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PREFACE

This monograph is an attempt to justify the following assertion: “It is desir-
able to learn algebra via number theory and to learn number theory via algebra”.

Many concepts in commutative algebra such as Euclidean domains, prime
and primary ideals, field of quotients of an integral domain and such others have
originated from notions in number theory. For one who goes deeper into the finer
aspects of number theory, algebraic techniques would appear to be powerful and
elegant. Examples are from the crisp proofs of Gauss’s quadratic reciprocity law,
Fermat’s Two-squares theorem and Lagrange’s theorem on the expressibility of a
positive integer as a sum of four squares. Though all authors of books on number
theory have emphasized this aspect, perhaps, two books that make the algebraic
approach explicit are

1. Ethan D. Bolker: Elementary Number Theory — an Algebraic Approach
W. A. Benjamin Inc. NY (1970) and

2. F. Richman: Number Theory — An Introduction to Algebra
Brooks/Cole Monterey/California (1971).

It is true that classical textbooks such as O. Zariski and P. Samuel:
Commutative Algebra Vols I and II (Springer Verlag GTM Nos. 28, 29 (1982)
original version Van Nostrand Edition (1958)) and K. Ireland and M. I. Rosen:
A Classical Introduction to Modern Number Theory, 2nd Edition, Springer Verlag
GTM No. 84 (1985) original version: Bogden and Quigley Inc., Publishers,
Tarrytown-on-Hudson, NY (1972) convey the message of doing algebra with full
number-theoretic support and vice versa exceedingly well.

The aim of this monograph is to spread this message with greater emphasis.
It is for the mathematical community, at large, to pass judgement as to how far
the desired goal has been achieved.

This monograph presupposes rudimentary knowledge of elementary number
theory as well as algebra on the part of the reader. The main theme is the study of

(i) the ring Z of integers
(ii) the Chinese Remainder Theorem and reciprocity laws

(iii) finite groups from the point of view of enumeration
(iv) abstract Möbius Inversion
(v) the role of generating functions

(vi) rings of arithmetic functions and
(vii) certain analogues of the Goldbach problem.

Many interesting topics such as p-adic fields, cyclotomy, Emil Artin’s con-
jecture and Fermat’s Last Theorem (FLT) have not been discussed in detail. How-
ever, the overall picture is what one gets about the nice interconnections between
number theory and algebra.

The monograph has been divided into four parts containing 16 chapters in
all. Each chapter begins with a ‘historical perspective’ and closes by giving ‘notes
with illustrative examples/worked-out example(s)’. Part I dealing with elements
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of number theory and algebra contains seven chapters. The details are given be-
low.

PART I
ELEMENTS OF NUMBER THEORY AND ALGEBRA

Chapter 1: Theorems of Euler, Fermat and Lagrange

Certain new proofs of classical theorems of number theory are pointed out.
Using a counting principle of Melvin Hausner, the theorems of Fermat and
Lucas are proved. D. Zagier’s proof of Fermat’s two-squares theorem is given.
Lagrange’s four-squares theorem is deduced from the fact that a certain 2× 2
matrix with entries from Z[i] has a factorization of the type BB∗ when B∗ is the
adjoint (conjugate transpose of B). Linear Diophantine equations are also dis-
cussed.

Chapter 2: The integral domain of rational integers

Z is shown as an ordered integral domain. It is proved that an ordered inte-
gral domain whose subset of positive elements is well-ordered, is the same as Z,
up to isomorphism. Operations on ideals of a commutative ring with unity are
described. They give analogues of g.c.d. and l.c.m. of integers. In the case of
an integral domain, characterizations of irreducibles and primes are shown. The
criterion for an integral domain to satisfy UFD property is given. The notion of a
GCD domain is also pointed out.

Chapter 3: Euclidean domains

Z is a Euclidean domain. The ring of algebraic integers of a quadratic number
field Q(

√
m) is a Euclidean domain when m = −1,−2,−3,−7 and −11. ‘Almost

Euclidean’ domains are discussed. It is proved that the ring R(−19) of algebraic
integers ofQ(

√
−19) is a PID, but not a Euclidean domain. Further, Z is shown to

be the unique Euclidean domain having ‘double-remainder property’.

Chapter 4: Rings of polynomials and formal power series

Polynomial rings are introduced. If F is a field, the uniqueness of the division
algorithm in F[x] characterizes F[x] among Euclidean domains. The ring A of
arithmetic functions under the operations of addition and Dirichlet convolution
is shown to be a UFD via the ring Cω of formal power series (over the field C
of complex numbers) in countably infinite indeterminates. This significant result
is due to E. D. Cashwell and C. J. Everett. See ‘The ring of number-theoretic
functions’, Pacific J. Math 9 (1959) 975–985.

Next, we give a formula for the number of monic irreducible polynomials
of degree m (> 0) over the finite field Z/pZ (where p is a prime) via Möbius
inversion. It is deduced that the number of monic irreducible polynomials over
Z/pZ is infinite.
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Chapter 5: The Chinese Remainder Theorem and the evaluation of number
of solutions of a linear congruence with side conditions

The Chinese Remainder Theorem is one of the landmarks of number theory.
Its proof along with illustrations is indicated. Direct products and direct sums
of rings are discussed. Simultaneous congruences modulo ideals of a commuta-
tive ring with unity are considered. This gives a ring-theoretic analogue of the
Chinese Remainder Theorem. The theorem holds in a polynomial ring F[x] in
which congruences with a set of pairwise relatively prime polynomials provide
the desired data for generalization. Next, a class of arithmetical functions called
even functions (mod r) is studied with a view to evaluating the number N(n,r,s)
of solutions of a linear congruence: x1 + x2 + x3 + · · ·+ xs ≡ n (mod r), under the
restriction g.c.d (xi,r) = 1 (i = 1,2,3 . . .s). David Rearick’s theorem gives N(n,r,s)
in terms of Ramanujan Sums, see theorem 39. The Rademacher formula for
N(n,r,s) is also derived in corollary 5.6.1.

Chapter 6: Reciprocity laws

Quadratic residues modulo a prime are discussed and Gauss’s quadratic reci-
procity law is shown by a proof using finite fields. Eisenstein’s cubic reciprocity
law is proved using primes in the ring Z[ω], where ω is an imaginary cube root of
unity. As pointed out by W. C. Waterhouse, the genesis of reciprocity laws is in
Gauss’s lemma.

Chapter 7: Finite groups

This chapter considers various aspects of enumeration vis-a-vis finite groups.
Firstly, one notes that the partition function whose value at n is p(n) gives the
number of conjugate classes of elements in the symmetric group Sn. Following
David Jacobson and Kenneth S. Williams, the number of representations of an ele-
ment in a finite group G as a product of s ‘special elements’ possessing a specified
property P is considered. A formula for the number N(D,a,s) of representations
of a ∈ G as a product of s elements belonging to D, where G \D is a subgroup
of G, is obtained in theorem 51. Some illustrations are shown. Next, as an ap-
plication of Burnside’s lemma, it is shown that the number of cyclic subgroups
of a group G of order r is d(r) (the number of divisors of r) if, and only if, G
is cyclic. See theorem 54 which is due to I. M. Richards. An identity due to P.
Kesava Menon is also deduced. Further, given a positive integer r, a group G of
order r is the only cyclic group of order r if, and only if, g.c.d (r,φ(r)) = 1, where
φ denotes Euler totient. See theorem 55.

Part II comprises four chapters, 8 to 11, and they deal with certain aspects of
algebraic structures with reference to (i) partial ordering, (ii) valuation. Abstract
Möbius inversion, generating functions and convolutions of functions defined on
a finite semigroup are also discussed.
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PART II
THE RELEVANCE OF ALGEBRAIC STRUCTURES TO

NUMBER THEORY

Chapter 8: Ordered fields, fields with valuation and other algebraic struc-
tures

Fields with valuation are discussed. The notion of a normed division domain
due to S. W. Golomb is discussed. Properties of modular lattices are pointed
out. Jordan-Hölder theorem is described. Unique factorization for elements of a
non-commutative ring is made possible via lattices of ideals. An analogue of the
fundamental theorem of arithmetic is also noted in the context of a finite Boolean
algebra.

Chapter 9: The role of the Möbius function

This chapter is about abstract Möbius inversion. G. C. Rota’s idea of
Incidence functions defined on a locally finite partially ordered set places Möbius
inversion in a general setting. Möbius inversion formula of number theory is ob-
tained as a special case. The incidence algebra of n× n matrices is described.
Considering a vector space Vn(q) of dimension n over a finite field Fq, one ob-
tains a formula for the number of k-dimensional subspaces of Vn(q). The Möbius
function of the lattice L(Vn(q)) of subspaces of Vn(q) is derived. See theorem 72.

Chapter 10: The role of generating functions

Perhaps the first instance of a generating function was noticed by Euler while
studying the partition function p(n), denoting the number of unrestricted parti-
tions of n. Examples of generating functions occur in results relating to Stirling
numbers and Bernoulli numbers. While deriving proofs of theorems, the essential
analytical background is sketched. Certain generating functions are expressible
as a suitable infinite product under given hypotheses. The generating function of
Ramanujan’s τ -function is an example. Using the notion of binomial posets, we
consider an algebra of incidence functions. Its connection with the algebraC[[x]]
of formal power series in x is pointed out. See theorem 77. Dirichlet series of an
arithmetic function gives yet another example of a generating function. Properties
of Dirichlet series are discussed. Given a field F , the ring F[[x]] of formal power
series in x is also considered in order to show that it is an example of a valuation
ring. See theorem 81.

Chapter 11: Semigroups and certain convolution algebras

Following E. Hewitt and H. S. Zuckerman (Finite dimensional convolution
algebras: Acta Mathematica 93 (1955), 67–119) a convolution algebra of func-
tions defined on a semigroup G is introduced. Denoting the convolution algebra
by L1(G), it is shown that L1(G) is isomorphic to the semigroup algebra CG.
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Certain applications to arithmetical convolutions are pointed out. Abstract arith-
metical functions defined on a finite semigroup of idempotents give illustrations of
generating functions behaving like Dirichlet series. See theorem 86. This general-
isation is due to M. Tainiter. See ‘Generating functions on idempotent semigroups
with applications to combinatorial analysis’, J. Comb. Theory 5(1968) 272–288.
A subclass of the class of Dirichlet series of arithmetic functions gives rise to a
new kind of algebra called a functional-theoretic algebra (F-T.A). We remark that
a finite dimensional F-T.A is, indeed, a convolution algebra.

Part III gives a bird’s eye view of the fundamentals of algebraic Number The-
ory. Noetherian and Dedekind domains are discussed in detail. The Pell equation
and its solution by the Cakravala method of Brahmagupta are presented in con-
nection with quadratic number fields. Dirichlet’s unit theorem is proved. Next, the
case of class-number two number fields gives rise to the notion of half-factorial
domains. Carlitz’s characterization of such number fields is worthy of mention.
See theorem 118 (Chapter 13).

PART III
A GLIMPSE OF ALGEBRAIC NUMBER THEORY

Chapter 12: Noetherian and Dedekind domains

This chapter is about the study of Noetherian rings, Artinian rings and
Dedekind domains. While discussing Noetherian rings, it is shown that if R is a
Noetherian ring in which all maximal ideals are principal, then R is a principal
ideal ring (PIR) (see worked-out example b). The Jacobson radical of a ring is
introduced. One comes across the class of semisimple rings in which the Jacobson
radical is (0). An analogue of Euclid’s theorem on infinitude of primes is that
a commutative ring R (with unity) is semisimple if, and only if, R is either a
field or has an infinite number of maximal ideals (see theorem 92). Properties
of Dedekind domains are shown. One meets with an analogue of the Chinese
Remainder Theorem in the context of Dedekind domains. Integral domains with
finite-norm property are also discussed.

Chapter 13: Algebraic number fields

The ideal class-group is introduced. Number fields having class-number 1 or
2 are discussed. Some properties of cyclotomic fields are pointed out. The Pell
equation and its solution are shown. Dirichlet’s unit theorem is given with proof.
See theorem 124.

Part IV is the concluding part of the monograph. There are three chapters in
this section, namely, chapters 14 to 16. These give some more interconnections.

We mention certain classes of periodic functions (mod r) (r ≥ 2). Various
convolutions of arithmetic functions are discussed. Let Br(C) denote the algebra
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of even functions (mod r). In the case of the ring (Br(C),+, ·) under addition
and Cauchy multiplication, as Br(C) is a finite dimensional algebra over C, the
ring has no nonzero nilpotent elements. So, divisors of 0 in (Br(C,+, ·)) are not
nilpotent. However, if one considers the algebraA′ of complex-valued arithmetic
functions under the operations of addition and Lucas multiplication, A′ is a ring
in which there are zero divisors that are nilpotent. Carlitz Conjecture (1966) says
that in (A′,+,∗) (the Lucas ring of arithmetic functions f : Z̃ 7→ F , where Z̃ is the
set of non-negative integers and F is a field of characteristic zero) f ∈A′ is a zero
divisor if, and only if, f is nilpotent. As far as the knowledge of the author goes,
this conjecture is yet to be resolved.

A brief account of the well-known Goldbach problem is given. Eckford
Cohen obtained a finite analogue of the Goldbach problem in 1954. (See the-
orems 139 and 140.) An extension to the situation in algebraic number fields is
also possible. Two more analogues are known. One is in the context of the ring
Mn(Z) of n×n matrices with entries fromZ. This is due to L. N. Vaserstein (1989)
with generalisation by Jun Wang (1992). The polynomial 3-primes conjecture due
to D. R. Hayes (1966) is narrated along with some of the theorems of G. W. Effin-
ger (1991), which lead to a complete solution of the polynomial analogue of the
Goldbach conjecture. These are described in chapter 15. See propositions 15.5.1
and 15.5.2.

Chapter 16 is an epilogue giving some more interconnections. Specifically,
we look at a finite group of units of a commutative ring. We also observe that one
can make a quadratic reciprocity law in the context of a finite group.

PART IV
SOME MORE INTERCONNECTIONS

Chapter 14: Rings of arithmetic functions

Following Eckford Cohen, if r ≥ 1, the class Ar(F) of (r,F)-arithmetic func-
tions f : Z→ F (a field) is defined. Ar(F) forms an algebra of dimension r under
the operations of addition and Cauchy composition. Ar(F) is a semisimple alge-
bra that is the direct sum of r fields each isomorphic to F. See proposition 14.2.1.
Then, the set Br(C) of even functions (mod r) (C, the field of complex numbers)
is shown to be a semisimple algebra of dimension d(r), the number of divisors of
r. The algebra of even functions (mod r) is studied in section 14.3. Next, Carlitz
conjecture about A′ (defined earlier) is mentioned. This conjecture is about the
structure of the Lucas ringA′ (of arithmetic functions) that is a commutative ring
with unity. Defining a ‘primary ring’ as a ring in which there is a proper minimal
prime ideal, we show that a commutative ring S having unity element is a primary
ring if, and only if, every zero divisor of S is nilpotent (see Remark 14.8.3).

When the set ofA of arithmetic functions is considered as a vector space over
C, certain linear operators on A (which are norm-preserving) yield interesting
number-theoretic identities. Examples are given.
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Chapter 15: Analogues of the Goldbach problem

The Goldbach problem of number theory is that every even number greater
than 4 is a sum of two odd primes. This problem is about 260 years old. I. M. Vino-
gradov (1891–1983) proved in 1937 that when n is an odd integer which is ‘suf-
ficiently large’, n could be expressed as a sum of three primes. Experimental
results, using super computers show that the Goldbach conjecture is true for all
even numbers up to 4.1011. An interesting connection with algebra is that every
element of the residue class ring Z/rZ (r≥ 2) (considered in terms of a least non-
negative residue system (mod r)) is a sum of two primes of Z/rZ. This is due to
Eckford Cohen (1954). He has also extended this result to a residue class ideal of
a number ring.

Mn(Z) denotes the ring of n× n matrices with entries from Z. L. N. Vaser-
stein has shown that given an integer p and A ∈ M2(Z), one can find matrices
X ,Y ∈ M2(Z) such that A = X + Y with det X = det Y = p. Next, let n be even
and q be an arbitrary positive integer. Then, given A ∈ Mn(Z), there exist matri-
ces X ,Y ∈ Mn(Z) such that A = X +Y with det X = det Y = q. See theorem 142.
Theorem 143 covers the case of Mn(Z) with n odd.

Let Fq be a finite field of characteristic p (a prime). Suppose that
M(x) ∈ Fq[x]. M(x) is called an even polynomial, if q = 2 and if x or x + 1 divides
M(x). M(x) is called odd, if it is not even.

Let M(x) ∈ Fq[x], monic with deg M(x) = r. M(x) is called a 3-primes poly-
nomial, if there exist irreducible monic polynomials P1(x), P2(x) and P3(x)∈ Fq[x]
such that deg P1(x) = r, degP2(x)< r, degP3(x)< r and M(x) = P1(x)+P2(x)+P3(x).

We examine the polynomial 3-primes conjecture given below:
Every odd monic polynomial M(x) ∈ Fq[x] is a 3-primes polynomial except

for the case q even and M(x) = x2 + a ∈ Fq[x].
Certain particular cases are given with proofs.

Chapter 16: An epilogue: More interconnections

A journey through the adjacent lanes of number theory and algebra is, indeed,
an experience beyond theorem-proving. One is tempted to believe that Gauss was
more an algebraist than a number-theorist. The various types of integral domains
that have appeared are a PID, a Dedekind domain, a Bézout domain, a valuation
domain and a Prüfer domain. The final observation is that Z finds a place in many
of them.

Four more interesting situations that arise are
(i) There exist commutative rings without maximal ideals. See theorem 157.
(ii) Fabrizio Zanello (2004) looks at ‘infinitude of primes’ in a principal ideal

domain R in terms of a property of maximal ideals of R[x] thus: If R is a PID, R
has an infinite number of pairwise nonassociated irreducible elements if, and only
if, every maximal ideal of R[x] has height 2 (see theorem 158).

(iii) We mention about the structure of the group G of units of a commutative
ring R when G is finite and of odd order. Further, if the order of G (the number of
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units in R) is of the form pm, either p equals 2 or p is a Mersenne prime Mq = 2q −1,
where q is a prime (see theorem 160 and corollary 16.4.2).

(iv) An analogue of quadratic reciprocity law due to William Duke and Kim-
berly Hopkins in the context of a finite group G is made possible using the notion
of a discriminant d of G. See theorem 162.

Some of the theorems presented are adaptations from journal articles and
other known sources. They are duly acknowledged with proper references. It
was kind of the referee to have suggested that the polynomial analogue of the
Goldbach problem be included. This has improved the original version of chapter
15 in the present form for which the author is thankful to the referee.

Before concluding, the author wishes to remark that selected chapters from
Parts I to IV may be chosen as the course material for a one-semester programme
for senior undergraduate students and for beginning research scholars entering the
areas of number theory and algebra. Some suitable combinations of chapters are
(i) chapters 1,2,3,4,5 and 6 (v) chapters 1,3,4,9,10 and 11
(ii) chapters 2,3,4,5,11 and 14 (vi) chapters 4,5,6,7,14 and 16
(iii) chapters 1,3,4,5,6 and 7 (vii) chapters 2,8,12,13,15 and 16.
(iv) chapters 2,3,5,6,12 and 13
It goes without saying that an instructor could select chapters of his/her choice.

This monograph was originally planned to be published by Marcel Dekker,
Inc., New York. However, due to certain unforeseen circumstances, there was a
delay for completion of the final draft of the manuscript, on the part of the author.
He is grateful to Ms. Maria Allegra, Mr. Kevin Sequeira, Mr. Fred Coppersmith,
Mr. David Grubbs, Ms. Theresa Delforn and Mrs. Gerry Jaffe of the Taylor &
Francis Group for all the help received in connection with the publication of this
manuscript.

Thanks are also due to Dr. T. R. Aggarwal, Principal Scientific Officer, De-
partment of Science and Technology, Ministry of Science and Technology, Gov-
ernment of India, New Delhi for the timely help received in the matter of a release
of the Grant for writing the book.

The author expresses his sincere thanks to M/s Srividya Computers,
Chenakkal, Calicut University P. O. and M/s Beeta Computers, XXII/20,
Rajendra Nivas, Fort, Tripunithura P. O. (both located in Kerala) for their valu-
able help and assistance in typesetting work done extremely well. In particular,
the author is indebted to Mr. Sanjai Varma and to Mr. K. Manu for their unfailing
courtesy and efficiency in the execution of LATEX.

Mistakes, if any, found in the narration of proofs or statements may kindly
be pointed out to the author. None of the persons who helped the author in this
venture should be held responsible for mistakes/errors that the reader may find in
this monograph.

25th June 2006 R. Sivaramakrishnan
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CHAPTER 1

Theorems of Euler, Fermat and Lagrange

Historical perspective

Number theory has a long and interesting history. It deals with the study of
properties of integers. The fact that there are infinitely many primes was noted by
Euclid (300 B.C.) in Euclid’s Elements (Book IX, theorem 20). The result: ‘For
p a prime, if p divides ab (a, b integers), either p divides a or p divides b’ is
found in Euclid’s Elements (Book VII, theorem 30). Further, Euclid noted that
every natural number is divisible by at least one prime p (see Euclid’s Elements,
Book VII, theorem 31). Every positive integer n (> 1) is a product of primes and
apart from rearrangement of factors, n can be expressed as a product of primes
uniquely. This is known as the fundamental theorem of arithmetic (F.T.A). F.T.A
does not seem to have been stated in this form before Carl Friedrich Gauss (1777–
1855). As pointed out in [4], it was familiar to earlier mathematicians, but Gauss
was the first to develop arithmetic as a “systematic science”. Problems in number
theory led to many important developments in other branches of mathematics: for
instance, Gauss’s construction of a regular polygon of 17 sides. Over the years,
many results of significance sprang up.

A positive integer is said to be ‘representable’ if it can be expressed as the
sum of two squares of integers (including zero). In fact, a perfect square r2 is
representable in the sense that r2 = r2 +02. It is known that the least integer which
is representable in three ways is

325 = 182 + 12 = 172 + 62 = 152 + 102.

Representable numbers were first studied by Diophantos in 250 A.D. Equa-
tions for which solutions are sought in integers are called Diophantine equa-
tions. In the case of the equation 2x + 5y = 100, a solution by inspection gives
〈x,y〉 = 〈10,16〉, as are many others. Pierre de Fermat (1601–1665) who was a
lawyer by profession, took interest in mathematics while reading a translation by
Bachet (1581–1638) of Diophantos’ ‘Arithmetica’. Fermat gave a formula for the
number of solutions of the Diophantine equation

x2 + y2 = r.

This follows from Fermat’s Two-squares theorem. It may be remarked that Fermat
merely stated theorems and many of his theorems were codified with proofs by
Leonhard Euler (1707–1783), the way we learn number theory from textbooks.

3
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The ‘congruence’ notation was introduced and used extensively by Gauss. The
famous ‘Four-squares theorem’ which states that every positive integer is the
sum of four integer squares, was guessed by Fermat and proved by Joseph Louis
Lagrange (1736–1813) . Diophantos probably knew the Four squares theorem.

Among the mathematicians who contributed to number theory during the 17th

and the 18th centuries, the name of John Wilson (1741–1793) is never missed as
he proved only one theorem of number theory in his lifetime and he is known by
that lone theorem.

1.1. Introduction

The set {0,±1,±2, . . .} of integers is denoted by Z. This notation probably
got established due to the fact that the German word zahlen means ‘number’.

The purpose of this chapter is to point out certain proofs of classical theorems
of elementary number theory using ideas arising from

(1) an elementary enumeration principle of Melvin Hausner [6]
(2) a map on Z×Z×Z due to D. Zagier [17] and
(3) Newman’s [11] factorisation of 2×2 matrices over the ring of Gaussian

integers.
We also give conditions necessary and sufficient for the existence of solutions

of Diophantine equations of first degree in s unknowns. A formula for solutions
of

a1x1 + a2x2 + . . .+ asxs = r, ai ≥ 1, i = 1,2, . . . ,s ; r ≥ 1,
when solutions exist, is pointed out.

1.2. The quotient ring Z/rZ

Let r be an arbitrary element of Z. We write

rZ = {rk : k ∈ Z}.
It suffices to choose r to be either 0 or a positive integer. rZ consists of inte-
gers congruent to 0 (mod r). rZ is an ideal of the ring (Z,+, ·), where + denotes
addition and · denotes multiplication. We know that for a,b ∈ Z,

a≡ b (mod r)

if, and only if, a − b ∈ rZ, that is, if, and only if, a and b come from the same
coset of (rZ,+) in (Z,+). Congruence (modulo r) is an equivalence relation on
Z and a congruence class is a coset of (rZ,+) in (Z,+). Each coset of (rZ,+)
is a subset of Z containing integers which form an arithmetic progression with
common difference r. It is this connection between congruence (modulo r) and
cosets of (rZ,+) that motivates quotient groups and quotient rings.

It is easy to check that the quotient group (Z/rZ,⊕) under addition
(modulo r) is cyclic and is of order r. The quotient ring (Z/rZ,⊕,⊗) under
addition and multiplication (modulo r) is an example of a finite ring which is a
field if, and only if, r is a prime. (The abstract definition of a field was given by
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Heinrich Weber (1842–1913) in a paper of 1893). The group of units in Z/rZ is
the set of cosets

{ [a] : a ∈ N,g.c.d (a,r) = 1)},
where N denotes the set of positive integers. The cardinality of the group of units
in Z/rZ is φ(r), the Euler totient. To find x such that

(1.2.1) ax≡ b (mod r), where a,b are fixed integers,

is to obtain the congruence class [t] such that at ≡ b (mod r). When t is obtained,
[t] is a solution of (1.2.1). It is known that (1.2.1) is solvable if, and only if,
g.c.d (a,r) divides b. If this happens, the congruence (1.2.1) is equivalent to the
equation

(1.2.2) AX = B

in Z/rZ, where A = [a] and B = [b]. If X ∈ Z/rZ is obtained from (1.2.2), any
t ∈ X solves (1.2.1). Conversely, if t is a solution of (1.2.1) then [t] solves (1.2.2).
In short, what are congruences in number theory are equations in algebra.

Next, we note that (1.2.1) could be written as

(1.2.3) ax = b + ry

which is an example of a Diophantine equation in x,y. That is, (1.2.1), (1.2.2) and
(1.2.3) are three formulations of the same problem, namely,

(1) solving a linear congruence
(2) solving an equation in Z/rZ and
(3) solving a linear Diophantine equation in two unknowns x, y.

Now, let us denote the group of units in Z/rZ by U(r). For r ≥ 1, U(r) has φ(r)
elements. One notes that

(1.2.4) aφ(r) ≡ 1(mod r), whenever g.c.d (a,r) = 1.

which is Euler’s theorem.
In the case r = p, a prime, one sees that

(1.2.5) ap−1 ≡ 1 (mod p)

(whenever p does not divide a) which is Fermat’s little theorem.
Next we point out that Wilson’s theorem follows as a corollary of

Lemma 1.2.1 : Let G = {a1,a2 . . . ,ar} be an abelian group of order r under
multiplication, with a1 serving as the identity element. If a j ( j 6= 1) is the only
element of order 2 in G, then a1 ·a2 · . . . ·ar = a j.

Proof : We observe that a j is its own inverse. The remaining elements ai

(i 6= 1, i 6= j) have distinct inverses. That is, the product of all these elements is
the identity a1.

a1a2 . . .a j−1a j+1 . . .ar = a1.

Multiplication by a j gives the desired result. �
Corollary 1.2.1 (Wilson’s theorem) : If p is a prime, then, (p−1)!+1≡ 0 (mod p).
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Proof : For, the case p = 2 is obvious. So, let p be an odd prime. If we con-
sider the multiplicative group of Z/pZ, it is cyclic and so abelian. Its (p − 1)
elements are such that [(p − 1)] is the only element of order 2 in the group. So, by
lemma 1.2.1, we see that (p − 1)!≡ −1 (mod p). �

Remark 1.2.1 : Wilson’s theorem has a valid converse which is stated below:
If r is a positive integer > 1 such that (r − 1)! + 1 ≡ 0 (mod r), then r is a

prime.

This by itself is not an efficient way to determine primes. But, Wilson’s
theorem is relevant to applications in certain contexts. For instance, if p is a
prime, one knows that the quadratic congruence

(1.2.6) x2 ≡ −1(mod p)

has a solution if, and only if, p is a prime of the form 4k + 1. To prove (1.2.6) one
way, Wilson’s theorem is used.
Before concluding this section, we point out an interconnection between algebra
and number theory.

Definition 1.2.1 : Let r> 1 be a composite number. Suppose that d is an arbitrary
but fixed integer such that 1≤ d < r. We write

(1.2.7) Ar(d) = [{x ∈ Z : xd ≡ 0(mod r)}]

It is easily verified that

Ar(d) = {[x] ∈ Z/rZ : [x] [d] = [0]}.
Ar(d) = Ar(dt), if g.c.d (t,r) = 1

Ar(d) is an ideal of the ring Z/rZ.
Ar(d) is the annihilator of [d] in Z/rZ.

As an illustration, when r = 12, d = 7, one has

A12(7) = [{x ∈ Z : 7x≡ 0(mod 12)}] = [0].

When r = 12, d = 4, we get

A12(4) = [{x ∈ Z : 4x≡ 0(mod 12)}] = {[0], [3], [6], [9]}.
A12(4) is contained in Z/12Z and is an ideal of Z/12Z. Next, suppose that d
divides r. When x = r/d, 2r/d, . . . , (d −1)r/d, r ; xd ≡ 0 (mod r) and so, there are
d elements in Ar(d).

Lemma 1.2.2 (Charles Green [5]) : Let d be a proper divisor of r. Suppose that
Ar(d) is as defined in (1.2.7). Then, Ar(d) is a field if, and only if, d is a prime
such that g.c.d (d,r/d) = 1. If p1, p2, . . . , ps are prime divisors of r such that
g.c.d (pi,r/pi) = 1, (i = 1,2, . . . ,s), there are s fields contained in Z/rZ.
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Proof : :⇒ Let Ar(d) be a field. Suppose that d = d1d2. We write r = d1d2t. We
note that [d1t] and [d2t] are both nonzero elements in Ar(d). But, [d1t][d2t] =
[d1d2t2] = [0]. So, if d2|r, then r = d2s and [d][s] is a nonzero element of Ar(d)
such that [ds][ds] = [d2s2] = [0]. As Ar(d) is a field, d has to be a prime p such
that p2 - r ; that is, d is a prime and g.c.d (d, r

d ) = 1.

⇐: Suppose that d is a prime p and p2 - r. Let q = r
p and g.c.d (q, p) = 1. If

m ∈ Ar(p), then m = [nq] for some integer n. Since a ≡ b (mod r) implies
aq≡ bq (mod r), we see that an element [nq] of Ar(p) is [0] if, and only if, p|n.
Hence, if [aq] and [bq] are nonzero elements of Ar(p), we have

[aq][bq] = [abq2] is nonzero.

p is a prime such that p - a, p - b and p - q. So p - abq. Therefore, Ar(p) is an
integral domain. Since Ar(p) is finite, Ar(p) is a field.

Further, there are as many fields Ar(p) as there are primes p for which p | r
and g.c.d (p, r

p ) = 1. This proves the lemma 1.2.2. �

Corollary 1.2.2 : Let p be a prime such that p2 - r. Then, the identity element of
the field Ar(p) is [cc′] where c 6= 0, [c] ∈ Z/pZ and cc′ ≡ 1 (mod p).

Proof : Given Ar(p) is a field, we can consider a nonzero element [c] ∈ Z/pZ,
where Z/pZ is a field. Since p - c, there exists [c′] ∈ Z/pZ such that

cc′ ≡ 1(mod p).

Then [cc′] is a nonzero element of Ar(p). Further,

[cc′][cc′] = [c2c′c′] and c2c′ ≡ c (mod p).

Also, c′ ≡ c′ (mod
r
p

).

So,
c2c′c′ ≡ cc′(mod r) or [cc′][cc′] = [cc′] in Ar(p).

That is, [cc′] is the identity element in Ar(p). �

Example 1.2.1 : Taking r = 12, p = 3, we observe that A12(3) is a field, as
g.c.d(3,4) = 1. Further,

A12(3) = {[0], [4], [8]}
[2] ∈ Z/3Z is such that 22 ≡ 1 (mod 3). Clearly, [4] is the identity element of
A12(3).

Example 1.2.2 : Taking r = 14, p = 7, we have

A14(7) = {[0], [2], [4], [6], [8], [10], [12]}.
72 does not divide 14. Further, 2 and 4 are such that 8≡ 1 (mod 7). Then, [8] is
the identity element in A14(7).
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Next, we note that every ideal of Z is principal. That is, an ideal of Z is
generated by a single element. For, let I be an ideal of Z. If I = (0), I is generated
by 0. Suppose I 6= (0)). I contains a nonzero element say n. If n ∈ I, −n ∈ I and
so I contains positive integers. Let m be the least positive integer contained in I.
The division algorithm in Z says that given a ∈ Z,

a = mq + r, where 0≤ r < m.

Since a ∈ I and mq ∈ I, r = a − mq∈ I.
As r < m, if r 6= 0, we arrive at a contradiction to the minimality of m ∈ Z.

This forces r to be zero. So, a = mq.
We write

(m) = {km : k ∈ Z} .
(m) is the ideal of Z generated by m. So I ⊆ (m). As m∈ I, (m)⊆ I. Thus, I = (m),
or every ideal of Z is principal. In fact, Z is an example of principal ideal domain
written PID.

Definition 1.2.2 : The set of Gaussian integers is defined by

Z[i] =
{

a + bi : a,b ∈ Z, i denotes
√

−1
}
.

The function g : Z[i]→ Z given by

(1.2.8) g(a + bi) = a2 + b2 a,b ∈ Z
serves as a Euclidean Norm on Z[i] and so Z[i] is a PID.

We look at Euclidean domains more closely in Chapter 3.

1.3. An elementary counting principle

X denotes a finite set. Let p be an arbitrary but fixed prime. | S | denotes the
number of elements of S when S is finite. There exist functions f : X → X such
that

f p = f ◦ f ◦ · · · ◦ f (p times) = j, the identity map on X .
For example, let G be a finite group. We define f : G→ G by
f (x) = x−1 (the inverse of x) for each x ∈ G. It is clear that f ◦ f = f 2 = j.

If T is defined by
T = {x ∈ G : f (x) = x} ,

then,

T =
{

x ∈ G : x−1 = x
}

=
{

x ∈ G : x2 = e, the identity element in G
}
.

We note that | T | gives the number of elements of order 2 in G. If | G | is odd,
| T | ≡ 1 (mod 2) and we get

(1.3.1) | G | ≡ | T | (mod 2).

If | G | is even, elements x for which x 6= x−1 can be paired off and so
| T | ≡ 0(mod 2). In this case also (1.3.1) holds. As e ∈ T , it follows that

© 2007 by Taylor & Francis Group, LLC



THEOREMS OF EULER, FERMAT AND LAGRANGE 9

if G is a group of even order, then G has an element a 6= e such that a2 = e
(see I. N. Herstein [8]). This is precisely what we did in the proof of Wilson’s
theorem for odd primes p. The sort of argument used to obtain (1.3.1) could be
given in a general set-up.

Theorem 1 (Melvin Hausner (1983)) : Let f : X → X be such f p = j, the identity
map. Suppose T is a subset of X defined by

T = {x ∈ X : f (x) = x} .
Then,

(1.3.2) | X | ≡ | T | (mod p).

Proof : For x ∈ X , we define A(x) by

A(x) =
{

x, f (x), f 2(x), · · · , f p−1(x)
}
.

A(x) is called the orbit of x under f , as f p(x) = x for all x ∈ X . The orbits of the
elements of X give rise to a partition of set X . Further,

| A(x) |= 1 if, and only if, f (x) = x.

That is, |A(x)| = 1 if, and only if, x ∈ T.

Claim : If |A(x)| > 1, then |A(x)| = p. If A(x) is such that, for some s, t ;
0≤ s< t < p; f s(x) = f t (x), then, f t−s(x) = x. Since f p(x) = x and g.c.d (t −s, p) = 1,
it follows that t − s = 1 and f (x) = x. So, |A(x)| = 1. Thus, the elements of A(x) are
all distinct if |A(x)|> 1. Then, |A(x)| = p. Now, there are |T | orbits of length 1 in
X . As X is a disjoint union of orbits, we get

| X | = | T | + mp,

where m is the number of orbits of length p. (1.3.2) follows. �

Theorem 2 (Fermat) : For n ∈ N and p a prime

(1.3.3) np ≡ n (mod p).

Proof : Let R denote the field of real numbers.

Rn = {(x1,x2, · · · ,xn) : xi ∈ R, i = 1,2, · · · ,n}
is referred to as an n−dimensional vector space over R.
Points (x1,x2, · · · ,xn) where xi ∈ Z (i = 1,2, · · · ,n) are called lattice points in Rn.

From x1,x2, · · · ,xn, 1 ≤ xi ≤ n (i = 1,2, · · · ,n), we choose a lattice point
(x1,x2, · · · ,xp) ∈ Rp. We define

X = {(x1,x2, · · · ,xp) : 1≤ xi ≤ n , (i = 1,2, · · · , p)} .
A function f : X → X is defined by

f (x1,x2, · · · ,xp) = (x2,x3, · · · ,xp,x1).

Then f p = j, the identity map. We note that |X | = np.
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If (xi,xi, · · · ,xi) ∈ X , i = 1,2, · · · ,n;

f (xi,xi, · · · ,xi) = (xi,xi, · · · ,xi), i = 1,2, ...n.

So, if

T = {(x1,x2, · · · ,xp) : f (x1,x2, · · · ,xp) = (x1,x2, · · · ,xp)} ,
|T | = n.

By theorem 1, we get the desired congruence (1.3.3). �

Remark 1.3.1 : We note that this argument works with Rp, whatever be the value
of n 6= 0.

Theorem 3 (Lucas’ Theorem) : Let p be any prime. Suppose that

n = n0 + n1 p + · · ·+ nk pk 0≤ ni < p ;
and r = r0 + r1 p + · · ·+ rk pk 0≤ ri < p.

}
i = 0,1, · · · ,k.

Then,

(1.3.4)
(

n
r

)
≡
(

n0
r0

)(
n1
r1

)
· · ·
(

nk

rk

)
(mod p),

where
(

a
b

)
=





0, if b> a;
a!

b!(a−b)! , if b< a;
1, if b = a.

Proof : n and r are such that

n = n0 + N p, n0 ≥ 0

r = r0 + Rp, r0 ≥ 0.
Once we prove that

(1.3.5)
(

n
r

)
=
(

n0
r0

)(
N
R

)
(mod p),

we will get from
n = n0 + n1 p + n2p2

r = r0 + r1 p + r2 p2

n = (n0 + n1 p) + n2p · p
r = (r0 + r1 p) + r2 p · p

So, (
n
r

)
≡
(

n0 + n1 p
r0 + r1 p

)(
n2 p
r2 p

)
(mod p),

Or, (
n
r

)
≡
(

n0

r0

)(
n1

r1

)(
n2 p
r2 p

)
(mod p).
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But, (
n2 p
r2 p

)
≡
(

n2
r2

)
(mod p)

This would imply that
(

n
r

)
≡
(

n0
r0

)(
n1
r1

)(
n2
r2

)
(mod p).

Therefore, it suffices to show that (1.3.5) holds. We write

Ai = {(i,1), (i,2), · · · , (i,N)}; i = 1,2, · · · , p.
and

B = {(0,1), (0,2), · · · , (0,n0)}.
A1, A2, · · · ,Ap and B are sets of ordered pairs. | Ai |= N, i = 1,2, · · · , p;
| B |= n0. There are (p + 1) sets under consideration. We write

(1.3.6) A = A1∪A2∪ ·· ·∪Ap∪B.

Then,

(1.3.7) | A |= N p + n0.

We define f : A→ A by moving A′is cyclically and keeping B fixed. That is,

(1.3.8)





f ((i,x)) = (i + 1,x), 1≤ i≤ p − 1, x = 1,2, · · · ,N.
f ((p,x)) = (1,x), x = 1,2, · · · ,N.
f ((0,x)) = (0,x), x = 1,2, · · · ,n0.

From (1.3.8), we get

(1.3.9)





f (Ai) = Ai+1 (1 ≤ i ≤ p − 1),
f (Ap) = A1,

f (B) = B.

It is seen that f p(A) = A or f p = j, the identity map. We take X as the collection
of subsets C of A with |C |= r.

f (C) = { f (x) : x ∈C}
As f is one-to-one, | f (C)| = |C|. |X | is the number of r-element subsets of A,

where |A| = n. So, |X | =
(

n
r

)
.

Any subset C of A can be uniquely written as

C = C1∪C2∪ ·· ·Cp ∪C0

where Ci ⊆ Ai and C0 ⊆ B.
Since f sends Ai cyclically around and keeps B fixed, we see that

f (C) = C
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if, and only if, Ci = f i−1(C1) i = 1,2, · · · , p. For, f (C1) = C2, f 2(C1) = C3, · · · and

f (Ci) = Ci+1,

f (Cp) = C1,

f (C0) = C0.

Then f (C) = C.
For C contained in X , we have |C |= r. If C is in T ,

r = |C| = p |C1|+ |C0|.
Also, |C0| ≥ 0, r0 < p. The cardinality restriction on C is satisfied if, and only if,

| C1 |= R, | C0 |= r0. So, | C |= Rp + r0. There are
(

N
R

)
such choices for C1 and

(
n0

r0

)
independent choices for C0. So,

| T |=
(

N
R

)(
n0

r0

)

and | X | ≡ | T | (mod p) yields (1.3.5). �

Remark 1.3.2 : Proofs of theorems 1, 2 and 3 have been adapted from [6].

1.4. Fermat’s two squares theorem

It is known [4] that a prime p of the form 4k + 1 can be expressed as a sum
of two squares. Many proofs are available. One is based on the fact that a prime
of the form 4k + 1 splits in Z[i]. (It can be proved without appealing to Z[i]). In
1984, D. R. Heath-Brown [7] gave a new proof based on an involutory map on
a finite set. D. Zagier [17] gave a proof in 1990 on the lines of proof given by
Heath-Brown. D. Zagier’s proof is presented below. We need a definition and a
special case of theorem 1.

Definition 1.4.1 : Let X be a finite set. Suppose f : X → X is a well-defined map.
f is called an involution, if f ◦ f = j, the identity map.

The set
T = {y ∈ X : f (y) = y}

is called the set of fixed points of f .
From theorem 1, we see that we could take the case p = 2 in the congruence

| X |≡| T | (mod p).
So, when f : X → X is an involution, we deduce that | X | and | T | have the

same parity, or

(1.4.1) | X | ≡ | T | (mod 2).

D. Zagier remarks that the above congruence is the combinatorial analogue
of the
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Proposition 1.4.1 : The Euler characteristic of a topological space and its fixed-
point set under any continuous involution have the same parity.

The above theorem is from algebraic topology. See [2].

Theorem 4 (Fermat’s Two-squares theorem) : Any prime p≡ 1 (mod 4) is a sum
of two squares.

Proof : We define a set

S =
{

(x,y,z) ∈ N3 : x2 + 4yz = p
}

where N denotes the set of positive integers. p is an arbitrary but fixed odd prime,
where p≡ 1(mod 4).

If p = 4k + 1 taking x = 1, k = yz, the different values of y,z are obtained from
the different factorizations of k into the form yz. So, there are only a finite number
of solutions 〈x,y,z〉 to the equation

x2 + 4yz = p.

So, S is a finite set. For (x,y,z) ∈ S, let

(1.4.2) f (x,y,z) =





(x + 2z,z,y − x − z), i f x < y − z
(2y − x,y,x − y + z), i f y − z< x < 2y
(x − 2y,x − y + z,y), i f 2y< x.

The image of (x,y,z) under f is the triple (x′,y′,z′) where x′,y′,z′ are positive
integers. Three cases arise.
(a) Suppose that (x,y,z) is such that x < y − z.
Then,

f (x,y,z) = (x + 2z,z,y − x − z).
We have y − x − z> 0, z > 0.
As x> 0, x + 2z> 0.
We write

x′ = x + 2z,y′ = z, z′ = y − x − z.
2y′ = 2z and 2y′ < x′ = x + 2z.
So,

f (x′,y′,z′) = (x′ − 2y′,x′ − y′ + z′,y′) = (x,y,z)
So,

f 2(x,y,z) = (x,y,z).
(b) Suppose that x,y,z are such that y − z< x < 2y. Then,

f (x,y,z) = (2y − x,y,x − y + z).

2y − x> 0,y> 0,x − y + z> 0 or x + z> y or y − z< x < 2y.
If 2y − x = x′, y = y′ and x − y + z = z′.

2y′ − x′ = 2y − (2y − x) = x > 0.

Also,
2y′ > x′,y′ − z′ = y − (x − y + z) = 2y − x − z< x′, as x′ = 2y − x.
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Therefore,
y′ − z′ < x′ < 2y′.

That is,
f (x′,y′,z′) = (2y′ − x′,y′,x′ − y′ + z′) = (x,y,z).

So,
f 2(x,y,z) = (x,y,z).

(c) Suppose that, x,y and z are such that 2y< x.

f (x,y,z) = (x − 2y,x − y + z,y).

Take
x′ = x − 2y,y′ = x − y + z,z′ = y,

x′ > 0, y′ − z′ = (x − y + z) − y = x − 2y + z = x′ + z> x′ or x′ < y′ − z′.

So,
f (x′,y,′ z′) = (x′ + 2z′,z′,y′ − x′ − z′) = (x,y,z).

Or,
f 2(x,y,z) = (x,y,z).

This shows that f is an involution on S. To obtain T , we note that
f (x,y,z) = (x,y,z) if, and only if, we get positive integral values for x,y,z such that
2y − x = x, as x + 2z> x and x − 2y< x with y − z = 0< x< 2y. Then,

x2 + 4yz = x2 + 4xz = p⇒ x | p. So, x = 1 or p.

x 6= p. So, x = 1. Then, (1,1,k) is the only fixed point under f . Next, let g : S→ S
be given by g(x,y,z) = (x,z,y). g is an involution and g has a fixed point (x,y,y).
Then, p = x2 + 4y2 gives the required property of p. �

Remark 1.4.1 :
(1) The above type of argument could be applied to prove the expressibility

of a prime of the form 8k + 3 as x2 + 2y2.
See Terrence Jackson [9].

(2) For a recent but a different proof of the Two-squares theorem,
see John A. Ewell [3].

(3) Counting the number of solutions of x2 +y2 = p requires the study of the
nature of primes in Z[i] where Z[i], the ring of Gaussian integers, is a
unique factorization domain.

If p1, p2, . . . , pr are primes congruent to 1 (mod 4) and q1,q2, . . . ,qr are primes
congruent to 3 (mod 4), and n = 2a pa1

1 · · · par
r · · ·q2b1

1 q2b2
2 · · ·q

2bp
p , x2 + y2 = n has

[ (a1+1)(a2+1)···(ar+1)+1
2 ] solutions where solution < x,y > and < x′,y′ > are

considered equivalent whenever x =±x′, y =±y′. See [1]. ([x] denotes the greatest
integer not exceeding x).
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We metion that one can count the number r(n) of solutions of x2 + y2 = n
without appealing to Z[i]. Considering (±x,±y) as distinct solutions we note that
r(n) = 8, when n is the prime of the form 4k + 1, where as r(n) = 0 when n is a
prime of the form 4k + 3. It can be shown that

(1.4.3) r(n) = 4
∑

d2|n
t(

n
d2 ),

where d runs through positive integers whose squares divide n and

t(m) =





0, if 4 divides m or if m is divisible by a prime
of the form 4k + 3

2q, if 4 does not divide m, m is not divisible by a prime
of the form 4k + 3 and q is the number of distinct primes
of the form 4k + 1 dividing m.

For proof, see E. Landau [10] or Don Redmond [12].

1.5. Lagrange’s four squares theorem

It was Lagrange who proved in 1770 that every positive integer is a sum of
four squares. The proof given below is originally due to M. Newman [11]. The
simplification of the proof is due to Charles Small [16].

We begin with

Lemma 1.5.1 : Let p be a prime. Every element of the field Z/pZ is a sum of two
squares.

Proof : We may assume that p 6= 2. We write

S1 =
{

x2 : x ∈ Z/pZ
}
, S2 =

{
r − y2 : y ∈ Z/pZ

}

where r is an arbitrary representative element of Z/pZ. As x and kp − x both give
the same square x2, S1 has p−1

2 + 1 = p+1
2 elements. S2 also has p+1

2 elements. So,
S1∩S2 is non empty and so r is a sum of two squares. �

Remark 1.5.1 : The equation ax2 + cy2 = r (a,c 6= 0) has solutions in any finite
field Fp (a field of characteristic p). For, one has to consider

S1 =
{

ax2 : x ∈ Fp
}
.

and
S2 =

{
r − cy2 : y ∈ Fp

}
.

To see that a positive integer r is a sum of four squares, without loss of
generality, we may take r to be square-free. For, if r = a2r′, ( r′ square-free) and
if r′ = w2 + x2 + y2 + z2, then

r = (aw)2 + (ax)2 + (ay)2 + (az)2.

© 2007 by Taylor & Francis Group, LLC



16 CHAPTER 1

If r = p1 p2 · · · pk where p1, p2, · · · , pk are distinct primes,

Z/rZ ∼= Z/p1Z×Z/p2Z×·· ·×Z/pkZ (see [8]).(See also section 5.3, chapter 5)

As each element of Z/piZ (i = 1,2, · · · ,k) is a sum of two squares, each element
of Z/rZ is a sum of two squares. This is clear from the fact that writing t ∈Z/piZ
as a sum of two squares for each pi, t is a sum of two squares in Z/rZ.

So, −1 is a sum of two squares in Z/rZ, where r is square-free. We could
write −1 as

(1.5.1) −1 = c2 + d2 − rs

We define a 2×2 matrix A by

(1.5.2) A =
[

r c + di
c − di s

]

where i denotes
√

−1. Then,

detA = rs − c2 − d2 = 1 by (1.5.1).

Theorem 5 : Let the matrix A be given by (1.5.2) where c,d,r,s ∈ Z and r > 0.
Assume that det A = 1. Then,

A = BB∗

where B is a 2×2 matrix over Z[i] and B∗ is the conjugate transpose of B.

Proof : To prove the theorem, we apply induction on c2 + d2.
If c2 + d2 = 0, we will have

A =
[

1 0
0 1

]

and then B = A will do.
Therefore, we assume that c2 + d2 > 0. So, c and d are not both zero.
As rs = 1+c2 +d2, s is a positive integer. There are two cases to be considered:

(i) 0< r ≤ s (ii) 0< s≤ r
Case (i): 0< r ≤ s. Let A′ = M A M∗, where

M =
[

1 0
x − yi 1

]

and x,y are integers to be specified. Then,

A′ =
[

1 0
x − yi 1

][
r c + di

c − di s

][
1 x + yi
0 1

]

=
[

1 0
x − yi 1

][
r r(x + yi) + c + di

c − di (c − di)(x + yi) + s

]

=
[

r c′ + d′i
c′ − d′i ∗

]
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where
c′ = c + rx, d′ = d + ry

and det A′ = 1, as det M = det M∗ = 1.
We choose x,y such that

c′2 + d′2 < c2 + d2. Applying induction, A′ = CC∗. Further,

A = M−1A′(M∗)−1

= M−1CC∗(M∗)−1

= (M−1C)(M−1C)
∗

= BB∗,where B = M−1C.

Now, when c > r
2 , we choose x = −1,y = 0. Then, c′2 = (c − r)2 < c2 and d′2 = d2.

Therefore, c′2 + d′2 < c2 + d2. Similarly, if c< − r
2 , we take x = 1,y = 0.

If d > r
2 , take x = 0,y = −1.

If d < r
2 , take x = 0,y = 1.

If r = 1, | c |> 1
2 , since c and d are not both zero and s = 1+c2 +d2, as s≥ 1, | d |> 1

2 .
If r> 1, we claim that | c |> r

2 , | d |> r
2 . Suppose on the contrary, | c |≤ r

2 , | d |≤ r
2 .

Since 0 < r ≤ s, we have r2 ≤ rs = c2 + d2 + 1 ≤ ( r
2 )2 + ( r

2 )2 + 1 = r2

2 + 1 < r2 , a
contradiction. Therefore, we will only have | c |> r

2 , | d |> r
2 for r≥ 1. Therefore,

in all the above possibilities involving r,s,c,d; x and y are determinable and so
the proof is okay in case (i).
Case (ii): 0< s≤ r. We write A′ = MAM∗, where

M =
[

1 x + yi
0 1

]

Thus

A′ =
[

∗ c′ + d′i
c′ − d′i s

]

with c′ = c + sx, d′ = d + sy. It suffices to find x and y such that
c′2 + d′2 < c2 + d2. As in case (i), the values x = ±1, y = 0; x = 0, y = ±1 yield
the desired condition c′2 + d′2 < c2 + d2, since here | c |> s

2 , | d |> s
2 . Proof by

induction is complete. �
Corollary 1.5.1 : If r is square-free, r is a sum of four squares.
For, writing

A =
[

r c + di
c − di s

]

with det A = 1, we obtain A = BB∗ for some B. We take

B =
[

w + xi y + zi
∗ ∗

]

then,

B∗ =
[

w − xi ∗
y − zi ∗

]

and A = BB∗ yields r = w2 + x2 + y2 + z2. �
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Remark 1.5.2 : Lagrange’s theorem is a consequence of corollary 1.5.1.

1.6. Diophantine equations

A linear Diophantine equation in two unknowns is of the form
ax + by = c where a,b,c ∈ Z.

It is known that

(1.6.1) ax + by = c, 〈a,b〉 6= 〈0,0〉,
has solutions if, and only if, g.c.d (a,b)| c. When solutions exist, they are all given
by

(1.6.2)





x =
c
d

x0 +
b
d

r

y =
c
d

y0 −
a
d

r

where g.c.d (a,b) = d, ax0 + by0 = d and r is any integer. See [1].

Remark 1.6.1 : (a) The pair 〈x0,y0〉 is obtained in view of the fact that d is
expressible as a linear combination of a and b.

(b) In the case of the linear congruence ax ≡ b (mod r), a solution exists if,
and only if, g.c.d (a,r) | b. When solutions exist, they are unique modulo r

d where
d = g.c.d (a,r).

Definition 1.6.1 : Let a1,a2, · · · ,at be integers, at least one of which is not zero.
A greatest common divisor d of a1,a2, · · · ,ar is a common divisor which is a
multiple of every common divisor.

The existence of a g.c.d (a1,a2, · · · ,at) follows from the fact that Z is a PID.

Lemma 1.6.1 : The Diophantine equation

(1.6.3) a1x1 + a2x2 + a3x3 + · · ·+ asxs = c. (some ai 6= 0)

has a solution if, and only if, g.c.d (a1,a2, · · · ,as) | c.

Proof : When s = 2 the result is known. We apply induction on s. Suppose that
s> 2. We assume that the result is true for all Diophantine equations having s − 1
unknowns. Now,

g.c.d (a1,a2, · · · ,as) = g.c.d (t,a3,a4, · · · ,as),

where t = g.c.d (a1,a2).
By the linear expressibility of g.c.d, there exist integers y1,y2 such that

a1y1 +a2y2 = t and tx+a3x3 + · · ·+asxs = c is solvable, by induction hypothesis. We
write x1 = y1x, x2 = y2x. Then, a1x1 + a2x2 = tx. So, 〈x1,x2, · · · ,xs〉 solves (1.6.3)
if, and only if, g.c.d (a1,a2, · · · ,as) | c. �

Remark 1.6.2 : Given a,b,c ; the Diophantine equation

ax + by = c, 〈a,b〉 6= 〈0,0〉
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where g.c.d (a,b) divides c, has solutions stated in (1.6.2). To pick solutions
for which x > 0, y > 0, plot points (x,y) (which satisfy the given Diophantine
equation) in the cartesian plane and locate the pairs 〈x,y〉 corresponding to the
points which fall in the first quadrant.

1.7. Notes with illustrative examples

The division algorithm in the ring Z of integers has many applications. The
Euclidean algorithm is a technique of iterating the division algorithm. It provides
an efficient way to find the greatest common divisor of two positive integers.

Suppose a = 288, b = 51. The division algorithm gives

288 = 51×5 + 33, 0< 33< 51

Applying the division algorithm with a = 51 and b = 33, we have

51 = 33×1 + 18, 0< 18< 33.

One more iteration yields

33 = 18×1 + 15, 0< 15< 18.

Once again iterating, we get

18 = 15×1 + 3, 0< 3< 15

and
15 = 5×3 + 0.

The algorithm tells us that 3 is the g.c.d. of 51 and 288.
In a general setting, one would have the following iterations:

a = bq1 + r1, 0< r1 < b

b = r1q2 + r2, 0< r2 < r1

r1 = r2q3 + r3, 0< r3 < r2

· · · · · · · · ·
rk−2 = rk−1qk + rk, 0< rk < rk−1

rk−1 = rkqk+1 + 0 say at the kth iteration.

Then rk is the g.c.d of a and b. For, clearly, rk | rk−1. rk−1 | rk−2. So, rk | rk−2.
Proceeding thus, rk | r1 and rk | b. So,rk | a. If t | a and t | b, t | r1, so, t | r2,
· · · , t | rk. So, any common divisor a and b divides rk.

Next, if l is the least common multiple of a and b and g is
a g.c.d (a,b), one has

lg = ab

If we considerN as a partially ordered set under the divisibility relation, the g.c.d
and l.c.m of a,b are their greatest lower bound and least upper bound respec-
tively in the lattice (N,≤) where ≤ is to mean ‘divides’. Lattices are discussed in
chapter 8.
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A number of the form fn = 22n
+ 1 is called a Fermat number when n ≥ 0.

Fermat conjectured that fn is a prime for all positive integers n. Euler proved that
641 divides f5. So, f5 is not a prime. It is likely that all Fermat numbers other
than f0, f1, f2, f3 and f4 are composite. It is true that Fermat aimed at generating
the primes belonging to N. He believed that { fn} would generate primes.

If p1, p2, . . . , pt are Fermat primes, that is, primes of the form 22n
+ 1 and

r = 2a p1, p2, · · · , pt (a≥ 0), then the Euler function value φ(r) is a power of 2.
Now, we write Mp = 2p − 1. Mp is called a Mersenne prime (Marin Mersenne

(1588–1648)). If Mp is to be a prime, it is necessary but not sufficient to say that
p is a prime.

The 30th Mersenne prime
22,16,091 − 1

was discovered in 1985. Prof. Curtis Cooper and Prof. Steven Boone of Central
Missouri State University, Warrensburg, MO have reported (Dec 2005) that the
43rd Mersenne prime Mp is 2p − 1 where p = 30402457 and Mp has 9152052
digits.

Next, we compare the nature of solutions of a linear Diophantine equation
and a linear congruence.

In the case of Diophantine equation

(1.7.1) ax + by = c

if d = g.c.d (a,b) divides c, writing a = da1, b = db1, c = dc1, we get

(1.7.2) a1x + b1y = c1

It is easy to check that the equations in (1.7.1) and (1.7.2) have exactly the same
solutions.

In the case of congruence

(1.7.3) 18x≡ 30(mod 66),

since g.c.d (18,66) = 6 and 6 divides 30, the congruence (1.7.3) has six
incongruent solutions. From (1.7.3) division by 6 yields

(1.7.4) 3x ≡ 5 (mod 11).

Since the g.c.d (3,11) = 1 which divides 5, the congruence (1.7.4) has a unique
solution (modulo 11). The inverse of 3 (modulo 11) is 4 (modulo 11). Multiplying
both sides of (1.7.4) by 4 (mod 11), we get the unique solution as

(1.7.5) x0 ≡ 9 (mod 11).

But, (1.7.3) is given modulo 66 so that its incongruent solutions are integers
among the numbers 0,1,2, · · · ,65. The incongruent solutions of (1.7.3) are given
by

y = 9 + 11k, k = 0,1,2,3,4, and 5.

So the solutions of (1.7.3) are [9], [20], [31], [42], [53] and [64] and they are
six distinct residue classes satisfying (1.7.3) and incongruent modulo 66. The
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summary is that a unique solution of (1.7.4) gives rise to six distinct solutions of
(1.7.3).

The next observation is about Fermat’s little theorem. A direct converse of
theorem 2 is false. It is not true that if r does not divide a and

(1.7.6) ar−1 ≡ 1(mod r)

then r is necessarily a prime. As noted in Hardy and Wright [4], it is easy to check
that if a is prime to 561 = 3.11.17, then

a560 = 1 (mod 561)

However, 561 is not a prime!
A valid converse of theorem 2 is the following.

Theorem 6 : For a≥ 2 and prime to r, if ar−1 ≡ 1(mod r) and ad 6≡ 1(mod r) for
any divisor d(1≤ d < r − 1) of (r − 1), then r is a prime.

Proof : As g.c.d (a,r) = 1, if d is the order of a in the group of units of Z/rZ,
then, d|φ(r). We are given that

ad 6≡ 1 (mod r)

for any divisor d of r − 1 (1≤ d < r − 1). So, as ar−1 ≡ 1(mod r), (r − 1) divides
φ(r). If r is composite, then r has a divisor t such that 1< t < r. Further, we note
that there are at least two integers t1 and t2 among the numbers 1,2, · · · ,r which
are not relatively prime to r, namely t and r themselves. So, φ(r)≤ (r−2)< (r−1).
So, if (r − 1) divides φ(r), (r − 1) has to be equal to φ(r) and in that case r is a
prime. �

Remark 1.7.1 : For an account of Euler’s φ-function and its generalizations, see
the expository articles [11], [12] and [13].

Definition 1.7.1 : Let b be a positive integer. If r is a composite number and

br ≡ b (mod r)

then r is called a pseudoprime to the base b.

For example 341 = 11×31 is a pseudoprime to the base 2, as

2340 = 1(mod 341)

Definition 1.7.2 : Let r be a positive composite integer such that

ar−1 ≡ 1(mod r) for all a with g.c.d (a,r) = 1.

Then, r is called a Carmichael number.

It is verified that 561 is a Carmichael number and it is the smallest such num-
ber. We state, without proof, a
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Proposition 1.7.1 : An odd composite number r is a Carmichael number if, and
only if, r is square-free and p − 1 divides r − 1 for every prime p dividing r.

In 1994, Alford, Granville and Pomerance [A1] have shown that there are
infinitely many Carmichael numbers. While discussing sums of squares, we gave
certain number-theoretic aspects only. For an advanced level reading of the theme
on sums of squares, see Olga Taussky [A4].

1.8. Worked-out examples

a) What is meant by a ‘primality test’ ?
Answer: The problem of distinguishing primes from composites has attracted
the attention of those who are interested in some kind of a numerical compu-
tation. By a ‘primality test’, we mean a test that will check whether a given
number is composite or not. To say that a positive integer r passes a primality
test is to conclude that when the test is executed, r is shown to be composite.
If r fails a primality test, then r is a prime. The basic idea is that on account of
Fermat’s little theorem, if we can find an integer a such that

(1.8.1) ar 6≡ a (mod r),

then, r is composite.

Remark 1.8.1 : Suppose that r is composite. We write r = r1r2; where
1 < r1,r2 < r. So, we will have r1 ≤

√
r, since, otherwise, r2 ≥ r1 >

√
r

implies that r1r2 >
√

r.
√

r = r, which is impossible. As every positive integer
has at least one prime factor, r1 has a prime factor p ≤ √r. For instance,
every composite number < 100 has a prime factor <

√
100 = 10. Since the

only primes < 10 are 2,3,5 and 7, we have only to check each number < 100
for divisibility by 2,3,5 and 7. Crossing out such multiples of 2,3,5 and 7
we arrive at integers > 1, which are primes < 100. This procedure is known
as the sieve of Eratosthenes (276–196 B.C.) who belonged to the school of
Alexandria. He devised a systematic method (the sieve method) for attaining
all primes up to a given number r.

Remark 1.8.2 : A recent efficient algorithm known as AKS algorithm
(Aggarwal, Kayal and Saxena (2002)) is known to determine whether a given
integer is prime. See Andrew Granville [A2].

�
b) (Ralph G. Archibald) It is known that the polynomial x2 +x+41 yields a prime

for x = 0,1,2, . . . ,39, but is composite for x = 40 and 41. Show that there does
not exist a polynomial f (x) of degree m > 0 and having integer coefficients
such that f (x) yields primes for every integer value of x or every integer x> n0

(a specified integer).
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Answer: Let g(x) be a polynomial of degree n and having real coefficients. We
write

g(x) = a0xn + a1xn−1 + . . .+ an−1x + an

which is the same as

(1.8.2) g(x) = xn(a0 +
a1

x
+ . . .+

an−1

xn−1 +
an

xn ).

for sufficiently large x, in numerical value, g(x) has the same sign as that of
a0xn. Further,

as x→∞, |g(x)| →∞.
We write

(1.8.3) f (x) = b0xm + b1xm−1 + . . .+ bm−1x + bm.

Assume that b0 > 0. Let x0 be an integer such that

(1.8.4) f (x0) = q> 1.

For x> t, suppose that f (x)−q> 0. We use Taylor expansion of f at x = x0 +sq
where s is arbitrary.

(1.8.5) f (x0 + sq) = f (x0) + sq f ′(x0) +
s2q2

2!
f ′′(x0) + . . .+

smqm

m!
f (m)(x0).

Now, 1
r! f (r)(x0) has integer coefficients for 1 ≤ r ≤ m. So, for s an integer, as

f (x0) = q (1.8.4)

f (x0 + sq) − q = q{s f ′(x0) +
s2q
2!

f ′′(x0) + . . .+
smqm−1

m!
f (m)(x0)}

= qM( say).

So, when x = x0 + sq, f (x) − q is a multiple of q and is positive when x > t. So,

(1.8.6) f (x) = q(1 + M).

Therefore, we have exhibited q (> 1) as a divisor of f (x) for x0 + sq > t. So,
f (x) is composite for sq> t − x0. We have only to take x0 = t. �

c) (Ethan D. Bolker) (i) For r ≥ 2, let U(r) denote the group of units in Z/rZ. If
U(r) contains an element of order r − 1, show that r is a prime.
(ii) Given r ≥ 2, show that r is a prime if, and only if, every linear polynomial
with coefficients in Z/rZ has at most one zero in Z/rZ.
Answer: (i) Let [a] be an element of order (r − 1) in Z/rZ. It follows that

[a]r−1 = [1].

That is, ar−1 ≡ 1(mod r). As φ(r) is the order of U(r), r − 1 divides φ(r). But,
φ(r)≤ (r − 1). Hence, φ(r) = r − 1 and so, r is a prime.
(ii) :⇒. Let r be a prime. Then, U(r) has order (r − 1). A linear equation
having coefficients in Z/rZ has the form

(1.8.7) [a]x + [b] = [0].
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When a 6= 0, [a] has a multiplicative inverse [a]−1. So, solving (1.8.7), we get

x = −[a]−1⊗ [b]

which is a unique solution.
⇐: To prove the converse, we use contrapositive argument. Suppose that r is
composite. As r ≥ 2, the ring (Z/rZ,⊕,⊗) has divisors of zero. Suppose that
a,b are divisors of r such that 1 < a≤ b≤ r such that ab≡ 0(mod r). Let [t]
be a unit in Z/rZ. We consider the polynomial equation

(1.8.8) [t]x + [b] = [0].

One solution of (1.8.8) is x = −[t]−1⊗ [b]. However, multiplying both sides of
(1.8.8) by [a], we get

[a]⊗ ([t]x + [b]) = [0].
As [a]⊗ [t] 6= [0], we see that x = [0], which is another solution of (1.8.8). Or,
we have exhibited a linear equation having more than one solution. So, when
r is composite, we can find a linear polynomial having more than one zero.
In other words, if every linear polynomial having coefficients in Z/rZ, has at
most one zero, r cannot be composite. �

d) (Nicol and Vandiver) Given r ≥ 1 and d a divisor of r, we consider the set

S = {n1,n2, . . . ,nc}
where S is the set of positive integers less than and relatively prime to r.
c = φ(r), the Euler φ-function. Show that the number of elements of S which
are congruent to t(mod r

d ) with g.c.d (t, r
d ) = 1 is d

bφ(b) where b denotes the
greatest devisor of d such that g.c.d (b, r

d ) = 1.
Answer: Let

(1.8.9) T = {t + j(
r
d

) : j = 0,1,2, . . . , (d − 1)}.
Elements of T are integers which are relatively prime to r

d , but not necessarily
prime to r.
Case: (i) Suppose that b> 1. We write the d integers 0,1,2, . . . , (d − 1) as

(1.8.10) < m + hb>

where m = 0,1, . . . , (b − 1) and h = 0,1,2, . . . , ( d
b ) − 1.

The values of j in (1.8.9) are reduced modulo b using (1.8.10) and we
obtain

(1.8.11) T ′ = {t + m(
r
d

) : m = 0,1,2, . . . , (b − 1)}

corresponding to each value of h = 0,1,2, . . . , ( d
b ) − 1.

Since g.c.d (b, r
d ) = 1, the set T ′ (reduced modulo b) is the same as

{0,1,2, . . ., (b − 1)}.
By definition, d can be written as d = d1b where each prime factor of d1

divides r
d . To obtain those elements of T which are prime to d (and so prime

to r), it is enough if we select those which are prime to b, since they are prime
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to r
d and hence to d1. This subset of T becomes a subset W of T ′ in which the

elements are relatively prime to b. So |W | = φ(b). Now, there are d
b values of b

corresponding to each set T ′ (1.8.11). Hence, the number of integers relatively
prime to r is ( d

b )φ(b), as required. �

Remark 1.8.3 : If b = 1, each prime factor of d occurs in r
d so that each

element in S is prime to r. There are d
1φ(1) = d such numbers in this case.

Remark 1.8.4 : The result in worked out example (d) is fruitfully employed
to evaluate Ramanujan’s sum C(n,r) (specifically, relation (5.4.4) of chapter
5). See [A3].

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.
a) Let N (> 1) be a given positive integer. All the positive divisors of N can

be determined from the prime factorization of N.
b) Let p be an odd prime and n> 1. Then, pn + 1 is not a square.
c) Let t be an even integer. Suppose that a,b,c are integers having no com-

mon factor > 1, then, it is impossible to choose a,b,c such that

t2 = a2 + b2 + c2.

d) If n≡ 3 or 6(mod 9), then n is not representable as a sum of two squares.
e) Let r be a square-free integer. It is certain that an abelian group of order

r is cyclic.
f) The matrix ring M2(Z/2Z) has proper two-sided ideals. That is, M2(Z/2Z)

is not a simple ring.
2. For any a ∈ Z, show that a5 − a≡ 0(mod 5).
3. Find the integral solutions of 6x + 4y = 14.
4. Let a1,a2, · · · ,at be integers. We define

I = {a1x1 + a2x2 + · · ·+ atxt : xi ∈ Z, i = 1,2, · · · , t}.
Show that I is an ideal of Z, generated by g.c.d (a1,a2, · · · ,at).

5. Find all integers a such that for 0< a< 13,

x2 = a (mod 13)

has a solution.
6. Let {c1,c2, · · · ,ct} where t = φ(r) be a reduced residue system mod r. Show

that
c1 + c2 + · · ·+ ct ≡ 0 (mod r).

7. Solve the congruence: 45x≡ 36(mod 54).
8. Solve the Diophantine equation: 6x + 15y = 6.
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9. Solve the Diophantine equation: 8x + 3y = 28.
10. Let p be an odd prime. Suppose that g.c.d (a, p) = 1. Show that the congruence

x2 ≡ a (mod pt)

has either no solutions or exactly two solutions modulo pt .
11. A Pythagorean triple is a triple (a,b,c) of positive integers such that

a2 + b2 = c2. Let c > 0. Show that there is a Pythagorean triple (a,b,c) if,
and only if, c is divisible by some prime p with p≡ 1(mod 4).

12. We write A700(7) = {[x] ∈ Z/700Z : [7][x] = [0]}.
Show that A700(7) is a field isomorphic to Z/7Z.

13. Find the least positive residue of (i) 232 (ii) 247 modulo 47.
14. Let fn = 22n

+ 1. fn is called a Fermat number. If fn is a prime, it is called
a Fermat prime. For m 6= n, show that fm and fn are relatively prime to one
another.
(Gauss showed that a regular p-gon can be constructed with a ruler and com-
pass for those values of prime p for which p = fn; n = 2 gives p = 17.)

15. Solve the congruence 71x≡ 4(mod 55).
16. Let n be a product of four consecutive positive integers. Prove or disprove:

(n + 1) is a perfect square.
17. (Landau) Let m ≡ 5(mod 12) and m > 17. Show that m is expressible as a

sum of three distinct positive squares.
18. Let r = x2 + y2 where g.c.d (x,y) = 1. If d(≥ 1) is a divisor of r, show that d is

also a sum of two squares.
19. (Ethan D. Bolker). Let r = pa1

1 pa2
2 · · · pak

k where p1, p2, . . . , pk are distinct primes.
We denote the (symmetric) group of permutations on n symbols by Sn. Show
that the least value of n for which Sn contains an element of order r is
n = pa1

1 + pa2
2 + · · ·+ pak

k .
20. (Thue) Suppose that r is not a perfect square. Let t ∈ Z. Show that the

congruence tx ≡ y (mod r) has a solution < x,y > in which |x| and |y| are
both <

√
r and < x,y> 6=< 0,0>.
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CHAPTER 2

The integral domain of rational integers

Historical perspective

Commutative algebra owes its development during the last two hundred years
or so, to the discovery of various algebraic properties of the set Z of rational in-
tegers (as the set of integers forms a ring contained in the field Q of rational
numbers). Attempts to prove Fermat’s last theorem (FLT) — namely, if n > 2,
there exist no positive integers x,y and z such that xn + yn = zn— led to the birth of
a new branch of number theory called ‘algebraic number theory’. It was found
out that the set of rational integers could be considered in a larger set-up giving
the notion of ‘rings of algebraic integers’. For many of these rings it was possible
to show that for very large values of n, xn + yn = zn has no integer solutions. For
many values of n, nothing could be said about the truth or falsity of FLT. Andrew
Wiles (1994) of Princeton University proved FLT in the affirmative establishing
a conjecture in algebraic geometry, the so-called Shimura-Tanyama-Weil conjec-
ture. This was a remarkable achievement of Twentieth Century.

In 1843, Ernst Eduard Kummer (1810–1893) extended the definition of an
integer and gave a ‘proof ’of FLT. Peter Gustav Lejeune Dirichlet (1805–1859)
found that Kummer had made an incorrect assumption/statement about factor-
ization of numbers. Then, Kummer worked again and took pains to correct the
error in his ‘proof’. In order to rectify the incorrect factorizations, Kummer in-
troduced the notion of ‘ideal numbers’which enabled him to complete his proof
in certain special cases, as in the ring of integers of the number fieldQ(ω) where
ω = exp(2πi/23). His ‘ideal numbers’ were sets of numbers. Richard Dedekind
(1831–1916) used this latter observation to invent the notion of an ideal. It was at
this point of time that ring theory was born in a disguised manner as part of alge-
braic number theory. Leopold Kronecker (1823–1891) gave the name ‘order’ to
the ring of algebraic integers contained in a number field. However, it was David
Hilbert (1862–1943) who coined the word ‘ring’ for an algebraic structure with
two binary operations + (addition) and · (multiplication) satisfying the appropri-
ate axioms as we know. We owe this axiomatic approach to David Hilbert.

It was not until 1900 that a subject called ring theory appeared to have been
born. Commutative ring theory covers number systems and polynomials. Various
types of rings and their properties were established during the beginning of the
Twentieth Century. Factorial rings/unique factorization domains come from a
generalisation of the fundamental theorem of arithmetic.

29
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2.1. Introduction

The ring Z of rational integers is known to be an integral domain. We first
show that Z is an ordered integral domain.

The aim of this chapter is to discuss some properties of commutative rings
with unity. The ideal-theoretic analogues of the notions of l.c.m and g.c.d are
pointed out. The fact that Z is a Principal Ideal Domain (PID) makes it a Unique
Factorization Domain (UFD). The role of irreducibles and primes is important in
the context of uniqueness of factorization of a nonzero, non-unit in an integral
domain. The notion of a GCD domain due to I. Kaplansky is introduced. Not all
GCD domains are unique factorization domains. Further, Z[

√
−5] is shown as an

example of an integral domain which is not a GCD domain.

2.2. Ordered integral domains

The elements of Z could be exhibited in an ascending order as follows:

· · · ,−3,−2,−1,0,1,2,3, · · · .
For a,b ∈ Z, we see that a ≥ b if, and only if, a − b≥ 0. One distinguishes the
positive elements of Z by writing N for the subset of positive integers.

Definition 2.2.1 : An integral domain (D,+, ·) is said to be an ordered integral
domain, if D contains a subset DP with the following properties:

i. If a,b ∈ DP, a + b∈ DP (closure under addition)
ii. If a,b ∈ DP, a ·b ∈ DP (closure under multiplication)

iii. For each element a ∈ D, exactly one of the following is true:
a = 0, a ∈ DP or − a ∈ DP (law of trichotomy).

DP is called the set of positive elements of D. The nonzero elements of D which
are not in DP are called the negative elements of D.

This is a clear generalization of Z.

Definition 2.2.2 : Let D be an ordered integral domain with DP denoting the
subset of positive elements. If a,b ∈ D, we say that
a> b to mean a − b∈ DP and a< b if a − b /∈ DP.

Clearly a> 0⇒ a ∈ DP. a≥ b means either a = b or a − b∈ DP.
The absolute value | a | of a ∈ D is such that

(1) If a≥ 0, | a |= a
(2) If a< 0, | a |= −a. So, if a 6= 0, | a |> 0

Definition 2.2.3 : Let S be subset of an ordered integral domain D. S is said to be
well-ordered, if each non-empty subset T of S contains a least element. That is,
for each subset T of S there exists an element a in T such that a≤ x for all x ∈ T .

We deduce that N is well-ordered. However, if Q+ denotes the set of posi-
tive rational numbers. Q+ is not well-ordered, as the set of all positive rational
numbers has no least element.
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Theorem 7 : Let D be an integral domain in which the set DP of positive elements
is well-ordered. If 1D denotes the unity element of D, then,

DP = {m1D : m ∈ N}
and D = {n1D : n ∈ Z}.

Proof : If a ∈ DP, a> 0D (the zero element of D).
For a,b ∈ D, (−a) · (−b) = ab, since a · (−b) = −a · b and (−a) · (−b) = −(a · (−b)) =
−(−(a ·b)) = a ·b.
If a > 0D, a2 > 0D. If −a> 0D, (−a)2 > 0D or a2 > 0D. So, as 1D > 0D, 12

D = 1D,
12

D > 0D. For each positive integer n, let Sn be the assertion that n1D > 0D.
As 1D = 1D, we note that S1 is true. Let k ∈N such that k1D > 0. Then (k +1)1D =
k1D + 1D > 0.
So, Sk+1 is true if Sk is true. So, by induction on n, Sn is true for all n ∈ N. So,
n1D ∈ DP for all positive integers n.

Claim : All elements of DP are of the form m1D for m ∈ N.
Since DP is well-ordered, DP has a least element. The least element is going

to be 1D. For, suppose that c is the least element of DP and that

1D > c> 0D

So 1D · c > c2 > 0D or c > c2 > 0D, since c ·1D = c. So c2 ∈ DP and c2 < c. This
violates the assumption that c is the least element of DP.
So, c is not smaller than 1D, that is, c = 1D.

To show that every element of DP is of the form m1D where m∈N, we assume
the contrary. We pick some elements which are not of the form m1D.

Let T be a non-empty subset of DP where each element of T is not of the
form m1D. T has a least element say d. Since 1D is the least element of DP, we
should have d > 1D.
So, d −1D > 0D. But then, d −1D ∈DP and since 1D > 0D, d > d −1D. So d −1D /∈
T . Therefore, by hypothesis d − 1D = m′1D or d = (m′ + 1)1D and m′ + 1 ∈ N. This
contradicts the fact that d ∈ T . So T is empty. So every element of DP is of the
form m1D where m ∈ N.

Next, if a ∈ D and a /∈ DP, either a = 0D or −a ∈ DP.
If a = 0D, a = 0 ·1D. If −a∈DP, −a = m21D, m2 ∈N. So, a = −m21D where m2 ∈N.
So every element of D is of the form n1D where n ∈ Z.
Finally, if n1,n2 ∈ Z and n11D = n21D we will have n1 = n2. For, suppose not.
That is, we assume that n1 6= n2. Without loss of generality, we could take n1 > n2.
Then, n1 − n2 > 0. So, (n1 − n2)1D ∈ DP. Then, (n1 − n2)1D > 0D or n11D 6= n21D,
a contradiction to the assumption n11D = n21D. So, n11D = n21D⇒ n1 = n2. This
proves theorem 7. �

Theorem 8 (A Characterization of Z) : Let D, D′ be two ordered integral do-
mains in which the sets of positive elements are well-ordered. Then, D and D′ are
isomorphic.
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Proof : Let 1D, 1D′ be the unity elements of D, D′ respectively.
By theorem 7,

D = {n1D : n ∈ Z}, D′ = {n1D′ : n ∈ Z}
We define a map ψ : D→ D′ given by

ψ(n1D) = n1D′ n ∈ Z.

ψ is a homomorphism of D into D′ which is one-one. For,

ψ(n11D + n21D) = ψ((n1 + n2)1D)
= (n1 + n2)1D′

= n11D′ + n21D′

= ψ(n11D) +ψ(n21D)
Similarly, ψ(n1n21D) = ψ(n11D)ψ(n21D)

Further, given n11D′ ∈ D′, there exists n11D ∈ D such that

ψ(n11D) = n11′D

Also n11′D = n21′D ⇒ n1 = n2 and so n11D = n21D. So D and D′ are isomorphic
ring-theoretically. �

Corollary 2.2.1 : Z is the only ordered integral domain up to isomorphism, as N,
the subset of positive integers is well-ordered.

Remark 2.2.1 : Theorems 7 and 8 have been adapted from N. H. McCoy and
Thomas Berger [4].

2.3. Ideals in a commutative ring

Commutative rings with unity are in plenty. Z is one such. Let (R,+, ·) be a
commutative ring with unity 1R. We recall that by an ideal I of (R,+, ·) we mean
an additive subgroup (I,+) of (R,+) satisfying the property that for a ∈ I, r ∈ R,
r ·a = a · r ∈ I. Henceforth, we denote (R,+, ·) by R.

Definition 2.3.1 : If I, J are ideals of R, their sum I + J is defined by

I + J = {a + b : a ∈ I,b ∈ J}.

We notice that I + J is the smallest ideal of R containing I and J. For, if T is an
ideal containing I and J, then T contains I + J.

Definition 2.3.2 : The product IJ of two ideals I,J ∈ R is defined by

IJ = {
∑

finite

ai ·bi : ai ∈ I, bi ∈ J}.
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It is easy to check that IJ is an ideal of R. In fact, IJ is the additive subgroup of
(R,+) generated by all products x · y where x ∈ I, y ∈ J.

Next, the intersection I∩J of two ideals I,J of R is the largest ideal contained
in I as well as J.

In the case of Z, for a,b ∈ Z, if I = (a), J = (b); the principal ideals generated
by a and b respectively,

(2.3.1) I + J = (a) + (b) = (g) where g = g.c.d (a,b)

(2.3.2) IJ = (a)(b) = (ab) the ideal generated by ab

(2.3.3) I∩ J = (a)∩ (b) = (l) where l = l.c.m (a,b).

For I,J,K ideals of R, one has

(2.3.4) I(J + K) = IJ + IK

(2.3.5) IJ ⊆ I∩ J

(2.3.6) I∩ (J + K) = I∩ J + I∩K , if J ⊆ I or K ⊆ I (modular law)

(2.3.7) (I + J)(I∩ J)⊆ IJ.

Details of verification of (2.3.1) to (2.3.7) are omitted.

Definition 2.3.3 : An ideal I of the ring R is said to be a nil ideal if each element
a in I is nilpotent. That is, there exists a positive integer n such that an = 0R. (n
depends on the particular element a).

Definition 2.3.4 : An ideal I of the ring R is called a nilpotent ideal if In = (0R),
for same positive integer n.

We remark that In denotes the set of all finite sums of products of n elements
taken from I. It means that for every choice of n elements a1,a2, . . . ,an ∈ I, one
has a1 ·a2 · . . . ·an = 0R. So, an = 0 for all a ∈ I. Thus every nilpotent ideal of R is
a nilideal.

Definition 2.3.5 : Let {Iλ} (λ ∈ Λ, an index set) be a family of ideals of R. Their
sum

∑
λ Iλ is the ideal consisting of elements which are all possible finite sums of

elements drawn from the family {Iλ}.
That is,

∑

λ

Iλ = {
∑

finite

aλ : aλ ∈ Iλ,all but a finite number of aλ are zero}.

Further,
∑
λ Iλ is the smallest ideal containing every Iλ,λ ∈ Λ.

In the case of intersection and product of members of a family of ideals, one
obtains

(2.3.8)
⋂

λ

Iλ = {aλ : aλ ∈ Iλ for each λ ∈ Λ},
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the largest ideal of R containing each Iλ(λ ∈ Λ), and

(2.3.9)
n∏

i=1

Ii = {
∑

finite

a1 ·a2 · · ·an : ai ∈ Ii , i = 1,2, · · · ,n}

In particular,

(2.3.10) In = {
∑

finite

ai1 ·ai2 · · ·ain : aik ∈ I (k = 1,2, · · ·n)}

One easily checks that

I ⊇ I2 ⊇ I3 ⊇ ·· · ⊇ In ⊇ ·· ·
In Z, one has

(2)⊇ (4)⊇ (8)⊇ ·· · · · · , as (2)n = (2n),n≥ 1.

Definition 2.3.6 : For ideals I,J of R, the quotient of I by J denoted by I : J is
defined by

I : J = {a ∈ R : aJ ⊆ I}
Here, aJ means the set {as : s ∈ J}. As R is commutative, aJ = Ja.

If a,b ∈ I : J, we get

ax − bx = (a − b)x∈ I, whenever x ∈ J.

So, a − b∈ I : J.
For r ∈ R, raJ ⊆ rI ⊆ I and so ra ∈ I : J, whenever a ∈ I : J.

That is, I : J is an ideal of R.
In the case of Z, for principal ideals (a), (b) in Z, one verifies that

(2.3.11) (a) : (b) = (c), where c =
a

g.c.d (a,b)
·

2.4. Irreducibles and primes

R denotes a commutative ring with unity. The notion of ‘divisibility’is viewed
from two aspects: (i) through irreducible elements and (ii) through primes.

Definition 2.4.1 : A nonzero element q∈ R is called an irreducible if, and only if,
q is not a unit (divisor of the multiplicative identity 1R) and in every factorization
q = b · c with b,c ∈ R, either b or c is a unit.

Definition 2.4.2 : A nonzero element p ∈ R is called a prime if, and only if, p is
not a unit and for 0 6= a, 0 6= b elements in R whenever p | a ·b, either p | a or p | b.

For x,y∈R, we write x | y to denote that x divides y. When x does not divide y,
we express it as x - y. We recall that two elements a,b∈ R are said to be associates
if a is of the form b ·u where u is a unit.

We write a∼ b to say that a and b are associates. ∼ is an equivalence relation
on R. The equivalence classes are sets of associated elements. The associates of
1R are units. In Z, the associates of n ∈ Z are ±n. If a and b are associates in
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R, the statements: a | b and b | a are valid and the principal ideals (a) and (b) are
equal.

We note that any element which is an associate of an irreducible (prime) is
also an irreducible (prime). It is easy to check that if D is an integral domain, a
prime p in D is always an irreducible. The converse of this statement is not true,
in general. In Z[

√
−5] = {a + b

√
−5 : a,b ∈ Z} one has 2 ·3 = (1 +

√
−5)(1 −

√
−5)

and 2 is an irreducible. However, 2 divides (1 +
√

−5)(1 −
√

−5) and 2 - (1 +
√

−5),
2 - (1 −

√
−5). So, 2 is not a prime in Z[

√
−5].

In the context of a PID, the notions of an irreducible and a prime coincide.

Theorem 9 : Let D be a PID. A nonzero element p in D is an irreducible if, and
only if, p is a prime.

Proof : ⇐: If p is a prime, suppose that p = a · b, where a,b ∈ D, then p | a · b.
Therefore, p | a or p | b. For definiteness, we shall take it as p | a. Then, by
definition of a divisor, we have a = p ·c where c∈D. Then, p = (p ·c) ·b = p ·(c ·b).
By cancellation law, c ·b = 1D. So, c and b are units in D. Thus, p = a ·b where b
is a unit. That is, p is an irreducible.

:⇒ Suppose that p is an irreducible such that p | a · b where a and b are
nonzero elements of D. Then, p · c = a ·b for some element c ∈ D. As D is a PID
the ideal generated by p and a written (p,a) is another principal ideal say (d),
where d ∈ D. But, then, p = r ·d where r ∈ D, for some choice of r ∈ D. Now, p
is an irreducible. So, either r or d is a unit. If d is a unit, (p,d) = D. There exist
elements s, t ∈ D such that

1D = s · p + t ·d.
Then, b = b ·1D = b · (s · p + t ·d) = b · s · p + b · t ·d.

Or, b = b · s · p + b · t ·d.
Further, there exist x,y ∈ D such that d = x · p + y ·a. So,

b = b · s · p + b · t · (x · p + y ·a)(2.4.1)
b = b · s · p + b · t · x · p + t · y · (a ·b).(2.4.2)

Or, p|a ·b. So, p|b. So, b = p so p | b. If, on the other hand, r is a unit, one could
similarly arrive at p | a. So, whenever p | a · b either p | a or p | b. Thus, p is a
prime. �

Next, we mention about prime and maximal ideals in a commutative ring
with identity 1R.

Definition 2.4.3 : An ideal I of R is called a prime ideal if for all a,b ∈ R with
a ·b∈ I, one has either a ∈ I or b ∈ I.

It is known [1] that an ideal I of R is a prime ideal ⇔ R/I is an integral
domain.

Definition 2.4.4 : An ideal M of R is called an maximal ideal if M 6= R and
whenever J is an ideal of R such that M ⊆ J ⊆ R, then, either J = M or J = R.
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In other words, it is not possible to squeeze in a proper ideal of R between a
maximal ideal M and the whole ring R. If M is a maximal ideal and if a ∈ R and
a /∈M is chosen, the ideal generated by the set M∪{a} written (M,a) = R.

It is known [1] that M is a maximal ideal of R⇔ R/M is a field.
In Z, an ideal (r) is a maximal ideal⇔ r is a prime. In fact, ideals generated

by primes in Z are maximal ideals. Clearly, in R, a maximal ideal M of R is a
prime ideal, as a field is an integral domain.

Proposition 2.4.1 : [Krull-Zorn theorem] In a commutative ring R with unity,
every proper ideal is contained in a maximal ideal.

For proof see D. M. Burton [1].
We deduce that u ∈ R is a unit if, and only if, u belongs to no maximal ideal

of R. The ideal-theoretic version of theorem 9 is given in

Theorem 10 : Let R be a PID. A non-trivial ideal (a) of R is a prime ideal if, and
only if, it is a maximal ideal.

Proof : ⇐: As a maximal ideal is also a prime ideal, (a) is a maximal ideal
implies that (a) is a prime ideal.
:⇒ Let (a) be a prime ideal. Suppose that J is an ideal of R such that (a)⊆ J ⊆ R.
Since R is a PID, there exists an element 0 6= b ∈ R such that J = (b). Now, a ∈
(a)⊆ (b) implies that a = r ·b for some choice of r ∈ R. Since (a) is a prime ideal,
r · b ∈ (a) implies that either r ∈ (a) or b ∈ (a). If b ∈ (a) one has (b) ⊆ (a) and
so (b) = (a). If r ∈ (a), r = s · a for some s ∈ R. So, a = r · b = s · a · b = a · (s · b).
Therefore, s ·b = 1R or b is a unit. Then, (b) = R. So, (a)⊆ J ⊆ R⇒ either J = (a)
or J = R.
Thus, (a) is a maximal ideal of R. �

Theorem 11 : Let p be a nonzero non-unit element of an integral domain D.
(i) p is an irreducible element of D if, and only if, the principal ideal (p) is a
maximal principal ideal, that is, (p) is a maximal in the set of proper principal
ideals of D.
(ii) p is a prime element of D if, and only if, the principal ideal (p) 6= D is a prime
ideal.

Proof : (i) :⇒ Suppose that p is an irreducible element in D. Let (a) be a principal
ideal such that

(p)⊆ (a)⊆ D.
As p ∈ (a), we can write p = t ·a for some t ∈ D. As p is an irreducible, t or a is
a unit in D. If t is a unit,

a = t−1 · p ∈ (p). So, (a)⊆ (p), or, (p) = (a).

If a is a unit, then (a) = D. So, (p) is a maximal principal ideal in D.
⇐: Conversely, let (p) be a maximal ideal in the set of proper principal ideals

of D. Suppose that p is not an irreducible element. Then, p = a ·b, where a,b ∈ D
and neither a nor b is a unit.
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If a∈ (p), a = s · p for some choice of s ∈D. Then p = a ·b = s · p ·b = p · (s ·b).
Using cancellation law (of D), s · b = 1D. That is, b is a unit—a contradiction to
the assumption that a,b are non-units. So, a /∈ (p). Hence, (p)⊂ (a), as a | p.
If (a) = D, a is a unit contrary to the assumption that a is a non-unit. So,
(p) ⊂ (a) ⊂ D. But, then, (p) fails to be maximal in the set of principal ideals
of D—a contradiction. Thus, p = a · b⇒ either a or b is a unit. That is, p is an
irreducible element in D.
(ii) :⇒ Suppose that p is a prime in D. To prove that (p) is a prime ideal in D,
assume that a · b ∈ (p) for a,b ∈ D. Then, a · b = x · p for some choice of x ∈ D.
So, p | a ·b. As p is a prime, either p | a or p | b. That is, either a ∈ (p) or b ∈ (p).
Consequently, (p) is a prime ideal.
⇐: Conversely, let (p) be a prime ideal of D. Let p | a ·b for a,b ∈ D. Then,

a ·b∈ (p). Since (p) is a prime ideal, either a ∈ (p) or b ∈ (p). That is, either p | a
or p | b. Hence p is a prime in D. �

Fact 2.4.1 : Given a PI Domain D, a non-trivial ideal (p) of D is a maximal ideal
⇔ p is an irreducible element. (p) is a prime ideal of D⇔ p is a prime in D.

Theorems 9, 10 and 11 give us the following:

Fact 2.4.2 : (a) In a PID, an irreducible element is a prime and vice versa. Conse-
quently a prime ideal is a maximal ideal. Therefore, if D is a PID, every nonzero
non-unit in D is divisible by some prime p ∈ D.
(b) In an integral domain, once we locate irreducible elements in the sense that
there exist nonzero non-units that are irreducible, one can have an ascending chain
of principal ideals that terminates. One takes this as the ascending chain condition
on principal ideals, briefly written as ACCP. This idea will be explained when we
deal with GCD domains in section 2.5 of this chapter.

Definition 2.4.5 : An integral domain D is called a unique factorization domain
(briefly written as UFD) if
(i) every nonzero non-unit element a ∈ D can be factorized into a (product of) a
finite number of irreducibles and
(ii) 0 6= a ∈ D has two factorizations into irreducibles, namely,

a = p1 p2 · · · pn = q1q2 · · ·qm

n = m and there is a permutation π of the suffix set {1,2, · · · ,n} such that pi and
qπ(i) are associates (i = 1,2 · · · ,n).

Indeed, Z is a UFD. In fact, we know that every PID is a UFD. An example
of an integral domain which is not a UFD, is given by

Z[
√

−5] = {a + b
√

−5 : a,b ∈ Z}
For, 3 is an irreducible in Z[

√
−5]. To see this, suppose that

3 = (a + b
√

−5) · (c + d
√

−5)
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gives (taking conjugates)

3 = (a − b
√

−5) · (c − d
√

−5)

and on multiplication,
32 = (a2 + 5b2) · (c2 + 5d2)

So, a2 + 5b2 | 9. But a2 + 5b2 6= 1 and c2 + 5d2 6= 1, if a + b
√

5 and c + d
√

5 are
both non-units. So, a2 + 5b2 6= 9, as in that case c2 + 5d2 would be 1. We are
left with a2 + 5b2 = 3. This equation has no solutions 〈a,b〉 as a2 + 5b2 ≥ 5 for
nonzero integers a and b. Similarly c2 + 5d2 = 3 is not permissible. So, a non-
trivial factorization of 3 in Z[

√
−5] is not possible. Therefore, 3 is an irreducible.

Similarly it can be shown that 2 +
√

−5 and 2 −
√

−5 are irreducibles. But then,
one has

9 = 3 ·3 = (2 +
√

−5) · (2 −
√

−5).
This gives two different factorizations of 9 into irreducibles and so Z[

√
−5] is not

a UFD.
We state below, without proof, a consequence of theorem 9.

Proposition 2.4.2 : Let D be an integral domain in which every nonzero non-unit
is expressible as a finite product of irreducibles. Then D is a UFD if, and only if,
every irreducible is a prime.

For proof, see I. Stewart & D. O. Tall [5].

2.5. GCD domains

Following I. Kaplansky [2], an integral domain D is called a GCD domain,
if every pair of nonzero elements in D has a greatest common divisor. It follows
that in a GCD domain, any finite number of elements have a g.c.d.

Let D be a GCD domain.
Suppose a,b,c are elements of D.
The g.c.d of c ·a and c ·b exists and g.c.d (c ·a,c ·b) = c · g.c.d(a,b).
If g.c.d (a,b) = 1D = g.c.d (a,c) then g.c.d (a,b,c) = 1D.

For a1,a2, · · ·an ∈ D,
g.c.d (a1,a2, · · · ,an) = g.c.d(g.c.d(a1,a2, · · · ,an−1),an), n≥ 2.

Fact 2.5.1 : In a GCD domain D, every irreducible is a prime.
For, if p ∈ D is an irreducible and p | a ·b (a,b,∈ D) as g.c.d (p,a) divides p, the
g.c.d (p,a) is either p or 1D. Similarly, g.c.d (p,b) is either p or 1D.

Now, g.c.d (p,a) = g.c.d(p,b) = 1D contradicts g.c.d (p,ab) = p. So when
p | ab, either p | a or p | b, thereby asserting that p is a prime.

From the definition of a GCD domain, we deduce that in a GCD domain D,
the ideal generated by a finite number of elements is a principal ideal. Further,
in a GCD domain every irreducible element is a prime. Since in Z[

√
−5], one

has irreducible elements which are not primes, we see that Z[
√

−5] is not a GCD
domain.
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Claim : In Z[
√

−5], the elements 9 and 3 · (2 +
√

−5) do not permit a g.c.d.
We proceed as follows. In Z[

√
−5], we have

9 = 3 ·3 = (2 +
√

−5) · (2 −
√

−5)

(see the example following definition 2.4.5).
The common divisors of 9 and 3 · (2+

√
−5) and 1,3 and (2+

√
−5). However,

3 is not divisible by 2 +
√

−5 and vice versa. Therefore, a unique g.c.d of 9 and
3(2 +

√
−5) fails to exist. Further, though 3 and 2 +

√
−5 are relatively prime to

one another, the equation

(2.5.1) g.c.d(9,3(2 +
√

−5)) = 3 · g.c.d (3,2 +
√

−5)

is not valid in Z[
√

−5]. See D. M. Burton [1]. We remark that if Z[
√

−5] is a GCD
domain, we should have g.c.d (c · a,c · b) = c · g.c.d (a,b) for any three elements
a,b,c in Z[

√
−5]. This, again, shows that Z[

√
−5] is not a GCD domain.

Definition 2.5.1 : Let R be a commutative ring with unity 1R. R is said to satisfy
the ascending chain condition on principal ideals written ACCP, if every ascend-
ing chain of principal ideals terminates. That is, given a chain of principal ideals

(a1)⊆ (a2)⊆ ·· · ⊆ (an)⊆ ·· ·
there exists m ∈ N such that (an) = (am) for all n≥ m.

It is clear thatZ satisfies ACCP. We ask the question : When is a GCD domain
a UFD?
The answer is in

Theorem 12 : An integral domain D is a UFD if, and only if, it is a GCD domain
in which ACCP is satisfied.

Proof : ⇐: Let D be a GCD domain. We have seen that D has the property given
in Fact 2.5.1. That is, every irreducible is a prime.

Also, here, D satisfies ACCP. Let a be a nonzero non-unit in D. Then, there
is a chain

(a)⊆ (a1)⊆ (a2)⊆ ·· · ⊆ (an)⊆ ·· ·
which terminates.

So, there exists m ∈ N such that

(am) = (am+1) = · · · .
So then, am is irreducible say p1.
Writing a = p1 · b1 we check whether b1 is an irreducible or not. If b1 is an irre-
ducible, a is a product of irreducibles. Otherwise, we write b1 = p2 · c2 where p2

is an irreducible. Continuing in this manner, we obtain,

(a)⊆ (b1)⊆ (b2) · · · .
This breaks off with an irreducible element bn = pn+1.
Thus, we get

a = p1 ·b1 = p1 · p2 ·b2 = · · · = p1 · p2 · · · pn+1.
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That is, a is finite product of irreducibles. By Proposition 2.4.2, we conclude that
D is a UFD as every irreducible in a GCD domain (see Fact 2.5.1) is a prime.
:⇒ Conversely, if D is a UFD, we write a,b ∈ D as

a = µ · pa1
1 · pa2

2 · · · par
r , ai ≥ 0, i = 1,2, · · · ,r ;

b = ν · pb1
1 · pb2

2 · · · pbr
r , bi ≥ 0, i = 1,2, · · · ,r

where µ,ν are units in D. pi (i = 1,2, · · · ,r) are pairwise non-associated primes.
The g.c.d of a and b is given by

g.c.d (a,b) = ωpc1
1 · pc2

2 · · · pcr
r , where ci = min{ai,bi} (i = 1,2, · · · ,r)

and ω is a unit.
So, D is a GCD domain. Further, every nonzero non-unit t ∈ D is a finite

product of irreducibles. We can make an ascending chain of principal ideals of
the form

(t)⊆ (t1)⊆ (t2) · · · ⊆ (tn)⊆ ·· ·
where tn is an irreducible for an appropriate choice of n≥ 1. Then, the ascending
chain terminates, as whenever b | a, (a)⊆ (b).
So, D is a GCD domain in which ACCP holds. �

Remark 2.5.1 : The criterion for a GCD domain to be a UFD has been adapted
from G. Karpilovsky [3].

2.6. Notes with illustrative examples

We have observed that the set of integers has the properties of an ordered
integral domain in which the set of positive elements is well-ordered. It is possible
to assume simple properties ofN, the set of positive integers and to derive all other
properties in a logical way. The idea is due to the Italian mathematician G. Peano
(1858–1932) who stated a few axioms to define N. They are called

PEANO’S AXIOMS:
Axiom1: 1 ∈ N
Axiom 2: To each element n of N there corresponds a unique element n

′
, called

the successor of n in N.
Axiom 3: For each n ∈ N, n′ 6= 1. Or 1 is not the successor of any element of N.
Axiom 4: If m,n ∈ N, m′ = n′⇒ m = n.
Axiom 5: Let K be a set of elements belonging to N. Then K = N, if
(a) 1 ∈ K
(b) Given k ∈ K, then k′ ∈ K.
Axiom 5 is the basis of proof by mathematical induction. Using the five axioms
one could define addition and multiplication in N and to prove that N has all the
properties of an integral domain except that 0 /∈ N and n ∈ N has no additive
inverse. For addition, define n + 1 = n′ and proceed to show that m + n′ = (m + n)′.
For n ∈ N, define n · 1 = n and for n ∈ N, we get n ·m′ = n ·m + n. We have to
introduce negative integers and the zero element in Z.
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We write
S = {(a,b) : a,b ∈ N}

We are to frame (a,b) as a − b. For (a,b), (c,d) ∈ S, we say that (a,b)∼ (c,d) if
a + d = c + b. ∼ is an equivalence relation on S. The equivalence class [a,b] is
given by

[a,b] = {(x,y) : x,y ∈ N and x + b = y + a}.
Let us define

(2.6.1) [a,b] + [c,d] = [a + c,b + d]

(2.6.2) [a,b] · [c,d] = [ac + bd,ad + bc]

Z is realised as an integral domain with the new notation for addition and mul-
tiplication given in (2.6.1) and (2.6.2). The zero element of Z is [c,c] for every
c ∈ N. The additive inverse of [a,b] is [b,a], that is

−[a,b] = [b,a].

Let N′ be the set of elements of Z of the form [x + 1,1], x ∈ N
The map φ : N→ N′ defined by

φ(n) = [n + 1,1], n ∈ N
is one-one and onto N′. Addition and multiplication are preserved under φ. We
can identify N′ with N and take n to represent [n + 1,1]∈ N′. So, Z contains N.

If [a,b] ∈ Z,
[a,b] = [a + 1,1] + [1,b + 1]

= [a + 1,1] − [b + 1,1]

[a + 1,1] and [b + 1,1] are respectively elements a,b ∈ N.
So then,

[a,b] = a − b

as desired. Thus, Z contains zero and±n for each n ∈ N.
This argument parallels the method of construction of the set of rational num-

bers starting from the integral domain Z of rational integers.
Let D be a PID. Suppose a(6= 0) ∈ D. λ(a) is defined as the number of irre-

ducible factors of a. λ(a) is called the length of a. λ(a) = 0 if, and only if, a is a
unit in D. If a | b, λ(a)≤ λ(b). If a and b do not divide one another, there exist
p,q ∈ D such that

λ(pa + qb)≤min{λ(a),λ(b)}
If a has length n, it can be shown that there are at the most 2n ideals containing a,
in D. For, suppose

a = p1 p2 · · · pn where pi is irreducible

pi = p j for i = j is allowed.
The ideals generated by pi are maximal ideals of D. When pi 6= p j, i 6= j,

the set S = {p1, p2, · · · , pn} has 2n subsets. The subset containing k irreducibles
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generates a principal ideal containing a. Therefore, there are at the most 2n ideals
(of D) containing a.

Recalling the example of Z[
√

−5], we note that g.c.d (a,b) may exist but
g.c.d (ta, tb) may not exist in an integral domain. Therefore, it is wrong to assume
always

g.c.d (ta, tb) = t g.c.d (a,b)
in an arbitrary integral domain, unless it is a GCD domain.

Next, the dual concept of g.c.d is that of l.c.m.

Definition 2.6.1 : Let a1,a2, · · · ,an be nonzero elements of an integral domain D.
l ∈ D is called a least common multiple (l.c.m) of a1,a2, · · · ,an, if
(i) ai|l, for i = 1,2, · · ·n.
(ii) ai|c, for i = 1,2, · · ·n implies that l|c.

One could verify that a1,a2, · · · ,an have an l.c.m if, and only if, ∩
i
(ai) is

principal. If D is a GCD domain, it follows that any finite number of nonzero
elements of D admit a l.c.m. Every principal ideal domain is a GCD domain
possessing the l.c.m property also.

This chapter has touched upon the structure of Z. To supplement the con-
tent with related material bearing on Z, see A. G. Hamilton [A2]. See also
Aaboe [A1].

2.7. Worked-out examples

a) A ring R is said to be ordered when there is a non-empty subset P of R, called
the set of positive elements of R satisfying
(i) a ∈ P and b ∈ P⇒ a + b∈ P and a ·b∈ P.
(ii) for each a ∈ R, either a ∈ P, a = 0R or (−a) ∈ P. (law of trichotomy (see
definition 2.2.1 relating to an integral domain D.))
Prove that (i) In any ordered ring R, all squares of nonzero elements are posi-
tive (ii) Any ordered commutative ring R is an integral domain of characteristic
zero.

Answer: (i) Let P be the set of positive elements of R. Suppose that 0R 6= a∈ R.
By the law of trichotomy, either a ∈ P or −a ∈ P. Since P is closed under
multiplication, a2 = (−a)2 ∈ P in either case, as asserted.

(ii) R is an ordered commutative ring. Suppose that 0R 6= a, 0R 6= b where
a,b make a ·b = 0R. Then, (±a) · (±b) = 1R. By trichotomy law, one of±a and
one of±b ∈ P. So, some one of the four products (±a) · (±b) belongs to P − a
contradiction to 0R 6∈ P. So, R is an ordered integral domain. Since 1R ∈ P,

1R + 1R + · · ·+ 1R (n times ) ∈ P.

Therefore 1R + 1R + · · ·+ 1R (n times ) 6= 0R. That is, R has characteristic zero. �

Remark 2.7.1 : If 1R ∈ R, 1
2

R = 1R is always positive. −1R is never positive.
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b) Discuss the nature of Z,R, Z[
√

2] andQ as ordered integral domains.

Answer: (i) There is only one way to make Z an ordered integral domain. (See
theorem 8.)
(ii) In the case ofR, the field of real numbers, we make the observation that by
example (a), any nonzero square is positive, (in any ordering of the ring). The
positive real numbers have real square-roots, so real numbers remain positive
in any ordering of R. So, there is only one way to make R, an ordered integral
domain. Further, the monomorphism φ : Z→ R given by φ(n) = n.1 is order-
preserving.
(iii) In the case of Z[

√
2], we have

Z[
√

2] = {a + b
√

2 : a,b ∈ Z}
Z[
√

2] can be made an ordered integral domain by at least two choices of P
(the set of positive elements in Z[

√
2]).

One ordering is given by the condition:

a + b
√

2 ∈ P, if a> 0 and a2 > 2b2.

The other ordering is given by the condition:

a + b
√

2 ∈ P, if b> 0 and 2b2 > a2.

Further details are to be verified, without any difficulty.
(iv) Q is the field of quotients of Z. Let P denote the set of positive elements
in Z.

For a,b ∈ Z with b 6= 0, we say that a
b ∈ P1, the set of positive elements of

Q, if, and only if, a ·b∈ P in Z. Now,

a
b

= (a ·b) · 1
b2 .

1
b2 is (

1
b

)2 is necessarily in P1.

So, a
b ∈ P1, if, and only if, a ·b ∈ P1.

If φ :Z→Q is given by φ(n) = n ·1∈Q, φ is order-preserving and so a ·b∈ P1
if, and only if, a · b ∈ P. So, P1 is the set of positive elements of Q, provided
P1 is closed under addition and multiplication. This can be checked easily. �

Remark 2.7.2 : There is one and only one way of makingQ an ordered field.

c) Let Z[i] denote the integral domain of Gaussian integer. For α,β ∈ Z[i], we
define α≡ β (mod η) if α−β

η ∈Z[i], (where η ∈ Z[i] ). Congruences are clearly
additive and multiplicative as for rational integers. Write down the residue
classes of integers of Z[i] modulo (2 + i). Show that they form a field having 5
elements.
Answer: The zero residue class [0] contains multiples of (2 + i). The other
residue classes are determined by the rational integers 1,2,3 and 4.
The residue classes are {[1], [2], [3], [4], [0]}. They form a field having 5 ele-
ments. �
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Remark 2.7.3 : Z[i] is a U.F.D. Further, (2 + i) is a prime in Z[i], as norm of
(2 + i) equal to 22 + 12 = 5 is a prime. So, Z[i]/(2 + i) is an integral domain
which is finite.

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) The ring Z/rZ is a principal ideal ring (r ≥ 1)
b) Let I be an nonzero ideal of the ring Z of integer. The following state-

ment are equivalent:
(i) I is a prime ideal,
(ii) I is a maximal ideal,
(iii) I = (p), where p is a prime.

c) Z[
√

3] is not a GCD domain.
d) A commutative ring with unity can be made an ordered ring.
e) D = {x + y 3

√
2: x,y ∈ Q} is an integral domain under ordinary addition

and multiplication.
f) A prime subdomain is of an integral domain D is one containing no

proper subdomains. Let 1D denote the unity element in D. Then,

D′ = {n1D : n = 0,±1,±2, . . .}

is a prime subdomain of D with unity 1D.
(Note: Every integral domain D contains a unique prime subdomain
which is either isomorphic to Z/pZ (p a prime) or isomorphic to Z).

2. Z denotes the integral domain of rational integers. I,J denote the principal
ideals of Z generated by 36 and 49 respectively. Find I + J, IJ, I∩ J.

3. Ze denotes the ring of even rational integers. (Ze does not have a unity ele-
ment). Show that the principal ideal generated by 4 is a maximal ideal in Ze

though Ze/4Ze is not a field. What is your inference?
4. (a) What are the prime and maximal ideals in Z/36Z?

(b) Discuss the general case when 36 is replaced by an integer r > 1.
5. Show that Z/rZ is a principal ideal ring for all r ≥ 1 (it need not be a PID).
6. Give an example of a ring possessing a non-trivial prime ideal which is not a

maximal ideal.
7. Let P be proper prime ideal of a non-trivial commutative ring R with unity 1R.

If R/P is finite, show that P is a maximal ideal of R.
8. Show that Z[

√
−5] is not a PID.

9. Show that Z[
√

−6] = {a + b
√

−6 : a,b ∈ Z} is not a UFD.
10. Give an example of a GCD domain that is not a UFD.
11. Let R be the ring of n× n matrices with entries from a field F. Show that R

has no right or left ideals other than [0] and R.
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12. Prove or disprove : In an ordered field, the set of positive elements is not
well-ordered.

13. Let F be a field. The intersection of all subfields of F is called the prime
subfield of F. It is the subfield generated by 1F . Show that in an ordered field
F, the prime subfield is isomorphic to Q.

14. Make the integral domainZ[
√

3] into an ordered integral domain, by defining
P, the set of its positive elements.

15. By considering Z[ω] where ω = exp( 2πi
3 ). Show that a rational prime of the

form 3k + 1 is expressible in the form a2 − ab + b2.
16. Let θ = exp( 2πi

5 ). We write

Z[θ] = {a0 + a1θ + a2θ
2 + a3θ

3 : a0,a1,a2,a3 ∈ Z}.
Show that Z[θ] is a PID.

17. (Charles Vanden Eynden) Given an integer r> 1, determine the set of integers
which can be written as a sum of two integers relatively prime to r.
(Ref: Problem 10338, Amer.Math.Monthly, 104 (1997) p 75).
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CHAPTER 3

Euclidean domains

Historical perspective

The making of algebra (where symbols replaced numbers) took roots in India
and Arabia around 400 A.D. Arithmetic became a discipline as a branch of math-
ematics at the hands of mathematicians in India and the Middle East. The origin
of the word ‘algorithm’ is traced back to the Arab mathematician Al-Khowarizmi
(825 A.D.) who computed via algebra areas of rectangles and used them to rep-
resent algebraic quantities and vice versa. But, it was not until 1637 when Rene
Descartes (1596–1650) invented Analytical Geometry, a mixing of algebraic and
geometric concepts took place. (Descartes made use of ‘x’ and other letters near
the end of the alphabet to represent an ‘indeterminate’.) In fact, the ideas of al-
gebra and geometry were brought together in a recognizable way. That was a
great event in the history of mathematics. For, it helped the invention of Calculus
by Isaac Newton (1642–1727) and Gottfried Wilhelm von Leibnitz (1646–1716)
during the early years of eighteenth century.

As years passed by, one could interpret the set Z of integers in many ways.
The efforts to prove Fermat’s last theorem paved the way for the development of
new concepts in Ring theory. A close examination of certain types of integral do-
mains which are number rings corresponding to algebraic number fields (which
are finite extensions of the field Q of rational numbers) was done. Thanks to the
efforts of Kummer, Kronecker, Dedekind and others, factorization of elements in
commutative rings was analysed in depth. It was found that uniqueness of factor-
ization of elements was possible in certain integral domains such as a Euclidean
domain. The structure of a Euclidean domain (whose properties are discussed in
this chapter) arises from the notion of the ‘division algorithm’ property occurring
in the integral domain Z. The idea of a ‘Euclidean norm’ works out beautifully
well in a general set-up.

3.1. Introduction

The purpose of this chapter is to highlight the properties of

(1) Euclidean domains
(2) the ring of integers of Q(

√
m), m an integer,

47
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and to point out the well-known example of Z[
√
θ ] where θ = 1+

√
−19

2 , which is a
PID, but not a Euclidean domain. We also observe that Z is characterised by its
‘double-remainder property’.

3.2. Z as a Euclidean domain

We denote the set of non-negative integers by Z̃. We observe that Z is an
example of a Euclidean domain whose definition is shown below:

Definition 3.2.1 : A Euclidean domain is an integral domain D together with a
function g : D∗→ Z̃ (D∗ is the set of nonzero elements of D) such that

(1) g(ab)≥ g(b) for all a,b ∈ D∗,
(2) if a ∈ D,b ∈ D∗, there exist elements q,r ∈ D such that

a = bq + r

where either r = 0 or g(r)< g(b).

We write (D,g) to say that D is a Euclidean domain with the associated
function g. We assume that D is not a field. As D is commutative, g satisfies
g(ba)≥ g(a) also.

It is easily verified that when (D,g) is a Euclidean domain, the following
statements hold:

For each a ∈ D∗, g(a)≥ g(1D).(3.2.1)
If a,b are associates in D, g(a) = g(b).(3.2.2)
u ∈ D is a unit if, and only if, g(u) = g(1D).(3.2.3)

Theorem 13 : Let (D,g) be a Euclidean domain. For a ∈ D,b ∈ D∗, one has
a = bq + r where either r = 0 or g(r)< g(b). Then, q and r are unique if, and only
if,

(3.2.4) g(a + b)≤max{g(a),g(b)} for a,b ∈ D∗.

Proof : ⇐: Suppose that (3.2.4) holds. We claim that q,r are unique. On the
contrary, assume that q,r are not unique. That is, let

a = bq′ + r′ where r′ = 0 or g(r′)< g(b)

for another representation of a in terms of q′, r′. Also, let r 6= r′, q 6= q′. Then,

g(b(q − q′))≥ g(b)

But, g(b(q − q′)) = g(r′ − r)<max{g(r′),g(−r)}.
That is,

(3.2.5) g(b)<max{g(r′),g(−r)}, by definition (3.2.1)

(3.2.5) is possible only when one of r′ − r or q − q′ is zero. For,

g(r′) < g(b), g(−r)< g(b)
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If r′ − r 6= 0, g(r) and g(r′) are nonzero and so one of g(r), g(r′) has to be less than
g(b). (3.2.5) contradicts this situation. So, when once r = r′, q = q′ follows and
vice versa. Therefore q,r are unique.

:⇒We are given that in a = bq+r with r = 0 or g(r)< g(b), q and r are unique.
We have to establish (3.2.4).

If possible, assume that

g(a + b)>max{g(a),g(b)}
Then,

(3.2.6)
{

b = 0D(a + b) + b
b = 1D(a + b) − a

Also, from (3.2.6) g(−a) = g(a)< g(a + b) and

g(b)< g(a + b).

We observe that we get a contradiction to the uniqueness of ‘q’and ‘r’. So, we
must have

g(a + b)≤max{g(a),g(b)} , for a,b ∈ D∗.

�

Remark 3.2.1 : (i) The above criterion for uniqueness of ‘quotient’ and ‘remain-
der’ has been adapted from D. M. Burton [1].
(ii) A commutative ring R satisfying the conditions in definition 3.2.1 is called a
Euclidean ring.

Remark 3.2.2 : (Z,g) is a Euclidean domain with g(a) =| a | for all a ∈ Z. But
(3.2.4) does not hold for the absolute value function. In the division algorithm
a = bq + r with r = 0 or | r |< b, q and r are not unique. However, in a = bq + r
with 0 ≤ r <| b |, q and r are unique. This is what we use in number-theoretic
situations.

We state, without, proof

Fact 3.2.1 : Every Euclidean domain is a PID.

For proof, see I. N. Herstein [6]. The converse is not true in general. See
theorem 19 below. See also [A2].

3.3. Quadratic number fields

Q denotes the field of rational numbers. Let C denote the field of complex
numbers. A subfield K of C which is finite extension of Q is called an algebraic
number field. It is known that K is of the formQ[α] for some α∈C. If the degree
of K over Q (written [K : Q]) is equal to n, then,

(3.3.1) Q[α] = {a0 + a1α+ · · ·+ an−1α
n−1 : ai ∈Q,0≤ i≤ n − 1}.
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In fact, {1,α,α2, · · · ,αn−1} forms a basis for Q[α] considered as a vector space
over Q. Also, α is a root of an irreducible polynomial of degree n having coeffi-
cients fromQ.

Quadratic number fields are of the form Q[
√

m ] where m is not a perfect
square. Further, [Q[

√
m ] : Q] = 2. {1,√m} is a basis for Q[

√
m ] as a vector

space overQ. We have

(3.3.2) Q[
√

m ] = {a + b
√

m : a,b ∈Q}
Q[
√

m ] is called a real quadratic field when m > 0. It is called an imaginary
quadratic field when m < 0.

We recall that if ω = exp( 2πi
m ) (m any positive integer),Q[ω] is called the mth

cyclotomic field. The irreducible polynomial of ω is the cyclotomic polynomial
of degree φ(m), where φ is the Euler φ-function. If ρ = exp( 2πi

3 )

Q[ρ] = {a + bρ : a,b ∈Q}
and the irreducible polynomial of ρ is x2 + x + 1, as ρ2 +ρ+ 1 = 0.

Definition 3.3.1 : A complex number α is called an algebraic integer if, and only
if, α is a zero of a monic polynomial (leading coefficient 1) with coefficients from
Z.

As examples, we have algebraic integers such as 1 +
√

2, −1+
√

3 i
2 , exp( 2πi

3 )
etc. However, if t is a rational number of the form a

b , b 6= 0, g.c.d (a,b) = 1, a
b is

not an algebraic integer.

Fact 3.3.1 : Let f be a monic polynomial with coefficients from Z. Assume that
f = gh, where g and h are monic polynomials with coefficients from Q. Then, g
and h have coefficients from Z.

For proof, see D. A. Marcus [8, lemma p 14].

Lemma 3.3.1 : Let α be an algebraic integer. Suppose that α satisfies a monic
polynomial f (of lowest degree) with coefficients from Z. Then, f is irreducible
over Q.

Proof : On the contrary, suppose that f is reducible. Take f = gh where g and h
are non-constant polynomials with coefficients fromQ. g and h can be considered
as monic polynomials (division by a suitable rational number will help). From
fact 3.3.1, we see that g and h are monic polynomials with coefficients from Z.
But then, α is a zero of either g or h which are of lower degree than that of f . This
contradicts the status of f as a monic polynomial of lowest degree and having α
as a zero. So, f is irreducible. �

Remark 3.3.1 : The notation :Q(α).
In general, parentheses are used when one wishes to indicate that the set is a field,
although no harm would be done by usingQ[α] to denote

{a0 + a1α+ · · ·+ an−1α
n−1 : ai ∈Q,0≤ i≤ n − 1}.
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Z[
√

2] is the ring of integers of Q(
√

2). Z[
√

2] is merely a ring where as Q(
√

2)
is a field. Usage of a single bracket rather than a square bracket, conveys a bit
more information about the set.

Let F be a field. By convention, we write F[x] to denote the ring of polyno-
mials in x. F[x] is, indeed an integral domain. The field of quotients of F[x] is
denoted by F(x). If f (x) is the irreducible polynomial of α (an algebraic number)
of degree n, we get an extension ofQ by consideringQ[x]/( f (x)). We writeQ(α)
to denote the finite extension of Q by adjoining α to Q. It can be shown [6] that

Q(α)∼= Q[x]/( f (x)).

Q(α) = {a0 + a1α+ · · ·+ an−1α
n−1 : ai ∈Q, i = 0,1,2, · · · ,n − 1}.

Evidently,Q(α) andQ[α] are one and the same, in the present context.

Remark 3.3.2 : The monic irreducible polynomial of α has coefficients from Z
when α is an algebraic integer.

Remark 3.3.3 : If α is an algebraic integer and α ∈ Q, then α ∈ Z. That is, if a
rational number is an algebraic integer, it is a rational integer.

When the context is clear, the ring of algebraic integers contained in a number
field K is referred to as the ring of integers of K. Properties of the ring of integers
of a number field are treated in chapter 13.

Theorem 14 : Let m be a square-free integer. Then the set R(m) of algebraic
integers in Q[

√
m ] is given by

R(m) =

{
{a + b

√
m : a,b ∈ Z}, if m≡ 2 or 3 (mod 4)

{ a+b
√

m
2 : a,b ∈ Z,a≡ b (mod 2)}, if m≡ 1 (mod 4)

Proof : α ∈Q[
√

m ] is of the form α = a
t + b

t

√
m where a,b, t ∈ Z and t > 0.

We may assume that a
t and b

t are in their lowest terms. That is, a,b, t have no
common divisor> 1. When α∈ R(m), α satisfies a monic polynomial f of degree
2 with coefficients from Z. The zeros of f are α,ᾱ where ᾱ is the conjugate of α.
Then,

f (x) = (x −α)(x − ᾱ) = x2 −
2a
t

x +
a2 − b2m

t2 .

The coefficients of x and x2 in f are rational integers. So, 2a
t ∈ Z and a2−b2m

t2 ∈ Z.
As g.c.d (t,a) = 1, t|2. So, t = 2 or t = 1.
If t = 2, a2 − b2m≡ 0 (mod 4). As t = 2 and g.c.d (t,a) = 1, a is odd. This forces b
to be odd. So, a and b are odd. Then,

a2 ≡ 1 (mod 4), b2 ≡ 1 (mod 4).

Therefore, a2 − b2m≡ 0 (mod 4) happens when m≡ 1 (mod 4) only.
Then, a2 − b2 ≡ 0 (mod 4). This shows that a and b have the same parity. That is,
a≡ b(mod 2). Thus, α = a+b

√
m

2 as required.
Conversely, if m ≡ 1 (mod 4), when a and b are odd, a2 − b2m ≡ 0 (mod 4) and
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a ∈ Z. So, α = a+b
√

m
2 satisfies a monic polynomial with coefficients from Z. So,

R(m) = { a+b
√

m
2 : a,b ∈ Z,a≡ b (mod 2)} when m≡ 1 (mod 4).

If m≡ 2 or 3 (mod 4), from 2a
t ∈Z, when t 6= 2, we get t = 1 and a2 −b2m∈Z.

a and b could take odd or even values in any manner. In all such cases,
α = a+b

√
m is an algebraic integer, whenever a,b∈Z and m 6≡ 1 (mod 4). Hence,

R(m) has the structure as prescribed in the theorem. �

Remark 3.3.4 : The spirit of theorem 14 is that R(m) is expressible in the form

R(m) =

{
Z+
√

mZ, if m 6≡ 1 (mod 4)
Z+ θZ, if m≡ 1(mod 4) where θ = 1+

√
m

2 .

In other words,

(3.3.3) R(m) =

{
Z[
√

m] if m 6≡ 1 (mod 4)
Z[θ] if m≡ 1 (mod 4).

Definition 3.3.2 : For α ∈ Q[
√

m ], if α = a + b
√

m, a,b ∈Q, we define the norm
of α, written N(α), as N(α) = αᾱ = a2 − b2m.

It is clear that for α, β ∈Q[
√

m],

(3.3.4) N(αβ) = N(α)N(β).

We observe that R(m) can be made a Euclidean domain by defining a function
g : R∗(m)→ Z̃ by g(α) =| N(α) | where R∗(m) = R(m)\{0}; αεR∗(m).

Let α, β ∈ R(m). If α | β, one has g(α) ≤ g(β). Further, given α, β ∈ R(m)
with β 6= 0, one can find γ and δ in R(m) such that

(3.3.5) α = βγ + δ, where either δ = 0 or g(δ)< g(β),

provided one shows that for θ ∈Q[
√

m ] there exists η ∈ R(m) such that

(3.3.6) g(θ −η)< 1.

If (3.3.6) is satisfied, R(m) becomes a Euclidean domain.

Theorem 15 : (R(m),g) is a Euclidean domain if given θ ∈Q[
√

m ], we can find
η ∈ R(m) such that (3.3.6) holds.

Proof : In order to show that (R(m),g) is a Euclidean domain, we need to show
that the division algorithm shown in (3.3.5) holds for any pair α, β of elements of
R(m) with β 6= 0.

We are given that θ ∈ Q[
√

m ]. We write θ = α
β where α,β ∈ R(m), β 6= 0. In

fact, one has only to multiply θ by an algebraic integer β(6= 0) and take βθ = α.
(i) If θ ∈ R(m), from βθ = α we see that β divides α and so the ‘remainder’on
division of α by β is zero.
(ii) If θ 6∈ R(m), we are assuming that we can choose an η ∈ R(m) such that

g(θ −η) =| N(θ −η) | < 1.
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Now, g(β(θ −η)) = g(β)g(θ−η) = g(α−βη) as θ = α
β . So, writing δ = α−βη, we

see that
g(δ) = g(α−βη) = g(β)g(θ −η)< g(β) , as g(θ −η)< 1.

So, α = βη + δ holds and either δ = 0 or g(δ) < g(β). This makes (R(m),g) a
Euclidean domain. �

Remark 3.3.5 : The multiplicativity of g is essential in the context of the number
ring R(m).

Remark 3.3.6 : The essence of theorem 15 is that in order to show that R(m) is
a Euclidean domain, one need only establish the sufficiency condition stated in
(3.3.6).

Theorem 16 : R(m) is a Euclidean domain for m = −1,−2,−3,−7 and −11 with
associated function g : R∗(m)→ Z̃ given by

g(α) =| N(α) |, for α ∈ R∗(m).

Proof : We have only to show that given θ ∈Q[
√

m ], one can find η ∈ R(m) such
that

(3.3.7) | N(θ −η) |< 1.

Let θ = r + s
√

m, r,s ∈Q. If m 6≡ 1 (mod 4), take η = x + y
√

m, x,y ∈ Z satisfying
(3.3.7).
That is, | (r − x)2 − m(s − y)2 |< 1.
Case 1: m = −1 or m = −2.

Take x,y to be integers nearest to r and s respectively.
Then, | r − x |≤ 1

2 | and | s − y |≤ 1
2 .

Therefore, | (r − x)2 − m(s − y)2 | ≤ | ( 1
2 )

2 + 2( 1
2 )

2 |= 3
4 < 1. η ∈ R(m) exists and is

such that | r − x |≤ 1
2 and | s − y |≤ 1

2 . Further, (3.3.7) is satisfied.
So, R(m) is a Euclidean domain.

Case 2: m = −3,−7 or −11.
We have θ = r+s

√
m, m≡ 1 (mod 4). Let us take η = x+y( 1+

√
m

2 ) with x,y∈Z.
Then,

|
(
r − x −

y
2
)2 − m

(
s −

y
2
)2 | should be < 1.

Take y as the integer nearest to 2s so that | 2s−y |≤ 1
2 . We can find x ∈ Z such that

| r − x − y
2 |≤ 1

2 for given y. Then,

|
(
r − x −

y
2
)2 − m

(
s −

y
2
)2 | ≤ | 1

4
+

11
6
|= 15

16
< 1.

So, for m = −3,−7,−11; given θ ∈Q[
√

m ], we can find η ∈ R(m) such that (3.3.7)
holds. This proves theorem 16. �
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Remark 3.3.7 : For m = −1,

R(−1) = Z[i] = {a + bi : a,b ∈ Z, i =
√

−1}
is the familiar ring of Gaussian integers and it is a Euclidean domain. It is a PID
and so a UFD.

Remark 3.3.8 : When m is negative, it can be shown that R(m) is not Euclidean
for m< −11. We conclude that for m negative, R(m) is a Euclidean domain if, and
only if, m = −1,−2,−3,−7 and −11.

Remark 3.3.9 : For m > 0, it is known that R(m) is a Euclidean domain if, and
only if, m = 2,3,5,6,7,11,13,17,19,21,29,33,37,41,55 and 73.
See Chatland and Davenport [3] and K. Inkeri [7].

Remark 3.3.10 : C. F. Gauss had stated that for m< 0, R(m) would be a UFD for
m = −1,−2,−3,−7,−11,−19,−43,−67 and −163. In 1968, H. M. Stark [10] proved
that when m < 0, R(m) is a UFD precisely for these values of m. For a study of
other significant contributions of Stark, H. M. see W. Narkeiwicz [9]. As we have
seen, for m = −1,−2,−3,−7 and −11, R(m) is Euclidean domain and so a UFD.
The case m = −19 is discussed separately. See Section 3.4.

3.4. Almost Euclidean domains

There exist integral domains which resemble a Euclidean domain in certain
respects. The following theorem is due to Helmut Hasse (1898–1979). It is also
contained in a paper of R. Dedekind under a slightly different version. We will
call it Dedekind-Hasse theorem.

Theorem 17 (Dedekind-Hasse) : Given an integral domain D, suppose that a
function g : D→ Z̃ satisfies the following conditions:
(i) g(a) = 0⇔ a = 0D, a ∈ D, (0D being the additive identity),
(ii) g(ab) = g(a)g(b) for all a,b ∈ D,
(iii) Whenever b does not divide a and 0 < g(b)≤ g(a), there exists a pair 〈x,y〉
of elements in D with

0< g(ax − by)< g(b),
then D is a PID.

Proof : Let I be a nonzero ideal of D. We consider the set

S = {x : x = g(a),a ∈ I,a 6= 0D}.
As S is a subset of Z̃, S has a minimal element say x0. If g(a0) = x0 is the least of
the g-values of nonzero elements of I, then 0< g(a0)≤ g(a), if a0 does not divide
a.
By (iii) for 0D 6= a ∈ I, there exists a pair 〈x,y〉 of elements in D such that

0< g(ax − a0y)< g(a0).
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This contradicts the choice of a0, since ax − a0y ∈ I. Therefore, a0 | a or a = ta0

for some t ∈ D. Thus, I = (a0), the principal ideal generated by a0. That is, D is a
PID. �

Remark 3.4.1 : K. R. Nagarajan has rightly asked the following question: should
the function g be multiplicative? Clearly, we have not used the condition of multi-
plicativity in the proof of theorem 17. In the case of rings of integers of algebraic
number fields, multiplicativity of norm of an element holds. So, the same is re-
tained. Moreover, the existence of a function g : D∗→ Z̃ satisfying the conditions
of the theorem is not always guaranteed. Theorem 17 has been adapted from W.
Narkeiwicz [9].

Our aim is show that R(−19) is a PID.

Theorem 18 : R(−19) is a PID.

Proof : We write θ = 1+
√

−19
2 . As −19≡ 1 (mod 4), R(−19) = Z[θ].

For α = a + bθ ∈ R(−19), the norm of α written N(α) is given by

(3.4.1) N(α) = (a + bθ)(a + bθ̄) = a2 + ab + 5b2.

N : R(−19)→ Z̃ satisfies
(i) N(αβ) = N(α)N(β) for all α,β ∈ R(−19).
(ii) N(α) = 0⇔ α = 0.
(iii) N(α)> 0 for α 6= 0 in R(−19).

In view of theorem 17, we get through if the following condition is estab-
lished: For α,β ∈ R(−19), where β does not divide α and
0< N(β)≤ N(α) there exist, γ,δ ∈ R(−19) such that

(3.4.2) 0< N(αγ −βδ)< N(β)

To arrive at (3.4.2), we proceed as follows: We assume that β 6= 0. Then,

(3.4.3)
α

β
= a + bθ;a,b∈Q

and at least one of a, b is not an element of Z. This is okay as the inverse of θ (as
a complex number) is in Q[θ].

The following situations are to be handled:
Case 1: b ∈ Z, a 6∈ Z.

Let {x} denote the integer nearest to x.
Take γ = 1 and δ = {a}+ bθ.

α

β
γ − δ =

α

β
− δ = a −{a}

As | a −{a} |≤ 1
2 , 0< N(αβ γ − δ)≤ 1

4 < 1. This makes
N(αγ −βδ)< N(β).
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Case 2(a): a ∈ Z, 5b 6∈ Z.
As θ̄ = 1 − θ,

α

β
θ̄ =

α

β
(1 − θ) = (a + bθ)(1 − θ) from (3.4.3)

= a − aθ + bθ − bθ2 = a(1 − θ) + bθ − b(θ − 5)

or,
α

β
θ̄ = a + 5b − aθ

Take γ = θ̄, δ = (a + 5b) − aθ
Then,

α

β
γ − δ =

α

β
θ̄ − (a + 5b) + aθ = 0.

So,

N(
α

β
γ − δ)< 1.

That is, N(αγ −βδ)< N(β) as in case 1.
Case 2(b): a ∈ Z, 5b ∈ Z. Take γ = 1, δ = a +{b}θ. Then,

α

β
γ − δ =

α

β
− δ = a + bθ − (a +{b}θ)

= (b −{b})θ
So, N(

α

β
γ − δ) = N((b −{b}θ) = N(b −{b})N(θ)

= (b −{b})θθ̄
= 5(b −{b}), as θθ̄ = 5.

Or, N(αβ γ − δ) = 5b −{5b}= 0< 1. So, N(αγ −βδ)< N(β) as in case 1.
Case 3(a) a and b are not elements of Z, but 2a,2b ∈ Z.
It can be shown that

α

β
θ = −5b + (a + b)θ and a + b∈ Z.

Taking γ = θ and δ = {−5b}+ (a + b)θ, we get

N(
α

β
γ − δ) = N(

α

β
θ − δ)

= N(−5b −{−5b})

≤ 1
4
< 1.

So, N(αγ −βδ)< N(β) as in case 1.
Case 3(b): a,b are not elements of Z,2a and 2b are also not elements of Z. Then,
either | b − {b} |≤ 1

3 or | 2b − {2b} |≤ 1
3 . In the former case, we take γ = 1,
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δ = {a}+{b}θ. We arrive at

0< N(
α

β
γ − δ) = N(a −{a}+ (b −{b})θ)

= (a −{a})2 + (a −{a})(b −{b}) + 5(b −{b})2

≤ 1
4

+
1
6

+
5
9

(=
35
36

)

< 1.

In the latter case, take γ = 2 and δ = {2a}+{2b}θ
we get N(αβ γ − δ)≤ 35

36 < 1.
Case 3(c): a,b are not elements of Z, but 2a ∈ Z and 2b 6∈ Z.
When 5b ∈ Z, take γ = 5 and δ = {5a}+ 5bθ.
When 5b 6∈ Z, take γ = 2θ̄ and δ = {2a + 10b}− 2aθ. This leads to

N(
α

β
γ − δ)< 1 as in the earlier cases.

Case 3(d): a and b are not elements of Z, 2a 6∈ Z, but 2b ∈ Z.
Take γ = 2, δ = {2a}+ 2bθ. Then,

α

β
γ − δ = 2(a + bθ) −{2a}− 2bθ = 2a −{2a}.

So, N(αβ γ −δ)≤ 1
4 < 1 and hence N(αγ −βδ)< N(β) as in the earlier cases. This

exhausts all possibilities for the choices of a,b in α
β = a + bθ. Thus, (3.4.2) holds

and the proof is complete. �

Theorem 19 : R(−19) is not a Euclidean domain.

Proof : Let R(−19)∗ = R(−19) \ {0}. To show that R(−19) is not a Euclidean
domain, one has to establish that R(−19) does not admit a function

g : R(−19)∗→ Z̃
where (i) g(α)≤ g(αβ) for α 6= 0,β 6= 0 in R(−19)
(ii) given α, β nonzero elements in R(−19), there exist γ,δ ∈ R(−19) such that
α = βγ + δ with either δ = 0 or g(δ)< g(β).

Assume the contrary. That is, assume that there exists a function
g : R(−19)∗→ Z̃ with the properties given above.

Take g(α) = N(α) = αᾱ for α ∈ R(−19). The group of units in R(−19) is
{+1,−1}. We have seen in (3.4.1) that if α = a + bθ where θ = 1+

√
−19

2 .

N(α) = αᾱ = (a + bθ)(a + bθ̄) = a2 + ab + 5b2.

Also, the norm is multiplicative. Further,

(3.4.4) N(α) = N(ᾱ) = (a + b)2 − ab + 4b2

If α is a unit, then N(α) = 1.
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We introduce two sets S and T defined by

S = {α ∈ R(−19) : α 6= 0,1 or − 1}(3.4.5)

T = {N(α) : α ∈ S}(3.4.6)

T has a minimal element say n> 0.
We claim that 2 and 3 stay as primes in R(−19). Applying the division algo-

rithm to 2 with n as divisor (in Z) we get

2 = qn + r with | r |<| n | .
r is one of 0,1,−1. So, either n|2 or n|3. We show that n =±2 or n =±3.

If 2 is not a prime in R(−19) we could write

2 = (a + bθ)(c + dθ)

where a + bθ, c + dθ are in R(−19) and are nonzero non-units.

N(2) = 4 = N(a + bθ)N(c + dθ) = ((a + b)2 − ab + 4b2)((c + d)2 − cd + 4d2)

From ((a + b)2 − ab + 4b2) = 2, considering the cases ab≥ 0 and ab < 0, we note
that b = 0. In the same manner, d = 0. So then, 2 = ac is a factorization in Z
— a contradiction. So, 2 stays prime in R(−19). Similarly, it could be shown that
3 stays prime in R(−19).

Applying the division algorithm in R(−19) to θ with ±2 or ±3 as a divisor,
we see that if θ = 2γ + δ either δ = 0 or N(δ)< N(2).
δ = 0⇒ θ is divisible by 2. δ =±1 would give θ±1 is divisible by 2. Similarly,
either θ is divisible by 3 or θ±1 is divisible by 3. But this is impossible since

N(θ) = 5 = N(θ − 1) and N(θ + 1) = 7,

N(2) = 4 and N(3) = 9.

The minimal element of T (3.4.6) being 2 or 3 is not allowed. This contradiction
asserts that our assumption about the existence of a function g : R(−19)∗→ Z̃ with
the stated properties is wrong. So, R(−19) is not a Euclidean domain. �

Remark 3.4.2 : Theorems 18 and 19 have been drawn from Oscar A. Campoli [2].

The Dedekind-Hasse theorem (theorem 17) says that a PID is near to a
Euclidean domain. John Greene [5] remarks that the structure of R(−19) along
with the norm N(α), α ∈ R(−19) makes us suggest that R(−19) is ‘almost
Euclidean’.

Definition 3.4.1 : An integral domain D is called ‘almost Euclidean’ if there is a
function g : D→ Z̃ satisfying the following conditions:
(i) g(0D) = 0 and g(a)> 0 for 0 6= a ∈ D. (0D being the additive identity)
(ii) for 0 6= a,b elements in D, one has

g(ab)≥ g(a) for all a ∈ D
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and
(iii) either a = bq, for some q ∈ D or
(iv) 0< g(ax + by)< g(b), for some x,y ∈ D.

Theorem 20 : An integral domain D is a PID if, and only if, it is ‘almost Euclidean’.

Proof : ⇐: Dedekind-Hasse theorem (theorem 17) shows that if D is
‘almost Euclidean’, then it is a PID.

For, g(ab) = g(a)g(b) satisfies g(ab) ≥ g(a)g(b) for all a,b ∈ D. Let I be a
nonzero ideal in D. Among the elements x ∈ I, let x = b be an element such that
g(b) is minimal. For a ∈ I, since ax + by ∈ I for x,y ∈ D one has

0< g(ax + by)< g(b).

This is not acceptable as g(b) is minimal. So, a = bq must hold for some q ∈ D.
Thus, I = (b) and so D is PID.
:⇒ Suppose that D is a PID. We define a function g : D→ Z̃ as follows:
g(0D) = 0. For 0D 6= a ∈ D, let a = ε p1 p2 · · · pn where ε is a unit and p1, p2, · · · , pn

are irreducibles in D.
Let g(a) = 2n, n denoting the total number of irreducible factors of a. (repeti-

tions being allowed)
Since g(ab) = g(a)g(b), g satisfies conditions (i) and (ii) of definition 3.4.1.
Let a,b ∈ D with b 6= 0D. We write

I = {ax + by : x,y ∈ D}
Since I is an ideal in D, I = (d), the principal ideal generated by d (say an element
of I).

If a = bq for some q ∈ D, I = (b). Otherwise, I 6= (b). Since b ∈ I, b = td for
some t ∈ D. So, g(b)≥ g(d). Since I 6= (b), t is not a unit in D. So g(t)> 1. So,
g(b)> g(d). If d = ax0 + by0 for some x0,y0 ∈ D,
0< g(d)< g(b) gives 0< g(ax0 + by0)< g(b).
This shows that either a = bq or there exist x0,y0 ∈ D such that

0< g(ax0 + by0)< g(b).

That is, D is ‘almost Euclidean’. �

Remark 3.4.3 : Theorem 20 has been adapted from John Greene [5].

Next, the division algorithm in Z says that for a,b ∈ Z (b 6= 0), we can find
q,r such that

(3.4.7) a = bq + r with 0≤| r |<| b |
In (3.4.7), we have considered the absolute-value norm. If r > 0, we see that
0< r <| b |. When q 6= −1 we also have

(3.4.8) a = b(q + 1) − t
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with r = b − t or t = b − r where | t |<| b |. If q = −1, a = −b + r is the same as
a = 0 ·b − t where t = −a = (b − r) and | t |<| b |.

(3.4.7) and (3.4.8) together suggest that the remainder on division of a by b is
not unique and it is said to have a ‘double-remainder property’ abbreviated d.r.p.
Following Steven Galovich [4], we make the

Definition 3.4.2 (Steven Galovich) : A Euclidean domain (D,g) is said to have the
double-remainder property (d.r.p) if, for each pair of elements a,b (a ∈ D,b ∈ D∗)
such that b does not divide a, there exist exactly two pairs (qi,ri) (i = 1,2) such
that

a = qib + ri (i = 1,2)

where g(ri)< g(b) (i = 1,2).
Further, a≡ r1 (mod b) and a≡ r2 (mod b).

Next, we show that d.r.p characterizes Z among Euclidean domains. See
Steven Galovich [4].

Let (R,g) be a Euclidean domain possessing d.r.p. R is assumed to be an
infinite set. U(R) denotes the group of units of R. As usual, we write
R∗ = R\{0R}. Let 1R denote the multiplicative identity in R.

Definition 3.4.3 : Given a Euclidean domain (R,g), a subset R1 of R∗ is defined
by

R1 = {x ∈ R∗ : g(x)≤ g(y) for all y ∈ R∗}
If u ∈U(R), g(u) = g(1R). Further, g(1R)≤ g(a) for all a∈ R∗. Also, if t ∈ R1,

g(t) ≤ g(1R). But, g(1R) ≤ g(t). So, g(t) = g(1R) or t ∈ U(R). That is, R1 is
precisely the set U(R) of units of R.

Definition 3.4.4 : For n≥ 2, we define

Rn = {x ∈ R∗ : g(x)≤ g(y) for all y ∈ R∗ \Rn−1}
We need a series of lemmas (nine of them) to reach the desired goal.

Lemma 3.4.1 : R∗ =
∞⋃

n=1

Rn.

Proof : We have observed that R1 = U(R). Now,

R2 = {x ∈ R∗ : g(x)≤ g(y) for all y ∈ R∗ \R1}.
If t ∈ R1, g(t) ≤ g(y) for all y ∈ R∗. So g(t) ≤ g(y) for all y ∈ R∗ \R1 also. So,
t ∈ R2. That is, R1 ⊆ R2.

We prove by induction on n that Rn ⊆ Rn+1 for all n≥ 1. The result is true for
n = 1. Assume that there exists m> 2 such that

Rm−1 ⊆ Rm.

Rm−1 ⊆ Rm⇒ R∗ \Rm ⊆ R∗ \Rm−1.
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Let t ∈ R∗ and t ∈ Rm where g(t) ≤ g(y) for all y ∈ R∗\Rm. Then, t ∈ Rm+1

or Rm ⊆ Rm+1. It follows that Rn ⊆ Rn+1 for all n≥ 1. Thus, {Rn} is an enlarging

sequence of subsets of R∗. If M =
∞⋃

n=1

Rn, M ⊆ R∗.

Now, for s ∈ R∗, there exists Rq contained in M such that s ∈ Rq for some
s∈N. That is, R∗⊆M and this shows that R∗ = M which proves lemma 3.4.1. �

Lemma 3.4.2 : If u ∈U(R) and u 6=±1R, then 1R + u ∈U(R).

Proof : We note that if v ∈U(R), then

g(v)< g(a) for all a ∈ R∗ \U(R).

No two of 1R, −u,u2 are equal. However,

1R ≡ −u≡ u2 (mod (1R + u)).

So, if 1R + u /∈U(R) we get the congruences

(3.4.9)

{
1R ≡ −u (mod (1R + u))
1R ≡ u2 (mod (1R + u))

(3.4.9) is due to the fact that (R,g) possesses d.r.p. Further,

(3.4.10)

{
g(−u) < g(1R + u)
g(u2) < g(1R + u)

Next, when u ∈ U(R), there exists v ∈ U(R) such that uv = 1R. Let I denote the
ideal generated by 1R + u in R. Then, as I is a principal ideal, g(a)≥ g(1R + u) for
all a ∈ I. 1R + u is a nonzero non-unit and so I is a proper ideal of R, provided
we assume that 1R + u /∈U(R). The nonzero elements of I are contained in Rm for
some m≥ 1.

Now, 1R +u = uv+u = u(1R +v). 1R +u 6= 0R, as u 6=±1R. So, g(1R +u)≤ g(y) for
every y ∈ R∗\Rm−1, as 1R + u ∈ Rm. As U(R) ⊂ Rm and u ∈ U(R),
g(1R + u)≤ g(u). Further, g(−u)≤ g(u) and so g(1R + u)≤ g(−u). As g(u)≤ g(u2),
we have g(1R + u)≤ g(u2). Therefore, d.r.p does not work if 1R + u /∈U(R). Thus,
1R + u ∈U(R). �

Corollary 3.4.1 : If u ∈U(R), u 6=±1R, 1R − u ∈U(R).

Proof follows on lines of proof of lemma 3.4.2.

Lemma 3.4.3 : Let S(R) = U(R)∪{0R}. Then, S(R) does not form a field under
the ring operations in R.

Proof : Assume the contrary. That is, we suppose that S(R) is a field.
Let r ∈ R2 \R1. Since (R,g) possesses d.r.p, there exists u ∈ U(R), u 6= 1R and
q ∈ R such that

1R = qr + u
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By the assumption that S(R) is a field, qr = 1R −u ∈U(R), by Corollary 3.4.1.
Then, q and r would be units. But, we have taken r to be a non-unit. This contra-
dicts the field structure (assumed) of S(R). So, S(R) is not a field. �
Lemma 3.4.4 : Taking 1R + 1R as 2R, 2R considered as an element of R is a
nonzero non-unit.

Proof : If 2R ∈ S(R) = U(R)∪ {0}, then for all u,v ∈ U(R) either u + v = 0 or
u + v = u(1R + u−1v) ∈U(R) by lemma 3.4.2. So, then S(R) becomes a field which
is not true by lemma 3.4.3. That is, 2R is a nonzero non-unit in R. �
Corollary 3.4.2 : The characteristic of R is not equal to 2 and 2R /∈U(R). For,
2R is a nonzero non-unit of R and so 2R 6= 0R.

We deduce that as R is assumed to be an infinite set, characteristic of R is
zero.

Lemma 3.4.5 : If Rn is as given in definition 3.4.4, Rn is a finite set.

Proof : We first show that R1 = U(R) = {1R,−1R}. Suppose that there exists u∈ R
such that u ∈U(R) and u 6=±1R. Then,

u≡ u − 2R (mod 2R)

u≡ u + 2R (mod 2R)
Now, 2R + u = 1R + (1R + u). Let v = 1R + u ∈U(R). Then, 1R + v = 1R + (1R + u) is
again an element of U(R), by lemma 3.4.2. So, 2R + u ∈U(R). Also,

u − 2R = −(1R + (1R − u)) ∈U(R).

Therefore, by d.r.p,
g(u − 2R)< g(2R)
g(2R + u)< g(2R)

As 2R 6= 0R, 2R belongs to Rm for some m. So,

g(2R)≤ g(y) for all y ∈ R∗\Rm−1

Next, R1 ⊆ Rm. So, if a property is true for all y ∈ Rm, it is true for all y ∈ R1.

That is, g(2R)≤ g(y) for all y ∈ R1 = u(R)

In particular, g(2R)≤ g(u + 2R) and g(2R)≤ g(u − 2R) as u + 2R,u − 2R are in U(R).
This violates d.r.p. So, R1 = {1R,−1R}.

Next, we assume that Rn−1 is finite. Let x ∈ Rn \Rn−1. By d.r.p, each nonzero
coset of the ideal (x) (generated by x) contains exactly two elements of Rn−1. By
hypothesis, Rn−1 is finite. We write

k = 1 +
1
2

(# Rn−1).

Then, R/(x) is a finite ring having k elements. So,if ⊕ denotes addition modulo
(x), (R/(x),⊕) is a finite group with k elements. In R/(x),

k(1R⊕ (x)) = k1R⊕ (x) = (x).
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So, k1R ∈ (x). That is k1R is a multiple of x. Since R is a UFD with a finite group
of units,

k1R = (1 +
1
2

(#Rn−1)1R

has only a finite number of divisors in R. So, Rn is finite whenever Rn−1 is finite.
Since R1 is finite, the induction is complete. �

Corollary 3.4.3 : If x ∈ R∗, R/(x) is a finite ring.

Remark 3.4.4 : Since R is infinite and for each n≥ 1, Rn is a finite set, we note
that Rn is strictly contained in Rn+1 for n≥ 1.

Definition 3.4.5 : For x ∈ R∗, #(R/(x)) denoted by N(x) is a positive integer and
N(x) is called the norm of x ∈ R∗.

Lemma 3.4.6 : The norm N(x) of x ∈ R∗ is multiplicative.
That is, for x,y ∈ R∗,

N(xy) = N(x)N(y).

Proof : For x,y ∈ R∗, we consider the quotient rings R/(x) and (y)/(xy). This is
meaningful as R is a PID. We define

ψ : R/(x)→ (y)/(xy)

by ψ(a + (x)) = ay + (xy) where a ∈ R. If b ∈ R and ay + (xy) = by + (xy), we get
(a − b)y∈ (xy). This yields a − b = 0R or a = b. That is, ψ is one-one. Therefore,

N(x) = #((y)/(xy)).

Further, R/(y) ∼= R/(xy)
/

(y)/(xy). Thus, N(y) = N(xy)
N(x) which proves the desired

property of N. �

Lemma 3.4.7 : For n≥ 2,

Rn \Rn−1 = {x ∈ R∗ : N(x) = 1 +
1
2

(#Rn−1)}.

Proof : While proving lemma 3.4.5, we have observed that if
x ∈ Rn \Rn−1,R/(x) has k = 1 + 1

2 (#Rn−1) elements.
We set

An = Rn \Rn−1

and

Bn = {x ∈ R∗ : N(x) = 1 +
1
2

(#Rn−1)}.
Am∩An = φ for m 6= n. Similarly Bm∩Bn = ∅ for m 6= n. However,
we have

∞⋃

n=2

An =
∞⋃

n=2

Bn = R∗ \U(R).

Also, An ⊆ Bn. For, if x ∈ Rn \Rn−1, N(x) = 1 + 1
2 (#Rn−1) and so x ∈ Bn.

© 2007 by Taylor & Francis Group, LLC



64 CHAPTER 3

We claim that An as a proper subset of Bn is impossible. For if y∈ Bn, y /∈ An.
So, y ∈ A j ⊂ B j is a contradiction as B j ∩Bn = ∅ for j 6= n. So, An = Bn for n≥ 2.
This completes the proof of lemma 3.4.7. �

Lemma 3.4.8 : For x,y,∈ R∗, g(x) < g(y)⇔ N(x) < N(y). In other words, the
Euclidean domain (R,N) also possesses d.r.p.

Proof : ⇐: Let x,y,∈ R∗ such that

N(x) = 1 +
1
2

(#Rn−1)

N(y) = 1 +
1
2

(#Rm−1)

x 6= y⇒ n 6= m. If N(x) < N(y), #Rn−1 < #Rm−1. As Rn ⊂ Rn+1 for n≥ 1, Rn ⊂ Rm

when x ∈ Rn \Rn−1; y ∈ Rm \Rm−1. So, when n< m, g(x)< g(y).
:⇒ Suppose that g(x) < g(y). Choose n,m the least positive integers such that
x ∈ Rn, y ∈ Rm. Then, n< m.

Rm = {y ∈ R∗ : g(y)≤ g(t) for all t ∈ R∗ \Rm−1}

Rm − Rm−1 = {y ∈ R∗ : N(y) = 1 +
1
2

(#Rm−1)}
Now,

N(x) = 1 +
1
2

(#Rn−1)≤ N(y) = 1 +
1
2

(#Rm−1).

Inequality is strict. For, otherwise, x ∈ Rm \Rm−1.
So, g(x)< g(y)⇒ N(x)< N(y). As N is multiplicative, (R,N) has also d.r.p. �

Remark 3.4.5 : Lemma 3.4.8 connects the function g with the norm N.

Remark 3.4.6 : #Rn−1 = 2(N(y) − 1), whenever y ∈ Rn \Rn−1.

Lemma 3.4.9 :
R2 \R1 = {±2R}.

Proof : By lemma 3.4.7,

R2 \R1 = {x ∈ R∗ : N(x) = 1 +
1
2

(#R1)}.

As #R1 = 2, we have
R2 \R1 = {x ∈ R∗ : N(x) = 2}.

N(x) = 2⇒ #R/(x) = 2. Therefore, 2(1R + (x)) = (x) or 2R ∈ (x). There exists y∈ R∗

such that xy = 2R (as 2R is a multiple of x.) We claim that N(y) = 1. This implies
that y is a unit and x =±2R. We proceed as follows:
We observe that

N(x2) = N(x)N(x) = 4.

1R ≡ x≡ x2 (mod (x − 1R)).
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For,

1R = −(x − 1R) + x

1R = −(x + 1R)(x − 1R) + x2

1R = 0R(x − 1R) + 1R.

If N(x − 1R)> 4, then N(x) < N(x − 1R), N(x2) = 4< N(x − 1R). Also,
N(1R)<N(x−1R). As R satisfies d.r.p, there exist exactly two elements x1,x2 with
(x − 1R) not dividing 1R such that

N(x1)< N(x − 1R)
N(x2)< N(x − 1R)

and

1R ≡ x1 (mod (x − 1R))
1R ≡ x2 (mod (x − 1R))

This shows that # (R/(x − 1R)) = N(x − 1R) cannot exceed 4. That is,

(3.4.11) N(x − 1R)≤ 4.

Arguing similarly, we show that N(±1R± x)≤ 4.

(3.4.12) Now, no two of ±1R± x are equal.

For,

If 1R + x = −1R + x, we have 2R = 0.
If 1R + x = 1R − x, we have 2Rx = 0.
If − 1R − x = 1R + x, we have 2Rx = −2R or x = −1R.

But, x is a non-unit. So (3.4.11) holds good.
We observe that

1R + x = 2Rx + (1R − x)
1R + x = 2 1R + (−1R + x)
1R + x = 2 0R + (1R + x)

So, they are congruent modulo 2R. So, by d.r.p, N(2R) ≤ N(±1R± x) ≤ 4 or,
4≥ N(2R) = N(x)N(y) = 2N(y) as N(x) = 2. So, N(y)≤ 2. If all of (±1R± x) have
norm < 4, then,

N(2R)< 4 or else, d.r.p is violated.
If N(2R)< 4, 2N(y)< 4 and so N(y) = 1 as N(y)< 2.

From the argument shown above, we arrive at the fact that N(y) = 1.
So, we can assume without loss of generality that

N(1R − x) = 4 and N(y) = 1.

N(a) = 4⇒ #R/(a) = 4. Since any element of norm 4 is a product of irreducibles
dividing 2R, we suppose that ab = 4R for some b ∈ R. As R is a UFD, ab = 2R ·2R.
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Suppose that xy = 2R. Then, N(1R − x) = 4⇒ x divides 1R − x or y divides
1R − x. If x divides 1R − x, 1R − x ∈ (x). So 1R − x + x = 1R ∈ (x). This shows that
x has to be a unit which is not the case. So, y divides 1R − x and N(y) = 2. So,
1 − x =±y2.

Now,
R2 \R1 = {x ∈ R∗ : N(x) = 2} = {±x,±y}

Furthermore, if N(1R − x) = 4, 1R − x must be of the form a1a2 where a1,a2 are xy
or yx.

R3 \R2 = {x ∈ R∗ : N(x) = 4} = {±x2,±xy,±y2}
Since N(1R + x)≤ 4, x does not divide 1R + x and 1R + x 6= 1R − x. So, 1R + x 6=±y2

or 1R + x =±y. Therefore,

y2 = (1R + x)2 =±(1R − x).

If (1R + x)2 = (1R − x), then, 1R + 2Rx + x2 = 1R − x or x(x + 3R) = 0. So, x = −3R and
y =±2R which implies that x =±1R, a contradiction. So,

(1R + x)2 = −1R + x

or x2 + x + 2R = 0.

So, x = −1R±
√

1R−8R
2 . That is,

(3.4.13) 2x + 1R =
√

−7R ∈ R.

Also, y = −1R − x = −( 1R±
√

−7R
2 ), x − y = 1R + 2x.

Now, #R3 = #(R3 − R2) + #(R2 − R1) + #R1 = 12. So, by lemma 3.4.7

R4 \R3 = {t ∈ R∗ : N(t) = 7}
If z ∈ R4 \R3, z divides

√
−7R. Thus z divides

√
−7R = 1R + 2x = x − y.

Therefore, x2 ≡ xy ≡ y2 (mod z) which contradicts d.r.p. So, we conclude
that N(y) = ±1 and so R2 \R1 has elements 2R and −2R as desired. This proves
Lemma 3.4.9. �

Theorem 21 (Steven Galovich (1978).) : If (R,g) is a Euclidean domain with
d.r.p, then R ∼= Z.

Proof : Proof is by induction on the norm function N given in definition 3.4.5.
We have seen that R1 = U(R) = {±1R}. By lemma 3.4.9, R2\R1 = {±2R}. Further,

U(R) = {x ∈ R∗ : N(x) = 1}.
Let

nR = 1R + 1R + · · ·+ 1R (n times)

N(nR) = n is true for n = 1 and 2. Suppose that N(kR) = k for all
k ≤ (n − 1). If n is composite, N(nR) = n by induction on n, as N : R∗ → N is
multiplicative.
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Let n be an odd prime. Then,

N((n + 1)R) = N
(2(n + 1)R

2

)

= N(2R)N
( (n + 1)R

2

)

= 2 ·
((n + 1)

2

)

= (n + 1).

Since 1R ≡ 1R − nR ≡ (n + 1)R (mod nR),

N(nR)≤ (n + 1) as N((n + 1)R) = (n + 1).

But, 1R has additive order n in R/(nR) and so n divides N(nR). Therefore, N(nR) =
n. Next, let y ∈ R∗

(3.4.14) #{x ∈ R∗ : N(x)< N(y)} = 2(N(y) − 1).

For, if y ∈ Rn \Rn−1 = {y ∈ R∗ : N(y) = 1 + 1
2 (#Rn−1)}

{x ∈ R∗ : N(x)< N(y)} = Rn−1

and #Rn−1 = 2(N(y)) − 1. Writing y = nR in (3.4.14) and noting that N(nR) = n, we
obtain

{x ∈ R∗ : N(x)< n} = {±1R,±2R, · · · ,±(n − 1)R}.

As
∞⋃

n=1

{x ∈ R∗ : N(x) < n} = R∗, R∼= Z or R = Z up to isomorphism. This shows

that the double-remainder property characterizes Z among Euclidean domains.
�

Remark 3.4.7 : Proof of theorem 21 has been adapted from [4].

3.5. Notes with illustrative examples

One need not confine oneself to integral domains while discussing the ‘divi-
sion algorithm’. Euclidean rings could be studied. So, then, there are principal
ideal rings.

The study of the ring of algebraic integers of Q[
√

m] has arisen from a class
of Diophantine equations

x2 − my2 = n
where | m | is given and n is arbitrary. In the case of

x2 − y2 = p (a prime)

we have (x − y)(x + y) = p. One has x − y = 1 and x + y = p and so x = p+1
2 , y = p−1

2 .
So, a prime p is a difference of two squares if, and only if, it is odd. For an odd
integer n, one can write

n =
(

n + 1
2

)2

−
(

n − 1
2

)2
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and hence every odd integer is the difference of two consecutive squares.
So, we are interested in studying rings contained in Q[

√
m ] where

m ∈ Z \ {0,1}, m square free. In the case of the ring Z[i] of Gaussian integers,
it can be shown that for any ideal I of Z[i], the quotient ring Z[i]/I is finite. As
I is a principal ideal, I = (α), α ∈ Z[i]. The cosets I +β are those determined
by θ = αγ +β where θ ∈ Z[i]. There are only a finite number of β for which
g(β)< g(α).

Now, given m1 and m2 square-free integers such that one does not divide the
other, it is easy to check that Q[

√
m1 ] and Q[

√
m2 ] are not isomorphic as fields.

Further, for a given m, one can determine all the subfields of the quadratic field
Q[
√

m ] as [Q[
√

m ] :Q] = 2. Regarding units in
Z[
√

m ], m> 1, Z[
√

m ] has infinitely many units.
If 〈a1,b1〉 is a solution of a2 − mb2 =±1, 〈ak,bk〉 is also a solution where

〈ak,bk〉 = (a1 + b1
√

m)k, k ∈ Z. If 〈a1,b1〉 is a solution of a2 − mb2 = ±1, then
a1 +b1

√
m is a unit. It follows that±(a1 +b1

√
m)k, k∈Z are all units. In particular,

the elements of the form±(1 +
√

2)k, k ∈ Z are units ofQ[
√

2]. See section 13.7,
chapter 13.

If m< −1 Z[
√

m ] has units +1,−1. Further, Z[
√

−5] is not a PID, as the ideal
generated by 3 and 2 +

√
−5 is not a principal ideal. Z[

√
−5] deserves greater

attention. If p1, p2, · · · , pk and q1,q2, · · · ,qm are irreducible elements of Z[
√

−5],
such that p1, p2, · · · , pk = q1,q2, · · · ,qm, then k = m. An integral domain which
satisfies this kind of property is referred to as a half-factorial domain (H.F.D). In
general, if H is a H.F.D, it happens that a finite set of elements of H need not have
a greatest common divisor. See Section 2.5, chapter 2. Half-factorial domains are
considered in Section 13.4, chapter 13.

3.6. Worked-out examples

a) Let K = Q[
√

m] where m > 0 and m ≡ 2 or 3(mod 4). Show that the number
of fields K for which the ring R(m) is a Euclidean domain is finite.
Answer: Let us suppose that R(m) is Euclidean for m > 0 and m 6≡ 1(mod 4).
Given θ =Q[

√
m], there exists η ∈ R(m) such that

(3.6.1) g(θ −η)< 1

where g : R∗(m)→ Z̃ given by g(α) = |N(α)|,α ∈ R∗(m).
Let θ = r + s

√
m, r,s ∈ Q. η = x + y

√
m, x,y ∈ Z and θ,η satisfy (3.6.1).

Then, by (3.6.1),
|(r − x)2 − m(s − y)2|< 1.

Take r = 0, s : t/m where t is an integer to be chosen. Then,

|x2 − m(y − t/m)2|< 1.

That is, |(my − t)2 − mx2|< m. But, (my − t)2 − mx2 ≡ t2(mod m).
So, there exist rational integers x,z such that

(3.6.2) z2 − mx2 ≡ t2(mod m), |z2 − mx2|< m.
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If m≡ 3(mod 4), we choose t such that 5m < t2 < 6m. This is possible when
m is large enough. By (3.6.2) z2 −mx2 is equal to t2 −5m or t2 −6m. Therefore,
one of

(3.6.3) t2 + z2 = m(5 · x2), t2 − z2 = m(6 · x2)

holds. Considering integers t2,z2,x2,m modulo 8, we have

t2 ≡ 1(mod 8)

z2,x2 ≡ 0,1 or 4(mod 8), m≡ 3 or 7(mod 8)

t2 − z2 ≡ 0,1 or 5(mod 8)

5 − x2 ≡ 1,4 or 5(mod 8)

6 − x2 ≡ 2,5 or 6(mod 8)

m(5 − x2)≡ 3,4 or 7(mod 8)

m(6 − x2)≡ 2,3,6 or 7(mod 8).

whatever be the choice of m, each of (3.6.3) is impossible.
If m≡ 2(mod 4), we choose t odd with the property

(3.6.4) 2m< t2 < 3m,

when m is large enough. (3.6.4) holds for large values of m. In this case, one
of

(3.6.5) t2 − z2 = m(2 − x2), t2 − z2 = m(3 − x2)

holds. But, to the modulus 8, m≡ 2 or 6(mod 8). Then,

2 − x2 ≡ 1,2 or 6(mod 8)

3 − x2 ≡ 2,3 or 7(mod 8)

m(2 − x2)≡ 2,4 or 6(mod 8)

m(3 − x2)≡ 2,4 or 6(mod 8).

Then, each of (3.6.5) is impossible.
Hence, if m≡ 2 or 3(mod 4) and m is large enough, the ring R(m) of integers
of Q(

√
m) is not Euclidean.

This completes the answer. �

Remark 3.6.1 : Worked out example (a) is applicable to the case m≡ 1(mod 4).
As noted in [A1], the proof is more difficult and so not attempted.

b) (Godement) Let R be a PID having F for its field of quotients. Suppose that
t ∈ F is given by

(3.6.6) t =
a

pa1
1 , p

a2
2 , . . . , p

ak
k
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where p1, p2, . . . , pk are distinct primes of R; a∈R, ai≥ 1(i = 1,2, . . . ,k). Show
that there exist elements t1, t2, . . . tk in R such that

(3.6.7) t =
t1
pa1

1
+ · · ·+ tk

pak
k
.

(that is, every element of F can be written as a sum of fractions of the form
b
p r , where b ∈ R, p a prime in R, r ≥ 0).

Answer: We make the following
Observation: (i) If p1, p2, . . . , pk are nonassociated primes in R, then, pa1

1 , p
a2
2 ,

. . . , pak
k (ai ≥ 1; i = 1,2, . . . ,k) are relatively prime to one another.

Observation: (ii) Suppose that b1,b2, . . . ,bk are elements of R which are rela-
tively prime to one another. If

s =
c

b1,b2, . . . ,bk

where c ∈ R, s ∈ F and s can be expressed as

(3.6.8) s =
c1

b1
+

c2

b2
+ · · ·+ ck

bk

where ci ∈ R(i = 1,2, . . . ,k).
Observation (i) follows from the fact that if d is a g.c.d of pai

i and pa j
j , i 6= j

and if d is a non-unit, d has a prime divisor p which divides pai
i and pa j

j . So, p
is an associate of pi as well as p j — a contradiction to the fact that pi and p j

are not associated. So, d is a unit and hence pai
i and pa j

j are relatively prime to
one another.

Observation (ii) can be proved by induction on k, starting with k = 2.
(3.6.7) follows from (3.6.8). �

Remark 3.6.2 : Example (b) is useful when we considerR[x], the polynomial
ring with coefficients fromR, the field of real numbers. R[x] is a PID. Its field
of quotients R(x) contains rational functions of the form f (x)

g(x) , g(x) 6= 0. By the
UFD property of R[x], we express g(x) as a product of irreducible elements of
R[x]. Then, f (x)

g(x) is expressible as a sum of partial fractions.

Illustration 3.6.1 :

(3.6.9)
x3 + 2x + 1

x4 − 1
=

1
x − 1

+
1

2(x + 1)
−

(x + 1)
2(x2 + 1)

.
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EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) d is a g.c.d of nonzero elements a1,a2, . . . ,an of a PID R. Then, d is
expressible as

d = x1a1 + x2a2 + · · ·+ xnan

where x1,x2, . . . ,xn are elements of R. It is correct to say that x1,x2, . . . ,xn

are pairwise relatively prime to one another.
b) Let R be a PID. Suppose that p denotes an irreducible element of R.

Then the ideal I(= (p)) generated by p need not be a prime ideal.
c) (Godement) Let d be an element of a commutative ring R with unity. In

R×R, we define addition and multiplication by

(r,s) + (r′,s′) = (r + r′,s + s′)
(3.6.10) (r,s) · (r′,s′) = (rr′ + dss′,rs′ + r′s)

(where r, r′; s, s′ are elements of R) involving the given element d and
the laws of composition in R. We denote the new ring obtained from
R×R using (3.6.10) by R[

√
d].

If R = Fp = Z/pZ, where p is a prime, Fp[
√

d] is a field having 121
elements, for d = [7] (element of Fp) and p = 11.

d) The g.c.d of 11 + 7i and 18 − i in Z[i] is 2 + i.
e) Let R(3) denote the ring of integer of Q(

√
3). The equation 2.11 =

(5 +
√

3)(5 −
√

3) does not contradict the UFD property of R(3).
f) Let θ = exp( 2πi

5 ). Then, Z[θ] is a Euclidean domain.
2. Let (D,g) be a Euclidean domain. For nonzero a,b∈D, show that g(a)< g(b)

if, and only if, b is not a unit in D.
3. (Picavet) [A3] Let (D,g) be a Euclidean domain whose algorithm g satisfies

the following properties :
(a) g(ab) = g(a)g(b) for all a,b ∈ D∗ with a + b 6= 0
(b) g(a) = g(b) if, and only if, a and b are associates.

Show that D = Z, the ring of integers.
4. Prove that 1 and −1 are the only units in R(−19).
5. If ω = exp( 2πi

3 ), show that Z[ω] is a Euclidean domain.
6. Show that Z[

√
−10] is not a unique factorization domain.

7. Prove that for each of the number fields Q(
√

m) where
m = −13,−14,−15,−17,−21,−22,−23 and −26, the associated ring R(m) of
integers is not a U.F.D and so not a PID.

8. Show that R(10) and R(15) are not unique factorization domains. (Recall that
R(m) denotes the ring of integers of Q[

√
m ]).

9. What is the irreducible polynomial of α = 1 + 3
√

5 determining a number field
K such that [K :Q] = 3. Determine the ring of integers of K.
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10. Let a ∈ Q. Suppose that α is a zero of x2 − a. Find the number field K of
degree 2 over Q such that α ∈ K. Describe the ring of integers of K.

11. Let K be equal to Q(
√

3, i) where i denotes
√

−1. Determine the ring of inte-
gers of K. Is it a Euclidean domain?
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CHAPTER 4

Rings of polynomials and formal power series

Historical perspective

Polynomials have played a major role in the study of algebra and geometry.
Even before the time of Euclid, Babylonians (586 B.C.) knew that a right-angled
triangle with legs each of unit length must have a hypotenuse

√
2 units in length.

(The ancient Babylonian Empire was situated in Euphrates valley about 100 kms
south of Baghdad (Capital of Iraq which was formerly known as Mesopotamia).
Pythagoras (580–500 B.C.) is known by the theorem that bears his name, al-
though the theorem was known to Babylonians. It is reported that Egyptians were
familiar with methods of solving polynomial equations in special cases. From the
time of Hippocrates (c. 460 B.C.) till the time of Diophantos (c 250 A.D.), Greeks
attempted numerical problems which could be stated in terms of polynomials. In
Greek algebra, magnitudes were represented by line segments and the problem of
finding the roots of a quadratic equation meant a solution in the form of a straight-
edge and compass construction for line segments representing the roots. By 1100
A.D., Arabs developed algebra to the extent where they were conscious of tackling
cubic equations. In the sixteenth and seventeenth centuries, methods of finding the
roots of a quadratic, cubic and biquadratic equations were found out in the form
of ‘formulae for roots’. The contributions of Euler, Lagrange, Niels Henrik Abel
(1802–1829) and Everiste Galois (1811–1832) to the ‘insolvability of the quintic’
are well-known. As mentioned in chapter 3, when Rene Descartes (1596–1650)
invented analytic geometry, the door was opened for a fusion of ideas of Calculus
which unfolded itself at the hands of Newton and Leibnitz.

A major breakthrough was in sight when Poncelot (1788–1867) published
his work on projective geometry. Poncelot was in prison during 1813–1814 and it
was during this period he invented many outstanding results in geometry—mainly
his concept of central projection. Polynomials are studied in the context of cen-
tral projections. If we consider curves whose equations are given by polynomials,
central projections change these curves into other curves given by ratios of poly-
nomials. We examine the properties of a curve which do not change by such
projections. Those properties are called invariants. Invariants provide a ‘bridge’
between algebra and geometry. The idea of central projections gave place to
one-one onto mappings θ of an n-dimensional space so that θ and θ−1 were poly-
nomial maps. They are birational transformations. The question that was asked
is the following:

73
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What properties of curves remain invariant under certain kinds of transfor-
mations? In the general situation, polynomials with coefficients from a field were
considered. The ring F[x] is a PID. Polynomials in two indeterminates x,y be-
long to the integral domain F[x,y]. But F[x,y] is not a PID. We look at an ideal
I of the ring F[x1,x2, · · · ,xn] in n indeterminates. The question is : Is I finitely
generated? Hilbert’s Basis theorem says that I is finitely generated. It was P.
Gordon (1837–1912) who first proved this theorem for ideals of F[x,y] in 1868.
For the next 20 years or so, Gordon and others were able to extend this result to
certain special kinds of ideals in F[x1,x2,x3] and F[x1,x2,x3,x4]. Even though the
work was about the structure of ideals, they studied certain kinds of polynomials.
Indeed, D. Hilbert’s contributions are remarkable and his influence on modern
mathematics is profound.

4.1. Introduction

Polynomial rings are introduced. If F is a field, F[x] is a Euclidean domain
and the uniqueness of the division algorithm characterizes F[x] among Euclidean
domains.

The ring A of arithmetic functions under the operations of addition and
Dirichlet convolution is shown to be a UFD via the ring Cω of formal power
series in countably infinite indeterminates. This was proved by E. D. Cashwell
and C. J. Everet [2] in 1959. This is given in theorem 27.

When we consider polynomials over a finite field, say Z/pZ, p, a prime it is
possible to find a formula for the number of monic irreducible polynomials of a
given degree say m, via Möbius inversion. It is deduced that the number of monic
irreducible polynomials over Z/pZ is infinite. This is an analogue of Euclid’s
theorem on the infinitude of primes (done in arithmetic) in algebra. Noting that Z
is a PID, another analogue involving a PID (due to Fabrizio Zanello) is considered
in Section 16.3, Chapter 16. See Theorem 158.

4.2. Polynomial rings

Let R be a commutative ring with unity 1R. A polynomial in x (an in-

determinate) with coefficients from R is of the form
n∑

i=0

aixi. It is a sequence

(a0,a1,a2, · · · ) where ai ∈ R and all the ai except a finite number of them are zero.
(a0,a1,a2, · · · ) and (b0,b1,b2, · · · ) are equal if, and only if, ai = bi for i = 0,1,2, · · · .

Addition and multiplication of polynomials are defined by

(4.2.1) (a0,a1,a2, · · · ) + (b0,b1,b2, · · · ) = (a0 + b0,a1 + b1,a2 + b2, · · · )

and

(4.2.2) (a0,a1,a2, · · · )(b0,b1,b2, · · · ) = (c0,c1,c2, · · · )
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where

cn =
n∑

j=0

a jbn− j

The set of polynomials with coefficients from R is denoted by R[x]. R[x] forms
a commutative ring under operations of addition and multiplication given above.
The zero polynomial is

(0R,0R,0R, · · · )
and x is denoted by (0R,1R, · · · .). It is a polynomial. The symbol x multiplied by
x, t times is the polynomial

(0R,0R, · · · , 1R
↓

(t+1)thplace

,0R, · · · ).

0R is the additive identity and 1R, the unity element in R. With this notation, we
get

(4.2.3) (a0,a1,a2, · · · ,an,0R,0R, · · · ) =
n∑

i=0

aixi.

It is easy to check that when R is an integral domain so is R[x].
If f (x) =

∑n
i=0 aixi ∈ R[x], deg f (x) = n when an 6= 0R. By convention, the degree

of zero polynomial is defined to be −∞ (negative infinity). Let R be an integral
domain. We observe that

(4.2.4) deg( f + g)(x)≤max{deg f (x),degg(x)}

(4.2.5) deg( f g)(x) = deg f (x) + degg(x)

When R is a commutative ring with unity, division algorithm holds in R[x]. We
state this property without proof.

Proposition 4.2.1 : Suppose that f (x), g(x) (6= 0) are elements of R[x] such that
the leading coefficient of g(x) is a unit in R. Then, there exist unique elements
q(x),r(x) ∈ R[x] such that

f (x) = q(x)g(x) + r(x)

where either r(x) = 0 or degr(x)< degg(x).

For proof, see D. M. Burton [1].

Remark 4.2.1 : When R = F , a field, the leading coefficient in g(x) is invertible
and so the condition that the leading coefficient should be a unit is not needed.

Corollary 4.2.1 : F[x] is a Euclidean domain.

For, one could define δ : F[x]→ Z̃ (the set of non-negative integers), by

δ( f ) = deg f , f ∈ F[x].

Let f ,g ∈ F[x].
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(i)

δ( f (x)g(x)) = deg( f (x)g(x))
= deg f (x) + degg(x)
≥ deg f (x), as degg(x)≥ 0
= δ( f (x))

(ii) Given f ,g ∈ F[x], g(x) 6= 0, one has, by proposition 4.2.1,

f (x) = q(x)g(x) + r(x)

where either r(x) = 0 or δ(r(x))< δ(g(x)). This proves corollary 4.2.1.
We prove in theorem 23 below that the division algorithm for polynomials

in F[x] gives a unique quotient and remainder. Such uniqueness characterises
polynomial rings among Euclidean domains.

Let D be a Euclidean domain with 1D 6= 0D. Let D∗ = D\{0D}. The function
g : D∗→ Z̃ has the property:

(4.2.6) If a,b ∈ D and a is a proper divisor of b then g(a)< g(b)

and g(a) = g(b) if, and only if, a and b are associates.
Further by theorem 13, (chapter 3), the quotient and remainder on application

of division algorithm are unique if, and only if,

(4.2.7) g(a + b)≤max{g(a),g(b)} for every pair 〈a,b〉 in D∗.

Now, we may assume that g(1) = 0. If not, we could write

(4.2.8) g′ : D∗→ Z̃ such that g′(a) = g(a) − g(1).

g′ also gives a Euclidean norm (function) in D∗ just as g does give.

Theorem 22 : If g′ : D∗ → Z̃ is as given in (4.2.8) and for a ∈ D∗, g′(a) is a
positive minimum. Then for each b ∈ D∗, there exist unique elements
q0,q1, · · · ,qk ∈U(D)∪{0D} such that

b = qkak + qk−1ak−1 + · · ·+ q1 + q0, qk 6= 0D (the zero element in D),

where U(D) denotes the set of units in D. Further, the map

φ : D→ F[x]

given by b =
k∑

j=1

q jx j is an isomorphism, where F = U(D)∪{0D}.

Proof : The sequence {g′(ak)}, k = 0,1,2, · · · is a strictly increasing sequence as
ak is a proper divisor of ak+1. (k≥ 1).

(4.2.9) If b 6= 0D,g′(ak)≤ g′(b)≤ g′(ak+1) for some k ≥ 1.

Then,
b = qkak + r where r = 0 or g′(r)< g′(ak).
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qk 6= 0D. We claim that qk is a unit. If qk were not a unit, we will have

qk = la + m,m ∈ F and l 6= 0D as g′(a) is a positive minimum.

So, qkak = lak+1 + mak. From
b = qkak + r,

we have
b = lak+1 + mak + r.

Now, l and m are unique, as m is a unit.

So, by (4.2.7), g′(b − mak − r) = g′(b + (−mak − r))

≤max {g′(b),g′(mak + r)}
Further,

g′(mak + r)≤max{g′(mak),g′(r)}
≤max{g′(ak),g′(r)}, as m is a unit.

= g′(ak).

By (4.2.9), g′(b)≥ g′(ak). So, max{g′(b), g′(mak + r)} = g′(b).
Also, g′(b − mak − r)≤ g′(b). But, b − mak − r = lak+1.
Therefore, g′(b)≥ g′(lak+1)≥ g′(ak+1) which contradicts the inequality
g′(b)< g′(ak+1) in (4.2.9). So, qk is a unit and b = qkak + r.

If r 6= 0, we proceed as before and arrive at

(4.2.10) b =
k∑

j=0

q ja j, q j ∈ F, j = 0,1,2, · · ·k.

The representation of b in (4.2.10) is unique.
For, suppose that

n∑

j=m

s ja j = 0D, s j ∈ F, sm 6= 0D.

Then,

−sm = a
n∑

j=m+1

s ja j−m−1

Therefore, g′(sm) = g′(1)≥ g′(a) which is impossible as, g′(1) = 0. That is,
n∑

j=m

s ja j = 0D,⇒ s j = 0D, m≤ j ≤ n.

It follows that the representation (4.2.10) for b is unique. φ : D∗→ F[x] is such
that

φ(b) =
k∑

j=0

q jx j
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provides a one-one map from D∗ into F[x].

The question is : Is F a well-defined ring?
We answer this in the affirmative, once we claim that the sum of two units in

D is again a unit.
If u1,u2 are in u(D)

0≤ g′(u1 + u2)≤max{g′(u1),g′(u2)} = g′(1) = 0.

So u1 + u2 is a unit whenever u1,u2 are units.
If D = u(D)∪{0D}(= F),D is a field. This completes the proof. �
Theorem 23 (M. A. Jodiet (1967)) : Let D be a Euclidean domain in which
1D 6= 0D. If the quotient and remainder on applying division algorithm to every
pair 〈a,b〉 in D∗ are unique, the set F of units together with 0D forms a field.
If F 6= D, D∼= F[x].

Proof : If the quotient and remainder are unique, the function g′ : D∗→ Z̃ could
be so defined as to make g′(1D) = 0. In this case D = F by theorem 22.

If D 6= F , there exist nonzero non-units in D and then, by theorem 22, we have
a one-one map φ : D∗→ F[x] given by
φ(b) =

∑k
j=0 q jx j, q j ∈ F, qk 6= 0, b ∈ D∗. Let us map the zero element 0D into the

zero polynomial in F[x]. We get a map φ′ : D→ F[x] which is a homomorphism
and which is one-one onto F[x]. For,

φ′(b1 + b2) = φ′(
k1∑

j=0

q ja j +
k2∑

j=0

q′ja
j)

= φ′(
max{k1,k2}∑

j=0

t ja j) , where t j = q j + q′j ∈ F ;

=
max{k1,k2}∑

j=0

t jx j.

Or, φ′(b1 + b2) = φ′(b1) +φ′(b2).
Also,

φ′(b1b2) = φ′(
k1∑

j=0

q ja j
k2∑

j=0

q′ja
j)

= φ′(
k1+k2∑

j=0

c ja j, where c j =
j∑

s=0

qsq′j−s)

=
k1+k2∑

j=0

c jx j

Or, φ′(b1b2) = φ′(b1)φ′(b2).
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So, D∼= F[x]. �

Remark 4.2.2 : Theorems 22 and 23 have been adapted from M. A. Jodiet [6].

Theorem 24 : Let D be an integral domain. Suppose that a function φ : D→ Z̃
satisfies the conditions:
(a) for a,b ∈ D whenever a|b. φ(a) ≤ φ(b) with equality if, and only if, a and b
are associates.
(b) If a,b ∈ D∗ (= D\{0}) such that neither of them divides the other, then there
exist elements k, l,m with the property m = ka + lb and
φ(m)<min{φ(a), φ(b)}. Then D is a PID and conversely.

Proof : :⇒ D is an integral domain and φ : D→ Z̃ is a function satisfying condi-
tions (a) and (b) of the theorem.

We claim that D is a PID.
To achieve this, we consider a proper ideal I of D. I 6= (0). We take an element

x among the nonzero elements of I such that φ(x) is a minimum. We show that I
is the principal ideal generated by x.

Suppose not. Let y ∈ I. If y is not a multiple of x, x cannot be a multiple of y
as g(x)≤ g(y) by condition (a). Applying (b) we note that there exist elements k,
l, m such that

m = kx + ly and φ(m) <min{φ(x),φ(y)} = φ(x)

This contradicts the minimality of φ(x). So I is a principal ideal and I = (x). Thus,
D is a PID.
⇐: Conversely, if D is a PID we introduce a function φ : D∗→ Z̃ as follows:

As D is a UFD, every nonzero element of D is a product of a finite number of
irreducibles.

For a ∈ D∗, take φ(a) = the number of irreducible factors of a and write
φ(0D) = 0. Then (a) holds. For (b), take m to be a g.c.d of a and b. As D is a PID,
D satisfies the criteria for the function φ defined as above. �

Remark 4.2.3 : An integral domain D for which a function φ : D∗ → Z̃ satisfy-
ing conditions (a) and (b) of theorem 24 does not make it a Euclidean domain.
For, condition (b) is not the equivalent of the ‘division algorithm’ property of a
Euclidean domain. So, theorem 24 does not hold good for Euclidean domains
though they are principal ideal domains. For instance, as in theorem 18, chapter
3, R(−19) is a PID and is not a Euclidean domain. Theorem 24 indicates that an
integral domain D could be ‘almost Euclidean’ as indicated in theorem 17, chapter
3 (see definition 3.4.1).

4.3. Elementary arithmetic functions

By an arithmetic function f we mean a mapping f : N→C where C denotes
the field of complex numbers. We denote the set of arithmetic functions byA. An
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arithmetic function is merely a complex-valued sequence: f (1), f (2), f (3), · · · .
For f ,g ∈ A, we define f + g by

(4.3.1) ( f + g)(r) = f (r) + g(r), r ≥ 1

Definition 4.3.1 : The Dirichlet convolution f ·g of f ,g ∈ A is defined by

( f ·g)(r) =
∑

t|r
f (t)g(

r
t
)

where the summation on the right is over all positive divisors t of r.

Addition and Dirichlet convolution are associative. They are also commuta-
tive. Further, for f ,g,h ∈ A

(4.3.2) f · (g + h) = f ·g + f ·h

The function z given by

(4.3.3) z(r) = 0, r ≥ 1

serves as the identity element for addition. The function e0 given by

(4.3.4) e0(r) = [ 1
r ]

where [x] denotes the greatest integer not greater than x serves as the identity for
Dirichlet convolution (multiplication). It follows that (A,+, ·) is a commutative
ring with unity e0. It is known [7] that f ∈ A is a unit if, and only if, f (1) 6= 0.

Definition 4.3.2 : f ∈ A is called a multiplicative function if, whenever
g.c.d (r,s) = 1, f (r) f (s) = f (rs).

The function d where d(r) denotes the number of divisors of r and the Euler
totient φ are examples of multiplicative functions.

Definition 4.3.3 : For f ∈ A, f 6= z , N( f ), the norm of f is defined as the least
positive integer a such that f (a) 6= 0. N(z) = 0, where z is the zero function.

Fact 4.3.1 : Norm of an arithmetic function satisfies

N( f ·g) = N( f )N(g) for all f ,g ∈A.

For proof, see Sivaramakrishnan [8].
It is clear that N( f ) = 1 if, and only if, f is a unit. If f ∈ A is a unit, there

exists g ∈ A such that f · g = e0. We denote g by f −1 and call it the Dirichlet
inverse of f .

If e(r) = 1 for all r ≥ 1, e, is a unit in A. The Dirichlet inverse of e is called
the Möbius function which is denoted by µ. That is, e−1 = µ. Accordingly, we
give
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Definition 4.3.4 : The Möbius function µ is defined by

µ(r) =





1, r = 1;
(1)k, if r = p1 p2 · · · pk, where p1, p2, · · · pk are distinct primes;
0, if a2|r, a> 1.

µ is multiplicative.
The relation e ·µ = e0 translates into

∑

t|r
µ(t) =

{
1, r = 1
0, otherwise.

Further, we note that for f ,g ∈ A
f · e = g⇔ f = g · e−1

This is the well-known Möbius Inversion formula namely:
for f ,g ∈ A
(4.3.5)

∑

t|r
f (t) = g(r)⇔ f (r) =

∑

t|r
g(t)µ( r

t )

Let U(A) denote the group of units in (A,+, ·). As remarked earlier, f ∈U(A) if,
and only if, f (1) 6= 0.

Lemma 4.3.1 : (A,+, ·) is an integral domain.

Proof : We have already seen that (A,+, ·) is a commutative ring with unity e0.
We claim that A has no divisors of zero. As the norm N( f ) of an arithmetic
function f satisfies

N( f ) = N(g ·h) = N(g)N(h), whenever f = g ·h;

N( f ) = 0 if, and only if, N(g) or N(h) is zero. So, if g 6= z, h 6= z,
f = g ·h 6= z. So, A is an integral domain. �

We, next, mention some identities occurring in elementary number theory.
Let I ∈ A be defined by

(4.3.6) I(r) = r, r ≥ 1.

Then, if φ denotes Euler’s totient,
∑

t|r
φ(t) = r is expressed by

φ · e = I,

or φ = I · e−1 = I ·µ
That is, φ(r) =

∑
t|r t µ( r

t ).
The number of divisors function d = e · e, or d · e−1 = e. That is,

∑

t|r
d(t)µ( r

t ) = 1.
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If ω(r) denotes the number of distinct prime divisors of r
∑

t|r
| µ(t) |= 2ω(r)⇔ | µ(r) |=

∑

t|r
2ω(t)µ( r

t ).

It is, in effect, | µ | ·e = λ where λ(r) = 2ω(r). Or

| µ |= λ · e−1.

Many of the known number-theoretic identities can be brought under Dirichlet
convolution, using the calculus of multiplicative functions introduced by
R. Vaidyanathaswamy (1894–1960) [9].

4.4. Polynomials in several indeterminates

We begin with a commutative ring R having unity element 1R. Let S be a
subring of R and T a subset of R. The smallest subring of R containing S and T is
the intersection of all subrings of R which contain both S and T . We denote it by
S[T ] and S[T ] is the subring of R generated by S and T .

If T = {x1,x2, · · · ,xn} we get the ring S[x1,x2, · · · ,xn]. It is the subring of R
generated by S and the xi (i = 1,2, · · ·n). S[x1,x2, · · ·xn] contains finite sums of
monomials

sxa1
1 xa2

2 · · ·xan
n , where ai ≥ 0 (i = 1,2, · · ·n), s ∈ S.

So, S[x1,x2, · · · ,xn] consists of all polynomials in x1,x2, · · · ,xn with coefficients
from S. A typical polynomial in n indeterminates is of the form

(4.4.1) f (x1,x2, · · · ,xn) =
∑

a1,a2,··· ,an≥0

s(a1,a2, · · · ,an) xa1
1 xa2

2 · · ·xan
n ;

where s(a1,a2, · · · ,an) is written to represent an element of S which occurs as a
coefficient of xa1

1 xa2
2 · · ·xan

n . f (x1,x2, · · · ,xn) can also be written in the form

(4.4.2) f (x1,x2, · · · ,xn) = a +
nX

i=1

aixi +
nX

i, j=1

ai, jxix j+
nX

i, j,k=1

ai, j,kxix jxk + · · ·

with coefficients a,ai,ai, j,ai, j,k, · · · all but a finite number of them being zero.
To obtain (4.4.2), we have considered the terms in (4.4.1) for which

a1 + a2 + · · ·+ an = 0,
a1 + a2 + · · ·+ an = 1,
a1 + a2 + · · ·+ an = 2,

· · · · · · · · · · · · · · ·
Now, S[x1,x2, · · · ,xn] contains all polynomials shown in (4.4.1) and conversely,
every element of this ring is such a polynomial.
That is, S[x1,x2, · · · ,xn] is precisely the set of elements y ∈ R which are of the
form f (x1,x2, · · · ,xn) given in (4.4.1). For, since the product of two monomi-
als in the xi (i = 1,2, · · · ,n) is another monomial in xi (i = 1,2, · · · ,n), the set S′
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of polynomials (4.4.1) is a subring of R which contains S and x1,x2, · · ·xn. So,
S′ ⊇ S[x1,x2, · · · ,xn]. But S[x1,x2, · · · ,xn]⊇ S′ and so,

S′ = S[x1,x2, · · · ,xn].

When T = {x} we get S[x] to be the ring of polynomials in x with coefficients
from S. For example, C = R[i] where i2 = −1 and R is the set of reals. Suppose
x = 3
√

2. The successive powers of x are

1,x,x2,2,2x,2x2,4, · · ·
So, the subringQ[ 3

√
2] of R is the set of all real numbers of the form

a + bα+ cα2 where α = real cube root of 2; a,b,c ∈Q.

Definition 4.4.1 : Let R be a commutative ring and S a subring of R. Suppose
x1,x2, · · · ,xn are elements of R. An algebraic relation between x1,x2, · · · ,xn with
coefficients in S is of the form

(4.4.3)
∑

a1,a2,···an≥0

s(a1,a2, · · · ,an)xa1
1 xa2

2 · · ·xan
n = 0

where s(a1,a2, · · · ,an) are elements of S and all but a finite number of coefficients
s(a1,a2, · · · ,an) are zero.

If (4.4.3) implies that each s(a1,a2 · · · ,an) = 0, then x1,x2, · · · ,xn are said to be
algebraically independent over S. On the other hand, if there exists at least one
non-trivial relation (4.4.3), x1,x2, · · · ,xn are said to be algebraically dependent.

In the particular case S[x], if x is algebraically dependent over S, that is, if
there exists a relation of the form

(4.4.4) a0 + a1x + · · ·+ atxt = 0

for some t ≥ 1, and the coefficients ai ∈ S not all of which are zero, then, x is said
to be algebraic over S. i =

√
−1 is algebraic overQ.

Next, let R be a commutative ring containing S as a subring and generated
by S and (n − 1) elements x1,x2, · · ·xn−1 which are algebraically independent over
S. Let T be the polynomial ring in one indeterminate xn with coefficients from R,
then,

(4.4.5) T = R[xn] = S[x1,x2, · · · ,xn−1][xn]

(1) S[x1,x2, · · · ,xn−1] is a subring of T .
(2) x1,x2, · · · ,xn are algebraically independent over S.
(3) T is generated by S and x1,x2, · · · ,xn.

Definition 4.4.2 : T given in (4.4.5) is called the ring of polynomials in n inde-
terminates with coefficients from S.

f ∈ T can be written as

(4.4.6) f =
∑

s(a1,a2, · · · ,an)xa1
1 xa2

2 · · ·xan
n

with the coefficients s(a1,a2, · · · ,an) ∈ S, all but a finite number of them being
zero.
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For n = 2, one has

(4.4.7) f =
∑

a1, a2≥0

s(a1,a2)xa1 ya2

s(a1,a2) ∈ S, all but a finite number being zero. f in (4.4.7) can be rewritten as

f = s(0,0)+ (s(1,0)x + s(0,1)y)

+ (s(2,0)x2 + s(1,1)xy + s(0,2)y2)

+ (s(3,0)x3 + s(2,1)x2y + s(1,2)xy2 + s(0,3)y3) + · · ·
with only a finite number of nonzero terms.

Fact 4.4.1 : In the case of S[x], if S is a UFD, so is S[x].
In the case of S[x1,x2, · · · ,xn], we have

Fact 4.4.2 : If S is an integral domain, so is S[x1,x2, · · · ,xn].

Fact 4.4.3 : If S is a UFD, so is S[x1,x2, · · · ,xn].

For proofs of facts 4.4.1, 4.4.2, see R. Godement [3] and T. W. Hungerford [4].

4.5. Ring of formal power series

Let R be a commutative ring with unity 1R. We consider an infinite sequence

(4.5.1) f = (a0,a1,a2, · · · ,an, · · · ) where ai ∈ R, i ∈ Z̃
f is called a formal power series over R. The set of all such infinite sequences is
denoted by seq R. We introduce suitable operations of addition and multiplication
in seq R in order to make it a ring containing R.

For f ,g ∈ seq R, when f is as given in (4.5.1) and

(4.5.2) g = (b0,b1,b2, · · · ,bn, · · · ); bi ∈ R, i ∈ Z̃
f = g if, and only if, an = bn for all n≥ 0.

Definition 4.5.1 : When f and g are as given in (4.5.1) and (4.5.2) respectively,
f + g and f g are given by

f + g = (a0 + b0,a1 + b1, · · · )
f g = (c0,c1,c2, · · · )

where, for each n≥ 0, cn =
∑n

j=0 a jbn− j.

It can be checked that for f ,g,h ∈ seq R

f (g + h) = f g + f h

The zero sequence is given by

(4.5.3) z = (0R,0R,0R, · · · )
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where 0R is the additive identity in R and additive inverse of f is given by

(4.5.4) − f = (−a0,−a1,−a2, · · · ,−an, · · · )
Thus, the seq R forms a commutative ring with unity

(4.5.5) j = (1R,0R,0R, · · · )
The set S = {(a,0R,0R, · · · ) : a ∈ R} is a subring of seq R isomorphic to R.
Let x be an indeterminate. We define

(4.5.6) ax = (0R,a,0R, · · · ), a ∈ R

and then,

(4.5.7) axt = (0R,0R, · · · ,0R, a
↓

(t+1)thplace

,0R, · · · ), t ≥ 2.

If

f = (a0,0R, · · · ) + (0R,a1,0R, · · · ) + (0R,0R,a2,0R, · · · )
+ (0R,0R, · · · ,0R, an

↓
(n+1)thplace

,0R, · · · ) + · · ·

(4.5.8) f =
∞∑

n=0

anxn

f is now in the form of a formal power series, the form we want.
When we take

x = (0R,1R,0R,0R, · · · )
ax = (a,0R, · · · ) (0R,1R,0R, · · · )

or, ax = (0R,a,0R,0R, · · · ) as in (4.5.6)

Notation 4.5.1 : seq R is denoted by R[[x]], even though x need not be considered
as an element of R[[x]] when R does not have 1R.
As an example, we take R = Z to obtain Z[[x]].

It is easily verified that

(1,0,1,0,1,0, · · ·) = 1 + x2 + x4 + · · ·+ x2n + · · ·
Definition 4.5.2 : If f (x) =

∑
anxn is a nonzero formal power series, then the

smallest integer n such that an 6= 0 is called the order of f (x) and is denoted by
ord f (x).

Suppose f (x), g(x) ∈ R[[x]] and ord f (x) = s, ord g(x) = t
then,

f (x) = asxs + as+1xs+1 + · · · as 6= 0

g(x) = btxt + bt+1xt+1 + · · · bt 6= 0
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Then,
f (x)g(x) = asbtxs+t + (as+1bt + asbt+1)xs+t+1 + · · ·

If as or bt is not a zero divisor in R, then, asbt 6= 0R and so,

(4.5.9) ord ( f (x)g(x)) = s + t = ord f (x) + ord g(x)

So, if, by chance, asbt = 0, we can very well write

(4.5.10) ord ( f (x)g(x))≥ ord f (x) + ord g(x)

with equality if R is an integral domain.
It can happen that f (x)g(x) = z (4.5.3).

In the same manner, one notes that if f (x) and g(x) are nonzero formal power
series,

(4.5.11) ord ( f (x) + g(x))≥min{ord f (x),ord g(x)}
Or, it can happen that f (x) + g(x) = z (4.5.3). We also deduce that

(4.5.12) if R is an integral domain, so is R[[x]].

Lemma 4.5.1 : Let R be a commutative ring with 1R. A formal power series
f (x) =

∑∞
n=0 anxn is a unit in R[[x]] if, and only if, the constant term a0 is invertible

in R.

Proof : :⇒ Let j denote the formal power series (1R,0R,0R, · · · ) (4.5.5).
If f (x)g(x) = j where g(x) =

∑
bnxn, then a0b0 = 1R and so a0 is invertible in R.

⇐: Conversely, suppose that a0 is invertible in R. We proceed inductively to
define the coefficients of a power series

∑
bnxn in R[[x]], given

f (x) =
∑

anxn. Take b0 = a−1
0 . Assuming that b1,b2, · · · ,bn−1 are already obtained,

let
bn = −a−1

0 (a1bn−1 + a2bn−2 + · · ·+ anb0)
Then, a0b0 = 1R and for n≥ 1

cn =
n∑

i=0

aibn−i = a0bn + a1bn−1 + · · ·+ anb0 = 0. It follows that

∑
anxn

∑
bnxn = j = (1R,0R,0R, · · · )

and so
∑

anxn has an inverse in R[[x]]. �

Remark 4.5.1 : If F is a field, F[[x]] is such that f (x) =
∑

anxn ∈ F[[x]] has an
inverse in F[[x]] if, and only if, a0 6= 0F .

Theorem 25 : Given a field F, F[[x]] is a PID. In fact, the nontrivial ideals of
F[[x]] are of the form (xt), t ∈ N.

Proof : Let I be a proper ideal of F[[x]]. Either I = (z) in which case it is the
zero ideal or else, I has nonzero elements. Let f (x) ∈ I with minimal order, say k.
Then

(4.5.13) f (x) = akxk + ak+1xk+1 + · · · = xk(ak + ak+1x + · · ·), ak 6= 0.
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So, the series

ak + ak+1x + · · · is a unit in F[[x]], by lemma 4.5.1

So, f (x) = xkg(x) where g(x) is a unit in F[[x]].
Then, xk = f (x)g−1(x) ∈ I.
So the ideal (xk) generated by xk is contained in I.

On the other hand, let h(x) be a nonzero power series such that h(x) ∈ I and
h(x) is of order m. Since f (x) is assumed to have the least order k, k ≤ m. Thus,
h(x) can be written as

h(x) = xk(bmxm−k + bm+1xm−k+1 + · · · ) ε (xk)

So, I ⊆ (xk) and thus I = (xk). �
Definition 4.5.3 : A commutative ring R with unity 1R is said to be a quasi-local
ring, if it has a unique maximal ideal.

On the basis of definition 4.5.3, we note that F[[x]] is a quasi-local ring as
(x) is its unique maximal ideal. We also note that any element f (x) ∈ F[[x]] can
be written as f (x) = xkg(x) where g(x) is a unit in F[[x]] and k ≥ 0.

If we consider C[[x]], there is a one-one correspondence between
f (x) =

∑
anxn and the arithmetic function

(4.5.14) f = (a0,a1,a2, · · · )
when the domain of definition of f is taken as Z̃. The set A′ of arithmetic func-
tions f (4.5.14) forms a commutative ring under the operations of ordinary addi-
tion and Cauchy multiplication given by

( f ∗g)(r) =
r∑

i=0

f (i)g(r − i).

As C[[x]] is a UFD, we note that A′ is also a UFD. But Dirichlet multiplication
of arithmetic functions (see definition 4.3.1) is not that easy to handle. We need a
formal power series in countably many variables.

Let ω = {xn : n ∈ N} be a countably infinite set of indeterminates. We write

(4.5.15) Cω = C[[x1,x2,x3, · · · ]]
to denote the ring of formal power series in the indeterminates xn, n ∈ N.

We connect the set A of arithmetic functions having domainN with Cω. Our
aim is to show that (A,+, ·)∼= Cω and Cω is going to be a UFD.

Definition 4.5.4 : Let r = pa1
1 pa2

2 · · · pak
k , ai ≥ 1, i = 1,2, · · · ,k be the prime

factorization of r with p1 < p2 < · · · < pk. Given f ∈ A, we define a formal
power series relating to f by

(4.5.16) P( f ) =
∑

a1,a2,···
f (r)xa1

1 xa2
2 · · ·

where the summation extends over all r of the form pa1
1 pa2

2 · · · pak
k .
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P( f ) is a formal power series in a countably infinite number of indetermi-
nates x1,x2, · · · and having coefficients in C, the field of complex numbers. This
gives a one-one correspondence between the setA of arithmetic functions andCω
(4.5.15). Actually, only a finite number of xi will occur in any term of P( f ). But,
infinitely many xi may also occur in the terms with non zero coefficients of terms
in P( f ).

We examine A more closely. For f ,g ∈ A, suppose that there exists h ∈ A
such that f = g ·h (Dirichlet convolution of g and h). We say that g divides f and
we write g | f to express this fact. Two elements f ,g ∈ A are called associates
written f ∼ g, if, and only if, f |g and g | f . Further, ∼ is an equivalence relation
on A partitioning the set of arithmetic functions into mutually disjoint classes of
associates. The class [0] contains only z (4.5.3). The class [u] of units is the group
of units in A. [u] consists of all the arithmetic functions f for which N( f ) = 1.
Primes in N are called rational primes.

Lemma 4.5.2 : An arithmetic function f for which N( f ) = p, a rational prime, is
an irreducible in A.

Proof : Since the norm is multiplicative, if π ∈A is such that N(π) = p, π = ε1 ·ε2

will imply that either ε1 or ε2 is a unit. So π is an irreducible in A. �

Definition 4.5.5 : f ∈ A is called a composite function, if f is not an irreducible
in A.

Lemma 4.5.3 : Every composite function f ∈A can be written as a finite product
of irreducibles.

Proof : Suppose that f 6= z is given. If f1 | f , we can write f = f1 ·g1 where g1 is
not a unit. Then, we call f1 a proper divisor of f . So every composite function
f ∈ A can be written as f = g ·h where g and h properly divide f . As g,h are not
units, N(g)> 1, N(h)> 1. Also,

N( f ) = N(g)N(h)

where N(g) and N(h) divide N( f ) properly. If N( f ) = p a prime in N, f would be
an irreducible by lemma 4.5.2. So, N(g) < N( f ) and N(h)< N( f ) with N(g) 6= 1,
N(h) 6= 1. Therefore, if g and h are not irreducibles they could be split further.
Also, N( f ) has only a finite number of prime factors which are rational primes.
So, every chain of proper divisors of f terminates at an irreducible element of A.
Therefore, if f 6= z and f 6∈U(A), where U(A) is the group of units of A, f has
an irreducible factor. Thus, a composite f can be expressed as a finite product of
irreducibles. �

Next, suppose that the uniqueness of factorization of an arithmetic function
into irreducibles is false. We will divide the set of nonzero non-units of A into
two mutually disjoint subsets:

(i) the subset E of normal elements whose factorization into irreducibles is
unique,
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(ii) the subset E ′ of abnormal elements whose factorization is such that there
are essentially two different ways of factorization of an abnormal element
into irreducibles.

E 6= ∅, as irreducible elements of A belong to E. What about E ′?
We have

Theorem 26 : If f is an abnormal element of minimum norm N( f ), then f can
be expressed as

f = g1 ·g2 = h1 ·h2

where g1,g2; h1h2 are distinct irreducibles having the same norm say N.

Proof : If f is an abnormal element, suppose that

f = g1 ·g2 · · ·gm = h1 ·h2 · · ·hn

where g1 · g2 · · ·gm and h1 · h2 · · ·hn are essentially two decompositions of f into
irreducibles. Now, m 6= 1, n 6= 1, as an irreducible is a normal element. No g j is
an associate of an hl . For, if so, cancellation will produce an element of norm
< N( f ). Without loss of generality, let us assume that

N(g1)≤ N(g2)≤ ·· · ≤ N(gm)
N(h1)≤ N(h2)≤ ·· · ≤ N(hm)

and N(g1)< N(h1).
Then, N(g1 ·h1) = N(g1)N(h1)≤ N(h1)N(h2) = N(h1 ·h2)≤ N( f ).
If any of ≤ is a strict inequality, we will have

(4.5.17) N(g1 ·h1)< N( f ).

We claim that (4.5.17) leads to a contradiction.
For, let

y = f − g1 ·h1,

y 6= z as g2 ·g3 · · ·gm = h1 is false. Also, y 6∈U(A), since g1|y. From the definition
of norm and the assumption (4.5.17) it follows that N(y) < N( f ). This implies
that y is normal, since N( f ) is minimal. g1 and h1 are not associates. They divide
y. So,

g1 ·h1| f = g1 ·g2 · · ·gm

f = g1 ·h1.s1 (say)
or g2 ·g3 ·gm = h1 · s1. Now, N(g2 ·g3 · · ·gm)< N( f ).

So, g2 · g3 · · ·gm = h1 · s1 is normal by the minimality of N( f ). So, h1 is an
associate of some g j ( j = 2,3, · · ·m)— a contradiction. So, we are forced to arrive
at N(g1 ·h1)≥ N( f ). So, together with N(g1 ·h1)≤ N( f ), we get

(4.5.18) N( f ) = N(g1)N(h1).

From N(g1 · h1) ≤ N(h1)N(h2), as we have N(g1)N(h1) ≤ N(h1)N(h2) or,
N(g1)≤ N(h2). From N(g1 ·h1)≥ N( f )≥ N(h1 ·h2) we get
N(g1)N(h1)≥ N(h1)N(h2) or N(g1)≥ N(h2). So, N(g1) = N(h2).
From (4.5.18) we get N( f ) = N(h1)N(h2). As N(g1) < N(h1) ≤ N(h2) and as

© 2007 by Taylor & Francis Group, LLC



90 CHAPTER 4

N(g1) = N(h2) we should have N(g1) = N(h1) = N(h2).
So, if N(g1) = N(h1) = N(h2) = N, we get

N2 = N( f ) = N(h1)N(h2) = N(g1)N(g2) · · ·N(gm)≥ Nm.

As m > 1, m = 2. So, N(g2) = N. Hence, if the unique factorization property
fails inA, we should have an element of the form g1 ·g2 = h1 ·h2 where g1, g2, h1,
h2 are irreducible elements of identical norm N. �

Lemma 4.5.4 : The integral domain A of arithmetic functions is isomorphic to
Cω.

Proof : Cω is the ring of formal power series in countably infinite indeterminates
x1,x2, · · · , (4.5.15). For f ∈ A, the associated formal series P( f ) is as given in
(4.5.16). The correspondence f 7→ P( f ) preserves addition. For, if f ,g ∈ A

P( f + g) =
∑

a1,a2,···
( f (r) + g(r))xa1

1 xa2
2 · · ·

=
∑

a1,a2,···
f (r)xa1

1 xa2
2 · · ·+

∑

a1,a2,···
g(r)xa1

1 xa2
2 · · ·

or,

(4.5.19) P( f + g) = P( f ) + P(g)

Dirichlet convolution (4.3.1) of f and g corresponds to multiplication of P( f ) and
P(g) where ‘like terms’ are collected and arranged as a formal power series. For,

P( f )P(g) =

( ∑

a1,a2,···
f (r)xa1

1 xa2
2 · · ·

)( ∑

a1,a2,···
g(r)xa1

1 xa2
2 · · ·

)
.

If t = pδ1
1 pδ2

2 · · · pδk
k ,

r
t

= pa1−δ1
1 pa2−δ2

2 · · · pak−δk
k .

f (t)g( r
t )(xδ1

1 xδ2
2 · · ·xδk

k )(xa1−δ1
1 xa2−δ2

2 · · ·xak−δk
k ) = f (t)g( r

t )xa1
1 xa2

2 · · ·xak
k

So, like terms add up to


∑

t|r
f (t)g( r

t )


xa1

1 xa2
2 · · ·xak

k .

We have

(4.5.20) P( f )P(g) =
∑

a1,a2,···
h(r)xa1

1 xa2
2 · · · , where h(r) =

∑

t|r
f (t)g( r

t ).

Thus,A∼= Cω. �

Definition 4.5.6 : C` = C[[x1,x2, · · · ,x`]] is the ring of formal power series in `
indeterminates x1,x2, · · · ,x`.

By Krull’s theorem [7],C` is a UFD. The units ofC` are formal power series
with nonzero constant terms.
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We use the notation

(4.5.21) P( f )` = C[[x1,x2,x3, · · · ,x`,0,0,0, · · · ]]

P( f ) 7→ P( f )` gives a ring homomorphism of Cω or Cm onto C` when m≥ `. We
also note that

(P( f )P(g))` = P( f )`P(g)`.

Let C[[0,0,0, · · ·]] = 0. If a series P( f ) in Cω is neither zero nor a unit, there
exists a minimal L = L(P( f )) for which P( f )` is neither zero nor a unit of C` for
`≥ L. Since P( f ) 6= 0, P( f ) must contain a nonzero term containing xa1

1 xa2
2 · · · with

(a1,a2, · · · ) 6= (0,0,0, · · · ). There is a minimal L = L(P( f )) with P( f )L 6= 0,L ≥ 1.
But then, P( f )` is a nonzero non-unit for any `≥ L.

We come to the crucial point. If P( f ) is neither zero nor a unit in Cω, then,
for any P( f )` irreducible in C` where `≥ L, P( f )m is an irreducible in Cm for all
m≥ ` implies that P( f ) is an irreducible inCω. For such a P( f ), there is a minimal
q = q(P( f ))≥ L(P( f )) such that P( f )` is an irreducible in C` for all `≥ q(P( f )).
We say that such irreducibles inCω are ‘finitely irreducible’. The other possibility
is that for some P( f ) nonzero, non-unit, one has P( f )` as a composite power series
in C` for all `≥ L(P( f )). Next, we need a lemma called the principal lemma. See
[2].

Lemma 4.5.5 (PRINCIPAL LEMMA) : All irreducibles in Cω are finitely irre-
ducible.

Proof : Let P( f ) be a fixed nonzero non-unit in Cω with L = L(P( f )).
P( f )` is a nonzero non-unit for any `≥ L. Let P( f )` = P(h1)`P(h2)` where P(h1)`
and P(h2)` are non-units in C`. We say that P(h1)` and P(h2)` are true factors of
P( f )` and P(h1)`P(h2)` is a true factorization of P( f )`. A true factor of P( f )` is
thus a non-unit proper divisor of P( f )` in C` and so has a companion of the same
kind.

We call any chain [P(h1)L,P(h1)L+1, · · · ,P(h1)M] of true factors of the corre-
sponding P( f )`, ` = L,L + 1, · · · ,M telescopic if each

P(h1)`−1 ∈ C[[x1,x2, · · · ,x`−1,0, · · · ]]

induces a true factorization of

P( f )m−1 = (P( f )m)m−1 = (P(h1)m)m−1(P(h2)m)m−1

≡ P(h1)m−1P(h2)m−1

and so down to (P( f ))L = P(h1)LP(h2)L, where the chain of true factors is tele-
scopic (gradual reduction of number of indeterminates). In the above notation
(P( f )m)m−1 means C[[x1,x2, · · ·xm−1,0,0, · · · ]] considered as isomorphic to a sub-
ring (containing m − 1 indeterminates) of C[[x1,x2, · · · ,xm−1,xm,0,0, · · · ]].

The assumption on P( f ) is as follows:
We assume the existence of sequence K0,K1,K2, · · · defined via the true factors
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P(h1)i, j; j = 0,1, · · · , i of (P( f ))L+ j.

K0 = [P(h1)0,0]
K1 = [P(h1)1,0,P(h1)1,1]
K2 = [P(h1)2,0,P(h1)2,1,P(h1)2,2]
· · · · · · · · · · · · · · ·

We want to prove the existence of an infinite chain of true factors

(4.5.22) K∗ = [P(h1)∗0 ,P(h1)∗1 ,P(h1)∗2 , · · · ]
where P(h1)∗i = [P(h1)i,0,P(h1)i,1, · · · ,P(h1)i,i] which is telescopic throughout. If
this is achieved, we would have

(P( f ))L+ j = P(h1)∗j P(h2)∗j .

Clearly, the chain [P(h1)∗0 ,P(h1)∗1 ,P(h1)∗2 , · · · ] is also telescopic since

(P(h1)∗j−1P(h2)∗j )L+ j−1 = (P(h1)∗j )L+ j−1(P(h2)∗j )L+ j−1

= P(h1)∗j−1(P(h2)∗j )L+ j−1

But, any infinite telescopic chain defines unambiguously a series belonging toCω.
If P(h1)∗ and P(h2)∗ are the non-unit series defined by P(h1)∗j and P(h2)∗j chains,
we will have

P( f ) = P(h1)∗P(h2)∗,

since we can prove the left and right coefficients of any term by considering

(P( f ))L+ j = P(h1)∗j P(h2)∗j for suitable j.

and then we are done with the principal lemma.
Since unique factorization holds in C` there are only a finite number of

classes of associates into which the true factors of any P( f )` can fall. Hence,
by the pigeon-hole principle, an infinite set of the chains Ki are such that they
have their first entry equivalent to some one true factor P(h1)0 of P( f )L. Choose
one of these and call it K ′0. Belonging to this infinite set, there is an infinite subset
of Ki whose second entry is equal to some one true factor P(h)1 of ((P( f ))L+1.
Choose one and call it K ′1.

Continuing in this way, we are led to a subsequence of telescopic chains

K′0 = [P(h1)′0,0, · · · , ]
K′1 = [P(h1)′1,0,P(h1)′1,1, · · · , ]
K′2 = [P(h1)′2,0,P(h1)′2,1,P(h1)′2,2, · · · , ]

each of which extends at least to the main diagonal such that the entries of this
diagonal and below have the property that for each j = 0,1,2, · · · ,
P(h1)′i, j ∼ P(h1) j for all i≥ j.

We can now construct the telescopic infinite chain K∗ working only with the
main diagonal next below it as follows:
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Define P(h1)∗0 = P(h1)′0,0.
Since P(h1)′1,0 ∼ P(h1)0 ∼ P(h1)∗0 in C`, there is a unit UL of C` such that

P(h1)∗0 = P(h1)′1,0 UL = (P(h1)′1,1UL)L.

Define P(h1)∗1 = P(h1)′1,1UL inCL+1. We note that P(h1)∗1 is a true factor of P( f )L+1,

P(h1)∗1 = P(h1)∗0 and

P(h1)∗1 ∼ P(h1)1 in CL+i.

To make the process clear and to avoid a formal induction we carry out the
construction through one more step.

Since P(h1)′2,1 ∼ P(h1)1 ∼ P(h1)∗1 in CL+1, there is a unit UL+1 of CL+1 such
that

P(h1)∗ = P(h1)′2,1UL+1 = (P(h1)′2,2UL+1)L+1

We define P(h1)∗2 = P(h1)′2,2UL+1 inCL+2 and we observe that P(h1)∗2 is a true factor
of P( f )L+2. Also P(h1)∗2 ∼ P(h1)2 in CL+2. P( f ) reducible in C` for `≥ L implies
that P( f ) is reducible inCω. This completes the proof of the principal lemma. �

Theorem 27 (Cashwell and Everett (1959)) : Cω is a UFD.

Proof : We have seen that by lemma 4.5.4, A ∼= Cω. Suppose that unique fac-
torization into irreducibles fails in A. Then, it fails in Cω. By theorem 26 an
abnormal element q has two factorizations f ·g and h · k where f ,g,h and k have
the same norm. Accordingly, we have a formal power series P(q) in Cω of the
form

P(q) = P( f )P(g) = P(h)P(k)

where P( f ), P(g), P(h), P(k) are irreducibles in Cω and P( f ) is not an associate
of P(h) or P(k). Since all irreducibles in Cω are finitely irreducible, there exists
an integer t such that in the equations

(P( f )P(g))` = P( f )`P(g)` = (P(h)P(k))` = P(h)`P(k)`;

P( f )`, P(g)`, P(h)`, P(k)` are distinct irreducibles in C` for each ` ≥ t. Since
factorization in each C` is unique, P( f )` must be an associate of P(h)` or P(k)`
in C` for each ` ≥ t. Hence, there must exist an infinite increasing subsequence
σ = {m} of N (m≥ t) such that

P( f )m is an associate of P(h)m in Cm or

P( f )m is an associate of P(k)m in Cm,

for all m ∈ σ.
We shall use the notation ∼ to mean ‘an associate of’, in the context of Cm

or Cω. To fix ideas, we take

P( f )m ∼ P(h)m.

Then,
P( f )m = UmP(h)m
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where Um is a unit of Cm for each m ∈ σ. If m,n are chosen from σ such that
m< n,

UmP(h)m = P( f )m = (P( f )n)m,

where (P( f )n)m is obtained from P( f )n by substituting

xm+1 = xm+2 = · · · = xn = 0.

However,
(P( f )n)m = (Un)m(P(h)n)m = (Un)mP(h)m,

where Un is an extension of Um by terms each of which involves the indeterminate
xi with i>m and so does not occur in Um. Thus, {Um}m∈σ defines a unit U of Cω
and by an argument used to show that irreducibles in Cω are ‘finitely irreducible’,
we arrive at P( f ) = UP(h). Thus, P( f )∼P(h) inCω. This leads to a contradiction.
Hence, the factorization of an element into irreducibles inCω exists and is unique.

�

Corollary 4.5.1 : (A,+, ·) is a UFD.

This follows from the fact that A ∼= Cω which is a UFD by theorem 27.

Remark 4.5.2 : The ring A also forms an algebra over C. It is called the
‘Dirichlet algebra’ of arithmetic functions, as multiplication is Dirichlet convo-
lution.

4.6. Finite fields and irreducible polynomials

It is known that the characteristic of a field is either 0 or a prime p. Given
a field K, if char K = 0, K has a subfield isomorphic to Q, the field of rational
numbers. If char K = p (a prime), K has a subfield isomorphic to Z/pZ denoted
by Fp. If K is a finite field, K has pn elements for some prime p and n ∈ N.
Further, char K = p. K can be considered as an extension of Fp of degree n.
We write n = [K : Fp]. Further, every element of K with pn elements is the zero
of a polynomial f (x) = xpn

− x ∈ Fp[x]. We express this by saying that K is the
splitting field of f (x) = xpn

− x ∈ Fp[x]. Since any two splitting fields of a given
nonconstant polynomial are isomorphic, any two finite fields having the same
number of elements are isomorphic.

Now, xp − x has all its zeros in Fp[x]. So, every nonzero element of Fp is a
zero of xp−1 − 1 ∈ Fp[x]. Therefore,

xp−1 − 1≡ (x − 1)(x − 2) · · ·(x − (p − 1))(mod p)

Putting x = α≡ 0 (mod p), we obtain

−1≡ (−1)p−1 (p − 1)! (mod p).

So, for p≥ 2, (p − 1)! + 1≡ 0 (mod p) which is Wilson’s theorem. (See corollary
1.2.1, chapter 1).
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Lemma 4.6.1 : Given a prime p, let Fd(x) denote the product of monic irreducible
polynomials of degree d over Fp. Then,

(4.6.1) xpn
− x =

∏

d|n
Fd(x).

Proof : t(x) denotes a factor of xpn
− x. We claim that t(x) can occur only to the

first power. That is, if t(x) | (xpn
− x), t2 - (xpn

− x). For,
if xpn

− x = t2(x)s(x), by formal differentiation, we obtain

pn(xpn−1) − 1 = 2t(x)t ′(x)s(x) + t2(x)s′(x).

As char Fp = p, we get

−1 = 2t(x)t ′(x)s(x) + t2(x)s′(x).

This implies that t(x) divides −1 which is not correct.
Next, we show that if t(x) is a monic irreducible polynomial of degree d, then

t(x) |xpn
− x⇔ d |n.

Let α be a zero of t(x). Adjoining α to Fp we obtain an extension Fp(α) of degree
d over Fp. That is, the extension Fp(α) is such that [Fp(α) :Fp] = d. Each element
of Fp(α) is a zero of

(4.6.2) xpn
− x = t(x)s(x)

As α is a zero of t(x), from (4.6.2), αpn
−α = 0. Moreover, Fp(α) is a vector space

(over Fp) of dimension d and has a basis {1,α,α2, · · · ,αd−1}. v ∈ Fp(α) can be
written as

(4.6.3) v = b1α
d−1 + b2α

d−2 + · · ·+ bd−1α+ bd, bi ∈ Fp (i = 1,2, · · ·d).

Then, as (a + b)pn
= apn

+ bpn
for a,b ∈ Fp(α) (n≥ 1)

(b1α
d−1 + b2α

d−2 + · · ·+ bd)pn
= b1(αpn

)d−1 + · · ·+ bd

= b1α
d−1 + · · ·+ bd

or vpn
= v by (4.6.3), for every v ∈ Fp(α). Therefore, the elements of Fp(α) satisfy

xpn
− x = 0. Since the elements of Fp(α) also satisfy xpd

− x = 0, we see that

xpd
− x |xpn

− x

or x (xpd −1 − 1) divides x(xpn−1 − 1).
Further, for a ∈ N, aα − 1 divides aβ − 1 if, and only if, α |β.
So, xpd−1 − 1 divides xpn−1 − 1⇔ pd − 1 | pn − 1. This, in turn, implies d |n.
Conversely, suppose that d |n.
Then xpd

−x | xpn
−x and so t(x) | xpn

−x ⇔ d | n. For each d, a divisor of n, there is
at least one monic irreducible polynomial dividing xpn

−x. Let d1 = 1,d2, · · · ,dt = n
be the divisors of n. By the definition of Fd(x), d | n,

xpn
− x = Fd1 (x)Fd2(x) · · ·Fdt (x) which is (4.6.1).
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�

Theorem 28 : If N(m) denotes the number of monic irreducible polynomials of
degree m in Fp[x], then

(4.6.4) N(m) =
1
m

∑

d|m
pdµ(

m
d

)

where µ is the Möbius function. (See definition 4.3.1).

Proof : By lemma 4.6.1, we have

xpn
− x =

∏

d|n
Fd(x)

where Fd(x) denotes the product of monic irreducible polynomials of degree d in
Fp[x]. N(m) denotes the number of monic irreducible polynomials of degree m in
Fp[x]. Replacing n by m in (4.6.1), we have

(4.6.5) xpm
− x =

∏

d|m
Fd(x).

pm occurs as the highest degree of x on the right side of (4.6.5). So, we get

pm =
∑

d|m
d N(d).

Using Möbius inversion (4.3.5), we obtain

mN(m) =
∑

d|m
pdµ( m

d )

from which (4.6.4) follows. �

Corollary 4.6.1 : For every integer m≥ 1, there exists a monic irreducible poly-
nomial of degree m in Fp[x].

Proof : From (4.6.3), we have

(4.6.6) N(m) =
1
m
{pm − · · ·+ pµ(m)}.

We note that µ(r) = 0 if r contains a squared factor > 1. So, the terms inside
the bracket on the right side of (4.6.6) will be a sum of distinct powers of p with
coefficients +1 and −1. So, N(m) 6= 0. �

Remark 4.6.1 : The above theorem and corollary are adapted from K. Ireland
and M. I. Rosen [5].

Remark 4.6.2 : For each m≥ 1, there is a monic irreducible polynomial of degree
m with coefficients from Fp. This enables us to state the following analogue of
Euclid’s theorem on infinitude of primes.
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Fact 4.6.1 : The number of monic irreducible polynomials over Fp is infinite.

For a detailed study of finite fields and their applications, see Lidl and
Niederreiter [A2].

4.7. More about irreducible polynomials

Let p(x) be an irreducible polynomial in F[x] where F is a field. If p(x)
divides a product f (x) g(x) where f (x), g(x) are elements of F[x], p(x) divides
either f (x) or g(x). Further, F[x] is a PID. If f (x) ∈ Z[x] and

(4.7.1) f (x) = a0 + a1x + a2x2 · · ·+ anxn, an > 0

f (x) is called a primitive polynomial, if a0, a1, . . . an have no common factor other
than±1.

Fact 4.7.1 : f (x) given by (4.7.1) is irreducible in Z[x] if, and only if, either
(i) f (x) is a prime number or
(ii) f (x) is a primitive polynomial which is irreducible in Q[x] (Q, being the field
of rational numbers).

Fact 4.7.2 : Let f (x) = a0 + a1x + · · ·+ anxn ∈ Z[x]. Let p be a prime not dividing
an. If f (x) is reduced modulo p, say f (x), and f (x) is irreducible over Z/pZ, then
f (x) is irreducible in Q[x].

Fact 4.7.3 : (Eisenstein criterion) Let f (x) = a0 + a1x + · · ·+ anxn ∈ Z[x].
For a prime p, suppose that
(i) p2 - a0, (ii) p|ai (i = 0,1,2, . . . , (n − 1)) and (iii) p - an, then f (x) is irreducible
in Q[x]. If f (x) is also primitive, f (x) is irreducible in Z[x].

For proofs of Facts 4.7.1 to 4.7.3, see M. Artin [A1, chapter 11, pp 390–404].
In the case finite fields Fq, where q = pm, p a prime; m ≥ 1, the elements of

Fq are the zeros of the polynomial xq − x. xq − x factors into linear factor in Fq, as
remarked earlier.

Suppose that E denotes a field of characteristic p, a prime. We consider

F = {α ∈ E : α is a zero of xq − x, where q = pm;m≥ 1}.
It is verified that xq − x has no multiple roots in E and F is a subfield of E.

Let f (x) be an irreducible polynomial of degree t in Fp[x]. Suppose that f (x)
has a zeroα in an extension E of F. We write E ′ =Fp(α) where [E ′ :Fp] = t. Then,
|E ′| = pt . Elements of E ′ are the zeros of xq′ − x where q′ = pt . If |E| = q = pm,
(m ≥ 1), α is a zero of xq − x also. So, if f (x) is an irreducible polynomial of
degree t in Fp[x], f (x) divides xq − x.

Next, suppose that f (x) is an irreducible polynomial of degree t and t|m. Then
f (x) is a factor of xq − x. For, as f (x) divides xq′ − x where q′ = pt , if m = ts, then,
as xq′ − x divides xq − x, we note that an irreducible polynomial f (x) whose degree

© 2007 by Taylor & Francis Group, LLC



98 CHAPTER 4

t divides m is such that f (x) divides xq − x. However, if f (x) is irreducible and its
degree t does not divide m, since [E : Fp] = m, f (x) has no zero in E and so, f (x)
is not a factor of xq − x. We arrive at

Fact 4.7.4 : (a) Every irreducible polynomial of degree t in Fp[x] is a factor of
xq − x, for some q = pm (m≥ 1).

(b) A field Fq(q = pm;m ≥ 1) contains a subfield Fq′ (q′ = pt ; t ≥ 1) if, and
only if, t divides m.

Proofs are omitted.

Remark 4.7.1 : In the case of F8, having 23 elements, F4 is not a subfield of F8,
as [F8 : F2] = 3, [F4 : F2] = 2 and 2 does not divide 3. But, in the case of F16, F16

contains F4.

Remark 4.7.2 : If Fq is a field having q = pm elements, to obtain an irreducible
polynomial of degree t in Fq[x], we have only to consider an irreducible polyno-
mial of degree t in Fp[x].

4.8. Notes with illustrative examples

We begin with a UFD say R. K denotes the field of quotients of R. Suppose
that f (x) = a0 + a1x + · · · + anxn is a nonconstant polynomial in R[x]. Eisenstein
criterion says: For some prime p ∈ R, suppose that p - an, p|ak(k = 0,1, · · · ,n − 1)
and p2 - a0. Then, f (x) is irreducible in K[x]. As an example, one could prove
that for a 6=±1, a nonzero square-free integer, xn + a ∈ Z[x] is irreducible over Q
for n ≥ 2. Using the example of Z[x], one can also show that Z[x] has a prime
ideal which is not a maximal ideal. For, if

(x) = {a1x + a2x2 + · · ·+ anxn : ai ∈ Z,1≤ i≤ n}
(x) is a prime ideal of Z[x]. For Z/(x)∼= Z is an integral domain. One also notes
that Z[x] is not PID, though Z[x] is a UFD. If we consider the ideal generated by
2 and x, (2,x) is the maximal ideal consisting of polynomials with constant terms
equal to an even integer. Further, (x)⊂ (2,x).

Let F be a field. If n > 1, F[x1,x2, · · · ,xn] is neither a PID nor a Euclidean
domain. In fact, the ideal (x1,x2) is not a principal ideal.

In the case of the ringA of arithmetic functions, we have thrown the problem
of uniqueness of factorization into the ring Cω of formal power series in count-
ably infinite indeterminates x1,x2, · · · . Cω is shown to be a UFD by an ingenious
method and so A is shown to be a UFD. As A satisfies ACCP (ascending chain
condition on principal ideals), it suffices to show thatA is a GCD domain in order
to show that it is a UFD. The difficulty arises because of the fact that the linear
expressibility of the g.c.d is not to be presumed though g.c.d property holds.

Finite fields are easy to handle. Counting monic irreducible polynomials of
degree m in Fp[x] involves the use of Möbius inversion. This is not the only place
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in algebra where we use Möbius inversion. This inversion technique is powerful
and can be used in many other contexts. Abstract Möbius inversion is an idea due
to G. C. Rota and it will be taken up in detail in chapter 9.

As an illustration of theorem 28, we observe that N(2), the number of monic
irreducible polynomials of degree 2 over Fp is given by

(4.8.1) N(2) = 1
2

∑

d|2
pdµ( 2

d ) = 1
2 (p2 − p) = p(p−1)

2

In the same manner,

(4.8.2) N(3) = 1
3

∑

d|3
pdµ( 3

d ) = 1
3 (p3 − p) = (p−1)p(p+1)

3

(4.8.3) N(4) = 1
4

∑

d|4
pdµ( 4

d ) = 1
4 (p4 − p2) = p2(p−1)(p+1)

4

In the formula for N(4), we note that (p − 1)p and p(p + 1) are even numbers and
so p2(p − 1)(p + 1) is exactly divisible by 4.

4.9. Worked-out examples

a) R denote a commutative ring with unity. Jn+1 denotes the ideal of R[x], gener-
ated by xn+1(n≥ 0). Show that Sn+1 = R[x]/Jn+1 is generated by R and λ where
λn+1 = 0. Describe the units in Sn+1.
Answer: Sn+1 is the ring of polynomials in λ of degree ≤ n, when they are
reduced modulo λn+1. The set {1R,λ,λ

2, . . . ,λn} generates Sn+1. The units in
Sn+1 are polynomials u(λ),v(λ) of degree≤ n such that

(4.9.1) u(λ)v(λ)≡ 1R (mod λn+1).

�
b) Let Fq denote a field having q = pm elements. (p, a prime; m ≥ 1). Let

F r = {xr : x ∈ Fq : r, a positive integer}. If s = g.c.d (r,q − 1), show that
F s = {xs : x ∈ Fq} and F r are identical sets.
Answer: It is known that F∗q = \{0} is a cyclic group of order (q − 1). Let y be
a generator of F∗q , so that yq−1 = 1. If x ∈ Fq, x = yt for some integer t ≥ 1. So,

xr = yrt . Also, xs = yst and r = ( r
s s).

So, xr = y( r
s )st = (yst)

r
s = (y

rt
s )s = (x′)s for some x′ ∈ Fq. So, F r = Fs where

s = g.c.d(r,q − 1). �
c) (Mowaffaq Hajja) Find all infinite sequences ~c = (c0,c1,c2, . . .) of integers for

which the set

I~c = {
n∑

i=0

aixi ∈ Z[x] :
n∑

i=0

aici = 0}

is an ideal of Z[x].
Answer: We prove
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Proposition 4.9.1 : I~c is an ideal of Z[x] if, and only if, there exist integers r,s
such that ci = ris, for all i.

Proof : :⇒ Given: I~c is an ideal. If c0 = 0 and 1 ∈ I~c, we must have 1 · xi ∈ I~c.
Then, ci = 0 for all i. (We choose s = 0 and r is arbitrary). On the other hand,
if c0 6= 0, then c1 − c0x ∈ I~c, as a0c0 + a1c1 = 0 for a1 = −c0 and a0 = c1. This
requires that (c1 − c0x)xi ∈ I~c. We conclude that

(4.9.2) cic1 − ci+1c0 = 0

Therefore, ci+1 = rci where r = c1
c0

. This gives

(4.9.3) ci = ric0 (i≥ 1)

r has to be an integer, since otherwise ci will not be an integer. When i is
sufficiently large, we choose s = c0. This shows that the condition ci = ris for
all i, is necessary.
⇐: Suppose we are given that ci = ris for fixed integers r and s. If c0 = 0,

then I~c = Z[x].
If c0 6= 0, then f ∈ I~c if, and only if, f (r) = 0, where f (x) =

∑n
i=0 aixi ∈ Z[x].

Thus, I~c is the set of polynomials in Z[x] that vanish at r. Clearly, I~c is an
ideal of Z[x]. To make I~c an ideal of Z[x], it is sufficient that ci = ris for some
r,s ∈ Z. �

Remark 4.9.1 : The above example has been adapted from problem 10399 in
Amer. Math. Monthly 104 (1997) pp 279–280 for which a composite solution
was provided by John H. Lindsey II and Nasha Komanda.

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) Let F[x] be a ring of polynomials with coefficients from a field F. Con-
sider f (x) ∈ F[x]. If f (x) = 0 has a nonzero root in F that is twice
another root, then all the roots of f (x) = 0 are in F.

b) Let p,q ∈ Z. Consider x2 + 3x − pq∈ Z[x]. Then, x2 + 3x − pq is a prime
element of Z[x] for all primes p and q.

c) Let f (x) = x3 − 3x2 − 2x + 6 be an element of R[x] (R, the field of real
numbers). Then, f (x) is a product of 3 distinct primes in R[x].

d) Let

f (x) =
n∑

j=0
a jx j, g(x) =

n∑
j=0

a j(x + 1) j (a j ∈Q; j=0,1,2,. . . ,n).

f (x) is composite in Q[x] if, and only if, g(x) is composite in Q[x].
e) f (x) = x2 + 3x + 2∈ Z[x] as well as Z[[x]]. The assertion is:

f (x) is reducible in Z[x], but not in Z[[x]].
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f) The formal power series ring F[[x]] (F, a field) is such that F[[x]] is a
PID having the only ideals (0F) and (xk), k ≥ 0.

2. p(x) = x2 − 2x − 1 is irreducible over Q, the field of rational. However, it is
reducible for the finite fields Z/3Z, Z/5Z and Z/7Z. Is it reducible over
Z/pZ, where p is a prime other than 3,5 or 7?

3. Let σ(r), d(r), denote respectively the sum and number of divisors of r(> 1).
Prove that

σ(r) +φ(r) = rd(r);

if, and only if, r is a prime. (φ denotes the Euler φ-function).
4. Let Fp denote a finite field of p elements. (p a prime). Let X = Fp×Fp. Make

X a field of p2 elements by defining suitable laws of composition of addition
and multiplication in the cartesian product for X.

5. Let R be a commutative ring. If I denotes an ideal of R, show that I[x] is an
ideal of R[x].

6. Decompose 10x2 + 5x − 5 into prime factors in Z[x].
7. 1 − x is a unit in C[[x]]. Find its inverse.
8. Let R be a commutative ring. t ∈ R is called a nilpotent element if there exists

an integer n≥ 1 such that tn = 0R.
(a) If t is a nilpotent element of R, show that 1 − t is a unit in R.
(b) Show that the polynomial 1 − tx (t ∈ R) is a unit in R[x] if, and only if, t is

a nilpotent in R.
(c) Show that the intersection of all prime ideals of R is the set of nilpotent

elements of R.
9. Let p be a prime. Show that the cyclotomic polynomial

f (x) = xp−1 + xp−2 + · · ·+ x + 1

is irreducible in Z[x].
10. Let D be an integral domain. Show that a prime ideal P of D can be de-

scribed as an ideal whose complement is a multiplicatively closed set. (That
is, whenever x,y ∈ D\P,xy ∈ D\P).

11. Let R be a commutative ring with unity 1R. An ideal J of R is called a primary
ideal if whenever ab ∈ J (a,b ∈ R) and a 6∈ J, there exists an integer n ∈ N
such that bn ∈ J.

In Z, the primary ideals are the principal ideals (pk) (k ≥ 1, p a prime).
Considering F[x,y] (F a field), give an example to show that a primary ideal
need not be a power of a prime ideal. [Hint : Let I = (x,y). I is a prime ideal
of F[x,y]. Also

I2 = (x2,xy,y2)⊆ (x2,y)⊆ I

J = (x2,y) is a primary ideal but J 6= In for n≥ 1.]
12. Let R be a commutative ring with unity 1R. If R is a quasi-local ring, (i.e.,

a ring in which there is a unique maximal ideal) show that R[[x]] is also a
quasi-local ring. Check that the converse need not be true, in general.

13. Show that the ideal M = (2,x,y) is a maximal ideal in Z[x,y].
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14. [R. Sridharan] R denotes the field of real numbers. Analogous to theorems
18 and 19 of chapter 3, if I(x,y) denotes the ideal generated by x2 + y2 + 1 in
R[x,y], show that R[x,y]/I(x,y) is a PID, but not a Euclidean domain.

15. [R. Sridharan] Let C denote the field of complex numbers. If J(x,y) denotes
the ideal generated by x2 + y2 + 1 in C[x,y], show that

C[x,y]/J(x,y)∼= C[t, t−1]

and that C[t, t−1] is a Euclidean domain. (Note the difference when R is re-
placed by C, in exercise 14).

16. Let A be a set and G be a group. If φ : G→ S is a homomorphism of G into
the symmetric group S upon A, φ is called an action of G on A.

Let K be a finite field. The set G of all automorphisms of K is called the
Galois group of K. When K = GF(pn), the Galois group G is cyclic and is of
order n.

Let p = 2m + 1 (m≥ 1)
(a) Show that the group U of units of K = GF(22m) contains an element u of

order p.
(b) Show that K = F2(u) where F2 = Z/2Z.
(c) Let G be the Galois group of K. Show that G has an action upon the

subgroup U ′ of U generated by u and that this action is an isomorphism
of G.

(d) Show that 2m|(p − 1) and that m has to be a power of 2.
(Exercise 16 says that if 2m + 1 is a prime, m has to be a power of 2. Then,
2m + 1 is referred to as a Fermat prime. See section 1.7 Chapter 1. Ref: N H
McCoy & T R Berger : Algebra : Groups, rings and other topics: Allyn & Ba-
con Inc. Boston (1977), Chapter 12 (problem 12) page 468.)
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CHAPTER 5

The Chinese Remainder Theorem and the
evaluation of number of solutions of a linear

congruence with side conditions

Historical perspective

The premise is a pair of linear congruences having the same modulus r. Let
a1,a2; b1,b2; c1,c2 be integers. One considers

a1x1 + a2x2 ≡ c1 (mod r)
b1x1 + b2x2 ≡ c2 (mod r).

(A)

If

D =
a1 a2

b1 b2
,D1 =

c1 b1

c2 b2
,D2 =

a1 c1

a2 c2
,one gets

Dx1 ≡ D1 (mod r)
Dx2 ≡ D2 (mod r)

(B)

If g.c.d (D,r) = 1, the congruences (B) have solution 〈t1, t2〉 where t1, t2 are unique
modulo r. These give a solution of the system (A) above. In the same manner,
if there are m congruences in m unknowns all taken to the same modulus r, they
can be reduced to m independent congruences involving only one unknown as in
(B) above. These give a unique solution (mod r). A different context is when we
have a system of m congruences in a single unknown but taken to different moduli.
This problem was solved by Chinese mathematicians as early as the first century
A.D. The earliest reference is that of Sun Tsu [18]. But, at about the same period
Nichomachus (born in Gerasa, Palestine c 100 A.D.) is known to have solved the
problem in his “Introductio to Arithemeticae”. An example is:

Find the least positive integer which upon division by 3 leaves a remainder 2,
upon division by 5 leaves a remainder 3 and upon division by 7 leaves a remainder
2. In symbols, one has

x≡ 2(mod 3), x≡ 3(mod 5) and x≡ 2(mod 7).

A common solution is x≡ 23 (mod 3 ·5 ·7). The gist of the idea is that the solutions
to

x≡ bi(mod ri) (i = 1,2, · · · ,k)

105
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form a progression with period ri. The Chinese Remainder Theorem says that k
arithmetic progressions with pairwise relatively prime moduli have a non-empty
intersection. It is just an assertion of the fact that the cosets of the ideals riZ
(i = 1,2, · · · ,k) fit nicely into a particular coset of the ideal NZ where N = r1r2 · · · rk.
See T. W. Hungerford [11]. The 13th century Chinese algebraist Ch’in Chiu-Shao
used the Euclidean algorithm in his solution of the Chinese Remainder Theorem
(1247) (published in Shu-shu Chiu Chang, a mathematical treatise in 9 sections).

The second problem we consider is that of determining the number of solu-
tions of the congruence

n≡ x1 + x2 + · · ·+ xs (mod r),

when x’s are such that g.c.d (xi,r) = 1 (i = 1,2, · · · ,s). If N(n,r,s) denotes the
number of solutions as specified above, H. Rademacher [14] gave the evalua-
tion of N(n,r,s) in 1925. Alfred Theodor Brauer (1884–1985) [2] verified it in
1926. An application of the Chinese Remainder Theorem shows that N(n,r,s) is
a multiplicative function of r.

5.1. Introduction

The Chinese Remainder Theorem is one of the landmarks of Number theory.
It is shown as theorem 29 given below. There are analogues of the theorem in
algebra. We give two of them: one in terms of direct sums of rings and the other
replacing Z by the ring F[x] of polynomials with coefficients from a field F. See
[3] and [9].

N(n,r,s) denotes the number of solutions of a linear congruence

(5.1.1) x1 + x2 + · · ·+ xs ≡ n (mod r)

under the restriction g.c.d (xi,r) = 1, (i = 1,2, · · · ,s).
The formula for N(n,r,s) is derived using elementary methods. We remark

that Ramanujan sums defined by

(5.1.2) C(n,r) =
∑

h(mod r), g.c.d (h,r)=1

exp(
2πihn

r
)

where the summation is over a reduced residue system (mod r) plays an impor-
tant role in the derivation of formulae involving N(n,r,s). The notion of even
functions (mod r) due to Eckford Cohen [5] is discussed. The arithmetical repre-
sentation of an even function (mod r) is obtained by using an orthogonal property
of Ramanujan sums. See theorem 34. The Rademacher formula for N(n,r,s) is
deduced from David Rearick’s theorem which is shown as theorem 39.

5.2. The Chinese Remainder Theorem

We observe that the number of solutions of the linear congruence

(5.2.1) ax≡ b(mod r), a,b ∈ Z, r ≥ 1

is the number of incongruent solutions t (mod r) such that at − b≡ 0 (mod r).
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Fact 5.2.1 : (5.2.1) has a solution ⇔ g.c.d (a,r) | b. When a solution exists, it
has d = g.c.d (a,r) solutions. If x ≡ x0 (mod r) is a solution, so is x = x0 + ( r

d )t,
(t = 0,1,2, · · · (d − 1)).

(This has been noted in an example in Section 1.7, chapter 1).
So, we replace (5.2.1) by x≡ d′ (mod r′) where r′ = r

g.c.d (a,r) , d′ = bu
g.c.d (a,r) for

a suitable u which satisfies

(5.2.2)
au

g.c.d (a,r)
≡ 1(mod

r
g.c.d (a,r)

).

Fact 5.2.1 is needed for later reference. See illustration 7.4.1, chapter 7.

Example 5.2.1 : The congruence 24x≡ 6 (mod 15) is equivalent to x≡ 2 (mod 5).
For, g.c.d (24,15) = 3. Further application of (5.2.2) to 24x ≡ 6 (mod 15) with
a = 24, b = 6, r = 15 yields

(5.2.3) 8u≡ 1 (mod 5).

The unique solution of (5.2.3) is u ≡ 2 (mod 5). Also, 6u
3 = 2u where u ≡ 2

(mod 5). So, the three solutions of 24x≡ 6 (mod 15) are given by x≡ d ′ (mod 5)
where d′ = 2u ≡ 4 (mod 5). That is, x ≡ 4 (mod 15), x ≡ 9 (mod 15), x ≡ 14
(mod 15).

Next, we consider simultaneous linear congruences taken to different moduli.

Theorem 29 (The Chinese Remainder Theorem) : The system of simultaneous
congruences

(5.2.4)





x≡ c1 (mod r1)
x≡ c2 (mod r2)
· · · · · · · · ·

x≡ ck (mod rk)

is solvable if, and only if, g.c.d (ri,r j) | ci − c j for every pair of subscripts i, j
satisfying 1≤ i < j ≤ k, any two solutions of the system are incongruent modulo
l.c.m of the moduli, written [r1,r2, · · · ,rk].

Proof : :⇒ In order that the system (5.2.4) is solvable, it is certainly necessary
that every pair

x≡ ci (mod ri)
x≡ c j (mod r j) (1≤ i< j ≤ k)

is solvable. So, we must have,

x = ci + tri,x = c j + sr j, t,s ∈ Z
or tri ≡ (c j −ci) (mod r) j. Such a linear congruence in t is solvable if, and only if,
g.c.d (ri,r j) divides (c j −ci). So, the conditions g.c.d (ri,r j)|(ci −c j) (1≤ i< j≤ k)
are necessary.
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⇐: Conversely, suppose that g.c.d (ri,r j)|(ci − c j) (1 ≤ i < j ≤ k). We choose a
pair

x≡ ci (mod ri)
x≡ c j (mod r j)

and claim that the system (5.2.4) is solvable. Starting from

x≡ c1 (mod r1)
x≡ c2 (mod r2)

we get a congruence tr1≡ (c2 −c1) (mod r2). This congruence in t has g.c.d (r1,r2)
solutions modulo r2. But, it is uniquely determined modulo r2

g.c.d (r1,r2) . Therefore,

x≡ c1 + tr1

is uniquely determined modulo r1r2
g.c.d (r1,r2) = [r1,r2], l.c.m of r1 and r2.

We write x ≡ c12(mod [r1,r2]) where c12 is uniquely determined modulo [r1,r2].
We, next, show that every pair of the congruences

(5.2.5)
x≡ c12 (mod [r1,r2])
x≡ c j (mod r j), (3≤ j ≤ k)

is solvable. This needs the requirement

g.c.d (r j, [r1,r2]) | (c j − c12) (3≤ j ≤ k)

This implies that g.c.d (ri,r j) | (ci,c j), 1≤ i < j ≤ k. This proves the sufficiency
condition.

Now, c12 is uniquely determined modulo [r1,r2].
Solving the congruences

(5.2.6)
x≡ c12 (mod [r1,r2])
x≡ c3 (mod r3)

simultaneously, we arrive at

x≡ c123 (mod [r1,r2,r3])

where c123 is uniquely determined modulo [r1,r2,r3]. Repeating the procedure a
finite number of times, we prove that the system (5.2.4) is solved simultaneously
and the solution is unique modulo [r1,r2, · · · ,rk]. �

Corollary 5.2.1 : The system of congruences

(5.2.7)





x≡ c1(mod r1)
x≡ c2(mod r2)
· · · · · · · · ·

x≡ ck(mod rk)

is solvable, if g.c.d (ri,r j) = 1 (i 6= j; i, j = 1,2, · · ·k) and any two solutions of the
system (5.2.7) are congruent modulo the product r1r2 · · · rk.
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Proof follows from the fact that ri and r j are relatively prime to one another
and conditions of theorem 29 are satisfied and [r1,r2, · · · , rk] = r1r2 · · · rk, when
g.c.d (ri,r j) = 1 i 6= j, i, j = 1,2, · · · ,k. See Hugh M. Edgar [10] also.

Remark 5.2.1 : The Chinese Remainder Theorem is about the existence of solu-
tion when a certain condition is satisfied and when the solution exists, the unique-
ness of solution is from a particular residue class modulo [r1,r2, · · · ,rk].

Remark 5.2.2 : The constructive proof of the corollary emerges from the follow-
ing observation:

As g.c.d (ri,r j) = 1 for i 6= j we write

M = r1r2 · · · rk and so, g.c.d (
M
ri
,ri) = 1. i = 1,2, · · · ,k.

Let ti denote the solution of

(5.2.8)
M
ri

x≡ 1(mod ri); i = 1,2, · · · ,k

Then, as

(5.2.9)
M
ri

ti ≡ 1(mod r j) for j 6= i

we write x0 =
∑k

i=1
M
ri

tici. Then, for 1≤ j≤ k, x0≡ M
r j

t jc j ≡ c j (mod r j), by (5.2.8)
and (5.2.9). This shows that x0 is a solution of the system (5.2.7) and is unique
modulo r1r2 · · · rk.

Illustration 5.2.1 : Solve the system of simultaneous congruences

x≡ 2 (mod 3)

x≡ 4 (mod 5)

x≡ 6 (mod 7)

Solution : Here, M = 3 ·5 ·7 = 105.

35x≡ 1(mod 3)⇒ x≡ 2(mod 3),
21x≡ 1(mod 5)⇒ x≡ 1(mod 5),
15x≡ 1(mod 7)⇒ x≡ 1(mod 7).

So, x0 = 35× 2× 2 + 21× 4× 1 + 15×6×1 = 104≡ −1 (mod 105) leads to the
unique solution x0 ≡ −1 (mod 105) which satisfies each of the given congruences.
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5.3. Direct products and direct sums

G and G′ are two groups with identity elements e, e′ respectively.

Definition 5.3.1 : The direct product of G and G′ is a group whose underlying
set is G×G′ and whose binary operation is given by

(a,a′) · (b,b′) = (a ·b,a′ ·b′)
where a,b ∈ G and a′, b′ ∈ G′.

Observation 5.3.1 : The identity element of the direct product, written
G×G′, is (e,e′). The inverse of (a,a′) in G×G′ is (a−1,a′−1) where a−1 and a′−1

are respective inverses of a and a′ in G and G′.

Observation 5.3.2 : If the group operations are ‘addition’ in each of the groups
G, G′, we express G×G′ as G⊕G′.

Let {Gλ : λ∈Λ} be a family of groups indexed by the set Λ. The direct prod-
uct of the groups Gλ, (λ ∈ Λ) written

∏
λGλ or

∑
λ⊕Gλ is defined as follows:

Let a : Λ→
⋃

λ

Gλ, b : Λ→
⋃

λ

Gλ

be two functions. Then, ab : Λ→
⋃

λ

Gλ is the function given by

(5.3.1) ab(λ) = a(λ)b(λ) for all λ ∈ Λ

where a(λ) ∈ Gλ, b(λ) ∈ Gλ.

Definition 5.3.2 : The direct product (or the complete direct sum) of the groups
Gλ,λ ∈ Λ is the set
∏

λ

Gλ(=
∑

λ

⊕Gλ) = {a : a is a function from Λ to ∪Gλsuch that a(λ) ∈ Gλ}.

Remark 5.3.1 :
∏

λ

Gλ is a group under the operation of multiplication given

in (5.3.1) and for each θ ∈ Λ, the map πθ : ΠλGλ → Gθ given by a 7→ a(θ) is a
surjective homomorphism of groups (homomorphism onto).

Example 5.3.1 : If Λ = {1,2, · · · ,n} and Gi (i ∈ Λ) = (Z,+)

Zn = {(a1,a2, · · · ,an) : ai ∈ Z, (i = 1,2, · · · ,n)}
and for (a1,a2, · · · ,an), (b1,b2, · · · ,bn) ∈ Zn,

(a1,a2, · · · ,an)⊕ (b1,b2, · · · ,bn) = (a1 + b1,a2 + b2, · · · ,an + bn)

Zn is the complete direct sum of n groups each equal to Z. (Z,+) is abelian. So is
(Zn,⊕).
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Definition 5.3.3 : A group (G, ·) is said to be decomposable into the direct product
of groups A, B if, and only if, G ∼= A×B and A∩B = (e), the subgroup of G
containing the identity.

It follows that if a group G is decomposable into the direct product of two
normal subgroups A and B of G, then every element of A commutes with ev-
ery element of B and an element x ∈ G is uniquely expressed as x = a · b where
a ∈ A,b ∈ B. G is said to be indecomposable if G admits no non-trivial direct
decomposition.

Definition 5.3.4 : Let S be an arbitrary, but fixed, set. By a free abelian group
G on the set S, we mean an abelian group G together with a function f : S→ G
such that for every function g : S→ H where H is some abelian group, there is a
unique homomorphism h : G→ H such that the relation h◦ f = g holds.

g

H

S

f

G

h

Figure 1

We express this in symbols as in figure 1 above. If for each s ∈ S, h( f (s)) = g(s),
the diagram above is said to be commutative. There are two sets of arrows from
S to H. The composition of mappings h and f is the same as g. The composition
of maps depends only on the initial point and the final point and not on the path
chosen.

Fact 5.3.1 : If G is an abelian group and f : S→ G makes it a free abelian group
on S, then f : S→ G is injective (one-one) and its image f (S) generates G.
For proof, see Chih-Han Sah [17].

Observation 5.3.3 : Let {Aλ : λ ∈ Λ} be a collection of sets indexed by Λ. Then,
there exists a set B together with a collection of maps θλ : B→ Aλ which satisfies
the following universal mapping property namely:

Let C be any set and let φλ : C→ Aλ be any collection of maps. Then, there
exists a unique map φ : C→ B such that

θλ ◦φ = φλ.

In figure 2, φ is denoted by a dotted arrow and φ is not given in advance.
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C

φλ

φ
B

θλ

Aλ

Figure 2

Universal mapping property characterises a cartesian product via maps.
Now, the definition of direct product of a family of groups can be recast as follows:

Definition 5.3.5 : Let {Gλ : λ ∈ Λ} be an indexed family of groups. A group G is
called a direct product of the groups Gλ, λ ∈ Λ if, and only if, there exist homo-
morphisms θλ : G→ Gλ (λ ∈ Λ) with the following universal mapping property:

For any group H and group homomorphisms φλ : H → Gλ (λ ∈ Λ), there
exists a unique homomorphism φ : H→ G such that

θλ ◦φ = φλ, λ ∈ Λ

That is, the diagram given in figure 3 (shown below) is commutative.

H

φλ

φ
G

θλ

Gλ

Figure 3

Fact 5.3.2 : Let I be the finite set {1,2, · · · ,n}. A group G is a direct product of
the groups Gi (i ∈ I) if, and only if, there exist groups
Hi ⊆ GI , i ∈ I such that the following conditions hold :

(i) Hi is normal in G for all i ∈ I
(ii) Hi

∼= Gi, for all i ∈ I.
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(iii) each element g ∈ G has a unique representation as

g = g1g2 · · ·gn where gi ∈ Hi (i = 1,2, · · ·n).

If G contains a finite number of subgroups Hi that satisfy the conditions stated
above, G is called the internal direct product of the subgroups Hi (i varying over
a finite set).

Remark 5.3.2 : A finite abelian group G is the internal direct product of uniquely
determined Sylow p-subgroups in which p runs through the distinct prime factors
of n =| G |, (the order of G).

That is, if n =
∏k

i=1 pi
ai , pi primes, ai ≥ 1 (i = 1,2, · · ·k), then G =

∏k
i=1 Hi

where Hi is a Sylow pi-subgroup (of G) of order pi
ai . It is worthwhile noting that

(5.3.2) Z/(n)∼=
R∏

i=1

Z/(pi
ai ).

Next, for technical reasons, the ‘dual’ of direct product of groups is obtained
by reversing the arrows in the commutative diagram mentioned in definition 5.3.3
and the resulting group is called the direct sum of groups Gλ(λ ∈ Λ). Defini-
tion 5.3.5 is restated for abelian groups in the following manner:

Definition 5.3.6 : Let {Gλ : λ ∈ Λ} be an indexed family of abelian groups. An
abelian group G is called a direct sum of the abelian groups Gλ, λ∈Λ if, and only
if, there are homomorphisms θλ : Gλ → G (λ ∈ Λ) with the following universal
mapping property: For any abelian group H and homomorphisms φλ : Gλ→ H,
λ ∈ Λ, there exists a unique homomorphism φ : G→ H such that φ◦ θλ = φλ for
all λ ∈ Λ.

That is, the diagram given in figure 4 (shown below) is commutative.

Gλ

φλ

θλ
G

φ

H

Figure 4
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Remark 5.3.3 : Existence of direct sum :
Let G be the subgroup of the direct product

∏
λ∈Λ Gλ which consists of the

elements gλ, λ ∈ Λ such that gλ 6= eλ (the identity in Gλ) for at most a finite
number of indices λ ∈ Λ. (the finite number may vary from element to element).
The map θλ : Gλ→ G is such that

(5.3.3) gλ 7→ (1,1, · · · ,1,gλ,1,1, · · · ) of G,

where 1 represents the identity element of the component of G. So, every element
of G is expressed uniquely as a finite product of elements of the form θλ(gλ),
λ ∈Λ and only finite products occur in G. This proves the existence of direct sum
of groups Gλ, λ ∈ Λ.

Further, φ ((1,1, · · · ,gλ,1,1, · · · )) = φλ(gλ) ∈ H.

Theorem 30 (Fundamental theorem of arithmetic) : Let Q∗ = Q \ {0} be the
group of non-zero rational numbers under multiplication. Then, Q∗ is the direct
sum of a cyclic group of order 2 and a countable number of infinite cyclic groups.

Proof : Let G0 be a cyclic group of order 2. That is, G0 = {1,−1}. Let pk be
the kth prime in N. pλkQ∗ denotes an infinite cyclic subgroup of Q∗ generated by
pλk (λ ∈ Z). We consider a countable family of cyclic subgroups of Q∗ given in

{G0, pλ1Q∗, pλ2Q∗, · · · },λ ∈ Z.
Every element of Q∗ is of the form ±∏s

j=1 pa j
j , p j are primes, a j is a positive or

negative integer. Then Q∗ is the direct sum of a cyclic group of order 2 and a
countable number of infinite cyclic groups generated by pλ, p a prime and λ a
nonzero element in Z. �

Remark 5.3.4 : Theorem 30 has been adapted from Chih-Han Sah [17].

Next, we shall extend these ideas to the case of a family of rings.
Let {Rλ : λ ∈ Λ} be an indexed family of rings.

∏
λRλ is the direct product

of the additive abelian groups (Rλ,+), λ ∈ Λ.
(i)
∏
λRλ is a ring with multiplication given by

(5.3.4) {aλ} · {bλ} = {aλbλ}
(ii) If Rλ (λ∈Λ) has multiplicative identity, then,

∏
λRλ also has multiplicative

identity.
(iii) If Rλ (λ ∈ Λ) is commutative, so is

∏
λRλ.

(iv) For each θ ∈Λ, the canonical projection πθ : Π
λ

Rλ→ Rθ given by {aλ} 7→ aθ
is an epimorphism of rings
(onto homomorphisms)

(v) For each θ ∈ Λ, the canonical injection iθ : Rθ→ Π
λ

Rλ given by aθ 7→ {aλ}
where aλ = 0 for λ 6= θ is a monomorphism of rings
(one-one homomorphisms).
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Now, we translate definition 5.3.5 of direct product of groups to direct product of
rings.

Definition 5.3.7 : Let {Rλ : λ ∈ Λ} be a non-empty family of rings. A ring R is
called a direct product of rings Rλ, λ ∈Λ written

∏
λRλ if, and only if, there exist

homomorphisms {φλ : R→ Rλ} (λ ∈ Λ) with the following universal mapping
property:

For any ring S and any ring homomorphisms ψλ : S→ Rλ (λ ∈ Λ), there
exists a unique ring homomorphism φ : S→ R such that

φλ ◦φ = ψλ (λ ∈ Λ).

Theorem 31 : {Ai : 1≤ i≤ n} is a collection of ideals of a commutative ring R
with unity 1R such that

R = A1 + A2 + · · ·+ An.

Suppose that for k (k = 1,2, · · · ,n),

Ak∩ (A1 + A2 + · · ·+ Ak−1 + Ak+1 + · · ·+ An) = (0R).

Then, there is a ring isomorphism R∼=
∏n

i=1 Ai.

Proof : From the given data, we are led to consider

θ :
n∏

i=1

Ai→ R

given by θ((a1,a2, · · · ,an)) = a1 + a2 + · · · + an, (ai ∈ Ai, i = 1,2, · · · ,n). θ is an
isomorphism of additive abelian groups.

Claim : θ is a ring homomorphism.
If i 6= j and ai ∈ Ai, a j ∈ A j, aia j ∈ Ai∩A j = (0R). So, for all ai,bi ∈ Ai,

(a1 + a2 + · · ·+ an)(b1 + b2 + · · ·+ bn) = (a1b1 + a2b2 + · · ·+ anbn).

So, θ((a1b1,a2b2, · · · ,anbn)) = θ((a1,a2, · · · ,an)) θ((b1,b2, · · · ,bn)). So, θ is a ring
homomorphism, which is both an epimorphism and a monomorphism. Thus,
R∼=

∏n
i=1 Ai. �

Remark 5.3.5 : Theorem 31 suggests that the ring R (with unity 1R) is the internal
direct product of the ideals Ai (i = 1,2, · · · ,n).

Remark 5.3.6 : The idea of a direct product of k finite fields has already been
mentioned while expressing −1 as a sum of squares in Z/rZ in Section 1.7 of
chapter 1. See (5.3.2) also.

Definition 5.3.8 : Given a commutative ring R with unity 1R, and ideal I ⊂ R, we
say that for a,b,∈ R,

a≡ b (mod I)⇔ a − b∈ I.
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That is, a≡ b (mod I)⇔ the cosets a+ I and b+ I are identical. Since R/I can
be made a ring, we deduce that :
Given a1 ≡ a2(mod I), b1 ≡ b2(mod I)

(5.3.5)
{

a1 + b1 ≡ a2 + b2 (mod I)
a1b1 ≡ a2b2 (mod I).

Definition 5.3.9 : Two ideals I,J of a ring R are said to be comaximal, if I +J = R.

As an example, if we consider two ideals (a), (b) of Z where
g.c.d (a,b) = 1, one gets (a)+ (b) = Z and so (a) and (b) are comaximal. For, when
g.c.d (a,b) = 1 there exist integers x, y such that

ax + by = 1.

‘Comaximality’ among ideals corresponds to the notion of ‘relatively prime’ among
integers.

Theorem 32 (analogue of the Chinese Remainder Theorem.) : R is a commu-
tative ring with unity 1R. Let {I1, I2, · · · , In} be a set of n ideals (of R) which are
pairwise comaximal. That is, Ii + I j = R (i 6= j). Let c1,c2, · · · ,cn be elements of R.
Then, the system of simultaneous congruences

x≡ ci(mod Ii) (i = 1,2, · · · ,n)

has a unique solution b satisfying

x≡ b (mod I)

where
I = ∩n

i=1Ii.

This implies that

(5.3.6) R/∩n
i=1 Ii
∼=

n∏

i=1

R/Ii.

Proof : We define a mapping f : R→∏n
i=1 R/Ii by

(5.3.7) f (x) = (x + I1,x + I2, · · · ,x + In), x ∈ R

Then,
f (x + y) = f (x) + f (y)

f (xy) = f (x) f (y)

}
x,y ∈ R.

If f (t) = (I1, I2, · · · , In), t ∈ Ii for each i and so

t ∈ ∩n
i=1Ii

Therefore, ker f = ∩n
i=1Ii.

Our aim is to show that f is an epimorphism. Since Ii + I j = R for i 6= j, there
exist elements ai ∈ Ii, bi ∈ I j such that ai + bi = 1R.

If r j = a1a2 · · ·a j−1a j+1 · · ·an, r j ∈ ∩i6= jIi.
Since 1R − ai ∈ I j the coset ai + I j = 1R + I j for all i 6= j. So,

ai ≡ 1R(mod I j) , i 6= j.
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Let x1,x2, · · · ,xn ∈ R. If x =
∑n

i=n rixi, we will have

(5.3.8) f (x) = (x1 + I1,x2 + I2, · · · ,xn + In)

For,
x + I j =

∑

i6= j

(ri + I j)(xi + I j) + (r j + I j)(x j + I j)

Since ri ∈ I j for i 6= j and r j + I j = 1R + I j (by comaximality among Ii, I j), we get

x + I j = x j + I j ( j = 1,2, · · ·n)

or,
x≡ x j (mod I j) j = 1,2, · · · ,n

Therefore, from (5.3.8) x =
∑n

i=1 rixi gives (5.3.7) thereby showing that f is an
epimorphism. Now, r1,r2, · · · ,rn are such that

ri ≡ 0(mod I j) for i 6= j

and r j ≡ 1R(mod I j)
So, ciri ≡ 0(mod I j) for i 6= j

and c jr j ≡ c j(mod I j).

If b =
∑n

i=1 ciri, b≡ c j(mod I j) for j = 1,2, · · ·n. So, the system

x≡ ci(mod Ii) i = 1,2, · · · ,n
has a solution b which is the preimage of (c1 + I1,c2 + I2, . . . ,cn + In) under f . If b′

is another solution of the given system of congruences,

b − b′ ≡ 0(mod I)

where I = ∩n
i=1Ii. So, the solution is unique modulo I. Since ker f = I, this is also

expressed by the isomorphism shown in (5.3.6) which is a consequence of the
fundamental homomorphism theorem. �

Observation 5.3.4 : The corollary 5.2.1 of theorem 29 (the Chinese Remainder
Theorem) is a special case of theorem 32.

For, if x≡ ci(mod ri) (i = 1,2, · · · ,k) with g.c.d (ri,r j) = 1, these congruences
admit a simultaneous solution modulo r1r2 · · · rk.

We consider principal ideals (r1), (r2), · · · , (rk) which are pairwise comaximal
and note that

∩k
i=1(ri) = the ideal generated by r = r1r2 · · · rk.

Remark 5.3.7 : The form in which theorem 32 is stated gives the natural exten-
sion of the Chinese Remainder Theorem to commutative rings having a given set
of pair-wise comaximal ideals. See Thomas W. Hungerford [11] and David M.
Burton [3].
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Now, we observe that Z is a U.F.D. So, we replace Z by a U.F.D, say, F[x],
the integral domain of polynomials with coefficients from a field F . Let a(x) and
r(x) be polynomials in F[x]. We look for a polynomial u(x) modulo r(x) such that

(5.3.9) a(x)u(x)≡ b(x) (mod r(x)) ,

where b(x) ∈ F[x] is already given. (5.3.9) is a congruence in which we solve for
u(x). (We can compare (5.3.9) with ax ≡ b (mod r) of number theory). We state
below an analogue of the Chinese Remainder Theorem in the context of F[x].

Theorem 33 : ri(x) (i = 1,2, · · ·k) are given polynomials in F[x] and ri(x) and
r j(x) are relatively prime whenever i 6= j. Suppose ai(x) (i = 1,2, · · ·k) are polyno-
mials for which ai(x) and ri(x) are relatively prime to one another (i = 1,2, · · ·k).
If bi(x) (i = 1,2, · · ·k) are arbitrary polynomials in F[x], then, the system of con-
gruences

(5.3.10)





a1(x)u(x) ≡ b1(x) (mod r1(x))
a2(x)u(x) ≡ b2(x) (mod r2(x))
· · · · · · · · · · · · · · · · · · · · · · · ·
ak(x)u(x) ≡ bk(x) (mod rk(x))

has a unique solution modulo r(x) where r(x) = r1(x)r2(x) · · ·rk(x).

Outline of proof : On account of the linear expressibility of g.c.d, since
(ai(x), ri(x)) = 1F , we can find a polynomial ci(x) ∈ F[x] such that

(5.3.11) ci(x)ai(x)≡ 1(mod ri(x)) (i = 1,2, · · · ,k)

So, (5.3.10) can be restated as

u(x)≡ ci(x)bi(x) (mod ri(x)), (i = 1,2, · · · ,k)

It is of the form
x≡ ci (mod Ii) (i = 1,2, · · · ,k)

where Ii (i = 1,2, · · · ,k) are ideals of the ring F[x]. Further, Ii, I j are comaximal for
i 6= j. Applying theorem 32 we obtain the unique solution u(x)≡ h(x) (mod r(x))
where r(x) = r1(x)r2(x) · · ·rk(x). �

Remark 5.3.8 : Theorem 33 has been adapted from C. Ding, D. Pei and
A. Salomaa [9].

Illustration 5.3.1 : We take F = GF(2), the Galois field having two elements.

r1(x) = x3 + x + 1

r2(x) = x3 + x2 + 1

Let a1(x) = x2 + x + 1 and a2(x) = x + 1.

a1(x)u(x)≡ 1(mod x3 + x + 1)

has the solution
t(x) = x2
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as x2(x2 + x + 1) + (x + 1)(x3 + x + 1) = 1. That is, we have

(5.3.12) (x2 + x + 1)x2 ≡ 1(mod (x3 + x + 1))

So, here, ci(x) of (5.3.11) is ci(x) = x2. Now,

a2(x)u(x)≡ 1(mod x3 + x + 1)

has the solution
s(x) = x2,

as x2(x + 1) + x3 + x2 + 1 = 1. That is ,

(5.3.13) (x + 1)x2 ≡ 1(mod (x3 + x + 1)).

We seek a solution of simultaneous congruences

(5.3.14)
{

(x2 + x + 1)u(x) ≡ b1(x) (mod (x3 + x + 1))
(x + 1)u(x) ≡ b2(x) (mod (x3 + x2 + 1))

By theorem 33, (5.3.14) has a unique solution modulo r(x) where

r(x) = (x3 + x + 1)(x3 + x2 + 1).

This is due to the fact that x3 + x + 1 and x3 + x2 + 1 are relatively prime to one
another, as

(5.3.15) (x + 1)(x3 + x2 + 1) + x(x3 + x + 1) = 1

From (5.3.12), (5.3.13) and (5.3.14), we obtain

(5.3.16)
{

u(x)≡ x2b1(x)(mod (x3 + x + 1)),
u(x)≡ x2b2(x)(mod (x3 + x2 + 1)).

So, if

(5.3.17) d(x) = (x + 1)(x3 + x2 + 1) x2b1(x) + x(x3 + x + 1)x2b2(x),

(5.3.18) u(x)≡ d(x) (mod (x3 + x + 1)(x3 + x2 + 1)).

From (5.3.16), we notice that u(x) satisfies the congruence in (5.3.18) and as

(x2 + x + 1)x2≡1(mod (x3 + x + 1)),

(x2 + x + 1)u(x)≡(x + 1)(x3 + x2 + 1)b1(x) (mod (x3 + x + 1)).

But,

(x + 1)(x3 + x2 + 1)≡ 1(mod (x3 + x + 1)).

So, (x2 + x + 1)u(x)≡ b1(x) (mod (x3 + x + 1)).

Similarly,

(x + 1)u(x)≡ b2(x) (mod (x3 + x + 1)).

Thus, (5.3.18) gives a common solution to either of the congruences in (5.3.14).
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5.4. Even functions (mod r)

Let r denote an arbitrary but fixed positive integer≥ 1. If n∈Z, Ramanujan’s
sum C(n,r) (5.1.2) has the arithmetical representation [4] given by

(5.4.1) C(n,r) =
∑

d|(n,r)

µ( r
d )d, n≥ 1,r ≥ 1

where d runs through the common divisors of n and r and µ is the Möbius function
and summation is over a(modr) such that g.c.d (a,r) = 1.

C(n,r) is known to be multiplicative in r. That is,

(5.4.2) C(n,r)C(n,r′) = C(n,rr′) whenever g.c.d. (r,r′) = 1.

If φ denotes Euler φ-function, the Hölder relation [4] for C(n,r) is

(5.4.3) C(n,r) =
µ( r

g )φ(r)

φ( r
g )

µ and φ being the Möbius and Euler φ-function respectively and g = g.c.d (n,r).

Definition 5.4.1 : By an arithmetic function f of two variables n,r, we mean a
map f : Z×N→ C, the field of complex numbers.

Definition 5.4.2 : An arithmetic function f (of two variables n,r) is said to be
periodic (mod r) if

f (n,r) = f (n′,r) whenever n′ ≡ n (mod r).

If f is periodic (mod r) and if d | r, then f is periodic (mod d), since
n≡ n′(mod r)⇒ n≡ n′(mod d)

We note that C(n,r) is periodic (mod r).

Definition 5.4.3 : An arithmetic function f is called an even function (mod r) or
briefly ‘even (mod r)’ if f ((n,r),r) = f (n,r) for all n; (n,r) being g.c.d (n,r).

Evidently an even function (mod r) is also periodic (mod r). An orthogonal
property of C(n,r) due to Eckford Cohen [4] states that if d,e are divisors of r,

(5.4.4)
∑

t|r
C( r

t ,d)C( r
e , t) =

{
r, if d = e,
0, otherwise.

For proof, see [5].
(5.3.5) is exploited to obtain an arithmetical representation of an even func-

tion (mod r) via Ramanujan Sums. See [6]. This also enables one to consider the
set Br(C) of even functions (mod r) as a finite dimensional algebra over C, the
field of complex numbers. This aspect of the algebra of even functions (mod r)
will be considered in chapter 14.

Definition 5.4.4 : Let f ,g be periodic functions (mod r). The Cauchy product [7]
of f and g is the arithmetic function defined by

h(n,r) =
∑

n≡a+b (mod r)

f (a)g(b)
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where the sum on the right side is over all solutions 〈a,b〉(mod r) of the congru-
ence

x + y≡ n (mod r).

It follows from definition 5.4.4 that h is also periodic (mod r).
Analogous to (5.4.4), one gets the orthogonal relation: If d,e are divisors of r,

(5.4.5)
∑

n≡a+b(mod r)

C(a,d)C(b,e) =
{

rC(n,d), if e = d,
0, otherwise.

For proof, see Eckford Cohen [7].
Next, we go to the arithmetical representation of an even function (mod r).

The two theorems that follow are due to Eckford Cohen [5], [6], [7] and they are
fundamental in nature.

Theorem 34 (Eckford Cohen (1955)) : Let f be an even function (mod r). Then,
f can be uniquely expressed as

(5.4.6) f (n,r) =
∑

d|r
α(d,r)C(n,d), for all n;

where α(d,r) is given by

(5.4.7) α(d,r) =
1
r

∑

t|r
f (

r
t
,r)C(

r
d
, t), d|r.

Proof : Suppose that α(d,r) are given by the formula (5.4.7) for all divisors d of
r. Then,

∑

d|r
α(d,r)C(n,d) =

1
r

∑

d|r

∑

t|r
f (

r
t
,r)C(

r
d
, t)C(n,d)

=
1
r

∑

t|r
f (

r
t
,r)
∑

d|r
C(

r
d
, t)C(n,d).

Now, C(n,d) = C((n,d),d) for all d|r, by virtue of (5.4.3). g.c.d (n,d)|n, for d|r.
So, g.c.d (n,d)|g.c.d (n,r). So, d runs through those divisors common to n and r.
Therefore, C(n,d) = C(d,d) = C((n,r),d) as d| g.c.d (n,r).

Consequently,

(5.4.8)
∑

d|r
α(d,r)C(n,d) =

1
r

∑

t|r
f (

r
t
,r)
∑

d|r
C(

r
d
, t)C((n,r), d)

Let g.c.d (n,r) = g. Then the right side of (5.4.8) becomes
1
r

∑

t|r
f (

r
t
,r)
∑

d|r
C(

r
d
, t)C(

r
r
g
,d).

The inner sum shown is zero when r
g 6= t and is r if r

g = t by (5.4.4). So,
∑

d|r
α(d,r)C(n,d) = f (g,r) = f (n,r).
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This proves (5.4.6).
To show that the representation is unique, we prove that∑

d|rα(d,r)C(n,d) = 0 for all n⇒ α(d,r) = 0 for each divisor of r.
For, choosing n = 0 one gets

∑

d|r
α(d,r)C(0,d) = 0.

For divisors d,e of r, one has, using (5.4.5)

rC(0,d) =
∑

a+b≡0(mod r)

C(a,d)C(b,e) when d = e.

So,
1
r

∑

d|r
α(d,r)rC(0,d) =

1
r

∑

d|r
α(d,r)

∑

a+b≡0(mod r)

C(a,d)C(b,e) = 0

That is,
1
r

∑

d|r
α(d,r)

∑

a+b≡0(mod r)

C(a,d)C(b,e) = 0

As C(0,d) = φ(d), the Euler totient, C(0,d) 6= 0 and so α(d,r) = 0 for each d|r. �

Remark 5.4.1 : The coefficients α(d,r) given in (5.4.7) are called the Fourier
coefficients of f . (5.4.6) gives a finite Fourier expansion of the function which is
even (mod r).

Theorem 35 : If f and g are even functions (mod r) with Fourier coefficients
α(d,r) and β(d,r) respectively, their Cauchy product h is even (mod r) with
Fourier coefficients rα(d,r)β(d,r) for all d dividing r.

Proof : Let n be arbitrary but fixed. By definition,

h(n,r) =
∑

n≡a+b(mod r)

f (a,r)g(b,r).

But, f (a,r) =
∑

s|rα(s,r)C(a,s) and g(b,r) =
∑

t|rβ(t,r)C(b, t). So,

h(n,r) =
∑

n≡a+b(mod r)

∑

s|r
α(s,r)C(a,s)

∑

t|r
β(t,r)C(b, t)

=
∑

s|r

∑

t|r
α(s,r)β(t,r)

∑

n ≡a+b(mod r)

C(a,s)C(b, t)

Or,

(5.4.9) h(n,r) =
∑

s|r
rα(s,r)β(s,r)C(n,s) for s = t( by (5.4.5)).

As h is even (mod r), h has a finite Fourier expansion with Fourier coefficients
rα(d,r)β(d,r) for d dividing r, as stated in the theorem. �
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Illustration 5.4.1 : If C(n,r) denotes Ramanujan’s sum

(5.4.10)
∑

g.c.d (a,r)=1

C(n − a,r) = µ(r)C(n,r),

where µ is the Möbius function and summation is over a reduced-residue system
(mod r).

Proof of (5.4.10) is by finding the Cauchy product h of ρ and C where ρ is
Kronecker function:

(5.4.11) ρ(n,r) =
{

1, g.c.d (n,r) = 1
0, g.c.d (n,r) 6= 1.

and C is Ramanujan’s sum (5.1.2). ρ and C are even functions (mod r).

If ρ(n,r) =
∑

d|r
α(d,r)C(n,d)

α(d,r) =
1
r

∑

t|r
ρ(

r
t
,r)C(

r
d
, t)

=
1
r

∑

t|r
g.c.d ( r

t ,r)=1

C(
r
d
, t)

For t dividing r, ( r
t ,r) = 1 if, and only if, r = t. So,

(5.4.12) α(d,r) =
1
r

C(
r
d
,r).

Also, when

C(n,r) =
∑

d|r
β(d,r)C(n,d)

β(d,r) =
{

1, if d = r,
0, if d 6= r.

Or,

(5.4.13) β(d,r) = P(d,r),

where P is the ‘principal function’ whose value is 1 when d = r and zero, other-
wise. By theorem 35,

∑

a (mod r)
(a,r)=1

C(n − a,r) = r
∑

d|r
d=r

1
r

C(
r
d
,r)C(n,d) = C(1,r)C(n,r)

As C(1,r) = µ(r), (see (5.4.3)), (5.4.10) follows.
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5.5. Linear congruences with side conditions

A linear congruence in s unknowns x1,x2, · · · ,xs is of the form

(5.5.1) a1x1 + a2x2 + · · ·+ asxs ≡ n (mod r) ; ai ∈ Z, i = 1,2, · · · ,s.
By a solution of (5.5.1), we mean a solution (mod r) namely, an ordered

s-tuple of integers 〈x1,x2, · · · ,xs〉 that satisfies (5.5.1).
Two s-tuples 〈x1,x2, · · · ,xs〉 and 〈x′1,x′2, · · · ,x′s〉 that satisfy (5.5.1) are counted as
the same solution if, and only if,

xi ≡ x′i (mod r), i = 1,2, · · · ,s.
We will count either all solutions of (5.5.1) or all the solutions that are restricted
in some way. A problem that is relevant to our context is counting those solutions
〈x1,x2, · · · ,xs〉 in which g.c.d (xi,r) = 1, i = 1,2, · · · s. We may call this as a ‘side-
condition’ in respect of solutions of (5.5.1).

Theorem 36 (unrestricted case) : The congruence (5.5.1) has a solution if, and
only if, d|n where d = g.c.d (a1,a2, · · · ,as,r) and when this condition is satisfied,
it has drs−1 solutions.

Proof : :⇒ (5.5.1) has a solution implies that there is an s-tuple〈t1, t2, · · ts〉 such
that

a1t1 + a2t2 + · · ·+ asts ≡ n(mod r)

If d = g.c.d (a1,a2, · · · ,as,r), d has to divide n. So, this condition is necessary for
the congruence to have a solution.
⇐: Suppose that d|n. We prove that the congruence (5.5.1) has a solution. We
show that it has drs−1 solutions by induction on s. For the case s = 1

(5.5.2)
a1x1

d
≡ n

d
(mod

r
d

)

yields that (5.5.2) has a unique solution (mod r
d ) as g.c.d ( a1

d ,
r
d ) = 1. So,

a1x1 ≡ n(mod r) has exactly d solutions namely

x1,x1 + r
d ,x1 + 2r

d , · · · ,x1 + (d−1)r
d .

Next, suppose that s> 1 and that the result is true for linear congruences with
(s − 1) unknowns.

Let b = g.c.d (a2,a3, · · · ,as,r). Since d = g.c.d (a1,b) divides n, the congru-
ence

a1x1 ≡ n (mod b)

has d solutions. Also, in every complete residue system (mod r) there are ( r
b )d

solutions of (5.5.1).
Let t1 be a solution of a1x1 ≡ n(mod b). We take

a2x2 + · · ·+ asxs ≡ (n − a1t1) (mod r).

Since b|(n−a1t1), it has brs−2 solutions by induction hypothesis. Therefore, (5.5.1)
with s unknowns has ( r

b )dbrs−2 = drs−1 solutions. This completes the proof. �
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Next, we proceed to obtain a formula for the number N(n,r,s) of solutions of
the congruence.

(5.5.3) x1 + x2 + · · ·+ xs ≡ n (mod r)

under the restriction g.c.d (xi,r) = 1 for i = 1,2, · · · s.
When s = 2, we have the special case of counting the number a of integers

1≤ a≤ r such that
g.c.d (a,r) = g.c.d (n − a,r) = 1.

We denote this number by θ(n,r). One can show that

(5.5.4) θ(n,r) = r
∏

p|g.c.d (n,r)

(1 −
1
p

)
∏

p|r
p - n

(1 −
2
p

)

See [6]. θ(n,r) is referred to as Nagell’s totient in the literature. The first step
in the derivation of a formula for N(n,r,s) is to show that it is an even function
(mod r).

Lemma 5.5.1 : N(n,r,s) is an even function (mod r).
That is, N(n,r,s) = N((n,r),r,s), where (n,r) = g.c.d (n,r).

Proof : Let n = mn′ with g.c.d (n′,r) = 1. We consider

(5.5.5) x1 + x2 + · · ·+ xs ≡ m (mod r)

under the restriction g.c.d (xi,r) = 1.
Let 〈y1,y2, · · · ,ys〉 be a solution of (5.5.5).

Then 〈n′y1,n′y2, · · · ,n′ys〉 is a solution of (5.5.3). So, to each solution of (5.5.5)
there corresponds a solution of (5.5.3) and vice-versa. That is , there is a one-one
correspondence between the solutions of (5.5.3) and (5.5.5). Also, g.c.d (yi,r) = 1
(i = 1,2, · · · ,s) holds if, and only if, g.c.d (n′yi,r) = 1 (i = 1,2, · · · ,s). Therefore,
we have

N(n,r,s) = N(m,r,s).
Using the Chinese Remainder Theorem, we also note that N(n,r,s) is multiplica-
tive in r. That is,

(5.5.6) N(n,r,s)N(n,r′,s) = N(n,rr′,s)

whenever g.c.d (r,r′) = 1.
So, it will suffice to show that N(n,r,s) = N((n,r),r,s) when n and r are powers

of same prime p.
Let n = pb, r = pa, a≥ 1, b≥ 1. If b≤ a, g.c.d (n,r) = pb = n. So

N(pb, pa,s) = N(g.c.d(pb, pa), pa,s), when b≤ a.

When b> a, pa + pb = pat where p - t. Further,

N(pb, pa,s) = N(pb + pa, pa,s) = N(pat, pa,s) = N( g.c.d (pat, pa), pa,s)

= N(pa, pa,s) , as g.c.d (pa, t) = 1.

This establishes the claim of the lemma (5.5.1). �
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Theorem 37 : For all n ∈ Z and r ≥ 1, the arithmetical evaluation of N(n,r,s) is
given by

(5.5.7) N(n,r,s) =
1
r

∑

d|r
C(

r
d
,r)

s
C(n,d)

where C(n,r) denotes Ramanujan’s sum (5.1.2).

Proof : Proof is by induction on s. The congruence x1 ≡ n(mod r) with g.c.d
(x1,r) = 1 is such that

N(n,r,1) =
{

1, if g.c.d (n,r) = 1,
0, otherwise.

That is, N(n,r,1) = ρ(n,r) (5.4.11).
We have seen that

(5.5.8)





ρ(n,r) =
∑

d|r
α(d,r)C(n,d)

where α(d,r) = 1
r C( r

d ,r), whenever d|r (see (5.4.12)).

So, (5.5.7) holds for s = 1. Suppose that s > 1. Assume that the result holds for
s = s′ − 1. Then,

N(n,r,s′ − 1) =
1
r

∑

d|r
C(

r
d
,r)s′−1C(n,d),n ∈ Z.

By virtue of Cauchy multiplication (see definition (5.4.4)) we see that

N(n,r,s′) =
∑

n≡a+b (mod r)

N(a,r,1)N(b,r,s′ − 1).

By induction hypothesis, (5.5.7) holds for s = s′ − 1. Then, by theorem 34 and
the expression for ρ(n,r) as in (5.5.8), we deduce that (5.5.7) holds for s = s′

as the Fourier coefficients for ρ(n,r) are as given in (5.5.8). This completes the
proof. �

Remark 5.5.1 : The evaluation (5.5.7) was discovered by K. G. Ramanathan [15]
in 1944. It was rediscovered by Nicol and Vandiver [13] in 1954.

5.6. The Rademacher formula

Though theorem 37 gives an evaluation of N(n,r,s) in terms of C(n,r), it is
desirable to give it an explicit form. For this, we use the fact that N(n,r,s) is
multiplicative in r and that when r = pa (p a prime and a≥ 1)

(5.6.1) C(n, pa) =





pa−1(p − 1), if pa|n
−pa−1, if pa−1|n and pa - n
0, otherwise.

If φ denotes Euler’s totient, C(n, pa) = φ(pa) whenever pa|n. This implies that

(5.6.2) C(n,r) = φ(r) whenever r|n.
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Notation 5.6.1 : We write e(x) to represent exp(2πix), i denotes
√

−1.

Theorem 38 (David Rearick (1963)) : Let C(n,r) denote Ramanujan’s sum. If
N(n,r,s) represents the number of solutions of

x1 + x2 + · · ·+ xs ≡ n(mod r)

under the restriction g.c.d (xi,r) = 1 (i = 1,2, · · · ,s), then

(5.6.3) Cs(n,r) =
∑

h(mod r)

N(h,r,s)e( hn
r )

and

(5.6.4) N(n,r,s) =
1
r

∑

h(mod r)

Cs(h,r)e( −hn
r ).

Proof : From the definition of C(n,r), we note that

Cs(n,r) =
∗∑

x1(mod r)

e( x1n
r )

∗∑

x2(mod r)

e( x2n
r ) · · ·

∗∑

xs(mod r)

e( xsn
r )

where
∗∑

x

means that the summation is over x(mod r) with g.c.d (x,r) = 1. (that

is,
∗∑

x

is over a reduced-residue system (mod r)). Therefore,

Cs(n,r) =
∗∑

x1(mod r)

∗∑

x2(mod r)

· · ·
∗∑

xs(mod r)

e
( n(x1+x2+···+xs)

r

)

=
∑

h(mod r)

e( nh
r )
∗∗∑

λ

1,

where
∗∗∑

xi

stands for summation over s reduced-residues xi(mod r) (i = 1,2, · · · ,s)

such that

x1 + x2 + · · ·+ xs ≡ h (mod r).

We infer that
∗∗∑

xi

1 = N(h,r,s). This proves (5.6.3). (5.6.4) is the same as the result

given in theorem 37. It is proved by the familiar orthogonal methods of Fourier

© 2007 by Taylor & Francis Group, LLC



128 CHAPTER 5

coefficients. More specifically,

1
r

∑

h(mod r)

Cs(h,r)e( −hn
r ) =

1
r

∑

h(mod r)

e( −hn
r )

∑

k(mod r)

N(k,r,s)e( kh
r )

=
1
r

∑

h(mod r)

∑

k(mod r)

N(k,r,s)e( h(k−n)
r )

=
1
r

∑

k(mod r)

N(k,r,s)
∑

h(mod r)

e( h(k−n)
r ).

The inner sum is zero unless r|(k − n). As k runs through a complete residue
system (mod r), (k − n) also runs through a complete residue system (mod r) and
| k − n |< r is what we need. It is so. Therefore, r|(k − n) if, and only if, k − n = 0
and in such a situation the inner sum is r. This proves (5.6.4). �

Theorem 39 (David Rearick (1963)) : An evaluation of N(n,r,s) is given by

(5.6.5) N(n,r,s) =
φs(r)

r

∏

p|r
(1 +

(−1)sC(n, p)
(p − 1)s )

where φ denotes Euler’s totient and C(n,r) is Ramanujan’s sum.

Proof : From theorem 37, using Hölder relation for C(n,r) given in (5.4.3), we
see that

(5.6.6) N(n,r,s) =
φs(r)

r

∑

d|r

µs(d)
φs(d)

C(n,d)

C(n,r) is multiplicative in r. So are φ and µ.
It is easy to check that if f is multiplicative

(5.6.7)
∑

d|r
µs(d) f (d) =

∏

p|r
(1 + (−1)s f (p)),

where p runs through the primes dividing r on the right side of (5.6.7). Taking
f (r) = C(n,r)

φs(r) , we get from (5.6.6)

N(n,r,s) =
φs(r)

r

∏

p|r
(1 + (−1)sC(n,p)

φs(p) ).

As φ(p) = p − 1, we arrive at (5.6.5). �

Corollary 5.6.1 : Rademacher’s formula for N(n,r,s) is

N(n,r,s) = rs−1
∏

p|g.c.d (n,r)

(p − 1){(p − 1)s−1 − (−1)s−1}
ps

∏

p|r,p -n

(p − 1)s − (−1)s

ps .
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For, it is easy to note that C(n, p) = φ(p) = (p − 1) if p|n and C(n, p) = (−1) if
p - n. Separating the prime factors p of r as those p for which p|n and those p for
which p - n and using the fact that

φs(r) = rs
∏

p|r
(1 − 1

p )s = rs
∏

(p−1)s

ps ,

we get

N(n,r,s) = rs−1
∏

p|r

(p−1)s

ps

∏

p|g.c.d (n,r)

(1 + (−1)s(p−1)
(p−1)s )

∏

p|r,p-n
(1 + (−1)s(−1)

(p−1)s )

= rs−1
∏

p|g.c.d (n,r)

{ (p−1){(p−1)s−1−(−1)s−1

ps }
∏

p|r,p -n

(p−1)s−(−1)s

ps

which is as stated. �

Remark 5.6.1 : Theorems 38 and 39 have been adapted from David Rearick [16].

Remark 5.6.2 : In [1], Henry L. Alder defines the function φ(n,r) as the number
of solutions 〈x,y〉 of the equation

x + y = n + r

satisfying 1≤ x≤ r and g.c.d (x,r) = g.c.d (y,r) = 1. φ(n,r) is the same as N(n,r,2)
which is θ(n,r) (5.5.4).

For more results of this kind, see Eckford Cohen [6], [8]. See also
Paul J. McCarthy [12] for a beautiful exposition of counting linear congruences
with specified restrictions.

The use of computers for doing problems in elementary number theory espe-
cially in topics dealing with primality test, factorization and solving congruences
is recommended for practical training. Choosing PASCAL for programs, Peter
Giblin [A1] gives an interesting study of primes and programming touching upon
number-theoretic aspects of cryptography.

5.7. Notes with illustrative examples

During the 7th century A.D. the Indian mathematician Brahmagupta
(598–665 A.D.) posed the following problem:

Find a positive integer such that when divided by 3,4,5 and 6 it leaves the
remainders 2,3,4 and 5 respectively. The system of congruences would mean

x≡ 2(mod 3)
x≡ 3(mod 4)
x≡ 4(mod 5)
x≡ 5(mod 6)
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Here, the moduli are not relatively prime in pairs. However, one could apply the
Chinese Remainder Theorem to solve the first three congruences simultaneously.
Taking M = 3 ·4 ·5 = 60, r1 = 3, r2 = 4, r3 = 5 we have Mi = M

ri
and so

M1 = 20, M2 = 15, M3 = 12

M1 t1 ≡ 1(mod r1) gives

t1 ≡ 1(mod 3), or t1 = 2,
15 t2 ≡ 1(mod 4), or t2 = 3,
12 t3 ≡ 1(mod 5), or t3 = 3.

So, x0 = 20 · 2 · 2 + 15 · 3 · 3 + 12 · 3 · 4 = 359 ≡ −1(mod 60) So, the general solu-
tion of the first three congruences is x = 60k − 1. But, then, 60k − 1 ≡ 5(mod 6).
So, the general solution is 60k − 1 and the least positive integer satisfying all the
four congruences is 59. When the moduli are not relatively prime in pairs, one
has to do a ‘splitting’ of the moduli into relatively prime numbers and consider
the minimum number of congruences for forming a system. Let us look at the
simultaneous congruences

5x≡ 2 (mod 24),
3x≡ 62 (mod 88),(5.7.1)
x≡ 28 (mod 99).

In (5.7.1), the first is equivalent to x ≡ 10(mod 24). The second is equivalent to
x≡ 50(mod 88). So, we get x≡ 10(mod 24), x≡ 50(mod 88) and x≡ 28(mod 99).
We factorize 24,88 and 99 and obtain a system of non-repeated simultaneous con-
gruences

x≡ 2(mod 8),
x≡ 6(mod 11)

and x≡ 1(mod 9)

in which the moduli are relatively prime in pairs. The solution is x≡ 226 (mod 792).
When properly set, the Chinese Remainder Theorem holds in any commuta-

tive ring with unity. Theorem 32 is one such.
A generalization of N(n,r,s) was given by Paul J. McCarthy [12] in 1977. It

covered several other congruences under suitable side-conditions. For instance, if
Pk(n,r,s) (5.6.4) denotes the number of solutions of

x1 + x2 + · · ·+ xs ≡ n (mod r)

under restriction g.c.d (xi,r) is a kth− power (i = 1,2, · · · ,s), then,

(5.7.2) Pk(n,r,s) =
1
r

∑

d|r
(Hk( r

d ,r))s C(n,d)
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where

(5.7.3) Hk(n,r) =
∑

dk|r
C(n, r

dk )

See Eckford Cohen [8] also.
In connection with the evaluation of N(n,r,s) (5.6.4), David Rearick [16]

obtained a ‘cross-correlation function’ of N(n,r,s) by showing that

(5.7.4)
∑

m(mod r)

N(m,r,s)N(m + k,r, t) = N(k,r,s + t).

The summation on the left of (5.7.4) runs over a complete residue system (mod r).
For each value of m(mod r) inside the sum, we note that N(m,r,s) gives the num-
ber of solutions of

x1 + x2 + · · ·+ xs ≡ m (mod r)
under the restriction g.c.d (xi,r) = 1, i = 1,2, · · · ,s.

N(m + k,r, t) gives the number of solutions of

y1 + y2 + · · ·+ yt ≡ m + k (mod r)

under the restriction g.c.d (y j,r) = 1, j = 1,2, · · · , t.
Accordingly, there are N(m,r,s)N(m + k,r, t) solutions of the simultaneous con-
gruences

x1 + x2 + · · ·+ xs ≡ m (mod r)
y1 + y2 + · · ·+ yt − x1 − x2 − · · ·− xs ≡ k (mod r)

with g.c.d (xi,r) = 1 (i = 1,2, · · · ,s), g.c.d (y j,r) = 1, ( j = 1,2, · · · , t).
So,
∑

m(mod r) N(m,r,s)N(m + k,r, t) yields the number of solutions of

(5.7.5) y1 + y2 + · · ·+ yt − x1 − x2 − · · ·− xs ≡ k (mod r)

under the restriction g.c.d (xi,r) = 1 (i = 1,2, · · · ,s), g.c.d (y j,r) = 1, ( j = 1,2, · · · , t).
The number of solutions of the restricted congruence (5.7.5) is evidently
N(k,r,s+t) as g.c.d (r−u,r) = 1 for 1≤ u< r⇒ g.c.d (u,r) = 1. This proves (5.7.4).

As N(n,r,1) = ρ(n,r) (Kronecker function (5.4.11)), we get, from (5.7.4), the
relation

(5.7.6)
∑

m(mod r)
g.c.d (m,r)=1

N(m + k,r, t) = N(k,r, t + 1)

(5.7.6) was also obtained by A. Brauer in [2].

5.8. Worked-out examples

a) (Underwood Dudley) Construct linear congruences modulo 20 that have
(i) no solutions
(ii) exactly one solution
(iii) more than one solution
(iv) exactly 20 solutions
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Answer:
(i) 15x≡ 14(mod 20) has no solution as g.c.d (15,20) = 5 does not divide 14.
(ii) 13x≡ 14(mod 20) has exactly one solution, as g.c.d (13,20) = 1.
(iii) 12x ≡ 4(mod 20) has exactly 4 solutions, as g.c.d (12,20) = 4 and 4 di-
vides 4.
(iv) 20x≡ 0(mod 20) has 20 solutions. �

b) (Ralph G. Archibald) Let p be an odd prime. Suppose that f (x), g(x) ∈ Z[x]
are of degrees m and n respectively and xp−1 − 1 ≡ f (x)g(x) (mod p) identi-
cally. Then, show that f (x) ≡ 0(mod p) and g(x) ≡ 0(mod p) have m and n
incongruent solutions, respectively, modulo p.
Answer: Two polynomials in Z[x] are said to be identically congruent to one
another modulo k, if the coefficients of like terms in the two polynomials are
congruent to one another modulo k. For instance, f (x) = 5x3 − 2x2 + x + 5 and
g(x) = 6x4 − x3 + 10x2 − 5x − 1 are such that f (x)≡ g(x) (mod 6) identically.

By Fermat’s little theorem, xp−1 − 1 ≡ 0(mod p) has precisely (p − 1) in-
congruent solutions modulo p, namely,

(5.8.1) x≡ 1,2,3, . . . , (p − 1) (mod p)

if xp−1 − 1 is factorized modulo p into polynomials f (x), g(x) ∈ Z[x],
f (x)≡ 0(mod p) cannot have more than m incongruent solutions (as deg f (x) =
m). In the same manner, g(x)≡ 0(mod p) cannot have more than n incongruent
solutions. However, since

f (x)g(x)≡ 0(mod p)

has exactly p − 1 = m + n solutions, f (x) ≡ 0(mod p) cannot have fewer than
m incongruent solutions and g(x)≡ 0(mod p) cannot have fewer than n incon-
gruent solutions, modulo p. Moreover, f (x)≡ 0(mod p) and g(x)≡ 0(mod p)
cannot have a solution in common.
This completes the answer. �

c) (Nicol and Vandiver). Given r > 1 and

Φ(n,r) =
µ( r

g )φ(r)

φ( r
g )

; g = g.c.d(n,r)(see (5.4.3)),

show that

(5.8.2)
r∑

s=1

sΦ(s,r) =
rφ(r)

2
.

Answer: Let α = exp( 2πi
r ). From (5.1.2) and (5.4.3), we note that

(5.8.3) Φ(n,r) =
∑

g.c.d (k,r)=1

αnk.
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So,
r∑

s=1

sΦ(s,r) =
r∑

s=1

s
∑

g.c.d (k,r)=1

αks

or,

(5.8.4)
r∑

s=1

sΦ(s,r) =
∑

g.c.d (k,r)=1

(αk + 2α2k + · · ·+ rαrk)

It is verified that

(5.8.5) αk + 2α2k + · · ·+ rαkr = r (
1

αk − 1
+ 1)

The cyclotomic polynomial Fr(x) is given by

(5.8.6) Fr(x) =
∏

g.c.d (k,r)=1

(x −αk).

Differentiating and letting x = 1, we have

(5.8.7)
F ′r (1)
Fr(1)

= −
∑

g.c.d (k,r)=1

1
(αk − 1)

A formula due to Hölder says

(5.8.8) F ′r (1) =

{
1
2φ(r), r not a power of a prime,
pm(p − 1), if r = pm. m≥ 1.

Further, it is known that

(5.8.9) Fr(1) =

{
1, if r contains two prime factors;
p, otherwise.

From (5.8.5), (5.8.7), (5.8.8) and (5.8.9), we deduce that
r∑

s=1

sΦ(s,r) = −
rφ(r)

2
+ rφ(r)

which yields (5.8.2). �

Remark 5.8.1 : Worked-out example (c) has been drawn from [13, Theorem
III].

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) The number of solutions of 24x≡ 18(mod 21) is four.
b) In order that 3k ≡ 1(mod 10), one should have k ≥ 4.
c) The congruence 4x2 + x≡ 14(mod 13) is solvable.
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d) The only solution t of the simultaneous congruences

5x≡ 6(mod 7)
4x≡ 5(mod 9)

for which 0< t ≤ 100 is t = 53.

e) Let Φ(n,r) =
µ( r

g )φ(r)

φ( r
g )

; g = g.c.d (n,r). For r > 1, one gets

∑

d|r
Φ(d,r) = r

∏

p|r
(1 − 2/p).

f) Let f (x) = anxn + a1xn−1 + · · · + a1x + a0 ∈ Z[x], an 6= 0. Suppose that
m1,m2, . . . ,mk are pairwise relatively prime positive integers. The num-
ber of solutions of

f (x)≡ 0(mod m1m2 . . .mk)

equals the product of the numbers of solutions of

f (x)≡ 0(mod m1),
f (x)≡ 0(mod m2),
· · · · · ·

f (x)≡ 0(mod mk).

2. Find the least positive integer which simultaneously satisfies

5x≡ 2(mod 13)
x≡ 1(mod 25)

3x≡ 4(mod 11)
x≡ 7(mod 20).

3. Solve the congruence :

71x≡ 4(mod 55).

4. (Landau) Let m ≡ 5(mod 12) and m > 17. Show that m is expressible as a
sum of three distinct square numbers.

5. Find the least positive integer N that satisfies

N ≡ 9(mod 11),
N ≡ 13(mod 28),
N ≡ 7(mod 45).

6. Solve the congruences

5x≡ 2(mod 13),
x≡ 2(mod 35),

3x≡ 13(mod 77),
x≡ 7(mod 20).
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7. Solve the congruences simultaneously

x≡ 2(mod 6),
x≡ 3(mod 5),
x≡ 5(mod 11).

8. Examine whether the following pair of congruences can be solved
simultaneously

5x≡ −2(mod 10),
x≡ 1(mod 4).

9. Suppose that a, b are positive integers which are relatively prime to one an-
other. Given an integer n, show that there exists an integer m for which
g.c.d (ma + b,n) = 1.

10. Suppose that {a1,a2, · · · ,an} is a set of nonzero elements of a P.I.D say D.
Assume that ai and a j are relatively prime to one another when i 6= j. If
a = [a1,a2, · · · ,an] (l.c.m), show that

D/(a)∼= ⊕
n∑

i=1

(
D/(ai)

)

11. Let F be a field of 3 elements. Solve the system of congruences

(x2 + 1)u(x)≡ b1(x) (mod x2 + 2),

(x + 1)u(x)≡ b2(x) (mod x2 + 1),

where the polynomials are from F[x].
(Hint : GF(3) = {0,1,α} where α2 = 1, α+ 1 = 0.
x2 + 2 = (x + 1)(x +α) and g.c.d (x2 + 1,x2 + 2) = 1.)

12. (Eckford Cohen) Let M(n,r,s) denote the number of solutions of

x1 + x2 + · · ·+ xs ≡ n (mod r)

under the restriction g.c.d ((x1,x2, · · ·xs),r) = 1. Show that

M(n,r,s) = ( r
g )s−1φs(g), g = g.c.d (n,r)

where φs(r) =
∑

d|r
µ(

r
d

)ds.

13. (Eckford Cohen) Let M′(n,r,s) denote the number of solutions
xi (mod r), yi (mod r) (i = 1,2,3, · · · ,s) of the congruence

x1y1 + x2y2 + · · ·+ xsys ≡ n (mod r).

Show that

M′(n,r,s) = rs−1
∑

d|g
dφs( r

d ) ; g = g.c.d (n,r)

and φs(r) is as given in exercise 12.
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14. (Eckford Cohen) Let D(n,r,s) denote the number of solutions (mod r) of the
congruence

x + y1 + y2 + · · ·+ ys ≡ n (mod r)

under the restriction g.c.d (x,r) = g.c.d(g.c.d(y1,y2, · · ·ys),r) = 1. Show that

D(n,r,s) = rs−1φ(r)
∑

d|r
g.c.d (d,n)=1

µ(d)
φ(d)ds−1 ,

where the summation on the right is over those divisors d (of r) such that
g.c.d (d,n) = 1. For s = 1, deduce that Nagell’s totient θ(n,r) is given by

θ(n,r) = φ(r)
∑

d|r
g.c.d (d,n)=1

µ(d)
φ(d)

.
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CHAPTER 6

Reciprocity laws

Historical perspective

By a quadratic congruence, we mean a congruence of the form
x2 ≡ a (mod m) where a, m are integers and m≥ 2. If it has a solution we say that
a is a quadratic residue of m, written aRm. Otherwise, a is said to be a quadratic
non-residue of m written aNm. More precisely, we give

Definition 6.0.1 : Let m > 1 and g.c.d (a,m) = 1. a is a quadratic residue of m if
x2 ≡ a(mod m) has a solution. If x2 ≡ a(mod m) has no solution, a is a quadratic
non-residue of m.

It is convenient to suppose that the modulus m is a prime, say p. If x2 ≡
a (mod p) has a solution, there are two distinct solutions x≡ α (mod p) and x ≡
−α (mod p). It is possible to show that there are two solutions of x2 ≡ a (mod pk),
k≥ 1. The Legendre symbol (a|p) is given by

(6.0.1) (a|p) =





1, if aRp,
−1, if aN p,
0, if p|a.

If p and q are odd primes, the quadratic reciprocity law stated by Adrien-Marie
Legendre (1752–1833) in 1785 says that

(6.0.2) (p|q)(q|p) = (−1)
(p−1)(q−1)

4

See Gauss [5]. This was proved by Gauss. In fact, Gauss succeeded in discover-
ing eight different demonstrations of (6.0.2). Gauss made use of a lemma which
goes by his name. Many other mathematicians have given proofs. According
to Emil Grosswald [7], Paul Bachmann (1837–1920) counted 45 proofs. More
number of proofs were also coming up abundantly. One of Gauss’s own proofs
is due to his student F. G. Eisenstein (1822–1852). The shortest known proof is
due to Georg Frobenius (1849–1917). For a detailed account of different proofs
of quadratic reciprocity law, see F. Lemmermeyer [A2]. A new elementary proof
is found in Sey Y. Kim [A1].
It is known that x2 ≡ −1(mod p) has a solution if, and only if, p is a prime of the
form (4k + 1). That is,

(−1|p) = 1 ⇔ p≡ 1(mod 4)

139
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For, if p≡ 1(mod 4), −1≡ {( p−1
2 )!}2 (mod p). That is, two of the square roots of

−1 in Z/pZ are ±( p−1
2 )! Conversely, if (−1|p) = 1, there exists t ∈ Z such that

t2 ≡ −1(mod p)

But, t p−1 ≡ 1(mod p). So, (t2)
p−1
2 ≡ 1(mod p) or (−1)

p−1
2 ≡ 1(mod p). That is, p−1

2
is even and so p ≡ 1(mod 4). Thus, there is an odd prime p for which (−1|p) =
1 and that p ≡ 1(mod 4). Each of the infinitely many odd primes p for which
(−1|p) = 1 is of the form (4k + 1). So, there are an infinite number of primes of
the form (4k + 1). Legendre’s quadratic reciprocity law (also referred to as Gauss
reciprocity law) enables one to show that certain arithmetic progressions contain
infinitely many primes. Dirichlet’s theorem [1] states that there are infinitely
many primes of the form ax+b, where a and b are relatively prime to one another.
Undoubtedly, Legendre’s (Gauss) reciprocity law occupies a pivotal place in the
elementary theory of numbers.

6.1. Introduction

The aim of this chapter is to prove the quadratic reciprocity law using finite
fields. Eisenstein’s cubic reciprocity law is discussed by considering the ringZ[ω]
where ω is an imaginary cube root of unity. Reciprocity laws are also viewed in a
general setting. As pointed out by W. C. Waterhouse [13], the mode of formation
of reciprocity laws is suggested by Gauss lemma (stated in theorem 41).

6.2. Preliminaries

We begin with a polynomial f (x) = c0xn + c1xn−1 + . . .+ cn ∈ Z[x]. An integer
t which satisfies

(6.2.1) f (x)≡ 0(mod r) (r ∈ N,and r arbitrary, but fixed)

is said to be a root of the congruence (6.2.1). If t is a root, so is any integer
congruent to t (mod r). Congruent roots are considered to be equivalent. When
the congruence has m incongruent roots, we say that the congruence has m roots.
There is no analogue of the fundamental theorem of algebra for polynomial con-
gruences such as (6.2.1). However, given a prime p, if f (x) ≡ 0(mod p) with
c0 6≡ 0 (mod p), the congruence has at most n roots or n solutions modulo p. For
proof, see Tom Apostol [1]. Further, if f (x) ≡ 0(mod p) has more than n roots,
then every coefficient ci (i = 0,1,2, . . . ,n) is divisible by p.

Fermat’s little theorem says that

xp−1 − 1≡ 0(mod p)

has (p − 1) roots namely {t1, t2, . . . , tp−1} where ti (i = 1,2 . . . (p − 1)) are nonzero
residues (mod p) from a complete set of residues modulo p.

If d |(p − 1), the congruence

xd − 1≡ 0(mod p)

has exactly d roots. See [1] or [8].
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Definition 6.2.1 : An integer a is called a primitive root (mod p), if [a] generates
the group U of nonzero elements of Z/pZ (The group U has order φ(p) = (p−1)).

Thus, if a is a primitive root (mod p), (p − 1) is the smallest positive integer
such that

(6.2.2) ap−1 − 1≡ 0(mod p)

and vice versa.
More generally, a is called a primitive root (mod r) (r ≥ 2) if φ(r) is the least

positive integer such that
aφ(r) − 1≡ 0(mod r);

that is, if [a] generates the group U of units in Z/rZ.

6.2.1. EMIL ARTIN’S CONJECTURE: If a is not a square and a 6= −1, there are
infinitely many primes p for which a is a primitive root (mod p).
For a general exposition of this conjecture see L. J. Goldstein [6].

The conjecture remains unproven. Moving on to certain classes of number
fields, E. Artin conjectured that a ‘form of degree d’ in n > d2 variables has a
non-trivial zero. This is proved by L. Carlitz for the special case where the form
is defined in relation to the field K of rational functions over a finite field Fq.

It is known [1] that an integer r possesses primitive roots if, and only if, r is
of the form 2, 4, pt or 2pt where p is an odd prime and t ≥ 1. It amounts to saying
that the group U of units in Z/rZ is cyclic if, and only if, r = 2,4, pt or 2pt .

Definition 6.2.2 : Let r, n∈N, a∈ Z and g.c.d (a,r) = 1, a is called an nth-power
residue mod r, if

xn ≡ a (mod r)
has a solution.

Theorem 40 : Suppose that r ∈ N possesses primitive roots. Let g.c.d (a,r) = 1.
Then a is an nth-power residue (mod r) if, and only if,

(6.2.3) a
φ(r)

d − 1≡ 0(mod r)

where d = g.c.d (n,φ(r)).

Proof : :⇒ Let g be a primitive root (mod r).
Then, the numbers g, g2, . . . ,gφ(r) form a reduced residue system (mod r). So, as
g.c.d (a,r) = 1, we could write

a = gb (say) and
when g.c.d (x,r) = 1,x = gy (say).

The congruence xn − a≡ 0 (mod r) is equivalent to gny − gb ≡ 0 (mod r). As
g is a primitive root (mod r), φ(r) is the least positive integer for which

gφ(r) ≡ 1(mod r)

and so, ny≡ 0 (mod φ(r)) and b≡ 0 (mod φ(r)).
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Thus,

(6.2.4) ny≡ b (mod φ(r))

(6.2.4) is solvable if, and only if, d = g.c.d (n,φ(r)) divides b. Also, if there
is one solution for (6.2.4), there are d solutions for (6.2.4). If d|b,

a
φ(r)

d ≡ g
bφ(r)

d ≡ 1(mod r).

That is, for a to be an nth power residue (mod r), it is necessary that (6.2.3) holds.
⇐: If a

φ(r)
d ≡ 1(mod r), then,

g
bφ(r)

d ≡ 1(mod r).

As g is a primitive root (mod r), φ(r)|φ(r) b
d or d|b. So, ny ≡ b (mod φ(r)) has a

solution. That is, xn − a ≡ 0 (mod r) has a solution or a is an nth-power residue
(mod r). �

Corollary 6.2.1 (Euler’s criterion) : Let p be an odd prime.

aRp⇔ a
p−1
2 ≡ 1(mod p).

This follows from the fact that g.c.d (2,φ(p)) = 2.

6.3. Gauss lemma

Given r = 2b pb1
1 . . . p

bk
k where b≥ 0, bi ≥ 1 (i = 1,2, . . . ,k) and p1, p2 . . . pk are

distinct odd primes dividing r, we attempt to solve

(6.3.1) x2 ≡ a(mod r), g.c.d (a,r) = 1.

By the Chinese Remainder Theorem, we know that (6.3.1) is equivalent to
the system of congruences:

x2 ≡ a (mod 2b)

x2 ≡ a (mod pb1
1 )

· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
x2 ≡ a (mod pbk

k ).

For x2 ≡ a (mod 2b), we dispose of the cases b = 1,2 and 3. x2 ≡ a (mod 2) gives
x≡ 1(mod 2). x2 ≡ a (mod 4) gives a = 1 and x2 ≡ a (mod 8) gives a = 1.

The values b = 2, b = 3 are such that 1 is the only quadratic residue modulo 4
as well as modulo 8. For b≥ 3, the structure of the group U of units of Z/2bZ is
such that U is not a cyclic group.

Lemma 6.3.1 : If a is odd and b≥ 3,

a2b−2 ≡ 1(mod 2b)
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Proof : When b = 3, each element of the group U of units in Z/8Z is of order 2
and so U is not cyclic. Moreover, one has

12 ≡ 32 ≡ 52 ≡ 72 ≡ 1(mod 8)

proving the lemma for b = 3.
To prove the lemma for b > 3, we shall apply induction on b. Suppose that

the lemma is true for b = q (say) q≥ 3.
Then a2q−2 ≡ 1(mod 2q) or a2q−2

= 1 + t 2q, t ∈ Z. Squaring
(

a2q−2
)2

= 1 + 2(t 2q) + t222q.

Therefore, a2q−1 ≡ 1 (mod 2q+1). As the result is true for b = 3, induction on b
is complete. �

Remark 6.3.1 : Let G2 be the cyclic subgroup of the group U of units in Z/2bZ,
generated by the element [5]. By lemma 6.3.1, one has 52b−2 ≡ 1 (mod 2b). Also it
is verified that 52b−3

is not congruent to 1 (mod 2b). The order of G2 is 2b−2. But,
the order of U is 2b−1.

As 5 f is not congruent to −1(mod 2b) for any f ≥ 0, −1 is not congruent to
any power of 5 modulo 2b. That is, −1 6∈ G2. As |G2| is one half of |U |, the index
of G2 in U is 2. Therefore, U is a disjoint union of the cosets G2 and (−1) G2

(of G2 in U). So the set S = {[−1], [5]} generates U . So, we could write U as
isomorphic to C(2)×G2 where C(2) is cyclic of order 2 and G2 is cyclic of order
2b−2(b≥ 3).

The structure of the group U of units of Z/2bZ (b ≥ 3) suggests that any
element y of U is of the form:

(6.3.2) y =±5α chosen from the appropriate residue class (mod 2b),

1≤ α≤ 2b−2.

Now, if 5α is a solution of (6.3.1) with r = 2b, 2b − 5α is also a solution. And,
52α ≡ a (mod 2b) is such that 52α − a = m 2b, m ∈ Z or (1 + 4)2α − a = m 2b or
1 + 42α+ 2 ·4α− a≡ m 2b with b≥ 3. Then, a≡ 1 (mod 8).

The conclusion is that x2 ≡ a (mod 2b) has a solution

t ≡ 5α (mod 2b)⇒ a≡ 1(mod 8), (1≤ α≤ 2b−2)

Fact 6.3.1 : x2 ≡ a (mod 2b), b≥ 3 is solvable if, and only if, a ≡ 1 (mod 8).
When solutions exist, there are four of them (modulo 2b). Further, x2 ≡ a (mod 8)
is solvable if, and only if, x2 ≡ a (mod 2b) is solvable for all b≥ 3.

Next, in the case of x2 ≡ a (mod pbi
i ) i = 1,2, . . . ,k, we proceed as follows:

As pbi
i possesses primitive roots, by theorem 40, a is a quadratic residue (mod pi)
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if, and only if,

(6.3.3) a
φ(p

bi
i )

2 − 1≡ 0(mod pbi
i )

This is okay as g.c.d (2,φ(pi − 1)) = 2. But φ(pbi
i ) = pbi−1

i (pi − 1). So, (6.3.3) reads

(6.3.4) (a
pi−1

2 )pbi−1
i ≡ 1(mod pbi

i ).

If aRpi, by Euler’s criterion (corollary 6.2.1) a
pi−1

2 ≡ 1 (mod pi).
So (6.3.4) is satisfied and thus aRpbi

i .
Conversely, if aRpbi

i , from (6.3.4) letting m = a
pi−1

2 .

(6.3.5) mpbi−1
i ≡ 1(mod pbi

i )

As the group of units of Z/pbi
i Z is cyclic, mφ(pbi

i ) ≡ 1 (mod pbi
i ) or

(6.3.6) m(pbi
i −pbi−1

i ) ≡ 1(mod pbi
i ).

From (6.3.5) and (6.3.6), we see that mpbi
i ≡ 1 (mod pbi

i ). This implies that
m≡ 1 (mod pi) or Euler’s criterion holds.

Fact 6.3.2 : x2 ≡ a (mod pb) (b ≥ 1), p, an odd prime, is solvable if, and only
if, x2 ≡ a (mod p) is solvable. Thus, it suffices to consider quadratic congruences
modulo a prime p. For proof, see [12].

Theorem 41 (Gauss lemma) : Let p be an odd prime. Suppose that

S = {− (p − 1)
2

,
−(p − 3)

2
, . . . ,−1,1,2, . . . ,

(p − 1)
2
}

represents the set of nonzero least residues (mod p). Further, assume that p - a.
Let µ be the number of least negative residues of the integers 1a,2a, · · · , ( p−1

2 )a.
Then (a|p) = (−1)µ.

Proof : We consider the products ta(mod p), 1 ≤ t ≤ p−1
2 . Let ±bt be the least

residue of ta(mod p) where bt is positive. As 1 ≤ t ≤ p−1
2 , µ is the number of

negative signs arising in this manner.

Claim : bt 6= bs if t 6= s and t,s lie between 1 and p−1
2 .

Assume the contrary. If bt = bs, then ta ≡ ±sa (mod p). Since p does not
divide a, p|(t± s). This is impossible since t 6= s and |t± s| ≤ |t|+ |s| ≤ (p − 1). It
follows that the sets {1,2, . . . , p−1

2 } and {b1,b2, . . . ,b p−1
2
} coincide. Now,

1a≡±b1 (mod p)
2a≡±b2 (mod p)
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·

(
p − 1

2

)
a≡±b p−1

2
(mod p).
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Multiplying the left sides and right sides, we get
(

p − 1
2

)
!a( p−1

2 ) ≡ (−1)µ
(

p − 1
2

)
! (mod p).

This yields a
p−1
2 ≡ (−1)µ (mod p) and Euler’s criterion (corollary 6.2.1) gives the

desired result. �

From the definition of Legendre symbol (a|p) (6.0.1), we note that

a
p−1
2 ≡ (a|p) (mod p)(6.3.7)

(ab|p) = (a|p)(b|p), for all a,b ∈ Z(6.3.8)

(a|p) = (b|p), if b≡ a (mod p)(6.3.9)

Now,

(6.3.10) xp−1 − 1≡ (x
p−1
2 − 1)(x

p−1
2 + 1)(mod p)

But xp−1 − 1≡ 0 (mod p) has (p − 1) solutions [1], [2], . . . , [p − 1].
As x

p−1
2 ≡ 1 (mod p) has

(
p−1
2

)
solutions, there are

(
p−1
2

)
quadratic residues

(mod p). So, half of the nonzero residues [1], [2], . . . , [p−1] are quadratic residues
and the remaining half quadratic non-residues (mod p).

Using (6.3.7), one deduces that
(2|p) = 1 if, and only if, p≡ 1 or 3 (mod 8).

6.4. Finite fields and quadratic reciprocity law

This section is meant to obtain Gauss quadratic reciprocity law, using Gauss’s
quadratic sum defined in terms of primitive pth roots of unity, where p is a prime.
We have seen properties of finite fields in Section 4.6 of chapter 4.

Let p be a prime and s ≥ 1. There exists a finite field F having q = ps ele-
ments. F is a vector space of dimension s over Z/pZ. F∗ = F \ {0} is a cyclic
group of order q − 1 and having φ(q − 1) generators. Now,

xq − x =
∏

a∈F

(x − a),

where xq − x ∈ F[x]. Let b ∈ K, where K is an extension of F . Then, b ∈ F if, and
only if, bq = b, as the zeros of the polynomial xq − x are precisely the q elements
of F.
Next, we take g to be a generator of the cyclic group F∗. Then, g j (1≤ j ≤ q − 1)
is an nth-root of unity, if g jn = 1F . This happens in a cyclic group of order (q − 1).
So, g jn = 1F ⇔ jn ≡ 0 (mod q − 1). That is, the number of nth-roots of unity
contained in F∗ is equal to the g.c.d (n,q − 1), as the number of solutions of

nx≡ 0(mod q − 1)

is equal to g.c.d (n,q − 1). If n|(q − 1), the powers of g namely

g j,g2 j, . . . ,g(n−1) j,gn j = 1F , (where n j = (q − 1))
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run through the nth-roots of unity. If g.c.d (n,q − 1) = 1, 1F is the only nth-root of
unity contained in F∗. See Neal Koblitz [9].

We recall that a complex number ζ is a primitive nth-root of unity, if n is the
least positive integer such that ζn = 1. ζ is, in fact, a generator of a cyclic group
of order n.

Given an odd prime p, suppose that ζ denotes a complex pth-root of unity.
We could take ζ = exp( 2πi

p ). For p = 5, we have ζ = exp( 2πi
5 ). ζ is not an element

of Z/5Z as the nonzero elements of Z/5Z are {1,g,g2,g3} with g4 = 1. However,
we could adjoin ζ to F5 = Z/5Z and get an extension E of F5 where |E| = 54. A
basis for E is {1, ζ,ζ2, ζ3} where ζ5 = 1. When p = 7 and ω = exp( 2πi

3 ), as ω3 = 1,
2 · 3 ≡ 0 (mod 6) yields ω = g2 where g generates the cyclic group of order 6,
namely F∗7 = Z/7Z\{0}. The set {1,ω,ω2} forms a subgroup of F∗7 (of order 3).
Indeed, ω and ω2 are in F∗7 .

We fix an odd prime p. ζ = exp( 2πi
p ) is a primitive pth-root of unity.

Definition 6.4.1 : A quadratic Gauss sum is defined by

G(a, ζ) =
p−1∑

j=0

( j|p)ζa j.

In particular, we write

(6.4.1) G(1, ζ) = G(ζ) =
p−1∑

j=0

( j|p)ζ j

Lemma 6.4.1 : G(a, ζ) = (a|p)G(ζ)

Proof : If p|a, ζa j = 1 for 0≤ j ≤ (p − 1).
Then, G(a, ξ) =

∑b−1
j=0( j|p) = 0, since the numbers 1 to (p−1) are such that half

of them are quadratic residues (mod p) and the remaining quadratic non-residues
(mod p).

And (a|p) = 0 when p|a. So, the lemma is true for the case where p|a.
Next, assume that p does not divide a.
Then,

(a|p) G(a, ζ) =
p−1∑

j=0

(a|p)( j|p)ζa j =
p−1∑

j=0

(a j|p)ζa j,

as the Legendre symbol is multiplicative. But, then, since p - a, a j
( j = 0,1, . . ., (p − 1)) constitute a complete residue system (mod p). So,

(a|p)G(a, ζ) =
p−1∑

k=0

(k|p) ζk = G(ζ).

Since (a|p)2 = 1, the lemma, for the case p not dividing a, holds. �
Lemma 6.4.2 :

G2(ζ) = (−1)
p−1
2 p.
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Proof :
We evaluate G2(ζ) in two different ways. Firstly, summing for j = 0,1, . . ., (p − 1)
and secondly for − j = p, (p − 1), . . . ,1 in the reverse order. So,

G2(ζ) =
p−1∑

j=0

( j|p)ζ j
1∑

k=p

(−k|p)ζ−k

=
p−1∑

j,k=0

(−1|p)(k j|p)ζ j−k

= (−1|p)
p−1∑

j=0

p−1∑

k=0

(k j|p)ζ j−k.

It is known that (−1|p) = (−1)
p−1
2 . For each value of j we make a change of variable

in the inner sum namely k 7→ k j. That is, for each j, k j gives a set of residues
mod p, as k does. The summands depend only on the residues (mod p). So,

G2(ζ) = (−1)
p−1
2

p−1∑

j=0

p−1∑

k=0

( j2k|p)ζ j(1−k)

= (−1)
p−1
2

p−1∑

k=0

(k|p)
p−1∑

j=0

ζ j(1−k)

For k 6= 1, the inner sum gives the sum of the jth powers of θ = ζ1−k, a complex
pth-root of unity. Therefore,

p−1∑

j=0

ζ j(1−k) = 0 for k 6= 1.

When k = 1
p−1∑
j=0
ζ0 = p and so

G2(ζ) = (−1)
p−1
2 (1|p)p = (−1)

p−1
2 p,

as desired. �

Theorem 42 (Quadratic reciprocity law) : If p and q are distinct odd primes, then

(6.4.2) (p|q)(q|p) = (−1)
(p−1)(q−1)

4

Proof : Since p and q are distinct odd primes, they are relatively prime to one
another. So, there exists a positive integer n such that

qn ≡ 1(mod p)

We remark that n could be (p − 1). Let Fq be a field having qn elements.
F∗q = Fq \{0} is a cyclic group of order qn − 1. Let g be a generator of F∗q .
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We set h = gλ where λ = qn−1
p , an integer. hp = gqn−1 = 1. In fact, p is the least

positive integer such that hp = 1. So, order of h in F∗q is p.
Analogous to the definition of a quadratic Gauss sum (definition 6.4.1), we

write

(6.4.3) χ(a,h) =
p−1∑

j=0

( j|p)ha j, a ∈ Z.

As h ∈ F∗q , χ(a,h) ∈ F∗q .
If p|a, ha j = 1. Then,

χ(a,h) =
p−1∑

j=0

( j|p) = 0 = (a|p),

(as there are b−1
2 quadratic residues and b−1

2 quadratic non-residues mod p). If
p - a,

(a|p)χ(a,h) =
p−1∑

j=0

(a j|p)ha j

As j runs through a complete residue system (mod p), so is the case with a j,
as p - a. Therefore,

(a|p)χ(a,h) =
p−1∑

k=0

(k|p)hk = χ(1,h) = χ(h) (say).

Thus,

(6.4.4) χ(a,h) = (a|p)χ(h)

As in the case of lemma 6.4.2, one has

(6.4.5) χ2(1,h) = χ2(h) = (−1)
p−1
2 [p],

where [p] is the coset of p in Z/qZ. From (6.4.5), we note that

(6.4.6) ((−1)
p−1
2 p|q) = 1 if, and only if, χ(h) ∈ Z/qZ.

Next, let K be a finite extension of Z/qZ. Then, α ∈ K is in Z/qZ if, and
only if, αq = α, since all the zeros of tq − t are in the field Z/qZ.
Therefore,

(6.4.7) ((−1)
p−1
2 p|q) = 1 if, and only if, χq(h) = χ(h).

Now,

χq(h) =
( p−1∑

j=0

( j|p)h j)q
, where h ∈ F∗q and hp = 1.
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In a field F of characteristic q, when a,b ∈ F , the relation (a + b)q = aq + bq holds.
So,

χq(h) =
p−1∑

j=0

( j|p)hq j, as char Fq = q

Thus,

(6.4.8) χq(h) = χ(q,h), q ∈ Z by (6.4.3).

Using (6.4.4), we get

(6.4.9) χ(q,h) = (q|p)χ(h).

Therefore, from (6.4.7) to (6.4.9), we note that

((−1)
p−1
2 p|q) = 1 if, and only if, (q|p) = 1.

That is,

(6.4.10) ((−1)
p−1
2 |q)(p|q) = 1 if, and only if, (q|p) = 1

But, (−1|q) = (−1)
q−1
2 , as q is an odd prime. So,

((−1)
p−1
2 |q) = ((−1)

q−1
2 )

p−1
2 = (−1)

(p−1)(q−1)
4

Thus, from (6.4.10), we deduce that

(6.4.11) (−1)
(p−1)(q−1)

4 (p|q) = 1 if, and only if, (q|p) = 1

Also,

(6.4.12) (−1)
(p−1)(q−1)

4 (p|q) = −1⇒ (q|p) = −1

(by the contrapositive argument applied to (6.4.11)). So,

(−1)
(p−1)(q−1)

4 (p|q)(q|p) = 1,

which completes the proof of theorem 42. �

Remark 6.4.1 : In the proof of theorem 42, (6.4.5) mentions about [p], the coset
of p inZ/qZ∗ =F∗q . It refers to a residue class modulo q. As h is a pth-root of unity
in F∗q , it is advisable to consider congruence modulo q in the ring A of algebraic
integers. (We recall that an algebraic integer is a zero of a monic polynomial with
coefficients fromZ. It is true that ω ∈A can be a rational number and an algebraic
integer. If ω ∈Q, ω is necessarily an element of Z. That is, ω is a rational integer.)

We introduce a congruence relation modulo ω in A by writing

(6.4.13) a≡ b (mod ω), where a,b ∈ Z.
The above congruence means that a − b = cω when c ∈ Z. So, while considering
residue classes modulo q, we are actually working with congruences modulo q in
the ringA of algebraic integers. This is a point to be noted, while giving the proof
of the quadratic reciprocity law using finite fields.
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Remark 6.4.2 : Quadratic reciprocity law is an essential tool to find out primes
p for which x2 ≡ a (mod p) has a solution (of course, for a given a). We have
pointed out that −1 is a quadratic residue of primes p of the form 4k+1. Similarly,
by using the formula

(2|p) = (−1)
p2−1

8

one obtains that 2 is a quadratic residue of a prime p of the form 8k + 1 or 8k + 7.

Fact 6.4.1 : −3 is a quadratic residue of primes p of the form 12k + 1 or 12k − 5.

For proof, see Emil Grosswald [7].
For more examples and illustrations, see Tom M. Apostol [1], K. Ireland and

M. I. Rosen [8] or Don Redmond [12].

6.5. Cubic residues (mod p)

a denotes a fixed integer and p a prime. When x3 ≡ a (mod p) has a solution,
a is said to be a cubic residue modulo p.

A reciprocity law similar to that of theorem 42 is obtainable in the context
of cubic residues. The result is due to Eisenstein [3]. The candidate for cubic
reciprocity is the ring Z[ω] of Eisenstein integers where ω = exp( 2πi

3 ). This ring
is described as

(6.5.1) Z[ω] = {a + bω : a,b ∈ Z}

Lemma 6.5.1 : Z[ω] is a Euclidean domain.

Proof : It is easy to check that Z[ω] is an integral domain. For α ∈ Z[ω], we
define the norm N(α) of α by

N(α) = αᾱ = a2 − ab + b2, where α = a + bω.

Let 0 6= β ∈ Z[ω].
α

β
=
αβ̄

ββ̄
= s + tω where s, t ∈ R.

αβ̄ ∈ Z[ω] and ββ̄ is a positive integer.
We find integers m,n such that |s − m| ≤ 1/2 and |t − n| ≤ 1/2.
As m,n ∈ Z, γ = m + nω ∈ Z[ω].

Also, N(αβ − γ) = (s − m)2 − (s − m)(t − n) + (t − n)2 ≤ 1/4 + 1/4 + 1/4 < 1.
If δ = α−βγ, then either δ = 0, or

N(δ) = N(β(
α

β
−γ))

= N(β)N(
α

β
−γ)

< N(β).
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Thus, N : Z[ω]→ N determines a Euclidean norm in Z[ω] satisfying the condi-
tions for making Z[ω] a Euclidean domain. ((3.3.6) of chapter 3 gives a criterion
for Euclidean domain property). �

Remark 6.5.1 : α ∈ Z[ω] is a unit if, and only if, N(α) = 1.
For, if α = a + bω, N(α) = 1⇒ a2 − ab + b2 = 1

or, 4(a2 − ab + b2) = 4
or, (2a − b)2 + 3b2 = 4.

The following possibilities arise:
(i) 2a − b = ±1, b = ±1
(ii) 2a − b = ±2, b = 0

Solving the above six pairs of equations, we get a = 1, b = 0 ; a = −1, b = 0 ;
a = 0, b = 1 ; a = 0, b = −1 ; a = 1, b = 1 and a = −1, b = −1.

As 1 +ω+ω2 = 0, ω2 = −1 −ω, the units in Z[ω] form the set
{1,−1,ω,−ω,ω2,−ω2}. For each of these, the norm N takes the value 1.

Facts 6.5.1 :
a) If π is a prime in Z[ω], N(π) = p or p2 where p is a rational prime.
b) If N(π) = p2, π is an associate of p.
c) If π ∈ Z[ω] and N(π) = p, then π is a prime in Z[ω].
d) 1 −ω is a prime in Z[ω] as N(1 −ω) = 3, a prime in Z.

For, if N(π) = n (n > 1). ππ̄ = n ∈ Z as n is a product of primes, π divides
a rational prime p. There exists η ∈ Z[ω] such that πη = p. Then, N(π)N(η) =
N(p) = p2. So, N(π) is either p or p2. If N(η) = 1, π and p are associates.

If N(π) = N(η) = p, π = up′ where u is a unit and p′ is a rational prime. Then,
p = p′2 leads to a contradiction. So, π is not an associate of a rational prime.
Then, π is a prime in Z[ω], since p = πη with N(π), N(η)> 1 is impossible.

Next, 1 −ω is a prime in Z[ω] as N(1 −ω) = (1 −ω)(1 −ω2) = 3 a rational
prime.
In what follows, we denote Z[ω] by D. We can introduce the notation of congru-
ence among the elements of D.

Definition 6.5.1 : For α, β, γ ∈ D with γ 6= 0, we say that α≡ β (mod γ), if γ
divides (α−β).

As in Z, the congruence classes (mod γ), form a ring called the residue class
ring modulo γ, denoted by D/γD.

Lemma 6.5.2 : (a) If p is a prime ≡ 2(mod 3), then p is a prime in D.
(b) if p is a prime ≡ 1(mod 3), then p = ππ̄ where π is a prime in D.

Proof : (a) We are given that p≡ 2(mod 3).
If p were not a prime in D, p = πη, where N(π),N(η) are greater than 1.

Then, p2 = N(π)N(η). So, N(π) = N(η) = p. Writing π = a + bω, a,b ∈ Z, we
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get p = a2 − ab + b2 or 4p = (2a − b)2 + 3b2. That is p ≡ (2a − b)2(mod 3). If 3
does not divide p, as 1 is the only square such that 1 ≡ (2a − b)2(mod 3), p has
to be congruent to 1(mod 3). So, p = πη with N(π),N(η)> 1 is impossible when
p≡ 2(mod 3). This proves (a).

(b) If p≡ 1(mod 3), using quadratic reciprocity law,

(−3|p) = (−1|p)(3|p) = (−1)
p−1
2 (−1)( p−1

2 )( 3−1
2 )(p|3)

= (p|3)
= 1, as p≡ 1(mod 3)

Therefore, we can find t such that t2 ≡ −3(mod p).
That is, p divides (t +

√
−3)(t −

√
−3) = (t + 1 + 2ω)(t − 1 − 2ω) = αβ (say) where

ω = 1+
√

−3
2 . If p were a prime in D, p will divide either α or β. As p 6= 2 and p is

odd, if p≥ 7, p divides neither α nor β. So, p = αβ where αβ are non-units in D.
Therefore,

p2 = N(α)N(β)
gives p = N(α) = αᾱ or p = N(β) = ββ̄. This proves (b). �

Remark 6.5.2 : From lemma 6.5.2, we get the structure of a prime (in D) other
than 1 −ω. See [8, chapter 9].

Theorem 43 : Let π ∈ D be a prime. Then D/πD is a finite field with N(π)
elements.

Proof : As D is a Euclidean domain, D is a PID. As π is a prime in D, the prin-
cipal ideal πD is a prime ideal of D. So, D/πD is an integral domain. We get
through if we show that D/πD is finite.

Let α ∈ D and α is not congruent to 0 (mod π). It means that π - α. So, there
exist β, γ ∈ D such that

βα+γπ = 1D (1D = 1, here)

So, βα≡ 1 (mod π). So the residue class of α is a unit in D/πD.

Claim : D/πD has N(π) elements.
Case 1. Suppose that π = p1, a rational prime congruent to 2 (mod 3).
Let µ = m + nω ∈ D.
We apply the division algorithm in Z to m and n taking p1 as the divisor. Then,

m = p1s + a,

n = p1t + b ;

s, t, a, b ∈ Z and 0 ≤ a < p1, 0 ≤ b < p1. Then µ ≡ a + bω (mod p1). Suppose
that a + bω≡ a′ + b′ω (mod p1).

0≤ a< p1, 0≤ b< p1; 0≤ a′ < p1, 0≤ b′ < p1.

Then,
a − a′

p1
+

(b − b′)ω
p1

is in D.
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So, then,
a − a′

p1
∈ Z, b − b′

p1
∈ Z.

This is possible only if a = a′, b = b′.
So, the set S = {a + bω : 0≤ a < p1, 0 ≤ b < p1} is a complete set of coset

representatives in D/p1D. So, D/p1D has p2
1 = N(p1) elements.

Case 2. Let p2 be a rational prime≡ 1(mod 3). Then, p2 = ππ̄ where π is a prime
in D. See (b) of lemma 6.5.2.
Now, let π = a + bω. Since p2 = a2 − ab + b2, it follows that p2 - b. Let µ = m + nω.
There exists an integer s such that bs≡ n (mod p2).Then,µ−sπ≡ (m−sa) (mod p2).
Therefore,

µ≡ (m − sa) (mod π)
So, every element such as µ is congruent to a rational integer (mod π). If c ∈ Z,
we write

c = qp2 + r where q,r ∈ Z, 0≤ r < p2.

Then, c≡ r (mod p2) and as π|p2,

c≡ r (mod π).

So every element of D, by reduction modulo p2, is congruent to an element of
{0,1,2, . . . , (p2 − 1)}modulo π.

If r ≡ r′ (mod π) with r,r′ ∈ Z, we have

0≤ r < p2, 0≤ r′ < p2

and then (r − r′) = πδ for some δ ∈ D. Therefore,

(r − r′)2 = N(π)N(δ) = p2N(δ) which implies that p2| (r − r′).

So, then, r = r′. Thus, D/πD has N(π) = p2 elements.
Case 3. π = 1 −ω. If π = 1 −ω, N(π) = 3 and by an argument similar to that of
case 2, D/πD has 3 elements.

Hence D/πD is a finite integral domain and so D/πD is a field. �

Remark 6.5.3 : When π is a prime, the multiplicative group of D/πD has N(π)−1
elements. The multiplicative group is cyclic.
When [α] ∈ D/πD, if π - α, one has

(6.5.2) αN(π)−1 ≡ 1(mod π)

which is an analogue of Fermat’s little theorem relating to Z[ω].

Since {1,ω,ω2} is a cyclic group of order 3 contained in D/πD, we also see
that 3 divides N(π) − 1.

Lemma 6.5.3 : Let π be a prime such that N(π) 6= 3 and that π - α (α∈D). Then,
there exists a unique integer m belonging to the set {0,1,2} such that

α
N(π)−1

3 ≡ ωm(mod π).
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Proof : By (6.5.2), π|(αN(π)−1 − 1).
However,

(6.5.3) αN(π)−1 − 1 = (α
N(π)−1

3 − 1)(α
Nπ−1

3 −ω)(α
N(π)−1

3 −ω2).

Since π is a prime, π must divide one of the factors on the right side of (6.5.3).
It can divide at the most one factor only. For, if π were to divide two of the factors,
it would divide their difference which would mean that π will divide either 1 −ω,
1 −ω2 or ω(1 −ω). As 1 −ω is a prime in D and ω or 1 +ω is a unit, π divides
one of the factors on the right side of (6.5.3). So α

N(π)−1
3 ≡ 1, ω or ω2 (mod π), as

claimed. �

Definition 6.5.2 : Let π be a prime in D. If N(π) 6= 3 and α ∈ D, the cubic
character of α modulo π denoted by (α|π)3 is defined by

(i) (α|π)3 = 0 if π|α,
(ii) α

N(π)−1
3 ≡ (α|π)3 (mod π),

where (α|π)3 = 1,ω or ω2.

Remark 6.5.4 : (α|π)3 is the analogue of the Legendre symbol (a | p) where a∈Z
and p is a rational prime.

Lemma 6.5.4 : The following statements hold in respect of (α|π)3.
(i) (α|π)3 = 1 if, and only if, x3 ≡ α (mod π) has a solution in D.

(ii) α
N(π)−1

3 ≡ (α|π)3 (mod π)
(iii) For α,β ∈ D, (α|π)3(β|π)3 = (αβ|π)3

(iv) If α≡ β (mod π), (α|π)3 = (β|π)3

Proof : (i) We appeal to the following particular case of theorem 40. Suppose
that F is a finite field having q elements (q a prime). Let α ∈ F∗. Then,
xn = α has a solution in F if, and only if,

α
q−1

d = 1 where d = g.c.d (n,q − 1)

In the case of D/πD with N(π) elements, as 3 | (N(π) − 1), x3 = α has a
solution in D/πD if, and only if,

α
N(π)−1

3 = 1

This proves (i).
(ii) is a consequence of lemma 6.5.3.

(iii) For α, β ∈ D,

(αβ|π)3 = (αβ)
N(π)−1

3 ≡ α N(π)−1
3 ·β N(π)−1

3 ≡ (α|π)3(β|π)3 (mod π)

(iv) If α≡ β (mod π)

(α|π)3 = α
N(π)−1

3 = β
N(π)−1

3 ≡ (β|π)3 (mod π)

So, (α|π)3 = (β|π)3. �

© 2007 by Taylor & Francis Group, LLC



RECIPROCITY LAWS 155

Notation 6.5.1 : If a is a complex number, ā denotes the conjugate of a. The
cubic character of α (mod π), namely, (α|π)3 is hereafter denoted by χ(α,π).

We verify that

χ(α,π) = χ(α,π)2 = χ(α2,π) as (α|π)3 = 1,ω or ω2.(6.5.4)

χ(α,π) = χ(ᾱ, π̄)(6.5.5)

(6.5.5) is a consequence of the fact that

α
N(π)−1

3 ≡ χ(α,π) (mod π)

implies
ᾱ

N(π)−1
3 ≡ χ(α,π) (mod π)

But, N(π̄) = N(π) and so, χ(ᾱ, π̄) = χ(α,π) which is (6.5.5).

Lemma 6.5.5 : Let q be a prime congruent to 2(mod 3) and suppose that n ∈ Z
is such that q - n. Then n is a cubic residue (mod q).

For,
χ(n̄|q) = χ(n,q) = χ(n2,q) = χ(n,q)2

Since χ(n,q) 6= 0, we get χ(n,q) = 1.

Corollary 6.5.1 : If q and q2 are distinct primes each of which is congruent to
2 (mod 3), χ(q2,q1) = χ(q1,q2) as each one of them is 1.

Remark 6.5.5 : Corollary 6.5.1 is a special case of Eisenstein’s cubic reciprocity
law which says that if π, and π2 are primes (in D) of a special kind, then

χ(π1,π2) = χ(π2,π1)

This will be proved in theorem 47 after going through a few lemmas providing
the necessary preparation.

Since the group of units in D is of order 6, every element of D has six asso-
ciates. We need to pick a special kind of an associate of a prime π in D.

Definition 6.5.3 : Let π be a prime in D. π is called ‘primary’, if π ≡ 2(mod 3).

By lemma 6.5.2 a rational prime q≡ 2(mod 3) is a ‘primary’ prime in D. In
the case of a prime π = a + bω, π ≡ 2(mod 3) if, and only if, a ≡ 2 (mod 3) and
b≡ 0 (mod 3).

Lemma 6.5.6 : Let π be a prime in D such that N(π) = p≡ 1 (mod 3) (p a rational
prime). Then, π has an associate π′ which is primary and π′ is unique.

Proof : We take π = a + bω where a,b ∈ Z. The associates of π are π, −π, πω,
−πω, πω2 and −πω2. These are respectively a+bω, −a−bω, −b+ (a−b)ω, b+ (b−
a)ω, (b−a)−aω. Since N(π) = p = a2 −ab+b2, a and b are not both divisible by 3.
From the associates of π, we have to pick the one which satisfies the conditions
for being ‘primary’.
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If a≡ 2 (mod 3), as p = a2 − ab + b2, we get

p≡ 1≡ 4 − 2ab + b2(mod 3),

or,
b(b − 2)≡ 0(mod 3).

If 3|b, a + bω is primary. If b≡ 2 (mod 3), b + (b − a)ω is primary. So, a + bω
or b + (b − a)ω is primary.

To prove the uniqueness, let us assume that a + bω is primary. Then none of
the others is primary. If a + bω is not primary, −ωπ = b + (b − a)ω is primary. �

Example 6.5.1 : (a) 3 +ω ∈D is such that N(3 +ω) = 7, a rational prime. So 3 +ω
is a prime in D.

−ω2(3 +ω) = −3ω2 − 1 = 3(1 +ω) − 1 = 2 + 3ω

is such that 2+3ω≡ 2 (mod 3). So 2+3ω is the primary prime associated to 3+ω.
(b) 7+3ω ∈D is such that N(7+3ω) = 37, a rational prime of the from 4k +1,

7 + 3ω is a prime in D, and 37 = ππ̄ = (7 + 3ω)(7 + 3ω2).
Now, −(7 + 3ω) is the unique primary prime associated to 7 + 3ω.

6.6. Group characters and the cubic reciprocity law

(R,+) denotes the additive group of real numbers. It is an abelian group.
(Z,+) is a normal subgroup of (R,+). Let T be the quotient groupR/Z.

T = R/Z = {Z+ t : t ∈ R,0 < t ≤ 1}
Z+t 7→ exp(2πit) gives a mapping of T onto the circle group S1, the multiplicative
group of complex numbers of absolute value 1. It is easy to check that T ∼= S1.

Definition 6.6.1 : Let R be a ring with unity 1R. An R-module A is an addi-
tive abelian group together with a function s : R×A→ A written (r,a) 7→ ra and
subject to the following axioms:

For all r,r′ ∈ R, a,b ∈ A,

r(a + b) = ra + rb

(r + r′)a = ra + r′a

(rr′)a = r(r′a)
1Ra = a

As ‘scalar’ multiplication by elements of R is on the left, A is called a left R-
module.

When r is fixed, a 7→ ra is a homomorphism of (A,+) into (A,+).

Definition 6.6.2 : Given two R-modules A,A′, an R-module homomorphism of
R-modules is a mapping f : A→ A′ such that

f (a + b) = f (a) + f (b)
f (ra) = r f (a)
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for all a,b ∈ A and all scalars r ∈ R.

The above two conditions are equivalent to the following requirement:

(6.6.1) f (ra + r′b) = r f (a) + r′ f (b), r,r′ ∈ R

Fact 6.6.1 : If A and A′ are two R-modules, the set

Hom R(A,A′) = { f | f : A→ A′ is an R-module homomorphism}
is an abelian group under point-wise addition of R-module homomorphisms.

Any abelian group A is a module over the ring Z of integers. For, if a ∈ A,
n ∈ Z, we take na to be a multiple of a by n that is, a + a + . . .+ a (n times) if n is
positive and −a + −a + . . .+ −a (−n times), if n is negative. na = 0A, if n is zero. As
1a = a, (n + 1)a = na + a, (−n)a = −(na), the abelian group A is a Z-module.

Definition 6.6.3 : Let A be an abelian group and T = R/Z. The character group
of A is defined to be the group HomZ(A,T ). A character χ of A is an element of
HomZ(A,T ). Further, χ is multiplicative. That is, χ(a)χ(b) = χ(ab) for a,b ∈ A.
χ0 : A→ T given by χ0(a) = 1 for all a ∈ A is called the principal character of A.

The multiplication of characters χi, χ j ∈ HomZ(A,T ) is defined by

(6.6.2) (χiχ j)(a) = χi(a)χ j(a), for all a ∈ A.

HomZ(A,T ) is the abelian group of characters of A, denoted by ch(A).

Lemma 6.6.1 : For each positive integer n, the group T = R/Z has exactly one
cyclic subgroup of order n.

Proof : Let G = {e,a2, . . . ,an} be a subgroup of T of order n. For ai ∈G, let Ki(d)
be the cyclic subgroup (of order d) generated by ai. It implies that

ad
i = 1.

So, ai is a dth-root of unity, Ki(d) is the cyclic subgroup (of order d) generated by
a complex dth-root of unity. This is true for every divisor d of n. In particular,
there is an nth-root of unity say ζ contained in G such that ζn = 1. So, G is cyclic
of order n. �

Theorem 44 : A finite abelian group G of order n has exactly n distinct charac-
ters.

Proof : Let H be a proper subgroup of G. Suppose that a ∈ G and a 6∈ H. If a is
of order m in G, then am = e ∈ H. It happens that among the powers a j, ( j ≥ 0),
there is a smallest positive integer h such that ah ∈ H. We call h the indicator of a
in H. The subgroup 〈H,a〉 generated by H and a is of the form

〈H,a〉 = {yak : y ∈ H and 0≤ k < h}
As H is finite,

|〈H,a〉| = h|H|.
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Let us denote the trivial subgroup (e) by H0. We assume that H0 6= G. Let a1 ∈ G
and a1 6= e. Suppose that H1 = 〈H0,a1〉. Having got H1, if H1 6= G, take a2 6∈ H1
and let H2 = 〈H1,a2〉. Continuing this process, we get an ascending sequence of
subgroups:

H0 ⊂ H1 ⊂ H2 ⊂ ·· · ⊂ Hn = G, as G is finite.
We prove the theorem by showing that if it is true for i, 0 ≤ i < n, it is true for
i + 1.

For H0 = (e), there is one character for H0 namely the function which is iden-
tically 1. For Hi, assume that Hi has order d (where d divides n) and Hi has d
distinct characters.

In Hi+1 = 〈Hi,ai+1〉, let hi+1 be the indicator of ai+1. That is, hi+1 is the smallest
integer such that ahi+1

i+1 ∈ Hi. We prove that there are hi+1 different ways to extend
each character of Hi to obtain a character of Hi+1. This will show that Hi+1 has
exactly dhi+1 characters and dhi+1 is the order of Hi+1.

A typical element of Hi+1 is of the form yak
i+1, where y ∈ Hi and 0≤ k < hi+1.

Let χ̄ be an extension of χ defined on Hi. The multiplicative property of χ
requires that

χ̄(yak
i+1) = χ̄(y)χ̄(ai+1)k

But, y ∈ Hi. So, χ̄ = χ(y). So, we have

(6.6.3) χ̄(yak
i+1) = χ̄(y)χ̄(ai+1)k

So χ̄(yak
i+1) is known when χ̄(ai+1) is known. Let c = ahi+1

i+1 ∈ Hi. Then, χ̄(c) = χ(c)
as c ∈ Hi.
So,

χ̄(ahi+1
i+1 ) = χ(c) or (χ̄(ai+1))hi+1 = χ(c)

χ̄i(ai+1) is one of the hi+1th-roots of χ(c). There are hi+1 choices for χ̄i(αi+1). Each
one of these gives rise to a character of Hi+1. From (6.6.3), we also note that

χ̄(xak
i+1 · ya j

i+1) = χ̄(xy)χ̄(ai+1)k+ j

= χ(xy)(χ̄(ai+1))k+ j

= χ(x)χ(y)χ̄(ai+1)kχ̄(ai+1) j

= χ̄(xak
i+1)χ̄(ya j

i+1)

and so χ̄ is multiplicative. No two extensions χ̄1, χ̄2 can be identical on Hi+1, as
the characters χ1 and χ2 on Hi which they extend would then be the same. So
each of the d characters of Hi can be extended in hi+1 different ways to produce a
character of Hi+1. Also, if χ′ is any character on Hi+1, its restriction to Hi will be
a character on Hi and so this process of extension produces all the characters on
Hi+1. So the number of characters on Hi+1 is equal to |Hi+1|. This way, we produce
n distinct characters on G. �

Remark 6.6.1 : Proof of theorem 44 has been adapted from Tom Apostol [1]. [1]
gives more properties of characters of a finite abelian group.

© 2007 by Taylor & Francis Group, LLC



RECIPROCITY LAWS 159

Lemma 6.6.2 : For any positive integer n, Ch(Z/nZ) ∼= Z/nZ .

Proof : By theorem 44, Z/nZ has n distinct characters. (Z/nZ) is cyclic of order
n. So if χ ∈Ch(Z/nZ),

χ([1])n = 1
So χ([1]) is an nth-root of unity. So Ch(Z/nZ) is also cyclic generated by a
primitive nth-root of unity. This proves the lemma. �

Fact 6.6.2 : Given a finite abelian group A, Ch(A)∼= A.
For, if G, G′ are finite abelian groups, Ch(G⊕G′) ∼= Ch G⊕ Ch G′. As G is a
direct product of cyclic subgroups, Ch G ∼= G.

Let p be a prime. We consider Fp = Z/pZ. F∗p is cyclic of order p − 1.
ChF∗p ∼= F∗p .

If g is a generator of F∗p, we define

λ(g) = exp(
2πi
p − 1

)

λ is a character on F∗p and the set of characters of F∗p is given by

{ε,λ,λ2, . . . ,λp−2}, λp−1(g) = 1.

(6.6.4) ε(g) = 1, g ∈ F∗p.
ε is called the principal character on F∗p.

Next, we need to consider sums over elements of Fp. So, it is convenient to
extend the domain of definition of a character χ (on F∗p) to Fp by writing

χ(0) =

{
1, if χ = ε
0 if χ 6= ε

(where ε is the principal character on F∗p).
By doing this, we make χ a character on Fp.

Definition 6.6.4 : Let χ be a character on Fp and let a ∈ F∗p. We write
ζ = exp( 2πi

p ). The sum

G(a,χ) =
∑

t∈Fp

χ(t)ζat

is called a Gauss sum on Fp belonging to the character χ.

Theorem 45 : Let a ∈ Fp. Suppose that ε is the principal character on Fp. That
is, ε(b) = 1 for all b ∈ Fp. Then,

(6.6.5) G(a,χ) =





χ(a−1)G(1,χ), if χ 6= ε, a 6= 0
0, if χ = ε and a 6= 0
0, if χ 6= ε and a = 0
p, if χ = ε and a = 0
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Proof : Case 1. a 6= 0, χ 6= ε.
χ(a)G(a,χ) = χ(a)

∑

t∈Fp

χ(t)ζat =
∑

t∈Fp

χ(at)ζat = G(1,χ),

as p - a and ‘at’ runs through a complete residue system (mod p).

or G(a,χ) = χ(a)−1G(1,x) = χ(a−1)G(1,χ).

Case 2. a 6= 0, χ = ε

G(a,ε) =
∑

t∈Fp

ε(t)ζat =
∑

t∈Fp

ζat = 0.

Case 3. a = 0, χ 6= ε

G(0,χ) =
∑

t∈Fp

χ(t)ζ0t =
∑

t∈Fp

χ(t) =

{
p, if χ = ε
0, otherwise.

For, if we choose a ∈ F∗p such that χ(a) 6= 1,

χ(a)
∑

t∈Fp

χ(t) =
∑

t∈Fp

χ(at).

If S =
∑

t∈Fp
χ(t), we get χ(a)S = S, as ‘at’ runs through a complete residue system

(mod p).
This implies that S = 0.
Case 4. a = 0, χ = ε

G(0,ε) =
∑

t∈Fp

ε(t)ζ0t = p.

Cases 1 to 4 above yield (6.6.5). �

Theorem 46 : If χ 6= ε, |G(1,χ)| =√p.

Proof : We evaluate the sum
∑

a∈Fp

G(a,χ)G(a,χ) in the different ways,

If a 6= 0, by theorem 45, G(a,χ) = χ(a−1)G(1,χ) = χ(a)G(1,χ).
So,

(6.6.6) G(a,χ)G(a,χ) = χ(a−1)χ(a)G(1,χ)G(1,χ) = |G(1,χ)|2.
Also,

G(a,χ)G(a,χ) =
∑

t

∑

t′
χ(t)χ(t ′)ζat−at′ .

Summing over a ∈ Fp on the left and right sides, we obtain

(6.6.7)
∑

a∈Fp

G(a,χ)G(a,χ) =
∑

a∈Fp

(
∑

t

∑

t′
χ(t)χ(t ′)ζa(t−t′))
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Now, ∑

a∈Fp

ζa(t−t′) = p δ(t, t ′),

where

δ(t, t ′) =

{
1, if t ≡ t ′ (mod p)
0, otherwise.

So, from (6.6.7)
∑

a∈Fp

G(a,χ)G(a,χ) =
∑

t

∑

t′
χ(t)χ(t ′)p δ(t, t ′)

=
∑

t∈Fp

|χ(t)|2 p.

Now, as G(a,χ) = 0 for χ 6= ε, a = 0; noting that |χ(t)| = 1, for t ∈ F∗p , we get

(6.6.8)
∑

a∈Fp

G(a,χ)G(a,χ) = p(p − 1), as χ(0) = 0.

Further, from (6.6.6),
∑

a∈Fp

G(a,χ)G(a,χ) =
∑

a∈F∗p

|G(1,χ)|2.

That is,

(6.6.9)
∑

a∈Fp

G(a,χ)G(a,χ) = (p − 1)|G(1,χ)|2.

From (6.6.8) and (6.6.9), we obtain |G(1,χ)|2 = p which proves theorem 46. �

Definition 6.6.5 : Let χ and λ be two characters of Fp. The Jacobi sum in terms
of χ and λ is defined by

J(χ,λ) =
∑

a+b=1

χ(a)λ(b)

where the summation is over the elements a,b ∈ Fp such that a + b = 1.

It is easy to check that

J(ε,ε) = p,(6.6.10)
J(ε,χ) = 0.(6.6.11)

Now,
J(χ,χ−1) =

∑

a+b=1

χ(a)χ−1(b) =
∑

a+b=1
b6= 0

χ(
a
b

) =
∑

a6=1

χ(
a

1 − a
).

Let a
1−a = t. If t 6= −1, a = t

1+t .
As a varies over the elements of Fp, except 1, t varies over the elements of

Fp except −1.
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But, ∑

t∈Fp

χ(t) = 0, for χ 6= ε.

Therefore, J(χ,χ−1) =
∑

t 6=−1χ(t)) or

(6.6.12) J(χ,χ−1) = −χ(−1).

Next, suppose χ and λ are such that χλ 6= ε.

G(1,χ)G(1,λ) =
(∑

a

χ(a)ζa)(∑

b

λ(b)ζb)

=
∑

a,b

χ(a)λ(b)ζa+b

=
∑

t

(∑

a+b=t

χ(a)λ(b)
)
ζ t .

If t = 0,
∑

a+b=0

χ(a)λ(b) =
∑

a∈Fp

χ(a)λ(−a) = λ(−1)
∑

a∈Fp

χλ(a) = 0, as χλ 6= ε.

If t 6= 0, let a′ be such that a = ta′. Let b′ be such that b = tb′. If a+b = t, a′+b′ = 1
and so ∑

a+b=t

χ(a)λ(b) =
∑

a′+b′=1

χ(ta′)λ(tb′) = χλ(t)J(χ,λ).

So,
G(1,χ)G(1,λ) =

∑

t

χλ(t)J(χ,λ)ζ t = J(χ,λ)G(1,χλ),

or

(6.6.13) J(χ,λ) =
G(1,χ)G(1,λ)

G(1,χλ)
, χλ 6= ε.

We deduce that if χ,λ and χλ are not equal to ε, as |G(1,χ)| = √p (theorem 46)

(6.6.14) |J(χ,λ)| =√p .

Fact 6.6.3 : If p≡ 1 (mod 3) and χ is a cubic character (mod p), that is, χ3 = ε

(6.6.15) G(1,χ)3 = pJ(χ,χ).

Proof : Using (6.6.13), we have G(1,χ)2 = G(1,χ2)J(χ,χ). Multiplying both
sides by G(1,χ), we obtain

(6.6.16) G(1,χ)3 = G(1,χ)G(1,χ2)J(χ,χ).

But χ2 = χ−1.
Also, G(1,χ−1) = G(1, χ̄) as χ−1 is the character which takes t ∈ Fp to χ̄(t).
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Now,

χ(−1)G(1, χ̄) =
∑

t∈Fp

χ(−t)ζ t

=
∑

s∈Fp

χ(s)ζ−s

= G(1,χ)

So,

χ(−1)G(1,χ)G(1, χ̄) = G(1,χ)G(1,χ).

= |G(1,χ)|2.
= p, by theorem 46.

As χ is a cubic character (mod p), χ(−1) = χ((−1)3) = χ3(−1) = 1. So,

(6.6.17) G(1,χ)G(1,χ2) = p

From (6.6.16) and (6.6.17), we arrive at (6.6.15). �

Lemma 6.6.3 : Let p ≡ 1 (mod 3). If χ is a cubic character (mod p) and if
J(χ,χ) = a + bω where ω = exp( 2πi

3 ), then a≡ 2 (mod 3) and b≡ 0 (mod 3). That
is, J(χ,χ) is a primary prime.

Proof : We work with congruences in the ringA of algebraic integers.

(6.6.18) G(1,χ)3 = (
∑

t∈Fp

χ(t)ζ t)3 =
∑

t∈Fp

χ(t)3ζ3t (mod 3)

We observe that χ(0) = 0 and χ3(t) = 1 for t 6= 0.
Therefore, ∑

t

χ(t)3ζ3t =
∑

t 6=0

ζ3t = −1.

So, from (6.6.15) and (6.6.18), we have

G(1,χ)3 = pJ(χ,χ)≡ a + bω≡ −1(mod 3).

Working with χ̄ instead of χ and remembering that G(1,χ) = G(1, χ̄), we get

G(1, χ̄)3 = pJ(χ̄, χ̄)≡ a + bω̄≡ −1(mod 3)).

Subtraction yields b(ω − ω̄)≡ 0 (mod 3)).
But, ω − ω̄ = ( −1+

√
−3

2 ) − ( −1−
√

−3
2 ) =

√
−3.

Or,
b
√

−3≡ 0(mod 3).

It follows that −3b2 ≡ 0 (mod 9) or 3 divides b.
Since b≡ 0 (mod 3), a + bω≡ −1 (mod 3) gives a≡ −1 (mod 3), as desired. �
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Observation 6.6.1
By (6.6.14), |J(χ,χ)| =√p. So,

N(J(χ,χ)) = J(χ,χ)J(χ,χ)

= |J(χ,χ)|2
= p.

If p is a prime congruent to 1 (mod 3) and χ is a cubic character (mod p), by
definition 6.5.3 and lemma 6.6.3, J(χ,χ) is a primary prime in D. By lemma 6.5.6,
J(χ,χ) is the associate of a prime π in D such that

N(π) = p≡ 1(mod 3).

Theorem 47 (cubic reciprocity law) : If π1 and π2 are primary primes in D and
N(π1), N(π2) 6= 3 and N(π1) 6= N(π2), then

χ(π2,π1) = χ(π1,π2)

where χ(α,π) stands for (α|π)3 as per Notation 6.5.1.

Proof : If π1 and π2 are distinct rational primes congruent to 2 (mod 3), take
π1 = a, π2 = b (say).

As ā = a, b̄ = b and χ(ā, b̄) = χ(a,b) = (χ(a,b))2 (by 6.6.4)
χ(a,b) = (χ(a,b))2⇒ χ(a,b) = 1 as χ(a,b) 6= 0. Similarly, χ(b,a) = 1 and so the
result holds for distinct rational primes≡ 2 (mod 3).

The other cases to be considered are

(i) π1, a rational prime q≡ 2 (mod 3) and π2 complex with
N(π2) = p a prime ≡ 1 (mod 3).

(ii) π1 and π2 complex with N(π1) = p1 ≡ 1 (mod 3) and
N(π2) = p2 ≡ 1(mod 3), where p1 and p2 are distinct primes.

Case 1. We consider the case

π1 = q≡ 2(mod 3) and π2 = π with N(π) = p.

χ(α,π) is a cubic character modulo p. By lemma 6.6.3

(6.6.19) J(χ(α,π),χ(α,π)) = π′ a primary prime.

Since ππ̄ = p = π′π̄′, we have π|π′ or π|π̄′.
Since all primes are primary, we claim that π = π′ or π = π̄′.
From the definition of J, one obtains

J(χ(α,π),χ(α,π)) =
∑

a+b=1

χ(a,π)χ(b,π)

=
(∑

t∈Fp

t
p−1

3 (1 − t)
p−1
3
)

(mod p).

The polynomial t
p−1
3 (1 − t)

p−1
3 is of degree 2

3 (p − 1)< (p − 1).
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So, ∑

t∈Fp

t
p−1
3 (1 − t)

p−1
3 ≡ 0(mod p).

For,
p−1∑

i=1

ik ≡
{

0(mod p), if (p − 1) - k
−1(mod p), if (p − 1)|k

So,
J(χ(α,π),χ(α,π))≡ 0 (mod π).

From (6.6.19), we have π|π′ and so π = π′.
Using Fact 6.6.3, we obtain G(1,χ(α,π))3 = pπ.
In particular,

(6.6.20) G(1,χ(q,π))3 = pπ where π1 = q≡ 2(mod 3)

Raising both sides to the power q2−1
3 , we get

G(1,χ(q,π))q2−1 = (pπ)
q2−1

3

Taking congruences (modulo q), we get

G(1,χ(q,π))q2
= χ(pπ,q)G(1,χ(q,π)) (mod q), as N(q) = q2.

Now, χ(p,q) = 1, as p
q2−1

3 ≡ 1(mod q). We have

(6.6.21) G(1,χ(q,π))q2
= χ(π,q)G(1,χ(q,π)) (mod q).

G(1,χ(q,π))q2
= (
∑

t∈Fp

χ(t,π)ζ t)q2

=
∑

t∈Fp

χ(t,π)q2
ζ tq2

(mod q).

As q2 ≡ 1 (mod 3) and χ(t,π) is a cube root of unity, we have

G(1,χ(q,π))q2 ≡ G(q2,χ(q,π)) (mod q).

By theorem 45, G(q2,χ(q,π)) = χ(q−2,π)G(1,χ(q,π)),

(6.6.22) or G(1,χ(q,π))q2
= χ(q,π)G(1,χ(q,π)),

or, from (6.6.21) and (6.6.22) we get

χ(π,q)G(1,χ(q,π))≡ χ(q,π)G(1,χ(q,π)) (mod q).

Multiplying both sides by G(1,χ(q,π)) and noting that

G(1,χ(q,π))G(1,χ(q,π)) = p, (by theorem 46)

we have
χ(q,π)p≡ χ(π,q)p (mod q),

or,
χ(q,π)≡ χ(π,q) (mod q).
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This implies that χ(q,π) = χ(π,q).
Case 2. π1 and π2 are complex primes and

N(π1) = p1 ≡ 1(mod 3),
N(π2) = p2 ≡ 1(mod 3).

Let δ1 = π̄1 and δ2 = π̄2.
Then, δ1, δ2 are primary primes and p1 = π1δ1, p2 = π2δ2. Now, using (6.6.15)

and observation (6.6.1),
G(1,χ(1,δ1))3 = p1δ1.

Raising to the power N(π2)−1
3 = p2−1

3 and taking congruences modulo π2, we get

(6.6.23) χ(p2
2,δ1) = χ(p1δ1,π2)

Starting from G(1,χ(1,π2))3 = p2π2 and raising both sides to the power p1−1
3 and

taking congruences modulo π1, we obtain

(6.6.24) χ(p2
1,π2) = χ(p2π2,π1)

(since χ(α,π1) = χ(α,π̄1) = χ(α2, π̄1) with α = p̄2 = p2 and δ1 = π̄1). We also have

(6.6.25) χ(p2
2,δ1) = χ(p2,π1)

(since χ(α,π̄1) = χ(α,π̄1)2 = χ(α2, π̄1) with π̄1 = δ1 and α = p̄2 = p2).
Next by, (6.6.23),

χ(π2,π1)χ(p1δ1,π2) = χ(π2,π1)χ(p2
2,δ1)

= χ(π2,π1)χ(p2,π1) by (6.6.25)
= χ(p2π2,π1)

= χ(p2
1,π2) by (6.6.24)

= χ(p1π1δ1,π2) as p1 = π1δ1.

Or,
χ(π2,π1)χ(p1δ1,π2) = χ(π1,π2)χ(p1δ1,π2).

Cancelling χ(p1δ1,π2) from both sides, we get χ(π2,π1) = χ(π1,π2). �

Remark 6.6.2 : Proof of theorem 47 has been adapted from [8]. For an overview
of reciprocity laws, see B. F. Wyman [A4]. K. S. Williams gives an Euler criterion
for cubic non-residues in [A3].

6.7. Notes with illustrative examples

The Legendre symbol is in respect of primes.
Let b be an odd positive integer. Suppose that b = p1 p2 . . . pr where pi

(i = 1,2, . . .r) are primes not necessarily distinct. Jacobi (1804–1851) defined
the symbol (a|b) by

(6.7.1) (a|b) = (a|p1)(a|p2) · · · (a|pr)

where (a|pi) is the Legendre symbol (i = 1,2, . . . ,r).
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(a|b) is referred to as the Jacobi symbol. If g.c.d (a,b) > 1, we take (a|b) to be
zero. Now,

(2|175) = (2|5)2(2|7) = 1

However, 2 is not a quadratic residue mod 175. That is, (a|b) = 1 does not mean
that a is a quadratic residue (mod b). However, if (a|b) = −1 then a is a non-residue
(mod b). The Jacobi symbol could be used to prove the following.

Theorem 48 : Let a be square-free integer. There are infinitely many primes p
for which a is a quadratic non-residue.

Proof : We write

a = 2k p1 p2 . . . pr where k = 0 or 1 and pi (i = 1 . . .r)

are distinct odd primes, (r ≥ 1).
Let {q1,q2, . . . ,qs} be a finite set of odd primes not containing any pi. Let t

be a quadratic non-residue of pr.
We solve the congruences

x≡ 1(mod q j), j = 1,2, . . . ,s ;
x≡ 1(mod 8),
x≡ 1(mod pi), i = 1,2, . . . (r − 1) ;
x≡ t (mod pr).

Suppose that x ≡ b mod (8p1 p2 . . . prq1q2 . . .qs) be the common solution. Let
b = m1,m2, . . . ,mn where mi are primes.
Since b≡ 1 (mod 8), x2 ≡ 2 (mod b) has a solution. For,

(2|b) = (2|m1)(2|m2) . . . (2|mn) = 1.

The generalized quadratic reciprocity law says:

(6.7.2) (a|b)(b|a) = (−1)
(a−1)(b−1)

4 when a,b are positive and odd.

By the generalized quadratic reciprocity law, (pi|b) = (b|pi) i = 1,2, . . . ,r.
So,

(a|b) = (2|b)k(p1|b) . . . (pr|b)

= (b|p1)(b|p2) . . . (b|pr)

= (1|p1)(1|p2) . . . (1|pr−1)(t|pr).

This gives

(a|b) = −1(6.7.3)

By definition of (a|b), we have

(a|b) = (a|m1)(a|m2) . . . (a|mn).
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From (6.7.3), we have (a|mi) = −1 for some i, 1≤ i ≤ n. The primes q1,q2, . . .qn

are so chosen that none of them divides b. So mi 6∈ {q1,q2 . . .qs}. Also a is square-
free and divisible by an odd prime. We are able to pick a prime mi outside the set
{2,q1, . . . ,qs} such that (a|mi) = −1. The theorem is okay for such a’s.

If a = 2, let {q1,q2, . . . ,qs} be a finite set of primes (6= 3) for which (2|q j) = −1
( j = 1, . . .s), we write

b = 8q1q2 . . .qs + 3.
Since b≡ 3 (mod 8), we have (2|b) = −1.
As before, take b = m1,m2, . . . ,mn where mi are primes (i = 1, . . . ,n).
Then (2|mi) = −1 for some i (as before) and mi 6∈ {3,q1,q2, . . . ,qs}. This disposes
of the case a = 2 also.

�

Remark 6.7.1 : Theorem 48 has been adapted from [8].

Next, let p be an odd prime and a ∈ N, p - a. The Legendre symbol (a|p)
takes values +1 or −1 according as a is a quadratic residue (mod p) or a qua-
dratic non-residue (mod p). (a|p) is a character on F∗p where Fp = Z/pZ and F∗p =
Fp \ {0}. The Legendre symbol depends only on the residue class of a (mod p)
and is multiplicative.
Now,

(6.7.4) F∗p
2 = {a2 : a ∈ F∗} = the set of quadratic residues (mod p).

It follows that F∗p
2 is a subgroup (of F∗p) of order p−1

2 . So F∗p
2 is a subgroup of

index 2 in F∗p. It is a normal subgroup of F∗p. One has F∗p/F∗p
2 ∼= {1,−1}. Further,

(6.7.5) x2 ≡ a (mod p)⇔ x2 − a = [0] in Fp.

This is possible if, and only if, a ∈ F∗p2. That is,

(6.7.6) x2 ≡ a (mod p)⇔ x2 − a splits into a product of linear factors in Fp[x].

We go to a general problem. Let K be an arbitrary field. Suppose that
f (x) ∈ K[x]. We have to check whether f (x) splits into a product of linear factors
in K[x] and in L[x] when L is the smallest extension of K. That is, we obtain an
extension L of K such that L is the splitting field of f (x). Using results on field
extensions [4], one knows that a splitting field of f (x) exists and is unique up to
isomorphism.

Is it possible to characterize a splitting field of f (x) in terms of certain invari-
ants depending only on K and the polynomial f (x)? When k = R, the field of real
numbers, every polynomial in R[x] splits into a product of irreducible factors of
degree ≤ 2. Also, a polynomial t(x) of degree 2 (over R) is irreducible if, and
only if, the discriminant of t(x) is negative. In that case, the splitting field of t(x)
is C, the field of complex numbers.

If K = Fq, a finite field having q = pm (m≥ 1) elements (where p is a prime),
for every m ∈ N, there exists up to isomorphism a unique field extension L (of
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K) such that the degree of L over K is m. L can be viewed as a vector space of
dimension m over K. Further, every polynomial f (x) of degree s≤ m splits into a
product of linear factors in L[x]. The situation is tougher when K =Q, the field of
rational numbers or more generally an algebraic number field (a finite extension
of Q).

A situation that could be tackled better is the class of finite fields Z/pZ (p a
prime) and the set of polynomials f (x) ∈ Z[x]. The question is whether a given
monic irreducible polynomial t(x) ∈ Z[x] splits into a product of linear factors in
Fp[x] where Fp = Z/pZ.

A more difficult question is:
Given a monic irreducible polynomial in Z[x], find the set of primes p for which
f (x) splits into a product of linear factors in Fp[x] ?

Definition 6.7.1 : The set spl. f (x) is defined by

spl. f (x) = {p : p is a prime and f (x) splits into a product of

linear factors in Fp[x]}
The most general reciprocity law due to Emil Artin establishes a curious con-

nection between the splitting field of f (x) and the set spl. f (x) when the splitting
field L of f (x) is such that L is abelian over K in the sense that the Galois group
G(L/K) is an abelian group.
Let f (x) = x2 − a ∈ Z[x].
Suppose that f (x) is irreducible overQ.

spl. f (x) = {p : f (x) splits into a product of linear factors over Z/pZ}.
For any a ∈ Z, spl. f (x) contains the prime 2 as

x2 − a≡ x2 − 1 or x2 ∈ F2[x]

So, x2 − a splits into linear factors over Z/2Z. To determine spl.(x2 − a) we need
to compute (a|p) for fixed a and all odd primes p such that p - a. The problem,
thus, reduces to that of computing (a|p).

As a =±2b pa1
1 pa2

2 · · · par
r ; b≥ 0, ai ≥ 1(i = 1,2, . . . r)

and as (a|p) is multiplicative, we need to consider only (2|p), (−1|p) and (q|p)
where q 6= p are odd primes. Quadratic reciprocity law comes in handy. We need
only to compute the Legendre symbol for finitely many primes.

We have observed that −1 is a quadratic residue of primes of the form 4k + 1.
So,

spl.(x2 + 1) = {2,5,13,17,29, . . .}
Also, −3 is a quadratic residue (mod p) if, and only if, p≡ 1 (mod 12) or p≡ −5
(mod 12). Therefore,

spl.(x2 + 3) = {2,7,13,19,37, . . .}
In the case of f (x) = x3 − a, a ∈ Z, suppose that x3 − a is irreducible over

Q. If p is a prime 6= 3, x3 − 1 splits into a product of linear factors over Fp,
as Fp contains a primitive cube root of unity when p ≡ 1 (mod 3). That is, if
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p≡ 1 (mod 3) F∗p/F∗p
3 is of order 3. If p≡ −1 (mod 3) F∗p/F∗p

3 is of order 1. For,
the map θ : F∗p → F∗p

3 defined by θ(t) = t3 is surjective and ker θ is the set of all
cube roots of unity in F∗p.
It follows that the cubic residue symbol should take values in a group of order 3
and it is to be expected that such a symbol should be an isomorphism of F∗p/F∗p

3

onto a group of order 3. But, the primes p ≡ −1 (mod 3) do not satisfy this
condition, as F∗p/F∗p

3 is the trivial group of order 1 in such a case. For such
primes, F∗p does not contain primitive cube roots of unity. So, in order to get
an analogy with the Legendre symbol, we should work in a ring larger than Z,
since Z does not contain the imaginary cube roots of unity. This led Eisenstein to
consider D = Z[ω], (6.5.1).
The group of units in D is {±1,±ω,±ω2}.

Let p be a rational prime. If π is a prime in D,

N(π) = ππ̄ = p, p2 or 9

according as p≡ 1 (mod 3), p≡ 2 (mod 3) or p = 3.

(6.7.7) 1 −ω is a prime in D with N(1 −ω) = 3

Given a prime π ∈ D, D/πD ∼= Fp or Fp2 according as N(π) = p or p2.
Since p2 ≡ 1 (mod 3) for all primes p 6= 3, it follows that for all primes π in

D for which N(π) 6= 3, D/πD∼= Fq (q = N(π)) contains all cube roots of unity (see
remark 6.5.3).

Further, given α ∈ Z[ω] and a prime π ∈ Z[ω] where π - α there exists a
unique cube root of unity namely 1, ω or ω2 such that

(6.7.8) α
N(π)−1

3 ≡ ωi(mod π) (i = 0,1 or 2) (see Lemma 6.5.3)

Next, the cubic residue symbol (α|π)3 induces an isomorphism of
F∗N(π)/F∗3

N(π) onto the group H = {1,ω,ω2}. (α|π)3 = 1 if, and only if, x3 −α splits
into a product of linear factors in FN(π)[x].

To determine the primes π for which x2 −α splits into a product of linear
factors in FN(π)[x], it is enough to compute (α|π)3 for α = −1,ω,1 −ω and all
primary primes π′ co-prime with π. For, α ∈ Z[ω] can be uniquely expressed as

α = (−1)aωb(1 −ω)cπa1
1 π

a2
2 . . .π

at
t

where a,b,c;a1,a2, . . .at are integers≥ 0 and πi(i = 1,2, . . . t) are primary primes.
David Hilbert’s ninth problem asks for the most general reciprocity law in

the context of algebraic number fields. Emil Artin (1898–1962) gave the solution
and it is now known as Artin’s general reciprocity law. The details are available
in S. Lang [10]. See also Parvathy Shastri [11], J. W. S. Cassels and A. Frölich
[2]. For an exhaustive treatment of quadratic residues and quadratic congruences,
see Don Redmond [12]. For problems and solutions relating to reciprocity laws,
see J. Esmond and M. Ram Murthy [3].
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6.8. A comment by W. C. Waterhouse

Gauss lemma given in theorem 41 states that if p is an odd prime and p does
not divide a. (a|b) = (−1)µ where µ denotes the number of elements in the set
{1a,2a, . . . , ( p−1

2 )a} whose numerically least residues (mod p) are negative. The
point is that

(−1)µ ≡ a
p−1
2 (mod p).

H. Hasse, W. J. Leveque and D. Shanks have pointed out that the factors
1,2, . . . , ( p−1

2 ) of a can be replaced by a ‘half-system’, any p−1
2 numbers not con-

gruent to each other or each other’s negatives. The first step towards a general
understanding of the lemma is to notice that these are simply the coset represen-
tatives of the subgroup {1,−1}which is the group of units in Z. We take a look at
the corresponding lemma for cubic residues as given by Eisenstein. See [3]. For
a prime p congruent to 1 (mod 3) and an element ω of order 3 (mod p), we take
coset representatives

R1,R2, . . . ,R p−1
3

of {1,ω,ω2} (where ω = exp( 2πi
3 )), and multiply by a not divisible by p. Let β

be the number of these products of the form ω2Ri (i = 1,2, . . . , p−1
3 ). Then, Gauss

lemma gives

a
p−1
3 ≡ ω2β+γ (mod p) (γ ≥ 0)

So, in Gauss lemma, it is (−1)µ rather than µ that matters. The expression in
Gauss lemma is a product of 1’s and −1’s where µ of them are −1.
The general setting is as follows:
Let G be a group and H subgroup (of G) of finite order. Suppose that a ∈ G. Let
[H,H] denote the commutator subgroup of H. That is, [H,H] is the subgroup of
H generated by elements of the form aba−1b−1 where a,b ∈ H. Let b be a fixed
element of G. We choose the coset representatives Ri of H and multiply to form
bRi. Rewriting bRi as hiRπ(i) for hi ∈H (π(i) is the image of i under a permutation
π of the set of suffixes). We form the product Πhi.

Let [G : H] = n. hi exists as h−1
i b = ai (say) for some hi ∈ H. Then,

bRi = hiaiRi = hiRπ(i) (i = 1,2, . . . ,n)

As [G : H] = n,
∏n

i=1 hiRπ(i) can be associated with
∏n

i=1 hi where hi ∈ H. A coset
(mod H) is the sum of a finite number of cosets modulo [H,H]. Now, [H,H] is a
normal subgroup of H and H/[H,H] is abelian. Also, [G,G] is a normal subgroup
of G with G/[G,G] abelian.

Let φ : G→ H/[H,H] be given by

φ(b) =
n∏

i=1

hiRπ(i) = a specified coset of [H,H] in H.

φ is a group homomorphism from G into H/[H,H].
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Let ψ : H/[H,H]→ G/[G,G] be given by

ψ(
n∏

i=1

hiRπ(i)) = a coset of [G.G] in G determined by bn.

(ψ ◦φ)(b) = the coset determined by b[G,H] in G/[G,G].
In other words, the composite map G→ H/[H,H]→ G/[G,G] sends b (an ele-
ment of G) to the class of b[G:H] in G/[G,G].

In 1930, Emil Artin defined this general mapping from G to H/[H,H] in a
quite different number-theoretic set-up. He called it a ‘transfer’ and it served as
a tool to prove the principal ideal theorem of class-field theory due to S. Iyanaga.
See the reference in [13]. It turns out to be an extension of Gauss lemma to
‘transfers’. This is related to group cohomology as pointed out by B. Eckmann.
Generalizations here opened up the doors to deeper group-theoretic ideas.

We conclude by saying that the genesis of reciprocity laws lies in Gauss
lemma as pointed out by W. C. Waterhouse in his ‘tiny note’ [13].

6.9. Worked-out examples

a) What are the odd primes p for which 3 is a quadratic residue ?
Answer: We have to find those odd primes p for which (3|p) = 1. We appeal
to the quadratic reciprocity law (6.4.2). That is,

(3|p)(p|3) = (−1)( 3−1
2 )( p−1

2 ),

or,

(3|p) = (−1)
p−1
2 (p|3).

In order that (3|p) = 1, we must have

(6.9.1)
p − 1

2
= 2k and (p|3) = 1.

or

(6.9.2)
p − 1

2
= 2l + 1 and (p|3) = −1

where k, l ∈ Z.
(6.9.1) is satisfied when p = 4k + 1 and x2 ≡ p (mod 3) is solvable. That is, p
is of the form p≡ 1(mod 4) and p≡ 1(mod 3). Therefore, p has to be of the
form 12k′ + 1, k′ ∈ Z.
(6.9.2) is satisfied of p ≡ 3(mod 4) and x2 ≡ p (mod 3) is not solvable. That
is, p is of the form p≡ 3(mod 4) and p≡ 2(mod 3). Therefore, p has to be of
the form 12k′ + 11, k′ ∈ Z.

If p is of the form 12k + 5 or 12l + 7, 3 is a quadratic non-residue mod p.
We conclude that 3 is a quadratic residue of p, when p is a prime of the form
12k±1. �
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b) What are the odd primes p for which 7 is a quadratic residue ?
Answer: We have to find those odd primes p for which (7|p) = 1. Appealing
to quadratic reciprocity law (6.4.2),

(7|p) = (−1)
p−1
2 (p|7).

So, (7|p) = 1 if, and only if,

(6.9.3)
p − 1

2
= 2k and (p|7) = 1

or

(6.9.4)
p − 1

2
= 2l + 1 and (p|7) = −1

where k, l ∈ Z.
(6.9.3) holds if p≡ 1(mod 4) and p≡ 1,2,4(mod 7). Using Chinese Remain-
der Theorem, by forming pairs of congruences

p≡ 1(mod 4)
p≡ 1(mod 7)

}
p≡ 1(mod 4)
p≡ 2(mod 7)

}
p≡ 1(mod 4)

p≡ 4(mod 7) ;

we note that p has to be one of the forms p = 28k′ + 1, p = 28k′ + 9 or
p = 28k′ + 25, where k′ ∈ Z.

(6.9.4) holds if, and only if, p≡ 3(mod 4) and p≡ 3,5,6(mod 7).
This yields that p has to be one of the forms p = 28k′ + 3, p = 28k′ + 19,
p = 28k′ + 27.

Hence, an odd prime p is a quadratic residue modulo 7 if, and only if, p
is one of the types 28k±1, 28k±3 or 28k±9. �

c) What are the primes π is Z[ω], (ω = exp( 2πi
3 )) for which 3 is a cubic residue ?

Answer: Let π denote a prime in Z[ω]. x3 ≡ 2(mod π) is solvable, if, and only
if, x3≡ 2(mod π′) where π′ is an associate of π. π′ can be taken as the primary
prime associated with π. If π is a rational prime, say q, then χ(2,q) = 1 and as
2 is a cubic residue of such primes.

Let π = a + bω be a primary prime (which is complex). By cubic reci-
procity law (see Theorem 47), χ(2,π) = χ(π,2). N(2) = 4. So,

π = π
(4−1)

3 ≡ χ(π,2)(mod 2).

So, χ(π,2) = 1 if, and only if, π ≡ 1(mod 2) in Z[ω]. Thus, x3 ≡ 2(mod π) is
solvable, if, and only if, π ≡ 1(mod 2), that is, if, and only if, a ≡ 1(mod 2)
and b≡ 0 (mod 2). �
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EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) 2 is a quadratic residue (mod p), if, and only if, p is a prime of the form
8k±1.

b) Let p be a prime not dividing a. The number of solutions of
ax2 + bx + c≡ 0(mod p) is 1 + (b2 − 4ac | p).

c) It is correct to say that (43|101) = 1.
d) x3 ≡ 2(mod p) if, and only if, p is a prime of the form A2 + 27B2, when

A,B ∈ Z.
e) 7 remains a prime in D = Z[ω] where ω = exp( 2πi

3 ).
f) Let p be a rational prime. Then, χ(−3, p) = 1.

2. Find all primes p for which 11 is a quadratic residue.
3. (Don Redmond) If p and q are odd primes and q = 2p + 1 show that

(p|q) = (−1|p).

4. Let α = 2 − 3ω ∈ D = Z[ω], ω = exp( 2πi
3 ). Prove that x3 ≡ α (mod 11) is not

solvable in D.
5. Suppose p ≥ 5 is a prime. Show that if N(p) denotes the number of distinct

nonzero cubic residues (mod p), then

N(p) =





p − 1, if p≡ 5 or p≡ 11(mod 12)
p − 1

3
, if p≡ 1 or p≡ 7(mod 12)

6. Use Gauss lemma to determine (−6|13).
7. Examine whether x2 ≡ −3(mod 53) is solvable.
8. Determine the primes p for which 23 is a quadratic residue.
9. Find the number of solutions of the congruence x2 ≡ 17(mod 21).

10. Solve x2 + 4x − 28≡ 0(mod 289).
11. If p is a prime of the form 12k + 1, show that (3|p) = 1.
12. If p and q are odd primes and q = 2p + 1, show that

(p|q) = (−1|p).

13. Let p be a prime > 3. Show that the sum of the quadratic residues of p is
divisible by p.

14. (Don Redmond) Show that an integer is a square if, and only if, it is a qua-
dratic residue of every prime.

15. Let π be a prime in Z[ω]. If N(π) 6= 3, prove that χ(ω,π) = 1, ω or ω2, accord-
ing as N(π)≡ 1,4 or 7 (mod 9).

16. Find the primes π in Z[ω] for which x3 ≡ 5 (mod π) has a solution.
17. Find the primary prime which is an associate of 3 −ω in Z[ω].
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18. [K. Ireland and M. I. Rosen] Let α ∈ Z[ω]. Suppose that x3 ≡ α (mod π) is
solvable for all but finitely many primes π in Z[ω]. Then, show that α is a
cube in Z[ω].
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CHAPTER 7

Finite groups

Historical perspective

The notion of a group originated from ideas about transformations of geomet-
rical objects. The study of groups of symmetry paved the way for the definition
of an abstract group. By the end of 17th century, methods of solving quadratic,
cubic and biquadratic equations were known. In the attempts to solve a quintic
equation, permutation groups proved to be relevant. Lagrange got the idea that
groups had something to do with equations. The permutation groups S2, S3 and S4

were ‘well-behaved’ groups (in the sense of solvability) and were associated with
a quadratic, cubic and bi-quadratic equation respectively. Lagrange knew that S5

behaved ‘differently’. It was Abel who showed that an equation of the fifth degree
was not solvable by ‘radicals’. During this period, Everiste Galois discovered a
necessary and sufficient condition for an nth degree equation to be solvable by
radicals. Galois showed that to each algebraic equation

f (x) = a0xn + a1xn + · · ·+ an = 0 (a0 6= 0, a0,a1, . . . ,an ∈Q)

one could attach a group of permutations to the polynomial f (x) of the equation.
The equation is solvable by radicals if, and only if, the group associated with the
polynomial is solvable. After Galois, Felix Klein (1849–1929) attempted to de-
scribe all geometries by their groups of symmetries. This, he called the Erlangen
Programme. Since then, group theory has become a major tool in many branches
of mathematics.

Arthur Cayley (1821–1895), Richard Dedekind and Kronecker gave a gen-
eral definition of an abstract group. It was an example to make abstraction the
general trend, just as the axiomatic or postulational development of mathematics
laid the foundations of modern mathematics during the period 1880–1900. But,
then, when did number theory interact with groups? It is to be emphasized that it
was Augustin-Louis Cauchy (1789–1857) and the Norwegian high-school teacher
Ludwig Sylow (1832–1918) who gave conditions for the existence of a subgroup
of prime-power order in a finite group. The contributions of C. Jordan (1838–
1922), Frobenius (a student of Karl Weierstrass), I. Schur (1875–1941) (a student
of Frobenius) to the representation theory of groups are substantial. Indeed, the
probing investigations of William Burnside (1852–1927) into group theory made
it a well cut-out branch of algebra. Burnside’s aim was to understand finite sim-
ple groups better. Burnside’s conjecture: ‘No simple group of odd order exists’

177
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was solved in the affirmative by Walter Feit and John Thompson in 1963. See
[A2]. The classification problem of finite simple groups has also been settled
by E. Zelmanov in 1992. Zelmanov received the Fields medal for his solution to
‘Restricted Burnside Problem for groups’ in 1994.

7.1. Introduction

Wherever there is a problem of enumeration or counting of objects, number
theory lends a helping hand. While counting the number of conjugate classes of
elements in the symmetric group Sn (n≥ 2), one gets a formula in terms of p(n),
the number of partitions of n. This aspect is narrated in Section 7.2. In chapter 5,
the Rademacher formula for N(n,r,s), the number of solutions of

x1 + x2 + · · ·+ xs ≡ n (mod r)

under the restriction g.c.d (xi,r) = 1, i = 1,2, . . . ,r was derived. See Section 5.6. A
similar situation occurs in counting the number of distinguished representations
of a group element of a finite group G. The main result in the context of groups is
due to David Jacobson and K. S. Williams [8] and is shown in theorem 51. This
is dealt with in Section 7.3. Section 7.4 is about the number of cyclic subgroups
of a finite group. Burnside’s lemma (see theorem 52) is applied to establish I. M.
Richards’ theorem (theorem 54) which says that if G is a finite group of order r,
the number of cyclic subgroups of G is d(r), the number of divisors of r if, and
only if, G is cyclic. See [12]. Incidentally, P. Kesava Menon’s identity [11]

∑

a (mod r)
g.c.d (a,r)=1

(a − 1,r) = φ(r)d(r)

is deduced from Burnside’s lemma.
Next, a criterion for uniqueness of a cyclic group of order r due to Dieter

Jungnickel [3] is proved in theorem 55. The criterion is that a group G of order r
is a unique cyclic group if, and only if, g.c.d (r,φ(r)) = 1.

7.2. Conjugate classes of elements in a group

We recall the notion of conjugacy in respect of elements of a group G.

Definition 7.2.1 : For a,b∈G, b is called a conjugate of a in G, if there exists an
element c in G such that b = c−1ac.

Conjugacy is an equivalence relation on the set G. For a ∈ G, we write

(7.2.1) C(a) = {x ∈ G : x is a conjugate of a}
C(a) denotes the equivalence class of a or the conjugate class of a (conjugacy
class of a). If N(a) denotes the set of elements of G which commute with a, N(a)
is a subgroup of G. N(a) is known as the normalizer of a in G. We denote the
number of elements in C(a) by |C(a)|.
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Fact 7.2.1 : If G is a finite group and a ∈ G

|C(a)| = |G|
|N(a)|

where |G| and |N(a)| denote the number of elements of G and N(a) respectively.

For proof, see I. N. Herstein [7].
As G is a disjoint union of conjugate classes of elements, we deduce the class

equation of G in the form

(7.2.2) |G| =
∑

a

|G|
|N(a)|

where summation is over one element a in each conjugate class.
We apply (7.2.2) to connect the number of conjugate classes of elements in

Sn, the permutation group on n symbols with partition function.

Definition 7.2.2 : Let T = {a1,a2, . . . ,am, . . .} be a finite or infinite set of positive
integers . If

a(1)
j + a(2)

j + · · ·+ a(r)
j = n with a(i)

j ∈ T, (i = 1,2, . . . ,r)

we regard a(1)
j + · · ·+a(r)

j as a partition of n into r summands or parts belonging to
T . If n ∈ T , n itself is counted as a partition of n. The summands do not have to
be distinct.

Definition 7.2.3 : Let T be a finite or infinite set of positive integers. The number
of distinct partitions of n into summands (or parts) belonging to T is denoted by
pT (n). pT is the partition function relative to T .

pT (n) is the number of unrestricted partitions of N into parts that belong to T .
pT is a function pT : N→ N where N denotes the set of positive integers. When
T = N, the partition function is denoted by p. In fact, p(n) denotes the number
of partitions of n. For instance, as 5=4+1 or 3+2 or 3+1+1 or 2+2+1 or 2+1+1+1
or 1+1+1+1+1. p(5) = 7 (as 5 = 5 is also to be counted for obtaining p(5)).
By convention, we take p(0) = 1.

Definition 7.2.4 : When |x|< 1, F(x) =
∑∞

n=0 p(n)xn is called the generating func-
tion of p(n).

A result due to Euler says:

Fact 7.2.2 :

F(x) =
∞∑

n=0

p(n)xn =
∞∏

k=1

(1 − xk)−1 ( |x|< 1).

For proof, see Emil Grosswald [6].

Theorem 49 : The number of conjugate classes in Sn is p(n), the number of
unrestricted partitions of n.
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Proof : It is known that every element α of Sn that is not a cycle by itself is
expressible as a product of cycles. When we break a given permutation α ∈ Sn

into a product of cycles, we obtain a partition of n. For, if the cycles appearing in
α have lengths n1,n2 . . . ,nr respectively with
n1 ≤ n2 ≤ ·· · ≤ nr, then

(7.2.3) n = n1 + n2 + · · ·+ nr.

A permutation α ∈ Sn has the cycle decomposition {n1,n2, . . . ,nr}, if α is a prod-
uct of disjoint cycles of lengths n1,n2, . . .nr.

Claim : Two permutations α,β ∈ Sn are conjugate if, and only if, they have the
same cycle decomposition.

Suppose θ ∈ Sn. Given α ∈ Sn, we need to describe θαθ−1. Suppose that α
sends i to j and θ sends i to s and j to t. Then θαθ−1 sends s to t. That is, to
compute θ−1αθ, we replace every symbol in α by its image under θ.

Suppose

α = (a1a2 · · ·an1 )(b1b2 · · ·bn2) · · · (x1x2 · · ·xnr ) and

β = (a′1a′2 · · ·a′n1
)(b′1b′2 · · ·b′n2

) · · · (x′1x′2 · · ·x′nr
)

(7.2.4)

Then,

β = θαθ−1 where θ =
(

a1a2 · · ·an1 b1b2 · · ·bn2 · · · x1x2 · · ·xnr

a′1a′2 · · ·a′n1
b′1b′2 · · ·b′n2

· · · x′1x′2 · · ·x′nr

)

It is clear that two conjugates have the same cycle decomposition. The rule for
computing a conjugate of α is that we have to replace every element in a cycle
by its image under the element θ ∈ Sn used for taking θ−1αθ. As each conjugate
class gives a partition of n, p(n) gives the number of conjugate classes in Sn. �

Example 7.2.1 : In the case of S5, as p(5) = 7, there are 7 conjugate classes of
elements in S5.

Remark 7.2.1 : The computation of p(n) is possible, if p(t) is known for all t < n.
The well-known formula is

(7.2.5) p(n) = p(n − 1) + p(n − 2) − p(n − 5) − p(n − 7) + · · ·+ (−1)k+1p(n − nk) + · · ·
where nk = 1

2 k (3k±1) are called pentagonal numbers.

For proof, see Emil Grosswald [6]. The series on the right side of (7.2.5)
terminates when k(3k+1)

2 > n.

7.3. Counting certain special representations of a group element

G denotes a finite group which is not necessarily abelian.
We call a ∈ G a special element if a is characterised by a specific property P
relating to G. For example, a∈G is called a generator if there exists a subset T of
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G such that S = T ∪{a} generates G but the subgroup generated by T is not equal
to G. The property P here is ‘being a generator’.

Definition 7.3.1 : The centre Z(G) of G is defined by

Z(G) = {x ∈ G : xa = ax for all a ∈ G}.
In fact, the centre of G consists of those elements (of G) which commute

with every element of G. y ∈ G is called a central element if y ∈ Z(G). We could
take the property P of a special element to be ‘being non-central’. Further, the
property P could be such that the order of a special element is greatest.

In [8], David Jacobson and Kenneth S. Willams consider the number of rep-
resentations of an element in a finite group G as a product of s special elements
possessing a specified property P. More generally, one could consider a non-
empty subset D of G and find the number N(D,a,s) of solutions of the equation

(7.3.1) x1x2 · · ·xs = a , where xi ∈ D (i = 1,2, . . . s).

We observe that if a does not belong to the subgroup generated by D, then
N(D,a,s) = 0 for all s.

For arbitrarily chosen D, the evaluation of N(D,a,s) is not easy. If D is a
subgroup of G,

(7.3.2) N(D,a,s) = |D|s−1, for all a ∈ D.

Let D be a non-empty subset of G. We write J(D) = J to denote the largest
normal subgroup of G such that

xJ ⊆ D for all x ∈ D.

Definition 7.3.2 : The group G is said to be D-reduced, if J = (e) where e denotes
the identity element of G.

G/J is denoted by Ḡ and elements of Ḡ (that is, cosets of J in G) are denoted
by ā for a ∈ G. In other words,

ā = aJ in Ḡ.

Lemma 7.3.1 : Let G be a group. Suppose that J is a normal subgroup of G. If
x1,x2, . . . ,xs are elements of G, the number of s-tuples (y1,y2, . . .ys) such that

x1x2 · · ·xs = y1y2 · · ·ys where yi ∈ xiJ i = 1,2, . . . ,s

is equal to |J|s−1.

Proof : in two steps.
1. The case s = 1 is trivial as x1e = x1 and x1 ∈ x1J. So, the number of elements

having this property equals 1 = |J|0.
2. Suppose that s > 1. Let b1,b2, . . . ,bs−1 be arbitrary elements of J. Then,

b1x2 b2x3 · · ·bs−1xs = (x2x3 · · ·xs)(b1b2 · · ·bs−1)
= (x1x2 · · ·xs)b where b1b2 · · ·bs−1 = b, b ∈ J
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or
(b1x2 b2x3 · · ·bs−1xs)b−1 = x1x2 · · ·xs.

So, the number of representations such as x1x2 · · ·xs = y1y2 · · ·ys where yi ∈ xiJ
is the same as the number of (s − 1)-tuples
(b1,b2, . . . ,bs−1) where bi ∈ J (i = 1,2, . . . ,s − 1).

Therefore, the number desired is |J|s−1, as {b1b2 · · ·bs−1} can be chosen from J in
|J|s−1 ways. �

Theorem 50 : If D̄ = {x̄ : x ∈ D}, then Ḡ is D̄-reduced and

(7.3.3) N(D,a,s) = |J|s−1N(D̄, ā,s)

Proof : K̄ = K/J is a normal subgroup of Ḡ = G/J, if K is a normal subgroup of
G containing J. If K̄ is the largest normal subgroup of Ḡ such that x̄K̄ ⊆ D̄ for
all x̄ ∈ D̄, then it is easy to check that xK ⊆ D for all x ∈ D. As K is a normal
subgroup of G, K = J and so Ḡ is D̄-reduced.
To find N(D,a,s), we proceed as follows:

Let T denote the set of solutions (x1,x2, . . . ,xs) of (7.3.1), we introduce an
equivalence relation on T by considering

(x1,x2, . . . ,xs)∼ (y1,y2, . . . ,ys)

if yi ∈ xiJ (i = 1,2, . . . ,s). With each equivalence class C(x1,x2, . . . ,xs)
of the s-tuple (x1,x2, . . .xs), we associate an s-tuple (x̄1, x̄2, . . . , x̄s) where

(7.3.4) (x̄1 x̄2 · · · x̄s) = ā in Ḡ

Let E be the set equivalence classes of T , if T̄ denotes the set of solutions of

(7.3.5) x̄1 x̄2 · · · x̄s = ā where x̄1, x̄2 . . . , x̄s ∈ D̄

we obtain a map ψ : E→ T̄ defined by

(7.3.6) ψ(C(x1,x2, . . .xs)) = (x̄1, x̄2, . . . x̄s)

Claim : ψ is a bijection.
For, if (x̄1, x̄2, . . . x̄s) = (t̄1, t̄2, . . . t̄s), that is, if

x̄i = t̄i i = 1,2, . . .s

then, (x1,x2, . . .xs)∼ (t1, t2, . . . , ts) and

C(x1,x2, . . . ,xs) = C(t1, t2, . . . , ts)

That is, ψ is one-one.
To show that ψ is onto, let x̄1x̄2 · · · x̄s = ā where x̄1, x̄2, . . . , x̄s ∈ D̄.
Then, x1x2 · · ·xsb = a where x1,x2, . . . ,xs ∈ D and b ∈ J.

Thus (x1,x2, . . .xs−1,xsb) is a solution of (7.3.1) and ψ maps C(x1,x2, . . .xsb)
onto (x̄1, x̄2, . . . , x̄s) in T̄ . So, the number of equivalence classes of T is equal to
N(D̄, ā,s). By lemma 7.3.1, each equivalence class consists of |J|s−1 elements and
hence (7.3.3) follows. �
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Remark 7.3.1 : If J = G \D and J is a normal subgroup of G, D̄ = {ā : a ∈ D}
and Ḡ is D̄-reduced. This shows that J consists of all the elements of Ḡ except the
identity. For, J∩D = ∅ and the coset eJ belonging to Ḡ is not in D̄ .

Next, we introduce a function f : G→ Z by

(7.3.7) f (a) =

{
−1, if a ∈ D
[G : H] − 1, a 6∈ D, where H = G\D is a subgroup of G.

The formula for N(D,a,s) is obtained in the following

Theorem 51 (D. Jacobson and K. S. Willams (1972)) : Let G be a finite group.
Suppose that D is a non-empty subset of G such that H = G \D is a subgroup of
G. Then,

(7.3.8) N(D,a,s) =
|D|s
|G| {1 +

(−1)s f (a)
([G : H] − 1)s}

where f is as defined in (7.3.7). [G : H] denotes the index of H in G.

Proof : We, first, note that H is not taken as a normal subgroup. For b ∈ G,
N(D,b,s) denotes the number of representations of b as a product of s elements
chosen from D. The number of ways of forming s-tuples from D is |D|s. So,

(7.3.9)
∑

b∈G

N(D,b,s) = |D|s

Now, all the solutions of

x1x2 · · ·xsxs+1 = a where xi ∈ D (i = 1,2, . . . , (s + 1))

correspond to the solutions of the simultaneous system of equations

x1x2 · · ·xs = b, xs+1 = b−1a, b ∈ G,a ∈ G and b−1a ∈ D

Therefore, we deduce that

(7.3.10) N(D,a,s + 1) =
∑

b−1a∈D

N(D,b,s)

As H = G\D, we obtain from (7.3.9) and (7.3.10) that

(7.3.11) N(D,a,s + 1) = |D|s −
∑

b−1a∈H

N(D,b,s)

Now, b−1a ∈ H ⇔ a ∈ bH. That is,

b−1a ∈ H ⇔ b ∈ aH

Next, we claim that

(7.3.12) N(D,a,s) = N(D,b,s), whenever b ∈ aH.

For, suppose that b = ac where c ∈ H.
If a,b ∈ D, N(D,a,1) = N(D,b,1).
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If a 6∈ D, then a ∈ H and b ∈ H. So,

N(D,a,1) = N(D,b,1) = 0

So, (7.3.12) is true for s = 1.
Assume that s> 1. If x1x2 · · ·xs−1xs = a and each xi ∈ D

(i = 1,2, . . . ,s) then,

x1,x2, . . . ,xs−1 (xsc) = b where c ∈ H

If xsc 6∈ D, xsc ∈ H. So, xs ∈ H and so xs 6∈ D.
The contrapositive statement yields xs ∈ D⇒ xsc ∈ D.
So, N(D,a,s) = N(D,b,s), whenever b ∈ aH.
This establishes (7.3.12).
From (7.3.11), we obtain

(7.3.13) N(D,a,s + 1) = |D|s − |H| N(D,a,s).

This is a recurrence relation connecting N(D,a,s) and N(D,a,s + 1). By repeated
application of (7.3.13), one gets

(7.3.14) N(D,a,s) = |D|s−1 − |H||D|s−2 + · · ·+ (−1)s−2|H|s−2|D|
+ (−1)s−1N(D,a,1).

But,

(7.3.15) N(D,a,1) =

{
1, if a ∈ D,
0, if a 6∈ D.

So, the right side of (7.3.14) has either s or (s − 1) terms according as a ∈ D or
a 6∈ D. As [G : H] = |G||H| ,

(7.3.16) [G : H] − 1 =
|D|
|H| and 1 +

|H|
|D| =

|G|
|D| .

We note that we get the sum on the right side of (7.3.14) as that of a geometric
progression with common ratio − |H||D| .
So,

(7.3.17) N(D,a,s) =





|D|s−1
{

1−(−1)s( |H||D| )
s

1+ |H||D|

}
, if a ∈ D

|D|s−1
{

1−(−1)s−1( |H||D| )
s−1

1+ |H||D|

}
, if a 6∈ D

So (7.3.17) reduces to

(7.3.18) N(D,a,s) =





|D|s
|G|

(
1 + (−1)(−1)s

([G:H]−1)s

)
, if a ∈ D

|D|s
|G|

(
1 + (−1)s

([G:H]−1)s−1

)
, if a 6∈ D

With f as given in (7.3.7), we obtain (7.3.8) from (7.3.18). �

Remark 7.3.2 : Theorem 51 has been adapted from [8].
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APPLICATIONS 7.3.1: G is a finite group. Suppose P is the property of an ele-
ment being ‘non-central’. The set of elements possessing the property P is the set
of elements (of G) which are not in the centre Z(G) of G. (See definition 7.3.1).
So, D is the set of non central elements. Clearly, G\D = Z(G) is a subgroup of G.
Therefore, theorem 51 is applicable to obtain N(D,a,s).

We take, for instance the dihedral group D4 giving the group of symmetries
of a square. Its elements are

a0 =
(

1 2 3 4
1 2 3 4

)
, b1 =

(
1 2 3 4
2 1 4 3

)
,

a1 =
(

1 2 3 4
2 3 4 1

)
, b2 =

(
1 2 3 4
4 3 2 1

)

a2 =
(

1 2 3 4
3 4 1 2

)
, c1 =

(
1 2 3 4
3 2 1 4

)
,

a3 =
(

1 2 3 4
4 1 2 3

)
, c2 =

(
1 2 3 4
1 4 3 2

)
.

(7.3.19)

ai (i = 0,1,2,3) represent rotations, bi (i = 1,2) present mirror images in perpen-
dicular bisectors of sides and ci(i = 1,2) represent diagonal flips.

Z(D4) = {a0,a2}.
[D4 : Z(D4)] = 4.

D denotes the set of non-central elements. Taking t ∈ D4, the expression for
N(D, t,3) (s = 3) is

(7.3.20) N(D, t,3) =

{
28, if t ∈ D
24, if t 6∈ D

We recall that a group G is said to be finitely generated if the set of elements
which generate G is a finite set.

Definition 7.3.3 : A group G satisfies the maximum condition for subgroups,
if every non-empty chain of subgroups has a maximal element. That is, every
ascending chain of subgroups becomes constant after a finite number of steps.

The minimum condition is satisfied if every non-empty chain of subgroups
has a minimal element.

Definition 7.3.4 : a) Let G be a group with identity e. A subnormal series of G
is a finite ascending chain of subgroups of G beginning with H0 = (e) as given
below:

H0 = (e)⊂ H1 ⊂ H2 · · · ⊂ Hn = G
and Hi is a normal subgroup of Hi+1(i = 0,1,2, . . . ,n−1). The factor groups Hi+1/Hi

are called the factor of the subnormal series and the number of factors (> 1) is
called the length of the subnormal series.
b) A subnormal series {K j} is a refinement of a subnormal series {Hi} of a group
G, if each Hi is a K j.
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c) Two subnormal series of the same group are called equivalent, if they have
the same length and if there is a one-to-one correspondence between their factors
where corresponding factors are isomorphic groups.
d) A composition series of a group G is a subnormal series whose factors are
simple groups 6= (e). That is, one has an ascending chain of subgroups:

H0 = (e)⊂ H1 ⊂ ·· · ⊂ Hn = G

and each Hi is a maximal normal subgroup of Hi+1(i = 0,1,2, . . . ,n − 1).

Propositions 7.3.1 :
a) (Schreier’s theorem) Any two subnormal series of the same group have isomor-
phic refinements.
b) (Jordan-Hölder theorem) Any two composition series of the same group are
equivalent.
For proofs, see D. Robinson [13].

Fact 7.3.1 : A group satisfies the maximum condition if, and only if, each of its
subgroups is finitely generated.

Fact 7.3.2 : A non-trivial finitely generated group has a maximal subgroup and
also has a maximal normal subgroup (A maximal normal subgroup is a proper
normal subgroup which is not a proper subgroup of a proper normal subgroup).

Fact 7.3.3 : If a group satisfies the minimum condition, then each of its elements
has finite order.

Fact 7.3.4 : A group G is not finitely generated if it has an infinite ascending
union ∪∞n=1An with each An properly contained in An+1 where Ai, (i = 1,2, . . .) are
subgroups of G, or, if it is an infinite direct product

∏∞
n=1 Bn with each Bn a non-

trivial subgroup of G.

For proofs of Facts 7.3.1 to 7.3.4, see Eugene Shenkman [14].

Definition 7.3.5 : Let x be an element of a group G. x is called a non-generator
if for every subset S (of G) such that G = 〈S,x〉 (the subgroup generated by S and
x), one has G = 〈S〉 also.

In the case of D4, the maximal subgroups are
H1 = {a0,a2,b1,b2}
H2 = {a0,a1,a2,a3}
H3 = {a0,a2,c1,c2}

(7.3.21)

Claim : It is easy to check that the set of non-generators of a group G is a subgroup
of G . (It is non-empty, as it contains the identity element e). By convention, the
empty set φ is a generating set for the trivial subgroup 〈φ〉 = (e).
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To substantiate the claim, let x,y be non-generators of G. Let S be a set of
generators of G.

If G = 〈xy−1,S〉, then G = 〈x,y,S〉 = 〈x,S〉 = 〈S〉
That is, xy−1 is a non-generator whenever x and y are non-generators. This estab-
lishes the claim.

Definition 7.3.6 : The subgroup of non-generators of a group G is called the
Frattini subgroup of G. (after Giovanni Frattini (1852–1925))

Fact 7.3.5 : The Frattini subgroup of a group G is the intersection of G with the
maximal subgroups of G.

For proof, see Eugene Shenkman [14].
In the case of D4, from (7.3.21), we see that the Frattini subgroup of D4 is

given by K (say), where

K = H1∩H2∩H3 = {a0,a2} = Z(D4).

Remark 7.3.3 : If G is a finitely generated simple group, then the Frattini sub-
group of G is (e) where e is the identity element in G.

Another illustration of theorem 51 is from the Frattini subgroup of a group G.
If P is the property of an element being a generator of G, D is the set of generators.
The complement of D in G is K, the Frattini subgroup of G. So the formula for
N(D,a,s) holds.

Taking the example of D4 once again, the set of generators of D4 is {a1,a3,b1,
b2,c1,c2} where ai, bi, ci are as given in (7.3.19). Here, D is the set of generators
and |D| = 6. Then, with s = 4

(7.3.22) N(D, t,4) =

{
2(34 − 1), if t ∈ D;
6(33 + 1), if t 6∈ D.

Remark 7.3.4 : The dihedral group Dn is defined as a group of order 2n and
having generators a, b such that

an = e, b2 = e, ba = a−1b

It is the group of symmetries of the regular n-gon. The elements of Dn

[1, Proposition 3.6 page 165] are

{e,a,a2, . . .an−1;b,ab,a2b, . . . ,an−1b} = {aib j : 0≤ i < n,0≤ j < 2}

It can be shown that if a group G is of order 2p, where p is an odd prime, then G
is either cyclic or Dp.
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7.4. Number of cyclic subgroups of a finite group

It is known that if G is a finite cyclic group of order r, then for each divisor t
of r, there is exactly one subgroup of order t and this subgroup is cyclic. This is
established as follows:

Let r be equal to pa1
1 pa2

2 . . . p
ak
k ai ≥ 1, i = 1,2, . . . ,k.

As pbi
i (1 ≤ bi ≤ ai) divides r, by Sylow’s first theorem, there is a subgroup (of

G) of order pbi
i and it is cyclic. When m, n are relatively prime to one another the

cyclic groups C(m) and C(n) of orders m and n respectively are such that C(mn) is
isomorphic to the direct productC(m)×C(n). It is also cyclic. So the subgroups of
G are cyclic subgroups C(t) for each divisor t of r. C(t) is unique on account of the
fact that C(t) is isomorphic to the direct product of cyclic groups whose orders are
relatively prime to one another. Therefore, if d(r) denotes the number of divisors
of r, G has exactly d(r) cyclic subgroups. This statement can be sharpened by
considering any finite group of order r.

We need the notion of a group action on a set X .

Definition 7.4.1 : A group G is said to act on a set X, if for each x ∈ X, we
associate the pair (g,x) denoted by g(x) satisfying the following conditions:
(a) g(h(x)) = gh(x) for g,h ∈ G and every x ∈ X
(b) e(x) = x where e is the identity in G and x ∈ X.

For example, the symmetric group Sn is a group acting on the set {1,2, . . . ,n}.
Definition 7.4.2 : For x,y ∈ X, we define a congruence

x≡ y(mod G)

if there exists g ∈ G such that g(x) = gx = y.

≡ is an equivalence relation on X . The equivalence classes under≡ are called the
orbits of G (in X).

Definition 7.4.3 : For x ∈ X, we define

Gx = {g ∈ G : g(x) = x}
Gx is called the stabilizer of x in G.

It is easy to check that Gx is a subgroup of G. It is also clear that if Ox denotes
the orbit of G containing x, then, when |G| is finite,

(7.4.1) |G| = |Gx||Ox|.
Theorem 52 (Burnside’s lemma) : Let G be a finite group. If G acts on a set X
and if ψ(g) denotes the number of elements of X which are left invariant by g∈G,
the number N(G) of orbits of G is given by

(7.4.2) N(G) =
1
|G|
∑

g∈G

ψ(g)
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Proof : We suppose that S(G) denotes the set of orbits of G. We need to find out
N(G) = |S(G)|. Let r denote the number of elements of the form g(x) where x∈ X ,
g ∈ G and g(x) = x. For fixed g, the number of such elements is given by ψ(g) (in
the notation of the theorem). Then,

(7.4.3) r =
∑

g∈G

ψ(g)

Now, for a fixed x ∈ X , the number of elements g(x) for which g(x) = x, g ∈ G is
|Gx| (see definition 7.4.3). If T denotes the union of orbits of G, we have

r =
∑

y∈T

|Gy| =
∑

O∈S(G)

∑

x∈O

|Gx| (where O denotes an orbit).

If x and y belong to the same orbit,

|Gx| = |Gy| =
|G|
|Ox|

=
|G|
|Oy|

, by (7.4.1).

Thus,

r =
∑

g∈G

ψ(g) =
∑

O∈S(G)

∑

x∈O

|G|
|Ox|

,

=
∑

O∈S(G)

|Ox|
|G|
|Ox|

= |G|
∑

O∈S(G)

1.

Or,

(7.4.4) r = |G|N(G).

From (7.4.3) and (7.4.4), we arrive at the desired formula for N(G) given in
(7.4.2). �

Illustration 7.4.1 (Kesava Menon’s identity [11]) :

(7.4.5)
∑

a(mod r)
g.c.d (a,r)=1

(a − 1,r) = φ(r)d(r)

where the summation on the left is over a reduced-residue system (mod r). φ(r)
and d(r) are, respectively, the Euler φ-function and the divisor function.

Proof : We consider a set X given by {1,2, . . . ,r}. Ur denotes the multiplicative
group of units in Z/rZ. Ur is of order φ(r). The action of Ur on X together with
Burnside’s lemma yields the desired identity.

For ψ(g) = #{x ∈ X : g(x) = x where g ∈Ur}
ψ(g) is the number of solutions of the congruence

(7.4.6) gx≡ x (mod r) where g.c.d (g,r) = 1
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(7.4.6) is written as

(7.4.7) (g − 1)x≡ 0(mod r)

So, ψ(g) is the number of solutions of the congruence (7.4.7). Therefore, ψ(g) =
g.c.d (g − 1,r). See Fact 5.2.1, chapter 5.

If N(Ur) denotes the number of orbits of Ur in X , then, using Burnside’s
lemma (theorem 52), we obtain

(7.4.8) N(Ur) =
1
φ(r)

∑

g (mod r)
g.c.d (g,r)=1

(g − 1,r)

Therefore, it will suffice to show that N(Ur) = d(r), the number of divisors of r.
Now, x,y (∈ X) belong to the same orbit if there exists g ∈ Ur such that y = gx,
g.c.d (g,r) = 1.
If y = gx for some g ∈Ur, g.c.d (y,r) = g.c.d (x,r). Those elements of x for which
g.c.d (x,r) = d fall into one orbit, where d is a divisor of r. In fact, if d|r, there
are φ( r

d ) elements in an orbit Od where x ∈ Od is such that g.c.d (x,r) = d. This is
precisely a class-division of integers (mod r). It was first noticed by C. F. Gauss
and later studied intensively by R. Vaidyanathaswamy. That the orbits of Ur in X
are mutually disjoint follows from the fact that

∑
d|rφ( r

d ) = r. So, N(Ur) = d(r).
This proves (7.4.5). �

Next, we give a characterization of a finite cyclic group. It is easy to note that
a cyclic group of order r has φ(r) generators, φ being the Euler φ -function.

Lemma 7.4.1 : If a group G contains an element of order s, then it contains at
least φ(s) of them.

Proof : Suppose that g ∈ G has order s. Then the cyclic subgroup H (of G)
generated by g has s elements. So, it has φ(s) generators all of which are elements
of order s (in G). So, G has at least φ(s) elements of order s. �

Corollary 7.4.1 : A cyclic group G of order r has exactly φ(d) elements of order
d for each divisor d of r.

Proof : Letψ(d) denote the number of elements of order d in G, where d|r. Then,
ψ(d)≥ φ(d). Since every element of G has order d for each divisor d of r,

r =
∑

d|r
ψ(d)≥

∑

d|r
φ(d) = r

So, equality can happen if, and only if, ψ(d) = φ(d) for each divisor d of r. �

Lemma 7.4.2 : Let G be a group of order r. If G has at most φ(d) elements of
order d for each divisor d of r, then G is cyclic.

Proof : If ψ(d) denotes the number of elements of order d where d|r, we have,
by hypothesis, ψ(d)≤ φ(d).
So, r =

∑
d|rψ(d)≤∑d|rφ(d) = r.
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Equality holds if, and only if,ψ(d) =φ(d) for each divisor d of r. In particular,
ψ(r) = φ(r) 6= 0 and so G has an element of order r. That is, G is cyclic. �

Theorem 53 : A finite group G of order r is cyclic if, and only if, it has φ(d)
elements of order d for each divisor d of r.

Proof : :⇒ G is cyclic.
So, for each divisor d of r, there is a cyclic subgroup H of order d and H has φ(d)
generators.
⇐: Conversely, if G has φ(d) elements of order d for each divisor d of r, there is
an element of order r or G is cyclic. �

Lemma 7.4.3 (J. S. Jose) : Let G be a group of order r. If, for each divisor d of
r, the number of solutions of the equation xd = e (the identity in G) is less than or
equal to d, then G is cyclic.

Proof : [The abelian case] We give a proof of lemma 7.4.3 in the case where G is
abelian. It is known [7] that G is a direct product of its Sylow p-subgroups. As a
prime-power group is a direct product of cyclic subgroups, we consider two cyclic
subgroups H and K (of G) of orders s and t respectively, where g.c.d (s, t) = 1.

In H×K, there are precisely st solutions for xst = e.
If g.c.d (s, t)> 1, let g.c.d (s, t) = q.

Then s = qs′, t = qt ′; g.c.d (s′, t ′) = 1.
xq = e in H×K has 2q − 1 solutions of the form hakb where (a,b) has values

(0,0), (s′,0), (2s′,0), . . . , ((q − 1)s′,0); (0, t ′), (0,2t ′), . . . (0, (q − 1)t ′).

Then, when H and K are cyclic groups of orders s and t respectively and when
d|st, then xd = e has exactly d = g.c.d (d,st) solutions if, and only if, g.c.d (s,t) = 1.
On the contrary, more than q solutions exist for q = g.c.d (s, t)> 1. Further, H×K
is cyclic if, and only if, g.c.d (s, t) = 1. So, for G, a group other than a cyclic
group, when d divides |G|, xd = e has more than d solutions. When xd = e has less
than or equal to d solutions, G has to be cyclic. �

For the general case, see J. S. Jose [10].

Theorem 54 (I. M. Richards (1984)) : Let G be a group of order r. If d(r) denotes
the number of divisors of r, then the number of cyclic subgroups of G is greater
than or equal to d(r). Further, the number of cyclic subgroups of G is d(r) if, and
only if, it is cyclic.

Proof : Ur denotes the group of units in Z/rZ. As noted earlier, |Ur| = φ(r). We
consider the action of Ur on the set G (stripped of its group structure). With each
s ∈Ur, we associate the permutation πs defined by

(7.4.9) πs(g) = gs, for all g ∈ G,

Under this action, two elements belong to the same orbit of Ur if, and only if, they
generate the same cyclic subgroup of G. Therefore, the number of orbits of Ur
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denoted by N(Ur) is equal to the number of cyclic subgroups of G. By Burnside’s
lemma (theorem 52), we get

(7.4.10) N(Ur) =
1
φ(r)

∑

s∈Ur

ψ(s),

whereψ(s) denotes the number of elements of G which are left invariant by s∈Ur.
That is,

πs(g) = gs = g

Or, gs−1 = e (the identity element).
In the case of a cyclic group C(r) of order r, for g ∈C(r), gs−1 = e

⇒ tk(s−1) = e where t is a generator of C(r).
Reverting to a congruence modulo r, we have only to find the number of solutions
of (s − 1)x≡ 0 (mod r) to obtain the number of elements of order (s − 1) in C(r).
The number of solutions is given by g.c.d (s − 1,r). When G is an arbitrary group
of order r, the centre Z(G) of G may contain more than one element. Therefore,
when products of elements of G belong to Z(G), the number of elements of G of
order (s − 1) is a multiple of g.c.d (s − 1,r). Thus,

(7.4.11) ψ(s) = ks g.c.d (s − 1,r)

where ks is an integer≥ 1. (7.4.11) is due to Frobenius [5]. From (7.4.11), we get

(7.4.12) N(Ur) =
1
φ(r)

∑

s∈Ur

ks g.c.d (s − 1,r)

As ks ≥ 1,

(7.4.13) N(Ur)≥
1
φ(r)

∑

s∈Ur

g.c.d (s − 1,r).

The case of equality in (7.4.13) occurs when G is a cyclic group of order r, as seen
in illustration 7.4.1. Further, N(Ur) is equal to the number of cyclic subgroups of
G. From (7.4.13), N(Ur)≥ d(r). This proves that the number of cyclic subgroups
of a group G (of order r) ≥ d(r). This is the first part of the theorem.

Now, the number of cyclic subgroups of G is equal to d(r) if, for each s with
g.c.d (s,r) = 1 the number of solutions of the equation

(7.4.14) x f = e in G (where f = g.c.d (s − 1,r))

is exactly g.c.d (s − 1,r).
Next, we set Tr = {g.c.d (s − 1,r) : s ∈Ur}. It follows that

(7.4.15) Tr =

{
{d : d|r,d even}, if r is even,
{d : d|r}, if r is odd.

Therefore, if G is a group of odd order r such that the number of cyclic subgroups
of G is d(r), the number of divisors of r, then G is cyclic. This follows from the
structure of Tr and lemma 7.4.3.
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Next, assume that G is a group of even order r. Suppose that the number of
cyclic subgroups of G is d(r). As Tr = {t : t|r, t even}, for each even divisor t of
r, the number of solutions of xt = e in G is exactly t. In particular, the number of
solutions of x2 = e is 2. Therefore a homomorphism ψ : G→ G (onto G) defined
by ψ(x) = x−1 for all x ∈ G is a unique involution in the sense that ψ2 = I, the
identity homomorphism. Those elements (of G) of the form y where y2 = e are
fixed by ψ.

Let m be an odd divisor of r (An even integer other than 2q (q≥ 1) can have
non-trivial odd divisors).
Suppose that a ∈ G and am = e. Then, a2m = e and ψ(a)2m = (a−1)2m = (a2m)−1 = e.
So, to each solution of xm = e in G, there correspond two solutions of the equation
x2m = e. So the number of solutions of the equation x2m = e is only 2m. That is,
the number of solutions of xm = e cannot exceed m. This is true of any divisor d
of r. So, the number of solutions of xd = e (where d divides r) cannot exceed d.
So, by lemma 7.4.3, G is cyclic.

This completes the proof of the second part of theorem 54. �

Remark 7.4.1 : The proof of theorem 54 has been adapted from I. M. Richards
[12]. Theorem 52 and illustration 7.4.1 are also given in [15].

Remark 7.4.2 : In [A3], enumeration techniques giving a variation of Burnside’s
lemma have been pointed out. In particular, the proof of the following congru-
ence:
Let a be an arbitrary integer. If µ denotes the Möbius function (definition 4.3.4,
chapter 4), for r ≥ 1,

(7.4.16)
∑

d|r
µ(

r
d

)ad ≡ 0(mod r)

is given using an analogue of Burnside’s lemma. Incidentally, we mention that
according to P. M. Neumann [A7], the orbit-counting lemma of Burnside is to
be reckoned as Cauchy-Frobenius orbit-counting formula and this is endorsed in
[A3]. Details of generalizations are not discussed here.

7.5. A criterion for the uniqueness of a cyclic group of order r

In [2], L. E. Dickson (1905) determined the positive integers r for which
every group of order r is abelian. Naturally, one could ask for a criterion for a
group of order r to be unique up to isomorphism. Of course, such a group must
be cyclic. For, there is a cyclic group of order r for every positive integer r ≥ 2.
It is easily checked that there is a unique cyclic group of order p, a prime. For
r = pq where p and q are primes (p< q), there is a criterion for the existence of a
cyclic group of order pq. It is given in the following
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Lemma 7.5.1 : (J. B. Fraleigh) Let r = pq where p and q are primes and p < q.
There exists a unique cyclic group of order r if, and only if, q 6≡ 1 (mod p), that
is, if, and only if, p does not divide (q − 1).

Proof : Let G be the group of order r. G has a Sylow q-group and the number
of such subgroups is congruent to 1 (mod q) and divides pq by Sylow theorems.
Since p < q, the only possibility is one. So, there is only one Sylow q-subgroup
H of G and it is normal in G. Similarly, there is a Sylow p-subgroup K of G and
the number of such subgroups is congruent to 1(mod p) and the number is either
1 or q. If q is not congruent to 1 (mod p), this number is also 1 and so K is normal
in G. Since H and K are of orders q and p respectively, H ∩K = (e), e being the
identity, as every element a (other than e) in H is of order q and every element b
(other than e) in K is of order p. So, G ∼= H×K or G ∼= Z/qZ×Z/pZ. Clearly,
G is cyclic.

Conversely, if G is cyclic and of order pq where p and q are primes,
G∼= Z/pZ×Z/qZ. If p|(q−1), p is even and so p = 2 and there exists a Dihedral
group of order 2p which is not abelian. (see remark 7.3.3). Then, G is not unique.
So, if G is unique and cyclic, q is not congruent to 1 (mod p). �

Remark 7.5.1 : Lemma 7.5.1 has been adapted from [4].

Theorem 55 (Dieter Jungnickel (1992)) : Let r be a positive integer. The cyclic
group C(r) of order r is the only group of order r if, and only if, g.c.d (r,φ(r)) = 1
where φ denotes Euler φ-function.

Proof : We make the following

Observation 7.5.1 : Suppose that r = spa where p is a prime not dividing s and
a≥ 2. Then, φ(r) = φ(s)pa−1(p − 1), (by the multiplicativity of the φ-function and
the fact that φ(pa) = pa−1(p − 1)).

So, both r and φ(r) are divisible by p. Also, the direct product C(s)×C(p)a is
not isomorphic to C(r). This implies that r has to be square-free. That is, r is a
product of distinct primes. The following assumption is justified.

Assume that r = p1, p2, . . . , pk, a product of k primes. Then,

φ(r) =
k∏

i=1

(pi − 1)

Then, g.c.d (r,φ(r)) 6= 1 implies that there exist primes p and q dividing r and
φ(r). We write r = pqt where t > 1. Also, p divides (q − 1). Then, there exists a
non-abelian group H of order pq and so H×C(t) is a non-abelian group of order
r. So, we could assume that g.c.d (r,φ(r)) = 1.

Claim : There is only one cyclic group of order r, if g.c.d (r,φ(r)) = 1.
Assume the contrary. That is, let r be the least positive integer for which a

counterexample G exists. We will arrive at a contradiction.
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Step 1. As r is square-free, (t,φ(t)) = 1 for each divisor t of r.
Step 2. Every proper subgroup and every non-trivial quotient group of G are
cyclic. This is clear, as r is minimal.
Step 3. The centre Z(G) of G is trivial.

Otherwise, G/Z(G) will be cyclic by step 2 and therefore G is abelian and
hence cyclic.
Step 4. Let x 6= e be an element of a maximal subgroup U of G. Then, U is the
centralizer (normalizer) CG(x) of x in G. For, CG(x) is a proper subgroup of G
by step 3 and U is cyclic and therefore, U is contained in CG(x) by step 2. The
maximality of U shows that U = CG(x).
Step 5. If U and V are two maximal subgroups of G, then U ∩V = (e) where e is
the identity.

For, if x 6= e and x ∈U ∩V , by step 4, would give U = V = CG(x).
Step 6. Any maximal subgroup U equals its own normalizer

NG(U) = {g ∈ G : gU−1
g = U}.

For, let x 6= e be an element in NG(U). Then,
ψ : NG(U)→ NG(U) given by ψ(y) = x−1yx gives an automorphism of the

cyclic group U . If U has order s, then the order of ψ in the group of automor-
phisms of U has order φ(s) which divides φ(r), as r is square-free. Since x and
hence ψ has order dividing r, order of ψ has to be 1. Then, x centralizes U and by
step 3, belongs to U .
Step 7. Let U be a maximal subgroup of order u in G. Then, the conjugate
subgroups of U contain exactly r − r

u elements 6= e.
For, we recall that the number of conjugates of U is the index of the nor-

malizer of U in G. By step 6, this index is r
u . By step 5, any two conjugates

of U intersect trivially. Thus, the set of conjugates of U contain altogether (u−1)r
u

elements 6= e.
Step 8. With U as maximal subgroup of G of order u, choose an element x not
contained in any of the conjugate subgroups of U . Let V be a maximal subgroup
containing x and therefore not conjugate to U . Then, any conjugate of U and any
conjugate of V intersect trivially by step 5. Applying step 7 also to V , we obtain
r −

r
v

elements 6= e in the set of conjugates of V . But, there are only r − 1 elements
6= e in G giving the inequality

r −
r
u

+ r −
r
v
< r.

Or,

1 − (
1
u

+
1
v

)< 0 or u + v> uv

which is a contradiction. �

Remark 7.5.2 : The proof of theorem 55 has been adapted from Dieter Jungnickel
[3]. For related results, see Jonathan Pakianathan and Krishnan Shankar [9].
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For a detailed study of the theory of finite groups see M. A. Ashbacher [A1],
T. Y. Lam [A4, A5] and Ronald Solomon [A9] given in additional references.
Another interesting paper is that of Murthy and Murthy [A6].

7.6. Notes with illustrative examples

The theory of partitions is a well-developed branch of number theory.
Euler introduced the notion of a generating function and obtained an identity con-
necting p(n), the number of partitions of n with

∏∞
k=1(1 − xk)−1) (see Fact 7.2.2).

(Functions related to p(n) are the so-called theta functions and modular functions
which were extensively studied by Jacobi and others). We have seen that p(n)
is the number of conjugate classes of elements of Sn, the symmetric group on n
symbols. It can be shown that for n ≥ 2, the number of conjugate classes in Sn

is also the number of different abelian groups of order pn (up to isomorphism)
where p is a prime.

The number of solutions of linear congruences with side conditions is made
use of to count certain special elements of a finite group. See theorems 50 and 51.
We observe that these theorems have their analogues in the context of finite rings.

Let R be a finite wing with unity. Suppose that D is a non-empty subset of R.
The number of solutions of

(7.6.1) x1 + x2 + · · ·+ xs = a, a ∈ R, xi ∈ D (i = 1,2, . . . ,s)

is denoted by N(D,a,s) with respect to the additive group (R,+). The analogue of
theorem 50 is valid when J = J(D) is taken to be the largest ideal of R such that
x + J ⊆ D for all x ∈ D.

When H = R\D is an ideal of R, theorem 51 is applicable. We consider the
ring Z/rZ (r ≥ 1). If N(n,r,s) denotes the number of solutions of

(7.6.2) x1 + x2 + · · ·+ xs ≡ n (mod r)

under the restriction g.c.d (xi,r) = 1, (i = 1,2, . . . ,s) it is known [15] that N(n,r,s)
is multiplicative in r. See (5.5.6) in chapter 5. Therefore, we tackle the case where
r = pm (p a prime, m≥ 1).

When R = Z/pmZ, R is a quasi-local ring (that is, it has a unique maximal
ideal). We take D = U , the group of units in R. Then,

(7.6.3) |U | = φ(pm) = pm−1(p − 1)

H = R\U , H is the unique maximal ideal of R and
|H| = |R\U | = pm −φ(pm) = pm−1.
So, [R : H] = p and [R : H] − 1 = (p − 1).
The formula for N(U, pm,s) using (7.3.8) is given by

(7.6.4) N(U,n,s) =
(φ(pm))s

pm {1 −
(−1)s

(p − 1)s}, if n ∈U

and

(7.6.5) N(U,n,s) =
(φ(pm))s

pm {1 +
(−1)s(p − 1)

(p − 1)s }, if n 6∈U
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(7.6.4) is the case when p - n. (7.6.5) is the case when p|n. These two, together,
yield

N(U,n,s) =

{
(pm−1(p−1))s

pm {1 − (−1)s

(p−1)s } if p - n
(pm−1(p−1))s

pm {1 − (−1)s−1

(p−1)s−1 } if p|n
In fact, we have derived the Rademacher formula for r = pm (see chapter 5, Corol-
lary 5.6.1).

While studying the number of cyclic subgroups of a given group, we referred
to Kesava Menon’s identity. See (7.4.5). It is a remarkable example of an appli-
cation of Burnside’s lemma. Various generalizations of the identity are known.

Characterizations of finite cyclic groups are known. The uniqueness of a
cyclic group of order r is tied up with φ(r), the Euler totient. Following Jonathan
Pakianathan and Krishnan Shankar [9], we call a positive integer r a cyclic number
if every group of order r is cyclic. The smallest non-prime cyclic number is 15.
A positive integer is a cyclic number if, and only if, g.c.d (r,φ(r)) = 1.

A group G is called a nilpotent group if, and only if, it is the internal direct
product of its Sylow subgroups. See D. Robinson [13]. It is known that

Cyclic groups⊂ abelian groups⊂ nilpotent groups.
Based on these, one defines nilpotent and abelian numbers. Their characteri-

zations are given in [9].

7.7. A worked-out example

Question: (T. Hungerford) Prove the fundamental theorem of arithmetic by ap-
plying Jordan-Hölder theorem to the group (Z/rZ,⊕) (r > 1).
Answer: We observe that (Z/rZ,⊕) is a finite cyclic group of order r. By theo-
rem 54, it has d(r) cyclic subgroups, where d(r) denotes the number of divisors
of r.

We recapture the notion of a nilpotent group. Let N0,N1,N2, · · · be a sequence
of normal subgroups of a group G such that N0 = (e),

N1 = C(G) = {a : ax = xa for all x ∈ G}, the centre of G.

C(G) is an abelian normal subgroup of G. N2 is the inverse image of C(G/N1)
under the canonical map ψ : G→ G/N1. N2 is normal in G and contains N1. If Ni

is the inverse image of C(G/Ni−1) (i = 1,2, . . .), we obtain a sequence of normal
subgroups of G, called the ascending central series of G, namely

(7.7.1) N0 = (e)⊂ N1 ⊂ N2 ⊂ ·· ·
Definition 7.7.1 : A group G is called nilpotent if Nk = G for some k.

An abelian group H is nilpotent, as C(H) = H. Even for a finite group G,
ascending central series need not terminate in G. For instance, C(S3) = (e). So, S3
is not nilpotent. However, S3 is solvable. See exercise 10.

Lemma 7.7.1 : A proper subgroup H of a nilpotent group G is properly contained
in its normalizer

N(H) = {x ∈ G : xHx−1 = H}
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Proof : In the ascending central series for G, given by (e) = N0 ⊂ N1 ⊂ ·· · and
H ⊂ Nk = G, there exists i ∈ N such that Ni ⊂ H and Ni+1 is not contained in H.
For, if ti+1 ∈ Ni+1 and h ∈ H,

ti+1h−1t−1
i+1h ∈ Ni ⊂ H.

Therefore, Ni+1 ⊂ N(H) and H 6= N(H). �

Lemma 7.7.2 : Every Sylow p-subgroup of a finite nilpotent group G is a normal
subgroup of G.

Proof : If p is a Sylow p-subgroup of G, N(P) is given by

N(P) = {x ∈ G : x−1Px = P}

By lemma 7.7.1, P ⊂ N(P) and P 6= N(P). As P is a maximal subgroup of G,
N(P) = G. Hence P is a normal subgroup of G. �

Remark 7.7.1 : A finite nilpotent group G possesses a subnormal series

N0 = (e)⊂ N1 ⊂ ·· · ⊂ Nk = G

obtained from an ascending central series of G, Ni is a normal subgroup of Ni+1
(i = 0,1,2, . . . (k − 1)). Its factors are abelian. G is said to be solvable. In fact,
every finite cyclic group is nilpotent and has a composition series whose factors
are of order a prime p dividing the order of the group. Every Sylow p-subgroup
of a finite nilpotent group G is normal in G and the G is the internal direct product
of its Sylow p-subgroups.

The problem is solved by noting that in a cyclic group G of order r (> 1),
if p1 is a prime dividing r, there exists a Sylow p1-subgroup of order pa1

1 which
is normal in G. (pa1

1 is the highest power of p1 dividing r). If p1, p2, . . . , pn

are the distinct prime divisors of r, G is the direct product of Sylow subgroups
P1,P2, . . . ,Pn corresponding to the prime factors p1, p2, . . . , pn of r. Product of the
orders of P1,P2, . . . ,Pn is the order of G which is r. This accounts for the unique
factorization of r into distinct prime factors. �

7.8. An example from quadratic residues

r denotes an odd positive integer> 1. We consider the group U(r) of units of
Z/rZ. U(r) is a group of order φ(r), the Euler φ- function.

We write

(7.8.1) S(r) = {[a] ∈U(r) : a = b2, [b] ∈U(r)}.

(where [a] denotes the residue class of a modulo r).
It is verified that S(r) is a subgroup of U(r). To find the order of S(r), we

proceed as follows:
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Given odd positive integer r,s, the Jacobi symbol (r|s) (6.7.1) has the follow-
ing properties

(i) (a|r)(b|r) = (ab|r)

(ii) (a|rs) = (a|r)(a|s)(7.8.2)

(iii) a≡ b (mod r)⇒ (a|r) = (b|r)

(iv) (r|s) = (−1)( r−1
2 )( s−1

2 )(s|r).

Remark 7.8.1 : We consider quadratic residues modulo r both as integers and as
elements of Z/rZ.

Lemma 7.8.1 : Let r be an odd integer> 1, the set of quadratic residues modulo r
corresponds to the subgroup S(r) of U(r). Consequently, the number of quadratic
residues modulo r is equal to φ(r)/2ω(r), where ω(r) denotes the number of distinct
prime factors of r.

Proof : We note that if p is an odd prime and e ≥ 1, the number of quadratic
residues a modulo pe with 0≤ a< pe is φ(pe)

2 . For, x2 ≡ a (mod pe) is solvable if,
and only if, x2 ≡ a (mod p) is solvable.

The map ψ : U(r)→ {1,−1} given by

ψ ([a]) = (a|r), (the Jacobi Symbol)

is a group homomorphism with

(7.8.3) kerψ = {[a] ∈U(r) : ψ([a]) = 1}
Claim: If S(r) is as given in (7.8.1), S(r) = kerψ.

For, kerψ is a subgroup of U(r) and S(r) ⊆ kerψ. If r is a perfect square,
kerψ = U(r). If r is not a perfect square, [U(r) : kerψ] = 2.

Let [a] ∈ kerψ. Then ψ ([a]) = 1. This implies that a is a quadratic residue
of r. If it is not, [a] 6∈ S(r) and the image of [a] under ψ would be −1. That is,
kerψ ⊆ S(r).
Thus, S(r) = kerψ.

Let r =
∏k

i=1 pei
i (pi odd primes and ei ≥ 1, i = 1,2, . . . ,k). As S(r) is a direct

product of groups S1,S2, . . . ,Sk where Si(i = 1,2, . . . ,k) is the group of quadratic
residues modulo pei

i ,

|S(r)| =
k∏

i=1

|Si| =
k∏

i=1

φ(pei
i )

2
.

(|X | denotes the number of elements of X). This completes the proof of
lemma 7.8.1. �

Remark 7.8.2 : Proof of lemma 7.8.1 has been adapted from Victor Shoup [A8].
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Question: Let r be an odd positive integer > 1. Suppose that the group S(r) of
quadratic residues (mod r) acts on the set Z/rZ. If N denotes the number of orbits
in Z/rZ under the action of S(r), show that

(7.8.4) N =
2ω(r)

φ(r)

∑

[a2]∈S(r)

g.c.d (a2 − 1,r)

Answer: The identity (7.8.4) is yet another application of Burnside’s lemma.
(Theorem 52). S(r) is of order φ(r)

2ω(r) . We obtain the number of elements of Z/rZ
which are left invariant by the elements of S(r). For [a2] ∈ S(r), let t([a2]) denote
the number of elements of Z/rZ which are left invariant by [a2]. Then, t([a2]) is
the number of solutions of the congruence

a2x≡ x (mod r), g.c.d (a2,r) = 1.

That is, (a2 − 1)x ≡ 0(mod r). It follows that t([a2]) equals g.c.d (a2 − 1,r). By
Theorem 52, we obtain

N =
1
|S(r)|

∑

[a2]∈S(r)

g.c.d (a2 − 1,r)

(7.8.4) is an immediate consequence. �

Remark 7.8.3 : It is advisable to express N in terms of certain known arithmetic
functions, as in illustration (7.4.1).

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) The number of conjugate classes in Sn is equal to the number of non-
isomorphic abelian groups of order pn, where p is a prime.

b) The homomorphic image of a nilpotent group is nilpotent.
c) There exist two or more non-isomorphic groups of order 75.
d) The group S4 of order 24 is nilpotent.
e) An abelian group G has a composition series if, and only if, it is finite.
f) A simple group of order 60 need not be isomorphic to A5.

2. Prove that a finite group of order r is abelian if, and only if, it has r conjugate
classes of elements.

3. Find the conjugate classes of elements of S4 and S5.
4. [I.M.Richards] Let f (x)∈Z[x]. If Ur denotes the group of units in Z/rZ, show

that ∑

s∈Ur

( f (s),r) = φ(r)
∑

d|n
|{t ∈Ud : f (t)≡ 0(mod d)}|

where ( f (s),r) denotes the g.c.d of f (s) and r.
(We remark that this gives a generalization of Kesava Menon’s identity (7.4.5)).
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5. Prove that a group of order 255 is cyclic.
6. If r = pq where p, q are primes and p< q with q≡ 1 (mod p) show that there

exists only one non-abelian group of order r up to isomorphism.
7. Let r,s be positive integers and n = g.c.d (r,s). If we consider the additive

groups
G1 = Z/rZ and G2 = s(Z/rZ)

Show that G1/G2
∼= Z/nZ.

8. Let G be an abelian group. T (G) denotes the set of elements of finite order in
G. T (G) is a subgroup of G called the torsion subgroup of G. If T (G) = (e),
the trivial subgroup, G is said to be torsion-free. If T (G) = G, G is called a
torsion-group. When G is a abelian with torsion subgroup T (G), show that
G/T (G) is torsion-free.

9. A group G is said to be indecomposable if it is not a direct product of proper
subgroups. (See definition 5.3.3, chapter 5). Show that a finite cyclic group is
indecomposable if, and only if, its order is pm (p a prime, m≥ 1).

10. A composition series of a group G is a finite descending chain of subgroups:

G = G0 ⊃ G1 ⊃ ·· · ⊃ Gr = (e)

such that the factor groups Gi/Gi+1 are simple groups 6= (e)
(0≤ i≤ r − 1). Gi/Gi+1 are called composition factors of G. A finite group G
is said to solvable if, and only if, the composition factors of G are cyclic and
of prime order.
Show that a nilpotent group G is solvable.
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CHAPTER 8

Ordered fields, fields with valuation and other
algebraic structures

Historical perspective

The theory of fields is an extensive branch of algebra. It was in connection
with the proof of the theorem:

‘A fifth degree equation with coefficients from Q, the field of rationals, is
not always solvable by radicals’, the notion of field extensions was laid on firm
foundations.

The field Q, the field R of real numbers and the field C of complex numbers
pervade the whole of basic theory of fields. In these fields, ‘order’ and ‘limit’ con-
cepts are fundamental. The evolution of the various forms of numbers is roughly
as follows:

During the sixth century B.C., the Pythagorean school knew about rational
and irrational numbers. It was the failure of repeated attempts to express

√
2 as

a rational number that lead the followers of Pythagoras to the notion of an ‘ir-
rational number’. It is to be remarked that Babylonians conceived of and calcu-
lated square-roots of non-square integers, though they were satisfied with crude
approximation methods. See K. von Fritz [7]. See also Nicholas Bourbaki [2].
Negative rationals and imaginary numbers were discovered during the period
1000–1500 A.D. They kept mathematicians puzzled as they were unbelievable,
though accepted. Algebraic irrationals which cannot be written as radicals
appeared through the Fundamental Theorem of Galois theory (1826). It also
led to the study of lattices and other useful algebraic structures. George Boole
(1815–1864) thought of an algebraic structure in which every element is an idem-
potent—for instance, the power set of a set X. By then, transcendental numbers
were discovered. Transcendence of e, the exponential constant, was proved by
C. Hermite (1822–1901) in 1873. The transcendence of π was shown by
Lindemann (1852–1939) in 1882. It was only after this long sequence of events,
classical algebra got unified with the trends in modern mathematics. The theory
of continued fractions remained isolated for some time. But now, that also has
been brought into the modern stream.

It is to be emphasized that a revelation of the nineteenth century was that
there were fields which were different from the field of complex numbers and there
were groups which made no reference to automorphisms of fields. This point of
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view was brought out by Emil Artin (1898–1962). Indeed, thanks to the efforts of
Emil Artin, an exposition of the fundamental Theorem of Galois Theory made it a
landmark in the area of algebra where the classical theory of equations gets the
correct interpretation via the splitting field of a polynomial f (x) and the Galois
group of the equation f (x) = 0. The role of a prime p is in the context of Sp.
Abel gave the theorem: There exist equations of every degree ≥ 5 which are not
solvable by radicals. He made use of the strong lemma: If f is an irreducible
polynomial over Q, of degree p (a prime) and if f has exactly (p − 2) real roots,
then the Galois group of f is Sp. For details see Charles R. Hadlock [10]. This is
just stated to give a sample of field theory in its classical form.

The ideas of analysis and topology also had their share in the development of
the theory of algebraic structures. Ordered fields, fields with valuation, archimed-
ean and non-archimedean fields are some of the notions that proved to be useful
in the study of fields during the first half of the twentieth century.

8.1. Introduction

The classical theorem: ‘The field of real numbers is order complete’ has a
great impact on the development of algebra and analysis. Ordered fields gener-
alize the concepts and properties of the field Q of rational numbers. It is also
an important fact to note that −1 is not a sum of squares in R, the field of reals.
The formal ‘real fields’ are introduced. The idea of ‘absolute values’ has been
exploited in the notion of ‘fields with valuation’. The approximation theorem for
fields with valuation has an interesting application to the proof of the Chinese
Remainder Theorem, already done in chapter 5.

The notion of a normed division domain due to S. W. Golomb [9] gener-
alised the idea of ‘divisibility’ in integral domains via weak partially ordered sets.
Modular lattices and the Jordan-Hölder Theorem give rise to the idea of unique-
ness of factorization of an element of a non-commutative integral domain into
irreducibles. Theorem 68, shown, is due to P. M. Cohn [5]. While studying prop-
erties of Boolean algebras, an analogue of the fundamental theorem of arithmetic
is pointed out.

This chapter is aimed at an understanding of abstract algebraic structures
which are the outcome of generalizations of the familiar ideas in (i) divisibility
(ii) absolute values and (iii) set-theoretic operations.

8.2. Ordered fields

In chapter 2, we considered ordered integral domains and showed that an
integral domain in which the set of positive elements is well-ordered characterizes
the ordered integral domain Z. (See corollary 2.2.1)

Definition 8.2.1 : A ring (R,+, ·) is said to be ordered if there exists a non-empty
subset P (of R) called the set of positive elements of R such that
(a) whenever a, b ∈ P, a + b∈ P and a ·b ∈ P and
(b) for each a ∈ R, only one of the following alternatives holds :
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a ∈ P or − a ∈ P or a = 0 (the law of Trichotomy).

In fact, if R is an integral domain satisfying definition 8.2.1, R is called an
ordered integral domain. Z and R (the field of real numbers) are ordered integral
domains. (see definition 2.2.1 in chapter 2).

Lemma 8.2.1 : In an ordered ring R, all squares of nonzero elements are positive.

Proof : Let a ∈ R. By the law of trichotomy, either a ∈ P or −a ∈ P or a ∈ 0
(where P is the set of positive elements of R). Since P is closed under multiplica-
tion, a2 = (−a)(−a) = (−a)2 ∈ P.

Also 1 = 12 ∈ P and (−1)2 ∈ P, though −1 /∈ P. �

The word ‘ordered’ is from the fact that one could define a < b ⇐⇒
(b − a) ∈ P. We could write b > a to mean a < b. The order < satisfies the
transitivity property:

Whenever a< b, b< c, then, one has a< c. One notes that it is not a partial
order as reflexivity and antisymmetry of ≤ are not okay with <.

Definition 8.2.2 : In an ordered ring R, the absolute value |a| of a ∈ R is defined
as :

|a| =





0, if a = 0
a, if a ∈ P, a 6= 0
−a, if a /∈ P, a 6= 0

Fact 8.2.1 : For a,b ∈ R, an ordered ring in which absolute value of an element
is defined as in definition 8.2.2,

(8.2.1) |a ·b| = |a| · |b|, |a + b| ≤ |a|+ |b|
the inequality with ≤ (less than or equal to) shown in (8.2.1) is referred to as the
triangle inequality.

Next, Q is the field of quotients of Z. We can make Q into an ordered field:

Lemma 8.2.2 : Let D be an ordered integral domain with K, the field of fractions
of D. There is a unique way of defining a positive subset PK of K in K so that
the inclusion map D→ K is an order-preserving homomorphism. This order is
defined by

a
b
∈ PK if, and only if, a ·b ∈ P in D for a,b ∈ D with b 6= 0,

where P is the set of positive elements in D.

Proof : D can be embedded in K and K contains D as a subdomain. Every
nonzero element of K is of the form a

b , b 6= 0 (a,b ∈ D).
Suppose that K is ordered with PK as the subset of positive elements. Then,

a
b

= a ·b · (1
b

)2. Since (
1
b

)2 is necessarily in PK ,
a
b
∈ PK
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if, and only if, a · b ∈ PK . As i : D→ K is the inclusion map which is an order
homomorphism, a ·b∈PK in K⇐⇒ a ·b∈P⊂D. So, PK must satisfy the property

a
b
∈ PK ⇐⇒ a ·b∈ P in D.

Now, a
b = c

d in K⇒ a ·d = b · c in D.
Multiplication by b ·d yields (a ·d) · (b ·d) = (b ·c) · (b ·d) or (a ·b) ·d2 = (c ·d) ·b2.
So, given a · b ∈ P, we can define PK by taking a

b ∈ PK ⇐⇒ a · b ∈ P consistent
with the condition stated in the lemma.

Next, defining a
b ∈ PK if, and only if, a ·b∈ P, suppose a

b and c
d are in PK .

Their sum
a
b

+
c
d

=
a ·d + b · c

b ·d ∈ PK if, and only if, (a ·d + b · c) · (b ·d)∈ P;

that is, if, and only if, (a ·b) ·d2 + (b · c) ·d2 ∈ P.
Since a ·b∈ P and c ·d ∈ P, a ·b ·d2 ∈ P, c ·d ·b2 ∈ P. So,

a ·b ·d2 + c ·d ·b2 = (a ·d + b · c) ·b ·d ∈ P.

Or, a
b + c

d ∈ PK whenever a
b , c

d are in PK .
Similarly, ( a

b ) · ( c
d ) ∈ PK. Also PK satisfies the trichotomy property. For a ·b ∈ P,

a ·b = 0D and (−a) ·b ∈ P: only one of them holds. So with a
b ∈ K either a

b ∈ PK ,
or −a

b ∈ K or a
b = 0. �

We observe that the characteristic of an ordered integral domain D is zero.
As D ∼= Z (preserving the order), in any ordered field F , the prime subfield of F
is isomorphic to Q, the field of rational numbers. See R. Godement [8].

Observations 8.2.1 :
(1) A sum of two or more squares in an ordered field is either positive or

zero.
(2) In any field K, a product of two sums of squares in K is again a sum of

squares.
For if a,b,c,d ∈ K,
(a2 + b2)(c2 + d2) = (ad − bc)2 + (ac + bd)2.

(3) If a,b ∈ K, b 6= 0, writing a
b = a ·b(b−1)2, we see that if a and b are sums

of squares, a
b is also a sum of squares.

(4) If K is a field of characteristic 6= 2 and −1 is a sum of squares in K, then
every element a in K is a sum of squares. For, we could write

(8.2.2) 4a = (1 + a)2 + (−1)(1 − a)2

and so, 4a is a sum of squares. This implies that a is a sum of squares.
(5) In the fieldC of complex numbers, −1 = i2 = i2 +02 and so it follows that

any complex number a + bi, (a,b ∈ R, the field of real numbers) can be
expressed as the sum of two squares. As in (8.2.2), we have

a + bi =
(1 + (a + bi)

2

)2
+ i2
(1 − (a + bi)

2

)2
,
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or,

(8.2.3) a + bi = x2 + y2 where x,y ∈ C.

We remark that C is not the only field in which −1 is a sum of two squares.
For instance, let n ∈ N and n≡ 3(mod 8). Let ζ = exp( 2πi

n ), an imaginary nth
root of unity. We consider an extension of Q by adjoining ζ to Q. We write

(8.2.4) K =Q(ζ),

where [Q(ζ) :Q] = φ(n).
We need a result on Gauss quadratic sums defined below:

Definition 8.2.3 : For n ∈ N,

G(m,n) =
n−1∑

h=0

exp
(2πih2m

n

)

is called a Gauss quadratic sum.

In chapter 6, definition 6.6.4 gives a Gauss sum via characters.

Lemma 8.2.3 : For n ∈ N,

(8.2.5) G(1,n) =





(1 + i)
√

n, if n≡ 0(mod 4)√
n, if n≡ 1(mod 4)

0, if n≡ 2(mod 4)
i
√

n, if n≡ 3(mod 4)

Proof : Let e(x) = exp( 2πix
n ). Then, when n≡ 2(mod 4), n = 4k + 2.

So n
2 = 2k + 1 (say), n−2

2 = 2k.
So e((h + n

2 )2) = e(h2 + hn + n2

4 ) = −e(h2).
Then,

n−1∑

h=0

exp
(2πih2

n

)
=

n−2
2∑

h=0

e(h2) +
n−1∑

h= n
2

e(h2),

or,

G(1,n) =

n−2
2∑

h=0

e(h2) +

n−2
2∑

t=h− n
2

e((t +
n
2

)2)

=

n−2
2∑

h=0

e(h2) −

n−2
2∑

t=0

e(t2),

or,

(8.2.6) G(1,n) = 0, when n≡ 2(mod 4).
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Now, G(m,n) has the equivalent representation [17]

(8.2.7) G(m,n) =

n−1
2∏

t=1

2csin
( (4t − 2)mπ

n

)
, when n is odd.

Taking m = 1, in (8.2.7), we obtain

(8.2.8) G(1,n) =

n−1
2∏

t=1

2isin
( (4t − 2)π

n

)
, n odd.

But,

(8.2.9)

n−1
2∏

t=1

2sin
(4t − 2)π

n
= (−1)[ n

4 ]√n (n odd ) [17]

where [x] = the greatest integer not exceeding x.
Combining (8.2.8) and (8.2.9), we obtain

(8.2.10) G(1,n) = i
n−1

2 (−1)[ n
4 ]√n.

When n ≡ 1 (mod 4), G(1,n) = i2k(−1)k√n (when n = 4k + 1) = (−1)2k√n, or we
get G(1,n) as in (8.2.5) if n≡ 1 (mod 4).
When n≡ 3(mod 4), G(1,n) = i

√
n (on simplification) which is as given in (8.2.5).

The case that remains is n≡ 0(mod 4).
It is known [17] that G(m,n) possesses the following multiplicative property:

Whenever g.c.d (m,n) = 1,

(8.2.11) G(rm,n) ·G(rn,m) = G(r,mn), for any integer r ≥ 1.

Let n be odd. If r = 1, m = 2β

G(1,2βn) = G(n,2β)G(2β,n) (by (8.2.11)).

If β is even,

G(2β,n) =
n−1∑

h=0

e
(2βh2

n

)
=

n−1∑

h=0

e
(h2

n

)
= G(1,n).

If β is odd,

G(2β,n) =
n−1∑

h=0

e
(2βh2

n

)
=

n−1∑

h=0

e
(2h2

n

)
= G(2,n).

Now,

G(2,n) =

n−1
2∏

k−1

2sin
(8k − 4

n
π
)

= (−i)
n−1
2
√

n.

Also,
G(n,4) = 2(1 + in)

and
G(n,8) =

√
8(1 + i)i

n−1
2 .
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For m = 2β, β ≥ 4, we have

G(n,2β) =
2β−1∑

h=0

e
(nh2

2β
)

=
2β−1−1∑

h=0

e
(n(2h + 1)2

2β
)

+ 2
2β−2−1∑

h=0

e
( nh2

2β−2

)
.

Further simplification yields

G(n,2β) = 2G(n,2β−2), if β > 3 and n odd

and

G(1,2βn) = G(1,n)G(n,4)

√
2β

4
= (1 + i)

√
2βn.

If β is odd and ≥ 3,

G(1,2βn) = G(2,n)G(n,8)

√
2β

8
= (1 + i)

√
2βn.

Therefore, if s = 2βn where n is odd and β ≥ 2, G(1,s) = (1+ i)
√

s which is (8.2.5)
when s≡ 0(mod 4).

Fact 8.2.2 : A theorem of Legendre [19] says that if n is not of the form 4a(8b+7)
(a≥ 0,b≥ 0), then n can be written as a sum of three integral squares.

However, we need only a case where n≡ 3(mod 8). As shown in [17], Gauss
has proved that if n≡ 3(mod 8), there exist rational integers x,y,z such that

(8.2.12) n = x2 + y2 + z2

Theorem 56 (Paromita Chowla (1969)) : Let n be a prime ≡ 3(mod 8).
If ζ = exp( 2πi

n ) and K =Q(ζ), then −1 is a sum of two squares: That is,

(8.2.13) −1 = α2
1 +α2

2 where α1,α2 ∈ K.

Proof : As n≡ 3(mod 8), n≡ 3(mod 4) as well. Using (8.2.5),

n−1∑

h=0

ζh2
=

n−1∑

h=0

exp(
2πih2

n
) = G(1,n) = i

√
n, when n≡ 3(mod 8).

A basis for K as a vector space overQ is {1, ζ,ζ2, . . . , ζ t}. t = n − 2. α ∈ K can be
written as

(8.2.14) α = a0 + a1ζ + a2ζ
2 · · ·+ atζ

t ai ∈Q, i = 0,1,2, . . . , t.

α can be expressed in terms of G(1,n) and so we write

(8.2.15) α = a + ib
√

n where a,b ∈Q.
We get through, if we show that

(8.2.16) −1 = (a + ib
√

n)2 + (c + id
√

n)2
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where a,b,c,d are determinable rational numbers. Suppose that (8.2.16) is true.
Then,

a2 + c2 − n(b2 + d2) = −1(8.2.17)
ab + cd = 0(8.2.18)

Taking c = −ab
d (using (8.2.18))

a2 + (
−ab
d

)2 − n(b2 + d2) = −1 (from (8.2.17)),

or,

(8.2.19) (
a2

d2 − n)(b2 + d2) = −1

As n≡ 3(mod 8), from (8.2.12), we have

nd2 = x2d2 + y2d2 + z2d2.

Write a = xd. We get

n =
a2

d2 + y2 + z2

So, (8.2.19) becomes
(y2 + z2)(b2 + d2) = 1

We choose b = y
y2+z2 , d = z

y2+z2 .
Then b2 + d2 = 1

y2+z2 .
So, (8.2.19) is okay for the values of b,d chosen as above
with a = xz

y2+z2 . c = −xy
y2+z2 .

We get
ab + cd = 0

and so with values of a,b,c,d thus determined, (8.2.16) is satisfied perfectly well.
This proves (8.2.13). �

Remark 8.2.1 : Theorem 56 has been adapted from [18].

We are now justified in making the following

Definition 8.2.4 : A field K is said to be real, if −1 is not a sum of squares in K.
The field R of reals is one such.

Theorem 57 (Serge Lang (1965)) : Let K be a real field.

(i) If a ∈ K, then K(
√

a) or K(
√

−a) is real. If a is a sum of squares in K, then
K(
√

a) is real. If K(
√

a) is not real, then −a is a sum of squares in K.
(ii) If f is an irreducible polynomial of odd degree in K[x], and α is a root of

f (x) = 0, then K(α) is real.
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Proof : If a ∈ K and a is a square say b2 where b ∈ K, one has

K(
√

a) = K(b) = K

and K is real. Suppose that a is not a square in K. If K(
√

a) is not real, −1 is a
sum of squares and so there exist elements bi, ci(i = 1,2, . . . ,r) such that

−1 =
r∑

i=1

(bi + ci
√

a)2 =
r∑

i=1

(b2
i + 2bici

√
a + c2

i a).

Since [K(
√

a) : K] = 2, from

−1 =
r∑

i=1

(b2
i + c2

i a) + 2
r∑

i=1

bici
√

a

equating the ‘rational’ parts,

−1 =
r∑

i=1

(b2
1 + c2

i a).

If a is a sum of two or more squares in K, −1 is a sum of squares in K. This
contradicts the fact that K is real.
However,

−a =
1 +
∑r

i=1 b2
i∑r

i=1 c2
i
.

So, −a is a quotient of sums of squares. This would mean −a is a sum of squares.
Hence, K(

√
−a) is real.

This proves the first part of the theorem.
For the second part, we have to show that K(a) is real, if a is a root of a

polynomial equation f (x) = 0 where f (x) ∈ K[x] and deg f is odd. Suppose that
K(a) is not real. Then, we could write

−1 =
r∑

i=1

gi(a)2

where gi are polynomials in K[x] of degree ≤ n − 1, n being odd and n = deg f
such that

−1 =
r∑

i=1

gi(x)2 + h(x) f (x).

∑r
i=1 gi(x)2 has even degree> 0. Otherwise, −1 would be a sum of squares in

K. It is clear that
∑r

i=1 g2
i (x) has degree≤ 2(n−1). So, degh(x)≤ n−2. Since deg f

is odd, degh is also odd. If b is a root of h(x) = 0, then −1 will be a sum of squares
in K(b). Since degh< deg f , it would mean that K(b) is not real. Proceeding thus,
by considering polynomials of lower odd degree, we will arrive at a polynomial
of first degree say x −α and −1 will be a sum of squares in K(α) = K( as α ∈ K)
—a contradiction to the given data. Thus, K is real.

This completes the proof of the second part of theorem 57. �
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Remark 8.2.2 : For more results on real fields, see Serge Lang [14, Chapter XI].

8.3. Valuation rings

We start with a prime p which is arbitrary, but fixed. A subset of Q, the field
of rationals, is considered in the following

Definition 8.3.1 :

Zp = {m
n
∈Q :

m
n

is in its lowest terms and p - n}

Zp consists of those rational numbers whose denominators do not contain p
as a factor. If p 6= 2, 1

2 ∈ Zp, for example.

Theorem 58 : Zp is a PID contained in Q.

Proof : If a
b , c

d are in Zp, by definition p - b. p - d. So p - bd. Therefore a
b + c

d
and ac

bd are in Zp. 0 ∈ Zp. (Zp,+) is an abelian group, multiplication is associative
and distributive. Therefore, Zp is a subring of Q. Zp is not an ideal, as Q is a
field. When a

b
c
d = 0, ac = 0. So either a = 0 or c = 0. So, Zp is an integral domain

properly contained in Q.
Let I be an ideal of Zp.
An element x ∈ I is of the form a

b = pm a′

b′ where p - b′ and p - a′. Such an
element is an element of Zp. Also a′

b′ ∈ Zp as p - b′. So, every element a
b ∈ I can

be written as
a
b

= pmu where u ∈ Zp.

Among the powers pm, there is one which is the least, say pn. So any element
of I is of the form pnu where u ∈ Zp. So, I is generated by the unique positive
integer pn. Therefore, I is a principal ideal.

This being the case, Zp is a PID. �

Remark 8.3.1 : (1) If x ∈Q, then either x ∈ Zp or x−1 ∈ Zp. For, if x ∈Q. x = m
n

(in its lowest terms). If p - n, x ∈ Zp. If p|n, n = pan′ where p - n′.
So n

m = pa( n′

m ) and p - m. Therefore, x−1 ∈ Zp.
(2) If S is a subring of Q containing Zp, then either S = Zp or S =Q.
If S = Zp, there is nothing to prove. Suppose that S properly contains Zp.

There exists x∈ S and x /∈Zp. As x∈Q, when x /∈Zp, x−1 ∈Zp. Then x−1 ∈Zp⊂ S
or x−1 ∈ S.

Therefore, if x ∈ S, x /∈ Zp, x−1 ∈ S also. So, for every x ∈ S and x /∈ Zp,
x−1 ∈ S. Whenever x is not in Zp, both x and x−1 are in S, when one of them is
in S. If t ∈ Q and t /∈ S, then t /∈ ZP and so t−1 ∈ Zp. That is, t−1 ∈ S. But, then,
(t−1)−1 = t ∈ S or Q ⊆ S. But, S ⊆Q. Therefore, S = Q, whenever S contains Zp

properly.
(3) Every nonzero x ∈Q is of the form pnu, where u is a unit in Zp and n is a

unique integer depending on x. For, if x ∈ Zp, x = r
s where p - s. But, p may be a

© 2007 by Taylor & Francis Group, LLC



ORDERED FIELDS, FIELDS WITH VALUATION AND OTHER ALGEBRAIC STRUCTURES 215

factor of r. So,

x = pn r′

s
, where p - r′.

Then, r′

s is a unit in Zp (invertible) or x = pnu, u being a unit in Zp.
If x /∈ Zp, x−1 ∈ Zp and so x−1 = a

b , where p - b.
Then, x−1 = pn a

b , where p - a. So, then, x = p−nv where v is a unit in Zp.
When 0 6= x ∈ Q, there exists a unique integer n such that x = pnu where u is

a unit in Zp.
This fact is exploited to define what is called a valuation onQ.

Definition 8.3.2 : When 0 6= x ∈Q and x = pnu where u is a unit in Zp, we define
νp(x) = n and use the convention that νp(0) = +∞.

We remark that +∞ denotes an object which satisfies the ‘rules of calculation’
given below:

n + (+∞) = +∞, for all n ∈ Z.
(+∞) + (+∞) = +∞.

+∞> n for all n ∈ Z and +∞≥ +∞.
Lemma 8.3.1 : If νp(x), x ∈Q is as given in definition in 8.3.2, then, for x,y ∈Q,

(1) νp(xy) = νp(x) +νp(y) and
(2) νp(x + y)≥min{νp(x),νp(y)}.

Further, Zp is the set of all x ∈Q such that νp(x)≥ 0.

Proof : When 0 6= x ∈Q, there exists a unique integer n such that

x = pnu1where u1 is a unit in Zp.

Similarly, for 0 6= y ∈Q, there exists a unique integer m such that

y = pmu2 where u2 is a unit in Zp.

As xy = pn+mu1u2, where u1u2 is also a unit in Zp, (1) follows.

Now, x + y = pnu1 + pmu2 = pn(u1 + pm−nu2) if n≤ m.

If u1 = a
b , u2 = c

d are units in Zp, p does not divide any of a,b,c or d.
Also, u1 + pm−nu2 = ad+pm−nbc

bd . Neither the numerator nor the denominator is
divisible by p. So, u1 + pm−2u2 is a unit and (2) follows.

In the situation where x = 0 or y = 0 or both are zero, the convention for rules
of calculation with +∞ given after definition 8.3.2 makes it agree with the results
of (1) and (2).

If u ∈ Zp and u is a unit, then, u = p0u and so vp(u) = 0. If x ∈ Zp and x is not
a unit, x = a

b where p does not divide b. Let pn be the highest power of p contained
in a. Then, n = 0 if, and only if, x is a unit. So, if x is not a unit in Zp, n > 0 and
thus vp(x)≥ 0 whenever x ∈ Zp. �
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Definition 8.3.3 : Let F be a field and R a subring of F. R is said to be a valuation
ring of F, if R 6= F, and for each x (6= 0) in F either x or x−1 ∈ R.

We remark that perhaps, the motivation for the definition of a valuation ring
of a field comes from the example of Zp contained in Q.

Lemma 8.3.2 : Let R be a valuation ring of a field F. Then, R is a quasi-local
ring in the sense that R has a unique maximal ideal M.

Proof : Let M be the set of non-units in R. If a,b ∈ M, then a + b ∈ M. For, if
a + b is a unit for any two elements a,b ∈M, then a + (−b) is also a unit. That is,
(a + b) + (a + (−b)) = a + a is a unit, or (a + a) + (−a) = a is a unit which contradicts
the assumption that a is a non-unit. For r ∈ R, a ∈M, r · a ∈M. For, if r · a is a
unit, (r · a)−1 exists. Therefore, a−1 · r−1 = r−1 · a−1 exists, which implies that a−1

exists, a contradiction. So, (M,+) is an abelian subgroup of (R,+) and it absorbs
products from right and left. That is, M is an ideal of R. As R \M is the set of
units of R, M is the unique maximal ideal of R. Hence, R is a quasi-local ring. �
Corollary 8.3.1 : Zp is a quasi-local ring contained in Q.

Definition 8.3.4 (Roger Godement [8]) : A discrete valuation of a field F is a
function ν : F → Z∪{+∞} such that

(i) ν(0) = +∞, ν(x) ∈ Z, if x 6= 0;
(ii) ν(xy) = ν(x) +ν(y) for all x,y ∈ F;

(iii) ν(x + y)≥min{ν(x),ν(y)} for all x,y ∈ F.

Remark 8.3.2 : ν is said to be nontrivial, if ν(F) does not consist of 0 and +∞
only.

It can be shown that the set R of elements x ∈ F such that ν(x) ≥ 0 is a
valuation ring of F . The maximal ideal M of R is the set of all x ∈ F such that
v(x) > 0. If we choose an element t ∈M such that ν(t) is a minimum, then M is
generated by t. That is, M = Rt. Further, every ideal of R is of the form (tn) = Rtn

for some n≥ 0.

8.4. Fields with valuation

As remarked by Nathan Jacobson [12] ‘valuation theory forms a solid link
between number theory, algebra and analysis’. While discussing valuation rings
(see Section 8.3), we considered Zp, the ring of rational numbers whose denomi-
nators do not contain the prime p (fixed) as a factor. Zp is a valuation ring of Q,
the field of rational numbers. A non-trivial discrete valuation (see definition 8.3.4)
of F is a real-valued valuation which is known by the name ‘absolute-value’, in
view of ‘triangle equality’.

Definition 8.4.1 : Let R̃ denote the set of non-negative real numbers. An absolute-
value on a field F is a function m : F → R̃ given by
(a) m(a)≥ 0 and m(a) = 0 if, and only if, a = 0F
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(b) m(a ·b) = m(a)m(b)
(c) m(a + b)≤ m(a) + m(b) (triangle inequality)

For instance, if F = C, the field of complex numbers, when z = x + iy ∈
C, |z| =

√
x2 + y2, (i denotes

√
−1) is an absolute value on C. The function

|C| : C → R̃ reduces to the usual absolute value on the subfields Q and R of
C.

Recalling the definition of Zp, we obtain the p-adic absolute value of Q as
follows. Suppose that p is an arbitrary but fixed prime.

Let a ∈Q, a = ( x
y )pk where k ∈ Z and x and y do not contain p as a factor. k

is uniquely determined once a is given. If p = 2, and a = 5
48 = 5

3 ·2−4, k = −4.

Definition 8.4.2 : For a = ( x
y )pk, we define νp(a) = k with the convention

that νp(0) =∞.

We note that
(i) νp(a) =∞ if, and only if, a = 0

(ii) νp(a ·b) = νp(a) +νp(b)
(iii) νp(a + b)≥min{νp(a),νp(b)}

Let η be a real number with the property 0< η < 1.

Definition 8.4.3 : The p-adic absolute value mp :Q→ R̃ is defined by

mp(a) = ηνp(a) where νp(a) is as given in definition 8.4.2.

Taking mp(0) = 0, we check that
(1) mp(a) = 0⇔ a = 0, mp(a)≥ 0 for all a ∈Q
(2) mp(a ·b) = mp(a)mp(b), a,b ∈Q and
(3) mp(a + b) = ηνp(a+b).

As νp(a + b)≥min{νp(a),νp(b)}, ηνp(a+b) ≤max{ηνp(a),ηνp(b)}.
Or mp(a + b)≤max{mp(a),mp(b)} ≤mp(a) + mp(b).

So, mp :Q→ R̃ is an absolute value on Q (See definition 8.4.1). We call mp

a p-adic valuation of Q.
If we take η = 1

p , mp(a) = |a|p = p−n, where vp(a) = n.
It is verified that 11p is a p-adic valuation of Q.

Remark 8.4.1 : For any field F, the trivial absolute value of F is given by

m(a) =

{
0, a = 0
1, a 6= 0

Let F∗ = F \ {0}. If R∗ = R̃\ {0} is considered as a group under multiplication,
m : F∗→R∗ where m is the absolute value map, is a group homomorphism. Also,
m(1F) = 1 and for a ε F∗, m(a−1) = 1

m(a) and m(−1F) = 1, as −1F ·−1F = 1F .
If F is a finite field with m : F → R̃ as an absolute value map, as m(1F) = 1,

m(ζk) = 1 where ζ is a kth root of 1F contained in F . So, for a finite field, we get
only the trivial absolute value.
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Fact 8.4.1 : Let (X ,d) be a metric space. Given ε > 0, the set

Bd(a, ε) = {x ∈ X : d(a − x)< ε}
of all elements whose ‘distance’ from a < ε is called the ε-ball centred at a. The
collection B of all ε-balls Bd(a, ε) for a ∈ X , ε > 0, is a basis for a topology of X
called the metric topology induced by d.

A topological space X is called Hausdorff if, for each pair a1,a2 of distinct
points of X , there exist ε-balls U1 and U2 centred at a1 and a2 respectively such
that U1∩U2 = ∅. The topology on X declares ‘open subsets’ of X . A subset A of
X is called closed if X \A is open.

When m : F→ R̃ is an absolute-value map, it is easily verified that m(1F) = 1,
m(b) = 1, if there exists k ∈ N such that bk = 1F .

m(−a) = m(a) for all a ∈ F. If a 6= 0F , m(a−1) = 1
m(a) and

|m(a) − m(b)| ≤m(a − b)

Thus, an absolute-value on F defines a topology whose open sets are unions
of ε-balls. Addition, subtraction and multiplication are continuous functions from
F×F to F in the topology of F . We can talk about convergence of sequences and
series in the usual manner. As m gives a metric topology on F , the topological
space induced by m is Hausdorff.

Definition 8.4.4 : If {an} is a sequence with ai ∈ F(i = 1,2, . . .), we say that {an}
converges to a∈F if, given ε> 0, there exists N = N(ε)∈N such that m(a−an)<ε,
for all n≥ N.

Definition 8.4.5 : Two absolute-value maps m1 and m2, defined on F, are said to
be equivalent if they define the same topology on F.

For example, if m1,p and m2,p are two p-adic valuations on Q given by

m1,p(a) = ηνp(a),m2,p(a) = ηνp(a)
2 ,0< η1,η2,< 1

then, m2,p(a) = (m1,p(a))s where s = logη2
logη1

> 0.
This implies that any ε-neighbourhood of a point defined by m1,p is an ε′-neigh-
bourhood defined by m2,p. So m1,p and m2,p define the same topology on F . This
is no accident. This is the case for any field F and any two absolute-values m1

and m2 where m2(a) = m1(a)s with s a positive real number.
When the absolute value map is trivial, it defines the discrete topology on F.
If the absolute-value map is non-trivial, we have an a ∈ F such that

0 < m(a)< 1. Then, the sequence {an} converges to 0F as {m(an)} → 0 and the
set of points {a,a2, . . . ,an, . . .} is denoted by A. By the closure Ā of A, we mean
the intersection of all closed sets containing A. By the definition of Ā,0F ∈ Ā,
as m(an) < ε for all n ≥ N(ε) which is determinable. It is not necessary that 0F

should belong to A, as a subset S of F is closed if, and only if, S ⊇ S̄. So, A is
not closed in F. Therefore, the topology induced by m is not discrete. Or, if the
topology induced by an absolute-value map is discrete, then it is trivial. In other
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words, the trivial absolute-value map is equivalent to itself. The equivalence of
absolute-value maps is brought out in the following

Theorem 59 : Suppose that m1 and m2 are absolute-value maps on a field F such
that m1 : F → R̃ is not trivial and m1(a)< 1 for all a ∈ F implies that m2(a)< 1
for all a ∈ F. Then, there exists a positive real number s such that

m2(a) = m1(a)s for all a (6= 0) ∈ F

Proof : Let a,b ∈ F . If m1(a)< m1(b), then m2(a)< m2(b).
So, m1(a)> 1 = m1(1F) implies that m2(a) > 1. Since m1 : F → R̃ is non-trivial,
we can choose a0 ∈ F such that m1(a0)> 1 and so
m2(a0)> 1.

Suppose that a ∈ F is such that m1(a)> 1 and m2(a)> 1. We write

(8.4.1) t =
logm1(a)
logm2(a0)

Then, t > 0 and m1(a) = m1(a0)t .
We have m2(a) = m2(a0)t′ with t ′ > 0. If t ′ 6= t, there exists a rational number

r having the property r > t and r < t ′ or r < t and r > t ′.
If r > t and r < t ′, m2(a0)r < m2(a). If r < t and r > t ′ m2(a0)r > m2(a).

Claim: t = t ′.
Let r be equal to m

n (n 6= 0).
If r > t, r > log m2(a)

log m2(a0) .
So, m2(a0)r > m2(a).
If r < t, m2(a0)r < m2(a).
With r = m

n (m,n positive integers), if r > t,

m1(a)< m1(a0)
m
n

and so, m1(a)n < m1(a0)m.
Then, m2(a)n < m2(a0)m and so, m2(a)< m2(a0)

m
n .

Similarly, if r < t, m2(a)> m2(a0)
m
n .

The same argument works for r in relation to t ′. Then, we are forced to
conclude that t = t ′. So,

t =
logm2(a)
logm2(a0)

=
logm1(a)
logm1(a0)

.

It follows that
logm2(a)
logm1(a)

=
logm2(a0)
logm1(a0)

or, m2(a) = ms
1(a) where s = log m2(a0)

log m1(a0) > 0.
This holds for all a for which m1(a)> 1. If m1(a)< 1, we have

m2(a−1) = m1(a−1)s and so, m2(a) = (m1(a))s.

This completes the proof of theorem 59. �
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Corollary 8.4.1 : The absolute-value maps m1 : F → R̃ and m2 : F → R̃ are
equivalent as they define the same topology on F.

Remark 8.4.2 : Theorem 59 has been adapted from Nathan Jacobson [12].

Lemma 8.4.1 : Let m1,m2, . . . ,mn be inequivalent nontrivial absolute-value maps
of F. There exists an element a ∈ F such that

m1(a)> 1 and m2(a),m3(a) . . . ,mn(a) are all < 1.

Proof : We prove the result by induction on n. If n = 2, we can find b,c ∈ F such
that

m1(b)> 1,m1(c)≤ 1 and m2(b)≤ 1,m2(c)> 1.

This is possible since we are considering absolute-value maps which are not
equivalent. See theorem 59.

We write a = b
c . Then,

m1(a) = m1(
b
c

)> 1, as m1(c−1) =
1

m1(c)
≥ 1

m2(a) = m2(
b
c

)< 1, as m2(c−1) =
1

m2(c)
< 1

So, the lemma is true for n = 2.
Suppose that the result holds for n = r − 1(> 2).

Let b ∈ F and assume that

m1(b)> 1,m2(b)< 1, . . . ,mr−1(b)< 1.

Let c ∈ F such that

m1(c)> 1, and mr(c)< 1.

If mr(b)≤ 1, then a = btc, for sufficiently large t, is such that

m1(a)> 1,m2(a)< 1, . . . ,mr−1(a)< 1

and mr(a) = mr(btc)< (mr(b))tmr(c)< 1 is okay.
The case where mr(b)> 1 is handled as follows:

If m : F → R̃ is an absolute value map, m(b)< 1 =⇒ bt → 0 in the topology

Tm induced by m. So
bt

1F + bt → 0 in Tm.

So m
( bt

1F + bt

)
→ 0, as t grows large.

Therefore, m(b)> 1 gives 1
bt → 0 in Tm.

Therefore ,
bt

1F + bt =
1F

1F + 1
bt

→ 1F in Tm.
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Thus, m(
bt

1F + bt )→ 1 for t growing large.

That is, for large t , a =
bt

1F + bt c makes

m1(a)> 1, m2(a)< 1, . . . ,mr−1(a)< 1

and mr(a) = mr(
bt

1F + bt c) = mr(
bt

1F + bt )mr(c)< 1.

This proves the lemma 8.4.1. �

Lemma 8.4.2 : Let m1,m2, . . . ,mr be inequivalent nontrivial absolute-value maps
of F into R̃. Given ε > 0, there exists b ∈ Fsuch that

m1(1F − b)< ε,m2(b)< ε, . . . ,mr(b)< ε.

Proof : By lemma 8.4.1, we could choose a ∈ F in such a way that

m1(a)> 1,m2(a)< 1, . . . ,mr(a)< 1.

We write b = at

1F +at with t a real number to be found out.
For j > 1,

m j(b) = m j
(

at

1F +at

)
→ 1 for the topology Tm j induced by m j.

For j = 1,
m1(1F − b) = m1

( 1F
1F +at

)
= m1

(
(a−1)t

)
m1
( 1F

(a−1)t+1F

)
→ 0 for sufficiently large t.

The desired inequalities follow. �

Theorem 60 (The approximation theorem (weak form)) :
Let m1,m2, . . . ,mr be inequivalent nontrivial absolute-value maps from a field

F into R̃. Suppose that a1,a2, . . . ,ar are given elements of R. Given ε > 0, there
exists an element a in F such that

m j(a − a j)< ε ; j = 1,2, . . .r.

Proof : We write maxi{mi(a j)} = M, i, j = 1,2, . . . ,r.
By lemma 8.4.2, we note that there exist b1,b2, . . . ,br ∈ F such that

mi(1F − bi)<
ε

rM
i = 1,2, . . . ,r ; mi(b j)<

ε

rM
, j 6= i.

As mi(a + b)≤ mi(a) + mi(b) for a,b,∈ F; i = 1,2, . . .r ;
when

a = a1b1 + a2b2, · · ·+ arbr,

mi(a − ai) = mi(a1b1 + a2b2 + ai(bi − 1F) + · · ·+ arbr)

≤
r∑

j=1
j 6=i

mi(a jb j) + mi(ai(bi − 1F))

≤ Mε
rM

+
Mε
rM

+ · · ·+ Mε
rM

( r terms );

= ε.
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Or, m j(a − a j)< ε for j = 1,2, . . . ,r; as required. �

Remark 8.4.3 : If m1,m2 are two equivalent absolute value maps of F into R̃,

m2(a) = ms
1(a) for some s> 0 and all a ∈ F.

Or,

(8.4.2) ms
1(a)m2(a)−1 = 1.

The approximation theorem says that if m1,m2, . . . ,mr are inequivalent and
nontrivial, there does not exist an r-tuple (s1,s2, . . . ,sr) 6= (0,0, . . .0), si ∈ R
(i = 1,2, . . .r) such that

(8.4.3) m1(a)s1m2(a)s2 · · ·mr(a)sr = 1 for all a ∈ F.

For, suppose that s1 = 1. Then, there exists an ai such that
m1(ai)< 1

2i and m j(ai − 1F)< 1
2i for j > 1.

Then, m1(ai) → 0 and m j(ai) → 1. Therefore, (8.4.2) is not valid for all
ai(i = 1,2, . . .r).

Next, we note that the p-adic absolute value on Q namely mp :Q→ R̃ given
by mp(a) = ηνp(a) (see definition 8.4.3) is such that

(8.4.4) mp(a + b)≤max{mp(a),mp(b)}.
This motivates

Definition 8.4.6 : An absolute value map m : F → R̃ is called
non-archimedean if

(8.4.5) m(a + b)≤max{m(a),m(b)} for all a,b ∈ F.

This condition is stronger than

m(a + b)≤ m(a) + m(b) for all a,b ∈ F,

as max{m(a),m(b)}≤m(a) + m(b) for all a,b ∈ F .
If (8.4.5) is not satisfied, we say that m : F → R̃ is archimedean.

Theorem 61 : An absolute-value map m : F→ R̃ is non-archimedean if, and only
if, m(n1F)≤ 1 for all n ∈ Z.

Proof : ⇒ If m : f → R̃ is non-archimedean, then for ai(i = 1,2, . . .n) ∈ F .

m(a1 + a2 · · ·+ an)≤max{m(ai)}
So, m(1F + 1F + · · ·+ 1F)≤ m(1F) = 1, where 1F is added to itself (n − 1) times.
So, m(n1F)≤ 1 for all n ∈ Z.
⇐: Suppose that m(n1F)≤ 1 for all n ∈ Z.
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For any n ∈ N, a,b ∈ F,

m
(
(a + b)n) = m(an +

(
n
1

)
an−1b + · · ·+ bn)

≤ m(an) + m(n1F)m(an−1)m(b) + · · ·+ m(bn).

Or,
m((a + b)n)≤ (n + 1)max{m(an),m(bn)}.

Or,
m(a + b)≤ (n + 1)

1
n max{m(a),m(b)}.

In R, limn→∞(n + 1)
1
n = 1. Therefore,

m(a + b)≤max{m(a),m(b)}
�

Corollary 8.4.2 : If F is a finite field, an absolute-value map m : F → R̃ is non-
archimedean.

Proof : If n1F is in the prime-subfield of F and n1F 6= 0F ,
then, (n1F)p−1 = 1F , where p is a prime which is the characteristic of F .
So m(n1F) = 1, Also m(0F) = 0.
So, m : F → R̃ is non-archimedean. �

Remark 8.4.4 : Theorem 61 has been adapted from Nathan Jacobson [12].

Remark 8.4.5 : The trivial absolute value map m : F → R̃ is non-archimedean,
since m : F → R̃ is given by

m(a) =

{
0, a = 0F

1, a 6= 0F

So, for a,b ∈ F , m(a + b)≤max{m(a),m(b)} holds.

Remark 8.4.6 : The absolute value map of C is archimedean. For, if m : C→ R̃
is given by

m(x + yi) =
√

x2 + y2, x,y ∈ R;
for a,b ∈ C, m(a + b) = |a + b| ≤ |a|+ |b|.

m(a + b)≤max{m(a),m(b)} if, and only if, a or b is zero. So, m : C→ R̃ is
archimedean.

Remark 8.4.7 : It can be shown that the absolute-value map m : F → R̃ is non-
archimedean if, and only if,

{m(n1F) : n ∈ Z}
is bounded above. See Edwin Weiss [23].
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Observation 8.4.1 : Valuation of a field (as in definition 8.3.4) and absolute-
value map could be connected in the following manner.

Let v : F → R∪{∞} be a map given by

(i) v(a) =∞ if, and only if, a = 0
(ii) v(a ·b) = v(a) v(b)

(iii) v(a + b)>min{v(a),v(b)}.
Then, F together with v forms a field with valuation. Suppose that α ∈ R is

such that α > 0. We write m(a) = |a|α = α−v(a);a ∈ F.
|0|α = 0. m : F → R satisfies

(i) m(a)> 0 and m(a) = 0 if, and only if, a = 0
(ii) m(a,b) = m(a) (b)

(iii) m(a + b) = |a + b|α = α−v(a+b) 6 α− min{v(a),v(b)} = max{|a|α, |b|α}.
m is precisely an absolute value on F (compare definition 8.4.3).

Given F together with v, we write

(8.4.6) Rv = {a ∈ F : v(a)> 0}.
Rv is a subring of F . In fact, F is the field of quotients of Rv.
If x ∈ F , x /∈ Rv, v(x)< 0 and so v(x−1)> 0.

That is, if x /∈ Rv, x−1 ∈ Rv. So, any x ∈ F is such that either x or x−1 ∈ Rv.
Consistent with definition 8.3.3, we note that Rv is a valuation ring of F.

Thus, an integral domain D is said to be a valuation ring, if there exists a
valuation v of the field F of quotients of D such that D = Rv (8.4.6).

Next, we observe that the equivalence of absolute-value maps of a field F
gives an equivalence relation on F . (see definition 8.4.5). The equivalence classes
with respect to this equivalence relation are called the ‘prime divisors’ of F . The
prime divisor to which the trivial absolute value map belongs is known as the
trivial prime divisor. All others are non-trivial prime divisors.

Fact 8.4.2 : Let P be a prime divisor of F . For any absolute-value map m : F→ R̃
belonging to P, we have

(8.4.7) P = {ms : s> 0}

Definition 8.4.7 : We call P an archimedean prime divisor when an absolute-
value map which belongs to P is archimedean.

A similar terminology is used for a non-archimedean prime divisor. It may
be verified that an archimedean absolute-value map cannot be equivalent to a non-
archimedean absolute-value map.

We now consider three disjoint subsets of a field F with respect to a non-
archimedean prime divisor P of F. Let m be an absolute-value map belonging
to P.
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Definition 8.4.8 :
(1) The set

O = {a ∈ F : m(a)≤ 1}
is called the valuation ring at P or the ring of integers of F at P.

(2) The Set
P = {a ∈ F : m(a) = 1}

is a prime ideal of O and is called the prime ideal at P.

We check that

(8.4.8) U = {a ∈ F : m(a) = 1}
is the multiplicative group of units of O.

If O−1 = {a−1 ∈ F : a ∈ O,a 6= 0}
We have

U =O∩O−1

Further,

(8.4.9) O = P ∪U and P ∩U = ∅
P consists of all the non-units of O. Therefore, P is the unique maximal ideal of
O.

Definition 8.4.9 : The quotient ring O/P is a field and it is called the residue
class field at P. It is denoted by F.

Remark 8.4.8 :
(1) The definitions given above are independent of the choice of the

absolute-value map m belonging to P.
(2) If P is the trivial prime divisor, there is only one absolute value map

m : F → R̃ for which m(a) = 1 for all a (6= 0) ∈ F . So, O = F , P = (0F)
and U = F∗ = F \{0F}. Also F = F.

Definition 8.4.10 : Let F be a field. A function τ : F → R∪{∞} is called an
exponential valuation of F, if

(i) τ (a) =∞⇔ a = 0;
(ii) τ (ab) = τ (a) + τ (b), for a,b ∈ F;

(iii) τ (a + b)≥min{τ (a), τ (b)}.
It is easy to check that τ is related to a non-archimedean absolute-value map
m : F → R̃ by

τ (a) = − logm(a), for all a ∈ F.
In fact, m(a) = exp

(
− τ (a)

)
for all a ∈ F and hence the name exponential

valuation for τ .
All the properties of a non-archimedean absolute-value map can be carried

over to τ .
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We say that the exponential valuation τ and τ ′ are equivalent if, and only
if, τ ′ = sτ for some s > 0, s ∈ R. Further, τ belongs to a prime divisor P of F
whenever e−τ = m ∈ P. If τ : F → R∪{∞} belongs to P, one has

(8.4.10) P = {sτ : s > 0}
Analogous to the definition 8.4.7 regarding subsets O, P and U , we have

O = {a ∈ F : τ (a)≥ 0}(8.4.11)

P = {a ∈ F : τ (a)> 0}(8.4.12)

U = {a ∈ F : τ (a) = 0}(8.4.13)

We observe that τ ∈ P determines a homomorphism τ : F∗→ (R,+) the ad-
ditive group of real numbers. τ (F∗) is a subgroup of (R,+). τ (F∗) is called the
value-group of τ written G(τ ). If τ ′ ∈ P, then τ ′(F∗) = sτ (F∗) for some s > 0, by
the property of equivalent absolute-value maps. Then, G(τ ) and G(τ ′) are order
isomorphic (as ordered abelian groups).

Fact 8.4.3 : In the case of subgroups of (R,+) two situations arise:
Let B(0, ε) denote the closed interval {−ε,ε} (where ε > 0) in R. A subset X of R
is called a bounded subset of R if X ⊆ B(0, ε) for some ε > 0. A subset X of R
is called a discrete subset of R if, and only if, X intersects every closed interval
B(0, ε) ofR in a finite set. A subgroup (G,+) of (R,+) is either discrete or dense in
R. For instance, (Z,+) is a discrete subgroup of (R,+) whereas (Q,+) is a dense
subgroup of R. It is known [23] that only one of these happens in the case of a
subgroup of (R,+).

Definition 8.4.11 : The prime divisor P of F is called discrete or non-discrete
according as G(τ ) = τ (F∗) for τ ∈ P is discrete or non-discrete in (R,+). This is
independent of the choice of τ .

Let P be a discrete prime divisor of F . If, for some τ ∈ P, G(τ ) = τ (F∗) = (0),
then m = e−τ is the trivial absolute-value map, since m(a) equals 1 for all a ∈ F∗

and so G(τ ) = (0). If P is discrete and non-trivial, there exists a unique exponential
valuation (τ : F→R∪{∞}) belonging to P written τP such that G(τP) = τP(F∗) =
Z. Then, τP is referred to as the normalized exponential valuation belonging to P.
From this, we get

O = {a ∈ F : τP(a)> −1}
P = {a ∈ F : τP(a)≥ 1}
U = {a ∈ F : τP(a) = 0}

(8.4.14)

With the notion of exponential valuation on hand, we go to the notion of an
ordinary arithmetic field (OAF). See Edwin Weiss [23].

Definition 8.4.12 : Let S be a non-empty collection of discrete prime
divisors of a field F. The pair {F,S } is called an ordinary arithmetic field (OAF)
if the following axioms are satisfied:
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(A1) For each a ∈ F, if τP is a normalized valuation of F, τP(a)≥ 0 for a finite set
of prime divisors P belonging to S .

(A2) Given P1,P2 ∈S with P1 6= P2 and any integers k1,k2 there exists a∈ F such
that

τP1 (a − 1F)≥ k1

τP2 (a)≥ k2

τP(a)≥ 0 for all other P ∈S

Example 8.4.1 : ForQ denoting the field of rational numbers, let S be the set of
all non-archimedean prime divisors ofQ. Then {Q,S } satisfies (A1) and (A2) of
the definition of an OAF.

Definition 8.4.13 : Let {F,S } be an OAF. We write

R = {a ∈ F : τP(a)≥ 0 for all P ∈S }
R is a ring called the ring of integers of {F,S }.
In the case of {Q,S }, the ring of integers is Z. More generally, if D is a PID with
field of quotients F, when S denotes the set of prime divisors of F determined by
the primes in D, {F,S } is an OAF with ring of integers equal to D.

Theorem 62 (Strong approximation theorem) : Let {F,S } be an OAF.
If T = {P1,P2 . . . ,Pr} is any finite subset of S , then for arbitrary elements
a1,a2, . . .ar ∈ F and any integers k1,k2, . . . ,kr, there exists an element a ∈ F such
that

τPi (a − ai)≥ ki i = 1,2, . . .r and τP(a)≥ 0 for P /∈ T and P ∈S .

Proof : Claim : For each i = 1,2, . . . ,r there exists an element bi ∈ F such that

τPi (bi − 1F)≥ ki, i = 1,2, . . . ,r
τPi (b j)≥ k j, j 6= i

τP(bi)≥ 0, P /∈ T, P ∈S .

Step 1. Let us assume that ki ≥ 1 for i = 1,2, . . . ,r
Fix i, take j 6= i. By (A2) there exists an element ci j ∈ F such that

τPi (ci j − 1F)≥ ki;
τPi (ci j)≥ m j

τP(ci j)≥ 0 for P ∈S ,P 6= Pi,Pj (i, j = 1,2, . . .r).

We set
bi =

∏

j 6=i

ci j

we have
Pi = {a ∈ F : τPi (a)≥ 1}
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ci j − 1F ∈ Pki
i . So, ci j ∈ 1F +Pki

i .
So, bi ∈ 1F +Pki

i . So bi − 1F is such that

τPi (bi − 1F)≥ ki.

Also,
τPi (b j)≥ k j, j 6= i

and
τP(bi)≥ 0 for P /∈ T, P ∈S .

This establishes the claim made.
Step 2. We enlarge T so as to include the finite set of all P ∈ S for which
τP(ai)< 0. We denote the enlarged set by

T ′ = {P1,P2,P3, . . . ,Pr,Pr+1, . . . ,Pn}
Suppose that ar+1 = ar+2, . . . ,an = 0F . For P ∈S , τP(0F) =∞.
Let kr+1 = kr+2 = · · · = kn = 0.

Suppose that ki ≥ 0 for i = 1,2, . . . ,r.
Now, τPi (ai) = τPi (ai − 1F + 1F) ≥ min{τPi(ai − 1F), τPi(1F)} = 0. So, for each

i = 1,2, . . . ,n, there exists an element bi ∈ F such that

(8.4.15)





τPi (bi − 1F) ≥ ki − τPi(ai), i = 1,2, . . .r
τPi (b j) ≥ k j − τPi(a j), j 6= i, j ∈ {1,2, . . . ,n}
τP(bi) ≥ 0, P /∈ T ′, P ∈S .

Some of the inequalities given above may be deleted since their right sides may
turn out to be −∞.

We set

a =
n∑

i=1

biai =
r∑

i=1

biai

Then,
a − ai = b1a1 + · · ·+ (bi − 1F)ai + · · ·+ brar

So,

τPi (a − ai)≥min{min
j
τPi (b ja j), τPi (ai) + τPi(bi − 1F)}

≥min{min
j
{τPi(b j) + τPi(a j)}, τPi (ai) + τPi(bi − 1F)}

By step 1, τPi (bi − 1F)≥ ki, τPi(b j)≥ k j.

For j 6= i, if k j ≥ ki, we get through. If k j ≤ ki, τPj (a − a j)≥ k j.
Further, τP(a)≥ 0 for P /∈ T , P ∈S .
So whatever be ki (i = 1,2, . . . ,r), the conclusion of theorem 62 holds. �

Remark 8.4.9 : Theorem 62 is referred to as the strong approximation theorem,
as it is valid in a more general setting when ai are chosen from the completion of
F with respect to Pi. For details, see Edwin Weiss [23].
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Corollary 8.4.3 (The Chinese Remainder Theorem) : If a1,a2, . . .ar are integers
and m1,m2, . . . ,mr are positive integers such that
g.c.d (mi,m j) = 1, i 6= j, i, j = 1,2, . . . ,r, the system of congruences

x≡ ai (mod mi), i = 1,2, . . . ,r

has a common solution modulo m1m2 . . .mr.

For, one has to take {Q,S } with S the set of all non-archimedean prime
divisors of Q. Then, there exists a ∈ Z such that

τPi (a − ai)≥ mi (i = 1,2, . . . ,r)

If p is a prime in Z, P determines a discrete prime divisor P(p) ∈S . We define
τP(p) by

τP(p)(0) =∞
and for any a (6= 0)∈Q, τP(p)(a) = the exponent to which p appears in the factoriza-
tion of a. Since a has only a finite number of primes appearing in its denominator,
τP(p)(a) ≥ 0 for a finite number of discrete prime divisors P ∈ S . For distinct
primes p1, p2 in Z there exist x,y ∈ Z such that xp1 + yp2 = 1. So a = yp2 ∈ F is
such that

τP(p1)(a − 1)≥ k1, say
τP(p2)(a)≥ k2

and τP(a)≥ 0 for all other P ∈ S.

{Q,S } is an OAF and x≡ a(mod m1m2 . . .mr) gives a simultaneous solution. �

Remark 8.4.10 : Theorems 60 and 62 have been adapted from Edwin Weiss [23].
The valuation-theoretic approach is due to Hensel (1861–1941) who was a stu-
dent of Kronecker. The concepts of OAF, local and global fields which introduce
Ade’les and Ide’les lead to abstract techniques in algebraic number theory. For
the further study in this direction, see Edwin Weiss [23].

8.5. Normed division domains

In [9], Solomon W. Golomb gives an interesting account of the concepts of
divisibility, primes and composites via a weak partially ordered set. One does
not have to start with an integral domain. The underlying structure is a weak
partially ordered set (to be defined below) in which a suitable multiplicative norm
is considered. The approach is interesting and has applications to solutions of
problems in graph theory. However, we confine ourselves to algebraic concepts.

Let X be a non-empty set. A relation R on X is a non-empty subset of X×X .
If (a,b) ∈ R, we write aRb to convey this information.
1. R is said to be reflexive if, aRa for all a ∈ X .
2. R is said to be transitive if aRb and bRc imply aRc for all a,b,c ∈ R.
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Definition 8.5.1 :
(1) A relation R on a set X is called a weak partial order, if R is reflexive and
transitive.
(2) A set X together with a weak partial order defined on it is called a weak
partially ordered set. It is denoted by (X ,4) where 4 denotes the weak partial
order on X.

In the definition 8.5.1, ‘anti-symmetry’ of the relation R is not wanted. This is
to accommodate units, if any, of an integral domain. In fact, when we consider a
as a proper divisor of b, that is, a|b, a 6= b, ‘divides’ is a relation which is transitive.
However, when a|b and a = b, it is okay with b|a. That is, a|b and b|a =⇒ a = b
(antisymmetry). But then, we do not provide for ‘units’ in the integral domain
considered. Hence the motivation for a weak partially ordered set.

Definition 8.5.2 : Let (X ,4) be a weak partially ordered set. Suppose we asso-
ciate a norm N with elements of X defined by

N : X → N
such that for a,b ∈ X, N(a) divides N(b) whenever a4b. Further if u ∈ X is such
that N(u) = 1 then u4y for all y ∈ X. The triple (X ,∆,N) is said to be a normed
division domain, abbreviated as NDD.

Example 8.5.1 : The integral domain Z is an NDD. For, if the weak partial order
in Z is ‘divides’ and the norm N is given by N(a) = a2 for a ∈ Z, then whenever
a divides b, N(a) divides N(b). Further N(1) = N(−1) = 1 and {1,−1} is the set of
units in Z. 1 or −1 divides a for any a ∈ Z.

Notation 8.5.1 : Let us call the primes in Z to be rational primes (as mentioned
in chapter 2).

The ring Z[i] of Gaussian integers is an NDD.
For, the weak partial order in Z[i] is ‘divides’ and the norm N is given by

N(a + bi) = a2 + b2 where a + bi∈ Z[i].

{1,−1, i,−i} is the set of units in Z[i]. Clearly if u is a unit in Z[i], N(u) = 1 and u
divides (a + bi) for a,b ∈ Z. So Z[i] is an NDD.

Definition 8.5.3 : Let (X ,4,N) be an NDD. u ∈ X is called a unit, if N(u) = 1.

The normed division domains that we consider are those for which there will
be at least one unit u present in it. In (X ,4,N), we read a4b as ‘a divides b’,
where a,b ∈ X .

Definition 8.5.4 :
Let D = (X ,4,N) be an NDD. An element π in X is called a prime of D if N(π)> 1
and there is no element a in X with a4π and 1< N(a)< N(π).
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Lemma 8.5.1 : In the NDD D = (X ,4,N), an element π in X is a prime of D if
N(π) is a rational prime.

Proof : If N(π) is a rational prime p, suppose that there exists a ∈ D such that
a4π. Since N(a) divides N(π) = p, N(a) is either 1 or p. So, 1< N(a)< N(π) is
not possible when a4π in D. Thus, π is a prime in D. �

Theorem 63 : Let D = (X ,4,N) be an NDD. An element π in X with N(π)> 1 is
a prime of D if, and only if, there is no element ρ in X which is a prime of D such
that ρ4π and N(ρ)< N(π).

Proof : :⇒ If there a prime ρ of D with ρ4π and N(ρ)< N(π) then clearly, π is
not a prime of D. By contrapositive argument, the condition is sufficient.
⇐: If N(π) > 1 and π is not a prime of D, we must show that there exists a

‘proper prime divisor’ of π. For this we apply induction on N(π).
If N(π) = 2, the smallest possible norm for a prime of D, then π is a prime by

lemma 8.5.1. Assume that the result holds for all elements of norm ≤ m where
m > 2 and consider an element π with N(π) = m + 1. By definition, either π is a
prime or it has a divisor ρ with 2≤ N(ρ)≤ m. By induction hypothesis, either ρ
is a prime of D in which case there is nothing more to prove or D has a prime σ
which divides ρ with 2 ≤ N(σ) < N(ρ) ≤ m. In this case, since σ4ρ and ρ4π
and 4 is ‘transitive’, we conclude that σ4π and σ is a prime divisor of π with
1 < N(σ) < N(π). This contradicts the definition of a prime in D. So, if there is
no element ρ in X which is a prime of D such that ρ4π and N(ρ) < N(π), then,
π with N(π)> 1 is a prime of D. �

Fact 8.5.1 : Let D = (X ,4,N) be an NDD. Let Y be a subset of X . Suppose
D′ = (Y,4,N), the result of restricting 4 and N to Y . Then D′ is an NDD and
every prime of D which belongs to Y is a prime of D′.

Fact 8.5.2 : Let D = (X ,4,N) be an NDD. Suppose that 4′ is a weak partial
order on X such that a4′b whenever a4b but not in general conversely and such
that N(a) divides N(b) whenever a4′b, then D∗ = (X ,4′,N) is an NDD. If π in X
is a prime of D∗, then π is a prime of D.

Definition 8.5.5 : Let D = (X ,4,N) be an NDD. For a ∈ X, we define the
principal ideal of a to be the set {y ∈ X : a4y} and denote it by (a).

If u⊂ X with N(u) = 1, then (u) = X is the unit ideal.

The analogy with Z is clear.

Definition 8.5.6 : Let D = (X ,4,N) be an NDD. Suppose that a,b are elements
of X. We define the set M = M(a,b) of common multiples of a and b to be (a)∩ (b).
If M 6= ∅, M has a non-empty subset LCM(a,b) of elements of least norm, called
the least common multiple of a and b.
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We remark that the least norm must be a common multiple of N(a) and N(b),
but not necessarily their least common multiple.

For instance, we shall consider two elements a = 1 + i and b = 1 − i of Z[i].

(a) = {(1 + i)(c + di) : c,d ∈ Z}
(b) = {(1 − i)(c′+ d′i) : c′,d′ ∈ Z}

As 2 is a common multiple of (1 + i) and (1 − i), an element t in (a)∩ (b) of
least norm is t = 2 with N(t) = 4.

But, N(1 + i) = 2 and N(1 − i) = 2. The least norm 4 is a multiple of 2. But, it
is not the l.c.m of N(1 + i) and N(1 − i).

Definition 8.5.7 : Let D = (X ,4,N) be an NDD. Suppose that a ∈ X, b ∈ X. We
define the set C = C(a,b) of common divisors of a and b as the set consisting of
those elements d ∈ X such that a ∈ (d) and b ∈ (d).

If there exists u ∈ X with N(u) = 1, then u ∈ C(a,b) for all a,b ∈ X .
If C(a,b) 6= ∅, C(a,b) has a non-empty subset GCD (a,b) of elements of great-
est norm, called the greatest common divisor of a and b.

We remark that the greatest norm will be a common divisor of N(a) and N(b),
but not necessarily their greatest common divisor.

For instance, let us pick two elements a,b of Z(i) with a = 2, b = 2i

2i = (1 + i)2, 2 = (1 + i)(1 − i)

2i is an element of the principal ideal of (1 + i), 2 is an element of the principal
ideal of (1 + i).

GCD (2,2i) = {1 + i,−1 + i,−1 − i,1 − i}.
N(1 + i) = 2, N(2) = 4, N(2i) = 4

The greatest norm 4 is not the g.c.d of 2 and 4.

Definition 8.5.8 : Let D = (X ,4,N) be an NDD. Let X ′ be the set of equivalence
classes of elements of X established by a norm-preserving equivalence relation.
We define a new NDD by D′ = (X ′,4,N) where whenever σ ∈ X ′, τ ∈ X ′ then
σ4τ if, and only if, there exist elements s and t in X with s ∈ σ, t ∈ τ such that
s4 t in D.

The elements of X belonging to the same equivalence class in X ′ are called
associates relative to D′.

The equivalence classes or orbits of X arise from a group of transformations
of the elements of X . In Z[i], it is the group U of units in Z[i] namely

U = {1,−1, i,−i}
It is clear that all the units are placed in a single orbit of X where each element of
the orbit has norm equal to 1. If z = a + bi is an element of Z[i], the orbit of z is

(8.5.1) {z, iz,−z,−iz,}
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This corresponds to a transformation by the cyclic group C4 of units in Z[i].
If we take the group D4 of symmetries of a square, a transformation of z would
result in

(8.5.2) {z, iz,−z,−iz, z̄, iz̄,−z̄,−iz̄}
D4 consists of complex conjugation as well as multiplication by units. Each of
the elements in (8.5.1) or (8.5.2) has norm equal to N(z) = a2 + b2. Associates of
Gaussian integers could be defined via D4 as well. Divisibility theory for Z[i]
does not differ much from that of Z[i] in terms of C4.

The purpose of introducing the notion of an NDD is to point out that when a
norm function is suitably defined in respect of a weak partially ordered set, a lot
of ‘arithmetic’ is worked out.

We conclude this section with an example from group theory. Let X denote
the set of all finite groups. For G ∈ X , we define N(G) to be |G|, the order of G.
A weak partial order on X is given by H41G if H is isomorphic to a subgroup
of G whenever H,G ∈ X . By Lagrange’s Theorem, N(H)|N(G) whenever this
happens. The resulting normed division domain D1 = (X ,41,N). D is such that
the primes of D are cyclic groups of order a rational prime p. Those are the
elements guaranteed to be primes of D by lemma 8.5.1.

We could introduce another weak partial order on X by stating that for
H,G ∈ X , H42G if H is isomorphic to a normal subgroup of G or by transitivity
there is a normal series from H to G namely

H = H0 ⊂ H1 ⊂ H2 · · · ⊂ Hk = G

where Hi is a normal subgroup of Hi+1 (i = 0,1, . . . ,k − 1). Then D2 = (X ,42,N)
satisfies the axioms of an NDD. The primes in D2 are precisely finite simple
groups. These will also include primes of D1 as a subset. See Fact 8.5.1.
For applications to graph theory, see S. W. Golomb [9].

8.6. Modular lattices and Jordan-Hölder theorem

While considering a weak partial order on a non-empty set X , we mentioned
about reflexivity and transitivity. A relation R on X is said to be anti-symmetric if
for a,b ∈ X , aRb and bRa =⇒ a = b. As an example, the relation ‘divides’ on N
(the set of positive integers) is anti-symmetric. However, it is not anti-symmetric
on Z, the set of rational integers.

Definition 8.6.1 : A relation R on a non-empty set X is called a partial order if
R is (i) reflexive (ii) antisymmetric and (iii) transitive. We call (X ,R) a partially
ordered set. R is normally expressed as ‘≤’. By the symbol (X ,≤), we mean
a partially ordered set (or, briefly, a poset) wherein ≤ denotes the partial order
relation.

If P(X) denotes the power set of a non-empty set X , (P(X), ≤) is a poset
under the partial order ‘a subset of’. The relation ‘divides’ on N is a partial order
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in N. Let G be a group. We define ≤ on the collection Y of subgroups of G by
H ≤ K if H is a subgroup of K. Then (Y,≤) is a poset.

Let R be a commutative ring with unity. Let X denote the collection of ideals
of R. If ⊆ denotes ‘set-inclusion’, (X ,⊆) is a poset.

Definition 8.6.2 : Let (X ,≤) be a poset. For a,b ∈ X, we define a < b to mean
that a ≤ b and a 6= b. That is, a is strictly less than b. Examples of a relation of
the type ‘strictly less than’ are ‘a proper subset of’,‘a proper divisor of’ and ‘a
proper subgroup of’.

Definition 8.6.3 : Given (X ,≤) let a,b ∈ X be such that a < b. If, for any c ∈ X,
a< c< b is not true, we say that b covers a.

When X is a finite set, the relation ‘covers’ can be used to represent the poset
(X ,≤) by means of a diagram. The diagram is known as ‘the covering diagram’ of
the partial order on the given set X (also known as Hasse diagram). For instance,
the covering diagram in the figure below shows the poset (D(12),≤) where ≤

1

2

12

4

3

6

Figure 5

means ‘divides’. D(12) denotes the set of positive divisors of 12. When there are
two or more elements such as a, b, c which are covered by different elements say
a′, b′, c′ respectively, it is customary to draw the edges vertical and parallel to one
another, as in figure 5.

Definition 8.6.4 : In a poset (X ,≤), an element a in X is called a minimal element,
if there does not exist an element b in X such that b< a.

An element n in X is called a maximal element of (X ,≤) if, there does not
exist an element n in X such that m< n.

The poset (Z,≤) with ≤ to mean ‘less than or equal to’ does not have either
a minimal element or maximal element. In the case of the power set P(X) of X ,
(P(X),⊆), ∅ is the minimal element and X is the maximal element.

An element 0X ∈ X is called a zero element of (X ,≤) if 0X ≤ x for all
x ∈ X . An element 1X ∈ X is called unit element of (X ,≤) if x ≤ 1X for all
x ∈ X . Obviously ∅ is the zero element of (P(X),⊆) and X is the unit element of
(P(X),⊆).
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A zero element is a minimal element but a minimal element need not be a
zero element.

Definition 8.6.5 : If (X ,≤) has a zero element 0X , the elements p in X that cover
0X are called atoms.

If (X ,≤) has a unit element 1X , the elements q in X that are covered by 1X

are called coatoms of X.

In (P(X),⊆), atoms are singletons {a}, {b} etc. where a,b, . . . ∈ X .
If D(n) denotes the set of positive divisors of n, atoms are the prime divisors

of n. In (P(X),⊆), the coatoms are subsets of the form X \{a} where a ∈ X . The
coatoms of (D(n),≤) (≤ means ‘divides’) are numbers of the form n/pi where pi

(i = 1,2, . . .k) are the distinct prime divisors of n.

Definition 8.6.6 : Suppose that (X ,≤) and (Y,≤′) are posets. A bijection
f : X → Y is an isomorphism of posets if, wherever, x1 ≤ x2 in (X ,≤),
f (x1) ≤′ f (x2) in (Y,≤′). When f : X → Y is an isomorphism, the posets (X ,≤),
(Y,≤′) are said to be order isomorphic.

We consider the following finite partially ordered sets.

(8.6.1) (D(24),≤), the set of divisors of 24 with ≤ to mean ‘divides’.

(C(54),≤), the set of non-isomorphic subgroups of a cyclic(8.6.2)
group of order 54,≤ means ‘a subgroup of’

(S(40),≤), the set of ideals of Z/40Z with ≤ to mean(8.6.3)
‘a subset of’

We note that D(24) has 8 elements. C(54) has eight elements namely (e),
C(2), C(3), C(6), C(9), C(18), C(27) and C(54) where (e) is the trivial subgroup of
order 1. The number of subgroups of C(54) is equal to the number of divisors of
54, by theorem 54 of chapter 7. The additive abelian group of Z/40Z is of order
23 ·5 = 40. The ideals of Z/40Z are I1, I2, . . . , I8 where

I1 = (0), |I2| = 2, |I3| = 4, |I4| = 5, |I5| = 8, |I6| = 10,

|I7| = 20, |I8| = 40.
It is easy to check that any two of the partially ordered sets (8.6.1), (8.6.2),

(8.6.3) are order isomorphic.

Definition 8.6.7 : Let (X ,≤) be a poset. Given a,b,∈ X, an element g ∈ X is
called the greatest lower bound (g.l.b) of a and b, if

(i) g≤ a and g≤ b,
(ii) whenever there exists h ∈ X such that h≤ a and h≤ b then h≤ g.

Similarly, an element l ∈ X is called the least upper bound (l.u.b) of
a and b, if

(i) a≤ l and b≤ l and
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(ii) whenever there exists m ∈ X such that a≤ m and b≤ m, then l ≤ m.

The g.l.b of a and b, if it exists, is denoted by a∧ b (read as a meet b). The
l.u.b of a and b, if it exists, is denoted by a∨b (read as a join b). See [2] or [4].

The easiest illustration is from (P(X),⊆). For A,B subsets of X we have
A∧B = A∩B and A∨B = A∪B. In the poset (N,≤) where≤ means ‘divides’, for
a,b,∈ N, a∧b is the g.c.d of a and b and a∨b is the l.c.m of a and b.

It is known that in a poset (X ,≤) when a,b ∈ X are given, if a∧ b or a∨ b
exist, then the g.l.b or l.u.b is unique. There are examples of posets (X ,≤) where
there are elements a,b in X and the pair {a,b} does not have a g.l.b or l.u.b.

Definition 8.6.8 : If (X ,≤) is a poset in which any two elements have a g.l.b and
l.u.b then (X ,≤) is called a lattice.

Remark 8.6.1 : Given a poset (X ,≤), one could consider a subset S of X and
define l.u.b and g.l.b with reference to the elements of S. We get l.u.b and g.l.b of
S. Then, (X ,≤) is said to be a lattice if every two-element subset of X has an l.u.b
and a g.l.b.

Indeed, (P(X),⊆) is an example of a lattice, as also (N,≤), where ≤ is to
mean ‘divides’.

The properties of a lattice (L,≤) are shown below:

For a,b ∈ L,a≤ b if, and only if, a∧b = a,(8.6.4)
For a,b ∈ L,a≤ b if, and only if, a∨b = b,(8.6.5)
For a ∈ L,a∧a = a and a∨a = a (idempotency law),(8.6.6)
For a,b ∈ L,a∧b = b∧a and a∨b = b∨a (commutative law),(8.6.7)

(8.6.8) For a,b,c ∈ L,
a∧ (b∧ c) = (a∧b)∧ c
a∨ (b∨ c) = (a∨b)∨ c

}
(associative law) ,

(8.6.9) For a,b ∈ L,
a∨ (a∧b) = a
a∧ (a,b) = a

}
(absorption law) .

Definition 8.6.9 : A lattice (L,≤) is said to be bounded, if L contains a zero
element and a unit element.

It is easy to check that any finite lattice is bounded. In the case of (N,≤)
where ≤ is to mean ‘less than or equal to’, it is not bounded, though it has a zero
element.

If B = {0,1}, Bn is the set of ordered n-tuples (a1,a2, . . .an) where ai = 0 or 1
for i = 1,2, . . .n. For convenience, we write

a1a2 . . .an to denote (a1,a2, . . . ,an)

For instance, 01100 is an element of B5.
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For a1a2 . . .an, b1b2 . . .bn ∈ Bn, we define

a1a2 . . .an ≤ b1b2 . . .bn if ai ≤ bi for all i = 1,2 . . .n.

In B5, 10100≤ 11101
We set a1a2 . . .an∧b1b2 . . .bn = c1c2 . . .cn,

where ci = min{ai,bi} i = 1,2, . . . ,n and

a1a2 . . .an∨b1b2 . . .bn = d1d2 . . .dn,

where di = max{ai,bi} (i = 1,2, . . .n).
It is easy to check that (Bn,≤) is a lattice. Bn has 2n elements. (B3,≤) can

be looked upon as the set of vertices of a cube having an edge to be of unit length
and having one vertex at (0,0,0). Bn is referred to as a hyper cube.

It is possible to make a non-empty set L a lattice, once we introduce the
operations of ‘meet’ and ‘join’ in L, provided the four laws from (8.6.6) to (8.6.9)
hold for elements of L. When (8.6.6) to (8.6.9) are satisfied for a non-empty set L
in which ∧ and ∧ are known; then, by defining a relation≤ as

a≤ b if, and only if, a∨b = b,

we get (L,≤) as a lattice in which l.u.b of a and b is a∨ b and g.l.b of a and
b is a∧ b. In fact, this alternative definition is analogous to that of rings where
addition and multiplication are defined so as to satisfy certain axioms. Therefore,
it is appropriate to recognize a lattice (L,≤) as a triple (L,∨,∧).

Definition 8.6.10 : A subset L1 of L is called a sublattice of (L,∨,∧), if (L1,∨,∧)
is itself a lattice obtained from the restrictions of ∨ and ∧ to L1.

In other words, L1 is a sublattice of L if the l.u.b and g.l.b of a,b ∈ L1, are
also in L1, for all a,b ∈ L1.

Definition 8.6.11 : Let (L,∨,∧) be a lattice in which the partial order is denoted
by ≤. (L,∨,∧) is called a modular lattice if for a,b,c ∈ L,

a≤ c =⇒ (a∨b)∧ c = a∨ (b∧ c).

0

a

b

c

1

Figure 6
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Not every lattice is modular. In the case of the pentagonal lattice given by
Figure 6, one has (a∨b)∧ c = 1∧ c = c, whereas a∨ (b∧ c) = a∨0 = a and so the
lattice shown is not modular.

Fact 8.6.1 : The normal subgroups of any group G form a modular lattice.

For proof see [5].
More generally, let M be an R-module. The lattice of R-submodules of M

form a modular lattice.
If R is a non-commutative ring, we could consider the lattice of right or left-

ideals of R. Fact 8.6.1 applied to rings says that the set of right or left ideals of R
forms a modular lattice.

Definition 8.6.12 : Given a lattice (L,∨,∧), a subset S of L is said to be a chain
if, for a,b ∈ S either a≤ b or b ≤ a. S is, in short, a totally ordered subset of L.
If S is finite, S is said to be of finite length.

Definition 8.6.13 : Given a lattice (L,∨,∧), L is said to be of finite length, if

sup{l : l is the length of a chain in L}
is finite. It is the l.u.b of lengths of chains in L.

A lattice (L,∨,∧) of finite length is defined up to isomorphism by its
‘Covering relation’: a covers b or b< a if, and only if, a finite sequence x0,x1, . . .,xn

of elements of L exists such that

(8.6.10) b = x0, a = xn and xi covers xi−1 for i = 1,2, . . . ,n.

A lattice (L,∨,∧) of finite length has a greatest and least element.
An alternate definition [5] of a modular lattice is as follows: We begin with

the definition of an interval I in L.

Definition 8.6.14 : Let (L,∨,∧) be a lattice. Suppose a,b∈ L are such that a≤ b.
The subset

[a,b] = {x ∈ L : a≤ x≤ b}
is called the interval defined by a and b.

Such an interval need not be a chain. But, [a,b] is always a sublattice of L
with greatest element b and least element a.

Lemma 8.6.1 : [5] Let I = [a,b] be an interval in a lattice (L,∨,∧). For all x ∈ L,
the following inequality holds:

(8.6.11) (x∧b)∨a≤ (x∨a)∧b

Proof : We define maps ψ : L→ I and ρ : L→ I by the equations

ψ(x) = (x∧b)∨a
ρ(x) = (x∨a)∧b

}
,x ∈ L

where ψ(x), ρ(x) belong to I.
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When x ∈ I,

ψ(x) = (x∧b)∨a = x∨a = x, as a≤ x =⇒ a∨ x = x.

ρ(x) = (x∨a)∧b = (a∨ x)∧b = x, since x∧b = x, as x≤ b.

Now, for x ∈ L,

(ψ ◦ρ)(x) = ψ(ρ(x)) = ψ(x), as ρ(x) ∈ I.

(ψ ◦ψ)(x) = ψ(ψ(x)) = ψ(x) as ψ(x) ∈ I.

We have
ψ ◦ρ = ψ2 = ψ

and
ρ◦ψ = ρ2 = ρ.

Since x∧ b ≤ (x∧ b)∨ a = ψ(x) = x = ρ(x), x∧ b ≤ ρ(x) and a ≤ ρ(x). It follows
that

(x∧b)∨a = ψ(x)≤ ρ(x)
Thus, (8.6.11) holds for all x ∈ L. �

Remark 8.6.2 :
(i) If (x∧b)∨a = (x∨a)∧b for all x ∈ L, I = [a,b] is said to be modular.
(ii) Lemma 8.6.1 has been adapted from P. M. Cohn [5].

Definition 8.6.15 : A lattice (L,∨,∧) in which all intervals are modular is called
a modular lattice.

In other words, (L,∨,∧) is modular if, and only if,

(c∨a)∧b≤ (c∧b)∨a for all a,b,c ∈ L with a≤ b.

In view of lemma 8.6.1, we conclude that a lattice (L,∨,∧) is modular if, and only
if,

(8.6.12) (c∨a)∧b = (c∧b)∨a for all a,b,c ∈ L with a≤ b.

(8.6.12) is referred to as the ‘modular law’ for the lattice L.

Definition 8.6.16 : In a lattice (L,∨,∧) with least element 0 and greatest element
1, two elements a and b are said to be complementary, if a∧b = 0 and a∨b = 1.
An element complementary to a is called the complement of a in L. Two elements
which have a common complement b in L are called ‘b-related’ or simply related
in L.

Theorem 64 (P. M. Cohn (1965)) : A lattice (L,∨,∧) is modular if, and only
if, for each interval I of L, any two elements of I which are comparable and are
related in I are equal.

Proof : We know that (L,∨,∧) is modular if, and only if, definition 8.6.15 holds.
So, (L,∨,∧) is not modular, if the inequality
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(8.6.13) (c∧b)∨a≤ (c∨a)∧b

is strict for at least one triple of values a,b,c such that a≤ b. When a = b, the two
sides of (8.6.13) are equal by absorption law: namely

a∧ (a∨ c) = a and a∨ (a∧ c) = a.

Therefore let us take a< b.
⇐=: First assume that the inequality (8.6.13) is strict.
We write

a1 = (c∧b)∨a, b1 = (c∨a)∧b
Then, a≤ a1 < b1 ≤ b.

Now, c∧b1 = c∧ ((c∨a)∧b) = (c∧b)∧ (c∨a)≤ (c∧b)∨a = a1.
So, c∧b1 ≤ a1. Also c∧b1 ≤ c.

That is,

(8.6.14) c∧b1 ≤ c∧a1.

Now, a1 < b1. So,

(8.6.15) c∧a1 ≤ c∧b1

From (8.6.14) and (8.6.15), we get

(8.6.16) c∧a1 = c∧b1 = a2 (say)

In the same manner, one has

(8.6.17) c∨a1 = c∨b1 = b2 (say)

So a1 and b1 are comparable and are related in [a2,b2], although not equal.
Thus, (L,∨,∧) is not modular⇒ inequality (8.6.13) is strict which, in turn, implies
that any two elements of I which are comparable and are related in I are unequal.

So, the condition stated for (L,∨,∧) to be modular is sufficient.
Figure 7 shown below illustrates the proof.

c

b

b

b

a

a

a

1

2

2

1

Figure 7
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:⇒ Conversely, let a′, b′ be distinct elements of I which are comparable and
related in [a,b].
Suppose that

c∧a′ = c∧b′ = a,c∨a′ = c∨b′ = b

and a≤ a′ < b′ ≤ b.
Then, (c∧b′)∨a′ = a′ < b′ = (c∨a′)∧b′

That is,
(c∧b′)∨a′ < (c∨a′)∧b′

So, the inequality (8.6.13) is strict and so, L is not modular.
So, the condition stated for (L,∨,∧) is necessary. �

Remark 8.6.3 : The property stated in theorem 64 involves only five elements
namely the end-points of the interval, the given element and its complements.

When we consider the sublattice formed by the five elements mentioned
above, we obtain

Corollary 8.6.1 : A lattice is modular if, and only if, it does not contain a
sublattice isomorphic to the pentagonal lattice.

Remark 8.6.4 : Theorem 64 has been adapted from P.M. Cohn [5].

Definition 8.6.17 : A lattice (L,∨,∧) is said to be distributive, if it satisfies one
of the following laws:

(i) (a∨b)∧ c = (a∧ c)∨ (b∧ c), for all a,b,c ∈ L,
(ii) (a∧b)∨ c = (a∨ c)∧ (b∨ c), for all a,b,c ∈ L.

Lemma 8.6.2 : Every distributive lattice (L,∨,∧) is modular.

Proof : Suppose (L,∨,∧) is distributive. Then, for a,b,c ∈ L,

(8.6.18) (c∨a)∧b = (c∧b)∨ (a∧b)≤ (c∧b)∨a

In particular, (8.6.18) is true whenever a≤ b also. Thus, (L,∨,∧) is modular. �

Fact 8.6.2 : A lattice (L,∨,∧) is distributive if, and only if, for each interval I of
L, any two elements of I which are related in I are equal.

For proof, see [5, Proposition 4.5].

Lemma 8.6.3 : Let (L,∨,∧) be a modular lattice and a,b any two elements in L.
Suppose that I = [a∧b,a], J = [b,a∨b]; a,b∈ L. Then, there exists a lattice-

isomorphism between I and J.

Proof : Given x ∈ I, x∨b ∈ J.
Also a∧b≤ x≤ a. So, (x∨b)∧a = x∨ (b∧a) = x.
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A dual statement is : if y ∈ J, y∧a ∈ I and (y∧a)∨b = y.
So,

ξ : I→ J given by ξ(x) = x∨b

and
η : J→ I given by η(y) = y∧a

are inverses of one another. Each is order-preserving and the lemma follows. �

Definition 8.6.18 : When maps ξ and η are defined as given above, the intervals
I and J are said to be in perspective.

More generally, two intervals, I and J are said to be projective, if there is a
chain of perspectives from I to J. That is, there is a chain

I0 = I, I1, I2, . . . , In = J

of intervals such that Ii−1, and Ii are in perspective. (i = 1,2, . . . ,n). For instance,
if a and b are related elements in a modular lattice (L,∨,∧) with 0 and 1, then the
intervals [0,a] and [0,b] are projective. Since any two intervals in perspective
are isomorphic, any two projective intervals are isomorphic. We are aiming at
Jordan-Hölder theorem for lattices.

Definition 8.6.19 : Let (L,∨,∧) be a lattice. Two chains in L given by

e = a0 ≤ a1 ≤ . . .≤ am = a(8.6.19)
e = b0 ≤ b1 ≤ . . .≤ bn = a(8.6.20)

between e and a are said to be isomorphic if m = n and if there is a permutation π
of {1,2, . . . ,n} such that the interval [ai−1,ai] is isomorphic to [bπ(i−1),bπ(i)].

Any chain obtained from (8.6.19) by inserting more terms is called a refine-
ment of (8.6.19).

Theorem 65 (P. M. Cohn(1965)) : Let (L,∨,∧) be a modular lattice. Any two
chains between the same two points in L have isomorphic refinements. More
generally, the theorem holds in any lattice for two chains all of whose intervals
are modular.

Proof : Let

e = a0 ≤ a1 ≤ ·· · ≤ am = a

e = b0 ≤ b1 ≤ ·· · ≤ bn = b

be two chains between the same elements e and a(= b) of L.
We write

ai, j = (ai∧b j)∨b j−1

b j,i = (b j∧ai)∨ai−1
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where i = 1,2, . . . ,m; j = 1,2, . . . ,n.
Then,

ai−1, j∧ (ai∧b j) =
[
(ai−1∧b j)∨b j−1

]
∧ (ai∧b j)

= (ai−1∨b j−1)∧b j∧ai

and

ai−1, j∨ (ai∧b j) =
[
(ai−1∧b j)∨b j−1

]
∨ (ai∧b j)

= (ai∧b j)∨b j−1

= ai, j

Now,
b j−1,i∧ (ai∧b j) = (ai−1∨b j−1)∧b j∧ai

and
b j−1,i∨ (ai∧b j) = b j,i

We take c = ai ∧ b j, d = ai−1, j. Then, by lemma 8.6.3, [c∧ d,c] and J = [d,c∨ d]
are isomorphic. But, then, J = [ai−1, j,ai, j].
Taking c = ai ∧ b j, d′ = b j−1,i. We also have: I′ = [c∧ d′,c] and J′ = [d′,c∨ d′]
are isomorphic. But, it is seen that I = I′. Thus, J and J′ are isomorphic. That is,
[b j−1,i,b j,i] is isomorphic to [ai−1, j,ai, j].
We get the chains

e = a0,1 ≤ a1,1 ≤ ·· · ≤ am,1 ≤ a1,2 ≤ ·· · ≤ am,2 ≤ a1,3 ≤ ·· · ≤ am,n = a

e = b0,1 ≤ b1,1 ≤ ·· · ≤ bn,1 ≤ b1,2 ≤ ·· · ≤ bn,2 ≤ b1,3 ≤ ·· · ≤ bn,m = b

which refine (8.6.19) and (8.6.20) respectively.
They are isomorphic refinements of (8.6.19) and (8.6.20). �

Theorem 66 (Jordan-Hölder theorem) : If (L,∨,∧) is of finite length, any chain
can be refined to a maximal chain and any two maximal chains between two given
elements, say, a and b in L have the same length.

Proof : By theorem 65, any two chains between a and b have isomorphic re-
finements and when a maximal chain is refined, its length is unaltered and so
isomorphic maximal chains have the same length. �

Remark 8.6.5 : Theorem 66 is the analogue of Jordan-Hölder theorem :

Any two composition series for a finite group have the same length k say, as
shown below

G = G0 ⊃ G1 ⊃ G2 ⊃ ·· · ⊃ Gk = (e)

and
G = G0 ⊃ G′1 ⊃ G′2 ⊃ ·· · ⊃ G′k = (e)
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and the quotients

G/G1,G1/G2, · · ·Gk−1/Gk

G/G′1,G
′
1/G′2, · · · ,G′k−1/G′k

are factors which are simple groups and these are isomorphic in the sense that
Gi/Gi+1

∼= G′j/G′j+1 where j = π(i) (i, j = 1,2, . . .k) for a permutation π of the set
{1,2, . . . ,k}.

For proof see S. MacLane and G. Birkhoff [15, chapter XIV]. Also, see
exercise 10, chapter 7.

8.7. Non-commutative rings

In the case of a commutative integral domain D, D is a UFD, if each irre-
ducible element of D is a prime (see Proposition 2.4.2, chapter 2). An irreducible
element in D is also referred to as an atom. D is called an atomic integral domain
[6] if every nonzero non-unit of D is a finite product of atoms. It is easily checked
that if D is an atomic integral domain, the ascending chain condition on principal
ideals (ACCP) holds. Instead of primes, if one considers prime ideals, one has the
following criterion for UFD property.

Fact 8.7.1 : An integral domain is a UFD if, and only if, every nonzero prime
ideal in it contains a prime element.

For proof, see I. Kaplansky [13].
It follows that in a UFD, every minimal nonzero prime ideal is principal.
We will examine these in greater detail when we study Noetherian domains

(see chapter 12).
We go to the non-commutative case.

Definition 8.7.1 : An integral domain D which is not necessarily commutative is
called an atomic integral domain if

(1) D has no divisors of zero, either left or right.
(2) every nonzero non-unit a ∈ D is such that there exists an irreducible

element q ∈ D dividing a either on the left or on the right.

In an atomic integral domain D, if D∗ = D \ {0}, a ∈ D∗ has the representa-
tion.

(8.7.1) a = a1a2 . . .ar where ai is an irreducible (i = 1,2, . . .r)

We consider a descending chain of right ideals from D to aD namely

(8.7.2) D⊇ a1D⊇ a1a2D⊇ ·· · ⊇ a1a2 · · ·arD = aD.
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The corresponding quotient rings have the property:

a1D/a1a2D∼= D/a2D,

a1a2D/a1a2a3D∼= D/a3D,

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
a1a2 . . .ar−1D/a1a2 . . .arD∼= D/arD.

So, we get a finite sequence of quotients

(8.7.3) D/a1D,D/a2D, . . . ,D/arD.

If a has a second factorization into irreducibles of the form

a = b1b2 · · ·bs,

we could get a second sequence of quotients

(8.7.4) D/b1D,D/b2D, . . . ,D/bsD.

We say that (8.7.3) and (8.7.4) are isomorphic if r = s and there is a permuta-
tion π of {1,2, . . . ,r} such that π(i) = j, 1≤ j ≤ r and

D/aiD∼= D/b jD

Definition 8.7.2 : An atomic integral domain D is called a general UFD if any
two complete factorizations of a nonzero non-unit of D is a product of r atoms
in two different ways and the corresponding quotients of right-ideals such as aiD
and b jD are isomorphic.

In the case of a commutative integral domain D, if a and b∈ D∗ are such that
D/aD∼= D/bD, then aD is the annihilator of D/aD and one will get aD = bD and
consequently a and b are associates. This is shown in

Theorem 67 : Let D be a commutative integral domain in which a, b are nonzero
non-units. Then a, b are associates if, and only if, D/aD∼= D/bD.

Proof : ⇐: Suppose that D/aD∼= D/bD.
There is an isomorphism ψ : D/aD → D/bD (which is onto) defined by

ψ(x + aD) = y + bD; x,y ∈ D.
Then,

y1 + bD = y2 + bD =⇒ y1 − y2 ∈ bD,

=⇒ x1 − x2 ∈ aD,

where

ψ(x1 + aD) = y1 + bD,

ψ(x2 + aD) = y2 + bD.

In particular, there is a one-one correspondence between the elements of aD and
bD. Since aD and bD have the same cardinality, aD = bD. This implies that a and
b are associates.

:⇒ If a and b are associates, aD = bD and so, D/aD∼= D/bD. �
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Now, considering left and right ideals of D say aD and Da one can talk about
‘factorial duality’ in D by saying that

(8.7.5) D/aD∼= D/bD⇔ D/Da∼= D/Db.

We call (8.7.5) ‘left-right symmetry’.
Analogous to the definition of associates in a commutative integral domain,

we can introduce similarity between two nonzero divisors in a non-commutative
integral domain.

Definition 8.7.3 : Let a, a′ be two nonzero divisors in a ring R. We say that a and
a′ are similar, if the matrices

[
1 0
0 a

]
and

[
1 0
0 a′

]

are similar in M2(R).

There are other equivalent statements possible. See P. M. Cohn [6].
An interesting example of a non-commutative UFD is the ring Q of integral

quaternions. (A rational quaternion a = a0 + a1i + a2 j + a3k is said to be integral if
its coefficients a0, a1, a2, a3 are either integers or halves of odd integers).

Theorem 68 (P. M. Cohn) : Let D be a non-commutative integral domain. D
is a UFD whenever for each nonzero non-unit a ∈ D, the set L(aD,D) of princi-
pal right ideals between D and aD forms a modular lattice of finite length, as a
sublattice of the lattice of all right ideals of D.

Proof : L(D,aD) is a sublattice of the lattice of right ideals of D.
L(D,aD) is a modular lattice. When L(D,aD) has a composition series, every
chain in L(D,aD) of intervals can be refined to a maximal chain and any two
maximal chains between two given elements have the same length. The Jordan-
Hölder theorem (theorem 66) says that when

a = a1a2 . . .ar = b1b2 . . .bs

are two different factorizations, D/aiD ∼= D/b jD and i = s and so by definition
(8.7.2) D is a UFD. �

Remark 8.7.1 : We say that an integral domain D is a PID, if every right or left
ideal of D is principal. In a PID, the principal right ideals between D and aD form
a modular lattice. As every ideal is finitely generated, by a result on Noetherian
rings, (see chapter 12) ascending chain condition and descending chain condition
on principal ideals holds by the use of ‘factorial duality’. This shows that a PID is
a UFD in the non-commutative case as well. The ring of integral quaternions is a
PID and so a UFD. More about unique factorization can be had from P. M. Cohn
[6] and P. Samuel [21].
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8.8. Boolean algebras

In Section 8.5, we have considered modular lattices and the Jordan-Hölder
theorem. It is known that a distributive lattice is modular. For instance, if X is
a non-empty set, (P(X),⊆) is a distributive lattice. (N,≤) is a distributive lattice
where ≤ means ‘divides’. For a,b ∈ N, a∨ b is the l.c.m of a and b and a∧ b
equals the g.c.d. of a and b.

Fact 8.8.1 : Let (L,∨,∧) be a distributive lattice and S an arbitrary non-empty set.
The set LS of functions f : S→ L forms a distributive lattice.

Proof : Let x ∈ S. If f : S→ L, f (x) ∈ L. When f , g ∈ LS, we define functions
J : S→ L, M : S→ L such that

J(x) = f (x)∨g(x), M(x) = f (x)∧g(x), for all x ∈ S.

Then, J,M defined by J = f ∨ g and M = f ∧ g are in the poset (L,≤), where
≤ is obtained via ∨ and ∧ in (L,∨,∧). So, LS is a lattice. To prove that LS is
distributive, we proceed as follows:
For f ,g,h ∈ LS, we define

(8.8.1) F = f ∧ (g∨h) and G = ( f ∧g)∨ ( f ∧h).

For x ∈ S, we have

F(x) = f (x)∧ (g(x)∨h(x))
= ( f (x)∧g(x))∨ ( f (x)∧h(x)), by distributivity in L,

= ( f ∧g)(x)∨ ( f ∧h)(x)
= G(x).

Thus, LS is a distributive lattice. �
Let Z̃ denote the set of non-negative integers. For r > 1, suppose that Ω(r)

denote the total number of prime factors of r. That is, if

r =
k∏

i=1

pai
i (pi primes such that p1 ≤ p2 ≤ ·· · ≤ pk,ai ≥ 1, i = 1,2, . . .k).

Ω(r) = a1 + a2 + · · ·+ ak. Further Ω(1) = 0. It is easy to check that for r,s ∈ N,

(8.8.2) Ω(rs) = Ω(r) + Ω(s).

Ω : N→ Z̃ is a function onto Z̃.
More generally, if

(8.8.3) r = 2e(1) ·3e(2) ·5e(3) · · · pe(k)
k · · · (pk,kth prime )

e( j) ≥ 0 for j = 1,2,3 . . .. The decomposition (8.8.3) assigns to each positive
integer r a function e : N→ Z̃.

If e : N → Z̃ and f : N → Z̃ are two functions (e obtained from r and f
obtained from s = 2 f (1) ·3 f (2) . . .), we take e∧ f to correspond with g.c.d (r,s) and
e∨ f to correspond with l.c.m (r,s). Clearly e + f corresponds to r · s. L denotes
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the set of functions e : N→ Z̃ which are such that e( j) = 0 except for a finite set
of value of j. Let us agree that when r divides s, e ≤ f . Then, (L ,≤) is a poset
where ‘≤’ in Z̃ is induced by the partial order ‘divides’ in N. Z̃ is a distributive
lattice. So, by Fact 8.8.1, (L ,∨,∧) is a distributive lattice.

Remark 8.8.1 : Fact 8.8.1 has been adapted from S. MacLane and G. Birkhoff
[15].

Definition 8.8.1 : Let (L,∨,∧) be a lattice having a least element 0 and a greatest
element 1. By a complement of an element a in L, we mean an element y in L such
that a∧ y = 0 and a∨ y = 1. The lattice (L,∨,∧) is called a complemented lattice
if all of its elements have complements.

In (P(X),⊆), if A is in P(X), the complement Ac of A in X has the property
A∩Ac = ∅ and A∪Ac = X . So (P(X),∪,∩) is a complemented lattice. We note that
Ac is the only complement of A in P(X). The modular lattice of all subspaces of a
finite dimensional vector space V (over a field F) is a complemented lattice. For,
given a subspace W of V there exists an annihilator of W such that

dimW + dim(annW ) = dimV

and W ∩ annW = {0}. See S. MacLane and G. Birkhoff [15].

Definition 8.8.2 : A Boolean lattice is defined as a distributive complemented
lattice.

With the operations of join and meet suitably defined on a non-empty set L,
one can make a partially ordered set (L,≤) in which l.u.b (a,b) = a∨ b and g.l.b
(a,b) = a∧ b, a lattice. The theory of a distributive complemented lattice was
first applied by George Boole (1815–1864) to model structures in logic. For this
reason, a lattice structure which is distributive and complemented is known as a
Boolean algebra.

Definition 8.8.3 : A Boolean algebra written (B,∨,∧) is such that one can intro-
duce the operations ‘+’ and ‘·’ to replace ‘∨’ and ‘∧’ symbols respectively. We
write it as (B,+, ·).
Observation 8.8.1 : The operations + and · in a Boolean algebra satisfy the
following axioms.

(i) a + b = b + a, and a ·b = b ·a, for a, b ∈ B,
(ii) a + (b + c) = (a + b) + c and a · (b · c) = (a ·b) · c for, a,b,c ∈ B,

(iii) there exist elements 0 and 1 in B such that
a + 0 = a, a ·0 = 0; a + 1 = 1 and a ·1 = a, for all a ∈ B,

(iv) for a ∈ B, there exists a complement ā ∈ B such that
a + ā = 1 and a · ā = 0,

(v) for a,b,c ∈ B
a · (b + c) = (a ·b) + (a · c); a + b · c = (a + b) · (a + c),

(vi) for a ∈ B
a + a = a and a ·a = a,
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(vii) a + a ·b = a(a + b) = a, for all a,b ∈ B.

Remark 8.8.2 : A Boolean algebra (B,+, ·) is not always a commutative ring.
However, in an arbitrary ring (R,+, ·) with unity, when every element of R is an
idempotent, that is a2 = a for all a ∈ R, R is called a Boolean ring.

The 5-element lattice (L,∨,∧) shown below in figure 8, the element c has two
complements. We note that

c∨a = 1, c∧a = 0, c∨b = 1, c∧b = 0.

(L,∨,∧) is a complemented lattice. But the complements of elements are not
unique.

1

a c

b

0

Figure 8

Fact 8.8.2 : In a distributive lattice (L,∨,∧), for a,b,c ∈ L, if

a∧b = a∧ c and a∨b = a∨ c

then b = c. (law of cancellation).
For, as (L,∨,∧) is distributive,

b = b∧ (a∨b) = b∧ (a∨ c) = (b∧a)∨ (b∧ c) = (a∧b)∨ (b∧ c)
= (a∧ c)∨ (b∧ c) = (a∨b)∧ c.

Or, b = (a∨b)∧ c = (a∨ c)∧ c

= c.

On account of Fact 8.8.2, we see that in a Boolean algebra (B,∨,∧), the
complement of an element is unique. That is, for each a ∈ B, ā is unique.
We recall that a bijection f between two lattices (L1,∪,∩) and (L2,∨,∧) is an iso-
morphism, if it preserves least upper bound and greatest lower bound of a pair of
elements either from L1 or from L2. Every lattice isomorphism is an isomorphism
of the corresponding posets. It is known that if (B,+, ·) is a finite Boolean algebra,
it is a lattice isomorphic to (P(X),∪,∩) for an appropriate finite set X . It is also
interesting to note that elements of a finite Boolean algebra can be written as a
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sum of atoms of B (elements that cover zero) in a unique way. In fact, we come
across an analogue of the fundamental theorem of arithmetic in the context of a
finite Boolean algebra. It is also possible to talk about uniqueness of factorization
of elements of a lattice from a different point of view. See J. Martinez [16].

Lemma 8.8.1 : Let (B,+, ·) be a Boolean algebra. Suppose that a and b are
distinct atoms of B. Then a ·b = 0.

Proof : B is a poset under the corresponding partial order given by a≤ b if, and
only if, a + b = b, where a,b ∈ B.

Now, from axiom (vii) of a Boolean algebra (observation 8.8.1).

We have a + a ·b = a and so, a ·b≤ a.

If a ·b = a, we have

a + b = a ·b + b = b + b ·a = b and so, a≤ b.

Since a is an atom, a> 0. So, b≥ a> 0.
So a = b, a contradiction to the assumption that a 6= b.
So, a ·b = a is impossible. So a ·b< a. As a is an atom, a ·b = 0. �

Theorem 69 : (B,+, ·) denotes a finite Boolean algebra. Every element a in B
can be written as a sum of atoms. The atoms that appear in the representation are
unique up to rearrangement.

Proof : Stage I: We, first, show that a decomposition of a∈ B, as a sum of atoms,
exists.

If a is an atom, there is nothing to prove. If a is not an atom, there exists an
atom a1 < a such that a = a1 + ā1 ·a.

For,
a1 + ā1 ·a = (a1 + ā1) · (a1 + a) = 1 · (a1 + a) = a1 + a = a

If ā1 · a is an atom, we are through. Otherwise, there exists an atom a2 ∈ B with
a2 6= a1 and ā1 ·a = a2 + (ā1 ·a) · ā2. Then,

(8.8.4) a = a1 + a2 + (ā1 · ā2) ·a
In (8.8.4) above, if (ā1 · ā2) · a is an atom, the proof of the existence of such a
decomposition is complete. Otherwise, we repeat the argument and get a decom-
position of a in a finite number of steps as desired. Since B is finite, B has only a
finite number of atoms. So, a decomposition of a as a sum of a finite number of
atoms exists.
Stage II Uniqueness: Suppose a possesses two decompositions such as

a = a1 + a2 + · · ·+ as = b1 + b2 + · · ·+ bt(8.8.5)
(ai,b j are atoms, i = 1 to s, j = 1 to t)

We claim that s = t and there exists a permutation σ of {1,2, . . . t} such that
ai = bσ(i).

To prove that t = s, we proceed by induction on t.
If t = 1, a = a1 = b1.
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Assume that the result is true for decompositions of a into a sum of less than
t atoms. Since

b1 ≤ b1 + b2, . . .+ bt = a = a1 + a2 + · · ·+ as,

we have

b1 = bi ·a = b1 · (a1 + a2 · · ·+ as) = b1 ·a1 + b1 ·a2 · · ·+ b1 ·as

Then, b1 · ai ≤ b1 for i = 1,2, . . .s. By lemma 8.8.1, there exists ak such that
b1 ·ak = b1 and b1 ·a j = 0 for all j 6= k( j = 1,2, . . . s).

But, b1 ·ak = b1 =⇒ b1 ≤ ak and so b1 = ak, since ak is an atom.
Therefore,

ak + (a1 + a2 + · · ·+ ak−1 + ak+1 + · · ·+ as) = b1 + (b2 + b3 + · · ·+ bt)

Now, when x + y = x + z and x ·y = x · z for x,y,z ∈ (B,+, ·), then, y = z. This is true,
as B is a distributive lattice (see Fact 8.8.2).

Take x = ak = b1, y = (a1 + a2 · · ·+ ak−1 + ak+1 + · · ·+ as)
z = (b2 + b3 · · ·+ bt).

We have

x + y = x + z and x · y = ak · (a1 + a2 · · ·+ ak−1 + · · ·+ as)
x · z = b1 · (b2 + b3 · · ·+ bt)

Since ak and b j are atoms

ak · (a1 + · · ·+ ak−1 + ak+1 + · · ·+ as) = b1 · (b2 + b3 + · · ·+ bt) = 0

By cancellation,

a1 + a2 · · ·+ ak−1 + ak+1 + · · ·+ as = b2 + b3 + · · ·+ bt

By induction hypothesis ai = b j for some i, j; 1≤ i≤ k − 1,
k + 1≤ i≤ s, 2≤ j ≤ t.

So the theorem holds for t whenever it holds for (t − 1), as ak = b1. So, the
decomposition of a is unique up to rearrangement of terms. �

Remark 8.8.3 : Theorem 69 has been adapted from David C. Buchthal and
Douglas E. Cameron [3].

For more information about the theory of valuations see O. F. G. Schilling [A3],
L. L. Dornhoff and F. E. Hohn [A1] for results on Lattices, Boolean algebras and
their applications. See also Paulo Ribenboim [A2].
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8.9. Notes with illustrative examples

There are methods of construction of real members starting from the field Q
of rational members. An algebraic treatment due to Artin and Schreier [1] is via
the notion of Q-absolute values. This precedes the idea of a field with valuation.
In the field R of real numbers, any finite sum of squares of nonzero elements is
positive. That is, in R, −1 is not a sum of squares. The notion of an ordered field
specifies a subset P of positive elements. Thus, the idea of ‘absolute values’ is a
natural outcome.

Let F be any field. Suppose N denotes the set of positive integers. The set
of all maps from N into F is denoted by FN. Each map a : N→ F is a sequence
with elements from F . We denote such a sequence by {an}, an ∈ F , n ∈ N. By
component-wise addition and multiplication, FN is made a commutative ring. If
t ∈ F , a scalar multiplication by t ∈ F is possible to obtain {tan} (n = 1,2, . . .).
FN is thus a vector space over F. FN has the structure of an ‘F-algebra’ which is
commutative.

The valuation theory of fields originated from a number-theoretic source. It
was Hensel who gave us p-adic numbers. In 1913, Kurshcha’k (1864–1933) in-
troduced real-valued valuation of a field and showed that Hensel’s field of p-adic
numbers could be obtained as the ‘completion’ of Q relative to the p-adic valua-
tion. (Von Neumann was one of his students). Analogous to the definition 8.4.1,
we give below the definition of a Q-valued field.

Definition 8.9.1 : Let F be a field. A map || : F→Q is called aQ-absolute value
if, and only if, the following conditions hold:

(i) |a| ≥ 0 for all a ∈ F with |a| = 0 when and only when a = 0,
(ii) |a ·b| = |a||b| for all a,b ∈ F,

(iii) |a + b| ≤ |a|+ |b| (triangle inequality) for all a,b ∈ F.

We call (F, ||) a Q-valued field.
If |a| = 1 for all a ∈ F∗ (the set of nonzero elements of F) and |0F | = 0, then,

(F, ||) is a Q-valued field and || is the trivial Q-absolute value on F . It is easy
to check that as || is multiplicative, when 0 6= a ∈ F is such that am = 1 for some
m ∈ N, |a| = 1. That is, finite fields admit only the trivial Q-absolute value. We
can also talk about Q-absolute values on the field Q itself. For instance, defining

|a|∞ =





a if a is positive ,a ∈Q,
−a if a is negative ,a ∈Q,
0, if a = 0,

we see that (Q, ||∞) is a Q-valued field.

Definition 8.9.2 : (a) Let (F, ||) be a Q-valued field. If {an} ∈ FN then {an} is
called a Cauchy sequence in F if, and only if, for each n∈N, there exists M(n)∈N
such that

|ai − a j|<
1
n

whenever i, j >M(n).

© 2007 by Taylor & Francis Group, LLC



ORDERED FIELDS, FIELDS WITH VALUATION AND OTHER ALGEBRAIC STRUCTURES 253

(b) {an} is called a null-sequence in F if, and only if, for each n ∈ N, there
exists M(n) ∈ N such that

|ai|<
1
n
, whenever i >M(n)

The set of Cauchy sequences in (F, ||) is denoted by C(F). The set of null
sequences in (F, ||) is denoted by N(F).

We remark that if {an}∈C(F), there exists B∈N such that 0≤ |ai| ≤B for all
i∈N. Further, if (F, ||) is aQ-valued field, then F̃ = C(F)/N(F) is an extension of
F under the natural identification of elements of F with the cosets determined by
the constant sequences. The following equations are enough to justify the above
statement:

(8.9.1) ({ai}+ N(F))({bi}+ N(F)) = {aibi}+ N(F).

For multiplicative inverse, one has

(8.9.2) ({a}+ N(F))({bi}+ N(F)) = {1}+ N(F).

C(F) forms a ring under addition and component-wise multiplication. The set
N(F) of null sequences forms a maximal ideal of the ring of Cauchy sequences.
One has the residue class field F̃ = C(F)/N(F). F̃ is a Q-valued field under the
extendedQ-absolute value. F̃ is complete with respect to Q-absolute value. That
is, every Cauchy sequence in (F̃, ||) has a limit in F̃.

We apply this to (Q, ||∞). Let {ai} ∈C(Q)/N(Q). Then, there exist B, b ∈ N
such that either for i>B, ai>

1
b , or, for i>B, ai <

−1
b . It means that for sufficiently

large n either an >
1
b or an <

−1
b . Only one of these is possible. This enables one to

define positive and negative sequences in C(Q)/N(Q), when Q is equipped with
||∞ as the Q-absolute value. That is,
{an} is positive if, and only if, {−an} is negative.

Constant sequences {a} are positive if, and only if, a > 0 and {a} is negative if,
and only if, a< 0. We are now in a position to define the field R of real numbers.

Definition 8.9.3 : Let (Q, ||∞) be the Q-valued field considered under the
absolute value ||∞ given by

|a|∞ = a if a≥ 0 and |a|∞ = −a, when a< 0 for all a ∈Q.

The extension Q̃ = C(Q)/N(Q) of Q is called the field of real numbers denoted by
R. An element a∈R is positive if, and only if, it is the coset of a positive sequence
in C(Q). a ∈ R is negative if, and only if, it is the coset of a negative sequence in
C(Q). Further, for a,b ∈ R, we write a> b to mean that a − b> 0. Also, ‘<’ is a
total order on R which extends the total order ‘<’ in Q.

R+ = {a ∈C(Q)/N(Q) : a> 0}
is the set of positive real numbers and it is closed under addition and multiplica-
tion.
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Instead of (Q, ||∞), we could consider the p-adic absolute value given in
definition 8.4.3. If mp : Q→ R̃ is replaced by ||p : Q→ Q, we get (Q.||p) as a
Q-valued field. Q̃ is obtained by considering Cauchy sequences and null se-
quences relative to ||p. The residue class field Q̃p or simply Qp is the field of
(rational) p-adic numbers.

By lemma 8.3.1, Zp is the set

{x ∈Q : vp(x)> 0}.

It implies thatZp = {x∈Q : 0≤ |x|p ≤ 1}, where |x|p = p−vp(x). By definition 8.3.4,
vp : R→ Z∪{∞} is a discrete valuation of Q. Further, the only valuation rings
(by definition 8.3.3) of the field R are the rings Zp for every prime p. By theorem
58, Z is a PID and Zp has exactly one nonzero prime ideal. Zp is referred to as
the ring of p-adic integers.

If a ∈Q, and a 6= 0, there are only finitely many primes p for which |a|p 6= 0.
As R is an OAF, for every prime p, the value–group of ||p is Z.

In the case of a field with a valuation map m : F =⇒ R̃, we can start with
a prime divisor P of F . A sequence {an} (an ∈ F,n ∈ N) is called a P-Cauchy
sequence in 〈F,P〉 if {an} is Cauchy in the topology TP specified by P. We say
that F is P-complete, if every P-Cauchy sequence converges. The P-completion
of 〈F,P〉 is denoted by 〈F̃ , P̃〉. A field is always complete with respect to the trivial
prime divisor. A theorem of Ostrowski (1893–1986) says that the only fields that
are complete relative to a prime divisor P determined by an archimedean absolute-
value map areR (the field of real numbers) andC (the field of complex numbers).

The idea of ordering of positive integers via ‘divisibility’ and the usual ‘≤’
relation happened to be in use, frequently, long back. However, the notion of a
‘partial order relation’ on a set came much later while introducing algebraic sys-
tems. Inclusion relations between sets led to the concepts of partial order relations
and to lattices in which analogues of ‘set-intersection’ and ‘set-union’ are defined.
The role of g.c.d and l.c.m of numbers also got exploited. Postulates for an al-
gebraic system were declared or set down for specific structures such as groups,
rings and fields. In the case of a Boolean algebra, there exist several independent
sets of postulates. In his classic paper of 1904, E. V. Huntington [11] proclaimed
an independent set of postulates defining a Boolean algebra. The standard defini-
tion of a Boolean algebra is along the lines suggested by Huntington. As is often
remarked: ‘Huntington list of postulates is mathematically elegant’. It will be an
omission if we do not mention Marshal Stone’s outstanding 75-page paper (1936)
on the theory of representations of Boolean algebras [22]. The Stone Representa-
tion Theorem, as it is called, says that any Boolean ring R is isomorphic to a ring
of subsets of some fixed set X . See D. M. Burton [4, Chapter 9].

Now, suppose that (X ,≤) is a poset. A relation ≥ on X defined by y ≥ x
if, and only if, x ≤ y (x,y ∈ X) is called the converse of ≤ and (X ,≥) is known
as the dual of the poset (X ,≤). That is, the converse of a partial ordering is a
partial ordering. The atoms of (X ,≥) are the coatoms of (X ,≤). A result shown
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in respect of (X ,≤) can be dualized by changing ≤ into ≥ to obtain a similar
result for (X ,≥). In the case of lattices, l.u.b and g.l.b are interchanged and ≤
replaced by≥ to obtain dual statements. This phenomenon is called the principle
of duality. The principle of duality holds in every Boolean algebra. The dual of
theorem 69 is the following:

Any element in a finite Boolean algebra can be expressed uniquely as a
product of coatoms. The proof is by the principle of duality.

8.10. Worked-out examples

a) In an ordered field F , the prime subfield is isomorphic toQ, the field of rational
numbers. Prove:

Answer: We recall that an ordered integral domain is of characteristic zero.
So, an ordered field F is of characteristic zero. Any subfield of F must contain
the multiplicative identity 1F ∈ F. Further, the prime subfield K of F is the in-
tersection of all subfields of F. The prime subfield K is the subfield generated
by 1F .

The one-to-one order-preserving homomorphism ψ : Z→ F can be ex-
tended to a unique homomorphism ψ′ : Q→ F of fields. The image of ψ′ is
the prime subfield of F.
This completes the proof. �

8.10.1. ARCHIMEDEAN LAW.

Lemma 8.10.1 : Given a > 0, b > 0 in R, the field of real numbers. There
exists nεN such that na> b.

Proof : Assume that the conclusion is false for two particular real numbers a
and b so that for every n, b≥ na. Let

S = {xεR : x = na for all nεN}.
S has an upper bound b. So, S has a l.u.b say b′. Therefore, b′ ≥ na for all
nεN. It follows that

b′ ≥ (m + 1)a, for all mεN.

But then, b′ − a ≥ ma, for all mεN. This contradicts the minimality of b′.
Lemma 8.10.1 follows. �

Remark 8.10.1 : R is a complete ordered field in which archimedean law
holds.

b) Give an example of an ordered field in which archimedean law does not hold.

Answer: Let t > 0 be an arbitrary, but fixed element of R. We considerQ[[t]],
the field of formal power series with coefficients fromQ. That is,

f (t) = a0 + a1t + a2t2 + · · · where ai εQ, i = 0,1,2, . . .
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belongs toQ[[t]] and is invertible when f (t) 6= 0. f (t)εQ[[t]] is called positive

whenever its first nonzero coefficient is positive. That is,
∞∑
i=0

ait i > 0 implies

that for some k, a0 = a1 = · · · = ak−1 = 0 and ak > 0. So, Q[[t]] is an ordered
field. For every nεN, g(t) = 1 − nt > 0.

1,1/2,1/3, . . . are elements of Q[[t]].

limn→∞ 1
n 6= 0, as 1−nt> 0⇒| 1n |> t. So, there is no nεN for which | 1n |< t, yet

t > 0. Thus, Q[[t]] is not a complete ordered field. Moreover, given t > 0 and
1> 0, there does not exist nεN such that nt > 1, since for every nεN, nt < 1.
In other words, Q[[t]] is an incomplete ordered field in which archimedean
law does not hold.

Remark 8.10.2 : The above example has been drawn from S. MacLane and
G. Birkhoff [15].

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) Let D be an ordered integral domain with positive subset P. In D[x], we
write

(a0 + a1x + · · ·+ anxn) ∈ P∗,an 6= 0
if, and only if, an ∈ P in D. Then, D[x] with positive set P∗ is an ordered
integral domain.

b) Z[
√

3] = {a + b
√

3 : a,b ∈ Z} can be made an ordered integral domain,
by defining the set P of positive elements.

c) Let n = pa1
1 , p

a2
2 , . . . , p

ak
k (p1 < p2 · · · < pk) (pi, primes, i = 1,2, . . . ,k)

D(n), the set of divisors of n partially ordered by divisibility forms a dis-
tributive lattice L1 × L2 × ·· ·Lk where Li is a chain of length
ai(i = 1,2, . . . ,k).

d) There exists a modular lattice of 7 elements in which the complemented
elements do not form a sublattice.

e) Any Boolean algebra generated by n elements has more than 22n
ele-

ments.
f) The modular lattice of all subspaces of a finite dimensional vector space

V is also a complemented lattice.
2. An ordered integral domain D is said to be complete, if every non-empty

set of positive elements of D has a g.l.b in D. Prove that the set R of real
numbers is a complete ordered integral domain.

3. [S. Lang]
(a) Starting from an absolute value map m :Q→ R̃, describe the archimedean

and non-archimedean prime divisors of Q. (the field of rational numbers).
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(b) Let Qp denote the field of p-adic numbers where p is a rational prime.
Show that Qp contains infinitely many fields of the type Q(

√
−m), where

m is a positive integer.
4. Prove that a lattice (L,∨,∧) is distributive, if the equations

x∨ y = x∨ z and x∧ y = x∧ z =⇒ y = z.

5. Suppose that we consider the lattice of normal subgroups of a group G. Show
that it need not be a modular lattice. Check this for the lattice of normal
subgroups of the Klein 4-group

V = {e,a,b,c} with ab = bc = ca, a2 = b2 = c2 = e.

6. Let F =Q[x]/(x2 +r), r> 0. Show that F can be ordered in two different ways.
(One has to consider the monomorphisms of F into C).

7. Let (B,+, ·) be a ring containing 0 and 1 and for a ∈ B, the complement of a
denoted by ā = a + 1 and

a + b = a · b̄+ ā ·b, a ·1 = a, a · ā = a + a = 0

Check whether B is a Boolean algebra.
8. Let (B,+, ·) be a Boolean algebra. For a,b ∈ B, show that a = a ·b if, and only

if, a · b̄ = 0 where b̄ is the complement of b in B.
9. Suppose that L1 and L2 are lattices which are isomorphic as posets. Show

that L1 and L2 are isomorphic as lattices.
10. Give an example of a lattice (L,∨,∧) with a subset L1 such that (L1,∨,∧) is a

lattice, but not a sublattice of L.
11. Prove that the positive divisors of a positive integer n form a complemented

lattice if, and only if, n is square-free.
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CHAPTER 9

The role of the Möbius function— Abstract Möbius
inversion

Historical perspective

Counting techniques and solving mathematical puzzles were part of the ‘recre-
ational hobby’ of ancient mathematicians. Magic squares such as

4 9 2
3 5 7
8 1 6

(wherein numbers from 1 to 9 are used to get a total of 15, adding numbers
horizontally, vertically or diagonally) were known to the Chinese (2000–1000
B.C.). The idea of permutations and combinations was also known in crude form.
Significant developments in the study of combinatorial mathematics were noticed
in the work of Isaac Newton. With the discovery of sets by George Cantor (1845–
1918), enumeration problems could be stated precisely and solutions found. ‘In-
version’ of a finite series proved to be useful. The classical inclusion-exclusion
principle found a stronghold in the theory of probability and related topics. The
natural ‘ordering’ of objects, for instance, ‘divisibility ordering’ of positive in-
tegers gave the clue to the formula of Möbius inversion via a function µ defined
on the set of positive integers. The use of arithmetic functions like µ and the
Euler totient φ found applications, ever since Euler codified the study of elemen-
tary number theory from the scribblings of Fermat. However, it was A. F. Möbius
(1790–1868) who first investigated the properties of µ systematically. And that
gave µ the name Möbius function. See Hardy and Wright [6]. The principle of
inclusion-exclusion was investigated by several 19th century mathematicians and
stated most clearly by Poincare’ (1854–1912). It has been rediscovered many a
time in different contexts with varying degrees of generalization. A good and com-
plete account of the principle together with a history and development of classical
applications in the theory of probability may be found in Frechet [4].

Formula for Möbuis inversion was first obtained by Weisner in [17]. It was
also noticed by Philip Hall in [5] independently. Both of them were motivated
by problems in finite groups. See also Morgan Ward [15] and Weigandt [18]. In
1964, Gian Carlo Rota [10] gave the theory of Möbius functions via locally finite
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partially ordered sets and emphasized its applications to combinatorial mathe-
matics. This has had a great impact on the study of combinatorics, subsequently.
The introduction of a Möbius function via a partially ordered set was also carried
out independently by Harold Scheid [11] in 1968. It is no exaggeration to say
that many results involving enumeration have a bearing on the theory of Möbius
functions.

9.1. Introduction

This chapter introduces the notion of an ‘incidence function’ via a locally
finite partially ordered set. See definitions (9.2.1) and (9.2.2) below. An incidence
function is a generalized arithmetic function. The results of classical arithmetic
functions are carried over to this general set-up. Naturally, the ζ-function and its
inverse the Möbius function have their analogues among incidence functions. The
Möbius function depends on the partial order considered for locally finite posets.

Section 9.2 is about the properties of the generalized Möbius function and
abstract Möbius inversion given in theorem 70. The generalization to n× n ma-
trices is also studied briefly. See Section 9.3. In Section 9.4, we consider an
n-dimensional vector space Vn(q) over a finite field GF(q). The lattice L(Vn(q)) of
subspaces of Vn(q) with partial order ‘a subspace of’ is shown to be isomorphic
to a ‘geometric lattice’ which is the lattice of projective subspaces of a projective
space P(V ). See definition 9.4.13. The Möbius function of L(Vn(q)) is obtained in
theorem 72.

9.2. Abstract Möbius inversion

In [10], G. C. Rota gives a detailed account of the theory of Möbius inversion
via locally finite partially ordered sets. A good many applications have been found
based on this generalization. See E. A. Bender and J. R. Goldman [2].

Let (P,≤) be a poset.

Definition 9.2.1 : For, x,y ∈ P, by a segment [x,y] in (P,≤) we mean

[x,y] = {t : x≤ t and t ≤ y}.
Also , (x,y] = {t : x < t and t ≤ y},

[x,y) = {t : x≤ t and t < y},
(x,y) = {t : x < t < y}.

A segment [x,y] is not necessarily totally ordered. In (N,≤) the segment
[2,8] = {t : 2≤ t ≤ 8} = {2,3,4,5,6,7,8}. If the partial order is ‘divides’,

[1,6] = {t : 1|t and t|6} = {1,2,3,6}
2 does not divide 3 and so [1,6] is not totally ordered.

Definition 9.2.2 : A poset (P,≤) is called a locally finite poset, if every segment
[x,y] of (P,≤) is finite.
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For instance, (N,≤) where ≤ is to mean ‘divides’ is locally finite. In (R,≤),
where ≤ is to mean ‘less than or equal to’, a segment [x,y] where x 6= y is not
finite.

Definition 9.2.3 : Let R be a commutative ring with unity 1R. A function
f : P×P→ R is called an incidence function, if

f (x,y) = 0, unless x≤ y.

For two incidence functions f ,g, we define multiplication by

(9.2.1) ( f ·g)(x,y) =

{∑
x≤t≤y f (x, t)g(t,y), if x≤ y,

0, otherwise.

Clearly, ( f ·g) is an incidence function.
Let AP be the set of incidence functions defined on P×P.

For f ,g ∈ AP their sum f + g is given by

(9.2.2) ( f + g)(x,y) = f (x,y) + g(x,y)

Lemma 9.2.1 : The set AP of incidence functions defined with respect to a locally
finite poset P forms a commutative ring with unity element e0 given by

e0(x,y) =

{
1R, x = y
0 otherwise

Proof : Multiplication (9.2.1) is commutative and associative and addition (9.2.2)
distributes multiplication. Further if f ∈ AP,

f · e0 = e0 · f = f

So (AP,+, ·) is a commutative ring with unity e0. �

Definition 9.2.4 : (AP,+, ·) is called the incidence ring with unity e0.

Remark 9.2.1 : AP can be considered as a vector space over C, if

AP = { f : f : P×P→ C, the field of complex numbers }.
Together with multiplication (9.2.1), AP is a ‘Dirichlet algebra’ over C.

Definition 9.2.5 : The zeta-function of AP is defined by

(9.2.3) ζ(x,y) =

{
1R, if x≤ y
0, otherwise

Definition 9.2.6 : The Möbius function µ of AP is defined in two ways:

(9.2.4) µ(x,y) =





1R, if x = y,
−
∑

x≤t<yµ(t,y), if x < y,
0R, otherwise.
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(9.2.5) µ1(x,y) =





1R, if x = y,
−
∑

x<t≤yµ(x, t), if x < y,
0R, otherwise.

The function µ1 (9.2.5) is introduced only temporarily. We wish to show that
µ1 = µ.

Lemma 9.2.2 : For ζ, µ and µ1 as defined in (9.2.3), (9.2.4) and (9.2.5) respec-
tively, the following equations hold

µ · ζ = e0 and ζ ·µ1 = e0

Proof : If x is not less than or equal to y, µ,ζ and e0 have value zero.
For x = y,

(µ · ζ)(x,x) = µ(x,x)ζ(x,x) = 1R ·1R = e0(x,x)

If x< y,

(µ · ζ)(x,y) =
∑

x≤t≤y

µ(x, t)ζ(t,y) =
∑

x≤t≤y

µ(x, t) = 0 = e0(x,y).

So, µ · ζ = e0. Similarly, it is easy to note that ζ ·µ1 = e0. �

Lemma 9.2.3 : µ = µ1

Proof :

µ = µ · e0 = µ · (ζ ·µ1), by (9.2.2),
= (µ · ζ) ·µ1, by associativity,
= e0 ·µ1 = µ1.

This proves Lemma 9.2.3. �

Remark 9.2.2 : For x≤ y,
∑

x≤t≤y

µ(x, t) =
∑

x≤t≤y

µ(t,y) = e0(x,y)

Definition 9.2.7 : (P,≤) is said to be left-finite if, for all y ∈ P, the set

T = {x : x≤ y} is finite.

As an example, (N,≤) is left-finite where ≤ means ‘less than or equal to’ or
‘divides’:

We observe that if P has a least element, then it is left-finite.

Theorem 70 (Robert Spira (1972)) : Let f : P→R and g : P→R be two functions.
Suppose that P is left-finite. Then,

(9.2.6) g(y) =
∑

x≤y

f (x)⇔ f (y) =
∑

x≤y

g(x)µ(x,y)
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Proof : :⇒ Since P is left-finite,
∑

x≤y f (x) is a well-defined finite sum and so
g : P→ R is well-defined.

∑

x≤y

g(x)µ(x,y) =
∑

x≤y

(
∑

t≤x

f (t))µ(x,y)

=
∑

x≤y

(
∑

t≤x

f (t)ζ(t,x)µ(x,y)

=
∑

t≤y

f (t)
∑

x≤y

ζ(t,x)µ(x,y)

=
∑

t≤y

f (t)
∑

t≤x≤y

ζ(t,x)µ(x,y)

=
∑

t≤y

f (t)e0(t,y), by lemmas 9.2.2 and 9.2.3.

So,
∑

x≤y

g(x)µ(x,y) = f (y), as e0(t,y) = 0 if t 6= y.

The reverse implication is proved easily and so, the details are omitted. �

Remark 9.2.3 : Theorem 70 is adapted from [13].

Illustration 9.2.1 (Möbius inversion of number theory) : (N,≤) is a locally finite
partially ordered set where ≤ means ‘divides’. The Möbius function associated
with (N,≤) is given by

(9.2.7) µ(m,n) = µ(1,
m
n

)

For, let n = km. When k = 1, µ(m,m) = 1 = µ(1,1).

We prove (9.2.7) by induction on k. Assume that it is true for q ≤ (k − 1),
where k > 1. Since m divides n properly,

µ(m,n) = −
∑

d|n
m|d,d 6=n

µ(m,d),

or,

µ(m,n) = −
∑

j|k
j 6=k

µ(m, jm)

Now, µ(m, jm) = µ(1, j) by induction hypothesis for j|k, j 6= k.
So,

µ(m, jm) = −
∑

j|k
j 6=k

µ(1, j) = µ(1,k) = µ(1,
n
m

) as in (9.2.7).
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By the definition of µ(1,n),

µ(1,n) = µ(n) =





1, if n = 1
(−1)r, if n = p1 p2 · · · pr, pi distinct primes, i = 1,2, . . .r,
0, if a2|n, a> 1.

As (N,≤) is left-finite, theorem 70 yields

(9.2.8) g(n) =
∑

d|n
f (d)⇔ f (n) =

∑

d|n
g(d)µ(d,n) =

∑

d|n
g(d)µ(

n
d

),

as µ(d,n) = µ(1, n
d ) = µ( n

d ) for d dividing n.
(9.2.8) is the classical Möbius inversion formula [6].
For more applications, see Robert Spira [13]. See, also, H. Scheid [10].

The generalization of µ via locally finite partially ordered sets tells us that
there is a Möbius function associated with any locally finite poset. µ takes on
different robes for different partial order relations.

Suppose (P,≤) is totally ordered and locally finite. That is, any two elements
of P are comparable. That is, for x,y ∈ P; either x≤ y or y≤ x.

If x < y, the segment [x,y] is given by

{x = t0 < t1 < t2 < .. . tn = y}

If y covers x there is no ti (i = 1,2 . . .n − 1) such that x< ti < y. If x< y and y does
not cover x, we get a chain as above. We could assume that between ti−1 and ti,
there is no element of P (i = 1,2, . . .n). In other words, ti covers ti−1.

Then,

µ(ti, ti+1) = −
∑

ti≤t<ti+1

µ(ti, t) = −µ(ti, ti) = −1

For n≥ 2, one has

(9.2.9)





µ(x,x) = 1
µ(x, t1) = −1
µ(x, ti) = 0, i≥ 2.

Then, µ(x,y) = −
∑

x≤t<yµ(x, t) = −1 + 1 + 0 = 0 for 2≤ i≤ (n − 2).

µ(tn−1,y) = −1,
µ(ti,y) = 0, for 0≤ i≤ (n − 2).

The above method of computation could be applied in all situations, provided the
poset is locally finite.

Definition 9.2.8 : Let Σ = (P,≤) and Σ′ = (P′,≤′) be two posets. We say that
Σ is isomorphic to Σ′ if, and only if, there is a bijection φ : P→ P′ such that
φ(x)≤ φ(y) in (P′,≤′) whenever x≤ y in (P,≤) and vice versa.
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Illustration 9.2.2 : Let X be a finite set. We consider Σ = (P(X),⊆).
Let B(n) = {(a1,a2, . . .an) : ai = 0 or 1, i = 1,2, . . .n}, B = {0,1}. Σ′ = B(n) is a poset
in the sense that

(a1,a2, . . .an)≤ (b1,b2, . . .bn)
if, and only if, ai ≤ bi for each i = 1,2, . . .n.
Let X = {x1,x2, . . . ,xn}. |X | = n.
If T is a subset of X, |T | ≤ n.

We define a map ϕ : (P(X),⊆)→ B(n) by

φ(T ) = (a1,a2, . . .an) where

ai =

{
1, if ai ∈ T,
0, if ai /∈ T.

To each subset T of X, there is an n-tuple (a1,a2 . . .an) associated with T .

T ⊆ T ′⇔ (a1,a2, . . .an)≤ (a′1,a
′
2 . . .a

′
n)

where (a′1,a
′
2, . . .a

′
n) is the image of T ′ under φ.

φ is an order-preserving isomorphism and so, Σ ∼= Σ′.

Definition 9.2.9 : Let Σ = (P,≤), Σ′ = (P′,≤′) be two partially ordered sets. Their
direct product Σ = Σ×Σ′ is a partially ordered set (S,≤) where

(i) S = P×P′ = {(a,a′) : a ∈ P, a′ ∈ P′}.
(ii) s≤ t in S if, and only if, a≤ b in P and a′ ≤′ b′ in P′,

where s = (a,a′) and t = (b,b′).

Theorem 71 (E. A. Bender and J. R. Goldman (1975)) : If Σ = (P,≤) has Möbius
function µ and Σ′ = (P′,≤′) has Möbius function µ′, then, the Möbius function of
D = Σ×Σ′ is given by

(9.2.10) µ((a,a′), (b,b′)) = µ(a,b)µ′(a′,b′)

Proof : By definition 9.2.9, Σ×Σ′ is a poset. The ζ-function of Σ×Σ′ = D1 is
given by

ζD((a,a′), (b,b′)) =

{
1, if (a,a′)≤ (b,b′),
0, otherwise.

Also, (a,a′)≤ (b,b′)⇔ a≤ b in Σ and a′ ≤′ b′ in Σ′.
So, we get

(9.2.11) ζD((a,a′), (b,b′)) = ζ(a,b)ζ ′(a′,b′),

where ζ is the zeta–function of Σ and ζ ′ that of Σ′ respectively.
Now,

ζ ·µ = e0 in Σ, ζ ′ ·µ′ = e′0 in Σ′

For D = Σ×Σ′,

e0,D((a,a′), (b,b′)) =

{
1, if (a,b) = (a′,b′)
0, otherwise.
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So, e0,D = e0e′0.
So, if µD denotes the Möbius function of D = Σ×Σ′, we have

ζD ·µD = e0,D = e0e′0.

Or,
ζζ ′ ·µD = e0e′0 = (ζ ·µ)(ζ ′ ·µ′)

Also,

(ζ ·µ)(ζ ′ ·µ′)((a,a′), (b,b′)) =
∑

a≤t≤b

µ(a, t)
∑

a′≤t′≤b′
µ′(a′, t ′)

=
∑

(a,a′)≤(t,t′)≤(b,b′)

λ((a,a′), (t, t ′))( say )

= e0,D((a,a′), (b,b′)).

It shows that λ = ζ−1
D = µµ′. �

Examples 9.2.1 :
1. We have noted that (B(n),≤)∼= (P(X),⊆) where |X | = n. We look at B = {0,1}.

B is made a partially ordered set by the usual order relation:

0≤ 0, 0< 1, 1≤ 1.

We denote this poset by (B,≤). It is, obviously, locally finite and left-finite.
The Möbius function of (B,≤) is given by

(9.2.12) µ(x,y) =

{
1, x = y,
−1, x < y;

as
∑

x≤t≤yµ(x, t) = µ(x,x) +µ(x,y) = 0 and µ(x,x) = 1. We express this as

(9.2.13) µ(x,y) = (−1)y−x,

since the only possibilities are x = y or x = 0, y = 1.
Under the isomorphism (P(X),⊆)∼= B(n), if A 7→ (a1,a2, . . .an) and
B 7→ (b1,b2, . . .bn) where A,B are subsets of X ,

µ(A,B) = µ((a1,a2, . . .an), (b1,b2, . . .bn))

=
n∏

i=1

µ(ai,bi)

and
∏n

i=1µ(ai,bi) = (−1)
P

bi−
P

ai = (−1)|B|−|A|

or, the Möbius function of (P(X),⊆) is

(9.2.14) µ(A,B) = (−1)|B|−|A|

where A and B are subsets of X and |A|, |B| denote the number of elements of
A and B respectively.
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2. We take (N,≤) where≤ means ‘divides’.
Let n ∈ N be written as

n =
k∏

i=1

pai
i , pi are primes, ai ≥ 1(i = 1,2, . . .k)

Let D(n) denote the set of divisors of n. By the uniqueness of factorization of
n into prime powers,

D(n) = D(pa1
1 )×D(pa2

2 )× . . .×D(pak
k )

Let Σi = (D(pai
i ),≤) where≤ means ‘divides’.

Σi (i = 1,2, . . .n) is a locally finite poset given by {1, pi, p2
i , . . . p

ai
i }. D(pai

i ) is
totally ordered. It is a chain. Its Möbius function (9.2.9) is given by

µ(pti
i , p

si
i ) =





1, if ti = si

−1, if si − ti = 1
0, otherwise.

By the product theorem (theorem 71), we arrive at

µ(πk
i=0 pti

i ,π
k
i=0 psi

i ) =





(−1)
P

(si−ti) if si − ti = 0 or 1,
for i = 0,1, . . .k

0, if si − ti > 1 for some i.

Then,
µ(m,n) = µ(1,

n
m

) = µ(
n
m

)

as obtained in (9.2.7).

Definition 9.2.10 : Let (P,≤) be a locally finite poset. A function
f : P×P→ C (the field of complex numbers)
with the property f (x,y) = 0, whenever x is not less than or equal to y, is referred
to as an incidence function. (In fact, f is also called a generalized arithmetic
function) (compare definition 9.2.3).

Observation 9.2.1 : Let A(P) denote the set of incidence functions of (P,≤). As
in lemma 9.2.1, we can make A(P) an incidence ring by defining addition (+) and
multiplication (·) as follows:

( f + g)(x,y) = f (x,y) + g(x,y), for all x,y ∈ P(9.2.15)

( f ·g)(x,y) =
∑

x≤t≤y

f (x, t)g(t,y), for all x,y ∈ P(9.2.16)

The multiplicative identity of (A(P),+, ·) is given by

(9.2.17) e0(x,y) =

{
1, x = y,
0, x 6= y.
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Definition 9.2.11 : An incidence function f is said to have an inverse, say, g if
f ·g = g · f = e0.

If f has an inverse, it is unique and is denoted by f −1.

Lemma 9.2.4 : An incidence function f ∈ A(P) has an inverse if, and only if,
f (x,x) 6= 0 for all x ∈ P.

Proof : Suppose that f −1 exists. Then for all x ∈ P,

( f · f −1)(x,x) = f (x,x) f −1(x,x) = e0(x,x) = 1

so, f (x,x) 6= 0. Conversely, suppose that f (x,x) 6= 0 for all x ∈ P. We define a
function g ∈ A(P) such that g will serve as the inverse of f . Suppose f · g = e0

and g(x,y) = 0 whenever x is not≤ y. We are given that (P,≤) is locally finite. So
the number of elements in [x,y] where x ≤ y is finite. We denote the number of
elements of [x,y] by #[x,y].

If y = x let g(x,x) = 1
f (x,x) which is valid as f (x,x) 6= 0. We prove the result by

induction on #[x,y].
Let x < y. Suppose that g(u,v) is known for all u,v ∈ P such that u≤ v and

#[u,v]< #[x,y].
If x≤ t < y,#[x, t]< #[x,y]. So g[x, t] is known.
Let

(9.2.18) g(x,y) = −
1

f (y,y)

∑

x≤t<y

g(x, t) f (t,y)

As g(x,x) f (x,x) = 1 for all x ∈ P, when x < y, by (9.2.18)
∑

x≤t≤y

g(x, t) f (t,y) = 0

Thus, g · f = e0 for the interval [x,y] we have chosen from P. As [x,y] is arbitrary
g · f = e0. We claim that f ·g = e0 also holds. Since g[x,x] 6= 0, for all x ∈ P, there
is a function h ∈ A(P) such that h.g = e0.

Then,

f ·g = e0 · ( f ·g) = (h ·g) · ( f ·g)
= h · (g · f ) ·g
= h · e0 ·g
= h ·g = e0.

Or, f ·g = e0. So, g is the unique inverse of f . �

Remark 9.2.4 : The Möbius function µ ∈ A(P) is the inverse of the ζ-function
defined as in ζ (9.2.3).

Now, we are in a set–up in which we could carry over the properties of arith-
metic functions to incidence functions in the context of a locally finite partially
ordered set.
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Definition 9.2.12 : A poset (P,≤) is called a local lattice, if every non-empty
interval in P is a poset with respect to the partial ordering that it inherits from P.
A local lattice (P,∨,∧) is called locally distributive, if every non-empty interval
in P is a distributive lattice.

One could consider incidence functions f : P×P→ C where P is a locally
distributive lattice. Multiplicativity and related concepts could be talked about
in the set A(P) of functions defined on P×P. Details can be had from Paul J.
McCarthy [8] and David A. Smith [12].

9.3. Incidence algebra of n×n matrices

A(P) considered in observation (9.2.1) is also referred to as an incidence al-
gebra. Yet another instance is provided by considering square matrices M with
entries from an integral domain D with unity 1D. The rows and columns of M are
indexed by a locally finite partially ordered set P. That is, we write

(9.3.1) M = [ai j] where i, j ∈ P and ai j = 0 unless i≤ j

ai j is the value of a function f : P×P→ C :

(9.3.2) f (i, j) =

{
ai, j if i≤ j
0 otherwise

We denote the set of square matrices M (9.3.1) by M (P). That is, we shall
take the elements of M (P) to be n×n matrices with entries from D.

As usual, we have: when M1 = [ai j],M2 = [bi j]

M1 + M2 = [ai j + bi j]

M1M2 = [ci j] where ci j =
n∑

k=1

aikbk j

We can consider M (P) as a D–algebra. If P is totally ordered, M (P) consists
of n×n upper triangular matrices.

The analogue of lemma 9.2.4 is the following:

Lemma 9.3.1 : M = [ai j] ∈M (P) is invertible if, and only if, aii is invertible for
each i ∈ P.

Proof : :⇒ If M is invertible, let M−1 = [bi j].
Then, MM−1 = I, the unit matrix, gives

(9.3.3) aiibii = 1D

So, the condition is necessary.
⇐: Conversely, suppose that each aii is invertible in D. Then, for each aii,

there exists bii ∈ D such that (9.3.3) holds. For i < j, let bik be known for all k
with i≤ k < j. Then, bi j is uniquely determined from
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(9.3.4)
j̇∑

k=1

bikak j = 0

Then, the only unknown term in (9.3.4) is bi j and it occurs with a j j which
is invertible by hypothesis. Thus, bi j is determined for all i ≤ j. Also, bi j = 0
whenever i is not≤ j. So, then, B = [bi j] satisfies BM = I, the unit matrix, or M is
invertible in M (P). �

Illustration 9.3.1 : The zeta matrix z of M (P) is given by

z = [ei j] =

{
1D, if i≤ j
0, otherwise.

z is invertible. So, z has an inverse say [µi j]. [µi j] is called the Möbius matrix.
If (P,≤) is replaced by (N,≤) where ≤ means ‘divides’, z = [ei j] is such that

ei j =

{
1, if i divides j;
0, otherwise.

ei j depends only on j
i . So, we write ei, j = e( j

i ) where e(n) = 1 for all n ∈ N.
For [µi j], we have µi j as the Dirichlet inverse of e( j

i ) in the set of arithmetic
functions defined on N.

So, then, µi j = µ( j
i ) where µ is the classical Möbius function. That is,

µi j =

{
µ( j

i ), if i divides j;
0, otherwise.

In the case of a 4×4 matrix,

z =




1 1 1 1
0 1 0 1
0 0 1 0
0 0 0 1




and

[µ] =




µ(1) µ(2) µ(3) µ(4)
0 µ(1) 0 µ(2)
0 0 µ(1) 0
0 0 0 µ(1)


 =




1 −1 −1 0
0 1 0 −1
0 0 1 0
0 0 0 1




Illustration 9.3.2 : Let P = {1,2, . . .n} with partial order ≤.
The zeta matrix is

z = [ei j], where ei j =

{
1 if i≤ j;
0 otherwise.
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The Möbius matrix [µi j] is obtained as follows:

µii = 1, i = 1,2, . . .
µi j = 0, if i is not ≤ j.

Now,
j∑

k=1

µikek j = 0, if i 6= j.

µ11 = 1, µ11e12 +µ12e22 = 0 or 1 +µ12 = 0. That is, µ12 = −1

µ11e13 +µ12e23 +µ13e33 = 1 − 1 +µ13 = 0, etc...

It may be verified that

[µi j] = I −V

where

V = [vi j] with vi j = δi, j − 1 and δi j =

{
1, i = j;
0, otherwise.

In the case of 4×4 matrices, we have

z =




1 1 1 1
0 1 1 1
0 0 1 1
0 0 0 1


 , [µi j] =




1 −1 0 0
0 1 −1 0
0 0 1 −1
0 0 0 1


 .

For more details, see P. M. Cohn [3].

9.4. Vector spaces over a finite field

We make use of Möbius inversion to study the number of k-dimensional sub-
spaces of an n-dimensional vector space Vn(q) over a finite field GF(q), where
q = pm, p a prime and m ≥ 1. The set of subspaces of Vn(q) forms a poset under
the partial order:‘a subspace of’. If J and K are subspaces of Vn(q), we write J≤K
if, and only if, J is a subspace of K. The resulting poset is denoted by L(Vn(q)).
L(Vn(q)) is order isomorphic to the lattice of subspaces of a projective space. To
make it clear, we need to know about the notion of a ‘geometric lattice’. A slight
diversion is worth attempting to understand the ‘geometrical’ terminology. See
[7].

Definition 9.4.1 : The real affine line L =R is defined as the setR of real numbers
regarded as ‘points’ l ∈ L.

A transformation T1 : L −→ L gives by T1(l) = kl where k ∈ R gives scalar
multiplication. A transformation T2 : L −→ L given by T2(l) = l + a where a ∈ R,
gives a translation.

T1 and T2 are particular cases of the most general affine transformation
T : L −→ L given by
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(9.4.1) T (l) = kl + a; k,a ∈ R,
is a scalar multiplication followed by a translation. The word ‘affine’ literally
means ‘resemblance’. As T depends on the values of k and a, we shall denote
T (9.4.1) by T (k,a). Let k′,a′ ∈ R. We consider the composition of T (k,a) with
T (k′,a′) by writing

(
T (k′,a′)◦T (k,a)

)
l = T (k′,a′)(kl + a)

= k′(kl + a) + a′

= k′kl + (k′a + a′)

It is also of the form in (9.4.1). T (k,a) is a bijection or affine automorphism
if, and only if, k 6= 0. The set of affine automorphisms forms a group under the
composition of transformations.

Definition 9.4.2 : The group of all affine automorphisms from L to L is called the
one-dimensional real affine group denoted by A1.

Definition 9.4.3 : Let M1,M2,M3 be R-modules (see definitions 6.6.1 and 6.6.2,
chapter 6), where R is a commutative ring with unity. A sequence< f ,g> of two
module-homomorphisms

M1
f−→M2

g−→M3

of R-modules is said to be exact or exact at M2 if im f = kerg.

We note that go f is the zero-map as im f ⊆ kerg. It is easy to check that

0 −→M1
f−→M2 is exact at M1 if f is a monomorphism. Further, M2

g−→M3 −→ 0
is exact at M3 if, and only if, g is an isomorphism.

Definition 9.4.4 : A sequence of module-homomorphisms

M0
f1−→M1

f2−→M2 −→ ··· −→Mn−1
fn−→Mn

is called an exact sequence when each sequence < fi, fi+1 > is exact at Mi for
i = 1,2, . . . , (n − 1).

Definition 9.4.5 : An exact sequence of the form

0→M1
f−→M2

g−→M3 −→ 0

with zero modules and so zero homomorphisms at the ends, is called a short exact
sequence. In this case, f is a monomorphism and g is an epimorphism.

These ideas are applicable to other structures as well. In particular, we can
consider sequences of group-homomorphisms. Let R× denote the multiplicative
group of nonzero real numbers. With each affine automorphism T (k,a), k 6= 0,
we associate the nonzero real number k of R×. This gives a homomorphism
ψ : A1 −→ R×, where ψ(T (k,a)) = k (see definition 9.4.2)

kerψ = {T (k,a) : ψ(T (k,a)) = 1} = {T (1,a) : a ∈ R}

© 2007 by Taylor & Francis Group, LLC



THE ROLE OF THE MÖBIUS FUNCTION— ABSTRACT MÖBIUS INVERSION 275

We note that for l ∈ L
(
T (1,a′) ◦ T (1,a)

)
l = T (1,a′)(l + a)

= l + a + a′

= T (1,a + a′)l.

We define ξ : (R,+) −→ kerψ by ξ(a) = T (1,a), a ∈ R. ξ1 defines a ho-
momorphism from (R,+) onto kerψ. So, the image of ξ in A1 is kerψ where
ψ : A1 −→R×. This enables us to form a short exact sequence of homomorphisms
of groups in the form

(9.4.2) 0 −→ (R,+)
ξ−→ A1

ψ−→ (R×, ·) −→ 1

(9.4.2) is an illustration of definition (9.4.5).

Definition 9.4.6 : A subset D of R2 is defined by

D = {(k,a) : k,a ∈ R and k 6= 0}
D is made a group under the multiplication given by

(9.4.3) (k,a)× (k′,a′) = (kk′,k′a + a′)

It is easy to check that A1 ∼= D.

Definition 9.4.7 : A property of two or more points {l1, l2, . . .} of L is called an
affine property if it is invariant under the action of the affine group A1.

Let w1,w2 be real numbers with w1 + w2 = 1.
The average of l1, l2 ∈ L with weights w1 and w2 is given by

(9.4.4) l = w1l1 + w2l2

If T (k,a) is given by the affine transformation (9.4.1), we obtain

T (k,a)(w1l1 + w2l2) = w1T (k,a)l1 + w2T (k,a)l2
= w1(kl1 + a) + w2(kl2 + a)
= kl + a, where l is as given in (9.4.4),
= T (k,a)l

So, an affine transformation preserves averages.
Conversely, if A : L −→ L is any transformation which preserves averages,

then A is an affine transformation.
Next, we go to the real affine plane. More generally, we give

Definition 9.4.8 : Let F be a field of characteristic 6= 2. An affine space P over F
is a non-empty set for which there exists a finite dimensional vector space V over
F and a function Ψ : V ×P −→ P denoting addition such that
(a) for all vectors u,v ∈V and all points t ∈ P

0 + t = t, (u + v) + t = u + (v + t),
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(b) for any two points t,s ∈ P, there is precisely one vector v ∈V satisfying

v + s = t.

Remark 9.4.1 : We take the dimension of P to be the dimension of V .

Observation 9.4.1 : The operation + is symbolic of the action of a vector u of V
on a point t ∈ P.

u 7−→ u + t for t ∈ P is a bijection of sets.

The additive group of V acts on P. t 7−→ u+ t is a translation of P. If k,k′ ∈ F, and
u′,v′ ∈V

T (P) = {ku′ + k′v′ : k,k′ ∈ F,u,v′ ∈V}
is such that T (P) is a vector space isomorphic to V . The mapping is given by
η : V −→ T (P) where η(u) = u′ ∈V .

Then, for k,k′ ∈ F, ku 7−→ ku′ and k′v 7−→ k′v′.
For c ∈ F,u ∈ V, cu 7−→ cu′. T (P) is called the space of translations of the

affine space P.

Observation 9.4.2 : The affine line L considered earlier is an affine space with
the one-dimensional vector space R as its space of translations.

Example 9.4.1 : V is a vector space (finite dimensional or not) over F . W is a
subspace of V . dimW is finite. We write

P = {W + x : x ∈V giving distinct cosets of W}
P is an affine space over F . W makes the space of translations of P.
That is , T (P) = W . We consider w ∈W as the bijection:

w + u 7−→ v + (w + u), for all w ∈W.

It is the action of v ∈W on the coset W + u.
When W = V and V is finite dimensional, let VA stand for the set V .
A point of VA is a vector u ∈V .
We write

t = u ∈VA

If v ∈V , we define v + T as a point of VA. The definition 9.4.8 holds. That is,

0 + t = t, (u + v) + t = u + (v + t)

Given t, s ∈VA, there exists a unique vector v ∈V such that v + s = t.
In other words, the vector space V has been converted into an affine space VA.

The space of translations T (VA) is V . Strictly, T (VA)∼= V .

Summary: An affine space is defined in terms of a given vector space of transla-
tions.

Let w1,w2, . . .wn ∈ F such that
n∑

i=1

wi = 1F .
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For points ti(i = 1,2, . . . ,n) elements of P considered as an affine space with as-
sociated finite dimensional vector space V , the scalar multiples witi(i = 1,2, . . . ,n)
are such that

∑n
i=1 witi is a point of P when

∑n
i=1 wi = 1F .

Definition 9.4.9 : Let P,P′ be a affine spaces over the same field F. An affine
transformation T : P −→ P′ is such that

T (w1t1 + w2t2 + · · ·+ wntn) = w1T (t1) + w2T (t2) + · · ·+ wn(tn),

for all n and all points ti ∈ P with
∑n

i=1 wi = 1F .

It is verified that every translation is an affine transformation. For details and
related results, see S. Maclane and G. Birkhoff [7].

We go to the notion of a projective plane.

Definition 9.4.10 : A projective plane over a field is one in which

(i) any two distinct points lie on a unique line.
(ii) any two distinct lines intersect in a unique point.

Definition 9.4.11 : Given a three-dimensional vector space V over a field F, we
define P = P(V ) by the statements:

(i) A point t ∈ P(V ) is a one-dimensional subspace of V .
(ii) A line L ∈ P(V ) is a two-dimensional subspace of V .

A point t is on the line L (or incident with L) when the subspace t(of V ) is
contained in the subspace L(of V ).

If t,s are points of P(V ) with t 6= s, they are different one-dimensional subspaces
of V . So their sum is a two-dimensional subspace L of V and so is a line of P(V )
and that is the only line containing t and s. Property (i) of definition 9.4.11 holds.
Property (ii) of definition 9.4.11 also holds on account of the fact that two distinct
lines L1 and L2 of P(V ) are two-dimensional subspaces of V . So, their sum L1 +L2

must be the whole space V . By the theorem on the dimension of sum of two
subspaces,

dim(L1 + L2) = dimL1 + dimL2 − dim(L1∩L2)

So,

dim(L1∩L2) = 2 + 2 − 3 = 1 as claimed in (ii) of definition 9.4.10.

That is, L1 ∩L2 is a point t of P(V ) and t is the unique point in which L1 and L2

intersect. It is also clear that the points of P(V ) are the lines containing the origin
of V and the lines of P(V ) are the planes containing the origin of V . In fact, the
projective plane P(V ) has been constructed from a vector space of dimension 3.
More generally, a projective space of dimension n is constructed from a vector
space V of dimension (n + 1) over a field.

Definition 9.4.12 : A projective space is a set of points together with certain
distinguished subsets called its projective subspaces (or hyperplanes).
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The construction of a projective space is shown below:
Let V be a vector space of dimension (n + 1). A projective space P(V ) of

dimension n possesses the following properties:
Points t of P(V ) are the one-dimensional subspaces of V . For each subspace

S of V , we take P(S) to be the subset of all those points t of P(V ) (the one-
dimensional subspace t of V ) for which t ⊂ S. P(V ) has distinguished subsets as
the sets P(S) where S is a subspace of V . If S is a vector subspace of dimension
(k +1) contained in V , P(S) is called a projective subspace of dimension k in P(V ).
In particular, a two-dimensional vector subspace S is a projective line P(S) in
P(V ). A three-dimensional subspace W is a projective plane P(W ) in P(V ) and so
on. For the trivial subspace (0) of V , P((0)) = ∅, the empty projective subspace of
P(V ).

Fact 9.4.1 :
(a) If W is a vector subspace of another vector subspace S of V , that is, W ⊂ S,

then P(W ) ⊂ P(S). For, each one-dimensional subspace of V contained in
W is also contained in S. When P(W ) ⊂ P(S), we say that the projective
subspaces P(W ) are ‘incident’ with P(S).

(b) The projective subspaces of P(V ) are such that

P(S)∧P(W) = P(S∩W ),

corresponding to the intersection subspace S∩W in V and

P(S)∨P(W) = P(S +W),

corresponding to the vector space sum S +W in V .
(c) The correspondence S 7−→ P(S) gives a lattice isomorphism of the lattice L(V )

of subspaces of V with the lattice L(P(V )) of projective subspaces of P(V ).

Definition 9.4.13 : The lattice L(P(V )) of projective subspaces of a projective
space P(V ) is called a geometric lattice.

L(P(V )) is isomorphic to the lattice L(V ) of subspaces of V . We remark
that finite dimensional vector spaces have a role to play in the context of either an
affine space or a projective space. To reach the stage where L(Vn(q)) is considered,
we needed a narration up to the definition of a geometric lattice given in (9.4.13).

The study of subspaces of a finite dimensional vector space is analogous
to the study of subsets of a finite set. Just as

(n
k

)
counts the k-element subsets

of a set X having n elements, we can define
(n

k

)
q to denote the number of k-

dimensional subspaces of Vn(q) where the ground field GF(q) has q = pm elements
(p a prime, m≥ 1). Let Sk denote a set of k linearly independent vectors belonging
to Vn(q). Sk forms a basis for a k-dimensional subspace of Vn(q). Sk also belongs
to Vk(q), a k-dimensional vector space over GF(q). Each k-dimensional subspace
of Vn(q) contains a collection Sk of k linearly independent vectors. Therefore, as(n

k

)
q counts the number of k-dimensional subspaces of Vn(q), we have # sets of k

linearly independent vectors in Vk(q)×
(n

k

)
q equals # sets of k linearly independent
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vectors in Vn(q). The number of sets of k linearly independent vectors in Vn(q) is
computed in the following manner:

For a set of k linearly independent vectors of Vn(q), the first vector, say v1, can
be chosen from (qn −1) nonzero vectors of Vn(q). The vectors v1 generate q vectors
namely, the vectors of the form αv1 where α ∈ GF(q). Then, the second vector
v2 can be chosen in (qn − q) ways. v1 and v2 generate, by linear combinations, q2

vectors. Therefore, the 3rd vector can be chosen in (qn −q2) ways. Continuing this
argument, we have:

# sets of k linearly independent vectors in Vn(q) is given by

(qn − 1)(qn − q)(qn − q2) . . . (qn − qk−1).

In the same manner,
# sets of k linearly independent vectors in Vk(q)

= (qk − 1)(qk − q) · · ·(qk − qk−1)

So, (
n
k

)

q
=

# sets of k linearly independent vectors in Vn(q)
# sets of k linearly independent vectors in Vk(q)

.

Or,

(9.4.5)
(

n
k

)

q
=

(qn − 1)(qn − q) · · ·(qn − qk−1)
(qk − 1)(qk − q) · · ·(qk − qk−1)

=
(qn − 1)(qn−1 − 1) · · ·(qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)

(9.4.5) gives a formula for the number of k-dimensional subspaces of Vn(q).
Next, we aim at derivation of the Möbius function µ for the poset L(Vn(q)).

As Vn(q) is finite, L(Vn(q)) is a locally finite poset. It is also left-finite and the
trivial subspace (0) is such that (0)⊂W for any subspace W of Vn(q). Further, let
{u1,u2, . . .ut} be a basis for a subspace W . If {u1,u2, . . . ,ut ,ut+1, . . . ,us} is a basis
for S containing W , we write

f (ui) =

{
ui, t + 1≤ i≤ s
0 i≤ t

Then, [W,S] can be shown to be isomorphic to [0,A] when A is a subspace of
dimension s − t. In fact, we can take A to be the quotient space S/W . Since
all k-dimensional spaces over GF(q) are isomorphic, we have only to compute
µ(0,Vn(q)) for all n.

Theorem 72 (Bender and Goldman(1975)) : The Möbius function
of L(Vn(q)) (n≥ 2) is given by

(9.4.6) µ(0,Vn(q)) = (−1)nq(n
2).

Proof : We prove (9.4.6) by induction on n. The proof due to Bender and Gold-
man is by the method of undetermined coefficients. Let G(q) be a vector space
over F(q) and having |G(q)| = y vectors.

© 2007 by Taylor & Francis Group, LLC



280 CHAPTER 9

For a subspace U ∈ L(Vn(q)) let N(U) be the number of linear transformations
π : Vn(q) −→ G(q) whose null-space is U . N ′(U) denotes the number of linear
transformations T ′ : Vn(q) −→ G(q) whose null space contains U . Then,

(9.4.7) N′(U) =
∑

U⊆W

N(W )⇐⇒ N(U) =
∑

U⊆W

N′(W )µ(U,W )

and with U = (0),

(9.4.8) N
(
(0)
)

=
∑

W∈L(Vn(q))

µ(0,W )N′(W )

By definition, N((0)) is the number of linear transformations whose null space
is (0); that is, the number of one-one linear transformations. Such a transfor-
mation is identified by giving a list of n linearly independent vectors—the im-
age of an ordered basis for Vn(q). By the argument used to derive (9.4.5), we
note that the number of one-one transformations from Vn(q) into G(q) is given by
(y − 1)(y − 2) . . .(y − qn−1) where y = |G(q)|.

Next, we compute N ′(W ). Let dimW = w. A linear transformation has null
space containing W if it maps W onto (0) and does anything at all with the rest of
the vectors. So, if {v1,v2, . . .vn} is a basis for Vn(q) where {v1,v2, . . .vt} is a basis
for W , we must map v1,v2, . . . ,vt onto (0) and the remaining (n − t) basis-vectors
onto any vectors in G(q). So,

(9.4.9) N′(W ) = yn−t

Substituting in (9.4.8) we get

(9.4.10) N
(
(0)
)

= (y − 1)(y − q) . . .(y − qn−1) =
∑

W∈L(Vn(q))

µ(0,W )yn−d(w).

Where d(W ) denotes the dimension of W .
(9.4.10) holds for all values of y. So, it is a polynomial identity. Equating the

constant terms of both sides of (9.4.10) we get (when W = Vn(q))
µ(0,Vn(q)) = (−1)(−q) . . .(−qn−1) = (−1)nqb where b = 1 + 2 + · · ·+ (n − 1) =

(n
2

)
.

This proves (9.4.6). �

Remark 9.4.2 : From (9.4.10), as µ(0,Vn(q)) = (−1)nq(n
2), we see that

µ(0,W ) = (−1)tq(t
2) with t = dimW

That is,

(9.4.11)
n−1∏

i=0

(y − qi) =
n∑

t=0

(
n
t

)

q
(−1)tq(t

2)yn−t ,

as there are
(n

t

)
q t-dimensional subspaces W of Vn(q). (9.4.11) is referred to as a

q-identity. For more details and other illustrations of Möbius inversion, see Ben-
der and Goldman [2].
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9.5. Notes with illustrative examples

It was G.C. Rota’s fundamental paper [9] of 1964 that sparked a lot of activity
in the study of incidence functions and in the applications to combinatorial math-
ematics and the theory of graphs. The focal point in abstract Möbius inversion is
that there is a Möbius function associated with every locally finite poset.

Let R̃ be the set of real numbers which are≥ 1. Following Niven and Zucker-
man [9], we introduce a function β : R̃ −→C. We recall that an arithmetic function
f has domain N or Z̃ and range C.

Definition 9.5.1 : The ‘Niven product’ of f with β is given by

( fβ)(n) =
[n]∑

m=1

f (m)β(
n
m

). n ∈ R̃,

where [x] is the greatest integer not exceeding x.

fβ is a function from R̃ into C.
If g is another arithmetic function,

g( fβ)(n) =
[n]∑

m=1

g(m) fβ(
n
m

)

=
[n]∑

m=1

[ n
m ]∑

k=1

g(m) f (k)β(
n

mk
)

If mk = s, s = mk ≤ m[ n
m ]≤ m n

m = n.
If s is any positive integer≤ n, s≤ [n] and if s = mk is a factorization of s, we

note that 1≤ mk≤ [n] and

k =
s
m
≤ [n]

m
= [

n
m

]

If h(s) =
∑

mk=s g(m) f (k), h is the Dirichlet product of f and g and so

g( fβ)(n) =
[n]∑

s=1

∑

m|s
g(m) f (

s
m

)β(
n
s

) =
[n]∑

s=1

(∑

m|s
g(m) f (

s
m

)
)
β(

n
s

).

Or,

(9.5.1) g( fβ)(n) =
[n]∑

s=1

(
(g · f )(s)β(

n
s

)
)

= (g · f )β(n)

Theorem 73 : Suppose that β and γ are complex-valued functions defined on R̃.
Then for all n≥ 1,

(9.5.2) β(n) =
[n]∑

m=1

γ(
n
m

)⇔ γ(n) =
[n]∑

k=1

µ(k)β(
n
k

)

where µ is the classical Möbius function.
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Proof : :⇒ By (9.5.1)
g( fβ)(n) = (g · f )β(n).

Take f to be the Möbius function µ. Then, γ = µβ.
So,

γ(n) = (µβ)(n) for all n≥ 1.
Let e(n) = 1 for all n≥ 1. µ is the Dirichlet inverse of e. Or, e ·µ = e0, (e0(n) = [ 1

n ]).
Then,

eγ = e(µβ) = (e ·µ)β, by (9.5.1)
= e0β

and e0β(n) =
∑[n]

m=1 e0(m)β( n
m ) = β(n) or eγ = β.

So, γ = µβ =⇒ eγ = β. This proves (9.5.2) in one direction.
⇐: suppose that γ = µβ.
eγ = β =⇒ µβ = µ(eγ) = (µ · e)(γ) = e0(γ) = γ.
Thus (9.5.2) is established. �

We translate (9.5.2) into the set-up of partially ordered sets. We make R̃ into
a poset. For x,y ∈ R̃, we say that x divides y or x ≤ y if y

x is a positive integer.
Then, (R̃,≤) is a left-finite poset. It is also locally-finite.

x≤ y =⇒ y ∈ R̃ and x ∈ {y, y
2
,

y
3
, . . . ,

y
[y]
}.

We check that the associated Möbius function is µ(x,y) given by
µ(x,y) = µ(1, y

x ) = µ( y
x ) as in illustration 9.2.1.

Then,
∑

m|n
f (m) =

[n]∑

m=1

f (
n
m

) =
∑

j≤n

f (
n
j
)

Also,
∑

m|n
g(m)µ(m,n) =

[n]∑

m=1

g(m)µ(m,n) =
∑

j≤n

g( j)µ(
n
j
),

or,

(9.5.3)
[n]∑

m=1

f (
n
m

) = g(n)⇔ f (n) =
[n]∑

m=1

µ(m)g(
n
m

)

Corollary 9.5.1 : If f and g are arithmetic functions, then

(9.5.4) g(n) =
[n]∑

m=1

f
(
[

n
m

]
)
⇔ f (n) =

[n]∑

m=1

µ(m)g
(
[

n
m

]
)

Proof : (9.5.4) follows from (9.5.3), if we define F : R̃ −→ C as

F(n) = f
(
[n]
)
, n≥ 1

and G : R̃ −→ C as G(n) = g
(
[n]
)
,n≥ 1. �
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For related results of classical number theory, see Ralph G. Archibald [1].
For a detailed study of the algebra of incidence functions defined on a locally
finite poset, see Eugene Spiegel and Christofer J. O’Donnel [A1].

9.6. Worked-out examples

a) (Don Redmond)A denotes the commutative ring of arithmetic functions under
the operations of addition and Dirichlet convolution. (See Section 4.3, chapter
4) Suppose that U(A) denotes the group of units of A. The logarithmic and
von Mangoldt operators L and Λ (respectively) are given by

L :A→A to mean L( f )(r) = f (r) logr, r ≥ 1

Λ : U(A)→A to mean Λ( f )(r) = ( f −1 ·L( f ))(r) =
∑

t|r
f −1(

r
t

) f (t) logt

It is clear that if f ∈U(A), L( f ) = f ·Λ( f ).
Let e0(r) = [ 1

r ], where [x] denotes the greatest integer not exceeding x. If
µ stands for the Möbius function, evaluate (i) Λ(e0) (ii) Λ(µ) and (iii) Λ(d)
where d(r) denotes the number of divisors of r.
Answer: (i) Λ(e0) = e−1

0 ·L(e0). e−1
0 = e0 and L(e0) = z where z(r) = 0, r ≥ 1.

So, Λ(e0) = e0 · z = z.
(ii) Let f ∈U(A).

Λ( f −1) = f ·L( f −1)

So, Λ( f −1)(r) =
∑

d|r
f (d) f −1(

r
d

) log(
r
d

)

= logr
∑

d|r
f (d) f −1(

r
d

) −
∑

d|r
f (d) f −1(

r
d

) logd

= L(e0)(r) − (L f · f −1)(r).

Or,

(9.6.1) Λ( f −1) = −L f · f −1· = −Λ( f ).

when, f = e,

(9.6.2) Λ(µ) = −Λ(e) = −
∑

t|r
µ(

r
t

) logt

(iii)

Λ(d) = Λ(e · e)
(e · e) ·Λ(e · e) = L(e · e) = d log

So,

Λ(e · e) = (d log) ·d−1 = (d log) ·µ ·µ.
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That is,

Λ(d)(r) =
∑

t1t2t3=r

d(t1) log(t1)µ(t2)µ(t3).

Remark 9.6.1 : von Mangoldt’s function Λ is given by

(9.6.3) Λ(r) =

{
log p, if r is a prime-power pm,m≥ 1
0, otherwise.

It is verified that
∑
t|r

Λ(t) = logr. By Möbius inversion,

Λ(r) =
∑

t|r
µ(t) log(

r
t

) = −
∑

t|r
µ(t) logt

From (9.6.2), we see that Λ(µ) = −Λ.
It can be checked that Λ( f ·g) = Λ( f ) + Λ(g). As Λ(e0) = z,

Λ( f ) + Λ( f −1) = Λ(e0) = z, where f ∈U(A). (9.6.1) is a consequence.

�
b) (Nicol and Vandiver) Von Sterneck function Φ(n,r) is given by

Φ(n,r) =
µ( r

g )φ(r)

φ(r/g)
, g = g.c.d (n,r)

(see (5.5.4), chapter 5)
Let

g(n,r) =
∑

d|r
f (d)Φ(n,

r
d

)

where f is any arithmetic function. Show that

(9.6.4) f (r) =
1
r

r∑

k=1

g (k,r).

Answer: This inversion formula is deduced from the identity shown below:
If d|r,

(9.6.5)
r∑

k=1

Φ(k,d) =

{
r, if d = 1
0, otherwise.

For,
r∑

k=1

g(k,r) =
r∑

k=1


∑

t|r
f (d)Φ(k,

r
t

)




=
∑

t|r
f (t)

r∑

k=1

Φ(k,
r
t

)
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By (9.6.5), the inner sum is r, if t = r and is zero otherwise.
So,

r∑
k=1

g(k,r) = r f (r), from which (9.6.4) follows. �

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) Let λ : N→{−1,1} be given by

λ(r) =

{
1, r = 1
(−1)Ω(r), r > 1

where Ω(r) denotes the total number of prime factors of r, each counted
according to its multiplicity. (λ is Liouville’s function). We define

M(r) =
r∑

j=1

λ( j)

It is correct to say that M(r)> 0.
b) Let f ,g be arithmetic functions satisfying

f (r)> 0,g(r)> 0(r ≥ 1) and g (r) =
∏

t|r
f (t).

One obtains log f (r) =
∑

t|rµ( r
t ) logg(t).

c) The lattice of subgroups of S4 is a complemented lattice.
d) The lattice of normal subgroups of a group G is a Boolean algebra.
e) Let (L1,∨,∧) and (L2,∪,∩) be two lattices. A bijection ψ : L1→ L2 is a

lattice isomorphism if

ψ(a∨b) = ψ(a)∪ψ(b),
and (ψ∧b) = ψ(a)∩ψ(b); for all a,b ∈ L1.

If L1 and L2 are lattices that are isomorphic as posets, L1 and L2 are
isomorphic as lattices.

f) For a + bi, c + di∈ C, we define

a + bi4 c + di, if a≤ c and b≤ d.

It is correct to say that (C,4) can be made a lattice.
2. Let x be real and x ≥ 1. Suppose that ϕ(x,n) denotes the number of positive

integers m≤ x such that gcd(m,n) = 1. Show that
∑

d|n
ϕ(

x
d
,

n
d

) = [x].
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Deduce that
ϕ(x,n) =

∑

d|n
µ(d)[

x
d

]

where µ is the Möbius function and [x] denotes the greatest integer not
exceeding x.

3. Let P = {0,a,b,c,1} with 0 < a < 1, 0 < b < 1, 0 < c < 1. a∧ b = b∧ c =
c∧a = 0, a∨b = b∨ c = c∨a = 1.

Find the Möbius function of (P,∨,∧). (See Fig. 9)

a b c

1

0

Figure 9

4. Let P = {a,b,c,d} with a< c < d, b< c< d as shown:
Determine the Möbius function of (P,≤). (See Fig. 10)

c

b

d

a

Figure 10

5. Let (L1,∨,∧) and (L2,∨,∧) be two lattices. Suppose that L = L1×L2, the
product of the posets (L1,≤), (L2,≤′).
Show that L is a lattice. If L1 and L2 are modular, so is L: Prove.

6. Let γ(n) denote the product of the distinct prime factors of n with γ(1) = 1. f
and g are arithmetic functions given by

g(n) =
∑

d|n
γ(d)=γ(n)

f (d)

where d runs through those divisors of n such that d and n contain the same
distinct prime factors.
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Show that
f (n) =

∑

d|n
γ(d)=γ(n)

g(d)µ(
n
d

).

7. Let P,P′ be isomorphic posets. That is, there exists a one-to-one map
Ψ : P −→ P′ (onto) such that for x,y ∈ P,

x≤ y⇐⇒Ψ(x)≤′ Ψ(y) in P′.

Show that
µ′
(
Ψ(x),Ψ(y)

)
= µ(x,y) for all x,y ∈ P.

8. Following R. P. Stanley [14], a locally finite poset (P,≤) is called a ‘binominal
poset’ if

(i) for every interval [x,y] of (P,≤) all maximal chains in [x,y] have the
same length n(x,y) or [x,y] is an n-interval.

(ii) any two n-intervals have the same number of maximal chains.
Show that (N,≤) where ≤ means ‘less than or equal to’ is a binominal
poset. Let [a,b] be an n-interval in (N,≤).
If ζ(x,y) = 1 for all x,y ∈ P such that 1≤ x≤ y, show that

(ζ · ζ)(a,b) = |[a,b]| = n + 1.

9. A denotes the set of complex-valued functions on N. (N,≤) is a left-finite,
locally finite poset where ≤ means ‘divides’. Given f ∈ A, we define an inci-
dence function f̄ of (N,≤) by

f̄ (m,n) =

{
f ( n

m ), if m|n;
0 otherwise.

If Ā denotes the set of incidence functions of (N,≤), show that the map
θ : A −→ Ā given by θ( f ) = f̄ is one-to-one and preserves addition and Dirich-
let convolution.

10. [Paul J. McCarthy] Let L be a local lattice. An incidence function f̄ of
(L,∨,∧) is called factorable, if f̄ has an inverse and if

f̄ (a∨b,c∨d) = f̄ (a,c) f̄ (b,d)

for all a,b,c,d ∈ L such that a,b,c,d belong to the same interval in L and
a≤ c, b≤ d with a∧b = c∧d. If f̄ is factorable, show that f̄ (a,a) = 1 for all
a ∈ L. In particular, show that the ζ-function of L is factorable.

11. [Paul J. McCarthy] Let L be a local lattice. If µ is factorable, show that
(L,∨,∧) is locally distributive.
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CHAPTER 10

The role of generating functions

Historical perspective

It was Euler who gave us the idea of a generating function. He was interested
in the theory of partitions of a positive integer n. We denote by p(n), the number of
partitions of n. Through the introduction of generating functions and the progress
in the theory of functions of a complex variable, the study of partitions became rig-
orous. The functions related to partitions and formulae connected with them were
discovered as special cases of a more general set-up involving theta functions
and modular functions. They were investigated thoroughly by Carl Gustav Jacob
Jacobi and others. The results found a place in additive number theory legiti-
mately. The role of generating functions in additive number theory is similar to
the role of Dirichlet series of arithmetic functions in multiplicative number the-
ory. In 1859, B. Riemann (1826–1866) undertook the study of π(x), the number of
primes less than or equal to x in establishing Gauss’s conjecture π(x)∼ x

log x and
connected this problem with the properties of ζ(s) =

∑∞
n=1 n−s(Re s > 1). Indeed,

Riemann was one of the founders of the theory of functions of a complex variable
and it was his interest in π(x) that prompted him to pursue the general theory of
functions of a complex variable. The Dirichlet series of an arithmetic function
generalizes the Riemann ζ-function. In fact, ζ(s) is the generating function of the
function e, where e(n) = 1, n≥ 1. The inverse of ζ(s) gives the Möbius function µ,
where 1/ζ(s) =

∑∞
n=1µ(n)n−s, Re s> 1.

In combinatorial theory, one comes across the use of generating functions in
solving enumeration problems. The development of the modern theory of gener-
ating functions is due to P. Doubilet, G. C. Rota and R. P. Stanley (1972). We look
upon a generating function (representing a counting function) as an element of
an algebra over C, the field of complex numbers. The ringC[[x]] of formal power
series in x with coefficients from C helps as a tool for enumeration and C[[x]]
serves as the point of entry into algebra.

10.1. Introduction

The aim of this chapter is to go into the genesis of generating functions. As is
well-known, Euler made use of generating functions in the study of partitions of
a positive integer. In Section 10.2, we derive two classical theorems due to Euler
for writing the generating function of p(n), namely,

∑
p(n)xn and its inverse. See

291
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theorems 74 and 75. In Section 10.3, we discuss the notion of an elliptic function
and introduce Weierstrass’s P-function. The purpose is to give an example of a
modular function. Ramanujan’s τ -function has the property that its generating
function satisfies ∞∑

n=1

τ (n)xn = x
∞∏

n=1

(1 − xn)24, |x|< 1

and it appears that certain generating functions could be expressed as a suitable
infinite product. Theorem 76 in Section 10.3 gives an identity for τ . Section 10.4
is about properties of Stirling numbers and Bernoulli numbers. This is a context
in which we exploit the nature of generating functions for deriving recurrence
relations and from recurrence relations we get at generating functions. In Section
10.5, we introduce binomial posets which are originally due to Richard P. Stanley
[19]. We work in the context of a locally finite partially ordered set. By defining
an algebra of incidence functions, one is able to show that an algebra B(P) of a
special kind is isomorphic to the algebra C[[x]] of formal power series in x with
coefficients from C.

Dirichlet series are, in fact, generating functions of complex-valued arith-
metic functions defined on N. Dirichlet multiplication of arithmetic functions
corresponds to ordinary multiplication of Dirichlet series. Very many interesting
results follow. See theorem 80. See also Hardy & Wright [12]. Let F be a field.
If K denotes the field of fractions of F[[x]], it is shown that F[[x]] is a valuation
ring of K. (See theorem 81).

10.2. Euler’s theorems on partitions of an integer

Perhaps, the first instance in the use of generating functions is from the theory
of partitions. Let Z̃ denote the set of non-negative integers. A function f : Z̃→ C
is an arithmetic function. The domain of f is also taken as N, the set of positive
integers, while doing multiplicative number theory.

Definition 10.2.1 : Let f be an arithmetic function defined on Z̃. We call F(x) =∑∞
n=0 f (n)xn, the generating function of f . x may be real or complex.

The region of convergence of the series for F(x) is specified when needed. Usu-
ally, |x|< 1 helps.

In [13] A. F. Horadam considers a sequence {wn(a,b; p,q)} where a, b, p, q
are arbitrary complex numbers with a 6= 0, and

w0 = a, w1 = b and wn = pwn−1 − qwn−2 (n≥ 2)

{wn} is given by

(10.2.1) wn = Aαn + bβn

where
A =

b − aβ
α−β

, B =
aα− b
α−β

and α, β are the zeros of the polynomial x2 − px + q.
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The generating function [13], [14] of {wn} is

(10.2.2)
a + (b − pa)x
1 − px + qx2 =

∞∑

n=0

wnxn.

As illustrations, we note that the Fermat sequences {un} and {vn} are such that
un = 2n − 1 and vn = 2n + 1. In fact,

un = wn(1,3; 3,2),(10.2.3)
vn = wn(2,3; 3,2).(10.2.4)

Then,

1
1 − 3x + 2x2 =

∞∑

n=0

unxn, |x|< 1/2.(10.2.5)

2 − 3x
1 − 3x + 2x2 =

∞∑

n=0

vnxn, |x|< 1/2.(10.2.6)

Next, in the case of Fibonacci sequence {Fn} given by F0 = 1, F1 = 1 and
Fn+1 = Fn + Fn−1 (n≥ 1), the generating function of {Fn} is given by

(10.2.7)
1

1 − x − x2 =
∞∑

n=0

Fnxn, |x|<min{|α|, |β|},

where

(10.2.8) Fn =
1√
5
{αn+1 −βn+1}; α =

1 +
√

5
2

, β =
1 −
√

5
2

.

See A. F. Horadam [14] for more examples. A related reference is Pentti Haukkanen
[11].

Definition 10.2.2 : Let A = {a1,a2, . . . ,ar, . . .} be a finite or infinite set of positive
integers. If

ai1 + ai2 + · · ·+ air = n with ai j ∈ A ( j = 1,2 . . . ,r),
we say that the sum ai1 +ai2 + · · ·+air is a partition of n into parts belonging to A .

If n ∈ A, n itself is counted as a partition of itself.
The summands or parts need not be distinct. Further, the order of the sum-

mands is immaterial. Every partition of n can be uniquely written as

(10.2.9) x = k1a1 + k2a2 · · ·+ kiai + · · ·
where ai are distinct elements of A (i = 1,2, . . .) in an increasing order and ki ∈ Z̃.
Only finitely many ki are nonzero.

Definition 10.2.3 : A = {a1,a2, . . .} is a finite or infinite set of positive integers.
The number of distinct partitions of a positive integer n into parts belonging to A is
denoted by pA(n). pA is called the partition function relative to set A. pA : N→ Z̃
is the desired function.
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If no restrictions are imposed, pA(n) gives the number of unrestricted parti-
tions of n into parts belonging to A. If A = N, pA(n) is written as p(n). Various
restrictions could be imposed to define pA(n). p(0)

A (n) stands for the number of
partitions of n into an odd number of parts belonging to A. Likewise, p(0)(n) de-
notes the number of partitions of n into an odd number of parts. p(e)

A (n)(p(e)(n))
denotes the number of partitions of n into an even number of parts belonging to A
(when A = N). For instance, as

5 = 5
5 = 4 + 1
5 = 3 + 2
5 = 3 + 1 + 1
5 = 2 + 2 + 1
5 = 2 + 1 + 1 + 1
5 = 1 + 1 + 1 + 1 + 1

p(5) = 7. Also, p(e)(5) = 3, p(0)(5) = 4.
Next, some of the elementary ideas of complex analysis are described below

for making the convergence of a series used for generating functions clear:
An open connected subset of the complex-plane is called a region. Let D

be a region. A function f : D → C is said to be differentiable at z0 ∈ D, if
limz→z0

f (z)− f (z0)
z−z0

exists and is independent of the path along which z→ z0 in the
complex-plane. The derivative is denoted by f ′(z0).

f : D→ C is said to be analytic at z0 ∈ D, if it is differentiable throughout
some ε-neighbourhood of z0. f is said to be analytic in D if it is analytic at
every point of D. A region D is called a simply connected region, if D can be
continuously deformed into a point without going outside D.

Let D be a simply connected region: Suppose that D contains an interval of
the real-axis. Let f : D→ C be an analytic function. If f (z) is real on the interval
of the real axis contained in D, then f (z̄) = f (z) where z or z̄ belongs to D. As
usual, z̄ denotes the complex conjugate of z.

Let D2 be a region containing a region D1. Suppose that f : D1 → C is
analytic in D1. Let g : D2→C be an analytic function. If g(z) = f (z) at all points z
of D1, we say that g is an analytic continuation of f in the region D2. For instance,

f (z) = 1 + z + z2 + · · ·
is analytic at all points of the unit disc |z| < 1. The function g : D2 → C given
by g(z) = 1

1−z , (z 6= 1) is analytic except at z = 1 of the complex plane. Further,
f (z) = g(z) for |z|< 1. We say that g is an analytic continuation of f in the region
D2 = C\{1}. There are several methods of analytic continuation of which the
simplest is by power series.

Fact 10.2.1 : (Schwarz reflection principle) Let f be analytic in a region D of the
upper half-plane H (of C). Suppose that the boundary ∂D of D intersects the real

© 2007 by Taylor & Francis Group, LLC



THE ROLE OF GENERATING FUNCTIONS 295

axis in a line-segment L. Let f be continuous on D∪L. Further, assume that f (z)
is real at all points z of L. If D∗ is the reflection of D on the real axis, then, f can
be continued analytically across L into D∗ by taking

f (z) = f (z̄) (z ∈ D∗)

For proof, see L. V. Ahlfors [1].
We need to mention about infinite products.

∏∞
n=1(1 − an) is said to converge,

if an 6= 1 for all n ≥ N0 (specified) and if limk→∞
∏k

n=N0
(1 − an) exists and is dif-

ferent from zero. If {an} is real and an 6= 1 for all n and
∏∞

n=1(1 − an) converges,
then its value is nonzero.
See Tom Apostol [2].

Theorem 74 (Euler) : For |x|< 1,

(10.2.10)
∞∑

n=0

p(n)xn =
∞∏

m=1

(1 − xm)−1 , where p(0) = 1.

Proof :
∏∞

m=1(1 − xm)−1 = (1 − x)−1(1 − x2)−1(1 − x3)−1 · · · . One has
∞∏

m=0

(1 − xm)−1 = (1 + x + x2 + · · · )(1 + x2 + x4 + · · · )(1 + x3 + x6 + · · · )

If we multiply the series on the right side, treating them as polynomials for the
time being, we will get 1 +

∑∞
k=1 akxk. It is our aim to show that ak = p(k). To get

a term involving xk, we can form

xk1 x2k2 x3k3 · · ·xmkm = xk

where k = k1 + 2k2 + 3k3 · · ·+ mkm. In the partition of k, 1 occurs k1 times, 2 occurs
k2 times and so on. The coefficient ak of xk is such that ak = p(k).

Now, suppose that 0≤ x < 1. We define

(10.2.11) Fm(x) =
m∏

k=1

(1 − xk)−1, F(x) =
∞∏

k=1

(1 − xk)−1 = lim
m→∞

Fm(x)

∏∞
k=1(1 − xk) converges absolutely, since

∑∞
k=0 xk converges absolutely. So,∏∞

k=1(1 − xk)−1 (the reciprocal of a convergent infinite product) converges abso-
lutely for 0≤ x < 1.

Next, for a fixed x, {Fn(x)} is an increasing sequence, as

Fm+1(x) = Fm(x)(1 − xm+1)−1 ≥ Fm(x).

That is, Fm(x) ≤ F(x) for each x (when 0 ≤ x < 1) and m ≥ 1. Also, Fm(x) is
the product of a finite number of absolutely convergent series. Therefore, it is an
absolutely convergent series and we write it as

Fm(x) = 1 +
∞∑

k=1

pm(k)xk
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where pm(k) is the number of solutions of

k = k1 + 2k2 + · · ·+ mkm,

that is, the number of partitions of k into parts not exceeding m. If m≥ k, pm(k) =
p(k). Also pm(k)≤ p(k) with equality when m = k. Thus,

(10.2.12) lim
m→∞

pm(k) = p(k).

We have

Fm(x) =
m∑

k=0

pm(k)xk +
∞∑

k=m+1

pm(k)xk

=
m∑

k=0

pm(k)xk +
∞∑

k=m+1

p(k)xk

For x≥ 0,
m∑

k=0

pm(k)xk ≤ Fm(x)≤ F(x).

For t >m,
t∑

k=m+1

p(k)xk < Ft(x)< F(x).

So,
∑∞

k=m+1 p(k)xk converges. That is,
∑∞

k=0 p(k)xk converges.

Also,
∞∑

k=0

pm(k)xk ≤
∞∑

k=0

p(k)xk ≤ F(x).

So, for each fixed x,
∑∞

k=0 pm(k)xk converges uniformly in m.
Making m→∞, we have

F(x) = lim
m→∞

Fm(x) = lim
m→∞

m∑

k=0

pm(k)xk =
∞∑

k=0

lim
m→∞

pm(k)xk =
∞∑

k=0

p(k)xk.

This proves (10.2.10) for 0≤ x < 1. We can extend it by analytic continuation to
the unit disc |x|< 1. �

Definition 10.2.4 : The pentagonal numbers are defined by the sums

(10.2.13) w(n) =
n−1∑

k=0

(1 + 3k) =
3n2 − n

2
.

For n< 0, w(n) is given by 3n2+n
2 .

They are related to pentagonal-type graphs in which the number of vertices
increases as shown:
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1 1+4 1+4+7

Figure 11

Theorem 75 (Euler’s pentagonal number theorem) : If |x|< 1,

(10.2.14)
∞∏

m=1

(1 − xm) = 1 +
∞∑

n=1

(−1)n{xw(n) + xw(−n)} =
∞∑

n=−∞
(−1)nxw(n)

where w(n), w(−n) are pentagonal numbers (n = 1,2, . . .).

Proof : The method of proof is to show that for 0≤ x< 1,
if Pn =

∏n
r=1(1 − xr) and Sn = 1 +

∑n
r=1(−1)r{xw(r) + xw(−r)}

|Sn − Pn| ≤ nxn+1. As 0≤ x < 1, we will get

lim
n→∞

Pn = lim
n→∞

Sn.

We define P0 = S0 = 1.
We write g(r) = r(r+1)

2 .
Let

(10.2.15) Fn =
n∑

r=0

(−1)r Pn

Pr
xrn+g(r)

F1 = 1 − x − x2 = S1.

Fn − Fn−1 =
n∑

r=0

(−1)r Pn

Pr
xrn+g(r) −

n−1∑

r=0

(−1)r Pn−1

Pr
xr(n−1)+g(r).

Now, Pn = (1 − xn)Pn−1. After simplification, we obtain

Fn − Fn−1 = (−1)nxn2+g(n) + (−1)nxn2+g(n−1)

But, n2 + g(n) = n2 + n(n+1)
2 = w(−n) and n2 + g(n − 1) = w(n).

So,
Fn − Fn−1 = (−1)n{xw(n) + xw(−n)} = Sn − Sn−1.
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So, Fn − Sn = Fn−1 − Sn−1 = Fn−2 − Sn−2 = · · · = F1 − S1 = 0
or Fn = Sn for n≥ 1. From (10.2.15), we also have

(10.2.16) Fn = Pn +
n∑

r=1

(−1)r Pn

Pr
xrn+g(r).

Further, 0< Pn
Pr
≤ 1 for 0≤ x< 1. xrn+g(r) ≤ xn+1 for r ≥ 1.

Therefore, the sum on the right side of (10.2.16) is bounded by nxn+1. So,
|Fn − Pn| ≤ nxn+1 and since Fn = Sn, given ε > 0.

|Sn − Pn|< ε for n≥ N0 (specified)

So, (10.2.14) is okay for 0≤ x < 1. We extend it by analytic continuation to the
disc |x|< 1. �

Remark 10.2.1 : The proof of theorem 75 has been adapted from Tom Apostol
[3]. See Emil Grosswald [9] also.

10.3. Elliptic functions

We begin by defining a lattice in the complex plane.
Let S be an arbitrary but fixed non-empty set. We recall definition 5.3.4,

chapter 5, of a free abelian group. The definition holds good verbatim for any
group F . We state

Fact 10.3.1 :
(a) If the group F together with the function f : S→ F is a free group on S, then

f is injective (one-one) and f (S) generates F . We write the free group F on S
by (F, f ).

(b) (Existence theorem) For any set S, there always exists a free group on S.
(c) (Uniqueness theorem) If (F, f ) and (F ′, f ′) are free groups on the same set S,

there exists a unique isomorphism j : F → F ′ such that j ◦ f = f ′.

For proofs, See S. T. Hu [15].
If a free group is generated by a single element, then it is infinite cyclic.

Infinite cyclic groups are also known as free cyclic groups.
We recall that an abelian group F together with a function f : S→ F is a free

abelian group on S if, given any function g : S→ G where G is any abelian group,
there exists a unique homomorphism h : F → G such that h ◦ f = g. Further, f
is injective and f (S) generates F . Also, every set S of elements determines an
essentially unique free abelian group (F, f ). The abelian group F is called the free
abelian group generated by the given set S.

Fact 10.3.2 : The direct sum of an arbitrarily indexed family

f : {Gs : s ∈ S}
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of infinite cyclic groups Gs is isomorphic to the free abelian group generated by
S.

For proof, see S. T. Hu [15].

Definition 10.3.1 : A free abelian group F is said to be of rank n if, and only if,
it is isomorphic to the direct sum of n infinite cyclic groups. The trivial group (e)
is considered as a free abelian group of rank 0. r(F) denotes the rank of F.

Definition 10.3.2 : A subgroup (L,+) of (C,+) is called a lattice if (L,+) is a free
abelian group of rank 2.

The lattice (L,+) has a basis {ω1,ω2}. It is easy to see that

(10.3.1) L = {z ∈ C : z = mω1 + nω2; m,n ∈ Z}.
The set

(10.3.2) B = {z ∈ C : z = α+ t1ω1 + t2ω2; α ∈ C, 0≤ t1 ≤ 1, 0≤ t2 ≤ 1}
is called a fundamental parallelogram with respect to the basis {ω1,ω2} of (L,+).

Definition 10.3.3 : Let D be a region in C. A function f : D→ C is called a
periodic function with period ω, if f (z +ω) = f (z), whenever z,z +ω ∈ D.

If ω is a period, so is nω for every integer n. If ω1 and ω2 are periods, so is
mω1 +nω2 for every choice of m,n∈ Z. We note that exp: C→C is periodic with
period 2πi.

Definition 10.3.4 : Let D be a region of the complex plane containing ω1 and ω2,
where ω1

ω2
is not real. f : D→ C is called a doubly-periodic function, if it has two

periods ω1 and ω2.

Definition 10.3.5 : When f is a doubly-periodic function with periods ω1 and ω2
(with ω1

ω2
not real) the pair 〈ω1,ω2〉 is called a fundamental pair if every period of

f is of the form mω1 + nω2 for m,n ∈ Z. We assume that 0< arg(ω1/ω2)< π.
We set L(ω1,ω2) = {z ∈ C : z = mω1 + nω2, m,n ∈ Z}. L(ω1,ω2) is a lattice in the
complex plane, given ω1, ω2 are complex numbers such that ω1

ω2
is not real.

Next, let ω1 = 1 +
√

3i and ω2 = 1 − i, so that ω1
ω2

is not real.
0 < argω1 − argω2 = 5π/12 < π. The lattice generated by ω1 and ω2 is of the
form given in (10.3.1). The fundamental parallelogram with respect to the basis
{ω1,ω2} is known. See figure 12 below:

Fact 10.3.3 : (i) Let α be a real number. Then,
∑

ω∈L(ω1,ω2)
ω 6=0

ω−αz =
∑∑

m,n∈Z
(m,n)6=(0,0)

(mω1 + nω2)−α

is absolutely convergent if, and only if, α > 2.
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−2ω1
−ω2

0
ω1

2ω2
3ω1

3ω2

2ω2

ω2

−ω2

−2ω2

ω1 + 2ω2

ω1 +ω2

ω1 −ω2

ω1 − 2ω1

2ω1 −ω2

Figure 12

(ii) Let α > 2 and A, a positive real number. Then, the series
∑

|ω|>R

1
(z −ω)α

=
∑

m

∑

n
|nω1+nω2|>R

1
(z − mω1 − nω2)α

is absolutely and uniformly convergent in the disc |z| ≤ A. For proofs, see
Tom Apostol [2].

Next, let D be a simply connected region in the complex plane. Suppose that
f : D→ C is analytic, except possibly, at z0 ∈ D. Then z0 is called an isolated
singularity of f .

Definition 10.3.6 : If limz→z0{(z − z0) f (z)} = 0, then limz→z0 f (z) exists and is
finite. By taking

f (z0) = lim
z→z0

f (z)

we can make f analytic throughout D and in that case, z0 is called a removable
singularity of f . In other words, we call z0 an ordinary point of f .

Suppose that limz→z0 f (z)(z − z0) 6= 0

Definition 10.3.7 : If there exists k > 0 such that

lim
z→z0

(z − z0)k f (z) = g(z0)

and g is analytic at z0, then z0 is called a pole of f .
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The smallest integer k for which limz→z0 (z − z0)k f (z) exists and is finite, is
called the order of the pole z0 of f .

Further, if z0 is neither a removable singularity nor a pole (of order k) of f ,
z0 is said to be an essential singularity of f .

Let f : D→ C be single-valued and analytic in D. If z0 ∈ D and f (z0) = 0,
then, there exists a positive integer t such that

f (z) = (z − z0)tg(z)

with g analytic in D and g(z0) 6= 0. z0 is called a zero of order t, of f .
Let f : D→ C be single-valued in D and analytic except possibly at a finite

number of points z1,z2, . . . ,zm. Then, if z0 ∈ D, f possesses a series expansion of
the form

(10.3.3) f (z) =
∞∑

n=−∞
an(z − z0)n

which is convergent in some ‘punctured disc’: 0< |z − z0|< r having centre at z0

and radius r > 0. If z0 6= zi (i = 1,2, . . . ,m) then, an = 0 for n < 0. (10.3.3) gives
the Taylor series of f . The Taylor series converges at z = z0 also (as f (z0) = a0). If
z0 = zi (1≤ i≤m), a finite number or an infinite number of coefficients an (n< 0)
may be non-zero and the series expansion of f is termed a Laurent series.

Suppose f (z) =
∑∞

n=−k an(z − z0)n. Then z = z0 is a pole of order k of f . If
an 6= 0 for infinitely many negative values of n, then z0 is an essential singularity
of f .

Now, an entire function is one which is analytic everywhere in the complex
plane. A meromorphic function is one whose only singularities are poles. These
two kinds of functions are related. The reciprocal of an entire function is a mero-
morphic function. The reciprocal function has a pole at a point where the entire
function has a zero. f : C→ C given by

f (z) =
1
z

exp(z)

is a meromorphic function in the complex plane. A rational function of the form
f = g

h where g and h are analytic in a region D of the complex plane, is meromor-
phic in D.

If we consider the set A of analytic functions defined on D (a simply con-
nected region in C), A can be made a commutative ring under the operations of
ordinary addition and ordinary multiplication. A has no divisors of zero. That is,
A is an integral domain. One can find the field of quotients of A, say F . Then, F
is the field of meromorphic functions defined on D.

Definition 10.3.8 : Let f : C→ C be such that

(i) f is doubly periodic with periods ω1 and ω2,
(ii) f is meromorphic on C.

Then, f is called an elliptic function.
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The function f defined by

(10.3.4) f (z) =
∑

ω∈L(ω1,ω2)

1
(z −ω)3

is an elliptic function with periods ω1 and ω2 and it has a pole of order 3 at each
period ω in L(ω1,ω2).

For proof, see Tom Apostol [3].
An example of an elliptic function having a pole of order 2 at each period ω

is Weierstrass’s P-function given by

(10.3.5) P(z) =
1
z2 +

∑

w∈L(ω1,ω2)
w6=0

{ 1
(z −ω)2 −

1
ω2 }

For properties of P(z), see Tom Apostol [4].
Let H represent the upper-half of the complex plane. That is,

H = {ξ ∈ C : im (ξ)> 0}
Let ω1 and ω2 be as in the definition of Weierstrass’s P function (10.3.5). Let
ξ = ω2

ω1
and im ξ > 0. Then, ξ ∈ H.

Definition 10.3.9 : g2(ξ), g3(ξ) are defined by

g2(ξ) = 60
∑

(m,n)∈Z×Z
(m,n)6=(0,0)

1
(m + nξ)4

g3(ξ) = 140
∑

(m,n)∈Z×Z
(m,n)6=(0,0)

1
(m + nξ)6

We observe that g2 and g3 occur in the differential equation satisfied by P.

Definition 10.3.10 : The discriminant ∆(ξ) is defined by

∆(ξ) = g3
2(ξ) − 27g2

3(ξ).

It is known [3] that g2, g3 and ∆ are analytic in H. We write

(10.3.6) J(ξ) =
g3

2(ξ)
∆(ξ)

J is also analytic in H.

Fact 10.3.4 : If ξ ∈ H, ∆(ξ) possesses the Fourier expansion

(10.3.7) ∆(ξ) = (2π)12
∞∑

n=1

τ (n)e2π inξ

where the coefficients τ (n) are integers. τ : N→ Z defined by (10.3.7) is known
as Ramanujan’s τ -function.
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Further,

(10.3.8) 123J(ξ) = e−2πiξ + 744 +
∞∑

n=1

c(n)e2π inξ,

where c(n) are integers.

For proofs, see Tom Apostol [4].
(10.3.6) gives J as an analytic function defined on H.
If

ξ′ =
aξ + b
cξ + d

where a,b,c,d are integers with ad − bc = 1, ξ′ ∈ H and T : H → H defined by
T (ξ) = ξ′ is a unimodular transformation. It is known [4] that

(10.3.9) J(ξ′) = J(
aξ + b
cξ + d

) = J(ξ),

where a,b,c,d ∈ Z and ad − bc = 1. (10.3.8) expresses J(ξ) as an absolutely con-
vergent Fourier series [4].

If the matrix of T is A =
[

a b
c d

]
with ad − bc = 1,

A and −A represent the same transformation. The set Γ of all such transformations
T forms a group under composition of transformations. Γ is called the modular
group. Γ is generated by the transformations.

T1(ξ) = ξ + 1 and T2(ξ) = −1/ξ.
Let k ∈ Z.

Definition 10.3.11 : A function f : C→ C is called an entire modular form of
weight k, if the following conditions are satisfied:

(i) f is analytic in the upper half-plane H,
(ii) f ( aξ+b

cξ+d ) = (cξ + d)k f (ξ) · (ad − bc = 1,a,b,c,d ∈ Z),
(iii) f possesses the fourier expansion

(10.3.10) f (ξ) =
∞∑

n=0

q(n)exp(2πinξ),

where q(n) are integers.

A modular form of weight 0 is called a modular function. By (10.3.9), J is
an example of a modular function. Further, J is meromorphic in H.
In the Fourier expansion (10.3.10) of f ,q(0) is the constant term and it is called
the value of f at i∞. If q(0) = 0, f is called a cusp form. For the discriminant ∆
given in Fact 10.3.4, it is seen that ∆ is a cusp form. Further, we observe that

(10.3.11) ∆

(
aξ + b
cξ + d

)
= (cξ + d)12∆(ξ),

[
a b
c d

]
∈ Γ.

(see [4, Theorem 3.2 of chapter 3].)
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So, ∆ is a cusp form of weight 12, by definition 10.3.11, as ∆ is analytic
in the upper half-plane and ∆ has the Fourier expansion given by (10.3.7). Now,
J(ξ′) = J(ξ) and J has a Fourier expansion exhibited in (10.3.8). It is known [4]
that a non constant entire modular form exists only if k ≥ 4 and k is even. For
more details, see [4, chapter 6].

In 1877, R. Dedekind introduced an η-function as follows: for ξ ∈ H, where
ξ = ω2

ω1
with Im ξ > 0.

(10.3.12) η(ξ) = eπiξ/12
∞∏

n=1

(1 − e2πinξ).

The infinite product on the right side of (10.3.12) has the form∏∞
n=1(1 − xn), where x = e2πiξ . If ξ ∈ H, |x| < 1. So the product in (10.3.12)

converges absolutely and is nonzero. Further, it can be shown that the convergence
of the product is uniform on compact subsets of H. Therefore, η is analytic in H.

Fact 10.3.5 : Let ∆ and η be as given in Definition 10.3.10 and (10.3.9) respec-
tively. If ξ ∈ H and x = e2πiξ, then

(10.3.13) ∆(ξ) = (2π)12η24(ξ) = (2π)12x
∞∏

n=1

(1 − xn)24

Consequently, from (10.3.7) one derives

(10.3.14)
∞∑

n=1

τ (n)xn = x
∞∏

n=1

(1 − xn)24, whenever |x|< 1

where τ is Ramanujan’s τ -function. For proof, see Tom M. Apostol [4].
We note that the left side of (10.3.14) is the generating function of τ . It is

expressible as an infinite product. This happens, when one considers modular
functions. There is a vast literature on the τ function. Ramanujan conjectured
that τ is multiplicative. That is,

τ (m)τ (n) = τ (mn) whenever g.c.d (m,n) = 1

It was proved by L. J. Mordell [16] in 1920 using complex analysis. See
Sivaramakrishnan [18].

A formula for τ (n) using the method of generating functions is due to John
A. Ewell [8].

Let k ∈ N. For each n ∈ N, σk(n) denotes the sum of the kth-powers of the
positive divisors of n. That is,

σk(n) =
∑

d|n
dk

For instance, σk(6) = 1k + 2k + 3k + 6k. We write

(10.3.15) n = 2b(n)M(n)
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where M(n) is the highest odd divisor of n. 2b(n) is the highest power of 2 dividing
n. For each integer n, we set

Sk(n) = {(x1,x2, . . . ,xk) ∈ Zk : n = x2
1 + x2

2 + · · ·+ x2
k}

Let rk(n) = |Sk(n)| with rk(0) = 1.
Next, we state four identities which are valid for complex x with |x|< 1.

∞∏

n=1

(1 + xn)(1 − x2n−1) = 1(10.3.16)

∞∏

n=1

(1 − xn)(1 − x2n−1) =
∞∑

n=−∞
(−x)n2

(10.3.17)

∞∏

n=1

(1 − x2n)(1 + xn) =
∞∑

n=0

x
n(n+1)

2(10.3.18)

x

{ ∞∑

n=0

x
n(n+1)

2

}8

=
∞∑

n=1

n3xn

1 − x2n(10.3.19)

Identities (10.3.16) to (10.3.18) are due to Euler and Gauss. See Hardy and
Wright [12]. (10.3.19) is in Ramanujan’s collected papers [17]. (10.3.18) can
be restated as (using (10.3.16))

(10.3.20)
∞∏

n=1

(1 − x2n−1)−2 =
∞∑

n=0

x
n(n+1)

2

Theorem 76 (John A. Ewell (1984)) : For each positive integer n,

(10.3.21) τ (n) =
n∑

j=1

(−1)n− jr16(n − j)23b( j)σ3(M( j))

where b and M are as defined in (10.3.15).

Proof : Using (10.3.17) and (10.3.18),

(10.3.22)
∞∏

n=1

(1 − xn)24 =

( ∞∑

n=0

x
n(n+1)

2

)8( ∞∑

−∞
(−x)n2

)16

Multiplying both sides of (10.3.22) by x, we get, using (10.3.19),

(10.3.23) x
∞∏

n=1

(1 − xn)24 =
∞∑

n=1

τ (n)xn =
∞∑

n=1

n3xn

1 − x2n

∞∑

n=0

(−1)nr16(n)xn
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But,
∞∑

n=1

n3xn

1 − x2n =
∞∑

n=1

n3xn
∞∑

k=0

x2nk =
∞∑

n=1

∞∑

k=0

n3xn(2k+1)

=
∞∑

m=1

xm
∑

d|m
d odd

(
m
d

)3

=
∞∑

m=1

23b(m)σ3(M(m))xm

From (10.3.23), we get
∞∑

n=1

τ (n)xn =
∞∑

j=1

23b( j)σ3(M( j))x j
∞∑

k=0

(−1)kr16(k)xk.

Or,
∞∑

n=1

τ (n)xn =
∞∑

n=1

xn
n∑

j=1

(−1)n− jr16(n − j)23b( j)σ3(M( j)).

Comparing coefficients of xn, we arrive at the identity (10.3.21). �

Remark 10.3.1 : Theorem 76 has been adapted from [8].

Before concluding this section, we mention that certain congruence proper-
ties of τ (n) could be deduced from (10.3.21). In particular, a remarkable congru-
ence shown by Ramanujan [17] says that

(10.3.24) τ (n)≡ σ11(n) (mod 691).

10.4. Stirling numbers and Bernoulli numbers:

In Section 10.2, the generating functions of certain sequences were men-
tioned. See (10.2.2) and (10.2.7). In the case of {an}, suppose that the following
recurrence relation holds.

(10.4.1) an = c1an−1 + c2an−2 + · · ·+ ckan−k (n> k),

where ci (i = 1 to k) are real numbers.
Let

(10.4.2) f (x) =
∞∑

n=0

anxn

where an satisfies (10.4.1).
Claim : f (x) is a quotient of two polynomials.

Assume that C = max{|c1|, |c2| · · · |ck|}
We shall denote the sum

(10.4.3) |a0|+ |a1|+ · · ·+ |ak−1 = Sk.
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Then, by (10.4.1)

(10.4.4) |ak| ≤C Sk; as |ci| ≤C for i = 1,2, · · · ,k.
We prove by induction on n that

(10.4.5) |an| ≤C(C + 1)n−kSk, n≥ k.

Suppose that for k ≤ i≤ m, |ai| ≤C(C + 1)i−kSk.
Then, as

|am+1| = |c1am + c2am−2 + · · ·+ cka(m+1)−k

≤C{|am|+ |am−1|+ . . .+ |am+1−k|}

= C
k∑

i=1

|am+1−i|

By induction hypothesis,
k∑

i=1

|am+1−i| ≤CSk

k∑

i=i

(C + 1)(m+1−i)−k

So,
k∑

i=1

|am+1−i| ≤CSk(C + 1)m−k
k∑

i=1

(C + 1)1−i

= CSk(C + 1)m−k{1 − (C + 1)−k

1 − (C + 1)−1 }

= Sk(C + 1)m+1−k(1 − (C + 1)−k).

So,
|am+1| ≤CSk(C + 1)m+1−k.

So, if (10.4.5) holds for k≤ i≤m, it also holds for i = m+1. But, by (10.4.4),
it holds for i = k. Thus, (10.4.5) holds for all n≥ k.

Let

λ =
1

C + 1
. 0≤ x< λ.

Suppose that

g(x) =
∞∑

n=k

CSk(C + 1)n−k|x|n

=
CSk

(C + 1)k

∞∑

n=k

1
λn |x|

n.

(10.4.6) g(x) =
CSk

(C + 1)k

∞∑

n=k

| x
λ
|n.
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As | x
λ | < 1, the right side of (10.4.6) is convergent. So, the comparison

test, (10.4.2) is valid for |x|< λ.
Let

h(x) = 1 −
k∑

i=1

cixi.(10.4.7)

f (x)h(x) =
∞∑

n=0

anxn −
∞∑

n=0

an

k∑

i=1

cixn+i

=
∞∑

n=0

anxn −
k−1∑

i=1

i∑

j=1

ai− jc jxi −
∞∑

j=k

k∑

j=1

ai− jc jx j,

where i − j = n runs from 0 to k − 1, first and then from k to infinity. So,

f (x)h(x) = a0 +
k−1∑

i=1

(ai −
i∑

j=1

ai− jc j)xi +
∞∑

i=k

(ai −
i∑

j=1

ai− jc j)xi.

By virtue of (10.4.1)

ai =
i∑

j=1

ai− jc j; i≥ k.

Therefore,

f (x)h(x) = a0 +
k−1∑

i=1

(ai −
i∑

j=1

ai− jc j)xi

which is a polynomial, say t(x), of degree at most (k − 1). As h(x) is a nonzero
polynomial,

(10.4.8) f (x) =
t(x)
h(x)

;

where h(x) is as given in (10.4.7). This proves that f (x) is a quotient of polyno-
mials, as claimed.

Illustration 10.4.1 :
(i) In the case of wn(a,b; p,q) with w0 = a,w1 = b and wn = pwn−1 −qwn−2(n≥ 2),

we have k = 2. h(x) = 1 − px − (−q)x2 = 1 − px + qx2.

t(x) = w0 + (w1 − pw0)x = a + (b − pa)x.

So, the generating function of wn(a,b; p,q) is as given in (10.2.2).
(ii) For the Fibonacci {Fn} with F0 = 1,F1 = 1 and

Fn = Fn−1 + Fn−2(n≥ 2), we have k = 2.

h(x) = 1 − x − x2,

t(x) = f0 + (F1 − F0)x = 1
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Thus, the generating function of {Fn} is as shown in (10.2.7).

Remark 10.4.1 : The idea of proof of (10.4.8) is given in [A3].

Next, we note that there are many functions of an arithmetical nature which
satisfy certain recurrence relations.

The Fibonacci and Lucas numbers satisfy the recurrence relation

(10.4.9) f (n + 1) = f (n) + f (n − 1), n≥ 1

for all integral values of n. For Fibonacci numbers we have f (0) = 1 and f (1) = 1.
For Lucas numbers, f (0) = 2, f (1) = 1.

In the case of the quantities
(n

r

)
, we have

(10.4.10)
(

n + 1
r

)
=
(

n
r

)
+
(

n
r − 1

)

with
(n

r

)
= 0 for r > n and

(n
n

)
= 1.

S(n,k), the Stirling numbers of the first kind are defined by the relation

(10.4.11) (x + 1)(x + 2) · · ·(x + n) =
n∑

k=0

S(n,k) xn−k

where S(n,0) = 1 for n≥ 1. (James Stirling 1692–1770). By convention, we take
S(n,k) = 0 for k > n > 0. S(n,k) denotes the sum of the products of the first n
natural numbers taken k at a time. (10.4.11) can be rewritten as

(10.4.12) (x + n){(x + 1)(x + 2) · · ·(x + n − 1)}= (x + n)
n−1∑

k=0

S(n − 1,k) xn−k−1

Comparing the coefficients of xn−k on both sides of (10.4.12), we obtain a recur-
rence relation

(10.4.13) S(n,k) = S(n − 1,k) + nS(n − 1,k − 1)

satisfied by Stirling numbers of the first kind.
For x,y ∈ Z̃, we consider numbers G(x,y) satisfying

(10.4.14) G(x,y) = G(x − 1,y) + xG(x − 1,y − 1)

(in analogy with S(n,k)).
For definiteness, let us write G( j,0) = a j and G(0,k) = bk for j,k ∈ Z̃ with

( j,k) 6= (0,0). For Stirling numbers, we have a j = 1, bk = 0 for k 6= 0. G(−n,k) are
called Stirling numbers of the second kind with a j = 1, bk = 0, k 6= 0.

It is verified that G(n,k) = 0 for 0≤ n< k, when G( j,0) = a j = 1 and G(0,k) =
bk = 0 for k 6= 0.
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For, suppose that n< k.

G(n,k) = G(n − 1,k) + nG(n − 1,k − 1)
G(n − 1,k) = G(n − 2,k) + (n − 1)G(n − 2,k − 2)

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
G(1,k) = G(0,k) + 0G(0,k − 2)

As G(1,k) = 0, it follows that G(n,k) = 0, whenever n< k.

Fact 10.4.1 :

S(n,k) =
n∑

j=1

j S( j − 1,k − 1).(10.4.15)

S(n,1) =
(n + 1)(n)

2
=
(

n + 1
2

)
.(10.4.16)

Next, we define positive integers H(n,k) given recursively by the formula

(10.4.17) H(n,k) = (2n − k − 1)H(n − 1,k) + (n − k)H(n − 1,k − 1)

with

(10.4.18)

{
H(n − 1,−1) = 0 = H(n − 1,n − 1), n> 1
and H(0,0) = 1,H(0,−1) = 0.

Further, H(1,0) = 1.
We have from (10.4.17),

H(n,0) = (2n − 1)H(n − 1,0) = (2n − 1)(2n − 3)H(n − 2,0) = · · · ,
or,

(10.4.19) H(n,0) = (2n − 1)(2n − 3) · · ·5 ·3 ·1.
Also,

H(n,n − 1) = nH(n − 1,n − 1) + H(n − 1,n − 2)

As H(n − 1,n − 1) = 0,

H(n,n − 1) = H(n − 1,n − 2) = · · · = H(1,0) = 1.

Fact 10.4.2 : [Morgan Ward]

(10.4.20) S(n,k) =
k−1∑

j=0

(−1) jH(k, j)
(

n + k − j
2k − j

)

Also, S(n,k) is a polynomial in n of degree 2k with fractional coefficients, in
general. For proof, see [20].

Stirling numbers of the second kind are G(−n,k), n≥ 1. (See (10.4.6))
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Fact 10.4.3 :

(10.4.21) n!G(−n − 1,k) =
n−1∑

j=0

(−1) j
(

n
j

)
(n − j)n+k, n≥ 1, k ≥ 0

For proof, see Hansraj Gupta [10].
For instance, G(−2,k) = 1.
From (10.4.21), after cancelling n from both sides, we also have

(10.4.22) (n − 1)!G(−n − 1,k) =
n−1∑

j=0

(−1) j
(

n − 1
j

)
(n − j)n+k−1,

(n≥ 1, k ≥ 0).

Taking k = 0 in (10.4.22), we also get

(10.4.23) (n − 1)! =
(

n − 1
0

)
nn−1 −

(
n − 1

1

)
(n − 1)n−1

+
(

n − 1
2

)
(n − 2)n−1 − · · ·+ (−1)n−1

(
n − 1
n − 1

)
1n−1.

Next, we look at the generating function of Bernoulli (Jacob Bernoulli (1654–
1705)) numbers.

Definition 10.4.1 : For x ∈ C, the functions Bn(x) are defined by

zexz

ez − 1
=
∞∑

n=0

Bn(x)
n!

zn, where |z|< 2π

Taking x = 0 in the above equation, we have

z
ez − 1

=
∞∑

n=0

Bn

n!
zn, |z|< 2π

where Bn = Bn(0), n = 0,1, . . .

B0 = 1, B1 =
1
2
, B2 =

1
6
, B3 = 0 . . .

Bn(x) are called Bernoulli polynomials.

Lemma 10.4.1 : Bernoulli polynomials Bn(x) are given by

(10.4.24) Bn(x) =
n∑

j=0

(
n
r

)
B jxn− j.

Proof : For,
∞∑

n=0

Bn(x)
n!

zn =
z

ez − 1
exz = (

∞∑

n=0

Bn

n!
zn)(

∞∑

n=0

xn

n!
zn)
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Equating coefficients of zn from both sides, we get

Bn(x)
n!

=
n∑

j=0

B j

j!
xn− j

(n − j)!

which gives (10.4.24). �

Lemma 10.4.2 : For n≥ 1,

(10.4.25) Bn(x + 1) − Bn(x) = nxn−1.

Also, Bn(1) = Bn(0), if n≥ 2.

Proof : We have

z
e(x+1)z

ez − 1
− z

exz

ez − 1
= z exz

So,

(10.4.26)
∞∑

n=0

Bn(x + 1) − Bn(x)
n!

zn =
∞∑

n=0

xn

n!
zn+1.

Equating coefficients of zn from both sides of (10.4.26), we obtain (10.4.25). For
n≥ 2, Bn(1) = Bn(0) follows from (10.4.25). �

Corollary 10.4.1 : For n≥ 2,

Bn(0) = Bn(1) =
n∑

j=0

(
n
j

)
B j, by using (10.4.17) and so,

(10.4.27) Bn =
n∑

j=0

(
n
j

)
B j,

which is a recurrence relation for computing Bernoulli numbers.

Fact 10.4.4 : Bernoulli numbers Bn are related to Stirling numbers of the second
kind G(−n,r) by the formula

(10.4.28) Bn = G(−2,n) −
1!
2

G(−3,n − 1) +
2!
3

G(−4,n − 2) · · ·

+ (−1)n n!
n + 1

G(−n − 2,0),

where m!G(−m−2,n) =
∑m

j=0(−1) j
(m

j

)
(m− j+1)m+n (which is the same as (10.4.22)).

For proof, see Hansraj Gupta [10]. See, also, Morgan Ward [20].
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10.5. Binomial posets and generating functions

Let Λ be an index set. We consider a family S of sets Sλ where each Sλ is a
finite set.

S = {Sλ : λ ∈ Λ}.
To determine the cardinality of Sλ, we introduce a function f : Λ→ Z̃ where
f (λ) = |Sλ|. In combinational problems, there will be a relationship between λ∈Λ
and Sλ. Let

X = {1,2, . . . ,n}
Suppose that Sn denotes the set of subsets of X . Then, f (n) = |Sn| = 2n. f is an
example of a counting function. If we consider Z̃× Z̃ = {(k,n) : k,n ∈ Z̃}, we
write S(k,n) to denote the set of all subsets of X (|X | = n) of cardinality k. Then,
|S(k,n)| = f ((k,n)) =

(n
k

)
. If Dn denotes the set of divisors of n, f (n) = |Dn| = d(n),

the number of divisors of n. Here, S = {D1,D2, . . . ,Dn, . . .}.
Definition 10.5.1 : A generating function is a representation of a counting func-
tion f : S→ Z̃ as an element F( f ) of some algebraA. In the case of the partition
function p : Z̃→ Z̃ one has F(x) =

∑∞
n=0 p(n)xn, |x| < 1. F(x) can be consid-

ered as a formal power series in x with coefficients from C. If C[[x]] denotes the
ring of formal power series in x (with coefficients from C), F(x) ∈ C[[x]]. (See
notation 4.5.1 in chapter 4).

C[[x]] is a vector space over C. If

A(x) =
∞∑

n=0

anxn, B(x) =
∞∑

n=0

bnxn

A(x)B(x) =
∑∞

n=0 cnxn where cn =
∑n

k=0 akbn−k.
If α ∈ C, αA(x) ∈ C[[x]]. Multiplication distributes addition. C[[x]] satisfies the
axioms of an algebra. Therefore, it is meaningful to look at a generating function
as an element of an algebra. We write

(10.5.1) F( f ,x) =
∞∑

n=0

f (n)xn

It is the ordinary generating function of f .

(10.5.2) E( f ,x) =
∞∑

n=0

f (n)
n!

xn

is referred to as the exponential generating function of f .
Let F be a finite field with q elements, where q = pm (p a prime, m≥ 1). The

series G( f ,x), given by

(10.5.3) G( f ,x) =
∞∑

n=0

f (n)xn

(1 + q)(1 + q + q2) · · · (1 + q + · · ·qn−1)

is known as the Eulerian generating function of f .
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The series H( f ,x) given by

(10.5.4) H( f ,x) =
∞∑

n=0

f (n)xn

q(n
2)n!

is known as the chromatic generating function of f .
Our aim is to consider generating functions in a more general setting. While

generalizing Möbius inversion, we looked upon N as a locally finite partially or-
dered set. Following Richard P. Stanley [19], we define a binomial poset as fol-
lows:

Definition 10.5.2 : A poset (P,≤) is called a binomial poset if it satisfies the
following three conditions:

(a) P is locally finite. That is, every interval [x,y] = {t : x ≤ t ≤ y} is finite,
and P contains arbitrarily large finite chains. (By a chain, we mean a totally
ordered subset of P).

(b) For every interval [x,y] of P, all maximal chains between x and y have the
same length n = n(x,y). We call [x,y] an n-interval. We observe that the
length of a chain is one less than its number of elements.

(c) For all n ∈ N, any two n-intervals contain the same number B(n) of maximal
chains.

Examples 10.5.1 :

(i) When P = N, (N,≤) is a binomial poset with B(n) = 1 for all n ∈ N.
(ii) Suppose (P,≤) is the lattice of all finite subsets of N, ordered by inclusion.

Consider an n-element subset S of N. A singleton from S can be chosen in n
ways. Suppose S1 = {a1} is one such. A subset containing two elements one
of which is a1 can be chosen in (n − 1) ways, call one such set S2 = {a1,a2}.
S1 and S2 together can be chosen in n(n − 1) ways. So a chain (of subsets)
of length n obtained by taking the null set φ also, can be chosen in n! ways.
So, B(n) = n!.

(iii) Suppose (P,≤) is the lattice of all finite dimensional subspaces of a vector
space of infinite dimension over GF(q). q = pm (p a prime, m ≥ 1) or-
dered by inclusion. As discussed in Section 9.4 of chapter 9, the number
of k linearly independent vectors in a vector space Vn(q) of dimension n is
(qn − 1)(qn − q) · · ·(qn − qk−1).

As we need to take one-dimensional, two-dimensional, · · · , (n − 1)-dimensional
subspaces of Vn(q), the number of chains of length n from the zero subspace to
Vn(q) is obtained using the formula

(10.5.5)
(

n
k

)

q
=

(qn − 1)(qn − q) · · ·(qn − qk−1)
(qk − 1)(qk − q) · · ·(qk − qk−1)

© 2007 by Taylor & Francis Group, LLC



THE ROLE OF GENERATING FUNCTIONS 315

for the number of k-dimensional subspaces of Vn(q). See (9.4.5). In fact,

(10.5.6) B(n) =
(

2
1

)

q

(
3
2

)

q
· · ·
(

n
n − 1

)

q
.

(
n

n − 1

)

q
=

(qn − 1)(qn − q) · · ·(qn − qn−2)
(qn−1 − 1)(qn−1 − q) · · ·(qn−1 − qn−2)

=
(qn − 1)(qn−1 − 1)(qn−2 − 1) · · ·(q2 − 1)
(qn−1 − 1)(qn−2 − 1) · · · (q2 − 1)(q − 1)

=
qn − 1
q − 1

.

So,

(10.5.7) B(n) = (
q2 − 1
q − 1

)(
q3 − 1
q − 1

) · · · (qn − 1
q − 1

)

= (q + 1)(q2 + q + 1) · · ·(qn−1 + qn−2 + · · ·+ q + 1).

Now, we point out that there is a particular expression for B(n) with respect to a
binomial poset (P,≤) considered. In the case of (P,≤) where P is the lattice of
finite subsets of N, B(n) = n!. This accounts for the exponential generating func-
tion. So, with a binomial poset (P,≤), we could associate a generating function
FP( f ,x) defined by

(10.5.8) Fp( f ,x) =
∞∑

n=0

f (n)xn

B(n)

To make the analogy stronger, we need to consider the incidence algebra of
generalized arithmetic functions. See definition 9.2.10 of chapter 9.

Definition 10.5.3 : Let (P,≤) be a locally finite poset. The incidence algebra
A(P) of P over C is the vector space of all functions f : P×P→ C given by

f (x,y) = 0 whenever x is not ≤ y

For f ,g ∈ A(P), addition and multiplication (see definition 9.2.3) are

(10.5.9) ( f + g)(x,y) =

{
f (x,y) + g(x,y), x≤ y
0, otherwise

and

(10.5.10) ( f ·g)(x,y) =

{∑
x≤t≤y f (x, t)g(t,y), if x≤ y;

0, otherwise.

We take the particular case where (P,≤) is a binomial poset (see definition 10.5.2).
In a binomial poset, any two n-intervals contain the same number B(n) of maximal
chains. Suppose that f ∈ A(P) is such that

f (x,y) = f (t,w)
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whenever [x,y] and [t,w] are n-intervals having the same number B(n) of maximal
chains. In such a situation, f depends only on n. Let B(P) denote the set of
incidence functions which are constants on n-intervals.
For f ,g,∈ B(P), f + g and f ·g are in B(P). The function e0 given by

(10.5.11) e0(x,y) =

{
1, x = y;
0, x 6= y.

is such that

(10.5.12) e0(n) =

{
1, n = 0;
0, n 6= 0.

e0 ∈ B(P). We write f (n) for f (x,y) when [x,y] is an n-interval. It is verified that
B(P) is a subalgebra of A(P).

Let [x,y] be an n-interval in (P,≤). For t such that x ≤ t ≤ y, suppose that
[x, t] is an i-interval. There are B(i) maximal chains in [x, t] and B(n − i) maximal
chains in [t,y]. Therefore, there are B(i)B(n − i) maximal chains of [x,y] passing
through t. So the number of elements t in an n-interval [x,y] such that [x, t] is an

i-interval is given by
B(n)

B(i)B(n − i)
.

Notation 10.5.1 :
[

n
i

]
denotes

B(n)
B(i)B(n − i)

.
[

n
i

]
is the analogue of the familiar expression

(
n
k

)
=

n!
k!(n − k)!

.

If A(i) =
[

i
1

]
= B(i)

B(i−1)

(10.5.13) B(n) = A(n)A(n − 1) · · ·A(1)

which corresponds to the expression for n!. Further,

(10.5.14) ( f ·g)(n) =
n∑

j=0

[
n
j

]
f ( j)g(n − j), using (10.5.10)

Theorem 77 (R. P. Stanley (1978)) : If (P,≤) is a binomial poset and B(P)
denotes the set of incidence functions which are constants on n-intervals, then,
B(P)∼= C[[x]].

Proof : Let f ∈ B(P). The generating function of f is given by

FP( f ,x) =
∞∑

n=0

f (n)xn

B(n)

where f (n) = f (x,y) and [x,y] is an n-interval. It is easy to check that

FP( f + g,x) = FP( f ,x) + FP(g,x)
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Given A(x) ∈ C[[x]], we can write A(x) as

A(x) = a0 + a1x + a2x2 + · · · where an ∈ C

{an} can be so chosen that an =
f (n)
B(n)

for f ∈ B(P).

So, there exists a formal power series corresponding to an element
f ∈ B(P) and vice-versa.

Let ψ : B(P)→ C[[x]] be defined by

ψ( f ) = FP( f ,x). Then, ψ( f + g) = ψ( f ) +ψ(g).

For α ∈ C, ψ(α f ) = αψ( f ).

ψ( f ·g) =
∞∑

n=0

( f ·g)(n)xn

B(n)
.

But ( f ·g)(n) =
∑n

j=0

[
n
j

]
f ( j)g(n − j).

Now, FP( f ,x)FP(g,x) = (
∞∑

n=0

f (n)xn

B(n)
)(
∞∑

n=0

g(n)xn

B(n)
)

=
∞∑

n=0

(
n∑

j=0

f ( j)g(n − j)
B( j)B(n − j)

)xn

=
∞∑

n=0

(
n∑

j=0

B(n)
B( j)B(n − j)

f ( j)g(n − j))
xn

B(n)

=
∞∑

n=0

( f ·g)(n)
B(n)

xn.

So, f 7→ FP( f ,x) is an algebra homomorphism from B(P) into C[[x]].

ker ψ = { f ∈ B(P) : ψ( f ) = 1(x)}

where 1(x) ∈ C[[x]] given by 1(x) = 1.

So,
∞∑
n=0

f (n)xn

B(n)
= 1(x)⇒ f (0) = 1 and f (n) = 0 for n≥ 1.

Using (10.5.12), we note that ker ψ = e0 ∈ B(P), the unity element of the algebra
B(P). So, ψ is one-one. It is also onto, as any element

∑∞
n=0 anxn is the formal

power series corresponding to a predetermined f ∈ B(P). Therefore, ψ is an
isomorphism onto C[[x]] as desired. �

Examples 10.5.2 : Let ζ ∈ B(P) be defined by

(10.5.15) ζ(n) = 1 for all n ∈ Z̄
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ζ2(n) =
∑

t∈[x,y]

ζ(x, t)ζ(t,y)

=
∑

t∈[x,y]

1

= the cardinality of the set of elements in [x,y].

As the cardinality of a chain of length n is (n + 1), we have

(10.5.16)
∞∑

n=0

(n + 1)xn

B(n)
=
∞∑

n=0

(n + 1)xn = (
∞∑

n=0

xn)2 = (1 − x)−2

with |x|< 1.
In the case of the binomial poset of finite subsets of a set X , as B(n) = n! (see

example 10.5.1 (ii)), if N(n) denotes the number of subsets of an n-element set, as
N(n) = ζ2(n),

∞∑

n=0

N(n)xn

n!
= (
∞∑

n=0

xn

n!
)2 = e2x =

∞∑

n=0

2nxn

n!

and so, N(n) = 2n.

10.6. Dirichlet series

Let f be an arithmetic function. Dirichlet introduced the series

(10.6.1)
∞∑

n=1

f (n)
ns (s complex, Re s > a)

as the generating function of f where f (n) is defined for n≥ 1. We call (10.6.1)
the Dirichlet series of f .
A subset of C defined by {s ∈ C : Re s> a} is a half-plane.
To each Dirichlet series such as (10.6.1), there is a half-plane σ > σa in which∑

f (n)n−s converges absolutely. (σ = Res)

Fact 10.6.1 : Given f , suppose that
∑ | f (n)n−s| does not converge for all s or

does not diverge for all s. Then, there exists σa, a real number called the abscissa
of absolute convergence such that

∑
f (n)n−s converges absolutely for Re s> σa.

For proof see Tom M. Apostol [3].

Definition 10.6.1 : When
∑

f (n)n−s converges absolutely for Re s>σa, we write
F(s) to denote the sum function so that

F(s) =
∞∑

n=1

f (n)n−s, Re s> σa

Lemma 10.6.1 (Uniqueness theorem) : If F(s) and G(s) represent two Dirichlet
series:

F(s) =
∑

f (n)n−s, G(s) =
∑

g(n)n−s where Re s > σa
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and both
∑

f (n)n−s and
∑

g(n)n−s have the same half-plane of absolute conver-
gence Re s> σa and if F(s) = G(s) for a sequence {sk} such that σk = Re sk→∞
as k→∞, then, f (n) = g(n) for all n≥ 1.

Proof : We write h = f − g and H(s) = F(s) − G(s), Re s > σa. By the hypothesis,
H(sk) = 0 for k ≥ 1 where Re sk→∞ as k→∞.

Claim : h(n) = 0 for all n≥ 1.
On the contrary, suppose that h(n) 6= 0 for some n.
Let m be the smallest positive integer such that h(m) 6= 0.
Then,

H(s) =
∞∑

n=m

h(n)
ns =

h(m)
ms +

∞∑

m+1

h(n)
ns

Then,

h(m) = msH(s) − ms
∞∑

m+1

h(n)
ns

Let s = sk, then, H(sk) = 0 or

h(m) = −msk

∞∑

m+1

h(n)n−sk

Choose k such that Re sk > c and c> σa. Then,

|h(m)| = |− msk
∑

m+1

h(n)n−sk |

≤ mσk (m + 1)−(σk−c)
∞∑

n=m+1

|h(n)|n−c where σk = Re sk

= (
m

m + 1
)σk M, where M is independent of k.

The quantity (
m

m + 1
)σk → 0 as k→∞.

So h(m) = 0, a contradiction. That is, f = g. �

Remark 10.6.1 : Suppose that F(s) given by F(s) =
∑

f (n)n−s is such that
F(s) 6= 0 for some s with Re s > σa. Then, there is a half-plane σ > c ≥ σa in
which F(s) is never zero.

For, if we take that no such half-plane exists, then for every k ∈ N, there is
a complex number sk with Re sk > k such that F(sk) = 0. Since Re(sk)→∞ as
k→∞, lemma 10.6.1 says that f (n) = 0 for all n, contradicting the hypothesis
that F(s) 6= 0 for some s.
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Theorem 78 (Multiplication of Dirichlet series) : Let F(s) and G(s) be the Dirich-
let series of two arithmetic functions f and g, given by

F(s) =
∞∑

n=1

f (n)n−s, Re s > a(10.6.2)

G(s) =
∞∑

n=1

g(n)n−s Re s > b(10.6.3)

If h(n) =
∑

d|n f (d)g( n
d ), then,

(10.6.4) F(s)G(s) =
∞∑

n=1

h(n)n−s Re s >max{a,b}.

Proof : Suppose that Re s>max{a,b}. Then,

F(s)G(s) =
∞∑

n=1

f (n)n−s
∞∑

r=1

g(r)r−s =
∞∑

n=1

∞∑

r=1

f (n)g(r)(nr)−s

The multiplication of series is valid and we can rearrange the terms in any manner
without altering the sum.

Then,

(10.6.5) F(s)G(s) =
∞∑

m=1

(
∑

nr=m

f (n) f (r))m−s =
∞∑

m=1

h(m)m−s

where h = ( f ·g). The abscissa of absolute convergence of the series on the extreme
right of (10.6.5) determines the half-plane in which both (10.6.2) and (10.6.3) hold
and so it is Re s >max{a,b}. �

Examples 10.6.1 : The Riemann ζ-function ζ(s) is given by

(10.6.6) ζ(s) =
∞∑

n=1

n−s, Re s > 1

ζ(s) is the Dirichlet series of the arithmetic function e, given by e(n) = 1, n ≥ 1.
Further,

(10.6.7)
∞∑

n=1

µ(n)n−s =
1
ζ(s)

, Re s > 1

as e ·µ = e0, where e0(n) = [
1
n

]. ([x] denotes the greatest integer not exceeding x).
It is easy to check the following assertions:

If φ denotes Euler’s φ-function

(10.6.8)
∞∑

n=1

φ(n)n−s =
ζ(s − 1)
ζ(s)

, Re s > 2.
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If σk(n) denotes the sum of the kth-powers of the divisors of n,

(10.6.9)
∞∑

n=1

σk(n)n−s = ζ(s)ζ(s − k), Re s >max{1,k + 1}

Theorem 79 (Euler-product theorem) : Let f be a multiplicative arithmetic func-
tion with the property that

∑∞
n=1 f (n) is absolutely convergent. Then, f satisfies

(10.6.10)
∞∑

n=1

f (n) =
∏

p

{1 + f (p) + f (p2) + . . .}

where the product on the right extends over all primes.

Proof : We denote the product
∏

p≤r

{1 + f (p) + f (p2) + · · ·} by P(r).

For each prime p, 1 + f (p) + f (p2) + · · · is absolutely convergent and so, P(r) can
be obtained by multiplying the series for primes p≤ r. A rearrangement of terms
will give for a typical term:

f (pa1
1 ) f (pa2

2 ) · · · f (pak
k ) = f (pa1

1 pa2
2 · · · pak

k ),
as f is multiplicative. If S denotes the set of all n∈N for which each prime factor
of n is less than r, we set

P(r) =
∑

n∈S

f (n)

So,
∞∑

n=1

f (n) − P(r) =
∑

n∈T

f (n)

where T consists of elements n for which at least one prime factor is bigger than
r.
So,

|
∞∑

n=1

f (n) − P(r) | ≤
∑

n∈T

| f (n)| ≤
∑

n>r

| f (n)|

For large r,
∑

n>r | f (n)| can be made as small as we please, as
∑∞

n=1 | f (n)| is
convergent. So,

(10.6.11) lim
r→∞

P(r) =
∞∑

n=1

f (n)

Now, Π(1+an) converges absolutely whenever the corresponding series
∑

an con-
verges absolutely [1]. Here,

∑

p≤r

| f (p) + f (p2) + · · · | ≤
∑

p≤r

(| f (p)|+ | f (p2)|+ · · ·)≤
∞∑

n=1

| f (n)|
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So,
∑

p≤r | f (p) + f (p2) + · · · | is bounded and hence∑
p | f (p) + f (p2) + · · · | converges. Now, as the set of primes is countably infinite.

Hence,
∏

p{1 + f (p) + f (p2) + · · · } converges absolutely and so, (10.6.10) holds.
�

Corollary 10.6.1 : If F(s) =
∑∞

n=1 f (n)n−s, Re s > a, where f is multiplicative,
one has

(10.6.12)
∞∑

n=1

f (n)n−s =
∏

p

{1 + f (p)p−s + f (p2)p−2s + · · ·}, Re s > a.

Further, if f is completely multiplicative,

(10.6.13)
∞∑

n=1

f (n)n−s =
∏

p

(1 − f (p)p−s)−1, if Re s > a.

Remark 10.6.2 :
(a) The Riemann ζ-function has the Euler-product form

(10.6.14) ζ(s) =
∏

p

(1 − p−s)−1, Re s > 1.

(b) Proofs of lemma 10.6.1 and theorems 78, 79 have been adapted from [3].

We consider the set S of all sequences (a1,a2, . . .) of non-negative integers in
which only finitely many ai are nonzero.
Let P = {pi : pi is the ith-prime, i ∈ N}.

If r = pai1
i1 pai2

i2 · · · paik
ik , pi j is a prime in the set P having a predetermined place.

(ai1,ai2, . . .) is a sequence ∈ S.
Let A denote the set of arithmetic functions f : N→ C.

For f ∈A, we associate

f (r) with
∞∑

r=1

f (r)xai1
i1 xai2

i2 · · ·xaik
ik

So the power series
∑∞

r=1 f (r)xai1
i1 · · ·xaik

ik corresponds to f ∈ A.
Let C[[x1,x2, . . . ,xn, . . .]] denote the ring of formal power series in countably
many indeterminates x1,x2, . . . ,xn, . . . . It was denoted by Cw (4.5.15) in chap-
ter 4.

(10.6.15) Then F( f ,x1,x2, . . .) =
∞∑

a1,a2,...=0

f (a1,a2, . . .)xa1
1 xa2

2 . . .

where f (a1,a2, . . .) corresponds to f (r) with r = pa1
1 pa2

2 · · · . (10.6.15) has been
considered in definition 4.5.2 of chapter 4. As in theorem 77, A considered as a
C-algebra is isomorphic to C[[x1,x2, . . .]]. See corollary 4.5.1 in chapter 4.
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Let D(A) denote the set of Dirichlet series of functions belonging to A.
Suppose for f ∈ A,

(10.6.16) F(s) =
∞∑

n=1

f (n)n−s, Re s > a (say)

Theorem 80 : C[[x1,x2, . . .]] is isomorphic to D(A).

Proof : If A is considered as a C-algebra with Dirichlet multiplication as giving
the product of arithmetic functions, by theorem 78, A is isomorphic to D(A) by
the map ψ : A→D(A) where

ψ( f ) = F(s) =
∞∑

n=1

f (n)n−s (Re s> a).

If G(s) is the Dirichlet series of g, f + g has Dirichlet series
∞∑

n=1

( f (n) + g(n))n−s, Re s> s0 (say).

Also,
∑

d|n f (d)g(n/d) has Dirichlet series F(s)G(s) for Re s > s1, (say). So, the
algebraA is isomorphic to D(A).

In C[[x1,x2, . . . ,xi, . . .]], we take xi to correspond to p−s
i where pi is the ith-

prime.
Then,

∞∑

n=1

f (n)n−s corresponds to
∞∑

a1,a2,...=0

f (ai,a2, . . .)xa1
1 xa2

2 · · ·

For, if n = pai1
i1 pai2

i2 · · · paik
ik ,

f (n)p−ai1s
i1 p−ai2s

i2 · · · p−aiks
ik corresponds to

f (ai1,ai2, . . .)xai1
i1 xai2

i2 · · ·xaik
ik .

In other words, the transformation is p−ai js
i j 7→ xai j

i j .
Addition and multiplication are preserved and so

D(A)∼= C[[x1,x2, . . . ,xn, . . .]].

That is, as C-algebras,D(A) and C[[x1,x2, . . .]] are isomorphic. �

Observation 10.6.1 : IfA∗ denotes the set of arithmetic functions f : Z̃→C,A∗
is a commutative ring with unity c0 given by

c0(r) =

{
1, r = 0
0 r ≥ 1

under the operations of ordinary addition and Cauchy multiplication given by

( f ·g)(r) =
r∑

i=0

f (i)g(r − i); f ,g ∈ A∗
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Any f ∈A∗ for which f (0) 6= 0 is a unit inA∗. From the way Cauchy multipli-
cation is defined, it is clear thatA∗ ∼= C[[x]]. In fact,A∗ and C[[x]] are two sides
of the same coin as they have the structure of the set of complex-valued sequences
(a0,a1,a2, . . .). The important point that we observe is that any nonzero non-unit
is of the form (xr), r ≥ 1 and x = (0,1,0,0, . . .).

We take π : Z̃→ C as

π(r) =

{
1, r = 1
0, r 6= 1

π has the property: whenever π| f ·g, π either divides f or g. For

πk(r) =

{
1, r = k
0, r 6= k.

If f (k) = ak ∈ C, f (k) = akπ
k.

If g(s) = bs ∈ C, g(s) = bsπ
s.

In fact, any nonzero non-unit element of A∗ is a multiple of π. That is, π
serves as a prime in A∗.

In other words, every nonzero non-unit in A∗ is generated by a single prime.
We, thus, have an example of a UFD in which there is only one prime, namely

π(r) =

{
1, r = 1,
0, otherwise.

Theorem 81 : Let K be the field of quotients of F[[x]] (F a field). Then, F[[x]] is
a valuation ring of K.

Proof : In theorem 25 of chapter 4, we have shown that F[[x]] is a P.I.D. Any
nonzero non-unit of F[[x]] is given by A(x) = xkB(x), where k ≥ 1 and B(x) is an
invertible element of F[[x]]. That is, if T (x) is in K, T (x) = xtU(x) where U(x) is
a unit in F[[x]] and t ∈ Z. If t is a positive integer T (x) ∈ F[[x]]. If t is a negative
integer, T −1(x) = x−tV (x) where U(x)V (x) = (1F ,0F ,0F , . . .). As V (x) is a unit in
F[[x]], either T (x) or T −1(x) ∈ F[[x]].
So, F[[x]] is a valuation ring of K. �

Corollary 10.6.2 : The valuation ring F[[x]] is a PID having a unique nonzero
prime ideal (x) where x = (OF ,1F ,OF , . . .).

Remark 10.6.3 : For the field K of quotients of F[[x]], given A(x) ∈ K, suppose
that we define v(A(x)) = v(xtU(x)) = t where t is zero, positive or a negative integer,
and v(0) =∞. U(x) is a unit in F[[x]]. One could verify that

v(A(x)B(x)) = v(A(x)) + v(B(x)), for all A(x),B(x) ∈ K

and v(A(x) + B(x)) ≥ min{v(A(x)),v(B(x))} for all A(x),B(x) ∈ K. Then, for
A(x)∈F[[x]], ν(A(x))≥ 0. The maximal ideal (x) of F[[x]] is such that v(A(x))> 0
for all A(x) ∈ (x). v : K→ Z is a discrete valuation of K.
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10.7. Notes with illustrative examples

The application of generating functions to the identity involving the partition
function was shown in Theorem 74. Then came the generalization to arithmetical
functions by means of Dirichlet series. The simplest Dirichlet series is that of
e,e(n) = 1,n≥ 1.

ζ(s) =
∞∑

n=1

n−s Re s > 1.

When s = 2, we get ζ(2) = π2

6 . Further, ζ(2n) is a rational multiple of π2n for all
n ∈ N. ζ(4) = π4

90 and

(10.7.1) ζ(2n) =
22n−1Bn

(2n)!
π2n,

where Bn is the nth Bernoulli number defined in Section 10.4. A remarkable result
of B. Riemann is the functional equation satisfied by ζ(s):

(10.7.2) π−s/2Γ(
s
2

)ζ(s) = π
s−1
2 Γ(

1 − s
2

)ζ(1 − s),

where Γ(s) is given by

(10.7.3) Γ(s) =
∫ ∞

0
e−yys−1dy, Re s > 0.

See Tom Apostol [3] or K. Chandrasekharan [6].
If F(s) =

∑∞
n=1 ann−s (Re s > α) and G(s) =

∑∞
n=1 bnn−s (Re s > β) then,

(10.7.4) ψ(x) =
∞∑

n=1

anxn

1 − xn =
∞∑

n=1

bnxn

if, and only if, ζ(s)F(s) = G(s) where Re s >max{1,α,β}.
See Hardy and Wright [12].

As an example of (10.7.4) we take F(s) =
∑∞

n=1µ(n)n−s, Re s > 1, µ being
the Möbius function. Then, F(s) = ζ(s)−1 and so G(s) = 1.

Then,

(10.7.5)
∞∑

n=1

µ(n)xn

1 − xn =
∞∑

n=1

bnxn = x. (bn = e0(n) = [
1
n

]).

Let f be any arithmetic function.
∞∑
n=1

f (n)xn

1 − xn is called a Lambert series. Assuming

the conditions for absolute convergence, we can arrive at

(10.7.6)
∞∑

n=1

f (n)xn

1 − xn =
∞∑

n=1

g(n)xn,

whenever g(n) =
∑

d|n f (d). (10.7.6) is a restatement of (10.7.4) without introduc-
ing ζ(s).

For |x|< 1, the following equations are easily verified :
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If φ denotes Euler’s totient,

(10.7.7)
∞∑

n=1

φ(n)xn

1 − xn =
x

(1 − x)2 .

If σk(n) denotes the sum of the kth-powers of the divisors of n,

(10.7.8)
∞∑

n=1

nkxn

1 − xn =
∞∑

n=1

σk(n)xn

For more results of this type, see Hardy and Wright [12].
For an exhaustive study of generating functions, see Doubilet, Rota and
Stanley [7].

Techniques of generating functionology have also been developed to go deeper
into combinatorial aspects. See E. A. Bender and J. R. Goldman [A2] and M.
Henle [A6] also. For a detailed account of results relating to Riemann ζ-function,
see S. J. Petterson [A8].

Applications of Burnside’s lemma (theorem 52) were discussed in chapter
7. One makes use of certain polynomials in a finite number of indeterminates
for a counting technique. Though this is not a generating function technique,
a particular value of a polynomial is needed for enumeration. The enumeration
theorem is due to George Polya (1887–1985). See [A 5].

Let G be a subgroup of Sn. σ ∈G is a permutation of the set X = {1,2, . . . ,m}
(m ≤ n). σ could be written as a product of disjoint cycles. If l(σ) denotes the
number of cycles in σ and if σ ∈ G has li(σ) cycles of length i,

l(σ) = l1(σ) + l2(σ) . . .+ lm(σ).

Since, the union of disjoint cycles in σ is {1,2, . . .m},
(10.7.9) m = 1 l1(σ) + 2 l2(σ) + · · ·+ mlm(σ).

Definition 10.7.1 : If x1,x2, . . .xm are interminates, the cycle index of σ ∈ G is
defined as

(10.7.10) xl1(σ)
1 xl2(σ)

2 . . .xlm(σ)
m

Definition 10.7.2 : The cycle index polynomial of G is defined as

PG(x1,x2, . . .xm) =
1
|G|
∑

σ∈G

xl1(σ)
1 xl2(σ)

2 . . .xlm(σ)
m

Let F be a set of r colours f1, f2, . . . fr. We write X = {1,2, . . .m}. (m ≥ r).
FX denotes the set of all functions from X into F . G is a permutation group on
FX given by

(10.7.11) g( f1, f2, . . . , fr) = ( fg(1), fg(2), . . . , fg(m))

where g is a permutation of {1,2, . . . ,m} and g : F r→ FX is as given in (10.7.11).
In fact, G is a subgroup of Srm where rm = |FX |.

We state without proof
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Proposition 10.7.1 (Polya’s theorem) : The number n of orbits of G on F X is
given by

n = PG(r,r, . . . ,r)

where PG(r,r, . . .r) is the value of PG(x1,x2, . . .xm) at x1 = x2 . . . = xm = r.

For proof, see F. Harary and E. M. Palmer [A5]. See also Rudolf Lidl and
Günter Pilz [A7].

Illustration 10.7.1 : Suppose there are five beads and F = {red, yellow, blue} is
a set of three colours. We take X = {1,2,3,4,5}. The group G of symmetries of a
regular pentagon is the dihedral group D5 of order 10 generated by a rotation (of
order 5) and a reflection (of order 2). The cycle index polynomial of G is given by

(10.7.12) PG(x1,x2,x3,x4,x5) =
1

10
(x5

1 + 4x5 + 5x1x2
2).

If F = {r,y,b},
PG(3,3,3,3,3) =

1
10

(35 + 4.3 + 5.33) = 39.

One can make 39 inequivalent bracelets with 3 colours and 5 beads.

10.8. Worked-out examples

a) Determine {an} where an = 2an−1 − an−2, n≥ 2 given that a0 = 1, a1 = 3.

Answer: an satisfies an = c1an−1 + c2an−2 where c1 = 2, c2 = −1. Let f (x) =∑∞
n=0 anxn where |x|< 1.

As in (10.4.7), we take

h(x) = 1 − 2x + x2 = (1 − x)2.

Then, by (10.4.8),

f (x) =
t(x)
h(x)

where t(x) = a0 + (a1 − a0 c1)x = 1 + (3 − 2)x = 1 + x and f (x) = 1+x
(1−x)2 , |x|< 1.

an is the coefficient of xn in (1 + x)(1 − x)−2 and so, an = 2n + 1. {an} is the
sequence of odd numbers. �

b) Solve the recurrence relation an = −3an−1 + n, n≥ 1; given that a0 = 1.

Answer: We wish to obtain a particular solution pn of

an = −3an−1 + n

by assuming that pn = a + bn; where a and b are to be determined. Writing

a + bn = −3{a + b(n − 1)}+ n

we get

(10.8.1) a + bn = −3a + 3b + (1 − 3b)n.
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So, a = −3a + 3b and b = 1 − 3b. It follows that

(10.8.2) a = 3/16, b = 1/4.

So, pn = 3
16 + n

4 is a particular solution to the recurrence relation, if we ignore
initial conditions.

From an = −3an−1 (without the term n), we see that an = k(−3)n, where k is
a constant.
We write qn = k(−3)n as a solution of the homogeneous recurrence relation
an = −3an−1. We have

pn + qn =
3

16
+

n
4

+ k(−3)n.

As a0 = 1, 1 = 3
16 + k or k = 13

16 . The solution of the recurrence relation
an = −3an−1 + n is given by

pn + qn = an =
3

16
+

n
4

+
13
16

(−3)n.

�
The result is based on

Fact 10.8.1 : Let r,s be real number. If pn is a particular solution of the
recurrence

(10.8.3) an = ran−1 + san−2 + f (n) (n≥ 2)

where f : N→ R is an arbitrary polynomial function, and if qn is the solution
of

(10.8.4) an = ran−1 + san−2 (n≥ 2)

(without imposing initial conditions), then pn + qn is the solution to the
recurrence relation (10.8.3). The initial conditions, if any, determine the con-
stants in qn. For details see E. E. Goodaire and M. M. Parmenter [A4].

10.9. Catalan numbers

10.9.1. EULER’S POLYGON DIVISION PROBLEM. We come across a sequence
of integers in connection with an enumeration problem called Euler’s polygon
division problem described below:

In how many ways a regular polygon of n sides (written n-gon) can be divided
into n − 2 triangles, if different orientations are counted as distinct?

If the required number is denoted by En, we note that by definition, E3 = 1.
For n = 4, one has 2 ways of dividing a regular quadrilateral into two triangles.
(see figure 13)
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A

A

A
A

A

A

A

E  = 2

1 1

2 2

3

4 4 4

A3

Figure 13

For n = 5, there are s ways of dividing a regular pentagon into 3 triangles.
(see figure 14).

1A 1A 1A

A 2

A 2

A3 A3 A3

A3A3

A4 A4 A4

A4A4

A5 A5 A5

A5A 2

A 2 A 2

A5

1A 1A E  = 55

Figure 14

Lemma 10.9.1 : (Segner (1758)). For n≥ 4,

(10.9.1) En = E2En−1 + E3En−2 + · · ·+ En−2E3 + En−1E2.

with E2 = 1.

Proof : Let Ak,Ak+1, . . . ,Ak+i denote the vertices of a regular i-gon, denoted by
∆i. (1≤ k < i, 4≤ i≤ (m + 1)) ∆m has vertices A1,A2, . . .Am.

(10.9.1) holds for n = 4, as E4 = 2 = E2E3 +E3E2 = 1+1. Assume that (10.9.1)
holds for n = m where m> 4. For convenience, we consider the vertices A2,A3, . . .,
Am+1 of ∆m+1 as the vertices of an m-gon ∆m. In ∆m+1, we take A1A2A3 as a
triangle subdivision of ∆m+1 where A2A3 is one side of ∆m. Em+1 is evaluated by
(i) counting E2 = 1 subdivision of A1A2 and associating it with each of the Em

subdivisions of ∆m formed by the vertices A2,A3, . . . ,Am+1

(ii) counting E3 = 1 subdivision of ∆3 = A1A2A3 and associating it with each of
the Em−1 subdivision of ∆m−1 having vertices A3,A4,A5, . . . ,Am+1
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(iii) counting E4 = 2 subdivisions of A1A2A3A4 and associating them with each
of the Em−2 subdivisions of ∆m−3 having vertices A4,A5,A6, . . . ,Am+1 and so on.
Finally, we count Em subdivisions of ∆m = A1A2 . . .Am and associate them with
E2 = 1 subdivision of ∆2 = AmAm+1.

Thus, we will obtain

Em+1 = E2Em + E3Em−1 + · · ·+ EmE2.

So (10.9.1) holds for n = m + 1 and induction is complete. �

Definition 10.9.1 : A sequence of integers named after Catalan (1814–1894) is
called a sequence of Catalan numbers Cn where Cn−2 = En(n≥ 2).

The first eleven Catalan numbers are:
C0 = 1, C1 = 1, C2 = 2, C3 = 5, C4 = 14, C5 = 42, C6 = 132, C7 = 429, C8 = 1430,
C9 = 4862, C10 = 16796.

Fact 10.9.1 :
(a) The only odd Catalan numbers are those of the form Cq where q = 2k −1. k≥ 2.
(b) The last digit of Cq is 5 for q = 2k − 1 with k = 9,10,11,12,13,14 and 15.
(c) The only prime Catalan numbers Cq with q≤ 215 − 1 are those for which q = 2
and q = 3.

For proofs, see Alter R [A1].

Remark 10.9.1 : As Cn = En−2 (n≥ 2), by virtue of lemma (10.9.1)

(10.9.2) Cn = C0Cn−1 +Cn−2 + . . .+Cn−2C1 +Cn−1C0.

Lemma 10.9.2 : Catalan numbers Cn are given by

(10.9.3) Cn =
1

n + 1

(
2n
n

)
, (n≥ 1)

with C0 = 1.

Proof : Let do = 1. dn =
(2n

n

)
,n≥ 1.

For 0< |x|< 1
4 ,

(10.9.4) (1 − 4x)− 1
2 =

∞∑

n=0

dnxn = D(x) (say)

If Cn denotes the (n+1)th Catalan number, the generating function G(x) of Cn

is given by

(10.9.5) G(x) =
∞∑

n=0

Cnxn

(with appropriate interval of convergence). Our aim is to determine G(x).
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If t0 = t1 = 1 and tn =
n∑

j=0
C jCn− j, by (10.9.2), tn = Cn+1. So,

G2(x) = C1 +C2x +C3x2 + . . . .

Therefore,

(10.9.6) 1 + xG2(x) = G(x).

From (10.9.6), we note that

G(x) =
1±
√

1 − 4x
2x

The positive sign in ±
√

1 − 4x is not admissible. Therefore,

(10.9.7) G(x) =
1 −
√

1 − 4x
2x

.

Now,
(1 − 4x)1/2 = (1 − 4x) D(x) by (10.9.4).

But, (1 − 4x)1/2 = D−1(x). So using (10.9.7), we get

D−1(x) = 1 − 2xG(x).

Or,

(10.9.8) (1 − 4x)
∞∑

n=0

dnxn = 1 − 2x
∞∑

n=0

Cnxn.

Comparing coefficients of like powers of x in (10.9.8), we have

dn+1 − 4dn = −2Cn (n = 0,1,2, . . .)

As dn =
(2n

n

)
, evaluation of Cn yields (10.9.3). �

Remark 10.9.2 : An ‘elementary’ evaluation of Cn in the form

Cn =
1

2n + 1

(
2n + 1

n

)
; n = 1,2, . . .

is given in David Singmaster [A9]. See also Hansraj Gupta [10].

10.9.2. A WORKED-OUT EXAMPLE. Given a generating function G with
G(0) = 1, let M be the infinite matrix M = [mi, j] with (i, j)th entry defined by

∞∑

i=0

mi, jxi = G(x) (xG(x)) j, (i, j ≥ 0).

Note that M is lower triangular.

a) If G(x) =
1 −
√

1 − 4x
2x

where |x|< 1
4 , show that

∞∑

k= j

m1,k = mi+1, j+1 for all i, j ≥ 0.
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b) Prove the converse of (a)
Answer: If |x|< 1

4 ,

(10.9.9)
∞∑

i=0

(
∞∑

k= j

mi,k) xi =
∞∑

k= j

G(x) (xG(x))k =
G(x)

1 − xG(x)
(xG(x) j

As G(x) is the generating function of {Cn}

1 − xG(x) =
1 +
√

1 − 4x
2

=
1

G(x)
.

So,
G(x)

1 − xG(x)
(xG(x)) j =

G(x)
x

(xG(x)) j+1 =
1
x

∞∑

i=0

mi, j+1 xi.

Hence,
∞∑

k= j

mi,k = mi+1, j+1 for all i, j ≥ 0.

This proves (a).
Next, for the converse, we are given that

∞∑

k= j

mi,k = mi+1, j+1.

From (10.9.9),

(10.9.10)
∞∑

i=0

mi+1,1xi =
∞∑

i=0

( ∞∑

k=0

mi,k

)
xi =

G(x)
1 − xG(x)

.

From the definition of M and the fact that m0,1 = 0, we obtain
∞∑

i=0

mi+1,1xi =
1
x

G(x) (xG(x)).

From (10.9.10)
G(x)

1 − xG(x)
=

1
x

G(x) (xG(x))

It follows that

G(x) =
1

1 − xG(x)
, |x|< 1

4
which means that G(x) is the generating function of {Cn}. �

Remark 10.9.3 : The above worked-out example has been adapted from problem
10850 proposed by Wolfdieter Lang in Amer. Math. Monthly 109 (2002) 82–83.
It is pointed out by Lin Tan that the matrix M is a recursive matrix in the sense that
the generating functions of its columns are the powers of the generating function
of first column. See L. Shapiro, S. Getu, W. Woan and I. Woodson: ‘The Riordan
group’, Discrete Applied Math 34 (1991) 229–239.
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EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) {an} is defined by a1 = 1, an+1 = (n + 1)2 − an (n≥ 1). Then, an is given
by an = n(n+1)

2 .
b) For {an} with a0 = 2, an = an−1 + 2n. (n ≥ 1). Using the method of

generating functions or otherwise, one gets an = 2n+1.
c) For fixed a, we define

m(a) = inf
t
|ζ(a + it)|, M(a) = sup

t
|ζ(a + it)|

where the infimum and supremum are taken over all real t. Then, for
a> 1, one has

M(a) = ζ(a) and m(a) =
ζ(2a)
ζ(a)

.

d)
r∑

j=1
j2
(r

j
)

= 2r−1r. (r ≥ 1)

e) If τ (n) denotes Ramanujan’s τ -function evaluated at n, it is correct to
say that

τ (3n)≡ −1(mod 3)
f) Let µ denote the Möbius function. Then,

ex =
∞∏

n=1

(1 − xn)
−µ(n)

n , whenever |x|< 1.

2. (C. A. Nicol) Let Fr(x) denote the cyclotonic polynomial (whose zeros are the
primitive rth-roots of unity). If C(n,r) denotes Ramanujan’s sum, show that

r∑

a=1

C(a,r) xa−1 = (xr − 1)
F′r (x)
Fr(x)

where F ′r (x) denotes the formal derivative of Fr(x) with respect to x.
3. (Ramanujan) Let C(n,r) denote Ramanujan’s sum. Show that

∞∑

a=1

C(a,r)
a

= −Λ(r) (r > 1),

where

Λ(r) =

{
log p, if r = pm,m≥ 1; p a prime
0, otherwise.

4. Let n be a positive integer. Prove that the number of partitions of n into
unequal parts is equal to the number of its partitions into odd parts. (In
Hardy and Wright [12], there is a proof of this result without using generating
functions. See theorem 344 on page 277 of [12]).
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5. Let p (n,k) denote the number of partitions of n into exactly k (≥ 0) summands
with

p(n,k) =

{
0, 0< n< k,
1, k = 0 = n.

Show that

kp(n,k)≥ 1
(k − 1)!

(
n − 1
k − 1

)
.

6. Prove Jacobi’s identity
∞∑

j=0

(−1) j(2 j + 1)x
j( j+1)

2 =
∞∏

n=1

(1 − xn)3.

7. Let r4(n) denote the number of solutions of

n = m2
1 + m2

2 + m2
3 + m2

4, where m1,m2,m3,m4 ∈ Z.
Two solutions differing only in sign or order of m1,m2,m3,m4 are reckoned as
distinct. Show that r4(n) is the coefficient of xn in

(1 + 2x + 2x4 + 2x9 + . . .)4 = (
∞∑

m=−∞
xm2

)4.

Prove, further, that r4(n) is eight times the sum of the divisors (of n) which are
not multiples of 4.

8. Let m ∈ N and m is a quadratic residue mod 5. If R(5) denotes the set of
quadratic residues (mod 5), we write m ∈ R(5). Show that

∏

m≥1
m∈R(5)

(1 − xm) =
∞∑

n=−∞
(−1)nx

n (5n+1)
2 .

9. Suppose that for |x|< 1,
∞∑

n=0

q(n)xn = ((1 − x)(1 − x2))−1.

Give an arithmetical interpretation of q(n).
10. [Ramanujan] Let C(n,r) denote Ramanujan’s sum (see (5.4.1), chapter 5).

Assume that s is real and s > 1. If σk(n) denotes the sum of the kth powers of
the divisors of n, show that

ζ(s)
∞∑

r=1

C(n,r)
rs =

σs−1(n)
ns−1 , (n≥ 1).

(The above relation gives the generating function of C(n,r)).
11. Let N(n) be an enumerating function satisfying the recurrence

N(n + 3) = 5N(n + 2) − 7N(n + 1) + 4n, n≥ 2

with N(0) = 1, N(1) = 1, N(2) = 2. Find the generating function of N(n)?
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12. Let P(n) be a polynomial in n of degree t. Show that
∞∑

n=0

P(n)xn =
F(x)

(1 − x)t+1

where F(x) is a polynomial in x of degree at the most t and F(1) 6= 0 if, and
only if,

t+1∑

j=0

(−1) j
(

t + 1
j

)
P(n + j) = 0

and for some n≥ 0,
t∑

j=0

(−1) j
(

t
j

)
P(n + j) 6= 0.

(See Richard P. Stanley [19]).
13. [Richard P. Stanley] Let ∅ = s0 ⊂ s1 ⊂ s2 · · · ⊂ sk = S be a chain of subsets of

a finite set S with |S| = n. Suppose, further, that
|Si+1 − Si| ≥ 2 for 0≤ i< k. If M(n) denotes the number of chains

φ = S0 ⊂ S1 · · · ⊂ Sk = S and |Si+1 − Si| ≥ 2, 0≤ i< k

in P(S), show that
∞∑

n=0

M(n)
xn

n!
= (2 + x − ex)−1.

It is assumed that the series on the left converges in an appropriate interval
for x.

14. The Legendre polynomial Pn(x) is defined as a solution of the differential equa-
tion:

(1 − x2)y′′ − 2xy′ + n(n + 1)y = 0

It is known that

Pn(x) =
N∑

k=0

(−1)k(2n − 2k)!
2nk!(n − k)!(n − 2k)!

xn−2k

where

N =

{
n
2 , if n is even
n−1

2 , if n is odd.

Show that the generating function of Pn(x) is given by

(1 − 2xt + t2)−1/2 =
∞∑

n=0

Pn(x)tn, |t|< 1.

Deduce that

(n + 1) Pn+1(x) − (2n + 1)xPn(x) + n Pn−1(x) = 0 (n≥ 1)
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15. Bessel polynomials yn(x) are defined by

yn(x) =
n∑

k=0

(n + k)!
(n − k)!k!

(x
2

)k
,

which satisfy the differential equation

x2y′′ + (2x + 2)y′− n(n + 1)y = 0.

Show that yn(x) satisfies the recurrence relation

(10.9.11) yn(x) − (2n − 1) x yn−1(x) − yn−2(x) = 0 (n≥ 2),

with y0(x) = 1, y1(x) = 1 + x.
Obtain the generating function of yn(x). (In (10.9.11), the coefficients are not
constant real numbers).

Following L. Carlitz, we write pn(x) = xnyn−1(
1
x

).
Show that

∞∑

k=0

pk(x)
k!

tk = ex (1−
√

1−2t). (0< t < 1/2)

(Ref: H. L. Krall and O. Frink: A new class of orthogonal polynomials :
the Bessel polynomials. Trans. Amer. Math. Soc. 65 (1949) 100–115)
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CHAPTER 11

Semigroups and certain convolution algebras

Historical perspective

Perhaps, multiplicative systems would have come about from various sources.
One such is the set N of positive integers where ordinary multiplication gives rise
to a monoid (N, ·) with 1 as the unity element. George Cantor, the father of set
theory, gave the example of all maps: Map (A,B) from a non-empty set A into
a non-empty set B. The composition of maps defines a ‘multiplication’ which
is associative. For composition of Map (A,B) and Map (B,C) where A,B,C are
non-empty sets one gets Map (A,C). In particular, Map (A,A) satisfies the asso-
ciative law of composition and the identity map iA : A→ A (onto A) serves as the
multiplicative identity. As is well-known, a semigroup is a multiplicative system
in which the associative law for multiplication holds. The evolution of groups
has its roots in geometry and in analysis, and group-theoretic ideas were used
around 1800. As (N, ·) is a semigroup, it is natural to consider functions from
a semigroup, G into the field C of complex numbers. In [11], J. Knopfmacher
gives an interesting exposition of abstract analytic number theory wherein many
of the results of classical number theory are generalized in a suitable context of
semigroups satisfying certain axioms. The treatment is all the more remarkable
when one gets an abstract analogue of the Prime Number Theorem.

We have had groups, rings, fields. Structures such as algebras become useful
when we look at the underlying vector space structure ofC as a 2-dimensional al-
gebra over R, the field of real numbers. In fact, we realize C as a 2-dimensional
algebra over R, the field of reals. One might ask the question : who gave us
C =R2 ? As C. F. Gauss gave the fundamental theorem of algebra, there is reason
to believe that Gauss was aware of C = R2. However, the identification C = R2

was first done by Casper Wessel (1745–1818) in 1798. But his paper came to
the noticed or became well-known only by the end of 19th century. It was Jean
Robert Argand (1768–1822) who made a greater effect by the well-known ‘Ar-
gand plane’. W. R. Hamilton (1805 –1865) gave the definition of complex num-
bers with suitable rules for addition and multiplication in 1837. We remark that
G. Cantor defined real numbers in terms of rationals in 1871. R. Dedekind gave
the definition independently in 1872.

In a field (F,+, ·) one has the additive group (F,+) as well as multiplicative
group (F∗, ·) where F∗ = F \{0F}. Permutation groups play a role in Galois the-
ory of equations when one considers a Galois group associated with a polynomial

339
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equation. In linear algebra, it was J. W. Gibbs (1839–1903) who created a vector
algebra and it was important to note that a vector in 3-dimensions could take the
form

~r = x~i + y~j + z~k

where~i, ~j,~k form a rectangular triad of unit vectors and x,y,z ∈R. ~r is thought of
as a directed line segment emanating from the origin (0,0,0) to the point (x,y,z).
In a more general setting, one talks about a finite dimensional vector space over
a field F. This paved the way for the enrichment of linear algebra. A ring which
differs from a field only ‘slightly’ is called a division ring. More specifically, a
ring which satisfies all the properties of a field except commutative law of mul-
tiplication is a division ring. If the ring is also an algebra over a field F, it is
called a division algebra. In 1843, W. R. Hamilton discovered a division algebra
by considering real quaternions. The set

Q = {a + bi + c j + dk : a,b,c,d ∈ R}
in which i2 = j2 = k2 = −1, i j = k = − ji, jk = i = −k j and ki = j = −ik, serves
as a division algebra having a basis {1, i, j,k}. Q is called the real quaternion
algebra. In 1844, Grassman (1809–1877) obtained a most general algebra of
which Q is a special case. Such algebras are called ‘Grassman algebras’ in
the literature. Very quickly, algebras found application in many branches of
Mathematics and Physics. Modern mathematics got a face-lift via the notion
of algebras. A powerful theorem of J. H. M. Wedderburn (1882–1948) says that a
finite division ring is a field. See T. Hungerford [10]. It is also to be emphasized
that A. Cayley’s (1821–1895) contributions to matrix algebra are significant.

How does number theory enter into the realm of finite or infinite-dimensional
algebras? Perhaps, a valid answer is that it happened when an analyst and a
number-theorist collaborated. In 1955, E. Hewitt and H. S. Zuckerman [9] have
studied in detail finite dimensional convolution algebras. They have established
that a convolution of functions is just a technique for ‘multiplication’ of linear
functionals in a ‘well-set’ background. The operations of Dirichlet convolution
(see chapter 4), Cauchy convolution (see observation 10.6.1, chapter 10) and such
other convolutions can be brought under one roof when one considers the vector
space of complex-valued functions defined on a semigroup.

The study of rings of arithmetic functions was begun by Eckford Cohen [4],
[5] during 1952–54. It was followed up by Leonard Carlitz [2], [3] in a slightly
different situation which he called an ‘unusual setting’.

11.1. Introduction

In this chapter, properties of semigroups are studied. The definition of a
semicharacter of a semigroup G is given. The idea is to use the notion of a char-
acter of a group sitting inside the semigroup G. The vector space of complex
valued-functions defined on a semigroup is considered. Convolution algebras are
defined as given in Hewitt and Zuckerman [9]. This fits well into the concepts of
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convolutions of arithmetic functions studied in number theory. Finite dimensional
convolution algebras arise in a natural way from the vector space of functions de-
fined on a finite semigroup. An interesting theorem borrowed from [9] says that
any finite dimensional algebra over a field is, indeed, a convolution algebra.

Following M. Tainiter [14], a finite dimensional algebra of complex-valued
functions defined on a finite commutative semigroup of idempotents is shown
to provide an analogue of Dirichlet convolution of arithmetic functions. The
functions considered are called abstract arithmetical functions. The analogue of
product theorem for Dirichlet series is proved. See theorem 86. Some exam-
ples are given. Some new convolutions of functions are introduced in Section
11.6. Finally, the notion of a functional-theoretic algebra is introduced. A class of
linear functionals defined on the vector space A of arithmetic functions is used to
define a new product of arithmetic functions.

11.2. Semigroups

By a semigroup, we mean a non-empty set G together with a binary relation,
dot (·) on G, called multiplication which is associative. A semigroup G is called
commutative if x ·y = y ·x for all x,y∈G. An element u∈G is called an idempotent
if u ·u = u2 = u. We denote a semigroup by (G, ·).
Definition 11.2.1 : Let (G, ·) be a semigroup. x ∈ G is said to divide an element
y in G (or y is divisible by x) if there exists t ∈ G such that y = x · t.

Definition 11.2.2 : An element x ∈ G is said to be an irreducible element, if the
equation x = y · t implies that either y = x or t = x.

Definition 11.2.3 : A semigroup (G, ·) is said to have a zero, if it has a unique
element 0 which is divisible by every element x in G. That is, x ·0 = 0, 0 ·x = 0 for
all x ∈ G.

Fact 11.2.1 :
(i) Let (G, ·) be a semigroup. Suppose that z is not an element in G. Then,

G∪{z}, written Gz, is made a semigroup under the multiplication rules:

x · y = x · y as in (G, ·), for all x,y ∈ G,

x · z = z · x = z, for all x ∈ Gz.

In fact, (Gz, ·) is obtained from (G, ·) by adjoining zero.
(ii) Let (G, ·) be a semigroup and suppose that e is not an element of G. Then

G∪{e}, written Ge, is made a semigroup under the multiplication rules:

x · y = x · y as in (G, ·), for all x,y ∈ G,

e · x = x · e = x, for all x ∈ Ge.

(Ge, ·) is obtained from (G, ·) by adjoining a unit.
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(iii) Let (G, ·) be a semigroup containing an idempotent u. Let a be an object not
contained in G. Then G∪{a}, written Ga, is made a semigroup under the
multiplication rules:

x · y = x · y, as in (G, ·), for all x,y ∈ G,

x ·a = x ·u, for all x ∈ G

a · x = u · x, for all x ∈ G

a ·a = a2 = a.

Then (Ga, ·) is a semigroup obtained from (G, ·) by idempotent adjunction.
See Hewitt and Zuckerman [9].

Definition 11.2.4 : Let (G, ·) be a semigroup and x ∈ G . x is said to be of finite
order, if there exist two integers k, l ∈ N with k ≥ l and l ≥ 1 such that

xk+l = xl .

Clearly, idempotent elements in a semigroup (G, ·) are of finite order. In fact,
all the elements of a finite semigroup are of finite order. In (N, ·), no element other
than 1 is of finite order.

Notation 11.2.1 : [9] Given a semigroup (G, ·), let x ∈ G be such that x is of finite
order. Then, the sequence

x,x2,x3, . . .

contains at the most k + l − 1 distinct elements. For, one has, by definition, the
elements

xl ,xl+1, . . . ,xl+k−1,xl+k = xl

If r is the smallest integer such that xr = xs, 1≤ s < r, we write

(11.2.1) lx = s and kx = r − s

Then, xp = xq, p> q⇔ q≥ lx and p = q + jkx for some integer j.

Remark 11.2.1 : Let (G, ·) be a semigroup.

(a) If x ∈ G is of finite order, then,

(xm)2 = xm (m≥ 1) if, and only if, the condition

m = jkx ≥ lx holds for some positive integer j.
(b) If (xm)2 = xm for some m≥ 1, x is of finite order.
(c) If (xm)2 = xm and (xr)2 = xr, then (xm)r = xm = (xr)m = xr.
(d) If x ∈ G is of finite order and lx = 1, (xkx )2 = xkx .
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(e) If x,y ∈ G are such that lx = ly = 1, then,

(x · y)kxky+1 = (xkx )ky · (yky)kx · x · y
= xkx · yky · x · y
= xkx+1 · yky+1

= x · y, as kx + 1 = r (least),

where xr = x and ky + 1 = t (least). Further xt = x (and lx = ly = 1).

So, lx·y = 1.

Fact 11.2.2 : Let (G, ·) be a finite or infinite commutative semigroup all of whose
elements are of finite order. Suppose that lx = 1 for all x ∈ G. Then,

(a) G is a disjoint union of groups.
(b) The set H of idempotents of G forms a semigroup (H, ·).

Proof :
(a) For each idempotent a ∈ G, we write

Sa = {x ∈ G : xm = a for some m≥ 1}
every x ∈ G is in some Sa, as all elements of G are of finite order. For x ∈ Sa,
using remark 11.2.1(a), we see that

xkx = a

Similarly, y ∈ Sa⇒ yky = a.
So, (x · y)kxky = (xkx )ky · (yky )kx = a ·a = a.
Therefore, x · y ∈ Sa whenever x, y are in Sa.
Also, a · x = xkx · x = xkx+1 = xr = x as lx = 1.
Further, x · x2kx−1 = x2kx = a2 = a. Thus, a serves as the identity element in
(Sa, ·) and x2kx−1 is the inverse of x in Sa. So, (Sa, ·) is a group. As Sa∩Sb = ∅
for a 6= b, (G, ·) is a disjoint union of groups.

(b) Suppose that x ∈ Sa and y ∈ Sb (a 6= b).
Then,

(x · y)kxky = (xkx )ky · (yky )kx = xkx · yky = a ·b
So, x · y ∈ Sa·b. Associativity follows.
Thus, (H, ·) is a semigroup.

�

Remark 11.2.2 : Fact 11.2.2 has been adapted from [9].

Example 11.2.1 : In (P(x),∩) every element is an idempotent. (P(x),∩) is a
semigroup of idempotents. P(x) is a union of groups of order 1, trivially.
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Next, we go to the particular case where (G, ·) is a finite commutative semi-
group all of whose elements are of finite order.

Notation 11.2.2 : We denote the set {x : x ∈ G, lx = 1} by G0.
If x,y ∈ G0, then

(x · y)kxky+1 = (xkx )ky · (yky)kx · (x · y) = xkx · yky · (x · y)

= xkx+1 · yky+1,

or,

(x · y)kxky+1 = x · y.(11.2.2)

For, if lx = 1, kx = r − 1, where r is the least positive integer such that xr = xs.
From (11.2.2), we see that lx·y = 1 and so, G0 is a semigroup. By Fact 11.2.1(b),

if H denotes the set of idempotents of G0, H is a semigroup contained in G0.

Definition 11.2.5 : For each a ∈ H, we write

Ta = {x : x ∈ G, xm = a, for some m≥ 1}
As in the proof of Fact 11.2.1(a), Ta are pairwise disjoint and every x ∈ G is in
some Ta. Each Ta is a semigroup and Ta∩G0 is a group. It is simply the group Sa

considered in the proof of Fact 11.2.2(a).
For, if x ∈ Ta, y ∈ Tb, then, xm = a, ym′ = b.
So, (x · y)mm′ = (xm)m′ · (ym′)m = am′ ·bm = a ·b as a,b ∈ H.
Further, Ta is a semigroup containing the group Ta∩G0.

Observation 11.2.1: If x ∈ Ta, xm = a, for some m≥ 1. So,

(a · x)m+1 = a · xm+1 = a ·a · x = a · x.
So, la·x = 1. Therefore,

(11.2.3) aTa = Ta∩G0.

11.3. Semicharacters

We introduce the notion of semicharacters in the same way as is done for
characters of a group.

Definition 11.3.1 : Let (G, ·) be a semigroup. A function χ : G→ C is called a
semicharacter of G, if χ(a) 6= 0 for some a ∈ G and

χ(a)χ(b) = χ(a ·b) for all a,b ∈ G.

Observations 11.3.1:
(a) Let (G, ·) be a semigroup. If x ∈ G is of finite order and χ is a semicharacter

of G, then χ(x) is either zero or a root of unity.
(b) If x ∈ G is an idempotent and χ is a semicharacter of G, then χ(x) is either 0

or 1.
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(c) If (G, ·) is a monoid (containing the unity element e) and if χ is a semichar-
acter of G, then χ(e) = 1.

(d) If (G, ·) contains a zero z and χ is a semicharacter not identically equal to 1,
then χ(z) = 0.

(e) A semicharacter of a group is a character in the normal sense.

Fact 11.3.1 : Suppose (G, ·) is a finite semigroup such that for every pair of
distinct elements a,b ∈ G, there exists a semicharacter χ not assuming the value
zero (for any x ∈ G) and χ(a) 6= χ(b), then G is an abelian group.

For, by hypothesis, any semicharacter χ : G→ C is a one–one map. So, as
G is finite, χ(an) = χ(a) for n ≥ 1. Similarly, χ(bm) = χ(b) for m ≥ 1. Thus,
χ(an−1) = χ(bm−1) = 1 or an−1 = bm−1 serves as the multiplicative identity. There
is a unique identity element and any a ∈ G has a unique inverse. So, (G, ·) is a
group. As χ(a ·b) = χ(b ·a), a ·b = b ·a and so (G, ·) is abelian.

Theorem 82 (Hewitt and Zuckerman (1955)) : Let (G, ·) be a commutative semi-
group. Suppose that χ is a semicharacter of G. Let H denote the semigroup of
idempotents of G. For each a ∈ H, we write

(11.3.1) Ta = {x ∈ G : xm = a, for some m≥ 1}
and

(11.3.2) G0 = {x ∈ G : lx = 1}
Then, there exists a0 ∈ H and a character χa0 of the group Ta0 ∩G0 such that

(11.3.3) χ(y) =





0, if a0 ·a 6= a0, for the element a of G such
that y ∈ Ta;

χa0 (a0 · y), if a0 ·a = a0, for the element a
such that y ∈ Ta.

Proof : For some y ∈ G, there exists a semicharacter χ of G such that χ(y) 6= 0.
Then, for some a ∈ H, χ(a) 6= 0. So, χ(a) = 1, as a is an idempotent.

We let

(11.3.4) a0 =
∏

a∈H
χ(a)=1

a

It is clear that χ(a0) = 1 and for a ∈ H,

χ(a) =

{
1, if a0 ·a = a0;
0, if a0 ·a 6= a0.

For all y ∈ G, we have χ(y) = χ(a0)χ(y) = χ(a0y).
If y ∈ Ta and a0 ·a = a0, then a0 · y ∈ Ta0·a = Ta0 .
So,

a0 · y = a0 · (a0 · y) ∈ a0Ta0 = Ta0 ∩G0 (by (11.2.3))
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Further, if y ∈ Ta and a0 ·a 6= a0, then ym = a for some m≥ 1 and so,

(χ(y))m = χ(a) = 0, for a ∈ H and χ(a) 6= 1.

Therefore, χ(y) = 0.
Now, Ta0 ∩G0 is a group and χ(a0) 6= 0. When the domain of χ is restricted to the
group Ta0 ∩G0, χ is a character of the group Ta∩G0 and we denote the restriction
of χ to Ta0 ∩G0 by χa0 . This proves theorem 82. �

Theorem 82 can be reset for any arbitrary commutative semigroup in which
every element is of finite order and in which H is finite. We have

Theorem 83 (Hewitt and Zuckerman (1955)) : Let G be a finite or infinite com-
mutative semigroup all of whose elements have finite order. If a0 ∈ H and χa0 is
a character of the group Ta0 ∩G0, then, the function χ : G→ C defined by

χ(y) =

{
0, if a0 ·a 6= a0 , for some a such that y ∈ Ta

χa0 (a0 · y), if a0 ·a = a0 , for the element a for which y ∈ Ta ;

is a semicharacter of G.

Proof : χ(a0) = χa0 (a0), as a0 ∈ H and a0 ∈ Ta0 .
So, χ(a0) 6= 0. We have only to show that

χ(a ·b) = χ(a)χ(b), for a,b ∈ G.

If y ∈ Ta and t ∈ Tb, then y · t ∈ Tab.
If a0 · (y · t) = a0, then,

a0 · y = a0 · y · t · y = a0 · (y · t) = a0

and a0 · t = a0 · (y · t) · t = a0 · y · t = a0.
If a0 · y = a0 · t = a0, then, a0 · y · t = a0 · y · a0 · t = a0 · (a0 · y · t) = a0 · a0 = a0.

Therefore, χ(y · t) 6= 0 if, and only if, χ(y) 6= 0 and χ(t) 6= 0.
If χ(y) 6= 0, χ(t) 6= 0, then,

χ(y)χ(t) = χa0 (a0 · y)χa0(a0 · t)
= χa0 (a0 · y ·a0 · t)
= χa0 (a0 · y · t)
= χ(y · t), by hypothesis.

Thus, χ is a semicharacter on G. �

Corollary 11.3.1 : Let G be a finite commutative semigroup. The semicharacters
of G form a linearly independent set of functions.

Proof : By Fact 6.6.2, chapter 6, for a finite abelian group A, the group char(A) of
characters of A is isomorphic to A. If H denotes the semigroup of idempotents of
G, the semicharacter χ of G evolves from the group characters of the finite group
Ta∩G0, where a ∈ H. It follows that the number m of distinct semicharacters of
G is such that m≤ |G|.
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Now, let χ1,χ2, . . .χm be the semicharacters of G.
Suppose that αi ∈ C (i = 1,2, . . . ,m) and

∑m
i=1αiχi = 0.

We consider an idempotent a ∈ G and the group Ta ∩G0. On this group, every
semicharacter χ j is either identically zero or is a character of the group. Since the
characters of a finite group are linearly independent, we get α j = 0 for each j such
that χ j(a) 6= 0. Since a is arbitrary, it follows that α j = 0, for j = 1,2, . . . ,m. �

Theorem 84 (Hewitt and Zuckerman (1955)) : Let G be a semigroup all of whose
elements are of finite order and having the property that for all a,b ∈ G such that
a 6= b, there is a semicharacter χ satisfying χ(a) 6= χ(b). Then, G is commutative
and lx = 1, for all x ∈ G.
Conversely, suppose that G is a commutative semigroup in which every element
is of finite order and lx = 1 for all x ∈ G. Then, for a,b ∈ G such that a 6= b, there
is a semicharacter χ for which χ(a) 6= χ(b).

Proof : :⇒ For all semicharacters χ, we have

χ(a ·b) = χ(a)χ(b) = χ(b)χ(a) = χ(b ·a)

By the property of χ, a ·b = b ·a for all a,b ∈ G. So G is commutative. Also,

(χ(a))ka+la = χ(aka+la ) = χ(ala) = (χ(a))la

(by the definition of ka and la). So, (χ(a))ka+1 = χ(a), as (χ(a))ka = 1.
So, aka+1 = a. That is, lx = 1 for all x ∈ G.
⇐: If χ(a) = χ(b) for all semicharacters χ given in theorem 83, we take a0 = aka

and obtain
χ(a) = χa0 (a0 ·a) = χa0 (aka ·a) = χa0 (a).

Since χa0 (a) 6= a0, we have χ(a) = χ(b) 6= 0 and

(11.3.5) a0 ·bkb = a0, χ(b) = χa0 (aka ·b).

Thus, we have

(11.3.6) χa0 (a) = χa0 (aka ·b)

But, χa0 can be any character of the abelian group Ta0 ∩G0.
If a ∈ Ta0 and a 6∈ G0, a0 ·a ∈ a0 ·Ta0 = Ta0 ∩G0 (by (11.2.3)).

So, a0 · a ∈ G and am = a0 for some m ≥ 1. As we have assumed that a0 = aka ,
a0 ·a = aka+1 = a ∈ G0.
So, Ta0 ⊆ G0 or Ta0 ∩G0 = Ta0 .
So, from (11.3.6),

(11.3.7) a = aka ·b
(It is on account of the fact that distinct elements of an abelian group can be
separated by characters. That is, a 6= b⇒ χa0 (a) 6= χa0 (b)).

Also, we have

aka ·bkb = aka since a0 ·bkb = a0, by (11.3.5).

© 2007 by Taylor & Francis Group, LLC



348 CHAPTER 11

Since a and b are interchangeable, we get, from (11.3.7),

(11.3.8) b = bkb ·a.
So, bkb ·aka = bkb .
So,

aka = aka ·bkb and a = aka ·b = bkb ·b = b.
That is, χ(a) = χ(b)⇒ a = b and this completes the proof of the converse. �

Remark 11.3.1 : In the case of a finite commutative semigroup G, all semichar-
acters of G could be obtained in terms of a character of the group Ta0 ∩G0 where
a0 ∈ H. Taking G0 as a semigroup, each semicharacter of G0 can be extended to
a semicharacter of G in one and only one way.

Remark 11.3.2 : Given a semigroup (G, ·), let Ĝ denote the set of semicharacters
of G. If χ, θ are in Ĝ, the product χθ is defined by

χθ(a) = χ(a)θ(a) for all a ∈ G.

So, Ĝ can be given an algebraic structure.

Fact 11.3.2 : The semicharacters of a semigroup either form a semigroup by
themselves or they form a semigroup, if an additional element zero is supplied.
Further,
(a) If G is a semigroup, Ĝ has a unity element.
(b) If G is a semigroup with unity element, then Ĝ is a semigroup.
For details, see Hewitt and Zuckerman [9].

Definition 11.3.2 : Let H be a finite commutative semigroup of idempotents.
a∈H is called a prime element of H, if the equality a = b ·c (b,c∈H)⇒ b = c = a.

It follows that a ∈ H is a prime element, if, and only if, a = a · b where
b ∈ H ⇒ b = a.

Lemma 11.3.1 (Hewitt and Zuckerman) : Every finite commutative semigroup of
idempotents contains at least one prime element.

Proof : We choose an arbitrary element a1 ∈ H. If a1 is not a prime element,
then there exists an element a2 ∈ H such that a1 = a1 ·a2 with a1 6= a2. Repeating
this procedure, we obtain a finite sequence a1,a2, . . . ,am where ai = ai · ai+1 and
ai+1 6= ai (i = 1,2,3, . . . (m − 1)). If h≤ j ≤ m, we have

ah = ah ·ah+1 ·ah+2 · · ·a j.

Therefore, ah ·a j = ah as a2
j = a j.

For, a j−1 ·a j = a j−1,
a j−2a j−1a j = a j−2a j−1 = a j−2.
Or, ah ·ah+1 ·a j = ah.
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That is, an ·an+1 · · ·a2
j = ah ·a j,

or, ah = ah ·a j.
If h< j ≤ m and ah = a j, then,

ah = ah ·ah+1 = a j ·ah+1 = ah+i ·a j = ah+1.

This is a contradiction. As H is finite, a1,a2, . . . ,am are such that the sequence
a1,a2, . . . ,am will eventually end with a prime element am. This proves the lemma.

�

Corollary 11.3.2 : Corresponding to every element a j ∈ H, there is a prime ele-
ment am (of H) such that a j = a j ·am.

Corollary 11.3.3 : If H has just one prime element am and b = b ·am for all b∈H,
then am is a unity element of H (an identity element). Further, if H has just one
unity element e, then H has just one prime element e.

Proofs of corollaries 11.3.2 and 11.3.3 are omitted.
Next, we examine more closely, a commutative semigroup of idempotents.

We recall that if (G, ·) is a semigroup, for x,y ∈ G, x divides y if there exists t ∈ G
such that y = x · t. If G is a commutative semigroup of idempotents, both x and y
divide x · y. For, y · (x · y) = x · (x · y) = x · y.

A prime element a∈G is such that a = y · t⇔ y = t = a. So, a prime element is
an irreducible (see definition 11.2.2). A prime element has no divisors other than
itself. By lemma 11.3.1, a finite commutative semigroup H of idempotents has at
least one prime element. Further, a zero element z in a commutative semigroup, if
it exists, has the property that z is divisible by every x∈H. (see definition 11.2.3).

Lemma 11.3.2 : A finite commutative semigroup H of idempotents has a zero
element.

For, the semigroup is finite and so we can find an element z such that z · x = z
for all x ∈ H.

Definition 11.3.3 : Let H be a commutative semigroup of idempotents. An ele-
ment x in H is said to cover an element y in H if x divides y and x does not divide
any other divisor of y.

For any non-empty set S, the power set (P(S),∩) is a commutative semigroup
of idempotents. For A⊂ S and B⊂ S such that A\{a} = B, where a ∈ A, then B
covers A. In the set of divisors of a positive integer n = pam where p is a prime
and m and p are relatively prime, pa|n and pa does not divide any other divisor of
n. pa covers n.

Definition 11.3.4 : Let (P,≤) be a poset. (P,≤) is called a lower semilattice if
every pair of elements of P has a greatest lower bound. That is, given a,b ∈ P,
there exists an element g ∈ P such that g≤ a and g ≤ b and if c ∈ P is such that
c≤ a and c≤ b, then c≤ g. We write g = a∧b.
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Example 11.3.1 : Let X be any non-empty set. The power set P(X) of X ordered
by inclusion is a lower semilattice. The g.l.b. of two elements A, B belonging
to P(X) is A∩B. In fact, any collection of subsets of X (which is closed under
intersection) is a lower semilattice when partially ordered by set-inclusion.

It is easy to check that the subgroups of a group, subrings of a ring, ideals of
a ring, subspaces of a vector space and submodules of a module all form lower
semilattices.

Lemma 11.3.3 : A commutative semigroup of idempotents is a lower semilattice
up to isomorphism.

Proof : Let (H, ·) be a commutative semigroup of idempotents. For x,y ∈ H, we
write x≤ y if x divides y (and y≤ x if y divides x). x and y are said to be isolated
if neither divides the other. As x2 = x, x ≤ x for all x ∈ H (reflexivity). Suppose
that for x,y ∈ H, x≤ y and y≤ x. Then,

y = x · t and x = y · s for t, s ∈ H.

So,

(11.3.9) y = x · t = (y · s) · t = y · (s · t)
Therefore, x = y · s = y · (s · t) · s (by (11.3.9)) or,

x = y · t · s2 = y · (t · s) = y · (s · t) = y

That is, x≤ y and y≤ x⇒ x = y (antisymmetry).
When x≤ y and y≤ t, it is easily checked that x≤ t (transitivity). Thus (H,≤) is
a poset.

Next, for x,y ∈ H, as x · (x · y) = y · (x · y) = x · y, one has

x≤ x · y and y≤ x · y
Also, if t ∈ H and t ≤ x, t ≤ y, then t ≤ x ·y by transitivity. Therefore, the g.l.b of
x and y is given by x · y. This makes (G, ·) a lower semilattice. �

Next, in the case of a finite semigroup H of idempotents, for a ∈ H,

Ta = {x ∈ G : xm = a, m≥ 1} = {a}
and G0 = {x ∈ G : lx = 1} = G. Further, aTa = {a} = Ta∩G0 is a group of order 1.
If χ : G→ C is a semicharacter, for t ∈ G,

χ(t2) = χ(t) and so χ(t) = 0 or 1.

If a ∈ H, any semicharacter χa : H → C is given by

(11.3.10) χa(y) =

{
1, if y|a,
0, otherwise.

(11.3.10) follows from the proof of theorem 82. Again, by corollary 11.3.1, the
semicharacters of H form a linearly independent set. We deduce below
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Theorem 85 : Given a finite commutative semigroup H of idempotents,

(11.3.11) B = {χa : a ∈ H}
the set of semicharacters of H spans a vector space V (H) of dimension |H| over
C. Further, any function f : H→ C is an element of V (H).

11.4. Finite dimensional convolution algebras

Let F be a field. By an F-algebra (or a linear algebra over F) we mean a ring
AF which is also a vector space over F . The scalar multiplication, that is, the map
F×AF →AF satisfies

α(a + b) = αa +αb for all α ∈ F, a,b ∈ AF ,

(α+β)a = αa +βa for all α,β ∈ F, a ∈AF ,

(αβ)a = α(βa) for all α,β ∈ F, a ∈AF ,

1Fa = a for all a ∈ AF ,

and α(ab) = (αa)b = a(αb) for all α ∈ F, a,b ∈ AF .

If there exists e∈AF such that ea = ae = a for all a∈AF ,AF is an F algebra with
a unity element e. When AF , as a vector space over F , is finite dimensional, AF

is called a finite dimensional F-algebra. When the ground field F is understood,
AF is referred to as an algebra.

We examine a finite dimensional algebra AF . The multiplication in AF is
completely determined by the products of the basis elements. If {ui} is a basis for
AF , we have

ui ·u j =
∑

k

γi jkuk

where γi jk are called the multiplication constants of the algebra. When AF is
infinite dimensional,

∑
k γi jkuk is such that only finitely many of γi jk are non-zero

for any choice of i, j. If a =
∑
αiui, b =

∑
β ju j, then,

a ·b =
∑

k

αiβ jγi jkuk.

Since the multiplication in AF is associative, the multiplication constants satisfy
the equations arising from (ui ·u j) ·uk = ui · (u j ·uk). That is,

∑

l

γi jlγlkm =
∑

l

γ jklγilm

Further, when AF is commutative, it is true that γi jk = γ jik.
We begin with an arbitrary semigroup G and consider complex-valued func-

tions having domain G.
Let F denote the vector space of functions f : G→ C with the usual definitions
of addition and scalar multiplication.
For x ∈ G, f ∈ F , we define x f by

(11.4.1) x f (y) = f (xy)

© 2007 by Taylor & Francis Group, LLC



352 CHAPTER 11

x f is an element of F (for fixed x ∈ G).
Let L denote the vector space of linear functionals defined on F . For L ∈ L,

f ∈ F and x ∈ G we write

(11.4.2) Ly( f (xy)) to denote L(x f )

For all L ∈ L and f ∈ F , Ly( f (xy)) is such that the value of Ly( f (xy)) at x, is an
element of C.

(11.4.3) Ly( f (xy)) = L(x f ) is an element of F when x is taken as

an element of the domain G.
For all L,M ∈ L, we define

(11.4.4) N( f ) = Mx(Ly( f (xy))), as an element of L, for all f ∈ F .
Definition 11.4.1 : [9] Using the relations (11.4.1) to (11.4.4), N is called the
convolution of M and L and we call L a convolution algebra. The notation for
convolution of M and L is M ∗L.

Examples 11.4.1 :
(a) A CONVOLUTION ALGEBRA:

Let G be a non-empty set. Take a ∈ G to be a fixed element of G. For
x,y∈G, we define multiplication (·) by x ·y = a. (G, ·) is a semigroup which is
commutative. Let F be the vector space of complex-valued functions defined
on G. The function e : G→ C given by e(x) = 1 for all x ∈ G is an element of
F .

IfL denotes the vector space of linear functionals onF , λa ∈L is defined
by

(11.4.5) λa( f ) = f (a) (∈ C), for all f ∈ F .
Then, for x,y ∈ G, x f (y) = f (xy) = f (a) = λa( f ).
For any x ∈ G, x f (y) gives f (a).

Ly( f (xy) = Ly( f (a)e) = f (a)Ly(e) = λaLy(e)
(M ∗L)( f ) = Mx(Ly( f (xy))) = Mx(λaLy(e)e) = Mx(e)Ly(e)λa( f )

Convolution of M and L is given by M(e)L(e)λa for all M,L ∈ L. L is a
convolution algebra.

(b) CAUCHY CONVOLUTION:
Z̃ denotes the set of non-negative integers. Let A∗ denote the set of

functions f : Z̃→C. f is, in fact, a sequence of complex numbers, say, {an}.
If g = {bn},

(11.4.6) f + g = {an + bn}
and

(11.4.7) f ∗g = {cn} where cn =
n∑

k=0

akbn−k

© 2007 by Taylor & Francis Group, LLC



SEMIGROUPS AND CERTAIN CONVOLUTION ALGEBRAS 353

(A∗,+,∗) is an algebra over C. We claim that (A∗,+,∗) is a convolution
algebra in the sense of definition 11.4.1.

Let F̃ be the space of all functions defined on Z̃ which vanish except on
finite subsets of Z̃. We know that (Z̃,+) is a semigroup. Let L be the space
of all functionals of F̃ . A linear functional A : F → C is such that there is a
unique sequence {an} ∈ A∗ for which

(11.4.8) A( f ) =
∞∑

n=0

an f (n) for all f ∈ F̃

The right side of (11.4.8) is a finite sum as f vanishes except for a finite
number of elements of Z̃. Conversely, every sequence {an} defines a linear
functional on F̃ . For f ∈ F̃ , m f (n) = f (mn) determines m f as an element of
F̃ .

Let f 6≡ 0. When f ∈ F̃ , let (t − 1) be the greatest integer such that
f (t − 1) 6= 0. Then,

(11.4.9) f (m + n) = 0 for all n ∈ Z̃ and m≥ t.

Therefore,

An( f (m + n)) =
∞∑

n=0

an f (m + n) = 0 for all m≥ t.

So An(m f ) ∈ F̃ . (11.4.1), (11.4.2) and (11.4.3) hold.
Now, L consists of all linear functionals defined on F̃ . Let en be defined

by

(11.4.10) en(m) =

{
1, n = m
0, otherwise

Then, {en} (n ∈ Z̃) forms a basis for F̃ and A(en) = an (by (11.4.8)). For
A,B ∈ L, we obtain

(11.4.11) (A∗B)(en) = Ak(Bl(en(k + l))) =
∞∑

k=0

∞∑

l=0

akblen(k + l).

Or,

(11.4.12) (A∗B)(en) =
n∑

k=0

akln−k

So, multiplication given in (11.4.7) for elements ofA∗ is a convolution in the
sense of definition 11.4.1.

(c) DIRICHLET CONVOLUTION:
N, the set of positive integers is a semigroup under multiplication f : N→ C
is an arithmetic function. { f (1), f (2), . . .} is a complex-valued sequence. We
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write

(11.4.13) f = { f (1), f (2), f (3), . . .}
Let

(11.4.14) g = {g(1),g(2),g(3), . . .}
The Dirichlet product of f and g is given by

(11.4.15) h = ( f ·g) = {h(1),h(2), . . .}
where

(11.4.16) h(r) =
∑

d|r
f (d)g(

r
d

), (see definition 4.3.1 of chapter 4)

(the summation on the right is over the positive divisors d of r). The set A of
arithmetic functions is a vector space over C. The function e0 given by

(11.4.17) e0(r) = [
1
r

],

where [x] denotes the greatest integer not exceeding x serves as the identity
for Dirichlet multiplication (11.4.16) see (4.3.4) of chapter 4. As in Cauchy
multiplication, we look at a subspaceA0 of A defined by

(11.4.18) A0 = { f ∈A : f vanishes except on finite subsets of N}
Let L denote the vector space of linear functionals defined on A0. For all
A ∈ L, there is a unique {an} (n ∈ N) such that A( f ) =

∑∞
n=1 an f (n) for all

f ∈ A0. A( f ) is a finite sum. For r ∈ N, we write

r f (n) = f (rn), n ∈ N
Then, r f ∈ A0. When f ∈ A0, let (s − 1) be the greatest integer such that
f (s − 1) 6= 0. Then,

f (rn) = 0 for n ∈ N and r ≥ s

Further,

(11.4.19) An f (rn) =
∞∑

n=1

an f (rn) = 0, for r ≥ s

An(r f ) ∈ A0. If B is a linear functional on A0 and f ∈ A0, Br(An( f (rn))) is a
linear functional. We note that Br is defined the same way as An is given in
(11.4.19). That is,

Br( f (rn)) =
∑

r=1

br f (rn).

The functions er given by

(11.4.20) er(n) =

{
1 n = r
0 otherwise
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form the basis for A0, as f ∈A0 can be written uniquely as

f (n) =
∞∑

r=1

f (r)er(n)(11.4.21)

That is,

f =
∞∑

r=1

f (r)er(11.4.22)

We check Dirichlet convolution for the basis elements er,r = 1,2, . . .

B∗A(er) = Bk(Al(er(kl)))

=
∞∑

k=1

∞∑

l=1

bkaler(kl)

Therefore,

(11.4.23) B∗A(er) =
∑

kl=r

bkal

which is the gist of Dirichlet multiplication. That is, Dirichlet multiplication
is also brought under convolution of linear functionals as in the earlier ex-
ample. In other words, L, the space of linear functionals on A0 is indeed a
convolution algebra.

Definition 11.4.2 : Let G be a group. The group algebra FG of G over F is
defined as the F-algebra obtained by taking G as a basis for the vector space FG
over F. Elements of FG are finite sums

∑

g∈G

αgg where αg ∈ F.

Multiplication in FG is defined by

(11.4.24) (
∑

g∈G

αgg)(
∑

h∈G

Bhh) =
∑

g∈G

∑

h∈G

αgβhgh, αg,βh ∈ F.

Addition is defined by

(11.4.25)
∑

g∈G

αgg +
∑

g∈G

βgg =
∑

g∈G

(αg +βg)g ; αg, βg ∈ F

and for β ∈ F,

(11.4.26) β
∑

g∈G

αgg =
∑

g∈G

(βαg)g

The multiplication in FG is given by the multiplication table of G.
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e a b
e e a b
a a b e
b b e a

Figure 15

Let C3 denote a cyclic group of order 3. C3 = 〈a〉, say. Taking C3 as a basis for
a vector space CC3, CC3 is made an algebra with the multiplication table given in
the Figure 15 shown above.

Any element x of the group algebra CC3 is of the form
α1e +α2a +α3b, where α1,α2,α3 ∈ C. If y ∈ CC3 is given by β1e +β2a +β3b,

x · y = (α1e +α2a +α3b) · (β1e +β2a +β3b)

or

x · y = (α1β1 +α2β3 +α3β2)e + (α1β2 +α2β1 +α3β3)a + (α1β3 +α3β1 +α2β2)b

(using the multiplication table in Figure 15).
CC3 is a group algebra of dimension 3. In the same manner, we can talk

about a semigroup algebra FG when G is a semigroup.
If Mn(F) denotes the set of n×n matrices with entries from F (n≥ 1), Mn(F)

forms a ring and it is also a vector space of dimension n2 over F . If

Ei j = [ei j]

where Ei j is the matrix whose entry at i, i is 1F and having all other entries OF ,
{Ei j} (i = 1,2, . . .n, j = 1,2, . . .n) is a basis for Mn( f ). The multiplication is given
by

Ei jEkl = δ jkEil where δ j k is Kronecker delta, given by

(11.4.27) δ j k =

{
1, j = k
0 otherwise.

Mn( f ) is the matrix algebra of dimension n2 over F .
Returning to the case of an arbitrary commutative semigroup

G = {x1,x2, . . . ,xn} with xi · x j = xi∗ j where i∗ j is the suffix which will make xi∗ j

the product of xi and x j, we consider another algebra L1(G) described below:
Suppose that F1(G) denotes the vector space of functions f : G→ C. The

space of linear functionals on F1(G) is denoted as L1(G).
Let φi ∈ F1(G) be given by

(11.4.28) φi(x j) = δi j (Kronecker delta; i, j = 1,2, . . .n)

If λi ∈ L1(G) is given by

(11.4.29) λi(φ j) = δi j (i, j = 1,2, . . . ,n)
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it is verified that B1 = {φ1,φ2, . . .φn} forms a basis for F1(G) and any element
f ∈ F1(G) can be written as

(11.4.30) f =
n∑

i=1

f (xi)φi

Also, the functionals λi (i = 1,2, . . .n) form a basis for L1(G).
If L ∈ L1(G),

(11.4.31) L =
n∑

i=1

L(φi)λi

and λi( f ) =
∑n

j=1 f (x j)λi(φ j) = f (xi) (i = 1,2, . . .n), for all f ∈ F1(G).

Lemma 11.4.1 (Hewitt and Zuckerman (1955) ) : L1(G) is a convolution algebra
and is isomorphic to the semigroup algebra CG.

Proof : We have observed that {λ1,λ2, . . . ,λn} forms a basis for L1(G) where λi

is as given in (11.4.29).
Now, we use the identity:

(11.4.32) f (x · y) =
n∑

k,l=1

f (xk · xl)φk(x)φl(y)

which is valid for all f ∈ F1(G) and x,y ∈ G. Then, we need to find the product
of the linear functionals λi and λ j where λi,λ j ∈ L1(G).

When f ∈ F1(G), λi( f ) = f (xi) (i = 1,2, . . .n). Fix the suffixes r, s of xr and
xs for the time being. We get

(11.4.33) f (xr · xs) =
n∑

k,l=1

f (xk · xl)φk(xr)φl(xs).

We write

λi,xr ( f (y)) =
n∑

k,l=1

f (xk · xl)φk(xr)λi(φl).

Then,

λi,xr (λ j,xs ( f (xr · xs))) = λi,xr

( n∑

k,l=1

f (xk · xl)φk(xr)λ j(φl)
)

=
n∑

k,l=1

f (xk · xl)λi(φk)λ j(φl)

=
n∑

k,l=1

f (xk · xl)δikδ jl

= f (xi · x j)
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or,

λi⊗λ j( f ) = λi∗ j( f ),where i∗ j is such that xi · x j = xi∗ j (1≤ i, j ≤ n).

That is, λi⊗λ j = λi∗ j. Hence, L1(G) is a convolution algebra.
The semigroup algebra CG consists of complex linear combinations∑

x∈Gαxx and

(
∑

x∈G

αxx) + (
∑

x∈G

βxx) =
∑

x∈G

(αx +βx)x.

For r ∈ C, r
∑

x∈Gαxx =
∑

x∈G(rαx)x. And

(
∑

x∈G

αxx)(
∑

y∈G

βyy) =
∑

x∈G

∑

y∈G

αxβy(x · y).

Let ψ : L1(G)→ CG be defined by ψ(
∑n

i=1αiλi) =
∑n

i=1αixi.
It is easily verified that ψ is an isomorphism of L1(G) onto CG. In other words,
L1(G)∼= CG. �

Fact 11.4.1 :
(i) A finite dimensional algebra AF is isomorphic to an algebra L1(G) for an

appropriate finite semigroup G if, and only if,AF has a basis which is closed
under multiplication.

(ii) Every finite dimensional algebraAF is a convolution algebra.
For proofs of (i) and (ii), see [9].

(iii) Let AF be an n-dimensional algebra over a field F . Then,AF is isomorphic
to a subalgebra of the matrix algebra Mn( f ).
For proof, see P. M. Cohn [7].

11.5. Abstract arithmetical functions

When H is a finite commutative semigroup of idempotents, we form the vec-
tor space V (H) of functions f : H→ C. By theorem 85, the set B = {χa : a ∈ H}
of semicharacters of H spans V (H). We recall that χa are functions defined in
(11.3.10). We wish to make V (H) an algebra. Elements of V (H) are abstract
arithmetical functions. V (H) is finite dimensional. It is a convolution algebra,
when multiplication of functions is defined as below:

For f ,g ∈V (H)

(11.5.1) ( f ·g)(x) = h(x) =
∑

yz=x

f (y)g(z), for all x ∈ H.

(11.5.1) is an analogue of Dirichlet convolution of arithmetic functions considered
in definition 4.3.1, chapter 4. There, it was the infinite semigroupNwith multipli-
cation as the binary operation. Here, (N, ·) is replaced by a finite semigroup (H, ·)
of idempotents. (11.5.1) is meaningful as H is finite. The convolution operator ·
is a map ψ : V (H)×V (H)→ V (H) which gives (11.5.1). The n-fold convolu-
tion of functions f1, f2, · · · fn could be defined in the same manner. In the case
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of an arithmetic function f , we have considered the Dirichlet series
∑

f (n)n−s

(Re s > σa) of f (see definition 10.6.1, chapter 10). An analogous definition for
abstract arithmetical functions is given in

Definition 11.5.1 (M. Tainiter) : For f ∈V (H), we write

(11.5.2) F(a) =
∑

y∈H

f (y)χa(y) =
∑

y≤a

f (y), for all a ∈ H;

where χa is a semicharacter of H specified at a ∈ H.
In (11.5.2), summation

∑
is over all divisors y of a ∈ H. F can be viewed as a

linear operator on V (H). For more details see M. Tainiter [15]. F is called the
generating function of f .

Theorem 86 (M. Tainiter (1968)) : Let f ,g, t ∈V (H). If F,G,T are the generating
functions of f ,g and t respectively, then

(11.5.3) t = f ·g⇔ T (a) = F(a)G(a), for all a ∈ H.

Proof : :⇒ Suppose that t = f ·g.
By definition, for a ∈ G

F(a) =
∑

y≤a

f (y), G(a) =
∑

y≤a

g(y).

Then,

F(a)G(a) = (
∑

y≤a

f (y))(
∑

z≤a

g(z))

=
∑

y≤a

∑

z≤a

f (y)g(z)

=
∑

y∧z≤a

f (y)g(z), as H is a lower semilattice.

As y∧ z = yz, we get

(11.5.4) F(a)G(a) =
∑

yz≤a

f (y)g(z)

Now,

(11.5.5) T (a) =
∑

x≤a

t(x) =
∑

x≤a

∑

yz=x

f (y)g(z) =
∑

yz≤a

f (y)g(z)

From (11.5.4) and (11.5.5), T (a) = F(a)G(a). When T (a) = F(a)G(a), a ∈ H
we conclude that t = f · g, as the generating function of an abstract arithmetical
function is unique. �
Corollary 11.5.1 : As (H, ·) is a poset (more precisely a lower semilattice) there
is a Möbius function µ associated with (H,≤) and

F(a) =
∑

y≤a

f (a)⇔ f (x) =
∑

a≤x

F(a)µ(a,x)
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Examples 11.5.1 :: The function e ∈ V (H) is given by e(x) = 1 for all x ∈ H.
Then,

(11.5.6) E(a) =
∑

y∈H

e(y)χa(y) =
∑

y≤a

1 = the number of divisors of a.

Let

(11.5.7) f (x) =

{
1, if x is an irreducible;
0, otherwise.

Then, F(a) =
∑

y≤a f (y) = the number of irreducible divisors of a.
The analogue of the ζ-function ζH of (H,≤) is given by

(11.5.8) ζH(x,y) =

{
1, x≤ y;
0, otherwise.

Its generating function Z(b,a) is expressed as

Z(b,a) =
∑

y≤a

χb(y)χa(y) =
∑

y≤a
y≤b

1.

Z(b,a) is the number of common divisors of a and b.
For more related results, see M. Tainiter [15].

Next, we consider the power set P(S) of a finite set S having n elements.
|P(S)| = 2n(n≥ 1). P(S) forms a semigroup of idempotents under set-intersection.
We define

(11.5.9) χA(B) =

{
1, if B is a subset of A;
0, otherwise.

Möbius function of (P(S),⊆) is given by

(11.5.10) µ(B,A) =

{
(−1)|A|−|B|, if B is a subset of A;
0, otherwise.

Theorem 87 (Tainiter (1968)) : Let A be a subset of S with |S| = n, such that
|A| = m, (m ≤ n). If hk(A) denotes the number of ways of expressing A as the
intersection of k subsets of S, then

(11.5.11) hk(A) = (2k − 1)n−m.

Proof : As (P(S),∩) is a semigroup, the problem is to find the number of ways of
writing A as a product of k elements belonging to P(S). Let

e(A) = 1, for all A ∈ P(S).

Then,
hk(A) =

∑

A1A2···Ak=A

e(A1)e(A2) · · ·e(Ak).
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As semigroup multiplication corresponds to set-intersection, we write

(11.5.12) E(A) =
∑

B⊇A

e(B).

E(A) gives the number of subsets of S which contain A. The generating function
of hk(A) is given by

(11.5.13) Hk(A) =
∑

B∈P(S)

hk(B)χA(B) =
∑

B⊇A

hk(B).

By Möbius inversion,

(11.5.14) hk(A) =
∑

B⊇A

Hk(B)µ(A,B).

However, using (11.5.12) and (11.5.13), we note that

Hk(A) = dk(A),

where d(A) = the number of subsets of S which contain A.
If we count the number of subsets of S\A, and add to each subset the elements of
A, we get the number of subsets of S which contain A. That is, d(A) = 2n−|A|. So,
(11.5.14) is rewritten as

hk(A) =
∑

B⊇A

2k(n−|B|)(−1)|B|−|A|

As |A| = m, |B|− |A| decreases from (n − m) to 0. So, we obtain

hk(A) =
n−m∑

j=0

2k(n−(m+ j))(−1) j
(

n − m
j

)
,

= 2k(n−m)
n−m∑

j=0

(−1) j2−k j
(

n − m
j

)
.

Or, hk(A) = 2k(n−m)(1 −
1
2k )n−m = 2k(n−m) (2k − 1)n−m

2k(n−m) = (2k − 1)n−m

This proves (11.5.11). �

11.6. Convolutions in general

There are several instances for obtaining generalisations of arithmetical con-
volutions. One is the case of functions defined on the semigroup X of finite
abelian groups G with respect to the direct product.
Let f : X → C, g : X → C be functions defined on X . The direct convolution [6]
of f and g is defined by

(11.6.1) ( f ·g)(G) =
∑

D×E=G

f (D)g(E),
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where the summation is over all pairs of groups D,E such that D×E = G. The
group of order 1 (the identity group) is denoted by G0. If T denotes the sub-
semigroup (of X) consisting of all finite cyclic groups, then T is isomorphic to
the multiplicative semigroup (N, ·) of positive integers under the correspondence
associating with each integer r ∈ N, the unique finite cyclic group of order r in X .
The elementary functions defined on X are

E(G) = 1, G ∈ X

E0(G) =

{
1, if G = G0

0, if G 6= G0

d(G) = the number of direct factors of G in X .

(11.6.2)

The theory of arithmetic functions could be developed parallely in the context
of the semigroup X . When X is replaced by T , Dirichlet convolution results
from (11.6.1). A generalization of the Prime Number Theorem [1] is obtained
by Eckford Cohen in the generalized set-up. See [6] for details.

Next, we consider the set

(11.6.3) L = {1,2, . . . ,r}, r ≥ 1

For x,y ∈ L, the product x · y is defined by

x · y = max{x,y}
Then, (L, ·) is a finite commutative semigroup of idempotents. We note that y
divides x if, and only if, y≤ x.
That is,

y≤ x⇔ y is less than or equal to x and

y≤ x⇔max{x,y} = x.

The element r in L serves as the zero element in (L, ·). (L,≤) is a lower semilattice.
The set {χa : a ∈ L} of semicharacters of L consists of the elements χa given by

(11.6.4) χa(y) =

{
1, if y≤ a;
0, otherwise.

The vector space V (L) spanned by the semicharacters χa (11.6.4) is finite dimen-
sional. dimV (L) = r. A function f : L→ C belongs to V (L).

Definition 11.6.1 : For f ,g ∈ V (L), the MAX convolution of f and g written
h = ( f ◦g) is given by

(11.6.5) h(x) = ( f ◦g)(x) =
∑

max{y,z}=x

f (y)g(z), for all x ∈ L.

When x = r, one has

(11.6.6) h(r) =
∑

max{y,z}=r

f (y)g(z) = g(r)
r∑

i=1

f (i) + f (r)
r∑

i=1

g(i) − f (r)g(r)

© 2007 by Taylor & Francis Group, LLC



SEMIGROUPS AND CERTAIN CONVOLUTION ALGEBRAS 363

In terms of χa (11.6.4), the ζ-function related to (L,≤) is given by

(11.6.7) ζ(a,x) = χa(x).

The generating function F of f ∈V (L) is defined by

F(a) =
∑

y∈L

f (y)χa(y) =
∑

y≤a

f (y), for all a ∈ L.

Theorem 88 (Haukkanen and Sivaramakrishnan (1998)) : For f ,g ∈ V (L), let
h = ( f ◦g), the MAX product of f and g. If F, G and H are the generating functions
of f ,g and h respectively, then,

H(a) = F(a)G(a), a ∈ L.

Proof follows on lines similar to the proof of theorem 86.
When L is as defined in 11.6.3, (L,≤) is a locally finite partially ordered set.

The Möbius function µ of (L,≤) exists and is given by

(11.6.8) µ(x,y) =





1, if x = y
−1, if y − x = 1 (x≤ y)
0, otherwise

Next, we consider the set

(11.6.9) D = {d : 1≤ d ≤ r and d|r}
D is the set of divisors of r. For x,y ∈ D, we define their product x∗ y = [x,y], the
l.c.m of x and y. Then (D,∗) is a finite commutative semigroup of idempotents.
|D| = d(r), the number of divisors of r. We write y|x, if y divides x in the number-
theoretic sense. The partial order≤ in D is given by

y≤ x⇔ y|x or y≤ x⇔ [x,y] = x

r serves as the zero element in (D,∗). Clearly (D,≤) is a lower semilattice. The
semicharacters of D are defined as in (11.6.4). We denote the semicharacters by
χa (a ∈ D). The set of semicharacters spans a vector space V (D) of dimension
d(r).

Definition 11.6.2 : For f ,g ∈ V (D), the LCM convolution of f and g, written
h = f ⊗g, is defined by

(11.6.10) h(x) = ( f ⊗g)(x) =
∑

[y,z]=x

f (y)g(z), x ∈ D,

where the summation is over all y,z ∈ D such that their l.c.m. is equal to x.
The ζ -function related to (D,≤) is given by

ζ(y,x) =

{
1, if x≤ y;
0, otherwise.
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We note that ζ(a,x) = χa(x). The generating function F of f ∈V (D) is given by

F(a) =
∑

y∈D

f (y)χa(y) =
∑

y≤a

f (y), for all a ∈ D,

That is,

(11.6.11) F(a) =
∑

[y,a]=a

f (y)

Theorem 89 : For f ,g ∈ V (D), let h = ( f ⊗ g). If F,G,H are the generating
functions of f ,g and h respectively

H(a) = F(a)G(a), a ∈ D.

Proof is omitted as it is similar to those of theorems 85 and 87.
We remark that the Möbius function of (D,≤) is

(11.6.12) µ(y,x) =





1, y = x,
(−1)k, if x

y = t is a product of k distinct primes,
0, if x

y = a2, a> 1.

More results of this nature are given in Haukkanen and Sivaramakrishnan [8].

11.7. A functional-theoretic algebra

Various types of arithmetical convolutions have been studied by many au-
thors. See M. V. Subbarao [14]. When the set A of arithmetical functions is
considered as a vector space over C, the field of complex numbers, we can asso-
ciate a Dirichlet series

∑∞
n=1 f (n)n−s (Re s > a) with each f ∈ A and it gives rise

to a correspondence between f ∈ A and F(s) =
∑∞

n=1 f (n)n−s (Re s > σa). Mul-
tiplication of Dirichlet series corresponds to Dirichlet convolution of arithmetic
functions.

It is known [1] that when
∑∞

n=1 | f (n)n−s| is not either convergent or diver-
gent for all s, there exists an abscissa of absolute convergence σa (say) such that∑∞

n=1 f (n)n−s converges absolutely for all Re s>σa. See Fact 10.6.1. We consider
a subset A(k) of the vector space of Dirichlet series as follows:

Let k be a real number > 1. A(k) consists of all arithmetic functions f ∈ A
such that their Dirichlet series

∑∞
n=1 f (n)n−s converge absolutely for all

Re s > k − δ (δ positive). Then, it follows that if f ∈ A(k),
∑∞

n=1 f (n)n−k is a
complex constant which we denote by F( f ,k). Let f ,g ∈A(k). Then, F( f ,k) and
F(g,k) are elements of C. Further, for α,β ∈ C

(11.7.1)
∞∑

n=1

(α f (n) +βg(n))n−k = αF( f ,k) +βF(g,k)

So, α f +βg ∈ A(k). In other words, A(k) is a subspace of A.
Let L :A(k)→ C be given by

(11.7.2) L( f ) = F( f ,k), f ∈A(k).
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Then, L is a linear functional on A(k). Further, if e0 ∈ A is given by

(11.7.3) e0(r) =

{
1, r = 1,
0, r > 1.

e0 ∈ A(k) and L(e0) = 1. That is F(e0,k) = 1.
We introduce a multiplication of elements ofA(k) in terms of the linear func-

tional L (11.7.2).

Definition 11.7.1 : For f ,g ∈ A(k), the product of f and g denoted by f × g is
defined as

(11.7.4) f ×g = F(g,k) f + F( f ,k)g − F( f ,k)F(g,k)e0

We verify that

(i) f ×g = g× f for all f ,g ∈ A(k)
(ii) f × e0 = e0× f for all f ∈ A(k)

(iii) L( f ×g) = L( f )L(g) for all f ,g ∈ A(k).
Further, if f ,g,h ∈ A(k) we have

(iv) f × (g×h) = ( f ×g)×h (associativity)
(v) f × (g + h) = f ×g + f ×h (distributivity)

We verify that f ×g ∈ A(k), whenever f ,g are A(k). Further,

(11.7.5) L( f ×g) = F(g,k)F( f ,k) = L( f )L(g).

So, (A(k),+,×) is a commutative algebra. We refer to (A(k),+,×) as a
functional-theoretic algebra, briefly written as F-T.A.

As an example, consider the functions φ (Euler totient) and e ≡ 1. φ and e
are elements of A(3).
We recall that

∞∑

n=1

φ(n)
ns =

ζ(s − 1)
ζ(s)

, Re s> 2

and
∞∑

n=1

e(n)
ns = ζ(s), Re s > 1.

From (11.7.4), we see that when Re s> 2

(11.7.6) φ× e = ζ(s)φ+
ζ(s − 1)
ζ(s)

e − ζ(s − 1)e0

and

(11.7.7) L(φ× e) = L(φ)L(e) = ζ(s − 1), Re s > 2.

(11.7.7) follows from (11.7.6).
Now, (11.7.4) could be considered in a more general set-up.
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Definition 11.7.2 : Let AF be a vector space over a field F. Suppose that L is a
linear functional on AF such that L(e0) = 1 for some e0 ∈ AF . For x,y ∈ AF , the
product x · y is defined by

(11.7.8) x · y = L(y)x + L(x)y − L(x)L(y)e0

Then, (AF ,+, ·) is called a functional-theoretic algebra (F-T.A).

A further generalization of (11.7.8) is as follows:

Definition 11.7.3 : [12] Let AF be a vector space over a field F. Given two
linear functionals L1 and L2 on AF with the property L1(e0) = L2(e0) = 1F for
some e0 ∈ AF , we define multiplication of two elements x,y ∈ AF by

(11.7.9) x · y = L1(x)y + L2(y)x − L1(x)L2(y)e0.

It is easy to check that multiplication (11.7.9) is associative and e0 serves as
the unity element in (AF ,+, ·). (AF ,+, ·) is called a functional-theoretic algebra.
It is denoted by AF(L1,L2).

There are interesting properties of (AF ,+, ·) when AF is a finite dimensional
vector space over F . These have been considered by Sebastian Vattamattam and
Sivaramakrishnan in [12] and [13]. It is shown in [13] that certain functional-
theoretic algebras are indeed convolution algebras in the sense of Hewitt and
Zuckerman [9]. It is also known that there exist convolution algebras which are
not functional-theoretic.

Postscript : To provide an essential background to the study of algebras, it
is desirable to study 2-dimensional real algebras. See Steven C. Althoen and
Lawrence D. Kugler [A1].

11.8. Notes with illustrative examples

The set Z̃ of non-negative integers is the simplest example of a semigroup
under addition. Let R be any commutative ring with unity 1R. The set A(R) of all
functions f : Z̃→ R is an R-module. We can define a multiplication (Cauchy) in
A(R) by writing

(11.8.1) ( f ·g)(n) =
n∑

i=0

f (i)g(n − i), f ,g ∈ A(R)

f ·g belongs toA(R). Multiplication is associative and commutative. It distributes
addition. A(R) is an algebra over R. Suppose that we define x : Z̃→ R by

(11.8.2) x(n) =

{
1, n = 1,
0, n 6= 1,

Then,

x · x(n) = x2(n) =

{
1, if n = 2,
0, n 6= 2.
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In general, for k ≥ 1

(11.8.3) x · x · x(n) (k factors) =

{
1, if n = k.
0, if n 6= k.

We express the left side of (11.8.3) by xk. Any f ∈ A(R) can be symbolically
shown as a power series:

(11.8.4) f = f (0) + f (1)x + f (2)x2 · · ·+ f (k)xk + · · ·

On account of (11.8.4), A(R) is called the algebra of formal power series with
coefficients from R. It is written as R[[x]] (See Section 4.5, chapter 4). The subset
B(R) of A(R) which consists of all functions f : Z̃→ R such that f (n) = 0 except
for at most a finite number of integers n ∈ Z̃ forms a subalgebra of A(R). B(R)
is the ring R[x] of polynomials with coefficients from R. R[x] is commutative
and has the unity element 1R, as an element of R[x]. R[x] is called the polyno-
mial algebra over R. As we have N (set of positive integers), as a semigroup un-
der multiplication, functions defined on an arbitrary semigroup G are considered.
The role of semicharacters is in obtaining a basis for the vector space of complex
valued functions defined on G. The familiar arithmetical convolutions are con-
volutions in the general set-up. So, there is sufficient justification in introducing
finite dimensional convolution algebras. A specific example is that of abstract
arithmetical functions defined on a commutative semigroup of idempotents [15].

11.9. Worked-out examples

a) A denotes the ring of arithmetic functions with addition and Dirichlet convo-
lution as the ring operations. (By Corollary 4.5.1 of chapter 4, A is a UFD).
Suppose that M denotes the set of functions f : R+→C where R+ denotes the
set of positive real numbers f (x) is assumed to be zero for 0< x< 1. (M,+) is
an abelian group. For α ∈ A, f ∈M, we define

(11.9.1) (α◦ f )(x) =
∑

n≤x

α(n) f (
x
n

).

Show that M is a left A-module using (11.9.1) for scalar multiplication.
Answer: From (11.9.1), it is clear that for α ∈A, f ∈M, α◦ f ∈M. α◦ f also
vanishes for x in (0,1). The operator ◦ is neither commutative nor associative.
However, we have

Lemma 11.9.1 : (Apostol) For α, β ∈A and f ∈M,

α◦ (β ◦ f ) = (α ·β)◦ f

where (α ·β) is the Dirichlet product of α and β.
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Proof : Let x > 0, Then,

(α◦ (β ◦ f )) =
∑

n≤x

α(n)


∑

m≤ x
n

β(m) f (
x

mn
)




=
∑

mn≤x

α(n)β(m) f (
x

mn
)

=
∑

r≤x


∑

n|r
α(n)β(

r
n

)


 f (

x
r

), where r is chosen as mn.

=
∑

r≤x

(α.β)(r) f (
x
r

)

= ((α ·β)◦ f ) (x).

�

We deduce from lemma (11.9.1) that as (M,+) is an abelian group and the
function ψ :A×M→M defined by ψ(α, f ) = α◦g satisfies

α◦ ( f + g) = α◦ f +α◦g,

(α+β)◦ f = α◦ f +β ◦ f ,(11.9.2)
(α ·β)◦ f = α◦ (β ◦ f ), by lemma 11.9.1
and e0 ◦ f = f ,

where e0 is the multiplicative identity inA. Thus, M is a unital leftA- module.
�

Remark 11.9.1 : Apostol [1] calls multiplication (11.9.2) a generalized Dirich-
let convolution. Therefore, it is appropriate to call M a convolution module.
Generalized Dirichlet convolution given above has been considered as ‘Niven
product’ mentioned in Section 9.5, chapter 9. Generalized Möbius inversion
was illustrated in theorem 73, in that context.

b) Describe the structure of a 2-dimensional algebra over a field F.
Answer: Let {e,a} be a basis for an algebra A (over a field F). We assume that
a 6∈ Fe, so that A is 2-dimensional. Multiplication is uniquely determined by
a ·a = a2.

Suppose that a2 = me+na ; m,n∈F . We consider h(x) = x2 −nx−m∈F[x].
As a2 − na − me = 0A, a is a ‘zero’ of h(x). The following cases arise.
Case (i): h(x) = 0 has two distinct roots α,β with α 6= β. α,β are determined
from the equation α+β = n, αβ = m. (x −α)(x −β) = 0 yields

(a −αe)(a −βe) = 0.

As α 6= β, we write b = a−αe
β−α . β 6∈ Fe. So, {e,b} forms a basis for A. It is

verified that b2 = b.
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Case (ii): h(x) = 0 has a unique repeated root in F . That is, h(x) = (x −α)2,
where α ∈ F.
We write b = a −αe. {e,b} is a basis for A and b2 = (a −αe)2 = h(a) = 0.
Case (iii): h(x) = 0 has no roots in F. Then, h(x) is an irreducible polynomial
over F .
Claim : A is a field.
Here, we write b = se + ta, s, t ∈ F , b ∈ A, b 6= 0A.

h(x) = (tx + s)q(x) + r(x),

where either r(x) = 0 or degr(x) = 0. That is r(x) = r (say) and r ∈ F . Writing
q(x) = t ′x + s′, we note that

h(a) = (ta + se)(t ′a + s′e) + re.

Or,

h(a) − re = (ta + se)(t ′a + s′e)

By the choice of a, a2 − na − me = 0A.
So,

(11.9.3) e = (ta + se)(
−(t ′a + s′e)

r
) = bb′ (say).

It follows that b′ serves as the inverse of b(6= 0). Hence, A is a field. �

Remark 11.9.2 : A 2-dimensional algebra A over a field F is either a field or
possesses a basis {e,b} wherein either b2 = d or b2 = 0A. If F is algebraically
closed (meaning that any polynomial f (x) ∈ F[x] has all its zeros in F), case
(iii) in the above solution does not arise.

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) Let A be an algebra over the field C of complex numbers. Suppose that
{e, i, j,k} be a basis for A (e, the identity) i2 = j2 = k2 = −e, i j = − ji = k,
jk = −k j = i, ki = −ik = j. If M2(C) stands for the algebra of 2× 2
matrices with entries from C, then A∼= M2(C).

b) Consider the algebra A over Q (the field of rational numbers) given by
a basis {1, i, j,k} and having the multiplication table

i j k
i −1 k − j
j −k −2 2i
k j −2i −2
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It happens that the four-dimensional algebra A given above has divisors
of zero.

c) (Alexander Abian) Let A be a 2-dimensional algebra over R, the field of
real numbers and having a basis: {e,b} where b2 = 0A. It is correct to
say that any product α ·β = 0A for α,β ∈ A.

d) (Alexander Abian) Let A be a 2-dimensional algebra overQ, the field of
rational numbers. If {e,b} is a basis for A such that e2 = b, e ·b = b ·e =
b2 = 0A, then, α ·β ·γ = 0A for all α,β,γ ∈ A.

e) Let S be an m-dimensional division subalgebra of an n-dimensional di-
vision A with unity eA. If the unity element of S is also eA, then, m
divides n.

f) Let A be a finite dimensional algebra over a field F. A subspace of A
which is at the same time a right and left ideal of A is called an ideal of
A. If Mn(F) denotes the algebra of n× n matrices with entries from F,
Mn(F) has no ideals other than the zero ideal and Mn(F).

2. Let (G, ·) be an arbitrary commutative semigroup. Suppose that xi

(i = 1,2, . . . ,n) belongs to G. If {π(1),π(2) . . .π(n)} is a permutation of the set
{1,2, . . . ,n}, show that

x1 · x2, . . .xn = xπ(1) · xπ(2) · · ·xπ(n)

3. The semigroup (N, ·) has the unity element 1 and so is a monoid. Let P =
{2,3,5, . . .}. P denotes the set of primes in N. Show that P generates N and
that P is contained in every set of generators of N.

4. Let GLn(C) denote the general linear group of order n overC. That is, GLn(C)
stands for the group of invertible n× n matrices with entries from C. An
n dimensional matrix representation of a semigroup G is a homomorphism
ρ : G→ GLn(C). If Pg is the image of g ∈ G under ρ, ρgh = ρgρh. ρg and ρh

are invertible matrices belonging to GLn(C). ρ is said to be faithful if ρ is an
isomorphism. That is, ρ maps G isomorphically onto its image. Show that
every semigroup of order n, commutative, or not, has a faithful representation
by matrices of order not exceeding (n + 1).

5. Describe all semigroups of order 2 up to isomorphism. (There are four of
them)

6. Let G be a finite semigroup having 3 elements. There are 9 algebras L1(G) of
dimension 3. Obtain one of them.

7. [Fröbenius] Let A be a finite dimensional division algebra over R, the field
of reals. If A is commutative, show that either A = R, the field of reals or
A = C, the field of complex numbers. If A is not commutative, show that A is
the four-dimensional algebra H of real quaternions.

8. Let H be a finite commutative semigroup of idempotents. An element e in H is
called a unit for multiplication, if e · x = x · e = x for all x ∈ H. If H has a unit
e, show that H has just one prime element e.
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9. Let AF be a vector space over a field F. Suppose that L :AF → F is a linear
functional such that L(e) = 1F for some e ∈AF . For x,y ∈ AF , we define

x · y = L(x)y + L(y)x − L(x)L(y)e

Then, (AF ,+, ·) is an algebra over F. (in fact, a functional-theoretic algebra).
Show that (AF ,+, ·) is a quasi-local algebra. If (AF ,+, ·) is a commutative
algebra, show that it has an idempotent other than e.

10. Give an example of a 3-dimensional convolution algebra which is not com-
mutative.

11. For arithmetic functions f , g; one defines unitary convolution of f and g by

( f ⊕g)(r) =
∑

d|r
g.c.d (d, r

d )=1

f (d)g(
r
d

)

where the summation is over those divisors d (of r) for which g.c.d (d, r
d ) = 1.

Examine whether unitary convolution can be obtained via a vector space of
complex-valued functions defined on an appropriate semigroup.

REFERENCES

[1] Tom M. Apstol: Introduction to Analytic Number Theory, Chapter 11
pp 224–248 UTM, Springer Verlag (1976).

[2] L. Carlitz: Arithmetical functions in an unusual setting, Amer. Math. Monthly,
73 (1966), 582–590.

[3] L. Carlitz: Arithmetical functions in an unusual setting II, Duke Math. J., 34
(1967), 757–759.

[4] Eckford Cohen: Rings of arithmetic functions, Duke Math. J., 19 (1952),
115–129.

[5] Eckford Cohen: Rings of arithmetic functions II. The number of solutions of
quadratic congruences, Duke Math. J., 21 (1954), 9–28.

[6] Eckford Cohen: Arithmetical functions of finite abelian groups, Math.
Annalen 142 (1961), 165–182.

[7] P. M. Cohn: An Introduction to Ring Theory, Chap 2 pp 53–58, SUMS,
Springer Verlag, Berlin-Heidelberg, 2nd printing 2001.

[8] Pentti Haukkanen and R. Sivaramakrishnan: On semigroups of idempotents
and certain arithmetical convolutions (unpublished manuscript) (1998).

[9] E. Hewitt and H. S. Zuckerman: Finite dimensional convolution algebras,
Acta Mathematica, 93 (1955), 67–119.

[10] T. W. Hungerford: Algebra GTM No:73 Springer Verlag. (1986) Chapter
VII, pp. 327–370.

[11] J. Knopfmacher: Abstract analytic Number Theory, North Holland Pub. Co.,
Amsterdam (1975).

© 2007 by Taylor & Francis Group, LLC



372 CHAPTER 11

[12] Sebastian Vattamattam and R. Sivaramakrishnan: Associative algebras via
linear functionals, Proc. Annual Conference of Kerala Math. Association
and International seminar on Mathematical Tradition of Kerala: Jan 17–19,
2000. pp. 81–89.

[13] Sebastian Vattamattam and R. Sivaramakrishnan: A note on convolution
algebras: Paper read at the International Conf. on ‘Recent Trends in Analysis’
held at St. Joseph’s college, Irinjalakuda (Kerala), December 16–18, 2000.

[14] M.V. Subbarao: On some arithmetical convolutions, Lecture Notes in Math.
# 251, Springer Verlag (1972), 247–271.

[15] M. Tainiter: Generating functions on idempotent semigroups with applica-
tions to Combinatorial Analysis, J. Comb. Theory, 5 (1968), 273–288.

ADDITIONAL REFERENCE

[A1] Steven C. Althoen and Lawrence D. Kugler: When is R2 a division
algebra?, Amer. Math. Monthly, 90 (1983), 625–635.

© 2007 by Taylor & Francis Group, LLC



Part III

A GLIMPSE OF ALGEBRAIC NUMBER THEORY

© 2007 by Taylor & Francis Group, LLC



CHAPTER 12

Noetherian and Dedekind domains

Historical perspective

The birth of algebraic number theory took place while attempts were made to
prove Fermat’s Last Theorem during the 18th century and early 19th century. The
creation of ideals had a bearing on the growth of ring theory. Ideals were used
long before homomorphisms reached the scene. There was a shift of emphasis
from ideals to homomorphisms. This was brought about by a German mathemati-
cian Emmy Noether (1882–1935). Her view of ring theory has had a tremendous
influence on the growth of ring theory. Van der Waerden’s (1903–1996) Modern
Algebra published in 1931 gave the modern view of algebra as he drew the the-
orems and their applications from the courses presented by E. Artin and Emmy
Noether, which he had attended at Gottingen. The class of rings which Emmy
Noether had investigated is known as the class of Noetherian rings in honour of
the great woman algebraist Emmy Noether. Among Noetherian rings are the ring
of integers and rings of polynomials.

The study of rings of algebraic integers strengthened the development of al-
gebraic number theory. The algebraic analogue of the fundamental theorem of
arithmetic is found in unique factorization domains. But, the uniqueness of fac-
torization of an element of a ring into a product of irreducibles is not true in
certain rings such as Z [

√
−5]. However, if one introduces the notion of ‘ideal’

numbers, uniqueness of factorization is retrieved. That is, ideals of a certain ring
called a Dedekind Domain, are expressible uniquely as a product of prime ideals.
This was a major contribution during early 20th century.

12.1. Introduction

This chapter is about the study of Noetherian rings, Artinian rings and Dedekind
domains. These are rings with certain ‘finiteness’ conditions: A Noetherian ring
R possesses three equivalent properties:

(i) R satisfies the ascending chain condition for ideals.
(ii) The maximum condition for ideals holds in R.

(iii) Every ideal of R is finitely generated.

This is discussed from the point of view of the ring of integers of quadratic num-
ber fields. Fermat’s two-square theorem is revisited. The Jacobson radical plays

375
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an important role in the study of primary ideals of a ring. The Lasker-Noether de-
composition theorem for Noetherian rings is proved. (See theorem 93). Artinian
rings are studied. The integral closure of a ring is introduced. It is shown that any
PID is integrally closed in its field of quotients. Properties of Dedekind domains
are given. A substitute for the fundamental theorem of arithmetic is shown for
Dedekind domains. It is about the unique factorization of a nonzero ideal of a
Dedekind domain into a product of prime ideals. (See theorem 101). The ring of
algebraic integers (a number ring corresponding to an algebraic number field) is
shown to be a Dedekind domain. Introducing congruences modulo an ideal of a
Dedekind domain, an analogue of the Chinese Remainder theorem is proved in
Section 12.7. Section 12.8 deals with integral domains having finite norm prop-
erty.

12.2. Noetherian rings

The ring Z of integers being a PID has the property that every ideal of Z is
generated by a single element. If d1 = p a prime, d2,d3, . . . ,dt = r are the divisors
of r, we can find a chain of divisors:

d1|ds1 ,ds1 |ds2 , . . . ,dsk−1 |dsk = r

This gives an ascending chain of principal ideals.

(12.2.1) (r)⊂ (dsk−1)⊂ ·· · ⊂ (ds2)⊂ (ds1)⊂ (p)

As (p) is a maximal ideal, the ascending chain of principal ideals (12.2.1) termi-
nates. In the case of a ring which is not commutative, one can look at ascending
chains of right ideals and left ideals separately. If each such ascending chain of
left and right ideals terminates, the ring is called a Noetherian ring. This phe-
nomenon of ‘ascending chain condition’ (briefly written as a.c.c) was noticed by
Emmy Noether in 1917. In what follows, we consider R to be a commutative ring
with unity.

Definition 12.2.1 : A ring R is said to satisfy a.c.c for ideals if, given any sequence
{In} of ideals of R with

I1 ⊆ I2 ⊆ ·· · ⊆ In ⊆ ·· · ,
there exists an integer m depending on {In} such that In = Im for all n≥ m.

A field F satisfies a.c.c for ideals trivially, as its only ideals are (0) and
F. In the case of Z, if m,n ∈ Z are such that m divides n, then, (n) ⊆ (m) and
(n)⊆ (m)⇒ m divides n. As a nonzero integer n ∈ Z has only a finite number of
distinct (non-associated) divisors, Z satisfies a.c.c for ideals which are principal
ideals, though. We referred to this as ACCP when we considered GCD domains
in Section 2.5 (see definition 2.5.1), chapter 2.

Not all rings satisfy a.c.c for ideals. Take for instance, the set R of all finite
subsets of Z+ with symmetric difference4 as addition and intersection as multi-
plication. (R,4,∩) is a commutative ring without unity. If In = {1,2,3, . . .n}, the
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power set P(In) of In is an ideal of (R,4,∩). Further,

P(I1)⊂P(I2)⊂ ·· · ⊂P(In)⊂ ·· ·
is a strictly ascending chain of ideals of R which does not terminate, as n goes on
increasing.

Definition 12.2.2 : A ring R is said to possess the property of maximum condition
for ideals, if every non-empty set M of ideals of R partially ordered under set-
inclusion has at least one maximal member, that is, an ideal which is not properly
contained in any other ideal belonging to M .

Definition 12.2.3 : An ideal I of a ring R is said to be finitely generated if there
exists a finite set S of elements of I such that S generates I. In other words, (S) = I.

Lemma 12.2.1 : The following statements about the ideals of a ring R are equiv-
alent:

(i) R satisfies a.c.c for ideals.
(ii) The maximum condition for ideals holds in R.

(iii) Every ideal of R is finitely generated.

Proof : (i)⇒(ii)
Let M be a non-empty collection of ideals of R. Suppose that M has no

maximal element. We will arrive at a contradiction to the data in (i).
Since M is non-empty, we can pick an ideal I1 ∈M . By our assumption, I1

is not a maximal element of M . So I1 is contained in a proper ideal I2 belonging
to M . Likewise, as I2 is not a maximal element in M , there exists an ideal I3

belonging to M such that I2⊆ I3. Proceeding thus, we obtain an infinite ascending
chain of ideals of R, namely,

I1 ⊂ I2 ⊂ I3 ⊂ ·· ·
all of whose inclusions are proper. This violates a.c.c for ideals and hence M has
a maximal element. Or, (i)⇒ (ii).
(ii) :⇒ (iii)

Suppose that the maximum condition for ideals holds in R. Let I be an ideal
of R. If I = (0R), it is finitely generated (generated by 0R). If I 6= (0R), we pick a
nonzero element a1 ∈ I. If the principal ideal (a1) = I, we are through. Otherwise,
there exists an element a2 ∈ I which does not belong to (a1). Then,

(a1)⊂ (a1,a2)⊆ I.

If (a1,a2) 6= I, there exists a3 ∈ I, a3 /∈ (a1,a2) such that

(a1,a2)⊂ (a1,a2,a3)⊆ I

Proceeding thus, we obtain an ascending chain of ideals of R in the form

(12.2.2) (a1)⊂ (a1,a2)⊂ (a1,a2,a3)⊂ ·· · ⊂ (a1,a2, . . . ,an)⊂ ·· ·
The maximum condition for ideals ensures that the collection M of ideals (a1),
(a1,a2), . . ., (a1,a2,a3, . . . ,an), . . . has a maximal element say (a1,a2, . . . ,am) for
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some m ∈ N. If I 6= (a1,a2, . . . ,am), we could pick an element a ∈ I and
a 6∈ (a1, . . . ,am). Then, the ideal (a1,a2,a3, . . . ,am,a) contains (a1,a2, . . . ,am)
properly and so spoils the maximality of (a1,a2, . . . ,am) in the collection M of
ideals contained in I. This contradiction shows that the ascending chain of ideals
in (12.2.2) terminates and so I = (a1,a2, . . . ,am). Thus, I is finitely generated. This
proves (ii)⇒ (iii).
(iii)⇒ (i)

We choose an ascending chain of ideals (of R) of the form

(12.2.3) I1 ⊆ I2 ⊆ I3 ⊆ ·· · ⊆ In ⊆ ·· ·
Let I = ∪nIn. Then, I is an ideal of R. By (iii), I is finitely generated.

Suppose that I = (a1,a2, . . . ,at).
Each element ak (k = 1,2, . . . , t) of the set of generators is an element of some
ideal Iik of the chain in (12.2.3). Choosing m to be the largest of the suffixes ik we
note that all the elements ak (k = 1, . . . t) are contained in Im. However, for n≥ m,

I = (a1,a2, . . . ,at)⊆ Im ⊆ In ⊆ I

Therefore, In = Im for n≥m and so the chain of ideals in (12.2.3) terminates. This
is true for any arbitrary chain of ideals. That is, R satisfies a.c.c for ideals. Thus,
(iii)⇒ (i). �

Definition 12.2.4 : A ring R which satisfies any one of the equivalent conditions
of lemma 12.2.1 is called a Noetherian ring (in honour of Emmy Noether who
initiated the study of such rings). An integral domain which is Noetherian is said
to be Noetherian domain.

We remark that it is advantageous to utilize the fact that in a Noetherian ring,
every ideal is finitely generated. Z is, indeed, the simplest non-trivial example of
a Noetherian ring. If nZ is an ideal of Z, Z/nZ is also Noetherian, as Z/nZ is
finite.

Definition 12.2.5 : A ring R′ is called a homomorphic image of a ring R, if there
exists a homomorphism ψ : R→ R′ which is onto.

Fact 12.2.1 :
(i) Any homomorphic image of a Noetherian ring is Noetherian.

(ii) If I denotes an ideal of a Noetherian ring R, then R/I is Noetherian.

For proof, see D. M. Burton [3].

12.3. More about ideals

We confine ourselves to a commutative ring R with unity 1R.
Let R,R′ be commutative rings. If ψ : R→ R′ is a ring homomorphism,

when I is an ideal of R, it is not necessary that ψ(I) is an ideal of R′. For instance,
if (a) denotes a nonzero ideal of Z, when ψ : Z→ Q (the field of rationals) is an
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embedding of Z in Q, ψ : (a) = a
1 ∈ Q. But, if p/q ∈ Q, p

qψ(ka) = p
q

ka
1 6∈ ψ((a)).

However, when J is an ideal of R′, ψ−1(J) is an ideal of R.

Definition 12.3.1 : Let ψ : R→ R′ be a ring homomorphism. If J is an ideal of
R′, ψ−1(J) = Jc is called the contraction of J via ψ.

We observe that if J is a prime ideal of R′, Jc is also a prime ideal of R.

Definition 12.3.2 : Let ψ : R→ R′ be a ring homomorphism. Suppose that I
denotes an ideal of R. The extension Ie of I via ψ is defined as the ideal ψ(I)R′

which is generated by ψ(I) in R′.

To be precise, Ie is given by the set

(12.3.1) {
∑

finite

biψ(ai) : ai ∈ I, bi ∈ R′}.

When I is a prime ideal of R, Ie need not be a prime ideal of R′. For, if ψ : Z→Q
is the embedding of Z inQ and I = (p), where p is a prime in Z, Ie is a non-trivial
ideal of Q implies that Ie =Q (as Q is a field). So, Ie is not a prime ideal of Q.

We look at the diagram of homomorphisms

(12.3.2) R
ψ→ ψ(R)

ψ′→ R′.

ψ(R) is a subring of R′. ψ is onto ψ(R). ψ′ : ψ(R)→ R′ is one-one. It is known [3]
that there is a one-one correspondence between the ideals of ψ(R) and the ideals
of R which contain ker ψ. Also, the prime ideals of ψ(R) correspond to the prime
ideals of R which contain ker ψ. Nothing specific can be said about ψ′. We wish
to examine the situation in Z[i], the ring of Gaussian integers.

Let Q(
√

m) be the quadratic extension of Q by
√

m where m is a square-free
integer. R(m) is the ring of algebraic integers of Q(

√
m). The structure of R(m) is

given in theorem 14, chapter 3.
If α ∈Q(

√
m), the norm N(α) (see definition 3.3.2, chapter 3) is given by

N(α) = a2 − b2m, if α = a±b
√

m

Let S(m) denote the set of norms of nonzero algebraic integers of Q(
√

m). Since
norms of algebraic integers are rational integers, S(m) ⊆ Z. As 1 ∈ R(m),
1 = N(1)∈ S(m). Now, a+b

√
m∈ R(m) is such that a,b∈Z, when m 6≡ 1 (mod 4).

Now, if m 6≡ 1 (mod 4), n ∈ Z⇒ n ∈ S(m) if, and only if, the Diophantine
equation x2 − my2 = n has a solution. Suppose that α ∈ R(m). Then, N(α) = n if,
and only if, α = a + b

√
m has the property that a,b ∈ Z. This happens only when

m 6≡ 1 (mod 4).

Lemma 12.3.1 : Suppose that α∈ R(m) and N(α) is an irreducible in S(m). Then,
α is an irreducible in R(m).

Proof : Suppose that β ∈ R(m) and β|α. Then, N(β)|N(α). As α is an irreducible
in R(m), N(β) =±1 in which case β is unit or N(β) =±N(α). In the latter case, α
and β are associates. So, α is an irreducible in R(m). �
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Corollary 12.3.1 : If N(α) is a prime in Z, then, α is a prime in R(m).

For, an element of S(m) which is a prime in Z is, of course, a prime in S(m)
(with stronger reason, as S(m)⊆ Z). So α is a prime in R(m).

Let R(m)∗ = R(m) \ {0}. A non-unit α in R(m)∗ is a prime if, and only
if, its only divisors are its associates and the units. Since the conjugation map
ψ̄ : R(m)→ R(m) given by ψ̄(α) = ᾱ is an automorphism of the ring R(m), α is a
prime in R(m) if, and only if, ᾱ is a prime in R(m).

The essence of lemma 12.3.1 is that elements α of R(m) with norm N(α), a
prime, in S(m), are irreducible in R(m).

Let p be a rational prime in Z. Then, p may or may not be an element of
S(m). If neither p nor −p is in S(m), then p2 = N(p) ∈ S(m) is a prime in S(m). By
lemma 12.3.1, p is an irreducible in R(m). We say that p stays prime in R(m) or p
is inertial. If p is not an irreducible in R(m), ±p is a norm ∈ S(m), such that for
some α ∈ R(m),

N(α) = αᾱ =±p ∈ S(m)

Then, α and ᾱ are irreducible in R(m), by lemma 12.3.1. There are occasions
where α and ᾱ are associates. In such cases, we say that p ramifies. Where α and
ᾱ are not associates, we say that p splits in R(m) (as the word suggests).

Lemma 12.3.2 : If R(m) is a UFD and α is a prime in R(m), then, N(α) =±p or
±p2 for some rational prime p.

Proof : If |N(α)| denotes the absolute value of N(α), we note that α divides
|N(α)|. So, there is a least positive integer t such that α|t in R(m). Let t = r · s
in Z. Then, α|r or α|s in R(m). The minimality of t forces t = r or t = s. So, t is a
prime in Z. But, then,

αᾱ = N(α)|N(t) or N(α)|t2.

So, N(α) =± t or ± t2 and t is a prime. �

Next, we consider odd primes p in Z and the case where R(m) is a UFD.

Theorem 90 (Ethan D. Bolker [1970]) : Suppose that R(m) is a UFD. If p is an
odd prime, the nature of p in R(m) is determined in the following manner: Let
(m|p) denote the Legendre symbol (see (6.0.1) in chapter 6).

(i) p ramifies in R(m), if (m|p) = 0.
(ii) p splits in R(m), if (m|p) = 1.

(iii) p is inertial in R(m), if (m|p) = −1.

Proof : We begin with (iii). If (m|p) = −1, m is not a quadratic residue (mod p).
So, the Diophantine equation

(12.3.3) x2 − my2 =±p

has no solution. For, if x2 −my2 = kp has a solution, where p - k, p -m, g.c.d (p,x) = 1
and g.c.d (p,y) = 1. Then,
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x2 ≡ my2(mod p) implies (xy′)2 ≡ m(mod p),

where yy′≡ 1 (mod p). So, then, m is a quadratic residue mod p—a contradiction.
Therefore,±p /∈ S(m). So, p is inertial in R(m) or p stays prime in R(m). That is,
p is inertial in R(m)⇔ (m|p) = −1, as p2 = N(±p) ∈ S(m) is a prime in S(m) (as
±p 6∈ S(m)).

Next, we go to (i) and (ii). If p|m, then, p divides p2 − m.
Now, x2 ≡ m(mod p) has a solution, if (m|p) = 1. In either case,

p|(x2 − m) = (x +
√

m)(x −
√

m), for some x ∈ Z.
If p is a prime in R(m) (assumed to be a UFD) p divides either x +

√
m or x −

√
m.

Since p 6= 2, neither x+
√

m
p nor x−

√
m

p is an algebraic integer. So, p is not a prime in
R(m).

Next, take ±p ∈ S(m): Therefore, there are integers a,b ∈ Z such that
α = a + b

√
m ∈ R(m) and αᾱ = N(α) = ±p = a2 − mb2, where m ≡ 1 (mod 4).

Also,

r =
a + b
√

m
2

∈ R(m)

and
4rr̄ = 4N(r) =±4p = a2 − mb2, if m≡ 1(mod 4).

So, for each value of m (either ≡ 1 (mod 4) or 6≡ 1 (mod 4))

p|a⇒ p|m

When
α

ᾱ
is a unit in R(m), α ramifies in R(m). But,

α

ᾱ
=

α2

N(α)
=
α2

±p

So, p ramifies in R(m) if, and only if, p|α2. Now,

(a2 + mb2) + 2ab
√

m =

{
α2, if m 6≡ 1(mod 4);
4α2, if m≡ 1(mod 4).

So p|a implies p|α2. Conversely, if p|α2, p|2ab. So, p (being odd) divides a or b.
If p|a, we are done. If p|b, we will have p |a, as p |(a2 + mb2). So, p|α2⇒ p|a.
So, p ramifies in R(m)⇔ p|m⇔ (m|p) = 0.

p splits in R(m)⇔ x2 ≡ m (mod p) has a solution⇔ ( m
p ) = 1. These are the

statements in (i) and (ii). �

Remark 12.3.1 : Theorem 90 has been adapted from Ethan D. Bolker [2].

Corollary 12.3.2 : In the case of Z[i], a prime of the form 4k + 1 splits in Z[i] as
(−1|p) = 1. A prime of the form 4k + 3 is inertial in Z(i), as (−1|p) = −1.
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Remark 12.3.2 : We give another proof of Fermat’s Two-square theorem: Any
prime of the form 4k + 1 can be expressed as a sum of two squares. (See theorem
4 of chapter 1).

Proof : We consider the diagram of homomorphisms

Z ψ→ Z[i]
ψ′→ C

For a ∈ Z, ψ(a) = (a,0) and ψ′ is the inclusion map.
By an inclusion map we mean the following:
Let B⊂A. If 1A : A→ A is the identity map, 1A : B→A is called the inclusion

map of B into A.
A prime ideal (p) in Z may or may not stay as a prime ideal in Z[i]. If p≡ 3

(mod 4), p is inertial in Z[i] and so stays a prime in Z[i].
If p≡ 1 (mod 4), p splits in Z[i]. So, if (p) is an ideal of Z, (p)e is a product of
two prime ideals in Z[i]. That is, (p)e = IJ where I = (a + bi) and J = (a − bi). I,J
are prime ideals of Z[i], as a + bi and a − bi are non-associated primes in Z[i]. So,
p can be written as a2 + b2. �

Illustration 12.3.1 :
(a) The ideal (2)e in Z[i] is generated by (1 + i)2.
(b) The ideal (5)e in Z[i] is the product of the prime ideals (2 + i) and (2 − i) in

Z[i].

Definition 12.3.3 : Let I be an ideal of a ring R. The nilradical of I, written
√

I,
is defined by

√
I = {r ∈ R : rn ∈ I, for some n (depending on r) ∈ N}

Definition 12.3.4 : x ∈ R is called a nilpotent element (or simply nilpotent), if
there exists a positive integer n such that xn = 0R.

We observe that the nilradical of I may be considered as the set of those
elements r ∈ R such that the coset r + I in R/I is nilpotent (as an element of R/I).

Definition 12.3.5 : The nilradical of the zero ideal (of R) is referred to as the
nilradical of R.

We observe that the nilradical of R consists of all the nilpotent elements of R.

Lemma 12.3.3 : Given an ideal I of R,
√

I is an ideal for which I ⊆
√

I holds.

Proof : It is obvious from the definition of
√

I that I ⊆
√

I, as x ∈ I⇒ x1 = x ∈ I.
Now, R is a commutative ring with unity. The binomial expansion for (a − b)n

holds for all n≥ 2. Also, every term in the expansion of (a − b)n+m contains either
an or bm as a factor. So, (a − b)n+m ∈ I. This shows that when a,b ∈

√
I, (a − b)

is also an element of
√

I, when an ∈ I, bm ∈ I respectively. If r ∈ R and a ∈
√

I,
as an ∈ I for some n ∈ N, (ra)n = rnan ∈ I. So, ra ∈

√
I. Thus,

√
I is an ideal of

R. �
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Theorem 91 : Let n = pa1
1 pa2

2 · · · pak
k (pi primes, ai ≥ 1; i = 1,2, . . . ,k). If I = (n),

the ideal generated by n in Z, then the nilradical of I is given by
√

I = (p1 p2 · · · pk)

(the ideal generated by the product of the prime factors of n).

Proof : Let q = p1 p2 · · · pk. If a = max{a1,a2, . . . ,ak},
then qa ∈ (n) = I. By definition, q ∈

√
I. So (q)⊆

√
I.

Next, let m ∈ N. If mb is divisible by n for some b≥ 1, then, m ∈
√

I. Then,
m is divisible by each of the prime factors p1, p2, . . . pk of n. So,

m ∈ (p1)∩ (p2) · · · ∩ (pk) = (p1 p2 · · · pk) = (q)

Therefore,
√

I ⊆ (q). Thus,
√

I = (q). �

Definition 12.3.6 : An ideal I of a ring R is called a primary ideal, if the condi-
tions ab ∈ I and a /∈ I together imply that bn ∈ I for some n ∈ N.

Clearly, a prime ideal is a primary ideal.
The motivation for considering primary ideals is from the fact that any integer

n > 1 contains a prime factor p occurring to a power m ≥ 1. If I = (pm), given
ab ∈ I, a 6∈ I, b is divisible by an sth-power of p (s≥ 1).

Fact 12.3.1 : An ideal I (of R) is primary, if, and only if, whenever ab ∈ I, a 6∈ I,
b ∈
√

I.

Proof follows from definition 12.3.6.
In Z, primary ideals are precisely the principal ideals generated by the prime

powers pm (m≥ 1), together with the improper ideals (0) and Z.

Lemma 12.3.4 : If Q is a primary ideal of a ring R, its nilradical
√

Q is a prime
ideal.

Proof : If ab ∈ √Q, a /∈ √Q, then there exists a positive integer n such that
(ab)n = anbn ∈Q and an /∈Q. (For, otherwise, a will be in

√
Q). As Q is a primary

ideal, there exists a positive integer m such that (bn)m = bnm ∈Q. That is, b∈√Q.
So,
√

Q is a prime ideal. �

Note :
√

Q is called the prime ideal associated with the primary ideal Q.

Remark 12.3.3 :
(1) In the case of Z, we have seen that if I = (n), where n = pa1

1 pa2
2 ..p

ak
k

(pi primes, ai ≥ 1; i = 1,2, . . . ,k),
√

I = (q) where q = p1 p2 · · · pk. So,
different principal ideals may have the same nilradical (q). In the same
manner, different primary ideals may have the same associated prime
ideal as their nilradical.

(2) It can be shown that if Q is a primary ideal (of R),
√

Q is the smallest
prime ideal containing Q.

(3) If Q is a primary ideal of R, R/Q will have divisors of zero.
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When Q is a primary ideal, the zero divisors of R/Q have a special property.

Fact 12.3.2 : Let I be an ideal of R. Then I is primary⇔ every zero divisor a + I
of R/I is nilpotent.

For, if I is a primary ideal of R , we consider a + I of R/I. Then, there exists
b + I, b 6∈ I such that

(a + I)(b + I) = ab + I = I
This shows that ab ∈ I and as b /∈ I, there exists n ∈ N such that an ∈ I, since I
is a primary ideal of R. So, (a + I)n = an + I = I. Therefore a + I is nilpotent as an
element of R/I.

Next, suppose that for an ideal I of R, every zero divisor of R/I is nilpotent.
Let ab ∈ I with b /∈ I. Then,

ab + I = (a + I)(b + I) = I with b + I 6= I

If a+I 6= I, a+I is a zero divisor of R/I. a+I is given to be nilpotent. So, (a+I)n = I
for some n∈N. This means that an ∈ I. Therefore, whenever ab∈ I, b /∈ I, an ∈ I,
for some n ∈ N. That is, I is a primary ideal of R.

12.4. Jacobson radical

The structure of a ring is studied from various points of view. In the case of
an integral domain, we check whether it belongs to any of the types (i) a PID (ii)
a Euclidean domain (iii) a GCD domain or (iv) a Noetherian domain. Z is all of
these.
The notion of the Jacobson radical of a ring helps to understand the structure of
a ring in a different way. We come across the idea of semisimplicity which is yet
another property possessed by Z. Henceforth, R denotes a commutative ring with
unity 1R.

Definition 12.4.1 : The Jacobson radical of a ring R, denoted by J(R), is the set

(12.4.1) J(R) = ∩{M : M is a maximal ideal of R}
Definition 12.4.2 : If J(R) = (0R), R is said to be a semisimple ring.

If F is a field, its only ideals are (0F) and F . (0F) is a maximal ideal of F
and so any field is a semisimple ring. A theorem of Krull-Zorn [3] says that in a
commutative ring with unity, every proper ideal is contained in a maximal ideal.
Therefore, the Jacobson radical exists, as every commutative ring with unity has
at least one maximal ideal.

We observe that Z has an infinite number of maximal ideals of the form (p)
where p is a prime. We claim that Z is semisimple. That is, J(Z) = (0). For, if
J(Z) 6= (0), J(Z) is a principal ideal generated by an integer n (say). As n has only
a finite number of distinct prime divisors, (n) cannot belong to an infinite number
of maximal ideals of Z. Therefore,

∩∞i=1(pi) = (0),
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where the intersection is over all the prime ideals (pi) (which are maximal) of Z.
See Theorem 92.

Lemma 12.4.1 : Let I be an ideal of R. Then, I ⊆ J(R) if, and only if, each
element of the coset 1R + I is a unit in R.

Proof : ⇐: Suppose that each member of 1R +I is a unit in R and I is not contained
in J(R). There exists a maximal ideal M of R such that I is not contained in M.

Let a ∈ I and a /∈M. The maximality of M implies that the ideal generated
by M and a is R. We express this by writing (M,a) = R. From this, we have
1R = m + ra where m ∈M, r ∈ R.
Then, m = 1R −ra∈ 1R + I, as a∈ I. Therefore, m is a unit in R. This is impossible,
since no proper ideal of R contains a unit. So, I ⊆ J(R).

:⇒ Conversely, suppose that I ⊆ J(R) and that there is some element a∈ I for
which 1R + a is not a unit in R. This will lead to a contradiction. As 1R + a is not a
unit, 1R + a belongs to some maximal ideal M of R (as every ideal is contained in
a maximal ideal). Since a ∈ I, and I ⊆ J(R), a ∈ J(R). Thus, a ∈M.

So, (1R + a) − a = 1R ∈ M, a contradiction. Therefore, if I ⊆ J(R), every ele-
ment of 1R + I is a unit in R. �
Corollary 12.4.1 : In a commutative ring with unity 1R, an element a (of R)
belongs to J(R) if, and only if, 1R − ra is a unit for each r ∈ R.

Lemma 12.4.2 : Let R be a commutative ring with unity 1R. Then, R/J(R) is a
semisimple ring.

Proof : As J(R) is an ideal of R, it makes sense to talk about the quotient ring
R/J(R). We consider a coset a + J(R) in J(R/J(R)).
As a + J(R)∈ J(R/J(R)), by corollary 12.4.1,

(1R + J(R)) − (r + J(R))(a + J(R)) = 1R − ra + J(R)

is a unit in R/J(R) for each choice of r ∈ R giving distinct cosets in R/J(R). So,
there exists b + J(R)∈ R/J(R) such that

(1R − ra + J(R))(b + J(R)) = 1R + J(R),

That is, b − rab + J(R)∈ 1R + J(R) or 1R − (b − rab)∈ J(R).
Now, b − rab = 1R − (1R − b + rab) is a unit in R as 1R − b + rab∈ J(R). So,

b(1R − ra)c = 1R, for c, a unit in R.

So, 1R − ra is a unit in R for each r ∈ R. By corollary 12.4.1 a ∈ J(R). Therefore,
a + J(R) = J(R) which is an intersection of maximal ideals of R.

There is a one-one correspondence between the maximal ideals of R/J(R)
and the maximal ideals of R containing J(R).

So,
a + J(R)∈ J(R/J(R))⇒ a ∈ J(R),

or, J(R/J(R)) = the zero ideal (J(R)) in R/J(R).
Thus, R/J(R) is semisimple. �
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Remark 12.4.1 : Given a ring R, J(R) is the smallest ideal of R such that R/J(R)
is semisimple.

For, suppose that I is an ideal of R such that R/I is semisimple.
We consider the natural homomorphism ν : R→ R/I which is onto R/I.

J(R/I) = ∩{B : B is a maximal ideal of R/I}
If B is a maximal ideal of R/I, its preimage A under ν is given by

A = {x ∈ R : ν(x) ∈ B}
A is a maximal ideal of R containing I. So,

J(R/I) = ∩{ν(A) : A is a maximal ideal of R containing I}.
Now, it is easily checked that ν(A) = A/I. So,

ν(I + J(R)) = (I + J(R))/I.

Since R/I is semisimple, J(R/I) = (I).
But, ∩{ν(A) : A is a maximal ideal of R containing I} contains
ν(I + J(R)) = (I + J(R))/I.
So, J(R/I) = (I)⊇ (I + J(R))/I.
As (I) is the zero element in R/I, (I)⊆ (I + J(R))/I.
So, (I + J(R))/I = (I).
This can happen only when J(R)⊆ I.
This establishes Remark 12.4.1. Next, we obtain an analogue of Euclid’s theorem
on infinitude of primes using the fact that Z is a semisimple ring.

Theorem 92 (D. M. Burton (1970)) : Let R be a PID. Then, R is semisimple if,
and only if, R is a field or R has an infinite number of maximal ideals.

Proof : ⇐: Given R is a PID. Suppose {pi} denotes the set of primes in R. The
maximal ideals in R are precisely the principal ideals (pi). Let a ∈ J(R). If a 6= 0R

then, a ∈ J(R) if, and only if, a is divisible by each prime pi. If R has an infinite
number of maximal ideals, then, a has to be 0R. So, J(R) = (0R). Thus, R is
semisimple.

:⇒ Suppose that R is semisimple. If R contains only a finite number of
primes, say, p1, p2, . . . , pk; then

J(R) = ∩k
i=1(pi) = (p1 p2 . . . pk) 6= (OR)

So, then, R cannot be semisimple. So, R is semisimple⇒R has an infinite number
of maximal ideals.

When the set {pi} of primes in R is empty, each nonzero element of R is a
unit. Since a nonzero non-unit in R is divisible by a finite number of primes by
the uniqueness of factorization of a non-unit into a product of primes, {pi} = ∅
implies that R is a field in which case J(R) = (OR). �
Corollary 12.4.2 : As Z is a PID and Z is semisimple, Z has an infinite number
of maximal ideals which in turn implies that the number of primes in N is infinite.
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12.5. The Lasker–Noether decomposition theorem

In Z, a nonzero non-unit has the factorization

n =±pa1
1 pa2

2 · · · pak
k (pi are primes, ai ≥ 1, i = 1,2, . . .k).

When expressed in terms of ideals, one gets

(n) = (pa1
1 )∩ (pa2

2 )∩ ·· ·∩ (pak
k )

where each (pai
i ) is a primary ideal of Z. This sort of representation of an ideal is

valid in a Noetherian ring. In this connection, it is appropriate to quote O. Zariski
and P. Samuel [16]:

“The theorem we are going to prove states that in a Noetherian ring, every
ideal is an intersection of primary ideals. In many aspects, this theorem reduces
the study of arbitrary ideals to that of primary ideals. The theorem does not ex-
tend, however to non-Noetherian rings, even if infinite intersections are allowed.
The theorem was first proved in the case of polynomial rings by the chess-master
Emanuel Lasker who introduced the notion of a primary ideal. His proof was
involved and computational. To Emmy Noether is due the recognition that the
theorem is a consequence of a.c.c and the proof given here is essentially hers!”.

We consider, as usual, commutative rings with unity and describe the proof
of Lasker-Noether theorem (see theorem 93).

Definition 12.5.1 : A ideal I of a ring R is said to be irreducible if it is not the
intersection of ideals (of R) properly containing I. If it is, otherwise, I is called
reducible.

An example of an irreducible ideal is a prime ideal P of R. For, suppose that
there exist ideals I and J of R such that

P = I∩ J, P⊂ I, P⊂ J.

We pick elements a,b,∈ R such that a ∈ I \P, b ∈ J \P. Then, ab is in both I
and J. Therefore ab ∈ I∩ J = P. As P is a prime ideal, either a ∈ P or b ∈ P —a
contradiction to the choice of a,b. So, P = I∩J with P⊂ I, P⊂ J is unacceptable.
That is, P is an irreducible ideal of R. However, there exist primary ideals Q (of
R) which are reducible.

Lemma 12.5.1 : Every ideal of a Noetherian ring R is a finite intersection of
irreducible ideals.

Proof : Let F be the family of all ideals (of R) which are not finite intersections
of irreducible ideals. If F 6= ∅, F has a maximal element J, as R is Noetherian.
Any ideal (of R) containing J must be a finite intersection of irreducible ideals.
Since J /∈ F , J is not irreducible, we write J = I∩K where I,K are ideals strictly
containing J. The maximality of J implies that I and K are finite intersections of
irreducible ideals. Then, J is also so. This contradicts the fact that J ∈ F . Thus,
F 6= ∅ is incorrect and so F is empty. This proves the lemma. �
Lemma 12.5.2 : In a Noetherian ring, every irreducible ideal is a primary ideal.
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Proof : We establish a statement which is the contrapositive of the assertion in
the statement of lemma 12.5.2.

Let I be an ideal (of R) which is not primary. There exists a pair a,b∈ R such
that ab ∈ I, b /∈ I and am /∈ I for all m≥ 1.

Now,
I : (a)⊆ I : (a2)⊆ ·· · ⊆ I : (an)⊆ ·· ·

forms an ascending chain of ideals of R. By definition 2.3.6 of chapter 2,

I : (a) = {x ∈ R : x(a)⊆ I}.
When xa ∈ I, xa2 ∈ I, · · · . So, x ∈ I : (a)⇒ x ∈ I : (a2).
That is, if xan ∈ I, xan+1 ∈ I (n≥ 1).
Since R is Noetherian, there exists an integer m ∈ N such that I : (am) = I : (am+1).

Claim :

(12.5.1) I = I : (am)∩ (I,b),

where (I,b) denotes the ideal generated by I and b. (We have assumed that b /∈ I).
Now, I ⊆ I : (am) and also I ⊆ (I,b). So,

(12.5.2) I ⊆ I : (am)∩ (I,b)

To obtain the reverse inclusion, we proceed as follows:
Let r ∈ I : (am)∩ (I,b).

Then, r can be written as r = s + tam = x + yb, where s,x ∈ I, t,y ∈ R.

tam+1 = (x + yb)a − sa

= (x − s)a + yab∈ I.

So, t ∈ I : (am+1) = I : (am), so tam ∈ I.
Therefore, r = s + tam ∈ I. This shows that

(12.5.3) I : (am)∩ (I,b)⊆ I.

From (12.5.2) and (12.5.3), (12.5.1) follows.
Therefore, I ⊂ I : (am) (inclusion is strict as am /∈ I).

Also, b /∈ I. So I ⊂ (I,b). From (12.5.1), we note that I is reducible.
So, an irreducible ideal of R is a primary ideal, by contrapositive argument.

�

Lemma 12.5.3 : Let P,Q be ideal of R such that Q⊂ P⊂√Q.
Suppose that for a,b∈ R. ab∈ Q with b /∈ P, one has a ∈Q. Then, Q is a primary
ideal of R with P =

√
Q.

Proof : Stage 1: Q is a primary ideal.
Let ab ∈ Q with b /∈ Q. Then a ∈ P ⊆ √Q. So, an ∈ Q for some n ∈ N. So Q is
primary.
Stage 2: P =

√
Q.

It suffices to show that
√

Q⊆ P. Let b ∈ √Q. Then, there exists m ∈ N such that
bm ∈Q. Suppose that m is chosen in such a way that m is the least positive integer

© 2007 by Taylor & Francis Group, LLC



NOETHERIAN AND DEDEKIND DOMAINS 389

which serves to make bm ∈ Q.
If m = 1, b ∈ Q⊆ P. So, b ∈ √Q⇒ b ∈ P or

√
Q⊆ P.

If m> 1, we have bm = bm−1 ·b ∈ Q with bm−1 /∈ Q.
Hence b ∈ Q or b ∈ P. So

√
Q ⊆ P. As P is given to be contained in

√
Q,

P =
√

Q. �
Note :

√
Q is a primary ideal (of R) associated with Q.

Definition 12.5.2 : For an ideal I of R, I =∩n
i=1Qi is called an irredundant primary

decomposition of I, if each Qi (i = 1,2, . . .n) is a primary ideal (of R) and if
(i) no Qi contains the intersection of other primary components, that is,

(12.5.4) ∩i6= jQi 6= ∩n
i=1Qi, for any j = 1,2, . . . ,n.

(ii)
√

Qi 6=
√

Q j for i 6= j.

The purpose of the above definition is the following: If an ideal I admits a
finite primary decomposition say I = ∩n

i=1Qi, some of the Qi’s may be omitted to
yield an irredundant primary decomposition. For, suppose that Qi is the intersec-
tion of all those primary components which have the same associated prime ideal
say IP. In other words,

IP =
√

Qi1 =
√

Qi2 = · · · =
√

Qik .

We take Q′i = Qi1 ∩Qi2 ∩ ·· · ∩Qik . Then, Q′i is primary and its associated prime
ideal is Ip =

√
Q′i . Further,

(12.5.5) I = ∩iQ′i
which is an irredundant primary decomposition. It follows that every ideal in a
Noetherian ring has an irredundant primary decomposition.

Theorem 93 (Lasker-Noether) : Every ideal in a Noetherian ring can be repre-
sented as a finite intersection of primary ideals.

Proof : Follows from the fact that every ideal in a Noetherian ring R is a finite in-
tersection of irreducible ideals and each irreducible ideal is primary. (see lemmas
12.5.1 and 12.5.2). �
Corollary 12.5.1 : Every ideal of a Noetherian ring has an irredundant primary
decomposition.

For, a finite intersection of primary ideals can be converted into an irredun-
dant primary decomposition.

Example 12.5.1 : Let n be equal to 600. 600 = 23×3×52.
In Z, (600) = (23)∩ (3)∩ (52) is an irredundant primary decomposition of the ideal
generated by 600.

Fact 12.5.1 : (A characteristic property of primary decomposition) Let R be the
Noetherian ring. Suppose that an ideal I of R has a finite irredundant primary
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decomposition:
I = ∩n

i=1Qi,

where Qi are primary ideals with associated prime ideals
√

Qi. If P is a prime
ideal of R, then, P =

√
Qi for some i if, and only if, there exists an element a /∈ I

such that P =
√

I : (a).

For proof, see D. M. Burton [3, chapter 12, theorem 12.4, pp 238–239]. The
above result gives the associated prime ideals in a primary decomposition via the
ideal and an element a /∈ I.

Fact 12.5.2 : A consequence of the result in Fact 12.5.1 is the following:
Suppose that I denotes an ideal of a Noetherian ring R and that I possesses two
finite irredundant primary decompositions, namely,

(12.5.6) I = Q1∩Q2∩ ·· ·Qn = Q′1∩Q′2∩ ·· ·∩Q′m.

Then, n = m and the associated prime ideals of these two decompositions are
equal. That is, under a reordering of suffixes,

√
Qi =

√
Q′i (1≤ i≤ n)

This provides a characterisation of the irredundant primary decomposition
of an ideal I of a Noetherian ring R which connects the associated prime ideals
with I. Further, it is the number n of primary components for I in (12.5.6) that is
unique.

See T. W. Hungerford [9, chapter VIII, sections viii.1 to viii.4] and D. M.
Burton [3, chapter 12, pp 234–240].

Definition 12.5.3 : A ring R is said to satisfy the descending chain condition for
ideals (d. c. c) if, given any descending chain of ideals

I1 ⊃ I2 ⊃ ·· · ⊃ In ⊃ ·· ·
there exists an integer m such that Im = Im+1 = Im+2 = · · ·

Fact 12.5.3 : A ring R satisfies the descending chain condition on ideals if,
and only if, every non-empty set of ideals of R, partially ordered by set-inclusion
contains a minimal element.

In such a situation, we say that if R satisfies d.c.c on ideals, the minimum
condition on ideals holds and conversely. Proof is omitted.

Definition 12.5.4 : A ring R is said to be an Artinian ring, if it satisfies either of
the conditions stated in Fact 12.5.3.

We observe that the ring Z of integers is Noetherian, but not Artinian. For,
we can give an infinite descending chain of ideals

(m1)⊃ (m2)⊃ (m3)⊃ ·· ·
where m1 divides m2, m2 divides m3 · · · ,mt divides mt+1 and so on.
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Examples 12.5.2 :
(1) Any field is both Artinian and Noetherian. For n > 1, as Z/nZ is finite.

Z/nZ is both Artinian and Noetherian.
(2) Let R denote the field of real numbers. Suppose that Map R denotes the

set of functions f : R→ R. We define

Ik = { f ∈ Map R : f (x) = 0 whenever −k ≤ x≤ k}.
We note that I1 ⊃ I2 ⊃ I3 ⊃ ·· · and

I1 ⊂ I1/2 ⊂ I1/3 ⊂ ·· ·
Map R is a commutative ring under the operations of addition and ordinary mul-
tiplication. Ik is an ideal of Map R. Map R contains ascending and descending
chains that do not terminate. Map R is neither Artinian nor Noetherian.

(3) Let p be an arbitrary, but fixed prime. We define

Z(p∞) = { m
pn : m,n ∈ Z̃ and 0≤ m< pn}

Z(p∞) contains rational numbers r of the form
m
pn such that 0≤ r< 1. Z(p∞)

is an abelian group under addition modulo 1. It is a ring without identity, if we
introduce multiplication by defining the product a ·b = 0 for a,b ∈ Z(p∞).

Let I be a nontrivial ideal of Z(p∞). We choose k to be the smallest positive
integer such that for some a ∈ Z̃, a

pk /∈ I. We need to choose a as relatively prime
to p. Then,

I = { s
pk−1 : 0≤ s≤ pk−1 − 1}.

To specify k, we write I = Ik−1. The only ideals of Z(p∞) (which are subgroups of
the additive group Z(p∞) under addition modulo 1) are of the form {Ik} (k ≥ 0)
and

(0)⊂ I1 ⊂ I2 ⊂ ·· · ⊂ Ik ⊂ ·· · ⊂ Z(p∞)
Z(p∞) has a strictly ascending chain of ideals which does not terminate. So,
Z(p∞) is not Noetherian. However, any descending chain is of finite length. So,
(Zp∞) is Artinian.

(4) The polynomial ring F[x1,x2, · · · ] satisfies neither a.c.c nor d.c.c on ideals.
For instance, one has

(x1)⊂ (x1,x2)⊂ (x1,x2,x3) · · ·
and

(xi)⊃ (x2
i )⊃ (x3

i )⊃ ·· · .
((2) and (3) above have been adapted from D. M. Burton [3]).

Fact 12.5.4 :
(i) Let I be an ideal of a Noetherian ring R. Then R/I is Noetherian. This is

true for Artinian rings as well.
(ii) Let I be an ideal of a ring R. If I, R/I are Noetherian, so is R.
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Likewise, if I and R/I are Artinian, so is R.

For proofs, see D. M. Burton [3] [Chapter 11, theorems 11.6 and 11.7,
pp. 225–226].

The a.c.c and d.c.c on ideals are meant to study the structure of rings and
modules. In a more general set-up, the following situation characterizes a.c.c.

Fact 12.5.5 : Let (P,≤) be a partially ordered set. Let {xn} be any sequence of
elements of P. Then, the increasing sequence

x1 ≤ x2 ≤ x3 ≤ ·· · ≤ xn ≤ ·· ·
is stationary (that is, there exists m ∈ N such that xm = xm+1 = · · · ) if, and only if,
every non-empty subset T of P has a maximal element. For, if there is a non-
empty subset T of P which has no maximal element, then a.c.c on {xn} would
fail. Conversely, when the set {xn, n ∈ N} has a maximal element, {xn} satisfies
a.c.c.

For instance, if (P,≤) is the poset of submodules of an R-module M ordered
by set-inclusion, a.c.c on submodules holds ⇔ every non-empty collection of
submodules of M has a maximal element. An R-module possessing this property
is called a Noetherian module.

The dual of Fact 12.5.5 is

Fact 12.5.6 : Let (P,≥) be a poset. Any sequence {xn} of elements of P satisfies
d.c.c, that is,

x1 ≥ x2 ≥ x3 ≥ ·· ·
implies that there exists m ∈ N such that xm = xm+1 = · · ·
if, and only if, every non-empty subset of P has a minimal element.

If (P,≤) is the poset of submodules of an R-module M partially ordered by
set-inclusion, then (P,≤) satisfies d.c.c on submodules⇔ every non-empty collec-
tion of submodules of (P,≤) has a minimal element. An R-module M possessing
this property is called an Artinian module.

Now, we note that an R-module M is Noetherian⇔ every R-submodule of M
is finitely generated. Proof follows on lines similar to that of lemma 12.2.1.

Next, we consider a finite sequence {Mk} (0≤ k≤ n) of R-submodules of an
R-module M. If

(12.5.7) M = M0 ⊃M1 ⊃M2 · · · ⊃Mn = (0)

where ⊃ is strict containment, (12.5.7) gives a chain of length n. A composition
series is a maximal chain such as (12.5.7) wherein no finite number of extra sub-
modules could be inserted. This is equivalent to saying that Mk−1/Mk (1≤ k ≤ n)
is a simple module.

Fact 12.5.7 : Let M be an R-module. Suppose that M has a composition series of
finite length n. Then, every composition series of M has length n and every chain
in M can be extended to a composition series.
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For proof, see M. F. Atiyah and I. G. McDonald [1, chapter 6, p 77].
Suppose that an R-module M has a composition series. Then, all chains in M

are of finite length and so both a.c.c, d.c.c hold for submodules of M. Conversely,
if both a.c.c and d.c.c hold for submodules of M, we can construct a strictly de-
scending chain M = M0 ⊃M1 ⊃ . . . which terminates. So, by Fact 12.5.7, M has
a composition series.

Definition 12.5.5 : An R-module M satisfying both a.c.c and d.c.c on submodules
is called a module of finite length.

We remark that all composition series of M have the same length l(M) (say).
Further, Jordan-Hölder theorem [5] (see theorem 66, chapter 8) applies to modules
of finite length. In the case of a finite dimensional vector space V over a field F ,
if dimV = n, a maximal chain in V is of length n (starting from zero subspace and
reaching V : If K is a subspace of dimension k, it is contained in a subspace of
dimension (k +1), 0≤ k≤ n−1). So, V satisfies a.c.c on subspaces if, and only if,
it satisfies d.c.c. on subspaces.

Theorem 94 (Atiyah and MacDonald (1969)) : Let R be a ring in which the zero
ideal is a product of a finite number of maximal ideals (not necessarily distinct).
Then, R is Noetherian⇔ R is Artinian.

Proof : Let M1,M2, . . . ,Mn be maximal ideals of R with the property

(0R) = M1M2 · · ·Mn.

One has a descending chain of ideals

(12.5.8) R⊃M1 ⊇M1M2 ⊇M1M2M3 ⊇ ·· · ⊇M1M2 · · ·Mn = (0R)

As Mi is a maximal ideal (1≤ i≤ n), R/Mi is a field. M1/M1M2 is a vector space
over R/M2. For, if r + M2 ∈ R/M2 and x + (M1M2) is an element of M1/M1M2.

(r + M2)(x + M1M2) = rx + xM2 + rM1M2

= rx + M1M2, as M1M2 ⊆M1 and x ∈M1.

As M1/M1M2 is an abelian group and scalar multiplication by elements of R/M2
is taken care of, M1/M1M2 is a vector space over R/M2.
In general, (M1M2 · · ·Mk−1)/(M1M2 · · ·Mk) (2 ≤ k ≤ n) is a vector space over
R/Mk. Each Vk−1 = (M1M2 · · ·Mk−1)/(M1M2 · · ·Mk) is finite-dimensional
(1≤ k ≤ n). Therefore, for each Vk−1, a.c.c holds⇔ d.c.c holds.

Let M be any maximal ideal of R. We consider an ascending chain J1 ⊆ J2 ⊆
·· · of ideals of R. Then, J1∩M ⊆ J2∩M ⊆ ·· · is a chain of ideals of M.

Claim: Jk−1 ∩M = Jk ∩M. When Jk−1 ⊆ Jk, Jk−1 ∩M ⊆ Jk ∩M. If x ∈ Jk,
there exists y ∈ Jk−1 such that x,y ∈ R and the cosets x + M and y + M are equal
(considering R/M). So, x + M = y + M and so, y − x ∈M.

As Jk−1 ⊆ Jk, when y ∈ Jk−1, y ∈ Jk. So, y − x ∈ Jk. That is, y − x ∈ Jk∩M. We
get through if we show that y − x ∈ Jk−1∩M.
If y − x 6∈ Jk−1∩M, y − x 6∈ Jk ∩M—a contradiction.
Therefore, y − x ∈ Jk−1 as well as M.
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Or, if y − x ∈ Jk ∩M, y − x ∈ Jk−1 ∩M. Thus, Jk−1 ∩M = Jk ∩M. So, jk−1 = Jk.
Therefore, M is Noetherian, as also R. In the same manner M is Artinian ⇒ R
is Artinian. As a.c.c ⇔ d.c.c for each Vk−1 (1 ≤ k ≤ n), R is Noetherian⇔ R is
Artinian. �

Remark 12.5.1 : Technique employed is by using Fact 12.5.4 (ii). Theorem 94
has been adapted from [1].

12.6. Dedekind domains

Before we go to the definition of a Dedekind domain, we will give the mean-
ing of ‘integral closure’. The characterization of integral closure is tied up with
the definition of a finitely generated R-module.

Let (M,+) be an abelian group. Suppose that R is a commutative ring which
acts on M linearly. Then, M gets the structure of an R-module.

Definition 12.6.1 : A subset S of an R-module M is said to generate M, if M
is the smallest R-submodule that contains S. In other words, there is no proper
submodule of M that contains S.

When S generates M, every element a of M can be written as

(12.6.1) a = n1s1 + n2s2 · · ·+ nksk + r1s1 + r2s2 · · ·+ rksk

where ni ∈ Z, ri ∈ R and si ∈ S (i = 1,2, . . . ,k).
When S is finite, we say that M is finitely generated. When S is a singleton,

we say that M is a cyclic R-module.

Examples 12.6.1 :
(i) Let R be a commutative ring with unity 1R. Then R[x], the polynomial ring

is an R-module when we take ‘scalar multiplication’ as multiplication of a
polynomial f (x) by r ∈ R given by
r f (x) ∈ R[x].

(ii) Let M,N be R-modules. If ψ : M→ N is an R-isomorphism onto N, then,

ker ψ = {a ∈M : ψ(a) = 0}
is an R-submodule of M. Further, M/kerψ and N are R-isomorphic.

(iii) Let I be a nonzero ideal of a PID R. Then, R/I considered as an R-module
is both Noetherian and Artinian.

Definition 12.6.2 : Given a commutative ring T with unity 1T , let R be a subring
of T containing 1T . Then T is called an extension ring of R.

For example, if R is a commutative ring with unity 1R, the polynomial ring
R[x] is an extension ring of R. However, though 2Z is a subring of Z, as 2Z does
not contain 1, Z is not considered as an extension ring of 2Z.
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Definition 12.6.3 : Suppose that T is an extension ring of R and t ∈ T. If there
exists a monic polynomial f (x) ∈ R[x] such that t is a zero of f (x), t is said to be
integral over R.

If every element of T is integral over R, then, T is called an integral extension
of R.

We consider the set

Z×{0} = {(a,0) : a ∈ Z}.
For (a,0), (b,0) ∈ Z×{0}, we define

(a,0) + (b,0) = (a + b,0)

and (a,0) · (b,0) = (ab,0).
Then, Z×{0} is a ring with unity (1,0). If i denotes

√
−1, the ring Z[i] of

Gaussian integers is easily seen to be an extension ring of Z×{0}.
Definition 12.6.4 : Let T be an extension ring of a ring R. Suppose that Y is a
non-empty subset of T . The subring of T generated by Y over R is the intersection
of all subrings of T which contain Y ∪R. It is denoted by R[Y ].

If Y = {t}, a singleton, the subring generated by t over R is R[t], as each
element of R[t] is a polynomial in t with coefficients from R. If f (t) ∈ R[t], and
f is monic, it may happen that f (t) = 0R. It is the situation where t is integral
over R. For this reason, R[t] is not isomorphic to R[x], the polynomial ring in the
indeterminate x.

We remark that if f (x) ∈ R[x], f (x) 6= 0R even when f (t) = 0R.
When t ∈ T is integral over R, the module structure of R[t] is ‘neat’. This is

brought out in

Theorem 95 : Let T be an extension ring of R. Given t ∈ T , t is integral over
R⇔ the ring R[t] is a finitely generated R-module.

Proof : :⇒ Given t is integral over R. Therefore, t satisfies a monic polynomial
equation with coefficients from R. That is, t is a root of

(12.6.2) xn + an−1xn−1 + · · ·+ a1x + a0 = 0R, ai ∈ R (i = 0,1, . . .n).

Denoting the left side of (12.6.2) by f (x), we see that f (t) = 0. Now, every element
of R[t] is of the form g(t) where g(x) ∈ R[x]. As R[x] is a Euclidean ring, (see
Remark 3.2.1(ii), chapter 3) we can apply division algorithm to g(x) with f (x) for
‘division’ to get

(12.6.3) g(x) = q(x) f (x) + r(x), where either r(x) = 0 or degr(x)< deg f (x).

Replacing x by t in (12.6.3) and noting that f (t) = 0R, we get g(t) = r(t). So, g(t) is
a polynomial of degree < n. Also, g(t) is a linear combination of 1R, t, t2, . . . , tm

with m = degr(x) < deg f (x) = n. So, R[t] is finitely generated as an R-module.
⇐: t ∈ T is such that R[t] is finitely generated R-module.

Let {y1,y2, . . . ,yn} be a set of generators of R[t]. t ∈ R[t].
As R[t] is a subring of T , tyi ∈ R[t] for i = 1,2, . . . ,n.
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Using the generating set {y1,y2, . . . ,yn}, we obtain

ty1 = a11y1 + a12y2 + · · ·+ a1nyn,

ty2 = a21y1 + a22y2 + · · ·+ a2nyn,

. . . . . . . . . . . . . . . . . . . . . . . . . . .

tyn = an1y1 + an2y2 + · · ·+ annyn,

where ai j (i, j = 1,2, . . . ,n) are elements of R.
So,

(t − a11)y1 − a12y2 · · ·− a1nyn = OR,

−a21y1 + (t − a22)y2 − · · ·− a2nyn = OR,

. . . . . . . . . . . .

−an1y1 − an2y2 · · ·+ (t − ann)yn = 0R.

or,

(12.6.4)




t − a11 −a12 · · · −a1n

−a21 t − a22 · · · −a2n

· · · · · · · · · · · ·
· · · · · · · · · · · ·

−an1 −an2 · · · (t − ann)







y1
y2
...

yn


 = 0R

This gives a system of n homogeneous linear equations in y1,y2 . . .yn.
Let B = det[bi j] where [bi j] is the coefficient matrix given by

bi j =

{
t − aii, if j = i
−ai j, otherwise.

Using Cramer’s rule, we see that Byi = 0R for each i = 1,2, . . . ,n. So, Bq = 0R for
every q ∈ R[t]. As 1R ∈ R[t], we get B1R = 0R from which it follows that B = 0R.
But B, is a monic polynomial in t of degree n, on account of (12.6.4). Thus, t is
integral over R. �

Corollary 12.6.1 : Let T be a ring extension of R. If T is a finitely generated
R-module, then T is an integral extension of R.

Proof : Let t ∈ T . We claim that t is integral over R. Let S be a subring of T
containing 1R and R[t]. Then, S is a finitely generated R-module, as we need only
take S = R[t]. Then, t is integral over R and so, every element of T is integral over
R which proves that T is an integral extension of R. �

Next, let Y = {y1,y2, . . . ,yn}. We have seen that the subring of T generated by
Y over R is the smallest subring of T containing R∪Y . R[Y ] consists of elements

f (y1,y2, . . . ,yn), n≥ 1

such that f (x1,x2, . . .xn) ∈ R[x1,x2, . . . ,xn]. For any set y1,y2, . . . ,yn of elements
of T , an element of R[y1,y2, . . . yn] is a polynomial in y1,y2, . . . ,yn. As noted
earlier, in the case of R[t] and R[x], R[y1,y2, . . . ,yn] need not be isomorphic to
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R[x1,x2, . . . ,xn], where x1,x2, . . . ,xn are indeterminates. It can be checked that for
1≤ i≤ n,

R[y1,y2, . . . ,yi−1][yi] = R[y1,y2, . . . ,yi].

Since R[y1,y2, . . .yn] is a ring containing R, R[y1,y2, . . . ,yn] is indeed an R-module.

Theorem 96 : Let T be an extension ring of R. Suppose that y1,y2, . . .yn ∈ T are
integral over R. Then, R[y1,y2, . . . ,yn] is a finitely-generated R-module and is an
integral extension of R.

Proof : We consider R-modules R[y1], R[y1,y2], · · · , R[y1,y2, . . . ,yn]. We can
form a strict ascending chain of extension rings:

R⊂ R[y1]⊂ R[y1,y2]⊂ ·· · ⊂ R[y1,y2, . . . ,yn].

For each i, yi is integral over R. So, yi is integral over R[y1,y2, . . . ,yi−1].
Since R[y1,y2, . . . ,yi−1][yi] = R[y1,y2, . . .yi],R[y1,y2, . . . ,yi] is a finitely-generated
R[y1,y2, . . .yi−1]-module, by iteration, R[y1,y2, . . .yn] is a finitely-generated R-
module. Each element of R[y1,y2 . . .yn] is integral over R. So, R[y1,y2, . . . ,yn]
is an integral extension of R. �

Corollary 12.6.2 : Let T be an extension ring of R. If S denotes the set of all
elements of T which are integral over R, then, S is an integral extension of R
which contains every subring of T that is integral over R.

Proof : Let s, t ∈ S. Then, s and t are elements of R[s, t]. So, s − t ∈ R[s, t]. Also
st ∈ R[s, t]. Since s and t are integral over R, R[s, t] is an integral extension ring
of R (by theorem 96). Also, s − t ∈ S and st ∈ S. So, S is a subring of T . R ⊂ S,
as every element of R is trivially integral over R. By the definition of S, S is an
integral extension of R and contains all subrings of T that are integral extensions
of R, as R[s, t]⊆ S, whenever s, t ∈ S. �

Definition 12.6.5 : If T is an extension ring of R, the ring S containing all ele-
ments of T which are integral over R is called the integral closure of R in T . If
S = R, R is said to be integrally closed in T .

Given an integral domain D, its field F of quotients D is an extension ring
of D up to isomorphism. Further, F is the smallest field containing D. See T. W.
Hungerford [9].

Definition 12.6.6 : An integral domain D is said to be integrally closed, if it is
integrally closed in its field of quotients .

Theorem 97 : A PID is integrally closed.

Proof : Let D be an integral domain with field of quotients F. We pick an element
a
b ∈ F where a,b (6= 0) ∈ D.
Suppose that a

b is integral over D. Then a
b satisfies a monic polynomial equation

(12.6.5) xn + an−1xn−1 + · · ·+ a1x + a0 = 0D (ai ∈ D, i = 0,1, . . .n)
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Suppose that a and b are relatively prime to one another. That is, a and b are in
their lowest terms in

a
b

.

Substituting
a
b

for x in (12.6.5), we see that

an + b(an−1)an−1 + · · ·+ a0bn−1 = 0D

Therefore,
b(an−1an−1 + · · ·+ a1bn−2 + a0bn−1) = −an

So, b divides an. But b does not divide a. As an = an−1 · a, b divides an−1. Pro-
ceeding thus, we arrive at the conclusion: b divides a, after a finite number of
steps. This contradicts the fact that a and b are relatively prime to one another.
Consequently, ‘b divides a’ can happen only when b is a unit. In such a situation,
we note that a

b ∈ D. So, every element of F which is integral over D belongs to
D. Hence, D is integrally closed. �

Arguing on the same lines, one can show that every unique factorization do-
main is integrally closed. We deduce from theorem 97 that Z is integrally closed.

Fact 12.6.1 : A GCD domain is integrally closed.

For proof, see G. Karpilovsky [10].

Observation 12.6.1 :
(i) The only integral domains that satisfy d.c.c on ideals are fields. In other

words, any Artinian integral domain is a field. For, let R be an integral
domain and 0R 6= a ∈ R. We consider the strictly descending chain of ideals
(of R)

Ra⊃ Ra2 ⊃ Ra3 ⊃ ·· · ⊃ Ran ⊃ ·· ·
Then Ram = Ram+1 for some integer m. So, there exists r ∈ R such that am =
ram+1 or an(1R − ra) = 0R. As R is an integral domain, we note that ra = 1R.
That is, every nonzero element of R has a multiplicative inverse and so, R
has to be a field.

(ii) For a commutative ring without unity, maximal ideals need not be prime. We
have only to check this in the ring 2Z of even integers.

(iii) In commutative rings with unity, prime ideals need not be maximal. For
example, in Z, the ideal (0) is a prime ideal which is not a maximal ideal of
Z. In R =Z×Z, Z×{0} is a prime ideal of R; for, R/Z×(0)∼= Z an integral
domain. If Ze = 2Z, Z×Ze is an ideal of R. Further, Z×{0} ⊂ Z×Ze ⊂ R.
So, Z×{0} is not a maximal ideal of R.

(iv) Let R be a commutative ring with unity. Suppose that R is Artinian. We
claim that every proper prime ideal of R is maximal:

When P is a prime ideal of R, R/P is an integral domain. Further, the
ideals of R/P have the form I/P where I is an ideal of R containing P. We
consider a descending chain

I1/P⊇ I2/P⊇ ·· ·
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of ideals of R/P. Then, I1 ⊇ I2 ⊇ ·· · is a descending chain of ideals (of
R) containing P. As R is Artinian, the descending chain terminates. That
is, one has Im = Im+1 = · · · for some integer m. Then, Im/P = Im+1/P = · · ·
and so R/P is Artinian. Therefore, R/P being an integral domain which is
Artinian turns out to be a field (by observation 12.6.1 (i) above) from which
we deduce that P is a maximal ideal of R.

(v) An Artinian ring R has only a finite number of prime (hence maximal) ideals.
For, suppose that there exists an infinite sequence {Pn} of distinct prime
ideals of R. We form a descending chain of ideals

P1 ⊇ P1P2 ⊇ P1P2P3 ⊇ ·· · .
Since R is Artinian, there exists a positive integer m for which

P1P2 · · ·Pm = P1P2 · · ·Pm+1.

It follows that P1P2 · · ·Pm ⊆ Pm+1. So Ps ⊆ Pm+1 for some s ≤ (m + 1). But,
Ps is a maximal ideal of R. So, we must have Ps = Pm+1. This contradicts the
hypothesis that the prime ideals Pn (n ≥ 1) are distinct. So, R has only a finite
number of maximal ideals.

Remark 12.6.1 : Observation 12.6.1(iii) has been adapted from D. M. Burton [3].

Theorem 98 : Let R be a commutative ring with unity. Then,

R is Artinian ⇒ R is Noetherian

Proof : When R is a field, R is both Artinian and Noetherian. So, let us assume
that R is not a field.

Claim : When R is Artinian, the zero ideal is a product of a finite number of
maximal ideals.

As R has only a finite number of maximal ideals, the Jacobson radical J(R)
of R takes the form

(12.6.6) J(R) = M1∩M2 · · · ∩Mn,

where Mi(i = 1,2, . . .n) is a maximal ideal of R. J(R) has the property that a
positive power of J(R) is the zero ideal. In other words, J(R) is a nilpotent ideal.
For, if we consider the descending chain

J(R)⊇ (J(R))2 ⊇ (J(R))3 ⊇ ·· · ,
there exists a positive integer t such that (J(R))t = (J(R))t+1 = · · · . If I = (J(R))t,
I ⊆ J(R) and I2 = I.

We have to show that I = (0). Suppose the contrary. That is, assume that
I 6= (0). Let F denote the family of all ideals A (of R) such that

(i) A⊆ I and (ii) AI 6= (0).
Then, F is non-empty as I belongs to F . As R is Artinian, F has a minimal

element, say B. By (ii) BI 6= (0). So, there exists b ∈ B such that bI 6= (0).
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But then, (bI)I = bI2 = bI 6= (0).
Also, bI ⊆ B⊆ I (by (i)).

By the minimality of B, bI = B.
Therefore, there exists a ∈ I such that ba = b. But, I ⊆ J(R). So, a ∈ J(R). As

J(R) is the radical of R, it is clear that 1R − a is a unit in R. (See Corollary 12.4.1).
So, there exists c ∈ R such that

(1R − a)c = 1R

Then, b = b1R = b(1R − a)c = (b − ba)c = 0R, as ba = b.
This contradicts the fact that bI 6= (0).
So, I = (0) and so J(R) is nilpotent.

Next, if J(R) is as given in (12.6.6), Mi and M j are comaximal whenever i 6= j
(i, j = 1,2, . . .n). That is, Mi + M j = R (i 6= j).
For, as Mi is a maximal ideal of R, for every r /∈Mi, there exists x ∈ R such that

(12.6.7) 1R − rx ∈Mi

(It is a consequence of the fact that when r /∈ Mi, the ideal (Mi,r) (generated by
Mi and r) equals R).

Take r ∈M j \Mi. Then, there exists x ∈ R such that (12.6.7) holds. But, as
r ∈M j, rx ∈M j and therefore,

(1R − rx) + rx = 1R ∈Mi + M j.

In (12.6.6), Mi, M j are pairwise comaximal whenever i 6= j. By a familiar
argument in the study of ideals, one gets

(12.6.8) M1M2 · · ·Mn = M1∩M2∩ ·· ·∩Mn

Therefore,
(0R) = (J(R))t = Mt

1Mt
2 · · ·Mt

n

Thus, (0R) is a product of maximal ideals with repetitions allowed. By theorem 94,
the desired conclusion follows. �
Theorem 99 (I. S. Cohen (1950)) : Let R be a commutative ring with unity. R is
Noetherian if, and only if, every prime ideal of R is finitely generated.

Proof : :⇒ It is true that if R is Noetherian, every prime ideal (of R) is finitely
generated (as it is the case with all proper ideals).
⇐: Let R be a commutative ring with unity in which every prime ideal is

finitely generated. Suppose that R is not Noetherian. This means that the collec-
tion F of ideals (of R) which are not finitely generated is non-empty. By Zorn’s
lemma, F has a maximal element, say I. By our hypothesis, I cannot be a prime
ideal of R. Therefore, there exist elements a,b of R which are not in I such that
ab ∈ I. Both the ideals (I,b) and I : (b) contain I properly. So, a ∈ I : (b) (say),
as a ∈ I. By the maximality of I in F , these ideals are finitely generated. Let

(I,b) = (x1,x2, . . .xn)(12.6.9)
I : (b) = (y1,y2, . . .ym)(12.6.10)
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Then, xi = ai + bri where ai ∈ I, ri ∈ R (i = 1,2, . . .n). We rewrite (I,b) as

(I,b) = (a1,a2, . . .an,b)

We define the ideal J by

(12.6.11) J = (a1,a2, . . . ,an,by1,by2, . . . ,bym).

Since by j ∈ I for every j, we get J ⊆ I.

Claim : I ⊆ J.
Let t ∈ I. As t ∈ (I,b),

t = a1s1 + . . .+ ansn + bs (si,s ∈ R; i = 1,2, . . . ,n)

As ai ∈ I (i = 1, . . . ,n) s ∈ I : (b).
So, we find elements ci ∈ R such that

s = y1c1 + y2c2 · · ·+ ymcm (by (12.6.10))

It follows that t = a1s1 + · · ·+ ansn + (by1)c1 + · · ·+ (bym)cm, and t ∈ J by (12.6.11).
So, the claim is okay. Therefore, I itself is finitely generated which is impossible,
as I ∈ F .

This contradicts the assumption that F is non-empty. So, F = ∅. Hence R is
Noetherian. �

Remark 12.6.2 : The original version of proof of theorem 99 is in I. S. Cohen [6].

Definition 12.6.7 : An integral domain D is said to be a Dedekind domain if
(i) D is Noetherian,

(ii) D is integrally closed and
(iii) every nonzero prime ideal of D is a maximal ideal.

From theorem 97 and by virtue of the fact that a PID is Noetherian and that a
nonzero prime ideal of a PID is maximal, we conclude that a PID is a Dedekind
domain. In particular, Z is a Dedekind domain.

Definition 12.6.8 : Let D be an integral domain with field of quotients F. A
fractional ideal L of D is one for which L is a nonzero D-submodule of F such
that aL⊂ D for some nonzero element a in D.

This means that elements of L have a ‘common denominator’ a ∈ D. The
ideals of D are fractional ideals for which a = 1D.

Lemma 12.6.1 : A nonzero finitely generated D-submodule M of F is a fractional
ideal of D.

Proof : For, if {b1,b2, . . .bk} generates M, then,

M = Db1 + Db2 + · · ·+ Dbk, (bi ∈ F, i = 1,2, . . . ,k).

Let bi = ci
ai

, ai 6= 0 and ai,ci ∈ D. If a = a1a2 · · ·ak, then,

aM = Da2a3 · · ·akc1 + Da1a3 · · ·akc2 + · · ·+ Da1a2 · · ·ak−1ck ⊂ D.
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So, there exists a ∈ D such that a M ⊂ D. This completes the proof of lemma
12.6.1. �

Remark 12.6.3 : If L is a fractional ideal of D with aL⊂D for a 6= 0, a∈ D, then,
aL is an ideal of D and ψ : L→ aL defined by ψ(x) = ax, x ∈ L, is a D-module
homomorphism.

Definition 12.6.9 : Given two fractional ideals L1 and L2 of D, their product L1L2
is defined by

L1L2 = {
n∑

i=1

aibi : ai ∈ Li,bi ∈ L2;n ∈ N}

Definition 12.6.10 : A fractional ideal L of D is said to be invertible if there exists
a fractional ideal M of D such that LM = D.

We remark that fractional ideals of D are of the form a−1I where a ∈ F and
I denotes an ideal of D. a−1I is a D-submodule of F . In the case of Z with field
of quotients Q, the field of rational numbers, the fractional ideals of Z are of the
form qZ where q ∈ Q. So, if L1 = q1Z and L2 = q2Z, L1L2 = q1q2Z. Obviously, if

q1 6= 0, L−1
1 =

1
q1
Z.

Lemma 12.6.2 : If a factional ideal L of D possesses an inverse denoted by L−1

then,
L−1 = {a ∈ F : aL⊂ D}

Further, L−1 is unique.

Proof : Suppose that M = {a ∈ F : aL⊂ D}.
As ML⊂D, M is a fractional ideal of D. (Any t ∈ L is such that tM ⊂D). Further
LM = ML ⊂ D.

If L is invertible, LM = ML = D and M ⊆ L−1.
Conversely, since L−1 and M are D-submodules of F ,

L−1 = DL−1 = (ML)L−1 = M(LL−1)⊂MD = DM = M

So, L−1 = M.
To prove the uniqueness of L−1, we proceed as follows:

Suppose that L,M,M′ are fractional ideals of D such that LM = LM′ and L is invertible.
Then, M = DM = (L−1L)M = L−1(LM) = L−1(LM′) = (L−1L)M′ = DM′ = M′. �

Remark 12.6.4 :
(i) Let I be an ideal of D. If I is invertible, then D⊂ I−1. For,

I−1 = {a ∈ F : aI ⊂ D}.
If y ∈ D, yI = I ⊂ D. So, y ∈ I−1 and D⊂ I−1.
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(ii) Every nonzero principal ideal of an integral domain D is invertible. For, let
I = (a), a principal ideal generated by a ∈D (a 6= 0D). We take q = 1D/a∈ F ,
the field of quotients of D. Then, L = qD⊂ F and L is a fractional ideal (of
D) having the property IL = D. So, I is invertible.

We are now ready to prove the structure theorem (for Dedekind domains)
which states that every ideal of a Dedekind domain D is a product of prime ideals
and the representation is unique. This will serve as a substitute for unique fac-
torization of elements in D when the uniqueness of factorization of an element
into irreducibles fails. An example is that of Z[

√
−5] which is not a UFD. How-

ever, any ideal of Z[
√

−5] can be expressed uniquely as a product of prime ideals.
Z[
√

−5] will be shown to be a Dedekind domain in the subsequent narration of
this chapter.

Lemma 12.6.3 : In a Dedekind domain D, every ideal contains a product of
prime ideals.

Proof : Assume the contrary. Then, the set S of ideals which do not contain
products of prime ideals is non-empty. As D is Noetherian, S has a maximal
member, say, J. J is not a prime ideal, since it does not contain a product of prime
ideals. We pick two elements a,b ∈ D\ J such that ab ∈ J. The ideals J + (a) and
J + (b) are strictly bigger than J. So, by hypothesis, they contain products of prime
ideals. This property is shared by the ideal (J + (a))(J + (b)) also. As ab ∈ J,

(J + (a))(J + (b))⊂ J.

This contradicts the assumption that J does not contain products of prime ideals.
That is, S = ∅. �

Lemma 12.6.4 : Let J be a proper ideal of a Dedekind domain having field of
quotients F. Then, we can pick an element q ∈ F \D such that qJ ⊂ D.

Proof : We take a nonzero element a in J. By lemma 12.6.3, the principal ideal
(a) contains a product of prime ideals. Suppose that P1,P2 . . .Pr are prime ideals
having the property

P1P2 · · ·Pr ⊂ (a).

Let r be the least such suffix. r≥ 2. We know that every proper ideal is contained
in a maximal ideal P, by Krull-Zorn theorem, see [3]. P is a prime ideal. So,
P1P2 . . .Pr ⊂ P. It is verified that P contains some Pi. The argument is as follows:

Suppose that P does not contain any of the Pi. Let ai ∈ Pi \P, i = 1,2, . . . r.
As P ⊃ P1P2 · · ·Pr, a1a2 · · ·ar ∈ P. So, some ai (i = 1,2, . . .r) belongs to P. This
contradicts the assumption that ai /∈ P for each i. So, P contains some Pi. Without
loss of generality, we take P1 ⊆ P. As D is a Dedekind domain, any proper prime
ideal is maximal. So, P1 = P. Since (a) cannot contain a product of fewer than r
prime ideals, there exists b ∈ P2 · · ·Pr \ (a). We write q = b

a ∈ F \D.

Claim : qJ ⊂ D.
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As P1P2 . . .Pr⊂ (a) and P1 = P, we have bP⊆ (a). Now 1D
a D∈F and J′ = 1D

a D
is a fractional ideal which is such that (a) J′ = D. Since P is a maximal ideal, P
does not contain any unit ∈ D. So, there exist nonzero element y ∈ F such that
yP⊆ D. Therefore,

T = {x ∈ F : xP⊆ D}
is non-empty and so, by lemma 12.6.2 P−1 = T (say) exists. That is, P is invertible.
Further, when (a) ⊂ P, D ⊆ P−1 ⊆ (a)−1. From the fact that b ∈ P2P3 · · ·Pr \ (a)
and bP⊆ (a), we see that for q = b

a ,

qP =
b
a

P⊆ D and
b
a
∈ P−1

But b /∈ (a). So, q = b
a is such that qJ ⊂ qP⊆ D and so, qJ ⊂ D, as claimed.

�

Theorem 100 : Let D be a Dedekind domain. Given I, an ideal of D, there exists
an ideal J (of D) such that IJ is a principal ideal.

Proof : We pick a nonzero element a from I. We define

(12.6.12) J = {x ∈ D : xI ⊂ (a)},
where (a) denotes the principal ideal generated by a.

As a ∈ I, aI ⊂ (a) and so a ∈ J and J is a nonzero ideal of D. Further,

JI = IJ ⊂ (a).

So, we get through, if we show that IJ ⊃ (a).

We set L =
1D

a
IJ.

If y = 1D
a

∑
finite xiyi where xi ∈ I, yi ∈ J; y ∈ L. Also, y ∈ L⇒ y ∈ D. Therefore,

L⊆ D. L is also an ideal of D.
If L = D, then IJ = (a), showing that IJ is a principal ideal.

Claim : The assertion: ‘L is is a proper ideal of D’ is false.
Suppose that L is a proper ideal of D. F denotes the field of quotients of D.

By lemma 12.6.4, we can pick an element q ∈ F \D such that qL⊂ D.
Since D is a Dedekind domain, D is integrally closed.

Since J = 1D
a aJ and a ∈ I, J ⊂ L. So,

qJ ⊂ qL⊂ D

As q is a unit in F \D, qJ = {qx : x ∈ J}
(12.6.13) qxI = xqI = xI ⊂ (a)

Let qJ ⊂ J. Let {b1b2 . . .bm} be a set of generators of I.

qb1 = a11b1 + a12b2 · · ·+ a1mbm,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

qbm = am1b1 + am2b2 · · ·+ ambm.
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Or,

q




b1

b2
...

bm


 = M




b1

b2
...

bm




where M = [ai j]; ai j ∈ D, i, j = 1,2, . . .m. Or,

(12.6.14) (qIm)




b1

b2
...

bm


 = 0D (Im is the m×m unit matrix).

As {b1,b2, . . . ,bm} is a set of nonzero elements of J, we note from (12.6.14) that q
satisfies a monic polynomial with coefficients from D. Then, q ∈ D
— a contradiction. So, the claim is established and L = D is the only possibil-
ity, or, IJ = (a) as desired. �

Corollary 12.6.3 : Given ideals L,M,N of a Dedekind domain, LM = LN implies
M = N.

For, by theorem 100, given L an ideal of D, there exists an ideal J of D such
that LJ = (a), a principal ideal. This shows that aM = aN and so, M = N.

Corollary 12.6.4 : If I and J are ideals of a Dedekind domain D, I divides J if,
and only if, I ⊃ J.

Proof : If I divides J, it is true that I ⊃ J. Conversely, assume that I ⊃ J. Fix an
ideal L of D such that IL is principal, say (a). Writing M = 1D

a LJ, we see that M is
an ideal contained in D. Thus, IM = ( 1D

a )ILJ = J. So, I divides J. �

Theorem 101 : Every ideal of a Dedekind domain D is expressible as a product
of prime ideals and this representation is unique.

Proof : Suppose that the set of ideals (of D) which are not expressible as a prod-
uct of prime ideals (of D) is not empty. As D is Noetherian, this set has a
maximal member say M 6= D, considering proper ideals only. Then, M is con-
tained in a prime ideal P (which is a maximal ideal). M ⊂ P⇒ P divides M, by
corollary 12.6.4. So, we rewrite M as PJ for some ideal J of D. Then, J con-
tains M strictly, by cancellation property (See corollary 12.6.3). For, if J = M,
DM = PM⇒ D = P, which is false. So, J is strictly bigger than M. Also, J is a
product of prime ideals. As M = PJ, M is also a product of prime ideals, a con-
tradiction to the assumption that the set of ideals not expressible in this manner is
non-empty. Therefore, the set of ideals which are not expressible as a product of
prime ideals is empty.

Thus, any proper ideal I of D is expressible in the form

(12.6.15) I = P1P2 . . .Pr (Pi not necessarily distinct)
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where Pi are prime ideals. (i = 1,2, . . .r)
As for uniqueness, suppose that I has also the representation

(12.6.16) I = Q1Q2 · · ·Qs (Q j not necessarily distinct)

where Q j are prime ideals ( j = 1,2, . . .s). Then,

P1P2 · · ·Pr = QQ2 . . .Qs⇒ P1 ⊃ Q1Q2 · · ·Qs

So, P1 contains some Q j. Rearranging Q j, if needed, we get P1 ⊃ Q1. As the
prime ideals are maximal, P1 = Q1. Using the cancellation property, we get

P2P3 · · ·Pr = Q2Q3 · · ·Qs

Proceeding as before, we note that Pi = Qi for all i and r = s. This completes the
proof of theorem 101. �

Next, we examine whether a Dedekind domain could be a UFD under certain
restrictions. Though Z is a UFD, not all Dedekind domains have the property of
a UFD.

Theorem 102 (D. A. Marcus (1977)) : A Dedekind domain is a UFD, if, and only
if, it is a PID.

Proof : ⇐: The ‘if’ part is a consequence of theorem 97, since a PID is Noether-
ian, integrally closed and every nonzero prime ideal is maximal. So, a Dedekind
domain which is a PID is a UFD.

:⇒ Let D be a Dedekind domain which is a UFD. We show that D is a PID.
Assume the contrary. That is, we suppose that D is not a PID. Let P be a non-
principal prime ideal. Such an ideal exists, since, otherwise, all ideals would be
principal ideals. Since D is a Dedekind domain, by theorem 100, there exists an
ideal J of D such that PJ is a principal ideal. We consider the set Σ of ideals I
such that PI is principal. This set is non-empty as J ∈ Σ. As D is Noetherian, Σ
has a maximal member, say M. Suppose that PM = (a), a ∈ D. We claim that a
is an irreducible element in D. For, if not, one has a = bc where b,c are nonzero
non-units. Then, either (b) or (c) will be of the form PL for some L dividing M.
As M is a maximal element in Σ, L dividing M ⇒ L = M. But, then, b or c is a
unit.

As P divides (a), P ⊃ (a). Similarly M ⊃ (a). We pick two elements x,y
such that x ∈ P\ (a), y ∈ M \ (a). Now, xy ∈ (a), as PM = (a). So, a divides xy.
But, a does not divide x, a does not divide y. This is not allowed in a UFD. This
contradiction makes us accept the fact that there does not exist a non-principal
prime ideal of D. As every proper ideal of D is a unique product of prime ideals
and as every proper prime ideal is principal, every proper ideal of D is principal.
Further, D is generated by the multiplicative identity 1D. So, D is a PID. �

Remark 12.6.5 : Theorem 102 has been adapted from [12].

Next, we consider the ring of integers of an algebraic number field. It may be
recalled that by an algebraic number field, we mean a subfield K of C such that
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K has finite dimension when it is considered as a vector space over Q. Further, a
complex number α is an algebraic integer if, and only if, α is a zero of a monic
polynomial with coefficients from Z.

Lemma 12.6.5 : α ∈ C is an algebraic integer if, and only if, Z[α] is a finitely
generated Z-module.

Proof : :⇒ Given α, an algebraic integer, there exists a monic polynomial of
degree n (≥ 1) with coefficients from Z and having α as a zero. That is, one gets

αn + an−1α
n−1 + · · ·a1α + a0 = 0 ; ai ∈ Z, i = 1,2, . . . ,n. This means that the

Z-module Z[α] is generated by {1,α,α2, . . . ,αn−1}. Therefore, Z[α] is finitely
generated.
⇐: suppose that α ∈ C is such that Z[α] is a finitely generated Z-module.

We denote Z[α] by M. As α ∈M, αM ⊆M. Let {e1,e2, . . . ,em} generate M.

αe1 = a11e1 + a12e2 . . .+ a1mem,

αe2 = a21e1 + a22e2 + · · ·+ a2mem,

· · · · · · · · · · · ·
· · · · · · · · · · · ·
αem = am1e1 + am2e2 . . .+ ammem,

where ai j ∈ Z (i, j = 1,2, . . . ,m). Or,

(αIm − A)




e1

e2
...

em


 = 0; (Im, the m×m unit matrix and A = [ai j]).

This shows that det(αI − A) = 0. That is, α satisfies a monic polynomial

xm + bm−1xm−1 + · · ·+ b1x + b0 = 0,

where b j ( j = 0,1,2, . . . , (m−1)) are integers. Hence α is an algebraic integer. �

Corollary 12.6.5 : If α, β are algebraic integers, so are α+β and αβ.

Proof : By lemma 12.6.5, Z[α] and Z[β] are finitely generated Z-modules. Let
{a1,a2, . . .am} generate Z[α] and {b1,b2, . . .bn} generate Z[β]. Then, the mn
products aib j (i = 1, . . .m; j = 1,2, . . .n) generate a Z-module which we shall de-
note by Z[α,β]. Z[α,β] is a finitely generated Z-module. It is verified that α+β
and αβ are elements of Z[α,β]. So, by lemma 12.6.5, α+β and αβ are algebraic
integers. �

From lemma 12.6.5, we deduce that the set of algebraic integers (which are
elements of C) forms a ring denoted by A . If K is any algebraic number field,
A ∩K is a subring of K.
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Definition 12.6.11 : Given an algebraic number field K, we call A ∩ K, the
number ring corresponding to K.

For instance, if K = Q(
√

m), where Q is the field of rational numbers, m square
free, the number ring corresponding to K is given by

A ∩K =

{
Z[
√

m], if m 6≡ 1 (mod 4);
Z[ζ], where ζ = 1+

√
m

2 , if m≡ 1 (mod 4).

(See theorem 14, chapter 3).

Definition 12.6.12 : If ω = exp(2πi/m), (i =
√

−1), m ∈ N; one has

Q(ω) = {a0 + a1ω + · · ·+ am−2ω
m−2 : ai ∈ Q, (i = 0,1,2, . . . (m − 2))}

is an algebraic number field, called the mth cyclotomic field.

It could be verified that the number ring corresponding to Q(ω) is given by

(12.6.17) A ∩Q(ω) = Z[ω]

In particular, for m = 4, exp( 2πi
4 ) = i. (See [12]). So, Z[i], the ring Gaussian

integers is the number ring corresponding to the algebraic number field Q(i). We
recall that Q[ω] is a finite extension of Q of degree φ(m) where φ denotes the
Euler φ-function.

Next, we examine the additive structure of A ∩K where A is the ring of
algebraic integers and K an algebraic number field.

Recalling the definition 10.3.6 of a free abelian group of rank n, we give for
ready reference

Definition 12.6.13 : A free abelian group G of rank n (n finite) is a group which
is a direct sum of n subgroups each of which is isomorphic to Z.

In other words, G is isomorphic to the group (Zn,+) where Zn is the set of
lattice points in Rn. The rank of a free abelian group is well-defined, as Zm and
Zn are non-isomorphic for m 6= n (see [9]). It is also verified that a subgroup of a
free abelian group of rank n is also a free abelian group of rank≤ n.

Let α be an algebraic number. α is the zero of a polynomial f (x) where
f (x) ∈ Q[x], deg f = n, say. That is, the equation f (x) = 0 is

(12.6.18) a0α
n + a1α

n−1 + · · ·+ an = 0, a0 6= 0, ai ∈ Q, i = 0,1, . . .n

can be rewritten as

αn + b1α
n−1 + · · ·+ bn = 0, where bi =

ai

a0
, i = 0,1,2 . . .n.

As b1,b2 . . .bn are elements of Q, we take m to be the l.c.m. of denominators of
b1,b2 . . .bn, m ∈ Z. We obtain

mnαn + bimnαn−1 · · ·+ bnmn = 0.

Writing θ = mα, we get a monic polynomial equation of the form

θn + c1θ
n−1 + · · ·+ cn = 0 where ci = bimi, i = 1,2, . . .n
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We note that c1,c2 . . . ,cn are in Z. So, θ is an algebraic integer. Thus, given an
algebraic number α, we can find m ∈ Z such that mα is an algebraic integer.

Fact 12.6.2 : If K denotes an algebraic number field and A the ring of algebraic
integers, A ∩K, the number ring corresponding to K is a free abelian group of
rank n, where n = [K : Q].

For proof, see D. A. Marcus [12, corollary to theorem 9].
Next, if α is an algebraic number, α is a zero of an irreducible polynomial

f (x)∈Q[x]. If deg f = n, [Q[α] : Q] = n. We write K = Q[α]. The zeros of f (x) all
lie in C. The zeros of f (x) are called conjugates of α. An embedding of K in C is
a ring homomorphism of K into C. There are n embeddings of K in C, obtained
by mapping α into any one of its conjugates. Each conjugate β (of α) determines
a unique embedding ψβ : K→C given by g(α) 7→ g(β) for every g ∈ Q[x]. Every
embedding arises in this way, since in each ring homomorphism α goes to one of
its conjugates. These, in fact, give n monomorphisms of K, say, σ1,σ2, . . .σn. For
θ ∈ K, we write

(12.6.19) N(θ) = σ1(θ)σ2(θ) · · ·σn(θ).

N(θ) depends on K as well as θ. Clearly, N(θ) ∈ Q, as N(θ) is the product of the
conjugates of θ and θ satisfies an irreducible polynomial with coefficients from
Q. N(θ) is called the norm of θ.

Theorem 103 : The number ring corresponding to an algebraic number field K
is a Dedekind domain.

Proof : First, we observe that if R = A ∩K where K is the given number field
and A is the ring of algebraic integers, R is an integral domain. Further, R is a
free abelian group of finite rank, say n. If I denotes an ideal of R, (I,+) is also a
free abelian group of rank ≤ n and so I is finitely generated.
That is,

(1) R is a Noetherian domain.
We claim that

(2) R is integrally closed in K.
Reason: For α,β ∈ R, if we take θ = α

β , θ is an algebraic integer. For, if θ
satisfies a monic polynomial

xn + an−1xn−1 + · · ·+ a1x + a0

where ai (i = 0,1, . . . (n − 1)) are algebraic integers, Z[a0,a1, . . .an−1,θ] is finitely
generated as a Z-module. So θ ∈ R. So, R is integrally closed in K.
Next, we have to show that

(3) every nonzero prime ideal of R is maximal. It suffices to show that if P
is a nonzero prime ideal of R, R/P is a finite integral domain. Let I be a nonzero
ideal of R.

Claim : R/I is finite.
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Let α be a nonzero element of I. Let m = N(α), the norm of α (in terms of
automorphisms of K) see (12.6.19). As α ∈ R, m is an integer, m 6= 0. From the
definition of norm, m = αβ, where β is a product of conjugates of α (other than
α). These conjugates need not be in R. β ∈ R, since β = m

α ∈ K and it is verified
that β ∈A . So, m ∈ I, as α ∈ I, β ∈ R. So, I contains the nonzero integer m. We
consider R/(m). Now, if G is a free abelian group of rank n, for m ∈ Z, G/mZ is a
direct sum of n cyclic groups of order m (in additive notation). So, G/mZ is finite
and has mn elements. So, R/(m) has order mn. As (m)⊂ I, R/I ⊂ R/(m) and so
R/I is finite. R/I has order t where t| mn. So, every nonzero prime ideal of R is
maximal, since R/P is a field.

Thus, R = A ∩K is a Dedekind domain.
�

Remark 12.6.6 : A number ring R corresponding to an algebraic number field K
has the following characteristic properties:

(i) R is a Dedekind domain and so any ideal I of R is expressible as a finite
product of prime ideals uniquely, which is the analogue of the uniqueness
of factorization of an element as a product of primes in a UFD.

(ii) Every nonzero ideal I of R is such that R/I is finite.

12.7. The Chinese remainder theorem revisited

Let D be an integral domain with field of quotients F . From Definition (12.6.8),
we recall that if L is a fractional ideal of D, L is a nonzero D submodule of F such
that aL ⊂ D for some nonzero element a ∈ D. If L possesses an inverse denoted
by L−1, then

L−1 = {a ∈ F : aL⊂ D}
and LL−1 = D.

Definition 12.7.1 : For a fractional ideal L of D, we define

DL = {a ∈ F : aL⊂ L}
We notice that DL is an extension ring of D. For, if t ∈ D, tL = L and so

t ∈ DL. As DL is a subring of F , DL is an extension ring of D.

Lemma 12.7.1 : If D is a Noetherian domain which is integrally closed and L is
a proper ideal of D, then DL = D.

Proof : A D is Noetherian, L is finitely generated. Suppose that {a1, . . .an} gen-
erates L. Let b ∈ DL. Then bL⊂ L.
So,

ba1 = c11a1 + · · · · · ·+ c1nan,

ba2 = c21a1 + · · · · · ·+ c2nan,

· · · · · · · · · · · ·
ban = cn1a1 + · · · · · ·+ cnnan
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where ci j ∈ D (i, j = 1,2, . . .n). Or,

(bIn − M)




a1

a2
...

an


 = 0D,

where In is the n×n unit matrix and M = [ci j] with ci j ∈D; i, j = 1,2, . . . ,n. So, as
ai 6= 0 for i = 1,2, . . .n, det (bIn − M) = 0. This gives a monic polynomial equation
of the nth degree in b with coefficients from D. As D is integrally closed, b ∈ D.
So, DL = D. �

Theorem 104 : Let D be a Dedekind domain which is not a field. If M denotes a
nonzero maximal ideal of D, then M is an invertible prime ideal of D.

Proof : As M is a maximal ideal, M is prime. Moreover, every nonzero prime
ideal of D is maximal. If M possesses an inverse, say M−1, then,

M−1 = {a ∈ F : aM ⊂ D}, where F is the field of quotients of D.

M is Noetherian and integrally closed. So, by lemma 12.7.1, DM = D. As
M−1 ⊃ DM,MM−1 ⊃MDM = DM = D. So, MM−1 ⊇ D. Now, M ⊂ D. So,
MM−1 ⊂ DM−1. If t ∈ D, and q ∈ M−1, as qM ⊆ D, tqM ⊂ D. Or, MM−1 ⊆ D.
This proves that MM−1 = D. That is, M is an invertible prime ideal of D. �

Corollary 12.7.1 : Every proper prime ideal of a Dedekind domain D is invert-
ible, as every maximal ideal of D is invertible.

Next, we observe that while proving theorem 103, we came across the fact
that given a nonzero ideal I of a number ringA∩K corresponding to an algebraic
number field K, A∩K/I is finite. AsA∩K is a Dedekind domain, we have plenty
of examples of Dedekind domains D for which whenever I is a nonzero ideal of
D, D/I is finite.

Definition 12.7.2 : Let D be a Dedekind domain. Assume that for every nonzero
proper ideal I of D, D/I is finite. The number of cosets of I in D is called the norm
of I and is denoted by N(I).

In the case of Z, the integral domain of integers, if I = nZ, where n is a
positive integer > 1, N(I) = |Z/nZ| = n.

Now, if D is as given in the definition 12.7.2,

(12.7.1) N(I)D = {N(I)x : x ∈ D}

Claim : N(I)D⊂ I.
For let ψ : N(I)D→ D/I be given by

ψ(N(I)x) = N(I)x + I, the coset of I determined by N(I)x ∈ D.
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Then,

ψ(N(I)1D) = N(I)1D + I

= (1D + I)⊕ (1D + I)⊕·· ·⊕ (1D + I)(N(I)times).

As N(I) is the order of the additive group (D/I,⊕), where ⊕ denotes addition
modulo I,

ψ(N(I)1D) = [0D] in D/I.

Therefore, if x ∈ D

ψ(N(I)x) = (N(I)1D + I)(x + I) = [0D]. Or, x ∈ I.

It means that N(I)D⊂ I.
Using the notation ‘divides’ for ideals, we have I | N(I)D.

Remark 12.7.1 : If P is a proper prime ideal of D, P is a maximal ideal of D, as D
is a Dedekind domain. Therefore, D/P, when finite, has q = pm elements, where
p is a prime and m≥ 1. (D/P is a finite field).

Lemma 12.7.2 : Let D be a Dedekind domain. Given a prime ideal P of D
and any positive integer m, the quotient rings D/P (a field) and Pm/Pm+1 have
isomorphic additive groups.

Proof : We choose an element a in Pm \Pm+1. Let θ be a map given by
θ : (D,+)→ (Pm,+) with θ(x) = ax for all x ∈ D. As a ∈ Pm \Pm+1, ax ∈ Pm for
any x ∈ D.

If y is an element of Pm, θ(y) = ay ∈ Pm+1. So θ(P) ⊂ Pm+1. So, θ induces a
homomorphism θ̄ : (D/P,⊕)→ (Pm/Pm+1,⊕).

If x̄ ∈ ker θ̄ and x belongs to the coset x̄ of P in D, ax ∈ Pm+1.
That is, x ∈ P. So x̄ = 0 and so, θ̄ is an isomorphism. It is also onto. For, if y

belongs to the coset ȳ of P in D and if we take ȳ ∈ Pm/Pm+1, taking b ∈ aD + Pm,
we see that b ∈ Pm+1 and b = ax + y for some x ∈ D. So, the element x̄ ∈ D/P has
the property:

θ(x̄) = ȳ ∈ Pm/Pm+1.

So, θ̄ is a surjective homomorphism. That is, D/P and Pm/Pm+1 have isomorphic
additive groups. �

Lemma 12.7.3 : Let D be a Dedekind domain. Any nonzero ideal of D is divisible
by only finitely many ideals.

For, if P is a prime ideal which contains a given ideal I of D, then P|I. Sup-
pose that for an integer m, Pm|I, but Pm+1 - I. Then, the number of ideals which
serve as divisors of I will be finite, as I is expressible uniquely as a finite product
of prime ideals.

Theorem 105 : Let D be a Dedekind domain such that for any proper ideal I (of
D) the quotient ring D/I is finite. Writing N(I) = |D/I|, the number of ideals J
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such that N(J)≤ r (a given positive integer) is finite. Further, for ideals I,J in D
with norms N(I) and N(J) respectively,

(12.7.2) N(IJ) = N(I)N(J).

Proof : We assume that ai ∈ D, i = 1,2, . . . ,k and k > (r + 1).
Let S = {a1,a2, . . .ak}, ai 6= a j for i 6= j.

S has k distinct elements belonging to D. For an ideal J with N(J) ≤ r, we can
select two elements as, at from S such that as − at ∈ J.
This is expressed by writing the congruence as ≡ at (mod J). The set of elements
of the form as −at is finite as, |D/J| is finite and≤ r. If as −at ∈ I (say), then, J ⊂ I
or I |J. As the number of ideals of D dividing J is finite (by lemma 12.7.3) and
since the set of elements as − at is finite, there are only a finite number of ideals J
for which N(J)≤ r.

For the second part, we choose a prime ideal P of D. It is easy to check that
for additive groups D/P, D/P2 and P/P2

D/P2

D/P
∼= P/P2,

or,

(12.7.3) |D/P| |P/P2| = |D/P2|
That is, N(P)2 = N(P2), by lemma 12.7.2.

Further,
D/Pm+1

D/Pm
∼= Pm/Pm+1

So, N(Pm+1) = N(Pm)N(P), as D/P∼= Pm/Pm+1.
So, by induction on m, N(Pm) = (N(P))m, m≥ 1.

By theorem 101, as D is a Dedekind domain, any nonzero ideal I of D has
the unique representation

(12.7.4) I = Pa(P1)
1 Pa(P2)

2 · · ·Pa(Pk)
k

where Pi (i = 1,2, . . .k) are distinct prime ideals and a(pi) ∈ N (i = 1,2, . . .k). So,
it follows from (12.7.4) that N(IJ) = N(I)N(J), as described. �

Lemma 12.7.4 (Fermat’s little theorem) : Let D be a Dedekind domain in which
D/I is finite for any nonzero ideal I of D. If P is a nonzero prime ideal of D, for
all x ∈ D,

(12.7.5) xN(P) ≡ x (mod P)

where N(P) = |D/P| and N(P) is the least exponent for which (12.7.5) holds.

Proof : If x∈ P, (12.7.5) holds trivially. Suppose that x /∈ P. Since D/P is a finite
field, x̄ = x + P belongs to a cyclic group of order N(P) − 1 and so,

(x̄)N(P)−1 = [1D], the congruence class of 1D.
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Or, xN(P)−1 ≡ 1D (mod P) and so (12.7.5) holds for all x ∈ D. Further, N(P) is the
least positive integer satisfying (12.7.5), as the multiplicative group (D∗/P,⊗),
where D∗/P = D/P\ [0D] has order N(P) − 1. �
Theorem 106 (Euler φ-function for a class of Dedekind domains) : Let D be a
Dedekind domain in which D/I is finite for any nonzero ideal I of D. We write
N(I) = |D/I|. If φ(I) denotes the number of invertible elements in D/I,

(12.7.6) φ(I) = N(I)
∏

P

(1 − 1/N(P))

where
∏

P means that the product is over all the prime ideals (of D) dividing I.
Moreover, if x ∈ D and the greatest common divisor of xD and I is D, then

(12.7.7) xφ(I) ≡ 1D (mod I).

Proof : We note that if I =
∏

P Pa(P) is the factorization of I into a product of
prime ideals, it is clear that

(12.7.8) D/I ∼= ⊕
∑

D/P a(P).

((12.7.8) is obtained along the lines of proof of exercise 10 in chapter 5). There-
fore, it suffices to prove the theorem for I = Pm, m ≥ 1 where P is a prime ideal.
When m = 1, it is the case of the number of nonzero elements of D/P. That is,

φ(P) = N(P) − 1.

For m > 1, φ(Pm) = # invertible elements of D/Pm or

φ(Pm) = N(Pm) − N(Pm−1) = N(P)m{1 − 1/N(P)}.
So, from (12.7.8), (12.7.6) follows.

The second part of the theorem gives the analogue of Eulers’ theorem. Given
that x belongs to a unit in the residue class ring (D/I,⊕,⊗), (12.7.7) follows
naturally, as [1D] is the multiplicative identity. �

Remark 12.7.2 : Theorem 106 has been adapted from W. Narkeiwicz [13].

Next, we go to the analogue of the Chinese Remainder Theorem in the con-
text of a Dedekind domain. Let D be a Dedekind domain. Every proper nonzero
ideal of D is a product of prime ideals. If J is a fractional ideal of D, we can
choose a nonzero element b from D such that bJ ⊂ D. bJ is an ideal in D. So,

(12.7.9) J = (bD)−1bJ.

Therefore, we can express J as a product of prime ideals P with exponents a(P)
(say) which may be a positive or a negative integer. That is, the prime ideals of D
generate the abelian group of all fractional ideals of D with identity D. Further, a
nonzero ideal of D is divisible by only a finite number of prime ideals of D. The
idea is that any fractional ideal J of D has a unique representation

(12.7.10) J =
∏

P

P a(P)
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where the product extends over all prime ideals of D where a(P) are integers
(positive or negative or zero ) and only a finite number of them is nonzero.

Definition 12.7.3 : Let I,J be ideals of a Dedekind domain D. If

I =
∏

P

P a(P), J =
∏

P

P b(P);

we say that I divides J if, and only if, a(P)≤ b(P) for distinct primes P occurring
in the factorizations of I and J.

It follows that g.c.d of I and J written g.c.d (I,J) is given by

(12.7.11) gcd (I,J) =
∏

P

P c(P) where c(P) = min{a(P),b(P)}.

The l.c.m. of I and J written [I,J] is given by

(12.7.12) [I,J] =
∏

P

P d(P) where d(P) = max{a(P),b(P)}.

As in elementary number theory, one has

(12.7.13) gcd (I,J)[I,J] = IJ.

It can be checked that g.c.d (I,J) = I + J. I and J are said to be relatively prime,
if g.c.d (I,J) = the ideal generated by 1D that is, D. I and J are relatively prime
to one another. So, I and J are relatively prime to one another if, and only if,
I + J = D. We know that two such ideals are comaximal (when I,J are proper
ideals of D).

We can discuss solutions of linear congruences the way it is done in elementary
number theory. We consider linear congruences modulo an ideal I in a Dedekind
domain.

Lemma 12.7.5 : Let D be a Dedekind domain and let I be a proper nonzero ideal
of D. For a,b ∈ D, the congruence

ax≡ b (mod I)

has a solution in D if, and only if, b belongs to the ideal I + aD.

Proof : ⇐: If b ∈ I + aD, b can be written as

b = y + at

where y ∈ I, t ∈ D. So, b − at ∈ I. So, t is such that at ≡ b(mod I). So, t is a
solution of ax≡ b(mod I).
:⇒ If ax≡ b (mod I) has a solution, say, t ∈ D, then for suitable y ∈ I,
b = at + y ∈ aD + I. So, b belongs to the ideal aD + I. �

Corollary 12.7.2 : If P is a prime ideal of a Dedekind domain D and a ∈ D\P,
then, the congruence

ax≡ b(mod Pn)
has a solution in D for any b ∈ D and n≥ 1.
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For, we observe that a /∈ Pn and so, Pn + aD = D yields the result, as P is a
maximal ideal in D.

Corollary 12.7.3 : If P1,P2, . . .Pm are distinct prime ideals in a Dedekind domain
D, then, for a1,a2, . . .am ∈ D and n ≥ 1, there exists a common solution to the
system of congruences

x≡ a1 (mod Pn
1 ),

x≡ a2(mod Pn
2 ),

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

x≡ am(mod Pn
m).

Proof : We choose bi ∈ Ji where Ji = (P1 · P2 · · · · · Pi−1 · Pi+1 · · · · · Pm)n \ Pi ,
(i = 1,2, . . .m). Let ti be a solution of

bix≡ ai (mod Pn
i ).

ti exists, as ai ∈ biD + Pn
i (i = 1,2, . . .m). Then, t = b1t1 + b2t2 + · · ·+ bmtm has the

desired property. �

Theorem 107 (The Chinese Remainder Theorem) : Let I1, I2 . . . Im be pairwise
comaximal ideals of a Dedekind domain D. If a1,a2 . . .am are elements of D,
then, there exists a common solution to the system of congruences:

x≡ a1(mod I1),
x≡ a2(mod I2),
. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

x≡ am(mod Im).

Proof : We observe that any congruence of the form

x≡ a (mod I)

is equivalent to a system of congruences

x = ai(mod Pbi
i ) i = 1,2, . . . t

where I =
∏t

i=1 Pbi
i , bi ≥ 1(i = 1,2, . . . t).

The corollary 12.7.3 of lemma 12.7.5 gives a common solution to given con-
gruences, as the m congruences x ≡ ai (mod Ii) (i = 1,2, . . . ,m) give rise to km
(k ≥ 1) congruences in terms of the prime-power moduli. So, they have a com-
mon solution which is unique modulo

∏
Pa(P), the l.c.m of I1, I2, . . . , Im. �

As in the case of rings (see theorem 32, chapter 5), another version of the
Chinese Remainder Theorem for Dedekind domains is the following
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Theorem 108 (Frölich and Taylor) : Let Pi (i = 1, . . .n) denote distinct prime
ideals of a Dedekind domain D. Suppose that ai (i = 1,2, . . .n) denote positive
integers. Let ψ : D→∏n

i=1 D/Pai
i be given by

ψ(x) = (x + Pa1
1 ,x + Pa2

2 . . . ,x + Pan
n ); x ∈ D.

Then, ψ is a surjective homomorphism and D/
∏n

i=1 Pai
i and

∏n
i=1 D/Pai

i are
isomorphic.

Proof : It is clear that ψ is a homomorphism.

ker ψ = Pa1
1 ∩Pa2

2 ∩ . . .Pan
n

Now, Pan
n and

∏n−1
i=1 Pai

i are relatively prime to one another and when I and J are
comaximal, I + J = D and I∩ J = IJ.

So,

(
n−1∏

i=1

Pa1
1 )∩Pan

n =
n∏

i=1

Pai
i

Therefore, ker ψ = Pa1
1 Pa2

2 · · ·Pan
n .

To show that ψ is surjective, we proceed as follows:
Let xi (i = 1,2, . . .n) be specified elements of D. For each k, 1 ≤ k ≤ n, the

ideals Pak
k and Jk =

∏n

i=1
i6=k

Pai
i are relatively prime to one another.

So, we can find rk ∈ Jk; sk ∈ Pak
k such that rk + sk = 1D. Then, xk ≡ xkrk ∈ Pai

i ,
i 6= k. However, xksk = xk(1D − rk) ∈ Pak

k . Therefore,

xk ≡ xkrk (mod Pak
k )

Therefore, x = x1r1 + x2r2 + · · ·+ xkrk is such that

x≡ xk(mod Pak
k ) for each k.

So, ψ is surjective. By the fundamental homomorphism theorem, the desired
isomorphism of rings D/ΠPai

i and Πn
i=1D/Pai

i is established. �

Remark 12.7.3 : What we have shown is that given x1,x2 . . . ,xn ∈ D there exists
x ∈ D such that

x≡ x1(mod Pa1
1 ),

. . . . . . . . . . . . . . .

. . . . . . . . . . . . . . .

x≡ xn(mod Pan
n )

and the common solution determines the class of x (mod
∏n

i=1 Pai
i ) uniquely.

Example 12.7.1 : Let I = P2
1 P2P3 (P1,P2,P3 distinct prime ideals)
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Let x1 ∈ P1 \P2
1 , x2 = 1D, x3 = 1D.

Then, we can find y1 ∈ D such that y1 ≡ x1 (mod P2
1 ), y1 /∈ P2, y1 /∈ P3. Similarly,

we can find y2 ∈ P2 \P2
2 , y2 /∈ P1, y2 /∈ P3 and y3 ∈ P3 \P2

3 , y3 /∈ P1, y3 /∈ P2.
For the system of congruences :

x≡ x1(mod P2
1 ); x≡ x2(mod P2); x≡ x3(mod P3)

a unique solution is x≡ y1(mod I).
For the system of congruences :

x≡ x1(mod P1) x≡ x2(mod P2
2 ) x≡ x3(mod P3)

a unique solution is x≡ y2(mod J) where J = P1P2
2 P3.

For the system of congruences :

x≡ x1(mod P1) x≡ x2(mod P2) x≡ x3(mod P2
3 )

one has x≡ y3(mod J′) where J′ = P1P2P2
3 .

When {P1,P2,P3} is the only set of prime ideals of D, P1 will contain only
multiples of y1 or P1 is the principal ideal (y1). Similarly, P2 is the principal ideal
(y2) and P3 is the principal ideal (y3).

Remark 12.7.4 : Example 12.7.1 has been adapted from [8]. We have a gen-
eralization: A Dedekind domain D having only a finite number of prime ideals
reduces to a PID. See P.M. Cohn [7].

For more properties of Dedekind domains and applications, see A. Frölich
and M. J. Taylor [8], W. Narkeiwicz [13], P. Samuel [15].

12.8. Integral domains having finite norm property

Ideals of rings have played a major role in the development of algebraic num-
ber theory. If K denotes an algebraic number field, we consider the ring R of
integers corresponding to K. Every proper ideal of R is either a prime ideal or a
unique product of prime ideals (except order). Further, the residue class ring of
R modulo an ideal I is finite for every proper ideal I of R. The fact that R is a
Dedekind domain is exploited to know more about R. Using the unique factoriza-
tion theorem (see theorem 101), it is shown that the norm of I denoted by N(I)
is multiplicative (see theorem 105). We wish to establish that the multiplicative
property of the norm implies the unique (prime ideal) factorization theorem in an
integral domain with unity in which every proper ideal has finite norm. Definition
12.5.1 is recast as follows:

Definition 12.8.1 : Let D be an integral domain with unity. An ideal I of D is
called irreducible if I is proper and I = AB (where A,B are ideals of D) implies
that either A = D or B = D. In other words, A or B is the unit ideal.

In a general integral domain, an irreducible ideal may not be a prime ideal
and a prime ideal may not be an irreducible. (However, a ‘prime’ element in an
integral domain is irreducible).

© 2007 by Taylor & Francis Group, LLC



NOETHERIAN AND DEDEKIND DOMAINS 419

Definition 12.8.2 : An integral domain D with unity is said to have the finite norm
property, if for every proper ideal I of D, the quotient ring D/I is finite. When D/I
is finite, we denote the number of elements of D/I by N(I). N(I) is called the norm
of I.

Examples 12.8.1 : Dedekind domains having finite norm property [5] are

i The ring DK of algebraic integers of a number field K.
ii The ring Fq[x] of polynomials over a finite field Fq.

iii Let p be a prime. We denote by Zp (see definition 8.3.1), the set of rational
numbers of the form a

b where a and b are integers with p - b. By Theorem 58,
Zp is a PID contained inQ. By Corollary 8.3.1, Zp is a quasilocal ring having
a unique maximal ideal P which is generated by p. Every proper ideal of Zp

is a power of P. Zp is Noetherian and is integrally closed. Zp is a Dedekind
domain having the finite norm property. Zp is a special primary ring (see
definition 12.10.1).

Lemma 12.8.1 : If I and J are proper ideals of the D (having finite norm property)
such that I ⊂ J, then, there exists a positive integer k such that N(I) = kN(J).
Further, I is a proper subset of J if, and only if, k ≥ 2.

Proof : Since (I,+) is a subgroup of (J,+), there exist elements ti ∈ J (i = 1,2, . . . ,k)
such that the cosets I + ti are disjoint for i = 1,2, . . . ,k. Also,

(12.8.1) J = ∪k
i=1{I + ti}

It is clear that if J = I, then, k = 1 and if J 6= I, then, k > 1. If

(12.8.2) D = ∪n
j=1{J + s j}

is the (finite) coset decomposition of D modulo J, then

(12.8.3) D = ∪1≤ j≤n
1≤i≤k

{I + ti + s j}

is the coset decomposition of D modulo I. It follows that N(I) = kN(J). �

Lemma 12.8.2 : If every proper ideal of D has finite norm, then every proper
ideal is finitely generated.

Proof : Let I be a proper ideal of D and a1 6= 0D be an element of I. If I = (a1),
then I is finitely generated. If I 6= (a1), let a2 ∈ I and a2 /∈ (a1). If I = (a1,a2) then,
I is finitely generated. If I 6= (a1,a2), then, there exists a3 ∈ I such a3 /∈ (a1,a2). If
this process is continued, we obtain a chain of ideals

(12.8.4) (a1)⊂ (a1a2)⊂ (a1,a2,a3)⊂ . . .

© 2007 by Taylor & Francis Group, LLC



420 CHAPTER 12

By lemma 12.8.1, we have

N(a1)> N((a1,a2))> N((a1,a2,a3))> .. .

Now, the norm of a proper ideal is a positive integer and so the chain (12.8.4) of
ideals terminates in a finite number of steps. Therefore, we arrive at

I = (a1,a2, . . .ak).

Hence I is finitely generated. �
Theorem 109 (H. S. Butts and L. I. Wade (1966)) : Let D be an integral domain
having finite norm property. Assume that N(IJ) = N(I)N(J) for every pair of ideals
I and J in D. If I,J are ideals in D such that I ⊂ J, there exists an ideal A in D
such that I = JA.

Proof : Case (i) J = I + (t), t /∈ I.
If, either J or J + (t) is not a proper ideal or if t ∈ J, then it is clear that there

is an ideal A such that J = IA. Suppose that I = J + (t) and J are proper ideals such
that t /∈ I and

A = {x ∈ D : xt ∈ J}
Then, A is an ideal of D and IA ⊂ J. In order to show that J = IA, it is enough if
we prove that N(IA) = N(J), using lemma 12.8.1.

Since IA ⊂ J, by lemma 12.8.1, N(IA) = N(I)N(A) ≥ N(J). To show that
N(IA) = N(J), we make a

Claim : If N(I)
N(J) = k, a positive integer, N(A)≤ k.

Let J = ∪k
i=1{I + ti} be a coset decomposition of J modulo I. Suppose that

D = ∪l
i=1{A + si} be a coset decomposition of D modulo A. We write

T = {I + t1, I + t2, . . . , I + tk}
S = {A + s1,A + s2, . . . ,A + sl}

Suppose that J = I + (t). Let Ψ : T → S be defined by Ψ(I + ti) = A + s j, where
ts j occurs in I + ti. If A + sm = A + sn, tsm − tsn ∈ I. So, t(sm − sn) ∈ I. As I ⊂ J,
t(sm − sn) ∈ J. It follows that tsm and tsn belong to the same coset of J modulo I.
So,Ψ is independent of the coset representative. Since each element of J belongs
to one and only one coset of I, Ψ is single-valued. Suppose that A + sm and A + sn

come from the same coset I + tq (1≤ q≤ k). Then, t(sm −sn)∈ I and so, sm −sn ∈ A
or A+sm = A+sn. So, Ψ is one-one. That is, N(A) = l ≤ k. Further, when J = I + (t),
J = IA.

Case (ii) J 6= I + (t) where t /∈ I.
Since I ⊂ J, by lemma 12.8.2, J is finitely generated and consequently, there

exist elements t1, t2, . . . th such that

I ⊂ I + (t1)⊂ I + (t1) + (t2)⊂ . . .⊂ I + (t1) + (t2) . . .+ (th) = J

I is finitely generated and so, J is expressible as

(12.8.5) J = I + (t1) + (t2) . . .+ (th) ; ti ∈ D, (i = 1,2, . . . ,h).
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As in the argument used for case (i), we obtain an ideal A1 such that
I = (I + (t1))A1. Similarly, there is an ideal A2 such that I + t1 = (I + (t1) + (t2))A2.

So, I = (I + (t1) + (t2))A1A2. By induction, there is an ideal A such that I = JA.
�

Next, we observe that the definition (2.4.3) of a prime ideal P (see chapter 2)
may be recast in the following manner:

If D is an integral domain and A,B are ideals of D such that AB⊂ P⇒ either
A⊂ P or B⊂ P, then, P is a prime ideal of D. Further, if D is an integral domain
with unity 1D, the following cancellation property holds:

If 0D 6= a ∈ D and B,C are ideals of D,

(12.8.6) (a)B = (a)C⇒ B = C.

For, if b ∈ B, then ab ∈ (a)B = (a)C. Therefore

ab =
n∑

i=1

(ria)ci =
n∑

i=1

a(rici) =
n∑

i=1

adi

where ri ∈ D, ci ∈C, di ∈C; i = 1,2, . . . ,n.
So,

ab = a
n∑

i=1

di or, b =
n∑

i=1

di ∈C

Thus, B⊆C. Similarly, C ⊆ B or B = C.

Remark 12.8.1 : In the case of a Dedekind domain D, we have shown in Corol-
lary 12.6.3 that given nonzero ideals L,M,N of D, LM = LN⇒M = N.

Theorem 110 (H. S. Butts and L.I. Wade (1966)) : Let D be an integral domain
having finite norm property. If the norm of a proper ideal of D is multiplicative,
then every proper ideal of D is either a prime ideal or a unique product of prime
ideals, except for order.

Proof : Let I be a proper ideal of D. Let I be irreducible (or nonfactorable). By
theorem 109, if I ⊂ J, there exists an ideal A such that I = JA. It follows that either
J or A is D. If J is proper, A = D. So I = J. That is, I is a maximal ideal of D. So,
I is a prime ideal.

If I is reducible, then, I = I1I2 where I1 and I2 are proper ideals. So,
N(I) = N(I1)N(I2). Since the norm of a proper ideal ≥ 2, it follows that I can be
expressed as

(12.8.7) I = I1I2 . . . Im

where I j( j = 1,2, . . .m) is a proper irreducible (nonfactorable) ideal.
Since proper irreducible ideals are maximal, it follows that I is a (finite) prod-

uct of maximal ideals and hence a product of prime ideals.
UNIQUENESS: Suppose that I admits two different factorizations in the form

(12.8.8) I = I1I2 . . . Im = J1J2 . . .Jn
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where I j( j = 1,2, . . .m) are maximal ideals and Ji(i = 1,2, . . .n) are proper prime
ideals. By the property of a prime ideal, I j ⊂ Ji for some j, say j = 1. Then, I1 = Ji.
Let x (6= 0D) be an element of I1. Since (x)⊂ I1, there exists an ideal Q such that
(x) = I1Q (by theorem 109). We get

QI1I2 . . . Im = QJ1 . . .Ji−1I1Ji+1 . . .Jn

or
(x)I2 . . . Im = (x)J1J2 . . .Ji−1Ji+1 . . .Jn

By the cancellation property (12.8.6)

I2 . . . Im = J1J2 . . .Ji−1Ji+1 . . .Jn

By the standard argument used in such situations, we get m = n and any two
factorizations differ only in the order of the factors which are prime ideals. �

Remark 12.8.2 : The converse of theorem 110 holds for integral domains (with
unity element 1D) having finite norm property. However, an integral domain (with
unity element 1D) in which unique prime ideal factorization theorem holds, need
not have the finite norm property. For example, the ring F[x] of polynomials over
an infinite field F (of characteristic zero or not) is a Dedekind domain which does
not have the finite norm property, since the quotient ring F[x]/(x) is isomorphic
to F. We add that one can construct an infinite field of characteristic p (a prime),
by considering the ring Fq[x] where Fq is a finite field with q = pm (p a prime).
Fq[x] is an integral domain. Its field of quotients Fq(x) is an infinite field having
characteristic p.

Definition 12.8.3 : Let D be an integral domain with unity element 1D. Suppose
that I denotes a proper ideal of D. We denote by S, the set of all positive integers
n obtained by taking the lengths of all possible finite chains of ideals

(12.8.9) I ⊂ I1 ⊂ I2 . . .⊂ In = D, I 6= I1 and I j 6= I j+1

( j = 1,2, . . . , (n − 1)). I is said to be of finite length, if S is finite and in this case,
the largest integer in S is called the length of I, denoted by L(I).

Theorem 111 (H. S. Butts and L. I. Wade (1966)) : Let D be an integral domain.
Suppose that every proper ideal I of D is of finite length, say, L(I). If L(AB) =
L(A) + L(B) for proper ideals A,B of D and if, for ideals I,J of D, one has I ⊂ J,
then, there exists an ideal A (of D) such that I = JA.

Proof : As in the proof of theorem 109, it is enough if we prove the theorem for
the case where J = I + (t), t /∈ I. We define the set A by

A = {x ∈ D : xt ∈ I}
A is an ideal of D and JA⊂ I. So,

L(JA) = L(J) + L(A)≥ L(I).

To show that JA = I, it suffices to prove that
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(12.8.10) L(I)≥ L(JA) = L(J) + L(A).

We consider a strictly ascending chain of ideals from A to D as follows:

(12.8.11) A⊂ A + (t1)⊂ A + (t1) + (t2)⊂ . . .⊂ A + (t1) + . . .+ (tn) = D.

Since J = I + (t), we take

(12.8.12) A⊂ A + (tt1)⊂ A + (tt1) + (tt2)⊂ A + (tt1) + . . .+ (ttn)

(12.8.12) is a strictly increasing chain of ideals each contained in J. For, if
I = I + (tti), i = 1,2, . . .n, then tti ∈ I. By definition ti ∈ A. Then, A = A + (ti) and
then, (12.8.12) is not a strictly increasing chain. So, from (12.8.12), it follows
that by induction, A + (tt1) + . . .+ (ttn)⊂ J. Hence, (12.8.10) holds and I = JA. �

Lemma 12.8.3 : Let D be an integral domain and a ∈ D. If J is an ideal in D
such that J ⊂ (a), then, there exists an ideal Q in D such that (a)Q = J.

Proof : Let Q = {x ∈ D : ax ∈ J}. It is an ideal of D and (a)Q = J. �

Lemma 12.8.4 : Let D be an integral domain.

(1) Suppose that every proper ideal J in D is either maximal or a product
of maximal ideals. If M is a maximal ideal in D, then, there exists an
element a ∈ D and an ideal Q 6= (0) (in D) such that MQ = (a).

(2) Suppose that every proper ideal in D is either maximal or a unique
product of maximal ideals (except for order). If I and J are proper
ideals of D such that I ⊂ J, then there exists an ideal A in D such that
I = JA.

Proof : If M = 0D, we take Q = D and a = 0D. If M 6= (0D), let 0D 6= a be an element
of M. There exist maximal ideals M1,M2, . . .Mn in D such that

(12.8.13) (a) = M1M2 . . .Mn

since (a)⊂M, it follows that as M is a prime ideal, M = Mi for some i, say i = 1.
Then,

(a) = MM2 . . .Mn and we have only to take M2M3 . . .Mn = Q

This proves the first part of lemma 12.8.4.
By the result in (1), there exists an ideal Q 6= (0) in D and an element t ∈ D such
that (t) = JQ and IQ ⊂ JQ = (t). So, by lemma 12.8.3, there exists an ideal A
in D such that (t)A = IQ. Therefore, (t)A = JQA = IQ. We do the factorizations
into products of maximal ideals for I,J,A and Q and by using the fact that the
factorization is unique except for order, we obtain I = JA.

This proves the second part of lemma 12.8.4. �
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Remark 12.8.3 : By theorem 101, we have seen that a Dedekind domain D has
the property: Every proper ideal I of D is either a prime ideal or a unique product
of prime ideals except for order. Lemma 12.8.4 shows that if D is a Dedekind
domain, for proper ideals I,J of D such that I ⊂ J, there exists an ideal A of D
such that I = JA. This condition is also sufficient to make D a Dedekind domain.
See W. Krull [11]. See also H. S. Butts and L. I. Wade [5]. So, then, theorem
111 says that an integral domain satisfying the conditions stated therein makes it
a Dedekind domain. The following theorem gives yet another sufficient condition
for an integral domain D (with unity element 1D) to be a Dedekind domain.

Theorem 112 (H. S. Butts (1964)) : If D is an integral domain with unity element
1D such that every proper ideal of D is either an irreducible ideal or can be
factorized uniquely into a product of irreducible ideals of D, then irreducible
ideals are prime ideals.

Proof : Let J be a proper prime ideal of D. Suppose that 0D 6= a is an element of
J. There exist irreducible ideals P1,P2, . . .Pn such that

(12.8.14) (a) = P1P2 . . .Pn.

We observe that (a) is a fractional ideal and so each Pi(i = 1,2, . . .n) is a fractional
ideal. (See Remark 12.6.4 (ii)). Also, by the application of lemma 12.8.2, each Pi

is finitely generated.
Let x ∈ D and x /∈ Pi (i arbitrary, but fixed). Since Pi is finitely generated,

Pi + (x) is finitely generated. As uniqueness of factorization of an ideal into ir-
reducible ideals holds in D, cancellation law for ideals holds in D. So, finitely
generated ideals of D are irreducible. See Heinz Prüfer (1896–1934) [14]. There-
fore, Pi + (x) is invertible. By hypothesis, every ideal of D has finite norm. So, by
theorem 109, as Pi ⊂ Pi + (x), there exists an ideal A in D such that Pi = (Pi + (x))A.
Now, Pi is an irreducible ideal. So, Pi + (x) = D. It implies that Pi is a maximal
ideal of D. We began with a proper prime ideal J of D. As P1P2 . . .Pn ⊆ J, it fol-
lows that J = Pi for some i. So, J is invertible. A converse of theorem 104 is due
to I. S. Cohen [6]. It says that if every proper prime ideal of D is invertible, then D
is a Dedekind domain. (See Exercise 12). Hence, D satisfying the hypothesis of
the theorem is a Dedekind domain. Clearly, irreducible ideals are maximal ideals
and so prime ideals. �

Remark 12.8.4 : Theorem 112 has been adapted from H. S. Butts [4].

Theorem 113 (H. S. Butts and L. I. Wade (1966)) : D denotes an integral domain
with unity 1D. Then, every proper ideal of D is either a maximal ideal or a unique
product of maximal ideals if, and only if, every proper ideal A has finite length
L(A) and for proper ideals I,J of D,

(12.8.15) L(IJ) = L(I) + L(J).

Proof : ⇐: Let I be a proper ideal of D. If I is irreducible, I = AB implies either A
or B is the unit ideal and so I is a maximal ideal. If I is reducible, we write I = I1I2
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where I1, I2 are proper ideals such that L(I) = L(I1) + L(I2), by (12.8.15). So, since
I1I2 ⊆ I1∩ I2 and L(I1I2) = L(I1) + L(I2), I is a product of irreducible ideals. That
is, I is a product of maximal ideals. The uniqueness of factorization of a proper
ideal into a product of maximal ideals is shown as in the proof of theorem 108.

:⇒ Let I be a proper ideal of D. We are given that either I is maximal or a
unique product of maximal ideals (except for order).

Claim : Every proper ideal is of finite length. Further, if I,J are proper ideals of
D, the lengths L(I) and L(J) of I and J respectively, satisfy the relation (12.8.15).
Let

(12.8.16) I = M1M2 . . .Mn

and

(12.8.17) J = P1P2 . . .Pm,

where Mi(i = 1,2, . . .n) and Pj( j = 1,2, . . .m) are maximal ideals and the represen-
tations (12.8.16) and (12.8.17) of I and J (respectively) are unique. By appealing
to lemma 12.8.4(2), we obtain a strict ascending chain of ideals

(12.8.18) I ⊂M2M3 . . .Mn ⊂M3M4 . . .Mn ⊂ . . .Mn−1 ⊂Mn ⊂ D

(where D may be considered as Mn+1). By the uniqueness of factorization, the
ascending chain in ((12.8.18)) is the longest. So, L(I) = n. Similarly, L(J) = m.
We get through, if we show that L(IJ) = n + m.

If a maximal ideal P occurs in I as well as J, one gets a factor P2 in IJ. Also,
there is no ideal between P2 and P when P is a maximal ideal. See I.S. Cohen [6].
Noting that L(P2) = 2, we could calculate L(IJ). Suppose that q of the maximal
ideals occurring in ((12.8.16)) and ((12.8.17)) are common. Then

L(IJ) = (n − q) + 2q + (m − q) = n + m.

This completes the proof of theorem 113. �

Remark 12.8.5 : Theorems 109–111 and 113 have been adapted from H. S. Butts
and L. I. Wade [5].

We, now, give an example of an integral domain which has finite norm prop-
erty and which is not a Dedekind domain. Let Fq[x] be the ring of polynomials
with coefficients from a finite field Fq where q = pm (p a prime, m≥ 1). We define

(12.8.19) D = {a0 + a2x2 + . . .+ anxn : a0, a2, . . . ,an ∈ Fq, n≥ 2}.
D consists of polynomials chosen from Fq[x] such that the x-coefficient in each
such polynomial is zero. D is an integral domain. In fact, D is a subring of Fq[x].
As Fq is finite, proper ideals of D are of finite length. They have also finite norm.
Norm of a proper ideal is not multiplicative. Every ideal in D is generated by
either one or two elements. Any proper prime ideal is maximal. Every proper
ideal is not a unique product of prime ideals. See I.S. Cohen [6]. For proper
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ideals I,J of D, it is not true that L(IJ) = L(I) + L(J), in general. By theorem 112,
D is not a Dedekind domain. It is also obvious, otherwise.

For supplementary reading in rings and modules one may refer to A. J. Berrick
and M. E. Keating [A1].

12.9. Notes with illustrative examples

As Z is a Noetherian domain, so is Z[x], by Hilbert basis theorem (see (a) in
Section 12.10). If nZ denotes the ideal generated by n (≥ 2), Z/nZ is a finite ring
and so satisfies both a.c.c and d.c.c. In general, if I denotes a nonzero proper ideal
of a PID, say R, the quotient ring R/I satisfies both chain conditions.

In the case of Z[x], the ideal

(x) = {a1x + a2x2 + . . .anxn : ak ∈ Z,1≤ k ≤ n}
is a principal ideal of Z[x] generated x. Z[x]/(x) ∼= Z, an integral domain. So (x)
is a prime ideal of Z[x]. Let J = (x,2) the ideal generated by x and 2 in Z[x]. J is
a maximal ideal (of Z[x]) containing polynomials of the form

a0 + a1x + a2x2 + · · ·+ anxn ; ai ∈ Z, 0≤ i≤ n

where a0 is even. As Z[x]/J is a field having two elements, J is a maximal ideal
of Z[x] containing the prime ideal (x). So, the prime ideal (x) is not a maximal
ideal of Z[x]. Thus, Z[x] is not a Dedekind domain. Z[x] is not a PID also, as
a principal ideal domain has to be a Dedekind domain. This conclusion is also
obvious from the fact that J is not a principal ideal of Z[x]. Further, the ideal
Q = (x,4) generated by x and 4 in Z[x] is a primary ideal of Z[x]. It is not the
power of any prime ideal of Z[x].

In the case of Z[x,y], the ideals (x), (x,y) and (2,x,y) are prime ideals in
Z[x,y]. However, (2,x,y) is the only maximal ideal among these ideals. Further,
the ideal (xk,xy,yk) (k≥ 1) is a primary ideal of Z[x,y]. In the case of I = (x2,xy),√

I is the prime ideal (x). But I is not a primary ideal of Z[x,y]. If F is any field,
one can show that F[x,y]/(x + y) ∼= F[x]. Now, F[x,y] is Noetherian. The ideal
J = (x2,2xy) has an irredundant primary decomposition:

(12.9.1) J = (x2,xy,y2)∩ (x)∩ (x2,2x,4).

Next, we have seen that any PID is integrally closed. Let us consider D =Z[
√

−3],
D is a ring of algebraic integers, not fully corresponding to the number field
Q(
√

−3). An imaginary cube-root of unity ω = −1+
√

−3
2 is integral over D as it

satisfies the monic polynomial x2 + x + 1. As ω /∈ Z(
√

−3), Z(
√

−3) is not inte-
grally closed in its field of quotients.

A Dedekind domain D has the property that any nonzero ideal of D is gener-
ated, at the most, by two elements. We prove this in the following manner: First
we need a

Lemma 12.9.1 : Let I,J be nonzero ideals of a Dedekind domain D. Then, there
exists a ∈ I such that aI−1 + J = D.

© 2007 by Taylor & Francis Group, LLC



NOETHERIAN AND DEDEKIND DOMAINS 427

Proof : We consider the principal ideal generated by a. As a ∈ I, I divides (a).
So, (a) = II′ or, I′ = (a)I−1 = aI−1 is an ideal of D. So, aI−1 + J is the g.c.d of aI−1

and J.
Let J = P1P2 · · ·Pk where Pi (i = 1,2, . . .k) is a prime ideal of D. So, it is

sufficient to show that

(12.9.2) aI−1 + Pi = D (i = 1,2, . . .k)

Since Pi is a maximal ideal of D, (12.9.2) holds, if aI−1 6= Pi. So, we have only to
choose a ∈ I \ IPi for all i = 1,2, . . .k.

If k = 1, the unique factorization of ideals implies that I 6= IP1. So, (12.9.2)
holds for k = 1. If k > 1, let

Ii = IP1P2 · · ·Pi−1Pi+1 · · ·Pk

By the case k = 1, we can choose ai ∈ Ii \ IiPi. We define

a = a1 + · · ·+ ak

Then, each ai ∈ Ii ⊆ I. So, a ∈ I.
If, by chance, a ∈ IPj and for j 6= i, a j ∈ I j ⊂ IPi, we will get

ai = a − a1 − · · ·− ai−1 − ai+1 − · · ·− ak ∈ IPi .

This contradicts the choice of ai. So, a /∈ IPi (i = 1,2, . . .k) and (12.9.2) is true.
So, aI−1 and J are comaximal in D. �
Theorem 114 : Let I be a nonzero ideal of a Dedekind domain D. If 0 6= b ∈ I,
there exists a ∈ I such that I is generated by a and b. That is, I = (a,b).

Proof : Let J = bI−1. Then, there exists a ∈ I such that

aI−1 + J = D. That is, aI−1 + bI−1 = D

This means that (a)I−1 + (b)I−1 = D.
That is, ((a) + (b))I−1 = D.
But, (I)(I−1) = D. So, I = (a) + (b) = the ideal generated by a and b.

That is, I = (a,b). �

Remark 12.9.1 : The above theorem exhibits the structure of a nonzero ideal of
a Dedekind domain and, in particular, of the number ring corresponding to an
algebraic number field.

Sometimes, a power of a prime ideal becomes a principal ideal. For instance,
if P = (2,1 +

√
−5) in D = Z[

√
−5], D/P is a field isomorphic Z/2Z and so P is a

prime ideal which is maximal. Any element of P is of the form
a = 2a1 + (1 +

√
−5)b1, a1,b1 ∈ Z.

a2 = 4a2
1 + b2

1(1 − 5 + 2
√

−5) + 4a1b1(1 +
√

−5)

= 2(c + d
√

−5) where c,d ∈ Z.
So, P2 = (2), the ideal generated by 2 in Z(

√
−5).
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It is appropriate to mention that a study of the properties of Noetherian rings
and Dedekind domains opens the door to the vast arena of the theory of algebraic
numbers. Further, looking at Z and Z[x], we note the following:

1) Z is a UFD : Z[x] is a UFD.
2) Z is a Noetherian domain : Z[x] is Noetherian.
3) Z is a PID: Z[x] is not a PID.
4) Z is a Euclidean domain: Z[x] is not a Euclidean domain.
5) Z is a Dedekind domain : Z[x] is not a Dedekind domain.
6) Z is semisimple: Z[x] is semisimple.∗
∗ This is deduced from Lemma 16.3.2, chapter 16.

12.10. Worked-out examples

a) (Hilbert Basis theorem): If R is a Noetherian ring with identity 1R, and if x is
transcendental over R, then show that R[x] is a Noetherian ring.

Answer: We have to show that every ideal in R[x] is finitely generated.
Let i = 0,1,2, . . . . {Bi} denotes a family of subsets of R such that there

exists a polynomial t(x) of degree i given by

(12.10.1) t(x) = bixi + bi−1xi−1 + · · ·+ b0.

t(x) ∈ R[x] and t(x) belongs to an ideal A of R[x]. Further, bi is the leading
coefficient of t(x).

Now, b1,b2 ∈ Bi⇒ b1 − b2 ∈ Bi and since b ∈ Bi, r ∈ R implies
r ·b = b · r ∈ Bi, Bi is an ideal of R.

When b ∈ Bi and b is the leading coefficient of a polynomial t(x) as in
(12.10.1), xt(x) = bxi+1 + · · ·+ b0x ∈ A (an ideal of R[x]).
This shows that b ∈ Bi+1. Or,

(12.10.2) Bi ⊆ Bi+1 (i = 0,1,2, . . .)

As R is given to be Noetherian, the ascending chain

(12.10.3) B0 ⊆ B1 ⊆ B2 ⊆ ·· · ⊆ Bn ⊆ ·· ·
terminates, say at n = N. So,

BN = BN+1 = · · ·
As each Bi is finitely generated, we write

Bi = (bi1,bi2, . . . ,biki ),bi j ∈ R( j = 1,2, . . . ,ki).

Let ci j(x) be a polynomial in A of degree i and with leading coefficient bi j,
1≤ j ≤ ki.
Since bi j ∈ Bi, there exists at least one polynomial like ci j(x) in A.

The number of such polynomials ci j(x) (1 ≤ j ≤ ki) is k0 + k1 + · · · + kN .
The set of polynomials ci j(x) is finite. These polynomials ci j(x) generate A.

For, all polynomials of degree 0 in A form the set B0 ⊂ R. B0 is an ideal
of R. So, it is finitely generated.
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We assume that all polynomials in A of degrees < r are generated by
ci j(x). Let s(x) ∈ A be of degree r.
Then,

s(x) = crxr + · · ·+ c0, where r ≤ N and cr ∈ Br.

This yields

cr =
kr∑

j=1

ar jbr j, ar j ∈ R.

Now,
cr j(x) = br jxr + · · ·+ brkr .

So,

q(x) = s(x) −
kr∑

j=1

ar jcr j(x) ∈ A.

This polynomial has degree < r. By induction hypothesis, q(x) is generated
by ci j(x). Hence, s(x) is generated by ci j(x).

If r > N, cr ∈ Br = BN . So,

cr =
kN∑

j=1

aN jbN j, aN j ∈ R( j = 1,2, . . . ,kN).

Therefore, s(x) −
∑kN

j=1 aN jxr−NcN j(x) has degree < r and so s(x) is generated
by ci j(x).

Thus, all polynomials of degree r are generated by ci j(x). Hence, by the
induction argument, this is true of all polynomials in A. So, A is finitely gen-
erated (generated by a finite number of polynomials ci j(x)). Since A is an
arbitrary ideal of R[x], R[x] is Noetherian, whenever R is so. �

Remark 12.10.1 : If x1,x2, . . . ,xn are independent transcendental elements
over a Noetherian ring R, then R[x1,x2, . . . ,xn] is Noetherian.

Proof follows by induction on n, the number of transcendental elements.

Now, we note that any principal ideal ring is Noetherian. As R[x] is Noe-
therian whenever R is, there are plenty of Noetherian rings.

Example 12.10.1 : Let F be a field. The polynomial ring F[x,y] is Noetherian.
This follows from Hilbert Basis Theorem. (x,y) is a maximal ideal of F[x,y].
(x2,xy,y2) is an ideal contained in (x2,y) which is a primary ideal. For,

√
(x2,y)

is (x,y) which is maximal (we have only to appeal to lemma 12.5.3).
If I = (x,y), I2 = (x2,xy,y2). So,

(x2,xy) = (x2,xy,y2)∩ (x) (an irredundant primary decomposition).

(x2,xy) can also be written as (x2,xy) = (x2,y)∩ (x).
We remark that (x2,xy,y2) and (x2,y) are both primary ideals. (x) is a prime
ideal in F[x,y] and so primary.
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Next, we recall that if R is a ring with unity 1R, R is called quasi-local if
R has a unique maximal ideal. A local ring is a Noetherian quasi-local ring.

A ring S is said to be a primary ring if S contains at least one proper prime
ideal. A prime ideal is said to be a minimal prime ideal, if it is minimal in the
set of prime ideals. When S is a commutative ring with unity 1S, a minimal
prime ideal is necessarily a proper ideal.

Fact 12.10.1 : A ring S is a primary ring if, and only if, S has a minimal prime
ideal which contains all the zero divisors in S.

For proof, see worked-out example (b) in chapter 14.

Definition 12.10.1 : A special primary ring R is a local ring with maximal
ideal M such that each proper ideal of R is a power of M. (R is assumed to be
commutative and has 1R)

It means that a special primary ring is a principal ideal ring (PIR) with
only finitely many ideals, by virtue of Noetherian property.

Definition 12.10.2 : Given R is a commutative ring, R is said to be a ZPI- ring
(for Zerlegung Primideal) if each nonzero ideal of R is uniquely expressible as
a product of prime ideals of R. (If R has identity 1R, we exclude factors of 1R

in considering uniqueness of factorization). R is said to be a general ZPI ring,
if each ideal of R can be expressed as a finite product of prime ideals of R.

Fact 12.10.2 : Let R be a commutative ring with identity 1R. The following
statements are equivalent:
(i) R is a general ZPI-ring.
(ii) R is Noetherian and for each maximal ideal M of R, there are no ideals
between M and M2.
(iii) R is a finite direct sum of Dedekind domains and special primary rings.
That is,

(12.10.4) R = D1⊕D2⊕·· ·⊕Dn⊕S1⊕S2 · · ·⊕Sm

where Di(i = 1 to n) is a Dedekind ring and S j( j = 1 to m) is a special primary
ring.
For proof, see R. Gilmer [A2].

b) (Paul Arne Storer) Suppose that R is a Noetherian ring in which all maximal
ideals are principal. Show that R is a principal ideal ring.

Answer: Let M be a maximal ideal of R. If M = (m) (say), M/M2 is a vector
space (over the field R/M) of dimension at most 1. Therefore, there are no
ideals of R properly squeezed in between M and M2. Using Fact 12.10.2, one
notes that R has the structure given in (12.10.4).

Now, Di(i = 1,2, . . . ,n) inherits from R the property that each of its maxi-
mal ideals is principal. So, every nonzero prime ideal of Di is principal. As Di
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is a Dedekind ring, when all its maximal ideals are principal, Di is a PIR. As
each S j( j = 1,2, . . . ,m) is a special primary ring, each S j is a PIR, by definition
12.10.1.
This shows that R is a PIR. �

Remark 12.10.2 : Example (b) has been adapted from Problem 10534, Amer.
Math. Monthly 106 (1999) p 265.

Remark 12.10.3 : An editorial comment (in Amer. Math. Monthly) on prob-
lem 10534 is that R. Gilmer and W. Heinzer have given the following theorem
(generalizing the content of (b)):

If R satisfies ACCP and each maximal ideal of R is principal, then R is a
PIR.
See R. Gilmer, W. Heinzer: Principal ideal rings and a condition of Kummer,
J. Algebra 83 (1983) 285–292.

Remark 12.10.4 : Example (b) gives a condition for making a Noetherian
domain a UFD. By remark 12.10.3, one gets a condition for an integral do-
main in which ACCP is satisfied to become a UFD. Unfortunately the ring of
arithmetic functions A (which is shown to be a UFD, by using theorem 27 of
Cashwell and Everett) does not fall under Example (b), as A is not Noether-
ian. However, one knows that A is a quasi-local ring in which ACCP holds.
What additional requirement is needed for A to possess UFD property, is a
question that remains an open problem (of interest to algebraists, but not to
number-theorists, as remarked by Paul J. McCarthy years ago!).

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) Let F be a field, α ∈ F. The set Mα of all polynomials f (x) ∈ F[x],
having α as a zero is given by

Mα = { f (x) ∈ F[x] : f (α) = 0F}

It is correct to say that Mα is a maximal ideal F[x] and F[x]/Mα
∼= F.

b) Let n(> 1) be a square-free integer. (x2 − n) denotes the ideal gener-
ated by x2 − n in Q[x], (Q being the field of rational numbers). Then,
Q[x]/(x2 − n) need not be a field.

c) Let R be a quasi-local ring (commutative and has multiplicative identity
1R). Suppose that the maximal ideal M (of R) is a principal ideal, say
(p). Assume that ∩∞n=1Mn = (0R). If I denotes a proper ideal of R, then,
I = Mk (k ∈ N).
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d) Let C{z} denote the ring of rational functions of the complex variable z
and having no pole on the unit circle |z | = 1. C{z} is not Noetherian.

e) Let R be an integral domain. Then, R is a Dedekind domain if, and only
if, every nonzero fractional ideal of R is invertible.

f) Let D be a Dedekind domain. Suppose that S is a multiplicatively closed
subset of D. Then S−1D is either a Dedekind domain or the field of
quotients of D.

2. (D. M. Burton) Let I be a proper ideal of a Noetherian ring R. Show that

∩∞n=1 In = {x ∈ R : (1R − a)x = 0 for some a ∈ I}
3. Prove that a prime ideal in a commutative ring is irreducible.
4. Show that in Z[x], the ideal J = (9,3x + 3) = (3)∩ (9,x + 1).
5. We shall call an ideal I of a commutative ring R (with unity 1R) a semiprime

ideal, if I is an intersection of prime ideals of R. Exhibit the semiprime ideals
of Z. Give an equivalent definition of a semiprime ideal I in terms of

√
I.

6. Let R be a commutative ring with unity 1R. Show that a product of principal
ideals of R is again a principal ideal.

7. Let I be an ideal of a Noetherian ring R in which every non-trival prime ideal
is maximal. Show that I is expressible as a product of primary ideals.

8. Let R be a commutative ring with unity 1R. e ∈ R is called an idempotent, if
e2 = e. If each maximal ideal of R has an idempotent generator e 6= 1R or 0R,
show that every primary ideal of R is maximal.

Use Cohen’s theorem (Theorem 99) to deduce that R is Noetherian.
9. (Dennis Spellman) Let R be a principal ideal ring with unity 1R in which two

elements a,b are multiples of one another. Show that they are unit multiples
of one another. That is, show that there is an invertible element u ∈ R such
that a = ub.
[Ref. Problem 10495 Amer. Math. Monthly 105 No.1 (Jan 1998) 70]

10. An integral domain D is called a Prüfer domain if every finitely-generated
ideal of D is invertible. Prove that a Prüfer domain is a Dedekind domain if,
and only if, it is Noetherian.

11. Prove that Z[
√

10] = {a + b
√

10 : a,b ∈ Z} is a Dedekind domain, but not a
PID.

12. Let D be an integral domain D. If every proper prime ideal of D is invertible,
show that D is a Dedekind domain.
(Conversely) Let D be a Dedekind domain. Show that every proper prime
ideal of D is invertible. (See corollary 12.7.1)

13. Illustrate theorem 94 with a non-trivial example.
14. LetQp denote the completion ofQ with respect to a p-adic valuation ||p. (See

Section 8.4, chapter 8) Find the integral closure of Z in Qp.
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CHAPTER 13

Algebraic number fields

Historical perspective

The origin of algebraic number theory is in the ‘attempted-proofs’ of Fer-
mat’s Last Theorem: The motivation is to be found in the generalizations of the
integral domainZ (of rational integers) giving rise to the notion of algebraic inte-
gers: (See ‘Euclidean domains’, chapter 3). Many of the results of number theory
are tackled in a more general set-up in algebraic number theory. For instance,
Fermat’s two-square theorem (theorem 4, chapter 1) is proved by considering the
Euclidean domain Z[i] of Gaussian integers. We recall that an algebraic integer
is a zero of a monic polynomial in Z[x]. Very often, the study of a suitable ring
of algebraic integers helps in the solution of a problem which is initially stated
in terms of ordinary (rational) integers. For example, we have the context of so-
lutions of the Pell equation x2 − my2 = 1. The consideration of ideals instead of
elements of a ring was indeed a breakthrough for purposes of factorization. This
is achieved in Dedekind domains considered in chapter 12.

The contributions of Kummer, Dirichlet, Kronecker and Dedekind to the de-
velopment of the theory of rings and ideals have been indicated earlier, (see chap-
ters 2 and 3). It was L. J. Mordell (1888–1972) who gave a series of lectures on
‘Fermat’s Last Theorem’ which were recorded in print and that perhaps is the first
authentic account of a survey of the beginnings of Algebraic Number Theory.

13.1. Introduction

In this chapter, we make a brief study of the number ring R corresponding
to a number field K. By introducing equivalence classes of ideals in R, namely,
the ideals I,J of R are equivalent if, and only if, there exist elements α, β in R
such that αI = βJ. The equivalence classes form a group under multiplication. It
is called the class group of R. It is shown that the class-group is finite. The order
of the class group is referred to as the class-number of K. The ring corresponding
to the cyclotomic field Q[ω] where ω = exp( 2πi

m ) is obtained. The ‘Carlitz the-
orem’ on the characterization of a number field of class-number 2 is proved in
theorem 118. This leads to the notion of half-factorial domains. See Section 13.4.

The Pell equation x2 −my2 = 1 (m square-free) is studied in detail. It is related
to the quadratic number field Q(

√
m). The existence of a nontrivial solution to the

Pell equation is shown in theorem 120. The structure of the group of units in

435
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a number ring corresponding to an algebraic number field K is brought out in
Dirichlet’s unit theorem (see theorem 124). Some examples are pointed out.

Bhaskara’s (Bhaskaracharya (1114–1185)) Cakravala method of solving the
Pell equation is shown in Section 13.6.

13.2. The ideal class group

K denotes an algebraic number field, that is, a finite extension of the field Q
of rational numbers. Let R denote the ring A ∩K where A stands for the ring of
algebraic integers.

Definition 13.2.1 : For ideals I,J of R, we say that I ∼ J if, and only if, there exist
elements α,β ∈ R such that αI = βJ.

Clearly, ∼ is reflexive and symmetric. It is also transitive, as whenever I ∼ J
and J∼ L where I, J, L are ideals of R, one has αI = βJ for α,β ∈ R. Also γJ = δL
for γ,δ ∈ R. So,

βγJ = γβJ = γαI = βδL and so I ∼ L.
So, ∼ determines an equivalence relation on the set of ideals of R. Our aim

is to show that there are only finitely many equivalence classes of ideals under
∼. When R is a principal ideal domain, every ideal of R is a principal ideal and
so any two ideals are equivalent and therefore the set of ideals of R forms one
class only. In the case of Z[

√
−5], it can be shown that all non-principal ideals of

Z[
√

−5] belong to one class under∼ and so one will conclude that there are only
two classes of ideals in the set of ideals of Z[

√
−5], namely

(i) The class c1 of principal ideals of Z[
√

−5] and
(ii) The class c2 of non-principal ideals of Z[

√
−5].

Definition 13.2.2 : In R, the classes induced by ∼ are known as ideal classes.

Next, we consider two algebraic number fields K and F such that K ⊂ F . Let
R = A ∩K and S = A ∩F. (A denotes the ring of algebraic integers).

Lemma 13.2.1 : Let P, Q be prime ideals of R and S respectively.
If Q⊃ P, Q∩R = P and Q∩R = P⇒ Q∩K = P.

Proof : As Q⊃ P, Q∩R contains P and Q∩R is an ideal of R. As P is a prime
ideal of R and R is a Dedekind domain, P is a maximal ideal of R. So Q∩R = P
or Q∩R = R. If Q∩R = R, 1R ∈ Q and so Q = S, a contradiction. So, Q∩R = P.
Further, Q∩R = P⇒ Q∩K = P, as Q⊂A .
For, R⊂A ∩F and Q∩R = P⊂A ∩K = R. So, Q∩K = Q∩R = P. �

Definition 13.2.3 : Let P, Q be prime ideals of R = A ∩K and S = A ∩F respec-
tively with K ⊂ F. We say that Q lies over P, if Q∩R = P. It also means that P
lies under Q.

Lemma 13.2.2 : Every prime ideal Q of S lies over a unique prime ideal P of R.
Further, every prime ideal P of R lies under at least one prime ideal Q of S.
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Proof : The first part of the lemma wants that Q∩R = P is unique. It is so, as P
is a maximal ideal of R.

For the second part, we observe that the prime ideals lying over P are prime
ideals of S. Let Q be a prime ideal of S. We consider the ideal PS of S. As Q is
an ideal of S, PS ⊂ Q⇒ P ⊂ Q. Therefore, Q divides PS. So, the prime ideals
of S lying over P are the prime divisors of PS. Now, PS 6= S. For, assume PS = S,
1s /∈ P. Further, by lemma 12.6.4 of chapter 12, there exists t = b

a ∈ K \R such
that tP⊂ R. Then, tPS ⊂ RS = S. If 1s ∈ PS, then t ∈ S. Then, t is an algebraic
integer contradicting the fact that t ∈ K \R.

Therefore, the prime ideals of S which lie over P are the prime ideals which
occur in the prime decomposition of PS. That is, every prime ideal of R lies under
at least one prime ideal Q of S and Q happens to be a prime divisor of PS. �

Remark 13.2.1 : Lemma 13.2.2 has been adapted from [10].

Definition 13.2.4 : If P is a prime ideal of R which lies under Q, a prime ideal
of S,Q divides PS and the exponent e to which Q occurs in the prime-power
decomposition of PS is called the ramification index of Q, written e(Q|P).

Example 13.2.1 : We take K = Q. F = Q[i], R = Z and S = Z[i], i =
√

−1. Let
α = 1 − i. The principal ideal Q = (1 − i) of Z[i] is such that Q∩Z = (2). Q is a
prime ideal, since Z[i]/(1 − i)∼= Z/5Z which is a field. Now, Q lies over P = (2).
For, 2S = 2Z[i] = Q2. So, e(Q|(2)) = 2.

If p is an odd prime in Z and a prime ideal Q of Z[i] lies over P = (p),
PS = pZ[i] = Q and so, e(Q|P) = 1.

Next, as R = A ∩K, R is a Dedekind domain and it is true that for any nonzero
proper ideal I of R, R/I is finite. (See Remark 12.6.6 (ii) of chapter 12)

Definition 13.2.5 : Let R = A ∩K be the number ring corresponding to the alge-
braic number field K. Let I be a nonzero ideal of R. The norm (or index) of I is
defined as ||I|| = |R/I|, the cardinality of the quotient ring R/I which is finite.

We used the notation N(I) for ||I|| in the context of a Dedekind domain (see
definition 12.7.2).

We recall that the norm N(α) of an element α ∈ R is given by

(13.2.1) N(α) =
n∏

i=1

σi(α)

where σ1,σ2 . . .σn are the n (= [K : Q]) embeddings of K in C which fix Q.

Fact 13.2.1 :
(a) For ideals I, J in R, ||IJ|| = ||I|| ||J||
(b) Let I be an ideal of R. For the S-ideal IS of S = A ∩F where K ⊂ F,

||IS|| = ||I||m where m = [F : K]
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(c) Let α ∈ R and α 6= 0. If (α) denotes the principal ideal generated by α,

||(α)|| = |N(α)| where N(α) is as given in (13.2.1).

For proof see D. A. Marcus [10, chapter 3, theorem 22].

Theorem 115 : K denotes a number field. R is the number ring corresponding
to K. For any ideal I of R, if 0 6= α ∈ I, there exists a positive real number j
(depending on K) such that

(13.2.2) |N(α)| ≤ j||I||,
where N(α) is as given in (13.2.1). Further, j is independent of ||I||.
Proof : As R is a finitely generated Z-module, R has an ‘integral basis’. That is,
if [K : Q] = n, we can choose a set of n elements α1,α2 . . .αn of R such that any
element β ∈ R can be written as

β =
n∑

i=1

aiαi, ai ∈ Z, i = 1,2, . . .n.

As ||I|| is finite, we can find a unique positive integer t such that

tn ≤ ||I||< (t + 1)n

We consider
∑n

s=1 tsαs, ts ∈ Z, 0≤ ts ≤ t.
Each ts (s = 0,1,2, . . . t) takes (t +1) values. So, there are (t +1)n elements

∑n
s=1 tsαs

belonging to R. As ||I|| < (t + 1)n, two of the elements say δ1 =
∑n

s=1 t (1)
s αs and

δ2 =
∑n

s=1 t (2)
s αs are such that δ1 − δ2 ∈ I where 0 6= δ1 − δ2. Taking δ1 − δ2 = α, we

obtain

α =
n∑

s=1

msαs, ms ∈ Z and |ms| ≤ t, s = 1,2, . . . ,n.

Now,

(13.2.3) |N(α)| =
n∏

i=1

|σi(α)| =
n∏

i=1

∣∣∣∣∣
n∑

s=1

msσi(αs)

∣∣∣∣∣ .

As |ms| ≤ t, we have
n∑

s=1

ms|σi(αs)| ≤ t
n∑

s=1

|σi(αs)|.

We write

(13.2.4)
n∏

i=1

n∑

s=1

|σi(αs)| = j.

From (13.2.3) and (13.2.4) we see that

|N(α)| ≤ tn j. But, tn ≤ ||I||.
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So, |N(α)| ≤ ||I|| j which is (13.2.2).
j is defined only in terms of σi(αs) (s = 1,2, . . .n) and so comes from the embed-
dings of K in C which fix Q. That is, j is independent of ||I||. �

If R is the number ring corresponding to an algebraic number field K, the
set S of ideals of R could be partitioned into mutually disjoint classes under
the equivalence relation I ∼ J, if, and only if, there exist elements α,β ∈ R such
that αI = βJ where I,J belong to S . It is verified that two ideals I1, I2 of R are
isomorphic ring-theoretically, if, and only if, they belong to the same ideal class.

Let I be an ideal of R. If αI is principal for some α ∈ R, then I is principal.
For if αI = (β) (say), there exists γ ∈ I such that αγ = β. Let t ∈ I. Then αt = βδ
for some δ ∈ R. So, αt = αγδ. As R is an integral domain, cancellation of α
gives t = γδ. So any element of I is a multiple of γ or I is principal. Further, the
principal ideals form an ideal class. In the case of R, by theorem 100, when I is a
given ideal of R, we can select an ideal J of R such that IJ is principal. If C(I) and
C(J) are the ideal classes containing I and J respectively, then C(IJ) is the class
containing principal ideals (of R). Therefore, if we define multiplication of ideal
classes by

(13.2.5) C(I1)C(I2) = C(I1I2) for I1, I2 ∈S ,

(13.2.5) is well-defined on the set of ideal classes. By virtue of the fact that C(IJ)
is the class of principal ideals, the ideal classes form an abelian group, the so-
called ideal class group CK . In the case of a PID, CK = {1}. We refer to the ideal
classes C(I) as the ideal classes of R.

Theorem 116 : Let R be the number ring corresponding to an algebraic number
field K.

(i) Every ideal class of R contains an ideal I such that ||I|| ≤ j where j is as
given in theorem 115.

(ii) There are only finitely many ideal classes of R.

Proof :
(i) Let C be an ideal class of R. Suppose that an ideal I belongs to C. By

theorem 100, there exists an ideal J of R such that IJ is principal. That is, J
belongs to the class C−1. Let α ∈ J be such that

(13.2.6) |N(α)| ≤ j||J||
J contains the principal ideal (α). So, (α) = IJ where I belongs to C. By
Fact 13.2.1 (c), |N(α)| = ||(α)|| = ||I|| ||J||. From (13.2.6), we see that
||I|| ||J|| ≤ j||J||.
So, I belonging to C is such that ||I|| ≤ j. This proves the first part.

(ii) We observe that if an ideal I =
∏n

i=1 Pn(Pi)
i where Pi are distinct prime ideals

dividing I,

||I|| =
n∏

i=1

||Pi||n(Pi)
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Each ideal of R has only a finite number of prime divisors. So, given j as
in theorem 115, using (i) of this theorem, only finitely many ideals I satisfy
|I|| ≤ j. Every ideal class contains an ideal I with ||I|| ≤ j. If there are
an infinite number of ideal classes, there would occur an infinite number of
ideals J with ||J|| ≤ j — a contradiction. Therefore, the number of ideal
classes is finite.

�
Corollary 13.2.1 : Given an algebraic number field K, the ideal class group CK

is finite.

Proof is immediate from (ii) of theorem 116.

Definition 13.2.6 : The order of the ideal class group CK of an algebraic number
field K is called the class number of the number ring R of K and is denoted by
h(K).

h(K) is also referred to as the class-number of the field K.

Illustration 13.2.1 :
(i) The number field Q(

√
2).

The number ring corresponding to Q[
√

2] is Z[
√

2]. It has an integral
basis {1,

√
2}. For any ideal I of Z[

√
2], one has

||I|| ≤ 5.

For, j =
∏2

i=1(|σi(1)|+ |σi(
√

2)|)
= (1 +

√
2)(1 +

√
2) = (1 +

√
2)2 > 5.

The prime divisors of I are among the prime ideals lying over (2), (3)
and (5) of Z.

2Z[
√

2] = (
√

2)2

3Z[
√

2] and 5Z[
√

2] are prime ideals of Z[
√

2]. It is checked that the ideals
I for which ||I|| ≤ 5 are Z[

√
2], (
√

2) and 2Z[
√

2]. Each one of these is a
principal ideal and so the class number of Z[

√
2] is 1. That is, Z[

√
2] is a

PID.
(ii) The number field Q[

√
−5].

The number ring corresponding to Q[
√

−5] is Z[
√

−5]. Every ideal
class of Z[

√
−5] contains an ideal I with ||I|| ≤ 10. We consider the prime

ideals of Z[
√

−5] which lie over (2), (3), (5) and (7). It is verified that

2Z[
√

−5] = (2,1 +
√

−5)2,

3Z[
√

−5] = (3,1 +
√

−5)(3,1 −
√

−5),

5Z[
√

−5] = (
√

−5)2,

7Z[
√

−5] = (7,3 +
√

−5)(7,3 −
√

−5).

(2,1+
√

−5) is not a principal ideal of Z[
√

−5]. Similarly, the prime divisors
of the ideals 3Z[

√
−5] and 7Z[

√
−5] are not principal ideals. The class C2
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containing (2,1 +
√

−5) is an element of order 2 in the ideal class group. All
non-principal ideals are in C2. The ideal class group is CK = {C1,C2}, when
K = Q[

√
−5]. C1 is the class of principal ideals. Thus, the class number of

Z[
√

−5] is 2.
(iii) The number field Q(

√
−6).

The number ring corresponding to K = Q[
√

−6] is Z[
√

−6]. It has an
integral basis {1,

√
−6}

j =
2∏

i=1

{|σi(1)|+ |σi(
√

−6)|} = (1 +
√

6)2 ≥ 7.

For any ideal I of Z[
√

−6], ||I|| ≤ 3. So the class number ≤ 3.
It is checked that if P1 = (2,

√
−6), P2

1 = 2Z[
√

−6]. If P2 = (3,
√

−6),
P2

2 = 3Z[
√

−6], C2 containing P1 and P2 is an element of order 2 in the ideal
class group. Further, P1 and P2 are the only prime ideals of norm 2 and 3
respectively. Thus, if K = Q[

√
−6], CK is of order 2 and h(K) = 2.

13.3. Cyclotomic fields

Let m be a positive integer. We write ω = exp( 2πi
m ), i denotes

√
−1. When

m = 1,2, ω = ±1, an extension of Q by adjoining ω to Q is Q itself. So, we take
m > 2. The extension of Q by adjoining ω to Q is called a cyclotomic extension
of Q. It is denoted by Q(ω). Q(ω) is referred to as the mth cyclotomic field.

If ω = exp( 2πi
6 ), ω = −ω4 = −(ω2)2 and we see that Q(ω) =Q(ω2).

Observation 13.3.1 :
(1) Let m be an odd integer. Writing ω = exp( 2πi

2m ) we see that ω = −ωm+1

and ω ∈ Q(ω2). That is, the mth cyclotomic field and 2mth cyclotomic
field are one and the same.

(2) When m is even, the cyclotomic fields Q(ω) are all distinct since
[Q(ω) :Q], (the degree of the extension Q(ω) over Q) is given by φ(m),
the Euler φ-function at m.

(3) There are an infinite number of cyclotomic fields. The other infinite
set of algebraic number fields that we have considered is the class of
quadratic number fields Q(

√
m) where m is square-free and m ∈ Z.

We wish to concentrate on the pth cyclotomic field Q(ω) where ω = exp( 2πi
p ),

p being an odd prime. ω is a complex pth root of unity. Also, ω2,ω3, . . .ωp−1 are
complex pth-roots of unity. It is known [5] that

(13.3.1) f (x) = xp−1 + xp2 + · · ·+ x + 1

is irreducible over Z (by Eisenstein criterion) and [Q(ω) : Q] = (p − 1). f (x) is
expressible as

(13.3.2) f (x) = (x −ω)(x −ω2) − (x −ωp−1)
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ω,ω2, . . .ωp−1 are the ‘conjugates’ of ω in f (x) = 0. The embeddings of Q(ω) in
C are monomorphisms

σi : Q(ω)→ C
given by σi(ω) = ωi (1≤ i≤ p − 1).

In fact, {1,ω,ω2, . . .ωp−2} is a basis for the vector space Q(ω) over Q.
(It may be recalled that {1,ω, . . .ωp−1} is a linearly dependent set, as
1 +ω+ω2 + . . .+ωp−1 = 0).

α ∈Q(ω) is of the form

(13.3.3) α = a0 + a1ω + · · ·+ ap−2ω
p−2 (ai ∈Q,0≤ i≤ p − 2)

The monomorphism σi : Q(ω)→ C is given by

(13.3.4) σi(α) = a0 + a1ω
i + · · ·+ ap−2ω

(p−2)i

The norm N(α) and trace T (α) of α are defined by

N(α) =
p−1∏

i=1

σi(α)(13.3.5)

T (α) =
p−1∑

i=1

σi(α)(13.3.6)

It is easy to check that

T (ωi) = −1 (1≤ i≤ p − 1)(13.3.7)

N(ωi) = 1, i ∈ Z;(13.3.8)

and

N(1 −ω) =
p−1∏

i=1

(1 −ωi) = p(13.3.9)

Theorem 117 : The number ring corresponding to Q(ω) is Z[ω].

Proof : Let D be the number ring corresponding to Q(ω).

Claim : D has an integral basis {1,ω,ω2, . . .ωp−2}. That is, if α ∈ D, one has

(13.3.10) α = a0 + a1ω + · · ·+ ap−2ω
p−2 ai ∈ Z, (0≤ i≤ p − 2)

Let β = a0 + a1ω · · ·+ ap−2ω
p−2 where ai ∈Q, (0≤ i≤ p − 2).

If β ∈ D, we have to show that each ai ∈ Z, (0≤ i≤ p − 2).
Now,

β(1 −ω) = a0(1 −ω) + a1(ω −ω2) + · · ·+ ap−2(ωp−2 −ωp−1)

Also, T (ω) = −1 and T (1) = (p − 1). Further,

(13.3.11) T (1 −ω) = T (1 −ω2) = · · · = T (1 −ωp−1) = p.
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So,

T (β(1 −ω)) = a0T (1 −ω) + a1T (ω−ω2) · · ·+ ap−2T (ωp−2 −ωp−1)

T (ω j−1 −ω j) =
p−1∑

i=1

σi(ω j−1 −ω j)

=
p−1∑

i=1

σi(ω( j−1))σi(1 −ω)

=
p−1∑

i=1

ωi( j−1)(1 −ωi)

=
p−1∑

i=1

ωi( j−1) −
p−1∑

i=1

ωi j.

Or,
T (ω j−1 −ω j) = 0 ; 2≤ j ≤ (p − 1).

That is,
T (β(1 −ω)) = a0T (1 −ω) = a0 p, by (13.3.11).

As (1 −ω)(1 −ω2) . . . (1 −ωp−1) = N(1 −ω) = p, by (13.3.9),
p ∈ (1 −ω)D. So, (1 −ω)D∩ pZ contains pZ. As pZ is a maximal ideal of Z,
(1 −ω)D∩Z 6= pZ⇒ (1 −ω)D∩Z = Z. That is, 1 −ω is a unit in D. So, the
conjugates 1 −ωi (1 ≤ i ≤ p − 1) of 1 −ω are also units. As N(1 −ω) = p, p is a
unit in D∩Z. It will mean that p is a unit in Z which is false. So,

(13.3.12) (1 −ω)D∩Z = pZ

Now, T (β(1 −ω))∈ pZ. So, as pa0 ∈ pZ. Or, a0 ∈ Z.
Since ω−1 = ωp−1 ∈ D, (as ωp−1 has a representation −1 − ω − ω2 · · · − ωp−2 as
in (13.3.10),

(β − a0)ω−1 = a1 + a2ω + · · ·+ ap−2ω
p−2 ∈ D

So, arguing as before, a1 ∈ Z. In the same manner, we arrive at ai ∈ Z,
2≤ i≤ (p − 2). This shows that D⊆ Z[ω]. But, Z[ω]⊆ D. Thus, D = Z[ω]. �

13.4. Half-factorial domains

We look at a characterization of algebraic number fields K having class num-
ber h(K) = 2. We know that the number ring corresponding to an algebraic number
field K is a PID if, and only if, h(K) = 1. Further, h(K) = 1 implies that the number
ring corresponding to K is a UFD.

Theorem 118 (L. Carlitz (1960)) : An algebraic number field K has class-number
≤ 2 if, and only if, every nonzero element α ∈ R, the number ring corresponding
to K is such that whenever

α = π1π2 · · ·πs = τ1, τ2, . . . τt
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(i) s = t and πi and τ j are associated i, j = 1,2 . . .s, provided, h(K) = 1.
(ii) s = t and πi and τ j (i 6= j) need not be associated, provided h(K) = 2.

Proof :
(i) When h(K) = 1, every ideal of R is principal and so R is a PID. Then, it is

essential that s = t and πi, τ j are associates (i, j = 1,2, . . .s), as R is a UFD.
(ii) Let us take h(K) = 2. As R is a Dedekind domain, every nonzero proper ideal

of R is a product of distinct prime ideals and factorization into prime ideals
is unique. (See theorem 101, chapter 12). For α ∈ R, one has

(13.4.1) (α) = π1π2 . . .πm · τ1τ2 . . . τn,

where π1,π2 . . .πm are principal ideals and τ1, τ2, . . . τn are prime ideals which
are not principal ideals. Then,

(13.4.2) πi = (pi) (i = 1,2, . . .m).

As τi, τ j are non-principal ideals and as h(K) = 2, τi, τ j belong to the class
C2 of non-principal ideals where the class group H = {C1,C2} with C2

2 = C1.
Therefore, there exist elements β,γ in R such that

βτi = γτ j.

It implies that βτiτ j = γτ 2
j = (λi, j) where λi, j ∈ R. This shows that

(13.4.3) τiτ j = (ρi, j) (i, j = 1,2, . . .n).

The nonprincipal ideals τi, τ j are so paired as to make τiτ j a principal ideal.
From (13.4.1) and (13.4.2), we also note that n has to be even, say 2u.

Every factorization of α ∈ R has a unique representation in the form

(13.4.4) α = επ1π2 · · ·πmρ1,2ρ3,4 · · ·ρn−1,n

where ε is a unit and α has m + u prime factors.
An important result about ideal classes is that every class of ideals con-

tains at least one prime ideal. This is given in connection with more stronger
theorems in E. Hecke [7]. We examine the case h(K)> 2. Assume that there
exists an ideal class C of order t > 2. Let P be a prime ideal in C and P′ a
prime ideal in C−1. Then, we have

(13.4.5) P t = (π), (P′)t = (π′) and PP′ = (π1),

where π,π′,π1 are primes. For, Ct = R, (C−1)t = R and CC−1 = R. (13.4.5)
implies that

(13.4.6) πt
1 = εππ′

where ε is a unit.
Next, we assume that there exist two classes C1 and C2 such that each

is of order 2 and C3 = C1C2 is not principal. We choose prime ideals Pj ∈C j
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( j = 1,2,3). Then,

P2
j = (π j), ( j = 1,2,3)(13.4.7)

P1P2P3 = (π)(13.4.8)

where π1,π2,π3 and π are primes. From (13.4.8) we get

(13.4.9) π2 = π1π2π3.

Let α ∈ R be given by

(13.4.10) α = π1π2 · · ·πs.

From (13.4.7), (13.4.8) and (13.4.9), we see that when h(K)> 2, the number
s of primes in (13.4.10) is not independent of the factorization. So, when
h(K) = 2, one has

(13.4.11) α = π1π2 . . .πs = τ1τ2 . . . τt

with s = t and πi and τ j need not be associates i, j = 1,2, . . .s, i 6= j. s = t
follows from the factorization of α as a product of primes, given in (13.4.4).

�

Remark 13.4.1 : Theorem 118 has been adapted from [2].

Example 13.4.1 : It was observed in illustration (13.2.1) (ii) that Z[
√

−5] is the
number ring of Q[

√
−5] and that the class number of Q[

√
−5] is 2. A repre-

sentative set of ideals is [Z[
√

−5]] belonging to the class of principal ideals and
(2,1 +

√
−5) belonging to the class of non-principal ideals. Further,

(13.4.12) (2,1 +
√

−5)2 = (2)

The two different factorizations of 6 are

6 = 2 ·3 = (1 +
√

−5)(1 −
√

−5)

Let P1 = (2,1 +
√

−5), P2 = (3,1 +
√

−5), P3 = (3,1 −
√

−5). It is verified that
P2

1 = (2) as in (13.4.12), P2P3 = (3), P1P2 = (1 +
√

−5), P1P3 = (1 −
√

−5). So, in
terms of ideal classes,

[P1]2 = [Z[
√

−5]], [P1][P2] = [Z[
√

−5]], [P1][P3] = [Z[
√

−5]]

So, P1, P2 and P3 are in the class of non-principal ideals. Every element ofZ[
√

−5]
which is not a power of a prime can be expressed as a product of primes in just
two ways.

Observation 13.4.1 : Carlitz’s theorem (Theorem 118) motivates the definition
of a half-factorial domain.
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Definition 13.4.1 : Let D be an integral domain. D is called a half-factorial
domain if, given any two factorizations of an element a ∈ D,

a = π1π2 · · ·πs = τ1τ2 · · ·τt

with each πi, τ j (i = 1,2, . . .s), ( j = 1,2, . . . t) is an irreducible, one has s = t.

We do not insist that πi and τ j should be associated irreducibles, which is
what is required of a UFD. A UFD is, of course, a half-factorial domain (HFD).

A number ring corresponding to an algebraic number field K is a HFD if, and
only if, its class-number is less than or equal to 2. Number rings fall into two
classes: those which are UFD’s (class number 1 case) and those which are non-
UFD half-factorial domains (class number 2 case). For a detailed discussion of
properties of half-factorial domains in the context of number rings corresponding
to quadratic number fields Q(

√
m) (m square-free), see Jim Coykendall [4]. In

[4], Jim Coykendall investigates half-factorial domains from the point of view of
a ‘norm’ associated with Z+ nZ[

√
m] given by

f (x,y) = x2 − mn2y2.

See also A. Zaks [18], [19]. Number fields having class-number 2 have also been
studied by E. Hecke [7].

The breakdown of unique factorization in an integral domain could be seen
through a semigroup ring. See R. Gilmer [A3].

Let R be a commutative ring and (s,+) an abelian monoid. Z̃ denotes the set
of non-negative integers.

Definition 13.4.2 : The set

R[x;S] = {
n∑

i=0

r0xsi : n ∈ Z̃, 0≤ i≤ n, ri ∈ R and si ∈ S}

endowed with polynomial type addition and multiplication is called the semigroup
ring of R over S.

When S⊂ Z̃, R[x;S] may be looked upon as a subring of R[x] (the polynomial
ring with x as an indeterminate).

When

(13.4.13) S = {2m + 3n : m,n ∈ Z̃}
S is a submonoid of Z̃, generated by 2 and 3.

Let k be any field. If S is as given in (13.4.13), we write

(13.4.14) K[x;S] = {
n∑

i=0

aixsi : n ∈ Z̃, ai ∈ K,si ∈ S, 0≤ i≤ n and a1 = 0}

For instance,

a0 + a2xs2 + a3xs3 + a4xs4 = a0 + a2x5 + a3x7 + a4x8
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When s2 = 2 + 3 = 5, s3 = 4 + 3 = 7, s4 = 2 + 6 = 8.

K[x;S]⊂ K[x2,x3]

K[x ;S] is an integral domain. The units in K[x ;S] are the non zero elements of K.
x2,x3 are irreducibles. One has

(13.4.15) x6 = x2 · x2 · x2 = x3 · x3.

In (13.4.15), x6 is a product of two irreducibles. It is also a product of 3 irre-
ducibles. So, K[x;S] is neither a UFD nor a HFD.

Remark 13.4.2 : The above example has been adapted from Scott T. Chapman
[A2].

Next, let Q̃ denote the set of non-negative rational numbers. C denotes the
field of complex numbers.

(Q̃,+) is an abelian monoid. As in (13.4.14), we write the semigroup ring

(13.4.16) C[x,Q̃] = {
n∑

i=0

cixqi : n ∈ Z̃ and for 0≤ i≤ n,ci ∈ C and qi ∈ Q̃}

C[x,Q̃] is an integral domain. Every element of C[x, Q̃] can be factorized into
elements which are polynomial like, but having rational numbers for ‘degrees’.
So, C[x,Q̃] has no irreducible elements.

Another example is from a subring of C[x]. Let R denote the field of real
numbers. We consider

(13.4.17) R+ xC[x] = {
n∑

i=0

cixi ∈ C[x] : ci ∈ C, 0≤ i≤ n and c0 ∈ R}.

It is verified that R+ xC[x] is a subring of C[x]. R+ xC[x] is an integral domain.
It is a HFD, but not a UFD. See Paulo Ribenboim [A5].

13.5. The Pell equation

An equation of the form x2 −my2 = 1 where m is square-free is called the Pell
equation. The problem is to solve the equation in positive integers for a given
m. The British mathematician John Pell (1610–1685) had nothing to do with the
equation. Euler had erroneously credited a method of solution to Pell, though
the method was found out by another British mathematician William Brounckner
(1620–1684) in response to a challenge by Fermat. It is reported that Fermat did
have solutions for the cases m = 109,149 and 433 which require large values of
x,y. Owing to the reference made by Euler to Pell, the equation continues to be
known by Pell’s name.

In the case of a linear indeterminate equation of the first degree, say
ax + by = c, a method of solution in x and y is the same as finding the g.c.d of
a and b and is treated by an Indian who called it Kuttaka or Kuttākara (Pulver-
ization). It is referred to in the classical work in Sanskrit: ‘Aryabhatiya’ written
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by the Indian mathematician Aryabhata II (920–1000). The equation x2 − my2 = k
was tackled by the Indian mathematician Brahmagupta (620 A.D.) in his treatise:
Brahma sphuta Siddhanta. Brahmagupta considered the identity

(13.5.1) (x2 − my2)(z2 − mt2) = (xz±myt)2 − m(xt± yz)2

In modern terminology, x2 − my2 is called a binary quadratic form with discrim-
inant m and (13.5.1) says that two binary quadratic forms can be ‘composed’ to
yield another quadratic form with discriminant m in the variables X = xz±myt.
Y = xt ± yz. During the 19th century, Gauss and Dirichlet spoke about compo-
sition of quadratic forms and Jacobi used quadratic forms to study determinants
arising in the theory of invariants.

Brahmagupta made use of (13.5.1) in the following manner:
Suppose that there exist integers k,k′ such that

(13.5.2) x2 − my2 = k, z2 − mt2 = k′

are both solvable with x = α, y = β; z = α′, t = β′ and ββ′ 6= 0. Then, there exists
a solution of the equation

(13.5.3) x2 − my2 = kk′.

In fact, x = αα′±ββ′, y = αβ′±α′β is also a solution.
When k′ = k, one has x2 − my2 = k2 and it is solvable, provided x2 − my2 = k is
solvable. That is, if α2 − mβ2 = k, we write λ = α2 + mβ2 µ = 2αβ. Then,

λ2 − mµ2 = k2.

Thus, one gets

(13.5.4) (
λ

k
)2 − m(

µ

k
)2 = 1

That is, the equation x2 − my2 = 1 is solvable in rational numbers. A solution is
〈α2+mβ2

k , 2αβ
k 〉. Further, if there is one solution, there are infinitely many. Pre-

cisely, if 〈α,β〉 is a solution, 〈α2 + mβ2,2αβ〉 is also a solution. Therefore, by
iteration, there are an infinity of solutions. The gist of the argument is that if
x2 − my2 = 1 has a solution, it has infinitely many. However, Brahmagupta did not
solve the equation x2 − my2 = 1 for all m. He solved it for the case m = 92 and left
the general case open. In Bijaganitha (1150 A.D.), Bhaskara (Bhaskaracharya)
mentions an algorithm called ‘Cakravala’ to solve x2 −my2 = 1. Both the works of
Brahmagupta and Bhaskara were translated by the Englishman H. T. Colebrooke
in 1817. His text is entitled ‘Algebra with arithmetic and mensuration from the
Sanskrit of Brahmagupta and Bhaskara’.

13.6. The Cakravala method

To solve the equation x2 − my2 = 1, we start with an auxiliary equation
x2 −my2 = k which can be solved for x and y, say, x = a and y = b so that a2 −mb2 = k.
In other words, we chose k for which a2 − mb2 = k holds where a,b ∈ N. We also
assume that a and b are relatively prime to one another.
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With a = l, b = 1 one has

(13.6.1) x2 − my2 = l2 − m,

where l is so chosen that l2 is close to m.
Analogous to (13.6.1), we have

(13.6.2) (al + mb)2 − m(bl + a)2 = k(l2 − m).

Dividing by k2, we have

(13.6.3) (
ab + mb

k
)2 − m(

bl + a
k

)2 =
l2 − m

k
.

If
l2 − m

k
,

al + mb
k

and
bl + a

k
are integers, we get an integral solution of

(13.6.4) x2 − my2 =
l2 − m

k
and l2 is close to m. We choose λ such that bl − kλ = −a. We have solved the
indeterminate equation

bx − ky = −a

by Kuttākara. If
bl + a

k
is an integer,

(l2 − m)b2 = l2b2 + k − a2

= k(
bl + a

k
(bl − a) + 1).

As
bl + a

k
∈ N, k divides (l2 − m)b2. But k and b are so chosen that g.c.d (k.b) = 1

and k divides l2 − m. Then, l2−m
k is also an integer. It follows from (13.6.3) that

la + mb
k

is an integer. Therefore, we arrive at

(13.6.5) a2
1 − mb2

1 = k1,

where a1 =
la + mb

k
, b1 =

bl + a
k

and k1 =
l2 − m

k
.

That is, x2 − my2 = k, has a solution. Repeating the process of transforming
the equation x2 − my2 = k to x2 − my2 = k1, we obtain (a2,b2,k2), (a3,b3,k3) and so
on. The claim of the Chakravala method is that this process will eventually lead to
(ar,br,kr) where kr = ±1,±2,±4 which could be handled the way Brahmagupta
treated such cases.

As R. Sridharan [14] has remarked, Chakravala refers to a cycle in a deeper
sense which corresponds to the periodicity of the continued fraction for

√
m. We

point out that Fermat had probably a method of solution of the Pell equation for
every m. See A. Weil [17].

The Pell equation may be rewritten as

(13.6.6) (x + y
√

m)(x − y
√

m) = 1
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Therefore, finding a solution of the Pell equation is equivalent to finding a non-
trivial unit (whose norm equals 1) in the ring Z[

√
m]. This leads to the fact that

if we know a solution of the Pell equation, we can find infinitely many. That is, if
the solutions are ordered by magnitude, the nth solution 〈xn,yn〉 can be obtained
from the first one 〈x1,y1〉 by writing

(13.6.7) xn + yn
√

m = (x1 + y1
√

m)n

provided the group of units in Z[
√

m] is infinite.
Accordingly, the first solution 〈x1,y1〉 is called the fundamental solution to

the Pell equation. Solving the Pell equation amounts to finding 〈x1,y1〉 for a given
m.

Next, if R(m) denotes the number ring corresponding to an algebraic num-
ber field Q(

√
m), we denote by N(α), the norm of α (α ∈ Q(

√
m)) (see defini-

tion 3.3.2, chapter 3). That is,

(13.6.8) αᾱ = N(α)

Fact 13.6.1 : Let α,β ∈ R(m).
(i) α is a unit if, and only if, N(α) =±1.

(ii) If α and β are associates in R(m), N(α) =±N(β).
(iii) If N(α) is a rational prime, α is irreducible in R(m).

(i) and (ii) are easy to observe. And (iii) has already been noted in chapter
12. See Lemma 12.3.1 and its corollary 12.3.1.

Lemma 13.6.1 : Let G(m) denote the group of units of R(m). If m < 0
(i) G(m) = {±1,±i} for m = −1.

(ii) G(m) = {±1,±ω,±ω2} where ω = exp( 2πi
3 ) for m = −3.

(iii) G(m) = {±1} for m< −3.

Proof : Suppose that α ∈ R(m) is a unit. Then, there exists β ∈ R(m) such that
αβ = 1. As the norm is multiplicative,

N(α)N(β) = N(αβ) = N(1) = 1

If α = a + b
√

m, a,b ∈ Z, N(α) = a2 − mb2 and N(α) is positive for m < 0. So,
N(α) = 1 if, and only if, m < 0
(a) For m = −1, one has N(α) = a2 + b2 = 1.

So, a = ±1, b = 0 and a = 0, b =±1 are the possible solutions of a2 + b2 = 1.
So, G(−1) = {±1,±i}.

(b) For m< −3, a2 − mb2 = 1 would imply a =±1, b = 0.
So, G(m) = {±1} for m < 3.

(c) We are left with the case m = −3. As −3≡ 1(mod 4)

R(−3) = Z(ζ) where ζ =
1 +
√

−3
2

; by Remark 3.3.4, chapter 3.
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For α ∈ R(−3), N(α) = 1⇒ x2 + 3y2 = 1, where x,y are halfs of rational odd inte-
gers. If x = s

2 , y = t
2 where s, t are odd, we get

s2 + 3t2 = 4

The solutions are 〈±1,±1〉.
When s = −1, t = 1, we have α ∈ R(−3) expressed as

α =
s + t
√

−3
2

=
−1 +
√

−3
2

= ω (say)

ω is an imaginary cube-root of unity. The other cases are 〈1,−1〉, 〈−1,−1〉 and
〈1,1〉. These give α = −ω,ω2,−ω2 respectively. So, G(−3) = {±1,±ω,±ω2},
where ω = exp( 2πi

3 ).
All this put together says that we have found out the group of units of R(m)

for all m< 0, as described. �

Definition 13.6.1 : A unit δ of R(m) is called a proper unit, if N(δ) = 1. δ is called
an improper unit, if N(δ) = −1.

We remark that there are no improper units in R(m) when m < 0. However,
for m > 0, as in R(2), there exist improper units of R(m). 1 +

√
2 is an improper

unit of R(2), the number ring corresponding to Q(
√

2).
When m is a square-free positive integer, Q(

√
m) is a subfield of the field R

of real numbers.

Fact 13.6.2 :
(a) When m 6≡ 1 (mod 4), solving the equation

x2 − my2 =±1

is equivalent to finding the units in the number ring R(m) corresponding to
the algebraic number field Q(

√
m).

(b) When m≡ 1 (mod 4), solving the equation

x2 − my2 =±4

is equivalent to finding the units in the number ring R(m) corresponding to
the algebraic number field (Q

√
m).

While considering real quadratic number fields Q(
√

m), (m> 0), we will need
the structure of the number ring R(m) corresponding to Q(

√
m). We write

(13.6.9) ζ =

{√
m if m 6≡ 1(mod 4)

−1+
√

m
2 if m≡ 1(mod 4)

Then,

(13.6.10) R(m) = Z+Z[ζ].
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(See Remark 3.3.4, chapter 3. It is immaterial whether we take ζ = 1+
√

m
2 or

−1+
√

m
2 ). For α = a + bζ ∈ R(m),

(13.6.11) ᾱ =

{
a − bζ , if m 6≡ 1(mod 4)
(a − 1) − bζ , if m≡ 1(mod 4)

The real-axis is split into four open intervals:

I1 = (−∞,−1), I2 = (−1,0), I3 = (0,1) and I4 = (1,∞).

Let δ = a + bζ (a,b ∈ Z) be a unit other than ±1, belonging to R(m). For m = 2,
δ = 1 +

√
2 is a non-trivial unit in R(2). As 1 +

√
2 > 1, δ ∈ I4. δ̄ = 1 −

√
2 lies in

I2. Further, −δ = −1 −
√

2 lies in I1 and −δ̄ ∈ I3. That is, I1, I2, I3 and I4 contain
exactly one and only one of the units±δ,±δ̄. This is true of R(m), m a square-free
positive integer.

Fact 13.6.3 : (i) Let δ = a + bζ be a unit other than ±1 in R(m). Then, just one of
the four units±δ,±δ̄ lies in each of the intervals I1, I2, I3, I4. Further, δ > 1 if, and
only if, a> 0, b> 0.
(ii) Let M ∈ R be such that M > 1. The interval (1,M] contains only a finite
number of units of R(m).

For proof, see Ethan D. Bolker [1, chapter 6, Lemma 31.1 and corollary 31.2].

Theorem 119 (Dirichlet’s inequalities) :
(a) Let t be a positive irrational number. Given M, a positive integer, there exist

integers y,x ; 0≤ y≤M and x≥ 0 such that

(13.6.12) |x − yt |< 1
M
.

(b) There are infinitely many pairs 〈x,y〉 (with y 6= 0) of integers such that

(13.6.13) | x
y

− t |< 1
y2 .

Proof : (a) Let [s] denote the greatest integer not exceeding s. We have

0≤ s − [s]< 1.

We divide the interval [0,1) into M subintervals:

[1,
1
M

), [
1
M
,

2
M

), . . . , [
M − 1

M
,1).

Each of the subintervals shown above has length 1/M. By the pigeon-hole
principle, two of the M + 1 numbers

t − [t], 2t − [2t], . . . ,Mt − [Mt], (M + 1)t − [(M + 1)t]

must lie in the same interval. So, there exist integers j, k such
that 0< j < k ≤M + 1 and

|[kt] − [ jt] − (k − j)t|< 1
M
.
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We take x = [kt] − [ jt] and y = k − j (<M). Then,

|x − yt|< 1
M

as desired.

(b) By the result in (a), there exists one pair 〈x,y〉 of integers satisfying (13.6.12)
namely x = 0, y = M giving |t|< 1/M2.

Suppose that we have found n pairs 〈x j,y j〉 ( j = 1,2, . . .n) such that (13.6.13)
holds. We consider the absolute differences

d j = |x j − ty j| ( j = 1,2, . . .n).

Let dq be the least among d j. Since t is irrational, dq > 0. Suppose M denotes an
integer > 1

dq
. Then, by (a), we can find x and y 6= 0 such that

|x − yt |< 1
M
.

Since 1
M < dq, 〈x,y〉 is not one of the pairs 〈x j,y j〉 ( j = 1,2, . . .n). But, 0< y≤M

gives

| x
y

− t |< 1
My
≤ 1

y2 .

So 〈x,y〉 is the (n + 1)th pair satisfying (13.6.13). Hence, by induction on n, the
number of pairs 〈x,y〉 for which (13.6.13) holds is infinite. �

Theorem 120 (Existence of a nontrivial solution of the Pell equation) :
There exist integers y 6= 0 and x such that

(13.6.14) x2 − my2 = 1, where m is a square-free integer ≥ 2.

Proof : By theorem 119(b), we can find integers x,y (6= 0) satisfying

(13.6.15) | x
y

−
√

m |< 1
y2 .

Let α = x + y
√

m, α ∈ Z+Z[
√

m] ⊆ R(m), the number ring corresponding to the
algebraic number field Q(

√
m).

|N(α) | = |(x − y
√

m)(x + y
√

m)|
= y2|x

y
−
√

m| |x
y

+
√

m|

< |x
y

+
√

m|, by (13.6.15).

But,

|x
y

+
√

m| = |x
y

−
√

m + 2
√

m |

≤ |x
y

−
√

m|+ 2
√

m

<
1
y2 + 2

√
m.

© 2007 by Taylor & Francis Group, LLC



454 CHAPTER 13

Therefore, |N(x + y
√

m)|< 1 + 2
√

m, as y≥ 1.
So, N(α) is an integer lying between −1 − 2

√
m and 1 + 2

√
m for infinitely

many pairs 〈x,y〉, y 6= 0. This is deduced from theorem 119(b). So, there exists a
rational number γ with the property: |γ|< 1 + 2

√
m and

(13.6.16) N(α) = N(x + y
√

m) = γ,

for infinitely many α ∈ Z+Z[
√

m].
Suppose that β ∈ Z+Z[

√
m] satisfies (13.6.16) and α 6=±β. Then αβ−1 6=±1

and N(αβ−1) = γγ−1 = 1. Therefore, αβ−1 is a nontrivial unit in R(m), if
αβ−1 ∈ R(m). But, then,

αβ−1 =
αβ̄

N(β)
=
αβ̄

γ
.

Thus, αβ−1 ∈ R(m), provided γ divides αβ̄ in R(m). We will show that this is,
indeed, the case.

If we consider residue classes modulo |γ|, there are |γ| possible values for x
and |γ| possible values for y and so there are γ2 possible values for pairs 〈x,y〉
modulo |γ|. Among the infinitely many α satisfying (13.6.16), there are two,
namely,±β 6= α such that γ divides α−β in R(m). Then,

γ divides (α−β)β̄ = αβ̄ −ββ̄ = αβ̄ −γ.

So, γ divides αβ̄ and hence αβ−1 is a proper unit in R(m) with N(αβ−1) = 1. It
means that there exists a pair 〈x0,y0〉 with y0 6= 0, such that x2

0 − my2
0 = 1. That is,

the Pell equation x2 − my2 = 1 has a non-trivial solution. �

Theorem 121 : There exists a unit η ∈ R(m), η 6=±1 such that every unit in R(m)
is of the form ±ηn, n ∈ Z .

Proof : The statement of the theorem presumes that there exists a unit η 6= ±1
belonging to R(m). This is precisely the same as saying that the Pell equation
x2 − my2 = 1 has a non-trivial solution. In other words, R(m) has a proper unit
other than ±1. This has been established in theorem 120 for square-free m ≥ 2.
The following step is meaningful:

There exists a unit δ 6=±1 in R(m).
δ = a + bζ is an algebraic integer. For m > 0, Q(

√
m) is a real quadratic

extension ofQ. Any element α = c + d
√

m belonging to Q(
√

m) belongs to R, the
field of real numbers. R is a complete ordered field under the partial order≤ and
so an order structure in (Q(

√
m),≤) is inherited from (R,≤). We can compare

a + bζ and c + dζ; a,b,c,d ∈ Z. That is, when δ 6= ±1 in R(m) is a unit, we can
assume that δ > 1. By Fact 13.6.3(ii), there are only a finite number of units in
the interval (1,δ]. Let η be the least among them.

For α,β ∈ R(m), |N(α)| = |N(β)| implies that α and β are associates. So,
when δ is a unit,±δn is also a unit, n ∈ Z.

We claim that every non-trivial unit in R(m) is of the form±ηn. Suppose that
β > 1 is a unit. There exists n ∈ Z such that

(13.6.17) 0< ηn−1 < β ≤ ηn.
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Multiplying throughout by η1−n, we get

(13.6.18) 0< 1< βη1−n ≤ η.
But, then, βη1−n is a unit. As η is the least among the units in [1,δ),

βη1−n = η. Therefore, β = ηn.

This completes the proof. �

Remark 13.6.1 : Theorem 121 stated differently means that the group of units of
R(m) = {±ηn : n ∈ Z}. If G(m) denotes the group of units of R(m),

G(m)∼= Z/2Z×Z.
It is a special case of Dirichlet’s unit theorem which gives the structure of G(m)
for all square-free m (see Section 13.7).

Definition 13.6.2 : η given in theorem 121 is called the fundamental unit of R(m).

As examples, we take R(2) and R(3).
In the case of R(2), 1+

√
2 is the fundamental unit and 1+

√
2 is the least algebraic

integer > 1. Any unit of R(2) is either ±1 or ±(1 +
√

2)n, n ∈ Z.
In the case of R(3), 1 +

√
3 is not a unit. But, 2 +

√
3 is the least algebraic

integer > 1 which is also a unit. So, 2 +
√

3 is the fundamental unit in R(3).

Observation 13.6.1 : The fundamental solution 〈x0,y0〉 to the Pell equation
x2 − my2 = 1 is the one which minimizes x + y

√
m for positive integers x and y.

Case (i) m 6≡ 1 (mod 4):
x0 + y0

√
m is either the fundamental unit η of R(m) if η is a proper unit or

x0 + y0
√

m is equal to η2 if η is an improper unit of R(m).

Case (ii) m≡ 1 (mod 4):
If η is the fundamental unit of R(m), x0 + y0

√
m = ηk for a suitable positive

integer k.

Examples 13.6.1 : In the case of R(2), the fundamental unit is 1 +
√

2. It is an
improper unit. η2 = 3 + 2

√
2. 〈x0,y0〉 = 〈3,2〉 gives the fundamental solution of

x2 − 2y2 = 1.
In the case of R(3) the fundamental unit is 2 +

√
3 which is proper. So,

〈x0,y0〉 = 〈2,1〉 gives the fundamental solution of x2 − 3y2 = 1.
In the case of R(5), the fundamental unit is 2 +

√
5 which is improper. Let

η = 2 +
√

5.
(2 +
√

5)6 = 2889 + 1292
√

5
〈x0,y0〉 = 〈2889,1292〉 is the fundamental solution of x2 − 5y2 = 1 as,
28892 − 5×12922 = 1.

In the case of R(6), the fundamental unit is 5 + 2
√

6 which is proper. So,
〈x0,y0〉 = 〈5,2〉 is the fundamental solution to x2 − 6y2 = 1.
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In the case of R(14), the fundamental unit is 15 + 4
√

14 which is proper.
〈x0,y0〉 = 〈15,4〉 is the fundamental solution to x2 − 14y2 = 1.

In the case of R(23), the fundamental unit is 24 + 5
√

23 which is proper.
〈x0,y0〉 = 〈24,5〉 is the fundamental solution to x2 − 23y2 = 1.

In the case of the prime 17, 4 +
√

17 is an improper unit of R(17). Also,
(4 +
√

17)2 = 33 + 8
√

17 is such that 〈x0,y0〉 = 〈33,8〉 is the fundamental solution
of x2 − 17y2 = 1. The square-root of 33 + 8

√
17 is a unit in R(17). More generally,

it can be shown that if p is a prime of the form 4k + 1, the number ring R(p)
corresponding to the number field Q(

√
p) has an improper unit whose square

yields the fundamental solution to the Pell equation x2 − py2 = 1. See Ethan D.
Bolker [1, chapter 6, p.134] J. Esmonde and M. Ram Murthy give related results
and problems in [5, chapter 8].

13.7. Dirichlet’s unit theorem

We make a closer look at the multiplicative group U of units in a number ring
R corresponding to an algebraic number field K. Dirichlet’s unit theorem says that
U is the direct product of a finite cyclic group consisting of the roots of unity in R
and a free abelian group. It is known that K =Q(θ) where θ is an algebraic integer.
We assume that [K : Q] = n. Let σ1,σ2, . . .σn be the embeddings of K in C. In
fact, there are exactly n distinct monomorphisms of K into C. They are given by
σi : K → C where σi(θ) = θi (say) (i = 1,2, . . .n). The minimum polynomial of θ
overQ is of degree n and θi (i = 1,2, . . . ,n) are the distinct zeros of the minimum
polynomial of θ in C. If σi(θ) ∈ R, we say that σi is real. Otherwise, σi is called
complex (i = 1,2, . . . ,n). Suppose that σi(α) = σi(α). Since complex conjugation
is an automorphism ofC, σ̄i is also a embedding of K in C. Complex embeddings
occur in conjugate pairs. We write n = r + 2s where r denotes the number of real
embeddings of K in C and 2s denotes the number of complex embeddings of K in
C. Hereafter, n = r + 2s will mean that r gives the component for real embeddings
of K in C and 2s gives the component for non-real embeddings of K in C. The
following notation, therefore, stands:

(13.7.1) n = r + 2s.

Next, we note that R is a Noetherian domain with field of quotients F such
that K ⊆ F . Let M be an R-module. We recall that x ∈ M is called a torsion
element if ax = 0M for some nonzero element a ∈ R. If M is a finitely-generated
R-module, the torsion elements of M form a finitely-generated R-submodule, de-
noted by TM, where

(13.7.2) TM = {x ∈M : ax = 0M , for some a ∈ R}
The annihilator of M is written as

(13.7.3) annM = {a ∈ R : ay = 0M for all y ∈ N}.
annM is an ideal of R. M is called torsion-free, if TM = (0M) implying that 0M is
the only torsion element of M. We recall that an R-module M′ is said to be a free
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R-module on S = {g1,g2, . . .gk} of generators if, and only if, every element m in
M′ can be uniquely expressed as

(13.7.4) m =
k∑

i=1

aigi, ai ∈ R, (i = 1,2, . . .k).

Lemma 13.7.1 : Let M be a nonzero finitely-generated R-module. M is torsion-
free if, and only if, one of the following conditions hold:
(a) M is isomorphic to a R-submodule of a free R-module of finite rank.
(b) M is isomorphic to an R-submodule of a finite dimensional K-vector space V ,

where R is contained in K.

Proof : Suppose that (a) holds. Let N be a free R-module of finite rank. N has a
basis which is a set of linearly independent generators of N. M is isomorphic to a
R-submodule of N implies that the R-submodule N ′ of N for which M ∼= N′ is such
that N′ has a basis of linearly independent generators and so, N ′ is torsion-free.
That is, M is torsion-free.

Conversely, if M is finitely-generated and M is torsion-free, then M has a ba-
sis of linearly independent generators and so, M is isomorphic to a R-submodule
of a free R-module of finite rank.

Next, suppose that (b) holds. Let {e j : j = 1,2, . . . ,k} be a K-basis for the
vector space V , where K is a field containing R. Assume that {g1,g2 . . .gm} de-
notes a generating set of M over R. If b 6= 0R and b ∈ R, then bgi (i = 1,2, . . . ,m) is
an element of M. By embedding M in V , bgi can be taken as an element of V . So,

(13.7.5) bgi =
k∑

j=1

ai je j, ai j ∈ K (i = 1,2, . . . ,m).

Considering b−1 as an element of K, {b−1e j : j = 1, . . . ,k} forms a basis for an
R-module N containing M. That is, M is contained in a free R-module of finite
rank.

So, by (a), M is torsion-free. Conversely, if M is finitely generated and
torsion-free, taking K as the field of quotients of R,M can be embedded in a
finite dimensional K-vector space V which yields (b). �

Next, we need some geometrical ideas.
Let V be a k-dimensional vector space overR (the field of real numbers). Let

{e1,e2 . . . ,ek} be a basis for V .
Let Ω = {v ∈V : v =

∑k
i=1 aiei, ai ∈ Z}.

(Ω,+) is a subgroup of (V,+), generated by {e1,e2 . . .ek}.
For x,y ∈V , using the usual ‘distance’ scalar d(x,y) = {∑k

i=1(xi −yi)2}1/2 (see
Fact 8.4.1, chapter 8) where x =

∑
xiei, y =

∑
yiei. d(x,y) defines a metric on V

and we can consider a metric topology on V .

Definition 13.7.1 : A subset S of V is said to be bounded, if S is contained in
Br(0) = {x ∈ V : d(x,0) ≤ r}, (a spherical k-ball of radius r, r > 0) for some
r > 0.
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Definition 13.7.2 : An additive subgroup Λ of V is said to be discrete, if the set
Λ∩S is finite for all bounded subsets S of V .

For t ≤ k,

(13.7.6) Ωt = {x ∈V :
t∑

i=1

aiei = x, ai ∈ Z}

is a discrete subgroup of V , since it has finite intersection with any bounded subset
of V . (see Fact 8.4.1, chapter 8).

Definition 13.7.3 : Ωt = {x ∈ V :
∑t

i=1 aiei = x, ai ∈ Z} is called a lattice of di-
mension t (t ≤ n) generated by {e1,e2, . . .et}.
Theorem 122 : An additive subgroup Λ of V is a discrete subgroup of V if, and
only if, Λ is a lattice of dimension t (≤ k).

Proof : ⇐: Suppose that Λ is a lattice of dimension t, contained in V . Then,
(Λ,+) is a free abelian group of finite rank t. So, Λ is generated by an R-linearly
independent set of vectors {v1,v2, . . .vt}. We enlarge this to an R basis of V , say,
{v1,v2 . . .vt ,vt+1, . . .vk}. If S denotes a bounded subset of V , suppose that x ∈ S is
of the form x =

∑k
i=1 xivi. It follows that the coordinates xi are all bounded and so

Λ∩S is finite. That is, Λ is a discrete subgroup of V .
:⇒ Suppose that Λ is a discrete subgroup of V . We have to show that Λ is a

lattice of dimension t (say) (t ≤ k).
Let B = {v1,v2, . . .vt} denote a maximal subset of Λ such that B is a linearly

independent set in V . We define

(13.7.7) TB = {
t∑

i=1

aivi : 0≤ ai ≤ 1}

TB is a subset of V . By the maximality condition imposed on B, given x ∈ Λ, we
can write

(13.7.8) x =
t∑

i=1

xivi, xi ∈ R,set of real numbers (i = 1,2, . . .k).

If [y] denotes the greatest integer not greater than y,

(13.7.9) x =
t∑

i=1

(xi − [xi])vi +
t∑

i=1

[xi]vi.

[xi] ∈ Z and [xi]≤ xi < [xi] + 1, i = 1,2, . . .k.
As 0≤ xi − [xi]< 1 (i = 1,2, . . . ,k),

t∑

i=1

(xi − [xi])vi is in TB as well as Λ.

From (13.7.9), we note that Λ is generated over Z by TB ∩Λ and {v1,v2, . . .vt}.
Since TB ∩Λ is finite, Λ is finitely generated as a Z-module. Since V has no
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torsion elements other than ~0, Λ is torsion-free. By definition (13.7.3), Λ is a free
Z-module, being isomorphic to a Z-submodule of the finite dimensional vector
space V over R.

Let x ∈ TB∩Λ. Take x =
∑t

i=1 xivi. For each positive integer j we introduce

(13.7.10) y j =
t∑

i=1

(xi j − [xi j])vi.

Then, y j ∈ TB∩Λ. Therefore, we can find distinct integers l,m such that yl = ym.
That is,

t∑

i=1

xi(l − m)vi =
k∑

i=1

([xil] − [xim])vi

Since {v1, . . .vt} is a linearly independent set in V , we may equate the coefficients
to obtain

xi(l − m) = [xil] − [xim]
This shows that xi is a rational number (i = 1,2 . . . t). Since TB ∩Λ is finite,∑t

i=1 aivi with ai ∈ Z is such that

Λ′ = {y ∈V :
t∑

i=1

aiyi = y with ai ∈ Z}

is a subgroup of Λ such that the quotient group Λ/Λ′ is finite. Now, as B =
{v1,v2, . . .vt} is a linearly independent set in V , by transforming B into a Z-basis
{v′1,v′2, . . .v′t} = B′, we can take B′ as a Z-basis for Λ. The matrix of the transfor-
mation is non-singular overQ, the field of rationals. Thus, the matrix of transfor-
mation is non-singular overR. So B′ = {v′1,v′2, . . .v′t} is a linearly independent set
over R. So, Λ is a free Z-module of finite rank and is contained in V . Hence, Λ is
a lattice of dimension t. �

Starting again with number field K and having R as its ring of integers, we
consider UK , the group of units of K. Let µK denote the group of roots of unity in
K. ζ ∈ µk is an algebraic integer, as ζ satisfies a polynomial equation xm − 1 = 0
for some m ≥ 1. As ζ · ζm−1 = ζm = 1, we note that a root of unity say ζ is indeed
a unit. So, ζ ∈UK . Let TK denote the Z-torsion submodule of the Z-module UK .

Clearly, µK ⊂ TK . Now, if u ∈ TK , there exists a positive integer m such that
um = 1. So, u ∈ µK or

(13.7.11) µK = TK

We are interested in studying the torsion-free part of UK . Let FK = UK/µK . If
n = r + 2s in the notation of (13.7.1), we claim that FK

∼= Z(r+s−1). Then,

(13.7.12) UK
∼= µK×Z(r+s−1)

which implies that UK is a finitely-generated Z-module.
(13.7.12) is, in fact, the essence of Dirichlet’s unit theorem. (r + s−1) is called the
Dirichlet rank of UK .
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Let σ : K→ Rr×Cs be defined by

(13.7.13) σ(α) = (σ1(α), . . .σr(α); σr+1(α), . . . ,σr+s(α))

where σ1,σ2, . . .σr+s are the embeddings of K in C. We observe that when K
is considered as a vector space over Q, Q-linearly independent elements of K
map into R-linearly independent elements of Rr×Cs. If G is a finitely-generated
Z-module contained in K which is Z-free of rank m and having a basis
{α1,α2 . . .αm}, the image of G in Rr×Cs under σ is a lattice of dimension m in
Rr×Cs with the generating set {σ(α1),σ(α2), . . . ,σ(αm)}.

Next, we define a map ψ :

(13.7.14) ψ : Rr×Cs→ Rr+s

in terms of ψi(i = 1,2, . . . ,r : r + 1, . . . ,r + s), where

(13.7.15) ψi(x) =

{
log |xi|, i = 1,2, . . .r ;
log |xi|2, i = r + 1, . . . ,r + s ;

where x = (x1,x2, . . .xr; xr+1, . . .xr+s) ∈ Rr×Cs.
Then, ψ(x) = (ψ1(x),ψ2(x), . . . ,ψr+s(x)).
It is easy to check that when x · y = (x1y1,x2y2, . . . ,xr+syr+s) : x,y ∈ Rr×Cs.

ψ(x · y) = ψ(x) +ψ(y), for x,y ∈ Rr×Cs

So, we have maps σ : K→ Rr×Cs and ψ : Rr×Cs→ Rr+s.
If σ′ = ψ ◦σ, σ′ : K→ Rr+s is such that for α ∈ K, we have

(13.7.16) σ′(α) = ψ(σ(α)).

That is,

σ′(α) = (log |σ1(α)|, . . . , log |σr(α)|; log |σr+1(α)|2, . . . log |σr+s(α)|2).

σ′ : K→ Rr+s is known as the logarithmic representation of K. Rr+s is called the
logarithmic space. It is verified that

(13.7.17) σ′(αβ) = σ′(α) +σ′(β) for α,β ∈ K

Let K∗ = K \ {0}, σ′ : K∗ → Rr+s is a homomorphism from the multiplicative
group K∗ into the additive group (Rr+s,+).

We restrict σ′ to UK , the group of units of R, the number ring corresponding
to the number field K. We get a homomorphism σ′R : UK→ Rr+s. In what follows,
we will see that σ′R does the job.

Let H denote the kernel of σ′R.

H = {u ∈UK : σ′R(u) = 0}
σ′R(u) = 0⇒ |σi(u)| = 1 for i = 1 to r + s.

u is an algebraic integer. The minimum polynomial of u given by

f (t) =
r+s∏

i=1

(t −σi(u))
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has integer coefficients. It is known that if p(t) ∈ Z[t] is a monic polynomial all
of whose zeros are in C and have absolute value 1, then, every zero of p(t) is a
root of unity. Therefore, all the σi(u) are roots of unity. In particular, u itself is a
root of unity. The image of R in Rr×Cs under σ is a lattice and so is a discrete
subgroup of Rr×Cs = Rr+2s. So, H contains only finitely many roots of unity.
But any finite subgroup of K∗ is cyclic. H contains −1 which is a unit of order 2.
So,±u is a unit of finite order when it belongs to H. So, H is a finite cyclic group
of even order. We have denoted H by µK .

Let J be the image of UK under σ′R.

Claim :

(13.7.18) J is a lattice of dimension≤ r + s − 1

We note that the norm of a unit is ±1.
From (13.7.15), we see that if x = (x1,x2, . . .xr; xr+1 . . .xr+s).

r+s∑

i=1

ψi(x) =
r∑

i=1

log |xi|+
r+s∑

i=r+1

log |xi|2

If u ∈UK ,
r+s∑

i=1

ψi(u) = log |N(u)| = log1 = 0.

So, if y ∈ J, y = (y1,y2, . . . ,yr+s) is such that

(13.7.19) y1 + y2 . . .+ yr+s = 0

If V = {y∈Rr+s : y1 +y2 . . .+yr+s = 0}, V is a subspace ofRr+s and J ⊆V . Clearly,
V has dimension r + s − 1, because of the restriction (13.7.19) on the coordinates
of an element y ∈V .

Let || || denote the usual norm on Rr+s. For t > 0, t ∈ R and u ∈UK ,
||ψ(u)||< t⇒ |ψi(u)| ≤ ||ψ(u)||< t.

So,

log |ψi(u)|< t i = 1,2, . . . ,r;

log |ψi(u)|2 < t i = r + 1, . . . ,r + s;

or, |ψi(u)|< et i = 1,2, . . . ,r;

|ψi(u)|2 < et i = r + 1, . . . ,r + s.

So, the set of points ψ(u) in Rr+s corresponding to the units u with ||ψ(u)||< t is
bounded and finite. So, J intersects a closed ball Bt(0) inRr+s in a finite set and so
J is a discrete subgroup of Rr+s. Therefore, J is a lattice of dimension ≤ r + s − 1,
by theorem 122, as claimed in (13.7.18).

Lemma 13.7.2 : InRm, there exists a lattice L of dimension m and having a basis
{e1,e2 . . .em} which is also a basis for Rm.
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Proof : We define the set

D = {
m∑

i=1

aiei : 0≤ ai < 1}

as a fundamental domain for the lattice L. For x ∈ L,

D + x = {
m∑

i=1

aiei + x : 0≤ ai < 1}

is a subset of Rm whose elements are of the form d + x where d ∈ D. It is easy
to check that each element v of Rm lies in one of the subsets D + x, x ∈ L. For,
if v ∈ D + x1 as well as D + x2 for x1,x2 ∈ L where x1 6= x2 there exist d1,d2 ∈ D,
d1 6= d2 such that

v = d1 + x1

v = d2 + x2

It follows that x1 − x2 = d2 − d1. But x1 − x2 ∈ L and d2 − d1 /∈ L when d1 6= d2.
Further, L has dimension m if, and only if, there exists a bounded subset B of Rm

such that

(13.7.20) Rm = B +
⋃

x∈L

x

For, if L has dimension m, we have only to take B to be a fundamental domain
for L. It means that every vector in Rm is in exactly one of the sets B + l for
l ∈ L. To prove the converse, suppose that L has dimension m′ < m. We could
write Rm = W ⊕W ′ where W has dimension m′ and W ′ has dimension m − m′.
Now, (13.7.20) is the same as

Rm = B +
⋃

v∈W

v

Then, the image of B under the projection π : Rm →W ′ is W ′. As π preserves
distances, W ′ will have to be bounded—a contradiction to the fact that W ′ is
unbounded. That is, L has dimension m. �

Definition 13.7.4 : A subset E of Rm is called a convex set if, whenever x,y ∈ E,
the element λx + (1 −λ)y also belongs to E, for all λ with 0≤ λ≤ 1.

Definition 13.7.5 : A subset E of Rm is said to be symmetric, if, whenever x ∈ E,
−x is also an element of E.

Let {v1,v2, . . .vm} be a basis for a lattice of dimension m in Rm. If D denotes
the fundamental domain of L, the volume of D is given by

(13.7.21) ν(D) = absolute value of det[ai j],

where vi = ai1e1 + ai2e2 + · · ·+ aimem with {e1,e2, . . .em} forming a standard basis
of Rm. The volume of a subset S of Rm is countably additive and determinable.
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Theorem 123 (Minkowski’s theorem) : Let L be an m-dimensional lattice in
Rm. Suppose that D denotes the fundamental domain of L. Let E be a bounded
symmetric convex subset of Rm. If

ν(E)> 2mν(D),

then E contains a nonzero element of L.

Proof : We enlarge L into a lattice 2L with fundamental domain 2D and having
volume 2mν(D). We consider the m-dimensional torus Rm/2L. We denote it by
T m. Then,

ν(T m) = ν(2D) = 2mν(D).
Let ξ : Rm → T m be defined by ξ(x) = x + 2L, x ∈ Rm. Since ν(E) > 2mν(D), ξ
cannot preserve the volume of E. But, ξ is onto T m. So ξ(E) is contained in T m.
So, ξ(ν(E))≤ ν(T m) = 2mν(D)< ν(E).
So, the restriction of ξ to E is not injective. Therefore, there exist x1,x2 ∈ E with
x1 6= x2 such that

ξ(x1) = ξ(x2)
It means that x1 − x2 ∈ 2L. As x2 ∈ L, −x2 ∈ L, by symmetry. By convexity,
1
2 x1 + 1

2 (−x2) ∈ E or 1
2 (x1 − x2) ∈ E. But, as x1 − x2 ∈ 2L 1

2 (x1 − x2) ∈ L.
So, there exists a nonzero element 1

2 (x1 − x2) ∈ E ∩L. �

Lemma 13.7.3 (Stewart and Tall) : Let L be a lattice of dimension r + 2s in Rr×
Cs. Suppose D denotes the fundamental domain of L and volume of D is ν(D). If
c1,c2 . . .cr+s are positive real numbers whose product

c1c2 . . .cr+s > (
4
π

)sν(D),

then, there exists in L a nonzero element y = (y1,y2, . . .yr; yr+1 . . .yr+s) such that

(13.7.22)

{
|y1|< c1, |y2|< c2, . . . , |yr|< cr;
|yr+1|2 < cr+1, . . . , |yr+s|2 < cr+s.

Proof : We denote by Y the set of points y ∈Rr×Cs such that the coordinates of
y satisfy the conditions stated in (13.7.22). We compute the volume of Y .

ν(Y ) =
∫ c1

−c1

dy1 · · ·
∫ cr

−cr

dyr×
∫∫

x2
1+z2

1<cs+1

dx1dz1×·· ·×
∫∫

x2
s +z2

s≤cr+s

dxsdzs

= 2c1 ·2c2 · · ·2cr ·πcr+1 · · ·πcr+s

= 2rπsc1c2 · · ·cr+s

Y is a cartesian product of line segments and circular discs. So, Y is bounded,
symmetric and convex. By theorem 123, if

(13.7.23) ν(Y ) > 2r+2sν(D),

Y has a nonzero element in common with L. (13.7.23) is satisfied, if

2rπsc1c2 · · ·cr+s > 2r+2sν(D),
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that is, if c1c2 · · ·cr+s > ( 4
π )sν(D) and this is the stated hypothesis of the lemma. Y

contains a nonzero element of L.
Therefore, there exists y = (y1,y2.;yr+1, . . . ,yr+s) in L satisfying (13.7.22).

This completes the proof of the lemma. �

In (13.7.18), we made the claim that the image J of UK under σ′R is a lattice
of dimension ≤ (r + s − 1). The claim was shown to be correct by using theorem
122. What is more important is that the next lemma specifies the dimension of J.

Lemma 13.7.4 : The image J of UK in Rr+s under σ′R is a lattice of dimension
equal to (r + s − 1).

Proof : The subset V defined by

(13.7.24) V = {(y1,y2, . . . ,yr+s) ∈ Rr+s : y1 + y2 · · ·+ yr+s = 0}
is a subspace (of Rr+s) of dimension r + s − 1. Every element of J is the image of
some element in Rr×Cs under ψ (13.7.14). Further, when x ∈ Rr×Cs, ψ(x) ∈V
if, and only if, |N(x)| = 1.
We recall that if x = (x1,x2, . . . ,xr;xr+1,xr+2, . . . ,xr+s)

(13.7.25) N(x) = x1x2 . . .xr|xr+1|2 · · · |xr+s|2.
Let

(13.7.26) S = {x ∈ Rr×Cs : |N(x)| = 1}
Then, ψ(S) = V . If T ⊆ S and T is bounded, then ψ(T ) is also bounded. Further,
as the norm is multiplicative, when x ∈ S, xT ⊆ S, if T ⊆ S. σ : K → Rr×Cs

is given. When u is a unit in K, σ(u)T ⊆ S. For, using (13.7.25), as σi(u) = ±1,
i = 1,2, . . . (r + s), |N(σ(u))| = 1 and thus, σ(u) ∈ S.

Therefore,

(13.7.27) σ(u)T ⊆ S, where T ⊆ S and T is bounded.

We now proceed to find a suitable subset T of S satisfying (13.7.27) shown after
some steps that follow. Rr×Cs has a standard basis given by

e1 = (1,0 . . .0; 0,0, . . .0),
e2 = (0,1 . . .0; 0,0, . . .0),
. . . . . . . . .

er = (0,0 . . . ,1; 0,0, . . .0),
er+1 = (0, . . .0; 1,0, . . .0),

e′r+1 = (0,0 . . .0; i,0, . . .0),
. . . . . . . . .

er+s = (0,0 . . .0; 0,0, . . .0,1),

e′r+s = (0,0 . . .0; 0,0, . . .0, i).
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When R is the number ring corresponding to the number field K, the image of R
under σ written σ(R) is a lattice M of dimension m (say).

The product of two vectors in Rr×Cs is obtained by component-wise multi-
plication. Also, σ : K→ Rr×Cs is as given in (13.7.13).

σ is both a ring homomorphism as well as anR -algebra homomorphism. Let
y be an arbitrary but fixed element of Rr×Cs. We define the map

(13.7.28) λy : Rr×Cs→ Rr×Cs

by λy(x) = yx for all x ∈ Rr×Cs. λy is a linear operator on Rr×Cs.

Claim : det(λy) = N(y).
We fix y as (y1,y2, . . .yr; x1 + iz1,x2 + iz2, . . .xs + izs) ∈ Rr×Cs

Now,

λy(er+1) = yer+1 = (0, . . . ,0; x1 + iz1,0, . . . ,0).

Or,

λy(e′r+1) = 0e1 + · · ·+ 0er + (x1er+1 + z1e′r+1) + · · ·+ 0er+s + 0e′r+s,

λy(e′r+1) = ye′r+1 = (0,0, . . .0; −z1 + ix1,0, . . . ,0),

or,

λy(e′r+1) = 0e1 + · · ·+ 0er − z1er+1 + x1e′r+1 + · · ·+ 0er+s + 0e′r+s,

. . . . . . . . . . . .

λy(er+s) = (0,0, . . .0; 0,0, . . . ,xs + izs),

and so,

λy(er+s) = 0e1 + · · ·+ 0er + 0er+1 + · · ·+ xser+s + zse′r+s.

Also,

λy(e′r+s) = (0,0 · · ·0; 0; · · · ,0,−zs + ixs),

or,

λy(e′r+s) = (0e1 + 0e2 · · ·+ 0er + 0er+1 + 0e′r+1 + · · ·− zser+s + xse′r+s.
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Therefore,

(13.7.29) detλy = det




y1 0 . . . 0
... 0 0

... . . .
... 0 0

0 y2 . . . 0
... 0 0

...
... 0 0

· · · · · · · · · · · ·
... · · · · · ·

... · · ·
... · · · · · ·

0 0 · · · yr
... 0 0

... · · ·
... 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0
... x1 −z1

...
... 0 0

0 0 . . . 0
... z1 x1

...
... 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

· · · · · · · · · · · ·
... · · · · · ·

... · · ·
... · · · · · ·

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 0 . . . 0
... 0 0

...
... xs −zs

0 0 . . . 0
... 0 0

...
... zs xs.




Or,

(13.7.30) det(λy) = y1y2 · · ·yr(x2
1 + z2

1) · · · (x2
s + z2

s ) = N(y).

Matrix of λy has the block form



A 0 0 0 · · ·
0 B1
0 B2

. . .
0 0 · · · 0 Bs




(r + 2s× r + 2s matrix),

where

A =




y1 0 · · · 0
y2 · · ·

0 · · · yr


 (r× r matrix),

Bi =
[

xi −zi

zi xi

]
(2×2 matrix) (i = 1,2, . . .s).

We remark that (13.7.29) gives detλy as the determinant of a r +2s×r +2s matrix.
That is, Rr×Cs is considered as a vector space of dimension (r + 2s) over R.

Now, N(y) =±1, if y ∈ S. So, det(λy) is unimodular, if y ∈ S. It implies that
the fundamental domain for the lattice λy(M) has the same volume as a funda-
mental domain for M. We denote it by ν(D). We choose real numbers ci > 0
(i = 1,2, . . . ,r + s) such that

(13.7.31) c1.c2 . . .cr+s > (
4
π

)s ν(D).
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Let E be the set of elements x ∈ Rr×Cs for which
|xi|< ci (i = 1,2, . . .r)

|xr+ j|2 < cr+ j ( j = 1,2, . . .s).
(13.7.32)

Then, there exists in λy(M) a nonzero element x ∈ E such that (13.7.32) holds.
(See lemma 13.7.3). Now, x ∈ λy(M) is such that

(13.7.33) x = yσ(α), (0 6= α ∈ R).

Since N(x) = N(y)N(σ(α)) = N(y)N(α) =±N(α), as N(α) =
∏r+s

i=1σi(α), we get

(13.7.34) |N(α)|< c1c2 . . .crcr+1 . . .cr+s using (13.7.32).

We denote the right side of (13.7.34) by A. In R, there exist only finitely many
ideals I having norm ||I||< A.
Reason : For, given a positive rational integer m equal to the norm of an ideal I
contained in R, by definition

m = ||I|| = |R/I|.
For x ∈ R, m(x + I) = I as (R/I,⊕) is an abelian group of order m. If m = 1, x ∈ I.
For m≥ 2,

mx + mI = mx + (m − 1)I + I = I

gives mx + (m − 1)I which could be reduced to the form y + I equals to I. Or,
mx + (m − 1)I ∈ I. Proceeding thus, we obtain mx + I = I or mx ∈ I, for x ∈ R. As
this is true for any x ∈ R, taking x = 1, we get m ∈ I. Therefore,

(m)⊆ I,

or, I|(m). As R is a Dedekind domain, we could write (m) = Pa1
1 Pa2

2 , . . ., Pak
k where

P1,P2, . . .Pk are distinct prime ideals of R and ai ≥ 1, i = 1,2, . . . ,k.
Since I divides Pa1

1 Pa2
2 · · ·Pak

k , I has only a finite number of prime divisors.
Further, the factorization of I into a product of prime ideals is unique. I has the
form Pb1

1 Pb2
2 . . .Pbk

k , 0 ≤ bi ≤ ai(i = 1,2, . . . ,k). Therefore, there are only a finite
number of choices for I.

The generators of these ideals (which are finitely generated) are known and
are unique up to multiplication by units. So, there exist only a finite number of
nonassociated elements say β1,β2 . . .βk whose norms are less than A in absolute
value. As |N(α)|< A, αu = βi for some i = 1,2, . . .k, where u is a unit.

As x = yσ(α), x = yσ(βiu−1) = yσ(βi)σ(v), v a unit and

(13.7.35) yσ(v) = xσ(β−1
i )

We define

(13.7.36) T ′ = S∩ (∪k
i=1σ(β−1

i )E),

where E is a bounded subset of Rr×Cs. So, σ(β−1
i )E is bounded. Therefore, a

finite union intersected with S is bounded. That is, T ′ is bounded. We remark that
T ′ does not depend on the choice of y ∈ S. Since y and σ(v) are in S, xσ(β−1

i ) is in
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S (i = 1,2 . . .k) (by (13.7.35)). Therefore, y ∈ σ(v)T ′. As y is an arbitrary element
of S, we have

(13.7.37)
⋃

v∈Uk

σ(v)T ′ = S.

Thus, we have succeeded in finding a bounded subset T ′ of S such that (13.7.37)
holds. That is, we have succeeded in finding in V a bounded subset T ′ of V such
that ψ(T ′) = B (say) and

V = B +
⋃

x∈J

x

But then, from (13.7.24), J is a lattice of dimension (r+s−1) by the statement
leading to (13.7.20). This proves the lemma. �

Next, using the lemma above and noting that ker(σ′R) = H is a finite cyclic
group of even order denoted by µK (see the steps before (13.6.18)), we see that

(13.7.38) UK/µK
∼= Zr+s−1

which is the celebrated Dirichlet’s unit theorem stated below:

Theorem 124 : The group UK of units in R, the number ring corresponding to
the number field K is the direct product µK×FK where µK is a finite cyclic group
consisting of roots of unity in K which is of even order and FK is a free abelian
group of rank r + s − 1 (isomorphic to Zr+s−1) where n = r + 2s = [K : Q].

FK consists of elements

(13.7.39) u = ut1
1 ut2

2 · · ·utr+s−1
r+s−1, ti ∈ Z, i = 1,2, . . . (r + s − 1);

where u1,u2, . . .ur+s−1 are units in R. Such a set {u1,u2, . . .ur+s−1} is called a
‘fundamental system of units’ in K. The exponents t1, t2 . . . tr+s−1 are uniquely de-
termined for a given member u ∈ FK.

Remark 13.7.1 : Theorems 122 and 123 have been adapted from I. N. Stewart
and D. O. Tall [15].

Examples 13.7.1 :
(i) Units in quadratic number fields : Let m > 0 be square-free. K =Q(

√
m)

is a real quadratic field extension of Q. Since Q(
√

m) ⊂ R, the only roots
of unity in K are ±1. So, µK = {±1}. Now, [K : Q] = 2. So, r + 2s = 2
giving r = 2,s = 0. There are two real embeddings of K in C and no complex
embeddings in C, r + s − 1 = 1. So,

UK
∼= µK×Fk = Z/2Z×Z.

If K =Q(
√

−m),
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(13.7.40) UK =





Z/4Z, if m = 1;
Z/6Z, if m = 3;
Z/2Z, otherwise.

For, when m = 1, K =Q(i), i denoting
√

−1. R = Z[i]. The group of units is
{±1,±i}. So, G(−1)∼= Z/4Z, see lemma 13.6.1. r + 2s = 2⇒ r = 0, s = 1.

r + s − 1 = 0, UK = µK
∼= Z/4Z.

When m = 3, R = Z[ζ], where ζ = −1+
√

−3
2 , as −3 ≡ 1(mod 4). r + 2s = 2⇒

r = 0, s = 1. UK = µK .
α ∈UK ⇒ α = a + b ζ is such that a2 + 3b2 = 4.
Then, (a,b) ∈ {(±2,0), (±1,±1)}.
UK = {±1,±ω,±ω2}where ω = exp( 2πi

3 ) (already discussed) or, UK
∼= Z/6Z

when m = 3.
For other negative values of m, if m≡ 1(mod 4), a2 + bm2 = 1⇒±1 is

the only root of unity in K, or UK
∼= Z/2Z.

If m≡ 1(mod 4), a2 + mb2 = 4⇒ (a,b) = (±2,0) for m> 4.
This shows that UK

∼= Z/2Z.
(ii) Units in cyclotomic fields :

Let ω(m) = exp( 2πi
m ). We consider K =Q(ω(m)).

The number ring corresponding to K is Z(ω(m)).
(a) If m is even, the only roots of unity in K are the mth-roots of unity. We

have [K :Q] = φ(m), the Euler φ-function.
Let θ ∈Q(ω(m)) be a primitive kth root of unity, k not dividing m. Then,
if r = l.c.m(k,m), there exists α ∈ Q(ω(m)) such that αr = 1 and r is the
least positive integer with this property.
So, Q(ω(r))⊆Q(ω(m)), or,

(13.7.41) φ(r) = [Q(ω(r)) :Q]≤ [Q(ω(m)) : Q] = φ(m)

Now, m is even and r > m.
But, m is even and properly divides r. This implies that φ(m) divides
φ(r) property or φ(m)< φ(r), a contradiction to (13.7.41).
So, Q(ω(m)) contains only mth roots of unity as roots of unity. So,
µk
∼= Z/mZ.

(b) If m is odd, the roots of unity in Q(ω(m)) are the 2mth roots of unity.
For, if m is odd,

ω(2m) = exp(
2πi
2m

) = exp(
πi
m

) = −{ω(m)} m+1
2 .

So, Q(ω(m)) =Q(ω(2m)). So, µk
∼= Z/2mZ.

(c) When K =Q(ω(5)).
UK = {±ζh(1 + ζ)k : 0≤ h≤ 4, k ∈ Z, ζ = exp( 2πi

5 )}.
For, if ω(m) = exp( 2πi

m ), writing ω(m) = ω, we see that
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1 +ω+ω2 + · · ·ωk−1 is a unit in Z[ω(m)], if g.c.d(k,m) = 1. Its inverse is
ω−1
ωk−1 . Also, as g.c.d(k,m) = 1, there exist integers x,y such that xk +ym =
1. So ωkx = 1, for some x ∈ Z.
Let β = ζ + 1/ζ, ζ = exp( 2πi

5 ). Then, β2 +β − 1 = 0.
Since β = 2cos( 2π

5 )> 0, β = −1+
√

5
2 . So, Q(β) =Q(

√
5).

Also, [Q(ω(5)) :Q] = φ(5) = 4. When r +2s = 4, r = 0, s = 2, r + s−1 = 1.
The roots of unity in Z[ω(5)] are the 10th roots of unity contained in
Z[ω(5)]. So,

µK
∼= {±ζh : 0≤ h≤ 4, ζ = exp(

2πi
5

)}

As r + s − 1 = 1, FK
∼= Z. We have only to obtain a unit in Z[ω(5)] other

than a root of unity.
If α = 1 +β = 1 + ζ + 1/ζ = 1+ζ+ζ2

ζ , α is a unit.

α = 1+
√

5
2 . So, FK

∼= αk, k ∈ Z. Thus,

UK
∼= {±ζhαk : 0≤ h≤ 4, k ∈ Z}.

For more results and worked-out problems, see J. Esmonde and M. Ram
Murthy [5, chapter 8]. For an interesting survey of the theory behind the Pell
equation, one may refer to H. W. Lenstra Jr. [9]. He discusses the method of
algorithms for solving the Pell equation.

13.8. Notes with illustrative examples

When m is a square-free positive integer ≥ 2, the fundamental unit in the
number ring R(m) corresponding to the number field Q(

√
m) is the least alge-

braic integer greater than 1 and having positive coefficients. In Z[ζ], where
ζ = exp( 2πi

5 ), it is 1+
√

5
2 . The fundamental unit is large enough for certain other val-

ues of m. InZ[
√

31], it is 1520+273
√

31. InZ[
√

94], it is 2143295+221064
√

94.
See D.A. Marcus [10]. For Z[

√
95], it is 39 + 4

√
95. There are algorithms for de-

termining fundamental units. One method is by the use of continued fractions.
In the case of cubic fields, that is, K with [K : Q] = 3, there is only one real

embedding of K in C and 3 = r + 2s gives r = s = 1.
So, r + s − 1 = 1. The group UK of units of the number ring R corresponding to K
has the form

(13.8.1) UK = {±uk : k ∈ Z},
where u is a unit and ±1 is the only roots of unity in K. For fields K of degree 4
overQ and having no real embedding (inR) we have 4 = r +2s = 0+2.2. r +s−1 =
1. If θ is a root of unity in K, the group UK of units is given by

(13.8.2) UK = {θuk : k ∈ Z, θ is a root of unity}.
For the 5th cyclotomic field Q[ζ] where ζ = exp( 2πi

5 ), we have noted that a unit is
1 + ζ.
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Next, let K be a number field of degree n over Q. Let σ1,σ2, . . .σn be the
embeddings of K in C. Suppose that 〈α1,α2 . . .αn〉 be an n-tuple of elements of
K.

Definition 13.8.1 : The discriminant of {α1,α2, . . .αn} is defined as

disc (α1,α2, . . . ,αn) = (det[σi(α j)])2,

where [σi(α j)] is the n×n matrix whose ith row- jth column element is σi(α j).

The role of the discriminant is to check whether the n-tuple
〈α1,α2 . . .αn〉, forms a linearly independent set of elements or not.

Proposition 13.8.1 : disc(α1,α2, . . . ,αn) = 0 if, and only if, {α1,α2, . . . ,αn} is a
linearly dependent set over Q.
For proof, see D.A. Marcus [10].

Let {α1,α2, . . . ,αn} be a basis for K over Q consisting of algebraic integers.
Suppose that ∆ = disc(α1,α2, . . .αn).

Proposition 13.8.2 : If α ∈ R, the number ring corresponding to the number field
K, then

(13.8.3) α =
1
∆

n∑

j=1

a jα j where, a j ∈ Z; j = 1,2, . . .n.

For proof, see D. A. Marcus [10].
This enables one to obtain a basis for R over Z. We see that R contains a free

abelian group A of rank n. β ∈ A is given by

β =
n∑

j=1

m jα j . . . m j ∈ Z; j = 1,2, . . .n.

That is, A = Zα1⊕Zα2⊕·· ·⊕Zαn.
R is contained in the free abelian group 1

∆ A given by

1
∆

A = Z
α1

∆
⊕·· ·⊕Z αn

∆
.

As R is sandwiched between two free abelian groups of rank n, R, itself, is a
free abelian group of rank n.

We remark that the discriminant is well-defined and any two integral bases
for K give rise to the same discriminant. We call this the discriminant of K. If ∆
denotes the discriminant of K where [K :Q] = n, then, ∆≡ 0 or 1(mod 4). This is
referred to as Stickelberger’s criterion. For proof, see Esmonde and Murthy [5].

Next, we make a few observations about Q(ω(m)) where ω(m) = exp( 2πi
m ).

Q(ω(m)) is a cyclotomic extension of Q, that is an extension obtained by adjoin-
ing ω(m) to Q. It is known that the square-root of a positive integer is always
contained in Q(ω(m)) for a suitable choice of m.

By a genuine square root of an integer a, we mean a1/2 and there exists y∈ R
such that y2 = a.
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Definition 13.8.2 : If a is an integer greater than 1, then the real number a1/n is
said to be a genuine nth-root of a, if it cannot be written in the form b1/m for some
integer b and m< n.

A genuine nth root of a (for a> 1) is an irrational number. For a> 1, the real
square root a1/2 of a is contained in a cyclotomic field.

Theorem 125 (Rajat Tandon (2001)) : Let a be an integer> 1. If a1/n is a genuine
nth-root of a with n> 2, then, a1/n is not contained in a cyclotomic field.

An outline of the proof is along the following lines:
The group G(Q[ω(m)) of automorphisms of Q(ω(m)) keeping Q fixed is isomor-
phic to the group of units of Z/mZ for m > 2 and G(Q[ζm]) is abelian. Further,
if Q⊆ F ⊆ K where F and K are extensions of Q obtained by adjoining zeros of
polynomials in Q[x], the group G(K) of automorphisms of K leaving Q fixed and
the group G(F) of automorphisms of F leavingQ fixed are related and

G(F)∼= G(K)/G(K/F),

where G(K/F) denotes the group of automorphisms of K leaving F fixed. The
point is that if G(K) is abelian, so is G(F).

IfQ(a1/n)⊆Q(ω(n)), thenQ(a1/n,ω(n))⊆Q(ω(m),ω(n)) where m< n. But,
if [m,n] denotes the l.c.m of m and n,

Q(ω(m),ω(n)) =Q(ω([m,n])).

If p is a prime > 2 and if Q[a1/p,ω(p)] ⊆ Q(ω(m)) for some m, the group of
automorphisms of Q(a1/p,ω(p)) leaving Q fixed would be abelian. However,
Rajat Tandon [16] proves

Proposition 13.8.3 : If p is an odd prime or 4 and if a1/p is genuine with a > 1
then G(a1/p,ω(p)) is not abelian.

This proves theorem 125. For details see Rajat Tandon [16].
Rajat Tandon’s theorem speaks about an analogue of Fermat’s Last theorem :

xn + yn = zn has non-trivial solutions, for n = 2. But, for n > 2, xn + yn = zn has
no non-trivial solutions. In the same manner, one notes that the square-root of
an integer a > 1 is contained in a cyclotomic extension of Q. But, for n > 2, a
genuine nth root of an integer a > 1 is not contained in a cyclotomic extension
of Q.

In Section 8.5, chapter 8, we have given the definition of a normed division
domain. (See definition 8.5.2). It is a weak partially ordered set (X ,4) endowed
with a norm N : X → N such that for a,b ∈ X , N(a) divides N(b) whenever a4b.
Further, if n4x is such that N(n) = 1, then n4y, for all y ∈ X . (4 is reflexive and
transitive)

The number ring R corresponding to a number field K is such that R∗ = R\{0}
is a multiplicative normed division domain where N(α) = |αα2 . . .αn|; (α1α2 . . .αn

are the conjugates of α in K) where α ∈ R∗. The norm is multiplicative and hence
the name multiplicative normed division domain. See Rajendran Valiaveetil [12].
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If p is a prime ≡ 2(mod 3), D∗ = Z[
√−p ] \ {0} is a multiplicative normed

division domain. We consider

M2 = {a + b
√

−p : a − b≡ 0(mod 2)}
M3 = {a + b

√
−p : a − b≡ 0(mod 3)}

M2 and M3 are maximal ideals of Z[
√−p ]

M2∩M3 = {a + b
√

−p : a − b≡ 0(mod 6)}
Let J denote M2 ∩M3. J is an ideal of Z[

√−p ] and is such that whenever
αβ ∈ J with α /∈ J, (α,β ∈ Z[

√−p ]) either β ∈ J, 2β ∈ J or 3β ∈ J. For proof,
see [12]. J is referred to as a quasi-prime ideal. The details and a generalisation
may be found in [12].

We wish to point out that only the basic ideas about algebraic number theory
have been brought out in this chapter. Indeed, algebraic number theory is very
vast. Many outstanding books on the subject are available. For instance, one may
consult P. Samuel [13], A. Fröhlic and M.J. Taylor [6], W. Narkeiwicz [11] or
Kazuya Kato, Nobushige Kurokawa and Takeshi Saito [8]. The emerging area of
computational algebraic number theory is also worth studying. See Henri Cohen
[3].

For a splendid treatment of the theory of algebraic numbers, see Paulo Riben-
boim [A 5].

13.9. Formally real fields

In chapter 8, Section 8.2, ordered fields were considered. Definition 8.2.4
says that a field K is real, if −1 is not a sum of squares in K.

Definition 13.9.1 : Let K be a field. The level s(K) of K is the smallest positive
integer s such that −1 is a sum of s squares in K.

If there is no such s (that is, no integer s such that −1 is a sum of s squares in
K), we use the convention that s(K) =∞. The notation ‘s’ comes from the German
word stufe, meaning ‘level’.

Definition 13.9.2 : Given a field K, t(K) is defined as the smallest positive integer
t such that 0K is non-trivially a sum of t squares in K.

If there does not exist a number t such that
t∑

i=1
a2

i = 0⇒ ai = 0(i = 1,2, . . . t),

we write t(K) =∞.
In the case of a finite field Fq (q = pm; p a prime, m ≥ 1), it may be verified

that s(Fq) is 1 or 2. Further, s(Fq) = 1 if, and only if, q≡ 1(mod 4) or char(Fq) = 2.
We note that s(Fq) = 1 whenever q = 2m (m≥ 1).

Definition 13.9.3 : Given a field K, if s(K) =∞, K is called a formally real field.

For m square-free, K = Q(
√

m) is such that s(K) =∞, if m > 0. s(K) = 1 if
m = −1. It can be shown that if m < 0, and m ≡ 1(mod 8), s(K) = 4. Further,
s(K) = 2, if m is negative and m 6≡ 1(mod 8). See Charles Small [A 7], [A 8].
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We note that for m (square-free)> 0,Q(
√

m) is an example of a formally real
field. It is shown by T. Y. Lam [A 4] that formally real fields can be ordered.

Definition 13.9.4 : Let K be an ordered field. α ∈ K is called totally positive
(that is, α > 0), if α is positive in every ordering of K.

Squares of nonzero elements of an ordered field K are totally positive. So are
their finite sums. It is true that if α > 0 in an ordered field K, then α is a sum of
squares in K.

Let K =Q(θ) be an algebraic number field.
Suppose that [Q(θ) :Q] = n = r +2s. Then, r is the number of real conjugates of θ.
α∈K is such that α> 0 in K if, and only if, σi(α)> 0 for which i, 1≤ i≤ r, where
σi : K→ R is a Q-isomorphism of K into R. In 1902, D. Hilbert conjectured that
every element β(> 0) in K is a sum of four squares in K. This was proved to be
true by C. L. Siegel [A 6] in 1921. In 1941, Maass showed that if R(5) denotes
the ring of integer ofQ(

√
5), β(> 0) in R(5) is a sum of three squares in R(5). We

state without proof.

Proposition 13.9.1 : (C. L. Siegel (1921)). The only formally real algebraic num-
ber fields K in which every totally positive algebraic integer is a sum of squares
of algebraic integers in K are the fields Q andQ(

√
5).

For proof, see Juliet Britto [A 1].

13.10. Worked-out examples

a) Let K be an algebraic number field. RK denotes the ring of integers of K. If
{α1,α2, . . . ,αn} and {β1,β2, . . . ,βn} are two integral bases for RK , show that

∆[α1,α2, . . . ,αn] = ∆[β1,β2, . . . ,βn].

Answer: We write β j ( j = 1,2, . . . ,n) in terms of the elements of the basis
{α1,α2, . . . ,αn} of RK . We obtain

(13.10.1) β j = a j1α1 + a j2α2 + · · ·+ a jnαn, ( j = 1,2, . . .n).

This yields 


β1

β2
...
βn


 =




a11 a12 · · · a1n

a21 · · · · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann







α1

α2
...
αn


 .

Or,

(13.10.2)




β1

β2
...
βn


 = A




α1

α2
...
αn




where A is the n×n matrix [ai j] with ai j ∈Z (i, j = 1,2, . . . ,n). Let σ1,σ2, . . . ,σn

be the embeddings of K into C.
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Applying σi to each of the n equations (13.10.2), we obtain the matrix
equation

[σi(β j)] = A[σi(α j)].

Taking determinants and squaring

∆[β1,β2, . . . ,βn] = (det A)2∆[α1,α2, . . . ,αn].

As det A ∈ Z, ∆[α1,α2, . . . ,αn] divides ∆[β1,β2, . . . ,βn] and both have the
same sign. Writing αi (i = 1,2, . . . ,n) in terms of the basis {β1,β2, . . . ,βn} and
arguing similarly, we note that ∆[β1,β2, . . . ,βn] divides ∆[α1,α2, . . . ,αn]. So,
the discriminants of {α1,α2, . . . ,αn} and {β1,β2, . . . ,βn} are equal. �

Remark 13.10.1 : The above result justifies the definition of the discriminant
of K.

b) As −17≡ 3(mod 4), Z[
√

−17] is the ring of integers of the quadratic number
field Q(

√
−17). Find the number of ideals of Z[

√
−17] which have norm 18.

Answer: Z[
√

−17] is not a UFD, as 18 = 2.32 = (1 +
√

−17)(1 −
√

−17). How-
ever, Z[

√
−17] is a Dedekind domain. So, every ideal of Z[

√
−17] can be

uniquely expressed as a product of prime ideals.
If P1 = 〈2,1 +

√
−17〉, P2 = 〈3,1 +

√
−17〉 and P3 = 〈3,1 −

√
−17〉, it can be

shown (after a good deal of calculation) that the ideal generated by 18 has the
factorization

(13.10.3) 〈18〉 = P2
1 P2

2 P2
3 .

In fact, we will have

(13.10.4) 〈18〉 = (P1P2
2 ) · (P1P2

3 ) = 〈1 +
√

−17〉 · 〈1 −
√

−17〉.
Norm of 〈18〉 is 182. For I, an ideal of RK, we know that I divides N(I). So, if
I has norm 18, I|18. So, I has the form

I = Pa
1 ·Pb

2 ·Pc
3

which implies that

N(I) = 2a ·3b ·3c, as N(P1) = 2,N(P2) = N(p3) = 3

N(I) = 18 gives a = 1, b + c = 2. One has

I = P1P2
2 or P1P2P3 or P1P2

3 .

Thus, there are 3 ideals (in Z[
√

−17]) which have norm 18. �
c) (Niven) Let α = a + 2bi be a Gaussian integer, where b ∈ Z. Show that α can

be expressed as a sum of two squares of Gaussian integers if, and only if, not
both a/2 and b are odd integers.

Answer: :⇒ α = a + 2bi is a Gaussian integer expressible as a sum of two
squares of Gaussian integers. We have to prove that not both a/2 and b are
odd integers. Assume that a/2 and b are odd integers.
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Write a = 2a′ so that a′ is an integer.
Let α = (x + yi)2 + (s + ti)2.
Then, 2a′ + 2bi = (x2 − y2 + s2 − t2) + 2(xy + st)i
gives

x2 − y2 + s2 − t2 = 2a′(13.10.5)
xy + st = b.(13.10.6)

Since b is odd, (13.10.6) implies that exactly two or three of x,y, s, t are odd
integers.

If exactly three of x,y,s, t are odd, (13.10.5) will be okay only when all
x,y,s and t are odd in which case (13.10.6) will be violated. So, exactly two
of x,y,s, t are odd integers. Then, left side of (13.10.5) will be divisible by 4.
But then, it will contradict the fact that a′ is an odd integer. So, α = a + 2bi is
a sum of two squares of Gaussian integers⇒ not both a/2 and b are odd.
⇐: Suppose that α = a+2bi satisfies the condition: not both a/2 and b are

odd. Four cases arise:
Case (i) a is odd and b even. Then,

α+ 1 = (a + 1) + 2bi

α+ 1
2

=
(a + 1

2

)
+ bi

α− 1
2

=
(a − 1

2

)
+ bi

(13.10.7)
(α+ 1

2

)2
+ i2
(α− 1

2

)2
= a + 2bi = α.

Case (ii) Let a = 2a′, where a′ is odd and b is even.
Suppose the α′ = a′ + bi.

α′ + i = a′ + (b + 1)i,

α′ − i = a′ + (b − 1)i.

a′ is odd. (b + 1) and (b − 1) are odd.
Now, x + yi is such that both x and y are odd integers, then (1 + i) divides x + yi.
For,

(1 + i)(c + di) = x + yi

will give c − d = x, c + d = y.
c = x+y

2 , d = x−y
2 are integers giving (c + di) as the other factor of x + yi. In

the same manner (1+ i) divides x−yi also when x,y are odd integers. Therefore,
α′± i is divisible by (1 + i). Then,

(13.10.8)
(α′ + 1

1 + i

)2
+ i
(α′ − 1

1 + i

)2
= α.

Case (iii) If a = 4a′ (where a
2 is even) and b is odd, we write α′ = b − 2a′i,

α′ + 1 = (b + 1) − 2a′i. Both b + 1 and 2a′ are even. (1 − i) divides α′ ± 1.
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Therefore,

(13.10.9)
(α′ + 1

1 − i

)2
+ i2
(α′ − 1

1 − i

)2
= α.

Case (iv) If a = 4a′ (so that 2a′ is even) α = 4a′ + 4b′i and b is 2b′, we write
α′ = 2a′ + 2b′i.
α′±2 = (2a′±2) + 2b′i is such that 2 divides both α′ + 2 and α′ − 2. Then,

(13.10.10)
(α′ + 2

2

)2
+ i2
(α′ − 2

2

)2
= α.

We have actually verified that in cases where either
a
2

or b or both are even, α
is a sum of two squares of Gaussian integers. �

Remark 13.10.2 : The solution has been adapted from W. J. Leahey: A note
on a theorem of Niven, Proc. Amer. Math. Soc. 16 (1965) pp 1130–1131.

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) Let J be an ideal of a number ring RK . The norm N(J) can be a prime
power pm, (p a prime, m≥ 1).

b) Let I, J be nonzero distinct prime ideals of a number ring RK. Then,
I + J = RK and I∩ J = ∅.

c) Let K = Q(
√

7,
√

10). Let RK be the ring of integers of K. If α ∈ RK , it
is correct to say that RK = Z[α].

d) Let α be a zero of x3 − x − 1. Then,

Z[α] = {a0 + a1α+ a2α
2 : ai ∈ Z, i = 0,1,2}

is a Dedekind domain.
e) Let R(m) denote the ring of integers of Q(

√
m) where m is square-free.

Let p be a prime dividing m. Then, the ideal 〈p〉 generated by p in R(m)
is given by 〈p〉 = 〈p,√m〉2.

f) The ideal class group of Z[
√

−14] is cyclic of order 4.
2. In Z[

√
−5], show that

〈2〉 = 〈2,1 +
√

−5〉2

〈3〉 = 〈3,1 −
√

−5〉〈3,1 −
√

−5〉.

3. Show that the number ringZ[
√

14] corresponding to the number fieldQ(
√

14)
is a PID.

4. Let ζ = 1+
√

−19
2 . Show that the class-number of Z[ζ] is 1.

5. Show that the class-number of the number ring Z[
√

−6] corresponding to the
algebraic number field Q[

√
−6] is 2.
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6. Let ξ = 1+
√

−23
2 . Find the class-number of Z[ξ] corresponding to the algebraic

number field Q[
√

−23].
7. Let ω = exp 2πi

23 . Show that the class-number of Z[ω] is 3.
8. Show that x2 − 5y2 = 4 has infinitely many solutions.
9. (Esmonde and Murthy) Let UK denote the group of units in the number ring R

corresponding to an algebraic number field K. Show that UK is finite if, and
only if, either K = Q or K = Q[

√
−m ] where m is square-free and greater than

or equal to1.
10. Let α = 3

√
2 (the real cube-root of 2). Find a fundamental unit in the number

ring R corresponding to Q(α).
11. Show that 15+4

√
14 is the fundamental unit of the number ring R correspond-

ing to K =Q(
√

14). Give the structure of the group UK of units in R.
12. Illustrate Dirichlet’s unit theorem for the number ring Z[ζ10] (where

ζ10 = exp( 2πi
10 )) corresponding to the cyclotomic fieldQ(ζ10).
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CHAPTER 14

Rings of arithmetic functions

Historical perspective

It was E. T. Bell (1883–1960) who considered the multiplicative inverse of
an arithmetic function. In his paper entitled: An arithmetical theory of cer-
tain numerical functions (University of Washington Publications in Mathemati-
cal and Physical Sciences Vol No.1 (1915)), Bell shows that an arithmetic func-
tion f possesses a Dirichlet inverse if, and only if, f (1) 6= 0. In October 1927,
R. Vaidyanathaswamy showed the existence of the inverse of a multiplicative func-
tion independently. In the Journal of Indian Math. Society (Notes and questions)
17 (1927), 69–73, Vaidynathaswamy established that every multiplicative func-
tion of one variable possesses an inverse which is also multiplicative. Only later,
when he was in St. Andrews University, (while he was with Professor H. W. Turn-
bull), he got interested in the papers of E. T. Bell. Vaidynathaswamy refers to
the work of Bell in his memoir: ‘The theory of multiplicative arithmetic func-
tions’ (Trans. Amer. Math. Soc. 33 (1931) 579–662). It is to be remarked that
Bell recognized the algebraic foundations of the theory of arithmetical functions
and made use of Cauchy composition given by h(n,r) =

∑

n≡a+b(mod r)

f (a)g(b) and

other techniques. See Bell: Euler Algebra (Trans. Amer. Math. Soc. 25 (1923)
135–154) and Modular interpolation (Bull. Amer. Math. Soc., 37 (1931) 65–68).
Since then, the algebraic approach to the theory of arithmetic functions came
to be known better resulting in further work by L. Carlitz (1907–1999), Eckford
Cohen, P. Kesava Menon and others.

14.1. Introduction

This chapter deals with certain finite dimensional algebras which arise in
arithmetic function theory. It was seen that the set A of arithmetic functions is
a Dirichlet algebra over C, the field of complex numbers, multiplication being
Dirichlet convolution. (See Remark 4.5.2, chapter 4). It is an example of an infi-
nite dimensional algebra. Let r be a fixed positive integer and F a field of char-
acteristic zero. The set ArF of (r,F)-arithmetic functions (See Definition 14.2.2)
forms an algebra of dimension r under the rule of Cauchy-composition for mul-
tiplication. Ar(F) is, indeed, a semisimple algebra which is the direct sum of r
fields each isomorphic to F . See Proposition 14.2.1. Next, we discuss the algebra
of even functions (mod r). The algebra Br(C) of even functions (mod r), that is,

483
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functions f for which f (n,r) = f (g.c.d(n,r),r) is also a semisimple algebra. It is
of dimension d(r), the number of divisors of r. The basic technique is by using
an orthogonal property of Ramanujan’s sum C(n,r), due to Eckford Cohen (see
(5.4.4) and (5.4.5), chapter 5). As Br(C) is a non-nilpotent algebra, a zero divisor
in Br(C) is not nilpotent.

The set A′ of arithmetic functions defined over Z̃ has a ring structure when
multiplication is via a Lucas product defined in terms of a fixed prime p. We call
A′ a Lucas ring. Zero-divisors in the Lucas ring could be nilpotent. An unsettled
conjecture of Carlitz says:

Let (A′,+,∗) be a Lucas ring of arithmetic functions f : Z̃→ F, where F is a
field of characteristic zero. f ∈ A′ is a zero divisor if, and only if, f is nilpotent.

Next, we examine certain norm-preserving transformations of A considered
as a vector space overC. Linear operators help in the derivation of certain number
theoretic identities. See Section 14.6.

14.2. Cauchy composition (mod r)

Let r be an arbitrary but fixed positive integer. ω = exp( 2πi
r ) is an imaginary

rth-root of unity. We consider a field F of characteristic zero and assume that
F contains the rth-roots of unity. A cyclotomic extension Q(ω) (ω an rth root of
unity) of Q, the field of rational numbers, is an example of F .

Definition 14.2.1 (Eckford Cohen) : A function f : Z→ F is called an (r,F)-
arithmetic function, if f is single-valued and for every a ∈ Z,

f (a′) = f (a), whenevera′ ≡ a (mod r).

(Z̃ denotes the set of non-negative integers).
To specify r, we write f (n), n ∈ Z, as f (n,r).

Example 14.2.1 : ωn (n ∈ Z) is an (r,F) arithmetic function, as

ωm = ωn whenever m≡ n (mod r).

Definition 14.2.2 : Let f , g be (r,F)-arithmetic functions. The Cauchy product h
of f and g is defined by

h(n,r) = ( f ·g)(n,r) =
∑

n≡a+b(mod r)

f (a,r)g(b,r)

where a and b range over elements of a complete residue system (mod r) such that
n≡ a + b (mod r).

We introduce the notation

(14.2.1) ea(n) = ωan = exp(
2πian

r
)
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Since
∑

u(mod r)

exp(
2πitu

r
) =

{
r, if t ≡ 0(mod r);
0, if t 6≡ 0(mod r)

we could write

(14.2.2)
∑

u(mod r)

ea(u) =

{
r, if a≡ 0(mod r);
0, otherwise.

Further,

(14.2.3)

{
ea(u), = eu(a);
ea(s + t), = ea(s)ea(t).

Now, ea is an (r,F) arithmetic function whose value at n is ea(n). The Cauchy
product of ea and eb is given by

(ea · eb)(n,r) =
∑

n≡x+y(mod r)

ea(x)eb(y)

=
∑

x(mod r)

ea(x)eb(n − x)

= eb(n)
∑

x(mod r)

ea(x)eb(−x)

= eb(n)
∑

x(mod r)

ea(x)e−b(x), by (14.2.3)

= eb(n)
∑

x(mod r)

ea−b(x).

Using (14.2.2) we deduce that

(14.2.4) (ea · eb)(n,r) =

{
reb(n), if a≡ b(mod r);
0, otherwise.

Lemma 14.2.1 : The set {ea : 0≤ a≤ r − 1} forms a linearly independent set of
(r,F)-arithmetic functions over F.

Proof : Let α0,α1, . . .αr−1 be scalars (∈ F) satisfying
r−1∑

t=0

αtet(n) = 0.

We take the Cauchy product of the above with es for a fixed s (0≤ s≤ r − 1).
Then, from the left side, we have

r−1∑

t=0

αt(es · et)(n) =

{
αsres(n), if t = s;
0, otherwise.

This shows that αs = 0 for each s. So, {ea : 0≤ a ≤ r − 1} forms a linearly inde-
pendent set. �
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We ask whether the set {ea : 0≤ a≤ r−1} spans the space of (r,F)-arithmetic
functions. The answer is yes. It is easy to check that the set Ar(F) of (r,F)-
arithmetic functions forms a vector space over F.

Theorem 126 (Eckford Cohen (1952)) : The set {ea : 0≤ a≤ r −1} is a basis for
the vector space Ar(F). Further, f ∈ Ar(F) has the form

(14.2.5) f (a,r) =
r−1∑

s=0

αses(a),

where αs is given by

(14.2.6) αs =
1
r

∑

t(mod r)

f (t,r)es(−t).

Proof : Assuming (14.2.6), we see that
r−1∑

s=0

αses(a) =
1
r

r−1∑

s=0

es(a)
∑

t(mod r)

f (t,r)es(−t),

=
1
r

r−1∑

s=0

r−1∑

t=0

f (t,r)es(a)es(−t),

=
1
r

r−1∑

t=0

f (t,r)
r−1∑

s=0

ea(s)et(−s),

=
1
r

r−1∑

t=0

f (t,r)
∑

x+y≡0(mod r)

ea(x)et(y),

=

{
1
r

∑r−1
t=0 f (t,r)ret(0), if t ≡ a(mod r),

0, otherwise.
(by (14.2.4)),

= f (a,r), as ea(0) = 1.

So, (14.2.6) implies (14.2.5). As {ea : 0≤ a≤ r −1} is a linearly independent set,
the representation of f (a,r) given in (14.2.5) is unique. �

Remark 14.2.1 : Theorem 126 has been adapted from [7].

Corollary 14.2.1 : If f (a,r) is as given in (14.2.5) and g(b,r) =
∑r−1

s=0βses(b),
then,

(14.2.7) h(n,r) = ( f ·g)(n,r) = r
r−1∑

s=0

αsβses(n).

Proof follows from the definition of Cauchy product and from (14.2.5).
In (14.2.1), we gave the notation ea(n) for exp( 2πian

r ). To specify r, we write

(14.2.8) ε(an,r) = exp(
2πian

r
).
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Lemma 14.2.2 (Orthogonality relation) : For fixed r, let d, δ be two divisors of r.
Let 0≤ x < d, 0≤ y < δ. Suppose that

g.c.d (x,d) = g.c.d (y,δ) = 1.

Then,

(14.2.9)
∑

n≡a+b(mod r)

ε(ax,d)ε(by,δ) =

{
rε (nx,d) if, x = y, δ = d,
0, otherwise.

Proof : We write dd′ = r, δδ′ = r. The left side of (14.2.9) is simplified as follows:

ε(ax,d) = ε(axd′,dd′) = ε(axd′,r)

ε(by,δ) = ε(byδ′,δδ′) = ε(byδ′,r)

Then, ∑

n≡a+b(mod r)

ε(axd′,r)ε(byδ′,r) = (exd′eyδ′ )(n,r)

Using (14.2.4), we get

(exd′ · eyδ′)(n,r) =

{
rexd′(n) if xd′ ≡ yδ′(mod r)
0, otherwise.

That is, the left side (14.2.9) reduces to zero unless xd ′ = yδ′. Multiplying both
sides by dδ , we get δx = dy. Since g.c.d(x,d) = 1, δ divides d. Also, d divides δ.
So d = δ. Then, x = y.

As exd′ (n) = ε(nxd′,r) = ε(nx,d), we have

∑

n≡a+b(mod r)

ε(ax,d)ε(by,δ) =

{
r ∈ (nx,d), if x = y, δ = d;
0, otherwise.

If x = 0 and d = 1, the left side of (14.2.9) is the sum of the δth-roots of unity
which is zero unless less δ = 1. But, in that case y = 0. So, the sum reduces to r
when x = y = 0, d = δ = 1.

From lemma 14.2.1 and definition14.2.2, we note that (Ar(F),+, ·) forms a
commutative ring with unity

(14.2.10) u0(n,r) =

{
1, if n≡ 0(mod r);
0, otherwise.

(+ denotes ordinary addition and · denotes Cauchy composition.)
From (14.2.2), we also note that

u0(n,r) =
1
r

∑

u(mod r)

en(u) =
1
r

∑

u(mod r)

exp(
2πiun

r
).

�
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Fact 14.2.1 : As Ar(F) is an r-dimensional vector space over F , Ar(F) is a finite
dimensional commutative algebra over F .

We digress, for a while, to exhibit the structure of a finite dimensional com-
mutative algebraA over a field F.

While considering convolution algebras (see Section 11.4, chapter 11), we
have defined an F-algebra AF . We recall that a commutative algebra A over a
field F is such that A is a vector space over F and (A,+, ·) is a commutative
ring where (·) denotes the operation of multiplication. Further, for α,β ∈ F and
a,b ∈ A, one has

(14.2.11) (αa) · (βb) = αβ(a ·b)

where αa is obtained from a by doing scalar multiplication by α. Also, a ·b = b ·a
for all a,b∈A. A is said to have the unity element e0, if e0 ·a ·e0 = a for all a∈A.

Fact 14.2.2 : If A is a finite dimensional algebra over F , (a field), A has no
nonzero idempotent elements if, and only if, every element of A is nilpotent. For
proof, see [1].

Since an algebra is also a ring, results which are known for subsets of a ring
hold good in connection with subsets of an algebra. In the same manner, as an
algebra is a vector space, results which are known for subsets of a vector space
are applicable to subsets of an algebra.

A subspace W of an algebra A is a subalgebra of A if, and only if, a ·b ∈W
for elements a,b ∈W . W is, in fact, a subring of the ring A.

Definition 14.2.3 : A subspace W of an algebraA is called an ideal of A if, and
only if,

AW ⊂W and WA⊂W.

The zero ideal (0) and A are trivial ideals of A. Any other ideal of A is said
to be non trivial.

Definition 14.2.4 : A commutative algebra A (over a field F) is called simple if
A 6= (0) and if A has no non trivial ideals.

Definition 14.2.5 : Let A,B be algebras over a field F. A map ψ :A→B is said
to be an algebra homomorphism from A to B, if

ψ(a + b) = ψ(a) +ψ(b),
ψ(αa) = αψ(a),
ψ(a ·b) = ψ(a) ·ψ(b),

for all a,b ∈ A and α ∈ F.

ψ is called an isomorphism from A into B, if ψ is injective. If there exists an
isomorphism fromA onto B,A and B are said to be isomorphic, written A ∼= B.
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Next, we note that an element a of an algebraA is called idempotent if a2 = a.
An element t of an algebraA is called nilpotent of index m if tm = 0, but tm−1 6= 0,
for some positive integer m.

Observation 14.2.1 :
(a) A set {e1,e2, . . . ,en} of elements of an algebra A is said to form pairwise

orthogonal idempotents of A if

e2
i = ei and eie j = 0 (i 6= j)

where i, j = 1,2, . . . ,n.
(b) A set {e1,e2, . . . ,en} of non zero pairwise orthogonal idempotent elements of
A is a linearly independent subset of A.

(c) Let B = [e1,e2, . . . ,en] be the subspace of an algebra A spanned by n pair-
wise orthogonal idempotents e1,e2, . . . ,en of A. Then, B is an n-dimensional
subspace of A and e = e1 + e2 + · · ·+ en is the unity element of B.

(d) LetA be an algebra and I an ideal ofAwith unity. (Recall that I is a subspace
of A such that for a ∈ I, s ∈ A, a.s and s.a are in A). Then, I is a direct
summand of A. That is, A = I⊕ J for some ideal J of A and J is unique.

(e) An algebraA is called reducible if A is expressible as a direct sum of two of
its proper ideals. Otherwise, it is called irreducible.

(f) Let A be a finite dimensional algebra with a unity element. Then, A is ex-
pressible as a direct sum of irreducible direct summands uniquely except for
the order of the direct summands. That is,

(14.2.12) A =A1⊕A2⊕·· ·⊕An

In (14.2.12), every direct summand is an ideal of A. The method of derivation
is similar to that of rings. See Alexander Abian [1].

Lemma 14.2.3 : Let A be a one-dimensional algebra over a field F. Then, A is
either the one-dimensional zero algebra or is a field isomorphic to F.

Proof : Suppose that A has a basis {e1} and that the multiplication table for A
is given by e1 · e1 = αe1 where α is a fixed element of F . If α = 0F , A is the one-
dimensional zero algebra. If α 6= 0F , we define ψ : A→ F by ψ(a) = αξ where
a = ξe1, ξ ∈ F. If is verified that ψ is an algebra isomorphism onto F . That is,
A∼= F . �

If I is an ideal of an algebra A, we could define the quotient algebra A/I, as
we do for a quotient ring or a quotient space. Also, an ideal I of A is called a
nilpotent ideal of index m, if there exists m ∈ N such that Im = (0) and Im−1 6= (0);
m ∈ N.

Fact 14.2.3 : Let A be a finite dimensional commutative algebra. If I and J are
nilpotent ideals of A, so is their sum I + J.

Proof is omitted.
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Lemma 14.2.4 : Let A be a finite dimensional commutative algebra with unity
element. Then, A has a unique nilpotent ideal of maximal dimension.

Proof : We consider the collectionM of nilpotent ideals of A. As the zero ideal
belongs toM,M is non-empty. As A is Noetherian as a ring (or F-module),M
has a maximal element. That is, A has a nilpotent ideal of maximal dimension.
We call it J. If J′ is any other nilpotent ideal ofA, by Fact 14.2.3, J + J ′ is again a
nilpotent ideal. But, then, J ⊆ J + J′. Since J is of maximal dimension, J = J + J′

which implies that J′ ⊆ J. Also, as J + J′ = J, J′ ⊆ J + J′ = J. Thus, J′ = J or, J is
unique. �

Definition 14.2.6 : The unique nilpotent ideal of maximal dimension is called the
radical of A.

We remark that an algebra A is nilpotent if, and only if, A is its own radical.
Further, when A is nilpotent, every element of A is nilpotent.

When A is a finite dimensional commutative algebra with unity element, A
has the structure of an Artinian ring. Looking at A as a ring, the radical of A is
the largest nilpotent ideal ofA.

Observation 14.2.2 :
(a) Let N be a 2-dimensional algebra whose multiplication table with respect to

a basis {e1,e2} is given by

e1 e2

e1 e2 0
e2 0 0

Then N2 is a one-dimensional subalgebra and N2 6= (0). But N3 = 0. So, N is
a nilpotent algebra of index 3.

(b) Let V be a 2-dimensional algebra whose multiplication table with respect to
a basis {v1,v2} is given by

v1 v2

v1 v1 v1

v2 v1 v1

V 2 is a one-dimensional subalgebra andV 2 =V 3. V is a nonnilpotent algebra.
(c) An algebraA is simple, if, and only if,A is nonnilpotent and has no nontrivial

ideal.
(d) Let Jn be an ideal of Mn(R), the ring of n× n matrices with entries from a

commutative ring R having unity element 1R. The set I of all entries of all the
elements of Jn is an ideal of R. If R is a simple ring with unity 1R, then Mn(R)
is also a simple ring with unity.

(e) An algebra over a field F is called a total n×n matrix algebra over F, if it is
isomorphic to the algebra Mn(F) of all n×n matrices with entries in F.
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(f) If A is a nonnilpotent algebra, then A has a nonzero idempotent element.
In other words, A is nilpotent if, and only if, it has no nonzero idempotent
element.

Definition 14.2.7 : A nonnilpotent algebra whose radical is (0) is called a semisim-
ple algebra . This means that when A is considered as a ring, the intersection of
its maximal ideals is (0). In other words, the Jacobson radical (see Section 12.4,
chapter 12) of a semisimple algebra A is (0). Obviously, a simple algebra is
semisimple.

Definition 14.2.8 : LetA be a finite dimensional commutative algebra with unity.
A is said to be the (internal) direct sum of its subalgebrasA1,A2, . . . ,An, if every
element a of A is uniquely expressed as a sum of elements a1,a2, . . .an where
ai ∈ Ai (i = 1,2, . . .n) and for every ai ∈ Ai,a j ∈ A j(i, j = 1,2, . . . ,n), ai · a j = 0
for i /∈ j, where 0 is the zero element of the algebra.

We write A =A1⊕A2⊕·· ·⊕An.

Lemma 14.2.5 : Let A be a finite dimensional commutative algebra. Suppose
that {e1,e2, . . . ,en} is a basis of A such that ei,e j are pairwise orthogonal. That
is, whenever i 6= j. ei · e j = 0. Then,

(14.2.13) A = [e1]⊕ [e2]⊕·· ·⊕ [en],

when [ei] is the one-dimensional subalgebra of A, generated by ei(i = 1,2, . . . ,n).

Proof : By definition, a ∈A can be uniquely written as a =
∑n

i=1 xiei, xi ∈ F
(i = 1,2, . . . ,n) xiei ∈ [ei]. As e1,e2, . . .en are pairwise orthogonal (14.2.13) holds.

�

Corollary 14.2.2 : By lemma 14.2.3, [ei] is isomorphic to F, for each i.

Fact 14.2.4 : Let A be a finite dimensional commutative algebra over a field F .

(a) If A is a semisimple algebra, A has a unity element. In particular, if A is
simple, A has a unity element.

(b) If A is semisimple, A is irreducible if, and only if, A is simple.
(c) Suppose that A has a unity element. If

A =Ai⊕A2⊕·⊕An,

a subalgebraN ofA is the radical ofA if, and only if,N =N1⊕N2⊕·· ·⊕Nn

whereNi is the radical ofAi andNi =N ∩Ai (i = 1,2, . . . ,n). For proofs, see
Alexander Abian [1].

Theorem 127 : LetA be a finite dimensional commutative algebra with unity. A
is semisimple if, and only if, it is simple or is expressible uniquely as a direct sum
of simple subalgebras, except for the order of the direct summands.
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Proof : IfA is simple, it is nonnilpotent and has radical (0). Thus,A is semisim-
ple. Conversely, if A is semisimple either A is simple or is reducible.
⇐: If A is reducible and is expressible as a direct sum of irreducible ideals

Ai (i = 1,2, . . . ,n) uniquely except for the order of the summands, we have

A =A1⊕A2⊕·· ·An (by observation 14.2.1(f)).

Each ideal Ai is irreducible and so each Ai is simple (by Fact 14.2.4(b)). By
Fact 14.2.4(a), each Ai has a unity element say ui (i = 1,2, . . .n). Then,

u1 + u2 + · · ·+ un = u is the unity element ofA.
u is an idempotent element. So, A is non-nilpotent. Since each Ai is simple, rad-
ical Ni of Ai is (0). By Fact 14.2.4(c), radical of A is (0). Thus,A is semisimple

:⇒ Suppose thatA is semisimple. IfA is irreducible, by Fact 14.2.4(b),A is
simple. If A is reducible,A is expressible uniquely as

A =A1⊕A2⊕·· ·An(except for the order of the summands).

Each Ai is irreducible and semisimple. So, each Ai is simple, by Fact 14.2.4(b).
This completes the proof of theorem 127. �

Observation 14.2.3 :
(a) Every nonzero ideal of a semisimple algebra is semisimple.
(b) Every nonzero ideal of a semisimple algebraA has a unity element (different

from that of A).
(c) Let {e1,e2, . . . ,en} be a basis of an algebraA such that

ei.e j =

{
ei, if j = i
0, otherwise.

Then,A is a commutative semisimple algebra.

Observation 14.2.4 : A homomorphic image of a semisimple ring need not be
semisimple.

Proof : We recalled that a ring R′ is a homomorphic image of a ring R if there
exists a subjective homomorphism (epimorphism) from R onto R′ (see definition
12.2.5, chapter 12). That is, R′ is isomorphic to a quotient ring of R. If I is an
ideal of R, we get a ring R/I isomorphic to a homomorphic image of R.

Let ψ : Z→ Z/pnZ (p a prime, n> 1) be defined by ψ(a) = a+ (pnZ), a ∈ Z.
Z is semisimple. But if a = kp, 1≤ k ≤ pn−1, a + (pnZ) is a nilpotent element and
so the ideal generated by p + (pnZ) is a nilideal (see definition 2.3.3, chapter 2)
of Z/pnZ, denoted by N. N is contained in the Jacobson radical of Z/pnZ. So,
Z/pnZ is not semisimple for n> 1. �

Observation 14.2.5 : Let R be a Noetherian (Artinian) ring. It is verified that
any homomorphic image of R is Noetherian (Artinian). Though chain conditions
are not destroyed by homomorphism, the property of ‘semisimplicity’ is not so, as
is seen in observation 14.2.4.
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Next, from lemma 14.2.5 and theorem 127, we deduce thatAr(F) is the direct
sum of the subalgebras [ei] (0≤ i≤ r −1) and each [ei] is a field isomorphic to F .
That is,

(14.2.14) Ar(F) = [e0]⊕ [e1] · · ·⊕ [er−1].

Ar(F) has a basis containing r elements e0,e1, . . .er−1 and the basis elements are
pairwise orthogonal.

If Es = 1
r es where es(n) = exp( 2πins

r ), we note that

(14.2.15) Es ·Et =
1
r2 (es · et) =

{
1
r es(n), if s≡ t(mod r);
0, otherwise.

That is, we get

(14.2.16) Es ·Et =

{
Es, if t = s;
0, otherwise.

So, {E0,E1, . . .Er−1} is a basis of Ar(F) such that (14.2.16) holds. It follows that
Ar(F) is a semisimple algebra. We state this as

Proposition 14.2.1 (Eckford Cohen (1952)) : The ringAr(F) of (r,F)-arithmetic
functions is a semisimple algebra over F and can be expressed as a direct sum of
r fields As (s = 0,1,2, . . . ,r − 1) in the form

(14.2.17) Ar(F) = A0⊕A1⊕·· ·⊕Ar−1,

where eachAs, (s = 0, . . . , (r − 1)) is isomorphic to F. Further, As contains 1
r es as

an idempotent generator. Also

u0(n,r) =

{
1, n≡ 0(mod r);
0, otherwise;

serves as the unity element of the algebra.

Remark 14.2.2 : Proposition 14.2.1 has been adapted from Eckford Cohen [7].

Next, we recall the definition of Ramanujan’s sum C(n,r) (See (5.1.2) of
chapter 5).

C(n,r) =
∑

h(mod r)
(h,r)=1

exp(
2πinu

r
) =

r−1∑

h=0
(h,r)=1

eh(n),

where the summation is over a reduced-residue system (mod r).

Lemma 14.2.6 : Let d,δ be divisors of r. Then,

∑

n≡a+b(mod r)

C(a,d)C(b,δ) =

{
rC(n,d) if δ = d
0 otherwise.
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Proof :
∑

n≡a+b(mod r)

C(a,d)C(b,δ) =
∑

(x,d)=1
(y,δ)=1

∑

n≡a+b(mod r)

ε(ax,d)ε(by,δ),

where x ranges over non-negative integers < d and prime to d and y ranges over
those < δ and prime to δ. By (14.2.9), the inner sum namely,

∑

n≡a+b(mod r)

ε(ax,d)ε(by,δ) =

{
rε(nx,d) if x = y, d = δ;
0 otherwise.

So, we have

(14.2.18)
∑

n≡a+b(mod r)

C(a,d)C(b,δ) =

{∑
(x,d)=1 rε(nx,d), if δ = d;

0, otherwise.

From (14.2.18) and the definition of C(n,r), the desired result follows. �

Remark 14.2.3 : Lemma 14.2.6 has been adapted from Eckford Cohen [8]. See
[9] also.

We deduce that the set S = { 1
r C(n,d) : d|r} forms a linearly independent set

in which any two distinct elements are mutually orthogonal. For, let r > 1. Each
element of the set S can be obtained by taking a linear combination of certain
basis elements of B = { 1

r es(n) : 0 ≤ s ≤ (r − 1)}. We consider a set (having
φ(d) elements) 1

r es1 (n), 1
r es2(n) . . . , 1

r est (n) where g.c.d (s j,r) = r
d , d being a fixed

divisor of r ( j = 1,2, . . . t). Then,

1
r

t∑

j=1

es j (n) =
1
r

∑

h(mod d)
(h,d)=1

exp(
2πih( r

d )n
r

)

=
1
r

∑

h(mod d)
(h,d)=1

exp(
2πhn

d
),

or,

1
r

t∑

j=1

es j (n) =
1
r

C(n,d).

Thus, { 1
r C(n,d) : d|r} forms a basis for a subalgebra Dr(F) (of dimension d(r))

of the algebra Ar(F). To make it down to earth for number theory, we take F
to be the field C of complex numbers. So, then, we have a finite dimensional
algebra Dr(C) of dimension d(r) over C. In fact, Dr(C) forms a semisimple sub-
algebra of the algebra of periodic functions (mod r). Analogous to theorem 126
and proposition 14.2.1, we have
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Proposition 14.2.2 : The set Dr(C) of arithmetic functions of the form

f (n,r) =
∑

d|r
α(d,r)C(n,d), α(d,r) ∈ C, r > 1;

forms a subalgebra ofAr(C) with an orthogonal basis { 1
r C(n,d) : d|r}. The unity

element of Dr(C) coincides with that of Ar(C). Further Dr(C) is a direct sum of
d(r) fields each isomorphic to C, where d(r) denotes the number of divisors of r.

Proposition 14.2.2 is a consequence of theorem 127 and so, its proof is omitted.

Remark 14.2.4 : (a) Dr(C) is a semisimple algebra.
(b) The unity element in Dr(C) is given by

(14.2.19) I(n,r) =
∑

d|r

1
r

C(n,d) =

{
1, if n≡ 0(mod r);
0, otherwise;

which is the same as that of Ar(C). (See (14.2.10)).

In Section 5.4, chapter 5, we considered the class of even functions (mod r), that
is, functions f : Z̃×N→ C which are such that f (n,r) = f (g.c.d (n,r),r). The
arithmetical representation of an even function (mod r) was given in theorem 34.

If f is even (mod r), it is easy to check that f (n,r) = f (n′,r) whenever
n′ ≡ n (mod r). Therefore, f is even (mod r)⇒ f is an (r,C)-arithmetic func-
tion.

By theorem 34, if Br(C) denotes the set of even functions (mod r), Br(C) and
Dr(C) are subspaces ofAr(C). Further, dimBr(C) = dimDr(C). So, as

Br(C)⊆ Dr(C),Br(C) = Dr(C).

See M. Artin [2, Proposition 3.20, chapter 3]. This is also obvious, otherwise.

14.3. The algebra of even functions (mod r)

By theorem 34 in chapter 5, if f is even (mod r), then,

(14.3.1) f (n,r) =
∑

d|r
α(d,r)C(n,d),

where

(14.3.2) α(d,r) =
1
r

∑

t|r
f (

r
t

)C(
r
d
, t)

α(d,r) is also expressed by the equivalent formula:

(14.3.3) α(d,r) =
1

rϕ(d)

r∑

a=1

f (a,r)C(a,d)
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For, replacing a (mod r) on the right of (14.3.3) by an equivalent residue system
s = ( r

t )x, t|r and g.c.d (x, t) = 1, we get

α(d,r) =
1

rφ(d)

∑

t|r

∑

x(mod t)
g.c.d(x,t)=1

f (
r
t

x,r)C(
r
t

x,d)

Now, since f and C are even functions (mod r),

f (
r
t

x,r) = f (
r
t
,r) and C(

r
t

x,d) = C(
r
t
,d)

By the property of C(n,r),

(14.3.4) C(
r
t
,d)φ(t) = C(

r
d
, t)φ(d)

So, (14.3.3) takes the form

(14.3.5) α(d,r) =
1

rφ(d)

∑

t|r
f (

r
t
,r) C(

r
d
, t) φ(d)

which reduces to (14.3.2). In obtaining (14.3.5), we have made use of the fact that
as x runs through a complete residue system (mod r), we get φ(t) such systems
mod r

t .
Next, let d1,d2, . . .dq be the distinct divisors of r. q = d(r), the number of

divisors of r. If the divisors are arranged in ascending order, we could take d1 = 1
and dq = r. We define

(14.3.6) ρi(n,r) =

{
1, if (n,r) = di, i = 1,2, . . .q
0, otherwise.

ρ1(n,r) is the familiar Kronecker function ρ.
For r ≥ 1, g.c.d (n,r) = di for some i (1≤ i≤ q). So, if f is even (mod r),

f (n,r) = f (di,r), for some i (1≤ i≤ q).

So, f is expressible as

(14.3.7) f (n,r) =
q∑

i=1

f (di,r)ρi(n,r)

It is easy to check that the set E = {ρi(n,r) : 1≤ i≤ q} is a linearly independent
set. By virtue of (14.3.7), Br(C) is a vector space of dimension d(r) and having E
as a basis. See Pentti Haukkanen [19]. (14.3.7) is not that convenient to handle,
as it merely says f (n,r) = f (di,r) for a divisor di of r. (1≤ i≤ q). The arithmetic
representation (14.3.1) of f (n,r) is referred to as a finite Fourier series expansion
of f and α(d,r) : d|r are the Fourier coefficients of f . See Remark 5.4.1, in
chapter 5.

The Cauchy product of two even functions (mod r) is an even function (mod r).
For f ,g ∈ Br(C), let α(d,r), β(d,r) be the Fourier coefficients of f and g respec-
tively, where d|r. By theorem 35, chapter 5, the Cauchy product h = f · g has
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Fourier coefficients rα(d,r)β(d,r). So, (Br(C),+, ·) is a commutative ring with
unity I(n,r) (14.2.19). As

1
r2

∑

n≡a+b(mod r)

C(a,di)C(b,d j) =

{
1
r C(n,di), if d j = di;
0, otherwise;

{ 1
r C(n,d) : d|r} forms a basis of idempotents which are pairwise orthogonal. If

Ei = 1
r C(n,di) (i = 1,2, . . .q = d(r)).

1
r

∑

d|r
C(n,d) =

t∑

i=1

Ei =

{
1, if n≡ 0(mod r);
0, otherwise.

The basis elements Ei (i = 1,2, . . .q) of idempotents is such that
E1 +E2 + · · ·+Et = I(n,r) = the unity element in Br(C). (See (14.2.18) and proof of
theorem 127).

Definition 14.3.1 : Let f ∈Br(C). If f is a unit in the ring (Br(C),+, ·) the Cauchy
inverse g of f (if it exists) is defined by the relation:

( f ·g)(n,r) = (g · f )(n,r) = I(n,r) =

{
1, if n≡ 0 (mod r);
0, otherwise .

Theorem 128 : Let f ∈ Br(C) have Fourier coefficients α(d,r) 6= 0 : d|r. f
possesses a Cauchy inverse if, and only if, α(d,r) 6= 0 for all d dividing r. Further,
the Fourier coefficients of a Cauchy inverse are r−2α(d,r)−1 : d|r.

Proof : If g denotes a Cauchy inverse of f , with Fourier coefficients
β(d,r) : d|r,

( f ·g)(n,r) = r
∑

d|r
α(d,r)β(d,r)C(n,d)

As 1
r

∑
d|r C(n,d) = I(n,r), ( f ·g) = I if, and only if,

rα(d,r)β(d,r) =
1
r

for each d dividing r.

Thus, g is a Cauchy inverse if, and only if, β(d,r) = 1
r2α(d,r)−1 where d|r. �

Remark 14.3.1 : Theorem 128 has been drawn from Haukkanen and
Sivaramakrishnan [7].

It is clear from theorem 128 that if any one of the Fourier coefficients of
f ∈ Br(C) is zero, then f is not a unit in Br(C). Any such f is a divisor of zero.
We point out that the non-units in Br(C) are divisors of zero. So, the complement
of the group of units in Br(C) is the set of zero divisors of the ring. Something
more can be said about the set of zero divisors of a ring R.

Definition 14.3.2 : Let R be a ring. A non-empty subset S of R is called a multi-
plicative set if, whenever a,b ∈ S, ab ∈ S.
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As an example, we note that the set of all elements in a nonzero ring R with
identity which are not divisors of zero is multiplicative. In particular, the set of all
nonzero elements of an integral domain is multiplicative. The group of units in a
ring with unity is a multiplicative set.

Let R be a commutative ring with unity. If P is a prime ideal of R, P is a
multiplicative set and so is the set S = R\P.

Theorem 129 : Let I be an ideal of a commutative ring R with unity 1R. Suppose
that S ⊆ R is a multiplicative set in R, and S and I are mutually disjoint. Then,
there exists an ideal P (of R) such that P is maximal in the set of ideals containing
I and disjoint from S and P is prime.

Proof : We consider the family F of ideals J of R such that I ⊆ J and J∩S = ∅.
F is non-empty as I belongs to F . Any chain {Ji} of ideals in F has an upper
bound in F . For, ∪iJi is an ideal of R contained in F . Also, ∪iJi is disjoint from
S, since

∪iJi∩S = ∪(Ji∩S) = U∅ = ∅
Zorn’s lemma [20] could be applied to the family and soF has a maximal element
say P. P is maximal in the set of ideals containing I and P does not intersect S.

Claim : P is a prime ideal.
Suppose that for a,b ∈ R, ab∈ P, but a /∈ P, b /∈ P. The ideal (P,a) generated

by P and a is strictly larger than P and so contains an element s ∈ S. Similarly, by
considering the ideal (P,b), we can find an element t ∈ (P,b). This shows that

st ∈ (P,a)(P,b)⊆ (P,ab)⊆ P, as ab ∈ P.

As S is a multiplicative set, st ∈ S. This contradicts the fact that P∩ S = ∅. Our
assumption that a /∈ P and b /∈ P is wrong. So, either a ∈ P or b ∈ P. It follows
that P is a prime ideal of R. �
Corollary 14.3.1 : The following statements on the subset S of R are equivalent:
[I. Kaplansky [20]]
(a) S is multiplicative.
(b) The complement of S in R is a set-theoretic union of prime ideals of R.

Proof : :⇒ Given (a), there is a prime ideal P which is maximal with respect to
disjointness from S. Let t be an element from R \ S. We consider the principal
ideal (t) generated by t. (t) is disjoint from S. (t) is contained in a prime ideal
P which is maximal with respect to disjointness from S. When t /∈ S, t has been
inserted into a prime ideal disjoint from S. So, R \ S is a set-theoretical union of
prime ideals of R. This is (b).
⇐: Given (b), t ∈ R\S is contained in a prime ideal P of R. If a ∈ S, b ∈ S,

suppose ab ∈ R \ S. Then, ab ∈ P, a prime ideal of R. So, either a ∈ P or b ∈ P.
That is, when ab /∈ S, it can happen that either a /∈ S or b /∈ S. The contrapositive
statement yields that a ∈ S and b ∈ S⇒ ab ∈ S or S is a multiplicative set. �

Corollary 14.3.2 : The set of zero divisors of R is a union of prime ideals.
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Remark 14.3.2 : Corollary 14.3.2 has been adapted from [20].

For, let T be the set of zero divisors of R. Then, S = R\T is a multiplicative
set. By Corollary 14.3.1, T is a set-theoretic union of prime ideals of R.

Fact 14.3.1 : A commutative algebraA over a field F is semisimple if, and only
if, it contains no nonzero nilpotent elements. (That is, a 6= 0 and am = 0 for some
m≥ 2, does not happen).

For proof, see Yu. A. Drozd and V. Y. Kirichenko [13, Chapter 2].
The commutative algebra Br(C) has no nonzero nilpotent elements and so is

semisimple. As it is finite dimensional, it is both Noetherian and Artinian (as a
ring). The zero ideal is a product of a finite number of maximal ideals. If we
consider the ideals generated by Ei and E j (i 6= j) which are idempotent elements
of the basis {Ei = 1

r C(n,di) : di|r}, we have

[Ei][E j] = (0) for i 6= j.

So, Br(C) is Noetherian⇒ Br(C) is Artinian and conversely. This gives a non-
trivial illustration of theorem 94, chapter 12.

Definition 14.3.3 : Let f ∈ Br(C) with Fourier coefficients α(d,r) : d|r. The norm
of f , written N( f ), is defined by

N( f ) = rd(r)
∏

d|r
α(d,r).

N( f ) 6= 0 if, and only if, f is a unit in Br(C).
It is easy to check that for f ,g ∈ Br(C).

(14.3.8) N( f ·g) = N( f )N(g).

Thus, it is possible to make Br(C) a multiplicatively normed algebra.
It is interesting to note that Br(C) can be made an inner product space.

Definition 14.3.4 : For f ,g ∈ Br(C), the inner product 〈 f ,g〉 is defined by

〈 f ,g〉 =
∑

d|r
f ( r

d ,r)g( r
d ,r)φ(d)

where g is the complex conjugate of g.
See Paul J. McCarthy [22]. See also Pentti Haukkanen [19].

That 〈 f ,g〉 is an inner product follows from the following observations:
(i) 〈g, f 〉 =

∑
d|r g( r

d ,r) f ( r
d ,r)φ(d) = 〈 f ,g〉;

(ii) 〈α f ,g〉 = α〈 f ,g〉, α ∈ C;
(iii) 〈 f ,αg〉 = α〈 f ,g〉 α ∈ C;
(iv) 〈 f + h, g〉 = 〈 f ,g〉+ 〈h,g〉; f ,g,h ∈ Br(C).

The norm of f via the inner product is given by

(14.3.9) < f , f > =
∑

d|r
f ( r

d ,r) f ( r
d ,r)φ(d) =

∑

d|r
| f ( r

d ,r) |2φ(d)
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A rigorous definition of inner-product is as given in 15.5.9 of chapter 15. For
results relating to even functions (mod r) and applications, see Eckford Cohen
[7], [8], [9], [10] and [11]. See also Haukkanen and Sivaramakrishnan [16] and
[18].

We remark that in the ring (Br(C),+, ·), every nonzero non-unit is a divisor
of zero. However, as it has no nonzero nilpotent elements, a divisor of zero in
Br(C) is not nilpotent. We examine whether a divisor of zero could be nilpotent
in a suitable arithmetical ring. This is considered in Section 14.4 below.

14.4. Carlitz conjecture

In [3], L. Carlitz studies arithmetic functions in an unusual setting. Let F be
any field. We consider functions f : Z̃→ F where Z̃ is the set of non-negative
integers. Let A′ denote the set of functions having domain Z̃ and codomain F .
f ∈ A′ is also called an arithmetic function.

For f ,g ∈ A′, the Cauchy product of f and g given by

(14.4.1) ( f �g)(r) =
r∑

s=0

f (s)g(r − s)

is associative and commutative. Cauchy multiplication distributes addition. It is
easily verified that (A′,+,�) is an integral domain.

Let p be an arbitrary but fixed prime.
We write

r = r0 + r1 p + r2 p2 + · · · (0≤ ri < p)

s = s0 + s1 p + s2 p2 + · · · (0≤ si < p)

Then, a theorem of Lucas (see theorem 3, chapter 1) says that

(14.4.2)
(

r
s

)
≡
(

r0

s0

)(
r1

s1

)(
r2

s2

)
· · · (mod p).

(r
s

)
is relatively prime to p if, and only if,

(14.4.3) 0≤ si ≤ ri (i = 0,1,2, . . .)

Definition 14.4.1 : For f ,g ∈ A′, the Lucas product ( f ∗g) of f and g is defined
by

(14.4.4) ( f ∗g)(r) =
r∑

s=0

∗
f (s)g(r − s)

where
∑∗ is restricted to those values of s for which (14.4.3) holds .
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(14.4.4) is referred to as Lucas convolution [3].
It is verified that for f ,g,h ∈ A′,

( f ∗g)∗h = f ∗ (g∗h),
( f ∗g) = (g∗ f ),

f ∗ (g + h) = f ∗g + f ∗h.

The function

(14.4.5) z(r) = 0, r ≥ 0

serves as the identity for addition. Also,

(14.4.6) u(r) =

{
1, r = 0;
0, r > 0.

serves as the identity for Lucas multiplication. Further ∗ is commutative. It fol-
lows that (A′,+,∗) forms a commutative ring with unity u (14.4.6).

Definition 14.4.2 : f ∈ A′ is said to be singular, if f (0) = 0F . Otherwise, f is
called non-singular.

Non-singular functions are precisely those for which a Lucas inverse exists.
g ∈A′ is called a Lucas inverse of f , if f ∗g = g∗ f = u.

Lemma 14.4.1 : f ∈ A′ possesses a Lucas inverse if, and only if, f is non-
singular.

Proof : :⇒ If f possesses a Lucas inverse g, f ∗g = u yields f (0)g(0) = 1 and so,
f (0) 6= 0.
⇐ : Conversely, suppose that f (0) 6= 0. Then, we can construct a function

g ∈A′ such that f ∗g = u. We take g(0) = 1
f (0) . We define g(r) recursively from

r∑

s=0

∗
f (s)g(r − s) = 0, r > 0.

That is,

(14.4.7) g(r) = −
1

f (0)

r∑

s=1

∗
f (s)g(r − s) (r ≥ 1).

g(r) is uniquely determined in terms of g(s) (1 ≤ s < r), where g(r) is to satisfy
(14.4.7). Thus, g is determined as a Lucas inverse of f . �

Remark 14.4.1 : Lemma 14.4.1 is the analogue of the corresponding result for
Dirichlet inverse: f has a Dirichlet inverse if, and only if, f (1) 6= 0. See the
narration after the definition 4.3.1, chapter 4. See also [22].

Definition 14.4.3 : f ∈ A′ is a divisor of zero, if f 6= z and there exists g 6= z such
that f ∗g = z.
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The ring (A′,+,∗) has divisors of zero.
Let j ∈ Z̃. Suppose that

(14.4.8) ϕ j(r) =

{
1, if r = p j

0, otherwise.

Now,

(ϕr ∗ϕ j)(r) =
r∑

s=0

∗ϕ j(s)ϕ j(r − s)

when r = 2p j, ϕ j(p j) = 1 gives

(ϕ j ∗ϕ j)(r) =

{
1, if r = 2p j

0, otherwise.

(14.4.9) (ϕ j ∗ϕ j ∗ · · · )(r) = ϕp
j (r) =

r∑

s=0

∗ϕ j(s)ϕp−1
j (r − s) = z

with p factors on the extreme left of (14.4.9).
(Since ϕ j(s) = 1 if s = p j and ϕp−1

j (r − s) = 1, only when r − s = (p − 1)p j. But,
then, r = p j+1 and s = p j. So, in

∑∗ above, ϕ j(s) and ϕp−1
j (r − s) do not take the

value 1 simultaneously. So, ϕ j is a divisor of zero.)
For f ∈ A′. f k stands for f ∗ f ∗ · · · ∗ f (k factors).

Definition 14.4.4 : Let m = a0 + a1 p + · · ·+ at pt . 0≤ ai < p,
(i = 0,1,2 . . . t). We define the monomial function ψm as

(14.4.10) ψm = ϕa0
0 ∗ϕa1

1 ∗ · · · ∗ϕat
t (m = 1,2,3 . . .)

where ϕ j is as given in (14.4.8).

From (14.4.9), we deduce that

(14.4.11) ψp
m = z (m = 1,2, . . .)

It follows that ψm is a nilpotent element in A′. In other words, every mono-
mial function is nilpotent. Further,

if
(m1+m2

m1

)
is prime to p, we obtain

(14.4.12) ψm1 ∗ψm2 = ψm1+m2 .

If
(m1+m2

m1

)
and p are not relatively prime to one another, we get

(14.4.13) ψm1 ∗ψm2 = z.

(14.4.12) and (14.4.13) are established as follows:
Suppose that

m1 = x0 + x1 p + · · ·+ xs ps, 0≤ xi < p (i = 0,1, . . .s)

m2 = y0 + y1 p + · · ·+ yt pt , 0≤ y j < p ( j = 0,1, . . . t).
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Then m1 + m2 = b0 + b1 p · · ·+ bn pn, 0≤ bi < p (i = 0,1 . . .n),
(

m1 + m2

m1

)
≡
(

b0

x0

)(
b1

x1

)
· · · (mod p).

Next,
ψm1 ∗ψm2 = ϕx0

0 ∗ϕx1
1 ∗ · · · ∗ϕxs

s ∗ϕy0
0 ∗ϕ

y1
1 · · · ∗ϕyn

n ,

or,
ψm1 ∗ψm2 = ϕx0+y0

0 ∗ϕx1+y1
1 ∗ · · · ∗ϕyt

t , if t > s.

When
(m1+m2

m1

)
is relatively prime to p,

(b j
x j

)
and

(b j
y j

)
are relatively prime to p for

admissible values of j. So, (14.4.12) holds. When
(m1+m2

m1

)
and p have g.c.d > 1,

p divides
(m1+m2

m1

)
and contains ψp

j as a factor for a suitable value of j and so,
ψm1 ∗ ψm2 = z which is (14.4.13). (14.4.11) is a special case of (14.4.13), as
g.c.d (mp, p) = p.

Theorem 130 (L. Carlitz (1966)) : Let ψm1 ,ψm2 . . .ψmk be monomial functions as
in (14.4.10). Suppose that f1, f2, . . . fk are arbitrary arithmetic functions such that
f ∈ A′ has the form

(14.4.14) f = f1 ∗ψm1 + f2 ∗ψm2 + · · ·+ fk ∗ψmk .

Then, f is a nilpotent element in the ring (A′,+,∗). (m1,m2, . . . ,mk are any set of
k positive integers)

Proof : As in (14.4.12) and (14.4.13).

ψm1 ∗ψm2 · · · ∗ψmk = ψm1+m2+···+mk or z

according as the multinomial coefficient

(m1 + m2 + · · ·+ mk)!
m1!m2! · · ·mk!

is or is not relatively prime to p.
When f is as given in (14.4.14), raising both sides of (14.4.14) to a power λ,

we get

f λ =
∑

b1+b2...+bk=λ

λ!
b1!b2! · · ·bk!

f b1
1 ∗ψb1

m1
∗ f b2

2 ∗ψb2
m2
· · · ∗ f bk

k ∗ψbk
mk
.

For λ > k(p − 1), at least one b j ≥ p and so, by (14.4.11), f λ = z. That is, f is
nilpotent. �

Remark 14.4.2 : The Lucas product of two arithmetic functions could be de-
scribed in the following manner also:

f ∈ A′ can be expressed formally in terms of monomial functions ψm as

(a) f = f (0)u +
∑∞

m=1 f (m)ψm.
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(b) If g = g(0)u +
∑∞

m=1 g(m)ψm, the Lucas product h of f and g is given by

h = f ∗g = f (0)g(0)u +
∞∑

m=1

h(m)ψm,

where h(m) is defined by

(c) h(m) = f (0)g(m) + f (m)g(0) +
m−1∑

r=1

∗
f (k)g(m − k).

In h, one has ψt ∗ψs which is ψt+s or z according as
(t+s

t

)
is or is not relatively

prime to p.

Theorem 131 (Carlitz (1966)) : Let F be a field of characteristic q, a prime.
Then, f : Z̃→ F is a zero divisor inA′ if, and only if, f is singular. Further, every
zero divisor in A′ is nilpotent.

Proof : If f is a zero divisor, it is clear that f (0) = 0. For, by lemma 14.4.1, if f
is non-singular, f is invertible. So, suppose that f (0) = 0. Then, f is expressed as

(14.4.15) f =
∞∑

m=1

f (m)ψm

If char F = q

f ∗ f ∗ · · · f (q times ) =
∞∑

m=1

( f (m))qψq
m

where ψq
m = ψm ∗ψm · · ·ψm (q factors).

So,

(14.4.16) f qt
=
∞∑

m=1

( f (m))q t
ψqt

m (t = 1,2,3 . . .)

If we choose t such that qt ≥ p, as ψp
m = z, we get f q t

= z. If follows that a zero-
divisor f is nilpotent, whenever char F = q (a prime). �

It is shown in [3] that theorem 131 does not stand when F is of characteristic
zero. In fact, when char F = 0, one can show that a singular function need not be
a zero-divisor.

It is likely that in char F = 0 case, a function f is a zero-divisor if, and only
if, it is of the form given in (14.4.14). If this is true, it will follow that f ∈A′ is a
zero-divisor if, and only if, f is nilpotent.

14.4.1. CARLITZ CONJECTURE. (A′,+,∗) denotes a Lucas ring of arithmetic
functions f : Z̃→ F where F is a field of characteristic zero. f ∈ A′ is a zero
divisor of the ring if, and only if, f is nilpotent.

As far as the knowledge of the author goes, this conjecture remains unresolved.
See L. Carlitz [3].
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14.5. More about zero divisors

Given a commutative ring R with unity 1R, we examine the set Z(R) of zero
divisors of R in the following manner:

Definition 14.5.1 (D. M. Burton) : Let S be a multiplicative set in R. S is called
a saturated multiplicative set if whenever ab ∈ S, both a ∈ S and b ∈ S.

See definition 14.3.2 and recall Corollary 14.3.1.

Lemma 14.5.1 : S is a saturated multiplicative set if, and only if, R\S is a union
of prime ideals of R.

Proof : :⇒ We are given a saturated multiplicative set S in R. Suppose that
a ∈ R \ S. We consider the ideal J generated by a. That is, J = (a). Then, for
r ∈ R, ra ∈ J. If ra ∈ S, it will mean that both r and a are in S. But a 6∈ S. So,
J∩S = ∅, as ra 6∈ S.

Let F be the family of ideals I (of R) such that J ⊆ I and I ∩ S = ∅. As J
belongs to F , F is non-empty. For any chain of ideals {Im} in F , ∪mIm belongs
to F . (∪mIm is an ideal of R). As J ⊆ Im, J ⊆ ∪mIm. Further,

(14.5.1) (∪mIm)∩S = ∪(Im∩S) = ∪∅ = ∅.
By Zorn’s lemma, J has a maximal element P. We claim that P is a prime ideal
of R. Suppose that for a,b ∈ R, ab ∈ S. As S is a saturated multiplicative set,
both a and b belong to S. Therefore, by multiplicative property of S, a ∈ S,
b ∈ S⇒ ab ∈ S. So, a 6∈ P and b 6∈ P⇒ ab 6∈ P. The contrapositive statement
gives: ab ∈ P⇒ a ∈ P or b ∈ P. Thus, P is a prime ideal of R.
⇐: Conversely, suppose that given a set S contained in R, R\S is a union of prime
ideals of R. Given a ∈ R\S, the ideal J = (a)⊆ P, a prime ideal of R. For a,b ∈ R
such that ab ∈ P implies either a ∈ P or b 6∈ P. That is, a 6∈ P and b 6∈ P imply
ab 6∈ P.
Thus, a ∈ S and b ∈ S imply ab ∈ S. So, S is a multiplicative set. For a,b ∈ S, if
ab ∈ S, ab 6∈ P, a prime ideal of R. This gives the fact that a 6∈ P and b 6∈ P. For,
if a ∈ P or b ∈ P, we would get ab ∈ P (as P is an ideal). That is, ab ∈ S implies
a ∈ S and b ∈ S. That is, S is a saturated multiplicative set.
This completes the proof of lemma 14.5.1. �

Remark 14.5.1 : The set of nonzero-divisors of R is a saturated multiplicative set.
For, let S denote the set of nonzero-divisors of R. Then, S consists of units and
non-units which are not zero divisors. For a,b ∈ R and ab ∈ S, a ∈ S and b ∈ S.

Corollary 14.5.1 : The set of zero divisors of R along with 0R is a union of prime
ideals of R.

Proof : By remark 14.5.1, the set S of nonzero-divisors of R is a saturated multi-
plicative set. So, by lemma 14.5.1, R \ S is a union of prime ideals of R. This is
the content of Corollary 14.5.1. �
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Next, a nonzero element a in R is nilpotent if there exists a positive integer
n such that an = 0R. So, a nonzero nilpotent element is a zero divisor, but not
conversely, in general. If Carlitz conjecture is true, (see 14.4.1) a Lucas ring of
arithmetic functions provides an example of a ring in which every zero divisor is
nilpotent.

The set Z(R) of zero divisors consists of
(i) zero divisors which are non-nilpotent and
(ii) zero divisors which are nilpotent.

Definition 14.5.2 : Let R be a commutative ring with unity 1R. The prime radical
of R denoted by P(R) is the set

(14.5.2) P(R) = ∩{P : P a prime ideal of R}.
It is verified that P(R) is the ideal containing the nilpotent elements of R. So,

if Z′(R) denotes the set of zero divisors of R which are not nilpotent, by Corollary
14.5.1, we obtain

(14.5.3) Z′(R) =
⋃

λ∈Λ

Pλ \
⋂

λ∈Λ

Pλ

where {Pλ}(λ ∈ Λ) is the set of prime ideals of R.
It follows that if, in R, every zero divisor is nilpotent, we will arrive at

(14.5.4)
⋃

λ∈Λ

Pλ =
⋂

λ∈Λ

Pλ.

Thus, if every zero divisor is nilpotent, there is a unique prime ideal, say N, which
contains the nilpotent elements of R.

In order to characterize R for which every zero divisor is nilpotent, we may
need more conditions on R such as Noetherian and the like. It will require deeper
investigation! In Section 12.10, chapter 12, we have considered primary rings
A which contain at least one proper prime ideal. If A is a primary ring, A has a
minimal prime ideal which contains all zero divisors. (See Fact 12.10.1). In other
words, the set of zero divisors of A along with 0A coincides with the ideal N of
nilpotent elements. Moreover, N is a prime ideal of A. (N is the prime radical of
A). It means that A is a primary ring whenever the zero ideal is a primary ideal of
A. (See definition 12.3.6). One concludes that a ring A is primary if, and only if,
every zero divisor of A is nilpotent. Thus, Carlitz conjecture (14.4.1) boils down
to saying that (A′,+,∗) is a primary ring. See (b) in Section 14.8.

14.6. Certain norm-preserving transformations

A denotes the set of arithmetic functions f : N→ C. A forms an integral
domain under the operations of addition and Dirichlet multiplication. To prove
this, we made use of the norm N( f ) of f ∈ A. We recall that N( f ) is the least
positive integer m such that f (m) 6= 0. The norm of a unit in A is 1, as f ∈ A pos-
sesses a Dirichlet inverse if, and only if, f (1) 6= 0. It was shown in corollary 4.5.1,
chapter 4 that A is indeed a UFD. As A is a vector space over C, A is an algebra
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over C with Dirichlet multiplication for multiplication of elements in A. A is
known as the Dirichlet algebra over C. See Remark 4.5.2 in chapter 4.

The notion of an algebra homomorphism has already been given in defini-
tion 14.2.5.

An example of an algebra isomorphism is the isomorphism between the al-
gebra of linear operators L(V ) of an n-dimensional vector space V over a field F
and the matrix algebra Mn(F) obtained by assigning to each operator T : V → V ,
its n×n matrix with respect to a given basis B of V .

Next, we consider A′, the Lucas algebra of arithmetic functions defined on
Z̃. f ∈A′ is such that f is a function from Z̃ into C. For f ,g ∈ A′,

( f + g)(r) = f (r) + g(r), r ≥ 0;(14.6.1)

( f ∗g)(r) =
r∑∗

f (s)g(r − s),(14.6.2)

where the summation is restricted to such s such that p -
(r

s

)
(p denotes a fixed

prime). See definition 14.4.1.
We note that (14.6.2) holds if, and only if,

r = r0 + r1 p + r2 p2 + · · · 0≤ ri < p

s = s0 + s1 p + s2 p2 + · · · 0≤ si < p

and
0≤ si ≤ ri (i = 0,1,2, . . .)

Let p0, p1, p2 . . . be the sequence of primes in ascending order. If a is not
divisible by the pth power of any prime, writing

(14.6.3) a = pa0
0 pa1

1 pa2
2 · · · pak

k · · · (0≤ a j < p),

where only a finite number of a j are different from zero ; with each a, we may
associate the sequence:

(14.6.4) {a0,a1,a2, . . . }.
Suppose that b has the representation

(14.6.5) b = pb0
0 pb1

1 pb2
2 · · · (0≤ b j < p),

where only a finite number of b j are different from zero.
Let Bp denote the set of arithmetic functions fp defined on N such that

(14.6.6) fp(r) =

{
k f , if r is not divisible by a pth-power of a prime,
0, if r is divisible by a pth-power of a prime.

(In (14.6.6), k f is a constant depending on fp.)
For fp,gp ∈ Bp, we define

(14.6.7) ( fp ·gp)(r) =
∑′
ab=r

fp(a)gp(b)
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the summation
∑′ is restricted to a and b such that ab = r is not divisible by a

pth-power of a prime.
The restriction in

∑′ is equivalent to saying that when a, b are as given in
(14.6.3) and (14.6.5),

(14.6.8) a j + b j < p ( j = 0,1,2 . . .)

We define ψ : Bp→A′ by

(14.6.9) ψ( fp) = f

where fp(r) = fp(pr0
0 pr1

1 pr2
2 · · · ) (0≤ r j < p).

(Only a finite number of p j are nonzero) and f is given by

f (r) = f (r0 + r1 p + r2p2 + · · · ), (r = r0 + r1 p + r2 p2 + · · · ), (0≤ r j < p).

Then, f ∗g in A′ corresponds to fp ·gp in Bp.
The multiplicative identity in Bp is

ep(r) =

{
1, if r = 1;
0, otherwise.

The multiplicative identity in A′ is

u(r) =

{
1, if r = 0;
0, otherwise.

We check that ψ(ep) = e. ψ preserves addition and multiplication. We conclude
that there is an algebra isomorphism between Bp and A′. See L. Carlitz [4].

The notion of transformations of arithmetic functions was first introduced by
P. Kesava Menon in [21]. Let

r = pa1
1 pa2

2 · · · pat
t . pi primes, ai ≥ 1, i = 1,2 . . . t.(14.6.10)

s = pb1
1 pb2

2 · · · pbt
t pi primes, bi ≥ 1, i = 1,2 . . . t.(14.6.11)

We define

(14.6.12) B(s,r) =





1, if s = r ;∏t
i=1

(a1−1
bi−1

)
, if s divides r and s contains all

the prime factors of r ;
0, otherwise.

Definition 14.6.1 : A transformation B :A→A is defined by

(14.6.13) B( f )(r) =
∑

d|r
B(d,r) f (d) : f ∈ A.

It is verified that for f ,g ∈ A
B( f + g) = B( f ) + B(g)
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and for α ∈ C, B(α f ) = αB( f ). That is , B is a linear operator on the vector space
A over C.

Theorem 132 (Haukkanen and Sivaramakrishnan (1991)) : B :A→A as defined
in (14.6.13) is an algebra isomorphism.

Proof : We have noticed that B :A→A is a linear operator onA.

Claim : B preserves Dirichlet multiplication.
Let f ,g ∈ A.

(14.6.14) [B( f ) ·B(g)](r) =
∑

cuδ=r

f (c)g(u)
∑

du=δ

B(c,cd)B(u,uv)

Using the combinatorial identity (H. W. Gould [15])
r∑

k=0

(
x + k

k

)(
y + r − k

r − k

)
=
(

x + y + r + 1
r

)
,

we arrive at ∑

dv=δ

B(c,cd)B(u,uv) = B(cu,cus).

Or, (14.6.14) is recast as

[B( f ) ·B(g)](r) =
∑

cus=r

f (c)g(u)B(cu,cus)

=
∑

ts=r

B(t,r)
∑

cu=t

f (c)g(u)

=
∑

ts=r

B(t,r)( f ·g)(t).

Or,

B( f ·g)(r) = [B( f ) ·B(g)](r).

Next, suppose that for g ∈ A, we define

f (r) = g(r) −
∑

d|r
d 6=r

B(d,r) f (d)

inductively, then f is such that B( f ) = g.
This shows that B : A→A is surjective. Therefore, B is a ring homomorphism
which is onto.

ker B = { f ∈A : B( f ) = 0}
B( f )(r) = 0⇒

∑

d|r
B(d,r) f (d) = 0.

For r = 1, f (1) = 0. Assume that f (r) = 0 for 1≤ r < n. Then,
∑

d|n
B(d,n) f (d) = 0 gives B(n,n) f (n) = 0. As B(n,n) = 1, f (n) = 0.
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By induction on r, f (r) = 0, r ≥ 1. So, ker B = 0. That is, B is one-one. For
α ∈C, B(α f ) = αB( f ). e0 = [ 1

r ] is the multiplicative identity inA. As B preserves
Dirichlet multiplication, B( f · e0) = B( f ) = B( f ) ·B(e0) or B(e0) = e0.
Thus, B :A→A is an algebra isomorphism. �
Theorem 133 (Haukkanen and Sivaramakrishnan (1991)) :
Let λ(r) = (−1)Ω(r) where Ω(r) denotes the total number of prime factors of r,

each being counted according to its multiplicity. Then, the inverse of B : A→A
is given by

(14.6.15) B−1( f )(r) =
∑

d|r
λ(

r
d

)B(d,r) f (d).

Proof : Suppose that g ∈A is such that B(g) = f . Then, g = B−1( f ). Then,

(14.6.16)
∑

d|r
λ(

r
d

)B(d,r) f (d) =
∑

ca=r

g(c)
∑

eδ=a

λ(δ)B(ce,r)B(c,ce)

By the combinatorial identity (H. W. Gould [15]),
n∑

k= j

(−1)k
(

n
k

)(
k
j

)
=

{
(−1)n, j = n;
0, j 6= n.

So, we obtain

(14.6.17)
∑

eδ=a

λ(δ)B(Ce,r)B(c,ce) =

{
1, r = c ;
0, otherwise.

From (14.6.16) and (14.6.17) we obtain B−1( f )(r) = g(r). �

Remark 14.6.1 : Theorems 132 and 133 have been drawn from [18].

We remark that B : A→A is a norm-preserving linear operator on A. Let
N( f ) = m. For r <m,

B( f )(r) =
∑

d|r
B(d,r) f (d) = 0.

When r = m,
B( f )(m) =

∑

d|m
B(d,m) f (d) = f (m),

as B(m,m) = 1 and f (d) = 0 whenever d < m. Therefore, N(B( f )) = m = N( f ).
Next, we consider T :A→A given by

(14.6.18) T ( f )(r) =
∑

d|r
f ((d,

r
d

))

where (d, r
d ) denotes the g.c.d of d and r

d for each positive divisor d of r. T is a
linear operator on A. When f = e0, the unity element in (A,+, ·);

T (e0)(r) = 2ω(r)
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where ω(r) denotes the number of distinct prime divisors of r. The number 2ω(r)

gives the number of those divisors d of r for which g.c.d (d, r
d ) = 1. Such divisors

are called unitary divisors of r. See Eckford Cohen [12]. As T (e0) 6= e0, T is not
an algebra homomorphism. However, there is an arithmetical representation of
T ( f )(r) (14.6.18).

Theorem 134 (Rajendran Valiaveetil (1996)) : For f ∈ A,

(14.6.19) T ( f )(r) =
∑

k2|r
f (k)2ω(r/k2)

Proof : If t denotes the number of distinct prime divisors of r, where r is ex-
pressed as a product d1d2 of co-prime factors, as d1d2 = d2d1, the number of ways
of expressing r as a product of two co-prime factors is 1

2 2t = 2t−1 factors. We take
d1 ·d2 = d2 ·d1 whenever g.c.d (d1,d2) = 1. So, the required number is 1

2 2t = 2t−1.
Suppose that g.c.d (d, r

d ) = k. Then, d = kd1, r
d = kd2 where g.c.d (d1,d2) = 1.

Further r = k2d1d2 and so, k2 divides r. Thus, if g.c.d (d, r
d ) = k, k2|r. Conversely,

if k2|r and r = k2s, s can be factored into two co-prime factors s1 and s2 in 2ω(s)−1

ways. For each of these 2ω(s)−1 ways, one has

r = k2s1s2 = (ks1)(ks2) = d(
r
d

) with d = ks1,
r
d

= ks2.

So, for each k such that k2|r, there exist 2ω(s)−1 pairs of divisors < d, r
d > for

which g.c.d (d, r
d ) = k. Therefore, the total number of such divisors is 2 ·2ω(s)−1 =

2ω(s) where, s =
r
k2 .

Next, we consider the set {d1 = 1,d2, . . .dn = r} of divisors of r written in as-
cending order of magnitude. This set is partitioned into mutually disjoint classes:

C1,C2, . . .Cm

such that the class Ck contains those divisors d of r for which (d, r
d ) = k, if k2|r.

The number of elements in the class Ck is 2ω(r/k2). We note that Ck is empty if
k2 - r. Let d(r) denote the number of divisors of r. Then,

(14.6.20) d(r) =
∑

k2|r
2ω(r/k2)

Further, f ((d, r
d )) will appear as f (k) for each d belonging to the class Ck and as

pointed out, there are 2ω(r/k2) elements in the class Ck. Hence,

(14.6.21) T ( f )(r) =
∑

d|r
f ((d,

r
d

)) =
∑

k2|r
f (k)2ω(r/k2),

as claimed in (14.6.19). �
Corollary 14.6.1 (Daniel I. A. Cohen (1965)) : If f (r) = r, r ≥ 1, one gets from
(14.6.21) ∑

d|r
(d,

r
d

) =
∑

k2|r
k 2ω(r/k2).
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Remark 14.6.2 : The above identity is adapted from [6].

Remark 14.6.3 : T :A→A is not a norm-preserving linear operator.

Analogous to the linear operator T defined in (14.6.18), we define a function
L :A→ A by

(14.6.22) L( f ) =
∑

d|r
f ([d,

r
d

]),

where [d, r
d ] denotes the l.c.m of d and r

d .

Theorem 135 (Rajendran Valiaveetil (1996)) : For f ∈ A,

(14.6.23) L( f )(r) =
∑

k2|r
f (

r
k

)2ω(r/k2).

Proof : Follows from that of theorem 134. For, as

[d,
r
d

] =
r

(d,r/d)
, where (d,

r
d

) = g.c.d of d and
r
d
,

we obtain
L( f )(r) =

∑

d|r
f (

r
(d, r

d )
).

Using the identity in (14.6.19), we arrive at (14.6.23). �

Remark 14.6.4 : Theorems 134 and 135 have been drawn from [23].

Corollary 14.6.2 :

(14.6.24)
∑

d|r
[d,

r
d

] =
∑

k2|r

r
k

2ω(r/k2)

For, (14.6.24) is a special case of (14.6.23) when f (r) = r, (r ≥ 1).

We note that L :A→A (14.6.22) is a linear operator and L is norm-preserving.
To see this, we proceed as follows:

Let r = s2t where t is the greatest square-free divisor of r. Then k2|r implies
k|s. Further,

ω(
s2t
k2 )≤ ω(

s
k

) +ω(t).

If N( f ) = m, then for 1≤ a< m, when a = s2b, b square-free,

L( f ) (a) =
∑

k|s
f (

a
k

)2ω(sb/k).

As f ( a
k ) = 0, for k dividing s; L( f )(a) = 0. When a = m with m = s2n where n is

the greatest square-free divisor of m,

L( f )(m) =
∑

k|s
f (

m
k

)2ω( sn
k ) = f (m)2ω(m′) 6= 0,
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where m′ is the product of the distinct prime factors of m.
So, N(L( f )) = N( f ). That is, L is norm-preserving. However, L is not an algebra
homomorphism, as L does not preserve Dirichlet multiplication.

When one confines to the class M of multiplicative functions [22] or [24],
one comes across a transformation R : M→M given by

(14.6.25) R( f ) =
∑

d|r2

f (
r2

d
) f (d)λ(d)

where λ(r) = (−1)Ω(r) and as given in theorem 133. R( f ) belongs to M and for
f ,g ∈M, R( f ·g) = R( f ) ·R(g) . See Haukkanen and Sivaramakrishnan [17].
Let W denote the set of completely multiplicative functions f where f satisfies

(14.6.26) f (r) f (s) = f (rs) for all pairs of integers r,s ∈ N
and for which f (s) 6= 0 for every prime p.
W is a subset of M. When f ∈W or M, f (1) = 1. λ(r) = (−1)Ω(r) belongs to W and
λ(p) = −1 for all primes p.

Fix h∈W . Then h is completely multiplicative and h(s) 6= 0 for every prime p.

Definition 14.6.2 : νh :A→A is defined by

(14.6.27) νh( f ) = h f

That is,
νh( f )(r) = h(r) f (r)

It is known [22, theorem 20] that given a,b,c ∈ A,

c(a ·b) = ca · cb

if, and only if, c is completely multiplicative. So, h ∈W has the property:

(14.6.28) h( f ·g) = (h f ) · (hg) for all f ,g ∈ A.
Theorem 136 : νh as defined in (14.6.27) is a norm-preserving algebra isomor-
phism from A ontoA.

Proof : Let f ∈ A. νh( f ) = h f .
As h is completely multiplicative, N(h f ) = N( f ).
So, νh preserves the norm of f . By (14.6.28), νh preserves Dirichlet multiplica-
tion. For f 6= g, νh( f ) 6= νh(g). So νh is injective. Let g ∈ A. There exists f ∈ A
such that

h f = g.
h(r) 6= 0 for r ≥ 1. So, f = 1

h g is what is required. For r ∈ N, we define f by
f (r) = 1

h(r) g(r). So, νh is surjective. Thus, νh :A→A is a norm-preserving algebra
isomorphism, as νh(e0) = he0 = e0. �

We remark that there is a lot to learn about rings with zero-divisors. James
A. Huckaba makes an interesting study of commutative rings with zero-divisors
in [A3]. In [A2], L. Carlitz and M. V. Subbarao have made a study of certain
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transformations of arithmetic functions f for which f (1) = 1. However, results
of Section 14.6 are aimed at obtaining certain known arithmetical identities via
linear operators.

14.7. Notes with illustrative examples

The study of trigonometric sums in Number theory was first initiated by
Gauss. He used these sums for solving problems relating to congruences. Though
exponential sums were known earlier, they were handled via the arithmetical
representation of a periodic function (mod r) by Eckford Cohen in 1952. He
introduced the class of (r,F)-arithmetic functions and studied its properties exten-
sively. A significant theorem of Eckford Cohen says that the set Ar(F) of (r,F)-
arithmetic functions forms a commutative semisimple algebra which is a direct
sum of r fields each isomorphic to F . See proposition 14.2.1. Analogous results
could be given in the context of periodic functions defined over GF[pn,x] the ring
of polynomials in x with coefficients from a finite field Fq, q = pn. Details are in
the papers [7], [9], [10]. One could give an analogue of Ramanujan’s sum C(n,r)
in the polynomial case. It is referred to as Carlitz η-sum. See [7] and [24]. They
have applications to congruences.

The three papers [9], [10] and [11] of Eckford Cohen have sparked a lot of
interest in research workers for further study in the area of periodic functions
(mod r). A major achievement of Eckford Cohen was in the discovery of an
orthogonal property for Ramanujan Sums (considered in lemma 14.2.6). It gen-
eralizes Carmichael’s formula [5]:

If r = e f ,e 6= f ,
e f∑

a=1

C(a,e)C(a, f ) = 0(14.7.1)

If e = f ,
e∑

a=1

c2(a,e) = eφ(e)(14.7.2)

where φ is Euler φ-function.
The function

(14.7.3) B(n,r) =
∑

h(mod r)
g.c.d(h,r)=a square

exp(
2πihn

r
)

where the summation is over a residue system h(mod r) such that g.c.d (h,r) is a
square, is an analogue of C(n,r). It is known [24] that

B(n,r) =
∑

d| g.c.d(n,r)

λ(
r
d

)d = λ(
r
g

)b(g);g = g.c.d (n,r)

where λ(r) = (−1)Ω(r), b(r) = B(0,r) (Ω(r) = the total number of prime divisors
of r). See [9], [22] also.
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Analogous to the orthogonal property of C(n,r), one has the following or-
thogonal property of B(n,r): If t1, t2 are square-free divisors of r,

(14.7.4)
∑

n≡a+b(mod r)

B(a,
r
t1

) B(b,
r
t2

) =

{
rB(n, r

t ), if t1 = t2 = t;
0, otherwise.

See Rajendran Valiaveetil [23].

Definition 14.7.1 (Cohen [9]) : A function f : Z×N→C is said to be completely
even (mod r) if there exists a function F : Z̃ → C such that f (n,r) = F((n,r))
where (n,r) = g.c.d of n and r. It can be verified that λ(r)B(n,r) is completely
even (mod r).

Proposition 14.7.1 (Rajendran Valiaveetil [21]) : The set Vr(C) of completely
even functions (mod r) forms a subspace of Br(C) having dimension 2ω(r), the
number of square-free divisors of r. Vr(C) has an orthonormal basis:

{λ( r
t )(rb( r

t ))− 1
2 B(n, r

t ) : t a square-free divisor of r}.
Proof follows on lines similar to that of proposition 14.2.2. In fact, one has

Proposition 14.7.2 : The space Br(C) of even functions (mod r) is of dimension
d(r), the number of divisors of r and Br(C) has an orthonormal basis

{ 1√
rφ(d)

C(n,d) : d|r}.

See theorem 5 in Haukkanen and Sivaramakrishnan [16].
Analogous to even functions (mod r), Eckford Cohen [12] considers a class

of functions called unitary functions mod (r). For n ∈ Z, (n,r)∗ denotes the
greatest divisor of n which is a unitary divisor of r, that is, a divisor d of r for
which g.c.d (d, r

d ) = 1. Let f ∈ Br(C). f is called an unitary function (mod r), if
f (n,r) = f ((n,r)∗,r). The unitary analogue C∗(n,r) of Ramanujan’s sum could be
defined via a semireduced residue system (mod r) [12]:

C∗(n,r) =
∑

(h,r)∗=1

exp(
2πihn

r
)

where the summation is over h(mod r) such that (h,r)∗ = 1.
C∗(r,r) = φ∗(r), the unitary analogue of Euler’s totient. C∗(n,r) has the or-

thogonal property:
If d1 and d2 are unitary divisors of r,

(14.7.5)
∑

n≡a+b(mod r)

C∗(a,d1)C∗(b,d2) =

{
r c∗(n,d), if d1 = d2 = d;
0, otherwise.

Proposition 14.7.3 (Eckford Cohen) : The set S∗r (C) of unitary functions (mod r)
forms a subspace of Br(C) and has dimension 2ω(r), the number of unitary divisors
of r. S∗r (C) has an orthonormal basis

{ 1√
rφ∗(d)

C∗(n,d) : d is a unitary divisor of r}.
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For proof, see [12].
We note that the subspaces Vr(C) and S∗r (C) of Br(C) have the same dimen-

sion 2ω(r).
There are various ways of constructing transformations of arithmetic func-

tions. For instance, we fix a ∈ N. Let

ea(r) =

{
1, if r = a;
0, otherwise.

Then, for f ∈ A, the Dirichlet product of f and ea gives

(14.7.6) ( f · ea)(r) =

{
f ( r

a ), if a|r;
0, otherwise.

Ta : A → A given by Ta( f ) = f · ea is a linear operator on A. Generally
speaking, transformations are useful in deriving arithmetical identities.

Next, in a finite dimensional algebra A over a field F , every element is either a
divisor of zero or a unit (a divisor of multiplicative identity). Also, every element
of A is a root of some polynomial equation f (x) = 0 where f (x) ∈ F[x]. For,
suppose that a is not a root. As a does belong to A, the subalgebra F[a] will
be isomorphic to F[x] which is impossible since F[x] is an infinite dimensional
vector space over F.

We wish to add that integers (mod r) form an additive cyclic group of
order r. A periodic function (mod r) may be viewed as a function defined on
an additive cyclic group C(r) of order r. A subclass of periodic functions con-
sists of those complex-valued functions defined on C(r) which are invariant un-
der automorphisms of C(r). Arithmetically, these functions are the functions
f (n,r) = f (g.c.d (n,r),r) for all n. They are the even functions (mod r).

Remark 14.7.1 : Let D be a division ring. Mn(D) denotes the total n by n matrix
ring with entries from D. Then, Mn(D) is a semisimple ring. Further, every
semisimple ring is isomorphic to a direct sum of a finite number of total matrix
rings over division rings. See J. S. Golan [14].

The structural description of semisimple rings in terms of total matrix rings is
one of the major classical results of Wedderburn. See Emil Artin: The influence of
J. H. M. Wedderburn on the development of modern algebra, Bull. Amer. Math.
Soc., 56 (1950), 65–72.

14.8. Worked-out examples

a) (Sivaramakrishnan (1973)) Kesava Menon defines the norm f ∗ of a multiplica-
tive function f (see definition 4.3.2, chapter 4) by

f ∗(r) =
∑

d|r2

f (
r2

d
)λ(d) f (d); r ≥ 1
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in which λ(r) = (−1)Ω(r), where Ω(r) denotes the total number of prime factors
of r, each being counted according to its multiplicity and Ω(1) = 0.

Characterize the class of multiplicative functions f for which f ∗ = e0, the
multiplicative identity of the ring (A,+,∗) of arithmetic functions under the
operations of addition and Dirichlet convolution.

Answer: We note that e0(r) = [ 1
r ], [x] being the greatest integer not exceeding

x. The definition of f ∗ gives

(14.8.1) f ∗(r) = ( f ·λ f )(r2). r ≥ 1.

Let (M, ·) denote the group of multiplicative functions. M is a subgroup of the
group of units in A. f ∈M is known if f (pm) (p a prime, m≥ 1) is known for
all primes p. When f ∈M, so is f ∗.

We evaluate f ·λ f at r = p2m−1, p a prime, m≥ 1.

( f ·λ f )(p2m−1) =
2m−1∑

i=0

f (p2m−1−i) λ(pi) f (pi)

=
2m−1∑

i=0

(−1)i f (p2m−1−i) f (pi).

We take ( f ·λ f )(p2m−1) = 0 for all primes p, m≥ 1.
Then,

(14.8.2) ( f ·λ f )(p2m−1) =
2m−1∑

i=0

(−1)i f (p2m−1−i) f (pi) = 0.

We are interested in characterising the set

(14.8.3) I = { f ∈M : f ∗ = e0}
By definition, f ∈ I if, and only if,

(14.8.4) ( f ·λ f )(p2m) = 0 for all primes p,m≥ 1.

From (14.8.2) and (14.8.4), we observe that

I = { f ∈M : ( f ·λ f ) = e0}
or

(14.8.5) I = { f ∈M : f −1 = λ f}.
Let g,h ∈ I. Then, g−1 = λg. h−1 = λh.

Now,

(g ·h−1)−1 = (g ·λh)−1

= (λh)−1 ·g−1.

As λ is completely multiplicative (meaning thereby, λ(rs) = λ(r)λ(s) for all
pairs of integers r,s)

λ(h ·h−1) = λh ·λh−1.

© 2007 by Taylor & Francis Group, LLC



518 CHAPTER 14

(This is also obvious, as (λh·λh−1)(pm) =
m∑

i=0
(−1)mh(pm−i)h−1(pi) =λ(h ·h−1)(pm)).

So, (λh)−1 = λh−1. Thus,

(g ·h−1)−1 = (g ·λh)−1 = λh−1 ·g−1 = λh−1 ·λg = λ(g ·h−1).

It follows that g.h−1 ∈ I whenever g,h ∈ I. Therefore, I is a subgroup of M.
From this characterization, it is not clear whether I has any element other

than e0. It has elements other than e0. For, let f be a multiplicative function
given by

(14.8.6) f (p2m) =
1
2

(−1)m+1 f (pm)2 +
2m−1∑

i = m+1

(−1)i+1 f (pi) f (p2m−i)

(for all prime p, m≥ 1), where f has arbitrary values at f (p), f (p3), f (p5) . . . .
That is, f takes arbitrary values whenever the argument = p2m−1, (m ≥ 1).
Then, f given by (14.8.6) belongs to I. �

Remark 14.8.1 : ψ : M → M given by ψ( f ) = f ∗ is a homomorphism of M
into itself with kernel = I. Given g ∈ M, there exists f ∈M such that f ∗ = g,
that is, f ·λ f = g. Hence ψ is an epimorphism.

Remark 14.8.2 : The solution shown above has been adapted from
Carl Pomerance: Solution to problem 5945, Amer. Math. Monthly 82 (1975)
410–411.

b) Let S be a commutative ring with identity 1S. S is said to be a primary ring
if S has a minimal prime ideal. (see Section 12.10 of chapter 12). Show that
a necessary and sufficient condition for S to be a primary ring is that S has a
minimal prime ideal which contains all the zero divisors of S.

Answer:
Sufficiency: Let S be a primary ring. The set of zero divisors of S, along with
zero, coincides with the ideal N of nilpotent elements. So, N is a prime ideal.
But then, N is the prime radical of S, which is the intersection of prime ideals
of S. So, N is contained in every prime ideal of S. That is, N is a minimal
prime ideal of S.
Necessity: We prove the contrapositive statement of the converse. That is, if
a ∈ S is such that a is non-nilpotent, then, a can never be a zero divisor of S.

Suppose that S has a minimal prime ideal P which contains all zero divi-
sors. a ∈ S, a is non-nilpotent. We consider

T = {tan : t 6∈ P; n≥ 0}
T is a multiplicative set and 1S ∈ T . 0S 6∈ T . Otherwise 0S ∈ T ⇒ tan = 0S with
an 6= 0S. Then t is a zero divisor and t ∈ P — a contradiction. Therefore, by
theorem 129, the complement of T is S contains a prime ideal P′ which is such
that P′ ⊆ S \T ⊆ P, with P a minimal prime ideal. It follows that S \T = P.
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But, a ∈ S, a 6∈ P. So, a cannot be a zero divisor. That is, a non-nilpotent⇒ a
non-zero divisor.

That is, every zero divisor of S is nilpotent. So, if S is such that S has a
minimal prime ideal which contains all zero divisors, S has the property that
every zero divisor of S is nilpotent. Then, the zero ideal of S is primary. This
implies that S is a primary ring. �

Remark 14.8.3 : A commutative ring S with identity 1S is a primary ring, if,
and only if, every zero divisor of S is nilpotent.

Remark 14.8.4 : The solution of example (b) has been adapted from D. M.
Burton [A1, Theorem 8–15, Chapter 8, p 169].

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) There exist a 2-dimensional algebra A over R, the field of real numbers
and having a basis {~e1,~e2} where (~e1)3 = 0, (~e1)2 = ~e2.

b) Let A be a 3-dimensional algebra with unity ~e over R the field of real
numbers. Then, A has no singular element (that is, an element ~a which
has no multiplicative inverse).

c) Let A be a 2-dimensional algebra over Z/3Z. It is correct to say that A
is commutative, has unity element and every nonzero element of A has a
multiplicative inverse.

d) Let Br(C) denote the algebra of even functions (mod r). If f ∈ Br(C),
there exists a function g : Z×N→ C such that

f (n,r) =
∑

d|g
g(d,

r
d

)

where summation is over divisors d of g = g.c.d (n,r).
e) Let r be an arbitrary but fixed positive integer. Consider the matrix [ai j]

(i, j = 1,2, . . . ,r) where ai j = C(i, j), (C(n,r) being Ramanujan’s sum).
Then,

det [ai j] = r!
f) Let f (n,r) represent an even function (mod r), possessing a finite Fourier

expansion with Fourier coefficients α(d,r). One gets

α(1,r) =
∑

a(mod r)

f (a,r).

2. [Eckford Cohen] Let

εh(n) = exp(
2πihn

r
), r ≥ 1.
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Sr(F) denotes the class of (r,F), arithmetic functions f of the form

f (n,r) =
∑

h (mod r)
(h,r)=a square

a(h,r)εh(n), a(h,r) ∈ F, (1≤ h≤ r);

where the summation is over h (mod r) such that g.c.d (h,r) = a square. Show
that Sr(F) is a subalgebra of Ar(F). Determine the dimension of Sr(F).

3. [Eckford Cohen] With the notation in exercise 1, let Pr(F) denote the class of
(r,F)-arithmetic function f of the form

f (n,r) =
∑

h (mod r)
h = a prime<r

b(h,r)εh(n), b(h,r) ∈ F, (1≤ h≤ r).

f is referred to as a Vinogradov sum. Show that Pr(F) is a subalgebra of
Ar(F). Determine the dimension of Pr(F).

4. [Eckford Cohen] Let Ns(n,r) denote the number of solutions of the congruence

n≡ p1 + p2 · · ·+ ps (mod r),

where p1, p2, . . . , ps are primes, 0≤ n< r. Show that

Ns(n,r) =
1
r

r−1∑

h=0

εh(n)
( ∑

k(mod r)
k=a prime<r

εh(−k)
)s

5. [Eckford Cohen] Let Jk denote the Jordan totient given by

Jk(r) =
∑

d|r
µ(

r
d

)dk

where µ is the Möbius function. Ms(n,r) denotes the number of the solutions
of n≡ x1 + x2 · · ·+ xs (mod r) such that g.c.d (g.c.d (x1,x2, . . . ,xs),r)=1.

Show that

Ms(n,r) = (
r

(n,r)
)sJs((n,r)), where (n,r) = g.c.d (n,r).

(Note that Ms is an even function (mod r))
6. [L. Carlitz] Let F be a field of characteristic zero. Consider the ring Lp of

arithmetic functions f : Z̃→ F. For f ,g ∈ Lp, Lucas multiplication of f and
g is given by

( f ∗g)(r) =
r∑

j=0

∗
f ( j)g(r − j)

where summation
∑∗ is over j such that

(r
j

)
is relatively prime to p. f ∈ Lp is

said to be singular if f (0) = 0F . Show by an example that a singular function
g ∈ Lp need not be a divisor of zero.
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7. We use the notation of exercise 6. Let I(r) = 1, r ≥ 0. Show that I is a unit in
Lp.

If r = r0 + r1 p + · · ·+ rs ps (0≤ r j < p; j = 0, . . . ,s), define

µ(bpk) =





1, b = 0;
−1, b = 1;
0, b> 1.

(where 0≤ b< p, k = 0,1,2, . . .s) and let

µ(r) =
∞∏

j=0

µ(r j p j).

Show that µ is the Lucas inverse of I. Deduce that

g(r) =
r∑

j=0

∗
f ( j)⇔ F(r) =

r∑

j=0

∗
f (r − j) µ( j).

8. Let A be an algebra over a field F. Assume that A does not possess the
multiplicative identity. Suppose that Ā is defined by

Ā = {(a,α) : a ∈A ,α ∈ F}
Addition and multiplication in Ā are given by

(a,α) + (b,β) = (a + b,α+β), a,b ∈A ,α,β ∈ F ;

r(a,α) = (ra,rα) a ∈A , r,α ∈ F ;

(a,α) · (b,β) = {ab +αb +βa,αβ} a,b ∈A : α,β ∈ F.

Show that Ā is an algebra with the identity element (0,1F). Deduce that A
can be embedded in Ā by showing that elements of the form (a,0) generate
an ideal of Ā which is isomorphic to A .

9. Let A be a two-dimensional algebra over a field F such that every element of
A is an idempotent. Show that the characteristic of A (as a ring) is two and
that A is a commutative semisimple algebra.

10. An element a of a ring R is called Von Neumann regular, if there exists x ∈ R
such that axa = a. If every element of R is Von Neumann regular, R is called
a regular ring. Show that every regular ring is semisimple. (The ring Z of
integers is semisimple, but not regular).

11. Let R be a commutative ring with unity. If R is semisimple and Artinian, show
that R is Noetherian.
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CHAPTER 15

Analogues of the Goldbach problem

Historical perspective

A famous problem concerning prime numbers is known by the name:
Goldbach conjecture. In his letter dated 7th June, 1742 addressed to Leonhard
Euler, Christian Goldbach (1690–1764) mentioned that every even number ≥ 4
is a sum of two primes. As it has remained an unsolved problem for over two
centuries, the conjecture is often referred to as the Goldbach problem. Attempts
to solve the problem were made along with attempts to prove the Prime Number
Theorem which says that if π(x) denotes the number of primes not exceeding x,
then,

π(x)∼ x
logx

, as x→∞.

The Prime Number Theorem was first proved by Jacques Hadamard
(1865–1963) and C. J. de la Vallee Poussin (1866–1962) independently using
Complex Analysis, in 1896. (Probably, it was the first instance of inter-disciplinary
research). An elementary proof of the theorem was given by Atle Selberg (b.1917)
and Paul Erdös (1913–1996) in 1949. An interesting exposition on the Prime
Number Theorem is given by Norman Levinson in [30]. See also H. Diamond
[15] and V. S. Varadarajan [35]. Ralph G. Archibald [2] reports that Rene
Descartes stated without proof that every even number is a sum of 1,2, or 3
primes. E. Waring (1734–1798) also declared that every number is either a prime
or a sum of three primes. See L. E. Dickson (1874–1954) [16]. The statement of
the Goldbach problem may be given as:

(i) BGC: Every even positive integer ≥ 4 can be expressed as a sum of two
primes. (BGC is the short form of Binary Goldbach Conjecture)

(ii) TGC: Every odd number ≥ 7 can be expressed as the sum of three primes.
(TGC is the short form of Ternary Goldbach Conjecture)

Clearly, the truth of BGC implies the truth of TGC. In 1920, Hardy and Littlewood
[25] have shown that under the assumption of a weak version of Generalized
Riemann Hypothesis (GRH), there exists a positive integer M0 such that TGC
holds for all integers ≥M0. M0 is referred to as the Hardy-Littlewood Constant.
In 1993, Chen and Wang [10] have shown that M0 can be chosen as equal to 1050.
In 1997, Zinoviev [40] has shown that assuming GRH, one can make M0 = 1020.
In 1937, I. M. Vinogradov (1891–1983) proved unconditionally that there exists a

525
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positive integer No such that TGC holds for all integers ≥ No. More specifically,
we state

Vinogradov’s Theorem : Every sufficiently large odd number is a sum of three
primes.

For proof, see [37].
Experimental verification using algorithms and computations shows that BGC

is true for even integers up to 4 ·1011. See M. K. Sinisalo [34]. New experiments
on CRAY C916 super computer and on SGI computer server with 18 R 1000
CPU’s carried out by Deshouillers, te Riele and Saouter [14] extend the bound to
1014. The consequences are

(a) TGC holds.
(b) Under the assumption of GRH, every even positive integer can be expressed

as the sum of at most four prime numbers. In addition, Deshouillers, te Riele
and Saouter [14] have verified the
Goldbach conjecture for all even numbers in the intervals:

(i) [105i,105i+8], i = 3,4,5, . . . ,20,
(ii) [1010i,1010i + 109], i = 20,21, . . . ,30.

The computation predicts the average number of steps needed to verify
Goldbach Conjecture on a given interval. The experimental results are in good
agreement with this prediction. This adds to the truth of the Goldbach Conjecture.
See A. Granville, J. Van de Lune and H. J. J. te Riele [24].

15.1. Introduction

This chapter gives yet another instance of a number-theoretic situation for
which parallel results have been formulated in algebra. We discuss three ana-
logues of the Goldbach problem.

We mention about the Riemann hypothesis which has a bearing on computa-
tional aspects in the verification of the Goldbach problem for particular cases.
A finite analogue of the Goldbach problem due to Eckford Cohen is discussed in
the context of the quotient ring R(r) = Z/rZ where r is any positive composite
number. ‘Primes’ in R(r) are of the form ±pm where p is a prime and g.c.d
(m,r) = 1. If r is even, it is shown in theorem 140 that every element of R(r) with
the possible exception of primes associated with 2, is expressible as a sum of two
primes in R(r).

If Mn(Z) denotes the ring of n× n matrices (n ≥ 2) with entries from Z, it
is shown in theorems 142 and 143 that for any A ∈ Mn(Z), there exist matrices
X ,Y ∈Mn(Z) such that

A = X +Y with detX = detY = q (a fixed positive integer) under suitable con-
ditions.

In Section 15.5, we point out an analogue of the Goldbach problem via
polynomials over finite fields. It is due to G. W. Effinger and D. R. Hayes [21]. Let
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M(x) be a monic polynomial with coefficients from a finite field Fq ·M(x) is called
an even polynomial, if q = 2 and if x or (x+1) divides M(x). All other polynomials
are odd. M(x) ∈ Fq(x) is called a 3-primes polynomial, if there exist irreducible
monic polynomials P1(x), P2(x) and P3(x) such that degP1(x) = degM(x), degP2(x)
and degP3(x) are less than degM(x) and

(15.1.1) M(x) = P1(x) + P2(x) + P3(x).

The expressibility of M(x) in the form (15.1.1) has been proved in its generality.
We indicate a few particular cases in theorems 146, 151 and 153.

15.2. The Riemann hypothesis

While discussing Dirichlet series (Section 10.6, chapter 10) of an arithmetic
function, the ζ-function was introduced as the generating function of e : N→ C
where e(r) = 1, r ≥ 1. We recall that

ζ(s) =
∞∑

r=1

r−s , Re s > 1.

See (10.6.6). Writing s = σ+ it, Riemann conjectured that if ζ(s) = 0 with Res=σ >
0, then σ = 1/2. For s = −2,−4,−6, · · · ,−2m, · · · , ζ(s) = 0. The functional equation
[1] for ζ(s) says:

(15.2.1a) ζ(1 − s) = 2(2π)−s cos
(πs

2
)
ζ(s)Γ(1 − s),

or,

(15.2.1b) π−s/2Γ(
s
2

)ζ(s) = π− 1
2 (1−s)Γ(

1 − s
2

)ζ(1 − s),

where Γ(1 − s) denotes the value of the gamma-function at 1 − s.
When s = 2m+1 in (15.2.1), m≥ 1, cos(πs

2 ) vanishes and so we get ζ(−2m) = 0 for
m≥ 1. The values s = −2,−4,−6, · · · ,−2m, · · · are called the trivial zeros of ζ(s).
In 1914, G. H. Hardy proved that an infinite number of values of s can be found for
which ζ(s) = 0 and σ = 1/2. However, it is not known whether all the non-trivial
roots of ζ(s) = 0 satisfy Re s = 1/2. That is, the Riemann Hypothesis (RH) about
the non-trivial zeros of ζ(s) remains an open problem. In 1974, Norman Levinson
[31] showed that at least one-third of the roots of ζ(s) = 0 must lie on Re s = 1/2,
the so-called critical line. Le Liounair showed in 1983 that Levinson’s finding can
be sharpened to 40%. It is known that the zeros of ζ(s) are symmetrically placed
about the line Im s = 0.

Dirichlet’s asymptotic formula for the partial sums of the divisor
function d : N→ C where d(r) = the number of divisors of r is as given below:

Proposition 15.2.1 : For x≥ 1,

(15.2.2)
∑

r≤x

d(r) = x logx + (2γ − 1)x + 0(
√

x)

where γ denotes Euler’s constant.
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For proof, see Tom Apostol [1] or Niven, Zuckerman and Montgomery [32].
The error term 0(

√
x), (read big 0 of

√
x) has been improved. Assuming the

Riemann Hypothesis, the error term is 0(xα) with α < 1/3. The determination
of the infimum of α such that the error term is 0(xα) is an unsolved problem,
known as Dirichlet’s divisor problem. H. Ivaniec and C. J. Mozzochi [27] have
shown that the error term is 0(x

7
22 +ε) (for every ε > 0). In the opposite direc-

tion, it is known that the error term is infinitely often as large as x1/4. That is,
inf α ≥ 1/4. This is mentioned to point out that certain significant results are
achieved on the assumption of R.H.

If π(x) denotes the number of primes ≤ x(x ≥ 1) and if Li(x) denotes the
logarithmic integral defined by

(15.2.3) Li(x) =
∫ x

2

dt
logt

,

R.H is equivalent to the assertion.

(15.2.4) |Li(x) −π(x)| ≤ c
√

x logx,

where c is a computable constant. See K. Chandrasekharan [9, Chapter III].
See also [8].

R.H was computationally tested and found to be true for the first 2× 108

zeros by Brent et al. [4], a limit subsequently extended to the first 1.5× 109 + 1
zeros by Brent et al. [5]. Brent’s calculation covered zeros 1

2 + i t in the region
0< t < 81,702,130,19. See also [6] and [7].

Introducing the function ξ(s) as

(15.2.5) ξ(s) = Γ(s/2 + 1) (s − 1)π−s/2 ζ(s),

one notes that ξ(s) is an entire function which has as zeros the nontrivial zeros
of ζ(s). ξ(s) is invariant under the transformation s→ 1 − s. This invariance and
the fact that ξ(s) is real for s real imply that ξ(s) is also real on the critical line
s = 1/2 + i t, t real. In fact,

ξ(1/2 + i t) =
(

eRe log(Γ( s
2 ))π−1/4(−t2 − 1/4)/2

)
×(15.2.6)

(
ei im log(Γ(s/2))×π−i t/2ζ(1/2 + i t)

)
.

The first factor on the right of (15.2.6) is always negative. The second factor
denoted by Z(t) is real and has the same zeros as ζ(s) has at s = 1/2 + i t.

(15.2.7) Z(t) = ei ϑ(t)ζ(1/2 + i t)

where

(15.2.8) ϑ(t) = Im log(Γ(i t/2 + 1/4)) − t/2 logπ.

Locating the zeros of ζ(s) on the critical line amounts to studying Z(t) fot its zeros.
A. Turing (1912–1954) devised an ingenious method of determining the num-

ber of zeros on the critical line up to height T . We define S(T ) by
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(15.2.9) S(T ) = N(T ) −
ϑ(T )
π

− 1,

where N(T ) is the number of zeros on the critical line between 0 and T . Turing
showed that ∣∣∣∣

∫ t2

t1
S(t) dt

∣∣∣∣≤ 2.3 + 0.128 log(t2/2π),

where 168π < t1 < t2.
With related numerical computation and more of techniques (leading to the

fact that one has to compute Z(T ) to know how it changes sign from + to − or –
to +), much progress has been made in locating zeros of ζ(s) on the critical line.
Van de Lune et al. have shown that the first one and a half billion nontrivial zeros
lie on the critical line.

Analogous to ζ(s), Dirichlet defined an L-function L(s,χ) as follows:
We consider the ring Z/rZ of integers modulo r, Ur denotes the group of

units of this ring. |Ur| = φ(r), the Euler φ-function. Let χ be a character of Ur.
As usual, [a] denotes the residue class of a (mod r). We lift χ (from Ur) to Z by
writing

χ(a) =

{
χ([a]), if g.c.d (a,r) = 1;
0 , otherwise .

|χ(a)| ≤ 1 for all a ∈ Z.

Definition 15.2.1 : The function L(s,χ) is given by

L(s,χ) =
∞∑

n=1

χ(n)n−s, Re s > 1.

The expression for L(s,χ) is also the same as

(15.2.10) logL(s,χ) =
∑

p

∞∑

k=1

χ(pk)
kpks , Re s> 1,

where
∑

p denotes summation over all primes p.
Or, equivalently,

(15.2.11) logL(s,χ) =
∑

p

χ(p)
ps +

∞∑

k=2

χ(pk)
kpks , Re s> 1.

We remark that L(s,χ) is a tool in proving Dirichlet’s theorem on the infinitude of
primes in an arithmetic progression. See Apostol [1]. When, χ = χ0 the principal
character (mod r),

(15.2.12) L(s,χ0) = ζ(s)
∏

p|r
(1 − p−s), Re s > 1,
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where

χ0(a) =

{
1, if g.c.d (a,r) = 1
0, otherwise .

Fact 15.2.1 : (a) For Re s > 1,

(15.2.13) logL(s,χ0) = log
1

s − 1
+ O (loglogr).

(b) For χ 6= χ0, L(1,χ) 6= 0.

For proofs, see K. Chandrasekharan [9].

15.2.1. GENERALIZED WEAK RIEMANN HYPOTHESIS (Rδ): The real parts of
the zeros of all Dirichlet L-functions L(s,χ) are less than or equal to 1/δ.

(R2) is the Riemann Hypothesis about the zeros of ζ(s). As remarked earlier,
Hardy and Littlewood [25] assumed the generalized weak Riemann Hypothesis
(and used their ‘Circle method’) to prove that there exists a positive integer N
such that every odd integer r≥N is a sum of three primes. That is, TGC holds for
all odd numbers r ≥ N. Vinogradov’s theorem establishes the Hardy-Littlewood
conclusion without invoking generalized weak R.H. Further, Vinogradov’s theo-
rem guarantees a computable value for N.

We mention briefly about Generalized Riemann Hypothesis (GRH) in the
following manner :

Riemann Hypothesis (RH) asserts that ζ(s) 6= 0 for any value of s for which
Res > 1/2. Riemann Hypothesis for L(s,χ) is that for any character χ modulo r,
L(s,χ) > 0 for values of s for which Res > 1/2. This is called Generalized
Riemann Hypothesis (GRH).

Definition 15.2.2 : Let Ur denote the group of units in Z/rZ (r ≥ 2). A Dirichlet
character is a homomorphism χ : Ur → C∗, the group of nonzero complex num-
bers under multiplication, with the additional requirement that χ is multiplicative.

(This agrees with the definition of a character of a finite group given in defi-
nition 6.6.3, chapter 6).

It follows that the image of Ur under χ is a subset of the unit circle in C.
If r|t, χ induces a homomorphism ϕ: Ut → C∗ by composition with the natural
map Ut →Ur. So, we would regard χ as being defined modulo t or modulo r. If
[a] ∈Ut , [a] will be the same as [a′] ∈Ur (0≤ a′ < r). We take [a] 7→ exp

( 2πi
r

)
.

That is, both are essentially the same map.

Definition 15.2.3 : The minimum number r chosen to define χ : Ur→ S1 (the unit
circle in C) is called the conductor of χ written as f or fχ.

Examples 15.2.1 : a) t = 8, r = 4.
Let χ : U8→ S1 be given by

χ(1) = 1, χ(3) = −1, χ(5) = 1, χ(7) = −1.
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Since χ(a) = χ(a + 4), χ is defined on U4 with χ(1) = 1, χ(3) = −1. So, fχ = 4.
b) t = 12, r = 6.

Let χ : U12→ S1 be given by

χ(1) = 1, χ(5) = −1, χ(7) = 1, χ(11) = −1.

We note that χ(a) = χ(a + 6); χ(1) = χ(7) and χ(5) = χ(11). 6 is minimal and
fχ = 6.

For defining L(s,χ) (definition 15.2.1), we lift χ to Z by taking χ : Z→ C
with χ(a) = 0 if g.c.d (a, fχ) 6= 1. That is, χ is defined modulo its conductor fχ.
Such characters are called primitive characters. χ is periodic modulo fχ.

The notion of a Dirichlet character modulo r is restated fully, in

Definition 15.2.4 (R. A. Mollin) : A Dirichlet characterχmodulo r (an arbitrary,
but fixed positive integer) is a function χ : Z→ C satisfying
a) χ(mn) = χ(m)χ(n); m,n ∈ Z
b) χ(n) = 0, if g.c.d (n,r)> 1
c) χ(n) = χ(m), if n≡ m(mod r)
d) χ(1) 6= 0.

χ0 given by (15.2.8) is called a principal character modulo r.

Definition 15.2.5 (R. A. Mollin) : A character χ modulo r is called a primi-
tive character, if, for every divisor r0 of r, there exists an integer a satisfying
a≡ 1(mod r0), g.c.d (a,r) = 1 and χ(a) 6= 1.

Fact 15.2.2 : If χ is a Dirichlet character modulo r, then for all s > 1

L(s,χ) =
∏

p

(1 −χ(p)p−s)−1; Re s> 1

where
∏
p

on the right runs through all primes.

15.2.2. EXAMPLE OF A DIRICHLET CHARACTER. Let K = Q(
√

m) be a qua-
dratic number field (see Section 3.3, chapter 3), where m is square-free. It is
known that given a basis B = {α1,α2} for Q(

√
m) (considered as a vector space

of dimension 2 overQ) discriminant of B is given by

(15.2.14) ∆ = {det([σi(αr)])}2 (i, j = 1,2)

where σ1 : K → C, σ2 : K → C are monomorphisms of K into C, keeping every
element of Q fixed. σ1 is the identity monomorphism and σ2 is the conjugation
map. It is known that ∆ is independent of the choice of a basis for K. (See
worked-out example (a) and Remark 13.10.1, chapter 13). By theorem 14, chapter
3, the ring R(m) of integers of K is given by

(15.2.15) R(m) =

{
Z[
√

m] if m 6≡ 1(mod 4)
Z[ 1+

√
m

2 ], if m≡ 1(mod 4).
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A basis for R(m), the ring of integers of K is given by

(15.2.16) B =

{
{1,√m}, m 6≡ 1(mod 4);
{1, 1+

√
m

2 }, m≡ 1(mod 4).

It follows that

(15.2.17) ∆ =

{
4m, if m 6≡ 1(mod 4);
m, if m≡ 1(mod 4).

Thus,

(15.2.18) ∆≡ 0.1(mod 4).

Therefore, K = Q(
√

m) could be expressed as K = Q(
√

∆), where ∆ is not a
square.

If n =
k∏

i=1
pai

i , we write

(15.2.19) (∆|n) =
k∏

i=1

(∆ |pi)ai

where pi (i = 1,2, . . . ,k) are primes and (∆|pi) denotes Legendre symbol. (∆|n)
(15.2.19) is the Kronecker symbol for ∆ (which is similar to Jacobi symbol (Sec-
tion 6.7, chapter 6) but n could be odd or even).

It is verified that for m,n ∈ Z.

(15.2.20) (∆|mn) = (∆|m)(∆|n)

(15.2.21) (∆|m) = (∆|n) if m≡ n(mod |∆|).
As remarked in [A3], (∆|n) is considered as a Dirichlet character modulo ∆.

The Dirichlet L-function in respect of ∆ is given by

(15.2.22) L(s, (∆|n)) =
∞∑

n=1

(∆|n)n−s; Res> 1.

Next, by theorem 44, chapter 6, we know that a finite abelian group G of
order n has n distinct characters and that the group Ch(Z/nZ)∼= Z/nZ (see lemma
6.6.2).

Let G be a finite abelian group. Fix g ∈ G. As χ runs through the elements
of Ch(G), χ(g) runs through the f th roots of unity in C where f = o(g) (order of
g). In fact, χ(g) runs through all the f th roots of 1 and takes on each value equally
many times in the following sense:

We consider the homomorphism e : Ch(G) → S1 given by the evaluation
e(χ) = χ(g) at g. Kernel of e consists of those χ which send g to 1. This is
the same as the character group of G/ < g>, where < g> denotes the subgroup
of G generated by g. Therefore, the kernel of the evaluation map has order |G|/ f .
It implies that the image of e consists of all the f th roots of 1. As e : Ch(G)→ S1

is a homomorphism, χ(g) takes on each f th root of 1 equally many times.
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In the context of a cyclotomic field F =Q(ω) whereω = exp
( 2πi

r

)
, we identify

Ur, (the group of units in Z/rZ) with the Galois group G(F/Q) of F over Q.
Writing G = Gal(F/Q), we note that G is a homomorphic image of Ur. Characters
of G can be considered as characters modulo r. Thus, we consider Ch(G) to be a
subgroup of Ch(Ur).

Next, let K and L be number fields with K ⊂ L. Suppose that R = A∩K,
S =A∩L where A denotes the ring of algebraic integers. Let P be a prime ideal
of R and Q a prime ideal of S. Then, Q divides PS, Q⊃ P and Q∩R = Q∩K = P.
We say that Q lies over P. (see definition 13.2.3, chapter 13).

We obtain an embedding γ : R/P→ S/Q. R/P and S/Q are called residue
class fields associated with P and Q. (Note that the ring of integers of a number
field is a Dedekind domain and so P, Q are maximal ideals in R, S respectively).
Further, R/P and S/Q are finite fields and so S/Q is a finite extension of R/P
meaning that degree of extension is finite. Let f = [S/Q : R/P], the degree of
extension. Then f is called the inertial degree of Q over P denoted by f (Q|P).

We consider K as a subfield of the cyclotomic field Q(ω) where ω = exp
( 2πi

r

)
.

We can identify Ur, with Gal(Q(ω)/Q). Let H be the subgroup of Ur fixing K
pointwise.

For a rational prime p not dividing r, let f be the least positive integer such
that [p] f ∈ H, where [p] denotes the congruence class of p (mod r). Let R′ =
A∩K. If P is a prime ideal of R′, then the prime ideal (p) of Z is such that P
lies over (p). It can be shown [A2] that f equals the inertial degree f (P|(p)) of P
lying over (p).

Applying definition 13.2.5 for the norm ||I|| of an ideal I of a number ring
R =A∩K we make

Definition 15.2.6 : The Dedekind zeta function ζK of a number field K is given
by

(15.2.23) ζK(s) =
∑

I

||I||−s, Re s > 1,

where the summation is taken over all nonzero ideals I of R, the number ring
corresponding to K.

Analogous to the expression for L(s,χ) given in Fact 15.2.2, by the unique
factorization of an ideal I in R, one gets

(15.2.24) ζK(s) =
∏

P

(1 − ||P||−s)−1, Re s> 1

where P runs through the prime ideals of R.
The idea is that when

ζK(s) =
∏

P

(1 +
1
||P||s +

1
||P||2s + · · · )
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formal multiplication gives terms like ||I||−s with each I occurring exactly once.
Questions of convergence could be tackled using the fact that

∑ | ||P||−s|<∞ for
Re s> 1.

For each rational prime p, let tp denote the number of prime ideals P of R
lying over (p). The inertial degree f (P|(p)) depends only on p. We denote it by
fP. Then,

(15.2.25) ζK(s) =
∏

p

(1 − 1
p fp·s )−tp , Re s > 1.

A character χ modulo r is a character of Gal(Q(ω)/Q) where ω = exp
( 2πi

r

)
. Let

K be the fixed field of the kernel of χ. Then, K ⊆Q(ω). Let r be minimal. That
is, r = fχ. K is called the field belonging to χ.

In general, let G be a finite group of Dirichlet characters. Let r be the l.c.m of
the conductors of the characters in G. G is a subgroup of the group of characters
of Gal (Q(ω)/Q)(ω = exp

( 2πi
r

)
). We consider the intersection H of the kernels of

these characters.
Let K be the fixed field of H. Then, G is the group of homomorphisms

χ : Gal(K/Q)→ C×, the group of nonzero complex numbers under multiplica-
tion. The field K is called the field belonging to G. If G is cyclic, generated by χ,
K is the field belonging to χ.

It can be shown that [K,Q] = |G|. In fact,

(15.2.26) G∼= Gal (K/Q).

Example 15.2.2 : Let G be the group of characters χ of Ur for which χ(−1) = 1.
The field associated to G is Q(ω+ω−1). For, among the monomorphisms ofQ(ω)
into C, the conjugation map σ̄ :Q(ω)→ C given by σ̄(ω) = ω−1, the conjugate of
ω is in the kernel of χ. So, the field associated with G is Q(ω +ω−1), which is the
maximal real subfield of Q(ω).

Remark 15.2.1 : (a) It can be shown that if χ is any character, then the field
belonging to χ is real if, and only if, χ(−1) = 1.
(b) Example 15.2.2 has been adapted from Lawrence C. Washington [A6].

Fact 15.2.3 : Let G be a group of Dirichlet characters modulo r, with K as the
associated field. The Dedekind ζ-function ζK(s) satisfies the identity

(15.2.27) ζK(s) =
∏

χ∈G

L(s,χ).

For proof, see Lawrence C. Washington [A6] or D. A. Marcus [A2].

© 2007 by Taylor & Francis Group, LLC



ANALOGUES OF THE GOLDBACH PROBLEM 535

Fact 15.2.4 : K denotes the field belonging to a characters χ modulo r. ζK(s) has
a simple hole at s = 1. If χ is of order t

(15.2.28) ζK(s) = ζ(s)
t−1∏

a=1

L(s,χa).

Proof follows on using Fact 15.2.3 and noting that L(s,χ0) = ζ(s). (Re s> 1).

Fact 15.2.5 : Kronecker-Weber theorem states that if K is a finite abelian exten-
sion of Q (meaning that K is a normal extension with abelian Galois group), then
K is contained in a cyclotomic field. That is, K ⊆Q(exp( 2πi

r )), for some r.
Let K be a quadratic number field given by K = Q(

√
∆) where ∆ denotes

the discriminant of K. Considering Dirichlet characters χ modulo ∆ given by
χ(n) = (∆|n), one has

(15.2.29) L(s,χ) =
ζK(s)
ζ(s)

(Re s > 1).

For proof of Kronecker-Weber theorem, see Lawrence C. Washington [A6].
(15.2.29) follows by noting that χ is of order [K : Q] = 2 and by appealing to
(15.2.28).

Next, let h(∆) denote the class number of K =Q(
√

∆).
Gauss’s Conjecture: h(∆)→∞ as |∆| →∞.

This is an open problem.

Remark 15.2.2 : Under the assumption of GRH, one can show that h(∆)→∞ as
∆→ −∞. That is, if the nontrivial zeros of L(s,χ) (χ(n) = (∆|n)) lie on the critical
line Re s = 1/2, h(∆) must grow with |∆|. L. J. Mordell (1934) proved this, by
assuming that RH is false. Hielbronn (1934) showed that if GRH is false, then
h(∆)→∞ as ∆→ −∞. So, under the assumption of either the truth or falsity
of GRH, one gets h(∆)→∞, as ∆→ −∞. It is an example of an unconditional
proof.

Gauss’s class number one problem is about the fact that the ring R(m) of
integers ofQ(

√
m) is a PID for m = −1, −2, −3, −7, −11, −19, −43, −67 and −163.

This is proved by assuming GRH.
If there could exist a 10th discriminant ∆ < 0 with h(∆) = 1, such existence

would be a counterexample to GRH. For more detailed results, see R. A. Mollin
[A3].

15.3. A finite analogue of the Goldbach problem

r denotes a composite positive integer > 1. The candidate for obtaining an
analogue of BGC is the quotient ring Z/rZ. We represent the elements of Z/rZ
by integers belonging to a complete residue system (mod r). We write

(15.3.1) r = 2a pa1
1 pa2

2 · · · pak
k (a≥ 0,ai ≥ 1, i = 1,2, . . .k) ;
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where pi (i = 1,2, . . .k) are odd primes dividing r. Our aim is to obtain an analogue
of BGC in the context of the finite ring Z/rZ. We recall that u ∈ Z/rZ is a unit,
if g.c.d (u,r) = 1. Two elements m,m′ in Z/rZ are associates if m = um′ for some
unit u ∈ Z/rZ.

Lemma 15.3.1 : Let c1,c2 . . . ,cs be arbitrary integers.

The congruence

(15.3.2) c1x1 + c2x2 + · · ·+ csxs ≡ n(mod r)

has a solution in xi(mod r)(i = 1,2 . . . ,s) where g.c.d (xi,r) = 1 if, and only if, each
of the congruences

(15.3.3)





c1x1 + c2x2+ · · ·+ csxs ≡ n(mod 2a),
c1x1 + c2x2+ · · ·+ csxs ≡ n(mod pa1

1 ),
· · · · · · · · · · · ·
· · · · · · · · · · · ·
c1x1 + c2x2+ · · ·+ csxs ≡ n(mod pak

k ),

has a solution in xi relatively prime to a prime qi, where qi equals 2 or pi

(i = 1,2, . . .k). Proof is similar to that of the Chinese Remainder theorem and
hence omitted.

We recall that by a solution to (15.3.2), we mean an ordered s-tuple of inte-
gers (x1,x2, . . .xs) that satisfies the congruence. Two s-tuples (x1,x2, . . . ,xs) and
(y1,y2, . . . ,ys) are counted as the same solution, if x j ≡ y j(mod r), ( j = 1,2, . . . ,s).
For (15.3.2) to have a solution, it is necessary and sufficient that

g.c.d (c1,c2, . . . ,cs,r) = d divides n.

When solutions exist, let N(n,r,s) denote the number of solutions of (15.3.2). It
is easy to check that

(15.3.4) N(n,r,s) = N(n,2a,s)N(n, pa1
1 ,s) · · ·N(n, pak

k ,s).

When one guarantees a solution of each of the congruences in (15.3.3), a solu-
tion of (15.3.2) is obtained and conversely, when (15.3.2) has a solution, each of
(15.3.3) has a solution.

Lemma 15.3.2 : Every element of Z/rZ is expressible in the form

(15.3.5) m = 2b pb1
1 pb2

2 · · · pbk
k ·n, where g.c.d (n,r) = 1

and 0≤ b≤ a, 0≤ bi ≤ ai (i = 1,2, . . .k).
Further, the representation (15.3.5) is unique except for the multiple n which

is a unit in Z/rZ.
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Proof : We consider the congruences

(15.3.6)





2ay ≡ 2a+1(mod r),
pa1

1 y1 ≡ pa1+1
1 (mod r),

· · · · · · · · · · · ·
· · · · · · · · · · · ·
pak

k yk ≡ pak+1
k (mod r).

The above congruences are solvable for y,y1,y2, . . . ,yk respectively, where
g.c.d (y,r) = 1, g.c.d (yi,r) = 1 (i = 1,2, . . . ,k). Therefore, m given by (15.3.5)
is a representative element of Z/rZ. Further, any representative element of Z/rZ
has the form (15.3.5). More explicitly, a representative element m in Z/rZ has
the structure m = dn where d|r and g.c.d (n,r) = 1.

Next, suppose that

(15.3.7) m′ = 2t pt1
1 · · · ptk

k n′, g.c.d (n′,r) = 1

and 0≤ t ≤ a, 0≤ ti ≤ ai (i = 1,2, . . .k). Then, let

(15.3.8) m′ = 2t pt1
1 pt2

2 · · · ptk
k ·n′ ≡ 2b pb1

1 pb2
2 · · · ptk

k ·n(mod r)

where g.c.d (n,r) = g.c.d (n′,r) = 1. Assume that, for some i, ti 6= bi or t 6= b,
a≥ b> t or ai ≥ bi > ti (for some fixed i).

From (15.3.8), for a≥ b> t, pt1
1 pt2

2 · · · ptk
k ≡ 0(mod 2)— a contradiction.

Similarly, for i = 1, as a1 ≥ b1 > t1 implies 2t pt2
2 pt3

3 · · · ptk
k ≡ 0(mod p1)— a contra-

diction.
So, it happens that t = b and ti = bi(i = 1,2, . . .k), or, the representation of m

in (15.3.5) is unique, except for n. �

Next, we examine ‘primes’ in Z/rZ. The primes of Z/rZ are the elements
which are associates of rational primes 2 or pi (i = 1,2, . . .k) dividing r. So, an
element m ∈ Z/rZ is a prime in Z/rZ if, and only if, it is of the form m = 2n
(if 2 divides r) or m = pin′ where pi divides r and g.c.d (n,r) = 1, g.c.d (n′,r) = 1.

For instance, when r = 36, the primes in Z/36Z are 2n or 3n′ where
g.c.d (n,36) = g.c.d (n′,36) = 1.

In the notation of (14.2.1) of chapter 14, we write ea(n) = exp( 2πina
r ). In

(14.1.6), it is shown that

(15.3.9)
∑

n≡x+y(mod r)

ea(x)eb(y) =

{
reb(n), if a≡ b (mod r),
0, otherwise .

We generalize (15.3.9) to the case of a Cauchy product of k functions eai (n)
(i = 1,2, . . .k) (k≥ 2). We state without proof

Lemma 15.3.3 (Eckford Cohen) : If x1,x2 . . . ,xk range independently over
numbers of a complete residue system (mod r) such that

n≡ x1 + x2 · · ·+ xk(mod r)
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then,

(ea1 .ea2 · · · .eak )(n,r) =
∑

n≡x1+x2···+xk(mod r)

ea1 (x1)ea2 (x2) · · ·eak (xk)(15.3.10)

=

{
rk−1ea1 (n), if a1 ≡ . . .≡ ak(mod r);
0, otherwise .

For proof, see [11, lemma 3].
Let S denote a least non-negative complete residue system (mod r). |S| = r.

For i = 1,2 . . .s, we write Pi for a finite collection of elements chosen from S, with
repetitions allowed.

Definition 15.3.1 : Let f (i)
r be a function from Z̃ to N given by

f (i)
r (a) = ti,

if a≡ m(mod r), where m ∈ S and m appears ti times in Pi.

It follows that f (i)
r (b) = f (i)

r (a) whenever b≡ a(mod r). In the terminology of
Section 14.1 of chapter 14, f (i)

r is an (r,C) arithmetic function.

15.3.1. ECKFORD COHEN’S PRINCIPLE. The number Ns(n,r) of ordered sets,
including repetitions, of the type (x1,x2, . . . ,xs) such that xi range over Pi and
n≡ xi + x2 · · ·+ xs (mod r), is given by

Ns(n,r) = f1 · f2 · · · fs(n,r) =
1
r

r−1∑

a=0

ea(n)
s∏

i=1

(∑

u∈Pi

ea(−u)
)
,

where u ranges over all numbers in Pi.
This follows from Eckford Cohen’s theorem (theorem 126, chapter 14) on

the representation of an (r,F)-arithmetic function in terms of the elements of a
basis {ea(n) : 0≤ a< r}.

To illustrate the principle, we obtain the number Gs(n,r) of solutions in
positive primes < r of the congruence

(15.3.11) n≡ p1 + p2 + · · ·+ ps(mod r)

where o ≤ n < r. Let Pi consist of the set of all primes in the interval (0,r);
i = 1,2,3, . . . ,s. Then,

(15.3.12) Gs(n,r) =
1
r

r−1∑

a=0

ea(n)
( ∑

p a prime
0<p<r

ea(−p)
)s
.

Theorem 137 (Eckford Cohen (1954)) : Let p be a prime and m≥ 1. a1,a2, . . . ,at ,
at+1, . . .at+k are integers such that p does not divide ai (i = 1,2, . . . t), whereas p
divides ai (i = t + 1, t + 2, · · · , t + k). t > 0, k≥ 0 and t + k = s.

Then, the number M(n, pm,s) of solutions of the congruence

(15.3.13) a1x1 + a2x2 + · · ·+ asxs ≡ n(mod pm)
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in xi prime to p (i = 1,2, , . . . s) and distinct modulo pm is given by

(15.3.14) M(n, pm,s) = pm(s−1)−s(p − 1)k{(p − 1)t + (−1)tξ(n, pm)},
where

(15.3.15) ξ(n, pm) =

{
p − 1 , if p|n,
−1 if p - n.

Proof : With the notation used in Eckford Cohen’s principle (15.3.1), we write Pi

to denote the collection of integers ni chosen from a least non-negative complete
residue system (mod pm) and

ni ≡ aiu(mod pm), p - u

and each ni appearing (in Pi) as many times as there are distinct solutions to

ni ≡ aiu(mod pm)

in u prime to p. Let ea(q) = exp( 2πiaq
pm ). Then, as in (15.3.1),

(15.3.16) M(n, pm,s) =
1

pm

pm−1∑

a=0

ea(n)
s∏

i=1

∑

1≤ni<pm

g.c.d(u,p)=1

ea(−aiu).

This is simplified using the definition of Ramanujan’s sum C(n,r) (5.1.2), chapter
5. Isolating the term corresponding to a = 0 in (15.3.16) we obtain

(15.3.17) M(n, pm,s) =
1
pm

{(
φ(pm)

)s +
∑

1≤a<pm

ea(n)
s∏

i=1

C(aai, pm)
}
.

Now, φ(pm) = pm−1(p − 1), m≥ 1;

C(aai, pm) =

{
0, whenever aai contains pm−2 as a factor ;
(−1)pm−1, if pm−1 divides aai.

But, p - ai(i = 1,2, . . . t) and p|ai for i = t + 1, t + 2, . . . , t + k. We do summation
for a(1 ≤ a < pm) for which C(aai, pm) 6= 0. Writing a = bpm−1, 0 < b < p, and
summing over b, we obtain

M(n, pm,s) =
1
pm {p(m−1)s(p − 1)s +

∑

0<b<p

exp(
2πinb

p
)

s∏

i=1

C(aibpm−1, pm)}

=
1
pm {p(m−1)s(p − 1)s +

∑

0<b<p

exp(
2πinb

p
) (−pm−1)t (pm − pm−1)k}.

Now,
∑

0<b<p

exp(
2πinb

p
) =

{
p − 1, if p|n ;
−1, if p - n.
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Using the definition of ξ(n, pm), we get

(15.3.18) M(n, pm,s) =
1

pm

{
p(m−1)s(p − 1)s + (−1)tξ(n, pm)p(m−1)(t+k)(p − 1)k

}
.

Simplifying the right side of (15.3.18), we arrive at (15.3.14). �

Corollary 15.3.1 : Under the conditions of theorem 137, (15.3.13) is not solvable
for xi prime to p if, and only if, one of the following cases hold:
(a) p odd, t = 1, p|n,
(b) p = 2, t odd, n even,
(c) p = 2, t even, n odd.

For, (p − 1)t + (−1)tξ(n, pm) = 0 in each of the cases (a),(b),(c) above.
Corollary 15.3.1 is of significance in the results that follow.

We denote the ring Z/rZ by R(r). Let G(r) denote the number having the
property: Every element of R(r) can be expressed as a sum of G(r) primes in R(r).

Let g denote the minimum value of G(r) when it exists. If r = pc, p a prime,
c≥ 1, then, for 1≤ a≤ pc, a = pdu (where p - u) is a prime in R(pc) if, and only
if, d = 1. Further, no unit in R(pc) is a sum of two primes in R(pc). That is, G(pc)
does not exist. So, to find g, we may assume that r has at least two distinct prime
factors.

Theorem 138 (Eckford Cohen (1954)) : Let r > 1. There exists a number G(r)
such that every element of R(r) is a sum of G(r) primes in R(r) if, and only if, r
has at least two distinct prime factors. For such r, the minimum value g of G(r) is
given by
(a) g = 2, if r is odd
(b) g = 3, if r is even and has at least two distinct odd prime factors or if r is twice

on odd prime power and
(c) g = 4, if r is of the form r = 2b pk where p is an odd prime dividing r, b > 1

and k ≥ 1.

Proof : Case (i) r is odd and has at least two distinct prime factors. We write

r = pa1
1 pa2

2 · · · pah
h (h≥ 2).

By theorem 137 and its corollary 15.3.1,

p1x1 + p2x2 ≡ m(mod r)

is solvable. Further, m ∈ R(r) is a sum of s primes in R(r) if, and only if,

α1x1 +α2x2 · · ·+αsxs ≡ m(mod r)

is solvable in integers xi prime to r and αi are rational primes dividing r
(i = 1,2, . . . ,s) or equivalently, if, and only if,

α1x1 +α2x2 · · ·+αsxs ≡ m (mod pai
i ) (1≤ i≤ h)

is solvable in x j prime to pi ( j = 1,2, . . .s). Every such m is a sum of two primes
in R(r).
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If m is a non-unit in R(r), then, m has a prime factor say p1 in common with r.
For such m, we consider the congruence:

(15.3.19) p1x1 + p2x2 ≡ m (mod pai
i ), i > 1.

Now, if p is a prime, the congruence

px1 + px2 + · · ·+ pxs ≡ bt(mod pb), b≥ 1, t ∈ Z
is solvable in x j prime to p if, and only if, the congruence

x1 + x2 + · · ·+ xs ≡ t(mod pb−1)

has such a solution. So, (15.3.19) is solvable mod pai
i in x j prime to pi, by theo-

rem 137. So all non-units of R(r) are sums of two primes in R(r).
Case (ii): Suppose that r is even and r = 2b pa1

1 pa2
2 · · · pah

h (h≥ 1,b≥ 1). Not
every element of R(r) is expressible as a sum of two primes in R(r). Such an
element (not expressible as desired) is m′ = pa1

1 pa2
2 · · · pah

h . For, let

(15.3.20) π1x1 +π2x2 ≡ q(mod r)

where π1,π2 are two prime divisors of r. By theorem 137, in order that (15.3.20)
is solvable modulo 2b, one of the coefficients π1 or π2 must be 2 and the other
must be odd. For example, π1 = p1, π2 = 2. But, in this case (15.3.20) is not
solvable (mod pai

i ). This follows from lemma 15.3.1.
Let r = 2b pa1 (b≥ 2). Then, three primes will not suffice. For, if we consider

(15.3.21) π1x1 +π2x2 +π3x3 ≡ 4p1(mod r),

where πi have values either 2 or p1; for (15.3.21) to be solvable (mod 2b), one
must have, by corollary 15.3.1, essentially one of the two cases;

(i) π1 = π2 = π3 = 2
(ii) π1 = π2 = p1, π3 = 2

In case (i), (15.3.21) is not solvable (mod 2b) by an argument used before. In
case (ii) (15.3.21) is not solvable (mod pai

i ) (i = 1,2, . . .h). So, 4p is not a sum of
three primes in R(r).

On the other hand, four primes will suffice in this case. First, let r be odd.
Then,

(15.3.22) p1x1 + 2x2 + 2x3 + 2x4 ≡ m(mod r)

is solvable by theorem 137 and Lemma 15.3.1.
Secondly, if r is even, the congruence

(15.3.23) p1x1 + p1x2 + 2x3 + 2x4 ≡ m(mod r)

is solvable. So, as before, every element m of R(r) is a sum of four primes of R(r)
where r = 2b pa1

1 (b≥ 2).
Case(iii) (remaining cases)

r = 2pa1
1 or r = 2b pa1

1 pa2
2 · · · pah

h (b≥ 1,h≥ 2)
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If m is odd,

(15.3.24) p1x1 + 2x2 + 2x3 ≡ m(mod r)

is solvable for either value of r by theorem 137 and lemma 15.3.1. If m is even,
we consider

(15.3.25) 2x1 + 2x2 + 2x3 ≡ m (mod r); (m = 2l, l odd)

(15.3.26) p1x1 + p2x2 + 2x3 ≡ m (mod r).

(15.3.25) is solvable (mod 2pa1
1 ) and (15.3.26) is solvable (mod 2b pa1

1 pa2
2 · · · pah

h ).
Thus, whether m is odd or even, m is expressible as a sum of three primes in
R(r). �

Theorem 139 (Eckford Cohen (1954)) : For r> 1, R(r) denotes the quotient ring
Z/rZ.
(a) Every element of R(r) is expressible as a sum of, at most, three primes in R(r)

if, and only if, r has at least two distinct prime factors.
(b) Every element of R(r) is a sum of, at most, two primes in R(r) if, and only if,

r is odd with at least two distinct prime factors or r is an even number of the
form r = 2b p where b≥ 1 and p is an odd prime.

Proof : Both (a) and (b) of the theorem are established, once we are able to show
that

(i) If r = 2b pa1
1 (p an odd prime, b≥ 2, a1 ≥ 1) every element of R(r) is a sum

of two or three primes in R(r).
(ii) If r = 2b pa1

1 (p1 an odd prime, b≥ 1, a1 ≥ 1), any element of R(r) is a prime
or a sum of two primes in R(r).

By theorem 138, it is clear that two primes will not suffice if r is even and
not of the form 2b p1 (p1 an odd prime, b≥ 1). For, if π, and π2 are prime divisors
of r,

π1x1 +π2x2 = q (say)
is neither a prime nor a sum of two primes in R(r).
Step 1 :
(a) Suppose that r = 2b pa1

1 (b≥ 2). Let m ∈ R(r) be such that m is even and m is
not divisible by 4. Then,

2x1 + 2x2 + 2x3 ≡ m (mod r); (m = 2l, l odd )

is solvable.
(b) If m is even and m is divisible by 4, then the congruence

2x1 + 2x2 ≡ m (mod r)

is solvable.
(c) If m is odd,

p1x1 + 2x2 + 2x3 ≡ m (mod r)
is solvable.
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(a),(b),(c) are easily checked.
We recall that m ∈ R(r) is a sum of s primes in R(r) if, and only if, the con-

gruence
α1x1 +α2x2 · · ·+αsxs ≡ m (mod r)

is solvable in integers xi prime to r (i = 1,2, . . .s) and in αi, rational primes divid-
ing r. (i = 1,2, . . . ,s). It follows that all elements of R(r) are sums of, at most,
three primes in R(r).
Step 2: Suppose that r = 2b p1 (p1 an odd prime, b≥ 1). Then, the congruence

p1x1 + 2x2 ≡ m (mod r)

is solvable. If r is divisible by 4, that is, b> 1, as every element m in R(r) has the
form m = 2c pd

1u where 0≤ c≤ b, 0≤ d ≤ 1 and g.c.d (r,u) = 1,

2x1 + 2x2 ≡ m (mod r)

is solvable. Further, if m≡ 0(mod 2p1), then,

p1x1 + p1x2 ≡ m (mod r)

is solvable. In all other cases, m is a prime in R(r). It follows that every element
of R(r) which is not a prime of R(r) is a sum of two primes in R(r). �

Next theorem gives a finite analogue of BGC.

Theorem 140 (Eckford Cohen (1954)) : Let R(r) denote the ring Z/rZ. If r is
even, every element of R(r) with the possible exception of primes associated with
2, is expressible as a sum of two primes in R(r).

Proof : We have only to recapture some of the steps of proof of theorems 138
and 139.

Let r = 2b pa1
1 pa2

2 · · · pah
h (b≥,ai ≥ 1; i = 1,2, . . .h).

Let m∈ Z/rZ and m odd. m is not expressible as a sum of two primes in R(r). So,
we are concerned with even elements of R(r). Any associate of 2 is of the form
2u where g.c.d (u,r) = 1. Such elements are ‘even primes’. So, we, next, look at
elements of the form 2c pb1

1 pb2
2 · · · pbh

h , where 0< c≤ b, 0≤ bi ≤ ai (i = 1,2, . . .h).
If r = 2b pa1

1 (p1 an odd prime; b≥ 1, a1 ≥ 1), any element of R(r) is a prime
or a sum of two primes in R(r). So, an even element of R(r) is a sum of two primes
in R(r).
Let r = 2b pa1

1 pa2
2 · · · pah

h (pi odd primes; h> 1). Let m∈R(r). Then, m has the form

(15.3.27) m = 2c pb1
1 pb2

2 · · · pbh
h n , g.c.d(n,r) = 1;

(0≤ c≤ b, 0≤ bi ≤ ai ; i = 1,2, . . .h).
The representation of m in (15.3.27) is unique except for the unit n in the ring

R(r) (by lemma 15.3.2). An even element other than an associate of 2 has the
form

(15.3.28) m = 2c pb1
1 pb2

2 · · · pbn
n n, g.c.d (n,r) = 1,

(1≤ c≤ b,0≤ bi ≤ ai; i = 1,2, . . .h).
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Claim : m as given in (15.3.28) is a sum of two primes in R(r).
If m is a nonzero, non-unit in R(r), m has a prime factor say p1 in common

with r. For such an m, we consider the congruences:

(15.3.29)

{
p1x1 + p2x2 ≡ m (mod 2b);
p1x1 + p2x2 ≡ m (mod pai

i ), i> 1.

(15.3.29) is solvable in x j( j = 1,2) prime to 2b as well as prime to pai
i (i = 2, . . . ,h).

This is a consequence of theorem 137 . So, all the even nonzero non-units of R(r)
are sums of two primes of R(r). In the case where r = 2b(b > 1), for 1 ≤ m ≤ r,
m = 2cu where u is odd (that is, 2 - u) is such that m is a prime in R(r), if, and only
if, c = 1. Further, no unit of R(2b) is a sum of two primes of R(2b). However, the
congruence

(15.3.30) 2x1 + 2x2 ≡ m (mod 2b)

is solvable in x j( j = 1,2) prime to 2 by theorem 137.
By corollary 15.3.1 (b), given a prime p, integers a1,a2, . . .at ,at+1, . . .at+k

with p - ai(i = 1,2, . . . t); p |ai (i = t +1,. . . ,s = t +k), where t is odd, the congruence:

a1x1 + a2x2 · · ·+ asxs ≡ n (mod pq)

in xi prime to p(i = 1,2, . . . ,s = t + k) has no solution when n is even. That is,
(15.3.30) does not fall under any of the cases (a),(b),(c) of corollary 15.3.1. Thus,
any even element of R(r) (when r is even) is either a prime associated to 2 or is a
sum of two primes of R(r). �

Remark 15.3.1 : Theorems 137 to 140 have been drawn from Eckford Cohen
[12].

15.4. The Goldbach problem in Mn(Z)

Mn(Z) denotes the ring of n×n matrices (n≥ 2) with entries from Z, the ring
of integers. In [36], Vaserstein proves that given any integer p and A ∈ M2(Z),
one can find matrices X ,Y ∈M2(Z) such that

(15.4.1) A = X +Y with detX = detY = p.

(15.4.1) shows the expressibility of A as a sum of two matrices X ,Y having the
property that detX = detY = p (the given integer). (15.4.1) is an analogue of the
Goldbach problem in the context of 2×2 matrices with entries from Z.

For a diagonal matrix
[

a 0
0 b

]
= A, we have

(15.4.2)
[

a 0
0 b

]
=
[

a 1
−p 0

]
+
[

0 −1
p b.

]

A generalization is given by Jun Wang [39] in 1992.
The tool for handling square-matrices, in general, is the process of reduction

of a matrix to the ‘diagonal form’. Instead of Z, (which is a PID), we consider a

© 2007 by Taylor & Francis Group, LLC



ANALOGUES OF THE GOLDBACH PROBLEM 545

principal ideal domain D. We recall that any finite collection of elements of a PID
has a g.c.d.

Notation 15.4.1 : Let D be a PID and n, a positive integer. GLn(D) denotes the
group of all invertible elements P in the matrix ring Mn(D) of n×n matrices with
entries from D.

Definition 15.4.1 : Two n×n matrices A and B (elements of Mn(D)) are said to
be equivalent if there exists P ∈ GLn(D) such that B = PAP−1.

Let V,V ′ be two free D-modules each of rank n. Two matrices A,B are equiva-
lent if, and only if, they represent the same D-module homomorphism Ψ : V →V ′.
The image Ψ(V ) of V is a submodule of V ′. The rank of the homomorphism Ψ
is the rank of the matrix A of Ψ. As in the case of matrices having entries from
a field F , the rank of A over D is the maximum number of linearly independent
rows (or columns) of A. Further, equivalent matrices have the same rank.

Equivalence of matrices is best understood using ‘elementary column or row
operations’. The elementary column operations on A ∈Mn(D) are

(i) Interchange of any two columns,
(ii) multiplication of the elements of a column by a unit in D,

(iii) addition of d times elements of a column to another column, where d ∈ D.

If one of these is applied to I, the n× n identity matrix, the resulting matrix
is an elementary matrix E. It is an invertible matrix. To apply an elementary
column operation on an n×n matrix A (with entries from D) is to postmultiply A
by the corresponding elementary matrix E, that is, A gets transformed into AE by
the elementary column operation. Similarly, elementary row operations amount
to premultiplication by E. That is, A gets transformed into EA by the elementary
row operation.

Observation 15.4.1 : Any matrix obtained from A ∈ Mn(D) by elementary row
and column operations is equivalent to A; as A gets transformed into the form
PAP−1 where P is an invertible matrix ∈ GLn(D).

Next, we consider J ∈ GL2(D).
Let

J =
[

a b
c d

]
; a,b,c,d ∈ D, ad − bc 6= 0D.

We write

(15.4.3) J⊕ I =




a b 0D 0D · · · · · ·
c d 0D 0D · · · · · ·

0D 0D 1 0D · · · · · ·
0D 0D · · · · · · · · · 1D




J⊕ I is a k + 2× k + 2 matrix, where I is the k× k unit matrix (k ≥ 1). Further,
ad − bc is a unit in D. J⊕ I is a direct sum square matrix.
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Definition 15.4.2 : [29] J⊕ I as given in (15.4.3) is called a secondary matrix.
Postmultiplication by J⊕ I is called a secondary column operation.

Lemma 15.4.1 : Let A be an n× n matrix with entries from D. If A ∈ Mn(D)
(n ≥ 2) is such that the first row of A is [s t · · · · · · ], then A can be transformed
into a matrix B with first row [g 0 0 · · · 0] where g = g.c.d (a,b) by a secondary
column operation.

Proof : The idea of proof is that as D is a PID, a and b have a greatest common
divisor g and g is a linear combination of a and b, say,

(15.4.4) g = as + bt; s, t ∈ D

We could write s = gs′, t = gt ′ where g.c.d (s′, t ′) = 1D. It follows from (15.4.4)
that as′ + bt ′ = 1D. Further, ts′ − st ′ = 0D. So, in order to transform the first row of
A into [g 0 · · ·0], we do the secondary column operation choosing a direct sum
square matrix J⊕ I given by

(15.4.5) J⊕ I =




a −t ′ 0D · · · · · ·
b −s′ 0D · · · · · ·

0D 0D 1D 0D · · ·
· · · · · · · · · · · · · · ·
0D 0D 0D · · · 1D




The 2×2 block of A(J⊕ I) appearing in the left-top corner is
[

s t
− −

][
a −t ′

b s′

]
=
[

sa + tb −st ′ + ts′

− −

]
=
[

g 0D

− −

]

Further, J ∈ GL2(D), as as′ + bt ′ = 1D 6= 0D.
This proves the statement of lemma 15.4.1. �

Lemma 15.4.2 : Given A∈Mn(D) (A, nonzero) there exists a sequence of elemen-
tary row or column operations together with secondary row or column operations
transforming A to B where B is of the form

(15.4.6) B =
[

t 0
0 C

]

in which C ∈Mn−1(D) and t divides every entry in C.

Proof : The use of g.c.d of two elements of D via a secondary column operation
(as in lemma 15.4.1) helps. We call the left-upper corner of A with entry a11 6= 0D,
the corner of A. Since A is nonzero, we can assume that a11 6= 0D, if necessary, by
interchanging rows or columns. Secondary column or row operations (described
earlier) will change the first row of A to

[
t 0 0 · · ·0

]
. Analogous secondary row

operations reduce entries in the first column below the corner to 0D. These sec-
ondary row operations may spoil some of the entries in the first row. However,
using secondary column operations again and then making secondary row op-
erations, we will eventually get the form (15.4.6) for A after a finite number of
iterations.
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In the matrix B that is obtained, though first row and first column will be
okay, t may not divide all the entries in C ∈ Mn−1(D). If t does not divide some
entry in the second row, add second row to first row and use secondary row or
column operations (as done earlier) so as to produce a new corner t ′ where t ′|t. It
means that the principal ideal (t)( (t ′). In case, the new corner fails to divide an
entry in some other row, repeat the procedure, one obtains an ascending chain of
principal ideals:

(t)⊂ (t ′)⊂ (t
′′

)⊂ ·· ·
on the successive corner entries. As D is Noetherian, the ascending chain of
principal ideals terminates and so we will obtain the matrix B as in (15.4.6) with
the stated properties. �

Lemma 15.4.3 : Let A be a nonzero n×n matrix with entries from D. A can be
reduced to a diagonal matrix.

L = diag (t1, t2, . . . , tn),

where ti | ti+1(i = 1,2, . . . (n−1)), ti 6= 0D, (i = 1,2, . . .n), by a sequence of elementary
and secondary unimodular row and column operations.

Proof : We recall that U ∈ Mn(D) is unimodular, if detU = ±1D. For n = 2,
postmultiplication by a secondary matrix takes the form

[
s t
− −

][
a −t ′

b s′

]
=
[

sa + tb −st ′ + ts′

− −

]
=
[

g 0D

− −

]

where g = g.c.d (a,b), as′ + bt ′ = 1D 6= 0D, st ′ − ts′ = 0D. So, it is the result of a
secondary unimodular column operation. Therefore, the result holds for n = 2. We
apply induction on n. If it is true for n = k, it is also true for n = k + 1, by lemma
15.4.2. This proves lemma 15.4.3. �

Lemma 15.4.4 : If P ∈ GLn(D), P is a product of elementary and secondary
matrices.

Proof : We note that a sequence of elementary and secondary column opera-
tions is the same as postmultiplication by elementary and secondary matrices say
E1,E2, . . .Ek. Similarly, we do premultiplication by elementary and secondary
matrices for a sequence of elementary and secondary row operations. Further, P
is invertible if, and only if, detP is a unit in D. So, we obtain

E ′mE ′m−1 · · ·E ′1PE1E2 · · ·Ek = L = diag (t1, t2, . . . tn), by lemma 15.4.3. ti is a unit
in D (i = 1,2, . . .n). Now, multiplying a column by a unit in D, we can make L = I,
the n×n unit matrix. Since the inverse of an elementary matrix is elementary, we
get P as a product of elementary and secondary matrices in the form

(15.4.7) P = E ′ −1
1 E ′ −1

2 · · · E ′ −1
m · E −1

k E −1
k−1 · · · E −1

1 .

�
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Lemma 15.4.5 : Two matrices A and B (elements of Mn(D)) are equivalent if,
and only if, there is a sequence of elementary and secondary row and column
operations transforming A into B.

Proof : ⇐: Suppose A is transformed into B in the form

B = E ′−1
1 E ′−1

2 · · ·E ′
−1
m A E−1

k E−1
k−1 · · ·E−1

1 ,

where E1,E2, . . .Ek,E ′1, . . .E
′
m are elementary and secondary matrices. Then,

B = QAP−1 where P,Q are invertible n× n square matrices. That is, A and B
are equivalent.

:⇒ Given that A and B are equivalent matrices, there exist invertible matrices
P,Q such that B = QAP−1. We can write P and Q as products of elementary and
secondary matrices as in (15.4.7). So, by lemma 15.4.4, Q and P−1 are products
of elementary and secondary matrices. Therefore, when A and B are equivalent
matrices, A can be transformed into B by a sequence of elementary and secondary
row and column operations. �

Lemmas 15.4.3 and 15.4.5 together yield the following

Theorem 141 : A ∈Mn(D) is equivalent to a matrix

L = diag (t1, t2, . . . tn)

where ti(i = 1,2, . . .n) are nonzero and ti | ti+1 (i = 1,2, . . . (n − 1)).

Remark 15.4.1 : Lemmas 15.4.1 to 15.4.5 and theorem 141 have been adapted
from S. MacLane and G. Birkhoff [29, Chapter VIII, section 7].

Definition 15.4.3 : Given A ∈Mn(D), where A = [ai j], we define

d(A) = g.c.d (a11,a12, . . .a1n;a21, . . .a2n; . . . ;an1,an2,ann).

We allow 0D to divide 0D and set g.c.d (0D,0D) = 0D. Further, g.c.d (0D,a) = a∈D.
By repeated application of lemma 15.4.1 and using theorem 141, A ∈ Mn(D) is
equivalent to a matrix L = diag (t1, t2, . . . , tn), where t1 = d(A). We state this for the
special case D = Z, the PID of rational integers in

Proposition 15.4.1 : Let A ∈ Mn(Z) there exist unimodular matrices U,V in
Mn(Z) such that

(15.4.8) UAV = diag (t1, t2, . . . , tn)

where t1 = d(A) and ti | ti+1(i = 1,2, . . . , (n − 1)).

See N. Jacobson [28, theorem 3.8, chapter 3, p 176].
By virtue of the above proposition, we note from (15.4.2) that given A ∈ M2(Z)
and an integer p, A is as shown in (15.4.1).

If A ∈ Mn(Z), (n ≥ 2), we could take A = diag (t1, t2, . . . tn); t1 = d(A) and
ti | ti+1, i = 1,2, . . . , (n − 1). When n is even, A is made up of 2× 2 blocks. So we
deduce
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Theorem 142 (Jun Wang (1992)) : Let n be even. Suppose that q is a given
positive integer, there exist X ,Y ∈Mn(Z) such that

(15.4.9) A = X +Y with detX = detY = q.

Therefore, an analogue of the Goldbach problem in the form given above is
possible for n even. The situation, when n is odd, is handled in the following

Theorem 143 (Jun Wang (1992)) : Let n (> 1) be an odd integer and q a fixed
positive integer. Then, for any A ∈Mn(Z), there exist matrices X ,Y ∈Mn(Z) such
that

A = X +Y and detX = detY = q
if, and only if, d(A) divides 2q.

Proof : :⇒ Suppose that A,X ,Y ∈ Mn(Z) are such that A = X + Y and detX =
detY = q. Let d(A) = d. Then,

det(A − X) = detY = q.

But, det(A − X) ≡ det(−X)(mod d), (by theorem 141). As n is odd, det(−X) =
−detX . So, detY ≡ −detX(mod d) from which it follows that 2q≡ 0(mod d).
⇐: Suppose that 2q≡ 0(mod d). We write 2q = kd, where k≥ 1. By theorem

141 and by the validity of (15.4.9) for n even, it will suffice if we prove the
theorem for n = 3. So, we take A = diag (d,a,b) where d |a, d |b. Writing

(15.4.10) X =




d 1 0
0 a 1

−q −k 0


 ,Y =




0 −1 0
0 0 −1
q k b




we see that A = X +Y with detX = detY = q. Thus, the theorem holds for all odd
n≥ 3, when d |2q. �

Corollary 15.4.1 : Let n(> 1) be odd and A ∈ Mn(Z). Then, for any integer q,
there exist matrices X ,Y ∈Mn(Z) such that

A = X +Y with detX = detY = q

if d(A) = 1 or 2.

For, d(A) = 1 or 2 satisfies the condition that d(A) divides 2q.

Remark 15.4.2 : Theorems 141 to 143 and corollary 14.4.1 have been adapted
from Jun Wang [39].

15.5. An analogue of Goldbach theorem via polynomials over finite fields

We examine monic polynomials with coefficients from a finite field Fq having
q elements, where q = pm, p a prime, m≥ 1. We make a restatement of corollary
4.6.1 of chapter 4 under a slightly different notation.

Fact 15.5.1 : Let Fq be a finite field of characteristic p (a prime). Then, for every
positive integer r, there exists an irreducible polynomial of degree r in Fq[x].
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Proof : Suppose that q = pm(m≥ 1). We denote the algebraic closure of Fq by F̄q.
Then, there exists a field K ⊆ F̄q (and containing the prime subfield Z/pZ) such
that K consists of the zeros of xpmr

−x. Now, every element of Fq is a zero of xpm
−x.

That is, if α∈Fq, αpm
=α. But, pmr = pm · pm(r−1). So, αpmr

= (α)pm(r−2) · · · =αpm
=α.

So, α ∈ Fq⇒ α ∈ K. Or, Fq ⊆ K. [K : Fq] = r. So, K is a simple extension of Fq.
Therefore, there exists β ∈ K such that K = Fq(β). It follows that the irreducible
polynomial of β over Fq is of degree r. This proves the assertion. �

Definition 15.5.1 : A monic polynomial M(x) ∈ Fq[x] is called even if q = 2 and
if x or x + 1 divides M(x).

For example, x2 + 1 ∈ F2[X] is an even polynomial. x3 + x2 + 1 ∈ F2[X] is not
an even polynomial, though q = 2. We note that x3 + x2 + 1 is irreducible over F2.

Definition 15.5.2 : A monic polynomial M(x) ∈ Fq[X] which is not an even poly-
nomial, is called an odd polynomial.

Definition 15.5.3 : Let M(x) ∈ Fq[X] be monic with degM(x) = r. M(x) is called
a 3-primes polynomial, if there exist monic irreducible polynomials P1(x), P2(x)
and P3(x) ∈ Fq[x] such that degP1(x) = r, degP2(x)< r, degP3(x)< r and

(15.5.1) M(x) = P1(x) + P2(x) + P3(x).

For instance, x4 + x2 + 1 is an odd 3-primes polynomial over F2.
For,

P1(x) = x4 + x3 + x2 + x + 1, P2(x) = x3 + x2 + 1, P3(x) = x2 + x + 1

are irreducible polynomials in F2[x] and

M(x) = x4 + x2 + 1 = P1(x) + P2(x) + P3(x).

Lemma 15.5.1 : (a) When q = 2m(m≥ 1), x2 + a ∈ Fq[x] is not a 3-primes poly-
nomial.

(b) When q = 2, g(x) = x(x+1)h(x), where h(x)∈F2[x] and g(x)+1 is reducible,
is not a 3-primes polynomial.

Proof : (a) In Fq, Ψ : Fq −→ Fq given by Ψ(α) = α2, α ∈ Fq is an automorphism
of Fq, as Ψ(α+β) = (α+β)2 = α2 +β2 = Ψ(α) + Ψ(β) and Ψ(αβ) = Ψ(α)Ψ(β) for
αβ ∈ Fq. Further, Ψ(0) = 0 and Fq is finite. (Ψ is the Frobenius automorphism of
Fq).

Let P2(x) = x + a2, P3(x) = x + a3 and P1(x) = x2 + (a + a2 + a3). Then, given
f (x) = x2 + a, there exists α ∈ Fq such that α2 = a + a2 + a3. So, P1(x) is not irre-
ducible as P(x) = (x +α)2. Evidently, P2(x) and P3(x) are first degree polynomials.
So, f (x) is not a 3-primes polynomial in Fq[x].

(b) Let g(x) satisfy the stated conditions. g(x) has an even number of terms if,
and only if, it is divisible by x + 1, and so, x + 1 is the only irreducible polynomial
over F2 with an even number of terms. If g1(x) and h1(x) ∈ F2(x) are such that
g1(x) and h1(x) have an even (odd) number of terms, then g1(x) + h1(x) has an
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even number of terms. If g1(x) has an odd number of terms and h1(x) has an even
number of terms then g1(x) + h1(x) has an odd number of terms.

Let g(x) = P1(x) + P2(x) + P3(x).

As g(x) = x(x + 1)h(x), not all of P1(x), P2(x) and P3(x) have an odd number of
terms. So, one of them, say, P2(x) = x + 1. Not all of them can have 1 as their
constant terms. So, as we need only irreducible polynomials, we take P3(x) = x.
Then, P1(x) = g(x) − (x + 1) − x = g(x) − 1 = g(x) + 1. But, then, P1(x) is reducible by
hypothesis. So, it is impossible to write g(x) = P1(x) + P2(x) + P3(x), where Pi(x)
(i = 1,2,3) is irreducible. So, g(x) is not a 3-primes polynomial. �

For r ≥ 1, M(x) = x4r + x2r is not a 3-primes polynomial, since M(x) + 1 =
x4r + x2r + 1 = (x2r + xr + 1)2 and so M(x) + 1 is reducible. Further,

M(x) = x2r(x2r + 1) = x(x + 1)h(x), for h(x) ∈ F2[x].

Remark 15.5.1 : D.R. Hayes [26] defines a 3-primes polynomial of degree r as
M(x) where M(x) is capable of representation as

(15.5.2) M(x) = αP1(x) +βP2(x) +γP3(x)

and α,β,γ ∈ Fq, Pi(x) ∈ Fq(x) is of degree r. (i = 1,2,3).

We state, without proof, a theorem of Hayes.

Proposition 15.5.1 (D.R. Hayes (1966)) : For every degree r ≥ 5, there exists a
qr (depending on r and decreasing as r increases) such that if q≥ qr, then every
odd monic polynomial M of degree r in Fq[x] is a 3-primes polynomial.

Gove Effinger reports that by Haye’s theorem, if q ≥ 6,340,567, then every
monic 5th degree polynomial over Fq is a 3-primes polynomial. Therefore,
q5 ≤ 6,340,567. Also, q6 ≤ 5,297 and q7 ≤ 479. Also, in Hayes’ theorem, r
is considered to be ≥ 5, and it is an ‘asymptotic’ result.

For polynomials of low degree, G. W. Effinger [18], [19] gives the 3-primes
theorem as follows:

Proposition 15.5.2 :
(a) If q is odd and if degM(x) = 2,3,4,5 or 6, then M(x) is a 3-primes poly-

nomial. If degM(x) = 7 and q ≥ 203 (and is odd), then M(x) is a 3-primes poly-
nomial.

(b) Let M(x) be an odd monic polynomial in Fq(x), where q is even. If degree
M(x) is 3, 4, 5 or 6, then M(x) is a 3-primes polynomial. If degM(x) = 2 and if
M(x) is of the form x2 + bx + a where b 6= 0, then M(x) is a 3-primes polynomial.

15.5.1. THE POLYNOMIAL 3-PRIMES CONJECTURE.
Every odd monic polynomial M(x)∈ Fq[x] is a 3-primes polynomial except for
the case q even and M(x) = x2 + a ∈ Fq[x].
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The theorems of Hayes and Effinger (propositions 15.5.1 and 15.5.2 above)
solve the polynomial 3-primes conjecture except for certain individual values of
degM(x). The cases not covered are shown in the following table:

For odd monic
polynomials
of degree r 7 8 9 10 11 12 13 14 15 16
We must still
check all fields
of order < 199∗ 97 47 29 23 17 13 11 9 8

For odd monic
polynomials
of degree r 17 – 20 21 – 24 25 – 33 34 – 41
We must still
check all fields
of order < 7 5 4 3 ∗ and the single case q = 256.

Thus, the solution of the polynomial 3-primes conjecture is reduced to a fi-
nite and apparently tractable calculation as given in the table above. To give a
flavour of the method of solution for polynomials of low degree, we discuss a few
particular cases.

We need a few results from the theory of finite fields. For q = pm (p a prime,
m≥ 1) Fq, denoting a finite field of q elements, contains Z/pZ as its prime sub-
field. Fq is a finite extension of Z/pZ of degree m. For r ≥ 2, Fqr is a finite ex-
tension of Fq of degree r over Fq. We could write Fqr = Fq(α) for some α ∈ Fqr.
The irreducible polynomial of α over Fq is denoted by irr (α,Fq). It is also called
the minimal polynomial of α, as it is the monic polynomial of minimal degree
having α as a zero. It is known [23] that every field F has an algebraic closure,
that is, an algebraic extension F̄ which is algebraically closed. If E is a finite ex-
tension of F, the number of isomorphisms of E into F̄ leaving F fixed is denoted
by {E : F}, called the index of E over F . {Fq(α) : Fq} gives the number of distinct
zeros of irr (α,Fq). If {Fq(α) : Fq} = [Fq(α) : Fq](= r), Fq(α) is called a separable
extension of Fq. An element α in F̄q is separable over Fq, if Fq(α) is a separable
extention of Fq. A field F is perfect if every finite extension of F is a separable
extension. Every finite field is perfect.

Now, Fq has characteristic p. E = Fqr(r≥ 2) is a finite extension of Fq. Anal-
ogous to the primitive element theorem [23] (which says that a finite separable
extension E of an infinite field F contains an element α such that E = F(α)), we
note that Fqr contains primitive elements α such that Fqr = Fq(α).

We denote by E, a field which is an algebraic extension of a field F . Suppose
that α ∈ E. β is said to be a conjugate of α, if the irreducible polynomial of α
has β as a zero also. If F ⊆ E ⊆ F̄ (the algebraic closure of F), an automorphism
σ of F̄ which leaves F fixed, maps α(ε E) onto some conjugate β of α over F .
The collection of all automorphisms of E leaving F fixed forms a group G(E/F).
Let F ⊂ E ⊆ F̄ . E is called a splitting field over F , if it is the splitting field

© 2007 by Taylor & Francis Group, LLC



ANALOGUES OF THE GOLDBACH PROBLEM 553

of a specified set of polynomials in F[x]. E is a splitting field over F , if all
isomorphisms of E into F̄ leaving F fixed are automorphisms of E. That is,
if E ⊆ F̄ is a splitting field over F , then every irreducible polynomial in F[x]
having a zero in E splits in E (factors into a product of linear factors in E[x]).
Further, if E is a finite extension of F and is a separable splitting field over F ,
then, |G(E/F)| = [E : F]. In such a situation, E is referred to as a finite normal
extension of F .
Definition 15.5.4 : Let E be a finite normal extension of a field F. For α ∈ E, the
norm of α over F, written NE/F(α), is given by

NE/F(α) =
∏

σ∈G(E/F)

σ(α).

The trace of α over F is given by

TE/F (α) =
∑

σ∈G(E/F)

σ(α).

It is verified that NE/F (α) and TE/F(α) are elements of F.
Further, when E = F(α), if

irr(α,F) = xn + an−1xn−1 + · · ·+ a1x + a0,

then,

NE/F (α) = (−1)na0(15.5.3)
TraceE/F(α) = TE/F(α) = −an−1.(15.5.4)

In what follows, we consider only monic polynomials with coefficients from a
finite field Fq.

Definition 15.5.5 : Given P(x) = xr + a1xr−1 + a2xr−2 + · · · + ar where ai ∈ Fq

(i = 1,2, . . .r), a1 is called the first or trace coefficient of P(x), a2 the second
coefficient, . . . ,ar the rth coefficient.

In order to solve the 3-primes problem for polynomials of low degree, the
general procedure is as follows:

Let M(x) be a given polynomial of degree r. We seek an irreducible poly-
nomial P1(x) of degree r such that M(x) − P1(x) is monic and is of as low a
degree as possible. Then, we find an irreducible polynomial P2(x) such that(
M(x) − P1(x)

)
− P2(x) is monic and irreducible. We call this P3(x). It follows

that

(15.5.5) M(x) = P1(x) + P2(x) + P3(x)

making M(x) a 3-primes polynomial.
For instance, if degM(x) = 3, it will suffice if P1(x) can be obtained so that

M(x) − P1(x) is a (monic) quadratic polynomial and if P2(x) is obtained so that(
M(x)−P1(x)

)
−P2(x) is (monic) linear. If degM(x) = 5, we find P1(x) with degP1(x)

= 5 and P2(x) = M(x)−P1(x) is (monic) cubic. Then,
(
M(x)−P1(x)

)
−P2(x) is to be

a (monic) linear polynomial.
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Theorem 144 : Let a1 ∈ Fq and r ≥ 2. Then, there exists an irreducible polyno-
mial P(x) of degree r whose first coefficient is a1 except for the case q even, r = 2,
a1 = 0.

Proof : Case 1. Let p = char Fq. Suppose that p - r. Pick any t0, a primitive
element of Fqr (an extension of Fq). Let

t = t0 −
a1 + trace (t0)

r
be also a primitive element of Fqr. Then,

trace (t) = trace (t0) − trace (
a1 + trace (t0)

r
) = trace (t0) −

ra1

r
− trace (t0) = −a1.

Let ft(x) be the irreducible polynomial of t over Fq. Then ft (x) has the first coef-
ficient a1.
Case 2. Suppose that char Fq = p and p divides r. Since Fqr is a separable ex-
tension of Fqr, the trace function is not identically zero. Select t0 ∈ Fqr with
trace (t0) 6= 0. Then, for any t ∈ Fq, t = ( −a1

trace (t0) ) t0 has trace (t) = −a1. So,
Ψ : Fqr → Fq where Ψ(t) = trace (t), t ∈ Fqr is onto. But, Ψ is an additive
homomorphism. So, for every t ∈ Fq,

#{t ∈ Fqr : trace (t) = −a1} =
qr

q
= qr−1.

If r > 2, r − 1 > r
2 . But, there are at the most qr/2 elements (in Fqr) which are

not primitive elements. So, there exists a primitive element t with trace (t) = −a1.
Then, ft(x) is the irreducible polynomial, as desired.

If r = 2 and q = 2m(m ≥ 1),kerΨ = {t ∈ Fq2 : trace (t) = 0} is given by
kerΨ = Fq. So, there are no primitive elements t in Fq2 with trace(t) = 0. �

Let Pi(x) be an irreducible polynomial of degree r with coefficients from Fq.
(i = 1,2, . . .n). Suppose that g.c.d (q,r) = 1. If n distinct elements of Fq appear as
the second coefficient in Pi(x)(i = 1,2, . . .n) where trace coefficient of Pi(x) = 0 for
each i = 1,2, . . .n, then, the n distinct elements will appear as the trace coefficient
for every irreducible polynomial P(x) ∈ Fq[x], where degP(x) = r. We say that all
trace coefficients are obtained by ‘translation’. This is justified in

Theorem 145 (Translation lemma) : Suppose that for a ∈ Fq, there are n0(a)
irreducible polynomials of degree r with trace coefficient = 0 and second coeffi-
cient a, where g.c.d (q,r) = 1. Let a1 ∈ Fq be such that there are n1(a) irreducible
polynomials of degree r with trace coefficient a1 and second coefficient a. Then,

(15.5.6) n1(a) = n0
(
a −
(

r
2

)
a2

1

r2

)
.

That is, for any a1 ∈ Fq, the set {n1(a) : a ∈ Fq} is just a permutation of the set
{n0(a) : a ∈ Fq}.
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Proof :
Suppose that t ∈ Fqr satisfies the irreducible polynomial xr + axr−2 + · · · + ar.
Assume that t is a primitive element of Fqr. Then, t − a1

r is also primitive in Fqr

and satisfies

(x +
a1

r
)r + a (x +

a1

r
)r−2 + · · · = (xr + a1xr−1 +

(
r
2

)
a2

1

r2 xr−2 + · · · )

+ a (xr−2 +
r − 2

r
a1xr−3 + · · · ).

Or,

(x +
a1

r
)r + a(x +

a1

r
)r−2 + · · · = xr + a1xr−1 +{

(
r
2

)
a2

1

r2 + a}xr−2 + · · · .

From the above, (15.5.6) follows. �

Remark 15.5.2 : When degP(x) = r and char Fq = p is such that p - r, theorem
145 says that we can obtain all trace coefficients by ‘translation’. So, it suffices to
study polynomials with trace coefficient = 0. This is a technique used by Effinger
[18], [19], [21] in his investigations. See also [22].

Next, using theorems 144 and 145, we obtain

Theorem 146 (G. W. Effinger (1988)) :
a) If q is odd, then every quadratic and cubic polynomial over Fq are 3-primes

polynomials.
b) If q is even, every monic quadratic or a cubic polynomial over Fq is a

3-primes polynomial, except for x2 + a, a ∈ Fq.

Proof : Case 1, Quadratic case :
Let M(x) = x2 + a1x + a. a1,a ∈ Fq, a 6= 0.

Then, by theorem 144, there exists an irreducible polynomial P1(x) of degree 2
whose first coefficient is a1, except for q even, r = 2 and a1 = 0. So we take
P1(x) = x2 +a1x+a′, P2(x) = x+a, P3(x) = x+a′, so that M(x) = P1(x)+P2(x)+P3(x),
when q is even.

Next, suppose that q is odd. Then degM(x) is relatively prime to p = char Fq.
Theorem 144 guarantees that there exists an irreducible polynomial P1(x) = x2 +
(a1 − 2)x + a′ for some a′ ∈ Fq. Let P2(x) = x + a and P3(x) = x − a′. Then, M(x) =
P1(x) + P2(x) + P3(x) as required.
Case 2, Cubic Case:

(i) Char Fq = 2. Let M(x) = x3 + a1x2 + ax + b. If q> 2, there must exist at least
two distinct coefficients a′1 and a′2 such that

P1,1(x) = x3 + (a1 + 1)x2 + a′1x + b′1,

P1,2(x) = x3 + (a1 + 1)x2 + a′2x + b′2.
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Both P1,1(x) and P1,2(x) are irreducible for some b′1,b
′
2. If this is not the

case, then, (a1 + 1) = a′0 (say). If b′ ranges over all the nonzero elements of
Fq, there would exist at the most (q − 1) irreducible polynomials with first
coefficient (a1 + 1). But, by theorem 144, the q3−q

3 irreducible polynomials
of degree 3 are equally divided among the q possible trace values. So, we
notice that there exist q2−1

3 irreducible polynomials of degree 3, with first
coefficient (a1 + 1). In order that

q2 − 1
3
≤ (q − 1),

we must have q + 1≤ 3. That is q≤ 2. So, there exist at least two polyno-
mials P1,1(x) and P1,2(x) with the stated properties.

So, when q > 2, we select P1(x) = x3 + (a1 + 1)x2 + a′x + b′ with
a1 + a′ + 1 6= 0. By theorem 144, we may select

P2(x) = x2 + (a1 + a′ + 1)x + b′′

and P3(x) = x + (b + b′+ b′′). Then, M(x) = P1(x) + P2(x) + P3(x) as required.
Next, when q = 2, there are 8 monic cubic polynomials over F2. We

display the ‘3-primes representations’ for each using the fact that x3 + x2 + 1,
x3 + x + 1 and x2 + x + 1 are irreducible polynomials.

(i) x3 = (x3 + x2 + 1) + (x2 + x + 1) + x
(ii) x3 + 1 = (x3 + x2 + 1) + (x2 + x + 1) + (x + 1)

(iii) x3 + x = (x3 + x + 1) + (x + 1) + x
(iv) x3 + x + 1 = (x3 + x + 1) + x + x
(v) x3 + x2 = (x3 + x2 + 1) + (x + 1) + x

(vi) x3 + x2 + 1 = (x3 + x2 + 1) + x + x
(vii) x3 + x2 + x = (x3 + x + 1) + (x2 + x + 1) + x

(viii) x3 + x2 + x + 1 = (x3 + x + 1) + (x2 + x + 1) + (x + 1).
We have already noted that x2 + a, (a ∈ Fq) is not a 3-primes polynomial
when q = 2m. See Lemma 15.5.1(a).

(ii) Char Fq = p, odd. Let M(x) = x3 +a1x2 +ax+b. The irreducible polynomials
P1(x), P2(x) and P3(x) are given by

P1(x) = x3 + (a1 − 1)x2 + a′x + b′,

P2(x) = x2 + (a − a′− 1)x + b′′,

P3(x) = x + b − b′− b′′.

So, every monic polynomial of degree 3 over Fq (q odd) is a 3-primes poly-
nomial.
This completes the proof of theorem 146.

�

The first or trace coefficient was needed to obtain a 3-primes representation
of a quadratic or a cubic polynomial in Fq[x]. For polynomials of degree 4 or 5,
we examine the second coefficient of the polynomial.
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Now, given a field F , a map η : F → F given by η(x) = x2, x ∈ F ; defines a
‘homogeneous’ quadratic form, in the sense that

(15.5.7) η(x + y) −η(x) −η(y) = (x + y)2 − x2 − y2 = 2xy.

Let V,V ′ be finite dimensional vector spaces over a field F . An F-bilinear
function ξ : V ×V ′→W , a finite dimensional vector space over F, is given by

(15.5.8)

{
ξ(α1~v1 +α2~v2,~v ′) = α1ξ(~v1,~v ′) +α2ξ(~v2,~v ′) ;
ξ(~v,α1~v1

′ +α2~v2
′) = α1ξ(~v,~v1

′) +α2ξ(~v,~v2
′) , (α1,α2 ∈ F) ,

where ~v,~v1,~v2 are elements of V and ~v ′,~v1
′,~v2

′ are those of V ′. A bilinear form
on the finite dimensional vector spaces V,V ′ (over the same field F) is a bilinear
function ξ : V ×V ′ → F satisfying relations of the type (15.5.8). Suppose that
dimV = m, dimV ′ = n. Let B,B′ be bases for V,V ′ respectively. We define the
matrix of the form ξ : V ×V ′→ F to be the m× n matrix [ai j] with entries from
F (relative to bases B,B′) given by

(15.5.9) ai j = ξ(~bi,~b′j), i = 1,2, . . .m; j = 1,2, . . .n;

where B = {~b1,~b2, . . . ,~bm}, B′ = {~b ′1,~b ′2 . . . ,~b ′m}. In fact,
for v =

∑
xi~bi, v′ =

∑
y j~b j

′ ;

ξ(~v,~v ′) =
m∑

i=1

n∑

j=1

xiξ(~bi,~b j
′)y j.

To each bilinear form ξ, there corresponds an m× n matrix A = [ai j] given in
(15.5.9). It is an isomorphism of the vector space of bilinear forms ξ : V×V ′→ F
to the vector space Mm,n(F) of m×n matrices with entries from F . If A∈Mm,n(F)
corresponds to ξ, the rank of A is referred to as the rank of the bilinear form ξ. Two
m×n matrices represent the same bilinear form relative to two different bases in
V and V ′ if, and only if, they are equivalent. We know that a matrix A of rank r is
equivalent to one in canonical form with r entries 1F on the main diagonal and all
other entries zero.

Definition 15.5.6 : A bilinear form ξ : V×V →F (where V is a finite dimensional
vector space over F) is said to be symmetric if ξ(~v,~v ′) = ξ(~v ′,~v) for all ~v,~v ′ ∈V.

We note that a bilinear form ξ : V ×V → F is symmetric if, and only if, its
matrix A (relative to any one basis B of V ) is symmetric.

Observation 15.5.1 : If ξ : V×V ′→F is a bilinear form of rank r, there exist vec-
tors ~v,~v ′ in V and V ′ respectively with ~v = (x1,x2, . . .xm), ~v ′ = (y1,y2, . . . ,yn) and

ξ(~v,~v ′) = x1y1 + x2y2 + · · ·+ xryr.

Definition 15.5.7 : Let V be a finite dimensional vector space over a field F (of
characteristic 6= 2). A quadratic form θ : V → F is such that θ(−~v) = θ(~v) for all
~v ∈V and

2ξ(~u,~v) = θ(~u +~v) − θ(~u) − θ(~v)
gives a bilinear form ξ : V ×V → F. The rank of ξ is accepted as the rank of θ.
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It can be verified that for ~u,~v, ~w ∈V ,

(15.5.10) θ(~u +~v+ ~w) − θ(~u+~v) − θ(~v+ ~w) − θ(~w+~u) + θ(~u) + θ(~v) + θ(~w) = 0.

Taking ~u = ~v = ~w = 0 in (15.5.10), we obtain θ(0) = 0.
Let v̄ = ~u and ~w = −~u in (15.5.10). We see that

(15.5.11) θ(~u) − θ(2~u) − θ(0) − θ(0) +θ(~u) + θ(~u) + θ(−~u) = 0.

As θ(−~u) = θ(~u), ~u ∈V ; we get

(15.5.12) θ(2~u) = 4θ(~u).

The result that is of relevance to polynomials over Fq is the following:

Theorem 147 : Let V be a finite dimensional vector space over a field F of
characteristic 6= 2. Then, each symmetric bilinear form ξ : V ×V → F defines a
quadratic form θ : V → F given by the equation.

θ(~v ) = ξ(~v,~v ), ~v ∈V.

Further, θ is the only quadratic form satisfying

(15.5.13) 2ξ(~u,~v ) = θ(~u +~v) − θ(~u) − θ(~v).

Proof : :⇒ As θ(~v ) = ξ(~v,~v ) for all ~v ∈V ,

θ(−~v ) = ξ(−~v,−~v ) = (−1)2ξ(~v,~v ) = θ(~v ).

Further, ξ is bilinear and symmetric. So,

θ(~u +~v) − θ(~u) − θ(~v) = ξ(~u +~v,~u +~v) − ξ(~u,~u ) − ξ(~v,~v )

= ξ(~u,~u ) + ξ(~u,~v ) + ξ(~v,~u ) + ξ(~v,~v ) − ξ(~u,~u ) − ξ(~v,~v )

= ξ(~u,~v ) + ξ(~v,~u )

= 2ξ(~u,~v ), by symmetry of ξ.

⇐: Suppose that ξ and θ are such that (15.5.13) holds.
From (15.5.13), we note that 2ξ(~u,~u ) = θ(2~u) − 2θ(~u). But, by (15.5.12),

θ(2~u) = 4θ(~u) and θ(0) = 0, as θ is a quadratic form. Therefore, 2ξ(~u,~u) = 2θ(~u).
Or, ξ(~v,~v ) = θ(~v ), for all ~v ∈ V . Thus, θ : V → F is such that ξ(~v,~v ) = θ(~v ). Or,
the symmetric bilinear form ξ defines θ, as stated in theorem 147. �

Remark 15.5.3 : Theorem 147 has been adapted from MacLane and
Birkhoff [29, chapter IX, §3, theorem 2, pp 382–384].

Definition 15.5.8 : Let q be odd. If t is a primitive element of Fqr with Pt(x), the
irreducible polynomial of t (over Fq), the second coefficient of Pt(x) is denoted by
A(t).

We note that degPt(x) = r and

(15.5.14) Pt(x) = (x − t)(x − tq) · · · (x − tqr−1
).
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The second coefficient in Pt(x) is given by

(15.5.15) A(t) = t1+q + t1+q2
+ · · ·+ tqr−2+qr−1

=
∑

0≤i, j<r
i< j

tqi+q j
.

Theorem 148 : Suppose that t,s ∈ Fqr and trace (t) = 0. Then,

(15.5.16) A(t + s) = A(t) + A(s) − trace (ts).

Proof :
trace (t) = TE/F (t) =

∑

σ∈G(E/F)

σ(t),

where E = Fqr , F = Fq and G(E/F) is the group of automorphisms of E leaving
F fixed.

A(t + s) =
∑

0≤i, j<r
i< j

(t + s)qi+q j

= (t + s)(t + s)q + (t + s)(t + s)q2
+ · · ·+ (t + s)qr−2

(t + s)qr−1
;

= (t + s)(tq + sq) + (t + s)(tq2
+ sq2

) + · · ·+ (tqr−2
+ sqr−2

)(tqr−1
+ sqr−1

)

= (t1+q + tsq + tqs + s1+q) + (t1+q2
+ tsq2

+ tq2
s + s1+q2

) + · · ·
+ (tqr−2

sqr−1
+ tqr−2

sqr−2
+ tqr−1

sqr−2
+ sqr−2+qr−1

);

= A(t) + A(s) + s(tq + tq2
+ · · ·+ tqr−1

) + sq(t + tq2
+ · · ·+ tqr−1

) + · · ·
+ sqr−1

(1 + tq + · · ·+ tqr−2
);

= A(t) + A(s) − ts − tqsq − · · ·− tqr−1
sqr−1

, since trace (t) = 0.

Or,

A(t + s) = A(t) + A(s) − trace (ts).

�

Theorem 149 : If α ∈ Fq, then, A(αt) = α2A(t).

Proof : A(αt) = (αt)1+q + (αt)1+q2
+ · · ·+ (αt)qr−2+qr−1

. We know that

αq−1 = 1, if α 6= 0.

So, α1+q = α2 · αq−1 = α2. Also, αqi+q j
= αq j(1+qi− j), if j ≤ i. Further,

α1+qi− j
= α2 ·αqi− j−1 = α2, if i − j ≥ 1. So,

A(αt) = α2(t1+q + t1+q2
+ · · ·+ tqr−2+qr−1

) = α2A(t).

�
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Corollary 15.5.1 : If t ∈ Fqr has trace(t) = 0, then,

(15.5.17) A(t) = −
1
2

trace (t2).

For, 4A(t) = A(2t) = A(t + t) = A(t) + A(t) − trace (t2), by (15.5.16). (15.5.17) is
immediate.

Next, we observe that (15.5.17) allows us to tackle the second coefficient of
an irreducible polynomial via trace(t2). We have noticed that Ψ : Fqr → Fq given
by Ψ(t) = trace (t), is onto Fq. So, if V denotes kernel of Ψ, by rank-nullity
theorem.

dim(ImΨ) + dim(V ) = dimFqr = r
So, V is an (r − 1)-dimensional vector space over Fq.

Definition 15.5.9 : Let V be a vector space over a field F. By an inner product
~u∗~v of vectors ~u, ~v∈V, we mean an F-bilinear function η : V×V → F. The inner
product is said to be symmetric if ~u∗~v = ~v∗~u.

In the case of Rn, considered as a vector space overR, the inner product ~u ·~v
of two vectors ~u = (u1,u2, . . .un) and ~v = (v1,v2, . . .vn) given by

(15.5.18) ~u∗~v = u1v1 + u2v2 · · ·+ unvn

is R-linear in ~u for each ~v ∈ Rn and is R-linear in ~v for each ~u ∈ Rn. ~u ∗ ~u is an
R-bilinear function from Rn×Rn to R. Further, as ~u∗~v = ~v∗~u, the inner product
is symmetric.

Definition 15.5.10 : Let V be a vector space (over a field F) endowed with a
symmetric inner product. V is said to be nonsingular if there does not exist a
vector ~u0 ∈V such that ~u0 ∗~v = 0 for all ~v ∈V.

We have noted that Ψ : Fqr → Fq given by Ψ(t) = trace t (t ∈ Fqr ) is such that
V = kerΨ is an (r − 1)-dimensional vector space. Now, for t,s,∈ V , the product
t ∗ s = trace (ts) serves as an inner-product on V . When t ∗ s = trace (ts), the
relation (15.5.16) shows that A(t) = − 1

2 trace t2 is the quadratic form associated
with the inner product. (See (15.5.16) and (15.5.17)). Further, if 0 6= t ∈ V is
such that trace(ts) = 0 for all s ∈ V , then tV ⊆ V , by the definition of V . Since
#{tV : t fixed } = #{V : V = kerΨ} and the number of elements in each set is finite,
we have tV = V . So we must have 1 ∈ V , which is not true as dimV < dimFqr .
So, V is nonsingular with respect to the inner product t ∗ s = trace (ts). Therefore,
if t ∈ V and t is a primitive element of Fqr , then, the minimal polynomial Pt(x)
of t is of degree r, the trace coefficient of Pi(x) is zero and the second coefficient
A(t) = − 1

2 trace (t2) = − 1
2 (t ∗ t) .

Let r ≥ 2. Fqr is obtained as a finite extension of degree r over Fq. For
a ∈ Fqr , there exists a monic irreducible polynomial fa(x) of degree r with co-
efficients from Fq. Further, Fq is realized as a simple extension of Fq obtained
by adjourning a to Fq. The degree of irr(a,Fq) is r and irr(a,Fq) = fa(x). The
conjugates of a are the zeros of fa(x). Fqr can be obtained by adjoining any of
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the r conjugates of a to Fq. So corresponding to a monic irreducible polynomial
of degree r (with coefficients from Fq), there exist r primitive elements in Fqr .
For instance, to a cubic irreducible polynomial ga(x) ∈ Fq(x), there corresponds 3
primitive elements in Fq3. Elements of Fqr which do not generate Fqr (as a vector
space of dimension r over Fq) are non-primitive elements in Fqr . For example,
if fa(x) = x3 + a1x + a2 (a1,a2 ∈ Fq) and if fa(x) is irreducible and having a as a
zero, a is not a primitive element of Fq4. In fact, there are q2 such irreducible
polynomials. So, there corresponds q2 non-primitive elements of Fq4 all having
trace = 0.

Observation 15.5.2 : Since there are q2 non-primitive elements of Fq4 all hav-

ing trace = 0, there exist q3−q2

4 irreducible polynomials of degree 4 over Fq with

trace = 0 and q3

4 irreducible polynomials with trace = a1 for each a1 6= 0.

Next, let r denote the degree of a monic irreducible polynomial Pt(x)∈ Fq(x).
By theorem 145, if it is a primitive element of Fqr , and if r is odd, it suffices
to study Pt(x) with trace coefficient equal to zero. In what follows, we take q =
2m(m ≥ 1). That is, char Fq = 2. Quadratic and cubic polynomials have been
considered in theorem 146. In order to tackle the cases r = 4 and r = 5, we need
to know more about cubic irreducible polynomials.

Theorem 150 (G. W. Effinger) : Among the irreducible cubic polynomials with
trace coefficient = 0,
(a) there are 2(q−1)

3 cubic polynomials with second coefficient zero and q−1
3 with

each nonzero second coefficient, provided q = 2m with m even.
(b) there are none with second coefficient zero and q+1

3 with each nonzero second
coefficient, provided q = 2m with m odd.

Proof : The linear functional Ψ : Fq3 → Fq given by Ψ(t) = trace (t), t ∈ Fq3 is
such that V3 = kerΨ is a vector space of dimension 2 over Fq. V3 is non-singular
with respect to the inner product t ∗ s = trace (ts) where t,s ∈ Fq3. Let {t1, t2} be
a basis for V3. Then, t ∈V3 has the representation.

(15.5.19) t = α1t1 +α2t2 ; αi ∈ Fq (i = 1,2)

It is known [17] that if Pt(x) denotes the minimal polynomial of t over Fq, the
second coefficient A(t) in Pt(x) is given by

(15.5.20) A(t) = βα2
1 +α1α2 +βα2

2

where either β = 0 or βx2 + x +β ∈ Fq[x] is irreducible.
In (15.5.20), α1,α2 vary over the elements of Fq. We shall count the number

of solutions {α1,α2} of (15.5.20) for fixed A(t). All nonzero elements t in V3 are
primitive elements in Fq3, since g.c.d (3,q) = 1, by theorem 145. Two cases arise:

Case(i) β = 0. Then, A(t) = α1α2. If A(t) = 0, either α1 = 0 or α2 = 0. If
α2 = 0, there are (q − 1) choices for α1. As α1 = α2 = 0 is excluded, there are
2(q−1) nonzero solutions {α1,α2} for (15.5.20). If A(t) = α0 6= 0, there are (q−1)
solutions {α1,α2}.
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Case(ii) β 6= 0. Then, βx2 + x +β is irreducible over Fq. So, A(t) = 0 has no
nonzero solutions. If A(t) = α0 6= 0, we examine βα2

1 +α1α2 +βα2
2 = α0. If α2 = 0,

there is one solution obtained from βα2
1 = α0. If α2 6= 0, we get

β(
α1

α2
)2 + (

α1

α2
) +β =

α0

α2
2
,

or,

(15.5.21) (
α1

α2
)2 +

1
β

(
α1

α2
) + (1 +

α0

βα2
2

) = 0, as char Fq = 2.

We count the number of irreducible quadratic polynomials with trace coefficient
6= 0. There are (q − 1) nonzero elements of Fq which can serve as a trace coeffi-
cient. In (15.5.21), we get different equations for different elements α2 6= 0. The
number of irreducible quadratic polynomials with trace coefficient 6= 0 is q3−q2

2 ,
as each nonzero element of V3 is a primitive element of Fq3. For the total of
(q − 1) nonzero traces, there are ( q

2 − 1) irreducible quadratic polynomials and q
2

reducible quadratic polynomials. (There are (q − 1) choices for α2 in 1 +
α0

βα2
2
).

Since a reducible quadratic polynomial has two solutions, we obtain a total of
2( q

2 ) = q solutions. Thus, there are a total of (q + 1) solutions for a given A(t).
Now, each irreducible cubic polynomial corresponds to 3 primitive elements

of Fq3. If q = 2m(m odd), q + 1 = 2m + 1 is divisible by 3. If m is even, 2m − 1 is
divisible by 3.

Therefore, there are 2( q−1
3 ) cubic polynomials with second coefficient A(t)

when q = 2m, m even. When q = 2m, m odd or even, A(t) = 0 shows that there are
no cubic polynomials (case(ii) above with β 6= 0). If q = 2m with m odd, there are
q+1

3 cubic polynomials with second coefficient A(t) 6= 0. �

Corollary 15.5.2 : Among the irreducible cubic polynomials in Fq[x] (where
q = 2m) with trace coefficient a1, there exist q distinct second coefficients, if m
is even and (q − 1) distinct second coefficients, if m is odd.

For, by theorem 145 (translation lemma), we need only to look into irre-
ducible cubic polynomials with trace coefficient zero. As indicated in the proof
of theorem 150, all elements of Fq could be a second coefficient, if m is even.
However, only the (q − 1) nonzero elements of Fq could occur, if m is odd.

Now, we move on to the case r = 4.

Theorem 151 (G. W. Effinger (1988)) : Every odd fourth degree polynomial over
Fq (q even) is a 3-primes polynomial.

Proof : By observation 15.5.2, we note that there are q2 non-primitive elements
inFq4. If q = 2m, Fq4 is a finite extension ofFq such that [Fq4 :Fq] = 4. Forα∈Fq4,
α24m

= α. A non-primitive element β in Fq4 is of the form β = α22m
for some

α ∈ Fq4. The Galois group G(Fq4,Fq) of automorphisms of Fq4, leaving every
element of Fq fixed, is cyclic of order 4. Therefore, the non-primitive elements of
Fq4 are of the form αq2

,α2q2
, . . . ,αq·q2

,αq3+q2
,αq3+2q2

, . . . ,αq4−q2
. They are (q2 −1)

© 2007 by Taylor & Francis Group, LLC



ANALOGUES OF THE GOLDBACH PROBLEM 563

in number. Including 1 in the set of non-primitive elements, we see that as
G(Fq2,Fq) is cyclic of order 2, the trace of β (where β is non-primitive) is equal
to σ1(β) +σ2(β) where σ1 : Fq2 → Fq2 is the identity map and σ2 : Fq2 → Fq2 is
given by σ2(β) = β22m

. We get σ1(β) +σ2(β) = α +α = 0, as β = α22m
for some

α ∈ Fq4. Thus, trace of a non-primitive element is zero.
Therefore, there must be q3−q2

4 irreducible polynomials of degree 4 over Fq

with trace = 0 and q3

4 with trace = a1 for each a1 (6= 0) ∈ Fq. Two cases arise:
Case 1: Suppose that q = 2m, where m is even. Let

M(x) = x4 + a1x3 + ax2 + bx + c.

We select P1(x) = x4 + (a1 + 1)x3 + dx2 + ex + f . Using corollary 15.5.2, we select
P2(x) = x3 + (a + d)x2 + (b + e + 1)x + g. Finally, let P3(x) = x + (e + f + g). We get
M(x) = P1(x) + P2(x) + P3(x).

Case 2: Suppose that q = 2m where m is odd. Suppose that among the fourth
degree irreducible polynomials with trace a1 + 1, every second coefficient which
appears is matched with a single third coefficient. Then, there can be at the most
q(q − 1) irreducible polynomials with trace coefficient a1 + 1. But, we know that
there are at least q3−q2

4 such irreducible polynomials. So, q3−q2

4 ≤ q(q − 1). That is,
q≤ 4. So, we must have q = 2 (as m is odd).

If we suppose that q > 2, we know that there exists some second coefficient
a such that

P1,1(x) = x4 + (a + 1)x3 + a′x2 + b′1x + c′

and
P1,2(x) = x4 + (a + 1)x3 + a′x2 + b′2x + e′

are both irreducible polynomials and b′1 6= b′2. By corollary 15.5.2, we now select

P2(x) = x3 + a′x2 + (b′i + 1)x + f ′ where b′i = b′1 or b′i = b1
2.

Further, if P3(x) = x + (c′ + e′ + f ′), we obtain

M(x) = P1,i(x) + P2(x) + P3(x), as desired, (i = 1 or 2).

Case 3: For the remaining case q = 2, we observe that there are even polynomials
which are not 3-primes polynomials. For instance, x4 + x2 is one such. Sup-
pose that M(x) ∈ F2(x) is an odd monic polynomial. Then the constant term in
M(x) is 1. We may choose P1(x) as an irreducible 4th degree polynomial so that
M(x) − P1(x) = x3 + tx2 + sx. We establish that four polynomials of this type can be
written as a sum of two irreducible polynomials. But,

x3 = (x3 + x + 1) + (x + 1),

x3 + x = (x3 + x2 + 1) + (x2 + x + 1),

x3 + x2 = (x3 + x + 1) + (x2 + x + 1),

and x3 + x2 + x = (x3 + x2 + 1) + (x + 1).
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As we work with the field F2, in x3 + tx2 + sx, one has either t = 0, s = 0 or t = 0,
s = 1 or t = 1, s = 0 or t = 1, s = 1. So, an odd 4th degree polynomial M(x) over F2
is a sum of three irreducible polynomials.
This proves theorem 151. �

Next, we move on to the case r = 5. The argument is similar to that of case 3.
We obtain an analogue of theorem 150.

Theorem 152 (G. W. Effinger (1988)) : Among the irreducible fifth degree poly-
nomials with trace coefficient equal to zero, (over Fq, q = 2m) ;

(a) there are (q − 1)(q + 1)2/5 with second coefficient = 0 and (q − 1)q(q + 1)/5
with each nonzero second coefficient, provided m is even,

(b) there are (q − 1)(q2 + 1)/5 with second coefficient = 0 and q(q2 + 1)/5 with
each nonzero second coefficient, provided m is odd.

Proof : We work with Fq5 and the linear functional Ψ : Fq5→ Fq given by Ψ(t) =
trace (t). Let V5 denote kerΨ. Then, dimV5 = 4 over Fq.

It is known [17, p 34] that there is a basis for V5 say {t1, t2, t3, t4} such that
t ∈V5 has the representation t = α1t1 +α2t2 +α3t3 +α4t4, where

(15.5.22) A(t) = α1α2 +βα2
3 +α3α4 +βα2

4

with either β = 0 or βx2 + x + β ∈ Fq[x] is irreducible. (A(t) being the second
coefficient in the irreducible polynomial of t over Fq). We have to count the
number of solutions in αi (i = 1,2,3,4) of (15.5.22) for fixed values of A(t). Let
t 6= 0. t ∈V5 is primitive in Fq5 (5 being odd). The following cases arise:
Case 1: β = 0.

We have A(t) =α1α2 +α3α4. First, suppose thatα1α2 +α3α4 = 0. We compute
the number of nonzero solutions by breaking the total number into summands by
the number of zeros among the α′is.

(a) 3 out of four α′is equal to zero :
(4

3

)
(q − 1) = 4(q − 1),

(b) 2 out of four α′is equal to zero :
(2

1

)(2
1

)
(q − 1)2 = 4(q − 1)2,

(c) 1 out of four α′is equal to zero : no solutions,
(d) all α1

i s nonzero : (q − 1)(q − 1)(q − 1) = (q − 1)3.
So, the total number of solutions equals 4(q−1)+4(q−1)2+(q−1)3 = (q−1)(q+1)2.

Next, suppose that α1α2 +α3α4 = α0 (6= 0).
The possibilities are
(a) 3 out of four α′is zero : no solution,
(b) 2 out of four α′is zero : 2(q − 1) solutions,
(c) 1 out of four α′is zero : 4(q − 1)2 solutions,
(d) all α′is nonzero : (q − 1)2(q − 2) solutions.
So, the total number of solutions equals 2(q − 1) + 4(q − 1)2 + (q − 1)2(q − 2) which
is (q − 1)q(q + 1).

To verify the above results, we have only to note that the number of nonzero
elements with trace zero, occurring in Fq5 is the number of ways of choosing bi
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(i = 1,2,3,4) ∈ Fq in the quintic: x5 + b1x3 + b2x2 + b3x + b4 and that is equal to
q4 − 1.

For, we check that # zero solutions +(q − 1) (# nonzero solutions)

= (q − 1)(q + 1)2 + (q − 1)(q − 1)q(q + 1)

= (q − 1)(q + 1){(q + 1) + (q − 1)q}= (q2 − 1)(q2 + 1)

= (q4 − 1), as required .

Case 2: β 6= 0, βx2 + x +β is irreducible over Fq.
We have A(t) as given in (15.5.22). If A(t) = 0, one gets

α1α2 +βα2
3 +α3α4 +βα2

4 = 0

(a) α3 = 0 = α4⇒ α1α2 = 0. There are 2(q − 1) solutions.
(b) At least one of α3,α4 6= 0. Assume that α3 6= 0, α4 = 0. Then, βα2

3 +α1α2 = 0.
There are (q − 1) choices for α1 and the same number for α2. So, one part
of solution gives (q − 1)2. Similarly, βα2

4 +α1α2 = 0 has (q − 1)2 solutions.
When α3 6= 0, α4 6= 0, from βα2

3 +α1α2 +α3α4 +βα2
4 = 0, one gets (q − 1)3 so-

lutions for α1,α2,α3. (Once α1,α2,α3 are known, α4 is fixed by the equation
βα2

3 +α1α2 +α3α4 +βα2
4 = 0). So, the total number of solutions is

2(q − 1)2 + (q − 1)3 = (q − 1)2{2 + q − 1}= (q − 1)2(q + 1) = (q2 − 1)(q − 1).

So, altogether, total number of solutions is

2(q − 1) + (q2 − 1)(q − 1) = (q − 1)(q2 + 1).

Next, suppose that α1α2 + βα2
3 +α3α4 + βα2

4 = α0 6= 0. As in the proof of
theorem 150, we break up the total:

βα2
3 +α3α4 +βα2

4 = α0 : (q + 1)
(
2(q − 1) + 1

)
= (q + 1)(2q − 1)

βα2
3 +α3α4 +βα2

4 6= α0, 6= 0 : (q + 1)(q − 2)(q − 1)

βα2
3 +α3α4 +βα2

4 = 0 : 1(q − 1).
The total number = (q + 1)(2q − 1) + (q + 1)(q − 2)(q − 1) + (q − 1)

= (q + 1){q2 − q + 1}+ (q − 1)

= q(q2 + 1).

This is verified by checking that (# zero solutions) +(q − 1) (# nonzero solutions)

= (q − 1)(q2 + 1) + (q − 1)q(q2 + 1)

= (q − 1)(q2 + 1)(1 + q)

= (q2 − 1)(q2 + 1)

= (q4 − 1), as required.

Now, there are five primitive elements of Fq5, corresponding to each irreducible
fifth degree polynomial over Fq. If q = 2m, where m is even, 5 divides (q2 − 1). If
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q = 2m, where m is odd, 5 divides q2 + 1.
So, the assertion of the theorem 152 is true. �
Corollary 15.5.3 : Let q = 2m where m is odd. Then given a1,a ∈ Fq there exist
at least (q−1)(q2 +1)/5 irreducible fifth degree polynomials with trace coefficient
a1 and second coefficient a.

For, by theorem 145 (translation lemma) we have only to look for irreducible
fifth degree polynomials with trace coefficient 0 and zero or nonzero second co-
efficient. As (q−1)(q2+1)

5 < q(q2+1)
5 , the number of such irreducible polynomials is

either (q−1)(q2+1)
5 or more.

Theorem 153 (G. W. Effinger (1988)) : Every odd monic fifth degree polynomial
over any finite field of characteristic 2 is a 3-primes polynomial.

Proof : Let q = 2m. Take M(x) = x5 + a1x4 + ax3 + bx2 + cx + d.
Case 1: Let m be even. By theorems 145 and 152, there exists an irreducible

polynomial P1(x) = x5 + a1x4 + (a + 1)x3 + b′x2 + c′x + d′. By corollary 15.5.2, there
exists an irreducible polynomial

P2(x) = x3 + (b + b′)x2 + (c + c′+ 1)x + d
′′
.

Taking P3(x) = x + (d + d′ + d′′), we obtain

M(x) = P1(x) + P2(x) + P3(x), as desired.

Case 2: Let m be odd. According to corollary 15.5.2, one second coefficient
is ‘missing’ among cubic irreducible polynomials with any fixed trace. We claim
that if q > 2, among fifth degree irreducible polynomials of fixed trace and sec-
ond coefficient, there exists a third coefficient for which there must exist at least
two distinct fourth (that is, the term containing x) coefficients. Were this not the
case, there could exist at most q(q − 1) irreducible polynomials with fixed first
two coefficients. But, by corollary 15.5.3, there are at least (q − 1)(q2 + 1)/5 such
polynomials. Therefore,

(q − 1)(q2 + 1)
5

≤ q(q − 1).

That is, q2 −5q+1≤ 0, from which we infer that q = 2, since m is odd. So, we first
assume that q> 2. Then, by the above argument, there exists b′ ∈ Fq such that

P1,1(x) = x5 + a1x4 + (a + 1)x3 + b′x2 + c′x + d ′1
and

P1,2(x) = x5 + a1x4 + (a + 1)x3 + b′x2 + c′2x + d2
′

are both irreducible polynomials with c′1 6= c′2. By the corollary 15.5.2, there exists
an irreducible polynomial

P2(x) = x3 + (b + b′)x2 + (c + c′k + 1)x + d ′′ ,

where c′k = c′1 or c′k = c′2. We write

P3(x) = x + (d + d′k + d′′) ;d′k = d′1 or d′2.
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Then, M(x) = P1,k(x) − P2(x) + P3(x), where k = 1 or 2.
The remaining case is q = 2. Here, there are even polynomials which are not

3-primes polynomials. For example,

x5 + x4 + 1 = (x3 + x + 1)(x2 + x + 1)

and so x5 + x4 + 1 is reducible. By lemma 15.5.1(b),

M(x) = x5 + x4 = x4(x + 1)

is not a 3-prime polynomial. Suppose, then, that M(x) is odd and so the constant
term in M(x) is 1. By theorem 145 and theorem 152, we observe that there exists
an irreducible polynomial P1(x) of degree 5 so that M − P1(x) = x3 + a′x2 + b′x.

As a′,b′ take values 0 or 1 only, as in the last step (case 3) of proof of theorem
151, we see that the four cubic polynomials x3,x3 + x, x3 + x2 and x3 + x2 + x are
sums of two irreducible polynomials.
Thus, a fifth degree polynomial over Fq (q even) is a 3-primes polynomial. �

For solving the 3-primes problem for polynomials of degree 6 (over Fq) one
needs to study the 3rd coefficient as well. This is systematically developed by
G. W. Effinger in [19] for q even.

Fact 15.5.2 : Among irreducible fourth degree polynomials over Fq (q even)
which have fixed nonzero trace coefficient a1 and fixed arbitrary second coeffi-
cient a0, there are least (q − 1) distinct third coefficients.

For proof see [18].

Fact 15.5.3 : If q > 8 in Fq (q even), then for every fixed first and second coeffi-
cient, there exists a fourth coefficient such that there are irreducible sixth degree
polynomials with that fourth coefficient and with at least two distinct third coeffi-
cients and for each of those third coefficients, there exist at least two distinct fifth
coefficients.

For proof, see [19].

Fact 15.5.4 : Every odd monic sixth degree polynomial over Fq (a finite field of
characteristic 2) is a 3-primes polynomial.

For proof, see [19].
Combining the above with theorems 146(b), 151 and 153, we obtain the as-

sertion in Proposition 15.5.2(b) given at the beginning of this section.
Incidentally, we remark that analytical number theory makes use of a good

dose of complex analysis. For a study of number theory involving complex anal-
ysis, see Anatolij A. Karatsuba [A1].
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15.6. Notes with illustrative examples

The experimental method of verifying the Goldbach conjecture is to find two
sets P,Q of primes such that

P + Q = {p + q : p,q primes belonging to P and Q respectively}
covers all even numbers in a given interval [a,b]. It is computationally verified
that GBC is true for all even numbers up to 4 · 1011 [34]. All the work of an
algorithmic nature does give evidence of the truth of BGC. So far, no even number
which is not a sum of two odd primes has been found out. If the given even
number is not big enough, the easiest way to check BGC is with a table of primes.

Eckford Cohen’s analogue of BGC is via the (finite) residue class ring Z/rZ
where r is even > 2. Theorem 140 says that when r is even, every element of
Z/rZ considered as belonging to a least non-negative complete residue system
(mod r) is either a prime or a sum of two primes. For instance, in the case r = 24,

(15.6.1) Z/24Z = {0,1,2,3, . . . ,23}
The primes in Z/24Z are in the set {2,10,14,18,22;3,5,21} as a prime is either
of the form 2k or 3k′ where g.c.d (k,24) = g.c.d (k′,24) = 1. It is easy to check
that

0 = 3 + 21 or 14 + 10 11 = 14 + 21
1 = 3 + 22 or 15 + 10 12 = 2 + 10

4 = 2 + 2 13 = 3 + 10
5 = 2 + 3 16 = 2 + 14
6 = 3 + 3 17 = 2 + 15

7 = 10 + 21 19 = 21 + 22
8 = 10 + 22 20 = 10 + 10
9 = 15 + 18 23 = 2 + 21

We observe that an extension of the Goldbach problem to the ring of integers
of an algebraic number field is possible. See Eckford Cohen [13]. Let K be an
algebraic number field with DK , the ring of integers of K. Let A denote a proper
ideal of DK . It is known (see Remark 12.6.6(ii), of chapter 12) that the quotient
ring DK/A is finite. Let R(A) denote the quotient ring of A in DK . The ‘primes’ of
R(A) are suitably defined.

Proposition 15.6.1 : There exists an s ≥ 1 such that all elements of R(A) are
expressible as a sum of s primes in R(A) under suitably chosen conditions.

For details, see Eckford Cohen [13].
In the case of the polynomial analogue of BGC, the starting point is Hayes’

asymptotic theorem (analogous to Vinogradov’s theorem) which says:
For every degree r ≥ 5, there exists a qr, depending on r and decreasing, as

r increases so that if q ≥ qr, then every odd monic polynomial of degree r over
Fq(q = pm, p a prime ,m ≥ 1) is a 3-primes polynomial. Moreover, qr = 2, if r is
sufficiently large.
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G. W. Effinger [20] proves results in the form of theorems (for q odd or even;
q even considered in theorems 146(b), 151 and 153) which reduce the cases not
covered by the asymptotic theorem to a finite, tractable number. Applications of
these theorems reduces the polynomial 3-primes problem to a situation where one
has to consider 85 separate combinations of q and r. For instance, q = 256, r = 5;
q = 199, r = 4,5, . . .; q = 2, r = 25 and so on.

One needed to check that every monic polynomial (except for odd polynomi-
als when q = 2) with first coefficient 0 and the second coefficient 0,1 and (for odd
q) a fixed quadratic non-residue is a sum of two monic irreducible polynomials.
This involved laborious computation with a powerful computer. G. W. Effinger
programmed the IBM3090 Super Computer at the Cornell National Super Com-
puting Facility to check those remaining cases. Algorithms were designed to

(a) generate lists of irreducible polynomials and
(b) check off the sums of appropriate pairs of irreducibles.

For (a), both the Berlekamp Factorization Algorithm for Fq[x] and an extension
field algorithm were employed. For (b), extensive indexing was used. The details
of the algorithm design are given in Effinger [20]. See also [21].

On December 19, 1989, the IBM3090 completed the list of 85 cases which
needed to be checked. A total of 64.8 hours of central processing was needed.
This culminated in the complete solution to the 3-primes problem and the credit
for this achievement goes to D. R. Hayes and G. W. Effinger. See [22].

Before conclusion, we make a mention about Bertrand’s postulate. In a paper
published in ‘j.de l’Ecole royale polytechnique XVIII Pt 30(1845) pp 123–140,
J. Bertrand (1822–1903 ) asked for the occurrence of a prime p lying in the inter-
val.

n/2< p≤ n − 2, where n> 6.

He had verified it for numbers n less than 6 million. P. L. Chebyshev (1821–1894)
was the first to prove ‘Bertrand’s Postulate’ in 1850. See Mem’oires pre’sente’s
a l’ Academie Imperiale des Sciences de St. Petersburg VII (1854) pp 15–33 and
Journal de mathematiques pures et appliques (Paris) XVII (1852) pp 366–390.
Chebyshev proved that given ε > 1/5, there exists a real number ξ such that for
n≥ ξ, at least one prime satisfies

n< p≤ (1 + ε) n

J. J. Sylvester (1814–1897) and others showed that ε can be taken as a positive
quantity, however small. From this, it would follow that if pm denotes the mth

prime,

lim
m→∞

pm+1

pm
= 1

In simple terms, Bertrand’s postulate says that if n is a positive integer, there
exists a prime p such that n < p ≤ 2n. S. Sivasankaranarayana Pillai
(1901–1950) gave a proof of Bertrand’s postulate without using Stirling’s
formula for Γ(n) and his proof reduced the number of verifications to a minimum.
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See K. Chandrasekharan [9]. Defining Chebyshev’s function ϑ by

ϑ(x) =
∑

p≤x

log p, x> 0, p a prime,

Pillai showed that ϑ(2n) −ϑ(n) > 0 for all n ≥ 26 and verified the inequality di-
rectly for 1≤ n< 26.

For an update of the Goldbach problem, see Wang Yuan [38].

15.7. A variant of Goldbach conjecture:

Following D. Shanks [A4], we give a variant of Goldbach conjecture as
shown below:

(15.7.1) Every integer of the form 4k + 2(k> 2) is a sum of two primes
of the form 4t + 1(t > 1).

It follows that by Fermat’s Two squares theorem, every integer of the form
4k + 2(k> 2) is a sum of four squares. When 4k + 2 = 14, one writes

14 = 1 + 13 = 02 + 12 + 22 + 32,

where 1 is considered as a prime for small values of 4k + 2.
If P(2r) denotes the number of solutions of

(15.7.2) 2r = p1 + p2

where p1 and p2 are primes and p1 ≡ p2 ≡ 1(mod 4), one can obtain an asymp-
totic result for P(2r) (due to Hardy and Wright) in the form

(15.7.3) P(2r)∼ f (2r)
∏

q | r

(
q − 1
q − 2

)
,

where

(15.7.4) f (r) = 1.3203236
∫ r

0

dx
(log x)2

and the product
∏
q|r

on the right of (15.7.3) is taken over all odd primes q if any,

that divide r. (15.7.3) has been verified for values of r up to r = 105 [A5]. The
constant on the right side of (15.7.4) is not an empirical constant, but, the infinite
product

(15.7.5) 2
∏

p, an odd prime

(
1 −

1
(p − 1)2

)

equals 1.3203236 . . . (
∏
p

running through all odd primes). (See D. Shanks [A4]).

If (15.7.1) is true, we obtain a simple proof of Lagrange’s four squares theorem.
For, given a prime p, if 2p is a sum of four squares, p is also a sum of four squares.
So, any positive odd integer is the sum of four squares. If r ≡ 0(mod 4), either
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r = m2s or r = n2 ·2s′, where m, n are even powers of 2 and s, s′ are odd integers.
In all of these cases, r is a sum of four squares, yielding Lagrange’s theorem.

EXERCISES

1. Mark the following statements true (T) or false (F) justifying your answer
briefly.

a) Every positive integer ≥ 12 is a sum of two composite integers.
b) Given integers a,b, 1< b< a, let p1, p2, . . . pb, pb+1, . . . pn be a set of n

primes arranged in ascending order of magnitude. We choose a set of
b primes from S = {p1, p2, . . . , pn} and take M to be their product. If N
denotes the product of the remaining primes in S, it is correct to say that
M + N is divisible by all the primes of the set S.

c) It is possible that a prime p could be of the form a4 − b4 where a,b ∈ Z.
d) There exists a composite integer r > 1 such that the nonzero non-units

of Z/rZ are primes in the ring.
e) Let

A =




1 2 3
2 3 1
3 1 2


 .

There exist matrices X ,Y ∈ M3(Z) such that A = X + Y and detX =
detY = 9.

f) M(X) = X5 + 1 ∈ F4[X] is a 3-primes polynomial.
2. Let p be a prime greater that a positive integer n. If p divides N = (2n)!

(n!)2 , show
that p2 does not divide N.

3. (Euler) If 4k + 3 and 8k + 7 are both primes, show that

24k+3 − 1

is divisible by 8k + 7.
4. (Euler) Let m be a positive integer. For positive integers x,y; show that every

divisor of
x2m

+ y2m

is of the form 2m+1k + 1, where k ≥ 1.
5. (Jacobi) Let p be a prime of the form 4k + 3. Show that

(2k + 1)! + (−1)η≡ 0(mod p)

where η is the number of quadratic non-residues of p which are less that p/2.
6. Following S. Ramanujan (1887–1920) [33], a positive integer m is called

highly composite, if m(> 1) has more number of divisors than any preced-
ing positive integer. For instance, 36 is highly composite. Show that every
prime is a divisor of some highly composite number.

Analogously, highly composite ideals could be defined in the context of
algebraic number fields. See Ralph G. Archibald [3].
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7. Find all positive integers m for which m(m + 30) is a perfect square. (m = 2 is
the least among such numbers).

8. If pn denotes the nth prime, show that
(a) pn < 22n

;
(b) pn+1 < pn

n + 1, (n> 1).
9. Let p = 4k + 1(an integer) for k≥ 1. Show that p is a prime if, and only if,

3
p−1
2 ≡ −1(mod p).

10. [Eckford Cohen] Let r > 1 be an even integer. Show that 2 and its associates
are not sums of two primes in Z/rZ if, and only if,
r ≡ 0(mod 4) and r has at most one distinct odd prime divisor.

11. [Eckford Cohen] Let r = 2b pa1
1 pa2

2 · · · pah
h (h≥ 1) where p1, p2, . . ., ph are odd

primes. Show that an odd integer m belonging to Z/rZ is not expressible as
a sum of two primes in Z/rZ if, and only if, m is divisible by every odd prime
dividing r.

12. [Eckford Cohen] Let r = 2b pa1
1 (b≥ 2, p1 an odd prime, a1 ≥ 1). Show that a

number m belonging to Z/rZ cannot be represented as a sum of three primes
of Z/rZ if, and only if, m is of the form 2c pt

1q, where c≥ 2, t ≥ 1 and
g.c.d (q,r) = 1.

13. Let M(x) = x5 + x4 + x3 + x2 + x + 1∈ Z2(x). Show that M(x) is a 3-primes poly-
nomial.

14. Let M(x) = x4 − x3 + x2 + 1 ∈ Z3(x). Show that M(x) is a 3-primes polynomial.
15. Let M(x) = x6 + 1 ∈ Z3[x]. Express M(x) as P1(x) + P2(x) + P3(x) where P1(x)

is an irreducible 6th degree polynomial and P2(x),P3(x) are irreducible 5th
degree polynomials.
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CHAPTER 16

An epilogue: More interconnections

Introduction

Thus far, a genuine attempt has been made to highlight some interconnections
between Number Theory and Algebra. This concluding chapter gives a sum-up
of the salient features of commutative rings. It is a significant fact that the integral
domain Z of rational integers is characterised by its double-remainder property.
Something more is said about integral domains.

Krull-Zorn theorem (see Proposition 2.4.1, chapter 2) is about the existence
of a maximal ideal in a commutative ring with unity. But, does there exist a
commutative ring without a maximal ideal? The answer is yes. See theorem
156. We mention that many more interesting results could be given in the context
of commutative rings. In Section 16.3, an analogue of Euclid’s theorem on the
infinitude of primes is given for a PID. See theorem 158. Corollary 16.4.2 gives
a connection of the number of units in a ring with Mersenne primes. In theorem
162 (the last one), a quadratic reciprocity law (due to William Duke and Kimberly
Hopkins) for a finite group is stated and proved.

16.1. On commutative rings

Commutative rings are in plenty. They have two subdivisions (i) Noetherian
rings (ii) Non-Noetherian rings. (See figure 16): The class of Noetherian rings

COMMUTATIVE  RINGS

Noetherian
ringsrings

Non−Noetherian

Figure 16
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could be subdivided further. However, if we confine to the class of integral
domains, we have the following subclasses (see figure 17):

i. Half-factorial domains
ii. Unique factorization domains

iii. Principal ideal domains
iv. Euclidean domains
v. The Euclidean domain having double remainder property (d.r.p) which is Z,

the ring of integers. (See Theorem 21, chapter 3). Figure 17 below illustrates
the unique position of Z, among integral domains.

HALF−FACTORIAL  DOMAINS
INTEGRAL  DOMAINS

PRINCIPAL IDEAL  DOMAINS

EUCLIDEAN  DOMAIN

COMMUTATIVE  RINGS

WITH d.r.p = Z

EUCLIDEAN  DOMAINS

UNIQUE FACTORIZATION  DOMAINS

Figure 17

In Section 8.4 of chapter 8, fields with valuation were considered. We recall
definition 8.4.10.

Definition 16.1.1 : Let F be a field. A valuation on F is a map ν : F → G∪{∞}
where (G,+) is a totally ordered abelian group and∞ is a symbol which is greater
than any element of G such that for all a,b ∈ F,

(i) ν(a ·b) = ν(a) +ν(b)
(ii) ν(a) =∞, if, and only if, a = 0 and

(iii) ν(a + b)≥min{ν(a),ν(b)}.
G is called the value-group of the valuation ν. Let

(16.1.1) R = {x : x ∈ F,ν(x)≥ 0}.
It is verified that R is a subring of F . If t ∈ F, ν(t) = 0, if t = 1F . Also,

ν(t−1) = −ν(t). Therefore, when t ∈ F, either ν(t) ≥ 0 or ν(t−1) ≥ 0. This is an
interesting property of R.

Definition 16.1.2 : Let R be an integral domain with field of quotients F. R is
called a valuation domain, if it satisfies either of the following equivalent condi-
tions:
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(i) For any two elements a,b in R, either a|b or b|a.
(ii) For any element t in K, either t ∈ R or t−1 ∈ R.

See definition 8.3.3 and lemma 8.3.2, chapter 8. R given by (16.1.1) is, thus,
a valuation domain. Further,

(16.1.2) M = {x : x ∈ F and ν(x)> 0}
is the unique maximal ideal of R. For this reason, R is a quasi-local ring. It is
possible that we may get the same valuation domain by using two or more distinct
valuation maps. Recalling definition 12.6.6, chapter 12, we have

Theorem 154 : If R is a valuation domain, R is integrally closed.

Proof : Let K be the field of fractions of R. Suppose that a =
s
t
∈ F where s, t ∈ R

with t 6= 0. As R is a valuation domain, for s, t ∈ R, either s|t or t|s. If t|s,
s
t
∈ R.

So, if
s
t

is integral over R,
s
t
∈ R whenever t|s. Suppose that s|t and a =

s
t

is

integral over R. Then,
s
t

is a root of a monic polynomial equation:

(16.1.3) xn + a1xn−1 + · · ·+ an−1x + an = 0, qi ∈ R, i = 1,2, . . . ,n.

If s|t, we write t = sb where 0 6= b ∈ R.
s
t

= 1
b satisfies (16.1.3). That is,

1 + a1b + · · ·+ an−1bn−1 + anbn = 0

or,
b(a1 + a2b + · · ·+ anbn−1) = −1.

This shows that b is a unit in R. That is, s and t are associates in R. Thus, when
s|t, s

t
is a unit belonging to R. Hence, any element a =

s
t

of the field of quotients
of R which is integral over R belongs to R. �

As remarked in [14], valuation domains exist in abundance. Let R be an
integral domain contained in a field K. Assume that R has a maximal ideal M
(say). Then, we can construct an integral domain D contained in K and containing
R such that K is the field of quotients of D and for any x∈K, either x or x−1 belongs
to D. Then, D is a valuation domain having unique maximal ideal M ′ such that
M′∩R = M.

Fact 16.1.1 : If R is a Noetherian valuation domain, then, the value group of R is
isomorphic to (Z,+), the additive group of rational integers.

For proof, see I. Kaplansky [15].

Definition 16.1.3 : An integral domain D is called a Prüfer domain, if every
finitely generated nonzero ideal of D is invertible.
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We note that Prüfer domains are integrally closed [11]. A PID is Prüfer, as
principal ideals are invertible. A Noetherian Prüfer domain is a Dedekind domain.
We have to show that every nonzero prime ideal of the domain is maximal.

Definition 16.1.4 : Let R be a commutative ring with unity 1R. A prime ideal P
of R is said to be of height n, written ht(P) = n, if there exists an ascending chain

P0 ⊂ P1 ⊂ . . .⊂ Pn = P

of prime ideals of R.

In particular, a prime ideal is of height 0, if it contains no other prime ideals.

Definition 16.1.5 : An commutative ring R with unity 1R is said to be of Krull
dimension r, written, dim(R) = r (possibly infinite) if r = the supremum of ht(P)
for all prime ideals P of R.

For example, Z has Krull dimension 1. In fact, a PID has Krull dimension 1.
Let D be a Noetherian domain. Suppose that x ∈ D is a non-unit. We call P a
prime ideal minimal among all prime ideals containing (x), if there does not exist
a prime ideal P′ such that (x)⊂ P′ ⊂ P. Then, ht(P)≤ 1. Further, if x is nilpotent
(that is, there exists m ∈ N such that xm = 0D), then ht(P) = 0, as D has no zero
divisors. If x is not a zero divisor, ht(P) = 1. This is the content of Krull’s Principal
ideal theorem. For details and a more general result, see I. Kaplansky [15].

We remark that a Noetherian domain D may have dim(D) =∞, whereas non-
Noetherian domains D can be found such that dim(D)<∞.

Let D be an integral domain with unity element 1D. A nonzero element
x ∈ D is called a principal prime, if the ideal (x) is a prime ideal. Any princi-
pal prime element is irreducible. However, there exist irreducible elements which
are not principal primes. In any domain with ACCP (ascending chain condition
on principal ideals), there exist irreducible elements (see Section 4.8, chapter 4).
But, in a Noetherian domain, it is possible that principal prime ideals may not
exist.

In a unique factorization domain (UFD), every prime ideal of height 1 is
principal. Also, if an integral domain D is Noetherian and height 1 prime ideals
are principal, then, D is a UFD. This is what makes Z a UFD. In other words,
a Noetherian domain is a UFD, if, and only if, every prime ideal of height 1 is
principal. We remark that a Noetherian valuation domain is one-dimensional.
But, not all one-dimensional valuation domains are Noetherian. See R. Gilmer
[11] or N. Bourbaki [3].

Next, we give a characterization of Dedekind domains (see Section 12.6,
chapter 12).

An integral domain D is a Dedekind domain if, and only if,
(i) D is Noetherian, integrally closed and one-dimensional or

(ii) every nonzero ideal of D is invertible, or
(iii) every proper ideal of D is a product of prime ideals (unique, except for

order).
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Definition 16.1.6 : Let D be an integral domain with unity 1D. D is called a
Bézout domain (Etienne Bézout (1730–1783)), if every finitely generated ideal of
D is principal.

We note that a valuation domain is a Bézout domain. Now, as principal ideals
of an integral domain are invertible, a Bézout domain is also a Prüfer domain.
Further, there exist Bézout domains which are not valuation domains as also there
are Prüfer domains which are not Bézout domains.

We have
a) a Dedekind domain⊂ a Noetherian domain⊂ a 1-dimensional domain which

is integrally closed.
b) a Dedekind domain⊂ a Prüfer domain⊂ a domain which is integrally closed.
c) a Principal Ideal Domain⊂ a Bézout domain⊂ a Prüfer domain.

For a more detailed account of commutative rings, see Harry C. Hutchinson
[14] and M. F. Atiyah and I. G. Macdonald [2].

16.2. Commutative rings without maximal ideals

In Z, the principal ideal (6) is contained in the maximal ideal (2) or (3). If
n ∈ Z has k distinct prime factors, the ideal (n) is contained in k maximal ideals
generated by the k distinct prime factors of n. However, there exist commutative
rings without maximal ideals. The idea is to look for the so-called ‘divisible
groups’.

Definition 16.2.1 : Let (G,+) be an abelian group. G is said to be a divisible
group, if given a ∈ G and n (6= 0) ∈ Z, there exists b ∈ G such that nb = a.

Example 16.2.1 : If Q denotes the set of rational numbers, (Q,+) is a divisible
group. For, given a

b ∈Q, (b 6= 0), there exists c
d ∈Q such that for n ∈ Z,

nc
d

=
a
b

(a,b,c,d ∈ Z ; b,d 6= 0).

It is enough if we make ( 1
n )( a

b ) = c
d .

However, Z is not a divisible group. For, given a ∈ Z, n (6= 0) ∈ Z, there does
not exist b ∈ Z for which nb = a, when n> 1.

Fact 16.2.1 :
a) An abelian group G is divisible, if mG = {mg : g ∈ G} = G for every positive

integer m.
b) A direct sum of divisible groups is divisible; if, and only if, each summand is

divisible.
c) A homomorphic image of a divisible group is divisible. ( In contract, a ho-

momorphic image of a semisimple ring need not be semisimple. see observa-
tion 14.2.4, chapter 14).

Proofs are omitted.
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Theorem 155 (Peter Malcolmson and Frank Okoh (2000)) : A divisible abelian
group has no maximal subgroups .

Proof : Assume the contrary. Suppose that M is a maximal subgroup of a
divisible abelian group G. Then, G/M is abelian and simple. Therefore, G/M
is cyclic. As (Z,+) is not a divisible group, G/M is not infinite cyclic. So,
G/M ∼= Z/pZ, for some prime p. p is such that pa = 0 for every element a in
G/M. That is, p(G/M) = 0 from which it follows that pG ⊆ M. By Fact 16.2.1
(a), as G is divisible, pG = G. It follows that G⊆M, a contradiction to the fact that
M is maximal (proper) subgroup of G. Hence, G has no maximal subgroups. �
Lemma 16.2.1 : A torsion-free abelian group (G,+) is divisible if, and only if, G
is a vector space over Q, the field of rationals.

Proof : ⇐: Suppose that (G,+) forms a vector space over Q. Given a ∈ G and
n (6= 0) ∈ Z, ( 1

n ) a ∈ G. So there exists b ∈ G such that nb = a. For, we have only
to choose b as ( 1

n )a ∈ G. No nonzero element of G is of finite order. Therefore, G
is a divisible group.

:⇒ Assume that (G,+) is abelian, torsion-free and divisible. If n(6= 0)∈Z and
a ∈ G are given, there exists b ∈ G, for which nb = a. We denote b by ( 1

n )a.
For m,n ∈ Z, n 6= 0, we define ( m

n ) a = m( 1
n ) a. Scalar multiplication is asso-

ciative and distributes addition. No element of G is of finite order. So, scalar mul-
tiplication is nontrivial. Moreover 1(a) = a. So, G is a vector space overQ. �

Next, let R be a commutative ring. By definition (see definition 2.3.2, chap-
ter 2)

(16.2.1) R2 = {
∑

finite

ai1ai2 : ai j ∈ R · j = 1,2}.

R2 is an ideal generated by products of elements of R. Two cases arise
(i) R 6= R2 6= (0R),
(ii) R = R2 6= (0R).
(Where 0R is the zero element in R). We note that a particular case of R = R2

happens when R has a unity element.
It was mentioned in theorem 25 (chapter 4) that given F a field of charac-

teristic 0, the ring F[[x]] of formal power series in x is a PID and on the basis of
definition of a quasilocal ring (see definition 4.5.3, chapter 4). F[[x]] is quasilocal
with the unique maximal ideal (x) = xF[[x]]. Writing

(16.2.2) R = xF[[x]],

we note that R2 = x2F[[x]] and R 6= R2 6= (0R) (case (i) above).

Theorem 156 (Peter Malcolmson and Frank Okoh (2000)) : Let F be a field of
characteristic zero. If R is as given in (16.2.2), R has no maximal ideals.

Proof : Assume the contrary. Suppose that M is a maximal ideal of R. By Re-
mark 4.5.1, chapter 4, if f ∈ F[[x]], f has an inverse, if the constant term in f is
nonzero.
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Claim : R2 ⊆M.
If M⊆ R2, M = R2, as M is maximal. Otherwise, M contains an element x f in

R such that x f /∈ R2. When x f /∈ R2, f has a nonzero constant term and so f has an
inverse. Then, if x2g ∈ R2, one could write x2g = (x f )(x f −1g), where g ∈ F[[x]].
As x f ∈M,x2g ∈M. That is, R2 ⊆M. If a + R2, b + R2 ∈ R/R2,

ab + R2 ∈ R2 and so, R/R2 has ‘trivial’ multiplication.

We consider (R/R2,+). It is an abelian group. Given a ∈ G. n ∈ N, na is well
defined. If, by any chance, na = 0, na is a product of two elements of R. So,
there exists b = cd (say) such that na = b. If na 6= 0, na is an element of R/R2

and so na = c (say). In either case, we could define an element of R/R2 as ( 1
n )a.

For negative integer n, writing n = −n′, one could define − ( 1
n′ )a ∈ R/R2. Then,

( m
n )a is given by m( 1

n )a. Thus, scalar multiplication by m
n ∈Q works out alright.

Scalar multiplication distributes addition. As in the proof of lemma 16.2.1, we
note that (R/R2,+) is a divisible group. Next, as M is designated as a maximal
ideal of R, M/R2 is a maximal ideal of R/R2. By theorem 155, the divisible group
R/R2 has no maximal subgroups. The situation giving M/R2 as a maximal ideal
of R/R2 contradicts the fact that (R/R2,+) has no maximal subgroups. So, R has
no maximal ideals. �

Remark 16.2.1 : R is the unique maximal ideal of F[[x]]. R 6= R2. Then, R/R2

is shown to have no maximal ideals in theorem 156. It is mentioned in [17] that
if R is a commutative ring with unity and R has a unique maximal ideal M with
M = M2, then, the ring M has no maximal ideals.

We proceed to consider case (ii): R = R2 6= (0R). We look for a subring of
Aω = the polynomial ring in countably many indeterminates x1,x2, . . . over a com-
mutative ring A subject to the condition:

(16.2.3) x2
i = xi−1, i = 2,3,4, . . . .

Theorem 157 (Peter Malcolmson and Frank Okoh (2000)) : Let R be a subring of
Aω (the ring of polynomials in x1,x2,x3, . . . satisfying (16.2.3) such that R consists
of those polynomials in x1,x2, . . . having constant term equal to 0A). Then, R has
no maximal ideals.

Proof : Because of the relation (16.2.3), R = R2 6= (0A);0A being the zero element
in A. We consider a proper ideal I of R. Suppose that xn (n ∈ N) belongs to I. For
a ∈ A, we get

axn = (axn+1)xn+1 ∈ I.

Therefore, for m ≥ n, xm ∈ I. Since I is proper, we choose the least value t ∈ N,
such that xt /∈ I. Denoting the ideal generated by xt and I by < I,xt >, we see that
J =< I,xt > is a proper ideal of R. If J = R, we will have

(16.2.4) xt+1 = a + sxt + gxt
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where a ∈ I,g ∈ R and s is an integer. Multiplying both sides of (16.2.4) by xt ,
we obtain xtxt+1 ∈ I, since x2

t = xt+1 ∈ I. Next, multiplying both sides of (16.2.4)
by xt+1, we see that xt ∈ I, since x2

t+1 = xt . This contradicts the fact that xt /∈ I. So,
J 6= R. That is, J is a proper ideal of R. This implies that given I a proper ideal of
R, we can always find another proper ideal J of R such that J contains I properly.
Hence, R has no maximal ideals. �

Remark 16.2.2 :
(a) Theorems 155,156 and 157 have been adapted from Peter Malcolmson and

Frank Okoh [17].
(b) The rings R considered in theorems 156 and 157 are such that R does not

possess the unity element (multiplicative identity).

For more examples of rings having no maximal ideals, see [17].

16.3. Infinitude of primes in a PID

An analogue of Euclid’s theorem on the infinitude of primes was shown in
theorem 92, chapter 12. It says that a PID is semisimple if, and only if, either it
is a field or it has an infinite number of maximal ideals. In theorem 9, chapter
2, we noted that if D is a PID, an irreducible element is also a prime. Further, a
principal ideal generated by a prime is a prime ideal. That is, p is a prime in D
if, and only if, the principal ideal (p) is a prime ideal. When D has an infinite
number of maximal ideals, D has an infinite number of irreducible elements that
are primes in D. Is there a way to characterise a PID which has an infinite number
of irreducibles? It is possible to get this by noting that given an integral domain
D, the polynomial ring D[x] is semisimple (see definition 12.4.2, chapter 12).

We recall that the Jacobson radical J(R) of a commutative ring R with unity
1R is defined as the intersection of maximal (prime) ideals of R. In the notation
of definition 12.3.3, chapter 12,

√
0R is the nilradical of the zero ideal. It was

observed that the nilradical of R consists of the nilpotent elements of R.

Lemma 16.3.1 : Given a commutative ring R with unity 1R, the nilradical
√

0R

of R is the intersection of prime ideals of R.

Proof : Let

(16.3.1) J = ∩{P : P is a prime ideal of R}.
Suppose that a ∈ R and a 6∈ √0R. Then, a is non-nilpotent. So, S = {an : n ∈
N} does not intersect

√
0R. Since S is a multiplicative set (see definition 14.3.2,

chapter 14), by Corollary 14.3.1, the complement of S in R is a set-theoretic union
of prime ideals of R. So, there exists a prime ideal P not containing a. That is,
a does not belong to the intersection of prime ideals of R. Or, a 6∈ J. That is,
a 6∈ √0R⇒ a 6∈ J. Therefore,

(16.3.2) J ⊆
√

0R.
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If b ∈ R and b 6∈ J, there exists a prime ideal not containing b. So, no power of b
belongs to P. It means that b is not nilpotent. That is, b 6∈ √0R. Thus,

(16.3.3)
√

0R ⊆ J.

From (16.3.2) and (16.3.3), we arrive at
√

0R = J. �

Remark 16.3.1 : The nilradical of R is also the prime radical of R. See definition
14.5.2, chapter 14.

Lemma 16.3.2 : If R is an integral domain, R[x] is semisimple.

Proof : Assume the contrary. Let 0 6= f (x)∈ J(R[x]). By Corollary 12.4.1, chapter
12, x f (x) + 1R is a unit. This is evident, even otherwise. For, if x f (x) + 1R is not
a unit, x f (x) + 1R will belong to a maximal ideal M of R[x]. Since f (x) ∈ M,
x f (x) ∈ M. Then, 1R ∈ M, a contradiction. Now, R is an integral domain, so is
R[x]. When x f (x) + 1R is a unit, x f (x) + 1R is a constant polynomial, forcing f (x)
to be the zero polynomial. So, J(R[x]) = (0R). �

Theorem 158 (Fabrizio Zanello (2004)) : R denotes a PID. R has an infinite num-
ber of pairwise nonassociated irreducible elements if, and only if, every maximal
ideal of R[x] has height 2.

Proof : :⇒
Let M be a maximal ideal in R[x]. We write P = M ∩R. Then, P is a prime

ideal of R. Suppose that P = (0). We select an element g(x) in M of lowest degree
which is possible, since R[x] is a UFD. Now, M is a prime ideal of R[x]. So, we
could assume that degg(x)> 0 and g(x) is an irreducible in R[x].

Let K denote the quotient field of R. If f (x) ∈M, as division algorithm holds
in K[x], we obtain

(16.3.4) f (x) = g(x)q1(x) + r1(x)

where either r1(x) = 0 or degr1(x)< degg(x). From (16.3.4), we have

(16.3.5) f (x) = g(x)
q(x)

a
+

r(x)
a

where a denotes the l.c.m of denominators of the coefficients (which are from K)
of q1(x) and a 6= 0R. Or,

(16.3.6) a f (x) = g(x)q(x) + r(x)

where q(x) and r(x) ∈ R[x]. This implies that r(x) ∈ M. This leads to the fact
that r(x) is the zero polynomial, as degr(x) ≥ degg(x) by the choice of g(x) as
an irreducible polynomial. So, a f (x) ∈ (g(x)) ⊂ M. Therefore, f (x) belongs to
the principal ideal (g(x)). But (g(x)) is a prime ideal. So, either a ∈ (g(x)) or
f (x) ∈ (g(x)). But, prime ideals in R[x] cannot contain nonzero constants. Thus,
M = (g(x)) which implies that ht(M) = 1 in case P = (0R).

M is an arbitrary maximal ideal of R[x]. If P = M∩R = (0R), M = (g(x)) where
g(x) is an irreducible polynomial in R[x]. For every irreducible p in R,

© 2007 by Taylor & Francis Group, LLC



586 CHAPTER 16

g.c.d (g(x), p) = a unit in R. Therefore, if J = the ideal generated by g(x) and p,
written (g(x), p), we have

(16.3.7) R[x]/J = (0R).

Now, R/(p) is a field say F. There exist polynomials u (x), v (x) in R[x] such that
u (x)g (x) + v (x)p = 1R. So, in F[x], as u (x)g (x) ≡ 1R (mod I), where I = (p), the
ideal generated by p in R[x], g (x) is a constant in F[x], for each such p. So, every
coefficient of g (x) other than the constant term is divisible by every irreducible
p in R. This is a contradiction to the hypothesis that there are infinitely many
pairwise non-associated irreducible elements in R and the fact that R, being a
PID, is a UFD. Therefore, P = M∩R 6= (0R). So, P = (p) where p is an irreducible
element of R.

Now, M is not a principal ideal. For, if it were, M would coincide with (p).
But, then, R[x]/(p) ∼= F[x], where F = R/(p) and F[x] is not a field. Therefore,
M strictly contains the prime ideal (p). So, height of M is at least 2. But, as R is
Noetherian,

(16.3.8) dimR[x] = dimR + 1.

For proof, see G. Karpilovsky [A2]. Here, dimR = 1. Therefore, dimR[x] = 2.
Thus, height of M is exactly 2. That is, if R has infinitely many pairwise nonasso-
ciated irreducibles, height of a maximal ideal M of R[x] is 2.
⇐: Conversely, assume that every maximal ideal M of R[x] has height 2. Every
such M must contain some nonzero constant and so must contain at least one
irreducible element of R. For, if P = M∩R and P = (0), it was shown already that
M has height 1.
Suppose that there are only a finite number of pairwise non-associated irreducible
elements in R. Let the irreducibles be p1, p2, . . . , pm (say). Then, p1 · p2 · . . . · pm

belongs to every maximal ideal M in R[x]. Therefore, the product p1 · p2 · · · pm

belongs to the Jacobson radical J(R[x]) of R[x]. Since R is an integral domain, by
lemma 16.3.2, J(R[x]) = (0R), a contradiction to the fact that the product
p1 · p2 · · · pm of irreducibles belongs to J(R[x]). This proves that R has an infi-
nite number of non-associated irreducible elements. �

Remark 16.3.2 : The proof given above has been adapted from [20].

Remark 16.3.3 : Theorem 158 catches the infinitude of primes in a PID R for
which every maximal ideal of R[x] has height 2. Of course, we use the fact that
R[x] is semisimple.

Remark 16.3.4 : Let P = (p), (p a prime) be a prime ideal of Z. Then, P[x] is a
prime ideal of Z[x]. Z[x] is semisimple and by Theorem 92 (Burton’s theorem),
Z[x] has an infinite number of maximal ideals. Not all prime ideals of Z[x] are of
the form P[x]. For, (x), the ideal generated by x is a prime ideal of Z[x] and it is
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not a maximal ideal, though. As mentioned in chapter 12, Z[x] is not a Dedekind
domain.

Next, we make the following

Observation 16.3.1 : Let P,Q be prime ideals of a Noetherian domain R such
that P ⊂ Q. Suppose that ht P = n, ht Q = n + 1 (n≥ 0). Then, there is no prime
ideal in R[x] which lies strictly in between P[x] and Q[x]. See [A2].

Observation 16.3.2 : Given a prime ideal P of a Noetherian domain R such that
ht P = n (≥ 1), if J is a prime ideal of R[x] which contracts to P (meaning that
P = J∩R) and contains P[x] properly, then, in R[x],

(16.3.9) ht (P[x]) = n, ht J = n + 1.

For proof, see [A2].
We deduce that if P is a prime ideal (generated by a prime p) in Z, as (0)⊂ P

forms an ascending chain of prime ideals of Z, ht P = ht (P[x]) = 1. P[x] is con-
tained in a maximal ideal of Z[x]. If M denotes the ideal of Z[x] which contracts
to P and contains P[x], ht M = 1 + 1 = 2. It implies that every maximal ideal of
Z[x] has height 2. Theorem 158 confirms that Z has an infinite number of non-
associated irreducible elements that are primes.

16.4. On the group of units of a commutative ring

Dirichlet’s unit theorem (see theorem 124, chapter 13) determines the struc-
ture of the group of units in the ring of integers of an algebraic number field. As a
partial converse, given a cyclic group G, one could determine a finite commutative
ring R for which the given group G is the group of units, see Robert Gilmer [10].
Going a step further, K. E. Elridge and I. Fisher [9] determine an artinian ring
(see definition 12.5.4, chapter 12) whose group of units is a given cyclic group.
In a way, a ring structure is determined by a given group G which will serve as
the group of units [8]. In [5], the following questions are posed.

Question 1: Which groups can be reckoned as the group of units of a commutation
ring with unity?
Question 2: Which numbers u can serve as the number of units of a commutative
ring with unity?

S. Z. Ditor [5], answers questions 1 and 2 for finite groups of odd order. The
needed background picture is presented below:

Fact 16.4.1 : In a finite dimensional algebra A with unity 1A, over a field F
(i) Every left divisor of zero is a right divisor of zero and vice versa.
(ii) Every left unit (a left divisor of 1A) is also a right unit (a right divisor of 1A).
(iii) A divisor of zero in A is never a unit in A.
These are obvious.
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Definition 16.4.1 : A finite dimensional algebra A without divisors of zero is
called a division algebra.

Definition 16.4.2 : A representation of an algebra A over a field F is a homo-
morphism T : A→ L(V ), where L(V ) denotes the F-algebra of linear operators
on some vector space V (over F). In other words, to define a representation T of
A is to assign to every element a in A, a linear operator Ta : V →V such that for
a,b ∈ A, α ∈ F,

Ta+b(v) = (Ta + Tb)(v),
Tαa(v) = αTa(v),
Ta·b(v) = Ta(Tb(v)),

and T1A (v) = I(v),

where v ∈V and I denotes the identity operator on V .
If V is finite dimensional, its dimension is called the dimension of the repre-

sentation T . The image of the representation T (the set of linear operators of the
form Ta : a ∈ A, forms a subalgebra of L(V ). Image of T is denoted by ImT .

Definition 16.4.3 : Let T be a representation of an algebra A. If T : A→L(V ) is
a monomorphism, ImT which is isomorphic to A is called a faithful representation
of A.

Lemma 16.4.1 (Cayley) : Every algebra admits a faithful representation. That
is, every algebra is isomorphic to a subalgebra of L(V ), for some vector space V
over F.

Proof : Given A, if a∈ A, we could define Ta : A→L(V ) by Ta (x) = ax, x ∈ A. Ta

is a linear operator on the space A over F .

Ta+b(x) = (Ta + Tb)(x),
Tαa(x) = αTa(x)
Ta·b(x) = Ta(Tb(x))

and T1A (x) = IA(x) = x = I(x);

where x ∈ A and I denotes the identity operator on V . T is a representation of
A and for a,b ∈ A whenever a 6= b 1A(a) 6= 1A(b) or T is a faithful representation
of A. �
Definition 16.4.4 : The representation given in lemma 16.4.1 is called the regular
representation of A. When A is finite dimensional, the dimension of the regular
representation is equal to the dimension of A.

When T is finite dimensional, we may choose a basis of V and assign to
each operator Ta ∈ L(V ) its matrix [Ta]. T : A→L(V ) gives a homomorphism of
A into the algebra Mn(F), where n = dimT . Such a homomorphism is a matrix
representation of the algebra A. So, a representation T of A also gives rise to a
matrix representation of A.
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Definition 16.4.5 : Let A be an algebra over a field F. A left A-module M is a
vector space over F together with a function η : A×M→M such that if η (a,m)
is denoted by am (a ∈ A,m ∈M), and

a(m1 + m2) =am1 + am2,

(a + b)m =am + bm,

a(αm) =αa(m) = α(am),α ∈ F,

a.b(m) =a(bm),
1Am =m,

where a,b ∈ A,m,m1,m2 are in M.

If T : A→L(V ) is a representation of A, we define Ta(V ) as av for a∈A,v∈V .
Then, V becomes a left A-module. This module corresponds to T . Conversely,
given M as a left A-module, for a ∈ A, we can consider Ta : M→M by defining
Ta(m) = am. Then, Ta becomes a linear operator on M. That is, we get a repre-
sentation of A corresponding to the module M. In particular, there corresponds
a regular module corresponding to a regular representation of A. In fact, when
M = A, ma is nothing but the product of elements m and a in A.

Next, we consider A-module homomorphisms. Let M,N be left A-modules.
A linear map ψ : M → N satisfying ψ(am) = aψ(m). a ∈ A, m ∈ M is called a
homomorphism. If ψ is both a homomorphism and epimorphism, it is called an
isomorphism. Further, M and N are said to be isomorphic. We state without proof:

Fact 16.4.2 : The representations of an algebra A corresponding to isomorphic
modules are similar and modules corresponding to similar representations are iso-
morphic.

Homomorphisms of A-modules can be multiplied. The idea is that given
ψ : M→ N,η : N→ L, the product ηψ : M→ L is given by η ψ(m) = η (ψ(m)) for
all m ∈M. ηψ is also a homomorphism. Further, if ψ1,ψ2 are homomorphisms
from M to N,

(ψ1 +ψ2)(m) = ψ1(m) +ψ2(m)

and
(αψi)(m) = α(ψi(m)),α ∈ F, i = 1,2; m ∈M;

multiplication is associative and distributes addition. The set HomA(M,N) de-
notes the set of all homomorphisms and it is considered as a vector space over the
field F . In particular, HomA(M,M) is such that homomorphisms from M to M can
be multiplied. It forms an F-algebra called the algebra of endomorphisms of the
module M and is denoted by EA(M). Its elements are endomorphisms of M. We
note that an A-module M is called simple if its only submodules are (OM) and M.

Lemma 16.4.2 (Schur lemma) : If M and N are simple A-modules, every nonzero
homomorphism ψ : M→ N is an isomorphism.
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Proof : kerψ and Imψ are submodules of M and N respectively. ψ is a nonzero
homomorphism implies that ker ψ 6= M and Imψ 6= (ON). As M is simple, ker ψ =
(OM). So, ψ is a monomorphism. As N is simple, Im ψ = N. That is, ψ is an
epimorphism. Thus, ψ is an isomorphism. �
Corollary 16.4.1 : A regular A-module is simple if, and only if, A is a division
algebra.

Proof : We observe that A∼= L(A). So, when A has no nontrivial left ideals (sub-
spaces N′ which absorb products from left), A has no zero divisors. That is, A
is a division algebra. As a left ideal N ′ of A is realized as the kernel of a linear
operator, when A is a division algebra, the regular A-module is simple. �

Next, we remark that commutative semisimple algebras have been considered
in chapter 14. By theorem 127 or by Schur lemma, one obtains

Fact 16.4.3 : (Weierstrass-Dedekind theorem) A commutative semisimple alge-
bra is isomorphic to a direct sum of fields. Conversely, a direct sum of fields is a
semisimple algebra (see theorem 127, chapter 14).

Proof is omitted.
Let D denote a finite dimensional division algebra over a field F . Suppose

that V is a finite dimensional left D-module. We call V a finite dimensional vector
space over the division algebra D.

Fact 16.4.4 :
a) V is a semisimple D-module.
b) Every vector space over D is isomorphic to a direct sum of n copies of D.
(n = dimV )
c) If A = Mn(D), V , as an A-module, is simple.
d) A = Mn(D) is simple.
e) An algebra A is semisimple if, and only if, there exists a faithful semisimple
A-module.
For proofs, see Yu. A Drozd and V. V. Kirichenko [6].

Theorem 159 (Wedderburn-Artin theorem (1908)) : Every semisimple algebra is
isomorphic to a direct sum of matrix algebras over division algebras. Conversely,
a direct sum of matrix algebras over division algebras is a semisimple algebra.

Proof : ⇒ Let A be a semisimple algebra. Suppose M is a regular A-module. By
Fact 16.4.4 (e), M is regular⇒M is faithful and so M is semisimple.

M ∼= n1M1⊕n2M2⊕·· ·⊕nkMk

is a decomposition of M into a direct sum of simple modules Mi (i = 1,2, . . . ,k).
Mi 6= M j, for i 6= j. So, we get

A∼= S1⊕S2 . . .⊕Sk where Si = niMi.

By Schur lemma, HomA(Mi,M j) = (0) for i 6= j.
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Then, A = ⊕
k∑

i=1
Ai, where Ai = EA(Si), as EA(M) ∼= ⊕

n∑
i=1

EA(Si). As Si = niMi

(i = 1,2, . . .k), Ai
∼= Mn(Di) with a division algebra Di = EA(Mi).

⇐: If A =⊕
k∑

i=1
Ai where Ai = Mn(Di), the regular A-module M can be decomposed

into a direct sum ⊕
k∑

i=1
Mi with Mi as regular Ai-modules. As every module over

A = Mn(D) is semisimple, Mi are semisimple modules. That is, A, being a direct
sum of semisimple modules, is semisimple. �

Let G be a group. A representation of G over a field F is a homomorphism
T : G→ A(V ), where A(V ) denotes the group of invertible linear operators on
V , a vector space (over F). The terminology is similar to that of representations
of an algebra. G acts on V as a group of F-linear automorphisms of V by the
action g · v = Tg(v), for g ∈ G,v ∈ V . V becomes a left G-module. This module
corresponds to T . Conversely, given M as a left G-module, for g ∈ G we make
Tg : M→M by defining Tg(m) = g ·m. Then, Tg becomes a linear operator on M.
That is, we get a representation of G corresponding to the module M. As for the
case of algebras, we can talk about the representation module of group G.

Remark 16.4.1 : Theorem 159 has been included to give a flavour of ‘semisim-
plicity’ via representation theory.

Next, given a finite group G, we consider the group algebra FG (see definition
11.4.2, chapter 11). We need

Fact 16.4.5 : (Maschke’s theorem) Let G be a finite group of order n. Given a field
F of arbitrary characteristic (0 or a prime p), the group algebra FG is semisimple
if, and only if, the characteristic of F does not divide n, the order of G.

For proof, see Yu. A. Drozd and V. V. Kirichenko [6].

Theorem 160 (S. Z. Ditor (1971)) :
a) A finite group of G of odd order is the group of units of some ring if, and

only if, G is abelian and is the finite product of cyclic groups Gi where order of
each Gi is of the form 2ki − 1.

b) If G is the group of units of a ring R and if G is finite and of odd order,
then the subring [G] (of R) generated by G is a finite direct sum of Galois fields
of characteristic 2, namely,

[G] =⊕
r∑

i=1

GF(2ki).

Proof : We prove (b) first.
Since G is of odd order, −1R = 1R. Otherwise {−1R,1R} will be a subgroup of

G of order 2. Therefore, the subring [G] (of R) generated by G is a finite dimen-
sional algebra over a field GF(2) of characteristic 2. Now, [G] is a representation
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module of G over GF(2). Also the characteristic 2 of GF(2) does not divide o(G)
(being odd). By Fact 16.4.5 (Maschke’s theorem), [G] is semisimple. By theo-
rem 159, [G] is the finite direct sum of rings Ai where each Ai is the full ring of
ni× ni matrices (for some ni) over a division ring Di; i = 1,2, . . . ,r. By Wedder-
burn’s theorem (which says that a finite division ring is a field), the division rings
Di are fields. Since −1R = 1R in [G], each Di is a Galois field of characteristic 2.

Now, if Mn(F) is the ring of n× n matrices over a finite field F having s
elements. Mn(F) has precisely

(16.4.1) (sn − 1)(sn − s) · · · (sn − sn−1)

units (matrices whose rows are linearly independent). When s is of the form
2k(k≥ 1), the number of units obtained from (16.4.1) is odd if, and only if, n = 1.
Hence

[G] =⊕
r∑

i=1

GF(2ki).

Proof of (a) (using (b)). Since the multiplicative group of GF(2ki) is cyclic of
order 2ki − 1, the group of units of R is a direct product of cyclic groups of order
2ki − 1(i = 1,2, . . . ,r) and so G is cyclic and hence abelian.

Conversely, if a finite group G is abelian and is a finite direct product of
cyclic groups Gi, where o(Gi) = 2ki −1, (i = 1,2, . . .r), considering {0}∪G = S and
obtaining a ring generated by S, say [S], we see that G is the group of units of [S]
and G is of odd order. �

Corollary 16.4.2 : Let t = pm where p is a prime and m ≥ 1. Then, t is equal
to the number of units of a ring R if, and only if, p = 2 or p is Mersenne prime
Mq = 2q − 1 where q is a prime.

Proof : If p = 2, the direct sum of m fields GF(2) has 2m units.
If p = Mq = 2q − 1 (a Mersenne prime) the direct sum of m fields GF(2q) has

pm units. Conversely, let G be a group of odd pm and suppose that G is the group
of units of a ring R. By theorem 160, G is a direct product of cyclic groups of
order 2ki − 1 (i = 1,2, . . . ,r). So, pm =

∏r
i=1(2ki − 1).

So, there exist integers n and k such that pn = 2k − 1. When n is even,

pn − 1 = (p − 1)(pn−1 + pn−2 + · · ·+ p + 1)

and pn − 1 is divisible by 4. If k 6= 1, 2k − 2 is not divisible by 4. So pn = 2k − 1 is
not feasible, when n is even. Therefore, n is odd and pn + 1 = 2k. Then, as (p + 1)
divides pn +1, p+1 has to be a power of 2. Thus, p = 2q −1, making p a Mersenne
prime. �

16.5. Quadratic reciprocity in a finite group

In this section, we revisit the law of quadratic reciprocity (see theorem 42,
chapter 6) in the context of a finite group. In [7], William Duke and Kimberly
Hopkins give a nice generalization via group characters.
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Let p be an odd prime. Then F∗p = Z/pZ \ [0] is a cyclic group of order
(p − 1). The associated Dirichlet character is the Legendre symbol (·| p). In 1872,
Zolotarev [7] referred to the sign of a permutation of the elements of G = Z/pZ
induced by multiplication by a where p - a.

Definition 16.5.1 : Let α be a permutation of a finite set S. Sign α, written sgnα,
is given by

(16.5.1) sgn α =

{
1, if α is an even permutation
−1, otherwise.

Since α is expressed as a product of s transpositions (say), sgn (α) = (−1)s. If
β is another permutation expressed as a product of t transpositions,

(16.5.2) sgn (α◦β) = (−1)s+t = (sgn α) (sgn β).

Thus, sgn is a mapping of Sr (the symmetric group on r symbols) into the multi-
plicative group {1,−1} which preserves products. In fact, sgn : Sr→ {1,−1} is a
homomorphism of Sr into {1,−1} with kernel Ar, the alternating group.

In the case of F∗p which is a cyclic group of order (p−1), the map π : F∗p→ F∗p
given by π(a) = a2 is such that image of F∗p under π is the unique subgroup of
order p−1

2 and ker π is the unique subgroup of order 2 and is equal to {1,−1}.
This unique subgroup of order 2 identifies the Legendre symbol (·| p). We also
observe that a generator of F∗p induces a (p−1)-cycle which is an odd permutation.

In what follows, we take G to be a finite group of order r. We recall that if F
is a field, the general linear group GLn(F) is given by

(16.5.3) GLn(F) = {A : A is an invertible n×n matrix with entries from F}.
Definition 16.5.2 : An n-dimensional matrix representation of G is a homomor-
phism ψ : G→ GLn(F).

We denote the image of g ∈ G made ψ by ψ(g) and it is an invertible matrix,
as an element of GLn(F). For g,h ∈ G,

ψ(g.h) = ψ(g)ψ(h).

Notation 16.5.1 : Let V be a finite dimensional vector space over F . GL(V )
denotes the group of invertible linear operators on V . The choice of a basis for V
determines an isomorphism of GL(V ) with GLn(F).

We recall

Definition 16.5.3 : A representation of G onV is a homomorphism ρ : G→ GL(V ).
The dimension of the representation ρ is defined as the dimension of the vector
space V (over F).

As V ∼= Fn, matrix representation of G can be considered as representations
of G on the space Fn of column vectors. As remarked in M. Artin [1], all rep-
resentations of G on finite dimensional vector spaces can be reduced to matrix
representation, once we decide to choose a basis.
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Definition 16.5.4 : Two representations ρ : G→ GL(V ) and ρ′: G→ GL(V ′) of
a group G are called isomorphic (or equivalent) if there is an isomorphism of
vector spaces V and V ′ given by T : V → V ′ which is compatible with the group
operation in the sense that for v ∈V, g ∈ G,

(16.5.4) gT (v) = T (gv)

or

(16.5.5) ρ′(g)(T (v)) = T (ρ(g)v).

If B is a basis of V and if B′ = T (B) is the corresponding basis of V ′, the
associated matrix representations ψ(g) and ψ(g′) are equal, where g′ ∈ G.

Next, let V be an n-dimensional vector space order C (the held of complex
numbers).

Definition 16.5.5 : The character χ of a representation ρ for a choice of a basis
of V is the map χ : G→ C defined by

(16.5.6) χ(g) = trace (ρ(g))

If ψ is the matrix representation obtained from ρ for a choice of a basis of V ,

(16.5.7) χ(g) = trace (ψ(g)) = λ1 +λ2 · · ·+λn

where λi(i = 1,2 · · ·n) are the eigenvalues of ψ(g).

Let ρ be a representation of G on a finite dimensional vector space V . Given
ρ, it is known [1] that for each g∈G, there is a basis of V so that the matrix of ρ(g)
is diagonal. We will look for a basis which will diagonalize ρ(g) for all g ∈ G. If
G is a finite abelian group, every matrix representation ψ of G is diagonalisable.
That is, there exists ρ ∈ GLn(C) such that ρ ψ(g)ρ−1 is a diagonal matrix for all
g ∈ G.

Definition 16.5.6 : Let ρ be a representation of G on a vector space V . A subspace
W of V is called G-invariant if ρ(g)w ∈W for all w ∈W and g ∈ G. That is,
ρ(g)W ⊆W for all g ∈ G.

Definition 16.5.7 : If a representation ρ of a (finite) group G on a vector space V
has no proper G-invariant subspaces, it is called an irreducible representation.

We remark that the character of an irreducible representation is called an
irreducible character.

Fact 16.5.1 : Given a (finite) group G, let ρ1,ρ2, · · · be the distinct isomorphism
classes of irreducible representations of G. Let χi be the character of ρi.

a) orthogonality relations: The characters χi are orthonormal. That is,

(16.5.8) 〈χi,χ j〉 =
1
|G|
∑

g∈G

χi(g) χ j(g) =

{
1, if j = i
0, otherwise.

b) There are finitely many isomorphism classes of irreducible representa-
tions, the same number as the number of conjugacy classes in the group.
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For proof, see Michael Artin [1, chapter 9 sections 1,2,4,5 and 9].
Next, if f : G→ C is such that f is a constant on each conjugacy class of

G, f is called a class-function on the set of conjugacy classes. The set of class-
functions defined on G forms a vector space C (say) overC. It is verified that the
set of irreducible characters of G forms an orthonormal basis of C . Thus, C is a
finite dimensional complex vector space.

If χ is a character of G,χ(g), g ∈ G, is called a character value. As C has a
basis consisting of a finite number of distinct irreducible characters, the character
values of all representations of G could be found out. For let χ1,χ2, · · · ,χm be the
distinct irreducible characters of G. Then, χ ∈ C is expressible as

(16.5.9) χ = k1χ1 + k2χ2 + · · ·+ kmχm

where ki = 〈χ,χi〉 (i = 1,2, · · ·m), (see (16.5.8)).
Now, if {g1,g2 · · · ,gm} is a set of representatives of conjugacy classes in G,

we form a table, which is referred to as the character table of G.

g1 g2 g j gm

χ1 χ1(g1) χ1(g2) χ1(g j) χ1(gm)

χ2 χ2(g1) χ2(g2) χ2(g j) χ2(gm)
... · · · · · · · · · · · ·
χi χi(g1) χi(g2) χi(g j) χi(gm)

· · · · · · · · · · · ·
χm χm(g1) χm(g2) χm(g j) χm(gm)

Table 1

Next, we denote the order of G by r. Suppose that a ∈ N and g.c.d (a,r) = 1.
We denote the set of m conjugacy classes in G by

(16.5.10) Γ = {C1,C2, · · · ,Cm}.
m = r if, and only if, G is abelian. a induces a permutation of Γ, if we define
ψ : Γ→ F by ψ(g) = ga, for all g ∈ G. It means that

C a
j = {ga : g ∈C j}.

(16.5.11) ψ takes C j to C a
j ( j = 1,2, · · ·m).

Definition 16.5.8 : The quadratic symbol for G at any nonzero integer a is defined
by

(a|G ) =





0, if g.c.d (a,r) 6= 1;
1, if ψ is even;
−1, if ψ is odd

(where ψ is as given in (16.5.11)).
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If we take the l.c.m k of orders of elements of G, (a|G) is a Dirichlet character
modulo k (see definition 15.2.3). In the special case when G = Z/pZ, p an odd
prime

(16.5.12) (a|G) = (a|p), the Legendre symbol.

Definition 16.5.9 : C j ∈ Γ (16.5.10) is said to be a real conjugacy class, if C−1
j =

C j. If C−1
j 6= C j, C j is said to be a complex conjugacy class.

We note that C−1
j is obtained from Γ by taking the conjugacy class of g−1

where g determines C j. Complex conjugacy classes occur in pairs {C j,C−1
j } with

|C j| = |C−1
j |. Then, as is done in the case of number fields, we could write

|Γ| = m = s + 2t where t is half the number of complex conjugacy classes.

Notation 16.5.2 : Given a finite group G, if m = |Γ| and m = s + 2t (s being the
number of real conjugacy classes), we write

(16.5.13) d = d(G) = (−1)t|G|s
s∏

j=1

|C j|−1.

We recall that for a ∈ G, the normalizer of a in G is given by

N(a) = {g ∈ G : g ·a = a ·g}.
N(a) is a subgroup of G and if a∈C j, |C j| = |G|

|N(a)| . (See I. N. Herstein [13, chapter

2, section 11 pp 69–77]). So, |C j|−1 = N(a)
|G| . Therefore d given in (16.5.13) is an

integer.

Remark 16.5.1 : It will be shown in theorem 161 that

d = 0 or 1(mod 4).

In a sense, d resembles ∆, the discriminant of a quadratic number field. (See Sec-
tion 15.2, chapter 15). Therefore, it is appropriate to call d (given in (16.5.13)),
the discriminant of G.

Let b be an odd positive integer. Suppose that b =
k∏

i=1
pi (pi primes not nec-

essarily distinct). In (6.7.1), chapter 6, we have seen the Jacobi symbol (a|b)
expressed as

(16.5.14) (a |b) =
k∏

i=1

(a |pi)

where (a|pi) is Legendre symbol. (a |b) = 1, if b = 1.

Fact 16.5.2 : The following statements are valid for the Jacobi symbol.
(i) If b> 0, b odd and a≡ a′(mod b) with g.c.d (a,b) = 1

(16.5.15) (a |b) = (a′ |b).
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(ii) If b> 0, b odd; b′ > 0, b′ odd and g.c.d (a,b) = g.c.d (a,b′) = 1

(16.5.16) (a |b)(a |b′) = (a |bb′).

(iii) If b> 0, b odd

(16.5.17) (−1 |b) = (−1)
b − 1

2 .

(iv) If b> 0, b odd

(16.5.18) (2 |b) = (−1)
b2 − 1

8

(v) Let a,b be odd and g.c.d (a,b) = 1. Then,

(16.5.19) (a |b)(b |a) =





− (−1)
(

a−1
2

)(
b−1

2

)
, if a< 0 and b< 0

(−1)
(

a−1
2

)(
b−1

2

)
, if a> 0 and b> 0, or

a< 0 and b> 0 or
a> 0 and b< 0.

For proofs, see E. Landau [16].
Kronecker symbol (15.2.19) was already used in Section 15.2, chapter 15.

We need to look into it more closely: Following Landau [16], Kronecker symbol
is introduced as given below:

Let d ≡ 0 or 1(mod 4). d is not a perfect square.
(For instance, d = 5,8,12,13,17,20,21, . . . or − 3,−4,−7,−8, · · ·). Let a> 0.

Definition 16.5.10 : The symbol (d |m) is always given a meaning by means of
the following:

(d |p) = 0, if p |d (p a prime),

(d |2) =

{
1, if d ≡ 1(mod 8),
−1, if d ≡ 5(mod 8).

It means that (d |2) = the Jacobi symbol (2 |d) for 2 not dividing d.

(d |p) = Legendre symbol, if p> 2 and p - d

(d |a) =
k∏

i=1

(d |pi), where a =
k∏

i=1

pi

and (d |1) =1.

For those integers d and a for which Kronecker and Jacobi symbols are defined
namely, odd a> 0 and g.c.d (d,a) = 1, both definitions agree. Further,
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if g.c.d (d,a) > 1, (d |a) = 0. If g.c.d (d,a) = 1, (d |a) = ±1 (for the above-
mentioned d).

Fact 16.5.3 : If a> 0, a′ > 0, then

(d |aa′) = (d |a) (d |a′).

Next, let |d| = D.

Fact 16.5.4 : Let a> 0 and g.c.d (d,a) = 1. If d is odd, (d |a) = (a |D) (the Jacobi
symbol). If d is even and d = 2qm (m odd), given |m| = M, then,

(16.5.20) (d |a) = (2 |a)q(−1)( m−1
2 )( a−1

2 )(a |M).

(symbols on the right are Jacobi symbols.)

For proofs, see E. Landau [16].
As mentioned in [16], the Kronecker symbol (d |a) when expressed as a

function (of a) gives a number-theoretic function fd : N→ C taking values in
{0,±1}.

Fact 16.5.5 : The function (d |a) has the following properties:
(i) (d |a) = 0 if g.c.d (d,a)> 1.

(ii) (d |1) = 1.
(iii) (d |a1a2) = (d |a1) (d |a2), a1 > 0, a2 > 0.
(iv) (d |a1) = (d |a2) whenever a1 ≡ a2(mod D); D = |d|.
(v) If d is odd and g.c.d (D,a) = 1 writing d = prm, where p is odd, r odd, p

does not divide m we can choose a quadratic nonresidue s (mod p) so that
a≡ s (mod p), a≡ 1(mod m) and as g.c.d (D,a) = 1

(d |a) = (a |D) = (a |p)r(a |m)

= (s |p)r(1 |m)

= (−1)r

or

(d |a) = −1, when r is odd.

(vi) If d is even, so that d = 2qm, where m is odd, choose q odd and a≡ 5(mod 8),
a≡ 1(mod |m|). Then, g.c.d (D,a) = 1 and by (16.5.20)

(d |a) = (2 |a)q(−1)( m−1
2 )( a−1

2 )(a| |m|).
Or,

(d |a) = (2 |a) ·1 · (1||m|) = −1.

(vii) If d is even and q is even, m is not a perfect square. If g.c.d (D,a) = 1 and
a> 0

(d |a) = (−1)( m−1
2 )( a−1

2 ), (a | |m|)
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If m = 3(mod 4), choose a≡ −1(mod 4), a≡ 1(mod |m|). As g.c.d (D,a) = 1,
a> 0,

(d |a) = (−1)
m−1

2 (1| |m|) = −1.
If m≡ 1(mod 4), when g.c.d (D,a) = 1, a> 0,

(d |a) = (a| |m|) = −1.

(viii) From (vi) and (vii), one gets (d |a) = −1 for a suitable value of a. Details of
proof of (i) to (iv) are in [16].

Lemma 16.5.1 (Landau (1927)) : Given d ≡ 0 or 1(mod 4) and D = |d|

(16.5.21) (d|D − 1) =

{
1, if d > 0
−1, if d < 0.

Proof :
Case (i): d an odd integer.
By Fact 16.5.4, (d |D − 1) = the Jacobi symbol (D − 1)|D).
But,

(D − 1|D) = (−1|D) = (−1)
D−1

2 =

{
1 if d > 0,
−1 if d < 0.

Case (ii): d even and d = 2qm, m odd. Then, by Fact 16.5.4

(d|D − 1) = (2|D − 1)q(−1)
m−1

2 (D − 1|M)

where M = |m|. Now, (2|D − 1)q = 1, since it is true for q = 2, and for q ≥ 3, as
D − 1≡ 7(mod 8), (2|D − 1)q = 1.

Next,

(−1)
m−1

2 (D − 1 |M) = (−1)
m−1

2 (−1 |M)

= (−1)
m−1

2 (−1)
M−1

2 .

Or,

(−1)
m−1

2 (D − 1 |M) =

{
1, d > 0
−1 d < 0.

�
Theorem 161 (Landau (1927)) : For a> 0, b> 0 and a≡ −b (mod |D|)

(16.5.22) (d |a) =

{
(d |b), if a> 0
−(d |b) if d < 0.

Proof :
(d |a) = (d |Db − b) = (d |b(D − 1))

= (d |b)(d |D − 1)

which yields (16.5.22) using (16.5.21). �
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If d is any integer and a a positive odd integer, we apply Jacobi’s generalized
reciprocity law (16.5.19) to obtain

(16.5.23) (d |a) ((−1)
a−1
2 a |d) = 1.

It implies that

(16.5.24) (d |a) = ((−1)
a−1
2 a |d)

which is an equivalent form of the quadratic reciprocity law.
As a is odd, (−1)

a−1
2 a≡ 1(mod 4) and so a∗ = (−1)

a−1
2 a is a discriminant. That is.

(d |a) = (a∗|d)

is the type of relation, we think of proving, given a finite group G as the premise.

Theorem 162 (William Duke and Kimberly Hopkins (2005)) : Let G be a finite
group having discriminant d (16.5.13). Then,

(i) d ≡ 0 or 1(mod 4)
(ii) (a |G) = (d |a).

Proof : The set Γ (16.5.10) of conjugacy classes is such that if χ is a character of
G, χ(C j) =χ(g), where g∈C j. Let χ1 = 1,χ2, · · · ,χm be the irreducible characters
of G. The character table of G is the m×m matrix.

(16.5.25) M =




χ1(C1) χ1(C2) · · · χ1(Cm)
χ2(C1) χ2(C2) · · · χ2(Cm)
· · · · · · · · · · · ·

χm(C1) χm(C2) · · · χm(Cm)


 .

We denote the conjugate transpose of M by M∗. Then, the (i, j)-entry in M∗M is
given by

m∑

k=1

χ̄i(Ck)χk(C j) =

{
|Ci|−1|G|, if j = i;
0, if j 6= i.

(as χ(C j) = χ(g) for all g ∈C j).
Thus,

(16.5.26) M∗M =




|G||C1|−1 0 · · · 0
0 |G||C2|−1 · · · 0

0 · · · |G||Cm|−1




M∗M is a diagonal matrix. Since χ(C−1
j ) = χ(C j) for any character χ and any

conjugacy class C j, we obtain

(16.5.27) det M̄ = (−1)t det M,

where t is as given in (16.5.13). From (16.5.26) and (16.5.27), we deduce that

(16.5.28) ( det M)2 = q2d for some integer q.
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Each entry χi(C j) of M is an algebraic integer in the cyclotomic field Q(ζ r)
where ζ r = exp( 2πi

r ) and r = |G|. Q(ζ r) is a finite extension of Q whose Galois
group Gal (Q(ζ r)/Q) is isomorphic to ((Z/rZ)∗, ·) by the map

σa : Gal(Q(ζ r)/Q)→ (Z/rZ)∗

given by

(16.5.29) σa(ζ r) = ζa
r .

Then,

(16.5.30) σa(χ j(g)) = χ j(ga) for any χ j and g ∈ G. ( j = 1,2, · · ·m).

By the definition of a determinant [12, chapter 6 section 9, pp 279–294],

det M =
∑

σ∈Sm

sgn (σ)χ1(Cσ(1)) · · ·χm(Cσ(m)),

where the summation is over all σ ∈ Sm and sgn (σ) =±1, according as σ is even
or odd.

We write
det M = A − B,

where A is the sum of even permutations in Sm and B, the sum of odd permutation
in Sm. By (16.5.30), A + B and AB are invariant under the Galois group of auto-
morphisms of Q(ζr) leaving Q fixed.
Then,

q2d = (A − B)2 = (A + B)2 − 4 AB≡ (A + B)2 (mod 4).
Thus,

q2d ≡ 0 or 1(mod 4)
from which it follows that d ≡ 0 or 1(mod 4).
This proves (i).

Next, from (16.5.25) and (16.5.29), we note that

σa(det M) = (a |G) det M.

From (16.5.28)

(16.5.31) σa(
√

d) = (a |G)
√

d.

To show that (a |G) = (d |a) we prove it for a = p, a prime such that p does
not divide |G| and for a = −1. If p - |G|, we use the Frobenius automorphism σp.
It is known [18] that p splits in Z[ζr] if, and only if, σp fixes Z[ζr] pointwise. So,
p splits in the ring of integers of Q(

√
d) if, and only if, σp(

√
d) =
√

d. Further,
the Kronecker symbol (d |p) has the fundamental property that p splits in the ring
of integers of Q(

√
d) if, and only if, (d |p) = 1. See P. Samuel [18]. Thus, from

(16.5.31), we see that
(p |G) = (d |p).

For a = −1, since det (M̄) = (−1)t det M,by (16.5.13),

(−1|G) = (−1)t = (d |− 1).
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This completes the proof of (ii). �

Example 16.5.1 : If |G| is odd, C1 is the only real conjugacy class. (See W.
Burnside [4]). For, if g∈G and g is in a real conjugacy class, we have h−1g h = g−1

for some h. Then, h−2g h2 = g. So, h2 ∈ N(g), the normalizer of g. Since |G| is
odd, order of h is odd, say 2k +1. It follows that h = (h2)

k+1
implying that h∈ N(g).

Thus, h−1gh = (h−1h)g = g = g−1. Since the order of g is odd, g is the identity
element in G. So, then, in m = s+2t,s = 1. Therefore, from the equation (16.5.13)
for d, we have

d = (−1)
m−1

2 r.

As d ≡ 0 or 1(mod 4), and r is odd, we have

(16.5.32) d = (−1)
r−1
2 r = r∗

holds for any group of odd order.

Remark 16.5.2 : When |G| is odd, W. Burnside [4] shows that |G| and m are
related by the congruence

|G| ≡ m (mod 16).

Example 16.5.2 : Let Fq denote a finite field of order q = 2k (k≥ 1).

SL(2,Fq) = {A : A is a 2×2 matrix with entries from Fq and det A = 1}.
I. Schur [19] has shown that |SL(2,Fq)| = q(q2 − 1) and m = s = q + 1. Further,

(16.5.33) d = q2(q + 1)(q2 − 1)q/2.

It is known that d is a perfect square if, and only if, q = 23 = 8. When q = 4,
SL(2,F4) ∼= A5 (a nonabelian group of order 60). Then, (a |A5) = (5 |a). For
d = 16×5×152, d ≡ 0(mod 4). So, (a |A5) = (d |a) = (5 |a).

16.6. Worked-out examples

(a) Let R be a ring with the property that for every a ∈ R, there exists an integer
n = n(a)≥ 4 such that

a + a2 + a3 = an + an+1 + an+2.

Show that
(i) a3n(a) −2 = a, for every a ∈ R.
(ii) R is a commutative ring.
(iii) every element of R has finite additive order.

Answer: (i) More generally, suppose that for each a ∈ R, there exist integers
k = k(a) and n = n(a) with n> k ≥ 1 such that

(16.6.1) a + a2 · · ·+ ak = an + an+1 + · · ·+ an+k−1.
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To prove (i), we make a
Claim:

(16.6.2) ak(a) n(a)−k(a)+1 = a, for all a ∈ R.

Step I: We first prove that R has no nonzero nilpotent elements. On the con-
trary, suppose that x ∈ R is such that xr = oR for some r > 1 and r is minimal.

Using (16.6.1), we note that

(16.6.3) x + x2 · · ·+ xk = (x + x2 · · ·+ xk)xn−1.

Iterating (16.6.3) m times, where (n − 1)m≥ r, we obtain

x + x2 · · ·+ xk = 0R.

Multiplying both sides by xr−2, we get

(x + x2 · · ·+ xk)xr−2 = xr−1 + xr + · · ·+ xk+r−2 = 0R.

It follows that xr−1 = 0R which contradicts the minimality of r. So, R has no
nonzero nilpotent elements.
Step II: We rewrite (16.6.1) as

(16.6.4) (a + a2 + · · ·+ ak)(an−1 − 1) = 0R.

Here, ‘1’ is a formal symbol. It means that we get (16.6.1) when we multiply
out the factor on the left side of (16.6.4). It is made clear that we are not
assuming the existence of a multiplicative identity 1R in R.

It follows that multiplying both sides of (16.6.4) by (a − 1), we obtain

(a − 1)(a + a2 · · ·+ ak)(an−1 − 1) = (ak+1 − a)(an−1 − 1) = 0R.

Or,

(16.6.5) a(ak − 1)(an−1 − 1) = OR.

We consider two polynomials f (a) and g(a) as defined below:

(16.6.6) f (a) =
n−2∑

i=0

ai k, g(a) =
k−1∑

j=0

a j(n−1)

Then, we get

a(ak − 1) f (a) = a(an−1 − 1)g(a) = akn−k+1 − a.

Therefore,

(akn−k+1 − a)2 = {a(ak − 1) f (a)a(an−1 − 1)g(a)}.
Or,

(akn−k+1 − a)2 = a(ak − 1)(an−1 − 1)a f (a)g(a) = 0R.

As R has no nonzero nilpotent elements, we conclude that

akn−k+1 − a = 0R.

Thus, (16.6.2) holds for all a ∈ R.
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(ii) A theorem of Jacobson [13] states that if R is a ring such that for
each a ∈ R, there exists an integer m(a) > 1 for which am(a) = a, then R is
commutative. By (i), m(a) = k(a)n(a) − k(a) + 1 > 1 makes am(a) = a for all
a ∈ R. That is, R is commutative.

(iii) We need to prove that the additive order of any a (6= 0) ∈ R is finite.
Let a ∈ R. (a 6= 0). Then, a + a = 2a ∈ R. Using (i), we see that there exists
integers s and t such that

(16.6.7) xs = x, (2x)t = 2x.

Considering as−1, we see that

(as−1)2 = a2s−2 = as ·as−2 = a ·as−2 = as−1.

Thus, as−1 serves as an idempotent element. In the same manner, we show
that (2a)t−1 is also an idempotent.
Therefore,

(16.6.8) a(s−1)(t−1)+1 = (as−1)t−1 ·a = as−1 ·a = a.

Likewise, (2a)(s−1)(t−1)+1 = 2a. Writing (s − 1)(t − 1) + 1 = q (say), we see that

2a = (2a)q = 2q.aq = 2qa, by (16.6.8).

Hence (2q − 2)a = 0R. Thus, a is of finite additive order.
The solution is complete. �

Remark 16.6.1 : The above worked-out example is due to Erwin Just. The
solution given has been adapted from Charles Lanski: Solution to problem
10841, Amer. Math. Monthly 109 (2002) p 858. A nontrivial example
of a ring possessing the property stated is yet to be found. For any set X
if P(X) denotes the power set of X , (P(X),∆,∩) is a ring. (∆ being sym-
metric difference and ∩, set-intersection). It is true that for any A ∈ P(X),
A∆A2∆A3 = A = An∆An+1∆An+2,n ≥ 4. We know, already, that every ele-
ment in P(X) is of additive order 2.

(b) We recall that a Mersenne number is one of the form Mn = 2n − 1. It is known
that if n > 1 and an − 1 is a prime, then a = 2 and n is a prime. Let p be a
prime. Lucas (1876) has given a method of checking whether Mp is a prime
or not. In fact, he showed that M127 is a prime.

Let p be an odd prime. Suppose that q is a positive integer such that
q < p,r = qp + 1 or qp2 + 1 and 2q ≡ 1(mod r). If 2r−1 − 1≡ 0(mod r), show
that r is a prime.

Answer: We write r = qpi +1, where i = 1 or 2. Suppose that the element [2] in
U(r) (the group of units in Z/rZ) has order d. That is, d is the least positive
integer such that [2]d = [1]. In other words, d is the least positive integer such
that 2d ≡ 1(mod r). Then, d - q. But d | (r − 1). That is, d |qpi. There exists
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d′ such that dd′ = qpi. As d - q, p |d. Now, d |φr). So p |φ (r). Further, if
r =
∏k

i=1 pai
i (pi, primes. ai ≥ 1; i = 1,2 . . .k)

(16.6.9) φ (r) = pa1−1
1 pa2−1

2 · · · pak−1
k (p1 − 1)(p2 − 1) · · ·(pk − 1).

Some p - r, p divides at least one of (pi − 1) (i = 1,2 . . .k). So, r has a
prime factor s satisfying s ≡ 1(mod p). Let r = sr′. Since r ≡ 1≡ s(mod p),
r′ ≡ 1(mod p). If r′ > 1,

(16.6.10) r = (mp + 1)(m′p + 1), 1≤ m≤ m′.

Then,
qpi + 1≡ (mm′p2 + (m + m′) p + 1,

or

(16.6.11) qpi−1 = mm′p + (m + m′).

If i = 1, q = mm′p + (m + m′) and so,

p≤ mm′p< q< p — a contradiction.

If i = 2, qp = mm′p + (m + m′). So

p | (m + m′), p< (m + m′).

Therefore, mm′ < q and q < p (given). Moreover, 2m′ ≥ (m + m′) > p.
So, mm′ < q< p. Or, mm′ ≤ (p − 2) and m′ > p/2. That is,

m≤ (p − 2)
m′

<
2(p − 2)

p
< 2.

Therefore, m = 1. But then, m′ > p − 1,mm′ ≥ (p − 1) — a contradiction.
So, (16.6.10) is impossible, unless r′ = 1. This forces r to be equal to s,
a prime≡ 1(mod p). �

We examine the factorability of Mp = 2p − 1.

(c) (Euler) Let p be a prime of the form 4k + 3 and > 7. Show that 2p + 1 is a
prime if, and only if,

(16.6.12) 2p ≡ 1(mod (2p + 1)),

(when 2p + 1 is a prime, Mp = 2p − 1 is composite).

Answer: :⇒ Let 2p + 1 be a prime.
Then, 2p + 1 = t is a prime ≡ 7(mod 8). 2 is a quadratic residue of s. So,

(16.6.13) 2p = 2
t−1
2 ≡ 1(mod t).

So (16.6.12) is a necessary condition.
As p > 7, k > 1, Mp = 2p − 1> s = 2p + 1, a prime. So, Mp = 2p − 1 is a

composite number.
⇐: Let (16.6.12) be given, when p = 4k + 3. In worked-out example (b),

taking q = 2, r = 2p + 1, we note that q< p and 2q = 4 6≡ 1(mod r). Now,

2r−1 = 22p ≡ 1(mod r).
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By worked-out example (b), r is a prime. Therefore, the condition (16.6.12)
is sufficient. �

Remark 16.6.2 : Worked-out examples (b) and (c) have been adapted from
Hardy & Wright [A1, chapter VI pp 78–80]. Worked-out example (c) gives
a criterion for testing the primality of Mersenne numbers Mp where p is a
prime ≡ 3(mod 4) and p > 7. For instance, for p = 11, 23 is a factor of M11.
For p = 23, 47 is a factor of M23.

Remark 16.6.3 : The Fibonacci type of a primality test is the following:
Let F0 = F1 = 1 and Fn+1 = Fn + Fn−1(n ≥ 1). If Fn is divisible by N for

n = N + 1, but not for n = N+1
p , where p ranges over the prime factors p of

N + 1, then N is a prime.
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True/False statements : Answer key

(a) (b) (c) (d) (e) (f)
chapter 1 T T T T T F

chapter 2 T T F F F T

chapter 3 T F T T T T

chapter 4 T F T T T T

chapter 5 F T T T T T

chapter 6 T T F T F T

chapter 7 T T T F T F

chapter 8 T T T T F T

chapter 9 F T F F T T

chapter 10 T T T F F T

chapter 11 T F F T T F

chapter 12 T F T F T T

chapter 13 T F F T T T

chapter 14 T F T T T T

chapter 15 T F T F F T
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Index of some selected structure theorems/results

1 Z is the only ordered integral domain up to isomor-
phism

Theorem 8 p 31

2 An integral domain D is a UFD if, and only if, it is a
GCD domain in which ACCP is satisfied

Theorem 12 p 39

3 Dedekind-Hasse Theorem Theorem 17 p 54

4 Z is the unique Euclidean domain having double-
remainder property

Theorem 21 p 66

5 Let D be a Euclidean domain (which is not a field). If
the division algorithm yields a unique quotient and re-
mainder and if F denotes the set of units of D together
with 0D then, D∼= F[x].

Theorem 23 p 78

6 The ringA of arithmetic functions under the operations
of addition and Dirichlet convolution is a UFD.

Corollary 4.5.1 p 94

7 Let Fp be a finite field having p (p a prime) elements.
The number of monic irreducible polynomials in Fp[x]
is infinite.

Fact 4.6.1 p 97

8 The Chinese Remainder Theorem Theorem 29 p 107
9 The quadratic reciprocity law Theorem 42 p 147

10 The cubic reciprocity law Theorem 47 p 164

11 Let G be a group of under r. Suppose that d(r) denotes
the number of divisors of r. Then, the number of cyclic
subgroups of G is equal to d(r), if, and only if, G is
cyclic.

Theorem 54 p 191

12 The cyclic group C(r) of order r (≥ 1) is the only group
of order r (up to isomorphism) if, and only if, g.c.d
(r,φ(r)) = 1.

Theorem 55 p 194

13 If (P,≤) is a binomial poset and B(P) denotes the set of
incidence functions which are constants on n-intervals,
then, B(P)∼= C[[x]].

Theorem 77 p 316

14 Let R be a PID. Then, R is semisimple if, and only if, R
is a field or R has an infinite number of maximal ideals.

Theorem 92 p 386

15 Let R be a commutative ring with unity. R is Noether-
ian if, and only if, every prime ideal of R is finitely
generated.

Theorem 99 p 400

16 A Dedekind domain is a UFD if, and only if, it is a PID. Theorem 102 p 406

17 The number ring corresponding to an algebraic number
field is a Dedekind domain

Theorem 103 p 409

18 Given an algebraic number field K, the ideal class
group CK is finite.

Corollary 13.2.1 p 440

19 Dirichlet’s unit theorem on the structure of the group of
units in a number ring R corresponding to an algebraic
number field K.

Theorem 124 p 468
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20 The ring Ar(F) of (r,F)-arithmetic functions is a
semisimple algebra over F and can be expressed as a
direct sum of r fields each isomorphic to F.

Proposition 14.2.1 p 493

21 CARLITZ CONJECTURE : (A′,+,∗) denotes the Lu-

cas ring of arithmetic functions f :
∼
Z→ F, where F is

a field of characteristic zero. f ∈ A′ is a zero divisor
if, and only if, f is nilpotent.

Section 14.4.1 p 504

22 The ring Br(C) of even functions (mod r) is a semisim-
ple algebra of dimension d(r), the number of divisors
of r.

Proposition 14.7.2 p 515

23 THE POLYNOMIAL 3-PRIMES CONJECTURE:
Every odd monic polynomial M(x) ∈ Fq[x] is a 3-
primes polynomial except for the case q even and
M(x) = x2 + a ∈ Fq[x].

Subsection 15.5.1 p 551

24 Every odd monic fifth degree polynomial over any fi-
nite field of characteristic 2 is a 3-primes polynomial

Theorem 153 p 566

25 If R = xF[[x]], R has no maximal ideals. Theorem 156 p 582

26 Suppose that R is a Noetherian ring in which all maxi-
mal ideals are principal, then R is a principal ideal ring
(PIR).

Worked-out exam-
ple (b)

p 430

27 A commutative ring S with identity 1S is a primary ring,
if, and only if, every zero divisor of S is nilpotent.

Remark 14.8.3 p 519

28 (Fabrizio Zanello) R denotes a PID. R has an infinite
number of pairwise nonassociated irreducible elements
if, and only if, every maximal ideal of R[x] has height 2.

Theorem 158 p 585

29 (S. Z. Ditor) A finite group G of odd order is the group
of units of some ring if, and only if, G is abelian and
is the finite product of cyclic groups Gi where order of
each Gi is of the form 2ki − 1.

Theorem 160(a) p 591

30 (S. Z. Ditor) Let t = pm where p is a prime and m≥ 1.
Then, t is equal to the number of units of a ring R if,
and only if, p = 2 or p is Mersenne prime Mq = 2q − 1
where q is a prime.

Corollary 16.4.2 p 592
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Index of symbols and notations

∈ element of / member of p. 4
/∈ not an element of / not a member of p. 30
A ∪ B A union B p. 11
A ∩ B A intersection B p. 15
A \ B A difference B p. 52
A ∆ B A∪B\A∩B (symmetric difference) p. 376
A ⊆ B A is a subset of B or A = B p. 8
A⊇ B A contains B or A = B p. 34
∅ null set p. 64
| divides p. 7
- does not divide p. 7
| | absolute value; determinant; number of ele-

ments
p. 8

∏
product p. 34∑
sum p. 34

z̄ complex conjugate of z p. 16
⇐: ‘if’ p. 7
:⇒ ‘only if’ p. 7
⇒ implies p. 14
⇔ if, and only if, p. 35
� written on extreme right after a sentence or

paragraph indicates that the proof or argu-
ment concludes.

p. 5

a ≡ b (mod r) a is congruent to b modulo r p. 4
s = σ + it σ, t; real and imaginary parts of the complex

variable s
p. 527

∼= isomorphic with p. 16
Z the ring of rational integers p. 4
∼
Z the semigroup of non-negative rational inte-

gers
p. 48

Q the field of rational numbers p. 29
N the semigroup of positive integers p. 5
R the field of real numbers p. 9
R̃ the semigroup of non-negative real numbers p. 216
C the field of complex numbers p. 49
A the ring of algebraic integers p. 407
(Z/rZ,⊕,⊗) the quotient ring of residue classes modulo r p. 4
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612 Symbols and Notations

Z[i] the ring of Gaussian integers p. 8
φ(r) the value of Euler φ-function at r p. 5
[a] the congruence class of a or the greatest in-

teger not exceeding a (to be understood from
the context)

p. 5, 281

(
a
b

)
a choose b = a!

b!(a−b)! , if b< a p. 10

R[x] polynomial ring in x with coefficients from
R

p. 75

R[t] an R-module generated by t p. 395
F[x1,x2, . . . ,xn] polynomial ring in x1,x2, . . . ,xn with coeffi-

cients from a field F
p. 83

g.c.d (a1,a2, . . . ,as) greatest common divisor of a1,a2, . . . ,as. p. 18
Rm {(x1,x2, . . . ,xm) : xi ∈ R, i = 1,2, . . . ,m} p. 9
(a) the principal ideal generated by a p. 33
Fq[x] ring of polynomials in x with coefficients

from the finite field Fq having q elements
p. 419

R[[x]] seq R = {a0,a1,a2, . . .} where ai ∈ R, p. 85
i = 0,1,2, . . .

F[[x]] ring of formal power series in x with coeffi-
cients from F

p. 86

Cl

(C[[x1,x2, . . . ,xl]])
ring of formal power series in x1,x2, . . . ,xl

over C
p. 90

Cω ring of formal power series in countably in-
finite number of indeterminates over C

p. 87

I + J {a + b : a ∈ I,b ∈ J} p. 32
IJ {∑finite aibi : ai ∈ I, bi ∈ J} p. 32
I : J {a ∈ R : aJ ⊆ I} where I,J are ideals of R,a

commutative ring with unity 1R.
p. 34

RH Riemann Hypothesis p. 527
GRH Generalized Riemann Hypothesis p. 525
ht(P) height of prime ideal P p. 580
Z[
√

−5] {a + b
√

−5 : a,b ∈ Z} p. 35
Q(α) =Q[α] {a0,a1α + a2α

2 . . . + an−1α
n−1 : ai ∈ Q, i =

0,1,2, . . . , (n − 1)}.
p. 49, 50

Q(
√

m) {a + b
√

m : a,b ∈Q} p. 50
R(m) the number ring corresponding to the alge-

braic number field Q(
√

m)
p. 51

N(α) norm of α p. 52
N(I) = ||I|| norm of the ideal I in a number ring p. 437
L(I) length of the ideal I of an integral domain p. 422
U(r) group of units in Z/rZ p. 5
PID principal ideal domain p. 8
UFD unique factorization domain p. 37
HFD half factorial domain p. 446
F.T.A fundamental theorem of arithmetic p. 3
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F-T.A functional-theoretic algebra p. 366
FLT Fermat’s Last Theorem p. 29
a.c.c ascending chain condition p. 376
d.c.c. descending chain condition p. 390
NDD normed division domain p. 230
ACCP ascending chain condition on principal

ideals
p. 39

BGC binary Goldbach conjecture p. 525
TGC ternary Goldbach conjecture p. 525
A the Dirichlet algebra of arithmetic functions p. 94
A∗ ring of arithmetic functions under addition

and Cauchy multiplication
p. 323

A′ the Lucas ring of arithmetic functions p. 501
D(A) the ring of Dirichlet series of arithmetic

functions f ∈ A.
p. 323

A(R) the algebra of functions f : Z̃→ R p. 366
B(R) the subalgebra of functions f : Z̃→ R which

vanish except for a finite subset of Z̃
p. 367

A1⊕A2⊕·· ·⊕An direct sum of A1, A2, . . .An p. 491
d.r.p double-remainder property p. 60
Fq a finite field having q elements p. 97
GF(2k) Galois field of characteristic 2, having 2k p. 591

elements
D∗ D\{0D} where D is an integral domain p. 48
aRm a is a quadratic residue of m p. 139
aNm a is a quadratic non-residue of m p. 139
(a|p) Legendre symbol p. 139
(a|b) Jacobi symbol for b an odd positive integer p. 166
(∆|n) Kronecker symbol for ∆ p. 532
(α,π)3 the cubic character of α modulo π p. 154
ω an imaginary root of unity p. 435
Z[ω] {a0 + a1ω + . . .+ an−2ω

n−2 : ω = exp( 2πi
n ); p. 442

ai ∈ Z, i = 0,1,2, . . . , (n − 2)}
χ(α,π) a notation for (α,π)3 p. 155
spl. f (x) {p : p is a prime and f (x) splits into a prod-

uct of linear factors in Fp[x]}
p. 169

p(n) value of partition function at n p. 178
Z(G) centre of G, where G is a group p. 181
Dn dihedral group of order 2n p. 187
[E : F] degree of the field extension E over the field

F
p. 553

{E;F} index of the field extension E over a field F p. 552
G(E/F) Galois group of E over F p. 552
(D,g) Euclidean domain R with the associated

function g
p. 48

Zp (p is a prime) the integral domain consisting of rational
numbers of the form m

n where m
n is in its low-

est terms and p - n.

p. 214
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(X ,∆) weak partially ordered set p. 230
poset partially ordered set p. 233
(X ,≤) the poset X with partial order≤ p. 233
(L,∨,∧) a lattice L p. 237
Mn(D) the total matrix ring of n× n matrices with

entries from D
p. 545

GLn(D) {[ai j] : [ai j] is an invertible n×n matrix with
entries from D}

p. 545

GL(V ) the group of invertible linear operators on V p. 593
|a|∞ Q-absolute value of a ∈ F, a field p. 253
d(r) the number of divisors of r p. 80
σk(n) sum of the kth powers of the divisors of r p. 304
S(n,k) Stirling numbers of first kind p. 309
G(−n,k) Stirling numbers of second kind p. 309
Bn Bernoulli numbers p. 311
Vn(q) vector space of dimension n over Fq, a finite

field having q elements
p. 262

L(Vn(q)) Lattice of k-dimensional subspaces of Vn(q) p. 262(
n
k

)

q
number of k-dimensional subspaces of
Vn(q).

p. 279

AP the incidence algebra of functions defined on
P×P where P is a locally finite poset.

p. 263

χ : G→ C a semicharacter (character) of a semigroup p. 344,
(group) G (p. 157)

ch(G) the group of characters of G p. 159
FG group algebra of a group G over a field F p. 355
A(k) the set of arithmetic functions f for which∑∞

n=1 f (n)n−s converges absolutely where
Res > k − δ

p. 364

√
I nilradical of I p. 382

J(R) Jacobson radical of R p. 384
CK ideal class group of an algebraic number

field K
p. 439

Ar(F) the algebra of (r,F) arithmetic functions p. 486
Br(C) the algebra of even functions (mod r) p. 483
C(n,r) Ramanujan’s sum p. 106
C∗(n,r) the unitary analogue of Ramanujan’s sum p. 515
ζ(s) Riemann ζ-function at s p. 291
τ (n) Ramanujan’s τ -function at n p. 292
π(x) the number of primes less than or equal to x p. 291
Li(x) the logarithmic integral p. 528
L(s,χ) Dirichlet’s L-function at s,χ p. 529
ϑ(x) Chebyshev’s ϑ-function at x p. 570
ξ(s) function related to ζ(s) p. 528
Z(t) function related to ζ(1/2 + it) p. 528
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