k) : 1 ≤ j < k ≤ n, (j, k) /∈ S } → {1, . . . , N − |S|} .

Lemma 3.8 continues to apply, although we must replace Lemma 3.10 with
Lemma 3.15. Finally, if (j, j + 1) ∈ S, then we do not have Bj,j+1 | Aj+1, so
we set Aj+1 = A′

j+1 and mi,j+1 = m′
i,j+1 for 1 ≤ i ≤ j + 1. We therefore

obtain

ζ�
trn(Z)/IS ,p(s) = ζ�

Zn,p(s)RS(p−s) ,

where

RS(Y ) =
∑
W ′′

S

⎛⎜⎜⎜⎜⎜⎝
∏

1≤j<n
(j,j+1)/∈S

Y 2Bj,j+1
∏

1≤j<k≤n
k−j≥2
(j,k)/∈S

Y Bj,k

⎞⎟⎟⎟⎟⎟⎠ (3.26)

and W ′′
S is the set of all (Bj,k : (j, k) /∈ S) ∈ N

1
2 n(n−1)−|S| satisfying

Bj,k ≤ Bj,k−1 for 1 ≤ j < k ≤ n, k − j ≥ 2, (j, k) /∈ S , (3.27)
Bj,k ≤ Bj+1,k for 1 ≤ j < k ≤ n, k − j ≥ 2, (j, k) /∈ S . (3.28)

Hence the result. ��
However it is not always true that a functional equation holds.

Theorem 3.17. Let S = {(1, 4), (1, 5)}. Then ζ�
tr5(Z)/IS ,p(s) satisfies no func-

tional equation of the form (3.1).

Proof. A computer calculation has shown that

ζ�
tr5(Z)/IS ,p(s) = ζ�

Z5,p(s)ζp(2s)3ζp(5s)2ζp(8s)ζp(9s)ζp(11s)ζp(12s)Q(p−s) ,

where

Q(Y ) = 1 + Y 2 + Y 4 + Y 5 + Y 6 + Y 7 + 2Y 8 + Y 9 + Y 10 + Y 11 + Y 12 − Y 17

− Y 18 − Y 19 − 2Y 20 − Y 21 − Y 22 − Y 23 − Y 24 − Y 25 − Y 26 − Y 28 .

From this the result follows immediately. ��
Nonetheless, we can prove a theorem giving many cases when a functional

equation does hold. For 1 ≤ j < n, let

wj = min({ k : j < k < n, (j, k + 1) ∈ S } ∪ {n}) ,

and for 1 ≤ j < n − 1, put dj = wj+1 − wj . For convenience, set w0 = 0,
d0 = w1.
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Definition 3.18. (j, k) is a corner of S if (j, k) ∈ S but (j, k − 1) /∈ S and
(j + 1, k) /∈ S, or equivalently if wj = k − 1 and wj < wj+1.

Definition 3.19. Suppose 1 ≤ j < n − 1. A corner (j, k) of S is square if
j ≥ dj, wj−dj

< wj−dj+1 and wj−dj+1 = · · · = wj.

Definition 3.20. A corner (j, k) of S is on the mth superdiagonal if k =
j + m.

Example 3.21. Suppose n = 7, S = {(1, 5), (1, 6), (1, 7), (2, 5), (2, 6), (2, 7),
(3, 7)}. S has two corners, (2, 5) and (3, 7), both of which are square, since
d2 = 2 and w2 = w1 = 4, and d3 = 1, w3 = 6.

Example 3.22. Suppose S = { (j, k) : k−j ≥ m }, i.e. everything on or beyond
the mth superdiagonal. This has n−m corners, (j, j + m) for 1 ≤ j ≤ n−m.
Each corner is square since wj+1 = wj + 1 for 1 ≤ j ≤ n − m.

Theorem 3.23. Suppose all the corners of S are square or on the first or
second superdiagonal. Then

ζ�
trn(Z)/IS ,p(s)|p→p−1 = (−1)N−|S|p(n

2)−CSsζ�
trn(Z)/IS ,p(s)

for some CS ∈ N.

Proof. From the proof of Theorem 3.16, we have

ζ�
trn(Z)/IS ,p(s) = ζ�

Zn,p(s)
∑
W ′′

S

⎛⎜⎜⎜⎜⎜⎝
∏

1≤j<n
(j,j+1)/∈S

p−2Bj,j+1s
∏

1≤j<k≤n
k−j≥2
(j,k)/∈S

p−Bj,ks

⎞⎟⎟⎟⎟⎟⎠ , (3.29)

where W ′′
S is the subset of (Bj,k : (j, k) /∈ S) ∈ N

1
2 n(n−1)−|S| satisfying the

conditions (3.27) and (3.28).
Set Bj,k = B′

j,k+Bj,k+1 for all j, k such that 1 ≤ j < n−1, j < k < wj . For
completeness, set Bj,wj

= B′
j,wj

for all 1 ≤ j < n. Inductively, this becomes
Bj,k = B′

j,k + B′
j,k+1 + · · ·+ B′

j,wj
. Doing so eliminates the conditions (3.27),

and (3.28) becomes

B′
j,k + · · · + B′

j,wj
≤ B′

j+1,k + · · ·B′
j+1,wj+1

(3.30)

for 1 ≤ j < n − 1, j + 1 < k ≤ wj . If 1 ≤ j < n − 1 and wj = wj+1,
the condition Bj,wj

≤ Bj+1,wj
becomes B′

j,wj
≤ B′

j+1,wj
, so we may set

B′
j+1,wj

= B′′
j+1,wj

+ B′
j,wj

. For all other B′
j,k, i.e. those for which k < wj ,

j = 1, or k = wj > wj−1, set B′
j,k = B′′

j,k. Inductively, this becomes

B′
j,k =

∑
j′≤j

w′
j=wj

B′′
j′,k .



3.4 Variations 81

We split into three cases, depending on j:

1. If wj ≤ j + 1, there are no conditions of the form (3.30) for this value of
j. In particular, this happens if (j, j + 1) or (j, j + 2) is a corner of S.

2. If wj = wj+1, then the conditions (3.30) become

B′′
j,k + B′′

j,k+1 + · · · + B′′
j,wj−1

≤ B′′
j+1,k + B′′

j+1,k+1 + · · · + B′′
j+1,wj−1 + B′′

j+1,wj
(3.31)

for j + 1 < k < wj . It is clear that the LHS of (3.31) has one less term
than the RHS.

3. Now suppose wj < wj+1 and wj > j +1, so (j, wj +1) is a corner of S not
on either of the first two superdiagonals. By assumption, this corner must
be square, so B′

j,wj
= B′′

j,wj
+· · ·+B′′

j−dj+1,wj
. Recall that dj = wj+1−wj .

Equation (3.30) becomes

B′′
j,k + B′′

j,k+1 + · · · + B′′
j,wj−1 + B′′

j,wj
+ B′′

j−1,wj
+ · · · + B′′

j−dj+1,wj

≤ B′′
j+1,k + B′′

j+1,k+1 + · · · + B′′
j+1,wj+1

(3.32)

for j +1 < k < wj . The LHS of (3.32) has wj −k +dj terms and the RHS
has wj+1 − k + 1, one more than on the LHS.

Hence,

ζ�
trn(Z)/IS ,p(s) = ζ�

Zn,p(s)
∑
W ′′′

S

⎛⎝ ∏
1≤j<k≤n

p−ej,k,SB′′
j,ks

⎞⎠ , (3.33)

for some positive integers ej,k,S , and W ′′′
S is the set of all (Bj,k : (j, k) /∈ S) ∈

N
1
2 n(n−1)−|S| satisfying (3.31) and (3.32). The inferior side of each condition

in both (3.31) and (3.32) has one less term than the superior, and all terms
have coefficient 1. When slack variables are added to the inferior sides, the
resulting system of linear equations will have 1 as a solution. Put

CS = n +
∑

1≤j<k≤n
(j,k)/∈S

ej,k,S .

The result now follows from Corollaries 3.4 and 3.5. ��
We have chosen not to give explicit values for the integers ej,k,S , as we believe
the resulting expression would be fiddly and awkward. For the same reason
we do not to give an explicit formula for the constant CS .

It can be seen from Theorem 3.23 that if ζ�
trn(Z)/IS ,p(s) is not to satisfy a

functional equation, then n ≥ 5. In fact, tr5(Z)/IS for S = {(1, 4), (1, 5)} or
{(1, 5), (2, 5)} are the smallest cases that Theorem 3.23 cannot be applied to.
A more general result giving conditions on S such that ζ�

trn(Z)/IS ,p(s) does not
satisfy a functional equation is more difficult to come by. It is not in general
true that if 1 is not a solution to a system of homogeneous linear equations
E, then there is no simple relation between F (E;X) and F (E; 1/X).
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3.4.2 Counting All Subrings

Zeta functions counting all subrings in a Lie ring L can be defined in an anal-
ogous way to those counting ideals. However, it is considerably more difficult
to calculate these zeta functions in the case that L = trn(Z), the main reason
being that there is no equivalent of Lemma 3.8. Taylor [57, p. 149] shows that

ζ≤tr2(Z),p(s) = ζp(s)ζp(s − 1)2ζp(2s − 2)ζp(2s − 1)−1 .

However, even the calculation of ζ≤tr3(Z),p(s) seems infeasible and out of reach.



4

Local Functional Equations

4.1 Introduction

In this chapter, we consider the functional equations that various local zeta
functions of groups and Lie rings are known to satisfy. These local functional
equations take the form

ζ∗L,p(s)
∣∣
p→p−1 = (−1)rpb−asζ∗L,p(s) (4.1)

for a, b, r ∈ N. Frequently, the values of a, b and r can be given explicitly in
terms of various invariants of the group or Lie ring.

4.2 Algebraic Groups

In [21], Lubotzky and the first author consider the zeta function of an algebraic
group G as defined in the previous chapter. Under certain assumptions on G,
they demonstrate that this zeta function satisfies a functional equation of the
form

ζG,p(s)|p→p−1 = (−1)npb−asζG,p(s)

with a, b, n ∈ N, for all but finitely many primes p. As noted in the Introduc-
tion, these zeta functions are counting certain subgroups within a T-group Γ .
A similar functional equation for ζ∧Γ,p(s) then follows.

4.3 Nilpotent Groups and Lie Rings

We describe below a conjecture sketched by the second author concerning
local functional equations of these zeta functions of T-groups and Lie rings.
This conjecture offers a potential explanation of the functional equations of
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zeta functions of nilpotent Lie rings and T-groups that we have seen to date.
It can also explain why the local zeta functions that do not satisfy a functional
equation don’t.

However, we have been unable to rigorously formulate the conjecture.
There are certain technical conditions which must be assumed. Nonetheless,
we present this conjecture as it stands and sketch the proof of a significant spe-
cial case. We spend the rest of the chapter deducing consequences regarding
local functional equations from this conjecture.

4.4 The Conjecture

The conjecture we present below is not a direct conjecture about functional
equations. Instead, it is a ‘reciprocity’ conjecture for p-adic integrals, inspired
by Theorem 3.3. If the cone data are all monomial, the integral can be ex-
pressed as a sum over integral points in a polyhedral cone. Theorem 3.3 can
then be applied to deduce a reciprocity result regarding these monomial in-
tegrals. The conjecture below is an attempt to generalise this result to cone
integrals where the cone data is not monomial.

We recall some definitions from Chap. 2:

Definition 4.1. Let x = (x1, . . . , xn) be a vector of variables, and for i =
0, . . . , l, let fi(x), gi(x) ∈ Q[x] be homogeneous polynomials. The (closed)
cone integral corresponding to the cone data D = {f0, g0, f1, g1, . . . , fl, gl} is
defined to be

ZD(s, p) =
∫

WD
|f0(x)|sp|g0(x)|p dµ ,

where

WD = {x ∈ Zn
p : v(fi(x)) ≤ v(gi(x)) for i = 1, . . . , l } .

We also define the corresponding open cone integral to be

Z◦
D(s, p) =

∫
W◦

D

|f0(x)|sp|g0(x)|p dµ ,

where

W ◦
D = {x ∈ (pZp)n : v(fi(x)) < v(gi(x)) for i = 1, . . . , l } .

Proposition 2.1 (p. 23) implies that for ∗ ∈ {�,≤}, ζ∗L,p(s + d) (where d =
rankL) can be expressed as a closed cone integral.

We will also be working with resolutions of singularities. Following Sect. 5
of [7], we make the following definitions.
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Definition 4.2. A resolution (Y, h) for a homogeneous polynomial F over Q
consists of a closed integral subscheme Y of PK

XQ
(where XQ = Spec(Q[x])

and PK
XQ

denotes projective K-space over the scheme XQ) and the morphism
h : Y → X which is the restriction to Y of the projection morphism PK

XQ
, such

that

1. Y is smooth over Spec(Q);
2. The restriction h : Y \ h−1(D) → X \ D is an isomorphism, where D =

Spec(Q[x]/(F )) ⊂ XQ); and
3. The reduced scheme (h−1(D))red associated to h−1(D) has only normal

crossings (as a subscheme of Y ).

Definition 4.3. Let Ei, i ∈ T be the irreducible components of the reduced
scheme (h−1(D))red over Spec(Q). For i ∈ T , let Ni be the multiplicity of Ei

in the divisor of F ◦ h on Y and let νi − 1 be the multiplicity of Ei in the
divisor of h∗( dx1 ∧ · · · ∧ dxn), The (Ni, νi) for i ∈ T are called the numerical
data of the resolution (Y, h) for F .

We also recall some necessary facts about reduction of varieties mod p.
When X = XQ = Spec(Q[x]) one defines the reduction mod p of a closed
integral subscheme Y of PK

XQ
as follows. Let X̃ = Spec(Z[x]) and Ỹ be the

scheme-theoretic closure of Y in PK
X̃

. Then the reduction mod p of Y is the
scheme Ỹ ×ZSpec(Fp) and we denote it by Y . Let h̃ : Ỹ → X̃ be the restriction
to Ỹ of the projection morphism PK

X̃
→ X̃Q and h : Y → X be obtained from

h̃ by base extension. Thus

Definition 4.4. A resolution (Y, h) for F over Q has good reduction mod
p if

1. Y is smooth over Spec(Fp);
2. Ei is smooth over Spec(Fp) for each i ∈ T , and

⋃
i∈T Ei has only normal

crossings as a subscheme of Y ; and
3. Ei and Ej have no common irreducible components when i �= j.

Any resolution over Q has good reduction mod p for almost all primes p ([7,
Theorem 2.4]).

We can now roughly state our conjecture:

Conjecture 4.5. Assume the above notation. Let f0(x), g0(x), . . . , fl(x), gl(x)
be homogeneous polynomials and put F =

∏l
i=0 fi(x)gi(x). Suppose that

µ(W ◦
D) > 0, the resolution (Y, h) of F has good reduction mod p, and some

as-yet-undetermined conditions hold. Then, for all but finitely many primes p,

ZD(s, p)|p→p−1 = pnZ◦
D(s, p) . (4.2)

It is clear that we need the resolution to have good reduction mod p. In [24],
du Sautoy and Taylor calculate ζ≤sl2(Z),p(s) for all p. In this case, the resolution
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of the polynomial F has bad reduction at p = 2, and indeed ζ≤sl2(Z),2(s) satisfies
no local functional equation.

Remark 4.6. To show that other conditions are necessary, consider the integral

ZD(s, p) =
∫

x|y
|xy(x + y)|sp dµ .

It is not difficult to calculate that

ZD(s, p) = (1 − p−1)ζp(s + 1)ζp(3s + 2)(1 − 2p−1 + p−1−s) ,

Z◦
D(s, p) = (1 − p−1)2p−3−4sζp(s + 1)ζp(3s + 2) .

In this case the polynomial F = x2y2(x+y) has good reduction at all primes p,
and it is clear that µ(W ◦

D) > 0, but ZD(s, p) and Z◦
D(s, p) do not satisfy (4.2).

The polynomial xy(x + y) requires a single blow-up to resolve the singularity
at (0, 0). Normally, we would split into two cases, v(x) ≤ v(y) and v(x) > v(y),
but it is clear that the condition x | y under the integral renders the second
case inconsistent. Set y = xy′, so that xy(x + y) = x3y′(1 + y′).

Any point { (x, y, x′, y′) ∈ Z2
p ×P1(Qp) : xy′ = x′y } on the variety (1+ y′)

maps to the point (x,−x) under the resolution h. In W ◦
D, however, there are

no such points, since v(x) < v(y). The correspondence fails this time because
|x+y|p = |x|p for all (x, y) ∈ W ◦

D, but the same is not true for all (x, y) ∈ WD.

4.5 Special Cases Known to Hold

If all the fi and gi are monomial, ZD(s, p) and Z◦
D(s, p) reduce to cone sums

of integer points in polyhedral cones in Rn
≥0 with a coefficient (1−p−1)n. This

special case of the conjecture follows easily from Stanley’s Theorem (Theo-
rem 3.3), with no technical conditions.

Theorem 4.7. Conjecture 4.5 holds if all the fi and gi are monomial.

Proof. If fi and gi are monomial for 0 ≤ i ≤ l, whether a point x ∈ WD
(or W ◦

D) depends only on the p-adic valuations of the xi. So, let ai = v(xi).
The polynomial divisibility conditions defining WD and W ◦

D become linear
inequalities in the ai. By adding slack variables we obtain a system of linear
equations E. We take each Xi to be a suitable monomial in p and p−s, and
then

ZD(s, p) = (1 − p−1)nF (E;X) and Z◦
D(s, p) = (1 − p−1)nF̄ (E;X) .

If µ(W ◦
D) > 0 then S̄ �= ∅. The corank of the system of equations E is n, since

there are n + l variables and l linearly independent linear equations. By our
choice of X,
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F (E;X)|p→p−1 = F (E; 1/X) = (−1)dF̄ (E;X) .

Hence

ZD(s, p)|p→p−1 = pdZ◦
D(s, p) ,

as required. ��
This conjecture also generalises in part a theorem of Denef and Meuser [8].

Denef and Meuser work over any finite extension K of Qp with RK the ring
of integers of K. They assume that l = 0 (i.e. the integral is over the whole of
Rn

K) and g0(x) = 1. Indeed, we follow the strategy used in their proof below
when we (attempt to) prove a special case of this conjecture.

The most important special case of Conjecture 4.5 is the following. It is in
some ways parallel to Corollary 3.5 of the previous chapter. We believe this
special case requires no extra conditions such as those which would exclude
the example described in Remark 4.6.

Corollary 4.8. Suppose the cone data satisfies

deg fi(x) + 1 = deg gi(x) for i = 1, . . . , l . (4.3)

Assume Conjecture 4.5 holds. Then

ZD(s, p)|p→p−1 = p− deg g0−s deg f0ZD(s, p) . (4.4)

Proof. Since fi and gi are homogeneous, fi(px) = pdeg fifi(x) and gi(px) =
pdeg gigi(x), and this implies W ◦

D = pWD. It is then routine to see that
Z◦
D(s, p) = p−n−deg g0−s deg f0ZD(s, p). Hence, by Conjecture 4.5,

ZD(s, p)|p→p−1 = pnZ◦
D(s, p) = p− deg g0−s deg f0ZD(s, p)

for all but finitely many primes p. ��

4.6 A Special Case of the Conjecture

In this section we present an almost-complete proof of a significant special
case of Conjecture 4.5. We hope that sketching a proof of a substantial case
can lay the groundwork for future attempts at the conjecture.

We focus on the case deg fi(x) = deg gi(x) for 1 ≤ i ≤ l, because it can
be ‘projectivised’ easily. If x is a solution to a set of polynomial conditions of
the form v(fi(x)) ≤ v(gi(x)) with deg fi(x) = deg gi(x) for i = 1, . . . , l, then
so is λx for any λ ∈ Zp. Note that this case includes the integral presented in
Remark 4.6. We therefore need to make an assumption in the proof to exclude
this exceptional case.



88 4 Local Functional Equations

We follow the proof of the functional equation of the Igusa local zeta
function given in [8], using certain results of du Sautoy and Grunewald [17]
in place of corresponding results of Denef.

Let

ZD(s, p) =
∫

WD
|f0(x)|sp|g0(x)|p dµ ,

where

WD = {x ∈ Zn
p : v(fi(x)) ≤ v(gi(x)) for i = 1, . . . , l }

and fi(x), gi(x) for 0 ≤ i ≤ l are homogeneous polynomials, with deg fi(x) =
deg gi(x) for 1 ≤ i ≤ l. Let d = deg f0(x) and d′ = deg g0(x). For clarity, we
shall drop the subscript D from WD. Also, let

ẐD(s, p) =
∫

Ŵ

|f0(x)|sp|g0(x)|p dµ ,

where

Ŵ = {x ∈ Zn
p : v(fi(x)) + deg(fi) ≤ v(gi(x)) + deg(gi) for i = 1, . . . , l } .

It is easy to see that W ◦ = pŴ , and hence

Z◦
D(s, p) = p−ds−d′−nẐD(s, p) ,

so we are left with proving that

ZD(s, p)|p→p−1 = p−ds−d′
ẐD(s, p) .

We split the proof as it stands up into a number of steps in the hope that
it makes it easier to follow.

4.6.1 Projectivisation

As in [8], we start by projectivising the integral. Let

W̃ = {x ∈ W : xi ∈ Z∗
p for some i } ,

i.e. points in W with at least one unit coordinate, and let

Z̃D(s, p) =
∫

W̃

|f0(x)|sp|g0(x)|p dµ .

It is easy to see that

ZD(s, p) =
∞∑

k=0

∫
W

mini v(xi)=k

|f0(x)|sp|g0(x)|p dµ ,
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and a change of variables x = pku gives

ZD(s, p) =
∞∑

k=0

p−k(ds+d′+n)

∫
W

mini v(ui)=0

|f0(u)|sp|g0(u)|p dµ

= ζp(ds + d′ + n)Z̃D(s, p) .

Note that x ∈ W if and only if u ∈ W since the powers of p appearing on
each side of each condition fi(x) | gi(x) cancel out.

Next, we write W̃ as the disjoint union of W̃1, . . . , W̃n, where

W̃r = {u ∈ W : ui ∈ pZp for 1 ≤ i < r and ur ∈ Z∗
p } .

Then

Z̃D(s, p) =
n∑

r=1

∫
W̃r

|f0(u)|sp|g0(u)|p dµ .

There is an obvious map γ : W̃ → Pn−1(Qp), and we note that |f(u)|p, |g(u)|p
and whether u ∈ W depends only on γ(u). Let ω be the Haar measure on
Pn−1(Qp) which induces the Haar measure on the unit ball Zn−1

p of each affine
chart satisfying ω(a + (pZp)n−1) = p−(n−1). We see that∫

W̃r

|f(u)|sp|g(u)|p dµ = (1 − p−1)
∫

Vr

|f(u)|sp|g(u)|p dω , (4.5)

where Vr = γ(W̃r).

4.6.2 Resolution

At this point in [8], Denef and Meuser use a previous result proved by Denef
which in essence tells them what the integral looks like on the other side of a
resolution of singularities. Our analogue is provided by results of du Sautoy
and Grunewald in [17], which we modify slightly.

Let x = (x1, . . . , xm), XQ = Spec(Q[x]), and let (Y, h) be a resolution for
F =

∏l
i=0 fi(x)gi(x). Let T be an indexing set for the irreducible components

Ei, and t = |T |. For i ∈ T , let Ei be the irreducible components of the reduced
scheme (h−1(D))red over Spec(Q). Set D = {f0, g0, . . . , fl, gl}, and let integral

ZD(s, p) =
∫

W

|f0(x)|sp|g0(x)|p dµ .

Suppose that the resolution (Y, h) has good reduction mod p. Then, du Sautoy
and Grunewald show that

ZD(s, p) = (1 − p−1)m
∑
I⊆T

cp,IJI(s, p) ,



90 4 Local Functional Equations

where

cp,I = |{ a ∈ Y (Fp) : a ∈ Ei if and only if i ∈ I }| ,

and JI(s, p) is a rational function in p−1 and p−s given by

JI(s, p) =
1

(p − 1)m−|I|
∑

(k1,...,k|I|)∈ΛI

p
−
∑|I|

j=1
kj(Aj,Is+Bj,I)

,

where I = {i1, . . . , i|I|},

ΛI =

⎧⎨⎩ (k1, . . . , k|I|) ∈ N|I|
>0 :

|I|∑
j=1

Nij
(fi)kj ≤

|I|∑
j=1

Nij
(gi)kj for i = 1, . . . , l

⎫⎬⎭
(4.6)

and Nij
(fi), Nij

(gi), Aj,I and Bj,I are some constants depending on the
numerical data of the resolution (Y, h).

du Sautoy and Grunewald’s formula can easily be modified to evaluate
integrals over a union of cosets mod (pZp)m. If U is such a union of cosets,
then we define

ZD,U (s, p) =
∫

W∩U

|f0(x)|sp|g0(x)|p dµ ,

and a simple modification of du Sautoy and Grunewald’s proof gives us

ZD,U (s, p) = (1 − p−1)n
∑
I⊆T

cp,I,UJI(s, p) ,

where U denotes the reduction of U mod p and

cp,I,U = |{ a ∈ Y (Fp) : a ∈ Ei iff i ∈ I, and h(a) ∈ U }| .

Summing gives us

Z̃D(s, p) =
n∑

r=1

(1 − p−1)n−1
∑
I⊆T

cp,I,Vr
JI(s, p)

= (1 − p−1)n−1
∑
I⊆T

(
n∑

r=1

cp,I,Vr

)
JI(s, p)

= (1 − p−1)n−1
∑
I⊆T

cp,IJI(s, p) ,

so that

ZD(s, p) =
(1 − p−1)n

1 − p−(ds+d′+n)

∑
I⊆T

cp,IJI(s, p) .
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Similarly,

ẐD(s, p) =
(1 − p−1)n

1 − p−(ds+d′+n)

˜̂
ZD(s, p) ,

where

˜̂
ZD(s, p) =

∑
I⊆T

cp,I ĴI(s, p)

and

ĴI(s, p) =
1

(p − 1)n−1−|I|
∑

(k1,...,k|I|)∈Λ̂I

p
−
∑|I|

j=1
kj(Aj,Is+Bj,I)

,

where

Λ̂I =

⎧⎨⎩ (k1, . . . , k|I|) ∈ N|I|
>0 :

|I|∑
j=1

Nij
(fi)kj <

|I|∑
j=1

Nij
(gi)kj for i = 1, . . . , l

⎫⎬⎭ .

Note that the definition of Λ̂I is identical to that of ΛI (4.6), except that the
linear inequalities are strict.

4.6.3 Manipulating the Cone Sums

At this point, we have to take into account the polyhedral cones, and the
rational functions JI(s, p) counting integer points within them.

Now

(1 − p−1)n

1 − p−(ds+d′+n)

∣∣∣∣
p→p−1

= (−1)n−1p−ds−d′ (1 − p−1)n

1 − p−(ds+d′+n)
,

so it is sufficient to prove that

∑
I⊆T

cp,I ĴI(s, p)

∣∣∣∣∣∣
p→p−1

= (−1)n−1
∑
I⊆T

cp,IJI(s, p) . (4.7)

The ĴI(s, p)s that are nonzero are (p − 1)|I|−n+1 times a cone sum of the
‘open cone’ form required for Stanley’s theorem to hold. For all sets I with
ĴI(s, p) �= 0, Stanley’s theorem tells us that

ĴI(s, p)|p→p−1 = (−1)|I|(−p)n−1−|I|J⊥
I (s, p) , (4.8)
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where

J⊥
I (s, p) =

1
(p − 1)n−1−|I|

∑
(k1,...,k|I|)∈Λ⊥

I

p
−
∑|I|

j=1
kj(Aj,Is+Bj,I)

and

Λ⊥
I =

⎧⎨⎩ (k1, . . . , k|I|) ∈ N|I| :
|I|∑

j=1

Nij
(fi)kj ≤

|I|∑
j=1

Nij
(gi)kj for i = 1, . . . , l

⎫⎬⎭ .

Λ⊥
I is essentially the closed cone corresponding to Λ̂I .

For I ⊆ T , define

bp,I = |{ a ∈ Y (Fp) : a ∈ Ei if i ∈ I }| .

The relationships between the bp,Is and the cp,Is are

bp,I =
∑

I⊆J⊆T

cp,J (4.9)

and

cp,I =
∑

I⊆J⊆T

(−1)|J|−|I|bp,J . (4.10)

The bp,Is are counting points on smooth projective varieties; we shall need to
use the properties of the Weil zeta function of such varieties.

If bp,I is a polynomial in p for all p, then it is clear what we mean by
bp,I |p→p−1 . However, we don’t want to restrict ourselves to such limited cases.
If we define bpe,I to be the number of Fpe -rational points on V :=

⋂
i∈I Ei,

then the analogue of the Riemann Hypothesis for the Weil zeta function of V
implies that the function NV (e) defined by

NV : N>0 → N

e �→ |{Fpe -rational points of V }|
has a unique extension to Z. We shall then take bp,I |p→p−1 to be NV (−1). It
then follows from the functional equation of the Weil zeta function of V that

bp,I |p→p−1 = p|I|−n+1bp,I . (4.11)

We also need the following combinatorial lemma, an immediate consequence
of Lemma 1 in [8]. For I fixed,

Lemma 4.9. ∑
I⊆J⊆T

bp,J (−p)|J|−|I| =
∑

I⊆K⊆T

cp,K(1 − p)|K|−|I| . (4.12)
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We say that a subset I of T is good if ĴI(s, p) �= 0, quasi-good if ĴI(s, p) = 0
but JI(s, p) �= 0, and bad otherwise. Finally, we note that

J⊥
I (s, p) =

∑
H⊆I

(p − 1)|I|−|H|JH(s, p) . (4.13)

We now have enough to guide us through the following piece of algebraic
manipulation. We have∑

I⊆T

cp,I ĴI(s, p) =
∑
J⊆T

bp,J

∑
I⊆J

(−1)|J|−|I|ĴI(s, p) ,

so, using (4.10), (4.11), (4.8), (4.12) and (4.13) in that order,

∑
I⊆T

cp,I ĴI(s, p)

∣∣∣∣∣∣
p→p−1

=

⎡⎣∑
J⊆T

bp,J

⎛⎝∑
I⊆J

(−1)|J|−|I|ĴI(s, p)

⎞⎠⎤⎦∣∣∣∣∣∣
p→p−1

=
∑
J⊆T

p|J|−n+1bp,J

⎛⎜⎜⎝ ∑
I⊆J

I good

(−1)|J|−|I|(−p)n−1−|I|(−1)|I|J⊥
I (s, p)

⎞⎟⎟⎠

= (−1)n−1
∑
J⊆T

bp,J

⎛⎜⎜⎝ ∑
I⊆J

I good

(−p)|J|−|I|J⊥
I (s, p)

⎞⎟⎟⎠
= (−1)n−1

∑
I⊆T

I good

J⊥
I (s, p)

⎛⎝ ∑
I⊆J⊆T

bp,J(−p)|J|−|I|

⎞⎠

= (−1)n−1
∑
I⊆T

I good

J⊥
I (s, p)

⎛⎝ ∑
I⊆K⊆T

cp,K(1 − p)|K|−|I|

⎞⎠
= (−1)n−1

∑
H⊆I⊆K⊆T

I good

(p − 1)|I|−|H|JH(s, p)cp,K(1 − p)|K|−|I|

= (−1)n−1
∑

H⊆I⊆K⊆T
I good

(p − 1)|K|−|H|JH(s, p)cp,K(−1)|K|−|I| . (4.14)

4.6.4 Cones and Schemes

From (4.7) and (4.14), it now suffices to show that
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cp,H =
∑

H⊆I⊆K⊆T
I good

(p − 1)|K|−|H|cp,K(−1)|K|−|I| (4.15)

for all good or quasi-good H. If H is bad, JH(s, p) = 0, so the coefficient
of JH(s, p) in (4.14) is irrelevant. This statement is independent of the cone
sums; all we have left to work with are the schemes over Fp and the cones
themselves.

We may assume from now on that |H| < n. cp,I = 0 for all I with |I| ≥ n,
and if |H| ≥ n, (4.15) trivially holds.

Remark 4.10. We assume at this point that the whole set T is good. This
assumption is certainly necessary, since it rules out the integral presented
in Remark 4.6. However, we do not know what conditions to impose on the
integral to ensure that T is always good.

We let DT be the polyhedral cone mentioned in Chap. 3 of [17]. It is defined
as follows:

DT =

⎧⎨⎩ (z1, . . . , zt) ∈ Rt
≥0 :

t∑
j=1

Nj(fi)zj ≤
t∑

j=1

Nj(gi)zj for i = 1, . . . , l

⎫⎬⎭ ,

where t = |T |. DT is a cone in Rt, with each dimension corresponding to one
of the varieties of the resolution. For any subset of Rm, we define its dimension
to be the dimension of its R-linear span.

A wall of DT is a face of codimension 1. Walls of DT are of two forms:

1. Walls of the form xk = 0 for some j (coordinate walls)
2. Walls of the form

t∑
j=1

Nj(fi)zj =
t∑

j=1

Nj(gi)zj

for some i (non-coordinate walls)

For I ⊆ T , we define

face(I) = { (z1, . . . , zt) ∈ DT : zi > 0 ⇐⇒ i ∈ I } .

If I is bad, face(I) = ∅. Otherwise, face(I) is a face of DT of dimension |I|.
Since T is good, the dimension of DT is |T |. A set I is quasi-good if and only
if face(I) is contained in at least one non-coordinate wall.

Our first lemma in this section shows that good sets are ‘upwards-closed’:

Lemma 4.11. If I ⊆ J ⊆ T and I is good, then J is good.
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Proof. It suffices to assume |J | = |I| + 1. Let u be any integer point in the
open face of DT corresponding to I.

Each of the inequalities defining DT will be satisfied strictly. Pick j ∈ T \I,
and for k �= j, set u′

k = uk. Let u′
j be a rational number which can be chosen

to be small enough so that u′ still strictly satisfies the inequalities. u′ may
not be an integer point, but if not, a suitable integer multiple of it will be
integral. Clearing denominators if necessary will give us an integer point in
Λ̂I∪{j}, so I ∪ {j} is good. ��
Proposition 4.12. Let I ′ ⊇ H be good. Then∑

I′⊆I⊆K⊆T
I good

(p − 1)|K|−|H|cp,K(−1)|K|−|I| = (p − 1)|I
′|−|H|cp,I′ .

Proof. Since I ′ is good and I ′ ⊆ I, I is good. Thus we have∑
I′⊆I⊆K⊆T

(p − 1)|K|−|H|cp,K(−1)|K|−|I|

=
∑

I′⊆K⊆T

(p − 1)|K|−|H|cp,K

∑
I′⊆I⊆T

(−1)|K|−|I|

=
∑

I′⊆K⊆T

(p − 1)|K|−|H|cp,K(1 − 1)|K|−|I′|

= (p − 1)|I
′|−|H|cp,I′ .

��
Corollary 4.13. Equation (4.15) holds if H is good.

Proof. Proposition 4.12 with I ′ = H. ��

4.6.5 Quasi-Good Sets

The case with H good could be easily dealt with. We didn’t need to know
anything about the cp,Is; everything follows as an identity in the cp,Is. We
are now left with proving (4.15) for H quasi-good. For this we require the
terminology of convex polytopes (see, for example, [30]).

A convex polytope P is a bounded subset of Rm defined as the intersection
of finitely many closed half-spaces. The dimension of a convex polytope is the
dimension of its linear span as a vector space over R. We suppose dimP = m.
A wall of P is an (m − 1)-dimensional hyperplane which does not bisect P
but whose intersection with P is (m − 1)-dimensional. A face F of P is a
nonempty intersection of P with a number of walls. We do not consider the
empty set to be a face of P, but we do consider the whole polytope P to be
a face of itself. A face F is proper if dimF < m.
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Let F(P) denote the set of nonempty faces of P, and for F a face of P,
let F(P;F ) denote the set of faces of P containing F . The most important
result concerning this counting function is the following variation on the Euler
characteristic, namely ∑

F ′∈F(P;F )

(−1)dim F ′
= 0 (4.16)

for all proper faces F of P [30, p. 137].
A polyhedral cone C is a subset of Rm

≥0 defined as the intersection of finitely
many closed half-spaces, with the property that λx ∈ C for all x ∈ C, λ ∈ R>0.
In particular, all the boundary hyperplanes must pass through the origin 0.
We define walls and faces of a polyhedral cone in an analogous way as for
convex polytopes.

Proposition 4.14. Let F be a proper face of the polyhedral cone C. Then∑
F ′∈F(C;F )

(−1)dim F ′
= 0 .

Proof. Let H denote the half plane {x ∈ Rm |∑i xi = 1 } and H− the closed
half-space {x ∈ Rm |∑i xi ≤ 1 }. P := C ∩H− is a convex polytope since it
is clearly convex and is contained within the m-dimensional unit hypercube.
There is a bijective dimension-preserving correspondence between the faces
of C containing F and faces of P containing F ∩ H−, from which the result
follows. ��

We shall prove the following combinatorial theorem, which gives us some
idea about how the quasi-good faces behave. Let W1, . . . , Wl denote the walls
of the cone C.

Theorem 4.15. Suppose there exists x0 ∈ face(T ) such that x ∈ ⋂l
i=1 Wi.

Then for all quasi-good sets H ⊂ T ,∑
H⊆I⊆T
I good

(−1)|T |−|I| = 0 .

We shall prove this result after proving a number of combinatorial lemmas.
Fix a subset Σ ⊆ {1, . . . , l} and a face F �

⋂
i∈Σ Wi.

Lemma 4.16. For S ⊆ Σ, set W∩
S = ∩i∈SWi. Then∑

F ′∈F(W∩
S

;F )

(−1)dim F ′
= 0 .

Proof. Proposition 4.14 with C = W∩
S . ��
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Lemma 4.17. For S ⊆ Σ, set Ẇ∩
S =

⋂
i∈S Wi \

⋃
j∈Σ\S Wj. Then∑

F ′∈F(Ẇ∩
S

;F )

(−1)dim F ′
= 0 .

Proof. By reverse induction on |S|. The case S = Σ is clear. Otherwise, we
note that

W∩
S =

⋃̇
S′Ẇ

∩
S′

for some combination of sets S′ with S � S′ ⊆ Σ. By induction, the alter-
nating sum over each Ẇ∩

S′ is zero, and the sets Ẇ∩
S′ are disjoint, so the result

follows. ��
Lemma 4.18. For S ⊆ Σ, set W∪

S =
⋃

i∈S Wi. Then∑
F ′∈F(C;F )\F(W∪

S
;F )

(−1)dim F ′
= 0 .

Proof. W∪
S is the disjoint union of terms of the form Ẇ∩

S′ for various S′ ⊆ Σ.
The alternating sum over each Ẇ∩

S′ is zero, hence∑
F(W∪

S
;F )

(−1)dim F ′
= 0 .

The result follows from this and Proposition 4.14. ��
Proof. (of Theorem 4.15) Set F = face(H). It is clear that there is then a
bijective correspondence between faces of C containing F and good or quasi-
good subsets of T containing H, with dim(face(I)) = |I|.

Let Σ = { i | 1 ≤ i ≤ l, Wi � F }, the indexing set of the hyperplanes
strictly containing F . Since F contains only quasi-good points, Σ �= ∅. It is
clear that F ⊆ ⋂i∈Σ Wi, but there cannot be equality since x0 ∈ Wi for all
i but x0 /∈ F . There is a bijective correspondence between faces contained
in W∪

Σ and quasi-good subsets of T containing H, and hence between faces
containing F but not contained in W∪

Σ and good subsets of T containing H.
The result then follows from Lemma 4.18. ��

4.6.6 Quasi-Good Sets: The Monomial Case

If we additionally assume that the cone data is monomial, we can show that
(4.15) holds.
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Proposition 4.19. Suppose that the cone data D = {f0, g0, . . . , fl, gl} are
monomial, and that H � T . Then (4.15) holds.

Proof. Since the cone data are monomial, cp,K = (p − 1)n−1−|K| if K � T ,
with cp,T = 0. We now substitute this into the RHS of (4.15):∑

H⊆I⊆K⊆T
I good

(p − 1)|K|−|H|cp,K(−1)|K|−|I|

= (p − 1)n−1−|H| ∑
H⊆I⊆K�T

I good

(−1)|K|−|I|

= cp,H

⎛⎜⎜⎝ ∑
H⊆I⊆K⊆T

I good

(−1)|K|−|I| −
∑

H⊆I⊆T
I good

(−1)|T |−|I|

⎞⎟⎟⎠

= cp,H

⎛⎜⎜⎝ ∑
H⊆I⊆T
I good

(1 − 1)|T |−|I| −
∑

H⊆I⊆T
I good

(−1)|T |−|I|

⎞⎟⎟⎠
= cp,H(1 − 0)
= cp,H ,

using Lemma 4.15 with x0 = (1, 1, . . . , 1) for the penultimate step. ��
Note that Proposition 4.19 does not prove anything new. In fact, Theo-

rem 4.7 is more general and has a much simpler proof. Nonetheless it demon-
strates one case where we can follow the proof through to completion. To go
any further without assuming the cone data is monomial seems to require
intimate knowledge of the coefficients cp,I .

4.7 Applications of Conjecture 4.5

We now look at applying Conjecture 4.5 to functional equations of local
zeta functions. We adopt a cavalier attitude to the incompleteness of Con-
jecture 4.5; the aim here is to demonstrate that what it predicts agrees with
calculations made to date. Before we do this, we take the time to consider
the conjectures that have so far been formulated concerning these functional
equations.

For brevity, we shall refer to a Lie ring additively isomorphic to Zd (or
Zd

p) as a Z-Lie ring (or Zp-Lie ring) of rank d, where we assume d ∈ N. All
calculated examples at nilpotency class 2 satisfy the following conjectures,
which were also stated in [15] and [57]:
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Conjecture 4.20. Let L be a class-2-nilpotent Z-Lie ring of rank d. Then, for
all but finitely many primes p,

ζ�
L,p(s)

∣∣
p→p−1 = (−1)dp(d

2)−(d+n)sζ�
L,p(s) , (4.17)

where n = rank(L/Z(L)).

Conjecture 4.21. Let L be a class-2-nilpotent Z-Lie ring of rank d. Then, for
all but finitely many primes p,

ζ≤L,p(s)
∣∣∣
p→p−1

= (−1)dp(d
2)−dsζ≤L,p(s) . (4.18)

Both conjectures have been confirmed by Voll [59].
For Lie rings of higher nilpotency class, Taylor makes the following

Conjecture 4.22 ([57]). Let L be a nilpotent Z-Lie ring of rank d. Then, for
all but finitely many primes p,

ζ≤L,p(s)
∣∣∣
p→p−1

= (−1)dp(d
2)−dsζ≤L,p(s) . (4.19)

This conjecture generalises Conjecture 4.21 and has also been confirmed
by Voll [59]. In fact, Voll proves that Conjecture 4.22 holds for any not-
necessarily-associative ring L.

A similar conjecture for the zeta functions counting ideals was formulated
by the second author in his thesis. Let σi(L) denote the ith term of the upper-
central series of L, which we recall is defined by σ0(L) = {0}, σ1(L) = Z(L)
and σi(L)/σi−1(L) = Z(L/σi−1(L)). All examples in Chap. 2 at nilpotency
classes 3 and 4 satisfy the following conjecture.

Conjecture 4.23. Let L be a class-c-nilpotent Z-Lie ring of rank d. One of the
following two alternatives holds:

• For all but finitely many primes p,

ζ�
L,p(s)

∣∣
p→p−1 = (−1)dp(d

2)−Nsζ�
L,p(s) ,

where N =
∑c

i=0 rank(L/σi(L)).
• For all but finitely many primes p, ζ�

L,p(s) satisfies no such functional
equation.

In [57], Taylor also considered the ideal zeta functions of the Lie rings

Mn = 〈z, x1, x2, . . . , xn : [z, xi] = xi+1 for i = 1, . . . , n − 1〉

for n ∈ N, and made the following conjecture.
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Conjecture 4.24. Let L = Mn of rank d = n + 1. Then, for all but finitely
many primes p,

ζ�
L,p(s)

∣∣
p→p−1 = (−1)dp(d

2)−((d+1
2 )−1)sζ�

L,p(s) ,

where d = n + 1.

The exponent of p−s agrees with that predicted by Conjecture 4.23; Taylor
conjectures that such a functional equation always holds.

Finally, we briefly move away from nilpotent Lie rings. Suppose L arises
as the Z-span of a Chevalley basis corresponding to a simple Lie algebra over
C. du Sautoy asks the following question on p. 219 of [12]:

Question 4.25. Does ζ≤L⊗Zp
(s) satisfy a functional equation of the form

ζ≤L⊗Zp
(s)
∣∣∣
p→p−1

= (−1)np−as+bζ≤L⊗Zp
(s)

for all but perhaps finitely many primes p?

Voll’s work on the local zeta functions counting all subrings of a Z-Lie ring L
of rank d answers this question in the affirmative.

In the following sections we will see that Conjecture 4.5 implies all of Con-
jectures 4.20–4.24 as well as a positive answer to Question 4.25. In particular,
it agrees with Voll’s results.

Let L be a Z-Lie ring of rank d, ∗ ∈ {≤,�}. From Proposition 2.2, there
exists a set of cone data D∗ such that

ζ∗L,p(s) = (1 − p−1)−dZD∗(s − d, p) . (4.20)

Conjecture 4.5 relates ZD∗(s, p)|p→p−1 and Z◦
D∗(s, p). It is clear from (4.20)

that (1−p−1)−dZD∗(s−d, p) is counting additive submodules of L with certain
properties, i.e. ideals or subrings of L. Our applications are founded on the
observation that (1−p−1)−dZ◦

D∗(s−d, p) is also counting additive submodules,
and on determining what these additive submodules are.

Definition 4.26. Let L be a Z-Lie ring, p a rational prime. An ideal I � L
is a p-ideal of L if:

1. I ⊆ pL, and
2. For all x ∈ L, y ∈ I, [x, y] ∈ pI.

If I is a p-ideal of L, we write I �p L.

Definition 4.27. Let L be a Z-Lie ring, p a rational prime. A subring H ≤ L
is a p-subring of L if:

1. H ⊆ pL, and
2. For all x, y ∈ L, [x, y] ∈ pH.
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If H is a p-subring of L, we write H <p L.

p-ideals and p-subrings can also be defined for Zp-Lie rings in a similar way.

Lemma 4.28. Let L be a Z-Lie ring and ∗ ∈ {≤,�}. By Proposition 2.2,
there exist sets of cone data D�, D≤ such that

ζ�
L,p(s) = (1 − p−1)−dZD�(s − d, p) ,

ζ≤L,p(s) = (1 − p−1)−dZD≤(s − d, p) .

Define

ζ
�p

L,p(s) =
∞∑

n=0

a
�p

pn (L)p−ns ,

ζ
<p

L,p(s) =
∞∑

n=0

a
<p

pn (L)p−ns ,

where a
�p

pn (L) is the number of p-ideals of index pn in L and a
<p

pn (L) is the
number of p-subrings of index pn in L. Then

ζ
�p

L,p(s) = (1 − p−1)−dZ◦
D�(s − d, p) ,

ζ
<p

L,p(s) = (1 − p−1)−dZ◦
D≤(s − d, p) .

Proof. Let B = (e1, . . . , ed) be a basis for L, and m1, . . . ,md a set of additive
generators for an additive submodule H of L. The polynomial divisibility
conditions v(fk(x)) ≤ v(gk(x)) ensure that Lie brackets [ei,mj ] are in the
Zp-span of {m1, . . . ,md} for 1 ≤ i, j ≤ d. Indeed, when we express

[mi, ej ] =
d∑

r=1

λi,j,rmr ,

each nonzero coefficient λi,j,r is of the form gk(x)/fk(x) for some k. Enforcing
v(fi(x)) < v(gi(x)) will then ensure that each [mi, ej ] is in the pZp-span of
{m1, . . . ,md} for 1 ≤ i, j ≤ d, i.e. is in pH.

A similar argument works when we count all subrings instead of just ideals.
We must consider the Lie brackets [mi,mj ] for 1 ≤ i < j ≤ d instead of
[mi, ej ] for 1 ≤ i, j ≤ d.

Finally, since Z◦
D∗(s, p) integrates over a subset of (pZp)(

d+1
2 ), it is clear

that it is only counting additive submodules contained in pL. ��
Corollary 4.29. Let L be a Z-Lie ring. Assume Conjecture 4.5. Then, for all
primes p outside a finite set dependent on L,

ζ�
L,p(s)

∣∣
p→p−1 = (−1)dp(d

2)ζ�p

L,p(s) , (4.21)

ζ≤L,p(s)
∣∣∣
p→p−1

= (−1)dp(d
2)ζ<p

L,p(s) . (4.22)
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Proof. ZD�(s, p) and ZD≤(s, p) are both integrals over
(
d+1
2

)
variables. So,

since we are assuming Conjecture 4.5,

ZD�(s, p)|p→p−1 = p(d+1
2 )Z◦

D�(s, p) ,

ZD≤(s, p)|p→p−1 = p(d+1
2 )Z◦

D≤(s, p) ,

for all but finitely many primes p. Also, it is straightforward that

(1 − p−1)−d
∣∣
p→p−1 = (−1)dp−d(1 − p−1)−d .

The result now follows from Lemma 4.28. ��
Corollary 4.29 suggests that the functional equations we have seen arise

from correspondences between ideals and p-ideals, or subrings and p-subrings.
This therefore motivates us to study these correspondences.

4.8 Counting Subrings and p-Subrings

The correspondence between subrings and p-subrings is encapsulated by the
following lemma.

Lemma 4.30. Let L be a Z-Lie ring, and H be an additive submodule of L.
Then H is a subring of L if and only if pH is a p-subring of L.

Proof. Clearly pH ⊆ pL. For all x, y ∈ H, [x, y] ∈ H if and only if [px, py] ∈
p(pH). ��
Theorem 4.31. Let L be a Z-Lie ring. Assume Conjecture 4.5. Then, for all
but finitely many primes p,

ζ≤L,p(s)
∣∣∣
p→p−1

= (−1)dp(d
2)−dsζ≤L,p(s) . (4.23)

Proof. Lemma 4.30 implies that the multiplication-by-p map is a bijective
correspondence between the subrings of p-power index in L and the p-subrings
of p-power index in L, for all primes p. Hence

ζ
<p

L,p(s) = p−dsζ≤L,p(s) (4.24)

for all primes p. Combining (4.24) with (4.22), we obtain that Conjecture 4.5
implies the functional equation

ζ≤L,p(s)
∣∣∣
p→p−1

= (−1)dp(d
2)−dsζ≤L,p(s) .

This gives us the result. ��
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A second proof of Theorem 4.31 follows from Corollary 4.8:

Proof. By Proposition 2.2, there exists a set of cone data D = {f0, g0, . . . , fl, gl}
such that

ζ≤L,p(s + d) = (1 − p−1)−dZD(s, p) .

By Proposition 2.1, the cone data satisfy deg fi(x)+1 = deg gi(x) for 1 ≤ i ≤ l.
Assuming Conjecture 4.5, Corollary 4.8 implies that ZD(s, p) satisfies the
functional equation

ZD(s, p)|p→p−1 = p− deg g0−s deg f0ZD(s, p) .

Proposition 2.2 additionally implies that deg f0 = d and deg g0 =
(
d
2

)
. Hence

ζ≤L,p(s + d)
∣∣∣
p→p−1

= (−p)−dp−(d
2)−dsζ≤L,p(s + d) ,

and this easily rearranges into the functional equation (4.23). ��
In both proofs we can relax the assumption that L is a Lie ring. L can

instead be any not-necessarily associative ring provided it is additively iso-
morphic to Zd for some d ∈ N. Conjectures 4.21 and 4.22 are thus mere special
cases of Conjecture 4.5, as is a positive answer to Question 4.25. However, if
L is not a nilpotent Lie ring we do not obtain a corresponding result counting
subgroups in a T-group.

The correspondence between subrings and p-subrings is rather trivial. It is
encapsulated in one tiny lemma (Lemma 4.30). Furthermore, there is a more
direct proof of Theorem 4.31 which avoids introducing the concept of a p-
subring. However, it does illustrate the approach we shall apply to local zeta
functions counting ideals, where such a direct proof does not exist.

4.9 Counting Ideals and p-Ideals

Let L be a Lie ring additively isomorphic to Z. By Proposition 2.2, there
exists a set of cone data D = {f0, g0, . . . , fl, gl} such that

ZD(s, p) = (1 − p−1)dζ�
L,p(s + d) .

Proposition 2.1 establishes that the cone data satisfy deg fi(x) = deg gi(x)
for 1 ≤ i ≤ l. In this case we cannot apply Corollary 4.8.

Remark 4.6 notes that some unspecified extra conditions for Conjecture 4.5
are necessary in the case where deg fi(x) = deg gi(x) for all 1 ≤ i ≤ l. We are
not sure what these conditions are but we do believe that they will be satisfied
by the p-adic integrals representing local ideal zeta functions of nilpotent Lie
rings. Although we cannot formulate Conjecture 4.5 rigorously, we can still
study the correspondence between ideals and p-ideals that it has led us to.
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It can be seen that the soluble Lie rings trn(Z) for n ≥ 2 have no p-ideals
of finite index for all primes p. In this case we cannot deduce the functional
equations we deduced in Chap. 3 from Conjecture 4.5. Therefore we must
also make the assumption that p-ideals exist. We shall see later that if L is
nilpotent, L has p-ideals of finite index for all p. For this reason we assume
from now on that L is nilpotent.

Furthermore, we shall only consider Lie rings. It is likely that similar results
could be obtained for more general torsion-free rings with nilpotent multipli-
cation. For simplicity, this is a route we have chosen not to follow.

We will frequently find ourselves working over Zp instead of over Z. For
a Z-Lie ring L, we shall denote L ⊗ Zp by Lp. We shall also identify an
element x ∈ L with its image x ⊗ 1Zp

in Lp. In particular, if we have a basis
B = (e1, . . . , ed) for a Z-Lie ring L, we shall also write B for the corresponding
basis (e1 ⊗ 1Zp

, . . . , ed ⊗ 1Zp
) of Lp.

4.9.1 Heights, Cocentral Bases and the π-Map

Nilpotent groups and rings have a notion of the weight of an element, i.e. how
far down the lower-central series a given element lies. We require an analogue
of this notion for the upper-central series.

Definition 4.32. Let L be a nilpotent Lie ring of class c. For 0 ≤ i ≤ c, let
σi(L) denote the ith term of the upper-central series of L. The height of an
element x ∈ L is defined by ht(x) := min{ i : x ∈ σi(L) }.
For clarity we shall write the left-normed Lie bracket [[. . . [[z1, z2], z3], . . .], zm]
as [z1, z2, z3, . . . , zm].

Proposition 4.33. Let L be a nilpotent Lie ring, x ∈ L. ht(x) > h if and
only if there exist z1, . . . , zh ∈ L such that [x, z1, . . . , zh] �= 0.

Proof. By induction on h ≥ 0. ht(x) > 0 if and only if x �= 0, so the base case
is clear.

ht(x) > h if and only if x + σh−1(L) /∈ Z(L/σh−1(L)), i.e. if and only
if there exists z1 such that [x + σh−1(L), z1 + σh−1(L)] �= σh−1(L), i.e. if
and only if [x, z1] /∈ σh−1(L). This is equivalent to ht([x, z1]) > h − 1, and
by our inductive hypothesis, equivalent to there existing z2, . . . , zh such that
[[x, z1], z2, . . . , zh] �= 0. This establishes the induction. ��
Proposition 4.34. Let L be a nilpotent Lie ring, x, y ∈ L, x, y �= 0. Then
ht([x, y]) < min(ht(x),ht(y)).

Proof. Straightforward. ��
Proposition 4.35. Let L be a nilpotent Lie ring with basis B = (e1, . . . , ed).
Suppose ht(x) = h > 1. There exists j with 1 ≤ j ≤ d such that ht([x, ej ]) =
h − 1.



4.9 Counting Ideals and p-Ideals 105

Proof. For a contradiction, suppose ht([x, ej ]) ≤ h − 2 for all ej . Since x has
height h, there must exist z1, . . . , zh−1 ∈ L such that

[x, z1, . . . , zh−1] �= 0 . (4.25)

By our supposition, ht([x, z1]) ≤ h − 2. By (4.25), [x, z1, . . . , zk] �= 0 for all
1 ≤ k ≤ h−1. Since ht([x, z1, . . . , zk]) > ht([ei, z1, . . . , zk+1]) for 1 ≤ k ≤ h−2,
this implies that ht([x, z1, . . . , zh−1]) = 0. Clearly this contradicts (4.25). ��
Proposition 4.36. Let L be a torsion-free nilpotent Lie ring. Then, for all
1 ≤ i ≤ c, σi(L)/σi−1(L) is torsion-free.

Proof. For a contradiction, suppose x /∈ σi−1(L) but mx ∈ σi−1(L) for some
m ∈ N>0. Thus ht(x) ≥ i and ht(mx) < i. Proposition 4.33 then implies that
there exist z1, . . . , zi−1 such that

α := [x, z1, . . . , zi−1] �= 0 . (4.26)

However, since ht(mx) < i,

mα = [mx, z1, . . . , zi−1] = 0 . (4.27)

Since L is torsion-free, (4.26) and (4.27) contradict one another. ��
Definition 4.37. Let L be a torsion-free nilpotent Lie ring of rank d. For
1 ≤ i ≤ c, let ρi = rank(σi(L)). A basis B = (e1, . . . , ed) for L is said to be
cocentral if, for all 1 ≤ i ≤ c, σi(L) = 〈ed−ρi+1, . . . , ed〉.
Remark 4.38. Proposition 4.36 guarantees that for a nilpotent Lie ring of rank
d, a cocentral basis B for L exists.

Lemma 4.39. Let L be a class-c-nilpotent Z-Lie ring, with cocentral basis
B = (e1, . . . , ed). Let 1 ≤ h < c, 1 ≤ k1, k2, . . . , kh ≤ d and suppose
ht(ei) > h. Let mi = mi,iei+· · ·+mi,ded, where mi,i, . . . , mi,d are independent
indeterminates. Let Ri,h be the free Z-module with basis {mi,i, . . . , mi,d−ρh

}.
Then the coefficients of basis elements in iterated Lie brackets of the form

[mi, ek1 , ek2 , . . . , ekh
] (4.28)

generate a Z-module of finite index in Ri,h.

Proof. By Proposition 4.33, the coefficients of basis elements in (4.28) are
linear polynomials over Z in mi,i, . . . , mi,d−ρh

. It suffices to show that over
Q they generate a (d − ρh − i + 1)-dimensional vector space. Suppose for a
contradiction that they do not. We may if necessary perform an invertible
change of variables mi,j =

∑d−ρh

r=1 cr,jm
′
j for cr,j ∈ Q, so that all the Lie

brackets of the form (4.28) are independent of, say, m′
i,l. Now
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mi =
n∑

j=1

mi,jej

=
n∑

r=1

⎛⎝d−ρh∑
j=1

cr,jm
′
i,j

⎞⎠ er

=
n∑

j=1

m′
i,j

(
d−ρh∑
r=1

cr,jer

)
. (4.29)

If [mi, ek1 , . . . , ekh
] has no term in m′

i,l for all ek1 , . . . , ekh
∈ L, then (4.29)

implies that
∑d−ρh

r=1 cr,ler ∈ σh−1(L). Since the change of variables is invert-
ible, we cannot have cr,l = 0 for all 1 ≤ r ≤ d − ρh. This contradicts B being
cocentral. ��
Definition 4.40. Let p be a prime and L a nilpotent Zp-Lie ring with co-
central basis B = (e1, . . . , ed). We define the linear map πB : L → L by
πB(ei) = pht(ei)ei.

Lemma 4.41. Let L be a nilpotent Z-Lie ring with cocentral basis B =
(e1, . . . , ed). For all but finitely many primes p, P �p Lp implies P ⊆ πB(Lp).

Proof. Let P be a p-ideal with additive generators m1, . . . ,md where mi =
mi,iei + · · · + mi,ded for mi,j ∈ Zp. We must prove that pht(ej) | mi,j for all
1 ≤ i ≤ j ≤ d.

Suppose ht(ei) > h. By Lemma 4.39, the coefficients of basis elements in
(4.28) generate a submodule of finite index in Ri,h, the free Z-module with
basis {mi,i, . . . , mi,d−ρh

}. For all primes p not dividing this finite index, the
coefficients mi,i, . . . , mi,d−ρh

generate the free Zp-module Ri,h ⊗ Zp.
Since P is a p-ideal,

[mi, ek1 , ek2 , . . . , ekh
] ∈ phP ⊆ ph+1L .

This implies that ph+1 divides all the linear combinations of mi,i, . . . , mi,d−ρh

that arise as coefficients of basis elements in the above Lie brackets. But since
these span Ri,h ⊗ Zp, we must have that ph+1 | mi,j for 1 ≤ i ≤ j ≤ d − ρh.

Hence pht(ei) | mi,j , and thus P ⊆ πB(Lp). ��
Corollary 4.42. Let L be a nilpotent Z-Lie ring with cocentral basis B =
(e1, . . . , ed). For all but finitely many primes p, the unique p-ideal of minimal
index in Lp is πB(Lp).

Proof. It is easy to see that πB(Lp) is a p-ideal. By Lemma 4.41 it contains
all other p-ideals of finite index, hence its index must be minimal. ��
Remark 4.43. If πB(Lp) is the unique p-ideal of Lp of minimal index, it is clear
that π−1

B (P ) is an additive submodule of Lp for all p-ideals P �p Lp. However,
there is no guarantee at all that π−1

B (P ) is an ideal, nor even a subring, of Lp.
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We can now deduce Conjecture 4.23 from Conjecture 4.5:

Theorem 4.44. Let L be a Z-Lie ring of nilpotency class c with cocentral
basis B = (e1, . . . , ed). Assume Conjecture 4.5. Suppose ζ�

L,p(s) satisfies a
functional equation of the form

ζ�
L,p(s)

∣∣
p→p−1 = (−1)rpb−asζ�

L,p(s) (4.30)

for almost all primes p, with a, b, r ∈ Z. Then a = N , b =
(
d
2

)
and r ≡ d

(mod 2), i.e.

ζ�
L,p(s)

∣∣
p→p−1 = (−1)dp(d

2)−Nsζ�
L,p(s) , (4.31)

where

N =
c−1∑
i=0

rank(L/σi(L)) =
d∑

i=1

ht(ei) . (4.32)

Proof. By Proposition 2.2, there exists a set of cone data D such that ζ�
L,p(s) =

(1−p−1)−dZD(s−d, p). Assuming Conjecture 4.5, Corollary 4.29 implies that

ζ�
L,p(s)|p→p−1 = (−1)dp(d

2)ζ�p

L,p(s)

for p outside a finite set of exceptional primes.
Excluding at most finitely many primes p, Corollary 4.42 establishes that

the minimal index of a p-ideal in Lp is

p
∑d

i=1
ht(ei) = pN ,

and that there is precisely one p-ideal of this index. Hence if ζ�
Lp

(s) satisfies

a functional equation of the form (4.30), then ζ
�p

Lp
(s) = p−Nsζ�

Lp
(s). Hence

ζ�
Lp

(s) = ζ�
L,p(s) satisfies (4.31). ��

4.9.2 Property (†)
We are unable to give a general condition which decides whether the p-local
ideal zeta functions of a nilpotent Lie ring should or should not satisfy the
functional equation (4.31). The idea behind our next definition is to define
an interesting subset of Lie rings within which we can prove a necessary
and sufficient condition for this functional equation to be satisfied, assuming
Conjecture 4.5.

Definition 4.45. Let L be a nilpotent Z-Lie ring or Zp-Lie ring. A cocentral
basis B = (e1, . . . , ed) for L has Property (†) if there exists a function λ : B →
N>0 such that for all 1 ≤ i, j ≤ d, [ei, ej ] is in the span of basis elements of
height ht(ei) − λ(ej). L has Property (†) if there exists a cocentral basis B
satisfying Property (†).
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The definition of Property (†) is rather abstract, in that it gives no indi-
cation what the constants λ(ej) should be. However, it is in some sense the
most general possible definition that allows us to prove the following lemma:

Lemma 4.46. Let L be a nilpotent Zp-Lie ring and let B = (e1, . . . , ed) be
a cocentral basis for L with (†). Let H be the Zp-linear span of m1, . . . ,md

and let fi,j,k(x) and gi,j,k(x) be coprime polynomials in the indeterminates
x = (m1,1,m1,2, . . . , md,d) such that

[mi, ej ] =
d∑

k=1

gi,j,k(x)
fi,j,k(x)

mk . (4.33)

1. The conditions that must be satisfied if H � Lp are

fi,j,k(x) | gi,j,k(x) (4.34)

for all 1 ≤ i, j, k ≤ d.
2. The conditions that must be satisfied if πB(H) �p Lp are

fi,j,k(x) | pλ(ej)−1gi,j,k(x) (4.35)

for all 1 ≤ i, j, k ≤ d.

Proof. 1. Clear from (4.33).
2. Put m̂i,j = pht(ej)mi,j and m̂i = πB(mi) = m̂i,iei+· · ·+m̂i,ded. It is clear

that m̂i,j ∈ pZp, so the additive submodule generated by m̂1, . . . , m̂d is
clearly contained within pL.
Equating the basis elements of height h in (4.33) gives us

∑
ht(er)=λ(ej)+h

mi,r[er, ej ] =
∑

ht(ek)≥h

gi,j,k(x)
fi,j,k(x)

⎛⎝ ∑
ht(et)=h

mk,tet

⎞⎠ .

Multiply both sides by pλ(ej)+h, to give us

∑
ht(er)=λ(ej)+h

m̂i,r[er, ej ] =
∑

ht(ek)≥h

pλ(ej)gi,j,k(x)
fi,j,k(x)

⎛⎝ ∑
ht(et)=h

m̂k,tet

⎞⎠ .

Summing both sides over h yields

[m̂i, ej ] =
d∑

k=1

pλ(ej)gi,j,k(x)
fi,j,k(x)

m̂k .

For πB(H) to be a p-ideal, we require the coefficient pλ(ej)gi,j,k(x)/fi,j,k(x)
to be an element of pL. This is true if and only if (4.35) holds. ��
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Corollary 4.47. Let L be a nilpotent Z-Lie ring and let B = (e1, . . . , ed) be
a cocentral basis for L with (†). For all primes p, and for all ideals I � Lp of
finite index in Lp, πB(I) �p Lp and |Lp : πB(I)| = pN |Lp : I|.
Proof. It is clear that (4.34) implies (4.35), hence I � Lp implies πB(I) �p Lp.
Since |Lp : I| = |m1,1 . . . md,d|−1 and |Lp : πB(I)| = |m̂1,1 . . . m̂d,d|−1 it is also
clear that |Lp : πB(I)| = pN |Lp : I|. ��

Corollary 4.47 now gives us an obvious criterion for the local ideal zeta
functions of L to satisfy the functional equation (4.31):

Corollary 4.48. Let L be a nilpotent Z-Lie ring with a cocentral basis B =
(e1, . . . , ed) having (†). Suppose additionally that for all but finitely many
primes p, π−1

B (P ) � Lp for all p-ideals P of finite index in Lp. Assume Con-
jecture 4.5. Then, for all but finitely many primes p, ζ�

L,p(s) satisfies (4.31).

Proof. Lemma 4.47 and our assumption that π−1
B (P ) � Lp for all p-ideals P

of p-power index in L together imply that there is a bijective correspondence
between ideals of L and p-ideals of L. Under this correspondence, an ideal of
index pr corresponds to a p-ideal of index pr+N . Hence the result. ��

It is useful to classify Lie rings that satisfy Property (†). For more general
rings there may not be a similar classification.

Definition 4.49. Let L be a Z-Lie ring of nilpotency class c. We define the
depth of an element x ∈ L to be dep(x) = c + 1 − ht(x).

Definition 4.50. Let L be a nilpotent ring additively isomorphic to Zd. A
cocentral basis B = (e1, . . . , ed) for L is stepped if B has (†) and we may take
λ(ej) = dep(ej) for 1 ≤ j ≤ d. L is stepped if there exists a stepped basis
for L.

Lemma 4.51. Let L be a Lie ring, a, b, c ∈ L. If c commutes with a and b, c
commutes with [a, b].

Proof. Follows immediately from the Jacobi identity. ��
Lemma 4.52. Let L be a Z-Lie ring and let B = (e1, . . . , ed) be a cocentral
basis for L having (†). Suppose ei, ej are non-commuting basis elements. Then

ht(ei) + λ(ei) = ht(ej) + λ(ej) . (4.36)

Proof. From the definition of Property (†), [ei, ej ] is a linear combination of
basis elements of height ht(ei)−λ(ej). Since the Lie bracket is antisymmetric,
ht(ei) − λ(ej) = ht(ej) − λ(ei). Rearranging gives the result. ��
Theorem 4.53. Let L be a nonabelian nilpotent Lie ring. Then L has (†)
if and only if L is a direct product (perhaps with central amalgamation) of
stepped Lie rings.
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Proof. Define the relation ∼ on B by ei ∼ ej if [ei, ej ] �= 0. Clearly ∼ is
symmetric. Let ≈ denote the transitive closure of ∼. ≈ is an equivalence
relation on the set of non-central basis elements. By Lemma 4.52, the function
ei �→ ht(ei) + λ(ei) is constant on the equivalence classes C1, . . . , Cr of ≈.

Let Li be the subring generated by Ci. Consider two distinct subrings Li

and Lj , i �= j. For all a, b ∈ Li, c ∈ Lj , Lemma 4.51 implies that c commutes
with [a, b]. Hence the subrings Li and Lj commute, and so their intersection
must lie in the centre. Furthermore, Z(Li), Z(Lj) ⊆ Z(L). It is then clear
that L1 + Z(L), L2, L3, . . . , Lr generate L.

We now claim that each subring Li is stepped. For 1 ≤ i ≤ r, let ti be
the constant value of ht(ej) + λ(ej) for ej ∈ Ci. Proposition 4.35 implies
there exists ej ∈ Li such that λ(ej) = 1 and thus ht(ej) = ti − 1. Since
Z(Li) ⊆ Z(L), Li contains elements of height 1, so the nilpotency class of Li

is ti − 1. By the definition of ti, λ(ej) = ti − ht(ej) = depLi
(ej). Thus Li is

stepped. Clearly L1 + Z(L) is also stepped if L1 is.
Conversely it is easy to see that any direct product of stepped Lie rings

L1, . . . , Lr, perhaps with central amalgamation, has (†). For a central basis
element ej , the value of λ(ej) is arbitrary. For a noncentral basis element ej ,
ej ∈ Li for some unique 1 ≤ i ≤ r, and we take λ(ej) = depLi

(ej). ��
Remark 4.54. It is not always true that L1, . . . , Lr generate L. In particular,
this happens if L has an abelian direct factor.

Remark 4.55. The concept of a stepped Lie ring is similar to the concept of
a graded Lie ring. Indeed, by taking Li to be the linear span of the basis
elements of depth i, L1, . . . , Lc is a grading of a stepped Lie ring. Direct
products of such rings are clearly graded as well, and it is easy to see that a
direct product with central amalgamation of graded Lie rings is also graded.
However, graded Lie rings do not necessarily have (†). Fil4 (p. 53) is graded
– take L1 = 〈z〉, Li+1 = 〈xi〉 for i = 1, 2, 3, 4, then [Li, Lj ] ⊆ Li+j – but does
not have (†).

Corollary 4.48 is obvious, but it is awkward to use. We now develop a more
useful equivalent notion.

Definition 4.56. Let L be a Z-Lie ring with cocentral basis B = (e1, . . . , ed)
having (†). B has (∗) if, for all 1 ≤ j, k ≤ d with λ(ej) > 1,

[ek, ej ] ∈
〈{

[ek, ej1 , . . . , ejl
] :

1 ≤ l ≤ c,
λ(ej1) = · · · = λ(ejl

) = 1

}〉
Q

. (4.37)

This is a somewhat technical definition and is more difficult to understand
than Corollary 4.48. However, determining whether a basis has (∗) is a finite
calculation, not something offered by Corollary 4.48.

Note also that we use the Q-span in (4.37), rather than the Z-span. (4.37)
holds if and only if



4.9 Counting Ideals and p-Ideals 111

[ek, ej ] ∈
〈{

[ek, ej1 , . . . , ejl
] :

1 ≤ l ≤ c,
λ(ej1) = · · · = λ(ejl

) = 1

}〉
Zp

for all but finitely many primes p. The same is not true with the Z-span.

Example 4.57. The Lie ring g6,17 has presentation

〈e1, . . . , e6 : [e1, e2] = e3, [e1, e3] = e5, [e1, e5] = e6, [e2, e4] = e6〉 .

The basis B = (e1, . . . , e6) is cocentral and has (†), with λ(e1) = λ(e2) = 1,
λ(e3) = 2, λ(e4) = λ(e5) = 3. Now

[e1, e3] = e5 , [e1, e4] = 0 , [e1, e5] = e6 ,

and

[e1, e2, e1] = −e5 , [e1, e2, e1, e1] = e6 ,

so (4.37) holds for k = 1. For k = 2, we need only check that

[e2, e3] = 0 , [e2, e4] = e6 , [e2, e5] = 0 ,

and

[e2, e1, e1, e1] = −e6 .

There is nothing to check for k ≥ 3 since e3, e4, e5, e6 all commute. Hence
B has (∗). Turning to p. 61, we find that ζ�

g6,17,p(s) does indeed satisfy the
expected functional equation.

Example 4.58. The Lie ring g6,6 has presentation

〈e1, . . . , e6 : [e1, e2] = e4, [e1, e3] = e5, [e1, e4] = e6, [e2, e3] = e6〉 .

The basis B = (e1, . . . , e6) is cocentral and has (†), with λ(e1) = λ(e2) = 1
and λ(e3) = λ(e4) = 2. Now [e1, e3] = e5 but [e1, e2, e1] = −e6 and
[e1, e2, e2] = 0. Hence (4.37) does not hold with j = 3, k = 1, so g6,6 does not
have (∗). ζ�

g6,6,p(s) does not satisfy a functional equation, as we see on p. 56.

Definition 4.59. Let L be a Z-Lie ring with cocentral basis B having (†). Let
fi,j,k(x) ≤ gi,j,k(x) for 1 ≤ k ≤ d be the polynomial divisibility conditions
in (4.34). A condition fi,j,k(x) ≤ gi,j,k(x) is primary if λ(ej) = 1, and is
secondary otherwise.

From (4.34) and (4.35), the primary conditions are necessary conditions
for H to be an ideal and for πB(H) to be a p-ideal. The secondary conditions
for πB(H) to be a p-ideal are weaker than those for H to be an ideal. This
suggests that πB(P ) � Lp for all p-ideals P of p-power index if and only if the
secondary conditions are redundant. Our next aim is to show that this is in
fact the case.
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Lemma 4.60. Let L be a nilpotent Z-Lie ring or Zp-Lie ring, B = (e1, . . . , ed)
a basis for L with (†), and m1, . . . ,md be additive generators for an ideal
I � L. Suppose that

[mi, ej ] ∈ 〈m1, . . . ,md〉
for all ej with λ(ej) = 1. Then, for all j1, . . . , jr with λ(ej1) = · · · =
λ(ejr

) = 1,

[mi, ej1 , ej2 , . . . , ejr
] ∈ 〈m1, . . . ,md〉 .

Proof. If [mi, ej ] ∈ 〈m1, . . . ,md〉 for all ej with λ(ej) = 1, then [u, ej ] ∈
〈m1, . . . ,md〉 for all u ∈ 〈m1, . . . ,md〉 and all ej such that λ(ej) = 1. Setting
u = mi, [mi, ej1 ], [mi, ej1 , ej2 ], . . . , [mi, ej1 , ej2 , . . . , ejr−1 ] in turn gives the
result. ��
Theorem 4.61. Let L be a Z-Lie ring with cocentral basis B having (†) and
(∗). For all but finitely many primes p, H � Lp if and only if πB(H) �p Lp.

Proof. For all but finitely many primes p, (4.37) implies that

[ek, ej ] ∈
〈{

[ek, ej1 , . . . , ejl
] :

1 ≤ l ≤ c,
λ(ej1) = · · · = λ(ejl

) = 1

}〉
Zp

(4.38)

for all ej , ek with λ(ej) > 1. If we set mi = mi,iei + · · ·+mi,ded for 1 ≤ i ≤ d,
it can then be seen that (4.38) is equivalent to

[mi, ej ] ∈
〈{

[mi, ej1 , . . . , ejl
] :

1 ≤ l ≤ c,
λ(ej1) = · · · = λ(ejl

) = 1

}〉
Zp

(4.39)

for all 1 ≤ i, j ≤ d with λ(ej) > 1.
For fixed i, j with λ(ej) > 1, the secondary conditions fi,j,k(x) | gi,j,k(x)

for 1 ≤ k ≤ d are ‘redundant’ (in the sense that they are implied by the
primary conditions) for all but finitely many primes p if

[mi, ej ] ∈
〈{

[mi, ej1 , . . . , ejr
] :

1 ≤ l ≤ c,
λ(ej1) = · · · = λ(ejl

) = 1

}〉
Zp

. (4.40)

By Lemma 4.60, [mi, ej1 , . . . , ejr
] ∈ 〈m1, . . . ,md〉 for all j1, . . . , jr with

λ(ej1) = · · · = λ(ejr
) = 1 if and only if [mi, ej ] ∈ 〈m1, . . . ,md〉 for all j

such that λ(ej) = 1. Clearly if (4.40) holds for all i, j with 1 ≤ i, j ≤ d and
λ(ej) > 1, then the conditions fi,j,k(x) | gi,j,k(x) for 1 ≤ k ≤ d are implied
by those where λ(ej) = 1. Hence H � Lp if and only if πB(H) �p Lp. ��
Theorem 4.62. Let L be a nilpotent Z-Lie ring with basis B = (e1, . . . , ed)
which has (†) but does not have (∗). There exists an additive submodule H
such that H �� Lp but πB(H) �p Lp.
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Proof. Since B does not have (∗), there exist basis elements ej , ek with
λ(ej) > 1 such that

[ek, ej ] /∈
〈{

[ek, ej1 , . . . , ejl
] :

1 ≤ l ≤ c,
λ(ej1) = · · · = λ(ejl

) = 1

}〉
Q

, (4.41)

and hence, for all primes p,

[ek, ej ] /∈
〈{

[ek, ej1 , . . . , ejl
] :

1 ≤ l ≤ c,
λ(ej1) = · · · = λ(ejl

) = 1

}〉
Zp

. (4.42)

We construct a suitable additive submodule H additively generated by
m1, . . . ,md. It suffices to assume mi,j = 0 for 1 ≤ i < j ≤ d, so that
mi = mi,iei and thus

[mi, ej ] = mi,i

∑
ht(er)=ht(ei)−λ(ej)

ci,j,rer

for some nonzero integers ci,j,r. We may assume p divides none of the nonzero
ci,j,r. Since we have chosen a ‘diagonal’ set of generators for H, the re-
quirement that [mi, ej ] ∈ 〈m1, . . . ,md〉 becomes mr,r | mi,i for each r with
ci,j,r �= 0.

Choose ek, ej to satisfy (4.41). Choose et such that ck,j,t �= 0, so that mt,t |
mk,k if 〈m1, . . . ,md〉 is to be an ideal. Set mt,t = p, and if any conjunction
of primary conditions implies that mt,t | mi,i, set mi,i = p too. Set all other
mi,i = 1. By our construction, all primary conditions are satisfied.

By our choice of ek and ej , mt,t | mk,k cannot be a conjunction of
primary conditions, so we must have mk,k = 1. This clearly implies that
H = 〈m1, . . . ,md〉 is not an ideal of Lp, since one of the non-primary condi-
tions does not hold.

We now prove that πB(H) is a p-ideal. Recall that

πB(H) = 〈pht(e1)m1,1, . . . , p
ht(ed)md,d〉Zp

.

For 1 ≤ i, l ≤ d, we must show that [mi, el] ∈ 〈pm1, . . . , pmd〉. Now

[mi, el] =
∑

ht(er)=ht(ei)−λ(el)

ci,l,rp
ht(er)+λ(el)mi,ier ,

so for each r with ci,l,r �= 0,

mr,r | pλ(el)−1mi,i . (4.43)

If λ(el) = 1, (4.43) reduces to mr,r | mi,i, one of the primary conditions that
we know H satisfies. If λ(el) > 1, (4.43) trivially holds since mr,r | p for all
1 ≤ r ≤ d. Hence πB(H) �p Lp. ��
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Corollary 4.63. Let L be a nilpotent Z-Lie ring with basis B = (e1, . . . , ed)
which has (†). Assume Conjecture 4.5. Then, for all but finitely many primes
p, ζ�

L,p(s) satisfies the functional equation (4.31) if and only if B has (∗).
Proof. Corollary 4.48 and Theorems 4.61 and 4.62. ��
Corollary 4.64. Let L be a ring with (†), i.e. a direct product (possibly with
central amalgamation) of stepped rings L1, . . . , Lr. Then L has (∗) if and only
if for each 1 ≤ i ≤ r, Li has (∗).
Proof. If ej ∈ Li, then [mk, ej ] only has nonzero coefficients of other basis
elements in Li. If all the direct factors have (∗), it is clear that L will. If (with
no loss of generality) L1 does not have (∗), we will still be able to construct
an non-ideal H � Lp such that πB(H) �p L. ��

Theorems 4.61 and 4.62 give us a way of determining whether ideals and
p-ideals correspond. However, we can further cut down the work we need to
do. Our next lemma essentially allows us to reorder the Lie brackets within
(4.37). Its proof is routine manipulation of the Jacobi identity.

Lemma 4.65. Let L be a Lie ring and b be any iterated Lie bracket of ele-
ments in L, y ∈ L. Let S ⊆ L be any set of elements such that b is in the
subring generated by S. Then

[b, y] ∈ 〈{ [y, z1, z2, . . . , zr] | 1 ≤ r ≤ c, zi ∈ S }〉Z .

Remark 4.66. We may assume y and all the zi are distinct by considering them
as indeterminates and follow the method outlined in the proof to obtain an
identity expressing [b, y] as a linear combination of left-normed brackets.

Proof. Let the number of Lie brackets within b be b. Define the altitude of
y in b, altb(y), to be the number of Lie brackets it is contained within. We
proceed by reverse induction on altb(y). If altb(y) = b, then b is left-normed
and the result is trivially true. Initially, we have altb(y) = 0.

If altb(y) < b, then there exists a Lie bracket within b not containing y.
Let [[A,B], C] be the innermost Lie bracket containing y and this other Lie
bracket, with y somewhere within C. The Jacobi identity implies that

[[A,B], C] = [[C, B], A] + [[A,C], B] . (4.44)

Using (4.44) we may express b as b = b1 + b2. For i = 1, 2 either bi = 0 or
altbi

(y) = altb(y) + 1 and there are b brackets within bi. By our inductive
hypothesis, b1 and b2 are expressible as some Z-linear combination of left-
normed Lie brackets, so b is too. ��
Definition 4.67. Let L be a Z-Lie ring or Zp-Lie ring with basis B having
(†). Denote by ΓB(L) the subring generated by all ej ∈ B such that λ(ej) = 1.
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Corollary 4.68. Let L be a Zp-Lie ring with basis B having (†), ej ∈ B. If
ej ∈ ΓB(L) then (4.37) holds for all ek ∈ B.

Proof. Lemma 4.65 with S = { z ∈ B | λ(z) = 1 }. ��
Corollary 4.69. Let L be a Z-Lie ring with basis B having (†). Suppose |L :
ΓB(L)| < ∞. Assume Conjecture 4.5. Then ζ�

L,p(s) satisfies (4.31) for all but
finitely many primes p.

Proof. For all primes p not dividing |L : ΓB(L)|, ΓB(Lp) = Lp. Hence B ⊂
ΓB(Lp) and by Corollary 4.68, B has (∗). Thus Corollary 4.63 implies the
result. ��

This next corollary provides a useful quick check for the correspondence
to fail, and hence predict that local ideal zeta function does not satisfy a
functional equation.

Corollary 4.70. Let L be a Z-Lie ring with basis B = (e1, . . . , ed) having (†).
Suppose ΓB(L) is not of finite index in L. Suppose that there exist ek, ej ∈ B
such that ek ∈ ΓB(L), but for all primes p, ej /∈ ΓB(Lp) and [ek, ej ] /∈ ΓB(Lp).
Then B does not have (∗). Hence, assuming Conjecture 4.5, ζ�

L,p(s) satisfies
no functional equation for all but finitely many primes p.

Proof. If ek ∈ ΓB(Lp), ej /∈ ΓB(Lp) and [ek, ej ] /∈ ΓB(Lp), then (4.41) clearly
holds. ��

Having laid the groundwork above, we can now prove results about when
local ideal zeta functions of Lie rings should satisfy functional equations.

Proposition 4.71. Let L be a class-2 nilpotent Lie ring. Assume Conjec-
ture 4.5. Then, for all but finitely many primes p, ζ�

L,p(s) satisfies (4.31). In
other words, Conjecture 4.5 implies Conjecture 4.20.

Proof. Since L has nilpotency class 2 it is clear that L is stepped. L trivially
has (∗) since there are no nontrivial secondary conditions. The result now
follows from Theorem 4.61. ��
Lemma 4.72. For c, d ≥ 2, let Fc,d denote the free class-c-nilpotent Lie ring
on d generators. Then Fc,d is stepped.

Proof. Let e1, . . . , ed be free generators of Fc,d, and for 1 ≤ i ≤ c, set ri =
rank(γi(Fc,d)/γi+1(Fc,d)). Set si = rank(γi(Fc,d)/γi+1(Fc,d)) = r1 + · · · + ri.
For convenience set s0 = 0.

Fc,d has a basis B = (e1, . . . , esc
) with the property that for si−1 +1 ≤ l ≤

si, el is a left-normed Lie bracket of length i in the free generators e1, . . . , ed.
Define Li to be the Z-span of esi−1+1, . . . , esi

. Then

Fc,d = L1 ⊕ L2 ⊕ · · · ⊕ Lc
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as Z-module direct sums. Furthermore, Lemma 4.65 implies that any Lie
bracket with i + j elements, left-normed or otherwise, can be rewritten as
a Z-linear combination of left-normed Lie brackets of length i + j. Hence
[Li, Lj ] ⊆ Li+j , so Fc,d is graded with respect to L1, . . . , Lc.

If si−1 + 1 ≤ l ≤ si, then el ∈ Li. [el, e1, . . . , e1︸ ︷︷ ︸
c−i

] is a left-normed Lie

bracket of length c. By the freeness of Fc,d, this Lie bracket is nonzero. Hence,
by Proposition 4.33, ht(el) > c − i.

For all z1, . . . , zc−i+1 ∈ Fc,d, [el, z1, . . . , zc−i+1] is a left-normed Lie bracket
of length c + 1, so is zero. Thus ht(el) = c − i + 1, so dep(el) = i. Hence Fc,d

is stepped. ��
Theorem 4.73. Suppose c, d ≥ 2. Assume Conjecture 4.5. Then, for all but
finitely many primes p,

ζ�
Fc,d,p(s)

∣∣∣
p→p−1

= (−1)N1p(N1
2 )−N2sζ�

Fc,d,p(s) , (4.45)

where

N1 =
c∑

i=1

1
i

∑
j|i

µ(j)di/j = rank(Fc,d) ,

N2 =
c∑

i=1

∑
j|i

µ(j)di/j .

and µ is the Möbius function.

Proof. Lemma 4.72 implies that Fc,d has a stepped basis B. The formula

ri =
1
i

∑
j|i

µ(j)di/j

is due to Witt, see for example Theorem 5.11 of [45]. It is also clear that
ΓB(Fc,d) = Fc,d, so by Corollary 4.69, (4.45) holds. ��
Proposition 4.74. Let L be a 2-generated stepped Z-Lie ring. Then ζ�

L,p(s)
satisfies (4.31) for all but finitely many primes p.

Proof. We shall prove that rank(L/σc−1(L)) = 2, the result will then follow
from Corollary 4.69. Since L/σc−1(L) is abelian,

rank(L/σc−1(L)) ≤ rank(L/[L,L]) = 2 .

Choose some x /∈ σc−1(L). Since x /∈ σc−1(L), there must exist y ∈ L such
that y /∈ σc−2(L) and [x, y] /∈ σc−2(L). This implies y /∈ σc−1(L) and since
[x, y] /∈ σc−2(L), x and y must be linearly independent modulo σc−1(L). Hence
rank(L/σc−1(L)) = 2. ��
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The following proposition demonstrates infinitely many Lie rings which
(conjecturally) have no functional equation:

Proposition 4.75. For r ∈ N>0, let h = (h1, . . . , hr) be a finite sequence of
natural numbers satisfying h1 ≥ h2 ≥ · · · ≥ hr ≥ 2. Let Lh be the Lie ring on
generators {z} ∪ { ei,j | 1 ≤ i ≤ r, 1 ≤ j ≤ hi } with the only nontrivial Lie
brackets (up to antisymmetry) being [z, ei,j ] = ei,j+1 for 1 ≤ i ≤ r, 1 ≤ j < hi.
Set c = h1 and d = 1+h1 + · · ·+hr. Assume Conjecture 4.5. If h1 = · · · = hr,

ζ�
Lh,p(s)|p→p−1 = (−1)dp(d

2)−Nsζ�
Lh,p(s) , (4.46)

for all but finitely many primes p, where N = c + 1
2c(c + 1)r. If hr < h1,

ζ�
Lh,p(s) satisfies no such functional equation.

Proof. Firstly, it is clear that ht(ei,j) = hi+1−j, so Lh is clearly stepped with
respect to any basis B listing the generators in descending order of height.

If h1 = · · · = hr, then z, e1,1, . . . , er,1 are the basis elements of depth 1, and
it is clear that they generate Lh. Hence ΓB(Lh) = Lh, and by Corollary 4.69,
(4.46) holds.

If hr < h1, then dep(er,1) > 1. Hence er,1, er,2 /∈ ΓB(Lh). Now z ∈ ΓB(L)
and [z, er,1] = er,2, hence, by Corollary 4.70, ζ�

Lh,p(s) satisfies no functional
equation. ��

We can deduce Taylor’s conjecture about the maximal class Lie rings Mn

(Conjecture 4.24) as special cases of both of these last two propositions:

Corollary 4.76. Assume Conjecture 4.5. Then, for all but finitely many
primes p,

ζ�
Mn,p(s)

∣∣
p→p−1 = (−1)dp(d

2)−((d+1
2 )−1)sζ�

Mn,p(s) ,

where d = n + 1.

Proof. Mn is 2-generated and also Mn = Lh for the singleton sequence
h = (n). ��

Corollary 4.70 is a quick way of verifying the lack of functional equation.
Although it is useful, it is not universal. Consider the Lie ring L with presen-
tation〈

e1, . . . , e9 :
[e1, e2] = e3, [e1, e3] = e6, [e2, e3] = e7, [e1, e4] = e7,
[e2, e5] = e6, [e4, e5] = e9, [e2, e6] = e8, [e1, e7] = e8

〉
.

L has nilpotency class 4 and has stepped basis B = (e1, . . . , e9), with ΓB(L) =
〈e1, e2, e3, e6, e7, e8〉. Corollary 4.70 cannot be applied since [ek, ej ] /∈ ΓB(L)
implies {ek, ej} = {e4, e5}, and e4, e5 /∈ ΓB(L). However, it follows from
Corollary 4.48 that ζ�

L,p(s) is predicted to satisfy no functional equation. For
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each prime p, H = 〈e1, e2, . . . , e8, pe9〉Zp
is clearly not an ideal (nor even a

subring!) of Lp, but πB(H) �p Lp.
We conclude this section by referring back to Chap. 2. The majority of Lie

rings considered have (†). The exceptions are Fil4, Fil4×Z, g6,15, g137B, g137D,
g1357B, g1357C and g1457B. All the others have (†) and all of them satisfy a
functional equation if and only if they have (∗). The local ideal zeta functions
of those with (∗) satisfy the functional equation (4.31), and Corollary 4.70
applies to each Lie ring without (∗).

Many of the examples in Chap. 2 arose from taking the Z-span of a nilpo-
tent Lie algebra of dimension 6 or 7 over C, classified in [44] and [26]. Whilst
we have been able to complete many of the calculations, there are still a num-
ber of Lie rings arising from these classifications for which we were not able to
calculate the ideal zeta function. It therefore seems worthwhile listing such Lie
rings, and for those that have (†), whether Corollary 4.63 implies a functional
equation satisfied by the ideal zeta function.

The only such Lie rings of rank 6 whose ideal zeta functions are not given
in Chap. 2 are g6,n for n ∈ {2, 11, 18, 19, 20, 21, 22}. Of these, g6,2

∼= M5, g6,18

and g6,21 are also stepped and Corollary 4.63 predicts the ideal zeta functions
of all three to satisfy (4.31). The remaining four Lie rings do not have (†).

Amongst Lie rings of rank 7 there are many calculations of ideal zeta
functions which have yet to be done. In the table below, we list these Lie
rings and whether or not they have (†). For each set of upper-central series
dimensions, we list the suffixes of Lie algebras as used in [26]. There are
six infinite families indexed by a single parameter. These are denoted by an
asterisk. In all six cases, whether the Lie ring has (†) is independent of the
parameter. Note that there are gaps in the suffixes: the Lie algebras (147C),
(1357K), (12457M), (13457H) and (123457G) do not exist.

Dimensions Has (†) Doesn’t have (†)
147 D,E∗ –
247 C-K L-R
257 D,I,J E-H,L
357 A-C –
1357 D,M∗,O-R,S∗ E,F,I,J,L,N∗

2357 – A-D
2457 A-C,L,M D-K
12357 A B,C
12457 A,C,H,L B,D-G,I-K,N∗

13457 A,C B,D-G,I
23457 C A,B,D-G
123457 A B-F,H,I∗

Of those that have (†), all except 257D, 357A-C, 1357D and 2457A-C sat-
isfy (4.37). For each of these eight exceptions, their predicted lack of functional
equation can be deduced from Corollary 4.70.
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4.9.3 Lie Rings Without (†)
We have focused on Lie rings with (†) since we can apply Proposition 4.47. If
we wish to determine whether the local ideal zeta function satisfies a functional
equation, we only need to look for a p-ideal that doesn’t correspond to an ideal,
or show that no such p-ideal exists. If we instead consider Lie rings without (†)
we can no longer do this. There may well be ideals that don’t correspond to
p-ideals under the π-map, as well as p-ideals that don’t correspond to ideals,
and some cancellation may take place.

Fil4, defined by the presentation

〈z, x1, x2, x3, x4 : [z, x1] = x2, [z, x2] = x3, [z, x3] = x4, [x1, x2] = x4〉 ,

is in some sense the ‘simplest’ Lie ring without (†). There certainly aren’t
any of smaller rank. Let p be any prime and put B = (z, x1, x2, x3, x4), Lp =
Fil4 ⊗ Zp and N = 5 + 4 + 3 + 2 = 14. Then set

H = 〈p2z + px1 + x2, p
2x1, px2 + x3, px3 + x4, px4〉 ,

P = πB(H) = 〈p6z + p5x1 + p3x2, p
6x1, p

4x2 + p2x3, p
3x3 + px4, p

2x4〉 .

It is a routine task to verify that H � Lp but P ��p Lp. However, it turns
out that this ideal not associated to a p-ideal, and all others of index no
more than 10, are ‘cancelled out’ by p-ideals P ′ of index ≤ 10 + N such that
π−1
B (P ′) �� Lp. There are, however, more p-ideals of index p11+N than ideals

of index p11. This phenomenon can be observed in the numerator polynomial
of ζ�

Fil4,p(s) (p. 54). For each term cXaY b with b ≤ 10, there exists a term
cX23−aY 42−b, but this doesn’t happen for the term −X6Y 11.

It is perhaps worth noting that g6,15, g137B and g137D are the only Lie
rings without (†) whose ideal zeta functions we have calculated and which
satisfy a functional equation. In all three cases the Lie ring is isospectral to a
Lie ring with (†) – g6,17, M3 ×Z M3 and g137C respectively – so it raises the
following:

Question 4.77. Let L be a Z-Lie ring without (†). Suppose ζ�
L,p(s) satisfies

(4.31) for all but finitely many primes p. Does there always exist a Z-Lie ring
L1 with (†) such that ζ�

L,p(s) = ζ�
L1,p(s) for all but finitely many primes p?

We suspect the answer is ‘no’, but on the scant evidence we have it would be
foolish to elevate this to a conjecture.
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Natural Boundaries I: Theory

5.1 A Natural Boundary for ζGSp6
(s)

We begin this chapter with an explicit demonstration that the global zeta
function of the algebraic group GSp6 has a natural boundary.

Theorem 5.1. Let Z(s) =
∏

p(1 + (p + p2 + p3 + p4)p−s + p5−2s), where the
product is taken over all primes p. Then

1. Z(s) converges on { s ∈ C : �(s) > 5 };
2. Z(s) can be meromorphically continued to { s ∈ C : �(s) > 4 };
3. { s ∈ C : �(s) = 4 } is a natural boundary for Z(s).

Proof. 1. An infinite product
∏

n∈I(1 + an) converges absolutely if the cor-
responding sum

∑
n∈I |an| converges. Now

∑
p prime |p−s| converges on

{ s ∈ C : �(s) > 1 }. Hence we see that in our infinite product Z(s) it is
the term p4−s which is the limit of convergence. Hence Z(s) converges on
{ s ∈ C : �(s) > 5 }.

2. To meromorphically continue the function to { s ∈ C : �(s) > 4 }, we
have to produce a function meromorphic on { s ∈ C : �(s) > 4 } which
coincides with Z(s) on { s ∈ C : �(s) > 5 }.
Let

F (s) =
∏
p

(1 + (p + p2 + p3 + p4)p−s + p5−2s)
(1 − p−s+4)
(1 − p−2s+8)

.

We claim that this converges on { s ∈ C : �(s) > 4 }, in which case
it coincides with Z(s). ζ(2s−8)

ζ(s−4) on { s ∈ C : �(s) > 5 }. Since ζ(s−4)
ζ(2s−8) is

meromorphic on the whole complex plane, we can meromorphically con-
tinue Z(s) from { s ∈ C : �(s) > 5 } to { s ∈ C : �(s) > 4 } by setting
Z(s) = F (s). ζ(s−4)

ζ(2s−8) for s with �(s) > 4.



122 5 Natural Boundaries I: Theory

The terms in the infinite product F (s) can be rewritten

(1 + (p + p2 + p3 + p4)p−s + p5−2s)
(1 − p−s+4)
(1 − p−2s+8)

= 1 +
(p + p2 + p3)p−s + p5−2s

1 + p4−s
.

To ascertain the radius of convergence of the infinite product of such
expressions we again look at the absolute convergence of sums. The limit
of convergence is given now by the term

∑
p

∣∣∣ p3−s

1+p4−s

∣∣∣ which converges
for s with �(s) > 4. We have therefore continued Z(s) successfully to
{ s ∈ C : �(s) > 4 } by using the Riemann zeta function to pass the pole
at �(s) = 5.

3. However �(s) = 4 is as far as we can go. We show now how we can realise
every point on this boundary as the limit point of zeros from { s ∈ C :
�(s) > 4 }. To do this we consider solutions of the equation 1 + (X +
X2 + X3 + X4)Y + X5Y 2 = 0. We will be interested in the value of s for
solutions of the form (X,Y ) = (p, p−s).
We make the substitution U = X4Y and V = X−1. Hence we want to
consider the equation

F (V,U) = U2V 3 + U(1 + V + V 2 + V 3) + 1 = 0.

This has a trivial solution at (V,U) = (0,−1). The partial derivatives at
this point are then given by

FV (V,U)|(0,−1) = 3U2V 2 + U(1 + 2V + 3V 2)
∣∣
(0,−1)

= −1 ,

FU (V,U)|(0,−1) = 2UV 3 + 1 + V + V 2 + V 3
∣∣
(0,−1)

= 1 .

We can therefore use the Implicit Function Theorem to expand U as a
function of V in the neighbourhood around the solution (0,−1) to get

U = −1 − FV

FU

∣∣∣∣
(0,−1)

V + Ω(V )

= −1 + V + Ω(V ) ,

where Ω(V ) is a power series in V starting with V 2 or some higher term.
So for p large enough at the point V = p−1 we get the solution U =
−1 + p−1 + Ω(p−1). Setting U = p4−s we therefore get a solution of
(1 + (p + p2 + p3 + p4)p−s + p5−2s) = 0 for values of s satisfying

p4−s = −1 + p−1 + Ω(p−1) .

Hence for all n ∈ Z we have a solution of the form

s = 4 − log(1 − p−1 + Ω(p−1))
log p

+
(2n − 1)πi

log p
.



5.2 Natural Boundaries for Euler Products 123

Now

δp = − log(1 − p−1 + Ω(p−1))
log p

→ 0

as p → ∞. If we fix some point A = 4+ai on the boundary �(s) = 4 then
we can arrange some sequence of integers np for each prime p so that

(2np − 1)π
log p

→ a

as p → ∞. Hence each point A on the boundary is a limit point of zeros.
Finally we must check that the zeros are on the right-hand side of this
boundary which follows since δp > 0 for large enough p. We therefore
cannot continue Z(s) beyond its natural boundary at �(s) = 4.
This proves Theorem 5.1. ��

Corollary 5.2. The global zeta function ZGSp6
(s) =

∏
p ZGSp6,p(s) has a nat-

ural boundary at �(s) = 4.

Proof. It was established in [36] that

ZGSp6,p(s) =
1 + (p + p2 + p3 + p4)p−s + p5−2s

(1 − p−s)(1 − p3−s)(1 − p5−s)(1 − p6−s)
.

The result is now immediate from Theorem 5.1. ��
Remark 5.3. Notice that we had a helpful minor miracle during the course of
the proof of the natural boundary in the fact that δp > 0 which forced the
zeros to lie on the right-hand side of the boundary. If they had been on the left-
hand side they would not have been helpful as there may have been a way to
continue the function to avoid picking up these zeros. However since there is a
unique way to analytically continue a function, once the zeros have appeared,
we are stuck with them. As we shall see in the next section, we shall make this
a hypothesis of our general result on natural boundaries. It means that we are
unable to completely answer the conjecture mentioned in the introduction of a
generalisation of Estermann’s result to two variables. For example the method
above would fail for the polynomial 1 + (X + X2 − X3 + X4)Y + X5Y 2.

What is perhaps extraordinary is that all the examples of zeta functions
of Lie rings that have been calculated involve polynomials that also satisfy
this minor miracle.

5.2 Natural Boundaries for Euler Products

We see in this section how far we can take the methodology employed in the
previous section. Let
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W (X,Y ) = 1 +
l∑

k=1

(a0,k + a1,kX + · · · + ank,kXnk)Y k ,

where ai,k ∈ Z and we assume that ank,k �= 0. Put degX W = dX , say.
We consider the analytic behaviour of the function

Z(s) =
∏

p prime

W (p, p−s) .

We shall prove in this section Conjecture 1.11 under certain conditions that
we shall explain during the course of the discussion.

Lemma 5.4. Let α = max{ 1+nk

k : k = 1, . . . , l }. Then Z(s) converges on
{ s ∈ C : �(s) > α }.
Proof. The sum

∑
p |ai,kpi−ks| converges on { s ∈ C : �(s) > α }. Hence the

infinite product Z(s) also converges on { s ∈ C : �(s) > α }. ��
Where and whether we can meromorphically continue Z(s) is going to

depend on the zeros of W (X,Y ). These zeros are determined by the Puiseux
power series and the corresponding Newton diagrams. The Puiseux power
series as we shall see are just a more sophisticated version of the implicit
function theorem that we used in the previous section.

We first make a substitution into our polynomial so that we are considering
the behaviour of a polynomial as one of the variables tends to zero rather than
infinity. Let β = max{ nk

k : k ∈ I }. Let j ∈ I be as small as possible with the
property that nj

j = β and put

U = XβY ,

V = X−1/j .

Then setting J = { (k, i) : i = 0, . . . , nk and k = 1, . . . , l },

W (X,Y ) = F (V,U) = 1 +
∑

(k,i)∈J

ai,kV (njk−ij)Uk

= 1 +
∑

(k,i)∈K

bi,kV iUk .

Note that njk − ij ≥ 0.
The theory of the Puiseux power series guarantees us the existence of

power series Ωi for i = 1, . . . , l such that

Ωi(V 1/q) = ci

(
V 1/q

)ei

+ Ωi,1(V 1/q) ,

where Ωi,1(V 1/q) is a power series in V 1/q starting with
(
V 1/q

)ei+1
or some

higher term and ei ∈ Z. Since the coefficients of F (V,U) as a polynomial in U
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are polynomials in V , the power series Ωi(V 1/q) converge for all V and define
the l zeros of the polynomial F (V,U) = W (X,Y ).

We can read off the initial term of these Puiseux power series from the
Newton polygon of W (X,Y ). Let LW denote the set of lattice points (n,m)
which correspond to the occurrence of a non-zero term XnY m in W (X,Y ).
Let l1, . . . , lr be the lines starting from the point (n0, 0) and ascending to the
line with end point (nl, l) marking out the right-hand convex hull which we
call N .

For each line li, let mi = min{m : (n,m) ∈ li ∩ LW }. Let ui and vi be
coprime with the property that

vi

ui
=

(mi+1 − mi)
(nmi+1 − nmi

)
,

the gradient of the line li. Consider the quasi-homogeneous polynomial made
up of all the homogeneous components of W (X,Y ) sitting on the line li:∑

(n,m)∈li∩LW

an,mXnY m = Xnmi Y miW̃i(XuiY vi) ,

where W̃i(Z) is a polynomial of degree (mi+1 − mi)/vi in one variable with
non-zero constant coefficient anmi

,mi
.

In [18] we defined the ghost polynomial of W (X,Y ) as follows:

W̃ (X,Y ) = XdX−nl

r∏
i=1

W̃i(XuiY vi)

= XdX−nl

l∏
i=1

(Xei/qY − ci) .

It has the property as explained in [18] of picking out the leading term of the
Puiseux power series in which we are interested. We have made an additional
change of variable to that in [18]. Note that β is the inverse of the value of
the minimal gradient in the Newton polygon. Hence

W̃ (X,Y ) = V (nl−dX)j
r∏

i=1

W̃i(V siU ti)

= V (nl−dX)jW̃1(U t1)
r∏

i=2

W̃i(V siU ti) .

It is the zeros defined by the Puiseux power series corresponding to the
first piece of the Newton polygon that will be important to us. That is except
for one case which we can remove from the outset. If W̃1(Z) is a product
of cyclotomic polynomials and W̃1(XuiY vi) is actually a factor of W (X,Y ),
then

∏
p W̃1(puip−svi) is meromorphic on the whole of C. Hence we can just
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factor it off and suppose we are in a situation in which either W̃1(Z) is a
not a product of cyclotomic polynomials or W̃1(XuiY vi) is not a factor of
W (X,Y ). Note that if we keep on doing this and are left with a constant then
of course Z(s) is meromorphic and of the shape predicated by the conjecture.
And conversely if W (X,Y ) is built out of products of cyclotomic polynomials
in one variable then we will be able to remove each section corresponding to
sides of the Newton polygon until we are left with a constant.

So we want to show that in the case that we are left with terms of the
Newton polygon, Z(s) will to have a natural boundary at �(s) = β, the
inverse of the first gradient.

We shall divide into a number of cases. First though, we need to show that
we can meromorphically continue to �(s) > β.

Lemma 5.5. Z(s) can be meromorphically continued to �(s) > β.

Proof. There is a unique way to write W (X,Y ) formally as a product:

W (X,Y ) =
∏

(n,m)∈N2

(1 − XnY m)cn,m . (5.1)

To see how to find such an expression for a general bivariate polynomial, one
clears each term with N2 ordered lexicographically from the right. To clear a
term (−1)εn,men,mXnY m where εn,m = 0 or 1 and en,m > 0 one introduces
a factor (1 − XnY m)en,m if εn,m = 1 or two terms (1 − X2nY 2m)en,m(1 −
XnY m)−en,m if εn,m = 0. This only introduces terms higher up the lexico-
graphical ordering which will be cleared later. For each fixed m there will only
be a finite number of terms (−1)εn,men,mXnY m that we will ever have to clear
so the procedure does approximate W (X,Y ) modulo polynomials starting in
higher and higher degrees of Y . The uniqueness is clear since each cn,m will
be recursively defined from terms lower in the lexicographical ordering.

The next claim is that if we have

W (X,Y ) =
∏

m≤M

(1 − XnY m)cn,m +
∑

m>M

en,mXnY m , (5.2)

if en,m �= 0 �= cn,m then n/m ≤ β. This follows because the pairs (n,m) ap-
pearing are all generated additively by { (n,m) : an,m �= 0 } and if n1/m1 ≤β
and if n2/m2 ≤ β then (n1 + n2)/(m1 + m2) ≤ β. For each fixed M , we set
βM = max{ (n + 1) /m : m > M and en,m �= 0 }. Then for �(s) > βM the
following infinite product converges absolutely:

WM (s) =
∏
p

(
1 +

∑
m>M en,mpn−ms∏

m≤M (1 − pn−ms)cn,m

)
.
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Hence on �(s) > βM we continue Z(s) by defining

Z(s) =
∏

(n,m)∈N2

m≤M

ζ(ms − n)−cn,mWM (s) .

To prove that this is a meromorphic continuation of Z(s) we have to check
that on the region of convergence of Z(s), the two expressions for Z(s) agree.
For this we just need to use the fact that if

∏
an,
∏

bn and
∏

anbn all converge
absolutely then (

∏
an ×∏ bn) =

∏
anbn. By letting M → ∞, this continues

Z(s) up to �(s) > β since βM has a limit which is β or smaller as M → ∞.
If we want to see the zeros of one of the local factors W (p, p−s) we shall

use the following identity in �(s) > βM :

Z(s) =
∏

(n,m)∈N2

m≤M

ζ(ms − n)−cn,mWM (s)

= W (p, p−s)
∏

(n,m)∈N2

m≤M

ζp(ms − n)cn,m

∏
(n,m)∈N2

m≤M

ζ(ms − n)−cn,mWM,p(s) ,

where

WM,p(s) =
∏
q �=p

(
1 +

∑
m>M en,mqn−ms∏

m≤M (1 − qn−ms)cn,m

)
.

Note that since a convergent product of non-zero factors is not zero, we shall
get that WM (s) is non-zero except for zeros of W (p, p−s). ��

We now consider several case distinctions for our polynomial W (X,Y ).

Case 1: W̃1(U t1) is not cyclotomic. This is equivalent to there existing infi-
nitely many (n,m) with cn,m �= 0 and n/m = β. In this case there exists a cor-
responding Puiseux power series with |ci| < 1. To prove this we use the same
argument as in the proof of Estermann’s result. Let ci (i = 1, . . . , d1 = deg W̃1)
be all the roots of W̃1. Now we know that c1 · · · cd1 = 1, the constant term of
W̃1. Suppose that |ci| ≥ 1 for all i. Then this would imply |ci| = 1. But if all
the ci lie on the unit circle then W̃1 is cyclotomic contrary to our assumption.
Hence there must be some i with |ci| < 1.

We shall prove that this case has a lot of zeros of W (p, p−s) on the right
of �(s) = β which can’t get cancelled. We shall call a polynomial that falls
under this case of Type I .

Case 2: W̃1(U t1) is cyclotomic (hence there are finitely many (n,m) with
cn,m �= 0 and n/m = β), and in addition there are only finitely many pairs



128 5 Natural Boundaries I: Theory

(n,m) with cn,m > 0 and (n + 1)/m > β but there exists a corresponding
Puiseux power series

Ωi(V 1/q) = ci + Ωi,1(V 1/q)

= ci + ci,1

(
V 1/q

)γi

+ Ωi,2(V 1/q)

with

|Ωi(V 1/q)| < 1 (5.3)

for small enough V . This case also has a lot of zeros of W (p, p−s) on the right
of �(s) = β which can’t get cancelled. This will be called a polynomial of
Type II .

Case 3: W̃1(U t1) is cyclotomic (hence there are finitely many (n,m) with
cn,m > 0 and n/m = β), there are infinitely many pairs (n,m) with cn,m > 0
and (n + 1)/m > β, and there exists a corresponding Puiseux power series

Ωi(V 1/q) = ci + Ωi,1(V 1/q)

= ci + ci,1

(
V 1/q

)γi

+ Ωi,2(V 1/q)

satisfying (5.3) for V small enough. Polynomials in this case we call of
Type III .

Type III polynomials require an assumption that the Riemann Hypothesis
holds which implies that zeros of W (p, p−s) on the right of �(s) = β can’t
get cancelled by zeros of the Riemann zeta function. There is a subcase which
doesn’t require the Riemann Hypothesis. This depends on the second term of
the Puiseux power series. In this subcase we show that the current estimates
for the number of Riemann zeros off the line �(s) = 1

2 are sufficient to show
that there are not enough to cancel local zeros. We shall consider this subcase
in Sect. 5.3.

We now prove the following:

Theorem 5.6. Suppose that W (X,Y ) �= 1 and has no unitary factors and is
a polynomial of type I, II or III. Then �(s) = β is a natural boundary for
Z(s) (where we assume the Riemann Hypothesis for polynomials of Type III).

Proof. In all three cases the zeros

U = Ωi(V 1/q) = ci + ci,1

(
V 1/q

)γi

+ Ωi,2(V 1/q)

lie within the unit circle for V small enough.
Let ∆ν,η be the region z = σ + τ i with

β +
1

ν + 1
< σ ≤ β +

1
ν

, 0 < u < τ < u + η ,

where ν is a positive integer, η > 0 and u > 0.



5.2 Natural Boundaries for Euler Products 129

We have a lot of candidate zeros of Z(s) produced by the zeros of Ωi(V 1/q),
namely:

sn,p = β − log
(
ci + ci,1p

−γi/qj + Ωi,2(p−1/qj)
)

log p
+

2πni
log p

with n ∈ Z and p ranging over all primes. Note that our conditions in case 1, 2
and 3 imply that for p sufficiently large, where the term Ωi,2(p−1/qj) becomes
negligible, these zeros lie on the right-hand side of �(s) = β. This follows
because the modulus of ci + ci,1p

−γi/qj + Ωi,2(p−1/qj) will be less than 1. For
p large enough ci + ci,1p

−γi/qj + Ωi,2(p−1/qj) will lie within the unit circle.
Let S(ν, η) denote the number of zeros sn,p in ∆ν,η.

We start with case 1. Let

Ci = |c−1
i | > 1 .

For 2π/ log p < η and

1
ν + 1

<
− log

∣∣ci + ci,1p
−γi/qj + Ωi,2(p−1/qj)

∣∣
log p

≤ 1
ν

, (5.4)

there exists n such that sn,p ∈ ∆ν,η.
For p large enough, one of the following cases holds∣∣∣∣1 +

ci,1

ci
p−γi/qj +

Ωi,2(p−1/qj)
ci

∣∣∣∣ ≥ 1 for all p > N , (5.5)∣∣∣∣1 +
ci,1

ci
p−γi/qj +

Ωi,2(p−1/qj)
ci

∣∣∣∣ ≤ 1 for all p > N . (5.6)

In case (5.5) set ε = 1 and in case (5.6) set ε = 0. We can then choose N large
enough to ensure that

(−1)ε

∣∣∣∣1 +
ci,1

ci
p−γi/qj +

Ωi,2(p−1/qj)
ci

∣∣∣∣−ν−ε

<

(
1 + (−1)εCν+ε

i

Cν+ε
i

)
. (5.7)

Lemma 5.7. If p > N and

Cν
i + 1 ≤ p ≤ Cν+1

i − 1 , (5.8)

then (5.4) holds.

Proof. Condition (5.7) implies that

Cν+1
i − 1 < Cν+1

i

∣∣∣∣1 +
ci,1

ci
p−γi/qj +

Ωi,2(p−1/qj)
ci

∣∣∣∣−ν−1
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and that

Cν
i

∣∣∣∣1 +
ci,1

ci
p−γi/qj +

Ωi,2(p−1/qj)
ci

∣∣∣∣−ν

< Cν
i + 1 .

Hence (5.8) implies

Cν
i

∣∣∣∣1 +
ci,1

ci
p−γi/qj +

Ωi,2(p−1/qj)
ci

∣∣∣∣−ν

< p

and

p < Cν+1
i

∣∣∣∣1 +
ci,1

ci
p−γi/qj +

Ωi,2(p−1/qj)
ci

∣∣∣∣−ν−1

.

Now just take logs of both sides. (Note that, unlike Ci, we don’t know whether∣∣∣∣1 +
ci,1

ci
p−γi/qj +

Ωi,2(p−1/qj)
ci

∣∣∣∣ (5.9)

is greater or less than 1. In Case 2 and 3 when Ci = 1 we are going to make
an assumption to control the size of (5.9) which we don’t need to do in this
case since Ci > 1.) ��

So for a fixed choice of η, if we take ν such that 2π/ log(Cν
i + 1) < η and

N < Cν
i + 1 then for any prime satisfying Cν

i + 1 ≤ p ≤ Cν+1
i − 1 we will

get η log p
2π + θ zeros sn,p in ∆ν,η where |θ| ≤ 1. Note that sn,p �= sn′,p′ if p

and p′ are distinct primes. This depends on the fact that log p and log p′ are
algebraically independent. Hence

S(ν, η) >
∑

Cν
i
+1≤p≤Cν+1

i
−1

(
η log p

2π
+ θ

)
.

Since
∑

p≤x log p ∼ x we get S(ν, η) ∼ ηCν+1
i

2π as ν tends to infinity.
We now want to check that these zeros don’t get cancelled by singularities

in ∆ν,η produced by the ζ-factors. We only have to consider ζ(ms − n) for
which n/m ≤ β since cn,m = 0 otherwise. If ρ ∈ ∆ν,η and mρ − n is a zero of
ζ(s), then since zeros of the Riemann zeta function have real part less than 1,

�(ρ) < 1/m + n/m ≤ 1/m + β .

But �(ρ) > β + 1/(ν + 1). Hence m < ν + 1. Since �(ρ) < u + η, this implies
that singularities ρ must have their source in some zero mρ−n of ζ(s) situated
below the line (u+η)(ν+1). The number of such zeros according to a classical
result is

O((ν + 1) log(ν + 1)) .
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Each zero can appear as a singularity of at most β(ν + 1)2 zeta functions
ζ(ms−n) since 0 ≤ m < (ν+1) which in turn implies that n ≤ mβ ≤ β(ν+1).
Hence in the region ∆ν,η we can get at most O((ν+1)3 log(ν+1)) singularities,

which is not enough to kill the S(ν, η) ∼ ηCν+1
i

2π zeros in this region.
This means that there are an infinity of zeros in the region

∆η = lim
ν→∞

⋃
ν′≤ν

∆ν′,η .

These zeros have at least one limit point which must lie on �(s) = β. This
limit point is a singularity of Z(s). The analysis above was valid for any choice
of u > 0 and any positive η. However the result is still true for u < 0 since
ζ(s) takes conjugate values in conjugate points. Hence �(s) = β is a natural
boundary for Z(s). This completes the proof for polynomials of Type I.

For polynomials of Type II there are only finitely many pairs (n,m) with
cn,m > 0 and (n+1)/m > β. Then since zeros of ζ(s) have real part less than
1, choosing ν large enough that

β + 1/ν < min{ (n + 1)/m > β and cn,m > 0 } ,

then there are no singularities from the zeta functions ζ(ms − n)−cn,m in
∆ν,η. Hence the region ∆η = limν→∞

⋃
ν′≤ν ∆ν′,η contains only finitely many

singularities coming from the zeta functions ζ(ms − n)−cn,m .
We show now that this region contains infinitely many zeros sn,p of Z(s).

Recall

sn,p = β − log
(
ci + ci,1p

−γi/qj + Ωi,2(p−1/qj)
)

log p
+

2πni
log p

.

Type II assumes that for some choice of i,∣∣∣1 + (ci,1/ci)p−γi/qj + Ωi,2(p−1/qj)/ci

∣∣∣→ 1

from below as p → ∞. Hence for p large enough,

log
∣∣∣(ci + ci,1p

−γi/qj + Ωi,2(p−1/qj)
)∣∣∣

= log
∣∣∣(1 + (ci,1/ci)p−γi/qj + Ωi,2(p−1/qj)/ci

)∣∣∣
< 0

and

log
∣∣∣(ci + ci,1p

−γi/qj + Ωi,2(p−1/qj)
)∣∣∣ > −1 .

For p big enough we also get 2π/ log p < η. Hence for some N for each
p > N , we get a zero sn,p in the region ∆η, i.e. infinitely many zeros of Z(s)
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sit inside ∆η which can’t get cancelled by singularities since there are only
finitely many possible in this region. Hence the same argument as for Type I
polynomials implies that �(s) = β is a natural boundary for Z(s).

Note that case 2 includes an interesting subcase when there are only finitely
many (n,m) with cn,m �= 0 and (n + 1)/m > β. In this case we only need a
finite number of Riemann zeta functions to continue to �(s) = β. Below we
shall consider a strategy for proving the natural boundary in this case (which
we call Type V ) regardless of an assumption on the local zeros.

There is particular case where this happens which is worth recording,
namely when β is an integer:

Corollary 5.8. Let W (X,Y ) be a polynomial with an infinite cyclotomic ex-
pansion W (X,Y ) =

∏
(n,m)(1 − XnY m)cn,m and suppose that W̃1(U t1), the

piece of the ghost corresponding to the first gradient of the Newton polygon,
is cyclotomic. Suppose that β = max{n/m : cn,m �= 0 } is an integer. Then
there are only finitely many (n,m) with cn,m �= 0 and (n + 1)/m > β.

Proof. Since W̃1(U t1) is cyclotomic, there are only finitely many pairs (n,m)
with cn,m �= 0 and n/m = β. We need to prove that if n/m < β then
(n + 1)/m ≤ β. If not, then

n < βm < n + 1 .

But since we are assuming that β is an integer, all the terms are integers,
hence we get a contradiction. ��
Corollary 5.9. Let W (X,Y ) be a polynomial with an infinite cyclotomic ex-
pansion W (X,Y ) =

∏
(n,m)(1−XnY m)cn,m and suppose that β = max{n/m :

cn,m �= 0 } is an integer. Then if there are zeros of W (p, Y ) for p large enough
with |Y | < pβ then �(s) = β is a natural boundary.

Proof. If the ghost is not friendly we are done by case 1 above. If the ghost is
friendly then we are in case 2 of the above. ��

Note that the same argument as in Corollary 5.8 implies the following:

Corollary 5.10. Suppose the inverse β1 = s1/t1 of the first gradient of the
Newton polygon of W (X,Y ) is an integer and

t1 = min{ t : s/t = β and XsY t is a monomial in W (X,Y ) } .

Then the abscissa of convergence of Z(s) =
∏

p W (p, p−s) is α = (s1 + 1)/t1,

which is the same as that of the ghost Z̃(s) =
∏

p W̃ (p, p−s).

We return to the proof of Theorem 5.6. Case 3 assumes that there are
infinitely many pairs (n,m) with cn,m > 0 and (n + 1)/m > β. Hence there
is the possibility that zeros from the corresponding Riemann zeta functions
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might create singularities that would cancel the local zeros we are trying to
use to get a natural boundary.

We state the following Lemma which shows that at least for large enough
m the Riemann zeros on �(s) = 1

2 cannot cancel local zeros.

Lemma 5.11. Suppose that W (X,Y ) has degree d in Y and β = c/e with e
minimal. Suppose sn,p is a local zero of W (p, p−s) with �(s) > β. If m ≥ ed2

then the following is not true: ζ(msn,p − n) = 0 and �(msn,p − n) = 1
2 .

Proof. We suppose that we have a Riemann zeta function ζ(ms − n) with
(n + 1

2 )/m > β ≥ n/m and an s such that ms − n = ρ is a zero on the line
�(ρ) = 1

2 . Hence �(s) = (2n + 1)/2m.
Now β = c/e which we suppose is with e minimal. Suppose d is the degree

of the original polynomial W (X,Y ) in Y . We show now that provided m ≥
ed2, s cannot be a local zero.

Suppose that p−s = α where W (p, α) = 0 and W (p, Y ) ∈ Z[X]. Then
α ∈ K a field of degree ≤ d over Q and α ∈ K. Hence αα ∈ L where
[L : Q] ≤ d2. Now �(αα) = p−2�(s) = p−(2n+1)/m. If we put (2n+1)/m = a/b
with b minimal then this implies that b ≤ d2.

Recall though that (n + 1
2 )/m > β ≥ n/m. Hence 1/(2m) > a/2b − c/e ≥

1/2be ≥ 1/2ed2, i.e. m < ed2. This confirms the Lemma. ��
We resume the proof of Theorem 5.6. In view of Lemma 5.11, choose ν

large enough that

β + 1/ν < min{ (n + 1
2 )/m : (n + 1

2 )/m > β,m < ed2 and cn,m > 0 } .

Then under the Riemann Hypothesis we will get no singularities from the
zeta functions ζ(ms − n)−cn,m which can coincide with a local zero sn,p in
∆η. Hence the same argument as in (2) will suffice to prove that �(s) = β is
a natural boundary for Z(s). This completes the proof of Theorem 5.6. ��

We summarise some of the current state of the conjecture which we can
test for various explicit polynomials.

Corollary 5.12. (a) If the ghost polynomial is not cyclotomic then Z(s) has
a natural boundary at �(s) = β.

(b) If there are zeros of W (p, Y ) for p large enough with |Y | < pβ then, under
the assumption of the Riemann Hypothesis, Z(s) has a natural boundary
at �(s) = β.

The strong assumption of part (b) is not needed for all cases. If there are
finitely many pairs (n,m) with cn,m > 0 and (n + 1)/m > β then we don’t
need the Riemann Hypothesis. We shall also discuss below subcases of case
(3) where we can avoid the Riemann Hypothesis.
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5.2.1 Practicalities

It is useful to have an easy way to check which side zeros will be on. We
give now a criterion provided the implicit function theorem applies which
generalises the example at the start of the chapter. We also show how the
implicit function theorem relates to the combinatorial procedure to calculate
Puiseux power series based on successive Newton polygons.

Recall that we had the following. Let j ∈ I be as small as possible with
the property that nj

j = β and put

U = XβY, V = X−1/j . (5.10)

Then setting J = { (k, i) : i = 0, . . . , nk and k = 1, . . . , l },

W (X,Y ) = F (V,U) = 1 +
∑

(k,i)∈J

ai,kV (njk−ij)Uk

= 1 +
∑

(k,i)∈K

bi,kV iUk .

Note that njk − ij ≥ 0.
Let

A(U) = F (0, U) = 1 +
∑

nk
k =β

ank,kUk .

Choose a root ω of A(U) with the property that |ω| ≤ 1 which always
exists since the constant term is 1 and the coefficients are integers.

Hypothesis 1 Suppose that ω is not a root of A′(U), i.e. it is not a multiple
root of A(U).

We can then apply the implicit function theorem to F (V,U) around the
zero (0, ω) so that in some neighbourhood of (0, ω),

U = ω − Bγ(ω)
A′(ω)

V γ + Ω(V ) ,

where

Bn(U) =
1
n!

∂

∂V n
F (V,U)

∣∣∣∣
V =0

=
∑

njk−ij=n

ai,kUk

and

γ = min{n : Bn(ω) �= 0 }

and Ω(V ) is a power series in V of degree greater than γ.
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This gives us then the first approximation to one branch of the Puiseux
power series. This zero will then give zeros in the unit circle for p large enough
provided the following hypothesis holds:

Hypothesis 2 Either (1) |ω| < 1 for some choice of a zero ω of A(U) or (2) if
|ω| = 1 for all zeros ω of A(U) then for all sufficiently large p, we can choose
a zero ω of A(U) such that

log
∣∣∣∣ω − Bγ(ω)

A′(ω)
p−γ/j + Ω(p−1/j)

∣∣∣∣ < 0 . (5.11)

If this inequality fails for one zero, it need not fail for all zeros.
Hypothesis 2 is equivalent to the condition

�
(
− Bγ(ω)

ωA′(ω)

)
< 0 , (5.12)

provided the LHS of 5.12 is nonzero. To see this put − Bγ(ω)
ωA′(ω) = x + iy where

x, y ∈ R. Now

|1 + (x + iy)V γ + Ω(V )|2 = 1 + 2xV γ + Ω1(V ) ,

where Ω1(V ) is a power series in V starting with V γ+1 or some higher term.
Assuming x �= 0, it is now clear that (5.11) holds for all sufficiently large p if
and only if x < 0. If x = 0, (5.12) is no use to us. We must instead compute
the next term of the power series, and if that doesn’t help, the next one after
that, and so on.

We therefore have the following

Corollary 5.13. Suppose that the Riemann Hypothesis is true. Suppose Hy-
pothesis 1 and 2 hold. Then Z(s) has a natural boundary at �(s) = β.

The assumption of Hypothesis 1 can be interpreted as simplifying the
construction of the Puiseux power series by successive use of Newton polygons.
For details of this procedure see for example Appendix B of [53]. Note for
example that it implies that the value of q, namely the rational power of the
variable V that the Puiseux power series are defined in, is 1. Our polynomial
is of the form A(U) + V G(V,U). The first Newton polygon therefore has a
line corresponding to the polynomial A(U) of which we take a root ω as our
first approximation. We then substitute U = ω + U1 and look at the Newton
diagram of this. Hypothesis 1 implies that ω is not a repeated root of A(U).
Hence we get A(U) = U1A1(U1) where A1(U1) has non-zero constant term
A′(ω). So at the second Newton polygon we are going to pick the unique
piece with negative gradient consisting of the point A′(ω)U1 and a term b0V

γ

(where V corresponds to the vertical and U to the horizontal in contrast to
the choice of [53]). Note that since we are assuming that U − ω is not a
factor of F (V,U), there is a term b0V

γ . The value of b0 is then Bγ(ω). Hence
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the next approximation from this second Newton polygon gives Bγ(ω)V γ +
A′(ω)U1 = 0, i.e. U = ω − Bγ(ω)

A′(ω) V γ + U2. Hence the denominator of the
gradient will not introduce any change to our fractional power of V . This
process repeats itself to give the Puiseux expansion provided by the implicit
function theorem.

5.2.2 Distinguishing Types I, II and III

It is also useful to be able to effectively distinguish between the three types
of polynomial we introduced above. Determining whether a polynomial is of
Type I is easy: it suffices to check whether the polynomial does not have all
its roots on the unit circle. However, it is not so easy to distinguish Types II
and III. Corollary 5.8 provides a useful sufficient condition for a polynomial
to not be of Type III, namely if the natural boundary is an integer. Indeed,
this case covers the zeta functions of algebraic groups that we consider in
the following chapter. We shall see that there are many local zeta functions
of nilpotent groups and Lie rings that do not have integral natural bound-
aries. It is therefore worthwhile to prove a few propositions which can help us
distinguish Types II and III.

Proposition 5.14. Suppose A(U) is squarefree. Then the cyclotomic expan-
sion of W (X,Y ) has only finitely many (n,m) ∈ N2 such that cn,m �= 0 and
(n + γ/j)/m > β, and infinitely many such that (n + γ/j)/m = β.

Proof. Set U = XβY , V = X−1/j as per (5.10), and put F (V,U) = W (X,Y ).
Note that (n + γ/j)/m > β iff njm − jn < γ.

We may express F (V,U) in the form

F (V,U) = A(U) + V G(V,U) + V γBγ(U) + V γ+1H(V,U) (5.13)

for some bivariate polynomials G(V,U) and H(V,U), with V G(V,U) of degree
less than γ − 1 in V and G(V, ω) = 0 for all roots ω of A(U). Since A(U) is
squarefree, G(V,U) must be divisible by A(U). Hence

F (V,U) = A(U)(1 + V G̃(V,U)) + V γBγ(U) + V γ+1H(V,U)

for some polynomial G̃(V,U). It can now be seen that F (V,U) has a cyclotomic
expansion with only finitely many factors (1 − UmV njm−jn)±1 for njm −
jn < γ.

For a contradiction, suppose the cyclotomic expansion of F (V,U) has only
finitely many such factors with njm − jn = γ. We may then write

F (V,U) ≡ A(U)
r∏

i=1

(1 − UmiV ni)εi (mod V γ+1)

for suitable ni ∈ N, mi ∈ N>0, εi ∈ Z \ {0}. In particular, this implies
F (V, ω) ≡ 0 (mod V γ+1). But since Bγ(ω) �= 0,
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F (V, ω) ≡ V γBγ(ω) (mod V γ+1)

�≡ 0 (mod V γ+1) . (5.14)

This is the contradiction we sought. ��
Recall from above Corollary 5.8, which asserts that if β ∈ N, W (X,Y ) is

not of Type III. The following corollary is in a similar vein:

Corollary 5.15. Suppose W (X,Y ) satisfies Hypotheses 1 and 2 and is not of
Type I. If γ ≥ j, W (X,Y ) is of Type II.

Proof. Clear. ��
To demonstrate that a polynomial is of Type III, we need to find an infinite

number of pairs (n,m) with cn,m > 0 and (n + 1)/m > β. The following
proposition and its corollaries provide one way of doing this:

Proposition 5.16. Let

W (X,Y ) = 1 +
∑

(n,m)∈S

an,mXnY m ,

where S = {(n1,m1), . . . , (nr, mr)} is a finite nonempty subset of N × N>0

with ni/mi ≥ ni+1/mi+1 for 1 ≤ i ≤ r − 1 and an,m ∈ Z \ {0}. Suppose
W (X,Y ) is not of Type I. Let β = n1/m1, suppose nr/mr < β and let
d = min{ i : ni/mi < β }. We are interested in the solutions (λd, . . . , λr) of
the inequality

(
∑r

i=d λini) + 1∑r
i=d λimi

>
n1

m1
. (5.15)

1. Equation (5.15) has only finitely many solutions.
2. Suppose that d = 2, so that an1,m1 = ±1. Suppose also that there exists

� ∈ {2, . . . , r} such that the only simultaneous solution of (5.15) and the
congruence

r∑
i=2

λimi ≡ m� (mod m1) (5.16)

is λ� = 1, λi = 0 for 2 ≤ i ≤ r, i �= �. Then, for each N ∈ N, the
cyclotomic expansion of W (X,Y ) contains the factor

(1 + (−ε1)Nε�X
n�+Nn1Y m�+Nm1)b� , (5.17)

where an1,m1 = ε1 and an�,m�
= ε�b� where ε� = ±1 and b� ∈ N>0.
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Proof. 1. Clear, once one rearranges (5.15) to

m1 >
r∑

i=d

λi(n1mi − nim1)

and notes that n1/m1 > ni/mi for d ≤ i ≤ r.
2. By induction on N . Since n1/m1 is maximal, the only way we can ‘clear’

the term an1,m1X
n1Y m1 is to introduce the factor (1+ ε1X

n1Y m1). Since
the congruence (5.16) has a unique solution, the only way to clear the
term ε�b�X

n�Y m� is to multiply in the factor (1 − ε�X
n�Y m�)b� .

Now, suppose that in our cyclotomic expansion we have the factors

(1 + ε1X
n1Y m1) , (5.18)

(1 + (−ε1)Nε�X
n�+Nn1Y m�+Nm1)b� . (5.19)

Multiplying the second terms of (5.18) and (5.19) contributes a term

(−ε1)Nε1ε�b�X
n�+(N+1)n1Y m�+(N+1)m1 . (5.20)

Now

n� + (N + 1)n1 + 1
m� + (N + 1)m1

> β

since (n� + 1)/m� > β. By our congruence assumption, (5.20) cannot
coincide with another term in W (X,Y ), nor can it be affected by mul-
tiplying in factors for clearing other terms. Hence to clear this term we
must introduce a factor

(1 + (−ε1)N+1ε�X
n�+(N+1)n1Y m�+(N+1)m1)b� .

This establishes the induction. ��
Corollary 5.17. Suppose additionally that ε1 = 1 or ε1 = ε� = −1. Then
W (X,Y ) is of Type III.

Proof. It suffices to show that (−ε1)Nεl = −1 for infinitely many N ∈ N. If
ε1 = 1 then (−ε1)Nεl = (−1)Nεl, and if ε1 = ε� = −1, then (−ε1)Nεl = −1.

��
Corollary 5.18. In (5.17), suppose that ε1 = −1, ε� = 1, γ < 1

2j and (n� +
γ/j)/m� = β. Then W (X,Y ) is of Type III.

Proof. By Proposition 5.16, the cyclotomic expansion of W (X,Y ) contains
the factor (1 − Xn1Y m1) and the factors

(1 + Xn�+µn1Y m�+µm1) (5.21)
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for all µ ∈ N. In particular, these generate terms⌊
1
2 (µ − 1)

⌋
X2n�+µn1Y 2m�+µm1 , (5.22)

and by our supposition, (2n� + µn1 + 1)/(2m� + µm1) > β. The only way to
cancel such terms without introducing a factor of the form

(1 − X2n�+µn1Y 2m�+µm1) (5.23)

is if the polynomial W (X,Y ) contains (finitely many) terms of the form
eiX

2nl+µin1Y 2nl+µim1 for ei ∈ N>0, µi ∈ N. Each such term contributes
an infinite number of terms of the form

eiX
2n�+µn1Y 2m�+µm1 (5.24)

for µ ∈ N. However, the coefficients ei in (5.24) are all constant, whereas the
coefficient in (5.22) grows linearly with µ. Hence we must introduce infinitely
many factors of the form (5.23), so W (X,Y ) is of Type III. ��

5.3 Avoiding the Riemann Hypothesis

There are two subcases of polynomials of Type III which avoid the Riemann
Hypothesis.

Case (a) Suppose that we are in case (3) and γi/qj < 1/3 for some choice of
Puiseux branch Ωi(V 1/q) corresponding to the first gradient of the Newton
polygon, also satisfying our condition (5.3). We shall see below that this isn’t
far from being forced on us by our assumption that there are infinitely many
pairs (n,m) with cn,m > 0 and (n + 1)/m > β.

We are going to choose a different box to estimate the number of zeros
of the local factors corresponding to this branch of the Puiseux power series.
Instead of a box of width [β + 1/(ν + 1), β + 1/ν] we are going to take a box
with �(s) ∈ [β + δ, β + 2δ].

By estimating the size of∣∣∣ci + ci,1p
−γi/qj + Ωi,2(p−1/qj)

∣∣∣ = 1 − p−γi/qj |ci,1| sin θ + Ω

(which by assumption (5.3) is within the unit circle for p large enough) we see
that the real part of a zero sn,p is

�(sn,p) = β + p−νc + Ω ,

where ν = γi/qj, c is constant and Ω is something small compared to
p−ν . So we need to estimate how many primes p there are in the in-
terval [(2δ)−1/ν , δ−1/ν ]. With the assumption on ν, this interval contains
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( 1
2 )δ−1/ν , δ−1/ν

]
. So, provided δ is sufficiently small, with the help of the

Prime Number Theorem we can deduce that there are approximately

C
δ−1/ν

log δ−1/ν

primes in the interval
[
( 1
2 )δ−1/ν , δ−1/ν

]
, for some constant C. So in the box

{ s ∈ C : �(s) ∈ [β + δ, β + 2δ],�(s) ∈ [u, u + η] } ,

where u and η are fixed, we get approximately

C
δ−1/ν

log δ−1/ν
η log p = C ′ δ−1/ν

log δ−1/ν
log(δ−1)

zeros since p ∈
[
(2δ)−1/ν

, δ−1/ν
]
.

The estimate of the number of Riemann zeros in this box which we derived
in Case 1 would give

Kδ−3 log(δ−1).

Hence a bound of ν < 1/3 would suffice to show that local zeros dominate
Riemann zeros in case (3). We shall call such polynomials of Type IIIa.

Case (b) We can do a little better if we assume (i) that of the infinitely
many pairs (n,m) with cn,m > 0 and (n + 1)/m > β, only finitely many pairs
have (n + 1

2 )/m > β. In this case the Riemann zeros that appear must be
increasingly far from �(s) = 1

2 that we can use stronger estimates for the
number of zeros off the line to weaken the condition on ν = γi/qj.

Suppose (ii) ν < 1
2 for some choice of Puiseux branch Ωi(V 1/q) correspond-

ing to the first gradient of the Newton polygon, also satisfying our condition
(5.3). Type III polynomials satisfying (i) and (ii) will be called polynomials
of Type IIIb.

We shall show for Type IIIb polynomials that local zeros dominate Rie-
mann zeros without an assumption of the Riemann Hypothesis.

If a local zero sn,p meets a Riemann zero ρ of ζ(ms−n) where (n+ 1
2 )/m≤β

then msn,p − n = ρ, so

�(ρ) ≈ m(β + p−ν) − n

= (mβ − n) + mp−ν

≥ 1
2 + mp−ν

�(ρ) ≈ mu

So the zero will have to be further and further from 1
2 as m gets bigger. Note

that since �(ρ) < 1 we get that m is bounded by m ≤ 1/(2δ) since p−ν ≥ δ.
We are looking at getting zeros in the box
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u ≤ �(s) ≤ u + η, β + δ ≤ �(s) ≤ β + 2δ .

Define

N(σ, T ) := card{ ρ : ζ(ρ) = 0, |�(ρ)| ≤ T,�(ρ) ≥ σ } ,

then

N(σ, T ) � T 1−(σ− 1
2 )/4 log T .

We use this then to estimate how many zeros there are for values m ∈
[M, 2M ] with �(ρ) ≤ uM and �(ρ) ≥ 1

2 + Mδ:

(uM)1−Mδ/4 log uM = cM1−Mδ/4 log M .

Summing over values m ∈ [M, 2M ] we get approximately∑
M=2k≤1/(2δ)

M1−Mδ/4 log M � log2 N max
M≤N/2

M1−M/4N

Riemann zeros where N = 1/δ. Now summing over the subdivision of
m ≤ 1/(2δ) we get at most∑

M≤1/(2δ)

M log M zeros for each M

≈ 1/δ2 log 1/δ .

We now compare this against our estimate of (1/δ)1/ν local zeros. So provided
ν < 1

2 , the local zeros will dominate.
What can we say in general about the value of ν, the degree of the second

term in our Puiseux power series expansion?
Note that we are assuming that there are infinitely many pairs (n,m) with

cn,m > 0 and (n + 1)/m > β but that W̃1(U t1) is cyclotomic (hence there
are finitely many (n,m) with cn,m > 0 and n/m = β). This means that when
we draw the lattice points representing W (X,Y ) we have at least one lattice
point (n,m) with (n+1)/m > β. (The infinitely many other cases come when
we introduce this into our cyclotomic expression and correct the error term.
This produces things of the form (n1 + n2, m1 + m2) where n1/m1 = β and
(n2 + 1)/m2 > β. Hence (n1 + n2 + 1)/(m1 + m2) > β.)

To understand where the ν is coming from we have to understand how to
build the second Newton polygon after the first approximation of U = c1. The
Newton polygon corresponding to our transformed polynomial in U and V has
a lattice point (m′, n′) (where we change the ordering to make it consistent
with [53] for the moment) with the property that with n′ − j < 0. (Note that
the first piece of the Newton polygon is now a horizontal line representing
a polynomial in U .) Now substitute c1 + U1 into this polynomial to get a
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new polynomial in U1 and V . We are interested now in the pieces of negative
gradient. Note that substituting c1 + U1 into the polynomial corresponding
to the first piece of the lower convex hull produces a polynomial in U1 with
zero constant term since c1 is a root of this polynomial. Let Ud

1 be the first
term. (Note that we considered above the situation where the Puiseux power
series analysis reduces to the implicit function theorem. There we needed an
assumption that c1 is not a repeated root of A(U) which implies d = 1.)

Substituting c1 +U1 into the terms of the polynomial corresponding to the
terms on a horizontal line through a (m′, n′) with n′−j < 0, either produces a
term on the V -axis or we get that c1 is a root of the polynomial corresponding
to this line. If we have any choice of c1 and any choice of n′ with n′ − j < 0
which produces a non-zero term on the V -axis, then the second term of the
Puiseux power series is of the form

U = ci + ci,1V
γi/q + Ωi,2 ,

where −γi/q is a gradient of a line in this second Newton polygon in the section
starting at some cV n′

and ending at Ud
1 . The gradient can therefore be chosen

to have slope at most n′/d. Hence ν = γi/qj ≤ n′/dj < 1/d by our assumption
that n′ − j < 0. So we can see that our assumption on ν which helps us avoid
the Riemann Hypothesis is not so far away from what might happen in this
setting anyway. The only problem is that every choice of root c1 of A(U) might
make the polynomials V n′

Pn′(U) vanish where these polynomials are defined
by the horizontal lines through each (m′, n′) with n′−j < 0. This doesn’t seem
so far from being related to the fact that we might actually only have finitely
many terms (1 + XnY m) with (n + 1)/m > β, contradicting our assumption
for polynomials of Type III. For example if V n′

Pn′(U) = V n′
A(U)Ur, then

this certainly vanishes on all roots c1 of A(U). However it also means that
we can get rid of all these terms without introducing more error terms in the
next approximation of the cyclotomic expansion of W (U, V ):

W (U, V ) = A(U) + V n′
A(U)Ur + V B(U, V )

= A(U)(1 + V n′
Ur) + V B(U, V ) .

So if we could do this for all n′ with n′ − j < 0 we would not get infinitely
many terms (1 + XnY m) with (n + 1)/m > β in the cyclotomic expansion.

Although inconclusive, the discussion above hints that in any particular
case there is some concrete analysis which can be executed with the hope that
the Riemann Hypothesis can be avoided.

5.4 All Local Zeros on or to the Left of �(s) = β

We discuss here some tactics that might yield a natural boundary if we don’t
have local zeros available to us on the right-hand side of �(s) = β. Before we
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do so, however, it is instructive to consider what polynomials don’t have local
zeros to the right of �(s) = β.

Lemma 5.19. Let W (X,Y ) be a polynomial for which all the local zeros of
W (p, p−s) lie in the closed half-plane �(s) ≤ β for sufficiently large p. Then,
for all non-repeated roots ω of A(U), gcd(γ, j) ∈ { 1

2j, j
}
.

Proof. We may suppose that our polynomial W (X,Y ) is not of Type I, so the
polynomial A(U) has all its roots on the unit circle, and is thus cyclotomic. Let
β = a/b where we may assume gcd(a, b) = 1. Set U = Xnj/jY , V = X−1/j ,
F (V,U) = W (X,Y ), A(U) = F (0, U). Let ω be any non-repeated root of
A(U). We can write

F (V,U) = A(U) + V G(V,U) + V γBγ(U) + V γ+1H(V,U)

for some bivariate polynomials G(V,U) and H(V,U), with V G(V,U) of degree
less than γ in V and G(V, ω) = 0. Furthermore, XnY m = UmV njm−jn, so
(n + 1)/m > β if and only if j > njm − jn.

It is clear that A(U) = f(U b) and UA′(U) = g(U b) for some polynomials
f(U) and g(U). Let d = gcd(nj , j), so that nj = da, j = db. It is also clear
that d | γ. There exists a unique λ such that 0 ≤ λ < b and λa ≡ γ/d (mod b),
so Bγ(U) = Uλh(U b) for some polynomial h(U). Hence

− Bγ(ω)
ωA′(ω)

= −ωλh(ωb)
g(ωb)

. (5.25)

Let ω be a root of A(U), so that ωb is then a root of f(U). For 0 ≤ n < b,
put ξn = e2πin/bω. Then ξb

n = ωb for 0 ≤ n < b, so ξn is a root of A(U) for all
such n. Furthermore, Bγ(ξn) and ξnA′(ξn) remain constant as n varies.

ξλ
n = e2πiλn/b and as n varies this takes all Nth roots of unity, where

N = b/ gcd(λ, b). h(ξb
n) �= 0 by definition of Bγ(U). If N ≥ 3, it is clear that

�
(
−ξλ

nh(ξb
n)

g(ξb
n)

)
< 0

for some ξn, and thus we have a root of W (X,Y ) to the right of �(s) = β.
Thus, if �(−ξλ

nh(ξb
n)/g(ξb

n)) ≥ 0 for all n, we must have N ≤ 2. Furthermore, if
N = 2, Bγ(ω)/(ωA′(ω)) must be purely imaginary. Hence gcd(λ, b) ∈ { 1

2b, b
}
,

and since gcd(λ, b) = gcd(γ/d, b), gcd(γ, j) = d gcd(γ/d, b) ∈ { 1
2j, j

}
. ��

5.4.1 Using Riemann Zeros

Case 4: Assume that there are an infinite number of pairs (n,m) with cn,m �= 0
and (n + 1

2 )/m > β, but that all local zeros (for large enough primes) are on
or to the left of �(s) = β. We call these polynomials of Type IV . In this case
we can estimate a lot of singularities or zeros coming from ζ(ms − n)−cn,m
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in the region ∆(ν, η). However in order to make sure that they don’t cancel
each other we need to make the extra assumption that there is no rational
dependence between the values of the imaginary parts of nontrivial zeros of
the Riemann zeta function. We have in the region ∆(ν, η) for M large enough:

Z(s) =
∏

(n,m)∈N2

m≤M

ζ(ms − n)−cn,mWM (s) .

Let N0(T ) denote the number of distinct zeros of the Riemann zeta func-
tion on the critical line �(s) = 1

2 . Hardy and Littlewood [33] proved the
following:

Theorem 5.20. Let U = T a where a > 1
2 . Then, there exists K(a) and T0(a)

such that

N0(T + U) − N0(T ) > K(a)U

for all T > T0(a).

We show that there an infinite number of singularities or zeros of Z(s)
inside the rectangle ∆̃(ν, ηu) =

⋃
ν≤ν′ ∆ν′,ηu.

The translate ζ(ms−n) of ζ(s) has its ‘critical line’ at �(s) = (n+ 1
2 )/m.

Hence, for each pair (n,m) with cn,m �= 0 and (n + 1
2 )/m > β, ζ(ms− n) has

infinitely many zeros to the right of �(s) = β. Now n/m ≤ β so (n + 1
2 )/m ≤

β + 1/(2m). Thus, for m > 1
2ν, the zeros of ζ(ms − n) on its critical line are

in the strip β < �(s) < β + 1/ν.
If mu > η−3, then mηu > (mu)2/3. If also mu > T0( 2

3 ), Theorem 5.20
then implies that there exist at least K(2

3 )(mηu)2/3 zeros of ζ(ms−n) inside
the box ∆̃(ν, ηu).

By supposition, there exist infinitely many pairs (n,m) such that cn,m �= 0
and (n + 1

2 )/m > β. For fixed η, u, ν, it is clear that infinitely many m will
satisfy mu > max(T0( 2

3 ), η−3) and m > 1
2ν. Hence ∆̃(ν, ηu) contains infinitely

many singularities or zeros. These singularities or zeros come from zeros of
ζ(s) on the line �(s) = 1

2 between �(s) = mu and �(s) = mu + mηu. Our
assumption of rational independence of nontrivial zeros of ζ(s) implies that
none of these can coincide with zeros or singularities coming from another
pair (n′,m′), otherwise there is a point s ∈ ∆̃(ν, ηu) which can be written as
s = mρ − n = m′ρ′ − n′ where ρ = σ + iτ and ρ′ = σ′ + iτ ′ are zeros of the
Riemann zeta function, i.e. σ = (m′/m)σ′.

So by using the zeros of the Riemann zeta function we can realise �(s) = β
as a natural boundary under the strong assumption of rational independence
of nontrivial zeros ζ(s) on �(s) = 1

2 .

Theorem 5.21. Suppose that W (X,Y ) �= 1 and has no unitary factors. Sup-
pose that there are an infinite number of pairs (n,m) with cn,m �= 0 and
(n + 1

2 )/m > β. Under the assumption that the nontrivial Riemann zeros are
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rationally independent (i.e. if ρ = τ +σi and ρ′ = τ ′ +σ′i are nontrivial zeros
of ζ(s) then σ/σ′ /∈ Q) then �(s) = β is a natural boundary for Z(s).

If one preferred to make this assumption about rational independence of
zeros against an assumption of the Riemann Hypothesis then we can use a
similar argument for Type III polynomials satisfying: there are an infinite
number of pairs (n,m) with cn,m �= 0 and (n + 1

2 )/m > β. We call these
polynomials Type III-IV . Note that we would need to add that local zeros
can’t kill Riemann zeros sitting on �(s) = 1

2 as we proved above. This is the
reason we didn’t need to include any assumption on the local zeros in the
statement of Theorem 5.21.

This argument using the Riemann zeros to get a natural boundary also
appears in the paper [4] of Dahlquist where he generalises Estermann’s result
from a polynomial to a general analytic function in one variable. Dahlquist
however is able to use some combinatorial arguments on the cyclotomic rep-
resentation of the analytic function (which is in one variable unlike our case)
to avoid any strong condition on the Riemann zeros. This combinatorial ar-
gument shows that one can always find Riemann zeros not cancelled by other
Riemann zeros.

5.4.2 Avoiding Rational Independence of Riemann Zeros

It is possible to perform some analysis to ascertain whether one really needs
this condition on rational independence of Riemann zeros. This again should
yield in any individual case whether such an assumption is really necessary.

We have our cyclotomic expression W (X,Y ) =
∏

(n,m)(1 − XnY m)cn,m .
This gives rise then to consideration of an infinite product of Riemann zeta
functions

∏
(n,m) ζ(ms − n)−cn,m . Take a pair (n0, m0) with cn0m0 �= 0 and

(2n0 + 1)/2m0 = a/b > β. We want to show that we get some zeros on
�(s) = a/b with �(s) ∈ [u, u + η]. Namely we want to know that we can’t
get cancelling out from zeros of other ζ(ms − n)−cn,m . Note that if such a
term cancels zeros on �(s) = a/b then (assuming the Riemann Hypothesis for
the moment) 2m = kb and 2n + 1 = ka so this puts some restrictions on the
possible pairs we can take. Let Ia/b = { (n,m) : 2m = kb, 2n + 1 = ka }.

We want to prove that the multiplicity of
∏

(n,m) ζ(ms − n)−cn,m at s =
a/b + iτ is non-zero for some τ ∈ [u, u + η]. Let ν(ζ : 1

2 + iτ) denote the
multiplicity of a zero 1

2 +iτ of the Riemann zeta function ζ(s). We are required
to prove therefore that ∑

(n,m)∈Ia/b

ν(ζ : 1
2 + imτ)cn,m = 0

for all τ ∈ [u, u + η].
Now the number of zeros with imaginary part between m(u + η) and mu

we estimated as
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(um/2π)(log(u + η) − log u) + (ηm/2π) log((u + η)m/2π)
− ηm/2π + O(log(u + η)m)

= cmη log m + O(m) .

So this implies that ∑
(n,m)∈Ia/b

cn,mm log m = O(m) . (5.26)

There is a geometric picture that one can begin to build up to determine
the values of cn,m which appear in our cyclotomic expression. Consider the
lattice of points (n,m) with cn,m non-zero. Let l(a/b) be the line through 0
with gradient a/b. The best thing would be to show that there exist infinitely
many lines l(a/b) with a/b > β containing one and only one point (n + 1

2 , m)
with cn,m non-zero. (We know by assumption of case 4 that there are infinitely
many lines with at least one such point.)

Starting from the diagram of finite number of lattice points defining the
original polynomial W (X,Y ) where each lattice point has the corresponding
coefficient an,m attached to it, can we build up a picture of what the lattice
points corresponding to the cyclotomic expression looks like? Somehow, once
we have cleared all the finite number of terms of the polynomial, we should
get some nice recurrence relations generating all the lattice points.

We can forget about anything which sits too far to the right of l(β), i.e.
with (n + 1

2 ,m) also sitting to the right of l(β).
We first write

W (X,Y ) =
∏

(n,m)∈J(β)

(1 − XnY m)cn,m +
∑

n/m<β

an,mXnY m

= W̃1(X,Y ) +
∑

n/m<β

an,mXnY m ,

where J(β) consists of pairs with n/m = β. J(β) is finite since we are assuming
that the polynomial corresponding to the first gradient of the Newton polygon
is cyclotomic. So this precisely clears the terms of W (X,Y ) which sit on l(β)
and we can do this in a finite number of steps without introducing extra stuff
which needs to be cleared.

Now take a lattice point with (n + 1
2 , m) to the right of l(β). Lets take

it so it lies on l(a/b) with a/b minimal. (There may be some other points
also on this line but lets just see what happens to this one.) Lets just assume
that the coefficient an,m = −1. Then we introduce a term (1 − XnY m) into
the cyclotomic expression, but we introduce a load of extra terms that will
need to be cleared, namely (W̃1(X,Y )− 1)XnY m. Geometrically, this is then
a finite set of lattice points (n′, m′) such that the lattice points (n′ + 1

2 , m′)
all sit on the line l(β, (n + 1

2 , m)) of gradient β passing through the lattice
point (n + 1

2 ,m). When we try to clear these points, we will introduce more
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points on this line coming from multiplication by (W̃1(X,Y ) − 1). Note that
all of these new points sit on distinct lines l(a′/b′) of larger and larger gradient
(bounded by β though). If we had another lattice point (n′ + 1

2 , m′) on this
original line l(a/b) sitting further out, then we should get the same picture of
new lattice points sitting on the line l(β, (n′ + 1

2 , m′)) but now we’ll be able to
get points on l(β, (n′ + 1

2 ,m′)) such that the line l(a1/b1) through this point
doesn’t pick up a point on the line l(β, (n + 1

2 , m)).
With a small example like 1+Y +XY 2 one can see why we get lines l(a/b)

with only one lattice point in the cyclotomic expression sitting on it. The
trouble is when there are lots of terms it’s hard to keep track of whether you
can’t always get several points on lines as a/b gets bigger. My feeling is that
one starts with a finite number of lattice points of the form (n+ 1

2 , m) coming
from the original polynomial. Then one generates a finite number of lines of
gradient β emanating from these points, with an infinite number of lattice
points sitting on them regularly distributed up the lines according somehow
to what W̃1(X,Y ) looks like, and then one has to show that sufficiently high
up these lines, you can get l(a/b) which picks up exactly one point. I’m not
sure if this is true, but certainly the possible relations between the cn,m that
we would get come from the points that we pick up on these lines l(a/b).

I have ignored in this an extra complication which I hope won’t be too
much of a problem. For example when we have an,m �= −1, then we are going
to get extra error terms from (1−XnY m)an,m which could have (λn+ 1

2 , λm)
to the right of l(β). However this will only happen finitely often since as λ
grows this will fall to the left of l(β) since n/m < β.

This geometric picture could be helpful, but things are still quite compli-
cated.

Note that we at least have a condition (5.26) on cn,m which for any par-
ticular polynomial one can check is satisfied infinitely often and hence avoid
invoking anything as strong as the rational independence.

There was some hope that the assumption about the rational indepen-
dence of zeros of the Riemann zeta function could be avoided by using Von
Mangoldt’s estimate for the number of zeros below �(s) = T and the Riemann
Hypothesis. Von Mangoldt’s estimate for the number of zeros below �(s) = T
is (see [63]):

(T/2π) log(T/2π) − T/2π + O(log T ) .

We get singularities in ∆̃(ν, η) =
⋃

ν′≤ν ∆ν,η for each pair (n,m) with
cn,m > 0 and

(
1
2 + n

)
/m > β + 1/(ν + 1) and zeros possibly cancelling these

singularities from each pair (n′, m′) with cn′m′ < 0 and (1
2 + 2n′)/2m′ >

β + 1/(ν + 1). The imaginary part of these zeros of ζ(s) then lie between
(u + η)m and um. We therefore choose

m0 = max{m : cn,m > 0, (1
2 + n)/m > β + 1/(ν + 1) } .

If there is a zero which would cancel these singularities coming from a
ζ(m0s − n0)−cn0,m0 , the claim is that it must come from a pair (n′, m′) �=
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(n0,m0) with m′ < m0. Since we are assuming the Riemann Hypothesis, we
know the precise location of the real part of the zeros. Hence if m′ = m0, then
the real part of the singularity is (1

2 + n′)/m′ = (1
2 + n0)/m0 which implies

that n0 = n′. Therefore m′ < m0.
The number of singularities on �(s) = (1

2 + n0)/m0 is then the number of
zeros of the Riemann zeta function between (u + η)m0 and um0, which is:

((u + η)m0/2π) log((u + η)m0/2π) − (u + η)m0/2π + O(log(u + η)m0)
− ((um0/2π) log(um0/2π) − um0/2π + O(log um0)) (5.27)

= (um0/2π) (log(u + η) − log u) + (ηm0/2π) log((u + η)m0/2π)
− ηm0/2π + O (log((u + η)m0)) .

The number of singularities on (1
2 + n′)/m′ = (1

2 + n0)/m0 between (u +
η)m′ and um′ is then

(um′/2π) (log(u + η) − log u) + (ηm′/2π) log((u + η)m′/2π) (5.28)
− ηm′/2π + O (log ((u + η)m′)) .

There could be at worst singularities for every m′ < m0 killing those from
m0. So we need to consider:∑

m′<m0

um′

2π
(log(u + η) − log u) +

ηm′

2π
log
(

(u + η)m′

2π

)
− ηm′

2π
+ O (log ((u + η)m′))

=
um0(m0 − 1) (log(u + η) − log u)

4π
+

( ∑
m′<m0

(
ηm′

2π

)
log
(

(u + η)m′

2π

))

− ηm0(m0 − 1)
4π

+ O (log ((u + η)(m0 − 1)!)) .

This looks pretty deadly against (5.27). Even consider the difference for a
fixed m′.

We have to prove that the difference of (5.27) and (5.28) is positive:

(5.27) − (5.28)
= (m0 − m′)u/2π (log(u + η) − log u) (5.29)

+ (ηm0/2π) log((u + η)m0/2π) − (ηm′/2π) log((u + η)m′/2π) (5.30)
− (m0 − m′)η/2π (5.31)
+ O (log ((u + η)m0)) . (5.32)

The trouble is that m′ could be close to m0, e.g. m′ = m0 − 1. Then
O (log ((u + η)m0)) is getting bigger whilst

(m0 − m′)u/2π (log(u + η) − log u) = u/2π (log(u + η) − log u)
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is not. Consider the second line of this expression (5.30):

(ηm0/2π) log((u + η)m0/2π) − (η(m0 − 1)/2π) log((u + η)(m0 − 1)/2π)
= (ηm0/2π) log((u + η)m0/2π)

− (ηm0/2π − η/2π) (log((u + η)m0/2π) + log(1 − 1/m0))
= η/2π log((u + η)(m0 − 1)/2π) − ηm0/2π log(1 − 1/m0) .

Again this is deadly since η/2π log((u + η)(m0 − 1)/2π) compared to
O(log(u + η)m0) with η small doesn’t look good.

Despite all this analysis we have not been able to construct a polyno-
mial of Type IV. For a polynomial to be of this type, Proposition 5.14 and
Lemma 5.19 together imply that the polynomial A(U) cannot be squarefree.
Non-squarefree polynomials have repeated roots and these provide another dif-
ficulty to overcome. Frequently there are multiple Puiseux branches at these
repeated roots, and we must somehow force the zeros on all the branches to
lie outside the unit circle.

We return now to another possible strategy for polynomials that only
involve a finite number of Riemann zeta functions to continue to the candidate
natural boundary and local zeros to the left of this boundary.

5.4.3 Continuation with Finitely Many Riemann Zeta Functions

Case 5: where W̃1(U t1) is cyclotomic but the zeros of W (p, p−s) all lie on or
to the left of �(s) = β for p large enough but there exist only finitely many
(n,m) with cn,m �= 0 and (n + 1)/m > β. We call these polynomials of Type
V . It is clear that in this case we have γ ≥ j, so the finitely many (n,m) with
cn,m �= 0 and (n + 1)/m > β are those that form the cyclotomic expansion of
W̃1(U t1).

The strategy here would be to demonstrate that there is a dense set of
points on �(s) = β for which the function blows up as we approach it along
a line of fixed imaginary part.

The meromorphic function on �(s) > β in this case looks like, for some M

Z(s) =
∏

(n,m)∈N2

m≤M

ζ(ms − n)−cn,m

∏
p

(
1 +

∑
m>M en,mpn−ms∏

m≤M (1 − pn−ms)cn,m

)

=
∏

(n,m)∈N2

m≤M

ζ(ms − n)−cn,mWM (s)

= W (q, q−s)
∏

(n,m)∈N2

m≤M

ζq(ms − n)cn,m

∏
(n,m)∈N2

m≤M

ζ(ms − n)−cn,mWM,q(s) ,
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where

WM,q(s) =
∏
p�=q

(
1 +

∑
m>M en,mpn−ms∏

m≤M (1 − pn−ms)cn,m

)
.

The task is to show that we get Z(s) blowing up for s = β+ε+riπ/ log q for
fixed prime q and integer r and ε → 0. Let I = { (n,m) : n/m = β, cn,m �= 0 }.
Since W̃1(U t1) is cyclotomic, this set is finite and non-empty. If one recalls
the way cn,m are defined, if there is a cn,m < 0 then this has come from a
term (1 + XnY m) = (1 − XnY m)−1(1 − X2nY 2m). In fact it is simpler to
rewrite

∏
(n,m)∈I(1− pn−ms)cn,m =

∏
(n,m)∈I′(1 + (−1)δn,mpn−ms)c′n,m where

c′n,m > 0 and I ′ is non-empty and δn,m ∈ {0, 1}. Now certainly∣∣∣∣∣1 +
∑

m>M en,mqn−ms∏
(n,m)∈I′(1 + (−1)δn,mpn−ms)c′n,m

∏
m≤M,n/m �=β(1 − qn−ms)cn,m

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣W (q, q−s)
∏

(n,m)∈N2

m≤M

ζq(ms − n)cn,m

∏
(n,m)∈I′

(1 + (−1)δn,mpn−ms)−c′n,m

∣∣∣∣∣∣∣∣
→ ∞

for s = β + ε + riπ/ log q as ε → 0 for r odd if there exists δn,m = 0 or r even
if there exists δn,m = 1. Note that because W̃1(U t1) is not a factor of W , the
zeros of W (q, q−s) are bounded away from �(s) = β. So the task is to show
that ∣∣∣∣∣∣∣∣

∏
(n,m)∈N2

m≤M

ζ(ms − n)−cn,mWM,q(s)

∣∣∣∣∣∣∣∣
does not tend to zero along �(s) = 2πr/ log q.

There is a subcase of polynomials of Type V for which it may be possible
to see the elusive zeros to the left of �(s) = β.

Case 5(a): where W̃1(U t1) is cyclotomic but the zeros of W (p, p−s) all lie
to the left of �(s) = β for p large enough but there exist only finitely many
(n,m) with cn,m �= 0 and (n + 1)/m ≥ β. In this case it may be possible
to show that any meromorphic continuation beyond �(s) = β would have to
pick up the zeros of W (p, p−s) on the left of �(s) = β. Call polynomials in
this case of Type Va.

5.4.4 Infinite Products of Riemann Zeta Functions

The only case which is missing from the analysis above is the following.
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Case 6: This is the case where W (X,Y ) =
∏

(n,m)(1 − XnY m)cn,m and

(1) There are finitely many pairs (n,m) with cn,m �= 0 and n/m = β (in which
case the part of the ghost corresponding to the first gradient is cyclotomic
and all zeros of the local factors are clustered round the unit circle).

(2) Only finitely many zeros of W (p, Y ) for all p lie within the unit circle (this
of course implies condition (1)).

(3) There are infinitely many pairs (n,m) with cn,m �= 0 and (n + 1)/m > β
(which means we need an infinite number of Riemann zeta functions to
meromorphically continue Z(s)) but none with (n + 1

2 )/m > β (which
means we can’t get enough zeros of these infinite number of Riemann zeta
functions to cause trouble in the region into which we have meromorphi-
cally continued).

Polynomials in this case will be called of Type VI .
There are two subcases which are probably relevant to this case:

(a) There are infinitely many pairs (n,m) with cn,m �= 0 and (n + 1
2 )/m = β.

(b) There are only finitely many pairs (n,m) with cn,m �= 0 and (n+ 1
2 )/m = β.

An example of case (a) is W (X,Y ) = 1 + Y + XY 2, an embarrassingly
innocuous looking polynomial. We can apply the quadratic formula to see that
the zeros are on the candidate natural boundary at �(s) = β = 1

2 . We take

U = X1/2Y, V = X−1/2 ,

F (V,U) = 1 + V U + U2 .

It is then clear that A(U) = 1 + U2, A′(U) = 2U and B1(U) = U . It is
elementary to see that the zeros of F (V,U) are on the unit circle. As expected,
taking either zero ω = ±i of A(U) = 1 + U2 gives us

�
(
− Bγ(ω)

ωA′(ω)

)
= 0 .

We get the following cyclotomic expansion of W (X,Y ):

1 + Y + XY 2

= (1 + Y )(1 + XY 2)
∏
n≥1

(1 + (−1)nXnY 2n+1)
∏

(n,m)∈I

(1 − XnY m)cn,m

= (1 − Y )−1(1 − Y 2)(1 − XY 2)−1(1 − X2Y 4)
∏

(n,m)∈I

(1 − XnY m)cn,m

×
∏
m≥0

(1 − X2m+1Y 4m+3)
∏
m≥1

(
1 − X2mY 4m+1

)−1 (
1 − X4mY 8m+2

)
,

where (n,m) ∈ I if and only if (n + 1)/m < β = 1
2 , i.e. I consists of all the

terms which will not contribute anything critical.
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This requires then an infinite number of Riemann zeta functions to con-
tinue to �(s) = β = 1

2 since (n + 1)/(2n + 1) = 1
2 + 1/(4n + 2). For any fixed

N we get a meromorphic continuation to �(s) > 1
2 + 1/(4N + 2) where the

function Z(s) is defined by

Z(s) =
∏

(n,m)∈N2

m≤2N+1

ζ(ms − n)−cn,m

∏
p

(
1 +

∑
m>2N+1 en,mpn−ms∏

m≤2N+1(1 − pn−ms)cn,m

)

= W (q, q−s)
∏

(n,m)∈N2

m≤2N+1

ζq(ms − n)cn,m

∏
(n,m)∈N2

m≤2N+1

ζ(ms − n)−cn,mWM,q(s) ,

where

WM,q(s) =
∏
p�=q

(
1 +

∑
m>2N+1 en,mpn−ms∏

m≤2N+1(1 − pn−ms)cn,m

)
.

Hence we could try to play the same trick as in case 4 above by looking to
prove that the function blows up as we tend to 1

2 + (2r + 1)πi/ log q along the
line �(s) = (2r + 1)πi/ log q, by exploiting the blowing up of the local factor(

1 +

∑
m>2N+1 en,mqn−ms∏

m≤2N+1(1 − qn−ms)cn,m

)
= W (q, q−s)

∏
(n,m)∈N2

m≤2N+1

ζq(ms − n)cn,m

caused by (1 + q2s−1)−1.
However now we run up against the difficult problem of the behaviour of

an infinite product of Riemann zeta functions on �(s) = 1
2 . We need to prove

that ∏
m≥0

ζ ((4m + 3)s − (2m + 1))−1
∏
m≥1

ζ ((4m + 1)s − 2m)
ζ ((8m + 2)s − 4m)

does not tend to zero as s tends to 1
2 + (2r + 1)πi/ log q along the line �(s) =

(2r + 1)πi/ log q. Essentially we need to understand the behaviour of∏
m≥0

ζ( 1
2 + (2m + 1)πi/ log q)

which does not appear to be known.
The other approach is to use the fact that on the candidate natural bound-

ary we have a lot of potential poles coming from all the zeros of the Riemann
zeta function. This is a case where there are an infinite number of pairs (n,m)
with cn,m > 0 and (n+ 1

2 )/m = β, but only finitely many with (n+ 1
2 )/m > β,

so we can’t quite see the zeros of the Riemann zeta function because they
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don’t lie in the region of continuation, but they surely will cause troubles on
�(s) = β.

However this runs into the same problems. We take some ζ((4m0 + 3)s −
(2m0 + 1))−1 and a zero of the Riemann zeta function ρ. Then we have to
show why ∏

m≥0
m �=m0

ζ ((4m + 3)s − (2m + 1))−1
∏
m≥1

ζ ((4m + 1)s − 2m)
ζ ((8m + 2)s − 4m)

does not tend to zero as we approach ρ from the right along a horizontal line.
Certainly we’ll want to know that we aren’t picking up a zero of ζ((4m+1)s−
2m) for some other m. But there is the same problem as above that although
each individual zeta function doesn’t tend to zero, the infinite product of
Riemann zeta functions might tend to zero.

Nonetheless it is at least worth remarking that the point 1
2 must lie outside

the region of analytic continuation. The factor ζ((4m+3)s− (2m+1))−1 has
a zero at s = 1

2 + (8m + 6)−1 arising from the singularity of ζ(s) at s = 1,
and hence 1

2 is a limit point of zeros. It does raise the interesting question of
what shape region a Dirichlet series can be analytically continued into, if it
can’t be meromorphically continued to C. Is it always a right half-plane?

Polynomials that fall into case (b) above however will not have the luxury
of this second approach. However, we have been unable to come up with a
polynomial that will have all zeros of W (p, Y ) outside the unit circle but satisfy
the conditions for case (b). We run into the same difficulties we encountered
with Type IV.



6

Natural Boundaries II: Algebraic Groups

6.1 Introduction

In this chapter, we use the analysis of the previous section to prove that the
zeta functions of the classical groups GO2l+1,GSp2l or GO+

2l of types Bl for
l ≥ 2, Cl for l ≥ 3 and Dl for l ≥ 4 have natural boundaries. These results
were announced in [18]. We recall the definition of the local factors and the
formula in terms of the root system established in [36] and [21].

Let G be one of the classical reductive groups GLl+1, GO2l+1, GSp2l or
GO+

2l. For any field K, G(K) will denote the appropriate subgroup of GLn(K).
Hey [35] and Tamagawa [56] proved that when G = GLl+1, the zeta function
of G is something very classical, namely ZG(s) = ζ(s) . . . ζ(s − l), and hence
has meromorphic continuation to the whole complex plane. Emboldened by
the case of GLl+1, the following definition of the zeta function of the classical
group G had been proposed:

Definition 6.1. 1. For each prime p, let µG denote the Haar measure on
G(Qp) normalised such that µG(G(Zp)) = 1. Define the local or p-adic
zeta function of G to be

ZG,p(s) =
∫

G+
p

|det(g)|sp µG(g) ,

where G+
p = G(Qp) ∩ Mn(Zp), the set of matrices whose entries are all

p-adic integers, and | · |p denotes the p-adic valuation.
2. Define the global zeta function of G to be

ZG(s) =
∏

p prime

ZG,p(s) .

Given any algebraic group G defined over a number field K and some
K-rational representation ρ : G → GLn we can define in a similar manner
an associated zeta function. In this paper we restrict ourselves to the above
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case of the classical groups, i.e. Q-split reductive algebraic groups of type
Al, Bl, Cl, and Dl and their natural representations. In [18] we consider the
exceptional types and the effect of changing the representation.

We describe now the formula in terms of the root system for the local zeta
functions.

Let T denote the diagonal matrices of G(Qp), namely a maximal split
torus for G(Qp). Let Π = {α1, . . . , αl} be a basis for the root system Φ ⊂
Hom(T, Qp) of G(Qp) and let � be the dominant weight of the contragredient
(irreducible) representation ρ∗ = Tρ−1 of the natural representation ρ that
we are taking for G(Qp). Let m denote the order of the centre of the derived

group [G(C), G(C)]. Note that in particular m divides n. Let α0 = detn/m
∣∣∣
T
.

Then there exist integers ci > 0 for 1 ≤ i ≤ l such that

�m = α−1
0 ·

l∏
i=1

αci
i .

The second set of numerical data we need for our formula are the positive
integers b1, . . . , bl which express the sum of the positive roots in terms of the
primitive roots:

∏
α∈Φ+

α =
l∏

i=1

αbi
i .

We can now write down our formula for the zeta function. Let W denote
the finite Weyl group of Φ and λ(w) the length of an element w of the Weyl
group in terms of the fundamental reflections in the hyperplanes defined by
the primitive roots.

Define two polynomials PG(X,Y ), QG(X,Y ) ∈ Z[X,Y ] by

PG(X,Y ) =
∑

w∈W

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj ,

QG(X,Y ) = (1 − Y m)
l∏

j=1

(
1 − Xbj Y cj

)
.

Then for each prime p,

ZG,p(s) =
PG(p, p−(n/m)s)
QG(p, p−(n/m)s)

.

It was proved in [36] and [21] that these polynomials satisfy a functional
equation

PG(X−1, Y −1)
QG(X−1, Y −1)

= (−1)l+1Xcard(Φ+)Y m PG(X,Y )
QG(X,Y )

.
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We are interested in the global behaviour of the zeta function defined as
an Euler product of all these local factors. The denominator is always well
behaved since it is just built out of the Riemann zeta function ζp(s). The
interest lies in the numerator.

We record now the results of our analysis of the polynomial PG(X,Y )
for the classical groups and in particular that for large enough l the poly-
nomials for G = GO2l+1,GSp2l and GO+

2l satisfy, after some factorisation,
the conditions of Corollary 5.9 in the previous chapter and hence have a nat-
ural boundary. We tabulate first the combinatorial data for the four examples
(Table 6.1):

Table 6.1. Combinatorial data for algebraic groups

m bi ci

GLl+1 Al l + 1 i(l − i + 1) l − i + 1
GO2l+1 Bl 1 i(2l − i) 1

GSp2l Cl 2

{
i(2l − i + 1) if i < l

l(l + 1)/2 if i = l

{
2 if i < l

1 if i = l

GO+
2l Dl 2

{
i(2l − i − 1) if i < l − 1

l(l − 1)/2 if i ≥ l − 1

{
2 if i < l − 1

1 if i ≥ l − 1

Let PG(s) =
∏

PG(p, p−s) and αPG
be the abscissa of convergence of

PG(s).
To satisfy the conditions of Corollary 5.10 it suffices to know what the

ghosts of PG(X,Y ) look like. The following descriptions were announced in
[16] and proved in [18]. For convenience, we set b0 = 0.

Proposition 6.2. 1. The ghost polynomial P̃G(X,Y ) associated to G =
GO2l+1 is

l−1∏
i=0

(1 + XbiY ) .

Hence ZGO2l+1(s) has a friendly ghost.
2. The ghost polynomial P̃G(X,Y ) associated to GSp2l is

l−1∏
i=0

(1 + Xbi/2Y )
l−2∏
i=0

(1 + Xbi/2+1Y ) .

Hence ZGSp2l
(s) has a friendly ghost.

3. The ghost polynomial P̃G(X,Y ) associated to GO+
2l or Dl and its natural

representation is
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l−2∏
i=0

(1 + Xbi/2Y )2 .

Hence ZGO+
2l

(s) has a friendly ghost.

Corollary 6.3. If G = GO2l+1, GSp2l or GO+
2l then the inverse of the gradi-

ents of the Newton polygon of PG(X,Y ) are all integers.

Proof. This follows since the gradients are the same as the gradients of the
Newton polygon of the ghost. ��
Corollary 6.4. The abscissa of convergence αPG

of PG(s) =
∏

PG(p, p−s)
for G = GO2l+1, GSp2l or GO+

2l is bl.

Proof. 1. If G = GO2l+1 then bl−1 is the maximal inverse gradient in the
Newton polygon. Hence αPG

= bl−1 + 1 = bl.
2. If G = GSp2l then bl−1/2 is the maximal inverse gradient in the Newton

polygon. Hence αPG
= bl−1/2 + 1 = bl.

3. If G = GO+
2l then bl−2/2 is the maximal inverse gradient in the Newton

polygon. Hence αPG
= bl−2/2 + 1 = bl. ��

Note that in each case there is a term Xbl−1Y appearing in both PG(X,Y )
and its ghost. In fact there is another way to see why bl is the abscissa of
convergence without passing to the ghost although the analysis below was
essential in determining the ghost.

We know that αPG
= max{ 1+nk

k : k = 1, . . . , r }. We shall need to analyse
the root system and the combinatorial data to ascertain the value of αPG

.
Choose a subset of simple roots Π0 ⊆ Π. Let Φ0 be the sub-root system

that Π0 generates. Notice that in the expression for PG(X,Y ) we can realise
the monomial term X−λ(w)

∏
αj∈Π0

Xbj Y cj where w is a Weyl element such
that Π0 =

{
w−1αj

} ⊂ Φ−. For each choice of Π0, such elements w exist since
we can take w = w0 to be the unique element of W0, the Weyl group of Φ0,
that sends all positive roots Φ+

0 to negative roots Φ−
0 . To calculate the abscissa

of convergence αPG
we are going to be interested in choosing a w which is of

minimal length since

αPG
= max

{
1 − λ(w) +

∑
αj∈Π0

bj∑
αj∈Π0

cj
: Π0 ⊆ Π, w ∈ W s.t. w−1Π0 ⊂ Φ−

}

The following lemma tells us that for any choice of a subset of simple roots
Π0, w0 is the most efficient way to realise the corresponding monomial term:

Lemma 6.5. Let Π0 be a subset of the simple roots Π and let Φ0 be the
sub-root system of Φ generated by Π0. Then the length of the shortest element
w ∈ W with the property that w(Π0) ⊂ Φ− but w(Π \Π0) ⊂ Φ+ is card(Φ+

0 ) =
λ(w0).
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Proof. Let w0 be the element which maps Φ+
0 to Φ−

0 . Certainly then w0(Π0) ⊂
Φ−. The length of this element is card(Φ+

0 ) in terms of the natural generators
wα where α ∈ Π0. We can’t get any shorter than this using all generators
wα where α ∈ Π since the length is still the number of positive roots sent to
negative roots in Φ which is at least card(Φ+

0 ). But notice that we have now
shown that it is exactly that number hence Π \ Π0 must be sent to positive
roots since (Π \Π0)∩Φ0 = ∅. But now the length of any element sending Π0

to negative roots must be at least card(Φ+
0 ) since the length is the number

of positive roots in Φ+ sent to negative roots and if Π0 gets sent to negative
roots then so does Φ+

0 . This completes the proof of the lemma. ��
Lemma 6.6. αPG

= bl.

Proof. First note that αPG
≥ bl since we can take Π0 = {αl} and w0 = wl

the reflection in αl which is a word of length 1. Next note that card(Φ+
0 ) ≥

card(Π0). An analysis of the combinatorial data will confirm that bl − 1 =
(bl − 1)/cl = max{ bi − 1/ci : i = 1, . . . , l }. The easiest way to check this is to
note that for example in the case Cl we have (2l− i + 1)/2 =

∑l−1
j=l−i j. Then

we can use the fact that for any positive integers x1, . . . , xr, y1, . . . , yr we have
x1+...+xr

y1+...+yr
≤ max xi

yi
to deduce that for w ∈ W such that w−1Π0 ⊂ Φ−,

1 − λ(w) +
∑

αj∈Π0
bj∑

αj∈Π0
cj

≤
1 +
∑

αj∈Π0
(bj − 1)∑

αj∈Π0
cj

≤
⎛⎝ ∑

αj∈Π0

cj

⎞⎠−1

+ max{ bi − 1/ci : αi ∈ Π0 } .

Therefore αPG
≤ 1 + (bl − 1) = bl. This completes the lemma. ��

We now put βP = bl − 1 = max{ nk

k : k ∈ I } where I = { k : 1+nk

k = αP }.
The three examples Bl, Cl and Dl are perfect to illustrate the application
of Hypotheses 1 and 2 (p. 134) of the previous chapter. For Bl with l ≥ 2,
we will find that the two hypotheses are satisfied and that βP is a natural
boundary. For Cl with l ≥ 3, we will find that Hypothesis 2 actually fails,
but because P (X,Y ) has a factor of the form (1 + XβP Y ) and hence the first
candidate natural boundary can be passed. We then show that if P (X,Y ) =
(1 + XβP Y )P1(X,Y ) then P1(X,Y ) will give us a natural boundary. For Dl

with l ≥ 4, we will find that Hypothesis 1 fails. Again this is due to a factor
of the form (1 + XβP Y ). Once this is removed we find that both Hypotheses
1 and 2 are satisfied and βP is in fact a natural boundary.

6.2 G = GO2l+1 of Type Bl

Proposition 6.7. If G = GO2l+1 of type Bl and l ≥ 2, then PG(s) has a
natural boundary at βP = bl−1 = bl − 1 = l2 − 1.
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Proof. We make the change of variable U = XβP Y and V = X−1 so that
P (X,Y ) = F (U, V ). Then A(U) = F (0, U) = 1 + U . This follows because for
all Π0 ⊆ Π, w ∈ W such that w−1Π0 ⊂ Φ− except for the case Π0 = {αl}
and w0 = wl we have:

−λ(w) +
∑

αj∈Π0
bj∑

αj∈Π0
cj

< βP =
bl − 1

cl

We set ω = −1, the unique root of A(U). Clearly Hypothesis 1 is satisfied
since A(U) does not have a multiple root at ω.

To check Hypothesis 2 we need to determine

B1(U) =
∂

∂V
F (V,U)

∣∣∣∣
V =0

=
∑

βP k−i=1

ai,kUk .

We claim that for i = βP k − 1, ai,k �= 0 if and only if k = 1. For k = 1
we are required to show there is a monomial of the form Xbl−1−1Y . This
can be realised by taking Π0 = {αl−1} and w0 = wl−1 the reflection defined
by the root αl−1. For k > 1, for each choice of Π0 with k elements and a
corresponding w such that w−1Π0 ⊂ Φ−,

−λ(w) +
∑

αj∈Π0

bj ≤
∑

αj∈Π0

(bj − 1)

< (k − 1)(bl−1 − 1) + bl − 1 if Π0 �= {αl−1, αl}
≤ (k − 1)(βP − 1) + βP ≤ i

since the bi are a strictly increasing sequence. For Π0 = {αl−1, αl} we just
have to use the stronger inequality that if w−1Π0 ⊂ Φ− then λ(w) ≥ 3. Hence
we have shown that for each k > 1, there are no monomials of the form
XβP k−1Y k. Hence B1(U) = aβP −1,1U and

− B1(ω)
ωA′(ω)

= −aβP −1,1.

Since aβP −1,1 > 0, Hypothesis 2 is satisfied. Therefore we can apply Theo-
rem 5.13 to deduce that PG(s) has a natural boundary at βP = bl−1 = bl−1 =
l2 − 1. ��
Corollary 6.8. If G = GO2l+1 of type Bl and l ≥ 2 then ZG(s) has abscissa
of convergence at αG = bl +1 and a natural boundary at βP = bl−1 = bl −1 =
l2 − 1.

Proof. We just have to add that QG(s)−1 =
∏

QG(p, p−s)−1 is a meromorphic
function with abscissa of convergence at αG = bl + 1. ��
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6.3 G = GSp2l of Type Cl or G = GO+
2l of Type Dl

In these two examples, there is an initial problem with performing the analysis
of the previous example because (1 + XβP Y ) is a factor of PG(X,Y ). This
means that after the substitution U = XβP Y and V = X−1, P (X,Y ) =
F (U, V ) = (1 + U)F1(U, V ) and hence for all n

Bn(−1) =
1
n!

∂

∂V n
F (V,U)

∣∣∣∣
V =0,U=−1

= 0 .

Hence Hypothesis 2 is never satisfied. This is what we would expect since if
(1 + XβP Y ) is a factor then the potential natural boundary it might cause
at s = βP can be passed by multiplying by the meromorphic function

∏
(1 +

pβP p−s)−1. Note that in the case of G = GO+
2l of type Dl, even Hypothesis

1 fails since A(U) = F (0, U) = 1 + 2U + U2. In this case once the factor
(1 + XβP Y ) is removed the remaining term F1(U, V ) still has the property
that U = −1 is a zero of F1(U, 0). We will find that s = βP will now produce
a natural boundary. In the case G = GSp2l of type Cl we will have to move a
little further to the left to find our natural boundary.

The polynomial PG(X,Y ) actually has a number of other natural factors,
not only (1 + XβP Y ). This fact was announced in [16]. Its proof is technical
and has been consigned to Appendix B:

Theorem 6.9. If G = GSp2l of type Cl or G = GO+
2l of type Dl then

PG(X,Y ) has a factor of the form

(1 + Y )
r∏

i=1

(1 + Xbi/2Y ) ,

where r = l − 1 for G = GSp2l and r = l − 2 for G = GO+
2l.

Corollary 6.10. 1. If G = GSp2l then

PG(X,Y ) = (1 + Y )
l−1∏
i=1

(1 + Xbi/2Y )RG(X,Y ) ,

where RG(X,Y ) has ghost polynomial

R̃G(X,Y ) = (1 + XY )
l−2∏
i=1

(1 + Xbi/2+1Y ) .

2. If G = GO+
2l then

PG(X,Y ) = (1 + Y )
l−2∏
i=1

(1 + Xbi/2Y )RG(X,Y ) ,
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where RG(X,Y ) has ghost polynomial

R̃G(X,Y ) = (1 + Y )
l−2∏
i=1

(1 + Xbi/2Y ) .

In Appendix B we give a description of the polynomials RG(X,Y ) in terms
of the root system.

6.3.1 G = GSp2l of Type Cl

Let us recall the structure of the root system Cl and its corresponding Weyl
group. Let ei be the standard basis for the l-dimensional vector space Rl,
where we assume l ≥ 3.

C+
l = { 2ei, ei ± ej : 1 ≤ i < j ≤ l } with simple roots α1 = e1 − e2, . . . ,

αl−1 = el−1 − el, αl = 2el. W (Cl) is a semi-direct product of the symmetric
group on ei and the group (Z/2Z)l operating by ei �→ (±1)iei.

We shall write w = πwσw where πw is the permutation and σw is the sign
change.

Let wl be the element sending αl to −αl. The element wl is the sign change
ei �→ ei for i = 1, . . . , l − 1 and el �→ −el. Let Φk+1 be the sub-root system
generated by {αl−k, . . . , αl } and wΦk+1 be the element sending Φ+

k+1 to Φ−
k+1.

For G = GSp2l we prove in Appendix B that for k = 1, . . . , l,

PG(X,Y ) = (1 + Xbk−1/2Y )

⎛⎝ ∑
w∈W (k)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
= (1 + Xbk−1/2Y )Pk(X,Y ) ,

where

W (k) =
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have the same sign and (σw−1)k = 1

}
∪
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have opposite signs and (σw−1)k = −1

}
= W (k)+ ∪ W (k)− ,

where for each w ∈ W , w(k) denotes the permutation of eπw−1 (i) for
i = k, . . . , l which alters the order. Here it suffices to know the following:
for G = GSp2l,

PG(X,Y )

= (1 + Xbl−1/2Y )(1 + Xbl−2/2Y )P (X,Y )

= (1 + Xbl−1/2Y )(1 + Xbl−2/2Y )

×
⎛⎝ ∑

w∈W (l)∩W (l−1)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠ .
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The ghost of P (X,Y ) indicates that the first candidate natural boundary
is at β = bl−2/2 + 1. We see that Hypotheses 1 and 2 apply now to P (X,Y ).
We make our change of variable U = XβY and V = X−1 so that P (X,Y ) =
F (U, V ). The corresponding polynomial A(U) = 1 + U hence this satisfies
Hypothesis 1 for the unique root ω = −1.

To check Hypothesis 2 we need to determine

B1(U) =
∂

∂V
F (V,U)

∣∣∣∣
V =0

=
∑

βk−i=1

ai,kUk .

We claim that for i = βk−1, ai,k �= 0 if and only if k = 1. For k = 1, we are
required to show that there is a monomial of the form Xbl−2/2Y in P (X,Y ).
Now Xbl−2/2Y = Xbl−3Y . This can be realised by taking w = wlwl−1wl−2,
where wi is the reflection defined by the root αi. Now

w−1 : el �→ −el−2

: el−1 �→ el

: el−2 �→ el−1

We show that w ∈ W (l). Now (wlwl−1wl−2)
−1 (αl−1) = el + el−2 ∈ Φ+

and (wlwlwl−1wl−2)−1(αl−1) = el − el−2 ∈ Φ−. Since (σw−1)l = −1 this
implies that w ∈ W (l).

Next we need that w ∈ W (l − 1). We have that (wlwl−1wl−2)−1(αl−2) =
αl−1 ∈ Φ+. Now w(l − 1) is defined as the permutation which swaps el−2 =
eπw−1 (l) and el = eπw−1 (l−1) and wΦ2 sends el to −el and el−1 to −el−1.
Hence

w(l − 1)−1w−1w−1
Φ2

(αl−2) = el−1 + el−2 .

Since (σw−1)l−1 = 1 this implies that w ∈ W (l − 1).
Finally {αj : αj ∈ wlwl−1wl−2(Φ−) } = {αl} and λ(wlwl−1wl−2) = 3.
Consider any monomial term XrY 2j+ε where 2j + ε > 1 and ε = 0 or 1.

Then

r = −λ(w) +
∑

αi∈Π′
bi ,

where w is an element of W (l) such that w−1 sends Π ′ (a subset of the simple
roots of size j +ε) to negative roots. Now β = bl−2/2+1 = bl−1/2−1 = bl−2
and bi is strictly increasing for i ≤ l − 1. Suppose first that j ≥ 2 then since
λ(w) ≥ j + ε,

r = −λ(w) +
∑

αi∈Π′
bi

≤ (j − 1)bl−2 + bl−1 + εbl − λ(w)
≤ 2jβ + εbl − (ε + 1) − (j − 1)
< (2j + ε)β − 1 .
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Suppose that j = 1. Then (except if Π ′ = {αl−1 } or {αl−1, αl })

r = −λ(w) +
∑

αi∈Π′
bi

≤ bl−2 + εbl − λ(w)
≤ (2j + ε)β − 2 .

This finishes the cases except for Π ′ = {αl−1} or {αl−1, αl}.
If w ∈ W (l) ∩ W (l − 1) and Π ′ = {αl−1}, then we are required to show

that

1 < 2β − r

= (bl−1 − 2) − (bl−1 − λ(w)) ,

i.e. that λ(w) ≥ 4. In this case (σw−1)l = 1 and w−1(αl−1) ∈ Φ− hence
w−1w−1

l (αl−1)=w−1(el−1+el) ∈ Φ−. This in turn implies that (σw−1)l−1=−1
and πw−1(l − 1) < πw−1(l) So we have already found three positive roots
(el−1 + el, el−1 − el and 2el−1) that are sent to negative roots by w−1.
We just have to demonstrate a fourth such root to guarantee λ(w) ≥ 4.
Now since (σw−1)l−1 = −1 and w ∈ W (l − 1) we get that w−1(αl−2) and
(wΦ2ww(l−1))−1(αl−2) = w−1(ww(l−1)w−1wΦ2)(αl−2) have opposite signs.
So we just need to know that (ww(l − 1)w−1wΦ2)(αl−2) �= el−1 ± el but
is a positive root. Now (ww(l − 1)w−1wΦ2)(el−2) = el−2 whilst (ww(l − 1)
w−1wΦ2)(el−1) = −(σw)πw−1 (l)el which confirms both these facts. Hence we
have a fourth positive root (either αl−2 or (ww(l − 1)w−1wΦ2)(αl−2)) sent to
a negative root by w−1. This confirms that λ(w) ≥ 4.

We show that if w ∈ W (l) ∩ W (l − 1) then Π ′ �= {αl−1, αl}. Sup-
pose otherwise. In this case (σw−1)l = −1 and w−1(αl−1) ∈ Φ− hence
(1) (σw−1)l−1 = −1 and (2) w−1w−1

l (αl−1) = w−1(el−1 + el) ∈ Φ+ since
w ∈ W (l). But

w−1(el−1 + el) = −eπw−1 (l−1) − eπw−1 (l) ∈ Φ− .

Hence we have a contradiction.
This completes the analysis and confirms that B1(U) = aβ−1,1U where

aβ−1,1 ≥ 1 (in fact it is possible to show that aβ−1,1 = 1). Hence

− B1(−1)
(−1)A′(−1)

= −aβ−1,1

and so �
(
− Bγ(ω)

ωA′(ω)

)
< 0, confirming Hypothesis 2. Therefore we can apply

Theorem 5.13 to deduce that PG(s) has a natural boundary at βP = bl−2/2+
1 = l(l + 1)/2 − 2.

Corollary 6.11. If G = GSp2l of type Cl then ZG(s) has abscissa of conver-
gence at αG = bl+1 and a natural boundary at βP = bl−2/2+1 = l(l+1)/2−2.
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Proof. We just have to add that QG(s)−1 =
∏

QG(p, p−s)−1 is a meromorphic
function with abscissa of convergence at αG = bl + 1. ��

Note that had we not factored out (1+Xbl−2/2Y ) as well to define P (X,Y )
we would have got that B1(−1) = 0. In the next example we only have to
remove one factor.

6.3.2 G = GO+
2l of Type Dl

We turn now to proving that Hypotheses 1 and 2 hold for Dl if l ≥ 4. We recall
the structure of the root system in this case. D+

l = { ei ± ej : 1 ≤ i < j ≤ l }
with simple roots α1 = e1−e2, . . . , αl−1 = el−1−el, αl = el−1 +el. W (Dl) is
a semi-direct product of the symmetric group on ei and the group (Z/2Z)l−1

operating by ei �→ (±1)iei with
∏

i(±1)i = 1. Again we write an element of
w as πwσw.

In a similar fashion to the case of GSp2l we prove for GO+
2l in Appendix B

that k = 1, . . . , l − 1

PG(X,Y ) = (1 + Xbk−1/2Y )

⎛⎝ ∑
w∈W (k)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
= (1 + Xbk−1/2Y )Pk(X,Y ) ,

where

W (k) =
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have the same sign and (σw−1)k = 1

}
∪
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have opposite signs and (σw−1)k = −1

}
= W (k)+ ∪ W (k)− ,

where for each w ∈ W , w(k) denotes the permutation of eπw−1 (i) for i =
k, . . . , l which alters the order. In this case we only need to know that

PG(X,Y ) = (1 + Xbl−2/2Y )P (X,Y )

= (1 + Xbl−2/2Y )

⎛⎝ ∑
w∈W (l−1)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠ .

The ghost of P (X,Y ) indicates that the first candidate natural bound-
ary is at β = bl−2/2. We see that Hypotheses 1 and 2 apply now to
P (X,Y ). We make our change of variable U = XβY and V = X−1 so that
P (X,Y ) = F (U, V ). The corresponding polynomial A(U) = 1 + U hence this
satisfies Hypothesis 1 for the unique root ω = −1.
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To check Hypothesis 2 we need to determine

B1(U) =
∂

∂V
F (V,U)

∣∣∣∣
V =0

=
∑

βk−i=1

bi,kUk .

We claim that for i = βk − 1, ai,k �= 0 if and only if k = 1.
For k = 1, we are required to show that there is a monomial of the form

Xbl−2/2−1Y in P (X,Y ). If we rewrite Xbl−2/2−1Y = Xbl−2Y = Xbl−1−2Y we
see that we are looking for an element w ∈ W (l− 1) of length two with either
w−1(αl) or w−1(αl−1) ∈ Φ−. If we choose either w = wl−1wl−2 or w = wlwl−2

then we can satisfy these criterion.

Lemma 6.12. 1. If w = wl−1wl−2 then {αi ∈ Π : αi ∈ w(Φ−) } = {αl−1}
and w ∈ W (l − 1)+.

2. If w = wlwl−2 then {αi ∈ Π : αi ∈ w(Φ−) } = {αl} and w ∈ W (l − 1)−.

Proof. 1.

wl−2wl−1 : el−2 − el−1 �→ el−1 − el

: el−1 − el �→ el − el−2

: el−1 + el �→ el + el−2 .

This is enough to check that {αi ∈ Π : αi ∈ w(Φ−) } = {αl−1}. The
element w(l−1) is the permutation of el = eπw−1 (l−1) and el−2 = eπw−1 (l)

whilst the element wΦ2 maps el−1 to −el−1 and el to −el. Hence

w(l − 1)w−1wΦ2 : el−2 − el−1 �→ el−1 + el−2 ∈ Φ+ .

Since wl−2wl−1(el−2 − el−1) ∈ Φ+ and (σw−1)l−1 = 1 this confirms that
w ∈ W (l − 1)+.

2.

wl−2wl : el−2 − el−1 �→ el−1 + el

: el−1 − el �→ −el + el−2

: el−1 + el �→ −el − el−2 .

From this we can deduce {αi ∈ Π : αi ∈ w(Φ−) } = {αl}. The element
w(l − 1) is again the permutation of el = eπw−1 (l−1) and el−2 = eπw−1 (l).
Hence

w(l − 1)w−1wΦ2 : el−2 − el−1 �→ el−1 − el−2 ∈ Φ− .

Since wl−2wl(el−2 − el−1) ∈ Φ+ and (σw−1)l−1 = −1 this confirms that
w ∈ W (l − 1)−.
So aβ−1,1 ≥ 2 (and in fact it is possible to show that aβ−1,1 = 2).
Now we need to show that we don’t pick up any other terms.
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Suppose we have a monomial term XrY 2j+el−1+el corresponding to a
w ∈ W (l − 1) where el−1 (respectively, el) = 0 or 1 according to whether
αl−1 (respectively, αl) ∈ {αi ∈ Π : αi ∈ w(Φ−) } = Π ′ and Π ′ is a set of
size j + el−1 + el.
Firstly assume j > 1. Then using the fact that bi is a strictly increasing
sequence for i ≤ l − 2 and bl = bl−1 = bl−2/2 + 1 we can deduce

r = −λ(w) +
∑

αi∈Π′
bi

≤ (j − 1)bl−3 + bl−2 + el−1bl−1 + elbl − (j + el−1 + el)
< (2j + el−1 + el)β − j

< (2j + el−1 + el)β − 1 .

So we are left with the cases that Π ′ = {αl−2}, {αl−2, αl−1}, {αl−2, αl}
or {αl−2, αl−1, αl}. It suffices to show that λ(w) > |Π ′|. Recall that λ(w)
is the number of positive roots sent to negative roots by w. Hence it
suffices to show at least one positive root outside of Π ′ which gets sent to
a negative root.
In the case that Π ′ = {αl−2} we just have to demonstrate that λ(w) > 1.
Now there is a unique element w of length one with w−1(αl−2) ∈ Φ−,
namely the reflection wl−2 : el−2 − el−1 �→ el−1 − el−2. We need to show
that this element is not in W (l − 1). Now (σw−1

l−2
)l−1 = 1. So we just

need to demonstrate that wl−2(l − 1)w−1
l−2wΦ2(αl−2) ∈ Φ+. The element

wl−2(l − 1) is again the element swapping el−2 and el. Then wl−2(l −
1)w−1

l−2wΦ2(αl−2) = el−1 + el ∈ Φ+. Hence wl−2 /∈ W (l − 1) and any
element in W (l−1) with Π ′ = {αl−2} must have length greater than one.
Recall that λ(w) is the number of positive roots sent to negative roots
by w. Hence it suffices to show at least one positive root outside of Π ′

which gets sent to a negative root. In the case that Π ′ = {αl−2, αl−1},
{αl−2, αl} or {αl−2, αl−1, αl} then since el−2 − el−1 and el−1 + εel are
sent to negative roots (where ε = ±1 according to the choice of Π ′) then
el−2 + εel = (el−2 − el−1) + (el−1 + εel) is also sent to a negative root.
Hence λ(w) > |Π ′|. ��
This completes the analysis and confirms that B1(U) = aβ−1,1U where

aβ−1,1 ≥ 1 (in fact it is possible to show that aβ−1,1 = 2). Hence

− B1(−1)
(−1)A′(−1)

= −aβ−1,1

and so �
(
− Bγ(ω)

ωA′(ω)

)
< 0, confirming Hypothesis 2. Therefore we can apply

Theorem 5.13 to deduce that PG(s) has a natural boundary at βP = bl−2/2 =
l(l − 1)/2 − 1.

Corollary 6.13. If G = GO+
2l of type Dl then ZG(s) has abscissa of conver-

gence at αG = bl + 1 and a natural boundary at βP = bl−2/2 = l(l− 1)/2− 1.
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Natural Boundaries III: Nilpotent Groups

7.1 Introduction

In the previous chapter, we found that Hypotheses 1 and 2 always held and
the natural boundary for the zeta function of each algebraic group was an
integer. Hence Corollary 5.9 ensured the existence natural boundary with no
need to assume the Riemann Hypothesis. In this chapter, we consider the
zeta functions of nilpotent groups and Lie rings listed in Chap. 2. We are not
so lucky this time, since the candidate natural boundary is frequently non-
integral, and in many cases the existence of the natural boundary requires us
to assume the Riemann Hypothesis. We find that Hypotheses 1 and 2 continue
to hold for all calculated examples, although there seems to be no good reason
why these hypotheses should hold in general.

To simplify matters, we shall only consider those zeta functions for which
the p-local factors are given by the same bivariate rational function for all
primes p. To minimise repetition, we shall also only consider one of each pair
of isospectral Lie rings.

A related topic to natural boundaries is that of the ‘ghost’ zeta functions.
We additionally list whether the ghost of each zeta function is friendly or not.

7.2 Zeta Functions with Meromorphic Continuation

Below, we take the chance to list those zeta functions calculated in Chap. 2
which do not have a natural boundary, i.e. those with meromorphic continua-
tion. Their ‘ghosts’ are equal to themselves, and hence automatically friendly.
They will be of no further interest to us in this chapter.

Theorem 7.1. For r ∈ N, m ∈ N>0, the following zeta functions all have
meromorphic continuation to C:

• Counting ideals in the following Lie rings:
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Zr, H, H2, U3(R2), G3 × Zr, G(m, r), g6,4, M3 × Zr, g5,3 × Zr,
H× g5,3, g6,12, g6,14(±1), g6,16, g17, g27A, g27B, g147A, g147B, g157,

g1357A.

• Counting all subrings in the Lie rings Zr, H and G(1, r).

7.3 Zeta Functions with Natural Boundaries

In this section we describe the local zeta functions from Chap. 2 for which we
are able to prove the existence of the natural boundary, with, if necessary, an
assumption of the Riemann Hypothesis.

The polynomials given in Chap. 2 are mostly irreducible. However, there
are a small number which can be given more succinctly in reducible form, since
an irreducible polynomial factor has more terms than the reducible polyno-
mial given. In Table 7.1, we list all such reducible numerator polynomials,
along with the cyclotomic factors that must be divided out. It is essential to
ensure that these cyclotomic factors are removed prior to the calculation of
the natural boundary.

The calculations required to determine the natural boundary and verify
Hypothesis 1 and Hypothesis 2 are fairly similar for each case. We do not

Table 7.1. Factors of numerator polynomials of zeta functions

Ring Counting Page Type Factor(s)

H2 all subrings 35 III 1 − X2Y
G(2, 0) all subrings 43 II 1 − X2Y
G(2, 3) all subrings 43 III 1 − X2Y
G(2, 5) all subrings 43 III 1 − X3Y
G(2, 6) all subrings 43 III 1 − X3Y
G3 × Z2 all subrings 44 II 1 − X2Y
M3 all subrings 46 III 1 − X4Y 3

M3 × Z all subrings 46 II 1 − X4Y 2

M3 × Z4 all subrings 46 II 1 − X3Y
H× M3 ideals 47 I 1 − XY
H2 × M3 ideals – I 1 − X3Y 2

L(3,3) ideals 49 III 1 + XY , 1 + X2Y 2

L(3,2) ideals 49 III 1 − XY
F3,2 × Z ideals 52 II 1 − XY
M4 ideals 52 III 1 − X3Y 6

M4 × Z ideals 53 III 1 − X4Y 6

g6,8 ideals 57 II 1 + XY
g6,9 ideals 58 I 1 + XY
g257K ideals 66 II 1 − XY
g1457A ideals 186 III 1 − X2Y 3, 1 − X5Y 8
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wish to keep repeating ourselves, so instead we shall tabulate relevant data
for each example.

7.3.1 Type I

The numerator polynomials of the local zeta functions of the Lie rings in
Tables 7.2 and 7.3, after dividing out cyclotomic factors if necessary, are all
of Type I. For each zeta function we give the candidate natural boundary β,
the squarefree polynomial A(U) and a root ω of A with |ω| < 1. Each root
given is an approximation unless it is clear otherwise. We have chosen real
roots whenever possible.

For clarity, the longer polynomials were omitted from Table 7.2. They are
as follows:

AH×M3(U) = 1 + U + U2 + U3 + U4 + 2U5 + 2U6 + 2U7 + 2U8,

Ag6,7(U) = 1 + U3 − U9 − U10 + U16,

Ag6,9(U) = 1 − U + U2 + U6 + U9 + U11 + U13 − U14 + U15,

Ag1357G(U) = Ag6,7(U).

The ghost of each of these zeta functions is unfriendly by virtue of the fact
that the polynomial A(U) is the first factor of the ghost, and Type I implies
that A(U) is not cyclotomic.

7.3.2 Type II

The numerator polynomials of the local zeta functions of the Lie rings in
Tables 7.4 and 7.5 are all of Type II. For each zeta function we give the

Table 7.2. Natural boundary data for polynomials of Type I, counting ideals

Ring Page β A(U) ω

H3 35 13/8 1 − 2U8 2−1/8

H4 179 26/11 1 − 3U11 3−1/11

H× M3 47 1 AH×M3(U) 0.67516 + 0.54041i

H2 × M3 – 17/10 1 + 2U20 2−1/20eπi/20

G3 × g5,3 182 2 1 + U3 − U10 −0.88712
g6,7 57 1 Ag6,7(U) 0.26431 + 0.85097i
g6,9 58 1 Ag6,9(U) 0.97827
g1357G 184 1 Ag1357G(U) 0.26431 + 0.85097i

Table 7.3. Natural boundary data for polynomials of Type I, counting all subrings

Ring Page β A(U) ω

G4 39 3 1 + U2 + U3 0.23279 + 0.79255i
G(2, 4) 43 3 1 + U3 − U4 −0.81917
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candidate natural boundary �(s) = β, the squarefree polynomial A(U), a
root ω of A, the constant γ and polynomial Bγ(U) satisfying

�
(
− Bγ(ω)

ωA′(ω)

)
< 0 .

Within Type II, ω will always be root of unity, so it can be given exactly. We
have chosen roots ±1 wherever possible.

As with Type I, there are some polynomials which are too long to fit in
Tables 7.4 and 7.5. We list them below:

AF3,2×Z(U) = (1 − U11)/(1 − U) ,

BF3,2×Z,1(U) = U4 + U5 + U6 − U9 − U10 − U11 ,

Ag6,8(U) = (1 + U7)/(1 + U) ,

Bg6,8,1(U) = U4 − 2U7 − U11 ,

AG(2,0)(U) = 1 + U + U2 + U3 ,

Table 7.4. Natural boundary data for polynomials of Type II, counting ideals

Ring p. β A(U) ω γ Bγ(U)

F3,2 × Z 52 1 AF3,2×Z(U) e8πi/11 1 BF3,2×Z,1(U)

g6,8 57 1 Ag6,8(U) e5πi/7 1 Bg6,8,1(U)

g6,13 60 1 1 + U3 eπi/3 3 −U12

g137C 64 9/8 1 − U8 −1 19 U19

g257K 66 1 Ag257K(U) e2πi/13 1 Bg257K,1(U)

Table 7.5. Natural boundary data for polynomials of Type II, counting all subrings

Ring p. β A(U) ω γ Bγ(U)

G3 38 2 1 + U2 i 2 U2 − U3

G(2, 0) 43 2 AG(2,0)(U) −1 1 U3

G(2, 1) 43 9/4 1 − U4 −1 3 U3

G(2, 2) 43 5/2 1 − U4 −1 2 U3

G(2, r)a 43 (r + 5)/3 1 + U3 −1 r − 4 −U4

G3 × Z 44 5/2 1 + U2 i 2 U2

G3 × Z2 44 3 1 + U2 i 2 U + U2 + U3

G3 × Zrb 44 (r + 4)/2 1 + U2 i 2 U2

M3 × Z 46 2 1 − U + U2 eπi/3 1 U2 − U3 − U5

M3 × Z4 46 7/2 1 + U2 + U4 eπi/3 2 2U2 + U4

M3 × Zrc 46 (r + 3)/2 1 + U2 + U4 eπi/3 2 U2 − U6

g5,3 55 2 1 + U4 eπi/4 4 Bg5,3,4(U)

a r ≥ 7
b r ≥ 3
c r ≥ 2, r �= 4
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Ag257K(U) = (1 − U13)/(1 − U) ,

Bg257K,1(U) = −U5(1 + U6)((1 + U)(1 + U2)(1 + 2U4) + U8) ,

Bg5,3,4(U) = U2 + U3 + U4 + U5 − U8 − U10 .

The value of j is the minimal nonzero exponent of U in the polynomial A(U).
In all but two cases it can be seen that γ ≥ j, and hence Corollary 5.15
implies that the polynomial is Type II. The two exceptional cases are G(2, 1)
and G(2, 2). We have that, for any N ∈ N,

W≤
G(2,1)(X,Y ) = (1 − X9Y 4)

N−1∏
k=0

(1 + X6+9kY 3+4k) + X6+9NY 3+4N

+ O(9/4) ,

W≤
G(2,2)(X,Y ) = (1 − X10Y 4)

N−1∏
k=0

(1 + X7+10kY 3+4k) + X7+10NY 3+4N

+ O(5/2) ,

where XnY m ∈ O(β) if (n+1)/m ≤ β. Since (12+1)/6 ≤ 9/4 and (14+1)/6 ≤
5/2, both expansions only have the one term with cn,m > 0 and (n+1)/m > β.
These are Type II by virtue of the fact that, although there exist infinitely
many cn,m �= 0 with (n + 1)/m > β, only one such cn,m is positive.

The ghosts of ζ�
g6,8

(s), ζ≤G(2,7)(s) and ζ≤M3×Zr (s) for r = 2, 3 are unfriendly,
with all other zeta functions listed in Tables 7.4 and 7.5 having friendly ghosts.

7.3.3 Type III

The numerator polynomials of the local zeta functions of the Lie rings in
Tables 7.6 and 7.7 are all of Type III. For each zeta function we give the
candidate natural boundary β, the squarefree polynomial A(U), γ and Bγ(U),
and a root ω satisfying Hypothesis 2. Again, ω will always be a root of unity,
so we give it exactly and choose ±1 wherever possible.

In all but two cases, Lemma 5.12 applies, allowing us to easily confirm
Hypothesis 2. The exceptions are ζ≤F2,3

(s) and ζ�
g37D

(s). In both cases we have

�
(
− Bγ(ω)

ωA′(ω)

)
= 0

for all roots ω of A(U), so we must compute a further term of the power series
expansion of U in terms of V near a root ω. For ζ≤F2,3

(s), we have

U = i + 1
2V − 17i

8
V 2 + Ω1(V )
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Table 7.6. Natural boundary data for polynomials of Type III, counting ideals

Ring p. β A(U) ω γ Bγ(U)

G4 39 9/5 1 + U5 −1 2 U3

G5 39 13/5 1 + U5 −1 4 U3

F2,3 41 7/5 1 + U5 −1 1 U3

T4 45 8/5 1 + U5 eπi/5 4 U3 − U8

M3 × M3 – 10/9 1 + U9 e7πi/9 4 U4 − 2U13 + U22

M3 ×Z M3 48 14/17 1 + U17 eπi/17 2 −U5

L(3,3) 49 9/7 1 + U7 −1 3 U5

L(3,2) 49 7/6 1 − U12 −1 2 U + U7 − U13

H× L(3,2) – 11/6 1 − U12 1 4 −U16

L(3,2,2) 181 13/7 1 − U14 −1 2 U5 − U12

F3,2 51 8/11 1 − U11 1 6 −U9

M4 52 8/13 1 − U13 e2πi/13 1 U5

Fil4 54 8/13 1 − U13 e2πi/13 1 U5

M4 × Z 53 11/13 1 − U13 e2πi/13 3 U5

Fil4 × Z 54 11/13 1 − U13 e2πi/13 3 U5

g6,6 56 7/6 1 − U12 −1 6 U3

H× g6,12 59 5/4 1 + U16 eπi/16 4 −U5

g6,15 61 4/5 1 + U5 eπi/5 1 −U9

g37D 63 3/2 1 + U6 i 3 U3

g247B – 7/6 1 − U12 −1 2 2U + U7 − 2U13

g257A 65 4/3 1 + U3 −1 1 −U10

g257B 66 13/10 1 − U10 1 3 −U11

g1357B 67 5/6 1 − U12 1 2 −U11

g1457A 186 14/15 1 − U15 1 10 −U5

g1457B 187 14/15 1 − U15 1 10 −U5

Table 7.7. Natural boundary data for polynomials of Type III, counting all subrings

Ring p. β A(U) ω γ Bγ(U)

H2 35 7/3 1 − U3 + U6 e5πi/9 1 U − 2U4 + U7

G5 39 13/3 1 + U3 eπi/3 1 U4

F2,3 41 5/2 1 + U2 i 1 U5

G(2, 3) 43 11/4 1 − U4 −1 1 U3

G(2, 5) 43 10/3 1 + U3 −1 1 U
G(2, 6) 43 11/3 1 + U3 −1 2 U3

g6,4 180 13/5 1 − U5 e4πi/5 2 U4

T4 180 20/7 1 + U7 −1 1 −2U6

M3 46 3/2 1 + U2 + U4 eπi/3 1 U3 − U5

L(3,2) 50 17/7 1 − U7 e2πi/7 2 U3

F3,2 51 15/8 1 − U8 1 1 −U7

M4 53 13/7 1 − U7 1 1 −U6

g6,12 183 7/3 1 − U9 e4πi/3 3 U + U4 − U10
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and for ζ�
g37D

(s), we have

U = i + 1
6V − 13i

72
V 2 + Ω2(V ) ,

where Ω1(V ) and Ω2(V ) are power series in V 3 and higher. In both cases
|U | < 1 for sufficiently small V , so Hypothesis 2 is satisfied.

For the majority of zeta functions in Tables 7.6 and 7.7, Corollaries 5.17
and 5.18 can be used to deduce that the numerator polynomials are of Type
III. In Tables 7.8 and 7.9, we list the values of ε1, ε�, n� and m� required by
these corollaries. Corollary 5.18 applies if ε1 = −1 and ε� = 1, and Corol-
lary 5.17 applies otherwise.

Two further cases can be dealt with by multiplying the numerator poly-
nomial by a factor of the form (1 ± XnY m).

Proposition 7.2. Let P (X,Y ) = W≤
H2(X,Y )/(1 − X2Y ). Then P (X,Y ) is

irreducible and is of Type III.

Proof. We cannot apply Corollary 5.17 since d = 3. However, we can apply
Corollary 5.17 to Q(X,Y ) := P (X,Y )(1+X7Y 3) with ε1 = 1, ε� = −1, n� = 9,

Table 7.8. Data for Corollaries 5.17 and 5.18, counting ideals

Ring ε1 ε� n� m� Ring ε1 ε� n� m�

G4 1 1 5 3 M4 × Z −1 1 4 5
G5 1 1 7 3 Fil4 × Z −1 1 4 5
F2,3 1 1 4 3 g6,6 −1 −1 11 10
M3 × M3 1 1 5 5 H× g6,12 1 −1 6 5
M3 ×Z M3 1 −1 4 5 g6,15 1 −1 7 9
L(3,3) 1 1 6 5 g37D 1 1 4 3
L(3,2) 1 1 6 5 g247B −1 1 8 7
H× L(3,2) −1 −1 29 16 g257A −1 −1 13 10
L(3,2,2) −1 −1 22 12 g257B −1 −1 14 11
F3,2 −1 −1 6 9 g1357B −1 −1 9 11
M4 −1 1 3 5 g1457A −1 −1 4 5
Fil4 −1 1 3 5 g1457B −1 −1 4 5

Table 7.9. Data for Corollaries 5.17 and 5.18, counting all subrings

Ring ε1 ε� n� m� Ring ε1 ε� n� m�

G5 1 1 17 4 T4 1 −1 17 6
F2,3 1 −1 12 5 L(3,2) −1 1 8 7
G(2, 3) −1 1 8 3 F3,2 −1 −1 13 7
G(2, 5) 1 1 3 1 M4 −1 −1 11 6
G(2, 6) 1 1 3 1 g6,12 −1 1 9 4
g6,4 −1 −1 15 6
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m� = 4. The cyclotomic expansion Q(X,Y ) has the factor (1 + X21Y 9), so it
is legitimate to divide by (1+X7Y 3). Thus P (X,Y ) = (1+X7Y 3)−1Q(X,Y )
is of Type III. ��
Remark 7.3. If one tries to compute the cyclotomic expansions of P (X,Y ) and
Q(X,Y ) directly using the method outlined in Lemma 5.5, the only difference
is that P (X,Y ) will feature factors (1−X7Y 3), (1+X14Y 6), (1+X28Y 12),. . . ,
(1 + X7×2k

Y 3×2k

), . . . . These factors comprise the geometric expansion of
(1 + X7Y 3)−1, and so by premultiplying by (1 + X7Y 3)−1, we can avoid its
expansion cluttering up the calculation.

Proposition 7.4. Let P (X,Y ) = W≤
M3

(X,Y )/(1 −X4Y 3). Then P (X,Y ) is
of Type III.

Proof. Corollary 5.17 applies to P (X,Y )(1 − X3Y 2) with ε1 = ε� = −1,
n� = 7, m� = 5. ��

The last case is one where we must compute the cyclotomic expansion
explicitly.

Proposition 7.5. W�
T4

(X,Y ) is of Type III.

Proof. The congruence (5.16) has no unique solutions, so we cannot apply
Corollary 5.17. However, it can easily be shown that, for any N ∈ N,

W�
T4

(X,Y )

= (1 + X4Y 3)(1 + X8Y 5)(1 − X9Y 6)
N−1∏
k=0

(1 − (−1)kX12+8kY 8+5k)2

− (−1)N2X12+8NY 8+5N + O(8/5) ,

where XnY m ∈ O(8/5) if (n + 1)/m ≤ 8/5. ��
Remark 7.6. Note that

W�
T4

(X,Y ) = 1 + X4Y 3 + X8Y 5 − X9Y 6 − X12Y 8 − X17Y 11 + O(8/5) .

(7.1)

Consider instead a polynomial of the form

W (X,Y ) = 1 + X4Y 3 + X8Y 5 − X9Y 6 + X12Y 8 − X17Y 11 + O(8/5) ,

which has been obtained from (7.1) by doing nothing more than changing the
sign of the term −X12Y 8. This polynomial also fails the congruence condition,
and hence Corollary 5.17 cannot be applied to this polynomial for exactly the
same reason as with W�

T4
(X,Y ). However, in this case,

W (X,Y ) = (1 + X8Y 5)(1 + X4Y 3 − X9Y 6) + O(8/5) ,

and, provided 1 + X8Y 5 is not a factor of W (X,Y ), W (X,Y ) is of Type II.
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Finally we note that ζ�
L (s) has an unfriendly ghost if L is one of M3×M3,

L(3,3), g8, F3,2, g6,6 or g247B, and ζ≤L (s) has an unfriendly ghost if L is M3,
F3,2, M4 or g6,12. All other zeta functions listed in Tables 7.6 and 7.7 have
friendly ghosts.

7.4 Other Types

7.4.1 Types IIIa and IIIb

In Sect. 5.3 we introduced two subcases of Type III where it is possible to
remove the dependence on the Riemann Hypothesis. The following zeta func-
tions are of Type IIIa:

• Counting ideals in F2,3, M3 ×Z M3, L(3,2), L(3,2,2), M4, Fil4, M4 × Z,
Fil4 × Z, H× g6,12, g6,15, g1357B, g1357C and g257B

• Counting all subrings in T4, G(2, 3), L(3,2), F3,2, M4 and g5,3 × Z

However, none of the examples calculated in Chap. 2 is of Type IIIb.

7.4.2 Types IV, V and VI

Types I, II and III account for all the calculated examples of zeta functions
in Chap. 2. There are no examples of Types IV, V nor VI arising from zeta
functions of Lie rings.

The zeta functions in the following lists are of Type III-IV but not Type
IIIa nor Type IIIb. Hence their natural boundaries are as prescribed if one
assumes rational independence of Riemann zeros instead of the Riemann
Hypothesis:

• Counting ideals in G4, M3 × M3, L(3,3), H× L(3,2), L(3,2,2) and g257A

• Counting all subrings in G5, G(2, 5), g6,4 and g6,12



A

Large Polynomials

In this appendix, we quarantine off some of the larger polynomials which
would otherwise disrupt the flow of the text of Chaps. 2 and 3.

A.1 H4, Counting Ideals

The following polynomial is W�
H4(X,Y ), mentioned on p. 36:

1 − 6X8Y 5 + 5X9Y 5 + 4X8Y 7 − 8X9Y 7 + 3X10Y 7 + 4X16Y 8 − 8X17Y 8

+ 3X18Y 8 − X8Y 9 + 3X9Y 9 − 3X10Y 9 − X16Y 10 + 5X17Y 10 − 6X18Y 10

+ X19Y 10 − X24Y 11 + 3X25Y 11 − 3X26Y 11 + 8X17Y 12 − 10X18Y 12

+ 3X19Y 12 + 8X25Y 13 − 10X26Y 13 + 3X27Y 13 − 5X17Y 14 + 15X18Y 14

− 9X19Y 14 − 19X25Y 15 + 43X26Y 15 − 24X27Y 15 + 2X28Y 15 − 3X18Y 16

+ 5X19Y 16 − X20Y 16 − 5X33Y 16 + 15X34Y 16 − 9X35Y 16 + 8X25Y 17

− 30X26Y 17 + 32X27Y 17 − 7X28Y 17 − X29Y 17 + 8X33Y 18 − 30X34Y 18

+ 32X35Y 18 − 7X36Y 18 − X37Y 18 + 3X26Y 19 − 9X27Y 19 + 7X28Y 19

− 3X42Y 19 + 5X43Y 19 − X44Y 19 − 3X33Y 20 + 8X34Y 20 − 17X35Y 20

+ 15X36Y 20 − 3X37Y 20 − 3X27Y 21 + X28Y 21 + X29Y 21 + 3X42Y 21

− 9X43Y 21 + 7X44Y 21 + 4X34Y 22 − 12X35Y 22 − 2X36Y 22 + 13X37Y 22

− 5X38Y 22 + 4X42Y 23 − 12X43Y 23 − 2X44Y 23 + 13X45Y 23 − 5X46Y 23

+ 9X35Y 24 − 10X36Y 24 − 10X37Y 24 + 9X38Y 24 − 3X51Y 24 + X52Y 24

+ X53Y 24 − 3X42Y 25 + 18X43Y 25 − 16X44Y 25 − 16X45Y 25 + 18X46Y 25

− 3X47Y 25 + X36Y 26 + X37Y 26 − 3X38Y 26 + 9X51Y 26 − 10X52Y 26

− 10X53Y 26 + 9X54Y 26 − 5X43Y 27 + 13X44Y 27 − 2X45Y 27 − 12X46Y 27

+ 4X47Y 27 − 5X51Y 28 + 13X52Y 28 − 2X53Y 28 − 12X54Y 28 + 4X55Y 28
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+ 7X45Y 29 − 9X46Y 29 + 3X47Y 29 + X60Y 29 + X61Y 29 − 3X62Y 29

− 3X52Y 30 + 15X53Y 30 − 17X54Y 30 + 8X55Y 30 − 3X56Y 30 − X45Y 31

+ 5X46Y 31 − 3X47Y 31 + 7X61Y 31 − 9X62Y 31 + 3X63Y 31 − X52Y 32

− 7X53Y 32 + 32X54Y 32 − 30X55Y 32 + 8X56Y 32 − X60Y 33 − 7X61Y 33

+ 32X62Y 33 − 30X63Y 33 + 8X64Y 33 − 9X54Y 34 + 15X55Y 34 − 5X56Y 34

− X69Y 34 + 5X70Y 34 − 3X71Y 34 + 2X61Y 35 − 24X62Y 35 + 43X63Y 35

− 19X64Y 35 − 9X70Y 36 + 15X71Y 36 − 5X72Y 36 + 3X62Y 37 − 10X63Y 37

+ 8X64Y 37 + 3X70Y 38 − 10X71Y 38 + 8X72Y 38 − 3X63Y 39 + 3X64Y 39

− X65Y 39 + X70Y 40 − 6X71Y 40 + 5X72Y 40 − X73Y 40 − 3X79Y 41

+ 3X80Y 41 − X81Y 41 + 3X71Y 42 − 8X72Y 42 + 4X73Y 42 + 3X79Y 43

− 8X80Y 43 + 4X81Y 43 + 5X80Y 45 − 6X81Y 45 + X89Y 50.

A.2 g6,4, Counting All Subrings

The following polynomial is W≤
g6,4(X,Y ), mentioned on p. 44:

1 + X4Y 2 − X5Y 3 + X6Y 3 − X6Y 4 − X7Y 4 − X9Y 4 + X10Y 4 − X9Y 5

− 2X10Y 5 − 3X11Y 5 − 2X12Y 5 − X13Y 5 + X10Y 6 + X11Y 6 + 2X12Y 6

+ X13Y 6 + X14Y 6 − X15Y 6 − X13Y 7 − X14Y 7 − 2X15Y 7 − X16Y 7

− X17Y 7 + X14Y 8 + 2X15Y 8 + 3X16Y 8 + 3X17Y 8 + X18Y 8 − X19Y 8

+ X20Y 8 − X17Y 9 + X18Y 9 + 2X19Y 9 + 2X20Y 9 + 2X21Y 9 + X22Y 9

+ X22Y 10 + X23Y 10 + X24Y 10 − X21Y 11 − X22Y 11 + X26Y 11

+ X27Y 11 − X24Y 12 − X25Y 12 − X26Y 12 − X26Y 13 − 2X27Y 13

− 2X28Y 13 − 2X29Y 13 − X30Y 13 + X31Y 13 − X28Y 14 + X29Y 14

− X30Y 14 − 3X31Y 14 − 3X32Y 14 − 2X33Y 14 − X34Y 14 + X31Y 15

+ X32Y 15 + 2X33Y 15 + X34Y 15 + X35Y 15 + X33Y 16 − X34Y 16

− X35Y 16 − 2X36Y 16 − X37Y 16 − X38Y 16 + X35Y 17 + 2X36Y 17

+ 3X37Y 17 + 2X38Y 17 + X39Y 17 − X38Y 18 + X39Y 18 + X41Y 18

+ X42Y 18 − X42Y 19 + X43Y 19 − X44Y 20 − X48Y 22.

A.3 T4, Counting All Subrings

The following polynomial is W≤
T4

(X,Y ), mentioned on p. 45:

1 + X4Y 2 + X5Y 2 − 2X5Y 3 − 3X6Y 3 + X6Y 4 − X8Y 4 − 2X9Y 4 − 2X10Y 4
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+ X11Y 5 − 2X12Y 5 − 4X13Y 5 − X14Y 5 + X11Y 6 + X12Y 6 + 4X13Y 6

+ 2X14Y 6 + 2X15Y 6 − 2X16Y 6 − 2X17Y 6 + X14Y 7 + 3X15Y 7 + 2X16Y 7

+ 4X17Y 7 + 2X18Y 7 − X19Y 7 + X20Y 7 − X15Y 8 + 3X18Y 8 + 6X19Y 8

+ 4X20Y 8 + 3X21Y 8 − X18Y 9 − 4X19Y 9 − 4X20Y 9 − 2X21Y 9 + 5X22Y 9

+ 2X23Y 9 + 4X24Y 9 + 2X25Y 9 − X20Y 10 − 3X22Y 10 − 8X23Y 10

− 3X24Y 10 − X25Y 10 + 2X26Y 10 + 2X27Y 10 + 2X23Y 11 − 2X24Y 11

− 4X25Y 11 − 8X26Y 11 − 11X27Y 11 − 4X28Y 11 + X29Y 11 + 3X30Y 11

+ X25Y 12 + 4X26Y 12 + 3X27Y 12 + 2X28Y 12 − 6X29Y 12 − 11X30Y 12

− 6X31Y 12 − 4X32Y 12 + X33Y 12 + 2X29Y 13 + 6X30Y 13 + 5X31Y 13

− 5X33Y 13 − 6X34Y 13 − 2X35Y 13 − X31Y 14 + 4X32Y 14 + 6X33Y 14

+ 11X34Y 14 + 6X35Y 14 − 2X36Y 14 − 3X37Y 14 − 4X38Y 14 − X39Y 14

− 3X34Y 15 − X35Y 15 + 4X36Y 15 + 11X37Y 15 + 8X38Y 15 + 4X39Y 15

+ 2X40Y 15 − 2X41Y 15 − 2X37Y 16 − 2X38Y 16 + X39Y 16 + 3X40Y 16

+ 8X41Y 16 + 3X42Y 16 + X44Y 16 − 2X39Y 17 − 4X40Y 17 − 2X41Y 17

− 5X42Y 17 + 2X43Y 17 + 4X44Y 17 + 4X45Y 17 + X46Y 17 − 3X43Y 18

− 4X44Y 18 − 6X45Y 18 − 3X46Y 18 + X49Y 18 − X44Y 19 + X45Y 19

− 2X46Y 19 − 4X47Y 19 − 2X48Y 19 − 3X49Y 19 − X50Y 19 + 2X47Y 20

+ 2X48Y 20 − 2X49Y 20 − 2X50Y 20 − 4X51Y 20 − X52Y 20 − X53Y 20

+ X50Y 21 + 4X51Y 21 + 2X52Y 21 − X53Y 21 + 2X54Y 22 + 2X55Y 22

+ X56Y 22 − X58Y 22 + 3X58Y 23 + 2X59Y 23 − X59Y 24 − X60Y 24 − X64Y 26.

A.4 L(3,2,2), Counting Ideals

The following polynomial is W�
L(3,2,2)

(X,Y ), mentioned on p. 50:

1 − X3Y 2 + X4Y 3 + X5Y 3 + X6Y 4 − X6Y 5 − X7Y 5 + X9Y 5 − X10Y 7

− X11Y 8 − X12Y 8 + X13Y 8 − X12Y 9 + X13Y 9 − 2X14Y 9 − X15Y 9

+ X14Y 10 − X16Y 10 − X17Y 10 + X15Y 11 − 2X16Y 11 − X18Y 11 + X20Y 11

+ X16Y 12 + X18Y 12 − X19Y 12 + X20Y 12 − X21Y 12 − X22Y 12 + X19Y 13

− X20Y 13 − 2X22Y 13 − X23Y 13 + 3X22Y 14 − 2X23Y 14 + X24Y 14

− X26Y 14 + X22Y 15 + X23Y 15 + X25Y 15 + X23Y 16 + X24Y 16 − 2X25Y 16

+ 2X26Y 16 − X27Y 16 − X25Y 17 + 2X26Y 17 + X27Y 17 − X28Y 17 − X30Y 17

− X26Y 18 + X27Y 18 + 2X28Y 18 + 2X29Y 18 − X30Y 18 + X31Y 18 − X29Y 19

+ 2X30Y 19 + X33Y 19 − X30Y 20 + X31Y 20 − X32Y 20 + 3X33Y 20 + X35Y 20
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− 2X33Y 21 + 2X34Y 21 − X37Y 21 − X34Y 22 + 3X35Y 22 − 2X36Y 22

+ 3X37Y 22 + X39Y 22 − X34Y 23 − X35Y 23 − X37Y 23 + X38Y 23 + 3X40Y 23

− X41Y 23 − X38Y 24 + X39Y 24 − X40Y 24 + X41Y 24 − X42Y 24 − X38Y 25

− 2X39Y 25 − X40Y 25 − X41Y 25 + 2X42Y 25 − 2X43Y 25 + 2X44Y 25

+ X42Y 26 − X43Y 26 + 2X45Y 26 − 3X44Y 27 − 2X45Y 27 + 2X46Y 27

+ X48Y 27 − X45Y 28 − 2X47Y 28 − X48Y 28 + X49Y 28 + X44Y 29 − X45Y 29

− X46Y 29 − X49Y 29 − X50Y 29 − X49Y 30 + X50Y 30 − X51Y 30 − X52Y 30

+ X53Y 30 + X48Y 31 − X50Y 31 − 2X51Y 31 − 2X52Y 31 + 2X53Y 31

− X54Y 31 + 2X51Y 32 − X53Y 32 − X55Y 32 − X56Y 32 + X52Y 33 − 3X56Y 33

− X54Y 34 + 2X55Y 34 + 2X56Y 34 + X56Y 35 − X58Y 35 − X60Y 35 + X57Y 36

+ X60Y 36 − X63Y 36 + X61Y 37 + X62Y 37 + X62Y 38 + X63Y 38 + X64Y 38

− X65Y 38 + X66Y 38 − X65Y 40 + X66Y 40 + X67Y 40 + X68Y 40 − X69Y 40

+ X69Y 41 − X69Y 42 + X72Y 42 + X71Y 43 − X72Y 43 − X73Y 45 − X74Y 45

+ X75Y 45 − X78Y 47.

A.5 G3 × g5,3, Counting Ideals

The following polynomial is W�
G3×g5,3

(X,Y ), mentioned on p. 56:

1 + X6Y 3 − X6Y 5 − X7Y 7 − X12Y 7 − X14Y 8 − X13Y 9 − X15Y 10

− X20Y 10 + X13Y 11 − X14Y 11 − X15Y 11 + X14Y 12 + X15Y 12 − X16Y 12

+ X20Y 12 − X21Y 12 + X19Y 14 + 2X21Y 14 − X22Y 14 − X23Y 14 + X23Y 15

+ X26Y 15 + 2X22Y 16 + X26Y 16 + X27Y 16 − X28Y 16 − X26Y 17 + X27Y 17

+ X28Y 17 + X29Y 17 + X23Y 18 + X28Y 18 − X27Y 19 + X28Y 19 + X30Y 19

+ X35Y 19 + X29Y 20 − X28Y 21 + X31Y 21 − X33Y 21 + X36Y 21 − X35Y 22

− X29Y 23 − X34Y 23 − X36Y 23 + X37Y 23 − X36Y 24 − X41Y 24 − X35Y 25

− X36Y 25 − X37Y 25 + X38Y 25 + X36Y 26 − X37Y 26 − X38Y 26 − 2X42Y 26

− X38Y 27 − X41Y 27 + X41Y 28 + X42Y 28 − 2X43Y 28 − X45Y 28 + X43Y 30

− X44Y 30 + X48Y 30 − X49Y 30 − X50Y 30 + X49Y 31 + X50Y 31 − X51Y 31

+ X44Y 32 + X49Y 32 + X51Y 33 + X50Y 34 + X52Y 35 + X57Y 35 + X58Y 37

− X58Y 39 − X64Y 42.
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A.6 g6,12, Counting All Subrings

The following polynomial is W≤
g6,12(X,Y ), mentioned on p. 59:

1 + X2Y + 2X4Y 2 − X5Y 3 + 2X6Y 3 − X6Y 4 − X7Y 4 + 4X8Y 4 + X9Y 4

− 3X8Y 5 − 5X9Y 5 + X10Y 5 + X9Y 6 − X10Y 6 − 3X11Y 6 + 3X12Y 6

− X13Y 6 + X11Y 7 − 5X12Y 7 − 8X13Y 7 − 2X14Y 7 − 3X15Y 7 + 5X13Y 8

+ X14Y 8 − X15Y 8 − 2X16Y 8 − 6X17Y 8 + 2X15Y 9 − 2X16Y 9 + X17Y 9

− 2X18Y 9 − 7X19Y 9 − 2X20Y 9 − X21Y 9 + 4X17Y 10 + 3X18Y 10 + 8X19Y 10

− X20Y 10 − 4X21Y 10 − X23Y 10 − X18Y 11 + X20Y 11 + 11X21Y 11

+ X22Y 11 − 4X23Y 11 − 4X24Y 11 − 2X25Y 11 + 2X22Y 12 + 13X23Y 12

+ 8X24Y 12 + 8X25Y 12 + X26Y 12 − X27Y 12 − 3X23Y 13 − 2X24Y 13

+ 8X25Y 13 + 3X26Y 13 + 5X27Y 13 + X29Y 13 − 3X25Y 14 − 2X26Y 14

+ 6X27Y 14 + 8X28Y 14 + 13X29Y 14 + 3X30Y 14 + 2X31Y 14 − 5X27Y 15

− 5X28Y 15 − 4X29Y 15 − 3X30Y 15 + 9X31Y 15 + 6X32Y 15 + 4X33Y 15

− 2X29Y 16 − 3X30Y 16 − 8X31Y 16 − 5X32Y 16 + 6X33Y 16 + 2X34Y 16

+ 6X35Y 16 + 2X36Y 16 − 2X31Y 17 − X32Y 17 − 11X33Y 17 − 11X34Y 17

− X36Y 17 + 4X37Y 17 + X38Y 17 − 12X35Y 18 − 11X36Y 18 − 8X37Y 18

− 6X38Y 18 + 6X39Y 18 + 2X40Y 18 + 2X35Y 19 + 6X36Y 19 − 6X37Y 19

− 8X38Y 19 − 11X39Y 19 − 12X40Y 19 + X37Y 20 + 4X38Y 20 − X39Y 20

− 11X41Y 20 − 11X42Y 20 − X43Y 20 − 2X44Y 20 + 2X39Y 21 + 6X40Y 21

+ 2X41Y 21 + 6X42Y 21 − 5X43Y 21 − 8X44Y 21 − 3X45Y 21 − 2X46Y 21

+ 4X42Y 22 + 6X43Y 22 + 9X44Y 22 − 3X45Y 22 − 4X46Y 22 − 5X47Y 22

− 5X48Y 22 + 2X44Y 23 + 3X45Y 23 + 13X46Y 23 + 8X47Y 23 + 6X48Y 23

− 2X49Y 23 − 3X50Y 23 + X46Y 24 + 5X48Y 24 + 3X49Y 24 + 8X50Y 24

− 2X51Y 24 − 3X52Y 24 − X48Y 25 + X49Y 25 + 8X50Y 25 + 8X51Y 25

+ 13X52Y 25 + 2X53Y 25 − 2X50Y 26 − 4X51Y 26 − 4X52Y 26 + X53Y 26

+ 11X54Y 26 + X55Y 26 − X57Y 26 − X52Y 27 − 4X54Y 27 − X55Y 27

+ 8X56Y 27 + 3X57Y 27 + 4X58Y 27 − X54Y 28 − 2X55Y 28 − 7X56Y 28

− 2X57Y 28 + X58Y 28 − 2X59Y 28 + 2X60Y 28 − 6X58Y 29 − 2X59Y 29

− X60Y 29 + X61Y 29 + 5X62Y 29 − 3X60Y 30 − 2X61Y 30 − 8X62Y 30

− 5X63Y 30 + X64Y 30 − X62Y 31 + 3X63Y 31 − 3X64Y 31 − X65Y 31

+ X66Y 31 + X65Y 32 − 5X66Y 32 − 3X67Y 32 + X66Y 33 + 4X67Y 33

− X68Y 33 − X69Y 33 + 2X69Y 34 − X70Y 34 + 2X71Y 35 + X73Y 36 + X75Y 37.
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A.7 g1357G, Counting Ideals

The following polynomial is W�
g1357B

(X,Y ), mentioned on p. 67:

1 + X3Y 3 − X3Y 5 − 2X6Y 7 − 2X4Y 8 + X5Y 8 − X7Y 8 + X4Y 9 − 2X5Y 9

− X9Y 9 − X7Y 10 − X10Y 10 − X7Y 11 − X8Y 11 + X9Y 11 − X10Y 11

+ 3X7Y 12 − 3X8Y 12 − 2X9Y 12 + X10Y 12 − X7Y 13 + 3X8Y 13 + X10Y 13

− 3X11Y 13 + X9Y 14 + X10Y 14 − X11Y 14 + X13Y 14 + 5X11Y 15 − 2X12Y 15

− X14Y 15 + X11Y 16 + 5X12Y 16 − 2X14Y 16 + X16Y 16 + X9Y 17 − X12Y 17

+ X13Y 17 + 7X14Y 17 − X16Y 17 + X12Y 18 + 2X14Y 18 + 2X15Y 18

+ X16Y 18 + 2X12Y 19 − 4X14Y 19 + 6X15Y 19 + X16Y 19 + 3X17Y 19

− X12Y 20 + 4X13Y 20 − 3X15Y 20 + 2X16Y 20 + X17Y 20 + 3X18Y 20

− X12Y 21 − 2X13Y 21 + 4X14Y 21 + X15Y 21 − 2X17Y 21 + X18Y 21

+ 2X19Y 21 + X20Y 21 − 2X14Y 22 + X16Y 22 + X20Y 22 + X21Y 22

− 3X15Y 23 + X16Y 23 + 3X17Y 23 − 2X18Y 23 − X19Y 23 − X20Y 23

+ 2X21Y 23 − 5X16Y 24 − 3X18Y 24 + 6X19Y 24 − X20Y 24 − 6X21Y 24

+ X22Y 24 + X16Y 25 − 5X17Y 25 − X18Y 25 − 8X19Y 25 + 6X20Y 25

+ X21Y 25 − 2X22Y 25 + X17Y 26 − 2X18Y 26 − 4X19Y 26 − 6X20Y 26

+ X21Y 26 − X23Y 26 − 2X24Y 26 + X18Y 27 − X19Y 27 − 9X20Y 27

− 3X21Y 27 − 2X22Y 27 + X23Y 27 − X25Y 27 − X17Y 28 + 2X19Y 28

+ X20Y 28 − 7X21Y 28 − 8X22Y 28 − 3X23Y 28 + 2X24Y 28 − X26Y 28

− X27Y 28 − X19Y 29 + 4X21Y 29 + X22Y 29 − 11X23Y 29 − 4X24Y 29

− 2X25Y 29 + X26Y 29 − 2X21Y 30 + 4X22Y 30 − X23Y 30 − 5X24Y 30

− 5X25Y 30 − 4X26Y 30 + X27Y 30 − X21Y 31 − X22Y 31 + 8X23Y 31

− X24Y 31 − 9X26Y 31 − X27Y 31 + X20Y 32 + X21Y 32 − 2X22Y 32

− 2X23Y 32 + 3X24Y 32 + 5X25Y 32 + 7X26Y 32 − 10X27Y 32 − X28Y 32

− 2X29Y 32 + X21Y 33 + 2X22Y 33 − 4X25Y 33 + 6X26Y 33 + 8X27Y 33

− 5X28Y 33 − X29Y 33 − X30Y 33 + 3X23Y 34 + X24Y 34 + 3X25Y 34

− X26Y 34 + X27Y 34 + 6X28Y 34 + 2X29Y 34 − 2X30Y 34 − X31Y 34

+ 5X24Y 35 + X26Y 35 + X27Y 35 + 3X28Y 35 + 9X29Y 35 − X30Y 35

− X32Y 35 − 2X24Y 36 + 5X25Y 36 + 4X26Y 36 + 10X27Y 36 − 8X28Y 36

− 5X29Y 36 + 12X30Y 36 + X31Y 36 + 4X32Y 36 − X33Y 36 − X25Y 37

+ 2X26Y 37 + 15X28Y 37 − X29Y 37 − 2X30Y 37 + 4X31Y 37 + X32Y 37

+ 3X33Y 37 − X26Y 38 − X27Y 38 + 2X28Y 38 + 13X29Y 38 + 2X30Y 38

+ X31Y 38 − X32Y 38 + 4X33Y 38 + X34Y 38 + X35Y 38 − 2X27Y 39 − X28Y 39
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+ 2X29Y 39 + 9X30Y 39 + 5X31Y 39 − X33Y 39 + 3X34Y 39 + X36Y 39

+ X27Y 40 − X28Y 40 − 6X29Y 40 − 5X30Y 40 + 13X31Y 40 + 12X32Y 40

− 3X33Y 40 − X34Y 40 + X35Y 40 + X36Y 40 + X37Y 40 + X29Y 41 − 2X30Y 41

− 10X31Y 41 + 8X33Y 41 + 9X34Y 41 − 2X35Y 41 − X36Y 41 + X30Y 42

− 5X31Y 42 − 4X32Y 42 − X33Y 42 + 3X34Y 42 + 7X35Y 42 − 2X36Y 42

+ X37Y 42 − X29Y 43 + 2X31Y 43 − 5X32Y 43 − 6X33Y 43 − 12X34Y 43

+ 6X35Y 43 + 6X36Y 43 − X39Y 43 − X30Y 44 − X31Y 44 + X32Y 44

+ 2X33Y 44 − 6X34Y 44 − 18X35Y 44 + 4X36Y 44 + 2X37Y 44 + 3X38Y 44

− X31Y 45 − 3X32Y 45 − 3X33Y 45 + 6X34Y 45 + X35Y 45 − 15X36Y 45

− 8X37Y 45 − X38Y 45 + 5X39Y 45 − X40Y 45 − 2X33Y 46 − 4X34Y 46

− X36Y 46 − 6X37Y 46 − 6X38Y 46 − 2X39Y 46 + X40Y 46 − 3X34Y 47

− 7X35Y 47 + 4X36Y 47 + 3X37Y 47 − 12X38Y 47 − 5X39Y 47 − 5X40Y 47

+ 2X41Y 47 + 2X35Y 48 − 12X36Y 48 + 9X38Y 48 − 6X39Y 48 − 10X41Y 48

+ X42Y 48 + X35Y 49 + 4X36Y 49 − 10X37Y 49 − 5X38Y 49 + X39Y 49

+ X41Y 49 − 7X42Y 49 − X43Y 49 + X36Y 50 + 4X37Y 50 − 4X38Y 50

− 5X39Y 50 − 5X40Y 50 + 6X41Y 50 − X42Y 50 − 2X43Y 50 − 2X44Y 50

+ X37Y 51 + 6X38Y 51 − 2X39Y 51 − 6X40Y 51 − 3X41Y 51 + 5X42Y 51

− X44Y 51 − 2X45Y 51 + X37Y 52 + 9X39Y 52 + 4X40Y 52 − 7X41Y 52

− 7X42Y 52 + X43Y 52 + 5X44Y 52 − X45Y 52 − X46Y 52 − 2X39Y 53

+ 5X40Y 53 + 8X41Y 53 + 4X42Y 53 − 8X43Y 53 − 2X44Y 53 + 3X45Y 53

+ X40Y 54 + 3X41Y 54 + 6X42Y 54 + 7X43Y 54 − 5X44Y 54 − X45Y 54

+ X46Y 54 + 2X47Y 54 − X48Y 54 + X39Y 55 + X40Y 55 − X41Y 55 + X42Y 55

+ 10X43Y 55 + 5X44Y 55 − X45Y 55 − 2X46Y 55 − 2X47Y 55 + 3X48Y 55

+ X41Y 56 − 2X42Y 56 − X43Y 56 + 8X44Y 56 + 7X45Y 56 + 5X46Y 56

− 4X47Y 56 − X48Y 56 + X49Y 56 + 3X42Y 57 − 4X44Y 57 + 2X45Y 57

+ 9X46Y 57 + 7X47Y 57 − 2X48Y 57 + 3X44Y 58 − 2X46Y 58 + 4X47Y 58

+ 5X48Y 58 + X44Y 59 + X45Y 59 − 3X46Y 59 + 2X48Y 59 + 7X49Y 59

− X44Y 60 + X45Y 60 + 2X46Y 60 − X48Y 60 − 6X49Y 60 + 7X50Y 60

+ X51Y 60 − X45Y 61 + 3X48Y 61 − X49Y 61 − 5X50Y 61 + 4X51Y 61

+ X52Y 61 − 2X46Y 62 − X47Y 62 − 3X48Y 62 + 4X49Y 62 − 4X51Y 62

− X52Y 62 + 2X53Y 62 − 2X47Y 63 + X48Y 63 − 2X50Y 63 + 2X51Y 63

− 3X52Y 63 − 2X53Y 63 + 2X54Y 63 + X47Y 64 − 3X48Y 64 − 5X49Y 64

− X50Y 64 + X51Y 64 + 3X52Y 64 − 2X53Y 64 − 2X54Y 64 − 6X51Y 65
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+ X53Y 65 − X54Y 65 − X51Y 66 − 6X52Y 66 − X56Y 66 − X50Y 67 − 2X53Y 67

− X54Y 67 − X55Y 67 + X56Y 67 − X57Y 67 + 2X52Y 68 − 4X54Y 68

− 3X55Y 68 + X56Y 68 − X53Y 69 + 3X54Y 69 − 3X56Y 69 − X57Y 69

− X58Y 70 + 2X55Y 71 + X57Y 71 − X59Y 71 + 2X58Y 72 − X59Y 72 + X56Y 73

− X57Y 73 + 2X59Y 73 + 2X57Y 74 + X60Y 74 − X60Y 75 + 2X61Y 75

+ X59Y 76 + X60Y 76 − X61Y 76 + X62Y 76 + X60Y 77 + X63Y 78 − X63Y 81

− X66Y 83.

A.8 g1457A, Counting Ideals

The following polynomial is W�
g1457A

(X,Y ), mentioned on p. 68:

1 − X4Y 5 − X4Y 8 + X5Y 8 − X5Y 9 − X8Y 10 + X8Y 11 − 2X9Y 11 + X8Y 12

− X9Y 12 − X10Y 12 + 2X9Y 13 − 2X10Y 13 + X10Y 14 − X9Y 15 + 2X13Y 15

− X14Y 15 + X9Y 16 − 2X10Y 16 − X13Y 16 + 2X14Y 16 + X10Y 17 − X11Y 17

+ X14Y 17 + 2X13Y 18 − 2X14Y 18 + 3X14Y 19 − 2X15Y 19 − X13Y 20

+ 3X14Y 20 − X14Y 21 + 4X15Y 21 − X16Y 21 + X18Y 21 − X15Y 22 + X16Y 22

− X17Y 22 + X18Y 22 + X19Y 22 + X14Y 23 − X15Y 23 − 3X18Y 23 + 4X19Y 23

+ 2X15Y 24 − X16Y 24 − X18Y 24 − 2X19Y 24 + 2X20Y 24 + X16Y 25

+ X18Y 25 − X19Y 25 − X18Y 26 + 4X19Y 26 − 2X20Y 26 − X23Y 26 − X18Y 27

− X19Y 27 + 4X20Y 27 − X23Y 27 − 3X19Y 28 + 3X20Y 28 + X21Y 28

− X24Y 28 − 3X20Y 29 + 2X21Y 29 − X23Y 29 + X24Y 29 − X21Y 30

− 3X23Y 30 + X24Y 30 + X20Y 31 − 5X24Y 31 + 2X25Y 31 − X20Y 32

+ X21Y 32 + X23Y 32 − X24Y 32 − 3X25Y 32 − X23Y 33 + X24Y 33 − X25Y 33

− X28Y 33 − 3X24Y 34 + 2X25Y 34 + X27Y 34 − X29Y 34 − X24Y 35

− 2X25Y 35 + X26Y 35 + X27Y 35 + X28Y 35 − X29Y 35 − 3X25Y 36 − X26Y 37

− X28Y 37 + X27Y 38 + X28Y 38 − 3X29Y 38 − X30Y 38 + X33Y 38 + 3X28Y 39

− 3X30Y 39 − X25Y 40 + X28Y 40 + 3X29Y 40 − X30Y 40 − X31Y 40 + X30Y 41

+ X32Y 41 + 3X33Y 42 + X29Y 43 − X30Y 43 − X31Y 43 − X32Y 43 + 2X33Y 43

+ X34Y 43 + X29Y 44 − X31Y 44 − 2X33Y 44 + 3X34Y 44 + X30Y 45 + X33Y 45

− X34Y 45 + X35Y 45 + 3X33Y 46 + X34Y 46 − X35Y 46 − X37Y 46 + X38Y 46

− 2X33Y 47 + 5X34Y 47 − X38Y 47 − X34Y 48 + 3X35Y 48 + X37Y 48

− X34Y 49 + X35Y 49 − 2X37Y 49 + 3X38Y 49 + X34Y 50 − X37Y 50

− 3X38Y 50 + 3X39Y 50 + X35Y 51 − 4X38Y 51 + X39Y 51 + X40Y 51
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+ X35Y 52 + 2X38Y 52 − 4X39Y 52 + X40Y 52 + X39Y 53 − X40Y 53 − X42Y 53

− 2X38Y 54 + 2X39Y 54 + X40Y 54 + X42Y 54 − 2X43Y 54 − 4X39Y 55

+ 3X40Y 55 + X43Y 55 − X44Y 55 − X39Y 56 − X40Y 56 + X41Y 56 − X42Y 56

+ X43Y 56 − X40Y 57 + X42Y 57 − 4X43Y 57 + X44Y 57 − 3X44Y 58 + X45Y 58

+ 2X43Y 59 − 3X44Y 59 + 2X44Y 60 − 2X45Y 60 − X44Y 61 + X47Y 61

− X48Y 61 − 2X44Y 62 + X45Y 62 + 2X48Y 62 − X49Y 62 + X44Y 63

− 2X45Y 63 + X49Y 63 − X48Y 64 + 2X48Y 65 − 2X49Y 65 + X48Y 66

+ X49Y 66 − X50Y 66 + 2X49Y 67 − X50Y 67 + X50Y 68 + X53Y 69 − X53Y 70

+ X54Y 70 + X54Y 73 − X58Y 78.

A.9 g1457B, Counting Ideals

The following polynomial is W�
g1457B

(X,Y ), mentioned on p. 68:

1 − X4Y 5 − X4Y 8 + X5Y 8 − X5Y 9 − X8Y 10 + X8Y 11 − 2X9Y 11 + X8Y 12

− X9Y 12 − X10Y 12 + 2X9Y 13 − 2X10Y 13 + X10Y 14 + 2X13Y 15 − X14Y 15

− X10Y 16 − X13Y 16 + 2X14Y 16 + X10Y 17 − X11Y 17 + X14Y 17 + X13Y 18

− X14Y 18 + 3X14Y 19 − 2X15Y 19 + X15Y 20 + 3X15Y 21 − X16Y 21

+ X18Y 21 − X15Y 22 + X16Y 22 + X19Y 22 − X17Y 23 − X18Y 23 + 3X19Y 23

− X18Y 24 − 2X19Y 24 + 2X20Y 24 + X15Y 25 − X18Y 25 + X19Y 26 − X20Y 26

− X23Y 26 + X20Y 27 − X22Y 27 − X19Y 28 + X20Y 28 + X21Y 28 + X22Y 28

− X23Y 28 − X24Y 28 − X19Y 29 + X21Y 29 − X20Y 30 − X23Y 30 − 3X23Y 31

+ X25Y 31 + 2X23Y 32 − 3X24Y 32 − X25Y 32 − X25Y 33 − X27Y 33 + X24Y 34

− X25Y 34 + 2X27Y 34 − 2X28Y 34 − X24Y 35 + X27Y 35 + X28Y 35 − X29Y 35

− X25Y 36 + 3X28Y 36 − 2X29Y 36 − X25Y 37 − 2X28Y 37 + 2X29Y 37

− X29Y 38 + X32Y 38 + 2X28Y 39 − 2X29Y 39 − X30Y 39 − X32Y 39 + X33Y 39

+ 4X29Y 40 − 3X30Y 40 + X29Y 41 + X30Y 41 − X31Y 41 + X32Y 41 − X33Y 41

+ X30Y 42 − X32Y 42 + 4X33Y 42 − X34Y 42 + 2X34Y 43 − X35Y 43

− 2X33Y 44 + 3X34Y 44 − 2X34Y 45 + 2X35Y 45 + X34Y 46 − X37Y 46

+ X38Y 46 + 2X34Y 47 − X35Y 47 − 2X38Y 47 + X39Y 47 − X34Y 48

+ 2X35Y 48 + X38Y 48 − X39Y 48 + X38Y 49 − 2X38Y 50 + 2X39Y 50

− X38Y 51 − X39Y 51 + X40Y 51 − 2X39Y 52 + X40Y 52 − X40Y 53 − X43Y 54

+ X43Y 55 − X44Y 55 − X44Y 58 + X48Y 63.
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A.10 tr6(Z), Counting Ideals

The following polynomial is W�
tr6(Z)(Y ) mentioned on p. 78:

1 + 2Y 2 + 3Y 4 + 2Y 5 + 4Y 6 + 4Y 7 + 7Y 8 + 8Y 9 + 10Y 10 + 13Y 11 + 16Y 12

+ 19Y 13 + 24Y 14 + 27Y 15 + 34Y 16 + 37Y 17 + 44Y 18 + 48Y 19 + 56Y 20

+ 59Y 21 + 70Y 22 + 72Y 23 + 81Y 24 + 83Y 25 + 90Y 26 + 91Y 27 + 95Y 28

+ 93Y 29 + 99Y 30 + 91Y 31 + 92Y 32 + 82Y 33 + 80Y 34 + 63Y 35 + 62Y 36

+ 38Y 37 + 34Y 38 + 9Y 39 − 27Y 41 − 38Y 42 − 68Y 43 − 75Y 44 − 105Y 45

− 115Y 46 − 139Y 47 − 146Y 48 − 173Y 49 − 171Y 50 − 195Y 51 − 188Y 52

− 206Y 53 − 194Y 54 − 206Y 55 − 188Y 56 − 195Y 57 − 171Y 58 − 173Y 59

− 146Y 60 − 139Y 61 − 115Y 62 − 105Y 63 − 75Y 64 − 68Y 65 − 38Y 66 − 27Y 67

+ 9Y 69 + 34Y 70 + 38Y 71 + 62Y 72 + 63Y 73 + 80Y 74 + 82Y 75 + 92Y 76

+ 91Y 77 + 99Y 78 + 93Y 79 + 95Y 80 + 91Y 81 + 90Y 82 + 83Y 83 + 81Y 84

+ 72Y 85 + 70Y 86 + 59Y 87 + 56Y 88 + 48Y 89 + 44Y 90 + 37Y 91 + 34Y 92

+ 27Y 93 + 24Y 94 + 19Y 95 + 16Y 96 + 13Y 97 + 10Y 98 + 8Y 99 + 7Y 100

+ 4Y 101 + 4Y 102 + 2Y 103 + 3Y 104 + 2Y 106 + Y 108.

A.11 tr7(Z), Counting Ideals

The following polynomial is W�
tr7(Z)(Y ) mentioned on p. 78:

1 + 3Y 2 + 5Y 4 + 3Y 5 + 7Y 6 + 9Y 7 + 13Y 8 + 18Y 9 + 25Y 10 + 32Y 11

+ 44Y 12 + 56Y 13 + 75Y 14 + 94Y 15 + 125Y 16 + 153Y 17 + 199Y 18 + 242Y 19

+ 305Y 20 + 367Y 21 + 459Y 22 + 545Y 23 + 673Y 24 + 793Y 25 + 958Y 26

+ 1124Y 27 + 1337Y 28 + 1553Y 29 + 1834Y 30 + 2106Y 31 + 2458Y 32

+ 2806Y 33 + 3228Y 34 + 3656Y 35 + 4172Y 36 + 4668Y 37 + 5290Y 38

+ 5867Y 39 + 6573Y 40 + 7245Y 41 + 8028Y 42 + 8767Y 43 + 9642Y 44

+ 10421Y 45 + 11360Y 46 + 12183Y 47 + 13136Y 48 + 13963Y 49 + 14921Y 50

+ 15683Y 51 + 16609Y 52 + 17279Y 53 + 18089Y 54 + 18627Y 55 + 19271Y 56

+ 19582Y 57 + 20023Y 58 + 20038Y 59 + 20192Y 60 + 19882Y 61 + 19663Y 62

+ 18961Y 63 + 18352Y 64 + 17163Y 65 + 16125Y 66 + 14444Y 67 + 12905Y 68

+ 10732Y 69 + 8700Y 70 + 5995Y 71 + 3517Y 72 + 305Y 73 − 2612Y 74

− 6241Y 75 − 9546Y 76 − 13535Y 77 − 17095Y 78 − 21361Y 79 − 25071Y 80
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− 29441Y 81 − 33196Y 82 − 37522Y 83 − 41121Y 84 − 45290Y 85 − 48557Y 86

− 52361Y 87 − 55180Y 88 − 58427Y 89 − 60607Y 90 − 63191Y 91 − 64544Y 92

− 66322Y 93 − 66778Y 94 − 67583Y 95 − 67068Y 96 − 66871Y 97 − 65267Y 98

− 64071Y 99 − 61396Y 100 − 59142Y 101 − 55484Y 102 − 52239Y 103

− 47622Y 104 − 43560Y 105 − 38095Y 106 − 33306Y 107 − 27241Y 108

− 21857Y 109 − 15362Y 110 − 9666Y 111 − 2883Y 112 + 2883Y 113 + 9666Y 114

+ 15362Y 115 + 21857Y 116 + 27241Y 117 + 33306Y 118 + 38095Y 119

+ 43560Y 120 + 47622Y 121 + 52239Y 122 + 55484Y 123 + 59142Y 124

+ 61396Y 125 + 64071Y 126 + 65267Y 127 + 66871Y 128 + 67068Y 129

+ 67583Y 130 + 66778Y 131 + 66322Y 132 + 64544Y 133 + 63191Y 134

+ 60607Y 135 + 58427Y 136 + 55180Y 137 + 52361Y 138 + 48557Y 139

+ 45290Y 140 + 41121Y 141 + 37522Y 142 + 33196Y 143 + 29441Y 144

+ 25071Y 145 + 21361Y 146 + 17095Y 147 + 13535Y 148 + 9546Y 149

+ 6241Y 150 + 2612Y 151 − 305Y 152 − 3517Y 153 − 5995Y 154 − 8700Y 155

− 10732Y 156 − 12905Y 157 − 14444Y 158 − 16125Y 159 − 17163Y 160

− 18352Y 161 − 18961Y 162 − 19663Y 163 − 19882Y 164 − 20192Y 165

− 20038Y 166 − 20023Y 167 − 19582Y 168 − 19271Y 169 − 18627Y 170

− 18089Y 171 − 17279Y 172 − 16609Y 173 − 15683Y 174 − 14921Y 175

− 13963Y 176 − 13136Y 177 − 12183Y 178 − 11360Y 179 − 10421Y 180

− 9642Y 181 − 8767Y 182 − 8028Y 183 − 7245Y 184 − 6573Y 185 − 5867Y 186

− 5290Y 187 − 4668Y 188 − 4172Y 189 − 3656Y 190 − 3228Y 191 − 2806Y 192

− 2458Y 193 − 2106Y 194 − 1834Y 195 − 1553Y 196 − 1337Y 197 − 1124Y 198

− 958Y 199 − 793Y 200 − 673Y 201 − 545Y 202 − 459Y 203 − 367Y 204

− 305Y 205 − 242Y 206 − 199Y 207 − 153Y 208 − 125Y 209 − 94Y 210 − 75Y 211

− 56Y 212 − 44Y 213 − 32Y 214 − 25Y 215 − 18Y 216 − 13Y 217 − 9Y 218

− 7Y 219 − 3Y 220 − 5Y 221 − 3Y 223 − Y 225.



B

Factorisation of Polynomials
Associated to Classical Groups

In this appendix we are concerned with the proof of Theorem 6.9. The proof
depends on extending the following classical identity on root systems: let wi

be the reflection in the root defined by αi, then

λ(wiw) =

{
λ(w) + 1 if w−1(αi) ∈ Φ+ ,

λ(w) − 1 if w−1(αi) ∈ Φ− .

To explain our generalisation to the root systems Xl = Cl or Dl, we set up
some notation. Let Φk+1 be the sub-root system generated by {αl−k, . . . , αl}
of type Xk+1. Let wΦk+1 be the element sending Φ+

k+1 to Φ−
k+1.

Let us recall the structure of the root systems Cl and Dl and their cor-
responding Weyl groups. Let ei be the standard basis for the l-dimensional
vector space Rl.

C+
l = { 2ei, ei ± ej : 1 ≤ i < j ≤ l } with simple roots α1 = e1 − e2, . . . ,

αl−1 = el−1−el, αl = 2el. W (Cl) is the semi-direct product of the symmetric
group on ei and the group (Z/2Z)l operating by ei �→ (±1)iei.

D+
l = { ei ± ej : 1 ≤ i < j ≤ l } with simple roots α1 = e1 − e2, . . . ,

αl−1 = el−1 − el, αl = el−1 + el. W (Dl) is the semi-direct product of the
symmetric group on ei and the group (Z/2Z)l−1 operating by ei �→ (±1)iei

with
∏

i(±1)i = 1.
We shall write w = πwσw where πw is the permutation and σw is the sign

change (where we employ the convention that we implement the sign change
followed by the permutation). For each w ∈ W , let w(k) be the permutation
of eπw−1 (i) for i = k, . . . , l which alters the order. For k = 1, . . . , r + 1 let

W (k) =
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have the same sign and (σw−1)k = 1

}
∪
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have opposite signs and (σw−1)k = −1

}
= W (k)+ ∪ W (k)−
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and

J−
k (w) = { j : k ≤ j ≤ r, (σw−1)j = 1, (σw−1)j+1 = −1 } ,

J+
k (w) = { j : k ≤ j ≤ r, (σw−1)j = −1, (σw−1)j+1 = 1 } .

Note that we put W (1) = {w = πwσw : (σw−1)1 = 1 } = W (1)+ since there is
no α0.

Theorem B.1. For k = 1, . . . , r + 1,

1. The map w �→ wΦl−k+1ww(k) is a bijection from W (k) to W \ W (k);
2. If w ∈ W (k)+ then

λ(wΦl−k+1ww(k))

= λ(w) − bk−1/2 −
∑

j∈J+
k

(w)

bj +
∑

j∈J−
k

(w)

bj + (σw−1)r+1br+1 ;

3. If w ∈ W (k)− then

λ(wΦl−k+1ww(k))

= λ(w) − bk−1/2 −
∑

j∈J+
k

(w)

bj + bk−1 +
∑

j∈J−
k

(w)

bj + (σw−1)r+1br+1 .

Note that part 1 implies that parts 2 and 3 can be used to provide an
identity valid on the whole of W . Although complicated, taking Xl = Cl

and k = l reduces to the classical identity for i = l. To see this note that
J+

l (w) = J−
l (w) = ∅, bl − bl−1/2 = 1, and wΦl−k+1ww(k) = wlw.

Having set up this notation, we can extend Theorem 6.9 to describe more
precisely the factorisation:

Theorem B.2. If G = GSp2l of type Cl or G = GO+
2l of type Dl then for

k = 1, . . . , r + 1

PG,ρ(X,Y ) = (1 + Xbk−1/2Y )

⎛⎝ ∑
w∈W (k)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
= (1 + Y )

(
r∏

i=1

(1 + Xbi/2Y )

)
RG(X,Y ) ,

where

RG(X,Y ) =

⎛⎝∑
w∈W̃

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
and

W̃ =
r+1⋂
k=1

W (k) .
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It is important therefore in establishing natural boundaries to remove
the cyclotomic factors and provide a description of the resulting polynomial.
This is precisely the goal of Theorem B.2 in the case of PGSp2l

(X,Y ) and
PGO+

2l
(X,Y ). In this appendix we establish the following:

Theorem B.3. If G = GSp2l of type Cl or G = GO+
2l of type Dl then

PG(X,Y ) has a factor of the form

(1 + Y )
r∏

i=1

(1 + Xbi/2Y ) ,

where r = l − 1 for G = GSp2l and r = l − 2 for G = GO+
2l.

Proof. For convenience, let us use the notation that b0 = 0. Let Xl denote
either the Dynkin diagram Cl or Dl. We shall use the following identities: for
Cl we have

bl − card(C+
k+1) + card(A+

k ) = bl−(k+1)/2 for k = 0, . . . , l − 1 ,

for Dl we have

bl − card(D+
k+1) + card(A+

k ) = bl−(k+1)/2 for k = 2, . . . , l − 1 ,

bl − card(D+
1 ) = bl−2/2 .

The element wΦk+1 is the sign change ei �→ ei for i = 1, . . . , l − k − 1
and ei �→ −ei for i = l − k, . . . , r + 1 (note that in the case of Dl this then
determines the sign change el, namely el �→ (−1)kel.) For each w ∈ W , let
w(k) be the permutation of eπw−1 (i) for i = k, . . . , l which alters the order.

For k = 1, . . . , r + 1 let

W (k) =
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have the same sign and (σw−1)k = 1

}
∪
{

w = πwσw : w−1(αk−1) and (wΦl−k+1ww(k))−1(αk−1)
have opposite signs and (σw−1)k = −1

}
= W (k)+ ∪ W (k)− .

Note that we shall put W (1) = {w = πwσw : (σw−1)1 = 1 } = W (1)+ since
there is no α0. The point is that things are going to work out because this
means that in the second case actually it forces αk−1 ∈ w(Φ+

l ). We’re trying
to divide W up into two pieces so that w �→ wΦl−k+1ww(k) is a bijection and
the difference in the polynomial is effected by multiplication by Xbk−1/2Y .

Then the claim is that w �→ wΦl−k+1ww(k) is a bijection between W (k)
and W \ W (k).

Note first of all that wΦl−k+1(wΦl−k+1ww(k))(wΦl−k+1ww(k))(k) = w, since
(wΦl−k+1ww(k))(k) = w(k). Secondly, since w(k) is just a permutation and
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wΦl−k+1 changes the sign of ek, (σw−1)k = −(σ(wΦl−k+1ww(k))−1)k. Hence w �→
wΦl−k+1ww(k) maps W (k) into W \W (k) and also maps W \W (k) into W (k).
It is straightforward to see, using this second map, that w �→ wΦl−k+1ww(k)
is then a bijection between W (k) and W \ W (k).

We claim now that the correspondence w �→ wΦl−k+1ww(k) behaves in the
following manner:

Xbk−1/2Y

⎛⎝X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
= X−λ(wΦl−k+1ww(k))

∏
αj∈wΦl−k+1ww(k)(Φ−)

Xbj Y cj .

Let

J−
k (w) = { j : k ≤ j ≤ r, (σw−1)j = 1, (σw−1)j+1 = −1 } ,

J+
k (w) = { j : k ≤ j ≤ r, (σw−1)j = −1, (σw−1)j+1 = 1 } .

Then divide J(w) =
{

j ≤ r : w−1αj ∈ Φ− } into J+
k (w) and its complement

J(w) \ J+
k (w). The first claim is then that for w ∈ W (k)+

J(wΦl−k+1ww(k)) = (J(w) \ J+
k (w)) ∪ J−

k (w)

and for w ∈ W (k)−,

J(wΦl−k+1ww(k)) = (J(w) \ J+
k (w)) ∪ J−

k (w) ∪ {k − 1} .

For 1 ≤ j ≤ r,

w−1αj = w−1(ej − ej+1) = (σw−1)j eπw−1 (j) − (σw−1)j+1eπw−1 (j+1) .

So firstly J(w) ⊃ J+
k (w) and J(w) ∩ J−

k (w) = ∅.
For k ≤ j ≤ r,(

wΦl−k+1ww(k)
)−1

αj

= − (σw−1)j w(k)
(
eπw−1 (j)

)
+ (σw−1)j+1 w(k)

(
eπw−1 (j+1)

)
.

If (σw−1)j = − (σw−1)j+1, (i.e. j ∈ J+
k (w) ∪ J−

k (w)) then w−1αj ∈ Φ− if and

only if
(
wΦl−k+1ww(k)

)−1
αj /∈ Φ−. If (σw−1)j = (σw−1)j+1, then

(σw−1)j eπw−1 (j) − (σw−1)j+1 eπw−1 (j+1) = (σw−1)j

(
eπw−1 (j) − eπw−1 (j+1)

)
.

The point of using w(k) now comes into effect because(
wΦl−k+1ww(k)

)−1
αj = (σw−1)j

(
−w(k)eπw−1 (j) + w(k)eπw−1 (j+1)

)
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will have the same sign as w−1αj . This is because ei1 −ei2 ∈ Φ− if and only if
i2 < i1 and w(k) has the effect of altering the order of πw−1(i) for i = k, . . . , l.

w �→ wΦl−k+1ww(k) has no effect on those j < k − 1 since w−1αj =(
wΦl−k+1ww(k)

)−1
αj .

The only root we haven’t taken account of is αk−1 = ek−1 − ek. If
w ∈ W (k)+ then we are assuming that k − 1 ∈ J(w) if and only if
k − 1 ∈ J(wΦl−k+1ww(k)). So the only issue here is that if w ∈ W (k)−,
then w−1αk−1 /∈ Φ−, i.e. k − 1 /∈ J(w). Then by definition of W (k)−,
k − 1 ∈ J(wΦl−k+1ww(k)). Now

w−1αk−1 = (σw−1)k−1 eπw−1 (k−1) − (σw−1)k eπw−1k(
wΦl−k+1ww(k)

)−1
αk−1 = (σw−1)k−1 eπw−1 (k−1) + (σw−1)k w(k)

(
eπw−1k

)
Then w ∈ W (k)− (i.e. that these two elements have different signs) implies
that the sign of w−1αk−1 is − (σw−1)k = 1, by definition of W (k)−.

We start with the case Cl. For ease of notation, set Φ1 = Φ+, Φ−1 = Φ−.
Let us suppose first that w ∈ W (k)+. We have to prove that:

λ(wΦl−k+1ww(k)) = λ(w) − bk−1/2 −
∑

j∈J+
k

(w)

bj +
∑

j∈J−
k

(w)

bj + εwbl , (B.1)

where w−1αl ∈ Φεw and εw ∈ {±1}. Notice that the powers of Y are correct
since if εw = 1, then cardJ+

k (w) = cardJ−
k (w) (look at the string of signs in

σw−1 from k to l which by hypothesis begins and ends with +, then cardJ+
k (w)

is the number of sign changes − to +, and cardJ−
k (w) is the number of sign

changes + to −). Then the degree of Y in the monomial corresponding to w
is 2 card J(w) and to wΦl−k+1ww(k) is

2 card J(wΦl−k+1ww(k)) + 1 = 2 card
(
(J(w) \ J+

k (w)) ∪ J−
k (w)

)
+ 1

= 2 card J(w) + 1 .

If εw = −1, then cardJ−
k (w) = card J+

k (w) − 1, and the degree of Y in the
monomial corresponding to w is 2 card J(w) + 1 and to wΦl−k+1ww(k) is

2 card J(wΦl−k+1ww(k)) = 2 card
(
(J(w) \ J+

k (w)) ∪ J−
k (w)

)
= 2 (card J(w) + 1)
= 2 card J(w) + 2 .

Recall that the length of a word is the number of positive roots sent to
negative roots by that word. It is the same as the length of its inverse. We look
first at the effect of w−1 and (wΦl−k+1ww(k))−1 on ei ± ej for k ≤ i ≤ j ≤ l.
Define

Ki(w) =
{

α = ei ± ej : i ≤ j ≤ l, w−1(α) ∈ Φ− } .
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Lemma B.4. If i ≥ k and (σw−1)i = εi then

cardKi(w) = cardKi(wΦl−k+1ww(k)) + εi(l − i + 1) .

Proof. The point here is that in w−1 (ei ± ej) = εiei′ ± ej′ there is always
one root with both signs of the basis elements equal to εi, and one with
alternate signs. As we have explained the first root then changes sign under
(wΦl−k+1ww(k))−1 whilst the second retains its sign. So if (σw−1)i = εi then
there are l− i+1 roots (including 2ei) which get mapped by w−1 into Φεi but
get mapped by (wΦl−k+1ww(k))−1 into −Φεi ; the other l − i roots will keep
the same sign. ��

So in the roots ei ± ej for k ≤ i ≤ j ≤ l we get a change of length

l∑
i=k

εi(l − i + 1) =
l∑

i=k

(l − i + 1) − 2
∑

k≤i,εi=−1

(l − i + 1) .

Now, bl − bk−1/2 =
∑l

i=1(l − i + 1) −∑k−1
i=1 (l − i + 1) =

∑l
i=k(l − i + 1).

Also we have

2
∑

k≤i,εi=−1

(l − i + 1)

=
∑

j∈J+
k

(w)

2
j∑

i=1

(l − i + 1) −
∑

j∈J−
k

(w)

2
j∑

i=1

(l − i + 1) + 2δ
l∑

i=1

(l − i + 1) ,

where δ = 0 if εw = 1 and δ = 1 if εw = −1. One can see this by looking at
the string of +s and −s. A string of −s starts at a j1 + 1 where j1 ∈ J−

k (w)
and ends at a j2 where j2 ∈ J+

k (w). If the last term in the string is a − then
since l /∈ J(w) we need to add the last term as appropriate. But

∑
j∈J+

k
(w)

2
j∑

i=1

(l − i + 1) −
∑

j∈J−
k

(w)

2
j∑

i=1

(l − i + 1) + 2δ
l∑

i=1

(l − i + 1)

=
∑

j∈J+
k

(w)

bj −
∑

j∈J−
k

(w)

bj + 2δbl .

Hence we have got a contribution to the change in length between w and
wΦl−k+1ww(k) by looking at the roots ei ± ej for k ≤ i ≤ j ≤ l of

bl − bk−1/2 −
∑

j∈J+
k

(w)

bj +
∑

j∈J−
k

(w)

bj − 2δbl .

So our claim is that the other roots don’t contribute any change in length.
That is certainly true of ei ± ej for i ≤ j ≤ k − 1 since the elements w−1 and(
wΦl−k+1ww(k)

)−1 act in the same way on these roots.



B Factorisation of Polynomials Associated to Classical Groups 197

The last case where i ≤ k − 1 < j, if eπw−1 (j) and w(k)eπw−1 (j) are both
on the same side of i then there is no change in the number of roots being
sent to negative roots. If however they are on different sides then to see that
there is no change in the number of positive roots changing sign we have to
consider the four positive roots ei ± ej and ei ± eπw−1 (j) if πw−1(j) > i (and
otherwise ei ± ej and ei ± w(k)eπw−1 (j)).

Let us suppose now that w ∈ W (k)−. We have to prove that:

λ(wΦl−k+1ww(k)) = λ(w) − bk−1/2 −
∑

j∈J+
k

(w)

bj + bk−1 +
∑

j∈J−
k

(w)

bj + εwbl .

(B.2)

Check first that the powers of Y match up again. If εw = 1, then
card J+

k (w) − 1 = card J−
k (w) (look at the string of signs in σw−1 from k

to l which by hypothesis begins with − and ends with +, then cardJ+
k (w)

is the number of sign changes − to +, and cardJ−
k (w) is the number of sign

changes + to −). Then the degree of Y in the monomial corresponding to w
is 2 card J(w) and to wΦl−k+1ww(k) is

2 card J(wΦl−k+1ww(k)) + 1

= 2 card
(
(J(w) \ J+

k (w)) ∪ J−
k (w) ∪ {k − 1})+ 1

= 2 card J(w) + 1 .

If εw = −1, then cardJ−
k (w) = cardJ+

k (w), and the degree of Y in the
monomial corresponding to w is 2 card J(w) + 1 and to wΦl−k+1ww(k) is

2 card J(wΦl−k+1ww(k)) = 2 card
(
(J(w) \ J+

k (w)) ∪ J−
k (w) ∪ {k − 1})

= 2 (cardJ(w) + 1)
= 2 card J(w) + 2 .

Again we look at the effect of w−1 and (wΦl−k+1ww(k))−1 on ei ± ej for
k ≤ i ≤ j ≤ l and with the same argument we get a change of length

l∑
i=k

εi(l − i + 1) =
l∑

i=k

(l − i + 1) − 2
∑

k≤i,εi=−1

(l − i + 1) .

Now, this time since the string of +’s and −’s starts with a − we need to add
an extra term to get

2
∑

k≤i,εi=−1

(l − i + 1) =
∑

j∈J+
k

(w)

2
j∑

i=1

(l − i + 1) −
∑

j∈J−
k

(w)

2
j∑

i=1

(l − i + 1)

− 2
k−1∑
i=1

(l − i + 1) + 2δ

l∑
i=1

(l − i + 1)

=
∑

j∈J+
k

(w)

bj −
∑

j∈J−
k

(w)

bj − bk−1 + 2δbl ,
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where δ = 0 if εw = 1 and δ = 1 if εw = −1.
Hence we have got a contribution to the change in length between w and

wΦl−k+1ww(k) by looking at the roots ei ± ej for k ≤ i ≤ j ≤ l of

bl − bk−1/2 −
∑

j∈J+
k

(w)

bj +
∑

j∈J−
k

(w)

bj − 2δbl .

The same argument as above shows that the other roots don’t contribute
to a change in length.

Note that these identities B.1 and B.2 are generalisations of the classical
identities:

λ(wlw) = λ(w) + 1 if w−1(αl) ∈ Φ+ ,

λ(wlw) = λ(w) − 1 if w−1(αl) ∈ Φ− .

This establishes the proof of Theorem B.1 detailed in the Introduction.
These identities therefore suffice in the case of Cl to show that our claim

that the correspondence w �→ wΦl−k+1ww(k) behaves in the following manner:

Xbk−1/2Y

⎛⎝X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
= X−λ(wΦl−k+1ww(k))

∏
αj∈wΦl−k+1ww(k)(Φ−)

Xbj Y cj .

Hence

PG(X,Y ) = (1 + Xbk−1/2Y )

⎛⎝ ∑
w∈W (k)

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠ ,

where

W (k) =
{

w = πwσw : w−1(αk−1) and
(
wΦl−k+1ww(k)

)−1 (αk−1)
have the same sign and (σw−1)k = 1

}
∪
{

w = πwσw : w−1(αk−1) and
(
wΦl−k+1ww(k)

)−1 (αk−1)
have opposite signs and (σw−1)k = −1

}
and

PG(X,Y ) = (1 + Y )
r∏

i=1

(1 + Xbi/2Y )RG(X,Y ) ,

where

RG(X,Y ) =

⎛⎝∑
w∈W̃

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
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and

W̃ =
r+1⋂
k=1

W (k) .

This concludes the proof of Theorem B.3 for the case of Cl and establishes
the description of the resulting factor detailed in B.2.

Next consider the case Dl. We start with looking at the effect of w and
wΦl−k+1ww(k) on the roots ei ± ej for k ≤ i < j ≤ l. Define again

Ki(w) = {α = ei ± ej : i < j ≤ l, w−1(α) ∈ Φ− } .

Lemma B.5. If i ≥ k and (σw−1)i = εi then

cardKi(w) = card Ki(wΦl−k+1ww(k)) + εi(l − i) .

If i < k then cardKi(w) = card Ki(wΦl−k+1ww(k)).

The same proof works here with the observation that in Dl we don’t have
roots 2ei so our counting arguments for Cl here and elsewhere will generally
be effected by a drop of one everywhere.

Note taking i = l − 1, that this lemma implies in particular for the roots
simple αl−1 and αl that we get one more or one less of these roots in the
monomial corresponding to wΦl−k+1ww(k) according to whether εl−1 is re-
spectively 1 or −1. Note that in the combinatorial data for Dl, cl−1 = cl = 1.
Therefore the proof that the degree of Y in the monomial corresponding to
wΦl−k+1ww(k) is one more than that for w ∈ W (k) is the same as for Cl

except that we look just at the string of +’s and −’s in σw−1 from k to l − 1.
Let us suppose first that w ∈ W (k)+. We have to prove that:

λ(wΦl−k+1ww(k)) = λ(w) − bk−1/2 −
∑

j∈J+
k

(w)

bj +
∑

j∈J−
k

(w)

bj + εl−1bl−1 .

(B.3)

Note that since bl−1 = bl, the last term takes account of the change of degree
in X corresponding to the action of w and wΦl−k+1ww(k) on the roots αl−1

and αl.
By Lemma B.5,

λ(wΦl−k+1ww(k)) − λ(w) =
l−1∑
i=k

εi (l − i)

=
l−1∑
i=k

(l − i) − 2
∑

k≤i<l,εi=−1

(l − i)

= bl−1 − bk−1/2 −
∑

j∈J+
k

(w)

bj +
∑

j∈J−
k

(w)

bj − 2δbl−1 ,
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where δ = 0 if εl−1 = 1 and δ = 1 if εl−1 = −1. The last equality just follows
the same argument as for Cl with the observation that for Dl

bl−1 =
l−1∑
i=1

(l − i) ,

bj = 2
j∑

i=1

(l − i) .

If w ∈ W (k)− then by a similar adaptation of the argument for Cl one can
prove that

λ(wΦl−k+1ww(k))

= λ(w) − bk−1/2 −
∑

j∈J+
k

(w)

bj + bk−1 +
∑

j∈J−
k

(w)

bj + εl−1bl−1 . (B.4)

Again the identities B.3 and B.4 prove that in the case of Dl,

PG(X,Y ) = (1 + Y )
r∏

i=1

(1 + Xbi/2Y )RG(X,Y ) ,

where

RG(X,Y ) =

⎛⎝∑
w∈W̃

X−λ(w)
∏

αj∈w(Φ−)

Xbj Y cj

⎞⎠
and

W̃ =
r+1⋂
k=1

W (k) .

This concludes the proof of Theorem B.3 for the case of Dl and establishes
the description of the resulting factor detailed in B.2. ��
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