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Vladimir Drinfeld



Preface

Vladimir Drinfeld’s many profound contributions to mathematics reflect breadth and
great originality. The ten research articles in this volume, covering a diversity of topics
predominantly in algebra and number theory, reflect Drinfeld’s vision in significant
areas of mathematics, and are dedicated to him on the occasion of his 50th birthday.

The paper by Goncharov and Fock is devoted to the study of cluster varieties and
their quantizations. This subject has its origins in the work of Fomin and Zelevinsky
on cluster algebras and total positivity on the one hand, and, on the other hand, on
various attempts to understand Kashiwara’s theory of crystals and quantizations of
moduli spaces of curves.

Starting with a split semisimple real Lie group G with trivial center, Goncharov
and Fock define a family of varieties with additional structures called cluster X-
varieties. These varieties have a natural Poisson structure. The authors define a
Poisson map from a cluster variety to the groupG equipped with the standard Poisson–
Lie structure as defined by V. Drinfeld. The map is birational and thus providesGwith
canonical rational coordinates. Further, Goncharov and Fock show how to construct
complicated cluster X-varieties from more elementary ones using an amalgamation
procedure. This is used, in particular, to produce canonical (Darboux) coordinates
for the Poisson structure on a Zariski open subset of the group G.

Some of the cluster varieties are very closely related to the double Bruhat cells
studied byA. Berenshtein, S. Fomin, andA. Zelevinisky. On the other hand, the results
of the paper play a key role in describing the cluster structure of the moduli spaces
of local systems on surfaces, as studied by Goncharov and Fock in an earlier work.

The important role of Drinfeld’s ideas—indeed, one of the central themes of his
research—is evident in the paper by Frenkel and Gaitsgory, which is devoted to the
(local) geometric Langlands correspondence from the point of view of D-modules
and the representation theory of affine Kac–Moody algebras.

Let g be a simple complex Lie algebra and G a connected algebraic group with
Lie algebra g. The affine Kac–Moody algebra ĝ is the universal central extension
of the formal loop agebra g((t)). Representations of ĝ have a parameter, an invar-
iant bilinear form on g, which is called the level. Representations corresponding
to the bilinear form that is equal to minus one-half of the Killing form are called
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representations of critical level. Such representations can be realized in spaces of
global sections of twistedD-modules on the quotient of the loop groupG((t)) by its
“compact’’ subgroup K equal to G[[t]], or to the Iwahori subgroup I .

This work by Frenkel and Gaitsgory is the first in a series of papers devoted to
the study of the categories of representations of the affine Kac–Moody algebra ĝ of
the critical level and D-modules onG((t))/K from the point of view of a geometric
version of the local Langlands correspondence. The local Langlands correspondence
sets up a relation between two different types of data. Roughly speaking, the first
data consist of the equivalence classes of homomorphisms from the Galois group
of a local non-archimedean field K to G(C)∨, the Langlands dual group of G. The
second data consist of the isomorphism classes of irreducible smooth representations,
denoted by π , of the locally compact group G(K).

A naive analogue of this correspondence in the geometric situation seeks to assign
to a G(C)∨-local system on the formal punctured disc a representation of the formal
loop groupG((t)). However, the authors show that in contrast to the classical setting,
this representation ofG((t)) should be defined not on a vector space, but on a category,
as explained in the paper.

In the contribution by Ihara, and in the closely related appendix by Tsfasman, the
authors study the ζ -function ζK(s) of a global field K. Specifically, they are interested
in the so-called Euler–Kronecker constant γK, a real number attached to the power
series expansion of the ζ -function at the point s = 1. In the special case of the field
K = Q of rational numbers, this constant reduces to the Euler constant

γQ = lim
n→∞

(
1+ 1

2
+ 1

3
+ · · · + 1

n
− log n

)
.

The constant γK plays an important role in analytic number theory. On the other
hand, for K = Fq(X), the field of rational functions on a complete algebraic curveX
over a finite field, the corresponding Euler–Kronecker constant is closely related to
the number of Fq -rational points of X.

Ihara addresses the question of how negative the constant γK may be, depending
on the field K. In the number field case, this happens when K has many primes
with small norm. In the function field case, there are known towers of curves with
many Fq -rational points; the author studies the behavior of γK using the generalized
Riemann hypothesis. In this way, he obtains very interesting explicit estimates of γK.
For instance, in the case K = Fq(X) Ihara establishes an upper bound

γK ≤ 2 log((g − 1) log q)+ log q,

where g denotes the genus of the curve X. He also obtains similar estimates for the
lower bound.

Hrushovski and Kazhdan in their paper lay the foundations of integration theory
over, not necessarily locally compact, valued fields of residue characteristic zero.
A valued field is a field K equipped with a “ring of integers’’ O ⊂ K, satisfying
the property that K = O ∪ (O \ {0})−1. In particular, the authors obtain new and
base-field independent foundations for integration over local fields of large residue
characteristic, extending results of Denef, Loeser, and Cluckers.
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The work of Hrushovski and Kazhdan is on the border of logic and algebraic
geometry. Their methods involve an analysis of definable sets. Specifically, they
obtain a precise description of the Grothendieck semigroup of definable sets in terms
of related groups over the residue field and value group. This yields new invariants of
all definable bijections, as well as invariants of measure-preserving bijections. Their
results are intended to be applied to the construction of Hecke algebras associated
with reductive groups over a not necessarily locally compact valued field. In the case
of a two-dimensional local field, the corresponding Hecke algebra is expected to be
closely related to the double affine Hecke algebra introduced by Cherednik.

Kisin’s paper is devoted to p-adic algebraic geometry and number theory. This
subject is rapidly developing at this point in time. Following the ideas of Berger and
Breuil, Kisin gives a new classification of crystalline representations. The objects
involved may be viewed as local, characteristic 0 analogues of the “shtukas’’ intro-
duced by Drinfeld. Kisin also gives a classification of p-divisible groups and finite
flat group schemes, conjectured by Breuil. Furthermore, he shows that a crystalline
representation with Hodge–Tate weights 0, 1 arises from ap-divisible group—a result
conjectured by Fontaine.

Let k be a perfect field of characteristic p > 0,W = W(k) its ring of Witt vectors,
K0 = W(k)[ 1

p
], and K : K0 a finite totally ramified extension. Breuil proposed a

new classification of p-divisible groups and finite flat group schemes over the ring
of integers OK of K. For p-divisible groups and p > 2, this classification was
established in an earlier paper by Kisin, who also used a variant of Breuil’s theory
to describe flat deformation rings, and thereby establish a modularity lifting theorem
for Barsotti–Tate Galois representations.

In the present paper, the author generalizes Breuil’s theory to describe crystalline
representations of higher weight or, equivalently, their associated weakly admissible
modules.

Krichever’s paper analyzes deep and important relations between the theory of in-
tegrable systems and the Riemann–Schottky problem. The Riemann–Schottky prob-
lem on the characterization of the Jacobians of curves among abelian varieties is more
than 120 years old. Quite a few geometrical characterizations of the Jacobians have
been found. None of them, however, provides an explicit system of equations for the
image of the Jacobian locus in the projective space under the level-2 theta imbedding.

The link of this problem to integrable systems was first discovered in the 1980s.
Specifically, T. Shiota established the first effective solution of the Riemann–Schottky
problem, known as Novikov’s conjecture. The conjecture says the following: An
indecomposable principally polarized abelian variety (X, θ) is the Jacobian of a
curve of a genus g if and only if there exist g-dimensional vectors U �= 0, V ,W such
that the function

u(x, y, t) = −2℘2
x ln θ(Ux + Vy +Wt + Z)

is a solution of the Kadomtsev–Petviashvilii (KP) equation

3uyy = (4ut + 6uux − uxxx)x.
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(Here θ(Z) = θ(Z|B) is the Riemann theta function.)
In the present paper, Krichever proves that an indecomposable principally polar-

ized abelian varietyX is the Jacobian of a curve if and only if there exist vectorsU �=
0, V such that the roots xi(y) of the theta functional equation θ(Ux + Vy + Z) = 0
satisfy the equations of motion of the formal infinite-dimensional Calogero–Moser
system.

The main goal of Laumon’s paper is to identify the fibers of the affine Springer
resolution for the group GLn with coverings of compactified Jacobians of projective
singular curves. This work is part of a more general project of obtaining a geo-
metric version of the “Fundamental Lemma’’ that appears in Langlands’ works on
automorphic forms.

Let F be a local non-archimedean field of equal characteristic, let OF be its ring
of integers, and let k be the residue field. Let E be a finite-dimensional F -vector
space. The author considers the affine Grassmannian formed by OF -latticesM in E.

Given a regular semisimple and topologically nilpotent endomorphism γ of E,
one defines the affine Springer fiber, Xγ , as the closed reduced subscheme of the
affine Grassmannian formed by the γ -stable lattices M ⊂ E. Kazhdan and Lusztig
have shown thatXγ is a scheme, locally of finite type over k. Moreover, this scheme
comes equipped with a natural free action of an abelian algebraic group�γ such that
the quotient Zγ = Xγ /�γ is a projective k-scheme.

In his paper, the author attaches to γ a projective algebraic curve Cγ over k with
a single singular point such that the completed local ring at this point is isomorphic
to OF [γ ] ⊂ F [γ ] ⊂ AutF (E). Furthermore, the author relates the varieties Xγ and
Zγ with the compactified Jacobian of the curve Cγ . This allows him to reprove some
irreducibility results about compactified Jacobians due to Altman and Kleiman. In
addition, the techniques developed in the paper provide an approach to an important
“purity conjecture’’ concerning the cohomology of certain affine Springer fibers, due
to Goresky, Kottwitz, and MacPherson.

The goal of the work of Manin presented in this volume is to study properties of
the iterated integrals of modular forms in the upper half-plane. This setting general-
izes simultaneously the theory of modular symbols and that of multiple zeta values.
Multiple zeta values are the numbers given by the k-multiple Dirichlet series

ζ(m1, . . . , mk) =
∑

0<n1<···<nk

1

n
m1
1 · · · nmkk

(0.1)

or, equivalently, by the m-multiple iterated integrals m = m1 + · · · +mk ,

ζ(m1, . . . , mk) =
∫ 1

0

dz1

z1

∫ z1

0

dz2

z2

∫ z2

0
· · ·
∫ zmk−1

0

dzmk

1− zmk
· · · . (0.2)

Multiple zeta values are interesting because they and their generalizations appear
in many different contexts involving mixed Tate motives, deformation quantization
(Kontsevich), knot invariants, etc.

Multiple zeta values satisfy certain combinatorial relations, called double-shuffle
relations. The relations in question can be succinctly written in terms of formal
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generating series for (regularized) iterated integrals (0.2). Such integrals appeared
more than 15 years ago in the celebrated work by Drinfeld on what is nowadays
known as the Drinfeld associator. However, the question about interdependence of
(double-) shuffle and associator relations does not seem to be settled at the moment.

In the paper, the author defines 1-forms of modular and cusp modular type and
studies iterated integrals and the total Mellin transform for families of such forms.
The functional equation for the total Mellin transform is deduced. This result extends
the classical functional equation for L series. The author also introduces an iterated
modular symbol as a certain noncommutative 1-cohomology class of the relevant
subgroup of the modular group. The paper establishes some analogues of the classical
identity (0.1) = (0.2) but different from it in two essential respects. First, iterated
integrals are only linear combinations of certain multiple Dirichlet series. Second,
the identities obtained in the paper involve integrals which are not of the usual type,∑

0<n1<···<nk

a1,n1 · · · an,nk
n
m1
1 · · · nmkk

;

in fact, their coefficients depend on pairwise differences nj − ni .
In the paper by Eskin and Okounkov, the authors prove that natural generating

functions for enumeration of branched coverings of the pillowcase orbifold are level-
2 quasimodular forms. This gives us a way to compute the volumes of the strata of
the moduli space of quadratic differentials.

Consider a complex torus T 2 = C/L, where L ⊂ C is a lattice. Its quotient

P = T 2/± 1

by the automorphism z �→ −z is a sphere with four (Z/2)-orbifold points, which
is sometimes called the pillowcase orbifold. The map T 2 → P is essentially the
Weierstraß℘-function. The quadratic differential (dz)2 on T 2 descends to a quadratic
differential on P . Viewed as a quadratic differential on the Riemann sphere, (dz)2

has simple poles at corner points.
Let µ be a partition and ν a partition of an even number into odd parts. The

authors are interested in enumeration of degree 2d maps

π : C → P (0.3)

with the following ramification data. Viewed as a map to the sphere, π has profile
(ν, 2d−|ν|/2) over 0 ∈ P and profile (2d) over the other three corners of P . Addition-
ally, π has the profile (µi, 12d−µi ) over some �(µ) given points of P and unramified
elsewhere. Here �(µ) is the number of parts in µ.

The paper by Schechtman may be viewed as a continuation of the work by Gor-
bunov, Malikov, and Schechtman on the chiral de Rham complex. Specifically, the
paper in the volume introduces a certain chiral analogue of the third Chern–Simons
class of a vector bundle.

Let X be a smooth variety over a field k of characteristic zero, and write 	·X for
the de Rham complex of X. Associated with any vector bundle E on X, one has the
corresponding Chern classes
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cDRi (E) ∈ H 2i (X,	·X), i ≥ 1,

respectively, the Chern–Simons classes

cCSi (E) ∈ Hi(X,	[i,2i−1〉
X ),

where
	
[i,2i−1〉
X = σ≥iτ≤2i−1	X[i] : 	iX → · · · → 	

2i−1,cl
X ,

and where 	j,cl
X ⊂ 	jX stands for the subsheaf of closed forms. These classes are

related via the canonical morphism

Hi(X,	
[i,2i−1〉
X )→ H 2i (X,	·X),

which sends the class cCSi (E) to cDRi (E). One also defines the corresponding “Chern
character’’ by setting ch1 = c1, ch2 = c2

1 − c2
2 , etc.

The present paper addresses the problem of giving explicit de Rham representa-
tives for the classes chCSi (TX) for i = 1, 2, 3, where TX denotes the tangent sheaf on
X. Writing a de Rham representative for chCS1 (TX) involves a choice of flat connec-
tion on det TX. Similarly, it is shown in the paper that the data required for writing
de Rham representatives for the classes chCSi (TX), i = 2, 3 involve three maps

γ : OX ⊗k TX → 	1
X, 〈, 〉 : S2TX → OX, and c : �2TX → 	1

X.

These maps must satisfy certain identities.
It turns out that exactly the same data of three maps γ , 〈, 〉, and c appears in the

theory of vertex algebras. Specifically, Gorbunov, Malikov, and Schechtman have
given a mathematical definition of a special class of vertex algebras, called sheaves
of chiral differential operators. The main result of the present paper by Schechtman
says that the sheaves of chiral differential operators on a manifold X form a gerbe
over the complex	[1,2〉X , and the caracteristic class of that gerbe is equal to chCS2 (TX).
This provides “la raison d’être’’ for the appearance of the class chCS2 (TX).

Victor Ginzburg
University of Chicago

June 2006



A glimpse into the life and work of V. Drinfeld

Volodya1 Drinfeld was born in 1954 in Kharkov, Ukraine. He graduated from Moscow
State University in 1974 at the age of 20, and defended his Ph.D. thesis in 1978. His
vision of mathematics was, to a great extent, influenced by Yu. I. Manin, his advisor,
and by the Algebraic Geometry Seminar (“Manin’s Seminar’’) that functioned with
regularity at Moscow State University for about two decades.

Because of his Jewish origin and the absence of a Moscow “propiska,’’2 the Soviet
system made it extremely difficult for the talented Drinfeld, in spite of his obvious
mathematical achievements, to get any reasonable job in mathematics in Moscow.

Therefore, after receiving his Ph.D., Drinfeld went to Ufa, a town in the Ural
Mountains, where he taught mathematics at a local university. Later, he moved back
to his native city, Kharkov, where he lived with his family until after the collapse of
the Soviet Union.

It was in Kharkov where Drinfeld learned that he was to be awarded the Fields
Medal, which he received at the Kyoto International Congress of Mathematicians
(ICM) in 1990. In 1998, Drinfeld left Kharkov. Not long after migrating to the United
States, he became a Distinguished Service Professor at the University of Chicago.

Almost immediately upon his arrival in Chicago, Drinfeld andA. Beilinson jointly
organized the Geometric Langlands Seminar. Following, perhaps, in the tradition of
the famous Gelfand Seminar in Moscow, the Geometric Langlands Seminar now runs
regularly on Mondays from 4:30PM until both the speaker and the participants are
completely exhausted.

In the course of his mathematical career, Drinfeld has worked on many different
subjects, but his most fundamental contributions are in two fields. The first pertains to
Drinfeld’s fascination with quantum groups, which were discovered by the Leningrad
school—L. D. Faddeev’s students and collaborators. Drinfeld’s outstanding contri-
butions revitalized the entire subject. With his celebrated talk at the Berkeley ICM

1 Volodya is the Russian diminutive for “Vladimir.’’
2 People in the Soviet Union had their addresses written in their passports, the so-called

“propiska.’’ A person was not allowed to get a job in any town different from the one
indicated in the propiska. Changing one’s propiska was close to impossible.
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in 1986, Drinfeld effectively “played a decisive role in the crystallization of this new
domain.’’ To be sure, we do not discount the articles of M. Jimbo and others who
drew attention of this field to so many mathematicians today.

The second major contribution of Drinfeld is in the area known as the “Langlands
program.’’ Although the program itself was launched by Langlands in the late 1960s
and early 1970s, it was Drinfeld who contributed crucial geometric insights. Drinfeld
himself proved the Langlands conjecture in the special case of the group GL2 over
function fields; this, together with his achievements in quantum groups, earned him
the Fields Medal. Drinfeld’s ideas have been extended to the GLn case by L. Lafforgue
(2001), and a geometric refinement of this result was proved by D. Gaitsgory shortly
afterwards. The general case of the Langlands conjecture still remains wide open.

Almost as important as Drinfeld’s own works were the remarks and ideas that he
generously shared, either during private discussions or in his letters to other math-
ematicians. For instance, in a (widely circulated) letter to V. Schechtman, Drin-
feld outlined his vision of deformation theory, emphasizes the role of DG-algebras,
Maurer–Cartan equations, and stacks. All of these have later found their place in
M. Kontsevich’s approach to deformation theory via A∞-algebras.

As another example, one may cite a classic work of Deligne and Lusztig that
to a large extent owes its existence to a remark made by Drinfeld to T. Springer in
a private conversation. In that remark, Drinfeld sketched a geometric construction
of representations of the groups SL2(Fq) in terms of what is nowadays known as
Deligne–Lusztig varieties.

In the same spirit, I remember how Volodya once asked me, while walking in
the corridor of Moscow State University sometime around 1987, whether or not the
convolution of two spherical perverse sheaves on the loop grassmannian was again a
perverse sheaf. The following day, I told him that this was indeed true and could be
deduced from Lusztig’s results on Hecke algebras. In this way, thanks to his question,
Drinfeld effectively created the theory of geometric Satake isomorphism.

I would like to finish with a couple of examples that show, I believe, that many
of Drinfeld’s insights are still awaiting “discovery.’’ One such example is related to
symplectic reflection algebras, a notion introduced by P. Etingof and myself in 2002.
After having worked on the subject for several years, we discovered (in January 2005)
that the definition of symplectic reflection algebras was essentially contained in two
lines of Drinfeld’s paper “Degenerate Affine Hecke Algebras and Yangians,’’ written
15 years earlier! Although the paper itself is very well known, it seems nobody has
read those two lines of Drinfeld’s very densely written text carefully enough.

The second example is equally amazing. I was preparing for a course on repre-
sentation theory, which I teach regularly in Chicago. Volodya mentioned to me that
he had some old notes with exercises on representation theory, written for his stu-
dents in Kharkov back in the 1980s. As usual, Volodya’s notes were very systematic;
they contained both the exercises and the solutions. Somewhere in the middle of the
notes, I found a digression on “q-analogues’’ that contained computations equivalent,
essentially, to the important geometric construction of the quantum group discovered
by Beilinson, Lusztig, and MacPherson 10 years later!
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We wish Volodya Drinfeld many more years of good health and inspirational
mathematics which have contributed so much to so many of us from all over the
mathematical world.

Victor Ginzburg
University of Chicago

June 2006
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Pillowcases and quasimodular forms
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To Vladimir Drinfeld on his 50th birthday.

Summary. We prove that natural generating functions for enumeration of branched coverings
of the pillowcase orbifold are level 2 quasimodular forms. This gives a way to compute the
volumes of the strata of the moduli space of quadratic differentials.

Subject Classifications: Primary 14N10, 14N30. Secondary 11F23, 14N35.

1 Introduction

1.1 Pillowcase covers and quadratic differentials

Consider a complex torus T2 = C/L, where L ⊂ C is a lattice. Its quotient

P = T2/±
by the automorphism z �→ −z is a sphere with four (Z/2)-orbifold points which
is sometimes called the pillowcase orbifold. The map T2 → P is essentially the
Weierstraß℘-function. The quadratic differential (dz)2 on T2 descends to a quadratic
differential on P. Viewed as a quadratic differential on the Riemann sphere, (dz)2

has simple poles at corner points.
Let µ be a partition and ν a partition of an even number into odd parts. We are

interested in enumeration of degree 2d maps
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π : C → P (1)

with the following ramification data. Viewed as a map to the sphere, π has profile
(ν, 2d−|ν|/2) over 0 ∈ P and profile (2d) over the other three corners of P. Addition-
ally, π has profile (µi, 12d−µi ) over some �(µ) given points of P and is unramified
elsewhere. Here �(µ) is the number of parts in µ. This ramification data determines
the genus of C by

χ(C) = �(µ)+ �(ν)− |µ| − |ν|/2.
In principle, one could allow more general ramifications over 0 and the nonorbifold
points, but this more general problem is readily reduced to the one above.1

Pulling back (dz)2 via π gives a quadratic differential on C with zeros of multi-
plicities {νi − 2} and {2µi − 2}. The periods of this differential, by construction, lie
in a translate of a certain lattice. The enumeration of covers π is thus related to lattice
point enumeration in the natural strata of the moduli space of quadratic differentials.
In particular, the d →∞ asymptotics gives the volumes of these strata. These vol-
umes are of considerable interest in ergodic theory, in particular in connection with
billiards in rational polygons; see [6, 18]. Their computation was the main motivation
for the present work.

A different way to compute the volume of the principal stratum was found by
M. Mirzakhani [19].

1.2 Generating functions

1.2.1

Two covers πi : Ci → P, i = 1, 2, are identified if there is an isomorphism f :
C1 → C2 such that π1 = f ◦ π2. In particular, associated to every cover π is a
finite group Aut(π). This group is trivial for most connected covers; see, e.g., [7,
Section 3.1]. We form the generating function

Z(µ, ν; q) =
∑
π

qdegπ

|Aut(π)| , (2)

where π ranges over all inequivalent covers (1) with ramification data µ and ν as
above. Note that the degree of any such π is even.

In particular, for µ = ν = ∅ any connected cover has the form

π : T2 π ′−→ T2 → T2/±
with π ′ unramified. We have |Aut(π)| = 2|Aut(π ′)| corresponding to the lift of ±.
From the enumeration of possible π ′ we obtain,

1 From first principles, the count of the branched coverings does not change if one replaces two
ramification conditions by the product of the corresponding conjugacy classes in the class
algebra of the symmetric group. In this way, one can generate complicated ramifications
from simpler ones.
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Z(∅,∅; q) =
∏
n

(1− q2n)−1/2.

By definition, we set

Z′(µ, ν; q) = Z(µ, ν; q)
Z(∅,∅; q) . (3)

This enumerates covers without unramified connected components. By the usual
inclusion-exclusion, one can extract from (3) a generating function for connected
covers. This generating function for connected covers will be denoted byZ◦(µ, ν; q).

1.2.2

Recall the classical level 1 Eisenstein series

E2k(q) = ζ(1− 2k)

2
+

∞∑
n=1

⎛⎝∑
d|n
d2k−1

⎞⎠ qn, k = 1, 2, . . . .

The algebra they generate is called the algebra QM((1)) of quasimodular forms for
(1) = SL2(Z); see [16] and also below in Section 3.3.7. It is known that E2, E4,
and E6 are free commutative generators of QM((1)). The algebra QM((1)) is
naturally graded by weight, where wtE2k = 2k. Clearly, for any integerN ,E2k(q

N)

is a quasimodular form of weight 2k for the group

0(N) =
{(
a b

c d

)∣∣∣∣ c ≡ 0 mod N

}
⊂ SL2(Z).

The quasimodular forms that will appear in this paper will typically be inhomo-
geneous, so instead of weight grading we will only keep track of the corresponding
filtration. We define the weight of a partition by

wtµ = |µ| + �(µ).
The main result of this paper is the following.

Theorem 1. The series Z′(µ, ν; q) is a polynomial in E2(q
2), E2(q

4), and E4(q
4)

of weight wtµ+ |ν|/2.

Several explicit examples of the forms Z′(µ, ν; q) are given in the appendix.

1.2.3

Quasimodular forms occur in nature, for example, as coefficients of the expansion of
the odd genus 1 theta-function

ϑ(x) = (x1/2 − x−1/2)

∞∏
i=1

(1− qix)(1− qi/x)
(1− qi)2

at the origin x = 1. The techniques developed below give a certain formula for (3)
in terms of derivatives of ϑ(x) at x = ±1, from which the quasimodularity follows.
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1.2.4

The following discussion closely parallels the corresponding discussion for the case
of holomorphic differentials in [7, Section 1.2].

Let Q(µ, ν) denote the moduli space of pairs (�, φ), where φ is a quadratic
differential on a curve � with zeroes of multiplicities {νi − 2, 2µi − 2}. Note that
we allow νi = 1; hence our quadratic differentials can have simple poles. For
(�, φ) ∈ Q(µ, ν), let �̃ denote the double cover of � on which the differential

ω = √φ
is well defined. The pair (�̃, ω) belongs to the corresponding space of holomorphic
differentials with zeroes of multiplicity

{νi − 1, µi − 1, µi − 1}.
By construction, � is the quotient of �̃ by an involution σ . Let P denote the set
of zeroes of ω; it is clearly stable under σ . Then σ acts as an involution on the
relative homology groupH1(�̃, P,Z). LetH− denote the subspace ofH1(�̃, P,Z)
on which σ acts as multiplication by −1. Choose a basis {γ1, . . . , γn} for H−, and
consider the period map � : Q(µ, ν)→ Cn defined by

�(�, φ) =
(∫
γ1

ω, . . . ,

∫
γn

ω

)
.

It is known [18] that�(�, φ) is a local coordinate system on Q(µ, ν) and, in partic-
ular, n = dimCH

− = dimC Q(µ, ν).
Pulling back the Lebesgue measure from Cn yields a well-defined measure on

Q(µ, ν). However, this measure is infinite since φ can be multiplied by any complex
number. Thus we define Q1(µ, ν) to be the subset satisfying

Area(�̃) ≡
√−1

2

∫
�̃

ω ∧ ω = 2.

As in the case of holomorphic differentials, the area function is a quadratic form in
the local coordinates on Q(µ, ν), and thus the image under � of Q1(µ, ν) can be
identified with an open subset of a hyperboloid in Cn.

Now let E ⊂ Q1(µ, ν) be a set lying in the domain of a coordinate chart, and
let C�(E) ⊂ Cn denote the cone over �(E) with vertex 0. Then we can define a
measure ρ on Q1(µ, ν) via

ρ(E) = vol(C�(E)),

where vol is the Lebesgue measure. The proof of [7, Proposition 1.6] shows the
analogue

ρ(Q1(µ, ν)) = lim
D→∞D

− dimC Q(µ,ν)
2D∑
d=1

Cov0
d(µ, ν),
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where Cov0
d(µ, ν) is the number of inequivalent degree d connected covers C → P.

Thus, the volume ρ(Q1(µ, ν)) can be read off from the q → 1 asymptotics of the
connected generating function Z◦(µ, ν; q).

Note that the moduli spaces Q(µ, ν)may be disconnected. Ergodic theory appli-
cations require the knowledge of volumes of each connected component. Fortunately,
connected components of Q(µ, ν) have been classified by E. Lanneau [17] and these
spaces turn out to be connected except for hyperelliptic components (whose volume
can be computed separately) and finitely many sporadic cases.

1.2.5

The modular transformation

q = e2πiτ �→ e−2πi/τ

relates q = 0 and q = 1 and thus gives an easy handle on the q → 1 asymptotics of
(3). This gives an asymptotic enumeration of pillowcase covers and hence computes
the volume of the moduli spaces of quadratic differentials.

1.2.6

In spirit, Theorem 1 is parallel to the results of [1, 8, 13]; see also [2, 3, 5] for earlier
results in the physics literature. The main novelty is the occurrence of quasimodular
forms of higher level. One might speculate whether similar lattice point enumeration
in the space of N th order differentials leads to level N quasimodular forms. Those
spaces, however, do not admit an SL2(R)-action and a natural interpretation of their
volumes is not known.

1.2.7

The following enumerative problem is naturally a building block of the enumerative
problem that we consider. Consider branched covers of the sphere ramified over 3
points 0, 1,∞ with profile (ν, 2d−|ν|/2), (2d), and µ, respectively, where µ is an
arbitrary partition of 2d .

The preimage of the segment [0, 1] on the sphere is a graph G on a Riemann
surface (also known as a ribbon graph) with many 2-valent vertices (that can be
ignored) and a few odd valent vertices (namely, with valencies νi). The complement
of G is a union of �(µ) disks (known as cells) with perimeters 2µi in the natural
metric on G. The asymptotic enumeration of such combinatorial objects is, almost
by definition, given by integrals of ψ-classes against Kontsevitch’s combinatorial
cycles in Mg,�(µ); see [15]. There is a useful expression for these integrals in terms
of SchurQ-functions obtained in [4, 11]. In fact, our original approach to the results
presented in this paper was based on these ideas.

While the proof that we give here is more direct, it is still interesting to investigate
the connection with combinatorial classes further, especially since a natural geometric
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interpretation of combinatorial classes is still missing. Perhaps the Gromov–Witten
theory of the orbifold P is the natural place to look for it. This will be further discussed
in [22].

2 Character sums

2.1 Characters of near-involutions

2.1.1

There is a classical way to enumerate branched coverings in terms of irreducible
characters, which is reviewed, for example, in [10] or in [21]. Specialized to our
case, it gives

Z(µ, ν; q) =
∑
λ

q |λ|/2
(

dim λ

|λ|!
)2

fν,2,2,...(λ)f2,2,...(λ)
3
∏
i

fµi (λ) (4)

where summation is over all partitions, dim λ is the dimension of the corresponding
representation of the symmetric group, and fη(λ) is the central character of an element
with cycle type η in the representation λ. Recall that the sum of all permutations with
cycle type η acts as a scalar operator in any representation λ and, by definition, this
number is fη(λ). In (4), as usual, we abbreviate fk,1,1,... to fk .

2.1.2

Alot is known about the characters of the symmetric group S(2d) in the situation when
the representation is arbitrary but the support of the permutation is bounded by some
number independent of d . In particular, explicit formulas exist for the functions fk .

Understanding the function fν,2,2,... is the key to evaluation of (4). That is, we must
study characters of permutations that are a product of a permutation with finite support
and a fixed-point-free involution. We call such permutations near-involutions.

2.1.3

By a result of Kerov and Olshanski [14], the functions fk belong to the algebra �∗
generated by

pk(λ) = (1− 2−k)ζ(−k)+
∑
i

[
(λi − i + 1

2
)k −

(
−i + 1

2

)k]
; (5)

moreover, fk has weight k + 1 in the weight filtration on �∗ defined by setting

wt pk = k + 1.

The functions pk are central characters of certain distinguished elements in the group
algebra of symmetric group known as completed cycles. See [21] for the discussion
of the relation between pk and fk from the viewpoint of Gromov–Witten theory.
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2.1.4

Our next goal is to generalize the results of [14] to characters of near-involutions.
This will require enlarging the algebra of functions. In addition to the polynomials
pk , we will need quasi-polynomial functions p̄k defined in (6) below.

It is convenient to work with the generating function

e(λ, z) def=
∑
i

ez(λi−i+
1
2 ) = 1

z
+
∑
k

pk(λ)
zk

k! .

By definition, set

p̄k(λ) = ik![zk]e(λ, z+ πi) (6)

=
∑
i

[
(−1)λi−i+1

(
λi − i + 1

2

)k
− (−1)−i+1

(
−i + 1

2

)k]
+ const,

where the constant terms are determined by the expansion

∑
k

zk

k! p̄k(∅) =
1

ez/2 + e−z/2 .

Up to powers of 2, they are Euler numbers.

2.1.5

Define
�̄ = Q[pk, p̄k]k≥1.

Setting
wt p̄k = k

gives the algebra �̄ the weight grading. Note that if f is homogeneous, then

f (λ′) = (−1)wt f f (λ), (7)

where λ′ denotes the conjugate partition.

2.1.6

In the definition of �̄, we excluded the function

p̄0(λ) = 1

2
+
∑
i

[(−1)λi−i+1 − (−1)−i+1],

which measures the difference between the number of even and odd numbers among
{λi − i + 1}, also known as the 2-charge of a partition λ.
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Every partitionλ uniquely defines two partitionsα andβ, known as its 2-quotients,
such that{

λi − i + 1

2

}
=
{

2

(
αi − i + 1

2

)
+ p̄0(λ)

}
�
{

2

(
βi − i + 1

2

)
− p̄0(λ)

}
.

A partition λ will be called balanced if p̄0(λ) = 1
2 .

Several constructions related to 2-quotients will play an important role in this pa-
per. A modern review of these ideas can be found, for example, in [9]. In particular, it
is known that the character χλ2,2,... of a fixed-point free involution in the representation
λ vanishes unless λ is balanced, in which case∣∣χλ2,2,...∣∣ = ( |λ|/2

|α|, |β|
)

dim α dim β. (8)

It follows that only balanced partitions contribute to the sum (4).

2.1.7

For a balanced partition λ, define

gν(λ) = f(ν,2,2,... )(λ)
f(2,2,... )(λ)

. (9)

We will prove that this function lies in �̄ in the following sense.

Theorem 2. The ratio (9) is the restriction of a unique function gν ∈ �̄ of weight
|ν|/2 to the set of balanced partitions.

Several examples of the polynomials gν can be found in the appendix.

2.1.8

In view of Theorem 2, it is natural to introduce the pillowcase weight

w(λ) =
(

dim λ

|λ|!
)2

f2,2,...(λ)
4.

Theorem 1 follows from (4), Theorem 2, and the following result.

Theorem 3. For any F ∈ �̄, the average

〈F 〉w = 1

Z(∅,∅; q)
∑
λ

q |λ|w(λ)F (λ) (10)

is a polynomial in E2(q
2), E2(q

4), and E4(q
4) of weight wt F .

Note that if F is homogeneous of odd weight, then 〈F 〉w = 0. This can be seen
directly from (7). Also note that (10) will not in general be of pure weight even if
F is a monomial in the generators pk and p̄k . This contrast with [1, 8] hints to the
existence of a better set of generators of the algebra �̄. Probably such generators are
related to descendents of orbifold points in the Gromov–Witten theory of P.
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2.1.9

It will be convenient to work with the following generating functions for the sums (10):

F(x1, . . . , xn) =
〈∏

e(λ, ln xi)
〉
w
. (11)

The function (11) will be called the n-point function.

2.2 Proof of Theorem 2

2.2.1

In the proof of theorems 2 and 3 it will be very convenient to use the fermionic Fock
space formalism. This formalism is standard and [12, 20] can be recommended as
a reference. A quick review of these techniques can be found, for example, in [21,
Section 2]. We follow the notation of [21].

2.2.2

By definition, the space �
∞
2 0V is spanned by the infinite wedge products

vλ = λ1 − 1
2 ∧ λ2 − 3

2 ∧ λ3 − 5
2 ∧ · · · , (12)

where k, k ∈ Z + 1
2 , is a basis of the underlying space V and λ is a partition. The

subscript 0 in �
∞
2 0V refers to the charge zero condition: the ith factor in (12) is

−i + 1
2 for all sufficiently large i.

There is a natural projective representation of the Lie algebra gl(V ) on �
∞
2 0V .

For us, the following elements of gl(V ) will be especially important:

Ek[f (x)]i = f
(
i − k

2

)
i − k, (13)

where f is a function on the real line. To define the action of E0[f (x)] on �
∞
2 0V

one needs to regularize the infinite sum
∑
i<0 f (

1
2 − i). This regularization is the

source of the central extension in the gl(V ) action. When f is an exponential as in

Ek(z) = Ek[ezx],

this infinite sum is a geometric series and thus has a natural regularization. By
differentiation, this leads to the ζ -regularization for operators Ek[f ]with a polynomial
function f .
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2.2.3

Other very useful operators are

αk = Ek[1], k �= 0.

The operator H defined by
Hvλ = |λ|vλ

is known as the energy operator. It differs only by a constant from the operator E0[x].
The operator H defines a natural grading on �

∞
2 0V and gl(V ).

2.2.4

A function F(λ) on partitions of n can be viewed as a vector∑
|λ|=n

F (λ)vλ ∈ �∞
2 0V

of energy n. For example, the vectors

|µ〉 def= 1

z(µ)

∏
α−µi v∅ =

1

z(µ)

∑
λ

χλµvλ, (14)

where
z(µ) = |Autµ|

∏
µi,

correspond to irreducible characters normalized by the order of the centralizer.

2.2.5

The operator E0(z) is the generating function

E0(z) = E0[ezx] = 1

z
+
∑
k

zk

k!Pk,

for the operators Pk acting by

Pkvλ = pk(λ)vλ.

In parallel to (6), we define operators P̄k by

iE0(z+ πi) =
∑
k

zk

k! P̄k.

Translated into the operator language, the statement of Theorem 2 is the following:
the orthogonal projection of |ν, 2d−|ν|/2〉 onto the subspace spanned by the vλ with λ
balanced is a linear combination of vectors∏

Pµi
∏

P̄µ̄i |2d〉 (15)

with
wtµ+ |µ̄| ≤ |ν|/2

and coefficients independent of d .
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2.2.6

Let us call the span of vλ with λ balanced the balanced subspace of �
∞
2 0V . A

convenient orthogonal basis of it is provided by the vectors

|ρ; ρ̄〉 def= 1

z(ρ)z(ρ̄)

∏
α−ρi

∏
ᾱ−ρ̄i v∅, ρi, ρ̄i ∈ 2Z, (16)

where the operators ᾱk are defined by

ᾱk = ik+1Ek(πi) =
∑
n

(−1)n+
1
2En−k,n + δk

2
, (17)

the operators Ei,j being the matrix units of gl(V ). From the commutation relations
for the operators Ek(z), we compute

[ᾱk, ᾱm] = [(−1)k − (−1)m]αk+m + k(−1)kδk+m, (18)

[αk, ᾱm] = [1− (−1)k]
(
ᾱk+m + δk+m

2

)
. (19)

In particular, when both k and m are even, all these operators commute apart from
the central term in [ᾱk, ᾱ−k].

The adjoint of ᾱk is
ᾱ∗k = (−1)kᾱ−k,

which gives the inner products

〈ρ; ρ̄∣∣ρ′; ρ̄′〉 = δρ,ρ′δρ̄,ρ̄′

z(ρ)z(ρ̄)
, (20)

provided all parts of all partitions in (20) are even. In particular, the vectors (16) are
orthogonal. It is clear that they lie in the balanced subspace and their number equals
the dimension of the space. Therefore, they form a basis.

2.2.7

The projection of |ν, 2d−|ν|/2〉 onto the balanced subspace is given in term of inner
products of the form

〈ν, 2d−|ν|/2∣∣(ρ, 2d−|ρ|/2−|ρ̄|/2); ρ̄〉
where all parts of ν are odd, all parts of ρ and ρ̄ are even, and ρ has no parts equal to
2. From the commutation relations (18) and (19) we conclude that this inner product
vanishes unless

ρ = ∅.
The nonvanishing inner products are
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〈ν, 2k∣∣2k; ρ̄〉 = 2�(ν)−�(ρ̄)

2kk!z(ν)z(ρ̄)C(ν, ρ̄), (21)

where the combinatorial coefficient C(ν, ρ̄) equals the number of ways to represent
the parts of ρ̄ as sums of parts of ν. For example,

C((3, 1, 1, 1), (4, 2)) = 3, C((3, 1, 1, 1), (6)) = 1.

2.2.8

The matrix elements〈
2d
∣∣∣∏Pµi

∏
P̄µ̄i
∣∣∣ (ρ, 2d−|ρ|/2−|ρ̄|/2); ρ̄〉 , ρi �= 2, (22)

describe the decomposition of the vectors (15) in the basis (16). Since

P1|2d〉 =
(
d − 1

24

)
|2d〉, (23)

we can also assume that µi �= 1.
We claim that (22) vanishes unless

wtµ+ |µ̄| ≥ wt ρ/2+ |ρ̄|/2, (24)

where ρ/2 is the partition with parts ρi/2 (recall that all parts of ρ are even).

2.2.9

The usual way to evaluate a matrix element like (22) is to use commutation relations
to commute all lowering operators to the right until they reach the vacuum (which
they annihilate) and, similarly, commute the raising operators to the left.

We will exploit the following property of the operators Pk and P̄k: their com-
mutator with enough operators of the form α−2ρi and ᾱ−2ρ̄i vanishes. All such com-
mutators have the form Ek[f ] with f (x) = (±1)xp(x), where p(x) is a polynomial.
Commutation with α−2ρi takes a finite difference of p(x); commutation with ᾱ−2ρ̄i
additionally flips the sign of ±1.

Since a (k + 1)-fold finite difference of a degree k polynomial vanishes, the
commutator of Pk with more than k+1 operators of the form α−2ρi or ᾱ−2ρ̄i vanishes.
In fact, a (k + 1)-fold commutator may be nonvanishing only because of the central
extension term. To pick up this central term, the total energy of all operators involved
should be zero and the number of ᾱs should be even. The same reasoning applies
to P̄k , but now the number of ᾱs should be odd to produce a nontrivial (k + 1)-fold
commutator.
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2.2.10

Now look at one of the raising operators involved in (22), say ᾱ−ρ̄i . This operator
commutes with α2 and its adjoint annihilates the vacuum, so only the terms involving
the commutator of ᾱ−ρ̄i with one of the Pµi or P̄µ̄i give a nonzero contribution to (22).
The commutator [Pµi , ᾱ−ρ̄i ] has energy (−ρi) and so its adjoint again annihilates the
vacuum. The same is true for the commutation with P̄µ̄i . To bring these commutators
back to zero energy, one needs to commute it ρ̄i/2 times with α2. Given the above
bounds on how many commutators we can afford, this implies (24).

2.2.11

When the bound (24) is saturated, then a further condition

�(ρ)+ �(ρ̄) ≥ �(µ)+ �(µ̄)
is clearly necessary for nonvanishing of (22). The unique nonzero coefficient satu-
rating both bounds corresponds to

ρ = 2µ, ρ̄ = 2µ̄.

Moreover, when divided by the norm squared of the vector |(ρ, 2d−|ρ|/2−|ρ̄|/2); ρ̄〉,
this coefficient is independent of d .

2.2.12

For general ρ and ρ̄, the similarly normalized coefficient will be a polynomial in d
of degree

1

2
(wtµ+ |µ̄| − wt ρ/2− |ρ̄|/2) (25)

because so many operatorsα−2 can commute with Pµi s or P̄µ̄i s instead of commuting
directly with α2s.

By induction on weight and length, we can express the basis vectors (16) in terms
of (15) with µi �= 1 and coefficients being polynomial in d of degree at most minus
the difference (25). By (23), to have d-dependent coefficients and µi �= 1 is the
same as to allow µi = 1 and make the coefficients independent of d. The bound of
degree in d ensures that this transition preserves weight. This concludes the proof of
Theorem 2.

3 Proof of Theorem 3

3.1 The pillowcase operator

3.1.1

Consider the operator
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W = exp

(∑
n>0

α−2n−1

2n+ 1

)
exp

(
−
∑
n>0

α2n+1

2n+ 1

)
. (26)

Because this operator is normally ordered, its matrix elements (Wv,w) are well
defined for any vectors v and w of finite energy. The relevance of this operator for
our purposes lies in the following.

Theorem 4. The diagonal matrix elements of W are

(Wvλ, vλ) =
{

w(λ), λ is balanced,

0 otherwise.

The proof of this theorem will occupy the rest of Section 3.1.

3.1.2

LetN be chosen so large that λ2N+1 = 0. Then because the operator (26) is a product
of an upper unitriangular and lower unitriangular operator, the vectorsλi − i + 1

2 with
i > 2N in

vλ = λ1 − 1
2 ∧ λ2 − 3

2 ∧ λ3 − 5
2 ∧ · · ·

are inert bystanders for the evaluation of (Wvλ, vλ). The whole computation is
therefore a computation of a matrix element of an operator in a finite exterior power
of a finite dimensional vector space V [N ] with basis

ek = −2N + k + 1
2 , k = 0, . . . , λ1 + 2N − 1.

By definition, matrix elements of W in exterior powers of V [N ] are determinants of
the matrix elements of W acting on the space V [N ] itself. The latter matrix elements
are determined in the following.

Proposition 1. We have

(Wek, el)

b(k)b(l)
=

⎧⎪⎨⎪⎩
1, k ≡ l ≡ 0 mod 2,

0, k ≡ l ≡ 1 mod 2,

2/(k − l), otherwise,

(27)

where

b(k) = k!
2k�k/2�!2 .
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3.1.3

For the proof of Proposition 1, form the generating function

f (x, y) =
∑
k,l

xkyl(Wek, el).

From the equality

exp

(∑
n>0

x2n+1

2n+ 1

)
=
√

1+ x
1− x

and definitions, we compute

f (x, y) = 1

1− xy
√

1+ x
1− x

√
1− y
1+ y .

The factorization(
x
∂

∂x
− y ∂

∂y

)
f (x, y) = (x + y)(1+ x)(1− y)

(1− x2)3/2(1− y2)3/2

by elementary binomial coefficient manipulations proves (27) for k �= l. To compute
the diagonal matrix elements observe that the above differential equation uniquely
determines f (x, y) from its values on the diagonal x = y. On the diagonal, the
skew-symmetric terms in (27) cancel out and evaluation is immediate.

3.1.4

We now proceed to the computation of the matrix element (Wvλ, vλ). We have the
following.

Proposition 2. We have

(Wvλ, vλ) =
⎛⎝2N

2N∏
i=1

b(λi − i + 2N)
∏

i<j≤2N

(λi − λj + j − i)(−1)λi−λj+j−i
⎞⎠2

,

provided λ is balanced and (Wvλ, vλ) = 0 otherwise.

The proof of this proposition is the following. Observe that by Proposition 1 the
matrix element (Wvλ, vλ) is a determinant of a 2N × 2N block matrix in which the
odd-odd block is identically zero, the even-even block is a rank 1 matrix with all
elements equal to 1 and the off-diagonal blocks have the form ( 2

xi−yj ), where {xi}
and {yi} are the odd and even subsets of {λi − i + 2N}. Since the odd-odd block
is identically zero, its size has to be ≤ N for the determinant to be nonvanishing.
Similarly, if the size of the even-even block is larger than N , then the determinant is
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easily seen to vanish. It follows that both blocks have sizeN , which precisely means
that the partition λ is balanced. It remains to use the Cauchy determinant

det

(
1

xi + yj
)
=
∏
i<j (xi − xj )

∏
i<j (yi − yj )∏

(xi + yj )
to finish the proof.

3.1.5

Note that decomposition of {λi − i + 2N} into the even and odd subsets is the same
as the 2-quotient construction from Section 2.1.6. Theorem 4 follows from formula
(8) and the classical formula

dim λ

|λ|! =
∏
i<j≤N(λi − λj + j − i)∏

(λi +N − i)! ,

where N is any number such that λN+1 = 0.

3.1.6

It would be interesting to find an interpretation of the operator W in conformal field
theory. Note that

exp

(∑
n>0

z−2n−1

2n+ 1

)
exp

(
−
∑
n>0

z2n+1

2n+ 1

)
=
√

1+ z−1

1− z−1

√
1− z
1+ z

is the Wiener–Hopf factorization of the function taking the value ∓i on the up-
per/lower half-plane.

3.2 Formula for the n-point function

3.2.1

Theorem 4 yields the following operator formula for the n-point function (11):

F(x1, . . . , xn) = 1

Z(∅,∅; q) tr qH
∏

E0(ln xi)W, (28)

where the trace is taken in the charge zero subspace of the infinite wedge and H is
the energy operator

Hvλ = |λ|vλ.
We have the following expression for the operator E0 in terms of the fermionic cur-
rents:

E0(ln x) = [y0]ψ(xy)ψ∗(y),
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where [y0] denotes the constant coefficient in the Laurent series expansion in the
variable y. Therefore,

F(x1, . . . , xn) = 1

Z(∅,∅; q)
× [y0

1 · · · y0
n] tr qHψ(x1y1)ψ

∗(y1) · · ·ψ(xnyn)ψ∗(yn)W.
(29)

3.2.2

By the main result of [9], we have

w(λ) ≤ 1 (30)

for any partition λ. In other words, all diagonal matrix elements of W are bounded
by 1. For the off-diagonal elements, we prove the following cruder bound.

Proposition 3. LetM = max{|λ|, |µ|}. Then

(Wvλ, vµ) ≤ exp

⎛⎜⎝1

2

�M−1
2 �∑
n=0

1

2n+ 1

⎞⎟⎠ ∼ const ·M1/4. (31)

To see this note that

(Wvλ, vµ) = (W[M]vλ, vµ),

where W[M] is the truncated operator

exp

⎛⎝ ∑
2n+1≤M

α−2n−1

2n+ 1

⎞⎠ exp

⎛⎝− ∑
2n+1≤M

α2n+1

2n+ 1

⎞⎠ .
We claim that the operator W[M] is a multiple of a unitary operator. Indeed,

(W[M]∗)−1 = exp

⎛⎜⎝−�M−1
2 �∑
n=0

1

2n+ 1

⎞⎟⎠W[M],

whence the result.
In fact, we will only use that (31) is bounded by a polynomial in the sizes of the

partitions.

3.2.3

By normally ordering all fermionic operators in (29) and using the estimate (31) one
sees that the trace converges if

|yn/q| > |x1y1| > |y1| > · · · > |xnyn| > |yn| > 1. (32)
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3.2.4

The proof of the following identity is given in [12, Theorem 14.10]:

ψ(xy)ψ∗(y) = 1

x1/2 − x−1/2

× exp

(∑
n

(xy)n − yn
n

α−n

)
exp

(∑
n

y−n − (xy)−n
n

αn

)
.

(33)

It allows to express the operator in (29) in terms of bosonic operators αn.
With respect to the action of the operators αn, the charge zero subspace of the

infinite wedge space decomposes as the infinite tensor product

�
∞
2 0V ∼=

∞⊗
n=1

∞⊕
k=0

αk−nv∅,

the distinguished vector in each factor being v∅. This gives a factorization of the trace
in (29). The trace in each tensor factor is computed as follows:

tr eAα−neBαn
∣∣∣⊕∞

k=0 α
k−nv∅

= 1

1− qn exp

(
nABqn

1− qn
)
.

For example, this shows that

tr qHW = (q2)
−1/2∞ = Z(∅,∅; q),

where

(a)∞ =
∏
n≥0

(1− aqn),

and so the 0-point function is F( ) = 1, as expected. For the n-point function this
gives the following.

Theorem 5. We have

F(x1, . . . , xn) =
∏ 1

ϑ(xi)

× [y0
1 · · · y0

n]
∏
i<j

ϑ(yi/yj )ϑ(xiyi/xj yj )

ϑ(xiyi/yj )ϑ(yi/xjyj )

∏
i

√
ϑ(−yi)ϑ(xiyi)
ϑ(yi)ϑ(−xiyi) ,

(34)

where the series expansion is performed in the domain (32).
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3.3 Quasimodular forms

3.3.1

In the computation of (34), we can assume that 1 < |xi | � |q−1| for all i and hence

|yi | > |yj |
∏

|xk|±1 > |qyi |, i < j.

The series expansion in (34) can then be performed using the following elementary
lemma.

Lemma 4. We have

1

2πi

∮
|y|=c

dy

y

n∏
i=1

ϑ(y/ai)

ϑ(y/bi)
=
(

1−
∏ ai

bi

)−1 n∑
i=1

∏
j ϑ(bi/aj )∏
j �=i ϑ(bi/bj )

, (35)

provided c > |bi | > |q|c for i = 1, . . . , n.

This is obtained by computing the difference of
∮
|y|=c and

∮
|y|=|q|c as a sum of

residues using
ϑ ′(1) = 1.

3.3.2

There are two obstacles to literally applying this lemma to the evaluation of (34).
The first is the square roots in (34). However, we are ultimately interested in the
expansion of (34) about xi = ±1. The expansion of the integrand about xi = ±1
contains no square roots, only the theta function and its derivatives. Formulas for
integrating derivatives can be obtained from (35) by differentiating with respect to
parameters.

3.3.3

The other issue is that at xi = 1 the integrand is an elliptic function of the corre-
sponding yi , and so the left hand side of (35) gives infinity times zero. This can be
circumvented, for example, by replacing each factor of xi in the argument of each
theta function an independent variable and specializing them all back to xi only after
integration. By l’Hôpital’s rule, this will produce an additional differentiation any
time we expand around xi = 1 for some i.

3.3.4

In the end, we will get some rather complicated polynomial in theta functions and
their derivatives evaluated at ±1 divided by a power of ϑ(−1). This means that we
will get a combination of Eisenstein series arising from
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ln
z

ϑ(ez)
= 2

∑
k≥1

z2k

(2k)!E2k(q), (36)

and

ln
ϑ(−ez)
ϑ(−1)

= 2
∑
k≥1

z2k

(2k)! [E2k(q)− 22kE2k(q
2)], (37)

together with the product

ϑ(−1) = 2i

(∏
n

1+ qn
1− qn

)2

= η(q2)2

η(q)4
. (38)

Note that (38) has weight −1.

3.3.5

Without knowing the precise form of the answer, one can still make some qualitative
observations about it.

Suppose we are interested in the coefficient of zk1
1 · · · zknn in the expansion of

F(ez1 , . . . , ezr ,−ezr+1 , . . . ,−ezn)
in powers of zi . We claim that the weight of this coefficient is at most

∑
ki + r .

Indeed, we from (36) and (37) we have

wt

(
x
d

dx

)k
ϑ(x)

∣∣∣
x=±1

= k − 1.

This gives the following count for the weight:

n− n+
∑
ki + r,

where the first n is added because of the prefactor in (34), the second n is subtracted
due to integration in yi (which, by Lemma 4 changes the balance of θ -factors by 1),∑
ki is the number of times we need to differentiate the integrand, and, finally, r

additional differentiations are needed for reasons explained in Section 3.3.3.

3.3.6

We further claim that (34) is, in fact, a polynomial in the coefficients of (36), (37), and

1

ϑ(−1)2
= −1

4

η(q)8

η(q2)4
= 2E2(q)− 12E2(q

2)+ 16E2(q
4). (39)

First, observe only even powers of (38) appear in the answer. This is because the
formula (34) has a balance of minus signs in the arguments of theta functions in the
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numerator and denominator. Every time we specialize yi to one of the poles in (35),
the balance of minus signs changes by an even number.

Inverse powers of (39) cannot appear in the answer because they grow expo-
nentially as q → 1 and there are no other exponentially large terms to cancel this
growth out. The averages (10) may grow only polynomially as q → 1 because of
the bound (30).

3.3.7

Recall from [16] that a quasimodular form for a congruence subgroup  ⊂ SL2(Z)
is, by definition, the holomorphic part of an almost holomorphic modular form for .
A function of |q| < 1 is called almost holomorphic if it is a polynomial in (ln |q|)−1

with coefficients in holomorphic functions of q. Quasimodular forms for  form a
graded algebra denoted by QM(). By a theorem of Kaneko and Zagier [13],

QM() = Q[E2] ⊗M().

In particular,
E2(q), E2(q

2), E2(q
4) ∈ QM(0(4)) (40)

where

0(4) =
{(
a b

c d

)∣∣∣∣ c ≡ 0 mod 4

}
⊂ SL2(Z).

Hence all averages (10) lie in QM(0(4)).
In fact, the series (40) generate the subalgebra QM2∗(0(4)) of even weight

quasimodular forms. This is because M2∗(0(4)) is freely generated by two gener-
ators of weight two, for example, by Eodd

2 (q) and Eodd
2 (q2), where

Eodd
2 (q) = E2(q)− 2E2(q

2) = 1

24
+

∞∑
n=1

⎛⎝ ∑
d|n,d odd

d

⎞⎠ qn.
3.3.8

Note that because w(λ) = 0 for any partition λ of odd size, the series (10) is in fact a
series in q2. It follows that it is quasimodular with respect to a bigger group, namely(

1 0
0 2

)
0(2)

(
1 0
0 2

)−1

⊃ 0(4).

In other words, (10) is, in fact, obtained by substituting q �→ q2 into an element of
QM(0(2)). We have

M(0(2)) = Q[Eodd
2 (q), E4(q

2)]
and hence

QM(0(2)) = Q[E2(q), E2(q
2), E4(q

2)].
This concludes the proof of Theorem 3.
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Appendix A: Examples

In this appendix, we list some simple examples of the quasimodular formsZ′(µ, ν; q)
appearing in Theorem 1 and polynomials gν from Theorem 2.

A.1 Quasimodular forms Z′(µ, ν; q)

Z′((1, 1), (2)) = 20E2(q
4)

2 − 20E2(q
4)E2(q

2)+ 4E2(q
2)

2 − 5

3
E4(q

4).

Z′((3, 1), (3)) = −2112

5
E2(q

4)
3 + 3888

5
E2(q

4)
2
E2(q

2)

− 2304

5
E2(q

4)E2(q
2)

2 + 384

5
E2(q

2)
3

+ 48E4(q
4)E2(q

4)− 36E4(q
4)E2(q

2).

Z′((3, 3), (2)) = 1056

5
E2(q

4)
3 − 1044

5
E2(q

4)
2
E2(q

2)

+ 252

5
E2(q

4)E2(q
2)

2 − 12

5
E2(q

2)
3 − 24E4(q

4)E2(q
4)

+ 3E4(q
4)E2(q

2)+ 15

2
E2(q

4)
2 − 15

2
E2(q

4)E2(q
2)

+ 3

2
E2(q

2)
2 − 5

8
E4(q

4).

Z′((5, 1), (2)) = 3520

3
E2(q

4)
3 − 1160E2(q

4)
2
E2(q

2)+ 280E2(q
4)E2(q

2)
2

− 40

3
E2(q

2)
3 − 400

3
E4(q

4)E2(q
4)+ 50

3
E4(q

4)E2(q
2)

+ 125

3
E2(q

4)
2 − 125

3
E2(q

4)E2(q
2)+ 25

3
E2(q

2)
2

− 125

36
E4(q

4).

Z′((1, 1, 1, 1),∅) = 1

4
E2(q

4)+ 1

96
.

Z′((3, 3, 1, 1),∅) = 9

256
− 12E2(q

4)
2 + 27

2
E2(q

4)E2(q
2)− 9

4
E2(q

2)
2

+ 5

4
E4(q

4)+ 9

16
E2(q

4)+ 3

8
E2(q

2).

Z′((5, 1, 1, 1),∅) = 125

1152
− 10E2(q

4)
2 + 15E2(q

4)E2(q
2)− 5

2
E2(q

2)
2

+ 55

24
E2(q

4)+ 5

12
E2(q

2).

Z′((3, 3, 3, 3),∅) = −24

5
E2(q

4)
3 − 84

5
E2(q

4)
2
E2(q

2)+ 423

20
E2(q

4)E2(q
2)

2

− 39

10
E2(q

2)
3 + E4(q

4)E2(q
4)+ 7

4
E4(q

4)E2(q
2)
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− 33

4
E2(q

4)
2 + 141

16
E2(q

4)E2(q
2)− 21

32
E2(q

2)
2

+ 25

32
E4(q

4)+ 27

256
E2(q

4)+ 9

32
E2(q

2)+ 27

2048
.

Z′((5, 3, 3, 1),∅) = 132E2(q
4)

3 − 708E2(q
4)

2
E2(q

2)+ 639E2(q
4)E2(q

2)
2

− 114E2(q
2)

3 − 15E4(q
4)E2(q

4)+ 55E4(q
4)E2(q

2)

− 310E2(q
4)

2 + 1365

4
E2(q

4)E2(q
2)− 285

8
E2(q

2)
2

+ 175

6
E4(q

4)+ 615

64
E2(q

4)+ 85

8
E2(q

2)+ 375

512
.

A.2 Polynomials gν

g1,1 = 1

2
p̄1.

g3,1 = 1

6
p̄2

1 +
1

6
p̄2 − 1

2
p1.

g3,3 = − 1

54
p̄3

1 +
1

18
p̄1p̄2 + 1

54
p̄3 − 1

4
p2 + 3

16
p̄1.

g5,1 = 1

30
p̄3

1 +
1

10
p̄1p̄2 − 1

2
p̄1p1 + 1

15
p̄3 − 1

2
p2 + 25

24
p̄1.

g5,3 = − 1

360
p̄4

1 −
1

60
p̄2

1p̄2 − 1

12
p̄2

1p1 + 2

45
p̄3p̄1 + 25

36
p̄2

1 +
1

40
p̄2

2

− 1

12
p̄2p1 + 5

8
p1

2 + 1

60
p̄4 − 1

2
p3 + 25

36
p̄2 − 25

12
p1.

g1,1,1,1 = − 1

24
p̄2

1 +
1

12
p̄2 + 1

96
.

g3,1,1,1 = 1

108
p̄3

1 −
1

36
p̄1p̄2 − 1

4
p̄1p1 + 2

27
p̄3 + 3

8
p̄1.

g3,3,1,1 = 1

216
p̄4

1 −
1

12
p̄2

1p1 + 1

108
p̄3p̄1 − 1

8
p2p̄1 + 9

32
p̄2

1 −
1

72
p̄2

2

− 1

12
p̄2p1 + 1

8
p1

2 + 1

36
p̄4 + 9

16
p̄2 − 3

4
p1 + 9

256
.

g3,3,3,1 = 1

4860
p̄5

1 +
1

486
p̄3

1p̄2 + 1

108
p̄3

1p1 − 5

972
p̄3p̄2

1 −
1

24
p2p̄2

1 −
1

96
p̄3

1

+ 1

324
p̄1p̄2

2 −
1

36
p̄1p̄2p1 + 1

162
p̄4p̄1 − 5

972
p̄3p̄2 − 1

108
p̄3p1 − 1

24
p2p̄2

+ 1

8
p2p1 + 31

96
p̄1p̄2 − 19

32
p̄1p1 + 1

4
p̄3 − p2 + 2

405
p̄5 + 153

128
p̄1.

g3,3,3,3 = 1

29160
p̄6

1 −
1

2916
p̄3p̄3

1 +
1

216
p2p̄3

1 −
1

432
p̄4

1 +
1

1944
p̄2

1p̄2
2 −

1

972
p̄4p̄2

1

+ 1

972
p̄3p̄1p̄2 − 1

72
p2p̄1p̄2 − 7

288
p̄2

1p̄2 − 1

12
p̄2

1p1 − 1

2916
p̄3

2
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− 1

1944
p̄2

3 −
1

216
p̄3p2 + 59

864
p̄3p̄1 + 1

32
p2

2 − 3

64
p2p̄1 + 1

1215
p̄5p̄1

+ 231

512
p̄2

1 +
1

32
p̄2

2 −
1

12
p̄2p1 + 3

8
p1

2 + 5

144
p̄4 − 5

12
p3 + 1

2916
p̄6

+ 129

256
p̄2 − 9

8
p1 + 27

2048
.
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1 Introduction

1.1 Summary

In this paper, starting from a split semisimple real Lie groupG with trivial center, we
define a family of varieties with additional structures. We describe them as cluster
X -varieties, as defined in [FG2]. In particular they are Poisson varieties. We define
canonical Poisson maps of these varieties to the groupG equipped with the standard
Poisson–Lie structure defined by V. Drinfeld in [D, D1]. One of them maps to the
group birationally and thus provides G with canonical rational coordinates.

We introduce a simple but important operation of amalgamation of cluster va-
rieties. Our varieties are obtained as amalgamations of certain elementary cluster
varieties XJ(α), assigned to positive simple roots α of the root system of G. An ele-
mentary cluster variety XJ(α) is a split algebraic torus of dimension r + 1, where r is
the rank of G. Its cluster, and in particular Poisson structure, is described in a very
simple way by the Cartan matrix for G. Since one of them is a Zariski open part of
G, we can develop the Poisson–Lie group structure on G from scratch, without the
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r-matrix formalism, getting as a benefit canonical (Darboux) coordinates for the Pois-
son structure onG. Some of our varieties are very closely related to the double Bruhat
cells studied by A. Berenstein, S. Fomin, and A. Zelevinisky in [FZ, BFZ3, BZq].

Using quantization of cluster X -varieties developed in [FG2, Section 4] we get as a
byproduct a quantization (i.e., a noncommutative q-deformation) of our varieties. The
quantum version of the operation of amalgamation generalizes the standard quantum
group structure.

The results of this paper enter as a building block into a description of the cluster
structure of the moduli spaces of local systems on surfaces studied in [FG1].

1.2 Description of the results

We start the paper with a brief recollection of the definition and properties of cluster
X -varieties. Let us briefly discuss some of their features, postponing the detailed
discussion until Section 2.

1.2.1 Cluster X -varieties

Cluster X -varieties are determined by combinatorial data similarly (although differ-
ently in some details) to that used for the definition of cluster algebras in [FZI], that
is, by a cluster seed I, which is a quadruple (I, I0, ε, d), where

(i) I is a finite set;
(ii) I0 ⊂ I is a subset;
(iii) ε is a matrix (εij ), where i, j ∈ I , such that εij ∈ Z unless i, j ∈ I0;
(iv) d = {di}, where i ∈ I , is a set of positive integers, such that the matrix (̂εij ) =

(εij dj ) is skew-symmetric.

The elements of the set I are called vertices, the elements of I0 are called frozen
vertices.

Given a seed I, every nonfrozen vertex k ∈ I − I0 gives rise to a mutation,
producing a new, mutated seed µk(I). Compositions of mutations are called cluster
transformations of seeds.

Following [FG2, Section 2], we associate to a seed I a torus XI = (Gm)I with a
Poisson structure given by

{xi, xj } = ε̂ij xixj
where {xi |i ∈ I } are the standard coordinates on the factors. We shall call it the seed
X -torus. Cluster transformations of seeds give rise to Poisson birational transforma-
tions between the seed tori, called cluster transformations. Gluing the seed X -tori
according to these birational transformations we get a scheme X|I| over Z, called
below a cluster X -variety. (However, X|I| may not be a scheme of finite type, and
thus X|I| ⊗Q may not be an algebraic variety.)

In [FZI], the values εij for i ∈ I0 were not defined, so (εij ) was a rectangular
matrix with integral entries. In our approach the frozen variables play an important
role. The values εij , when i, j ∈ I0, are essential, and may not be integers. Let us
elaborate on this point.
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1.2.2 Amalgamation

We introduce operations of amalgamation and defrosting of seeds. The amal-
gamation of a collection of seeds I(s), parametrised by a set S, is a new seed
K = (K,K0, εij , d). The set K is defined by gluing some of the frozen vertices
of the sets I (s). The frozen subsetK0 is obtained by gluing the frozen subsets I0(s).
The rest of the data of K is also inherited from those of I(s). Defrosting simply
shrinks the subset of the frozen vertices of K, without changing the set K . One can
defrost any subset of K such that εij ∈ Z for any i, j from this subset. All seeds in
our paper are obtained by amalgamation followed by defrosting of certain elementary
seeds. All vertices of the elementary seeds are frozen.

In order to state our results we have to introduce some notation related to the
group.

1.2.3 Notation

Let G be a semisimple adjoint Lie group of rank r . There is the following data
associated to G: the set of positive simple roots �, the Cartan matrix Cαβ = 2 (α,β)

(α,α)
,

where α, β ∈ �, and the multipliers dα = (α, α)/2, α ∈ �, such that the matrix
Ĉαβ = Cαβdβ is symmetric. Let�− be the set of negative simple roots and let W be
the semigroup freely generated by � and �−. Any element D of W is thus a word
µ1 · · ·µl(D) in the letters from the alphabet � ∪ �−, where l(D) is its length. For
α ∈ � we shall denote by ᾱ the opposite element from �−.

1.2.4 The braid and Hecke semigroups

Let B be the quotient of the semigroup W by

αβ̄ = β̄α, (1)

αβα = βαβ and ᾱβ̄ᾱ = β̄ᾱβ̄ if Cαβ = Cβα = −1,
αβαβ = βαβα and ᾱβ̄ᾱβ̄ = β̄ᾱβ̄ᾱ if Cαβ = 2Cβα = −2,

αβαβαβ = βαβαβα and ᾱβ̄ᾱβ̄ᾱβ̄ = β̄ᾱβ̄ᾱβ̄ᾱ if Cαβ = 3Cβα = −3.
(2)

The semigroup B is called the braid semigroup. We denote by p : W → B the
canonical projection.

Another semigroup appropriate in our context is the further quotient of B by the
relations

α2 = α; ᾱ2 = ᾱ, (3)

denoted by H and called the Hecke semigroup. It is isomorphic as a set to the square
of the Weyl group ofG. We call an element of W or B reduced if its length is minimal
among the elements having the same image in H.

Now we are ready to discuss our main goals and results.
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1.2.5 Cluster X -varieties related to the braid semigroup and their properties

We will define a cluster X -variety XB associated to any element B ∈ B. For this
purpose, given aD ∈ W, we will define a seed J(D) = (J (D), J0(D), ε(D), d(D)).
We prove that the seeds corresponding to different elements of p−1(B) are related by
cluster transformations. Moreover, we define the evaluation and multiplication maps

ev : XB → G, m : XB1 × XB2 → XB1B2 .

The correspondence B �→ XB and the maps m and ev are to satisfy the following
properties:

1. ev is a Poisson map.
2. m is an amalgamation followed by defrosting of cluster X -varieties (and thus a

Poisson map).
3. The multiplication maps are associative in the obvious sense.
4. Multiplication commutes with the evaluation, i.e., the following diagram is com-

mutative:

XB1 × XB2

(ev,ev)−→ G×G,
↓m ↓m,

XB1B2

ev−→ G.

(4)

We would like to stress that the multiplicationm is a projection with fibers of nonzero
dimension.

1.2.6 Cluster X -varieties related to the Hecke semigroup

Letπ : B → H be the canonical projection of semigroups. Considered as a projection
of sets it has a canonical splitting s : H → B. Namely, for every H ∈ H there is a
unique reduced element s(H) in π−1(H), the reduced representative of H in B. So
given an element H ∈ H there is a cluster variety Xs(H). Abusing notation, we will
denote it by XH .

A rational map of cluster X -varieties is a cluster projection if in a certain cluster
coordinate system it is obtained by forgetting one or more cluster coordinates.

We show the following:

1. There is a canonical cluster projection π : XB → Xπ(B). By the very definition,
it is an isomorphism if B is reduced.

2. There is a multiplication map mH : XH1 × XH2 → XH1H2 , defined as the
composition

XH1 × XH2 := Xs(H1) × Xs(H2)
m−→ Xs(H1)s(H2)

π−→ XH1H2 .

So it is a composition of an amalgamation, defrosting, and cluster projection. It
follows from (4) that the maps mH andm are related by a commutative diagram
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XB1 × XB2

m−→ XB1B2 ,↓π×π ↓π ,
XH1 × XH2

mH−→ XH1H2 ,

(5)

where the vertical maps are the canonical cluster projections.
3. The multiplication maps are associative in the obvious sense (see the remark

below).
4. If H ∈ H, the map ev : XH ↪→ G is injective at the generic point. If H is

the longest element of H, then the image of ev is Zariski dense in G. The map
ev : XB → G is a composition

XB
π−→ XH

evH
↪→ G, H = π(B).

Remark 1. A part of the above data is axiomatized as follows. Given a semigroup S,
we assign to every s ∈ S an object Xs of a monoidal category M (e.g., the category of
Poisson varieties with the product as monoidal structure), and for every pair s, t ∈ S
a canonical morphism ms,t : Xs × Xt −→ Xst . They must satisfy an associativity
constraint, i.e., for every r, s, t ∈ S, the following diagram is commutative:

Xr × Xs × Xt
Id×ms,t−→ Xr × Xst ,

mr,s↓×Id ↓mr,st ,
Xrs × Xt

mrs,t−→ Xrst .
(6)

Remark 2. Recall Lusztig’s coordinates on the groupG [L1]. LetEα(t) and Fα(t) be
the two standard one-parameter subgroups corresponding to a simple root α. Denote
byXα(t) the elementEα(t) if α ∈ � andFα(t) if α ∈ �−. A reduced decomposition
of the longest element inW×W is encoded by a sequenceα1, . . . , α2m of 2m elements
of � ∪�−, where 2m+ r = dimG. There is a birational isomorphism

H ×G2m
m −→ G, (H, t1, . . . , t2m) �−→ HXα1(t1), . . . , X

α2m(t2m). (7)

There are similar coordinates on all double Bruhat cells [FZ]. However, they are not
cluster X -coordinates. Our coordinates are related to them by monomial transforma-
tions.

1.2.7 Quantization

Cluster X -varieties were quantized in [FG2, Section 4]. The operations of amal-
gamation, defrosting and cluster projection have straightforward generalizations to
the quantum X -varieties. Thus we immediately get q-deformations of the cluster
X -varieties considered above for the braid and Hecke semigroups.

We understood the category of quantum spaces as in loc. cit. So, in particular, a
morphism of quantum cluster spaces X q → Yq , by definition, is given by a compat-
ible collection of morphisms of the corresponding quantum tori algebras going in the
opposite direction, i.e., the Y-algebras map to the corresponding X -algebras.

It follows that the quantum spaces enjoy properties similar to the properties of
their classical counterparts listed above:
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1. There is a canonical projection π : XB → Xπ(B).
2. There are multiplication maps of quantum spaces for the braid and Hecke semi-

groups:

mq : X q
B1
× X q

B2
→ X q

B1B2
, m

q

H : X q
H1
× X q

H2
→ X q

H1H2
.

3. They are related by the q-version of the diagram (5), and satisfy the associativity
constraints given by the q-versions of the diagram (6).

Remark. One can show that there is a quantum evaluation map to the quantum de-
formation [D1] of the algebra of regular functions ofG. Unlike the other properties,
this is not completely straightforward, and will be elaborated elsewhere.

1.2.8 Proofs

They are easy if the Dynkin diagram ofG is simply-laced. The other cases are reduced
to the rank two cases. The B2 case can be done by unenlightening calculations. The
G2 case is considerably more difficult.

Amore conceptual approach is provided by the operation of cluster folding [FG2],
briefly reviewed in Section 3.6, which clarifies the picture in the B2 case and seems
to be indispensable in the G2 case.

1.2.9 Cluster structures of moduli spaces of triples of flags of types A3 and G2

In the process of proof we work with cluster X -varieties related to the moduli spaces
Conf 3(BB2) and Conf 3(BG2) of configurations of triples of flags in the Lie groups
of type B2 and G2, respectively. There is a canonical embedding Conf 3(BB2) ↪→
Conf 3(BA3) provided by the folding of the latter. It allows us to reduce the study of
the former to the study of the latter. In the two appendices we investigate the cluster
structures of the moduli spaces Conf 3(BA3) and Conf 3(BG2) in detail. Here is what
we learned.

Recall the moduli space M0,6 of configurations of 6 points on P1. It has an X -
cluster structure of finite type A3. In Appendix B we construct an explicit birational
isomorphism

� : Conf 3(BA3)
∼−→ M0,6

respecting the X -cluster structures.
The investigation of the moduli space Conf 3(BG2) turned out to be a subject of

independent interest, which reveals the following story, discussed in Appendix A.
We say that two seeds I = (I, I0, ε, d) and I′ = (I ′, I ′0, ε′, d ′) are isomorphic if

there is a set isomorphism ϕ : I → I ′, preserving the frozen vertices and the ε- and
d-functions.

Definition 1.1. A cluster X -variety is of ε-finite type if the set of isomorphism classes
of its seeds is finite.
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Any cluster X -variety gives rise to an orbifold, called the modular orbifold ; see
[FG2, Section 2]. We recall its definition in Section ??. Its dimension is the dimension
of the cluster X -variety minus one. In the ε-finite case the modular orbifold is glued
from a finite number of simplices. It is noncompact, unless the cluster X -variety is
of finite cluster type. Here is the main result:

Theorem 1.2.

(a) The cluster X -variety corresponding to the moduli space Conf 3(BG2) is of ε-finite
type. The number of isomorphism classes of its seeds is seven.

(b) The corresponding modular orbifold is a manifold. It is homeomorphic to S3−L,
whereL is a two-component link, andπ1(S

3−L) is isomorphic to the braid group
of type G2.

It is well known that the complement to the discriminant variety of type G2 in
C2 is a K(π, 1)-space, where π is the braid group of typeG2. Its intersection with a
sphere S3 containing the origin has two connected components. We conjecture that
it is isomorphic to S3 − L.

The mapping class group of a cluster X -variety was defined in loc. cit. It acts by
automorphisms of the cluster X -variety. It is always infinite if the cluster structure is
of ε-finite, but not of finite type. Theorem 1.2 immediately implies the following.

Corollary 1.3. The mapping class group of the cluster X -variety corresponding to
Conf 3(BG2) is an infinite quotient of the braid group of type G2.

Conjecturally it coincides with the braid group. This is the first example of an
infinite mapping class group different from the mapping class groups of surfaces.

2 Cluster X -varieties and amalgamation

In this section we recall some definitions from [FG2]. For the reader’s convinience,
we repeat, verbatim, the definition of the cluster seed from Section 1.2.1.

2.1 Basic definitions

A cluster seed , or just seed , I is a quadruple (I, I0, ε, d), where

(i) I is a finite set;
(ii) I0 ⊂ I is a subset;
(iii) ε is a matrix (εij ), where i, j ∈ I , such that εij ∈ Z unless i, j ∈ I0;
(iv) d = {di}, where i ∈ I , is a set of positive integers, such that the matrix (̂εij ) =

(εij dj ) is skew-symmetric.

The elements of the set I are called vertices, the elements of I0 are called frozen
vertices. The matrix ε is called a cluster function, the numbers {di} are called multi-
pliers, and the function d on I whose value at i is di is called a multiplier function. We
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omit {di} if all of them are equal to one, and therefore the matrix ε is skew-symmetric,
and we omit the set J0 if it is empty.

The seed I = (I, I0, ε, d) is called a subseed of the seed I′ = (I ′, I ′0, ε, d) if
I ⊂ I ′, I0 ⊂ I ′0 and the functions ε and d are the restriction of ε′ and d ′, respectively.
In this case we denote I by I′|I .

Recall the multiplicative group scheme Gm. It is defined as the spectrum of the
ring Z[X,X−1]. The direct product of several copies of the multiplicative group is
called a split algebraic torus, or simply a torus. Readers who are not used to the
language of schemes may just fix, once and for all, a fieldK , and replace everywhere
Gm by K×; indeed Gm(K) = K×.

For a seed I we associate a torus XI = (Gm)I with a Poisson structure given by

{xi, xj } = ε̂ij xixj , (8)

where {xi |i ∈ I } are the standard coordinates on the factors. We shall call it the seed
X -torus.

Let I = (I, I0, ε, d) and I′ = (I ′, I ′0, ε′, d ′) be two seeds, and k ∈ I . A mutation
in the vertex k is an isomorphism µk : I → I ′ satisfying the following conditions:

1. µk(I0) = I ′0,
2. d ′µk(i) = di ,
3.

ε′µk(i)µk(j) =

⎧⎪⎨⎪⎩
−εij if i = k or j = k,
εij + εik max(0, εkj ) if εik ≥ 0,

εij + εik max(0,−εkj ) if εik < 0.

Asymmetry of a seed I = (I, I0, ε, d) is an automorphism σ of the set I preserving
the subset I0, the matrix ε and the numbers di . In other words, it satisfies the following
conditions:

1. σ(I0) = I0,
2. dσ(i) = di ,
3. εσ(i)σ (j) = εij

Symmetries and mutations induce (rational) maps between the corresponding seed
X -tori, which are denoted by the same symbols µk and σ and given by the formulas

xσ(i) = xi
and

xµk(i) =

⎧⎪⎨⎪⎩
x−1
k if i = k,
xi(1+ xk)εik if εik ≥ 0 and i �= k,
xi(1+ (xk)−1)εik if εik ≤ 0 and i �= k.

A cluster transformation between two seeds (and between two seed X -tori) is a
composition of symmetries and mutations. If the source and the target of a cluster
transformation coincide, we call this map a cluster automorphism. Two seeds are
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called equivalent if they are related by a cluster transformation. The equivalence
class of a seed I is denoted by |I|.

Thus we have defined two categories. The first one has cluster seeds as objects
and cluster transformations as morphisms. The second one has seed X -tori as objects
and cluster transformations of them as morphisms. There is a canonical functor from
the first to the second. The objects in these two categories are the same. However,
there are more morphisms in the second category.

A cluster X -variety is obtained by taking a union of all seed X -tori related to a
given seed I by cluster transformations, and gluing them together using the above
birational isomorphisms. It is denoted by X|I|. Observe that the cluster X -varieties
corresponding to equivalent seeds are isomorphic. Every particular seed X -torus
provide our cluster variety with a rational coordinate system. The corresponding
rational functions are called cluster coordinates.

Since in what follows we shall extencively use compositions of mutations we
would like to introduce a shorthand notation for them. Namely, we denote an expres-
sion µµi(j)µi by µjµi , µµµi (j)µi (k)µµi(j)µi by µkµjµi , and so on. We will also say

that two sequences of mutations are equivalent (
∼=) if they coincide as maps between

the X -tori up to permutation of coordinates.
The cluster transformations have the following basic properties (see [FG2, Sec-

tion 2]):

1. Every seed is related to other seeds by exactly �(I − I0) mutations.
2. Cluster transformations form a groupoid. In particular the inverse of a mutation

is a mutation: µkµk = id. Cluster automorphisms form a group called the
mapping class group. The groups of cluster automorphisms of equivalent seeds
are isomorphic.

3. Cluster transformations preserve the Poisson structure. In particular a cluster
X -manifold has a canonical Poisson structure and the automorphism group of
this manifold acts on it by Poisson transformations.

4. Cluster transformations are given by rational functions with positive integral
coefficients.

5. If εij = εji = 0, then µiµjµjµi = id.

6. If εij = −εji = −1, then µiµjµiµjµi
∼= id. (This is called the pentagon

relation.)
7. If If εij = −2εji = −2, then µiµjµiµjµiµj = id.
8. If If εij = −3εji = −3, then µiµjµiµjµiµjµi = id.

Conjecturally all relations between mutations are exhausted by properties 5–8.

2.2 Amalgamation

We start from the simplest example: the amalgamation of two seeds. Let J =
(J, J0, ε, d) and I = (I, I0, ζ, c) be two seeds and let L be a set embedded into
both I0 and J0 in a such a way that for any i, j ∈ L, we have c(i) = d(i). Then
the amalgamation of J and I is a seed K = (K,K0, ζ, b), such that K = I ∪L J ,
K0 = I0 ∪L J0 and
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ζij =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 if i ∈ I − L and j ∈ J − L,
0 if i ∈ J − L and j ∈ I − L,
ηij if i ∈ I − L or j ∈ I − L,
εij if i ∈ J − L or j ∈ J − L,
ηij + εij if i, j ∈ L.

This operation induces a homomorphism XJ×XI → XK between the corresponding
seed X -tori given by the rule

zi =

⎧⎪⎨⎪⎩
xi if i ∈ I − L,
yi if i ∈ J − L,
xiyi if i ∈ L.

(9)

It is easy to check that it respects the Poisson structure and commutes with cluster
transformations, and thus is defined for the cluster X -varieties, and not only for the
seeds.

If there is a subset L′ ⊂ L such that εij + ηij ∈ Z when i, j ∈ L, then we can
defrost the vertices of L′, getting a new seed (K,K0 − L′, ζ, b). In this way we get
a different cluster ensemble, since we can now mutate the elements of L′ as well.

Now let us present the general definition. Let

I(s) = (I (s), I0(s), ε(s), d(s)), s ∈ S
be a family of seeds parametrised by a set S. Let us glue the sets I s in such a way that

(a) only frozen vertices can be glued;
(b) if i ∈ I (s) and j ∈ I (t) are glued, then d(s)i = d(t)j .
Let us denote by K the set obtained by gluing the sets I (s).

Alternatively, the gluing data can be described by the following data:

(i) a set K;
(ii) a collection of injective maps ps : I (s) ↪→ K , s ∈ S, whose images cover K;

two images may intersect only at the frozen elements;
(iii) the multiplier function on ∪s∈SI (s) descends to a function d on the set K .

In other words, there is a cover of the set K by the subsets I (s), any two elements
covering the same point are frozen, and the values of the multiplier functions at these
elements coincide.

We identify ε(s) with a function on the square of the image of the set I (s), and
denote by ε(s)′ its extension by zero to K2. Then we set

ε :=
∑
ε(s)′. (10)

There is a map P : ∪s∈SI (s)→ K . We set

K0 := P(∪s∈SI0(s)).
There is a unique function c on K such that p∗s d = d(s) for any s ∈ C.
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Definition 2.1. The seed K := (K,K0, ε, d) is the amalgamation of the seeds I(s)
with respect to the given gluing data (i)–(iii).

Lemma 2.2. The amalgamation of seeds commutes with cluster transformations.

Proof. Thanks to (ii), for any element i ∈ I (s) − I0(s) one has |P−1(ps(i))| = 1.
Thus when we do a mutation in the direction ps(i), we can change the values of the
cluster function only on the subset ps(I (s)2). The lemma follows.

The amalgamation map of cluster X -varieties

Let us consider the following map of X -tori:

m :
∏
s∈S

XI(s) → XK, m∗xi =
∏

j∈P−1(i)

xj . (11)

The following lemma is obvious.

Lemma 2.3. The maps (11) commute with mutations, and thus give rise to a map of
cluster X -varieties, called the amalgamation map:

m :
∏
s∈S

X|I(s)| → X|K|.

Defrosting

Let L ⊂ K0. Assume that the function ε restricted to L×L−K0 ×K0 takes values
in Z. Set K ′

0 := K0 − L. Then there is a new seed K′ := (K,K ′
0, ε, c). We say

that the seed K′ is obtained from K by defrosting of L. There is a canonical open
embedding X|K| ↪→ X|K′|.

Amalgamation followed by defrosting is the key operation which we use below.
Abusing notation, sometimes one may refer to this operation simply as amalgamation.
However, then the defrosted subset must be specified.

3 Cluster X -varieties related to a group G

3.1 An example: Rational coordinates on PGL2

Observe that one has

H(x) :=
(
x1/2 0

0 x−1/2

)
PGL(2,C)=

(
x 0
0 1

)
.

They are elements of a Cartan subgroup in PGL(2,C).
Consider the map evᾱα : (C×)3 → PGL(2,C) given by
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evᾱα : (x0, x1, x2) �→ H(x0)

(
1 0
1 1

)
H(x1)

(
1 1
0 1

)
H(x2)

= (x0x1x2)
−1/2

(
x0x2(1+ x1) x0

x2 1

)
.

Consider also another map evαᾱ : (C×)3 → PGL(2,C):

evαᾱ : (y0, y1, y2) �→ H(y0)

(
1 1
0 1

)
H(y1)

(
1 0
1 1

)
H(y2)

= (y0y1y2)
−1/2

(
y0y1y2 y0y1
y1y2 1+ y1

)
.

One can see that these maps enjoy the following properties:

1. evᾱ,α(x0, x1, x2) = evα,ᾱ(x0(1+ x−1
1 )−1, x−1

1 , x2(1+ x−1
1 )−1).

2. evα,ᾱ(y0, y1, y2) = evᾱ,α(y0(1+ y1), y
−1
1 , y2(1+ y1)).

3. Both maps are open embeddings.
4. The standard Poisson–Lie bracket on the group PGL(2,C) reads as

{x0, x1} = x0x1; {x2, x1} = x2x1; {x0, x2} = 0;
{y0, y1} = −y0y1; {y2, y1} = −y2y1; {y0, y1} = 0.

Therefore, evᾱα and evαᾱ provide the group variety PGL(2,C) with two rational
coordinate systems. The transition between these coordinates is given by a mutation
and thus the union of the images of evᾱ,α and evα,ᾱ is a cluster variety corresponding
to two equivalent seeds ({0, 1, 2}, {0, 2}, ε) and ({0, 1, 2}, {0, 2}, η), where

ε = −η =
⎛⎝ 0 1 0
−1 0 1
0 −1 0

⎞⎠
(columns correspond to the first index).

One can also consider the maps

evα, evᾱ : (C×)2 → PGL(2,C) and ev∅ : C× → PGL(2,C)

given by

evα : (z0, z1) �→ H(z0)

(
1 1
0 1

)
H(z1) = (z0z1)

−1/2
(
z0z1 z0

0 1

)
,

evᾱ : (w0, w1) �→ H(w0)

(
1 0
1 1

)
H(w1) = (w0w1)

−1/2
(
w0w1 0
w1 1

)
,

ev∅ : (t) �→ t−1/2
(
t 0
0 1

)
.

and satisfying the following properties:
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6. The images of evα , evᾱ , ev∅ and the union of the images of evᾱα and evαᾱ
are pairwise disjoint. The complement to their union in the whole group is of
codimension two. It consists of the antidiagonal matrices.

7. The images of evα , evᾱ , ev∅ are Poisson subvarieties with respect to the standard
Drinfeld–Jimbo Poisson–Lie structure on PGL(2,C). The Poisson bracket is
given by

{z0, z1} = z0z1; {w0, w1} = w0w1.

In the above constructions one can replace C× by Gm, PGL(2,C) by the group
scheme PGL(2), and upgrade all maps to the maps of the corresponding schemes.

Our aim now is a generalization of this picture in two directions. We consider
split semisimple adjoint groups of higher ranks, and construct Poisson varieties which
map to the group respecting the Poisson structure, but may not inject into the group.

Below we will give two alternative definitions of the seed J(D). The first one is
computation-free: we define first the elementary seeds J(α) corresponding to simple
roots α, and then define J(D) as an amalgamated product of the elementary seeds
J(α1), . . . , J(αn), whereD = α1 . . . αn, followed by defrosting of some of the frozen
variables. It is presented in Section 2, and it is the definition which we use proving
the main properties of our varieties in Appendix A. The second definition is given
by defining directly all components of the seed; its most important part is an explicit
formula for the function εij . The second definition is given in Section 3.

3.2 The seed J(D)

Let us assume first that D = α is a simple positive root. Then we set

J (α) = J0(α) := (�− {α}) ∪ {α′} ∪ {α′′},
where α′ and α′′ are certain new elements. There is a decoration map

π : J (α) −→ �,

which sends α′ and α′′ to α, and is the identity map on �− α.
The collection of multipliers {dα} gives rise to a function D on the set�: D(α) :=

dα . We define the multipliers for J(α) as the function D ◦ π on J (α).
Finally, the function ε(α) is defined as follows. Its entry ε(α)βγ is zero unless

one of the indices is decorated by α. Further,

ε(α)α′β = Cαβ

2
, ε(α)α′′β = −Cαβ

2
, ε(α)α′α′′ = −1. (12)

If D = ᾱ is a negative simple root, we have a similar set

J (ᾱ) = J0(ᾱ) := (�− − {ᾱ}) ∪ {ᾱ′} ∪ {ᾱ′′},
a similar decoration π : J (ᾱ) −→ �, and similar multipliers D ◦ π on J (ᾱ). The
cluster function is obtained by reversing the signs, using the obvious identification of
J (ᾱ) and J (α): ε(ᾱ) := −ε(α):
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ε(ᾱ)ᾱ′β̄ = −Cαβ
2
, ε(ᾱ)ᾱ′′β̄s =

Cαβ

2
, ε(ᾱ)ᾱ′ᾱ′′ = 1.

The torus Xα can also be defined as follows. Let Uα be the one-parameter unipo-
tent subgroup corresponding to the root α. Then Xα = H × (Uα−{0}) = HUα−H .

The general case

Observe that the subset of elements decorated by a simple root has one element
unless this root is α when there are two elements. There is a natural linear order on
the subset of elements of J(α) decorated by a given simple positive root γ : it is given
by (α−, α+) in the only nontrivial case when α = γ . So for a given simple positive
root γ there are the minimal and the maximal elements decorated by γ .

Definition 3.1. Let D = α1 . . . αn ∈ W. Then J (D) is obtained by gluing the sets
J (α1), . . . , J (αn) as follows. For every γ ∈ �, and for every i = 1, . . . , n− 1, we
glue the maximal γ -decorated element of J (αi) and the minimal γ -decorated element
of J (αi+1).

The seed J̃(D) is the amalgamated product for this gluing data of the seeds
J(α1), . . . , J(αn).

The seed J̃(D) has frozen vertices only: J̃ (D) = J̃0(D). To define the seed J(D)
we will defrost some of them, making the set J0(D) smaller.

In Definition 3.1 we glue only the elements decorated by the same positive simple
root. Thus the obtained set J (D) has a natural decorationπ : J (D) −→ �, extending
those of the subsets J (αi). Moreover, for every γ ∈ �, the subset of γ -decorated
elements of J (D) has a natural linear order, induced by the ones on J (αi), and the
linear order of the word D.

Definition 3.2. The subset J0(D) is the union, over γ ∈ �, of the extremal (i.e.,
minimal and maximal) elements for the defined above linear order on the γ -decorated
part of J (D).

The seed J(D) is obtained from the seed J̃(D) by reducing J̃0(D) to the sub-
set J0(D).

Observe that εαβ is integral unless both α and β are in J0(D). Thus the integrality
condition for εαβ holds.

3.3 An alternative definition of the seed J(D)

The sets J0(D) and J(D)

Given a positive simple root α ∈ �, denote by nα(D) the number of occurrences of
α and ᾱ in the word D. We set

Jα(D) := {(αi )|α ∈ �, 0 ≤ i ≤ nα}, J α0 (D) := {(α0 )} ∪ {(αnα )}.
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Then J (D) (respectively, J0(D)) is the disjoint union of Jα(D) (respectively, Jα0 (D))
for allα ∈ �. Observe that if a rootα does not enter the wordD thenJα0 (D) = Jα(D)
is a one-element set.

One can picture elements of the set J (D) as associated to the intervals between
walls made by α, ᾱ or the ends of the word D for some root α. If at least one wall is
just the endD, the corresponding element of J (D) belongs to J0(D). We shall denote
these elements by braces connecting the walls with the name of the corresponding
elements in the middle.

Example. Let r = rk G = 3 and � = {α, β, γ }. Take D = αβ̄ᾱᾱβ. Then

nα(D) = 3, nβ(D) = 2, nγ (D) = 0,

J (D) = {(α0 ), (α1 ), (α2 ), (α3 ), (β0 ), (β1 ), (β2 ), (γ0 )},
J0(D) = {(α0 ), (α3 ), (β0 ), (β2 ), (γ0 )}.

In brace notation, the set J (D) can be shown as

(
β
0 )︷ ︸︸ ︷ (

β
1 )︷ ︸︸ ︷ (

β
2 )︷︸︸︷︸︷︷︸

(α0 )

︸ ︷︷ ︸
(α1 )

︸ ︷︷ ︸
(α2 )

︸ ︷︷ ︸
(α3 )

α β̄ ᾱ ᾱ β

︸ ︷︷ ︸
(
γ

0 )

.

A description of ε and d

In order to give an explicit formula for the matrix (ε
(αi )(

β
j )
), we introduce more notation.

Let nα(k) be the number of letters α or ᾱ among the first k letters of the word D.
Let µk be the kth letter of D and let sgn(k) be +1 if µk ∈ � and −1 otherwise. Let
finally |µk| = sgn(µk)µk ∈ �.

Definition 3.3. Let D be a word of W; then

• the multipliers are given by the rule d(αi )(D) = dα;
• the integers ε̂

(αi )(
β
j )

are defined by the formula

∑
(αi )(

β
j )

ε̂
(αi )(

β
j )

∂

∂ log xαi
∧ ∂

∂ log xβj

= 1

2

l(D)∑
k=1

∑
α

sgn(µk)Ĉµ(k)α
∂

∂ log xαnα(k)

∧
⎛⎝ ∂

∂ log x|µk |
n|µk |(k)−1

− ∂

∂ log x|µk |
n|µk |(k)

⎞⎠ .
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Remark. One can check that in the case whenD is reduced, our function εij is related
to the cluster function bij defined in [BFZ3] for the corresponding double Bruhat cell
as follows. Recall that bij is not defined if both i, j are frozen variables. Other than
that, the values of bij turn out to be the same as for εij .

It is easy to prove the following properties of the matrix ε:

1. ε
(αi )(

β
j )

is integral unless both (αi ) and (βj ) are in I0.

2. For a given (αi ) ∈ I the number of (βj ) ∈ I such that ε
(αi )(

β
j )
�= 0 is no more than

twice the number of β ∈ � such that Cαβ �= 0. In particular, this number never
exceeds 8.

3. The value of ε
(αi )(

β
j )

is determined by the patterns of the walls inD corresponding

to (αi ) and (βj ). The list of all possibilities is too large to give explicitly, but we
give just some of them—the patterns to the left and the corresponding values
of ε

(αi )(
β
j )

to the right (stars mean any roots or word ends compatible with the

pattern):

(αi )︷ ︸︸ ︷ (αi+1)︷ ︸︸ ︷
∗ α ∗ 1
(αi )︷ ︸︸ ︷︸ ︷︷ ︸

(
β
j )

∗ α β ∗ Cαβ

(αi )︷ ︸︸ ︷︸ ︷︷ ︸
(
β
j )

α β or

(α0 )︷ ︸︸ ︷︸ ︷︷ ︸
(
β
0 )

α β Cαβ/2.

4. If the word D consists of just one letter α, then ε
(α0 )(

β
0 )
= Cαβ/2, ε

(α1 )(
β
0 )
=

−Cαβ/2. If the word D consists of just one letter ᾱ, then ε
(α0 )(

β
0 )
= −Cαβ/2,

ε
(α1 )(

β
0 )
= Cαβ/2.

Example. For the wordD = αβ̄ᾱᾱβ considered above, one can easily compute that
all nonvanishing elements of ε are given by

ε̂(α0 )(
α
1 )
= −̂ε(α1 )(α2 ) = −̂ε(α2 )(α3 ) = Ĉαα/2,

−̂ε
(
β
0 )(

β
1 )
= ε̂

(
β
1 )(

β
2 )
= Ĉββ/2,

ε̂
(α0 )(

β
0 )
= ε̂

(α3 )(
β
2 )
= Ĉαβ/2,

ε̂(α0 )(
γ

0 )
= −̂ε(α1 )(γ0 )/2 = ε̂(α3 )(γ0 ) = Ĉαγ /2,

−̂ε
(
β
0 )(

γ

0 )
= ε̂

(
β
1 )(

γ

0 )
/2 = −̂ε

(
β
2 )(

γ

0 )
= Ĉβγ /2.

Proposition 3.4. Definitions 3.2 and 3.3 are equivalent.
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Proof. Property 4 of the matrix ε tells us that the two definitions coincide for the
elementary seeds J(α). So it remains to check that the seed J(D) is the amalgamated
product.

3.4 A map to the group

Recall the torus XJ(D) = GJ (D)m and the natural coordinates {xαi } on it. Let us define
the map ev : XJ(D) → G. In order to do this, we are going to construct a sequence of
group elements, each of which is either a constant or depends on just one coordinate
of XJ(D). The product of the elements of the sequence will give the desired map.

Let fα, hα, eα be Chevalley generators of the Lie algebra g ofG. They are defined
up to an action of the Cartan subgroupH ofG. Let {hα} be another basis of the Cartan
subalgebra defined by the property:

[hα, eβ ] = δαβej , [hα, fβ ] = −δαβfβ.

This basis is related to the basis {hα} via the Cartan matrix:
∑
β Cαβh

β = hα .
Recall the lattice X∗(H) of homomorphisms (cocharacters) Gm → H . The

elements hα and hα give rise to cocharactersHα,Hα ∈ X∗(H), called the coroot and
the coweight corresponding to the simple root α:

Hα : Gm → H, dHα(1) = hα, Hα : Gm → H, dHα(1) = hα.
One hasHα(x) = exp(log(x)hα). Let us introduce the group elements Eα = exp eα ,
Fα = exp fα .

Replace the letters in D by the group elements using the rule α → Eα, ᾱ →
Fα . For α ∈ � and for any (αi ) ∈ J (D), insert Hα(xαi ) somewhere between the
corresponding walls. The choice in placing everyH is nonessential since it commutes
with all Es and F s unless they are marked by the same root.

In other words the sequence of group elements is defined by the following re-
quirements:

• The sequence of Es and Fs reproduce the sequence of letters in the word D.
• Any H depends on its own variable xαi .
• There is at least one Eα or Fα between any two Hαs.
• The number of Hαs is equal to the total number of Eαs and Fαs plus one.

Example. The word αβ̄ᾱᾱβ is mapped by ev to

Hα(xα0 )H
β(x

β

0 )E
αHα(xα1 )F

βHβ(x
β

1 )F
αHα(xα2 )F

αEβHα(xα3 )H
β(x

β

2 )H
γ (x

γ

0 ).

3.5 The key properties of the spaces XB

We are going to show that the association of the seed X -torus to the words is com-
patible with natural operations on the words.
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Theorem 3.5. Let A,B be arbitrary words and α, β ∈ �. Then there are the follow-
ing rational maps commuting with the map ev:

1. XJ(AᾱβB) → XJ(AβᾱB) if α �= β.
2. XJ(AαβB) → XJ(AβαB) and XJ(Aᾱβ̄B) → XJ(Aβ̄ᾱB) if Cαβ = 0.
3. XJ(AαβαB) → XJ(AβαβB) and XJ(Aᾱβ̄ᾱB) → XJ(Aβ̄ᾱβ̄B) if Cαβ = −1, Cβα =
−1.

4. XJ(AαβαβB) → XJ(AβαβαB) and XJ(Aᾱβ̄ᾱβ̄B) → XJ(Aβ̄ᾱβ̄ᾱB) if Cαβ = −2,
Cβα = −1.

5. XJ(AαβαβαβB) → XJ(AβαβαβαB) and XJ(Aᾱβ̄ᾱβ̄ᾱβ̄B) → XJ(Aβ̄ᾱβ̄ᾱβ̄ᾱB) if Cαβ =
−3, Cβα = −1.

6. XJ(AααB) → XJ(AαB) and XJ(AᾱᾱB) → XJ(AᾱB).
7. XJ(A) × XJ(B) → XJ(AB).

Maps 1 and 2 are isomorphisms. Maps 3, 4, and 5 are cluster transformations.
(They are composions of 1, 3, and at least 10 mutations, respectively.) Map 6 is a
composition of a cluster transformation and a projection along the coordinate axis.
Map 7 is an amalgamated product. Map ev is a Poisson map. Maps 1–7 are also
Poisson maps.

Remark. It is not true that a mutation of a cluster seed J(D) is always a cluster seed
corresponding to another word of the semigroup. For example, let� = {γ, , η} be
the root system of type A3 with Cηγ = 0. (It is convenient to use the capital letter 
to distinguish the root which plays a special role below). Then µ(γ1 )

J(γ ηγ γ ) =
J( γ η γ ), butµ( 1 )

J(γ ηγ γ ) is a seed which does not correspond to any word.

Remark. There is a famous eight-term relation among the relations in the symmetric
group. Namely, in the notations of the previous remark, we have

γ ηγ γ = γ ηγ γ = γ η ηγ ∼= ηγ γη = η γ η = η γη η
∼= η ηγ η =  η γ η =  ηγ γη ∼= γη ηγ
=  γ η γ = γ γη γ = γ ηγ γ.

It is equivalent to the relation between mutations:

µ( 1 )
µ(γ2 )

µ(γ1 )
µ( 1 )

µ(γ2 )
µ(γ1 )

µ( 1 )
µ(γ2 )

= id .

It is an easy exercise to show that this relation is a corollary of properties 5 and 6 of
mutations. Thus the eight-term relation can be reduced to pentagons in the cluster
setting.

Proof. The proof of the last two statements follows immediately from the rest of the
theorem. To prove the rest of the theorem, we define map 7 as the amalgamation map
between the corresponding X -varieties. Then it is sufficient to construct the other
maps for the shortest word where the maps are defined, and then extend them using
the multiplicativity property 7 to the general case. The claim that the evaluation map
is Poisson will be proved in Section 3.8.
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It is useful to recall an explicit description of the amalgamation map XJ(A) ×
XJ(B) → XJ(AB). Let {xαi }, {yαi } and {zαi } be the coordinates on XJ(A), XJ(B) and
XJ(AB), respectively. Then the map is given by the formula:

zαi =

⎧⎪⎨⎪⎩
xαi if i < nα(A),

xαnα(A)y
α
0 if i = nα(A),

yαi+nα(A) if i > nα(A).

The crucial point is that, just by the construction, this map is compatible with the
evaluation map ev to the group.

Maps 1–6 and their properties are deduced from Proposition 3.6 below. Some
formulas of this proposition are equivalent to results available in the literature [L1, BZ,
FZ], but are stated there in a different form. Our goal is to make apparent their cluster
nature, i.e., to show that they transform as the X -coordinates for cluster varieties.
In the non-simply-laced cases these transformations are presented as compositions
of several cluster transformations. The very existence of such presentations is a key
new result.

Proposition 3.6. There are the following identities between the generators Eα,
Hα(x), Eα:

αα→ α. EαHα(x)Eα = Hα(1+ x)EαHα(1+ x−1)−1.

αβ → βα. If Cαβ = 0. Then EαEβ = EβEα.
αβα→ βαβ. If Cαβ = −1, then EαHα(x)EβEα = Hα(1 + x)Hβ(1 +

x−1)−1EβHβ(x)−1EαEβHα(1+ x−1)−1Hβ(1+ x).
αβαβ → βαβα. If Cαβ = −2, Cβα = −1, then EαEβHα(x)Hβ(y)EαEβ

= Hβ(a′)Hα(b′)EβEαHβ(y′)Hα(x′)EβEαHβ(q ′)Hα(p′),
where a′, b′, x′, y′, p′, q ′ are rational functions of x and y
given by (17).

αβαβαβ → βαβαβα. If Cαβ = −3, Cβα = −1, then

EαHα(x)EβHβ(y)EαHα(z)EβHβ(w)EαEβ

= Hβ(a′)Hα(b′)EβHβ(y′)EαHα(x′)EβHβ(w′)EαHα(z′)EβHβ(q ′)EαHα(p′),
(13)

where a′, b′, x′, y′, z′, w′, p′, q ′ are rational functions of x,
y, z, w given by (24).

Further, one has

ᾱα→ αᾱ.

FαHα(x)Eα =
⎛⎝∏
β �=α

Hβ(1+ x)−Cαβ
⎞⎠Hα(1+x−1)−1EαHα(x−1)FαHα(1+x−1)−1.
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ᾱβ → βᾱ. FαEβ = EβFα if α �= β.
Applying the antiautomorphism of g which acts as the identity on the Cartan

subalgebra, and interchanges Fα and Eα , we obtain similar formulas for ᾱᾱ→ ᾱ,
ᾱβ̄ → β̄ᾱ, ᾱβ̄ᾱ→ β̄ᾱβ̄ and ᾱβ̄ᾱβ̄ → β̄ᾱβ̄ᾱ. For example, if Cαβ = Cβα =
−1, then

FαHα(x)FβFα

= Hα(1+ x−1)−1Hβ(1+ x)FβHα(x)−1FαFβHα(1+ x)Hβ(1+ x−1)−1.

Proposition 3.6 implies Theorem 3.5 minus part 5 and the “map ev is Poisson’’
part

Map 1 is a corollary of the obvious property ᾱβ → βᾱ. Map 2 follows fromαβ → βα

and ᾱβ̄ → β̄ᾱ. Map 6 follows from αα→ α and ᾱᾱ→ ᾱ. Each of these maps is
obviously a composition of a mutation µ(α

nα(A)+1)
, or its ᾱ version, and the projec-

tion along the corresponding coordinate. The maps 3 follow from αβα→ βαβ and

ᾱβ̄ᾱ→ β̄ᾱβ̄ and are given by the mutations µ(α
nα(A)+1)

, or its ᾱ version. Map 4 fol-

lows from αβαβ → βαβα and ᾱβ̄ᾱβ̄ → β̄ᾱβ̄ᾱ and can be easily shown to be given
by composition of three mutations: µ(α

nα(A)+1)
, µ

(
β

nβ (A)+1
)

and µ(α
nα(A)+1)

, or their bar

counterparts. A conceptual proof explains this; see Section 3.7 below. However, it is
not at all clear from the very complicated fromulas (24) why map 5 in Theorem 3.5
is a composition of mutations.

Proof of Proposition 3.6. This proof will occupy the end of this subsection and the
next two subsections and will be combined with the proof of part 5 of Theorem 3.5,
as well as a more conceptual proof of part 4.

Recall that there is a transposition antiautomorphism which interchanges Eα and
Fα and does not change Hα . Thus the formulas ᾱᾱ→ ᾱ, ᾱβ̄ → β̄ᾱ, ᾱβ̄ᾱ→ β̄ᾱβ̄,

and ᾱβ̄ᾱβ̄ → ᾱβ̄ᾱβ̄ follow from the respective formulas for positive roots.
Let us introduce a more traditional generator Hα(x) = exp(log(x)hα).

• αα→ α. It is easy to show using computations with 2× 2 matrices that

EαHα(t)Eα = Hα(1+ t2)1/2EαHα(1+ t−2)−1/2.

Substituting Hα(t) = ∏
β H

β(t)Cαβ and taking into account that Eα and Hβ

commute when β �= α, Cαα = 2, and making the substitution x = t2 one gets
the identity αα→ α.

• ᾱβ → βᾱ. The proof is similar to the previous one. It is based on the easily
verifiable identity for 2× 2 matrices

FαHα(t)Eα = Hα(1+ t−2)−1/2EαHα(t)−1FαHα(1+ t−2)−1/2.
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• αβα→ βαβ. This identity can be easily derived from the well-known identity,
which is sufficient to check for SL3:

eaeα ebeβ eceα = e bc
a+c eβ e(a+c)eα e

ab
a+c eβ .

Taking into account that

Hα(a)EαHα(a)−1 = eaeα (14)

for any α and making the substitution a/c→ x, one obtains the desired identity.

3.6 Cluster folding

We start by recalling the notion of the folding of root systems. Let �′ and � be two
sets of simple roots corresponding to the root systems with the Cartan matrices C′
and C, respectively. A surjective map π : �′ → � is called folding if it satisfies the
following properties:

1. Cα′β ′ = 0 if π(α′) = π(β ′), and α′ �= β ′.
2. Cα,β =∑α′∈π−1(α) Cα′β ′ if π(β ′) = β.

A folding induces an embedding (in the inverse direction) of the corresponding
Lie algebras denoted by π∗ and given by

π∗(hα) =
∑

α′∈π−1(α)

h′α, π∗(eα) =
∑

α′∈π−1(α)

e′α, π∗(e−α) =
∑

α′∈π−1(α)

e′−α,

where {h′
α′ , e

′
α′ , e

′
−α′ } are the standard Chevalley generators of the Lie algebra g′

corresponding to the Cartan matrix C′.
A folding also induces maps between the corresponding Weyl groups, braid semi-

groups and braid groups, and Hecke semigroups, given by

π∗(α) =
∏

α′∈π−1(α)

α′, π∗(ᾱ) =
∏

α′∈π−1(α)

ᾱ′.

(The order of the product does not matter since according to property 1 the factors
commute.)

The main feature of the folding is that it gives embeddings of non-simply-laced
Lie algebras and groups to the simply-laced ones. Namely, Bn is a folding ofDn, Cn
is a folding of A2n−1, F4 is a folding of E6 andG2 is a folding of both B3 andD4. In
these cases, the folding is provided by the action of a subgroup of the automorphism
group of the Dynkin diagram: one has �′ := �/, and the folding is the quotient
map �→ �/. On the level of Dynkin diagrams a folding corresponds precisely
to the folding of the corresponding graph, thus explaining the origin of the name.

Following [FG2], we define a folding of a cluster seed .

Definition 3.7. A folding π of a cluster seed J′ = (J ′, J ′0, ε′, d ′) to a cluster seed
J = (J, J0, ε, d) is a surjective map π : J ′ → J satisfying the following conditions:
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0. π(J ′0) = J ′0, π(J ′ − J ′0) = J − J0.
1. ε′

i′j ′ = 0 if π(i′) = π(j ′).
2. εij =∑i′∈π−1i ε

′
i′j ′ , and all summands in this sum have the same signs or vanish.

A folding induces a map of the corresponding cluster tori π∗ : XJ → XJ′ by the
formula (π∗)∗xi′ = xπ(i′). The main feature of this map is that it commutes with
mutations in the following sense. To formulate it we need the following simple but
basic fact.

Lemma 3.8. If εkk′ = 0, then mutations in the directions k and k′ commute.

Let µk : J → I be a mutation, let π : J′ → J be a folding, and let I′ :=
(
∏
k′∈π−1(k) µk′)J

′. We define a map πk : I′ → I as the composition

πk = µkπ
⎛⎝ ∏
k′∈π−1(k)

µk′

⎞⎠−1

.

The last factor in this formula is well defined since the mutations µk′ commute
thanks to Lemma 3.8 and the condition 1 of Definition 3.7. The map πk is
not always a folding (the condition 2 may not be satisfied), but if it is then, of
course, µkπ = πk

∏
k′∈π−1k µk′ ; furthermore, on the level of X -tori we have

π∗µk =∏k′∈π−1k µk′π
∗.

We would like to note that the folding map is not a Poisson map. However, it
sends symplectic leaves to symplectic leaves, and, on being restricted to a symplectic
leaf, multiplies the symplectic structure there by a constant.

The two foldings, of the Cartan matrices and of the cluster seeds, are closely
related. Namely, let π : �′ → � be a folding of the Cartan matrices. Denote by W
(respectively, W′) the free seimgroup generated by � and −� (respectively, by �′
and−�′). LetD ∈ W, and letD′ = π∗(D) be the image ofD in the semigroup W′.
The proof of the following proposition is rather straightforward and is thus left to the
reader.

Proposition 3.9. In the above notation, there is a natural map π : J(D′) → J(D),
which is a folding of cluster seeds. Moreover, the map of the corresponding seed
X -tori commutes with the evaluation map ev to the respective Lie groups.

3.7 A proof of parts 4 and 5 of Theorem 3.5

Let us first prove the formula αβαβ → βαβα. We need the folding map of the
simple roots �′ of the Lie group A3 to the simple roots � of the Lie group B2. Let
�′ = {γ, , η}, � = {α, β}, π(γ ) = π(η) = α, π( ) = β,⎛⎝C′γ γ C′γ C′γ ηC′ γ C′  C′ η

C′ηγ C′η C′ηη

⎞⎠ =
⎛⎝ 2 −1 0
−1 2 −1

0 −1 2

⎞⎠ , (
Cαα Cαβ
Cβα Cββ

)
=
(

2 −2
−1 2

)
.
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There is the following sequence of relations in the braid group of type A3:

π∗(αβαβ) = γ η γη ∼= ηγ γη = η γ η = η γη η ∼= η ηγ η
=  η γ η =  ηγ γη ∼= γη γη = π∗(βαβα),

(15)

which just shows that π∗ is a semigroup homomorphism. Here
∼= stands for the

elementary transformations provided by the relation γ η = ηγ .
Hence we have

π∗(EαEβHα(x)Hβ(y)EαEβ)

= EγEηE Hγ (x)Hη(x)H (y)EγEηE 

= EηEγE Hγ (x)Hη(x)H (y)EγEηE 

= Hγ (1+ x)H (1+ x−1)−1EηE H (x−1)EγE H (z+ xz)
·Hη(y)EηE Hγ (1+ x−1)−1

= · · · = Hη(a′)Hγ (a′)H (b′)E EγEηHγ (x′)Hη(x′)
·H (y′)E EγEηHη(p′)Hγ (p′)H (q ′)

= π∗(Hβ(b′)Hα(a′)EβEαHβ(y′)Hα(x′)
· EβEαHβ(q ′)Hα(p′)),

(16)

where the ellipsis · · · means repeated application of the formula αβα→ βαβ corre-

sponding to the sequence of mutations µγ1µ
η
1µ
 
1 µ

γ

1 , and

a′ = 1+ x + 2xy + xy2

1+ x + xy , b′ = xy2

1+ x + 2xy + xy2
,

p′ = 1+ x + xy, q ′ = x(1+ x + 2xy + x2y)

(1+ x + xy)2 , (17)

x′ = y

1+ x + 2xy + xy2
, y′ = (1+ x + xy)2

xy2
.

This proves the αβαβ → βαβα claim of Proposition 3.6. Further, from this we easily
get, by adding pairs of elements of the Cartan group on both sides of (16), a birational
transformation

!B2 : Q(a, b, p, q, x, y) −→ Q(a′′, b′′, p′′, q ′′, x′′, y′′),

which reduces to (17) when a = b = p = q = 1, and is determined by the formula

π∗(Hα(a)Hβ(b)EαEβHα(x)Hβ(y)EαEβHα(p)Hβ(q))

= π∗(Hβ(b′′)Hα(a′′)EβEαHβ(y′′)Hα(x′′)EβEαHβ(q ′′)Hα(p′′)).
(18)

To prove that map 4 from Theorem 3.5 is a cluster transformation of the original
X -torus, we need to show that there exists a sequence of mutations of the cluster seed
J(αβαβ) whose product is equal to the transformation !B2 .
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Consider a cluster transformationLB : Xαβαβ −→ Xβαβα given as a composition
of three mutations:

LB := µ(α1 )µ(β1 )µ(α1 ).
Let us show that the map !B2 is equal to the cluster transformation LB .

The four nontrivial transformations in (15) give rise to a cluster transformation

LA : Xγ η γη −→ X γη γη, LA = µ(γ1 )µ(η1)µ( 1 )µ(γ1 )
given by composition of the corresponding sequence of four mutations. There is a
diagram

Xαβαβ ↪→ Xγ η γη ,
LB↓ ↓LA,

Xβαβα ↪→ X γη γη,
(19)

where the horizontal arrows are the folding embeddings.

Lemma 3.10. The diagram (19) is commutative.

Proof. Consider the following cluster transformation, which is the image under the
folding embedding of LB :

L̂B : Xγ η γη −→ Xδγ ηδγ η, L̂B := µ(η1)µ(γ1 )µ( 1 )µ(η1)µ(γ1 ). (20)

It evidently makes the following diagram commutative:

Xαβαβ ↪→ Xγ η γη ,
LB↓ ↓ L̂B ,

Xβαβα ↪→ X γη γη.
(21)

It remains to show that the cluster transformations L̂B and LA are equal. This can be
done by computing the effect of the action of the latter sequence of mutations on the
X -torus, and checking that it coincides with the transformation!B2 . Another way is
to use explicitly the pentagon relations. For the connoisseurs of the cluster varieties
we give another proof just by drawning pictures. The seed J(γ η γη ) is of the finite
type A3; it has only a finite number of different seeds parametrized by triangulations
of a hexagon. (See Appendix B, where we discuss this model and the isomorphism
of the corresponding cluster variety with the configuration space of 6 points in P1 and
of 3 flags in PGL4.) In this framework mutations correspond to removing an edge
of the triangulation and replacing it by another diagonal of the arising quadrilateral.
Thus the first sequence of mutations corresponds to the sequence of triangualtions
shown in Figure 1, while the second one is shown in Figure 2.

The lemma and hence part 4 of Theorem 3.5 are proved.
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Fig. 1. The sequence of 4 mutations corresponding to LA.

Fig. 2. The sequence of 5 mutations corresponding to L̂B .

Now let us proceed to the proof of the formula αβαβαβ → βαβαβα. Consider
the folding map π of the set of simple roots �′ of the Lie algebra D4 to the set
of simple roots � of the Lie algebra G2. Let �′ = {γ, η, ρ, }, � = {α, β},
π(γ ) = π(η) = π(ρ) = α, π( ) = β.⎛⎜⎜⎝
C′γ γ C′γ η C′γρ C′γ 
C′ηγ C′ηη C′ηρ C′η 
C′ργ C′ρη C′ρρ C′ρ 
C′ γ C′ η C′ ρ C′  

⎞⎟⎟⎠ =

⎛⎜⎜⎝
2 0 0 −1
0 2 0 −1
0 0 2 −1

−1 −1 −1 2

⎞⎟⎟⎠ , (
Cαα Cαβ
Cβα Cββ

)
=
(

2 −3
−1 2

)
.

There is the following sequence of relations in the braid group of type D4:

π∗(αβαβαβ)

= γ ηρ γηρ γηρ ∼= γ ηρ ρηγ γηρ = γ η ρ ηγ γηρ 
= γ η ρ η γ ηρ = γ η ρη ηγ ηρ ∼= γ η ηρ γη ηρ 
= γ η ρ γη ηρ = γ η ρ γ η ρ = γ η ρ γ ηρ ρ
= γ ηρ ργ ηρ ρ ∼= γ ηρ γρ ρη ρ = γ ηρ γ ρ η ρ
= γ ηργ γρ η ρ ∼= γ γηρ ργ η ρ =  γ ηρ ργ η ρ
=  γ η ρ γ η ρ =  γη ηρ γ η ρ =  γη ηρ γη ηρ
∼=  γη ρη ηγ ηρ =  γη ρ η γ ηρ =  γη ρ ηγ γηρ
=  γηρ ρηγ γηρ ∼=  γηρ γηρ γηρ = π∗(βαβαβα). (22)

It shows that π∗ is a homomorphism of semigroups. Here
∼= stands for the equalities

which follow from the commutativity relations γ η = ηγ , γρ = ργ and ηρ = ρη.
A computation similar to (16) is too long to write down here; it was done using a

computer. The result is

π∗(EαHα(x)EβHβ(y)EαHα(z)EβHβ(w)EαEβ)

= π∗(Hβ(a′)Hα(b′)EβHβ(y′)EαHα(x′)EβHβ(w′)EαHα(z′)
· EβHβ(q ′)EαHα(p′)).

(23)

where
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a′ = xR2

R3
, b′ = R3,

p′ = xyz2w

R1
, q ′ = R3

1

R4
,

x′ = zR1R3

R4
, y′ = yR4

R3
2

,

z′ = R4

xyz2wR2
, w′ = wR3

2

R3
3

(24)

and

R1 = xyz2w + 1+ x + yx + 2yxz+ yxz2,

R2 = y2x2z3w + y2x2z3 + 3y2x2z2 + 3yx2z+ 2yxz+ 3y2x2z+ 1+ 2x + 2yx

+ x2 + 2yx2 + y2x2,

R3 = 3x + 3x2 + 3yx2 + 3yx2z+ 1+ y2x3z3w + y2x3z3 + 3y2x3z2 + 3yx3z

+ 3y2x3z+ x3 + 2yx3 + y2x3,

R4 = 1+ 3x + 3y2x3z4 + 12y2x3z+ 6yx3z+ 18y2x3z2 + 12y2x3z3 + x3

+ 2y2x3z3w + 3y2x2z4w + 3y2x2z3w + 3yx + 3y2x3z4w + 6yxz

+ 3x2 + 6yx2 + 12yx2z+ 3yxz2 + 3y2x3 + 3yx3 + 3yx3z2

+ 2y3x3z6w + 6y3x3z5w + 6y3x3z4w + y3x3 + 20y3x3z3 + 6y3x3z5

+ 6y3x3z+ 15y3x3z4 + y3x3z6 + 15y3x3z2 + 2y3x3z3w + y3x3z6w2

+ 6yx2z2 + 12y2x2z+ 18y2x2z2 + 12y2x2z3 + 3y2x2z4 + 3y2x2.

This proves the αβαβαβ → βαβαβα claim of Proposition 3.6.
Just as in the B2 case, to prove that map 5 from Theorem 3.5 is a cluster trans-

formation, we need to show that there exists a cluster transformation of the seed
J(αβαβαβ) which, being transformed by the folding map to theD4 setup, equals the
cluster transformation encoded in the sequence (22), and given explicitly as the left-
hand side in the formula (25) below. To do this it is sufficient to show the following
equality between two sequences of mutations:

µ(ρ1 )
µ(ρ2 )

µ( 1 )
µ(η2)

µ(η1)
µ(ρ1 )

µ(γ1 )
µ(γ2 )

µ(ρ2 )
µ(ρ1 )

µ( 2 )
µ(η2)

µ(η1)
µ( 1 )

µ(γ2 )
µ(ρ1 )

= µ( 2 )µ(ρ1 )µ(η1)µ(γ1 )µ( 1 )µ( 2 )µ(ρ2 )µ(η2)µ(γ2 )µ( 2 )µ(ρ1 )µ(η1)µ(γ1 )µ(ρ2 )µ(η2)µ(γ2 )µ( 1 )µ( 2 ).
(25)

Here the second composition is the image under the folding map of the sequence of
mutations µ

(
β
2 )
µ(α1 )

µ
(
β
1 )
µ
(
β
2 )
µ(α2 )

µ
(
β
2 )
µ(α1 )

µ(α2 )
µ
(
β
1 )
µ
(
β
2 )

.

This was done by an explicit calculation of the action of the latter sequences
of mutations on the X -coordinates, performed by a computer, which showed that it
coincides with the transformation given by (23)–(24). It would be interesting to find
a proof which relates one of the sequences of mutations in the Lie group of type D4
to the other by using the pentagon relations.
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3.8 The evaluation map ev is a Poisson map

To prove this claim, it is sufficient to prove it in the simplest case.

Proposition 3.11. Let α be a simple root. Then the evaluation map ev : XJ(α) ↪→ G

is a Poisson immersion. So its image is a Poisson subvariety of G, and the induced
Poisson structure on XJ(α) coincides with the one (8) for the matrix ε given by (12).

We deduce the general claim from the proposition by induction, using the follow-
ing four facts: the multiplication mapG×G→ G is a Poisson map for the standard
Poisson structure on G, the evaluation map commutes with the multiplication, i.e.,
the diagram (4) is commutative, and the left vertical map in that diagram is a Pois-
son map, and a dominant map, i.e., its image is dense, and thus the induced map of
functions is injective.

Proof of Proposition 3.11. The evaluation map is obviously an immersion in our case.
Let us recall the standard Poisson structure on G. Let R ⊂ h∗ be the set of roots of
the Lie algebra g with Cartan subalgebra h, and let R+ ⊂ R be the subset of positive
roots. The root decomposition of g reads as g = ⊕β∈R gβ ⊕ h. Let {eα ∈ gα|α ∈ R}
be a set of root vectors normalized so that [eα, [e−α, eα]] = 2eα . The vectors e±α ,
α ∈ R+, are defined by this condition uniquely up to rescaling e±α → λ±1

α e±α . Let
r ∈ g⊗ g be the standard r-matrix:

r =
∑
α∈R+

dαeα ∧ e−α =
∑
α∈R+

dα(eα ⊗ e−α − e−α ⊗ eα), (26)

where as above dα = (α,α)
2 . Observe that r does not depend on the choice of the

vectors eα satisfying the above normalization. The Poisson bracket on G is given
by a bivector field P = rL − rR , where rL (respectively, rR) is the right-invariant
(respectively, left-invariant) bivector field on G which equals r at the identity of G.
If we identify the tangent space toG at a point g ∈ G with g using the right shift, the
value P(g) of the bivector field P at g is P(g) = r − Adg r . We apply this formula
in the special case when

g =
⎛⎝∏
β∈�

Hβ(x
β

0 )

⎞⎠EαHα(xα1 ). (27)

To make the computation we shall use the following formulas:

AdHα(x) r = r, AdHα(x) eα ∧ hα = xeα ∧ hα, AdEα r = r + dαeα ∧ hα.
(28)

The first two are obvious; for a proof of the third one see below. Using them, one
easily derives

P(g) = r − Adg r = dαxα0 hα ∧ eα. (29)

So to find the Poisson bracket induced on Xα we need to compute the right-invariant
vector fields on Xα corresponding to hα and eα . Obviously, hα gives rise to a vector
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field
∑
β Cαβx

β

0
∂

∂x
β
0

. The following computaiton, where g is from (27), shows that

eα gives rise to ∂
∂xα0

− xα1
xα0

∂
∂xα1

:

eαg = d

dt
exp teαg|t=0 = d

dt
Hα(t)EαHα(t−1)g|t=0

= d

dt

⎛⎝ ∏
β∈�−{α}

Hβ(x
β

0 )

⎞⎠Hα(t)EαHα(t−1)Hα(xα0 )E
αHα(xα1 )|t=0

=
⎛⎝ ∏
β∈�−{α}

Hβ(x
β

0 )

⎞⎠ d

dt
Hα(xα0 + t)EαHα(xα1 − txα1 /xα0 )|t=0

=
(
∂

∂xα0
− x

α
1

xα0

∂

∂xα1

)
g.

Here we have used the formula αα→ α from Proposition 3.6.
Substituting these expressions for the vector fields in (29), we get

P = −
∑
β

dαCαβx
β

0 x
α
0

(
∂

∂xα0
− x

α
1

xα0

∂

∂xα1

)
∧ ∂

∂x
β

0

= −Ĉαβxα0 xβ0
∂

∂xα0
∧ ∂

∂x
β

0

+ Ĉαβxα1 xβ0
∂

∂xα1
∧ ∂

∂x
β

0

,

(30)

which coincides with the expression given by (8) and (12).

Proof of the third formula in (28). Let R(α) ⊂ R be the root system for the Dynkin
diagram obtained from the initial one by deleting the vertex corresponding to the
simple positive root α. Let R+(α) be the set of its positive roots. Let p be the
projection of h∗ onto its quotient by the subspace spanned by α. Then p(R) = R(α).
So we can rewrite the root decomposition as

g = ⊕β∈R(α)(⊕γ∈p−1(β)gγ )⊕ h(α)⊕ iα(sl2), (31)

where iα(sl2) is the sl(2)-subalgebra spanned by eα, e−α , hα = [eα, e−α], and h(α) ⊂
h is the kernel of α. Observe that the summands are iα(sl2)-invariant.

Let us consider the quadratic Casimir:

t =
∑
β∈R

dβeβ ⊗ e−β + 1

2

∑
β∈�

dβhβ ⊗ hβ ∈ g⊗ g.

It can be rewritten as
t = t0 +

∑
β∈R(α)

tβ, (32)

where
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tβ =
∑

γ∈p−1(β)

dγ eγ ⊗ e−γ , t0 = dα(eα⊗ e−α + e−α⊗ eα)+ 1

2

∑
β∈�

dβhβ ⊗hβ.

Every term of the expression (32) is iα(sl2)-invariant. The r-matrix (26) is decom-
posed in the same way:

r = r0 +
∑

β∈R+(α)
tβ −

∑
β∈R−(α)

tβ,

where tβ are as above and r0 = dαeα∧e−α.All the terms but the first one r0 are iα(sl2)-
invariant and thus AdEα (r) = r − r0 +AdEα (r0) = r − r0 + exp(adeα )(eα ∧ e−α) =
r + dαeα ∧ hα . We proved the third formula in (28), and hence Proposition 3.11. As
was explained above, this implies that ev is a Poisson map in general.

Therefore, we have completed the proof of Theorem 3.5.

3.9 Duality conjectures and canonical bases

Let w0 be the longest element of the Weyl group WG of G. Let XG,w0 be the
corresponding cluster X -variety. Recall that, given a seed I, we defined in [FG2,
Section 2] a positive space A|I| assigned to it. Let GL be the Langlands dual group
for G. Applying this construction to the seed corresponding to the element w0 in
GL, we arrive at a positive space AGL,w0

. Recall that for any semifield F and a
positive space X there is a set X (F) of F-points of X (loc. cit.). Recall the tropical
semifield Zt : it is the set Z with the following semifield operations: the multiplication
and division are given by the usual addition and subtraction in Z, and the semifield
addition is given by taking the maximum. Let AGL,w0

(Zt ) be the set of Zt -points of
the positive space AGL,w0

.
Then, according to the duality conjecture from [FG2, Section 4], there should exist

a basis in the algebra Z[XG,w0 ] of regular functions on the variety XG,w0 , parametrised
by the set AGL,w0

(Zt ). Let us explain how it should be related to the (dual) canonical
basis of Lusztig [L2].

The dual canonical basis is a basis of regular functions on the Borel subgroup B
ofG. Since XG,w0 is birationally equivalent to B, the regular functions on the former
are rational, but not necessarily regular, functions on B. Let us say that an element
of our conjectural basis in Z[XG,w0 ] is regular if it provides a regular function on B.

Conjecture 3.12. The regular elements of the conjectural basis in Z[XG,w0 ] form a
basis of the space of regular functions on B. Moreover, it coincides with Lusztig’s
dual canonical basis on B.

Let us try to determine when a rational function F on XG,w0 is regular on B.
Observe that B = HU , whereU is the maximal unipotent in B. Clearly, F is regular
on H . So it remains to determine when it is regular on U .

Pick a reduced decomposition of w0. Let (ti1 , . . . , tiN ), where N = dimU =
l(w0), be the corresponding Lusztig coordinates on B [L1], and (xi1 , . . . , xiN+r ) the
corresponding cluster X -coordinates on XG,w0 . Choose coordinates (h1, . . . , hr )
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on H . Evidently the t-coordinates are related to the (x, h)-coordinates by mono-
mial transformations, and vice versa. In particular, any F ∈ Z[XG,w0 ] is a Laurent
polynomial in (ti1 , . . . , tiN ).

Lemma 3.13. An F ∈ Z[XG,w0 ] is regular on B if and only if for any reduced
decomposition ofw0 it is a polynomial in the corresponding coordinates (ti1 , . . . , tiN ).

Proof. The “only if’’ part is clear. Let us check the opposite. The subvarieties
ev(XG,w) in G, where w ∈ WG, are of codimension l(w0) − l(w), and it follows
from the Bruhat decomposition that the complement to their union is of codimension
≥ 2. Any irreducible component of divisors ev(XG,w) is given by the equation tik = 0
for a certain reduced decomposition of w0 and certain k. The lemma follows.

3.10 Examples for PGLm

Below we show how to visualize, in the case of PGLm, the combinatorics of the
cluster X -coordinates by a wiring diagram. The wiring diagram language is well
known [BFZ96]. Our goal is to show how it works for the X -coordinates.

3.10.1

TheX -coordinates are assigned to the connected components of the complement to the
wiring diagram, except the bottom and top components. The frozen X -coordinates
are assigned to the very left and right domains, i.e., to the domains which are not
completely bounded by wires. The word itself is encoded by the wiring diagram as
follows: we scan the diagram from the left to the right, and assign a generator for
each vertex of the diagram: the generator σi is assigned to a vertex having i−1 wires
above it. See Figure 3, which illustrates the situation for the word σ3σ1σ2σ1σ3σ2
for PGL4.
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2

3

4

.

.

x

x

x x

x

x x

x

x

1

2

3

4

6

5
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9

8

Fig. 3. The wiring diagram and X -coordinates for the word σ3σ1σ2σ1σ3σ2.

The corresponding parametrization of the Borel subgroup of upper triangular
4× 4 matrices is given by the product
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H 3(x3)H
1(x1)E3E1H 2(x2)H

1(x4)H
3(x5)E2E1H 2(x6)E3H 1(x7)E2H 2(x8)H

3(x9).

(33)
Here Ei is the elementary unipotent matrix corresponding to the ith simple positive
root: it has 1s on the diagonal, and the only nonzero nondiagonal element is 1 at
the entry (i, i + 1). Further, Hj(t) = diag(t, . . . , t︸ ︷︷ ︸

j

, 1, . . . , 1) is the diagonal matrix

corresponding to the j th simple coroot. The frozen variables are x1, x2, x3, x7, x8, x9.
To record the expression (33), we scan the wiring diagram from the left to the right.
The intersection points of wires provide the elementary matrices Ei , while the domains
contributes the Cartan elements Hj(x). Observe that the order of factors in (33) is
by no means uniquely determined: the Cartan elements commute, and some of them
commute with some Es. The wiring diagram, considered modulo isotopy, encodes
the element (33) in a more adequate way.

3.10.2

The Poisson structure tensor is encoded by the wiring diagram as follows. Take a
(connected) domain of the wiring diagram corresponding to a nonfrozen coordinate
x0. It can be rather complicated, sharing boundary with many other domains; see
Figure 4. However, it has two distinguished vertices, the very left and right ones,
shown by circles. There are at most six outside domains sharing one of these two
vertices. Let xj be an X -coordinate for the given wiring diagram. The Poisson
bracket {x0, xj } = ε0j x0xj is nonzero if and only if xj is assigned to one of those
domains. One has ε0j = ±1, and the sign is shown by arrows on the picture: ε0j = 1
if and only if the arrow goes from x0 to xj . The Posson bracket between two frozen
variables is obtained similarly, but the coefficient is divided by 2.

Fig. 4. Reading the Poisson tensor from a wiring diagram.

3.10.3

Yet another example, corresponding to a “standard’’ reduced decomposition of w0
for PGLm, is given on the left-hand side of Figure 5. The nonfrozen coordinates,
shown by black points, give ries to coordinates on H\B/H . Observe that there is a
canonical birational isomorphism between H\B/H and the configuration space of
triples of flags Conf 3(B).

Using it, one can show that the nonfrozen coordinates in this case are identified
with the canonical coordinates on the configuration space of triples of flags for PGLm
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Fig. 5. The X -coordinates for a standard reduced decomposition of w0 for PGL4.

introduced in [FG1, Section 9]. The right-hand side of Figure 5 shows the Poisson
tensor. Its coefficients between the frozen coordinates are shown by dotted arrows.

4 Cluster X -variety structure of partial flag varieties

LetP be a parabolic subgroup ofG, andP = MPUP its Levi decomposition. SoG/P
is a partial flag variety. LetwG0 (respectively,wM0 ) be the longest element of the Weyl
group ofG (respectively,MP ). Write wG0 = wM0 wU0 . Take a reduced decomposition
w̃U0 of wU0 . It gives rise to a coordinate system on G/P as follows. Take the seed
corresponding to w̃U0 and the corresponding seed X -torus Xw̃U0 . The frozen part of
the torus Xw̃U0 is a product HL × HR of two Cartan subgroups, called the left (HL)
and right (HR) frozen Cartan subgroups. The canonical projection Xw̃U0 → G/P

provides a regular open embedding HL\Xw̃U0 ↪→ U
opp
P ↪→ G/P , where Uopp

P is the
subgroup opposite to the unipotent radical UP . It is the coordinate system on G/P
corresponding to w̃U0 . It follows from Theorem 3.5 that the collection of coordinate
systems onG/P corresponding to different reduced decompositions of wU0 provides
a set of cluster X -coordinate systems.

Observe thatP is a Poisson subgroup ofG, soG/P has a natural Poisson structure.
It follows from Theorem 3.5 that it coincides with the one given by the cluster X -
variety structure on G/P .

Example. For the Grassmannian Grk(n) of k-planes in an n-dimensional vector space
the above construction provides a canonical coordinate system. Indeed, there is only
one reduced decomposition of wU0 for the Grassmannian. See Figure 6, where the
case of Gr3(6) is illustrated. The wiring diagram for the Grassmannian is on the right
of the dotted vertical line. The frozen variables are shown by circles. The oriented
graph providing the Poisson structure tensor is on the right. It is calculated using the
recipe from Section 3.10. It coincides with the one defined in [GSV1].
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Fig. 6. The cluster X -variety structure of Gr3(6).

Appendix A: The braid group of type G2 acts on triples of flags of
type G2

In this section we study the cluster X -variety corresponding to the moduli space
Conf 3(BG2) of configurations of triples of flags of type G2. The combinatorial
structure of a cluster X -variety is reflected in the topology of the modular orbifold ,
defined in [FG2, Section 2]. Below we recall its definition. Then we determine the
modular orbifold for the moduli space Conf 3(BG2), and compute its fundamental
group, which turns out to be the braid group of type G2.

A.1 The modular orbifold of a cluster X -variety

It is constructed in three steps:

1. We assign to a seed I = (I, I0, ε, d) a simplex SI equipped with a bijection
of the set of its codimension one faces with I . It induces a bijection between
the set of its vertices and I : a vertex is labeled by the same element as the
opposite codimension one face. Recall that an element k ∈ I − I0 gives rise
to a seed mutation I → µk(I). We glue the simplices SI and Sµk(I) along their
codimension one faces labeled by k, matching the vertices labeled by the same
elements. We continue this process by making all possible mutations and gluing
the corresponding simplices. In this way we get a simplicial complex S|I|.

2. We identify simplices corresponding to isomorphic seeds, getting a simplicial
complex S|I|.

3. We remove from S|I| certain faces of codimension≥ 2 defined as follows. Recall
that a seed I provides a torus XI with a coordinate system {xI

i }. Let ϕ : I → I′
be a cluster transformation of seeds. We say that it is an X -equivalence if the
induced cluster transformation ϕX : XI → XI′ is an isomorphism respecting
the coordinates: ϕ∗X x

I′
ϕ(i) = xI

i . Let F be a face of S|I|. Consider the set of
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X -equivalence classes of seeds I′ such that the simplex SI′ in S|I| contains F . We
say that F is of infinite type if this set is infinite. Removing from S|I| all faces of
infinite type, we get the modular orbifoldM|I|.

We proved (loc. cit.) that it is indeed an orbifold. Its dimension is the dimension
of the cluster X -variety minus one.

A.2 Main results

In the ε-finite case the modular orbifold is glued from a finite number of simplices.
It is noncompact, unless the cluster X -variety is of finite cluster type. In general it
cannot be compactified by an orbifold, but sometimes it can. Here is the main result.

Theorem A.1.

(a) The cluster X -variety corresponding to the moduli space Conf 3(BG2) is of ε-finite
type. The number of nonisomorphic seeds assigned to it is seven.

(b) The corresponding modular complex is homeomorphic to S3 − L, where L is a
link with two connected components, and π1(S

3 − L) is isomorphic to the braid
group of type G2.

The mapping class group of a cluster X -variety was defined in [FG2, Section 2].
It acts by automorphisms of the cluster X -variety. It is always infinite if the cluster
structure is of ε-finite, but not of finite, type. Theorem A.1 immediately implies the
following.

Corollary A.2. The mapping class group of this cluster X -variety corresponding to
Conf 3(BG2) is an infinite quotient of the braid group of type G2.

Remark. According to [FG2, Hypothesis 2.19], the modular complex of a cluster X -
variety is the classifying space (in general orbispace) for the corresponding mapping
class group. This plus Theorem A.1 imply that the mapping class group should be
isomorphic to the braid group of type G2.

A.3 Proof of Theorem A.1

The cluster structure of the moduli space Conf 3(BG2) can be described by a seed with
4 vertices shown in Figure 7. The multipliers are equal to 3 for the top two vertices,
and 1 for the bottom two.

We claim that mutating this seed we get exactly 7 different seeds shown in Figure 8,
where we keep the same convention about the multipliers. To prove this claim we
list below the 14 pairs of seeds from Figure 8 related by mutations.

Let us give an example explaining our notation. We denote by (ak, bk, ck, dk)
the four vertices of seed number k in Figure 8 (k counts the seeds from the left to the
right). The vertices are arranged as in Figure 7: (ak, bk) are the top two, and (ck, dk)
the bottom vertices. The mutation λ6 mutates the seed (a2, b2, c2, d2) at the vertex
d2, producing the seed (a3, b3, c3, d3). Forming the cluster/modular complex, we
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a b

c d

1 1

11

Fig. 7. The original seed.

Fig. 8. The seven seeds.

glue the corresponding two tetrahedra so that the face (a2, b2, c2) of the first is glued
to the face (b3, a3, d3) of the second, matching the ith vertices of these two triangles.
We record this information as follows:

λ6 :
(
a2 b2 c2
b3 a3 d3

)
.

Below we list mutations λ1, . . . , λ14, which together with their inverses give us all
the mutations:

λ1 :
(
b1 c1 d1
b2 c2 d2

)
, λ2 :

(
a1 c1 d1
b4 d4 c4

)
, λ3 :

(
a1 b1 d1
a7 b7 d7

)
, λ4 :

(
a1 b1 c1
b2 a2 d2

)
,

λ5 :
(
a2 c2 d2
a3 c3 d3

)
, λ6 :

(
a2 b2 c2
b3 a3 d3

)
, λ7 :

(
b3 c3 d3
b5 d5 c5

)
,

λ8 :
(
a3 b3 c3
a6 b6 d6

)
, λ9 :

(
a4 c4 d4
a5 c5 d5

)
, λ10 :

(
a4 b4 d4
a4 b4 c4

)
, λ11 :

(
a5 b5 d5
a5 b5 c5

)
,

λ12 :
(
b6 c6 d6
a6 c6 d6

)
, λ13 :

(
a6 b6 c6
a7 b7 c7

)
, λ14 :

(
b7 c7 d7
a7 c7 d7

)
.

We present in Figure 9 the 1-skeleton of the simplicial complex dual to the modular
complex. It has 7 vertices corresponding to the seven different seeds, and every vertex
is connected with the four vertices related to it by mutations.

The gluing data for the edges

Here is how we glue the edges of seven tetrahedra forming the modular complex:(
b1
d1

)
λ1−→
(
b2
d2

)
λ−1

4−→
(
a1
c1

)
λ2−→
(
b4
d4

)
λ10−→

(
b4
c4

)
λ−1

2−→
(
a1
d1

)
λ3−→
(
a7
d7

)
λ−1

14−→
(
b7
d7

)
λ−1

3−→
(
b1
d1

)
,
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Fig. 9. The 1-skeleton of the dual to the modular complex.

(
a2
c2

)
λ5−→
(
a3
c3

)
λ8−→
(
a6
d6

)
λ−1

12−→
(
b6
d6

)
λ−1

8−→
(
b3
c3

)
λ7−→
(
b5
d5

)
λ11−→

(
b5
c5

)
λ−1

7−→
(
b3
d3

)
λ−1

6−→
(
a2
c2

)
,(

c1
d1

)
λ1−→
(
c2
d2

)
λ5−→
(
c3
d3

)
λ7−→
(
d5
c5

)
λ−1

9−→
(
d4
c4

)
λ−1

2−→
(
c1
d1

)
,(

a1
b1

)
λ4−→
(
b2
a2

)
λ6−→
(
a3
b3

)
λ8−→
(
a6
b6

)
λ13−→

(
a7
b7

)
λ−1

3−→
(
a1
b1

)
,(

b1
c1

)
λ1−→
(
b2
c2

)
λ6−→
(
a3
d3

)
λ−1

5−→
(
a2
d2

)
λ−1

4−→
(
b1
c1

)
,(

a4
c4

)
λ9−→
(
a5
c5

)
λ−1

11−→
(
a5
d5

)
λ−1

9−→
(
a4
d4

)
λ10−→

(
a4
c4

)
,(

a6
c6

)
λ−1

12−→
(
b6
c6

)
λ13−→

(
b7
c7

)
λ14−→

(
a7
c7

)
λ−1

13−→
(
a6
c6

)
,(

c6
d6

)
λ12−→

(
c6
d6

)
;

(
c7
d7

)
λ14−→

(
c7
d7

)
;(

a4
b4

)
λ10−→

(
a4
b4

)
;

(
a5
b5

)
λ11−→

(
a5
b5

)
.

After the gluing, we get four vertices:

a1 = a2 = a3 = a6 = a7 = b1 = b2 = b3 = b4 = b5 = b6 = b7,

c1 = c2 = c3 = c4 = c5 = d1 = d2 = d3 = d4 = d5 = d6 = d7,

a4 = a5, c6 = c7.
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Thus we have 7 tetrahedra, 14 faces, 11 triangles, and 4 vertices. So the Euler
characteristic is 0.

Each of the edges λi , i = 1, . . . , 14, of the dual modular complex gives us a
generator of the fundamental groupoid. Each of the 11 edges listed above of the
original complex gives a relation in the fundamental groupoid.

To compute the fundamental group of the modular complex we use the following
algorithm. Recall that a spanning tree of a graph is a maximal contractible subgraph
of the graph. Clearly, a spanning tree contains all vertices of the graph. Let us
shrink a spanning tree. Then every edge of the graph which does not belong to the
spanning tree gives rise to a nontrivial loop on the quotient. These loops generate the
fundamental group of the quotient based at the contracted spanning tree.

1. Choose a spanning tree of the dual to the modular complex.
2. Then the fundamental group has the following presentation:

Generators correspond to the edges of the dual modular complex which do not
belong to the spanning tree. Relations correspond to the edges of the modular complex
as follows: Take all triangles containing the given edge. A coorientation of this
edge gives rise to a cyclic order of this set. Then the product of the corresponding
generators, in an order compatible with the cyclic order, is a relation.

Fig. 10. A spanning tree.

Let us implement this algorithm. Choose a spanning tree shown by bold arcs in
Figure 10. Then there are 8 generators, corresponding to mutations λ3, λ4, λ5, λ7,
λ10, λ11, λ12, λ14. The relations can be read off from the gluing data of the edges:

λ−1
4 λ10λ3λ

−1
14 λ

−1
3 = 1, λ5λ

−1
12 λ7λ11λ

−1
7 = 1, λ5λ7 = 1,

λ4λ
−1
3 = 1, λ−1

5 λ
−1
4 = 1, λ−1

11 λ10 = 1, λ−1
12 λ14 = 1.

Let us simplify these equations. From the last five equations, we get

ρ = λ3 = λ4 = λ−1
5 = λ7; a = λ10 = λ11; x = λ12 = λ14.

Substituting this into the first two equations we get an equivalent presentation of our
group: the generators are a, x, β; they satisfy two relations:
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ρ−1aβx−1ρ−1 = 1, ρ−1x−1ρaρ−1 = 1. (34)

Set b = ρx−1ρ−1, i.e., x−1 = ρ−1bρ. Then the first equation in (34) is equivalent
to β = ab. Thus the group is generated by a, b. The only relation comes from the
second equation in (34). Therefore, substituting the above expressions for β and x−1,
we arrive at

(ab)−1(ab)−1b(ab)aba(ab)−1 = 1 ⇔ bababa = ababab, (35)

which is the defining relation for the braid group of typeG2. The proof of TheoremA.1
is finished.

A.4 The action of the braid group of type G2

This group is generated by two elements a, b subject to the single relation ababab =
bababa. Let a be the composition of the three mutations at the vertices b1, c1, b1,
and b be the composition of the three mutations at the vertices c1, b1, c1. Then one
checks that they satisfy the above relation. So they are generators of the braid group
of type G2.

A.5 S3 − L and the discriminant variety for the Coxeter group of type G2

Let WG2 be the Coxeter group of type G2. It is isomorphic to the dihedral group
of order 12. It acts on the two-dimensional complex vector space V2, the Cartan
subalgebra of the complex Lie algebra of type G2, equipped with a configuration of
six one-dimensional subspaces, corresponding to the kernels of the roots. The group
WG2 acts freely on the complement V reg

2 to the union of these six lines. The quotient
V

reg
2 /WG2 is known to be a K(π, 1) space for π = WG2 . The group R∗+ acts by

dilatations on V reg
2 , commuting with the WG2 -action. Hence V reg

2 /R∗+WG2 is also a
K(π, 1) space for π = WG2 .

Conjecture A.3. The space V reg
2 /R∗+WG2 is homeomorphic to S3 − L.

Here is evidence. The quotient of V2 by the action of the groupWG2 is isomorphic
to C2. The R∗+-action on V2 descends to an R∗+-action on V reg

2 /WG2 = C2 given by
t : (z1, z2) �−→ (t2z1, t

6z2). Thus the quotient space V reg
2 −{0}/WG2R

∗+ is a sphere
S3, given as the quotient of C2 − {0.0} by the (2, 6)-weighted R∗+-action.

The intersection of each line with the unit sphere in V2 is a circle. The action of
the group WG2 has two orbits on the set of the six lines, and hence on the set of six
circles. So we get two circles in the quotient. They are the two connected components
of the link L in S3.
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Appendix B: Cluster structure of the moduli of triples of flags
in PGL4

B.1 The cluster X -structure for the moduli space M0,n+3

Recall that M0,n+3 is the moduli space of configurations of n+ 3 distinct points on
P1. Following [FG1, Section 9], we provide it with a structure of cluster X -variety
as follows.

Let us consider an (n + 3)-gon whose vertices are labeled by a configuration
(x1, . . . , xn+3) of points on P1, so that the cyclic structure on the points coincides
with that of the vertices induced by the counterclockwise orientation of the (n+3)-gon.
Then given a triangulation T of the (n+3)-gon, we define a rational coordinate system
on M0,n+3 as follows. Recall the cross-ratio of four distinct points (x1, x2, x3, x4)

on P1:

r+(x1, x2, x3, x4) := (x1 − x2)(x3 − x4)

(x1 − x4)(x2 − x3)
.

We assign to every (internal) edge of the triangulation T a rational function XTE on
M0,n+3 as follows. We define a seed IT = (IT , IT0 , εij , di) as follows: IT is the set
of edges of T , IT0 is empty, and di = 1.

Let (xa, xb, xc, xd) be the configuration of points assigned to the vertices of the
4-gon formed by the two triangles of the triangulation sharing the edge E, so that
E = xbxd . Then

XTE(x1, . . . , xn+3) := r+(xa, xb, xc, xd).

Proposition B.1. The above construction provides M0,n+3 with a structure of cluster
X -variety of finite type An.

Proof. Take the snake triangulation shown in Figure 11. The corresponding εij -
function is the one assigned to the root system of typeAn. Let us change the triangu-
lation by flipping a diagonal. Then it is easy to see that the resulting transformation
of the coordinates is described by the cluster mutation corresponding to the flip [FG1,
Section 9]. The proposition is proved.

x

xx

x

dc

b a

Fig. 11. A triangulation of the octagon provides a coordinate system on the moduli space M0,8.
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B.2 The cluster X -variety corresponding to the moduli space Conf3(BA3) of
triples of flags in PGL4

Recall the rational coordinates on the moduli space Conf 3(BA3) defined in [FG1,
Section 9.3]. A triple of vectors (a1, a2, a3) in a four-dimensional vector space V4
provides a flag (A0, A1, A2) := (a1, a1a2, a1a2a3) in P(V4). Here Ai is the pro-
jectivization of the subspace spanned by a1, . . . , ai+1. Consider a triple of flags
in P(V4):

(A,B,C) = ((a1, a2, a3), (b1, b2, b3), (c1, c2, c3)).

Let us choose a volume form ω ∈ det V ∗4 . Then, for any four vectors (a, b, c, d),
there is a determinant

 (a, b, c, d) := 〈ω, a ∧ b ∧ c ∧ d〉.
We define a rational function X1 on Conf 3(BA3) as follows:

X1(A,B,C) := − (a1, a2, a3, b1) (a1, b2, b3, c1) (a1, c1, c2, a2)

 (a1, a2, a3, c1) (a1, b1, b2, a2) (a1, c1, c2, b1)

and the functions X2 and X3 are obtained by cyclic shifts:

X2(A,B,C) := X1(B,C,A), X3(A,B,C) := X1(C,A,B),

B.3 An isomorphism of cluster X -varieties

Let us define a map
� : M0,6 −→ Conf 3(BA3).

Recall that a normal curve N ⊂ Pn is a curve of the minimal possible degree n
which does not lie in a hyperplane. Any such curve is projectively equivalent to the
image of the map t �→ (1, t, t2, . . . , tn−1). The group of projective transformations
preserving a normal curve is isomorphic to PGL2, that is, to the automorphism group
of P1. For any n+3 generic points in Pn there exists a unique normal curve containing
these points.

Let (x1, y1, x2, y2, x3, y3) be a configuration of six distinct points on P1. We
identify it with a configuration of points on a normal curve N ⊂ P3. Set

�(x1, y1, x2, y2, x3, y3)

= (X, Y, Z) := ((x1, x1y1, y3x1y1), (x2, x2y2, y1x2y2), (x3, x3y3, y2x3y3)).

The inverse map ! is defined as follows. Let

(A,B,C) := (A0, A1, A2), (B0, B1, B2), (C0, C1, C2) (36)

be a triple of flags in P3. So A0 is a point, A1 is a line containing this point, and A2
is a plane containing A1. We assign to it the following collection of 6 points in P3:
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x y1 1

y2
3x

y3

x2

Fig. 12. A configuration of three flags in P3 from a configuration of six points on P1.

!(A,B,C) := (A0, A1 ∩ B2, B0, B1 ∩ C2, C0, C1 ∩ A2).

Taking the unique normal curve passing through these points, we get a configuration
of 6 points on P1. By the very definition, the compositions ! ◦� and � ◦! are the
identity maps.

Proposition B.2. The map � provides an isomorphism of the cluster X -varieties
corresponding to the moduli spaces M0,6 and Conf 3(BA3).

Proof. Observe that one has

X1�(x1, y1, x2, y2, x3, y3)

= X1(X, Y, Z) = − (x1, y1, y3, x2) (x1, x2, y2, x3) (x1, x3, y3, y1)

 (x1, y1, y3, x3) (x1, x2, y2, y1) (x1, x3, y3, x2)

=  (x1, x2, y1, y3) (x1, x2, x3, y2)

 (x1, x2, y1, y2) (x1, x2, y3, x3)
= r+(y1, y3, x3, y2).

Using the cyclic shifts, we get

X2�(x1, y1, x2, y2, x3, y3) = r+(y2, y1, x1, y3),

X2�(x1, y1, x2, y2, x3, y3) = r+(y3, y2, x2, y1).

These are the coordinates on M0,6 assigned to the triangulation of the hexagon shown
in Figure 13. The proposition is proved.

y

y x

x y

x

1 1

3

2

2

3

Fig. 13. A triangulation of the hexagon providing a coordinate system on M0,6.
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Exercise. Using the above results, show that the cluster X -variety corresponding to
the moduli space Conf 3(BB2) of triples of flags in Sp4 is of finite type B2. Hint: Use
the triangulations of the hexagon symmetric with respect to the center.
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0 Introduction

Let g be a simple Lie algebra over C and G a connected algebraic group with Lie
algebra g. The affine Kac–Moody algebra ĝ is the universal central extension of the
formal loop agebra g((t)). Representations of ĝ have a parameter, an invariant bilinear
form on g, which is called the level. Representations corresponding to the bilinear
form which is equal to minus one half of the Killing form are called representations
of critical level. Such representations can be realized in spaces of global sections of
twisted D-modules on the quotient of the loop group G((t)) by its “open compact’’
subgroup K , such as G[[t]] or the Iwahori subgroup I .

This is the first in a series of papers devoted to the study of the categories of
representations of the affine Kac–Moody algebra ĝ of the critical level andD-modules
on G((t))/K from the point of view of a geometric version of the local Langlands
correspondence. Let us explain what we mean by that.

0.1

First, we recall the classical setting of the local Langlands correspondence. Let K̂ be
a non-archimedean local field such as Fq((t)) and G a connected reductive algebraic
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group over K̂. The local Langlands correspondence sets up a relation between two
different types of data. Roughly speaking, the first data are the equivalence classes
of homomorphisms, denoted by σ , from the Galois group of K̂ (more precisely,
its version, called the Weil–Deligne group) to Ǧ, the Langlands dual group of G.
The second data are the isomorphism classes of irreducible smooth representations,
denoted by π , of the locally compact group G(K̂) (we refer the reader to [Vog] for a
precise formulation of this correspondence).

A naive analogue of this correspondence in the geometric situation is as follows.
Since the geometric analogue of the Galois group is the fundamental group, the
geometric analogue of a homomorphism from the Galois group of K̂ to Ǧ is a Ǧ-
local system on Spec K̂. Now we wish to replace K̂ = Fq((t)) by C((t)). Then
Spec C((t)) is the formal punctured disc D×. By a Ǧ-local system on D× we will
always understand its de Rham version: a Ǧ-bundle on D× with a meromorphic
connection that may have a pole of arbitrary order at the origin. By analogy with
the classical local Langlands correspondence, we would like to attach to such a local
system a representation of the formal loop group G((t)) = G(C((t))). However, we
will argue in this paper that in contrast to the classical setting, this representation of
G((t)) should be defined not on a vector space, but on a category (see Section 20.7
where the notion of a group acting on a category is spelled out).

Thus, to each Ǧ-local system σ we would like to attach an abelian category
Cσ equipped with an action of the ind-group G((t)). This is what we will mean
by a geometric local Langlands correspondence for the formal loop group G((t)).
This correspondence may be viewed as a “categorification’’ of the classical local
Langlands correspondence, in the sense that we expect the Grothendieck groups of
the categories Cσ to “look like’’ irreducible smooth representations of G(K̂). At the
moment we cannot characterize Cσ in local terms. Instead, we shall now explain how
this local correspondence fits in with the pattern of the global geometric Langlands
correspondence.

In the global geometric Langlands correspondence we start with a smooth pro-
jective connected curve X over C with distinct marked points x1, . . . , xn. Let σ glob

be a Ǧ-local system on
◦
X = X\{x1, . . . , xn}, i.e., a Ǧ-bundle on X\{x1, . . . , xn}

with a connection which may have poles of arbitrary order at the points x1, . . . , xn.
Let Bunx1,...,xn

G be the moduli stack classifying G-bundles on X with the full level
structure at x1, . . . , xn (i.e., trivializations on the formal discs Dxi around xi). Let
D(Bunx1,...,xn

G )-mod be the category ofD-modules on Bunx1,...,xn
G . One defines, as in

[BD1], the Hecke correspondence between Bunx1,...,xn
G and

◦
X × Bunx1,...,xn

G and the
notion of a Hecke “eigensheaf’’ on Bunx1,...,xn

G with the “eigenvalue’’ σ glob.

The Hecke correspondence is the following moduli space:

H = {(P,P′, x, φ) | P,P′ ∈ Bunx1,...,xn
G , x ∈ ◦

X,φ : P|X\x ∼→ P′|X\x}.

It is equipped with the projections
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H

↙←h ↘→h
Bunx1,...,xn

G

◦
X × Bunx1,...,xn

G

where
←
h(P,P′, x, φ) = P and

→
h(P,P′, x, φ) = (x,P′). The fiber of H over (x,P′)

is isomorphic to GrP
′

x , the twist of the affine Grassmannian Grx = G(K̂x)/G(Ôx)
by the G(Ôx)–torsor of trivializations of P′|Dx

(here we denote by Ôx and K̂x the
completed local ring ofX atx and its field of fractions, respectively). The stratification
of Grx byG(Ôx)–orbits induces a stratification of H. The strata are parametrized by
the set of isomorphism classes of irreducible representations of the Langlands dual
group Ǧ. To each such isomorphism class V therefore corresponds an irreducible
D-module on H supported on the closure of the orbit labeled by V . We denote it
by F

glob
V .

One defines the Hecke functorsHV , V ∈ Irr(Rep(Ǧ)) from the derived category

ofD-modules on Bunx1,...,xn
G to the derived category ofD-modules on

◦
X×Bunx1,...,xn

G

by the formula

HV (F) =
→
h !(

←
h ∗(F)⊗ F

glob
V ).

AD-module on Bunx1,...,xn
G is called a Hecke eigensheaf with eigenvalue σ glob if we

are given isomorphisms
HV (F) ' Vσ glob � F (0.1)

of D-modules on
◦
X × Bunx1,...,xn

G which are compatible with the tensor product

structure on the category of representations of Ǧ (here Vσ glob is the associated vector

bundle with a connection on
◦
X corresponding to σ glob and V ).

The aim of the global geometric Langlands correspondence is to describe the
category D(Bunx1,...,xn

G )Hecke
σ glob -mod of such eigensheaves.

For example, if there are no marked points, and so σ glob is unramified everywhere,
it is believed that this category is equivalent to the category of vector spaces, provided
that σ glob is sufficiently generic. In particular, in this case D(BunG)Hecke

σ glob -mod should
contain a unique, up to isomorphism, irreducible object, and all other objects should
be direct sums of its copies. The irreducible Hecke eigensheaf may be viewed as a
geometric analogue of an unramified automorphic function from the classical global
Langlands correspondence. This Hecke eigensheaf has been constructed byA. Beilin-
son and V. Drinfeld in [BD1] in the case when σ glob has an additional structure of
an “oper.’’

In order to explain what we expect from the category D(Bunx1,...,xn
G )Hecke

σ glob -mod
when the set of marked points is nonempty, let us revisit the classical situation.
Denote by A the ring of adeles of the field of rational functions on X. Let πσ glob be
an irreducible automorphic representation of the adelic group G(A) corresponding
to σ glob by the classical global Langlands correspondence. Denote by (πσ glob)x1,...,xn

the subspace of πσ glob spanned by vectors unramified away from x1, . . . , xn. Then
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(πσ glob)x1,...,xn is a representation of the locally compact group �
i=1,...,n

G(K̂xi ) (here

K̂xi denotes the local field at xi). A basic compatibility between the local and global
classical Langlands correspondences is that this representation should be isomorphic
to the tensor product of local factors ⊗

i=1,...,n

πσi ,

where πσi is the irreducible representation ofG(K̂i ), attached via the local Langlands
correspondence to the restriction σi of σ glob to the formal punctured disc around xi .

In the geometric setting we view the category D(Bunx1,...,xn
G )Hecke

σ glob -mod as a “cat-
egorification’’ of the representation (πσ glob)x1,...,xn . Based on this, we expect that
there should be a natural functor⊗

i=1,...,n

Cσi → D(Bunx1,...,xn
G )Hecke

σ glob -mod, (0.2)

relating the local and global categories. Moreover, we expect this functor to be an
equivalence when σ glob is sufficiently generic. This gives us a basic compatibility
between the local and global geometric Langlands correspondences.

0.2

How can we construct the categories Cσ and the corresponding functors to the global
categories? At the moment we see two ways to do that. In order to explain them, we
first illustrate the main idea on a toy model.

Let G be a split reductive group over Z, and B a Borel subgroup. A natural
representation of the finite group G(Fq) is realized in the space of complex (or Q�-)
valued functions on the quotient G(Fq)/B(Fq). We can ask what is the “correct’’
analogue of this representation when we replace the field Fq by the complex field and
the group G(Fq) by G(C). This may be viewed as a simplified version of our quest,
since instead of considering G(Fq((t))) we now look at G(Fq).

The quotient G(Fq)/B(Fq) is the set of Fq -points of the algebraic variety G/B
defined over Z called the flag variety ofG. Let us recall the Grothendieck faisceaux-
fonctions dictionary: if F is an �-adic sheaf on an algebraic variety V over Fq and
x is an Fq -point of V , then we have the Frobenius conjugacy class Frx acting on
the stalk Fx of F at x. Hence, we can define a Q�-valued function fq(F) on the
set of Fq -points of X, whose value at x is Tr(Frx,Fx). We also obtain in the same
way a function on the set V (Fqn) of Fqn -points of V for n > 1. This passage from
�-adic sheaves to functions satisfies various natural properties. This construction
identifies the Grothendieck group of the category of �-adic sheaves on V with a
subgroup of the direct product of the spaces of functions on V (Fqn), n > 0 (see
[Lau]). Therefore, the category of �-adic sheaves (or its derived category) may be
viewed as a categorification of this space of functions.
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This suggests that in order to pass from Fq to C we first need to replace the
notion of a function on (G/B)(Fq) by the notion of an �-adic sheaf on the variety
(G/B)Fq = G/B ⊗

Z
Fq .

Next, we replace the notion of an �-adic sheaf onG/B, considered as an algebraic
variety over Fq , by a similar notion of a constructible sheaf on (G/B)C = G/B ⊗

Z
C

which is an algebraic variety over C. The group GC naturally acts on (G/B)C and
hence on this category. We shall now apply two more metamorphoses to this category.

Recall that for a smooth complex algebraic variety V we have a Riemann–Hilbert
correspondence which is an equivalence between the derived category of constructible
sheaves on V and the derived category of D-modules on V that are holonomic and
have regular singularities. Thus, over C we may pass from constructible sheaves to
D-modules. Generalizing this, we consider the category of allD-modules on the flag
variety (G/B)C. This category carries a natural action of GC.

Let us also recall that by taking global sections we obtain a functor from the cate-
gory ofD-modules on (G/B)C to the category of g-modules. Moreover, A. Beilinson
and J. Bernstein have proved [BB] that this functor is an equivalence between the cat-
egory of D-modules on (G/B)C and the category of g-modules on which the center
of the universal enveloping algebra U(g) acts through the augmentation character.
Observe that the latter category also carries a naturalGC-action that comes from the
adjoint action of GC on g.

We arrive at the following conclusion: a meaningful geometric analogue of the
notion of representation ofG(Fq) is that of a category equipped with an action ofGC.
In particular, an analogue of the space of functions on G(Fq)/B(Fq) is the category
D((G/B)C)-mod, which can be also realized as the category of g-modules with a
fixed central character.

Our challenge is to find analogues of the above two categories in the case when
the reductive groupG is replaced by its loop groupG((t)). The exact relation between
them will be given by a loop group analogue of the Beilinson–Bernstein equivalence,
and will be in itself of great interest to us.

As the previous discussion demonstrates, one possibility is to consider represen-
tations of the complex loop group G((t)) on various categories of D-modules on the
ind-schemes G((t))/K , where K is an “open compact’’ subgroup of G((t)), such as
G[[t]] or the Iwahori subgroup I (the preimage of a Borel subgroupB ⊂ G under the
homomorphismG[[t]] → G). The other possibility is to consider various categories
of representations of the Lie algebra g((t)), or of its universal central extension ĝ,
because the group G((t)) still acts on ĝ via the adjoint action.

0.3

To explain the main idea of this paper, we consider an important example of a cat-
egory of D-modules which may be viewed as a “categorification’’ of an irreducible
unramified representation of the group G(K̂), where K̂ = Fq((t)). We recall that a
representation π of G(K̂) is called unramified if it contains a nonzero vector v such
that G(Ô)v = v, where Ô = Fq [[t]]. The spherical Hecke algebra H(G(K̂),G(Ô))
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of bi-G(Ô)-invariant compactly supported functions on G(K̂) acts on the subspace
spanned by such vectors.

The Satake isomorphism identifies H(G(K̂),G(Ô)) with the representation ring
Rep(Ǧ) of finite-dimensional representations of the Langlands dual group Ǧ [Lan].
This implies that equivalence classes of irreducible unramified representations of
G(K̂) are parameterized by semisimple conjugacy classes in the Langlands dual
group Ǧ. This is, in fact, a baby version of the local Langlands correspondence
mentioned above, because a semisimple conjugacy class in Ǧ may be viewed as an
equivalence class of unramified homomorphisms from the Weil groupW

K̂
to Ǧ (i.e.,

one that factors through the homomorphismW
K̂
→ WFq ' Z).

For a semisimple conjugacy class γ in Ǧ denote by πγ the corresponding irre-

ducible unramified representation ofG(K̂). It contains a unique, up to scalars, vector
vγ such that G(Ô)vγ = vγ . It also satisfies the following property. For a finite-

dimensional representation V of Ǧ denote by FV the element of H(G(K̂),G(Ô))
corresponding to [V ] ∈ Rep(Ǧ) under the Satake isomorphism. Then we have
FV · vγ = Tr(γ, V )vγ (to simplify our notation, we omit a q-factor in this formula).

Now we embed πγ into the space of locally constant functions on G(K̂)/G(Ô),
by using matrix coefficients, as follows:

u ∈ πγ �→ fu, fu(g) = 〈u, gvγ 〉,
where 〈, 〉 is an invariant bilinear form on πγ . Clearly, the functions fu are right

G(Ô)-invariant and satisfy the condition

f " FV = Tr(γ, V )f, (0.3)

where " denotes the convolution product. Let C(G(K̂)/G(Ô))γ be the space of

locally constant functions on G(K̂)/G(Ô) satisfying (0.3). We have constructed an
injective map πγ → C(G(K̂)/G(Ô))γ , and one can show that for generic γ it is an
isomorphism.

Thus we obtain a realization of irreducible unramified representations of G(K̂)
in functions on the quotient G(K̂)/G(Ô). According to the discussion in the previ-
ous subsection, a natural complex geometric analogue of the space of functions on
G(K̂)/G(Ô) is the category of (right) D-modules on G((t))/G[[t]]. The latter has
the structure of an ind-scheme over C, which is called the affine Grassmannian and
is denoted by GrG.

The classical Satake isomorphism has a categorical version due to Lusztig, Drin-
feld, Ginzburg, and Mirković–Vilonen (see [MV]) which may be formulated as fol-
lows: the category ofG[[t]]-equivariantD-modules on GrG, equipped with the con-
volution tensor product, is equivalent to the category Rep(Ǧ) of finite-dimensional
representations of Ǧ as a tensor category. For a representation V of Ǧ let FV be
the correspondingD-module on GrG. AD-module F on GrG satisfies the geometric
analogue of the property (0.3) if we are given isomorphisms

αV : F " FV
∼−→ V ⊗ F, V ∈ Ob Rep(Ǧ) (0.4)
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satisfying a natural compatibility with tensor products. In other words, observe that
we now have two monoidal actions of the tensor category Rep(Ǧ) on the category
D(GrG)-mod of right D-modules on GrG: one is given by tensoring D-modules
with V , the vector space underlying a representation V of Ǧ, and the other is given
by convolution with the D-module FV . The collection of isomorphisms αV in (0.4)
should give us an isomorphism between these two actions applied to the object F.

Let D(GrG)Hecke-mod be the category whose objects are the data (F, {αV }),
where F is a D-module on GrG and {αV } are the isomorphisms (0.4) satisfying
the above compatibility. This category carries a natural action of the loop group
G((t)) that is induced by the (left) action of G((t)) on the Grassmannian GrG. We
believe that the category D(GrG)Hecke-mod, together with this action of G((t)), is
the “correct’’ geometric analogue of the unramified irreducible representations of
G(Fq((t))) described above. Therefore, we propose

Cσ0 ' D(GrG)
Hecke-mod, (0.5)

where σ0 is the trivial Ǧ-local system on D×. This is our simplest example of
the conjectural categories Cσ , and indeed its Grothendieck group “looks like’’ an
unramified irreducible representation of G(K̂).

0.4

Next, we attempt to describe the category Cσ0 in terms of representations of the affine
Kac–Moody algebra ĝ. Since the affine analogue of the Beilinson–Bernstein equiva-
lence is a priori not known, the answer is not as obvious as in the finite-dimensional
case. However, the clue is provided by the Beilinson–Drinfeld construction of the
Hecke eigensheaves.

The point of departure is a theorem of [FF3] which states that the completed
universal enveloping algebra of ĝ at the critical level has a large center. More precisely,
according to [FF3], it is isomorphic to the algebra of functions of the affine ind-scheme
Opǧ(D

×) of ǧ-opers over the formal punctured disc (where ǧ is the Langlands dual
of the Lie algebra g). Thus each point χ ∈ Opǧ(D

×) defines a character of the center,
and hence the category ĝcrit-modχ of discrete ĝ-modules of critical level on which
the center acts according to the character χ .

We recall that a ǧ-oper (on a curve or on a disc) is a Ǧ-local system plus some
additional data. This notion was introduced in [DS, BD1] (see Section 1.1 for the
definition). Thus we have a natural forgetful map Opǧ(D

×) → LocSys
Ǧ
(D×),

where LocSys
Ǧ
(D×) is the stack of Ǧ-local systems on D×.1 In this subsection we

will restrict our attention to those opers which extend regularly to the formal disc D;
they correspond to points of a closed subscheme of regular opers Opreg

ǧ
⊂ Opǧ(D

×).
In particular, the local systems on D× defined by such opers are unramified, i.e., they
extend to local systems on D, which means that they are isomorphic to the trivial

1 Note that it is not an algebraic stack, but in this paper we will work with its substacks which
are algebraic.
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local system (noncanonically, since the group Ǧ acts by automorphisms of the trivial
local system).

For a fixed point x ∈ X Beilinson and Drinfeld construct a local-to-global functor
ĝcrit-mod → D(BunxG)-mod as a Beilinson–Bernstein-type localization functor by
realizing BunxG as the quotient G((t))/G(X − x).

Given a regular oper on the formal disc D around x, consider the restriction of
this localization functor to the category ĝcrit-modχ . It was shown in [BD1] that the
latter functor is nonzero if and only if χ extends to an oper on the global curve X,
and in that case it gives rise to a functor

ĝcrit-modχ → D(BunxG)
Hecke
σ glob -mod,

where σ glob is the Ǧ-local system on X corresponding to the above oper.
This construction, combined with (0.2), suggests that for every regular oper χ on

D we should have an equivalence of categories

Cσ0 ' ĝcrit-modχ . (0.6)

Thus we have two conjectural descriptions of the category Cσ 0 : one is given by
(0.5), and the other by (0.6). Comparing the two, we obtain a conjectural analogue
of the Beilinson–Bernstein equivalence for the affine Grassmannian:

D(GrG)
Hecke-mod ' ĝcrit-modχ (0.7)

for any χ ∈ Opreg
ǧ

. In fact, as we shall see later, we should have an equivalence as in
(0.7) for every trivialization of the local system on D corresponding to the oper χ . In
particular, the group of automorphisms of such a local system, which is noncanoni-
cally isomorphic to Ǧ, should act on the category ĝcrit-modχ by automorphisms. In
a sense, it is this action that replaces the Satake parameters of irreducible unramified
representations of G(K̂) in the geometric setting.

Let us note that the equivalence conjectured in (0.7) does not explicitly involve
the Langlands correspondence. Thus our attempt to describe the simplest of the
categories Cσ has already paid dividends: it has led us to a formulation of Beilinson–
Bernstein-type equivalence for GrG.

It is instructive to compare it with the Beilinson–Bernstein equivalence for a
finite-dimensional flag variety (G/B)C, which says that the category of D-modules
on (G/B)C is equivalent to the category of g-modules with a fixed central character.
Naively, one might expect that the same pattern holds in the affine case as well, and
the category D(GrG)-mod is equivalent to the category of ĝcrit-modules with a fixed
central character. However, in contrast to the finite-dimensional case, the category
D(GrG)-mod carries an additional symmetry, namely, the monoidal action of the
category Rep(Ǧ) (which can be traced back to the action of the spherical Hecke
algebra in the classical setting). The existence of this symmetry means that, unlike
the category ĝcrit-modχ , the category D(GrG)-mod is a Ǧ-equivariant category (in
other words, D(GrG)-mod is a category over the stack pt /Ǧ; see below). From the
point of view of Langlands correspondence, this equivariant structure is related to
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the fact that Ǧ is the group of automorphisms of the trivial local system Ǧ. In order
to obtain a Beilinson–Bernstein-type equivalence, we need to deequivariantize this
category and replace it by D(GrG)Hecke-mod.

0.5

Our next goal is to try to understand in similar terms what the categories Cσ look like
for a general local system σ . Unfortunately, unlike the unramified case, we will not
be able to construct them directly as categories ofD-modules on some homogeneous
space of G((t)). The reason for this can be traced to the classical picture. If σ is
ramified, then the corresponding irreducible representation π of the groupG(Fq((t)))
does not contain nonzero vectors invariant under G(Fq [[t]]), but it contains vectors
invariant under a smaller compact subgroup K ⊂ G(Fq [[t]]). As in the ramified
case, we can realize π , by taking matrix coefficients, in the space of functions on
G(Fq((t)))/K with values in the space πK of K-invariant vectors in π satisfying a
certain Hecke property. However, unlike the case of unramified representations, πK

generically has dimension greater than one. When we pass to the geometric setting,
we need, roughly speaking, to find a proper “categorification’’not only for the space of
functions onG(Fq((t)))/K (which is the category ofD-modules on the corresponding
ind-scheme, as explained above), but also for πK and for the Hecke property. In the
case when σ is tamely ramified, we can take as K the Iwahori subgroup I . Then the
desired categorification of πI and the Hecke property can be constructed following
R. Bezrukavnikov’s work [Bez], as we will see below. This will allow us to relate the
conjectural category Cσ to the category of D-modules on G((t))/I . But we do not
know how to do that for more general local systems.

Therefore, we try first to describe the categories Cσ in terms of the category
of representations of ĝ at the critical level rather than categories of D-modules on
homogeneous spaces of G((t)).

A hint is once again provided by the Beilinson–Drinfeld construction of Hecke
eigensheaves from representations of ĝ at the critical level described above, because
it may be applied in the ramified situation as well. Extending (0.6), we conjecture that
for any oper χ on D× and the corresponding local system σ , we have an equivalence
of categories

Cσ ' ĝcrit-modχ (0.8)

equipped with an action of G((t)). This statement implies, in particular, that the
category ĝcrit-modχ depends not on the oper χ , but only on the underlying local
system! This is in itself a deep conjecture about representations of ĝ at the critical
level.

At this point, in order to elaborate more on what this conjecture implies and to
describe the results of this paper, we will need to discuss a more refined version of
the local geometric Langlands correspondence indicated above. For that we have to
use the notion of an abelian or a triangulated category over a stack. In the abelian
case this is an elementary notion, introduced, e.g., in [Ga1]. It amounts to a sheaf
(in the faithfully-flat topology) of abelian categories over a given stack Y. When Y
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is an affine scheme Spec(A), this amounts to the notion of A-linear abelian category.
In the triangulated case, some extra care is needed, and we refer the reader to [Ga2]
for details. The only property of this notion needed for the discussion that follows is
that whenever C is a category over Y and Y′ → Y is a map of stacks, we can form the
base-changed category C′ = C×

Y
Y′; in particular, for a point y ∈ Y(C) we have the

category-fiber Cy .
A refined version of the local geometric Langlands correspondence should attach

to any Y-family of Ǧ-local systems σ̃ on D× a category Cσ̃ over Y, equipped with an
action of G((t)), in a way compatible with the above base change property. Such an
assignment may be viewed as a category C over the stack LocSys

Ǧ
(D×) equipped

with a “fiberwise’’ action of G((t)). Then the categories Cσ discussed above may be
obtained as the fibers of C at C-points σ of LocSys

Ǧ
(D×).

We shall now present a refined version of (0.8). Namely, although at the mo-
ment we cannot construct C, the following meta-conjecture will serve as our guiding
principle:

ĝcrit-mod ' C ×
LocSys

Ǧ
(D×)

Opǧ(D
×). (0.9)

We will not even try to make this meta-conjecture precise in this paper. Instead we
will derive from it some more concrete conjectures, and the goal of this paper will be
to give their precise formulation and provide evidence for their validity.

0.6

Let us first revisit the unramified case discussed above. Since the trivial local system
σ0 has Ǧ as the group of its automorphisms, we have a natural map from the stack
pt /Ǧ to LocSys

Ǧ
(D×). Let us denote by Creg the base change of (the still conjectural

category) C under the above map. Then, by definition, we have an equivalence:

Cσ0 ' Creg ×
pt /Ǧ

pt . (0.10)

Now observe that the geometric Satake equivalence of Section 0.3 gives us an
action of the tensor category Rep(Ǧ) on D(GrG)-mod, V,F �→ F " FV . This
precisely amounts to saying that D(GrG)-mod is a category over the stack pt /Ǧ.
Moreover, we then have the following base change equivalence:

D(GrG)
Hecke-mod ' D(GrG)-mod ×

pt /Ǧ
pt . (0.11)

Combining (0.10) and (0.11), we arrive at the following generalization of (0.5):

Creg ' D(GrG)-mod. (0.12)

Let us now combine this with (0.9). Let us denote by ĝcrit-modreg the subcategory
of ĝ-modules at the critical level on which the center acts in such a way that their
scheme-theoretic support in Opǧ(D

×) belongs to Opreg
ǧ

. By the definition of the



Local geometric Langlands correspondence and affine Kac–Moody algebras 79

map Opǧ(D
×) → LocSys

Ǧ
(D×), its restriction to Opreg

ǧ
factors through a map

Opreg
ǧ
→ pt /Ǧ, which assigns to an oper χ the Ǧ-torsor on Opreg

ǧ
obtained by taking

the fiber of χ at the origin in D.
Thus, combining (0.9) with the identification

ĝcrit-modreg ' ĝcrit-mod ×
Opǧ(D

×)
Opreg

ǧ
, (0.13)

we obtain the following statement:

ĝcrit-modreg ' D(GrG)-mod ×
pt /Ǧ

Opreg
ǧ
, (0.14)

By making a further base change with respect to an embedding of the point-scheme
into Opreg

ǧ
corresponding to some regular oper χ , we obtain (0.7). Thus (0.14) is a

family version of (0.7).
Let us now comment on one more aspect of the conjectural equivalence proposed

in (0.14). With any category C acted on by G((t)) and an “open compact’’ subgroup
K ⊂ G((t)) we can associate the category CK of K-equivariant objects. Applying
this to ĝcrit-modreg we obtain the category consisting of those representations which
are K-integrable (i.e., those, for which the action of LieK may be exponentiated
to that of K). In the case of D(GrG)-mod we obtain the category of K-equivariant
D-modules in the usual sense.

Let us take K = G[[t]], and compare the categories obtained from the two sides
of (0.14):

ĝcrit-modG[[t]]reg ' D(GrG)
G[[t]]-mod ×

pt /Ǧ
Opreg

ǧ
. (0.15)

However, the Satake equivalence mentioned above says that D(GrG)G[[t]] '
Rep(Ǧ), implying that the RHS of (0.15) is equivalent to the category of quasi-
coherent sheaves on Opreg

ǧ
:

ĝcrit-modG[[t]]reg ' QCoh(Opreg
ǧ
). (0.16)

The latter equivalence is not conjectural, but has already been established in [FG,
Theorem 6.3] (see also [BD1]).

Thus we obtain a description of the category of modules at the critical level with a
specified integrability property and a condition on the central character as a category
of quasi-coherent sheaves on a scheme related to the Langlands dual group. Such a
description is a prototype for the main conjecture of this paper, described below.

0.7

The main goal of this paper is to develop a picture similar to the one presented
above, for tamely ramified local systems σ on D×, i.e., those with regular singularity
at the origin and unipotent monodromy. The algebraic stack classifying such local
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systems is isomorphic to N
Ǧ
/Ǧ, where N

Ǧ
⊂ ǧ is the nilpotent cone. Let Cnilp

be the corresponding hypothetically existing category over N
Ǧ
/Ǧ equipped with a

fiberwise action of G((t)).
We shall first formulate a conjectural analogue of theorem (0.16) in this setup.

As we will see, one essential difference from the unramified case is the necessity to
consider derived categories.

Denote by I ⊂ G[[t]] the Iwahori subgroup; it is the preimage of a once and
for all fixed Borel subgroup of G under the homomorphism G[[t]] → G. We wish
to give a description of the I -monodromic part Db(Cnilp)

I,m of the derived category
Db(Cnilp) that is similar in spirit to the one obtained in the unramified case (the notion
of Iwahori-monodromic derived category will be introduced in Section 5.3).

In Section 2.13 we will introduce a subscheme Opnilp
ǧ

⊂ Opǧ(D
×) of opers

with nilpotent singularities. Note that Opnilp
ǧ

contains as a closed subscheme the

scheme Opreg
ǧ

of regular opers. Denote by ĝcrit-modnilp the subcategory of ĝcrit-mod

whose objects are the ĝcrit-modules whose scheme-theoretic support in Opǧ(D
×) is

contained in Opnilp
ǧ

.

Let Ñ
Ǧ

be the Springer resolution of N
Ǧ

. We will show in Section 2.13 that the

composition Opnilp
ǧ

→ Opǧ(D
×)→ LocSys

Ǧ
(D×) factors as

Opnilp
ǧ

Resnilp−→ Ñ
Ǧ
/Ǧ→ N

Ǧ
/Ǧ ↪→ LocSys

Ǧ
(D×).

The first map, denoted by Resnilp, is smooth.
Then our Main Conjecture 6.2 describes the (bounded) derived category of

ĝcrit-modnilp as follows:

Db(̂gcrit-modnilp)
I,m ' Db(QCoh(̃ǧ/Ǧ ×

ǧ/Ǧ

Opnilp
ǧ
)), (0.17)

where ˜̌g → ǧ is Grothendieck’s alteration. This is an analogue for nilpotent opers of
theorem (0.16).

As will be explained below, the scheme ˜̌g/Ǧ ×
ǧ/Ǧ

Opnilp
ǧ

, appearing in the RHS of

(0.17), has a natural interpretation as the moduli space of Miura opers with nilpotent
singularities (see Section 3). The main motivation for the above conjecture came
from the theory of Wakimoto modules introduced in [FF2, F]. Namely, to each Miura
oper with nilpotent singularity one can attach a Wakimoto module which is an object
of the category ĝcrit-modI,mnilp. Our (0.17) extends this “pointwise’’ correspondence to
an equivalence of categories.

0.8

Next, we would like to formulate conjectures concerning Cnilp that are analogous to
(0.12) and (0.14), and relate them to conjecture (0.17) above.
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The main difficulty is that we do not have an explicit description of Cnilp in
terms of D-modules as the one for Creg, given by (0.12). Instead, we will be able to
describe a certain base change of Cnilp, suggested by the work of S. Arkhipov and
R. Bezrukavnikov [Bez, AB].

Let FlG = G((t))/I be the affine flag variety and the affine Grassmannian corre-
sponding toG and D(FlG)-mod the category of rightD-modules on FlG. The group
G((t)) naturally acts on D(FlG)-mod. According to [AB], the triangulated category
Db(D(FlG)-mod) is a category over the stack Ñ

Ǧ
/Ǧ.

We propose the following conjecture, describing the hypothetically existing cat-
egory Cnilp, which generalizes (0.12):

Db(Cnilp) ×
N
Ǧ
/Ǧ

Ñ
Ǧ
/Ǧ ' Db(D(FlG)-mod). (0.18)

Combining (0.18) with our meta-conjecture (0.9), we arrive at the statement

Db(̂gcrit-modnilp) ' Db(D(FlG)-mod) ×
Ñ
Ǧ
/Ǧ

Opnilp
ǧ

(0.19)

(the RHS of the above equivalence uses the formalism of triangulated categories over
stacks from [Ga2]). Note that conjecture (0.19) is an analogue for opers with nilpotent
singularities of conjecture (0.14) for regular opers.

We would now like to explain the relation of conjectures (0.18) and (0.19) to
the description of Db(̂gcrit-modnilp) via quasi-coherent sheaves, given by conjecture
(0.17) once we pass to the I -monodromic category.

We propose the following description of the category D(Cnilp)
I,m:

Db(Cnilp)
I,m ' Db(QCoh(̃ǧ ×̌

g
N
Ǧ
/Ǧ)). (0.20)

Let us note that conjecture (0.20) is compatible with (0.18). Namely, by combin-
ing the two we obtain the following:

Db(D(FlG)-mod)I,m ' Db(QCoh(̃ǧ ×̌
g

Ñ
Ǧ
/Ǧ)). (0.21)

However, this last statement is, in fact, a theorem, which is one of the main results
of Bezrukavnikov’s work [Bez].

Finally, combining (0.21) and (0.19), we arrive at the statement of conjecture
(0.17), providing another piece of motivation for it, in addition to the one via Waki-
moto modules given above.

0.9

The principal objective of our project is to prove conjectures (0.14) and (0.17). In
the present paper we review some background material necessary to introduce the
objects we are studying and formulate the above conjectures precisely. We also prove
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two results concerning the category of representations of affine Kac–Moody algebras
at the critical level which provide us with additional evidence for the validity of these
conjectures.

Our first result is Main Theorem 6.9, and it deals with a special case of Main Con-
jecture 6.2. Namely, in Section 6.7 we will explain that if C is a category endowed
with an action of G((t)), the corresponding category CI,m of Iwahori-monodromic
objects admits a Serre quotient, denoted fCI,m, by the subcategory consisting of the
so-called partially integrable objects. (Its classical analogue is as follows: given a
representation π of a locally compact group G(K̂), we first take the subspace πI

is Iwahori-invariant vectors, and then inside πI we take the subspace of vectors
corresponding to the sign character of the Iwahori–Hecke algebra.)

Performing this procedure on the two sides of (0.19), we should arrive at an
equivalence of the corresponding triangulated categories:

fDb(̂gcrit-modnilp)
I,m ' fDb(D(FlG)-mod)I,m ×

Ñ
Ǧ
/Ǧ

Opnilp
ǧ
. (0.22)

However, using Bezrukavnikov’s result (see Theorem 6.8), the RHS of the above
expression can be rewritten as Db(QCoh(Spec(h0) × Opnilp

ǧ
)), where h0 is a finite-

dimensional commutative algebra isomorphic toH(Ǧ/B̌,C). The resulting descrip-
tion of fDb(̂gcrit-modnilp)

I,m is our Main Theorem 6.9. In fact, we show that at the
level of quotient categories by partially integrable objects, the equivalence holds not
only at the level of triangulated categories, but also at the level of abelian ones:

f ĝcrit-modI,mnilp ' QCoh(Spec(h0)× Opnilp
ǧ
).

We note that while we use [Bez] for motivational purposes, the proofs presented
in this paper are independent of the results of [Bez].

Our second main result is Theorem 8.17. We construct a natural functor from the
RHS of (0.14) to the LHS and prove that it is fully faithful at the level of derived
categories.

0.10

Let us now describe the structure of the paper. It is logically divided into five parts.
Part I is a review of results concerning opers and Miura opers.
In Part II we discuss various categories of representations of affine Kac–Moody

algebras at the critical level. We give more precise formulations of the conjectural
equivalences that we mentioned above and the interrelations between them. In par-
ticular, we prove one of our main results, Theorem 8.17.

In Part III we review Wakimoto modules. We present a definition of Wakimoto
modules by means of a kind of semi-infinite induction functor. We also describe
various important properties of these modules.

In Part IV we prove Main Theorem 6.9, which establishes a special case of our
conjectural equivalence of categories (0.17).
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Part V is an appendix, most of which is devoted to the formalism of group action
on categories.

Finally, a couple of comments on notation.
We will write X ×

Z
Y for the fiber product of schemes X and Y equipped with

morphisms to a schemeZ. To distinguish this notation from the notation for associated

fiber bundles, we will write Y
K× FK for the fiber bundle associated to a principal K-

bundle FK over some base, where K is an algebraic group and Y is a K-space. We
also denote this associated bundle by YFK .

If a groupG acts on a variety X, we denote by X/G the stack-theoretic quotient.
If X is affine, we denote by X//G the GIT quotient, i.e., the spectrum of the algebra
of invariant functions. We have a natural morphism X/G→ X//G.

Part I: Opers and Miura Opers

We this part we collect the definitions and results on opers and Miura opers. As a
mathematical object, opers first appeared in [DS], and their connection to represen-
tations of affine Kac–Moody algebras at the critical level was discovered in [FF3].

In Section 1 we recall the definition of opers following [BD1] and the explicit
description of the scheme classifying them as a certain affine space.

In Section 2 we study opers on the formal punctured disc with a prescribed form
of singularity at the closed point. After reviewing some material from [BD1], we
show that the subscheme of opers with regular singularities and a specific value of
the residue can be interpreted as a scheme of opers with nilpotent singularities, which
we denote by Opnilp

g . We show that the scheme Opnilp
g admits a natural secondary

residue map to the stack n/B ' Ñ/G.
In Section 3 we study Miura opers. The notion of Miura oper was introduced in

[F], following earlier work of Feigin and Frenkel. By definition, a Miura oper on
a curve X is an oper plus a reduction of the underlying G-local system to a Borel
subgroupB− opposite to the oper Borel subgroupB. The functor MOpg(X) of Miura
opers admits a certain open subfunctor, denoted by MOpg,gen(X), that corresponds
to generic Miura opers. The (D-) scheme classifying the latter is affine overX, and as
was shown in [F], it is isomorphic to the (D-) scheme of connections on some fixed
H -bundle over X, where H is the Cartan quotient of B.2 The new results in this
section are Proposition 3.10 which describes the forgetful map from generic Miura
opers to opers over the locus of opers with regular singularities and Theorem 3.16
which describes the behavior of Miura opers and generic Miura opers over Opnilp

g .
In Section 4 we introduce the isomonodromy groupoid over the ind-scheme

Opg(D
×) and its various subschemes. We recall the definition of Poisson struc-

ture on the space Opg(D
×) of opers on the formal punctured disc introduced in [DS].

2 The corresponding space of H -connections on the formal punctured disc and its map to
the space of opers were introduced in [DS] as the phase space of the generalized mKdV
hierarchy and the Miura transformation from this space to the phase space of the generalized
KdV hierarchy.
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Following [BD1] and [CHA], we interpret this Poisson structure as a structure of Lie
algebroid on the cotangent sheaf 	1(Opg(D

×)) and following [DS] we show that
it is isomorphic to the Lie algebroid of the isomonodromy groupoid on the space of
opers. The new results in this section concern the behavior of this algebroid along
the subscheme Opnilp

g .

1 Opers

1.1 Definition of opers

Throughout Part I (except in Section 1.11), we will assume thatG is a simple algebraic
group of adjoint type. LetB be a Borel subgroup andN = [B,B] its unipotent radical,
with the corresponding Lie algebras n ⊂ b ⊂ g. There is an open B-orbit O ⊂ g/b
consisting of vectors which are invariant with respect to the radicalN ⊂ B, and such
that all of their negative simple root components, with respect to the adjoint action
of H = B/N , are nonzero. This orbit may also be described as the B-orbit of the
sum of the projections of simple root generators fı of any nilpotent subalgebra n−,
which is in generic position with respect to b, onto g/b. The torus H = B/N acts
simply transitively on O, so O is an H -torsor. Note in addition that O is invariant
with respect to the action of Gm on g by dilations.

Let X be a smooth curve, or the formal disc D = Spec(Ô), where Ô is a one-
dimensional complete local ring, or the formal punctured disc D× = Spec(K̂), where
K̂ is the field of fractions of Ô. We will denote by ωX the canonical line bundle on
X; by a slight abuse of notation we will identify it with the corresponding Gm-torsor
on X.

Suppose we are given a principalG-bundle FG on X, together with a connection
∇ (automatically flat) and a reduction FB of FG to the Borel subgroup B of G.
Then we define the relative position of ∇ and FB (i.e., the failure of ∇ to preserve
FB ) as follows. Locally, choose any connection ∇′ on F preserving FB , and take
the difference ∇ − ∇′ ∈ gFG ' gFB . It is clear that the projection of ∇ − ∇′ to
(g/b)FB⊗ωX is independent of∇′; we will denote it by∇/FB . This (g/b)FB -valued
one-form on X is by definition the relative position of ∇ and FB .

Following Beilinson and Drinfeld (see [BD1, Section 3.1] and [BD2]), one defines
a g-oper on X to be a triple (FG,∇,FB), where FG is a principal G-bundle FG on
X, ∇ is a connection on FG, and FB is a B-reduction of FG such that the one-form
∇/FB takes values in

OFB,ωX := O
B×Gm× (FB × ωX) ⊂ (g/b)FB ⊗ ωX.

Consider the H -bundle ωρ̌X on X, induced from the line bundle ωX by means of
the homomorphism ρ̌ : Gm → H . (The latter is well defined, since G was assumed
to be of adjoint type.)

Lemma 1.2. For an oper (FG,∇,FB), the induced H -bundle FH := N\FB is

canonically isomorphic to ωρ̌X.
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Proof. We have to show that for every simple root αı : B → Gm, the line bundle
CαıFB is canonically isomorphic to ωX.

Decomposing ∇/FB with respect to negative simple roots, we obtain for every ı
a nonvanishing section of the line bundle

C−αı
FB

⊗ ωX.
This provides the required identification. )�

Here is an equivalent way to think about opers. Let us choose a trivialization of
the B-bundle FB , and let ∇0 be the tautological connection on it. Then an oper is
given by a connection ∇ of the form

∇ = ∇0 +
∑
ı

φı · fı + q, (1.1)

where each φı is a nowhere vanishing one-form onX, and q is a b-valued one-form. If
we change the trivialization of FB by g : X→ B, the connection will get transformed
by the corresponding gauge transformation:

∇ �→ Adg(∇) := ∇0 + Adg

(∑
ı

φı · fı + q

)
− g−1 · d(g). (1.2)

The following will be established in the course of the proof of Proposition 1.6.

Lemma 1.3. If Adg(∇) = ∇, then g = 1.

In a similar way one defines the notion of an R-family of opers on X, where R
is an arbitrary commutative C-algebra. We shall denote this functor by Opg(X). For
X = D (respectively, X = D×) some extra care is needed when one defines the
notion of R-family of bundles. To simplify the notation we will choose a coordinate
t on D, thereby identifying Ô ' C[[t]] and K̂ ' C((t)). Although this choice of the
coordinate trivializesωX by means of dt , we will keep track of the distinction between
functions and forms by denoting the Ô-module ωD (respectively, the K̂-vector space
ωD× ) by by C[[t]]dt (respectively, C((t))dt).

By definition, anR-family ofG-bundles onX = D is aG-bundle on Spec(R[[t]]),
or what is the same, a compatible family ofG-bundles on Spec(R[t]/ti); such a family
is always locally trivial in the étale topology on Spec(R).

AnR-family ofG-bundles on D× is aG-bundle on Spec(R((t))), which we require
to be locally trivial in the étale topology in Spec(R).

Connections on the trivialR-family ofG-bundles on D and D× are expressions of
the form∇0+φ, where φ is an element of g⊗R[[t]]dt and g⊗R((t))dt , respectively.
Gauge transformations are elements of G(R[[t]]) and G(R((t))), respectively, and
they act on connections by the formula (1.2).

Thus Opg(D) and Opg(D
×) are well defined as functors on the category of C-

algebras. Following [BD1, Section 3.1.10], we will prove below that these functors
are representable by a scheme and ind-scheme, respectively.
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1.4 D-scheme picture

WhenX is a curve of finite type, a natural way to think of g-opers onX is in terms of
D-schemes. (We refer the reader to [CHA, Section 2.3] for the general discussion of
D-schemes, and to [CHA, Section 2.6.8] for the discussion of opers in this context.)

Namely, let us notice that the notion of R-family of g-opers on X makes sense
when R is a DX-algebra, i.e., a quasi-coherent sheaf of algebras over X, endowed
with a connection.

Repeating the argument of Proposition 1.6 (see below), one obtains that the above
functor on the category of DX-algebras is representable; the corresponding affine
DX-scheme, denoted Opg(X)

D, is isomorphic to the DX-scheme of jets into a finite-
dimensional vector space.

By definition, for a C-algebra R we have

Opg(X)(R) ' HomDX
(Spec(R ⊗ OX),Opg(X)

D). (1.3)

If D is the formal neighborhood of a point x ∈ X with a local coordinate t , the
functors Opg(D) and Opg(D

×) are reconstructed as

R �→ HomDX

(
Spec(R[[t]]),Opg(X)

D
)

and

R �→ HomDX

(
Spec (R((t))) ,Opg(X)

D
)
,

(1.4)

respectively.
In addition, one also has an isomorphism between the scheme Opg(D) and the

fiber of Opg(X)
D, regarded as a mere scheme over X, at x ∈ X.

1.5 Explicit description and canonical representatives

To analyze opers on D× (respectively, D) more explicitly we will continue to use
an identification O ' C[[t]], and we will think of opers as equivalence classes of
connections of the form

∇ = ∇0 +
∑
ı

φı(t)dt · fı + q(t)dt, (1.5)

where now φı and q are elements of R((t)) and b ⊗ R((t)) (respectively, R[[t]] and
b⊗ R[[t]]), such that each φı is invertible. Two such connections are equivalent, if
they can be conjugated one into another by a gauge transformation by an element of
Hom(Spec(R((t))), B) (respectively, Hom(Spec(R[[t]]), B)).

Let us observe that sinceH ' B/N acts simply-transitively on O, any connection
as above can be brought to the form in which all the functions φı(t) are equal to 1.
Moreover, this can be done uniquely, up to a gauge transformation by means of
Hom(Spec(R((t)), N).

The operator ad ρ̌ defines the principal grading on b, with respect to which we
have a direct sum decomposition b = ⊕

d≥0
bd . Set
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p−1 =
∑
ı

fı;

we shall call this element the negative principal nilpotent.
Let p1 be the unique element of n such that {p−1, 2ρ̌, p1} is an sl2-triple. Let

Vcan = ⊕
d>0
Vcan,d be the space of ad p1-invariants in n. The operator ad p−1 acts

from bd+1 to bd injectively for all d ≥ 0, and we have bd = [p−1, bd+1] ⊕ Vcan,d .
We will call the Gm-action on Vcan, resulting from the above grading, “principal.’’

We will call the Gm-action on Vcan, obtained by multiplying the principal one by the
standard character, “canonical.’’ Recall that by a theorem of Kostant, the map

Vcan
c �→p−1+c−→ g → g//G ' h//W (1.6)

is an isomorphism. This map is compatible with the canonical Gm-action on Vcan
and the action on h//W , induced by the standard Gm-action on h.

Proposition 1.6 ([DS]). The gauge action of Hom(Spec(R((t))), B) on the set of con-
nections of the form (1.5) is free. Each gauge equivalence class contains a unique
representative of the form

∇ = ∇0 + p−1dt + v(t)dt, v(t) ∈ Vcan ⊗ R((t)). (1.7)

As we shall see, the same assertion with the same proof is valid if we replace
R((t)) byR[[t]]. In what follows we will refer to (1.7) as the canonical representative
of an oper.

Proof. We already know that we can bring a connection (1.5) to the form

∇0 + p−1dt + q(t)dt,

uniquely up to an element in Hom(Spec(R((t))), N). We need to show now that there
exists a unique element u(t) ∈ n⊗ R((t)) such that

Adexp(u(t))

(
∇0 + p−1dt + q(t)dt

)
= ∇0 + p−1dt + v(t)dt,

v(t) ∈ Vcan ⊗ R((t)).
Let us now decompose the unknown element u(t) as

∑
d

ud(t), where

ud(t) ∈ nd ⊗ R((t)), and we claim that we can find the elements ud(t) by induc-
tion d. Indeed, let us assume that qd ′ ∈ Vcan,d ′ for d ′ < d. Then ud+1(t) must
satisfy

[ud+1(t), p−1] + qd(t) ∈ Vcan,d ,

and this indeed has a unique solution. )�
Corollary 1.7. The set of R-families of opers on D and D× is isomorphic to
Vcan ⊗ R[[t]] and Vcan ⊗ R((t)), respectively. In particular, the functor Opg(D)

(respectively, Opg(D
×)) is representable by the scheme (respectively, ind-scheme),

isomorphic to Vcan[[t]] (respectively, Vcan((t))).
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We should note, however, that the isomorphisms Opg(D) ' Vcan[[t]] and
Opg(D

×) ' Vcan((t)) are not canonical, since they depend on the choice of the
coordinate t on D.

By the very definition, on the scheme

Opg(D)×̂D := Spec(Fun Opg(D))[[t]]
there exists a universalG-bundle FG,Opg(D)with a reduction to aB-bundle FB,Opg(D)

and a connection ∇Opg(D) in the D-direction such that the triple

(FG,Opg(D),∇Opg(D),FB,Opg(D))

is an Opg(D)-family of g-opers on D. By the above, when we identify Ô ' C[[t]],
theG-bundle FB,Opg(D), and hence FG,Opg(D), becomes trivialized. But this trivial-
ization depends on the choice of the coordinate.

In what follows we will denote by PG,Opg(D) (respectively, PB,Opg(D)) the
restriction of FG,Opg(D) (respectively, FB,Opg(D)) to the subscheme Opg(D) ⊂
Opg(D)×̂D, corresponding to the closed point of D. Note that PG,Opg(D) can also
be defined as the torsor of horizontal, with respect to the connection along D, sections
of FG,Opg(D).

1.8 Action of Aut(D)

Let Aut(D) (respectively, Aut(D×)) be the group scheme (respectively, group ind-
scheme) of automorphisms of D (respectively, D×).3 Since Opg(D) (respectively,
Opg(D

×)) is canonically attached to D (respectively, D×), it carries an action of
Aut(D) (respectively, Aut(D×)); see Section 19.2 for the definition of the latter
notion.

By transport of structure, the action of Aut(D)on Opg(D)×̂D lifts ontoFG,Opg(D)

and FB,Opg(D). The interpretation of PG,Opg(D) as the space of horizontal sections of
FG,Opg(D) implies that the action of Aut(D) on Opg(D) lifts also onto the G-torsor
PG,Opg(D).

To a choice of a coordinate t on D there corresponds a homomorphism Gm →
Aut(D) that acts by the “loop rotation,’’ i.e., t �→ c · t . We shall now describe the
resulting action of Gm on Opg(D

×) in terms of the isomorphism of Corollary 1.7.

Lemma 1.9.

(1) The trivialization PG,Opg(D) ' G×Opg(D) corresponding to the given choice of
a coordinate is compatible with the Gm-action, via the homomorphism ρ̌ : Gm →
G.

(2) The action of c ∈ Gm on

Opg(D
×) ' Vcan((t)) ' ⊕

d
Vcan,d ((t))

3 Note that Aut(D) is not reduced; see [BD1, Section 2.6.5].
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is given by
vd(t) ∈ Vcan,d ((t)) �→ cd+1 · vd(c · t).

Proof. By definition, the action of c ∈ Gm on a connection in the form (1.7) trans-
forms it to

∇0 + p−1d(c · t)+ v(c · t)d(c · t) = ∇0 + c · p−1dt + c · v(c · t)dt. (1.8)

In order to bring it back to the form (1.7), we need to apply a gauge transformation by
means of the constant H -valued function ρ̌(c). This implies point (1) of the lemma.

This gauge transformation transforms (1.8) to

∇0 + p−1dt + c · Adρ̌(c)(v(c · t))dt.
This implies point (2) of the lemma, since Adρ̌(c)(vd(c · t)) = cd · vd(c · t). )�

1.10 Quasi-classics: The Hitchin space

Recall that the Hitchin space Hitchg(X) corresponding to the Lie algebra g and a
curve X is a functor on the category of algebras that attaches to R the set of sections
of the pull-back to Spec(R)×X of the fiber bundle

(h//W)
Gm× ωX,

where h//W := Spec (Sym(h∗)W ) ' Spec (Sym(g∗)G) is endowed with canonical
action of Gm.

When X = D or X = D×, in the above definition we replace Spec(R) × X by
Spec(R[[t]]) and Spec (R((t))), respectively.

For X = D the Hitchin space is a scheme, isomorphic to ⊕
d
Vcan,d ⊗ ω⊗d+1

D .

For X = D× this is an ind-scheme, isomorphic to ⊕
d
Vcan,d ⊗ ω⊗d+1

D× . In particu-

lar, Hitchg(D) (respectively, Hitchg(D
×)) has a natural structure of group scheme

(respectively, group ind-scheme).
According to [BD1, Section 2.4.1], the natural map

Spec(Sym(ǧ((t))/ǧ[[t]])ǧ[[t]])→ Hitchg(D)

is an isomorphism, where ǧ is the Langlands dual Lie algebra. This implies that
the maps

Fun
(
Hitchg(D

×)
)→

⎛⎝lim←−
k

Sym
(
ǧ((t))/tk · ǧ[[t]]

)⎞⎠ǧ((t))

→ lim←−
k

Sym
(
ǧ((t))/tk · ǧ[[t]]

)ǧ[[t]]
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are also isomorphisms.
By Proposition 1.6 the scheme Opg(D) (respectively, Opg(D

×)) is noncanoni-
cally isomorphic to Hitchg(D) (respectively, Hitchg(D

×)). However, one can deduce
from the proof (see [BD1, Section 3.10.11]) that Opg(D) (respectively, Opg(D

×)) is
canonically a torsor over Hitchg(D) (respectively, Hitchg(D

×)).
In particular, the algebra Fun(Opg(D)) acquires a filtration, whose associated

graded is Fun(Hitchg(D)). This filtration can also be defined as follows; see [BD1,
Section 3.11.14]:

We claim that there exists a flat Gm-equivariant family of schemes over A1 '
Spec(C[�]), whose fiber over 1 ∈ A1 is Opg(D), and whose fiber over 0 ∈ A1 is
Hitchg(D).

Indeed, this family is obtained from Opg(D) by replacing the word “connection’’
by “�-connection.’’ The identification at the special fiber results from Kostant’s
theorem that the adjoint action ofB on the preimage of O in g is free, and the quotient
projects isomorphically onto h//W .

1.11 The case of groups of nonadjoint type

In the rest of the paper we will have to consider the case when the group G is not
necessarily of adjoint type. Let Z(G) be the center of G.

The notion of R-family of G-opers in this case is formally the same as in the
adjoint case, i.e., a triple (FG,∇,FB), where FG is an R-family of G-bundle on X,
FB is its reduction to B, and ∇ is a connection on FG in the X-direction, which
satisfies the same condition on ∇/FB .

We will denote the functor of R-families of G-opers on X by OpG(X). The dif-
ference from the adjoint case is that now OpG(D) is not representable by a scheme,
but rather by a Deligne–Mumford stack, which is noncanonically isomorphic to
Opg(D)× pt /Z(G); see [BD1, Section 3.4].

The following statement, established in [BD1, Section 3.4], will suffice for our
purposes.

Lemma 1.12. Every choice of the square root ω
1
2
X of the canonical bundle gives a

map of functors Opg(X)→ OpG(X).

In particular, the lemma implies that for every choice of a square root ofωD, there
exists a canonically defined family of G-opers over Opg(D). A similar statement
holds for D replaced by D×.

Proof. One only has to show how to lift the B/Z(G)-bundle FB/Z(G) to a B-bundle.
This is equivalent to lifting the H -bundle FH/Z(G) to an H -bundle FH .

We set FH to be the bundle induced by means of the homomorphism 2ρ̌ : Gm →
H from the line bundle ω

1
2
X. By Lemma 1.2, it satisfies our requirement. )�
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2 Opers with singularities

2.1

For X a curve of finite type over C we shall fix x ∈ X to be any closed point. For
X = D, we let x to be the unique closed point of Spec(C[[t]]). We shall now define
the notion of g-oper on X with singularity of order k at x.

By definition, this is a triple (FG,∇,FB), where (FG,FB) are as in the definition
of opers, but the connection ∇ on FG is required to have a pole of order k such that

(∇ − ∇′)mod bFB ⊗ ωX(k · x) ∈ OFB,ωX(k·x) ⊂ (g/b)FB ⊗ ωX(k · x), (2.1)

for any regular connection ∇′ on FG that preserves FB .
Again, if we trivialize FB and choose a coordinate t near x, the set of opers with

singularity of order k at x identifies with the set of equivalence classes of connections
of the form

∇0 + t−k
(∑

ı

φı(t)dt · fı + q(t)dt

)
, (2.2)

where φı(t) are nowhere vanishing functions on X, and q(t) is a b-valued function.
Two such connections are equivalent if they are conjugate by means of an element of
Hom(X,B). Equivalently, opers with singularity of order k at x comprise the set of
Hom(X,N)-equivalence classes of connections of the form

∇0 + t−k (p−1dt + q(t)dt)

for q(t) as above.
As in Lemma 1.2 one has the following.

Lemma 2.2. For (FG,∇,FB)-an oper on X with singularity of order k at x, the
H -bundle FH = N\FB is canonically isomorphic to (ωX(x))ρ̌ .

One defines the notion of R-family of opers on X with singularity of order k at x
in a straightforward way. The corresponding functor on the category of R-algebras
will be denoted Opordk

g (X). We will be mainly concerned with the case whenX = D;
if no confusion is likely to occur, we will denote the corresponding functor simply by
Opordk

g . We have an evident morphism of functors Opordk
g → Opg(D

×), and below

we will see (see Corollary 2.7) that Opordk
g is a representable by a closed subscheme

of Opg(D
×). Note that for k = 0 we recover Opg(D), and we will often use the

notation Opreg
g for it.

As in the case of usual opers, there exists a naturally defined functor Opordk
g (X)D

on the category of DX-algebras. The functors Opordk
g (X) and Opordk

g are recon-
structed by the analogues of (1.3) and (1.4), respectively. Corollary 2.7 implies that
Opordk

g (X)D is representable by an affine DX-scheme, which over the curve (X− x)
is isomorphic to Opg(X)

D.
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2.3 Changing k

Proposition 2.4 ([BD1], 4.3). For every k there is a natural morphism of functors

Opordk
g → Opordk+1

g . We have

Opg(D
×) ' lim−→

k

Opordk
g .

Proof. Given a triple (FG,∇,FB) ∈ Opordk
g (R), we define the corresponding

(F′G,∇′,F′B) ∈ Opordk+1
g (R)

as follows:
Let us choose (locally) a trivialization of FB , and let us apply the gauge transfor-

mation by means of t ρ̌ ∈ H((t)), where t is any uniformizer on D. We thus obtain a
different extension of FB from D× to D, and let it be our F′B . It is clear that F′B is
independent of both the choice of the trivialization and the coordinate.

Let F′G be the induced G-bundle, and ∇′ the resulting meromorphic connection
on it. By (1.2), ∇′ has the form required by the (2.2).

Now let (FG,∇,FB) be an R-point of Opg(D
×), represented as a gauge equiv-

alence class of some connection written in the form (1.5), φı(t) ∈ (R((t)))×.
Consider the R-point of H((t)) equal to (

∏
ı

(ω̌ı)(φı))
−1 · tk·ρ̌ , where each ω̌ı is

regarded as a homomorphism Gm → H . It is clear from (1.2) that for k large enough,
the resulting connection will be of the form (2.2). )�

2.5 Description in terms of canonical representatives

By repeating the proof of Proposition 1.6, we obtain the following.

Lemma 2.6. For every R-point of Opordk
g , the canonical form of its image in

Opg(D
×)(R) is such that each homogeneous component vd(t) has a pole in t of

order ≤ k · (d + 1).

Corollary 2.7. The morphisms of functors Opordk
g → Opordk+1

g and Opordk
g →

Opg(D
×) are closed embeddings. The latter identifies with the subscheme

⊕
d
t−k·(d+1) · Vcan,d [[t]] ⊂ Vcan,d ((t)).

Proof. Evidently, given a point of Opg(D
×), written in the canonical form (1.7) such

that tk·(d+1) · vd(t) ∈ Vcan,d [[t]], by applying the gauge transformation by means of
tk·ρ̌ , we bring it to the form (2.2). Thus we obtain the maps

Opordk
g � ⊕

d
t−k·(d+1) · Vcan,d [[t]].

Finally, by induction on d it is easy to see that if some g ∈ B((t))(R) conjugates an
R-point of Opordk

g to another point of Opordk
g , then g ∈ B[[t]](R). )�
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Recall the ind-scheme Hitchg(D
×), and let us denote by Hitchordk

g its subscheme

corresponding to sections of (h//W)
Gm× ωD(k · x). This is a scheme, canonically

isomorphic to⊕
d
Vcan,d⊗(ωD(k ·x))⊗d+1, which gives it a structure of group scheme.

Evidently, Hitchg(D
×) is isomorphic to lim−→

k

Hitchordk
g . We also have an isomorphism:

Fun(Hitchordk
g ) ' Sym

(
ǧ((t))/tk · ǧ[[t]]

)ǧ[[t]]
.

As in the case of k = 0, the scheme Hitchordk
g acts simply transitively on Opordk

g .
Moreover,

Opordk
g ' Opg(D)

Hitchg(D)× Hitchordk
g .

This defines a filtration on the algebra Fun(Opordk
g ), whose associated graded is

Fun(Hitchordk
g ). This filtration can be alternatively described by the deformation

procedure mentioned at the end of Section 1.10.

2.8 Opers with regular singularities

In the context of the previous subsection let us set k = 1, in which case we will
replace the superscript ord1 by RS, and call the resulting scheme OpRS

g “the scheme of
opers with regular singularities.’’ The terminology is partly justified by the following
assertion, which will be proved in the next section.

Proposition 2.9. If a C-point (FG,∇,FB) of Opg(D
×) has regular singularities as

a G-bundle with connection, then it belongs to OpRS
g .

We claim now that there exists a canonical map ResRS : OpRS
g → h//W ; see

[BD1, Section 3.8.11]:
Recall first that if (FG,∇) is an R-family of G-bundles on X with a connection

that has a pole of order 1 at x, its residue (or polar part) is well defined as a section
of gPG , where PG is the restriction of FG to Spec(R)× x ⊂ Spec(R)×X. In other
words, we obtain an R-point of the stack g/G.

Given an R-point (FG,∇,FB) ∈ OpRS
g , we compose the above map with

g/Ad(G)→ h//W . The resulting map Spec(R)→ h//W is the map ResRS.
Explicitly, to a connection written as

∇0 + t−1

(∑
ı

φı(t)dt · fı + q(t)dt

)
, (2.3)

we attach the projection to h//W of the element �
ı
φı(0) · fı + q(0).

Let # denote the tautological projection h → h//W . For λ̌ ∈ h we will denote

by OpRS,#(λ̌)
g the preimage under ResRS of the point#(λ̌) ∈ h//W . From the proof
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of Proposition 2.4 for k = 0 we obtain that the subscheme Opg(D) =: Opreg
g ⊂ OpRS

g

is contained in OpRS,#(−ρ̌)
g .

Let us now describe the map ResRS in terms of the isomorphism of Corollary 2.7.

Lemma 2.10. The composition

⊕
d
t−d−1 · Vcan,d [[t]] ' OpRS

g
ResRS→ h//W

equals the map

⊕
d
t−d−1 · Vcan,d [[t]] → ⊕

d
Vcan,d ' Vcan ' h//W,

where the last arrow is given by (1.6), and the first arrow is defined as follows:

• For d �= 1, this is the projection on the top polar part.
• For d = 1, this is the projection on the top polar part, followed by the affine shift

by p1
4 .

Proof. By the proof of Proposition 1.6, we have to check that for any v′ ∈ ⊕
d �=1
Vcan,d

and v′′ ∈ Vcan,1, the elements of g given by p−1+v′ +v′′ − ρ̌ and p−1+v′ +v′′ + p1
4

project to the same element of h//W . However, this follows from the fact that exp(p1
2 )

conjugates one to the other. )�

Corollary 2.11. Under the isomorphism of Corollary 2.7 the subscheme Op#(−ρ̌)g ⊂
OpRS

g identifies with

⊕
d
t−d · Vcan,d [[t]] ⊂ ⊕

d
t−d−1 · Vcan,d [[t]].

Of course, as in the case of Corollary 2.7, the isomorphism

Op#(−ρ̌)g ' ⊕
d
t−d · Vcan,d [[t]]

depends on the choice of the coordinate t . Canonically, Op#(−ρ̌)g can be described in
terms of the Hitchin space as follows.

Let us denote Hitchord1
g by HitchRS

g , and let us note that we have a natural ho-

momorphism HitchRS
g → Vcan. Let Hitchnilp

g ⊂ HitchRS
g be the preimage of 0. The

algebra of functions on Hitchnilp
g also admits the description (see [F, Lemma 9.4])

Fun(Hitchnilp
g ) ' Sym

(
ǧ((t)))/Lie(Ǐ )

)Ǐ
,

where Ǐ ⊂ Ǧ[[t]] is the Iwahori subgroup.
We have
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Op#(−ρ̌)g ' Opg(D)
Hitchg(D)× Hitchnilp

g .

Now consider the gradings on the algebras Fun(Opordk
g ), Fun(OpRS

g ), and

Fun(Op#(−ρ̌)g ), coming from Gm → Aut(D), corresponding to some choice of a
coordinate t on D. From Lemma 1.9, we obtain the following.

Lemma 2.12.

(1) The algebra Fun(OpRS
g ) is nonpositively graded. The subalgebra consisting of

degree 0 elements is identified with Fun(h//W) under the map ResRS.
(2) For every k ≥ 2, the ideal of Fun(Opordk

g )→ Fun(OpRS
g ) is freely generated by

finitely many elements each having a positive degree.

(3) The algebra Fun(Op#(−ρ̌)g ) is freely generated by elements of strictly negative
degrees.

2.13 Opers with nilpotent singularities

Let X and x be as above. We define a g-oper on X with a nilpotent singularity at x
to be a triple (FG,∇,FB), where (FG,FB) are as in the definition of opers, and the
connection∇ has a pole of order 1 at x such that for some (or any) regular connection
∇′ that preserves B, we have the following:

(i) (∇ −∇′), which a priori is an element of gFG ⊗ωX(x), is, in fact, contained in
bFB ⊗ ωX(x) + gFG ⊗ ωX ⊂ gFG ⊗ ωX(x). Once this condition is satisfied,
we impose the following two:

(ii) (∇−∇′)mod gFG⊗ωX, which is an element of bPB ' bFB⊗ωX(x)/bFB⊗ωX,
must be contained in nPB ⊂ bPB , where PB is the fiber of FB at x.

(iii) (∇ − ∇′)mod bFB ⊗ ωX(x), which is a section of (g/b)FB ⊗ ωX, must be
contained in OFB,ωX ⊂ (g/b)FB ⊗ ωX.

In other words, we are looking at gauge equivalence classes with respect to
Hom(X,B) of connections of the form

∇0 +
∑
ı

φı · fı + q, (2.4)

where φı are as in (1.1), and q is a b-valued one-form on X with a pole of order 1 at
x, whose residue belongs to n.

This definition makes sense forR-families, so we obtain a functor on the category
of C-algebras, which we will denote by Opnilp

g (X). For X = D we will denote the

corresponding functor simply by Opnilp
g .

As in the previous cases, one can define the functor Opnilp
g (X)D on the category

of DX-algebras. Once we prove its representability (see below), this functor will
be related to Opnilp

g (X), Opnilp
g and Opg(D

×) in the same way as in the case of

OpRS
g (X)

D.
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2.14

We have an evident morphism of functors Opnilp
g → Opg(D

×).

Theorem 2.15. The above map is a closed embedding of functors, and an isomor-

phism onto OpRS,#(−ρ̌)
g .

Since the assertion is local, a similar statement holds for any pair (X, x). Be-
fore proving this theorem let us make the following observation, which implies in
particular that the map in question is injective at the level of C-points.

Let (FG,∇,FB) be a C-point of Opg(D
×), and let us first regard it as a G-local

system on D×. Recall that if a local system (FG,∇) on D× admits an extension to
a bundle on D with a meromorphic connection with a pole of order 1 and nilpotent
residue, then such extension is unique; we will refer to it as Deligne’s extension.4

Thus a necessary condition for (FG,∇,FB) to come from Opnilp
g is that it admits

such an extension. Since the flag variety G/B is compact, the B-bundle FB , which
is a priori defined on D×, admits a unique extension to D, compatible with the above
extension of FG.

Having fixed this extension, our point comes from Opnilp
g if and only if conditions

(i) and (iii) from the definition of opers with nilpotent singularities hold (condition
(ii) is automatic from (i) and the nilpotency assumption on the residue).

2.16 Proof of Theorem 2.15

To an oper with nilpotent singularities, written in the form

∇0 +
∑
ı

φı(t)dt · fı + q(t)
t
dt, (2.5)

φı(t) ∈ (R[[t]])×, q(t) ∈ b ⊗ R[[t]] with q(0) ∈ n ⊗ R, we associate a point of
OpRS,#(−ρ̌)

g by applying the gauge transformation by means of t ρ̌ .
The gauge action of B[[t]](R) on connections of the form (2.5) gets trans-

formed into the gauge action on connections with regular singularities by means
of Adt ρ̌ (B[[t]])(R), which is a subgroup of B[[t]]. This shows that the map

Opnilp
g → Opg(D

×) factors through OpRS,#(−ρ̌)
g .

To prove the theorem we must show that any connection written as

∇ = ∇0 + p−1 − ρ̌ + q(t)
t

dt, (2.6)

with q(t) ∈ b[[t]] such that the image of p−1 − ρ̌ + q(0) in h//W equals #(−ρ̌)
can be conjugated by means of N [[t]] into a connection of similar form such that
t−d · qd(t) ∈ bd [[t]], uniquely up to Adt ρ̌ (N [[t]]).

4 Such an extension exists if and only if (FG,∇) has regular singularities, and when regarded
analytically, has unipotent monodromy.
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Note first of all that, by applying a gauge transformation by means of a constant
loop into N , we can assume that q(0) = 0. By induction on d we will prove the
following statement:

Every connection as in (2.6) can be conjugated by means of N [[t]] to one which
satisfies

t−d ′ · qd ′(t) ∈ bd ′ [[t]] for d ′ ≤ d, (2.7)

and t−d · qd ′′(t) ∈ bd ′′ [[t]] for d ′′ ≥ d .
By the above, the statement holds for d = 1. To perform the induction step we

will again use a descending inductive argument. We assume that ∇ satisfies (2.7),
and that for some k ≥ d + 1,

t−d−1 · qk′(t) ∈ bk′ [[t]] for k′ satisfying k′ > k

and

t−d · qk′′(t) ∈ bk′′ [[t]] for d + 1 ≤ k′′ ≤ k.

We will show how to modify∇ so that it continues to satisfy (2.7), and, in addition,

t−d−1 · qk′(t) ∈ bk′ [[t]] for k′ satisfying k′ ≥ k

and

t−d · qk′′(t) ∈ bk′′ [[t]] for d + 1 ≤ k′′ < k.

Namely, we will replace ∇ by

∇′ := Adexp(td ·uk)(∇) = ∇0 + p−1 − ρ̌ + q′(t)
t

dt

for a certain element uk ∈ bk .
For any such uk the conditions involving q′

k′(t) for k′ with either k′ < k or k′ > k
hold automatically. The condition on q′k(t) reads as follows:

−d · uk + [uk,−ρ̌] = −t−dqk(t)mod t. (2.8)

However, [uk,−ρ̌] = k · uk , and since k > d the above condition is indeed solvable
uniquely.

This finishes the proof of the fact that any connection as in (2.6) can be conjugated
by means of N [[t]] to one satisfying t−d · qd(t) ∈ bd [[t]]. The uniqueness of the
solution of (2.8) implies that the conjugation is unique modulo Adt ρ̌ (N [[t]]). Thus
the proof of Theorem 2.15 is complete. Let us note that the same argument proves
the following generalization.
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Proposition 2.17. Let λ̌ be an antidominant coweight. Then the data of an R-point
of OpRS,#(λ−ρ)

g are equivalent to the data of B[[t]]-conjugacy class of connections
of the form

∇0 +
∑
ı

φı(t)dt · fı + q(t)
t
dt,

where φı(t) are as in (2.5), and q(t) ∈ b⊗ R[[t]] is such that q(0)mod n = λ̌.

2.18 The secondary residue map

Note that by definition the scheme Opnilp
g ×̂D carries a universal oper with nilpotent

singularities. Let us denote by P
G,Opnilp

g
(respectively, P

B,Opnilp
g

) the resulting G-

bundle (respectively, B-bundle) on Opnilp
g . In particular, we obtain a map Opnilp

g →
pt /B.

By taking the residue of the connection (see Section 2.8), we obtain a map from
Opnilp

g to the stack n/B, where B acts on n by means of the adjoint action; we will
denote this map by Resnilp.

Lemma 2.19.

(1) The map Resnilp is smooth. Moreover, the B-scheme n ×
n/B

Opnilp
g can be repre-

sented as a product of an infinite-dimensional affine space by a finite-dimensional
variety with a free action of B.

(2) We have a natural identification:

pt /B ×
n/B

Opnilp
g ' pt /B ×

pt /G
Opreg
G ,

where pt /B → n/B corresponds to 0 ∈ n, and the map Opreg
g := Opg(D) →

pt /G is given by PG,Opg(D).

Proof. The second point of the lemma results from the definitions. To prove the first
point, note that n ×

n/B
Opnilp

g identifies with the quotient of the space of connections

of the form (2.5) by gauge transformations by means of B(C[[t]]). As in the proof of
Proposition 1.6, we obtain that any such connection can be uniquely, up to the action
of B(tC[[t]]), brought into the form

∇0 +
(∑

ı

aı · fı + q′

t
+ q′′ + t · v(t)

)
dt,

where 0 �= aı ∈ C, q′ ∈ n, q′′ ∈ b and v(t) ∈ Vcan[[t]]. This scheme projects onto
the variety of expressions of the form∑

ı

aı · fı + q′

t
+ q′′,

on which B acts freely. )�



Local geometric Langlands correspondence and affine Kac–Moody algebras 99

2.20 Opers with an integral residue

For completeness, we shall now give a description of the scheme OpRS,#(−λ̌−ρ̌)
g

when λ̌ is an integral coweight with λ̌ + ρ̌ dominant, similar to the one given by
Theorem 2.15 in the case when λ̌ = 0.

Let J be the subset of the set I of vertices of the Dynkin diagram, corresponding
to those simple roots, for which 〈αj , λ̌〉 = −1. Let pJ ⊂ g be the corresponding
standard parabolic subalgebra, nJ ⊂ n its unipotent radical, and mJ the Levi factor.

We introduce the notion of oper with λ̌-nilpotent singularity to be a triple
(FG,∇,FB) as in the definition of nilpotent opers, where conditions (i)–(iii) are
replaced by the following ones:

(i) (∇ − ∇′)mod bFB ⊗ ωX(x), which is a section of (g/b)FB ⊗ ωX(x), must be

contained in OFB

Gm× ω
ρ̌
X(−λ̌ · x).

(ii) Res(∇) := (∇ − ∇′)mod gFG ⊗ ωX, which is a priori an element of gPB , is
contained in (pJ)PB .

(iii) The image of Res(∇) under (pJ)PB → (mJ)PB is nilpotent.

As in the case of λ̌ = 0, this definition makes sense for R-families, where R

is a C-algebra or a DX-algebra. We will denote by Opλ̌,nilp
g the resulting functor

for X = D. Explicitly, an R-point of Opλ̌,nilp
g is a B[[t]](R)-equivalence class of

connections of the form

∇0 +
∑
ı

t 〈αı ,λ̌〉 · φı(t)dt · fı + q(t)
t
dt, (2.9)

where φı(t) and q(t) are as in (2.5), subject to the condition that the element∑
j∈J

φj (0)+ q(0)mod nJ ∈ mJ

be nilpotent.

As in the case of λ̌ = 0, there exists a natural map of functors Opλ̌,nilp
g →

Opg(D
×).

Theorem 2.21. The above map is an isomorphism onto the subscheme OpRS,#(−λ̌−ρ̌)
g .

The proof of this theorem repeats that of Theorem 2.15, where instead of the
principal grading on n we use the one defined by the adjoint action of λ̌+ ρ̌.

Consider the subvariety of pI, denoted OJ, consisting of elements of the form∑
j∈J

cj · fj + q, cj �= 0, q ∈ b,

that are nilpotent. We have a natural action of B on OJ.
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As in the case of nilpotent opers, i.e, λ̌ = 0, there exists a natural smooth map

Resλ̌,nilp : Opλ̌,nilp
g → OJ/B,

obtained by taking the polar part of a connection as in (2.9).
Finally, let us consider the case when λ̌ itself is dominant. In this case J = ∅,

and OJ = n. Let us denote by Opλ̌,reg
g the preimage of pt /B ⊂ n/B under the map

Resλ̌,nilp, where pt → n corresonds to the point 0.

The scheme Opλ̌,reg
g is the scheme of λ̌-opers introduced earlier by Beilinson and

Drinfeld. As in the case of Opλ̌,nilp
g , we have the notion of (an R-family of) regular

λ̌-opers over any curve. By definition, this is a triple (FG,∇,FB), where FG and ∇
are a principal G-bundle and a connection on it, defined on the entire X, and FB is
a reduction of FG to B, such that ∇/FB , as a section of (g/b)FB ⊗ ωX, belongs to

OFB

Gm× ω
ρ̌
X(−λ̌ · x).

3 Miura opers

3.1

Ler R be a DX-algebra. Let us fix once and for all another Borel subgroup B− of
G which is in generic relative position with B. The definition of Miura opers given
below usesB−. However, the resulting scheme of Miura opers is defined canonically
and is independent of this choice.

Following [F, Section 10.3], one defines a Miura oper over R to be a quadruple

(FG,∇,FB,FB−),

where

• (FG,∇,FB) are as in the definition of opers, i.e., (FG,FB) is a G-bundle on
Spec(R) with a reduction to B, and ∇ is a connection on FG along X such that
∇/FB ∈ OFB,ωX ;

• FB− is a reduction of FG to the opposite Borel subgroup B− which is preserved
by the connection ∇.

We will denote the functor of Miura opers on the category of DX-algebras by
MOpg(X)

D, and the resulting functor on the category of C-algebras by MOpg(X), i.e.,

MOpg(X)(R) := MOpg(X)
D(R ⊗ OX).

Lemma 3.2. The functor MOpg(X)
D is representable by a DX-scheme.
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Proof. Since the functor Opg(X)
D is known to be representable, it suffices to show

that the morphism MOpg(X)
D → Opg(X)

D is representable as well.
Consider another functor on the category of DX-algebras that associates to R the

set of quadruples (FG,∇,FB,FB−), but without the condition that FB− be compatible
with the connection. The latter functor is clearly representable over Opg(X)

D, and
it contains MOpg(X)

D as a closed subfunctor. )�
We will denote by MOpg(D) or MOpreg

g the resulting scheme of Miura opers over
D. Note, however, that since the flag variety G/B− is nonaffine, the DX-scheme
MOpg(X) is nonaffine over X. Hence, the functor MOpg(D

×) on the category of
C-algebras is ill-behaved; in particular, it cannot be represented by an ind-scheme.

We define the DX-schemes MOpordk
g (X)D (respectively, MOpRS

g (X)
D,

MOpnilp
g (X)D) to classify quadruples (FG,∇,FB,FB−), where the first three pieces

of data are as in the definition of Opordk
g (X)D (respectively, OpRS

g (X)
D, Opnilp

g (X)D),
and FB− is a reduction of the G-bundle FG, which is defined on the entire X, to the
subgroup FB− , compatible with the connection ∇. The last condition means, in the
case of Opordk

g (X)D, that the operator∇tk∂t preserves FB− . For the other DX-schemes
this condition is defined similarly.

Each of these DX-schemes is isomorphic to MOpg(X)
D over the curve (X− x).

We will denote the corresponding schemes for X = D simply by MOpordk
g ,

MOpRS
g and MOpnilp

g , respectively.

Note that there are no natural maps from MOpordk
g to MOpordk+1

g or from MOpnilp
g

to MOpRS
g .

3.3 Generic Miura opers

Following [F, Section 10.3], we shall say that a Miura oper (FG,∇,FB,FB−) is
generic if the given reductions of FG to B and B− are in generic relative position.
More precisely, observe that given aG-bundle on a schemeX with two reductions to
B and B−, we obtain a morphism X→ B\G/B−. The Miura oper is called generic
if this morphism takes values in the open part B · B− of B\G/B−.

Lemma 3.4. Let (FG,∇,FB) be a C-valued oper on D×, and let FB− be any hor-
izontal reduction of FG to B−. Then it is in generic relative position with respect
to FB .

Proof. The following short argument is due to Drinfeld. The G-bundle FG can be
assumed to be trivial, and we can think of FB and FB− as two families of Borel
subalgebras

b−1 ⊂ g((t)) ⊃ b2.

The connection on FG has the form ∇0 + q(t), where q(t) ∈ b−1 .
Let h′ ⊂ g((t)) be any Cartan subalgebra contained in both b−1 and b2. Let us

decompose q(t) with respect to the characters of h′, acting on g((t)), i.e., with respect
to the roots.
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Then, on the one hand, each q(t)α belongs to b−1 . That is, if q(t)α �= 0, then α is
positive with respect to b−1 .

On the other hand, if αı be a simple root of h′ with respect to b2, then by the
oper condition, q(t)−αı �= 0. Hence, every positive simple root with respect to b2 is
negative with respect to b−1 . This implies that b−1 ∩ b2 = h′, i.e., the two reductions
are in generic relative position. )�

Evidently, generic Miura opers form an open DX-subscheme of MOpg(X)
D; we

will denote it by MOpg,gen(X)
D.

Lemma 3.5. The DX-scheme MOpg,gen(X)
D is affine over X.

Proof. We know that the DX-scheme Opg(X)
D is affine. Hence, it is sufficient to

show that MOpg,gen(X)
D is affine over Opg(X).

By definition, MOpg,gen(X)
D is a closed subfunctor of the functor that associates

to a DX-algebra R the set of quadruples (FG,∇,FB,FB−), where (FG,∇,FB) are
as above, and FB− is a reduction of FG to B−, which is in generic relative position
with FB , and not necessarily compatible with the connection.

Since the big cell B− · 1 ⊂ G/B is affine, the latter functor is evidently affine
over Opg(X)

D, implying our assertion. )�

We will denote by MOpordk
g,gen(X)

D (respectively, MOpRS
g,gen(X)

D, MOpnilp
g,gen(X)

D)

the corresponding openDX-subscheme of MOpordk
g (X)D (respectively, MOpRS

g (X)
D,

MOpnilp
g (X)D). We will denote by

MOpreg
g,gen := MOpg,gen(D), MOpnilp

g,gen, MOpRS
g,gen, MOpordk

g,gen

the corresponding open subschemes of

MOpreg
g := MOpg(D), MOpnilp

g , MOpRS
g , MOpordk

g ,

respectively. By Lemma 3.5, it makes sense also to consider the ind-scheme
MOpg,gen(D

×).

3.6 Miura opers and H -connections

We will now establish a crucial result that connects generic Miura opers with another,
very explicit, DX-scheme.

Consider the H -bundle ωρ̌X, and let ConnH (ω
ρ̌
X)

D be the DX-scheme of connec-
tions on it, i.e., it associates to a DX-algebraR the set of connections on the pull-back

of ωρ̌X to Spec(R) alongX. This is a principal homogeneous space with respect to the
group DX-scheme that associates to R the set of h-valued sections of the pull-back

of ωX to Spec(R). In particular, ConnH (ω
ρ̌
X)

D is affine over X.
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We will denote the resulting functor on C-algebras by ConnH (ω
ρ̌
X). For X = D

(respectively, D×) this functor is evidently representable by a scheme (respectively,

ind-scheme), which we will denote by ConnH (ω
ρ̌

D) =: ConnH (ω
ρ̌

D)
reg (respectively,

ConnH (ω
ρ̌

D×)). This scheme (respectively, ind-scheme) is a principal homogeneous
space with respect to h⊗ ωD (respectively, h⊗ ωD× ).

Note that we have a natural map of DX-schemes

MOpg,gen(X)
D → ConnH (ω

ρ̌
X)

D. (3.1)

Indeed, given an R-point of MOpg,gen(X)
D, let F′H be the H -bundle with con-

nection, induced by means of FB− . However, the assumption that the Miura oper is
generic implies that F′H ' F′B ∩ FB− ' FH , where FH is the H -bundle induced
by FB . Now let us recall that by Lemma 1.2, we have a canonical isomorphism

FH ' ωρ̌X.

Proposition 3.7 ([F, Proposition 10.4]). The map (3.1) is an isomorphism.

Proof. We construct the inverse map ConnH (ω
ρ̌
X)

D → MOpg,gen(X)
D as follows.

Recall first that the data of a G-bundle with two reductions to B and B− in generic

position is equivalent to a data of anH -bundle. Thus, from FH := ωρ̌X we obtain the
data (FG,FB,FB−) from the Miura oper quadruple.

Aconnection on (the pull-back of)ωρ̌X (to some DX-scheme) induces a connection,
that we will call∇H , on FG, compatible with both reductions. We produce the desired
connection ∇ on FG by adding to ∇H the n−FH ⊗ ωX-valued 1-form equal to

∑
ı

φı ,

where each φı is the tautological trivialization of (n−−αı )FH ⊗ ωX.
The resulting connection preserves FB− and satisfies the oper condition with re-

spect to FB . Hence (FG,∇,FB,FB−) is a generic Miura oper. Clearly, the two maps

MOpg,gen(X)
D � ConnH (ω

ρ̌
X)

D

are mutually inverse. )�
This proposition immediately implies the isomorphisms of DX-schemes

ConnH (ω
ρ̌

D)
reg ' MOpreg

g,gen and ConnH (ω
ρ̌

D×)→ MOpg,gen(D
×).

Let us denote by (ConnH (ω
ρ̌
X)

ordk )D (respectively, (ConnH (ω
ρ̌
X)

RS)D) the DX-

scheme of meromorphic connections on ωρ̌X over D with poles of order ≤ k (respec-

tively,≤ 1). Each of these DX-schemes is isomorphic to ConnH (ω
ρ̌
X)

D over (X−x).
We will denote by ConnH (ω

ρ̌

D)
RS and ConnH (ω

ρ̌

D)
ordk the resulting schemes of con-

nections on D.
Using the fact that connections on ωρ̌X with a pole of order k, k ≥ 1, are in

a canonical bijection with those on ωρ̌X(λ̌ · x) for any coweight λ̌, from the above
proposition we obtain also the isomorphisms
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ConnH (ω

ρ̌
X)

ordk
)D ' MOpordk

g,gen(X)
D

and (
ConnH (ω

ρ̌
X)

RS
)D ' MOpRS

g,gen(X)
D,

implying that

ConnH (ω
ρ̌

D)
ordk ' MOpordk

g,gen and ConnH (ω
ρ̌

D)
RS ' MOpRS

g,gen . (3.2)

We call the composed map of DX-schemes

ConnH (ω
ρ̌
X)

D → MOpg,gen(X)
D → Opg(X)

D (3.3)

the Miura transformation and denote it by MT. By a slight abuse of notation, we will
denote by the same symbol MT the corresponding maps

ConnH (ω
ρ̌

D)
RS → OpRS

g , ConnH (ω
ρ̌

D)
ordk → Opordk

g ,

ConnH (ω
ρ̌

D×)→ Opg(D
×).

3.8 An application: Proof of Proposition 2.9

Let (FG,∇,FB) be an oper on D× such that theG-bundle with connection (FG,∇)
has regular singularities, i.e., FG can be extended to a G-bundle F′G on D, so that ∇
has a pole of order ≤ 1.

Then it is known that (FG,∇) admits at least one horizontal reduction to B−;
call it FB− . By Lemma 3.4, the quadruple (FG,∇,FB,FB−) is a generic Miura oper
on D×.

By the compactness ofG/B−, the above reduction extends uniquely to the entire
D. The connection on the resulting B−-bundle F′

B− has a pole of order ≤ 1. Hence,
the connection on theH -bundle F′H , induced from F′

B− , also has a pole of order≤ 1.
Therefore, the above point (FG,∇,FB,FB−) ∈ MOpg,gen(D

×), viewed as a

point of ConnH (ω
ρ̌

D×), belongs to ConnH (ω
ρ̌

D)
RS. Hence, the triple (FG,∇,FB),

being the image of the above point under the map MT, belongs to OpRS
g .

3.9 Miura opers with regular singularities

Consider the map ConnH (ω
ρ̌

D)
RS → h that assigns to a connection with a pole

of order 1 its residue; we will denote it by Resh. For λ̌ ∈ h we will denote by

ConnH (ω
ρ̌

D)
RS,λ̌ the preimage of λ̌ under Resh.

A coweight λ̌ such that 〈αı, λ̌〉 /∈ Z<0 (respectively, /∈ Z>0) for α ∈  + will be
called dominant (respectively, antidominant).
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Proposition 3.10.

(1) We have a commutative diagram,

ConnH (ω
ρ̌

D)
RS MT−−−−→ OpRS

g

Resh
⏐⏐/ ResRS

⏐⏐/
h −−−−→ h//W,

where the bottom arrow is λ̌ �→ #(λ̌− ρ̌).
(2) If λ̌ is dominant with respect to B, then the map MT : ConnH (ω

ρ̌

D)
RS,λ̌+ρ̌ →

OpRS,#(λ̌)
g is an isomorphism.

The rest of this subsection is devoted to the proof of this proposition. Part (1)
follows from the construction:

Given a generic Miura oper with regular singularities (FG,∇,FB,FB−), the

induced H -bundle FH is ωρ̌X(ρ̌ · x), by Lemma 2.6. The polar part of ∇ is a section
q ∈ b−PB− . Let λ̌ denote the projection of q onto b−PB− /n

−
PB−

' h, which equals the

polar part of the connection on FH .
Then ResRS(FG,∇,FB) equals the projection of q under g/B− → g/G →

h//W , and hence it equals #(λ̌). It remains to notice that the resulting connection

on ωρ̌X has the polar part equal to λ̌+ ρ̌.
To prove part (2), we will use the following general assertion.

Lemma 3.11. Let (FG,∇) be anR-family ofG-connections on D with a pole of order
1, and let PG be the fiber of FG at the closed point of the disc. Let PB− be a reduction
of PG to G with the property that the residue q of ∇, which is a priori an element
of gPG , belongs to b−PB− . Assume that the projection of q to b−FB− /n

−
FB−

' h is

constant and antidominant with respect to B−.
Then there exists a unique B−-reduction FB− of FG, which is compatible with ∇

and whose fiber at x equals PB− .

Let us first show how this lemma implies the proposition. Consider the subvariety

(p−1 + b)λ̌ ⊂ (p−1 + b) ⊂ g,

consisting of elements whose image in h//W equals λ̌. This is the N -orbit of the
element p−1+ λ̌. We claim that each point of this orbit is contained in a unique Borel
subalgebra of g that is in generic relative position with b.

More precisely, consider the Grothendieck alteration g̃ → g defined as the sub-
variety of g×G/B− consisting of the pairs

g̃ = {q ∈ g, b′− ∈ G/B−|q ∈ b′−}. (3.4)

Let ˜(p−1 + b)λ̌ be the scheme-theoretic intersection of the preimages of

(p−1 + b)λ̌ ⊂ g and the big cell B · 1 ⊂ G/B− in g̃.

Lemma 3.12. The projection ˜(p−1 + b)λ̌ → (p−1 + b)λ̌ is an isomorphism.
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Proof. The inverse map (p−1 + b)λ̌ → ˜(p−1 + b)λ̌ is obtained by conjugating the
element {p−1 + λ̌, b−} by means of N . )�

Let us denote by F
G,OpRS,λ̌

g
(respectively, P

G,OpRS,λ̌
g

) the universalG-bundle with

connection on OpRS,λ̌
g ×̂D (respectively, its restriction to OpRS,λ̌

g ×x ⊂ OpRS,λ̌
g ×̂D).

Let F
B,OpRS,λ̌

g
and P

B,OpRS,λ̌
g

be their reductions to B given by the oper structure.

From the above lemma we obtain that theG-bundle P
G,OpRS,λ̌

g
over OpRS,λ̌

g admits

a unique reduction to B− such that the polar part of the connection belongs to b−FB−
and its image in h equals λ̌. Moreover, the resulting B−-bundle P

B−,OpRS,λ̌
g

is in

generic relative position with P
B,OpRS,λ̌

g
.

Note that if λ̌ is dominant with respect to B, then it is antidominant with respect
to B−. Hence, by our assumption on λ̌ and Lemma 3.11, the G-bundle F

G,OpRS,λ̌
g

on OpRS,λ̌
g ×̂D admits a unique horizontal reduction to B−. This reduction is auto-

matically in generic position with F
B,OpRS,λ̌

g
, because this is so over the closed point

x ∈ D. Thus we have constructed the inverse map

OpRS,#(λ̌)
g → ConnH (ω

ρ̌

D)
RS,λ̌+ρ̌ .

This map is evidently a left inverse of the map MT. The uniqueness assertion of
Lemma 3.11, combined with Lemma 3.12, implies that it is also a right inverse. This
completes the proof of part (2) of Proposition 3.10.

Let us now prove Lemma 3.11.

Proof (Drinfeld). With no loss of generality, we can assume that our G-bundle FG

is trivial, and the connection has the form ∇ = ∇0 + q(t)
t

, where q(t) ∈ g[[t]] and
q(0) ∈ b−. We must show that there exists an element g ∈ ker(G[[t]] → G), unique
modulo B−, such that

Adg

(
∇0 + q(t)

t

)
=: ∇′ = ∇0 + q′(t)

t

is such that q′(t) ∈ b−[[t]].
Assume by induction that q(t)mod tk ∈ b−[t]/tk . We must show that there exists

an element u ∈ g, unique modulo b−, such that

t ·
(

Adexp(tk ·u)
(

q(t)
t

)
− k · tk−1 · u

)
mod tk+1 ∈ b−[t]/tk+1.

This can be rewritten as
k · u+ [q0, u] = qk.

However, this equation is indeed solvable uniquely in g/b−, since by assump-
tion, negative integers are not among the eigenvalues of the adjoint action of q0
on g/b−. )�
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We will now describe the behavior of the map MT restricted to ConnH (ω
ρ̌

D)
RS,µ̌,

for µ̌ antidominant and integral. This is the case which is in a sense opposite to the
one considered in Proposition 3.10(2).

Proposition 3.13. Let λ̌ be a dominant integral weight. Then the image of the

map MT |
ConnH (ω

ρ̌

D)
RS,−λ̌ belongs to the closed subscheme Opλ̌,reg

g ⊂ Opλ̌,nilp
g '

OpRS,#(−λ̌−ρ̌)
g . Moreover, we have a Cartesian square:

ConnH (ω
ρ̌

D)
RS,−λ̌ −−−−→ (

◦
B−\G)/B

MT

⏐⏐/ ⏐⏐/
Opλ̌,reg

g
Resλ,nilp−−−−→ pt /B,

(3.5)

where
◦

B−\G denotes the open B-orbit in the flag variety B−\G.

Proof. Choosing a coordinate on D, and thus trivializing ωX, a point of

ConnH (ω
ρ̌

D)
RS,−λ̌ can be thought of as a connection on the trivial bundle of the form

∇0 + q(t)
t
dt

with q(t) ∈ h[[t]] and q(0) = −λ̌. The oper, corresponding to the Miura transfor-
mation of the above connection, equals

∇0 + p−1dt + q(t)
t
dt.

Conjugating this connection by means of t−λ̌ we obtain a connection of the form

(2.9). Let us denote by (FG,∇,FB) the resulting point of Opλ̌,reg
g .

Note that the horizontal generic reduction to B− of FG, which was defined over
D×, extends to one over D. Indeed, under the above trivialization of FG, the reduction
to B corresponds to the subgroup B itself, and the reduction to B− corresponds to
B−, which are manifestly in the generic position.

This defines the upper horizontal map in (3.5). To show that this diagram is

indeed Cartesian, it suffices to show that given a (R-) point (FG,∇,FB) of Opλ̌,reg
g ,

any reduction to B− of the fiber PG at x of FG, which is in the generic position with
respect PB (the latter being the fiber of FB at x), comes from a unique reduction
of FG to B−. However, this immediately follows from Lemma 3.11, since λ̌ was
assumed dominant with respect to B and hence antidominant with respect to B−. )�

3.14 Miura opers with nilpotent singularities

Let us observe that we have four geometric objects that may be called “Miura opers
with nilpotent singularities’’
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MOpnilp
g , MOpRS

g ×
OpRS

g

Opnilp
g , MOpRS

g,gen ×
OpRS

g

Opnilp
g ,

and

MOpg,gen(D
×) ×

Opg(D
×)

Opnilp
g .

The first three of the above objects are schemes, and the fourth is an ind-scheme. In
this section we will study the relationship between them.

First, we have the following.

Lemma 3.15. The sets of C-points of the four objects above are in a natural bijection.

Proof. In all the four cases the set in question classifies the data of an oper with a
nilpotent singularity on D, and its horizontal reduction to B− over D× (which is
necessarily generic by Lemma 3.4). )�

We will establish the following.

Theorem 3.16. There exist natural maps

MOpRS
g,gen ×

OpRS
g

Opnilp
g

1−−−−→ MOpg,gen(D
×) ×

Opg(D
×)

Opnilp
g

2−−−−→ MOpnilp
g

3

⏐⏐/
MOpRS

g ×
OpRS

g

Opnilp
g ,

which commute with the projection to Opnilp
g , and which on the level of C-points

induce the bijection of Lemma 3.15. Moreover, the map 1 is a closed embedding, the
map 2 is formally smooth, and the map 3 is an isomorphism.

The rest of this section is devoted to the proof of this theorem. Note, however,
that the existence of the map 1 and the fact that it is a closed embedding is immediate
from the fact that MOpRS

g,gen → MOpg,gen(D
×) is a closed embedding.

Also, the map 3 comes from the tautological map MOpRS
g,gen → MOpRS

g . Since
the latter is an open embedding, the map 3 is one too. Since it induces a bijection on
the set of C-points by Lemma 3.15, we obtain that it is an isomorphism.

To construct the map 2 appearing in Theorem 3.16, we need to describe the
corresponding schemes more explicitly. First, by (3.2), we have an isomorphism:

MOpRS
g,gen ×

OpRS
g

Opnilp
g ' ConnH (ω

ρ̌

D)
RS ×

OpRS
g

Opnilp
g ,

and the latter identifies, by Theorem 2.15, with

ConnH (ω
ρ̌

D)
RS ×

h
(h ×

h//W
pt),
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where pt → h//W corresponds to the point#(−ρ̌). Hence, by Proposition 3.10, we
obtain an isomorphism

MOpRS
g,gen ×

OpRS
g

Opnilp
g ' ∪

w∈W ConnH (ω
ρ̌

D)
RS,ρ̌−w(ρ̌).

Since the map 1 in Theorem 3.16 is a closed embedding and an isomorphism at the
level of C-points, the ind-scheme MOpg,gen(D

×) ×
Opg(D

×)
Opnilp

g also splits into con-

nected components, numbered by elements ofW ; we will denote by MOpg,gen(D
×)w

the component corresponding to a given w ∈ W .
Now let g̃ be the Grothendieck alteration of g defined in (3.4). Let ñ be the

scheme-theoretic preimage of n ⊂ g under the forgetful map g̃ → g; this is a scheme
acted on by B. Note that ñ is connected and nonreduced.

By Lemma 3.11, we have the following.

Corollary 3.17. There exists a canonical isomorphism

MOpnilp
g ' Opnilp

g ×
n/B

ñ/B.

Now let ñw be the subvariety of ñ, obtained by requiring that the pair
(q ∈ g, b′−) ∈ g̃ be such that the Borel subalgebra b′− is in position w with re-
spect to b, i.e., the corresponding point ofG/B− belongs to the B-orbit B ·w−1 ·B−.
This is a reduced scheme isomorphic to the affine space of dimension dim(n). Let
us denote by ñw,th the formal neighborhood of ñw in ñ, regarded as an ind-scheme.
Clearly, the action of B on ñ preserves each ñw, and

ñ(C) ' ∪
w∈W ñw(C).

Let us denote by MOpnilp,w
g the subscheme of MOpnilp

g equal to Opnilp
g ×

n/B
ñw/B

in terms of the isomorphism of Corollary 3.17. Let us denote by MOpnilp,w,th
g the

ind-scheme Opnilp
g ×

n/B
ñw,th/B.

Theorem 3.18. For every w ∈ W there exists an isomorphism

MOpg,gen(D
×)w ' MOpnilp,w,th

g ,

compatible with the forgetful map to Opnilp
g and the bijection of Lemma 3.15.

Clearly, Theorem 3.18 implies the remaining assertions of Theorem 3.16. In ad-
dition, by passing to reduced schemes underlying the isomorphism of Theorem 3.18,
and using Lemma 2.19(1), we obtain the following.

Corollary 3.19. There exists a canonical isomorphism ConnH (ω
ρ̌

D)
RS,ρ̌−w(ρ̌) '

MOpnilp,w
g .
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3.20 Proof of Theorem 3.18

We begin by constructing the map

MOpg,gen(D
×)w → MOpnilp

g . (3.6)

Given an R-point (FG,∇,FB,FB−) of MOpg,gen(D
×)w, let (F′G,F′B) be an

extension of the pair (FG,FB) onto D such that the resulting triple (F′G,∇,F′B) is a

point of Opnilp
g . Such an extension exists, according to Theorem 2.15. We claim that

the reduction to B− of FG, given by FB− , gives rise to a reduction of F′G to B−:
Let us think of a reduction to B− in the Plücker picture (see [FGV]). Let V λ be

the irreducible representation representation of g with highest weight λ. Then our
point of MOpg,gen(D

×)w gives rise to a system of meromorphic maps

V λF′
G
→ ω

〈λ,ρ̌〉
X ,

for dominant weights λ, compatible with the (meromorphic) connections on the two

sides. Note that the connection onωρ̌D, corresponding to (FG,∇,FB,FB−), restricted
to the subscheme

Spec(R) ×
MOpg,gen(D

×)w
ConnH (ω

ρ̌

D)
RS,ρ̌−w(ρ̌)

has the property that its pole is of order 1 and the residue equals ρ̌−w(ρ̌). We apply
the following.

Lemma 3.21. Let (FH ,∇H ) be an R-family of H -bundles with meromorphic con-
nections on D. Assume that there exists a quotient R � R′ by a nilpotent ideal such
that the connection on the resultingR′-family has a pole of order 1 and a fixed residue
integral λ̌ ∈ h. Then there exists a unique modification F′H of FH at x such that the
resulting connection on F′H is regular.

The lemma produces an R-family of H -bundles F′H with a regular connection,
and a horizontal system of a priori meromorphic maps

sλ : V λF′
G
→ CλF′

H
,

satisfying the Plücker equations. We claim that each of these maps sλ is, in fact,
regular and surjective. This is a particular case of the following lemma.

Lemma 3.22. Let V and L be R-families of vector bundles and line bundles on D,
respectively, both equipped with connections such that on V it has a pole of order 1
and nilpotent residue, and on L the connection is regular. Let V → L be a nonzero
meromorphic map, compatible with the connections. Then this map is regular and
surjective.
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Thus we obtain a horizontal reduction F′
B− of F′G to B−, and the desired map

in (3.6).
Consider the restriction of the map (3.6) to

ConnH (ω
ρ̌

D)
RS,ρ̌−w(ρ̌) ⊂ MOpg,gen(D

×)w.

Since the former scheme is reduced and irreducible, the image of this map is contained

in MOpnilp,w′
g for somew′ ∈ W . This implies that the map (3.6) itself factors through

MOpnilp,w′,th
g for the same w′.

We have to show that w′ = w and that the resulting map is an isomorphism. We
claim that for this purpose it is sufficient to construct a map in the opposite direction

MOpnilp,w
g → ConnH (ω

ρ̌

D)
RS,ρ̌−w(ρ̌), (3.7)

compatible with the identification of Lemma 3.15. This follows from the next obser-
vation.

Lemma 3.23. Let (FG,∇,FB) be an R-point of Opnilp
g , and let R′ be a quotient of

R by a nilpotent ideal. Let (F′G,∇′,F′B,F′B−) be a lift of the induced R′-family
to a point of MOpg,gen(D

×). Then the sets of extensions of this lift to R-points of

MOpg,gen(D
×) and MOpnilp

g are in bijection.

The lemma follows from the fact a deformation over a nilpotent base of a generic
Miura oper remains generic.

Given an R-point of MOpnilp,w
g and a dominant weight λ, consider the diagram

ω
〈λ,ρ̌〉
X

s′→ V λFG
s→ L, (3.8)

where the map s′ corresponds to the reduction of FG to B, and L is some line bundle
on Spec(R[[t]]) with a regular connection ∇L in the t-direction, and the map s is a
surjective bundle map, compatible with connections, corresponding to the reduction
of FG to B−. We will denote by ∇(∂t ) (respectively, ∇L(∂t )) the action of the vector
field ∂t on D on sections of V λFG (respectively, L), given by the connection.

To construct the map as in (3.7), we have to show that the composition s′ ◦ s
has a zero of order 〈λ, ρ̌ − w(ρ̌)〉. This is equivalent to the following: let v be a

nonvanishing section of ω〈λ,ρ̌〉X , thought of as a section of V λFG by means of s′. We

need to show that the section ∇L(∂t )
n′(s(v)) of L is regular and nonvanishing for

n′ = n := 〈λ, ρ̌−w(ρ̌)〉, and has a zero at x if n′ < n. Since the map s is compatible
with connections, we have to calculate s(∇(∂t )n(v)).

Let Fj (V λ) be the increasing B-stable filtration on V λ, defined by the condition
that a vector v ∈ V λ of weight λ′ belongs toFj (V λ) if and only if 〈λ−λ′, ρ̌〉 ≤ j . Let
Fj (V λFB

) be the corresponding induced filtration on the vector bundle V λFB ' V λFG .

Each successive quotient Fj (V λFB )/F
j−1(V λFB

) is isomorphic to

⊕
λ′,〈λ−λ′,ρ̌〉=j

F j (V λ)/F j−1(V λ)⊗ ω〈λ,ρ̌〉D .
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By the condition on ∇,

∇(∂t )(F j (V λFB )) ⊂ Fj−1(V λFB )(x)+ Fj+1(V λFB ), (3.9)

and the induced map

∇(∂t ) : Fj (V λFB )/F j−1(V λFB )→ Fj+1(V λFB )/F
j (V λFB ) (3.10)

comes from the mapFj (V λ)/F j−1(V λ)→ Fj+1(V λ)/F j (V λ), given byp−1. (The
latter makes sense, since the vector field ∂t trivializes the line bundle ωD.)

Let us denote by n′′ the maximal integer such that the composition s ◦ s′ vanishes
to order n′′ along Spec(R) × x ⊂ Spec(R[[t]]). By induction on j , from (3.9), we
obtain that the map

s : Fj (V λFB )→ L → Lx

vanishes to order n′′ − j , where Lx is the restriction of L to Spec(R)× x.
Assume first that n′′ < n. Then, by the maximality assumption on n′′, the image

of s(∇(∂t )n′′(v)) in Lx is nonzero. However, this is impossible since the composition

Fj (V λ) ↪→ V λ → (V λ)b′−

vanishes for any b′− ∈ G/B− in relative position w with respect to B and
j < 〈λ− w(λ), ρ̌〉 = n.

Thus s(∇(∂t )n(v)) is regular, and it remains to show that its image in Lx is
nowhere vanishing. However, this follows from (3.10), since for a highest weight
vector v ∈ V λ and n and b′− as above, the image of pn−1(v) in (V λ)b′− is nonzero.

4 Groupoids and Lie algebroids associated to opers

4.1 The isomonodromy groupoid

Let us recall that a groupoid over a scheme S is a scheme G equipped with morphisms
l : G → S, r : G → S, m : G ×

r,S,l
G → G, an involution γ : G → G, and a morphism

u : S → G that satisfy the following conditions:

• associativity: m ◦ (m× id) = m ◦ (id ×m) as morphisms G ×
r,S,l

G ×
r,S,l

G → G;

• unit: r ◦ u = l ◦ u = idS .
• inverse: l ◦ γ = r, r ◦ γ = l, m ◦ (γ × idG) = u ◦ r , m ◦ (idG × γ ) = u ◦ l.

If S1 ⊂ S is a subscheme, we will denote by G|S1 the restriction of G to S1, i.e.,
the subscheme of G equal to (l × r)−1(S1 × S1). This is a groupoid over S1.

The normal sheaf to S inside G acquires a structure of Lie algebroid; we will
denote it by G, and by anch the anchor map G → T (S), where T (S) is the tangent
algebroid of S. (We refer to [Ma] for more details on groupoids and Lie algebroids).
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The notion of groupoid generalizes in a straightforward way to the case when both
S and G are ind-schemes. However, to speak about a Lie algebroid attached to a Lie
groupoid, we will need to assume that G is formally smooth over S (with respect to
either, or equivalently, both projections). In this case G will be a Tate vector bundle
over S; we refer the reader to Section 19.2 for details.

We define the isomonodromy groupoid IsomOpg
over the ind-scheme Opg(D

×).
Points of the ind-scheme IsomOpg

over an algebra R are triples (χ, χ ′, φ), where
χ = (FG,∇,FB) and χ ′ = (F′G,∇′,F′B) are both R-points of Opg(D

×), and φ is
an isomorphism of G-bundles with connections (FG,∇) ' (F′G,∇′).

Explicitly, if χ and χ ′ are connections ∇ and ∇′, respectively, on the trivial
bundle, both of the form

∇0 + p−1dt + φ(t)dt, φ(t) ∈ b⊗ R((t)), (4.1)

then a point of IsomOpg
(R) over (χ, χ) is an element g ∈ G(R((t))) such that

Adg(∇) = ∇′. Two triples (χ1, χ
′
1, g1) and (χ2, χ

′
2, g2) are equivalent if there

exist elements g, g′ ∈ N(R((t))) such that ∇1 = Adg(∇2), ∇′2 = Adg′(∇′1) and
g2 = g′ · g1 · g.

The morphisms l and r send (χ, χ ′, φ) to χ and χ ′, respectively. The morphism
m sends the pair (χ, χ ′, φ), (χ ′, χ ′′, φ′) to (χ, χ ′′, φ′ ◦ φ), the morphisms γ sends
(χ, χ ′, φ) to (χ ′, χ, φ−1) and the morphism u : Opg(D

×) → IsomOpg
sends χ to

(χ, χ, id).
We call IsomOpg

the isomonodromy groupoid for the following reason. In the
analytic context two connections on the trivial bundle on a punctured disc are called
isomonodromic if they have the same monodromy and the Stokes data (in case of
irregular singularity). In the case of connections on the formal punctured disc the ap-
propriate analogue of the notion of isomonodromy is the notion of gauge equivalence
of connections.

Proposition 4.2. The groupoid IsomOpg
is formally smooth over Opg(D

×).

4.3 Description of tangent space and proof of Proposition 4.2

Let R′ → R be a homomorphism of rings such that its kernel I satisfies I2 = 0. Let
χ ′ = (F′G,∇′,F′B) be an R′-point of Opg(D

×), and let χ = (FG,∇,FB) be the
corresponding R-point. Let g be an automorphism of FG such that the quadruple
(FG,∇,FB, g) is an R-point of IsomOpg

over χ . We need to show that it can be
lifted to an R′-point (F′G,∇′,F′B, g′) of IsomOpg

.
Since the ind-scheme G((t)) is formally smooth, we can always find some auto-

morphism g′1 of F′G, lifting g. To show the existence of the required lift we must find
an element u ∈ gFG ⊗

R((t))
I((t)) such that the point g′ = g′1 · (1+ u) satisfies

Adg′(∇′)− ∇′ ∈ bF′
B

⊗
R′((t))

R′((t))dt.

By assumption, q := Adg′1(∇′)− ∇′ belongs to the subspace
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bF′
B

⊗
R′((t))

I((t))dt ' bFB ⊗
R((t))

I((t))dt.

Therefore, the desired element u must satisfy

∇(u) = q ∈ (g/b)FB ⊗
R((t))

I((t))dt.

Hence, it is sufficient to show that the map

gFB ⊗
R((t))

I((t))
∇→ gFB ⊗

R((t))
I((t))dt → (g/b)FB ⊗

R((t))
I((t))dt

is surjective. But this follows from the oper condition on ∇/FB .5

Thus Proposition 4.2 is proved. In particular, the Lie algebroid isomOpg
, corre-

sponding to the groupoid IsomOpg
, is well defined. Let us write down an explicit

expression for isomOpg
and for the anchor map.

Since the ind-scheme Opg(D
×) is reasonable and formally smooth, its tangent

T (Opg(D
×)) is a Tate vector bundle. For an R-point (FG,∇,FB) of Opg(D

×),
we have

T (Opg(D
×))|Spec(R) ' coker(∇) : nFB → bFB ⊗

C((t))
C((t))dt, (4.2)

and

isomOpg
|Spec(R) ' ker(∇) : (g/n)FG → (g/b)FB ⊗

C((t))
C((t))dt. (4.3)

The anchor map anch : isomOpg
→ T (Opg(D

×)) acts as follows:

u ∈ gFG �→ ∇(u) ∈ bFB ⊗
C((t))

C((t))dt.

Consider the cotangent sheaf 	1(Opg(D
×)); this is also a Tate vector bundle on

Opg(D
×). From (4.2), we obtain that once we identify g with its dual by means of

any invariant form κ : g⊗ g → C, we obtain an isomorphism

	1(Opg(D
×)) ' isomOpg

. (4.4)

As we shall see in the next subsection, a choice of κ defines a Poisson structure
on Opg(D

×), and in particular makes 	1(Opg(D
×)) into a Lie algebroid. We will

show that the above identification of bundles is compatible with the Lie algebroid
structure.

Remark 4.4. In the analytic context this Poisson structure is used to define the KdV
flow on Opg(D

×) as the system of evolution equations corresponding to a certain
Poisson-commuting system functions on the space of opers. The isomorphism with
isomOpg

implies in particular that the KdV flows preserve gauge equivalence classes.

5 The above description makes it explicit that both 	1(Opg(D
×)) and the conormal

N∗Opg(D
×)/ IsomOpg

are Tate vector bundles on Opg(D
×), i.e., we do not have to use

the general Theorem 19.4 to prove this fact.
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4.5 The Drinfeld–Sokolov reduction and Poisson structure

Consider the space of all connections on the trivial G-bundle on D×, i.e., the space
ConnG(D×) of operators of the form

∇0 + φ(t), φ(t) ∈ g⊗ ωD× . (4.5)

This is an ind-scheme, acted on by the group G((t)) by gauge transformations.
We can consider the natural isomonodromy ind-groupoid over ConnG(D×):

IsomConnG(D×) := {g,∇,∇′|Adg(∇) = ∇′}, l(g,∇,∇′) = ∇, r(g,∇,∇′) = ∇′.
Since IsomConnG(D×) ' ConnG(D×) × G((t)), it is formally smooth over
ConnG(D×).

Let us choose a symmetric invariant form κ : g ⊗ g → C, and let ĝκ be the
corresponding Kac–Moody extension of g((t)). Using the form κ , we can identify the
space ConnG(D×) with hyperplane in ĝ∗κ equal to the preimage of 1 ∈ C under the
natural map ĝκ → C. It is well known that under this identification the coadjoint
action of G((t)) on ĝ∗κ corresponds to the gauge action of G((t)) on ConnG(D×).

The space ĝ∗κ carries a canonical Poisson structure, which induces a Poisson
structure also on ConnG(D×).

Lemma 4.6. We have a canonical isomorphism of Lie algebroids

	1(ConnG(D
×)) ' isomConnG(D×), (4.6)

where isomConnG(D×) is the Lie algebroid of IsomConnG(D×).

Proof. We claim that (global sections of) both the LHS and the RHS identify with

g((t))
!⊗Fun(ConnG(D

×))

with the natural bracket (we refer to Section 19.1, where the notation
!⊗ is introduced).

The assertion concerning isomConnG(D×) follows from the fact that IsomConnG(D×)
is the product of ConnG(D×) and the group G((t)) acting on it, and g((t)) is the Lie
algebra of G((t)).

The assertion concerning 	1(ConnG(D×)) follows from the identification of
ConnG(D×) with a hyperplane in ĝ∗κ , and the description of the Poisson structure on
the dual space to a Lie algebra. )�

For any group ind-subscheme K ⊂ G((t)) such that ĝκ is split over k ⊂ g((t)),
the map ĝ∗κ → k∗ is a moment map for the action of K on ĝ∗κ , and, in particular, on
ConnG(D×).

We take K = N((t)), and we obtain a moment map

µ : ConnG(D
×)→ (n((t)))∗ ' g/b⊗ ωD× ,

where we identify n∗ ' g/b using κ .
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We have an identification

Opg(D
×) '

(
µ−1(p−1dt)

)
/N(K̂), (4.7)

where the action of N(K̂) on µ−1(p−1dt) is free. It is in this fashion that Opg(D
×)

was originally introduced in [DS] and this is why this Hamiltonian reduction is called
the Drinfeld–Sokolov reduction.

Lemma 4.7. There exists a canonical isomorphism of Lie algebroids over Opg(D
×)

	1(Opg(D
×)) ' isomOpg

.

Proof. Note that the action of N((t)) on ConnG(D×) lifts naturally to an action of
the group N((t)) × N((t)) on IsomConnG(D×). We have a canonical identification of
IsomOpg

with the two-sided quotient of IsomConnG(D×):

IsomOpg
'
(
((µ× µ) ◦ (l × r))−1 ((p−1 · dt)× (p−1 · dt))

)
/N((t))×N((t)).

(4.8)
Hence, isomOpg

is obtained as a reduction with respect to N((t)) of the Lie al-
gebroid isomConnG(D×). By the definition of the Poisson structure on Opg(D

×), the
Lie algebroid 	1(Opg(D

×)) is the reduction of the Lie algebroid 	1(ConnG(D×))
on ConnG(D×).

Hence, the assertion of the lemma follows from (4.6). )�

4.8 The groupoid and Lie algebroid over regular opers

Let S be an ind-scheme with a Poisson structure and S1 ⊂ S be a reasonable sub-
scheme, which is coisotropic, i.e., the ideal I = ker (Fun(S) → Fun(S1)) satisfies
[I, I] ⊂ I. We will assume that both S and S1 are formally smooth; we will also
assume that the normal bundleNS1/S (which by our assumption is discrete) is locally
projective.6

In this case the conormal N∗
S1/S

acquires a structure of Lie algebroid, and the

sheaf 	1(S1) is a module over it. Moreover, we have the commutative diagram

0 −−−−→ N∗
S1/S

−−−−→ 	1(S)|S1 −−−−→ 	1(S1) −−−−→ 0⏐⏐/ anch

⏐⏐/ ⏐⏐/
0 −−−−→ T (S1) −−−−→ T (S)|S1 −−−−→ NS1/S −−−−→ 0

(4.9)

such that the right vertical arrow is a map of modules over N∗
S1/S

.
We claim the following.

Lemma 4.9. The subscheme Opreg
g ⊂ Opg(D

×) is coisotropic.

6 We do not know whether this follows directly from the formal smoothness assumption.
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Proof. Consider the subscheme Connreg
G of ConnG(D×) obtained by imposing the

condition that φ(t) belongs to g⊗ω
Ô

. It is coisotropic, since the corresponding ideal
in Fun(ConnG(D×)) is generated by g⊗ ω

Ô
⊂ ĝκ , which is a subalgebra.

By Section 1.5, the scheme Opreg
g can be realized as(

µ−1(p−1 · dt) ∩ Connreg
G

)
/N [[t]],

which implies the assertion of the lemma. )�
Let Isomreg

Opg
be the groupoid over the scheme Opreg

g = Opg(D) whose R-points

are triples (χ, χ ′, φ), where χ = (FG,∇,FB) and χ = (FG,∇,FB) are R-points of
Opreg

g and φ is an isomorphism of R-families of G-bundles on D with connections
(FG,∇)→ (F′G,∇′).

Recall now the principalG-bundle PG,Opreg
g

over Opreg
g obtained by restriction to

Opreg
g ×x from the tautologicalG-bundle FG on Opreg

g ×̂D. ThisG-bundle defines a
map Opreg

g → pt /G.

Lemma 4.10.

(1) The natural map Isomreg
Opg

→ IsomOpg
|Opreg

g
is an isomorphism.

(2) The groupoid Isomreg
Opg

is naturally isomorphic to

Opreg
g ×

pt /G
Opreg

g .

Proof. The assertion of the lemma amounts to the following. Let S = Spec(R) be
an affine scheme and let (FG,∇), (F′G,∇′) be twoG-bundles on Spec(R[[t]])with a
regular connection along t . Let PG, P′G be their restrictions to Spec(R), respectively.
Then the set of connection-preserving isomorphisms FG → F′G maps isomorphically
to both the set of connection-preserving isomorphisms FG|D× → F′G|D× and the set
of isomorphisms PG → P′G. )�

Let isomreg
Opg

be the Lie algebroid of Isomreg
Opg

. Lemma 4.10(2) implies that

isomreg
Opg

is identified with the Atiyah algebroid At(PG,Opreg) of infinitesimal symme-

tries of the G-bundle PG,Opreg . Therefore, it fits in the exact sequence

0 → gOpreg
G
→ isomreg

Opg
→ T (Opreg

g )→ 0,

where gOpreg
G

:= gP
Op

reg
G

. In what follows we will denote by bOpreg
G

(respectively,

nOpreg
G

) the subbundle of gOpreg
G

, corresponding to the reduction PB,Opreg
G

of PG,Opreg
G

to B.
Note that by Lemmas 4.7 and 4.10(1) we have a natural map of algebroids

N∗
Opreg

g /Opg(D
×) → isomreg

Opg
. (4.10)

Following [BD1, Section 3.7.16], we have Proposition 4.11.
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Proposition 4.11. The map of (4.10) is an isomorphism.

Proof. The assertion of the proposition amounts to the fact that the map

	1(Opreg
g )→ NOpreg

g /Opg(D
×) (4.11)

from (4.9) is an injective bundle map.

Since the scheme Opreg
g is smooth, for an R-point (FG,∇,FB) of Opreg

g , the
restrictions of T (Opreg

g ) and	1(Opreg
g ) to Spec(R) can be canonically identified with

coker(∇) : nFB → bFB ⊗
C[[t]]

C[[t]]dt

and

ker(∇) : (g/n)FB ⊗
C[[t]]

(C((t))/C[[t]])→ (g/b)FB ⊗
C[[t]]

(C((t))dt/C[[t]]dt),

respectively, where we have used the identification g∗ ' g given by κ .

Hence, the restriction of NOpreg
g /Opg(D

×) to Spec(R) can be identified with

coker(∇) : nFB ⊗
C[[t]]

(C((t))/C[[t]])→ bFB ⊗
C[[t]]

(C((t))dt/C[[t]]dt),

and the map of (4.11) is given by

u ∈ gFB ⊗
C[[t]]

(C((t))/C[[t]]) �→ ∇(u) ∈ bFB ⊗
C[[t]]

(C((t))dt/C[[t]]dt).

The injectivity of the map in question is now evident from the oper condition
on ∇/FB . )�

Corollary 4.12. The kernel and the cokernel of the anchor map

anch : 	1(Opg(D
×))|Opreg

g
→ T (Opg(D

×))|Opreg
g

are both isomorphic to gOpreg
G

as N∗
Opreg

g /Opg(D
×)-modules.

Proof. The isomorphism concerning the kernel follows by combining Proposi-
tion 4.11 and Lemma 4.10. The isomorphism concerning the cokernel follows from
the first one by a general D-scheme argument; see [CHA, Section 2.5.22].

Let us, however, reprove both isomorphisms directly. We have
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ker(anch|Opreg
g
) ' ker(∇) : gFG ⊗

C[[t[[
C((t))→ gFG ⊗

C[[t]]
C((t))dt,

which is easily seen to be identified with gOpreg
G

.

The assertion concerning coker(anch|Opreg
g
) follows by Serre duality on D×. In-

deed, the dual of	1(Opg(D
×)) is canonically isomorphic toT (Opg(D

×)), and under
this isomorphism, the dual of the map anch goes to itself. Hence,

(coker(anch))∗ ' ker(anch) ' gOpreg
G
,

which we identify with g∗
Opreg
G

using the form κ . )�
To summarize, we obtain the following commutative diagram:

0 0⏐⏐/ ⏐⏐/
0 −−−−→ gOpreg

g

id−−−−→ gOpreg
g

−−−−→ 0⏐⏐/ ⏐⏐/ ⏐⏐/
0 −−−−→ N∗

Opreg
g /Opg(D

×) −−−−→ 	1(Opg(D
×)) −−−−→ 	1(Opreg

g ) −−−−→ 0⏐⏐/ ⏐⏐/ ⏐⏐/
0 −−−−→ T (Opreg

g ) −−−−→ T (Opg(D
×))|Opreg

g
−−−−→ NOpreg

g /Opg(D
×) −−−−→ 0⏐⏐/ ⏐⏐/ ⏐⏐/

0 −−−−→ gOpreg
g

id−−−−→ gOpreg
g
.⏐⏐/ ⏐⏐/

0 0

We will conclude this subsection by the following remark. Let (FG,∇,FB) be
an R-point of Opreg

g , and let u be an element of bFB ⊗
C[[t]]

C((t))dt , giving rise to a

section of T (Opg(D
×))|Spec(R) by (4.2).

From the proof of Corollary 4.12, we obtain the following.

Lemma 4.13. The image of u inNOpreg
g /Opg(D

×)/ isomreg
Opg

' gOpreg
g

equals the image

of u under the composition

bFB ⊗
C[[t]]

C((t))dt → gFG ⊗
C[[t]]

C((t))dt → H 0
DR(D

×, gFG) ' gOpreg
g
.

4.14 The groupoid and algebroid on opers with nilpotent singularities

Now consider the subscheme Opnilp
g ⊂ Opg(D

×). As in Lemma 4.9, it is easy to see

that Opnilp
g is coisotropic since
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Opnilp
g '

(
µ−1(p−1dt) ∩ Connnilp

G

)
/N [[t]],

where Connnilp
G is the subscheme of ConnG(D×), consisting of connections as in

(4.5), for which φ(t) ∈ g[[t]] + n ⊗ t−1C[[t]], and the latter is the orthogonal
complement to the Iwahori subalgebra in ĝκ .

Let us consider the groupoid

Isomnilp
Opg

:= Opnilp
g ×

n/B
Opnilp

g

over Opnilp
g , and let isomnilp

Opg
be the corresponding Lie algebroid.

Lemma 4.15. There exists a natural closed embedding Isomnilp
Opg

→ IsomOpg
|
Opnilp

g
.

Proof. The lemma is proved in the following general framework. Let (FG,∇) and
(F′G,∇′)be twoR-families of bundles with connections onDwith poles of order 1 and
nilpotent residues. LetPG andP′G be the resultingG-bundles on Spec(R), and Res(∇)
(respectively, Res(∇′)) be the residue, which is an element in gPG (respectively, gP′

G
).

Then there is a bijection between the set of connection-preserving isomorphisms
FG → F′G of bundles on Spec(R[[t]]) and isomorphisms PG → P′G which map
Res(∇) to Res(∇′). )�

Note, however, that unlike the case of regular opers, the map of Lemma 4.15 is
not an isomorphism. Indeed, the restriction of Isomnilp

Opg
to Opreg

g is Opreg
g ×

pt /B
Opreg

g ,

which is strictly contained in Opreg
g ×

pt /G
Opreg

g ' Isomreg
Opg

.

We shall now establish the following.

Proposition 4.16. The map of (4.9) induces an isomorphism of Lie algebroids

N∗
Opnilp

g /Opg(D
×)
' isomnilp

Opg
.

Proof. For an R-point (FG,∇,FB) of Opnilp
g let us describe the restrictions

of N∗
Opnilp

g /Opg(D
×)

and isomnilp
Opg

to Spec(R) as subspaces of the restriction of

	1(Opg(D
×)) ' isomOpg

. We have

T (Opnilp
g )|Spec(R) = coker(∇) : nFB →

→
(

bFB ⊗
C[[t]]

C[[t]]dt + nFB ⊗
C[[t]]

t−1C[[t]]dt
)
.

Hence, N
Opnilp

g /Opg(D
×)|Spec(R) is isomorphic to the cokernel of ∇:

nFB ⊗
C[[t]]

(C((t))dt/C[[t]]dt)→
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→ bFB ⊗
C[[t]]

C((t))dt/(bFB ⊗
C[[t]]

C[[t]]dt + nFB ⊗
C[[t]]

t−1C[[t]]dt).

Finally,

N∗
Opnilp

g /Opg(D
×)
|Spec(R) ' ker(∇) : ((g/n)FB (−x)+ (b/n)FB )→ (g/b)FB ⊗̂

O

ωD.

So we can identifyN∗
Opnilp

g /Opg(D
×)
|Spec(R) as a subset of	1(Opg(D

×))|Spec(R) with

{u ∈ gFG(−x)+ bFB ⊂ gFG |∇(u) ∈ bFB (x) ⊗̂
O

ωD}/{u ∈ nFB }.

The latter is easily seen to be the image of isomnilp
Opg

|Spec(R) inside

isomOpg
|Spec(R). )�

We shall now study the behavior of the restriction of isomnilp
Opg

to the subscheme

Opreg
g ⊂ Opnilp

g . The above proposition combined with Lemma 2.19(2) implies the
following.

Corollary 4.17. The Lie algebroid N∗
Opnilp

g /Opg(D
×)

preserves the subscheme Opreg
g .

The restrictionN∗
Opnilp

g /Opg(D
×)
|Opreg

g
identifies with the Atiyah algebroid At(PB,Opreg

g
)

of the B-bundle PB,Opreg
g

, and we have a commutative diagram

0 −−−−→ bOpreg
g
−−−−→ N∗

Opnilp
g /Opg(D

×)
|Opreg

g
−−−−→ T (Opnilp

g )|Opreg
g⏐⏐/ ⏐⏐/ 0⏐⏐

0 −−−−→ gOpreg
g
−−−−→ N∗

Opreg
g /Opg(D

×) −−−−→ T (Opreg
g ) −−−−→ 0.

Corollary 4.18. The composition

N
Opreg

g /Opnilp
g
→ NOpreg

g /Opg(D
×) → NOpreg

g /Opg(D
×)/	

1(Opreg
g ) ' gOpreg

g

is an injective bundle map, and its image coincides with nOpreg
g
⊂ gOpreg

g
.

Proof. We claim that it is enough to show that the natural surjectionNOpreg
g /Opg(D

×) →
N

Opnilp
g /Opg(D

×)|Opreg
g

fits into a commutative diagram with exact rows

	1(Opnilp
g )|Opreg

g

anch−−−−→ N
Opnilp

g /Opg(D
×)|Opreg

g
−−−−→ (g/n)Opreg

g
−−−−→ 0⏐⏐/ 0⏐⏐ 0⏐⏐

0 −−−−→ 	1(Opreg
g ) −−−−→ NOpreg

g /Opg(D
×) −−−−→ gOpreg

g
−−−−→ 0.

(4.12)
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Indeed, this would imply that the map N
Opreg

g /Opnilp
g

→ gOpreg
g

appearing in the

corollary is a surjective bundle map onto nOpreg
g

; hence it must be an isomorphism
because of the equality of the ranks.

By Serre duality, the existence of the diagram (4.12) is equivalent to the diagram
appearing in the previous corollary. )�

Let us now consider the sequence of embeddings of schemes

Opreg
g ↪→ Opnilp

g ↪→ OpRS
g .

By Theorem 2.15, the normal bundle N
Opnilp

g /OpRS
g

is canonically trivialized and its

fiber is isomorphic to the tangent space to h//W at the point −ρ̌; this tangent space
is in turn canonically isomorphic to h.

Lemma 4.19. The composition

h → N
Opnilp

g /OpRS
g
|Opreg

g
→ N

Opnilp
g /Opg(D

×)|Opreg
g

� (g/n)Opreg
g

equals the canonical map

h ' (b/n)Opreg
g
↪→ (g/n)Opreg

g
.

Proof. Let (FG,∇,FB) be an R-point of Opreg
g , written in the form ∇0 + p−1dt +

φ(t)dt , φ(t) ∈ b⊗ R[[t]]. Then by Proposition 2.17 the map

h → N
Opnilp

g /OpRS
g
|Spec(R) → N

Opnilp
g /Opg(D)

|Spec(R)

can be realized by

λ̌ �→ λ̌

t
∈ b⊗ C((t))dt ⊂ T (Opg(D

×))|Spec(R).

To prove the lemma it would be enough to show that the image of λ̌
t

under

T (Opg(D
×))|Spec(R) → NOpreg

g /Opg(D
×) → gOpreg

g

equals λ. But this follows from Lemma 4.13. )�

4.20 The case of opers with an integral residue

For completeness, let us describe the behaviour of the groupoid IsomOpg
and the

algebroid isomOpg
, when restricted to the subscheme

Opλ̌,nilp
g ' OpRS,#(−λ̌−ρ̌)

g ⊂ Opg(D
×)

when λ̌+ ρ̌ dominant and integral.
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Recall that to λ̌ as above there corresponds a subset J of vertices of the Dynkin
diagram, and a map

Resλ̌,nilp : Opλ̌,nilp
g → OJ/B.

Let us denote by Isomλ̌,nilp
Opg

the groupoid

Isomλ̌,nilp
Opg

:= Opλ̌,nilp
g ×

OJ/B
Opλ̌,nilp

g ,

and let isomλ̌,nilp
Opg

be the corresponding algebroid on Opλ̌,nilp
g .

As in the case of λ̌ there exists a natural closed embedding

Isomλ̌,nilp
Opg

↪→ IsomOpg
|
Opλ̌,nilp

g

.

Repeating the proofs in the λ̌ = 0 case, we obtain the following.

Proposition 4.21. The subscheme Opλ̌,nilp
g ⊂ Opg(D

×) is coisotropic. The map (4.9)
induces an isomorphism

N∗
Opλ̌,nilp

g /Opg(D
×)
' isomλ̌,nilp

Opg
.

Let us consider a particular example of λ̌ = −ρ̌. In this case J = I, and

OJ/B ' pt,

Therefore, the map

isomρ̌,nilp
Opg

→ T (Opρ̌,nilp
g )

is surjective. Therefore by Proposition 4.21, the map

N∗
Opλ̌,nilp

g /Opg(D
×)
→ T (Opρ̌,nilp

g ),

given by the Poisson structure, is surjective as well. By Serre duality, the map

	1(Opλ̌,nilp
g )→ N

Opλ̌,nilp
g /Opg(D

×)

is injective. This means that the map isom−ρ̌,nilp
Opg

↪→ isomOpg
|
Op−ρ̌,nilp

g
is an isomor-

phism. In fact, it is easy to see that the map Isom−ρ̌,nilp
Opg

↪→ IsomOpg
|
Op−ρ̌,nilp

g
is an

isomorphism.
Finally, let us consider the case of λ̌ which is integral and dominant. We have

the subscheme Opλ̌,reg
g ⊂ Opλ̌,nilp

g , and we claim that the behavior of the groupoid
IsomOpg

and the algebroid isomOpg
, restricted to it, are the same as in the λ̌ = 0

case. In particular, the analogues of Corollaries 4.17 and 4.18 hold, when we replace

Opnilp
g by Opλ̌,nilp

g .
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4.22 Grading on the Lie algebroid

Recall the action of the group scheme Aut(D) on the scheme Opg(D) and the ind-
scheme Opg(D

×). It is is easy to see that this action lifts to a map from Aut(D) to
the groupoids IsomOpg

and Isomreg
Opg

, respectively. In particular, we obtain a map

Der(Ô) ' Lie(Aut(D))→ isomreg
Opg
.

We choose a coordinate on D and consider two distinguished elements L0 = t∂t
and L−1 = ∂t in Der(Ô). The action of L0 integrates to an action of Gm, thus
defining a grading on isomreg

Opg
. Recall also that this choice of a coordinate trivializes

the B-bundle PB,Opreg
g

on Opreg
g .

Proposition 4.23.

(1) The image of L−1 under

isomreg
Opg

' At(PG,Opreg
g
)→ At(PG,Opreg

g
)/At(PB,Opreg

g
) ' (g/b)Opreg

g

identifies, under the trivialization of (g/b)Opreg
g

corresponding to the above choice

of a coordinate, with the element p−1 ∈ g/b.
(2) Under the above trivialization of PB , the subspace g ⊂ gOpreg

g
is L0-stable, and

grading arising on it equals the one induced by adρ̌ .

Proof. The proof is essentially borrowed from [BD1, Proposition 3.5.18].
The action of L−1 on Opreg

g ×̂D lifts to the triple (FG,Opreg
g
,∇Opreg

g
,FB,Opreg

g
) by

definition. The lift of L−1 to the G-bundle PG,Opreg
g

is obtained via the identification
of the latter with the space of horizontal (with respect to ∇) sections of FG,Opreg

g
.

This lift does not preserve the reduction of PG,Opreg
g

to B; the resulting element
in At(PG,Opreg

g
)/At(PB,Opreg

g
), which is the element appearing in point (1) of the

proposition, equals, by definition, the value of

〈∇Opreg
g
/FB,Opreg

g
, ∂t 〉 ∈ (g/b)F

B,Op
reg
g

at Opreg
g ×x ⊂ Opreg

g ×̂D.
When the triple (FG,Opreg

g
,∇Opreg

g
,FB,Opreg

g
) is written as a connection on the trivial

B-bundle in the form ∇0 + p−1dt + q(t)dt,q(t) ∈ b[[t]], the above value equals
p−1, as required.

The second point of the proposition follows immediately from Lemma 1.9(1). )�

Part II: Categories of Representations

This part of the paper is devoted to the discussion of various categories of repre-
sentations of affine Kac–Moody algebras of critical level.
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In Section 5 we recall the results of [FF3, F] about the structure of the center of
the completed universal enveloping algebra of ĝ at the critical level. According to
[FF3, F], the spectrum of the center is identified with the space Opǧ(D

×) of ǧ-opers
over the formal punctured disc. This means that the category ĝcrit-mod “fibers’’ over
the affine ind-scheme Opǧ(D

×). Next, we introduce the categories of representations
that we study in this project, and in Section 6 we formulate our Main Conjecture 6.2
and Main Theorem 6.9.

In Section 7 we collect some results concerning the structure of the category
ĝcrit-mod over its center. In particular, we discuss the various incarnations of the
renormalized universal enveloping algebra at the critical level. This renormalization
is a phenomenon that has to do with the fact that we are dealing with a one-parameter
family of associative algebras (the universal enveloping of the Kac–Moody Lie alge-
bra, depending on the level), which at some special point (the critical level) acquires
a large center.

In Section 8 we discuss the subcategory ĝcrit-modreg of representations at the
critical level, whose support over Opǧ(D

×)belongs to the subscheme of regular opers.
We study its relation with the category of D-modules on the affine Grassmannian
GrG ' G((t))/G[[t]], and this leads us to Main Conjecture 8.11. We prove Theo-
rem 8.17 which states that a natural functor in one direction is fully faithful at the
level of derived categories. The formalism of convolution action, developed in [BD1,
Section 7], and reviewed in Part V below, allows us to reduce this assertion to a
comparison of self-Exts of a certain basic object in both cases. On one side the
required computation of Exts was performed in [ABG], and on the other side it
follows from the recent paper [FT].

Section 9 plays an auxiliary role: we give a proof of one of the steps in the proof of
Theorem 8.17 mentioned above, by analyzing how the algebra of G[[t]]-equivariant
self-Exts of the vacuum module Vcrit interacts with the G-equivariant cohomology
of the point.

5 Definition of categories

5.1

Let g be a simple finite-dimensional Lie algebra. For an invariant inner product κ on
g (which is unique up to a scalar) define the central extension ĝκ of the formal loop
algebra g⊗ C((t)) which fits into the short exact sequence

0 → C1 → ĝκ → g⊗ C((t))→ 0.

This sequence is split as a vector space, and the commutation relations read

[x ⊗ f (t), y ⊗ g(t)] = [x, y] ⊗ f (t)g(t)+ κ(x, y) · Res(gdf ) · 1, (5.1)

and 1 is a central element. The Lie algebra ĝκ is the affine Kac–Moody algebra
associated to κ . We will denote by ĝκ -mod the category of discrete representations



126 Edward Frenkel and Dennis Gaitsgory

of ĝκ (i.e., such that any vector is annihilated by g ⊗ tnC[[t]] for sufficiently large
n), on which 1 acts as the identity.

Let Uκ (̂g) be the quotient of the universal enveloping algebra U(̂gκ) of ĝκ by the
ideal generated by (1− 1). Define its completion Ũκ (̂g) as follows:

Ũκ (̂g) = lim←−Uκ (̂g)/Uκ (̂g) · (g⊗ t
nC[[t]]).

It is clear that Ũκ (̂g) is a topological algebra, whose discrete continuous representa-
tions are the same as objects of ĝκ -mod.

The following theorem, due to [FF3, F], describes the center Zκ (̂g) of Ũκ (̂g).
Let κcrit be the critical inner product on g defined by the formula

κcrit(x, y) = −1

2
Tr(ad(x) ◦ ad(y)).

Denote by Ǧ the group of adjoint type whose Lie algebra ǧ is Langlands dual to g
(i.e., the Cartan matrix of ǧ is the transpose of that of g).

Theorem 5.2.

(1) Zκ (̂g) = C if κ �= κcrit.
(2) Zcrit (̂g) is isomorphic to the algebra Fun(Op

Ǧ
(D×)) of functions on the space of

Ǧ-opers on the punctured disc D×.

From now on we will denote Zcrit (̂g) simply by Zg.

5.3

Let I be the Iwahori subgroup of the groupG[[t]], i.e., the preimage of a fixed Borel
subgroup B ⊂ G under the evaluation homomorphism G[[t]] → G. Let I 0 ⊂ I

be the pro-unipotent radical of I . Noncanonically we have a splitting Lie(I ) =
Lie(I 0)⊕ h, where h is a Cartan subalgebra of g.

Recall that an object M ∈ gκ -mod is called I -integrable (respectively, I 0-
integrable) if the action of Lie(I ) ⊂ ĝκ (respectively, Lie(I 0)) on M integrates
to an action of the pro-algebraic group I (respectively, I 0). In the case of I 0 this
condition is equivalent to saying that Lie(I 0) acts locally nilpotently, and in the case
of I that, in addition, h acts semisimply with eigenvalues corresponding to integral
weights. (The latter condition is easily seen to be independent of the choice of the
splitting h → Lie(I )).

Following the conventions of Section 20.3, we will denote the corresponding

subcategories of ĝcrit-mod by ĝcrit-modI and ĝcrit-modI
0
, respectively. We will denote

byD(̂gκ -mod)I andD(̂gκ -mod)I
0

the corresponding triangulated categories; see Sec-
tion 20.8.
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Recall also that an object M ∈ gκ -mod is called I -monodromic if it is Lie(I 0)-
integrable and h acts locally finitely with generalized eigenvalues corresponding to
integral weights. It is evident that a module M is I -monodromic if and only if it
has an increasing filtration with successive quotients being I -integrable. We will
denote the subcategory of monodromic modules by gκ -modI,m. We will denote by
D(̂gκ -mod)I,m the full subcategory of D(̂gκ -mod) consisting of complexes with I -
monodromic cohomology.

Let us note that the above notions make sense more generally for an arbitrary
category C endowed with a Harish-Chandra action of I (see Section 20.7). Namely,
we have the full subcategories

CI ⊂ CI
0 ⊂ C

along with the equivariant categories D(C)I , D(C)I,m, D(C)I0 . Since the group I 0

is pro-unipotent, the functor

D+(C)I0 → D+(C)

is fully faithful and its image consists of complexes whose cohomologies are I 0-
equivariant. We also introduce the I -monodromic category CI,m as the full subcat-
egory of C consisting of objects that admit a filtration whose subquotients belong to
CI ; we let D(C)I,m be the full subcategory of D(C) which consists of complexes
whose cohomologies belong to CI,m.

From now on let us take κ = κcrit . Recall the subscheme Opnilp
ǧ

⊂ Opǧ(D
×); see

Section 2.13. Let ĝcrit-modnilp ⊂ gcrit-mod be the subcategory consisting of modules
on which the action of the center Zg ' Fun(Opǧ(D

×)) factors through the quotient

Z
nilp
g := Fun(Opnilp

ǧ
). This is a category endowed with an action of G((t)) and, in

particular, of I .
Our main object of study is the category ĝcrit-modI,mnilp, where we follow the above

conventions regarding the notion of the I -monodromic subcategory. In other words,

ĝcrit-modI,mnilp = ĝcrit-modI,m ∩ ĝcrit-modnilp.

The following will be established in Section 7.19.

Lemma 5.4. The inclusion functor

ĝcrit-modI,m ∩ ĝcrit-modnilp → ĝcrit-modI
0 ∩ ĝcrit-modnilp

is, in fact, an equivalence.

(In other words, any module in ĝcrit-mod, which is I 0-integrable, and on which
the center acts via Z

nilp
g , is automatically I -monodromic.)

By the above lemma, the inclusion

D+(̂gcrit-modnilp)
I,m ↪→ D+(̂gcrit-modnilp)

I 0
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is an equivalence, and both these categories identify with the full subcategory of
D+(̂gcrit-modnilp), consisting of complexes whose cohomologies belong to

ĝcrit-modI,mnilp.
The following assertion seems quite plausible, but we are unable to prove it at the

moment.

Conjecture 5.5. The natural functor D(̂gcrit-modI,mnilp) → Db(̂gcrit-modnilp)
I 0

is an
equivalence.

We will not need it in what follows.

6 The main conjecture

6.1

We shall now formulate our main conjecture. Recall the scheme MOpnilp
ǧ

; see

Section 3.14. Let Db(QCoh(MOpnilp
ǧ
)) be the bounded derived category of quasi-

coherent sheaves on MOpnilp
ǧ

.
Our main conjecture is as follows.

Main Conjecture 6.2. We have an equivalence of triangulated categories

Db(̂gcrit-modnilp)
I 0 ' Db

(
QCoh(MOpnilp

ǧ
)
)
.

In what follows we will provide some motivation for this conjecture. We will
denote a functor establishing the conjectural equivalence Db(̂gcrit-modnilp)

I 0 →
Db(QCoh(MOpnilp

ǧ
)) by F.

Note that both categories Db(QCoh(MOpnilp
ǧ
)) and Db(̂gcrit-modnilp)

I 0
come

equipped with natural t-structures. The functor F will not be exact, but we expect it
to be of bounded cohomological amplitude, and hence to extend to an equivalence of
the corresponding unbounded derived categories.

Recall the ind-scheme MOpǧ,gen(D
×) from Section 3.3. Following [FF2, F],

to a quasi-coherent sheaf R on MOpǧ,gen(D
×) ' Conn

Ȟ
(ω
ρ

D×) one can attach
a Wakimoto module Ww0

crit(R) ∈ ĝcrit-mod (see Section 13.1 for a review of this
construction).

If R is supported on the closed subscheme MOpǧ,gen(D
×) ×

Opǧ(D
×)

Opnilp
ǧ

, then it

turns out that Ww0
crit(R) belongs to the subcategory ĝcrit-modI,mnilp. The main compatibil-

ity property that we expect from the functor F is that F(Ww0
crit(R)) will be isomorphic

to the direct image of R under the morphism

MOpǧ,gen(D
×) ×

Opǧ(D
×)

Opnilp
ǧ

→ MOpnilp
ǧ

(6.1)
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of Theorem 3.16.
In view of this requirement, the functor F−1, inverse to F, should be characterized

by the property that it extends the Wakimoto module construction from quasi-coherent
sheaves on MOpǧ,gen(D

×) ×
Opǧ(D

×)
Opnilp

ǧ
to those on MOpnilp

ǧ
. This was, in fact, the

main motivation for Main Conjecture 6.2.

6.3

In this subsection we would like to explain a point of view on Conjecture 6.2 as
a localization-type statement for affine algebras at the critical level that connects
D-modules on the affine flag variety to ĝcrit-mod.

This material will not be used in what follows, and for that reason we shall allow
ourselves to appeal to some results and constructions that are not available in the
published literature. One set of such results is Bezrukavnikov’s theory of perverse
sheaves on the affine flag scheme (see [Bez]) and another the formalism of triangulated
categories over stacks (to be developed in [Ga2]).

Let FlG be the affine flag scheme corresponding to G, i.e., FlG ' G((t))/I .
Let D(FlG)-mod denote the category of right D-modules on Fl. Let D(FlG)-modI ,

D(FlG)-modI
0

and D(FlG)-modI,m be the subcategories of I -equivariant, I 0-equi-
variant, and I -monodromic D-modules, respectively. One easily shows that the
inclusion functor

D(FlG)-modI,m → D(FlG)-modI
0

is, in fact, an equivalence of categories.
Let D(D(FlG)-mod)I and D(D(FlG)-mod)I

0
denote the corresponding triangu-

lated categories.
Recall the Grothendieck alteration ˜̌g → ǧ from Section 3.14. Let Ñ

Ǧ
be the

Springer resolution of the nilpotent cone N
Ǧ
⊂ ǧ. Let St

Ǧ
be the “thickened’’

Steinberg variety
St
Ǧ
:= ˜̌g ×̌

g
Ñ
Ǧ
.

Note that the scheme ˜̌n := ň ×̌
g

˜̌g introduced in Section 3.14 equals the preimage of

Ǧ/B̌− × {b̌} under the natural map St
Ǧ
→ Ǧ/B̌− × Ǧ/B̌−, and we have natural

isomorphisms of stacks:

Ñ
Ǧ
/Ǧ ' ň/B̌ and St

Ǧ
/Ǧ ' ˜̌n/B̌.

The next lemma ensures that the definition of the scheme ˜̌n (and, hence, of St
Ǧ

)
is not too naive, i.e., that we do not neglect lower cohomology.

Lemma 6.4. The derived tensor product

Fun(̃ǧ)
L⊗

Fun(ǧ)
Fun(ň) ∈ QCoh(̃ǧ)

is concentrated in cohomological dimension 0.
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Proof. Consider the vector space ǧ/ň. It is enough to show that the composed map˜̌g → ǧ → ǧ/ň

is flat near 0 ∈ ǧ/ň. Since the varieties we are dealing with are smooth, it is enough
to check that the dimension of the fibers is constant. The latter is evident. )�

According to [AB], there exists a natural tensor functor

Db
(

Coh(Ñ
Ǧ
/Ǧ)

)
→ Db(D(FlG)-mod)I .

In particular, using the convolution action of the monoidal categoryDb(D(FlG)-mod)I

on the entire Db(D(FlG)-mod), we obtain a monoidal action of Db(Coh(Ñ
Ǧ
/Ǧ))

on Db(D(FlG)-mod). This construction can be upgraded to a structure on
Db(D(FlG)-mod) of triangulated category over the stack Ñ

Ǧ
/Ǧ, see [Ga2]. In par-

ticular, it makes sense to consider the base-changed triangulated category

Db (D(FlG)-mod) ×
Ñ
Ǧ
/Ǧ

Opnilp
ǧ
, (6.2)

where we are using the map Resnilp : Opnilp
ǧ

→ ň/B̌ ' Ñ
Ǧ
/Ǧ.

A far-reaching generalization of Conjecture 6.2 is the following statement in the
spirit of the localization theorem of [BB].

Conjecture 6.5. There is an equivalence of triangulated categories

Db (D(FlG)-mod) ×
Ñ
Ǧ
/Ǧ

Opnilp
ǧ

' Db(̂gcrit-modnilp).

A version of this conjecture concerning ĝcrit-modreg, rather than ĝcrit-modnilp,
can be made precise without the machinery of categories over stacks, and it will be
discussed in Section 8.

Let us explain the connection between the above Conjectures 6.5 and 6.2.
Namely, we claim that the latter is obtained from the former by passing to the corre-
sponding I 0-equivariant categories on both sides. In order to explain this, we recall
the main result of Bezrukavnikov’s theory.

Theorem 6.6. There is a natural equivalence

Db (D(FlG)-mod)I
0 ' Db

(
Coh

(
St
Ǧ
/Ǧ
))
.

This theorem implies that the base-changed category

Db (D(FlG)-mod)I0 ×
Ñ
Ǧ
/Ǧ

Opnilp
ǧ

is equivalent to

Db

(
QCoh(St

Ǧ
/Ǧ ×

Ñ
Ǧ
/Ǧ

Opnilp
ǧ
)

)
,

which by Corollary 3.17 is the same as Db(QCoh(MOpnilp
ǧ
)).
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6.7

We shall now formulate one of the main results of this paper, which amounts to an
equivalence as in Main Conjecture 6.2, but at the level of certain quotient categories.
This result provides us with the main supporting evidence for the validity of Main
Conjecture 6.2. Before stating the theorem, let us give some motivation along the
lines of Theorem 6.6.

Let F be an I 0-integrable D-module on FlG. We will say that it is partially
integrable if F admits a filtration F = ∪

k≥0
Fk such that each successive quotient

Fk/Fk−1 is equivariant with respect to a parahoric subalgebra pι = Lie(I )+ slι2 for
some vertex of the Dynkin graph ι ∈ I.

Similarly, we will call an object M of ĝcrit-modI
0

partially integrable if there exists
a filtration M = ∪

k≥0
Mk such that for each successive quotient Mk/Mk−1 there exists

a parahoric subalgebra pι as above such that its action integrates to an action of the
corresponding pro-algebraic group. More generally, the notion of partial integrability
makes sense in any category equipped with a Harish-Chandra action of G((t)) (see
Section 22, where the latter notion is introduced).

In both cases it is easy to see that partially integrable objects form a Serre

subcategory. Let fD(FlG)-modI
0

(respectively, f ĝcrit-modI,mnilp) denote the quo-

tient category of D(FlG)-modI
0

(respectively, ĝcrit-modI,mnilp) by the subcategory of

partially integrable objects. We will denote by fD(D(FlG)-mod)I
0

(respectively,
fDb(̂gcrit-modnilp)

I 0
) the triangulated quotient categories by the subcategories con-

sisting of objects whose cohomologies are partially integrable.
Let us now recall the statement from [Bez] that describes the category

fDb(D(FlG)-mod)I
0

in terms of quasi-coherent sheaves.
Let h0 denote the algebra of functions on the scheme #−1(0), where # is the

natural projection h∗ → h∗//W . This is a nilpotent algebra of length |W |.
Recall also that h∗ ' ȟ. We have a natural map

St
Ǧ
' ˜̌g ×̌

g
Ñ
Ǧ
→ ȟ ×

ȟ//W

Ñ
Ǧ
' Spec(h0)× Ñ

Ǧ
.

Theorem 6.8. There is a canonical equivalence

fDb (D(FlG)-mod) I
0 ' Db

(
QCoh

(
Spec(h0)× Ñ

Ǧ
/Ǧ
))
,

so that under the equivalence of Theorem 6.6 the functor

Db (D(FlG)-mod)I
0 → fDb (D(FlG)-mod)I

0

corresponds to the direct image under the projection St
Ǧ
/Ǧ→ Spec(h0)× Ñ

Ǧ
/Ǧ.

Combining this with Conjecture 6.5, we arrive at the following statement, which
is proved in Part IV of this paper and is one of our main results.
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Main Theorem 6.9. We have an equivalence:

fF : fDb(̂gcrit-modnilp)
I 0 → Db

(
QCoh

(
Spec(h0)× Opnilp

ǧ

))
.

Moreover, this functor is exact in the sense that it preserves the natural t-structures
on both sides.

7 Generalities on ĝcrit-modules

7.1

Recall that the ind-scheme Opǧ(D
×) contains the following subschemes:

Opreg
ǧ
⊂ Opnilp

ǧ
⊂ OpRS

ǧ = Opord1
ǧ

⊂ Opordk
ǧ

for k ≥ 1.

Let us denote by
Zordk

g � ZRS
g � Z

nilp
g � Z

reg
g ,

respectively, the corresponding quotients of Zg ' Fun(Opǧ(D
×)).

Let us denote by Zg-mod the category of discrete Zg-modules. By definition, any
object of this category is a union of subobjects, each of which is acted on by Zg via

the quotient Z
ordk
g for some k.

Let ıreg (respectively, ınilp, ıRS, ıordk ) denote the closed embedding of Spec(Zreg
g )

(respectively, Spec(Znilp
g ), Spec(ZRS

g ), Spec(Zordk
g )) into the ind-scheme Spec(Zg),

and let ıreg
! (respectively, ınilp

! , ıRS
! , ıordk

! ) denote the corresponding direct image
functor on the category of modules.

It is easy to see that at the level of derived categories we have well-defined right ad-
joint functors from D+(Zg-mod) to D+(Zreg

g -mod), D+(Znilp
g -mod), D+(ZRS

g -mod)

and D+(Zordk
g -mod), denoted ıreg!, ınilp!, ınilp! and ıordk !, respectively.

7.2

Let ĝcrit-modreg (respectively, ĝcrit-modnilp, ĝcrit-modRS, ĝcrit-modordk ) denote the
subcategory of ĝcrit-mod whose objects are modules on which Zg acts through the
corresponding quotient.

The following basic result was established in [BD1, Theorem 3.7.9].

Theorem 7.3. The induced module Indĝcrit
tkg[[t]]⊕C1(C) belongs to ĝcrit-modordk .

Here and below, when considering the induced modules such as Indĝcrit
tkg[[t]]⊕C1(C),

we will assume that 1 acts as the identity. We will also need the following.

Lemma 7.4. The module Indĝcrit
tkg[[t]]⊕C1(C) is flat over Z

ordk
g .
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Proof. By construction, the PBW filtration on Zg induces a filtration on Z
ordk
g

such that

gr(Zordk
g ) '

(
Sym

(
g((t))/tkg[[t]]

))G[[t]]
.

This filtration is compatible with the natural filtration on Indĝcrit
tkg[[t]]⊕C1(C), and it

suffices to check the flatness on the associated graded level.
This reduces the assertion to showing that the algebra Sym (g((t))/tkg[[t]]) is flat

over (Sym (g((t))/tkg[[t]]))G[[t]]. However, the multiplication by t−k reduces us to
the situation when k = 0, in which case the required assertion is proved in [EF]. )�

Let us denote by ıreg
! (respectively, ınilp

! , ıRS
! , ıordk

! ) the evident functor from
ĝcrit-modreg (respectively, ĝcrit-modnilp, ĝcrit-modRS, ĝcrit-modordk ) to ĝcrit-mod. It is
easy to show that each of these functors admits an adjoint, denoted ıreg! (respectively,
ınilp!, ıRS!, ıordk !), defined on D+(̂gcrit-mod).

From Lemmas 7.4 and 23.8, we obtain the following.

Lemma 7.5. The functor ıreg! : D+(̂gcrit-mod) → D+(̂gcrit-modreg) commutes in
the natural sense with the forgetful functors D+(̂gcrit-mod) → D+(Zg-mod) and
D+(̂gcrit-modreg)→ D+(Zreg

g -mod), and similarly for the nilp,RS and ordk versions.

7.6

Now letK be a group subscheme ofG[[t]]. Following our conventions, we will denote
by ĝcrit-modK (respectively, ĝcrit-modKreg, ĝcrit-modKnilp, ĝcrit-modKRS, ĝcrit-modKordk

)
the corresponding abelian categories of K-equivariant objects; see Section 20.7. We
will denote by D(̂gcrit-mod)K (respectively, D(̂gcrit-modreg)

K , D(̂gcrit-modnilp)
K ,

D(̂gcrit-modRS)
K , D(̂gcrit-modordk )

K ) the corresponding triangulated categories.

The functors ıreg
! (respectively, ınilp

! , ıRS
! , ıordk

! ) extend to theK-equivariant setting
in a straightforward way. By Proposition 23.14, we have the following.

Lemma 7.7. There exist functors ıreg! : D(̂gcrit-mod)K → D(̂gcrit-modreg)
K (re-

spectively, ınilp! : D+(̂gcrit-mod)K → D+(̂gcrit-modnilp)
K , ıRS! : D+(̂gcrit-mod)K

→ D+(̂gcrit-modRS)
K , ıordk ! : D+(̂gcrit-mod)K → D+(̂gcrit-modordk )

K) that are

right adjoint to the functors ıreg
! (respectively, ınilp

! , ıRS
! , ıordk

! ), and which commute
with the forgetful functors to the corresponding derived categories D+(̂gcrit-mod),
D+(̂gcrit-modreg), D

+(̂gcrit-modnilp), D
+(̂gcrit-modRS), and D+(̂gcrit-modordk ).

This lemma implies that if M1,M2 are two objects of, say ĝcrit-modKreg, then there

exists a spectral sequence, converging to Ext•
D(̂gcrit -mod)K

(ı
reg
! (M1), ı

reg
! (M2)), and

whose second term Ep,q2 is given by

Extp
D(̂gcrit -modreg)K

(M1,M2) ⊗
Z

reg
g

�q(NZ
reg
g /Zg

), (7.1)

where NZ
reg
g /Zg

denotes the normal bundle to Spec(Zreg
g ) inside Spec(Zg). The same

spectral sequence exists when we replace the index reg by either of nilp, RS, or ordk .
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7.8

We shall now recall a construction related to that of the renormalized universal en-
veloping algebra at the critical level, following [BD1, Section 5.6].

The main ingredient is the action of the algebra Zg on Ũcrit (̂g) by outer derivations.
Let us recall the construction:

Let us pick a nonzero (symmetric, invariant) pairing κ : g ⊗ g → C, and using
it construct a one-parameter deformation of the critical pairing: κ� = κcrit + � · κ .
We obtain a one-parameter family of topological associative algebras Ũ�(̂g). For an
element a ∈ Zg, and its lift a� ∈ Ũ�(̂g) and b ∈ Ũ�(̂g), the element [a�, b] ∈ Ũ�(̂g)
is 0 modulo �.

Hence, the operation b �→ [a�,b]
�

mod � is a derivation of Ũcrit (̂g). It does not
depend on the choice of the lifting a� up to inner derivations. This construction has
the following properties.

Lemma 7.9.

(a) The constructed map Zg → Derout(Ũcrit (̂g)) is a derivation, i.e., it extends to a
(continuous) map of (topological) Zg-modules 	1(Zg)→ Derout(Ũcrit (̂g)).

(b) Each of the above derivations preserves the subalgebra Zg ⊂ Ũcrit (̂g), i.e., Zg is
a topological Poisson algebra and 	1(Zg) is an algebroid over Spec(Zg).

The following result, which relates the Poisson algebra structure on Zg with
Langlands duality, is crucial for this paper:

Recall from Section 4.1 that IsomOpǧ
denotes the groupoid over the ind-scheme

Opǧ(D
×), whose fiber over χ, χ ′ ∈ Opǧ(D

×) is the scheme of isomorphisms of Ǧ-
local systems on D×, corresponding to χ and χ ′, respectively, and isomOpǧ

denotes
its algebroid. One of the key properties of the isomorphism Theorem 5.2, proved in
[FF3, F], is that it respects the Poisson structures. In other words, in terms of the
corresponding Lie algebroids (see Section 4.1), we have the following.

Theorem 7.10. Under the isomorphism Zg ' Fun(Opǧ(D
×)), we have a canonical

identification of Lie algebroids 	1(Zg) ' isomOpǧ
.

Let us now derive some consequences from the construction described above. By
Lemma 4.9 and its variant for the nilp, RS and ordk cases, we obtain the following.

Corollary 7.11. The ideal of each of the quotient algebras Z
reg
g (respectively, Z

nilp
g ,

ZRS
g , Zordk

g ) is stable under the Poisson bracket, i.e.,N∗
Z

reg
g /Zg

(respectively,N∗
Z

nilp
g /Zg

,

N∗
ZRS

g /Zg
, N∗

Z
ordk
g /Zg

) is an algebroid over the corresponding algebra.

Let us observe that for any ĝcrit-module M we obtain a map

	1(Zg)→ Ext1
ĝcrit -mod(M,M). (7.2)

This map is functorial in the sense that for a morphism of ĝcrit-modules M → M′,
the two compositions
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	1(Zg)→ Ext1
ĝcrit -mod(M,M)→ Ext1

ĝcrit -mod(M,M
′)

and

	1(Zg)→ Ext1
ĝcrit -mod(M

′,M′)→ Ext1
ĝcrit -mod(M,M

′)

coincide.
The next series of remarks is stated for the subscheme Spec(Zreg

g ) ⊂ Spec(Zg);
however, they equally apply to the cases when reg is replaced by either of nilp, RS
or ordk .

Note that the Poisson structure, viewed as a map	1(Zg)→ T (Zg), gives rise to
a commutative diagram:

0 −−−−→ N∗
Z

reg
g /Zg

−−−−→ 	1(Zg)|Spec(Zreg
g ) −−−−→ 	1(Z

reg
g ) −−−−→ 0⏐⏐/ ⏐⏐/ ⏐⏐/

0 −−−−→ T (Z
reg
g ) −−−−→ T (Zg)|Spec(Zreg

g ) −−−−→ NZ
reg
g /Zg

−−−−→ 0.

Let M and M′ be two objects of ĝcrit-modreg. Note that we have an exact sequence

0 → Ext1
ĝcrit -modreg

(M,M′)→ Ext1
ĝcrit -mod(M,M

′)→
→ Hom(M,M′) ⊗

Z
reg
g

NZ
reg
g /Zg

→ Ext2
ĝcrit -modreg

(M,M′).

It is easy to see that the composed map

Hom(M,M′) ⊗
Zg

	1(Zg)→ Ext1
ĝcrit -mod(M,M

′)→ Hom(M,M′) ⊗
Z

reg
g

NZ
reg
g /Zg

comes from the map 	1(Zg) → NZ
reg
g /Zg

from the above commutative diagram.
Thus we obtain the following commutative diagram:

Hom(M,M′) ⊗
Z

reg
g

N∗
Z

reg
g /Zg

−−−−→ Ext1
ĝcrit -modreg

(M,M′)⏐⏐/ ⏐⏐/
Hom(M,M′) ⊗

Z
reg
g

	1(Zg)|Spec(Zreg
g ) −−−−→ Ext1

ĝcrit -mod(M,M
′)⏐⏐/ ⏐⏐/

Hom(M,M′) ⊗
Z

reg
g

	1(Z
reg
g ) −−−−→ Hom(M,M′) ⊗

Z
reg
g

NZ
reg
g /Zg

(7.3)

and a natural map

Hom(M,M′) ⊗
Z

reg
g

(
NZ

reg
g /Zg

/	1(Z
reg
g )
)
→ Ext2

ĝcrit -modreg
(M,M′). (7.4)
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Let us now consider once again the family Ũ�(̂g), and inside Ũ�(̂g) ⊗
C[[�]]

C((�))

consider the C[[�]]-subalgebra generated by Ũ�(̂g) and elements of the form

a�

�
for a� mod � ∈ ker(Zg → Z

reg
g ).

Taking this algebra modulo �, we obtain an algebra, denotedU ren,reg (̂gcrit), and called
the renormalized enveloping algebra at the critical level. The algebra U ren,reg (̂gcrit)

has a natural filtration, with the 0th term isomorphic to Ũcrit (̂g) ⊗
Zg

Z
reg
g , and the first

associated graded quotient isomorphic to(
Ũcrit (̂g) ⊗

Zg

Z
reg
g

)
⊗̂

Z
reg
g

N∗
Z

reg
g /Zg

.

Let U ren,reg (̂gcrit)-mod denote the category of (discrete) U ren,reg (̂gcrit)-modules.
We have a tautological homomorphism Ũcrit (̂g)→ U ren,reg (̂gcrit), whose restriction
to Zg factors through Z

reg
g ; thus we have a restriction functor U ren,reg (̂gcrit)-mod →

ĝcrit-modreg. In addition, the adjoint action of the algebra Ũcrit (̂g)⊗
Zg

Z
reg
g on itself ex-

tends to an action of the first term of the above-mentioned filtration on U ren,reg (̂gcrit).
Now let M� be an �-family of modules over ĝ� such that the action of Zg on

M := M�/�·M� factors through Z
reg
g . Then M is naturally acted on byU ren,reg (̂gcrit).

This construction provides a supply of objects of U ren,reg (̂gcrit)-mod.

Lemma 7.12. Let M,M′ be U ren,reg (̂gcrit)-modules. Then

(a) The map Homĝcrit -mod(M,M
′) ⊗

Z
reg
g

N∗
Z

reg
g /Zg

→ Ext1
ĝcrit -modreg

(M,M′) vanishes.

(b) We have a natural action of the algebroid N∗
Z

reg
g /Zg

on Ext•̂gcrit -modreg
(M,M′).

Finally, let us note that the category of U ren,reg (̂gcrit)-modules carries a Harish-
Chandra action of G((t)). In particular, if K is a group subscheme of G[[t]], we can
introduce the categories U ren,reg (̂gcrit)-modK and D(U ren,reg (̂gcrit))

K . In addition,
analogues of the diagrams appearing above remain valid for

Ext•̂gcrit -modreg
(M,M′) and Ext•̂gcrit -mod(M,M

′)

replaced by

Ext•
D(̂gcrit -modreg)K

(M,M′) and Ext•
D(̂gcrit -mod)K (M,M

′),

respectively.
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7.13

For the rest of this section we will be concerned with the category ĝcrit-modord1 ,
denoted also by ĝcrit-modRS.

Now consider the functor g-mod → ĝcrit-mod given by

M �→ Indĝcrit
g[[t]]⊕C1(M), (7.5)

where g[[t]] acts onM via the evaluation map g[[t]] → g and 1 acts as the identity.
By definition.

Indĝcrit
g[[t]]⊕C1(U(g)) ' Indĝcrit

tg[[t]]⊕C1(C),

and by Theorem 7.3, this module belongs to ĝcrit-modRS. This implies that the module
Indĝcrit

g[[t]]⊕C1(M) ∈ ĝcrit-modRS for anyM .
In what follows we will need the following technical assertions, in which we use

the notion of quasi-perfectness introduced in Section 19.20.

Proposition 7.14.

(1) Representations of the form Indĝcrit
g[[t]]⊕C1(M) forM ∈ g-mod are quasi-perfect as

objects of D(̂gcrit-mod).
(2) Any object M ∈ ĝcrit-modRS, which is quasi-perfect in ĝcrit-mod, is also quasi-

perfect in ĝcrit-modRS. The same is true when the RS condition is replaced by any
of ordk , nilp, or reg.

Proof. Since the induction functor is exact, by adjunction,

HomD(gcrit -mod)(Indĝcrit
g[[t]]⊕C1(M),M

•
1) ' HomD(g[[t]]-mod)(M,M

•
1).

WhenM•
1 is bounded from below the latter is computed by the standard cohomological

complex of g[[t]] (see Section 19.17), which manifestly commutes with direct sums.
This proves the first point of the proposition.

The second point follows from Proposition 23.12. )�

7.15

Denote by Mλ (respectively, M∨
λ , Lλ) the ĝcrit-module induced from the Verma mod-

ule Mλ (respectively, the contragredient Verma module M∨
λ , the irreducible module

Lλ) with highest weight λ over g:

Mλ = Indĝcrit
g[[t]]⊕C1(Mλ), M∨

λ = Indĝcrit
g[[t]]⊕C1(M

∨
λ ), Lλ = Indĝcrit

g[[t]]⊕C1(Lλ).

Recall that we have the natural residue map ResRS : OpRS
ǧ
→ ȟ//W ' h∗//W .

At the level of algebras of functions we therefore have a map

ResRS ∗ : Sym(h)W → ZRS
g . (7.6)

Thus, for everyM ∈ g-mod we obtain two a priori different actions of Sym(h)W

on Indĝcrit
g[[t]]⊕C1(M):
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One action corresponds to the map ResRS ∗ and the action of ZRS
g on objects of

ĝcrit-modRS. Another action comes from the Harish-Chandra isomorphism

Sym(h)W ' Z(U(g)), (7.7)

(which we normalize so that the central character of Mλ equals #(λ + ρ)), the
action of Z(U(g)) by endomorphisms on M , and, hence, the induced action on
Indĝcrit

g[[t]]⊕C1(M), by functoriality.
Let τ be the involution of Z(U(g)), induced by the anti-involution x �→ −x of

U(g). Alternatively, τ can be thought of as induced by the outer involution of g that
acts on the weights as λ �→ −w0(λ).

Proposition 7.16. The above two actions of Sym(h)W on Indĝcrit
g[[t]]⊕C1(M) differ by τ .

Proof. It is enough to consider the universal example ofM = U(g). In the course of
the proof of the proposition we will essentially reprove Theorem 7.3.

Consider the grading on ĝcrit induced by the Gm-action on D by loop rotations.
Then all our objects, such as Zg, ZRS

g and Indĝcrit
tg[[t]]⊕C1(C), acquire a natural grading;

the degree i subspace will be denoted by the subscript i, i.e., (·)i .
Consider the ideal Zg · (Zg)>0 in Zg generated by elements of positive degree.

From Section 1.9, we know that the quotient Zg/Zg · (Zg)>0 is precisely ZRS
g . Since

the grading on Indĝcrit
tg[[t]]⊕C1(C) is nonpositive and the module is generated by the

subspace of degree 0, the above ideal annihilates this module.
Now consider the subalgebra of degree 0 elements (Zg/Zg · (Zg)>0)0 ⊂ ZRS

g .
According to Section 1.9, it is isomorphic to Sym(h)W and the resulting embedding

Sym(h)W → ZRS
g (7.8)

is the homomorphism ResRS ∗.
The action of (Zg/Zg · (Zg)>0)0 on Indĝcrit

tg[[t]]⊕C1(C) preserves the subspace of
degree 0 elements. However, the latter subspace is isomorphic to U(g). Therefore,
(Zg/Zg · (Zg)>0)0 acts on U(g) commuting with both the left and right module
structure; hence it comes from a homomorphism (Zg/Zg · (Zg)>0)0 → Z(U(g)).

It remains to compare the resulting homomorphism

Sym(h)W → (Zg/Zg · (Zg)>0)0 → Z(U(g))

with the Harish-Chandra isomorphism. This has been proved in [F, Section 12.6].
Let us repeat the argument for completeness:

It is enough to show that for any weight λ ∈ h∗, the two characters, corresponding
to Sym(h)W acting in the two ways on the module M∨

λ , coincide.
Let Ww0

crit,λ be the Wakimoto module corresponding to the weight λ, as in Sec-

tion 11.5. By Lemma 13.2, the character of Sym(h)W , acting on Ww0
crit,λ via (7.8), is

given by#(−λ− ρ).
By Section 11.5, we have have a nontrivial homomorphism M∨

λ → Ww0
crit,λ, and

hence the center Zg acts on both modules by the same character. )�



Local geometric Langlands correspondence and affine Kac–Moody algebras 139

Recall that for χ ∈ h∗//W ' ȟ//W we have a subscheme OpRS,χ
ǧ

⊂ OpRS
ǧ

; if

µ ∈ h∗ is integral and antidominant, then OpRS,#(µ)
ǧ

' Op−µ−ρ,nilp
ǧ

; if, moreover,

µ+ ρ is antidominant, then the latter scheme contains the subscheme Op−µ−ρ,reg
ǧ

.

Let us denote by Z
RS,χ
g , Z−µ−ρ,nilp

g and Z
−µ−ρ,reg
g , respectively, the corresponding

quotients of Zg. Let ĝcrit-modRS,χ , ĝcrit-mod−µ−ρ,nilp, ĝcrit-mod−µ−ρ,reg be the
corresponding subcategories of ĝcrit-mod. The general results stated in this section,
concerning the behavior of ĝcrit-modreg, ĝcrit-modnilp, ĝcrit-modRS and ĝcrit-modordk ,
are equally applicable to ĝcrit-modRS,χ , ĝcrit-mod−µ−ρ,nilp and ĝcrit-mod−µ−ρ,reg.

From Proposition 7.16, we obtain the following.

Corollary 7.17. The modules Mλ, M∨
λ and Lλ belong to ĝcrit-modRS,#(−λ−ρ).

For a dominant integral weight λ, let V λ be the corresponding irreducible finite-
dimensional g-module. Let Vλcrit denote the corresponding induced module at the
critical level. In Section 13.7 we will also establish the following.

Proposition 7.18. The module Vλcrit belongs to ĝcrit-modλ,reg.

7.19

Recall now that the subscheme Opnilp
ǧ

⊂ OpRS
ǧ

is the preimage of #(−ρ) ∈ h∗//W
under the map res : OpRS

ǧ
→ h∗//W .

In particular, if we denote by O0 the subcategory of the usual category O cor-
responding to g-modules with central character equal to #(−ρ), we obtain that the
induction (7.5) defines a functor O0 → ĝcrit-modI,mnilp. In particular, the modules

Mw(ρ)−ρ , M∨
w(ρ)−ρ for w ∈ W all belong to ĝcrit-modI,mnilp.

In what follows we will consider sections of right D-modules on the affine flag
variety FlG. Instead of ordinary right D-modules, we will consider the ones twisted
by a line bundle, which is the tensor product of the critical line bundle on GrG and the
G((t))-equivariant line bundle, corresponding to the weight 2ρ (this choice is such
that the twisting induced on G/B ⊂ FlG corresponds to left D-modules on G/B.)

We will denote the resulting category by D(FlG)crit-mod, and by a slight abuse
of language we will continue to call its objectsD-modules. Of course, as an abstract
category D(FlG)crit-mod is equivalent to D(FlG)-mod, but the functor of global
sections is different. We have

R  : D+ (D(FlG)crit-mod)→ D+(̂gcrit-mod).

In particular, (FlG, δ1FlG
) ' M−2ρ .

As usual, if K is a subgroup of G[[t]], we will denote by D(FlG)crit-modK the
abelian category of K-equivariant D-modules, and by D(D(FlG)crit-modK)K the
corresponding triangulated category.

For F• ∈ D+(D(FlG)crit-mod), we have
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(FlG,F
•) ' F• "M−2ρ.

Hence, we obtain the following.

Corollary 7.20. The functor of global sections gives rise to a functor

D+ (D(FlG)crit-mod)→ D+(̂gcrit-modnilp).

7.21

Let us now prove Lemma 5.4.

Proof. Let M be an I 0-integrable module. Then it admits a filtration whose sub-
quotients are quotients of modules of the form Indĝcrit

g[[t]]⊕C1(M), where M is an N -
integrable g-module,

If we impose the condition that M ∈ ĝcrit-modnilp, then by Proposition 7.16, we
can assume that the above M has central character #(−ρ). But, as is well known,
this implies thatM ∈ O0. )�

In addition, we have the following result.

Lemma 7.22. Any object M ∈ ĝcrit-modI,mnilp admits a nonzero map Lw(ρ)−ρ → M.

Proof. By definition, any M contains a vector annihilated by Lie(I 0), and which is an
eigenvector of h. Hence, we have a nontrivial map Mλ → M. By Proposition 7.16,
λ must be of the form w(ρ)− ρ for some w ∈ W .

The Verma module Mw(ρ)−ρ admits a filtration whose subquotients are the irre-
ducibles Lw′(ρ)−ρ , w′ ≥ w. Since the induction functor is exact, Mw(ρ)−ρ admits a
filtration with subquotients isomorphic to Mw′(ρ)−ρ .

Let w′ be the maximal element such that the corresponding term of the filtration
on Mw(ρ)−ρ maps nontrivially to M. This gives the desired map. )�

8 The case of regular opers

8.1

Recall that the preimage of pt /B̌ ↪→ ň/B̌ under Opnilp
ǧ

→ ň/B̌ is the scheme Opreg
ǧ

of regular Ǧ-opers on the disc D. From the point of view of representations, the
algebra Z

reg
g ' Fun(Opreg

ǧ
) is characterized as follows. Let

Vcrit ' Indĝcrit
g[[t]]⊕C1(C)

be the vacuum Verma module of critical level. According to [FF3, F], the action of
the center Zg ' Fun(Opǧ(D

×)) on Vcrit factors through its quotient Fun(Opreg
ǧ
).

Moreover, the latter algebra is isomorphic to the algebra of endomorphisms of Vcrit .
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In this section we will be concerned with the category ĝcrit-modreg and its derived
category D(̂gcrit-modreg). We will see that there are many parallels between the
categories D(̂gcrit-modreg) and D(̂gcrit-modnilp), but the structure of the former is
considerably simpler.

Let ĝcrit-modI,mreg denote the full subcategory of ĝcrit-modreg equal to the inter-

section ĝcrit-modreg ∩ ĝcrit-modI,m; we let Db(̂gcrit-modreg)
I 0 := D(̂gcrit-modreg)

I0

denote the corresponding full triangulated category.
In this section we will formulate a conjecture that describes these categories in

terms of D-modules on the affine Grassmannian.

8.2

Before stating the conjecture we would like to motivate it by Bezrukavnikov’s theory
in the spirit of Section 6.3. In this subsection the discussion will be informal.

Let GrG = G((t))/G[[t]] be the affine Grassmannian of the group G. We will
consider rightD-modules on GrG and denote this category by D(GrG)-mod. As be-
fore, we have the subcategories D(GrG)-modI , D(GrG)-modI0 ' D(GrG)-modI,m

and the corresponding triangulated categories

D(D(GrG)-mod)I ,D(D(GrG)-mod)I0 ⊂ D(D(GrG)-mod).

Consider the two categories appearing in Conjecture 6.5, and let us apply a further
base change with respect to the map Opreg

ǧ
→ Opnilp

ǧ
. We obtain an equivalence:

Db(D(FlG)-mod) ×
Ñ
Ǧ
/Ǧ

(Opnilp
ǧ

×
Opnilp

ǧ

Opreg
ǧ
) ' Db(̂gcrit-modnilp) ×

Opnilp
ǧ

Opreg
ǧ
. (8.1)

The right-hand side is by definition equivalent toDb(̂gcrit-modreg). The left-hand
side can be rewritten as(

Db(D(FlG)-mod) ×
Ñ
Ǧ
/Ǧ

pt /B̌

)
×

pt /B̌
Opreg

ǧ
.

The theory of spherical sheaves on the affine Grassmannian implies that
Db(D(GrG)-mod) is naturally a category over the stack pt /Ǧ in the sense explained
in Section 0.3. It follows from Bezrukavnikov’s theory [Bez] that the categories
Db(D(GrG)-mod) and Db(D(FlG)-mod) are related as follows:

Db(D(FlG)-mod) ×
Ñ
Ǧ
/Ǧ

pt /B̌ ' Db (D(GrG)-mod) ×
pt /Ǧ

pt /B̌.

Hence, from (8.1) we obtain the following conjecture:

Db (D(GrG)-mod) ×
pt /Ǧ

Opreg
ǧ
' Db(̂gcrit-modreg).

Our Conjecture 8.11 below reformulates the last statement in terms that do not
require the formalism of categories over a stack.
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8.3

Recall from Section 4.8 the groupoid Isomreg
Opǧ

on Opreg
ǧ

and the corresponding Lie

algebroid isomreg
Opǧ

, which is the Atiyah algebroid of the principal Ǧ-bundle P
Ǧ,Opreg

ǧ
.

For V ∈ Rep(Ǧ) we will denote by VOpreg
ǧ

the corresponding (projective) module

over Fun(Opreg
ǧ
).

Using Theorem 5.2 we can transfer these objects to Spec(Zreg
g ), and we will denote

them by IsomOpreg
ǧ

, isomOpreg
ǧ

, P
Ǧ,Z

reg
g

and VZ
reg
g

, respectively. From Theorem 7.10

and Section 4.8, we obtain the following.

Corollary 8.4.

(a) Under the isomorphism Z
reg
g ' Fun(Opreg

ǧ
), we have a canonical identification of

Lie algebroids N∗
Z

reg
g /Zg

' isomreg
Opg

.

(b) We have a commutative diagram

0 0⏐⏐/ ⏐⏐/
ǧZ

reg
g

id−−−−→ ǧZ
reg
g

−−−−→ 0⏐⏐/ ⏐⏐/ ⏐⏐/
0 −−−−→ N∗

Z
reg
g /Zg

−−−−→ 	1(Zg)|Spec(Zreg
g ) −−−−→ 	1(Z

reg
g ) −−−−→ 0⏐⏐/ ⏐⏐/ ⏐⏐/

0 −−−−→ T (Z
reg
g ) −−−−→ T (Zg)|Spec(Zreg

g ) −−−−→ NZ
reg
g /Zg

−−−−→ 0⏐⏐/ ⏐⏐/ ⏐⏐/
0 −−−−→ ǧZ

reg
g

id−−−−→ ǧZ
reg
g⏐⏐/ ⏐⏐/

0 0

8.5

In what follows will work not with usual right D-modules on GrG, but rather with
the D-modules twisted by the critical line bundle, as in Section 7.19. We will de-
note the corresponding category by Dcrit(GrG)-mod. We have the following result,
established in [FG].

Theorem 8.6. The functor of global sections  : Dcrit(GrG)-mod → ĝcrit-mod
is exact and faithful. Moreover, it factors canonically through a functor ren :
Dcrit(GrG)-mod → U ren,reg (̂gcrit)-mod, and the latter functor is fully faithful.
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Consider the category SphG := Dcrit(GrG)-modG[[t]]. According to the results
of Lusztig, Drinfeld, Ginzburg, and Mirković–Vilonen (see [MV]), this is a tensor
category under the convolution product, which is equivalent to the category Rep(Ǧ)
of representations of the algebraic group Ǧ. For V ∈ Rep(Ǧ) we will denote by FV
the corresponding (critically twisted) G[[t]]-equivariant D-module on GrG.

Let us recall the basic result of [BD1, Sections 5.5 and 5.6] that describes global
sections of the (critically twisted) D-modules FV .

Theorem 8.7.

(a) We have a canonical isomorphism of ĝcrit-modules

(GrG,FV ) ' Vcrit ⊗
Z

reg
g

VZ
reg
g
,

compatible with the tensor product of representations.
(b) The isomorphisms of (a) and that of Corollary 8.4 are compatible in the sense

that the N∗
Z

reg
g /Zg

-action on Hom(Vcrit, (GrG,FV )), coming from Theorem 8.6

and Section 7.8, corresponds to the canonical isomreg
Opǧ

-action on VOpreg
ǧ

.

We can take the convolution product of any D-module on GrG with a spherical
one. A priori, this will be a complex of D-modules on GrG, but as in [Ga] one
shows that this is a single D-module. (Alternatively, this follows from the lemma
below, using Theorem 8.6). Thus we obtain an action of the tensor category Rep(Ǧ)
on Dcrit(GrG)-mod:

F, V �→ F " FV .

Lemma 8.8. For F ∈ Dcrit(GrG)-mod and V ∈ Rep(Ǧ) we have a canonical iso-
morphism:

(GrG,F " FV ) ' (GrG,F) ⊗
Z

reg
g

VZ
reg
g
.

Proof. Let us recall the formalism of the convolution action (see Section 22.6). We
have the functors

Db(Dcrit(GrG)-mod)×Db(Dcrit(GrG)-mod)G[[t]] → Db(Dcrit(GrG)-mod)

and

Db(Dcrit(GrG)-mod)×Db(̂gcrit-modreg)
G[[t]] → Db(̂gcrit-modreg),

which are intertwined by the functor . Note that (GrG, δ1GrG
) ' Vcrit , and

(GrG,F) ' F " Vcrit .
Hence, we have

(GrG,F " FV ) ' (F " FV ) " Vcrit ' F " (FV " Vcrit) ' F " (GrG,FV )

' F " (Vcrit ⊗
Z

reg
g

VZ
reg
g
) ' (F " Vcrit) ⊗

Z
reg
g

VZ
reg
g

' (GrG,F) ⊗
Z

reg
g

VZ
reg
g
,

where the second-to-last isomorphism is given by Theorem 8.7. )�
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8.9

After these preparations we introduce the category D(GrG)Hecke
crit -mod which is con-

jecturally equivalent to ĝcrit-modreg.
Its objects are (critically twisted) D-modules F on GrG, endowed with an action

of the algebra Z
reg
g by endomorphisms, and a family of functorial isomorphisms

αV : F " FV ' VZ
reg
g

⊗
Z

reg
g

F, V ∈ Rep(Ǧ),

compatible with tensor products of representations in the sense that for U,V ∈
Rep(Ǧ) the diagram

(F " FU) " FV −−−−→ F " (FU " FV )⏐⏐/ ⏐⏐/
(UZ

reg
g

⊗
Z

reg
g

F) " FV (UZ
reg
g

⊗
Z

reg
g

VZ
reg
g
) ⊗

Fun(Opreg
ǧ
)

F⏐⏐/ ⏐⏐/
UZ

reg
g

⊗
Z

reg
g

(F " FV ) −−−−→ UZ
reg
g

⊗
Z

reg
g

(VZ
reg
g

⊗
Z

reg
g

F)

is commutative, and that αV , for V being the trivial representation, is the iden-
tity map.

In fact, one can show as in [AG2] that it is sufficient to give a family of morphisms
{αV } satisfying the above conditions; the fact that they are isomorphisms is then
automatic. Morphisms in this category are maps of D-modules that commute with
the action of Z

reg
g and the data of αV .

Note that the category D(GrG)Hecke
crit -mod is precisely the category

D(GrG)-mod ×
pt /Ǧ

Opreg
ǧ

introduced above.
Consider the groupoid IsomOpreg

ǧ
and note that the algebra Fun(IsomOpreg

ǧ
) is

isomorphic to
⊕

V∈Irr(Rep(Ǧ))
VZ

reg
g
⊗
C
V ∗

Z
reg
g
,

and the unit section corresponds to the map

VZ
reg
g
⊗
C
V ∗

Z
reg
g
→ VZ

reg
g

⊗
Fun(Zreg

g )

V ∗
Z

reg
g
→ Fun(Zreg

g ).

Let us consider the space of global sections of an object F ∈ D(GrG)Hecke
crit -mod.

From Lemma 8.8 we obtain the following.
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Lemma 8.10. For an object F of D(GrG)Hecke
crit -mod, the action of Zreg

g on (GrG,F)
by ĝcrit-endomorphisms canonically extends to an action of Fun(IsomOpreg

ǧ
).

Consider the functor Hecke : D(GrG)Hecke
crit -mod → ĝcrit-modreg given by

F �→ (Gr,F) ⊗
Fun(Isom

Op
reg
ǧ
)
Z

reg
g ,

where Z
reg
g is considered as a Fun(IsomOpreg

ǧ
)-algebra via the unit section.

We propose the following.

Main Conjecture 8.11. The above functorHecke is exact and defines an equivalence
of categories D(GrG)Hecke

crit -mod → ĝcrit-modreg.

Note that by definition, the category D(GrG)Hecke
crit -mod carries a Harish-Chandra

action ofG((t)) at the critical level. By construction, the functor Hecke preserves this
structure. In particular, we can consider the subcategories of I 0-equivariant objects
on both sides. As a consequence we obtain another conjecture.

Main Conjecture 8.12. The category ĝcrit-modI,mreg is equivalent to

D(GrG)
Hecke
crit -modI0 .

8.13

We now present another way of formulating Main Conjecture 8.11. Recall from [Ga1]
that if Y is an affine variety, C is a Fun(Y)-linear abelian category and GY is an affine
groupoid over Y, it then makes sense to speak about a lift of the GY-action on Y to C.

We take Y = Spec(Zreg
g ), GY = IsomOpreg

ǧ
and C = ĝcrit-modreg. One can show

that Main Conjecture 8.11 is equivalent to the following one.

Conjecture 8.14. The action of Isomreg
Opreg

ǧ

on Spec(Zreg
g ) lifts to an action on

ĝcrit-modreg in such a way that

(1) this structure commutes in the natural sense with the Harish-Chandra action of
G((t)) on ĝcrit-modreg;

(2) the functor  establishes an equivalence between the category D(GrG)crit-mod
and the category of IsomOpreg

ǧ
-equivariant objects in ĝcrit-modreg.

Remark 8.15. If we had an action of IsomOpreg
ǧ

on ĝcrit-modreg, as conjectured above,

then at the infinitesimal level we would have functorial maps

isomreg
Opreg

ǧ

→ Ext1
ĝcrit -modreg

(M,M),

for any M ∈ ĝcrit-modreg. However, the latter maps are known to exist, as follows
from (7.3) in Section 7.8.
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8.16

Although we are unable to prove Main Conjecture 8.11 at the moment, we will
establish one result in its direction, which we will use later on.

Let us denote by LHecke : D−(D(GrG)Hecke
crit -mod) → D−(̂gcrit-modreg) the

functor given by

F �→ (GrG,F)
L⊗

Fun(Isom
Op

reg
ǧ
)
Z

reg
g ,

where
L⊗ is defined using a left resolution of Z

reg
g by projective Fun(IsomOpreg

ǧ
)-

modules.
One easily shows (and we will see this in the course of the proof of the next

theorem) that LHecke is, in fact, the left derived functor of Hecke.

Theorem 8.17. The functor LHecke, restricted to Db(D(GrG)Hecke
crit -mod), is fully

faithful.

Before giving the proof, we need some preparations.

8.18

Let us observe that the obvious forgetful functor

D(GrG)
Hecke
crit -mod → D(GrG)crit-mod

admits a left adjoint, which we will denote by IndHecke. Indeed, it is given by

F �→ ⊕
V∈Irr(Rep(Ǧ))

(F " FV ∗)⊗
C
VZ

reg
g
.

Evidently, we have the following.

Lemma 8.19.

LHecke(GrG, IndHecke(F)) ' Hecke(GrG, IndHecke(F)) ' (GrG,F).

Therefore, Theorem 8.17 implies the following.

Theorem 8.20. For

F•1,F•2,∈ Db(D(GrG)crit) and M•
i = (GrG,F

•
i ) ∈ Db(̂gcrit-modreg),

the map, given by the functor LHecke,

RHomD(D(GrG)crit -mod)

(
F•1, ⊕

V∈Irr(Rep(Ǧ))
(F•2 " FV ∗)⊗

C
VZ

reg
g

)
→ RHomD(̂gcrit -modreg)(M

•
1,M

•
2)

is an isomorphism.
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From this theorem we obtain that all

Ri HomD(̂gcrit -modreg)((GrG,F
•
1), (GrG,F

•
2)),

viewed as quasi-coherent sheaves on Spec(Zreg
g ), are equivariant with respect to the

groupoid IsomOpreg
ǧ

. We claim that we know a priori that the above Ri Hom is acted

on by the algebroid isomOpreg
ǧ
' N∗

Z
reg
g /Zg

, and the map in Theorem 8.20 is compatible

with the action of N∗
Z

reg
g /Zg

. This follows from Lemma 7.12 and Theorem 8.7.

8.21 Proof of Theorem 8.17

It is clear that any object of D(GrG)Hecke
crit -mod admits a surjection from an object of

the form IndHecke(F) for some F ∈ D(GrG)crit-mod. Therefore, any bounded from
above complex in D(GrG)Hecke

crit -mod admits a left resolution by a complex consisting
of objects of this form. Hence, it is sufficient to show that for F1 ∈ D(GrG)crit-mod
and F•2 ∈ D+(D(GrG)Hecke

crit -mod) the map

RHom
D
(
D(GrG)Hecke

crit -mod
) (IndHecke(F1),F

•
2

)
(8.2)

→ RHomD(̂gcrit -modreg)

(
(GrG,F1),L

Hecke(GrG,F
•
2)
)
. (8.3)

is an isomorphism. Note that by adjunction the LHS of the above formula is iso-
morphic to RHomD(D(GrG)crit -mod)(F1,F

•
2), where we regard F•2 just as an object of

D+(D(GrG)crit-mod).
Without loss of generality we can assume that F1 is finitely generated, and is

equivariant with respect to some congruence subgroupK ⊂ G[[t]]. By Section 20.10,
we can replace F•2 by AvK(F•2), i.e., without a loss of generality, we can assume that
F•2 is also K-equivariant.

We will use the Harish-Chandra action of G((t)) on D(GrG)Hecke
crit -mod and

ĝcrit-modreg. Namely, we will interpret F1 as F1 " δ1GrG
∈ D(GrG)crit-modK ,

and hence

IndHecke(F1) ' F1 " (IndHecke(δ1GrG
)) ∈ D(GrG)

Hecke
crit -modK.

Similarly, (GrG,F1) ' F1 " Vcrit .
Let F̃1 be the dual D-module in D(G((t))/K)crit-modG[[t]]; see Section 22.22.

Set

F• := F̃1 " F2 ∈ D+ (D(GrG)
Hecke
crit -mod

)G[[t]]
.

By Section 22.22, we have

RHomD(D(GrG)crit -mod)(F1,F
•
2) ' RHomD(D(GrG)crit -mod)G[[t]]

(
δ1GrG

,F•
)

and RHomD(̂gcrit -modreg) ((GrG,F1),LHecke(GrG,F•2)) is isomorphic to
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RHomD(̂gcrit -modreg)G[[t]]
(
Vcrit,L

Hecke(GrG,F
•)
)
.

Evidently, we can assume F• is an object, denoted F, of the abelian category
D(GrHecke

G )crit-modG[[t]].
Since the category D(GrG)crit-modG[[t]] is equivalent to Rep(Ǧ), we obtain that

the category D(GrG)Hecke
crit -modG[[t]] is equivalent to the category of Z

reg
g -modules,

with the functor being given by

L �→ IndHecke(δ1GrG
)⊗ L.

Therefore, the D-module F above has such a form for some Z
reg
g -module L.

By a reg- andG[[t]]-equivariant version of Proposition 7.14, we can assume that
L is finitely presented. Since Z

reg
g is a polynomial algebra, every finitely presented

module admits a finite resolution by projective ones. This reduces us to the case when
L = Z

reg
g . Thus we obtain that it is enough to show the following:

(*) The map

Ext•
D(D(GrG)crit -mod)G[[t]](δ1GrG

, IndHecke(δ1GrG
))

→ Ext•
D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit)

is an isomorphism.

To establish (*) we proceed as follows. It is known from [ABG, Theorem
7.6.1] that

Ext•
D(D(Gr)crit -mod)G[[t]]

(
δ1GrG

, ⊕
V∈Irr(Rep(Ǧ))

FV ⊗
C
V ∗
)
' Sym•(ǧ),

viewed as a graded algebra with an action of Ǧ, where the generators ǧ ⊂ Sym•(ǧ)
have degree 2.

Hence, the left-hand side in (*) is isomorphic to the graded algebra over Z
reg
g

obtained from the Ǧ-torsor P
Ǧ,Z

reg
g

and the Ǧ-algebra Sym•(ǧ), i.e.,

P
Ǧ,Z

reg
g

Ǧ× Sym•(ǧ) ' Sym•
Z

reg
g
(ǧZ

reg
g
). (8.4)

Now we claim that the right-hand side in (*) is also isomorphic to the algebra
appearing in (8.4).

Theorem 8.22. There exists a canonical isomorphism of algebras

Ext•
D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit) ' Sym•

Z
reg
g
(ǧZ

reg
g
),

compatible with the action of N∗
Z

reg
g /Zg

, where the generators ǧ ⊂ Sym•(ǧ) have

degree 2.
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8.23 Proof of Theorem 8.22

From Corollary 8.4 and (7.4) we obtain a map

ǧZ
reg
g
→ Ext2

D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit), (8.5)

compatible with the action ofN∗
Z

reg
g /Zg

. We are going to show that this map induces the

isomorphism stated in the theorem. We will do it by analyzing the spectral sequence
of Section 7.6.

Since the ĝcrit-action on Vcrit can be canonically extended to an action of
U ren,reg (̂gcrit), from Lemma 7.12 and (7.3), we obtain a map

	1(Z
reg
g )→ Ext1

D(̂gcrit -mod)G[[t]](Vcrit,Vcrit).

We will use the following result of [FT].

Theorem 8.24. The cup-product induces an isomorphism of algebras

	•(Zreg
g )→ Ext•

D(̂gcrit -mod)G[[t]](Vcrit,Vcrit).

Recall that ıreg denotes the embedding Spec(Zreg
g ) ↪→ Spec(Zg). Consider the

object ıreg!(Vcrit) ∈ D(̂gcrit-modreg)
G[[t]]; see Section 7.6. By loc. cit., the j th

cohomology of this complex is isomorphic to Vcrit ⊗
Z

reg
g

�j(NZ
reg
g /Zg

).

Consider the cohomological truncation of ı!(Vcrit), leaving the segment in the
cohomological degrees j and j + 1. It gives rise to a map in the derived category

φj : Vcrit ⊗
Z

reg
g

�j+1(NZ
reg
g /Zg

)→ Vcrit ⊗
Z

reg
g

�j(NZ
reg
g /Zg

)[2]. (8.6)

Lemma 8.25. The map φj equals the composition

Vcrit ⊗
Z

reg
g

�j+1(NZ
reg
g /Zg

)→ Vcrit ⊗
Z

reg
g

NZ
reg
g /Zg

⊗
Z

reg
g

�j(NZ
reg
g /Zg

)

φ1⊗id→ Vcrit ⊗
Z

reg
g

�j(NZ
reg
g /Zg

)[2].

By Section 7.6, we obtain a spectral sequence, converging to

Ext•
D(̂gcrit -mod)G[[t]](Vcrit,Vcrit),

whose second term is given by

E
i,j

2 = Exti
D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit) ⊗

Z
reg
g

�j(NZ
reg
g /Zg

).

Note also that by Lemma 8.25, the differential in the above spectral sequence,
which maps Ei−2,j+1

2 → E
i,j

2 , can be expressed through the case when j = 0 as
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E
i−2,j+1
2 ' Ei−2,0

2 ⊗
Z

reg
g

�j+1(NZ
reg
g /Zg

)→ E
i−2,0
2 ⊗

Z
reg
g

NZ
reg
g /Zg

⊗
Z

reg
g

�j(NZ
reg
g /Zg

)

' Ei−2,1
2 ⊗

Z
reg
g

�j(NZ
reg
g /Zg

)→ E
i,0
2 ⊗

Z
reg
g

�j(NZ
reg
g /Zg

) ' Ei,j2 .

Let us observe that the canonical map

Extj
D(̂gcrit -mod)G[[t]](Vcrit,Vcrit)→ E

0,j
2 (8.7)

identifies by construction with the map 	j(Zreg
g ) → �j(NZ

reg
g /Zg

) coming from
(7.3); in particular, it is injective.

We will prove by induction on i = 1, 2, . . . the following statements:

(i) E
2i−1,0
2 = 0,

(ii) E
2i,0
2 ' Symi (ǧZ

reg
g
) such that the differential E2i−2,1

2 → E
2i,0
2 is identified

with the map Symi−1(ǧZ
reg
g
) ⊗

Z
reg
g

NZ
reg
g /Zg

→ Symi (ǧZ
reg
g
).

Note that item (i) above implies thatE2i−1,j
2 = 0 for any j and that item (ii) implies

thatE2i,j
2 ' Symi (ǧZ

reg
g
) ⊗
Z

reg
g

�j(NZ
reg
g /Zg

) such that the differential is identified with

the Koszul differential

Symi−1(ǧZ
reg
g
) ⊗

Z
reg
g

�j(NZ
reg
g /Zg

)→ Symi (ǧZ
reg
g
) ⊗

Z
reg
g

�j−1(NZ
reg
g /Zg

).

Consider first the base of the induction, i.e., the case i = 1. In this case we know
a priori that E1,0

2 = 0. We obtain that 	1(Z
reg
g ) maps isomorphically onto the kernel

of the map NZ
reg
g /Zg

' E0,1
2 → E

2,0
2 . In particular, the map of (8.5) ǧZ

reg
g
↪→ E

2,0
2

is injective. We claim that the latter map is surjective as well. Indeed, if it were not,
the map in (8.7) would not be injective for j = 2.

Hence, the differential E0,j
2 → E

2,j−1
2 does identify with the corresponding

term of the Koszul differential. In particular, Exti
D(̂gcrit -mod)G[[t]](Vcrit,Vcrit) maps

isomorphically to E0,j
3 ' ker(E0,i

2 → E
2,i−1
2 ). This implies, in particular, that all

the higher differentials E0,j
k → E

k,j−k−1
k for k ≥ 3 vanish.

Let us now perform the induction step. Observe that by the induction hypothesis,

all the terms of the spectral sequence Ei
′,j
k for 0 < i′ ≤ 2i − 2 with k ≥ 3 vanish.

Therefore, the term E2i+1,0
2 injects into

ker
(

Ext2i+1
D(̂gcrit -mod)G[[t]](Vcrit,Vcrit)→ E

0,2i+1
2

)
,

and as the latter map is injective, we obtain that E2i+1,0
2 = 0.

By a similar argument we obtain that E2i,1
3 = E

2i+2,0
3 = 0. Hence, E2i+2,0

2
identifies with
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coker

(
Symi−1(ǧZ

reg
g
) ⊗

Z
reg
g

�2(NZ
reg
g /Zg

)→ Symi (ǧZ
reg
g
) ⊗

Z
reg
g

NZ
reg
g /Zg

)
' Symi+1(ǧZ

reg
g
).

To finish the proof of theorem it remains to remark that, by construction, the
cup-product map

Ext2
D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit)⊗ Ext2i

D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit)

→ Ext2i+2
D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit)

is identified with the multiplication map ǧZ
reg
g
⊗ Symi (ǧZ

reg
g
)→ Symi+1(ǧZ

reg
g
).

8.26

Thus the two graded algebras appearing in (*) are abstractly isomorphic to one another.
It remains to see that the existing map indeed induces an isomorphism. Since both
algebras are freely generated by their degree 2 part, it is sufficient to show that the map

ǧZ
reg
g
' Ext2

D(D(GrG)crit -mod)G[[t]]

(
δ1GrG

, ⊕
V∈Irr(Rep(Ǧ))

FV ⊗
C
V ∗

Z
reg
g

)
(8.8)

→ Ext2
D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit) ' ǧZ

reg
g

(8.9)

is an isomorphism. Since the map of Theorem 8.20 is compatible with the action
of the algebroid N∗

Z
reg
g /Zg

, and since ǧZ
reg
g

is irreducible as a N∗
Z

reg
g /Zg

-module, if the

map in (8.8) were not an isomorphism, it would be zero. We claim that this leads to
a contradiction:

Consider the canonical maps of H •(pt /G) ' H •
G[[t]](pt) to both the LHS and

RHS of (*). Note that we have a canonical identification

H •(pt /G) ' Sym•(h∗)W ' Sym•(ȟ)W ' Sym•(ǧ)Ǧ.

By the construction of the isomorphism in [ABG, Theorem 7.6.1],

H •(pt /G)→ Ext•
D(D(Gr)crit -mod)G[[t]]

(
δ1Gr , ⊕

V∈Irr(Rep(Ǧ))
FV ⊗ V ∗

)

corresponds to the canonical embedding Sym•(ǧ)Ǧ → Sym•(ǧ). Therefore, if the
map of (*) was 0 on the generators, it would also annihilate the augmentation ideal
in H •(pt /G). However, we have the following assertion.

Theorem 8.27. The map

H •(pt /G) ' H •
G[[t]](pt)→ Ext•

D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit)
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corresponds under the isomorphism of Theorem 8.22 to the map

H •(pt /G) ' Sym•(ǧ)Ǧ
τ'Sym•(ǧ)Ǧ → P

Ǧ,Z
reg
g

Ǧ×Sym•(ǧ) ' Sym•(ǧZ
reg
g
),

where τ is as in Section 7.15.

The proof of this theorem will be given in the next section.

9 A manipulation with equivariant cohomology: Proof of
Theorem 8.27

9.1

We will consider the algebra of self-Exts of Vcrit in a category bigger than ĝcrit-modreg,
namely, in the category ĝcrit-modnilp.

Let P
B̌,Opnilp

ǧ

be the canonical B̌-torsor on the scheme Opnilp
ǧ

, and let P
B̌,Opreg

ǧ
be

its restriction to Opreg
ǧ

. We will denote by P
B̌,Z

nilp
g

and P
B̌,Z

reg
g

the corresponding

B̌-torsors on Spec(Znilp
g ) and Spec(Zreg

g ), respectively. If V is a representation of

B̌ (in practice we will take V = b̌, ň, ǧ/ň, etc.), we will denote by V
Z

nilp
g

, VZ
reg
g

the

corresponding modules over Z
nilp
g and Z

reg
g , respectively.

Recall that by Corollary 4.18, the image of the normalN
Opreg

ǧ
/Opnilp

ǧ

in the quotient

NZ
reg
g /Zg

/	1(Z
reg
g )

identifies with ňZ
reg
g
⊂ ǧZ

reg
g

. From the proof of Theorem 8.22 we obtain the following
statement.

Lemma 9.2. The natural map

Ext•
D(̂gcrit -modreg)G[[t]](Vcrit,Vcrit)→ Ext•

D(̂gcrit -modnilp)
G[[t]](Vcrit,Vcrit)

induces an isomorphism

Sym•((ǧ/ň)Zreg
g
) ' Ext•

D(̂gcrit -modnilp)
G[[t]](Vcrit,Vcrit).

By the equivariance of the map in (*) with respect to the algebroid N∗
Z

reg
g /Zg

,

the image of H •(pt /G) in Sym•
Z

reg
g
(ǧZ

reg
g
) is a priori contained in the subalgebra

Sym•(ǧ)Ǧ. Hence, it is sufficient to show that the composition

Sym•(ȟ)W ' H •(pt /G)→ Ext•
D(̂gcrit -modnilp)

G[[t]](Vcrit,Vcrit) ' Sym•((ǧ/ň)Zreg
g
)

equals the natural map

Sym•(ȟ)W
τ'Sym•(ȟ)W → Sym•(ȟ)→ Sym•((b̌/ň)Zreg

g
) ↪→ Sym•((ǧ/ň)Zreg

g
).
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9.3

Now consider the module M0 ∈ ĝcrit-modInilp. Since AvG[[t]]/I (M0) ' Vcrit , by
Section 22.21, we obtain an isomorphism

RHomD(̂gcrit -modnilp)
G[[t]](Vcrit,Vcrit) ' RHomD(̂gcrit -modnilp)

I (M0,Vcrit).

It is easy to see that the composition

H •(pt /G[[t]])→ Ext•
D(̂gcrit -modnilp)

G[[t]](Vcrit,Vcrit)

→ Ext•
D(̂gcrit -modnilp)

I (M0,Vcrit)

equals the map

H •(pt /G[[t]])→ H •(pt /I)→ Ext•
D(̂gcrit -modnilp)

I (M0,M0)

→ Ext•
D(̂gcrit -modnilp)

I (M0,Vcrit).

By Corollary 13.9, the module M0 is flat over Z
nilp
g . Hence, by Lemma 23.3

RHom•
D(̂gcrit -modnilp)

I (M0,M) ' RHom•
D(̂gcrit -modreg)I

(M0,reg,M)

for any M ∈ ĝcrit-modIreg, where M0,reg := M0 ⊗
Z

nilp
g

Z
reg
g .

Moreover, the map

H •(pt /I)→ Ext•
D(̂gcrit -modnilp)

I (M0,M0)→ Ext•
D(̂gcrit -modnilp)

I (M0,Vcrit)

that appears above equals the map

H •(pt /I)→ Ext•
D(̂gcrit -modreg)I

(M0,reg,M0,reg)→
→ Ext•

D(̂gcrit -modreg)I
(M0,reg,Vcrit) ' Ext•

D(̂gcrit -modnilp)
I (M0,Vcrit).

Thus we obtain a commutative diagram

H •(pt /G[[t]]) −−−−→ H •(pt /I)⏐⏐/ ⏐⏐/
Sym•((ǧ/ň)Zreg

g
)

∼−−−−→ Ext•
D(̂gcrit -modreg)I

(M0,reg,Vcrit),

and it is easy to see that the resulting map

Sym•(ȟ) ' H •(pt /I)→ Sym•((ǧ/ň)Zreg
g
)

is a homomorphism of algebras.
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Therefore, it suffices to show that the map

ȟ ' H 2(pt /I)→ Ext2
D(̂gcrit -modreg)I

(M0,reg,M0,reg)→
→ Ext2

D(̂gcrit -modreg)I
(M0,reg,Vcrit) ' (ǧ/ň)Zreg

g

equals the negative of the tautological map ȟ → (ǧ/ň)Zreg
g

.
Let M be an arbitrary I -equivariant object of ĝcrit-modreg. One easily establishes

the following compatibility of spectral sequences.

Lemma 9.4. The composition

Ext1
ĝcrit -mod(M,M)→ Hom(M,M) ⊗

Z
reg
g

NZ
reg
g /Zg

→ Ext2
D(̂gcrit -modreg)I

(M,M)

equals the composition

Ext1
ĝcrit -mod(M,M)→ Hom(M,M)⊗H 2(pt /I)→ Ext2

D(̂gcrit -modreg)I
(M,M).

Therefore, to complete the proof of Theorem 8.27, it is sufficient to construct a
map h∗ → Ext1

ĝcrit -mod(M0,reg,M0,reg) such that the composition

h∗ → Ext1
ĝcrit -mod(M0,reg,M0,reg)→ Hom(M0,reg,M0,reg)⊗H 2(pt /I)

comes from the natural isomorphism h∗ → H 2(pt /I), and the composition

ȟ ' h∗ → Ext1
ĝcrit -mod(M0,reg,M0,reg)→ Hom(M0,reg,M0,reg) ⊗

Z
reg
g

NZ
reg
g /Zg

→ Hom(M0,reg,M0,reg) ⊗
Z

reg
g

(ǧ/ň)Zreg
g

equals the negative of the embedding ȟ → (b̌/ň)Zreg
g

.

9.5

The required map h∗ → Ext1
ĝcrit -mod(M0,reg,M0,reg) is constructed as follows. By

deforming the highest weight, we obtain the “universal’’Verma moduleU(g) ⊗
U(n)

C =:
Muniv, and the corresponding induced module Muniv over ĝcrit . In particular, we have
a map h∗ → Ext1(M0,M0).

Clearly, the composition h∗ → Ext1(M0,M0) → Ext1(M0,M0,reg) factors
canonically through Ext1

ĝcrit -mod(M0,reg,M0,reg).
The fact that the composition

h∗ → Ext1
ĝcrit -mod(M0,reg,M0,reg)→ Hom(M0,reg,M0,reg)⊗H 2(pt /I)

comes from h∗ → H 2(pt /I) follows from the corresponding property of the com-
position h∗ → Ext1

g-mod(M0,M0)→ Hom(M0,M0)⊗H 2(pt /I).
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Consider the composition ȟ ' h∗ → Hom(M0,reg,M0,reg) ⊗
Z

reg
g

(ǧ/ň)Zreg
g

. This

map is equivariant with respect to the group Aut(D). In particular, if we choose a
coordinate on D, the above map has degree 0 with respect to the action of Gm by loop
rotations. Since ȟ equals the degree 0 subspace of Hom(M0,reg,M0,reg) ⊗

Z
reg
g

(ǧ/ň)Zreg
g

(see Section 4.22), we obtain that the map in question factors through some map
ȟ → ȟ.

To prove that the latter map is, in fact, the negative of the identity, we proceed
as follows. By Section 2.13, we have an identification h∗ ⊗ Z

nilp
g ' N

Z
nilp
g /ZRS

g
.

Moreover, by Lemma 4.19, the composition

h∗ ⊗ Z
reg
g ' N

Z
nilp
g /ZRS

g
|Spec(Zreg

g ) → N
Z

nilp
g /Zg

|Spec(Zreg
g ) → (ǧ/ň)Zreg

g
,

maps identically onto h∗ ⊗ Z
reg
g ⊂ (ǧ/ň)Zreg

g
.

Now, our assertion follows from the fact that the map

h∗ ⊗ Z
nilp
g → Ext1(M0,M0)→ Hom(M0,M0) ⊗

Z
nilp
g

N
Z

nilp
g /Zg

equals the negative of

h∗ ⊗ Z
nilp
g ' N

Z
nilp
g /ZRS

g

1⊗id−→Hom(M0,M0) ⊗
Z

nilp
g

N
Z

nilp
g /ZRS

g

→ Hom(M0,M0) ⊗
Z

nilp
g

N
Z

nilp
g /Zg

by Proposition 7.16.

Part III: Wakimoto Modules

In this part we review the Wakimoto modules which were introduced for an arbi-
trary affine Kac–Moody algebra ĝ in [FF1, FF2, F] following the work of Wakimoto
[W] in the case of ŝl2. On the intuitive level, Wakimoto modules are sections of cer-
tainD-modules on the Iwahori orbits on the semi-infinite flag manifoldG((t))/B((t)).
The construction of [FF1, FF2, F] may be phrased in terms of a kind of semi-infinite
induction functor, as we explain below. This approach to the Wakimoto modules
is similar to the one discussed in [Ar, Vor, GMS]. It uses the formalism of chiral
algebras, and in particular, the chiral algebra of differential operators on the group
G. It also uses the language of semi-infinite cohomology, which was introduced by
Feigin [Fe] and, in the setting of chiral algebras, by Beilinson and Drinfeld [CHA].

Let
◦
G be the big cell B · w0 · B ⊂ G, and for an arbitrary level κ we consider

the chiral algebra Dch(
◦
G)κ of chiral differential operators on it. In Section 10 we
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define the chiral algebra Dch(
◦

G/N)κ as a BRST reduction of Dch(
◦
G)κ with respect

to n((t)). This chiral algebra can be thought of as governing D-modules on the big
cell in G((t))/N((t)); we show that the natural homomorphism to it from the chiral
algebra, corresponding to the Kac–Moody Lie algebra ĝκ , coincides with the free
field realization homomorphism of Feigin and Frenkel.

By construction, any chiral module over Dch(
◦

G/N)κ is a bimodule over ĝκ and
the Heisenberg algebra ĥ−κ+κcrit . In Section 11, for any such module we define
the induction functor from the category ĥκ−κcrit -mod to ĝκ -mod. The resulting ĝκ -
modules are by definition the Wakimoto modules. Thus Wakimoto modules can be
viewed as induced from ĥκ−κcrit to ĝκ using certain bimodules.

In Section 12 we study cohomological properties of Wakimoto modules and, in
particular, their behavior with respect to the convolution functors. The crucial result
that we need below is Proposition 12.12, which states that Wakimoto modules are
essentially invariant under convolution with “lattice’’ elements in the Iwahori–Hecke
algebra.

In Section 13 we specialize to the case κ = κcrit . The crucial result here, due to
[F], is that certain Wakimoto modules are isomorphic to Verma modules over ĝcrit .
This fact will allow us to obtain information about the structure of Verma modules
that will be used in the subsequent sections.

10 Free field realization

In what follows we will use the language of chiral algebras on a curve X, developed
in [CHA]. We will fix a point x ∈ X and identify DX-modules supported at this point
with underlying vector spaces. We will identify the formal disc D with the formal
neighborhood of x in X.

10.1

Let L be a Lie-* algebra, which we assume to be projective and finitely generated as
a DX-module. Recall that there exists a canonical Tate central extension of L, which
is a Lie-* algebra L̂Tate

0 → ωX → L̂Tate → L→ 0

(see [CHA, Section 2.7]). The key property of L̂Tate is that if M is a chiral module
over L̂−Tate (here “−’’ signifies the Baer negative central extension), then we have
a well-defined complex of DX-modules, denoted C

∞
2 (L,M), which we will refer to

as the semi-infinite complex of M with respect to L. We will denote by H
∞
2 (L,M)

(respectively,H
∞
2 +i (L,M)) the 0th (respectively, ith) cohomology of this complex.

If M is supported at the point x ∈ X, by definition C
∞
2 (L,M) is given by the

semi-infinite complex of the Tate Lie algebraH 0
DR(D

×, L)with respect to the lattice
H 0
DR(D, L) ⊂ H 0

DR(D
×, L).

If A is a chiral algebra with a homomorphism L̂−Tate → A, then C
∞
2 (L,A) has

a natural structure of a DG chiral algebra.
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Now let L′ and L′′ be two central extensions of L by ωX, whose Baer sum is
identified with L̂−Tate, and let M and M′ be L′- and L′′-modules, respectively. Then
M⊗M′ is a module over L̂−Tate, and in this case we will use the notation

M

∞
2⊗
L

M′ or M

∞
2⊗

H 0
DR(D

×,L),H 0
DR(D,L)

M′

instead of C
∞
2 (L,M⊗M′). If the latter is acyclic away from cohomological degree

0 we will denote by the same symbol the corresponding 0th cohomology.
Finally, let h be a finite-dimensional subspace in H 0

DR(X,L). In this case,

C
∞
2 (L,M) admits a subcomplex C

∞
2 (L; h,M) of relative cochains. We will some-

times also use the notation C
∞
2 (L; h, ·) and ·

∞
2⊗
L;h
·.

10.2

Let Lg, Lb and Ln be the Lie-* algebras corresponding to the Lie algebras g, b and
n, respectively. For a level κ , we will denote by Lg,κ the corresponding Kac–Moody
extension of Lg by ωX, and by Lb,κ the induced central extension of Lb. Let L̂Tate

b

be the Tate extension of Lb, and let L̂′b,κ be the Baer sum of L̂Tate
b and Lb,κ ′ , where

κ ′ = −κ − 2κcrit; let L̂b,κ be the Baer negative of L̂′b,κ .
Since κ ′|n = 0, the extension induced by Lb,κ ′ on Ln is canonically trivialized.

The extension induced by L̂Tate
b is also canonically trivialized, since n is nilpotent.

Hence, L̂b,κ comes from a well-defined central extension L̂h,κ of the commutative
Lie-* algebra Lh. We will denote by L̂′h,κ the Baer negative of L̂h,κ .

Note that when κ is integral, the above central extensions of Lie algebras
H 0
DR(D

×, ?) all come from the corresponding central extensions of loop groups.
We will denote by Hκ (respectively, H′

κ ) the reduced universal enveloping chiral
algebra of L̂h,κ (respectively, L̂′h,κ ). We will denote by Ag,κ the reduced universal
enveloping chiral algebra of Lg,κ .

Let M be a chiral Lb,κ ′ -module. Since the Tate extension of Lb, induced by the
adjoint action equals the extension induced by the adjoint action on Ln, the complex
C
∞
2 (Ln,M) carries a chiral action of L̂′b,κ . The resulting action of Ln ⊂ L̂′b,κ on the

individual semi-infinite cohomologies H
∞
2 +i (Ln,M) is trivial. Hence, we obtain

that each H
∞
2 +i (Ln,M) is a chiral H′

κ -module. If R is an Hκ -module, regarded
as a L̂b,κ -module, C

∞
2 (Lb,M ⊗ R) makes sense. If we suppose, moreover, that

C
∞
2 (Ln,M) is acyclic away from degree 0, then

C
∞
2 (Lb,M⊗ R) ' H ∞

2 (Ln,M)

∞
2⊗
Lh

R.

10.3

Recall now that for any level κ we can introduce the chiral algebra of differential op-
erators (CADO) Dch(G)κ , which admits two mutually commuting homomorphisms
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lg : Ag,κ → Dch(G)κ ← Ag,κ ′ : rg.

Let
◦
G denote the open Bruhat cellB ·w0 ·B ⊂ G, wherew0 is the longest element

of the Weyl group. We will denote by
◦

G/N ,
◦

G/B the corresponding open subsets in
G/N and G/B, respectively.

Let Dch(
◦
G)κ be the induced CADO on

◦
G. Consider the chiral DG algebra

C
∞
2 (Ln,D

ch(
◦
G)κ), where we take Ln mapping to Dch(

◦
G)κ via

Dch(
◦
G)κ ← Dch(G)κ

rg←− Ag,κ ′ ← Lg,κ ′ ← Ln.

Since
◦
G→ ◦

G/N is a principalN -bundle, from [CHA, Section 2.8.16] we obtain
the following.

Lemma 10.4. The complex C
∞
2 (Ln,D

ch(
◦
G)κ) is acyclic away from degree zero, and

the resulting chiral algebra is a CADO on
◦

G/N .

Let us denote H
∞
2 (Ln,D

ch(
◦
G)κ) by Dch(

◦
G/N)κ . By construction, we have a

homomorphism of chiral algebras

Dch(
◦

G/N)κ ← H′
κ ,

which we will denote by rh. We define the chiral algebra Dch(
◦

G/B)κ as the Lie-

* centralizer of H′
κ in Dch(

◦
G/N)κ . The map lg : Ag,κ → Dch(G)κ induces a

homomorphism

lg : Ag,κ → Dch(
◦

G/B)κ . (10.1)

Again, by construction, we have a canonical map

Dch(
◦

G/B)κ → Dch(
◦

G/N)κ

∞
2⊗

Lh;h
Hκ . (10.2)

Lemma 10.5. The map in (10.2) is an isomorphism.

The proof will become clear from the discussion in the next section.

10.6

Note that Dch(
◦

G/B)κ is not a CADO on
◦

G/B. We will now give a more explicit,

even if less canonical, description of the chiral algebras Dch(
◦

G/N)κ , Dch(
◦

G/B)κ
and the free field realization homomorphism.
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Let us choose a representative ofw0 inW and identify the variety
◦
G ' N ·w0 ·B

with the productN×B, endowed with the action onN on the left and ofB on the right.

Then Dch(
◦
G)κ becomes a CADO on this group, isomorphic to Dch(N)⊗Dch(B)κ ′ .

We will denote the existing maps

An → Dch(N) ⊂ Dch(
◦
G)κ and Ab,κ ′ → Dch(B)κ ′ ⊂ Dch(

◦
G)κ

by ln and rb, respectively, and the “new’’ maps, as in [AG1],

An → Dch(N) ⊂ Dch(
◦
G)κ and Âb,κ → Dch(B)κ ′ ⊂ Dch(

◦
G)κ

by rn, lb, respectively, where Âb,κ is the reduced chiral universal envelope of L̂b,κ .
Then

Dch(
◦

G/N)κ ' Dch(N)⊗ D̂ch(H)κ, (10.3)

where D̂ch(H)κ is a CADO on H with the maps

Hκ
lh−→ D̂ch(H)κ

rh←− H′
κ .

As usual, the centralizer of H′
κ in D̂ch(H)κ is Hκ , and we obtain that

Dch(
◦

G/B)κ ' Dch(N)⊗ Hκ .

The above isomorphism makes the assertion of Lemma 10.5 manifest: indeed, it

follows from the fact that D̂ch(H)κ

∞
2⊗

Lh;h
Hκ ' Hκ ; see Section 22.8.

Homomorphism (10.1) therefore gives rise to a homomorphism from the affine
Kac–Moody algebra to the tensor product of the chiral algebras Dch(N) and Hκ :

Ag,κ → Dch(N)⊗ Hκ . (10.4)

This is the free field realization homomorphism of [FF2, F].
The CADO Dch(N) may be identified with what physicists call the free field βγ

system, and Hκ is a twisted form of a Heisenberg algebra, which is also related to a
free bosonic system. This is why the homomorphism (10.4) is referred to as the free
field realization.

10.7

Let us now explain in what sense the homomorphism

Ag,κ → Dch(
◦

G/B)κ ' Dch(N)⊗ Hκ (10.5)

above is an affine analogue (i.e., chiralization) of a well-known phenomenon for
finite-dimensional Lie algebras. We will appeal to notations introduced in [AG1].
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Consider the variety
◦
G ' N × B with an action of the Lie algebra g on the left.

This action defines a map g → T (
◦

G/N), whose image consists of vector fields, that
are invariant with respect to the action of H ' B/N on the right. Since the Lie
algebra of such vector fields is isomorphic to T (N)⊕ (Fun(N)⊗h), we obtain a map

g → T (N)⊕ (Fun(N)⊗ h) . (10.6)

The restriction of this map to n ⊂ g is the homomorphism ln → T (N). The restriction
to h ⊂ g is the sum of two maps: one is h → T (N), corresponding to the natural
adjoint of H on N , and the other is the identity map h → h ⊂ Fun(N)⊗ h, twisted
by w0.

The map of (10.6) can be chiralized in a straightforward way, and we obtain a
map of Lie-* algebras

Lg → '(N)⊕ (Fun(Jets(N))⊗ Lh

)
, (10.7)

where for an affine scheme Y , we denote by Jets(Y ) the DX-scheme of jets into Y ,
and '(Y) denotes the tangent algebroid on this DX-scheme. By construction, we
have the following.

Lemma 10.8. The image of Lg,κ ⊂ Ag,κ under (10.5) belongs to

Dch(N)≤1 ⊕
(

Fun(Jets(N))⊗ (Hκ)≤1
)
,

where (·)≤i denotes the PBW filtration. The composition

Lg,κ → Dch(N)≤1 ⊕
(

Fun(Jets(N))⊗ (Hκ)≤1
)

→
(
Dch(N)≤1/Dch(N)≤0

)
⊕
(

Fun(Jets(N))⊗
(
(Hκ)

≤1/(Hκ)
≤0
))

' '(N)⊕ (Fun(Jets(N))⊗ Lh

)
factors through Lg and equals the map of (10.7).

10.9

For the remainder of this section we will specialize to the case when κ = κcrit . The
following basic fact is established in [CHA, Section 2.8.17].

Proposition 10.10. The Lie-* algebra L̂′h,κ is commutative if and only if κ = κcrit.
In this case there is a canonical isomorphism

Spec(Hcrit) ' Conn
Ȟ
(ω
ρ
X)

D,

respecting the torsor structure on both sides with respect to the D-scheme of h∗-values
1-forms on X.
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Since H′
crit is commutative, it is contained as a chiral subalgebra in Dch(

◦
G/B)crit;

moreover, from (10.2) we infer

H′
crit ' z(Dch(

◦
G/B)crit). (10.8)

Since Hcrit is commutative as well, from the isomorphism (10.2) we obtain that
there exists a homomorphism (which is easily seen to be an isomorphism) from Hcrit

to z(Dch(
◦

G/B)crit).

Lemma 10.11. The resulting homomorphism Hcrit → H′
crit comes from the sign-

inversion isomorphism Lh,crit → L′h,crit of commutative Lie-* algebras.

10.12

We will now study the homomorphism

lg : Ag,crit → Dch(
◦

G/B)crit. (10.9)

Proposition 10.13. The centralizer of Ag,crit in Dch(
◦

G/B)crit equals H′
crit.

Proof. Since H′
crit is the center of the chiral algebra Dch(

◦
G/B)crit , the fact that it

centralizes the image of Ag,crit is evident.
To prove the inclusion in the opposite direction, we will establish a stronger

fact. Namely, that the centralizer in Dch(
◦

G/B)crit of the image of Ln + h is already
contained in H′

crit .

Using the description of Dch(
◦

G/B)crit given in Section 10.6, we obtain that the
centralizer of ln(An) in it equals rn(An)⊗ H′

crit , in the notation of loc. cit.
Now consider the action of h ∈ (X,Ag,crit) on

Dch(
◦

G/N)crit ' Dch(N)⊗ D̂ch(H)crit.

By Section 10.7, this action decomposes as a tensor product of the natural adjoint
action on Dch(N), and the action on D̂ch(H)κ given by lh, twisted by w0. Since

D̂ch(H)κ is commutative, the resulting action of h on Dch(
◦

G/B)crit ' Dch(N)⊗H′
crit

is the adjoint action along the first factor.
This implies our assertion since (An)

h ' C, as h acts on n, and hence on An, by
characters, which belong to the positive span of  +. )�

10.14

Now consider the composition

zg = z(Ag,crit)→ Dch(
◦

G/B)crit.

From Proposition 10.13 we immediately obtain the following result.
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Corollary 10.15. The image of zg is contained in z(Dch(
◦

G/B)crit) = H′
crit.

Thus we obtain a homomorphism of commutative chiral algebras

zg → H′
crit ' Hcrit. (10.10)

Let us now recall that ultimate form of the isomorphism statement of [FF3, F]
(see [F, Theorem 11.3]).

Theorem 10.16. There exists a canonical isomorphism of commutative chiral alge-
bras zg ' Fun(Opǧ(X)) such that the diagram

zg
∼−−−−→ Fun(Opǧ(X)

D)⏐⏐/ MT∗
⏐⏐/

Hcrit
∼−−−−→ Fun(Conn

Ȟ
(ω
ρ
X)

D)

is commutative, where the left vertical arrow is the map of (10.10), the right vertical
arrow is the Miura transformation of (3.3), and the bottom horizontal arrow is the
isomorphism of Proposition 10.10, composed with the automorphism, induced by the
automorphism τ := λ̌ �→ −w0(λ̌) of Ȟ .

Remark 10.17. The isomorphism between zg and Fun(Opǧ(X)
D) in the above dia-

gram differs from the isomorphism in the corresponding diagram of Theorem 11.3 of
[F] by the automorphism of zg induced by the automorphism τ of the Dynkin diagram
of the Lie algebra g. This automorphism takes the vertex i of the diagram to i, where
αi = −w0(αi).

10.18

To conclude this section let us return to the setup of Section 10.7. Consider the map
g → T (N), obtained by composing the map of (10.6) with the projection on the
T (N)-factor.

It is well known that lifts of this map to a homomorphism of Lie algebras g →
D(N)≤1, which on n ⊂ g induce the map ln : n → T (N), are classified by characters
of h (and correspond toG-equivariant twistings onG/B). We would like to establish
an affine analogue of this statement.

The analogue of characters of h will be played by the set of chiral algebra homo-
morphisms ψ : Hcrit → OX. For any such ψ , the composition

φ : Lg,crit → Dch(N)⊗ Hcrit → Dch(N)

is a Lie-* algebra homomorphism, satisfying the following:

• The image of φ belongs to Dch(N)≤1,
• The composition Lg,crit → Dch(N)→ '(N) equals the composition of the map

(10.7), followed by the projection on the '(N)-factor,
• The restriction of φ to Ln equals ln.
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Proposition 10.19. LetL′g be a central extension ofLg by means ofωX, split overLn,

and let φ : L′g → Dch(N) be a homomorphism of Lie-* algebras, satisfying the three
properties above. Then L′g ' Lg,crit and φ is obtained from some ψ : Hcrit → OX
in the manner described above.

Proof. First, sinceL′g splits overLn, we obtain that as a DX-moduleL′g ' Lg⊕ωX.
Let us show that the bracket on L′g corresponds to the critical pairing. For this, it is
sufficient to calculate the bracket on Lh ⊂ Lg. However, since Lh is commutative,
the latter bracket is independent of the choice of a pair (L′g, φ). Hence, we may choose
the pair L′g = Lg,crit and a homomorphism corresponding to some homomorphism
ψ : Hcrit → OX. In the latter case, our assertion is clear.

Consider the set of all homomorphisms of chiral algebras ψ : Hcrit → OX. By
definition, this is a torsor over (X,ωX⊗h∗). Now consider the space of homomor-
phisms φb : Lb,crit → Dch(N)≤1, satisfying the same three conditions as φ. This
set is also a torsor over (X,ωX ⊗ h∗). Moreover, it is easy to see that the map
ψ �→ φ �→ φ|Lb =: φb is a map of torsors.

Hence, for any φ as in the proposition, there exists a ψ , such that the two homo-
morphism Lg,crit → Dch(N)≤1 coincide, when restricted to Lb,crit . We claim that in
this case the two homomorphisms in question coincide on the entire of Lg,crit .

Indeed, let φ1 and φ2 be two such homomorphisms. Then φ1 − φ2 is a map
Lg/Lb → Fun(Jets(N))⊗ ωX. Let f be a section of Ln− , and let e be a section of
Ln such that [e, f] ∈ Lh. We obtain that [φ1(f) − φ2(f), φb(e)] = 0. Hence, the
image of φ1 − φ2 consists of Ln-invariant sections of Fun(Jets(N)) ⊗ ωX, and the
latter subspace is ωX.

Again, for f above, let h be a section of Lh such that [f,h] = c · f, where c is a
nonzero scalar. We obtain [φ1(f) − φ2(f), φb(h)] = c · (φ1(f) − φ2(f)). However,
by the above, φ1(f) − φ2(f) is central. Hence, c · (φ1(f) − φ2(f)) = 0, implying our
assertion. )�

11 Construction of Wakimoto modules

11.1

Homomorphism (10.1) allows us to produce representations of Ag,κ , i.e., ĝκ -modules,

by restricting modules of Dch(
◦

G/B)κ . This should be regarded as a chiral analogue
of the construction of g-modules by taking sections of twistedD-modules on the big

Schubert cell
◦

G/B.

In the applications, modules over Dch(
◦

G/B)κ that we will consider are obtained

using (10.2), from pairs of modules: M ∈ Dch(
◦

G/N)κ -mod, and R ∈ Hκ -mod by

taking M

∞
2⊗
Lh

R. Let us describe the examples of Dch(
◦

G/B)κ -modules that we will

consider.



164 Edward Frenkel and Dennis Gaitsgory

11.2

First, note that if Dch(Y ) is a CADO on (the scheme of jets corresponding to) a
smooth affine X-scheme Y , any left D-module on the scheme Y [[t]] gives rise to a
chiral module over Dch(Y ).

Indeed, if F is such a D-module, it (or, rather, the space of its global sections)
is naturally a chiral module over Fun(Jets(Y )) and a Lie-* module over 'Y . In this
case we can induce it and obtain a chiral module over Dch(Y ).

If Y ′ ⊂ Y is a smooth locally closed subvariety, let us denote by DistY (Y ′) the
leftD-module of distributions on Y ′ (i.e., the ∗-extension of theD-module Fun(Y ′)),
and let DistY [[t]](ev−1(Y ′)) denote the corresponding left D-module on Y [[t]], i.e.,

DistY [[t]](ev−1(Y ′)) ' ev∗(DistY (Y
′)).

Finally, let Distch
Y (ev−1(Y ′)) denote the resulting Dch(Y )-module.

Let us take Y = ◦
G and for each element w ∈ W consider

Y ′ = Adw0w
−1(N) · w0 ·N ⊂ ◦

G.

For example, if w = w0 we get the D-module of functions on N · w0 · N , and if
w = 1 we get the δ-function at w0 ·N .

Note that ev−1(N) = I 0. Therefore, we obtain a left D-module

DistG[[t]](Adw0w
−1(I

0) · w0 · I 0)

on G[[t]] and

Distch
G (Adw0w

−1(I
0) · w0 · I 0)κ ∈ Dch(

◦
G)κ -mod.

Consider the chiral Dch(
◦

G/N)κ -module

Distch◦
G/N

(ev−1(Adw0w
−1(N) · w0))κ := H ∞

2 (Ln,Distch
G (Adw0w

−1(I
0) · w0 · I 0)κ).

(11.1)
In other words, Distch◦

G/N
(ev−1(Adw0w

−1(N) · w0))κ is obtained by the above con-

struction for Y = ◦
G/N and Y ′ = Adw0w

−1(N) · w0 ⊂
◦

G/N . From Section 10.6 we

obtain that Distch◦
G/N

(ev−1(Adw0w
−1(N) ·w0))κ is indeed acyclic away from degree 0.

Moreover, as a module over H 0
DR(D

×, Ln ⊕ L̂′h,κ ), it is isomorphic to

Distch
N (Adw0w

−1(N) ∩N)⊗ Ind
H 0
DR(D

×,L̂′h,κ )
th[[t]]⊕C

(Fun (H(tC[[t]]))) .

In particular, as an H 0
DR(D

×, L̂′h,κ )-module, it is H(tC[[t]])-integrable, and in-

jective as an H(tC[[t]])-representation. Furthermore, it is free over over h[t−1] for
any choice of a splitting h[t−1] → H 0

DR(D
×, L̂′h,κ ).
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11.3

Now, for w ∈ W and an Hκ -module R we define the (complex of) Dch(
◦

G/B)κ -
modules

′Ww
κ (R) := Distch◦

G/N
(ev−1(Adw0w

−1(N) · w0))κ

∞
2⊗

h((t)),th[[t]]
R. (11.2)

Note that by theH(tC[[t]])-integrability of Distch◦
G/N

(ev−1(Adw0w
−1(N) ·w0))κ ,

we have
′Ww

κ (R) ' ′Ww
κ (AvH(tC[[t]])(R)), (11.3)

where AvH(tC[[t]]) denotes the averaging functor with respect toH(tC[[t]]); see Sec-
tion 20.10. Therefore, with no restriction of generality, we can (and will) assume that
R is H(tC[[t]])-integrable. Under this assumption, as a n((t)))-module

′Ww
κ (R) ' Distch

N (ev−1(Adw0w
−1(N) ∩N))⊗ R. (11.4)

In particular, it is acyclic away from degree 0.
We restrict ′Ww

κ (R) to Ag,κ and obtain an object of ĝκ -mod, denoted by the same
symbol. Note that when defining ′Ww

κ (R), we can avoid mentioning the chiral algebra

Dch(
◦

G/B)κ . Namely,

′Ww
κ (R) '

(
Distch

G (Adw0w
−1(I

0) · w0 · I 0)κ

) ∞
2⊗

b((t)),n[[t]]+th[[t]]
R.

The Dch(G)κ -module Distch
G (Adw0w

−1(I 0) · w0 · I 0)κ is by construction equiv-
ariant with respect to the group Adw0w

−1(I 0), when we think of the action on G((t))

on itself by left multiplication. Let Distch
G (I

0 · w · I 0)κ be the chiral Ag,κ -module,
obtained from the module Distch

G (Adw0w
−1(I 0) · w0 · I 0)κ by applying the left shift

by w · w0.
Set

Ww
κ (R) :=

(
Distch

G (I
0 · w · I 0)κ

) ∞
2⊗

b((t)),n[[t]]+th[[t]]
R. (11.5)

This is what we will call the Wakimoto module of type w corresponding to the Hκ -
module R.

Tautologically, as a ĝκ -module, Ww
κ (R) is obtained from ′Ww

κ (R) by the auto-
morphism Adww0 of g, and it is I 0-equivariant. Note, however, that Ww

κ (R) does not

come by restriction from a Dch(
◦

G/B)κ -module, unless w = w0.
We have a description of Ww

κ (R) similar to (11.4), but with respect to the subal-
gebra nww0((t)), where we set nw := Adw(n), Nw = Adw(N). Namely,

Ww
κ (R) ' Distch

Nww0

(
ev−1(Nww0 ∩N)

)
⊗ R. (11.6)
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11.4

Assume now that the Hκ -module R isH [[t]]-integrable. (Having already the assump-
tion that it is H(tC[[t]])-integrable, this amounts to requiring that h acts semisimply
with eigenvalues corresponding to integral weights.) We claim that in this case the
module Ww

κ (R) is I -integrable.
Indeed, let us instead of Distch

G (I
0 · w · I 0)κ take the chiral Dch(G)κ -module

Distch
G (I

0 · w · I )κ .
As an object of Dch(G)κ -mod, it is clearly I -integrable with respect to both left and
right action of G((t)) on itself.

Consider H
∞
2 (Ln,Distch(I 0 · w · I )κ). This is an H′

κ -module, which is H [[t]]-
integrable and injective as an H [[t]]-module.

One easily checks that Ww
κ (R) is isomorphic to

H
∞
2

(
Ln,Distch(I 0 · w · I )κ

) ∞
2⊗

Lh;h
R,

which is manifestly I -integrable.

11.5

For a weight λ ∈ h∗ consider the 1-dimensional Lie-* module over L̂h,κ correspond-
ing to the character λ. Let us denote by πλ the induced chiral module over Hκ .

For future use we introduce the notation

Ww
κ,λ := Ww

κ (πw−1(λ+ρ)+ρ). (11.7)

Observe that the definition of Ww
κ,λ can be rewritten as(

H
∞
2

(
n((t)), n[[t]],Distch

G (I
0 · w · I 0)κ

)th[[t]])⊗
h

Cw
−1(λ+ρ)+ρ.

Let Mw
λ be the g-module equal to DistG(N · w · N) ⊗

b,n
Cw

−1(λ+ρ)+ρ . Note that

when w = 1, Mw
λ is the Verma module Mλ, and when w = w0, Mw

λ is the dual
Verma M∨

λ . In general, Mw
λ always has highest weight λ, and it is characterized by

the property that it is free with respect to the Lie subalgebra nww0 ∩ n− and cofree
with respect to nww0 ∩ n.

Set Mw
κ,λ := Indĝκ

g[[t]]⊕C1(M
w
λ ) be the induced ĝκ -module. We claim that we

always have a map
Mw
κ,λ → Ww

κ,λ. (11.8)

This amounts to constructing a map of g[[t]]-modulesMw
λ → Ww

κ,λ. We have

Mw
λ ↪→ DistG[[t]](I 0 · w · I 0) ⊗

b[[t]],n[[t]]+th[[t]]
Cw

−1(λ+ρ)+ρ ↪→
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Distch

G (I
0 · w · I 0)κ

)n[[t]]+th[[t]] ⊗
h

Cw
−1(λ+ρ)+ρ,

which maps to the required semi-infinite cohomology.

12 Convolution action on Wakimoto modules

12.1

In this section we will apply the formalism of convolution functors

" : D(G/K)κ -modK
′ ×D(̂gκ -mod)K → D(̂gκ -mod)K

′
,

whereK,K ′ are subgroups ofG[[t]] to derive some additional properties ofWakimoto
modules.

The subgroups that we will use will be either I 0 or G(1), the first congruence
subgroup inG[[t]], and if κ is integral, also I . When confusion is likely to occur, we
will use the notation · "

K
· to emphasize which equivariant derived category we are

working in; see Section 22.6. We will identifyD-modules onG (respectively,G/N ,
G/B) with the corresponding κ-twisted D-modules on G((t))/G(1) (respectively,
F̃lG = G((t))/I 0, FlG = G((t))/I ).

Another two pieces of notation that we will need are as follows. If g is a point
of G((t)), and F an object of an arbitrary category with a Harish-Chandra action of
G((t)) at level κ , we will denote by δg "F the twist of F by g. If F is equivariant with
respect to a congruence subgroup K ⊂ G[[t]], then

δg " F ' δgG((t))/K "
K

F,

where δgG((t))/K is the unique κ-twisted D-module on G((t))/K , whose !-fiber at the
point gG((t))/K ∈ G((t))/K is C.

Let U be a pro-unipotent subgroup such that κ|Lie(U) is trivial. Then for F as above,
CU " F will denote the same thing as AvU(F). In other words, if F is equivariant
with respect to some unipotent K ⊂ G[[t]] containing a congruence subgroup, and
U′ = U ∩K , then

CU " F ' DistG((t))/K(U/U′)κ "
K

F ⊗ det
(
Lie(U)/Lie(U′)[1])⊗−1

,

where CU/U′ denotes the cohomologically shiftedD-module on U/U′, corresponding
via Riemann–Hilbert to the constant sheaf on U/U′, and DistG((t))/K(U/U′)κ is the
unique κ-twistedD-module onG((t))/K , supported on U/U′ ⊂ G((t))/K , and whose
!-restriction to this subscheme is Fun(U/U′); see Section 21.6.

We will use the following observation.

Lemma 12.2. Suppose that U contains two subgroups U1 and U2 such that the mul-
tiplication map defines an isomorphism U1 × U2 → U. Then

CU " F ' CU1
" (CU2

" F).



168 Edward Frenkel and Dennis Gaitsgory

For w̃ ∈ Waff we will denote by j̃κ,w̃ the unique κ-twisted I 0-equivariant D-
module on F̃lG, supported on I 0 · w̃ ⊂ F̃lG, whose !-restriction to this subscheme is
isomorphic to Fun(I 0 · w̃), as an I 0-equivariant quasi-coherent sheaf. Of course, the
isomorphism class of this D-module depends on the choice of a representative of w̃
in G((t)).

Since j̃κ,w̃ ' CI 0 " δw̃
G((t))/I0 ⊗ det (Lie(I 0)/Lie(I 0) ∩ Adw̃(Lie(I 0))[1]), from

Lemma 12.2 we obtain the following.

Lemma 12.3. For w̃ ∈ Waff assume that I 0 can be written as a product of subgroups
U1 ·U2 such that Adw̃−1(U2) ⊂ I 0. Then for an I 0-equivariant object F of a category
with a Harish-Chandra action of G((t)), we have a canonical isomorphism

j̃κ,w̃ "
I 0

F ' AvU1 (δw̃ " F)⊗ det (Lie(U1)/Lie(U1) ∩ Adw̃(Lie(U1))[1]) .

Suppose that κ is integral, i.e., comes from a group ind-scheme extension Ĝ((t))
of G((t)) split over G[[t]]; let us denote by Pκ the resulting line bundle on GrG =
G((t))/G[[t]]. In this case we will denote by jw̃,∗ (respectively, jw̃,!) the I -equivariant
κ-twisted D-modules on FlG given by the ∗-extension (respectively, !-extension) of
the twisted right D-module on I · w̃ ⊂ FlG, corresponding to the restriction of the
line bundle Ĝ((t))/I → G((t))/I to this subscheme. If κ is not integral the above
I -equivariant D-modules still make sense for w ∈ W .

If l(w̃1)+ l(w̃2) = l(w̃1 · w̃2), then

jw̃1,∗ "
I
jw̃2,∗ ' jw̃1·w̃2,∗ and jw̃1,! "

I
jw̃2,! ' jw̃1·w̃2,!.

Since the functor jw̃,∗ "
I
· is right exact, the above isomorphism implies that the functor

jw̃,! "
I
·, being its quasi-inverse, is left exact.

Let us observe that the definition of jw̃,∗ (respectively, jw̃,!) is evidently inde-
pendent of the choice of representatives w̃ in G((t)). The direct image of j̃κ,w̃ under
F̃lG → FlG is isomorphic to jw̃,∗ ⊗ (lw̃κ )⊗−1, where lw̃κ is the line defined as

lw̃κ := 
(
I · w̃,	top(I 0 · w̃)⊗ Pκ |I 0·w̃

)I0
. (12.1)

12.4

Let us first observe that for w ∈ W
Distch

G (I
0 · w · I 0)κ ' j̃κ,w "

I 0
Distch

G (I
0)κ .

Hence, we obtain the following.

Lemma 12.5. Ww
κ (R) ' j̃κ,w "

I 0
W1
κ(R).
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If R is integrable with respect to H [[t]], the above lemma implies that

Ww
κ (R) ' jw,∗ "W1(R), (12.2)

which, in turn, implies that

jw,! "Ww−1
(R) ' W1(R), (12.3)

and if l(w1 · w2) = l(w1)+ l(w2), then

jw1,∗ "Ww2(R) ' Ww1·w2(R). (12.4)

12.6

For w ∈ W recall that nw (respectively, bw) denotes the subalgebra Adw(n) ⊂ g
(respectively, Adw(b) ⊂ g). Note that the Cartan quotient of bw is still canonically
identified with h. For w = w0 we will sometimes also write n−, b−.

Proposition 12.7. For any chiral Hκ -module R,

Ww
κ (R) ' (Distch

G (I
0)κ)

∞
2⊗

bw((t)),tbw[[t]]+n∩nw
R.

Proof. It is enough to show that

H
∞
2 (n((t)), n[[t]],Distch

G (I
0·w·I 0)κ) ' H ∞

2 (nw((t)), tnw[[t]]+nw∩n,Distch
G (I

0)κ),

in a way compatible with the Hκ -actions.
Again, we have Distch

G (I
0 · w · I 0)κ ' Distch

G (I
0)κ "

I 0
j̃κ,w, where we are using

the action of G((t)) on itself by right translations. We have

I 0 = (I 0 ∩ B−[[t]]) · (I 0 ∩N [[t]]).
By Lemma 12.3, we obtain that

Distch
G (I

0 · w · I 0)κ ' Distch
G (I

0)κ " δw " CN [[t]] ⊗ det(n/nw
−1 ∩ n[1]).

Hence, by Section 22.15

H
∞
2 (n((t)), n[[t]],Distch

G (I
0 · w · I 0)κ)

' H ∞
2 (n((t)), n[[t]],Distch

G (I
0)κ " δw)⊗ det(n/nw

−1 ∩ n[1]),
which, in turn, is isomorphic to

H
∞
2 (nw((t)), nw[[t]],Distch

G (I
0)κ)⊗ det(nw/nw ∩ n[1]).

The determinant line exactly accounts for the change of the lattice nw[[t]] �→
tnw[[t]] + n ∩ nw. )�
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As a corollary, we obtain the following characterization of the Wakimoto mod-
ules Ww

κ (R).

Corollary 12.8. For an I 0-integrable ĝκ ′ -module M and a chiral Hκ -module R, we
have a quasi-isomorphism

M

∞
2⊗

g((t)),Lie(I 0)

Ww
κ (R) ' C

∞
2 (bw((t)), tbw[[t]] + n ∩ nw,M⊗ R).

Proof. In view of Proposition 12.7, it suffices to show that for any M as in the
proposition,

M

∞
2⊗

g((t)),Lie(I 0)

(
Distch

G (I
0)κ

)
' M

as ĝκ -modules. But this follows from Section 22.8. )�

12.9

We will now show that Wakimoto modules of type w · w0 are well behaved with
respect to the functor of semi-infinite cohomology of the algebra nw((t)). This is, in
fact, a fundamental property of Wakimoto modules which was found in [FF2].

Namely, let L be a module over nw((t)), on which the subalgebra

tnw[[t]] + n ∩ nw

acts locally nilpotently. Let R be an Hκ -module, on which th[[t]] acts locally nilpo-
tently. (By (11.3) the latter is not really restrictive.)

Proposition 12.10. Under the above circumstances,

L

∞
2⊗

nw((t)),tnw[[t]]+n∩nw
Www0
κ (R)

is canonically isomorphic to L⊗ R.

Proof. By (11.6), it suffices to show that

L

∞
2⊗

nw((t)),tnw[[t]]+n∩nw
Distch

Nw

(
ev−1(Nw ∩N)

)
' L.

However, this readily follows from Corollary 22.14(2). )�

12.11

For an integral coweight λ̌ let us consider the corresponding point t λ̌ ∈ G((t)). We
will also think of λ̌ as an element of Waff corresponding to this orbit. Note that if

λ is dominant, the orbit of I · t λ̌ ⊂ FlG has the property that under the projection
FlG → GrG it maps one-to-one.



Local geometric Langlands correspondence and affine Kac–Moody algebras 171

We have already established the transformation property of Wakimoto modules
with respect to convolution with j̃κ,w for w ∈ W , see Lemma 12.5. Now we would
like to study their behavior with respect to convolution with j̃

κ,λ̌
.

Note that we have a natural adjoint action of H((t)) on H 0
DR(D

×, L̂h,κ ), and
similarly for the Baer negative extension. Thus we obtain that H((t)) acts on the

categories Hκ -mod and H′
κ -mod. For t λ̌ ∈ H((t)) we will denote the corresponding

functor by R �→ t λ̌ " R.
The following property of Wakimoto modules will play a crucial role.

Proposition 12.12. For a dominant λ we have

j̃
κ,λ̌
"
I 0

Ww0
κ (R) ' Ww0

κ (t
w0(λ̌) " R).

12.13 Proof of Proposition 12.12

Consider the subscheme I 0 · t λ̌ · I 0 ⊂ G((t)). Clearly, there exists a unique irre-

ducible object of Dch(G)κ -modI
0,I 0

, supported on this subset. Let us denote it by

Distch
G (I

0t λ̌I 0)κ . In particular, for λ̌ = 0 we recover Distch
G (I

0)κ .
We have

j̃
κ,λ̌
"
I 0

Distch
G (I

0)κ ' Distch
G (I

0t λ̌I 0)κ ' Distch
G (I

0)κ "
I 0
j̃
κ ′,λ̌.

Therefore, by Proposition 12.7, we have to show that(
Distch

G (I
0)κ "

I 0
j̃
κ ′,λ̌

) ∞
2⊗

b−((t)),tb−[[t]]
R '

(
Distch

G (I
0)κ

) ∞
2⊗

b−((t)),tb−[[t]]
(tw0(λ̌) " R).

Let us write I 0+ = I 0 ∩B[[t]] and I 0− = I 0 ∩N−[[t]], and recall that the product
map defines an isomorphism I 0 = I 0+ · I 0−. Note also that Ad

t λ̌
(I 0+) ⊂ I 0.

Hence,

Distch
G (I

0)κ "
I 0
j̃
κ ′,λ̌ ' Distch

G (I
0)κ " δtλ̌ " CI 0−

⊗ det
(
tn−[[t]]/tn−[[t]] ∩ Ad

t−λ̌ (tn
−[[t]])[1]

)
.

Therefore, by Lemma 12.3 we obtain that

(
Distch

G (I
0)κ " j̃κ ′,λ

) ∞
2⊗

b−((t)),tb−[[t]]
R ' H ∞

2

(
n−((t)), tn−[[t]],

(
Distch

G (I
0)κ " δtλ̌

))
∞
2⊗

h((t)),th[[t]]
R⊗ det

(
tn−[[t]]/Ad

t−λ̌ (tn
−[[t]])[1]

)
.

For an L′b,κ -module M we have
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H
∞
2 (n−((t)), tn−[[t]], t λ̌ "M) ' t λ̌ " H ∞

2 (n−((t)),Ad
t λ̌
(tn−[[t]]),M),

as H′
κ -modules. Hence, the expression above can be rewritten as(

H
∞
2

(
n−((t)), tn−[[t]],Distch

G (I
0)κ

)
" t λ̌
) ∞

2⊗
h((t)),th[[t]]

R,

where we have absorbed the determinant line into changing the lattice

Ad
t−λ̌ (tn

−[[t]]) �→ tn−[[t]].
The latter can, in turn, be rewritten as

H
∞
2

(
n−((t)), tn−[[t]],Distch

G (I
0)κ

) ∞
2⊗

h((t)),th[[t]]
(tw0(λ̌) " R),

which is what we had to show.7

13 Wakimoto modules at the critical level

13.1

In this section we will consider in more detail Wakimoto modules at the critical level.
By Proposition 10.10 and using the isomorphism H′

crit ' Hcrit , if R is a quasi-coherent
sheaf on Conn

Ȟ
(ω
ρ

D×), we can define Wakimoto modules Ww
crit(R) for w ∈ W .

Note that for any R, the Wakimoto module Ww
crit(R) carries an action of Hcrit by

transport of structure, and the isomorphism

Ww
crit(R) ' Distch

Nww0 (ev−1(Nww0 ∩N))⊗ R (13.1)

of (11.6) is compatible with the Hcrit-actions.
In particular, from Theorem 10.16 combined with Proposition 3.10, we obtain the

following result. Recall that a weight λ is called antidominant, if 〈λ, α̌〉 /∈ Z>0 for
any α ∈  +, or equivalently, if the intersection of the two sets {λ − SpanZ+( 

+)}
and {w(λ),w ∈ W } consists only of the element α.

Corollary 13.2. The action of the center Zg ' Fun(Opǧ(D
×)) on Ww

crit,λ factors

through Z
RS,#(−λ−ρ)
g ' Fun(OpRS,#(−λ−ρ)

ǧ
). Moreover, if w−1(λ+ ρ) is dominant,

then Ww
crit,λ is flat over Fun(OpRS,#(−λ−ρ)

ǧ
).

Another useful observation is the following.

Proposition 13.3. Let R1 and R2 be two Hcrit-modules, on which h ⊂ (X,Hcrit)

acts by the same scalar. Then for any w ∈ W the map

HomHcrit (R1,R2)→ Homĝcrit (W
w
crit(R1),W

w
crit(R2))

is an isomorphism.

7 The replacement of λ̌ by w0(λ̌) comes from the fact that the identifications B/N ' H '
B−/N− differ by the automorphism w0 of H .
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Proof. Since R is a subspace of Ww
crit(R), the fact that the map in question is injective

is evident. Let us prove the surjectivity.
It will be more convenient to work with ′Ww

crit(Ri ) instead of Ww
crit(Ri ), i = 1, 2.

As in (13.1), we have an identification

′Ww
crit(Ri ) ' Distch

N

(
ev−1(N ∩Nw0w

−1
)
)
⊗ Ri ,

respecting the actions of n((t)) and Hcrit .
Let us first analyze the space of endomorphisms Distch

N (ev−1(N ∩Nw0w
−1
)) as a

n((t))-module. We obtain, as in Section 22.14, that the map rn : Ln → Dch(N)has the
property that the image ofU(n((t))) is dense in Endn((t)) (Distch

N (ev−1(N∩Nw0w
−1
))).

By the assumption on the h-action, and arguing as in the proof of Proposi-
tion 10.13, we obtain that any map of vector spaces ′Ww

crit(R1)→ ′Ww
crit(R2) com-

patible with the action of n((t)) and h ⊂ (X,Ag,crit) has the form

Id
Distch

N

(
ev−1(N∩Nw0w

−1
)
)⊗ϕ,

where ϕ is some map R1 → R2 as vector spaces. To prove that ϕ is a map of
Hcrit-modules, we argue as follows:

Recall that for a ĝcrit-module M, the semi-infinite cohomology

H
∞
2 (n((t)), tn[[t]] + n ∩ nw0w

−1
,M)

is naturally an H′
crit-module. We will regard it as an Hcrit-module via the isomorphism

Hcrit ' H′
crit . Recall the isomorphism

R ' H ∞
2 (n((t)), tn[[t]] + n ∩ nw0w

−1
, ′Ww

crit(R)) (13.2)

given by Proposition 12.10. From Lemma 10.11 we obtain the following.

Lemma 13.4. The isomorphism (13.2) respects the Hcrit-module structures.

From the construction of the isomorphism of Proposition 12.10 it is easy to see
that any map ′Ww

crit(R1) → ′Ww
crit(R2) of the form Id⊗φ induces on the left-hand

side of (13.2) the endomorphism equal to ϕ. Hence, the above lemma implies that φ
respects the Hcrit-actions. )�

13.5

We will now recall a crucial result of [F] (see [F, Proposition 6.3 and Remark 6.4])
that establishes isomorphisms between Wakimoto modules and Verma modules. Note
that in [F] the module Ww0

crit,λ is denoted byWλ,κc .

Proposition 13.6. Let λ be such that λ+ ρ is antidominant. Then Ww0
crit,λ ' Mλ.
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Proof. First, we claim that when λ is antidominant, the g-module Mw0
λ (see Sec-

tion 11.5) is, in fact, isomorphic to the Verma moduleMλ.
Indeed, let us first note thatMw0

λ has a vector of highest weight λ, i.e., there is a
morphism Mλ → M

w0
λ . Now, it is well known that the antidominance condition on

λ+ ρ implies thatMλ is irreducible, hence the above map is injective. The assertion
now follows from the fact that the two modules have the same formal character. This
is a prototype of the argument proving the proposition.

By Section 11.5 we have a map in one direction

Mλ → Ww0
crit,λ (13.3)

and we claim that it is an isomorphism. We will regard both sides of (13.3) as modules
over the Kac–Moody algebra C · t∂t � ĝcrit , where we normalize the action of t∂t so
that it annihilates the generating vector in Mλ, and it acts on Ww0

crit,λ by loop rotation.
The map (13.3) clearly respects this action. Moreover, both sides have well-

defined formal characters with respect to the extended Cartan subalgebra
C · t∂t ⊕h⊕C1, and a computation shows that these characters are equal. Therefore,
the map (13.3) is surjective if and only if it is injective.

Suppose that the kernel of the map in question is nonzero. Let v ∈ Mλ be a vector
of highest weight with respect to C · t∂t ⊕ h⊕ C1; let us denote this weight by µ̂.

Then the quotient Ww0
crit,λ/ Im Mλ also contains a vector, call it v′, of weight

µ̂. Moreover, by assumption, v′ projects nontrivially to the space of coinvariants
(Ww0

crit,λ)n−[t−1]⊕t−1b[t−1].
However, from (13.1), it follows that the projection

Fun(N [[t]])→
(
Ww0

crit,λ

)
t−1n[t−1]⊕t−1h[t−1]

is an isomorphism. Therefore, µ̂ must be of the form

µ̂ := (−n, λ− β,−ȟ), n ∈ Z≥0, β ∈ Span+( +). (13.4)

We will now use the Kac–Kazhdan theorem [KK] that describes the possible
highest weights of submodules of a Verma module. This theorem says that there
must exist a sequence of weights

(0, λ,−ȟ) = µ̂1, µ̂2, . . . , µ̂n−1, µ̂n = µ̂
and a sequence of positive affine roots αaff ,k such that

µ̂k+1 = µ̂k − bk · αaff ,k (13.5)

with bk ∈ Z>0 and such that

bk · (αaff ,k, αaff ,k) = 2 · (αaff ,k, µ̂k + ρaff ),

where (·, ·) is the invariant inner product on the Kac–Moody algebra.
Let us write µ̂k = (nk, µk,−ȟ) and
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αaff ,k = (mk, εk · αk, 0), mk ≥ 0, αk ∈  +, εk = ±1 if αaff ,k is real,

αaff ,k = (mk, 0, 0) if αaff ,k is imaginary.

In the latter case we obtain µk+1 = µk . In the former case we have

bk = 〈µ̂k + ρaff , α̌aff ,k〉,

and since ρaff = (0, ρ, ȟ) we obtain that bk = εk · 〈µk + ρ, αk〉, implying that

(µk+1 + ρ) = sαk (µk + ρ),
regardless of the sign of εk .

In particular, we obtain that (λ+ ρ)−β belongs to theW -orbit of λ+ ρ, but this
contradicts the antidominance of λ+ ρ. )�

13.7

We will use the above proposition to derive information about the structure of other
Wakimoto and Verma modules.

Corollary 13.8. For λ such that λ + ρ is antidominant and w ∈ W we have an
isomorphism

Www0
crit,w(λ+ρ)−ρ ' Mw(λ+ρ)−ρ.

Proof. Let us assume that λ is integral. In this case all Ww
crit,λ and Mw(λ+ρ)−ρ are

I -integrable, and we can use the convolution action ofD-modules onG/B ⊂ FlG to
pass from one another.

(If λ is not integral, the proof is essentially the same, where instead of B-
equivariant D-modules on G/B we will use λ-twisted D-modules and replace the
B-equivariant category by a λ-twisted version.)

It is known that for λ antidominant, jw,! "
B
Mλ = Mw(λ+ρ)−ρ . Hence, jw,! "

I
Mλ =

Mw(λ+ρ)−ρ . This implies the corollary in view of (12.3). )�
Since for every weight λ′ there exists an element of the Weyl group such that

λ′ = w(λ+ ρ)− ρ with λ antidominant, every Verma module Mλ′ is isomorphic to
an appropriate Wakimoto module. By combining this with Propositions 3.10 and 13.3
we obtain the following statement.

Corollary 13.9. The module Mλ is flat over Z
RS,#(−λ−ρ)
g . The map

Z
RS,#(−λ−ρ)
g → Endĝcrit (Mλ)

is an isomorphism.

Let us give an additional proof of the second assertion.
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Proof. As above, we can reduce the statement to the case when λ + ρ is itself an-
tidominant, and Mλ ' Ww0

crit,λ.
In the latter case, we have to show that the embedding of πw0(λ) into the subspace

of vectors of weight λ in (Ww0
crit,λ)

Lie(I 0) is an isomorphism.

Consider the bigger subspace (Ww0
crit,λ)

n[[t]]. As in the proof of Proposition 10.13,

this subspace is isomorphic to Indn((t))
n[[t]](C) ⊗ πw0(λ), which implies that the vectors

of weight λ belong to 1⊗ πw0(λ). )�
Next, we shall prove Proposition 7.18.

Proof. Consider the Wakimoto module Ww0
crit,λ, where λ is dominant. We claim that

Zg acts on it via Z
λ,reg
g . This follows by combining Proposition 3.13 with Theo-

rem 10.16 and the fact that the isomorphism of Proposition 10.10 sends the chiral
Hcrit-module πµ to Fun (Conn

Ȟ
(ω
ρ
X)

RS,µ).
Composing the map (11.8) with the natural embedding Vλcrit → M∨

crit,λ, we obtain

a map Vλ → Ww0
crit,λ, which can be shown to be injective.8 We obtain that the ideal

in the center that annihilates Ww0
crit,λ, annihilates Vλ as well, which is what we had

to show. )�

13.10

Finally, let us derive a corollary of Proposition 12.12 at the critical level. In this case
the adjoint action of H((t)) on H 0

DR(D
×, L̂h,crit) is trivial, and hence we obtain the

following.

Corollary 13.11. For a dominant coweight λ̌ and an Hcrit-module R, we have an
isomorphism

j̃
λ̌
"
I 0

Ww0
crit(R) ' Ww0

crit(R).

Suppose now that R in H [[t]]-integrable. In this case, we obtain that

j̃
λ̌
"
I 0

Ww0
crit(R) ' jλ̌,∗ "I Ww0

crit(R) ' Ww0
crit(R),

where both the LHS and RHS are canonically defined, i.e., are independent of the

choice of a representative t λ̌ ∈ G((t)). However, the isomorphism between them,
given by Corollary 13.11, does depend on this choice. In the remainder of this
chapter, we will need a more precise version of the above result.

Corollary 13.12. We have an isomorphism

j
λ̌,∗ "I M−2ρ ' M−2ρ ⊗ ω〈−ρ,λ̌〉x ,

where ωx is the fiber of ωX at x ∈ X, compatible with the natural actions of
Lie(Aut(D)) on both sides.

8 We will supply a proof in the next paper in the series.
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Note that 〈−ρ, λ̌〉, appearing in the corollary, may be a half-integer. In the above

formula the expression ω〈−ρ,λ̌〉x involves a choice of a square root of ωX, as does
the construction of the critical line bundle on GrGad . However, the character of

Lie(Aut(D)) on ω〈−ρ,λ̌〉x is, of course, independent of this choice.

Remark 13.13. By considering the action of the renormalized universal enveloping
algebra as in Section 7.8, one shows that, more generally, there is an isomorphism

j
λ̌,∗ "I Ww0

crit,µ ' Ww0
crit,µ ⊗ ω〈µ+ρ,λ̌〉x ,

compatible with the Lie(Aut(D))-actions.

Proof. The existence of an isomorphism stated in the corollary follows by combining
Proposition 13.6 and Corollary 13.11. By Proposition 13.3, we obtain that there exists
a line, acted on by (a double cover of) Aut(D), and a canonical isomorphism

j
λ̌,∗ "I M−2ρ ' M−2ρ ⊗ l,

compatible with the Lie(Aut(D))-actions.
We have to show that the character of Lie(Aut(D)), corresponding to l, equals

that of ω〈−ρ,λ̌〉x . Let t∂t ∈ Lie(Aut(D)) be the Euler vector field, corresponding to
the coordinate t on D. It suffices to show that the highest weight of j

λ̌,∗ "I M−2ρ with

respect to C · t∂t ⊕ h equals (−〈ρ, λ̌〉,−2ρ).
The module in question identifies with (FlG, jλ̌,∗). The highest weight line in

(FlG, jλ̌,∗) consists of I 0-invariant sections of this D-module, that are supported

on the I -orbit of t λ̌. Now the fact that t∂t acts on this line by the character equal to
−〈ρ, λ̌〉 is a straightforward calculation, as in [BD1, Section 9.1]. )�

Part IV: Proof of Main Theorem 6.9

The goal of this part is to prove Main Theorem 6.9:

There is an equivalence of categories

fF : f ĝcrit-modI,mnilp ' QCoh(Spec(h0)× Opnilp
ǧ
).

In Section 14 we introduce the module � as induced from the big projective
module� over the finite-dimensional Lie algebra g. We first review the properties of
�, and the corresponding properties of �, related to the notion of partial integrability.
The functor fF is then defined as

fF(M) = Hom(�,M),

and we state Main Theorem 14.15 which asserts that this functor is exact.
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As we shall see later (see Section 16), both Main Theorems 14.15 and 6.9 fol-
low once we can compute RHom

Db(̂gcrit -modnilp)
I0 (�,Mw0), where Mw0 is the cor-

responding Verma module over ĝcrit . Also in Section 16 (see Proposition 16.2) we
show that it is sufficient to compute RHom

Db(̂gcrit -modreg)I
0 (�reg,Mw0,reg), where

�reg and Mw0,reg are the restrictions of the corresponding modules to the subscheme

Opreg
ǧ
⊂ Opnilp

ǧ
.

The computation of RHom
Db(̂gcrit -modreg)I

0 (�reg,Mw0,reg) is carried out in Sec-

tion 15. We reduce it to a calculation involvingD-modules on the affine Grassmannian
once we can identify �reg as sections of some specific critically twisted D-module
on Gr. The latter identification is given by Theorem 15.6. This theorem is proved in
Section 17 by a rather explicit argument.

Having proved Main Theorem 6.9, we compare in Section 18 the functor
Hom

ĝcrit -modI,mnilp
(�, ·) with the one given by semi-infinite cohomology with respect

to the Lie algebra n−((t)) against a nondegenerate character. We show that the two
functors are isomorphic. We also express the semi-infinite cohomology of n((t))with
coefficients in a ĝcrit-module of the form (GrG,F), where F is a critically twisted
D-module on GrG, in terms of the de Rham cohomologies of the restrictions of F to
N((t))-orbits in GrG.

14 The module �

14.1

Recall from Section 7.19 that O0 denotes the subcategory of the category O of g-
modules whose objects are modules with central character#(ρ). According to [BB],
the functor of global sections induces an equivalence between the category of N -
equivariant (or, equivalently, B-monodromic) left D-modules on G/B and O0.

To simplify our notation slightly, we will use the notationMw instead ofMw(ρ)−ρ
andM∨

w instead ofM∨
w(ρ)−ρ . We will denote by Lw the irreducible quotient ofMw.

By Mw, M∨
w and Lw we will denote the corresponding induced representations of ĝ

at the critical level.
By definition, objects of O0 are N -integrable, and the condition on the central

character implies that they are, in fact, B-monodromic. Hence, every objectM ∈ O0
carries an action of the commutative algebra h. This is the obstruction to being
B-equivariant. (The notions of B-integrability (equivalently, B-equivariance), N -
integrability and B-monodromicity are defined as their I - and I 0-counterparts and
make sense in any category C with a Harish-Chandra action of G.)

Lemma 14.2. For every M ∈ O0, the action of Sym(h) on M factors through
Sym(h)→ h0.

The lemma follows, e.g., from the localization theorem of [BB]. Thus we obtain
that the algebra h0 maps to the center of O0. In fact, it follows from [Be] that h0 is
isomorphic to the center of O0.
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As in Section 6.7, we will call an objectM ∈ O0 partially integrable if it admits a
filtration such that each successive quotient is integrable with respect to a parabolic
subalgebra b+ slı2 for some ι ∈ I. This notion makes sense in an arbitrary category
with a Harish-Chandra action of G.

We will denote by fO0 the quotient abelian category of O0 by the subcategory
of partially integrable objects. We will denote by M �→ fM the projection functor
O0 → fO0.

Let � be a “longest’’ indecomposable projective in O0. By definition,

Hom(�,Lw0) = C, Hom(�,Lw) = 0 if w �= w0.

Moreover, � is known to be isomorphic (noncanonically) to its contragredient dual.
We have the following result (see [BG]).

Lemma 14.3.

(1) The map h0 → End(�) is an isomorphism.
(2) The functorM �→ Hom(�,M) induces an equivalence fO0 → h0-mod.

By construction, the image f� of � in fO0 identifies with the free h0-module
with one generator. The mapsMw0 → Lw0 → M∨

w0
induce isomorphisms fMw0 →

f Lw0 → fM∨
w0

, and all identify with the trivial h0-module C.
We will now recall the construction of � as

� = (G/B,+), (14.1)

where + is a certain left D-module on G/B.

14.4

To describe + we need to introduce some notation, which will also be used in what
follows. Let ψ : N− → Ga be a nondegenerate character. By a slight abuse of
notation, we will denote also by ψ its differential: n− → C.

Let eψ denote the pull-back of the “ex’’ D-module from Ga to N−. This is a
“character sheaf’’ in the sense of Section 20.20.

If N− acts (in the Harish-Chandra sense) on a category C, we will denote by
CN

−,ψ the corresponding (N−, ψ)-equivariant category (see Section 20.20), and
by D(C)N

−,ψ the corresponding triangulated category. Since N− is unipotent, the
natural forgetful functor D(C)N

−,ψ → D(C) is fully faithful; see Section 20.20.
Following Section 20.20, we will denote by AvN−,ψ the functor

M �→ eψ "M⊗ det(n−[1])−1 : D(C)→ D(C)N
−,ψ .

This functor is the right adjoint and a left quasi-inverse to D(C)N
−,ψ → D(C).

Lemma 14.5. Suppose that C is endowed with a Harish-Chandra action of G, and
let M ∈ CB,m be partially integrable; then AvN−,ψ (M) = 0.



180 Edward Frenkel and Dennis Gaitsgory

Proof. We can assume that M is an object of C integrable with respect to a parabolic
subgroup P ι for some ι ∈ I. Then the convolution eψ " F factors through the direct
image of eψ under N− ↪→ G� G/P ι, and the latter is clearly 0. )�

For example, if N− acts on a scheme Y , in this way we obtain the category of
(N−, ψ)-equivariant D-modules on Y . In other words, its objects are D-modules F

on Y , together with an isomorphism

act∗(F) ' eψ � F ∈ D(N− × Y )-mod,

compatible with the restriction to the unit section and associative in the natural sense.
One can show that in this case the functor

D(D(Y )-modN
−,ψ )→ D(D(Y )-mod)N

−,ψ

is an equivalence.
If we restrict ourselves to holonomic D-modules, or, rather, if we take the cor-

responding triangulated category (which, by definition, is the full subcategory of
D(D(Y )-mod) consisting of complexes with holonomic cohomologies), then in ad-
dition to the functor F �→ eψ " F we also have a functor

F �→ eψ
!
"M : D(D(Y )hol-mod)→ D(D(Y )hol-mod)N

−,ψ ,

corresponding to taking the direct image with compact supports. This functor, ten-
sored with det(n−[1]), is the left adjoint and a left quasi-inverse to the tautological
functor D(D(Y )hol-mod)N

−,−ψ → D(D(Y )hol-mod).

Proposition 14.6. Suppose thatY is acted on byG. Then forF ∈ D(D(Y )hol-mod)B,m

the canonical arrow: eψ
!
"F → eψ "F is an isomorphism. In particular, the functor

D(D(Y )hol-mod)B,m → D(D(Y )hol-mod)
eψ"·−→ D(D(Y )hol-mod)N

−,−ψ

is exact.

Proof. It is enough to analyze the functor F �→ eψ " F on the subcategory
D(Y )hol-modB .

The basic observation is that the D-module

DistG/B(N
−, ψ) := eψ " δ1G/B ∈ D(G/B)-modB

−,ψ ,

which is by definition the ∗-extension of eψ underN− ·1G/B ↪→ G/B, is clean. This
means that the ∗-extension coincides with the !-extension, or, what is the same, that

the arrow eψ
!
" δ1G/B → eψ " δ1G/B is an isomorphism. (One easily shows this by

observing that for any g ∈ G/B \ N−, the restriction of ψ to its stabilizer in N− is
nontrivial.) In particular, DistG/B(N−, ψ) is the Verdier dual of DistG/B(N−,−ψ).

Note that for F ∈ D(Y )hol-modB ,

eψ " F ' DistG/B(N
−, ψ) "

B
F, (14.2)

and similarly for eψ
!
" F. This establishes the assertion of the proposition. )�
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14.7

After these preliminaries, we are ready to introduce +:

+ := CN
!
" DistG/B(N

−, ψ)⊗ det(n[1]) ∈ D(D(G/B)-mod)N ,

where

F �→ CN
!
" F ⊗ det(n[1])⊗2

is the functor D(D(G/B)hol-mod) → D(D(G/B)hol-mod)N , left adjoint to the
tautological functor D(D(G/B)hol-mod)N → D(D(G/B)hol-mod). Explicitly,

CN
!
" · ⊗ det(n[1]) is given by convolution with compact supports with the constant

D-module on N .

Proposition 14.8.

(1) The complex + is concentrated in cohomological degree 0.
(2) + is projective as an object of D(G/B)-modN .
(3) + is noncanonically Verdier self-dual, i.e.,

+ ' CN " DistG/B(N
−,−ψ)⊗ det(n[1])−1.

(4) + is canonically independent of the choice of ψ .

Proof. Consider the functor F �→ RHom(+,F) on the categoryD(D(G/B)-mod)N .
We have

RHomD(D(G/B)-mod)N (+,F) ' RHomD(D(G/B)-mod)(eψ
!
" δ1G/B ,F)⊗ det(n[1]),

which, in turn, is isomorphic to

RHomD(D(G/B)-mod)(δ1G/B , e
ψ ′ " F)⊗ det(n[1]),

where ψ ′ = −ψ .
By Lemma 14.6, eψ

′
" F is concentrated in cohomological degree 0. Moreover,

it is lisse near 1G/B . Hence, the above RHom is concentrated in cohomological
degree 0.

Now, we will use the fact that D(D(G/B)-mod)N is equivalent to the derived
category of the abelian category D(G/B)-mod. Then the above property of RHom
implies simultaneously assertions (1) and (2) of the proposition.

The above expression for RHom(+,F) also implies that it is 0 if F is partially
integrable, and RHom(+, δ1G/B ) is one-dimensional. This implies that+ corresponds

to a projective cover of δ1G/B ∈ D(G/B)-modN , i.e., (G/B,+) ' �.
Since it is known that contravariant duality on O0 goes over to Verdier duality on

D(G/B)-modN , assertion (3) of the proposition holds.
The fact that + is noncanonically independent of the choice of ψ also follows,

since we have shown that (14.1) is valid for any choice of ψ . To establish that it is
canonically independent, we argue as follows:
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Let ψ ′ be another nondegenerate character of N−. Then there exists an element
h ∈ H , which, under the adjoint action of H on N−, transforms ψ to ψ ′.

Since + is B-monodromic, we have a canonical isomorphism of D-modules
h∗(+) ' +. However, from the construction of +, we have h∗(+) ' +′, where the
latter is the D-module constructed starting from ψ ′. )�

For any category C with a Harish-Chandra action ofG, we can consider the functor

F �→ + "
B

F : D(C)B → D(C)N .

Proposition 14.9.

(1) The above functor is exact, and it annihilates an object F ∈ C if and only if F is
partially integrable.

(2) For M1,M2 ∈ D(C)B we have a noncanonical but functorial isomorphism

RHomD(C)(+ "M1,M2) ' RHomD(C)(M1, + "M2).

Proof. Using Proposition 14.8(3), we can rewrite the functor in question as

F �→ CN " eψ " F ⊗ det(n[1])−1.

Hence, the fact that it annihilates partially integrable objects follows from Lem-
ma 14.5.

Recall that the object � ∈ O0 is tilting, i.e., it admits two filtrations: one, whose
successive quotients are isomorphic to Verma modules, and another, whose succes-
sive quotients are dual Verma modules. Hence, + also admits such filtrations, with
subquotients being jw,! and jw,∗, respectively. It is clear that convolution with the
latter is right exact. The convolution with jw,!, being a quasi-inverse of the convo-
lution with jw−1,∗, is therefore left exact. This proves the exactness assertion of the
proposition.

Finally, let us show that if F is not partially integrable, then + " F �= 0. Let fC

be the quotient category of C by the Serre subcategory of partially integrable objects.
Let fF be the image of F in fC.

We claim that the image of + " F in fC is endowed with an increasing filtration
of length |W |, whose subquotients are all isomorphic to fF. This follows from the
existence of the filtration on+ by jw,!: Indeed, the cokernel of the map δ1G/B → jw,!
is partially integrable, hence fF → f (jw,! "

B
F) is an isomorphism.

Now let us prove assertion (2) of the proposition. By Section 22.22,

RHomD(C)(+ "
B

M1,M2) ' RHomD(C)B (M1, +̃ "M2),

where +̃ is the corresponding dual D-module on B\G. Since M2 was assumed
B-equivariant,

+̃ "M2 ' (+̃ " CB) "
B

M2 ⊗ det(b[1]).
Similarly, by the B-equivariance of M1,
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RHomD(C)(M1, + "M2) ' RHomD(C)B (M1, (CB " +) "M2).

Hence, it remains to see that

CB " + ' +̃ " CB ⊗ det(b[1]) ∈ D(D(G/B)-mod)B ' D(D(G)-mod)B×B.

The left-hand side is isomorphic to AvB×B(DistG(N−, ψ)) using Proposition 14.8(3),
and using Proposition 14.8(4) the right-hand side is isomorphic to the same
thing. )�

14.10

Let us return to representations of affine algebras at the critical level. We define the
module � ∈ ĝcrit-mod as

� = Indĝcrit
g[[t]]⊕C1(�). (14.3)

By Section 7.19, � belongs to ĝcrit-modI,mnilp.
From the tilting property of�, we obtain that � admits two filtrations: one whose

subquotients are modules of the form Mw, and another, whose subquotients are of
the form M∨

w. Together with Corollary 13.9 this implies the following.

Corollary 14.11. The module � is flat over Z
nilp
g .

Using our conventions concerning twistedD-modules on FlG, we can rewrite the
definition of � as

(FlG,+),

where we think of + as living on FlG via G/B ↪→ FlG.
Note that for M• ∈ D(̂gcrit-mod)I , the convolution +"

I
M• is tautologically the

same as + "
B

M•, when we think of M• is a g-module via g ↪→ ĝcrit .

Proposition 14.12. If an object M of ĝcrit-modI,mnilp is partially integrable, then

RHom
Db(̂gcrit -modnilp)

I0 (�,M) = 0.

Proof. By Proposition 7.14, we can assume that M is I -integrable. In this case the
assertion follows readily from Proposition 14.9. )�

Obviously, the induction functor O0 → ĝcrit-modI,mnilp descends to a well-defined

functor fO0 → f ĝcrit-modI,mnilp. Let

M �→ fM

denote the projection functor ĝcrit-modI,mnilp → f ĝcrit-modI,mnilp. In particular, we obtain

the modules fMw and f� in f ĝcrit-modI,mnilp.
From Proposition 14.12 we obtain the following.
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Corollary 14.13. The map

RHom
Db(̂gcrit -modnilp)

I0 (�,M)→ RHomfDb(̂gcrit -modnilp)
I0 (
f�, fM)

is an isomorphism.

Since we have a surjection � → Mw0 , we also obtain the following.

Corollary 14.14. If an object M of ĝcrit-modI,mnilp is partially integrable, then

Hom(Mw0 ,M) = 0.

The main theorem in Part IV, from which we will derive Main Theorem 6.9, is
the following.

Main Theorem 14.15. For any object M of ĝcrit-modI,mnilp , we have

Ri Hom
Db(̂gcrit -modnilp)

I0 (�,M) = 0 for i > 0.

15 The module �reg via the affine Grassmannian

We proceed with the proof of Main Theorem 14.15.

15.1

Consider the quotient Z
reg
g of Z

nilp
g . We will denote by �reg and Mw0,reg the modules

� ⊗
Z

nilp
g

Z
reg
g and M ⊗

Z
nilp
g

Z
reg
g , respectively. The goal of this section is to express these

ĝcrit-modules as sections of critically twistedD-modules on the affine Grassmannian.
Consider the element of the extended affine Weyl group equal tow0 · ρ̌ = −ρ̌ ·w0.

Let jw0·ρ̌,∗ and jw0·ρ̌,! denote the corresponding critically twistedD-modules on FlG.
Note that w0 · ρ̌ is minimal in its coset in W\Waff /W , in particular, the orbit

I · (w0 · ρ̌) ⊂ FlG projects one-to-one under FlG → GrG. Hence, jw0·ρ̌,! "
I
δ1GrG

is the D-module on GrG obtained as the extension by 0 from the Iwahori orbit of
the element t−ρ̌ ∈ GrG. Let us denote by ICw0·ρ̌,GrG the intersection cohomology
D-module corresponding to the above I -orbit.

We have the maps

jw0·ρ̌,! "
I
δ1GrG

� ICw0·ρ̌,GrG ↪→ jw0·ρ̌,∗ "
I
δ1GrG

, (15.1)

such that the kernel of the first map and cokernel of the second map are supported on
the closed subset GrGρ̌ − Grρ̌G ⊂ GrG.
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Proposition 15.2. The maps

+"
I
jw0·ρ̌,! "

I
δ1GrG

→ +"
I

ICw0·ρ̌,GrG → +"
I
jw0·ρ̌,∗ "

I
δ1GrG

are isomorphisms.

The proposition follows from Proposition 14.9, using the following lemma.

Lemma 15.3. Any I -monodromic D-module on GrG supported on GrGρ̌ − Grρ̌G is
partially integrable.

Proof. Recall that the G[[t]]–orbits on GrG are labeled by the set of dominant
coweights of G; for a coweight λ̌ we will denote by

Grλ̌G
emb

λ̌
↪→ GrG

the embedding of the corresponding orbit. The quotient G(1)\Grλ̌G is a G-homo-
geneous space, isomorphic to a partial flag variety. We identify it with G/P by

requiring that the point w0 · t λ̌ ∈ G((t)) project to 1G/P ⊂ G/P ; we have P = B if
and only if λ̌ is regular.

Note that the G[[t]]-orbits appearing in GrGρ̌ − Grρ̌G all correspond to irregular
λ̌. Therefore, it is enough to show that an irreducible I -equivariant D-module on

Grλ̌G with irregular λ̌ is partially integrable.
Any such D-module arises as a pull-back from an irreducible B-equivariant D-

module onG/P for some parabolicP , strictly larger thanB. By definition, irreducible
B-equivariant D-modules on G/P are IC-sheaves of closures of B-orbits on G/P .
So, it is enough to show that any such closure is stable under SLι2 for some ι ∈ I. But
this is nearly evident:

The orbit of 1G/P is clearlyP -stable. Any other orbit corresponds to some element
w ∈ W of length more than 1. Hence, there exists a simple reflection sι such that
sι · w < w. Then the orbit corresponding to sι · w is contained in the closure of the
one corresponding to w, and their union is SLι2 stable. )�

Let us denote by π
λ̌

the map from Grλ̌G to the corresponding partial flag variety
G/P . The following lemma follows directly from definitions.

Lemma 15.4. Let w̃ be an element of Waff which is minimal in its double coset
W\Waff /W , and λ̌ the corresponding dominant coweight. Assume that λ̌ is regular,
and let F be a D-module on G/B. We have

F " jw̃,! " δ1GrG
' (emb

λ̌
)! ◦ π∗λ̌ (F) and F " jw̃,∗ " δ1GrG

' (emb
λ̌
)∗ ◦ π∗

λ̌
(F).

Therefore, we can rewrite

+"
I
jw0·ρ̌,! "

I
δ1GrG

' (embρ̌ )! ◦ π∗ρ̌ (+)
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and

+"
I
jw0·ρ̌,∗ "

I
δ1GrG

' (embρ̌ )∗ ◦ π∗ρ̌ (+).

Hence, the assertion of Proposition 15.2 can be reformulated as cleanness of the
perverse sheaf π∗

ρ̌
(+) on Grρ̌G, i.e., that the map

(embρ̌ )! ◦ π∗ρ̌ (+)→ (embρ̌ )∗ ◦ π∗ρ̌ (+)
is an isomorphism.

15.5

Set
Lw0 := ICw0·ρ̌,GrG "

G
Vcrit = (GrG, ICw0·ρ̌,GrG).

A key result, from which we will derive the main theorem, is the following.

Theorem 15.6. There exists a canonically defined map Mw0,reg ⊗ ω〈ρ,ρ̌〉x → Lw0

such that

(a) The above map is surjective and its kernel is partially integrable.
(b) The induced map

�reg ⊗ ω〈ρ,ρ̌〉x ' +"
I

Mw0,reg ⊗ ω〈ρ,ρ̌〉x

→ +"
I

ICw0·ρ̌,GrG "
G

Vcrit ' (GrG,+ "
I

ICw0·ρ̌,GrG)

is an isomorphism.

This theorem will be proved in Section 17. Let us now state a corollary of Theo-
rem 15.6 that will be used in the proof of Main Theorem 14.15.

Corollary 15.7. For any i > 0, Ri Hom
Db(̂gcrit -modreg)I

0 (�reg,Mw0,reg) = 0, and the

natural map Z
reg
g → Hom(�reg,Mw0,reg) is an isomorphism.

Let us prove this corollary. By Proposition 14.12, it is sufficient to compute

RHom
Db(̂gcrit -modnilp)

I0

(
(GrG,+ "

I
ICw0·ρ̌,GrG), (GrG, ICw0·ρ̌,GrG)

)
.

By Theorem 8.20, the latter RHom is isomorphic to

RHomD(D(GrG)crit -mod)

(
+"
I

ICw0·ρ̌,GrG, ⊕
V∈Irr(Rep(Ǧ))

ICw0·ρ̌,GrG "FV ∗ ⊗
C
VZ

reg
g

)
.

Let I−,0 be the subgroup of G[[t]] equal to the preimage of N− ⊂ G under the
evaluation map. By composing with ψ : N− → Ga , we obtain a character on I−,0,
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denoted in the same way, and we can consider the category D(GrG)crit-modI
−,0,ψ of

(I−,0, ψ)-equivariant D-modules, and the corresponding triangulated category.
As in Section 14.4, the forgetful functor

D(D(GrG)crit-modI
−,0,ψ ) ↪→ D(D(GrG)crit-mod)

admits a right adjoint, which we will denote by AvI−,0,ψ , given by convolution with
the corresponding D-module on I−,0.

From Proposition 14.6 we obtain that the composition

D(D(GrG)crit-mod)I,m → D(D(GrG)crit-mod)→ D(D(GrG)crit-mod)I
−,0,ψ ,

where the last arrow is the functor F �→ AvI−,0,ψ (F)⊗ det(n−[1])−1, is exact, and
essentially commutes with the Verdier duality on the holonomic subcategory.

By the construction of +, we have that, for F1 ∈ D(GrG)crit-modI and
F2 ∈ D(GrG)crit-modI,m,

RHomD(D(GrG)crit -mod)(+ "
I
F1,F2)

' RHom
D(D(GrG)crit -mod)I−,0,ψ

(
AvI−,0,ψ (F1),AvI−,0,ψ (F2)

)
.

Using the exactness property of AvI−,0,ψ mentioned above, Corollary 15.7 fol-
lows from the next general result.

Theorem 15.8. For any two F′1,F′2 ∈ D(GrG)crit-modI
−,0,ψ and i > 0,

Ri HomD(D(GrG)crit -mod)(F
′
1,F

′
2) = 0.

The functor D(GrG)crit-modG[[t]] → D(GrG)crit-modI
−,0,ψ , given by

F �→ AvI−,0,ψ (ICw0·ρ̌ "F),

is an equivalence of abelian categories.

The proof of Theorem 15.8 is a word-for-word repetition of the proof of the main
theorem of [FGV], using the fact that the combinatorics of I 0 (respectively, I−,0)
orbits on GrG is the same as that of N((t)) (respectively, N−((t))) orbits. The main

point is that any irreducible object of D(GrG)crit-modI
−,0,ψ is a clean extension from

a character sheaf on an orbit.

16 Proofs of the main theorems

In this section we will prove Main Theorem 14.15 and derive from it Main Theo-
rem 6.9, assuming Theorem 15.6 (which is proved in the next section).
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16.1

In Corollary 15.7 we computed the extensions between �reg and Mw0,reg in the cate-

gory Db(̂gcrit-modreg)
I 0

. Now we use this result to compute the extensions between

� and Mw0 in the category Db(̂gcrit-modnilp)
I 0

.

Proposition 16.2. The morphism Z
nilp
g → Hom

Db(̂gcrit -modnilp)
I0 (�,Mw0) is an iso-

morphism and Ri Hom
Db(̂gcrit -modnilp)

I0 (�,Mw0) = 0 for i > 0.

Proof. Let us note that for any two objects M•
1,M

•
2 ∈ Db(̂gcrit-modnilp) the complex

RHomD(̂gcrit -modnilp)(M
•
1,M

•
2) is naturally an object of D+(Znilp

g -mod). Recall also

that Z
reg
g , as a module over Z

nilp
g , admits a finite resolution by finitely generated

projective modules. Therefore, the functor

M• �→ M• L⊗
Z

nilp
g

Z
reg
g

is well defined as a functor Db(̂gcrit-modnilp)→ Db(̂gcrit-modnilp).
Almost by definition we obtain the following result.

Lemma 16.3. (
RHomD(̂gcrit -modnilp)(M

•
1,M

•
2)
) L⊗

Z
nilp
g

Z
reg
g

is isomorphic to

RHomD(̂gcrit -modnilp)

⎛⎝M•
1, (M

•
2

L⊗
Z

nilp
g

Z
reg
g )

⎞⎠ .
Since � is flat over Z

nilp
g , by Lemma 23.3, we obtain that for any M ∈ ĝcrit-modreg,

we have the following.

Lemma 16.4.

RHomD(̂gcrit -modnilp)(�,M) ' RHomD(̂gcrit -modreg)(�reg,M).

By combining this with Corollary 15.7, we obtain that the natural map

Z
reg
g →

(
RHomD(̂gcrit -modnilp)(�,Mw0)

) L⊗
Z

nilp
g

Z
reg
g

is a quasi-isomorphism. We will now derive the assertion of Proposition 16.2 by a
Nakayama lemma–type argument.
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Consider the Gm-action on ĝcrit coming from Gm ↪→ Aut(D). We obtain that
Gm acts weakly on the categories ĝcrit-modnilp and ĝcrit-mod. Since the objects �

and Mw0 are Gm-equivariant, the Ext groups

Extiĝcrit -mod(�,Mw0) and Extiĝcrit -modnilp
(�,Mw0)

acquire an action of Gm by Lemma 20.6.
We claim that the grading arising on Extiĝcrit -modnilp

(�,Mw0) is bounded from

above. First, let us note that the grading on Extiĝcrit -mod(�,Mw0) is nonpositive.

This is evident since Extiĝcrit -mod(�,Mw0) are computed by the standard complex
C•(g[[t]],HomC(�,Mw0)), whose terms are nonpositively graded. Note also that

the algebra Z
nilp
g is nonpositively graded, and the grading on N

Z
nilp
g /Zg

is such that

only finitely many free generators have positive degrees. Now, the spectral sequence
of Section 7.6 implies by induction on i that the grading on Extiĝcrit -modnilp

(�,Mw0)

is bounded from above.
Since the algebra Fun(Opnilp

ǧ
) is itself nonpositively graded, we deduce that

RHomD(̂gcrit -modnilp)(�,Mw0) can be represented by a complex of graded modules
such that the grading on each term is bounded from above, and which lives in nonneg-
ative cohomological degrees. Recall again that the ideal of Fun(Opreg

ǧ
) in Fun(Opnilp

ǧ
)

is generated by a regular sequence of homogeneous negatively graded elements. The
proof is concluded by the following observation.

Lemma 16.5. Let

Q• := Q0 → Q1 → · · · → Qn → · · ·
be a complex of graded modules over a graded algebra A = C[x1, . . . , xn], where
deg(xi) < 0 such that the grading on each Qi is bounded from above. Assume that

Q• L⊗
A

C is acyclic away from cohomological degree 0. ThenQ• is itself acyclic away

from cohomological degree 0. )�
Corollary 16.6. For any Z

nilp
g -module L

Ri Hom
Db(̂gcrit -modnilp)

I0 (�,Mw0 ⊗
Z

nilp
g

L) = 0

for i > 0 and is isomorphic to L for i = 0.

Proof. Since any module L is a direct limit of finitely presented ones, by Propo-
sition 7.14, we may assume that L is finitely presented. Since Z

nilp
g is isomorphic

to a polynomial algebra, any finitely presented module admits a finite resolution by
projective ones:

Ln → · · · → L1 → L0 → L.

Since Mw0 is flat over Z
nilp
g (cf, Corollary 13.9), we obtain a resolution
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Mw0 ⊗
Z

nilp
g

Ln → · · · → Mw0 ⊗
Z

nilp
g

L1 → Mw0 ⊗
Z

nilp
g

L0 → Mw0 ⊗
Z

nilp
g

L.

Hence, we obtain a spectral sequence, converging to

Ri HomD(̂gcrit -mod)I (�,Mw0 ⊗
Z

nilp
g

L),

whose first term Ei,j1 is given by

Ri HomD(̂gcrit -mod)I (�,Mw0 ⊗
Z

nilp
g

L−j ).

Since L• are projective, by Proposition 16.2, we obtain that Ei,j1 = 0 unless
i = 0, and in the latter case, it is isomorphic to L−j , implying the assertion of the
corollary. )�

Corollary 16.7. For any object L of ĝcrit-modI,mnilp and the Z
nilp
g -module

L := Hom(Mw0 , L),

the kernel of the natural map

Mw0 ⊗
Z

nilp
g

L → L

is partially integrable.

Proof. Let M be the kernel of Mw0 ⊗
Z

nilp
g

L → L, and suppose that it is not partially

integrable. Let M′ ⊂ M be the maximal partially integrable submodule. Consider
the short exact sequence

0 → M′ → M → M′′ → 0.

By Lemma 7.22, we have a nonzero map Lw → M′′ for some w ∈ W . We claim
that w necessarily equals w0.

Indeed, all modules Lw with w �= w0 are partially integrable, and we would
obtain that the preimage in M of Im(Lw) is again integrable, and is strictly bigger
than M.

Hence, we have a map Mw0 → M′′, and by composing, we obtain a map
� → M′′. Now, by Proposition 14.12, this maps lifts to a map � → M, i.e.,
Hom(�,M) �= 0.

Now consider the exact sequence

0 → Hom(�,M)→ Hom(�,Mw0 ⊗
Z

nilp
g

L)→ Hom(�, L).



Local geometric Langlands correspondence and affine Kac–Moody algebras 191

By Proposition 16.6, the middle term is isomorphic to L, and it maps injectively
to Hom(�, L), since

L ' Hom(Mw0 , L) ↪→ Hom(�, L),

which is a contradiction. )�
Now we are able to prove Main Theorem 14.15.

Proof. Let M be an object of ĝcrit-modI,mnilp. It admits a filtration 0 = M0 ⊂
M1 ⊂ M2 · · · whose subquotients Mj /Mj−1 have the property that each is a
quotient of the module Lw for some w ∈ W . By Proposition 7.14, to prove that
Extiĝcrit -modnilp

(�,M) = 0 for i = 0, by devissage, we can assume that M itself is a

quotient of some Lw.
If w �= w0, then M is partially integrable and the vanishing of Exts follows from

Proposition 14.12. Hence, we can assume that M is a quotient of Lw0 = Mw0 . In
this case, the assertion of the theorem follows from Corollary 16.6 combined with
Corollary 16.7. )�

16.8 Proof of Main Theorem 6.9

Now we derive Main Theorem 6.9 from Main Theorem 14.15. We define the functor
ĝcrit-mod → Z

nilp
g ⊗ h0-mod by

M �→ Hom(�,M).

Composing with the forgetful functor ĝcrit-modI,mnilp → ĝcrit-mod, we obtain a
functor

ĝcrit-modI,mnilp → Z
nilp
g ⊗ h0-mod.

By Main Theorem 14.15, the latter functor is exact, and by Proposition 14.12 it factors
through f ĝcrit-modI,mnilp. This defines the desired functor

fF : fDb(̂gcrit-modnilp)
I 0 → Db(Z

nilp
g ⊗ h0-mod).

We define a functor fG : Znilp
g ⊗ h0-mod → f ĝcrit-modI,mnilp by

L �→ f� ⊗
Z

nilp
g ⊗h0

L.

From Lemma 14.3 and Corollary 13.9 it follows that this functor is exact. We will
denote by the same character the resulting functor

Db(Z
nilp
g ⊗ h0)→ fDb(̂gcrit-modnilp)

I 0
.

For L• ∈ D−(Znilp
g ⊗ h0-mod) and M• ∈ fDb(̂gcrit-modnilp)

I 0
, by Corol-

lary 14.13 we have a natural isomorphism
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Hom
Db(Z

nilp
g ⊗h0-mod)

(L, fF(M•)) ' HomfDb(̂gcrit -modnilp)
I0 (
fG(L),M•).

Hence, G and F are mutually adjoint. Let us show that they are, in fact, mutually
quasi-inverse.

Let us first show that the adjunction morphism Id → fF◦ fG is an isomorphism.
By exactness, it suffices to show that for a Z

nilp
g ⊗ h0-module L, on which the action

of h0 is trivial, the map

L �→ Hom

⎛⎝f�, f� ⊗
Z

nilp
g ⊗h0

L

⎞⎠ (16.1)

is an isomorphism.
We have�⊗

h0

C ' M∨
1 , and hence �⊗

h0

C ' M∨
1 . Since the kernel of M∨

1 → Mw0

is partially integrable, we obtain that

f� ⊗
Z

nilp
g ⊗h0

L ' fMw0 ⊗
Z

nilp
g

L,

and the assertion follows from Corollary 16.6.
To show that the adjunction fG ◦ fF → Id is an isomorphism, by exactness, it is

again sufficient to evaluate it on a single module M. Since the functor fF is faithful,
it is enough to show that

fF ◦ fG ◦ fF(M)→ fF(M)

is an isomorphism. But we already know that fF(M) → fF ◦ fG ◦ fF(M) is an
isomorphism, and our assertion follows.

This completes the proof of Main Theorem 6.9 modulo Theorem 15.6. )�

17 Proof of Theorem 15.6

17.1

Let us first construct the map

Mw0,reg ⊗ ω〈ρ,ρ̌〉x → (GrG, ICw0·ρ̌,GrG), (17.1)

whose existence is stated in Theorem 15.6.
Consider the ĝcrit-module (GrG, jw0·ρ̌,∗ "

I
δ1,GrG); it is equivariant with respect

to the action of Gm acting by loop rotations. This module contains a unique line,
corresponding to those sections of the twisted D-module jw0·ρ̌,∗ "

I
δ1,GrG , which are

scheme-theoretically supported on the closure of the I -orbit of the element t−ρ̌ ∈
GrG, and which are I 0-invariant.
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This line has weight−2ρ̌ with respect to h, and has the highest degree with respect
to the Gm-action. Moreover, a straightforward calculation (see [BD1, Section 9.1.13])

shows that this line can be canonically identified with ω〈ρ,ρ̌〉x . This defines a map

Mw0,reg ⊗ ω〈ρ,ρ̌〉x → (GrG, jw0·ρ̌,∗ "
I
δ1,GrG).

We claim that the above map factors through

(GrG, ICw0·ρ̌,GrG) ⊂ (GrG, jw0·ρ̌,∗ "
I
δ1,GrG).

Indeed, by Lemma 15.3, the quotient module is partially integrable, and from Corol-
lary 14.14 we obtain that it cannot be the target of a nonzero map from Mw0,reg.

Proposition 17.2. The map Mw0,reg ⊗ ω〈ρ,ρ̌〉x → (GrG, ICw0·ρ̌,GrG) constructed
above is surjective.

The proof will be given at the end of this section. We will now proceed with the
proof of Theorem 15.6.

17.3

We shall now construct a map

(GrG, ICw0·ρ̌,GrG)→ M1,reg ⊗ ω〈ρ,ρ̌〉x . (17.2)

First, by Section 20.10, for any I -equivariant ĝcrit-module M,

Hom(Vcrit,M) ' R0 Homĝ-modG[[t]](Vcrit,AvG[[t]]/I (M)).

Applying this to M = Mw0,reg, we calculate

AvG[[t]]/I (Mw0,reg) ' AvG[[t]]/I (Mw0)
L⊗

Z
nilp
g

Z
reg
g ' Vcrit[− dim(G/B)] L⊗

Z
nilp
g

Z
reg
g .

(17.3)
Hence, the 0th cohomology of AvG[[t]]/I (Mw0,reg) is isomorphic to

Tor
Z

nilp
g

dim(G/B)(Vcrit,Z
reg
g ) ' Vcrit ⊗ Tor

Z
nilp
g

dim(G/B)(Z
reg
g ,Z

reg
g ).

However, from Corollary 4.18 and Proposition 4.23(2), it follows that

Tor
Z

nilp
g

dim(G/B)(Z
reg
g ,Z

reg
g ) ' �dim(G/B)(N∗

Z
reg
g /Z

nilp
g
) ' Z

reg
g ⊗ ω−〈2ρ,ρ̌〉x .

Hence, the above 0th cohomology is isomorphic to Vcrit ⊗ ω〈2ρ,ρ̌〉x , and we obtain
a map

Vcrit → Mw0,reg ⊗ ω−〈2ρ,ρ̌〉x .
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By applying the convolution jw0·ρ̌,∗ "
I
· to both sides we obtain a map

(GrG, jw0·ρ̌,∗ "
I
δ1,GrG)→ jw0·ρ̌,∗ "

I
Mw0,reg ⊗ ω〈2ρ,ρ̌〉x . (17.4)

However, by (13.12),

jw0·ρ̌,∗ "
I

Mw0,reg ' jw0,! "
I
jw0,∗ "

I
jw0·ρ̌,∗ "

I
Mw0,reg ' jw0,! "

I
jρ̌,∗ "

I
Mw0,reg

' jw0,! "
I

Mw0,reg ⊗ ω−〈ρ,ρ̌〉x ' M1,reg ⊗ ω−〈ρ,ρ̌〉x ,

and by composing with the embedding

(GrG, ICw0·ρ̌,GrG) ↪→ (GrG, jw0·ρ̌,∗ "
I
δ1,GrG),

we obtain the map of (17.2). By construction, this map respects the Gm-action.

17.4

Now consider the composition

Mw0,reg ⊗ ω〈ρ,ρ̌〉x → (GrG, ICw0·ρ̌,GrG)→ M1,reg ⊗ ω〈ρ,ρ̌〉x . (17.5)

Lemma 17.5. The resulting map Mw0,reg → M1,reg is a nonzero multiple of the
canonical map, coming from the embeddingMw0 → M1.

Proof. First, the map in question is nonzero by Proposition 17.2. Secondly, our
map Mw0,reg → M1,reg respects the Gm-action by loop rotations. Since Mw0,reg is
generated by a vector of degree 0, and the subspace in M1,reg consisting of elements
of degree 0 is isomorphic to the Verma module M0, any map Mw0,reg → M1,reg,
compatible with the grading, is a scalar multiple of the canonical map. )�

17.6

Let us now derive Theorem 15.6 from Lemma 17.5.
Let us apply the convolution +"

I
· to the three terms appearing in (17.5). We

obtain the maps

�⊗ω〈ρ,ρ̌〉x ' +"
I

Mw0,reg⊗ω〈ρ,ρ̌〉x → (GrG,+ "
I

ICw0·ρ̌,GrG)→ +"
I

M1,reg⊗ω〈ρ,ρ̌〉x .

(17.6)
However, the canonical map Mw0 → M0 has the property that its cokernel is

partially integrable. Hence, the cone of the resulting map Mw0,reg → M1,reg is also
partially integrable.

Hence, by Theorem 17.5 and Proposition 14.9, the composed map in
(17.6) is an isomorphism. In particular, we obtain that � is a direct summand of
(GrG,+ "

I
ICw0·ρ̌,GrG).
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Lemma 17.7. The map

Z
reg
g ⊗ h0 → End((GrG,+ "

I
ICw0·ρ̌,GrG))

is an isomorphism.

Proof. By Theorem 8.20 the assertion of the lemma is equivalent to the fact that
h0 ' End(+ "

I
ICw0·ρ̌,GrG), and Hom(+ "

I
ICw0·ρ̌,GrG,+ "

I
ICw0·ρ̌,GrG "

G[[t]]FV λ̌) = 0

for λ̌ �= 0.
The former isomorphism follows from the fact that h0 ' End(+), combined

with Proposition 15.2 and the fact that the projection Grρ̌G → G/B is smooth with
connected fibers.

To prove the vanishing for λ̌ �= 0, it is enough to show that

Hom(+ "
I

ICw0·ρ̌,GrG, ICw0·ρ̌,GrG "
G[[t]]FV λ̌) = 0,

because modulo partially integrable objects,+ appearing on the right-hand side is an
extension of several copies of δ1G/B .

As in the proof of Corollary 15.7, the latter Hom is isomorphic to

R0 Hom
D(D(GrG)crit -mod)I−,0,ψ

(
AvI−,0,ψ (δ1GrG

),AvI−,0,ψ (δ1GrG
) "
G[[t]] FV λ̌

)
,

and the latter vanishes, according to Theorem 15.8. )�
Thus we obtain that the ring End((GrG,+ "

I
ICw0·ρ̌,GrG)) has no idempotents.

In particular, the map � ⊗ ω〈ρ,ρ̌〉x → (GrG,+ "
I

ICw0·ρ̌,GrG) is an isomorphism,

establishing point (b) of Theorem 15.6.
Proposition 17.2 states that the map (17.1) is surjective. Thus it remains to show

that the kernel of the map (17.1) is partially integrable. But this follows from point
(b) and Proposition 14.9. Therefore we obtain point (a) of Theorem 15.6. This
completes the proof of Theorem 15.6 modulo Proposition 17.2, which is proved in
the next section. )�

17.8 Proof of Proposition 17.2

The crucial fact used in the proof of this proposition is that the module Lw0 carries an
action of the renormalized algebra U ren,reg (̂gcrit); see Section 7.8. Moreover, as an
object of the category U ren,reg (̂gcrit)-mod, the module Lw0 is irreducible, because the
D-module ICw0·ρ̌,GrG is irreducible, and the global sections functor D(GrG)-mod →
U ren,reg (̂gcrit)-mod is fully faithful, according to [FG].

Recall that the algebra U ren,reg (̂gcrit)-mod is naturally filtered,

U ren,reg (̂gcrit)-mod = ∪
i
(U ren,reg (̂gcrit)-mod)i ,
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so that

(U ren,reg (̂gcrit)-mod)0 ' Ũcrit (̂g) ⊗
Zg

Z
reg
g ,

and (U ren,reg (̂gcrit)-mod)1/(U ren,reg (̂gcrit)-mod)0 is a free (U ren,reg (̂gcrit)-mod)0-
module, generated by the algebroid N∗

Z
reg
g /Zg

.

Let us denote by (Lw0)
0 ⊂ Lw0 the image of the map Mw0,reg ⊗ ω〈ρ,ρ̌〉x → Lw0 ,

and we define the submodule (Lw0)
i inductively as the image of (Lw0)

i−1 under the
action of (U ren,reg (̂gcrit)-mod)1. In particular, we have surjective maps

N∗
Z

reg
g /Zg

⊗ (Lw0)
i/(Lw0)

i−1 → (Lw0)
i+1/(Lw0)

i ,

and, hence, also surjective maps(
N∗

Z
reg
g /Zg

)⊗i ⊗ (Mw0,reg ⊗ ω〈ρ,ρ̌〉x

)
� (Lw0)

i/(Lw0)
i−1,

and ∪
i
(Lw0)

i = Lw0 . Our task is to show that (Lw0)
0 = (Lw0)

1, i.e., that (Lw0)
0 is

stable under the action of (U ren,reg (̂gcrit)-mod)1.

Lemma 17.9. The module Lw0 has no partially integrable subquotients.

Proof. First, let us show first that Lw0 has no partially integrable quotient modules.
Suppose that M is such a quotient module. Let i be the minimal integer such that
the projection (Lw0)

i → M is nonzero; by definition this projection factors through
(Lw0)

i/(Lw0)
i−1. Hence, some element of (N∗

Z
reg
g /Zg

)⊗i gives rise to a nontrivial map

Mw0,reg → M. But this is a contradiction, since Mw0 , and hence Mw0,reg, cannot
map to any partially integrable module.

Now consider Lw0 as a graded module, i.e., as a module over C · t∂t � ĝcrit . It
is easy to see that a graded module admits no partially integrable subquotients as a
ĝcrit-module if and only if it has the same property with respect to C · t∂t � ĝcrit .

As was remarked earlier, the commutative Lie algebra C · t∂t ⊕ h has finite-
dimensional eigenspaces on the module (GrG, jw0·ρ̌,∗ "

I
δ1GrG

); hence the same will

be true for Lw0 .
Consider the maximal C · t∂t� ĝcrit-stable submodule of Lw0 that does not contain

the highest weight line, and take the quotient. Since this quotient is generated by a
vector of weight −2ρ with respect to h, it is not partially integrable.

Let M′′ be the maximal C · t∂t � ĝcrit-stable quotient of Lw0 which admits no par-
tially integrable subquotients. It is well defined due to the above finite-dimensionality
property. It is nonzero, because we have just exhibited one such quotient.

Let M′ := ker(Lw0 → M′′), and assume that M′ �= 0. As above, some section
of N∗

Z
reg
g /Zg

induces a nonzero map of ĝcrit-modules M′ → M′′. Therefore, M′ also

admits a quotient which has no partially integrable subquotients. This contradicts the
definition of M′′. Hence, Lw0 has no partially integrable subquotients. )�
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Let us continue viewing Lw0 as a graded module. For an integer nwe will denote
by (·)n the subspace of elements of degree n. By Section 17.1, (Lw0)n+〈ρ,ρ̌〉 = 0
if n > 0, and (Lw0)〈ρ,ρ̌〉 identifies with the Verma module Mw0 ; in particular, it is
contained in (Lw0)

0.

Lemma 17.10. The subspace (Lw0)〈ρ,ρ̌〉−1 is also contained in (Lw0)
0.

Proof. Let V ⊂ (GrG, jw0·ρ̌,∗ "
I
δ1GrG

) be the subspace of sections scheme-theoret-

ically supported on the I -orbit I · t−ρ̌ ⊂ GrG.
Let Lie(I 0)− ⊂ g((t)) be the subalgebra, opposite to Lie(I 0), i.e., the one spanned

by t−1g([t−1]) and n−1 ⊂ g. The module (GrG, jw0·ρ̌,∗ "
I
δ1GrG

) is generated from

V by means of Lie(I 0)− ⊂ g((t)).
Hence, the subspace(GrG, jw0·ρ̌,∗ "

I
δ1GrG

)〈ρ,ρ̌〉−1 is the direct sum of (g⊗ t−1) ·
U(n−) · V〈ρ,ρ̌〉 and U(n−) · V〈ρ,ρ̌〉−1. Note that V〈ρ,ρ̌〉 is the highest weight line in
Lw0 . Hence,

(g⊗ t−1) · U(n−) · V〈ρ,ρ̌〉 ⊂ (Lw0)
0.

Therefore, it remains to show that V〈ρ,ρ̌〉−1∩Lw0 is contained in (Lw0)
0. Suppose

not, and consider the image of V〈ρ,ρ̌〉−1 ∩ Lw0 in (Lw0)
1/(Lw0)

0. This is a subspace
annihilated by g(tC[[t]]), and stable under the b-action. Take some highest weight
vector. It gives rise to a map Mw → (Lw0)

1/(Lw0)
0 for some element w ∈ W ;

moreover w = w0 if and only if the above highest weight is −2ρ.
However, the algebra of functions on I · t−ρ̌ is generated by elements whose

weights with respect to h are in Span+(αi)− 0. Therefore, the above highest weight
is different from −2ρ. Thus we obtain a nonzero map Mw → (Lw0)

1/(Lw0)
0 for

w �= w0, where Mw is endowed with a Gm-action such that its generating vector has
degree 〈ρ, ρ̌〉 − 1. But this leads to a contradiction.

By Lemma 17.9, the image of Mw in (Lw0)
1/(Lw0)

0 equals the image of the
submodule Mw0 ⊂ Mw, as the quotient is partially integrable. Hence, Mw admits
a quotient, which is simultaneously a quotient module of Mw0 . However, this is
impossible, since we are working with the Kac–Moody algebra C · t∂t � ĝcrit , and it
is known that for Kac–Moody algebras, Verma modules have simple and mutually
nonisomorphic cosocles. )�

Now we are ready to finish the proof of Proposition 17.2. Consider the nilp-version
of the renormalized universal enveloping algebra at the critical level, U ren,nilp(̂gcrit);
see Section 7.8. We have a natural homomorphism U ren,nilp(̂gcrit)→ U ren,reg (̂gcrit).

Consider the �-family of ĝ�-modules equal to M−2ρ+κ�(ρ̌,·). Its specialization at
� = 0 is the module Mw0 ; and hence it acquires a U ren,nilp(̂gcrit)-action.

Lemma 17.11. The map Mw0 ⊗ω〈ρ,ρ̌〉x → Lw0 is compatible with theU ren,nilp(̂gcrit)-
actions.

Proof. This follows from the fact that the map Mw0 ⊗ ω
〈ρ,ρ̌〉
x → (GrG,

jw0·ρ̌,∗ "
I
δ1GrG

), constructed in Section 17.1, deforms away from the critical

level. )�
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By Theorem 7.10 and Corollary 4.18, we have a short exact sequence

0 → N∗
Z

nilp
g /Zg

|Spec(Zreg
g ) → N∗

Z
reg
g /Zg

→ (ǧ/b̌)Zreg
g
→ 0.

Let L−1 = ∂t be the renormalized Sugawara operator, which we view
as an element of (U ren,reg (̂gcrit))

1. By Proposition 4.23, the image of L−1 in
N∗

Z
reg
g /Zg

� (ǧ/b̌)Zreg
g

is a principal nilpotent element. Hence, N∗
Z

nilp
g /Zg

|Spec(Zreg
g )

and L−1 generate N∗
Z

reg
g /Zg

as an algebroid. This, in turn, implies that L−1

and (U ren,nilp(̂gcrit))
1 ⊗

Z
nilp
g

Z
reg
g generate (U ren,reg (̂gcrit))

1 as an algebroid over

(U ren,reg (̂gcrit))
0.

Thus, to prove Proposition 17.2, it remains to check that L−1 preserves
(Lw0)

0. Since L−1 normalizes (U ren,reg (̂gcrit))
0, and since (Lw0)

0 is generated over
(U ren,reg (̂gcrit))

0 by its highest weight line, it suffices to show that L−1 maps this
highest weight line to (Lw0)

0.
However, the image of the highest weight line under L−1 has degree 〈ρ, ρ̌〉 − 1,

and our assertion follows from Lemma 17.10. This completes the proof of Proposi-
tion 17.2. )�

17.12

We conclude this section by the following observation.

Proposition 17.13. For every χ ∈ Spec(Zreg
g ), the module Lw0 ⊗

Z
reg
g

Cχ is irreducible.

Proof. Let us observe that, on the one hand, Corollary 16.7 implies that the module
Mw0 ⊗

Z
reg
g

Cχ has a unique irreducible quotient, denoted Lw0,χ , such that the kernel of

the projection

Mw0 ⊗
Z

reg
g

Cχ → Lw0,χ

is partially integrable.
On the other hand, by Theorem 15.6, the above projection factors through

Mw0 ⊗
Z

reg
g

Cχ � Lw0 ⊗
Z

reg
g

Cχ → Lw0,χ .

Thus we obtain a surjective map Lw0 ⊗
Z

reg
g

Cχ → Lw0,χ , whose kernel is par-

tially integrable. However, by Lemma 17.9, we conclude that this map must be an
isomorphism. )�
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18 Comparison with semi-infinite cohomology

18.1

Consider the group ind-schemeN−((t)), and let!0 denote a nondegenerate character
N−((t)) → Ga of conductor 0. This means that the restriction of !0 to N−[[t]] is
trivial, and its restriction to Adt α̌ι (N

−[[t]]) ⊂ N−((t)) is nontrivial for each ι ∈ I.
Note that to specify !0 one needs to make a choice: e.g., of a nonvanishing 1-form
on D, in addition to a choice of ψ : N− → Ga .

For a coweight λ̌, let !
λ̌

denote the character obtained as a composition

N−((t)) Ad(t λ̌)−→ N−((t)) !0−→ Ga.

Note that for λ̌ = −ρ̌, this character is canonical, modulo a choice of ψ (the latter
we will consider fixed).

We will identify N− and N by means of conjugation by a chosen lift of the
elementw0 ∈ W ; and denote by the same symbol!

λ̌
the corresponding character on

N((t)). We will also use the same notation for the corresponding characters on the
Lie algebras.

In this section we will study the semi-infinite cohomology of n−((t)) twisted by
the characters !

λ̌
with coefficients in ĝcrit-modules. The complex computing semi-

infinite cohomology was introduced by Feigin [Fe]; the construction is recalled in
Section 19.17. We denote it by

M �→ C
∞
2 (n−((t)), ?,M⊗!

λ̌
),

where ? stands for a choice of a lattice in n−((t)). Its cohomology will be denoted by

H
∞
2 +•(n−((t)), n−[[t]],M⊗!

λ̌
).

Proposition 18.2. For M ∈ D(̂gcrit-mod)I
0
,

C
∞
2 (n((t)), n[[t]],M⊗!0) ' C

∞
2

(
n−((t)), tn−[[t]], (j̃w0·ρ̌,∗ "

I 0
M)⊗!−ρ̌

)
.

We do not give the proof, since it essentially repeats the proof of Proposition 12.12.
(In particular, the assertion is valid at any level κ .)

Another important observation (also valid at any level) is the following.

Lemma 18.3. If M ∈ ĝcrit-modI
0

is partially integrable, then

H
∞
2 +•(n−((t)), n−[[t]],M⊗!−ρ̌ ) = 0.

Proof. We can assume that M is integrable with respect to slι2 for some ι ∈ I. Let
fι ∈ n− ⊂ n−((t)) be the corresponding Chevalley generator. With no loss of
generality, we can assume that !−ρ̌ (fι) = 1.
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Consider the complex C
∞
2 (n−((t)), n−[[t]],M ⊗ !−ρ̌ ), and recall (see Sec-

tion 19.17) that we have an action of n−((t))[1] on it by “annihilation operators,’’
x �→ i(x), and the action of n−((t)) by Lie derivatives x �→ Liex such that

[d, i(x)] = Liex + Id ·!−ρ̌ (x).

Hence, i(fι) defines a homotopy between the identity map on

C
∞
2 (n−((t)), n−[[t]],M⊗!−ρ̌ )

and the map given by Liefι . However, by assumption, the latter acts locally nilpo-
tently, implying the assertion of the lemma. )�

18.4

In the rest of this section we will collect several additional facts concerning the semi-
infinite cohomology functorH

∞
2 +i (n−((t)), tn−[[t]], ?⊗!−ρ̌ ). By Lemma 18.3, this

functor, when restricted toDb(̂gcrit-modnilp)
I 0

, factors through fDb(̂gcrit-modnilp)
I 0

.

Theorem 18.5. The two functors fDb(̂gcrit-modnilp)
I 0 → D(Vect)

M• �→ H
∞
2 +•(n−((t)), tn−[[t]],M• ⊗!−ρ̌ ) and M• �→ Hom(�,M•)

are isomorphic. In particular, for 0 �= M ∈ f ĝcrit-modI,mnilp , we have

H
∞
2 +i (n−((t)), tn−[[t]],M⊗!−ρ̌ ) = 0 for i �= 0

and

H
∞
2 (n−((t)), tn−[[t]],M⊗!−ρ̌ ) �= 0.

The proof of the theorem is based on the following observation.

Lemma 18.6. For any Z
nilp
g -module L and w ∈ W , we have

H
∞
2 +i

⎛⎝n−((t)), tn−[[t]], (Mw ⊗
Z

nilp
g

L)⊗!−ρ̌
⎞⎠ '

{
L, i = 0,

0, i �= 0.

Proof. Since the quotients M1/Mw are all partially integrable, we can assume that
the elementw ∈ W , appearing in the lemma, equals 1. In the latter case, the assertion
follows from Proposition 12.10 and Corollary 13.8. )�

Let us now prove Theorem 18.5.
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Proof. In view of Main Theorem 6.9, to prove the theorem we have to establish an
isomorphism

H
∞
2 (n−((t)), tn−[[t]],�⊗!−ρ̌ ) ' Z

nilp
g ⊗ h0.

Consider the filtration on �, induced by the tilting filtration on� with quotients
Mw. By Lemma 18.6, we obtain that H

∞
2 +i (n−((t)), tn−[[t]],� ⊗ !−ρ̌ ) = 0 for

i �= 0, and that H
∞
2 (n−((t)), tn−[[t]],� ⊗ !−ρ̌ ) has a filtration, with subquotients

isomorphic to Z
nilp
g .

Hence, it remains to show that H
∞
2 (n−((t)), tn−[[t]],� ⊗ !−ρ̌ ) is flat as an

h0-module, where the action of h0 is induced from the identification h0 ' End(�).
It suffices to check that(

H
∞
2 (n−((t)), tn−[[t]],�⊗!−ρ̌ )

) L⊗
h0

C ' Z
nilp
g .

By Lemma 14.3, f�
L⊗
h0

C ' fMw0 . Hence,

(
H

∞
2 (n−((t)), tn−[[t]],�⊗!−ρ̌ )

) L⊗
h0

C ' H ∞
2 (n−((t)), tn−[[t]],Mw0 ⊗!−ρ̌ ),

and the assertion follows from Lemma 18.6. )�
Corollary 18.7. For any object M of ĝcrit-modI,mnilp and a dominant coweight λ̌

H
∞
2 +i (n((t)), n[[t]],M⊗!

λ̌
) = 0 for i > 0.

Proof. We have

H
∞
2 +i (n((t)), n[[t]],M⊗!

λ̌
) ' H ∞

2 (n−((t)), tn−[[t]], j̃
λ̌,∗ "

I 0
j̃w0·ρ̌,∗ "

I 0
M⊗!−ρ̌ ),

as in Proposition 18.2.
Now the assertion of the corollary follows from the fact that the functor M �→

j̃
λ̌,∗ "

I 0
j̃w0·ρ̌,∗ "

I 0
M is right exact. )�

As another application, we give an alternative proof of the following result of
[FB] (see Theorem 15.1.9).

Theorem 18.8. The natural map Z
reg
g → H

∞
2 (n((t)), n[[t]],Vcrit⊗!0) is an isomor-

phism, and all other cohomologies H
∞
2 +i (n((t)), n[[t]],Vcrit ⊗!0), i �= 0, vanish.

Proof. Consider the map

Mw0,reg ⊗ ω〈ρ,ρ̌〉x → jw0·ρ̌,∗ "
I

Vcrit

of Section 17.1. Its kernel and cokernel are partially integrable; hence it induces
isomorphisms
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H
∞
2 +i (n−((t)), tn−[[t]],Mw0,reg ⊗!−ρ̌ )
→ H

∞
2 +i (n−((t)), tn−[[t]], jw0·ρ̌,∗ "

I
Vcrit ⊗!−ρ̌ ).

By Lemma 18.6,

H
∞
2 +i (n−((t)), tn−[[t]],Mw0,reg ⊗!−ρ̌ ) '

{
Z

reg
g , i = 0,

0, i �= 0,

we obtain that

H
∞
2 +i (n−((t)), tn−[[t]], jw0·ρ̌,∗ "

I
Vcrit ⊗!−ρ̌ ) '

{
Z

reg
g , i = 0,

0, i �= 0.

Applying Proposition 18.2 for M = Vcrit , we obtain that

H
∞
2 +i (n((t)), n[[t]],Vcrit ⊗!0) = 0 for i �= 0

and

H
∞
2 (n((t)), n[[t]],Vcrit ⊗!0) ' Z

reg
g .

Moreover, by unraveling the isomorphism of Proposition 18.2, we obtain that
the above isomorphism coincides with the one appearing in the statement of the
theorem. )�

18.9

Let F be a critically twisted D-module on GrG. In this subsection we will express
the semi-infinite cohomology

H
∞
2 +• (n((t)), n[[t]], (GrG,F)⊗!0) (18.1)

in terms of the de Rham cohomologies of F along the N((t))-orbits in GrG.

For a coweight λ̌, consider the N((t))-orbit of the point t λ̌ on GrG; by pulling
back F, by Section 21.6, we obtain a D-module on N((t)). We will denote it by
F|
N((t))·t λ̌ . If !0 is a nondegenerate character of conductor 0, we will denote by

H •(N((t)),F|
N((t))·t λ̌ ⊗!0) the resulting de Rham cohomology. Note that this coho-

mology vanishes automatically unless λ̌ is dominant, since otherwise !0 would be

nontrivial on the stabilizer of t λ̌ ∈ GrG.
By decomposing F in the derived category with respect to the stratification of GrG

byN((t)) · t λ̌, using Section 22.15, we obtain that, as an object of the derived category
of Z

reg
g -modules, C

∞
2 +•(n((t)), n[[t]], (GrG,F)⊗ !0) is a successive extension of

complexes
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H
∞
2 +•

(
n((t)), n[[t]], (GrG, δtλ̌ )⊗!0

)
⊗H •(N((t)),F|

N((t))·t λ̌ ⊗!0). (18.2)

Note also that (GrG, δtλ̌ ) is isomorphic to the vacuum module, twisted by t λ̌ ∈
T ((t)). Hence,

H
∞
2 +•

(
n((t)), n[[t]], (GrG, δtλ̌ )⊗!0

)
' H ∞

2 +•
(
n((t)),Ad

t λ̌
(n[[t]]),Vcrit ⊗!λ̌

)
.

(18.3)

We will prove the following.

Theorem 18.10.

(1) For F ∈ D(GrG)crit-mod, there is a canonical direct sum decomposition

H
∞
2 +• (n((t)), n[[t]], (GrG,F)⊗!0)

' ⊕̌
λ

H
∞
2 +•

(
n((t)), n[[t]], (GrG, δtλ̌ )⊗!0

)
⊗H •(N((t)),F|

N((t))·t λ̌ ⊗!0).

(2) The cohomology H
∞
2 +i (n((t)), n[[t]],Vcrit ⊗!λ̌) vanishes unless λ̌ is dominant

and i = 0, and in the latter case, it is canonically isomorphic to V λ̌
Z

reg
g

.

The rest of this section is devoted to the proof of this theorem. Let us first prove
point (2). The fact that the semi-infinite cohomology in question vanishes unless λ̌ is
dominant follows by the same argument as in Lemma 18.3. Therefore, let us assume
that λ̌ is dominant and consider the D-module F

V λ̌
; see Section 8.5.

By the geometric Casselman–Shalika formula (see [FGV]),

H •(N((t)),F
V λ̌
|N((t))·t µ̌ ⊗!0) = 0

unlessµ = λ. Therefore, all terms withµ �= λ in the spectral sequence (18.2) vanish.
We obtain, therefore,

H
∞
2 +•

(
n((t)), n[[t]], (GrG,FV λ̌)⊗!0

)
' H ∞

2 +• (n((t)), n[[t]],Vcrit ⊗!λ̌
)
.

But by Theorem 8.7, (GrG,FV λ̌) ' Vcrit ⊗
Z

reg
g

V λ̌
Z

reg
g

. By combining this with Theo-

rem 18.8, we obtain

H
∞
2
(
n((t)), n[[t]],Vcrit ⊗!λ̌

) ' V λ̌
Z

reg
g
,

H
∞
2 +i (n((t)), n[[t]],Vcrit ⊗!λ̌

) = 0, i �= 0,
(18.4)

as required.
To prove point (1), we need some preparations.
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Proposition 18.11. Suppose that M is an object of ĝcrit-modreg that comes by re-

striction from a U ren,reg (̂gcrit)-module. Then all H
∞
2 +i (n((t)), n[[t]],M ⊗ !0) are

naturally modules over the algebroid N∗
Z

reg
g /Zg

.

Proof. We will assume that !0 comes from a character of the Lie-* algebra Ln. In
this case, the BRST complex C

∞
2 (Ln,Ag,crit ⊗!0) is itself a DG-chiral algebra.

Let Ag,� be a 1-st order deformation of Ag,crit away from the critical level; i.e.,
Ag,� is flat over C[�]/�2, and Ag,�/� ' Ag,crit .

Let us consider the DG-chiral algebra C
∞
2 (Ln,Ag,�⊗!0). From Theorem 18.8, it

follows that it is acyclic off cohomological degree 0; in particular, its 0th cohomology
is C[�]/�2-flat.

This implies that any section a ∈ zg, which we think of as a 0-cocycle in
C
∞
2 (Ln,Ag,crit ⊗!0), can be lifted to a 0-cocycle a� ∈ C

∞
2 (Ln,Ag,� ⊗!0).

We will think of a�

�
an element of the Lie-* algebra A

�
g⊗Cliff (Ln), where A

�
g is

as in [FG], and Cliff (Ln) is the Clifford chiral algebra, used in the definition of the
BRST complex.

By the construction of A
�
g, for M satisfying the properties of the proposition, we

have an action of A
�
g on M, and hence, an action of the Lie-* algebra A

�
g⊗Cliff (Ln)

on the complex C
∞
2 (Ln,M ⊗ !0). By taking the Lie-* bracket with the above

element a�

�
we obtain an endomorphism of C

∞
2 (Ln,M⊗!0), which commutes with

the differential.

It is easy to see that for a different choice of a� the corresponding endomorphisms
of C

∞
2 (Ln,M⊗ !0) will differ by a coboundary. Thus we obtain a Lie-* action of

zg on each H
∞
2 +i (Ln,M ⊗ !0). One easily checks that this action satisfies the

Leibniz rule with respect to the zg-module structure on H
∞
2 +i (Ln,M ⊗ !0), and

hence extends to an action of the Lie-* algebroid	1(zg). The latter is the same as an
action of the Z

reg
g -algebroid N∗

Z
reg
g /Zg

. )�

We are now ready to finish the proof of Theorem 18.10. By Section 7.8 and Pro-
position 18.11, the terms of the spectral sequence (18.2) are acted on by the algebroid
N∗

Z
reg
g /Zg

.

It is easy to see that theN∗
Z

reg
g /Zg

-action onH
∞
2 (n((t)), n[[t]],Vcrit⊗!0) identifies

via Theorem 18.8 with the canonical N∗
Z

reg
g /Zg

-action on Z
reg
g . Moreover, from Theo-

rem 8.7(a) we obtain that the isomorphisms of (18.4) are compatible with theN∗
Z

reg
g /Zg

-

action.

This implies the canonical splitting of the spectral sequence. Indeed, from Theo-
rem 8.7(b) it is easy to derive that there are no nontrivial Hom’s and Ext1’s between

different V λ̌
Z

reg
g

, regarded as N∗
Z

reg
g /Zg

-modules.
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Part V: Appendix

This part, which may be viewed as a user guide to [BD1, Section 7], reviews some
technical material that we need in the main body of this paper.

In Section 19 we review some background material: the three monoidal structures
on the category of topological vector spaces, the notion of a family of objects of an
abelian category over a scheme or an ind-scheme, and the formalism of DG-categories.

In Section 20 we introduce the notion of action of a group scheme on an abelian
category. In fact, there are two such notions that correspond to weak and strong
actions, respectively. A typical example of a weak action is when a group H acts on
a scheme S, and we obtain an action of H on the category QCohH of quasi-coherent
sheaves. A typical example of a strong (equivalently, infinitesimally trivial or Harish-
Chandra-type) action is when in the above situation we consider the action of H on
the category D(S)-mod of D-modules on S. We also discuss various notions related
to equivariant objects and the corresponding derived categories.

In Section 21 we make a digression and discuss the notion of D-module over a
group ind-scheme. The approach taken here is different, but equivalent, to the one
developed in [AG1] via chiral algebras.

In Section 22 we generalize the discussion of Section 20 to the case of group
ind-schemes. The goal of this section is to show that if C is a category that carries
a Harish-Chandra action of some group ind-scheme G, then at the level of derived
categories we have an action of the monoidal category of D-modules over G on C.
This formalism was developed in [BD1, Section 7], and in this section we essentially
repeat it.

Finally, Section 23 serves a purely auxiliary role: we prove some technical asser-
tions concerning the behavior of an abelian category over its center provided that a
certain flatness assumption is satisfied.

19 Miscellanea

Unless specified otherwise, the notation in this part will be independent of that of
Parts I–IV. We will work over the ground field C, and all additive categories will
be assumed C-linear. Unless specified otherwise, by tensor product, we will mean
tensor product over C.

If C is a category, and Xi is a directed system of objects in it, then following the
notation of SGA 4(I) notation, we write “lim−→’’Xi for the resulting object in Ind(C),

thought of as a contravariant functor on C. In contrast, lim−→Xi will denote the object

of C representing the functor Hom(lim−→Xi, ?) on C, provided that it exists.

19.1 Topological vector spaces and algebras

In this subsection we will briefly review the material of [CHA1]. By a topological
vector space we will mean a vector space over C equipped with a linear topology,
assumed complete and separated. We will denote this category by Top; it is closed
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under projective and inductive limits (note that the projective limits commute with the
forgetful functor to vector spaces, and inductive limits do not). Every such topological
vector space V can be represented as lim←− V

i , where V i are usual (i.e., discrete) vector

spaces and the transition maps V j → V i are surjective.
For a topological vector space V represented as a projective limit as above, its

dual V∗ is by definition the object of Top equal to

lim−→(Vi)
∗,

where each (Vi)∗ is a dual of the corresponding discrete vector space Vi , endowed
with the natural (pro-finite-dimensional) topology. It is easy to see that V∗ is well
defined, i.e., independent of the presentation of V as a projective limit.

A topological vector space V is said to be of Tate type if it can be written in the
form V1 ⊕V2, where V1 is discrete and V2 is pro-finite dimensional. In this case V∗
is also of Tate type, and the natural map (V∗)∗ → V is an isomorphism.

Following [CHA1], we endow the category Top with three different monoidal
structures:

V1,V2 �→ V1
∗⊗V2,V1

→⊗V2 and V1
!⊗V2.

They are constructed as follows. Let us write V1 = lim←− V
i
1 , V2 = lim←− V

j

2 . Then

V1
!⊗V2 = lim←−

i,j

V i1 ⊗ V j2 .

It is easy to see that this monoidal structure is, in fact, a tensor one.

To define V1
→⊗V2, we proceed in two steps. If V2 = V is discrete and equal to

∪
k
Vk , where Vk are finite dimensional, we set

V1
→⊗ V = lim−→

k

V1 ⊗ Vk,

where the inductive limit is taken in Top. For an arbitrary V2 written as V2 = lim←− V
j

2 ,

we set

V1
→⊗V2 = lim←−

j

(V1
→⊗ V j2 ).

Finally, V1
∗⊗V2 is characterized by the property that Hom(V1

∗⊗V2, V ), where
V is discrete, is the set of bilinear continuous maps V1 × V2 → W . This monoidal
structure is also tensor in a natural way.

We have natural maps

V1
∗⊗V2 → V1

→⊗V2 → V1
!⊗V2,
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where the first arrow is an isomorphism if V2 is discrete and the second one is an
isomorphism if V1 is discrete.

Note also that for three objects V1,V2,V3 ∈ Top we have natural maps

(V1
!⊗V2)

→⊗V3 → V1
!⊗(V2

→⊗V3) and V1
→⊗(V2

!⊗V3)→ (V1
→⊗V2)

!⊗V3

and hence the map

(V1
!⊗V2)

∗⊗V3 → V1
!⊗(V2

∗⊗V3). (19.1)

By an action of a topological vector space V from a discrete vector space W1 to
a discrete vector spaceW2 we will mean a map

V
→⊗W1 ' V

∗⊗W1 → W2.

The latter amounts to a compatible system of maps V ′ ⊗W ′
1 → W2, defined for every

finite-dimensional subspace W ′
1 ⊂ W1 for some sufficiently large discrete quotient

V ′ of V.
By definition, a topological associative algebra is an object A ∈ Top endowed

with an associative algebra structure with respect to the
→⊗ product. By construction,

any such A can be represented as lim←−
I

A/I, where I ⊂ A are open left ideals. Adiscrete

module over a topological associative algebra A is a vector space V endowed with

an associative action map A
→⊗ V → V ; we shall denote the category of discrete

A-modules by A-mod.

Atopological associative algebra is called commutative if the operation A
→⊗A →

A factors through A
!⊗A → A and the latter map is commutative (in the sense of

the commutativity constraint for the
!⊗ product). In this case A can be represented as

lim←−
i

Ai , where Ai are discrete commutative quotients of A.

For a commutative associative topological algebra, by a topological A-module
we shall mean a topological vector space V, endowed with an associative map

A
!⊗V → V such that V is separated and complete in the topology defined by open

A-submodules. Any such V can be represented as lim←− V
i , with Vi being discrete

A-modules, on each of which A acts through a discrete quotient. If f : A → B is a
homomorphism, we define f ∗(V) as lim←− B⊗

A
V i .

Note that if we regard A as an associative topological algebra, a discrete A-module
is a topological A-module in the above sense if and only if A acts on it through some
discrete quotient.

A topological Lie algebra g is a Lie algebra in the sense of the
∗⊗ structure. A

discrete module over such g is a vector space V endowed with a map g
∗⊗V → V ,

which is compatible with the bracket on g in a natural way.
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Let A be a commutative associative topological algebra. A Lie algebroid over
A is a topological Lie algebra g endowed with a topological A-module structure

A
!⊗ g → g and a Lie algebra action map g

∗⊗A → A, which satisfy the usual
compatibility conditions via (19.1).

19.2

Here we shall recall some notions related to infinite-dimensional vector bundles and
ind-schemes, borrowed from [BD1] and [Dr2].

By an ind-scheme we will understand an ind-object in the category of schemes,
which can be represented as Y := “lim’’−→

i∈I
Yi , where the transition maps fi,j : Yi → Yj

are closed embeddings. We will always assume that the indexing set I is countable.
A closed subscheme Z of Y is called reasonable if for every i, the ideal of the

subscheme Z ∩ Yi of Yi is locally finitely generated. The ind-scheme Y is called
reasonable if it can be represented as an inductive limit of its reasonable subschemes
(or, in other words, one can choose a presentation such that the ideal of Yi in Yj is
locally finitely generated).

We shall say that Y is ind-affine if all the schemes Yi are affine. In this case, if
we denote by Ai the algebra of functions of Yi , we will write Y = Spec(A), where
A = lim←−Ai and A = OY.

Assume that Y = G is ind-affine and is endowed with a structure of group ind-

scheme. This amounts to a coassociative counital map OG → OG
!⊗OG. By defini-

tion, an action of G on a topological vector space V is a map

V → OG
!⊗V,

such that the two morphisms

V ⇒ OG
!⊗OG

!⊗V

coincide.
If V is an associative or Lie topological algebra, we define in an evident way what

it means for an action to be compatible with the operation of product on V.
Assume now that G is a group scheme H = Spec(OH ).

Lemma 19.3. Every V, acted on byH , can be written as lim←− Vi , where Vi ∈ Rep(H)

are quotients of V.

Proof. Let V be some discrete quotient of V. We must show that we can find an
H -stable quotient V ′ such that V � V ′ � V . Consider the map

V → OH
!⊗V → OH ⊗ V,

Let V′ be the kernel of this map; this is an open subspace in V. The associativity of
the action implies that V′ is H -stable. Hence, V/V′ satisfies our requirements. )�
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Let Y be an ind-scheme. A topological *-sheaf on Y is a rule that assigns to a
commutative algebra R and an R-point y of Y a topological R-module Fy , and for
a morphism of algebras f : R → R′ an isomorphism Fy ' f ∗(Fy′), where y′
is the induced R′-point of Y, compatible with two-fold compositions. Morphisms
between topological *-sheaves are defined in an evident manner and we will denote
the resulting category by QCohtop,∗

Y . The cotangent sheaf 	1(Y) is an example of an

object of QCohtop,∗
Y .

We let TateY denote the full subcategory of QCohtop,∗
Y formed by Tate vector

bundles (i.e., those, for which each Fy is an R-module of Tate type); see [Dr2,
Section 6.3.2]. The following basic result was established in [Dr2, Theorem 6.2].

Theorem 19.4. Let Y1 → Y2 be a formally smooth morphism between ind-schemes
with Y1 being reasonable. Then the topological *-sheaf of relative differentials
	1(Y1/Y2) is a Tate vector bundle on Y1.

Assume now that Y is affine and isomorphic to Spec(A) for a commutative asso-
ciative topological algebra A. In this case, the category QCohtop,∗

Y is tautologically
equivalent to that of topological A-modules. We have the notion of Lie algebroid
over Y (which is the same as a topological Lie algebroid over A).

Now let G be an ind-groupoid over an ind-affine ind-scheme Y, such that both (or,
equivalently, one of the) projections l, r : G ⇒ Y is formally smooth. Then by the
above theorem, the normal to Y in G, denoted NY/G, which is by definition the dual
of the restriction to Y of 	1(G/Y) with respect to either of the projections, is a Tate
vector bundle. The standard construction endows it with a structure of Lie algebroid.

19.5 A class of categories

Let C be an abelian category, and let Ind(C) denote its ind-completion. We will
assume that C is closed under inductive limits, i.e., that the tautological embedding
C → Ind(C) admits a right adjoint limInd : Ind(C)→ C, and that the latter functor
is exact. In particular, it makes sense to tensor objects of C by vector spaces.

We shall say that an objectX ∈ C is finitely generated (or compact) if the functor
Hom(X, ·) : C → Vect commutes with direct sums. Let us denote by Cc the full
subcategory of C formed by compact objects. We will assume that Cc is equivalent to
a small category (i.e., that isomorphism classes of compact objects in C form a set).

We shall say that C satisfies (*) if every object of C is isomorphic to the inductive
limit of its compact subobjects.

Lemma 19.6. Assume that C satisfies (*), and let G be a left exact contravariant
functor Cc → Vect. The following conditions are equivalent:

(1) G is representable by X ∈ C.
(2) For an inductive system {Xi} ∈ Cc, whenever X := lim−→Xi belongs to Cc, the

natural map
G(X)→ lim←−G(Xi)

is an isomorphism.
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(3) G extends to a functor C → Vect such that for any inductive system {Xi} ∈ C,
the map

G
(

lim−→Xi
)
→ lim←−G(Xi)

is an isomorphism.

We shall say that C satisfies (**) if there exists an exact and faithful covariant
functor F : C → Vect, which commutes with inductive limits.

The following is standard.

Lemma 19.7. Assume that C satisfies (*) and (**). Then we have the following:

(1) F is representable by some “lim’’←−
i

Xi ∈ Pro(Cc).

(2) Assume that F has the following additional property. Whenever a system of maps
αk : X → Yk is such that for any nonzero subobject X′ ⊂ X not all maps αk|X′
are zero, then the map

F(X)→ �
k

F(Yk)

is injective.
Then the projective system {Xi} as above can be chosen so that all the transition
maps Xi′ → Xi are surjective.

(3) Under the assumption of (2), the functor F gives rise an to an equivalence C →
A-mod, where A is the topological associative algebra “lim’’←−

i

F(Xi) ' End(F).

19.8

IfA is an associative algebra, we will denote byA-mod⊗C the category whose objects
are objects of C, endowed with an action of A by endomorphisms, and morphisms
being C-morphisms, compatible withA-actions. This is evidently an abelian category.

If M is a left A-module and X ∈ C, we produce an example of an object of
A-mod⊗ C by takingM ⊗X.

LetM be a right A-module. We have a naturally defined right exact functor

A-mod⊗ C → C : X �→ M ⊗
A
X.

Lemma 19.9. If M is a flat (respectively, faithfully-flat A-algebra), then the above
functor is exact (respectively, exact and faithful).

For the proof see [Ga1, Lemma 4 and Proposition 5].9

We will say that X ∈ A-mod ⊗ C is A-flat if the functor M �→ M ⊗
A
X :

Aop-mod → C is exact. The functor of tensor product can be derived in either (or
both) arguments and we obtain a functor

9 Whereas the first of the assertions of the lemma is obvious from Lazard’s lemma, the second
is less so, and it was pointed out to us by Drinfeld.
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D−(Aop-mod)×D−(A-mod⊗ C)→ D−(C).

If M is a left A-module and X ∈ A-mod ⊗ C, we define a contravariant functor
on C by

Y �→ HomC⊗A-mod(Y ⊗M,X).
This functor is representable by an object that we will denote by HomA(M,X).

IfM is finitely presented as anA-module, the functorX �→ HomA(M,X) commutes
with inductive limits.

Let φ : A → B be a homomorphism of algebras. We have a natural forgetful
functor φ∗ : B-mod ⊗ C → A-mod ⊗ C, and its left adjoint φ∗, given by tensor
product with B, viewed as a right A-module. The right adjoint to φ∗, denoted φ!, is
given by X �→ HomA(B,X).

19.10 Objects parameterized by a scheme

Assume now that A is commutative and set S = Spec(A). In this case we will use
the notation QCohS ⊗ C for A-mod⊗ C. We will think of objects of QCohS ⊗ C as
families of objects of C over S.

For a morphism of affine schemes f : S1 → S2 we have the direct and inverse im-
age functors f∗, f ∗ : QCohS1

⊗C � QCohS2
⊗C, with f ∗ being exact (respectively,

exact and faithful) if f is, by Lemma 19.9.
The usual descent argument shows the following.

Lemma 19.11. Let S′ → S be a faithfully flat map. Then the category QCohS ⊗C is
equivalent to the category of descent data on QCohS′ ⊗C with respect to S′×

S
S′ ⇒ S′.

This allows us to define the category QCohS ⊗ C for any separated scheme S.
Namely, let S′ be an affine scheme covering S. We introduce QCohS ⊗ C as the
category of descent data on QCohS′ ⊗C with respect to S′ ×

S
S′ ⇒ S′. Lemma 19.11

above ensures that QCohS ⊗C is well defined, i.e., is independent of the choice of S′
up to a unique equivalence. (In fact, the same definition extends more generally to
stacks algebraic in the faithfully-flat topology, for which the diagonal map is affine.)
For a morphism of schemes f : S1 → S2 we have the evidently defined direct and
inverse image functors. If f is a closed embedding and the ideal of S1 in S2 is locally
finitely generated, then we also have the functor f ! : QCohS2

⊗ C → QCohS1
⊗ C,

right adjoint to f∗.
If S1 is a closed subscheme of S2, we say that an object X ∈ QCohS2

⊗ C is
set-theoretically supported on S1, if X can be represented as an inductive limit of its
subobjects, each of which is the direct image of an object in some QCohS′1 ⊗C, where
S′1 is a nilpotent thickening of S1 inside S2.

Suppose now that S is of finite type over C. We will denote by D(S)-mod the
category of rightD-modules on S. We define the category D(S)-mod⊗C as follows:

First, we assume that S is affine and smooth. Then D(S)-mod⊗C is by definition
the category (S,D(S))op-mod⊗ C.
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If S1 → S2 is a closed embedding of affine smooth schemes, we have an analogue
of Kashiwara’s theorem, saying that D(S1)-mod⊗C is equivalent to the subcategory
of D(S2)-mod ⊗ C, consisting of objects set-theoretically supported on S1, when
considered as objects of QCohS2

⊗ C.
This allows us to define D(S)-mod ⊗ C for any affine scheme of finite type,

by embedding it into a smooth scheme. Finally, for an arbitrary S, we define
D(S)-mod⊗ C using a cover by affine schemes, as above.

19.12

In this subsection we will assume that C satisfies (*). Let V be a topological vector
space, and X, Y ∈ C. An action V ×X→ Y is a map

V ⊗X→ Y,

satisfying the following continuity condition: For every compact subobject X′ ⊂ X,
the induced map V ⊗ X′ → Y factors through V ⊗ X′ → Y , where V is a discrete
quotient of V.

If X′ → X (respectively, Y → Y ′, V′ → V) is a map, and we have an action
V × X → Y , we produce an action V × X′ → Y (respectively, V × X → Y ′,
V′ ×X→ Y ).

Note that if V is pro-finite dimensional, with the dual V∗ ∈ Vect, an action
V ×X→ Y is the same as a map X→ V∗ ⊗ Y .

Lemma-Construction 19.13. Let V2 ×X→ Y and V1 × Y → Z be actions. Then
we have an action

(V1
→⊗V2)×X→ Z.

Proof. The construction immediately reduces to the case when V2 = V2 is discrete,
X is compact, and we have an action map V2 ⊗X→ Y .

Then for every finite-dimensional subspace V k2 ⊂ V2 we can find a compact
subobject Y k ⊂ Y , such that V k2 ⊗X→ Y maps to Y k and the action V1 ⊗ Y k → Z

factors through a discrete quotient V k1 of V1. Then

∪
k

ker(V1 → Vk1)⊗ V k2 ⊂ V1
→⊗ V2

is an open neighborhood of 0, and we have an action map(
V1

→⊗ V2/ ∪
k

ker(V1 → Vk1)⊗ V k2
)
⊗X ' lim−→(V

k
1 ⊗ V k2 )⊗X→ Z. )�

We shall say that V acts on X if we are given a map V ×X→ X. Objects of C,
acted on by V naturally form a category, which is abelian.

Let A be an associative topological algebra. We shall say that an object X ∈ C is
acted on by A if we are given an action map A×X→ X such that the two resulting

action maps (A
→⊗A)×X ⇒ X coincide. Objects of C acted on by A form a category,

denoted A-mod⊗ C.
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19.14 Objects of a category parameterized by an ind-scheme

In this subsection we retain the assumption that C satisfies (*). Let Y be an ind-scheme,
Y = ∪

i
Yi . We introduce the category QCoh∗Y ⊗ C to have as objects collections

{Xi ∈ QCoh∗Yi ⊗ C} together with a compatible system of isomorphisms f ∗i,j (Xj ) '
Xi , where fi,j is the map Yi → Yj . Morphisms in the category are evident.

It is easy to see that this category is independent of the presentation of Y as an
inductive limit. However, QCoh∗Y ⊗ C is, in general, not abelian.

Given an object of X ∈ QCoh∗Y ⊗ C and a scheme S mapping to Y, we have a
well-defined object X|S ∈ QCohS ⊗ C.

Assume now that Y is strict and reasonable. That is, the system Yi can be chosen
so that the maps fi,j are closed embeddings, and the ideal of Yi inside Yj is locally
finitely generated.

We introduce the category QCoh!Y ⊗ C as follows. Its objects are collections
X := {Xi ∈ QCoh∗Yi ⊗ C} together with a compatible system of isomorphisms

Xi ' f !i,j (Xj ). The morphisms in this category are evident.

Lemma 19.15. QCoh!Y ⊗ C is an abelian category.

Proof. If α = {αi : Xi → X′i} is a morphism in QCoh!Y ⊗ C, its kernel is given by
the system {ker(αi)}. It is easy to see that the cokernel and image of this morphism
are given by the systems that assign to each i,

lim−→
j≥i
f !i,j

(
coker(αj )

)
, lim−→

j≥i
f !i,j

(
Im(αj )

)
,

respectively. The fact that the axioms of an abelian category are satisfied is shown in
the same way as in the case of C = Vect. )�

Now let A be a commutative topological algebra. Then A can be represented as
lim←−Ai , where the Ai are discrete commutative algebras. Assume, moreover, that we

can find such a presentation that the ideal ofAi in eachAj , j ≥ i is finitely generated.
Then Y := lim−→ Spec(Ai) is reasonable.

Lemma 19.16. Under the above circumstances, the categories QCoh!Y ⊗ C and
A-mod⊗ C are equivalent.

Proof. The functor QCoh!Y⊗C → A-mod⊗C is evident. Its right adjoint is defined as
follows: given an objectX ∈ A-mod⊗C, represented as∪

i
Xi withXi ∈ Ai-mod⊗C,

we define an object {X′i} in QCoh!Y ⊗ C by setting

X′i = lim−→
j≥i
f !i,j (Xj ).

The fact that the adjunction morphisms are isomorphisms is shown as in the case
C = Vect. )�
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Now let X = {Xi} be an object of QCoh∗Y ⊗ C such that each Xi is Yi-flat. Let
M be an object in QCoh!Y ⊗ A-mod, where A is some topological algebra. We then
have a well-defined tensor product

X ⊗
OY

M ∈ QCoh!Y ⊗ (A-mod⊗ C).

The corresponding system assigns to every Yi the object

X|Yi ⊗
OYi

Mi ∈ QCohYi ⊗ (A-mod⊗ C).

Finally, let Y be a strict ind-scheme of ind-finite type. Proceeding as above, one
defines the category D(Y)!-mod⊗C as the category of systems {Xi} ∈ D(Yi )

!-mod⊗C

with isomorphisms Xi ' f !i,j (Xj ).
If Y is formally smooth, we can also introduce the DG-category of 	•Y-modules

with coefficients in C, and we will have an equivalence between the corresponding
derived category of 	•Y-mod⊗ C and the derived category of D(Y)!-mod⊗ C.

19.17 BRST complex

If g is a topological Lie algebra, an action of g onX ∈ C is an action map g×X→ X

such that the difference of the two iterations

(g
∗⊗ g)×X→ (g

→⊗ g)×X→ X

equals the action induced by the Lie bracket g
∗⊗ g → g.

Assume now that g ' k is pro-finite dimensional. Then its action on X is the
same as a coaction of the Lie coalgebra k∗ ∈ Vect onX, i.e., a map a : X→ k∗ ⊗X,
satisfying the suitable axioms. In this case we can form a complex of objects of C,
called the standard complex, C(k, X):

As a graded object of C, it is isomorphic to C(k,M) := X ⊗ �•(k∗). Let us
denote by i (respectively, i∗) the action of k[1] (respectively, k∗[−1]) on C(k, X) by
the “annihilation’’ (respectively, “creation’’operators), and by Lie the diagonal action
of k. Then the differential d on C(k, X) is uniquely characterized by the property that
[d, i] = Lie. We automatically obtain that

• d2 = 0,
• The map i∗ : �•(k∗)⊗C(k, X)→ C(k, X) is a map of complexes, where�•(k∗)

is endowed with a differential coming from the Lie cobracket.

If X• is a complex of objects of C, acted on by k, we will denote by C(k, X•) the
complex associated to the corresponding bicomplex. It is clear that if X• is bounded
from below and acyclic, then C(k, X•) is acyclic as well. However, this would not
be true if we dropped the boundedness from below assumption.

The above setup can be generalized as follows. Now let g be a topological Lie
algebra, which is of Tate type as a topological vector space. Let Cliff(g, g∗) be the
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(topological) Clifford algebra, constructed on g and g∗; it is naturally graded, where
the “creation’’ operators (i.e., elements of g∗) have degree 1, and the annihilation
operators (i.e., elements of g) have degree−1. Let Spin(g) be some fixed irreducible
representation of Cliff(g), equipped with a grading. (Of course, up to a grading shift
and a noncanonical isomorphism, Spin(g) is unique.)

Recall that the canonical (i.e., Tate) central extension gcan of g is characterized by
the property that the adjoint action of g on Cliff(g, g∗) is inner via a homomorphism
gcan → Cliff(g, g∗). We will denote by g−can the Baer negative central extension.

Let C be as above, and letX ∈ C be acted on by g−can. Consider the graded object
of C given by

C
∞
2 (g, X) := X ⊗ Spin(g).

As in the case in which C = Vect, one shows that C
∞
2 (g, X) acquires a canonical

differential d, characterized by the property that [d, i] = Lie, where i denotes the
action of g on C

∞
2 (g, X) via Spin(g) by creation operators, and Lie is the diagonal

action of g on X ⊗ Spin(g). We have

• d2 = 0

• The action i∗ of g∗ is compatible with the differential g∗ → g∗
!⊗ g∗ given by the

bracket.

IfX• is a complex of objects of C, acted on by g−can, we will denote by C
∞
2 (g, X•)

the complex associated to the corresponding bicomplex.

Lemma 19.18. Assume that X• is bounded from below and is acyclic. Then
C
∞
2 (g, X•) is also acyclic.

Proof. Let us choose a lattice k ⊂ g; we can then realize Spin(g) as Spin(g, k)–the
module generated by an element, annihilated by both k ⊂ g ⊂ �•(g) and (g/k)∗ ⊂
g∗ ⊂ �•(g∗).

In this case the complex C
∞
2 (g, X•) acquires a canonical increasing filtration,

indexed by the natural numbers, so that

gri
(
C
∞
2 (g, X•)

)
' C(k, X• ⊗�i(g/k))[i].

This readily implies the assertion of the lemma. )�
In what follows we will need to consider the following situation. Let X• be

a complex of objects of C, endowed with two actions of g−can, denoted a and a′,
respectively. Then X• ⊗ Spin(g) acquires two differentials, d and d ′.

Assume that there exists a self-anticommuting action

ih : g[1] ×X• → X•,

such that a′(x)− a(x) = [dX, ih(x)], [a′(x), ih(y)] = ih([x, y]), [a(x), ih(y)] = 0,
where dX is the differential on X•.

Lemma 19.19. Under the above circumstances, there exists a graded automorphism
of the complex X• ⊗ Spin(g) that intertwines d and d ′.
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Proof. Let �i(g) and �i(g∗) denote the !-completed exterior powers of g and g∗,
respectively.

For a natural number i consider the canonical element idi ∈ �i(g)
!⊗�i(g∗). We

define the operator

T : X• ⊗ Spin(g)→ X• ⊗ Spin(g)

by
∑
i∈N

(ih ⊗ i∗)(idi ), where i∗ and ih denote the extension of the actions of g∗[−1]
and g[1], respectively, to the exterior powers.

Clearly, T is a grading-preserving isomorphism, and

T ◦ i ◦ T −1 = i + ih.
One easily shows that d ′ = T −1 ◦ d ◦ T . )�

19.20 DG categories

We will adopt the conventions regarding DG categories from [Dr1]. Let C be a
C-linear DG category, which admits arbitrary direct sums.

For X•, Y • ∈ C we will denote by HomC(X
•, Y •) the corresponding complex,

and by HomC(X
•, Y •) its 0th cohomology. By definition, the homotopy category

Ho(C) has the same objects as C, with the Hom space being HomC(X
•, Y •)

We will assume that C is strongly pretriangulated, i.e., that it admits cones. In
this case Ho(C) is triangulated.

We will assume that C is equipped with a cohomological functor H to an abelian
category C′. We will denote by D(C) the corresponding localized triangulated cat-
egory, and we will assume that H defines a t-structure on D(C). We will denote by
RHomD(C)(·, ·) the resulting functor D(C)op ×D(C)→ D(Vect).

We will denote by Db(C) (respectively, D+(C), D−(C),) the subcategory con-
sisting of objects X• such that H(X•[i]) = 0 for i away from a bounded interval
(respectively, i � 0, i * 0.)

In what follows we will also use the following notion: We shall say that an
object X• ∈ D(C) is quasi-perfect if it belongs to D−(C), and the functor Y �→
HomD(C)(X•, Y [i]) commutes with direct sums in the core of C (i.e., those objects
Y ∈ C for which H(Y [j ]) = 0 for j �= 0).

Lemma 19.21. Let X• ∈ D(C) be quasi-perfect and Y • ∈ D+(C). Let K• be a
bounded from below complex of vector spaces. Then RHomD(C)(X•, Y • ⊗ K•) is
quasi-isomorphic to RHomD(C)(X•, Y •)⊗K• in D(Vect).

The most typical example of this situation is, of course, when C = C(C) is the
category of complexes of objects of an abelian category C, and H comes from an
exact functor C → C′. If C′ ' C, then D(C) will be denoted D(C); this is the usual
derived category of C.

An example of a quasi-perfect object of D(C) is provided by a bounded from
above complex consisting of projective finitely generated objects of C.
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Let C1,C2 be two DG categories as above, and let G : C1 → C2 be a DG functor.
We shall say that G is exact if it sends acyclic objects (in the sense of H1) to acyclic
ones (in the sense of H2).

The following (evident) assertion will be used repeatedly.

Lemma 19.22. Let G : C1 → C2 and G′ : C2 → C1 be mutually adjoint exact
functors. Then the induced functors G,G′ : D(C1) � D(C2) are also mutually
adjoint.

Proof. Let G be the left adjoint of G′. Note first of all that the functors induced
by G and G′ between the homotopy categories Ho(C1) and Ho(C2) are evidently
mutually adjoint.

Then for X• ∈ D(C1), Y • ∈ D(C2),

HomD(C1)(X
•,G′(Y •)) = lim−→

X′•→X•
HomHo(C1)(X

′•,G′(Y •)) (19.2)

and

HomD(C2)(G(X
•), Y •) = lim−→

Y•→Y ′•
HomHo(C2)(G(X

•), Y ′•), (19.3)

where in both cases the inductive limits are taken over quasi-isomorphisms, i.e.,
morphisms in the homotopy category that become isomorphisms in the quotient tri-
angulated category.

By adjunction, we rewrite the expression in (19.3) as

lim−→
Y•→Y ′•

HomHo(C2)(X
•,G′(Y ′•)),

and we map it to (19.2) as follows. For a quasi-isomorphism Y • → Y ′• the map
G(Y •)→ G(Y ′•) is a quasi-isomorphism as well, and given a map X• → G′(Y ′•),
we can find a quasi-isomorphism X′• → X•, so that the diagram

G′(Y •) −−−−→ G′(Y ′•)0⏐⏐ 0⏐⏐
X′• −−−−→ X•

commutes in Ho(C1). The above map X′ → G′(Y •) defines an element in (19.2).
One constructs the map from (19.2) to (19.3) in a similar way, and it is straight-

forward to check that the two are mutually inverse. )�

20 Action of a group on a category

20.1 Weak action

Let C be an abelian category as in Section 19.5, and letH be an affine group scheme.
We will say that H acts weakly on C if we are given a functor



218 Edward Frenkel and Dennis Gaitsgory

act∗ : C → QCohH ⊗ C,

and two functorial isomorphisms related to it. The first isomorphism is between the

identity functor on C and the composition C
act∗→ QCohH ⊗C → C, where the second

arrow corresponds to the restriction to 1 ∈ H .
To formulate the second isomorphism, note that from the existing data we obtain

a natural functor act∗S : QCohS ⊗ C → QCohS×H ⊗ C for any affine scheme S.
The second isomorphism is between the two functors C → QCohH×H ⊗ C that

correspond to the two paths of the diagram

C
act∗−−−−→ QCohH ⊗ C

act∗
⏐⏐/ act∗H

⏐⏐/
QCohH ⊗ C

mult∗−−−−→ QCoh∗H×H ⊗ C,

(20.1)

where mult denotes the multiplication map H ×H → H .
We assume that the above two isomorphisms of functors satisfy the usual compat-

ibility conditions. We will refer to these isomorphisms as the unit and associativity
constraint of the action, respectively.

Lemma 20.2. The functor act∗ is exact and faithful. For X ∈ C, the OH -family
act∗(X) is flat.

Proof. First, the faithfulness of act∗ is clear, since the fiber at 1 ∈ H provides a left
quasi-inverse QCohH ⊗ C → C.

Let S be a scheme equipped with a map φ : S → H . Note that we have a
self-functor act∗φ : QCohS ⊗ C → QCohS ⊗ C given by

QCohS ⊗ C
act∗S→ QCohS ⊗ QCohH ⊗ C

(idS×φ)∗→ QCohS ⊗ C.

This is an equivalence of categories and its quasi-inverse is given by act∗
φ−1 , where

φ−1 : S → G is obtained from φ by applying the inversion on H . Note that act∗φ is
OS-linear.

Let us take S = H and φ to be inversion map. Then the composition act∗φ ◦ act∗ :
C → QCohH × C is isomorphic to the functor X �→ OH ⊗ X, which is evidently
exact. Hence, act∗ is exact as well.

Similarly, to show that act∗(X) is OH -flat, it suffices to establish the corresponding
fact for act∗φ ◦ act∗(X), which is again evident. )�

Here are some typical examples of weak actions:

(1) LetH act on an ind-scheme Y. Then the category QCoh!Y carries a weakH -action.
(2) Let H act on a topological associative algebra A (see Section 19.2). Then the

category A-mod of discrete A-modules carries a weak H -action.
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20.3 Weakly equivariant objects

Let us denote by p∗ the tautological functor

C → QCohH ⊗ C : X �→ OH ⊗X,
where OH is the algebra of functions on H .

We will say that an object X ∈ C is weakly H -equivariant if we are given an
isomorphism

act∗(X) ' p∗(X), (20.2)

which is compatible with the associativity constraint of the H -action on C.
Clearly, weakly H -equivariant objects of C form an abelian category, which we

will denote by Cw,H . For example, let us take C to be Vect—the category of vector
spaces with the obvious, i.e., trivial, H -action. Then Cw,H is the category of H -
modules, denoted H -mod, or Rep(H).

Let X be an object of Cw,H , and V ∈ Rep(H). We define a new object V ∗X ∈
Cw,H to be V ⊗ X as an object of C, but where the isomorphism act∗(V ⊗ X) →
p∗(V ⊗X) is multiplied by the coaction map V → OH ⊗ V .

We have an obvious forgetful functor Cw,H → C, and it admits a right adjoint,
denoted AvwH , given by X �→ p∗(act∗(X)). For X ∈ Cw,H ,

AvwH (X) ' OH ∗X.
For two objectsX1, X2 of Cw,H we define a contravariant functor HomC(X1, X2)

of Rep(H) by

HomRep(H)(V ,HomC(X1, X2)) = HomCw,H (V ∗X1, X2).

It is easy to see that this functor is representable.

Lemma 20.4. Let X1 be finitely generated as an object of C. Then the forgetful
functor Rep(H)→ Vect maps HomC(X1, X2) to HomC(X1, X2).

Proof. We have the map

HomC(X1, X2) ' HomCw,H (X1,AvwH (X2))

→ HomC(X1,AvwH (X2)) ' HomC(X1,OH ⊗X2),

and the latter identifies with OH ⊗ HomC(X1, X2), by the assumption on X1.
This endows HomC(X1, X2) with a structure of H -module. It is easy to see that

it satisfies the required adjunction property. )�
Note that since

HomC(X1, X2) ' HomCw,H (X1,OH ∗X2)

and

HomCw,H (X1, X2) ' HomH (C,HomC(X1, X2)),

we obtain thatX1 is finitely generated as an object of C if and only if it is so in Cw,H .
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20.5

Let C(Cw,H ) denote the DG category of complexes of objects of Cw,H , and let
D(Cw,H ) be the corresponding derived category. By Lemma 19.22, the forgetful
functor D(Cw,H )→ D(C) admits a right adjoint given by X• �→ act∗(X•).

For X•1, X•2 ∈ D(Cw,H ), we define a contravariant cohomological functor
RHomD(C)(X

•
1, X

•
2) on D(Rep(H)) by

V • �→ HomD(Cw,H )(V
• ∗X•1, X•2).

It is easy to see that this functor is representable.

Lemma 20.6. Assume thatX•1 is quasi-perfect andX•2 ∈ D+(Cw,H ). Then the image
of RHomD(C)(X

•
1, X

•
2) under the forgetful functorD(Rep(H))→ D(Vect) is quasi-

isomorphic to RHomD(C)(X•1, X•2).

The proof repeats that of Lemma 20.4.

20.7 Infinitesimally trivial actions

Let H(i) be the ith infinitesimal neighborhood of 1 in H , so that H(0) = 1 and
H(1) = Spec(C ⊕ ε · h∗), where ε2 = 0. Note that if H weakly acts on C, the
restriction to H(1) yields for every object X ∈ C a short exact sequence in C.

0 → h∗ ⊗X→ X(1) → X→ 0,

where X(1) := act∗(X)|H(1) .
We will say that the action ofH on C is infinitesimally trivial, or of Harish-Chandra

type if we are given a functorial isomorphism

act∗(X)|H(1) ' p∗(X)|H(1) , (20.3)

such that two compatibility condition (see below) are satisfied.
The first condition is that the isomorphism (20.3) respects the identification of

the restrictions of both sides to 1 ∈ H with X. (In view of this condition, the data of
(20.3) amounts to a functorial splitting X→ X(1).)

To formulate the second condition, consider the map of schemes

(h, h1)
Ad�→ Adh(h1) : H ×H(1) → H(1).

From (20.1) and (20.3) we obtain two a priori different identifications

Ad∗(X(1))⇒ OH×H(1) ⊗X ∈ QCohH×H(1) ⊗ C.

Our condition is that these two identifications coincide.
Here are some typical examples of Harish-Chandra actions:
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(1) Let Y be an ind-scheme of ind-finite type acted on by H . Then the category
D(Y)-mod carries an H -action of Harish-Chandra type.

(2) Let A be a topological associative algebra, acted on by H , and assume that the
derived action of h on A is inner, i.e., comes from a continuous map h → A.
Then the action of H on A-mod is of Harish-Chandra type.

Now letX be an object of Cw,H . Note that in this case we have two identifications
between act∗(X)|H(1) and p∗(X)|H(1) . Their difference is a map

a� : X �→ h∗ ⊗X,
compatible with the cobracket on h∗, i.e., an action of h on X; see Section 19.1. We
will call this map “the obstruction to strong equivariance.’’

We will say that an object X ∈ Cw,H is strongly H -equivariant (or simply H -
equivariant) if the map a� is zero. Strongly equivariant objects form a full subcategory
in Cw,H , which we will denote by CH .

Let us consider the example where C = D(Y)-mod, whereX is an ind-scheme of
ind-finite type acted on byH . Then D(Y)-modw,H is the usual category of weaklyH -
equivariant D-modules, and D(Y)-modH is the category of strongly H -equivariant
D-modules.

More generally, if C = A-mod, where A is a topological associative algebra,
acted on by H , then A-modw,H consists of A-modules endowed with an algebraic
action of H , compatible with the action of H on A. If the action of H on A is of
Harish-Chandra type, and X ∈ A-modw,H , the map a� : X → h∗ ⊗ X corresponds
to the difference of the two actions of h on X.

20.8

Let C(CH ) denote the DG category of complexes of objects of CH , and D(CH ) the
corresponding derived category. We have a natural functor D(CH ) → D(C), but
in general it does not behave well. Following Beilinson, we will now introduce the
“correct’’ triangulated category, along with its DG model, that corresponds to strongly
H -equivariant objects of C.

Let C(C)H be the category whose objects are complexes X• of objects of Cw,H ,
endowed with a map of complexes

i� : X• → h∗[−1] ∗X•,
such that the following conditions are satisfied:

• i� is a map in Cw,H .
• The iteration of i�, viewed as a map X• → �2(h∗)[−2] ∗X•, vanishes.
• The map [d, i�] : X• → h∗ ∗X• equals the map a�.

For two objects X•1 and X•2 of C(C)H we define HomkC(C)H (X
•
1, X

•
2) to be the

subcomplex of HomkC(Cw,H )(X
•
1, X

•
2) consisting of graded maps X•1 → X•2[k] that

preserve the data of i�. This defines on C(C)H a structure of DG-category.
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Note that the usual cohomology functor defines a cohomological functor C(C)H →
CH . We will denote by D(C)H the resulting localized triangulated category, which
henceforth we will refer to as the “H -equivariant derived category of C.’’

By construction, the truncation functors τ<0, τ>0 are well defined at the level
of C(C)H . So objects of the subcategoryDb(C)H (respectively,D+(C)H ,D−(C)H )
can be realized by complexes in C(C)H that are concentrated in finitely many coho-
mological degrees (respectively, cohomological degrees * −∞, �∞).

20.9 Examples

First, take C to be Vect, in which case Cw,H identifies with the category Rep(H), and
CH is the same as Rep(H/H 0), where H 0 ⊂ H is the connected component of the
identity of H .

We will denote the resulting DG category by C(pt /H) and the triangulated cat-
egory by D(pt /H). Note that C(pt /H) is the standard, i.e., Cartan, DG-model for
the H -equivariant derived category of the point-scheme.

Consider the de Rham complex on H , denoted DRH . The multiplication on
H endows DRH with a structure of a DG coalgebra. The category C(pt /H) is
tautologically the same as the category of DG comodules over DRH . In particular,
DRH itself is naturally an object of C(pt /(H ×H)).

More generally, let C be D(Y)-mod for Y as above. In this case C(D(Y)-mod)H is
the DG-model for the H -equivariant derived category on Y studied in [BD1], where
it is shown that the corresponding equivariant derived category is equivalent to the
category of [BL].

20.10 Averaging

Note that for any C with an infinitesimally trivial action ofH we have a natural tensor
product functor

V •, X• �→ V • ∗X• : C(pt /H)× C(C)H → C(C)H ,

which extends to a functor D(pt /H)×D(C)H → D(C)H .
We have a tautological forgetful functor C(C)H → C(Cw,H ), and we claim that

it admits a natural right adjoint, described as follows.
We will regardX• ∈ C(Cw,H ) as a complex of objects of C, acted on by h via a�,

and we can form the standard complex

C(h, X•) := �•(h∗) ∗X•

(see Section 19.17). It is naturally an object of C(Cw,H ). The action of the annihilation
operators defines on C(h, X•) the structure of an object in C(C)H .

The resulting functor C(Cw,H )→ C(C)H is exact when restricted to C+(Cw,H ),
and the corresponding functor D+(C)H → D+(Cw,H ) is the right adjoint to the
tautological forgetful functor, by Lemma 19.22.
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We will denote the composed functor

C(C)
AvwH−→ C(Cw,H )→ C(C)H

(and the corresponding functorD+(C)→ D+(C)H ) by AvH . This functor is the right
adjoint to the forgetful functor C(C)H → C(C) (respectively, D(C)H → D(C)).

Let us consider two examples:

(1) For C = Vect, we have AvH (C) ' DRH ∈ C(pt /H).
(2) Let C = D(Y)-mod, where Y is an ind-scheme of ind-finite type, acted on by

H . The resulting functor at the level of derived categories D+(D(Y)-mod) →
D+(D(Y)-mod)H is the corresponding *-averaging functor:

F �→ p∗ ◦ act!(F),

where p and act are the two maps H × Y → Y.

20.11 The unipotent case

Assume now thatH is connected. We claim that in this case CH is a full subcategory
of C. Indeed, for a C-morphism φ : X1 → X2 between objects of CH , in the diagram

act∗(X1)
act∗(φ)−−−−→ act∗(X2)

∼
0⏐⏐ ∼

0⏐⏐
OH ⊗X1 −−−−→ OH ⊗X2

the bottom arrow is necessarily of the form id ⊗ φ′, since its derivative along H is
0, as follows from the condition that a�|X1 = a�|X2 = 0. Then the unit constraint
forces φ′ = φ.

ForH connected let us denote byD(C)CH the full subcategory ofD(C) consisting
of objects whose cohomologies belong to CH .

Proposition 20.12. Suppose that the group scheme H is pro-unipotent. Then the
functorD+(C)H → D+(C) is fully faithful, and it induces an equivalenceD+(C)H '
D+(C)CH .

Proof. Since AvH : D+(C)→ D+(C)H is the right adjoint to the functor in question,
to prove fully faithfulness it suffices to show that the adjunction map gives rise to an
isomorphism between the composition

D+(C)H → D+(C) AvH→ D+(C)H

and the identity functor.
For X• ∈ C+(C)H , the object AvH (X•) is isomorphic to the tensor product of

complexes
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DRH ∗X•,
and the adjunction map in question corresponds to the natural map C → DRH . The
latter is a quasi-isomorphism since H was assumed pro-unipotent.

It remains to show that D+(C)H maps essentially surjectively onto D+(C)CH .
For that it is sufficient to show that for X• ∈ D+(C)CH , the second adjunction map
AvH (X•)→ X• is a quasi-isomorphism.

By devissage, we can assume that X• is concentrated in one cohomological di-
mension. However, such an object is quasi-isomorphic (up to a shift) to an object
from CH , which makes the assertion manifest. )�

20.13 Equivariant cohomology

For X•1, X•2 ∈ C(C)H we define a contravariant functor

HomC(X
•
1, X

•
2) : C(pt /H)→ C(Vect)

by
V • �→ HomC(C)H (V

• ∗X•1, X•2).
This functor is easily seen to be representable. When X•1 is bounded from above

and consists of objects that are finitely generated, the forgetful functor C(C)H →
C(Vect) maps HomC(X

•
1, X

•
2) to HomC(C)(X

•
1, X

•
2).

Similarly, for X•1 ∈, X•2 ∈ D(C)H the cohomological functor

V • �→ RHomD(C)H (V
• ∗X•1, X•2)

is representable by some RHomD(C)(X
•
1, X

•
2) ∈ D+(C)H . We have the following

assertion, whose proof repeats that of Lemma 20.4.

Lemma 20.14. If X•1 is quasi-perfect as an object of D(C) and X•2 is bounded from
below, then the forgetful functorD+(pt /H)→ D+(Vect)maps RHomD(C)(X

•
1, X

•
2)

to RHomD(C)(X•1, X•2).

The last lemma gives rise to the Leray spectral sequence that expresses Exts in
the H -equivariant derived category as equivariant cohomology with coefficients in
usual Exts.

We will now recall an explicit way of computing Exts in the categoryD(pt /H),
in a slightly more general framework. For what follows we will make the following
additional assumption on H (satisfied in the examples of interest):

We will assume that the group scheme H is such that its unipotent radical Hu is
of finite codimension in H . We will fix a splitting H/Hu =: Hred → H .

Let C be an abelian category with the trivial action of H . We will denote the
resulting equivariant DG category by C(pt /H ⊗ C). It consists of complexes of
objects of C, endowed with an algebraic OH -action, and an action of h[1], satisfying
the usual axioms.
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Consider the functor X• �→ HomC(pt /H)(C, X
•) : C(pt /H ⊗ C) → C(C),

given by
X• �→ (X•)H,h[1].

Consider the corresponding derived functor

RHomD(pt /H)(C, ?) : D(pt /H ⊗ C)→ D(C).

Let us show how to compute it explicitly.
LetBH • (respectively,EH •) be the standard simplicial model for the classifying

space of H (respectively, the principal H -bundle over it). Let us denote by DREH •
the de Rham complex of EH •. The action ofH on EH • makes DREH • a comodule
over DRH , i.e., an object of C(pt /H). Since EH • is contractible, DREH • is quasi-
isomorphic to C.

Lemma 20.15. For X• ∈ C(pt /H ⊗ C), there is a natural quasi-isomorphism

HomC(pt /H)(C,DREH • ∗X•) ' RHomD(pt /H)(C, X
•).

Proof. We only have to check that whenever X• ∈ C(pt /H ⊗ C) is acyclic, then

(DREH • ∗X•)H,h[1]

is acyclic as well.
Note that the rows of the corresponding bicomplex are isomorphic to

(DRHn ∗X•)H,h[1] ' DRHn−1 ⊗X•.
In particular, they are acyclic if X• is. In other words, we have to show that the
corresponding spectral sequence is convergent.

Consider the maps DRHn → DRHnred
, corresponding to the splitting Hred → H .

They induce a quasi-isomorphism

(DREH • ∗X•)H,h[1] → (DREH •
red
∗X•)Hred,hred[1].

This reduces us to the case whenH is finite-dimensional, for which the convergence
of the spectral sequence is evident. )�

As a corollary, we obtain that the functor RHomD(pt /H)(C, ?) commutes
with direct sums. We will sometimes denote the functor RHomD(pt /H)(C, ?) by
H •

DR(pt /H, ?).

20.16 Harish-Chandra modules

Let g be a Tate Lie algebra, acted on by H by endomorphisms, and equipped with a
homomorphism h → g, so that (g, H) is a Harish-Chandra pair. Then the category
g-mod is a category with an infinitesimally trivial action of H .
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The abelian category g-modH is the same as (g, H)-mod, i.e., the category of
Harish-Chandra modules. For M• ∈ C(g-mod)H we will denote by x �→ a(x) the
action of g onM• and for x ∈ h, by a-(x) the action obtained by deriving the algebraic
H -action onM•. (Then, of course, a�(x) = a-(x)− a(x) = [d, i�(x)]).

Let D(g-mod)H be the corresponding derived category, and D((g, H)-mod) be
the naive derived category of the abelian category (g, H)-mod.

Proposition 20.17. Assume that g is finite-dimensional. Then the evident functor
D(g, H)-mod → D(g-mod)H is an equivalence.

Proof. We will construct a functor � : C(g-mod)H → C((g, H)-mod) that would
be the quasi-inverse of the tautological embedding at the level of derived categories.

ForM• ∈ C(g-mod) consider the tensor product

U(g)⊗�•(g)⊗M• (20.4)

with the standard differential, where U(g) is the universal enveloping algebra.
Assume now thatM• is, in fact, an object of C(g-mod)H . Consider an action io

of h[1] on (20.4), given by by io(x) ·(u⊗ω⊗m) = u⊗ω∧x⊗m+u⊗ω⊗ i�(x) ·m.
Consider also an h-action Lieo, given by

Lieox ·(u⊗ ω ⊗m) = −u · x ⊗ ω ⊗m+ u⊗ adx(ω)⊗m+ u⊗ ω ⊗ a-(x)(m).
We have the usual relation [d, io(x)] = Lieox , and set

�(M•) := (U(g)⊗�•(g)⊗M•)h,h[1] ' U(g) ⊗
U(h)

(�•(g) ⊗
�•(h)

M•).

This is a complex of g-modules via the g-action by the left multiplication onU(g),
Moreover, we claim that the action of h ⊂ g on �(M•) integrates to an H -action.
This follows from the fact that the a--action of h on M• is integrable, and that the
adjoint of h on g is integrable. Therefore, �(M•) is an object of C((g, H)-mod).

It is easy to see that � : C(g-mod)H → C((g, H)-mod) is exact, and hence it
gives rise to a functor at the level of derived categories.

Note that for anyM• ∈ C(g-mod)H we have the natural maps

M• ← U(g)⊗�•(g)⊗M• → �(M•),

both being quasi-isomorphisms. This implies the statement of the proposition. )�

20.18 Relative BRST complex

Assume now thatH is such that the adjoint action of h on Cliff(g, g∗) can be lifted to an
algebraic action of H on Spin(g). In particular, the canonical extension g−can splits
over h, and the category g−can-mod also acquires an infinitesimally trivial H -action.

For an object M• ∈ C(g−can-mod)H , consider the complex C
∞
2 (g,M•), asso-

ciated with the corresponding bicomplex. We claim that it is naturally an object of
C(pt /H):
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As a complex of vector spaces, it carries the diagonal action of the group schemeH
(we will denote the action of its Lie algebra by Lie-) and an action, denoted i-, of�•(h)
defined as i|h+i�. Let us show how to computeH •

DR(pt /H,C
∞
2 (g,M•)) ∈ D(Vect)

(see Section 20.13).
ForM• as above, let us denote by C

∞
2 (g;Hred,M

•) (respectively, C
∞
2 (g;H,M•)

the subcomplex of C
∞
2 (g,M•), equal to (C

∞
2 (g,M•))Hred,hred[1] (respectively,

(C
∞
2 (g,M•))H,h[1]).

Lemma 20.19.

(1) The complexH •
DR(pt /H,C

∞
2 (g,M•)) is quasi-isomorphic to C

∞
2 (g;Hred,M

•).
(2) If eachMi as above is injective as an Hu-module, then the embedding

C
∞
2 (g;H,M•) ↪→ C

∞
2 (g;Hred,M

•)

is a quasi-isomorphism.

Proof. First, by Section 20.13, we can assume that M• is bounded from below.
Secondly, arguing as in Proposition 20.12, we can replace the original complex M•
by one which consists of modules that are injective over Hu (and hence over H).

Hence, it is sufficient to check that in this case

H •
DR

(
pt /H,C

∞
2 (g,M•)

)
← C

∞
2 (g;H,M•)→ C

∞
2 (g;Hred,M

•)

are quasi-isomorphisms.
Consider C

∞
2 (g,M•) as a module over the Clifford algebra Cliff(h), where the

annihilation operators act by i∗, and the creation operators act by means of i-. We
obtain that

C
∞
2 (g,M•) ' C(h,M•

1 ),

for some complexM•
1 of H -modules, which, moreover, consist of injective objects.

Thus we have reduced the original problem to the case when g = h. In this case,
by Lemmas 19.19 and 20.14,

H •
DR

(
pt /H,C(h,M•)

) ' RHomD(H -mod)(C,M
•),

which is quasi-isomorphic to

C(h;H,M•) ' M•,

ifM• consists of injective H -modules.
Moreover, by the Hochshild–Serre spectral sequence,

RHomD(H -mod)(C,M
•) ' (RHomD(Hu-mod)(C,M

•)
)Hred ' C(h;Hred,M

•). )�
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20.20 Variant: Equivariance against a character

Now let ψ be a homomorphism H → Ga ; we will denote by the same character the
resulting character on h. For a category C as above, we introduce the category CH,ψ

to be the full subcategory of Cw,H consisting of objects for which the map a- is given
by the character ψ .

Let us consider the example when C = D(Y)-mod. Let eψ be the pull-back of
the Artin–Schreier D-module on Ga under ψ . Its fiber at 1 ∈ H is trivialized and it
is a character sheaf in the sense that we have a canonical isomorphism mult∗(eψ) '
eψ � eψ , which is associative in the natural sense.

The category D(Y)-modH,ψ consists of D-modules F on Y, endowed with an
isomorphism act∗(F) ' eψ � F ∈ D(H × Y)-mod, satisfying the associativity and
unit conditions.

Returning to the general situation, we introduce the category C(C)H,ψ in the same
way as C(C)H with the only difference that we require that [d, i�] = a�+ψ . This is
a DG-category with a cohomological functor to CH,ψ . We will denote by D(C)H,ψ

the resulting triangulated category.
Much of the discussion about C(C)H carries over to this situation. For example,

we have the averaging functor AvH,ψ : C(C) → C(C)H,ψ , right adjoint to the
forgetful functor. It is constructed as the composition of AvwH and the functor

X• �→ C(h, X• ⊗ Cψ) : C(Cw,H )→ C(C)H,ψ ,

where Cψ is the 1-dimensional representation of h corresponding to the character ψ .
When H is pro-unipotent, one shows in the same way as above that the functor

D+(C)H,ψ → D+(C) is an equivalence onto the full subcategory consisting of
objects whose cohomologies belong to CH,ψ .

21 D-modules on group ind-schemes

21.1

Let G be an affine reasonable group ind-scheme, as in [BD1]. In particular, its Lie
algebra g is a Tate vector space. We will denote by OG the topological commutative
algebra of functions on G.

The multiplication on G defines a map  G : OG → OG
!⊗OG. We will denote

by Liel and Lier the two maps

g
∗⊗OG → OG,

corresponding to the action of G on itself by left (respectively, right) translations.
In addition, we have the maps

 g : g → OG
!⊗ g, g∗ : g∗ → OG

!⊗ g∗
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that correspond to the adjoint and coadjoint actions of G on g and g∗, respectively.
Let us denote byT (G) (respectively, T ∗(G)) the topological OG-module of vector

fields (respectively, 1-forms) on G. It identifies in two ways with OG
!⊗ g (respec-

tively, OG
!⊗ g∗), corresponding to the realization of g (respectively, g∗) as right or

left invariant vector fields (respectively, 1-forms). Note that T (G) is a topological
Lie algebra and T ∗(G) is a module over it.

21.2

Following [AG1], we introduce the category ofD-modules onG, denoted D(G)-mod,
as follows:

Its objects are (discrete) vector spaces M, endowed with an action

O
→⊗M ' O

∗⊗M
m→ M

and a Lie algebra action

al : g
→⊗M ' g

∗⊗M → M,

such that the two pieces of data are compatible in the sense of the action of g on OG
by left translations in the following sense:

We need that the difference of the two arrows:

g
∗⊗OG

∗⊗M
idG⊗m−→ g

∗⊗M
al→ M

and

g
∗⊗OG

∗⊗M ' OG
∗⊗ g

∗⊗M
idOG

⊗al−→ OG
∗⊗M

m→ M

equals

g
∗⊗OG

∗⊗M
Liel−→ OG

∗⊗M
m→ M.

Morphisms in D(G)-mod are maps of vector spaces M1 → M2 that commute
with the actions of g and OG.

21.3 Action of the Tate canonical extension

Following Beilinson, we will show now that if M is an object of D(G)-mod, then
the underlying vector space carries a canonical action of g−can, denoted ar , which
commutes with the original action of g, and which is compatible with the action of
OG via the action of g on OG by right translations.

Set MDR = M⊗ Spin(g). Let us denote by ir and i∗r the actions on it of �•(g)
and �•(g∗), both of which are subalgebras of Cliff(g, g∗).

From the definition of D(G)-mod it follows that ir and i∗r on M extend to actions

of the odd topological vector spaces T (G) and T ∗(G), identified with OG
!⊗ g and
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OG
!⊗ g∗ using left-invariant vector fields and forms, respectively. We will denote

the resulting actions simply by i and i∗.
Using the map

g
− g−→ OG

!⊗ g
γ⊗idg−→ OG

!⊗ g, (21.1)

(here γ is the inversion onG), we obtain a new action il of�•(g) on MDR . Similarly,
we have a new action i∗l of �•(g∗) on MDR . Altogether, we obtain a new action of
the Clifford algebra Cliff(g, g∗) on MDR .

We will denote by the symbol Liel the action of g on MDR coming from the action
al of g on M. We claim that this action extends to an action of the Lie algebra T (G),
denoted simply by Lie.

First we define an action of the noncompleted tensor product OG ⊗ g on MDR .
Namely, for x ∈ g, f ∈ OG and v ∈ M, we set

(f ⊗ x) · v = f · Liel (x) · v + i∗l (df ) · il(x) · v. (21.2)

Note that

f · Liel (x) · v + i∗l (df ) · il(x) · v = Liel (x) · f · v + il(x) · i∗l (df ) · v.

This property implies that the above action ofOG⊗g extends to the action ofOG
!⊗ g '

T (G). Indeed, when x is contained in a deep enough neighborhood of zero, then both
Liel(x) and il(x) annihilate any given v ∈ M. Similarly, if f is contained in a deep
neighborhood of zero, then v is annihilated by both f and i∗l (df ).

One readily checks that the above action is compatible with the Lie algebra struc-

ture on T (G). In particular, using the map − g : g → OG
!⊗ g, i.e., the embedding

of g into T (G) as left-invariant vector fields, we obtain a new action of the Lie algebra
g on M. We will denote this action by Lier .

We have

• [Lier (x), il(y)] = 0, [Lier (x), i∗l (y∗)] = 0 for x, y ∈ g, y∗ ∈ g∗.
• [Lier (x), ir (y)] = ir ([x, y]), [Lier (x), i∗r (y∗)] = i∗r (adx(y∗)),
• [Lier (x), f ] = Lier(x)(f ) for f ∈ OG.
• [Lier (x), al(y)] = 0.

Finally, we are ready to define the action ar of g−can on MDR . Namely, ar is the
difference of Lier and the canonical gcan-action on Spin(g).

It is easy to see that ar is indeed an action. Moreover,

• [ar(x′), f ] = Lier(x)(f ), for x′ ∈ g−can and its image x ∈ g,
• [ar(x′), al(y)] = 0,
• [ar(x′), ir (y)] = 0, [ar(x′), ir (y∗)] = 0.

The last property implies that the ar -action of g−can on MDR preserves the sub-
space M; i.e., we obtain an action of g−can on M that satisfies the desired commutation
properties.
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When we view M ∈ D(G)-mod as a g−can-module via ar , we obtain that MDR

is identified with C
∞
2 (g,M), where i = ir , i∗ = i∗r , Lie = Lier . In particular, MDR

acquires a natural differential d .
From the above commutation properties, it follows that this differential satisfies

• [d, i(ξ)] = Lie(ξ) for ξ ∈ T (G),
• [d, f ] = i∗(df ) for f ∈ OG.

Of course, MDR depends on the choice of the Clifford module Spin(g).

21.4

Note that the above construction can be inverted: we can introduce the category
D(G)-mod to consist of (OG, g−can)-modules, where the two actions are compatible
in the sense of the g−can-action on OG via right translations. In this case, the vec-
tor space underlying a representation automatically acquires an action of g, which
commutes with the g−can-action and is compatible with the action of OG via left
translations.

Let us also note that in the definition of D(G)-mod we could interchange the roles
of left and right:

Let us call the category introduced above D(G)l-mod, and let us define the cat-
egory D(G)r -mod to consist of (OG, g)-modules, where the two actions are com-
patible via the action of g on OG by right translations. We claim that the categories
D(G)l-mod and D(G)r -mod are equivalent, but this equivalence does not respect the
forgetful functor to vector spaces.

This equivalence is defined as follows. For Ml ∈ D(G)l-mod, the actions il , i∗l
define a new action of Cliff(g, g∗) on MDR . We define an object of Mr ∈ D(G)r -mod
by HomCliff(g,g∗)(Spin(g),MDR) with respect to this new action.

Explicitly, this can be reformulated as follows. Let Gcan be the canonical (i.e.,
Tate) central extension of G. It can be viewed as a line bundle Pcan over G, whose
fiber at a given point g ∈ G is the relative determinant line det(g,Adg(g)). The
action of g on G be left (respectively, right) translations extends to an action of gcan
(respectively, g−can) on Pcan.

Then
Mr ' Ml ⊗

OG
P−1

can,

as OG-modules, respecting both the al and ar actions.
In what follows, unless stated otherwise, we will think of D(G)-mod in the

D(G)l-mod realization.

21.5

Let H be a group scheme, mapping to G. We claim that the category D(G)-mod
carries a natural infinitesimally trivial action of H , corresponding to the action of
H on G by left translations. (As we shall see later, this is a part of a more general
structure, the latter being an action of the group ind-scheme G×G on D(G)-mod).
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For M ∈ D(G)-mod we set act∗l (M) to be isomorphic to OH ⊗ M as an OH -
module. The action of OG is given via

OG
 G→ OG

!⊗OG
γ⊗id−→ OH

!⊗OG.

The action al of g is given via the map

g
 g→ OG

!⊗ g
γ⊗id−→ OG

!⊗ g → OH
!⊗ g,

where OH
!⊗ g acts on OH ⊗M by id ⊗m.

To construct the isomorphism act∗(M)|H(1) ' p∗(M)|H(1) we identify both sides
with M⊕ ε · h∗ ⊗M as vector spaces, and the required isomorphism is given by the
action of h on M, obtained by restriction from al .

Note that by construction, the action of g−can on act∗l (M) ' OH ⊗M is via its
action on the second multiple.

Now let H ′ be another group scheme mapping to G, and let us assume that
there exists a splitting h′ → gcan. In this case, we claim that there exists another
infinitesimally trivial action of H ′ on D(G)-mod, corresponding to the action of H
on G by right translations:

For M ∈ D(G)-mod, we define act∗r (M) to be isomorphic to M ⊗ OH ′ as an
OH ′ -module and as a g-module. The action of OG is given by the comultiplication

map OG → OG
!⊗OH ′ . It is easy to see that the commutation relation is satisfied.

The associativity and unit constraint are evident.
To construct the isomorphism act∗r (M)|H ′(1) ' p∗(M)|H ′(1) , note that both sides

are identified with M⊕ ε ·h′∗ ⊗M as g-modules. The required isomorphism is given
by the action of h′ on M, obtained by restriction from ar . Again, it is easy to see that
the axioms of Harish-Chandra action hold.

Let us note that the action ar of g−can on act∗r (M) ' M⊗OH ′ is given via the map

g−can
 g−→ g−can

!⊗OG → g−can
!⊗OH ′ .

Let us denote byD(G)-modl(H) (respectively, D(G)-modr(H
′)) the corresponding

categories of strongly equivariant objects of D(G)-mod. Moreover, it is easy to see
that the actions of H and H ′ commute in the natural sense, i.e., we have an action of
H×H ′ on D(G)-mod. We will denote the resulting category by D(G)-modl(H),r(H

′).

21.6

Now let K ⊂ G be a group subscheme such that the quotient G/K exists as a strict
ind-scheme of ind-finite type (in this case it is formally smooth). We will call such a
K “open compact.’’

We will choose a particular model for the module Spin(g), denoted Spin(g, k)
by letting it be generated by a vector 1 ∈ Spin(g), annihilated by k ⊕ (g/k)∗ ⊂
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g⊕ g∗ ⊂ Cliff(g, g∗). This Spin(g, k) carries a natural action ofK , which gives rise
to a splitting of Gcan over K .

By the assumption on G/K , it makes sense to consider right D-modules on it;
we will denote this category by D(G/K)-mod.

Proposition 21.7. We have a canonical equivalenceD(G)-modr(K) ' D(G/K)-mod.

Proof. Let π denote the projection G → G/K . For F ∈ D(G/K)-mod, consider
the OG-module M := (G, π∗(F)).

For x ∈ g, the (negative of the) corresponding vector field acting on F gives rise
to a map al(x) : M → M, as a vector space, and these data satisfy the conditions for
M to be a D(G)-module.

We claim that the action of the Lie algebra k ⊂ g−can on M, given by ar , coincides
with the natural action of k on π∗(F) obtained by deriving the group action. This
would imply that M is naturally an object of D(G)-modr(K).

To prove the assertion, we can assume that F is an extension of a D-module on
an affine ind-subscheme of G/K . Then it is sufficient to check that the subspace
(G/K,F) ⊂ M ⊂ MDR is annihilated by the operators Lier(x) for x ∈ k. But this
is straightforward from the construction.

Vice versa, let M be an object of D(G)-modr(K), which we identify with the cor-
responding quasi-coherent sheaf on G. Consider the complex of sheaves π∗(MDR)

on G/K; it carries an action of the operators ir (x), Lier(x), x ∈ g. We set FDR to be
the subcomplex of π∗(MDR) annihilated by the above operators for x ∈ k.

Set F to be the degree 0 part of FDR; it is easy to see that F ' (π∗(M))K . The
degree −1 part of FDR is identified with F ⊗

O(G/K)
T (G/K), and the differential

d : (FDR)−1 → (FDR)0

defines on F a structure of a right D-module. Moreover, the entire complex FDR is
identified with the de Rham complex of F. )�

Let δK,G be the object of D(G)-modr(K) corresponding to the delta-function
δ1,G/K under the equivalence of categories of Proposition 21.7. It can be constructed
as Indg

k (OK) as a module over g and OG. As a module over g−can it is also isomorphic
to Indg−can

k (OK).

More generally, let L be an object of QCoh!G/K . Let Ind
DG/K

OG/K
(L) be the induced

D-module. The corresponding object of D(G)-modr(K), i.e.,(G, π∗(Ind
DG/K

OG/K
(L)))

can be described as follows:
Consider the OG-module (G, π∗(L)); it is acted on naturally by K . Consider

the g−can-module Indg−can
k ((G, π∗(L))). It is naturally acted on by OG, so that the

actions of g−can and OG satisfy the commutation relation with respect to the right
action of G on itself. Hence, Indg−can

k ((G, π∗(L))) is an object of D(G)-modr(K)

and we have a natural isomorphism:


(
G,π∗

(
Ind

DG/K

OG/K
(L)
))

' Indg−can
k

(
(G, π∗(L))

)
. (21.3)
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21.8 The bi-equivariant situation

Now letK1,K2 be two “open compact’’ subgroups ofG. Note that we have a natural
equivalence of categories

D(G/K1)-modK2 → D(G/K2)-modK1 : F �→ Fop, (21.4)

defined as follows.
Assume, without loss of generality, that F is supported on a closed K2-invariant

subscheme Y ∈ G/K1, and let Yop be the corresponding K1-invariant subscheme in
K2\G. We can find a normal “open compact’’ subgroup K ′

2 ⊂ K2 such that if we
denote by Y′op the preimage of Yop in K ′

2\G, the projection

π1 : Y′op → Y

is well defined (and makes Y′op a torsor with respect to the corresponding smooth
group scheme over Y).

Considerπ !1(F). This is aD-module on Y′op, equivariant with respect to the action
of the group (K2/K

′
2)×K1 on this scheme. Hence, it gives rise to aK1-equivariantD-

module onK2\G. To obtain Fop we apply the involution g �→ g−1 : K2\G→ G/K2.
Let us now describe what this equivalence looks like in terms of the equivalences

D(G/K1)-modK2 ' D(G)-modl(K2),r(K1)

and

D(G/K2)-modK1 ' D(G)-modl(K1),r(K2).

First, the inversion on G defines an equivalence

D(G)l-modl(K2),r(K1) ' D(G)r -modl(K2),r(K1),

and the sought-for equivalence is obtained from the one above via

D(G)r -modl(K2),r(K1) ' D(G)l-modl(K2),r(K1).

(The determinant line that played a role in the D(G)r -mod ' D(G)l-mod equivalence
appears also in (21.4), when we descend right D-modules from Y′op to Yop.)

21.9

Now consider the DG-category C(D(G)-mod)r(K); we claim that the construction in
Proposition 21.7 generalizes to a functor C(D(G)-mod)r(K) → C(D(G/K)-mod).

Indeed, for M• ∈ C(D(G)-mod)r(K) let us denote by (M•)DR the total complex
of the corresponding bicomplex. We have several actions of�•(k) on it; let i-r be the
sum of the one given by restricting the ir -action of g and i�. In addition, (M•)DR
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carries a natural action of K . These two structures combine to that of an object
of C(pt /K).

Consider again the complex of sheaves π∗((M•)DR) onG/K . It carries an action
of �•(k) coming from i-r and an action of the group scheme K . Define

(F•)DR := HomC(pt /K)

(
C, π∗((M•)DR)

)
.

This is an 	•G/K -module on in the terminology of [BD1].

Finally, we consider the functor C(D(G)-mod)r(K) → C(D(G/K)-mod)given by

M• �→ IndD(G/K)
OG/K

(
(F•)DR

)
∈ C(D(G/K)),

where IndD(G/K)
OG/K

is the induction functor from 	•G/K -modules to D-modules on
G/K; see [BD1, Section 7.11.12].

Lemma 21.10. The resulting functor

M• �→ IndD(G/K)
OG/K

(
(F•)DR

)
: C(D(G)-mod)r(K) → C(D(G/K)-mod)

is exact.

Proof. This follows from the fact that the functor

M• �→ (F•)DR,

viewed as a functor from C(D(G)-mod)r(K) to the DG category of (non-quasi-
coherent) sheaves on G/K is exact. )�

Thus we obtain a well-defined functorD(D(G)-mod)r(K) → D(D(G/K)-mod).

Proposition 21.11. The above functor D(D(G)-mod)r(K) → D(D(G/K)-mod) is
an equivalence. Its quasi-inverse is given by

D(D(G/K)-mod)→ D(D(G)-modr(K))→ D(D(G)-mod)r(K).

As a corollary, we obtain that in this case the evident functorD(D(G)-modr(K))→
D(D(G/K)-mod) is an equivalence.

Proof. The functor

F• �→ (G, π∗(F•)) =: M• �→ IndD(G/K)
OG/K

(
HomC(pt /K)

(
C, π∗((M•)DR)

))
is isomorphic to the composition

C(D(G/K)-mod)
DR−→ 	•G/K -mod

IndD(G/K)
OG/K−→ C(D(G/K)-mod),
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and hence, on the derived level, it induces a functor isomorphic to the identity.
Vice versa, for M• ∈ C(D(G)-modr(K)) we have a natural map

π∗
(

IndD(G/K)
OG/K

(
HomC(pt /K)

(
C, π∗((M•)DR)

)))
→ M•, (21.5)

and we claim that it is a quasi-isomorphism. This follows from the fact that as a
complex of vector spaces, the LHS of (21.5) is naturally filtered, and the associated
graded is isomorphic to (

Sym(g/k)⊗�•(g/k))⊗M•,

where the first multiple has the Koszul differential. )�
We shall now establish the following.

Proposition 21.12. For M• ∈ D+(D(G)-mod)K and F• ∈ D+(D(G/K)-mod),
corresponding to each other under the equivalence of Proposition 21.11, we have a
canonical quasi-isomorphism

H •
DR(G/K,F

•) ' C
∞
2 (g;Kred,M

•).

Note that by Lemma 20.19(1),

C
∞
2 (g;Kred,M

•) ' H •
DR

(
pt /K, (M•)DR

)
.

Proof. We can assume that the complex M• is such that each Mi , as aK-equivariant
OG-module, is of the formπ∗(Li ), where Li is a quasi-coherent sheaf onG/K , which
is the direct image from an affine subscheme. Such an L is obviously loose in the sense
of [BD1], i.e., it has the property that the higher cohomologies Hi(G/K,L ⊗ L1)

vanish for any quasi-coherent sheaf L1 on G/K .
Hence, the de Rham cohomology of F• can be computed as (G/K, (F•)DR).

Note that the latter complex can be identified by definition with

C
∞
2 (g;K,M•).

Hence, the assertion of the proposition follows from Lemma 20.19(2). )�

21.13 Variant: Central extensions and twisting

Now let g′ be a central extension of g by means of C. We will denote by g′−can the
Baer sum of g−can and the Baer negative of g′.

We introduce the category D(G)′-mod to consist of (discrete) vector spaces M,
endowed with an action

OG
∗⊗M

m→ M

as before, and a Lie algebra action
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al : g′
∗⊗M → M,

(such that, of course, 1 ∈ C ⊂ g′ acts as an identity), and such that the two pieces of
data are compatible in same way as in the definition of D(G)-mod.

We claim that in this case, the vector space underlying an object M ∈ D(G)′-mod
carries a canonically defined action, denoted ar , of g′−can, which commutes with al ,
and which satisfies [ar(x′), f ] = Lier(x)(f ) for x′ ∈ g′−can and f ∈ OG.

We construct ar by the same method as in the case of g′ = g. Namely, we tensor

M by Spin(g), and show that it carries an action of T (G)′ := OG
!⊗ g′, from which

we produce the desired ar .
Note, however, that in this case M⊗ Spin(g) does not carry any differential.
Let us now assume that g′ is a scalar multiple of an extension induced by some

central extension ofG by means of Gm. LetK be an “open compact’’ subgroup ofK ,
and assume thatG′ splits overK . We can then consider the category D(G/K)′-mod
of twisted D-modules on G/K .

In this case we also have a well-defined category D(G)′-modK (along with its DG
and triangulated versions C(D(G)′-mod)K andD(D(G)′-mod)K ). Propositions 21.7
and 21.11 generalize to the twisted context in a straightforward way.

21.14 D-modules with coefficients in a category

Let C be an abelian category, satisfying assumption (*) of Section 19.5. Then it makes
sense to consider the category D(G)-mod⊗C, and all the results of the present section
carry over to this context.

In particular, for an “open compact’’ subgroup K ⊂ G we can consider the cate-
gory D(G/K)-mod⊗ C (see Section 19.14), and we have the analogues of Proposi-
tions 21.7 and 21.11.

22 Convolution

22.1 Action of group ind-schemes on categories

We will now generalize the contents of Sections 20.1 and 20.7 to the context of group
ind-schemes. Let G be an affine reasonable group ind-scheme as above. Let C be a
category satisfying assumption (*) of Section 19.5.

A weak action of G on a C is the data of a functor

act∗ : C → QCoh∗G ⊗ C,

and two functorial isomorphisms as in Section 20.1.
For X ∈ C and a scheme S mapping to G we obtain a functor

X �→ act∗(X)|S : C → QCohS ⊗ C.

The following assertion is proved as Lemma 20.2.
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Lemma 22.2. For any S → G, the functor X �→ act∗(X)|S is exact, and its image
consists of OS-flat objects.

LetG(1) be the first infinitesimal neighborhood of 1 ∈ G. This is a formal scheme
equal to Spf (C⊕ ε · g∗). If G acts on C and X ∈ C, we obtain an object

X(1) := act(X)|G(1) ∈ QCoh∗
G(1)

⊗ C.

We say that the action ofG on C is of Harish-Chandra type if we are given a func-
torial identification between X(1) and p∗(X)|G(1) , satisfying the same compatibility
conditions as in Section 20.7.

Now let g′ be a central extension of g by means of C. Let G′(1) be the formal
scheme Spf (C ⊕ ε · g′∗). It projects onto G(1) and contains Spec(C ⊕ ε · C) as a
closed subscheme.

We say that aG action on C is of twisted Harish-Chandra type relative to g′ if for
everyX ∈ C we have a functorial isomorphism between act∗(X)|G′(1) andp∗(X)|G′(1)
such that the induced map

act∗(X)|G′(1) |Spec(C⊕εC) ' X ⊕ ε ·X ' p∗(X)|G′(1) |Spec(C⊕εC),

is the automorphism

idX ⊕ ε · idX : X ⊕ ε ·X→ X ⊕ ε ·X,
and which satisfies the second compatibility as in the nontwisted case.

22.3 Example: g-modules

Let A be an associative topological algebra with an action of G (see Section 19.2).
Then the category A-mod carries a weak G-action.

If, in addition, we have a continuous map g′ → A that sends 1 ∈ C ⊂ g′ to

the identity in A such that the commutator map g
∗⊗A → A is the dual of the map

A → g∗
!⊗A, obtained by deriving the G-action, then the above action of G on

A-mod is of twisted Harish-Chandra type relative to g′.
We will consider some particular cases of this situation. The most basic example

is C = g′-mod:

Let M be a g′-module. We will denote by a the action map g′
∗⊗M → M and

by a∗ : M → g′∗
!⊗M its dual. For S → G, we set act∗S(M) to be isomorphic to

OS ⊗M as an OS-module. The g′-action on it is given via the map

g′
 g→ OG

!⊗ g′ → OS
!⊗ g′.

and the action of the latter on OS ⊗M by means of id ⊗m.
The restriction of act∗(M) to G′(1) identifies as a (C⊕ ε · g′∗)-module with the

free module
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M ⊕ ε · g′∗ !⊗M.
In terms of this identification, the g′-action is given by

x ⊗ (v1 + ε · v2) �→ a(x ⊗ v1)+ ε ·
(
(a ⊗ idg′∗)(ad∗(x)⊗ v1)+ a(x ⊗ v2)

)
,

where ad∗ is the map g′ → g′
!⊗ g′∗, adjoint to the bracket.

We construct an isomorphism betweenM(1) and

p∗(M)|G′(1) ' M ⊕ ε · g′∗ !⊗M
as g′-modules using the map

v1 + ε · v2 �→ v1 + ε · (a∗(v1)+ v2).

The category g′-mod is universal in the following sense. Let C be an abelian
category as above, endowed an action of G and a functor F : C → Vect, respecting
the action in the natural sense.

Assume that theG action on C is of Harish-Chandra type relative to g′. Then the
functor F naturally lifts to a functor C → g′-mod.

22.4 Example: D-modules on G

Now consider the category D(G)′-mod. We claim that it carries an action of G of
twisted Harish-Chandra type relative to g′, corresponding to the action ofG on itself
by left translations.

Let M be an object of D(G)′-mod, and S a scheme mapping to G. We define
act∗(M)|S to be isomorphic to OS ⊗M as an OS-module. The action of OG is given

via the comultiplication map OG
 G→ OG

!⊗OG → OS
!⊗OG. The action of al of g′

is also given via the map g′
 g→ OG

!⊗ g → OS
!⊗ g′.

Note that the action of g′−can on act∗(M)|S ' OS ⊗M is via the ar -action on the
second multiple.

The infinitesimal trivialization of this action is defined in the same way as for

g′-mod via the map a∗l : M → g′∗
!⊗M.

We will now define another action of G on D(G)′-mod, corresponding to the
action of G on itself by right translations. It will be of twisted Harish-Chandra type
relative to g′−can:

For M and S as above, we let act∗(M)|S again be isomorphic to M⊗OS as a OS-

module, and the OG-action be given via the comultiplication map OG → OG
!⊗OS .

The al-action of g′ is al ⊗ idOS . The resulting ar -action of g′−can is then given by the

map g′ → OG
!⊗ g′ → OS

!⊗ g′.
The infinitesimal trivialization of the right action is defined in the same way as

for the category g′−can-mod using the map a∗r : M → g′−can
∗ !⊗M.
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It is easy to see that the two actions of G on D(G)′-mod commute in the natural
sense. Thus we obtain an action of G × G on D(G)′-mod, which is of twisted
Harish-Chandra type relative to g⊕ g′−can.

22.5 The twisted product

Let C be a category equipped with an action of G of twisted Harish-Chandra type
with respect to g′. Let X be an object of C and M ∈ D(G)′-mod. We will define an
object M �̃X ∈ D(G)-mod⊗ C:

As an object of QCoh!G ⊗ C, it is isomorphic to

M ⊗
OG

act∗(X)

(see Section 19.14). The action of g′ on it is defined as follows.
Consider the ind-subschemeG(1)×G ⊂ G×G, and let p2 denote its projection

on the second multiple. Let k ⊂ g be a lattice and Spec(C⊕ ε ·k∗) the corresponding
subscheme of G(1).

We have to construct an isomorphism

mult∗
(

M ⊗
OG

act∗(X)
)
|Spec(C⊕ε·k∗)×G ' p∗2

(
M ⊗

OG
act∗(X)

)
|Spec(C⊕ε·k∗)×G

(22.1)
of objects of QCoh!Spec(C⊕ε·k∗)×G ⊗ C, compatible with the identification

mult∗
(

M ⊗
OG

act∗(X)
)
|1×G ' M ⊗

OG
act∗(X) ' p∗2

(
M ⊗

OG
act∗(X)

)
|1×G.

Let k′ be the preimage of k in g′, and let Spec(C ⊕ ε · k′∗) be the preimage of
Spec(C⊕ ε · k∗) in G′(1). We have an isomorphism

mult∗(M)|Spec(C⊕ε·k′∗)×G ' p∗2(M)|Spec(C⊕ε·k′∗)×G

in QCoh!Spec(C⊕ε·k′∗)×G ⊗ C, given by the al-action of g′ on M. We also have an
isomorphism

mult∗(act∗(X))|Spec(C⊕ε·k′∗)×G
' act∗(act∗(X))|Spec(C⊕ε·k′∗)×G ' p∗2(act∗(X))|Spec(C⊕ε·k′∗)×G

in QCoh∗Spec(C⊕ε·k′∗)×G ⊗ C where the first arrow is the associativity constraint for
the action, and second one is the infinitesimal trivialization.

Combining the two we obtain an isomorphism

mult∗
(

M ⊗
OG

act∗(X)
)
|Spec(C⊕ε·k′∗)×G ' p∗2

(
M ⊗

OG
act∗(X)

)
|Spec(C⊕ε·k′∗)×G

in QCoh!Spec(C⊕ε·k′∗)×G⊗C, but it is easy to see that the two central extensions cancel
out, and we obtain an isomorphism as in (22.1).
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By construction, this system of isomorphisms is compatible for different choices
of k. Thus we obtain an action of g, as a Tate vector space, on M ⊗

OG
act∗(X),

satisfying the desired commutation relation with OG. Moreover, from the axioms it
follows that this action of g is compatible with the Lie algebra structure. We will
denote this action by ãl .

Thus M �̃X is an object of D(G)-mod ⊗ C; in particular, it carries an action of
g′−can, denoted ãr . Let us describe this action explicitly:

Let k be a lattice in g as above, and let k−can denote its preimage in g−can. We
have to construct

mult∗
(

M ⊗
OG

act∗(X)
)
|G×Spec(C⊕ε·k∗−can)

' p∗1
(

M ⊗
OG

act∗(X)
)
|G×Spec(C⊕ε·k∗−can)

in QCoh!
G×Spec(C⊕ε·k∗−can)

⊗ C. It is constructed as in the previous case, using the

ar -action of g′−can on M.
Finally, let us note that we can consider an object of C given by

(M �̃X)DR ' C
∞
2 (g,M �̃X)

that carries a canonical differential. We will denote by L̃iel , L̃ier , ĩl , ĩ∗l , ĩr , ĩ∗r the
corresponding structures on it.

22.6 Definition of convolution

Now letK ⊂ Gbe an “open compact’’group subscheme over which g′ (and hence also
g′−can) is split. Let X be an object of Cw,K (respectively, CK ) and M be an object of
D(G)′-modw,r(K) (respectively, D(G)′-modr(K)). We claim that in this case M �̃X
is naturally an object of D(G)-modw,r(K) ⊗ C (respectively, D(G)-modr(K) ⊗ C).
This follows from the description of the action ãr given above.

More generally, if X• ∈ C(C)K and M• ∈ C(D(G)′-mod)r(K), then the com-
plex M• �̃X• is naturally an object of C(D(G)-mod ⊗ C)r(K). We will denote by
(M• �̃X•)G/K the resulting object of C(D(G/K)-mod⊗ C).

We define a functor

C(D(G)′-mod)r(K) × C(C)K → C(C)

by
M•, X• �→ C

∞
2 (g;Kred,M

• �̃X•). (22.2)

This functor is exact when restricted to C+(D(G)′-mod)r(K) × C+(C)K , and hence
we obtain a functor D+(D(G)′-mod)r(K) ×D+(C)K → D(C), denoted

M•, X• �→ M• "
K
X•.

By Lemma 20.19 and Proposition 21.12,



242 Edward Frenkel and Dennis Gaitsgory

M• "
K
X• ' H •

DR(G/K, (M
• �̃X•)G/K). (22.3)

Using the equivalence D(D(G)′-mod)r(K) ' D(D(G/K)′-mod) we obtain also
a functor D+(D(G/K)′-mod)×D+(C)K → D(C), denoted

F•, X• �→ F• "
K
X•.

Let H ⊂ G be another group subscheme, not necessarily “open compact,’’ and
consider the category C(D(G)′-mod)l(H),r(K). The above convolution functor is
easily seen to give rise to an exact functor

C+(D(G)′-mod)l(H),r(K) × C+(C)K → C(C)H ,

and the corresponding functor

C+(D(G/K)′-mod)H × C+(C)K → C(C)H .

Note however, that if we start with an object F• ∈ C+(D(G/K)′-mod)H that
comes from an object in the naive subcategory C+(D(G/K)′-modH ), the convolution
F• "X• is defined only as an object of C(C)H (and not of C(CH )). This is one of the
reasons why one should work with C(C)H , rather than with C(CH ).

Let us denote by Cbd(D(G/K)-mod) the subcategory of C(D(G/K)-mod) that
consists of bounded from below complexes supported on a finite-dimensional closed
subscheme ofG/K . LetDbd(D(G/K)-mod) be the corresponding full subcategory
of D(D(G/K)-mod).

Let Cbd(D(G)-mod)r(K) be the subcategory of C(D(G)-mod)r(K) consisting
of bounded from below complexes, supported set-theoretically on a preimage of a
finite-dimensional closed subscheme ofG/K; letDbd(D(G)-mod)r(K) be the corre-
sponding full subcategory of D(D(G)-mod)r(K).

One easily shows that under the equivalence

D(D(G/K)-mod) ' D(D(G)-mod)r(K),

the subcategories Dbd(D(G/K)-mod) and Dbd(D(G)-mod)r(K) correspond to one
another.

Lemma 22.7. For M• ∈ Dbd(D(G)-mod)r(K) and X• ∈ D+(C)K (respectively,
X• ∈ Db(C)K), the convolution M• "

K
X• belongs to D+(C) (respectively, Db(C)).

Proof. Under the assumptions of the lemma the C-valued complex of D-modules
(M• �̃X•)G/K is quasi-isomorphic to one bounded from below (respectively,
bounded) and supported on a finite-dimensional closed subscheme of G/K . Hence,
its de Rham cohomology is bounded from below (respectively, bounded). )�
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22.8 Examples

Let us consider the basic example, when M is the D(G)′-module

δ′K,G ' Indg′
k⊕C

(OK).

Note that δ′K,G ∈ C(D(G)′-mod)l(K),r(K).

Proposition 22.9. For X• ∈ C(C)K , we have a canonical quasi-isomorphism
in C(C)K :

δ′K,G "
K
X• ' X•.

Proof. Note that we can regard C as a category, acted on by K (rather than G). In
particular, it makes sense to consider δK,K �̃X• ∈ C(D(K)-mod⊗ C)r(K)×K .

Let us regard δ′K,G �̃X• as an object of the categories C(g−can-mod ⊗ C)K×K

and C(k-mod ⊗ C)K×K . We have a natural map δK,K �̃X• → δ′K,G �̃X• in the

latter category, and since as a g′−can-module δ′K,G ' Ind
g′−can
k⊕C

(OK), the latter map
induces an isomorphism

Ind
g′−can
k⊕C

(
δK,K �̃X•

)→ δ′K,G �̃X• ∈ C(g−can-mod⊗ C)K×K.

Hence, as objects of C(C)K ,

δ′K,G "
K
X• := C

∞
2 (g;Kred, δ

′
K,G �̃X•)

quasi-isom' C(k;Kred, δK,K �̃X•).

This reduces the assertion of the proposition to the case when G = K . Note that
we have a natural map

X• → C(k;Kred, δK,K �̃X•),

and it is easily seen to be a quasi-isomorphism, since as objects of C(C),

C(k;Kred, δK,K �̃X•) ' AvKu(X
•). )�

More generally, let K ′ ⊂ K be a group subscheme, and let δ′
K/K ′,G/K ′ be the

twistedD-module onG/K ′ equal to the direct image of OK/K ′ underK/K ′ → G/K ′.
Arguing as above, we obtain the following.

Lemma 22.10. For X• ∈ C(C)K
′
,

δ′K/K ′,G/K ′ "
K ′ X

• ' AvK(X
•) ∈ D(C)K.

Now let g be a point ofG. For an objectX ∈ C we will denote byXg (or δg,G "M)
the twist of X by means of g, i.e., the restriction of act∗(X) to g.

Applying this to F ∈ D(G/K)′-mod, we obtain a g-translate of F with respect to
the action of G on G/K . In particular, (δ1,G/K)g ' (δg,G/K). The following results
from the definitions.
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Lemma 22.11. For F ∈ C(D(G/K)′-mod), X• ∈ C(C)K ,(
F• "

K
X•
)g

' (F•)g "
K
X•.

In particular, for X• as above,

(X•)g ' δg,G/K "
K
X•.

Let G1 ⊂ G be a group subindscheme, let K1 = K ∩ G1, let F•1 be an object
of C(D(G1/K1)

′-mod, and let F• ∈ C(D(G/K)′-mod) be its direct image under
G1/K1 → G/K .

The action of G on C induces an action of G1; hence, for X• ∈ C(C)K it makes
sense to consider the object F•1 "

K1
X• ∈ C(C).

Lemma 22.12. For F•1 ∈ C(D(G1/K1)
′-mod andX• ∈ C(C)K , the objects F•1 "

K1
X•

and F• "
K
X• in C(C) are canonically quasi-isomorphic.

Proof. Let M• (respectively, M•
1) be the object of C(D(G)′-mod)K (respectively,

C(D(G1)
′-mod)K1 ) corresponding to F• (respectively, F•1) under the equivalence of

Proposition 21.7.
Let (M• �̃X•)G/K (respectively, (M•

1 �̃X•)G1/K1 ) be the corresponding objects
of the categories C(D(G/K)′-mod⊗C) and C(D(G1/K1)

′-mod⊗C), respectively.
The assertion now follows from the fact that C(D(G/K)′-mod⊗ C) is the direct

image C(D(G1/K1)
′-mod⊗ C) under G1/K1 ↪→ G/K . )�

Finally, let us consider the example in which C = D(Y)′, where Y is a strict
ind-scheme, acted on by G, and D(Y)′ is the category of twisted D-modules on Y,
compatible with a twisting on G.

Recall that in this case we have a functor

Dbd(D(G/K)′)×Db(D(Y)′-mod)K → Db(D(Y)′-mod) (22.4)

defined as follows:
Consider the ind-scheme G×

K
Y, which maps to Y via the action map of G on Y;

this ind-scheme is equipped with a twisting, which is pulled back from the one on Y′
using the above map.

For F1 ∈ Dbd(D(G/K)′), F2 ∈ Db(D(Y)′-mod)K one can form their twisted
external product

F1 �̃ F2 ∈ Db(D(G×
K

Y)′).

Then F1 "
K

F2 is the direct image of F1 �̃ F2 under the above map G×
K

Y → Y.

It follows immediately from the definitions, that the functor (22.4) is canonically
isomorphic to the one given by (22.2).
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22.13 Convolution action on Harish-Chandra modules

We shall now study a particular case of the above situation, when C = g′-mod.
First, for M ∈ D(G)′-mod and N ∈ g′-mod let us describe the object M �̃N ∈
D(G)-mod⊗ g′-mod more explicitly.

As a vector space M �̃N is isomorphic to M ⊗ N . We will denote by m the
action of OG on M, and by al , ar the actions of g′, g′−can on it. We will denote by a
the action of g′ on N .

Let m̃, ãl , ãr and ã be the actions of OG, g, g−can and g′, respectively, on M⊗N
defining on M �̃N a structure of object of D(G)-mod⊗ g′-mod. We have

• m̃ = m⊗ id,
• ã = (m⊗ a) ◦ (γ ⊗ idg) ◦ g′ ,
• ãl = (al ⊗ id)− (m⊗ a) ◦ (γ ⊗ idg) ◦ g′ ,
• ãr = ar ⊗ id + id ⊗ a.

More generally, if M• is an object of C(D(G)′-mod)r(K) and N• is an
object of C(g′-mod)K , the twisted product M �̃N is naturally an object of
C(D(G)-mod)r(K)⊗C(g′-mod), where the algebraic action ofK on M• ⊗N• is the
diagonal one, and so is the action of k[1].

In this case the convolution M• "
K
N• is computed by means of the complex

C
∞
2
(
g;Kred,M

• ⊗N•) ,
with respect to the diagonal action of g−can. The g′-module structure on this complex
is given by ã.

Note, however, that the above complex carries a different action of g′, namely one
given by al . We will denote this other functor C(D(G)′-mod)r(K)×C(g′-mod)K →
C(g′-mod) by

M•, N• �→ M• 1"
K
N•.

Note that if M ∈ C(D(G)′-mod)H,r(K) for some group scheme H , then M• 1"
K
N• is

naturally an object of C(g′-mod)H .
The two actions of g′ on C

∞
2 (g;Kred,M

• ⊗N•) are related by the formula

al − ã = ãl = [d, ĩl],
where ĩl is the action of the annihilation operators on

C
∞
2
(
g;Kred,M

• ⊗N•) ⊂ C
∞
2
(
g,M• ⊗N•) ' (M �̃N)DR.

Therefore, the cohomologies of M• "
K
N• and M• 1

"
K
N• are isomorphic as

g′-modules.
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Corollary 22.14.

(1) For N ∈ (g′,K)-mod, the complex

C
∞
2
(
g;Kred, δ

′
K,G ⊗N

)
is acyclic away from degree 0.

(2) When regarded as a g′-module via the al-action on δ′K,G, the above 0th cohomol-
ogy is isomorphic to N .

(3) The image of U(g′) in Endg′−can
(δ′K,G) is dense.

Proof. The first two points follows from Proposition 22.9 and the above comparison

of M
1
"
K
N• and M• "

K
N•.

LetU(g′, k) be the topological algebra of endomorphisms of the forgetful functor

(g′,K)-mod → Vect .

Evidently, the image of U(g′) in U(g′, k) is dense. We claim now that U(g′, k) is
isomorphic to Endg′−can

(δ′K,G).
The map in one direction, i.e., U(g′, k) → Endg′−can

(δ′K,G), is evident: given
an element in U(g′, k), we obtain a functorial endomorphism of every vector space
underlying an object of g′-mod; in particular δ′K,G. This endomorphism commutes
with g′-mod-endomorphisms of δ′K,G, in particular, with the action of g′−can.

To construct the map in the opposite direction, note that an endomorphism of
δ′K,G as a g′−can-module defines an endomorphism of the functor

N �→ h0
(
C
∞
2
(
g;Kred, δ

′
K,G ⊗N

)) : g′-mod → Vect,

and the latter is isomorphic to the forgetful functor. )�
We will now study the behavior of Lie algebra cohomology under convolution.

We shall first consider a technically simpler case, when we will considerD-modules
on a group scheme H , mapping to G, such that g′ splits over h. Let K ′

H ,K
′′
H ⊂ H

be group subschemes of finite codimension.

Proposition 22.15. ForN• ∈ D+(g-mod)K
′
H and M• ∈ D+(D(H))l(K ′

H ),r(K
′′
H ), the

complex C(h;K ′
H red,M

• "
K ′
H

N•) is quasi-isomorphic to

H •
DR(H

′
K\H,F•)⊗ C(h;H ′′

K red,M
•),

where F• is the object of D+(D(H ′
K\H)), corresponding to M•.

Proof. By Lemma 19.19,

C(h;K ′
H red,M

• "
K ′′
H

N•) ' C(h;K ′
H red,M

• 1
"
K ′′
H

N•).

The latter, by definition, can be rewritten as
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C(h⊕ h;K ′
H red ×K ′′

H red,M
• ⊗N•),

where the action of the first copy of h is via al on M, and the action of the second copy
is diagonal with respect to ar and a. Hence, the above expression can be rewritten as

C(h;K ′′
H red,C(h;K ′

H red,M
•)⊗N•),

where the h-action on C(h;K ′
H red,M

•)⊗N• is the diagonal one with respect to the
ar -action on M• and the existing action on N•.

Applying again Lemma 19.19, we can replace the ar -action on M• by the trivial
one. Hence,

C(h;K ′′
H red,C(h;K ′

H red,M
•)⊗N•) ' C(h;K ′

H red,M
•)⊗ C(h;K ′′

H red, N
•),

which is what we had to show. )�
We will now generalize the above proposition to the case of semi-infinite coho-

mology with respect to g.
Let N•

1 and N•
2 be objects of D+(g′−can-mod)K

′
and D+(g′-mod)K

′′
,

respectively, for some “open compact’’ K,K ′′ ⊂ G. Let M• be an object of
D+(D(G)′-mod)l(K

′),r(K ′′), supported over a closed pro-finite-dimensional sub-
scheme of G. In this case the convolution M• "

K ′′ N
•
2 makes sense as an object

of D+(g′-mod)K
′
. Similarly, we can consider the convolution “on the right’’

N•
1 "
K ′ M

• ∈ D+(g′−can-mod)K
′
.

Proposition 22.16. Under the above circumstances,

C
∞
2

(
g;K ′

red, N
•
1 ⊗

(
M• "

K ′′ N
•
2

))
and

C
∞
2

(
g;K ′′

red,

(
N•

1 "
K ′ M

•
)
⊗N•

2

)
are quasi-isomorphic.

Proof. By symmetry, it would be sufficient to show that there exists a quasi-
isomorphism between

C
∞
2

(
g;K ′

red, N
•
1 ⊗

(
M• "

K ′′ N
•
2

))
(22.5)

and

C
∞
2
(
g⊕ g;K ′

red ×K ′′
red, N

•
1 ⊗M• ⊗N•

2

)
, (22.6)
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where the first copy of g−can acts diagonally onN•
1⊗M• (via the existing g′−can action

on N•
1 and the al-action on M•) and the second copy acts diagonally on M• ⊗ N•

2
(via the ar -action on M• and the existing g′-action on N•

2 ).
By Lemma 19.19, in (22.6) we can replace the action of the first copy of g−can,

by one where the g′-action on M• ⊗N•
2 is given by ã. The resulting expression will

be equal to the one in (22.5) modulo the following complication:
To define (22.5) one has to replace C

∞
2 (g;K ′′

red,M
• ⊗ N•

2 ) by a quasi-iso-
morphic complex, which is bounded from below. We have to show that taking
C
∞
2 (g;K ′

red, N
•
1⊗?) survives this quasi-isomorphism.

Let us first consider a particular case in which M• is induced from an OG-module,
i.e., has the form

Ind
g′−can
k′′ (L•) (22.7)

for some complex L• of K ′-equivariant OG-modules. In this case we have a quasi-
isomorphism

C(k′′;K ′′
red,L

• ⊗N•
2 )→ C

∞
2 (g;K ′′

red,M
• ⊗N•

2 )

of complexes of g′-modules. Moreover, the PBW filtration defines a filtration on the
RHS, of which C(k′′;K ′′

red,L
• ⊗N•

2 ) is the first term, by g′-stable subcomplexes, all
quasi-isomorphic to one another.

Since the functor C
∞
2 (g;K ′

red, N
•
1⊗?) commutes with direct limits, the required

assertion about quasi-isomorphism holds.
The case of a general M• follows from the one considered above, since the

assumption on M• implies that it can be represented by a complex associated with a
bicomplex with finitely many rows, each of the form (22.7). )�

22.17 Convolution action on D(G)-modules

Let us now consider the case when C = D(G)′ with the action ofG by left translations.
Given two objects M1,M2 ∈ D(G)′-mod let us first describe how M1 �̃ M2

looks like as an object of D(G)-mod⊗D(G)′-mod.
By construction as a vector space M1 �̃ M2 ' M1⊗M2. We will denote by a1

l , a2
l

(respectively, a1
r , a2

r ,m1,m2) the actions of g′ (respectively, g′−can, OG) on F1 and F2,
respectively. We will denote by ã1

l , ã2
l , ã1

r , ã2
r , m̃1, m̃2 the actions of g, g′, g−can, g′−can,

respectively on F1 �̃ F2, corresponding to the D(G)-mod⊗D(G)′-mod-structure.
The action of OG, corresponding to the D(G)-mod-structure on M1 �̃ M2 is via

the first multiple in M1 ⊗ M2, which we will denote by m. The action of OG,
corresponding to the D(G)′-mod-structure, is via the comultiplication map  G :
OG → OG

!⊗OG.
These actions are described as follows:

• m̃1 = m1 ⊗ id,
• m̃2 = (m1 ⊗m2) ◦ (γ ⊗ id) ◦ G,
• ã1

l = a1
l ⊗ id − (m⊗ a2

l ) ◦ (γ ⊗ id) ◦ g′ ,
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• ã2
l = (m⊗ a2

l ) ◦ (γ ⊗ id) ◦ g′ ,
• ã1

r = a1
r ⊗ id + id ⊗ a2

l ,
• ã2

r = id ⊗ a2
r .

If M•
1 ∈ C+(D(G)′)-modr(K) and M•

2 ∈ C+(D(G)′)-modl(K), the convolution
M•

1 "
K

M•
2 is computed by means of

C
∞
2 (g;Kred,M

•
1 ⊗M•

2),

with respect to the diagonal (i.e., ã1
r = a1

r + a2
l ) action of g−can, and the actions of

OG, g′, and g′−can, specified above.
Note, however, that the above complex carries a differentD(G)′-module structure.

Namely, the action of OG is (m1 ⊗m2) ◦ (γ ⊗ id) ◦ G as before, and the action of
g′ is a1

l . In this case the action of g′−can equals (a1
r ⊗m) ◦ g.

We will denote this new functor

C+(D(G)′)-modr(K) × C+(D(G)′)-modl(K) → C(D(G)′-mod

by

M•
1,M

•
2 �→ M•

1
1
"
K

M•
2.

Lemma 22.18. For M•
1 ∈ Dbd(D(G)′-mod)r(K), M•

2 ∈ Dbd(D(G)′-mod)l(K), the
objects

M•
1 "
K

M•
2,M

•
1
1
"
K

M•
2 ∈ Db(D(G)′-mod)

are isomorphic.

Proof. From the assumption it follows that there exist “open compact’’groupsK ′,K ′′
such that M•

1 ∈ D(D(G)′-mod)l(K
′),r(K) and M•

2 ∈ D(D(G)′-mod)l(K),r(K
′′).

As we saw above, the convolution M•
1 "
K

M•
2 can be interpreted as an action of F•1 ∈

Dbd(D(G/K)′-mod)K
′
, corresponding to M•

1, on F•2 ∈ Db(D(G/K ′′)′-mod)K , cor-
responding to M•

2. The result is an object in Db(D(G/K ′′)-mod)K
′
.

However, this convolution can be rewritten also as an action of

′F•2 ∈ Dbd(D(K\G)′-mod)K
′′

on

′F•1 ∈ Db(D(K ′\G)′-mod)K,

with the result being in

Db(D(K ′\G)′-mod)K
′′ ' Db(D(G/K ′′)-mod)K

′
.

The latter convolution is manifestly the same as

M•
1
1
"
K

M•
2 ∈ Db(D(G)′-mod)l(K

′),r(K ′′). )�
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22.19 Associativity of convolution

Now let M•
1 be an object of

Cbd(D(G)′-mod)r(K), M•
2 ∈ Cbd(D(G)′-mod)l(K),r(K

′),

and

X• ∈ C+(C)K ′

for a category C as above.

Proposition 22.20. Under the above circumstances, there exists a canonical isomor-
phism in D+(C) (

M•
1 "
K

M•
2

)
"
K ′ X

• ' M•
1 "
K

(
M•

2 "
K ′ X

•
)
,

compatible with three-fold convolutions.

The rest of this subsection is devoted to the proof of this proposition.
Consider the bigraded object of C given by(

M•
1 � M•

2

) ⊗
OG×G

mult∗
(
act∗(X•)

)
. (22.8)

It carries two actions of the Lie algebra g−can ⊕ g−can, corresponding to the two
isomorphisms

M•
1 �̃
(
M•

2 �̃X•
) ' (M•

1 � M•
2

) ⊗
OG×G

mult∗
(
act∗(X•)

) ' (M•
1 �̃ M•

2

)
�̃X•.

The action of the second copy of g−can is the same in the two cases. The difference
of the actions of the first copy of g−can is given by the g-action, coming from its ãl-
action on M•

2 �̃X•.
Hence, by Lemma 19.19, the two complexes

C
∞
2
(
g⊕ g;K ×K ′,M•

1 �̃
(
M•

2 �̃X•
))

and
C
∞
2
(
g⊕ g;K ×K ′,

(
M•

1 �̃ M•
2

)
�̃X•

)
are isomorphic.

As in the proof of Proposition 22.16, we have to show that the above complexes
are isomorphic in the derived category to M•

1 "
K
(M•

2 "
K ′ X

•) and (M•
1 "
K

M•
2) "
K ′ X

•,
respectively. This is done as in the proof of Proposition 22.16 by replacing M•

1 and
M•

2 by appropriately chosen complexes, for which the above semi-infinite complexes
can be represented as direct limits of quasi-isomorphic complexes, bounded from
below.
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22.21 An adjunction in the proper case

Now let K1,K2 ∈ G be two “open compact’’ subgroups of G, and assume that
G/K1 is ind-proper. Let F be a finitely generated object of D(G/K1)

′-modK2 . As
in Section 21.8, we have a well-defined object Fop in D(G/K2)

′′
-modK1 , where the

superscript ′′ indicates the twisting opposite to ′. Then the Verdier dual D(Fop) is an
object of D(G/K2)

′-modK1 .

Proposition 22.22. The functor

D(C)K1 → D(C)K2 : X•1 �→ F "
K1
X•1

is left adjoint to the functor

D(C)K2 → D(C)K1 : X2 �→ D(Fop) "
K2
X2.

Proof. We need to construct the adjunction maps

F "
K1
(D(Fop) "

K2
X•2)→ X•2 and X•1 → D(Fop) "

K2
(F "

K1
X•1),

such that the identities concerning the two compositions hold.
In view of Proposition 22.20, it would suffice to construct the maps

F "
K1

D(Fop)→ δ1,G/K2 ∈ D(D(G/K2)-mod)K2

and
δ1,G/K1 → D(Fop) "

K2
F ∈ D(D(G/K1)-mod)K1 ,

such that the corresponding identities hold.
By the definition of convolution, constructing these maps is equivalent to con-

structing morphisms

H •(G/K1, 
∗
G/K1

(F � D(F))→ C ∈ D(pt /K2) (22.9)

and
C → H •(G/K2, 

!
G/K2

(Fop � D(Fop)) ∈ D(pt /K1), (22.10)

respectively, where  G/K denotes the diagonal morphism G/K → G/K × G/K .
(Note that in each of the cases, the pull-back of the corresponding twistedD-module
on the product under the diagonal map is a nontwisted right D-module.)

The morphism in (22.10) follows from Verdier duality, and likewise for (22.9),
using the fact that

H •(G/K1, ·) ' H •
c (G/K1, ·).

The fact that the identities concerning the compositions of adjunction maps hold
is an easy verification. )�
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23 Categories over topological commutative algebras

23.1 The notion of a category flat over an algebra

Let C be an abelian category as in Section 19.5, satisfying assumption (**), and let Z
be a commutative algebra, mapping to the center of C. An example of this situation
is when A is a topological algebra, Z is a (discrete) commutative algebra mapping
to the center of A and C = A-mod. Then the functor F factors naturally through a
functor FZ : C → Z-mod.

Note that we have a naturally defined functor Z-mod× C → C given by

M,X �→ M ⊗
Z
X.

This functor is right exact in both arguments. We have

FZ(M ⊗
Z
X) ' M ⊗

Z
FZ(X).

This shows, in particular, that ifM is Z-flat, then the above functor of tensor product
is exact in Z. We will denote by

M•, X• �→ M• L⊗
Z
X• : D−(Z-mod)×D−(C)→ D−(C)

the corresponding derived functor. We have

FZ(M• L⊗
Z
X•) ' M• L⊗

Z
FZ(X•).

It is easy to see that for a fixed X• ∈ C−(C), the derived functor of

M• �→ M• ⊗
Z
X• : C−(Z-mod)→ C−(C)

is isomorphic toM• L⊗
Z
X•. However, this is not, in general, true for the functor

X• �→ M• ⊗
Z
X• : C−(C)→ C−(C)

for a fixedM•.
We shall say that an object X ∈ C is flat over Z if the functor

M �→ M ⊗
Z
X : Z-mod → C

is exact. This is equivalent to FZ(X) being flat as a Z-module.
We shall say that C is flat over Z if every object ofX admits a surjectionX′ → X

for X being flat over Z.
Consider the example of C = A-mod. Suppose there exists a family of open left

ideals I ⊂ A such that A ' lim←− A/I, such that each A/I is flat as a Z-module. Then

C is flat over Z.
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Lemma 23.2. Let C be flat overZ, then for a fixedM• ∈ C−(Z-mod) the left derived
functor of

X• �→ M• ⊗
Z
X• : C−(C)→ C−(C)

is isomorphic toM• L⊗
Z
X•.

Proof. By assumption, every object in C−(C) admits a quasi-isomorphism from one
consisting of objects that are Z-flat. Hence, it suffices to show that if X• ∈ C−(C)
consists of Z-flat objects, andM• ∈ C−(Z-mod) is acyclic, thenM• ⊗

Z
X• is acyclic

as well. However, this is evident from the definitions. )�
If φ : Z → Z′ is a homomorphism, we will denote by CZ′ the base-changed

category, i.e., one whose objects are X ∈ C, endowed with an action of Z′, such that
the two actions of Z on X coincide. Morphisms in this category are C-morphisms
that commute with the action of Z′.

By construction, Z′ maps to the center of CZ′ . The composed functor CZ′ →
C

FZ→ Z-mod factors naturally through Z′-mod.
The forgetful functor CZ′ → C admits a left adjoint φ∗ given by X �→ Z′ ⊗

Z
X.

Note that this functor sends Z-flat objects in C to Z′-flat objects in CZ′ . In particular,
if C is flat over Z, then so is CZ′ over Z′.

As in Lemmas 23.2 and 19.22, we obtain the following.

Lemma 23.3. Assume that C is Z-flat. Then the right derived functor of φ∗

Lφ∗ : D−(C)→ D−(CZ′)

is well defined and is the left adjoint to the forgetful functor D(CZ′) → D(C).
Moreover,

FZ′ ◦ Lφ∗(X•) ' F(X•)
L⊗
Z
Z′.

In particular, we obtain that if C is flat over Z and X ∈ C is Z-flat, then for
Y • ∈ C(CZ′),

RHomD(CZ′ )(Z
′ ⊗
Z
X, Y •) ' RHomD(C)(X, Y

•).

Now let N be a Z-module. For Y ∈ C we define the object HomZ(N, Y ) by

HomC(X,HomZ(N, Y )) := HomC(N ⊗
Z
X, Y ).

If N is finitely presented, we have

FZ(HomZ(N, Y )) ' HomZ(N,FZ(Y )).

For Z′ as above, which is finitely presented as a Z-module, we define the functor
φ! : C → CZ′ to be the right adjoint of the forgetful functor CZ′ → C. It is given
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by X �→ HomZ(Z
′, X). By definition, it maps injective objects in C to injectives

in CZ′ .
We will denote by Rφ! : D+(C) → D+(CZ′) the corresponding right derived

functor. It is easily seen to be the right adjoint of the forgetful functor C(CZ′)→ C(C).

Proposition 23.4. Assume that C is flat over Z, and that Z′ is perfect as an object of
C(Z-mod). Then

Rφ! ◦ FZ ' FZ′ ◦ Rφ! : D+(C)→ D+(Z′-mod).

Proof. To prove the proposition it suffices to check that if Y • ∈ C+(C) is a complex
consisting of injective objects of C, and M• ∈ Cb(Z-mod) is a complex of finitely
presented modules, quasi-isomorphic to a perfect one, then FZ(Hom(M•, Y •)) is
quasi-isomorphic to RHomD(Z-mod)(M

•,FZ(Y •)).
IfM• is a bounded complex consisting of finitely generated projective modules,

then the assertion is evident. Hence, it remains to show that if M• is an acyclic
complex of finitely presented Z-modules, and Y • is as above, then Hom(M•, Y •) is
acyclic. By assumption on C, it would suffice to check that forX ∈ C which isZ-flat,

HomC(X,Hom(M•, Y •)) ' HomC(M
• ⊗
Z
X, Y •)

is acyclic. By the flatness assumption on Y , the complexM• ⊗
Z
X is also acyclic, and

hence our assertion follows from the injectivity assumption on Y •. )�
Corollary 23.5. If, under the assumptions of the proposition, X′ ∈ D(C′Z) is quasi-
perfect, then it is quasi-perfect also as an object of D(C).

Proof. This follows from the fact that the functor

Rφ! : D(Z-mod)→ D(Z′-mod)

commutes with direct sums, and hence so does the functor

Rφ! : D(C)→ D(CZ′). )�

23.6 A generalization

Let C be as in the previous subsection, and assume in addition that it satisfies assump-
tion (*) of Section 19.5. Let Z be a topological commutative algebra, which acts
functorially on every object of C. In this case we will say that Z maps to the center
C. The functor F naturally factors through a functor FZ : C → Z-mod.

For every discrete quotient Z of Z, let CZ be the subcategory of C consisting of
objects on which Z acts via Z. If Z � Z � Z′, then CZ′ is obtained from CZ by the
procedure described in the previous subsection.

We shall say that C is flat over Z if each CZ as above is flat over Z. Equivalently,
we can require that this happens for a cofinal family of discrete quotients Z of Z.
Henceforth, we will assume that C is flat over Z.
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In what follows we will make the following additional assumption on Z, namely,
that we can present Z as lim←−

i

Zi , such that for j ≥ i the ideal of φj,i : Zj → Zi is

perfect as an object of D(Zj -mod).
Recall that a discrete quotient Z of Z reasonable if for some (equivalently, any)

index i such that Z → Z factors through Zi , the algebra Z is finitely presented as a
Zi-module. We shall callZ admissible if the finite-presentation condition is replaced
by the perfectness one.

Let us call an objectM ∈ Z-mod finitely presented ifM belongs to some Z-mod
and is finitely presented as an object of this category, if Z is reasonable. By the
assumption on Z, this condition does not depend on a particular choice if Z.

For a finitely presentedM ∈ Z-mod and X ∈ C we define HomZ(M,X) ∈ C as

lim−→
Xi

HomZi (M,Xi),

where Xi runs over the set of subobjects of X that belong to CZi for some discrete
reasonable quotient Zi of Z. We have

FZ(HomZ(M,X)) ' HomZ(M,FZ(X)).

Consider M = Z for some reasonable quotient φ : Z → Z. Then X �→
HomZ(Z,X) defines a functor C → CZ , which we will denote by φ!.

Lemma 23.7. The functor φ! is the right adjoint to the forgetful functor CZ → C.

Proof. By assumption (*), it suffices to check that for every finitely generated object
Y of CZ ,

HomCZ (Y,HomZ(Z,X)) ' HomC(Y,X).

By the finite generation assumption, we reduce the assertion to the case when
X ∈ CZi for some Z � Zi � Z, considered in the previous subsection. )�

Clearly, the functor φ! maps injective objects in C to injectives in CZ . Let Rφ!
denote the right derived functor of φ!. By the above, it is the right adjoint to the
forgetful functor D(CZ)→ D(C).

Proposition 23.8. Assume that Z is admissible. Then we have an isomorphism of
functors:

FZ ◦ Rφ! ' Rφ! ◦ FZ : D+(C)→ D+(Z-mod).

Proof. As in the proof of Proposition 23.4, it suffices to show that ifX• ∈ C+(C) is a
complex consisting of injective objects of C, andM• is a perfect object ofD(Z-mod),
then HomC(Z-mod)(M

•,FZ(X
•)) computes RHomD(Z-mod)(M

•,FZ(X
•)).

By devissage, we can assume that X• consists of a single injective object X ∈ C.

For every Zi such that Z
φi� Zi � Z, note that φ!i (X) is an injective object of CZi ,

and X ' lim−→
i

Xi .

Using Proposition 23.4, the assertion of the present proposition follows from the
next lemma.
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Lemma 23.9. For N• ∈ C+(Z-mod) and N•
i := φ!i (N•), the map

lim−→
i

HomD(Zi -mod)(M
•, N•

i )→ HomD(Z-mod)(M
•, N•)

is a quasi-isomorphism, provided thatM• ∈ D(Z-mod) is perfect. )�
Proof of the lemma. The proof follows from the next observation:

Let P • → M• be a quasi-isomorphism, where P • ∈ C−(Z-mod). Then we can
find a quasi-isomorphismQ• → P • such thatQ• ∈ C−(Z-mod) and for any integer
i, the moduleQi is supported on some discrete quotient of Z. )�
Corollary 23.10. The functor Rφ! : D+(C) → D+(CZ) commutes with uniformly
bounded from below direct sums.

Proof. This follows from the corresponding fact for the functorRφ! : D+(Z-mod)→
D+(Z-mod). )�
Proposition 23.11. Let X•1 be a quasi-perfect object of C(CZ) and X•2 be an object
of C+(CZ) for some discrete quotient Z. Then

HomD(C)(X
•
1, X

•
2) ' lim−→

Zi

HomD(CZi )(X
•
1, X

•
2),

where the direct limit is taken over the indices i such that Z → Z factors through Zi .

Proof. We can find a system of quasi-isomorphisms X•2 → Y •i , where each Y •i ∈
C(CZi ) consists of injective objects of CZi , and such that these complexes form a
direct system with respect to the index i, and such that all Y •i are uniformly bounded
from below.

By Proposition 23.8 and Corollary 23.10, Rφ!(X•2) is given by the complex

lim−→
i

φ!i (Y •i ).

Then, by the quasi-perfectness assumption,

HomD(C)(X
•
1, X

•
2) ' HomD(CZ)(X

•
1, Rφ

!(X•2)) ' lim−→
i

HomD(CZ)(X
•
1, φ

!
i (Y

•
i )).

By Proposition 23.4, the latter is isomorphic to

lim−→
i

HomD(CZ)(X
•
1, Rφ

!
i (Y

•
i )) ' lim−→

i

HomD(CZi )(X
•
1, Y

•
i ),

which is what we had to show. )�
Finally, we will prove the following assertion.
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Proposition 23.12. LetX• be an object of C−(CZ), whereZ is an admissible quotient
of Z. ThenX• is quasi-perfect as an object ofD(CZ) if and only if it is quasi-perfect
as an object of D(C).

Proof. Since the functor Rφ! : D+(C)→ D+(CZ) commutes with direct sums, the
implication “quasi-perfectness in D(CZ)’’→ “quasi-perfectness in D(C)’’ is clear.

To prove the implication in the opposite direction, we proceed by induction. We
assume that the functor

Y �→ HomD(CZ)(X
•, Y [i′]) : CZ → Vect

commutes with direct sums for i′ < i. This assumption is satisfied for some i, since
X• is bounded from above.

Let us show that in this case the functorY �→ HomD(CZ)(X
•, Y [i]) also commutes

with direct sums. For ⊕
α
Yα ∈ CZ consider the exact triangle in D+(CZ):

⊕
α
Yα → Rφ!(⊕

α
Yα)→ τ>0

(
Rφ!(⊕

α
Yα)

)
,

where τ is the cohomological truncation.
Consider the corresponding commutative diagram:

HomD(C)(X•,⊕
α
Yα[i − 1]) ←−−−− ⊕

α
HomD(C)(X•, Yα[i − 1])⏐⏐/ ⏐⏐/

HomD(CZ)

(
X•, τ>0

(
Rφ!(⊕

α
Yα[i − 1])

))
←−−−− ⊕

α
HomD(CZ)

(
X•, τ>0

(
Rφ!(Yα[i − 1])))⏐⏐/ ⏐⏐/

HomD(CZ)(X
•,⊕
α
Yα[i]) ←−−−− ⊕

α
HomD(CZ)(X

•, Yα[i])⏐⏐/ ⏐⏐/
HomD(C)(X•,⊕

α
Yα[i]) ←−−−− ⊕

α
HomD(C)(X•, Yα[i])⏐⏐/ ⏐⏐/

HomD(CZ)

(
X•, τ>0

(
Rφ!(⊕

α
Yα[i])

))
←−−−− ⊕

α
HomD(CZ)

(
X•, τ>0

(
Rφ!(Yα[i])

))
.

The horizontal arrows in rows 1 and 4 are isomorphisms sinceX• is quasi-perfect
in D(C). The arrows in rows 2 and 5 are isomorphisms by the induction hypothesis.
Hence the map in row 3 is an isomorphism, which is what we had to show. )�

23.13 The equivariant situation

Assume now that the category C as in the previous subsection is equipped with an
infinitesimally trivial action of a group schemeH . Assume that this action commutes
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with that of Z. The latter means that for every X ∈ C, the Z-action on act∗(X) by
transport of structure coincides with the action obtained by regarding it merely as
an object of C. Then for every discrete quotient Z of Z, the category CZ carries an
infinitesimally trivial action of H .

We have a functor φ! : C+(C)H → C+(CZ)H ; let Rφ! : D+(C)H → D+(CZ)H
be its right derived functor. (Below we will show that it is well defined.) We are
going to prove the following.

Proposition 23.14. Rφ! : D+(C)H → D+(CZ)H is the right adjoint to the forgetful
functor D(CZ)H → D(C)H . Moreover, the diagram of functors

D+(C)H Rφ!−−−−→ D+(CZ)H

FZ

⏐⏐/ FZ

⏐⏐/
D+(Z-mod)

Rφ!−−−−→ D+(Z-mod)

is commutative.

Proof. For any quasi-isomorphism X• → X•1 in C+(C)H we can find a quasi-
isomorphism from X•1 to a complex, associated with a bicomplex X•,•2 , whose rows
are uniformly bounded from below and have the form AvH (Y •), where Y • ∈ C+(C)
consists of injective objects.

By Proposition 23.8 and Corollary 23.10, if we assign to X• the complex in
C(CZ)H associated with the bicomplex φ!(X•,•2 ), this is the desired right derived
functor of φ!. It is clear from the construction that the diagram of functors

D+(C)H Rφ!−−−−→ D+(CZ)H⏐⏐/ ⏐⏐/
D+(C) Rφ!−−−−→ D+(CZ),

where the vertical arrows are the forgetful functors, is commutative.
Hence, it remains to show that Rφ! satisfies the desired adjointness property. By

devissage, we are reduced to showing that for Y • as above and Y •1 ∈ C(CZ)H ,

HomD(C)H (Y
•
1 ,AvH (Y

•)) ' HomD(CZ)H
(
Y •1 , φ!(AvH (Y

•))
)
.

However, the LHS is isomorphic to HomD(C)(Y •1 , Y •), and the RHS is isomorphic to

HomD(CZ)H
(
Y •1 ,AvH (φ

!(Y •))
)
' HomD(CZ)(Y

•
1 , φ

!(Y •)),

and, as we have seen above, φ!(Y •)→ Rφ!(Y •) is an isomorphism in D+(CZ). )�
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plete intersection canonical singularities,’’ Invent. Math., 145-3 (2001), 397–424.

[Fe] B. Feigin, The semi-infinite cohomology of Kac–Moody and Virasoro Lie algebras,
Russian Math. Survey, 39-2 (1984), 155–156.

[FF1] B. Feigin and E. Frenkel, A family of representations of affine Lie algebras, Russian
Math. Survey, 43-5 (1988), 221–222.

[FF2] B. Feigin and E. Frenkel, Affine Kac-Moody algebras and semi-infinite flag mani-
folds, Comm. Math. Phys., 128 (1990), 161–189.

[FF3] B. Feigin and E. Frenkel,Affine Kac-Moody algebras at the critical level and Gelfand-
Dikii algebras, in A. Tsuchiya, T. Eguchi, and M. Jimbo, eds., Infinite Analysis,
Advanced Series in Mathematical Physics, Vol. 16, World Scientific, Singapore, 1992,
197–215.

[F] E. Frenkel, Wakimoto modules, opers and the center at the critical level, Adv. Math.,
195 (2005), 297–404.



260 Edward Frenkel and Dennis Gaitsgory

[FB] E. Frenkel and D. Ben-Zvi, Vertex Algebras and Algebraic Curves, 2nd ed., Mathe-
matical Surveys and Monographs, Vol. 88, American Mathematical Society, Provi-
dence, RI, 2004.

[FG] E. Frenkel and D. Gaitsgory, D-modules on the affine Grassmannian and represen-
tations of affine Kac-Moody algebras, Duke Math. J., 125 (2004), 279–327.

[FGV] E. Frenkel, D. Gaitsgory, and K. Vilonen, Whittaker patterns in the geometry of
moduli spaces of bundles on curves, Ann. Math., 153 (2001), 699–748.

[FT] E. Frenkel and K. Teleman, Self-extensions of Verma modules and differential forms
on opers, Compositio Math., 142 (2006), 477–500.

[Ga] D. Gaitsgory, Construction of central elements in the affine Hecke algebra via nearby
cycles, Invent. Math., 144 (2001), 253–280.

[Ga1] D. Gaitsgory, The notion of category over an algebraic stack, math.AG/0507192,
2005.

[Ga2] D. Gaitsgory, Notes on Bezrukavnikov’s theory, in preparation.
[GMS] V. Gorbounov, F. Malikov, and V. Schechtman, On chiral differential operators over

homogeneous spaces, Internat. J. Math. Math. Sci., 26 (2001), 83–106.
[KK] V. Kac and D. Kazhdan, Structure of representations with highest weight of infinite-

dimensional Lie algebras, Adv. Math., 34 (1979), 97–108.
[Ko] B. Kostant, Lie group representations on polynomial rings, Amer. J. Math.,

85 (1963), 327–402.
[Lan] R. P. Langlands, Problems in the theory of automorphic forms, in Lectures in Modern

Analysis and Applications III, Lecture Notes in Mathematics, Vol. 170, Springer-
Verlag, Berlin, New York, Heidelberg, 1970, 18–61.

[Lau] G. Laumon, Transformation de Fourier, constantes d’équations fonctionelles et con-
jecture de Weil, Publ. I.H.E.S., 65 (1987), 131–210.

[Ma] K. Mackenzie, Lie Groupoids and Lie Algebroids in Differential Geometry, London
Mathematical Society Lecture Note Series, Vol. 124, Cambridge University Press,
Cambridge, UK, 1987.
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Summary. We develop a theory of integration over valued fields of residue characteristic zero.
In particular, we obtain new and base-field independent foundations for integration over local
fields of large residue characteristic, extending results of Denef, Loeser, and Cluckers. The
method depends on an analysis of definable sets up to definable bijections. We obtain a precise
description of the Grothendieck semigroup of such sets in terms of related groups over the
residue field and value group. This yields new invariants of all definable bijections, as well as
invariants of measure-preserving bijections.

Subject Classifications: Primary 03C60, 14C99, 11S80.

1 Introduction

Since Weil’s Foundations, algebraic varieties have been understood independently
of a particular base field; thus an algebraic group G exists prior to the abstract or
topological groups of points G(F), taken over various fields F . For Hecke alge-
bras, or other geometric objects whose definition requires integration, no comparable
viewpoint exists. One uses the topology and measure theory of each local field sepa-
rately; since a field F has measure zero from the point of view of any nontrivial finite
extension, at the foundational level there is no direct connection between the objects
obtained over different fields. The main thrust of this paper is the development of a
theory of integration over valued fields, which is geometric in the sense of Weil. At
present the theory covers local fields of residue characteristic zero or, in applications,
large positive residue characteristic.

Our approach to integration continues a line traced by Kontsevich, Denef–Loeser,
and Loeser–Cluckers (cf. [7]). In integration over non-archimedean local fields there
are two sources for the numerical values. The first is counting points of varieties over
the residue field. Kontsevich explained that these numerical values can be replaced,
with a gain of geometric information, by the isomorphism classes of the varieties
themselves up to appropriate transformations, or more precisely by their classes in
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a certain Grothendieck ring. This makes it possible to understand geometrically the
changes in integrals upon unramified base change. In this aspect our approach is very
similar. The main difference is a slight generalization of the notion of variety over
the residue field, which allows us to avoid what amounted to a choice of uniformizer
in the previous theory.

The second source of numerical values is the piecewise linear geometry of the
value group. We geometrize this ingredient, too, obtaining a theory of integration
taking values in an entirely geometric ring, a tensor product of a Grothendieck ring
of generalized varieties over the residue field, and a Grothendieck ring of piecewise
linear varieties over the value group.

Viewed in this way, the integral is an invariant of measure-preserving definable
bijections. We actually find all such invariants. In addition, we consider and deter-
mine all possible invariants of definable bijections; we obtain in particular two Euler
characteristics on definable sets, with values in the Grothendieck group of generalized
varieties over the residue field.

At the level of foundations, until an additive character is introduced, we are able to
work with Grothendieck semigroups rather than with classes in Grothendieck groups.

1.1 The logical setting

Let L be a valued field, with valuation ring OL. M denotes the maximal ideal. We
let VFn(L) = Ln. The notation VFn is analogous to the symbol An of algebraic
geometry, denoting affine n-space. Let RVm(L) = L∗/(1 + M), (L) = L∗/O∗L,
k(L) = OL/ML. Let rv : VF → RV and val : VF →  be the natural maps. The
natural map RV →  is denoted valrv. The exact sequence

0 → k∗ → RV → → 0

shows that RV is, at first approximation, just a way to wrap together the residue field
and value group.

We consider expressions of the form h(x) = 0 and val f (x) ≥ val g(x) where
f, g, h ∈ L[X], X = (X1, . . . , Xn). A semialgebraic formula is a finite Boolean
combination of such basic expressions. A semialgebraic formula φ clearly defines a
subset D(L) of VFn(L). Moreover, if f, g, h ∈ L0[X], we obtain a functor L �→
D(L) from valued field extensions of L0 to sets. We will later describe more general
definable sets; but for the time being take a definable subset of VFn to be a functor
D = Dφ of this form.

An intrinsic description of definable subsets of RVm is given in Section 2.1. In
particular, definable subsets of (k∗)m coincide with constructible sets in the usual
Zariski sense; while modulo (k∗)m, a definable set is a piecewise linear subset of m.
The structure of arbitrary definable subsets of RVm is analyzed in Section 3.3.

The advantages of this approach are identical to the benefits in algebraic geometry
of working with arbitrary algebraically closed fields, over arbitrary base fields. One
can use Galois theory to describe rational points over subfields. Since function fields
are treated on the same footing, one has a mechanism to inductively reduce higher-
dimensional geometry to questions in dimension one, and often, in fact, to dimension



Integration in valued fields 263

zero. (As in algebraic geometry, statements about fields, applied to generic points,
can imply birational statements about varieties.)

1.2 Model theory

Since topological tools are no longer available, it is necessary to define notions such
as dimension in a different way. The basic framework comes from [15]; we recall and
develop it further in Sections 2 and 4. It is in many respects analogous to the o-minimal
framework of [37], that has become well accepted in real algebraic geometry.

In addition, whereas in geometry all varieties are made as it were of the same
material, here a number of rather different types of objects coexist, and the interaction
between them must be clarified. In particular, the residue field and the value group
are orthogonal in a sense that will be defined below; definable subsets of one can
never be isomorphic to subsets of the other, unless both are finite. This orthogonality
has an effect on definable subsets of VFn in general; for example, closed disks behave
very differently from open ones. Here we follow and further develop [16].

Note that the set of rational points of closed and open disks over discrete valua-
tion rings, for instance, cannot be distinguished; as in rigid geometry, the geometric
setting is required to make sense of the notions. Nevertheless, they have immediate
consequences for local fields. As an example, we define the notion of a definable
distribution; this is defined as a function on the space of polydisks with certain prop-
erties. Making use of model-theoretic properties of the space of polydisks, we show
that any definable distribution agrees outside a proper subvariety with one obtained
by integrating a function. This is valid over any valued field of sufficiently large
residue characteristic. In particular, for large p, the p-adic Fourier transform of a
rational polynomial is a locally constant function away from an exceptional subvari-
ety, in the usual sense (Corollary 11.10). The analogue for R and C was proved by
Bernstein using D-modules. For an individual Qp, the same result can be shown
using Denef integration and a similar analysis of definable sets over Qp. These results
were obtained independently by Cluckers and Loeser; cf. [8].

1.3 More general definable sets

Throughout the chapter, we discuss not semialgebraic sets, but definable subsets of a
theory with the requisite geometric properties (called V-minimality). This includes
also the rigid analytic structures of [23]. The adjective “geometrically’’ can be take
to mean here “in the sense of the V-minimal theory.’’

While we work geometrically throughout the paper, the isomorphisms we obtain
are canonical and so specialize to rational points over substructures. Thus a posteriori
our results apply to definable sets over any Hensel field of large residue characteristic.
See Section 12.

For model theorists, this systematic use of algebraically closed valued fields to
apply to other Hensel fields is only beginning to be familar. As an illustration,
see Proposition 12.9, where it is shown that after a little analysis of definable sets
over algebraically closed valued fields, quantifier elimination for Henselian fields of
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residue characteristic zero becomes a consequence of Robinson’s earlier quantifier
elimination in the algebraically closed case.

A third kind of generalization is an a posteriori expansion of the language in the
RV sort. Such an expansion involves loss of information in the integration theory,
but is sometimes useful. For instance, one may want to use the Denef–Pas language,
splitting the exact sequence into a product of residue field and value group. Another
example occurs in Theorem 12.5, where it is explained, given a valued field whose
residue field is also a valued field, what happens when one integrates twice. To discuss
this, the residue field is expanded so as to itself become a valued field.

1.4 Generalized algebraic varieties

We now describe the basic ingredients in more detail. Let L0 be a valued field
with residue field k0 and value group A. For each point γ ∈ Q ⊗ A, we have
one-dimensional k-vector space

Vγ = {0} ∪ {x ∈ K : val(x) = γ }
1+M

.

As discussed above, Vγ should be viewed as a functor L �→ Vγ (L) on valued field
extensionsL ofL0, giving a vector space over the residue field functor. If γ −γ ′ ∈ A,
then Vγ ,V′

γ are definably isomorphic, so one essentially has Vγ for γ ∈ (Q⊗A)/A.
Fix γ̄ = (γ1, . . . , γn), and Vi = Vγi , Vγ̄ = �iVγi . A γ̄ -polynomial is a polyno-

mial H(X) =∑ aνX
ν with valp(aν)+∑i ν(i)γi = 0 for each nonzero term aνXν .

The coefficients aν are described in Section 5.5; for the purposes of the introduc-
tion, and of Theorem 1.3 below, it suffices to think of integer coefficients. Such a
polynomial clearly defines a function H : Vγ̄ → k. In particular, one has the set of
zeroes Z(H). The generalized residue structure RESL0 is the residue field, together
with the collection of one-dimensional vector spaces Vγ (γ ∈ Q⊗A) over it, and the
functions H : Vγ̄ → k associated to each γ̄ -polynomial.

The intersectionW of finitely many zero sets Z(H) is called a generalized alge-
braic variety over the residue field. Given a valued field extensions L of L0, we have
the set of pointsW(L) ⊆ Vγ̄ (L). When L is a local field,W(L) is finite.

We will systematically use the Grothendieck group of generalized varieties over
the residue field, rather than the usual Grothendieck group of varieties. They are
fundamentally of a similar nature: base change to an algebraically closed value field
makes them isomorphic. But the generalized residue field makes it possible to see
canonically objects that are only visible after base change in the usual approach. One
application is Theorem 1.3 below.
K+ RESL0 [n] denotes the Grothendieck group of generalized varieties of dimen-

sion ≤ n; in the paper we will omit L0 from the notation.

1.5 Rational polyhedra over ordered Abelian groups

Let A be an ordered Abelian group. A rational polyhedron  over A is given by an
expression
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 = {x : Mx ≥ b}
with x = (x1, . . . , xn),M a k × n matrix with rational coefficients, and b ∈ Ak . We
view this as a functor B �→  (B) on ordered Abelian group extensions B of A. This
functor is already determined by its value at B = Q⊗A. In particular, whenA ≤ Q,
 is an ordinary rational polyhedron.
K+ A[n] is the semigroup generated by such polyhedra, up to piecewise GLn(Z)-

transformations andA-translations; see Section 9. WhenA is fixed it is omitted from
the notation.

In our applications, A will be the value group of a valued field L0. If B is the
value group of a valued field extension L, write  (L) for  (B).

1.6 The Grothendieck semiring of definable sets

Fix a base field L0. The word “definable’’ will mean TL0 -definable, with T a fixed
V-minimal theory. To have an example in mind one can read “semialgebraic over
L0’’ in place of “definable.’’

Let VF[n] be the category of definable subsets X of n-dimensional algebraic
varieties over L0; a morphism X→ X′ is a definable bijection X→ X′ (see Defini-
tion 3.65 for equivalent definitions). K+ VF[n] denotes the Grothendieck semigroup,
i.e., the set of isomorphism classes of VF[n] with the disjoint sum operation. [X]
denotes the class of X in the Grothendieck semigroup.

We explain how an isomorphism class of VF[n] is determined precisely by iso-
morphism classes of generalized algebraic varieties and rational polyhedra, whose
dimensions add up to n.

If X ⊆ RESm and f : X→ RESn is a finite-to-one map, let

L(X, f ) = VFn ×rv,f X = {(v1, . . . , vn, x) : vi ∈ VF, x ∈ X, rv(vi) = fi(x)}.
The VF[n]-isomorphism class [L(X, f )] does not depend on f , and is also de-
noted [LX].

When S is a smooth scheme over O, X a definable subset of S(k), π : S(O)→
S(k) the natural reduction map, we have [LX] = [π−1X].

We let RES[n] be the category of pairs (X, f ) as above; a morphism (X, f )→
(X′, f ′) is just a definable bijection X → X′. Let K+ RES[∗] be the direct sum of
the Grothendieck semigroups K+ RES[n].

On the other hand, we have already defined K+ [n]. Let K+ [∗] be the direct
sum of theK+ [n]. An element ofK+ [n] is represented by a definableX ⊆ [n].
Let LX = val−1(X), L[X] = [LX].

It is shown in Proposition 10.2 that the Grothendieck semiring of RV is the tensor
product K+ RES[∗] ⊗K+ [∗] over the semiring K+fin of classes of finite subsets
of ; see Section 9.

Note that L([1]1) = L([1]0) + L([(0,∞)]1), where [1]1 ∈ K+ RES[1], [1]0 ∈
K+ RES[0] are the classes of the singleton set 1, and [(0,∞)]1 is the class inK+ [1]
of the semi-infinite segment (0,∞). Indeed, L([1]1) is the unit open ball around 1,
L([1]0) is the point {1}, while L([(0,∞)]1) is the unit open ball around 0, isomorphic



266 Ehud Hrushovski and David Kazhdan

by a shift to the unit open ball around 1. This is the one relation that cannot be
understood in terms of the Grothendieck semiring of RV; it will be seen to correspond
to the analytic summation of geoemtric series in the Denef theory. Let Isp be the
congruence on the ringK+ RES[∗]⊗K+ [∗] generated by [1]1 ∼ [1]0+[(0,∞)]1.

The following theorem summarizes the relation between definable sets in VF and
in RV; it follows from Theorem 8.4 together with Proposition 10.2 in the text.

Theorem 1.1. L induces a surjective homomorphism of filtered semirings

K+ RES[∗] ⊗K+ [∗] → K+(VF).

The kernel is precisely the congruence Isp.

The inverse isomorphismK+(VF)→ K+ RES[∗]⊗K+ [∗]/Isp can be viewed
as a kind of Euler characteristic, respecting products and disjoint sums, and can be
functorial in various other ways.

The values of this Euler characteristic are themselves geometric objects, both on
the algebraic-geometry side (RES) and the combinatorial-analytic side (). This is
valuable for some purposes; in particular, it becomes clear that the isomorphism is
compatible with taking rational points over Henselian subfields (cf. Proposition 12.6).

For other applications, however, it would be useful to obtain more manageable
numerical invariants; for this purpose one needs to analyze the structure ofK+ [∗].
We do not fully do this here, but using a number of homomorphisms onK+ [∗], we
obtain a number of invariants. In particular, using the Z-valued Euler characteristics
onK [∗] (cf. Section 9 and [26, 20]), we obtain two homomorphisms onK+ VF[n]
essentially to K RES[n]. The reason there are two rather than one has to do with
Poincaré duality; see Theorem 10.5.

For instance, when F is a field of characteristic 0, we obtain an invariant of rigid
analytic varieties over F((t)), with values in the Grothendieck ringK(VarF ) of alge-
braic varieties over F ; and another in K(VarF )[[A1]−1] (Proposition 10.8). It is in-
structive to compare this with the invariant of [25], with values inK(RES[n])/[Gm].1
Since any two closed balls are isomorphic, via additive translation and multiplicative
contractions, all closed balls must have the same invariant. Working with a discrete
value group tends to force [Gm] = 0, since it appears that a closed ballB0 of valuation
radius 0 equalsGm times a closed ballB1 of valuation radius 1. Since our technology
is based on divisible value groups, the “equation’’ [B0] = [B1][Gm] is replaced for
us by [B0] = [Bo0 ][Gm], where Bo0 is the open ball of valuation radius 0. Though
B1 and B0

0 have the same F((t))-rational points, they are geometrically distinct (cf.
Lemma 3.46) and so no collapse takes place. See also Sections 12.6 and 12.6 for two
previously known cases.

By such Euler characteristic methods we can prove a statement purely concerning
algebraic varieties, partially answering a question of Gromov and Kontsevich [13,
p. 121]. In particular, two elliptic curves with isomorphic complements in projective

1 The setting is somewhat different: Loeser–Sebag can handle positive characteristic, too,
but assume smoothness.
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space were previously known to be isogenous, by zeta function methods; we show
that they are isomorphic. This also follows from [22]; the method there requires
strong forms of resolution of singularities. See Theorem 13.1.

1.7 Integration of forms up to absolute value

Over local fields, data for integration consists of a triple (X, V, ω), withX a definable
subset of a smooth variety V and ω a volume form on V . We are interested in an
integral of the form

∫
X
|ω|, so that multiplication of ω by a function with norm 1 does

not count as a change, nor does removing a subvariety of V of smaller dimension.
Using an equivalent description of VF[n], where the objects come with a distinguished
finite-to-one map into affine space, we can represent an integrand as a pair (X, ω)
with X ∈ Ob VF[n] and ω a function from X into . Isomorphisms are essential
bijections, preserving the form up to a function of norm 1. See Definition 8.10 for a
precise definition of this category, the category µVF[n].

Integration is intended to be an invariant of isomorphisms in this category. Thus
we can find the integral if we determine all invariants. We do this in complete analogy
with Theorem 1.1.

For n ≥ 0 let [n] be the category whose objects are finite unions of rational
polyhedra over the group A of definable points of . A morphism f : X → Y of
[n] is a bijection such that for some partition X = ∪ki=1Xi into rational polyhedra,
f |Xi is given by an element of GLn(Z) � An. Let µ[n] be the category of pairs
(X, ω), with X an object of [n], and ω : X →  a piecewise affine map. A
morphism f : (X, ω) → (X′, ω′) is a morphism f : X → X′ of [n] such that∑l
i=1 xi+ω(x) =

∑l
i=1 x

′
i+ω′(x′)whenever (x′1, . . . , x′n) = f (x1, . . . , xn). Given

(X, ω) ∈ Obµ[n], define LX as above, and adjoint the pullback of ω to obtain an
object of µVF[n]. This gives a homomorphism K+ µ[n] → K+ µVF[n].
Theorem 1.2. L induces a surjective homomorphism of filtered semirings

K+ RES[∗] ⊗N K+ µ[∗] → K+(µVF)[∗].
The kernel is generated by the relations p ⊗ 1 = 1 ⊗ [(valrv(p),∞)] and 1 ⊗ a =
valrv−1(a)⊗ 1.

In the statement of the theorem, p ranges over definable points of RES (actually
one value suffices), and a ranges over definable points of .

This can also be written as

K+ RES[∗] ⊗K+(µfin) K+ µ[∗]/Iµsp ' K+(µVF)[∗],

where K+(µfin) is the subsemiringof subsets of µ with finite support, and Iµsp is
a semiring congruence defined similarly to Isp. The base of the tensor leads to the
identification of a point of  with with a coset of k∗ in RES, while Iµsp identifies a
point of RES with an infinite interval of . The inverse isomorphism can be viewed
as an integral.
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We introduce neither additive nor multiplicative inverses inK+ RES[∗] formally,
so that the target of integration is completely geometric.

We proceed to give an application of the first part of the theorem (the surjectivity)
in terms of ordinary p-adic integration.

1.8 Integrals over local fields: Uniformity over ramified extensions

Let L be a local field, finite extension of Qp or Fp((t)). We normalize the Haar
measure µ in such a way that the maximal ideal has measure 1, the norm by |a| =
µ{x : |x| < |a|}. Let RESL be the generalized residue field, and L be the value
group. We assume Qp or Fp((t)) has value group Z, and identify L with a subgroup
of Q.

Given c = (c1, . . . , ck) ∈ Lk and s = (s1, . . . , sk) ∈ Rk with si ≥ 1, let
|c|s = �ki=1|ci |si .

Let λ be a multiplicative character Rn → R∗. Define

evλ( (B)) =
∑
b∈ (B)

λ(b),

provided this sum is absolutely convergent. Given linear functions h0, . . . , hk on Rn

and s1, . . . , sk ∈ R, let evh,s,Q = evλ, where λ(x) = Qh0(x)+∑ sihi (x).

Theorem 1.3. Fix n, d, k ∈ N. Let p be a large prime compared to n, d, k, and let
f ∈ Qp[X1, . . . , Xn]k have degrees ≤ d . Then there exist finitely many generalized
varieties Xi over RES(Qp), rational polyhedra i , γ (i) ∈ Q≥0, ni ∈ N, and linear
functions hi0, . . . , h

i
k with rational coefficients, such that for any finite extension L of

Qp with residue field GF(q) and val(L∗) = (1/r)Z, val(p) = 1, and any s ∈ Rk≥1,∫
OnL

|f |s =
∑
i

qrγ (i)(q − 1)ni |Xi(L)| evhi ,s,qr ( i(L)).

Note the following:

(1)  i(L) depends only on the ramification degree r of L over Qp.
(2) The formula is a sum of nonnegative terms.
(3) evh,s,qr ( i((1/r)Z)) can be written in closed form as a rational function of

qrs . This follows from Denef, who shows it for more general sets i definable in
Pressburger arithmetic; such analytic summation is an essential component of his
integration theory. Since it plays no role in our approach we leave the statement
in geometric form.

(4) The generalized varietiesXi and polyhedra i are simple functions of the coeffi-
cients f . Here we wish to emphasize not this, but the uniformity of the expression
over ramified extensions of Qp.

The proof follows Proposition 10.10. (It uses only the easy surjectivity in this
proposition and Proposition 4.5.)
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1.9 Bounded and unbounded sets

The isomorphism of semirings of Theorem 1.2 obviously induces an isomorphism of
rings. However, introducing additive inverses loses information on the  side; the
class of the interval [0, 1) becomes 0, since [0,∞) and [1,∞) are isomorphic. The
classical remedy is to cut down to bounded sets before groupifying. This presents no
difficulty, since the isomorphism respects boundedness.

In higher-dimensional local fields, stronger notions of boundedness may be useful,
such as those introduced by Fesenko. Since these questions are not entangled with
the theory of integration, and can be handled a posteriori, we will deal with them in
a future work.

Here we mention only that even if one insists on integrating all definable inte-
grands, with no boundedness condition, into a ring, some but not all information is
lost. This is due to the existence of Euler characteristics on , and thus again to the
fact that we work geometrically, with divisible groups, even if the base field has a
discrete group. We will see (Lemma 9.12) that K+(µ[n]) can be identified with
the group of definable functions  → K+([n]). Applying an appropriate Euler
characteristic reduces to the group of piecewise constant functions on  into Z. Re-
combining with RES we obtain a consistent definition of an integral on unbounded
integrands, compatible with measure-preserving maps, sums, and products, with val-
ues inK(RES)[A]/[A1]1K(RES)[A], whereA is the group of definable points of ,
and [A1]1 is the class of the affine line. See Theorem 10.11.

1.10 Finer volumes

We also consider a finer category of definable sets with RV-volume forms. This
means that a volume form ω is identified with gω only when g− 1 ∈ M; val(g) = 0
does not suffice. We obtain an integral whose values themselves are definable sets
with volume forms; in particular, including algebraic varieties with volume forms
over the residue field.

Theorem 1.4. L induces a surjective homomorphism of graded semirings

K+ µRV[∗] → K+(µVF)[∗].
The kernel is precisely the congruence Iµsp.

µRV is the category of definable subsets of µRV∗ enriched with volume forms;
see Definition 8.13. Again, an isomorphism is induced in the opposite direction, that
can be viewed as a motivic integral∫

: K+(µVF)[∗] → K+ µRV[∗]/Iµsp.

This allows an iteration of the integration theory, either with an integral of the same
nature if the residue field is a valued field, or with a different kind of integral if, for
instance, the residue field is R.
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1.11 Hopes

We mention three. Until now, a deep obstacle existed to extending Denef’s theory
to positive characteristic; namely, the theory was based on quantifier elimination for
Hensel fields of residue characteristic 0, or for finitely ramified extensions of Qp,
and it is known that no similar quantifier elimination is possible for Fp((t)), if any
is. On the other hand, Robinson’s quantifier elimination is perfectly valid in positive
characteristic. This raises hopes of progress in this direction, although other obstacles
remain.

It is natural to think that the theory can be applied to higher-dimensional local
fields; we will consider this in a future work.

Another important target is asymptotic integration over R. Nonstandard exten-
sions of R admit natural valued field structures. This is the basis of Robinson’s
nonstandard analysis. These valued fields have divisible value groups, and so previ-
ous theories of definable integration do not apply. The theory of this paper applies,
however, and we expect that it will yield connections between p-adic integration and
asymptotics of real integrals.

1.12 Organization of the paper

After recalling some basic model theory in Section 2, we proceed in Section 3 to
V-minimal theories.

In Section 4 we show that any definable subset of VFn admits a constructible
bijection with some L(X, f ). In fact, only a very limited class of bijections is needed;
a typical one has the form (x1, x2) �→ (x1, x2 + f (x1, x2)), so it is clearly measure
preserving. The proof is simple and brief, and uses only a little of the preceding
material. We note here that for many applications this statement is already sufficient;
in particular, it suffices to give the surjectivity in Theorems 1.1 and 1.2, and hence
the application Theorem 1.3.

In Section 5 we return to the geometry of V-minimal structures, developing a
theory of differentiation. We show the compatibility between differentiation in RV
and in VF. This is needed for Theorem 1.4. Differentiation in VF involves much
finer scales than in RV; in effect RV can only see distances measured by valuation 0,
while the derivative in VF involves distances of arbitrarily large valuation. The proof
uses a continuity argument with respect to dependence on scales. It fails in positive
characteristic, in its present form.

Section 6 is devoted to showing that L yields a well-defined map K+(RV) →
K+(VF); in other words, not only objects, but also isomorphisms can be lifted.

Sections 7 and 8 investigate the kernel of L in Theorem 1.1. This is the most
technical part of the paper, and we have not been able to give a proof as functorial as
we would have liked. See Question 7.9.

In Section 9 we study the piecewise linear Grothendieck group; see the introduc-
tion to this section.

Section 10 decomposes the Grothendieck group of RV into the components RES
and , used througout this introduction.
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Section 11 introduces an additive character, and hence the Fourier transform.
The isomorphism of volumes given by Theorem 1.4 suffices for this extension; it
is not necessary to redo the theory from scratch, but merely to follow through the
functoriality.

Section 12 contains the extension to definable sets over Hensel fields mentioned
above, and Section 13 gives the application to the Grothendieck group of varieties.

2 First-order theories

The bulk of this paper uses no deep results from logic beyond Robinson’s quantifier
elimination for the theory of algebraically closed valued fields [33]. However, it is
imbued with a model-theoretic viewpoint. We will not explain the most basic notions
of logic: language, theory, model. Let us just mention that a language consists of basic
relations and function symbols, and formulas are built out of these, using symbols for
Boolean operations and quantifiers (cf., e.g., [11] or [19], or the first section of [9]);
but we attempt in this section to bridge the gap between these and the model-theoretic
language used in the paper.

A language L consists of a family of “sorts’’ Si , a collection of variables ranging
over each sort, a set of relation symbolsRj , each intended to denote a subset of a finite
product of sorts, and a set of function symbols Fk intended to denote functions from
a given finite product of sorts to a given sort. From these, and the logical symbols
&, ¬, ∀, ∃ one forms formulas. A sentence is a formula with no free variables (cf.
[11]). A theory T is a set of sentences of L. A theory is called complete if for every
sentence φ of L, either φ or its negation ¬φ is in T .

AuniverseM for the languageL consists, by definition, of a set S(M) for each sort
S of L. An L-structure consists of such a universe, together with an interpretation
of each relation and a function symbol of L. One can define the truth value of a
sentence in a structure M; more generally, if φ(x1, . . . , xn) is a formula, with xi a
variable of sort Si , then one defines the interpretation φ(M) of φ inM , as the set of
all d ∈ S1(M) × · · · × Sn(M) of which φ is true. If every sentence in T is true in
M , one says that M is a model of T (M |= T ). The fundamental theorem here is
a consequence of Gödel’s completeness theorem called the compactness theorem: a
theory T has a model if every finite subset of T has a model.

The language Lrings of rings, for example, has one sort, three function symbols
+, · · · ,−, two constants 0, 1; any ring is anLrings-structure; one can obviously write
down a theory Tfields in this language whose models are precisely the fields.

2.1 Basic examples of theories

We will work with a number of theories associated with valued fields:

(1) ACF, the theory of algebraically closed fields. The language is the language of
rings {+, ·,−, 0, 1}, mentioned earlier. The theory states that the model is a field,
and for each n, that every monic polynomial of degree n has a root. For instance,
for n = 2,
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(∀u1)(∀u0)(∃x)(x2 + u1x + u0 = 0).

In addition, ACF(0) includes the sentence 1 + 1 �= 0, 1 + 1 + 1 �= 0, . . . . This
theory is complete (Tarski–Chevalley). It will arise as the theory of the residue
field of our valued fields.

(2) Divisible ordered Abelian groups (DOAG). The language consists of a single
sort, a binary relation symbol <, a binary function symbol +, a unary function
symbol −, and a constant symbol 0. The theory states that a model is an ordered
Abelian group. In addition, there are axioms asserting divisibility by n for each
n, for instance, (∀x)(∃y)(y + y = x).
This is the theory of the value group of a model of ACVF.

(3) The RV sort (extension of (2) by (1)). The language has one official sort, denoted
RV, and includes Abelian group operations ·, / on RV, a unary predicate k∗ for a
subgroup, and an operation+ : k2 → k, where k is k∗ augmented by a constant
0. Finally, there is a partial ordering; the theory states that k∗ is the equivalence
class of 1; that≤ is a total ordering on k∗-cosets, making RV/k∗ =:  a divisible
ordered Abelian group, and that (k,+, ·) is an algebraically closed field. (We
thus have an exact sequence 0 → k∗ → RV →  → 0, but we treat  as an
imaginary sort.) This theory TRV is complete, too.
We will sometimes view RV as an autonomous structure but it will arise from an
algebraically closed valued field, as in (5) below.

(4) Let M |= TRV, and let A be a subgroup of (M). Within TRVA we see an
interpretation of ACF, namely, the algebraically closed field k. In addition, for
each a ∈ A, we have a one-dimensional k-space, the fiber of RV lying over 
augmented by 0. Collectively, the field k with this collection of vector spaces
will be denoted RES.

(5) ACVF, the theory of algebraically closed valued fields. According to Robinson,
the completions, denoted ACVF(q, p), are obtained by specifying the charac-
teristic q and residue characteristic p. We will be concerned with ACVF(0, 0)
in this paper. However, since any sentence of ACVF(0, 0) lies in ACVF(0, p)
for almost all primes p, the results will a posteriori apply also to valued fields of
characteristic zero and large residue characteristic.
We will take ACVF(0, 0) to have two sorts, VF and RV = VF∗/(1 +M). The
language includes the language of rings (1) on the VF sort, the language (3)
on the RV sort, and a function symbol rv for a function VF∗ → RV. Denote
rv −1(RV≥0) = O, rv −1(0) = M.
The theory states that VF is a valued field, with valuation ring O and maximal
ideal M such that rv : VF∗ → RV is a surjective group homomorphism, and the
restriction to O (augmented by 0 �→ 0) is a surjective ring homomorphism.
The structure that ACVFA induces on  is of a uniquely divisible Abelian group,
with constants for the elements of (A). Thus every definable subset of  is a
finite union of points and open intervals (possibly infinite).

(6) Rigid analytic expansions (Lipshitz). The theory ACVFR of algebraically closed
valued fields expanded by a family R of analytic functions. See [23] and [24].
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Our theory of definable sets will be carried out axiomatically, and are thus also
valid for these rigid analytic expansions.

A definable set D is not really a set, but a functor from the category of models
of T to the category of sets of the form M �→ φ(M), where φ is a formula of
L. Model theorists do not really distinguish between the definable set D and the
formula φ defining it; we will usually refer to definable sets rather than to formulas.
If R ⊆ D × D′ and for any model M |= T , R(M) is the graph of a function
D(M)→ D(M ′), we say R is a definable function of T . Similarly, we sayD is finite
if D(M) is finite for anyM |= T , etc. It follows from the compactness theorem that
if D is finite, then for some integer m we have |D(M)| ≤ m for any M |= T . We
sometimes write S∗ to denote Sn for some unspecified n.

By a map between L-structures A, B we mean a family f = (fS) indexed by
the sorts of L, with fS : S(A) → S(B); one extends f to products of sorts by
setting f ((x1, . . . , xn)) = (f (x1), . . . , f (xn)). f is an embedding of structures if
f−1R(B) = R(A) for any atomic formula R of L. Taking R to be the equality
relation, this includes, in particular, the statement that each fS is injective.

On occasion we will use ∞-definable sets. An ∞-definable set is a functor of
the form M �→ ∩D, where D is a given collection of definable sets. In a complete
theory a definable set is determined by the value it has at a single model; this is, of
course, false for ∞-definable sets.

We write a ∈ D to mean a ∈ D(M) for some M |= T . It is customary, since
Shelah, to choose a single universal domain U embedding all “small’’ models, and
let a ∈ D mean a ∈ D(U); we will not require this interpretation, but the reader is
welcome to take it.

We will sometimes consider imaginary sorts. If D is a definable set, and E a
definable equivalence relation onD, thenD/E may be considered to be an imaginary
sort; as a definable set it is just the functorM �→ D(M)/E(M). A definable subset of
a product �ni=1Di/Ei of imaginary sorts (and ordinary sorts) is taken to be a subset
whose preimage in �ni=1Di is definable; the notion of a definable function is thus
also defined. In this way, the imaginary sorts can be treated on the same footing as
the others. The set of all elements of all imaginary sorts of a structureM is denoted
Meq. It is easy to construct a theory T eq in a language Leq whose category of models
is (essentially) {Meq : M |= T }. See [35] and [31, Section 16d].

Given a definable setD ⊆ S×X, where S,X are definable sets, and given s ∈ S,
let D(s) = {x ∈ X : (s, x) ∈ D}. Thus D is viewed as a family of definable subsets
of X, namely, {D(s) : s ∈ S}. If s �= s′ implies D(s) �= D(s′), we say that the
parameters are canonical, or that s is a code forD(s). In particular, ifE is a definable
equivalence relation, the imaginary elements a/E can be considered as codes for the
classes of E.

T is said to eliminate imaginaries if every imaginary sort admits a definable injec-
tion into a product of some of the sorts of L. For instance, the theory of algebraically
closed fields eliminates imaginaries. See [32] for an excellent exposition of these is-
sues. We note that T admits elimination of imaginaries iff for any familyD ⊆ S×X
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there exists a familyD′ ⊆ S′ ×X such that for any t ∈ S there exists a unique t ′ ∈ S′
with D(t) = D′(t ′).

(Recall that t ∈ S means t ∈ S(M) for some M |= T . The uniqueness of t ′
implies in this case that one can choose t ′ ∈ S′(M), too.) In this case, we also say
that t ′ is called a canonical parameter or code for D(t).

Example 2.1. Let b be a nondegenerate closed ball in a model the theory ACVF of
algebraically closed valued fields. Then b = {x : val(x − c) ≥ val(c− c′)} for some
elements c �= c′ of the field. b is coded by b̄ = (c, c′)/E, where (c, c′)E(d, d ′)
iff val(c − c′) = val(d − d ′) ≤ val(c − d). However, we often fail to distinguish
notationally between b and b̄, and, in particular, we write A(b) = A(b̄).

The only imaginary sorts that will really be essential for us are the sorts B of
closed and open balls. The closed balls around 0 can be identified with their radius,
hence the valuation group(M) = VF∗(M)/O∗(M) of a valued fieldM is embedded
as part of B.

Notation. Let B = Bo ∪ Bcl, the sorts of open and closed subballs of VF. Let
+ = {γ ∈  : γ ≥ 0}.

Bcl =
•⋃
γ∈

Bcl
γ , Bcl

γ = VF/γO,

Bo =
•⋃
γ∈

Bo
γ , Bo

γ = VF/γM.

Here γM = {x ∈ VF : val(x) > γ }, γO = {x ∈ RES : val(x) ≥ γ }. The elements
of Bcl

γ , fBoγ will be referred to as closed and open balls of valuative radius γ ; though
this valuative definition of radius means that bigger balls have smaller radius. The
word “distance’’ will be used similarly.

By a thin annulus we will mean a closed ball of valuative radius γ , with an open
ball of valuative radius γ removed.

Fix a modelM of T . A substructureA ofM (writtenA ≤ M) consists of a subset
AS of S(M), for each sort S of L, closed under all definable functions of T . For
example, the substructures of models of Tfields are the integral domains.

In general, the definable closure of a set A0 ⊂ M is the smallest substructure
containing A0; it is denoted dcl(A0) or 〈A0〉. An element of 〈A0〉 can be written as
g(a1, . . . , an)with ai ∈ A0 and g a definable function; i.e., it is an element satisfying
a formula φ(x, a1, . . . , an) of LA0 in one variable that has exactly one solution in
M . If A is a substructure, dcl(A ∪ {c}) is also denoted A(c). These notions apply
equally when A, c contain elements of the imaginary sorts. If B is contained in sorts
S1, . . . , Sn, then dcl(B) is said to be an S1, . . . , Sn-generated substructure. In the
special case of valued fields, where one of the sorts VF is the “main’’ valued field
sort, a VF-generated structure will be said to be field-generated, or sometimes just
“a field.’’



Integration in valued fields 275

For any definable setD, we letD(A) be the set of points ofD(M)with coordinates
in A. If S = D/E is an imaginary sort, S(A) is the set of a ∈ S whose preimage
is defined over A. We have D(A)/E(A) ⊆ S(A). D(A)/E(A) is, of course, closed
under definable functions Sm → S that lift to definable functions Dm → D, but
it is not necessarily closed under arbitrary definable functions, i.e., functions whose
graph is the image of a definable subset of Dm ×D. For example x �→ (1/n)x is a
definable function on the value group of a model of ACVF, but if A ≤ M |= ACVF,
(A) need not be divisible.

When A ≤ M,B ≤ N with M,N |= T , a function f : A → B is called a
(partial) elementary embedding (A,M) → (B,N) if for any definable set D of L,
f−1D(B) = D(A). In particular, when A = M , B = N , one says that M is an
elementary submodel of N .

By a constructible set over A, we mean the functor L �→ φ(L) on models
M |= TA, where φ = φ(x1, . . . , xn, a1, . . . , am) is a quantifier-free formula with
parameters from A.

We say that T admits quantifier elimination if every definable set coincides with
a constructible set. It follows in this case that for any A, any A-definable set is
A-constructible. When T admits quantifier elimination, f : A → B is a partial
elementary embedding iff it is an embedding of structures.

Theories (1)–(5) of Section 2.1 admit quantifier elimination in their natural alge-
braic languages (theorems of Tarski–Chevalley and Robinson; cf. [16]). The sixth
admits quantifier elimination in a language that needs to be formulated with more
care; see [23].

In all of this paper, except for Sections 12.1 and 12.3, we will only use structural
properties of definable sets, and not explicit formulas. In this situation quantifier elim-
ination can be assumed softly, by merely increasing the language by definition so that
all definable sets become equivalent to quantifier-free ones. The above distinctions
will only directly come into play in Sections 12.1 and 12.3.

IfA ≤ M |= T , LA is the languageL expanded by a constant ca for each element
a of A, so that an LA-structure is the same as an L-structure M together with a
function AS → S(M) for each sort S. TA is the set of LA sentences true inM when
the constant symbol ca is interpreted as a; the models of TA are models M of T ,
together with an isomorphic embedding ofA as a substructure ofM . In particular,M
with the inclusion ofA inM is anLA-structure denotedMA. For any subsetA0 ⊆ M ,
we write TA0 for T〈A0〉, where 〈A0〉 is the substructure generated by A0.

A definable set of TA will also be referred to as A-definable; similarly for other
notions such as those defined just below.

A parametrically definable set of T is by definition a TA-definable set for someA.

An almost definable set is the union of classes of a definable equivalence relation
with finitely many classes. An element e is called algebraic (respectively, definable)
if the singleton set {e} is almost definable (respectively, definable). When T is a
complete theory, the set of algebraic (definable) elements of a model M of T forms
a substructure that does not depend onM , up to (a unique) isomorphism.



276 Ehud Hrushovski and David Kazhdan

Let A0 ⊆ M |= T ; the set of e ∈ M almost definable over A0 is called the alge-
braic closure ofA0, acl(A0). IfA0 is contained in sorts S1, . . . , Sn, any substructure
of acl(A0) containing dcl(A0) is said to be almost S1, . . . , Sn-generated .

Example 2.2. If a definable setD carries a definable linear ordering, then every alge-
braic element ofD is definable. This is because the least element of a finite definable
set F is clearly definable; the rest are contained in a smaller finite definable subset of
D, so are definable by induction.

If, in addition, D has elimination of imaginaries, and Y is almost definable and
definable with parameters from D, then Y is definable. Indeed, using elimination of
imaginaries in D, the set Y can be defined using canonical parameters. These are
algebraic elements of D, hence definable.

Two definable functions f : X→ Y, f ′ : X→ Y ′ will be called isogenous if for
all x ∈ X, acl(f (x)) = acl(f ′(x)).

Compactness

Compactness often allows us to replace arguments in relative dimension one over a
definable set, by arguments in dimension one over a different base structure. Here is
an example.

Lemma 2.3. Let fi : Xi → Y be definable maps between definable sets of T (i =
1, 2). Assume that for anyM |= T and b ∈ Y (M),X1(b) := f1

−1(b) is Tb-definably
isomorphic to X2(b) = f2

−1(b). Then X1, X2 are definably isomorphic.

Proof. Let F be the family of pairs (U, h), where U is a definable subset of Y , and
h : f1

−1U → f2
−1U is a definable bijection.

Claim. For any b ∈ Y (M),M |= T , there exists (U, h) ∈ F with b ∈ U .

Proof. Let b ∈ Y (M). There exists a Tb-definable bijection X1(b) → X2(b). This
bijection can be written as x �→ g(x, b), where g is a definable function. Let U =
{y ∈ Y : (x �→ g(x, y)) is a bijectionX1(y)→ X2(y)}. Then (U, g(x, f1(x))) ∈ F,
and b ∈ U . )�

Now by compactness, there exist a finite number of definable subsets U1, . . . , Uk
of Y , with Y = ∪iUi , and (Ui, hi) ∈ F for some hi . We define U ′i = Ui \ (U1 ∪
. . . ∪ Ui−1) and h = ∪ihi |U ′i . Then h : X1 → X2 is the required bijection. )�

Here is another example of the use of compactness.

Example 2.4. If D is a definable set, and for any a, b ∈ D, a ∈ acl(b), then D is
finite. More generally, if a ∈ acl(b) for any b ∈ D, then a ∈ acl(∅).
Proof. We prove the first statement, the second being similar. For any modelM , pick
a ∈ M; then D(M) ⊆ acl(a). For b ∈ acl(a). Let φb be the formula x �= b&D(x).
Thus the set of formulas Th(M)M ∪ {φb} has no common solution. By compactness,
some finite subset already has no solution; this is only possible if D(M) is finite. )�
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Transitivity, orthogonality

A definable set D is transitive if it has no proper, nonempty definable subsets. (The
usual word is “atomic.’’ One also says thatD generates a complete type.) It is (finitely)
primitive if it admits no nontrivial definable equivalence relation (with finitely many
classes).

Remark 2.5. Let A be a VF-generated substructure of a model of ACVF. When
A is VF-generated, we will see that an ACVFA-definable ball b is never transitive
in ACVFA; indeed, it always contains an A-definable finite set. But b is always
ACVFA(b)-definable, and quite often it is transitive; cf. Lemma 3.8.

Two definable sets D, D′ are said to be orthogonal if any definable subset of
Dm ×Dl is a finite union of rectangles E × F , E ⊆ Dm, F ⊆ Dl . In this case, the
rectangles E, F can be taken to be almost definable. If the rectangles can actually be
taken definable, we say the D, D′ are strongly orthogonal.

Types

Let S be a product of sorts, and let M |= T , a ∈ S(M). We write tp(a) = tp(a;M)
(the type of a) for the set of definable sets D with a ∈ D; when p = tp(a) we write
a |= p. A complete type is the type of some element in some model. If q = tp(a),
we say that a is a realization of q. The set TpS of complete types belonging to S can
be topologized: a basic open set is the set of types including a given definable setD.
The compactness theorem of model theory implies that this is a compact topological
space: if {Di} is any collection of definable sets with nonempty finite intersections,
the compactness theorem asserts the existence ofM |= T with ∩iDi(M) �= ∅.

The compactness theorem is often used by way of a construction called saturated
models; cf. [9]. These are models where all types over “small’’ sets are realized.
They enjoy excellent Galois-theoretic properties: in particular, ifM is saturated, then
dcl(A0) = Fix Aut(M/A0) for any finite A0 ⊆ M . If D is acl(A0)-definable, then
there exists an A0-definable D′ which is a finite union of Aut(M/A0)-conjugates
of D.

A type p can also be identified with the functor P from models of T (under
elementary embeddings) into sets; P(M) = {a ∈ M : a |= p}. As with definable
sets, we speak as if P is simply a set. Unlike definable sets, the value of P(M) at a
single model does not determine P . (It could be empty, but it does determine P ifM
is sufficiently saturated.)

Any definable map f : S → S′ induces a map f∗ : TpS → TpS′ ; as another
consequence of the compactness theorem, f∗ is continuous. We also have a restriction
map from types of TA to types of T , tpT (A)(a) �→ tpT (a).

If L ⊆ L′ and T ⊆ T ′, we say that T ′ is an expansion of T . In this case any
T ′-type p′ restricts to a T -type p. If p′ is the unique type of T ′ extending p, we say
that p implies p′.

The simplest kind of expansion is an expansion by constants, i.e., a theory TA
(whereA ≤ M |= T ). If c ∈ Mn, or more generally if c ∈ Meq, the type of c forMA
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is denoted tp(c/A). It is rare for tp(c) to imply tp(c/A), but it is significant when it
happens.

An instance of this is strong orthogonality: it is easy to see that strong orthogo-
nality of two definable sets D, D′ is equivalent to the following condition:

If A′ is generated by elements of D′, then any type of elements
of D generates a complete type over A′. (∗)

The asymmetry in (∗) is therefore only apparent.
Similarly, we have the following.

Lemma 2.6. Let D,D′ be definable sets. Then (1) ⇐⇒ (2), (3) ⇐⇒ (4).

(1) Every definable function f : D → D′ is piecewise constant, i.e., there exists a
partition D = ∪ni=1Di of D into definable sets, with f constant on Di .

(2) If d ∈ D, d ′ ∈ D′, d ′ ∈ dcl(d), then d ′ ∈ dcl(∅).
(3) If f : E→ D is a definable finite-to-one map, and g : E→ D′ is definable, then
g(E) is finite.

(4) If d ∈ D, d ′ ∈ D′, d ′ ∈ acl(d), then d ′ ∈ acl(∅).

Proof. Let us show that (3) implies (4). Let M |= T , d ∈ D(M), and d ′ ∈ D′(M),
d ′ ∈ acl(d). Then d ′ lies in some finite Td -definable set D′(d) ⊆ D′. Since Td is
obtained from T by adding a constant symbol for d, there exists a formula φ(x, y)
of the language of T and some m such thatM |= φ(d, d ′) andM |= (∃≤mz)φ(d, z).
Let X0 = {(x : (∃≤my)φ(x, y)}, E = {(x, y) : x ∈ X0, φ(x, y)}, f (x, y) = x,
g(x, y) = y. Then by (3), g(E) is finite, but d ′ ∈ g(E), so d ′ ∈ acl(∅).

Next, (4) implies (3): let f,E, g be as in (3) , and suppose g(E) is infinite. In
particular, for any finite F ⊆ acl(∅) there exists d ′ ∈ g(E) \ F . Thus the family
consisting of g(E) and the complement of all finite definable sets has nonempty
intersections of finite subfamilies, so by the compactness theorem, in someM |= T ,
there exists d ′ ∈ g(E) \ acl(∅).

Let d ∈ E(M) be such that d ′ = g(d). Then d ′ ∈ acl(f (d)), but f (d) ∈ D,
contradicting (4). Thus (4) implies (3).

The equivalence of (1)–(2) is similar. )�

Example 2.7. Let P be a complete type, and f a definable function. Then f (P ) is a
complete type P ′. If f is injective on P , then there exist definableD ⊇ P , D′ ⊇ P ′
such that f restricts to a bijection of D with D′.

Proof. For any definableD′, f−1D′ is definable, so P ⊆ f−1D′ or P ∩f−1D′ = ∅.
Thus P ′ ⊆ D′ or P ′ ∩D′ = ∅. Thus P ′ is complete.

Let {Di} be the family of definable sets containing P . Let Ri = {(x, y) ∈ D2
i :

x �= y, f (x) = f (y)}. Then ∩iRi = ∅. Since the family of {Di} is closed under
finite intersections, it follows from the compactness theorem that for some i, Ri = ∅.
Let D = Di , D′ = f (D). )�
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Naming almost definable sets

As special case of an expansion by constants, we can move from a complete theory T
to the theory TA, where A = acl(∅) is the set of all algebraic elements of a modelM
of T , including imaginaries. The effect is a theory where each class of any definable
equivalence relation E with finitely many classes is definable. Since T is complete,
the isomorphism type of acl(∅) in a modelM does not depend on the choice of model;
so the theory TA is determined. A definable set in this theory corresponds to an almost
definable set in T .

When D is a constructible set, T |D denotes the theory induced on D. If T
eliminates quantifiers, the language is just the restriction to D of the relations and
functions of L. If the language is countable, the countable models of DA are of the
form D(M), whereM is a countable model of TA.

Stable embeddedness

A definable subset D of any product of sorts (possibly imaginary) is called stably
embedded (in T ) if for any A, any TA-definable subset of Dm is TB -definable for
some B ⊂ D. For example, the set of open balls is not stably embedded in ACVF,
since the set of open balls containing a point a ∈ K cannot in general be defined
using a finite number of balls.

Lemma 2.8. Let D be a family of sorts of L; let T |D be the theory induced on the
sorts D. If D is stably embedded and T |D admits elimination of imaginaries, then
for any definable P and definable S ⊂ P × Dm, viewed as a P -indexed family of
subsets S(a) ⊆ Dm, a ∈ P , we have a definable function f : P → Dn, with f (a) a
canonical parameter for S(a).

Proof. By stable embeddedness there exists a family S′ ⊂ P ′ × Dm yielding the
same family, i.e., {S(a) : a ∈ P } = {S′(a′) : a′ ∈ P ′}, and with P ′ ⊆ Dn; using
elimination of imaginaries we can take S′ to be a canonical family; now a defines
f (a) to be the unique a′ ∈ P ′ with S(a) = S′(a′). )�
Corollary 2.9. If D is stably embedded and admits elimination of imaginaries, then
for any substructure A,

(1) (TA)|D = (T |D)A∩D;
(2) for a ∈ A, tp(a/A ∩D) implies tp(a/D). )�

Examples of definable sets of ACVF satisfying the hypotheses include the residue
field k, or the value group , as well as RV ∪ . The stable embeddedness in this
case is an immediate consequence of quantifier elimination; cf. Lemma 3.30.

IfM is saturated andD is stably embedded in T , then we have an exact sequence

1 → Aut(M/D(M))→ Aut(M)→ Aut(D(M))→ 1,
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where Aut(M/D(M)) is the group of automorphisms ofM fixing D(M) pointwise,
and Aut(D(M)) is the group of permutations of D(M) preserving all definable re-
lations. Moreover, Aut(M/D(M)) has a good Galois theory; in particular, elements
with a finite orbit are almost definable over some finite subset of D. This and some
other characterizations can be found in [5, appendix].

Generic types

Let T be a complete theory with quantifier elimination. Let C be the category of
substructures of models of T , with L-embeddings, and let S be the category of pairs
(A, p) with A ∈ Ob C and p a type over A. We define Mor((A, p), (B, q)) = {f ∈
MorC(A,B) : f ∗(q) = p}.

By a generic type we will mean a function p on Ob C, denoted A �→ (p|A),
such that A �→ (A, p|A) is a functor C → S. For example, when T , the theory
of algebraically closed fields, is provided by any absolutely irreducible variety V :
given a field F , let p|F be the type of an F -generic point of V , i.e., the type of a
point of V (L) avoiding U(L) for every proper F -subvariety U of V , where L is
some extension field of F . Other examples will be given below, beginning with
Example 3.3.

Lemma 2.10. Let p be a generic type of T , and letM |= T , a, b ∈ M . Let c |= p|M .

(1) If a /∈ dcl(∅), then a /∈ dcl(c).
(2) If a /∈ acl(∅), then a /∈ acl(c).
(3) If a /∈ acl(b), then a /∈ acl(b, c).

Proof.

(1) Since a /∈ dcl(∅), there exists a′ �= a with tp(a) = tp(a′). Let c′ |= p|〈{a, a′}〉.
Since tp(a) = tp(a′), there exists an isomorphism 〈a〉 → 〈a′〉; by functoriality of
p, tp(a, c) = tp(a′, c). If a ∈ dcl(c), then a is the unique realization of tp(a/c),
so a = a′; a contradiction.

(2) If a ∈ acl(c), then for some n there are at most n realizations of tp(a/c). Since
a /∈ acl(∅), there exist distinct realizations a0, . . . , an of tp(a). Proceed as in (1)
to get a contradiction.

(3) This follows from (2) for T〈b〉. )�

2.2 Grothendieck rings

We define the Grothendieck group and associated objects of a theory T ; cf. [10].
Def (T ) is the category of definable sets and functions. Let C be a subcategory of
Def (T ). We assume Mor(X, Y ) is a sheaf on X: if X1 = X2 ∪ X3 are subobjects
of X, and fi ∈ Mor(Xi, Y ) with f1|(X2 ∩ X3) = f2|(X2 ∩ X3), then there exists
f ∈ Mor(X1, Y ) with f |Xi = fi . Thus the disjoint union of two constructible sets
in Ob C is also the category theoretic disjoint sum.

If only the objects are given, we will assume Mor C is the collection of all definable
bijections between them.
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The Grothendieck semigroup K+(C) is defined to be the semigroup generated by
the isomorphism classes [X] of elements X ∈ Ob C, subject to the relation

[X] + [Y ] = [X ∪ Y ] + [X ∩ Y ].
In most cases, C has disjoint unions; then the elements of K+(C) are precisely the
isomorphism classes of C.

If C has Cartesian products, we have a semiring structure given by

[X][Y ] = [X × Y ].
In all cases we will consider the cases when products are present, the symmetry
isomorphism X × Y → Y × X will be in the category, as well as the associativity
morphisms, so that K+(C) is a commutative semiring.

(The assumption on Cartesian products is taken to include the presence of an object
{p} = X0 such that the bijections X → {p} × X, x �→ (p, x), and X → X × {p},
x �→ (x, p), are in MorC for all X ∈ ObC. All such p give the same element
1 = [{p}] ∈ K(C), which serves as the identity element of the semiring.)

LetK(C) be the Grothendieck group, the formal groupification ofK+(C). When
C has products, K(C) is a commutative ring.

We will often have dimension filtrations on our categories, and hence on the
semiring.

By an semiring ideal we mean a congruence relation, i.e., an equivalence relation
on the semiring R that is a subsemiring of R × R. To show that an equivalence
relation E is a congruence on a commutative semiring R, it suffices to check that if
(a, b) ∈ E then (a + c, b + c) ∈ E and (ac, bc) ∈ E.

Remark. When T is incomplete, let S be the (compact, totally disconnected) space
of completions of T . Then {K(t) : t ∈ S} are the fibers of a sheaf of rings over
S. K(T ) can be identified with the ring of continuous sections of this sheaf. In this
sense, Grothendieck rings reduce to the case of complete theories.

This last remark is significant even when T is complete: if one adds a constant
symbol c to the language, T becomes incomplete, and so the Grothendieck ring of T
in L(c) is the Boolean power of K(Ta), where Ta ranges over all L(c)-completions
of T . Say c is a constant for an element of a sort S. Then an L(c)-definable subset
of a sort S′ corresponds to an L-definable subset of S × S′. This allows for an
inductive analysis of the Grothendieck ring of a structure, given good information
about definable sets in one variable (cf. Lemma 2.3).

Groups of functions into R

Let C(T ) be a subcategory of the category of definable sets and bijections, defined
systematically for T and for expansions by constants T . Let R(T ) = K+(C(T ))
be the Grothendieck semigroup of C(T ). When V is a definable set, we let CV ,
RV denote the corresponding objects over V ; the objects of CV are definable sets
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X ⊆ (V ×W) such that for any a ∈ V , Xa ∈ Ca , and similarly the morphisms. In
practice, R will be the Grothendieck semigroup of all definable sets and definable
isomorphisms satisfying some definable conditions, such as a boundedness condition
on the objects, or a “measure preservation’’ condition on the definable bijections.

To formalize the notion of “definable function into R’’ we will need to look at
classes Xa of parametrically definable sets. The class of Xa makes sense only in
the Grothendieck groups associated with Ta , not T. Moreover, the equality of such
classes, say, of Xa and of Xb, begins to make sense only in Grothendieck groups of
T(a,b). Expressions like

[X] =
a,b
[Y ]

will therefore mean thatX, Y are both definable in Ta,b, [X], [Y ] denote their classes
in the Grothendieck group of Ta,b, and these classes are equal.

If V is a definable set, we define the semigroup of definable functions V → R,
denoted Fn(V ,R). An element of Fn(V ,R) is represented by a definable X ∈ CV ,
viewed as the function a �→ [Xa], where [Xa] is a class in Ra . X,X′ represent
the same function if for all a, [Xa], [X′a] are the same element of Ra . Note that
despite the name, the elements of Fn(V ,R) should actually be viewed as sections
V → �a∈VRa .

Addition is given by disjoint union in the image (i.e., disjoint union over X).
Usually R has a natural grading by dimension; in this case Fn(V ,R) inherits the

grading.
Assume that V is a definable group and R = K+(T ) is the Grothendieck semiring

of all definable sets and functions of T , there is a natural convolution product on
Fn(V ,R). If hi(a) = [Hi(a)],Hi ⊂ V ×Bi , the convolution h1∗h2 is represented by

H = {(a1 + a2, (a1, a2, y1, y2)) : (ai, yi) ∈ Hi} ⊆ V × (V 2 × B1 × B2)

so that h1 ∗ h2(a) = H(a) = {(a1, a2, y1, y2) : (ai, yi) ∈ Hi, a1 + a2 = a}.

Grothendieck groups of orthogonal sets

Lemma 2.11. Let T be a theory with two strongly orthogonal definable setsD1,D2,
D12 = D1 ×D2. Let K+Di[n] be the Grothendieck semigroup of definable subsets
of Dni . Then K+D12[n] ' K+D1[n] ⊗K+D2[n].
Proof. This reduces to n = 1. Given definable setsXi ⊆ Dni , it is clear that the class
ofX1×X2 inK+D12[n] depends only on the classes ofXi onDi[n]. Define [X1]⊗
[X2] = [X1 × X2]. This is clearly Z-bilinear, and so extends to a homomorphism
η : K+D1[1] ×K+D2[1] → K+D12[1]. By strong orthogonality, η is surjective.

To prove injectivity, note that any element ofK+D1[n]⊗K+D2[n] can be written∑[Xi1] ⊗ [Xi2], with X1
1, . . . , X

k
1 pairwise disjoint. To see this, begin with some

expression
∑[Xi1]⊗[Xi2]; use the relation [X′ .∪X′′]⊗[Y ] = [X′]⊗[Y ]+[X′′]⊗[Y ]

to replace theXi1 by the atoms of the Boolean algebra they generate, so that the newXii
are equal or disjoint; finally use the relation [X′ ⊗Y ′]+[X′ ⊗Y ′′] = [X′]⊗[Y ′ .∪Y ′′]
to amalgamate the terms with equal first coordinate.
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Hence it suffices to show that if [∪iXi1×Xi2] = [∪j Y i1 ×Y i2], with theXi1 and the
Y i1 pairwise disjoint, then

∑[Xi1] × [Xi2] =
∑[Y i1] × [Y i2]. Let F : ∪iXi1 × Xi2 →

∪j Y i1 × Y i2 be a definable bijection. By strong orthogonality, the graph of F is a
disjoint union of rectangles. Since F is a bijection, it is easy to see that each of these
rectangles has the form f k1 × f k2 , where for ν = 1, 2, f kν : Xν(k) → Yν(k) is a

bijection from a subset of ∪iXiν to a subset of ∪j Y jν . The rest follows by an easy
combinatorial argument; we omit the details, since a somewhat more complicated
case will be needed and proved later; see Proposition 10.2. )�

Integration by parts

The following will be used only in Section 9, to study the Grothendieck semiring of
the valuation group.

Definition 2.12. Let us say that Y ∈ Ob C is treated as discrete if for any X ∈ Ob C

and any definable F ⊂ X × Y such that T |= F is the graph of a function, the
projection map F → X is an invertible element of MorC(F,X).

To explain the terminology, suppose each X ∈ Ob C is endowed with a measure
µX, and C is the category of measure-preserving maps. IfµY is the counting measure,
and µX×Y is the product measure, then for any function f : X→ Y , x �→ (x, f (x))

is measure preserving.
We will assume C is closed under products.
If Y1, Y2 are treated by C as discrete, so is Y1 × Y2: if F ⊂ X × (Y1 × Y2) is

the graph of a function X → (Y1 × Y2), then the projection to F1 ⊂ X × Y1 is the
graph of a function, hence the projection F1 → X is in C; now F ⊂ (F1 × Y2) is
the graph of a function, and so F → F1 is invertibly represented, too; thus so is the
composition. In particular, if Y is discretely treated, any bijection U → U ′ between
subsets of Yn is represented in C.

If R is a Grothendieck group or semigroup, we write [X]=
R
[Y ] to mean thatX, Y

have the same class in R.

Lemma 2.13. Let f, f ′ ⊂ X × L be objects of C such that [f (c)] =
K(Cc)

[f ′(c)] for

any c in X. Then [f ] =
K(C)

[f ′]; similarly for K+ .

Proof. By assumption, there exists g(c) such that f (c)+ g(c), f ′(c)+ g(c) are Cc-
isomorphic. By compactness (cf. the end of the proof of Lemma 2.3) this must be
uniform (piecewise in L, and hence by glueing globally): there exists a definable
g ⊂ Z×L and a definable isomorphism f +g ' f ′ +g, inducing the isomorphisms
of each fiber. By the definition of Cc, and since C is closed under finite glueing,
f + g, f ′ + g are in Ob C and the isomorphism between them is in Mor C. )�

Let L be an object of C, treated as discrete in C, and assume given a definable
partial ordering on L.
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Notation 2.14. Let f ⊂ X × L. For y ∈ L, let f (y) = {x : (x, y) ∈ f }. Denote∑
γ<β f (γ ) = [{(x, y) : x ∈ f (y), y < γ }].

Notation 2.15. Let φ : L→ K(X) be a constructible function, represented by f ⊂
X × L; so that φ(y) = [f (y)], f (y) = {x : (x, y) ∈ f }. Denote

∑
γ<β φ(γ ) =[{(x, y) : x ∈ f (y), y < γ }].

Note by Lemma 2.13 that this is well defined.
Below, we writefg for the pointwise product of two functions inK(C); [fg(y)] =

[f (y)× g(y)].
Lemma 2.16 (integration by parts). Let  be an object of C, treated as discrete in
C, and assume given a definable partial ordering of . Let f ⊂ X × , F(β) =∑
γ<β f (γ ), g ⊂ Y × , G(β) =∑γ≤β g(γ ).
Then

FG(β) =
∑
γ<β

fG(γ )+
∑
γ≤β

Fg(γ ).

Proof. Clearly,
FG(β) = �γ<β,γ ′≤βf (γ )g(γ ′).

We split this into two sets, γ < γ ′ and γ ′ ≤ γ . Now

�γ<γ ′≤βf (γ )g(γ ′) = �γ ′≤βF (γ ′)g(γ ′),
�γ ′≤γ<βf (γ )g(γ ′) = �g<βf (γ )G(γ ′).

The lemma follows. )�
This is particularly useful when L is treated as discrete in C, since then, if the sets

f (γ ) are disjoint, [f ] = [∪γ fγ ]. Another version, with G(β) =∑γ<β g(γ ):

FG(β) =
∑
γ<β

(fG+ gF + fg)(γ ).

3 Some C-minimal geometry

We will isolate the main properties of the theory ACVF, and work with an arbitrary
theory T satisfying these properties. This includes the rigid analytic expansions
ACVFR of [23].

The right general notion, C-minimality, has been introduced and studied in [15].
They obtain many of the results of the present section. Largely for expository reasons,
we will describe a slightly less general version; it is essentially minimality with respect
to an ultrametric structure in the sense of [31]. We will use notation suggestive of the
case of valued fields; thus we denote the main sort by VF and a binary function by
val(x − y). Some additional assumptions will be made explicit later on.
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Let T be a theory in a language L, extending a theory T in a language L. T is said
to be T-minimal if for anyM |= T , anyLM -formula in one variable is TM -equivalent
to an LM formula.

More generally, if D is a definable subset of T (i.e., a formula of L), we say that
D is T-minimal if for any M |= T , any TM -definable subset of D is TM -equivalent
to one defined by an LM formula.

Strong minimality

Let L = ∅. The only atomic formulas of L are thus equalities x = y of two variables.
T is the theory of infinite sets. T-minimality is known as strong minimality; see
[1, 28, 29]. A theory T is strongly minimal iff for any M |= T , any TM -definable
subset of M is finite or cofinite. For us the primary example of a strongly minimal
theory is ACF, the theory of algebraically closed fields.

LetM |= T . IfD is strongly minimal, andX a definable subset ofD∗, we define
the D-dimension of X to be the least n such that X admits a TM -definable map into
Dn with finite fibers. In the situation we will work in, there will be more than one
definable strongly minimal set up to isomorphism, and even up to definable isogeny;
in particular, there will be the various sets of RESM . However, between any of these,
there exists anM-definable isogeny; so the k dimension agrees with theD dimension
for any of them. We will call it the RES dimension. It agrees with Morley rank, a
notion defined in greater generality, that we will not otherwise need here.

O-minimality

L = {<}, T = DLO the theory of dense linear orders without endpoints (cf. [9]).
DLO minimality is known as O-minimality, and can also be stated thusly: any TM -
definable subset of M is a finite union of points and intervals. This also forms the
basis of an extensive theory; see [37].

LetD beO-minimal. Then theO-minimal dimension of a definable setX ⊆ D∗
is the least n such that X admits a TM -definable map into Dn with bounded finite
fibers.

The Steinitz exchange principle states that if a ∈ acl(B ∪ {b}) but a /∈ acl(B),
then b ∈ acl(B ∪ {a}).

This holds for both strongly minimal and O-minimal structures; cf. [37].
For us the relevant O-minimal theory is DOAG itself. We will occasionally use

stronger facts valid for this theory. Quantifier elimination for DOAG implies the
following.

Lemma 3.1.

(1) Any parameterically definable function f of one variable is piecewise affine;
there exists a finite partition of the universe into intervals and points, such that
on each interval I in the partition, f (x) = αx + c for some rational α and some
definable c.

(2) DOAG admits elimination of imaginaries.
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Proof.

(1) This follows from quantifier elimination for DOAG.
(2) This follows from (1) that any function definable with parameters in DOAG has

a canonical code, consisting of the endpoints of the intervals of the coarsest such
partition, together with a specification of the rationals α and the constants c. But
from this it follows on general grounds that every definable set is coded (cf. [16,
3.2.2]). Thus DOAG admits elimination of imaginaries. )�

C-minimality

Let T = Tum be the theory of ultrametric spaces or, equivalently, chains of equivalence
relations (cf. [31]).

In more detail, L has two sorts, VF and ∞. The relations on ∞ are a constant
∞ and a binary relation<. In addition, L has a function symbol VF2 → ∞, written
val(x − y). T states the following:

(1) ∞ is a dense linear ordering with no least element, but with a greatest element∞.
(2) val(x − y) = ∞ iff x = y.
(3) val(x − y) ≥ α is an equivalence relation; the classes are called closed α-balls.

Hence so is the relation val(x − y) > α, whose classes are called open α-balls.
(4) Let  = ∞ \ {∞}. For α ∈ , every closed α-ball contains infinitely many

open α-balls.

A Tum-minimal theory will be said to be C-minimal. The notion considered in
[15] is a little more general, but for theories Tum they coincide. Since we will be
interested in fields, this level of generality will suffice.

Atheory T extending ACVF isC-minimal iff for anyM |= T , every TM -definable
subset of VF(M) is a Boolean combination of open balls, closed balls and points. If
T isC-minimal,A ≤ M |= T , and b is anA-definable ball, or an infinite intersection,
let pbA be the collection of A-definable sets not contained in a finite union of proper
subballs of b. Then by C-minimality, pbA is a complete type over A.

Let T be C-minimal. Then in T ,  is O-minimal, and for any closed α-ball C,
the set of open α-subballs of C is strongly minimal. Denote it C/(1 +M). (These
facts are immediate from the definition.)

AssumeT isC-minimal with a distinguished point 0. We define: val(x) = val(x−
0); M = {x : val(x) > 0}. Let Bcl be the family of all closed balls, including points.

Among them are Bcl
c
α(0) = {x : val(x) ≥ α}. Let RV =

•⋃
γ∈ Bcγ (0)/(1 + M),

and let rv : VF \ {0} → RV and valrv : RV →  be the natural map. By an rv-ball
we mean an open ball of the form rv −1(c).

The T -definable fibers of valrv are referred to, collectively, as REST . Later we
will fix a theory T, and write RES for REST; we will also write RESA for RESTA .
The unqualified notion “definable,’’ as well as many derived notions, will implicity
refer to T.

A certain notion of genericity plays an essential role in these theories.
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Example 3.2. Let T be a strongly minimal theory. For any A ≤ M |= T , any A-
definable set is finite or has finite complement. Therefore, the collection of cofinite
sets forms a complete type. A realization of this type is called a generic element of
M , over A.

Example 3.3. Let T be anO-minimal theory. For any A ≤ M |= T , any A-definable
set contains, or is disjoint from, an infinite interval (b,∞) for some b ∈ M . The set of
A-definable sets containing such an interval is thus a complete type, the generic type
of large elements of . Similarly, the set of A-definable sets containing an interval
(0, a) with 0 < a is the generic type of small positive elements. More generally,
given a subset S ⊆ A S′ = {b ∈ A : (∀s ∈ S)(s < b)}; then the definable sets
x > a(a ∈ S), x < b(b ∈ S′) generate a complete type over A, called the type of
elements just bigger than S.

Definition 3.4. Let T be C-minimal. Let b be a TA-definable ball, or an infinite
intersection of balls. The generic type pb of b is defined by pb|A′ = pbA′ , for any
A ≤ A′ ≤ M |= T .

The completeness follows from C-minimality, since for any A′-definable subset
S of b, either S is contained in a finite union of proper subballs of b, or else the
complement b \ S is contained in such a finite union.

A realization of pb|A′ is said to be a generic point of b over A′. An A′-definable
set is said to be b-generic if it contains a generic point of b over A′.

See Section 3.2 for some generalities about generic types. For our purposes it
will suffice to consider generic types in one VF variable. For more information see
[16, Section 2.5].

Remark 3.5. If A = acl(A) then any type of a field element tp(c/A) coincides with
pb|A, where b is the intersection of all A-definable balls containing c.

This is intended to include the case of closed balls of valuative radius ∞, i.e.,
points; these are the algebraic types x = c. Note also the degenerate case that c is not
in any A-definable ball; then b = VF and tp(c/A) is the generic type of VF over A.

Not every generic 1-type is of the form pb for a ball b as above. For instance, let
b be an open ball, c ∈ b; then the generic type pb((x − c)−1) is not of this form.

For V-minimal theories (defined below) it can be shown that every generic 1-type
is of the form pb or pb((x − c)−1).

Let T be a C-minimal theory. Let b be a definable ball, or an infinite intersection
of definable balls. We say that b is centered if it contains a proper definable finite
union of balls. If b is open, or a properly infinite intersection of balls, we have the
following:

If b contains a proper finite union of balls, then it contains a
definable closed ball (the smallest closed ball containing the
finite set).

(∗)

For C-minimal fields of residue characteristic 0, (∗) is true of closed balls: the set of
maximal open subballs of b forms an affine space over the residue field k, where the
center of mass of a finite set is well defined.
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Clearly, b is centered over acl(A) if and only if it is centered over A. The term
“centered’’ will be justified to some extent by the assertion of Lemma 3.39, that when
A is generated by elements of VF∪RV ∪, any A-definable closed ball contains an
A-definable point, and thus a centered ball has a definable “center.’’

Lemma 3.6. b is centered over A iff b is not transitive over A.

This is immediate from the definition, and from C-minimality, since any proper
definable subset would have to be a Boolean combination of balls.

An often useful corollary of C-minimality is the following.

Lemma 3.7. Let T be C-minimal, X a definable subset of VF, and Y a definable set
of disjoint balls. Then for all but finitely many b ∈ Y , either b ⊆ X or b ∩X = ∅.

Proof. X is a finite Boolean combination of balls, so it suffices to prove this whenX
is a ball; then X is contained in at most one ball b ∈ Y ; for any other b ∈ Y , either
b ⊆ X or b ∩X = ∅. )�
Lemma 3.8. Let (bt : t ∈ Q) be a definable family of pairwise disjoint balls. Then
for any nonalgebraic t ∈ Q, bt is transitive over 〈t〉.
Proof. Consider a definable R′ ⊆ Q × VF with R′(t) ⊆ bt . Let Y = ∪t∈QR′(t).
Then Y is a definable subset of VF, hence a finite combination of a finite set H of
balls. The bt are pairwise disjoint, so at most finitely many can contain an element
of H , and thus no nonalgebraic bt contains an element of H . Thus each ball in H is
disjoint from, or contains, any given bt . It follows that Y is disjoint from, or contains,
any given bt . Thus bt ∩ Y cannot be a nonempty proper subset of bt . )�
Internalizing finite sets

The following lemma will be generalized later to finite sets of balls. It is of such
fundamental importance in this paper that we include it separately in its simplest
form. The failure of this lemma in residue characteristic p > 0 is the main reason for
the failure of the entire theory to generalize, in its present form. Recall the definition
of RV (Section 2.1).

Lemma 3.9. Let T be aC-minimal theory of fields of residue characteristic 0 (possibly
with additional structure), A ≤ M |= T. Let F be a finite TA-definable subset of
VFn. Then there exists F ′ ⊆ RVm, and a TA-definable bijection h : F → F ′.

Proof. First consider F = {c1, . . . , cn} ⊆ VF. Let c = (∑n
i=1 ci)/n be the average;

then F is TA-definably isomorphic to {c1 − c, . . . , cn − c}. Thus we may assume
the average is 0. If there is no nontrivial A-definable equivalence relation on F , then
val(x − y) = α is constant on x �= y ∈ F . In this case rv is injective on F and one
can take h = rv. Otherwise, let E be a nontrivial A-definable equivalence relation
on F . By an E-symmetric polynomial, we mean a polynomial H(x1, . . . , xn) with
coefficients inA, invariant under the symmetric group on eachE-class. For any such
H ,H(F) is a TA-definable set with< n elements. There existsH such thatH(F) has



Integration in valued fields 289

more than one element. By induction, there exists an injective A-definable function
h0 : H(F) → RVm. Let h1 = h0 ◦ H . For d ∈ h0(H(F )), and d ′ = h0

−1d, let
Fd = H−1h0

−1(d) = H−1(d ′). By induction again, there exists an A(d) = A(d ′)-
definable injective function gd : Fd → RVm

′
. (We can take the same m′ for all d.)

Define h(x) = (h1(x), gh1(x)(x)). Then clearly h is A-definable and injective.
The case F ⊆ VFn follows using a similar induction, or by finding a linear

projection with Q-coefficients VFn → VF which is injective on F . )�

3.1 Basic geography of C-minimal structures

Let T be aC-minimal theory. We begin with a rough study of the existence and nonex-
istence of definable maps between various regions of the structure: k, ,RV,VF and
VF/O.

We will occasionally refer to stable definable sets.
A definable set D of a theory T is called stable if there is no modelM |= T and

M-definable relation R ⊆ D2 and infinite subset J ⊆ M(D) such that R ∩ J 2 is a
linear ordering. This is a model-theoretic finiteness condition, greatly generalizing
finite Morley rank, and in turn strong minimality (cf. [28, 29]).

It is shown in [16] that a definable subset of ACVFeq
A is stable if and only if it has

finite Morley rank, if and only if it admits no parametrically definable map onto an
interval of ; and this is if and only if it embeds, definably over acl(A), into a finite-
dimensional k-vector space. These vector spaces have the general form�/M�, with
� ≤ VFn a lattice. Within the sorts we are using here, the relevant ones are the finite
products of vector spaces of RES. More generally, in a C-minimal structure with
sorts VF, RV, all stable sets are definably embeddable (with parameters) into RES.
We will, however, make no use of these facts, beyond justifying the terminology.
Thus “X is a stable definable set’’ can simply be read as “ there exists a definable
bijection between X and a subset of RES∗.’’

The first fact is the unrelatedness of k and .

Lemma 3.10. Let Y be a stable definable set. Then Y,  are strongly orthogonal. In
particular, any definable map from Y to  has finite image.

Proof. We prove the second statement first: let M |= T. Let f : Y →  be an
M-definable map. Then f (Y ) is stable, and linearly ordered by <; hence by the
definition of stability, it is finite.

Let γ = (γ1, . . . , γm) ∈ . We have to show that for a Y -generated struc-
ture A, tp(γ ) implies tp(γ /A). It suffices to show that for any a, . . . , an ∈ A,
tp(γi/〈γ1, . . . , γi−1〉) implies tp(γi/〈γ1, . . . , γi−1, a1, . . . , an〉), for each i. By pass-
ing to T〈γ1,...,γi−1〉 we may assume m = 1, γ ∈ . Similarly, we may assume n = 1;
let a = a1 ∈ Y . To show that tp(γ ) implies tp(γ /a), it suffices to show that any
Ta-definable subset of  is definable. ByO-minimality, any Ta-definable subset of 
is a finite union of intervals, so (in view of the linear ordering) it suffices to show this
for intervals (c1, c2). But if the interval is Ta-definable then so are the endpoints, so
ci = ci(a) is a value of a definable map Y → . But such maps have finite images,



290 Ehud Hrushovski and David Kazhdan

so ci lies in a finite definable set. Using the linear ordering, we see that ci itself is
definable, and hence so is the interval. )�
Lemma 3.11. There are no definable sections of valrv : RV →  over an infinite
subset of . In fact if Y ⊂ RVn is definable and valrv is finite-to-one on Y , then Y is
finite.

Proof. Looking at the fibers of the projection of Y to RVn−1, and using induction,
we reduce the lemma to the case n = 1. In this case, by Lemma 3.7, every definable
set is a Boolean combination of pullbacks by valrv of subsets of  and finite sets. )�
Lemma 3.12. Let M |= T and let Y ⊂ Bcl

n be an infinite definable set. Then there
exists a surjectiveM-definable map of Y to a proper interval in .

Proof. Since  is O-minimal, any infinite M-definable subset contains a proper
interval. Thus it suffices to find anM-definable map of Y onto an infinite subset of .

If the projection of Y to Bcl
n−1 as well as every fiber of this projection are finite,

then Y is finite. Otherwise, replacing Y by one of the fibers or by the projection, we
reduce inductively to the case n = 1.

Let v(y) ∈  be the valuative radius of the ball y. Then v(Y ) is anM-definable
subset of . If it is infinite, we are done; otherwise, we may assume all elements of
Y have the same valuative radius γ .

Let W = ∪Y . By C-minimality, W is a Boolean combination of balls bi (open,
of valuative radius < γ , or closed, of valuative radii δi ≤ γ ). If W contains some
W ′ = bi \(bj1∪· · ·∪bjl ), where bji is a proper subball of bi , and δi < γ , pick a point
c inW ′; then for any δ with γ > δ > δi there exists c′ ∈ W ′ with val(c− c′) = δ. It
follows that the balls bγ (c), bγ (c′) of radius γ around c, c′ are both in Y ; but infinitely
many such δ exist; fixing c, we obtain a map bγ (c′) �→ val(c − c′) into an infinite
subset of .

Otherwise, W can only be a finite set of balls of valuative radius γ . Thus Y is
finite. )�
Corollary 3.13. Bcl

n contains no stable definable set. In particular, VF contains no
strongly minimal set. )�

By contrast, we have the following.

Lemma 3.14. Any infinite definable subset of RVn contains a strongly minimal M-
definable subset.

Proof. By Lemma 3.11, the inverse image of some point in n must be infinite. )�
Lemma 3.15. Let M |= T. Let Y ⊆ Bcl be a definable set. Let rad(y) be the
valuative radius of the ball y. Then either rad : Y →  is finite-to-one, or else there
exists anM-definable map of anM-definable Y ′ ⊆ Y onto a strongly minimal set.

Proof. If rad is not finite-to-one, then Y contains an infinite set Y ′ of balls of the same
radius α. Then ∪Y ′ contains a closed ball b of valuative radius β < α. The set S
of open subballs b′ of b of valuative radius β forms a strongly minimal set; the map
sending y ∈ Y ′ to the unique b′ ∈ S containing y is surjective. )�
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The following lemma regarding VF/O will be needed for integration with an
additive character (Section 11).

Lemma 3.16. Let Y be a stable definable set, Z ⊂ VF× Y a definable set such that
for y ∈ Y , Z(y) = {x : (x, y) ∈ Z} is additively M invariant. Then for all but
finitely many O-cosets C, Z ∩ (C × Y ) is a rectangle C × Y ′.

Proof. For y ∈ Y ,Z(y) is a Ty-definable subset of VF, hence a Boolean combination
of a finite 〈y〉-definable set of balls b1(y), . . . , bk(y). Let Bi(y) be the smallest
closed ball containing bi(y). According to Lemma 3.13, since the set of closed balls
occurring as Bi(y) for some y is stable, it is finite:

{Bi(y) : y ∈ Y } = {B1, . . . , Bl}.

All the Bi are O-invariant. Let R be the set of O-cosets C that are equal to some Bi .
If Bi(y) has valuative radius < 0 (i.e., it is bigger than an O-coset), then so is

bi(y), so the characteristic function of such a bi(y) is constant on any closed O-coset
C. If C /∈ R, then it is disjoint from any Bi of valuative radius equal to (or greater
than) 0, so the characteristic functions of the corresponding bi(y) are also constant on
it. Thus with finitely many exceptionalC, any such characteristic function is constant
on C, and the claim follows. )�

3.2 Generic types and orthogonality

Two generic types p, q are said to be orthogonal if for any base A′, if c |= p|A′,
d |= q|A′, then p generates a complete type over A(d); equivalently, q generates a
complete type over A(c). We will see that generics of different kinds are orthogonal
(cf. Lemma 3.19). This orthogonality of types is weaker than the orthogonality of
definable sets mentioned in the introduction, and in the present case is only an indirect
consequence of the orthogonality between the residue field and value group; these
types do not have orthogonal definable neighborhoods.

If γ ∈  and rkQ((C(a))/(C)) = n, we say that tp(γ /C) has -dimension n.

Lemma 3.17. Let p be a TA-type of elements of n of  dimension n. Let P =
val

−1
(p). Then we have the following:

(1) val
−1
(p) is a complete type over A. In other words, for any A-definable set X,

either val
−1
(p) ⊆ X or val

−1
(p) ∩X = ∅.

(2) If D is a stable A-definable set and d1, . . . , dn ∈ D, then P implies a complete
type over A(d1, . . . , dn).

(3) If c ∈ P , then D(A(c)) = D(A).
(4) P is complete over A.
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Proof.

(1) This reduces inductively to the case n = 1. Since val−1(p) is a disjoint union of
open balls, (1) for n = 1 follows from Lemma 3.7: an A-definable set X cannot
intersect nontrivially each of an infinite family of open balls. Therefore, eitherX

is disjoint from almost all, or X contains almost all open balls val
−1
(c), c |= p;

in the former case the complement of X contains val
−1
(p), and in the latter X

contains val
−1
(p) since p is complete.

(2) By strong orthogonality, p generates a complete type q ′ over A(d), of -
dimension n. By (1) over A(d), val−1(p) is complete over A(d). But if c ∈ P
then val(c) |= p so c ∈ val−1(p). Thus P implies a complete type overA(d).

(3) follows from (2): if d ∈ D(A(c)) then there exists a formula φ such that |=
φ(d, c) and such that φ(x, c) has a unique solution. By (2) φ is a consequence
of P(c)∪ tp(d/A), and hence by compactness of a formula φ1(x)&φ2(c), where
φ2 ∈ tp(d/A). Thus already φ1(x) has the unique solution d, and thus d ∈ D(A).

(4) This is immediate from (1). )�
Lemma 3.18. Let q be a TA-type of elements of RESnA of RES dimension n. Let

Q = rv
−1
(q). Then Q is complete over A. Moreover, if γ1, . . . , γm ∈ , then Q

implies a complete type over A(γ1, . . . , γm).

Proof. Again the lemma reduces inductively to the case n = 1, and for n = 1 follows
from Lemma 3.7, since val−1(q) is a union of disjoint annuli; the “moreover’’ also
follows from orthogonality as in the proof of Lemma 3.17(2). )�
Lemma 3.19 ([16, Section 2.5]).

(1) If b is an open ball, or a properly infinite intersection of balls, and b′ a closed
ball, then pb, pb′ are orthogonal.

(2) Any b-definable map to k is constant on b away from a proper subball of b.

Proof. We recall the proof from [16, Section 2.5]: The statement becomes stronger if
the base set is enlarged. Thus we may assume that b and b′ are centered; by translating
we may assume both are centered at 0, and by a multiplicative renormalization that
b′ is the unit closed ball. Thus

c |= pb′ |A iff c ∈ O and res(c) /∈ acl(A). (∗)

On the other hand, let p be the type of elements of  that are just bigger than
the valuative radius of b (cf. Example 3.3). Then d |= pb|A iff val(d) |= p , i.e.,
pb is now the type P described in Lemma 3.17. By Lemma 3.17, if c′ ∈ P then
k(A(c′)) = k(A). It follows that if c |= pb′ |A, then res(c) /∈ acl(k(A(c′)). By (∗)
c |= pb′ |A(c′).

For the second statement, let g be a definable map b→ k; by Lemma 3.17(3), g
is constant on the generic type of b; by compactness, g is constant on b away from
some proper subball of b. )�
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Lemma 3.20. Let a = (a1, . . . , an) ∈ RVn, and assume ai /∈ acl(A(a1, . . . , ai−1))

for 1 ≤ i ≤ n. Then the formula D(x) = ∧ni=1 rv(xi) = ai generates a complete
type over A(a), and, indeed, over any RV ∪ -generated structure A′′ over A.

In particular, if q = tp(a/A), any A-definable function f : rv −1(q)→ RV ∪ 
factors through rv(x) = (rv(x1), . . . , rv(xn)).

Proof. This reduces inductively to the case n = 1. If we replace A by a bigger
set M (such that ai /∈ acl(A(a1, . . . , ai−1)) for 1 ≤ i ≤ n), the assertion becomes
stronger; so we may assume A = M |= T. Let rv(c) = rv(c′) = a. Either
val(c) = val(c′) /∈ M , or else val(c) = val(c′) = val(d) for some d ∈ M , and
res(c/d) = res(c′/d) /∈ M; in either case, by Lemma 3.17 or Lemma 3.18, we have
tp(c/M) = tp(c′/M). Thus tp(c, rv(c)/M) = tp(c′, rv(c′)/M), i.e., tp(c/M(a)) =
tp(c′/M(a)). This proves completeness over A(a).

Let A′ be a structure generated over A by finitely many elements of . Then
A′(a) = A(γ1, . . . , γk, a), where γi ∈ , and γi /∈ A(γ1, . . . , γi−1, val(a)).
It follows that rv(a) /∈ A(γ1, . . . , γk), so D(x) generates a complete type over
A(γ1, . . . , γk)(a) = A′(a).

LetA′′ be generated overA′(a)by elements of stableA-definable sets. SinceD(x)
is the (unique, and therefore) generic type of an open ball overA′(a), by Lemma 3.17,
it generates a complete type over A′′.

Now if A′′ = A(γ1, . . . , γk, r1, . . . , rn, d), where γj ∈ , ri ∈ RV and d lies in
a stable set over A, let A′ = A(γ1, . . . , γk, valrv(r1), . . . , valrv(rn)); then A′/A is -
generated, and A′′/A is generated by elements of stable sets (including valrv−1(ri)).
Thus the above applies.

The last statement follows by applying the first part of the lemma over A′′ =
A(f (c)): the formula f (x) = f (c) must follow from the formula D(x), since D(x)
generates a complete type over A′′. )�

3.3 Definable sets in group extensions

We will analyze the structure of RV in a slightly more abstract setting. In the following
lemmas we assume R is a ring, and 0 → A → B → C → 0 is a definable exact
sequence of R-modules in T . This means that A,B,C are definable sets, and that
one is also given definable maps +A : A2 → A, f rA : A → A for each r ∈ R, and
similarly for B,C; and definable maps ι : A → B, ϑ : B → C, such that in any
M |= T ,A(M),B(M),C(M) areR-modules under the corresponding functions, and
0 → A(M)→ι B(M)→ϑ C(M)→ 0 is an exact sequence of homomorphisms of
R-modules.

Lemma 3.21. Consider a theory with a sequence 0 → A → B →ϑ C → 0 of
definable R-modules and homomorphisms (carrying additional structure). Assume
the following:

(1) A,C are stably embedded and orthogonal.
(2) Every almost definable subgroup of An is defined by finitely many R-linear equa-

tions.
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(3) (“No definable quasi-sections.’’) IfP is a definable subset ofBn whose projection
to Cn is finite-to-one, then P is finite.

Then every almost definable subset Z of Bn is a finite union of sets of the form

{b : ϑ(b) ∈ W,Nb ∈ Y },
where N ∈ Bn,k(R) is an n × k matrix, Y is an almost definable subset of a single
coset of Ak ,W is an almost definable subset of Cn.

Note the following:

(1) To verify (3), it suffices to check it for n = 1 but for parametrically definable P .
(2) If C is definably linearly ordered, and Z is definable, then Y , W may be taken

definable.

Proof. Using a base change as in Section 2.1, we may assume almost definable sets
are definable. Replacing B by Bn and R byMn(R), we may assume n = 1. Let Z be
a definable subset of B. GivenX ⊂ A, let [X] denote the class ofX up to translation;
so [X] = [X′] if X = X′ + a for some a ∈ A. Now a definable subset U of a coset
b + A of A has the form b + X, X ⊂ A; the class [X] is well defined, and we will
denote [U ] = [X]. We obtain a map

c �→ [Z ∩ ϑ−1(c)].
In more detail, for any b ∈ (ϑ−1(c)∩Z), we have (ϑ−1(c)∩Z)− b ⊆ A, and so by
stable embeddedness ofA we can write (ϑ−1(c)∩Z)− b = X(a) for some a ∈ Am.
The tuple a is not well defined; but the class of a in the definable equivalence relation

x ∼ x′ ⇐⇒ (∃t ∈ A)(t +X(x)) = X(x′)
is obviously a function of c alone. By the orthogonality assumption, this map is
piecewise constant. Thus we may assume it is constant and fixC0 with [Z∩ϑ−1(c)] =
[C0]. Let S be the stabilizer S = {a ∈ A : a + C0 = C0}. Then for a ∈ S,
a+(Z∩ϑ−1(c)) = (Z∩ϑ−1(c)) for any c ∈ C, so that alsoS = {a ∈ A : a+Z = Z},
and S is definable.

NowZ∩ϑ−1(c) = C0+f (c) for some f (c) ∈ ϑ−1(c); f (c)+S is well defined.
By assumption (2), S = Ker(r1) ∩ . . . ∩ Ker(rm) for some ri ∈ R. Let I =

{r1, . . . , rm}. For r ∈ I , fr(c) := rf (c) is a well-defined element of B, and for all
c ∈ ϑ(Z), r(Z ∩ ϑ−1(c)) = rC0 + fr(c).

We have ϑfr(c) = rc. If d ∈ Ker(r : C → C), then fr(d + c) = rc also,
so fr(d + c) − fr(c) ∈ A. By orthogonality, for fixed r , fr(d + c) − fr(c) takes
finitely many values as c, d vary in C. In other words, {rf (c) : c ∈ ϑ(Z)} is a quasi-
section above rϑ(Z). By (3), rϑ(Z) is finite, for each r ∈ I . Let N = (r1, . . . , rm),
Y ′ = NZ. Then ϑ(Y ′) is finite. It follows that Y ′ is contained in a finite union of
cosets of A, so C, Y ′ are orthogonal.

Thus {(ϑ(z),Nz) : z ∈ Z} is a finite union of rectangles; upon dividingZ further,
we may assume this set is a rectangle W × Y . Now if ϑ(b) ∈ W and Nb ∈ Y then
for some z ∈ Z, ϑ(b) = ϑ(z) andNb = Nz; it follows that b−z ∈ A and b−z ∈ S;
so b ∈ S + Z = Z. Thus Z is of the required form. )�
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Corollary 3.22. Let T be a complete theory in a language L satisfying the assump-
tions of Lemma 3.21. Let L ⊆ L′, T ⊆ T ′, and assume (1)–(3) persist to T ′. If T ,
T ′ induce the same structure on A and on C, up to constants they induce the same
structure on B, i.e., every T -definable subset of B∗ is parameterically T ′-definable.

Proof. Apply Lemma 3.21 to T ′, and note that every definable set in the normal form
obtained there is already parametrically definable in T . )�

We will explicitly use imaginaries in RV only rarely; but our ability to work with
RV, using  as an auxiliary, is partly explained by the following.

Corollary 3.23. Let 0 → A → B →ϑ C → 0 be as in Lemma 3.21, and assume
C carries a definable linear ordering. Let V̄ be the disjoint union of the definable
cosets of A in B, with structure induced from T . Let e be an imaginary element of B.
Then 〈e〉 = 〈(a′, c′)〉 for some pair (a′, c′) consisting of an imaginary of V̄ and an
imaginary of C. Thus if V̄ , C eliminate imaginaries, so does B ∪ C ∪ V̄ .

Proof. Let e be an imaginary element ofB; letE0 be the set ofA, V̄ -imaginaries that
are algebraic over e.

By Lemma 3.21, applied to a definable set with code e in the theory TE0 , there
exist almost definable subsets of V̄ , Cn from which e can be defined. These are
coded by imaginaries permitted in the definition of E0. Thus e is E0-definable. Thus
e = g(d) for some definable function g and some tuple d from E0. )�

Let us now show that e is equidefinable with a finite set, i.e., an imaginary of the
form (f1, . . . , fn)/Sym(n). Let W be the set of elements with the same type as d
over e; W is finite by the definition of E0, and is e-definable. But e = g(w) for any
element w ∈ W , so e is definable from {W }.

It remains to see that every finite set of elements ofE0 is coded by imaginaries of
A and C and elements of B. Since C is linearly ordered, it suffices to consider finite
sets whose image in Cm consists of one point. These are subsets of some definable
coset of Am, so again by elimination of imaginaries there they are coded. )�
Corollary 3.24. The structure induced on RV∪ from ACVF eliminates imaginaries.

Proof. E0 eliminates imaginaries, and so does ACF (cf. [31]). Note that V̄ is
essentially a family of one-dimensional k-vector spaces, closed under tensor products
and roots and duals. Hence by [18], V̄E0 eliminates imaginaries, too. Our only
application of this lemma will be in a situation when parameters can be freely added;
in this case, it suffices to quote elimination of imaginaries in ACF. )�
Corollary 3.25. Let T be a theory as in Lemma 3.21, with R = Z, and C a linearly
ordered group. Then every definable subset of Bn is a disjoint union of GLn(Z)-
images of products Y × ϑ−1(Z), with |ϑY | = 1. In particular, the Grothendieck
semiring K+(B) (with respect to the category of all definable sets and functions of
B) is generated by the classes of elements Y ⊂ Bn with |ϑY | = 1, and pullbacks
ϑ−1(Z), Z ⊂ Cm.
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Proof. By Lemma 3.21, the Grothendieck ring is generated by classes of sets X of
the form X = {b ∈ Bn : ϑ(b) ∈ W,Nb ∈ Y }. After performing row and column
operations on the matrix N , we may assume it is the composition of a projection
p : Rn → Rk with a diagonal k × k integer matrix with nonzero determinant. The
composition ϑp(X) is finite; since C is ordered, each element of ϑp(X) is definable,
and so we may assume ϑp(X) has one element e. Thus W = {(e) ×W ′} for some
W ′, and X = pX × ϑ−1(W ′). )�
Lemma 3.26. Let T be a theory, and let 0 → A → B →ϑ C → 0 be an exact
sequence of definable Abelian groups and homomorphisms. If E ≤ M |= T , we will
write EA = A(E), etc. Assume the following:

(1) A, C are orthogonal.
(2) Any parametrically definable subset of B is a Boolean combination of sets Y with
ϑ(Y ) finite, and of full pullbacks ϑ−1(Z).

(3) C a uniquely divisible Abelian group, and for any E ≤ M |= T , every divisible
subgroup containing EC is algebraically closed in C over E.

(4) For any prime p > 0, T |= (∃x ∈ A)(px = 0, x �= 0).

LetZ ⊂ Cn and f : Z→ C be definable, and suppose there existsE andE-definable
X ⊂ Bn and F : X → B lifting f : ϑX = Z, ϑF(x) = f (ϑx). Then there exists
a partition of Z into finitely many definable sets Zν, such that for each ν, for some
m ∈ Zn, f (x)−∑n

i=1mixi is constant on Zν.

The main point is the integrality of the coefficients mi .

Proof. It suffices to show that for any M |= T and any c = (c1, . . . , cn) ∈ Z(M),
there existsm = (m1, . . . , mn) ∈ Z such that f (c)−mc ∈ E0, whereE0 = dcl(∅) is
the smallest substructure ofM . For if so, there exists a formula of one variable of sort
C, such that T |= (∃≤1z)ψ(z), M |= ψ(f (c) − mc). By compactness there exists
a finite set F of such pairs ν = (m,ψ), such that for any M |= T and c ∈ Z(M),
for some (m,ψ) ∈ F , M |= ψ(f (c) − mc); the required partition is given by
Xm,ψ = {z ∈ Z : ψ(f (z)−mz)}.

Fix M and c ∈ Z(M). Let 〈c〉 be the smallest divisible subgroup of C(M)
containing E0

C and c1, . . . , cn. By (3), 〈c〉 is closed under f , so f (c) ∈ 〈c〉, i.e.,
f (c) =∑αici+d for some αi ∈ Q and some d ∈ E0

C . The only problem is to show
that we can take αi ∈ Z.

We will use induction on n. Let K = {β ∈ Qn : β · c ∈ E0
C}. K is a Q-

subspace of Qn. If K �= (0), there exists a primitive integral vector β1 ∈ K . β1
may be completed to a basis for a Z-lattice in Qn. Applying a GLn(Z) change of
variables to Bn, we may assume β1 = (1, 0, . . . , 0), i.e., c1 ∈ E0

C . But then let
f ′(z2, . . . , zn) = f (c1, z2, . . . , zn). Then f ′ lifts to a definable function on Bn

(with parameters, of the form F(b1, y2, . . . , yn)) so by induction, f (c1, . . . , cn) =
f ′(c2, . . . , cn) =∑i≥2mizi+d ′ for somem2, . . . , mn ∈ Z andd ′ ∈ E0

C , as required.
Thus we can assume K = (0).
We can find m,mi ∈ Z, e ∈ dcl(∅) with
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mf (c) =
∑
mici + e.

Ifm|mi we are done. We will now derive a contradiction from the contrary assumption
that m does not divide each mi in such an equation, with f a liftable function. We
may assume that the greatest common divisor of m,m1, . . . , mn; so there exists a
prime dividing m but not (say) m1.

Let g(x) = f (x, c2, . . . , cn) − e/m −∑n
i=2mici/m; then mg(c1) = m1c1, m

does not divide m1, g is E = acl(c2, . . . , cn)-definable and liftable. Since K = (0),
by assumption (3), c1 /∈ acl(E). Let E′ ⊃ E be such that g lifts to an E′-definable
function G′. Enlarging the model if necessary, let c′1 realize tp(c1/E), with c′1 /∈ E′
(cf. Example 2.4). Therefore, there exists E′′ such that E′′, c1 and E′, c′1 have the
same type. In particular, g lifts to an E′′-definable function G.

Consider any b1 such that ϑ(b1) = c1. Then mϑG(b1) − m1ϑ(b1) = 0. Thus
mG(b1)−m1b1 ∈ A.

Let p be prime, p|m but p � |m1. Let s, r ∈ Z be such that sp− rm1 = 1, and let
h(x) = sx− rm

p
g(x). Thenph(c1) = psc1−rmg(c1) = psc1−rm1c1 = c1. Also h

is liftable overE′′: indeed, ifG isE′′-definable and lifts g, thenH(x) = sx− rm
p
G(x)

lifts h.
Thus pH(b1) = b1 + d , some d ∈ A. Let b2 = H(b1); then b1 = pb2 − d, or

b2 = H(pb2 − d).
Now let c2 = h(c1) = ϑ(b2). Then pc2 = c1, and so c2 /∈ acl(E′′), since by

unique divisibility c1 ∈ acl(h(c1)). By (1), c2 /∈ acl(E′′(d)). Let C2 = ϑ−1c2. By
(2), any E′′(d)-definable set either contains C2 or is disjoint from C2. Hence for any
y ∈ C2, y = H(py − d).

By (4) there exists 0 �= ωp ∈ Awith pωp = 0. Let b′2 = b2+ωp. Then b2 ∈ C2,
so b′2 = H(pb′2 − d). But pb′2 = pb2, so b2 = b′2 and ωp = 0, a contradiction. )�
Remark 3.27.

(1) It follows from Lemma 3.26 that a definable bijection between subsets of Cn

that lifts to subsets of Bn is piecewise given by an element of GLn(Z)� Cn (cf.
Lemma 3.28).

(2) Assumption (4) on torsion does not hold in characteristic p > 0 for the sequence
k∗ → RV → . In this case there is l-torsion for l �= p, but no p-torsion, and
the corresponding group is GLn(Z[1/p])� Cn.

Note as a corollary that there can be no definable sections of B → C over an
infinite definable subset of C.

Lemma 3.28. Let 0 → A → B → C → 0 be as in Lemma 3.26. Let X ⊂ Bn be
definable, and let f : X → Bl be a definable function. X may be partitioned into
finitely many pieces X′, such that on each X′,
(1) f (x) = Mx + b(x), whereM is a l × n-integer matrix and ϑb(x) is constant;
(2) there exists g ∈ GLn(Z) such that b ◦ g factors through a projection Bn →π B

k ,
where ϑπ(X′) is one point of Ck .
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Proof. We first prove (1)–(2) for complete types.
(1) This reduces to l = 1. Let P be a complete type of elements of X. Then on

P we have ϑ ◦ f (x) =∑miϑ(xi)+ d for some constant d (Lemma 3.26).
Thus f (x) =∑mixi + b(x), where b(x) = f (x)−∑mixi , and ϑb(x) = d is

constant.
(2) Letπ : Bn → Bk be a projection such that ϑπ(X) is one point ofCk , and with

k maximal. Thus P ⊂ P ′ × P ′′, P ′ ⊂ Bn−k, P ′′ ⊂ Bk , and ϑ(P ′′) is a single point
of Ck , while ϑ(P ′) is not contained in any proper hypersurface

∑
nixi = constant

with ni ∈ Z. Pick b′′ ∈ P ′′. Let γ = (γ1, . . . , γk) ∈ ϑ(P ′), γ not in any such
hypersurface. Let a = (a1, . . . , ak), ϑ(ai) = γi , and let a′ be another point with
ϑ(a′) = γ . Let e = f (a, b). Then tp(a/b, e) = tp(a′/b, e), so f (a′, b) = e. Thus
f (a, b) depends only on b ∈ P ′′ and not on a (with (a, b) ∈ P ).

Since (1)–(2) hold on each complete type, there exists a definable partition such
that they hold on each piece. )�

3.4 V-minimality

We assume from now on that T is a theory of C-minimal valued fields, of residue
characteristic 0. When using the many-sorted language, we will still say that T is a
theory of valued fields when T = Th(F,RV(F )) for some valued field F , possibly
with additional structure. A C-minimal T satisfying assumption (3) below will be
said to have centered closed balls. If, in addition, (1)–(2) hold, we will say T is V-
minimal. Expansions by the definition of the language, i.e., the addition of a relation
symbol R(x) to the language along with a definition (∀x)(R(x) ⇐⇒ φ(x)) to the
theory, do not change any of our assumptions. Thus we can assume that T eliminates
quantifiers.

(1) Induced structure on RV. T contains ACVF(0, 0), and every parametically T-
definable relation on RV∗ is parametrically definable in ACVF(0, 0).

(2) Definable completeness. Let A ≤ M |= T , and let W ⊂ B be a TA-definable
family of closed balls linearly ordered by inclusion. Then ∩W �= ∅.

(3) Choosing points in closed balls. LetM |= T,A ⊆ VF(M), and let b be an almost
A-definable closed ball. Then b contains an almost A-definable point.

T will be called effective if every definable finite disjoint union of balls contains
a definable set, with exactly one point in each. A substructure A of a model of T will
be called effective if TA is effective.

If every definable finite disjoint union of rv-balls contains a definable set, with
exactly one point in each, we can call T rv-effective. However, we have the following.

Lemma 3.29. Let T be V-minimal. Then T is effective iff it is rv-effective.

Proof. Assume T is rv-effective. Let b be an algebraic ball. If b is closed, it has an
algebraic point by assumption (3) of Section 3.4. If b is open, let b̄ be the closed ball
surrounding it. Then b̄ has an algebraic point a. Let f (x) = x − a. Then f (b) is an
rv-ball, so by rv-effectivity it has an algebraic point a′. Hence a′ + a is an algebraic
point of b. )�
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In general, effectivity is needed for lifting morphisms from RV to VF, not for the
“integration’’ direction.

If T is V-minimal andA is a VF∪RV∪-generated structure, we will see that TA
is V-minimal, too. The analogue for points in open balls is true but only for VF∪-
generated substructures; for thin annuli it is true only for VF-generated structures.
For this reason the condition on closed balls is more flexible; luckily we will be able
to avoid the others.

Lemma 3.30. Let T be aC-minimal theory of valued fields. Then (1) =⇒ (2) =⇒
(3) =⇒ (4):
(1) T admits quantifier elimination in a three-sorted language (VF,k, ),such that

for any basic function symbol F with range VF, the domain is a power of VF;
and no relations on k,  beyond the field structure on k and the ordered Abelian
group structure on .

(2) Every parametrically definable relation on k is parameterically definable in
ACF(0), and every parametrically definable relation on  is parameterically
definable in DOAG.

(3) Assumption (1) of Section 3.4.
(4) k, , and RV are stably embedded.

Proof.

(1) =⇒ (2) Let φ(a, x) be an atomic formula with paramaters a = (a1, . . . , an)

from VF and x = (x1, . . . , xm) variables for the k,  sorts. Then
φ must have the form ψ(t (a), x), where t is a term (composition of
function symbols) VF∗ → (k ∪ ). Thus φ(a, x) defines the same
set as ψ(b, x) where b = t (a). Since every formula is a Boolean
combination of atomic ones, (2) follows.

(2) =⇒ (3) This follows from Corollary 3.22. The assumptions of Lemma 3.26 are
satisfied: (1) is automatic since byC-minimality k is strongly minimal
and  is O-minimal; (2) follows from C-minimality; (3)–(4) follow
from the assumptions on k, .

(3) =⇒ (4) This is immediate. )�
Lemma 3.31. Let T be a theory of valued fields satisfying assumption (1) of Sec-
tion 3.4, such that res induces a surjective map on algebraic points. Then (1) =⇒
(2) =⇒ (3) =⇒ (4):
(1) For any VF-generated substructure A of a model M of T, if (A) �= (0), then

acl(A) |= T.
(2) For any VF-generated substructureAof a model of T,any TA-definable nonempty

finite union of balls contains a nonempty TA-definable finite set.
(3) Assumption (3) of Section 3.4 holds.
(4) Let A be VF-generated, and Y a finite A-definable set of disjoint closed balls.

Then there exists anA-definable finite setZ such that |b∩Z| = 1 for each b ∈ Y .

Proof. We first show the following.
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Claim. For any VF-generated A with (A) = (0), res : VF(acl(A))→ k(acl(A)) is
surjective.

Proof. It suffices to prove the claim for finitely generated A. For A = ∅ this is true
by assumption. Using induction on the number of generators, it suffices to show that
if the claim holds for A0 and c ∈ VF then it holds for A = A0(c)).

Since (A) = (0), res is defined and injective on VF(A). If c ∈ acl(A0) there
is nothing to prove. Otherwise, by injectivity, res(c) /∈ acl(A0). As a consequence
of assumption (1) of Section 3.4, both dcl and acl agree with the corresponding
field-theoretic notions on RV and, in particular, on the residue field.

By Lemma 3.20,

k(A0(c)) ⊆ dcl(RV(A0), rv(c)) = dcl(k(A0), res(c)) = k(A0)(res(c)).

Now if d ∈ k(acl(A)) then d ∈ k and d ∈ acl(A), so by stable embeddedness of
k, we have d ∈ acl(k(A)); but acl(k(A)) = k(A)alg by assumption (1) of Section 3.4;
so d ∈ k(A0)(res(c))alg ⊆ res(A0(c)

alg). )�
Assume (1). If (acl(A)) �= (0), then by (1) acl(A) |= T and, in particular,

every acl(A)-definable ball has a point in acl(A), so (2) holds. Assume therefore that
(acl(A)) = 0. Let b be an acl(A)-definable ball. Then bmust have valuative radius
0. If some element of b has valuation γ < 0 then all do, and γ ∈ A, a contradiction.
Thus b is the (open or closed) ball of radius 0 around some c ∈ O. If b is closed, then
b = O and 0 ∈ b. If b is open, then b = res−1(b′) for some element b′ of the residue
field k; in this case b has an acl(A)-definable point by the claim.

(3) is included in (2), being the case of closed balls.
Assume (3). In expansions of ACVF(0, 0), the average of a finite subset of a ball

remains within the ball. Thus if Y is a finite A-definable set of disjoint balls, by (3),
there exists a finite A-definable set Z0 including a representative of each ball in Y .
Let Z = {av(b ∩ Z0) : b ∈ Y }, where av(u) denotes the average of a finite set u. )�
Lemma 3.32. When T is a complete theory, definable completeness is true as soon
as T has a single spherically complete model M in the sense of Ribenboim and
Kaplansky: every intersection of nested closed balls is nonempty.

Proof. The proof is clear. )�
Let ACVFan denote any of the rigid analytic theories of [23]. For definiteness, let

us assume the power series have coefficients in C((X)). See [14] for variants living
over Zp.

Lemma 3.33. ACVF(0, 0) is V-minimal and effective. Thus is ACVFan.

Proof. C-minimality is proved in [24]. Lemma 3.30(1) for ACVF is a version of
Robinson’s quantifier elimination; cf. [16].

ACVFan admits quantifier elimination in the sorts (VF, ) by [23, Theorem 3.8.2].
The residue field sort is not explicit in this language, but one can argue as follows. Let
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k1 be a large algebraically closed field containing C, and letK = ∪n≥1k1((X
1/n)) be

the Puiseux series ring. Then K admits a natural expansion to a model of the theory.
K is not saturated, but by C-minimality the induced structure on the residue field is
strongly minimal, so k1 is saturated. Now any automorphism of k1 as a field extends
to an automorphism ofK as a rigid analytic structure. Thus everyK-definable relation
on k1 is algebraic. (This could be repeated over a larger value group if necessary.)
Lemma 3.30(2) thus holds in both cases; hence we have assumption (1) of Section 3.4.

Condition Lemma 3.31(1) is obviously true for ACVF. For ACVFan it is proved
in [24]. It is also evident that these theories have a spherically complete model. Thus
by Lemmas 3.31 and 3.32, assumptions (3) and (2) of Section 3.4 hold, too. )�
Remarks.

(1) Lemma 3.31(1)–(3) remain true for ACVF in positive residue characteristic, but
(4) fails.

(2) ACVF(0, 0) also admits quantifier elimination in the two sorted language with
sorts VF, RV; so assumption (1) of Section 3.4 can also be proved directly, without
going through k,  as in Lemma 3.30.

(3) Assumption (1) of Section 3.4 is needed for lifting definable bijections of RV to
VF, Proposition 6.1, Lemma 6.3. Specifically, it implies the truth of assumptions
(2) of Lemma 3.21 and (4) of Lemma 3.26. These lemmas are only needed for the
injectivity of the Euler charactersitic and integration maps, not for their construc-
tion and main properties. It is also needed for the theory of differentiation and
for comparing derivations in VF and RV; indeed, even for posing the question,
since in general there is no notion of differentiation on RV. The theory of differ-
entiation itself is needed neither for the Euler characteristic nor for integration of
definable sets with a -volume form. They are required only for the finer theory
introduced here of integration of RV-volume forms.

(4) We know no examples of C-minimal fields where assumption (2) of Sec-
tion 3.4 fails.

(5) Beyond effectivity of dcl(∅), assumption (3) of Section 3.4 imposes a condition
on liftability of definable functions from VF to Bcl. Let T1 be the theory, inter-
mediate between ACVF(0, 0) and a Lipshitz rigid analytic expansion, generated
over ACVF(0, 0) by the relation

val(f (t0x)− y) ≥ val(t1)

on O2, where t0, t1 are constants with val(t1)ð val(t0) > 0 and f is an analytic
function. It appears that balls do not necessarily remain pointed upon adding
VF-points to T1; so assumption (3) of Section 3.4 is not redundant.

3.5 Definable completeness and functions on the value group

We assume T is C-minimal and definably complete. We show that the property of
having centered closed balls is preserved under passage to TA if A is RV, ,VF-
generated; similarly for open balls ifA is ,VF-generated. Also included is a lemma
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stating that every image of an RV-set in VF must be finite; from the point of view
of content this belongs to the description of the “basic geography,’’ but we need the
lemmas on functions from  first.

Proposition 3.34. LetM |= T, γ = (γ1, . . . , γm) a tuple of elements of (M). Any
almost A(γ )-definable ball b contains an almost A-definable ball b′.

Proof. See [16, Proposition 2.4.4]. While the proposition is stated for ACVF there,
the proof uses only C-minimality and definable completeness. We review the proof
in the case that b ∈ A(γ ), i.e., b = f (γ ) for some definable function f with domain
D ⊆ M .

Let P = tp(γ /A). Let r(γ ) be the valuative radius of f (γ ). By O-minimality,
r is piecewise monotone; since P is a complete type, r is monotone, say, decreasing.
For a ∈ P let Pa = {b ∈ P : b < a}, and for b ∈ Pa let fa(b) be the open ball of
size r(a) containing f (b). By Lemma 3.15, the valuative radius map rad is finite-to-
one on fa(Pa); but by definition it is constant, so fa(Pa) is finite. Using the linear
ordering, fa(Pa) is constant on each complete type over a. Pick b1 ∈ P , ε ∈ 
with ε > 0 but very small (over A(b1)), and ε′ ∈  with ε′ > 0 but ε′ very small
(over A(b1, ε)). Let b2 = b1 + ε, a = b2 + ε′. Then tp(b1, a/A) = tp(b2, a/A),
so fa(b1) = fa(b2). Now if f (b1), f (b2) are disjoint, let δ = val(x1 − x2) for
(some or any) xi ∈ f (bi). Then r(b2) > δ. Since ε′ is very small, r(a) > δ

also. Thus fa(b1), fa(b2) are distinct, a contradiction. Thus f (b1) ⊂ f (b2). Since
tp(a/A) = tp(b2/A), we have f (y) ⊂ f (a) for some y ∈ Pa . If f (y) ⊂ f (a) for all
y ∈ Pa , we are done; otherwise, let c(a) be the unique smallest element such that f is
monotone on (c(a), a). We saw, however, that f is monotone on (d, c(a)) for some
d < c(a), hence also on (d, a), a contradiction. Thus f is monotone with respect to
inclusion. By compactness, this is true on some A-definable interval, hence on some
interval I containing P .

Let U = ∩a∈I f (a). By definable completeness (assumption (2) of Section 3.4),
U �= ∅. Clearly, U is a ball, and U ⊆ b. )�
Lemma 3.35. LetM |= T, γ = (γ1, . . . , γm) a tuple of elements of (M). Then any
A(γ )-definable ball contains an A-definable ball. If Y is a finite A(γ )-definable set
of disjoint balls, then there exists a finite A-definable set Y ′ of balls, such that each
ball of Y contains a unique ball of Y ′.

Proof. This reduces immediately to m = 1. For m = 1, by Proposition 3.34, any
almost A(γ )-definable ball b contains an almost A-definable ball b′. Thus given a
finite A(γ )-definable set Y of disjoint balls, there exists a finite A-definable set Z of
balls, such that any ball of Y contains a ball of Z. Given b ∈ Y , let b′ be the smallest
ball containing every subball c of b with c ∈ Z. Then Y ′ = {b′ : b ∈ Y } is A(γ )-
definable, finite, almostA-definable, and (since b′1 is disjoint from b2 if b1 �= b2 ∈ Y )
each ball of Y contains a unique ball of Y ′. Using elimination of imaginaries in ,
by Example 2.2, being A(γ )-definable and almost A-definable, Y ′ is A-definable. )�

The following corollary of Lemma 3.35 concerning definable functions from 

will be important for the theory of integration with an additive character in Section 11.
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Corollary 3.36. Let Y be a definable set admitting a finite-to-one map into n, and
let into h be a definable map on Y into VF or VF/O or VF/M. Then h has finite
image.

Proof. One can view h as a function from a subset of n into finite sets of balls.
Since a ball whose radius is definable containing a definable ball is itself definable,
Lemma 3.35 implies that h(γ ) ∈ acl(∅) for any γ ∈ n. By Lemma 2.6, the corollary
follows. )�
Corollary 3.37. Let Y ⊆ (RV ∪ )n and Z ⊆ VF × Y be definable sets, with Z
invariant for the action of M on VF. Then for all but finitely many O-cosets C,
Z ∩ (C × Y ) is a rectangle C × Y ′.
Proof. Let p : (RV ∪ )n → n be the natural projection, and for γ ∈ n let Zγ be
the fiber. For each γ , by Lemma 3.16, there exists a finite F(γ ) ⊆ VF/O such that
for any O-coset C /∈ F(γ ), Zγ ∩ (C × Y ) is O-invariant. Now {(u, γ ) : u ∈ F(γ )}
projects finite-to-one to n, so by Lemma 3.36, this set projects to a finite subset of
VF/O. Thus there exists a finite E ⊂ VF/O such that for any γ , and any O-coset
C /∈ E, Zγ ∩ (C × Y ) is O-invariant. In other words, for any C /∈ E, Z ∩ (C × Y )
is O-invariant. )�
Lemma 3.38. LetM |= T, A a substructure ofM (all imaginary elements allowed),
and let r = (r1, . . . , rm) be a tuple of elements of RV(M) ∪ (M). Then any closed
ball almost defined over A(r) contains a ball almost defined over A.

Proof. This reduces to m = 1, r = r1; moreover, using Lemma 3.35, to the case
r ∈ RV(M), valrv(r) = γ ∈ A. Let E = {y ∈ RV : valrv(y) = γ }. Then E is
a k∗-torsor, and so is strongly minimal within M . If c is almost defined over A(r),
there exists an A-definable set W ⊂ E × Bcl, with W(e) = {y : (e, y) ∈ W }
finite, and c ∈ W(r). But then W is a finite union of strongly minimals, and hence
so is the projection P of W to Bcl. But any strongly minimal subset of Bcl is
finite. (Otherwise, it admits a definable map onto a segment in ; but  is linearly
ordered and cannot have a strongly minimal segment.) Thus c ∈ P is almost defined
over A. )�
Lemma 3.39. Let M |= T, T C-minimal with centered closed balls. Let B be sub-
structure of VF(M) ∪ RV(M) ∪ (M). Then every B-definable closed ball has a
B-definable point. If Y is a finite B-definable set of disjoint closed balls, there exists
a finite B-definable set Z ⊂ M , meeting each ball of Y in a unique point.

Proof. We may take B to contain a subfield K and be generated over K by finitely
many points r1, . . . , rk ∈ RV . Let Y be a finite B-definable set of disjoint closed
balls, and let b ∈ Y . We may assume all elements of Y have the same type overB. By
Lemma 3.38, there exists a closed ball b′ defined almost over K and contained in b.
By assumption (3) of Section 3.4, there exists a finiteK-definable setZ′ meeting b′ in
a unique point. Let Y ′ = {b′′ ∈ Y : b′′ ∩ Z′ �= ∅}, and Z = {av(Z′ ∩ b′′) : b′′ ∈ Y ′}.
Then Z meets each ball of Y ′ in a unique point, and Z, Y ′ are B-definable. As for
Y \ Y ′, it may be treated inductively. )�
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Corollary 3.40. LetM |= T, T C-minimal with centered closed balls, and effective.
Let B be an almost -generated substructure. Then T is effective.

Proof. The proof is the same as the proof of Lemma 3.39, using Lemma 3.34 in place
of Lemma 3.38. )�
Lemma 3.41. Let Y be a T-definable set admitting a finite-to-one map into RVn. Let
g : Y → VFm be another definable map. Then g(Y ) is finite.

Proof. It suffices to prove this for TA, where A |= T. We may also assume m = 1.
We will use the equivalence (3) ⇐⇒ (4) of Lemma 2.6. If g(Y ) is infinite, then by
compactness there exists a ∈ g(Y ) a /∈ acl(A). But for some b we have a = g(b),
so if c = f (b), we have c ∈ RVn, a ∈ acl(c). Thus it suffices to show the following:

If a ∈ VF, c ∈ RVn and a ∈ acl(A(c)), then a ∈ acl(A). (∗)

This clearly reduces to the case n = 1, c ∈ RV. Let d = valrv(c), A′ = acl(A(d)).
Then c lies in anA′-definable strongly minimal setS (namely, S = valrv−1(d)). Using
Lemma 2.6 in the opposite direction, since a ∈ acl(A′(c))) there exists a finite-to-one
map f : S′ → S and a definable map g′ : S′ → VF with a ∈ g′(f−1(S′)). By Cor-
ollary 3.13, g′(f−1(S′)) is finite. Hence a ∈ acl(A(d)). But then by Lemma 3.36,
a ∈ acl(A). )�

In particular, there can be no definable isomorphism between an infinite subset of
RVn and one of VFm.

Lemma 3.42. Let M |= T, T C-minimal with centered closed balls, and let A be a
substructure of M . Write AVF for the field elements of A, ARV for the RV-elements
of A.

Let c ∈ RV(M), and let A(c) = dcl(A ∪ {c}). Then A(c)VF ⊂ (AVF)
alg, and

rv(A(c)VF) ∩ ARV = rv(AVF).

Proof. Let e ∈ A(c)VF. Then e = f (c) for someA-definable function f : W → VF,
W ⊆ RV. By Lemma 3.41, the image of f is finite, e ∈ acl(A). This proves the
first point. Now if d ∈ RVA and rv−1(d) has a point in A(c), then it has a point in
(AVF)

alg, by assumption (3) of Section 3.4. )�

3.6 Transitive sets in dimension one

Let b be a closed ball in a valued field. Then the set Aff (b) of maximal open subballs
of b has the structure of an affine space over the residue field. We will now begin
using this structure. Without it, more general transitive annuli (missing more than
one ball) could exist.

Lemma 3.43. Let X ⊆ VF be a transitive TB -definable set, where B is some set of
imaginaries. Then X is a finite union of open balls of equal size, or a finite union of
closed balls of equal size, or a finite union of thin annuli.
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Proof. ByC-minimality,X is a finite Boolean combination of balls. There are finitely
many distinct balls b1, . . . , bn that are almost contained inX (i.e., bi \X is contained
in a finite union of proper subballs of bi) but such that no ball larger than bi is almost
contained in X. These bi must be disjoint. If some of the bi have different type than
the others, their union (intersected with X) will be a proper B-definable subset of X.
Thus they all have the same type over B; in particular, they have the same radius β.

Consider first the case where the balls bi are open. Then bi ⊆ X. Otherwise,
bi \ X is contained in a unique smallest ball ci . Say ci has radius α; then α > β.
Let b′i be the open ball of radius (1/2)(α + β) around ci ; then ∪ib′i is a B-definable
proper subset of X, a contradiction. Thus in the case of open balls, X ⊇ ∪ibi and
therefore X = ∪ibi .

If the balls bi are closed, let cij be a minimal finite set of subballs of bi needed
to cover bi \ X. The same argument shows that no cij has radius < β. Thus all cij
are elements of the set Vi of open subballs of bi of radius β. Now Vi is a k-affine
space, and if there is more than one cij then over acl(B), Vi admits a bijection with
k; so there is a finite B-definable set of bijections Vi → k; since any finite definable
subset of k is contained in a strictly bigger one, the union of the pullbacks gives a
B-definable subset of Vi properly containing the cij , leading to a proper B-definable
subset ofX. Thus either bi ⊆ X (and thenX = ∪ibi), or else bi \ci ⊆ X for a unique
maximal open subball ci . Now ∪ci intersects X in a proper subset, which must be
empty. Thus in this case X = ∪i (bi \ ci). )�

Let X be a transitive B-definable set. Call Y ⊆ X potentially transitive if there
existsB ′ ⊃ B such thatY isB ′-definable andB ′-transitive. Let F(X)be the collection
of all proper potentially transitive subsets Y ofX. Let Fmax(X) be the set of maximal
elements of F(X).

Lemma 3.44.

(1) If X is an open ball, Fmax(X) = ∅.
(2) If X is a closed ball, Fmax(X) = {X \ Y : Y ∈ Aff (X)}.
(3) If X is a thin annulus X′ \ Y with X′ closed, then Fmax(X) = Aff (X) \ {Y }.

Proof. Any element of F(X) must be a ball or a thin annulus, so the lemma follows
by inspection. )�

Lemma 3.45. Let b be a transitive closed ball (respectively, thin annulus). Let
Y = Aff (b) be the set of maximal open subballs of b. Then the group of auto-
morphisms of Y over k is definable, acts transitively on Y , and, in fact, contains
Ga(k) (respectively, Gm(k)).

If b, b′ are transitive definable closed balls, and F : b→ b′ a definable bijection,
let F∗ : Y (b) → Y (b′) be the induced map. Then F∗ is a homomorphism of affine
spaces, i.e., there exists a vector space isomorphism F∗∗ : V (b) → V (b′) between
the corresponding vector spaces, and F∗(a + v) = F∗(a) + F∗∗(v). If b = b′ then
F∗∗ = Id .
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Proof. Y = Aff (b) is transitive, and there is a k-affine space structure on Y (re-
spectively, a k-vector space structure on V = Y ′ .∪{0}). Let G = Aut(Y/k) be the
subgroup of the group Aff = (Gm � Ga)(k) of affine transformations of Y that
preserve all definable relations. By definition, this is an intersection of definable sub-
groups of Aff . However, there is no infinite descending chain of definable subgroups
of Aff , so G is definable.

If G is finite, then Y ⊆ acl(k), and it follows (cf. Section 2.1) that there are
infinitely many algebraic points of Y , contradicting transitivity. ThusG is an infinite
subgroup of (Gm � Ga)(k) such that the set of fixed points YG is empty. Thus G
must contain a translation, and by strong minimality it must containGa(k). Similarly,
in the case of the annulus, G is an infinite definable subgroup of Gm(k), so it must
equal Gm(k).

As for the second statement, F induces a group isomorphism Aut(Y (b)/k) →
Aut(Y (b′)/k), and hence an isomorphism Ga(k) → Ga(k), which must be multi-
plication by some γ ∈ k∗. Since Ga(k) acts by automorphisms on (Y (b), Y (b′)),
any definable function Y (b) → Y (b′) commutes with this action and hence has the
specified form. If b = b′ then Y (b) = Y (b′); now if F∗∗ �= Id then F∗ would have a
fixed point, contradicting transitivity. )�
Lemma 3.46. Let b be a transitive TB -definable closed (open) ball. Let F be a
B-definable function, injective on b. Then F(b) is a closed (open) ball.

Proof. By Lemma 3.43, since F(b) is also transitive, it is either a closed ball, or an
open ball, or a thin annulus. We must rule out the possibility of a bijection between
such sets of distinct types.

Consider the collection Fmax(b) defined above. Any definable bijection between
b and b′ clearly induces a bijection Fmax(b) → Fmax(b

′). By Lemma 3.44, the
bijective image of an open ball is an open ball.

Let b be a closed ball, b′ = b′′ \ b′′′ a closed ball minus an open ball,
A = Fmax(b) ' Aff (b), A′ = F(b′) ' Aff (b′′) \ {b′′′}, G = Aut(A/k),
G′ = Aut(A′/k). Then a definable bijection A→ A′ would give a definable group
isomorphism G→ G′. But by Lemma 3.45, G′ = Gm(k) while G contains Ga(k),
so no such isomorphism is possible (say, because Gm(k) has torsion points).

Thus the three types are distinct. )�
We will see later that there can be no definable bijection between an open and a

closed ball, whether transitive or not.

Lemma 3.47. Let b be a transitive ball. Then every definable function on b into
RV∪ is constant. If b is a transitive thin annulus, every definable function on b into
k ∪  is constant. More generally, this is true for definable functions into definable
cosets C of k∗ in RV that contain algebraic points.

Proof. When a ball b is transitive, it is actually finitely primitive. For if E is a B-
definable equivalence relation with finitely many classes, then exactly one of these
classes is generic (i.e., is not contained in a finite union of proper subballs of b). This
class is B-definable, hence must equal b.
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Thus a definable function on b with finite image is constant.
Let F be a definable function on b into . If F is not constant, then for some

γ ∈ , F−1(γ ) is a proper subset of b; it follows that some finite union of proper
subballs of b is γ -definable. By Lemma 3.35, it follows that some such finite union
is already definable, a contradiction.

Thus it suffices to show that functions into a single coset C = valrv−1(γ ) of k∗
are constant on b.

Assume first that b is open, or a properly infinite intersection of balls. By
Lemma 3.19 definable functions on b into C are generically constant; but then by
transitivity they are constant.

Now suppose b is closed, or a thin annulus. Let Y be the set of maximal open
subballs b′ of b. Each b′ ∈ Y is transitive over Tb′ , so F |b′ is constant. Thus F
factors through Y .

In the case of the annulus, by Lemma 3.45, Gm(k) acts transitively on Y by
automorphisms over k. This suffices to rule out nonconstant functions into k. More
generally, if a coset C of k∗ has algebraic points, then Aut(C/k) is finite. Since
Aut(Y/k) is transitive, it follows that if f : Y → C is definable then f (Y ) is finite.
But Y is finitely primitive, so f (Y ) is a point.

Assume finally that b is a closed ball. Using Lemma 3.45, we can view Ga(k)
as a subgroup of Aut(Y/k). Aut(C/k) is contained in Gm(k). Let S = Aut(Y ×
C/k) ∩ (Ga(k) × Gm(k)). Then S projects onto Ga(k). By strong minimality,
S ∩ (Ga(k) × (0)) is either Ga(k) or a finite group. In the first case, S = Ga × T
for some T ≤ Gm. In the latter, S is the graph of an finite-to-one homomorphism
Ga → T ; but this is impossible. Thus Ga × (0) ≤ S and Ga acts transitively on Y
by automorphisms fixing C; it follows that F is constant. )�

3.7 Resolution and finite generation

Lemma 3.48. Let A ≤ B be substructures of a model of T. Assume B is finitely
generated over A. Then RV(B) is finitely generated over RV(A). Also, if RV(A) ≤
C ≤ RV(B) then C is finitely generated over RV(A).

Proof. Suppose (B) has infinitely many Q-linearly independent elements, modulo
(A). By Lemma 3.1, they are algebraically independent. By Lemma 3.20, they lift
to algebraically independent elements of B over A, contradicting the assumption of
finite generation. Thus rk(B)/(A) <∞. It is thus clear that any substructure of
(B) containing (A) is finitely generated over (A). Thus it suffices to show that
RV(B) is finitely generated overA∪(B); replacingA byA∪(B), we may assume
(B) = (A). In this case RV(B) ⊂ RES. See [17, Proposition 7.3] for a proof stated
for ACVFA, but valid in the present generality. Here is a sketch. One looks at B =
A(c) with c ∈ VF. If c ∈ acl(A) then the Galois group Aut(acl(A)/A(c)) has finite
index in Aut(acl(A)/A). Hence the same is true of their images in Aut(acl(A)∩RV),
and since RV is stably embedded (by clause (1) of the definition of V -minimality) it
follows that there exists a finite subset C′ of A(c)∩RV such that any automorphism
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of acl(A) fixing A(C′) fixes A(c) ∩ RV. By Galois theory for saturated structures
(Section 2.1) C′ generates A(c) ∩ RV over A.

On the other hand, if c /∈ acl(A), then tp(c/ acl(A)) agrees with the generic
type over A of either a closed ball, an open ball, or an infinite intersection of balls.
In the latter two cases, RES(A) = RES(B) using Lemma 3.19. In the case of a
closed ball b, let b′ be the unique maximal open subball of b containing c. Then
b′ ∈ A(c), and tp(c/A(b′)) is generic in the open ball b′. Thus by Lemma 3.17,
RES(B) = RES(A(b′)) so it is 1-generated. )�

Recall B = Bo ∪Bcl is the sort of closed and open balls.
We require a variant of a result from [17] on canonical resolutions. We state it for

B-generated structures, but it can be generalized to arbitrary ACVF-imaginaries [16].
The proposition and corollaries will have the effect of allowing free use of the

technology constructed in this paper over arbitrary base (cf. Proposition 8.3).
For this proposition, we allow B (and ) as sorts, in addition to VF and RV, so

that a structure is a subset of B,  of a model of T, closed under definable functions.
Assume for simplicity that T has quantifier elimination (cf. Section 3.4).
Let us call a structure A resolved if any ball and any thin annulus defined over

acl(A) has a point over acl(A).

Lemma 3.49. Let T be V-minimal. Let M |= T, and let A be a substructure of M .
Then (1) and (2) are equivalent; if (A) �= (0), then (3) is equivalent to both.

(1) A is effective and VF(acl(A))→ (A) is surjective.
(2) A is resolved.
(3) acl(A) is an elementary submodel ofM .

Proof. Clearly, (3) implies (1) and (2) implies (1). To prove that (1) implies (3) it
suffices to show that every definable φ(x) of TA in one variable, with a solution
in M , has a solution in A. If x is an RV-variable it suffices to show that φ(rv(y))
has a solution; so we may assume x is a VF-variable, so φ defines D ⊆ VF. By
C-minimalityD is a finite Boolean combination of balls. D can be written as a finite
union of definable sets of the form ∪mj=1Dj \ Ej , where for each j , Dj is a closed
ball, and Ej a finite union of maximal open subballs ofDj , orDj is an open ball and
Ej is a proper subball ofDj , or Ej = ∅, orDj = K . In the third case, by effectivity
there exists a finite set meeting eachDj in a point; since A = acl(A), this finite set is
contained in A; so D(A) �= ∅, as required. In the first and second cases, there exists
similarly a finite set Y meeting each Ej . Since A = acl(A), Y ⊆ A. By picking a
point and translating by it, we may assume 0 ∈ Ej for some j . Say Ej has valuative
radius α; picking a point d ∈ Awith val(d) = α and dividing, we may assume α = 0.
Now in the open case any element of valuation 0 will be inDj . In the closed case, the
image of Ej under res is a finite subset of the residue field; pick some element ā of
k(A) outside this finite set; by effectivity, pick a ∈ A with res(a) = ā; then a ∈ D.
In the fourth case, we use the assumption that (A) �= (0). This proves (3).

It remains to show that (1) implies (2). Let b be a thin annulus defined over
acl(∅); so b = b′ \ b′′ for a unique closed ball b′ and maximal open subball b′′. By
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effectivity, b′′ has an algebraic point, so translation we may assume 0 ∈ b′′. In this
case, the assumption that VF(acl(A))→ (A) is surjective gives a point of b′ \ b′′.)�

If T0 is V-minimal, A is a finitely generated structure (allowing B, or even
ACVF-imaginareis), and T = (T0)A, we will call T a finitely generated extension of
a V-minimal theory.

Remark 3.50. If A is effective, then A is VF ∪ -generated. If A is resolved, then A
is VF-generated.

Proposition 3.51. Let T be V-minimal.

(1) There exists an effective structure Eeff admitting an embedding into any effective
structure E. We have RV(Eeff ), (Eeff ) ⊆ dcl(∅).

(2) There exists a resolved Erslv embedding into any resolved structure E. We have
k(Erslv), (Erslv) ⊆ dcl(∅). In fact, C(Erslv) ⊆ dcl(∅) for any cosets C of k∗
in RV that contain algebraic points.

(3) Let A be a finitely generated substructure of a model of T, in the sorts VF ∪B.
Then (1)–(2) hold for TA.

Proof.
(1) Let (bi)i<λ enumerate the definable balls. Define a tower of VF-generated

structures Ai , and a sequence of balls bi , as follows. Let A0 = dcl(∅); if κ is a limit
ordinal, let Aκ = ∪i<κAi . Assume Ai has been defined. If possible, let bi be an
Ai-definable, Ai-transitive ball, not a point; and let ci be any point of bi . If no such
ball bi exists, the construction ends, and we let Eeff = Ai for this i.

Suppose E is any effective substructure of a model of T. We can inductively
define a tower of embeddings fi : Ai → E. At limit stages κ let fκ = ∪i<κfi .
Given fi with Ai �= E, let b′i be the image under f of bi . By effectivity, b′i has a
point c′i ∈ E. Since bi is transitive over Ai , the formula x ∈ bi generates a complete
type; so tp(ci/Ai) is carried by f to tp(c′i/A′i ). Thus there exists an embedding
fi+1 : Ai+1 → E extending fi , and with ci �→ c′i .

EachAi is VF-generated; by Lemma 3.31(3) =⇒ (4), the process can only stop
when Ai = Eeff . This shows that Eeff embeds into E, and at the same time that the
construction of Eeff itself must halt at some stage (of cardinality ≤ |T|).

By construction, Eeff is VF-generated; and hence TEeff is V-minimal. Moreover,
there are no Eeff -definable Eeff -transitive balls (except points). In other words all
Eeff -definable balls are centered. By V-minimality (assumption (3) of Section 3.4)
every closed ball has a definable point, so every centered ball has one. Thus Eeff is
effective.

It remains only to show that RV(Eeff ), (Eeff ) ⊆ dcl(∅). We show inductively
that RV(Ai), (Ai) ⊆ dcl(∅). At limit stages this is trivial, and at successor stages it
follows from Lemma 3.47.

(2) The proof is identical to that of (1), but using thin annuli as well as balls. If a
thin annulus is not transitive, it contains a proper nonempty finite union of balls, so
by V-minimality it contains a proper nonempty finite set. Hence the construction of
the Ai stops only when Ai is resolved.
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(3) Let A0 = (A ∩ (VF ∪ )). A is generated over A0 by some b1, . . . , bn ∈ B
with bi of valuative radius γi ∈ A0. Since TA0 is V-minimal, we may assume
T = TA0 and A is generated by b1, . . . , bn, with γi definable.

Let J be a subset of {1, . . . , n} of smallest size such that acl({bj : j ∈ J }) =
acl({b1, . . . , bn}). By minimality, no bj is algebraic over {bj ′ : j ′ ∈ J, j ′ �= j}.
Let j ∈ J , and let Yj be the set of balls of radius γj ; then Yj is a definable family
of disjoint balls. By Lemma 3.8 for T′ = T〈{bj ′ :j ′∈J,j ′ �=j}〉, bj is transitive in T′bj ,
i.e., in T〈bj ′ :j ′∈J 〉; hence bj is transitive over acl(b1, . . . , bn) = acl(A). Let us now
show, using induction on |J |, that �j∈J bj is transitive over A. Let cj ∈ bj . By
Lemma 2.10 the ({bj ′ : j ′ ∈ J, j ′ �= j}) remain algebraically independent over 〈cj 〉.
Thus by induction, �j �=j ′bj ′ is transitive over A(cj ); since bj is transitive over A,
�j∈J bj is, too. Let A′ = A(cj : j ∈ J ).
Claim. If B is a VF ∪ -generated structure containing A, then A′ embeds into B
over A.

Proof. Since B is VF ∪ -generated, every ball of TB is centered; in particular, bj
has a point c′j defined over TB . Let c′ = (c′j : j ∈ J ). By transitivity of�j∈J bj , we
have tp(c/A) = tp(c′/A). Thus A′ embeds into B. )�

Note thatA′ is almost VF∪-generated; indeed, since γi is definable, bi ∈ dcl(ci)
so A′ ⊆ acl((cj )j∈J ). Thus TA′ is V-minimal. Thus (1)–(2) applies and prove (3).)�

See Lemma 3.60 for a uniqueness statement.

Corollary 3.52. Let f : VF → (RV ∪ )∗ be a definable map.

(1) There exists a definable f̃ : RV → (RV∪)∗ such that for any x ∈ RV, for some
x ∈ VF with rv(x) = x, f̃ (x) = f (x).

(2) Let 	 = VF/M. There exists a definable map f̃ : 	→ (RV ∪ )∗ such that for
any x ∈ 	, for some x ∈ VF with x +M = x, f̃ (x) = f (x).

Proof.
(1) In view of Lemma 2.3, it suffices to show that for a given complete type

P ⊆ RV, there exists such a function f̃ on P . We fix a ∈ P , and show the existence
of c ∈ dcl(a) such that for some a with rv(a) = a, f (a) = c.

By Proposition 3.51, there exists an effective substructure A with a ∈ A and
(RV∪)(A) = (RV∪)(〈a〉). Thus the open ball rv −1(a) has anA-definable point
a. Set c = f (a); since f (a) ∈ RV(A) = RV(〈a〉) we have c = f̃P (a) for some
definable function f̃P . Clearly, f̃P satisfies the lemma for the input a, hence for any
input from P .

(2) The proof is identical, using Lemma 3.51(3). )�
Corollary 3.53. Let T be V-minimal. Assume every definable point of  lifts to an
algebraic point of RV. Then there exists a resolved structure Erslv such that Erslv
can be embedded into any resolved structure E, and RV(Erslv), (Erslv) ⊆ dcl(∅).
If A is a finitely generated substructure of a model of T, in the sorts VF ∪ B, the
same is true for TA.
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Proof. Under the assumption of the corollary, the conclusion of Proposition 3.51
implies RV(Erslv) ⊆ dcl(∅). )�
Remark 3.54. It is easy to see using the description of imaginaries in [16] that in a
resolved structure, any definable ACVF imaginary is resolved. In other words, if A
is a resolved, and ∼ is a definable equivalence relation on a definable set D, then
D(A)→ (D/ ∼)(A) is surjective.

If A is only effective, then there exists γ ∈ (A)n such that for any t with
val(t) = γ , (D/ ∼)(A) ⊆ dcl(D(A)/ ∼, t); this can be seen by embedding D/ ∼
into Bn(K)/H for an appropriate H ≤ Bn(O), and splitting Bn = TnUn.

3.8 Dimensions

We define the VF-dimension of a TM -definable set X to be the smallest n such that
for some n, X admits a TM -definable map with finite fibers into VFn × (RV ∪ )∗.

By essential bijection Y → Z we mean a bijection Y0 → Z0, where dimVF(Y \
Y0), dimVF(Z \ Z0) < dimVF(Y ) = dimVF(Z); and where two such maps are iden-
tified if they agree away from a set of dimension < dimVF(Y ).

We say that a map f : X→ VFn has RV-fibers if there exists g : X→ (RV∪)∗
with (f, g) injective.

Lemma 3.55. Let X ⊆ VFn × (RV ∪ )∗ be a definable set. Then we have the
following:

(1) X has VF dimension ≤ n iff there exists a definable map f : X → VFn with
RV-fibers.

(2) If it exists, the map f is “unique up to isogeny’’: if f1, f2 : X → VFn have
RV-fibers, then there exists a definable h : X → Z ⊆ VFn × (RV ∪ )∗ and
g1, g2 : Z→ VFn with finite fibers, such that fi = gih.

Proof.

(1) If f : X → VFn has RV-fibers, let g be as in the definition of RV-fibers;
then (f, g) : X → VFn × (RV ∪ )∗ is injective, so certainly finite-to-one. If
φ : X → VFn × RV∗ is finite-to-one, by Lemma 3.9, each fiber φ−1(c) admits
a c-definable injective map ψc : −1(c) → RV∗. By Lemma 2.3 we can find
θ : X→ VFn → RV∗ that is injective on each φ-fiber. Let f (x) = (φ, θ). This
proves the equivalence.

(2) Now supposef1, f2 : X→ VFn both have RV-fibers. Leth(x) = (f1(x), f2(x)),
Z′ = h(X), and define gi : Z′ → VFn by g1(x, y) = x, g2(x, y) = y. Then
gi has finite fibers. Otherwise, we can find a ∈ X such that f1(a) /∈ acl(f2(a))

(or vice versa). But for any a ∈ X, we have f1(a) ∈ acl(f2(a), c) for some
c ∈ (RV ∪ )∗. By Lemma 3.41, f1(a) ∈ acl(f2(a)), a contradiction. By
Lemma 3.9 (cf. Lemma 2.3), there exists a definable bijection between Z′ and a
subset Z of VFn × RV∗. Replacing Z by Z′ finishes the proof of the lemma. )�

Corollary 3.56. Letf : X→ RV∪,Xa = f−1(a). Then dim(X) = maxa dimXa .
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Proof. Let n = maxa dimXa . For each a there exist definable functions ga : Xa →
VFn and ha : Xa → (RV ∪ )∗ with (ga, fa) injective on Xa . Thus by the com-
pactness argument of Lemma 2.3, there exists definable functions g : X→ VFn and
h : Xa → (RV ∪ )∗ such that (g, h) is injective when restricted to each Xa . But
then clearly (g, h, f ) is injective, so dim(X) ≤ n. The other inequality is obvious.)�

We continue to assume T is V-minimal.

Lemma 3.57. Let a, b ∈ VF. If a ∈ acl(b) \ acl(∅), then b ∈ acl(a).

Proof. Suppose b /∈ acl(a). Let A0 = (acl(a, b)). Then by Lemma 3.36, b /∈
acl(A0(a)).

Let C be the intersection of all acl(A0)-definable balls such that b ∈ C, and let
C′ be the union of all acl(A0)-definable proper subballs of C. Let B = ∩i{Bi} be
the set of all balls defined over acl(A0(a)) with b ∈ Bi , and let B ′ = ∪j {B ′j } be the
union of all acl(A0(a))-definable proper subballs of B.

Since a ∈ acl(b), we have a ∈ acl(b′) for all b′ ∈ B \ B ′, outside some proper
subball. It follows by compactness that for some i, j , a ∈ acl(b′) for all b′ ∈ Bi \B ′j .
Say i = j = 1, B ′1 ⊂ B1. By Example 3.57, a ∈ acl(A0(f1)), where f1 ∈ B codes
the ball B1.

If B1 is a point, we are done. Otherwise, B1 has valuative radius α1 <∞ defined
overA0. It follows that ifB1 ⊇ C thenB1 is acl(A0)-definable; but then a ∈ acl(A0),
contradicting the assumption. Since B1 meets P nontrivially, we therefore have
B1 ⊂ C. Similarly, B1 cannot contain any ball in C′ since it is not acl(A0)-definable,
but it cannot be contained in C′ since B1 ∩ P �= ∅. so B1 ∩ C′ = ∅. Thus B1 ⊂ P .

Let B̄1 be the closed ball of radiusα1 containingB1, and let e1 be the corresponding
element ofBcl. Since B̄1 is almost definable overA0(a), it follows from V-minimality
that there exists an almostA0(a)-definable point c(a) in B̄1. Now if a ∈ acl(A0(e1)),
then B̄1 contains anA0(e1)-definable finite set F1 = F1(e1). But since B1 is a proper
subset of P , e1 /∈ acl(A0), this contradicts Lemma 3.8. Thus a /∈ acl(A0(e1)).

Nevertheless, we have seen that a ∈ acl(A0(f1)). Thus B1 �= B̄1, so B1 is a
maximal open subball of B̄1. Let b1 be the point of Aff (B̄1) representing B1. Then
a ∈ acl(b1). It follows that tp(a/ acl(A0(e1))) is strongly minimal, contradicting
Lemma 3.13. We have obtained a contradiction in all cases; so b ∈ acl(a). )�

Since the lemma continues to apply over any VF-generated structure, algebraic
closure is a dependence relation in the sense of Steinitz (also called a prematroid or
combinatorial geometry; cf. [34]). Define the VF-transcendence degree of a finitely
generated structure B to be the maximal number of elements of VF(B) that are
algebraically independent over VF(A). This is the size of any maximal independent
set, and also the minimal size of a subset whose algebraic closure includes all VF-
points. Hence we have the following.

Corollary 3.58. The VF dimension of a definable setD is the maximal transcendence
degree of 〈b〉. )�
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We can now obtain a strengthening of Lemma 3.41, and a uniqueness statement
in Proposition 3.51.

Corollary 3.59. Let Y be a T-definable set admitting a finite-to-one map f into Bn.
Let g : Y → VFm be a definable map. Then g(Y ) is finite.

Proof. We may assume m = 1. We will use the equivalence (3) ⇐⇒ (4) of
Lemma 2.6. If g(Y ) is infinite, then by compactness there exists a ∈ g(Y ), a /∈
acl(A). But for some b we have a = g(b), so if c = f (b), we have c ∈ Bn, a ∈
acl(c). Thus it suffices to show the following:

If a ∈ VF, c ∈ Bn and a ∈ acl(A(c)), then a ∈ acl(A). (∗)

This clearly reduces to the case n = 1, c ∈ B. Let γ be the valuative radius of c. As
follows from Corollary 3.36, it suffices to show that a ∈ acl(A(γ )). Thus in (∗) we
may assume γ ∈ A.

Finally, to prove (∗) (using again the equivalence of Lemma 2.6), we may en-
large A, so we may assume A |= T.

Since γ ∈ A, c ∈ dcl(A(e)) for any element e of the ball c. Thus a ∈ acl(A(e)).
Suppose a /∈ acl(A); then by exchange for algebraic closure in VF, e ∈ acl(A(a)).
Thus any two elements of the ball c are algebraic over each other. By Ex-
ample 2.4, c has finitely many points; which is absurd. This contradiction shows that
a ∈ acl(A). )�
Lemma 3.60 (cf. Proposition 3.51). Let T be a finitely generated extension of an
effective V-minimal theory. Then if E1, E2 are effective and both embed into any
effective E, then they are finitely generated, and E1 ' E2.

Proof. The finite generation is clear. Since E1, E2 embed into each other, they
have the same VF-transcendence degree We may assume E1 ≤ E2. But then by
Lemma 3.58, E2 ⊆ acl(E1). By Lemma 3.9, E2 ⊆ dcl(E1, F ) for some finite
F ⊆ RV∗ ∩ dcl(E2). But RV(E1) = RV(E2), so F ⊆ dcl(E1), and thus E2 = E1.)�
Remark 3.61. The analogous statement is true for resolved structures. Note that if F
is a finite definable subset of RVn, then automatically the coordinates of the points of
F lie in cosets of k∗ that have algebraic points.

Remark. The hypothesis of Lemma 3.60 can be slightly weakened to the following:
T is finitely generated over a V-minimal theory, and there exists a finitely generated
effective E.

Example 3.62. In ACVF, when X ⊆ VFn, the VF dimension equals the dimension
of the Zariski closure of X. This is proved in [36]. The idea of the proof: the VF
dimension is clearly bounded by the Zariski dimension. For the opposite inequality, in
the case of dimension 0, ifX is a finiteA-definable subset of VF, then using quantifier
elimination there exists a nonzero polynomial f with coefficients in A, such that f
vanishes on X. In general, if a definable X ⊆ VFn has VF dimension < n, one can
reduce to the case where all fibers of the projection pr : X → prX ⊂ VFn−1 are
finite, then X is not Zariski dense in VFn, using the zero-dimensional case.
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The RV-dimension of a definable set X ⊆ RV∗ is the smallest integer n (if any)
such that X admits a parametrically definable finite-to-one map into RVn. More
generally for X ⊆ (RV ∪ )∗, dimRV(X) is the smallest integer n (if any) such that
X admits a parametrically definable finite-to-one map into (RV ∪ )n.

Note that RV is one dimensional, but  and every fiber of valrv are also one
dimensional. In this sense RV ∪  dimension is not additive; model-theoretically it
is closer to weight than to rank. We do have dim(X × Y ) = dim(X)+ dim(Y ).

Dually, if a structure B is RV-generated over a substructure A, we can define the
weight of B/A to be the least n such that B ⊆ acl(A, a1, . . . , an), with ai ∈ RV.

For subsets of RV, RV dimension can be viewed as the size of a Steinitz basis with
respect to algebraic closure. One needs to note that the exchange principle holds.

Lemma 3.63 (exchange). Let a, b1, . . . , bn ∈ RV; assume a ∈ acl(A, b1, . . . , bn) \
acl(A, b1, . . . , bn−1). Then bn ∈ acl(A, b1, . . . , bn−1, a).

Proof. We may take n = 1, bn = b, and A = acl(A). Let α = valrv(a) ∈ ,
β = valrv(b). If β ∈ A then (A(a, b)) = (A(b)) = (A). The first equality is
true since a ∈ acl(A(b)) soA(a, b) ⊂ acl(A(b)), and using the stable embeddedness
of  (Section 2.1) and the linear ordering on . The second equality follows from
Lemma 3.10. Thus if β ∈ A, then a, b lie inA-definable strongly minimal sets, cosets
of k∗, and the lemma is clear.

Assume β /∈ A. If α ∈ A, then tp(a/A) is strongly minimal, and tp(a/A) implies
tp(a/A(b)) by Lemma 3.10; but then a ∈ acl(A), contradicting the assumption.
Thus α, β /∈ A; from the exchange principle in , it follows that A′ := acl(A, α) =
acl(A, β). Moreover, a /∈ acl(α) by Lemma 3.11 and Lemma 2.6. By the previous
case, b ∈ acl(A′, a), so b ∈ acl(A, a). )�
Lemma 3.64. A definable X ⊆ RVn has RV dimension n iff it contains an n-
dimensional definable subset of some coset of k∗n.

Proof. Assume X has RV dimension n. Then there exists (a1, . . . , an) ∈ X with
a1, . . . , an algebraically independent. Let c ∈ ; then since an /∈ acl(a1, . . . , an−1),
it follows as in the proof of Lemma 3.63 that an /∈ acl(a1, . . . , an−1, c). This applies
to any index, so a1, . . . , an remain algebraically independent over c; and inductively
we may add to the base any finite number of elements of . Let ci = valrv(ai), and
let A′ = A(c1, . . . , cn). Then a1, . . . , an are algebraically independent over A′, and
they lie in X′ = X ∩�ni=1 rv −1(ci); thus X′ is an n-dimensional definable subset of
a coset of k∗n. )�
Definition 3.65. VF[n, ·] be the category of definable subsets of VF∗ × RV∗ of di-
mension ≤ n. Morphisms are definable maps.

Let X ∈ Ob VF[n, ·]. By Lemma 3.55, there exists a definable f : X → VFn

with RV-fibers; and the maximal RV dimension of a fiber is a well-defined quantity,
depending only on the isomorphism type of X (but not on the choice of f ). In
particular, the subcategory of definable sets of maximal fiber dimension 0 will be
denoted VF[n].
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Definition 3.66. We define RV[n, ·] to be the category of definable pairs (U, f ), with
U ⊆ RV∗, f : U → RVn. If U,U ′ ∈ Ob RV[n, ·], a morphism h : U → U ′ is
a definable map, such that U ′′ = {(f (u), f ′(h(u)) : u ∈ U} has finite-to-one first
projection to RVn. RV[n] is the full subcategory of pairs (U, f ) with f : U → RVn

finite-to-one.
RES[n] is the full subcategory of RV [n] whose objects are pairs (U, f ) ∈

Ob RV[n] such that valrv(U) is finite, i.e., U ⊆ RES∗.

Remark 3.67.

(1) For X, Y ∈ Ob RV[n], any definable bijection X→ Y is in MorRV[n](X, Y ).
(2) The forgetful map (X, f ) �→ X is an equivalence of categories between RV[n]

and the category of all definable subsets of RV∗ of RV dimension ≤ m, with all
maps between them. The presentation with f is nonetheless useful for defining L.

By Remark 3.67, K+(RV[m]) is isomorphic to the Grothendieck semigroup of
definable subsets of RV∗ of RV dimension ≤ m. If dim(X) ≤ m, let [X]m denote
the class [X]m = [(X, f )]m ∈ RV[m], where f : X → RV∗ is any finite-to-one
definable map.

Unlike the case of VF[n, ·] or RV[n], for (U, f ) ∈ Ob RV[n, ·] the map f cannot
be reconstructed from U alone, even up to isogeny, so it must be given as part of the
data. We view (U, f ) as a cover of f (U) with “discrete’’ fibers.

We denote

RV[≤ N, ·] := ⊕0≤n≤NRV[n, ·], RV[≤ N ] = ⊕0≤n≤NRV[n],
RV[∗, ·] := ⊕0≤nRV[n, ·], RV[∗] := ⊕0≤nRV[n],
RES[∗] := ⊕0≤nRES[n].

We have natural multiplication maps K+ RV[k, ·] × K+ RV[l, ·] → K+[k + l, ·],
([(X, f )], [(Y, g)]) �→ [(X × Y, f × g)]. This gives a semiring structure to
K+(RV[∗]). This differs from the Grothendieck ring K+(RV).

Alternative description of RV[≤ N, ·]
An object of RV[≤ N, ·] thus consists of a formal sum

∑N
n=0 Xn of objects Xn =

(Xn, fn) of RV[n, ·]. This can be explained from another angle if one adds a formal
element ∞ to RV, and extends rv to VF by rv(0) = ∞. Define a function f [k] by
f [k](x) = (fn(x),∞, . . . ,∞) (N − k times). If X = (X, f ), let X[k] = (X, f [k]).
Then

∑N
n=0 Xn can be viewed as the disjoint union ∪Ni=0Xi × {∞}[N − i]. The rv

pullback is then a set of VF dimensionN , invariant under multiplication by 1+M; the
sum over dimensions≤ N is necessary to ensure that any such invariant set is obtained
(cf. Lemma 4.9). From this point of view, an isomorphism is a definable bijection
preserving the function “number of finite coordinates.’’ We will use RV[≤ N, ·] or
RV∞[N, ·] interchangeably.

Lemma 3.68. Let X,X′ ∈ Ob RV[n, ·], and assume a bijection g : X′ → X lifts to
G : LX′ → LX. Then g ∈ MorRV[n,·](X′, X).
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Proof. We only have to check the isogeny condition, i.e., that f (g(a)) ∈ acl(f ′(a))
for a ∈ X′ (and dually). By Lemma 3.42, for x ∈ ρX′−1(a),G(x)VF ∈ acl(xVF), i.e.,
the VF-coordinates ofG(x) are algebraic over those of x. Thus f (g(a)) ∈ acl(xVF).
This is true for any x ∈ ρX′−1(a), so f (g(a)) ∈ acl(a). )�

4 Descent to RV: Objects

We assume T is C-minimal with centered closed balls. We will find a very restricted
set of maps that transform any definable set to a pullback from RV. This is related to
Denef’s cell decomposition theorem; since we work in C-minimal theories it takes a
simpler form. Recall that this assumption is preserved under passage to TA, when A
is a (VF,RV, )-generated substructure of a model of T (Lemma 3.39).

Recall that RV = VF×/(1 + M), rv : VF× → RV the quotient map. Let
RV∞ = RV ∪ {∞}, and define rv(0) = ∞. We will also write rv for the induced
map rvn : (VF×)n → (RV)n.

Definition 4.1. Fix n. Let C0 be the category whose objects are the definable subsets
of VFn ×RV∗∞, and whose morphisms are generated by the inclusion maps together
with functions of one of the following types:

(1) Maps

(x1, . . . , xn, y1, . . . , yl) �→ (x1, . . . , xi−1, xi + a, xi+1, . . . , xn, y1, . . . , yl)

with a = a(x1, . . . , xi−1, y1, . . . , yl) : VFi−1 × RVl∞ → VF an A-definable
function of the coordinates y, x1, . . . , xi−1.

(2) Maps (x1, . . . , xn, y1, . . . , yl) �→ (x1, . . . , xn, y1, . . . , yl, rv(xi)).

The above functions are called elementary admissible transformations over A; a
morphism in C0

A generated by elementary admissible transformations over A will be
called an admissible transformation overA. Taking l = 0, we see that allA-definable
additive translations of VFn are admissible.

Analogously, if Y is a given definable set, one defines the notion of a Y -family of
admissible transformations.

If e ∈ RV and Te is an A(e)-admissible transformation, then there exists
an A-admissible T such that ιeTe = T ιe, where ιe(x1, . . . , xn, y1, . . . , yl) =
(x1, . . . , xn, e, y1, . . . , yl). This is easy to see for each generator and follows in-
ductively.

Informally, note that admissible maps preserve volume for any product satisfying
Fubini’s theorem of translation invariant measures on VF and counting measures
on RV .

We will now see that any X ⊂ VFn is a finite disjoint union of admissible
transforms of pullbacks from RV. We begin with n = 1.

Lemma 4.2. Let T be C-minimal with centered closed balls. Let X be a definable
subset of VF. ThenX is the disjoint union of finitely many definable setsZi , such that



Integration in valued fields 317

for some admissible transformations Ti , and definable subsets Hi of RVli∞, TiZi =
{(x, y) : y ∈ Hi, rv(x) = yli }.

If X is bounded, Hi is bounded below; in fact, for any h ∈ Hi , valrv(h) ≥ val(x)
for some x ∈ X.

Here VF will be considered a ball of valuative radius −∞, and points as balls of
valuative radius ∞.

Proof. We may assumeX is a finite union of disjoint balls of the same valuative radius
α ∈  ∪ {±∞}, each minus a finite union of proper subballs, since any definable set
is a finite union of definable sets of that form.

Case 1: X is a closed ball. In this case, by the assumption of centered closed balls,
X has a definable point a. Let T (x) = x − a. Then TX \ {0} is the pullback of a
subset of , the semi-infinite interval [α,∞) (where α is the valuative radius of X).
Thus TX = rv−1(H), where H = valrv−1([α,∞)) ∪ {∞}.

Case 2: X is an open ball. Let X be the surrounding closed ball of the same radius
α, and as in Case 1 let a ∈ X be an definable point, T (x) = x − a. If 0 ∈ TX
then TX = rv−1(H), where H = valrv−1((α,∞)) ∪ {∞}. If 0 /∈ TX, then TX =
rv−1(H), where H = rv(T X) is a singleton of RV.

Case 3:X = C\F is a ball with a single hole, the closed ballF. Letβ be the valuative
radius of F . Let a ∈ F be a definable point, T (x) = x − a. Then TX = rv−1(H),
H = valrv−1(I ), where I is the open interval (α, β) of  in case C is closed, the
half-open interval [α, β) when C is open.

Case 4: X = C \ ∪j∈J Fj is a closed ball, minus a finite union of maximal open
subballs. As in Case 1, find T1 such that 0 ∈ T1X. Then T1X is the union of the
maximal open subball S of radius α, with rv−1(H), where H = rv(X \ S). S can
be treated as in Case 2. Here H is a subset of valrv−1(α), consisting of valrv−1(α)

minus finitely many points.

Cases 3a and 4a: X is a union of m balls (perhaps with holes) of types 1–4 above.
Here we use induction on m; we have m balls Cj covering X. Let E be the smallest
ball containing all Cj . As we may assume m > 1, E must be a closed ball; and each
Cj is contained in some maximal open subballMj of E. By the choice of E, not all
Cj can be contained in the same maximal open ball of E. Let a ∈ E be a definable
point, T1(x) = x − a. If 0 ∈ T1Cj for some j , the lemma is true by induction for
this Cj and for the union of the others, hence also for X. Otherwise, F = rv(T1(X))

is a finite set, with more than one element. For b ∈ F , let Yb = T1X ∩ rv−1(b). By
Lemma 2.3, we can, in fact, find a definable Y whose fiber at b is Yb. By induction
again, there exists an admissible transformation Tb such that Tb(Y ) is a pullback of
the required form. Let T2(x) = (x, rv(x)), T3((x, b)) = ((Tb(x), b)). Then T3T2T1
solves the problem.
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General subsets of VF. Let β ≥ α be the least size (i.e., greatest element of ) such
that some ball of radius β contains more than one hole of X. Let {Cj : j ∈ J }
be the balls of radius β around the holes W of X, and let C = ∪j∈JCj . Then

X = (X \ C) .∪(C \W). Now X \ C has fewer holes than X, so it can be dealt with
inductively. Thus we may assume X = C \W ; and any proper subball of C of less
than maximal size contains at most one hole of X. We may assume the {Cj } form a
single Galois orbit; so they each contain two or more holes of X. Since these holes
are not contained in a proper subball of Cj , each Cj must be closed, and the maximal
open subballs of Cj separate holes. Let Dj,k be the maximal open subballs of Cj
containing a hole Fj,k . Let F̄j,k be the smallest closed ball containing Fj,k . Then

X = (C \ ∪j,kDj,k)
.∪∪j,k(Dj,k \ F̄j,k)

.∪∪j,k(F̄j,k \ Fj,k). The second summand
in this union falls into Case 3a, the first and third (when nonempty) into Case 4a. )�
Remark. If we allow arbitrary Boolean combinations (rather than disjoint unions
only), we can demand in Lemma 4.2 that the sets Hi be finite. More precisely,
let X be a definable subset of VF. Then there exist definable sets Zi , admissible
transformations Ti , and finite definable subsets Hi of RVli∞ such that we have the
following:
X is a Boolean combination of the sets Zi , and TiZi is one of the following:

(1) VF;
(2) (0)×Hi ;
(4) bi ×Hi , with bi a definable ball containing 0;
(5) {(x, y) : y ∈ Hi, rv(x) = fi(y)}, for some definable function fi : Hi → RV∞.

Corollary 4.3. Let X ⊆ VF × RV∗ be definable. Then there exists a definable
ρ : X → RV∗ and c : RV∗ → VF, c′ : RV∗ → RV∞, c′′ : RV∗ → RV∗ such that
every fiber ρ−1(α) has the form (c(α) + rv −1(c′(α))) × {c′′(a)}. Moreover, c has
finite image.

Proof. The finiteness of the image of c is automatic, by Lemma 3.41. The corollary
is obviously true for sets of the form L(H, h) = {(x, u) ∈ VF×H : rv(x) = h(u)};
take ρ(x, u) = (rv(x), u). If the statement holds for TX where T is an admissible
transformation, then it holds forX. If true for two disjoint sets, it is also true for their
union. (Add to ρ a map to {1,−1} ⊆ k∗ whose fibers are the two sets.) Hence by
Lemma 4.2 is true for all definable sets. )�
Corollary 4.4. Let T be V-minimal,X ⊆ VF and let f : X→ RV∪ be a definable
function. Then there exists a definable finite partition ofX = ∪mi=1Xi such that either
f is constant on Xi , or else Xi is a finite union of balls of equal radius (possibly
missing some subballs), there is a definable set Fi meeting each of the balls b in
a single point, and for x ∈ Xi , letting n(x) be the point of Fi nearest x, for some
function H , f (x) = H(rv(x − n(x))).
Proof. The conclusion is so stated that it suffices to prove it over acl(∅), i.e., we may
assume every almost definable set is definable; cf. Section 2.1. By compactness it
suffices to show that for each complete type p, f |p has the stated form. Let b be the
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intersection of all balls containing p. If b is transitive then by Lemma 3.47 f |p is
constant. Otherwise, by V-minimality b contains a definable point, and so we may
assume 0 ∈ b. It follows that rv(p) is infinite. Thus by Lemma 3.20, f factors
through rv. )�

Proposition 4.5. Let T be C-minimal with centered closed balls, and let X be a
definable subset of VFn × RVl . Then X can be expressed as a finite disjoint
union of A-definable sets Z, with each Z of the following form. For some A-
admissible transformation T , A-definable subset H of RVl

∗
∞, and map of indices

ν ∈ {1, . . . , n} �→ ν′ ∈ {1, . . . , l∗},

T Z = {(a, b) : b ∈ H, rv(aν) = bν′(ν = 1, . . . , n)}.

If X projects finite-to-one to VFn, then the projection of H to the primed coordi-
nates 1′, . . . , n′ is finite to one.

If X is bounded, then H is bounded below in RV∞.

Proof. By induction on n; the case n = 0 is trivial. Let pr : X → prX be the
projection of X to VFn−1 × RVl , so that X ⊂ VF× prX.

Let pr∗(Y ) = {v : (∃y ∈ Y )(x, y) ∈ Y }. For any c ∈ prX, according to

Lemma 4.2, we can write pr∗(c) =
•⋃k
i=1 Zi(c), where

Ti(c)Zi(c) = {(a, b) : b ∈ Hi(c), rv(a) = b1′ }

for someA(c)-admissible Ti(c),A(c)-definableZi(c), andHi(c) ⊆ RV = RV1′ . We
can write Zi(c) = {x : (x, c) ∈ Zi}, Hi(c) = {x : (x, c) ∈ Hi} for some definable
Zi andHi ⊂ VFn−1×RV1′ . By compactness, as in Lemma 2.3, one can assume that
the Zi(c),Hi(c), Ti(c) are uniformly definable: there exists a partition of prX into
finitely many definable sets Y , and for each Y families Zi,Hi, Ti over Y of definable
sets and admissible transformations over Y , such that the integer k is the same for
all c ∈ Y , and the Zi(c), Hi(c), Ti(c) are fibers over c of Zi , Hi , Ti . In this case,

pr∗(Y ) =
•⋃k
i=1 Zi . We can express X as a disjoint union of the various pr∗(Y ); so

we may as well assume prX = Y and X = Z1. Let T1 be such that ιcT1(c) = T1ιc.
Then

T1X = {(a, c, b) : (c, b) ∈ H1, rv(a) = b1′ }.
Any admissible transformation is injective and so commutes with disjoint unions.

Now by induction, H1 itself is a disjoint union H1 =
•⋃k′
j=1 Zj , with

T ′i Z′i = {(d, b) : b ∈ H ′
i , rv(dν) = dν′(ν = 2, . . . , n)}.

Notational remarks. Here d = (d2, . . . , dn) are the VF-coordinates of c above. The
′ depends on i but we will not represent this notationally.
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Let T ∗i (a, d, b) = (a, T ′i (d, b)), i.e., T ∗i does not touch the first coordinate. Note
that T ∗i also does not move the 1′ coordinate, since in general admissible transforma-
tions can only add RV coordinates but not change existing ones. Let

Zi = {x : T1(x) = (a, d, b), (d, b) ∈ Z′i , rv(a) = b1′ }.

Then (as one sees by applying T1) X =
•⋃k
i=1 Zi , and if Ti = T ∗i T1, we have

TiZi = {(a, d ′, b′) : (d ′, b′) ∈ T ′i Z′i , rv(a) = b′1′ }
= {(a, d ′, b′) : b ∈ H ′

i , rv(a) = b1′ , rv(dν) = bν′ }.
As for the finiteness of the projection, if X admits a finite-to-one projection to

VFn, so does each Z in the statement of the proposition, and hence the isomorphic
set T Z. We have H ⊂ RVn+l , π : RVn+l → RVn, so T Z = {(a, b, b′) : (b, b′) ∈
H, rv(a) = b′}. For fixed a, this yields an a-definable finite-to-one map T Z′(a) =
{b′ : (a, b, b′) ∈ T Z} → VFn. By Lemma 3.41, T Z′(a) is finite. Now fix b and
suppose (b, b′) ∈ H with b′ not algebraic over b. Then for generic a ∈ rv−1(b), b′
is not algebraic over b, a. Yet (a, b, b′) ∈ T Z and so b′ ∈ T Z′(a), a contradiction.

The statement on boundedness is obvious from the proof; if X ⊆ {x : val(x) ≥
−γ }n × RVm, then H is bounded below by −γ in each coordinate. )�

A remark on more general base structures

Lemma 4.6. Let T be V-minimal, A a B-generated substructure of a model of T.
LetX be a TA-definable subset of VFn×RVl . Then there exist TA-definable subsets
Yi ⊂ RVmi and (projection) maps fi : Yi → RVn, a disjoint union Z of

Zi = Yi ×fi ,rv VFn

and a nonempty A-definable family F of admissible transformations X→ Z. F will
have an A′-point for any VF ∪ RV ∪ -generated structure containing A.

Proof. We may assume A is finitely generated. By Proposition 3.51 there exists an
almost VF ∪ -generated A′ ⊃ A embeddable over A into any VF ∪ -generated
structure containing A, and with RV(A′) = RV(A). By Proposition 4.5, the required
objects Yi, fi exist over A′. But since RV is stably embedded, this data is defined
over RV(A′) ⊆ A. The admissible transformations X → Z = .∪(Yi ×fi ,rv VFn)
exist over A′; so one can find a definable set D with an A′-point, and such that any
element of D codes an admissible transformation X→ Z. )�
Remark. In fact, arbitrary ACVF-imaginaries may be allowed here.

Example 4.7. F need not have an A-rational point. For instance, if A consists of an
element of VF/M, i.e., an open ball c, then we can take Y = Y1 to be the point 0 ∈ RV
(since c can be transformed to M); but there is no A-definable bijection of c with M.
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A statement in terms of Grothendieck groups

Recall Definitions 3.65 and 3.66.

Definition 4.8. Define L : Ob RV[n, ·] → Ob VF[n, ·] by

L(X, f ) = (VF×)n ×rvn,f X ⊂ VFn × RVm,

where VF× = VF \ {0}.
For X = ∑

i Xi ∈ RV[∗], we let L(X) be the disjoint sum
∑
i L(Xi ) over the

various components in RV[i].
Let ρ denote the natural map L(X, f )→ X.

Lemma 4.9. The image of L : Ob RV[≤ n, ·] → Ob VF[n, ·] meets every isomor-
phism class of VF[n, ·].
Proof. For X ⊆ RV∗ and f : X→ RV∞, define rv(0) = ∞ and

L(X, f ) = VFn ×rvn,f X ⊂ VFn × RVm.

Then in the statement of Proposition 4.5, we have T Z = L(H, h) where h is the
projection to the primed coordinates. For x ∈ H , let s(x) = {i : hi(x) = ∞}.
For w ⊆ {1, . . . , n}, let Hw = {x ∈ H : s(x) = w}. Let H̄w = (Hw, h

′
w)

where h′w = (hi)i /∈w. Then H̄w ∈ RV[|w|, ·], and L(Hw, h|Hw) ' L(H̄w). Thus
L(H, h) ' L(

∑
w H̄w). )�

A restatement in terms of VF alone

This restatement will not be used later in the paper.

Definition 4.10. Let A be a subfield of VF. Let C1
A(n, l) be the category of definable

subsets of VFn × (VF×)l , generated by composition and restriction to subsets by
maps of one of the following types:

(1) Maps

(x1, . . . , xn, y1, . . . , yl) �→ (x1, . . . , xi−1, xi + a, xi+1, . . . , xn, y1, . . . , yl)

with a = a(x1, . . . , xi−1, y1, . . . , yl) : VFi+l−1 → VF an A-definable function
of the coordinates y, x1, . . . , xi−1.

(2) Maps (x1, . . . , xn, y1, . . . , yl) �→ (x1, . . . , xn, y1, . . . , yi−1, xiyi, yi+1, . . . , yl) :
X→ Y assuming xi �= 0 on X, and that this function takes X into Y .

Remark 4.11. The morphisms in this category are measure preserving with respect to
Fubini products of invariant measures (additively for VF, multiplicatively for VF×),
viz. dx1 ∧ · · · ∧ dxn ∧ dy1/y1 ∧ · · · ∧ dyl/yl .
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Lemma 4.12. Let T be C-minimal with centered closed balls, X a definable subset
of VFn. Then X can be expressed as a disjoint union of A-definable sets Z with the
following property. For some l ∈ N, there exists an C1

A(n, l)-transformation T and
a definable subset H of RVn∞ × RVl , such that

T (Z × ((1+M))l) = rv−1(H).

Moreover, the projection of H to RVn∞ is finite-to-one.
If val(x) is bounded below, then val(H) may be taken to be bounded below in the

RV-coordinates, and bounded in the RV∞-coordinates.

Proof. This follows from Proposition 4.5. )�

5 V-minimal geometry: Continuity and differentiation

We work with a V-minimal theory.

5.1 Images of balls under definable functions

Proposition 5.1. Let X, Y be definable subsets of VF, and let F : X → Y be a
definable bijection. Then there exists a partition of X to finitely many definable
equivalence classes, such that for any open ball b contained in one of the classes,
F(b) is an open ball; and dually, if F(b) is an open ball, so is b.

Proof. It suffices to show that such a partition exists over acl(∅); for any finite almost
definable partition has a finite definable refinement (cf. the discussion of Galois theory
in Section 2.1). Thus as in Section 2.1 we may assume every almost definable set
is named.

We will show that if p is a complete type, and b is an open subball of p, then
F(b) is an open ball; and that if b′ is an open subball of F(p), then b is an open ball.
From this it follows by compactness that there exists a definable Dp containing p
with the same property; by another use of compactness, finitely many Dp cover X;
it then suffices to choose any partition, such that any class is contained in some Dp.

When p has a unique solution, the assertion is trivial. When p is the generic type
of a closed ball, or of VF, or of a transitive open or ∞-definable ball, for any α ∈ ,
p remains complete over 〈α〉. In the transitive cases, this follows from Lemma 3.47,
while in the centered closed case it follows from Lemma 3.18.

Thus all open subballs bt of p of any radius α have the same type over 〈α〉; hence
they are all transitive over 〈t〉, where t ∈ K/Mα , where Mα = {x : val(x) > α}
(Lemma 3.8, withQ = p). Thus by Lemma 3.46, F(bt ) is an open ball.

The remaining case is that p is the generic type of a centered open or∞-definable
ball b1. Thus b1 contains a definable proper subball b0. If b is an open subball of p,
of radius α, then b ∩ b0 = ∅; let b̄ be the smallest closed ball of containing b and b0.
Then b is contained in the generic type of b̄, and so by the case of closed balls, F(b)
is an open ball. )�
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Remark 5.2. When X ⊆ VF× RVn, by a ball contained in X we will mean a subset
of X of the form b × {e}, where b ∈ B and e ∈ RVn. With this understanding, the
proposition extends immediately to such setsX. Indeed, for each e ∈ RVn, according
to the proposition there is a finite partition of X(e) with the required property; as in
Lemma 2.3 these can be patched to form a single partition of X.

Remark 5.3. When X ⊆ VF there exists a finite set of points F (not necessarily A-
definable) such that F(b) is an open ball whenever b is an open ball disjoint from F .
(This does not extend to X ⊆ VF× RV∗.)

Indeed, by Proposition 5.1 there is a finite number of closed and open balls bi and
points, such that F(b) is an open ball for any open ball b that is either contained in
or is disjoint from each bi . Now let ci be a point of bi . If b is an open ball and no
ci ∈ b, then b must be disjoint from, or contained in, each bi ; otherwise, b contains
bi and hence ci .

5.2 Images of balls II

Lemma 5.4. Let X, Y be balls, and F : X → Y a definable bijection taking open
balls to open balls. Then for all x, x′ ∈ X,

val(F (x)− F(x′)) = val(x − x′)+ v0,

where v0 is the difference of the valuative radii of X, Y .

Proof. Translating by some a ∈ X and by F(a) ∈ Y , we may assume 0 ∈ X, 0 ∈ Y ,
F(0) = 0; and by multiplying we may assume and both X, Y have valuative radius
0, i.e., X = Y = O. Let M(α) = {x : val(x) < α}. Then F(M(α)) = M(β) for
some β = β(α). β is an increasing definable surjection from {α ∈  : α > 0} to
itself; it must have the form β(α) = mα for some rational m > 0. By Lemma 3.26,
we have m ∈ Z. Now reversing the roles of X, Y and using F−1 will transform m to
m−1, so m−1 ∈ Z also, i.e., m = ±1. Since m > 0, we have m = 1. )�
Lemma 5.5. Let X be a transitive open or closed ball (or infinite intersection of
balls), and F : X→ Y a definable bijection. Then there exists a definable e0 ∈ RV
such that for x �= x′ ∈ X, rv(F (x)− F(x′)) = e0 rv(x − x′).
Proof. We first show a weaker statement.

Claim. For some definable e0 : → RV, rv(F (x)−F(x′)) = e0(val(x−x′)) rv(x−
x′) for all x �= x′ ∈ X.

Proof. Fix a ∈ X. For δ ∈ , let bδ = bδ(a), the closed ball around a of valuative
radius δ. Consider those bδ with bδ ⊆ X. As we saw in the proof of Lemma 5.1, as
any a ∈ X is generic, bδ is transitive in Tbδ . By Lemma 3.45, rv(F (x) − F(a)) =
fa(δ) rv(x − a), where val(x − a) = δ, and fa(δ) is a function of a and δ. But then
fa is a function → RV, so by Lemma 3.11 it takes finitely many values v1, . . . , vn.
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Let Yi = fa−1(vi). Yi has a canonical code ei ∈ ∗, consisting of the endpoints of the
intervals making up Yi . Using the linear ordering on, each individual ei is definable
from the set {ei}i , and hence from a; thus vi = fa(Yi) is also definable from a. Thus
fa fa is definable from (ei, vi)i . (This last argument could have been avoided by
quoting elimination of imaginaries in RV ∪ .) However, as X is transitive, every
definable function X→ (RV ∪ ) is constant, and so fa = fb for any a, b ∈ X. Let
e0(δ) = fa(δ). )�

We now have to show that the function e0 of the claim is constant. Using the
O-minimality of , it suffices to show for any definable δ ∈ dom(e0) that

(1) if e0(δ) = e, then e0(γ ) = e for sufficiently small γ > δ,

and if δ is not a minimal element of dom(e0)), then also

(2) if e0(γ ) = e for sufficiently large γ < δ, then e0(δ) = e.
To determine e0(δ), it suffices to know rv(F (x)− F(x′)) and rv(x − x′) for one

pair x, x′ with val(x − x′) = δ. Thus in (1) we may replace X by a closed subball
Y of valuative radius δ, and in (2) by any closed subball Y of X of valuative radius
< δ. Since such closed balls Y are transitive (over their code), we may assume X is
a closed ball.

Fix a ∈ X. Pick a generic c (over a) with rv(c) = e.
To prove (1), note that type of such c is generic in an open ball, whereas the

elements of X are generic in a closed ball; these generic types are orthogonal by
Lemma 3.19; soX remains transitive in Tc. Thus we may assume (by passing to Tc)
that c is definable.

Let qa be the generic type of the closed ball {x : val(a − x) ≥ δ}. For x |= qa ,
let v0 = val(F (a)− F(x)− c(a − x))− val(c).

By the definition of e, val(F (a) − F(x) − c(a − x)) > val(F (a) − F(x)), so
we have

v0 + val(c) = val(F (a)− F(x)− c(a − x)) > val(F (a)− F(x))
= val(c(a − x)) = δ + val(c).

(5.1)

If δ < γ < v0, find x, x′ |= qa with val(x − x′) = γ . Then val(F (x) − F(x′) −
c(x− x′)) ≥ v0 + valrv(e) > γ + valrv(e) = val(c(x− x′)), so rv(F (x)−F(x′)) =
rv(c(x − x′)) showing that e0(γ ) = rv(c) = e. This proves (1).

For (2), let Q0 = {γ : γ < δ}, Qdef
0 the set of definable elements of Q0, and

Q = {γ ∈ Q0 : (∀y ∈ Qdef
0 )(γ > y)}. Thus Q is a complete type of elements of

. For γ ∈ Q, according to Lemma 3.17, the formula val(x − a) = γ generates a
complete type qγ ;a(x). By Lemma 3.47,X is transitive over γ , so the formula x′ ∈ X
generates a complete Tγ -type. Thus by transitivity a complete Tγ -type qγ (x, x′) is
generated by x, x′ ∈ X, val(x − x′) = γ ; namely, (a, b) |= qγ iff b |= qγ ;a .

For some definable v0, for (a, x) |= qγ we have, as in (1),

val(F (a)− F(x)− c(a − x)) = v0(γ )+ val(c) > γ + val(c). (5.2)



Integration in valued fields 325

If we show that v0(γ ) > δ we can finish as in (1).
Now v0(γ ) = mγ + γ0 for some definable γ0 ∈ , and some rationalm. Letting

γ → δ in (5.2) givesmδ+ γ0 ≥ δ. Ifm < 0, then v0(γ ) = mγ + γ0 > mδ+ γ0 ≥ δ
so we are done; hence we may take m ≥ 0.

By Lemma 3.47, RV(〈∅〉) = RV(〈a〉); by Lemma 3.20, when x |= qγ ;a ,
RV(〈a, x〉) is generated over RV(〈a〉) by rv(a − x).

In particular, on qγ,a , x �→ rv(F (a)−F(x)−c(a−x)) is a function of rv(a−x).
This function lifts v0 to a function on RV; hence by Lemma 3.26, m ∈ Z. (This and
m ≥ 0 are simplifications rather than essential points.) We have

val((F (a)− F(x)− c(a − x))(a − x)−m) = γ0.

By Lemma 3.47, (RV ∪ )(〈a〉) = (RV ∪ )(〈∅〉). By Lemma 3.17, then
valrv−1(γ0) ∩ dcl(a, x) = valrv−1(γ0) ∩ dcl(a). Thus valrv−1(γ0) ∩ dcl(a, x) =
valrv−1(γ0) ∩ dcl(∅). Thus rv((F (a)− F(x)− c(a − x))(a − x)−m) ∈ dcl(∅); i.e.,

rv((F (a)− F(x)− c(a − x))(a − x)−m) = e1

for some definable e1. As in (1), we may assume there exists a definable c1 with
rv(c1) = e1. Thus for (a, x) |= qγ ,

val((F (a)− F(x)− c(a − x)− c1(a − x)m)) > val(F (a)− F(x)− c(a − x))
= v0(γ )+ val(c). (5.3)

Let x′ |= qγ,a be generic over {γ, a, x}, so in particular val(x−x′) = val(x−a) =
val(a − x′) = γ . We have

val((F (a)− F(x′)− c(a − x′)− c1(a − x′)m)) > val(F (a)− F(x)− c(a − x))
= v0(γ )+ val(c).

Subtracting from (5.3), we obtain

val((F (x′)− F(x)− c(x′ − x)− c1[(a − x)m − (a − x′)m]) > v0(γ )+ val(c)

= val(c1(a − x′)m).
(5.4)

But since (x, x′) |= qγ , by (5.3) we have

val((F (x)− F(x′)− c(x − x′)− c1(x − x′)m)) > v0(γ )+ val(c)

= val(c1(x − x′)m). (5.5)

Comparing (5.4) and (5.5) (and subtracting val(c1)), we see that

val((a − x)m − (a − x′)m − (x′ − x)m) > val((x − x′)m)
= val((a − x′)m) = val((a − x)m).

Let u = (a− x′)/(x′ − x); then (a− x)/(x′ − x) = u+ 1, val(u) = 0 = val(u+ 1),
and val((u + 1)m − um − 1) > 0. If U = res(u), we get (U + 1)m = Um + 1.
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Since the residue characteristic is 0 this forcesm = 1. (Note that U is generic.) Thus
v0(γ ) = γ + γ0.

From (5.2), γ + γ0 + val(c) > γ + val(c), or γ0 > 0. But δ − γ0 ∈ Qdef
0 , so

since γ ∈ Q we have γ > δ− γ0, or v0(γ ) = γ + γ0 > δ. As noted below (5.2) this
proves the lemma. )�
Remark 5.6. In ACVF(p, p), the claim following Lemma 5.5 remains true, but it is
possible for e0 to take more than one value; consider x − cxp on a closed ball of
valuative radius 0, where val(c) < 0.

Lemma 5.7. Let X be a transitive open ball, and let F : X → X be a definable
bijection. Then rv(F (x)− F(y)) = rv(x − y) for all x �= y ∈ X.

Proof. This follows from the second assertion in Lemma 3.45 and from
Lemma 5.5. )�

At this point, Lemma 5.1 may be improved.

Definition 5.8. Call a functionG on an open ball nice if for some e0, for all x �= x′ ∈
prX, rv(G(x)−G(x′)) = e0 rv(x − x′).
Proposition 5.9. Let X, Y be definable subsets of VF, and let F : X → Y be a
definable bijection. Then there exists a partition of X to finitely many definable
classes, such that on any open ball b contained in one of the classes, F(b) is an open
ball, and F |b is nice.

Proof. The proof of Proposition 5.1 goes through verbatim, only quoting Lemma 5.5
along with Lemma 3.46. )�

A definable translate of a ball rv −1(α) will be called a basic 1-cell. Thus Corol-
lary 4.3 states that every fiber of ρ is a basic 1-cell. By a basic 2-cell we mean a set
of the form

X = {(x, y) : x ∈ prX, rv(y −G(x)) = α},
where prX is a basic 1-cell, and G is nice.

Corollary 5.10. Let X ⊆ VF2 be definable. Then there exists a definable ρ : X →
RV∗ such that every fiber is a basic 2-cell.

Proof. Let X(a) = {y : (a, y) ∈ X}. By Corollary 4.3 there exist an a-definable
ρa : X(a)→ RV∗ and functions c, c′ such that every fiber ρa−1(α) is a basic 1-cell
rv −1(c′(a, α)) + c(a, α). By Lemma 2.3 we can glue these together to a function
ρ1 : X → RV∗ with ρa(y) = ρ1(a, y). Let ρ2(x, y) = (ρ1(x, y), c

′(x, ρ(x, y))).
Then any fiber D of ρ2 has the form

{(x, y) : x ∈ pr1D, rv(y −GD(x)) = α},
whereGD(x) = c(x, α), α depending on the fiberD. Combining ρ2 with a function
whose fibers yield a partition as in Proposition 5.9, we may assume G takes open
balls to open balls (cf. Remark 5.2). Now apply Corollary 4.3 to prX to obtain a map
ρ′ : prX→ RV∗ with nice fibers. )�
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5.3 Limits and continuity

We now assume T is a C-minimal theory of valued fields, satisfying assumption (1)
of Section 3.4.

Let V be a VF-variety. By “almost all a’’ we will mean “all a away from a set of
smaller VF dimension.’’

Lemma 5.11. Let g be a definable function on a ball around 0. Then either
val g(x) → −∞ as val(x) → ∞ or there exists a unique b ∈ VF such that
b = limx→0,x �=0 g(x); i.e.,

(∀ε ∈ )(∃δ ∈ )(0 �= x& val(x)) > δ =⇒ val(g(x)− b) > ε.
Proof. Let p be the generic type of an element of large valuation; so c |= p|A iff
val(x) > (A). and let q = tp(g(c)/A), where c |= p|A. By Remark 3.5, q
coincides with the generic type of P overA where P is a closed ball, an open ball, or
an infinite intersection of balls, orP = VF. The last case means that val g(x)→−∞.
The existence of g shows that p, q are nonorthogonal, so it follows from Lemma 3.19
that the first case is impossible.

We begin by reducing to the case where P is centered. Assume therefore that
P is transitive. For b ∈ P , let qb = tp(g(c′)/A(b)), where c′ |= p|A(b). If qb
includes a proper b-definable subball Pb of P , or a finite union of such balls, we may
take them all to have the same radius α(b); so α(b) is b-definable. By Lemma 3.47,
α is constant. If as b varies there are only finitely many balls Pb, then P is after
all centered. If not, then there are two disjoint Pb, Pb′ ; but this is absurd since if
c′′ |= p|A(b, b′) then g(c′′) ∈ Pb ∩ Pb′ . Thus qb cannot include a proper subball Pb
of P ; so qb is just the generic type of P , over A(b). Moving from A to A(b) we may
thus assume that P is centered.

Thus P is a centered open or infinitely-definable ball; therefore, it has a proper
definable subball b. If y /∈ b, write val(b − y) for the constant value of val(c − y),
c ∈ b. By the definition of a generic type of P , val(b − g(c)) /∈ (A). Now
val(b− g(c)) ∈ (A(c)) = (A)⊕Q val(c) (by assumption (2) of the definition of
V-minimality (Section 3.4)), and val(c) > (A); it follows that val(b−g(c)) < (A)
or val(b−g(c)) > (A). The first case is again the case ofP = VF, while the second
implies that P is an infinite intersection of balls Pi , whose radius is not bounded by
any element of (A). In other words, P = {b}. Unwinding the definitions shows
that b = limx→0,x �=0 g(x). )�
Remark. In reality, the transitive case considered in the proof above cannot occur.

By an (open, closed) polydisc, we mean a product of (open, closed) balls. Let B
be a closed polydisc. Let M |= T . Let b ∈ B(M), a ∈ B(acl(∅)). Write b → a if
for any definable γ ∈ , and each coordinate i, val(bi − ai) > γ . Let p0 be the type
of elements of  greater than any given definable element. Then Lemma 5.11 can
also be stated thusly: given a definable g on a ball B0 around 0 into B, there exists
b ∈ dcl(∅) such that if val(t) |= p, then (t, g(t))→ (0, b).

Stated this way, the lemma generalizes to functions defined on a finite cover ofB0.
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Lemma 5.12. Let B0 be a ball around 0, and B a closed polydisc, both 0-definable.
Let t ∈ B0 have val(t) |= p0, and let a ∈ acl(t), a ∈ B. Then there exists b ∈ B,
b ∈ acl(∅) with (t, a) �→ (0, b).

Proof. The proof of Lemma 5.11 goes through. )�
The following is an analogue of a result of Macintyre’s for the p-adics. By the

boundary of a set X, we mean the closure minus the interior of X.

Lemma 5.13.

(1) Any definable X ⊆ VFn of dimension n contains an open polydisc.
(2) Any definable function VFn → RV ∪  is constant on some open polydisc.
(3) The boundary of any definable X ⊆ VFn has dimension < n.

Proof. Given (1) and (3) follows since the boundary is definable; so it suffices to
prove (1)–(2). For a given n, (2) follows from (1): by Lemma 3.56, the fibers of the
function cannot all have dimension < n.

For n = 1, (1) is immediate from C-minimality. Assume that (1)–(2) are true for
n and let X ⊆ VF × VFn be a definable set of dimension n + 1. For any a ∈ VFn

such that Xa = {b : (a, b) ∈ X} contains an open ball, let γ (a) be the infimum of all
γ such that Xa contains an open γ -ball. By (2) for n, γ takes a constant value γ0 on
some polydisc U ; pick γ1 > γ0. Let

X′ = {(u, z) ∈ X : u ∈ U&(∀z′)(val(z− z′) > γ0 =⇒ (u, z′) ∈ X)}.
Then dim(X′) = n+ 1. Now consider the projection (u, z) �→ z. For some c ∈ VF,
the fiber X′c = {u : (u, c) ∈ X′} must have dimension n. By induction, X′c contains
a polydisc V . Now, clearly, V × Boγ1

(c) ⊆ X. )�
If x = (x1, . . . , xn), x

′ = (x′1, . . . , x′n), write val(x − x′) for min val(xi − x′i ).
Say a function F is δ-Lipschitz at x if whenever val(x − x′) is sufficiently large,
val(F (x) − F(x′)) > δ + val(x − x′). Say F is locally Lipschitz on X if for any
x ∈ X, for some δ ∈ , F is δ-Lipschitz at x.

Lemma 5.14. LetF : X ⊆ VFn → VF be a definable function. ThenF is continuous
away from a subsetX′ of dimension< n. Moreover, F is locally Lipschitz onX \X′.
Proof. Let X′ be the (definable) set of points x where F is not Lipschitz. We must
show that X′ has dimension < n. (In this case, by Lemma 5.13, the closure of X′
has dimension < n, too.) Suppose otherwise. For n = 1 the lemma follows from
Lemmas 5.1 and 5.4. Let πi : X′ ⊆ VFn → VFn−1 be the projection along the
ith coordinate axis. Let Y be the set of b ∈ VFn−1 such that πi−1(b) is infinite or,
equivalently, contains a ball; it is a definable set. For b ∈ Y , let

Di(b) = {x ∈ πi−1(b) : (∃δ ∈ )(F |πi−1(b) is δ-Lipschitz near x)}.
By the case n = 1, πi−1(b) \Di(b) is finite. Thus if Di = ∪b∈YDi(b), then πi has
finite fibers on X \ Di , so dim(X \ Di) < n. Let X∗ = ∩iDi , and for x ∈ X∗ let
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δ(x) be the infinimum of all such Lipschitz constants δ (for all n projections). By
Lemma 5.13, δ is constant on some open polydisc U ⊆ X∗. Let δ′ be greater than
this constant value. Then at any x ∈ U , the restriction of F to a line parallel to an
axis is δ′-Lipschitz. It follows immediately (using the ultrametric inequality) that F
is δ′-Lipschitz on U ; but this contradicts the definition of X′. )�
Remark 5.15. Via assumption (1) of Section 3.4, we used the existence of p-torsion
points in the kernel of RV →  for each p. In ACVF(p, p) this fails; one can still
show that F is locally logarithmically Lipschitz, i.e., for some rational α > 0, for
any x ∈ X \X′, for sufficiently close x′, val(F (x)− F(x′)) > δ val(x − x′).

5.4 Differentiation in VF

Let F : VFn → VF be a definable function, defined on a neighborhood of a ∈ VFn.
We say thatF is differentiable at a if there exists a linear mapL : VFn → VF such that
for any γ ∈ , for large enough δ ∈ , if val(xi) > δ for each i, x = (x1, . . . , xn),
then val(F (a + x)− F(a)− Lx) > δ + γ . If such an L exists it is unique, and we
denote it dFa .

Lemma 5.16. Let F : X ⊆ VFn → VFm be a definable function. Then each partial
derivative is defined at almost every a ∈ X.

Proof. We may assume n = m = 1. Let g(x) = (F (a + x) − F(a))/x. By
Lemma 5.4, for almost every a, for some δ ∈ , for all x with val(x) sufficiently
large, val(F (a+ x)−F(a)) = δ+ val(x); so val g(x) is bounded. By Lemma 5.11,
and Proposition 5.1, g(x) approaches a limit b ∈ VF as x → 0 (with x �= 0); the
lemma follows. )�
Corollary 5.17. Let F : VFn → VF be a definable function. Then F is continuously
differentiable away from a subset of dimension < n.

Proof. F has partial derivatives almost everywhere, and these are continuous almost
everywhere, so the usual proof works. )�
Lemma 5.18. LetX ⊆ VFn×RVm be definable, pr : X→ VFn the projection. Then
for almost every p ∈ VFn, there exists an open neighborhood U of p and H ⊆ RVm

such that pr −1(U) = U × H . If h : X → VF, then for almost all x ∈ X, h is
differentiable with respect to each VF-coordinate.

Proof. For x ∈ VFn, let H(x) = {h ∈ RVm : (x, h) ∈ X}. By Corollary 3.24,
Lemma 2.8, there exists H ′ ⊆ RVm × RVl × k such that for any x ∈ VFn, there
exists a unique y = f (x) ∈ RVl × k with H(x) = H ′(y). By Lemma 5.13, f is
locally constant almost everywhere. Thus for almost all x, for some neighborhood
U of x, for all x′ ∈ U , H(x) = H(x′); so pr −1U = U ×H(x). The last assertion is
immediate. )�
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We can now define the partial derivatives of any definable map F : X → VF
(almost everywhere); we just take them with respect to the VF-coordinates, ignoring
the RV-coordinates.

Given h : X → VFn, h′ : X′ → VFn with RV-fibers, and a definable map
F : X→ X′, we define the partials ofF to be those ofh′◦F . Then the differential dFx
exists at almost every point x ∈ X by Corollary 5.17, and we denote the determinant
by Jcb, and refer to it as usual as the Jacobian.

Definition 5.19. Let X,X′ ∈ VF[n, ·] and let F : X → X′ be a definable bijection.
F is measure preserving if rv Jcb(x) = 1 for almost all x ∈ X. VFvol[n, ·] is the
subcategory of VF[n, ·]with the same objects, and whose morphisms are the measure-
preserving morphisms of VF[n, ·].

Let VFvol be the category whose objects are those of VF[n, ·], and whose mor-
phisms X→ Y are the essential bijections f : X→ Y that are measure preserving.

5.5 Differentiation and Jacobians in RV

LetX, Y be definable sets, together with finite-to-one definable maps fX : X→ RVn,
fY : Y → RVn. Here X, Y can be subsets of RV∗ or of RV∗ × VF∗, etc.; the notion
of Jacobian will not depend on the particular realization of X, Y .

Let h : X→ Y be a definable map.
The notion of Jacobian will depend not only on h,X, Y but also on fX, fY ; to

emphasize this we will write h : (X, fX)→ (Y, fY ).
We first define smoothness. WhenA = fX(X), B = fY (Y ) are definable subsets

of kn, we say that h, X, Y are smooth if A,B are Zariski open, {(fX(x), fY (h(x))) :
x ∈ X} ∩ (A×B) = Z for some nonsingular Zariski closed set Z ⊂ A×B, and the
differentials of the projections to A and to B are isomorphisms at any point z ∈ Z.
In this case, composing the inverse of one of these differentials with the other, we
obtain a linear isomorphism Ta(A) → Tb(B) for any a = fX(x), b = fY (h(x));
since Ta(A) = kn = Tb(B), this linear isomorphism is given by an invertible matrix,
whose determinant is the Jacobian J .

In general, to define smoothness ofX, Y at (x, y = h(x)), we restrict to the cosets
of (k∗)n containing x and y, translate multiplicatively by x and y, respectively, and
pose the same condition.

Any X, Y , h are smooth outside of a set E, where E ∩ C has dimension < n for
each coset C of (k∗)n. Equivalently (by Lemma 3.64), E has RV-dimension < n.

Assume now that X, Y , h are smooth. Define

JcbRV(h)(q) = �(fX(q))−1�(fY (q
′))J (1, 1) ∈ RV,

where �(c1, . . . , cn) = c1 · · · · · cn.
At times it is preferable not to use a different translation at each point of a coset

of (k∗)n. The Jacobian JcbRV(h) of h at q ∈ X can also be defined as follows.
Let q ′ = h(q), γ = valrv(q), γ ′ = valrv(q ′) ∈ n. Pick any c, d ∈ RVn with
valrv(c) = γ, valrv(d) = γ ′ (one can take c = fX(q), d = fY (q ′)). Let
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W(γ, γ ′) = {a : fX(a) ∈ valrv
−1(γ ), fY (h(a)) ∈ valrv

−1(γ ′)},
H ′ = {(c−1fX(a), d

−1fY (h(a))) : a ∈ W }.
Since fX, fY are finite-to-one, H ′ ⊂ (k∗n)2 both projections of H ′ to k∗n are finite-
to-one, andH ′ is nonsingluar by the smoothness of (X, Y, h). We can thus define the
Jacobian J ′ of H ′ at any point. We have

JcbRV(h)(q) = �(c)−1�(d)J ′(qc−1, q ′d−1) ∈ RV.

We also define Jcb(h)(q) =∑ γ ′ −∑ γ ∈  (writing  additively). Note that
this depends only on the value of h at q. We have

valrv JcbRV(h)(q) = Jcb(h)(q).

Example 5.20. Jacobian of maps on . If X̄, Ȳ ⊂ n, we saw that a definable
map f̄ : X̄ → Ȳ lifts to RV iff it is piecewise given by an element of GLn(Z)
composed with a translation. Assume f̄ is given by a matrix M ∈ GLn(Z), let
X = valrv−1(X̄), Y = valrv−1(Ȳ ), and let f : X→ Y be given by the same matrix,
but multiplicatively. Then X, Y, f are smooth, and

J (f )(x) = �(y)�(x)−1 detM,

where y = f (x), and det(M) = ±1.

Alternative: �-weighted polynomials

We have seen that the geometry on valrv−1(γ ) (γ ∈ n) translates to the geom-
etry on (k∗)n, but this is true for the general notions and not for specific vari-
eties; a definable subset of C(γ ) = val−1(γ ) does not correspond canonically
to any definable subset of val−1(0). An invariant approach is therefore useful.
Let 0 = (〈∅〉). X = (X1, . . . , Xn) be variables, γ = (γ1, . . . , γn) ∈ n0 ,
and let ν = (ν(1), . . . , ν(n)) ∈ Nn denote a multi-index. By a γ -weighted
monomial we mean an expression aνXν with aν a definable element of RV, such
that valrv(aν) + ∑ ν(i)γi = 0 ∈ . Let Mon(γ, ν) be the set of γ -weighted
monomials of exponent ν, together with 0. Then Mon(γ, ν) \ {0} is a copy of
valrv−1(−(aν) +∑ ν(i)γi); so Mon(γ, ν) is a one-dimensional k-space. In par-
ticular, addition is defined in Mon(γ, ν). We also have a natural multiplication
Mon(γ, ν) × Mon(γ, ν′) → Mon(γ, ν + ν′). Let R[X; γ ] = ⊕ν∈Nn Mon(γ, ν).
This is a finitely generated graded k-algebra. It may be viewed as an affine coordi-
nate ring ofC[γ ]; but the ring of the productC[γ, γ ′] isR[X,X′; (γ, γ ′)], in general a
bigger ring thanR[X, γ ]⊗kR[X′, γ ′]. Nevertheless, a Zariski closed subset ofC(γ )
corresponds to a radical ideal of R[X′; γ ]. In this way, notions such as smoothness
may be attributed to closed or constructible subsets of any C(γ ) in an invariant way.

Definition 5.21. Let X, Y ∈ Ob RV[n, ·] and let h : X→ Y be a definable bijection.
h is measure preserving if Jcb h(x) = 0 for all x ∈ X, and JcbRV h(x) = 1 for all



332 Ehud Hrushovski and David Kazhdan

x ∈ X away from a set of RV dimension < n. If only the first condition holds, we
say h is -measure preserving.

For X, Y ∈ RV[≤ n, ·], we say that h : X → Y is measure preserving if this is
true of the RV[n]-component of h.

RVvol[n, ·] (respectively, RV-vol′ [n, ·]) is the subcategory of RV[n, ·] with the
same objects, and whose morphisms are the measure-preserving (respectively, -
measure-preserving) definable bijections.

RVvol[≤ n, ·] = ⊕k<nRV-vol′ [k, ·] ⊕ RVvol[n, ·].
Note that when X, Y ∈ Ob RV[n, ·], a bijection h : X → Y is -measure

preserving iff it leaves invariant the sets Sγ = {(a1, . . . , an) :∑n
i=1 valrv(ai) = γ }.

5.6 Comparing the derivatives

Consider a definable function F : VF → VF lying above f : RV → RV, i.e.,
rvF = f rv. The fibers of the map rv : VF → RV above k, for instance, are open
balls of valuative radius 0, whereas the derivative is defined on the scale of balls of
radius r for r → +∞. Thus the comparison between the derivatives of F and f is
not tautological. Nevertheless, one obtains the expected relation almost everywhere.

While this case of the affine line would suffice (using the usual technique of partial
derivatives), it is easier to place oneself in the more general context of curves. More
precisely, we consider definable setsC together with finite-to-one maps f : C → RV.
Let LC and ρ : LC → C be as above.

In the following lemma, H ′, h′ denote, respectively, the VF-, RV derivatives of
functions H , h defined on objects of VF[1], RV[1], respectively.

Proposition 5.22. Let Ci ⊆ RV∗ be definable sets, fi : Ci → RV finite-to-one
definable maps (i = 1, 2). Let h : C1 → C2 be a definable bijection, and let
H : LC1 → LC2 be a lifting of h, i.e., ρH = hρ. Then we have the following:

(1) For all but finitely many c ∈ C1, h is differentiable at c,H is differentiable at any
x ∈ Lc, and rvH ′(x) = h′(rv(x)).

(2) For all c ∈ C1, H is differentiable at a generic x ∈ Lc, and valH ′(x) =
(valrvh′)(x) = val(f2(h(x)))− val(f1(x)).

Proof.

(1) Let Z′ be the set of x ∈ LC1 such that H is not differentiable at x (a finite
set) or that rv(H ′(x)) �= h′(rv(x)). We have to show that ρ(Z′) ⊆ C is finite
or, equivalently, that f1 ◦ ρ(Z′) is finite. Otherwise, there exists c ∈ ρ(Z′)
with c /∈ acl(A). By Lemma 3.20, the formula rv(x) = f1(c) generates a
complete type q over A(c); it defines a transitive open ball bc over A(c). Since
ρ ◦H = ρ ◦h, we haveH(c, y) = (c,Hc(y)) for some A(c)-definable bijection
Hc of bc. By Lemma 5.5, for some e0 ∈ RV, rv(H(u)−H(v)) = e0 rv(u− v)
for all u, v ∈ bc; so rv((H(u)−H(v))/(u− v)) = e0. SinceH is differentiable
almost everywhere on bc (Lemma 5.17) and bc is transitive, it is differentiable at
every point. Clearly, rvH ′(u) = e0, contradicting the definition of Z′.
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(2) This follows from Lemma 5.4. )�
Corollary 5.23. Let X ∈ Ob RV[n], F : LX → VFn a definable function, f : LX →
RVn a definable function. Assume rvF(x) = f (rv(x)). Then Proposition 5.22
applies for each partial derivative of F . In particular,

• for all c ∈ X away from a set of smaller dimension, for all x ∈ Lc, F is
differentiable at x, f is differentiable at c, and rv Jcb(F )(x) = JcbRV(f )(x);

• for all c ∈ X, for generic x ∈ Lc, F is differentiable at x, and val Jcb(F )(x) =
(Jcb f )(x). )�

Corollary 5.24. Let

X,Y ∈ Ob RV[≤ n], f ∈ MorRV[≤n](X,Y), F ∈ MorVFvol[n](LX,LY).

Assume rvF(x) = f (rv(x)). Then f ∈ MorRVvol[n](X,Y). )�
Proof. The proof follows from Corollary 5.23. )�

6 Lifting functions from RV to VF

Proposition 6.1. Let T be an effective V-minimal theory. Let X ⊂ RVk be definable
and let φ1, φ2 : X→ RVn be two definable maps with finite fibers. Then there exists
a definable bijection F : X×φ1,rv (VF×)n → X×φ2,rv (VF×)n, commuting with the
natural projections to X.

Proof. Let A = dcl(∅) ∩ (VF ∪ ). If b ∈ dcl(∅) ∩ RV, then viewed as a ball b
has a point a ∈ A; since the valuative radius of b is also in A, we have b ∈ dcl(A).
Thus φ1, φ2, X are ACVFA-definable. Any ACVFA-definable bijectionF is a fortiori
T-definable; so the proposition for ACVFA implies the proposition for T. Moreover,
ACVFA is V-minimal and effective, since any algebaic ball of ACVFA is TA-algebraic
and hence has a point in VF(A)alg. Thus we may assume T = ACVFA.

The proof will be asymmetric, concentrating on φ1X.
We may definably partition X, and prove the proposition on each piece.
Consider first the case where φ1 : X → U and φ2 : X → V are bijections

to definable subsets U,V ⊆ (k∗)k . Our task is to lift the bijection f = φ2φ1
−1

to VFn. A definable subset of kn (such as φi(X)) is a disjoint union of smooth
varieties. We thus consider a definable bijection f : U → V between k varieties
U ⊂ kn and V ⊂ kn. Induction on dim(U) will allow us to remove a subset of U of
smaller dimension. Hence we may assumeU is smooth, cut out by h = (h1, . . . , hl),
T U = Ker(dh), f = (f1, . . . , fn), where fi are regular on U (defined on an open
subset of kn), and df is injective on T U at each point ofU . Thus the common kernel
of dh1, . . . , dhl, df1, . . . , dfn equals 0.

It follows that at a generic point ofU (i.e., every point outside a proper subvariety),
if Q is a sufficiently generic n × l matrix of elements of A (or integers) and we
let f ′i = fi + Qh, then the common kernel of df ′1, . . . , df ′n vanishes. Note that
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fi |U = f ′i |U . LetW be a smooth variety contained in f (U) and whose complement
in f (U) is a constructible set of dimension smaller than dim(U). Replacing U by
f−1(W), we may assume f (U) is also a smooth variety.

Let Ũ = res−1(U). Lift each f ′i to a polynomial Fi over O, with definable
coefficients. This is possible by effectiveness of ACVFA. Obtain a regular map F ,
whose Jacobian is invertible at points of Ũ . We have res ◦F = f ◦ res. Since f is
1-1 on U , the invertibility of dF implies that F is 1-1 on Ũ . Moreover, by Hensel’s
lemma, F : rv−1(U)→ rv−1(W) is bijective.

Next consider the case where in place of a bijection f : U → V we have a
finite-to-finite correspondence f̃ ⊂ U × V (where U = φ1(X), V = φ2(X)), f̃ =
{(φ1(x), φ2(x)) : x ∈ X}. We may take f̃ ⊂ U × V to be a subvariety, unramified
and quasi-finite over U and over V ; and we can take U,V to be smooth varieties. As
before we can lift f̃ to a correspondence F̃ ⊂ Ũ×Ṽ , such that F̃ ∩rv−1(u)×rv−1(v)

is a bijection rv−1(u) → rv−1(v) whenever (u, v) ∈ f̃ . It follows that a bijection
X ×φ1,rv (VF×)n → X ×φ2,rv (VF×)n is given by (x, y) �→ (x, y′) iff (y, y′) ∈ F̃ .

Let φ1 : X → U and φ2 : X → V be bijections to definable subsets U,V , each
contained in a single coset of (k∗)k , say, U ⊆ C(γ ), V ⊆ C(γ ′) for some γ, γ ′ ∈ k
(cf. Section 5.5). Let Z = (Z1, . . . , Zk) be variables, R[Z; γ ] be the subring of
VF[Z] consisting of polynomials

∑
aνZ

ν , with val(aν)+∑k
i=1 ν(i)γi = 0, and aν

a definable element of VF. There is a natural homomorphism R′[Z; γ ] → R[Z; γ ],
where R[Z; γ ] is the coordinate ring of C(γ ). By effectivity, this homomorphism is
surjective. The proof now proceeds in exactly the same way as above.

This proves the proposition in case valrvφi(X) consists of one point.
Next, assume valrvφ2 consists of one point, and valrvφ1(X) is finite. Thus φ1(X)

lies in the union of finitely many cosets (C(a) : a ∈ E), with E finite.
For a ∈ E,A(a) remains almost VF, -generated; since the proposition is true for

φ1
−1C(a) (definable in TA(a)), then by the one-coset case an appropriate isomorphism

F exists; and the finitely many F obtained in this way can then be glued together, to
yield a map defined over A.

The case of valrvφ1, valrvφ2 both finite, is treated similarly.
This proves the existence of a lifting in case valrvφi(X) is finite. Now for the

general case.

Claim. Let P ⊂ X be a complete type. Then there exists a definable D with P ⊂
D ⊂ X , and definable functions θ on valrv(φ1(D)) and θ ′ on valrv(φ2(D)) such that
for x ∈ D, θ(valrv(φ1(x))) = valrvφ2(x), θ ′(valrv(φ2(x))) = valrvφ1(x).

Proof. Let a ∈ P , γi = valrv(φi(a)). Then γ2 is definable over some points
of φ−1

1 valrv−1(γ1). But valrv−1(γ1) is a coset of k∗, and φ1 is finite-to-one, so
φ−1

1 valrv−1(γ1) is orthogonal to . Thus γ2 is algebraic over γ1. Since  is linearly
ordered, γ2 is definable over γ1; so γ2 = θ(γ1) for some definable θ . Similarly,
γ1 = θ ′(γ2). Clearly, θ restricts to a bijection valrvφ1P → valrvφ2P , with inverse
θ ′. By Lemma 2.7 there exists a definable D with θφ1 = φ2, φ1 = θ ′φ2 on D. )�

Now by compactness, there exist finitely many (Di, θi, θ ′i ) as in the claim with
∪iDi = X. We may cut down the Di successively, so we may assume the union
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is disjoint. But in this case the proposition reduces to the case of each individual
Di , so we may assume X = D. Let Bi = valrvφi(X). Given b ∈ B1, let Xb =
(valrvφ1)

−1(b). Then by the case already considered there exists an A(b)-definable
Fb : Xb ×φ1,rv (VF×)n → Xb ×φ2,rv (VF×)n. Let F = ∪b∈B1Fb. By Lemma 2.3,
F : X ×φ1,rv (VF×)n → X ×φ2,rv (VF×)n is bijective (see the discussion in Sec-
tion 2.1). )�

We note a corollary.

Lemma 6.2. Let T be V-minimal and effective, and let A be an almost (VF, )-
generated structure. Then A is effective.

Proof. By Lemma 3.29 it suffices to show A is rv-effective. Note that if A ⊆ acl(∅),
then T is rv-effective iff TA is rv-effective (see the proof of Lemma 3.31(2)–(3)).
Thus it suffices to show that ifA0 = acl(A0), a ∈ VF∪, and T′ = TA0 is effective,
then so is T′(a). The case a ∈  is included in Corollary 3.40, so assume a ∈ VF.
Let P be the intersection of allA0-definable balls containing a. If P is transitive over
A0, then by Lemma 3.47 we have RV(A0(a)) = RV(A0), so rv-effectivity remains
true trivially. Otherwise, P is centered overA0, hence has anA0-definable point, and
by translation we may assume 0 ∈ P . a is then a generic point of P over A0. Let
c ∈ RV(A0(a)); we must show that rv −1(c) is centered overA0(a). By Lemma 3.20,
if c ∈ RV(A0(a)) then c = f (d) for some A0-definable function f : RV → RV,
where d = rv(a). By Lemma 6.1 there exists anA0-definable functionF : VF → VF
lifting f . Then F(d) ∈ rv −1(c). )�

Base change: Summary

Base change from T to TA preserves V-minimality, effectiveness and being resolved,
if A is VF-generated; V-minimality and effectiveness, if A is RV-generated; V-
minimality, if A is -generated. (Lemmas 6.2, 3.39, and 3.40; the resolved case
follows using Lemma 3.49).

Though the notion of a morphism g : (X1, φ1)→ (X2, φ2) does not depend on
φ1, φ2, recall that the RV-Jacobian of g is defined with reference to these finite-to-
one maps.

Lemma 6.3. Let T be V-minimal and effective. Let Xi ⊂ RVki be definable and let
φi : X → RVn be definable maps with finite fibers; let g : X1 → X2 be a definable
bijection. Assume given, in addition, a definable function δ : X1 → RV, such that

(1) valrvδ(x) = Jcb g(x) for all x ∈ X1;
(2) δ(x) = JcbRV g(x) for almost all x ∈ X1 (i.e., all x outside a set of dimen-

sion < n).

Then there exists a definable bijection G : X1 ×φ1,rv (VF×)n → X2 ×φ2,rv (VF×)n
such that ρ2◦G = g◦ρ1,where ρi are the natural projections to theXi , and such that
for any x ∈ X1 ×φ1,rv (V F

∗)n, G is differentiable at x, and rv(Jcb(G)(x)) = δ(x).
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Proof. We follow closely the proof of Proposition 6.1. As there, we may assume
T = ACVFA, with A be an almost (VF, )-generated substructure.

We first assume that valrvφ1(X1) is a single point of n

Then X1 can be definably embedded into kN for some N , and it follows from
the orthogonality of k and  that the image of X1 in  under any definable map is
finite. Thus φ2X2 is contained in finitely many cosets (C(a) : a ∈ S) of (k∗)n; by
partitioningX1 working in TA(a), we may assume φ2X2 is contained in a single coset
(cf. Lemma 2.3).

As in Proposition 6.1, we may assume φiX ⊆ kn, and, indeed, that φ1X =
U, φ2X = V are smooth varieties. If dim(U) = n, then the lift constructed in Pro-
position 6.1 satisfies rv(Jcb(G))(x) = JcbRV g(x) for x ∈ X ×φ1,rv VFn; thus by
assumption (2), we have rv(Jcb(G))(x) = δ(x) for almost all x. The exceptional
points have dimension< n, and may be partitioned into smooth varieties of dimension
< n. Thus we are reduced to the case dim(U) < n. We prove it by induction
on dim(U). In this case choose any lifting G0. We have an error term e(x) =
rv(Jcb(G0))(x)

−1δ(x). Now A(x) is almost VF, -generated, and so balls rv −1(y)

contain definable points; thus e(x) = rvE(x) for some definable E : (X ×φ1,rv
VFn) → VF. Since U is a smooth subvariety of kn of positive codimension, some
regularh on kn vanishes onV , while some partial derivative (say, h1) vanishes only on
a lower-dimensional subvariety. By induction, one may assume h1 vanishes nowhere.
Lift h to H ; so H1 lifts h1. Compose G0 with a map fixing all coordinates but the
first, and multiplying the first coordinate by E(x)H(y)/H1(y). (Here x = g−1(y).)
Where h vanishes, this has Jacobian E(x); so the composition has RV-Jacobian δ(x)
as required.

Now in general, for any γ ∈ n let X1(γ ) = {x ∈ X1 : valrvφ1(x) = γ },
X2(γ ) = g(X1(γ )). By the definitions of JcbRV and Jcb , JcbRV(g|X2(γ )) =
JcbRV(g)|X2(γ ) and likewise Jcb . By the case already analyzed (for the sets
X1(γ ),X2(γ ) defined in ACVFA(γ )) there exists an A(γ )-definable bijection Gγ :
X1(γ ) ×φ1,rv (V F

×)n → X2(γ ) ×φ2,rv (V F
×)n with rv(Jcb(Gγ )(x)) = δ(x). As

in Lemma 2.3 one can extend theGγ by compactness to definable sets containing γ ,
cover X1 by finitely many such definable sets, and glue together to obtain a single
function G with the same property. )�

Remark. Assume IdX : (X, φ1) → (X, φ2) has Jacobian 1 everywhere. Then it is
possible to find F that is everywhere differentiable, of Jacobian precisely equal to 1.
At the before the point where Hensel’s lemma is quoted, it is possible to multiply the
function by J (F )−1 (not effecting the reduction, since J (F ) ∈ 1 + M). Then one
obtains on each such coset a function of Jacobian 1 and therefore globally.

Example. Let φ2(x) = φ1(x)
m. A definable bijection

X ×φ1,rv (VF×)n → X ×φ2,rv (VF×)n

is given by (x, y) �→ (x, ym). (If rv(u) = φ(x)m, there exists a unique y with
rv(y) = φ(x) and ym = u.)
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Example 6.4. Proposition 6.1 need not remain valid over an RV-generated base set.
LetA = dcl(c), c a transcendental point of k. Let f1(y) = y, f2(y) = 1, L(Y, fi) :=
VF ×rv,fi Y = {(x, y) ∈ RV × Y : rv(x) = y}. Then L(Y, f ),L(Y, f ′) are both
open balls; over any field A′ containing A, they are definably isomorphic, using a
translation. But these balls are not definably isomorphic over A.

7 Special bijections and RV-blowups

We work with a V-minimal theory T. Recall the lift L : RV[≤ n, ·] → VF[n, ·], with
ρX : LX → X. Our present goal is an intrinsic description in terms of RV of the
congruence relation LX ' LY .
Awill denote a (VF, ,RV)-generated substructure of a model of T. Note that TA

is also V-minimal (Corollary 3.39) so any lemma proved for T under our assumptions
can be used for any TA.

The word “definable’’below refers to T. The categories VF,RV[∗] defined below
thus depend on T; when necessary, we will denote them VFT, etc. When T has the
form T = T0

A for fixed T0 but varying A, we write VFA, etc.

7.1 Special bijections

Let X ⊆ VFn+1 × RVm be ∼
rv

-invariant. Say

X = {(x, y, u) ∈ VF× VFn × RVm : (rv(x), rv(y), u) ∈ X̄}.
(We allow x to be any of the n+ 1 coordinates and y the others.)

Let s(y, u) be a definable function into VF with∼
rv

-invariant domain of definition

dom(s) = {(y, u) : (rv(y), u) ∈ S̄}
and θ(u) a definable function on pru(dom(s)) into RV, such that (s(y, u), y, u) ∈ X
and rv(s(y, u)) = θ(u) for (y, u) ∈ dom(s). Note that θ is uniquely defined (given
s) if it exists. Let

X1 = {(x, y, u) ∈ X : (rv(y), u) ∈ S̄, rv(x) = θ(u)}, X2 = X \X1,

X′1 = {(x, y, u) ∈ VF× dom(s) : val(x) > valrvθ(u)}

and let X′ = X′1
.∪X2. Also define es : X′ → X to be the identity on X2, and

es(x, y, u) = (x + s(y, u), y, u)
on X′1.

Definition 7.1. es : X′ → X is a definable bijection, called an elementary bijec-
tion. )�
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Lemma 7.2.

(1) If X is ∼
rv

-invariant, so is X′. If X → VFn+1 is finite-to-one, the same is true

of X′.
(2) If Xi = LX̄i , X′1 = LX̄′1, then X̄′1 is isomorphic to (RV>0

.∪{1}) × S̄, while X̄1

is isomorphic to S̄.
(3) If the projection X → VFn+1 has finite fibers, then so does the projection

dom(s)→ VFn, and also the projection S̄ → RVn, (y′, u) �→ y′.
(4) es has partial derivative matrix I everywhere, hence has Jacobian 1. Thus if
F : X→ Y is such that rv Jcb(F ) factors through ρX, then rv Jcb(F ◦ es) factors
through ρX′ .

Proof. (1) and (4) are clear. The first isomorphism of (2) is obtained by dividing x by
θ(u), the second is evident. For (3), note that if (y, u) ∈ dom(s) then (s(y, u), y, u) ∈
X so by the assumption u ∈ acl(y, s(y, u)). But for fixed y, {s(y, u) : u ∈ dom(s)}
is finite, by Lemma 3.41. Thus, in fact, (y, u) ∈ dom(s) implies u ∈ acl(y). Hence
(y′, u) ∈ S̄ implies u ∈ acl(y) for any y with rv(y) = y′, so (fixing such a y)
{u : (y′, u) ∈ S̄} is finite for any given y′. )�

A special bijection is a composition of elementary bijections and auxiliary bijec-
tions (x1, . . . , xn, u) �→ (x1, . . . , xn, u, rv(x1), . . . , rv(xn)).

An elementary bijection depends on the data s of a partial section ofX→ VFn×
RVm. Conversely, given s, if rv(s(y, u)) depends only on u we can define θ(u) =
rv(s(y, u)) and obtain a special bijection. If not, we can apply an auxiliary bijection
toX ⊆ VFn×RVm, and obtain a setX′ ⊆ VF×RVm+n, such that rv(x) = prm+1(u)

for (x, u) ∈ X′. For such a set X′, the condition for existence of θ is automatic and
we can define an elementary bijection X′′ → X′ based on s, and obtain a special
bijection X′′ → X as the composition.

The classes of auxiliary morphisms and elementary morphisms are all closed
under disjoint union with any identity morphism, and it follows that the class special
morphisms is closed under disjoint unions.

7.2 Special bijections in one variable and families of RV-valued functions

We consider here special bijections in dimension 1. An elementary bijectionX′ → X

in dimension 1 involves a finite set B of rv-balls, and a set of “centers’’ of these balls
(i.e., a set T containing a unique point t (b) of each b ∈ B), and translates each ball so
as to be centered at 0 (while fixing the RV coordinates). We say that X′ → X blows
up the balls in B, with centers T .

Given a special bijection h′ : X′ → X, let FnRV(X;h′) be the set of definable
functionsX→ RV of the formH(ρX′((h′)−1(x))), whereH is a definable function.
This is a finitely generated set of definable functions X → RV. There will usually
be no ambiguity in writing FnRV(X,X′ → X) instead.

Note that while a special bijection is an isomorphism in VF, an asymmetry exists:
if e : X′ → X is a special bijection, then FnRV(X,X) is usually a proper subset of
FnRV(X,X′ → X).
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What is the effect on FnRV of passing fromX′ toX′′, whereX′′ → X′ is a special
bijection? The auxiliary bijections have no effect. Assume rv is already a coordinate
function of X′. Consider an elementary bijection es : X′′ → X′. Let B = {(x, u) ∈
X′ : u ∈ dom(s)}. Then the characteristic function 1B lies in FnRV(X′, IdX′); so
1B ◦ (h′)−1 lies in FnRV(X, h′). Using this, we see that FnRV(X′, es) is generated
over FnRV(X′, IdX′) by the function B → RV, (x, u) �→ rv(x − s(u)) (extended
by 0 outside B). Thus if h′′ = h′ ◦ es : X′′ → X, FnRV(X, h′′) is generated over
FnRV(X, h′) by the composition of the function (x, u) �→ rv(x − s(u)) with (h′)−1.

Conversely, if B is a finite union of open balls whose characteristic function lies
in FnRV(X, h′), and if there exists a definable set T of representatives (one point t (b)
in each ball b of B), and a function φ = (φ1, . . . , φn), φi ∈ FnRV(X, h′), with φ
injective on T , then one can find a special bijection X′′ → X′ with composition h′′ :
X′′ → X, such that FnRV(X, h′′) is generated over FnRV(X, h′) by y �→ rv(y−t (y)),
y ∈ b ∈ B. Namely, let dom(s) = φ(T ), and for u ∈ dom(s) set s(u) = h′−1(t) if
t ∈ T and φ(t) = u. In this situation, we will say that the balls in B are blown up by
X′′ → X′, with centers T . Let θ(u) = rv(s(u)). BecauseX′ → X may already have
blown up some of the balls in B, FnRV(X, h′′) is generated over FnRV(X, h′) by the
restriction of y �→ rv(y − t (y)) to some subball of b, possibly proper. Nevertheless,
we have the following.

Lemma 7.3. The function y �→ rv(y − t (y)) on B lies in FnRV(X, h′′).
Proof. This follows from the following, more general claim. )�
Claim. Let c ∈ VF, b ∈ B be definable, with c ∈ b. Let b′ be an rv-ball with c ∈ b′.
Then the function rv(x − c) on b is generated by its restriction to b′, rv, and the
characteristic function of b.

Proof. Let x ∈ b \ b′. From rv(x) compute val(x). If val(x) < val(c), rv(x − c) =
rv(c). If val(x) > val(c), rv(x − c) = rv(x). When val(x) = val(c), but x /∈ b′,
rv(x − c) = rv(x) − rv(c). Recall here that valrv−1(γ ) is the nonzero part of a
k-vector space; subtraction, for distinct elements u, v, can therefore be defined by
u− v = u(u−1v − 1). )�

Thus any special bijection can be understood as blowing up a certain finite number
of balls (in a certain sequence and with certain centers). We will say that a special
bijection X′′ → X′ is subordinate to a given partition of X if each ball blown up by
X′′ → X′ is contained in some class of the partition.

It will sometimes be more convenient to work with the sets of functions FnRV(X, h)

than with the special bijections h themselves.
We observe that any finite set of definable functions X → RV is contained in

FnRV(X;h) for some X′, h.

Lemma 7.4. Let X ⊆ VF × RV∗ be ∼
rv

-invariant, and let f : X → (RV ∪ ) be a

definable map. Then there exists an ∼
rv

-invariant X′ ⊆ VF×RV∗ a special bijection

h : X′ → X, and a definable function t such that t ◦ ρX′ = f ◦ h. Moreover, if
X = ∪mi=1Pi is a finite partition of X into sets whose characteristic functions factor
through ρ, we can find X′ → X subordinate to this partition.
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Proof. Say X ⊆ VF × RVm; let π : X → VF, π ′ : X → RVm be the projections.
Applying an auxiliary bijection, we may assume rv(π(x)) = prm π

′(x), i.e., rv(π(x))
agrees with one of the coordinates of π ′(x). We now claim that there exists a finite
F ′ ⊆ RVm, such that away from π ′−1(F ′), f factors through π ′. To prove this, it
suffices to show that if p is a complete type of X and π ′∗p is nonalgebraic (i.e., not
contained in a finite definable set), then f |p factors through π ′; this follows from
Lemma 3.20.

We can thus restrict attention to π ′−1(F ′); our special bijections will be the
identity away from this. Thus we may assume π ′(X) is finite. Recall that (since an
auxiliary bijection has been applied) rv is constant on each fiber of π ′. In this case
there is no problem relativizing to each fiber of π ′, and then collecting them together
(Lemma 2.3), we may assume, in fact, that π ′(X) consists of a single point {u}. In
this case the partition (since it is defined via ρ) will automatically be respected.

The rest of the proof is similar to Lemma 4.2. We first consider functions f with
finite support F (i.e., f (x) = 0 for x /∈ F ) and prove the analogue of the statement
of the lemma for them. If F = {0} × {u} then F = ρ−1({(0)} × {u})) so the claim
is clear. If F = {(x0, u)}, let s : {u} → VF, s(u) = x0. Applying es returns us to
the previous case. If F = F0 × {u} has more than one point, we use induction on
the number of points. Let s(u) be the average of F0. Apply the special bijection es .
Then the result is a situation where rv is no longer constant on the fiber. Applying
an auxiliary bijection to make it constant again, the fibers of F → RVm+1 become
smaller.

The case of the characteristic function of a finite union of balls is similar (following
Lemma 4.2).

Now consider a general function f . Having disposed of the case of characteristic
function, it suffices to treat f on each piece of any given partition. Thus we can
assume f has the form of Corollary 4.4, f (x) = H(rv(x − n(x))). Translating by
the n(x) as in the previous cases, we may assume n(x) = 0. But then again f factors
through ρ and rv, so one additional auxiliary bijection suffices. )�

Corollary 7.5. Let X, Y ⊆ VFn ×RV∗, and let f : X→ Y be a definable bijection.
Then there exists a special bijectionh : X′ → X, and t such that ρY ◦(f ◦h) = t◦ρX′ .

It can be found subordinate to a given finite partition, factoring through ρX. )�

We wish to obtain a symmetric version of Corollary 7.5. We will say that bijections
f, g : X→ Y differ by special bijections if there exist special bijections h1, h2 with
h2g = f h1. We show that every definable bijection between ∼

rv
-invariant objects

differs by special bijections from an ∼
rv

-invariant bijection.

Lemma 7.6. Let X ⊆ VF × RVm, Y ⊆ VF × RVm
′

be definable, ∼
rv

-invariant; let

F : X→ Y be a definable bijection. Then there exist special bijectionshX : X′ → X,
hY : Y ′ → Y , and an ∼

rv
-invariant bijection F ′ : X′ → Y ′ with F = hYF ′h−1

X ; i.e.,

F differs from an ∼
rv

-invariant morphism by special bijections.
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Proof. It suffices to find hX, hY such that FnRV(X, hX) = F ◦FnRV(Y, hY ); for then
we can let F ′ = h−1

Y FhX.
Let X = ∪mi=1Pi be a partition as in Proposition 5.1. By Lemma 7.4, there exist

X0, Y1 and special bijectionsX0 → X, Y1 → Y , such that the characteristic functions
of the sets Pi (respectively, the sets F(Pi)) are in FnRV(X,X0 → X) (respectively,
FnRV(Y, Y1 → Y )).

By Corollary 7.5, one can find a special X1 → X0 such that FnRV(X,X1 → X)

contains F ◦ FnRV(Y, Y1 → Y ). By another application of the same, one can find a
special bijection Y∗ → Y1 subordinate to {F(Pi)} such that

FnRV(Y, Y∗ → Y ) ⊇ F−1 ◦ FnRV(X,X1 → X). (7.1)

Now Y∗ is obtained by composing a sequence Y∗ = Ym → · · · → Y1 of elemen-
tary bijections and auxiliary bijections. We define inductively Xm → · · · → X2 →
X1, such that

FnRV(Y, Yk → Y ) ◦ F ⊆ FnRV(X,Xk → X). (7.2)

Let k ≥ 1. Yk+1 is obtained by blowing up a finite union of balls B of Y , with a
definable set T of representatives such that some φ ∈ FnRV(Y, Yk → Y ) is injective
on T ; then FnRV(Y, Yk+1 → Y ) is generated over FnRV(Y, Yk → Y ) byψ , where for
y ∈ b ∈ B ψ(y) = rv(y − t (b)) (Lemma 7.3). By the choice of the partition {Pi},
F−1(B) is also a finite union of balls.

Now F−1(B), with center set F−1(T ), can serve as data for a special bijection:
the requirement about the characteristic function of B and the injective function on T
being in FnRV are satisfied by virtue of Lemma 7.3. We can thus defineXk+1 → Xk so
as to blow up F−1(B)with center set F−1(T ). By Lemma 5.4, rv(F (x)−F(x′)) is a
function of rv(x−x′) (and conversely) on each of these balls, so FnRV(X,Xk+1 → X)

is generated over FnRV(X,Xk) by ψ ◦ F . Hence (7.2) remains valid for k + 1.
Now by (7.1), FnRV(X,X1 → X) ⊆ FnRV(Y, Y∗ → Y )◦F ; since the generators

match at each stage, by induction on k ≤ m,

FnRV(X,Xk → X) ⊆ FnRV(Y, Ym → Y ) ◦ F. (7.3)

By (7.2) and (7.3) for k = m, FnRV(X,Xm → X) = FnRV(Y, Y∗ → Y ) ◦ F . )�

For the sake of possible future refinements, we note that the proof of Lemma 7.6
also shows the following.

Lemma 7.7. Let X ⊆ VF × RVm, Y ⊆ VF × RVm
′

be definable, ∼
rv

-invariant; let

F : X → Y be a definable bijection. If a Proposition 5.1 partition for F has
characteristic functions factoring through ρX, ρY , and if F is ∼

rv
-invariant, then for

any special bijection h′X : X′ → X, there exists a special bijection h′Y : Y ′ → Y ′
such that (h′Y )−1Fh′X is ∼

rv
-invariant. )�
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7.3 Several variables

We will now show in general that any definable map from an ∼
rv

-invariant object to

RV factors through the inverse of a special bijection, and the standard map ρ.

Lemma 7.8. LetX ⊆ VFn×RVm be∼
rv

-invariant, and let φ : X→ (RV∪). Then

there exists a special bijection h : X′ → X, and a definable function τ such that
τ ◦ ρX′ = φ ◦ h.

Proof. By induction on n. For n = 0 we can take X′ = X, since ρX = IdX.
For n = 1 and X ⊆ VF, by Lemma 7.4, there exists µ = µ(X, φ) ∈ N such

that the lemma holds for some h that is a composition of µ elementary and auxiliary
bijections. It is easy to verify the semicontinuity of µ with respect to the definable
topology: if Xt is a definable family of definable sets, so that Xb is A(b)-definable,
and µ(Xb, φ|Xb) = m, then there exists a definable set D with b ∈ D such that if
b′ ∈ D, then µ(Xb′ , φ|Xb′) ≤ m.

Assume the lemma is known for n and suppose X ⊆ VF × Y , with Y ⊆ VFn ×
RVm. For any b ∈ Y , let Xb = {x : (x, b) ∈ X} ⊆ VF; so Xb is A(b)-definable.

Let µ = maxb µ(Xb, φ|Xb). Consider first the case µ = 0. Then φ|Xb =
τb ◦ ρ|Xb, for some A(b)-definable function τb : RVm → (RV ∪ ). By stable
embeddedness and elimination of imaginaries in RV ∪, there exists (Section 2.1) a
canonical parameter d ∈ (RV∪)l , and anA-definable function τ , such that τb(t) =
τ(d, t); and d itself is definable from τb, so we can write d = δ(b) for some definable
δ : Y → (RV ∪)l . Using the induction hypothesis for (Y, δ) in place of (X, φ), we
find that there exists an ∼

rv
-invariant Y ′ ⊆ VFn × RV∗, a special hY : Y ′ → Y , and a

definable τY , such that τY ◦ρY ′ = δ ◦hY . LetX′ = X×Y Y ′, h(x, y′) = (x, hY (y′)).
An elementary bijection to Y determines one toX, where the function s does not make
use of the first coordinate; so h : X′ → X is special. In this case, the lemma is proved:
φ ◦ h(x, y′) = φ(x, hY (y′)) = τ(δ(hY (y′)), ρ(x, y)) = τ(τY (ρY ′(y′)), ρ(x, y)).

Next suppose µ > 0. Applying an auxiliary bijection, we may assume that for
some definable function (in fact, projection) p, rv(x) = p(u) for (x, y, u) ∈ X.
For each b ∈ Y (M) (with M any model of TA) there exists an elementary bijection
hb : X′b → Xb, such that µ(X′b, φ|X′b) < µ; hb is determined by sb, θb,with sb ∈
rv(sb) = θb, and (sb, θb) ∈ X. (The u-variables have been absorbed into b.) By
compactness, one can take sb = s(b) and θb = θ ′(b) for some definable functions
s, θ ′. By the inductive hypothesis applied to (Y, θ ′), as in the previous paragraph,
we can assume θ ′(y, u) = θ(u) for some definable θ . Applying the special bijection
with data (s, θ) now amounts to blowing up (sb, θb) uniformly over each b, and thus
reduces the value of µ. )�

Question 7.9. Is Proposition 7.6 true in higher dimensions?

Corollary 7.10. Let X ⊆ VFn × RVm be definable. Then every definable function
φ : X→  factors through a definable function X→ RV∗.
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Proof. By Lemma 4.5 we may assume X is ∼
rv

-invariant; now the corollary follows

from Lemma 7.8. )�
(It is convenient to note this here, but it can also be proved with the methods

of Section 3; the main point is that on the generic type of ball with center c, every
function into RV ∪  factors through rv(x − c); while on a transitive ball, every
function into RV ∪  is constant.)

Consider pairs (X′, f ′) with X′, f ′ : X′ → VFn definable, such that f ′ has RV-
fibers. A bijection g : X′ → X′′ is said to be relatively unary (with respect to f ′, f ′′)
if it commutes with n− 1 coordinate projections, i.e., pri f

′′g = pri f
′ for all but at

most one value of i.
GivenX ⊆ VFn×RVm, we view it as a pair (X, f )with f the projection to VFn.

Thus for X, Y ⊆ VFn × RV∗, the notion F : X→ Y is relatively unary is defined.
Note that the elementary bijections are relatively unary, as are the auxiliary bijec-

tions.

Lemma 7.11. Let X, Y ⊆ VFn × RV∗, and let F : X→ Y be a definable bijection.
Then F can be written as the composition of relatively unary morphisms of VF[n, ·].
Proof. We have X with two finite-to-one maps f, g : X → VFn (the projection
and the composition of F with the projection Y → VFn). We must decompose the
identity X→ X into a composition of relatively unary maps (X, f )→ (X, g).

Begin with the case n = 2; we are given (X, f1, f2) and (X, g1, g2).

Claim. There exists a definable partition of X into sets Xij such that (fi, gj ) : X→
VF2 is finite-to-one.

Proof. Let a ∈ X. We wish to show that for some i, j , a ∈ acl(fi(a), gj (a)).
This follows from the exchange principle for algebraic closure in VF: if a ∈ acl(∅),
there is nothing to show. Otherwise, gj (a) /∈ acl(∅) for some j ; in this case either
a ∈ acl(f1(a), gj (a)) or f1(a) ∈ acl(gj (a)), and then a ∈ acl(f2(a), gj (a)). The
claim follows by compactness. )�

Let h : X′ → X be a special bijection such that the characteristic functions ofXij
are in FnRV(X,X′ → X). (Lemma 7.8). Since h is composition of relatively unary
bijections, we may replaceX byX′ (and fi , gi by fi ◦h, gi ◦h, respectively). Thus we
may assume the characteristic function of Xij is in FnRV(X,X), i.e., Xij ∈ VFr[n].
But then it suffices to treat eachXij separately, say,X11. In this case the identity map
on X takes

(X, f1, f2) �→ (X, f1, g1) �→ (X, g2, g1) �→ (X, g2, g1 − g2)

�→ (X, g1, g1 − g2) �→ (X, g1, g2),

where each step is relatively unary.
When n > 2, we move between (X, f1, . . . , fn) and (X, g1, . . . , gn), by parti-

tioning, and on a given piece replacing each fi by some gj , one at a time. )�
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7.4 RV-blowups

We now define the RV-counterparts of the special bijections, which will be called
RV-blowups. These will not be bijections; the kernel of the homomorphism L :
K+[RV] → K+[VF] will be seen to be obtained by formally inverting RV-blowups.
Let RV>0∞ = {x ∈ RV : val(x) > 0 ∪ {∞}} ⊆ RV∞. In the RV[≤ 1]-presentation,
RV>0∞ = [RV>0]1 + [1]0 (cf. Section 3.8).

Definition 7.12.

(1) Let Y = (Y, f ) ∈ Ob RV∞[n, ·] be such that fn(y) ∈ acl(f1(y), . . . , fn−1(y)),
and fn(y) �= ∞. Let Y ′ = Y × RV>0∞ . For (y, t) ∈ Y ′, define f ′ = (f ′1, . . . , f ′n)
by f ′i (y, t) = fi(y) for i < n, f ′n(y, t) = tfn(y). Then Ỹ = (Y ′, f ′) is an
elementary blowup of Y. It comes with the projection map Y ′ → Y .

(2) Let X = (X, g) ∈ Ob RV∞[n, ·], X = X′ .∪X′′, g′ = g|X′, g′′ = g|X′′, and let
φ : Y → (X′, g′) be an RVvol-isomorphism. Then the RV-blowup X̃φ is defined

to be Ỹ + (X′′, g′′) = (Y ′
.∪X′′, f ′ .∪ g′′). It comes with b : Y ′ .∪X′′ → X,

defined to be the identity onX′′, and the projection on Y ′. X′ is called the blowup
locus of b : X̃φ → X.

An iterated RV-blowup is obtained by finitely many iterations of RV-blowups.

Since blowups in the sense of algebraic geometry will not occur in this paper, we
will say “blowup’’ for RV-blowup.

Remark 7.13. In the definition of an elementary blowup, dimRV(Y ) < n. For such Y ,
φ : Y → (X′, g′) is an RVvol[≤ n, ·]-isomorphism iff it is an RV-vol′ -isomorphism
(Definition 5.21).

Lemma 7.14.

(1) Let Y′ be an elementary blowup of Y. Y′ is RVvol[n, ·]-isomorphic to Y′′ =
(Y ′′, f ′′), with Y ′′ = {(y, t) ∈ Y × RV∞ : valrv(t) > fn(y)}, f ′′(y, t) =
(f1(y), . . . , fn−1(y), t).

(2) An elementary blowup Y′ of Y is RV∞[n, ·]-isomorphic to (Y × RV∞, f ′) for
any f ′ isogenous to (f1, . . . , fn, t).

(3) Up to isomorphism, the blowup depends only on the blowup locus. In other words,
if X,X′, g, g′ are as in Definition 7.12, and φi : Yi → (X′, g′) (i = 1, 2) are
isomorphisms, then X̃φ1 , X̃φ2 are X-isomorphic in RVvol[n, ·].

Proof.

(1) The isomorphism is given by (y, t) �→ (y, tfn(y)).
(2) The identity map on Y × RV is an RV∞[n, ·] isomorphism.
(3) Let ψ0 = φ2

−1φ1, and define ψ1 : Y1 × RV>0∞ → Y2 × RV>0∞ by ψ(y, t) =
(ψ0(y), t). The sum of the values of then coordinates of Ỹi is then (

∑
i<n valrvfi)+

(valrv(t) + valrvfn) in both cases. Since by assumption ψ0 : Y1 → Y2 is an
RVvol-isomorphism, it preserves

∑
i≤n valrvfi and so ψ1 too is an RV-vol′ -

isomorphism; thus JcbRV(ψ1) ∈ k∗, i.e., let θY1 → k∗ be a definable map such
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that θ = JcbRV(ψ1) almost everywhere. Defineψ : Y1×RV>0∞ → Y2×RV>0∞ by
ψ(y, t) = (ψ0(y), t/θ(y)). Then one computes immediately that JcbRV(ψ) = 1,
so ψ is an RVvol[n, ·]-isomorphism, and hence so is ψ

.∪ IdX′′ : X̃φ1 → X̃φ2 . )�
Here is a coordinate-free description of RV-blowups; we will not really use it in

the subsequent development.

Lemma 7.15.

(1) Let Y = (Y, g) ∈ Ob RV∞[n, ·], with dim(g(Y )) < n; let f : Y → RVn−1

be isogenous to g. Let h : Y → RV be definable, with h(y) ∈ acl(g(y)) for
y ∈ Y , and with

∑
(g) =∑(f )+ valrv(h). Let Y ′ = Y ×RV>0∞ , and f ′(y, t) =

(f (y), th(y)). Then Y′ = (Y ′, f ′) with the projection map to Y is a blowup.
(2) Let Y′′ → Y be a blowup with blowup locus Y . Then there exist f , h such that

with Y′ as in (3), Y′′,Y′ are isomorphic over Y.

Proof.

(1) Since dimRV(g(Y )) < n, IdY : (Y, (f, h)) → (Y, g) is an RVvol-isomorphism.
Use this as φ in the definition of blowup.

(2) With notation as in Definition 7.12, let h = gn ◦ φ−1, f = (g1, . . . , gn−1)

◦ φ−1. )�
Definition 7.16. For C = RV[≤ n, ·] or C = RVvol[≤ n, ·], let Isp[≤ n] be the set of
pairs (X1,X2) ∈ Ob C such that there exist iterated blowups bi : X̃i → Xi and an
C-isomorphism F : X̃1 → X̃2.

When n is clear from the context, we will just write Isp.

Definition 7.17. Let 10 denote the one-element object of RV[0]. Given a definable
set X ⊆ RVn let Xn denote (X, IdX) ∈ RV[n], and [X]n the class in K+(RV[n]).
Write [1]1 for [{1}]1 (where {1} is the singleton set of the identity element of k).

Lemma 7.18. Let C = RV[≤ n, ·] or C = RVvol[≤ n, ·].
(1) Let f : X1 → X2 be a C-isomorphism, and let b1 : X̃1 → X1 be a blowup. Then

there exists a blowup b2 : X̃2 → X2 and a C-isomorphism F : X̃1 → X̃2 with
b2F = f b1.

(2) If b : X̃ → X is a blowup, then so are b
.∪ Id : X̃

.∪Z → X
.∪Z and (b × Id) :

X̃ × Z → X × Z.
(3) Let bi : X̃φi → X be a blowup (i = 1, 2). Then there exist blowups b′i : Zi → X̃φi

and an isomorphism F : Z1 → Z2 such that b2b
′
2F = b1b

′
1.

(4) Same as (1)–(3) for iterated blowups.
(5) Isp is an equivalence relation. It induces a semiring congruence on K+ RV[∗, ·],

respectively, K+ RVvol[∗, ·].
(6) As a semiring congruence on K+ RV[∗, ·], Isp is generated by ([1]1,

[RV>0]1 + 10).
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Proof.
(1) This reduces to the case of elementary blowups. If C = RVvol[n, ·], then the

composition f ◦ b1 is already a blowup. If C = RV[≤ n, ·], it is also clear using
Lemma 7.14(2).

(2) This follows from the definition of blowup.
(3) If b1 is the identity, let b′1 = b2, b′2 = Id, F = Id; similarly if b2 is the identity.

If X = X′ .∪X′′ and the statement is true above X′ and above X′′, then by glueing it
is true also above X. We thus reduce to the case that b1, b2 both are blowups with
blowup locus equal to X. But then by Lemma 7.14(3), there exists an isomorphism
F : X̃φ1 → X̃φ2 over X. Let b′1 = b′2 = Id.

(4) For (1)–(2) the induction is immediate. For (3), write k-blowup as shorthand
for “an iteration of k blowups.’’ We show by induction on k1, k′ a more precise form.

Claim. If X1 → X is a k1-blowup, and X′ → X is a k′-blowup, then there exists an
k′-blowup Z′1 → X1 a k1-blowup Z′ → X, and an RVvol[n, ·]-isomorphism Z′1 → Z′
over X.

If k1 = k′ = 1, this is (3). Thus say k′ > 1. The map X′ → X is a composition
X′ → X2 → X, where X2 → X is a k′ − 1-blowup and X′ → X2 is a blowup.
By induction there is a k′ − 1-blowup Z1 → X1 and a k1-blowup Z2 → X2 and an
RVvol[n, ·]-isomorphism Z1 → Z2 over X.

By induction again there is a blowup and Z′2 → Z2, a k1-blowup Z′ → X′ an
RVvol[n, ·]-isomorphism Z′ → Z2 over X2. By (1) there exists a blowup Z′1 →
Z1 and an RVvol[n, ·]-isomorphism Z′1 → Z′2, making the Z1,Z2,Z′1,Z2-square
commute. Thus Z1 → X1 is a k′-blowup, Z′ → X′ is a k1-blowup, and we have a
composed isomorphism Z′1 → Z′2 → Z′ over X.

(5) If (X1,X2), (X2,X3) ∈ Isp, there are iterated blowups X′
1 → X1,X′

2 → X2
and an isomorphism X′

1 → X′
2; and also X′′

2 → X2,X′
3 → X3 and X′′

2 → X3. Using

(3) for iterated blowups, there exist iterated blowups X̂2
′ → X′

2, X̂2
′′ → X′′

2 , and

an isomorphism X̂2
′ → X̂2

′
. By (1), for iterated blowups there are iterated blowups

X̂1 → X′
1, X̂3 → X3 and isomorphisms X̂1 → X̂2

′
, X̂2

′′ → X̂3, with the natural
diagrams commuting. Composing, we obtain X̂1 → X̂3, showing that (X1,X3) ∈ Isp.
Hence Isp is an equivalence relation.

Isomorphic objects are Isp-equivalent, so an equivalence relation on the semiring

K+ C is induced. If (X1, X2) ∈ Isp, then by (2), (X1
.∪Z,X2

.∪Z) ∈ Isp, and
(X1×Z,X2×Z) ∈ Isp. It follows that Isp induces a congruence on the semiringK+ C.

(6) We can blow up 11 to RV>0
1 + 10, so ([1]1, [RV>0]1 + 10) ∈ Isp. Conversely,

under the conditions of Definition 7.12, let Y− = [(Y, f1, . . . , fn−1)]; then [Y] =
[(Y, f1, . . . , fn−1, 0)] = [Y−] × [1]1 by Lemma 7.14, and we have

[X̃Y] = [Y]n−1 + [Y]n−1 × [RV>0]1 + [X′′] ∼=Isp [Y] × [1]1 + [X′′] = [X]
modulo the congruence generated by ([1]1, [RV>0]1 + 10). )�

We now relate special bijections to blowing ups. Given X = (X, f ),X′ =
(X′, f ′) ∈ RV[n, ·], say, X, X′ are strongly isomorphic if there exists a bijection
φ : X→ X′ with f ′ = φf . Strong isomorphisms are always in RVvol[n, ·].
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Up to strong isomorphism, an elementary blowup of (Y, f ) can be put in a different
form: (Ỹ) ' (Y ′′, f ′′), Y ′′ = {(z, y) : y ∈ Y, valrv(z) > valrvfn(y)}, fi(z, y) =
fi(y) for i < n, fn(z, y) = z. The strong isomorphism Y ′′ → Y ′ is given by
(z, y) �→ (y, z/fn(y)). This matches precisely the definition of special bijection, and
makes evident the following lemma.

Lemma 7.19. Let C = RV∞[n, ·] or RVvol[≤ n, ·].
(1) X, Y are strongly isomorphic over RVn iff LX, LY are isomorphic over the

projection to VFn.
(2) Let X,X′ ∈ RV[≤ n, ·], and letG : LX′ → LX be an auxiliary special bijection.

Then X′ is isomorphic to X over RVn.
(3) Let X,X′ ∈ RV[≤ n, ·], and let G : LX′ → LX be an elementary bijection.

Then X′ is strongly isomorphic to a blowup of X.
(4) Let X,X′ ∈ RV[≤ n, ·], and let G : LX′ → LX be a special bijection. Then X′

is strongly isomorphic to an iterated blowup of X.
(5) Assume T is effective. If Y → X is an RV-blowup, there exists Y′ strongly

isomorphic to Y over X and an elementary bijection c : LY′ → LY lying over
Y′ → Y.

Proof.

(1) This is clear using Lemma 3.52.
(2) This is a special case of (1).
(3) This is clear from the definitions.
(4) This is clear from (1)–(3).
(5) It suffices to consider elementary blowups; we use the notation in the definition

there. Thus fn(x) ∈ acl(f1(x), . . . , fn−1(x)) for x ∈ φ(Y ). By effectiveness
and Lemma 6.2, there exists a definable function s(x, y1, . . . , yn−1) such that
if rv(yi) = fi(x) for i = 1, . . . , n − 1, then rv s(x, y) = fn(x). This s is the
additional data needed for an elementary bijection. )�

Lemma 7.20. Let X = (X, f ),X′ = (X′, f ′) ∈ RV[≤ n, ·], and let h : X → W ⊆
RV∗, h′ : X′ → W be definable maps. Let Xc = h−1(c), Xc = (Xc, f |Xc) and
similarly X′

c. If (Xc,X′
c) ∈ Isp(RVc[n, ·]); then (X,X′) ∈ Isp.

Proof. Lemma 2.3 applies to RV-vol′ -isomorphisms, and hence using Remark 7.13
also to blowups. It also applies to RV[≤ n, ·]-isomorphisms; hence to Isp-equival-
ence. )�

Lemma 7.21. If (X,Y) ∈ Isp then LX ' LY.

Proof. Clear, since L[1]1 is the unit open ball around 1, L([RV>0]1 is the punctured
unit open ball around 0, and L10 = {0}. )�
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7.5 The kernel of L

Definition 7.22. VFR[k, l, ·] is the set of pairs X = (X, f ), with X ⊆ VFk × RV∗,
f : X → RVl∞, such that f factors through the projection prRV(X) of X to the
RV-coordinates. Isp is the equivalence relation on VFR[k, l, ·]:

(X, Y ) ∈ Isp ⇐⇒ (Xa, Ya) ∈ Isp(Ta) for each a ∈ VFk.

K+ VFR is the set of equivalence classes.

By the usual compactness argument, if (X, Y ) ∈ Isp then there are uniform for-
mulas demonstrating this. The relative versions of Lemmas 7.14 and 7.18 follow.

If U = (U, f ) ∈ VFR[k, l, ·], and for u ∈ U we are uniformly given Vu =
(Vu, gu) ∈ VFR[k′, l′, ·], we can define a sum

∑
u∈U Vu ∈ VFR[k + k′, l + l′, ·]: it

is the set
.∪u∈U Vu, with the function (u, v) �→ (f (u), gu(v)). When necessary, we

denote this operation
∑(k,l;k′,l′). The special case k = l = 0 is understood as the

default case.
By Proposition 7.6, the inverse of L : RV[1, ·] → VF[1, ·] induces an isomor-

phism I 1
1 : K+ VF[1, ·] → K+ RV[1, ·]/Isp:

I ([X]) = [Y ]/Isp ⇐⇒ [LY ] = [X].
Let J be a finite set of k elements. For j ∈ J , let πj : VFk ×RV∗ → VFJ−{j} ×

RV∗ be the projection forgetting the j th VF coordinate. We will write VFk,VFk−1

for VFJ ,VFJ−{j}, respectively, when the identity of the indices is not important.
Let X = (X, f ) ∈ VFR[k, l, ·]. By assumption, f factors through πj . We view

the image (πjX, f ) as an element of VFR[k − 1, l, ·]. Note that each fiber of πj is
in VF[1, ·].

Relativizing I 1
1 to πj , we obtain a map

I j = I jk,l : VFR[k, l, ·] → K+ VFR[k − 1, l + 1, ·]/Isp.

Lemma 7.23. Let X = (X, f ),X′ = (X′, f ′) ∈ VFR[k, l, ·].
(1) I j commutes with maps into RV: if h : X → W ⊆ RV∗ is definable, Xc =
h−1(c), then I j (X) =∑c∈W Ij (Xc).

(2) If ([X], [X′]) ∈ Isp then (I j (X), I j (X′)) ∈ Isp.

(3) I j induces a map K+ VFR[k, l, ·]/Isp → K+ VFR[k − 1, l + 1, ·]/Isp.

Proof.

(1) This reduces to the case of I 1
1 , where it is an immediate consequence of the

uniqueness, and the fact that L commutes with maps into RV in the same sense.
(2) All equivalences here are relative to the k − 1 coordinates of VF other than j ,

so we may assume k = 1. For a ∈ VF, ([Xa], [X′
a]) ∈ Isp(Ta). By stable

embeddedness of RV, there exists α = α(a) ∈ RV∗ such that Xa,X′
a are Tα-

definable and ([X]a, [X′]a) ∈ Isp(Tα). Fibering over the map α we may assume
by (1) and Lemma 7.20 that α is constant; so for some W ∈ VF[1],Y,Y′ ∈
RV[l, ·], we have X = W × Y,X′ = W × Y′, and ([Y], [Y′]) ∈ Isp. Then
I j (X) = I j (W)× Y, I j (X′) = I j (W)× Y′, and the conclusion is clear.
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(3) This follows from (2). )�
Lemma 7.24. Let X = (X, f ),X ⊆ VFJ × RV∞, f : X → RVl . If j �= j ′ ∈ J ,
then I j I j

′ = I j ′I j : K+ VFR[k, l, ·]/Isp → K+ VFR[k − 2, l + 2, ·]/Isp.

Proof. We may assume S = {1, 2}, j = 1, j ′ = 2, since all is relative to VFS\{j,j ′}.
By Lemma 7.23(1) it suffices to prove the statement for each fiber of a given definable
map into RV.

Hence we may assume X ⊆ VF2 and f is constant; and by Lemma 5.10, we can
assume X is a basic 2-cell:

X = {(x, y) : x ∈ X1, rv(y −G(x)) = α1}, X1 = rv −1(δ1)+ c1.

The case where G is constant is easy since then X is a finite union of rectangles.
Otherwise, G is invertible, and by the niceness of G we can also write

X = {(x, y) : y ∈ X2, rv(x −G−1(y)) = β}, X2 = rv −1(δ2)+ c2.

We immediately compute

I2I1(X) = (δ1, α1), I1I2(X) = (α2, δ2).

Clearly, [(δ1, α1)]2 = [(α2, δ2)]2. )�
Proposition 7.25. Let X,Y ∈ RV[≤ n, ·]. If LX, LY are isomorphic, then
([X], [Y ]) ∈ Isp.

Proof. Define I = I1 . . . In : VF[n, ·] = VFR[n, 0, ·] → VFR[0, n, ·] =
RV[≤ n, ·]. Let V ∈ VF[n, ·].
Claim 1. If σ ∈ Sym(n) then I = Iσ(1) . . . Iσ(n).
Proof. We may assume σ just permutes two adjacent coordinates, say, 2, 3 out of 1,
2, 3, 4. Then I = I1I2I3I4 = I1I3I2I4 by Lemma 7.24. )�
Claim 2. When F : V → F(V ) is a relatively unary bijection, we have I (V ) =
I (F (V )).

Proof. By Claim 1 we may assume F is relatively unary with respect to prn. Thus
F(Va) = F(V )a , whereVa, F (V )a are the prn-fibers. By the definition of I 1

1 , we have
I 1

1 (Va) = I 1
1 (F (V )a) ∈ RV[1, ·](Ta); but by the definition of In, In(V )a = I 1

1 (Va).
Thus In(V ) = In(F (V )) and thus I (V ) = I (F (V )). )�
Claim 3. When F : V → F(V ) is any definable bijection, I (V ) = I (F (V )).
Proof. The proof is immediate from Claim 2 and Lemma 7.11. )�

Now turning to the statement of the proposition, assume LX, LY are isomorphic.
We compute inductively that L(X) = [X]. By Claim 3, [X] = I (LX) = I (LY)
= [Y]. )�
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Notation 7.26. Let L∗ : K+(VF)→ K+(RV[∗])/Isp be the inverse map to L.

Remark 7.27. When T is rv-effective, one can restate the conclusion of Proposi-
tion 7.25 as follows: ifX, Y ∈ VF[n, ·] are∼

rv
-invariant andF : X→ Y is a definable

bijection, then there exist special bijectionsX′ → X and Y ′ → Y and an∼
rv

-invariant-

definable bijection G : X′ → Y ′. (This follows from Propositions 7.25 and 6.1 and
Lemmas 7.18 and 7.19.) The effectiveness hypothesis is actually unnecessary here, as
will be seen in the proof of Proposition 8.26. Perhaps Question 7.9 can be answered
simply by tracing the connection between F and G through the proof.

8 Definable sets over VF and RV: The main theorems

In stating the theorems, we restrict attention to VF[n], i.e., to definable subsets of
varieties, though the proof was given more generally for VF[n, ·] (definable subsets
of VFn × RV∗).

8.1 Definable subsets of varieties

Let T be V-minimal. We will look at the category of definable subsets of varieties,
and definable maps between them. The results will be stated for VF[n]; analogous
statements for VF[n, ·] are true with the same proofs.

We define three variants of the sets of objects. VF′′[n] is the category of ≤
n-dimensional definable sets over VF, i.e., of definable subsets of n-dimensional
varieties. Let VF[n] be the category of definable subsets X ⊆ VFn × RV∗ such that
the projectionX→ VFn has finite fibers. VF′[n] is the category of definable subsets
X of V ×RV∗, where V ranges over all VF(A)-definable sets of dimension n,m ∈ N,
such that the projection X → V is finite-to-one. VF, VF′, VF′′ are the unions over
all n. In all cases, the morphisms Mor(X, Y ) are the definable functions X→ Y .

Lemma 8.1. The natural inclusion of VF[n] in VF′[n] is an equivalence. If T is
effective, so is the inclusion of VF′′[n] in VF′[n].
Proof. We will omit the index ≤ n. The inclusion is fully faithful by definition, and
we have to show that it hits every VF′-isomorphism type; in other words, that any
definable X ⊆ (V × RVm) is definably isomorphic to some X′ ⊆ VFn × RVm+l
for some l (with n = dim(V )). Definable isomorphisms can be glued on pieces,
so we may assume V is affine, and admits a finite-to-one map h : V → VFm. By
Lemma 3.9, each fiberh−1(a) isA(a)-definably isomorphic to someF(a) ⊆ RVl . By
compactness, F can be chosen uniformly definable, F(a) = {y ∈ RVl : (a, y) ∈ F }
for some definable F ⊆ VFm × RVl ; and there exists a definable isomorphism
β : V → F , over VFm. Let α(v, t) = (β(v), t), X′ = α(X).

Now assume T is effective. Let X ∈ Ob VF′; X ⊆ V × RVm, V ⊆ VFn, such
that the projection X→ V has finite fibers. Then by effectivity, for any v ∈ V (over
any extension field), if (v, c1, . . . , cm) ∈ X then each ci , viewed as a ball, has a
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point defined over A(v). Hence the partial map V ×VFm → X, (v, x1, . . . , xm) �→
(v, rv(x1), . . . , rv(xm)) has an A-definable section; the image of this section is a
subset S of V × VFm, definably isomorphic to X; and the Zariski closure V ′ of S in
V × VFm has dimension ≤ dim(V ). )�

The following definition and proposition apply both to the category of definable
sets, and to the definable sets with volume forms.

Definition 8.2. X, Y are effectively isomorphic if
for any effective A, X, Y are definably isomorphic in TA. If Keff+ (VF) is the

semiring of effective isomorphic classes of definable sets. K(VF) is the corresponding
ring; similarly Keff+ (VF[n]), etc.

Over an effective base, in particular, if T is effective over any field-generated
base, effectively isomorphic is the same as isomorphic. But Example 4.7 shows that
this is not so in general.

Proposition 8.3. Let T be V-minimal, or a finitely generated extension of a V-
minimal theory. The following conditions are equivalent (let X, Y ∈ VF[n]):
(1) [L∗X] = [L∗Y ] in K+(RV[≤ n])/Isp[≤ n].
(2) There exists a definable family F of definable bijectionsX→ Y such that for any

effective structure A, F(A) �= ∅.
(3) X, Y are effectively isomorphic.
(4) X, Y are definably isomorphic over any A such that VF∗(A) → RV(A) is sur-

jective.
(5) For some finite A0 ⊆ RV(〈∅〉), X, Y are definably isomorphic over any A such

that A0 ⊆ rv(VF∗(A)).

Proof.
(1) implies (5): By Proposition 6.1 (Proposition 6.3 in the measured case), the

given isomorphism [L∗X] → [L∗Y ] lifts to an isomorphism LL∗X → LL∗Y ;
since TA ⊇ ACVFA, this is also a TA isomorphism; it can be composed with the
isomorphisms X→ LL∗X, Y → LL∗Y .

(2) implies (3), (5) implies (4) implies (3), trivially.
(3) implies (1)–(2): Let Eeff be as in Proposition 3.51. By (3), X, Y are Eeff -

isomorphic. By Proposition 7.25, [L∗X] = [L∗Y ] in K+(RVEeff [∗])/Isp. But
RV(Eeff ), (Eeff ) ⊆ dcl(∅), so every Eeff -definable relation on RV is definable;
i.e., RVEeff ,RV are the same structure. Thus (1) holds.

Now by assumption, there exists an Eeff -definable bijection f ′ : X → Y . f ′ is
an Eeff -definable element of a definable family F of definable bijections X → Y .
Since this family has an Eeff -point, and Eeff embeds into any effective B, it has a B
point, too. Thus (3) implies (2). )�
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8.2 Invariants of all definable maps

Let [X] denote the class of X in Keff+ (VF[n]).
Proposition 8.4. Let T be V-minimal. There exists a canonical isomorphism of
Grothendieck semigroups

D

∫
: Keff+ (VF[n])→ K+(RV[≤ n])/Isp[≤ n]

satisfying

D

∫
[X] = W/Isp[≤ n] ⇐⇒ [X] = [LW ] ∈ Keff+ (VF[n]).

Proof. Recall Definition 4.8. Given X = (X, f ) ∈ Ob RV[k] we have LX ∈
Ob VF[k] ⊆ Ob VF[n]. If X,X′ are isomorphic,then by Proposition 6.1, LX,LX′
are effectively isomorphic. Direct sums are clearly respected, so we have a semi-
group homomorphism L : K+(RV[≤ n]) → Keff+ (VF[n]). It is surjective by Pro-
position 4.5. By Proposition 8.3, the kernel is precisely Isp[≤ n]. Inverting, we
obtain D

∫
. )�

Definition 8.5. LetK+ VF[n]/(dim < n) be the Grothendieck ring of the category of
definable subsets of n-dimensional varieties, and essential bijections between them.
Let Isp

′[n] be the congruence on RV [n] generated by pairs (X,X × RV>0) (where
X ⊆ RV∗ is definable, of dimension < n).

Corollary 8.6. D
∫

induces an isomorphism

Keff+ (VF[n])/(dim < n)→ RV[n]/Isp
′[n]. )�

Corollary 8.7. Let A,B ∈ RV[≤ n]. Let n′ > n, and let AN,BN be their images in
RV[≤ N ]. If (AN,BN) ∈ Isp[≤ N ], then (A,B) ∈ Isp[≤ n].
Proof. By Proposition 8.4, (A,B) ∈ Isp[≤ n] iff LA,LB are definably isomorphic;
this latter condition does not depend on n. )�

Putting Proposition 8.4 together for all n, we obtain the following.

Theorem 8.8. Let T be V-minimal. There exists a canonical isomorphism of filtered
semirings

D

∫
: K+(VF)→ K+(RV[∗])/Isp.

Let [X] denote the class of X in K+(VF). Then

D

∫
[X] = W

Isp
⇐⇒ [X] = [LW ] ∈ Keff+ (VF). )�
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On the other hand, using the Grothendieck group isomorphisms of Proposition 8.4
and passing to the limit, we have the following.

Corollary 8.9. Let T be V-minimal. The isomorphisms of Proposition 8.4 induce an
isomorphism of Grothendieck groups:∫ K

: Keff (VF[n])→ K(RV[n]).

The isomorphism D
∫

of Theorem 8.8 induces an injective ring homomorphism∫ K

: Keff (VF)→ K(RV)[J−1],

where J = {1}1 − [RV>0]1 ∈ K(RV).

Proof. We may work over an effective base. With subtraction allowed, the generating
relation of Isp can be read as [{1}]0 = {1}1 − [RV>0]1 := J , so that the groupifi-
cation of K+(RV[≤ n])/Isp[≤ n] is isomorphic to K(RV[n]), via the embedding
of K+(RV[n]) as a direct factor in K+(RV[≤ n]). Thus the groupification of the
homomorphism of Theorem 8.8 is a homomorphism∫ K

: K(VF)→ lim
n→∞K(RV[n]),

where the direct limit system maps are given by [X]d �→ ([X]d+1 − ([X]d ×
(RV>0))) = [Xd ]J . This direct limit embeds into K(RV)[J−1] by mapping
X ∈ K(RV[n]) to XJ−n. )�

8.3 Definable volume forms: VF

We will now define the category µVF[n] of “n-dimensional TA-definable sets with
definable volume forms, up to RV-equivalence’’ and the same up to -equivalence.
We will represent the forms as functions to RV, that transform in the way volume
forms do.

By way of motivation, in a local field with an absolute value, a top differential
form ω induces a measure |dω|. For a regular isomorphism f : V → V ′, we
have ω = hf ∗ω′ for a unique h, and f is measure preserving between (V , |ω|) and
(V ′, |ω′|) iff |h| = 1.

We do not work with an absolute value into the reals, but instead define the
analogue using the map rv or, a coarser version, the map val into . When  = Z,
the latter is the usual practice in Denef-style motivic integration. Using rv leaves room
for considering an absolute value on the residue field, and iterating the integration
functorially when places are composed, for instance, C((x))((y))→ C((x))→ C.
This functoriality will be described in a future work.

In the definition below, the words “almost every y ∈ Y ’’ will mean for all y
outside a set of VF dimension < dimVF(Y ).
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Definition 8.10. ObµVF[n, ·] consists of pairs (Y, ω), where Y is a definable subset
of VFn ×RV∗, and ω : Y → RV is a definable map. A morphism (Y, ω)→ (Y ′, ω′)
is a definable essential bijection F such that for almost every y ∈ Y ,

ω(y) = ω′(F (y)) · rv(JcbF(y)).

(We will say “F : (Y, ω)→ (Y ′, ω′) is measure preserving.’’)
µVF[n, ·] is the category of pairs (Y, ω)with ω : Y →  a definable function A

morphism (Y, ω)→ (Y ′, ω′) is a definable essential bijection F : Y → Y ′ such that
for almost every y ∈ Y ,

ω(y) = ω′(F (y))+ val(JcbF(y)).

(“F : (Y, ω)→ (Y ′, ω′) is -measure preserving.’’)
µVF[n], µVF[n] are the full subcategories of µVF[n, ·], µVF[n, ·] (respec-

tively) whose objects admit a finite-to-one map to VFn.

In this definition, let t1(y), . . . , tn(y) be the VF-coordinates of y ∈ Y . One can
think of the form as ω(y)dt1 · · · · · dtn.

Note that VFvol of Definition 5.19 is isomorphic to the full subcategory of µVF
whose objects are pairs (Y, 1).

Remark 8.11. When T is V-minimal and effective, the data ω of an object (Y, ω) of
µVF[n] can be written as rv ◦� for some � : Y → VF. (Write ω = ω̄ ◦ rv ◦F for
some F , and use Proposition 6.1 to lift ω̄ to someG, so thatω = rv ◦G◦F .) It is thus
possible to view ω as the RV-image (respectively, -image) of a definable volume
form on Y . One could equivalently takeω to be a definable section of�nT Y/(1+M),
where T Y is the (appropriately defined) tangent bundle, �n the nth exterior power
with n = dim(Y ).

For VF the category we take is slightly more flexible than taking varieties with
absolute values of volume forms, even if T is V-minimal and effective, in that ex-
pressions such as

∫ |√x|dx are allowed.

In either of these categories, one could restrict the objects to bounded ones.

Definition 8.12. Let µVFbdd[n] be the full subcategory of µVF[n] whose objects
are bounded definable sets, with bounded definable forms ω. Similarly, one de-
fines µVF;bdd.

Here bounded means that there is a lower bound on the valuation of any coordinate
of any element of the set. A similar definition applies in RV and µRV.

Note that if an object ofµVF[n] isµVF[n]-isomorphic to an object ofµVFbdd[n],
it must lie in µVFbdd[n].
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8.4 Definable volume forms: RV

We will define a category µRV[n] of definable subsets of (RV)m, with additional
data that can be viewed as a volume form. Unlike µVF[n], in µRV[n] subsets of
dimension < n are not ignored: a point of RVn corresponds to an open polydisc of
VFn, with nonzero n-dimensional volume.

In particular, the Jacobian of a morphism needs to be defined at every point, not
just away from a lower-dimensional set. However, in accord with Lemma 6.3, it may
be modified by k∗-multiplication on a lower-dimensional set.

Definition 8.13. The objects of µRV[n] are definable triples (X, f, ω),X ⊆ RVn+m,
f : X→ RVn finite-to-one, and ω : X→ RV.

We define a multiplication µRV[n] × µRV[n′] → µRV[n + n′] by (X, f, ω) ×
(X′, f ′, ω′) = (X ×X′, f × f ′, ω · ω′). Here ω · ω′(x, x′) = ω(x)ω′(x′).

Given X = (X, f, ω), we define an object LX of VF[n]; namely, (LX,Lf,Lω),
where LX = X ×f,rv (VF×)n, Lf (a, b) = f (a, rv(b)), Lω(a, b) = ω(a, rv(b)).
(Sometimes we will write f , ω for Lf , Lω.)

A morphism α : X = (X, f, ω) → X′ = (X′, f ′, ω′) is a definable bijection
α : X→ X′ such that

ω(y) = ω′(α(y)) · rv(JcbRV(α)(y)) for almost all y,

where “almost all’’ means “away from a set Y with dimRV(f (Y )) < n’’; and

valrvω(y)+
n∑
i=1

valrvfi(y) = valrvω
′(α(y))+

n∑
i=1

valrvf
′
i (αy) for all y.

The objects of µRV[n] are triples (X, f, ω), with f : X → RVn, ω : X → .
A morphism α : (X, f, ω)→ (X′, f ′, ω′) is a definable bijection α : X → X′ such
that valrvω(y) +∑n

i=1 valrvfi(y) = valrvω′(α(y)) +∑n
i=1 valrvf ′i (αy) for all y.

Disjoint sums and products are defined as for µRV.
µRES[n] is the full subcategory of µRV[n] with objects (X, f, ω), such that

valrv(X) is finite. In this case, ω takes finitely many values, too.

Keff+ µRV[n] is the Grothendieck semigroup of µRV[n] with respect to effective
isomorphism. Keff+ µRV is the direct sum ⊕n Keff+ µRV[n]; it clearly inherits a
semiring structure from Cartesian multplication, (X, f, ω) × (X′, f ′, ω′) = (X ×
X′, (f, f ′), ω · ω′).

The morphisms of µRV[n] are called -measure preserving.
The category RVvol[n, ·] of Definition 5.21 is isomorphic to the full subcategory

whose objects have ω = 1.

Remark. The semiringKeff+ RVvol is naturally a subsemiring ofKeff+ µRV. The latter
is obtained by inverting [{a}]1 for a ∈ RV and taking the zeroth graded component.
This process is needed in order to identify integrals of functions in n variables with
volumes in n + 1 variables. Thus as semirings they are closely related. But if the
dimension grading is taken into account, the subsemiring of RV-volumes contains
finer information connected to integrability of forms.
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8.5 The kernel of L in the measured case

The description of the kernel of L on the semigroups of definable sets with volume
forms is essentially the same as for definable sets. We will now run through the
proof, indicating the modficiations. The principal change is the introduction of a
category with fewer morphisms, defined not only with reference to RV but also to
VF. For effective bases, the category is identical to µRV, so it will be invisible in the
statements of the main theorems; but during the induction in the proof, bases will not
in general be effective and the mixed category introduced here has better properties.

Both the introduction of the various intermediate categories and the repetition of
the proof would be unnecessary if we had a positive answer to Question 7.9. In this
case the proof of Lemma 8.23 would immediately lift to higher dimensions. Indeed,
the characterization of the kernel of the map L on Grothendieck groups would be
uniformized not only for the categories we consider, but for a range of categories
carrying more structure.

The integer n will be fixed in this subsection.

Lemma 8.14. Let (X, ω) ∈ ObµVF[n, ·], Y ∈ Ob VF[n, ·], and let F : Y → X be a
definable bijection.

(1) There exists ψ : Y → RV such that F : (Y, ψ)→ (X, ω) is measure preserving.
(2) ψ is essentially unique in the sense that ifψ ′ meets the same condition, thenψ,ψ ′

are equal away from a subset of X of lower dimension.
(3) Dually, given F , X, Y , ψ, there exists an essentially unique ω such that F :
(Y, ψ)→ (X, ω) is measure preserving.

(4) Lemma 7.11 applies to µVF[n, ·] and to µVF[n].
Proof.

(1)–(2) Letψ(y) = ω(α(y))·rv(JcbRV(α)(y)). By the definition ofµVF this works,
and is the only choice “almost everywhere.’’

(3) This follows from the case of F−1.
(4) Now let X,Y ∈ ObµVF[n] and let F ∈ MorµVF[n](X, Y ). We have

X = (X, ωX),Y = (Y, ωY ) for some X, Y ∈ Ob VF[n] and ωX : X →
RV, ωY : Y → RV. By Lemma 7.11 there exist X = X1, . . . , Xn =
Y ∈ Ob VF[n] and essentially unary Fi : Xi → Xi+1 with F =
Fn−1 ◦ · · · ◦ F1. Let ω1 = ωX, and inductively let ωi+1 be such that Fi ∈
MorµVF[n]((Xi, ωi), (Xi+1, ωi+1)). Then F ∈ MorµVF[n]((X, ω), (Y, ωn)).
By uniqueness it follows that ωY , ωn are essentially equal. )�

Definition 8.15. Given X,Y ∈ ObµRV[n, ·] call a definable bijection h : X → Y

liftable if there exists F ∈ MorµVF[n,·](LX,LY ) with ρYF = hρX.
Let C = µlRV[n, ·] be the subcategory of µRV[n, ·] consisting of all objects and

liftable morphisms.

By Proposition 5.22, liftable morphisms must preserve the volume forms, so C is
a subcategory of µRV[n, ·].



Integration in valued fields 357

Over an effective base, C = µRV[n, ·] (Lemma 6.3), and the condition of exis-
tence of s in Definition 8.16(1) below is equivalent tofn(y) ∈ acl(f1(y), . . . , fn−1(y)).

Definition 8.16.

(1) Let Y = (Y, f, ω) ∈ ObµRV[n, ·] be such that there exists s : Y ×f1,...,fn−1

VFn−1 → VF with rv(s(y, u1, . . . , un−1)) = fn(y). Let Y ′ = Y × RV>0.
For (y, t) ∈ Y ′, define f ′ = (f ′1, . . . , f ′n) by f ′i (y, t) = fi(y) for i < n,
f ′n(y, t) = tfn(y). Let ω′(y, t) = ω(y). Then Ỹ = (Y ′, f ′, ω′) is an elementary
blowup of Y. It comes with the projection map Y ′ → Y .

(2) Let X = (X, g, ω) ∈ ObµRV[n, ·], X = X′
.∪X′′, g′ = g|X′, g′′ = g|X′′,

ω′ = ω|X′, ω′′ = ω|X′′, and let φ : Y → (X′, g′, ω′) be a µlRV[n, ·]-
isomorphism. Then the RV-blowup X̃φ is defined to be Ỹ + (X′′, g′′, ω′′) =
(Y ′

.∪X′′, f ′ .∪ g′′, ω′ .∪ω′′). It comes with b : Y ′ .∪X′′ → X, defined to be
the identity on X′′, and the projection on Y ′. X′ is called the blowup locus of
b : X̃φ → X.

An iterated RV-blowup is obtained by finitely many iterations of RV-blowups.

Definition 8.17. Let Iµsp[n] be the set of pairs (X1,X2) ∈ ObµRV[n, ·] such that there
exist iterated blowups bi : X̃i → Xi and a µlRV[n, ·]-isomorphism F : X̃1 → X̃2.

When n is fixed, we will simply write Iµsp. On the other hand, we will need to
make explicit the dependence on the theory; we write Iµsp(A) for the congruence Iµsp
of the theory TA.

When X = (X, f, ω) ∈ ObµRV[n, ·], h : X → W is a definable map, and
c ∈ W , define Xc = (h−1(c), f |h−1(c), ω|h−1(c)).

Let X1, X2 ∈ ObµRV[n, ·], and let fi : Xi → Y be a definable map, with
Y ⊆ RV∗. In this situation the existence of µRV[n, ·](〈a〉)-isomorphisms be-
tween each pair of fibers X1(a), X2(a) (a ∈ Y ) does not necessarily imply that
X1 'µRV[≤n,·] X2, because of the explicit reference to dimension in the definition
of morphisms; the dimension of the allowed exceptional sets may accumulate over
Y . The definition of morphisms for µVF[n] also allows a lower-dimensional excep-
tional set; but this does not create a problem when fibered over W ⊆ RV∗, since
by Lemma 3.56 maxc∈W dimVF(Zc) = dimVF(Z). Thus an RV-disjoint union of
µVF[n]-isomorphisms is again a µVF[n]-isomorphism, and it follows that the same
is true for µlRV[n, ·]. We thus have the following.

Lemma 8.18. Let X = (X, f, ω), X′ = (X′, f ′, ω) ∈ µRV[n, ·], and let h : X →
W ⊆ RV∗, h′ : X′ → W be definable maps. If for each c ∈ W , (Xc,X′

c) ∈ Iµsp(〈c〉),
then (X,X′) ∈ Iµsp.

Proof. Lemma 2.3 applies to RVvol-isomorphisms, and hence using Remark 7.13,
also to blowups. It also applies to µlRV[n, ·]-isomorphisms by the discussion above,
and hence to Iµsp-equivalence. )�

In other words, there exists a well-defined direct sum operation onµRV[n, ·]/Iµsp,
with respect to RV-indexed systems.
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Lemma 8.19.

(1) Let Y′ be an elementary blowup of Y. Y′ is C-isomorphic to Y′′ = (Y ′′, f ′′, ω′),
with

Y ′′ = {(y, t) ∈ Y × RV∞ : valrv(t) > fn(y)},
f ′′(y, t) = (f1(y), . . . , fn−1(y), t), ω′(y, t) = ω(y).

(2) Up to isomorphism, the blowup depends only on the blowup locus. In other words,
if X, X′, g, g′, ω, ω′ are as in Definition 8.16, and φi : Yi → (X′, g′, ω′)
(i = 1, 2) are µlRV[n, ·]-isomorphisms, then X̃φ1 , X̃φ2 are X-isomorphic
in µlRV[n, ·].

Proof.

(1) The isomorphism is given by h((y, t)) = (y, tfn(y)); since fn always lifts to a
function Fn : LY → VF (a coordinate projection), h can be lifted to H defined
by H((y, t)) = (y, tFn(y)).

(2) By assumption, φ1, φ2 lift to measure-preserving maps �i : LYi → LX′.
On the other hand, by the assumption on existence of a section s of fn, we
have measure-preserving isomorphisms α1 : LY1 → LỸ1, (y, u1, . . . , un) �→
(y, u1, . . . , un−1, (un − s)/s). Similarly, we have α2 : LY2 → LỸ2. Compos-
ing, we obtain α2�2

−1�1α1
−1 : LỸ1 → LỸ2; it is easy to check that this is

∼
rv

-invariant and shows that LỸ1,LỸ2 are Y-isomorphic in µlRV[n, ·]. Taking

the disjoint sum with the complement X′′ of X′, we obtain the result. )�
Remark. There is also a parallel of Lemma 7.15: Let Y = (Y, g) ∈ Ob RV∞[n, ·],
with dim(g(Y )) < n; let f : Y → RVn−1 be isogenous to g. Let h : Y → RV be
definable, with h(y) ∈ acl(g(y)) for y ∈ Y , and with

∑
(g) = ∑

(f ) + valrv(h).
Let Y ′ = Y × RV>0∞ , and f ′(y, t) = (f (y), th(y)). Then for appropriate ω′, Y′ =
(Y ′, f ′, ω′)with the projection map to Y is a blowup. This follows from Lemma 7.15
and Lemma 8.14(3).

Notation. For X ∈ RV[n, ·], [X] = [(X, 1)] denotes the corresponding object of
µRV[n, ·] with form 1.

Lemma 8.20. Lemma 7.18(1)–(5) holds for µlRV[n, ·]. We also have the following:

(6) As a semiring congruence on K+ µlRV[n, ·], Iµsp is generated by
([[1k]1], [[RV>0]1) (with the forms 1).

Proof. (1)–(5) go through with the same proof. For (6), Let ∼ be the congru-
ence generated by this element. By blowing up a point one sees immediately that
([[1]1], [[RV>0]1) ∈ Iµsp, so ∼≤ Iµsp. For the converse direction we have to show
that (Ỹ,Y) ∈∼ whenever Ỹ is a blowup of Y; the elementary case suffices, since the
µlRV[n, ·]-isomorphisms of Definition 8.16(2) are already accounted for in the semi-
group K+ µlRV[n, ·]. Now Y = (Y, f, ω) with fn(y) ∈ RV. Since dim(Y ) < n, we
have Y ' (Y, f ′, ω′) where f ′i = fi for i < n, f ′n = 1, and ω′ = fnω. Thus we may
assume fn = 1. In this case, as in the proof of Lemma 7.18(6), (Ỹ,Y) ∈∼. )�
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Definition 8.21. Let J be a k-element set of natural numbers. VFRµ[J, l, ·] is the set
of triples X = (X, f, ω), with X ⊆ VFJ × RV∗, f : X→ RVl∞, ω : X→ RV, and
such that f and ω factor through the projection prRV(X) ofX to the RV-coordinates.
Iµsp is the equivalence relation on VFRµ[J, l, ·]:

(X, Y ) ∈ Iµsp ⇐⇒ (Xa, Ya) ∈ Iµsp(〈a〉) for each a ∈ VFJ .

K+ VFRµ is the set of equivalence classes.

For j ∈ J , let πj : VFk × RV∗ → VFJ−{j} × RV∗ be the projection forgetting
the j th VF coordinate. We will write VFRµ[k, l, ·], VFk,VFk−1 for VFRµ[J, l, ·]
VFJ , VFJ−{j}, respectively, when the identity of the indices is not important.

The map L : ObµRV[n, ·] → ObµVF[n] induces, by Lemma 6.3, a homomor-
phism L : K+ µRV[n, ·] → K+ µVF[n]. By Proposition 4.5 it is surjective.

Lemma 8.22. Let X,X′ ∈ µRV[n, ·], and letG : LX′ → LX be a special bijection.
Then X′ is isomorphic to an iterated blowup of X.

Proof. The proof is clear from Lemma 7.19 since strong isomorphisms are also
µlRV[n, ·]-isomorphisms. )�
Lemma 8.23. The homomorphism L : K+ µRV[1, ·] → K+ µVF[1, ·] is surjective,
with kernel equal to Iµsp[1]. The image of K+ RVvol[1, ·] is K+ VFvol[1, ·]
Proof. Let X,Y ∈ µRV[1, ·], and let F : LX → LY be a definable measure-
preserving bijection. We have X = (X, f, ω),Y = (Y, g, ω) with (X, f ), (Y, g) ∈
RV[1, ·]. By Lemma 7.6 there exist special bijections bX : LX′ → LX, bY : LY′ →
LY and an ∼

rv
-invariant definable bijection F ′ : LX′ → LY′ such that bYF ′ = FbX.

We used here that any ∼
rv

-invariant object can be written as LX′ for some X′. Since

F , bX, bY are measure-preserving bijections, so is F ′. By Lemma 8.22, X′ → X and
Y′ → Y are blowups; and F ′ descends to a definable bijection between them. This
bijection is measure preserving by Lemma 5.22. Hence by definition (X,Y) ∈ Iµsp.)�

By Proposition 8.23, the inverse of L : RV[1, ·] → VF[1, ·] induces an isomor-
phism I vol

1 : K+ VFvol[1, ·] → K+ RVvol[1, ·]/Iµsp.

I vol
1 ([X]) = [Y ]/Iµsp ⇐⇒ [LY ] = [X].

Let X = (X, f, ω) ∈ VFRµ[k, l, ·]. By assumption, f, ω factor through πj , so
that they can be viewed as functions on πjX. We view the image (πjX, f, ω) as an
element of VFRµ[k − 1, l, ·]. Each fiber of πj is a subset of VF; it can be viewed as
an element of VFvol[1] ⊆ µVF[1] ⊆ µVF[1, ·].
Claim. Relative Iµsp-equivalence implies Iµsp-equivalence, in the following sense. Let
Xi ⊆ RV∗ (i = 1, 2); hi : Xi → W ⊆ RV∗; fW : W → RVl , ω : W → RV, and
fi : X → RVk be definable sets and functions. Let Xi = (Xi, (fW ◦ hi, fi), ω ◦
hi). Let Xi (w) = (Xi(w), fi |Xi(w), ω ◦ hi |Xi(w)), where Xi(w) = hi−1(w). If
X1(w),X2(w) ∈ Isp(〈w〉) for each w ∈ W , then (X1,X2) ∈ Iµsp.
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Proof. The proof is clear using Lemma 8.18. )�
The claim allows us to relativize I vol

1 to πj . We obtain a map

I j = I jk,l : VFRµ[k, l, ·] → K+ VFRµ[k − 1, l + 1, ·]/Iµsp.

Lemma 8.24. Let X = (X, f, ω),X′ = (X′, f ′, ω′) ∈ VFRµ[k, l, ·].
(1) I j commutes with maps into RV: if h : X → W ⊆ RV∗ is definable, Xc =
h−1(c), then I j (X) =∑c∈W Ij (Xc).

(2) If ([X], [X′]) ∈ Iµsp, then (I j (X), I j (X′)) ∈ Iµsp.

(3) I j induces a map K+ VFRµ[k, l, ·]/Iµsp → K+ VFRµ[k − 1, l + 1, ·]/Iµsp.

Proof.

(1) This reduces to the case of I vol
1 , where it is an immediate consequence of unique-

ness, and the fact that L commutes with maps into RV in the same sense.
(2) All equivalences here are relative to the k − 1 coordinates of VF other than j ,

so we may assume k = 1, and write I for I j . For a ∈ VF, ([Xa], [X′
a]) ∈

Iµsp(〈a〉). By stable embeddedness of RV, there exists α = α(a) ∈ RV∗ such
that Xa,X′

a are 〈α〉-definable there are 〈α〉-definable blowups X̃a, X̃′
a and an

〈α〉-definable isomorphism between them, lifting to an a-definable isomorphism.
Using (1) and Lemma 8.18 we may assume that α is constant. Thus for some
W ∈ Ob VF[1], Y,Y′ ∈ µRV[l + 1, ·], we have X = W × Y, X′ = W × Y′,
Ỹ, Ỹ′ are blowups of Y, Y′, respectively, φ : Y → Y′ is a bijection, and for
any w ∈ W there exists a measure-preserving Fw : LỸ → LỸ lifting φ. Then
I (X) = I (W)×Y, I (X′) = I (W)×Y′ and the bijection IdI (W)×φ is lifted by
the measure-preserving bijection (w, y) �→ (w, Fw(y)).

(3) This follows by (2). )�
Lemma 8.25. Let X = (X, f, ω) ∈ Ob VFRµ[J, l, ·]. If j �= j ′ ∈ J , then I j I j

′ =
I j

′
I j : K+ VFRµ[J, l, ·]/Iµsp → K+ VFRµ[J \ {j, j ′}, l + 2, ·]/Iµsp.

Proof. We may assume S = {1, 2}, j = 1, j ′ = 2, since all is relative to VFS\{j,j ′}.
By Lemma 7.23(1) and Lemma 8.18 it suffices to prove the statement for each fiber
of a given map into RV[l]. Hence we may assume X ⊆ VF2 so that f is constant;
and by Lemma 5.10, we can assume X is a basic 2-cell:

X = {(x, y) : x ∈ X1, rv(y −G(x)) = α1}, X1 = rv −1(δ1)+ c1.

The case where G is constant is easy since then X is a finite union of rectangles.
Otherwise, G is invertible, and by the niceness of G we can also write

X = {(x, y) : y ∈ X2, rv(x −G−1(y)) = β}, X2 = rv −1(δ2)+ c2.

We immediately compute

I2I1(X) = (δ1, α1), I1I2(X) = (α2, δ2)
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and necessarily valrvδ1 + valrvα1 = valrvα2 + valrvδ2 (Lemma 5.4). We have bijec-
tions Fj : X → LIj (X). The map F1F2F1

−1F2
−1 : LI2I1(X) → LI1I2(X) lifts

the unique bijection between the singleton sets {(δ1, α1)}, {(α2, δ2)}, and shows that
[(δ1, α1)]2 = [(α2, δ2)]2. )�
Proposition 8.26. Let X,Y ∈ µRV[≤ n, ·]. If LX, LY are isomorphic, then
([X], [Y ]) ∈ Iµsp.

Proof. The proof is identical to the proof of Proposition 7.25, only quoting Lemma 8.25
in place of Lemma 7.24, and Lemma 8.14 to enable using Lemma 7.11. )�
Proposition 8.27. Proposition 8.3 is valid for µVF[n], µRV[n], Iµsp[n].
Proof. The proof is the same as that of Proposition 8.3, but using Proposition 6.3 in
place of 6.1 and Proposition 8.26 in place of Proposition 7.25. )�

8.6 Invariants of measure-preserving maps, and some induced isomorphisms

Theorem 8.28. Let T be V-minimal. There exists a canonical isomorphism of
Grothendieck semigroups

D

∫
: Keff+ µVF[n, ·] → K+(µRV[n, ·])/Iµsp[n].

Let [X] denote the class of X in Keff+ (µVF[n]). Then

D

∫
[X] = W/Iµsp[n] ⇐⇒ [X] = [LW ] ∈ Keff+ (µVF[n]).

Proof. Given X = (X, f, ω) ∈ ObµRV[n] we have LX ∈ ObµVF[n]. If X,X′ are
isomorphic, then by Lemma 6.3, LX,LX′ are effectively isomorphic. Direct sums
are clearly respected, so we have a semigroup homomorphism L : K+(µRV[n])→
Keff+ (µVF[n]). It is surjective by Proposition 4.5 and injective by Proposition 8.3.
Inverting, we obtain I . )�

Let Iµsp
′ be the semigroup congruence on RVvol[n] generated by ((Y, f ), (Y ×

RV>0, f ′)), where Y , f , f ′ are as in Definition 7.12. Let µIsp be the congruence
onK+ µRV[n] generated by ([[1k]1], [[RV>0]1]), with the constant -form 0 ∈ .

Assume given a distinguished subgroup N1 of the multiplicative group of the
residue field k. For example, N1 may be the group of elements of norm one, with
respect to some absolute value |, | on k. With this example in mind, write |x| = 1 for
x ∈ N1. Let |µ|VF[n] be the subcategory of VF[n] with the same objects, and such
that F ∈ Mor|µ|VF[n] iff F ∈ MorµVF[n] and |JRV (F)| = 1 almost everywhere.
Define | .µ|RV[n] similarly.

Theorem 8.29. The isomorphism D
∫

of Theorem 8.28 induces isomorphisms:

Keff+ VFvol[n] → K+ RVvol[n]/Iµsp
′[n], (8.1)
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Keff+ VFbdd
vol [n] → K+ RVbdd

vol [n]/Iµsp[n], (8.2)

Keff+ µVFbdd[n] → K+ µRVbdd[n]/Iµsp[n], (8.3)

Keff+ |µ|VF[n] → K+ | .µ|RV[n]/Iµsp[n], (8.4)

Keff+ µVF[n] → K+ µRV[n]/µIsp[n]. (8.5)

Proof. Since Proposition 4.5 uses measure-preserving maps, Proposition 6.1 does
not go out of the subcategory VFvol, and RVvol[n] is a full subcategory of µRV[n],
we have (8.1). It is similarly easy to see that “dimension < n’’ and boundedness are
preserved, hence (8.2)–(8.3).

We have Keff+ |µ|VF = Keff+ µVF/NVF, where NVF = {([X,ω], [X, gω]) : g :
X→ RV, |g| = 1}; similarly for Keff+ | .µ|RV. Thus for (8.4) it suffices to show that
(D
∫
(X), D

∫
(Y)) ∈ NRV ⇐⇒ (X,Y) ∈ NVF. ForX ∈ ObµVF[n] orX ∈ ObµRV[n]

with RV-volume form ω, given g : X → RV, let gX denote the same object but
with volume form gω. In one direction, we have to show that (LX,LY ) ∈ NVF if
(X, Y ) ∈ NRV. This is clear since L(gX) =g (LX). Conversely we have to show
that (D

∫ [gZ], D
∫ [Z]) ∈ NRV. Since D

∫
commutes with RV-sums, we may assume g is

constant, with value a. But then L(aX) =a (LX) implies D
∫
(aZ) =a D

∫
Z as required.

This gives (8.4); (8.5) is a special case. )�

9 The Grothendieck semirings of �

Let T = DOAGA be the theory of divisible ordered Abelian groups , with distin-
guished constants for elements of a subgroupA. Let DOAGA[∗] be the category of all
DOAGA definable sets and bijections. Our primary concern is not with DOAGA, but
rather a proper subcategory [∗], having the same objects but only piecewise integral
morphisms (Definition 9.1). Our interest in [∗] derives from this: the morphisms
of [∗] are precisely those that lift to morphisms of RV[∗], and it is K+[[∗]] that
forms a part of K+[RV[∗]] (cf. Section 3.3). This category depends on A, but will
nevertheless be denoted [∗] when A is fixed and understood.

We will first describe K(fin[∗]), the subring of classes of finite definable sets.
Next, we will analyzeK(DOAGA), obtaining two Euler characteristics. This repeats
earlier work by Maříková. We retain our proofs as they give a rapid path to the Euler
characteristics, but [26] includes a complete analysis of the semiring K(DOAGA),
that may well be useful in future applications.

At the level of Grothendieck rings, the categories [∗]A and DOAGA may be
rather close; see Lemma 9.8 and Question 9.9. But the semiring homomorphism
K+([∗]A) → K(DOAGA) is far from being an isomorphism, and it remains im-
portant to give a good description of K+([∗]A). We believe that further invariants
can be found by mapping K+[[∗]] into the Grothendieck semirings of other com-
pletions of the universal theory of ordered Abelian groups over A, as well as DOAG,
in the manner of Proposition 9.2; it is possible that all invariants appear in this way.

A description of K+([∗]A) would include information about the Grothendieck
group of subcategories, such as the category of bounded definable sets. We will only
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sample one bit of the information available there, in the form of a “volume’’ map on
bounded subsets of K+[[∗]] into the rationals, and a discrete analogue.

Definition 9.1. An object of [n] is a finite disjoint union of subsets of n defined
by linear equalities and inequalities with Z-coefficients and parameters in A. Given
X, Y ∈ Ob[n], f ∈ Mor(X, Y ) iff f is a bijection, and there exists a partition
X = ∪ni=1Xi ,Mi ∈ GLn(Z), ai ∈ An, such that for x ∈ Xi ,

f (x) = Mix + ai.
[∗] is the category of definable subsets ofn for anyn, with the same morphisms.

Since there are no morphisms between different dimensions, it is simply the direct sum
of the categories [n], and the Grothendieck semiring K+[] of [∗] is the graded
direct sum of the semigroups K+([n]). We will write K[] for the corresponding
group.

Let bdd[∗] be the full subcategory of [∗] consisting of bounded sets, i.e., an
element of Obbdd[n] is a definable subset of [−γ, γ ]n for some γ ∈ .
A is a subcategory of Q⊗A (a category with the same objects, but more mor-

phisms, generated by additional translations) and this in turn is a subcategory of
DOAGQ⊗A.

There is therefore always a natural morphism from K+(A[∗]) to the simpler
semigroup K+(DOAGQ⊗A). We will exhibit two independent Euler characteristics
on DOAGQ⊗A and show that they define an isomorphism K(DOAGQ⊗A) → Z2.
Taking the dimension grading into account, this will give rise to two families of Euler
characteristics on K(A), with Z[T ]-coefficients.

9.1 Finite sets

Letfin[n] be the full subcategory ofA[n] consisting of finite sets. The Grothendieck
semiring of fin[∗] embeds into the semirings of both A and RES, within the
Grothendieck semiring of RVA, and we will see that K+(RVA) is freely generated
by them over K+(fin[∗]). We proceed to analyze K+(fin[∗]) in detail.

Let τ = [0]1 ∈ K+(fin[1]) be the class of the singleton {0}.
The unit element of K() is the class of 0. Note that the bijection between τ

and 0 is not a morphism in [∗]; in fact 1, τ , τ 2, . . . are distinct and Q-linearly
independent in K(). The motivation for this choice of category becomes clear if
one thinks of the lift to RV: the inverse image of τn in RV (also denoted τn) has
dimension n, and cannot be a union of isomorphic copies of τm for smaller m.

Let K(fin)[τ−1] be the localization. This ring is a naturally Z-graded ring; let
Hfin be the zero-dimensional component.

Let+A be the space of subgroups of (Q⊗A)/A or, equivalently, of subgroups of
Q⊗A containing A. View it as a closed subspace of the Tychonoff space 2(Q⊗A)/A,
via the characteristic function 1s of a subgroup s ∈ +A. Let C(+A,Z) be the ring of
continuous functions +A → Z (where Z is discrete).

A cancellation semigroup is a semigroup where a + b = a + c implies b = c; in
other words, a subsemigroup of an Abelian group.
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Proposition 9.2. K+(fin[n]) is a cancellation semigroup. As a semiring,K+(fin[∗])
is generated by K+(fin[1]). We have

K(fin)[τ−1] = Hfin[τ , τ−1],
Hfin ' C(+A,Z).

Proof. Since  is ordered, any finite definable subset of n is a union of definable
singletons. Thus the semigroup K+(fin[n]) is freely generated by the isomorphism
classes of singletons a ∈ n and, in particular, is a cancellation semigroup. The
displayed equality is thus clear; we proceed to prove the isomorphism.

A definable singleton of n has the form (a1, . . . , an), where for some N ∈ N,
Na1, . . . , Nan ∈ A. Thus [(a1, . . . , an)] = [(a1)] · · · [(an)].

For any commutative ring R, let Idem(R) be the Boolean algebra of idempotent
elements of a commutative ring R with the operations 1, 0, xy, x + y − xy. Note
that the elements [(a1, . . . , an)]τ−n ∈ Hfin belong to Idem(Hfin): in K+(fin): for
any a ∈  we have the relation [a]2 = [a]τ . Let B be the Boolean subalgebra of
Idem(Hfin) generated by the elements [(a1, . . . , an)]τ−n. For a maximal idealM of
B, let IM be the ideal of Hfin generated by M . Note Hfin = ZB. Hence we have to
show the following:

(1) The Stone space of B is +A.
(2) For any maximal idealM of B, Hfin/IM ' Z naturally.

For any commutative ring R, a finitely generated Boolean ideal of Idem(R) is
generated by a single element b; if b �= 1, then bR �= R since b(1 − b) = 0. Thus
ifM is a proper ideal of Idem(R), thenMR is a proper ideal of R. Applying this to
B, viewed as a Boolean subalgebra of Idem(Q⊗Hfin), we see that IM ∩Z = (0) for
any maximal idealM of B. Thus the composition Z → Hfin → Hfin/IM is injective.
On the other hand, Hfin is generated over Z by the elements [a]/τ , and each of them
equals 0 or 1 modulo IM , so the map is surjective, too. This proves the second point.

To prove the first, we define a map � : +A → Stone(B).
Let t = T/A, T ≤ Q⊗A. If [(a1, . . . , an)] = [(b1, . . . , bn)], then some element

of GLn(Z)�An takes (a1, . . . , an) to (b1, . . . , bn); in this case, if ai ∈ T for each i
then bi ∈ T for each i; so �ni=11t (ai + A) = �ni=11t (bi + A). Thus, given t ∈ +A,
we can define a homomorphism ht : Hfin → Z by

[(a1, . . . , an)]/τn �→ �ni=11t (ai + A).
LetM(t) = ker(ht ) ∩ B.
The map � : t �→ M(t) is clearly continuous. If t , t ′ are distinct subgroups, let

a ∈ t , a /∈ t ′ (say); then [a]/τ ∈ M(t), [a]/τ /∈ M(t ′). Thus� is injective. If P is a
maximal filter of B, let tP = {a + A : [a]/τ ∈ P }.
Claim. tP is a subgroup.

Proof. Suppose a + A, b + A ∈ tP and let c = a + b. Then we have the relation

[a][b]τ = [a][b][c]
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in K+(fin), arising from the map

(x, y, z) �→ (x, y, xyz).

Thus ([a]/τ )([b]/τ )(1−[c]/τ ) = 0. As ([a]/τ ), ([b]/τ ) ∈ P we have (1−[c]/τ ) /∈
P , so [c]/τ ∈ P . )�

Clearly, P = M(tP ). Thus � is surjective, and so a homeomorphism. )�

Example. We always have a homomorphism K(fin)→ Z (by counting points of a
finite set in the divisible hull); when A is divisible, this identifies K(fin) with Z[τ ].
In general, we have the surjective morphism K(fin))→ K(fin

Q⊗A) = Z[τ ].

Lemma 9.3. Let Y be an A-definable subset of n, of dimension < n. Then Y is a
finite union of GLn(Z)-conjugates of sets Yi ⊆ {ci} × n−1, with ci ∈ Q⊗ A.

Proof. Y can be divided into finitely many A-definable pieces, each contained in
some A-definable hyperplane of n. Thus we may assume Y itself is contained in
some such hyperplane, i.e.,

∑
riyi = c for some c ∈ Q⊗ valrv(A). We may assume

ri ∈ Z and (r1, . . . , rn) have no common divisor. In this case Zn/Z(r1, . . . , rn)
is torsion free, hence free, so Z(r1, . . . , rn) is a direct summand of Zn. Thus after
effecting a transformation of GLn(Z), we may assume (r1, . . . , rn) = (1, 0, . . . , 0),
i.e., Y lies in the hyperplane y1 = c. Let Z be the projection of Y to the coordinates
(2, . . . , n). Then Y = {c} × Z. )�

9.2 Euler characteristics of DOAG

We describe two independent Euler characteristics on A-definable subsets of , i.e.,
additive, multiplicative Z[τ ]-valued functions invariant under all definable bijec-
tions. The values are in Z[τ ] rather than Z because [∗] = ⊕n[n] is graded by
ambient dimension. Proposition 9.4–Lemma 9.6 were obtained earlier in [26], and
independently in [20].

In fact, these two Euler characteristics come from Euler characteristics of
DOAGQ⊗A. Ther they are the only ones.

Proposition 9.4. Let A be a divisible ordered Abelian group. Then K(DOAGA)
' Z2.

Proof. We begin by noting that there are at most two possibilities.
In DOAG, all definable singletons are isomorphic. The identity element of the ring

K(DOAG) is the class of any singleton. Thus the image ofK(fin[∗]) inK(DOAGA)
is isomorphic to Z.

Claim. The image ofK(bdd
A ) inK(DOAGA) equals the image ofK(fin[∗]) there.
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Translation by a gives an equality of classes in K(), [(0,∞)] = [(a,∞)], so

[(0, a)] + [{pt}] = [(0, a] = 0.

Thus bounded segments are equivalent to linear combinations of points. This can
be seen directly by induction on dimension and on ambient dimension: consider the
class of a bounded set Y ⊂ n+1. Y is a Boolean combination of sets of the form
{(x, y) : x ∈ X, f (x) < y < g(x)}. This is DOAGA-isomorphic to Y ′ = {(x, y) :
x ∈ X, 0 < y < h(x)}, whereh(x) = g(x)−f (x). LetZ = {(x, y) : x ∈ X, y > 0},
Z′ = {(x, y) : x ∈ X, y > h(x)}. Then the map (x, y) �→ (x, y + h(x)) shows
that [Z] = [Z′]. On the other hand, Z′ is the disjoint union of Z, Y and a lower-
dimensional set W . Thus [Z] = [Z′] = [Z′] + [Y ] + [W ] so [Y ] = −[W ], and by
induction [Y ] lies in the image of K(fin[∗]).

Now consider t = [(0,∞)] ∈ K(A). We have a homomorphismK(bdd
A )[t] →

K(). To see that it is surjective, again by induction it suffices to look at sets such
as {(x, y) : x ∈ X, f (x) < y} or {(x, y) : x ∈ X, f (x) < y < g(x)}. The
latter is equivalent to a lower-dimensional set, by induction, as above. The former is
equivalent to {(x, y) : x ∈ X, 0 < y} so that it has the class [X] × t and thus is in the
image of K(bdd

A )[t].
Let T = {(x, y) : 0 < y ≤ x}. The map (x, y) �→ (x, y + x) takes T to

{(x, y) : 0 < x < y ≤ 2x}, so 2[T ] = [{(x, y) : 0 < y ≤ 2x}]. The same map
shows that t2 − [T ] = t2 − 2[T ] so [T ] = 0. But then [{(x, y) : 0 < x ≤ y}] = 0,
and adding we obtain 0 + 0 = t2 + [{(x, x) : 0 < x}] = t2 + t . Thus K(DOAGA)
is a homomorphic image of Z[t]/(t2 + t) ' Z2. To see that the homomorphism is
bijective, it remains to exhibit a homomorphism K(DOAGA)→ Z with t �→ 0 and
another with t �→ −1. The two lemmas below show this, in a form suitable also for
a dimension-graded version. )�
Lemma 9.5. There exists a ring homomorphism χO : K() → Z[τ ], such that
χO((0,∞)) = τ . It is invariant under GLn(Q) acting on n.

Proof. Let RCF be the theory of real closed fields. See [37] for the existence and
definability of an Euler characteristic map χ : K(RCF) → Z. For any definable
X,P, f : X → P of RCF, there exists m ∈ N and a definable partition P =
∪−m≤i≤mPi , such that for any i, any M |= RCF and b ∈ Pi(M), χ(Xb) = i. Here
Xb = f−1(b), and χ(Xb) = i iff there exists an M-definable partition of Xb into
definable cells Cj , with

∑
j (−1)dim(Cj ) = i.

The language of  (the language of ordered Abelian groups) is contained in the
language of RCF. Thus ifX,P, f : X→ P are definable in the language of ordered
Abelian groups, they are RCF-definable. Therefore, the above result specializes, and
we obtain an Euler characteristic map χ : K(A[n]) → Z, valid for any divisible
group A. This χ is invariant under all definable bijections (not only the morphisms
of [∗]), and is additive and multiplicative. We have χO({0}) = 1, χO((a, b)) = −1
for a < b, and χO(0,∞) = −1, too (though (0, 1) and (0,∞) are not definably
isomorphic in the linear structure). Now let χO(X) = χ(X)τn for X ⊆ n, and
extend to [∗] by additivity. )�
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Remark. The Euler characteristic constructed in this proof appears to depend on an
embedding of A into the additive group of a model of RCF. But by the uniqueness
shown above, it does not. In fact, as pointed out to us by Van den Dries, Ealy
and Maříková, an Euler characteristic with the requisite properties is defined in [37]
directly for any O-minimal structure; moreover, the use of RCF in the lemma below
can also be replaced by a direct inductive argument, and some simple facts about
Fourier–Motzkin elimination.

Another Euler characteristic can be obtained as follows: given a definable set
Y ⊂ n, let

χ ′(Y ) = lim
r→∞χ(Y ∩ Cr),

where Cr is the bounded closed cube [−r, r]n. ByO-minimality, the value of χ(Y ∩
Cr) is eventually constant.

Note that χ ′ is not invariant under semialgebraic bijections, since the bounded
and unbounded open intervals are given different measures. Still,

Lemma 9.6. χ ′ induces a group homomorphismK([n])→ Z; and yields a ring ho-
momorphismK([∗])→ Z[τ ]. Moreover, χ ′ is invariant under piecewise GLn(Q)-
transformations.

Proof. χ ′ is clearly additive and multiplicative. Isomorphism invariance can be
checked as follows: First, we make the following claim.

Claim. If X �= ∅ is defined by a finite number of weak (≤) affine equalities and
inequalities, then χ ′(X) = 1.

Proof. It suffices to show that this is true in (R,+); since then it is true in any model
of the theory of divisible ordered Abelian groups. Now we may compute the Euler
characteristic χ of the bounded setsX∩Cr in (R,+, ·). Let p ∈ X. For large enough
r , p ∈ X ∩ Cr there is a definable retraction of the closed bounded set X ∩ Cr to p
(along lines through p). Thus X ∩Cr has the same homology groups as a point, and
so Euler characteristic 1. )�

To prove the lemma we must show that if φ : X → Y is a definable bijection,
X, Y ⊆ n, then χ ′(X) = χ ′(Y ). We use induction on dim(X). By additivity, if
X is a Boolean combination of finitely many pieces, it suffices to prove the lemma
for each piece. We may therefore assume that φ is linear (rather than only piecewise
linear) on X. Let φ′ be a linear automorphism extending φ. Expressing X as a union
of basic pieces, we may assume X is defined by some inequalities

∑
αixi ≤ c, as

well as some equalities and strict inequalities. Thus X is convex. We have to show
that χ ′(X) = χ ′(φ′X). Let X̄ be the closure ofX (defined by the corresponding weak
inequalities). Then X̄ \X has dimension< dim(X), so by induction χ ′(φ′(X̄ \X) =
χ ′(X̄ \ X). But X̄ is closed and convex, so χO ′(X̄) = 1 = χO ′(φ′X̄). Subtracting,
χ ′(φ′(X̄)) = χ ′(X̄).

Once again, using the ambient dimension grading, we can define χ ′O : [∗] →
Z[τ ] with χ ′O(x) = χ ′(x)τn for x ∈ [n]. )�
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In the following lemma, all classes are taken in K(A)[∗]. Let ea be the class in
K(A)[1] of the singleton {a}, and τa the class of the segment (0, a).

Lemma 9.7. Let a ∈ Q⊗ A, b ∈ A.

(1) τa = τa+b, ea = ea+b.
(2) If b < c ∈ A then [(b, c)] = −e0.

(3) eae0 = e2
a.

(4) τa(τa + e0) = 0.
(5) If 2a ∈ A then 2τa + ea = −e0, and e0(ea − e0) = 0.

Proof.

(1) τa = [(0, a)] = [(0,∞)]−[(a,∞)]−ea , and similarly τa+b. The map x �→ x+b
shows that [(a,∞)] = [(a + b,∞)] and ea = ea+b, hence also τa = τa+b.

(2) [(b, c)] = [(b,∞)] − [(c,∞)] − ec = −e0 by (1), since c − b ∈ A.
(3) The map (x, y) �→ (x, y+x) is an SL2(Z)-bijection between {(a, 0)} and (a, a).
(4) Let

D = {(x, y) : 0 < x < a, 0 < y ≤ x},
D′ = {(x, y) : 0 < y < a, 0 < x ≤ y},
D1 = {(x, y) : 0 < x < a, y > 0},

T (x, y) = (x, y + x).
Then T (D1) = D1 \D. Since [T (D1)] = [D1], [D] = 0. Similarly, [D′] = 0.
Note also

T ((0, a)× {0}) = {(x, x) : 0 < x < a}.
Thus

0 = [D] + [D′] = [(0, a)2] + [{(x, x) : 0 < x < a}] = τ 2
a + τae0.

(5) Let 0 < 2a ∈ A. Then [(0, a)] = [(a, 2a)] using the map x �→ 2a − x. Thus
2τa + ea = [(0, a) ∪ {a} ∪ (a, 2a)] = [(0, 2a)] = −e0 (by (2)). Therefore,
(−e0 − ea)(e0 − ea) = (2τa)(2τa + 2e0) = 0 by (1). Thus eae0 = e2

a = e2
0. )�

The next lemma will not be used, except as a partial indication towards the question
that follows, regarding the difference at the level of Grothendieck groups between
GLn(Z) and GLn(Q) transformations. Let Ann(e0) be the annihilator ideal of e0;
it is a graded ideal. Let R = K(A)[∗]/Ann(e0), the image of K(A)[∗] in the
localization K(A)[∗](e0

−1). In the next lemma, the classes of definable sets are
taken in R, viewed as a subring of K(A)[∗](e0

−1). Let ea = ea/e0, ta = τa/e0.

Lemma 9.8. Let A′ = {a ∈ Q⊗ A : ea = 1}.
(1) If X ⊆ n is definable by linear inequalities over A, and T ∈ GLn(Z) � (A′)n,

then [TX] = [X] ∈ R.
(2) A′ is a subgroup of Q⊗ A.
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(3) e2
a = ea , ta(ta + 1) = 0.

(4) A′ is 2-divisible.

Proof.

(1) It suffices to show this when T is a translation by an element a ∈ (A′)n. The map
(x, y) �→ (x+y, y) is in SL2n(Z), hence [X×{a}] = [TX×{a}] inK(A)[2n].
Since a ∈ (A′)n, [a] = en0 . Thus [X]en0 = [TX]en0 , and upon dividing by en0 the
statement follows.

(2) This is clear from (1). For the following clauses, note that by (1)–(2), Lemma 9.7
applies with A replaced by A′.

(3) This follows from Lemma 9.7(3)–(4) divided by e2
0.

(4) By Lemma 9.7(5) applied to A′, if 2a ∈ A′ then e0(ea − e0) = 0; so ea − 1 = 0,
i.e., a ∈ A′. )�

Question 9.9. Is it true that K(A[∗])/Ann(e0) = K(DOAGA[∗])/Ann(e0)?

A positive answer would follow from an extension of (4) to odd primes, over
arbitrary A; by an inductive argument, or by integration by parts.

9.3 Bounded sets: Volume homomorphism

Let Ā = Q⊗A. Recall that bdd[n] is the category of bounded A-definable subsets
of n, with piecewise GLn(Z) � A-bijections for morphisms. Let Sym(Ā) be the
symmetric algebra on A.

Proposition 9.10. There exists a natural “volume’’ ring homomorphism K(bdd[∗])
→ Sym(Ā).

Proof. We first work with DOAG without parameters, defining a polynomial associ-
ated with a family of definable sets.

Let C(x, u) = C(x1, . . . , xn; u1, . . . , um) be a formula of DOAG. Write Cb =
{x : C(x, b)}; this is a definable family of definable sets. Assume the sets Cb are
uniformly bounded: equivalently, as one easily sees, for some q ∈ N, for each i,
C(x, u) implies |xi | ≤ q∑j |uj |. For b ∈ Rm, let v(b) = volCb(Rn). Here vol is
the Lebesgue measure.

By a constructible function into Q, we mean a Q-linear combination of charac-
teristic functions of definable sets of DOAG. Let R be the Q-algebra of constructible
functions into Q.

Claim 1. There exists a polynomial PC(u) ∈ R[u] such that for all b ∈ Rm,
volCb(Rn) = PC(b).

In other words, the volume of a rational polytope is piecewise polynomial in the
parameters, with linear pieces. The proof of the claim is standard, using iterated
integration. For each C, fix such a polynomial PC .

At this point we reintroduce A. Any A-definable bounded subset of n has the
form Cb for some C as above and some b ∈ Ām.
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Claim 2. If Cb = C′b′ then PC(b) = PC′(b′).
Proof. (See also below for a more algebraic proof). Fix the formulas C,C′. Write
b = Ne, b′ = N ′e where e ∈ Āl is a vector of Q-linearly independent elements of Ā,
and N,N ′ are rational matrices. Write PC =∑ aν(u)u

ν where aν is a constructible
function into Q; similarly for PC′ .

Now note that any formulaψ(x1, . . . , xl) of DOAG of dimension l has a solution
in Rl whose entries are algebraically independent. Use this to find algebraically
independent ẽ ∈ Rl such that CNẽ = C′N ′ẽ, and aν(Nẽ) = aν(b), aν(N ′ẽ) = a′ν(b′)
for each multi-index ν of degree d .

By the definition of PC we have PC(Nẽ) = PC′(N ′ẽ). Thus
∑
aν(b)(Nẽ)

ν =∑
a′ν(b′)(N ′ẽ)ν . By algebraic independence,

∑
aν(b)(Nv)

ν = ∑ a′ν(b′)(N ′v)ν as
Q-polynomials. Therefore, PC(Ne) = PC′(N ′e). )�

Thus we can define: v(Cb) = PC(b). Let us show that v defines a ring homo-
morphism.

Given C,C′ one can find C′′ such that C′′
b,b′ = Cb ∪ Cb′ , and similarly C′′′ with

C′′′
b,b′ = Cb ∩ Cb′ . Then PC + PC′ = PC′′ + PC′′′ . It follows that v is additive.

Similarly, v is multiplicative, and translation invariant. Since | det(M)| = 1 for
M ∈ GLn(Z), if φM(x, u) = φ(Mx, u) then PφM = Pφ . )�

Van den Dries, Ealy, and Maříková pointed out that Claim 2 can also be reduced
to the following statement: ifQ ∈ R[u], B is any 0-definable set of , andQ vanishes
on B(R), then Q vanishes on B(). They prove it as follows: let B̄ be the Zariski
closure of B; B̄ is clearly a finite union of linear subspaces, and by intersecting B
with each of these, we may assume B̄ is linear, so it is cut out by homogeneous linear
polynomials Q1, . . . ,Qm. Each Qi vanishes on B(R) and hence on B(). Thus Q
lies in the (radical) ideal generated byQ1, . . . ,Qm, hence vanishes on B().

The counting homomorphism in the discrete case

Suppose A has a least positive element 1, and assume given a homomorphism
hp : A → Zp for each p. Then A embeds into a Z-group Ã, i.e., an or-
dered Abelian group whose theory is the theory Th(Z) of (Z, <,+). (We have
Ã ∩ (Q ⊗ A) = {a/n ∈ Q ⊗ A : (∀p)(n|hp(a)).) We have a homomorphism
[X] �→ [X(Ã)] from K+([∗]) to K+(Th(Z)A). On the other hand, the polynomial
formula for the number of integral points in a polytope defined by linear equations
over Z yields a homomorphismK(Th(Z)bdd[∗])→ Q[A]. By composing we obtain
a homomorphism K(bdd[∗])→ Q[A].
Remark. Using integration by parts, one can see that the homomorphism

K(Th(Z)bdd[∗])→ Q[A]
above is actually an isomorphism.
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9.4 The measured case

We repeat the definition of µ from the introduction, along with two related cate-
gories. The category vol corresponds to integrable volume forms, i.e., those that
can be transformed by a definable change of variable to the standard form on a de-
finable subsets of affine n-space. By Lemma 3.26, the liftability condition in (2)
is equivalent to being piecewise in GLn(Z) � An, An being the group of definable
points.

Definition 9.11.

(1) For c = (c1, . . . , cn) ∈ n, let
∑
(c) =∑n

i=1 ci .
(2) For n ≥ 0, let µ[n] be the category whose objects are pairs (X, ω), with X ∈

Ob[n] and ω : X →  a definable map. A morphism (X, ω) → (X′, ω′) is
a definable bijection f : X → X′ liftable to a definable bijection valrv−1X →
valrv−1X′, such that

∑
(x)+ ω(x) =∑(x′)+ ω′(x′) for x ∈ X, x′ = f (x).

(4) Let µbdd[n] be the full subcategory of µ[n] with objects X ⊆ [γ,∞)n for
some γ ∈ .

(3) Let Ob vol[n] be the set of finite disjoint unions of definable subsets of n.
Given X, Y ∈ Ob vol[n], f ∈ Morvol[n](X, Y ) iff f ∈ Mor[n] and

∑
(x) =∑

(f (x)) for x ∈ X.
(5) µ[∗] is the direct sum of the µ[n], and similarly for the related categories.

Recall the Grothendieck rings of functions from Section 2.2. Fn(,K+()) is
a semigroup with pointwise addition. We also have a convolution product: if f is
represented by a definable F ⊆  × m, in the sense that f (γ ) = [F(γ )], and g by
a definable G ⊆  × n, let

f ∗ g(γ ) = [{(α, b, c) : α ∈ , b ∈ F(α), c ∈ G(γ − α)}].
The coordinate α in the definition is needed in order to make the union disjoint. In
general, it yields an element represented by a subset of  × m+n+1 rather than
m + n. But let Fn(,K+())[n] be the set of [F ] ∈ Fn(,K+([n])) such that
dim(F (a)) < n for all but finitely many a ∈ . If f ∈ Fn(,K+())[m] and
g ∈ Fn(,K+())[n], then f ∗ g ∈ Fn(,K+())[m+ n]. Let Fn(,K+())[∗] =
⊕m Fn(,K+())[m], a graded semiring.

Lemma 9.12.

(1) K+(µ)[n] ' Fn(,K+())[n].
(2) K+ µbdd[n] ' {f ∈ Fn(,K+(bdd))[n] : (∃γ0)(∀γ < γ0)(f (γ ) = 0)}.
(3) K+ vol[n] ' Fn(,K+([n− 1])).
Proof.

(1) Let (X, ω) ∈ Obµ[n], with X ⊆ n and ω : X → . Let d(x) =
ω(x) + ∑(x). For a ∈ , let Xa = {x ∈ X : d(x) = a}. This deter-
mines an element F(X,ω) ∈ Fn(,K+([n])), namely, a �→ [Xa]. It is clear
from additivity of dimension that dim(Xa) < n for all but finitely many a; so
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F(X,ω) ∈ Fn(,K+())[n]. If h ∈ Morµ[n](X, Y ), then by the definition of
µ we have h(Xa) = Ya ; so [Xa] = [Ya] in K+()[n]. Conversely if for all a ∈ 
we have [Xa] = [Ya] in K+()[n], then valrv−1(Xa), valrv−1(Ya) are a-definably
isomorphic. By Lemma 2.3 there exists a definable H : valrv−1(X) → valrv−1(Y )

such that for any x ∈ valrv−1(X), H(x) = ha(x), where a = ∑ valrv(x). Clearly,
H descends to H̄ : X → Y ; by construction H̄ lifts to RV, and preserves

∑+ω,
so H̄ ∈ Morµ[n](X, Y ). We have thus shown that [X] �→ [F(X)] is injective. It is
clearly a semiring homomorphism.

For surjectivity, let g ∈ Fn(,K+())[n] be represented by G ⊆  × n. It
suffices to consider either gwith singleton support {γ0}, or g such that dim(G(a)) < n
for all a ∈ . In the first case, g = F(X,ω) where X = G(γ0) and ω(x) =
γ0−∑(x). In the second: after effecting a partition and a permuation of the variables,
we may assume G(a) ⊆ n−1 × {ψ(a)} for some definable function ψ(a). With
another partition of , we may assume g is supported on S ⊆ , i.e., g(x) = 0
for x /∈ S, and ψ is either injective or constant on S. In fact, we may assume ψ
is injective on S: if ψ is constant on S, let G′ = {(a, (b1, . . . , bn−1, bn + a)) :
(a, (b1, . . . , bn)) ∈ G, a ∈ S}. Then G′ also represents g, and for G′ the function
ψ is injective. Now let X = ∪a∈SG(a), and let ω(x) = −∑(x)+ ψ−1(xn). Then
F(X,ω) = g.

(2) This follows from (1) by restricting the isomorphism.
(3) This is proved in a similar manner to (1) though more simply and we omit

the details. The key point is that GLn(Z) acts transitively on Pn(Q); this can be seen
as a consequence of the fact that finitely generated torsion free Abelian groups are
free. More specifically, the covector (1, . . . , 1) is GLn(Z)-conjugate to (1, 0, . . . , 0).
Thus the catgegory vol[n] is equivalent to the one defined using the weighting x1
in place of

∑
(xi). For this category the assertion is clear. )�

This lemma reduces the study of K+(µ) to that of K+().

10 The Grothendieck semirings of RV

10.1 Decomposition to �, RES

Recall that RV is a structure with an exact sequence

0 → k∗ → RV →
valrv

→ 0.

We study here the Grothendieck semiring of RV in a theory TRV satisfying the as-
sumptions of Lemma 3.26. The intended case is the structure induced from ACVFA
for some RV, -generated base structure A.

We show that the Grothendieck ring of RV decomposes into a tensor product of
those of RES, and of .

The category [∗] was described in Section 9. We used GLn(Z) rather than
GLn(Q) morphisms. The reason is given by the following.



Integration in valued fields 373

Lemma 10.1. The morphisms of [n] are precisely those definable maps that lift to
morphisms of RV[n]. The mapX �→ valrv−1(X) therefore induces a functor [n] →
RV[n], yielding an embedding of Grothendieck semiringsK+[[n]] → K+[RV[n]].
Proof. Any morphism of [∗] obviously lifts to RV, since GLn(Z) acts on Cn for
any group C. The converse is a consequence of Lemma 3.28. )�

We also have an inclusion morphism K+(RES)→ K+(RV).
Observe that K+(fin) forms a part of both K+(RES[∗]) and K+([∗]): the

embedding ofK+([∗]) intoK+(RV[∗]) takesK+(fin) to a subring ofK+(RES[∗]),
namely, the subring generated by the pullbacks valrv(γ ), γ ∈  a definable point.

Given two semiringsR1, R2 and a homomorphism fi : S → Ri , defineR1⊗S R2
by the universal property for triples (R, h1, h2), with R a semiring and hi : Ri → R

a semiring homomorphism, satisfying h1f1 = h2f2.
We have a natural map K+(RES)⊗K+([∗])→ K+(RV), [X] ⊗ [Y ] �→ [X ×

valrv−1(Y )]. By the universal property it induces a map on K+(RES) ⊗K+(fin)

K+([∗]). A typical element of the image is represented by a definable set of the
form

.∪(Xi × valrv−1(Yi)), with Xi ⊆ RES∗, Yi ⊆ ∗.

Proposition 10.2. The natural mapK+(RES)⊗K+(fin) K+([∗])→ K+(RV) is an
isomorphism.

Proof. Surjectivity is Corollary 3.25. We will prove injectivity. In this proof, X⊗ Y
will always denote an element of K+(RES)⊗K+(fin) K+([∗]).

Claim 1. Any element of K+([∗]) can be expressed as
∑l
j=1[Yj ] × {pj }, for some

Yj ⊆ mj , dim(Yj ) = mj , and pj ∈ lj .
Proof. Let Y ⊆ m be definable. If dim(Y ) < m, then Y can be partitioned
into finitely many sets Yj , each of which lies in some definable affine hypersur-
face

∑m
i=1 αixi = c, with αi ∈ Q, not all 0. In other words x �→ α · x is constant

on Yj , where α = (α1, . . . , αm). We may assume that each αi ∈ Z and that they
are relatively prime. Then (α) is the first row of a matrix M ∈ GLm(Z). The map
x �→ Mx takes Yj to a set of the form Y ′j × {c}, Y ′j ⊆ m−1. Since [MYj ] = [Yj ] in
K+([∗]), the claim follows by induction. )�
Claim 2. Any element of K+(RES)⊗K+(fin) K+([∗]) can be represented as

k∑
i=1

Xi ⊗ valrv
−1Yi,

where Xi ⊆ RESni and Yi ⊆ mi are definable sets, and mi = dim Yi .

Proof. By the definition ofK+(RES)⊗K+(fin)K+([∗]) and by Claim 1, any element

is a sum of tensorsX⊗valrv−1(Y×{p}); using the⊗K+(fin)-relation,X⊗valrv−1(Y×
{p}) = (X × valrv−1(p))⊗ Y . )�
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Now let Xi,X′i ⊆ RES∗, Yi, Y ′i ⊆ ∗ be definable sets, and let

F : .∪(Xi × valrv
−1(Yi))→

.∪(X′i′ × valrv
−1(Y ′i′))

be a definable isomorphism. Let m be the maximal dimension m of any Yi or Y ′
i′ .

Assume the following (by Claim 2):

For each i′, Y ′i′ ⊆ dim(Y ′
i′ ) and similarly for the Yi . (∗)

Claim 3. Let P be a complete type of Yi of dimension m, and Q a complete type of
Xi . Then F(Q× valrv−1P) = Q′ × valrv−1P ′, whereQ′ is a complete type of some
X′
i′ , and P ′ a complete type type of Y ′

i′ .
Moreover, there exist definable sets P̃ , Q̃, P̃ ′, Q̃′ containing P , Q, P ′, Q′,

respectively, such that

(1) F restricts to a bijection Q̃× valrv−1P̃ → Q̃′ × valrv−1P̃ ′;
(2) there exist definable bijections f : P̃ → P̃ ′ and g : Q̃→ Q̃′;
(3) For any x ∈ Q̃, y ∈ P̃ , F restricts to a bijection {x} × valrv−1(y)→ {f (x)} ×

valrv−1(g(y)).

Proof. By Lemma 3.17, valrv−1(P ) is a complete type; by the same lemma,
Q × valrv−1(P ) is complete; hence so is F(Q × valrv−1(P )). We have F(Q ×
valrv−1(P )) ⊆ (X′

i′ × valrv−1(Y ′
i′)) for some i′. LetQ′ = pr1(F (Q× valrv−1(P ))),

V ′ = pr2(F (Q × valrv−1(P ))), P ′ = valrv(V ′) ⊆ Y ′
i′ . where pr1 : X′

i′ ×
valrv−1(Y ′

i′) → Xi ⊆ RES, pr2 : X′i′ × valrv−1(Y ′
i′) → valrv−1(Y ′

i′) are the pro-
jections. ThenQ′, V ′, P ′ are complete types. We havem = dim(P ′) ≥ dim(Y ′

i′), so

by maximality of m, equality holds. We thus have P ′ ⊆ dim(P ′). By Lemma 3.17,
Q′ × valrv−1(P ′) is also complete type. Thus F(Q× P) = Q′ × valrv−1P ′.

By one more use of Lemma 3.17, the function fy : x �→ pr1 F(x, y), whose
graph is a subset of the stable set Q ×Q′, cannot depend on y ∈ P . Thus fy = f ,
i.e., F(x, y) = (f (x), pr2 F(x, y)).

Since Q × valrv−1(y) is stable, valrv pr2 F must be constant on it; so
valrv pr2 F(x, y) = g(y) on P ×Q. This shows that (3) of the “moreover’’ holds on
P × Q. By compactness, it holds on some definable Q̃ × P̃ (and we may take
f injective on Q̃, and g on P̃ ). Let Q̃′ = f (Q̃), P̃ ′ = g(P̃ ). Then (1)–(2)
hold also. )�
Claim 4. Assume (∗) holds. Then there exist finitely many definable Y ji (j =
0, . . . , Ni) and Xji such that dim(Y 0

i ) < m, and the conclusion of Claim 3 holds

on each Xji × valrv−1Y
j
i for j ≥ 1. Moreover, we may take the Y ji , Xji pairwise

disjoint.

Proof. This follows from Claim 3 by compactness; the disjointness can be achieved
by noting that if Claim 3(3) holds for P̃ , Q̃, then it holds for their definable subsets,
too. )�
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We now show that if
.∪(Xi ×valrv−1(Yi)) and

.∪(X′
i′ ×valrv−1(Y ′

i′)) are definably
isomorphic then

∑
i′ [Xi′ ] ⊗ [Yi′ ] =

∑
i[Xi ⊗ Yi]. We use induction on the maximal

dimensionm of any Yi or Y ′
i′ , and also on the number of indices i such that dim(Yi) =

m. Say dim(Y1) = m.
By Claim 2, without changing

∑
i′ X

′
i′ ⊗ valrv−1(Y ′

i′)) as an element of

K+(RES)⊗K+(fin) K+([∗]),
we can arrange that dim(Yi′) = mi′ , i.e., (∗) holds. Thus Claims 3 and 4 apply.

The Y j1 for j ≥ 1 may be removed from Y1, if their images are correspondingly
excised from the appropriate Y ′j , since [Q̃]⊗K+(fin) [P̃ ] = [f (Q̃)]⊗K+(fin) [g(P̃ )].
What is left in Y1 has  dimension < m, and so by induction the classes are equal.

The injectivity and the proposition follow. )�
For applications to VF, we need a version of Proposition 10.2 keeping track of

dimensions. Below, the tensor product is in the category of graded semirings.

Corollary 10.3. The natural map K+(RES[∗]) ⊗K+(fin) K+([∗])→ K+(RV[∗])
is an isomorphism.

Proof. For each n we have a surjective homomorphism

⊕nk=1K+(RES[k])⊗K+([n− k])→ K+(RV[n]).
K+ RV[n] can be identified with a subset of the semiring K+ RV, namely, {[X] :
dim(X) ≤ n}. The proof of Proposition 10.2 shows that the kernel is generated by
relations of the form

(X × valrv
−1(Y ))⊗ Z = X ⊗ (Y ⊗ Z)

when Y ∈ K+(fin) and dim(X)+ dim(valrv−1(Y ))+ dim(valrv−1(Z)) = n. These
relations are taken into account in the ring K+(RES[∗])⊗K+(fin) K+([∗]), so that
the natural map K+(RES[∗]) ⊗K+(fin) K+([∗]) → K+(RV[∗]) is injective and
hence an isomorphism. )�

Recall the classes ea = [{a}]1 in K([1]), defined for a ∈ (〈∅〉). They are in
K+(fin), hence identified with classes in K(RES[1]), namely, ea = [valrv−1(a)].
When denoting classes of varieties V over the residue field, we will write [V ] for
[V (k)], when no confusion can arise.

Definition 10.4. Let I ! be the ideal ofK(RES[∗]) generated by all differences ea−e0,
where a ∈ (〈∅〉). Let !K(RES[∗]) = K(RES[∗])/I !.

By Lemma 9.7(3), the natural homomorphism K(RES[∗]) into the localization
of K(RV[∗]) by all classes ea factors through !K(RES[∗]).

Since I ! is a homogeneous ideal, !K(RES[∗]) is a graded ring.
The theorem that follows, when combined with the canonical isomorphisms

K(VF[n])→ K(RV[≤ n])/Isp and K(VF)→ K(RV[∗])/Isp,
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R

∫
: K(VF)→ !K(RES)[[A1(k)]−1],

R

∫ ′
: K(VF)→ !K(RES).

Theorem 10.5.

(1) There exists a group homomorphism

En : K(RV[≤ n])/Isp → !K(RES[n])
with

[RV>0]1 �→ −[An−1 ×Gm]n
and

[X]k �→ [X × An−k]n
for X ∈ RES[k].

(2) There exists a ring homomorphism E : K(RV[∗])/Isp → !K(RES)[[A1]−1] with
E([X]k) = [X]k/Ak for X ∈ RES[k].

(3) There exists a group homomorphism

E′n : K(RV[≤ n])/Isp → !K(RES[n])
with [RV>0]1 �→ 0 and [X]k �→ [X]n for X ∈ RES[k].

(4) There exists a ring homomorphism E′ : K(RV[∗])/Isp → !K(RES) with
E([X]k) = [X]k for X ∈ RES[k].

Proof.
(1) We first define a homomorphism χ [m] : K(RV[m]) → !K(RES[m]). By

Corollary 10.3,

K(RV[m]) = ⊕ml=1K(RES[m− l])⊗K+(fin) K([l]).
Let χ0 = IdK RES[m]. For l ≥ 1, recall the homomorphism χ : K([l]) → Z
of Lemma 9.5. It induces χl : K(RES[k]) ⊗K+(fin) K([l]) → !K(RES[k]) by

a ⊗ b �→ χ(b) · [Gm]l · a.
Define a group homomorphism

χ [m] : K(RV[m])→ K(RES[m]), χ[m] = ⊕lχl .
We have

χ [m1 +m2](ab) = χ [m1](a)χ [m2](b)
when a ∈ K(RV[m1]), b ∈ K(RV[m2]). This can be checked on homogeneous
elements with respect to the grading ⊕l K+(RES[m− l])⊗K+([l]).

We compute χ [1]([RV>0]1) = χ1(1⊗ [>0]1) = −[Gm] ∈ K(RES[1]).
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Next, define a group homomorphism βm : !K(RES[m]) → !K(RES[n]) by
βm([X]) = [X × An−m]. Define γ : ⊕m≤n K(RV[m]) → !K(RES[n]) by γ =∑
m βm ◦ χ [m]. Then γ is a group homomorphism, and γ (a)γ (b) = γ (ab)× [An]

for a ∈ K(RV[m1]), b ∈ K(RV[m2]), m1 +m2 ≤ n. Again this is easy to verify on
homogeneous elements.

Finally, we compute γ on the standard generator J = [RV>0]1 + [1]0 − [1]1 of
Isp. Since χ [1]([RV>0]1) = −[Gm], we have

γ ([RV>0]1) = β1(−[Gm]) = −[Gm × An−1]1
On the other hand,

γ ([1]0) = β0([1]0) = [An]n,
γ ([1]1) = β1([1]1) = [An−1]n.

Thus γ (J ) = [An−1]n−1 × (−[Gm]1 + [A1]1 − [1]1) = 0. A homomorphism
K(RV[≤ n])/Isp →K(RES[n]) is thus induced.

(2) For a ∈ K(RV[m]), let E(a) = βm(a)/[Am]. For any large enough n, we
have E(a) = En(a)/[An]. The formulas in (1) prove that E is a ring homomorphism.

(3)–(4) The proof is similar, usingχ ′ from Lemma 9.6 in place ofχ of Lemma 9.5,
and the identity in place of βm. )�
Corollary 10.6. The natural morphism K(RES[n]) → K(RV[≤ n])/Isp has the
kernel contained in !I . )�
Lemma 10.7. Let T = ACVFF((t)) or T = ACVFR

F((t)), F a field of characteristic
0, with val(F ) = (0), val(F ((t))) = Z, and val(t) = 1 ∈ Z. Then there exists
a retraction ρt : K+(RES) → K+(VarF ). It induces a retraction !K(RES) →
K(VarF ).

Proof. Let tn ∈ F((t))alg be such that t1 = t and tnnm = tm. For α = m/n ∈ Q, with
m ∈ Z, n ∈ N, let tα = tmn . Thus α→ ta is a homomorphism Q → Gm(F((t))

alg).
Let V (α) = valrv−1(α). Let tα = rv(tα). Then ta ∈ V (α).
Let X ∈ RES[n]. Then for some α1, . . . , αn ∈ Q, we have X ⊆ �ni=1V (αi),

where V (αi) = valrv−1(αi). Define f (x1, . . . , xn) = (x1/tα1 , . . . , xn/tαn). Then f
is F((t1/m))-definable for some m, but not in general. Nevertheless, F(X) =: Y is
definable. This is because the Galois group G = Aut(F a((t1/m))/F a((t))) extends
to a group of valued field automorphisms Aut(k((t1/m))/k((t))) fixing the entire
residue field k; while Y ⊆ k; thus G fixes Y pointwise and hence setwise.

The map X �→ Y of definable sets described above clearly respects disjoint
unions. It also respects definable bijections: if h : X → X′ is a definable bijection,
Y = f (X), Y ′ = F(Y ′), then f hf−1 is an F((t1/∞))-definable bijection Y → Y ′;
by the Galois argument above, it is, in fact, definable.

The definable subsets of k are just the F -constructible sets. Thus we have an
induced homomorphism ρt : K+(RES) → K+(VarF ); it is clearly the identity on
K+(RES). It induces a homomorphism K(RES)→ K(VarF ).

Finally ρt (valrv−1(α)) = [Gm] for any α ∈ Q; so a homomorphism on !K(RES)
is induced. )�
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This example can be generalized as follows. Let L be a valued field with residue
field F of characteristic 0, T = ACVFL or ACVFR

L. Let A = res(L), A = Q⊗ A,
and let t : A → Gm(L

a) be a monomorphism, with t (A) ⊆ Gm(L). Then there
exists a retraction ρt : K+(RES)→ K+(VarF ).

From Theorem 10.5 and Lemma 10.7, we obtain the example discussed in the
introduction.

Proposition 10.8. Let T = ACVFR
F((t)), F a field of characteristic 0, with val(F ) =

(0) and val(t) = 1 ∈ Z. Then there exists a ring homomorphism Et : K(VF) →
K(VarF )[[A1]−1], with [M] �→ −[Gm]/[Ga], L([X]k) �→ [X]k/[Ak] for X ∈
VarF [k]. There is also a ring homomorphism E′t : K(VF) → K(VarF ) with
L([X]k) �→ [X]k .

10.2 Decomposition of µRV

An analogous decomposition is valid for the measured Grothendieck semiring µRV
(Definition 8.13).

Lemma 10.9. There exists a homomorphism K+ µ[n] → K+ µRV[n] with
[(X, ω)] �→ [(valrv−1(X), Id, ω ◦ valrv)].
Proof. We have to show that a µ[n]-isomorphism X → Y lifts to a µRV[n]-
isomorphism. This follows immediately from the definitions. )�

Recall µRES from Definition 8.13. Along the lines of Lemma 9.12, we
can also describe K+ µRES[n] as the semigroup of functions with finite support
 → K+(RES[n]). We also have the inclusion K+ µRES[n] → K+ µRV[n],
[(X, f )] �→ [(X, f, 1)].

Let µfin[n] be full subcategory of µ[n] whose objects are finite. We have a
homomorphismK+(µfin)[n] → µRES[n], (X, ω) �→ (valrv−1(X), Id, ω◦valrv).
As before, we obtain a homomorphism K+ µRES[∗] ⊗K+(µfin) K+(µ[∗]) →
K+(RV[∗]).

Let RES-vol′ be the full subcategory of RV-vol′ whose objects are in RES; this
is the same as RV except that morphisms must respect

∑
valrv. Let volfin be the

subcategory of finite objects of vol.

Proposition 10.10.

(1) The natural mapK+(µRES[∗])⊗K+(µfin) K+(µ[∗])→ K+(µRV[∗]) is an
isomorphism.

(2) So is K+(RES-vol′ [∗])⊗K+(volfin[∗]) K+(vol[∗])→ K+(RV-vol′ [∗]).
(3) The decompositions of this section preserve the subsemirings of bounded sets.

Proof. We first prove surjectivity in (1). By the surjectivity in Corollary 10.3, it
suffices to consider a class c = [(X× valrv−1(Y ), f, ω)] with X ∈ RES[k], Y ⊆ l ,
f (x, y) = (f0(x), y), and ω : X × (val r−1(Y )) → RV. In fact, as in Proposi-
tion 10.2 we may take dim(Y ) = l, and inductively we may assume that any class
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[(X′ × Y ′, f ′, ω′)] with dim(Y ′) < l is in the image. Since we may remove a subset
of Y of smaller dimension, applying Lemma 3.17 to ω : X × valrv−1(Y ) → , we
may assume ω(x, y) = ω′(γ )when valrv(y) = γ . Now c = [(X, f0, 1)]⊗ [(Y, ω′)].

The proof of surjectivity in (2) is similar.
The proof of injectivity in (1)–(2) is the same as of Proposition 10.2 and Corol-

lary 10.3. (3) is clear by inspection of the homomorphisms. )�
We now deduce Theorem 1.3. For a finite extension L of Qp, write volL(U) for

volL(U(L)). Let r be the ramification degree, i.e., val(L∗) = (1/r)Z. Let Q = qr .
The normalization is such that M has volume 1; so an open ball of valuative radius γ
has volume qrγ = Qγ . Thus the volume of valrv−1(γ ) is (q − 1)Qγ . Also the norm
satisfies |y| = Qval(y).

Proof of Theorem 1.3. For a ∈ k , let Z(a) = {x ∈ OnL : val(f1(x)) = a1 . . .

val(fk(x)) = ak}. Then∫
OnL

|f |s =
∑

a∈(≥0)k

Qs·avolL(Z(a)).

According to Propositions 4.5 and 10.10, we can write

Z(a) ∼
ν
.∪
i=1

LXi × L i(a),

where  i is a definable subset of k+n2(i), hi :  i → k the projection to the first k
coordinates,  i(a) = {d ∈ n2(i) : hi(d) = a}, Xi = (Xi, fi) ∈ RES[n1(i)], and ∼
denotes equivalence up to an admissible transformation. Thus

volL(Z(a)) = volL

(
ν
.∪
i=1

LXi × L i(a)

)
=

ν∑
i=1

volL(LXi )volL(L i(a)).

If b = (b1, . . . , bk+n2(i)) ∈  i , let hi0(b) be the sum of the last n2(i) coordinates.
Since valrv takes only finitely many values on a definable subset of RES, we

may assume
∑

valrv(f (x)) = γ (i) is constant on x ∈ Xi . Then volL(LXi(L)) =
Qγ(i)|Xi(L)|. Thus∫

OnL

|f |s =
∑
i

|Xi(L)|Qγ(i)
∑

a∈(≥0)k

Qs·avolL(L i(a)). (10.1)

Now volL(L i(a)) =∑b∈ i,h(b)=a(q − 1)n2(i)Qh0(b). Thus∑
a∈(≥0)k

Qs·avolL(L i(a)) =
∑
b∈ i

Qs1h
i
1(b)+···+skhik(b)(q − 1)n2(i)Qh0(b)

= (q − 1)n2(i) evhi ,s,Q( i).

(10.2)

The theorem follows from equations (10.1)–(10.2). )�
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Let A be the set of definable points of . Recall that for X ⊆ RV, [X]1
denotes the class [(X, IdX)] ∈ RV[1] of X with the identity map to RV, and
the constant form 1. For a ∈ A, let ẽa = [(valrv−1(0), Id, a)] ∈ RES[1],
fa = [{1}k, Id, a] ∈ RES[1] where a in the third coordinate is the constant function
with value a. If a lifts to a definable point d of RV, multiplication by d shows that
ẽa = [valrv−1(a), Id, 0], fa = [{d}, Id, 0]. Note ẽa ẽb = ẽa+bẽ0; and ẽ0 = [Gm].
Let τa ∈ RES[1] be the class of (valrv−1((a,∞)), Id, 0). The generating relation of
µIsp is thus (τ0, f0) (Lemma 8.20(6)). Let h be the class of [(RV>0, Id, x−1)].

Let !I 0
µ be the ideal of K(µRES[∗]) generated by the relations ẽa+b =

[(valrv−1(a), Id, b)], where a, b ∈ A, b denoting the constant function b. Let !Iµ be
the ideal generated by !I 0

µ as well as the element [A1]1.

Theorem 10.11. There exist two graded ring homomorphisms

e
∫
, e
∫ ′

: Keff (µVF[∗]) = K(µRV[∗])/Iµsp → K(µRES[∗])/!Iµ

such that the composition

K(µRES[∗])→ K(µRV[∗])/Iµsp → K(µRES[∗])/!Iµ
equals the natural projection

π : K(µRES[∗])→ K(µRES[∗])/!Iµ,
with

e
∫

h = −[{0k}]1, e
∫ ′

h = 0.

Proof. The identification Keff (µVF[∗]) = K(µRV[∗])/Iµsp is given by Theo-
rem 8.28, and we work with K(µRV[∗])/Iµsp.

According to Proposition 10.10, we can identify

K(µRV[∗]) = K(µRES[∗])⊗K+(µfin) K(µ[∗]).
We first construct two homomorphisms of graded rings R,R′ : K(µRV[∗])

→ K(µRES[∗])/!Iµ. This amounts to finding graded ring homomorphisms
K(µ[∗])→ K(µRES[∗])/!Iµ, agreeing with π on the graded ringK+(µfin). It
will be simpler to work with R, R′ together, i.e., construct

R′′ = (R,R′) : K(µ[n])→ (K(µRES[n])/!Iµ)2.
Recall from Lemma 9.12 the isomorphism

φ : K(µ[n])→ Fn(,K())[n].
Let χ ′′ : K([n]) → Z2 be the Euler characteristic of Proposition 9.4; so that

χ ′′ = (χ, χ ′); cf. Lemmas 9.5 and 9.6. We obtain by composition a map E′′n =
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(En,E
′
n) : Fn(,K([n])) → Fn(,Z)2. Here Fn(,Z) is the group of functions

g : → Z such that g() is finite and g−1(z) is a definable subset of (a finite union
of definable intervals and points). Thus Fn(,Z) is freely generated as an Abelian
group by {pa, qa, r}, where r is the constant function 1, and for a ∈ A, pa ,qa are
the characteristic functions of {a}, {(a,∞)}, respectively. Define ψn : Fn(,Z)→
K(µRES[∗]):
ψm(pa) = [Gm]n−1ẽa = [Gm]nfa, ψn(qa) = −[Gm]nfa, ψn(r) = 0.

For u ∈ K(µ[n]), let R′′(u) = ψn(E′′n(φ(u))).
Claim. R′′ : K(µ[∗])→ K(µRES[m])2 is a graded ring homomorphism.

Proof. We have already seen thatφ is a ring homorphism, so it remains to show this for
ψ∗◦E′′∗ . Now by Proposition 9.4, χ ′′(Y ) = χ ′′(Y ′) iff [Y ] = [Y ′] in the Grothendieck
group of DOAG. Hence given families Yt , Yt ′ of pairwise disjoint sets with χ ′′(Yt ) =
χ ′′(Y ′t ), by Lemma 2.3 we have χ ′′(∪t Yt ) = χ ′′(∪t Y ′t ). From this and the definition
of multiplication in Fn(,K())[∗], and the multiplicativity of E′′n , it follows that
if E′′n(f ) = E′′n(f ′) and E′′m(g) = E′′m(g′) then E′′n+m(fg) = E′′n+m(fg). In other
words, E′′∗ is a graded homomorphism from into (Fn(,Z)2, ") for some uniquely
determined multplication " on Fn(,Z)2. Clearly, (a, b) " (c, d) = (a∗1c, b∗2d) for
two operations ∗1, ∗2 on Fn(,Z).

Now we can compute these operations explicitly on the generators:

pa ∗ pb = pa+b, pa ∗ qb = qa+b, qa ∗ qb = −qa+b
for both ∗1 and ∗2, and

r∗1ẽa = r, r∗1qa = −r, r∗1r = r,
r∗2ẽa = −r, r∗2qa = 0, r∗2r = −r.

Composing with ψ , we see that R′′ is, indeed, a graded ring homomorphism. )�
Let R, R′ be the components of R′′.

Claim. R, R′, π agree on K+(µfin). R(τ0) = R′(τ0) = −ẽ0.

This is a direct computation. It follows that R,R′ induce homomorphisms
K(µRV[∗]) → K(µRES[∗]). Since ẽ0 + f0 = [(A1, Id, 0)], modulo !Iµ both
R,R′ equalize µIsp, and hence induce homomorphisms onK(µRV[∗])/µIsp →
K(µRES[∗])/!Iµ. )�
Remark. The construction is heavily, perhaps completely constrained. The value of
ψm(pa) is determined by the tensor relation over K+(µfin). The value of ψm(qa)
is determined by the relation Isp. The choice ψ(r) = 0 is not forced, but the multi-
plicative relation shows that either r or−r is idempotent, so one has a product of two
rings, with ψ(r) = 0 and with ψ(r) = ±1. In the latter case we obtain the isomor-
phisms of Theorem 10.5. Thus the only choice involved is to factor the fibers of an
element of Fn(,K())[n] through χ ′′, i.e., through K(DOAG). It is possible that
K([n]) = K(DOAG[n]) (cf. Question 9.9). In this case, e

∫
, e
∫ ′, R
∫

, R
∫ ′ are injective

as a quadruple, and determineK(µVF[∗]) completely, at least when localized by the
volume of a unit ball.
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11 Integration with an additive character

Let 	 = VF/M. Let ψ : VF → 	 be the canonical map.

Motivation. For any p, 	(Qp) can be identified with the pth power roots of unity
via an additive character on Qp. For other local fields, the universal ψ we use is
tantamount to integration with respect to all additive characters of conductor M at
once. Thus 	 is our motivic analogue of the roots of unity, and the natural map
VF → VF/M, an analogue of a generic additive character.

Throughout this paper, we have been able to avoid subtractions and work with
semigroups, but here it appears to be essential to work with a group or at least a
cancellation semigroup. The reason is that we will introduce, as the essential feature
of integration with an additive character, an identification of the integral of a function
f with f + g if g is O-invariant. This corresponds to the rule that the sum over a
subgroup of a nontrivial character vanishes. Now for any h : 	 → K+(µVF), it
is easy to construct h′ : 	 → K+(µVF) such that h + h′ is O-invariant. Thus if
f + h = f ′ + h for some h, then f = f + h + h′ = f ′ + h + h′ = f ′. Thus
cancellation appears to come by itself.

If we allow all definable sets and volume forms, a great deal of collapsing is caused
by the cancellation rule. We thus use the classical remedy and work with bounded sets
and volume forms. The setting is flexible and can be compatible with stricter notions
of boundedness. This is only a partial remedy in the case of higher-dimensional local
fields; cf. Example 12.12.

The theory can be carried out for any of the settings we considered. Let R be one
of these groups or rings, with D the corresponding data. For instance, D is the set of
pairs (X, φ) with X a bounded definable subset of VFn × RV∗, and φ : X→ RV is
a bounded definable function; R is the corresponding Grothendieck ring. Similarly,
we can take -volumes, or pure isomorphism invariants without volume forms. In
this last case there is no point restricting to bounded sets. As we saw, two Euler
characteristics into the Grothendieck group of varieties over RES do survive.

In each case, we think of R as a Grothendieck ring of associated RV-data, modulo
a canonical ideal.

Everything can be graded by dimension, but for the moment we have no need to
keep track of it, so in the volume case we can take the direct sum over all n or fix one
n and omit it from the notation.

The corresponding group for the theory TA or T〈a〉 will be denoted RA,Ra ,
etc. When V is a definable set, we let DV , RV denote the corresponding objects
over V . For instance, in the case of bounded RV-volumes, DV is the set of pairs
(X ⊆ V ×W,φ : X→ RV∗) such that for any a ∈ V , (Xa, φ|Xa)withXa bounded.

If R is our definable analogue of the real numbers (as recipients of values ofp-adic
integration), the group ring C = R[	]will take the role of the complex numbers. We
have a canonical group homomorphism (VF,+)→ 	 ⊆ Gm(C), corresponding to
a generic additive character.

Integration with an additive character can be presented in two ways: in terms
of definable functions f : X → 	 (Riemann style), where we wish to evaluate
expressions such as

∫
X
f (x)φ(x); classically f usually has the form ψ(h(x)), where



Integration in valued fields 383

h is a regular function and ψ is the additive character. Or we can treat definable
functions F : 	 → R (Lebesgue style), and evaluation

∫
ω∈	 F(ω). We will work

with the latter. Given this, to reconstruct a Riemann style integral, given f : X→ 	,
and an R-valued volume form φ on X, let

F(ω) =
∫
f−1(ω)

φ(x).

Then we can define ∫
X

f (x)φ(x) =
∫
ω∈	

ωF(ω).

It thus suffices to define the integral of a definable function on	. Such a function
can be interpreted as an M-invariant function on VF. We impose one rule (cancel-
lation): the integral of a function that is constant on each O-class equals zero. The
integral is a homomorphism on the group of M-invariant functions VF → R, vanish-
ing on the O-invariant ones. We give a full description of the quotient group, showing
that the universal homomorphism of this type factors through a similar group on the
residue field.

Recall the group Fn(V ,R) of Section 2.2. We will not need to refer to the dimen-
sion grading explicitly.

If V is a definable group, V acts on on Fn(V ,R) by translation.

Definition 11.1. For a definable subgroup W of V , let Fn(V ,R)W be the set of W -
invariant elements of Fn(V ,R): they are represented by a definable X, such that if
t ∈ W and a ∈ V then X[a], X[a + t] represent the same class in K(µVFa,t )[n].
Lemma 11.2. An element of Fn(VF,R)M can be represented by an M-invariant
X ⊆ (VF× ∗).
Proof. Let Y ∈ DRVVF represent an element of Fn(VF,R)M. Thus each fiber Ya ∈
DRV . By Lemma 3.52, for a ∈ VF/M one can find Y ′a ∈ DRV such that for some
a ∈ VF with a +M = a, Ya = Y ′a. As in Lemma 2.3 there exists Y ′ ∈ RVF/M such
that Y ′a is the fiber of Y ′ over a. Pulling back to VF gives the required M-invariant
representative. )�

Since the equivalence is defined in terms of effective isomorphism, Definition 8.2,
it is clear that two elements of D	 are equivalent iff the corresponding pullbacks to
Fn(VF,R)M are equivalent.

The groups Fn(VF,R)M and Fn(VF/M,R) can thus be identified.
Note that the effective isomorphism agrees with pointwise isomorphism for

Fn(VF,R)M, but not for Fn(VF/M,R).
The group we seek to describe is A = AT = Fn(VF,R)M/Fn(VF,R)O. The

quotient corresponds to the cancellation rule discussed earlier.
Let Fn(k,R) be the Grothendieck group of functions k → R, with addition

induced from R.
Let C = R[	] be the ring of definable functions 	 → R with finite support,

convolution product.
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Remark. C embeds into the Galois-invariant elements of the abstract group ring
RT̃ [	T̃ ], where T̃ = Tacl(∅).

The additive group k = O/M is a subgroup of 	 = VF/M, and so acts on
	 by translation. It also acts naturally on Fn(k,R). This gives two actions on
Fn(k,C) = Fn(k,R)[	]. Let Fn(k,C)k denote the coinvariants with respect to the
anti-diagonal action, i.e., the largest quotient on which the two actions coincide.

In general, the upper index denotes invariants, the lower index coinvariants.
Fn(VF,R) is the ring of definable functions from VF to R. Fn(k,R) is the

ring of definable functions from k to R. Fn(k,C) is the ring of definable functions
from k to C; equivalently, it is the set of Galois-invariant elements of the group ring
Fn(k,R)[	].

The action of k on Fn(k,C) is by translation on k, and negative translation on 	
and hence on C. The term (Const) refers to the image of the constant functions of
Fn(k,C) in Fn(k,C)k . (It is isomorphic to (C/k).)

Theorem 11.3. There exists a canonical isomorphism Fn(k,C)k/(Const)
→∼=

Fn(VF,R)M/Fn(VF,R)O.

Proof. Let Afin be the subring of Fn(VF,R)M consisting of functions represented
by elements of Fn(VF,D)M whose support projects to a finite subset of VF/O.

Adefinable function on k can be viewed as anM-invariant function onO; this gives

Fn(k,R)
→∼= Fn(O,R)M. (11.1)

On the other hand, we can define a homomorphism

Fn(O,R)M[	] → Afin :
∑
ω∈W

a(ω)ω �→
∑
ω∈W

a(ω)ω, (11.2)

whereW is a finite A-definable subset of 	, a : W → Fn(O,R)M is an A-definable
function, (so that

∑
a∈W a(ω)ω is a typical element of the group ring Fn(O,R)M[	]),

and bω is the translation of b by ω, i.e., bω(x) = b(x − ω).
(11.2) is surjective: Let f ∈ Afin be represented by F , with support Z, a finite

union of translates of O. By Lemma 3.39 there exists a finite definable setW , meeting
each ball of Z in a unique point. Define a : W → Fn(O,R)M by

a(ω) = (f |ω + O)−ω.

Then (11.2) maps
∑
a(ω)ω to f .

The kernel of (11.2) is the equalizer of the two actions of k. Composing with

(11.1), we obtain an isomorphism (Fn(k,R)[	])k
→∼=Afin or, equivalently,

Fn(k,C)k
→∼=Afin. (11.3)

The last ingredient is the homomorphism
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Afin → A. (11.4)

We need to show that it is surjective, and to describe the kernel.
Using the representation D of elements of R by RV-data, an element of A is

represented by an M-invariant definableW ⊂ VF× RV∗.
By Lemma 3.37, for each cosetC of O in VF apart from a finite number,W ∩(C×

RVn+l ) is invariant under translation of the first coordinate by elements of O. Thus
W is the disjoint sum of an O-invariant setW ′ and a setW ′′ ⊂ VF×RV∗ projecting
to a finite union Z of cosets of O in VF, i.e., representing a function in Afin.

Clearly,W ′ ×RVn VFn lies in Fn(VF,R)O.
Thus (11.4) is surjective; the kernel is AO

fin. Composing (11.3),(11.4) we obtain
an isomorphism

A
→∼=(Fn(k,R)[	])k/(Const).

Using the identification Fn(k,R)[	] ' Fn(k,C), the theorem follows. )�
Note that Fn(k,C)k ' C, via Fn(k,C) ' Fn(k ×	,R)fin.

11.1 Definable distributions

R is graded by dimension (VF-presentation) or ambient dimension (RV-presentation).
Write R = ⊕n≥0R[n].

Let Rdf be the dimension-free version: first form the localization R[[0]−1
1 ], where

[0]1 is the class of the point 1 ∈ RV, as an element of RV[1]. Equivalently, [0]n1 is
the volume of the open n-dimensional polydisc On. Let Rdf be the zero-dimensional
component of this localization. Similarly, define Cdf so that Cdf = Rdf [	]. We can
also define K+(D)df , and check that the groupification is Rdf .

Given a = (a1, . . . , an) ∈ VFn and γ = (γ1, . . . , γn) ∈ n, let B(a, γ ) =
�ni=1B(ai, γi), where B(ai, γi) = {c ∈ VF : val(c − ai) > γi}. Call B(a, γ ) an
open polydisc of dimension γ . If γ ∈ , let B(a, γ ) = B(a, (γ, . . . , γ )) (the open
cube of side γ ).

Note that [B(0, γ )] is invertible in Rdf , in each dimension. In particular, in
dimension 1, [B(0, γ )][B(0,−γ )] = [0]21. Note also that [B(a, γ )]=

a
[B(0, γ )].

We proceed to define integrals of definable functions.
Let U be a bounded definable subset of VFn. A definable function f : U →

K+(D)df has the form [0]−m1 F , where F : U → K+ D[m] is a definable function,
represented by some F̄ ∈ D[m+ n]U . In case F̄ can be taken bounded, define∫

U

f = [0]−m+n1 [F ]n+m.

We say that f is boundedly represented in this case.
In particular, vol(U) = ∫

U
1 = [0]−m1 [U ]m is treated as a pure number now,

without dimension units. (Check the independence of the choices.)
This extends by linearity to

∫
U
f for f : U → Rdf , provided f can be expressed

as the difference of two boundedly represented functions U → K+(D)df .
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We now note that averaging twice, with appropriate weighting, is the same as
doing it once. The function γ ′ in the lemmas below corresponds to a partition of U
into cubes; γ ′(u) is the side of the cube around u ∈ U .

Lemma 11.4. Let U be a bounded open subset of VFn, f a boundedly represented
function on U . Let γ ′ : U →  be a definable function such that if u ∈ U and
u′ ∈ B(u, γ ′(u)) then u′ ∈ U and γ ′(u′) = γ ′(u). Then∫

U

f =
∫
U

[
vol(B(u, γ ′(u)))−1

∫
B(u,γ ′(u))

f

]
.

Proof. Let f = [0]−m1 F , where F : U → K+ D[m] is bounded. We have
vol(B(u, γ ′)) = [0]−n1 [γ ′(u)]n so

vol(B(u, γ ′))−1 = [0]n1[γ ′(u)]−n = [0]−n1 [−γ ′(u)]n.
Thus, multiplying by [0]3n+m1 , we have to show

[0]2n1 [F ] = [−γ ′(u)]n[{(u, u′, z) : u ∈ U, u′ ∈ B(u, γ ′(u)), (u′, z) ∈ F }].
Now u′ ∈ B(u, γ ′(u)) iff u ∈ B(u′, γ ′(u′)). Applying the measure-preserving
bijection (u, u′, z) �→ (u − u′, u′, z′) we see that the [{(u, u′, z) : u ∈ U, u′ ∈
B(u, γ ′(u)), (u′, z) ∈ F }] = [γ ]n1[{(u′, z) : (u′, z) ∈ F ], so the equality is clear. )�

We now define the integral of definable functions into Cdf . By definition, such
a function is a finite sum of products fg, with f ∈ Fn(U,Rdf ) and g ∈ Fn(U,	).
Define ∫

U

fg =
∫
ω∈	

ω

∫
g−1(ω)

f

and extend by linearity.
Note that this is defined as soon as g is boundedly represented. (Again, check the

independence of the choices.)

Definition 11.5. A definable distribution on an openU ⊆ VFn is a definable function
d : U×→ Cdf , such that d(a, γ ) = d(a′, γ ) ifB(a, γ ) = B(a′, γ ), and whenever
γ ′ > γ in each coordinate,

d(b, γ ) =
∫
u∈B(b,γ )

vol(B(0, γ ′))−1d(u, γ ′).

As in Lemma 11.2, the invariance condition means that d can be viewed as a
function on open polydiscs, and we will view it this way below.

If d takes values in Rdf , we say it is Rdf -valued. By definition, d can be written as
a finite sum

∑
ωidi , where di is an Rdf -valued function; in fact, di is an Rdf -valued

distribution.
We wish to strengthen the definition of a distribution so as to apply to subpolydiscs

of variable size. For this we need a preliminary lemma.
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Lemma 11.6. Let U = B(a, γ ) be a polydisc. Let γ ′ : B(a, γ )→  be a definable
function such that γ ′(u′) = γ ′(u) for u′ ∈ B(u, γ ′(u)). Then γ ′ is bounded on U .

Proof. Suppose for contradiction that γ ′ is not bounded on B(a, γ ); i.e.,

(∀δ ∈ )(∃u ∈ B(a, γ ))(γ ′(u) > δ).
This will not change if we add a generic element of  to the base, so we may assume
(dcl(∅)) �= (0). By Lemma 3.51, there exists a resolved structure with the same
RV-part as 〈∅〉; hence we may assume T is resolved. By Section 6 any VF-generated
structure is resolved. By Lemma 3.49, for anyM |= T and c ∈ VF(M), acl(c) is an
elementary submodel of M . Consider c with val(c) |= p0, where p0 is the generic
type at ∞ of elements of , i.e., p0|A = {x > δ : δ ∈ (A)}. Since

acl(c) |= (∀δ ∈ )(∃u ∈ B(a, γ ))(γ ′(u) > δ)
there exists e ∈ acl(c) with e ∈ B(a, γ ) and γ ′(e) > val(c). By Lemma 5.12,
there exists e0 ∈ acl(∅) such that (c, e) → (0, e0). In particular, e0 ∈ B(a, γ ).
But then since e → e0 and γ ′(e0) ∈ (acl(∅)), we have e ∈ B(e0, γ

′(e0)). Thus
γ ′(e) = γ ′(e0). But then γ ′(e0) > val(c), contradicting the choice of c. )�
Lemma 11.7.

(1) Let d : U ×→ Cdf be a definable distribution. Let γ ′ : U →  be a definable
function with γ ′(u) > γ, such that γ ′(u′) = γ ′(u) for u′ ∈ B(u, γ ′(u)). Then

d(b, γ ) =
∫
u∈B(b,γ )

vol(B(0, γ ′(u))−1d(u, γ ′(u)). (11.5)

(2) Let d1, dd2 be definable distributions on U such that for any x ∈ U , for all
large enough γ ∈ , for any y ∈ B(x, γ ) and any γ ′ > γ , d1(B(y, γ

′)) =
d2(B(y, γ

′)). Then d1 = d2.

Proof.

(1) To prove (11.5), fix b, γ . We may assume U = B(b, γ ). Using Lemma 11.6,
pick a constant γ ′′ with γ ′′ > γ ′(u) for all u ∈ B(b, γ ). Use the definition
of a distribution with respect to γ ′′ to compute both d(B(b, γ )) and for each u
d(u, γ ′(u)), and compare the integrals using Lemma 11.4.

(1) Define γ ′(u) to be the smallest γ ′ such that for all γ ′′ > γ ′ and all y ∈
B(u, γ ), d1(B(y, γ

′′)) = d2(B(y, γ
′′)). It is clear that γ ′(u′) = γ ′(u) for

u′ ∈ B(u, γ ′(u)). (11.5) gives the same integral formula for d1(b, γ ) and
d2(b, γ ). )�
Let d be a definable distribution, and U an arbitrary bounded open set. We can

define d(U) as follows. For any x ∈ U , let ρ(x,U) be the smallest ρ ∈  such that
B(x, ρ) ⊆ U . Let B(x,U) = B(x, ρ(x, U)); this is the largest open cube around x
contained in U . Note that two such cubes B(x,U), B(x′, U) are disjoint or equal.
Define
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d(U) =
∫
x∈U

vol(B(x, U))−1d(x, ρ(x, U)).

More generally, if h is a locally constant function on VFn into Rdf with bounded
support, we can define

d(h) =
∫
x∈VFn

h(x)[B(x, h)]−1d(x, ρ(x, U)), (11.6)

where now B(x, h) = B(x, ρ(x, U)) is the largest open cube around x on which h
is constant.

Proposition 11.8. Let d be a definable distribution. Then there exists a definable
open setG ⊆ VFn whose complementZ has dimension< n, and a definable function
g : G→ Cdf such that for any polydisc U ⊆ G

d(U) =
∫
U

g.

Proof. Since d is a finite sum of Rdf -valued distributions, we may assume it is Rdf -
valued. Given a ∈ VFn, we have a function αa :  → Rdf defined by αa(ρ) =
d(B(a, ρ)). Using the RV-description of R, and the stable embeddedness of RV∪,
we see that αa has a canonical code c(a) ∈ (RV ∪ )∗.

Let G be the union of all polydiscs W such that c is constant on W . Let Z =
VFn \G. By Lemma 5.13, dim(Z) < n.

Claim. Let W be a polydisc such that c is constant on W . Then for some r ∈ Rdf ,
for any polydisc U = B(a, ρ) ⊆ W , d(a, ρ) = rvol(U).

Proof. Since c is constant on W , for some function δ, all ρ and all b ∈ W with
B(w, ρ) ⊆ W , we have d(B(w, ρ)) = δ(ρ). By the definition of a distribution we
have, for any a ∈ W ,

δ(ρ)vol(B(a, ρ′))=
a

volB(a, ρ)δ(ρ ′).

Now vol(B(a, ρ))=
a

volB(0, ρ). Thus δ(ρ)vol(B(0, ρ′))=
a

volB(0, ρ)δ(ρ′). Since

this holds for any a ∈ W , by Proposition 3.51 we have

δ(ρ)vol(B(0, ρ′))) = volB(0, ρ)δ(ρ′).

Thus δ(ρ)/volB(0, ρ) = r is constant. The claim follows. )�

The proposition also follows using Lemma 11.7. )�
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11.2 Fourier transform

Let ψ be the tautological projection K → K/M = 	.
Let g : VFn → Cdf be a definable function, bounded on bounded subsets of VFn.

Define a function F(g) by

F(g)(U) =
∫
y∈VF

g(y)(

∫
x∈U

ψ(x · y)).

This makes sense since for a givenU , (
∫
x∈U ψ(x ·y)) vanishes for y outside a certain

polydisc (with sides inverse to U ). Moreover, we have the following.

Lemma 11.9. F(g) is a definable distribution.

Proof. This follows from Fubini, Lemma 11.4, and chasing the definitions. )�
Corollary 11.10. Fix integers n, d. For all local fields L of sufficiently large residue
characteristic, for any polynomial G ∈ L[X1, . . . , Xn] of degree ≤ d, there exists
a proper variety VG of Ln such that F(|G|) agrees with a locally constant function
outside VG.

Proof. The proof follows from Lemmas 11.9 and 11.8. )�
See [4] for the real case.

12 Expansions and rational points over Henselian fields

We have worked everywhere with the geometry of algebraically closed valued fields,
or more generally of T, but at a geometric level; all objects and morphisms can be
lifted to the algebraic closure, and the quantifiers are interpreted there.

For many purposes, we believe this is the right framework. It includes, for
instance, Igusa integrals

∫
x∈X(F) |f (x)|s , and we will show in a future work how to

interpret in it some constructions of representation theory. See also [21].
In other situations, however, one wishes to integrate definable sets over Henselian

fields rather than only constructible sets; and to have a change of variable formula for
definable maps, as obtained by Denef–Loeser and Cluckers-Loeser (cf. [7]). It turns
out that our formalism lends itself immediately to this generalization; we explain in
this section how to recover it. The point is that an arbitrary definable set is an RV-
union of constructible ones, and the integration theory commutes with RV-unions.

We will consider F that admits quantifier elimination in a language L+ ob-
tained from the language of T by adding relations to RV only. For example, if
F = Th(C((X))), F has quantifier elimination in a language expanded with names
Dn for subgroups of  (with Dn(F) = n(F )).

There are two steps in moving from F alg to F . We will try to clarify the situation
by taking them one at a time. The two steps are to restrict the points to a smaller set
(the F -rational points), and they enlarge the language to a larger one (with enough
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relation symbols for F -quantifier elimination). We will take these steps in the reverse
order. In Section 12.1 we show how to extend the results of this paper to expansions
of the language in the RV sorts, and in Section 12.3 how to pass to sets of rational
points over a Hensel field.

The reader who wishes to restrict attention to constructible integrals (still taking
rational points) may skip Section 12.1, taking T+ = T in Section 12.3. In this case one
still has a change of variable formula for a constructible change of variable, but not for
a definable change of variable. An advantage is that the target ring correspondingly
involves the Grothendieck group of constructible sets and maps rather than definable
ones, which sometimes has more faithful information; cf. Example 12.12.

12.1 Expansions of the RV sort

Let T be V-minimal.
Let T+ be an expansion of T obtained by adding relations to RV. We assume that

every M |= T embeds into the restriction to the language of T of some N |= T+.
(As T is complete, this is actually automatic.) By adding some more basic relations,
without changing the class of definable relations, we may assume T+ eliminates RV-
quantifiers. As T eliminates field quantifiers, and T+ has no new atomic formulas
with VF variables, T+ eliminates VF-quantifiers, too, and hence all quantifiers.

For instance, T+ may include a name for a subfield of the residue field (say,
pseudofinite) or the angular coefficients the Denef–Pas language (where RV is split).
Write +-definable for T+-definable; similarly, tp+ will denote the type in T+, etc.
The unqualified words formula, type, and definable closure will refer to quantifier-free
formulas of T.

Lemma 12.1. LetM |= T+. Let A be a substructure ofM , c ∈ M , B = A(c)∩RV.

(1) tp(c/A ∪ B) ∪ T+A∪B implies tp+(c/A ∪ B).
(2) Assume c is T+A-definable. Then c ∈ dcl(A, b) for some b ∈ A(c) ∩ RV.

Proof.

(1) This follows immediately from the quantifier elimination for T+. Indeed, let
φ(x) ∈ tp+(c/A ∪ B). Then φ is a Boolean combination of atomic formulas,
and it is sufficient to consider the case of φ atomic, or the negation of an atomic
formula. Now since any basic function VFn → VF is already in the language of
T, every basic function of the language of T+ denoting a function VFn → RV
factors through a T-definable function into RV. Hence the same is true for all
terms (compositions of basic functions). And any basic relation is either the
equality relation on VF, or else a relation between variables of RV. If φ is
an equality or inequality between f (x), g(x), it is already in tp(c/A). Now
suppose φ is a relation R(f1(x), . . . , fn(x)) between elements of RV. Since
B(c) ∩ RV ⊆ B, the formula fi(x) = bi lies in tp(c/A ∪ B) for some bi ∈ B.
On the other hand, R(b1, . . . , bn) is part of T+B . These formulas together imply
R(f1(x), . . . , fn(x)).
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(2) We must show that c ∈ dcl(A ∪ B). Let p = tp(c/A ∪ B). By (1), p generates
a complete type of T+A∪B . Since this is the type of c and c is T+A-definable,
and since any model of T embeds into a model of T+, p has a unique solution
solution in any model of T. Thus c ∈ dcl(A ∪ B). )�
We will now see that any T+-definable bijection decomposes into T-bijections,

and bijections of the form x �→ (x, j (g(x))) where g is a T-definable map into RVm

and j is a T+-definable map on RV.

Corollary 12.2.

(1) Let P be a T+-definable set. There exist T-definable f : P̃ → RV∗ and a
T+-definableQ ⊆ RV∗ such that P = f−1Q.

(2) LetP1, P2 be T+-definable sets, and letF : P1 → P2 be a T+-definable bijection.
Then there exist gi : P̃i → Ri ⊆ RVm, R ⊆ RVm, hi : R → Ri , and a bijection
H : P̃1 ×g1,h1 R → P̃2 ×g2,h2 R over R, all T-definable, and T+-definable
Qi ⊆ Ri , Q ⊆ R, and ji : Qi → Q such that Pi = gi−1Qi , hiji = IdQi , and
for x ∈ P1,

j1g1(x) = j2g2(F (x)) =: j (x) and H(x, j (x)) = (F (x), j (x)). (2)

Moreover, if Pi ⊆ VFn × RVm projects finite-to-one to VFn, then R → Ri is
finite-to-one.

Proof.
(1) Let F be the family of all T-definable functions f : W → RVm, where W is

a definable set.

Claim. If tp(c) = tp(d) and f (c) = f (d) for all f ∈ F with c, d ∈ dom(f ), then
c ∈ P ⇐⇒ d ∈ P .

Proof. We have tp(c, f (c)) = tp(d, f (d)) = tp(d, f (c)), so tp(c/f (c)) = tp(d/f (c))
for all f ∈ F with c ∈ dom(f ), and thus tp(c/B) = tp(d/B), whereB = A(c)∩RV.
It follows that tp+(c) = tp+(d) and, in particular, c ∈ P ⇐⇒ d ∈ P . )�

By compactness, there are (fi,Wi)mi=1 ∈ F such that if c ∈ Wi ⇐⇒ d ∈ Wi and
fi(c) = fi(d) whenever c, d ∈ Wi , then c ∈ P ⇐⇒ d ∈ P . Let P̃ = ∪iWi , and
extend fi to P̃ by fi(x) = ∞ if x /∈ Wi . Let f (x) = (f1(x), . . . , fm(x)). Letting
P̃ = ∪iWi andQ = f (P ), (1) follows.

(2) Consider first a T+-type p = tp+(c1), c1 ∈ P1. Let c2 = F(c1). Using
Lemma 3.48, there exists gpi ∈ F such that ei = g

p
i (ci) generates dcl(ci) ∩ RV.

It follows as in Lemma 12.1(1) that ei generates dcl+(ci) ∩ RV. Let e gener-
ate dcl(c1, c2) ∩ RV; we have ei = h

p
i (e) for appropriate T-definable hpi . Note

dcl+(c1) = dcl+(c2), and so e ∈ dcl+(ci). Now quantifier elimination for T+
implies the stable embeddedness of RV, in the same way as for ACVF (cf. Sec-
tion 2.1). By Lemma 2.9 tp+(ci/ei) implies tp+(ci/RV); in particular, since
e ∈ dcl+(ci) e = jpi (ei) for some T+-definable jpi . By Lemma 12.1(2) over dcl(c1),
c2 ∈ dcl(c1, e); similarly, c1 ∈ dcl(c2, e). Thus there exists a T-definable invertible
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Hp with Hp(c1, e) = (c2, e). Equations (2) have been shown to hold on p. Now gi
extends to a T-definable function gi : P̃i → Ri . By compactness (2) holds on some
definable neighborhood of p; and by (1) this neighborhood can be taken to have the
form g1

−1Q1 for some Q1. Finitely many such neighborhoods cover P1, and the
data can be sewed together as in (1). We thus find P̃1, R, R1, R2, g1, g2, h1, h2, H ,
Q1, j1, j2 such that hiji(x) = x and (2) holds on g1

−1Q1 = P1. LetQ2 = h2j1Q1;
it follows that P2 = F(P1) = g2

−1Q2.
To prove the last point, since c2 ∈ dcl(c1, e)we have (Lemma 3.41) c2 ∈ acl(c1).

But e ∈ dcl(c1, c2) so e ∈ acl(dcl(c1)); and as e ∈ RVm for somem, e ∈ acl(dcl(e1)).

Let VF+ be the category of +-definable subsets of varieties over VF ∩ dcl(∅),
and +-definable maps. Define effective isomorphism as in Definition 8.2; let K+eff

denote the Grothendieck group of effective isomorphism classes, and let [X] be the
class of X.

Let RV+[∗] be the category of pairs (Y, f ), where Y is a+-definable subset ofX
for some (X, f ) ∈ Ob RV[∗] (Definition 3.66). A morphism (Y, f )→ (Y ′, f ′) is a
definable bijection h : Y → Y ′ such that f ′(h(y)) ∈ acl(f (y)) for y ∈ Y .

LetK+(RV+[∗]) be the Grothendieck semigroup of isomrphism classes of RV+;
let Isp be the congruence generated by (J, 11), where J = {1}0 + [RV>0]1.

Proposition 12.3. There exists a canonical surjective homomorphism of Grothen-
dieck semigroups

D

∫
: K+(VF+[∗])→ K+(RV+[∗])/Isp

determined by

D

∫
[X] = [W ]/Isp ⇐⇒ [X] = [LW ].

Proof. We have to show the following:

(i) Any element of K+(VF+) is effectively isomorphic to one of the form [LW ].
(ii) If [LW1] = [LW2] then ([W1], [W2]) ∈ Isp.

(i) By Corollary 12.2(1), a typical element of K+(VF+) is represented by P =
f−1Q, where Q ⊆ RV∗is T+-definable, f : P̃ → RV∗ is T-definable. For any
a ∈ RV∗, f−1(a) is Ta-definable, and [f−1(a)] = [LCa]where [Ca] = [∫ f−1(a)].
Since L commutes with RV-disjoint unions, it follows that [P ] = [LW ] where
W = .∪a∈Q Ca .

(ii) Assume [LW1] = [LW2]. By Proposition 3.51, the base can be enlarged so as
to be made effective, without change to RV; thus to show that ([W1], [W2]) ∈ Isp we
may assume LW1,LW2 are isomorphic. Let f : LW1 → LW2 be an isomorphism.
Let Pi = LWi and let P̃i , Ri , gi , hi , R, H ,Q,Qi , ji be as in Corollary 12.2(2).

Since Pi = gi−1Qi = LWi , the maximal ∼
rv

-invariant subset of P̃i contains Pi ,

so we may assume P̃i is∼
rv

-invariant; in other words, P̃i = LW̃i for some T-definable

W̃i ∈ RV[∗, ·] containingWi .
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By Lemma 7.8, there exists a special bijection σ : LW̃ ∗
i → LW̃i such that

gi ◦ σ factors through ρ, i.e., for some ei : W̃ ∗
i → Ri we have gi ◦ σ = ei ◦ ρ on

LW̃i . Let Wi∗ be the pullback of Wi to W̃ ∗
i , so that σ(LW ∗

i ) = LWi = Pi . Then
([Wi], [Wi∗]) ∈ Isp, so it suffices to show that (W ∗

1 ,W
∗
2 ) ∈ Isp. Since Pi = gi−1Qi ,

we haveW ∗
i = ei−1Qi .

For c ∈ R, let P̃i(c) = σ−1gi
−1(hi(c)), W̃i(c) = ei

−1(hi(c)). Then P̃i(c) =
LW̃i(c). Now H induces a bijection P̃1(c) → P̃2(c). Thus by Proposition 7.25,
(W̃1(c), W̃2(c)) ∈ Isp. In particular, this is true for c ∈ Q; now hi : Q → Qi is a

bijection, andW ∗
i =

.∪c∈Q W̃i(c). Thus ([W ∗
1 ], [W ∗

2 ]) ∈ Isp. )�
Remark. Since the structure on RV in T+ is arbitrary, we cannot expect the homo-
morphism of Corollary 12.3 to be injective. We could make it so tautologically by
modifying the category RV+, taking only liftable morphisms, i.e., those that lift to
VF; we then obtain an isomorphism. In specific cases it may be possible to check
that all morphisms are liftable.

12.2 Transitivity

Motivation. Consider a tower of valued fields, such as C ≤ C((s)) ≤ C((s))((t)).
Given a definable set over C((s))((t)), we can integrate with respect to the t-valuation,
obtaining data over C((s)) and the value group. The C((s)) can then be integrated
with respect to the s-valuation. On the other hand, we can consider directly the Z2-
valued valuation of C((s))((t)), and integrate so as to obtain an answer involving
the Grothendieck group of varieties over C. Below we develop the language for
comparing these answers, and show that they coincide.

For simplicity we accept here a Denef–Pas splitting, i.e., we expand RV so as to
split the sequence k∗ → RV∗ → . Then rv splits into two maps, ac : VF∗ → k∗
and val : VF∗ → . This expansion of ACVF(0, 0) is denoted ACVFDP. Note that
this falls under the framework of Section 12.1, as will the further expansions below.

Consider two expansions of ACVFDP: (1) Expand the residue field to have the
structure of a valued field (itself a model of ACVFDP). (2) Expand the value group to
be a lexicographically ordered product of two ordered Abelian groups. Then (1)–(2)
yield bi-interpretable theories. In more detail, we have the following:

First expansion. Rename the VF sort as VF21, the residue field as VF1, and the
value group 1. VF1 carries a field structure; expand it to a model of ACVFDP, with
residue field F0 and value group 0. Let ac21, val21 have their natural meanings.

Second expansion. Rename the VF-sort as VF20, the residue field as F0 and
the value group as 20. Add a predicate 0 for a proper convex subgroup of 20,
and a predicate 1 for a complementary subgroup, so that 20 is identified with the
lexicographically ordered 0 × 1.

Lemma 12.4. The two theories described above are bi-interpretable. A model of (1)
can canonically be made into a model of (2)with the same class of definable relations,
and vice versa.
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Proof. Given (1), let VF20 = VF21 as fields. Define

ac20 = ac10 ◦ ac21 . (12.1)

Let 20 = 1 × 0, and define val20 : VF∗21 → 20 by

val20(x) = (val21(x), val10(ac21(x))). (12.2)

Conversely, given (2), let VF21 = VF20 as fields;

O21 = {x ∈ VF21 : (∃t ∈ 0)(val20(x) ≥ t)},
M21 = {x ∈ VF21 : (∀t ∈ 0)(val20(x) > t)},
VF1 = O21/M21.

Let VF21 have the valued field structure with residue field VF1; note that the value
group VF∗21/O

∗
21 can be identified with 1. Note that ker ac20 ⊃ 1 + M21, so that

factors through VF∗1, and define ac10, ac21 so as to make (12.1) hold. Then define
val21, val10 so that (12.2) holds. )�

Let VF+[∗] denote the category of definable subsets of VF21, equivalently, VF20,
in the expansions (1) or (2). According to Proposition 12.3 and Lemma 2.11,
we have canonical maps K+(VF+[∗]) → K+(RV+

1 [∗])/Isp and K+(VF+[∗]) →
K+(RV+

2 [∗])/Isp, where RV+
i [∗] denotes the expansion of RV according to (1)–(2),

respectively.
By Proposition 8.4 we have canonical maps

K+(VF+[∗])→ K+(VF1[∗])⊗K+(21[∗])/Isp

→ (K+(F0)⊗K+(10))⊗K+(21)/Isp1

(12.3)

for a certain congruence Isp1. And, on the other hand,

K+(VF+[∗])→ K+(F0[∗])⊗K+(20[∗])/Isp

= K+(F0[∗])⊗ (K+(10[∗])⊗K+(21[∗]))/Isp2.
(12.4)

For an appropriate Isp2. The tensor products here are over Z, in each dimension
separately.

Using transitivity of the tensor product we identify (K+(F0) ⊗ K+(10)) ⊗
K+(21) with K+(F0[∗])⊗ (K+(10[∗])⊗K+(21[∗])). Then

Theorem 12.5. Isp1, Isp2 are equal and the maps of (12.3),(12.4) coincide.

Proof. It suffices to show in the opposite direction that the compositions of maps
induced by L

(K+(F0[∗])⊗K+(10[∗])⊗K+(21[∗])→ K+(VF1[∗])⊗K+(21[∗])
→ K+(VF+[∗]), (12.5)

K+(F0[∗])⊗K+(10[∗])⊗K+(21[∗])→ K+(F0[∗])⊗K+(20[∗])
→ K+(VF+[∗]) (12.6)

coincide. But this reduces by RV-additivity to the case of points, and by multplica-
tivity to the individual factors F0, 21, 10, yielding to an obvious computation in
each case. )�



Integration in valued fields 395

12.3 Rational points over a Henselian subfield: Constructible sets and
morphisms

Let T be V-minimal, and T+ an expansion of T in the RV sorts.
Let F be an effective substructure of a model of T. Thus F = (FVF, FRV), with

FVF a field, and rv(FVF) = FRV; and F is closed under definable functions of T. For
example, if T = T+ = ACVF(0, 0), this is the case iff FVF is a Henselian field and
FRV = F/M(F ); any Hensel field of residue characteristic 0 can be viewed in this
way. See Example 12.8.

By a +-constructible subset of Fn, we mean a set of the form X(F) = X ∩ Fn,
withX a quantifier-free formula of T+. Let VF+(F ) be the category of such sets, and
+-constructible functions between them. The Grothendieck semiringK+ VF+(F ) is
thus the quotient of K+ VF by the semiring congruence

IF = {([X], [Y ]) : X, Y ∈ Ob VF+, X(F ) = Y (F )}.
(One can verify this is an ideal; in fact, if X(F) = Y (F ) and X ' X′, then there
exists Y ′ ' Y with X′(F ) = Y ′(F ).)

Similarly, we can define IRVF and form K+ RV(F ) ' K+(RV)/IRVF . As usual,
let Isp denote the congruence generated by ([1]0 + [RV>0]1, [1]1), and IRVF + Isp
their sum.

Claim. If ([X], [X′]) ∈ IF then (D
∫ [X], D

∫ [X′]) ∈ IRVF + Isp.

Proof. We may assume, changing X within the VF-isomorphism class [X], that
X(F) = X′(F ). Then X(F) = (X ∪ X′)(F ) = X′(F ), and it suffices to show
that (D

∫ [X], D
∫ [X ∪ X′]), (D∫ [X′], D

∫ [X ∪ X′]) ∈ IRVF . Thus we may assume X ⊆ X′.
Let Z = X′ \ X. Then Z(F) = ∅, and it suffices to show that (D

∫
(Z),∅) ∈ IRVF .

Now D
∫
(Z) = [Y ] for some Y with Z definably isomorphic to LY . Thus LY (F ) = ∅;

hence Y (F ) = ∅. Thus ([Y ],∅) ∈ IRVF , as required. )�
As an immediate consequence, we have the following.

Proposition 12.6. Assume F ≤ M |= T, with F closed under definable functions of
T. The homomorphism D

∫
of Theorem 8.8 induces a homomorphism∫

F

: K+ VF+(F )→ K+ RV+(F )/Isp. )�

12.4 Quantifier elimination for Hensel fields

Let T be a V-minimal theory in a language LT, with sorts (VF,RV) (cf. Section 2.1).
Assume T admits quantifier elimination and, moreover, that any definable function is
given by a basic function symbol. This can be achieved by an expansion-by-definition
of the language.

Let Th = (T)∀ ∪ {(∀y ∈ RV)(∃x ∈ VF)(rv(x) = y)}.
A model of Th is thus the same as a substructure A of a model of T, such that

RV(A) = rv(VF(A)).
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Lemma 12.7. Any formula of LT is T-equivalent to a Boolean combination of for-
mulas in VF-variables alone, and formula ψ(t (x), u) where t is a sequence of terms
for functions VFn → RV, u is a sequence of RV-variables, and ψ is a formula of RV
variables only.

Proof. This follows from stable embeddedness of RV, Corollary 3.24, Lemma 2.8
and the fact (Lemma 7.10) that definable functions into  factor through definable
functions into RV. )�
Example 12.8. If T = ACVF(0, 0), then Th is an expansion-by-definition of the
theory of Hensel fields of residue characteristic zero.

Proof. We must show that a Henselian valued field is definably closed in its algebraic
closure, in the two sorts VF, RV.

Let K |= THensel , K ≤ M |= ACVF. Let X ⊆ VFk ×RVl , Y ⊆ VFk
′ ×RVl

′
be

ACVFK -definable sets, and F : X→ Y an ACVFK -definable bijection. We have to
show that F(X ∩Kk × RV(K)l) = Y ∩Kk′ × RV(K)l

′
.

Kalg is an elementary submodel ofM; we may assumeKalg = M . By one of the
characterizations of Henselianity, the valuation onK extends uniquely toKalg. Hence
every field automorphism of M over K is a valued field automorphism. Thus K is
the fixed field of Aut(M/K) (in the sense of valued fields), and hence K = dcl(K).
Since ACVFK is effective, any definable point of RV lifts to a definable point of VF;
so dcl(K) ∩ RV = RVK . Thus K is definably closed inM in both sorts. )�

Let L ⊃ LT; assume L \ LT consists of relations and functions on RV only. If
A ≤ M |= T, letLT(A) be the languages enriched with constants for each element of
A; let Th(A) = TA ∪Th, where TA is the set of quantifier-free valued field formulas
true of A.

Proposition 12.9. Th admits elimination of field quantifiers.

Proof. LetA be as above. Let�A be the set ofL(A)-formulas with no VF-quantifiers.

Claim. Let φ(x, y) ∈ �A with x a free VF-variable. Then (∃x)φ(x, y) is Th(A)-
equivalent to a formula in �A.

Proof. By the usual methods of compactness and absorbing the y-variables into A,
it suffices to prove this when x is the only variable. Assume first that φ(x) is an
LT(A)-formula. By Lemma 4.2, there exists an ACVF-definable bijection between
the definable set defined by φ(x), and a definable set of the form Lφ′(x′, u), where
φ′ is an LT(A)-formula in RV-variables only (including a distinguished variable x′
on which L acts.) By the definition of Th, in any model of Th, φ has a solution iff
Lφ′(x′, u) has a solution. But clearly Lφ′(x′, u) has a solution iff φ′(x′, u) does.
Thus Th(A) |= (∃x)φ(x) ⇐⇒ (∃x′, u)φ′(x′, u).

Now let φ(x) be an arbitrary �A formula. Let ! be the set of formulas of L(A)
involving RV-variables only. Let' be the set of conjunctions of formulas of LT(A)

in VF-variables only, and of formulas of the form ψ(t (x)), where ψ ∈ ! and t
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is a term of LT(A). The set of disjunctions of formulas in ' is then closed under
Boolean combinations, and under existential RV-quantification. By Lemma 12.7 it
includes all LT-formulas, up to equivalence; and also all formulas in RV-variables
only. Thus φ(x) is a disjunction of formulas in ', and we may assume φ(x) ∈ '.
Say φ = φ0(x) ∧ ψ(t (x)), with φ0 ∈ LT(A) and ψ ∈ !. By the claim, for some
formula ρ(y) of �A, we have Th(A) |= ρ(y) ⇐⇒ (∃x)(t (x) = y&φ0(x)). Hence
(∃x)φ(x) ⇐⇒ (∃y)(ψ(y)&ρ(y)). )�

Quantifier elimination now follows by induction. )�
Remark. Since only field quantifiers are mentioned, this immediately extends to ex-
pansions in the field sort.

In particular, one can split the sequence 0 → k∗ → RV → → 0 if one wishes.
This yields the quantifier elimination [30] in the Denef–Pas language.

The results of Ax-Kochen and Ershov, and the large literature that developed
around them, appeared to require methods of “quasi-convergent sequences.’’ It is
thus curious that they can also be obtained directly from Robinson’s earlier and
purely “algebraic’’ quantifier elimination for ACVF. Note that in the case of ACVF,
there is no need to expand the language to obtain QE; and then Lemma 12.7 requires
no proof beyond inspection of the language.

12.5 Rational points: Definable sets and morphisms

In this subsection we will work with completions T of Th ∪ {(∃x ∈ )(x > 0)}.
These are theories of valued fields of residue characteristic 0, possibly expanded, not
necessarily algebraically closed. The language of T is thus the language of T+. The
words formula, type, definable closure will refer to quantifier-free formulas of T+.
Definable closure, types with respect to T are referred to explicitly as dclT , T tp, etc.

LetF |= T . SinceF |= T∀,F embeds into a modelM ′ of T+. Since(F) �= (0),
by Proposition 3.51 and Lemma 3.49, there exists F ′ ⊆ M ′ containing F , with
(F ′) = (F), andM = acl(F ′) an elementary submodel ofM ′. Hence F embeds
into a modelM of T+ with (F) cofinal in (M).

Lemma 12.10. Let F |= T , F ≤ M |= T+, (F) cofinal in (M). Let A be a
substructure ofM , c ∈ F , B = A(c) ∩ RV ∩ F ,

(1) tp(c/B) ∪ TB implies T tp(c/B).
(2) Assume c is TA-definable. Then c ∈ dcl(A, b) for some b ∈ B.

Proof.

(1) This follows immediately from the quantifier elimination for T and from Lem-
ma 12.1(1).

(2) We have B ⊆ dclT (A) ∩ RV. We must show that c ∈ dcl(A ∪ B). Let p =
tp(c/A∪B). By (1), p generates a complete type of TA∪B . Since this is the type
of c and c is TA-definable, some formula P in the language of TA∪B with P ∈ p
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has a unique solution in F . Now the values of F are cofinal in the value group
of Fa ; so P cannot contain any ball around c. (Any such ball would have an
additional point of F , obtained by adding to c some element of large valuation.)
Let P ′ be the set of isolated elements of P ; then P ′ is finite (as is the case for
every definable P ), TA-definable, and c ∈ P ′. By Lemma 3.9, there exists an
TA-definable bijection f : P ′ → QwithQ ⊆ RVn. Then f (c) ∈ dclT (A) = B,
and c = f−1(f (c)) ∈ dcl(A ∪ B). )�

Corollary 12.11. Two definably isomorphic definable subsets of F have the same
class in K+ VF+(F ).

Proof. T -definable bijections are restrictions of T+-definable bijections. Hence Cor-
ollary 12.2 is true with T replacing T+. )�

Thus Proposition 12.6 includes a change-of-variable formalism for definable bi-
jections.

12.6 Some specializations

Tim Mellor’s Euler characteristic

Consider the theory RCVF of real closed valued fields. Let RVRCVF, RESRCVF,
VALRCVF denote the categories of definable sets and maps that lift to bijections of
RCVF (on RV and on the residue field, value group, respectively; we do not need
to use the sorts of RES other than the residue field here, say, all structures A of
interest have A divisible). From Proposition 12.6 and Corollary 12.11, we obtain
an isomorphism: K(RCVF)→ K(RVRCVF)/([0]1 − [RV>0]1 − [0]0).

The residue field is a model of the theory RCF of real closed fields; K(RCF) =
Z via the Euler characteristic (cf. [37]). Since the ambient dimension grading is
respected here, K(RESRCVF) = Z[t].

The value group is a model of DOAG, and moreover, any definable bijection on
[n] for fixed n lifts to RV and, indeed, to RCVF. This is because the multiplicative
group of positive elements is uniquely divisible, and so SLn(Q) acts on the nth
power of this group. By Proposition 9.4, K(DOAG)[n] = Z2 for each n ≥ 1, and
K(VALRCVF) = Z[s](2) := {(f, g) ∈ Z[s] : f (0) = g(0)}.

Thus K(RVRCVF) = Z[t] ⊗ Z[s](2) ≤ Z[t, s]2; and J is identified with the class
(1, 1)−(0,−s)−(t, t). Thus we obtain two homomorphismsK(RVRCVF)/J → Z[s]
(one mapping t �→ 1, the other with t �→ 1− s; and as a pair they are injective).

Equivalently, we have found two ring homomorphisms χ, χ ′ : K(RCVF) →
Z[t]. One of these was found in [27].

Cluckers–Haskell

Take the theory of the p-adics. By Proposition 12.6 and Corollary 12.11 we obtain
an isomorphism: K(pCF)→ K(RVpCF)/Isp. However, RVpCF is a finite extension
of Z, and evidently K(Z) = 0, since [[0,∞)] = [[1,∞)]. Thus K(pCF) = 0.
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12.7 Higher-dimensional local fields

We have seen that the Grothendieck group of definable sets with volume forms loses
a great deal of information compared to the semigroup. Over fields with discrete
value groups, restricting to bounded sets is helpful; in this way the Grothendieck
group retains information about volumes. In the case of higher-dimensional local
fields, with value group A = Zn, simple boundedness is insufficient to save it from
collapse. We show that using a simple-minded notion of boundedness is only partly
helpful, and loses much of the volume information (all but one Z factor).

Example 12.12. LetKµbdd(Th(C((s1))((s2)))[n]) be the Grothendieck ring of defin-
able bounded sets and measure-preserving maps in C((s1))((s2)) (with val(s1) �
val(s2)). Let Qt denote the class of the thin annulus of radius t . In particular, Q0 is
the volume of the units of the valuation ring. Then in Kµbdd(Th(C((s1))((s2)))[2]),
we have, for example, (Q0)2 = 0. To see this directly, let

Y = {(x, y) : val(x) = 0, val(y) = 0},
X = {(x, y) : 0 < 2 val(x) < val(s2), val(x)+ val(y) = 0}.

Then X is bounded. Let f (x, y) = (x/s1, s1y). Then f is a measure-preserving
bijection X→ X′ = {(x, y) : 0 < 2(val(x)+ val(s1)) < val(s2), val(x)+ val(y) =
0}. But in C((s1))((s2)), 2 val(x) < val(s2) iff 2(val(x) + val(s1)) < val(s2), so
X′(C((s1))((s2))) = X(C((s1))((s2)) ∪ Y (C((s1))((s2))).
Remark 12.13. (2[[0, y/2]]−[[0, y]])(2[[0, y/2)]−[[0, y)]), is a class of the Grothen-
dieck group of  that vanishes identically in the Z-evaluation, but not in the Z2-
evaluation.

13 The Grothendieck group of algebraic varieties

Let X, Y be smooth nonsingular curves in P3, or in some other smooth projective
variety Z, and assume Z \ X, Z \ Y are biregularly isomorphic. Say X, Y , Z are
defined over Q. Then for almost allp, |X(Fp)| = |Y (Fp)|, as one may see by counting
points of Z, Z \ X and subtracting. It follows from Weil’s Riemann hypothesis for
curves that X, Y have the same genus, from Faltings that X, Y are isomorphic if the
genus is 2 or more, and from Tate that X, Y are isogenous if the genus is one. It
was this observation that led Kontsevich and Gromov to ask ifX, Y must actually be
isomorphic. We show that this is the case below.2

Theorem 13.1. LetX, Y be two smooth d-dimensional subvarieties of a smooth pro-
jective n-dimensional varietyV , and assumeV \X,V \Y are biregularly isomorphic.
ThenX, Y are stably birational, i.e.,X×An−d , Y×An−d are birationally equivalent.
If X, Y contain no rational curves, then X, Y are birationally equivalent.

2 This already follows from [22], who use different methods.
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While we do not obtain a complete characterization in dimensions> 1, the results
and method of proof do show that the answer lies in synthetic geometry and is not
cohomological in nature.

Let VarK be the category of algebraic varieties over a field K of characteristic 0.
Let [X] denote the class of a varietyX in the Grothendieck semigroupK+(VarK).

We allow varieties to be disconnected. As all varieties will be over the same fieldK ,
we will write Var for VarK . LetK+ Varn be the Grothendieck semigroup of varieties
of dimension ≤ n.

For the proof, we viewK as a trivially valued subfield of a model of ACVF(0, 0).
We work with the theory ACVFK , so that “definable’’ means K-definable with
quantifier-free ACVF-formulas.

Note that RES = k∗ in ACVFK ; the only definable point of  is 0, so the only
definable coset of k∗ is k∗ itself.

The residue map is an isomorphism on K onto a subfield KRES of the residue
field k. In particular, any smooth variety V over K lifts canonically to a smooth
scheme VO = V ⊗K O over O, with generic fiber VVF = VO⊗O VF and special fiber
VO⊗O k = V ⊗K k. We have a reduction homomorphism ρV : V (O)→ V (k). We
will write V (O), V (VF) for VO(O), VVF(VF).

Given k ≤ n and a definable subset X of RV∗ of dimension ≤ k, let [X]k be the
class of X in K+ RV[k] ⊆ K+ RV[≤ n]. Thus if dim(X) = d we have n − d + 1
classes [X]k , d ≤ k ≤ n, in different direct factors of K+ RV[≤ n]. We also use
[X]k to denote the image of this class in K+ RV[≤ n]/Isp. This abuse of notation
is not excessive since for n ≤ N , K+ RV[≤ n]/Isp embeds in K+ RV[≤ N ]/Isp
(Lemma 8.7).

Let SDd be the image of K+ RV[≤ d] in K+ RV[≤ N ]/Isp. Let WDnd be the
subsemigroup of RV[n] generated by {[X] : dim(X) ≤ d}, and use the same letter
to denote the image in RV[≤ N ]/Isp. Let FDn = SDn−1 +WDnn−1. We write a ∼
b(FDnd) for (∃u, v ∈ FDnd)(a + u = b + v). More generally, for any subsemigroup
S′ of a semigroup S, write a ∼ b(S′) for (∃u, v ∈ S)(a + u = b + v).

We write K(RV[≤ n])/Isp for the groupification of K+(RV[≤ n])/Isp.

Lemma 13.2. Let V be a smooth projective k-variety of dimension n, X a definable
subset of V (k). Then

D

∫
[ρV −1(X)] = [X]n.

Proof. Let X = (X, f ) where f : X → RVn is a finite-to-one map. We have to
show that [LX] = [ρV −1(X)] in K+(VF[n]), i.e., that LX, ρV −1(X) are definably
isomorphic. By Lemma 2.3 this reduces to the case thatX is a point p. Find an open
affine neighborhood U of V such that ρV −1(p) ⊆ U(O), and U admits an étale map
g : V → An over k. Now U(O) ' On ×res,g U(k). This reduces the lemma to the
case of affine space, where it follows from the definition of L. )�
Lemma 13.3. Let X be a K-variety of dimension ≤ d.

(1) D
∫
(X(VF)) ∈ SDd = K+(RV[≤ d])/Isp.

(2) If X is a smooth complete variety of dimension d, then D
∫
X(VF) = [X]d .
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(3) If X is a variety of dimension d , then D
∫
X(VF) ∼ [X]d(FDd).

Proof.

(1) This is obvious, since dim(X(VF)) ≤ d .
(2) By Grothendieck’s valuative criterion for properness, X(VF) = X(O). We thus

have a map ρV : X(VF) = X(O) → X(k). For α ∈ X(k), let Xα(VF) =
ρV

−1(α). Since X is smooth of dimension d it is covered by Zariski open
neighborhoods U admitting an étale map fU : U → Ad , defined over K; let S

be a finite family of such pairs (U, fU ), with ∪(U,fU )∈SU = X. We may choose
a definable finite-to-one f : X→ Ad , defined over K , such that for any x ∈ X,
for some pair (U, fU ) ∈ S, f (x) = fU(x). We have L([X]d) = L(X, f ) =
VFd ×rv,f X(k). We have to show that L(X, f ) is definably isomorphic to
X(VF). By Lemma 2.3 it suffices to show that for each α ∈ X(k), VFd ×rv,f {a}
is α-definably isomorphic to Xα(VF). Now VFd ×rv,f {a}=

α
rv −1(f (α)). We

have f (α) = fU(α) for some (U, f ) ∈ S with α ∈ U . Since fU is étale, it
induces a bijective map Uα(VF) → rv −1(f (α)). But Xα(VF) = Uα(VF), so
the required isomorphism is proved.

(3) If X, Y are birationally equivalent, then [X]d ∼ [Y ]d(WDd<d), while X(VF),
Y (VF) differ by VF-definable sets of dimension < d, so

D

∫
(X(VF)) ∼ D

∫
(Y (VF))(SDd).

Using the resolution of singularities in the following form: every variety is bira-
tionally equivalent to a smooth nonsingular one; we are done by (2). With a more
complicated induction we should be able to dispense with this use of Hironaka’s
theorem. )�

Lemma 13.4. Let V be a smooth projectiveK-variety, X, Y closed subvarieties, Let
F : V \ X → V \ Y a biregular isomorphism. Let VO, VVF, Vk , FVF, etc., be the
objects obtained by base change. Then FVF induces a bijection V (VF) \X(VF)→
V (VF) \ Y (VF), and

FVF(ρV
−1(X) \X(VF)) = ρV −1(Y ) \ Y (VF).

Proof. The first statement follows from the Lefschetz principle since VF is alge-
braically closed.

Since V is projective, V (VF) = V (O), and one can define for v ∈ V the valuative
distance d(v,X), namely, the greatest α ∈  such that the image of x in V (O/α) lies
in X(O/α).

Let F be the Zariski closure in V 2 of the graph of F . Then F∩ (V \X)× (V \Y )
is the graph of F . In fact, in any algebraically closed field L, we have

if a ∈ V (L) \X(L) and (a, b) ∈ F(L), then b ∈ V (L) \ Y (L), (13.1)

and conversely.
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Suppose for the sake of contradiction that in some M |= ACVFK there exist
a ∈ ρV −1(X), b /∈ ρV −1(Y ), (a, b) ∈ F. Thus d(a,X) = α > 0, d(b, Y ) = 0. Let

C = {γ ∈  : (∀n ∈ N)nγ < α}.
We may assume by compactness that C(M) �= ∅. Let

I = {y ∈ O(M) : val(y) /∈ C}
so that I is a prime ideal of O(M). Let L be the field of fractions of O(M)/I . Let
ā, b̄ be the images of a, b in L. Then (ā, b̄) ∈ F̄ , and ā ∈ X, b̄ /∈ Y ; contradicting
(13.1). )�
Proof of Theorem 13.1. By Lemma 13.4, there exists a definable bijection ρV −1(X)\
X → ρV

−1(Y ) \ Y . Applying D
∫ : K(VF[n]) → K(RV[≤ n])/Isp, and using

Lemmas 13.2 and 13.3, we have [X]n − [X]d = [Y ]n − [Y ]d . Applying the first
retraction K(RV[≤ n])/Isp → K(RES[n]) of Theorem 10.5, we obtain

[Xn] − [X × An−d ]n = [Y ]n − [Y × An−d ]n
in !K(RES[n]) = K(Varn). Thus

[X × An−d
.∪Y ]n + [Z] = [Y × An−d

.∪X]n + [Z]
for some Z with dim(Z) ≤ n, where now the equality is of classes in K+ Varn.
Counting birational equivalence classes of varieties of dimension n, we see that
X×An−d , Y ×An−d must be birationally equivalent. The last sentence follows from
the lemma below. )�
Lemma 13.5. LetX, Y be varieties containing no rational curve. Let U be a variety
such that there exists a surjective morphism Am → U . If X × U , Y × U are
birationally equivalent, then so are X, Y .

Proof. For any variety W , let F(W) be the set of all rational maps g : A1 → W .
Write dom(g) for the maximal subset of A1 where g is regular; so dom(g) is cofinite
in A1. Let RW = {(g(t), g(t ′)) ∈ W 2 : g ∈ F(W), t, t ′ ∈ dom(g)}. Let EW be the
equivalence relation generated by RW , on points in the algebraic closure. RW,EW
may not be constructible in general, but in the case we are concerned with, they are
as follows.

Claim. Let W ⊆ X × U be a Zariski dense open set. Let π : W → X be the
projection. Then π(w) = π(w′) iff (w,w′) ∈ EW iff (w,w′) ∈ RW .

Proof. If g ∈ F(U), then π ◦g : dom(g)→ X is a regular map; hence by assumption
on X it is constant. It follows that if (w,w′) ∈ RU then π(w) = π(w′), and
hence if (w,w′) ∈ EU then π(w) = π(w′). Conversely, assume w′, w′′ ∈ W and
π(w′) = π(w′′); then w′ = (x, u′), w′ = (x, u′′) for some x ∈ X, u′, u′′ ∈ U . Let
Ux = {u ∈ U : (x, u) ∈ W }. SinceW is open, Ux is open in U . Let h : Am → U be
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a surjective morphism; let h(v′) = u′, h(v′′) = u′′. The line through v′, v′′ intersects
h−1(Ux) in a nonempty open set. This gives a regular map f from the affine lines,
minus finitely many points, intoU , passing through u′, u′′. Thus t �→ (x, f (t)) gives
a rational map from A1 to W , passing through (w′, w′′); and so (w′, w′′) ∈ RU and
certainly in EU . )�

Using the claim, we prove the lemma. Let WX ⊆ X × U , WY ⊆ Y × U
be Zariski dense open, and F : WX → WY a biregular isomorphism. Then F
takes EWX to EWY . Moving now to the category of constructible sets and maps,
quotients by constructible equivalence relations exist, andWX/EWX is isomorphic as
a constructible set toWY/EWY . LetπX : WX → X,πY : WY → Y be the projections.
By the claim, WX/EWX = πX(WX) =: X′. Similarly, WY/EWY = πY (WY ) =: Y ′.
Now since WX, WY are Zariski dense, so are X′, Y ′. Thus X, Y contain isomorphic
Zariski dense constructible sets, so they are birationally equivalent. )�
Remark. The condition on X, Y may be weakened to the statement that they contain
no rational curve through a generic point; i.e., that there exist proper subvarieties
(Xi : i ∈ I ) defined over K , such that for any field L ⊃ K , any rational curve on
X ×K L is contained in some Xi ×K L.

Acknowledgments. Thanks to Aviv Tatarsky and Moshe Kaminsky, and to Lou Van den Dries,
Clifton Ealy, and Jana Maříková for useful comments and corrections.
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0 Introduction

Let K be a global field, i.e., either an algebraic number field of finite degree (abbre-
viated NF), or an algebraic function field of one variable over a finite field (FF). Let
ζK(s) be the Dedekind zeta function of K , with the Laurent expansion at s = 1:

ζK(s) = c−1(s − 1)−1 + c0 + c1(s − 1)+ · · · (c−1 �= 0). (0.1)

In this paper, we shall present a systematic study of the real number

γK = c0/c−1 (0.2)

attached to each K , which we call the Euler–Kronecker constant (or invariant) of
K . When K = Q (the rational number field), it is nothing but the Euler–Mascheroni
constant

γQ = lim
n→∞

(
1+ 1

2
+ · · · + 1

n
− log n

)
= 0.57721566 . . . ,

and when K is imaginary quadratic, the well-known Kronecker limit formula ex-
presses γK in terms of special values of the Dedekind η function. This constant γK
appears here and there in several articles in analytic number theory, but as far as the
author knows, it has not played a main role nor has it been systematically studied.
We shall consider γK more as an invariant of K .
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Before explaining our motivation for systematic study, let us briefly look at the
FF case. When K is the function field of a curve X over a finite field Fq of genus g,
so that ζK(s) is a rational function of u = q−s of the form

ζK(s) =
∏g
ν=1(1− πνu)(1− π̄νu)
(1− u)(1− qu) , πνπ̄ν = q (1 ≤ ν ≤ g), (0.3)

then γK is closely related to the harmonic mean of the g positive real numbers

(1− πν)(1− π̄ν) (1 ≤ ν ≤ g), (0.4)

in contrast to the facts that their arithmetic (respectively, geometric) means are re-
lated to the number of Fq -rational points of X (respectively, its Jacobian JX). More
explicitly,

γK

log q
= (q − 1)

g∑
ν=1

1

(1− πν)(1− π̄ν) − (g − 1)− q + 1

2(q − 1)

=
∞∑
m=1

(
qm + 1−Nm

qm

)
+ 1− q + 1

2(q − 1)
,

(0.5)

whereNm denotes the number of Fqm -rational points ofX (see Section 1.4). The first
expression shows that γK is a rational multiple of log q, while the second shows that
when X has many Fqm -rational points for small m (especially m = 1), γK tends to
be negative.

Our first basic observation is that, including the NF case, γK can sometimes be
“conspicuously negative,’’ and that this occurs whenK has “many primes with small
norms.’’ In the FF case, there are known interesting towers of curves over Fq with
many rational points, and we ask how negative γK can be, in general and for such
a tower. In the NF case, there is no notion of rational points, but those K having
many primes with small norms would be equally interesting for applications (to
coding theory, etc.). Moreover, the related problems often have their own arithmetic
significance (e.g., the fieldsKp described below). We wish to know how negative γK
can be also in the NF case. A careful comparison of the two cases is very interesting.
Thus we are led to studying γK in both cases under a unified treatment, basically
assuming the generalized Riemann hypothesis (GRH)in the NF case. We shall give a
method for systematic computation of γK , give some general upper and lower bounds,
and study three special cases more closely, including that of curves with many rational
points, for comparisons and applications.

In Section 1, after basic preliminaries, we shall give some explicit estimations of
γK , and also discuss possibilities of improvements when we specialize to smaller
families ofK (see Section 1.6). Among them, Theorem 1 gives a general upper bound
for γK . The main term of this upper bound is{

2 log log
√|d| (NF, under GRH),

2 log((g − 1) log q)+ log q (FF),
(0.6)
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d = dK being the discriminant. The lower bound is, as we shall see, necessarily much
weaker. First, the main term of our general lower bound (Proposition 3) reads as{

− log
√|d| (NF, unconditionally),

−(g − 1) log q (FF).
(0.7)

Secondly, when we fix q, the latter will be improved to be

− 1√
q + 1

(g − 1) log q (FF) (0.8)

(Theorem 2). In other words,

C(q) := lim inf
γK

(gK − 1) log q
≥ − 1√

q + 1
. (0.9)

This is based on a result of Tsfasman [Ts1] and is somewhat stronger than what we
can prove only by using the Drinfeld–Vlăduţ asymptotic bound [D-V] for N1 . We
shall, moreover, see that the equality holds in (0.9) when q is a square (see below).
In the NF case, our attention will be focused on the absolute constant

C = lim inf
γK

log
√|dK | . (0.10)

Clearly, (0.7) gives C ≥ −1 (unconditionally), but quite recently, Tsfasman proved,
as a beautiful application of [T-V], that

C ≥ −0.26049 . . . (under GRH) (0.11)

(see [Ts2] in this volume). The estimation of C(q) or C from above is related to
finding a sequence of K having many primes with small norms. As for C(q), see
below. As for C, the author obtained C ≤ −0.1635 (under GRH; see Section 1.6),
but [Ts2] contains a sharper unconditional estimation. At any rate, in each of the FF
and NF cases, we see that the general (negative) lower bound for γK cannot be so
close to 0 as the (positive) upper bound.

Thirdly, when the degree N ofK over Q, respectively, Fq(t) is fixed (N > 1), or
grows slowly enough, (0.7) will be improved to be⎧⎪⎪⎪⎨⎪⎪⎪⎩

−2(N − 1) log

(
log

√|d|
N − 1

)
(NF, under GRH),

−2(N − 1) log

(
(g − 1) log q

N − 1

)
(FF)

(0.12)

(Theorem 3), which is nearly as strong as the upper bound, and exactly so (with
opposite signs) when N = 2. Granville–Stark [G-S, Section 3.1] gave an equivalent
statement whenN = 2 (NF case), and our Theorem 3 was inspired by this work. The
bound (0.12) is quite sharp. In fact, some families of K having many primes with
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small norms imply that (0.12) cannot be replaced by its quotient even by log logN . To
be precise, it cannot be replaced by its quotient by any such f (N) (NF) (respectively,
fq(N) for a fixed q > 2 (FF)) as satisfying f (N)→∞ (respectively, fq(N)→∞).

Section 1.7 is for supplementary remarks related to computations of γK .
In Section 2, we shall study some special cases. First, let q be any fixed prime

power. Then, as an application of a result in [E], we obtain

C(q) ≤ −c0
log q

q − 1
(0.13)

(Section 2.1), where c0 is a certain positive absolute constant. Then we treat the
case where K is the function field over Fq of a Shimura curve, with q a square, and
gK * q (Section 2.1). In this case, as a reflection of the fact that such a curve has an
abundance of Fq -rational points, we can prove

γK ≤ − 1√
q + 1

(gK − 1) log q + ε. (0.14)

Therefore, combining this with (0.9), we obtain

C(q) = − 1√
q + 1

(q a square). (0.15)

Secondly, when K is imaginary quadratic, we combine our upper bound for γK
with the Kronecker limit formula, to give a lower bound for its class number hK ;

hK log |dK |√|dK | >
π

3
− ε, (0.16)

with an explicit description of the ε part (under GRH) (Theorem 5 in Section 2.2). As
an asymptotic formula, this is weaker than Littlewood’s [Li] and almost equivalent
to Granville–Stark’s [G-S] (both conditional) formulas; its merit is explicitness.

Thirdly, we consider the case whereK = Kp is the “first layer’’of the cyclotomic
Zp-extension over Q (Section 2.3). It is the unique cyclic extension over Q of degree
p contained in the field of p2th roots of unity. By class-field theory, a prime �
decomposes completely in Kp if and only if

� p−1 ≡ 1 (mod p2). (0.17)

We shall apply our estimations of γK to this case K = Kp (Theorem 6 and its
corollaries). Among them, Corollary 7 gives information on small �s satisfying
(0.17) for a fixed large p, while Corollary 9 relates the question of the existence of
“many’’ p satisfying (0.17) for a fixed � to that of lim inf (γKp/p). (Incidentally,
lim(γKp/ log

√
dKp) = lim(γKp/(p − 1) logp) = 0 under GRH.) From Table 1,

notice how the existence of a very small � satisfying (0.17) pushes the value of γKp
drastically towards the left on the negative real axis. For example, (0.17) is satisfied
for � = 2 and p = 1093, and accordingly, γK1093 is as negative as about −747, while
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for several neighboring primes p, the absolute values of γKp are at most 10. Finally,
in Sections 2.4 and 2.5, we shall give some application to the “field index’’ of Kp.

Our main tool is “the explicit formula’’ for the prime counting function

�K(x) = 1

x − 1

∑
N(P )k≤x

(
x

N(P )k
− 1

)
logN(P ) (x > 1), (0.18)

where (P, k) runs over the pairs of (non-archimedean) primes P of K and positive
integers k such that N(P )k ≤ x (Sections 2.2 and 2.3). This function�K(x) is quite
close to log x when x is large, and the connection with our constant γK is

lim
x→∞(log x −�K(x)) = γK + 1 (NF, unconditionally), (0.19)

lim
x∈qZ

x→∞
(log x −�K(x)) = γK + q + 1

2(q − 1)
log q (FF). (0.20)

It is a simple combination of two well-known prime counting functions, but two
characteristic features of �K(x) are (i) it is continuous and (ii) the oscillating term
in the explicit formula for �K(x) has the form

− 1

2(x − 1)
lim
T→∞

∑
|ρ|<T

(xρ − 1)(x1−ρ − 1)

ρ(1− ρ) , (0.21)

where ρ runs over the nontrivial zeros of ζK(s), which, under GRH, is very easy to
evaluate. In fact, it is then sandwiched between two multiples by

((
√
x + 1)/(

√
x − 1))±1

of the negative real constant

−1

2

∑
ρ

1

ρ(1− ρ) . (0.22)

And−γK is a translate of (0.22) by a more elementary constant associated toK . This
is why (under GRH in the NF case) we can obtain results always with explicit error
terms, and using only simple elementary arguments. Usually, one uses the “truncated
explicit formula’’ where the summation over ρ is restricted to |ρ| < T and instead
contains an error term R(x, T ) which is not easy to evaluate systematically.

We add three more observations here.
(i) In some sense, the quantity on the RHS of (0.19)–(0.20) may be more canonical

than γK as an invariant of K . Note that (0.20) with q = 1 “corresponds to’’ (0.19),
and that (0.5) will be simplified if we use the RHS of (0.20) instead of γK itself (see
Section 1.4).

(ii) One can of course generalize the definition of γK to the case of L-functions,
although then they will not usually be real numbers. Multiplicative relations among
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the L-functions give rise to additive relations among these constants. In particu-
lar, when H runs over the subgroups of a given finite group G, any linear relation
among those characters of G induced from the trivial character of H gives rise to
the corresponding linear relation among the γK , where K runs over the intermediate
extensions of a given G-extension.

(iii) When K is either the cyclotomic field Q(µm) or its maximal real subfield
Q(µm)+, it seems fairly likely that γK is always positive! The author has computed
γK in both cases up tom = 600, and Mahoro Shimura more recently checked the first
caseK = Q(µm) form as far as up to 8000, and we have found no counterexamples.
On the other hand, their difference, “the relative’’γK , seems to take both signs “almost
equally.’’

Studies of γK for various families of global fields K including these cases will
be left to future publications. Some open problems and numerical data can be found
in my article in the (informal) “Proceedings of the 2004 Workshop on Cryptography
and Related Mathematics’’(Chuo University, 2005). The 2003 workshop proceedings
contains a short summary of the present paper.

1 The “explicit formula’’ for �K(x), and estimations of γK

1.1 The function �K(x)

LetK be a global field. We denote by P any (non-archimedean) prime divisor of K ,
and byN(P ) its norm. As mentioned in the introduction, we shall consider the prime
counting function

�K(x) = 1

x − 1

∑
N(P )k≤x

(
x

N(P )k
− 1

)
logN(P ) (x > 1). (1.1.1)

Here (P, k) runs over all pairs with k ≥ 1 and N(P )k ≤ x (or what amounts to the
same thing,N(P )k < x). Call a point on the real axis critical if it is of the formN(P )k .
Then�K(x) remains 0 until the first critical point, then is monotone increasing, and is
everywhere continuous. In fact, at each critical point�K(x) acquires new summands
but their values are 0 at this point, so the visible increase at each critical point is that
of the slope. The slope of �K(x) between two adjacent critical points a < b is
c(x − 1)−2, where

c =
∑

N(P )k≤a

(
1− 1

N(P )k

)
logN(P ) > 0.

So the slope near x is close to⎛⎝ ∑
N(P )k<x

logN(P )

⎞⎠ x−2 ∼ x−1.
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Thus�K(x) is an arithmetic approximation of log x. If the fieldK has many primes
P with small N(P ), then �K(x) increases faster than log x, at least for awhile. The
difference log x −�K(x) “at infinity’’ is closely related to γK , as we shall see later.

1.2 The explicit formula for �K(x)

From Weil’s general explicit formula [W1, W2], we obtain, as will be indicated in
Section 1.3, the following formula for �K(x):

�K(x) = log x + (αK + βK)+ �K(x)+ rK(x) (x > 1). (1.2.1)

Here

αK = 1

2
log |d| (NF),

= (g − 1) log q (FF)
(1.2.2)

(d = dK is the discriminant; g = gK is the genus; Fq is the exact constant field),

βK = −
{ r1

2
(γ + log 4π)+ r2(γ + log 2π)

}
(NF),

= 0 (FF)
(1.2.3)

(r1, r2 is the number of real, imaginary places of K , respectively; γ = γQ is the
Euler–Mascheroni constant = 0.57721566 . . . ),

�K(x) = r1

2

(
log
x + 1

x − 1
+ 2

x − 1
log
x + 1

2

)
+ r2

(
log

x

x − 1
+ 1

x − 1
log x

)
(NF),

= φ(q, x) (FF),

(1.2.4)

where φ(q, x) is a certain continuous function of x parametrized by q, satisfying

0 ≤ φ(q, x) < log q,

φ(q, x) = 0 ←→ x = qm with some m ∈ N
(1.2.5)

(see below). Finally,

rK(x) = − 1

2(x − 1)

∑
ρ

(xρ − 1)(x1−ρ − 1)

ρ(1− ρ) , (1.2.6)

where ρ runs over all nontrivial zeros of ζK(s), counted with multiplicities, and∑
ρ

= lim
T→∞

∑
|ρ|<T

. (1.2.7)

By the functional equation for ζK(s), if ρ is a nontrivial zero of ζK(s), then so is
1− ρ, with the same multiplicity.
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In the FF case, when x = qm (m ∈ N),⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�K(x)/ log q = 1

qm − 1

∑
k degP≤m

(qm−k degP − 1) degP,

log x/ log q = m,
αK/ log q = g − 1,
βK/ log q = �K(x)/ log q = 0,

rK(x)/ log q = −
(
q − 1

qm − 1

) g∑
ν=1

(πmν − 1)(π̄mν − 1)

(πν − 1)(π̄ν − 1)
,

(1.2.8)

where

ζK(s) =
∏g
ν=1(1− πνu)(1− π̄νu)
(1− u)(1− qu) , u = q−s , πνπ̄ν = q (1 ≤ ν ≤ g).

(1.2.9)
(To derive the last formula for rK(qm)/ log q from the definition (1.2.6) of rK(x),

take any α ∈ C× and q > 1, and substitute ez = α−1qs in the partial fraction
expansion formula

(ez − 1)−1 + 1

2
= lim
T→∞

T∑
n=−T

(z− 2πin)−1, (1.2.10)

which gives
log q

α−1qs − 1
+ log q

2
= lim
T→∞

∑
qρ=α
|ρ|≤T

(s − ρ)−1. (1.2.11)

Now let q = αᾱ, s = 0 and take the real part of (1.2.11) to obtain

q − 1

(α − 1)(ᾱ − 1)
log q = lim

T→∞
∑
qρ=α
|ρ|≤T

(
1

ρ
+ 1

ρ̄

)
. (1.2.12)

The desired formula follows immediately from this.)
Note that each reciprocal zero πν (respectively, π̄ν) of ζK(s) in u = q−s cor-

responds to infinitely many zeros in s, which are translations of one of them by
2πin/ log q (n ∈ Z). It also has poles at all translations of 0, 1 by 2πin/ log q
(n ∈ Z). The function φ(q, x) arises from the poles θ �= 0, 1;

φ(q, x) = 1

2(x − 1)

∑
poles θ �= 0, 1

(xθ − 1)(x1−θ − 1)

θ(1− θ) , (1.2.13)

where ∑
θ

= lim
T→∞

∑
|θ |<T

. (1.2.14)
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Since either qθ = 1 or q1−θ = 1, it is clear that φ(q, x) = 0 when x = qm (m ∈ N).
In a finite form,

φ(q, x) = log

(
qm

x

)
− (q

m−1 − 1)(qm − x)
(x − 1)(qm − qm−1)

log q (1.2.15)

for qm−1 ≤ x ≤ qm (m ∈ Z, m ≥ 1, x �= 1). This follows immediately from the
following.

Proposition 1.

(i) The functions �K(x) and rK(x) are continuous.
(ii) (FF): (x − 1)(�K(x) + log x) and (x − 1)rK(x) are linear on each interval
qm−1 ≤ x ≤ qm (m ≥ 1).

Proof.
(NF) �K(x) is continuous by definition. Since �K(x) and �K(x) are both con-

tinuous, rK(x) is also continuous by (1.2.1).
(FF) In this case, �K(x) = φ(q, x) is a function of x determined only by q. By

(1.2.1) applied to the case g = 0, we have

φ(q, x) = �Fq (t)(x)− log x + log q; (1.2.16)

hence φ(q, x) is continuous. Now, when qm−1 ≤ x ≤ qm,

(x − 1)�K(x) =
∑

N(P )k≤qm−1

(
x

N(P )k
− 1

)
logN(P ) (1.2.17)

is linear. Hence by (1.2.16), (x − 1)(φ(q, x)+ log x) is also linear on this interval.
Moreover, the function

(x − 1)rK(x) = (x − 1)�K(x)− (x − 1) (φ(q, x)+ log x)− (x − 1)(αK + βK)
is also linear in the same interval. )�
Remarks.

(i) In the NF case, βK and �K(x) both come from the archimedean places. Among
them, βK is the value at s = 1 of the logarithmic derivative of the “standard-factor’’
of ζK(s) (see Section 1.3 below), and �K(x) comes from the trivial zeros of ζK(s).
Thus �K(s) for the (FF) and the (NF) cases have quite different origins—poles �= 0, 1,
vs. trivial zeros. We have given them the same name here only to save notation.

(ii) In the NF case, βK + �K(x) is the term coming from the archimedean places,
and our separation into βK and �K(x) can also be characterized by

lim
x→∞ �K(x) = 0

(cf. Lemma 1 below (Section 1.5)).
(iii) We note also that

�K(x) ≥ 0 (x > 1)

in both cases (cf. Lemma 1 in Section 1.5).
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1.3 The explicit formula for �K(x) (continued)

The above explicit formula (1.2.1) for �K(x), at least in the NF case, is a special
case of Weil’s general explicit formula. To be precise, use t for x of [W1], keeping x
for our x, and put

F(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1

x − 1
(xe−t/2 − et/2), 0 < t < log x,

1

2
, t = 0,

0, otherwise,

in [W1, formula (11)]. Then we obtain (1.2.1) by straightforward computations. The
FF case is not fully treated in [W1] (nor in [W2] except when t is an integral multiple
of log q), but this case is easier.

In this Section 1.3, we shall give a brief account of some basic materials for, and
a sketch of, the proof of (1.2.1) valid in both cases, which hopefully is enough for
the readers to convince themselves of the validity also in the FF case, and to see why
the term φ(q, x) should appear. The formula (1.3.11) obtained in this process will
anyway be needed later. The advanced readers can skip this section.

The explicit formula itself, and its connection with γK , both follow from the
partial fraction decomposition of the logarithmic derivative of ζK(s). Put

ZK(s) = −ζ
′
K(s)

ζK(s)
. (1.3.1)

Then from the Euler product expansion∏
P

(1−N(P )−s)−1 (Re(s) > 1) (1.3.2)

of ζK(s) follows the Dirichlet series expansion

ZK(s) =
∑
P,k≥1

logN(P )

N(P )ks
(Re(s) > 1) (1.3.3)

for ZK(s). In terms of ZK(s), the Euler–Kronecker constant γK has the expression

γK = − lim
s→1

(
ZK(s)− 1

s − 1

)
. (1.3.4)

This ZK(s) has the following partial fraction expansion (“Stark’s lemma’’):

ZK(s) = 1

s
+ 1

s − 1
−
∑
ρ

1

s − ρ + αK + βK + ξK(s), (1.3.5)

with
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ξK(s) = r1

2

(
g
( s

2

)
− g

(
1

2

))
+ r2(g(s)− g(1))

= −r1
(

1− s
s

+
∞∑
n=1

(
1

s + 2n
− 1

1+ 2n

))

− r2
(

1− s
s

+
∞∑
n=1

(
1

s + n −
1

1+ n
))

(NF)

=
∑
θ �=0,1

1

s − θ (FF),

(1.3.6)

where ρ runs over the nontrivial zeros of ζK(s), θ runs over all poles �= 0, 1 of ζK(s)
(FF case), ∑

ρ

= lim
T→∞

∑
|ρ|<T

,
∑
θ

= lim
T→∞

∑
|θ |<T

, (1.3.7)

and

g(s) = ′(s)
(s)

. (1.3.8)

(Note that g(1) = −γQ, g( 1
2 ) = −γQ − log 4.)

In the NF case, (1.3.5) is Stark’s lemma [St, (9)] itself. The FF case follows
directly from the rational expression

ζK(s) =
∏
α∈A
(1− αq−s)λα (A : a finite subset of C×, λα = ±1) (1.3.9)

of ζK(s);

ZK(s) = −d log ζK(s)

ds
=
∑
α∈A

λα
log q

1− α−1qs

=
∑
α∈A

λα

⎛⎝ log q

2
−
∑
qβ=α

1

s − β

⎞⎠ (by (1.2.11))

= (g − 1) log q −
∑
ρ

1

s − ρ +

⎛⎜⎜⎝1

s
+ 1

s − 1
+
∑
θ �=0,1
poles

1

s − θ

⎞⎟⎟⎠ .
(1.3.10)

Now by combining (1.3.4) with (1.3.5), we easily obtain

γK =
∑
ρ

1

ρ
− αK − βK − cK

= 1

2

∑
ρ

1

ρ(1− ρ) − αK − βK − cK,
(1.3.11)
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where αK , βK are as defined by (1.2.2), (1.2.3), respectively, and

cK = 1 (NF),

= cq = q + 1

2(q − 1)
log q (FF).

(1.3.12)

The last formula for cK in the FF case follows directly from (1.2.11) for s = α = 1,
because

ξK(1)+ 1 =
∑
qθ=1,q
θ �=1

(1− θ)−1 =
∑
qθ=1

(1− θ)−1.

Remark. If we define cq for each q ∈ R, q > 1 by (1.3.12), then cq > 1 and
limq→1 cq = 1. This matches with the well-known belief that “the constant field of
a number field should be F1.’’

The explicit formula (1.2.1) follows from the evaluation of the integral

�
(µ)
K (x) =

1

2πi

∫ c+i∞

c−i∞
xs−µ

s − µZK(s)ds (c * 0) (1.3.13)

for µ = 0 and 1 in two ways, based on the classical formula

1

2πi

∫ c+i∞

c−i∞
ys

s
ds =

⎧⎪⎨⎪⎩
0, 0 < y < 1,
1

2
, y = 1,

1, 1 < y.

The Dirichlet series expansion (1.3.3) of ZK(s) gives the connection

x�
(1)
K (x)−�(0)K (x) = (x − 1)�K(x), (1.3.14)

while the partial fraction decomposition (1.3.5) of ZK(s) gives, via standard residue
calculations,

x�
(1)
K (x)−�(0)K (x) = (x − 1){log x + (αK + βK)+ �K(x)+ rK(x)}. (1.3.15)

The terms log x, �K(x), and rK(x) inside { } correspond to

1

s
+ 1

s − 1
, ξK(s), and −

∑
ρ

1

s − ρ

in (1.3.5), respectively.

Remarks.
(i) A word about the constant βK (NF case). If

R(s) = π− s2
( s

2

)
, respectively, C(s) = (2π)−s(s) (1.3.16)
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denote the standard -factors at the real (respectively, imaginary) places, so that

�K(s) = R(s)
r1C(s)

r2ζK(s) (1.3.17)

satisfies the functional equation

�K(s) = (
√|dK |)1−2s�K(1− s), (1.3.18)

then one has (
d logR(s)

ds

)
s=1

= −1

2
(γQ + log 4π), (1.3.19)(

d logC(s)

ds

)
s=1

= −(γQ + log 2π). (1.3.20)

Therefore,

lim
s→1

((
d log�K(s)

ds

)
+ 1

s − 1

)
= γK + βK. (1.3.21)

Thus βK is the “archimedean counterpart’’ of γK .
(ii) Incidentally, the functional equation in the function field case for �K(s) =

ζK(s) is
�K(s) = (qg−1)1−2s�K(1− s), (1.3.22)

and the comparison of (1.3.18) and (1.3.22) leads to our common recognition that
the FF analogue of 1

2 log |d| should be (g − 1) log q. In both cases, the constant
term in the partial fraction decomposition ofZK(s) is determined from the functional
equation.

1.4 Some elementary formulas related to γK

We shall give a few more remarks related to the quantity

γK =
∑
ρ

1

ρ
− αK − βK − cK. (1.4.1)

When αK is large, each of
∑
ρ ρ

−1 and αK + βK is usually much larger than the
absolute value of γK . (Only for some special families of K do they have the same
order of magnitude; see Section 1.6.) So, γK is a finer object for study than

∑
ρ ρ

−1.
In the FF case, in terms of the reciprocal roots πν, π̄ν (1 ≤ ν ≤ g) of ζK(s) in

u = q−s , we have (as is obvious by (1.2.12))

∑
ρ

1

ρ
= (q − 1)

g∑
ν=1

1

(πν − 1)(π̄ν − 1)
log q; (1.4.2)

hence
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γK =
{
(q − 1)

g∑
ν=1

1

(πν − 1)(π̄ν − 1)
− (g − 1)

}
log q − cq

=
g∑
ν=1

(
1

πν − 1
+ 1

π̄ν − 1

)
log q + (log q − cq)

=
∞∑
m=1

g∑
ν=1

(πmν + π̄mν )q−m log q + (log q − cq)

=
∞∑
m=1

(qm + 1−Nm)q−m log q + (log q − cq).

(1.4.3)

Consider the arithmetic, geometric, and harmonic means of g positive real numbers

(πν − 1)(π̄ν − 1) (1 ≤ ν ≤ g). (1.4.4)

Then if X denotes the proper smooth curve over Fq corresponding to K , and J its
Jacobian, the above three means of (1.4.4) are given, respectively, by

a.m. = 1

g
#X(Fq)+

(
1− 1

g

)
(q + 1)

≤

g.m. = (#J (Fq))1/g

≤

h.m. = g(q − 1) log q

γK + αK + cq .

(1.4.5)

The three properties #X(Fq) large, #J (Fq) large, and −γK large, are different
but correlated, and are in a sense in the same direction. (The denominator of h.m. is∑
ρ ρ

−1 > 0.)
By the Riemann hypothesis for curves, we have

(
√
q − 1)2 ≤ (πν − 1)(π̄ν − 1) ≤ (√q + 1)2;

hence by (1.4.3), we obtain immediately( −2g√
q + 1

+ 1

)
log q ≤ γK + cq ≤

(
2g√
q − 1

+ 1

)
log q. (1.4.6)

Later, we shall obtain much better bounds (Section 1.6). In particular, when g is fixed
and q →∞ (e.g., the constant field extensions), we have the limit formula

lim
q→∞

γK

log q
= 1

2
. (1.4.7)

When g = 0, γK is given by the equality

γK + cq = log q. (1.4.8)

(See Remark (i) below.)
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Remarks.
(i) We defined γK as a natural generalization of the Euler–Mascheroni constant

γQ. But, in a sense, the quantity γK + cK may be more canonical, as some of the
preceding formulas indicate! The quantities obtained by (further) adding βK (NF) or
− log q (FF) can sometimes be better.

(ii) In the FF case, if we use other poles of ζK(s), instead of s = 1, to define
γK similarly, then what we obtain is still γK if the pole is congruent to 1 modulo
2πi/ log q, and is −αK − γK if the pole is 0 mod (2πi/ log q).

In the NF case, the order of zero at s = 0 of ζK(s) is r1 + r2 − 1, and

γK = −γ ′K − log |dK | + [K : Q](γQ + log(2π)), (1.4.9)

where γ ′K is the coefficient of sr1+r2 divided by that of sr1+r2−1 in the Taylor expansion
of ζK(s) at s = 0.

1.5 Estimations of rK(x) and �K(x)

Now we return to the explicit formula (1.2.1). By (1.3.11), one may rewrite it as

log x −�K(x) = −(αK + βK)− rK(x)− �K(x)
= γK + cK − (rK(x)+

∑
ρ

ρ−1)− �K(x)

= γK + cK −
(
rK(x)+ 1

2

∑
ρ

1

ρ(1− ρ)

)
− �K(x).

(1.5.1)

We are going to estimate the nonconstant terms on the right side of (1.5.1). In most
of what follows, we shall assume GRH (which is satisfied in the FF case).

Main Lemma (FF; and NF under GRH). For any x > 1, we have

√
x − 1√
x + 1

(
1

2

∑
ρ

1

ρ(1− ρ)

)
≤ −rK(x) ≤

√
x + 1√
x − 1

(
1

2

∑
ρ

1

ρ(1− ρ)

)
. (1.5.2)

Proof. Since

−rK(x) = 1

2

∑
ρ

{
(xρ − 1)(x1−ρ − 1)

(x − 1)
· 1

ρ(1− ρ)
}

(1.5.3)

and ρ = 1
2 + iγ (γ ∈ R), it follows that ρ(1− ρ) = 1

4 + γ 2 > 0, and that

(xρ − 1)(x1−ρ − 1) = x + 1− 2
√
x cos(γ log x) (1.5.4)

lies in between (
√
x − 1)2 and (

√
x + 1)2, whence our inequalities. )�
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The graphs of the three functions of x appearing in (1.5.2) in the Main Lemma, for
the casesK = Q, Q(

√
481), are as shown in Figures 1(a)–1(b). (As (1.5.3) indicates,

each ρ with small |γ | contributes to a “high wave calm on the surface,’’ whereas a
larger |γ | to a lower “ripple.’’ The effect of the first few ρ is not particularly large, but
sometimes determines the main shape of the graph (for x not too large). Thus these
graphs seem to indicate that the smallest |γ | for Q(

√
481) would be much smaller

than that of K = Q (i.e., 14.1347 . . . ).)

20000 40000 60000 80000 100000

0.0229

0.0231

0.0232

0.0233

(a) K = Q

20000 40000 60000 80000 100000

0.795

0.805

0.81

0.815

0.82

0.825

(b) K = Q(
√

481)

Fig. 1.

By this lemma and (1.3.11), we obtain

−2√
x + 1

(γK + αK + βK + cK) ≤ −rK(x)− 1

2

∑
ρ

1

ρ(1− ρ)

≤ 2√
x − 1

(γK + αK + βK + cK),
(1.5.5)

and hence by (1.5.1),
√
x − 1√
x + 1

(γK + cK)− 2√
x + 1

(αK + βK)− �K(x)
≤ log x −�K(x)
≤
√
x + 1√
x − 1

(γK + cK)+ 2√
x − 1

(αK + βK)− �K(x)
(1.5.6)

(under GRH).
As for �K(x), we have the following.

Lemma 1.

(i) (NF case): �K(x) is monotone decreasing,

lim
x→1

�K(x) = +∞, lim
x→∞ �K(x) = 0,
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and

0 < �K(x) < [K : Q]
(

log x + 1

x − 1

)
(x > 1).

(ii) (FF case): �K(x) = 0 if and only if x = qm (m ∈ N); for other x, �K(x) always
remains within the open interval (0, log q) but does not tend to 0 as x →∞.

Proof.
(i) NF case. In this case,⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�K(x) = r1

2
F1(x)+ r2F2(x) with

F1(x) = log
x + 1

x − 1
+ 2

x − 1
log
x + 1

2
,

F2(x) = log
x

x − 1
+ 1

x − 1
log x.

(1.5.7)

First, sinceF ′1(x) = −2(x−1)−2 log((x+1)/2) < 0, F1(x) is monotone decreasing.
Second, since F2(x) = F1(2x − 1), F2(x) is also monotone decreasing and F2(x) <

F1(x). Third, since log( x+1
x−1 ) < 2(x − 1)−1 and log( x+1

2 ) < log x, we obtain

F1(x) < 2(log x + 1)(x − 1)−1, (1.5.8)

and it is clear that F2(x) > 0. The desired inequalities follow immediately from
these. The assertions for the limits at x → 1,∞ of �K(x) are also obvious.

The following inequality will be used later (Section 2.4):

1

2
(x − 1)F1(x) = log(x + 1)+ log

[
1

2

(
1+ 2

x − 1

) x−1
2
]
≥ log(x + 1) (x ≥ 3).

(1.5.9)
(ii) FF case. We already know that φ(q, x) = 0 if x = qm (m ∈ N). So, put

x = qm−1+y , with m ≥ 1, 0 < y < 1. Then by (1.2.15),

φ(q, x) =
(

1− y − (qm−1 − 1)(q − qy)
(qm−1+y − 1)(q − 1)

)
log q

=
(
(qm − 1)(qy − 1)

(qm−1+y − 1)(q − 1)
− y
)

log q.

(1.5.10)

It is easy to see that if we fix y, then this is monotone decreasing as a function of m,
and tends uniformly to

sq(y) =
(

1− q−y
1− q−1

− y
)

log q (> 0) (1.5.11)

as m→∞. Therefore,

0 <
1− q−y
1− q−1

− y < φ(q, x)
log q

≤ 1− y < 1, (1.5.12)

which proves all the assertions stated in Lemma 1(ii). )�
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Remark. Note that sq(0) = sq(1) = 0, sq(y) > 0 for 0 < y < 1. The maximal
value of sq(y) for 0 < y < 1 is

log q

1− q−1
− (log log q − log(1− q−1)+ 1), (1.5.13)

which is attained at

y = log log q − log(1− q−1)

log q
. (1.5.14)

The graphs of F1(x) > F2(x) will be shown in Figure 2(a), and that of φ(q, qz)
for q = 5, in Figure 2(b). The horizontal line in the latter gives the value of (1.5.13)
for q = 5.
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Fig. 2.

1.6 Estimations related to γK

From (1.5.6) we immediately obtain the following.

Proposition 2 (under GRH in the NF case). For any x > 1, we have

γK ≤
√
x + 1√
x − 1

(log x −�K(x)+ �K(x))+ 2√
x − 1

(αK + βK)− cK, (i)

γK ≥
√
x − 1√
x + 1

(log x −�K(x)+ �K(x))− 2√
x + 1

(αK + βK)− cK. (ii)

Since by (1.5.6) the difference between the upper and the lower bounds tends to
0 as x →∞, this gives a method for computing the constant γK (under GRH) to as
much accuracy as one desires. Although the convergence is slow, one can usually
determine the approximate size of γK (e.g., its sign) even by hand calculations.

Figures 3(a)–3(b) show two examples for the graphs of the upper and the lower
bounds given by Proposition 2 (denoted, respectively, as uppK(x), lowK(x)). The
horizontal lines indicate the expected values of γK .



Euler–Kronecker constants of global fields and primes with small norms 425

20000 40000 60000 80000 100000
-0.21

-0.19

-0.18

-0.17

-0.16

-0.15

-0.14

(a) K = Q(
√

481)

10000 20000 30000 40000 50000

1.76

1.77

1.78

1.79

(b) K = Q(cos 2π
9 )

Fig. 3.

Examples (by computer)

Let K = Q(
√−1), and take x = 50000. Then the upper and the lower bounds for

γK given by Proposition 2(i)–(ii) are 0.8239498, 0.8221413, respectively. The value
of γK computed by using the Kronecker formula (cf. Section 2.2) is 0.82282525.
Incidentally, in this case, the value of log x − �K(x) − 1 is 0.82280515, which is
close to the actual value, and lies in between the above upper and lower bounds. But
in general, log x−�K(x)−1 need not lie in between the two bounds of Proposition 2
(see Remark (ii) below).

For other imaginary quadratic fields, 0 < γK < 1 holds for |dK | ≤ 43, but
γK < 0 for dK = −47,−56, . . . . For example,

−0.072 < γQ(
√−47) < −0.053.

For real quadratic fields, 0 < γK < 2 for dK < 100, but

−0.181 < γQ(
√

481) < −0.167.

These are, of course, under (GRH).
Some other examples will be given in Sections 1.7 and 2.3.
We shall give some applications. First, by letting x → ∞ in (1.5.6), we obtain

the following.

Corollary 1.

γK = lim
x→∞(log x −�K(x)− 1) (NF), (1.6.1)

γK = lim
m→∞
m∈N

(log(qm)−�K(qm)− cq) (FF). (1.6.2)

A formula equivalent to (1.6.1) can also be found in a recent preprint [HIKW,
Theorem B].
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Remarks.
(i) For (1.6.1), GRH is unnecessary. In fact, by using a standard zero-free region

for ζK(s), one can show, unconditionally, that

lim
x→∞

{
rK(x)+ 1

2

∑
ρ

1

ρ(1− ρ)

}
= 0, (1.6.3)

from which (1.6.1) follows directly by (1.5.1) and Lemma 1. The proof of (1.6.3)
runs as follows. As is well known (cf., e.g., [L-O, Lemma 8.1]), there exists a positive
constant c (depending on K) such that if ρ = β + iγ is a nontrivial zero of ζK(s)
with |γ | sufficiently large, then

β < 1− c(log |γ |)−1. (1.6.4)

We claim that

lim
x→∞

(∑
ρ

xβ−1

γ 2

)
= 0, (1.6.5)

where ρ runs over all imaginary zeros of ζK(s). To show this, since β < 1, we may
exclude finitely many ρs and assume that (1.6.4) is satisfied. Then for x > 1,

∑
ρ

xβ−1

γ 2
<
∑
ρ

x−c(log |γ |)−1

γ 2
=

∑
log |γ |<T

+
∑

log |γ |≥T
,

where we choose T = √log x. Then

∑
log |γ |<T

≤
⎛⎝ ∑

log |γ |<T

1

γ 2

⎞⎠ x−cT −1 ≤
(∑
ρ

1

γ 2

)
exp(−c√log x)→ 0,

and ∑
log |γ |≥T

≤
∑

log |γ |≥√log x

1

γ 2
→ 0,

whence (1.6.5). But since

rK(x)+ 1

2

∑
ρ

1

ρ(1− ρ) =
1

2

∑
ρ

1

ρ(1− ρ)
(
xρ + x1−ρ − 2

x − 1

)
, (1.6.6)

and each term tends to 0 as x →∞, by (1.6.5), we obtain

lim
x→∞

∣∣∣∣∣rK(x)+ 1

2

∑
ρ

1

ρ(1− ρ)

∣∣∣∣∣ ≤ lim
x→∞

∑
ρ,
γ �=0

1

γ 2

xβ

x − 1
= 0. )�
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(ii) Some readers may be interested in the comparison between AK(x) := log x−
�K(x) − 1 and the two bounds uppK(x), lowK(x) of Proposition 2. From (1.2.1)
we obtain easily

√
x − 1

2
(uppK(x)− AK(x)) = −rK(x)+

√
x − 1

2
�K(x),

√
x + 1

2
(AK(x)− lowK(x)) = −rK(x)−

√
x + 1

2
�K(x),

and, moreover, we have −rK(x) > 0 under GRH. Therefore, AK(x) < uppK(x)
always holds under GRH. But AK(x) > lowK(x) need not hold in general, a coun-
terexample being given by K = Q(

√−1), x = (say) 1800.

Examples of graphs of AK(x) = log x − �K(x) − 1
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Fig. 4.

Upper bounds

The second application of Proposition 2 is to the problem of finding a reasonably
good general upper bound for γK in terms of more elementary invariants ofK . It can
be obtained from Proposition 2(i) by the substitution of a suitable value of x. Since
we do not know a priori the local behavior of �K(x), except that �K(x) ≥ 0, what
we do is try to minimize

√
x + 1√
x − 1

(log x + �K(x))+ 2√
x − 1

(αK + βK)− cK. (1.6.7)

We leave the discussion of this delicate question until a little later (after the proof of
Theorem 1), and first see what we can obtain by choosing the value x0 of x which
minimizes
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log x + 2αK√
x
,

i.e., x0 = α2
K . We then obtain the following.

Theorem 1 (under GRH in the NF case).

γK <

(
αK + 1

αK − 1

)
(2 log αK + a −�K(α2

K))

≤
(
αK + 1

αK − 1

)
(2 log αK + a),

(1.6.8)

provided that
g > 2, or g = 2 and q > 2 (FF)

n > 2, or n = 2 and |dK | > 8 (NF).
(1.6.9)

Here a = 1 and n = [K : Q] (NF), a = 1+ log q (FF).

Proof. The right-hand side of Proposition 2(i) for x = α2
K can be rewritten as⎧⎪⎪⎨⎪⎪⎩

αK + 1

αK − 1

(
2 log αK −�K(α2

K)+ 1
)
+ 1

αK − 1

(
(αK + 1)�K(α

2
K)+ 2βK

)
(NF),

αK + 1

αK − 1

(
2 log αK −�K(α2

K)+ 1+ φ(q, α2
K)
)
+ (1− cq) (FF).

(1.6.10)
In the FF case, (1.6.9) implies αK > 1. And since φ(q, α2

K) < log q and 1− cq < 0,
we are done. In the NF case, we have the inequalities⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(x) := (x + 1)

{
log

(
x2 + 1

x2 − 1

)
+ 2

x2 − 1
log

(
x2 + 1

2

)}
− 2(γQ + log 4π) < 0

for x > 1.16,

f2(x) := (x + 1)

{
log

(
x2

x2 − 1

)
+ 1

x2 − 1
log(x2)

}
− 2(γQ + log 2π) < 0

for x > 1.16.
(1.6.11)

They hold because f1(x), f2(x) are both monotone decreasing for x > 1, and their
values at 1.16 are both negative (being −0.08762 . . . , −0.03882 . . . , respectively).
Therefore,

(αK + 1)�K(α
2
K)+ 2βK < 0 for αK > 1.16. (1.6.12)

But even the Minkowski lower bound for |dK | shows that αK > 1.16 holds for n > 2
and for n = 2 with |dK | > 10.2 (which is actually the same as |dK | > 8). )�

Discussions on minimizing (1.6.7)

Write x = t2 (t > 1), and put
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s = sK = αK + βK. (1.6.13)

Then (1.6.7) can be expressed as

g(t) = g1(t)+ g2(t), (1.6.14)

with

g1(t) := 2

t − 1
((t + 1) log t + s)− cK, (1.6.15)

g2(t) := t + 1

t − 1

{ r1
2
F1(t

2)+ r2F2(t
2)
}

(> 0) (NF)

= t + 1

t − 1
φ(q, t2) (≥ 0) (FF)

(1.6.16)

(cf. (1.5.7)). These are continuous functions of t > 1 parametrized by s(∈ R);
r1, r2 ≥ 0, r1 + r2 > 0 (NF), or q (FF). We shall exclude the trivial case of genus
0 (FF). Then g(t) always achieves its minimal value at some θ (1 < θ < ∞),
because it is continuous and tends to +∞ at both ends, i.e., t → 1 and t →∞.

NF case

In this case, θ is unique, as (t − 1)2g′(t) is monotone increasing. Indeed,

(t − 1)2g′1(t) = 2(t − 2 log t − t−1 − s) (1.6.17)

is monotone increasing, and so are the r1 and r2 components of (t − 1)2g′2(t). When
s > 1, θ is close to

s + 2

(
1+ r1 + r2

s

)
log s. (1.6.18)

We have included the (r1 + r2)s−1 term, because when sK → ∞, the quantity
(r1 + r2)s−1

K , though bounded (by a standard unconditional lower bound for |dK |),
does not tend to 0.

FF case

The local differential structure of g(t) is, in a sense, opposite to the NF case. The
graph of g(t) looks like a bouncing ball, bouncing at each integral power of

√
q, first

coming down a slope and then going up another forever. (The slopes correspond to the
graph of g1(t).) Indeed, (t − 1)2g′(t) is a negative constant−2g log q (g: the genus)
on 1 < t2 < q, and is monotone decreasing on every open interval qm−1 < t2 < qm

(m > 1). The derivative of (t − 1)2g′(t) on this interval is −2a(t − 1)−2, where

a = (qm−1 − 1)(qm − 1)(qm − qm−1)−1 log q.

Therefore, g′′(t) < 0 wherever g′(t) = 0. Therefore, g(t) can acquire its minimal
value only at the bouncing points t ∈ (√q)Z. Note that φ(q, t2) = 0 at bouncing
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points. Moreover, by (1.6.17), we conclude that θ must be one of the (at most two)
integral powers of

√
q which are adjacent to the unique root of the equation

t − 2 log t − t−1 = s. (1.6.19)

Thus, again, θ is close to
s + 2 log s

as long as s is large compared with q. If, at the other extreme,

g <
1

log q

(√
q − 1√

q

)
, (1.6.20)

so that the root of (1.6.19) is smaller than
√
q, then θ is always equal to

√
q, and this

gives rise only to the trivial general upper bound (1.4.6) for γK .
Each of Figures 5(a)–5(b) gives the graphs of two functions

g(t) ≥ g1(t)

when K = Q(
√−5003) (Figure 5(a)), and q = 2, g = 5 for t2 = qy (the horizontal

axis is for y) (Figure 5(b)).
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Thus the best possible approximation of θ would depend on the specific family
of K and purpose of applications. For example, the βK part of sK in the NF case
should not be neglected if (r1 + r2)s−1

K is not small. But here we are satisfied with
having given a basic result expressed simply in terms of αK only, together with some
indications for possible improvements. We note that choices of other θ can improve
only minor terms in Theorem 1, unless we restrict ourselves to some special families
ofK . Further studies of the upper bounds of γK for various families ofK will be left
to future publications.

The author has as yet no idea about the minimal possible size of�K(θ2) for each
given r1, r2 and given approximate range of s. This is of course related to the question
of how sharp an upper bound our method can possibly give.
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Lower bounds

A general, unconditional (and trivial) lower bound is as follows.

Proposition 3.
γK > −αK − βK − cK.

This follows immediately from

γK + αK + βK + cK =
∑
ρ

1

ρ
= 1

2

∑
ρ

(
1

ρ
+ 1

ρ̄

)
> 0. (1.6.21)

(Under (GRH), one can deduce this also from Proposition 2(ii) by letting x → 1.)
We note that the absolute value of the negative lower bound given above is much

larger than that of the upper bound given in Theorem 1. For example, in the NF case,
the former is ∼ 1

2 log |d| while the latter is ∼ 2 log log |d|. This is not just because
we have not assumed GRH for the above lower bound as we did for the upper bound.
Indeed, in the FF case, γK can be of the order of(

− 1√
q + 1

+ ε
)
(gK − 1) log q (1.6.22)

for Shimura curves over Fq (q a square, gK → ∞); see Section 2.1. But we can
show the following.

Theorem 2 (FF). Fix q. Then

lim inf
γK

(gK − 1) log q
≥ − 1√

q + 1
. (1.6.23)

Proof. This is obtained by using Tsfasman’s [Ts1, Corollary 1]. (If we combine
the inequality h.m ≤ a.m in (1.4.5) with the Drinfeld–Vlăduţ asymptotic upper
bound [D-V] forN1, then what we obtain is a somewhat weaker statement, where the
denominator

√
q + 1 on the RHS of (1.6.23) is replaced by

√
q.)

First, let us recall the basic materials from [Ts1] that will be needed. By a curve
over Fq , we shall always mean a complete, smooth, geometrically irreducible alge-
braic curve over Fq . For a curve C over Fq , let g = g(C) denote the genus, and
Bm = Bm(C) denote the number of prime divisors (i.e., scheme theoretic closed
points) of C with degree m over Fq . Thus

Nm(C) =
∑
d|m
dBd(C)

is the number of Fqm -rational points of C. If {Cα} is a family of curves over Fq
(q fixed) with growing genus such that

βm = lim
α

Bm(Cα)

g(Cα)
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exists for all m ≥ 1, we call the family {Cα} asymptotically exact. Each sequence of
curves over Fq with growing genus contains a subsequence which is asymptotically
exact [Ts1, p. 182]. Moreover, for any asymptotically exact family of curves over Fq ,
one has ∞∑

m=1

mβm

qm/2 − 1
≤ 1 (1.6.24)

[Ts1, Corollary 1]. Now, to prove Theorem 2, let us write γ (C) = γK , where K is
the function field of C. Put

λ = lim inf
γ (C)

(g(C)− 1) log q
= lim inf

γ (C)

g(C) log q
.

Then there exists a family of curves C over Fq with g(C)→∞ such that

lim
C

γ (C)

g(C) log q
= λ,

and we may assume that this family is asymptotically exact. Let C run over such a
family. Then by (1.4.3),

γ (C)

g(C) log q
=

∞∑
m=1

qm + 1−Nm(C)
qmg(C)

+ 1

g(C)

(
1− cq

log q

)
. (1.6.25)

Since the summand on the right-hand side of (1.6.25) has absolute value at most equal
to 2q−m/2, the sum is uniformly convergent w.r.t. C. We thus obtain

λ =
∞∑
m=1

lim
C

(
qm + 1−Nm(C)

qmg(C)

)

= −
∞∑
m=1

q−m
⎛⎝∑
d|m
dβd

⎞⎠ = −
∞∑
d=1

dβd

qd − 1

≥ − 1√
q + 1

( ∞∑
d=1

dβd

qd/2 − 1

)
≥ − 1√

q + 1

(1.6.26)

by (1.6.24), as desired. )�
Remark. The above proof shows also that the equality λ = − 1√

q+1 holds if and only

if β1 = √
q−1 holds, i.e., if and only if the Drinfeld–Vlăduţ asymptotic upper bound

for N1(C)
g(C)

is attained by this family.

In Section 2.1, we shall show that when q is a square, then the equality holds for
(1.6.23) (see (2.1.11)).

It is also a very interesting problem to find out the precise value of the quantity

C = lim inf
γK

αK
(1.6.27)
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in the NF case. As for this, what the author obtained are the following:
(i) By Proposition 3 (Section 1.6), we have

C ≥ −1 (unconditionally). (1.6.28)

(ii) If there exists an infinite unramified Galois extensionM/k over a number field
k in which some prime ideals p1, . . . , pm of k decompose completely, then, under
(GRH), we can show easily that

C ≤ − 1

αk

(
m∑
i=1

logN(pi )

N(pi )− 1

)
, (1.6.29)

by applying Theorem 1 (the first inequality in (1.6.8)) to finite intermediate extensions
ofM/k. For example, one may choose the examples given in [T-V, Corollaries 9.3–
9.5], among which ([T-V, Corollary 9.5] is an old example due to the present author,
but) [T-V, Corollary 9.4] gives the best result. In this case,

k = Q(
√
d), d = −d1 × 73× 79,

where d1 is the product of all prime numbers q with 13 ≤ q ≤ 61. It has an infinite 2-
class-field tower in which ten primes above 2, 3, 5, 7, 11 split completely. By taking
p1, . . . , pm to be these ten primes of k, we obtain, by (1.6.29),

C ≤ −0.16352 . . . (under GRH). (1.6.30)

Now, after the present work was submitted to this volume, Tsfasman kindly in-
formed me that he can prove better results, namely,

−0.26049 · · · ≤ C ≤ −0.17849 . . . (1.6.31)

(the LHS inequality under GRH) by using [T-V] for the LHS inequality, and an
unconditional (1.6.29) [Ts2, Theorem 5] with a better class-field tower, for the RHS
inequality (see [Ts2]). The LHS inequality was surprising to the author who had
considered it plausible thatC = − 1

2 (the value obtained by putting q = 1 on the RHS
of (1.6.23)).

On the other hand,

lim sup
γK

αK
= 0 (under GRH) (1.6.32)

by Theorems 1 and 3 below (for, say, N = 2).
When the degree of K over Q (NF), or over a rational subfield of K (FF), is

relatively small, there is a much better lower bound for γK , as follows.

Theorem 3. Put k = Q (NF),= Fq(t) (FF), and letK be an extension of k of degree
N > 1. Put

α∗K =
αK

N − 1
= log

√|d|
N − 1

(NF),

= (g − 1) log q

N − 1
(FF),

(1.6.33)
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and assume α∗K > 1. Then

α∗K + 1

α∗K − 1
(γK + cK) > −2(N − 1)(log α∗K + 1) (NF, under GRH)

> −2(N − 1)(log α∗K +
α∗K

α∗K − 1
) (FF).

(1.6.34)

Remarks.
(i) Granville–Stark [G-S, Section 3.1] gave an equivalent statement when

[K : Q] = 2 (in fact, L′(1, χ)/L(1, χ) = γK − γQ), whose argument applies
also to abelian extensions over Q. Our theorem was motivated by [G-S].

(ii) The bound given by Theorem 3 is sharp in the following sense. The RHS of
(1.6.34) cannot be replaced by its quotient by such an f (N) (NF) (respectively, fq(N)
(FF, for a fixed q > 2)) that tends to ∞ as N → ∞. This can be proved easily by
using a family ofK satisfying (1.6.29) (NF), respectively, (2.1.8) (Section 2.1) (FF).
The point is that, in each case, one can find a subsequence of K such that αK →∞
and that the following (finite) limits lim α∗K > 1 and lim γK

αK
< 0 exist.

Proof. This will be based on the Main Lemma and the four inequalities

�K(x) ≤ N ·�k(x), (1.6.35)

�k(x) < log x, (1.6.36)

�K(x) ≥ 0, (1.6.37)

each for all x > 1, and
βK < −[K : Q]. (1.6.38)

Among them, (1.6.35) is trivial, (1.6.36)(FF) and (1.6.37) both follow directly from
Lemma 1 of Section 1.5, and (1.6.38) holds because γ + log 2π = 2.415 · · · > 2.
The inequality �Q(x) < log x can be proved easily as follows. Since �Q(x), log x
are both monotone increasing, it is enough to show�Q(x) ≤ log(x − 1) for integers
x = n ≥ 2 (note the shift x → x−1 on the right side). But by the prime factorization
of n!, we have

log n! =
∑
pk≤n

[
n

pk

]
logp ≥

∑
pk≤n

(
n+ 1

pk
− 1

)
logp

= n�Q(n+ 1);
(1.6.39)

hence

�Q(n+ 1) ≤ 1

n
log(n!) ≤ log n (1.6.40)

for all n ≥ 1.
Now we proceed to the proof of Theorem 3. By (1.6.35), (1.6.36), and then by

(1.4.1), (1.5.2), (1.6.37), we obtain
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N log x > �K(x) = log x + αK + βK + rK(x)+ �K(x)
≥ log x + αK + βK −

(√
x + 1√
x − 1

)
(γK + αK + βK + cK).

Therefore,

(N − 1) log x > − 2√
x − 1

(αK + βK)−
√
x + 1√
x − 1

(γK + cK).

Putting x = (α∗K)2, we obtain

α∗K + 1

α∗K − 1
(γK + cK) > −2(N − 1) log α∗K −

2

α∗K − 1
(αK + βK).

The rest follows directly by (1.6.38) in the NF case. )�
Corollary 2. If N and q (in the FF case) are fixed and α∗K →∞, then

γK > −2(N − 1+ ε) log(log |d|) (NF, under GRH )

> −2(N − 1+ ε) log((g − 1) log q) (FF).
(1.6.41)

1.7 Supplementary remarks related to computations of γK

An accurate computation of γK for each individual K is not the main issue of this
paper. Still, it should probably be pointed out that there are other ways of computing
γK that are better at least microscopically.

One is the classical Landau formula generalizing the well-known Euler formula
forK = Q. LetK be a number field, let ζK(s) =∑∞

n=1 ann
−s be the Dirichlet series

expansion of ζK(s) on Re(s) > 1, and put SK(x) =∑n≤x an, so that

ζK(s) = s
∫ ∞

1
SK(x)x

−s−1dx (Re(s) > 1). (1.7.1)

Further, put κK = lims→1(s − 1)ζK(s) = limx→∞(SK(x)/x), and

BK(x) = κ−1
K

∑
n≤x
ann

−1 − log x (x ≥ 1). (1.7.2)

Then the Landau formula asserts that

γK = lim
x→∞BK(x). (1.7.3)

(Compare this with (1.6.1), and note that log(x) appears with opposite signs!)
Now, there exist positive constants ε,C and x0 ≥ 1 (all depending onK) such that

|SK(x)− κKx| ≤ Cx1−ε (x ≥ x0). (1.7.4)
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So we can change the order of integration and passage to the limit s → 1, on the RHS
of (1.7.1) with SK(x) − κKx in place of SK(x). This gives an expression for γK in
terms of the definite integral of (SK(x) − κKx)x−2dx from 1 to ∞. But since that
from 1 to x is nothing but κKBK(x)− SK(x)x−1, we obtain directly

|γK − BK(x)| ≤ κ−1
K C(1+ ε−1)x−ε (x ≥ x0). (1.7.5)

As for (1.7.4), although certainly not the best possible bound (as the well-known case
of K = Q(

√−1)—counting lattice points in circles—indicates), a general method
(cf., e.g., [La, VI]) shows that one can take ε = [K : Q]−1 and can compute C
by using the geometry of numbers. For [K : Q] = 2, the exponent = − 1

2 of x in
(1.7.5) is as strong as our conditional estimate given in Section 1.6. The constant C
computed by following the method of loc. cit. is generally large compared with αK ,
but the actual convergence seems considerably faster than what we expect from such
a bound.

The second is for the case of quadratic fields. We have to rely on the notation of
Section 2.2 below. When K is imaginary, we have the Kronecker formula (2.2.1).
When K is real, there is also Hecke’s formula [H], which gives

γK = −1

2
log(dK)+ 2γQ + 1

hK

∑
C

iC. (1.7.6)

Here C runs over the narrow ideal classes of K , hK is the narrow class number, and
iC is defined as follows. Pick any ideal from C−1 with a Z-basis α1,α2 satisfying
α1α

′
2-α′1α2 > 0 (α′i is the conjugate of αi), and put

ω(y) = α2y + iα′2
α1y + iα′1

(i = √−1, 0 < y <∞). (1.7.7)

(Its image is a semicircle in the complex upper half-plane orthogonal to the real axis.)
Then

iC = − 1

log ε

∫ ε

ε−1
log(|η(ω)|2 Im(ω)1/2)dy/y, (1.7.8)

where ε is the fundamental unit> 1 ofK . (There is a small error in [H]. The formula
form [H, two lines below (4)] is actually that for 4m; the next two formulas will give
1
2 of the residue and of the constant term, if log 4 in [H, (5)] is replaced by log 2.)

For example, when K = Q(
√

10), where ε = 3 + √
10 and h = 2, (1.7.6)

(rewritten as the average of − 1
2 log(dK)+ 2γQ + iC) gives

γK = 1

2
(0.868877+ 0.402405) = 0.635641.

On the other hand,BK(105) = 0.635861, and the GRH bounds given by Proposition 2
in Section 1.6 for x = 105 give 0.634696 < γK < 0.639418. Finally, AK(105) =
0.636813, for

AK(x) = log(x)−�K(x)− 1. (1.7.9)



Euler–Kronecker constants of global fields and primes with small norms 437

2 Some special families of K

2.1 Curves over Fq with many rational points

When K corresponds to such a curve, γK tends to be negative with a large absolute
value. In fact, as a direct application of Theorem 1, we obtain the following.

Theorem 4. (FF): Fix any prime power q and ε > 0. Then

γK

(gK − 1) log q
< ε − N1(K)

(q − 1)(gK − 1)
(2.1.1)

holds as long as the exact constant field ofK is Fq and the genus gK ofK is sufficiently
large. Here N1(K) is the number of Fq -rational points of the curve corresponding
to K .

Proof. Let αK = (gK − 1) log q > 0. Then Theorem 1 gives

γK <

(
αK + 1

αK − 1

)(
2 log αK + 1+ log q −�K(α2

K)
)
. (2.1.2)

Let gK be so large that αK > q, and take m ∈ N such that

q2 ≤ qm ≤ α2
K < q

m+1. (2.1.3)

Then by the definition of �K(x),

�K(α
2
K) ≥

N1(K)

α2
K − 1

(
α2
K

(
1

q
+ · · · + 1

qm

)
−m

)
log q;

hence

−
(
αK + 1

αK − 1

)
�K(α

2
K) ≤ − N1(K)

(αK − 1)2

{
α2
K(1− q−m)
q − 1

−m
}

log q.

Now let gK be so large that

αK > (q − 1)

(
log αK
log q

+ 1

2

)
+ 1;

hence

αK >
1

2
(q − 1)(m+ 1)+ 1. (2.1.4)

Then by (2.1.3), (2.1.4), we obtain α2
Kq

−m+mq < (m+1)q < 2αK +m−1; hence

α2
K(1− q−m)−m(q − 1) > (αK − 1)2. (2.1.5)

Therefore,
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−
(
αK + 1

αK − 1

)
�K(α

2
K) < −N1(K)

q − 1
log q; (2.1.6)

hence by (2.1.2), we obtain

γK

αK
<

(
αK + 1

αK − 1

)(
2 log αK
αK

+ 1+ log q

αK

)
− N1(K)

(q − 1)(gK − 1)
. (2.1.7)

Therefore, if gK is so large that the first term on the RHS is < ε, we have

γK

αK
< ε − N1(K)

(q − 1)(gK − 1)
. )�

We shall combine this with two typical results on curves with many rational points.
First, we refer to the following.

Theorem (Elkies–Howe–Kresch–Poonen–Wetherell–Zieve [E, Section 3.2]).
There exists a positive absolute constant c0 such that for any prime power q, and
any g ≥ 1, there exists a curve X over Fq of genus g such that

#X(Fq) ≥ c0(log q)(g − 1). (2.1.8)

Combining this with Theorem 4, we obtain the following.

Corollary 3. For any fixed prime power q, we have

C(q) ≤ −c0
log q

q − 1
. (2.1.9)

Corollary 4. Fix any prime power q. Then for any sufficiently large g, there exists
K over Fq with genus g such that γK < 0.

Secondly, let us recall the following.

Theorem ([I1, I2, TVZ]). When q is a square, there exist Shimura curvesX over Fq
of growing genus g such that

#X(Fq) ≥ (√q − 1)(g − 1). (2.1.10)

Therefore, by Theorems 2 and 4, we obtain the following.

Corollary 5. Let q be a square. Then

C(q) = − 1√
q + 1

. (2.1.11)

Corollary 6. Let q be a square, and K be the function field of a Shimura curve over
Fq corresponding to a (∞ × p)-adic discrete subgroup  in the sense of [I1, I2].
Suppose that  is torsion-free, and{ √

q > 3,

g − 1 > 3(q + 1)/2(
√
q − 3).

(2.1.12)

Then γK < 0.
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Proof. In Proposition 2(i), take x = q2. Then

γK ≤ q + 1

q − 1

(
2 log q −�K(q2)

)
+ 2αK
q − 1

− cq

≤ q + 1

q − 1

(
2 log q − N1(K)

q2 − 1
(q − 1) log q

)
+ 2αK
q − 1

− cq .
(2.1.13)

But N1(K) ≥ (
√
q − 1)(gK − 1) when K corresponds to such a Shimura curve.

Therefore,

γK

αK
≤ q + 1

q − 1

(
2

gK − 1
−
√
q − 1

q + 1

)
+ 2

q − 1
− cq

αK

= 1

q − 1

{
(3−√

q)+ 3

2

q + 1

gK − 1

}
,

(2.1.14)

from which the desired assertion follows at once. )�

2.2 Imaginary quadratic fields

LetK be an imaginary quadratic field with discriminant d(< 0). Then the Kronecker
limit formula, averaged over all the ideal classes of K , gives the following.

Theorem (Kronecker).

γK = −1

2
log |d| + 2γQ − log 2+ 1

h

∑
C

tC. (2.2.1)

Here h = hK is the class number of K , C runs over all ideal classes of K ,

tC = −2 log(|η(ωC)|2 · Im(ωC)
1/2), (2.2.2)

η(τ) = q 1
24

∞∏
n=1

(1− qn), q = e2πiτ (Im(τ ) > 0) (2.2.3)

is the Dedekind η-function, and ωC is defined as follows. Pick any ideal from C−1,
with a Z-basis [ω1, ω2] such that Im(ω2/ω1) > 0. Then we put ωC = ω2/ω1. Since
the function

|η(τ)|2(Im(τ )) 1
2 (2.2.4)

is SL2(Z)-invariant, tC is well defined.

Remark. Each tC is positive. Indeed, the maximal value M of (2.2.4) on the upper
half-plane is attained at τ = 1

2 (1+
√

3i), and

M = 0.596450134 . . . , logM = −0.516759638 . . . . (2.2.5)

Since −tC ≤ 2 logM < 0, we see that tC is always positive.
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Now, one notes that the contribution of the principal ideal class C0 to the formula
(2.2.1) is extraordinarily large. Indeed,

tC0 ∼
1

6
π
√|d|, (2.2.6)

which is “too large’’compared with our upper bound∼ log log |d| for γK under GRH.
So, this “too outstanding a contribution of the principal class’’ should be “pulled
down’’ by averaging over a large number of nonprincipal classes. We thus obtain, by
combining with Theorem 1, the following.

Theorem 5 (under GRH). If αK = 1
2 log |dK | > 1.16. (i.e., |dK | ≥ 11), then

hK >

π
6

√|dK | − αK + b1

αK + 2 log αK + b2 + c(αK) , (2.2.7)

with small b1, b2, c(αK) given by⎧⎪⎪⎪⎨⎪⎪⎪⎩
b1 = 2 logM + log 2− 4q0 = −0.34037− 4q0, q0 = e−π

√|dK |,
b2 = 2 logM − 2γQ + log 2+ 1 = −0.49480 . . . ,

c(t) = 4 log t + 2

t − 1
.

(2.2.8)

Proof. Write ⎧⎪⎪⎨⎪⎪⎩
γK = 1

h

(∑
C

tC

)
− ξ,

ξ = αK − 2γQ + log 2.

(2.2.9)

Take t0 > t1 > 0 such that

t0 ≤ tC0 , t1 ≤ tC (all C), (2.2.10)

and a majorant U for γK , viz.,
γK ≤ U. (2.2.11)

Then
t0 − t1
h

+ t1 ≤ 1

h

(∑
C

tC

)
≤ U + ξ ; (2.2.12)

hence U + ξ − t1 is positive and

h ≥ t0 − t1
U + ξ − t1 . (2.2.13)

For t1, we choose t1 = −2 logM; and for t0, we may choose

t0 = π
√|dK |

6
− 4q0 − log

√|dK |
2

(q0 = e−π
√|dK |) (2.2.14)
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(see below). Finally, choose U as in Theorem 1,

U =
(
αK + 1

αK − 1

)
(2 log αK + 1), (2.2.15)

and we obtain the theorem by (2.2.13). Here it remains to check that t0 given by
(2.2.14) satisfies both

(i) t0 ≤ tC0 and (ii) − 2 logM < t0.

(i) For ωC0 , we may choose (
√|dK |i)/2, respectively, (1+√|dK |i)/2, according

to whether dK ≡ 0 (mod 4), respectively, dK ≡ 1 (mod 4); hence

tC0 = − log

√|dK |
2

+ π
√|dK |

6
− 4 log

∞∏
n=1

(1− (εq0)
n), (2.2.16)

with ε = 1, respectively, −1. But
∏∞
n=1(1 − (εq0)

n) < 1, respectively, < 1 +
q0; hence

tC0 > − log

√|dK |
2

+ π
√|dK |

6
−
{

0, dK ≡ 0 (mod 4),

4q0, dK ≡ 1 (mod 4),
(2.2.17)

which settles (i).
(ii) For αK > 1.16, we have t0 > 1.2032 > 1.0335 · · · = −2 logM . )�

Remark. As the above proof shows, the term−4q0 in the formula for b1 in Theorem 5
is unnecessary when dK ≡ 0 (mod 4).

A similar result has already been obtained by Granville–Stark [G-S, Theorem 1]
(note that the unconditional [G-S, Theorem 2] still contains L′(1, χ)/L(1, χ) =
γK − γQ).

S. Louboutin kindly informed the author that, as an asymptotic formula, there is
an essentially stronger (and much older) result due to Littlewood [Li];

h log log |d|√|d| >
π. exp(−γQ)

12
− o(1) (under GRH). (2.2.18)

(As asymptotic formula, this is better than Theorem 5 when log |d|/ log log |d| ≥
4 exp(γQ), and hence when |d| has 10 or more digits.)

2.3 The field Kp

For each odd prime p, let Kp denote the unique cyclic extension of degree p over Q
contained in the field Q(µp2) ofp2th roots of unity. It is totally real, with discriminant
d = dp = p2p−2, whence

log
√
d = (p − 1) logp. (2.3.1)
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Let � be any prime number �= p. Then, by class-field theory,

� decomposes completely in Kp ←→ � p−1 ≡ 1 (mod p2).

We shall study the invariant
γp = γKp (2.3.2)

in connection with the following set of primes

W(p) = {�; primes < p, �p−1 ≡ 1 (mod p2)}. (2.3.3)

For example, the list of nonemptyW(p) with p < 100 is

W(11) = {3}, W(43) = {19}, W(59) = {53},
W(71) = {11}, W(79) = {31}, W(97) = {53}.

Among the 14 primes p with 900 < p < 1000, only three primes p satisfy
W(p) �= ∅ (namely, p = 907, 919, 983). The known primes p such that W(p)
contains 2 (respectively, 3) are p = 1093, 3511 (respectively, p = 11, 1006003).

Theorem 6. Under GRH for Kp, we have

(i)

γp < i
′
p{2 log(p − 1)+ 2 log logp + 1} − p

⎛⎜⎜⎜⎝ ∑
�k<p
�∈W(p)

log �

�k

⎞⎟⎟⎟⎠ .
(ii)

γp > −ip{2(p − 1)(log logp + 1)} − 1.

Here

i′p = 1+ 2

(p − 1) logp − 1
, ip = 1− 2

logp + 1
. (2.3.4)

The first inequality is a direct consequence of Theorem 1 in Section 1.6. Indeed,
each � ∈ W(p) has p distinct primes of Kp above �, so if we write αp = αKp =
(p − 1) logp, then (since α2

p − p ≥ (αp − 1)2 for p ≥ 3) we have

αp + 1

αp − 1
�K(α

2
p) ≥ p

∑
�k<p
�∈W(p)

α2
p − �k

(αp − 1)2
log �

�k
≥ p

∑
�k<p
�∈W(p)

log �

�k
. (2.3.5)

The second inequality is a special case of Theorem 3. Note that α∗K = logp.

Remark. One may replace the sum ∑
�k<p
�∈W(p)

log �

�k
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in Theorem 6(i) and the following Corollaries 7 and 8 by a somewhat larger sum

∑
�,k

log �

�k
,

where the primes � satisfy �p−1 ≡ 1 (mod p2) and k satisfies �k < 2αp − 1 (instead
of �k < p). The latter sum is also interesting, but in order not to blur the present
focus, we just give it as a remark instead of incorporating it in Theorem 6.

Combining (i) and (ii) of Theorem 6, we immediately obtain the following.

Corollary 7 (under GRH). For any ε > 0, there is an effectively computable bound
Nε such that if p > Nε, then

∑
�k<p
�∈W(p)

log �

�k
< 2 log logp + 2+ ε. (2.3.6)

Since
∑
�k<x(log �)/�k ∼ log x, this is in agreement with a result of Lenstra [Le,

Theorem 3] which asserts (unconditionally!) that there exists some prime � /∈ W(p)
with � < 4(logp)2.

Remark. Lenstra also gives an asymptotic bound

(4e−2 + ε)(logp)2.

The agreement would have been perfect if the second term on the right side of (2.3.6)
had been log 4− 2 instead of 2. But we have not been able to make this replacement.

Corollary 8 (under GRH).

(i)

lim

(
γp

(p − 1) logp

)
= 0.

(ii)

lim sup

(
γp

p

)
≤ lim sup

⎛⎜⎜⎜⎝γpp +
∑
�k<p
�∈W(p)

log �

�k

⎞⎟⎟⎟⎠ ≤ 0.

(iii)

−2 ≤ lim inf

(
γp

p log logp

)
.
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By Theorem 6(i), ifW(p) contains small primes �, then γp tends to be negative.
For example, γ3, γ5, γ7 are positive, but γ11 is negative, reflectingW(11) 3 3. Also,
γ1093 is “very negative,’’ reflecting W(1093) 3 2 (see Table 1 below). It is an
interesting problem to investigate the asymptotic behaviors of γp, γp/p, etc. In
particular, the determination of the value of

lim inf
γp

p
(≤ 0)

will have the following implications.

Corollary 9 (under GRH).

(i) If lim inf γp
p
= 0, then for each prime �, there exist at most finitely many primes

p that satisfy
�p−1 ≡ 1 (mod p2).

(ii) If for each prime �, all but finitely many primes p satisfy

�p−1 ≡ 1 (mod p2),

then lim inf γp
p
= −∞.

Proof.

(i) If for some � there exist infinitely many p such that �p−1 ≡ 1 (mod p2), then by
Theorem 6(i),

lim inf
γp

p
≤ − log �

�− 1
< 0.

(ii) Under this assumption, by Theorem 6(i),

lim inf
γp

p
≤ −

∑
�

log �

�− 1
= −∞. )�

Table 1 shows the approximate values of γp for p < 110, and for several primes
around p = 1093, 3511 (the two known p such thatW(p) contains 2) , under GRH.
Let �p (respectively, up) denote the lower (respectively, upper) bound for γp given
by Proposition 2 in Section 1.6 for x = x0 = 5× 104, and put

γ ′p =
1

2
(�p + up),

γ ′′p = log x0 −�Kp(x0)− 1,

εp = 1

2
(up − �p),

so that (under GRH) γp should lie in between γ ′p ± εp, and γ ′′p should also be close
to γp.

Note how “conspicuously negative’’ the values of γ ′p, γ ′′p are whenW(p) contains
small primes!
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Table 1.

p γ ′′p γ ′p εp

3 1.76673 1.76741 0.00270354
5 1.6981 1.69927 0.0122214
7 1.84553 1.84723 0.032591
11 −1.43302 −1.43032 0.0577191
13 0.468641 0.472016 0.107757
17 3.5781 3.58283 0.210134
19 4.53435 4.53974 0.25948
23 4.47064 4.47731 0.346256
29 2.32308 2.33163 0.46998
31 4.61964 4.62896 0.540857
37 5.6061 5.6175 0.70755
41 4.2761 4.28883 0.805977
43 −0.929757 −0.916538 0.81594
47 −2.6783 −2.66375 0.91587
53 6.05396 6.071 1.17309
59 0.428977 0.447956 1.30809
61 4.62301 4.64288 1.40864
67 6.03706 6.05918 1.6139
71 −12.8724 −12.8496 1.57591
73 5.99832 6.02267 1.81104
79 −3.85765 −3.83146 1.92486
83 1.21387 1.24177 2.10718
89 7.51911 7.54953 2.37227
97 −5.02725 −4.99428 2.54395
101 2.75934 2.79415 2.75782
103 −2.22423 −2.18885 2.7859
107 5.75378 5.79103 3.00361
109 5.59505 5.63306 3.07587

1069 −4.10435 −3.63507 51.7394
1087 −5.5176 −5.03975 52.7617
1091 −3.11201 −2.63214 53.0135
1093 −748.191 −747.74 46.4644
1097 3.54759 4.03061 53.4188
1103 7.84455 8.33062 53.8033
1109 −0.666736 −0.178118 54.0736

3499 9.81761 11.521 206.78
3511 −2423.07 −2421.45 185.836
3517 7.66195 9.37476 207.986

2.4 The field index of Kp

We shall give some applications to the field index ofKp in the sense of [G]. In general,
let K be a number field and OK be the ring of integers of K . For each ξ ∈ OK ,
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consider the discriminant D(ξ) = I (ξ)2 · dK of ξ . Thus I (ξ) = (OK : Z[ξ ]). The
greatest common divisor IK of the I (ξ) is called the field index ofK . Clearly, IK = 1
if OK is generated by a single element. When K = Kp, write IK = Ip. Then

�|Ip ←→ � ∈ W(p) = {�; primes < p, �p−1 ≡ 1 (mod p2)}.
This is obvious by the Dirichlet pigeonhole principle (p pigeons are the conjugates
of ξ , and � holes are the residue classes modulo a fixed prime factor of �) and the
Chinese remainder theorem. In particular, Ip > 1 if and only if W(p) �= ∅. The
exponent of � ∈ W(p) in Ip can be expressed explicitly as

ord� Ip =
∑
�k<p

C(p, �k), (2.4.1)

where C(m, n) denotes the following combinatorial number.
Consider finite setsM,N of ordersm, n, respectively, withm > n. For each map

f : M → N , let nf be the number of unordered pairs (µ,µ′) of distinct elements
of M such that f (µ) = f (µ′). Define C(m, n) = Minf (nf ) (> 0). Clearly,
nf attains the minimal value C(m, n) if and only if the maximal difference among
#f−1(µ) (µ ∈ N) is at most 1. (So if we writeM = {1, 2, . . . , m}, the mod �k map
fk : M → Z/�k satisfies nfk = C(m, �k) for all k such that �k < m. This explains
the remaining key point underlying the equality (2.4.1).) Explicitly,

C(m, n) =
[m
n

](
m− 1

2
n− 1

2

[m
n

]
n

)
. (2.4.2)

We have
m

2n
(m− n) ≤ C(m, n) ≤ m

2n
(m− n)+ n

8
. (2.4.3)

(In fact, the left and right sides of (2.4.3) are given, respectively, by

C(m, n)− 1

2n
k(n− k), C(m, n)+ 1

8n
(n− 2k)2,

where k is defined by m = [m
n
]n+ k (0 ≤ k < n).) Since

log Ip =
∑

�∈W(p)
ord�(Ip) log �

=
∑

�∈W(p)
�k<p

C(p, �k) log �, (2.4.4)

we see that log Ip is fairly close to, and is bounded from below, by

p

2

∑
�∈W(p)
�k<p

( p
�k
− 1
)

log � = 1

2
(p − 1)�Kp(p). (2.4.5)

This was the initial motivation for our study of�K(x). Combining with our previous
bounds for γp, we obtain some estimations of log Ip, as follows.
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Proposition 4 (under GRH).

(i) For each ε > 0, if p ≥ Nε, then

log Ip < (1+ ε)p2 log logp.

(ii) If γp < −2
√
p logp, thenW(p) �= ∅, and

log Ip >
1

2
(γQ + log 4π)p

√
p.

Sketch of proof.

(i) By (2.4.3), (2.4.4), we have

log Ip ≤ p − 1

2
�Kp(p)+

1

8

∑
�∈W(p)
�k<p

�k log �

<
p − 1

2
�Kp(p)+

p

8

⎛⎝∑
�k<p

log �

⎞⎠ .
(2.4.6)

By using the explicit formula for �Kp(p), together with the upper bound

rKp(p) ≤ −
√
p − 1√
p + 1

(αKp + βKp + γp + 1) (2.4.7)

(the Main Lemma and (1.3.11)), we obtain

log Ip < −p − 1

2
γp +O(p2). (2.4.8)

Therefore, by Theorem 6(ii), we obtain

log Ip
p2 log logp

< 1+ o(1). (2.4.9)

(ii) We have

log Ip ≥ p − 1

2
�Kp(p). (2.4.10)

By using the explicit formula for �Kp(p), the lower bound for rKp(p) ((1.5.2),
(1.4.1)), and the inequality �Kp(p) > logp (by (1.5.9)), we obtain

�Kp(p) > −2
√
p logp +√

p(γQ + log 4π)−
√
p + 1√
p − 1

(γp + 1), (2.4.11)

from which the desired inequality follows directly. )�
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2.5 The field index of Kp (continued)

Finally, we shall show that the above conditional upper bound (Proposition 4(i)) for
log Ip is essentially stronger than what one can obtain by the “easier’’ method, i.e.,
by using the index of a standard generator of Kp. Put⎧⎪⎨⎪⎩

 p = {δ ∈ (Z/p2)×; δp−1 = 1},
ηp =

∑
δ∈ p

ζ δ, (2.5.1)

where ζ = exp(2π
√−1/p2). Then Kp = Q(ηp), and the ring of integers Op

is spanned over Z by 1 and the conjugates of ηp. (The trace of ηp is 0). As Ip
divides I (ηp), any estimation of the latter from above gives rise to that of the former.
Recall that

D(ηp) = I (ηp)2p2p−2. (2.5.2)

By Lemma 2 below, we obtain

D(ηp) < p
p · (p − 1)p−1 · · · 22 · 11. (2.5.3)

This gives

logD(ηp) <
p∑
i=1

i(log i)

<
1

2
p2 logp − 1

4
p2 + p logp + 1− 2 log 2,

(2.5.4)

and hence we have the following.

Proposition 5 (unconditional).

log Ip <

(
1

4
+ ε
)
p2 logp. (2.5.5)

Note the difference “log log vs. log,’’ between Propositions 4(i) and 5.

Remarks.
(i) Mahoro Shimura has shown by numerical computations that the upper bound

for logD(ηp) provided by (2.5.3) is quite close to the actual values (the ratio of their
log is 0.98 . . . for p � 400).

(ii) Each prime factor � of I (ηp) must satisfy �p−1 ≡ 1 (mod p2), but not nec-
essarily � < p. Shimura has also shown that I (ηp) is often divisible by much
larger primes �. This phenomenon appears already at p = 11, where I11 = 317 but
I (η11) = 322 × 457, and continues on.
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We conclude this section by stating the lemma in question. Take n(≥ 2) real
numbers x1, . . . , xn, and put {

nS = x1 + · · · + xn,
nT = x2

1 + · · · + x2
n.

(2.5.6)

Then S2 ≤ T , with equality only if x1 = · · · = xn. Now fix S, T ∈ R satisfying
S2 < T , and let x1, . . . , xn vary under the restrictions (2.5.6). Consider the maximal
value of the discriminant

D =
∏

1≤i<j≤n
(xi − xj )2 (2.5.7)

under (2.5.6).

Lemma 2 (Schur). The maximal value of D is attained at the unique (unordered)
n-ple

(x0
1 , . . . , x

0
n)

determined as follows. Put

f (x) =
n∏
i=1

(x − x0
i ). (2.5.8)

Then this monic polynomial of degree n is determined uniquely by the differential
equation

f ′′(x)+ (a − bx)f ′(x)+ nbf (x) = 0, (2.5.9)

where

b = n− 1

T − S2
, a = bS. (2.5.10)

The maximal value of D is given by

D = nn(n− 1)n−1 · · · 2211

b
1
2n(n−1)

. (2.5.11)

Remark. This “another Schur’s lemma’’ was kindly pointed out to me by J-P.Serre.
We may assume S = 0 by translation,and then the maximal value problem will be
the same whether we impose S = 0 or do not fix S (see [Sc, Section 2]).

Now let us taken = p and {xi} to be the conjugates of ηp. Then S = 0, T = p−1,
hence a = 0, b = 1. Hence (2.5.3) follows. Comparison of exponents of p shows
that the two sides of (2.5.3) can never be equal.

2.6 Concluding remarks

This paper consists mostly of inequalities, functional and numerical, under the gener-
alized Riemann hypothesis in the number field case. Computational data, including
graphical ones related to�K(x), log x, γK and the upper and the lower bounds given
by Proposition 2, impressively fit with the conditional results.
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However, a more interesting problem related to γK is its total behavior when we
consider a natural family of K , for example, a family of curves over Fp arising from
a two-dimensional scheme over Z or Fp. We hope to be able to report on this, too, in
the near future.

Acknowledgments. I wish to express my deep gratitude to Professor M. A. Tsfasman for valu-
able comments related to the NF analogue of Theorem 2 and for providing a related text to
this volume [Ts2], to Professor J.-P. Serre for helpful information, to Dr. M. Shimura for all
his technical assistance including those related to numerical computations, and to the referee
for valuable suggestions for the improvement of the presentation.
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Summary. This appendix to the beautiful paper [1] of Ihara puts it in the context of infinite
global fields of our papers [2] and [3]. We study the behaviour of Euler–Kronecker constant
γK when the discriminant (genus in the function field case) tends to infinity. Results of [2]
easily give us good lower bounds on the ratio γK/ log

√|dK |. In particular, for number fields,
under the generalized Riemann hypothesis we prove

lim inf
γK

log
√|dK |

≥ −0.26049 . . . .

Then we produce examples of class-field towers, showing that

lim inf
γK

log
√|dK |

≤ −0.17849 . . . .

1 Introduction

Let K be a global field, i.e., a finite algebraic extension either of the field Q of
rational numbers, or of the field of rational functions in one variable over a finite field
of constants. Let ζK(s) be its zeta-function. Consider its Laurent expansion at s = 1,

ζK(s) = c−1(s − 1)−1 + c0 + c1(s − 1)+ · · · .
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In [1] Yasutaka Ihara introduces and studies the constant

γK = c0/c−1.

There are several reasons to study it:

• It generalizes the classical Euler constant γ = γQ.
• For imaginary quadratic fields, it is expressed by a beautiful Kronecker limit

formula.
• For fields with large discriminants, its absolute value is at most of the order of

const × log
√|dK |, while the residue c−1 itself may happen to be exponential in

log
√|dK |; see [2].

In this appendix, we study the asymptotic behaviour of this constant when the
discriminant (genus in the function field case) of the field tends to infinity. It is
but natural to compare Ihara’s results [1] with the methods of infinite zeta-functions
developed in [2].

Let αK = log
√|dK | in the number field case and αK = (gK − 1) log q in the

function field case over Fq . In the number field case, Ihara shows that

0 ≥ lim sup
K

γK

αK
≥ lim inf

K

γK

αK
≥ −1.

We improve the lower bound to the following.

Theorem 1. Assuming the generalized Riemann hypothesis, we have

lim inf
K

γK

αK

≥ − log 2+ 1
2 log 3+ 1

4 log 5+ 1
6 log 7

1√
2−1

log 2+ 1√
3−1

log 3+ 1√
5−1

log 5+ 1√
7−1

log 7+ 1
2 (γ + log 8π)

= −0.26049 . . . .

Remarks. Unconditionally we get lim inf γK/αK ≥ −0.52227 . . . .
In the function field case, using the same method, we get 0 ≥ lim sup γK/αK ≥

lim inf γK/αK ≥ −(√q + 1)−1, which, of course, coincides with Ihara’s result [1,
Theorem 2].

Let us remark that the upper bound 0 is attained for any asymptotically bad
family of global fields, and that the lower bound in the function field case is attained
for any asymptotically optimal family (such that the ratio of the number of Fq -points
to the genus tends to

√
q − 1), which we know to exist whenever q is a square.

Hence lim sup γK/αK = 0 and in the function field case with a square q, we have
lim inf γK/αK = −(√q + 1)−1.

In Section 3 we construct examples of class-field towers proving (unconditionally)
the following.
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Theorem 2.

lim inf
K

γK/αK ≤ − 2 log 2+ log 3

log
√

5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37
= −0.17849 . . . .

This slightly improves the examples given by Ihara in [1].
In the number field case set βK = −( r12 (γ + log 4π) + r2(γ + log 2π)). If we

complete γK by archimedean terms, we get the following.

Theorem 3. Let γ̃K = γK + βK . Then under the generalized Riemann hypothesis,
we have

lim inf
K

γ̃K

αK
≥ −γ + log(2π)

γ + log(8π)
= −0.6353 . . . .

It is much easier to see that lim sup γ̃K/αK ≤ 0 , and that 0 is attained for any
asymptotically bad family (i.e., such that all φs vanish; see the definitions below).

The best example we know gives (unconditionally) the following.

Theorem 4.
lim inf
K

γ̃K/αK ≤ −0.5478 . . . .

2 Bounds

Let us consider the asymptotic behaviour of γK . We treat the number field case. (The
same argument in the function field case leads to [1, Theorem 2].) Let |dK | tend to
infinity. By [2, Lemma 2.2], any family of fields contains an asymptotically exact
subfamily, i.e., such that for any q there exists the limit φq of the ratio of the number
�q(K) of prime ideals of norm q to the “genus’’αK , and also the limits φR and φC of
the ratios of r1 and r2 to αK . To find lim inf γK/αK and lim inf γ̃K/αK , it is enough
to find corresponding limits for a given asymptotically exact family, and then to look
for their minimal values. In what follows, we consider only asymptotically exact
families.

Theorem 5. For an asymptotically exact family {K}, we have

lim
K

γK

αK
= −

∑ φq log q

q − 1
,

where q runs over all prime powers.

Proof. The right-hand side equals ξ0
φ(1), where ξ0

φ(s) is the log-derivative of the
infinite zeta-function ζφ(s) of [2]. The corresponding series converges for Re s ≥ 1
[2, Proposition 4.2]. We know [1, (1.3.3) and (1.3.4)] that

γK = − lim
s→1

(
ZK(s)− 1

s − 1

)
,
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where for Re(s) > 1,

ZK(s) = −ζ
′
K

ζK
(s) =

∑
P,k≥1

logN(P )

N(P )ks
=
∑
q

�q(K)
log q

qs − 1
.

By the same [2, Proposition 4.2],
ζ ′K
ζK
(s)→ ξ0

φ(s), and hence γK/αK → ξ0
φ(1). )�

Proof of Theorem 1. We have to maximize
∑ φq log q

q−1 under the following conditions:

• φq ≥ 0.
• For any prime p we have

∑∞
m=1mφpm ≤ φR + 2φC.

•
∑
q
φq log q√
q−1 +φR(log 2

√
2π+ π

4 + γ
2 )+φC(log 8π+γ ) ≤ 1 (the Basic Inequality,

[2, GRH-Theorem 3.1]).

If we put

a0 = log
√

8π + π
4
+ γ

2
, a1 = log 8π + γ, aq = log q√

q − 1
,

b0 = b1 = 0, bq = log q

q − 1
,

we are under [2, Section 8, conditions (1)–(4) and (i)–(iv)].
Theorem 1 is now straightforward from [2, Proposition 8.3]. Indeed, the maxi-

mum is attained for φpm = 0 for m > 1, φR = 0, and φ2 = φ3 = φ5 = φ7 = 2φC.
(Calculation shows that starting from p′ = 11, the last inequality of [2, Proposi-
tion 8.3] is violated.) )�
Proof of Theorem 3. This proof is much easier. Since in this case all coefficients are
positive and the ratio of the coefficient of the function we maximize to the correspond-
ing coefficient of the Basic Inequality is maximal for φC, the maximum is attained
when all φs vanish except for φC. )�
Remarks. If we want unconditional results, then instead of the Basic Inequality we
have to use [2, Proposition 3.1]:

2
∑
q

φq log q
∞∑
m=1

1

qm + 1
+ φR

(
γ

2
+ 1

2
+ log 2

√
π

)
+ φC(γ + log 4π) ≤ 1.

For γ̃K/αK , one easily gets

lim inf
γ̃K

αK
≥ −γ + log(2π)

γ + log(4π)
= −0.7770 . . . .

The calculation for γK/αK is trickier since the last condition of [2, Proposition 8.3]
is not violated until very large primes. Changing the coefficients by the first term
(q + 1)−1, Zykin [5] gets

lim inf
γK

αK
≥ −0.52227 . . . .

Note that (for an asymptotically exact family) 1+ γ̃K/αK is just the value at 1 of the
log-derivative ξ(s) of the completed infinite zeta-function ζ̃ (s) of [2].
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3 Examples

Let us bound lim inf γK/αK from above. To do this, one should provide some exam-
ples of families. The easiest is, just as in [2, Section 9], to produce quadratic fields
having infinite class-field towers with prescribed splitting. The proof of Theorem 1
suggests that we should look for towers of totally complex fields, where 2, 3, 5, and 7
are totally split. This is, however, imprecise, because the sum of [2, Proposition 8.3]
varies only slightly when we change p0. Therefore, I also look at the cases when 2,
3, 5, 7, and 11 are split, and when only 2, 3, and 5 are split, or even only 2 and 3.
This leads to a slight improvement on [1, (1.6.30)].

Each of the following fields has an infinite 2-class-field tower with prescribed
splitting (just apply [2, Theorem 9.1]), and Theorem 5 gives the following list.

• For Q(
√

11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 67) (the ex-
ample of [2, Theorem 9.4]) R, 2, 3, 5, 7 totally split, we get lim inf γK/αK ≤
−0.1515 . . . .

• For Q(
√−13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 47 · 53 · 59 · 61 · 73 · 79) (the

example of [2, Theorem 9.5]) with 2, 3, 5, 7, and 11 split, we get −0.1635 . . . .
• For Q(

√−7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 43 · 79)with 2, 3, 5 split, we
get −0.1727 . . . .

• For Q(
√−7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37 · 41 · 47 · 59)with 2, 3, 5 split, we

get −0.1737 . . . .
• An even better example is found by Zykin [5]:

Q(
√−5 · 7 · 11 · 13 · 17 · 19 · 23 · 29 · 31 · 37)

with 2 and 3 split gives us −0.17849 . . . . This proves Theorem 2.

For lim inf γ̃K/αK , the Martinet field Q(cos 2π
11 ,

√
2,
√−23) (see [2, Theo-

rem 9.2]) gives −0.5336 . . . The best Hajir–Maire example (see [4, Section 3.2])
gives lim inf γ̃K/αK ≤ −0.5478 . . . This proves Theorem 4.
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Summary. Following ideas of Berger and Breuil, we give a new classification of crystalline
representations. The objects involved may be viewed as local, characteristic 0 analogues
of the “shtukas’’ introduced by Drinfeld. We apply our results to give a classification of
p-divisible groups and finite flat group schemes, conjectured by Breuil, and to show that a
crystalline representation with Hodge–Tate weights 0, 1 arises from a p-divisible group, a
result conjectured by Fontaine.
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Introduction

Let k be a perfect field of characteristic p > 0, W = W(k) its ring of Witt vectors,
K0 = W(k)[1/p], and K/K0 a finite totally ramified extension. In [Br 4] Breuil
proposed a new classification of p-divisible groups and finite flat group schemes over
the ring of integers OK of K . For p-divisible groups and p > 2, this classification
was established in [Ki], where we also used a variant of Breuil’s theory to describe flat
deformation rings, and thereby establish a modularity lifting theorem for potentially
Barsotti–Tate Galois representations.

In this paper we generalize Breuil’s theory to describe crystalline representations
of higher weight or, equivalently, their associated weakly admissible modules. To
explain our main theorem, fix a uniformiser π ∈ K with Eisenstein polynomialE(u),
and write S = W [[u]]. We equip S with the endomorphism ϕ, which acts via the
Frobenius on W , and sends u to up. Let Modϕ

/S denote the category of finite free
S-modules M equipped with a map ϕ∗(M)→ M whose cokernel is killed by some
power of E(u).
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Theorem 0.1. The category of crystalline representations with all Hodge–Tate weights
� 0 admits a fully faithful embedding into the isogeny category Modϕ

/S⊗Qp of

Modϕ
/S.

Unfortunately the embedding of the theorem is not essentially surjective. In this
sense the situation is not as good as for p-divisible groups. However, we do give an
explicit description of the image of the functor. To explain it, let O denote the ring
of rigid analytic functions on the open unit u-disk. Then S[1/p] corresponds to the
bounded functions in O. It turns out that the module M = M ⊗S O is equipped
with a canonical connection which has poles at a sequence of points corresponding
to the ideals ϕn(E(u))O ⊂ O. A module M is in the image of our functor if and only
if these poles are logarithmic (see Corollary 1.3.15 below).

In fact the theorem we prove is slightly more general than the above, and includes
the case of semistable representations. We refer to the reader to the body of the text
for the more general statement.

To prove the theorem we adapt the techniques of Berger [Be 1]. One can view
his results as relating the weakly admissible module attached to a semistable repre-
sentation and the (ϕ, )-module attached to the same representation [Fo 1]. (ϕ, )-
modules are constructed using norm fields for the cyclotomic extension. We develop
an analogue of Berger’s theory in a setting where the cyclotomic extension has been
replaced by the Kummer extensionK∞ = ∪n≥1K(

pn
√
π) (cf. [Br 1]). As in Berger’s

case, a crucial role in the construction is played by Kedlaya’s theory of slopes [Ke 1].
In particular, we again make use of Berger’s beautiful observation that the notion
of weak admissibility for filtered (ϕ,N)-modules is intimately related to that of a
Frobenius module over the Robba ring being of slope 0 in the sense of [Ke 1]. For
K = K0, the analogue of the theorem in the setting of the cyclotomic extension is
proved in [Be 2, Theorem 2].

Let us mention some applications of our results. Fix an algebraic closure K̄ of
K , and writeGK = Gal(K̄/K) andGK∞ = Gal(K̄/K∞). The following result was
conjectured by Breuil [Br 1], and proved by him for representations of GK arising
from p-divisible groups [Br 3, 3.4.3].

Theorem 0.2. The functor from crystalline representations of GK to p-adic GK∞ -
representations, obtained by restricting the action of GK to GK∞ , is fully faithful.

We also obtain a proof of Fontaine’s conjecture that weakly admissible modules
are admissible (see Proposition 2.1.5). This is at least the fourth proof, following
those of Colmez–Fontaine [CF], Colmez [Co], and Berger [Be 1]. Of course our
proof is related to the one of Berger.

As alluded to above, for crystalline representations with all Hodge–Tate weights
equal to 0 or −1, there is a refinement of Theorem 0.1. Namely the category of such
representations is equivalent to BTϕ

/S⊗Qp, where BTϕ
/S denotes the full subcategory

of Modϕ
/S consisting of objects M such that the cokernel of ϕ∗(M)→ M is killed by

E(u). On the other hand there is a functor from BTϕ
/S to the category of p-divisible

groups. This functor was first constructed for p > 2 in [Br 4] using the theory of



Crystalline representations and F -crystals 461

[Br 2], and it was conjectured to exist and be an equivalence for all p [Br 4, 2.1.2].
Here we construct it for allp using Grothendieck–Messing theory. As a consequence,
we establish the following two results.

Theorem 0.3. Any crystalline representation with all Hodge–Tate weights equal to 0
or 1 arises from a p-divisible group.

Theorem 0.4. There is a functor from BTϕ
/S to p-divisible groups. If p > 2 this

functor is an equivalence. For p = 2 it induces an equivalence on the associated
isogeny categories.

Theorem 0.3 was conjectured by Fontaine [Fo 3, 5.2.5], and proved by Laffaille
for ramification degree e(K/K0) � p − 1 [La, Section 2], and by Breuil for p > 2,
and k finite [Br 2, Theorem 1.4].

For p > 2, Theorem 0.4 was proved in [Ki] by a completely different method.
Finally, it was pointed out by Beilinson that, using Theorem 0.4, one can deduce a
classification of finite flat group schemes over OK when p > 2. A special case of
this had been conjectured by Breuil [Br 4, 2.1.1]. To explain this result we denote
by (Mod /S) the category of finite S-modules M which are killed by some power
of p, have projective dimension 1 (i.e., M has a two-term resolution by finite free
S-modules) and are equipped with a map ϕ∗(M)→ M whose cokernel is killed by
E(u). Then we have

Theorem 0.5. For p > 2, the category (Mod /S) is equivalent to the category of
finite flat group schemes over OK .

During the writing of this paper, I learned from V. Lafforgue that, with Genestier,
he had recently developed a theory remarkably parallel to ours in the function field
case [GL]. The characteristic p analogues of modules in Modϕ

/S are a sort of local
version of a “shtuka’’ in the sense of Drinfeld [Ka]. Drinfeld introduced these objects,
with stunning success, in order to study the arithmetic of function fields. Lafforgue
pointed out to us that the modules in our theory could be regarded as analogues of local
shtukas in the case of mixed characteristic. The connection with shtukas gives a first
hint that our theory, and related constructions using norm fields, which have no known
geometric interpretation, may have some deeper meaning. The question of whether
there is a global analogue of a shtuka for number fields is extremely tantalizing, and
suggests that Drinfeld’s ideas, which revolutionized the study of automorphic forms
over function fields, may yet find an application in this case. It is a pleasure to dedicate
this article to him.

1 F -crystals and weakly admissible modules

1.1 Preliminaries

Throughout the paper we will fix a uniformiser π ∈ K , and we denote by E(u) ∈
K0[u] the Eisenstein polynomial of π . We also fix an algebraic closure K̄ of K , and
a sequence of elements πn ∈ K̄ , for n a nonnegative integer, such that π0 = π , and
π
p

n+1 = πn. We write Kn+1 = K(πn).
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1.1.1. Let S = W [[u]]. We denote by Ŝn the completion of Kn+1 ⊗W S at the
maximal ideal (u − πn). The ring Ŝn is equipped with its (u − πn)-adic filtration,
and this extends to a filtration on the quotient field Ŝn[1/(u− πn)].

Denote byD[0, 1) the open rigid analytic disk of radius 1 with co-ordinateu. Thus
the K̄-points of D([0, 1)) correspond to x ∈ K̄ such that |x| < 1. Suppose that I ⊂
[0, 1) is a subinterval. We denote by D(I) ⊂ D[0, 1) the admissible open subspace
whose K̄-points correspond to x ∈ K̄ with |x| ∈ I . We set OI = (D(I),OD(I)),
and O = O[0,1). If I = (a, b) we will write D(a, b) rather than D((a, b)), and
similarly for half open and closed intervals.

Note that for any n we have natural maps S[1/p] → O → Ŝn given by sending
u to u, where the first map has dense image. On S we have the Frobenius ϕ which
sends u to up, and acts as the natural Frobenius onW . We will write ϕW : S → S for
the Zp[[u]]-linear map which acts on W via the Frobenius, and by ϕS/W : S → S
the W -linear map which sends u to up. For any I ⊂ [0, 1), ϕW induces a map
ϕW : OI → OI , while ϕS/W induces a map ϕS/W : OI → Op−1I , where p−1I =
{r : rp ∈ I }. We will write ϕ = ϕW ◦ ϕS/W : OI → Op−1I .

Let c0 = E(0) ∈ K0. Set

λ =
∞∏
n=0

ϕn(E(u)/c0) ∈ O.

Thinking of functions in O as convergent power series in u, we define a derivation
N∇ := −uλ d

du
: O → O. We denote by the same symbol the induced derivation

OI → OI , for each I ⊂ [0, 1).
We adjoin a formal variable �u to O which acts formally like log u. We extend

the natural maps O → Ŝn to O[�u] by sending �u to

log

[(
u− πn
πn

)
+ 1

]
:=

∞∑
i=1

(−1)i−1i−1
(
u− πn
πn

)i
∈ Ŝn.

We extend ϕ to O[�u] by setting ϕ(�u) = p�u, and we extend N∇ to a derivation
on O[�u] by setting N∇(�u) = −λ. Finally, we write N for the derivation on O[�u]
which acts as differentiation of the formal variable �u. These satisfy the relations

Nϕ = pϕN and N∇ϕ = (p/c0)E(u)ϕN∇ . (1.1.2)

Finally, we remark that N and N∇ commute.

1.1.3. Recall [Fo 2] that a ϕ-module is a finite-dimensional K0-vector space D to-
gether with a bijective, Frobenius semilinear map ϕ : D → D. A (ϕ,N)-module is
a ϕ-moduleD, together with a linear (necessarily nilpotent) mapN : D→ D which
satisfies Nϕ = pϕN . (ϕ,N)-modules (respectively, ϕ-modules) form a Tannakian
category.

If D is a one-dimensional (ϕ,N)-module, and v ∈ D is a basis vector, then
ϕ(v) = αv for some α ∈ K0, and we write tN (D) for the p-adic valuation of α. IfD
has dimension d ∈ N+, then we write tN (D) = tN (∧d D).
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A filtered (ϕ,N)-module (respectively, ϕ-module) is a (ϕ,N)-module (respec-
tively, ϕ-module) D equipped with a decreasing, separated, exhaustive filtration on
DK = D⊗K0 K . These again form a Tannakian category. Given a one-dimensional
filtered (ϕ,N)-moduleD, we denote by tH (D) the unique integer i such that gri DK
is nonzero. In general, if D has dimension d , we set tH (D) = tH (

∧d
D). A fil-

tered (ϕ,N)-module D is called weakly admissible if tH (D) = tN (D) and for any
(ϕ,N)-submodule D′ ⊂ D, tH (D′) � tN (D

′), where D′
K ⊂ DK is equipped with

the induced filtration.
We will call a filtered (ϕ,N)-module effective if Fil0D = D.

1.1.4. By a ϕ-module over O we mean a finite free O-module M, equipped with a
ϕ-semilinear, injective map ϕ : M → M. A (ϕ,N∇)-module over O is a ϕ-module
M over O, together with a differential operator NM∇ over N∇ . That is, for f ∈ O,
and m ∈ M, we have

NM∇ (fm) = N∇(f )m+ fNM∇ (m).

ϕ and N∇ are required to satisfy the relation NM∇ ϕ = (p/c0)E(u)ϕN
M∇ . We will

usually writeN∇ forNM∇ since this will cause no confusion. The category of (ϕ,N∇)-
modules over O has a natural structure of a Tannakian category.

It will often be convenient to think of M as a coherent sheaf on D[0, 1). Then
we may speak of M or 1⊗ ϕ : ϕ∗(M)→ M having some property (e.g., being an
isomorphism) in the neighbourhood of a point of D[0, 1), or over some admissible
open subset. We will need the following.

Lemma 1.1.5. Let I ⊂ [0, 1) be an interval, M a finite free OI -module, and N ⊂ M
an OI -submodule. Then the following conditions are equivalent:

(1) N ⊂ M is closed.
(2) N is finitely generated.
(3) N is finite free.

Proof. We obviously have (3) =⇒ (2). If N is finitely generated, then it is free
of rank at most that of M by [Be 3, 4.13], so (2) =⇒ (3). Moreover, in this case,
N is the image of a map M → M, hence by [Be 3, 4.12(5)], we may choose an
isomorphism M ∼−→OdI under which N maps onto

∑d
i=1 fiOI for some fi ∈ OI .

Since fiOI ⊂ OI is a closed ideal by [Laz, 8.11], it follows that N is closed in M.
Finally, suppose that N ⊂ M is closed. We will show that N is free by induction

on the OI -rank of M. If M has rank 1, then this follows from [Laz, 7.3]. In
general choose a nonzero element n ∈ N . Let M′ = (M ∩ n · OI ) ⊗OI

Fr OI ⊂
M⊗OI

Fr OI , where Fr OI denotes the field of fractions of OI . Write N ′ = N ∩M′.
By Lazard’s results and [Ke 1, Lemma 2.4], M′ ⊂ M is a direct summand and is
free of rank 1 over OI . Since N ′ is closed in M′, and N /N ′ is closed in M/M′
by the open mapping theorem, we deduce by induction that both N ′ and N /N ′ are
finite free over OI , whence the same holds for N . )�
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1.2 Filtered (ϕ, N)-modules and (ϕ, N∇)-modules

Let D be an effective filtered (ϕ,N)-module. We define a (ϕ,N∇)-module over O,
as follows: For each nonnegative integer n, write ιn for the composite

O[�u] ⊗K0 D
ϕ−nW ⊗ϕ−n−→ O[�u] ⊗K0 D→ Ŝn ⊗K0 D = Ŝn ⊗K DK,

where the second map is deduced from the map O[�u] → Ŝn defined in (1.1.2). We
may extend this to a map

ιn : O[�u, 1/λ] ⊗K0 D→ Ŝn[1/(u− πn)] ⊗K DK.
Set

M(D) = {x ∈ (O[�u, 1/λ] ⊗K0 D)
N=0 : ιn(x) ∈ Fil0(Ŝn[1/(u− πn)] ⊗K DK),

n ≥ 0}.
Note that (O[�u, 1/λ] ⊗K0 D)

N=0 is an O-module with a ϕ-semilinear Frobenius
given by those on D and O[�u, 1/λ], where the latter ring is equipped with a Frobe-
nius, because ϕ(1/λ) = E(u)/(c0λ). It is equipped with a differential operator N∇ ,
induced by the operator on N∇ ⊗ 1 on O[�u, 1/λ] ⊗K0 D.

Lemma 1.2.1. If we regard Ŝn as an O-module via ϕ−nW , then

(1) The map
Ŝn ⊗O (O[�u] ⊗K0 D)

N=0 → Ŝn ⊗K DK
induced by ιn is an isomorphism.

(2) We have

Ŝn ⊗O M(D)
∼−→
∑
j≥0

(u− πn)−j Ŝn ⊗K Filj DK

=
∑
j≥0

ϕnS/W (E(u))
−j Ŝn ⊗K Filj DK.

Proof. Since both sides in (1) are easily seen to be free Ŝn-modules of the same
rank, it suffices to show that the map obtained by reducing modulo u − πn is an

isomorphism. The latter map is (Kn+1[�u]⊗K0D)
N=0 �u �→0→ Kn+1⊗K DK (whereN

acts on Kn+1[�u] Kn+1-linearly), and this is easily seen to be an isomorphism. This
establishes (1), and (2) follows easily. )�
Lemma 1.2.2. Suppose that D is effective. Then the operators ϕ and N∇ on
(O[�u, 1/λ] ⊗K0 D)

N=0 induce on M(D) the structure of a (ϕ,N∇)-module over
O. Moreover, there is an isomorphism of O-modules

coker(1⊗ ϕ : ϕ∗M(D)→ M(D))
∼−→⊕i≥0(O/E(u)i)hi

where hi = dimK gri DK .
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Proof. First, we check that M(D) is finite free over O. Let r be a nonnegative integer
such that Filr+1D = 0. Then M(D) ⊂ λ−r (O[�u] ⊗K0 D)

N=0, and the right-hand
side is a finite free O-module. Since the maps ιn are continuous, and the filtration on
Ŝn[1/(u−πn)] is by closedK-subspaces, this submodule is closed, and hence finite
free by Lemma 1.1.5.

Now let D0 = (O[�u] ⊗K0 D)
N=0. To prove the rest of the lemma, we have

to check that the natural map ϕ∗(λ−rD0) → λ−rD0, induced by the isomorphism
1 ⊗ ϕD0 : ϕ∗D0

∼−→D0, takes ϕ∗(M(D)) into M(D), and that the cokernel of
ϕ∗(M(D))→ M(D) is as claimed. For this it will be convenient to think of finite
O-modules as coherent sheaves on D[0, 1).

At any point ofD[0, 1) not corresponding to a maximal ideal of the formϕn(E(u))
for some n ≥ 0, M(D) is isomorphic to D0, and so 1⊗ϕD0 induces an isomorphism

ϕ∗M(D)
∼−→M(D) at such a point. Now for any n ≥ 1, the map ϕS/W on S

induces a map ofKn+1-algebrasϕS/W : Ŝn u�→u
p−→ Ŝn+1, and we have a commutative

diagram

λ−rD0
ιn ��

ϕ

��

(u− πn)−rŜn ⊗K DK
ϕS/W⊗1

��
λ−rD0

ιn+1 �� (u− πn+1)
−rŜn+1 ⊗K DK.

If we regard Ŝn as an O-module via ϕ−nW , then ϕS/W becomes a ϕ-semilinear map,
and the induced O-linear map

1⊗ ϕS/W : ϕ∗Ŝn[1/(u− πn)] → Ŝn+1[1/(u− πn+1)] (1.2.3)

is an isomorphism, which takes ϕ∗(u − πn)sŜn onto (u − πn+1)
sŜn+1 for each

integer s. Now let

Mn(D) = {x ∈ D0[1/λ] : ιn(x) ∈ Fil0(Ŝn[1/(u− πn)] ⊗K DK)}.
Then M(D) ⊂ Mn(D) and this inclusion is an isomorphism at the pointxn ∈ D[0, 1)
corresponding to the ideal (ϕn(E(u))) ⊂ O.

By Lemma 1.2.1, the map

D0/ϕ
n
W (E(u))D0 = (O/ϕnW (E(u))O[�u] ⊗K0 D)

N=0

→ Ŝn ⊗K DK/(u− πn)Ŝn ⊗K DK ∼−→Kn+1 ⊗K DK
induced by ιn is a bijection. Hence we have an exact sequence

0 → Mn(D)→ λ−rD0

→ ((u− πn)−rŜn ⊗K DK)/Fil0(Ŝn[1/(u− πn)] ⊗K DK)→ 0

Denote by Qn the term on the right of this exact sequence. Then its pullback by the
flat map ϕ : O → O sits in a commutative diagram with exact rows
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0 �� ϕ∗Mn(D) ��

���
�
� ϕ∗(λ−rD0)

��

��

ϕ∗(Qn) ��

��

0

0 �� Mn+1(D) �� λ−rD0
�� Qn+1 �� 0.

Here the map on the right is induced by the map 1⊗ ϕS/W of (1.2.3), and the re-
marks above show that it is a bijection. The map in the middle has imageE(u)rλ−rD0.
In particular, we may fill in the left hand map ϕ∗(Mn(D))→ Mn(D), as shown, and
we see that its cokernel is contained in λ−rD0/(E(u)

rλ−rD0). Since the inclusions
ϕ∗(M(D)) ⊂ ϕ∗(Mn(D)) and M(D) ⊂ Mn+1(D) are isomorphisms at xn+1, this
shows that 1⊗ ϕD0 induces an isomorphism ϕ∗(M(D))

∼−→M(D) at xn+1.
Finally, since ϕ(x0) �= xn for any n ≥ 0, the inclusion D0 ⊂ M(D) gives rise to

an inclusion ϕ∗D0 ⊂ ϕ∗(M(D))which is an isomorphism at x0. Since 1⊗ϕD0 maps
ϕ∗(D0) isomorphically onto D0 ⊂ M(D), it induces a map ϕ∗(M(D))→ M(D)

whose cokernel is supported on x0. Moreover, we have a commutative diagram with
exact rows

0 �� D0 ��

��

λ−rD0
�� ((u− π)−rŜ0/Ŝ0)⊗K DK ��

��

0

0 �� M0(D) �� λ−rD0
�� Q0 �� 0.

Hence

coker(ϕ∗(M(D))→ M(D))
∼−→M0(D)/D0

∼−→Fil0(Ŝ0[1/(u− π)] ⊗K DK)/(Ŝ0 ⊗K DK)
and the lemma follows. )�
1.2.4. We will say that a ϕ-module M over O is of finite E-height if the cokernel
of the O-linear map ϕ∗M → M is killed by some power of E(u), that is, if this
cokernel is supported on x0 ∈ D[0, 1). A (ϕ,N∇)-module over O is of finite E-
height if it is of finite E-height as a ϕ-module. We denote by Modϕ,N∇

/O (respectively,

Modϕ
/O) the category of (ϕ,N∇)-modules (respectively, ϕ-modules) over O of finite

E-height. Both these categories are stable under ⊗-products.

1.2.5. Suppose that M is in Modϕ
/O. We define a filteredϕ-moduleD(M) as follows:

The underlyingK0-vector space ofD(M) is M/uM, and the operator ϕ is induced
by ϕ on M.

To construct the filtration onD(M)K , it will be convenient to adopt the following
notation: If J ⊂ I ⊂ [0, 1) are intervals, and M is a finite OI -module, we will write
MJ = M ⊗OI

OJ . If we think of M as a coherent sheaf on D(I), then MJ

corresponds to the restriction of M to D(J ). Similarly, if ξ : M → M′ is a map of
finite OI -modules we denote by ξJ : MJ → M′

J the induced map. We will need
the following
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Lemma 1.2.6. Let M be a ϕ-module over O. There is a unique O-linear, ϕ-
equivariant morphism

ξ : D(M)⊗K0 O → M
whose reduction modulo u induces the identity on D(M). ξ is injective, and its
cokernel is killed by a finite power of λ. If r ∈ (|π |, |π |1/p), then the image of the
map ξ[0,r) induced by ξ coincides with the image of 1⊗ ϕ : (ϕ∗M)[0,r) → M[0,r).

Proof. Recall that O is a Fréchet space, with its topology defined by the norms | · |r
for r ∈ (0, 1), given by |f |r = supx∈D[0,r] |f (x)|. Since M is free we may identify
it with Od , where d = rkO M, and we will again denote by | · |r the norm on M
obtained by taking the maximum of | · |r applied to the co-ordinates of an element
m ∈ M = Od . For a subset � ⊂ M we set |�|r = supx∈� |x|r .

Now choose any K0-linear map s0 : D(M)→ M whose reduction modulo u is
the identity. We define a new map s : D(M)→ M by

s = s0 +
∞∑
i=1

(ϕi ◦ s0 ◦ ϕ−i − ϕi−1 ◦ s0 ◦ ϕ1−i )

To check that the right-hand side converges to a well defined map, fix an r ∈ (0, 1),
and let L ⊂ D(M) be a OK0 -lattice. Then ϕ−1(L) ⊂ p−jL for some nonnegative
integer j . After increasing j , we may also assume that |ϕ(m)|r � |p−jm|r for all
m ∈ M. Since ϕ◦s0◦ϕ−1−s0 ∈ uM, we have L̃ := u−1(ϕ◦s0◦ϕ−1−s0)(L) ⊂ M
so that

|(ϕi+1 ◦ s0 ◦ ϕ−i−1 − ϕi ◦ s0 ◦ ϕ−i )(L)|r � |p−ij upi ϕi(L̃)|r � p2ij rp
i |L̃|r .

Since |L̃|r is finite, and p2ij rp
i → 0 as i → ∞, for any j ≥ 0 and r ∈ (0, 1), the

map s is well defined. Once checks immediately that ϕ ◦ s = s ◦ ϕ.
Given any other such map s′, the difference s − s′ sends D(M) into uM. But

since ϕ is a bijection on D(M), and ϕj ◦ (s − s′) = (s − s′) ◦ ϕj , for j ≥ 1, we see
that (s − s′)(D(M)) ⊂ upjM, so that s − s′ = 0. It follows that s is the unique
such map. Extending s to D(M) ⊗K0 O by O-linearity yields the required map ξ ,
and the uniqueness of s implies the that of ξ .

To establish the claim regarding the image of ξ , note that ξ is an isomorphism
modulo u, so for some sufficiently large positive integer i, ξ[0,rpi ) is an isomorphism.
Since ξ commutes with ϕ, we have a commutative diagram

ϕ∗(D(M)⊗K0 O) ϕ∗ξ ��

∼
��

ϕ∗M
1⊗ϕ

��
D(M)⊗K0 O ξ �� M·

If i > 1, then the restriction of the right vertical map to [0, rpi−1
) is an isomor-

phism, so that ξ[0,rpi−1
)

is also. Repeating this argument, we find that ξ[0,rp) is an
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isomorphism, and making use of the above commutative diagram once more, we find
that the image of ξ[0,r) coincides with (1⊗ ϕ)[0,r).

Finally, we have seen that ξ[0,r) is injective with cokernel killed by a finite power
E(u)s of E(u). It follows from the same commutative diagram above that ξ is
injective with cokernel killed by λs . )�
1.2.7. Now define a decreasing filtration on ϕ∗M by

Fili ϕ∗M = {x ∈ ϕ∗M : 1⊗ ϕ(x) ∈ E(u)iM}.
This is a filtration onϕ∗Mby finite freeO-modules (for example, using Lemma 1.1.5),
whose successive graded pieces areE(u)-torsion modules. By transport of structure,
this defines a filtration on (1⊗ ϕ)(ϕ∗M), and hence on (1⊗ ϕ)(ϕ∗M)[0,r), where r
is as in Lemma 1.2.2. Using the map ξ[0,r) of Lemma 1.2.6, we obtain a filtration on
(D(M) ⊗K0 O)[0,r). The required filtration on D(M)K is defined to be the image
filtration under the composite

(D(M)⊗K0 O)[0,r) → D(M)⊗K0 O/E(u)O ∼−→D(M)⊗K0 K = D(M)K.

Finally, if M is a (ϕ,N∇)-module over O of finiteE-height, then we equipD(M)

with a K0-linear operator N , by reducing the operator N∇ on M modulo u. This
gives D(M) the structure of a filtered (ϕ,N)-module.

We will show that the functors D and M induce quasi-inverse equivalences of
categories.

Proposition 1.2.8. Let D be an effective filtered (ϕ,N)-module. There is a natural

isomorphism of filtered (ϕ,N)-modules D(M(D))
∼−→D.

Proof. As in Lemma 1.2.2, we set D0 = (O[�u] ⊗K0 D)
N=0. The natural inclusion

D0 ⊂ M(D) is an isomorphism at u = 0, so that

D(M(D)) = M(D)⊗O O/uO ∼−→(K0[�u] ⊗K0 D)
N=0 (1.2.9)

We claim that the composite map

η : (K0[�u] ⊗K0 D)
N=0 ⊂ K0[�u] ⊗K0 D

�u �→0→ D. (1.2.10)

is an isomorphism of filtered (ϕ,N)-modules, where on the left-hand side N acts
by −N ⊗ 1. This is the operator induced by reducing the operator N∇ ⊗ 1 on
O[�u] ⊗K0 D modulo u. First, one checks easily that η is an injection, and that
both sides have the same dimension. Hence η is a bijection. Since both maps in
(1.2.10) are evidently compatible with ϕ, so is the composite. Finally, suppose that
d =∑j≥0 dj �

j
u ∈ (K0[�u] ⊗K0 D)

N=0, with dj ∈ D. Since N(d) = 0, we see that
N(d0)+ d1 = 0. Hence

η(N∇ ⊗ 1(d)) = −d1 = N(d0) = N(η(d)),
so η is compatible with N .
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It remains to check that η is strictly compatible with filtrations. As remarked in the
proof of Lemma 1.2.2, the submodule D0 ⊂ M(D), is contained in (1⊗ ϕ)(ϕ∗M),
and this containment is an isomorphism at x0. By definition of M, an element d ∈ D0
is in E(u)iM if and only if ι0(d) ∈ Fili (Ŝ0 ⊗K DK). Hence, using Lemma 1.2.1,
one sees that under the isomorphisms

D(M(D))K = (K0[�u] ⊗K0 D)
N=0 ⊗K0 O/E(u)O = D0/E(u)D0

∼−→
ι0

Ŝ0 ⊗K DK/(u− π)Ŝ0 ⊗K DK = DK, (1.2.11)

the filtration on D(M(D))K is identified with the given filtration on DK .
Thus, to show that η is strictly compatible with filtrations, we have to check that

the composite

D
η−1

→ D(M(D)) ↪→ D(M(D))K
(1.2.11)→ DK.

is the natural inclusion. However, this is clear because both η and (1.2.11) send an
element

∑
i≥0 �

i
udi ∈ (K0[�u] ⊗K0 D)

N=0 to d0. )�

Lemma 1.2.12. Let M be in Modϕ,N∇
/O . Then we have

(1) The O-submodule (1⊗ ϕ)ϕ∗M ⊂ M is stable under N∇ .
(2) For i ≥ 0, N∇(E(u)iM) ⊂ E(u)iM. In particular, if we identify ϕ∗M with
(1 ⊗ ϕ)ϕ∗M via 1 ⊗ ϕ, then N∇ respects the filtration on ϕ∗M defined in
Section 1.2.7.

(3) The map

(O[�u] ⊗K0 D(M))N=0 = (K0[�u] ⊗K0 D(M))N=0 ⊗K0 O
η⊗1→ D(M)⊗K0 O ξ→ M

is compatible with N∇ . Here η is the isomorphism of (1.2.10), and N∇ acts on
the left via its action on O[�u].

(4) For i ≥ 1, applying Ŝ0⊗O to the map of (3) and using the isomorphism of
Lemma 1.2.1(1) induces an isomorphism∑

j≥0

E(u)j Ŝ0 ⊗K Fili−j D(M)K
∼−→

ξ◦(η⊗1)
Ŝ0 ⊗O (1⊗ ϕ)(Fili ϕ∗M).

Proof. (1) follows from the relation N∇ϕ = E(u)ϕN∇ , while (2) follows from the
Leibniz rule for N∇ , and the fact that N∇(E(u)) = −uλE′(u)iE(u)i−1, since E(u)
divides λ in O.

For (3) let σ = N∇ ◦ (ξ ◦ η)− (ξ ◦ η) ◦ N∇ , and write D0(M) = (K0[�u] ⊗K0

D(M))N=0. Then σ is O-linear, and it suffices to show that σ(D0(M)) = 0. Since
the map η of (1.2.10) is compatible with N , and ξ reduces to the identity modulo u,
we have σ(D0(M)) ⊂ uM. On the other hand, ξ ◦ η is compatible with ϕ, so that
σ ◦ ϕ = pE(u)/c0ϕ ◦ σ , and for i ≥ 1
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σ(D0(M)) = σ ◦ ϕi(D0(M))

= piE(u)/c0ϕ(E(u)/c0) . . . ϕ
i−1(E(u)/c0)ϕ

i ◦ σ(D0(M))

⊂ O · ϕi(uM) ⊂ upiM.

It follows that σ = 0, which proves (3).
Finally, for (4) it will be convenient to again denote by N∇ the operator −uλ d

du

on Ŝ0, and to extend NM∇ to a differential operator on Ŝ0 ⊗O M, which we again
denote by N∇ . By (2), N∇ leaves Ŝ0 ⊗O (1⊗ ϕ)(Fili ϕ∗M) stable.

SetMi = Ŝ0 ⊗O (E(u)(1⊗ ϕ)ϕ∗M∩E(u)iM) for i ≥ 1. We have a commu-
tative diagram with exact rows

0 �� Mi ��

N∇|Mi
��

Mi−1 ��

N∇|Mi−1
��

Mi−1/Mi ��

��

��

��

0

0 �� Mi �� Mi−1 �� Mi−1/Mi ���� 0,

where the vertical maps are induced by N∇ . We claim that N∇|Mi is a bijection for
i ≥ 0.

By Lemmas 1.2.1(1) and 1.2.6 and (3) above, we have an N∇ -compatible iso-
morphism

Ŝ0 ⊗K0 D(M)
∼−→ Ŝ0 ⊗K D(M)K

∼−→ Ŝ0 ⊗O ϕ∗M,

where N∇ acts on the left via N∇ ⊗ 1. Since N∇ induces a bijection on E(u)Ŝ0, our
claim holds for i = 0. For i ≥ 1, we may assume by induction that N∇|Mi−1 is a
bijection. Hence N∇|Mi−1/Mi is surjective, and it is therefore injective as Mi−1/Mi
is a finite-dimensionalK-vector space. Finally, it follows from the snake lemma that
N∇|Mi is surjective. In particular, we see that N∇|M0/Mi is bijective for all i.

To prove (4), we proceed by induction on i. For i = 0, this follows from
Lemma 1.2.6. For i ≥ 1, the induction hypothesis implies that

(u− π)Fili−1(Ŝ0 ⊗K D(M)K) = (u− π)Ŝ0 ⊗O (1⊗ ϕ)(Fili−1 ϕ∗M).

Since the filtrations on ϕ∗M and on Ŝ0 ⊗K D(M)K both induce the same filtration
on their common quotient D(M)K , it suffices to show that

ξ ◦ (η ⊗ 1)(Fili D(M)K) ⊂ Ŝ0 ⊗O (1⊗ ϕ)(Fili ϕ∗M).

Let d ∈ ξ ◦ (η ⊗ 1)(Fili D(M)K). We may write d = d0 + d1, with d0 ∈ Ŝ0 ⊗O
Fili ϕ∗M, and d1 ∈ E(u)Ŝ0 ⊗O ϕ∗M = M0. Since N∇(d) = 0,

N∇(d1) = −N∇(d0) ∈ Ŝ0 ⊗O Fili ϕ∗M ∩ E(u)Ŝ0 ⊗O ϕ∗M = Mi.
Hence, by what we saw above, we must have d1 ∈ Mi ⊂ Ŝ0 ⊗O Fili ϕ∗M. )�
Proposition 1.2.13. Let M be in Modϕ,N∇

/O . There is a canonical isomorphism

M(D(M))
∼−→M.
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Proof. Let M′ = M(D(M)). We will write D0(M) = (O[�u] ⊗K0 D(M))N=0.
By construction M′ ⊂ D0(M)[1/λ]. On the other hand, if we identify D0(M)

with an O-submodule of M via the map ξ ◦ (η ⊗ 1) of Lemma 1.2.12(3), then
M ⊂ D0(M)[1/λ], by Lemma 1.2.6. Since both these inclusions are compatible
with N∇ and ϕ, it suffices to check that M′ = M.

It is enough to check that M′
[0,r) = M[0,r) where r ∈ (|π |, |π |1/p), for then

pulling back by (ϕ∗)i , and using the fact that M and M′ are both of finite E-height,
we find that M′

[0,r1/pi )
= M[0,r1/pi )

, and hence that M = M′.
Now at any point of D[0, r) other than x0, we have M = D0(M) = M′, so we

have to check that

Ŝ0 ⊗O M = Ŝ0 ⊗O M′ ⊂ Ŝ0 ⊗O D0(M)[1/λ] ∼−→
1.2.1

Ŝ0[1/(u− π)] ⊗K D(M)K

For this it suffices to check that an element x ∈ Ŝ0⊗OD0(M) is divisible byE(u)i in
M for some i ≥ 0 if and only if it is divisible byE(u)i in M′. Now by Lemma 1.2.6,
and the observations made in the proof of Lemma 1.2.2, we have

Ŝ0 ⊗O (1⊗ ϕ)ϕ∗M = Ŝ0 ⊗O D0(M) = Ŝ0 ⊗O (1⊗ ϕ)ϕ∗M′, (1.2.14)

so it is enough to show that the filtrations on the left- and right-hand sides of (1.2.14),
defined in Section 1.2.7, coincide. This follows by comparing Lemma 1.2.1(2) with
Lemma 1.2.12(4). )�
Theorem 1.2.15. The functorsD and M induce exact, quasi-inverse equivalences of
⊗-categories between effective filtered (ϕ,N)-modules and the category Modϕ,N∇

/O .

Proof. By Propositions 1.2.8 and 1.2.13 we know thatD and M induce quasi-inverse
equivalences of categories. It remains to check that they they are exact and compatible
with tensor products.

Consider a sequence of filtered (ϕ,N)-modules

D• : 0 → D′′ → D→ D′ → 0

and denote by M(D•) the corresponding sequence of (ϕ,N∇)-modules over O. IfD•
is exact then, thinking of M(D•) as a sequence of coherent sheaves on D[0, 1), we
see that it is evidently exact outside the set of points {xn}n≥0, and the exactness at xn
follows from Lemma 1.2.1(2). Conversely, if M(D•) is exact then Lemma 1.2.1(2)
implies that D• is exact. Thus M and D are exact functors.

Suppose we are given filtered (ϕ,N)-modules D1 and D2. There is an obvious
morphism of (ϕ,N∇)-modules over O, M(D1) ⊗O M(D2) → M(D1 ⊗K0 D2),
which is an isomorphism outside the points {xn}n≥0. That it is an isomorphism at xn
follows from Lemma 1.2.1(2). Hence M commutes with tensor products.

Finally, suppose that M1 and M2 are (ϕ,N∇)-modules over O. From the defini-
tions, one sees that there is an isomorphism D(M1) ⊗K0 D(M2)

∼−→
D(M1 ⊗O M2) compatible with the action of ϕ, and that the map of K-vector
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spaces obtained by tensoring both sides by⊗K0K is compatible with filtrations. That
it is strictly compatible with filtrations may be deduced from the strict compatibility
with filtrations of the map

ϕ∗M1 ⊗O ϕ∗M2 → ϕ∗(M1 ⊗O M2). )�

1.3 Weakly admissible modules and F -crystals

In this section we show how to produce (ϕ,N∇)-modules over O using ϕ-modules
over S of finite E-height.

1.3.1. We begin by reviewing the results of Kedlaya [Ke 1], [Ke 2]. Recall that the
Robba ring R is defined by

R = lim
r→1−

O(r,1)

R is equipped with a Frobenius ϕ induced by the maps ϕ : O(r,1) → O(r1/p,1).
We denote by Modϕ

/R the category of finite free R-modules M equipped with an

isomorphism ϕ∗M ∼−→M. This has a natural structure of a Tannakian category.
We also have the bounded Robba ring Rb, defined by

R = lim
r→1−

Ob(r,1)

where Ob(r,1) ⊂ O(r,1) denotes the functions onD(r, 1) which are bounded. The ring

Rb is a discrete valuation field, with a valuation vRb given by

vRb (f ) = − logp lim
r→1−

sup
x∈D(r,1)

|f (x)|

The Frobenius ϕ on R induces a Frobenius ϕ on Rb. We denote by Modϕ
/Rb the

category of finite-dimensional Rb-vector spaces M equipped with an isomorphism
ϕ∗M ∼−→M.

Kedlaya defines an R-algebra Ralg (denoted byalg
an,con in [Ke 1]), which contains

a copy ofW(k̄), where k̄ denotes an algebraic closure of k, is equipped with a lifting
ϕ of the Frobenius on R, and such that for any M in Modϕ

/R, there exists a finite

extension E of W(k̄)[1/p] such that M ⊗R Ralg ⊗W(k̄)[1/p] E admits a basis of
ϕ-eigenvectors v1, . . . vn such that ϕ(vi ) = αivi for some αi ∈ E. The set of p-adic
valuations of α1, . . . , αn is uniquely determined by M, and called the set of slopes
of M [Ke 1, Theorem 4.16]. If these are all equal to some s ∈ Q, then M is called
pure of slope s. We denote by Modϕ,s

/R the full subcategory of Modϕ
/R consisting

of modules which are pure of slope s. We write Modϕ,s
/Rb for the full subcategory

of Modϕ
/Rb consisting of modules which are pure of slope s (as ϕ-modules over a

discretely valued field).

Theorem 1.3.2. (1) The functor M �→ M⊗Rb R induces an equivalence

Modϕ,s
/Rb

∼−→Modϕ,s
/R .
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(2) For any M in Modϕ
/R, there exists a canonical filtration—called the slope

filtration—0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M by ϕ-stable submodules such
that Mi/Mi−1 is finite free over R and pure of slope si , and s1 < s2 < · · · < sr .

Proof. The first part is [Ke 2, Theorem 6.3.3], while the second follows from [Ke 1,
Theorem 6.10]. )�
1.3.3. We want to show that if M in Modϕ

/R arises from a module MO in Modϕ,N∇
/O ,

then the slope filtration of (4) is induced by a filtration on MO.
We denote byN∇ the operator−uλ d

du
onR and we write Modϕ,N∇

/R for the category

whose objects consist of a module M in Modϕ
/R equipped with a differential operator

N∇ = NM∇ over the operator N∇ on R, such that N∇ϕ = (pE(u)/c0)ϕN∇ .
For M a finite free R-module (respectively, an OI -module for some interval

I ⊂ [0, 1),) we say that an R (respectively, OI ) submodule N ⊂ M is saturated
if it is finitely generated and if M/N is torsion-free or, equivalently, free over R
(respectively, OI ). If N ⊂ M is any submodule, then there is a smallest submodule
N ′ ⊂ M containing N which is saturated, and we call this the saturation of N .

Lemma 1.3.4. Let M be a finite free O-module equipped with a ϕ-semilinear map
ϕ : M → M such that the induced map ϕ∗M → M is an injection. Let NR ⊂
MR := M⊗O R be a saturated submodule which is stable under ϕ. Then there is
a unique saturated submodule N(0,1) ⊂ M(0,1) such that N(0,1) ⊗O(0,1) R = NR.
N(0,1) is ϕ-stable.

Proof. Since NR is finitely generated, there exists r ∈ (0, 1) and a saturated O(r,1)-
submodule N(r,1) ⊂ M(r,1) such that N(r,1) ⊗O(r,1) R = N . Since N(r,1) is clearly
the unique such saturated submodule of M(r,1), 1 ⊗ ϕ induces a map ϕ∗N(r,1) →
N(r1/p,1).

Set N(rp,1) = M(rp,1) ∩ N(r,1). Since N(rp,1) is clearly a closed O(rp,1)-
submodule, it is finitely generated, and one sees immediately that it is saturated. We
claim that its rank is equal to h = rkO(r,1) N(r,1). It suffices to show that ϕ∗N(rp,1)
has O(r,1)-rank h. Since the map ϕ : O(r,1) → O(rp,1) is finite flat, we have a
commutative diagram with exact rows

0 �� ϕ∗N(rp,1) ��

��

ϕ∗M(rp,1) ⊕ ϕ∗N(r,1) ��

��

ϕ∗M(r,1)

��
0 �� N(r,1) �� M(r,1) ⊕N(r1/p,1) �� M(r1/p,1).

Since the central and right vertical maps are injective, and the cokernel of the
central vertical map is a torsion O(r,1)-module, we see that rkO(r,1) ϕ

∗N(rp,1) =
rkO(r,1) N(r,1) = h.

Since N(rp,1) ⊗O(rp,1)
O(r,1) ⊂ N(r,1) and both modules are saturated O(r,1)-

submodules of M(r,1) of the same rank, this inclusion must be an equality. Repeating
the argument, we obtain for each i ≥ 0 a saturated O

(rp
i
,1)

-submodule N
(rp

i
,1)

of
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M
(rp

i
,1)

such that the restriction of N
(rp

i
,1)

toD(rp
i−1
, 1) is N

(rp
i−1
,1)

. These mod-
ules glue to a coherent sheaf N (0,1) on D(0, 1). Write N(0,1) for the global sections
of N (0,1). Then N(0,1) is a closed O(0,1)-submodule of M(0,1), and hence finitely
generated, and N (0,1) is the coherent sheaf corresponding to N(0,1). In particular,
we see that N(0,1) ⊂ M(0,1) is saturated and that N(0,1) ⊗O(0,1) R = NR. Since
N(0,1) = M(0,1) ∩NR is the unique saturated submodule with this property, we see
that N(0,1) is stable under ϕ. )�
Lemma 1.3.5. Let M be a finite free O-module equipped with a differential operator
∂ over −u d

du
, and suppose that the operator N : M/uM → M/uM induced by

∂ is nilpotent. If N(0,1) ⊂ M(0,1) is a saturated O(0,1)-submodule which is stable
under ∂ , then N(0,1) extends uniquely to a saturated, ∂-stable O-submodule N ⊂ M.

Proof. This is part of the theory of connections with regular singular points. In
fact one can even suppress the assumption on the nilpotence of N (cf. [De, Propo-
sition 5.4]). Since we could not find a good reference, and for the convenience of
the reader, we give a proof here. Closely related arguments may be found in the
literature—see, for example, [Ba] and [An].

We equip M with the connection given by ∇(m) = −u−1∂(m)du, and M′ :=
M/uM⊗K0 O with the logarithmic connection given by ∇(m⊗f ) = −N(m)/u⊗
f du + m ⊗ df . Then HomO(M′,M) is naturally equipped with a logarithmic
connection, given by∇(f )(m′) = −f (∇(m′))+∇(f (m′)). Let s0 : M/uM → M
be any K0-linear map lifting the identity on M/uM. We define a new section by

s =
∞∑
i=0

∇
(
d

du

)i
(s0)(−u)i/i!.

Note that since s0 lifts the identity section, ∇( d
du
)i(s0)(−u)i/i! sends M/uM into

uM for each i ≥ 1. Moreover, since N is nilpotent, this summand sends M/uM
into u[i/d]M, where d denotes the rank of M. Using this one sees easily that
there is a positive integer n such that the formula for s gives a well defined sec-
tion s : M/uM → M overD[0, p−n). After replacing u by u/pn, we may assume
that s gives a well defined section over D[0, 1), so that M ∼−→M′ as O-modules
with logarithmic connection. In particular, M∂d=0 ⊂ M is a K0-vector space of
dimension d, which spans M.

Now let L be any finite free O(0,1)-module equipped with a connection ∇, and

define ∂ = ∇(−u d
du
). We claim that the natural map L∂d=0 ⊗K0 O(0,1) → L is

injective. To see this we remark that we may replace L by the image of the above
map, and assume that L∂d=0 spans L. Note also that, if L′ and L′′ are two finite free
O(0,1)-modules with connection, and L is an extension of L′ by L′′, then it suffices
to prove the claim for L′ and L′′. Furthermore if L′ ⊂ L is any O(0,1)-submodule
which is stable by∇, then L/L′ is equipped with a connection, and is hence O(0,1)-free
[Kat 2, Proposition 8.9]. Applying these remarks with L′ = a · O where a ∈ L∂=0

is nonzero, and using induction on the rank of L, it suffices to consider the case
where L = O(0,1) with the trivial connection. In this case the result is clear since any
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f ∈ O(0,1) can be written as a convergent sum f =∑i∈Z aiu
i , so that ∂d(f ) = 0 if

and only if f is constant.
Now the natural map M∂d=0⊗K0 O → M is evidently an isomorphism. Hence,

applying the above remarks with L = N(0,1) and M(0,1)/N(0,1), and using the snake

lemma, we see that the map N ∂d=0
(0,1) ⊗K0 O(0,1) → N(0,1) is an isomorphism. In

particular, N(0,1) extends to N = N ∂d=0
(0,1) ⊗K0 O. )�

Lemma 1.3.6. Let Rξ denote a free R-module of rank 1 with a generator ξ . We think
of L := R⊕Rξ as a right R-module by setting ξ · a = aξ +N∇(a), and letting R
act on itself in the natural way. This makes L into an (R,R)-bimodule.

Let M be in Modϕ,N∇
/R . Then L ⊗R M has a natural structure of an object of

Modϕ
/R given by

ϕ(a ⊗ n+ bξ ⊗m) = ϕ(a)ϕ(n)+ ϕ(b)(pE(u)/c0)
−1ξ ⊗ ϕ(m),

and the set of slopes of L ⊗R M is equal to those of M. More precisely, if s is a
slope of M which appears with multiplicity h, then s appears with multiplicity 2h in
L⊗O M.

Proof. First, observe that the formula giving ϕ defines a well defined Frobenius
because

ϕ(ξ ⊗ bm) = (pE(u)/c0)
−1ξ ⊗ ϕ(bm)

= (pE(u)/c0)
−1ϕ(b)ξ ⊗ ϕ(m)+ (pE(u)/c0)

−1N∇(ϕ(b))ϕ(m)
= ϕ(bξ ⊗m+N∇(b)⊗m).

To prove the second claim, we may reduce by dévissage to the case where M is
irreducible and of pure slope s ∈ Q. Then we have an exact sequence in Modϕ

/R

0 → M → L⊗R M → M(1)→ 0.

Here M(1) denotes the object of Modϕ
/R whose underlying R-module is equal to

M, but whose Frobenius is the Frobenius on M multiplied by (pE(u)/c0)
−1. The

first map is given by m �→ m ⊕ 0, while the second sends a + bξ ⊗ m to bm. It
follows by [Ke 1, Proposition 4.5] that L⊗R M is pure of slope s. )�
Proposition 1.3.7. Let M be in Modϕ,N∇

/O and set MR = M⊗O R. If

0 = M0,R ⊂ M1,R ⊂ · · · ⊂ Mr,R = MR

denotes the slope filtration of MR then for i = 0, 1, . . . , r , Mi,R extends uniquely
to a saturated O-submodule Mi ⊂ M which is stable by ϕ and N∇ .

Proof. For any interval I ⊂ [0, 1), MI = M⊗O OI is equipped with a differential
operator induced by N∇ on M and −uλ d

du
on OI . Passing to the limit we also get a

differential operator on MR. We again denote these differential operators by N∇ ,
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By Lemma 1.3.4 Mi,R extends to a saturated ϕ-stable submodule Mi,(0,1) ⊂
M(0,1). We claim that Mi,(0,1) is stable by N∇ . Since Mi,(0,1) = Mi,R ∩M(0,1),
it suffices to show that Mi,R is stable by N∇ . For this we use the notation of
Lemma 1.3.6. Consider the map of R-modules

δ : L⊗R M → M; (a + bξ)⊗m �→ am+ bN∇(m).
A simple calculation shows that δ respects the action of ϕ. Let M′

i,R =
δ(L ⊗R Mi,R). We obviously have Mi,R ⊂ M′

i,R. To show this inclusion is
an equality we proceed by induction on i. Let si denote the slope of Mi/Mi−1.
When i = 0 there is nothing to prove. If Mi−1,R = M′

i−1,R, then we have surjec-
tions

L⊗R Mi,R/Mi−1,R
δ→ M′

i,R/M
′
i−1,R = M′

i,R/Mi−1,R → M′
i.R/Mi,R.

Since the R-submodule M′
i,R/Mi,R ⊂ M/Mi,R is finitely generated, it is finite

free over R by Lemma 1.1.5. By Lemma 1.3.6, L⊗RMi,R/Mi−1,R is pure of slope
si , so if M′

i,R/Mi,R is nonzero, its smallest slope is � si by [Ke 1, Lemma 4.1].
But then the smallest slope of M/Mi,R is � si , which is a contradiction as all the
slopes of this module are ≥ si+1 > si .

Finally, N∇ induces a differential operator ∂ = λ−1N∇ over −u d
du

on M[0,p−2).
By Lemma 1.3.5, Mi,(0,p−2) extends to a unique ∂-stable saturated O[0,p−2)-sub-
module Mi,[0,p−2) ⊂ Mi,[0,p−2). Hence Mi,(0,1) extends to a unique, N∇ -stable,
saturated O-submodule Mi ⊂ M. Since Mi = M ∩Mi,R it is stable by ϕ. )�
Theorem 1.3.8. Let D be an effective filtered (ϕ,N)-module. Then D is weakly
admissible if and only if M(D) is pure of slope 0.

Proof. Suppose first that D has rank 1, and choose a basis e ∈ D. Write ϕ(e) = αe
for some α ∈ K0. Set D0 = (O[�u] ⊗K0 D)

N=0. Then the definition of M shows
that M(D) = λ−tH (D)D0, so that

ϕ(λ−tH (D)e) = (E(u)/c0)
tH (D)αλ−tH (D)e.

Hence M(D) has slope tN (D)− tH (D). This proves the theorem for rank 1 (ϕ,N)-
modules.

Suppose that D is weakly admissible. By Proposition 1.3.7, the slope filtration
on M(D)R is induced by a filtration of M(D) by saturated O-submodules, stable
by ϕ and N∇

0 = M0 ⊂ M1 ⊂ · · · ⊂ Mr = M.

Write si for the unique slope of Mi,R/Mi−1,R, and di for its R-rank. By Theo-
rem 1.2.15, M1 = M(D1) for some filtered (ϕ,N) submodule D1 ⊂ D. Then∧d1 M1 has slope d1s1 [Ke 1, Proposition 5.13], and the compatibility with tensor
products in Theorem 1.2.15 and the rank 1 case considered above imply that this slope
is tN (D1)− tH (D1). Hence the weak admissibility of D implies that s1 ≥ 0. Since
s1 is the smallest slope this implies that si ≥ 0 for all i. On the other hand, applying
the rank 1 case as above,

∑r
i=1 disi = tN (D)− tH (D) = 0, so that r = 1 and s1 = 0.
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Conversely, suppose that M(D) is pure of slope 0. We have already seen that this
implies tN (D) = tH (D). If D′ ⊂ D is a (ϕ,N)-submodule, then M(D′) ⊂ M(D)

has all slopes ≥ 0 by [Ke 1, Proposition 4.4]. In particular, the slope of the top
exterior product of M(D′) is ≥ 0, so we have tN (D′)− tH (D′) ≥ 0. )�
1.3.9. A (ϕ,N)-module over O is a ϕ-module M together with a K0-linear map
N : M/uM → M/uM which satisfies Nϕ = pϕN , where we have written ϕ for
the endomorphism of M/uM obtained by reducing ϕ : M → M modulo u. We say
that M is pure of slope 0 if M⊗O R is. As usual, M is said to be of finite E-height
if it has this property as a ϕ-module over O. We denote by Modϕ,N

/O the category

of (ϕ,N)-modules over O of finite E-height, and by Modϕ,N,0
/O the full subcategory

consisting of modules which are pure of slope 0. Each of these categories has a
natural structure of a Tannakian category.

Given a module M in Modϕ,N∇
/O we obtain a module M̃ in Modϕ,N

/O by taking

M̃ = M equipped with the operator ϕ, and taking N to be the reduction of N∇
modulo u.

Lemma 1.3.10. Let M be in Modϕ,N
/O . Then

(1) M[1/λ] is canonically equipped with an operator N∇ such that N∇ϕ =
(p/c0)E(u)ϕN∇ and N∇|u=0 = N .

(2) The functor N �→ Ñ is fully faithful, and a module M is in its image if and only
if it is stable under the operator N∇ on M[1/λ].

(3) Any M in Modϕ,N
/O which has O-rank 1 is in the image of the functor in (2).

Proof. The construction of Section 1.2.5 shows that given an M in Modϕ,N
/O , we obtain

a filtered (ϕ,N)-moduleD(M), and that for N in Modϕ,N∇
/O we haveD(Ñ ) = D(N ).

Now, given M we set D0 = (O[�u]⊗K0 D(M))N=0, equipped with an operator
N∇ induced by the corresponding operator on O[�u]. As in Lemma 1.2.12, we may
consider the composite

D0 = (K0[�u] ⊗K0 D(M))N=0 ⊗K0 O η⊗1→ D(M)⊗K0 O ξ→ M (1.3.11)

where η is a bijection, and ξ has cokernel killed by some power of λ by Lemma 1.2.6.
Using (1.3.11), we obtain an isomorphism D0[1/λ] ∼−→M[1/λ], which is compatible
with the action of ϕ, and with N after applying ⊗OO/uO. From the definition of
M(D), we have an isomorphism D0[1/λ] ∼−→M(D(M))[1/λ], compatible with ϕ
and N∇ .

This proves (1). Moreover, by Theorem 1.2.15 M is in the image of N �→ Ñ if
and only if M ∼−→M(D(M)) in D0[1/λ], and this is equivalent to M being stable
under N∇ . This also shows the claim regarding full faithfulness.

Finally, suppose M in Modϕ,N
/O has O-rank 1. The above discussion shows that

ξ(D(M)) ⊂ M is killed by N∇ . If e is a K0-basis vector for D(M), then there
exists f ∈ O such that M = f−1Oe, and
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N∇(f−1e) = −uλ df
−1

du
e = uλdf

du
f−1(f−1e).

So it suffices to show that λdf
du
f−1 ∈ O. Since M ⊂ D0[1/λ] the set of zeroes of f

is contained in the set of zeroes of λ. Since df
du
f−1 has at most a simple pole at each

such zero, this completes the proof of (3). )�
1.3.12. A (ϕ,N)-module over S is a finite free S-module M, equipped with a ϕ-
semilinear Frobenius ϕ : M → M, and a linear endomorphism N : M/uM ⊗Zp

Qp → M/uM⊗Zp Qp such that Nϕ = pϕN on M/uM⊗Zp Qp. We say that M
is of finite E-height if the cokernel of ϕ∗M → M is killed by some power of E(u).
We denote by Modϕ,N

/S the category (ϕ,N)-modules over S of finite E-height, and

by Modϕ,N
/S ⊗Qp the associated isogeny category.

The reader may wonder why we do not insist that the operator N takes M/uM
to itself. The reason is that with this definition we could not prove Lemma 1.3.13
below. We do not know if the two definitions give rise to the same isogeny category.

Lemma 1.3.13. The functor

' : Modϕ,N
/S ⊗Qp

∼−→Modϕ,N,0
/O ; M �→ M⊗S O (1.3.14)

is an equivalence of Tannakian categories.

Proof. Let M be in Modϕ,N,0
/O . Then MR := M ⊗O R is in Modϕ,0

/R, and hence

Theorem 1.3.2 implies that M is of the form MRb⊗RbR for some MRb in Modϕ,0
/Rb ,

whose construction is functorial in MR. Thus we have

MRb ⊗Rb R ∼−→MR
∼−→M⊗O R.

Choose an Rb-basis for MRb , and an O-basis for M. The composite of the above
isomorphisms is then given by a matrix with values in R. By [Ke 1, Proposition 6.5],
after modifying the chosen bases, we may assume that this matrix is the identity.
In other words MRb and M are spanned by a common basis. Let Mb denote
the S[1/p]-span of this basis. Since S[1/p] = O ∩ Rb ⊂ R, we have Mb =
MRb ∩M ⊂ MR.

Hence Mb is stable by ϕ, and of finite E-height, since M is. This already shows
that ' is fully faithful, since given any N in Modϕ,N

/S , N ⊗Qp can be recovered as
'(N )Rb ∩ '(N ). To show that it is essentially surjective, we have to check that
Mb arises from an object of Modϕ,N

/S .

Let ORb denote the valuation ring of Rb. Since MRb has slope 0, there exists a
ϕ-stable ORb -lattice L in MRb . Let M′ = Mb ∩ L, and set

M = ORb ⊗S M′ ∩M′[1/p] ⊂ MRb .

Then M ⊂ MRb is a finite, ϕ-stable S-submodule. Moreover, the structure theory
of finite S-modules shows that there exists an inclusion M′ ⊂ F of M′ into a finite
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free S-module F , such that F/M′ has finite length. This implies that M may be
identified with F . Thus M is free over S.

To check that M is in Modϕ,N
/S , we have to check that the cokernel of ϕ∗M → M

is killed by a power of E(u). Let d be the S-rank of M. Then ϕ on
∧d

S M with
respect to some choice of basis vector is given by prE(u)sw where r, s ≥ 0, and
w ∈ S×. Since MRb = M⊗S Rb, and ∧dRbMRb is pure of slope 0, we must have
that r = 0. )�
Corollary 1.3.15. There exists a fully faithful⊗-functor from the category of effective
weakly admissible filtered (ϕ,N)-modules to Modϕ,N

/S ⊗Qp.

If M is in Modϕ,N
/S , and M = M⊗S O, then M[1/λ] is canonically equipped

with a connection ∇ such that ϕ ◦ ∇ = ∇ ◦ ϕ. The module M is in the image of
the functor above if and only if ∇ induces a singular connection on M with only
logarithmic singularities.

Proof. By Theorems 1.3.8 and 1.2.15, D �→ M(D) is an equivalence between the
category of effective weakly admissible filtered (ϕ,N)-modules, and Modϕ,N∇ ,0

/O .

By Lemma 1.3.10, the latter category is a full subcategory of Modϕ,N,0
/O which is

equivalent to Modϕ,N
/S ⊗Qp by Lemma 1.3.13. This proves the first claim, and the

second follows from Lemma 1.3.10(2), the connection on M being given by∇(m) =
−λ−1N∇(m)duu . )�

2 Galois representations and p-divisible groups

2.1 GK -representations and GK∞ -representations

In this section we will use the theory of the previous section to compare constructions
of crystalline representations, and representations of finiteE-height. We show that the
functor from crystallineGK -representations toGK∞ -representations is fully faithful.

2.1.1. Let OK̄ denote the ring of integers of K̄ . Let R = lim←−OK̄/p where the
transition maps are given by Frobenius. There is a unique surjective map θ : W(R)→
ÔK̄ to the p-adic completion ÔK̄ of OK̄ , which lifts the projection R→ OK̄/p onto
the first factor in the inverse limit.

Write π = (πn)n≥0 ∈ R, where πn ∈ K̄ are the elements introduced in Sec-
tion 1.1.1. Let [π] ∈ W(R) be the Teichmüller representative. We embed the
W -algebraW [u] intoW(R) by u �→ [π ]. Since θ([π ]) = π this embedding extends
to an embedding S ↪→ W(R), and θ |S is the map S → OK sending u to π . This
embedding is compatible with Frobenius endomorphisms.

We denote byAcris the p-adic completion of the divided power envelope ofW(R)
with respect to ker(θ). As usual, we write B+cris = Acris[1/p], we denote by B+st the
ring obtained by formally adjoining the element “log[π ]’’ to B+cris, and by B+dR the
ker(θ)-adic completion ofW(R)[1/p].
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Let OE be the p-adic completion of S[1/u]. Then OE is a discrete valuation ring
with residue field the field of Laurent series k((u)). We write E for the field of fractions
of OE . If FrR denotes the field of fractions of R, then the inclusion S ↪→ W(R)

extends to an inclusion E ↪→ W(FrR). Let Eur ⊂ W(FrR)[1/p] denote the maximal
unramified extension of E contained inW(FrR)[1/p], and OEur its ring of integers.
Since FrR is algebraically closed [Fo 1, A.3.1.6], the residue field OEur/pOEur is a
separable closure of k((u)). We denote by Êur the p-adic completion of Eur, and by
OÊur its ring of integers. Êur is also equal to the closure of Eur inW(FrR). We write
Sur = OEur ∩W(R) ⊂ W(FrR). We regard all these rings as subrings ofW(R).

Let K∞ = ∪n≥0Kn, and write GK∞ = Gal(K̄/K∞). Since GK∞ fixes the
subring S ⊂ W(R), it acts on Sur and Eur.

Lemma 2.1.2. Let M be a finitely generated S-module equipped with an S-linear
map ϕ∗M → M. Suppose that M is isomorphic as an S-module to a finite direct
sum ⊕i∈IS/pniS where ni ∈ N+ and that coker(1⊗ ϕ) is killed by some power of
E(u). Then

(1) The association M �→ HomS,ϕ(M,S
ur[1/p]/Sur) is an exact functor in M.

(2) The natural map

HomS,ϕ(M,S
ur[1/p]/Sur)→ HomS,ϕ(M, Eur/OEur )

is an isomorphism, and both sides are isomorphic to ⊕i∈IZp/pniZp as Zp-
modules.

Proof. The first part of (2) follows from [Fo 1, B.1.8.4]. The rest of the lemma then
follows from [Fo 1, Section A.1.2]. )�

2.1.3. We denote by Modϕ
/S the category of finite free S-modules equipped with an

S-linear map 1⊗ ϕ : ϕ∗M → M whose cokernel is killed by some power of E(u).
We may regard Modϕ

/S as a full subcategory of Modϕ,N
/S by taking the operator N to

be 0 on an object of Modϕ
/S.

Corollary 2.1.4. Let M be in Modϕ
/S. Then

VS(M) := HomS,ϕ(M,S
ur)

is a free Zp-module of rank r = rkS M, and the functor M �→ VS(M) is exact in
M. Moreover, the natural map

HomS,ϕ(M,S
ur)→ HomOE ,ϕ(OE ⊗S M,OÊur )

is a bijection.

Proof. This follows immediately from Lemma 2.1.2. )�
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Proposition 2.1.5. Let D be an effective, weakly admissible filtered (ϕ,N)-module,
and M in Modϕ,N

/S a module whose image in Modϕ,N
/S ⊗Qp is equal to the image of

D under the functor of Corollary 1.3.15.
Then there exists a canonical bijection

HomS,ϕ(M,S
ur)⊗Zp Qp

∼−→HomFil,ϕ,N (D,B
+
st ),

which is compatible with the action ofGK∞ on the two sides. In particular, both sides
have dimension dimK0 D, and D is admissible.

Proof. Set M = M ⊗S O. Using Proposition 1.2.8, we may identify D with
D(M). The inclusion S ⊂ B+cris admits a unique continuous extension to O, and we
will regard B+cris as an O-algebra in this way. Since the inclusion of O in B+cris sends
E(u) to E([π ]) ∈ Fil1 B+dR, it extends to an inclusion of Ŝ0 into B+dR. Recall that the
O-module ϕ∗M is equipped with a decreasing filtration as in Section 1.2.7, while
the ring B+cris ⊗K0 K is equipped with a filtration via its inclusion into the discrete
valuation ring B+dR.

Observe that we have natural maps

HomS,ϕ(M,S
ur)→ HomO,ϕ(M, B+cris)→ HomO,Fil,ϕ(ϕ

∗M, B+cris). (2.1.6)

Here the term on the right means O-linear, ϕ-compatible maps which induce a filtered
map Ŝ0⊗O ϕ∗M → B+dR, and the second map is obtained by composing morphisms
with the inclusion 1⊗ϕ : ϕ∗M → M. It follows from the definition of the filtration
on ϕ∗M (and the fact that E([π ]) ∈ Fil1 B+dR)) that any such composed morphism
respects filtrations. Note that both maps in (2.1.6) are injective. This is clear for the
first map, and for the second it follows from the fact that the cokernel of 1 ⊗ ϕ is a
killed by some power of λ, while B+cris is a domain.

Next, we set D0 = (O[�u] ⊗K0 D)
N=0. By Lemma 1.2.1 (and since we are

identifying D and D(M)), we have an isomorphism Ŝ0 ⊗O D0
∼−→ Ŝ0 ⊗K DK ,

and we regard the left-hand side of this isomorphism as equipped with the filtration
induced by that on the right-hand side. By Lemma 1.2.12, ξ ◦ (η⊗ 1) induces a map

HomO,Fil,ϕ(ϕ
∗M, B+cris)→ HomO,Fil,ϕ(D0, B

+
cris), (2.1.7)

where the term on the right means ϕ-compatible maps, which induce a map Ŝ0 ⊗O
D0 → B+dR that is compatible with filtrations. Since the map of Lemma 1.2.12(3) is
an isomorphism at the point x0, (2.1.7) is an injection.

Finally, note that multiplication in the ring O[�u] induces a natural isomorphism
O[�u] ⊗O D0

∼−→
µ⊗1

O[�u] ⊗K0 D which is compatible with ϕ and N . Hence given

any map f in the right-hand side of (2.1.7), we may form the composite

D ↪→ O[�u] ⊗K0 D
∼−→

(µ⊗1)−1
O[�u] ⊗O D0

1⊗f→ O[�u] ⊗O B+cris
∼−→

�u �→log[π ]
B+st .

It follows from the definition of the filtration on Ŝ0 ⊗O D0 that any such composed
map respects filtrations after tensoring by K⊗K0 . Hence we obtain an injective map
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HomO,Fil,ϕ(D0, B
+
cris)→ HomFil,ϕ,N (D,B

+
st ). (2.1.8)

Combining (2.1.6)–(2.1.8), we obtain a GK∞ -equivariant inclusion

HomS,ϕ(M,S
ur)⊗Zp Qp → HomFil,ϕ,N (D,B

+
st ),

Since the left-hand side has Qp-dimension d = dimK0 D by Corollary 2.1.4, the
dimension of the right-hand side is ≥ d . But now an elementary argument [CF,
Proposition 4.5] shows that the right-hand side has dimension d, andD is admissible.
Hence our map is a bijection, as required. )�
Lemma 2.1.9. Let h : M → M′ be a morphism in Modϕ

/S which becomes an
isomorphism after tensoring by OE . Then h is an isomorphism.

Proof. Sinceh is a morphism of free S-modules of the same rank, it is an isomorphism
if the induced map on determinants is. Hence we may assume that M and M′ are
free of rank 1 over S.

Let M = M ⊗S O and M′ = M′ ⊗S O. By Lemmas 1.3.13 and 1.3.10(3),
M and M′ may be regarded as objects of Modϕ,N∇

/O . Let D = D(M) and D′ =
D(M′). By Lemma 1.3.10(2) and Theorem 1.2.15 the mapD→ D′ induced by h is
nonzero, and hence is an isomorphism of filtered (ϕ,N)-modules. Hence h becomes
an isomorphism after inverting p by Corollary 1.3.15. This means that in a suitable
choice of bases h is given by multiplication by pi for some nonnegative integer i.
Since h becomes an isomorphism after tensoring by OE , we must have i = 0. )�
Lemma 2.1.10. Let M be in Modϕ

/S, and let VS(M) be as in Corollary 2.1.4. Then
M′ = HomZp[GK∞](VS(M),S

ur) is a free S-module of rank d = rkS M, and the
natural map

M → HomZp[GK∞](HomS,ϕ(M,S
ur),Sur) = M′

is an injection.

Proof. Set M = M ⊗S OE . The natural map Sur/pSur → OEur/pOEur is an
injection, so that we have an injection

HomZp[GK∞](VS(M),S
ur/pSur) ↪→ HomZp[GK∞](VS(M), ÔEur/pOEur ).

By [Fo 1, A.1.2.7], the right-hand side is a OE/pOE = k((u))-vector space of di-
mension d = rkZp VS(M). The left-hand side is clearly a u-adically separated,
torsion-free k[[u]]-module. Hence it is a free k[[u]]-module of rank at most d.

Now M′ is a p-adically separated torsion-free S-module. Moreover, we have an
injection

M′/pM′ ↪→ HomZp[GK∞](VS(M),S
ur/pSur).

Hence M′ is a quotient of Sd . On the other hand, the natural map M → M′
is an injection because the map OE ⊗S M → HomZp[GK∞](VS(M),OÊur ) is an
isomorphism by [Fo 1, A.1.2.7]. Thus M′ must be a free S-module of rank d =
rkS M by Corollary 2.1.4. )�
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2.1.11. Denote by Modϕ
/OE the category of finite free OE -modules M equipped with

an isomorphism ϕ∗M → M.

Proposition 2.1.12. The functor

Modϕ
/S → Modϕ

/OE ; M �→ M⊗S OE

is fully faithful.

Proof. Let M be in Modϕ
/OE . If M ⊂ M is any finitely generated S-module which

is stable under ϕ, and is such that M/ϕ∗(M) is killed by some power of E(u), then
we set F(M) = OE ⊗S M ∩ M[1/p]. As in the proof of Lemma 1.3.13, F(M)
is a finite free S-module, and is naturally a submodule of M, which contains M, is
stable by ϕ, and such that F(M)/ϕ∗(F (M)) is killed by some power of E(u). In
particular, F(M) is an object of Modϕ

/S.

Now suppose that M1 and M2 are in Modϕ
/S, and write M1 = M1 ⊗S OE and

M2 = M2 ⊗S OE . Suppose we are given a morphism h : M1 → M2 in Modϕ
/OE .

We have to show this induces a map M1 → M2.
Suppose first thath is the identity morphism. By Corollary 2.1.4, we haveVS(M1)

= VS(M2), so both M1 and M2 are contained in HomZp[GK∞](VS(M1),S
ur),

which is a finite S-module of rank d = rkOE M1, by (2.1.10). In particular, M3 =
M1+M2 ⊂ M1 is a finite S-module of rank d , which is stable under the action of ϕ,
and M3/ϕ

∗(M3) is killed by a power of E(u). Hence the morphism M1 → F(M3)

is an isomorphism by Lemma 2.1.9, and similarly M2 = F(M3) = M1.
Now consider the case of any map h. Let M3 = h(M1), M3 = h(M1), and

M′
3 = M3 ∩M2. Then M3 is in Modϕ

/OE , and M3 and M′
3 are finitely generated,

ϕ-stable S-modules, such that M3/ϕ
∗(M3) and M′

3/ϕ
∗(M′

3) are killed by some
power of E(u). To see this for M′ note that we have an exact sequence

0 → M′
3 → M3 ⊕M2 → M2

and that the map 1⊗ϕ is injective on all the terms of this sequence. Thus the cokernel
of 1⊗ ϕ on M′

3 may be identified with an S-submodule of the cokernel of 1⊗ ϕ on
M2. By what we have seen above, we must have F(M3) = F(M′

3) ⊂ M3, so h
induces the composite map

M1 → F(M3) = F(M′
3)→ F(M2) = M2. )�

2.1.13. Denote by RepGK∞ the category of continuous representations of GK∞ on

finite-dimensional Qp-vector spaces. Similarly, we denote by Repcris
GK

the category

of crystalline representations of GK = Gal(K̄/K). The following result had been
conjectured by Breuil [Br 1, p. 202].

Corollary 2.1.14. The functor Repcris
GK

→ RepGK∞ obtained by restricting the action
of a GK -representation to GK∞ is fully faithful.
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Proof. It suffices to prove the corollary for the full subcategory Repcris,+
GK

⊂ Repcris
GK

consisting of crystalline representations with nonnegative Hodge–Tate weights.
Consider the diagram of functors

Repcris,+
GK

��

��

RepGK∞

Modϕ
/S ⊗Qp �� Modϕ

/OE ⊗Qp.

��

Here⊗Qp means that we have passed to the associated isogeny category. The map on
the left is given by composing the (contravariant) functor from crystalline representa-
tions to weakly admissible modules with the fully faithful functor of Corollary 1.3.15.
The map on the bottom is given by Proposition 2.1.12, and hence is fully faithful,
while the map on the right is given by sending M in Modϕ

/OE to HomOE (M, Êur),
and this functor is an equivalence by [Fo 1, A.1.2.7]. That the square commutes (up to
a natural equivalence) follows from Proposition 2.1.5. It follows that the top functor
is also fully faithful. )�
Lemma 2.1.15. Let M be in Modϕ

/S and set V = VS(M) ⊗Zp Qp, and M =
E ⊗S M. Then the map N �→ HomS,ϕ(N,S

ur) is a bijection between finite free,

ϕ-stable S-submodules N ⊂ M such that E ⊗S N
∼−→M and N/ϕ∗(N) is killed

by a power of E(u), and GK∞ -stable Zp-lattices L ⊂ V .

Proof. By [Fo 1, A.1.2.7] the set of GK∞ -stable lattices L ⊂ V is in bijection with
the set of finite free, ϕ-stable OE -lattices N ⊂ M such that the map ϕ∗N → N is
an isomorphism.

Given N, HomS,ϕ(N,S
ur) is a GK∞ -stable lattice in V by Corollary 2.1.4.

Moreover, the above remarks together with Corollary 2.1.4 and Lemma 2.1.9 show
that the map of the lemma is an injection. Suppose we are given a GK∞ -stable
lattice L ⊂ V , and let N = HomZp[GK∞](L,OÊur ) be the corresponding finite free
OE -module. Let N = N ∩ M[1/p] ⊂ M. As in the proof of Lemma 1.3.13 N
is a finite free S-module such that N/ϕ∗(N) is killed by some power of E(u), and
OE ⊗S N = N . Hence N maps to L by Corollary 2.1.4. )�

2.2 Applications to p-divisible groups

In this section we apply the theory of Section 1 to the special case of p-divisible
groups. We give a classification of p-divisible groups (up to isogeny when p = 2)
using S-modules, and we show Fontaine’s conjecture that a crystalline representation
with Hodge–Tate weights 0 and 1 arises from a p-divisible group.

2.2.1. We will denote by BTϕ
/S the full subcategory of Modϕ

/S consisting of objectsM

such that M/ϕ∗(M) is killed byE(u) (not just some power). Similarly we denote by
BTϕ,N∇

/O (respectively, BTϕ
/O) the full subcategory of Modϕ,N∇

/O (respectively, Modϕ,N
/O )
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consisting of objects M such that N∇ = 0 modulo u, (respectively, N = 0) and
M/ϕ∗(M) is killed by E(u).

We say a weakly admissible moduleD is of Barsotti–Tate type if gri DK = 0 for
i �= 0, 1.

Proposition 2.2.2. The functor of Corollary 1.3.15 induces an exact equivalence
between the category of weakly admissible modules of Barsotti–Tate type and
BTϕ

/S⊗Qp.

Proof. Let M be in BTϕ
/S and M̃ = M⊗S O the corresponding object of Modϕ,N

/O .

Then M̃ is evidently in BTϕ
/O. As in (1.3.11) we obtain a mapD(M̃)⊗K0 O → M̃,

which lifts the isomorphismD(M̃)
∼−→M̃/uM̃, and is compatible with ϕ and N∇ .

Here N∇ acts on D(M̃)⊗K0 O as 1 ⊗−uλ d
du

. Now since M̃/ϕ∗(M̃) is killed by

E(u), one sees easily using Lemma 1.2.6 that M̃/(D(M̃)⊗K0 O) is killed by λ. Let
m ∈ M̃, and write m =∑r

i=1 di ⊗ λ−1fi , where di ∈ D(M̃) and fi ∈ O. Then

N∇(m) = −uλ
r∑
i=1

di ⊗ (−λ−2 dλ

du
fi + λ−1 dfi

du
) = udλ

du
m− u

r∑
i=1

di ⊗ dfi
du

∈ M̃.

Hence, by Lemma 1.3.10, M̃ arises from a module M in Modϕ,N∇
/O , and D(M̃) =

D(M) is weakly admissible by Theorems 1.3.8 and 1.2.15. By construction, the
functor in Corollary 1.3.15 takes D(M) to (an object isomorphic to) M.

It remains to remark that ifD is an effective weakly admissible module, and M in
Modϕ,N

/S is the image ofD under the functor of Corollary 1.3.15, then M is in BTϕ
/S

if and only if D is of Barsotti–Tate type. This follows from Lemma 1.2.2. )�
2.2.3. We will use the notation introduced in the appendix. Given a module M in
BTϕ

/S, M = S ⊗ϕ,S M has a natural structure of an object of BTϕ/S , where this is
the category introduced in Section A.5. Here the tensor product is taken with respect
to the map S → S sending u to up. Following [Br 4], we set

Fil1 M = {m ∈ M : 1⊗ ϕ(m) ∈ Fil1 S ⊗S M ⊂ S ⊗S M},
and we define the map ϕ1 as the composite

ϕ1 : Fil1 M 1⊗ϕ→ Fil1 S ⊗S M
ϕ1⊗1→ S ⊗ϕ,S M = M

By Lemma A.2, given a p-divisible group G over OK , M(G) := D(G)(S) is
naturally an object of BTϕ/S . By Proposition A.6 the functor G �→ M(G) is an

equivalence between BTϕ/S and the category of p-divisible groups if p > 2. If p = 2
it induces an equivalence between the corresponding isogeny categories.

Given a p-divisible groupG over OK , we will denote by Tp(G) its Tate module.
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Lemma 2.2.4. Let G be a p-divisible group over OK . If we regard the ring Acris of
Section 2.1.1 as an S-algebra via u �→ [π ], then there is a canonical injection of
GK∞ -modules

Tp(G) ↪→ HomS,Fil,ϕ(M(G),Acris).

This map is an isomorphism if p > 2, and has cokernel killed by p when p = 2.

Proof. An element of Tp(G) is a map of p-divisible groups over OK̄ , Qp/Zp →
G⊗OK

OK̄ . Since Acris is a divided power thickening of ÔK̄ , we can pull this map
back to ÔK̄ , and then evaluate the corresponding crystals onAcris (see the appendix).
This gives rise to a map M⊗SAcris → Acris compatible with filtrations and Frobenius.
That the resulting map is injective, an isomorphism when p > 2, and has cokernel
killed by p when p = 2, follows from [Fa, Theorem 7]. )�
2.2.5. We remark that the fact that the map of Lemma 2.2.4 is an isomorphism when
p > 2 also follows from the calculations of [Br 2, Section 5.3]; however, Faltings’
argument is quite direct and does not rely on reduction to calculations with finite flat
group schemes.

The following result had been conjectured by Fontaine [Fo 3, 5.2.5]

Corollary 2.2.6. Let V be a crystalline representation of GK with all Hodge–
Tate weights equal to 0 or 1. Then there exists a p-divisible group G such that

V
∼−→ Tp(G)⊗Zp Qp.

Proof. Let D = HomZp[GK ](V , B
+
cris) denote the admissible filtered (ϕ,N)-module

attached to V , and let M in BTϕ
/S⊗Qp be the module associated toD by the functor

of Proposition 2.2.2. We again denote by M the object of BTϕ
/S underlying M.

Write M = S ⊗ϕ,S M for the associated object of BTϕ/S . Then M is associated to
a p-divisible group G as above, and by Lemma 2.2.4 we have an isomorphism of
Qp-vector spaces with GK∞ -action

Tp(G)⊗Zp Qp
∼−→HomS,Fil,ϕ(M, Acris)⊗Zp Qp

∼−→HomS,Fil,ϕ(D,B
+
cris) = V.

Here the final isomorphism follows from the fact that, by [Br 2, 5.1.3], we have
a canonical isomorphism M ⊗Zp Qp

∼−→D ⊗W S, compatible with ϕ and filtra-
tions. This fact is also easily deduced from Lemma 1.2.6. That this map is actually
compatible with the action of GK follows from Corollary 2.1.14. )�
Theorem 2.2.7. There exists an exact functor between BTϕ

/S and the category of p-
divisible groups over OK . When p > 2, this functor is an equivalence, and when
p = 2 it induces an equivalence between the corresponding isogeny categories.

Proof. Let M be in BTϕ
/S and M = S ⊗ϕ,S M the corresponding module in BTϕ/S .

We have natural maps

HomS,ϕ(M,S
ur)→ HomS,Fil,ϕ(M, Acris) (2.2.8)
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obtained by composing maps M → Sur with the inclusion Sur ϕ→ Acris, and extend-
ing the resulting map to M by S-linearity. By Lemma 2.2.4 and Corollary 2.1.4, both
sides of (2.2.8) are finite free Zp-modules of the same rank, and (2.2.8) is clearly
injective. Hence it becomes an isomorphism after inverting p. In particular, any map
in the right-hand side induces a map M → Sur[1/p]. It follows that (2.2.8) is an
isomorphism provided that any map M → Sur in the left-hand side whose composite

with Sur ϕ→ Acris factors through pAcris actually factors through pSur. That this is
the case for p > 2, was observed in the proof of [Br 3, 3.3.2].

Now given M in BTϕ
/S, the construction of Section 2.2.3 produces a p-divisible

group G(M). Conversely, given a p-divisible group G, its Tate module Tp(G) is
a lattice in the Barsotti–Tate representation Vp(G) = Tp(G) ⊗Zp Qp. By Proposi-
tion 2.2.2 and Lemma 2.1.15, there is an M in BTϕ

/S, determined up to canonical

isomorphism, such that Tp(G)
∼−→HomS,ϕ(M,S

ur), and it follows from Proposi-
tion 2.1.12 that the assignment G �→ M = M(G) is functorial.

Now suppose thatp > 2. Then Lemma 2.2.4 and the fact that (2.2.8) is an isomor-
phism imply that for M in Modϕ

/S there is a natural isomorphism M(G(M))
∼−→M.

On the other hand, ifG is a p-divisible group over OK , then we have natural isomor-
phisms,

Tp(G(M(G)))
∼−→HomS,ϕ(M(G),S

ur)
∼−→ Tp(G),

and hence a natural isomorphism G(M(G))
∼−→G by Tate’s theorem.

For p = 2, the same arguments show that the functors G and M induce equiva-
lences on the associated isogeny categories. We could also have deduced the theorem
in this case directly from Proposition 2.2.2 and Corollary 2.2.6. )�
2.2.9. In [Ki, 2.2.22] we gave a different proof of the above theorem when p > 2,
which, in particular, made no use of Tate’s theorem. One can recover Tate’s result
from Theorem 2.2.7 by using the full faithfulness of Proposition 2.1.12 together with
Lemma 2.2.4 and the isomorphism (2.2.8).

2.3 Classification of finite flat group schemes

In this final subsection of the paper, we use Theorem 2.2.7 to give a classification
of finite flat group schemes over OK . The idea that one could do this is due to
A. Beilinson, and we are grateful to him for allowing us to include his argument here.
The final result was conjectured by Breuil [Br 4, 2.1.1]

2.3.1. Following the notation of [Ki] we denote by ′(Mod /S) the category consisting
of S-modules M equipped with a Frobenius semilinear map ϕ, such that the cokernel
of ϕ∗(M)→ M is killed by E(u). We denote by (Mod /S) the full subcategory of
′(Mod /S) consisting of modules M such that M has projective dimension 1 as an
S-module and is killed by some power of p.

Later we will need the full subcategory (ModFI /S) of (Mod /S) consisting of
modules M which are of the form⊕i∈IS/pniS, where I is a finite set and ni ∈ N+.
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Lemma 2.3.2. A module M in ′(Mod /S) is in (Mod /S) if and only if M is an
extension in ′(Mod /S) of objects which are finite free S/pS-modules.

Proof. We remark that since S is a regular ring of dimension 2, the Auslander-
Buchsbaum theorem implies that a finitely generated torsion S-module M has pro-
jective dimension 1 if and only if it has depth 1. The latter condition holds if and only
if the associated primes of M are all of height 1 or, equivalently, if M has no section
supported on the closed point of Spec S.

Thus, if M is in (Mod /S) then the quotients M[pi]/M[pi−1] for i = 0, 1, 2 . . .
are easily seen to be free S/pS-modules, and one sees by descending induction on
i that ϕ∗(M[pi]/M[pi−1]) → M[pi]/M[pi−1] has kernel killed by E(u), and is
therefore injective [Ki, 1.1.9]. Hence M is an extension of objects which are free
over S/pS.

Conversely, any such extension has projective dimension 1, and is killed by some
power of p. )�
2.3.3. Let Db(BTϕ

/S) denote the bounded derived category of the exact category

BTϕ
/S. We write (Mod /S)• for the full subcategory of Db(BTϕ

/S) consisting of
two-term complexes M• = M1 → M2 concentrated in degrees 0 and −1, such that
H−1(M•) = 0, and H 0(M•) is killed by a power of p. This is equivalent to asking
that the map M1 → M2 becomes an isomorphism in the isogeny category of BTϕ

/S.
Concretely, (Mod /S)• is obtained by taking the category of two-term complexes M•,
as above, dividing by homotopy equivalences—that is, by morphisms N• → M• of
the form (h ◦ d, d ◦ h), where h : N2 → M1 is a morphism in BTϕ

/S—and inverting
quasi-isomorphisms.

Lemma 2.3.4. The functor M• �→ H 0(M•) induces an equivalence between
(Mod /S)• and (Mod /S).

Proof. It is easy to check that the functor is fully faithful. To check essential surjec-
tivity it suffices, given M in (Mod /S), to find M̃ in BTϕ

/S and a surjection M̃ → M
compatible with ϕ. Indeed, the kernel of any such surjection is automatically a finite
free module, and since ϕ∗(M)→ M is injective, this cokernel is in BTϕ

/S.

LetL = M/(1⊗ϕ)(ϕ∗M). ThenL is a finite OK -module (via S
u�→π→ OK ). Let

L̃ be a free OK -module, and L̃→ L a surjection. Choose a free S-module M̃ and
surjections of S-modules M̃ → L̃ and M̃ → M compatible with the projections of
L̃ and M to L.

Since we may always replace M̃ with M̃⊕Sr for r ∈ N+, and map the second
factor to 0 in L̃ and arbitrarily to N = ker(M → L), we may assume that Ñ :=
ker(M̃ → L̃) surjects onto N. Finally, we may write Ñ = Ñ0 ⊕ Ñ1, where Ñ1

maps to 0 in N, and Ñ0 ⊗S k
∼−→N ⊗S k. Since ϕ∗(M̃) is a free S-module, the

composite
ϕ∗(M̃)→ ϕ∗(M) ∼−→N ⊂ M

lifts to Ñ0, and any such lift is automatically a surjection. We may then lift this further
to a surjection ϕ∗(M̃) → Ñ. Any such lift is an isomorphism, since both sides are
free S-modules of the same rank.
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The induced map ϕ∗(M̃)→ M̃ has cokernel L̃, and hence gives M̃ the structure
of a module in BTϕ

/S, which surjects onto M. )�
Theorem 2.3.5. If p > 2, there is an exact anti-equivalence between (Mod /S) and
the category (p-Gr /OK) of finite flat group schemes over OK .

Proof. LetDb(p-div /OK)denote the bounded derived category of the exact category
of p-divisible groups over OK . We write (p-Gr /OK)• for the full subcategory
of Db(p-div /OK) consisting of isogenies of p-divisible groups G1 → G2. This
category has an explicit description analogous to the one given for (Mod /S)• in
Section 2.3.3.

The kernel of any isogeny is a finite flat group scheme, and conversely given
any finite flat group scheme G there exists an embedding of G into a p-divisible
group G1 [BBM, 3.1.1]. The quotient G1/G (taken, for example, in the cate-
gory of fppf sheaves) is a p-divisible group. Hence one sees easily that the functor
(p-Gr /OK)• → (p-Gr /OK) given by sending an isogeny to its kernel is an equiv-
alence of categories.

On the other hand, (p-Gr /OK)• is anti-equivalent to (Mod /S)• by Theo-
rem 2.2.7, and the theorem follows, since (Mod /S)• is equivalent to (Mod /S)
by Lemma 2.3.4. )�
Corollary 2.3.6. Ifp > 2, the category (ModFI /S) is anti-equivalent to the category
of finite flat group schemes G over OK such that G[pn] is finite flat for n ≥ 1.

Proof. This can be deduced by formal arguments from Theorem 2.3.5 in the same
way that [Br 2, 4.2.2.5] is deduced from [Br 2, 4.2.1.6]. )�

Appendix A: Crystals and p-divisible groups

A.1

Let T be a W -scheme on which p is locally nilpotent, and denote by (T /W)cris the
crystalline site of T overW , corresponding to embeddings ofW -schemes T ↪→ T ′,
defined by a sheaf of ideal J on T ′, which is equipped with divided powers, and such
that the local sections of J are nilpotent.

Let G be a p-divisible group on T . Recall [MM, II Section 9] that there is a
contravariant functor G �→ D(G) from the category of p-divisible groups over T to
the category of crystals on (T /W)cris. The functor is defined using the Lie algebra
of the universal vector extension of the dual p-divisible group G∗.

The formation of D(G) is compatible with arbitrary base change. In particular, if
p = 0 on T , then we can pullG back by the Frobenius ϕ on T . The relative Frobenius
on G, gives a map G→ ϕ∗(G), and hence a map of crystals

ϕ∗(D(G)) ∼−→D(ϕ∗(G))→ D(G).
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Suppose now that T0 is a W -scheme with p = 0 on T0, and G0 is a p-divisible
group over T0. Let T0 ↪→ T be an object of (T0/W)cris on which p is locally nilpo-
tent, and G a lifting of G0 to T . By construction of D, we have an isomorphism
D(G0)(T )

∼−→D(G)(T ). Moreover, the OT -module D(G)(T ) sits in an exact se-
quence

0 → (LieG)∗ → D(G)(T )→ LieG∗ → 0

where (LieG)∗ denotes the OT -dual of LieG. Hence specifyingG equips D(G0)(T )

with an OT -submodule L such that D(G0)(T )/L is a free OT -module.
The main result of [Me] asserts that if the divided powers on the ideal defining

T0 ↪→ T are nilpotent, then G is determined by L, and that, conversely, given a
submodule L ⊂ D(G0)(T ) such that D(G0)(T )/L is OT -free, and L ⊗OT

OT0 ⊂
D(G0)(T0) coincides with (LieG0)

∗, there is a p-divisible group G over T with
L = (LieG)∗ ⊂ D(G)(T ) = D(G0)(T ). (Strictly speaking, the result in [Me]
applies when, locally on T0, G0 admits some lift to T , but this condition is always
satisfied [MM, II Section 9]).

If T = SpecA is affine we will write D(G)(A) for D(G)(SpecA).

Lemma A.2. Let A → A0 be a surjection of p-adically complete and separated,
local Zp-algebras with residue field k, whose kernel Fil1A is equipped with divided
powers. Suppose that

(1) A is p-torsion-free, and equipped with an endomorphism ϕ : A→ A lifting the
Frobenius on A/pA.

(2) The induced map ϕ∗(Fil1A)
1⊗ϕ/p→ A is surjective.

IfG is ap-divisible group overA0, write Fil1 D(G)(A) ⊂ D(G)(A) for the preim-
age of (LieG)∗ ⊂ D(G)(A0). Then the restriction of ϕ : D(G)(A)→ D(G)(A) to
Fil1 D(G)(A) is divisible by p, and the induced map

ϕ∗ Fil1 D(G)(A)
1⊗ϕ/p−→ D(G)(A)

is a surjection.

Proof. Let M = D(G)(A). Let G̃ be a lifting ofG toA, and set G̃0 = G⊗A A/pA.
Note that ϕ induces the zero endomorphism of (Lie G̃0)

∗, and that ϕ restricted to
Fil1A = ker(A → A0) is divisible by p, since this ideal is equipped with divided
powers. In particular, the map of (2) makes sense. Since

Fil1 M = (Lie G̃)∗ + Fil1A ·M,

we see that ϕ(Fil1 M) ⊂ pM, so we may define a map

ϕ1 = ϕ/p : Fil1 M → M.

We have to check that the image of this map generates the A-module M. The
hypothesis (2) implies that ϕ(M) = ϕ1(Fil1A)Aϕ(M) ⊂ ϕ1(Fil1 M)A. Hence it
suffices to show that the map
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ϕ∗(Fil1 M+ pM)
1⊗ϕ/p−→ M (A.2.1)

is surjective.
There is a unique map A → W(k) which lifts the projection A → k and is

compatible with the action of Frobenius. WriteH = G̃⊗AW(k) andH0 = H ⊗W(k)
k. By [MM, II Section 15] D(H)(W(k)) is naturally isomorphic to the Dieudonné
module ofH , and this isomorphism is compatible with the action of Frobenius. Hence
if V denotes the Verschiebung, then we have

(LieH)∗ = V (F/p)(LieH ∗) ⊂ VD(H)(W(k)).

Hence (LieH0)
∗ ⊂ VD(H0)(k), and this inclusion must be an equality since both

sides have the same k-dimension. (They may both be identified with the quotient
D(H0)(k)/FD(H0)(k).) Hence (LieH)∗ + pD(H)(W(k)) = VD(H)(W(k)), and
since (F/p)V = 1, we see thatF/p induces a surjection of (LieH)∗+pD(H)(W(k))
onto D(H)(W(k)). Hence (A.2.1) is also a surjection. )�

A.3

By a special ring we shall mean a p-adically complete, separated, p-torsion-free,
local Zp-algebra A with residue field k, equipped with an endomorphism ϕ lifting
the Frobenius on A/pA.

For such anA, we denote by CA the category of finite freeA-modules M, equipped
with a Frobenius semilinear map ϕ : M → M and anA-submodule M1 ⊂ M such
that ϕ(M1) ⊂ pM and the map 1⊗ ϕ/p : ϕ∗(M1)→ M is surjective.

Given a map of special rings A→ B, (that is a map of Zp-algebras compatible
with ϕ) and M in CA, we give M⊗A B the structure of an object in CB , by giving
it the induced Frobenius, and setting (M⊗A B)1 equal to the image of M1 ⊗A B in
M⊗A B.

Lemma A.4. Let h : A→ B be a surjection of special rings with kernel J . Suppose
that for i ≥ 1, ϕi(J ) ⊂ pi+ji J , where {ji}i≥1 is a sequence of integers such that
lim−→i

ji = ∞.

Let M and M′ be in CA, and θB : M ⊗A B ∼−→M′ ⊗A B an isomorphism in

CB Then there exists a unique isomorphism ofA-modules θA : M ∼−→M′ lifting θB ,
and compatible with ϕ.

Proof. Let θ0 : M → M′ be any map of A-modules lifting θB . Since ϕ(J ) ⊂ pA
the truth of the proposition is unaffected if we replace M1 and M′

1 by M1 + JM
and M′

1 + JM′ respectively. In particular, we may assume that θ0(M1) ⊂ M′
1.

We claim that the composite

ϕ∗(M1)
ϕ∗(θ0|M1 )−→ ϕ∗(M′

1)
1⊗ϕ/p−→ M′ (A.4.1)

factors through M via the map 1⊗ ϕ/p. To see this note that the map ϕ∗M → M
is injective because, after inverting p, it becomes a surjection of finite free A[1/p]-
modules of the same rank, and hence an isomorphism. Hence if x ∈ ϕ∗(M1) is
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in the kernel of 1 ⊗ ϕ/p, then the image of x in ϕ∗(M) is 0, and hence so is
ϕ∗(θ0)(x) ∈ ϕ∗(M′). It follows that (A.4.1) maps px and hence also x to 0.

Let θ1 : M → M′ be the map induced by (A.4.1). Then for x ∈ M1 we have
θ1 ◦ ϕ/p(x) = ϕ/p ◦ θ0(x). Repeating the construction, we obtain a sequence of
maps θ0, θ1, . . . lifting θB , and such that θi ◦ϕ/p(x) = ϕ/p◦θi−1(x) for x ∈ M1. In
particular, we have (θi+1−θi)◦ϕ/p = ϕ/p◦(θi−θi−1) on M1, and since ϕ/p(M1)

generates M as anA-module, we see that (θi+1−θi)(M) ⊂ (ϕ/p)i(J )M′ ⊂ pjiM′.
Hence the θi converge to a well defined map θA : M → M′, which commutes with
ϕ and lifts θB .

If θA and θ ′A are two such maps, then as above, we obtain that (θA − θ ′A)(M) ⊂
(ϕ/p)i(J )M′ for each i so that θA = θ ′A. )�

A.5

We will apply Lemma A.4 in the following situation: J is equipped with divided
powers, and there exist a finite set of elements x1, . . . xn ∈ J such that J is topo-
logically (for the p-adic topology) generated by the xi and their divided powers, and
ϕ(xi) = xpi . The integers ji may then be taken to be vp((pi − 1)!)− i.

Denote by S the p-adic completion of the divided power envelope ofW [u] with
respect to the ideal E(u). The ring S is equipped with an endomorphism ϕ given by
the Frobenius on W , and ϕ(u) = up. We denote by Fil1 S ⊂ S the closure of the
ideal generated by E(u) and its divided powers. Note that ϕ(Fil1 S) ⊂ pS. We set
ϕ1 = ϕ/p|Fil1 S .

We will denote by BTϕ/S the category of finite free S-modules M equipped with

an S-submodule Fil1 M and a ϕ-semilinear map ϕ1 : Fil1 M → M such that

(1) Fil1 S ·M ⊂ Fil1 M, and the quotient M/Fil1 M is a free OK -module.

(2) The map ϕ∗(Fil1 M)
1⊗ϕ1→ M is surjective.

Any M in BTϕ/S is equipped with a Frobenius semilinear map ϕ : M → M
defined by ϕ(x) = ϕ1(E(u))

−1ϕ1(E(u)x).

Proposition A.6. There is an exact contravariant functor G �→ D(G)(S) from the
category of p-divisible groups over OK to BTϕ/S . If p > 2 this functor is an anti-
equivalence, and ifp = 2 it induces an anti-equivalence of the corresponding isogeny
categories.

Proof. Given a p-divisible groupG over OK , the S-module M(G) := D(G)(S) has
a natural structure of an object of BTϕ/S by (A.2). This gives a functor fromp-divisible

groups over OK to BTϕ/S . We will construct a quasi-inverse (up to isogeny if p = 2).

Let M be in BTϕ/S . We begin by constructing from M a p-divisible group Gi
over OK/πi for i = 1, 2, . . . , e. More precisely, for any such i let Ri = W [u]/ui .
It is equipped with a Frobenius endomorphism ϕ given by the usual Frobenius onW
and u �→ up. We regard OK/πi as an Ri-algebra via u �→ π . This is a surjection



Crystalline representations and F -crystals 493

with kernel pRi , so Ri is a divided power thickening of OK/πi and given any p-
divisible groupGi over OK/πi we may form D(Gi)(Ri). As in (A.2), we denote by
Fil1 D(Gi)(Ri) the preimage of (LieGi)∗ ⊂ D(Gi)(OK/πi) in D(Gi)(Ri). On the
other hand, we have a ϕ-compatible map S → Ri , sending u to u, and uej /j ! to 0
for j ≥ 1. Write Ii for the kernel of this map. We equip Mi = Ri ⊗S M with the
induced Frobenius ϕ, and we set Fil1 Mi ⊂ Mi equal to the image of Fil1 M in Mi .
Note that 1⊗ϕ1 : ϕ∗(Fil1 M)→ M induces a surjective map ϕ∗(Fil1 Mi )→ Mi .
We will construct a p-divisible group Gi together with a canonical isomorphism
D(Gi)(Ri)

∼−→Mi compatible with ϕ and filtrations.
Denote by F : M1 → M1 the map induced by ϕ : M → M. A simple

computation shows that both sides of the surjective map ϕ∗(Fil1 M1) → M1, are
free W -modules of the same rank, hence this map is an isomorphism. Composing
the inverse of this isomorphism with the composite

ϕ∗(Fil1 M1)→ ϕ∗(M1)
∼−→M1,

where the first map is induced by the inclusion Fil1 M ⊂ M, while the second is given
by a⊗m �→ ϕ−1(a)m, gives a ϕ−1 semilinear mapV : M1 → M1, such thatFV =
VF = p. Denote by G1 to be the p-divisible group associated (contravariantly)
to this Dieudonné module. The tautological isomorphism D(G1)(W)

∼−→M1 is
compatible with Frobenius, and it is compatible with filtrations because Fil1 D(G1)

may be identified with VD(G1), as explained at the end of the proof of Lemma A.2.
Now suppose that i ∈ [2, e] is an integer and that we have constructedGi−1 such

that D(Gi−1)(Ri−1)
∼−→Mi−1 is compatible with Frobenius and filtrations. Note

that the kernel ofRi → OK/πi−1 is equal to (ui−1, p)which admits divided powers,
so we may evaluate D(Gi−1) on Ri . By Lemma A.2 and what we have already seen
D(Gi−1)(Ri), and Mi both have the structure of objects of CRi , and the above iso-
morphism is an isomorphism in CRi−1 . Hence by Lemma A.4 applied to the surjection

Ri → Ri−1, it lifts to a unique ϕ-compatible isomorphism D(Gi−1)(Ri)
∼−→Mi .

By the main result of [Me] there is a unique p-divisible groupGi over OK/πi which
lifts Gi−1, and such that (LieGi)∗ ⊂ D(Gi−1)(OK/πi) is equal to the image of
Fil1 Mi under the composite

Fil1 Mi ⊂ Mi
∼−→D(Gi−1)(Ri)→ D(Gi−1)(OK/πi).

By construction we have D(Gi)(Ri)
∼−→Mi compatible withϕ and filtrations, which

completes the induction.
We now apply Lemma A.4 to the surjection S → Re, and the modules M and

D(Ge)(S) in CS . Note that the kernel of S → OK/πe = OK/p admits divided
powers, so we may evaluate D(Ge) on S, and the result is in CS by Lemma A.2.
Since Me

∼−→D(Ge)(Re) in CRe , we have a canonical ϕ-compatible isomorphism

M ∼−→D(Ge)(S) by Lemma A.4.
Suppose that p > 2. Then the divided powers on the kernel of OK → OK/p are

nilpotent, and we may take G = G(M) to be the unique lift of Ge to OK such that
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(LieG)∗ ⊂ D(Ge)(OK) is equal to the image of Fil1 M under the composite of the
above isomorphism and the projection D(Ge)(S)→ D(Ge)(OK). Strictly speaking
what Grothendieck–Messing theory produces is a sequence ofp-divisible groups over
OK/pi for i = 1, 2, . . . which are compatible under the maps OK/pi → OK/pi−1.
However, this data corresponds to a unique p-divisible group over OK [deJ, 2.4.4].

From the construction we clearly have M ∼−→M(G(M)). On the other hand
using the uniqueness at every stage of the construction, one sees by induction on i that
for i = 1, 2, . . . , e and any p-divisible group G over OK , Gi(M(G)) is isomorphic
to G⊗OK

OK/πi , and then that G
∼−→G(M(G)).

Now suppose that p = 2. We may regard the kernel of OK/p2 → OK/p as
being equipped with divided powers by taking the divided powers p[i] to be 0 for
i ≥ 2. We denote by G2e the unique lift of Ge to OK/p2, such that the image of the
composite

Fil1 M → M ∼−→D(Ge)(S)→ D(Ge)(OK/p2)

is equal to (LieG2e)
∗. Finally, as for the case p = 2, we set G equal to the unique

lift of G2e to OK , such that the image of Fil1 M in D(G2e)(OK) = D(Ge)(OK) is
equal to (LieG)∗.

As for p > 2, we still have a natural isomorphism M(G(M))
∼−→M. Given a

p-divisible groupG over OK , we also obtain, as before, an isomorphismGe(M(G))
∼−→G⊗OK

OK/p. In general,G2e need not be isomorphic toG′2e := G⊗OK
OK/p2,

because the divided power structure on (p) ⊂ OK/p2, its not compatible with the
divided powers on (p) ⊂ S. However, since both these p-divisible groups lift Ge,
there exist maps G2e � G′2e, lifting multiplication by p2 on Ge [Kat, 1.1.3]. Since
G and G(M(G)) are obtained from G′2e and G2e as the unique lifts corresponding
to the image of Fil1 M in

D(G2e)(OK)
∼−→D(Ge)(OK)

∼−→D(G′2e)(OK),

these maps lift to mapsG(M(G))� G whose composite in either order is multipli-
cation by p4. )�
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Summary. We prove that an indecomposable principally polarized abelian variety X is the
Jacobain of a curve if and only if there exist vectors U �= 0, V such that the roots xi(y) of the
theta-functional equation θ(Ux + Vy + Z) = 0 satisfy the equations of motion of the formal
infinite-dimensional Calogero–Moser system.

Subject Classifications: Primary 14H70. Secondary 14H40, 14K05, 37K20, 14H42.

1 Introduction

The Riemann–Schottky problem on the characterization of the Jacobians of curves
among abelian varieties is more than 120 years old. Quite a few geometrical charac-
terizations of Jacobians have been found. None of them provides an explicit system
of equations for the image of the Jacobian locus in the projective space under the
level-two theta imbedding.

The first effective solution of the Riemann–Schottky problem was obtained by
T. Shiota [1], who proved the famous Novikov conjecture:

An indecomposable principally polarized abelian variety (X, θ) is the Jacobian
of a curve of a genus g if and only if there exist g-dimensional vectors U �= 0, V ,W
such that the function
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u(x, y, t) = −2∂2
x ln θ(Ux + Vy +Wt + Z) (1.1)

is a solution of the Kadomtsev–Petviashvili (KP) equation

3uyy = (4ut + 6uux − uxxx)x. (1.2)

Here θ(Z) = θ(Z|B) is the Riemann theta-function,

θ(z) =
∑
m∈Zg

e2πi(z,m)+πi(Bm,m), (z,m) = m1z1 + · · · +mgzg, (1.3)

whereB is the corresponding symmetric matrix with positive definite imaginary part.
It is easy to show [2] that the KP equation with u of the form (1.1) is in fact equiv-

alent to the following system of algebraic equations for the fourth-order derivatives
of the level-two theta constants:

∂4
U'[ε, 0] − ∂U∂W'[ε, 0] + ∂2

V'[ε, 0] + c'[ε, 0] = 0, c = const. (1.4)

Here '[ε, 0] = '[ε, 0](0), where '[ε, 0](z) = θ [ε, 0](2z|2B) are level-two theta-
functions with half-integer characteristics ε ∈ 1

2Zg2 .
The KP equation admits the so-called zero-curvature representation [3, 4], which

is the compatibility condition for the following over-determined system of linear
equations:

(∂y − ∂2
x + u)ψ = 0, (1.5)(

∂t − ∂3
x +

3

2
∂x + w

)
ψ = 0. (1.6)

The main goal of the present paper is to show that the KP equation contains excessive
information and that the Jacobians can be characterized in terms of only the first of
its auxiliary linear equations.

Theorem 1.1. An indecomposable principally polarized abelian variety (X, θ) is the
Jacobian of a curve of genus g if and only if there exist g-dimensional vectors U �=
0, V ,A such that equation (1.5) is satisfied for

u = −2∂2
x ln θ(Ux + Vy + Z) (1.7)

and

ψ = θ(A+ Ux + Vy + Z)
θ(Ux + Vy + Z) epx+Ey, (1.8)

where p,E are constants.

The “if’’ part of this statement follows from the exact theta-functional expression
for the Baker–Akhiezer function [5, 6].

The addition formula for the Riemann theta-function directly implies that equation
(1.5) with u andψ of the form (1.7) and (1.8) is equivalent to the system of equations
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(∂V − ∂2
U − 2p∂U + (E − p2))'[ε, 0](A/2) = 0, ε ∈ 1

2
Zg2 . (1.9)

Recently Theorem 1.1 was proved by E. Arbarello and G. Marini and the author [7]
under the additional assumption that the closure 〈A〉 of the subgroup of X generated
by A is irreducible. The geometric interpretation of Theorem 1.1 is equivalent to
the characterization of Jacobians via flexes of Kummer varieties (see details in [7]),
which is a particular case of the so-called trisecant conjecture, first formulated in [8].

Theorem 1.1 is not the strongest form of our main result. What we really prove
is that the Jacobian locus in the space of principally polarized abelian varieties is
characterized by a system of equations which formally can be seen as the equations
of motion of the infinite-dimensional Calogero–Moser system.

Let τ(x, y) be an entire function of the complex variable x smoothly depending
on a parameter y. Consider the equation

resx(∂
2
y ln τ + 2(∂2

x ln τ)2) = 0, (1.10)

which means that the meromorphic function given by the left-hand side of (1.10) has
no residues in the x variable. If xi(y) is a simple zero of τ , i.e., τ(xi(y), y) = 0,
∂xτ (xi(y), y) �= 0, then (1.10) implies

ẍi = 2wi, (1.11)

where “dots’’ stands for the y-derivatives andwi is the third coefficient of the Laurent
expansion of u(x, y) = −2∂2

x τ (x, y) at xi , i.e.,

u(x, y) = 2

(x − xi(y))2 + vi(y)+ wi(y)(x − xi(y))+ · · · . (1.12)

Formally, if we represent τ as an infinite product,

τ(x, y) = c(y)
∏
i

(x − xi(y)), (1.13)

then equation (1.10) can be written as the infinite system of equations

ẍi = −4
∑
j �=i

1

(xi − xj )3 . (1.14)

Equations (1.14) are purely formal because, even if τ has simple zeros at y = 0, in the
general case there is no nontrivial interval in y where the zeros stay simple. For the
moment, the only reason for representing (1.11) in the form (1.14) is to show that in
the case when τ is a rational, trigonometric or elliptic polynomial the system (1.11)
coincides with the equations of motion for the rational, trigonometrical or elliptic
Calogero–Moser systems, respectively.

Equations (1.11) for the zeros of the function τ = θ(Ux+Vy+Z)were derived
in [7] as a direct corollary of the assumptions of Theorem 1.1. Simple expansion of
θ at the points of its divisor z ∈ ' : θ(z) = 0 gives the equation
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[(∂2θ)
2 − (∂2

1θ)
2]∂2

1θ + 2[∂2
1θ∂

3
1θ − ∂2θ∂1∂2θ ]∂1θ + [∂2

2θ − ∂4
1θ ](∂1θ)

2

= 0 (mod θ)
(1.15)

which is valid on '. Here and below ' is the divisor on X defined by the equation
θ(Z) = 0 and ∂1 and ∂2 are constant vector fields on Cg corresponding to the vectors
U and V .

It would be very interesting to understand if any reasonable general theory of
equation (1.10) exists. The following form of our main result shows that in any case
such a theory has to be interesting and nontrivial.

Let '1 be defined by the equations '1 = {Z : θ(Z) = ∂1θ(Z) = 0}. The
∂1-invariant subset � of '1 will be called the singular locus.

Theorem 1.2. An indecomposable principally polarized abelian variety (X, θ) is the
Jacobian of a curve of genus g if and only if there exist g-dimensional vectors U �=
0, V , such that for each Z ∈ Cg \ � equation (1.10) for the function τ(x, y) =
θ(Ux + Vy + Z) is satisfied, i.e., equation (1.15) is valid on '.

The main idea of Shiota’s proof of the Novikov conjecture is to show that if u is
as in (1.1) and satisfies the KP equation, then it can be extended to a τ -function of the
KP hierarchy, as a global holomorphic function of the infinite number of variables
t = {ti}, t1 = x, t2 = y, t3 = t . Local existence of τ directly follows from the KP
equation. The global existence of the τ -function is crucial. The rest is a corollary of
the KP theory and the theory of commuting ordinary differential operators developed
by Burchnall–Chaundy [9, 10] and the author [5, 6].

The core of the problem is that there is a homological obstruction for the global
existence of τ . It is controlled by the cohomology groupH 1(Cg\�,V), where V is the
sheaf of ∂1-invariant meromorphic functions on Cg\�with poles along' (see details
in [11]). The hardest part of Shiota’s work (clarified in [11]) is the proof that the locus
� is empty. That ensures the vanishing of H 1(Cg,V). Analogous obstructions have
occurred in all the other attempts to apply the theory of soliton equations to various
characterization problems in the theory of abelian varieties. None of them has been
completely successful. Only partial results were obtained. (Note that Theorem 1.1 in
one of its equivalent forms was proved earlier in [12] under the additional assumption
that '1 does not contain a ∂1-invariant line.)

Strictly speaking, the KP equation and the KP hierarchy are not used in the present
paper. But our main construction of the formal wave solutions of (1.5) is reminiscent
of the construction of the τ -function. All its difficulties can be traced back to those
in Shiota’s work. The wave solution of (1.5) is a solution of the form

ψ(x, y, k) = ekx+(k2+b)y
(

1+
∞∑
s=1

ξs(x, y)k
−s
)
. (1.16)

At the beginning of the next section, we show that the assumptions of Theorem 1.2
are necessary and sufficient conditions for the local existence of the wave solutions
such that

ξs = τs(Ux + Vy + Z, y)
θ(Ux + Vy + Z) , Z /∈ �, (1.17)
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where τs(Z, y), as a function of Z, is holomorphic in some open domain in Cg . The
functions ξs are defined recursively by the equation 2∂1ξs+1 = ∂yξs − ∂2

1 ξs + uξs .
Therefore, the global existence of ξs is controlled by the same cohomology group
H 1(C \�,V) as above. At the local level the main problem is to find a translational
invariant normalization of ξs which defines wave solutions uniquely up to a ∂1-
invariant factor.

In the case of periodic potentials u(x + T , y) = u(x) the normalization problem
for the wave functions was solved by D. Phong and the author in [13]. It was shown
that the condition that ξs is periodic completely determines the y-dependence of
the integration constants and the corresponding wave solutions are related by an x-
independent factor. In general, the potential u = −2∂2

x θ(Ux+Vy+Z) is only quasi-
periodic in x. In that case the solution of the normalization problem is technically
more involved but mainly goes along the same lines as in the periodic case. The
corresponding wave solutions are called λ-periodic.

In the last section, we showed that for each Z /∈ � a local λ-periodic wave solu-
tion is the common eigenfunction of a commutative ring AZ of ordinary differential
operators. The coefficients of these operators are independent of ambiguities in the
construction of ψ . For generic Z the ring AZ is maximal and the corresponding
spectral curve  is Z-independent. The correspondence j : Z �−→ AZ allows us
to take the next crucial step and prove the global existence of the wave function.
Namely, onX \� the wave function can be globally defined as the preimage j∗ψBA
under j of the Baker–Akhiezer function on  and then can be extended to X by
the usual Hartog-type arguments. The global existence of the wave function implies
that X contains an orbit of the KP hierarchy, as an abelian subvariety. The orbit is
isomorphic to the generalized Jacobian J () = Pic0() of the spectral curve [1].
Therefore, the generalized Jacobian is compact. The compactness of Pic0() implies
that the spectral curve is smooth and the correspondence j extends by linearity and
defines an isomorphism j : X→ J ().

2 λ-periodic wave solutions

As was mentioned above, the formal Calogero–Moser equations (1.11) were derived
in [7] as a necessary condition for the existence of a meromorphic solution to equa-
tion (1.5).

Let τ(x, y) be a holomorphic function of the variable x in some open domain
D ∈ C smoothly depending on a parameter y. Suppose that for each y the zeros of
τ are simple,

τ(xi(y), y) = 0, τx(xi(y), y) �= 0. (2.1)

Lemma 2.1 ([7]). If equation (1.5) with the potential u = −2∂2
x ln τ(x, y) has a

meromorphic in D solution ψ0(x, y), then equations (1.11) hold.

Proof. Consider the Laurent expansions of ψ0 and u in the neighborhood of one of
the zeros xi of τ :
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u = 2

(x − xi)2 + vi + wi(x − xi)+ · · · , (2.2)

ψ0 = αi

x − xi + βi + γi(x − xi)+ δi(x − xi)
2 + · · · , (2.3)

(All coefficients in these expansions are smooth functions of the variable y.) Substi-
tution of (2.2), (2.3) in (1.5) gives a system of equations. The first three of them are

αiẋi + 2βi = 0, (2.4)

α̇i + αivi + 2γi = 0, (2.5)

β̇i + viβi − γi ẋi + αiwi = 0. (2.6)

Taking the y-derivative of the first equation and the using other two, we get (1.11).
Let us show that equations (1.11) are sufficient for the existence of meromorphic

wave solutions. )�
Lemma 2.2. Suppose that equations (1.11) for the zeros of τ(x, y) hold. Then there
exist meromorphic wave solutions of equation (1.5) that have simple poles at xi and
are holomorphic everywhere else.

Proof. Substitution of (1.16) into (1.5) gives a recurrent system of equations

2ξ ′s+1 = ∂yξs + uξs − ξ ′′s . (2.7)

We are going to prove by induction that this system has meromorphic solutions with
simple poles at all the zeros xi of τ .

Let us expand ξs at xi :

ξs = rs

x − xi + rs0 + rs1(x − xi), (2.8)

where for brevity we omit the index i in the notation for the coefficients of this
expansion. Suppose that ξs are defined and equation (2.7) has a meromorphic solution.
Then the right-hand side of (2.7) has zero residue at x = xi , i.e.,

resxi (∂yξs + uξs − ξ ′′s ) = ṙs + virs + 2rs1 = 0. (2.9)

We need to show that the residue of the next equation also vanishes. From (2.7) it
follows that the coefficients of the Laurent expansion for ξs+1 are equal to

rs+1 = −ẋi rs − 2rs0, (2.10)

2rs+1,1 = ṙs0 − rs1 + wirs + virs0. (2.11)

These equations imply

ṙs+1 + virs+1 + 2rs+1,1 = −rs(ẍi − 2wi)− ẋi (ṙs − virss + 2rs1) = 0, (2.12)

and the lemma is proved. )�
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Our next goal is to fix a translation-invariant normalization of ξs which defines
wave functions uniquely up to an x-independent factor. It is instructive to consider
first the case of the periodic potentials u(x + 1, y) = u(x, y) (see details in [13]).

Equations (2.7) are solved recursively by the formulae

ξs+1(x, y) = cs+1(y)+ ξ0
s+1(x, y), (2.13)

ξ0
s+1(x, y) =

1

2

∫ x

x0

(∂yξs − ξ ′′s + uξs)dx, (2.14)

where cs(y) are arbitrary functions of the variable y. Let us show that the periodicity
condition ξs(x + 1, y) = ξs(x, y) defines the functions cs(y) uniquely up to an
additive constant. Assume that ξs−1 is known and satisfies the condition that the
corresponding function ξ0

s is periodic. The choice of the function cs(y) does not
affect the periodicity property of ξs , but it does affect the periodicity in x of the
function ξ0

s+1(x, y). In order to make ξ0
s+1(x, y) periodic, the function cs(y) should

satisfy the linear differential equation

∂ycs(y)+ B(y)cs(y)+
∫ x0+1

x0

(∂yξ
0
s (x, y)+ u(x, y)ξ0

s (x, y))dx, (2.15)

where B(y) = ∫ x0+1
x0

udx. This defines cs uniquely up to a constant.
In the general case, when u is quasi-periodic, the normalization of the wave

functions is defined along the same lines.
Let YU = 〈Ux〉 be the closure of the group Ux in X. Shifting YU if needed, we

may assume, without loss of generality, that YU is not in the singular locus, YU /∈ �.
Then for a sufficiently small y, we haveYU+Vy /∈ � as well. Consider the restriction
of the theta-function onto the affine subspace Cd + Vy, where Cd = π−1(YU ), and
π : Cg → X = Cg/� is the universal cover of X:

τ(z, y) = θ(z+ Vy), z ∈ Cd . (2.16)

The function u(z, y) = −2∂2
1 ln τ is periodic with respect to the lattice�U = �∩Cd

and, for fixed y, has a double pole along the divisor 'U(y) = ('− Vy) ∩ Cd .

Lemma 2.3. Let equation (1.10) for τ(Ux + z, y) hold and let λ be a vector of the
sublattice �U = � ∩ Cd ⊂ Cg . Then

(i) equation (1.5) with the potential u(Ux + z, y) has a wave solution of the form
ψ = ekx+k2yφ(Ux + z, y, k) such that the coefficients ξs(z, y) of the formal
series

φ(z, y, k) = eby
(

1+
∞∑
s=1

ξs(z, y)k
−s
)

(2.17)

are λ-periodic meromorphic functions of the variable z ∈ Cd with a simple pole
along the divisor 'U(y),

ξs(z+ λ, y) = ξs(z, y) = τs(z, y)

τ (z, y)
; (2.18)
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(ii) φ(z, y, k) is unique up to a factor ρ(z, k) that is ∂1-invariant and holomorphic
in z,

φ1(z, y, k) = φ(z, y, k)ρ(z, k), ∂1ρ = 0. (2.19)

Proof. The functions ξs(z) are defined recursively by the equations

2∂1ξs+1 = ∂yξs + (u+ b)ξs − ∂2
1 ξs . (2.20)

A particular solution of the first equation 2∂1ξ1 = u+ b is given by the formula

2ξ0
1 = −2∂1 ln τ + (l, z)b, (2.21)

where (l, z) is a linear form on Cd given by the scalar product of z with a vector
l ∈ Cd such that (l, U) = 1, and (l, λ) �= 0. The periodicity condition for ξ0

1 defines
the constant b,

(l, λ)b = (2∂1 ln τ(z+ λ, y)− 2∂1 ln τ(z, y)), (2.22)

which depends only on a choice of the lattice vector λ. A change of the potential
by an additive constant does not affect the results of the previous lemma. Therefore,
equations (1.11) are sufficient for the local solvability of (2.20) in any domain, where
τ(z + Ux, y) has simple zeros, i.e., outside of the set 'U1 (y) = ('1 − Vy) ∩ Cd .
Recall that '1 = ' ∩ ∂1'. This set does not contain a ∂1-invariant line because
any such line is dense in YU . Therefore, the sheaf V0 of ∂1-invariant meromor-
phic functions on Cd \ 'U1 (y) with poles along the divisor 'U(y) coincides with
the sheaf of holomorphic ∂1-invariant functions. That implies the vanishing of
H 1(Cd \'U1 (y),V0) and the existence of global meromorphic solutions ξ0

s of (2.20)
which have a simple pole along the divisor 'U(y) (see details in [1, 11]). If ξ0

s

are fixed, then the general global meromorphic solutions are given by the formula
ξs = ξ0

s + cs , where the constant of integration cs(z, y) is a holomorphic ∂1-invariant
function of the variable z.

Let us assume, as in the example above, that a λ-periodic solution ξs−1 is known
and that it satisfies the condition that there exists a periodic solution ξ0

s of the next
equation. Let ξ∗s+1 be a solution of (2.20) for fixed ξ0

s . Then it is easy to see that the
function

ξ0
s+1(z, y) = ξ∗s+1(z, y)+ cs(z, y)ξ0

1 (z, y)+
(l, z)

2
∂ycs(z, y) (2.23)

is a solution of (2.20) for ξs = ξ0
s +cs . A choice of a λ-periodic ∂1-invariant function

cs(z, y) does not affect the periodicity property of ξs , but it does affect the periodicity
of the function ξ0

s+1. In order to make ξ0
s+1 periodic, the function cs(z, y) should

satisfy the linear differential equation

(l, λ)∂ycs(z, y) = 2ξ∗s+1(z+ λ, y)− 2ξ∗s+1(z, y). (2.24)

This equation, together with an initial condition cs(z) = cs(z, 0) uniquely defines
cs(x, y). The induction step is then completed. We have shown that the ratio of two
periodic formal series φ1 and φ is y-independent. Therefore, equation (2.19), where
ρ(z, k) is defined by the evaluation of the two sides at y = 0, holds. The lemma is
thus proved. )�
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Corollary 2.1. Let λ1, . . . , λd be a set of linear independent vectors of the lattice�U
and let z0 be a point of Cd . Then, under the assumptions of the previous lemma, there
is a unique wave solution of equation (1.5) such that the corresponding formal series
φ(z, y, k; z0) is quasi-periodic with respect to �U , i.e., for λ ∈ �U

φ(z+ λ, y, k; z0) = φ(z, y, k; z0)µλ(k) (2.25)

and satisfies the normalization conditions

µλi (k) = 1, φ(z0, 0, k; z0) = 1. (2.26)

The proof is identical to that of [1, Lemma 12, part (b)]. Let us briefly present its
main steps. As shown above, there exist wave solutions corresponding to φ which
are λ1-periodic. Moreover, from statement (ii) above it follows that for any λ′ ∈ �U ,

φ(z+ λ, y, k) = φ(z, y, k)ρλ(z, k), (2.27)

where the coefficients of ρλ are ∂1-invariant holomorphic functions. Then the same
arguments as in [1] show that there exists a ∂1-invariant series f (z, k) with holomor-
phic in z coefficients and formal series µ0

λ(k) with constant coefficients such that the
equation

f (z+ λ, k)ρλ(z, k) = f (z, k)µλ(k) (2.28)

holds. The ambiguity in the choice of f and µ corresponds to the multiplication by
the exponent of a linear form in z vanishing on U , i.e.,

f ′(z, k) = f (z, k)e(b(k),z), µ′λ(k) = µλ(k)e(b(k),λ), (b(k), U) = 0, (2.29)

where b(k) =∑s bsk
−s is a formal series with vector-coefficients that are orthogonal

to U . The vector U is in general position with respect to the lattice. Therefore,
the ambiguity can be uniquely fixed by imposing (d − 1) normalizing conditions
µλi (k) = 1, i > 1. (Recall that µλ1(k) = 1 by construction.)

The formal series f φ is quasi-periodic and its multiplicators satisfy (2.26). Then,
by these properties it is defined uniquely up to a factor which is constant in z and y.
Therefore, for the unique definition of φ0, it is enough to fix its evaluation at z0 and
y = 0. The corollary is proved.

3 The spectral curve

In this section, we show that λ-periodic wave solutions of equation (1.5), with u as
in (1.7), are common eigenfunctions of rings of commuting operators and identify X
with the Jacobian of the spectral curve of these rings.

Note that a simple shift z → z + Z, where Z /∈ �, gives λ-periodic wave
solutions with meromorphic coefficients along the affine subspaces Z + Cd . These
λ-periodic wave solutions are related to each other by a ∂1-invariant factor. Therefore,
choosing, in the neighborhood of any Z /∈ �, a hyperplane orthogonal to the vector
U and fixing initial data on this hyperplane at y = 0, we define the corresponding
series φ(z+Z, y, k) as a local meromorphic function of Z and global meromorphic
function of z.
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Lemma 3.1. Let the assumptions of Theorem 1.2 hold. Then there is a unique pseu-
dodifferential operator

L(Z, ∂x) = ∂x +
∞∑
s=1

ws(Z)∂
−s
x (3.1)

such that
L(Ux + Vy + Z, ∂x)ψ = kψ, (3.2)

whereψ = ekx+k2yφ(Ux+Z, y, k) is a λ-periodic solution of (1.5). The coefficients
ws(Z) of L are meromorphic functions on the abelian varietyX with poles along the
divisor '.

Proof. The construction of L is standard for the KP theory. First we define L as
a pseudodifferential operator with coefficients ws(Z, y), which are functions of Z
and y.

Let ψ be a λ-periodic wave solution. The substitution of (2.17) in (3.2) gives
a system of equations that recursively define ws(Z, y) as differential polynomials
in ξs(Z, y). The coefficients of ψ are local meromorphic functions of Z, but the
coefficients of L are well-defined global meromorphic functions on Cg \�, because
different λ-periodic wave solutions are related to each other by a ∂1-invariant factor,
which does not affect L. The singular locus is of codimension ≥ 2. Then Hartog’s
holomorphic extension theorem implies that ws(Z, y) can be extended to a global
meromorphic function on Cg .

The translational invariance of u implies the translational invariance of the λ-
periodic wave solutions. Indeed, for any constant s the series φ(V s + Z, y − s, k)
and φ(Z, y, k) correspond to λ-periodic solutions of the same equation. Therefore,
they coincide up to a ∂1-invariant factor. This factor does not affect L. Hence
ws(Z, y) = ws(Vy + Z).

The λ-periodic wave functions corresponding to Z and Z+λ′ for any λ′ ∈ � are
also related to each other by a ∂1-invariant factor:

∂1(φ1(Z + λ′, y, k)φ−1(Z, y, k)) = 0. (3.3)

Hencews are periodic with respect to� and therefore are meromorphic functions on
the abelian variety X. The lemma is proved. )�

Consider now the differential parts of the pseudodifferential operators Lm. Let
Lm+ be the differential operator such that Lm− = Lm − Lm+ = Fm∂−1 +O(∂−2). The
leading coefficient Fm of Lm− is the residue of Lm:

Fm = res∂ Lm. (3.4)

From the construction of L it follows that [∂y − ∂2
x + u,Ln] = 0. Hence

[∂y − ∂2
x + u,Lm+] = −[∂y − ∂2

x + u,Lm−] = 2∂xFm. (3.5)

The functions Fm are differential polynomials in the coefficients ws of L. Hence
Fm(Z) are meromorphic functions on X. The next statement is crucial for the proof
of the existence of commuting differential operators associated with u.
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Lemma 3.2. The abelian functions Fm have at most a second-order pole along the
divisor '.

Proof. We need a few more standard constructions from the KP theory. If ψ is as in
Lemma 3.1, then there exists a unique pseudodifferential operator � such that

ψ = �ekx+k2y, � = 1+
∞∑
s=1

ϕs(Ux + Z, y)∂−sx . (3.6)

The coefficients of � are universal differential polynomials on ξs . Therefore,
ϕs(z + Z, y) is a global meromorphic function of z ∈ Cd and a local meromor-
phic function of Z /∈ �. Note that L = �(∂x)�−1.

Consider the dual wave function defined by the left action of the operator �−1:
ψ+ = (e−kx−k2y)�−1. Recall that the left action of a pseudodifferential operator
is the formal adjoint action under which the left action of ∂x on a function f is
(f ∂x) = −∂xf . If ψ is a formal wave solution of (3.5), then ψ+ is a solution of the
adjoint equation

(−∂y − ∂2
x + u)ψ+ = 0. (3.7)

The same arguments, as before, prove that if equations (1.11) for poles of u hold
then ξ+s have simple poles at the poles of u. Therefore, if ψ as in Lemma 2.3, then

the dual wave solution is of the form ψ+ = e−kx−k2yφ+(Ux + Z, y, k), where the
coefficients ξ+s (z+ Z, y) of the formal series

φ+(z+ Z, y, k) = e−by
(

1+
∞∑
s=1

ξ+s (z+ Z, y)k−s
)

(3.8)

are λ-periodic meromorphic functions of the variable z ∈ Cd with a simple pole along
the divisor 'U(y).

The ambiguity in the definition of ψ does not affect the product

ψ+ψ = (e−kx−k2y�−1)(�ekx+k2y). (3.9)

Therefore, although each factor is only a local meromorphic function on Cg \�, the
coefficients Js of the product

ψ+ψ = φ+(Z, y, k)φ(Z, y, k) = 1+
∞∑
s=2

Js(Z, y)k
−s . (3.10)

are global meromorphic functions of Z. Moreover, the translational invariance of
u implies that they have the form Js(Z, y) = Js(Z + Vy). Each of the factors in
the left-hand side of (3.10) has a simple pole along ' − Vy. Hence Js(Z) is a
meromorphic function on X with a second-order pole along '.

From the definition of L, it follows that

resk(ψ
+(Lnψ)) = resk(ψ

+knψ) = Jn+1. (3.11)
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On the other hand, using the identity

resk(e
−kxD1)(D2e

kx) = res∂ (D2D1), (3.12)

which holds for any two pseudodifferential operators [14], we get

resk(ψ
+Lnψ) = resk(e

−kx�−1)(Ln�ekx) = res∂ Ln = Fn. (3.13)

Therefore, Fn = Jn+1 and the lemma is proved. )�
Let F̂ be a linear space generated by {Fm,m = 0, 1, . . . }, where we set F0 = 1.

It is a subspace of the 2g-dimensional space of the abelian functions that have at most
second-order pole along '. Therefore, for all but ĝ = dim F̂ positive integers n,
there exist constants ci,n such that

Fn(Z)+
n−1∑
i=0

ci,nFi(Z) = 0. (3.14)

Let I denote the subset of integers n for which there are no such constants. We call
this subset the gap sequence.

Lemma 3.3. Let L be the pseudodifferential operator corresponding to a λ-periodic
wave function ψ constructed above. Then for the differential operators

Ln = Ln+ +
n−1∑
i=0

ci,nLn−i+ = 0, n /∈ I, (3.15)

the equations

Lnψ = an(k)ψ, an(k) = kn +
∞∑
s=1

as,nk
n−s , (3.16)

where as,n are constants, hold.

Proof. First, note that from (3.5), it follows that

[∂y − ∂2
x + u,Ln] = 0. (3.17)

Hence if ψ is a λ-periodic wave solution of (1.5) corresponding to Z /∈ �, then Lnψ
is also a formal solution of the same equation. This implies the equation Lnψ =
an(Z, k)ψ , where a is ∂1-invariant. The ambiguity in the definition of ψ does not
affect an. Therefore, the coefficients of an are well-defined global meromorphic
functions on Cg \ �. The ∂1-invariance of an implies that an, as a function of Z,
is holomorphic outside of the locus. Hence it has an extension to a holomorphic
function on Cg . Equations (3.3) imply that an is periodic with respect to the lattice
�. Hence an is Z-independent. Note that as,n = cs,n, s ≤ n. The lemma is proved.)�
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The operatorLm can be regarded as aZ /∈ �-parametric family of ordinary differ-
ential operators LZm whose coefficients have the form

LZm = ∂nx +
m∑
i=1

ui,m(Ux + Z)∂m−ix , m /∈ I. (3.18)

Corollary 3.1. The operators LZm commute with each other,

[LZn , LZm] = 0, Z /∈ �. (3.19)

From (3.16) it follows that [LZn , LZm]ψ = 0. The commutator is an ordinary
differential operator. Hence the last equation implies (3.19).

Lemma 3.4. Let AZ , Z /∈ �, be a commutative ring of ordinary differential opera-
tors spanned by the operators LZn . Then there is an irreducible algebraic curve  of
arithmetic genus ĝ = dim F̂ such that AZ is isomorphic to the ringA(, P0) of mero-
morphic functions on  with the only pole at a smooth point P0. The correspondence
Z → AZ defines a holomorphic imbedding of X \ � into the space of torsion-free
rank-1 sheaves F on ,

j : X\� �−→ Pic(). (3.20)

Proof. It is a fundamental fact of the theory of commuting linear ordinary differential
operators [5, 6, 9, 10, 15] that there is a natural correspondence

A ←→ {,P0, [k−1]1,F} (3.21)

between regular at x = 0 commutative rings A of ordinary linear differential oper-
ators containing a pair of monic operators of coprime orders, and sets of algebraic-
geometrical data {,P0, [k−1]1,F}, where  is an algebraic curve with a fixed first
jet [k−1]1 of a local coordinate k−1 in the neighborhood of a smooth point P0 ∈ 
and F is a torsion-free rank-1 sheaf on  such that

H 0(,F) = H 1(,F) = 0. (3.22)

The correspondence becomes one-to-one if the rings A are considered modulo con-
jugation, A′ = g(x)Ag−1(x).

Note that in [5, 6, 9, 10] the main attention was paid to the generic case of com-
mutative rings corresponding to smooth algebraic curves. The invariant formulation
of the correspondence given above is due to Mumford [15].

The algebraic curve  is called the spectral curve of A. The ring A is isomorphic
to the ringA(, P0) of meromorphic functions on with the only pole at the puncture
P0. The isomorphism is defined by the equation

Laψ0 = aψ0, La ∈ A, a ∈ A(, P0). (3.23)

Here ψ0 is a common eigenfunction of the commuting operators. At x = 0, it is a
section of the sheaf F ⊗O(−P0).
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Important Remark. The construction of the correspondence (3.21) depends on a
choice of initial point x0 = 0. The spectral curve and the sheaf F are defined
by the evaluations of the coefficients of generators of A and a finite number of their
derivatives at the initial point. In fact, the spectral curve is independent of the choice
of x0, but the sheaf does depend on it, i.e., F = Fx0 .

Using the shift of the initial point it is easy to show that the correspondence
(3.21) extends to commutative rings of operators whose coefficients are meromorphic
functions of x at x = 0. The rings of operators having poles at x = 0 correspond to
sheaves for which the condition (3.22) is violated.

Let Z be the spectral curve corresponding to AZ . Note that, due to the remark
above, it is well defined for all Z /∈ �. The eigenvalues an(k) of the operators LZn
defined in (3.16) coincide with the Laurent expansions at P0 of the meromorphic
functions an ∈ A(Z, P0). They are Z-independent. Hence the spectral curve is
Z-independent as well,  = Z . The first statement of the lemma is thus proved. )�

The construction of the correspondence (3.21) implies that if the coefficients of the
operators A holomorphically depend on parameters then the algebraic-geometrical
spectral data are also holomorphic functions of the parameters. Hence j is holomor-
phic away from '. Then using the shift of the initial point and the fact, that Fx0

holomorphically depends on x0, we get that j holomorphically extends over ' \ �,
as well. The lemma is proved.

Recall that a commutative ring A of linear ordinary differential operators is called
maximal if it is not contained in any bigger commutative ring. Let us show that for
a generic Z the ring AZ is maximal. Suppose that it is not. Then there exists α ∈ I ,
where I is the gap sequence defined above, such that for each Z /∈ � there exists an
operatorLZα of orderαwhich commutes withLZn , n /∈ I . Therefore, it commutes with
L. A differential operator commuting with L up to order O(1) can be represented in
the form Lα = ∑m<α ci,α(Z)Li+, where ci,α(Z) are ∂1-invariant functions of Z. It
commutes with L if and only if

Fα(Z)+
n−1∑
i=0

ci,α(Z)Fi(Z) = 0, ∂1ci,α = 0. (3.24)

Note the difference between (3.14) and (3.24). In the first equation the coefficients
ci,n are constants. The λ-periodic wave solution of equation (1.5) is a common
eigenfunction of all commuting operators, i.e., Lαψ = aα(Z, k)ψ , where aα =
kα +∑∞

s=1 as,α(Z)k
α−s is ∂1-invariant. The same arguments as those used in the

proof of equation (3.16) show that the eigenvalue aα is Z-independent. We have
as,α = cs,α , s ≤ α. Therefore, the coefficients in (3.24) are Z-independent. This
contradicts the assumption that α /∈ I .

Our next goal is to finally prove the global existence of the wave function.

Lemma 3.5. Let the assumptions of Theorem 1.2 hold. Then there exists a com-
mon eigenfunction of the corresponding commuting operators LZn of the form
ψ = ekxφ(Ux + Z, k) such that the coefficients of the formal series
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φ(Z, k) = 1+
∞∑
s=1

ξs(Z)k
−s (3.25)

are global meromorphic functions with a simple pole along '.

Proof. It is instructive to consider first the case when the spectral curve  of the rings
AZ is smooth. Then as shown in [5, 6], the corresponding common eigenfunction of
the commuting differential operators (the Baker–Akhiezer function), normalized by
the condition ψ0|x=0 = 1, is of the form [5, 6]

ψ̂0 = θ̂ (Â(P )+ Ûx + Ẑ)θ̂ (Ẑ)
θ̂ (Ûx + Ẑ)θ̂ (Â(P )+ Ẑ)e

x	(P ). (3.26)

Here θ̂ (Ẑ) is the Riemann theta-function constructed with the help of the matrix
of b-periods of normalized holomorphic differentials on ; Â :  → J () is the
Abel map; 	 is the abelian integral corresponding to d	; d	 is the meromorphic
differential of the second kind and has the only pole at the puncture P0, where its
singularity is of the form dk; and 2πiÛ is the vector of its b-periods.

Remark. Let us emphasize, that the formula (3.26) is not the result of solution of
some differential equations. It is a direct corollary of analytic properties of the
Baker–Akhiezer function ψ̂0(x, P ) on the spectral curve:

(i) ψ̂0 is a meromorphic function of P ∈  \P0; its pole divisor is of degree g̃ and is
x-independent. It is nonspecial if the operators are regular at the normalization
point x = 0.

(ii) In the neighborhood of P0 the function ψ̂0 has the form (1.16) (with y = 0).

From the Riemann–Roch theorem, it follows that, if ψ̂0 exists, then it is unique. It is
easy to check that the function ψ̂0 given by (3.26) is single-valued on  and has all
the desired properties.

The last factors in the numerator and the denominator of (3.26) are x-independent.
Therefore, the function

ψ̂BA = θ̂ (Â(P )+ Ûx + Ẑ)
θ̂ (̂Ux + Ẑ) ex	(P ) (3.27)

is also a common eigenfunction of the commuting operators.
In the neighborhood of P0 the function ψ̂BA has the form

ψ̂BA = ekx
(

1+
∞∑
s=1

τs(Ẑ + Ûx)
θ̂(Ûx + Ẑ) k

−s
)
, k = 	, (3.28)

where τs(Ẑ) are global holomorphic functions.
According to Lemma 3.4, we have a holomorphic imbedding Ẑ = j (Z) ofX \�

into J (). Consider the formal series ψ = j∗ψ̂BA. It is globally well defined away
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from�. IfZ /∈ ', then j (Z) /∈ '̂ (which is the divisor on which the condition (3.22)
is violated). Hence the coefficients ofψ are regular away from'. The singular locus
is at least of codimension 2. Hence, once again using Hartog-type arguments, we can
extend ψ on X.

If the spectral curve is singular, we can proceed along the same lines using the
generalization of (3.27) given by the theory of the Sato τ -function [16]. Namely, a
set of algebraic-geometrical data (3.21) defines a point of the Sato Grassmannian, and
therefore the corresponding τ -function: τ(t;F). It is a holomorphic function of the
variables t = (t1, t2, . . . ), and is a section of a holomorphic line bundle on Pic().

The variable x is identified with the first time of the KP-hierarchy, x = t1.
Therefore, the formula for the Baker–Akhiezer function corresponding to a point
of the Grassmannian [16] implies that the function ψ̂BA given by the formula

ψ̂BA = τ(x − k,− 1
2k

2,− 1
3k

3, . . . ;F)
τ (x, 0, 0, . . . ;F) ekx (3.29)

is a common eigenfunction of the commuting operators defined by F . The rest of the
arguments proving the lemma are the same as in the smooth case. )�
Lemma 3.6. The linear space F̂ generated by the abelian functions {F0 = 1, Fm =
res∂ Lm}, is a subspace of the space H generated by F0 and by the abelian functions
Hi = ∂1∂zi ln θ(Z).

Proof. Recall that the functions Fn are abelian functions with at most second-order
poles on '. Hence a priori ĝ = dim F̂ ≤ 2g. In order to prove the statement of the
lemma, it is enough to show that Fn = ∂1Qn, where Qn is a meromorphic function
with a pole along'. Indeed, ifQn exists, then, for any vector λ in the period lattice,
we haveQn(Z+λ) = Qn(Z)+cn,λ. There is no abelian function with a simple pole
on '. Hence there exists a constant qn and two g-dimensional vectors ln, l′n, such
that Qn = qn + (ln, Z) + (l′n, h(Z)), where h(Z) is a vector with the coordinates
hi = ∂zi ln θ . Therefore, Fn = (ln, U)+ (l′n,H(Z)).

Let ψ(x,Z, k) be the formal Baker–Akhiezer function defined in the previous
lemma. Then the coefficients ϕs(Z) of the corresponding wave operator � (3.6) are
global meromorphic functions with poles along '.

The left and right actions of pseudodifferential operators are formally adjoint,
i.e., for any two operators the equality (e−kxD1)(D2e

kx) = e−kx(D1D2e
kx) +

∂x(e
−kx(D3e

kx)) holds. Here D3 is a pseudodifferential operator whose coefficients
are differential polynomials in the coefficients of D1 and D2. Therefore, from (3.9)–
(3.13) it follows that

ψ+ψ = 1+
∞∑
s=2

Fs−1k
−s = 1+ ∂x

( ∞∑
s=2

Qsk
−s
)
. (3.30)

The coefficients of the series Q are differential polynomials in the coefficients ϕs of
the wave operator. Therefore, they are global meromorphic functions ofZ with poles
along '. The lemma is proved. )�
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In order to complete the proof of our main result, we need one more standard fact
of the KP theory: flows of the KP hierarchy define deformations of the commutative
rings A of ordinary linear differential operators. The spectral curve is invariant under
these flows. For a given spectral curve the orbits of the KP hierarchy are isomorphic
to the generalized Jacobian J () = Pic0(), which is the set of equivalence classes
of zero degree divisors on the spectral curve (see details in [1, 5, 6, 16]).

The KP hierarchy in the Sato form is a system of commuting differential equation
for a pseudodifferential operator L,

∂tnL = [Ln+,L]. (3.31)

If the operator L is as above, i.e., if it is defined by λ-periodic wave solutions of
equation (1.5), then equations (3.31) are equivalent to the equations

∂tnu = ∂xFn. (3.32)

The first two times of the hierarchy are identified with the variables t1 = x, t2 = y.
Equations (3.32) identify the space F̂1 generated by the functions ∂1Fn with the

tangent space of the KP orbit at AZ . Then from Lemma 3.6, it follows that this
tangent space is a subspace of the tangent space of the abelian variety X. Hence
for any Z /∈ �, the orbit of the KP flows of the ring AZ is in X, i.e., it defines a
holomorphic imbedding:

iZ : J () �−→ X. (3.33)

From (3.33), it follows that J () is compact.
The generalized Jacobian of an algebraic curve is compact if and only if the curve

is smooth [17]. On a smooth algebraic curve a torsion-free rank-1 sheaf is a line
bundle, i.e., Pic() = J (). Then (3.20) implies that iZ is an isomorphism. Note
that for the Jacobians of smooth algebraic curves the bad locus� is empty [1], i.e., the
imbedding j in (3.20) is defined everywhere on X and is inverse to iZ . Theorem 1.2
is proved.
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Résumé. L’objet de ce travail est d’identifier, à homéomorphisme près, les fibres de Springer
affines pour GL(n) sur un corps local d’égales caractéristiques à des revêtements de jacobi-
ennes compactifiées de courbes projectives singulières. Ce lien permet de démontrer certaines
propriétés géométriques de ces fibres de Springer, dont une propriété d’irréductibilité, et aussi
d’en construire des déformations à homéomorphismes près.

Subject Classifications: Primary 14G20. Secondary 14F20, 14K30.

0 Introduction

Soient F un corps local non archimédien d’égales caractéristiques, OF son anneau
des entiers, k son corps résiduel et E un F -espace vectoriel de dimension finie.

La grassmannienne affine pour le F -schéma en groupes AutF (E) des automor-
phismes de E est le ind-k-schéma des OF -réseaux M dans E. Pour tout endomor-
phisme régulier semi-simple et topologiquement nilpotent γ deE, on peut considérer
le fermé réduit Xγ de la grassmannienne affine formé des réseaux M ⊂ E tels que
γ (M) ⊂ M . Ce fermé est appelé la fibre de Springer affine en γ par analogie avec
les fibres de Springer classiques dans les variétés de drapeaux.

D’après Kazhdan et Lusztig [K-L], Xγ est un vrai schéma, localement de type
fini sur k, qui est muni d’une action libre naturelle d’un groupe abélien libre de type
fini �γ , et le quotient Zγ = Xγ /�γ est un k-schéma projectif.

Dans ce travail, nous attachons à γ une courbe intègre et projective Cγ sur k, qui
n’a au plus qu’un point singulier, point en lequel l’anneau local complété de la courbe
n’est autre que OF [γ ] ⊂ F [γ ] ⊂ AuF (E). Puis, nous relions la fibre de Springer
affine Xγ et son quotient Zγ à la jacobienne compactifiée de Cγ .

Nous déduisons alors des résultats d’Altman et Kleiman sur les jacobiennes com-
pactifiées, un énoncé d’irréductibilité pour Zγ (Corollaire 2.3.1) et la possibilité de
déformer à homéomorphisme près Zγ (et aussi dans une certaine mesure Xγ ) en
faisant varier γ (cf. Chapitre 4).
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Nous énonçons une variante de la conjecture de pureté de Goresky, Kottwitz, et
MacPherson pour les jacobiennes compactifiées (cf. Chapitre 3), que nous démontrons
dans le cas homogène par un argument similaire à celui utilisé par Springer dans pour
les fibres de Springer classiques (cf. Section 4.3).

Dans un long appendice, nous rappelons quelques résultats de Teissier d’une part,
et de Diaz et Harris d’autre part, sur les déformations des singularités isolées de
courbes planes.

1 Fibres de Springer

1.1 Les données

On fixe un corps parfait k. Dans ce travail, on appelle simplement corps local
tout corps K contenant k et muni d’une valuation discrète vK : K → Z ∪ {∞}
pour laquelle K est complet et de corps résiduel k. Pour un tel corps local, on
note OK = {x ∈ K | vK(x) ≥ 0} ⊂ K l’anneau des entiers de K et pK =
{x ∈ K | vK(x) > 0} l’idéal maximal de OK . Le choix d’une uniformisante #K de
K identifie pK ⊂ OK ⊂ K à#Kk[[#K ]] ⊂ k[[#K ]] ⊂ k((#K)).

On fixe un corps local F et une famille finie (Ei)i∈I non vide d’extensions finies,
séparables et totalement ramifiées de F . Pour chaque i ∈ I , on note ni le degré de
Ei sur F et on se donne un élément γi de pEi ⊂ OEi ⊂ Ei qui engendre Ei sur F ,
de sorte que Ei ∼= F [T ]/(pi(T )) où pi(T ) ∈ OF [T ] est le polynôme minimal de γi
sur F .

On suppose que les polynômes pi(T ) unitaires et irréductibles dans F [T ] sont
deux à deux distincts.

On note Ai la k-algèbre intègre

Ai = OF [γi] ⊂ OEi .

Elle est locale d’idéal maximal mi = pEi ∩ Ai , son corps des fractions est Ei , et sa
normalisation Ãi ⊂ Ei n’est autre que OEi .

On note EI = ∏i∈I Ei , nI = ∑i∈I ni la dimension de cet espace vectoriel sur
F , γI = (γi)i∈I ∈∏i∈I Ai et

AI = OF [γI ] ⊂
∏
i∈I
Ai.

La k-algèbre AI est locale d’idéal maximal mI =
(∏

i∈I mi
) ∩AI , son anneau total

des fractions est EI et sa normalisation est égale à ÃI := ∏i∈I Ãi = ∏i∈I OEi =:
OEI ⊂ EI .

Comme

AI ∼= OF [T ]/(pI (T )) = k[[#F ]][T ]/(pI (T )) ∼= k[[#F , T ]]/(pI (T ))
où pI (T ) = ∏i∈I pi(T ), la k-algèbre locale (intègre et de dimension 1) AI est de
Gorenstein et son module dualisant ωAI est égal à
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ωAI = {y ∈ 	1
EI /k

| ResI (xy) = 0, ∀x ∈ AI } ⊃ 	1
ÃI /k

,

où l’application k-linéaire ResI : 	1
EI /k

→ k est la somme des applications résidus

Resi : 	1
Ei/k

→ k.

Proposition 1.1.1 (Rosenlicht). L’accouplement (ÃI /AI )× (ωAI /	1
ÃI /k

)→ k qui

envoie (x + AI , y +	1
ÃI /k

) sur ResI (xy) est un accouplement parfait.

Démonstration. Voir [A-K 1, VIII, Proposition 1.16]. )�
On pose

δI = dimk(ÃI /AI )

et on note aI le conducteur de ÃI dansAI , c’est-à-dire l’idéal de ÃI formé des x ∈ ÃI
tels que xÃI ⊂ AI . Cet idéal est contenu dans AI et il résulte de la proposition ci-
dessus que

dimk(AI /aI ) = δI .
Pour chaque i ∈ I , on pose

δi = dimk(Ãi/Ai)

et, pour chaque i �= j dans I , on note

rij = vEi (pj (γi)) = vEj (pi(γj )) = rji
la valuation du résultant dans F des polynômes pi(T ) et pj (T ). On vérifie que

δI =
∑
i∈I
δi + 1

2

∑
i,j∈I
i �=j

rij

et que

aI =
∏
i∈I

p
2δi+∑j∈I\{i} rij
Ei

⊂
∏
i∈I

OEi = OEI .

1.2 La grassmannienne affine

Rappelons qu’un OF -réseau dans un F -espace vectoriel de dimension finie E est un
sous-OF -module de E de rang égal à la dimension de E. Si M et N sont deux tels
OF -réseaux, l’indice deM relativement à N est l’entier

[M : N ] = dimk(M/P )− dimk(N/P )

où P est n’importe quel OF -réseau de E contenu à la fois dans M et dans N . Par
exemple, AI et ÃI sont des OF -réseaux dans EI et [ÃI : AI ] = δI .

Soient N ≥ 0 et d des entiers et soit

M ⊂ #−N
F AI ⊂ EI
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un OF -réseau qui est d’indice d relativement au OF -réseau particulier AI (bien
entendu, pour qu’il existe un telM , il faut que d ≤ nIN ). La multiplication par #F
induit un endomorphisme nilpotent du k-espace vectoriel #−N

F AI/M de dimension

nIN − d. Par suite,M contient automatiquement#(nI−1)N−d
F AI et la donnée deM

équivaut à la donnée du sous-espace vectoriel

M/#
(nI−1)N−d
F AI ⊂ #−N

F AI/#
(nI−1)N−d
F AI

stable par l’endomorphisme nilpotent induit par la multiplication par #F .
Pour toute extension k′ de k, on note F ′ = k′⊗̂kF = k′((#F )), E′i = k′⊗̂kEi =

k′((#Ei )), etc. les complétés#F -adiques de k′ ⊗k F , k′ ⊗k Ei , etc. Ce que l’on vient
de dire vaut encore après que l’on ait remplacé k par k′, F par F ′, etc.

Pour k′ variable, les OF ′ -réseaux dansE′I qui sont d’indice d relativement au OF ′ -
réseau particulierA′I et qui sont contenus dans#−N

F A′I sont donc naturellement les k′-
points d’un k-schéma projectif réduitRdI,N , à savoir le fermé (réduit) de la grassmanni-

enne des (nI−1)(nIN−d)-plans dans le k-espace vectoriel#−N
F AI/#

(nI−1)N−d
F AI

de dimension nI (nIN − d), formé des plans qui sont stables par l’endomorphisme
nilpotent induit par la multiplication par#F .

Pour d fixé, les k-schémas projectifs RdI,N s’organisent en un système inductif
d’immersions fermées

· · · ↪→ RdI,N ↪→ RdI,N+1 ↪→ · · ·

et on note RdI le ind-k-schéma «limite».
La grassmannienne affine ou ind-k-schéma des OF -réseaux de EI est par défini-

tion la somme disjointe

RI =
∐
d∈Z

RdI .

1.3 Fibres de Springer

Toujours pour k′ variable, les OF ′ -réseaux (M ⊂ E′I ) ∈ RdI,N (k′) tels que

γIM ⊂ M
sont les k′-points d’un sous-k-schéma fermé réduit XdI,N de RdI,N . Pour d fixé, les

XdI,N ⊂ RdI,N s’organisent en un système inductif et on noteXdI ⊂ RdI le sous-ind-k-
schéma fermé réduit «limite».

Définition 1.3.1. La fibre de Springer en γI est le sous-ind-k-schéma fermé réduit

XI =
∐
d∈Z

XdI ⊂
∐
d∈Z

RdI = RI

des OF -réseaux de EI stabilisé par γI .
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Bien entendu, chaque XdI = XI ∩ RdI est une partie ouverte et fermée de XI .
La remarque évidente suivante est essentielle pour la suite :
On peut identifier les k′-points de XI aux sous-A′I -modulesM ⊂ E′I qui sont de

rang 1 en chaque point générique de Spec(A′I ).
Pour k′ variable, le groupe E′×I /A

′×
I est de manière naturelle le groupe des k′-

points d’un k-schéma en groupes commutatifs GI qui est lisse et de dimension δI
sur k. Plus précisément, le groupe des composantes connexes de GI est le quotient
E×I /O

×
EI

= ∏
i∈I (E

×
i /O

×
Ei
), qui est canoniquement isomorphe à �I := ZI ; la

composante neutreG0
I deGI , qui admet O×

E′I
/A′×I pour groupe des k′-points, est une

extension d’un tore TI (le quotient de GIm,k par Gm,k plongé diagonalement) par un
schéma en groupes unipotents UI de type fini dont le groupe des k′-points est

UI (k
′) = (∏i∈I (1+ pE′I )

)/
(1+m′

I )

où m′
I est l’idéal maximal de A′I .

L’action par homothéties deE′×I /A
′×
I sur les réseauxM ∈ XI (k′) provient d’une

action algébrique naturelle de GI sur XI . Cette action permute les composantes XdI
de XI suivant la règle

g ·XdI = Xd+|λ(g)|I

où λ(g) est l’image de g ∈ GI dans �I et où on a posé |λ| =∑ι∈I λi pour chaque
λ ∈ �I .

Le k-schéma XI contient le k-point particulierM = AI . Le fixateur dans GI de
ce point particulier est réduit à l’élément neutre et son orbite X◦I = GI ·AI est donc
une partie de XI isomorphe à GI .

Lemme 1.3.1. La GI -orbite X◦I est l’ouvert de XI dont les k′-points sont lesM qui
sont libres de rang 1 en tant que A′I -modules. )�

Tout scindage σ : �0
I ↪→ GI de l’extension

1 → G0
I → GI → �I → 0

au-dessus du sous-groupe

�0
I := {λ ∈ �I | |λ| = 0} ⊂ �I

définit une action libre de�0
I surXI qui préserve les composantesXdI . On noteraZI =

XI/σ(�
0
I ) le k-espace quotient correspondant et ZdI = XdI /σ(�0

I ) ses composantes.

Théorème 1.3.1 (Kazhdan–Lusztig). La fibre de SpringerXI est en fait un k-schéma
localement de type fini et de dimension finie, dont les composantes connexes sont
exactement les XdI , d ∈ Z.

Pour tout scindage σ : �0
I ↪→ GI comme ci-dessus, les k-espaces quotients ZdI

correspondants sont des k-schémas projectifs, ZI est le k-schéma somme disjointe
desZdI et l’application quotientXI → ZI est un revêtement étale galoisien de groupe
de Galois �0

I .

Démonstration. Voir [K-L, Section 3]. )�
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2 Les fibres de Springer comme revêtements de jacobiennes
compactifiées

L’objet de ce chapitre est d’identifier, à homéomorphisme près, le quotient ZI =
XI/σ(�

0
I ) de la fibre de Springer XI à la jacobienne compactifiée d’une courbe

projective, et d’identifier, toujours à homéomorphisme près, le revêtementXI → ZI
à un revêtement étale galoisien de cette jacobienne compactifiée.

La clé de cette identification est la remarque très simple suivante : un OF -réseau
M ⊂ EI tel que γIM ⊂ M n’est rien d’autre qu’un AI -module de type fini sans
torsionM , de rang 1 en tout point générique de Spec(AI ), muni d’un isomorphisme
EI -linéaire EI ⊗AI M ∼−→ EI .

Le revêtement de la jacobienne compactifiée qui intervient peut être construit
en utilisant une formule d’adjonction de Grothendieck explicitée par Raynaud (cf.
la Section 2.6) et un résultat d’auto-dualité partielle pour les jacobiennes compacti-
fiées démontré par Estève, Gagné, et Kleiman, résultat que nous rappelons dans la
Section 2.5.

2.1 La courbe CI

Dans la situation de la Section 1.1, le schéma formel Spf (AI ) est un germe formel
de courbe plane dont la famille des branches irréductibles est (Spf (Ai))i∈I et dont le
normalisé est le schéma formel semi-local Spf (ÃI ) = ∐i∈I Spf (OEi ). On suppose
dans la suite que le nombre d’éléments du corps k est au moins égal au nombre
d’éléments de l’ensemble fini I .

Proposition 2.1.1. Il existe une courbe projective et géométriquement intègre CI sur
k, munie de deux k-points distincts cI et ∞I , ayant les propriétés suivantes :

1. CI est lisse sur k en dehors de cI ,

2. le complété de l’anneau local de CI en cI est isomorphe à AI ,

3. la normalisée C̃I de CI est isomorphe à la droite projective standard P1
k sur k

par un isomorphisme qui envoie le point à l’infini∞ de P1
k sur le point∞I deCI .

Pour une telle courbe CI , son morphisme de normalisation πI : C̃I → CI est un
isomorphisme au-dessus de CI \ {cI }, et π−1

I (cI ) ⊂ C̃I est l’ensemble des branches
de Spf (AI ) ; pour chaque i ∈ I , on notera c̃i le point de π−1

I (cI ) correspondant à la
branche Spf (Ai).

Démonstration. On fixe arbitrairement une injection ι : I ↪→ k et, pour chaque i ∈ I ,
on fixe arbitrairement une uniformisante #Ei de OEi . On plonge k[x] dans OEi en
envoyant x sur ι(i) +#Ei . On en déduit un plongement de k-algèbres de k[x] dans
OEI = ÃI qui identifie ÃI au complété de l’anneau semi-local de la droite affine
A1
k = Spec(k[x]) en l’ensemble fini de points ι(I ).

Considérons alors la k-algèbre BI définie par le carré cartésien
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BI ⊂ AI

∩ � ∩
k[x] ⊂ ÃI .

Elle est intègre, de type fini sur k et de dimension 1, l’inclusion BI ↪→ AI induit un
isomorphisme du complété de BI le long de son idéal maximal mI ∩ BI sur AI et
l’inclusion BI ↪→ k[x] fait de k[x] une BI -algèbre finie. En effet, d’une part on a

ÃI = k[x] + an+1
I , ∀n ∈ N,

et aI ⊂ AI ⊂ ÃI , de sorte que

AI = BI + an+1
I , ∀n ∈ N,

et d’autre part
k[x] ∩ aI ⊂ BI ⊂ k[x]

est l’idéal principal engendré par∏
i∈I
(x − ι(i))2δi+

∑
j∈I\{i} rij .

On peut donc effectuer la «somme amalgamée» de A1
k et de Spf (AI ) le long de

Spf (ÃI ) ; c’est par définition le k-schéma affine Spec(BI ). Bien sûr, le morphisme
fini A1

k → Spec(BI ), induit par l’inclusion BI ⊂ k[x], envoie le sous-ensemble fini
ι(I ) ⊂ A1

k sur un unique k-point cI de Spec(BI ) et il induit un isomorphisme de
A1
k \ ι(I ) sur Spec(BI ) \ {cI }.

On définit la courbe géométriquement intègre et projective CI sur k en recoll-
ant Spec(BI ) et P1

k \ ι(I ) le long de leur ouvert commun Spec(BI ) \ {cI } ∼=
A1
k \ ι(I ). )�

2.2 Schémas de Picard compactifiés

SoitC une courbe réduite, projective et géométriquement irréductible sur k. Comme k
est parfait,C est géométriquement réduite sur k et son lieu singulierCsing est donc fini.
On suppose que toutes les singularités deC sont planes, c’est-à-dire que pour tout c ∈
Csing, le complété de l’anneau local de C en c est isomorphe à κ(c)[[x, y]]/(f ) pour
une série formelle f ∈ κ(c)[[x, y]]. On note C̃ → C le morphisme de normalisation
de C. La courbe C̃ est donc géométriquement connexe, projective et lisse sur k.
On note g(C) = dimk H 1(C̃,OC̃ ) son genre, c’est-à-dire par définition le genre
géométrique de C.

On a la suite exacte

0 → OC → π∗OC̃ →
⊕
c∈Csing

(π∗OC̃/OC)c → 0

et on pose
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δ(C) =
∑
c∈Csing

[κ(c) : k]δc(C)

où, pour chaque c ∈ Csing, δc(C) est la dimension du κ(c)-espace vectoriel
(π∗OC̃/OC)c.

Le genre arithmétique dimk H 1(C,OC) = 1−χ(C,OC) de C est égal à g(C)+
δ(C). Pour tout OC-Module cohérent M, on pose

deg(M) = χ(C,M)− rang(M)χ(C,OC)

où rang(M) est le rang générique de M. Pour tout OC-Module inversible L, π∗L
est un OC̃-Module inversible et on a

deg(L) = deg(π∗L)

et
deg(L⊗OC

M) = rang(M) deg(L)+ deg(M).

SoitP(C) = PicC/k le k-schéma en groupes de Picard deC. Pour toute extension
k′ de k, ses k′-points sont les classes d’isomorphie de Ok′⊗kC-Modules inversibles
(avec la multiplication définie par le produit tensoriel). Ce k-schéma est lisse de di-
mension δ(C). Ses composantes connexes sont les sous-k-schémas Pd(C), d ∈ Z,
découpés par le degré du Module inversible universel, et elles sont en fait géométrique-
ment connexes. La composante neutre P 0(C) de P(C) est quasi-projective.

Soit P(C) = PicC/k le k-schéma de Picard compactifié de C défini par Mayer et
Mumford (cf. [A-K 2]) dont les k′-points sont les classes d’isomorphie de Ok′⊗kC-
Modules cohérents sans torsion de rang générique 1. Par définition,P(C) est un ouvert
de P(C) et l’action par translation de P(C) sur lui-même se prolonge en une action
de P(C) sur P(C) (encore définie par produit tensoriel). On a aussi un découpage en
parties ouvertes et fermées

P(C) =
∐
d∈Z

Pd(C)

par le degré du Module sans torsion universel, avec bien entendu

Pd(C) = P(C) ∩ Pd(C)
et

Pd(C) · P e(C) = Pd+e(C)
quels que soient les entiers d, e. D’après Mayer et Mumford (cf. [A-K 2] et [A-K 3]),
chaque composante Pd(C) est un k-schéma projectif.

Théorème 2.2.1 (Altman, Iarrobino, Kleiman [A-I-K, Corollary 7], Rego [Re,
Theorem A]). Chaque composante Pd(C) de P(C) est géométriquement intègre et
localement d’intersection complète de dimension δ(C). )�

La composante connexe P 0(C) est aussi appelée la jacobienne compactifiée de
C puisqu’elle compactifie la jacobienne P 0(C) de C.
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2.3 Lien entre fibres de Springer et schémas de Picard compactifiés

On note dans la suite PI = P(CI ), P I = P(CI ), etc.
Faisons le lien entre les k-schémas XI et P I . On a la suite exacte

1 → H 0(CI ,Gm)→ H 0(C̃I ,Gm)→ H 0(CI , πI∗Gm/Gm)

→ H 1(CI ,Gm)→ H 1(C̃I ,Gm)→ 1

dont la flèche de co-bord identifie les k-schémas en groupes

G0
I = H 0(CI , πI∗Gm/Gm) et P 0

I = Ker(H 1(CI ,Gm)→ H 1(C̃I ,Gm))

puisque C̃I est une droite projective sur k. On prolonge cette identification en un
k-épimorphisme de k-schémas en groupes

GI � PI

en envoyant x ∈ E×I /A×I sur le OCI -Module inversible L obtenu en recollant OCI \{cI }
et AI le long de Spec(EI ) = (CI \ {cI })×CI Spec(AI ) à l’aide de la multiplication
par x. Cet épimorphisme n’est autre que la flèche H 1{cI }(CI ,Gm) → H 1(CI ,Gm)

qui s’insère dans la suite exacte longue

(1) = H 0{cI }(CI ,Gm)→ H 0(CI ,Gm)→ H 0(CI \ {cI },Gm)

→ H 1{cI }(CI ,Gm)→ H 1(CI ,Gm)→ H 1(CI \ {cI },Gm) = (1)
et son noyau est donc le groupe discret

H 0(CI \ {cI },Gm)/H
0(CI ,Gm) ⊂ E×I /A

×
I|| ↓

H 0(C̃I \ π−1
I (cI ),Gm)/H

0(C̃I ,Gm) ⊂ E×I /O×
EI

des diviseurs de degré 0 sur C̃I qui sont supportés par le fermé réduit π−1
I (cI )red =

{̃ci | i ∈ I }, groupe que l’on identifie à �0
I par la flèche λ �→ ∑

i∈I λi [̃ci]. Compte
tenu de cette identification, le plongement

H 0(CI \ {cI },Gm)/H
0(CI ,Gm) ↪→ E×I /A

×
I = GI (k)

définit un scindage σ : �0
I → GI de l’extension 1 → G0

I → GI → �I → 0
au-dessus de �0

I ⊂ �I .
On prolonge GI � PI en le morphisme de k-schémas

XI → P I

qui envoie M ⊂ E sur le OCI -Module sans torsion M de rang générique 1 obtenu
en recollant OCI \{cI } et M le long de Spec(EI ) = (CI \ {cI }) ×CI Spec(AI ). Pour
chaque entier d, ce morphisme envoie la composante connexeXdI dans la composante
connexe PdI . Il estGI -équivariant pour l’action naturelle deGI surXI et l’action de
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GI sur PI induite par celle de PI sur P I et l’épimorphismeGI � PI ci-dessus, et il
passe au quotient en un morphisme de k-schémas projectifs

ZI = XI/σ(�0
I )→ P I

qui envoie, pour chaque entier d , la composante connexeZdI dans la composante con-
nexe PdI . Le morphisme ZI → P I est birationnel puisqu’il induit un isomorphisme
de l’ouvert Z◦I = X◦I /�0

I ⊂ ZI sur l’ouvert PI ⊂ P I .
Proposition 2.3.1. Le k-morphisme birationnel ZI → P I ci-dessus est un homéo-
morphisme universel, c’est-à-dire est fini, radiciel et surjectif.

Démonstration. Il suffit de voir que les fibres géométriques du morphismeZI → P I
sont toutes réduites à un point, avec éventuellement des nilpotents. Or tout OCI -
Module M sans torsion de rang générique 1 s’obtient par recollement de OCI \{cI } et
d’un AI -réseauM ⊂ EI , le couple formé deM et de la donnée de recollement étant
uniquement déterminé modulo l’action de

σ(�0
I ) = H 0(CI \ {cI },Gm)/H

0(CI ,Gm). )�
Compte tenu du Théorème 2.2.1, on déduit de cette proposition le suivant.

Corollaire 2.3.1. Le k-schéma ZI est irréductible et laGI -orbiteX◦I deM = AI est
dense dans XI . En particulier on a dimk(ZI ) = dimk(XI ) = δI . )�

Bezrukavnikov [Be] a donné une formule très générale pour la dimension des
fibres de Springer, formule qui contient bien entendu l’égalité dim(XI ) = δI . Par
contre, sa méthode ne permet pas de démontrer que XI n’admet pas de composantes
irréductibles de dimension < δI .

Corollaire 2.3.2. Le revêtement étale galoisienXI → ZI de groupe de Galois�0
I
∼=

σ(�0
I ) provient par le changement de baseZI → P I d’un revêtement étale galoisien

ϕI : P 1I → P I

dont la description au niveau des k′-points est la suivantes : P 1I (k
′) est l’ensemble

des couples (M, ι), où M est un Ok′⊗kCI -Module sans torsion de rang générique 1

et ι : M|k′⊗k(CI \{cI })
∼−→ Ok′⊗k(CI \{cI }) est une trivialisation de la restriction de M

à k′ ⊗k (CI \ {cI }), et ϕI est le morphisme d’oubli de ι. )�
On notera encore P 1I = GI et ϕI : P 1I � PI le k-épimorphisme défini plus haut.

Exemples 2.3.1. Pour |I | = 1 et pI (T ) = T 2 − # 3
F , CI est la cubique n’ayant

pour seule singularité qu’un cusp ordinaire et l’homéomorphisme Z0
I → P 0

I est
naturellement isomorphe au morphisme de normalisation πI : C̃I → CI .

Pour I = {1, 2}, p1(T ) = T − #F et p2(T ) = T + #F , CI est la cubique
n’ayant pour seule singularité qu’un point double ordinaire, ϕI : ZI → P I est
un isomorphisme et la composante de degré 0 du revêtement ϕI : P 1I → P I est

naturellement isomorphe au revêtementC1I → CI de groupe de Galois Z dont l’espace
total est la chaîne de droites projective indexée par Z obtenue en prenant Z copies de
la droite projective standard sur k et en identifiant le point à l’infini de la n-ème copie
à l’origine de la (n+ 1)-ème. )�
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2.4 Généralisation

On peut généraliser la proposition 2.3.1 comme suit. SoitC une courbe géométrique-
ment intègre et projective sur k n’ayant que des singularités planes. Soit {cj | j ∈ J }
l’ensemble fini des points singuliers de C et, pour chaque j ∈ J , soit π−1

C (cj ) ={̃ci | i ∈ Ij } l’ensemble des branches de C en cj . Pour chaque j ∈ J , notons AIj le
complété de l’anneau local de C en cj .

Pour simplifier, on suppose que tous les points cj de C et tous les points c̃i de C̃
sont rationnels sur k.

Pour chaque j ∈ J on a la fibre de Springer affine XIj qui paramètre les idéaux
fractionnaires de AIj , c’est-à-dire les sous-AIj -modules M de l’anneau total des
fractions EIj de AIj tels que EIjM = EIj . Cette fibre de Springer est munie d’une
action du k-schéma en groupes GIj «défini» par GIj (k) = E×Ij /A×Ij , action dont on
a vu qu’elle admet une orbite dense.

On note

X(C) =
∏
j∈J
XIj , G(C) =

∏
j∈J
GIj , I =

∐
j∈J
Ij et �(C) = ZI .

On a un dévissage
1 → G0(C)→ G(C)→ �(C)→ 0

qui au niveau des k-points n’est autre que le dévissage

1 →
∏
j∈J

O×
EIj
/A×Ij →

∏
j∈J
E×Ij /A

×
Ij
→
∏
j∈J

ZIj → 0.

On a de plus une suite exacte de schémas en groupes en groupes commutatifs connexes
et de type fini sur k

1 → G0(C)→ P 0(C)→ P 0(C̃)→ 1

où G0(C) est affine, et donc produit d’un tore par un groupe unipotent, et où P 0(C̃)

est un k-schéma abélien de dimension g(C).
On forme le k-schéma de Picard compactifié P(C) de C et on considère le k-

morphisme
X(C)→ P(C)

qui envoie (Mj ⊂ EIj )j∈J sur le OC-Module M sans torsion de rang générique 1
obtenu en recollant OC\{cj |j∈J } et lesMj . Compte tenu de l’action deP 0(C) ⊂ P(C)
sur P(C) on en déduit un morphisme P 0(C)×k X(C)→ P(C) qui passe au quotient
en un morphisme

[P 0(C)×k X(C)]/G0(C)→ P(C)

où G0(C) agit librement sur P 0(C) ×k X(C) par g · (p, x) = (pg−1, g · x). On
remarque que l’on a par construction une «fibration»

[P 0(C)×k X(C)]/G0(C)→ P 0(C̃)
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de fibre type X(C).
Considérons le groupe discret

H 0(C \ {cj | j ∈ J },Gm)/H
0(C,Gm) ⊂

∏
j∈J
E×Ij /A

×
Ij
= G(C)(k)

qui est l’image d’une section σ de G(C) � �(C) au-dessus de �0(C) =
Ker(ZI → Z). Ce groupe discret agit librement sur X(C) et le k-morphisme
[P 0(C)×k X(C)]/G0(C)→ P(C) passe au quotient en un k-morphisme

[P 0(C)×k (X(C)/σ(�0(C)))]/G0(C)→ P(C).

On remarque que l’on a encore une «fibration»

[P 0(C)×k (X(C)/σ(�0(C)))]/G0(C)→ P 0(C̃)

de fibre type Z(C) = X(C)/σ(�0(C)).

Proposition 2.4.1. Le k-morphisme [P 0(C)×k(X(C)/σ(�0(C)))]/G0(C)→ P(C)

défini ci-dessus est un homéomorphisme universel. )�
Corollaire 2.4.1. Le revêtement étale galoisien

[P 0(C)×k X(C)]/G0(C)→ [P 0(C)×k (X(C)/σ(�0(C)))]/G0(C)

de groupe de Galois �0(C) ∼= σ(�0(C)) provient par le changement de base
[P 0(C)×k (X(C)/σ(�0(C)))]/G0(C)→ P(C) d’un revêtement étale galoisien

ϕ : P 1(C)→ P(C). )�

2.5 Auto-dualité des jacobiennes compactifiées d’après Esteves, Gagné, et
Kleiman

Dans [E-G-K], Esteves, Gagné et Kleiman ont démontré un théorème d’auto-dualité
pour les jacobiennes compactifiées des courbes projectives et intègres dont toutes les
singularités sont planes et de multiplicité 2. Ce théorème généralise l’énoncé classique
d’auto-dualité des jacobiennes des courbes projectives et lisses.

Nous n’aurons besoin que de la partie «facile» de ce théorème, partie qui vaut en
fait sans l’hypothèse restrictive de multiplicité 2 et que nous allons rappeler main-
tenant.

On se place dans la situation naturelle pour ce résultat. Soient donc S un
schéma nœthérien et C → S un morphisme projectif et plat, dont toutes les fibres
géométriques sont intègres et de dimension 1. Pour simplifier, on supposera qu’il
existe une section globale de C sur S dont l’image est contenue dans le lieu de lissité
de C sur S et on fixera une fois pour toute une telle section ∞ : S → C. On notera
[∞] le diviseur de Cartier relatif sur C image de cette section.

Pour chaque entier d , soit Pd = PicdC/S la composante du S-schéma de Picard
de la courbe C/S qui paramètre les classes d’isomorphie de Modules inversibles sur
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C qui sont de degré d fibre à fibre du morphisme C → S, et soit Pd = Pic
d

C/S la
compactification relative de Pd qui paramètre les Modules cohérents sur C qui sont
plats sur S et, fibre à fibre, sans torsion, de rang générique 1 et de degré d. La torsion
M �→ M(−(d + 1)[∞]) par le diviseur de Cartier −(d + 1)[∞] identifie Pd et Pd

à P−1 et P−1 respectivement.
On supposera que, pour un entier d ou ce qui revient au même pour tout entier d,

le foncteur de Picard de Pd/S est représentable par un S-schéma

PicPd/S

qui est une réunion disjointe de S-schémas quasi-projectifs. C’est le cas d’après
Grothendieck (cf. [Gr 1, Théorème 3.1] et aussi [B-L-R, Section 8.2, Theorem 1])
si toutes les fibres de C/S ont au pire des singularités planes, car le S-schéma Pd

est alors projectif, plat et à fibres géométriques intègres d’après Altman, Iarrobino et
Kleiman, et Rego (cf. [A-I-K, Re] et notre Section 2.1). C’est aussi le cas si S est le
spectre d’un corps d’après Murre et Oort (cf. [B-L-R, Section 8.2, Theorem 3]).

Si S est le spectre d’un corps k, le k-schéma en groupes PicPd/k admet une

composante neutre Pic0
Pd/k

et on définit

Picτ
P d/k

=
⋃
n>0

[n]−1 Pic0
Pd/k

,

où [n] : PicPd/k → PicPd/k est la multiplication par l’entier n. Pour S arbitraire, on

note Pic0
Pd/S

(resp., Picτ
P d/S

) le sous-foncteur de PicPd/S formé des classes d’isomor-

phie de Modules inversibles sur Pd dont la restriction à chaque fibre Pds de Pd → S

est dans Pic0
Pds /κ(s)

(resp., Picτ
P ds /κ(s)

). Le sous-foncteur Picτ
P d/S

est représentable par

une partie ouverte et fermée de PicPd/S (cf. [B-L-R, Section 8.4, Theorem 4]) ; par

contre, le sous-foncteur Pic0
Pd/S

n’est pas représentable en général.

On a l’application d’Abel

A−1 : C → P−1

définie par l’Idéal de la diagonaleC ⊂ C×S C : la première projectionC×S C → C

est un changement de base de C → S et cet Idéal est un OC×SC-Module cohérent
qui est plat sur C et, fibre à fibre, sans torsion, de rang générique 1 et de degré −1.
Pour tout entier d, on définit

Ad : C → Pd

comme le composé de A−1 et de l’isomorphisme P−1 ∼−→ Pd de torsion par
(d + 1)[∞]. Le morphisme Ad induit un homomorphisme de S-schémas en groupes

A∗d : PicPd/S → PicC/S .

Dans [E-G-K], Esteves, Gagné et Kleiman construisent un inverse à droite de
l’homomorphisme A∗d sur P 0 = Pic0

C/S ⊂ PicC/S en utilisant le déterminant de la
cohomologie.
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Plus précisément, notons

C ×S P pr12←−−−−C ×S P ×S P 0 pr13−−−−→C ×S P 0

pr2

⏐⏐/ ⏐⏐/ pr23

⏐⏐/ pr2

P←−−−−−−−−−
pr1

P ×S P 0−−−−−−−−−→
pr2

P 0

les projections canoniques et Luniv et Muniv les Modules universels sur C ×S P 0 et
C×SP respectivement, rigidifiés le long des sectionsP 0 → C×SP 0 etP → C×SP
induites par la section ∞ : S → C. Alors, on peut former le OP×SP 0 -Module
inversible

(detR pr23,∗(pr∗12 Muniv ⊗ pr∗13 Luniv))⊗−1 ⊗ detR pr23,∗ pr∗12 Muniv

sur P ×S P 0, Module inversible qui définit un morphisme

β =
∏
d∈Z

βd : P 0 → PicP/S =
∏
d∈Z

PicPd/S .

Proposition 2.5.1 (Esteves, Gagné, et Kleiman [E-G-K, Proposition 2.2]). Pour
chaque entier d, le morphisme βd : P 0 → PicPd/S est un homomorphisme de S-
schémas en groupes dont l’image ensembliste est contenue dans le sous-foncteur
Pic0

Pd/S
, et donc dans l’ouvert et fermé Picτ

P d/S
, et la formation de βd commute à tout

changement de base S′ → S. De plus, le composé A∗d ◦ βd est l’identité de P 0. )�
Remarque 2.5.1. Si on note

µ : P ×S P 0 → P , (M,L) �→ M⊗OC
L,

l’action naturelle de P 0 sur P , on a le carré cartésien

C ×S P ×S P 0 IdC ×µ−−−−−−−→C ×S P
pr23

⏐⏐/ �
⏐⏐/ pr2

P ×S P 0−−−−−−−−−−−−→
µ

P

et on a un isomorphisme canonique

pr∗12 Muniv ⊗ pr∗13 Luniv ∼= (IdC ×µ)∗Muniv.

Le théorème de changement de base assure alors que

R pr23,∗(pr∗12 Muniv ⊗ pr∗13 Luniv) ∼= µ∗R pr2,∗ Muniv

et le morphisme β d’Esteves, Gagné et Kleiman est encore défini par le Module
inversible

(µ∗ detR pr2,∗ Muniv)⊗−1 ⊗ detR pr2,∗ Muniv. )�
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2.6 Schémas de Picard et dualité pour les tores

Nous aurons besoin dans la section suivante d’un résultat général de Grothendieck
qui nous a été communiqué par Raynaud.

Soient f : Z→ S un morphisme propre, plat et de présentation finie de schémas
tel que f∗OZ = OS , et T un S-tore (plat et de présentation finie) de faisceau des
caractères X∗(T ) = HomS-sch.gr.(T ,Gm,S). Pour chaque changement de base

Z′−−−→Z

f ′
⏐⏐/ �

⏐⏐/ f
S′ −−−→ S ,

chaque section globale t ′ du S′-tore T ′ = S′ ×S T et chaque f ′∗X∗(T ′)-torseur Y ′
sur Z′, on note 〈Y ′, t ′〉 le Gm,Z′ -torseur sur Z′ obtenu en poussant Y ′ par le caractère
image réciproque par f ′ du caractère X∗(T ′)→ Gm,S′ , χ ′ �→ χ ′(t ′).

Proposition 2.6.1 (cf. [Ra, Proposition 6.2.1]). Notons

PicZ/S = R1f∗Gm,Z

le foncteur de Picard relatif. Alors, l’homomorphisme de faisceaux étales sur S

R1f∗f ∗X∗(T )→ HomS-sch.gr.(T ,PicZ/S)

qui, quel que soit le S-schéma S′, envoie la classe d’un f ′∗X∗(T ′)-torseur Y ′ → Z′
sur l’homomorphisme 〈Y ′, ·〉 : T ′ → PicZ′/S′ , est un isomorphisme.

Démonstration. On raisonne comme le fait Raynaud pour prouver [Ra, Proposi-
tion 6.2.1]. Pour tout faisceau fppf en groupes commutatifs F sur S, on considère le
foncteur

G �→ H(G) = f∗ Hom(f ∗F,G)

sur la catégorie des faisceaux fppf en groupes commutatifs sur Z. On a deux suites
spectrales

E
pq

2 = Rqf∗ Extp(f ∗F,G)⇒ Rp+qH(G)

et
E
pq

2 = Extq(F, Rpf∗G)⇒ Rp+qH(G)

et donc deux suites exactes courtes des termes de bas degrés, qui s’écrivent pour
F = T et G = Gm,Z ,

0 → R1f∗f ∗X∗(T )→ R1H(Gm,Z)→ f∗ Ext1(f ∗T ,Gm,Z)

et

0 → Ext1(T , f∗Gm,Z)→ R1H(Gm,Z)→ Hom(T , R1f∗Gm,Z)

→ Ext2(T , f∗Gm,Z)→ R2H(Gm,Z).
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L’homomorphisme de la proposition est alors l’homomorphisme composé

R1f∗f ∗X∗(T )→ R1H(Gm,Z)→ Hom(T , R1f∗Gm,Z).

On a f∗Gm,Z = Gm,S par hypothèse et on sait que Ext1(f ∗T ,Gm,Z) = (0)
et Ext1(T ,Gm,S) = (0). Par suite, l’homomorphisme composé ci-dessus est in-
jectif et, pour démontrer qu’il est bijectif, il suffit de vérifier que l’application
Ext2(T , f∗Gm,Z) → R2H(Gm,Z) est injective. Comme cette propriété d’injecti-
vité est locale pour la topologie fppf sur S, on peut supposer que f admet une section
globale z : S → Z, et donc que l’on a une flèche ι : f∗G → z∗G fonctorielle en G. Or,
la flèche ι induit un morphisme R2H(G)→ Ext2(F, z∗G) tel que l’homomorphisme
composé Ext2(F, f∗G)→ R2H(G)→ Ext2(F, z∗G) soit égal à Ext2(F, ι), et elle
est un isomorphisme pour G = Gm,Z par hypothèse. Notre assertion d’injectivité est
donc vérifiée et la proposition est démontrée. )�

2.7 Auto-dualité des jacobiennes compactifiées et fibres de Springer

Revenons maintenant à la situation de la section 2.1. Nous avons donc la courbe
intègre et projective C = CI sur k, de normalisée π = πI : C̃ = C̃I → C une droite
projective, avec son unique point singulier c = cI en lequel la singularité est plane.
Le complété de l’anneau local de C en c est notre anneau A = AI de la section 1.1
et l’ensemble des branches π−1(c) = {̃ci | i ∈ I } est indexé par I .

On considère le k-schéma de Picard compactifié P = P I de C et son revêtement
étale galoisien

P 1 → P ,

de groupe de Galois

�0 = H 0(C \ {c},Gm)/H
0(C,Gm)

= H 0(C̃ \ {̃ci | i ∈ I },Gm)/H
0(C̃,Gm) = Ker(ZI → Z),

défini dans la section 2.3. Rappelons que les k-points de P 1 sont les couples (M, ι)

où M est un OC-Module sans torsion de rang générique 1 et ι : M|C\{c}
∼−→ OC\{c}

est une rigidification de M sur le lieu de lissité C \ {c} de C, et que la flèche du
revêtement est l’oubli de la rigidification.

Par construction, la restriction du revêtement P 1 → P par le morphisme radiciel

Z = ZI → P

défini dans la section 2.3 est le revêtement

X→ X/�0 = Z
où X = XI est la fibre de Springer de la première partie.

Nous allons utiliser les résultats généraux des sections 2.3 et 2.6 pour donner une
autre définition du revêtement P 1 → P .
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Soit T le tore maximal de la composante neutre P 0 du k-schéma de Picard de C.
On a T = GIm,k/Gm,k et le groupe des caractères de T est naturellement isomorphe
au noyau

Ker(ZI → Z)

de l’homomorphisme somme, avec pour accouplement

Ker(ZI → Z)× T → Gm,k, (λ, t) �→ tλ =
∏
i∈I
t
λi
i .

L’homomorphisme de k-schémas en groupes

T → PicP/k

obtenu en composant l’inclusionT ⊂ P 0 et l’homomorphisme canoniqueβ d’Esteves,
Gagné, et Kleiman (cf. Section 2.3), définit donc d’après la Proposition 2.6.1 un�0-
torseur P † → P .

Proposition 2.7.1. Le �0-torseur P † → P n’est autre que le revêtement P 1 → P .

Démonstration. Il s’agit de démontrer que, pour chaque entier d, la restriction à Zd

du�0-torseur P † → P est isomorphe àXd → Zd = Xd/�0 et, bien sûr, il suffit de
le faire pour d = 0.

Si l’on interprète le k-schéma de Picard PicZ0/k de Z0 comme le k-schéma de

Picard�0-équivariant Pic�
0

X0/k
deX0, le�0-torseurX0 → Z0 correspond de manière

tautologique par la Proposition 2.6.1 au k-homomorphisme

T → Pic�
0

X0/k
= PicZ0/k

qui envoie t ∈ T (k) sur le OX0 -Module inversible trivial muni de l’action de �0

donnée par le caractère
χt : �0 → Gm,k, λ �→ tλ,

et on veut montrer que ce k-homomorphisme coïncide avec le k-homomorphisme
composé

T ⊂ P 0 β0−−−→PicP 0/k → PicZ0/k

où la dernière flèche est la flèche de restriction par le morphisme radicielZ0 → P 0. Il
suffit donc de démontrer que, pour tout t ∈ T (k), la restriction à Z0 du OP 0 -Module
inversible β0(t) est le OX0 -Module inversible trivial muni de l’action de �0 donnée
par le caractère χt .

Rappelons que l’anneau total des fractions de A est E = EI = ∏
i∈I Ei , que

C̃ est la droite projective standard P1
k , que le point ∞ de C̃ est distinct des c̃i , que

pour chaque i ∈ I , on peut prendre pour uniformisante #i = #Ei de Ei la fonction
x − c̃i où x est une coordonnée affine sur C̃ \ {∞} ∼= A1

k , que Ã = ∏i∈I k[[#i]] ⊂∏
i∈I k((#i)) ∼= EI et que �0 est l’ensemble des fractions rationnelles de la forme∏
i∈I (x − c̃i )λi avec λ ∈ ZI et

∑
i∈I λi = 0.
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Rappelons de plus que X0 est le k-schéma des A-réseaux M ⊂ E d’indice 0
relativement à A ⊂ E, que l’image M ∈ P 0(k) de M ∈ X0(k) est le OC-Module
obtenu en recollant OC\{c} etM , et que l’action du groupe de Galois�0 est donnée par

(λ,M) �→ λ ·M = (#λii )i∈IM.
Rappelons enfin que le k-schéma X0 est localement de type fini, réunion d’une

suite croissante
X0

0 ⊂ · · · ⊂ X0
n ⊂ X0

n+1 ⊂ · · · ⊂ X0

de fermés de type fini stables sous l’action par translation de P 0(k) = Ã×/A× ; par
exemple, on peut prendre pour X0

n le fermé formé des M qui sont contenus dans
(#−n
i )i∈I Ã ⊂ E.
Il suffit donc de construire un système compatible de trivialisations des restrictions

du Module inversible β0(t) aux X0
n et de montrer que, pour tout M ∈ X0(k) et tout

λ ∈ �0, l’isomorphisme de la fibre enM de la restriction de β0(t) à X0 sur celle en
λ ·M donné par l’action de λ s’exprime dans ce système de trivialisations comme la
multiplication par tλ.

La fibre de β0(t) en l’image M ∈ P 0(k) deM ∈ X0
n(k) peut se calculer comme

suit. Soit R = H 0(C \ {c},OC) ⊂ E la k-algèbre des fonctions rationnelles sur C̃
qui sont régulières en dehors de {̃ci | i ∈ I }. On a une suite exacte

0 → H 0(C,M)→ R→ E/M → H 1(C,M)→ 0

et il existe N ≥ n, indépendant de M ∈ X0
n(k), tel que la restriction de la flèche

surjective E/M � H 1(C,M) à (#−N
i )i∈I Ã/M ⊂ E/M soit encore surjective. La

suite induite

0 → H 0(C,M)→ R ∩ (#−N
i )i∈I Ã→ (#−N

i )i∈I Ã/M → H 1(C,M)→ 0.

est donc aussi exacte.
La classe d’isomorphie fixée t ∈ T (k) ⊂ P 0(k) est représentée par le OC-

Module inversible L obtenu en recollant OC\{c} et le réseau L = (ti)i∈IA ⊂ E,
et on peut remplacer dans les suites exactes ci-dessus M par L ⊗OC

M et M par
t · M = (ti)i∈IM ⊂ (#−n

i )i∈I Ã ⊂ E. Par conséquent, la fibre de β0(t) en M
s’identifie canoniquement à la k-droite(

max∧
(#−N
i )i∈I Ã

/
t ·M

)
⊗k
(

max∧
(#−N
i )i∈I Ã

/
M

)⊗−1

,

ou ce qui revient au même à la k-droite(
max∧
(#−n
i )i∈I Ã

/
t ·M

)
⊗k
(

max∧
(#−n
i )i∈I Ã

/
M

)⊗−1

.

Le déterminant de l’isomorphisme (#−n
i )i∈I Ã/M

∼−→ (#−n
i )i∈I Ã/t · M induit

par la multiplication par (ti)i∈I définit un vecteur de base en,M de cette dernière
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k-droite. La section M �→ eM = (∏
i∈I t

−n
i

)
en,M de la restriction de β0(t) à X0

n

est la trivialisation cherchée : elle est «indépendant de n» puisque le déterminant de
l’automorphisme de multiplication par (ti)i∈I sur (#−n−1

i )i∈I Ã/(#−n
i )i∈I Ã est égal

à
∏
i∈I ti .
Maintenant, siM et λ ·M sont dansX0

n(k), la multiplication par (#−λi
i )i∈I induit

un isomorphisme de la k-droite(
max∧
(#−n
i )i∈I Ã

/
t · (λ ·M)

)
⊗k
(

max∧
(#−n
i )i∈I Ã

/
λ ·M

)⊗−1

sur la k-droite(
max∧
(#

−λi−n
i )i∈I Ã

/
t ·M

)
⊗k
(

max∧
(#

−λi−n
i )i∈I Ã

/
M

)⊗−1

qui envoie le vecteur de base en,M sur le déterminant e′ de l’isomorphisme

(#
−λi−n
i )i∈I Ã/M

∼−→ (#
−λi−n
i )i∈I Ã/t ·M

induit par la multiplication par (ti)i∈I . Or cette dernière k-droite est canoniquement
isomorphe à la k-droite(

max∧
(#−n
i )i∈I Ã

/
t ·M

)
⊗k
(

max∧
(#−n
i )i∈I Ã

/
M

)⊗−1

par un isomorphisme qui envoie e′ sur t−λen,M (choisir arbitrairement un entierm ≥
λi + n quel que soit i ∈ I et utiliser les inclusions (#−λi−n

i )i∈I Ã ⊂ (#−m
i )i∈I Ã ⊃

(#−n
i )i∈I Ã). On en déduit donc que l’action de −λ envoie eλ·M sur t−λeM , ce que

l’on voulait démontrer. )�

Remarque 2.7.1. Pour tout ã ∈ Ã×/A×, la multiplication par ã induit un isomor-
phisme de (#−n

i )i∈I Ã/M sur (#−n
i )i∈I Ã/̃aM dont le déterminant ne dépend que

du «terme constant» ã(0) de ã, c’est-à-dire de l’image de ã par la projection canon-
ique Ã×/A× � (k×)I /k×. Les mêmes calculs de déterminant de la cohomologie
que ceux de la démonstration de la proposition montrent donc que la flèche composée

P 0 β−−−→PicP → PicZ

est triviale sur la composante unipotente de P 0. )�

Remarque 2.7.2. On laisse le soin au lecteur d’étendre la construction ci-dessus pour
le revêtement ϕ : P 1(C)→ P(C) du corollaire 2.4.1. )�
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3 La conjecture de pureté

Dans tout ce chapitre, k est un corps fini à q éléments. On fixe une clôture algébrique k
de k, un nombre premier � distinct de la caractéristiquep de k et une clôture algébrique
Q� de Q�. Pour tout k-schéma de type fini S on note simplement

H •
c (S) := H •

c (k ⊗k S,Q�)
la cohomologie �-adique à supports compacts de k⊗k S. Bien entendu, si S est propre
sur k, on peut ôter l’indice c.

Pour chaque entier m, l’élément de Frobenius géométrique Frobk ∈ Gal(k/k)
(l’élévation à la puissance q−1 dans k) agit sur Hmc (S) et d’après la forme forte
de la conjecture de Weil prouvée par Deligne (cf. [De]), pour chaque valeur propre
α ∈ Q� pour cette action il existe un entier w(α) ≤ m (appelé le poids de α) tel que

|ι(α)| = q w(α)2 pour tout plongement ι : Q� ↪→ C. Deligne a défini la filtration par le
poidsW•H •

c (S) : pour tous entiersm etw,WwHmc (S) est le sous-Q�-espace vectoriel
de Hmc (S) somme des espaces propres généralisés pour les valeurs propres de Frobk
de poids ≤ w. Pour tout fermé T ⊂ S, la flèche de restriction Hmc (S)→ Hmc (T ) est
strictement compatibles aux filtrations par le poids.

On dit que la cohomologie �-adique de S est pure si, pour tout entierm, les valeurs
propres de Frobk sur Hmc (S) sont toutes de poids m, ou ce qui revient au même si

(0) = Wm−1H
m
c (S) ⊂ WmHmc (S) = Hmc (S).

Toujours d’après Deligne (cf. loc. cit.), c’est automatiquement le cas si S est propre
et lisse sur k.

3.1 La conjecture de Goresky, Kottwitz, et MacPherson

La composante connexe X0
I de la fibre de Springer affine XI du chaptire 1 est un

k-schéma connexe, localement de type fini, de dimension finie et réunion croissante
de sous-schémas fermés X0

I,N qui sont projectifs sur k. On définit la cohomologie

�-adique H •(X0
I ) comme la limite projective des cohomologies �-adiques des X0

I,N

relativement aux flèches de restriction H •(X0
I,N+1)→ H •(X0

I,N ). On a Hm(X0
I ) =

(0) pour m > 2δI où on rappelle que δI est la dimension de XI .
On définit la filtration par le poidsW•H •(X0

I ) par

WwH
m(X0

I ) = lim←−
N

WwH
m(X0

I,N ).

On dit que la cohomologie �-adique de X0
I est pure si, pour chaque entier m, on a

(0) = Wm−1H
m(X0

I ) ⊂ WmHm(X0
I ) = Hm(X0

I ).

La cohomologie �-adique des fibres de Springer classiques est pure (cf. [Sp]). Ce
résultat est une des motivations pour la conjecture suivante :
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Conjecture (Goresky, Kottwitz, et MacPherson). La cohomologie �-adique de X0
I

est pure.

Le premier cas de cette conjecture a été obtenu (avant la formulation de cette
dernière) par Lusztig et Smelt (cf. [Lu-Sm]). Il s’agit du cas où I est réduit à un
élément, E = F [#E]/(ϕnE −#F ) et γ = #vE pour des entiers n et v premiers entre
eux et premiers à p. Lusztig et Smelt montre plus précisément que dans ce cas, X0

I

est pavé par des espaces affines standard. Nous donnerons à la section 4.3 une autre
démonstration de ce résultat inspirée par l’argument de Springer dans [Sp].

Plus généralement, Goresky, Kottwitz, et MacPherson ont pavé X0
I par des fi-

brés en espaces affines standard sur des variétés projectives et lisses—et ont donc
démontré la conjecture de pureté ci-dessus—dans le cas d’égales valuations. Il
s’agit du cas où toutes les extensions Ei sont égales à une même extension finie
E = F [#E]/(ϕnE −#F ) de F pour un entier n premier à p et où vE(γi) ne dépend
pas de i.

3.2 Une variante pour les jacobiennes compactifiées

Soit C une courbe projective et géométriquement intègre sur k dont toutes les singu-
larités sont planes. Quitte à étendre les scalaires à une extension finie de k, on peut
supposer et on supposera dans la suite que toutes les singularités deC sont rationnelles
sur k, ainsi que toutes leurs branches formelles.

On a vu que la composante connexe P 0(C) du k-schéma de Picard compactifié
de C qui paramètre les classes d’isomorphie de OC-Modules cohérents sans torsion
de rang générique 1 et de degré 0 est un k-schéma projectif, géométriquement intègre
et localement d’intersection complète de dimension g(C)+ δ(C).

On a construit dans les sections 2.4 et 2.7 un revêtement étale galoisien P 1,0 →
P 0(C) = J (C) de groupe de Galois Zb−1 où b est le nombre total des branches des
singularités de C.

Comme P 1,0 est homéomorphe au k-schéma [P 0(C)×k X0(C)]/G0(C) qui est
l’espace total d’une fibration au dessus de la variété abélienne P 0(C̃), de fibre type
X(C), on voit facilement que la conjecture de pureté de Goresky, Kottwitz et MacPher-
son est équivalente à la conjecture suivante :

Conjecture. La cohomologie �-adique de P 1,0 est pure.

En particulier, on a :

Conjecture. Soit C une courbe projective et géométriquement intègre sur k dont
toutes les singularités sont planes et géométriquement unibranches, alors la coho-
mologie �-adique de sa jacobienne compactifiée J (C) est pure.

4 «Déformations» des fibres de Springer

4.1 Déformations de la courbe C

Revenons à la situation de la première partie. On rappelle (cf. Section 2.1) qu’on a
introduit une courbe intègre, projectiveC = CI sur k qui n’a qu’un seul point singulier
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c = cI pour lequel le complété ÔC,c de l’anneau local de C en c est isomorphe à

A = AI = OF [γI ] ∼= k[[#F , T ]]/(pI (T )).
Par hypothèse de séparabilité de pI (T ), on sait que l’idéal

(∂T pI (T ), pI (T )) ⊂ k[[#F ]][T ]
est de codimension finie. Il en est donc de même des idéaux

(∂T pI (T ), pI (T )) et (∂#F pI (T ), ∂T pI (T ), pI (T )) ⊂ k[[#F , T ]].
On supposera dans la suite que l’idéal

(∂#F pI (T ), ∂T pI (T )) ⊂ k[[#F , T ]]
est lui aussi de codimension finie (cette hypothèse est automatiquement vérifiée si k
est de caractéristique nulle ; cf. [Te 1, 1.1]).

Dans la suite on note

x = #F , y = T et f (x, x) = pI (T )
de sorte que A = k[[x, y]]/(f ).

Par construction la courbe C est muni d’un point ∞ dans son lieu de lissité et la
normalisée C̃ de C est identifiée à la droite projective P1

k de telle sorte que ∞ soit le
point à l’infini.

Lemme 4.1.1. Supposons de plus que C n’est pas lisse en c et que la caractéristique
de k est > |I |. Alors, le k-schéma en groupes Autk(C,∞) des automorphismes
(C,∞) sur k est soit fini, soit isomorphe à Gm,k .

Démonstration. Tout automorphisme g de (C,∞) induit un automorphisme de
C̃ = P1

k qui fixe le point à l’infini et {̃ci | i ∈ I } ⊂ C̃ dans son ensemble. Par
suite, Autk(C,∞) est un sous-k-schéma en groupes fermé du sous-groupe de Borel
des matrices triangulaires supérieures dans PGL(2). De plus, la puissance g|I |! de
g fixe chacun des c̃i . Par suite, si |I | ≥ 2, g|I |! est nécessairement l’identité et
Autk(C,∞) est un k-schéma en groupes fini d’ordre premier à la caractéristique
de k, et si |I | = 1, Autk(C,∞) est un sous-k-schéma en groupes du tore maximal
diagonal G2

m,k/Gm,k ⊂ PGL(2). )�
Comme C est de dimension 1 et localement d’intersection complète, on a

H 2(C,HomOC
(	1
C/k(∞),OC)) = (0)

et il n’y a pas d’obstruction à déformer le couple (C,∞). Par suite la base R de la
déformation miniverselle de (C,∞) est une k-algèbre de séries formelles en τ(C,∞)
variables, où τ(C,∞) est la dimension de l’espace tangent de Zariski

Ext1
OC
(	1
C/k(∞),OC).
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De plus, le k-espace vectoriel sous-jacent à l’algèbre de Lie de Autk(C,∞) est égal
à HomOC

(	1
C/k(∞),OC).

De même, le foncteur des déformations topologiques de A = k[[x, y]]/(f ) est
formellement lisse avec pour espace tangent

Def top
A (k[ε]) = Ext1

A(	
1,top
A ,A) ∼= k[[x, y]]/(f, ∂xf, ∂yf )

(	1,top
A est le conoyau de la flèche

A ↪→ Adx ⊕ Ady

qui envoie 1 sur df = (∂xf )dx + (∂yf )dy). En fait on obtient une déformation
miniverselle topologique

Spf (k[[x, y, z1, . . . , zτ(A))]]/(f̃ ))→ Spf (k[[z1, . . . , zτc(C,∞)]])
du germe formel de Cs en c en choisissant arbitrairement des série formelles

g1, . . . , gτ(A) ∈ k[[x, y]]

dont les réductions modulo l’idéal (f, ∂xf, ∂yf ) forment une base de Def top
A (k[ε]),

et en posant

f̃ = f̃ (x, y, z) = f (x, y)+
τ(A)∑
t=1

ztgt (x, y).

Bien sûr, on peut prendre gτ(A) = 1, de sorte que k[[x, y, z1, . . . , zτ(A)]]/(f̃ ) est
isomorphe à la k-algèbre de séries formelles k[[x, y, z1, . . . , zτ(A)−1]].

Soient S = Spec(R) et s = Spec(k) l’unique point fermé de S.
On note dorénavant Cs = CI,sI , ∞s = ∞ la courbe C et son point ∞, ce qui

libère les notation C et ∞ que nous allons pouvoir utiliser pour les déformations de
ces mêmes objets. On conserve la notation c pour l’unique point singulier de Cs .

Théorème 4.1.1. La déformation formelle miniverselle de (Cs,∞s) est algébrisable :
il existe un morphisme de schémas C → S propre et plat le complété formel pour
la topologie mR-adique est cette déformation formelle miniversel. Ce morphisme est
en fait projectif et à fibres géométriquement intègres.

Démonstration. On applique le théorème d’algébrisation de Grothendieck [Gr 2,
Théorème 5.4.5] et [Gr 3, Théorème 12.2.4]. )�
Proposition 4.1.1. Le schéma C est formellement lisse sur k, le morphisme C → S

est localement d’intersection complète et la fibre générique du morphisme C → S

est lisse.

Démonstration. Les deux premières assertions sont locales au point singulier c ∈ Cs
et résultent immédiatement des écritures

Spf (A) et Spf (k[[x, y, z1, . . . , zτ(A)]]/(f̃ ))
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pour les complétés formels de Cs et C en c, avec

f̃ = f̃ (x, y, z) = f (x, y)+
τ(A)∑
t=1

ztgt (x, y).

et gτ(A) = 1.
Passons à la dernière assertion. On sait déjà que la fibre Cη de C → S au point

générique η de S est géométriquement intègre et donc génériquement lisse.
Maintenant, si Cη admettait une singularité en un point fermé cη, on pourrait

localiser la situation au voisinage du point fermé de Cs qui spécialise cη et qui serait
nécessairement c. Pour conclure, il suffit donc de vérifier que, pour f̃ comme ci-
dessus, le lieu critique de la projection canonique

(∗) Spf (k[[x, y, z1, . . . , zτ(A)]]/(f̃ ))→ Spf (k[[z1, . . . , zτ(A)]]) = S

est fini sur S et son discriminant, c’est-à-dire l’image dans S du lieu critique, est un
fermé strict de S.

Or, le lieu critique de (∗) est le fermé de Spf (k[[x, y, z1, . . . , zτ(A)]]) d’équations

f̃ = ∂xf̃ = ∂yf̃ = 0.

Il est donc bien fini sur S puisque k[[x, y]]/(f, ∂xf, ∂yf ) est de dimension finie
sur k, et le discriminant de (∗) est le fermé défini par le 0-ème idéal de Fitting du
k[[z1, . . . , zτ(A)]]-module de type fini k[[x, y, z1, . . . , zτ(A)]]/(f̃ , ∂xf̃ , ∂yf̃ ).

Si le discriminant de (∗) était S tout entier, il contiendrait en particulier tout l’axe
des z1. Or la formation de ce discriminant commute à tout changement de base (cf.
[Te 2, Section 5]). Sa restriction à l’axe des z1 est donc le discriminant du morphisme

Spf (k[[x, y]])→ Spf (k[[z1]])
qui envoie (x, y) sur z1 = −f (x, y). Mais, il est facile de voir (cf. [Te 2, Sec-
tion 2.6]) que ce dernier discriminant est le fermé de Spf (k[[z1]]) défini par l’équation
z
µ(f )

1 où
µ(f ) = dimk(k[[x, y]]/(∂xf, ∂yf )),

d’où la conclusion. )�

4.2 Déformations de jacobiennes compactifiées

On s’intéresse de nouveau à la fibre de Springer X = XI et à son quotient Z = ZI
par le réseau �0 = �0

I .
On a vu d’une part que Z est naturellement homéomorphe au k-schéma de Picard

compactifié P = P I et que le revêtement X → Z provient d’un revêtement P 1 =
P
1
I → P . On a vu d’autre part comment déformer la courbe C = CI . On se propose

maintenant d’utiliser les déformations de C pour déformer P , et aussi d’une certaine
manière P 1.
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Comme on l’a déjà fait dans la section précédente on note dorénavant les objets
ci-dessus par Xs = XI,sI , Zs = ZI,sI , �0

s = �0
I,sI

, Ps = PI,sI , P s = P I,sI , . . . , ce

qui libère les notation X, Z, �, P , P , . . . que nous allons pouvoir utiliser pour les
déformations de ces mêmes objets.

Soient P = PI ⊂ P I = P les schémas de Picard et de Picard compactifié de la
déformation algébrique (C,∞)/S de (Cs,∞s) étudiée dans la section précédente.

On rappelle que P paramètre les classes de OC-Modules plats sur S qui sont fibre
à fibre sans torsion et de rang générique 1, et queP est l’ouvert deP formé des classes
de Modules inversibles.

Les schémas P et P sont purement de dimension relative δ = δI sur S, réunions
disjointes de composantes connexes Pd = PdI ⊂ PdI = Pd , respectivement quasi-
projectives et projectives sur S. Les fibres Pdt et Pdt de Pd → S et Pd → S en tout
point géométrique t de S sont les composantes de degré d des schémas de Picard et de
Picard compactifié de la fibreCt deC → S en t ; chaque Pdt est intègre et localement
d’intersection complète (cf. Théorème 2.2.1).

Théorème 4.2.1 (Fantechi, Göttsche, et van Straten [F-G-S, Corollary B.2]). Le
schéma P est régulier (formellement lisse sur k) et la fibre spéciale P s de P → S

est localement d’intersection complète dans P .

Pour prouver ce théorème, Fantechi, Göttsche et van Straten considèrent le fonc-
teur des déformations

DefCs,Ms
: Artk → Ens

du couple (Cs,Ms) où Ms est un OCs -Module cohérent sans torsion de rang
générique 1, et sa variante locale

Def top
A,M : Artk → Ens

en l’unique point singulier c de Cs , où A = ÔCs,c etM = M̂s,c est un A-module de
type fini, sans torsion et de rang générique 1. On a le carré commutatif de morphismes
naturels de foncteurs

DefCs,Ms
−−−→Def top

A,M⏐⏐/ +
⏐⏐/

DefCs −−−−→Def top
A

et il est facile de vérifier :

Lemme 4.2.1. Le morphisme de foncteurs

DefCs,Ms
→ DefCs ×Def top

M

Def top
A,M

induit par le diagramme ci-dessus est formellement lisse. )�
Le théorème résulte donc de la proposition suivante.

Proposition 4.2.1. Le foncteur des déformations Def top
A,M est formellement lisse sur k.
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Démonstration. D’après le lemmeA.3.3,M admet, en tant que k[[x, y]]-module, une
résolution

0 → k[[x, y]]n F−−−→ k[[x, y]]n → M → 0

où n ∈ {1, . . . , δ(A) + 1} et F est une matrice carré de taille n × n à coefficients
dans k[[x, y]]. En raisonnant comme dans la démonstration du Théorème A.3.1 avec
la matrice des co-facteurs de F , on peut exiger de plus que le déterminant det F est
égal à f .

Toute déformation topologique (R-plate) MR du k[[x, y]]-module M sur R ∈
ob Art peut-être obtenue en déformant la matrice F en une matrice carrée FR de taille
n× n à coefficients dans R[[x, y]] = R ⊗k k[[x, y]], de telle sorte queMR admette
la présentation

0 → R[[x, y]]n FR−−−→R[[x, y]]n → MR → 0.

Pour une telle déformation topologique MR de M en tant que k[[x, y]]-module,
la R-algèbre quotient AR = R[[x, y]]/(det FR) est une déformation topologique de
A sur R et MR est de manière évidente un AR-module sans torsion. Si maintenant
BR = R[[x, y]]/(gR) est une autre déformation plate de A sur R telle que gRMR =
(0), alors on a gR = hR det FR où hR ∈ R[[x, y]] est congru modulo l’idéal maximal
de R à un élément inversible de k[[x, y]] et est donc inversible dans R[[x, y]], de
sorte que BR = AR .

Si Def top
F : Artk → Ens est le foncteur des déformations de la matriceF ci-dessus,

on a donc construit un morphisme formellement lisse de foncteurs

Def top
F → Def top

A,M, FR �→ (R[[x, y]]/(det FR),Coker(FR)).

Comme le foncteur Def top
F est trivialement formellement lisse sur k, la proposition

s’en suit. )�
Dans la situation de la proposition ci-dessus, on note V (A) le sous-k-espace

vectoriel

(4.2.4) V (A) = a/(∂xf, ∂yf ) ⊂ A/(∂xf, ∂yf ) = Def top
A (k[ε])

de l’espace tangent de Def top
A , où a ⊂ A est le conducteur du normalisé Ã de A

dans A.
Le résultat suivant généralise le théorème 4.2.1.

Théorème 4.2.2 (Fantechi, Göttsche, van Straten ; [F-G-S] Corollary B.3). Soit
CT → T une courbe relative de base T ∼= Spec(k[[t1, . . . , tm]]) qui provient de
la courbe universelle C → S par un changement de base local T → S. Alors, le
T -schéma

PT = T ×S P
de Picard compactifié deCT /T est régulier (formellement lisse sur k) si et seulement
si l’espace tangent à l’origine de T est transverse au sous-espace V (Cs) ⊂ TsS de
l’espace tangent à l’origine de S obtenu par image inverse du sous-k-espace vectoriel
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V (A) ⊂ Def top
A (k[ε])

par l’épimorphisme naturel TsS � Def top
A (k[ε]).

Démonstration. On a un morphisme d’oubli

Def top
A,M → Def top

A

et il suffit de démontrer que l’image de l’application tangente à ce morphisme contient
le sous-espace V (A) de l’espace tangent à Def top

A .
L’image de cette application tangente est le quotient I/(f, ∂xf, ∂yf ), où I ⊂

k[[x, y]] est l’idéal engendrée par les entrées de la matrice F ∗ des co-facteurs de F
puisque l’on a

det(F + εEij ) = det F + εF ∗ji
quels que soient 0 ≤ i, j ≤ n, où Eij est la matrice élémentaire dont l’entrée (i, j)
est égale à 1 et dont toutes les autres entrées sont nulles.

Or, le A-moduleM = Coker(F ) admet la résolution périodique, de période 2,

· · · F−−−→An
F ∗−−−→An

F−−−→An → M → 0,

etM est encore égal à
M = Ker(F ) = Im(F ∗).

Comme on a Ext1
A(N,A) = (0) pour tout A-module sans torsion N , le morphisme

HomA(F ∗, A) admet la factorisation canonique

HomA(A
n,A)� HomA(M,A) ↪→ HomA(A

n,A)

et l’image I/(f ) de I dans A est égale à l’idéal engendré par les ϕ(m) pour ϕ
parcourant HomA(M,A) et m parcourantM .

Mais, à isomorphisme près, on peut supposer queA ⊂ M ⊂ Ã (cf. la démonstra-
tion du Lemme A.3.3), et alors il est clair que

{ϕ(m) | ϕ ∈ HomA(M,A), m ∈ M} ⊃ a,

ce qui termine la démonstration du théorème. )�

4.3 Application à la pureté dans le cas homogène

Soientm > n ≥ 1 premiers entre eux. On suppose quem! est inversible dans k et que
k contient toutes les racines m-ème de l’unité. On considère la fibre de Springer X
associée à l’extension totalement ramifiée F ⊂ E de degré n définie par #F = #nE
et à l’élément γ = #mE , ou encore celle associée à l’extension totalement ramifiée
F ⊂ E de degré m définie par #F = #mE et à l’élément γ = #nE . Dans les deux
cas, le germe formel de courbe plane correspondant est le même, à savoir Spf (A) où
A = k[[x, y]]/(xm − yn). Comme ce germe n’a qu’une seule branche, on a � = Z
et X = Z = Z0 × Z.
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Rappelons que, si C est n’importe quelle courbe intègre, projective sur k, de
normalisée isomorphe à la droite projective P1

k , et qui est munie d’un k-point c en
dehors duquel elle est lisse sur k et en lequel le germe formel de C est isomorphe à

Spf (A), alors le k-schéma Z0 est homéomorphe à la composante Pic
0
C/k de degré 0

du k-schéma de Picard compactifié de C.
On peut construire une telle courbe C de la façon suivante. Soit

P = Proj(k[X, Y,Z])
le plan projectif pondéré où degX = n, deg Y = m et degZ = 1, et soit C ⊂ P le
fermé défini par l’équation homogène

F(X, Y,Z) = Xm − Yn = 0

de degré mn. L’intersection de C avec la carte affine {Z �= 0} = Spec(k[x, y]) de P
est la courbe d’équation

f = xm − yn = 0;
elle est donc lisse en dehors de l’origine (0, 0) et admet le germe formel voulu en
(0, 0). L’intersection de C avec le diviseur à l’infini {Z = 0} de P est réduite au point
de coordonnées homogènes (1; 1; 0). De plus le germe formel de C en ce point est
isomorphe à celui en (x = 1, z = 0) de la courbe d’équation

xm − 1 = 0

dans le plan affine Spec(k[x, z]). (La carte affine {Y �= 0} de P est le quotient de ce
plan affine par le groupe fini des racinesm-ème de l’unité dans k pour l’action définie
par (ζ, (x, z)) �→ (ζ nx, ζ z) et cette action est libre en dehors de l’origine.) Par suite,
C est lisse au point (1; 1; 0). Enfin, la normalisation de C est donnée par

P1
k → C, (T ;U) �→ (T n; T m;U).

L’espace tangent au foncteur des déformations plates du germe formel de courbe
Spf (k[[x, y]]/(f )) est égal à

k[[x, y]]/(f, ∂xf, ∂yf ) = k[[x, y]]/(xm−1, yn−1)

et est donc de dimension
µ = (m− 1)(n− 1).

Une déformation miniverselle de f est donnée par

Spf (k[[. . . , aij , . . . , x, y]]/(f̃ ))
où les aij sont des indéterminées sur le corps de base k et

f̃ (x, y) = xm − yn +
∑

0≤i≤m−2
0≤j≤n−2

aij x
iyj .
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Le conducteur a de A = k[[tn, tm]] dans son normalisé Ã = k[[t]] est égal à
t (m−1)(n−1)k[[t]], soit encore à

a = {
∑
i,j≥0

aij x
iyj ∈ k[[x, y]] | aij = 0, ∀i, j tels que in+jm < (m−1)(n−1)}/(f ).

En particulier, le quotient

V (A) = a/(∂xf, ∂yf ) ⊂ A/(∂xf, ∂yf ) = k[[x, y]]/(xm−1, yn−1)

admet pour base les classes des monômes xiyj pour lesquels 0 ≤ i ≤ m − 2,
0 ≤ j ≤ n− 2 et in+ jm ≥ (m− 1)(n− 1).

Considérons l’espace affine S = Spec(k[. . . , aij , . . . ]), son fermé T ⊂ S défini
par les équations aij = 0, ∀i, j tels que in+ jm ≥ (m− 1)(n− 1), le plan projectif
pondéré

PT = Proj(OT [X, Y,Z])
où degX = n, deg Y = m et degZ = 1, et la courbe projective et plate relative

CT ↪→ PT
↓ ↙
T

définie par l’équation homogène

F̃ (X, Y, Z) = Xm − Yn +
∑

0≤i≤m−2
0≤j≤n−2

in+jm<(m−1)(n−1)

aijX
iY jZmn−in−jm = 0

de degré mn. Pour chaque t ∈ T , l’intersection de la fibre Ct de CT → T en t avec
le diviseur à l’infini Z = 0 du plan projectif pondéré Pt est réduite au point (1; 1; 0)
et on voit comme ci-dessus que Ct est lisse en ce point.

On a des actions compatibles du groupe multiplicatif Gm,k sur T et CT données
par

λ · (. . . , aij , . . . ) = (. . . , λmn−in−jmaij , . . . )
et

λ · (. . . , aij , . . . , X;Y ;Z)) = (. . . , λmn−in−jmaij , . . . , λnX, λmY,Z).
Par définition du fermé T de S, l’action sur T est contractante.

Considérons la composante Pic
0
CT /T

de degré 0 du schéma de Picard compactifié

relatif de CT sur T . L’action de Gm,k sur CT induit une action de Gm,k sur Pic
0
CT /T

qui relève celle sur T .
L’espace tangent au fermé T ⊂ S est un supplémentaire du sous-espace V (A)

de A/(∂xf, ∂yf ) = T(0,0)S. Il s’en suit, d’après le théorème 4.2.2, que le schéma
PicCT /T est lisse sur le corps de base k le long de sa fibre PicC/k à l’origine 0 de T .
Compte tenu de l’action de Gm,k , PicCT /T est partout lisse sur k.
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Soient �un nombre premier distinct de la caractéristique de k etK ∈ obDb
c (T ,Q�)

l’image directe du faisceau constant Q� par la projection Pic
0
CT /T

→ T . L’action de
Gm,k sur T se relève en une «action» sur K et on peut appliquer [Sp, Proposition 1]
qui assure que

Hi(T ,K) =
{
K0 si i = 0,

(0) sinon.

OrR(T ,K) n’est autre que la cohomologie �-adiqueR(Pic
0
CT /T

,Q�) du k-schéma

lisse et quasi-projectif Pic
0
CT /T

, et le théorème de changement de base propre im-
plique que la fibreK0 deK à l’origine de T n’est autre que la cohomologie �-adique

R(Pic
0
C/k,Q�) du k-schéma projectif Pic

0
C/k , soit encore la cohomologie �-adique

R(X0,Q�) de la composante de degré 0 de la fibre de Springer puisque cette com-

posante X0 = Z0 est universellement homéomorphe à Pic
0
C/k .

Si k est de caractéristique p > 0, toute la situation ci-dessus est définie sur Fp.
Appliquant alors la forme forte de la conjecture de Weil prouvée par Deligne comme
l’a fait Springer dans [Sp], on déduit de qui précède :

Proposition 4.3.1. Chaque groupe de cohomologie Hi(X0,Q�) est pur de poids
i. )�

Bien sûr, cette proposition résulte aussi de fait que X0 peut être pavé par des
espaces affines (cf. [Lu-Sm]).

4.4 Construction de déformations de fibres de Springer affine

Revenons à la situation générale de la Section 4.2. Nous avons donc la courbe intègre,
projective Cs = CI,sI sur k, de normalisée πs : C̃s → Cs une droite projective,
avec son unique point singulier c en lequel la singularité est plane et l’ensemble des
branches π−1

s (c) = {̃ci | i ∈ I } est indexé par I . Nous allons utiliser les résultats de
la section 2.7 pour «déformer» le revêtement

Xs → Zs

de groupe de Galois

�0
s = H 0(C̃s \ π−1

s (c),Gm)/H
0(C̃s,Gm) = Ker(ZI → Z),

de la section 2.3. Plus exactement, nous allons déformer le revêtement

P 1s → P s

qui lui est homéomorphe.
Considérons l’algébrisation (C = CI ,∞) → SI = S de la déformation mini-

verselle de (Cs,∞s) introduite dans la section 4.2 et la strate à δ constant Sδ ⊂ S
(cf. la Section A.4 de l’appendice). Considérons aussi le morphisme de normalisation
πSδ : S̃δ → Sδ de cette strate et la courbe
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C
S̃δ
= C

I,S̃δ
→ S̃δ

déduite de C → S par le changement de base

S̃δ � Sδ ↪→ S.

D’après le Corollaire A.2.1, cette courbe relative admet une normalisation en famille
C̃
S̃δ
→ C

S̃δ
, et on a en fait

C̃
S̃δ
∼= P1

S̃δ

puisque la normalisée de Cs est une droite projective sur k. On peut choisir l’iso-
morphisme ci-dessus de telle sorte que la section de S̃δ → C̃

S̃δ
induite par la section

∞ : S → C corresponde à la section à l’infini de P1
S̃δ

sur S̃δ .

Au moins pour k de caractéristique nulle (cf. Théorème A.4.2), le morphisme
C
S̃δ
→ S̃δ a les propriétés suivantes :

(1) S̃δ est un schéma strictement local régulier (formellement lisse sur k) de dimen-
sion τ(Cs,∞s)− δ,

(3) toutes les fibres géométriques de C̃
S̃δ
→ S̃δ sont des courbes intègres à singu-

larités planes,

(2) la fibre générique géométrique de C̃
S̃δ
→ S̃δ n’a comme seules singularités que

δ points doubles ordinaires.

Hypothèses et Notations 4.4.1. Dans la suite, nous supposerons que les propriétés
(1) à (3) sont vérifiées sur notre corps k.

De plus, comme la déformation totale C → S n’interviendra plus, nous noterons
simplement C → S la courbe relative C

S̃δ
→ S̃δ pour alléger l’exposition.

Nous avons donc un schéma strictement local S formellement lisse sur k, de di-
mension τ(Cs,∞s)− δ, et une courbe relative C sur S, munie d’une section globale
∞ le long de laquelle C est lisse sur S, de fibre spéciale Cs et qui admet une normal-
isation en famille πC : C̃ → C dont l’espace total C̃ est une droite projective sur S.
Le morphisme structural f : C → S est lisse en dehors du sous-schéma D ⊂ C fini
sur S qui est défini par l’Idéal conducteur a de π∗OC̃ dans OC et

f̃ = f ◦ πC : C̃ → S

est identifié à la droite projective standard P1
S → S de telle sorte que la section à

l’infini corresponde à la section∞ : S → C, et donc ne rencontre pas D̃ = π−1
C (D).

Considérons les S-schémas de Picard P et de Picard compactifié P relatifs de C
sur S. Le S-schéma en groupes P est isomorphe à P 0×Z puisque le lieu de lissité de
C → S admet une section. Pour chaque entier d , la composante connexe Pd contient
Pd = P 0 × {d} comme ouvert dense.

La composante neutre P 0 du schéma de Picard est par définition le S-schéma
affine et lisse qui représente le faisceau fppf
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f̃∗Gm,C̃/f∗Gm,C = f∗(πC,∗Gm,C̃/Gm,C).

Notons fD (resp., f̃D) les restrictions de f et f̃ aux fermés D ⊂ C (resp., D̃ ⊂ C̃).
On a le S-schéma en groupes affine et lisse

ResD/S Gm (resp., ResD̃/S Gm)

restriction à la Weil du groupe multiplicatif deD à S (resp., de D̃ à S), qui représente
le faisceau fppf fD,∗Gm,D (resp., f̃D,∗Gm,D̃), et on a la flèche d’adjonction

α : πC,∗Gm,C̃/Gm,C → i∗(πD,∗Gm,D̃/Gm,D)

où i : D ↪→ C est l’inclusion et πD : D̃→ D est la restriction de π .

Lemme 4.4.1. La flèche d’adjonction α est un isomorphisme et induit un isomor-
phisme de S-schémas en groupes

P 0 ∼−→ ResD̃/S Gm/ResD/S Gm.

Démonstration. Soit Spec(A) → C une carte affine de C. Au dessus cette carte, C̃
est égal à Spec(B) pour une A-algèbre finie B, la trace de D est définie par l’idéal
conducteur I de B dans A et α est donnée par la flèche naturelle

B×/A× → (B/I)×/(A/I)×

(on rappelle que I ⊂ A ⊂ B est à la fois un idéal de A et un idéal de B). Comme
cette dernière flèche est trivialement injective, l’injectivité de α est démontrée.

Maintenant, si b, b′ ∈ B sont tels que bb′ = 1 + a avec a ∈ I ⊂ A, quitte à
remplacer Spec(A)par le voisinage ouvert Spec(A[(1+a)−1])du fermé Spec(A/I) ⊂
Spec(A), on voit que b est inversible dans B, ce qui démontre la surjectivité de α. )�

La fibre spéciale ResDs/s Gm du S-schéma en groupes ResD/S Gm admet pour
tore maximal le tore Gm,k puisque (Ds)red est réduit au point c ∈ Ds ⊂ Cs . De même,
ResD̃s/s Gm admet pour tore maximal le tore GIm,k puisque (D̃s)red = {̃ci | i ∈ I }.
Le tore maximal Ts de P 0

s est donc canoniquement isomorphe à GIm,k/Gm,k (quotient
pour le plongement diagonal).

Le tore maximal Gm,k de ResDs/s Gm est la fibre spéciale du tore canonique
Gm,S ⊂ ResD/S Gm défini par la flèche d’adjonction id → fD,∗f ∗D . Comme S est
strictement hensélien, D̃ se casse en autant de composantes connexes qu’il y a de
points dans (D̃s)red et le tore maximal GIm,k de ResD̃s/s Gm est aussi la fibre spéciale

du tore canonique GIm,S ⊂ ResD̃/S Gm défini par la flèche d’adjonction id → f̃D,∗f̃ ∗D ,

composante connexe par composante connexe de D̃.
Par suite, le tore maximal Ts de P 0

s est la fibre spéciale d’un tore canonique

T = GIm,S/Gm,S ⊂ P 0.

Plus généralement, pour chaque point géométrique t de S, la fibre Tt de T en t est
contenue dans le tore maximal de
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P 0
t

∼−→ ResD̃t /t Gm/ResDt/t Gm,

tore maximal qui est isomorphe à
∏
j∈Jt (G

It,j
m,κ(t)/Gm,t ) où {cj,t | j ∈ Jt } est l’ensem-

ble des points singuliers de Ct et, pour chaque j ∈ Jt , {̃ct,i | i ∈ It,j } est l’ensemble
des branches du germe formel de Ct en son point singulier ct,j .

On identifie le groupe des caractères de Ts , ou ce qui revient au même celui de T ,
à �0

s := �0 comme dans la section 2.7. Pour chaque point géométrique t de S, �0

est donc un quotient du groupe des caractères

�0
t =

∏
j∈J

Ker(ZIt,j → Z)

du tore maximal de P 0
t , quotient que l’on peut voir concrètement en considérant la

manière dont les points singuliers ct,j et leurs branches c̃t,i confluent vers le point
singulier c et ses branches c̃i .

Nous sommes maintenant en mesure de construire la déformation de P 1s → P s .
Pour chaque entier d , la restriction de l’homomorphisme β d’Esteves, Gagné et

Kleiman à T est un homomorphisme T → PicP/S qui définit d’après la proposition

2.7.1 un �0-torseur
Qd → Pd

dont la formation commute à tout changement de base S′ → S. Notons

Q→ P

la somme disjointe de ces torseurs. C’est la déformation cherchée.
En effet, la fibre spéciale est par définition le revêtementP 1s → P s . Plus générale-

ment, pour chaque point géométrique t de S,Qt → P t est le quotient du revêtement
P
1
t → P t dans le Corollaire 2.3.2, quotient qui correspond au quotient �0

t � �0

entre les groupes de Galois.

Appendice A Rappels sur les déformations de courbes

A.1 Déformations miniverselles : généralités

Soit k un corps. On note Artk la catégorie des k-algèbres locales artiniennes de corps
résiduel k. Tous les k-schémas considérés dans la suite sont supposés séparés et
localement nœthériens.

Soit Xk un k-schéma. On a le foncteur des déformations

DefXk : Artk → Ens

qui associe à une k-algèbre locale artinienne R l’ensemble des classes d’isomorphie
de R-schémas plats XR munis d’un isomorphisme de k-schémas



548 Gérard Laumon

ι : Xk ∼−→ k ⊗R XR.
Si Xk = Spec(Ak) est affine, toute déformation XR de Xk sur R ∈ ob Artk est

aussi un schéma affine XR = Spec(AR) où AR est une R-algèbre plate munie d’un
isomorphisme de k-algèbres k⊗RAR ∼−→ Ak . On identifiera donc DefXk au foncteur
DefAk qui envoie R sur l’ensemble des classes d’isomorphie des AR .

On définit aussi le foncteur des déformations

Def top
Xk
= Def top

Ak

d’un k-schéma formel affine Xk = Spf (Ak) en tenant compte de la topologie de Ak .
SiUk est un ouvert deXk et si x ∈ Uk , on a des morphismes de foncteurs évidents

DefXk → DefUk → Def OXk,x
→ Def top

ÔXk,x
.

Une déformation formelle (R,X ) de Xk est un couple formé d’une k-algèbre
locale complète nœthérienne R de corps résiduel k et d’un couple X = (X•, ι•) où
X• est une suite de déformations Xn de Xk sur Rn = R/mn+1

R avec X0 = Xk et où
ι• est une suite d’isomorphismes

ιn : Xn ∼−→ Rn ⊗Rn+1 Xn+1, n ∈ N.

On voit dans la suite X comme un S-schéma formel où S = Spf (R).
Une telle déformation définit un morphisme de foncteurs

S → DefXk

qui envoie le R-point ϕ : R → R de S sur (R ⊗ϕ,R X , ι) où on a posé

R ⊗ϕ,R X = R ⊗ϕn,Rn Xn
quel que soit l’entier n assez grand pour que ϕ se factorise en R � Rn

ϕn−−→R.

Définition A.1.1. Une déformation formelle (R,X ) de Xk est dite miniverselle si le
morphisme de foncteurs Homk−alg(R, ·)→ DefXk associé est formellement lisse et
si l’application entre les espaces tangents

Homk(mR/m2
R, k)

∼←− S(k[ε])→ DefXk (k[ε])
est bijective.

On définit de même une déformation formelle miniverselle d’une k-algèbreAk et
une déformation formelle miniverselle topologique d’une k-algèbre topologique Ak .
Une déformation formelle miniverselle deXk ouAk (resp., une déformation formelle
miniverselle topologique Ak) est unique à isomorphisme près.

Théorème A.1.1 (Schlessinger ; cf. [Ri, Theorem 4.5]). Soit Xk un schéma séparé
et de type fini sur k. Supposons de plus que
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– soit Xk est propre sur k,

– soit Xk est affine avec un lieu singulier Xsing
k fini sur k.

Alors, Xk admet une déformation formelle miniverselle (R,X ). )�
Théorème A.1.2 (Rim [Ri, Theorem 4.11, Corollary 4.13]). Soit Xk un schéma

séparé et de type fini sur k dont le lieu singulier Xsing
k est fini sur k. Pour chaque

x ∈ Xsing
k , soitUk,x un ouvert affine deXk qui ne rencontreXsing

k qu’en x. On a alors
les propriétés suivantes.

1. Si H 2(Xk,HomOXk
(	1
Xk/k

,OXk )) = (0), le morphisme de foncteurs

DefXk →
∏

x∈Xsing
k

DefUk,x

est formellement lisse.

2. Pour chaque x ∈ Xsing
k , le morphisme de foncteurs

DefUk,x → Def top
ÔX,x

est formellement lisse et induit une bijection entre les espaces tangents de Zariski

DefUk,x (k[ε]) ∼−→ Def top
ÔX,x

(k[ε]);

en particulier, si (R,Ux) est une déformation formelle miniverselle du k-
schéma affine Uk,x , alors (R, ÔUx ,x) est une déformation formelle miniverselle
topologique de ÔX,x .

3. Si H 2(Xk,HomOXk
(	1
Xk/k

,OXk )) = (0) et si Xk est localement d’intersec-
tion complète, tous les foncteurs de déformations considérés dans (i) et (ii) sont
formellement lisses sur k ; si de plus le lieu de lissité est dense dans Xk , la suite
exacte entre les espaces tangents associée au morphisme de foncteurs

DefXk →
∏

x∈Xsing
k

Def top
ÔXk,x

n’est autre que la suite exacte courte

0 → H 1(Xk,HomOXk
(	1
Xk/k

,OXk ))→ Ext1
OXk
(	1
Xk/k

,OXk )

→ H 0(Xk, Ext1
OXk
(	1
Xk/k

,OXk ))→ 0. )�

A.2 Normalisation en famille et constance de l’invariant δ, d’après Teissier

Nous noterons dans la suite πX : X̃ → X le morphisme de normalisation de tout
schéma intègre X.
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Pour toute courbe Cκ géométriquement intègre sur un corps κ , le lieu singulier
C

sing
κ est fini et on définit

δ(Cκ) =
∑
c∈Csing

κ

[κ(c) : κ]δc(Cκ)

comme dans la section 2.2.
Soient S un schéma local complet, intègre et nœthérien, de point fermé s, ϕ :

C → S une courbe relative plate à fibres géométriquement réduites et D ⊂ C un
diviseur effectif fini et plat sur S tel ϕ soit lisse en dehors du support de D.

Soit a ⊂ OC l’Idéal annulateur du OC-Module cohérent πC,∗OC̃/OC et,
pour chaque t ∈ S, soit at ⊂ OCt l’Idéal annulateur du OCt -Module cohérent
πCt ,∗OC̃t /OCt , où bien entendu Ct est la fibre de ϕ en t . Il n’est pas vrai en général
que at soit la restriction de a à Ct .

Lemme A.2.1. On peut trouver un diviseur effectifD′ ⊂ C, fini et plat sur S, tel que
l’on ait les inclusions

OCt (−D′
t ) ⊂ at ⊂ OCt

quel que soit t ∈ S.

Démonstration. Par hypothèse, on a un diviseur effectif D ⊂ C fini et plat sur S tel
que ϕ soit lisse en dehors du support de D.

Pour chaque point t de S, D induit un diviseur Dt ⊂ Ct et, comme πCt est un
isomorphisme en dehors du support deDt , le support du fermé de Ct défini par at est
contenu dans celui de Dt . Il existe donc un entier n ≥ 0 tel que OCt (−nDt) ⊂ at ⊂
OCt ; notons nt le plus petit entier n ≥ 0 ayant cette propriété.

La fonction S → N, t �→ nt , est constructible. En effet, par induction nœthéri-
enne, il suffit de montrer que cette fonction est localement constante sur un ouvert
dense de S. Mais cela résulte de l’existence d’un ouvert dense normal U de S tel que,
pour tout t ∈ U , πCt soit la fibre en t de πC et at soit la restriction de a à Ct .

On peut donc choisir un entier n tel que n ≥ nt quel que soit t ∈ S et le diviseur
D′ = nD répond à la question. )�
Proposition A.2.1 (Teissier [Te 3, I, 1.3.2]). La fonction S → Z, t �→ δ(Ct ), est
semi-continue supérieurement. Elle est même constante si l’on suppose de plus que
le morphisme composé ϕ̃ = ϕ ◦ πC : C̃ → S est lisse.

Inversement, si S est normal et si la fonction S → Z, t �→ δ(Ct ), est constante
sur S, le morphisme ϕ̃ est lisse.

Chaque fois que le morphisme composé ϕ ◦ πC : C̃ → S sera lisse, on verra le
morphisme de normalisation πC : C̃ → C comme une normalisation en famille de
la courbe relative ϕ : C → S.

Teissier démontre dans un premier temps le cas particulier plus précis suivant.

Lemme A.2.2. Supposons de plus que S = Spec(V ) soit un trait (V est donc un
anneau de valuation discrète), de point générique η. Alors, le morphisme composé
ϕ̃ = ϕ ◦ πC : C̃ → S est plat et on a la relation
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δ(Cs)− δ(Cη) = δ((C̃)s) ≥ 0

où (C̃)s est la fibre spéciale de ϕ̃.

Démonstration du Lemme A.2.2. Il résulte du lemme A.2.1 que l’image réciproque
de la restriction de a à Cs ⊂ C par le morphisme de normalisation πCs : C̃s → Cs
est non nulle. La propriété universelle de la normalisation πC : C̃ → C nous donne
alors une factorisation

C̃s −→ C̃
πC−−−→C

de C̃s
πCs−−−→Cs ⊂ C, ou ce qui revient au même une factorisation

C̃s
ρ−−−→(C̃)s πC,s−−−→Cs

de πCs par la fibre spéciale πC,s de πC .
Fixons une uniformisante v de V . On vérifie que

(v · πC,∗OC̃ ) ∩OC = v ·OC,
et donc que le OS-Module cohérent πC,∗OC̃/OC est sans v-torsion et que les homo-
morphismes de k-Algèbres

OCs → (πC,s)∗O(C̃)s → πCs,∗OC̃s
correspondant à la factorisation ci-dessus sont injectifs. On vérifie aussi que la fibre
générique πC,η : (C̃)η → Cη de πC est la normalisation de Cη. Par suite, le OS-
Module ϕ∗(πC,∗OC̃/OC) est libre de rang fini égal à

dimκ(s) ϕs,∗((πC,s)∗O(C̃)s /OCs ) = dimκ(s)(ϕ∗(πC,∗OC̃/OC))s
= dimκ(η)(ϕ∗(πC,∗OC̃/OC))η
= dimκ(η) ϕη,∗((πC,η)∗O(C̃)η/OCη) = δ(Cη),

le morphisme ϕ̃ est plat, sa fibre spéciale (C̃)s est intègre, ρ est le morphisme de
normalisation de (C̃)s et on a bien

δ(Cs) = δ((C̃)s)+ dimk ϕs,∗((πC,s)∗O(C̃)s /OCs ) = δ((C̃)s)+ δ(Cη). )�
Démonstration de la Proposition A.2.1. La semi-continuité de la fonction t �→ δ(Ct )

dans le cas général résulte de sa constructibilité laissée au lecteur (voir la démonstra-
tion du lemme A.2.1) et du cas déjà traité où S est un trait.

Si ϕ̃ est lisse, il résulte du lemme A.2.2 que

δ(Cs)− δ(Cη) = δ((C̃)s) = 0

dans le cas où S est un trait. On en déduit immédiatement que la fonction t �→ δ(Ct )

est constante pour S arbitraire.
Inversement, supposons que t �→ δ(Ct ) est constante de valeur δ et fixons un di-

viseur effectifD′ ⊂ S comme dans le LemmeA.2.1. Le OS-Moduleϕ∗(OC(D′)/OC)
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est localement libre de rang fini d ≥ δ. SoitG→ S la grassmannienne des quotients
localement libres de rang d− δ de ce OS-Module. On définit une section ensembliste
σ : S → G de G sur S en envoyant le point t sur le conoyau de l’inclusion

(Ct , πCt ,∗OC̃t /OCt ) ⊂ (Ct ,OCt (D′
t )/OCt )

(on a OCt (−D′
t ) · πCt ,∗OC̃t ⊂ at · πCt ,∗OC̃t ⊂ OCt et donc πCt ,∗OC̃t ⊂ OCt (D′

t )).
Soit Z ⊂ G l’ensemble des points σ(t) pour t parcourant S. On vérifie par induc-

tion nœthérienne (comme dans la démonstration du lemme A.2.1) que l’ensemble Z
est constructible. On vérifie aussi que les constructions de F ,G et Z commutent aux
changements de bases S′ → S. On vérifie enfin, à l’aide du lemme A.2.2, que dans le
cas où S est un trait, Z est l’image ensembliste d’une section algébrique de G sur S.

On déduit de ces propriétés que Z est l’ensemble des points d’un fermé réduit de
G, noté encore Z, et que la restriction de la projection canonique G→ S à ce fermé
est un homéomorphisme de Z sur S.

Supposons de plus que S soit normal. Cet homéomorphisme est alors nécessaire-
ment un isomorphisme et σ est en fait une section algébrique deG→ S. En d’autres
termes, les espaces vectoriels (Ct , πCt ,∗OC̃t /OCt ) pour t ∈ S sont les fibres d’un
fibré vectoriel E de rang δ sur S qui est un sous-OS-Module localement facteur direct
de ϕ∗(OC(D′)/OC).

Considérons maintenant le OC-Module cohérent

M = (OC ⊕OC(D′))/OC

où OC est plongé diagonalement dans OC⊕OC(D′). On a d’une part une suite exacte
évidente

0 → OC → M → OC(D′)/OC → 0.

On a d’autre part le plongement

M ↪→ OC(D′), (f ⊕ f ′)+OC �→ f − f ′,
que l’on peut composer avec le plongement canonique de OC(D′) dans l’Anneau
total des fractions KC de OC .

Notons F ⊂ M l’image réciproque de E par la surjection M � OC(D′)/OC . On
peut voir F ⊂ M comme un sous-OC-Module de KC . Comme OCt (−D′

t ) ⊂ at , on
vérifie facilement que la restriction de F à Ct est une sous-OCt -Algèbre de l’Anneau
total des fractions KCt de OCt quel que soit t ∈ S. Il s’en suit que F est une sous-
OC-Algèbre de KC , et donc que

OC ⊂ F ⊂ πC,∗OC̃ ⊂ KC

puisque πC,∗OC̃ est la clôture intégrale de OC dans KC et que F est évidemment un
OC-Module cohérent.

Comme on l’a vu au cours de la démonstration du Lemme A.2.2, pour chaque
t ∈ S, on a les inclusions

OCt ⊂ (πC,t )∗O(C̃)t ⊂ πCt ,∗OC̃t ⊂ KCt
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et donc (πC,t )∗O(C̃)t est contenu dans la restriction de F à Ct . Il s’en suit que
πC,∗OC̃ ⊂ F ⊂ KC et donc que F = πC,∗OC̃ .

Comme OC et OC(D′)/OC sont S-plats, il en est de même de M. De plus, comme
E est aussi S-plat, il en est de même de F = πC,∗OC̃ . On a donc bien montré que ϕ̃
est plat et qu’en outre

(C̃)t = C̃t
pour tout t ∈ S. )�
Corollaire A.2.1. Les points t ∈ S pour lesquels δ(Ct ) = δ(Cs) sont les points d’un
fermé réduit Sδ ⊂ S, la strate à δ-constant.

La courbe plate relative C
S̃δ
= S̃δ ×S C → S̃δ déduite de ϕ : C → S par le

changement de base par le morphisme

S̃δ � Sδ ↪→ S,

composé du morphisme de normalisation πSδ de Sδ et de l’inclusion de Sδ dans S,
admet une normalisation en famille πC

S̃δ
: C̃

S̃δ
→ C

S̃δ
. )�

A.3 Le foncteur des déformations de A ↪→ ˜A

Soit A = k[[x, y]]/(f ) l’anneau formel d’un germe de courbe plane à singularité
isolée, c’est-à-dire tel que le k-espace vectoriel k[[x, y]]/(∂xf, ∂yf ) est de dimension
finie. Comme on l’a rappelé dans la section 4.1, si k est de caractéristique nulle, il
revient au même de demander que k[[x, y]]/(f, ∂xf, ∂yf ) soit de dimension finie (cf.
[Te 1, 1.1]).

On noteK l’anneau total des fractions deA et Ã ⊂ K la normalisation deA dans
K . On peut décomposerK en un produit fini de corpsK =∏i∈I Ki et Ã en le produit
correspondant d’anneaux intègres Ã =∏i∈I Ãi . On pose δ(A) = dimk(Ã/A).

On fixe dans la suite une uniformisante ti de Ãi pour chaque i ∈ I , de sorte
que Ãi = k[[ti]]. Le plongement A ↪→ Ã est donné par une famille de couples
(xi(ti), yi(ti)) ∈ k[[ti]]2 indexée par i ∈ I .

On rappelle (cf. [A-K 1, Chapter 8]) que :
– le module dualisant ωA est le A-module libre de rang 1 défini par

ωA = Ext1
k[[x,y]](A, ωk[[x,y]])

où ωk[[x,y]] = 	2
k[[x,y]]/k est un k[[x, y]]-module libre de rang 1,

– pour tout A-module M et tout entier i, on a un isomorphisme canonique de
A-modules

ExtiA(M,ωA) ∼= Exti+1
k[[x,y]](M,ωk[[x,y]])

où M est vu comme un k[[x, y]]-module via l’épimorphisme canonique
k[[x, y]] � A,
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– le module dualisant ωA est donné concrètement par

ωA = A dx∧dy
df = A dx

∂yf
= A(− dy

∂xf

) ⊂ 	1
K/k,

et aussi par
ωA = {α ∈ 	1

K/k | Res(Aα) = (0)}
où

Res =
∑
i∈I

Resi : 	1
K/k =

⊕
i∈I
	1
Ki/k

→ k, ⊕i∈I ai(ti)dti
ti
→
∑
i∈I
ai(0),

est la somme des homomorphismes résidus,
– on a

ωÃ = 	1
Ã/k

⊂ ωA
et l’accouplement

(Ã/A)× (ωA/ωÃ)→ k, (̃a + A, α + ωÃ)→ Res(̃aα),

est un accouplement parfait entre deux k-espaces vectoriels de dimension δ(A),
– le conducteur

a = {a ∈ A | aÃ ⊂ A}
est aussi le conducteur

a = {a ∈ A | aωA ⊂ ωÃ}.
En particulier, on a :

Lemme A.3.1. L’idéal de A engendré par les classes de ∂xf et ∂yf modulo (f ) est
contenu dans le conducteur a. )�

On considère maintenant le foncteur de déformations

Def top
A : Artk → Ens

(cf. la sectionA.1 de l’appendice) et on s’intéresse plus particulièrement aux déforma-
tions deA à δ constant. Pour cela, on va étudier les déformations de l’homomorphisme
de k-algèbres A ↪→ Ã. On considère donc le foncteur

Def top
A↪→Ã : Artk → Ens

qui envoie R ∈ ob Artk sur l’ensemble des classes d’isomorphie d’homomorphismes
de R-algèbres

AR → ÃR

dont la réduction modulo mR est l’inclusionA ⊂ Ã, oùAR est une déformation plate
sur R de A et ÃR est une déformation plate sur R de Ã. On a bien sûr un morphisme
d’oubli

Def top
A↪→Ã → Def top

A .
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Lemme A.3.2. Tout homomorphisme deR-algèbres (AR → ÃR) ∈ Def top
A↪→Ã(R) est

nécessairement injectif et son conoyau est automatiquement R-plat.

Démonstration. Notons NR , IR et CR les noyau, image et conoyau de l’homomor-
phisme AR → ÃR . On a les suites exactes

0 → TorR1 (CR, k)→ IR ⊗R k→ ÃR ⊗R k→ CR ⊗R k→ 0

et
0 → TorR1 (IR, k)→ NR ⊗R k→ AR ⊗R k→ IR ⊗R k→ 0

et l’homomorphisme composé

AR ⊗R k � IR ⊗R k→ ÃR ⊗R k
est par hypothèse l’inclusion A ⊂ Ã ; par suite, la surjection AR ⊗R k � IR ⊗R k
est nécessairement un isomorphisme, la flèche IR ⊗R k→ ÃR ⊗R k est injective et
TorR1 (CR, k) = (0), de sorte que CR est bien R-plat ; mais alors IR est aussi R-plat
puisque ÃR l’est, et on a NR ⊗R k = (0). Il s’en suit que NR = (0) et le lemme est
démontré. )�
Lemme A.3.3. SoitM un A-module de type fini sans torsion. On a

ExtiA(M,A) = (0), ∀i �= 0,

et il existe un entier n ≥ 0 tel queM , vu comme k[[x, y]]-module via l’épimorphisme
canonique k[[x, y]] � A, admette une résolution

0 → k[[x, y]]n → k[[x, y]]n → M → 0.

Si on suppose de plus que M est de rang générique 1, il existe même un tel entier
n ≤ δ(A)+ 1.

Démonstration. Comme le A-module ωA est libre de rang 1, pour tout A-moduleM
on a

ExtiA(M,A) ∼= ExtiA(M,ωA) ∼= Exti+1
k[[x,y]](M,ωk[[x,y]])

et, comme la k-algèbre k[[x, y]] est régulière de dimension 2, il s’en suit que

ExtiA(M,A) = (0)
quel que soit i �= 0, 1. SiM est sans torsion, on a de plus la suite exacte

Ext1
A(K ⊗A M,A)→ Ext1

A(M,A)→ Ext2
A(K ⊗A M/M,A)

où
Ext1

A(K ⊗A M,A) ∼= Ext1
K(K ⊗A M,K) = (0)

et Ext2
A(K ⊗A M/M,A) = (0), et donc on a aussi Ext1

A(M,A) = (0) et a fortiori

Ext2
k[[x,y]](M, k[[x, y]]) ∼= Ext2

k[[x,y]](M,ωk[[x,y]]) = (0).
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Par suite, si M est de type fini et sans torsion, le noyau de tout épimorphisme de
k[[x, y]]-modules k[[x, y]]n � M est nécessairement libre de rang fini et donc non
canoniquement isomorphe à k[[x, y]]n puisqu’en tant que k[[x, y]]-module, M est
de rang générique 0.

Montrons enfin que, si M un A-module de type fini, sans torsion et de rang
générique 1, M peut être engendré par δ(A) + 1 éléments. Comme Ã ⊗A M est un
Ã-module libre de rang 1 et que l’homomorphisme canonique M → Ã ⊗A M est
injectif, on peut supposerM ⊂ Ã et que ÃM = Ã. Mais alors,M contient au moins
un élément inversible m de Ã et, à isomorphisme près, on peut supposer que m = 1,
c’est-à-dire que

A ⊂ M ⊂ Ã.
Sous ces conditions, on a dimk(M/A) ≤ δ(A) et on conclut en remarquant que M
est engendré sur A par {1,m1, . . . , mn} où {m1, . . . , mn} ⊂ M représente une base
deM/A sur k. )�

Considérons maintenant les foncteurs

Def top
k[[x,y]]�A, Def top

k[[x,y]]→Ã : Artk → Ens

qui envoie R ∈ ob Artk sur l’ensemble des classes d’isomorphie d’homomorphismes
de R-algèbres

R[[x, y]] → AR et R[[x, y]] → ÃR

dont les réductions modulo mR sont l’épimorphisme canonique k[[x, y]] � A et
l’homomorphisme composé k[[x, y]] � A ↪→ Ã, où bien entenduAR et ÃR sont des
déformations plates sur R de A et Ã respectivement. On remarque que R[[x, y]] →
AR est automatiquement un épimorphisme d’après le lemme de Nakayama. On a les
morphismes de foncteurs évidents

Def top
A↪→Ã⏐⏐/

Def top
k[[x,y]]�A−−−→Def top

A

et on pose
Def top

k[[x,y]]�A↪→Ã = Def top
k[[x,y]]�A×Def top

A

Def top
A↪→Ã .

Le foncteur Def top
A , le morphisme de foncteurs Def top

k[[x,y]]�A → Def top
A et donc aussi

le foncteur Def top
k[[x,y]]�A, sont formellement lisses.

Théorème A.3.1. Le morphisme de composition Def top
k[[x,y]]�A↪→Ã → Def top

k[[x,y]]→Ã
est un isomorphisme.

Démonstration. Nous allons expliciter un inverse pour ce morphisme de composition.
Suivant une suggestion de J.-B. Bost, nous utiliserons pour cela un cas très simple de
la construction «Div» de Mumford (cf. [M-F, Chapter 5, Section 3]).
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Soit R[[x, y]] → ÃR une déformation de k[[x, y]] → Ã. On voit Ã et ÃR
comme des modules sur k[[x, y]] et R[[x, y]] à l’aide de ces homomorphismes.
Fixons arbitrairement une résolution

0 → k[[x, y]]n F−−−→ k[[x, y]]n → Ã→ 0

de Ã en tant que k[[x, y]]-module (il en existe d’après le lemme précédent). Si F ∗
est la matrice des co-facteurs de F , on a F ∗F = FF ∗ = det F et det F annule
Ã. Inversement si une fonction g ∈ k[[x, y]] annule Ã, c’est-à-dire est telle que
gk[[x, y]]n ⊂ Fk[[x, y]]n, il existe une matrice carréeG de taille n× n à coefficient
dans k[[x, y]]n telle que g = FG et gn = det F ·detG. Comme k[[x, y]] est réduit, il
s’en suit que det F et f engendre le même idéal de k[[x, y]] et que l’on peut demander
de plus que det F = f .

Comme ÃR est plat surR, on peut relever la résolution ci-dessus en une résolution

0 → R[[x, y]]n FR−−−→R[[x, y]]n → ÃR → 0.

En considérant la matrice des co-facteurs de FR , on montre comme ci-dessus que
fR = det FR dans le noyau de l’homomorphisme R[[x, y]] → ÃR , ou ce qui revient
au même que l’on a une factorisation

R[[x, y]] � R[[x, y]]/(fR)→ ÃR

qui relève la factorisation k[[x, y]] � A ↪→ Ã. Alors, AR := R[[x, y]]/(fR) est un
relèvement plat sur R de A et la flèche AR → ÃR est nécessairement injective (à
conoyau R-plat) d’après le Lemme A.3.2. La factorisation R[[x, y]] � AR ↪→ ÃR
est donc la factorisation canonique par l’image et la construction de Mumford produit
bien un inverse au morphisme de foncteurs Def top

k[[x,y]]�A↪→Ã → Def top
k[[x,y]]→Ã. )�

Si J est un idéal de carré nul dans R ∈ ob Artk et si R = R/J , il n’y a pas d’ob-
struction à relever un homomorphisme de R-algèbres R[[x, y]] → ÃR en un homo-

morphisme de R-algèbres R[[x, y]] → ÃR . En particulier, le foncteur Def top
k[[x,y]]→Ã

est formellement lisse et son espace tangent est le k-espace vectoriel Ã ⊕ Ã. Le
théorème admet donc le corollaire suivant :

Corollaire A.3.1. Le foncteur Def top
k[[x,y]]→A↪→Ã, et donc aussi le foncteur Def top

A↪→Ã,

est formellement lisse. )�
Remarque A.3.1. En évaluant l’isomorphisme du théorème surR = k[ε] avec ε2 = 0,
on trouve que, pour tout (ẋ(ti), ẏ(ti))i∈I ∈∏i∈I (k[[ti]]× k[[ti]]) = Ã⊕ Ã, il existe
ḟ (x, y) ∈ k[[x, y]] tel que

(f + εḟ )(x(ti)+ εẋ(ti), y(ti)+ εẏ(ti)) ≡ 0, ∀i ∈ I,
c’est-à-dire tel que

ḟ (x(ti), y(ti))+ ∂xf (x(ti), y(ti))ẋ(ti)+ ∂yf (x(ti), y(ti))ẏ(ti) ≡ 0, ∀i ∈ I,
ce qui est une reformulation du Lemme A.3.1. )�
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Nous allons maintenant déterminer l’espace tangent au foncteur Def top
A↪→Ã. Plus

généralement étudions le problème de relèvement d’une déformation AR → ÃR de
A ↪→ Ã sur R = R/J , où J est un idéal de carré nul dans R, en une déformation
AR → ÃR de A ↪→ Ã sur R.

Commençons par fixer un relèvement R-plat ÃR de ÃR sur R. On a donc un
diagramme

R � R⏐⏐/
AR⏐⏐/

ÃR−−−→ÃR
que l’on cherche à compléter en un diagramme

R � R⏐⏐/ ⏐⏐/
AR � AR⏐⏐/ ⏐⏐/
ÃR � ÃR

où AR est une déformation plate de AR sur R. D’après Illusie [Il, Chapitre III, Sec-
tion 2.3], ce problème de relèvement est contrôlé par un complexe T qui s’insère dans
un triangle distingué

T → RHomAR(LAR/R
, J ⊗R AR)→ RHomÃR (ÃR ⊗AR LAR/R, J ⊗R ÃR)→

où LAR/R
est le complexe cotangent de la R-algèbre AR . Plus précisément, il y a

une obstruction à relever dansH 2(T ) et, si cette obstruction est nulle, l’ensemble des
classes d’isomorphie de relèvements est un torseur sousH 1(T ) et le groupe des auto-
morphismes d’un relèvement donné s’identifie canoniquement à H 0(T ). Comme la
déformation plateAR deA surR est nécessairement de la formeAR = R[[x, y]]/(fR)
pour fR ∈ R[[x, y]], le complexe cotangent

LAR/R
= [AR → ARdx ⊕ ARdy]

est concentré en degrés [−1, 0] et son unique différentielle non triviale envoie 1 sur
dfR = (∂xfR)dx⊕(∂yfR)dy. Comme de plus la flècheAR → ÃR est nécessairement
injective à conoyau R-plat d’après le Lemme A.3.2, le complexe

T = [J ⊗R (ÃR/AR)∂x ⊕ J ⊗R (ÃR/AR)∂y → J ⊗R (ÃR/AR)]
est concentré en degrés [1, 2] et son unique différentielle envoie ã∂x ⊕ b̃∂y sur
ã∂xfR + b̃∂yfR . On a donc H 0(T ) = (0) et la suite exacte

0 → H 1(T )→ J ⊗R (ÃR/AR)∂x ⊕ J ⊗R (ÃR/AR)∂y
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→ J ⊗R (ÃR/AR)→ H 2(T )→ 0.

L’obstruction au relèvement se calcule comme suit. On se donne des relèvements arbi-
traires fR ∈ R[[x, y]] de fR etR[[x, y]] → ÃR de l’homomorphisme deR-algèbres
composé R[[x, y]] � AR ↪→ ÃR . Alors l’image de fR par l’homomorphisme de
R-algèbresR[[x, y]] → ÃR est dans J ÃR ⊂ ÃR . L’obstruction cherchée est l’image
de l’élément ainsi construit de J ÃR par l’épimorphisme composé

J ÃR ∼= J ⊗R ÃR � J ⊗R (ÃR/AR)� H 2(T ).

Bien entendu, cette obstruction ne dépend pas des choix faits et elle est nulle d’après
le Corollaire A.3.1.

En particulier, l’espace tangent relatif au morphisme de foncteurs Def top
Ã

→
Def top

A↪→Ã est le noyau de l’application k-linéaire

(Ã/A)∂x ⊕ (Ã/A)∂y → (Ã/A), ã∂x ⊕ b̃∂y �→ ã∂xf + b̃∂yf,
application qui est identiquement nulle d’après le Lemme A.3.1. Cet espace tangent
est donc égal au k-espace vectoriel (Ã/A)∂x ⊕ (Ã/A)∂y de dimension 2δ(A).

Comme Ã = ∏i∈I k[[ti]], le foncteur Def top
Ã

est trivial. Plus précisément, toute

déformation plate de Ã sur R ∈ ob Artk est isomorphe à
∏
i∈I R[[ti]] et, en termes

de relèvements, pour tout idéal J de carré nul dans R et pour R = R/J , il n’y
a pas d’obstruction à relever ÃR = ∏

i∈I R[[ti]] à R, il n’y a qu’une seule classe
d’isomorphie de tels relèvements, à savoir celle de ÃR = ∏i∈I R[[ti]], et le groupe
des automorphismes d’un relèvement arbitraire dans cette classe est le groupe

HomÃR (	
1
ÃR/R

, J ⊗R ÃR) =
∏
i∈I
(J ⊗R R[[ti]])∂ti .

On a donc montré :

Proposition A.3.1. Soient R ∈ ob Artk , J ⊂ R un idéal de carré nul et R = R/J .

1. Tout objet AR ↪→ ÃR de Def top
A↪→Ã(R) est de la forme

R[[x, y]]/(fR) ↪→
∏
i∈I
R[[ti]], x �→ (xR,i(ti))i∈I , y �→ (yR,i(ti))i∈I ,

pour des séries fR ∈ R[[x, y]] et xR,i(ti), yR,i(ti) ∈ R[[ti]], qui relèvent les
séries f et xi(t), yi(t), et qui vérifient bien sûr

fR(xR,i(ti), yR,i(ti)) ≡ 0, ∀i ∈ I.

2. Soit (AR ↪→ ÃR) ∈ Def top
A↪→Ã(R) isomorphe à

R[[x, y]]/(fR) ↪→
∏
i∈I
R[[ti]], x �→ (xR,i(ti))i∈I , y �→ (yR,i(ti))i∈I .
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Il n’y a pas d’obstruction à relever cet objet à R, l’ensemble des classes d’iso-
morphie des relèvements est le conoyau de la flèche⊕

i∈I
(J ⊗R R[[ti]])∂ti → Ker(J ⊗R (ÃR/AR)∂x ⊕ J ⊗R (ÃR/AR)∂y

→ J ⊗R (ÃR/AR))
qui envoie ⊕i∈I ai(ti)∂ti sur(
(ai(ti)(∂ti xR,i)(ti))i∈I +J ⊗R AR

)
∂x ⊕

(
(ai(ti)(∂ti yR,i)(ti))i∈I +J ⊗R AR

)
∂y

et que le groupe des automorphismes d’un relèvement arbitraire dans cette classe
est son noyau. )�

Corollaire A.3.2. L’espace tangent au foncteur formellement lisse Def top
A↪→Ã est le

conoyau de l’application k-linéaire⊕
i∈I
k[[ti]]∂ti → (Ã/A)∂x ⊕ (Ã/A)∂y

qui envoie ⊕i∈I ai(ti)∂ti sur(
(ai(ti)(∂ti xi)(ti))i∈I + A

)
∂x ⊕

(
(ai(ti)(∂ti yi)(ti))i∈I + A

)
∂y.

De plus, l’application tangente au morphisme de foncteur Def top
A↪→Ã → Def top

A

est induite par l’application k-linéaire

(Ã/A)∂x ⊕ (Ã/A)∂y → A/(∂xf, ∂yf )

qui envoie la classe d’un élément ã∂x ⊕ b̃∂y ∈ Ã∂x ⊕ Ã∂y sur la classe de l’élément
−(̃a∂xf + b̃∂yf ) ∈ A ⊂ Ã. )�

A.4 La strate à δ constant, d’après Diaz et Harris

Les résultats de cette section devraient être vérifiés pour k de caractéristique arbitraire.
Faute de référence nous nous limiterons à la caractéristique nulle.

Supposons donc de plus que k est de caractéristique nulle.

Théorème A.4.1 (Diaz et Harris [D-H, Proposition 4.17 et Theorem 4.15]). Le
morphisme de k-schémas formels Def top

A↪→Ã → Def top
A est fini, son image schématique

Def top,δ
A ⊂ Def top

A

est une fermé intègre de codimension δ(A) et le morphisme canonique Def top
A↪→Ã →

Def top,δ
A est le morphisme de normalisation.

De plus, le cône tangent de Def top,δ
A est le sous-k-espace vectoriel

V (A) = a/(∂xf, ∂yf ) ⊂ A/(∂xf, ∂yf ) = Def top
A (k[ε])

de l’espace tangent de Def top
A , où a ⊂ A est le conducteur du normalisé Ã de A dans

A (cf. Lemme A.3.1.) )�
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Soient maintenantCk une courbe projective, intègre et à singularités planes isolées
sur k, et ϕ : C → S une algébrisation d’une déformation formelle miniverselle deCk
comme dans la section 4.1. Toutes les fibres de ϕ sont géométriquement intègre et le
lieu singulier

⋃
t∈S C

sing
t est fini sur S. On peut donc appliquer le Corollaire A.2.1 à

cette courbe et on obtient la strate à δ constant

Sδ ⊂ S.
Pour chaque point singulier c de Ck , on peut aussi considérer une déformation

miniverselle Cc = Spf (Ac) → Sc = Spf (Rc) de Cc,s = Spf (ÔCk,c). Il résulte du
théorème A.1.3 que l’on a un morphisme canonique formellement lisse

S →
∏
c∈Csing

k

Sc

où S = Spf (OS,s) est le complété de S en son point fermé s.

Pour chaque c ∈ Csing
k , soit

Sδc ⊂ Sc
la strate à δ constant.

Lemme A.4.1. Le complété de Sδ au point fermé s est le fermé de S image réciproque
du fermé

∏
c∈Csing

k

Sδc de
∏
c∈Csing

k

Sc par le morphisme canonique ci-dessus. )�
L’énoncé suivant est une variante globale du théorèmeA.4.1. La dernière assertion

est bien connue mais ne semble être démontrée nulle part ; elle résulte du théorème
(1.3) de [D-H] dans le cas où Ck est une courbe plane.

Théorème A.4.2. La strate Sδ est irréductible de codimension dans S égale à δ(Ck).
Le schéma normalisé de Sδ est formellement lisse sur k.

De plus, le cône tangent à l’origine de Sδ est le sous-k-espace vectoriel

V (Ck) ⊂ TsS
de l’espace tangent à l’origine s de S obtenu par image inverse du sous-k-espace
vectoriel ⊕

c∈Csing
k

V (ÔCs,c) ⊂
⊕
c∈Csing

k

Def top
ÔCs ,c

(k[ε])

par l’épimorphisme naturel TsS �
⊕
c∈Csing

k

Def top
ÔCs ,c

(k[ε]).
En outre, la fibre de C → S en tout point géométrique générique de Sδ ⊂ S

est une courbe n’ayant comme seules singularités que δ(Ck) points doubles ordi-
naires. )�

Remerciements. Je remercie J.-B. Bost, E. Esteves, L. Göttsche, L. Illusie, S. Kleiman,
Y. Laszlo, F. Loeser et M. Raynaud pour l’aide qu’ils m’ont apportée durant la préparation
de ce travail.



562 Gérard Laumon

Litérature

[A-I-K] A.Altman,A. Iarrobino, and S. Kleiman, Irreducibility of the compactified Jacobian,
in P. Holm, ed., Real and Complex Singularities : Proceedings, Oslo 1976, Sijthoff
and Nordhoff, Alpen van Rijn, The Netherlands, 1977, 1–12.

[A-K 1] A. Altman and S. Kleiman, Introduction to Grothendieck Duality Theory, Lecture
Notes in Mathematics, Vol. 146, Springer-Verlag, Berlin, New York, Heidelberg,
1970.

[A-K 2] A. Altman and S. Kleiman, Compactifying the Jacobian, Bull. Amer. Math. Soc.,
82 (1976), 947–949.

[A-K 3] A.Altman and S. Kleiman, Compactifying the Picard scheme, Adv. Math., 35 (1980),
50–112.

[B-L-R] AUTHOR: PLEASE SUPPLY INFORMATION FOR REFERENCE [B-L-R].

[Be] R. Bezrukavnikov, The dimension of the fixed point set on affine flag manifolds,
Math. Res. Lett., 3 (1996), 185–189.

[De] P. Deligne, La conjecture de Weil II, Publ. Math. IHÉS, 52 (1980), 313–428.

[D-H] S. Diaz and J. Harris, Ideals associated to deformations of singular plane curves,
Trans. Amer. Math. Soc., 309 (1988), 433–468.

[E-G-K] E. Esteves, M. Gagné, and S. Kleiman, Autoduality of the compactified Jacobian,
math.AG/9911071, 1999.

[F-G-S] D. Fantechi, L. Göttsche, and D. Van Straten, Euler number of the compactified
Jacobian and multiplicity of rational curves, J. Algebraic Geom., 8 (1999), 115–
133.

[Gr 1] A. Grothendieck, Fondements de la géométrie algébrique, Séminaire Bourbaki,
Vol. 232, W. A. Benjamin, New York, 1966.

[Gr 2] A. Grothendieck, Éléments de géométrie algébrique III : Étude cohomologique des
faisceaux cohérents, Publ. Math. IHÉS, 11 (1961).

[Gr 3] A. Grothendieck, Éléments de géométrie algébrique IV : Étude locale des schémas
et des morphismes de schémas (troisième partie), Publ. Math. IHÉS, 28 (1966).

[Il] L. Illusie, Complexe Cotangent et Déformations I, Lecture Notes in Mathematics,
Vol. 239, Springer-Verlag, Berlin, 1971.

[K-L] D. Kazhdan and G. Lusztig, Fixed point varieties on affine flag manifolds, Israel J.
Math., 62 (1988), 129–168.

[Lu-Sm] G. Lusztig and J. M. Smelt, Fixed point varieties on the space of lattices, Bull.
London Math. Soc., 23 (1991), 213–218.

[M-F] D. Mumford and J. Fogarty, Geometric Invariant Theory, 2nd enlarged ed., Springer-
Verlag, Berlin, New York, Heidelberg, 1982.

[Ra] M. Raynaud, Spécialisation du foncteur de Picard, Publ. Math. IHÉS, 38 (1970),
27–76.

[Re] C. J. Rego, The compactified Jacobian, Ann. Sci. École Norm. Sup., 13 (1980),
211–223.

[Ri] D. S. Rin, Formal deformation theory, in SGA 7 I : Groupe de Monodromie en
Géométrie Algébrique, dirigé par A. Grothendieck , Lecture Notes in Mathematics,
Vol. 288, Springer-Verlag, Berlin, 1972, 32–132.



Fibres de Springer et jacobiennes compactifiées 563

[Sp] T. A. Springer, A purity result for fixed point varieties in flag manifolds, J. Fac. Sci.
Univ. Tokyo, 31 (1984), 271–282.

[Te 1] B. Teissier, Cycles évanescents, sections hyperplanes et condition de Whitney, in
Singularités à Cargèse, Astérisque, Vols. 7–8, Société Mathématique de France,
Paris, 1973, 285–362.

[Te 2] B. Teissier, The hunting of invariants in the geometry of discriminants, in P. Holm,
ed., Real and Complex Singularities : Proceedings, Oslo 1976, Sijthoff and Nord-
hoff, Alpen van Rijn, The Netherlands, 1977, 565–677.

[Te 3] B. Teissier, Résolution simultanée I, II, in M. Demazure, H. Pinkham, and B. Teissier,
eds., Séminaire sur les Singularités des Surfaces, Palaiseau, France 1976–1977,
Lecture Notes in Mathematics, Vol. 777, Springer-Verlag, Berlin, New York, Hei-
delberg, 1980, 71–146.



Iterated integrals of modular forms and
noncommutative modular symbols

Yuri I. Manin

Max-Planck Institut für Mathematik
Vivatsgasse 7
D-53111 Bonn
Germany
manin@mpim-bonn.mpg.de

and

Department of Mathematics
Northwestern University
2033 Sheridan Road
Evanston, IL 60208-2730
USA

To Volodya Drinfeld, cordially and friendly.

Summary. The main goal of this paper is to study properties of the iterated integrals of modular
forms in the upper half-plane, possibly multiplied by zs−1, along geodesics connecting two
cusps. This setting generalizes simultaneously the theory of modular symbols and that of
multiple zeta values.
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0 Introduction and summary

This paper was inspired by two sources: the theory of multiple zeta values on the one
hand (see [Za2]) and the theory of modular symbols and periods of cusp forms on the
other [Ma1, Ma2, Sh1, Sh2, Sh3, Me]. Roughly speaking, it extends the theory of
periods of modular forms, replacing integration along geodesics in the upper complex
half-plane by iterated integration. Here are some details.

0.1 Multiple zeta values

They are the numbers given by the k-multiple Dirichlet series

ζ(m1, . . . , mk) =
∑

0<n1<···<nk

1

n
m1
1 · · · nmkk

, (0.1)
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which converge for all integermi ≥ 1 andmk > 1, or equivalently by them-multiple
iterated integrals, m = m1 + · · · +mk ,

ζ(m1, . . . , mk) =
∫ 1

0

dz1

z1

∫ z1

0

dz2

z2

∫ z2

0
. . .

∫ zmk−1

0

dzmk

1− zmk
. . . (0.2)

where the sequence of differential forms in the iterated integral consists of consecutive
subsequences of the form dz

z
, . . . , dz

z
, dz1−z of lengths mk,mk−1, . . . , m1.

Easy combinatorial considerations allow one to express in two different ways
products ζ(l1, . . . , lj ) ·ζ(m1, . . . , mk) as linear combinations of multiple zeta values.

If one uses for this the integral representation (0.2), one gets a sum over shuffles
which enumerate the simplices of highest dimension occurring in the natural simplicial
decomposition of the product of two integration simplices.

If one uses instead (0.1), one gets sums over shuffles with repetitions which
enumerate some simplices of lower dimension as well.

These relations and their consequences are called double shuffle relations. Both
types of relations can be succinctly written down in terms of formal series on free
noncommutating generators. One can include in these relations regularized multiple
zeta values for arguments where the convergence of (0.1), (0.2) fails.

For a very clear and systematic exposition of these results, see [De, Ra1, Ra2].
In fact, the formal generating series for (regularized) iterated integrals (0.2) ap-

peared in the celebrated Drinfeld paper [Dr2], essentially as the Drinfeld associator,
and more relations for multiple zeta values were implicitly deduced there. The ques-
tion about interdependence of (double) shuffle and associator relations does not seem
to be settled at the moment of writing this; cf. [Ra3]. The problem of completeness
of these systems of relations is equivalent to some difficult transcendence questions.

Multiple zeta values are interesting, because they and their generalizations appear
in many different contexts involving mixed Tate motives [DeGo, T], deformation
quantization [Kon], knot invariants, etc.

0.2 Modular symbols and periods of modular forms

Let  be a congruence subgroup of the modular group acting upon the union H of
the upper complex half-plane H and the set of cusps P1(Q).

The quotient  \H is the modular curveX . Differentials of the first kind onX
lift to cusp forms of weight 2 on H (multiplied by dz).

The modular symbols {α, β} ∈ H1(X,Q), where α, β ∈ P1(Q), were intro-
duced in [Ma1] as linear functionals on the space of differentials of the first kind
obtained by lifting and integrating. The fact that one lands inH1(X,Q) and not just
H1(X,R) is not obvious. It was proved in [Dr1] by refining a weaker argument
given in [Ma1]. This is equivalent to the statement that the difference of any two
cusps in  has finite order in the Jacobian, or else that the mixed Hodge structure
on H 1(X \ {cusps},Q) is split (cf. [El]). One of the basic new insights of [Ma1]
consisted in the realization that studying the action of Hecke operators on modular
symbols one gets new arithmetic facts about periods and Fourier coefficients of cusp
forms of weight 2.
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The further generalizations of modular symbols proceeded, in particular, in the
following directions:

(a) In [Ma2] it was demonstrated that the same technique applies to the integrals of
cusp forms of higher weight, possibly multiplied by polynomials in z, producing
similar information about their periods and Fourier coefficients. In principle,
such integrals cannot be pushed down toX , but they can be pushed down to the
appropriate Kuga–Sato varieties over X , that is, relative Cartesian powers of
the universal elliptic curve. In this way, modular symbols of higher weight can
be interpreted as rational homology classes of middle dimension of Kuga–Sato
varieties; cf. [Sh1, Sh2, Sh3].

(b) Pushing down an oriented geodesic connecting two cusps in H to X , we get a
singular chain with boundary in cusps, which is a relative cycle modulo cusps
with integral coefficients. This is the viewpoint of [Me]. Hence it is more
natural to consider the relative/noncompact version of modular symbols, and
allow integration of the Eisenstein series, that is, differential forms of the third
kind with poles at cusps as well. The same remark applies to the modular symbols
of higher weight.
This refinement appears as well in the study of the “noncommutative boundary’’
of the modular space, that is, the (tower of) space(s)  \ P1(R); cf. [MaMar].
Namely, it turns out that the relative 1-homology modulo cusps (and additional
groups of similar nature) can be interpreted as (sub)groups of theK-theory of the
noncommutative boundary.
In this paper I suggest a generalization in the third direction, namely

(c) The study of iterated integrals of cusp forms and Eisenstein series, possibly
multiplied by a power of z, along geodesics connecting two cusps. Some of
these integrals can be pushed down to X and thus produce a de Rham version
of modular symbols which assigns iterated (possibly regularized) periods to the
elements of the fundamental groupoid of (X, {cusps}) instead of its 1-homology
group. One may call them noncommutative modular symbols.

Other integrals can only be pushed down to the Kuga–Sato varieties, or preferably,
to some (covers of the) moduli spacesM1,n, in the same vein as was done for multiple
zeta values and M0,n in [GoMa]. The related geometry deserves further study, both
for integrands related to cusp forms and to Eisenstein series.

Notice in conclusion that the discussion above implicitly referred only to the case
of SL2-modular symbols. It would be quite interesting to extend it to groups of higher
rank, along the lines of [AB] and [AR].

0.3 Summary of this paper

I recall the basic properties of iterated integrals of holomorphic 1-forms on a simply
connected Riemann surface in Section 1. The shuffle relations for the iterated integrals
are reflected directly in terms of a generating function J stating that it is a grouplike
element with respect to a comultiplication; cf. Proposition 1.4.1.
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Then I turn to the main object of study. In Section 2 I define 1-forms of modular
and cusp modular type, introduce and study the iterated and total Mellin transform
for families of such forms. The functional equation for the total Mellin transform is
deduced which extends the classical functional equation for L-series.

Using only critical values of these Mellin transforms, I introduce in Section 2.5
an iterated modular symbol as a certain noncommutative 1-cohomology class of the
relevant subgroup of the modular group.

In Section 3, I study the representation of such Mellin transforms at integer values
of their Mellin arguments in terms of multiple Dirichlet series. The results differ from
the classical ones expressed by the identity (0.1) = (0.2) in two essential respects.
First, iterated integrals are only linear combinations of certain multiple Dirichlet
series. Second, the latter are not of the usual type∑

0<n1<···<nk

a1,n1 · · · an,nk
n
m1
1 · · · nmkk

,

in fact, their coefficients depend on pairwise differences nj − ni .
In Section 4, the properties of the multiple Dirichlet series which emerged in

Section 3 are axiomatized, and the shuffle relations for them are deduced. This
requires, however, a considerable extension of the initial supply of series; the system
of those coming from 1-forms of modular type is not closed.

Section 5 is dedicated to the iterated analogues of the so-called Eichler–Shimura
and Manin relations for periods of cusp forms. Whereas the relations of the first
type are quite straightforward, the relations of the second type, involving Hecke
operators, are not obvious. The results presented here (Theorem 5.3) are preliminary;
they clearly afford generalizations and deserve further study.

Finally, in Section 6 I return to the formalism of Section 1 and extend it by
allowing our integrands to have logarithmic singularities at the boundary. A version
of the regularization procedure I use here is the same as in Drinfeld’s paper [Dr2].
It exploits complex analyticity in place of Boutet de Monvel’s technique of [De]
and [Ra2].

Using the Manin–Drinfeld theorem on cusps, I suggest a generalization of Drin-
feld’s associator and extend to this case a part of the identities satisfied by the latter.
This list includes the grouplike property, the duality, and the hexagonal relation, which
turn out to have the same source as the Shimura–Eichler relations for the periods of
cusp forms. In contrast, the pentagonal relation seems to be specific for the original
Drinfeld’s associator.

1 Iterated integrals of holomorphic 1-forms

1.1 Setup

Let X be a connected Riemann surface, not necessarily compact, OX its structure
sheaf of holomorphic functions, 	1

X the sheaf of holomorphic 1-forms. If ω is a
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(local) 1-form, z ∈ X a point, ω(z) denotes the value of ω at z, i.e., the respective
cotangent vector.

LetV be a finite set which will be used as a set indexing various families. Consider
the completed unital semigroup ring freely generated byV . We will write it as the ring
of associative formal series C〈〈AV 〉〉, where AV := (Av|v ∈ V ) are noncommuting
free formal variables.

More generally, we may consider the ring OX(U)〈〈AV 〉〉, where OX(U) is the
ring of holomorphic functions on an open subsetU ⊂ X (Av commute with OX(U)),
and the bimodule 	1

X(U)〈〈AV 〉〉 over this ring, connected by the differential d such
that dAv = 0 for all v ∈ V . Varying U , we will get two presheaves; the sheaves
associated with these presheaves are denoted OX〈〈AV 〉〉, respectively, 	1

X〈〈AV 〉〉,
and d extends to them, so that Ker d is the constant sheaf C〈〈AV 〉〉.

Let ωV := (ωv|v ∈ V ) be a family of 1-forms holomorphic in U and indexed by
V . Put

	 :=
∑
v∈V

Avωv. (1.1)

The total iterated integral of this form along a piecewise smooth path γ : [0, 1] → U

is denoted Jγ (	) or Jγ (ωV ) and is defined by the formula

Jγ (	) := 1+
∞∑
n=1

∫ 1

0
γ ∗(	)(t1)

∫ t1

0
γ ∗(	)(t2) · · ·

∫ tn−1

0
γ ∗(	)(tn) ∈ C〈〈AV 〉〉,

(1.2)
where the integration is taken over the simplex 0 < tn < · · · < t1 < 1. If γ , γ ′ with
the same ends are homotopic, Jγ (	) = Jγ ′(	).

Putting zi = γ (ti) ∈ X, a = γ (0), z = γ (1), and considering the whole integral
as a function of a variable z we will also write (1.2) in the form

J za (	) = J za (ωV ) = 1+
∞∑
n=1

∫ z

a

	(z1)

∫ z1

a

	(z2) · · ·
∫ zn−1

a

	(zn). (1.3)

IfU is connected and simply connected, this expression is an unambiguously defined
element of OX(U)〈〈AV 〉〉. Otherwise it is a multivalued function of z in this domain.

The following result is classical.

Proposition 1.2.

(i) J za (	) as a function of z satisfies the equation

dJ za (	) = 	(z)J za (	). (1.4)

In other words, J za (	) is a horizontal (multi)section of the flat connection ∇	 :=
d − l	 on OX〈〈AV 〉〉, where l	 is the operator of left multiplication by 	.

(ii) IfU is a simply connected neighborhood of a, J za (	) is the only horizontal section
with initial condition J aa = 1. Any other horizontal section Kz can be uniquely
written in the form J za (	)C, C ∈ C〈〈AV 〉〉. In particular, for any b ∈ U ,

J zb (	) = J za (	)J ab (	). (1.5)
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Proof. (i) follows directly from (1.3). Since J za (	) is an invertible element of
the ring OX(U)〈〈AV 〉〉, we can form J za (	)

−1Kz and then directly check that
d(J za (	)

−1Kz) = 0. Hence this element belongs to C〈〈AV 〉〉, and, moreover, equals
its value at z = a, that is, Ka . Choosing Kz = J zb (	), we get (1.5). )�

1.3 Jz
a () as a generating series

Clearly, we have

J za (ωV ) = J za (	) = 1+
∞∑
n=1

∑
(v1,...,vn)∈V n

Av1 · · ·AvnI za (ωv1 , . . . , ωvn), (1.6)

where

I za (ωv1 , . . . , ωvn) =
∫ z

a

ωv1(z1)

∫ z1

a

ωv2(z2) · · ·
∫ zn−1

a

ωvn(zn) (1.7)

are the usual iterated integrals.
In the remaining part of this section, and in the main body of the paper, we will

encode various (infinite families of) relations among the iterated integrals (1.7) in the
form of relations between the generating functions J za (ωV ). Generally, our relations
between the generating functions will be (noncommutative) polynomial ones. They
may also involve different families (ωV ), different integration paths, and some linear
transformations of the formal variables Av; cf. especially Theorem 2.2.1, Proposi-
tion 5.1.1, Theorem 5.3, and Section 6.5 (in the context requiring a regularization).

1.4 Basic relations between total iterated integrals

There are three types of basic relations, which we will call grouplike property, cyclic-
ity, and functoriality, respectively.

Proposition 1.4.1. Consider the comultiplication

 : C〈〈AV 〉〉 → C〈〈AV 〉〉 ⊗̂C C〈〈AV 〉〉,  (Av) = Av ⊗ 1+ 1⊗ Av
and extend it to the series with coefficients OX and 	1

X. Then

 (J za (ωV )) = J za (ωV )⊗OX
J za (ωV ). (1.8)

Proof. Both sides of (1.8) satisfy the equation dJ =  (	)J and have the initial
value 1 at z = a. )�
N.B. Coefficientwise, (1.8) is a compact version of the shuffle relations for the iterated
integrals (1.7).
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1.4.2 Cyclicity

Let γ be a closed oriented contractible contour in U , a1, . . . , an points along this
contour (cyclically) ordered compatibly with orientation. Then

J a1
a2
(	)J a2

a3
(	) · · · J an−1

an (	)J ana1
(	) = 1. (1.9)

This follows from (1.5) by induction.

1.4.3 Functoriality

Consider an automorphism g : X→ X such that g∗ maps into itself the linear space
spanned by ωv . In particular, there is a constant matrix G = (gvu) with rows and
columns labeled by V such that g∗(ωv) =∑u gvuωu. Define the automorphism g∗
of any of the rings/modules of formal series C〈〈AV 〉〉, C(X)〈〈AV 〉〉, 	1(X)〈〈AV 〉〉
by the formula g∗(Au) =∑v Avgvu. On coefficients g∗ acts as the identity.

Claim 1.4.4. We have
J
gz
ga (ωV ) = g∗(J za (ωV )). (1.10)

Proof. In fact, both sides coincide with J za (g
∗(ωV )). We will give below a calculation

which proves a slightly more general statement. )�

1.5 A variant: Multiple lower integration limits

Somewhat more generally, in the simply connected case we can consider a family of
points (a•) := (ai,v) in X indexed by pairs i = 1, 2, 3, . . . , v ∈ V .

Given such a family and ωV , we can construct the following formal series in
C(X)〈〈AV 〉〉 with constant term 1:

J z(a•)(ωV ) :=
∞∑
n=0

∑
(v1,...,vn)∈V n

Av1 · · ·AvnI za1,v1 ,...,an,vn
(ωv1 , . . . , ωvn), (1.11)

where

I za1,v1 ,...,an,vn
(ωv1 , . . . , ωvn) :=

∫ z

a1,v1

ωv1(z1)

∫ z1

a2,v2

ωv2(z2) · · ·
∫ zn−1

an,vn

ωvn(zn).

(1.12)
As above, z ∈ X denotes a variable point, the argument of our functions. Then
we have

dJ z(a•)(ωV ) = 	Jz(a•)(ωV ) (1.13)

and

J z(a•)(ωV ) = J za (ωV )J a(a•)(ωV ). (1.14)

The series (1.11) satisfies the following functoriality relation generalizing (1.10).



572 Yuri I. Manin

Claim 1.5.1. We have
J
gz

(ga•)(ωV ) = g∗(J z(a•)(ωV )). (1.15)

Proof. We will check that both sides coincide with J z(a•)(g
∗(ωV )). In fact,

∫ gv
gu
ν(z) =∫ v

u
ν(gz) so that, removing g step by step from the integration limits, we get

I
gz
ga1,v1 ,...,gan,vn

(ωv1 , . . . , ωvn) = I za1,v1 ,...,an,vn
(g∗(ωv1), . . . , g

∗(ωvn)).

Multiplying the left-hand side byAv1 · · ·Avn and summing, we get the left-hand side
of (1.15).

On the other hand,∑
v1,...,vn∈V n

Av1 · · ·AvnI za1,v1 ,...,an,vn
(g∗(ωv1), . . . , g

∗(ωvn))

=
∑

v1,...,vn∈V n
Av1 · · ·AvnI za1,v1 ,...,an,vn

⎛⎝∑
u1∈V

gv1,u1ωu1 , . . . ,
∑
un∈V

gvn,unωun

⎞⎠
=

∑
v1,...,vn∈V n
u1,...,un∈V n

Av1gv1,u1 · · ·Avngvn,unI za1,v1 ,...,an,vn
(ωv1 , . . . , ωvn)

= g∗
⎛⎝ ∑
v1,...,vn∈V n

Av1 · · ·AvnI za1,v1 ,...,an,vn
(ωv1 , . . . , ωvn)

⎞⎠ .
Summation over n produces the right-hand side of (1.15), proving the lemma. )�

1.6 A variant: Nonlinear 

Now let 	 ∈ 	1
X(U)〈〈AV 〉〉 be an arbitrary form without constant term in Av:

	 =
∞∑
n=1

∑
(v1,...,vn)∈V n

Av1 · · ·Avn	v1,...,vn , (1.16)

where 	v1,...,vn ∈ 	1
X(U).

The total iterated integrals Jγ (	) and J za (	) are defined by exactly the same
formulas (1.2) and (1.3). It is not true anymore that the coefficients of this series are
the usual iterated integrals. However, an analogue of Proposition 1.2 and the cyclic
identity remain true.

Proposition 1.6.1. J za (	) as a function of z satisfies the equation

dJ za (	) = 	(z)J za (	). (1.17)

If U is a simply connected neighborhood of a, J za (	) is the only horizontal section
with initial condition J aa = 1. Any other horizontal section Kz can be uniquely
written in the form J za (	)C, C ∈ C〈〈AV 〉〉. In particular, for any b ∈ U ,

J zb (	) = J za (	)J ab (	). (1.18)
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Corollary 1.6.2. Let γ be a closed oriented contractible contour in U , a1, . . . , an
points along this contour (cyclically) ordered compatibly with orientation. Then

J a1
a2
(	)J a2

a3
(	) · · · J an−1

an (	)J ana1
(	) = 1. (1.19)

Notice in conclusion that the integral formula (0.2) for the multiple zeta values
is not quite covered by the formalism reviewed so far because the integrands in (0.2)
have logarithmic poles at the boundary. We will return to this situation in Section 6,
to which some readers may prefer to turn right away. However, for applications to
the integration of cusp forms in Sections 2–5 the regular case treated here suffices.

2 1-forms of modular type, iterated Mellin transform, and
noncommutative modular symbols

2.1 Setup

In this section, X will be the upper half-plane H and z the standard complex coordi-
nate. H is endowed with the metric of constant curvature −1: ds2 = |dz|2/(Im z)2.

The limits of integration in our iterated integrals generally lie in H , but may be
“improper’’ as well, that is, belong to the set of cusps Q ∪ {i∞}. If this is the case,
we always assume that the respective integration path in some neighborhood of the
cusp coincides with a segment of a geodesic curve.

Our 1-forms generally will have the following structure.

Definition 2.1.1.

(i) A 1-form ω on H is called a form of modular type if it can be represented as
f (z)zs−1dz, where s is a complex number and f (z) is a modular form of some
weight with respect to a congruence subgroup of the modular group.
The modular form f (z) is then well defined and called the associated modular
form (to ω), and the number s is called the Mellin argument of ω.

(ii) ω is called a form of cusp modular type if the associated f (z) is a cusp form.

To fix notation, we will recall below some classical facts.

2.1.2 Action of automorphisms

Any matrix γ ∈ GL+2 (R) defines a holomorphic isometry of H , namely z �→ [γ ]z,
where [γ ] is the fractional linear transformation corresponding to γ . We will denote
this automorphism also by γ . It induces the inverse image maps on the sheaves
(	1
H )

⊗r of holomorphic tensor differentials of degree r:

γ ∗(f (z)(dz)r ) = f ([γ ]z)(d[γ ]z)r = (det γ )rf ([γ ]z) (dz)r

(cγ z+ dγ )2r , (2.1)

where (cγ , dγ ) is the lower row of γ .
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If one identifies (	1
H )

⊗r with OH by sending (dz)r to 1, (2.1) turns into the action
of weight 2r on functions, which is traditionally written as a right action:

f |[γ ]2r (z) := (det γ )rf ([γ ]z)(cγ z+ dγ )−2r . (2.2)

Assume thatf (z)(dz)r is invariant with respect to γ . Then, writingf (z)zs−1dz =
f (z)(dz)r · zs−1(dz)1−r , we see that

γ ∗(f (z)zs−1dz) = (det γ )1−rf (z)(aγ z+ bγ )s−1(cγ z+ dγ )2r−1−sdz, (2.3)

where (aγ , bγ ) is the upper row of γ . In particular, if 2r ≥ 2 is an integer, γ ∗ maps
into itself the space of 1-forms spanned by

f (z)zs−1dz, 1 ≤ s ≤ 2r − 1, s ∈ Z. (2.4)

More generally, if
γ ∗(f (z)(dz)r ) = χ(γ )f (z)(dz)r (2.5)

for some χ(γ ) ∈ C, then

γ ∗(f (z)zs−1dz) = (det γ )1−rf (z)χ(γ )(aγ z+ bγ )s−1(cγ z+ dγ )2r−1−sdz, (2.6)

and the space (2.4) will still remain invariant.
We can apply this formalism to the spaces of modular forms of weight 2r

with respect to a congruence subgroup  of SL2(Z), i.e., to the functions f in
(dz)−r ((	1

H )
⊗r ) . Two special cases will be of particular interest:

(i) For any such f , the space of 1-forms spanned by (2.4) is -invariant.
(ii) Assume that  = 0(N). This group is normalized by the involution

g = gN :=
(

0 −1
N 0

)
. (2.7)

Therefore, this involution maps into itself the space of 0(N)-modular forms,
and the latter has a basis consisting of forms with

g∗N(f (z)(dz)r ) = εf f (z)(dz)r , εf = ±1. (2.8)

Applying (2.6) with γ = gN we get, for any complex s,

g∗N(f (z)zs−1dz) = εf Nr−sf (z)z2r−1−sdz. (2.9)

2.1.3 Geodesics and cusp forms

The geodesic from 0 to i∞ is the upper half of the pure imaginary line. The unoriented
distance of a point iy on it to i is | log y|. The exponential of this distance is thus
y, if y > 1, and y−1, if y < 1. If we replace i by another reference point, even
outside of the imaginary axis, the exponential of the distance will behave like eO(1)y
(respectively, eO(1)y−1) as y →∞ (respectively, y → 0).
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Let f (z) be a cusp form of weight 2r for a congruence subgroup. Then it can be
represented by a Fourier series f (z) = ∑∞

n=1 cne
2πinz/N for some N ∈ Z+, whose

coefficients are polynomially bounded: cn = O(nC) for some C > 0. Therefore, we
have |f (iy)| = O(e−ay) for some a > 0 as y → ∞. From the previous analysis
it follows that more generally, for any cusp form and any geodesic connecting two
cusps, |f (z)| = O(e−ay(z)) for some a > 0 as z tends along the geodesics to one of
its ends, where this time y(z) means the exponentiated geodesic distance from z to
any reference point in H , fixed once and for all.

Now letω(z) = f (z)zs−1dz be a 1-form of cusp modular type. Then the estimates
above show that the following expected properties indeed hold:

(a) As z0 → i∞ along the imaginary axis, the family
∫ z
z0
ω of holomorphic func-

tions of z in any bounded domain H converges absolutely and uniformly to a
holomorphic function of z, which is denoted

∫ z
i∞ ω. The same remains true if

one replaces i∞ by 0.
These integrals are holomorphic functions of the Mellin argument s of ω as well.

(b) The sum (
∫ z
i∞+ ∫ 0

z
)ω does not depend on z in H and is denoted

∫ 0
i∞ ω. As a

function of s, it is called the classical Mellin transform of ω.

Denote this classical transform by �(f ; s). Assume that f satisfies (2.8). Then
we have the classical functional equation

�(f ; s) = −εf Nr−s�(f ; 2r − s), (2.10)

because in view of (2.9)

∫ 0

i∞
ω = −

∫ i∞

0
ω = −

∫ gN (0)

gN (i∞)
ω = −

∫ 0

i∞
g∗N(ω)

= −εf Nr−s
∫ 0

i∞
f (z)z2r−1−sdz.

Another identity in the same vein uses the fact that i/
√
N is the fixed point of gN , so

that �(f ; s) can be written as

�(f ; s) =
∫ i/

√
N

i∞
ω −

∫ i/
√
N

i∞
g∗N(ω). (2.11)

This allows one to use the Fourier expansions of f (z) and f |[gN ]2r (z) in order to
deduce series expansions for�(f ; s). (Notice that the Fourier expansions cannot be
termwise integrated near z = 0 because the formal integration produces a divergent
series.)

Now we can finally write down the analogues of these definitions and results for
iterated integrals.
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Definition 2.2.

(i) Let f1, . . . , fk be a finite sequence of cusp forms with respect to a congruence
subgroup, ωj (z) := fj (z)zsj−1dz. The iterated Mellin transform of (fj ) is, by
definition,

M(f1, . . . , fk; s1, . . . , sk) := I 0
i∞(ω1, . . . , ωk)

=
∫ 0

i∞
ω1(z1)

∫ z1

i∞
ω2(z2) · · ·

∫ zn−1

i∞
ωn(zn).

(2.12)

(ii) Let fV = (fv|v ∈ V ) be a finite family of cusp forms with respect to a congruence
subgroup, sV = (sv|v ∈ V ) a finite family of complex numbers, ωV = (ωv),

where ωv(z) := fv(z)zsv−1dz. The total Mellin transform of fV is, by definition,

TM(fV ; sV ) := J 0
i∞(ωV )

=
∞∑
n=0

∑
(v1,...,vn)∈V n

Av1 · · ·AvnM(fv1 , . . . , fvn; sv1 , . . . , svn)

(2.13)

(cf. (1.3)).

Below we will assume that the space spanned by all ωv is stable with respect to
some g∗N . Then, as in Section 1.4.3, denote byG = (gvu) the matrix of this action on
(ωv), and by gN∗ the action of the transposed matrix on the formal variables (Av).

For example, if (ωv) and (fv(dz)rv ), respectively, can be represented as a union of
pairs of forms, corresponding to the left- and right-hand sides of (2.9), the matrix G
consists of two-by-two antidiagonal blocks, each of which after the classical Mellin
transform produces a functional equation of the form (2.10).

Theorem 2.2.1.

(i) If the space spanned by all ωv is stable with respect to some g∗N , we have the
functional equation

J 0
i∞(ωV ) = gN∗(J 0

i∞(ωV ))−1. (2.14)

(ii) Under the assumptions of Definition 2.2(ii), denote the weight of fv by 2rv and
assume that fv is an eigenvector for g∗N with eigenvalue εv . Then the total Mellin
transform (2.13) satisfies

TM(fV ; sV ) = g∗(TM(fV ; 2rV − sV ))−1, (2.15)

where g∗ multiplies each Av by εvNrv−sv .

Proof. This is a straightforward corollary of the definitions and formulas (1.9) and
(1.10) as soon as one has checked that the latter formulas are applicable to the improper
iterated integrals of the 1-forms of cusp modular type.



Iterated integrals of modular forms and noncommutative modular symbols 577

This check is a routine matter, since at each step of an iterated integration we
multiply the result of the previous step by a holomorphic function of the typef (z)zs−1

which is bounded by O(e−ay(z)) as in Section 2.1.3 above as z tends to 0 or i∞.
Notice in conclusion that no analogue of the functional equation (2.11) can be

written for the individual Mellin transforms (2.12), because applying gN to the inte-
gration limits in them we get an expression which is not a Mellin transform in our
sense. Only putting them all together produces the necessary environment for replac-
ing the overall minus sign on the right-hand side of (2.10) by the overall exponent
−1 on the right-hand side of (2.15). )�

A similar reasoning establishes the iterated analogue of (2.11).

Proposition 2.3. We have

TM(fV ; sV ) = (gN∗J i/
√
N

i∞ (ωV ))
−1J

i/
√
N

i∞ (ωV ). (2.16)

2.4 Pushing down iterated integrals

Let ω be a 1-form of modular type whose associated modular form has weight 2 with
respect to a subgroup  of the modular group, and whose Mellin argument is 1. In
this caseω is-invariant so that it can be pushed down to a 1-form ν onX◦ := \H .
Instead of integrating ω along a path in H , we can integrate ν along the push-down
of this path to X◦ . If all ωv have this property, all relevant iterated integrals can be
pushed down to X◦ .

This argument admits a partial generalization to higher weights. Assume that the
modular form associated with ω has weight 2r > 2, whereas its Mellin argument
is an integer belonging to the critical strip (2.4), 1 ≤ s ≤ 2r − 1. In this case the
relevant simple integral along, say, {i∞, 0} can be pushed down to the Kuga–Sato
variety X(2r−2)

 which is the (2r − 2) fibered power of the universal elliptic curve

over X , or rather its compactified smooth model. However, on X(2r−2)
 we obtain

an integral of a holomorphic form ω̂ of degree 2r − 1 over a relative cycle of the
same dimension, which is > 1. Therefore, iterated “line’’ integrals of such forms on
H cannot be directly translated into integrals of the same type on X(2r−2)

 .
On the other hand, one can generally define Chen’s iterated integrals of forms of

arbitrary degree, say, ω̂v on X(2r−2)
 , which take values in the space of differential

forms on the path space PX(2r−2)
 and not just C; cf. the papers [Ch] and [Ha], as well

as references therein. Studying properties of such iterated integrals in the modular
case presents an interesting challenge.

Here I will only give a formula for ω̂ and show that its periods coincide with
integrals of ω along geodesics. It turns out that ω̂ depends only on the modular form
associated with ω, whereas geodesic integrals of 1-forms ωzk for integral critical
values of k become periods of ω̂ along cycles depending on k. For more details, see
[Sh1, Sh2] and especially [Sh3].

Denote by (r) the semidirect product  � (Z2r−2 × Z2r−2) acting upon
H × C2r−2 via
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(γ ; n,m)(z, ζ ) := ([γ ]z; (cγ z+ dγ )−1(ζ + zn+m)).

Here n = (n1, . . . , n2r−2), m = (m1, . . . , m2r−2), ζ = (ζ1, . . . , ζ2r−2), and nz =
(n1z, . . . , n2r−2z).

If f (z) is a holomorphic modular form of weight 2r , then f (z)dz ∧ dζ1 ∧ · · · ∧
dζ2r−2 is a (r)-invariant holomorphic volume form on H × C2r−2. Hence one can
push it down to (a Zariski open subset of) the quotient (r) \ (H × C2r−2) which is
a Zariski open subset of the respective Kuga–Sato variety. Denote by ω̂ the image
of this form. It is common for all 1-forms of modular type ω = f (z)zs−1dz with
different Mellin arguments s.

A detailed analysis of singularities performed in [Sh2, Sh3] shows that the map
f �→ ω̂ induces an isomorphism of the space of cusp forms of weight 2r with the
space of holomorphic volume forms on an appropriate smooth projective Kuga–Sato
variety. (As I have already remarked in the introduction, it would be useful to replace
it by the base extension (M1,2r−2)X .)

The dependence of the period of ω on the integration path and on the Mellin
argument is reflected in the choice of the relative cycle over which we integrate ω̂.

More precisely, letα, β ∈ P1(Q) be two cusps inH and letp be a geodesic joining
α to β. Fix (ni) and (mi) as above. Construct a cubic singular cell p× (0, 1)2r−2 →
H × C2r−2: (z, (ti)) �→ (z, (ti(zni + mi))). Take the S2r−2-symmetrization of this
cell and push down the result to the Kuga–Sato variety. We will get a relative cycle
whose homology class is Shokurov’s higher modular symbol {α, β; n,m} . From
this construction, it is almost obvious that

∫ β

α

f (z)

2r−2∏
i=1

(niz+mi)dz =
∫
{α,β;n,m}

ω̂.

In particular, if k of the coordinatesni are 1, and the rest are zero, whereasmi = 1−ni ,
the left-hand side equals

∫ β
α
f (z)zkdz.

The singular cube (0, 1)2r−2 may also be replaced by an evident singular simplex.
This can be useful for transposing the results of [GoMa] to the genus one moduli
spaces.

2.5 Noncommutative modular symbols and continued fractions

I will define in this subsection a generalization of modular symbols involving iterated
integrals and allowing a mixture of forms of different weights with respect to the
same subgroup  of SL(2,Z).

Let (ωv) be a family of linearly independent 1-forms of cusp modular type whose
Mellin arguments are integers lying in the respective critical strip as in (2.4). Let
 be a subgroup of modular group acting on the space spanned by (ωv) as in (2.3).
Denote by � the multiplicative group of power series in (Av) with constant term 1.
Clearly, the map J �→ g∗J (see Section 1.4.3) defines a left action of  on �.
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Proposition–Definition 2.5.1.

(i) For each a ∈ P1(Q), the map  → � : γ �→ J aγ a(	) is a noncommutative

1-cocycle ζa in Z1(,�).

(ii) The cohomology class of ζa in H 1(,�) does not depend on the choice of a and
is called the noncommutative modular symbol.

Proof. We have, omitting 	 for brevity, and using (1.9), (1.10),

J aγβa = J aγ aJ γ aγβa = J aγ aγ∗(J aβa),
which means that ζa is a 1-cocycle. Moreover, if b is another cusp,

J aγ a = J ab J bγ bJ γ bγ a = J ab J bγ b(γ∗(J ab ))−1,

that is, ζa and ζb are homologous. )�
Remark. Assume that the cusp forms associated with (ωv) span the sum of all spaces
of cusp forms of certain weights, and for each weight and each cusp form all admissible
Mellin arguments actually occur. Then the linear inAv term of ζa encodes all periods
of the involved cusp forms along all classical modular symbols corresponding to
loops in X(C) starting and ending at the cusp a .

2.5.2 Iterated integrals between arbitrary cusps

The group  generally does not act transitively on cusps, so that the components
of cocycles ζa do not contain iterated integrals along all geodesics connecting two
cusps. One can use the technique of continued fractions as in [Ma1, Ma2] in order to
express all such integrals through a finite number of them.

Namely, choose a set of representatives C of the left cosets  \ SL2(Z). Call
the iterated integrals of the form (J

g(0)
g(i∞))±1, g ∈ C, primitive ones. Notice that

when g /∈  the space spanned by (ωv) is not generally g∗-stable, so that we cannot
define g∗.

Proposition 2.5.3. Each J ab can be expressed as a noncommutative monomial in
γ∗(J cd ), where γ runs over  and J cd runs over primitive integrals.

Proof. First, we can write J ab = (J i∞a )−1J i∞b . So it remains to find a required
expression for J ai∞. Assume that a > 0; the case a < 0 can be treated similarly.
Consider the consequent convergents to a:

a = pn

qn
,

pn−1

qn−1
, . . . ,

p0

q0
= p0

1
,

p−1

q−1
:= 1

0
.

Put

gk :=
(
pk (−1)k−1pk−1

qk (−1)k−1qk−1

)
, k = 0, . . . , n.
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We have gk = gk(a) ∈ SL2(2,Z). Put gk = γkck , where γk ∈  and ck ∈ C are two
sequences of matrices depending on a. Then from cyclicity we get

J ai∞ =
0∏
k=n
J
pk/qk
pk−1/qk−1

,

and from functoriality we obtain

J
pk/qk
pk−1/qk−1

= γk∗(J ck(i∞)ck(0)
). )�

3 Values of iterated Mellin transforms at integer points and
multiple Dirichlet series

In this section, we collect some formulas expressing iterated Mellin transforms (2.12)
at integer values of their Mellin arguments as linear combinations of “multiple Dirich-
let series.’’

3.1 Notation

Consider a family of 1-forms ωV , v ∈ V , satisfying the following conditions. First,

ωv(z) =
∞∑
n=1

cv,ne
2πinzzmv−1dz, cv,n ∈ C, mv ∈ Z, mv ≥ 1. (3.1)

Moreover, assume that cv,n = O(nC) for some C and each v.
Until a problem of analytic continuation arises, we do not have to assume mod-

ularity. The notation mv , replacing the former sv , is chosen to emphasize that these
Mellin arguments are natural numbers.

We start with introducing some notation.

3.1.1 Functions L(z; ωvk
, . . . , ωv1; jk, . . . , j1)

Choose k ≥ 1; vk, . . . , v1 ∈ V , and nonnegative integers jk, . . . , j1; it is convenient
to add j0 = 0. In our applications, ja will satisfy the following restrictions:

ja ≤ mva − 1+ ja−1. (3.2)

Now put

L(z;ωvk , . . . , ωv1; jk, . . . , j1)

:= (2πiz)jk
∑

n1,...,nk≥1

cv1,n1 · · · cvk,nk e2πi(n1+···+nk)z

n
mv1+j0−j1
1 (n1 + n2)

mv2+j1−j2 · · · (n1 + · · · + nk)mvk+jk−1−jk
.

(3.3)

Thanks to the presence of exponential terms in (3.2), this series converges absolutely
for any z with Im z > 0 and defines a holomorphic function in H .

Notice that the enumeration of arguments of L is reversed in order to get a more
natural enumeration of factors in the summands of (3.3).
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3.1.2 Numbers L(0; ωvk
, . . . , ωv1; jk, jk−1, . . . , j1)

If we formally put z = 0 in the expansion for

(2πiz)−jkL(z;ωvk , . . . , ωv1; jk, . . . , j1),
we will get the formal series∑

n1,...,nk≥1

cv1,n1 · · · cvk,nk
n
mv1+j0−j1
1 (n1 + n2)

mv2+j1−j2 · · · (n1 + · · · + nk)mvk+jk−1−jk
. (3.4)

We have

cv1,n1 · · · cvk,nk = O((n1n2 . . . nk)
C) = O((n1 + · · · + nk)kC). (3.5)

Assume that (3.2) holds. Then the general term of (3.4) is bounded by

1

n1(n1 + n2) · · · (n1 + · · · + nk−1)(n1 + · · · + nk)mvk+jk−1−jk−1−kC .

Hence (3.4) converges absolutely as long as

mvk + jk−1 − jk > 1+ kC.
Summarizing, we get three alternatives, describing the possible behavior of

L(z;ωvk , . . . , ωv1; jk, jk−1, . . . , j1)

as z → 0. We will later identify the respective limit as a component of the total
Mellin transform of (ωV ).

Case 1: jk = 0 and mvk + jk−1 > 1+ kC. Then the limit exists, and is equal to
the “multiple Dirichlet series’’

L(0;ωvk , . . . , ωv1; 0, jk−1, . . . , j1)

=
∑

n1,...,nk≥1

cv1,n1 · · · cvk,nk
n
mv1+j0−j1
1 (n1 + n2)

mv2+j1−j2 · · · (n1 + · · · + nk)mvk+jk−1−jk
.

(3.6)

(j0 = jk = 0 appear on the right-hand side only for uniformity of notation.)
Case 2: jk > 0 and mvk + jk−1 − jk > 1 + kC. Then the limit exists, and

vanishes thanks to the factor (2πiz)jk :

L(0;ωvk , . . . , ωv1; jk, jk−1, . . . , j1) = 0 (3.7)

Case 3: jk > 0 and mvk + jk−1 − jk ≤ 1 + kC. In this case additional study is
needed.

We can now formulate the first main result of this section.
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Theorem 3.2. For any k ≥ 1, (v1, . . . , vk) ∈ V k , and Im z > 0, we have

(2πi)mv1+···+mvk I zi∞(ωvk , . . . , ωv1)

= (−1)
∑k
i=1(mvi−1)

mv1−1∑
j1=0

mv2−1+j1∑
j2=0

· · ·
mvk−1+jk−1∑

jk=0

(−1)jk

× (mv1 − 1)!(mv2 − 1+ j1)! · · · (mvk − 1+ jk−1)!
j1!j2! · · · jk! L(z;ωvk , . . . , ωv1; jk, . . . , j1).

(3.8)

The proof requires an auxiliary construction.

3.3 Auxiliary polynomials D
n1,...,nk
mv1 ,...,mvk

(t)

Choose now k ≥ 1; vk, . . . , v1 ∈ V , and positive integers nk, . . . , n1. It is convenient
to agree that for k = 0 the respective families are empty.

Define inductively polynomials

Dn1,...,nk
mv1 ,...,mvk

(t) ∈ Q[t]

putting D∅
∅ = 1, and

D
n1,...,nk+1
mv1 ,...,mvk+1

(t) = (1+ ∂t )−1
(
Dn1,...,nk
mv1 ,...,mvk

(
n1 + · · · + nk
n1 + · · · + nk+1

t

)
· tmvk+1−1

)
,

(3.9)
where

(1+ ∂t )−1 :=
∑
k≥0

(−1)k∂kt

as a linear operator on polynomials.
For example,

Dn1
mv1
(t) = (−1)mv1−1(mv1 − 1)!

mv1−1∑
j1=0

(−1)j1 tj1

j1! . (3.10)

In particular, Dn1
mv1
(0) = (−1)mv1−1(mv1 − 1)!. Furthermore,

Dn1,n2
mv1 ,mv2

(t)

= (−1)mv1−1(mv1 − 1)!
mv1−1∑
j1=0

(−1)j1

j1! (1+ ∂t )−1 n
j1
1 t
j1+mv2−1

(n1 + n2)j1

= (−1)mv1−1+mv2−1(mv1 − 1)!(mv2 − 1)!
mv1−1∑
j1=0

(−1)j1nj11

j1!(n1 + n2)j1

mv2−1+j1∑
j2=0

(−1)j2 tj2

j2! .

(3.11)
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In particular,

Dn1,n2
mv1 ,mv2

(0) = (−1)mv1−1+mv2−1(mv1 − 1)!(mv2 − 1)!
mv1−1∑
j1=0

(−1)j1nj11

j1!(n1 + n2)j1
.

The general formula looks as follows.

Proposition 3.3.1. We have for k ≥ 1

Dn1,...,nk
mv1 ,...,mvk

(t)

= (−1)
∑k
i=1(mvi−1)

mv1−1∑
j1=0

mv2−1+j1∑
j2=0

· · ·
mvk−1+jk−1∑

jk=0

(−1)jk

× (mv1 − 1)!(mv2 − 1+ j1)! · · · (mvk − 1+ jk−1)!
j1!j2! · · · jk!

× 1

n
−j1
1 (n1 + n2)j1−j2 · · · (n1 + · · · + nk−1)jk−2−jk−1(n1 + · · · + nk)jk−1

tjk .

(3.12)

Proof. We argue by induction on k. Assume that (3.12) holds for k and apply the
operator at the right-hand side of (3.9) to the right-hand side of (3.12). Looking for
brevity only at the last line of (3.11), we get

1

n
−j1
1 (n1 + n2)j1−j2 · · · (n1 + · · · + nk)jk−1−jk (n1 + · · · + nk+1)jk

· (1+ ∂t )−1t
mvk+1−1+jk

= 1

n
−j1
1 (n1 + n2)j1−j2 · · · (n1 + · · · + nk)jk−1−jk (n1 + · · · + nk+1)jk

×
mvk+1−1+jk∑
jk+1=0

(−1)jk+1(−1)mvk+1−1+jk (mvk+1 − 1+ jk)!
jk+1! tjk+1 .

Combining this with (3.12) for k, we get (3.12) for k + 1.

3.4 Proof of Theorem 3.2

By induction on k we will prove the formula

(2πi)mv1+···+mvk I zi∞(ωvk , . . . , ωv1)

=
∑

n1,...,nk≥1

cv1,n1 · · · cvk,nk e2πi(n1+···+nk)z

n
mv2
1 (n1 + n2)

mv1 · · · (n1 + · · · + nk)mvk
·Dn1,...,nk

mv1 ,...,mvk
(2πi(n1 + · · · + nk)z).

(3.13)
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Combining it with (3.12) and (3.3), we will get (3.8).
For k = 1 we check (3.13) directly:

(2πi)mv1 I zi∞(ωv1) = (2πi)mv1
∫ z

i∞
ωv1(z1)

= (2πi)mv1
∞∑
n1=1

cv1,n1

∫ z

i∞
e2πin1z1z

mv1−1
1 dz1.

Putting in the n1th summand t = 2πin1z1, we can rewrite this as

∞∑
n1=1

cv1,n1

n
mv1
1

∫ 2πin1z

−∞
et tmv1−1dt. (3.14)

Since ∫
etP (t)dt = et (1+ ∂t )−1P(t)+ const, (3.15)

this is equivalent to (3.13).
The inductive step from k to k + 1 is similar: Assuming (3.13)k , we have

(2πi)mv1+···+mvk+1 I zi∞(ωvk+1 , . . . , ωv1)

= (2πi)mvk+1

∞∑
nk+1=1

cvk+1,nk+1

∫ z

i∞
e2πink+1zk z

mvk+1−1
k

×
∑

n1,...,nk≥1

cv1,n1 · · · cvk,nk e2πi(n1+···+nk)zk

n
mv1
1 (n1 + n2)

mv1 · · · (n1 + · · · + nk)mvk
·Dn1,...,nk

mv1 ,...,mvk
(2πi(n1 + · · · + nk)zk)dzk

= (2πi)mvk+1
∑

n1,...,nk+1≥1

cv1,n1 · · · cvk,nk cvk+1,nk+1

n
mv1
1 (n1 + n2)

mv1 · · · (n1 + · · · + nk)mvk

×
∫ z

i∞
e2πi(n1+···+nk+nk+1)zkDn1,...,nk

mv1 ,...,mvk
(2πi(n1 + · · · + nk)zk)zmvk+1−1

k dzk.

(3.16)

Putting here t = 2πi(n1 + · · · + nk+1)zk , we can rewrite the last integral as

1

(2πi)mvk+1

1

(n1 + · · · + nk+1)
mvk+1

·
∫ z

i∞
etDn1,...,nk

mv1 ,...,mvk

(
n1 + · · · + nk
n1 + · · · + nk+1

t

)
t
mvk+1−1

dt,

that is,

1

(2πi)mvk+1

1

(n1 + · · · + nk)mvk+1
e2πi(n1+···+nk+1)z (3.17)
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× (1+ ∂t )−1
(
Dn1,...,nk
mv1 ,...,mvk

(
n1 + · · · + nk
n1 + · · · + nk+1

t

)
t
mvk+1−1

)∣∣∣∣
t=2πi(n1+···+nk+1)z

.

(3.18)

Substituting this into (3.16), we finally obtain (3.13) and (3.12). )�

3.5 The limit z → 0

We can try to get an expression for

I 0
i∞(ωvk , . . . , ωv1)

as a (linear combination of) multiple Dirichlet series, by formally putting z = 0 in
the right-hand side of (3.8). However, we will find out that this cannot be done
automatically for a certain range of values of (jk, jk−1), namely, for jk ≥ mvk +
jk−1 − 1− kC; cf. Case 3 at the end of Section 3.1.2.

To solve this problem, we will have for the first time to assume that z1−mvωv(z)
are of cusp modular type, say, for the group 0(N), or for any modular subgroup
which is normalized by the involution z �→ gz,

g = gN :=
(

0 −1
N 0

)
.

We can then apply Proposition 2.3 which we reproduce and slightly augment:

Proposition 3.5.1. Assume thatωV as above is a basis of a space of 1-forms invariant
with respect to gN . Then

J 0
i∞(ωV ) = (gN∗(J

i√
N

i∞ (ωV )))
−1J

i√
N

i∞ (ωV ). (3.19)

Replacing the coefficients of the formal series on the right-hand side of (3.19) by
their (convergent) representations via multiple Dirichlet series (3.8), we get such
representations for I 0

i∞(ωvk , . . . , ωv1).

3.5.2 Main application

If we fix a modular subgroup normalized by gN , this proposition becomes applicable
to any family of cusp forms of the type ωi(z)zm−1, m ≥ 1, where ωi(z) runs over
a basis of the space of forms of a fixed weight 2r , and m runs over [1, 2r − 1] (cf.
(2.4)). Moreover, we can mix different weights, that is, take a finite union of such
families.

Passing to a different basis of such a space, we may even assume that (ωv) consists
of eigenforms for gN : g∗N(ωv) = εvωv , εv = ±1, for all s ∈ V .

Coefficients of J
i√
N

i∞ are the series (3.3) at z = i√
N

.
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4 Shuffle relations between multiple Dirichlet series

4.1 Notation

In this section, we will consider (formal) multiple Dirichlet series of a special form
generalizing expressions (3.4), and deduce bilinear relations between them general-
izing the well-known harmonic shuffle relations involving shuffles with repetitions.

Each such series will depend on a set of coefficients data C and several complex
or formal arguments si . Here are the precise definitions. Let k ≥ 1 be a natural
number.

Definition 4.1.1. (i) Coefficients data C of depth k is a family of numbers c(j,i)n,m

indexed by two pairs of integers satisfying j > i ≥ 0, j ≤ k, and n > m ≥ 0.
(ii) The multiple Dirichlet series associated with C and arguments s1, . . . , sk is

LC(s1, . . . , sk) :=
∑

0=u0<u1<···<uk∈Z

∏
k≥j>i≥0 c

(j,i)
uj ,ui

u
s1
1 u

s2
2 · · · uskk

. (4.1)

4.1.2 Examples

(a) Assume that c(j,i)n,m = 1 if m > 0 or i > 0 and put c(j,0)n,0 = a(j)n . Then

LC(s1, . . . , sk) =
∑

0<u1<···<uk∈Z

a
(1)
u1 a

(2)
u2 · · · a(k)uk

u
s1
1 u

s2
2 · · · uskk

(4.2)

is an ordinary multiple Dirichlet series.
(b) Define cv,n as in Section 3.1, and choose v1, . . . , vk ∈ V as in Section 3.1.1.

Construct the coefficients data C putting

c
(j,j−1)
n,m := cvj ,n−m, (4.3)

and c(j,i)n,m = 1 otherwise. ThenLC(mv1 +j0−j1, . . . , mvk+jk−1−jk) becomes
the formal series (3.4) if we redenote uj = n1 + · · · + nj .

4.1.3 Shuffles and a composition of the coefficients data

Let C = (c
(j,i)
n,m ) and D = (d

(j,i)
n,m ) be two data of depths k and l, respectively. A

(k, l, p)-shuffle with repetitions is a pair of strictly increasing maps σ = (σ1, σ2),

σ1 : [0, k] → [0, p], σ2 : [0, l] → [0, p]
satisfying the conditions

σ1(0) = σ2(0) = 0, σ1([0, k]) ∪ σ2([0, l]) = [0, p]. (4.4)
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It follows that max(k, l) ≤ p ≤ k+l. We will say that the σ -multiplicity of j ∈ [0, p]
is 1 if j /∈ σ1([0, k])∩ σ2([0, l]). Otherwise, the σ -multiplicity of j ∈ [0, p] is 2. In
particular, the σ -multiplicity of 0 is 2.

Given such C,D and σ = (σ1, σ2), we will define the third coefficients dataE =
(e
(j,i)
n,m ) of depth p, which we denote E = C ∗σ D. Choose j, i with p ≥ j > i ≥ 0.

We have the following set of mutually exclusive and exhaustive alternatives (A)1,
(A)2, (B), and (C):

(A) Assume that both j and i have multiplicity 1.
(A)1 Both j and i belong to the image of one and the same σa with a = 1 or a = 2.

Then we put

e
(j,i)
n,m := c(σ

−1
1 (j),σ−1

1 (i))
n,m for a = 1

and

e
(j,i)
n,m := d(σ

−1
2 (j),σ−1

2 (i))
n,m for a = 2.

(A)2 Assume that j , respectively, i, belongs to the image of σa , respectively, σb, with
a �= b. Then we put

e
(j,i)
n,m := 1.

(B) Assume that exactly one of j, i has multiplicity 2. Then there exists only one
value a = 1 or 2 such that j and i belong to the image of σa . We put then as in
the case (A)1

e
(j,i)
n,m := c(σ

−1
1 (j),σ−1

1 (i))
n,m for a = 1

and

e
(j,i)
n,m := d(σ

−1
2 (j),σ−1

2 (i))
n,m for a = 2.

(C) Assume that both i and j have multiplicity 2. Then we put

e
(j,i)
n,m := c(σ

−1
1 (j),σ−1

1 (i))
n,m d

(σ−1
2 (j),σ−1

2 (i))
n,m .

4.1.4 Shuffles and a composition of the arguments

Let s := (s1, . . . , sk) and t := (t1, . . . , tl) be arguments for the dataC andD as above,
and σ a (k, l, p)-shuffle as above. We define s +σ t := (r1, . . . , rp) as follows.

If i has multiplicity one and is covered by σ1, respectively, σ2, then ri := sσ−1
1 (i)

,

respectively, ri := tσ−1
2 (i)

.

If i has multiplicity 2, then ri := sσ−1
1 (i)

+ t
σ−1

2 (i)
.

We can now state the main result of this section.

Theorem 4.2. Let C, respectively, D, be some coefficients data of depths k, respec-
tively, l, as above. Then we have

LC(s) · LD(t) =
∑
σ

LC∗σD(s +σ t), (4.5)

where the summation is taken over all (k, l, p)-shuffles with repetitions.
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Proof. Consider a term of the series (4.1) corresponding to (u0 = 0, u1, u2, . . . , uk)

and a term of the seriesLD(t) corresponding to, say, (w0 = 0, w1, w2, . . . , wl). This
pair of terms determines a unique (k, l, p)-shuffle (σ1, σ2), where p is the cardinality
of the union of sets

{u1, u2, . . . , uk} ∪ {w1, w2, . . . , wl} := {q1, . . . , qp}.
Namely, we may and will assume that q0 = 0 < q1 < · · · < qp. Then σ1(i) = j if
ui = qj , and σ2(i) = j if wi = qj .

Group together all pairwise products corresponding to one and the same shuffle,
and denote the resulting sum by Lσ .

The denominator of one such a product will obviously be qr11 · · · qrpp , where r =
s +σ t . Moreover, knowing such a denominator, we uniquely reconstruct the two
terms from LC(s) and LD(t), from which it was produced, at least if s, t take generic
values so that in the family {sa, tb, sa + tb} all terms are pairwise distinct. Finally, all
possible sequences q0 = 0 < q1 < · · · < qp will occur.

To prove that Lσ = LC∗σD(s +σ t), it remains to check that the numerator of
such a product will be as predicted by (4.5), in other words, that∏

p≥j>i≥0

e
(j,i)
qj ,qi

(?)=
∏

k≥j>i≥0

c
(j,i)
uj ,ui

∏
l≥j>i≥0

d(j,i)wj ,wi

if e(j,i)n,m are defined as in Section 4.1.3.
This is straightforward, although somewhat tedious. )�

4.3 Concluding remarks

It would be interesting to describe some nontrivial spaces of Dirichlet series containing
periods of cusp forms, closed with respect to the series shuffle relations, and consisting
entirely of periods in the sense of [KonZa].

Regarding shuffle relations themselves, motivic philosophy predicts that they
should be obtainable by standard manipulations with integrals. For the harmonic
shuffle relations between multiple zeta values, A. Goncharov established this in [Go6,
Chapter 9] (for convergent integrals), and in [Go6, 7.5] elaborating the last page
of [Go4] (for regularized integrals). Conversely, integral shuffle relations can be
deduced from harmonic ones: see [Go5, Chapter 2].

5 Iterated Eichler–Shimura and Hecke relations

5.1 Eichler–Shimura relations for iterated integrals

In this subsection, we take for X the upper half-plane H and for (ωV ) a family of
1-forms of cusp modular type (see 2.1.1) spanning a finite-dimensional linear space
stable with respect to the modular transformations
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σ =
(

0 −1
1 0

)
, τ =

(
1 −1
1 0

)
.

Proposition 5.1.1. With these assumptions, we have

σ∗(J i∞0 (ωV )) · J i∞0 (ωV ) = 1, (5.1)

τ 2∗ (J i∞0 (ωV )) · τ∗(J i∞0 (ωV )) · J i∞0 (ωV ) = 1. (5.2)

Proof. From (1.15) we get

σ∗(J i∞0 (ωV )) = J σ(i∞)σ (0) (ωV ) = J 0
i∞(ωV ) = J i∞0 (ωV )

−1.

which shows (5.1).
Similarly, τ transforms (0, i∞) into (i∞, 1), then to (1, 0), and according to (1.9)

J 0
1 (ωV ) · J 1

i∞(ωV ) · J i∞0 (ωV ) = 1, (5.3)

which is the same as (5.2). )�
Notice that some care is needed in establishing (5.3): the geodesic triangle with

vertices 0, i∞, 1 should first be replaced by a sequence of geodesic hexagons lying
entirely inH and cutting the corners of the triangle, and then it must be checked that
in the limit the hexagon relation replacing (5.3) tends to (5.3). This is routine for cusp
modular 1-forms; cf. Section 2.1.3.

We now pass to the relations involving Hecke operators.

5.2 Hecke operators

In this subsection, V denotes a finite set, ωv = fv(z)dz a family of modular forms of
weight 2, and pv a family of primes, both indexed by v ∈ V . Moreover, we assume
that Tpvωv = λvωv , λv ∈ C, where Tpv is the Hecke operator

Tpv :=
(
pv 0
0 1

)
+
pv−1∑
b=0

(
1 b

0 pv

)
= pv +

pv−1∑
b=0

h(pv, b). (5.4)

PutU := V ∐V ′, whereV ′ is another copy of the indexing setV , and for v′ ∈ V ′
corresponding to v ∈ V put ωv′ := (pv)

∗(ωv). Let ωU be the family consisting of all
ωv and ωv′ . When we consider formal series of the type J za (ωU) as in Section 1, we
denote the variables corresponding to V , respectively, V ′, by Av , respectively, Av′ .

Denote by W the set of pairs w = (v, b), where v ∈ V and b ∈ [0, pv − 1].
Let ωW be the family consisting of ω(v,b) := h(pv, b)

∗(ωv). When we consider
formal series of the type J za (ωW ), we denote the variables corresponding tow, by Bw
or B(v,b).

Define the following two continuous homomorphisms of rings of formal series:

l : C〈〈AU 〉〉 → C〈〈AV 〉〉 : l(Av) := λvAv, l(Av′) := −Av, (5.5)

r : C〈〈BW 〉〉 → C〈〈AV 〉〉 : r(B(v,b)) := Av. (5.6)



590 Yuri I. Manin

Theorem 5.3. We have
l(J 0
i∞(ωU)) = r(J 0

i∞(ωW )). (5.7)

Proof. We will check that

l(J 0
i∞(ωU)) = J 0

i∞((λvωv − ωv′)) (5.8)

whereas

r(J 0
i∞(ωW )) = J 0

i∞((
pv−1∑
b=0

ω(v,b))), (5.9)

where on the right-hand sides we consider both families as indexed by V . Since from
(5.4) and the above definitions we obtain for each v ∈ V

λvωv − ωv′ =
pv−1∑
b=0

ω(v,b), (5.10)

this will prove the theorem. )�
We have

J 0
i∞(ωU) =

∞∑
n=0

∑
(u1,...,un)∈Un

Aun · · ·Au1I
0
i∞(ωun, . . . , ωu1). (5.11)

Consider one summand in (5.11). In the sequence (u1, . . . , un) there are several, say
0 ≤ k ≤ n, elements vi ∈ V and the remaining n− k elements v′j ∈ V ′. Application
of l eliminates all primes in the subscripts of Aun · · ·Au1 and produces a monomial
in Av; besides, it multiplies this monomial by (−1)n−k

∏
λvi . Hence the coefficient

at any monomial Avn · · ·Av1 in l(J 0
i∞(ωU)) can be written as∑

S⊂[1,...n]
(−1)n−|S|

(∏
i∈S
λvi

)
I 0
i∞(πS(ωvn, . . . , ωv1)), (5.12)

where the operator πS replaces vj by v′j whenever j /∈ S.

On the other hand, the similar coefficient in J 0
i∞((λvωv − ωv′)) is

I 0
i∞(λvnωvn − ωv′n , . . . , λv1ωv1 − ωv′1),

which obviously coincides with (5.12) because the iterated integrals are polylinear in
ω. This proves (5.8).

The check of (5.9) is similar. We have

J 0
i∞(ωW ) =

∑
((vn,bn),...,(v1,b1))∈Wn

B(vn,bn) · · ·B(v1,b1)I
0
i∞(ω(vn,bn), . . . , ω(u1,b1)).

Application of r produces a series in (Av) whose coefficient of Avn · · ·Av1 equals∑
(b1,...,bn)

I 0
i∞(ω(vn,bn), . . . , ω(v1,b1)).

This is the same as the respective coefficient on the right-hand side of (5.9).
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6 Differentials of the third kind and generalized associators

6.1 Normalized horizontal sections

In this subsection, following [Dr2], we will define and study solutions of the differen-
tial equation (1.4), dJ z(	) = 	(z)J z(	) in the case when 	 =∑Avωv may have
a logarithmic singularity at a point a, so that it cannot be normalized by the condition
J a(	) = 1 and in fact cannot be defined by the series (1.3).

We start with a local situation. Put

rv,a := resa ωv, Ra := resa 	 =
∑
v

rv,aAv. (6.1)

The normalized solution will depend on the choice of a local parameter ta at a, and
a branch of the logarithm log ta .

Let U be a disc around a uniformized by ta . Denote by log ta the branch of the
logarithm in U which is real on Im ta = 0, Re ta > 0. Delete from U a cut from
a to the boundary which does not intersect the latter interval and denote by U ′ the
remaining domain. Write tRaa for eRa log ta . It is a formal series inAv with coefficients
which are holomorphic functions near a in U ′. Assume that, outside of a, all ωv are
regular in U .

Definition 6.1.1. A ∇	-horizontal section J in U ′ is called normalized at a (with
respect to a choice of ta) if it is of the form J = K · tRaa , whereK can be extended to
a holomorphic section in some neighborhood of a in U which takes the value 1 at a.

We will see that this definition produces a version of J za (	). In fact, we get
precisely J za (	) if Ra = 0, so that tRaa = 1.

Proposition 6.1.2. For any a and ta as above, there exists a unique local section
holomorphic in U ′ normalized at a.

Proof. In the course of proof, we will be considering only one point a, so we will
omit it in the notation for brevity and write R, t , rv , etc., in place of the former Ra ,
ta , rv,a .

The equation ∇	(K · tR) = 0 is equivalent to

dK = 	′K + t−1[R,K]dt, (6.2)

where

	′ := 	− Rdt
t
=
∑
v

rvνvAv.

We look for a solution to (6.2) of the form

K = 1+
∞∑
n=1

∑
(v1,...,vn)∈V n

fv1,...,vnAv1 · · ·Avn,
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where fv1,...,vn must be holomorphic functions defined in some common neighbor-
hood of a in U and vanishing at a. From (6.2) we find dfv = νv , so that the only
choice is fv(z) :=

∫ z
a
νv . Notice that all νv are regular in a common neighborhood

of a uniformized by ta . We will see that in this neighborhood all other coefficients
can be defined as well.

If fv1,...,vn−1 with the required properties are defined for some n− 1 ≥ 1, we find
from (6.2)

dfv1,...,vn = νv1fv2,...,vn + t−1(rv1fv2,...,vn − fv2,...,vn−1rvn)dt.

By the inductive assumption, the right-hand side is well defined and regular at a, so
integrating it from a to z, we get fv1,...,vn(z). )�

6.2 Scattering operators

Now let a, b be two points where 	 may have logarithmic singularities. Choose ta ,
tb as above, construct the neighborhoods Ua , Ub and neighborhoods with deleted
cuts U ′a , U ′b in which we have the holomorphic normalized horizontal sections Ja ,
Jb. Now embed U ′a , U ′b into a connected simply connected domain W to which
both Ja and Jb can be analytically extended. Clearly, they are invertible elements of
Ox〈〈AV 〉〉 at almost all points x ∈ W . Put

J̃ ab = J−1
a Jb. (6.3)

As in the proof of Proposition 1.2, one sees that J̃ ba ∈ C〈〈AV 〉〉. Borrowing the
physics terminology, we can call this transition element the scattering operator.

I added twiddle in the notation in order to remind the reader that J̃ ba , as well as	,
depends on ta and tb as well, if at least one of the residues Ra,Rb does not vanish.
This dependence however is pretty mild. Let J ′a = K ′(t ′a)Ra be another horizontal
section normalized with respect to some t ′a . Denote by τa ∈ C∗ the value of t ′a/ta at
a, and let t ′a = Ta · taτa , Ta(a) = 1.

Proposition 6.2.1.

(i) We have
J ′a = Ja · τRaa , K = K ′ · T Ra . (6.4)

(ii) Therefore, after replacing the two uniformizing parameters ta, tb by t ′a, t ′b, we get

J̃ ′ab = τ−Raa J̃ ab τ
Rb
b . (6.5)

Proof.

(i) We have
J ′a = K ′(t ′a)Ra = K ′ · T Raa · (ta)Ra τRa

Since τRa ∈ C〈〈AV 〉〉, and this section is invertible, K ′ · T Raa · (ta)Ra is ∇	-
horizontal as well, and sinceK ′ ·T Raa at a equals 1, it is normalized, soK ′ ·T Raa ·
(ta)

Ra = Ja , which proves (6.4).
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(ii) Similarly, from J ′b = J ′aJ̃ ′ab and (6.4), we get

Jb = JaτRaa J̃ ′ab τ−Rbb ,

which together with (6.3) proves (6.5). )�

6.3 Example: Drinfeld’s associator

Let X = P1(C), V = {0, 1},

ω0 = 1

2πi

dz

z
, ω1 = 1

2πi

dz

z− 1
.

Then
	 = A0ω0 + A1ω1

has poles at 0, 1,∞ with residues A0/2πi, A1/2πi, −(A0 +A1)/2πi, respectively.
Put t0 = z, t1 = 1−z. Then J̃ 1

0 in our notation is the Drinfeld associatorφKZ(A0, A1)

from [Dr2, Section 2].

6.4 Generalized associators

An essential feature of the the last example is that ωv are global logarithmic differ-
entials on the compact Riemann surface P1.

Generally, let X be such a surface, and (ai) a finite set of N points on it. The
dimension of the space of global logarithmic differentials with poles in this set,∑
cid log fi , where ci ∈ C, fi are meromorphic on X, is bounded by N − 1. It

achieves the maximum value N − 1 iff the difference of any two points ai − aj is
torsion in the divisor class group. I will call such a set (ai) logarithmic. The supply
of logarithmic sets depends on the genus of X.

(a) Genus zero. Any finite set of points is logarithmic. The respective iterated
integrals in this case include the multiple polylogarithms introduced in [Go1]. In
fact, as Goncharov remarked, general iterated integrals can be reduced to multiple
polylogarithms.

(b) Genus one. In this case we can take any finite set of points of finite order, for
example, the subgroup of all points of a given orderM .
For a general subset of points, Goncharov found a Feynman integral presentation
(in the sense of the last section of [Go2]) of the respective real periods. His for-
mulas involve the generalized Kronecker–Eisenstein series and can be considered
as an elliptic version of multiple zeta values. A similar problem is addressed in
the recent work of A. Levin and G. Racinet.

(c) Higher genera. If the genus of X is > 1, the order of such a logarithmic set is
bounded. The most interesting explicitly known examples are modular curves
and cusps on them; cf. [Dr1, El].
Notice that the initial Drinfeld’s setting is modular as well: P1 with three marked
points “is’’ the modular curve 0(4) \H together with its cusps.
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According to Deligne and Elkik [El], a set of points is logarithmic iff the mixed
Hodge structure onH 1(X◦,Q) (whereX◦ is the complement to the set of points)
is split, that is, the direct sum of pure Hodge structures.

Definition 6.4.1. Let X be a compact Riemannian surface, and (ai) a logarithmic set
of points on it. Then any scattering operator of the form J̃

aj
ai is called a generalized

associator.

6.5 Relations between scattering operators

Three types of relations established for J za (ωV ) in Section 1 are extended below to
the case of the general scattering operators.

6.5.1 Grouplike property

We have

 (J̃ ba ) = J̃ ba ⊗ J̃ ba (6.6)

where  is defined in 1.4.1.
To see this, notice that (Ja), by definition, is the series which is obtained from Ja

by replacing eachAv withBv := Av⊗1+1⊗Av . Hence (Ra) = Ra⊗1+1⊗Ra
is the residue of  (	) at a. Therefore,  (Ja) is the normalized ∇ (	)-horizontal
section in the ring of formal series in Bv , and  (J̃ ba ) is the respective scattering
operator.

On the other hand, Ja ⊗ Ja satisfies the same equation d(Ja ⊗ Ja) =
(	 ⊗ 1 + 1 ⊗ 	)(Ja ⊗ Ja) and clearly is as well normalized at ta . Hence the
passage from Ja ⊗ Ja to Jb ⊗ Jb is governed by the same scattering operator, this
time represented as the right-hand side of (6.6).

6.5.2 Cycle identities

Let γ be a closed oriented contractible contour in U , inside which there are no
singularities of 	. Let a1, . . . , an be points along this contour (cyclically) ordered
compatibly with orientation. Then

J̃ a1
a2
J̃ a2
a3
· · · J̃ an−1

an J̃ ana1
= 1. (6.7)

Of course, in this statement we assume that at each point ai one and the same
local parameter tai and one and the same branch of its logarithm are used for the
definition of the two relevant normalized sections corresponding to the incoming and
outcoming segments of the contour. Otherwise the relevant τR factors as in (6.5)
must be inserted.
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6.5.3 Functoriality

Let g be an automorphism ofX acting compatibly upon all the relevant objects, with
the possible exception of the parameters ta , and transforming the space spanned by
ωv into itself. Define g∗ as in Section 1.4. Then

J̃
gb
ga = τ−Raa g∗(J̃ ba )τ

Rb
b . (6.8)

where the τR factors account for the passage from ta , respectively, tb, to g∗(ta),
respectively, g∗(ta).

The proof is essentially the same as in Sections 1.4 and 1.5.

6.6 Example: Drinfeld associator revisited

If we treat Drinfeld’s setup as the 0(4)-modular curve, lift it to H and apply to the
respective family of scattering operators the Eichler–Shimura relations (5.1), (5.2)
(following from the cycle identities of lengths 2 and 3, and functoriality), we will get
the duality and the hexagonal relations. Of course, this is how they were deduced in
the first place, with σ, τ pushed down to P1 rather than everything else lifted to H .

It seems very probable that the somewhat mysterious relationship between the
double logarithms at roots of unity and the modular complex discovered in [Go3] can
be explained in the same way.

Acknowledgments. I am grateful to A. Levin and A. Goncharov, who have read the first draft
of this paper and made a number of useful suggestions which are incorporated in the text.
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0 Introduction

Dans cette article on généralise quelques formules de [GMS] au cas de la troisième
classe de Chern–Simons.

0.1

Soit X un schéma lisse sur un anneau commutatif k ⊃ Q. La théorie de classes
de Chern “style de Rham’’ associe à chaque fibré vectoriel E sur X des classes de
cohomologie

cDR
i (E) ∈ H 2i (X,	·X), i ≥ 1,

qui satisfont aux propriétés usuelles; cf. [Gr, Section 6]. Ici 	·X est le complexe de
de Rham de X sur k. On sait (cf., par exemple, [BD, 2.8]) que ces classes admettent
une version plus fine: les classes de Chern–Simons

cCS
i (E) ∈ Hi(X,	[i,2i−1〉

X ).

Ici
	
[i,2i−1〉
X = σ≥iτ≤2i−1	X[i] : 	iX −→ . . . −→ 	

2i−1,fer
X ,

où 	j,fer
X ⊂ 	jX est le sous-faisceau des formes fermées. L’image de cCS

i (E) par le
morphisme canonique

Hi(X,	
[i,2i−1〉
X ) −→ H 2i (X,	·X)

est égale à cDR
i (E).

Les images des cCS
i (E) par les morphismes évidents
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Hi(X,	
[i,2i−1〉
X ) −→ Hi(X,	iX)

sont les classes de Chern “style Hodge’’ cHdg
i (E); cf. [Gr, Section 6].

Il est très facile de décrire explicitement la première classe de Chern–Simons
cCS

1 (E) ∈ H 1(X,	
1,fer
X ). En effet, si r = rk(E), choisissons un 1-cocycle de Čech

définissant E, φ = {φij } ∈ Ž
1
(U,GLr (OX)) sur un recouvrement ouvert U = {Ui}

de X convenable; φij ∈ (Uij ,GLr (OX)), Uij = Ui ∩ Uj . Alors cCS
1 (E) est la

classe de cohomologie du 1-cocycle de Čech

zCS
1 (E) = {tr(φ−1

ij dφij )} ∈ Ž
1
(U, 	1,fer

X ).

Il est clair que zCS
1 (E) = zCS

1 (det(E)), où det(E) = �rOX
(E) est le fibré en droites

des puissances extérieures maximals de E.
Soit L un fibré en droites. Considérons le faisceau Conn Int(L) de connex-

ions intégrables sur L; ceci est un torseur sous 	1,fer
X , dont la classe caractéristique

c(Conn Int(L)) (l’obstruction à l’existence d’une section globale) est égale à cCS
1 (L).

Donc, pourE arbitraire, cCS
1 (E) est la classe du	1,fer

X -torseur Conn Int(det(E)).
On peut donc dire que ce torseur est à l’origine de l’existence de la première classe
de Chern–Simons.

Désormais nous ne nous intéresserons qu’au casE = TX, où TX est le fibré tangent
deX. Au lieu des classes de Chern ci on va considerer les “caractères de Chern’’ chi ,
donnés par les polynômes de Newton usuels, i.e., ch1 = c1, ch2 = c2

1 − c2/2, etc.
D’ailleurs, dans cette note on ne discutera que les cas i = 1, 2, 3.

Dans le Section 3 on décrit explicitement des cocycles qui représentent les
caractères chCS

i (TX) pour i = 2, 3.
Il est facile de voir (cf., par exemple, [GMS, Section 11]) que la donnée d’une

connexion intégrable sur det(TX) équivaut à celle d’une application k-linéaire c :
TX −→ OX vérifiant deux propriétés

c(aτ) = ac(τ)+ τ(a) (CY 1)

et

c([τ, τ ′]) = τc(τ ′)− τ ′c(τ ) (CY 2)

(a ∈ OX, τ, τ ′ ∈ TX). Ces axiomes entraînent d’ailleurs que c est un opérateur
différentiel (d’ordre 1). On appelle un tel opérateur une structure de Calabi–Yau
sur TX.

0.2

Les structures semblables, mais correspondant au deuxième caractère de Chern–
Simons, sont liées aux algèbres vertex. Une algèbre vertex est l’algèbre des symétries
fondamentale de la théorie des cordes quantiques. Dans [GMS] on a étudié une classe
particulière de ces algèbres: les algèbres vertex des opérateurs differentiels (VDO).
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Définir un faisceau de VDO sur X revient à définir une structure vertex sur TX,
c’est-à-dire: trois opérateurs différentiels

γ : OX ⊗k TX −→ 	1
X, 〈, 〉 : S2TX −→ OX, et c : �2TX −→ 	1

X,

vérifiants cinq axiomes analogues aux (CY 1), (CY 2); cf. op. cit. 1.4 où 7.2 ci-
dessous. Le théorème principal de op. cit. dit que toutes les structures vertex sur TX
forment une gerbe sous le complexe 	[1,2〉X , dont la classe caractéristique est égale à
chCS

2 (TX). Cette gerbe est donc à l’origine de l’existence de la classe chCS
2 (TX).

Les axiomes d’une structure vertex ont l’air assez mystérieux; dans [GMS] ils
se déduisent des axiomes de Borcherds pour une algèbre vertex. Par contre, dans
[S] il est donné une interprétation de ces axiomes qui ne fait aucune référence aux
algèbres vertex. Il y est introduit un complexe naturel de faisceaux surX, HKR(2)·X,
dit le deuxième complexe de Hochschild–Koszul–de Rham, muni d’une inclusion de
complexes

σ≥2σ≤5	X[2] ↪→ HKR(2)·X (0.2.1)

et d’un 2-cocycle canonique

ε
(2)
X ∈ Z2(X,HKR(2)·X).

Pour expliquer la structure de HKR(2)·X on utilise la notion d’un tricomplexe tordu
(de k-modules). Un tel objet est un k-module Z3-gradué C··· = {Cpqr}p,q,r∈Z mu-
nie d’une collection d’endomorphismes {dij }i,j∈Z où dij est de degré (i, j,−i −
j + 1), c’est à dire que dij est une collection dij = {dpqrij }p,q,r∈Z où dpqrij ∈
Hom(Cpqr , Cp+i,q+j,r−i−j+1). On exige les deux propriétés (a) et (b) si-dessous.

(a) (Finitude.) Pour chaque p, q, r et chaque x ∈ Cpqr il n’y a qu’un nombre fini
de dij (x) qui sont différents de 0.

Définissons un k-module Z-gradué C· par

Ci = ⊕p+q+r=iCpqr .
Posons d =∑ij dij ; ceci est un endomorphisme de degré 1 de C·, bien défini grâce
à (a).

(b) d2 = 0.
(Cette définition est plus générale que celle donnée dans la paragraphe 1.)
Le couple (C·, d) est appelé le complexe simple associé à C···.
Par exemple, si que d ′ = d10, d

′′ = d01 et d ′′′ = d00 sont différents de zéro, on
retrouve la notion usuelle d’un complexe triple.

Notre complexe HKR(2)·X est le complexe simple associé à un fasceau de tri-
complexes tordus {HKR(2)pqrX }, qui est une structure de dimension 3, p étant la
dimension “de de Rham,’’ q étant la dimension “de Koszul’’ et r étant la dimension
“de Hochschild.’’ Les seules composantes dij non triviales sont: d10 (“de de Rham’’),
d01 (“de Koszul’’), d00 (“de Hochschild’’) et deux flèches complémentaires, d2,−1 et
d1,−1.

Ce complexe tordu apparaît de manière essentiellement unique, lorsque l’on ajoute
une dimension hochschildienne au complexe de de Rham. La dimension koszulienne
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et les flèches complémentaires d2,−1 et d1,−1 viennent alors naturellement. La con-
struction est reproduite (suivant [S]) dans le la paragraphe 6.

Par exemple, la composante HKR(2)1X est égale à

Homk(OX ⊗k TX,	1
X)⊕Homk(S

2TX,OX)⊕Homk(�
2TX,	1

X).

Une structure vertex (au-dessus de X) est un élément

vX = (γX, 〈, 〉X, cX) ∈ (X,HKR(2)1X)

tel que dHKR(vX) = ε(2)X , où dHKR désigne la différentielle dans HKR(2)·X.
Par exemple, soit b = {τp} ⊂ (X, TX) une base abélienne, c’est-à-dire que

(X, TX) est un (X,OX)-module libre de base b et tous les vecteurs de cette base
commutent. Grâce à la lissité de X, de telles bases existent Zariski localement. À
une telle base b on peut associer une structure vertex vb. De plus, si b, b′ sont deux
bases abéliennes, on peut définir un élément hb,b′ ∈ (X,HKR(2)0X) tel que

dHKRhb,b′ = vb′ − vb.
Soit U = {Ui} un recouvrement ouvert deX et pour chaque i fixons une base abélienne
bi ⊂ (Ui, TX), d’où les collections

vU,b = {vbi } ∈
∏
i

(Ui,HKR(2)1X)

et

hU,b = {hbibj } ∈
∏
ij

(Ui ∩ Uj ,HKR(2)0X).

On peut considérer le couple v̂ = (vU,b, hU,b) comme une 1-cochaîne du complexe
Č·(U;HKR(2)X) (complexe simple associé au complexe double Č·(U;HKR(2)·X)).

L’inclusion (0.2.1) induit l’inclusion de complexes

µ : Č·(U;	[2,3〉X ) ↪→ Č·(U;HKR(2)X).

D’autre part, on a le morphisme évident de complexes

δ : (X,HKR(2)·X) −→ Č·(U;HKR(2)X).

La cochaîne v̂ est construite dans la paragraphe 7, dont résultat principal dit que
Dv̂ = µ(β(2))+ δ(ε(2)), où

β(2) ∈ Č2
(U, 	

[2,3〉
X )

est un cocycle représentant le deuxième caractère de Chern–Simons du fibré tangent
etD désigne la différentielle totale dans Č·(U;HKR(2)X). Cela est une variante du
le calcul principal de [GMS].

Les structures de Calabi–Yau admettent une interprétation tout à fait parallèle; cf.
[S] et les paragraphes 4, 5 ci-dessous.
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0.3

On peut appeler i-branaires les structures de la Géométrie Différentielle sous-jacentes
au i + 1-ième caractère de Chern–Simons.

Pour passer à dimension 3, il faudra définir le troisième complexe de Hochschild–
Koszul–de Rham HKR(3)·X et procéder comme ci-dessus. Dans cette note on fait
une partie de travail.

(a) La partie “Hochschild–Koszul.’’ On construit dans la paragraphe 8 un com-
plexe naturel HK(3)·X qui est le complexe simple associé au complexe double. Il est
muni d’une inclusion

	3
X ↪→ HK(3)·X

et d’un cocycle canonique

ε
(3)
X,HK ∈ Z3(X,HK(3)·X).

On appellera “structure prémembranaire’’ un élément π ∈ (X,HK(3)2X) tel que
dHKπ = εX. Cette notion est analogue à celle d’une préalgébroïde vertex; cf. [GMS,
4.1]. Les structures prémembranaires forment une “2-gerbe’’ sous 	3

X dont la classe

caractéristique est égale au troisième caractère de Chern style Hodge chHdg
3 (TX) ∈

H 3(X,	3
X); cf. Section 9.

(b) La partie “Koszul–de Rham.’’ On construit dans Section 10 un complexe
naturel KR(3)·X qui est le complexe simple associé à un “bicomplexe tordu’’; cf.
Section 1. Il est muni d’inclusion de complexes

σ≥3σ≤6	
·
X[3] ↪→ KR(3)·X.

Étant donné un recouvrement U deX, cette inclusion induit l’inclusion de complexes

µ : Č·(U;	[3,5〉X ) ↪→ Č·(U;KR(3)X).

Si l’on choisit une collection de bases abéliennes b comme ci-dessus, on définira dans
Section 11 une cochaîne m̂ ∈ Č2

(U;KR(3)X) telle que Dm̂ = µ(β̂(3)), où D est la
différentielle dans Č·(U;KR(3)X) et

β(3) ∈ Ž
3
(U, 	

[3,5〉
X )

représente la classe chCS
3 (TX). Ceci est le résultat principal de cette note, analogue,

en dimension 3, au calcul principal de [GMS]. En effet, la formule pour β(3) écrite
dans Section 3 est la conséquence du calcul du paragraphe 11.

Les théorèmes principaux de cette note sont: 8.4.1, 9.4.1, 10.7 et 11.4.1. On ne
décrit que la stratégie de leurs démonstrations; la vérification est tout à fait directe et
exige plus laboris quam artis.

Quant à l’idée de base, elle est simple: tout le contenu de cette note est obtenu
par “bootstrap.’’ D’abord, tous les complexes se déduisent du complexe de de Rham.
Ensuite, le rôle fondamental est joué par l’opérateur {, . . . , }b : SnTX −→ OX défini
(pour une base abélienne b = {τi} ⊂ (X, TX)) par la formule
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{a1τi1 , . . . , anτin}b =
1

n! Sym1...n τin(a1)τi1(a2) . . . τin−1(an) (0.3.1)

(aj ∈ OX, τij ∈ b). Tous les cocycles se déduisent de manière essentiellement
unique de (0.3.1). Ce phénomène d’unicité pour nous est un mystère.

1 Complexes tordus

1.1

Soit C une catégorie abélienne. Suivant l’usage, un bicomplexe dans C est un triple
(C··, d ′, d ′′), C·· = {Cij , i, j ∈ Z} étant une collection d’objets de C et d ′ = {d ′ij ,
i, j ∈ Z}, d ′′ = {d ′′ij , i, j ∈ Z}, étant des collections de morphismes, où d ′ a le
degré (1, 0), i.e.

d ′ij : Cij −→ Ci+1,j

et d ′′ a le degré (0, 1), c’est-à-dire,

d ′′ij : Cij −→ Ci,j+1,

qui vérifient les relations

d ′2 = 0, d ′′2 = 0, d ′d ′′ = d ′′d ′.
Le complexe simple associé Tot(C··) est défini par

Tot(C··)i = ⊕p+q=iCpq, dTot(x) = d ′x + (−1)pd ′′x, x ∈ Cpq.
Dans nos applications les bicomplexes seront limités inférieurement, i.e., Cij = 0
pour i < i0 ou j < j0, donc les sommes directes seront finies.

Exemple typique. Si X est un espace topologique, F · est un complexe limité in-
férieurement de faisceaux de groupes abéliens sur X, U = {Up} un recouvrement

ouvert de X, alors les cochaînes de Čech Čj (U,F i ) forment un bicomplexe.

1.2

Un bicomplexe tordu est une collection C·· comme ci-dessus munie de trois endo-
morphismes d ′, d ′′, R, où d ′ a le degré (1, 0), d ′′ a le degré (0, 1) et R = {Rij } a le
degré (2,−1), i.e.,

Rij : Cij −→ Ci+2,j−1

On exige les relations suivantes:

d ′′2 = 0, d ′d ′′ = d ′′d ′, d ′2 = Rd ′′ + d ′′R, Rd ′ = d ′R, R2 = 0
(1.2.1)

Le complexe simple associé est défini par

Tot(C··)i = ⊕p+q=iCpq,
dTot(x) = d ′x + (−1)pd ′′x + (−1)p+1Rx, x ∈ Cpq. (1.2.2)

On vérifie aussitôt que d2
Tot = 0.
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1.3

De même, un tricomplexe est une collection d’objets C··· = {Cpqr , p, q, r ∈ Z}
munie de trois endomorphismes d ′, d ′′, d ′′′ de degrés (1, 0, 0), (0, 1, 0), et (0, 0, 1),
respectivement, tels que

d ′2 = d ′′2 = d ′′′2 = 0, d ′d ′′ = d ′′d ′, d ′d ′′′ = d ′′′d ′, d ′′d ′′′ = d ′′′d ′′.

Le complexe simple associé est défini par

Tot(C···)i = ⊕p+q+r=iCpqr ,
dTot(x) = d ′x + (−1)pd ′′x + (−1)p+qd ′′′x, x ∈ Cpqr .

Définition équivalente: on prend d’abord le complexe simple par rapport aux deux
premiers degrés, on obtient le bicomplexe Tot12(C

···) et on prend le complexe simple
associé à ce bicomplexe Tot(Tot12(C

···)).

1.4

Un tricomplexe tordu est une collection C··· comme ci-dessus munie de 5 endomor-
phismes d ′, d ′′, d ′′′, R, etM de degrés

deg d ′ = (1, 0, 0), deg d ′′ = (0, 1, 0), deg d ′′′ = (0, 0, 1),
degR = (2,−1, 0), degM = (1,−1, 1).

qui vérifient les relations (a), (b), et (c) ci-dessous.

(a) Pour chaque p la collection (Cp′′, d ′′, d ′′′) est un bicomplexe.
(b) Pour chaque r la collection (C··r , d ′, d ′′, R) est un bicomplexe tordu.
(c) Les conditions surM:

M2 = 0,

d ′′′d ′ = d ′d ′′′ +Md ′′ + d ′′M,
d ′′′R = Rd ′′′ +Md ′ + d ′M,

d ′′′M +Md ′′′ = 0, RM +MR = 0.

Le complexe simple associé est défini par

Tot(C···)i = ⊕p+q+r=iCpqr ,
dTot(x) = d ′x + (−1)pd ′′x + (−1)p+qd ′′′x + (−1)p+1Rx + (−1)q+1Mx,

(1.4.1)

x ∈ Cpqr . On vérifie que d2
Tot = 0.



606 Vadim Schechtman

1.5

Chaque objet de C sera considéré comme un complexe concentré en degré 0.
Rappelons les notations usuelles pour les complexes. Soit C un complexe. Alors

sa translation C[a](a ∈ Z) est défini par C[a]i = Ca+i , dC[a] = (−1)adC .
Tronquations. “Bêtes’’:

σ≤aC : · · · −→ Ca−1 −→ Ca −→ 0,

σ≥a : 0 −→ Ca −→ Ca+1 −→ · · · .
“Intelligentes’’:

τ≤a : · · · −→ Ca−2 −→ Ca−1 −→ Ker da −→ 0.

Si f : C −→ D est un morphisme de complexes, alors Cône(f ) est le complexe

simple associé au bicomplexe C· f−→ D·, D· ayant le premier degré 0.

2 Rappels sur le complexe de de Rham

2.1

Désormais on fixe un anneau commutatif de base k et une k-algèbre commutative A.
Chaque A-module est un k-module par restriction de scalaires.

On va utiliser les notations suivantes.
k-Mod: la catégorie de k-modules; ⊗ := ⊗k , Hom := Homk . Si M1, . . . ,Mn,

N ∈ k-Mod on identifiera Hom(M1⊗· · ·⊗Mn,N) avec l’ensemble d’applications k-
multilinéairesM1×· · ·×Mn −→ N . M⊗n désignera la n-ième puissance tensorielle
sur k d’un k-moduleM .

De même, Hom(�nM,N) (resp., Hom(SnM,N)) désignera le k-module des
fonctions f : Mn −→ N k-multilinéaires alternées (resp., symétriques) (ceci peut
être considéré comme une définition de la puissance extérieure (resp., symétrique).
Par définition, �0M = S0M = k.

Plus généralement, Hom(�nM ⊗ SmM ′, N) désignera le k-module des fonc-
tions f : Mn ×M ′m −→ N k-multilinéaires, alternées par rapport aux premiers n
arguments et symétriques par rapport aux derniers m-arguments, etc.

SiM1, . . . ,Mn,N ∈ A-Mod, HomA(�nAM,N) (resp., HomA(SnAM,N)) désign-
era le A-module des fonctions f : Mn −→ N A-multilinéaires alternées (resp.,
symétriques).

2.2

Soit g une k-algèbre de Lie. g-Mod va désigner la catégorie de g-modules.
Si M , N ∈ g-Mod, alors M ⊗ N , M⊗n, �nM , SnM sont des g-modules sur

lequels g agit par la règle de Leibniz, par exemple,
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τ(x1 ⊗ · · · ⊗ xn) =
n∑
i=1

x1 ⊗ · · · ⊗ τxi ⊗ · · · ⊗ xn, (2.2.1)

etc.
De plus, Hom(M,N) est aussi un g-module; ici g agit par la règle

(τ (f ))(x) = τ(f (x))− f (τ(x)), f ∈ Hom(M,N). (2.2.2)

On utilisera aussi les notations τf et Lieτ f pour τ(f ).
Il en découle que si M1, . . . ,Mn, N sont de g-modules, alors Hom(M1 ⊗ · · · ⊗

Mn,N) sera un g-module, etc.
Le complexe de cochaînes de Chevalley de g à coefficients dans M , C·(g,M),

est défini par Cn(g,M) = Hom(�ng,M), n ≥ 0, la différentielle de Chevalley
dCh : Cn−1(g,M) −→ Cn(g,M) agit par la formule

dChf (τ1, . . . , τn) =
∑

1≤i<j≤n
(−1)i+j f ([τi, τj ], τ1, . . . , τ̂i , . . . , τ̂j , . . . , τn)

+
∑

1≤i≤n
(−1)i+1τif (τ1, . . . , τ̂i , . . . , τn) (2.2.3)

Attention: τif (τ1, . . . , τ̂i , . . . , τn) désigne τi(f (τ1, . . . , τ̂i , . . . , τn))!

2.3

Rappelons qu’une A-algébroïde de Lie est une k-algèbre de Lie T agissant sur A par
dérivations k-linéaires, munie d’une structure de A-module à gauche, telle que

[τ, aτ ′] = a[τ, τ ′] + τ(a)τ ′

(a ∈ A, τ, τ ′ ∈ T ).
Exemple typique. T = Derk(A) (algèbre de Lie des dérivations k-linéaires τ : A
−→ A).

Désormais nous fixons une A-algébroïde Lie T . On désigne par T Lie le même
T considérée comme une algèbre de Lie, avec la structure d’une algébroïde de Lie
oubliée.

On pose 	 = HomA(T ,A); ceci est un A-module. Les éléments de T (resp., de
	) seront notés τ, τ ′ (resp., ω), etc.; les éléments de A seront notés a, b, c.

On désigne par 〈, 〉 : T × 	 −→ A l’accouplement A-bilinéaire canonique. On
a la A-dérivation canonique d : A −→ 	 définie par

〈τ, da〉 = τ(a).
De plus, T Lie opère sur 	 par la règle

〈τ ′, τ (ω)〉 = τ(〈τ ′, ω〉)− 〈[τ, τ ′], ω〉
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(τ, τ ′ ∈ T , ω ∈ 	). Cette action vérifie les propriétés

τ(aω) = τ(a)ω + aτ(ω),
(aτ)(ω) = aτ(ω)+ 〈τ, ω〉da.

La flèche d est un morphisme de T Lie-modules.

2.4

Complexe de Chevalley–de Rham. Définissons les A-modules 	n :=
HomA(�nAT ,A) (n ≥ 0). En particulier, 	0 = A, 	1 = 	.

Les opérations fondamentales suivantes agissent sur ces modules.

Convolution avec un champ vectoriel. Pour τ ∈ T , l’opérateur iτ = 〈τ, ?〉 :
	n+1 −→ 	n est défini par

iτω(τ1, . . . , τn) = ω(τ, τ1, . . . , τn).
Il s’en suit que pour ω ∈ 	n

ω(τ1, . . . , τn) = iτn iτn−1 . . . iτ1ω.

Évidemment,

iτ iτ ′ = −iτ ′ iτ , ou bien [iτ , iτ ′ ] = 0; i2τ = 0.

Dérivée de Lie. Lieτ : 	n −→ 	n est définie par

Lieτ ω(τ1, . . . , τn) = τ(ω(τ1, . . . , τn))−
∑
i

ω(τ1, . . . , [τ, τi], . . . , τn).

En d’autres termes, T Lie agit sur Cn(T ,A) = Hom(�nT ,A) par les règles (2.2.1),
(2.2.2) et cette action respecte le sous-module 	n.

On désignera Lieτω aussi par τ(ω) ou simplement par τω.
On a

Lieτ ◦iτ ′ = i[τ,τ ′] + iτ ′ ◦ Lieτ , ou bien [Lieτ , iτ ′ ] = i[τ,τ ′].
Différentielle de Chevalley–de Rham. Par recurrence sur n on établit sans peine qu’il
existe une unique collection d’opérateurs d : 	n −→ 	n+1 qui satisfont à l’identité

iτ ◦ d + d ◦ iτ = Lieτ , ou bien [iτ , d] = Lieτ .

Pour n = 0, d a été déjà défini dans 2.3. On a d2 = 0.
La formule explicite sera

dω(τ1, . . . , τn) =
∑
i<j

(−1)i+jω([τi, τj ], τ1, . . . , τ̂i , . . . , τ̂j , . . . )
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+
∑
i

(−1)i+1τiω(τ1, . . . , τ̂i , . . . ).

Autrement dit, la différentielle de Chevalley (2.2.3) respecte les sous-modules 	n ⊂
Cn(T ,A), donc le complexe de de Rham (	·, d) est un sous-somplexe du complexe
de Chevalley C·(T ,A). On utilise la notation 	p,fer := Ker(d : 	p −→ 	p+1).

On a [d,Lieτ ] = 0.

2.5

Multiplication. Il existe une unique multiplication	· ×	· −→ 	·, (ω, ω′) �→ ωω′,
	p	q ⊂ 	p+q qui vérifie la propriété

iτ (ωω
′) = iτ (ω)ω′ + (−1)pωiτ (ω

′) (ω ∈ 	p).
En effet, cette règle implique la formule explicite “shuffle’’ évidente. Soient ω ∈ 	p,
ω′ ∈ 	q ; désignons par Ppq l’ensemble des sous-ensembles P ⊂ [1, p + q] :=
{1, . . . , p + q} de cardinalité p. Pour P = {i1, . . . , ip}, i1 < · · · < ip, posons
P ′ = [1, p + q] − P = {j1, . . . , jq}. On désigne par sgn(P ) ∈ Z/2Z le signe de la
permutation {i1, . . . , ip, j1, . . . , jq}. Dans ces notations

ωω′(τ1, . . . , τp+q) =
∑
P∈Ppq

(−1)sgn(P )ω(τP )ω
′(τP ′),

où ω(τP ) désigne ω(τi1 , . . . , τip ).
La composante de degré (0, p) correspond à la structure d’un A-module sur 	p

et (	·, d) devient une algèbre différentielle graduée associative et commutative.

3 Formes de Chern–Simons

3.1

Fixons un entier n ≥ 1. Pour chaque algèbre B on désigne par Matn(B) l’algèbre de
matrices n× n à coéfficients dans B.

Par exemple, considérons Matn(	·). Ceci est une algèbre différentielle graduée
associative (cf. 2.5); la graduation est définie par Matn(	·)i = Matn(	i). Pour
P ∈ Matn(	i) on pose |P | := i.

Notre algèbre est munie de la fonction trace tr : Matn(	·) −→ 	· qui commute
avec la différentielle et satisfait à la propriété fondamentale

tr(PQ) = (−1)|P ||Q| tr(QP ). (3.1.1)

Par contre, on utilisera parfois la notation usuelle pour le commutateur, [P,Q] =
PQ− (−1)|P ||Q|QP , d’où (3.1.1) se recrit comme tr([P,Q]) = 0.

On remarque aussi que
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tr(P 2) = 0 si |P | est impair. (3.1.2)

Bien sûr, ceci est une conséquence de (3.1.1) ci 1/2 ∈ k, mais c’est vrai toujours.
Le groupe GLn(	·) opère sur Matn(	·) par conjugaison; on n’utilisera que

l’action du sous-groupe GLn(A), avec la notation

Pφ = φ−1Pφ (φ ∈ GLn(A)).

Évidemment, tr(P φ) = tr(P ).

3.2

Pour φ ∈ GLn(A) on a

d(φ−1) = −φ−1dφ, φ−1 ∈ Matn(	
1).

On introduit la notation

�(φ) := φ−1dφ ∈ Matn(	
1). (3.2.1)

On a
d�(φ) = −�(φ)2.

Donc la forme tr{�(φ)} est fermée,

d tr{�(φ)} = − tr{�(φ)2} = 0 (3.2.2)

grâce à (3.1.2).
Ensuite,

d(P φ) = −[�(φ), P ] + (dP )φ (P ∈ Matn(	
·)).

3.3

D’un autre côté,
�(ψφ) = �(ψ)φ + �(φ) (3.3.1)

pour ψ, φ ∈ GLn(A), d’où

tr{�(ψφ)} = tr{�(ψ)} + tr{�(φ)}. (3.3.2)

3.4

Bicomplexe de Čech–de Rham. Supposons qu’un groupe G opère à droit sur un
groupe abélienM; on utilise la notation exponentielle: xg , x ∈ M,g ∈ G. Rappelons
que le complexe de cochaînesC·(G,M) est défini parCn(G,M) = HomEns(Gn,M),
avec la différentielle, dit de Čech,
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dcf (g1, . . . , gn+1)

= f (g2, . . . , gn+1)

+
n∑
i=1

(−1)if (g1, . . . , gigi+1, . . . , gn+1)+ (−1)n+1f (g1, . . . , gn)
gn+1 .

Par exemple, (3.3.1) signifie que � est un 1-cocycle de GLn(A) à coefficients dans
Matn(	1) et (3.3.2) et (3.2.1) signifient que

tr{�} ∈ Z1(GLn(A),	
1,fer) = H 1(GLn(A),	

1,fer) = HomGroupes(GLn(A),	
1,fer).

(L’action de GLn(A) sur 	1,fer étant triviale.)
Considérons le complexe de de Rham 	· comme muni de l’action triviale de

GLn(A). Le complexe de cochaînes C·(GLn,	·) devient un bicomplexe avec les
colonnes C·(GLn(A),	i), donc la première differentielle sera de de Rham et la
seconde celle de Čech.

3.5

Complexes de Chern–Simons. Pour i ≥ 1 considérons les complexes

	[i,2i−1〉 := τ≤2i−1σ≥i	·[i] : 	i −→ . . . −→ 	2i−1,fer.

Le i-ième bicomplexe de Chern–Simons CS(i)·· est le bicomplexe
C·(GLn(A),	[i,2i−1〉) dont le première degré est le degré dans 	[i,2i−1〉.

Le i-ième complexe de Chern–Simons CS(i) est le complexe simple associé

CS(i) = Tot CS(i)··.

Par exemple, CS(1) = C·(GLn(A),	1,fer). On a tr{�} ∈ CS(1)01 et dc(tr{�}) =
0, i.e.,

tr{�} ∈ Z1(CS(1)). (3.5.1)

On appelle l’élément (3.5.1) la première forme de Chern–Simons et l’on désigne
par β1.

On définira ci-dessous des cocycles analogues βi ∈ Zi(CS(i)) pour i = 2, 3.

Deuxième forme

3.6

Posons, pour abréger la notation, a := �(φ). On vérifie par recurrence que

d(a2i−1) = −a2i; d(a2i ) = 0.

Supposons que 2 est inversible dans k. Alors a2i = 1
2 [a, a2i−1], d’où tr{a2i} = 0.

(D’ailleurs, ceci est vrai sans hypothèse que 1/2 ∈ k; nous n’aurons pas besoin de
cela.) Donc
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tr{a2i−1} ∈ 	2i−1,fer.

Soit ψ ∈ GLn(A). Posons b := �(ψ)φ . On a

db = −[a, b] − b2 = −(ab + ba + b2),

d’où

d(ba) = −aba − b2a

et

d tr{ba} = − tr{a2b + ab2}.

3.7

D’autre part, rappelons que dcf (ψ, φ) = f (φ)− f (ψφ)+ f (ψ)φ , donc

dca
3(ψ, φ) = a3 − (a + b)3 + b3

= −(a2b + aba + ab2 + ba2 + bab + b2a),

d’où

dc tr(a3) = −3 tr{a2b + ab2} = 3d tr(ba).

Enfin, soit χ ∈ CLn(A). Posons c := �(χ)ψφ . Alors on aura

dc(ba)(χ,ψ, φ) = ba − (b + c)a + c(a + b)− cb = 0

3.8

Supposons que 6 est inversible dans k. Définissons les formes: β11 ∈ C1(G,	3,fer) =
CS(2)11 par

β11(φ) = 1

6
tr{�(φ)3}

et β02 ∈ C2(G,	2) = CS(2)02 par

β02(ψ, φ) = 1

2
tr{�(ψ)φ�(φ)}.

Alors on a montré que dcβ02 = 0 et dβ02 = dcβ11. Donc l’élément β2 = (β02, β11)

est un 2-cocycle dans CS(2). Nous l’appelons la deuxième forme de Chern–Simons.

Troisième forme



Structures membranaires 613

3.9

Ici nous supposons que 30 est inversible dans k. On a tr{�(φ)5} = 0. Considérons la
forme tr{�5} ∈ Hom(GLn(A),	5,fer) = CS(3)21. On a

dc tr{�5}(ψ, φ) = tr{b5 − (a + b)5 + a5}
= −5 tr{ba4 + b2a3 + b4a + b3a2 + baba2 + b2aba}.

On définit

β21 := − 1

60
tr{�5} ∈ Hom(GLn(A),	

5,fer) = CS(3)21.

3.10

D’un autre côté, on introduit une forme β12 ∈ Hom(GLn(A)2, 	4) = CS(3)12 par

β12(ψ, φ) := − 1

12
tr{ba3} − 1

12
tr{b3a} − 1

24
tr{baba} + 1

12
tr{b2a2}

= β ′ + β ′′ + β ′′′ + β ′′′′.
Alors on a

dβ ′ = 1

12
tr{ba4 + b2a3},

dβ ′′ = 1

12
tr{b4a + b3a2},

dβ ′′′Z = 1

12
tr{baba2 + b2aba},

et dβ ′′′′ = 0. En ajoutant,

dβ12(ψ, φ) = 1

12
tr{ba4 + b2a3 + b4a + b3a2 + baba2 + b2aba} = −dcβ21.

3.11

Enfin, on définit la forme β03 ∈ Hom(GLn(A)3, 	3) = CS(3)03 par

β03(χ, ψ, φ) = 1

6
tr{�(χ)ψφ�(ψ)φ�(φ)} = 1

6
tr{cba}.

On voit aussitôt que dc(cba) = 0, donc dcβ03 = 0.
D’autre part,

dc = −ac − bc − c2 − cb − ca,
d’où

d(cba) = −(a + b + c)cba
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Par contre, calculons

dcβ
12(χ, ψ, φ) = β12(ψ, φ)− β12(χψ, φ)+ β12(χ, ψφ)− β12(χ, ψ).

On trouve

dcβ
′ = − 1

12
tr{cb2a + cab2 + cba2 + ca2b + caba + cbab},

dcβ
′′ = 1

12
tr{c2ba − c2ab + cb2a + cab2 + cbca − cbab},

dcβ
′′′ = 1

12
tr{caba − cacb},

et

dcβ
′′′ = 1

12
tr{−cba2 − bca2 + c2ba + c2ab}.

En ajoutant, on obtient

dcβ
12(χ, ψ, φ) = 1

6
tr{c2ba − cbab − cba2} = 1

6
tr{(a + b + c)cba}

= −dβ03(χ, ψ, φ).

Il s’en suit:

Théorème 3.11.1. L’èlément β3 = (β03, β12, β21) ∈ CS(3)3 est un cocycle.

On l’appele la troisième forme de Chern–Simons.

4 Bicomplexe de Hochschild–de Rham

4.1

SoitM,N deuxA-modules. On peut plonger le module HomA(M,N) dans le module
de homomorphismes k-linéaires Hom(M,N); évidemment,

HomA(M,N) = Ker(dH : Hom(M,N) −→ Hom(A⊗M,N)),
où la flèche dH est définie par

dHf (a, x) = af (x)− f (ax)
(x ∈ M,a ∈ A).

Plus généralement, définissons le complexe de Hochschild C·H (M,N) par
CnH (M,N) = Hom(A⊗n−1 ⊗M,N) (n ≥ 0), la différentielle dH : CnH (M,N) −→
Cn+1
H (M,N) agit par la formule

dHf (a1, . . . , an; x)
= a1f (a2, . . . , an; x)

+
n−1∑
i=1

(−1)if (a1, . . . , aiai+1, . . . , an; x)+ (−1)nf (a2, . . . , an−1; anx).



Structures membranaires 615

4.2

Définissons un complexe augmenté de A-modules

B ·A(M)
e−→ M (4.2.1)

où B−nA (M) = A⊗n+1 ⊗M (n ≥ 0), la structure d’un A-module sur B−nA (M) étant
définie par

a(a1 ⊗ · · · ⊗ an+1 ⊗ x) = aa1 ⊗ · · · ⊗ an+1 ⊗ x,
la différentielle dH : B−nA (M) −→ B−n+1

A (M) agissant par

dH (a1 ⊗ · · · ⊗ an+1 ⊗ x) =
n∑
i=1

(−1)i+1a1 ⊗ . . . aiai+1 ⊗ · · · ⊗ an+1 ⊗ x

+ (−1)na1 ⊗ · · · ⊗ an ⊗ an+1x

et l’augmentation e étant définie par e(a ⊗ x) = ax.
Il est facile de voir que (4.2.1) est une résolution (on construit sans peine une

homotopie).
Il découle des définitions que

C·H (M,N) = HomA(B
·
A(M),N).

En pratique (sous les hypothèses faibles sur A) les A-modules BnA(M) seront projec-
tifs, donc

Hn(C·(M,N)) = ExtnA(M,N) (n ≥ 0).

Donc siM est projectif sur A, C·(M,N) sera une résolution de HomA(M,N).

4.3

Maintenant on applique cette construction à 	 = HomA(T ,A). On obtient le com-
plexe de Hochschild

C·H (T ,A) : Hom(T ,A) −→ Hom(A⊗ T ,A) −→ · · · .
On va noter ce complexe HR(1)0·, et cela sera la 0-ième colonne du bicomplexe de
Hochschild–de Rham.

Plus généralement, définissons pour i ≥ 1 les complexes analogues HR(1)i·.
Posons HR(1)i0 = Hom(�i+1T ,A). On remarque que l’on a l’inclusion évidente

	i+1 = HomA(�
i+1
A T ,A) ↪→ HR(1)i0.

Ensuite, posons

HR(1)ij = Hom(A⊗j ⊗ T ⊗�iT ,A) (j ≥ 1);
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les différentielles de Hochschild seront definies par la formule 4.1 par rapport au
premier argument:

dHf (a1, . . . , aj ; τ1; τ2, . . . , τi)
= a1f (a2, . . . , aj ; τ1; τ2, . . . , τi)

+
j−1∑
p=1

(−1)pf (a1, . . . , apap+1, . . . , aj ; τ1; τ2, . . . , τi)

+ (−1)j f (a1, . . . , aj−1; aj τ1; τ2, . . . , τi).
Le complexe HR(1)i· sera la i-ième colonne de notre bicomplexe de Hochschild–
de Rham.

4.4

Il nous reste à définir les flèches horizontales dDR : HR(1)i· −→ HR(1)i+1·.
D’abord la 0-ième ligne

HR(1)·0 : Hom(T ,A) −→ Hom(�2T ,A) −→ · · · .
La différentielle ici sera −dCh, où dCh est la différentielle de Chevalley dans
C·(T Lie, A), (2.2.3).

Par contre, pour j ≥ 1 la j -ième ligne sera

HR(1)·j : Hom(A⊗j ⊗ T ,A) −→ Hom(A⊗j ⊗ T ⊗ T ,A)
−→ Hom(A⊗j ⊗ T ⊗�2T ,A) −→ · · · .

Identifions Hom(A⊗j ⊗ T ⊗ �iT ,A) avec Hom(�iT ,Hom(A⊗j ⊗ T ,A)) et
définissons la différentielle de de Rham comme la différentielle de Chevalley dans
C·(T Lie,Hom(A⊗j ⊗ T ,A)), où l’action de T Lie sur Hom(A⊗j ⊗ T ,A) est définie
en accord avec la règle usuelle (cf. 2.2):

(τf )(a1, . . . , aj ; τ ′)
= τf (a1, . . . , aj ; τ ′)−

∑
p

f (a1, . . . , τ (ap), . . . ; τ ′)− f (a1, . . . , aj ; [τ, τ ′]).

Donc

dDRf (a1, . . . , aj ; τ ; τ1, . . . )
=
∑
p

(−1)p+1{τpf (a1, . . . ; τ ; . . . , τ̂p, . . . )

−
∑
r

f (a1, . . . , τp(ar), . . . ; τ ; . . . , τ̂p, . . . )− f (a1, . . . ; [τp, τ ]; . . . , τ̂p, . . . )}

+
∑
p<q

(−1)p+qf (a1, . . . ; τ ; . . . , τ̂p, . . . , τ̂q , . . . ).
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On vérifie par un calcul direct que d0
HdCh = −dChd

0
H (sic!), d’où d0

HdDR = dDRd
0
H .

D’autre part, on vérifie:

Lemme 4.4.1. Les Hochschilds

dH : Hom(A⊗j ⊗ T ,A) −→ Hom(A⊗j+1 ⊗ T ,A)
sont des morphismes de T Lie-modules.

4.5

Il s’en suit que djHdDR = dDRd
j
H pour j ≥ 1. Ceci donne le bicomplexe de

Hochschild–de Rham HR(1)·· promis. Le complexe de Hochschild–de Rham est
le complexe simple associé: HR(1) = Tot HR(1)··.

On a l’inclusion canonique

σ≥1	
·[1] ↪→ HR(1). (4.5.1)

Évidemment, 	1 = Ker(d0
H : HR(1)00 −→ HR(1)01), donc (4.5.1) induit un

isomorphisme sur H 0:
H 0(HR(1)) = 	1,fer.

5 Structures de Calabi–Yau

5.1

Cocycle ε1. Considérons l’élément “evaluation’’ e ∈ Hom(A ⊗ T ,A) = HR(1)01

défini par
e(a; τ) = τ(a).

Lemme. dH e = dDRe = 0.

En effet,

dH e(a, b; τ) = ae(b; τ)− e(ab; τ)+ e(a; bτ)
= aτ(b)− τ(ab)+ bτ(a) = 0.

D’autre part,

dDRe(a; τ, τ ′) = (τ ′e)(a; τ) = τ ′e(a; τ)− e(τ ′(a); τ)− e(a; [τ ′, τ ])
= τ ′τ(a)− ττ ′(a)− [τ ′, τ ](a) = 0.

(Autrement dit, l’opérateur e est invariant.)
Il s’en suit que ε1 = (−e, 0) ∈ HR(1)01 ⊕HR(1)10 = HR(1)1 est un cocycle.
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5.2

Une structure de Calabi–Yau sur T . est un élément c ∈ HR(1)0 = Hom(T ,A) tel
que dHRc = ε1.

Ceci signifie que

dH c = −e, c’est-à-dire, c(aτ)− ac(τ) = τ(a), (CY1)

et

dDRc = 0, c’est-à-dire, c([τ, τ ′])− τc(τ ′)+ τ ′c(τ ) = 0. (CY2)

Par exemple, siA est lisse sur k et T = Derk(A), alors une structure de CY sur T
est la même chose qu’une structure d’un D-module à droite surA (définie par la règle
1 · τ = −c(τ )) (cf. [GMS, Section 11]), et ceci est la même chose qu’une connexion
intégrable sur det T , d’où le nom.

On désigne par CY l’ensemble de structures de CY sur T . Évidemment, celui-ci
est un torseur sous le groupe abélienH 0(HR(1)) = 	1,fer. On va calculer sa classe.

5.3

Supposons que deux conditions (a) et (b) sont vérifiées.

(a) T est un A-module libre de rang fini n.
Une base b = {τ1, . . . , τn} comme un A-module est appelée abélienne si
[τi, τj ] = 0 pour tous i, j .

(b) T admet une base abélienne.
En effet, l’hypothèse (b) est superflue: sans doute tous les résultats du présent
papier restent vrais sans supposer (b). Par contre, elle simplifie énormement les
calculs et est suffisante pour les applications: en pratique elle est toujours vérifiée.
Donc nous supposons désormais que (b) est vérifiée.

On désigne par B l’ensemble de bases abéliennes de T .

5.4

Formules utiles. Soit b = {τi}, b′ = {τ ′i } ∈ B où τ ′i = φij τj , φij ∈ A (la sommation
par les indices répétes est sous-entendue). On ecrit b′ = φb, φ = (φij ) ∈ GLn(A).

On aura

0 = [τ ′i , τ ′j ] = [φipτp, φjqτq ] = φipτp(φjq)τq − φjqτq(φip)τp
= τ ′i (φjq)τq − τ ′j (φip)τp,

d’où
τ ′i (φjp) = τ ′j (φip)

pour tous i, j, p. Donc
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τa(φ
bc) = φ−1apτ ′p(φbc) = φ−1apτ ′b(φpc) = [φ−1τ ′b(φ)]ac

On utilisera les notations �′i (φ) = φ−1τ ′i (φ), etc.:

τa(φ
bc) = �′b(φ)ac, (5.4.1)

τa(φ
ba) = tr{�′b(φ)}. (5.4.2)

5.5

Pour un b = {τi} ∈ B il existe une seule structure de CY cb telle que cb(τi) = 0
pour chaque i. On a

cb(aτi) = τi(a).
Soit b′ = {τ ′i } une autre base abélienne, b′ = φb. Calculons la différence cb′ − cb ∈
	1,fer ⊂ Hom(T ,A). On a

cb′(τ
′
i )−cb(τ ′i ) = −cb(τ ′i ) = −cb(φipτp) = −τp(φip) = − tr{�′i (φ)} = −〈τ ′i , �(φ)〉,

i.e.,
cb′ − cb = −�(φ).

5.6

Complexe de Čech–Hochschild–de Rham. Soit X un groupe abélien. On défi-
nit le complexe de Čech à coefficients dans X, Č·(B;X) par Či (B;X) :=
HomEns(Bi+1, X) (i ≥ 0). Des éléments de Či (B;X) seront notés f = {fb0b1...bi }.
La différentielle agit comme

(dcf )b0...bi+1 =
i+1∑
p=0

(−1)pfb0...b̂p...bi+1
.

Le morphisme d’augmentation δ : X −→ Č0
(B;X) est défini par (δx)b = x

(x ∈ X).
Ensuite, on a le morphisme canonique

ν : C·(GLn(A),X) −→ Č·(B;X) (5.6.1)

(où GLn(A) agit trivialement sur X) défini par

(νf )b0b1...bi = f (gi, gi−1, . . . , g1), où bi = gibi−1.

Considérons le bicomplexe de Hochschild–de RhamHR(1)··. En appliquant Č·(B; ?)
on obtient: le tricomplexe Č·(B;HR(1)··) (avec les différentielles: la première,
de de Rham; la seconde, de Hochschild; et la troisième, de Čech), le bicomplexe
Č·(B;HR(1)·) et le complexe simple noté Č·(B;HR(1)), donc par définition
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Či (B;HR(1)) = ⊕s+r=iČr (B;HR(1)s) = ⊕p+q+r=iČr (B;HR(1)pq).

On a le morphisme d’augmentation

δ : HR(1) −→ Č·(B;HR(1)).

D’autre part, les inclusions 	1,fer ↪→ 	1 ↪→ Hom(T ,A) = HR(1)00 fournissent le
morphisme de complexes

	1,fer −→ HR(1)
qui induit, à l’aide de ν (5.6.1), le morphisme de complexes

µ : CS(1) = C·(GLn(A),	
1,fer) −→ Č·(B;HR(1)),

d’où la flèche
(µ, δ) : CS(1)⊕HR(1) −→ Č·(B;HR(1)).

On appele le premier complexe de Chern–Simons étendu le cône

ĈS(1) := Cône(µ, δ)[−1]. (5.6.2)

Évidemment, on a la projection canonique

π : ĈS(1) −→ CS(1)

Les calculs précédents sont résumés en:

Théorème 5.6.1. Considérons la collection c1 = {cb}b∈B comme un élément de
Č

0
(B;HR(1)00). Alors dH c1 = ε1 et dcc1 = −β1.
Donc l’élément β̂1 = (β1,−ε1,−c1) est un 1-cocycle de ĈS(1) tel que π(β̂1) =

β1.
On appelera cet élément le premier cocycle de Chern–Simons raffiné.

6 Deuxième Hochschild–Koszul–de Rham

6.1

Dans cette section on réproduit la construction de [S], Caput Secundum. Pour les
détails de calculs, voir op. cit.

Considérons 	2 comme un sous-module de Hom(T ,	), en associant à ω ∈ 	2

le morphisme ιω : T −→ 	 défini par ιω(τ) = iτω. Alors l’image de 	2 est
caractérisée par deux propriétés: (a) le morphisme ιω est A-linéaire; (b) l’expression
〈τ ′, ιω(τ)〉 est antisymétrique en τ, τ ′.

Donc on peut réprésenter 	2 comme l’intersection de deux noyaux

	2 = Ker(dH : Hom(T ,	) −→ Hom(A⊗ T ,	))
∩ Ker(Q : Hom(T ,	) −→ Hom(S2T ,A))
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où le Hochschild dH est défini par la formule usuelle dHf (a, τ ) = af (τ)− f (aτ),
et la “différentielle de Koszul’’Q est définie par

Qf (τ, τ ′) = Symτ,τ ′ 〈τ, f (τ ′)〉. (6.1.1)

Dans cette section on va définir un tricomplexe tordu HKR(2)··· = {HKR(2)ijk}
avec HKR(2)000 = Hom(T ,	), HKR(2)010 = Hom(S2T ,A), et HKR(2)001 =
Hom(A⊗ T ,	).

Dans ce tricomplexe i sera le degré de de Rham, j sera le degré de Koszul et k
sera le degré de Hochschild. Il sera concentré en degrés 0 ≤ i+ j + k ≤ 3, j = 0, 1.

Le complexe simple associé HKR(2) = Tot HKR(2)··· sera muni d’un plonge-
ment de complexes canonique

ι : 	[2,5] := σ≥2σ≤5	
·[2] ↪→ HKR(2). (6.1.2)

Voici ces termes non nuls.

Rez-de-chaussée. On aura HKR(2)000 = Hom(T ,	); les lignes

HKR(2)·00 : Hom(T ,	) −→ Hom(�2T ,	) −→ Hom(�3T ,	)

−→ Hom(�4T ,	),

HKR(2)·10 : Hom(S2T ,A) −→ Hom(S2T ⊗ T ,A) −→ Hom(S2T ⊗�2T ,A).

Premier étage:

HKR(2)·01 : Hom(A⊗ T ,	) −→ Hom(A⊗ T ⊗ T ,	)
−→ Hom(A⊗ T ⊗�2T ,	),

HKR(2)·11 : Hom(A⊗ T ⊗2, A) −→ Hom(A⊗ T ⊗3, A).

Deuxième étage:

HKR(2)·02 : Hom(A⊗2 ⊗ T ,	) −→ Hom(A⊗2 ⊗ T ⊗2, 	),

HKR(2)012 = Hom(A⊗2 ⊗ T ⊗2, A).

Troisième étage:

HKR(2)003 = Hom(A⊗3 ⊗ T ,	).
Les différentielles agiront: celle de de Rham d

ijk
DR : HKR(2)ijk −→

HKR(2)i+1,jk , celle de Koszul Qi0k : HKR(2)i0k −→ HKR(2)i1k et le Hoch-
schild dijkH : HKR(2)ijk −→ HKR(2)ij,k+1.

De plus, on aura 3 opérateurs

Rijk : HKR(2)ijk −→ HKR(2)i+2,j−1,k

pour (ijk) = (010), (110) ou (011), et 2 opérateurs

Mijk : HKR(2)ijk −→ HKR(2)i+1,j−1,k+1

pour (ijk) = (010) ou (011).
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Rez-de-chaussée

6.2

Définissons les plongements

ιn : 	n −→ Hom(�n−1T ,	) (6.2.1)

par

ιω(τ1, . . . , τn−1) = iτn−1 iτn−2 . . . iτ1ω. (6.2.2)

Alors, en employant la formule de Cartan et la formule iτ Lieτ ′ = Lieτ ′ iτ − i[τ ′,τ ],
on établit sans peine que

ιn+1dω = dChιnω + E′ω,

où dCh : Hom(�n−1T ,	) −→ Hom(�nT ,	) est la différentielle de Chevalley dans
le complexe C·(T ,	), i.e.,

dChf (τ1, . . . , τn) =
∑
p<q

(−1)p+qf ([τp, τq ], . . . , τ̂p, . . . , τ̂q , . . . )

+
∑
p

(−1)p+1τpf (τ1, . . . , τ̂p, . . . ) (6.2.3)

et

E′ω(τ1, . . . , τn) = (−1)nd〈τn, ιnω(τ1, . . . , τn−1)〉
Supposons que n est inversible dans A. Alors on peut récrire cela sous une forme
plus symétrique

E′ω(τ1, . . . , τn) = 1

n

n∑
p=1

(−1)pd〈τp, ιnω(τ1, . . . , τ̂p, . . . )〉.

Ceci entraîne:

Lemme 6.2.1. Supposons que n est inversible dans A. Définissons la flèche E :
Hom(�n−1T ,	) −→ Hom(�nT ,	) par

Ef (τ1, . . . , τn) = 1

n

n∑
p=1

(−1)pd〈τp, f (τ1, . . . , τ̂p, . . . )〉 (6.2.4)

et posons dDR = dCh + E. Alors dDRιn = ιn+1d .
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6.3

Ligne principale. Ceci justifie la définition: les différentielles de de Rham dDR dans
la ligne

HKR(2)·00 : Hom(T ,	) −→ Hom(�2T ,	) −→ Hom(�3T ,	)

−→ Hom(�4T ,	)

sont définies par dDR = dCh + E, où dCh est donnée par (6.2.3) et E est donnée par
(6.2.4). Ici on suppose que 6 est inversible dans A. On utilisera la notation di00

DR pour
la flèche HKR(2)i00 −→ HKR(2)i+1,00.

Les inclusions ιn (6.2.1) donnent lieu à l’inclusion

ι : 	[2,5] ↪→ HKR(2)·00. (6.3.1)

Par contre, HKR(2)·00 n’est pas un complexe: tandis que d2
Ch = 0, à cause du terme

E, d2
DR �= 0.

6.4

Par exemple, on calcule facilement que

d100
DR d

000
DR f (τ1, τ2, τ3) = −1

6
Cycle123{d〈[τ1, τ2], f (τ3)〉 + d〈τ3, f ([τ1, τ2])〉},

d’où le:

Lemme 6.4.1. Définissons le morphisme

R010 : HKR(2)010 = Hom(S2T ,A) −→ Hom(�3T ,	) = HKR(2)200

par

R010f (τ1, τ2, τ3) = −1

6
Cycle123 df ([τ1, τ2], τ3).

Alors d100
DR d

000
DR = R010Q000, oùQ000 est défini par (6.1.1).

6.5

Plus généralement, définissons les morphismes de Koszul

Qi00 : HKR(2)i00 = Hom(�i+1T ,	) −→ Hom(S2T ⊗�iT ,A) = HKR(2)i10

(i = 0, 1, 2) par

Qi00f (τ1, τ2; τ3, . . . ) = Sym12〈τ1, f (τ2, τ3, . . . )〉.
Lemme 6.5.1. On a d200

DR d
100
DR = R110Q100, où

R110 : HKR(2)110 = Hom(S2T ⊗ T ,A) −→ Hom(�4T ,	) = HKR(2)300

et défini par

R110f (τ1, τ2, τ3, τ4) = − 1

24
Alt1234 df ([τ1, τ2], τ3; τ4).
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6.6

Les deux différentielles de de Rham dans la ligne

HKR(2)·10 : Hom(S2T ,A) −→ Hom(S2T ⊗ T ,A) −→ Hom(S2T ⊗�2T ,A)

sont trouvées grace à condition de commutativité de deux carrés: d010
DRQ

000 =
Q100d000

DR et d110
DRQ

100 = Q200d100
DR . On arrive aux reponses suivantes.

Les opérateurs

di10
DR : Hom(S2T ⊗�iT ,A) −→ Hom(S2T ⊗�i+1T ,A) (i = 0, 1)

sont définis par di10
DR = −di10

Ch − Ei10.
Ici di10

Ch est la différentielle de Chevalley venant de l’identification

Hom(S2T ⊗�iT ,A) = Hom(�iT ,Hom(S2T ,A)) = Ci(T Lie,Hom(S2T ,A)),

l’action de T Lie sur Hom(S2T ,A) étant définie suivant l’usage, (τf )(τ ′, τ ′′) =
τf (τ ′, τ ′′)− f ([τ, τ ′], τ ′′)− f (τ ′, [τ, τ ′′]).

Les opérateurs E sont définis par

E010f (τ, τ ′; τ1) = −1

2
Symτ,τ ′ τf (τ

′, τ1)

et

E110f (τ, τ ′; τ1, τ2) = −1

3
Symτ,τ ′ {τf (τ ′, τ1; τ2)− τf (τ ′, τ2; τ1)}.

Lemme 6.6.1. On a les identités d110
DR d

010
DR = Q200R010 et R110d010

DR = d200
DRR

010.

6.7

Cela termine la définition de la partie HKR(2)··0; les relations écrites signifient que
celui-ci est un bicomplexe tordu.

Premier étage

6.8

Les Hochschilds (par rapport au premier argument)

di00
H : HKR(2)i00 = Hom(�i+1T ,	) −→ Hom(A⊗ T ⊗�iT ,	) = HKR(2)i01

(i = 0, 1, 2) seront définis par les formules usuelles

di00
H f (a, τ ; τ1, . . . ) = af (τ, τ1, . . . )− f (aτ, τ1, . . . )

Pour f ∈ Hom(T ,A) = HKR(2)000 on calcule:
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d100
H d000

DR f (a, τ, τ
′) = −τ ′dHf (a, τ )+ dHf (τ ′(a), τ )+ dHf (a, [τ ′, τ ])

+ 1

2
d〈τ ′, dHf (a, τ )〉 − 1

2
daQf (τ, τ ′).

Ceci justifie les définitions suivantes: le de Rham d001
DR := −d001

Ch − E001, où

d001
Ch f (a, τ, τ

′) = τ ′f (a, τ )− f (τ ′(a), τ )− f (a, [τ ′, τ ])
et

E001f (a, τ, τ ′) = −1

2
d〈τ ′, f (a, τ )〉.

D’autre côté, un opérateur exotique

M010 : HKR(2)010 = Hom(S2T ,A) −→ Hom(A⊗ T ⊗ T ,	) = HKR(2)101

sera défini par

M010f (a, τ, τ ′) = −1

2
daf (τ, τ ′).

Alors notre calcul signifie que

d100
H d000

DR = d001
DR d

000
H +M010Q000.

6.9

De même, le Chevalley

d101
Ch : Hom(A⊗ T ⊗ T ,	) −→ Hom(A⊗ T ⊗�2T ,	)

vient de l’identification Hom(A⊗ T ⊗�iT ,	) = Hom(�iT ,Hom(A⊗ T ,	)) =
Ci(T Lie,Hom(A⊗ T ,	)), explicitement,

d101
Ch f (a; τ ; τ1, τ2) = −f (a; τ ; [τ1, τ2])

+ Alt12{τ1f (a; τ ; τ2)− f (τ1(a); τ ; τ2)− f (a; [τ1, τ ]; τ2)}.
On pose

E101f (a; τ ; τ1, τ2) = −1

3
Alt12 d〈τ1, f (a; τ ; τ2)〉,

et l’on définit d101
DR := −d101

Ch − E101.
D’un autre côté, on introduit

M110 : Hom(S2T ⊗ T ,A) −→ Hom(A⊗ T ⊗�2T ,	)

par

M110f (a; τ ; τ1, τ2) = −1

3
daAlt12 f (τ, τ1; τ2).

Alors nous aurons
d200
H d100

DR = d101
DR d

100
H +M110Q100.
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6.10

Les Hochschilds

di10
H : Hom(S2T ⊗�iT ,A) −→ Hom(A⊗ T ⊗ T ⊗�iT ,A)

(i = 0, 1) sont définis par

dHf (a; τ ; τ ′; . . . ) = af (τ, τ ′; . . . )− f (aτ, τ ′; . . . ).
Les Koszuls

Qi01 : Hom(A⊗ T ⊗�iT ,	) −→ Hom(A⊗ T ⊗ T ⊗�iT ,A)
(i = 0, 1) seront définis à partir de la commutativitéQdH = dHQ, ce qui donne

Qi01f (a; τ ; τ ′; . . . ) = 〈τ ′, f (a; τ ; . . . )〉.

6.11

Le de Rham

d011
DR : Hom(A⊗ T ⊗2, A) −→ Hom(A⊗ T ⊗2 ⊗ T ,A)

est défini par d011
DR = −d011

Ch − E011, où

d011
Ch f (a; τ, τ ′; τ ′′)

= τ ′′f (a; τ, τ ′)− f (τ ′′(a); τ, τ ′)− f (a; [τ ′′, τ ], τ ′)− f (a; τ, [τ ′′, τ ′])
et

E011f (a; τ, τ ′; τ ′′) = −1

2
τ ′f (a; τ ′, τ ′′).

Ces formules sont déduites soit de la condition (a), soit de la condition (b) du lemme
suivant.

Lemme 6.11.1. (a) Q101d001
DR = d011

DRQ
001.

(b) d110
H d010

DR = d011
DR d

010
H +Q101M010.

Enfin, l’opérateur R du premier étage sera défini dans le lemme ci-dessous.

Lemme 6.11.2. Si l’on définit la flèche

R011 : Hom(A⊗ T ⊗ T ,A) −→ Hom(A⊗ T ⊗�2T ,	)

par

R011f (a; τ ; τ1, τ2)
= −1

6
d[f (a; τ ; [τ1, τ2])− Alt12{f (τ1(a); τ ; τ2)+ f (a; [τ1, τ ]; τ2)}]

alors

(a) d101
DR d

001
DR = R011Q001

et

(b) d200
H R010 = R011d010

H +M110d010
DR + d101

DRM
010.

Ceci termine la définition de la partie {HKR(2)··i}0≤i≤1 du notre tricomplexe tordu.
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Deuxième étage

6.12

Les formules sont tout à fait pareilles à celles du premier étage.
On définit les Hochschilds:

d001
H : Hom(A⊗ T ,	) −→ Hom(A⊗2 ⊗ T ,	)

par

d001
H f (a, b; τ) = af (b; τ)− f (ab; τ)+ f (a; bτ)

et

d101
H : Hom(A⊗ T ⊗2, 	) −→ Hom(A⊗2 ⊗ T ⊗2, 	)

par

d101
H f (a, b; τ, τ ′) = af (b; τ, τ ′)− f (ab; τ, τ ′)+ f (a; bτ, τ ′)

Ensuite,

M011 : Hom(A⊗ T ⊗2, A) −→ Hom(A⊗2 ⊗ T ⊗2, 	)

est défini par

M011f (a, b; τ, τ ′) = −1

2
daf (b; τ, τ ′).

Le de Rham

d002
DR : Hom(A⊗2 ⊗ T ,	) −→ Hom(A⊗2 ⊗ T ⊗2, 	)

sera défini par d002
DR = −d002

Ch − E002, où

d002
Ch f (a, b; τ, τ ′) = τ ′f (a, b; τ)−f (τ ′(a), b; τ)−f (a, τ ′(b); τ)−f (a, b; [τ ′, τ ])

et

E002f (a, b; τ, τ ′) = −1

2
d〈τ ′, f (a, b; τ)〉.

Alors on aura:

Lemme 6.12.1.

(a) d101
H d001

DR = d002
DR d

001
H +M011Q001.

(b) d101
H M010 = −M011d010

H .
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6.13

On définit le Hochschild

d011
H : Hom(A⊗ T ⊗2, A) −→ Hom(A⊗2 ⊗ T ⊗2, A)

par

d011
H f (a, b; τ, τ ′) = af (b; τ, τ ′)− f (ab; τ, τ ′)+ f (a; bτ, τ ′)

et le Koszul

Q002 : Hom(A⊗2 ⊗ T ,	) −→ Hom(A⊗2 ⊗ T ⊗2, 	)

par

Q002f (a, b; τ, τ ′) = 〈τ ′, f (a, b; τ)〉.
Alors on auraQ002d001

H = d011
H Q001.

Troisième étage

6.14

Enfin, le Hochschild

d002
H : Hom(A⊗2 ⊗ T ,	) −→ Hom(A⊗3 ⊗ T ,	)

est défini par la formule usuelle

d002
H f (a, b, c; τ) = af (b, c; τ)− f (ab, c; τ)+ f (a, bc; τ)− f (a, b; cτ).

Pour tous les Hochschilds, on a évidemment d2
H = 0.

Ceci termine la définition du tricomplexe tordu HKR(2)···, avec d ′ = dDR,
d ′′ = Q et d ′′′ = dH .

Attention: Notre de Rham est −dDR de [S], nos d ··0H sont −dH de [S], et notre
M011 et −M de [S]; les autres morphismes sont les mêmes.

Le plongement ι (6.1.2) est induit par (6.3.1). Son image

Im ι = Ker d ·00
H ∩ KerQ·00.

7 Structures vertex

Dans 7.1–7.2 on réproduit les considérations de [S], Finale. Pour les détails de calculs,
voir op. cit.
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7.1

Cocycle ε2. Définissons des éléments suivants: ε002
2 ∈ HKR(2)002 = Hom(A⊗2 ⊗

T ,	) par
ε002

2 (a, b; τ) = −τ(a)db − τ(b)da;
ε011

2 ∈ HKR(2)011 = Hom(A⊗ T ⊗2, A) par

ε011
2 (a; τ, τ ′) = ττ ′(a)

et ε101
2 ∈ HKR(2)101 = Hom(A⊗ T ⊗2, 	) par

ε101
2 (a; τ, τ ′) = 1

2
dττ ′(a).

Posons ε2 = (ε002
2 , ε011

2 , ε101
2 ) ∈ HKR(2)2.

Théorème 7.1.1. dHKRε2 = 0. Cette assertion est équivalente aux cinq identités:

dH ε
002
2 = 0, (B1)

Qε002
2 − dH ε011

2 = 0, (B2)

dDRε
002
2 − dH ε101

2 +Mε011
2 = 0, (B3)

dDRε
011
2 −Qε101

2 = 0, (B4)

et

dDRε
101
2 − Rε011

2 = 0, (B5)

qui se vérifient très facilement.

7.2

Une structure vertex sur T est un cochaîne v ∈ HKR(2)1 telle que dHKRv = ε2.
En composantes, v = (v001, v010, v100). Introduisons les notations γ = v001 ∈

Hom(A⊗ T ,	), 〈, 〉 = −v010 ∈ Hom(S2T ,A) et c = v100 ∈ Hom(�2T ,	). Alors
l’axiome de structure vertex est équivalent à cinq identités (A1)–(A5) ci-dessous.

dHγ = ε002
2 , (A1)

dH 〈, 〉 +Qγ = ε011
2 , (A2)

−dH c −M〈, 〉 + dDRγ = ε101
2 , (A3)

dDR〈, 〉 +Qc = 0, (A4)

et

dDRc + R〈, 〉 = 0. (A5)

On voit aussitôt que ces axiomes coïncident avec [GMS, 1.4, les axiomes (A1)–(A5)].
De même, un morphisme h : v −→ v′ de deux structures vertex est une cochaîne

h ∈ HKR(2)0 = Hom(T ,	) telle que dHKRh = v′ − v. On voit que ceci coïncide
avec la notion introduite dans op. cit. 3.5 (avec gA, gT , g	 étant les morphismes
identiques).
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7.3

Fixons une base abélienne b = {τi} de T . Définissons 〈, 〉b ∈ Hom(S2T ,A) par

〈aτi, bτj 〉b = −τj (a)τi(b)
Il existe un unique γb ∈ Hom(A⊗T ,	) quie vérifie l’axiome (A2) avec ce 〈, 〉b. En
effet, (A2) s’ecrit explicitement comme

〈γb(a, τ ), τ ′〉 = 〈aτ, τ ′〉b − a〈τ, τ ′〉b + ττ ′(a), (7.3.1)

qui nous donne
γb(b, aτi) = adτi(b).

De même, il existe un unique cb ∈ Hom(�2T ,	) tel que cb(τi, τj ) = 0 pour tous
i, j et satisfait à l’axiome (A3). Il est donné par la formule

cb(aτi, bτj ) = 1

2
Altaτi ,bτj τi(b)dτj (a).

Théorème 7.3.1. Le triple vb = (γb,−〈, 〉b, cb) est une structure vertex.

On remarque que la structure vertex vb diffère de celle utilisée dans [GMS], 5.7;
notre vb est plus simple. Nous laissons la preuve de 7.3.1 au lecteur.

7.4

Soient b = {τi}, b′ = {τ ′i }, b′′ = {τ ′′j } trois bases abéliennes, b′ = φb, b′′ = ψb′,
φ,ψ ∈ GLn(A).

On définit un élément hbb′ ∈ Hom(T ,	) = HKR(2)0 par

hbb′(aτ
′
i ) =

1

2
tr{φ−1aτ ′i (φ)φ−1dφ} + [dφφ−1]ipτ ′p(a).

Rappelons les composantes de la deuxième forme de Chern–Simons (cf. 3.8):

β11(φ) = 1

6
tr{�(φ)3}; β02(ψ, φ) = 1

2
tr{�(ψ)φ�(φ)},

où �(φ) = φ−1dφ, �(ψ)φ = ψ−1�(φ)ψ .
Le théorème ci-dessous réproduit le résultat principal de [GMS, Théorème 5.14].

Théorème 7.4.1.

(a) dDRhbb′(aτ ′i , bτ ′j ) = cb′(aτ ′i , bτ ′j )− cb(aτ ′i , bτ ′j )− 〈bτ ′j , 〈aτ ′i , β11(φ)〉〉.
(b) 〈aτ ′i , hbb′(bτ ′j )〉 + 〈bτ ′j , hbb′(aτ ′i )〉 = 〈aτ ′i , bτ ′j 〉b − 〈aτ ′i , bτ ′j 〉b′ .
(c) ahbb′(bτ ′j )− hbb′(abτ ′j ) = γb′(a, bτj )− γb(a, bτj ).
(d) hb′,b′′(aτ ′′i )− hb,b′′(aτ ′′i )+ hbb′(aτ ′′i ) = −〈aτ ′′i , β02(ψ, φ)〉.

On peut démontrer ce théorème par la méthode de [GMS], ou bien faire la vérifi-
cation directe. Nous laissons les détails comme un exercice au lecteur.
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7.5

Considérons le bicomplexe de Čech Č·(B,HKR(2)·) où le degré de Čech est le
premier et le complexe simple associé Č·(B,HKR(2)).

Le composé
	[2,3〉 ↪→ 	[2,5] ι−→ HKR(2)

induit le morphisme canonique

µ : CS(2) = C·(GLn(A),	
[2,3〉) −→ Č·(B,HKR(2)).

Posons v = {vb} ∈ Č0
(B;HKR(2)1); h = {hbb′ } ∈ Č1

(B;HKR(2)0).
Alors le théorème précédent se réécrit:

Théorème 7.5.1. (a) dHKRh− dcv = −µ(β11).

(b) dch = −µ(β02).

De plus, on a comme d’habitude le morphisme d’augmentation δ : HKR(2) −→
Č·(B;HKR(2)), et 7.3.1 signifie que dHKRv = δ(ε2).

Définissons le complexe

ĈS(2) = Cône{(µ, δ) : CS(2)⊕HKR(2) −→ Č·(B;HKR(2))[−1]};
cf. (5.6.2). On a le morphisme canonique de complexes π : ĈS(2) −→ CS(2).

On définit
v̂ = (v, h) ∈ Č1

(B;HKR(2)).
Toute l’information précédente est rassemblée dans:

Théorème 7.5.2. La cochaîne β̂2 = (β2,−ε2, v̂) ∈ ĈS(2)2 est un cocycle tel que
π(β̂2) = β2.

8 Structures prémembranaires

8.1

Complexes de Koszul. Le n-ième complexe de Koszul K(n) = {K(n)i} est concentré
en degrés 0 ≤ i ≤ n− 1

K(n)· : Hom(T ,	n−1) −→ Hom(S2T ,	n−2) −→ . . . −→ Hom(SnT ,A),

i.e., K(n)i = Hom(Si−1T ,	n−i+1). Les différentielles Q : K(n)i −→ K(n)i+1

sont définis par

Qf (τ1, . . . , τi) =
i∑
p=1

〈τp, f (τ1, . . . , τ̂p, . . . )〉.

Il est clair queQ2 = 0.
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8.2

Complexes de Hochschild–Koszul. Le n-ième bicomplexe de Hochschild–Koszul
HK(n)·· = {HK(n)ij } habite en degrés 0 ≤ i ≤ n − 1, j ≥ 0. Par définition, la
0-ième ligne HK(n)i0 coïncide avec K(n).

Les colonnes sont les complexes de Hochschild par rapport au premier argument:

HK(n)i· : Hom(Si−1T ,	n−i+1) −→ Hom(A⊗ T ⊗ Si−2T ,	n−i+1) −→ · · ·
−→ Hom(A⊗j ⊗ T ⊗ Si−2T ,	n−i+1) · · · ,

les différentielles verticales étant les Hochschilds usuels:

dHf (a1, . . . , aj ; τ ; . . . ) = a1f (a2, . . . , aj ; τ ; . . . )

+
j−1∑
p=1

(−1)pf (. . . , apap+1, . . . ; τ ; . . . )

+ (−1)j f (a1, . . . , aj−1; aj τ ; . . . ).
Par contre, les différentielles horisontales dans la j -ième ligne HK(n)·j , j > 0, sont
les Koszuls suivants:

Qf (a1, . . . , aj ; τ ; τ1, . . . , τi) =
i∑
p=1

〈τp, f (a1, . . . , aj ; τ ; τ1, . . . , τ̂p, . . . )〉.

On vérifie sans peine que dHQ = QdH . Donc le premier degré est de Koszul, et le
deuxième est de Hochschild.

Le complexe simple associé sera désigné par HK(n) = {HK(n)i}.
En effet, désormais on ne sera interessé qu’au troisième complexe HK(3). On

suppose dans cette section et dans la section suivante que 6 est inversible dans l’anneau
de base k.

8.3

Cocycle εHK
3 . Définissons les éléments: ε ∈ Hom(A⊗T ⊗S2T ,A) = HK(3)21 par

ε(a; τ ; τ ′, τ ′′) = 1

2
Symτ ′,τ ′′ ττ

′τ ′′(a),

ε′ ∈ Hom(A⊗2 ⊗ T ⊗2, 	) = HK(3)12 par

ε′(a, b; τ ; τ ′) = −Syma,b{
1

2
τ(a)dτ ′(b)+ ττ ′(a)db}

et ε′′ = Hom(A⊗3 ⊗ T ,	2) = HK(3)03 par

ε′′(a, b, c; τ) = τ(b)dadc + 1

2
τ(c)dadb + 1

2
τ(a)dbdc.

On les rassemble en
εHK

3 = (−ε′′,−ε′, ε) ∈ HK(3)3.
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Théorème 8.3.1. dHK(εHK
3 ) = 0.

En effet, on commence par l’élément ε “bien naturel.’’ Après on trouve ε′ à partir
de la condition

dH ε = Qε′. (8.3.1)

Ensuite, on trouve ε′′ de la condition

dH ε
′ = Qε′′. (8.3.2)

Enfin, on vérifie que

dH ε
′′ = 0. (8.3.3)

Les trois équations (8.3.1)–(8.3.3) sont équivalentes à l’assertion du théorème. Pour
les détails, voir 8.7–8.9.

Une structure prémembranaire sur T est une cochaîne m = (m02,m11,m20) ∈
HK(3)2 telle que dHKm = εHK

3 .

8.4

Fixons une base abélienne b = {τi} de T . Considérons un élément ρb ∈
Hom(T ⊗3, A):

ρb(aτi, bτj , cτk) = τk(a)τi(b)τj (c). (8.4.1)

Manifestement, il possède la symétrie cyclique: ρb(τ, τ
′, τ ′′) = ρb(τ

′, τ ′′, τ ). Donc,
si l’on définit {, , }b par

{τ, τ ′, τ ′′}b = −1

2
Symτ ′,τ ′′ ρb(τ, τ

′, τ ′′), (8.4.2)

cet élément appartiendra à Hom(S3T ,A) = HK(3)20.
De plus, on introduit les deux éléments suivants: γb ∈ Hom(A ⊗ T ⊗2, 	) =

HK(3)11,

γb(a; bτj , cτk) = −1

2
[bdτj {cτk(a)} + bτj (c)dτk(a)] (8.4.3)

et γ ′b ∈ Hom(A⊗2 ⊗ T ,	2) = HK(3)02,

γ ′b(a, b; cτk) =
1

2
Syma,b dacdτk(b). (8.4.4)

On les rassemble en

mb = (−γ ′b,−γb, {, , }b) ∈ HK(3)2.

Théorème 8.4.1. mb est une structure prémembranaire.
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En effet, on commence par l’élément {, , }b “bien naturel.’’ Après on trouve γb à
partir de l’équation

dH {, , }b = ε +Qγb. (8.4.5)

Ensuite, on trouve γ ′b à partir de la condition

dHγb = −ε′ +Qγ ′b. (8.4.6)

Enfin, on vérifie que
dHγ

′
b = ε′′. (8.4.7)

Les trois équations ci-dessus sont équivalentes à 8.4.1.

9 Troisième cocycle de Chern–Hodge raffiné

9.1

Maintenant considérons le tricomplexe Č·(B;HK(3)··), le degré de Koszul étant
le premier, le degré de Hochschild étant le deuxième et le degré de Čech étant le
troisième. On désigne par Č·(B;HK(3)) le complexe simple associé.

On a, comme d’habitude, le morphisme d’augmentation

δ : HK(3) −→ Č·(B;HK(3)).

De plus, on considère 	3 comme un sous-module de Hom(T ,	2) = HK(3)00

par la règle usuelle: on associe à une forme ω ∈ 	3 la flèche ιω : T −→ 	2,
ιω(τ) = iτω, dù l’inclusion

ι : 	3 ↪→ HK(3),

d’où le morphisme

µ : C·(GLn(A),	
3) −→ Č·(B;HK(3)).

Rappelons la forme βCH
3 := β03 ∈ Z3(GLn(A),	3),

βCH
3 (χ, ψ, φ) = 1

6
tr{�(χ)ψφ�(ψ)φ�(φ)};

cf. 3.11. On l’appele le troisième cocycle de Chern–Hodge, puisqu’il définit le
troisième caractère de Chern style Hodge.

9.2

On considère la collection m = {mb} construite dans 8.4 ci-dessus comme une
cochaîne m̂··0 ∈ Č0

(B;HK(3)··), avec les composantes (m̂020, m̂110, m̂200) =
(−γ ′,−γ, {, , }).
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9.3

Soient b = {τi}, b′ = {τ ′i } ∈ B, b′ = φb. On définit l’élément −hbb′ = m̂101
bb′ ∈

Hom(S2T ,	) = HK(3)10 par

−hbb′(aτ
′
i , bτ

′
j ) = m̂101

bb′(aτ
′
i , bτ

′
j )

= −Symaτ ′i ,bτ ′j

[
1

6
tr{φ−1aτ ′i (φ)φ−1bτ ′j (φ)φ−1dφ}

+ 1

2
[dφφ−1aτ ′i (φ)φ−1]jpτ ′p(b)+

1

2
[dφφ−1]jpτ ′p(a)τ ′i (b)

]
.

(9.3.1)

Ensuite, on définit l’élément bb′ = m̂011
bb′ ∈ Hom(A⊗ T ,	2) = HK(3)01 par

bb′(a; bτ ′j ) = m̂011
bb′(a; bτ ′j ) =

1

2
bdφjpdτp(a). (9.3.2)

Cela fournit une cochaîne m̂··1 = (m̂011
bb′ , m̂

101
bb′) ∈ Č1

(B;HK(3)··).

9.4

Soit b′′ = {τ ′′i } ∈ B, b′′ = ψb′. Définissons un élément −Hbb′b′′ = m̂002
bb′b′′ ∈

Hom(T ,	2) = HK(3)00 par

−Hbb′b′′(aτ
′′
i ) = m̂002

bb′b′′(aτ
′′
i )

= −1

6
a tr{�′′i (ψ)φ�(ψ)φ�(φ)− �′′i (ψ)φ�(φ)�(ψ)φ

+ �′′i (φ)�(ψ)φ�(φ)− �′′i (ψ)φ�(φ)�(φ)} −
1

2
[dψdφ]ipτp(a).

(9.4.1)

Rappelons que �(φ) := φ−1dφ, �′′i (ψ) := ψ−1τ ′′i (ψ), et xφ := φ−1xφ.

Cela fournit une cochaîne m̂··2 = (m̂002
bb′b′′) ∈ Č2

(B;HK(3)··).
En rassemblant, on définit la 2-cochaîne

m̂HK = (m··0,m··1,m··2) ∈ Č2
(B;HK(3)).

Théorème 9.4.1. Si l’on désigne pardCHK la différentielle totale dans Č
·
(B;HK(3)),

on aura dCHK(m̂HK) = δ(εHK
3 )+ µ(βCH

3 ).

En effet, on trouve hbb′ à partir de la condition

dc{, , }bb′ = Qhbb′ . (9.4.2)

Après on trouve Hbb′b′′ à partir de la condition
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dchbb′b′′ = QHbb′b′′ . (9.4.3)

Ensuite, on vérifie que

dcHbb′b′′b′′′ = −ιβCH
3 (χ, ψ, φ) (9.4.4)

(où b′′′ = χb′′). Cela fournit la partie Koszul–Čech de notre cocycle.
Ensuite, on trouve bb′ à partir de la condition

dcγ
′
bb′ = dHbb′ . (9.4.5)

Enfin, on vérifie que
dcbb′b′′ = −dHHbb′b′′ (9.4.6)

et
−dcγbb′ +Qbb′ + dHhbb′ = 0. (9.4.7)

Les relations (9.4.2)–(9.4.7), combinées avec 8.4.1, sont équivalentes à notre théorème.
Cela est analogue, en dimension 3, de [GMS, 5.10–5.13]. En langage “caté-

gorique,’’ les structures prémembranaires forment une “2-gerbe’’ lié par 	3, dont la
classe est representée par la forme βCH

3 .

10 Troisième Koszul–de Rham

10.1

Dans cette section on va introduire un bicomplexe tordu KR(3)··, dit le troisième
Koszul–de Rham.

Définissons les plongements

ιn : 	n −→ Hom(�n−2T ,	2)

par la règle usuelle

ιnω(τ1, . . . , τn−2) = iτn−2 iτn−3 . . . iτ1ω.

Supposons que p est inversible dans k. On définit le morphisme

dDR : Hom(�p−1, 	2) −→ Hom(�p,	2)

par dDR = −dCh − E, où

dChf (τ1, . . . ) =
∑
i<j

(−1)i+j f ([τi, τj ], . . . , τ̂i , . . . , τ̂j , . . . )

+
∑
i

(−1)i+1τif (. . . , τ̂i , . . . )

et
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Ef (τ1, . . . , τp) = 1

p

p∑
i=1

(−1)id〈τi, f (. . . , τ̂i , . . . )〉.

On utilisera la notation d(0)DR pour les opérateurs dDR définis ci-dessus; ils nous servi-
ront comme les différentielles dans la 0-ième ligne du notre Koszul–de Rham.

Lemme 10.1.1. d(0)DRιp+1 = −ιp+2d .
Donc les morphismes ιn donnent lieu à l’inclusion (si k ⊃ Q) du complexe de de

Rham tronqué et decalé

	[3 := σ≥3	
·[3] : 0 −→ 	3 −→ 	4 −→

dans la ligne

0 −→ Hom(T ,	2)
d
(0)
DR−→ Hom(�2T ,	2)

d
(0)
DR−→ · · · . (10.1.1)

Par contre, cette ligne n’est pas un complexe, car d(0)2DR �= 0.

10.2

Suivant l’usage, on définit les opérateurs de Koszul

Q : Hom(�nT ,	2) −→ Hom(S2T ⊗�n−1T ,	)

par
Qf (τ1, τ2; . . . ) = Sym12〈τ1, f (τ2, . . . )〉.

10.3

On introduit l’opérateur (en supposant que n(n− 1) est inversible dans k)

R : Hom(S2T ⊗�n−3T ,	) −→ Hom(�nT ,	2)

par

Rf (τ1, . . . , τn)

= − 1

n(n− 1)

·
∑
i<j<k

(−1)i+j+k Cycleijk df ([τi, τj ], τk; . . . , τ̂i , . . . , τ̂j , . . . , τ̂k, . . . ).

Lemme 10.3.1. d(0)2DR = RQ.
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10.4

Première ligne. On introduit les opérateurs

d
(1)
DR : Hom(S2T ⊗�n−2T ,	) −→ Hom(S2T ⊗�n−1T ,	)

(en supposant que n est inversible dans k) par d(1)DR = dCh + E.
Ici dCh est la différentielle de Chevalley, après l’identification

Hom(S2T ⊗�·T ,	) = Hom(�·T ,Hom(S2T ,	)) = C·(T Lie,Hom(S2T ,	))

Explicitement,

dChf (τ
′, τ ′′; . . . ) =

∑
i<j

(−1)i+j f (τ ′, τ ′′; [τi, τj ], . . . , τ̂i , . . . , τ̂j , . . . )

+
∑
i

(−1)i+1τif (τ
′, τ ′′; . . . , τ̂i , . . . )

+
∑
i

(−1)i Symτ ′,τ ′′ c([τi, τ ′], τ ′′; . . . , τ̂i , . . . ).

D’un autre côté, E = E′ + E′′,

E′f (τ ′, τ ′′; τ1, . . . , τn−1) = 1

n

∑
i

(−1)i Symτ ′,τ ′′ τ
′f (τ ′′, τi; . . . , τ̂i , . . . )

et

E′′f (τ ′, τ ′′; τ1, . . . , τn−1) = 1

n

∑
i

(−1)id〈τi, f (τ ′, τ ′′; . . . , τ̂i , . . . )〉.

Lemme 10.4.1. Qd(0)DR = d(1)DRQ.

Lemme 10.4.2. Définissons l’opérateur de Koszul

Q : Hom(S2T ,	) −→ Hom(S3T ,A)

par
Qf (τ, τ ′, τ ′′) = Cycleτ,τ ′,τ ′′ 〈τ, f (τ ′, τ ′′)〉. (10.4.1)

Cet opérateur est un morphisme de T Lie-modules.

Par définition, les opérateurs de Koszul

Q : Hom(S2T ⊗�nT,	) −→ Hom(S3T ⊗�nT,A)
seront induits par (10.4.1), i.e.,

Qf (τ, τ ′, τ ′′; . . . ) = Cycleτ,τ ′,τ ′′ 〈τ, f (τ ′, τ ′′; . . . )〉. (10.4.2)
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10.5

On va définir le Koszul–de Rham KR(3)·· = {KR(3)ij }. Il sera concentré dans la
domaine 0 ≤ i + j ≤ 3, 0 ≤ j ≤ 2, le premier degré i étant le degré de de Rham et
le deuxième degré j étant le degré de Koszul.

La 0-ième ligne sera (10.1.1) tronquée:

KR(3)·0 : Hom(T ,	2)
d
(0)
DR−→ · · · d

(0)
DR−→ Hom(�4T ,	2).

La première ligne sera

KR(3)·1 : Hom(S2T ,	)
d
(1)
DR−→ Hom(S2T ⊗ T ,	) d

(1)
DR−→ Hom(S2T ⊗�2T ,	).

La deuxième ligne sera

KR(3)·2 : Hom(S3T ,A)
d
(2)
DR−→ Hom(S3T ⊗ T ,A)

avec d(2)DR = dCh + E,

dChf (τ
′, τ ′′, τ ′′′; τ) = τf (τ ′, τ ′′, τ ′′′)− Cycleτ,τ ′,τ ′′ f ([τ, τ ′], τ ′′, τ ′′′)

et

Ef (τ ′, τ ′′, τ ′′′; τ) = −1

2
Cycleτ,τ ′,τ ′′ τ

′f (τ ′′, τ ′′′; τ).
Les flèches Q ont été définies dans 10.2 et 10.4.2. En utilisant Lemme 10.4.2 on
vérifie:

Lemme 10.5.1. Qd(1)DR = d(2)DRQ.

Les flèches

Ri1 : KR(3)i1 = Hom(S2T ⊗�iT ,	) −→ Hom(�i+3T ,	2)

(i = 0, 1) ont été définies dans 10.3.

10.6

Enfin, on définit la flèche

R02 : KR(3)i1 = Hom(S3T ,A) −→ Hom(S2T ⊗�2T ,	)

par

R02f (τ ′, τ ′′; τ1, τ2)
= −1

6
[df (τ ′, τ ′′; [τ1, τ2])+ Symτ ′,τ ′′ Alt12 df (τ

′, [τ ′′, τ1], τ2)].
Théorème 10.6.1. On a les relations: d20

DRR
01 = R11d01

DR et d11
DRd

01
DR = QR01 +

R02Q.
Donc, les opérateurs dDR,Q et R définissent sur KR(3)·· une structure d’un

bicomplexe tordu. On désigne par (KR(3), dKR) le complexe simple associé.
L’inclusion décrite après 10.1.1 induit l’inclusion de complexes

ι : 	[3,6] := σ≤6σ≥3	
·[3] ↪→ KR(3). (10.6.1)
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10.7

Soit b = {τi} une base abélienne. On a déjà vu un élément intéressant {, , }b ∈
Hom(S3T ,A) = KR(3)02,

{aτi, bτj , cτk}b = −1

2
Symaτi ,bτj τk(a)τi(b)τj (c)

= −1

6
Symaτi ,bτj ,cτk τk(a)τi(b)τj (c);

cf. 8.4.
Disons qu’une cochaîne x = (x02, x11, x20) ∈ KR(3)2 est un cocycle intéressant

si x02 = {, , }b (pour une b ∈ B) et dKRx = 0.

Théorème 10.7.1. Introduisons les éléments 〈, ; 〉b ∈ Hom(S2T⊗T ,	) = KR(3)11,

〈aτi, bτj ; cτk〉b = −1

2
Symaτi ,bτj τk(a)τi(b)dτj (c)−

1

2
d{aτi, bτj , cτk}b

et cb ∈ Hom(�3T ,	2) = KR(3)20,

cb(aτi, bτj , cτk) = 1

6
Altaτi ,bτj ,cτk τk(a)dτi(b)dτj (c).

Alors mKR
b := ({, , }b, 〈, ; 〉b, cb) est un cocycle intéressant.

En composantes, cela signifie que

dDR{, , }b −Q〈, ; 〉b = 0, (10.7.1)

dDR〈, ; 〉b − R{, , }b +Qcb = 0, (10.7.2)

dDRcb + R〈, ; 〉b = 0. (10.7.3)

En effet, on trouve 〈, ; 〉b grace à la condition (10.7.1), après on trouve cb grace à la
condition (10.7.2), et enfin on vérifie (10.7.3).

Le cocyclemKR
b est analogue, en dimension 3, de la partie Koszul–de Rhamienne

(−〈, 〉b, cb) de la structure vertex vb, 7.3, 7.3.1.

11 Troisième cocycle de Chern–Simons raffiné

11.1

Maintenant passons au bicomplexe Č·(B;KR(3)·), le degré de Čech étant comme
d’habitude le deuxième. On désigne par (Č·(B;KR(3)), dCKR) le complexe simple
associé. On suppose que 30 est inversible dans k.

L’inclusion ι, (10.11.1), induit le morphisme de complexes

µ : CS(3) = C·(GLn(A),	
[3,5〉) −→ Č·(B;KR(3))
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Rappelons la troisième forme de Chern–Simons (cf. 3.11.1) β3 = (β03, β12, β21) ∈
CS(3)3, où β03 ∈ Hom(GLn(A)3, 	3),

β03(χ, ψ, φ) = 1

6
tr{φ−1ψ−1χ−1dχdψdφ},

β12 ∈ Hom(GLn(A)2, 	4) est défini dans 3.10, et β21 ∈ Hom(GLn(A),	5,fer),

β21(φ) = − 1

60
tr{(φ−1dφ)5}.

11.2

Introduisons une cochaîne m̂KR = (m̂ijkKR) ∈ Č2
(B;KR(3)).

Les composantes de degré de Čech 0. On pose

m̂··0KR = (m̂020
KR, m̂

110
KR, m̂

200
KR) = ({, , }b, 〈, ; 〉b, cb) ∈ Č0

(B;KR(3)··);
cf. 10.6.1, 10.7.

11.3

Les composantes de degré de Čech 1. Soient b = {τi}, b′ = {τ ′i } ∈ B, b′ = φb.
Rappelons la forme −hbb′ ∈ Hom(S2T ,	) = KR(3)01 définie dans 9.3.

D’un autre côté, définissons une forme h′bb′ ∈ Hom(�2T ,	2) = KR(3)10 par
l’expression suivante:

− h′bb′(bτ
′
j , cτ

′
k)

= 1

4
tr{φ−1cτ ′k(φ)φ−1dφφ−1bτ ′j (φ)φ−1dφ}

+ 1

12
Altbτ ′j ,cτ ′k tr{φ−1cτ ′k(φ)φ−1bτ ′j (φ)(φ−1dφ)2}

+ 1

12
Altbτ ′j ,cτ ′k tr{dc[φ−1τ ′k(φ)φ−1bτ ′j (φ)+ φ−1bτ ′j (φ)φ−1τ ′k(φ)]φ−1dφ}

+ 1

12
Altbτ ′j ,cτ ′k tr{[φ−1cdτ ′k(φ)φ−1bτ ′j (φ)+ φ−1bτ ′j (φ)φ−1cdτ ′k(φ)]φ−1dφ}

− 1

4
Altbτ ′j ,cτ ′k [dφφ−1cdτ ′k(φ)φ−1]jpτ ′p(b)

+ 1

4
Altbτ ′j ,cτ ′k [dφφ−1dφφ−1cτ ′k(φ)φ−1]jpτ ′p(b)

− 1

4
Altbτ ′j ,cτ ′k [dφφ−1bτ ′j (φ)φ−1]kpdτ ′p(c)

+ 1

4
Altbτ ′j ,cτ ′k [dφφ−1bτ ′j (φ)φ−1dφφ−1]kuτ ′u(c)

+ 1

4
Altbτ ′j ,cτ ′k [dφφ−1dφφ−1]jpτ ′p(c)τ ′k(b)
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− 1

2
[dφφ−1]juτ ′u(c)[dφφ−1]kvτ ′v(b)

− 1

4
Altbτ ′j ,cτ ′k [dφφ−1dcτ ′k(φ)φ−1]jpτ ′p(b)

− 1

4
Altbτ ′j ,cτ ′k [dφφ−1]judτ ′u(c)τ ′k(b)−

1

4
Altbτ ′j ,cτ ′k [dφφ−1]kwτ ′w(b)dτ ′j (c).

On pose

m̂··1KR = (m̂011
KR, m̂

101
KR) = (−hbb′ , h

′
bb′) ∈ Č1

(B;KR(3)··).

11.4

La composante de degré de Čech 2.

m̂002
KR = (−Hbb′b′′) ∈ Č2

(B;KR(3)00),

où −Hbb′b′′ ∈ Hom(T ,	2) = KR(3)00 est écrite dans 9.4.
En rassemblant,

m̂KR = ({, , }b, 〈, ; 〉b, cb;−hbb′ , h
′
bb′ ; −Hbb′b′′).

Théorème 11.4.1. dCKR(m̂KR) = µ(β3).

En composantes, c’est exprimé par 9 relations:

−dcHbb′b′′b′′′ = ιβ03(χ, ψ, φ) (11.4.1)

si b′′′ = χb′′, b′′ = ψb′ et b′ = φb; ceci est une partie du Théorème 9.4.1;

dDRHbb′b′′ + dch′bb′b′′ = ιβ12(ψ, φ), (11.4.2)

dDRh
′
bb′ + Rhbb′ + dccbb′ = ιβ21(φ), (11.4.3)

−dDRhbb′ −Qh′bb′ + dc〈, ; 〉bb′ = 0. (11.4.4)

Encore deux relations qui font partie du 9.4.1:

QHbb′b′′ − dchbb′b′′ = 0 (11.4.5)

et

−Qhbb′ + dc{, , }bb′ = 0 (11.4.6)

et enfin, les 3 relations du Théorème 10.7.1.
En effet, on dérive la formule compliquée de 11.3 pour h′bb′ de l’équation (11.4.4).

Ensuite on obtient la forme β12 de l’équation (11.4.2) (sic!). Enfin, on vérifie que la
relation (11.4.3) est satisfaite.
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