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Preface

This is a sequel to my earlier book, A Concise Introduction to the Theory of
Numbers. The latter was based on a short preparatory course of the kind tradi-
tionally taught in Cambridge at around the time of publication about 25 years
ago. Clearly it was in need of updating, and it was originally intended that a
second edition be produced. However, on looking through, it became apparent
that the work would blend well with more advanced material arising from my
lecture courses in Cambridge at a higher level, and it was decided accordingly
that it would be more appropriate to produce a substantially new book. The
now much expanded text covers elements of cryptography and primality test-
ing. It also provides an account of number fields in the classical vein including
properties of their units, ideals and ideal classes. In addition it covers vari-
ous aspects of analytic number theory including studies of the Riemann zeta-
function, the prime-number theorem, primes in arithmetical progressions and
a brief exposition of the Hardy–Littlewood and sieve methods. Many worked
examples are given and, as with the earlier volume, there are guides to further
reading at the ends of the chapters.

The following remarks, taken from the Concise Introduction, apply even
more appropriately here:

The theory of numbers has a long and distinguished history, and indeed the concepts and
problems relating to the field have been instrumental in the foundation of a large part
of mathematics. It is very much to be hoped that our exposition will serve to stimulate
the reader to delve into the rich literature associated with the subject and thereby to
discover some of the deep and beautiful theories that have been created as a result of
numerous researches over the centuries. By way of introduction, there is a short account
of the Disquisitiones Arithmeticae of Gauss, and, to begin with, the reader can scarcely
do better than to consult this famous work.

To complete the text there is a chapter on elliptic curves; here my main
source has been lecture notes by Dr Tom Fisher of a course that he has given

xi



xii Preface

regularly in Cambridge in recent times. I am indebted to him for generously
providing me with a copy of the notes and for further expert advice. I am grate-
ful also to Mrs Michèle Bailey for her invaluable secretarial assistance with
my lectures over many years and to Dr David Tranah of Cambridge University
Press for his constant encouragement in the production of this book.

Cambridge 2012 A.B.



Introduction

Gauss and Number Theory†

Without doubt the theory of numbers was Gauss’ favourite subject. Indeed,
in a much quoted dictum, he asserted that Mathematics is the Queen of the
Sciences and the Theory of Numbers is the Queen of Mathematics. Moreover,
in the introduction to Eisenstein’s Mathematische Abhandlungen, Gauss wrote:

The Higher Arithmetic presents us with an inexhaustible storehouse of interesting
truths – of truths, too, which are not isolated but stand in the closest relation to one
another, and between which, with each successive advance of the science, we contin-
ually discover new and sometimes wholly unexpected points of contact. A great part
of the theories of Arithmetic derive an additional charm from the peculiarity that we
easily arrive by induction at important propositions which have the stamp of simplicity
upon them but the demonstration of which lies so deep as not to be discovered until
after many fruitless efforts; and even then it is obtained by some tedious and artificial
process while the simpler methods of proof long remain hidden from us.

All this is well illustrated by what is perhaps Gauss’ most profound pub-
lication, namely his Disquisitiones Arithmeticae. It has been described, quite
justifiably I believe, as the Magna Carta of Number Theory, and the depth and
originality of thought manifest in this work are particularly remarkable con-
sidering that it was written when Gauss was only about 18 years of age. Of
course, as Gauss said himself, not all of the subject matter was new at the
time of writing, and Gauss acknowledged the considerable debt that he owed
to earlier scholars, in particular Fermat, Euler, Lagrange and Legendre. But
the Disquisitiones Arithmeticae was the first systematic treatise on the Higher
Arithmetic and it provided the foundations and stimulus for a great volume

† This article was originally prepared for a meeting of the British Society for the History of
Mathematics held in Cambridge in 1977 to celebrate the bicentenary of Gauss’ birth.

xiii



xiv Introduction

of subsequent research which is in fact continuing to this day. The impor-
tance of the work was recognized as soon as it was published in 1801 and the
first edition quickly became unobtainable; indeed many scholars of the time
had to resort to taking handwritten copies. But it was generally regarded as
a rather impenetrable work and it was probably not widely understood; per-
haps the formal Latin style contributed in this respect. Now, however, after
numerous reformulations, most of the material is very well known, and the
earlier sections at least are included in every basic course on number
theory.

The text begins with the definition of a congruence, namely two numbers
are said to be congruent modulo n if their difference is divisible by n. This
is plainly an equivalence relation in the now familiar terminology. Gauss pro-
ceeds to the discussion of linear congruences and shows that they can in fact be
treated somewhat analogously to linear equations. He then turns his attention
to power residues and introduces, amongst other things, the concepts of primi-
tive roots and indices; and he notes, in particular, the resemblance between the
latter and the ordinary logarithms. There follows an exposition of the theory
of quadratic congruences, and it is here that we meet, more especially, the fa-
mous law of quadratic reciprocity; this asserts that if p, q are primes, not both
congruent to 3 (mod 4), then p is a residue or non-residue of q according as
q is a residue or non-residue of p, while in the remaining case the opposite
occurs. As is well known, Gauss spent a great deal of time on this result and
gave several demonstrations; and it has subsequently stimulated much excel-
lent research. In particular, following works of Jacobi, Eisenstein and Kummer,
Hilbert raised as the ninth of his famous list of problems presented at the Paris
Congress of 1900 the question of obtaining higher reciprocity laws, and this
led to the celebrated studies of Furtwängler, Artin and others in the context of
class field theory.

By far the largest section of the Disquisitiones Arithmeticae is concerned
with the theory of binary quadratic forms. Here Gauss describes how quadratic
forms with a given discriminant can be divided into classes so that two forms
belong to the same class if and only if there exists an integral unimodular sub-
stitution relating them, and how the classes can be divided into genera, so that
two forms are in the same genus if and only if they are rationally equivalent.
He proceeds to apply these concepts so as, for instance, to throw light on the
difficult question of the representation of integers by binary forms. It is a re-
markable and beautiful theory with many important ramifications. Indeed, after
re-interpretation in terms of quadratic fields, it became apparent that it could
be applied much more widely, and in fact it can be regarded as having provided
the foundations for the whole of algebraic number theory. The term ‘Gaussian
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field’, meaning the field generated over the rationals by i , is a reminder of
Gauss’ pioneering work in this area.

The remainder of the Disquisitiones Arithmeticae contains results of a more
miscellaneous character, relating, for instance, to the construction of 17-sided
polygons, which was clearly of particular appeal to Gauss, and to what is now
termed the cyclotomic field, that is, the field generated by a primitive root of
unity. And especially noteworthy here is the discussion of certain sums involv-
ing roots of unity, now referred to as Gaussian sums, which play a fundamental
role in the analytic theory of numbers.

I conclude this introduction with some words of Mordell. In an essay pub-
lished in 1917 he wrote ‘The theory of numbers is unrivalled for the number
and variety of its results and for the beauty and wealth of its demonstrations.
The Higher Arithmetic seems to include most of the romance of mathemat-
ics. As Gauss wrote to Sophie Germain, the enchanting beauties of this sub-
lime study are revealed in their full charm only to those who have the courage
to pursue it.’ And Mordell added ‘We are reminded of the folk-tales, current
amongst all peoples, of the Prince Charming who can assume his proper form
as a handsome prince only because of the devotedness of the faithful heroine.’





1

Divisibility

1.1 Foundations

The set 1,2,3, . . . of all natural numbers will be denoted byN. There is no need
to enter here into philosophical questions concerning the existence of N. It will
suffice to assume that it is a given set for which the Peano axioms are satisfied.
They imply that addition and multiplication can be defined on N such that the
commutative, associative and distributive laws are valid. Further, an ordering
onN can be introduced so that either m < n or n < m for any distinct elements
m, n in N. Furthermore, it is evident from the axioms that the principle of
mathematical induction holds and that every non-empty subset of N has a least
member. We shall frequently appeal to these properties.

As customary, we shall denote by Z the set of integers 0,±1,±2, . . . , and by
Q the set of rationals, that is, the numbers p/q with p in Z and q inN. The con-
struction, commencing with N, of Z, Q and then, through Cauchy sequences
and ordered pairs, the real and complex numbers R and C forms the basis of
mathematical analysis and it is assumed known.

1.2 Division algorithm

Suppose that a, b are elements of N. One says that b divides a (written b|a) if
there exists an element c of N such that a = bc. In this case b is referred to as
a divisor of a, and a is called a multiple of b. The relation b|a is reflexive and
transitive but not symmetric; in fact if b|a and a|b then a = b. Clearly also if
b|a then b ≤ a and so a natural number has only finitely many divisors. The
concept of divisibility is readily extended to Z; if a, b are elements of Z, with
b� 0, then b is said to divide a if there exists c in Z such that a = bc.

We shall frequently appeal to the division algorithm. This asserts that for any
a, b in Z, with b>0, there exist q, r in Z such that a =bq +r and 0≤r<b. The

1



2 Divisibility

proof is simple; indeed if bq is the largest multiple of b that does not exceed a
then the integer r = a − bq is certainly non-negative and, since b(q + 1) > a,
we have r < b. The result plainly remains valid for any integer b � 0 provided
that the bound r < b is replaced by r < |b|.

1.3 Greatest common divisor

By the greatest common divisor of natural numbers a, b we mean an element
d of N such that d|a,d|b and every common divisor of a and b also divides d.
We proceed to prove that a number d with these properties exists; plainly it
will be unique, for any other such number d ′ would divide a, b and so also d,
and since similarly d|d ′ we have d = d ′.

Accordingly consider the set of all natural numbers of the form ax + by
with x , y in Z. The set is not empty since, for instance, it contains a and b;
hence there is a least member d, say. Now d = ax + by for some integers x , y,
whence every common divisor of a and b certainly divides d. Further, by the
division algorithm, we have a = dq + r for some q, r in Z with 0 ≤ r < d; this
gives r = ax ′ + by′, where x ′ = 1 − qx and y′ =−qy. Thus, from the minimal
property of d, it follows that r = 0, whence d|a. Similarly we have d|b, as
required.

It is customary to signify the greatest common divisor of a, b by (a,b).
Clearly, for any n in N, the equation ax + by = n is soluble in integers x ,
y if and only if (a, b) divides n. In the case (a,b)= 1 we say that a and b
are relatively prime or coprime (or that a is prime to b). Then the equation
ax + by = n is always soluble.

Obviously one can extend these concepts to more than two numbers. In
fact one can show that any elements a1, . . . ,am of N have a greatest common
divisor d = (a1, . . . ,am) such that d = a1x1 + · · · + am xm for some integers
x1, . . . , xm . Further, if d = 1, we say that a1, . . . ,am are relatively prime and
then the equation a1x1 + · · ·+ am xm = n is always soluble.

1.4 Euclid’s algorithm

A method for finding the greatest common divisor d of a, b was described by
Euclid. It proceeds as follows.

By the division algorithm there exist integers q1, r1 such that
a = bq1 + r1 and 0 ≤ r1 < b. If r1 � 0 then there exist integers q2, r2 such that
b = r1q2 + r2 and 0 ≤ r2 < r1. If r2 � 0 then there exist integers q3, r3 such



1.4 Euclid’s algorithm 3

that r1 = r2q3 + r3 and 0 ≤ r3 < r2. Continuing thus, one obtains a decreasing
sequence r1, r2, . . . satisfying r j−2 = r j−1q j + r j . The sequence terminates
when rk+1 = 0 for some k, that is, when rk−1 = rkqk+1. It is then readily veri-
fied that d = rk . Indeed it is evident from the equations

a = bq1 + r1, 0< r1< b;
b = r1q2 + r2, 0< r2< r1;
r1 = r2q3 + r3, 0< r3< r2;
. . .

rk−2 = rk−1qk + rk, 0< rk < rk−1;
rk−1 = rkqk+1

that every common divisor of a and b divides r1, r2, . . . , rk ; and, moreover,
viewing the equations in the reverse order, it is clear that rk divides each r j and
so also b and a.

Euclid’s algorithm furnishes another proof of the existence of integers x , y
satisfying d = ax + by, and furthermore it enables these x , y to be explicitly
calculated. For we have d = rk and r j = r j−2 − r j−1q j , whence the required
values can be obtained by successive substitution. Let us take, for example,
a = 187 and b = 35. Then, following Euclid, we have

187 = 35.5 + 12, 35 = 12.2 + 11, 12 = 11.1 + 1.

Thus we see that (187,35)= 1 and moreover

1 = 12 − 11.1 = 12 − (35 − 12.2)= 3(187 − 35.5)− 35.

Hence a solution of the equation 187x + 35y = 1 in integers x , y is given by
x = 3, y =−16.

For another example let us take a = 1000 and b = 45; then we get

1000 = 45.22 + 10, 45 = 10.4 + 5, 10 = 5.2

and so d = 5. The solutions to ax + by = d can then be calculated from

5 = 45 − 10.4 = 45 − (1000 − 45.22)4 = 45.89 − 1000.4

which gives x = −4, y = 89. Note that the process is very efficient: if a > b
then a solution x, y can be found in O((log a)3) bit operations.

There is a close connection between Euclid’s algorithm and the theory of
continued fractions; this will be discussed in Chapter 6.



4 Divisibility

1.5 Fundamental theorem

A natural number, other than 1, is called a prime if it is divisible only by itself
and 1. The smallest primes are therefore given by 2, 3, 5, 7, 11, . . . .

Let n be any natural number other than 1. The least divisor of n that exceeds
1 is plainly a prime, say p1. If n � p1 then, similarly, there is a prime p2 divid-
ing n/p1. If n� p1 p2 then there is a prime p3 dividing n/p1 p2; and so on. After
a finite number of steps we obtain n = p1 · · · pm ; and by grouping together we
get the standard factorization (or canonical decomposition) n = p1

j1 · · · pk
jk ,

where p1, . . . , pk denote distinct primes and j1, . . . , jk are elements of N.
The fundamental theorem of arithmetic asserts that the above factorization is

unique except for the order of the factors. To prove the result, note first that if a
prime p divides a product mn of natural numbers then either p divides m or p
divides n. Indeed if p does not divide m then (p,m)= 1, whence there exist
integers x , y such that px + my = 1; thus we have pnx + mny = n and hence
p divides n. More generally we conclude that if p divides n1n2 · · ·nk then
p divides nl for some l. Now suppose that, apart from the factorization n =
p1

j1 · · · pk
jk derived above, there is another decomposition and that p′ is

one of the primes occurring therein. From the preceding conclusion we ob-
tain p′ = pl for some l. Hence we deduce that, if the standard factorization for
n/p′ is unique, then so also is that for n. The fundamental theorem follows by
induction.

It is simple to express the greatest common divisor (a, b) of elements a,
b of N in terms of the primes occurring in their decompositions. In fact we
can write a = p1

α1 · · · pk
αk and b = p1

β1 · · · pk
βk , where p1, . . . , pk are distinct

primes and the α s and β s are non-negative integers; then (a,b)= p1
γ1 · · · pk

γk ,
where γl = min(αl , βl). With the same notation, the lowest common multiple
of a, b is defined by {a,b}= p1

δ1 · · · pk
δk , where δ1 =max(αl , βl). The identity

(a,b){a,b} = ab is readily verified.

1.6 Properties of the primes

There exist infinitely many primes, for if p1, . . . , pn is any finite set of primes
then p1 · · · pn + 1 is divisible by a prime different from p1, . . . , pn ; the argu-
ment is due to Euclid. It follows that, if pn is the nth prime in ascending order
of magnitude, then pm divides p1 · · · pn + 1 for some m ≥ n + 1; from this we
deduce by induction that pn > 22n

. In fact a much stronger result is known;
indeed pn ∼ n log n as n → ∞.† The result is equivalent to the assertion that

† The notation f ∼ g means that f/g → 1; and one says that f is asymptotic to g.



1.6 Properties of the primes 5

the number π(x) of primes p ≤ x satisfies π(x)∼ x/ log x as x → ∞. This
is called the prime-number theorem and it was proved by Hadamard and de
la Vallée Poussin independently in 1896. Their proofs were based on proper-
ties of the Riemann zeta-function about which we shall speak in Chapter 2. In
1737 Euler proved that the series

∑
1/pn diverges and he noted that this gives

another demonstration of the existence of infinitely many primes. In fact it can
be shown by elementary arguments that, for some number c,∑

p≤x

1/p = log log x + c + O(1/ log x).

Fermat conjectured that the numbers 22n + 1 (n = 1,2, . . .) are all
primes; this is true for n = 1,2,3 and 4 but false for n = 5, as was proved by
Euler. In fact 641 divides 232 + 1. Numbers of the above form that are primes
are called Fermat primes. They are closely connected with the existence of a
construction of a regular plane polygon with ruler and compasses only. In fact
the regular plane polygon with p sides, where p is a prime, is capable of con-
struction if and only if p is a Fermat prime. It is not known at present whether
the number of Fermat primes is finite or infinite.

Numbers of the form 2n − 1 that are primes are called Mersenne primes.
In this case n is a prime, for plainly 2m − 1 divides 2n − 1 if m divides n.
Mersenne primes are of particular interest in providing examples of large prime
numbers; for instance it is known that 244 497 − 1 is the 27th Mersenne prime,
a number with 13 395 digits.

It is easily seen that no polynomial f (n) with integer coefficients can be
prime for all n in N, or even for all sufficiently large n, unless f is constant.
Indeed by Taylor’s theorem, f (m f (n)+ n) is divisible by f (n) for all m in N.
On the other hand, the remarkable polynomial n2 − n + 41 is prime for n =
1,2, . . . ,40. Furthermore one can write down a polynomial f (n1, . . . ,nk)with
the property that, as the n j run through the elements of N, the set of positive
values assumed by f is precisely the sequence of primes. The latter result
arises from studies in logic relating to Hilbert’s tenth problem (see Chapter 8).

The primes are well distributed in the sense that, for every n > 1, there is
always a prime between n and 2n. This result, which is commonly referred
to as Bertrand’s postulate, can be regarded as the forerunner of extensive re-
searches on the difference pn+1 − pn of consecutive primes. In fact estimates
of the form pn+1 − pn = O(pn

κ) are known with values of κ just a little
greater than 1

2 ; but, on the other hand, the difference is certainly not bounded,
since the consecutive integers n! + m with m =2,3, . . . ,n are all composite. A
famous theorem of Dirichlet asserts that any arithmetical progression a, a + q,
a + 2q, . . . , where (a,q)= 1, contains infinitely many primes. Some special
cases, for instance the existence of infinitely many primes of the form 4n + 3,
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can be deduced simply by modifying Euclid’s argument given at the begin-
ning, but the general result lies quite deep. Indeed Dirichlet’s proof involved,
amongst other things, the concepts of characters and L-functions, and of class
numbers of quadratic forms, and it has been of far-reaching significance in the
history of mathematics.

Two notorious unsolved problems in prime-number theory are the Gold-
bach conjecture, mentioned in a letter to Euler of 1742, to the effect that every
even integer (> 2) is the sum of two primes, and the twin-prime conjecture,
to the effect that there exist infinitely many pairs of primes, such as 3, 5 and
17, 19, that differ by 2. By ingenious work on sieve methods, Chen showed
in 1974 that these conjectures are valid if one of the primes is replaced by a
number with at most two prime factors (assuming, in the Goldbach case, that
the even integer is sufficiently large). The oldest known sieve, incidentally, is
due to Eratosthenes. He observed that if one deletes from the set of integers
2,3, . . . ,n, first all multiples of 2, then all multiples of 3, and so on up to the
largest integer not exceeding

√
n, then only primes remain. Studies on Gold-

bach’s conjecture gave rise to the Hardy–Littlewood circle method of analysis
and, in particular, to the celebrated theorem of Vinogradov to the effect that
every sufficiently large odd integer is the sum of three primes.

1.7 Further reading‡

For a good account of the Peano axioms see the book by E. Landau, Founda-
tions of Analysis (Chelsea Publishing, 1951).

The division algorithm, Euclid’s algorithm and the fundamental theorem of
arithmetic are discussed in every elementary text on number theory. The tracts
are too numerous to list here but for many years the book by G. H. Hardy and
E. M. Wright, An Introduction to the Theory of Numbers (Oxford University
Press, 2008) has been regarded as a standard work in the field. The books of
similar title by T. Nagell (Wiley, 1951) and H. M. Stark (MIT Press, 1978)
are also to be recommended, as well as the volume by E. Landau, Elementary
Number Theory (Chelsea Publishing, 1958).

For properties of the primes, see the book by Hardy and Wright mentioned
above and, for more advanced reading, see, for instance, H. Davenport, Multi-
plicative Number Theory (Springer, 2000) and H. Halberstam and H. E. Richert,
Sieve Methods (Academic Press, 1974). The latter contains, in particular, a
proof of Chen’s theorem. The result referred to on a polynomial in several

‡ For full publication details please refer to the Bibliography on page 240.
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variables representing primes arose from work of Davis, Robinson, Putnam
and Matiyasevich on Hilbert’s tenth problem; see, for instance, the article by
J. P. Jones et al. in American Math. Monthly 83 (1976), 449–464, where it is
shown that 12 variables suffice. The best result to date, due to Matiyasevich, is
10 variables; a proof is given in the article by J. P. Jones in J. Symbolic Logic
47 (1982), 549–571.

1.8 Exercises

(i) Find integers x , y such that 22x + 37y =1.
(ii) Find integers x , y such that 95x + 432y =1.

(iii) Find integers x , y, z such that 6x + 15y + 10z =1.
(iv) Find integers x , y, z such that 35x + 55y + 77z =1.
(v) Prove that 1 + 1

2 + · · ·+ 1/n is not an integer for n> 1.
(vi) Prove that

({a,b}, {b, c}, {c,a})={(a,b), (b, c), (c,a)}.
(vii) Prove that if g1, g2, . . . are integers>1 then every natural number can be

expressed uniquely in the form a0 + a1g1 + a2g1g2 + · · · + ak g1 · · · gk ,
where the a j are integers satisfying 0 ≤ a j < g j+1.

(viii) Show that there exist infinitely many primes of the form 4n + 3.
(ix) Show that, if 2n + 1 is a prime, then it is in fact a Fermat prime.
(x) Show that, if m > n, then 22n + 1 divides 22m − 1 and so

(22m + 1,22n + 1)=1.
(xi) Deduce that pn+1 ≤ 22n + 1, whence π(x)≥ log log x for x ≥ 2.



2

Arithmetical functions

2.1 The function [x]

For any real x , one signifies by [x] the largest integer ≤ x , that is, the unique
integer such that x − 1< [x] ≤ x . The function is called ‘the integral part of x’.
It is readily verified that [x + y] ≥ [x] + [y] and that, for any positive integer
n, [x + n]= [x] + n and [x/n]= [[x]/n]. The difference x − [x] is called ‘the
fractional part of x’; it is written {x} and satisfies 0 ≤{x}< 1.

Let now p be a prime. The largest integer l such that pl divides n! can be
neatly expressed in terms of the above function. In fact, on noting that [n/p]
of the numbers 1,2, . . . ,n are divisible by p, that [n/p2] are divisible by p2,
and so on, we obtain

l =
n∑

m =1

∞∑
j =1
p j |m

1=
∞∑

j =1

n∑
m =1
p j |m

1=
∞∑

j =1

[n/p j ].

It follows easily that l ≤ [n/(p − 1)]; for the latter sum is at most n(1/p +
1/p2 + · · · ). The result also shows at once that the binomial coefficient(

m

n

)
= m!

n!(m − n)!

is an integer; for we have

[m/p j ] ≥ [n/p j ] + [(m − n)/p j ].

Indeed, more generally, if n1, . . . ,nk are positive integers such that n1 + · · · +
nk =m then the expression m!/(n1! · · ·nk!) is an integer.

8
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2.2 Multiplicative functions

A real function f defined on the positive integers is said to be multiplica-
tive if f (m) f (n)= f (mn) for all m, n with (m,n)=1. We shall meet many
examples. Plainly if f is multiplicative and does not vanish identically then
f (1)=1. Further, if n = p1

j1 · · · pk
jk in standard form then

f (n)= f (p1
j1) · · · f (pk

jk ).

Thus to evaluate f it suffices to calculate its values on the prime powers; we
shall appeal to this property frequently.

We shall also use the fact that if f is multiplicative and if

g(n)=
∑
d|n

f (d),

where the sum is over all divisors d of n, then g is a multiplicative function.
Indeed, if (m,n)=1, we have

g(mn)=
∑
d|m

∑
d ′|n

f (dd ′)=
∑
d|m

f (d)
∑
d ′|n

f (d ′)

= g(m)g(n).

2.3 Euler’s (totient) function φ(n)

By φ(n) we mean the number of numbers 1,2, . . . ,n that are relatively prime
to n. Thus, in particular, φ(1)=φ(2)=1 and φ(3)=φ(4)=2.

We shall show, in the next chapter, from properties of congruences, that φ
is multiplicative. Now, as is easily verified, φ(p j )= p j − p j−1 for all prime
powers p j . It follows at once that

φ(n)=n
∏
p|n
(1 − 1/p).

We proceed to establish this formula directly without assuming that φ is mul-
tiplicative. In fact the formula furnishes another proof of this property.

Let p1, . . . , pk be the distinct prime factors of n. Then it suffices to show
that φ(n) is given by

n −
∑

r

(n/pr )+
∑
r>s

n/(pr ps)−
∑

r>s>t

n/(pr ps pt )+ · · · .
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But n/pr is the number of numbers 1,2, . . . ,n that are divisible by pr ;
n/(pr ps) is the number that are divisible by pr ps ; and so on. Hence the above
expression is

n∑
m =1

⎛⎜⎝1 −
∑

r
pr |m

1 +
∑
r>s

pr ps |m

1 − · · ·

⎞⎟⎠ =
n∑

m =1

(
1 −

(
l

1

)
+
(

l

2

)
− · · ·

)
,

where l = l(m) is the number of primes p1, . . . , pk that divide m. Now the
summand on the right is (1 − 1)l =0 if l > 0, and it is 1 if l =0. The required
result follows. The demonstration is a particular example of an argument due
to Sylvester. Note that the result can be obtained alternatively as an immediate
application of the inclusion–exclusion principle. For the respective sums in the
required expression for φ(n) give the number of elements in the set 1,2, . . . ,n
that possess precisely 1,2,3, . . . of the properties of divisibility by p j for 1 ≤
j ≤ k and the principle (or rather the complement of it) gives the analogous
expression for the number of elements in an arbitrary set of n objects that
possess none of k possible properties.

It is a simple consequence of the multiplicative property of φ that∑
d|n
φ(d)=n.

In fact the expression on the left is multiplicative and, when n = p j , it becomes

φ(1)+φ(p)+ · · · +φ(p j )= 1 + (p − 1)+ · · · + (p j − p j−1)= p j .

2.4 The Möbius function μ(n)

This is defined, for any positive integer n, as 0 if n contains a squared factor,
and as (−1)k if n = p1· · · pk as a product of k distinct primes. Further, by
convention, μ(1)=1.

It is clear that μ is multiplicative. Thus the function

ν(n)=
∑
d|n
μ(d)

is also multiplicative. Now for all prime powers p j with j>0 we have ν(p j )=
μ(1)+ μ(p)=0. Hence we obtain the basic property, namely ν(n)=0 for
n > 1 and ν(1)=1. We proceed to use this property to establish the Möbius
inversion formulae.
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Let f be any arithmetical function, that is, a function defined on the positive
integers, and let

g(n)=
∑
d|n

f (d).

Then we have

f (n)=
∑
d|n
μ(d)g(n/d).

In fact the right-hand side is∑
d|n

∑
d ′|n/d

μ(d) f (d ′)=
∑
d ′|n

f (d ′)ν(n/d ′),

and the result follows since ν(n/d ′)=0 unless d ′ =n. The converse also holds,
for we can write the second equation in the form

f (n)=
∑
d ′|n

μ(n/d ′)g(d ′)

and then ∑
d|n

f (d)=
∑
d|n

f (n/d)=
∑
d|n

∑
d ′|n/d

μ(n/dd ′)g(d ′)

=
∑
d ′|n

g(d ′)ν(n/d ′).

Again we have ν(n/d ′)=0 unless d ′ =n, whence the expression on the right
is g(n).

The Euler and Möbius functions are related by the equation

φ(n)=n
∑
d|n
μ(d)/d.

This can be seen directly from the formula for φ established in Section 2.3, and
it also follows at once by Möbius inversion from the property of φ recorded
at the end of Section 2.3. Indeed the relation is clear from the multiplicative
properties of φ and μ.

There is an analogue of Möbius inversion for functions defined over the
reals, namely if

g(x)=
∑
n≤x

f (x/n)

then

f (x)=
∑
n≤x

μ(n)g(x/n).
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In fact the last sum is∑
n≤x

∑
m≤x/n

μ(n) f (x/mn)=
∑
l≤x

f (x/ l)ν(l)

and the result follows since ν(l)=0 for l>1. We shall give several applications
of Möbius inversion in the examples at the end of the chapter.

2.5 The functions τ(n) and σ(n)

For any positive integer n, we denote by τ(n) the number of divisors of n (in
some books, in particular in that of Hardy and Wright, the function is written
d(n)). By σ(n) we denote the sum of the divisors of n. Thus

τ(n)=
∑
d|n

1, σ (n)=
∑
d|n

d.

It is plain that both τ(n) and σ(n) are multiplicative. Further, for any prime
power p j we have τ(p j )= j + 1 and

σ(p j )=1 + p + · · ·+ p j = (p j+1 − 1)/(p − 1).

Thus if p j is the highest power of p that divides n then

τ(n)=
∏
p|n
( j + 1), σ (n)=

∏
p|n
(p j+1 − 1)/(p − 1).

It is easy to give rough estimates for the sizes of τ(n) and σ(n). Indeed we
have τ(n)<cnδ for any δ>0, where c is a number depending only on δ; for the
function f (n)= τ(n)/nδ is multiplicative and satisfies f (p j )= ( j + 1)/p jδ <

1 for all but a finite number of values of p and j , the exceptions being bounded
in terms of δ. Further, we have

σ(n)=n
∑
d|n

1/d ≤ n
∑
d≤n

1/d < n(1 + log n).

The last estimate implies that φ(n) > 1
4 n/ log n for n> 1. In fact the function

f (n)=σ(n)φ(n)/n2 is multiplicative and, for any prime power p j , we have

f (p j )=1 − p− j−1 ≥ 1 − 1/p2;
hence, since ∏

p|n
(1 − 1/p2)≥

∞∏
m =2

(1 − 1/m2)= 1

2
,
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it follows that σ(n)φ(n)≥ 1
2 n2, and this together with σ(n)<2n log n for n>2

gives the estimate for φ.

2.6 Average orders

It is often of interest to determine the magnitude ‘on average’ of arithmetical
functions f, that is, to find estimates for sums of the form

∑
f (n) with n ≤ x ,

where x is a large real number. We shall obtain such estimates when f is τ , σ
and φ.

First we observe that∑
n≤x

τ(n)=
∑
n≤x

∑
d|n

1=
∑
d≤x

∑
m≤x/d

1=
∑
d≤x

[x/d].

Now we have ∑
d≤x

1/d = log x + O(1),

and hence ∑
n≤x

τ(n)= x log x + O(x).

This implies that (1/x)
∑
τ(n)∼ log x as x →∞. The argument can be refined

to give ∑
n≤x

τ(n)= x log x + (2γ − 1)x + O(
√

x),

where γ is Euler’s constant. Note that although one can say that the ‘average
order’ of τ(n) is log n (since

∑
log n ∼ x log x), it is not true that ‘almost all’

numbers have about log n divisors; here almost all numbers are said to have a
certain property if the proportion ≤ x not possessing the property is o(x). In
fact ‘almost all’ numbers have about (log n)log 2 divisors, that is, for any ε > 0
and for almost all n, the function τ(n)/(log n)log 2 lies between (log n)ε and
(log n)−ε.

To determine the average order of σ(n) we observe that∑
n≤x

σ(n)=
∑
n≤x

∑
d|n
(n/d)=

∑
d≤x

∑
m≤x/d

m.

The last sum is

1

2
[x/d]([x/d] + 1)= 1

2
(x/d)2 + O(x/d).
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Now ∑
d≤x

1/d2 =
∞∑

d =1

1/d2 + O(1/x),

and thus we obtain ∑
n≤x

σ(n)= 1

12
π2x2 + O(x log x).

This implies that the ‘average order’ of σ(n) is 1
6π

2n (since
∑

n ∼ 1
2 x2).

Finally we derive an average estimate for φ. We have∑
n≤x

φ(n)=
∑
n≤x

∑
d|n
μ(d)(n/d)=

∑
d≤x

μ(d)
∑

m≤x/d

m.

The last sum is
1

2
(x/d)2 + O(x/d).

Now ∑
d≤x

μ(d)/d2 =
∞∑

d =1

μ(d)/d2 + O(1/x),

and the infinite series here has sum 6/π2, as will be clear from Section 2.8.
Hence we obtain ∑

n≤x

φ(n)= (3/π2)x2 + O(x log x).

This implies that the ‘average order’ of φ(n) is 6n/π2. Moreover the result
shows that the probability that two integers are relatively prime is 6/π2. For
there are 1

2 n(n + 1) pairs of integers p, q with 1 ≤ p ≤ q ≤ n, and precisely
φ(1)+· · ·+φ(n) of the corresponding fractions p/q are in their lowest terms.

2.7 Perfect numbers

A natural number n is said to be perfect if σ(n)=2n, that is, if n is equal to
the sum of its divisors other than itself. Thus, for instance, 6 and 28 are perfect
numbers.

Whether there exist any odd perfect numbers is a notorious unresolved prob-
lem. By contrast, however, the even perfect numbers can be specified precisely.
Indeed an even number is perfect if and only if it has the form 2p−1(2p − 1),
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where both p and 2p − 1 are primes. It suffices to prove the necessity, for
it is readily verified that numbers of this form are certainly perfect. Suppose
therefore that σ(n)=2n and that n =2km, where k and m are positive inte-
gers with m odd. We have (2k+1 − 1)σ (m)=2k+1m and hence σ(m)=2k+1l
and m = (2k+1 − 1)l for some positive integer l. If now l were greater than
1 then m would have distinct divisors l, m and 1, whence we would have
σ(m)≥ l + m + 1. But l + m =2k+1l =σ(m), and this gives a contradiction.
Thus l =1 and σ(m)=m + 1, which implies that m is a prime. In fact m is a
Mersenne prime and hence k +1 is a prime p, say (cf. Section 1.6). This shows
that n has the required form.

2.8 The Riemann zeta-function

In a classic memoir of 1860 Riemann showed that questions concerning the
distribution of the primes are intimately related to properties of the zeta-
function

ζ(s)=
∞∑

n =1

1/ns,

where s denotes a complex variable. It is clear that the series converges abso-
lutely for σ > 1, where s =σ + i t with σ, t real, and indeed that it converges
uniformly for σ > 1 + δ for any δ > 0. Riemann showed that ζ(s) can be con-
tinued analytically throughout the complex plane and that it is regular there
except for a simple pole at s =1 with residue 1. He showed moreover that it
satisfies the functional equation �(s)=�(1 − s), where

�(s)=π− 1
2 s
�( 1

2 s)ζ(s).

The fundamental connection between the zeta-function and the primes is
given by the Euler product

ζ(s)=
∏

p

(1 − 1/ps)−1,

valid for σ > 1. The relation is readily verified; in fact it is clear that, for any
positive integer N ,∏

p≤N

(1 − 1/ps)−1 =
∏
p≤N

(1 + p−s + p−2s + · · · )=
∑

m

m−s,
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where m runs through all the positive integers that are divisible only by primes
≤ N , and ∣∣∣∣∣∣

∑
m

m−s −
∑
n≤N

n−s

∣∣∣∣∣∣≤
∑
n>N

n−σ → 0 as N → ∞.

The Euler product shows that ζ(s) has no zeros for σ > 1. In view of the
functional equation it follows that ζ(s) has no zeros for σ < 0 except at the
points s =−2,−4,−6, . . .; these are termed the ‘trivial zeros’. All other zeros
of ζ(s) must lie in the ‘critical strip’ given by 0 ≤ σ ≤ 1, and Riemann con-
jectured that they in fact lie on the line σ = 1

2 . This is the famous Riemann
hypothesis and it remains unproved to this day. There is much evidence in
favour of the hypothesis; in particular Hardy proved in 1915 that infinitely
many zeros of ζ(s) lie on the critical line, and extensive computations have
verified that at least the first trillion, that is, 1012, zeros above the real axis do
so. It has been shown that, if the hypothesis is true, then, for instance, there is
a refinement of the prime-number theorem to the effect that

π(x)=
∫ x

2

dt

log t
+ O(

√
x log x),

and that the difference between consecutive primes satisfies pn+1 − pn =
O(pn

1
2 +ε). In fact it has been shown that there is a narrow zero-free region

for ζ(s) to the left of the line σ =1, and this implies that results as above are
indeed valid but with weaker error terms. It is also known that the Riemann
hypothesis is equivalent to the assertion that, for any ε > 0,∑

n≤x

μ(n)= O(x
1
2 +ε).

The basic relation between the Möbius function and the Riemann zeta-
function is given by

1/ζ(s)=
∞∑

n =1

μ(n)/ns .

This is clearly valid for σ > 1 since the product of the series on the right with∑
1/ns is

∑
ν(n)/ns . In fact if the Riemann hypothesis holds then the equa-

tion remains true for σ > 1
2 . There is a similar equation for the Euler function,

valid for σ > 2, namely

ζ(s − 1)/ζ(s)=
∞∑

n =1

φ(n)/ns .
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This is readily verified from the result at the end of Section 2.3. Likewise there
are equations for τ(n) and σ(n), valid respectively for σ >1 and σ >2, namely

(ζ(s))2 =
∞∑

n =1

τ(n)/ns, ζ(s)ζ(s − 1)=
∞∑

n =1

σ(n)/ns .

2.9 Further reading

The elementary arithmetical functions are discussed in every introductory text
on number theory; again Hardy and Wright’s An Introduction to the The-
ory of Numbers (Oxford University Press, 2008) is a good reference. Other
books to be recommended are those of T. M. Apostol (Springer, 1976) and
K. Chandrasekharan (Springer, 1968), both with the title Introduction to Ana-
lytic Number Theory; see also Chandrasekharan’s Arithmetical Functions
(Springer, 1970).

As regards the last section, the classic text on the subject is that of E. C.
Titchmarsh, The Theory of the Riemann Zeta-Function (Oxford University
Press, 1986). There are substantial books covering more recent ground by
A. Ivić (Wiley, 1985) and by A. A. Karatsuba and S. M. Voronin (de Gruyter,
1992), both with the title The Riemann Zeta-Function. The volumes of similar
title by H. M. Edwards (Academic Press, 1974) and S. J. Patterson (Cambridge
University Press, 1988) provide accessible introductions to the topic.

2.10 Exercises

(i) Evaluate
∑

d|n μ(d)σ (d) in terms of the distinct prime factors of n.
(ii) Let�(n)= log p if n is a power of a prime p and let�(n)=0 otherwise

(� is called von Mangoldt’s function). Evaluate
∑

d|n�(d). Express∑
�(n)/ns in terms of ζ(s).

(iii) Let a run through all the integers with 1 ≤ a ≤ n and (a,n)=1. Show
that f (n)= (1/n)

∑
a satisfies

∑
d|n f (d)= 1

2 (n + 1). Hence prove that

f (n)= 1
2φ(n) for n> 1.

(iv) Let a run through the integers as in Exercise (iii). Prove that

(1/n3)
∑

a3 = 1
4φ(n)(1 + (−1)k p1 · · · pk/n2),

where p1, . . . , pk are the distinct prime factors of n(>1).
(v) Show that the product of all the integers a in Exercise (iii) is given by

nφ(n)
∏

d|n(d!/dd)μ(n/d).
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(vi) Show that
∑

n≤x μ(n)[x/n]=1. Hence prove that |∑n≤x μ(n)/n | ≤ 1.
(vii) Let m, n be positive integers and let d run through all divisors of (m,n).

Prove that
∑

dμ(n/d)=μ(n/(m,n))φ(n)/φ(n/(m,n)). (The sum here
is called Ramanujan’s sum.)

(viii) Prove that if n has k distinct prime factors then
∑

d|n |μ(d)|=2k .
(ix) Prove that∑

d|n
(μ(d))2/φ(d)=n/φ(n),

∑
d|2n

μ(d)φ(d)=0.

(x) Find all positive integers n such that

(a) φ(n)|n, (b) φ(n)= 1
2 n, (c) φ(n)=φ(2n), (d) φ(n)=12.

(xi) Prove that
∑∞

n =1 φ(n)x
n/(1 − xn)= x/(1 − x)2. (Series of this kind are

called Lambert series.)
(xii) Prove that

∑
n≤x φ(n)/n = (6/π2)x + O(log x).
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Congruences

3.1 Definitions

Suppose that a,b are integers and that n is a natural number. By a ≡ b (mod n)
one means n divides b − a; and one says that a is congruent to b modulo n. If
0 ≤ b< n then one refers to b as the residue of a (mod n). It is readily verified
that the congruence relation is an equivalence relation; the equivalence classes
are called residue classes or congruence classes. By a complete set of residues
(mod n) one means a set of n integers, one from each residue class (mod n).

It is clear that if a ≡ a′ (mod n) and b ≡ b′ (mod n) then a + b ≡ a′ + b′ and
a − b ≡ a′ − b′ (mod n). Further, we have ab ≡ a′b′ (mod n), since n divides
(a − a′)b + a′(b − b′). Furthermore, if f (x) is any polynomial with integer
coefficients, then f (a)≡ f (a′) (mod n).

Note also that if ka ≡ ka′ (mod n) for some natural number k with (k,n)=1
then a ≡ a′ (mod n); thus if a1, . . . ,an is a complete set of residues (mod n)
then so is ka1, . . . , kan . More generally, if k is any natural number such that
ka ≡ ka′ (mod n) then a ≡ a′ (mod n/(k,n)), since obviously k/(k,n) and
n/(k,n) are relatively prime.

3.2 Chinese remainder theorem

Let a,n be natural numbers and let b be any integer. We prove first that the
linear congruence ax ≡ b (mod n) is soluble for some integer x if and only if
(a,n) divides b. The condition is certainly necessary, for (a,n) divides both a
and n. To prove the sufficiency, suppose that d = (a,n) divides b. Put a′ =a/d,
b′ =b/d and n′ =n/d. Then it suffices to solve a′x ≡ b′ (mod n′). But this has
precisely one solution (mod n′), since (a′,n′)=1 and so a′x runs through a
complete set of residues (mod n′) as x runs through such a set. It is clear that

19
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if x ′ is any solution of a′x ′ ≡ b′ (mod n′) then the complete set of solutions
(mod n) of ax ≡ b (mod n) is given by x = x ′ + mn′, where m =1,2, . . . ,d.
Hence, when d divides b, the congruence ax ≡ b (mod n) has precisely d
solutions (mod n).

It follows from the last result that if p is a prime and if a is not divisible by p
then the congruence ax ≡ b (mod p) is always soluble; in fact there is a unique
solution (mod p). This implies that the residues 0,1, . . . , p − 1 form a field
under addition and multiplication (mod p); for indeed every non-zero element
has a unique inverse in the multiplicative group. We shall denote the field of
residues mod p by Fp.† Plainly the field has characteristic p. Since any other
finite field with characteristic p is a vector space over Fp, it must have q = pe

elements for some e; an essentially unique field with q elements actually exists
but we shall not be concerned with the theory relating to it here.

We turn now to simultaneous linear congruences and prove the Chinese re-
mainder theorem; the result was apparently known to the Chinese at least 1500
years ago. Let n1, . . . ,nk be natural numbers and suppose that they are coprime
in pairs, that is, (ni ,n j )=1 for i � j . The theorem asserts that, for any inte-
gers c1, . . . , ck , the congruences x ≡ c j (mod n j ), with 1 ≤ j ≤ k, are soluble
simultaneously for some integer x ; in fact there is a unique solution modulo
n = n1 · · ·nk . For the proof, let m j =n/n j (1 ≤ j ≤ k). Then (m j ,n j )=1 and
thus there is an integer x j such that m j x j ≡ c j (mod n j ). Now it is readily seen
that x =m1x1 +· · ·+ mk xk satisfies x ≡ c j (mod n j ), as required. The unique-
ness is clear, for if x, y are two solutions then x ≡ y (mod n j ) for 1 ≤ j ≤ k,
whence, since the n j are coprime in pairs, we have x ≡ y (mod n). Plainly
the Chinese remainder theorem together with the first result of this section
implies that if n1, . . . ,nk are coprime in pairs then the congruences a j x ≡ b j

(mod n j ), with 1 ≤ j ≤ k, are soluble simultaneously if and only if (a j ,n j )

divides b j for all j .
As an example, consider the congruences x ≡ 2 (mod 5), x ≡ 3 (mod 7),

x ≡4 (mod 11). In this case a solution is given by x =77x1+55x2+35x3, where
x1, x2, x3 satisfy 2x1 ≡2 (mod 5), 6x2 ≡3 (mod 7), 2x3 ≡4 (mod 11). Thus we
can take x1 =1, x2 =4, x3 =2, and these give x =367. The complete solution
is x ≡ −18 (mod 385). As another example, consider the congruences x ≡ 1
(mod 3), x ≡ 2 (mod 10), x ≡ 3 (mod 11). A solution is given by x =110x1+
33x2 +30x3, where x1, x2, x3 satisfy 2x1 ≡ 1 (mod 3), 3x2 ≡ 2 (mod 10),
8x3 ≡ 3 (mod 11). Again solving by inspection, we get x1 =2, x2 =4, x3 =10,
which gives x =652. The complete solution is x ≡−8 (mod 330).

† This is currently the most common of several standard notations; they include Z/pZ, Z/p and
GF(p) (the Galois field with p elements). The notation Zp , which was used in the Concise
Introduction, also commonly occurs but it is open to objection since it clashes with notation
customarily adopted in the context of p-adic numbers.
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Note that, when (a,n) divides b, an explicit solution to the congruence
ax ≡ b (mod n) can always be obtained from Euclid’s algorithm although, as
in the examples above, a simple observation often suffices.

3.3 The theorems of Fermat and Euler

First we introduce the concept of a reduced set of residues (mod n). By this
we mean a set of φ(n) numbers, one from each of the φ(n) residue classes
that consist of numbers relatively prime to n. In particular, the numbers a with
1 ≤ a ≤ n and (a,n)=1 form a reduced set of residues (mod n).

We proceed now to establish the multiplicative property of φ, referred to in
Section 2.3, using the above concept. Accordingly let n,n′ be natural num-
bers with (n,n′)=1. Further, let a and a′ run through reduced sets of residues
(mod n) and (mod n′) respectively. Then it suffices to prove that an′ +a′n runs
through a reduced set of residues (mod nn′); for this implies that φ(n)φ(n′)=
φ(nn′), as required. Now clearly, since (a,n)=1 and (a′,n′)=1, the number
an′ + a′n is relatively prime to n and to n′ and so to nn′. Furthermore any
two distinct numbers of the form are incongruent (mod nn′). Thus we have
only to prove that if (b,nn′)=1 then b ≡an′ +a′n (mod nn′) for some a,a′ as
above. But since (n,n′)=1 there exist integers m,m′ satisfying mn′ +m′n =1.
Plainly (bm,n)=1 and so a ≡ bm (mod n) for some a; similary a′ ≡ bm′

(mod n′) for some a′, and now it is easily seen that a,a′ have the required
property.

Fermat’s theorem states that if a is any natural number and if p is any prime
then a p ≡ a (mod p). In particular, if (a, p)=1 then a p−1 ≡ 1 (mod p). The
theorem was announced by Fermat in 1640 but without proof. Euler gave the
first demonstration about a century later and, in 1760, he established a more
general result to the effect that, if a,n are natural numbers with (a,n)=1 then
aφ(n)≡ 1 (mod n). For the proof of Euler’s theorem, we observe simply that as
x runs through a reduced set of residues (mod n) so also ax runs through such
a set. Hence

∏
(ax)≡∏(x) (mod n), where the products are taken over all x in

the reduced set, and the theorem follows on cancelling
∏
(x) from both sides.

3.4 Wilson’s theorem

This asserts that (p − 1)! ≡ −1 (mod p) for any prime p. Though the result is
attributed to Wilson, the statement was apparently first published by Waring in
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his Meditationes Algebraicae of 1770 and a proof was furnished a little later
by Lagrange.

For the demonstration, it suffices to assume that p is odd. Now to every
integer a with 0 < a < p there is a unique integer a′ with 0 < a′ < p such
that aa′ ≡ 1 (mod p). Further, if a =a′ then a2 ≡ 1 (mod p), whence a =1 or
a = p − 1. Thus the set 2,3, . . . , p − 2 can be divided into 1

2 (p − 3) pairs a,a′

with aa′ ≡ 1 (mod p). Hence we have 2 · 3 · · · (p − 2)≡ 1 (mod p), and so
(p − 1)! ≡ p − 1 ≡−1 (mod p), as required.

Wilson’s theorem admits a converse and so yields a criterion for primes.
Indeed an integer n > 1 is a prime if and only if (n − 1)! ≡ −1 (mod n). To
verify the sufficiency note that any divisor of n, other than itself, must divide
(n − 1)!.

As an immediate deduction from Wilson’s theorem we see that if p is a
prime with p ≡ 1 (mod 4) then the congruence x2 ≡−1 (mod p) has solutions
x = ± (r !), where r = 1

2 (p − 1). This follows on replacing a + r in (p − 1)!
by the congruent integer a − r − 1 for each a with 1 ≤ a ≤ r . Note that the
congruence has no solutions when p ≡ 3 (mod 4), for otherwise we would
have x p−1 = x2r ≡ (−1)r = − 1 (mod p), contrary to Fermat’s theorem.

3.5 Lagrange’s theorem

Let f (x) be a polynomial with integer coefficients and with degree n. Suppose
that p is a prime and that the leading coefficient of f , that is, the coefficient
of xn , is not divisible by p. Lagrange’s theorem states that the congruence
f (x)≡ 0 (mod p) has at most n solutions (mod p).

The theorem certainly holds for n =1 by the first result in Section 2.2. We
assume that it is valid for polynomials with degree n − 1 and proceed induc-
tively to prove the theorem for polynomials with degree n. Now, for any integer
a we have f (x)− f (a)= (x − a)g(x), where g is a polynomial with degree
n − 1, with integer coefficients and with the same leading coefficient as f .
Thus if f (x)≡ 0 (mod p) has a solution x =a then all solutions of the con-
gruence satisfy (x − a)g(x)≡ 0 (mod p). But, by the inductive hypothesis, the
congruence g(x)≡ 0 (mod p) has at most n − 1 solutions (mod p). The theo-
rem follows. It is customary to write f (x)≡ g(x) (mod p) to signify that the
coefficients of like powers of x in the polynomials f, g are congruent (mod p);
and it is clear that if the congruence f (x)≡ 0 (mod p) has its full complement
a1, . . . ,an of solutions (mod p) then

f (x)≡ c(x − a1) · · · (x − an) (mod p),
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where c is the leading coefficient of f . In particular, by Fermat’s theorem,
we have

x p−1 − 1 ≡ (x − 1) · · · (x − p + 1) (mod p),

and, on comparing constant coefficients, we obtain another proof of Wilson’s
theorem.

Plainly, instead of speaking of congruences, we can express the above suc-
cinctly in terms of polynomials defined over Fp. Thus Lagrange’s theorem
asserts that the number of zeros in Fp of a polynomial defined over this field
cannot exceed its degree. The proof proceeds in this instance by supposing that
f (x) is a polynomial over Fp with degree n and with at least one zero a in Fp;
then f (x)= f (x)− f (a)= (x − a)g(x), where g(x) is a polynomial over Fp

with degree n − 1 and as before, by induction on n, the result follows. As a
corollary we deduce that the polynomial xd − 1 has precisely d zeros in Fp

for each divisor d of p − 1. For we have x p−1 − 1= (xd − 1)g(x), where g(x)
has degree p − 1 − d. But, by Fermat’s theorem, x p−1 − 1 has p − 1 zeros in
Fp and, by Lagrange’s theorem, g(x) has at most p − 1 − d zeros in Fp. Thus
xd −1 has at least (p −1)− (p −1−d)=d zeros in Fp, whence the assertion.
In particular, on taking d =4, we deduce that x2 + 1 has precisely two zeros in
Fp when p ≡ 1 (mod 4), a result related to both Section 3.4 and Section 4.2.

Lagrange’s theorem does not remain true for composite moduli. In fact it
is readily verified from the Chinese remainder theorem that if m1, . . . ,mk are
natural numbers coprime in pairs, if f (x) is a polynomial with integer coeffi-
cients, and if the congruence f (x)≡ 0 (mod m j ) has s j solutions (mod m j ),
then the congruence f (x)≡ 0 (mod m), where m =m1 · · ·mk , has s = s1 · · · sk

solutions (mod m). Lagrange’s theorem is still false for prime power moduli;
for example x2 ≡ 1 (mod 8) has four solutions. But if the prime p does not
divide the discriminant of f then the theorem holds for all powers p j ; indeed
the number of solutions of f (x)≡ 0 (mod p j ) is, in this case, the same as the
number of solutions of f (x)≡ 0 (mod p). This can be seen at once when, for
instance, f (x)= x2 − a; for if p is any odd prime that does not divide a, then
from a solution y of f (y)≡ 0 (mod p j ) we obtain a solution x = y + p j z of
f (x)≡ 0 (mod p j+1) by solving the congruence 2yz + f (y)/p j ≡ 0 (mod p)
for z, as is possible since (2y, p)=1.

3.6 Primitive roots

Let a,n be natural numbers with (a,n)=1. The least natural number d such
that ad ≡ 1 (mod n) is called the order of a (mod n), and a is said to belong to
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d (mod n). By Euler’s theorem, the order d exists and it divides φ(n). In fact d
divides every integer k such that ak ≡1 (mod n), for, by the division algorithm,
k =dq + r with 0 ≤ r < d, whence ar ≡ 1 (mod n) and so r =0.

By a primitive root (mod n) we mean a number that belongs to φ(n) (mod
n). Thus, for a prime p, a primitive root (mod p) is an integer g, not divisible
by p, such that p − 1 is the smallest exponent with g p−1 ≡ 1 (mod p). In
other words, a primitive root (mod p) can be defined as a generator g of the
multiplicative group of the field Fp. It is relatively easy to obtain examples of
primitive roots (mod p). Thus, if we take p =17, then, by testing sequentially,
we find that the smallest primitive root is g =3; in fact the respective powers
of 3 (mod 17) are 3, 9, 10, 13, 5, 15, 11, 16, 14, 8, 7, 4, 12, 2, 6, 1.

We proceed to prove that for every odd prime p there exists a primitive root
(mod p) and indeed that there are precisely φ(p − 1) primitive roots (mod p).
Now each of the numbers 1,2, . . . , p − 1 belongs (mod p) to some divisor d
of p − 1; let ψ(d) be the number that belongs to d (mod p) so that∑

d|(p−1)

ψ(d)= p − 1.

It will suffice to prove that if ψ(d)� 0 then ψ(d)=φ(d). For, by Section 2.3,
we have ∑

d|(p−1)

φ(d)= p − 1,

whence ψ(d)� 0 for all d and so ψ(p − 1)=φ(p − 1) as required.
To verify the assertion concerning ψ , suppose that ψ(d)� 0 and let a be a

number that belongs to d (mod p). Then a,a2, . . . ,ad are mutually incongru-
ent solutions of xd ≡ 1 (mod p) and thus, by Lagrange’s theorem, they repre-
sent all the solutions (in fact we showed in Section 2.5 that the congruence has
precisely d solutions (mod p)). It is now easily seen that the numbers am with
1 ≤ m ≤ d and (m,d)=1 represent all the numbers that belong to d (mod p);
indeed each has order d, for if amd ′ ≡ 1 then d|d ′, and if b is any number that
belongs to d (mod p) then b ≡ am for some m with 1 ≤ m ≤ d, and we have
(m,d)=1 since bd/(m,d) ≡ (ad)m/(m,d) ≡ 1 (mod p). This gives ψ(d)=φ(d),
as asserted.

As noted before, arguments of this kind can be expressed alternatively by
referring to the field Fp. In this context, by a primitive root (mod p) we mean
a generator g of the multiplicative group of Fp and by the order of a non-zero
element a of Fp we mean the least positive integer d such that ad = 1. Let
ψ(d) be the number of elements in Fp with order d. Supposing that ψ(d)� 0
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and a is any element of Fp with order d, we show that the φ(d) elements am

with 1 ≤ m ≤ d and (m,d) = 1 are precisely those with order d; this gives
ψ(d)=φ(d) as required. Now certainly the am with 1 ≤ m ≤ d are distinct
zeros of the polynomial xd − 1 and thus, by Lagrange’s theorem, they are all
the zeros. Hence any element with order d is given by am for some m and,
since (am)d/(m,d) = (ad)m/(m,d) = 1, we must have (m,d)= 1. Further, each
of the am with (m,d)= 1 has order d since amd = 1 and md is the smallest
multiple of m divisible by d. The result follows.

Let g be a primitive root (mod p). We prove now that there exists an integer
x such that g′ = g + px is a primitive root (mod p j ) for all prime powers p j .

We have g p−1 =1 + py for some integer y and so, by the binomial theorem,
g′p−1 =1 + pz, where

z ≡ y + (p − 1)g p−2x (mod p).

The coefficient of x is not divisible by p and so we can choose x such that
(z, p)=1. Then g′ has the required property. For suppose that g′ belongs to d
(mod p j ). Then d divides φ(p j )= p j−1(p −1). But g′ is a primitive root (mod
p) and thus p −1 divides d. Hence d = pk(p −1) for some k< j. Further, since
p is odd, we have

(1 + pz)pk =1 + pk+1zk,

where (zk, p)=1. Now since g′d ≡ 1 (mod p j ) it follows that j = k + 1 and
this gives d =φ(p j ), as required.

Finally we deduce that, for any natural number n, there exists a primitive
root (mod n) if and only if n has the form 2, 4, p j or 2p j , where p is an odd
prime. Clearly 1 and 3 are primitive roots (mod 2) and (mod 4). Further, if
g is a primitive root (mod p j ) then the odd element of the pair g, g + p j is
a primitive root (mod 2p j ), since φ(2p j )=φ(p j ). Hence it remains only to
prove the necessity of the assertion. Now if n =n1n2, where (n1,n2)=1 and
n1 > 2,n2 > 2, then there is no primitive root (mod n). For φ(n1) and φ(n2)

are even and thus for any natural number a we have

a
1
2φ(n)= (aφ(n1))

1
2φ(n2)≡ 1 (mod n1);

similarly a
1
2φ(n) ≡ 1 (mod n2), whence a

1
2φ(n) ≡ 1 (mod n). Further, there are

no primitive roots (mod 2 j ) for j > 2, since, by induction, we have a2 j−2 ≡ 1
(mod 2 j ) for all odd numbers a. This proves the theorem.
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3.7 Indices

Let g be a primitive root (mod n). The numbers gl with l =0,1, . . . ,
φ(n)− 1 form a reduced set of residues (mod n). Hence, for every integer
a with (a,n)=1 there is a unique l such that gl ≡ a (mod n). The exponent
l is called the index of a with respect to g and it is denoted by ind a. Plainly
we have

ind a + ind b ≡ ind (ab) (mod φ(n)),

and ind 1=0, ind g =1. Further, for every natural number m, we have ind
(am)≡m ind a (mod φ(n)). These properties of the index are clearly analogous
to the properties of logarithms. We also have ind (−1)= 1

2φ(n) for n>2 since
g2 ind(−1) ≡ 1 (mod n) and 2 ind (−1)< 2φ(n).

As an example of the use of indices, consider the congruence xn ≡ a (mod
p), where p is a prime. We have n ind x ≡ ind a (mod (p − 1)) and thus if
(n, p − 1)=1 then there is just one solution. Consider, in particular, x5 ≡ 2
(mod 7). It is readily verified that 3 is a primitive root (mod 7) and we have
32 ≡2 (mod 7). Thus 5 ind x ≡2 (mod 6), which gives ind x =4 and x ≡34 ≡4
(mod 7).

Note that although there is no primitive root (mod 2 j ) for j>2, the number 5
belongs to 2 j−2 (mod 2 j ) and every odd integer a is congruent (mod 2 j ) to just
one integer of the form (−1)l5m , where l =0, 1 and m =0,1, . . . ,2 j−2 − 1.
The pair l,m has similar properties to the index defined above.

3.8 Further reading

A good account of the elementary theory of congruences is given by T. Nagell,
Introduction to Number Theory (Wiley, 1951); this contains, in particular, a
table of primitive roots. There is another and in fact more extensive table in I.
M. Vinogradov’s An Introduction to the Theory of Numbers (Pergamon Press,
1961). Again Hardy and Wright’s book of the same title (Oxford University
Press, 2008) covers the subject well.

3.9 Exercises

(i) Find an integer x such that 2x ≡ 1 (mod 3), 3x ≡ 1 (mod 5), 5x ≡
1 (mod 7).

(ii) Find an integer x such that 3x ≡ 1 (mod 5), 5x ≡ 1 (mod 17), 7x ≡ 1
(mod 23).
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(iii) Find integers a,b, c,d, e such that the congruences x ≡ a (mod 2), x ≡
b (mod 3), x ≡ c (mod 4), x ≡ d (mod 6), x ≡ e (mod 12) overlap, that
is, such that at least one is soluble for every x .

(iv) Show that akp−k+1 ≡a (mod p) for all primes p, integers a and positive
integers k. Deduce that 798 divides a19 − a for all integers a.

(v) Suppose that a1, . . . ,ap and b1, . . . ,bp are each complete sets of
residues (mod p) for a prime p. Is it possible that a1b1, . . . ,apbp is
also a complete set of residues (mod p)?

(vi) Show that, for an odd prime p, the congruence x2 ≡(−1)
1
2 (p+1) (mod p)

has the solution x = ( 1
2 (p − 1))!.

(vii) Show that, for composite n, the congruence (n − 1)! ≡ 0 (mod n) holds
with one exception. Show further that (n − 1)! + 1 is not a power of n.

(viii) Prove that, for any positive integers a,n with (a,n)=1,
∑{ax/n}=

1
2φ(n), where the summation is over all x in a reduced set of residues
(mod n).

(ix) The integers a and n> 1 satisfy an−1 ≡ 1 (mod n) but am � 1 (mod n)
for each divisor m of n − 1, other than itself. Prove that n is a prime.

(x) Show that the congruence x p−1 − 1 ≡ 0 (mod p j ) has just p − 1 solu-
tions (mod p j ) for every prime power p j .

(xii) Prove that, for every natural number n, either there is no primitive root
(mod n) or there are φ(φ(n)) primitive roots (mod n).

(xiii) Prove that, for any prime p, the sum of all the distinct primitive roots
(mod p) is congruent to μ(p − 1) (mod p).

(xiv) Prove that, for a prime p > 3, the product of all the distinct primitive
roots (mod p) is congruent to 1 (mod p).

(xv) Prove that if p is a prime and k is a positive integer then
∑p

n=1 nk is
congruent (mod p) to −1 if p − 1 divides k and to 0 otherwise.

(xvi) Determine all the solutions of the congruence y2 ≡ 5x3 (mod 7) in inte-
gers x, y.

(xvii) Prove that, for any prime p>3, the numerator of 1+ 1
2 +· · ·+1/(p −1)

is divisible by p2 (Wolstenholme’s theorem).



4

Quadratic residues

4.1 Legendre’s symbol

In the last chapter we discussed the linear congruence ax ≡b (mod n). Here we
shall study the quadratic congruence x2 ≡ a (mod n); in fact this amounts to
the study of the general quadratic congruence ax2 + bx + c ≡ 0 (mod n), since
on writing d =b2 − 4ac and y =2ax + b, the latter gives y2 ≡ d (mod 4an).

Let a be any integer, let n be a natural number and suppose that (a,n)=1.
Then a is called a quadratic residue (mod n) if the congruence x2 ≡ a (mod n)
is soluble; otherwise it is called a quadratic non-residue (mod n). The Legendre
symbol

( a
p

)
, where p is a prime and (a, p)=1, is defined as 1 if a is a quadratic

residue (mod p) and as −1 if a is a quadratic non-residue (mod p). The symbol
is customarily extended to the case when p divides a by defining it as 0 in this
instance. Clearly, if a ≡ a′ (mod p), we have(

a

p

)
=
(

a′

p

)
.

4.2 Euler’s criterion

This states that if p is an odd prime then(
a

p

)
≡ a

1
2 (p−1) (mod p).

For the proof we write, for brevity, r = 1
2 (p − 1) and we note first that if a

is a quadratic residue (mod p) then for some x in N we have x2 ≡ a (mod p),
whence, by Fermat’s theorem, ar ≡ x p−1 ≡1 (mod p). Thus it suffices to show
that if a is a quadratic non-residue (mod p) then ar ≡−1 (mod p). Now in any
reduced set of residues (mod p) there are r quadratic residues (mod p) and r
quadratic non-residues (mod p); for the numbers 12,22, . . . , r2 are mutually

28
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incongruent (mod p) and since, for any integer k, (p − k)2 ≡ k2 (mod p), the
numbers represent all the quadratic residues (mod p). Each of the numbers
satisfies xr ≡ 1 (mod p), and, by Lagrange’s theorem, the congruence has at
most r solutions (mod p). Hence if a is a quadratic non-residue (mod p) then a
is not a solution of the congruence. But, by Fermat’s theorem, a p−1 ≡ 1 (mod
p), whence ar ≡±1 (mod p). The required result follows.

It will be seen that the proof given above can be expressed briefly in terms of
the field Fp. In fact it is enough to observe that, from Fermat’s theorem, every

element of Fp other than 0 is a zero of one of the polynomials x
1
2 (p−1) ± 1

and, from Lagrange’s theorem, x
1
2 (p−1)− 1 has precisely the zeros 12,22, . . . ,

( 1
2 (p − 1))2, which is a complete set of quadratic residues. Note also that one

can argue alternatively in terms of a primitive root (mod p), say g; indeed it is
clear that the quadratic residues (mod p) are given by 1, g2, . . . , g2(r−1).

As an immediate corollary to Euler’s criterion we have the multiplicative
property of the Legendre symbol, namely(

a

p

)(
b

p

)
=
(

ab

p

)
for all integers a, b not divisible by p; here equality holds since both sides are
±1. Similarly we have (−1

p

)
= (−1)

1
2 (p−1);

in other words, −1 is a quadratic residue of all primes ≡ 1 (mod 4) and a
quadratic non-residue of all primes ≡ 3 (mod 4). It will be recalled from
Section 3.4 that when p ≡ 1 (mod 4) the solutions of x2 ≡ −1 (mod p) are
given by x = ± (r !).

4.3 Gauss’ lemma

For any integer a and any natural number n we define the numerically least res-
idue of a (mod n) as that integer a′ for which a ≡ a′ (mod n) and − 1

2 n<a′

≤ 1
2 n.

Let now p be an odd prime and suppose that (a, p)=1. Further, let a j be the
numerically least residue of aj (mod p) for j =1,2, . . . . Then Gauss’ lemma
states that (

a

p

)
= (−1)l ,

where l is the number of j ≤ 1
2 (p − 1) for which a j <0.
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For the proof we observe that the numbers |a j | with 1 ≤ j ≤ r , where r =
1
2 (p − 1), are simply the numbers 1,2, . . . , r in some order. For certainly we
have 1 ≤ |a j | ≤ r , and the |a j | are distinct since a j = − ak , with k ≤ r , would
give a( j +k)≡0 (mod p) with 0< j +k< p, which is impossible, and a j =ak

gives a j ≡ ak (mod p), whence j = k. Hence we have a1 · · ·ar = (−1)lr !. But
a j ≡ aj (mod p) and so a1 · · ·ar ≡ arr ! (mod p). Thus ar ≡ (−1)l (mod p),
and the result now follows from Euler’s criterion.

As a corollary we obtain (
2

p

)
= (−1)

1
8 (p2−1),

that is, 2 is a quadratic residue of all primes ≡ ±1 (mod 8) and a quadratic
non-residue of all primes ≡ ±3 (mod 8). To verify this result, note that, when
a =2, we have a j =2 j for 1 ≤ j ≤ [ 1

4 p] and a j =2 j − p for [ 1
4 p]< j ≤

1
2 (p −1). Hence in this case l = 1

2 (p −1)− [ 1
4 p], and it is readily checked that

l ≡ 1
8 (p

2 − 1) (mod 2).

4.4 Law of quadratic reciprocity

We come now to the famous theorem stated by Euler in 1783 and first proved
by Gauss in 1796. Apparently Euler, Legendre and Gauss each discovered the
theorem independently and Gauss worked on it intensively for a year before es-
tablishing the result; he subsequently gave no fewer than eight demonstrations.

The law of quadratic reciprocity asserts that if p,q are distinct odd primes
then (

p

q

)(
q

p

)
= (−1)

1
4 (p−1)(q−1).

Thus if p,q are not both congruent to 3 (mod 4) then(
p

q

)
=
(

q

p

)
,

and in the exceptional case (
p

q

)
= −

(
q

p

)
.

For the proof we observe that, by Gauss’ lemma,
( p

q

)= (−1)l , where l is the

number of lattice points (x, y) (that is, pairs of integers) satisfying 0< x< 1
2 q

and − 1
2 q< px − qy<0. Now these inequalities give y<(px/q) + 1

2 <
1
2 (p + 1). Hence, since y is an integer, we see that l is the number of lattice
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½ p

px – qy ≤ – ½q

qy – px ≤ – ½p

–½q < px –
 qy <

0

–½p < qy – px <
 0

½

½ ½q x

y

0

Fig. 4.1 The rectangle R in the proof of the law of quadratic reciprocity.

points in the rectangle R defined by 0< x< 1
2 q, 0< y< 1

2 p, satisfying − 1
2 q<

px − qy<0 (see Fig. 4.1). Similarly(
q

p

)
= (−1)m,

where m is the number of lattice points in R satisfying − 1
2 p<qy − px<0.

Now it suffices to prove that 1
4 (p − 1)(q − 1)− (l + m) is even. But 1

4 (p −
1)(q −1) is just the number of lattice points in R, and thus the latter expression
is the number of lattice points in R satisfying either px − qy ≤ − 1

2 q or qy −
px ≤ − 1

2 p. The regions in R defined by these inequalities are disjoint and
they contain the same number of lattice points since, as is readily verified, the
substitution

x = 1
2 (q + 1)− x ′, y = 1

2 (p + 1)− y′

furnishes a one–one correspondence between them. The theorem follows.
The law of quadratic reciprocity is useful in the calculation of Legendre

symbols. For example, we have(
15

71

)
=
(

3

71

)(
5

71

)
= −

(
71

3

)(
71

5

)
= −

(
2

3

)(
1

5

)
=1.

Further, for instance, we obtain(−3

p

)
=
(−1

p

)(
3

p

)
= (−1)

1
2 (p−1)

(
3

p

)
=
( p

3

)
,
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whence −3 is a quadratic residue of all primes ≡ 1 (mod 6) and a quadratic
non-residue of all primes ≡−1 (mod 6).

As another example, let us use the result to evaluate
(−5

p

)
. We have(−5

p

)
=
(−1

p

)(
5

p

)
= (−1)

1
2 (p−1)

( p

5

)
,

whence, since
( p

5

)= 1 for p ≡±1 (mod 5) and
( p

5

)=−1 for p ≡±2 (mod 5),
it follows that −5 is a quadratic residue of all primes ≡ 1,3,7,9 (mod 20) and
a quadratic non-residue of primes ≡−1,−3,−7,−9 (mod 20).

4.5 Jacobi’s symbol

This is a generalization of the Legendre symbol. Let n be a positive odd integer
and suppose that n = p1 p2 · · · pk as a product of primes, not necessarily dis-
tinct. Then, for any integer a with (a,n)=1, the Jacobi symbol is defined by(a

n

)
=
(

a

p1

)
· · ·
(

a

pk

)
,

where the factors on the right are Legendre symbols. When n =1 the Jacobi
symbol is defined as 1 and when (a,n)> 1 it is defined as 0. Clearly, if a ≡ a′

(mod n) then (a

n

)
=
(

a′

n

)
.

It should be noted at once that (a

n

)
=1

does not imply that a is a quadratic residue (mod n). Indeed a is a quadratic
residue (mod n) if and only if a is a quadratic residue (mod p) for each prime
divisor p of n (see Section 3.5). But(a

n

)
= − 1

does imply that a is a quadratic non-residue (mod n). Thus, for example, since(
6

35

)
=
(

6

5

)(
6

7

)
=
(

1

5

)(−1

7

)
= − 1,

we conclude that 6 is a quadratic non-residue (mod 35).
The Jacobi symbol is multiplicative, like the Legendre symbol; that is,(

ab

n

)
=
(a

n

)(b

n

)
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for all integers a,b relatively prime to n. Further, if m,n are odd and (a,mn)=1
then ( a

mn

)
=
( a

m

)(a

n

)
.

Furthermore we have(−1

n

)
= (−1)

1
2 (n−1),

(
2

n

)
= (−1)

1
8 (n

2−1),

and the analogue of the law of quadratic reciprocity holds, namely if m,n are
odd and (m,n)=1 then(m

n

)( n

m

)
= (−1)

1
4 (m−1)(n−1).

These results are readily verified from the corresponding theorems for the Leg-
endre symbol on noting that, if n =n1n2, then

1
2 (n − 1)≡ 1

2 (n1 − 1)+ 1
2 (n2 − 1) (mod 2),

since 1
2 (n1 − 1)(n2 − 1)≡ 0 (mod 2), and that a similar congruence holds for

1
8 (n

2 − 1).
Jacobi symbols can be used to facilitate the calculation of Legendre symbols.

We have, for example,(
335

2999

)
= −

(
2999

335

)
= −

(−16

335

)
= −

(−1

335

)
=1,

whence, since 2999 is a prime, it follows that 335 is a quadratic residue (mod
2999).

For another illustration of the use of the Jacobi symbol consider the
equations (

21

275

)
=
(

275

21

)
=
(

2

21

)
=−1.

Now if
( a

n

) =−1 then
( a

p

)=−1 for some prime factor p of n and, since x2 ≡a

(mod n) implies x2 ≡ a (mod p), it follows that a is a quadratic non-residue of
n; hence 21 is a quadratic non-residue of 275. But the converse is not true. For
instance, though

( 3
275

)= −( 2
3

)= 1, we cannot conclude that 3 is a quadratic
residue of 275; indeed

( 3
5

)=−1 and so 3 is a quadratic non-residue of 275.

4.6 Further reading

The theories here date back to the Disquisitiones Arithmeticae of Gauss, and
they are covered by numerous texts. An excellent account of the history relating
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to the law of quadratic reciprocity is given by Bachmann, Niedere Zahlentheo-
rie, Vol. 1 (Teubner, 1902). In particular he gives references to some 40 differ-
ent proofs. For an account of modern developments associated with the law of
quadratic reciprocity see Artin and Tate, Class Field Theory (W. A. Benjamin,
1967) and Cassels and Fröhlich, eds, Algebraic Number Theory (Academic
Press, 1967).

The study of higher congruences, that is, congruences of the form f (x1, . . . ,

xn)≡ 0 (mod p j ), where f is a polynomial with integer coefficients, leads to
the concept of p-adic numbers and to deep theories in the realm of algebraic
geometry; see, for example, Borevich and Shafarevich, Number Theory (Aca-
demic Press, 1966), and Weil, ‘Numbers of solutions of equations in finite
fields’, Bull. American Math. Soc. 55 (1949), 497–508.

4.7 Exercises

(i) Determine the primes p for which 5 is a quadratic residue (mod p).
(ii) Show that if p is a prime ≡3 (mod 4) and if p′ =2p +1 is a prime then

2p ≡ 1 (mod p′). Deduce that 2251 − 1 is not a Mersenne prime.
(iii) Show that if p is an odd prime then the product P of all the quadratic

residues (mod p) satisfies P ≡ (−1)
1
2 (p+1) (mod p). Show further that,

if p > 3, then their sum S satisfies S ≡ 0 (mod p). Deduce analo-
gous results for the product and sum of all the quadratic non-residues
(mod p).

(iv) Prove that if p is a prime ≡ 1 (mod 4) then
∑

r = 1
4 p(p − 1), where

the summation is over all quadratic residues r with 1 ≤ r ≤ p − 1.
(v) Use Euler’s criterion to show that the primitive roots (mod p) for a

prime p = 2n + 1 are precisely the quadratic non-residues (mod p).
Deduce that
(a) if n> 1 then 3 is a primitive root (mod p),
(b) if n = 2k with k> 1 then 5 is a primitive root (mod p).

(vi) Show that the prime factors of n2 +4, where n is a positive odd integer,
are congruent to 1 or 5 (mod 8). Deduce that there are infinitely many
primes congruent to 5 (mod 8). By considering n2 +2 and n2 −2, show
further that there are infinitely many primes congruent to 3 (mod 8) and
to 7 (mod 8).

(vii) Find the least integer n> 1 such that an ≡ a (mod 12 121) for all inte-
gers a.

(viii) Let p be an odd prime and let a be an integer not divisible by p. Prove
that, if a is a quadratic residue (mod p), then it is a quadratic residue
(mod pk) for all positive integers k.
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(ix) Show that, for p>3, the latter holds also for cubic residues; by a cubic
residue (mod n), one means an integer a with (a,n)= 1 such that x3 ≡
a (mod n) is soluble.

(x) Evaluate the Jacobi symbol
( 123

917

)
.

(xi) Evaluate the Jacobi symbols
( 103

2773

)
and

( 117
3553

)
. Are 103 and 117

quadratic residues mod 2773 and mod 3553 respectively?
(xii) Let f (x)=ax2 + bx + c, where a,b, c are integers, and let p be an

odd prime that does not divide a. Prove that the number of solutions of
the congruence f (x)≡ 0 (mod p) is 1 + ( d

p

)
, where d = b2 − 4ac and( d

p

)= 0 if p divides d.
(xiii) Find the number of solutions (mod 997) of

(a) x2 + x + 1 ≡ 0, (b) x2 + x − 2 ≡ 0, (c) x2 + 25x − 93 ≡ 0.
(xiv) With the notation of Exercise (xii), show that, if p does not divide d,

then
p∑

x =1

(
f (x)

p

)
= −

(
a

p

)
.

Evaluate the sum when p divides d.
(xv) Prove that if p′ is a prime ≡1 (mod 4) and if p =2p′ +1 is a prime then

2 is a primitive root (mod p). For which primes p′ with p =2p′ + 1
prime is 5 a primitive root (mod p)?

(xvi) Show that if p is a prime and a,b, c are integers not divisible by p then
there are integers x, y such that ax2 + by2 ≡ c (mod p).

(xvii) Let f = f (x1, . . . , xn) be a polynomial with integer coefficients that
vanishes at the origin and let p be a prime. Prove that if the congruence
f ≡ 0 (mod p) has only the trivial solution then the polynomial

1 − f p−1 − (1 − x p−1
1 ) · · · (1 − x p−1

n )

is divisible by p for all integers x1, . . . , xn . Deduce that if f has total
degree less than n then the congruence f ≡ 0 (mod p) has a non-trivial
solution (Chevalley’s theorem).

(xviii) Prove that if f = f (x1, . . . , xn) is a quadratic form with integer coeffi-
cients, if n ≥ 3 and if p is a prime then the congruence f ≡ 0 (mod p)
has a non-trivial solution.
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Quadratic forms

5.1 Equivalence

We shall consider binary quadratic forms

f (x, y)= ax2 + bxy + cy2,

where a, b, c are integers. By the discriminant of f we mean the number
d = b2 − 4ac. Plainly d ≡ 0 (mod 4) if b is even and d ≡ 1 (mod 4) if b is odd.
The forms x2 − 1

4 dy2 for d ≡ 0 (mod 4) and x2 + xy + 1
4 (1 − d)y2 for d ≡ 1

(mod 4) are called the principal forms with discriminant d. We have

4a f (x, y)= (2ax + by)2 − dy2,

whence if d < 0 the values taken by f are all of the same sign (or zero); f is
called positive or negative definite accordingly. If d > 0 then f takes values of
both signs and it is called indefinite.

We say that two quadratic forms are equivalent if one can be transformed
into the other by an integral unimodular substitution, that is, a substitution of
the form

x = px ′ + qy′, y = r x ′ + sy′,

where p,q, r, s are integers with ps − qr = 1. It is readily verified that this
relation is reflexive, symmetric and transitive. Further, it is clear that the set
of values assumed by equivalent forms as x, y run through the integers are
the same, and indeed they assume the same set of values as the pair x, y runs
through all relatively prime integers; for (x, y)= 1 if and only if (x ′, y′)= 1.
Furthermore equivalent forms have the same discriminant. For the substitution
takes f into

f ′(x ′, y′)= a′x ′2 + b′x ′y′ + c′y′2,

36
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where

a′ = f (p, r), b′ = 2apq + b(ps + qr)+ 2crs, c′ = f (q, s),

and it is readily checked that b′2 −4a′c′ =d(ps −qr)2. Alternatively, in matrix
notation, we can write f as X T F X and the substitution as X = U X ′, where

X =
(

x

y

)
, X ′ =

(
x ′

y′

)
, F =

(
a 1

2 b
1
2 b c

)
, U =

(
p q
r s

)
;

then f is transformed into X ′T F ′ X ′, where F ′ =U T FU , and, since the deter-
minant of U is 1, it follows that the determinants of F and F ′ are equal.

5.2 Reduction

There is an elegant theory of reduction relating to positive definite quadratic
forms which we shall now describe. Accordingly we shall assume henceforth
that d < 0 and that a> 0; then we have also c> 0.

We begin by observing that by a finite sequence of unimodular substitutions
of the form x = y′, y =−x ′ and x = x ′ ± y′, y = y′, f can be transformed into
another binary form for which |b| ≤ a ≤ c. For the first of these substitutions
interchanges a and c, whence it allows one to replace a> c by a< c; and the
second has the effect of changing b to b ± 2a, leaving a unchanged, whence,
by finitely many applications it allows one to replace |b|> a by |b| ≤ a. The
process must terminate since whenever the first substitution is applied it results
in a smaller value of a. In fact we can transform f into a binary form for which
either

−a< b ≤ a< c or 0 ≤ b ≤ a = c.

For if b = −a then the second of the above substitutions allows one to take
b = a, leaving c unchanged, and if a = c then the first substitution allows one
to take 0 ≤ b. A binary form for which one or other of the above conditions on
a, b, c holds is said to be reduced.

There are only finitely many reduced forms with a given discriminant d; for
if f is reduced then −d = 4ac − b2 ≥ 3ac, whence a, c and |b| cannot exceed
1
3 |d|. The number of reduced forms with discriminant d is called the class
number and is denoted by h(d). To calculate the class number when d = −4,
for example, we note that the inequality 3ac ≤ 4 gives a = c = 1, whence b = 0
and h(−4)=1. The number h(d) is actually the number of inequivalent classes
of binary quadratic forms with discriminant d since, as we shall now prove, any
two reduced forms are not equivalent.
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Let f (x, y) be a reduced form. Then if x, y are non-zero integers and |x | ≥
|y| we have

f (x, y)≥ |x |(a|x | − |by|)+ c|y|2
≥ |x |2(a − |b|)+ c|y|2 ≥ a − |b| + c.

Similarly if |y| ≥ |x | we have f (x, y)≥ a − |b| + c. Hence the smallest values
assumed by f for relatively prime integers x, y are a, c and a − |b| + c in
that order; these values are taken at (1, 0), (0, 1) and either (1, 1) or (1, −1).
Now the sequences of values assumed by equivalent forms for relatively prime
x, y are the same, except for a rearrangement, and thus if f ′ is a form, as
in Section 5.1, equivalent to f , and if also f ′ is reduced, then a = a′, c = c′

and b = ±b′. It remains therefore to prove that if b = −b′ then in fact b = 0.
We can assume here that −a < b < a < c, for, since f ′ is reduced, we have
−a <−b, and if a = c then we have b ≥ 0, −b ≥ 0, whence b = 0. It follows
that f (x, y)≥ a − |b| + c> c> a for all non-zero integers x, y. But, with the
notation of Section 5.1 for the substitution taking f to f ′, we have a = f (p, r).
Thus p =±1, r = 0, and from ps − qr = 1 we obtain s =±1. Further, we have
c = f (q, s), whence q = 0. Hence the only substitutions taking f to f ′ are
x = x ′, y = y′ and x =−x ′, y =−y′. These give b = 0, as required.

5.3 Representations by binary forms

A number n is said to be properly represented by a binary form f if n = f (x, y)
for some integers x, y with (x, y)= 1. There is a useful criterion in connection
with such representations, namely n is properly represented by some binary
form with discriminant d if and only if the congruence x2 ≡ d (mod 4n) is
soluble.

For the proof, suppose first that the congruence is soluble and let x = b
be a solution. Define c by b2 − 4nc = d and put a = n. Then the form f , as in
Section 5.1, has discriminant d and it properly represents n; in fact f (1,0)=n.
Conversely suppose that f has discriminant d and that n = f (p, r) for some
integers p, r with (p, r)= 1. Then there exist integers q, s with ps − qr = 1
and f is equivalent to a form f ′ as in Section 5.1 with a′ = n. But f and
f ′ have the same discriminants and so b′2 − 4nc′ = d. Hence the congruence
x2 ≡ d (mod 4n) has a solution x = b′.

The ideas here can be developed to furnish, in the case (n,d)= 1, the num-
ber of proper representations of n by all reduced forms with a given discrimi-
nant d. Indeed the quantity in question is given by ws, where s is the number
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of solutions of the congruence x2 ≡ d (mod 4n) with 0 ≤ x < 2n and w is the
number of automorphs of a reduced form; by an automorph of f we mean an
integral unimodular substitution that takes f into itself. The number w is re-
lated to the solutions of the Pell equation (see Section 7.3); it is given by 2 for
d<−4, by 4 for d =−4 and by 6 for d =−3. In fact the only automorphs, for
d <−4, are x = x ′, y = y′ and x =−x ′, y =−y′.

5.4 Sums of two squares

Let n be a natural number. We proceed to prove that n can be expressed in the
form x2 + y2 for some integers x, y if and only if every prime divisor p of n
with p ≡ 3 (mod 4) occurs to an even power in the standard factorization of n.
The result dates back to Fermat and Euler.

The necessity is easily verified, for suppose that n = x2 + y2 and that n is
divisible by a prime p ≡ 3 (mod 4). Then x2 ≡ −y2 (mod p) and, since −1 is
a quadratic non-residue (mod p), we see that p divides x and y. Thus we have
(x/p)2 + (y/p)2 = n/p2, and it follows by induction that p divides n to an
even power.

To prove the converse it will suffice to assume that n is square-free and to
show that if each odd prime divisor p of n satisfies p ≡1 (mod 4) then n can be
represented by x2 + y2; for clearly if n = x2 + y2 then nm2 = (xm)2 + (ym)2.
Now the quadratic form x2 + y2 is a reduced form with discriminant −4, and
it was proved in Section 5.2 that h(−4)= 1. Hence it is the only such reduced
form. It follows from Section 5.3 that n is properly represented by x2 + y2 if
and only if the congruence x2 ≡ −4 (mod 4n) is soluble. But, by hypothesis,
−1 is a quadratic residue (mod p) for each prime divisor p of n. Hence −1 is
a quadratic residue (mod n) and the result follows.

It will be noted that the argument involves the Chinese remainder theorem;
but this can be avoided by appeal to the identity

(x2 + y2)(x ′2 + y′2)= (xx ′ + yy′)2 + (xy′ − yx ′)2,

which enables one to consider only prime values of n. In fact there is a well-
known proof of the theorem based on this identity alone, similar to Section 5.5
below.

The demonstration here can be refined to furnish the number of representa-
tions of n as x2 + y2. The number is given by 4

∑(−1
m

)
, where the summation

is over all odd divisors m of n. Thus, for instance, each prime p ≡ 1 (mod 4)
can be expressed in precisely eight ways as the sum of two squares.
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5.5 Sums of four squares

We prove now the famous theorem stated by Bachet in 1621 and first demon-
strated by Lagrange in 1770 to the effect that every natural number can be
expressed as the sum of four integer squares. Our proof will be based on the
identity

(x2 + y2 + z2 +w2)(x ′2 + y′2 + z′2 +w′2)

= (xx ′ + yy′ + zz′ +ww′)2 + (xy′ − yx ′ +wz′ − zw′)2

+ (xz′ − zx ′ + yw′ −wy′)2 + (xw′ −wx ′ + zy′ − yz′)2,

which is related to the theory of quaternions.
In view of the identity and the trivial representation 2 = 12 + 12 + 02 + 02, it

will suffice to prove the theorem for odd primes p. Now the numbers x2 with
0 ≤ x ≤ 1

2 (p − 1) are mutually incongruent (mod p), and the same holds for
the numbers −1− y2 with 0≤ y ≤ 1

2 (p −1). Thus we have x2 ≡−1− y2 (mod
p) for some x , y satisfying x2 + y2 + 1< 1 + 2( 1

2 p)2 < p2. Hence we obtain
mp = x2 + y2 + 1 for some integer m with 0<m< p.

Let l be the least positive integer such that lp = x2 + y2 + z2 +w2 for some
integers x , y, z, w. Then l ≤ m < p. Further, l is odd, for if l were even then
an even number of x , y, z, w would be odd and we could assume that x + y,
x − y, z +w, z −w are even; but

1
2 lp = ( 1

2 (x + y))2 + ( 1
2 (x − y))2 + ( 1

2 (z +w))2 + ( 1
2 (z −w))2

and this is inconsistent with the minimal choice of l. To prove the theorem
we have to show that l = 1; accordingly we suppose that l > 1 and obtain a
contradiction. Let x ′, y′, z′, w′ be the numerically least residues of x , y, z, w
(mod l) and put

n = x ′2 + y′2 + z′2 +w′2.

Then n ≡0 (mod l) and we have n>0, for otherwise l would divide p. Further,
since l is odd, we have n < 4( 1

2 l)2 = l2. Thus n = kl for some integer k with
0< k < l. Now by the identity we see that (kl)(lp) is expressible as a sum
of four integer squares, and moreover it is clear that each of these squares is
divisible by l2. Thus kp is expressible as a sum of four integer squares. But
this contradicts the definition of l and the theorem follows. The argument here
is an illustration of Fermat’s method of infinite descent.

There is a result dating back to Legendre and Gauss to the effect that a
natural number is the sum of three squares if and only if it is not of the form
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4 j (8k + 7) with j , k non-negative integers. Here the necessity is obvious since
a square is congruent to 0, 1 or 4 (mod 8) but the sufficiency depends on the
theory of ternary quadratic forms.

Waring conjectured in 1770 that every natural number can be represented as
the sum of 4 squares, 9 cubes, 19 biquadrates ‘and so on’. One interprets the
latter to mean that, for every integer k ≥ 2 there exists an integer s = s(k) such
that every natural number n can be expressed in the form x1

k + · · · + xs
k with

x1, . . . , xs non-negative integers; and it is customary to denote the least such
s by g(k). Thus we have g(2)= 4. Waring’s conjecture was proved by Hilbert
in 1909. Another, quite different proof was given by Hardy and Littlewood in
1920 and it was here that they described for the first time their famous ‘circle
method’. The work depends on the identity

∞∑
n=0

r(n)zn = ( f (z))s,

where r(n) denotes the number of representations of n in the required form
and f (z)= 1 + z1k + z2k + · · · . Thus we have

r(n)= 1

2π i

∫
C

( f (z))s

zn+1
dz

for a suitable contour C . The argument now involves a delicate division of the
contour into ‘major and minor’ arcs, and the analysis leads to an asymptotic
expression for r(n) and to precise estimates for g(k).

5.6 Further reading

A careful account of the theory of binary quadratic forms is given in Landau,
Elementary Number Theory (Chelsea Publishing, 1958); see also Davenport,
The Higher Arithmetic (Cambridge University Press, 2008). As there, we have
used the classical definition of equivalence in terms of substitutions with de-
terminant 1; however, there is an analogous theory involving substitutions with
determinant ±1 and this is described in Niven, Zuckerman and Montgomery,
An Introduction to the Theory of Numbers (Wiley, 1991).

For a comprehensive account of the general theory of quadratic forms see
Cassels, Rational Quadratic Forms (Academic Press, 1978). For an account of
the analysis appertaining to Waring’s problem see R. C. Vaughan, The Hardy–
Littlewood Method (Cambridge University Press, 1997).
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5.7 Exercises

(i) Prove that h(d)=1 when d = − 3,−4,−7,−8,−11,−19,−43,−67
and −163.

(ii) Determine all the odd primes that can be expressed in the form x2 +
xy + 5y2.

(iii) Determine all the positive integers that can be expressed in the form
x2 + 2y2.

(iv) Determine all the positive integers that can be expressed in the form
x2 − y2.

(v) Show that there are precisely two reduced forms with discriminant −20.
Hence prove that the primes that can be represented by x2 + 5y2 are 5
and those congruent to 1 or 9 (mod 20).

(vi) Calculate h(−31).
(vii) Find the least positive integer that can be represented by 4x2 + 17xy +

20y2.
(viii) Prove that n and 2n, where n is any positive integer, have the same num-

ber of representations as the sum of two squares.
(ix) Find the least integer s such that n = 2k[(3/2)k] − 1 can be expressed in

the form n = xk
1 + · · ·+ xk

s with x1, . . . , xs positive integers.



6

Diophantine approximation

6.1 Dirichlet’s theorem

Diophantine approximation is concerned with the solubility of inequalities in
integers. The simplest result in this field was obtained by Dirichlet in 1842. He
showed that, for any real θ and any integer Q>1, there exist integers p, q with
0<q<Q such that |qθ − p|≤1/Q.

The result can be derived at once from the so-called ‘box’ or ‘pigeon-hole’
principle. This asserts that if there are n holes containing n + 1 pigeons then
there must be at least two pigeons in some hole. Consider in fact the Q + 1
numbers 0, 1, {θ}, {2θ}, . . . , {(Q − 1)θ}, where {x} denotes the fractional part
of x as in Chapter 2. These numbers all lie in the interval [0, 1], and if one
divides the latter, as clearly one can, into Q disjoint sub-intervals, each of
length 1/Q, then it follows that two of the Q + 1 numbers must lie in one
of the Q sub-intervals. The difference between the two numbers has the form
qθ − p, where p, q are integers with 0<q<Q, and we have |qθ − p|≤1/Q,
as required.

Dirichlet’s theorem holds more generally for any real Q>1; the result for
non-integral Q follows from the theorem just established with Q replaced
by [Q] + 1. Further, it is clear that the integers p, q referred to in the theo-
rem can be chosen to be relatively prime. When θ is irrational we have the
important corollary that there exist infinitely many rationals p/q(q>0) such
that |θ − p/q| < 1/q2. Indeed, for Q>1, there is a rational p/q with |θ −
p/q|≤1/(Qq)<1/q2; moreover, if θ is irrational then, for any Q′ exceeding
1/|qθ − p|, the rational corresponding to Q′ will be different from p/q. Note
that the corollary does not remain valid for rational θ ; for if θ = a/b with a, b
integers and b>0 then, when θ�p/q, we have |θ − p/q|≥1/(qb) and so there
are only finitely many rationals p/q such that |θ − p/q|<1/q2.

43
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6.2 Continued fractions

The continued-fraction algorithm sets up a one–one correspondence between
all irrational θ and all infinite sets of integers a0, a1, a2, . . . with a1, a2, . . .

positive. It also sets up a one–one correspondence between all rational θ and
all finite sets of integers a0, a1, . . . , an with a1, a2, . . . , an−1 positive and with
an≥2.

To describe the algorithm, let θ be any real number. We put a0 = [θ ]. If
a0 � θ we write θ =a0 + 1/θ1, so that θ1>1, and we put a1 = [θ1]. If a1 � θ1 we
write θ1 =a1 +1/θ2, so that θ2>1, and we put a2 = [θ2]. The process continues
indefinitely unless an = θn for some n. It is clear that if the latter occurs then θ
is rational; in fact we have

θ = a0 + 1

a1 + 1

a2 + . . .
1

an

.

Conversely, as will be clear in a moment, if θ is rational then the process ter-
minates. The expression above is called the continued fraction for θ ; it is cus-
tomary to write the equation briefly as

θ = a0 + 1

a1+
1

a2+ · · · 1

an

or, more briefly, as

θ = [a0,a1,a2, . . . ,an].

If an� θn for all n, so that the process does not terminate, then θ is irrational.
We proceed to show that one can then write

θ = a0 + 1

a1+
1

a2+ · · · ,

or briefly

θ = [a0,a1,a2, . . . ].

The integers a0, a1, a2, . . . are known as the partial quotients of θ ; the numbers
θ1, θ2, . . . are referred to as the complete quotients of θ . We shall prove that
the rationals

pn/qn = [a0,a1, . . . ,an],

where pn , qn denote relatively prime integers, tend to θ as n →∞; they are in
fact known as the convergents to θ .
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First we show that the pn , qn are generated recursively by the equations

pn = an pn−1 + pn−2, qn = anqn−1 + qn−2,

where p0 =a0, q0 =1 and p1 =a0a1 +1, q1 =a1. The recurrences plainly hold
for n = 2; we assume that they hold for n = m − 1≥ 2 and we proceed to verify
them for n = m. We define relatively prime integers p′

j , q ′
j ( j = 0,1, . . .) by

p′
j/q

′
j = [a1,a2, . . . ,a j+1],

and we apply the recurrences to p′
m−1, q ′

m−1; they give

p′
m−1 = am p′

m−2 + p′
m−3, q ′

m−1 = amq ′
m−2 + q ′

m−3.

But we have p j/q j = a0 + q ′
j−1/p′

j−1, whence

p j = a0 p′
j−1 + q ′

j−1, q j = p′
j−1.

Thus, on taking j = m, we obtain

pm = am(a0 p′
m−2 + q ′

m−2)+ a0 p′
m−3 + q ′

m−3,

qm = am p′
m−2 + p′

m−3,

and, on taking j = m − 1 and j = m − 2, it follows that

pm = am pm−1 + pm−2, qm = amqm−1 + qm−2,

as required.
Now by the definition of θ1, θ2, . . . we have

θ = [a0,a1, . . . ,an, θn+1],

where 0<1/θn+1≤1/an+1; hence θ lies between pn/qn and pn+1/qn+1. It is
readily seen by induction that the above recurrences give

pnqn+1 − pn+1qn = (−1)n+1,

and thus we have

|pn/qn − pn+1/qn+1| = 1/(qnqn+1).

It follows that the convergents pn/qn to θ satisfy

|θ − pn/qn|≤1/(qnqn+1),

and so certainly pn/qn → θ as n → ∞.
In view of the latter inequality and the remarks at the end of Section 6.1, it

is now clear that when θ is rational the continued-fraction process terminates.
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Indeed, for rational θ , the process is closely related to Euclid’s algorithm as
described in Chapter 1. In fact if we take θ = a/b then, with the notation of
Section 1.4, the partial quotients a0,a1,a2, . . . of θ are just q1,q2,q3, . . . ,qk+1

and the complete quotients θ1, θ2, . . . are given by b/r1, r1/r2, . . . , rk−1/rk . In
other words, on defining a j = q j+1(0≤ j≤k), we have

θ = [a0,a1, . . . ,ak];

thus, for example, 187
35 = [5,2,1,11].

6.3 Rational approximations

It follows from the results of Section 6.2 that, for any real θ , each convergent
p/q satisfies |θ − p/q|<1/q2. We observe now that, of any two consecu-
tive convergents, say pn/qn and pn+1/qn+1, one at least satisfies |θ − p/q|<
1/(2q2). Indeed, since θ − pn/qn and θ − pn+1/qn+1 have opposite signs, we
have

|θ − pn/qn| + |θ − pn+1/qn+1| = |pn/qn − pn+1/qn+1|
= 1/(qnqn+1);

but, for any real α, β with α�β, we have αβ< 1
2 (α

2 +β2), whence

1/(qnqn+1)<1/(2q2
n )+ 1/(2q2

n+1),

and this gives the required result. We observe further that, of any three consec-
utive convergents, say pn/qn , pn+1/qn+1 and pn+2/qn+2, one at least satisfies
|θ − p/q|<1/(

√
5 q2). In fact, if the result were false, then the equations above

would give

1/(
√

5 q2
n )+ 1/(

√
5 q2

n+1)≤1/(qnqn+1),

that is, λ+ 1/λ≤√
5, where λ= qn+1/qn . Since λ is rational it follows that

strict inequality holds and so

(λ− 1
2 (1 +√

5))(λ+ 1
2 (1 −√

5))<0,

whence λ< 1
2 (1 + √

5). Similarly, on writing μ= qn+2/qn+1, we would have
μ< 1

2 (1 + √
5). But, by Section 6.2, we have qn+2 = an+2qn+1 + qn , and

thus μ≥1 + 1/λ; this gives a contradiction, for if λ< 1
2 (1 + √

5) then 1/λ >
1
2 (−1 +√

5).
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The latter result confirms a theorem of Hurwitz to the effect that, for any
irrational θ , there exist infinitely many rational p/q such that |θ − p/q|<
1/(

√
5 q2). The constant 1/

√
5 is best possible, as can be verified (see

Section 6.5) by taking

θ = 1
2 (1 +√

5)= [1,1,1, . . . ].

However if one excludes all irrationals equivalent to θ , that is, those whose
continued fractions have all but finitely many partial quotients equal to 1, then
Hurwitz’s theorem holds with 1/

√
8 in place of 1/

√
5, and this is again best

possible. There is an infinite sequence of such results, with constants tending
to 1/3, and they constitute the so-called Markoff chain.

We note next that the convergents give successively closer approximations
to θ . In fact we have the stronger result that |qnθ− pn| decreases as n increases.
To verify this, we observe that the recurrences in Section 6.2 hold for any
indeterminates a0, a1, . . . , whence, for n≥1, we have

θ = pnθn+1 + pn−1

qnθn+1 + qn−1
;

thus we obtain

|qnθ − pn| = 1/(qnθn+1 + qn−1),

and the assertion follows since, for n>1, the denominator on the right exceeds

qn + qn−1 = (an + 1)qn−1 + qn−2>qn−1θn + qn−2,

and, for n =1, it exceeds θ1. The argument here shows, incidentally, that the
convergents to θ satisfy

1

(an+1 + 2)q2
n
<

∣∣∣∣θ − pn

qn

∣∣∣∣< 1

an+1q2
n
.

The convergents are indeed the best approximations to θ in the sense that, if
p, q are integers with 0<q<qn+1, then |qθ − p|≥|qnθ − pn|. For if we define
integers u, v by

p = upn + vpn+1, q = uqn + vqn+1,

then it is easily seen that u�0 and that, if v�0, then u, v have opposite signs;
hence, since qnθ − pn and qn+1θ − pn+1 have opposite signs, we obtain

|qθ − p| = |u(qnθ − pn)+ v(qn+1θ − pn+1)|
≥|qnθ − pn|,
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as required. As a corollary, we deduce that if a rational p/q satisfies |θ −
p/q|<1/(2q2) then it is a convergent to θ . In fact we have p/q = pn/qn ,
where qn≤q<qn+1; for clearly

|p/q − pn/qn|≤|θ − p/q| + |θ − pn/qn|
≤(1/q + 1/qn)|qθ − p|,

and, since q≥qn and |qθ − p|<1/(2q), the number on the right is less than
1/(qqn); hence the number on the left vanishes, as required.

To conclude this section we remark that, for almost all real θ in the sense of
Lebesgue measure, the inequality |θ − p/q|<1/(q2 log q) has infinitely many
rational solutions p/q; in fact the same applies to the inequality |θ − p/q|<
f (q)/q, where f is any monotonically decreasing function such that

∑
f (q)

diverges. However, almost no θ have the property if
∑

f (q) converges, for
instance if f (q)= 1/(q(log q)1+δ) with δ>0.

6.4 Quadratic irrationals

By a quadratic irrational we mean a zero of a polynomial ax2 + bx + c, where
a, b, c are integers and the discriminant d = b2 − 4ac is positive and not a
perfect square. One of the most remarkable results in the theory of numbers,
known since the time of Lagrange, is that a continued fraction represents a
quadratic irrational if and only if it is ultimately periodic, that is, if and only
if the partial quotients a0, a1, . . . satisfy am+n = an for some positive integer
m and for all sufficiently large n. Thus a continued fraction θ is a quadratic
irrational if and only if it has the form

θ = [a0,a1, . . . ,ak−1,ak, . . . ,ak+m−1],

where the bar indicates that the block of partial quotients is repeated indefi-
nitely. As examples, we have

√
2 = [1,2], 1

3 (3 + √
3)= [1,1,1,2] and 1

2 (3 +√
2)= [2,4,1,4]. In the latter instance, the quantity is a root of the equation

4x2 − 12x + 7 = 0 and, to generate the continued fraction, one expresses it as
2 + 1

2 (
√

2 − 1) and notes that

1/( 1
2 (

√
2 − 1))= 4 + 2(

√
2 − 1), 1/(2(

√
2 − 1))= 1 + 1

2 (
√

2 − 1).

Similarly, for example, one obtains
√

20= [4,2,8] and
√

22= [4,1,2,4,2,1,8].
It is easy to see that if the continued fraction for θ has the above form then

θ is a quadratic irrational. For the number

φ= [ak, . . . ,ak+m−1]
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is a complete quotient of θ and so, by Section 6.3, we have, for k≥2,

θ = pk−1φ+ pk−2

qk−1φ+ qk−2
,

where pn/qn(n =0,1, . . .) are the convergents to θ ; further, we have, for m≥2,

φ= p′
m−1φ+ p′

m−2

q ′
m−1φ+ q ′

m−2
,

where p′
n/q

′
n(n = 0,1, . . .) are the convergents to φ. It is clear from the latter

equation that φ is quadratic and hence, by the preceding equation, so also is
θ ; and this plainly remains valid for k = 0 and 1, and for m = 1. Since the
continued fraction for θ does not terminate, it follows that θ is a quadratic
irrational, as required.

To prove the converse, suppose that θ is a quadratic irrational so that θ
satisfies an equation ax2 + bx + c = 0, where a, b, c are integers with d =
b2 − 4ac> 0. We shall consider the binary form

f (x, y)= ax2 + bxy + cy2.

The substitution

x = pn x ′ + pn−1 y′, y = qn x ′ + qn−1 y′,

where pn/qn(n = 1,2, . . .) denote the convergents to θ , has determinant

pnqn−1 − pn−1qn = (−1)n−1,

and so, as in Section 5.1, we see that it takes f into a binary form

fn(x, y)= an x2 + bn xy + cn y2

with the same discriminant d as f . Further, we have an = f (pn,qn) and cn =
an−1. Now f (θ,1)= 0 and so

an/qn
2 = f (pn/qn,1)− f (θ,1)

= a((pn/qn)
2 − θ2)+ b((pn/qn)− θ).

By Section 6.2 we have |θ − pn/qn|<1/qn
2, whence

|θ2 − (pn/qn)
2|<|θ + pn/qn|/qn

2<(2|θ | + 1)/qn
2.

Thus we see that

|an|<(2|θ | + 1)|a| + |b|,
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that is, an is bounded independently of n. Since cn =an−1 and bn
2 −4ancn =d,

it follows that bn and cn are likewise bounded. But, for n≥1, we have

θ = pnθn+1 + pn−1

qnθn+1 + qn−1
,

where θ1, θ2, . . . denote the complete quotients of θ , and so fn(θn+1,1)= 0.
This implies that there are only finitely many possibilities for θ1, θ2, . . . , when-
ce θl+m = θl for some positive l, m. Hence the continued fraction for θ is
ultimately periodic, as required.

The continued fraction of a quadratic irrational θ is said to be purely periodic
if k = 0 in the expression indicated above. It is easy to show that this occurs if
and only if θ>1 and the conjugate θ ′ of θ , that is, the other root of the quadratic
equation defining θ , satisfies −1<θ ′<0. Indeed if θ>1 and −1<θ ′<0 then it
is readily verified by induction that the conjugates θ ′

n of the complete quotients
θn (n = 1,2, . . .) of θ likewise satisfy −1<θ ′

n<0; one needs to refer only to
the relation θ ′

n = an + 1/θ ′
n+1, where θ = [a0,a1, . . . ], together with the fact

that an ≥1 for all n including n = 0. The inequality −1<θ ′
n<0 shows that

an = [−1/θ ′
n+1]. Now since θ is a quadratic irrational we have θm = θn for

some distinct m, n; but this gives 1/θ ′
m =1/θ ′

n , whence am−1 =an−1. It follows
that θm−1 = θn−1, and repetition of this conclusion yields θ = θn−m , assuming
that n>m. Hence θ is purely periodic. Conversely, if θ is purely periodic, then
θ>a0≥1. Further, for some n≥1, we have

θ = pnθ + pn−1

qnθ + qn−1
,

where pn/qn(n = 1,2, . . .) denote the convergents to θ , and thus θ satisfies the
equation

qn x2 + (qn−1 − pn)x − pn−1 = 0.

Now the quadratic on the left has the value −pn−1<0 for x = 0, and it has the
value pn + qn − (pn−1 + qn−1)>0 for x = −1. Hence the conjugate θ ′ of θ
satisfies −1<θ ′<0, as required.

As an immediate corollary we see that the continued fractions of
√

d + [
√

d]
and 1/(

√
d − [

√
d]) are purely periodic, where d is any positive integer, not

a perfect square. Moreover this implies that the continued fraction of
√

d is
almost purely periodic in the sense that, here, k = 1; in other words, only the
initial partial quotient a0 precedes the repeated block. The convergents to

√
d,

incidentally, are closely related to the solutions of the Pell equation, about
which we shall speak in Chapter 8.
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6.5 Liouville’s theorem

The work of Section 6.4 shows that every quadratic irrational θ has bounded
partial quotients. It follows from the results of Section 6.3 that there exists a
number c = c(θ)>0 such that the inequality |θ − p/q|>c/q2 holds for all
rationals p/q (q>0). Liouville proved in 1844 that a theorem of the latter kind
is valid more generally for any algebraic irrational, and his discovery led to the
first demonstration of the existence of transcendental numbers.

A real or complex number is said to be algebraic if it is a zero of a polynomial

P(x)= a0xn + a1xn−1 + · · ·+ an,

where a0,a1, . . . ,an denote integers, not all 0. For each algebraic number α
there is a polynomial P as above, with least degree, such that P(α) = 0, and
P is unique if one assumes that a0>0 and that a0,a1, . . . ,an are relatively
prime; obviously P is irreducible over the rationals, and it is called the minimal
polynomial for α. The degree of α is defined as the degree of P .

Liouville’s theorem states that for any algebraic number α with degree n>1
there exists a number c = c(α)>0 such that the inequality |α − p/q|>c/qn

holds for all rationals p/q(q>0). For the proof, we shall assume, as clearly
we may, that α is real, and we shall apply the mean-value theorem to P , the
minimal polynomial for α. We have, for any rational p/q (q>0),

P(α)− P(p/q)= (α− p/q)P ′(ξ),

where P ′(x) denotes the derivative of P , and ξ lies between α and p/q. Now
we have P(α)= 0 and, since P is irreducible, we have also P(p/q)�0. But
qn P(p/q) is an integer and so |P(p/q)|≥1/qn . We can suppose that |α −
p/q|<1, for otherwise the theorem certainly holds; then we have |ξ |<|α| + 1
and so |P ′(ξ)|<C for some C = C(α). This gives |α − p/q|>c/qn , where
c = 1/C , as required.

The proof here enables one to furnish an explicit value for c in terms of
the degree of P and its coefficients. Let us use this observation to confirm the
assertion made in Section 6.3 concerning α= 1

2 (1 +√
5). In this case we have

P(x)= x2 − x − 1 and so P ′(x)= 2x − 1. Let p/q(q>0) be any rational and
let δ = |α− p/q|. Then |P(p/q)|≤δ|P ′(ξ)| for some ξ between α and p/q.
Now clearly |ξ |≤α+ δ and so

|P ′(ξ)|≤2(α+ δ)− 1 = 2δ+√
5.

But |P(p/q)|≥1/q2, whence δ(2δ + √
5)≥1/q2. This implies that for any

c′ with c′<1/
√

5 and for all sufficiently large q we have δ>c′/q2. Hence
Hurwitz’s theorem (see Section 6.3) is best possible.
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A real or complex number that is not algebraic is said to be transcendental.
It is now easy to give an example; consider, in fact, the series

θ = 2−1! + 2−2! + 2−3! + · · · .
If we put

p j = 2 j!(2−1! + 2−2! + · · ·+ 2− j!),

q j = 2 j! ( j = 1,2, . . .),

then p j ,q j are integers, and we have

|θ − p j/q j | = 2−( j+1)! + 2−( j+2)! + · · · .
But the sum on the right is at most

2−( j+1)!(1 + 2−1 + 2−2 + · · · )= 2−( j+1)!+1<q− j
j ,

and it follows readily from Liouville’s theorem that θ is transcendental. Indeed
any real number θ for which there exists an infinite sequence of distinct ratio-
nals p j/q j satisfying |θ − p j/q j |<1/q j

ω j , where ω j → ∞ as j → ∞, will
be transcendental. For instance, this will hold for any infinite decimal in which
there occur sufficiently long blocks of zeros or any continued fraction in which
the partial quotients increase sufficiently rapidly.

There have been some remarkable improvements on Liouville’s theorem,
beginning with a famous work of Thue in 1909. He showed that for any
algebraic number α with degree n>1 and for any κ > 1

2 n + 1 there exists
c = c(α, κ)>0 such that |α − p/q|>c/qκ for all rationals p/q(q>0). The
condition on κ was relaxed by Siegel in 1921 to κ>2

√
n and it was further

relaxed by Dyson and Gelfond, independently, in 1947 to κ>
√
(2n). Finally

Roth proved in 1955 that it is enough to take κ>2, and this is plainly best
possible. There is an intimate connection between such results and the the-
ory of Diophantine equations (see Chapter 8). In this context it is important to
know whether the numbers c(α, κ) can be evaluated explicitly, that is, whether
the results are effective. In fact all the improvements on Liouville’s theorem
referred to above are, in that sense, ineffective; for they involve a hypothet-
ical assumption, made at the outset, that the inequalities in question have at
least one large solution. Nevertheless effective results have been successfully
obtained for particular algebraic numbers; for instance, Baker proved in 1964
from properties of hypergeometric functions that, for all rationals p/q(q>0),
we have ∣∣ 3√

2 − p/q
∣∣>10−6/q2.955.
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Moreover, a small but general effective improvement on Liouville’s theorem,
that is, valid for any algebraic α, has been established by way of the theory of
linear forms in logarithms, referred to in the next section.

6.6 Transcendental numbers

In 1873 Hermite began a new era in number theory when he succeeded in
proving that e, the natural base for logarithms, is transcendental. It had earlier
been established that e was neither rational nor quadratic irrational; indeed the
continued fraction for e was known, namely

e = [2,1,2,1,1,4,1,1,6,1,1,8, . . . ].

But Hermite’s work rested on quite different ideas concerning the approxi-
mation of analytic functions by rational functions. In 1882 Lindemann found
a generalization of Hermite’s argument and he obtained thereby his famous
proof of the transcendence of π . This sufficed to solve the ancient Greek prob-
lem of constructing, with ruler and compasses only, a square with area equal
to that of a given circle. In fact, given a unit length, all the points in the plane
that are capable of construction are given by the intersection of lines and cir-
cles, whence their coordinates in a suitable frame of reference are algebraic
numbers. Hence the transcendence of π implies that the length

√
π cannot

be classically constructed and so the quadrature of the circle is impossible.
Lindemann actually proved that for any distinct algebraic numbers α1, . . . , αn

and any non-zero algebraic numbers β1, . . . , βn we have

β1eα1 + · · ·+βneαn�0.

The transcendence of π follows in view of Euler’s identity eiπ = − 1; and the
result plainly includes also the transcendence of e, of logα for algebraic α
not 0 or 1, and of the trigonometrical functions cosα, sinα and tanα for all
non-zero algebraic α.

In the sense of Lebesgue measure, ‘almost all’ numbers are transcendental;
in fact as Cantor observed in 1874, the set of all algebraic numbers is countable.
However, it has proved notoriously difficult to demonstrate the transcendence
of particular numbers; for instance, Euler’s constant γ has resisted any attack,
and the same applies to the values ζ(2n +1)(n =1,2, . . .) of the Riemann zeta-
function, though Apéry demonstrated in 1978 that ζ(3) is irrational. In 1900,
Hilbert raised, as the seventh of his famous list of 23 problems, the question of
proving the transcendence of 2

√
2 and, more generally, that of αβ for algebraic

α not 0 or 1 and algebraic irrational β. Hilbert expressed the opinion that a
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solution lay farther in the future than the Riemann hypothesis or Fermat’s last
theorem. But remarkably, in 1929, following studies on integral integer-valued
functions, Gelfond succeeded in verifying the special case that eπ = (−1)−i

is transcendental, and a complete solution to Hilbert’s seventh problem was
established by Gelfond and Schneider independently in 1934. A generaliza-
tion of the Gelfond–Schneider theorem was obtained by Baker in 1966; this
furnished, for instance, the transcendence of eβ0α1

β1 · · ·αn
βn , and indeed that

of any non-vanishing linear form

β1 logα1 + · · ·+βn logαn,

where the αs and βs denote non-zero algebraic numbers. The work enabled
quantitative versions of the results to be established, giving positive lower
bounds for linear forms in logarithms, and these have played a crucial role
in the effective solution of a wide variety of Diophantine problems. We have
already referred to one such application at the end of Section 6.5; we shall
mention some others later.

Several classical functions, apart from ez , have been shown to assume tran-
scendental values at non-zero algebraic values of the argument; these include
the Weierstrass elliptic function ℘(z), the Bessel function J0(z) and the ellip-
tic modular function j (z), where, in the latter case, z is necessarily neither real
nor imaginary quadratic. In fact there is now a rich and fertile theory relating to
the transcendence and algebraic independence of values assumed by analytic
functions, and we refer to Section 6.8 for an introduction to the literature.

To illustrate a few of the basic techniques of the theory, we give now a short
proof of the transcendence of e; the argument can be extended quite easily to
furnish the transcendence of π and indeed the general Lindemann theorem.
The proof depends on properties of the integral

I (t)=
∫ t

0
et−x f (x)dx,

defined for t≥0, where f is a real polynomial with degree m. By integration
by parts we have

I (t)= et
m∑

j=0

f ( j)(0)−
m∑

j=0

f ( j)(t),

where f ( j)(x) denotes the j th derivative of f (x). Further, we observe that, if
f̄ denotes the polynomial obtained from f by replacing each coefficient with
its absolute value, then

|I (t)| ≤
∫ t

0
|et−x f (x)|dx ≤ t et f̄ (t).
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Suppose now that e is algebraic, so that

a0 + a1e + · · ·+ an en = 0

for some integers a0, a1, . . . ,an with a0�0. We put

f (x)= x p−1(x − 1)p · · · (x − n)p,

where p is a large prime; then the degree m of f is (n + 1)p − 1. We shall
compare estimates for

J = a0 I (0)+ a1 I (1)+ · · · + an I (n).

By the above equations we see that

J =−
m∑

j=0

n∑
k=0

ak f ( j)(k).

Now, when 1≤k≤n, we have f ( j)(k)= 0 for j<p, and

f ( j)(k)=
(

j

p

)
p!g( j−p)(k)

for j ≥ p, where g(x)= f (x)/(x − k)p. Thus, for all j, f ( j)(k) is an integer
divisible by p!. Further, we have f ( j)(0)= 0 for j < p − 1, and

f ( j)(0)=
(

j

p − 1

)
(p − 1)! h( j−p+1)(0)

for j ≥ p − 1, where h(x)= f (x)/x p−1. Clearly h( j)(0) is an integer divisible
by p for j>0, and h(0)= (−1)np(n!)p. Thus, for j � p − 1, f ( j)(0) is an
integer divisible by p!, and f (p−1)(0) is an integer divisible by (p − 1)! but
not by p for p>n. It follows that J is a non-zero integer divisible by (p − 1)!,
whence |J |≥(p − 1)!. On the other hand, the trivial estimates f̄ (k)≤(2n)m

and m≤2np give

|J |≤|a1|e f̄ (1)+ · · ·+ |an|n en f̄ (n)≤cp

for some c independent of p. The inequalities are inconsistent for p sufficiently
large, and the contradiction shows that e is transcendental, as required.

6.7 Minkowski’s theorem

Practically intuitive deductions relating to the geometry of figures in the plane,
or, more generally, in Euclidean n-space, can sometimes yield results of great
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importance in number theory. It was Minkowski who first systematically
exploited this observation, and he called the resulting study the Geometry of
Numbers. The most famous theorem in this context is the convex-body theo-
rem that Minkowski obtained in 1896. By a convex body we mean a bounded,
open set of points in Euclidean n-space that contains λx + (1 − λ)y for all λ
with 0<λ<1 whenever it contains x and y. A set of points is said to be sym-
metric about the origin if it contains −x whenever it contains x. The simplest
form of Minkowski’s theorem asserts that if a convex body S , symmetric about
the origin, has volume exceeding 2n then it contains an integer point other than
the origin. By an integer point we mean a point all of whose coordinates are
integers.

For the proof, it will suffice to verify the following result due to Blichfeldt:
any bounded region R with volume V exceeding 1 contains distinct points x, y
such that x− y is an integer point. Minkowski’s theorem follows on taking R=
1
2S, that is, the set of points 1

2 x with x in S, and noting that if x and y belong
to R then 2x and −2y belong to S, whence x − y = 1

2 (2x − 2y) also belongs to
S. To prove Blichfeldt’s result, we note that R is the union of disjoint subsets
Ru, where u = (u1, . . . ,un) runs through all integer points and Ru denotes the
part of R that lies in the interval u j ≤x j<u j + 1 (1≤ j≤n). Thus V =∑Vu,
where Vu denotes the volume of Ru, and, by hypothesis, we obtain

∑
Vu> 1.

It follows that if each of the regions Ru is translated by −u so as to lie in
the interval 0≤x j<1 (1≤ j ≤n), then at least two of the translated regions,
say the translates of Ru and Rv, must overlap. Hence there exist points x in
Ru and y in Rv such that x − u = y − v, and so x − y is an integer point, as
required.

In order to state the more general form of Minkowski’s theorem we need the
concept of a lattice. First we recall that points a1, . . . ,an in Euclidean n-space
are said to be linearly independent if the only real numbers t1, . . . , tn satisfying
t1a1 + · · · + tnan = 0 are t1 = · · · = tn = 0; this is equivalent to the condition
that d = det(ai j )�0, where a j = (a1 j , . . . ,anj ). By a lattice � we mean a set
of points of the form

x = u1a1 + · · · + unan,

where a1, . . . ,an are fixed linearly independent points, customarily referred to
as generators or as a basis for the lattice, and u1, . . . ,un run through all the
integers. The determinant of� is defined as d(�)=|d|. With this notation, the
general Minkowski theorem asserts that if, for any lattice �, a convex body
S, symmetric about the origin, has volume exceeding 2nd(�), then it contains
a point of � other than the origin. The result can be established by simple
modifications to the earlier arguments.
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As an immediate application, let λ1, . . . , λn be positive numbers and let S
be the convex body |x j |<λ j (1≤ j ≤n); the volume of S is 2nλ1 · · ·λn . Thus,
on writing

L j = u1a j1 + · · ·+ una jn (1≤ j≤n),

we deduce that if λ1 · · ·λn>d(�) then there exist integers u1, . . . ,un , not all
0, such that |L j |<λ j (1≤ j≤n). This is referred to as Minkowski’s linear forms
theorem. It can be sharpened slightly to show that if λ1 · · ·λn =d(�) then there
exist integers u1, . . . ,un , not all 0, such that |L1|≤λ1 and |L j |<λ j (2≤ j≤n).
In fact, for each m =1,2, . . . there exists a non-zero integer point um for which
|L1| < λ1 + 1/m and |L j |<λ j (2≤ j ≤n); but the um are bounded, and so
um = u for some fixed u and infinitely many m, whence u = (u1, . . . ,un) has
the required properties.

Minkowski’s linear forms theorem implies that if θ1, . . . , θn are any real
numbers and if Q>0 then there exist integers p,q1, . . . ,qn , not all 0, such that
|q j |<Q(1≤ j≤n) and

|q1θ1 + · · ·+ qnθn − p|≤Q−n .

Similarly we see that there exist integers p1, . . . , pn,q, not all 0, such that
|q|≤ Qn and |qθ j − p j |<1/Q(1≤ j ≤n). It follows that, if one at least of
θ1, . . . , θn is irrational, then

|θ j − p j/q|<q−1−1/n (1≤ j≤n)

for infinitely many rationals p j/q(q>0). These results generalize Dirichlet’s
theorem discussed in Section 6.1. In the opposite direction, it is easy to extend
the observation on quadratic irrationals made in Section 6.5 to show that, when
θ is an algebraic number with degree n + 1, there exists c = c(θ)>0 such that

|q1θ + · · ·+ qnθ
n − p|>cq−n

for all integers p, q1, . . . ,qn with q = max |q j |>0. This implies, by a classical
transference principle, that the exponent −1 − 1/n above is best possible. It is
known from transcendence theory that, for any ε>0, there exists c>0 such that

|q1e + · · ·+ qnen − p|>cq−n−ε

for all integers p, q1, . . . ,qn with q = max |q j |>0. Moreover, some deep
work of Schmidt, generalizing the Thue–Siegel–Roth theorem, shows that the
same holds when e, . . . , en are replaced by algebraic numbers θ1, . . . , θn with
1, θ1, . . . , θn linearly independent over the rationals; in analogy with lattice
points, we say that real numbers φ1, . . . , φm are linearly independent over the
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rationals if the only rationals t1, . . . , tm satisfying t1φ1 + · · · + tmφm = 0 are
t1 = · · ·= tm = 0.

Minkowski conjectured that if L1, . . . , Ln are linear forms as above and if
θ1, . . . , θn are any real numbers then there exist integers u1, . . . ,un such that

|L1 − θ1| · · · |Ln − θn|≤2−nd(�).

At present the conjecture remains open, but it is trivial in the case n = 1 and
Minkowski himself proved that it is valid in the case n = 2. It has subsequently
been verified for n = 3, 4 and 5, and Tchebotarev showed that it holds for all
n if 2−n is replaced by 2−(1/2)n . Minkowski’s work furnished a result to the
effect that if θ is irrational and θ ′ is not of the form rθ + s for integers r , s,
then there are infinitely many integers q�0 such that, for some integer p,

|qθ − p − θ ′|<1/(4|q|);
and here the constant 1/4 is best possible. The result implies that the numbers
{nθ}, where n =1,2, . . ., are dense in the unit interval, that is, for every θ ′ with
0<θ ′<1, and for every ε>0, we have |{nθ} − θ ′|<ε for some n. A famous
theorem of Kronecker implies that, more generally, the points

({nθ1}, . . . , {nθm}) (n = 1,2, . . .),

where 1, θ1, . . . , θm are linearly independent over the rationals, are dense in the
unit cube in Euclidean m-space.

6.8 Further reading

The classic text on continued fractions is Perron’s Die Lehre von den
Kettenbrüchen (Teubner, 1913). There are, however, useful accounts in most
introductory works on number theory; see, in particular, Cassels’ An Introduc-
tion to Diophantine Approximation (Cambridge University Press, 1957), and
the books of Niven, Zuckerman and Montgomery (Wiley, 1991) and of Hardy
and Wright (Oxford University Press, 2008) cited earlier. A nice, short work is
Khintchine’s Kettenbrüche (Teubner, 1956).

Numerous references to the literature relating to Sections 6.5 and 6.6 are
given in Baker’s Transcendental Number Theory (Cambridge University Press,
1990). The area is further covered by Logarithmic Forms and Diophantine
Geometry (Cambridge University Press, 2007) by Baker and Wüstholz; this
describes, in particular, the much fruitful interplay that now exists between
transcendence theory and arithmetical algebraic geometry.
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For advanced work concerning rational approximations to algebraic num-
bers see W. M. Schmidt, Diophantine Approximation (Springer, 1980). The
topics referred to in Section 6.7 are discussed fully in Cassels’ An Introduction
to the Geometry of Numbers (Springer, 1971).

6.9 Exercises

(i) Express the continued fraction [1,2,3,4] as a quadratic irrational and
hence determine its minimal polynomial.

(ii) Evaluate the continued fraction [1, 2, 3, 1,4].
(iii) Assuming that π is given by 3.141 592 6 . . . , correct to seven decimal

places, prove that the first three convergents to π are 22
7 , 333

106 and 355
113 .

Verify that
∣∣∣π − 355

113

∣∣∣<10−6.

(iv) Assuming that e=2.718 281 828 45 . . . correct to 11 decimal places, ver-
ify that the first few partial quotients to e are as indicated in Section 6.6.
Show that 2721

1001 is a convergent and verify that it differs from e by less
than 2 × 10−7.

(v) Let θ , θ ′ be the roots of the equation x2 − ax − 1 = 0, where a is a
positive integer and θ>0. Show that the denominators in the convergents
to θ are given by qn−1 = (θn − θ ′n)/(θ − θ ′). Verify that the Fibonacci
sequence 1, 1, 2, 3, 5, . . . is given by q0,q1, . . . in a special case.

(vi) Prove that the denominators qn in the convergents to any real θ satisfy
qn≥( 1

2 (1+√
5))n−1. Prove also that, if the partial quotients are bounded

above by a constant A, then qn ≤ ( 1
2 (A +√

(A2 + 4)))n .
(vii) Assuming that the continued fraction for e is as quoted in Section 6.6,

show that |e − p/q|> c/(q2 log q) for all rationals p/q (q> 1), where c
is a positive constant.

(viii) Prove that, if the partial quotients a0,a1,a2, . . . in the continued fraction
of a real number θ form an increasing sequence, then the denominators
qn in the convergents to θ satisfy qn ≤ (an + 1)n . Hence verify that, if
an+1>(an + 1)n

2
for all n, then θ is transcendental.

(ix) Assuming the Thue–Siegel–Roth theorem, show that the sum a−b +
a−b2 + a−b3 + . . . is transcendental for any integers a ≥ 2, b ≥ 3.

(x) Let α, β, γ , δ be real numbers with �= αδ− βγ � 0. Prove that there
exist integers x , y, not both 0, such that |L| + |M | ≤ √

(2|�|), where
L =αx +βy and M =γ x + δy. Deduce that the inequality |L M |≤ 1

2 |�|
is soluble non-trivially.
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(xi) With the same notation, prove that the inequality L2 + M2 ≤ (4/π)|�| is
soluble in integers x , y, not both 0. Verify that the constant 4/π cannot
be replaced by a number smaller than

√
(4/3).

(xii) Assuming Kronecker’s theorem and the transcendence of eπ , show that,
for any primes p1, . . . , pm , there exists an integer n> 0 such that

cos(log pn
j )≤ − 1

2 ( j = 1,2, . . . ,m).
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Quadratic fields

7.1 Algebraic number fields

Although we shall be concerned principally in this chapter only with quadratic
fields, we shall nevertheless begin with a short discussion of the more general
concept of an algebraic number field. The theory relating to such fields arose
from attempts to solve Fermat’s last theorem and it is one of the most beautiful
and profound in mathematics.

Let α be an algebraic number with degree n and let P be the minimal poly-
nomial for α (see Section 6.5). By the conjugates of α we mean the zeros
α1, . . . , αn of P . The algebraic number field k generated by α over the ratio-
nals Q is defined as the set of numbers Q(α), where Q(x) is any polynomial
with rational coefficients; the set can be regarded as being embedded in the
complex number field C and thus its elements are subject to the usual opera-
tions of addition and multiplication. To verify that k is indeed a field we have
to show that every non-zero element Q(α) has an inverse. Now, if P is the min-
imal polynomial for α as above, then P , Q are relatively prime and so there
exist polynomials R, S such that P S + Q R = 1 identically, that is, for all x .
On putting x = α this gives R(α)= 1/Q(α), as required. The field k is said to
have degree n over Q, and one writes [k :Q] = n.

The construction can be continued analogously to furnish, for every alge-
braic number field k and every algebraic number β, a field K = k(β) with
elements given by polynomials in β with coefficients in k. The degree [K : k]
of K over k is defined in the obvious way as the degree of β over k. Now K
is in fact an algebraic number field over Q, for it can be shown that K =Q(γ ),
where γ = uα+ vβ for some rationals u, v; thus we have

[K : k][k :Q] = [K :Q].

An algebraic number is said to be an algebraic integer if the coefficient of the
highest power of x in the minimal polynomial P is 1. The algebraic integers in

61
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an algebraic number field k form a ring R. The ring has an integral basis, that
is, there exist elements ω1, . . . ,ωn in R such that every element in R can be
expressed uniquely in the form u1ω1 + · · · + unωn for some rational integers
u1, . . . ,un . We can write ωi = pi (α), where pi denotes a polynomial over Q,
and it is then readily verified that the number (det pi (α j ))

2 is a rational integer
independent of the choice of basis; it is called the discriminant of k and it turns
out to be an important invariant.

An algebraic integer α is said to be divisible by an algebraic integer β if
α/β is an algebraic integer. An algebraic integer ε is said to be a unit if 1/ε
is an algebraic integer. Suppose now that R is the ring of algebraic integers in
a number field k. Two elements α, β of R are said to be associates if α = εβ

for some unit ε, and this is an equivalence relation on R. An element α of
R is said to be irreducible if every divisor of α in R is either an associate or
a unit. One calls R a unique factorization domain if every element of R can
be expressed essentially uniquely as a product of irreducible elements. The
fundamental theorem of arithmetic asserts that the ring of integers in k = Q
has this property; but it does not hold for every k. Nevertheless, it is known
from pioneering studies of Kummer and Dedekind that a unique factorization
property can be restored by the introduction of ideals, and this forms the central
theme of algebraic number theory. The work on Fermat’s last theorem that
motivated much of the subject related to the particular case of the cyclotomic
field Q(ζ ) where ζ is a root of unity.

7.2 The quadratic field

Let d be a square-free integer, positive or negative, but not 1. The quadratic
field Q(

√
d) is the set of all numbers of the form u + v√d with rational u, v,

subject to the usual operations of addition and multiplication. For any element
α = u + v

√
d in Q(

√
d) one defines the norm of α as the rational number

N (α)= u2 − dv2. Clearly N (α)= αᾱ, where ᾱ = u − v
√

d; ᾱ is called the
conjugate of α. Now for any elements α,β in Q(

√
d) we see that αβ= ᾱβ̄ and

thus we have the important formula N (α)N (β)= N (αβ). It is readily verified
that Q(

√
d) is indeed a field; in particular, the inverse of any non-zero element

α is ᾱ/N (α). The special field Q(
√
(−1)) is called the Gaussian field and it

is customary to express its elements in the form u + iv; in this case we have
N (α)= u2 + v2 and so the product formula is precisely the identity referred to
in Section 5.4.

We proceed now to determine the algebraic integers in Q(
√

d). Suppose that
α= u + v√d is such an integer and let a = 2u,b = 2v. Then α is a zero of the
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polynomial P(x)= x2 − ax + c, where c = N (α), and so the rational numbers
a, c must in fact be integers. We have 4c =a2 −b2d and, since d is square-free,
it follows that also b is a rational integer. Now if d ≡ 2 or 3 (mod 4) then, since
a square is congruent to 0 or 1 (mod 4), we see that a, b are even and thus u, v
are rational integers; hence, in this case, an integral basis for Q(

√
d) is given

by 1,
√

d. If d ≡ 1 (mod 4), which is the only other possibility, then a ≡ b
(mod 2) and thus u − v is a rational integer; recalling that v= 1

2 b, we conclude
that, in this case, an integral basis for Q(

√
d) is given by 1, 1

2 (1 + √
d). The

discriminant D ofQ(
√

d), as defined in Section 7.1, is therefore 4d when d ≡2
or 3 (mod 4) and it is d when d ≡ 1 (mod 4).

There is a close analogy between the theory of quadratic fields and the the-
ory of binary quadratic forms as described in Chapter 5. In particular, the dis-
criminant D of Q(

√
d) is congruent to 0 or 1 (mod 4) and so D is also the

discriminant of a binary quadratic form. Now if α is any algebraic integer in
Q(

√
d) then, for some rational integers x , y, we have α= x + y

√
d when d ≡2

or 3 (mod 4) and α = x + 1
2 y(1 + √

d) when d ≡ 1 (mod 4). Thus we see
that N (α)= F(x, y), where F denotes the principal form with discriminant
D, that is, x2 − dy2 when D ≡ 0 (mod 4) and (x + 1

2 y)2 − 1
4 dy2 when D ≡ 1

(mod 4).

7.3 Units

By a unit in Q(
√

d) we mean an algebraic integer ε in Q(
√

d) such that 1/ε
is an algebraic integer. Plainly if ε is a unit then N (ε) and N (1/ε) are rational
integers and, since N (ε)N (1/ε)= 1, we see that N (ε)= ±1. Conversely, if
N (ε)= ±1, then εε̄= ±1 and so ε is a unit. Thus, by the above remarks, the
units in Q(

√
d) are determined by the integer solutions x , y of the equation

F(x, y)=±1.
We shall distinguish two cases according as d < 0 or d > 0; in the first case

the quadratic field is said to be imaginary and in the second it is said to be
real. Now in an imaginary quadratic field there are only finitely many units.
In fact if D <−4 then, as is readily verified, the equation F(x, y)= ±1 has
only the solutions x = ±1, y = 0 and so the only units in Q(

√
d) are ±1. For

d =−1, that is, for the Gaussian field, we have F(x, y)= x2 + y2 and there are
therefore four units ±1,±i . For d = −3 we have F(x, y)= x2 + xy + y2 and
the equation F(x, y)= ±1 has six solutions, namely (±1,0), (0,±1), (1,−1)
and (−1,1); thus the units of Q(

√
(−3)) are ±1, 1

2 (±1 ± √
(−3)). It follows

that the units in an imaginary quadratic field are all roots of unity; they are
given by the zeros of x2 − 1 when D<−4, by those of x4 − 1 when D = −4
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and by those of x6 − 1 when D = −3. Hence the number of units is the same
as the number w for forms with discriminant D indicated in Section 5.3.

We turn now to real quadratic fields; in this case there are infinitely many
units. To establish the result it suffices to show that, when d > 0, there is a
unit η in Q(

√
d) other than ±1; for then ηm is a unit for all integers m, and,

since the only roots of unity in Q(
√

d) are ±1, we see that different m give
distinct units. We shall use Dirichlet’s theorem on Diophantine approximation
(see Section 6.1); the theorem implies that, for any integer Q>1, there exist
rational integers p, q, with 0< q < Q, such that |α| ≤ 1/Q, where α = p −
q
√

d. Now the conjugate ᾱ = α + 2q
√

d satisfies |ᾱ| ≤ 3Q
√

d and thus we
have |N (α)| ≤ 3

√
d. Further, since

√
d is irrational, we obtain, as Q → ∞,

infinitely many α with this property. But N (α) is a rational integer bounded
independently of Q, and thus, for infinitely many α, it takes some fixed value,
say N . Moreover we can select two distinct elements from the infinite set,
say α = p − q

√
d and α′ = p′ − q ′√d, such that p ≡ p′ (mod N ) and q ≡

q ′ (mod N ). We now put η= α/α′. Then N (η)= N (α)/N (α′)= 1. Further,
η is clearly not 1, and it is also not −1 since

√
d is irrational and q, q ′ are

positive. Furthermore we have η= x + y
√

d, where x = (pp′ − dqq ′)/N and
y = (pq ′ − p′q)/N , and the congruences above imply that x , y are rational
integers. Thus η is a non-trivial unit in Q(

√
d), as required. The argument

here shows, incidentally, that the Pell equation x2 − dy2 = 1 has a non-trivial
solution; we shall discuss the equation more fully in Chapter 8.

We can now give a simple expression for all the units in a real quadratic
field. In fact consider the set of all units in the field that exceed 1. The set is
not empty, for if η is the unit obtained above then one of the numbers ±η or
±1/η is a member. Further, each element of the set has the form u + v

√
d,

where u, v are either integers, or, in the case d ≡ 1 (mod 4), possibly halves
of odd integers. Furthermore u and v are positive, for u + v√d is greater than
its conjugate u − v√d, which lies between −1 and 1. It follows that there is a
smallest element in the set, say ε. Now if ε′ is any positive unit in the field then
there is a unique integer m such that εm ≤ ε′<εm+1; this gives 1 ≤ ε′/εm <ε.
But ε′/εm is also a unit in the field and thus, from the definition of ε, we
conclude that ε′ = εm . This shows that all the units in the field are given by
±εm , where m = 0,±1,±2, . . . .

The results established here for quadratic fields are special cases of a famous
theorem of Dirichlet concerning units in an arbitrary algebraic number field.
Suppose that the field k is generated by an algebraic number α with degree
n and that precisely s of the conjugates α1, . . . , αn of α are real; then n =
s + 2t , where t is the number of complex conjugate pairs. Dirichlet’s theorem
asserts that there exist r = s + t − 1 fundamental units ε1, . . . , εr in k such that
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every unit in k can be expressed uniquely in the form ρε1
m1 · · · εr

mr , where
m1, . . . ,mr are rational integers and ρ is a root of unity in k.

7.4 Primes and factorization

Let R be the ring of algebraic integers in a quadratic field Q(
√

d). By a prime
π in R we mean an element of R that is neither 0 nor a unit and which has
the property that if π divides αβ, where α, β are elements of R, then either π
divides α or π divides β. It will be noted at once that a prime π is irreducible
in the sense indicated in Section 7.1; for if π=αβ then either α/π or β/π is an
element of R, whence either β or α is a unit. However, an irreducible element
need not be a prime. Consider, for example, the number 2 in the quadratic field
Q(

√
(−5)). It is certainly irreducible, for if 2 = αβ then 4 = N (α)N (β); but

N (α) and N (β) have the form x2 + 5y2 for some integers x , y, and, since
the equation x2 + 5y2 = ±2 has no integer solutions, it follows that either
N (α)= ±1 or N (β)= ±1 and thus either α or β is a unit. On the other hand,
2 is not a prime in Q(

√
(−5)), for it divides

(1 +√
(−5))(1 −√

(−5))= 6,

but it does not divide either 1+√
(−5) or 1−√

(−5); indeed, by taking norms,
it is readily verified that each of the latter is irreducible.

Now every element α of R that is neither 0 nor a unit can be factorized
into a finite product of irreducible elements. For if α is not itself irreducible
than α = βγ for some β, γ in R, neither of which is a unit. If β were not ir-
reducible then it could be factorized likewise, and the same holds for γ . The
process must terminate, for if α=β1 · · ·βn , where none of the βs is a unit, then,
since |N (β j )| ≥ 2, we see that |N (α)| ≥ 2n . The ring R is said to be a unique
factorization domain if the expression for α as a finite product of irreducible
elements is essentially unique, that is, unique except for the order of the fac-
tors and the possible replacement of irreducible elements by their associates.
A fundamental problem in number theory is to determine which domains have
unique factorization, and here the definition of a prime plays a crucial role. In
fact we have the basic theorem that R is a unique factorization domain if and
only if every irreducible element of R is also a prime in R. To verify the asser-
tion, note that, if factorization in R is unique and if π is an irreducible element
such that π divides αβ for some α, β in R, then π must be an associate of
one of the irreducible factors of α or β and so π divides α or β, as required.
Conversely, if every irreducible element is also a prime then we can argue as in
the demonstration of the fundamental theorem of arithmetic given in Section
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1.5; thus if α = π1 · · ·πk as a product of irreducible elements, and if π ′ is an
irreducible element occurring in another factorization, then π ′ must divide π j

for some j , whence π ′ and π j are associates, and assuming by induction that
the result holds for α/π ′, the required uniqueness of factorization follows.

All the imaginary quadratic fields Q(
√

d) which have the unique factoriza-
tion property are known; they are given by d = −1, −2, −3, −7, −11, −19,
−43, −67 and −163. The theorem has a long history, dating back to Gauss,
and it was finally proved by Baker and Stark, independently, in 1966; the
methods of proof were quite different, one depending on transcendence theory
(cf. Section 6.6) and the other on the study of elliptic modular functions. The
theorem shows, incidentally, that the nine discriminants d indicated in Exer-
cise (i) of Section 5.7 are the only values for which h(d)= 1. The problem of
finding all the real quadratic fields Q(

√
d) with unique factorization remains

open; it is generally conjectured that there are infinitely many such fields but
even this has not been proved. Nevertheless all such fields with d relatively
small, for instance with d < 100, are known; we shall discuss some particular
cases in the next section.

7.5 Euclidean fields

A quadratic field Q(
√

d) is said to be Euclidean if its ring of integers R has
the property that, for any elements α, β of R with β � 0, there exist elements
γ , δ of R such that α = βγ + δ and |N (δ)|< |N (β)|. For such fields there
exists a Euclidean algorithm analogous to that described in Chapter 1. In fact
we can generate the sequence of equations δ j−2 = δ j−1γ j + δ j ( j = 1,2, . . .),
where δ−1 = α, δ0 = β, δ1 = δ, γ1 = γ and |N (δ j )|< |N (δ j−1)|; the sequence
terminates when δk+1 =0 for some k and then δk has the properties of a greatest
common divisor, that is, δk divides α and β, and every common divisor of α,
β divides δk . Moreover we have δk = αλ+ βμ for some λ, μ in R. This can
be verified either by successive substitution or by observing that |N (δk)| is the
least member of the set of positive integers of the form |N (αλ+ βμ)|, where
λ, μ run through the elements of R. In fact the set certainly has a least member
|N (δ′)|, say, where δ′ = αλ+ βμ for some λ, μ in R; thus every common
divisor of α, β divides δ′. Further, δ′ divides α, since from α= δ′γ + δ′′, with
|N (δ′′)|< |N (δ′)|, we see that δ′′ = αλ′ + βμ′ for some λ′, μ′ in R, whence
N (δ′′)= 0 and so δ′′ = 0; similarly δ′ divides β. Hence we have δ′ = δk . It is
clear that if δk is a unit then, by division, we obtain elements λ, μ in R with
αλ+βμ= 1.

We proceed now to prove that a Euclidean field has unique factorization.
It suffices, in view of Section 7.4, to show that every irreducible element π
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in R is a prime; accordingly suppose that π divides αβ but that π does not
divide α. Then, by the remarks above, there exist integers λ, μ in R such that
αλ+ πμ= 1. This gives αβλ+ πβμ= β, whence π divides β. Thus π is a
prime and the desired result follows.

It was proved by Chatland and Davenport in 1950, and independently by
Inkeri at about the same time, that there are precisely 21 Euclidean fields
Q(

√
d); the values of d are given by −11, −7, −3, −2, −1, 2, 3, 5, 6, 7,

11, 13, 17, 19, 21, 29, 33, 37, 41, 57 and 73. It had been proved earlier by
Heilbronn that the list must be finite, and it had been verified as a consequence
of works by Dickson, Perron, Oppenheimer, Remak and Rédei that the fields
listed here are indeed Euclidean; we shall confirm the assertion for the first
eight fields in a moment. It is easy to see that there can be no other Euclidean
fields with d < 0. In fact if d ≡ 2 or 3 (mod 4) and d ≤ −5 then we cannot
have

√
d = 2γ + δ with |N (δ)|< 4; for we can express γ , δ as x + y

√
d and

x ′ + y′√d respectively, where x , y and x ′, y′ are rational integers, and since
N (δ)≥ x ′2 + 5y′2 we would obtain y′ = 0, contrary to 2y + y′ = 1. Similarly
if d ≡ 1 (mod 4) and d ≤ −15, then we cannot have 1

2 (1 + √
d)= 2γ + δ with

|N (δ)|< 4. The most difficult part of the theorem is the proof that there are
no other Euclidean fields with d > 0. In this connection, Davenport showed
by an ingenious algorithm derived from studies on Diophantine approxima-
tion that if d > 214 then Q(

√
d) is not Euclidean; this reduced the problem

to a finite checking of cases. Incidentally, Rédei claimed originally that the
field Q(

√
97) was Euclidean but Barnes and Swinnerton-Dyer proved this to

be erroneous.
We shall show now that if d = −2, −1, 2 or 3 then Q(

√
d) is Euclidean.

Accordingly let α, β be any algebraic integers in Q(
√

d) with β � 0. Then
α/β = u + v

√
d for some rationals u, v. We select integers x , y as close as

possible to u, v and put r = u − x , s = v − y; then |r | ≤ 1
2 and |s| ≤ 1

2 . On
writing γ = x + y

√
d we obtain α=βγ + δ, where δ=β(r + s

√
d). This gives

N (δ)= N (β)(r2 −ds2). But for |d|≤2 we have |r2 −ds2|≤r2 +2s2 ≤ 3
4 , and

for d = 3 we have |r2 − ds2| ≤ max(r2,ds2)≤ 3
4 . Hence |N (δ)|< |N (β)|, as

required.
Finally we prove that Q(

√
d) is Euclidean when d =−11, −7, −3, 5 and 13.

In these cases we have d ≡ 1 (mod 4) and so 1, 1
2 (1 + √

d) is an integral basis
for Q(

√
d). Again let α, β be any algebraic integers in Q(

√
d), with β � 0,

and let α/β = u + v
√

d with u, v rational. We select an integer y as close as
possible to 2v and put s = v− 1

2 y; then |s| ≤ 1
4 . Further, we select an integer

x as close as possible to u − 1
2 y and put r = u − x − 1

2 y; then |r | ≤ 1
2 . On

writing γ = x + 1
2 y(1 + √

d) we see that α= βγ + δ, where δ= β(r + s
√

d).
Now, for |d| ≤ 11, we have |r2 − ds2| ≤ 1

4 + 11
16 < 1, and, for d = 13, we have

|r2 − ds2| ≤ 13
16 . The result follows.
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7.6 The Gaussian field

To conclude this chapter we shall describe the principal properties of the most
fundamental quadratic field, namely the Gaussian field Q(

√
(−1)) or Q(i). We

have already seen that the integers in the field, that is, the Gaussian integers,
have the form x + iy with x , y rational integers. Thus the norm of a Gaussian
integer has the form x2 + y2, and, in particular, it is non-negative. It was noted
in Section 7.3 that there are just four units ±1 and ±i . Moreover we proved in
Section 7.5 that the field is Euclidean and so has unique factorization. Hence
there is no need to distinguish between irreducible elements and primes, and
we shall use the latter terminology in preference; in fact we shall refer to the
elements as Gaussian primes.

Our purpose now is to determine all the Gaussian primes. We begin with
two preliminary observations which actually apply analogously to all quadratic
fields with unique factorization. First, if α is any Gaussian integer and if N (α)
is a rational prime then α is a Gaussian prime; for plainly if α= βγ for some
Gaussian integers β, γ then N (α)= N (β)N (γ ) and so either N (β) = 1 or
N (γ )= 1, whence either β or γ is a unit. Secondly we observe that every
Gaussian prime π divides just one rational prime p. For π certainly divides
N (π) and so there is a least positive rational integer p such that π divides
p; and p is a rational prime, for if p = mn, where m, n are rational integers,
then, since π is a Gaussian prime, we have either π divides m or π divides
n, whence, by the minimal property of p, either m or n is 1. The prime p is
unique, for if p′ is any other rational prime then there exist rational integers a,
a′ such that ap + a′ p′ =1; thus if π were to divide both p and p′ then it would
divide 1 and so be a unit contrary to definition.

We note next that a rational prime p is either itself a Gaussian prime or
is the product ππ ′ of two Gaussian primes, where π , π ′ are conjugates. In-
deed p is divisible by some Gaussian prime π and thus we have p = πλ for
some Gaussian integer λ; this gives N (π)N (λ)= p2 and the two cases cor-
respond to the possibilities N (λ)= 1, implying that λ is a unit and that p is
an associate of π , and N (λ)= p, implying that N (π)= p. Now the first case
applies when p ≡ 3 (mod 4) and the second when p ≡ 1 (mod 4). For N (π)
has the form x2 + y2 and a square is congruent to 0 or 1 (mod 4). Further,
if p ≡ 1 (mod 4), then −1 is a quadratic residue (mod p), whence p divides
x2 + 1 = (x + i)(x − i) for some rational integer x ; but if p were a Gaussian
prime then it would divide either x + i or x − i , contrary to the fact that neither
x/p + i/p nor x/p − i/p is a Gaussian integer. With regard to the prime 2,
we have 2 = (1 + i)(1 − i) and here 1 + i and 1 − i are Gaussian primes and,
moreover, associates. Combining our results, we find therefore that the total-
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ity of Gaussian primes are given by the rational primes p ≡ 3 (mod 4), by the
factors π , π ′ in the expression p =ππ ′ appertaining to primes p ≡ 1 (mod 4),
and by 1 + i , together with all their associates formed by multiplying with ±1
and ±i . The argument here furnishes, incidentally, another proof of the result
that every prime p ≡ 1 (mod 4) can be expressed as a sum of two squares (see
Section 5.4).

Many of the definitions and theorems discussed earlier for the rational field
possess natural analogues in the Gaussian field. Thus, for example, one can
specify greatest common divisors and congruences in an obvious way, and
there is an analogue of Fermat’s theorem to the effect that if π is a Gaussian
prime and α is a Gaussian integer, with (α,π)= 1, then αN (π)−1 ≡ 1 (mod π ).
There is also, for instance, an analogue of the prime number theorem to the
effect that the number of non-associated Gaussian primes π with N (π)≤ x is
asymptotic to x/ log x as x → ∞.

7.7 Further reading

The structure of quadratic fields can be properly appreciated only in the wider
context of algebraic number theory and with reference especially to the the-
ory of ideals. This will be discussed in later chapters. As an initial guide, we
mention here that the classic text in this connection is that of Hecke. It was
originally published in German in 1923 and it appeared in English transla-
tion under the title Lectures on the Theory of Algebraic Numbers (Springer,
1981); it remains one of the best works on the subject. There are several newer
expositions, however. In particular, the book Algebraic Number Theory and
Fermat’s Last Theorem by I. Stewart and D. Tall (A. K. Peters, 2002) is rel-
atively elementary and easy to read, and other generally accessible works are
those by S. Alaca and K. S. Williams, Introductory Algebraic Number Theory
(Cambridge University Press, 2004), and by W. Narkiewicz, Elementary and
Analytic Theory of Algebraic Numbers (Springer, 2004). Further literature on
the subject is mentioned in Section 10.9.

An account of the solution to the problem of determining all imaginary
quadratic fields with unique factorization, referred to in Section 7.4, can be
found in Chapter 5 of Baker’s Transcendental Number Theory (Cambridge
University Press, 1990). The work, referred to in Section 7.5, of Chatland and
Davenport on Euclidean fields appeared in the Canadian J. Math. 2 (1950),
289–296; the article is reprinted in The Collected Works of Harold Daven-
port, Vol. I (eds B. J. Birch et al., Academic Press, 1977), pp. 366–373. For
a proof of the result on Gaussian primes cited at the end of Section 7.6 see
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E. Landau’s Einführung in die Elementare und Analytische Theorie der Alge-
braischen Zahlen und der Ideale (Teubner, 1918).

7.8 Exercises

(i) Show that the units in Q(
√

2) are given by ±(1 + √
2)n , where n = 0,

±1, ±2, . . . . Find the units in Q(
√

3).
(ii) Determine the integers n and d for which (1+n

√
d)/(1−n

√
d) is a unit

in Q(
√

d).
(iii) By considering products of norms, or otherwise, prove that there are

infinitely many irreducible elements in the integral domain of any quadra-
tic field.

(iv) Explain why the equation 2.11 = (5 + √
3)(5 − √

3) is not inconsistent
with the fact that Q(

√
3) has unique factorization.

(v) Prove that the equation 2.3=(√(−6))(−√
(−6)) implies thatQ(

√
(−6))

does not have unique factorization.
(vi) Show that 1 + √

(−17) is irreducible in Q(
√
(−17)). Verify that

Q(
√
(−17)) does not have unique factorization.

(vii) Find equations to show that Q(
√

d) does not have unique factorization
for d =−10, −13, −14 and −15.

(viii) By considering congruences (mod 5), show that there are no algebraic
integers in Q(

√
10) with norm ±2 and ±3. Prove that 4 + √

10 is ir-
reducible in Q(

√
10). Hence verify that Q(

√
10) does not have unique

factorization.
(ix) Use the fact that Q(

√
3) is Euclidean to determine algebraic integers α,

β in Q(
√

3) such that (1 + 2
√

3)α+ (5 + 4
√

3)β = 1.
(x) Prove that the primes in Q(

√
2) are given by the rational primes p ≡ ±3

(mod 8), the factors π , π ′ in the expression p = ππ ′ appertaining to
primes p ≡±1 (mod 8), and by

√
2, together with all their associates.

(xi) Show that if π is a Gaussian prime then the numbers 1,2, . . . , N (π)
form a complete set of residues (mod π ); that is, show that none of the
differences is divisible by π , but that for any Gaussian integer α there is
a rational integer a with 1 ≤ a ≤ N (π), such that π divides α− a. Apply
this result to establish the analogue of Fermat’s theorem quoted at the
end of Section 7.6.
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Diophantine equations

8.1 The Pell equation

Diophantine analysis has its genesis in the fertile mind of Fermat. He had
studied Bachet’s edition, published in 1621, of the first six books that then
remained of the famous Arithmetica; this was a treatise, originally consisting
of 13 books, written by the Greek mathematician Diophantus of Alexandria
at about the third century AD. The Arithmetica was concerned only with the
determination of particular rational or integer solutions of algebraic equations,
but it inspired Fermat to initiate researches into the nature of all such solutions,
and herewith the modern theories began.

An especially notorious Diophantine equation, in fact the issue of a cele-
brated challenge from Fermat to the English mathematicians of his time, is the
equation

x2 − dy2 = 1,

where d is a positive integer other than a perfect square. It is usually referred
to as the Pell equation but the nomenclature, due to Euler, has no historical
justification since Pell apparently made no contribution to the topic. Fermat
conjectured that there is at least one non-trivial solution in integers x, y, that
is, a solution other than x =±1, y = 0; the conjecture was proved by Lagrange
in 1768. In fact we have already established the result in Section 7.3; it was
assumed there that d is square-free but the argument plainly holds for any d
that is not a perfect square. Now there is a unique solution to the Pell equation
in which the integers x, y have their smallest positive values; it is called the
fundamental solution. Let x ′, y′ be this solution and put ε= x ′ + y′√d. Then,
by the arguments of Section 7.3, we see that all solutions are given by x +
y
√

d =±εn , where n =0,±1,±2, . . . . In particular, the equation has infinitely
many solutions.

71
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More insight into the character of the solutions is provided by the continued-
fraction algorithm. First we observe that any solution in positive integers x , y
satisfies x − y

√
d =1/(x + y

√
d), whence x> y

√
d and x − y

√
d<1/(2y

√
d).

This gives |√d − x/y|<1/(2y2), and it follows from Section 6.3 that x/y is a
convergent to

√
d. Now it was noted in Section 6.4 that the continued fraction

for
√

d has the form

[a0,a1, . . . ,am];
the number m of repeated partial quotients is called the period of

√
d. Let

pn/qn(n = 1,2, . . .) be the convergents to
√

d and let θn(n = 1,2, . . .) be the
complete quotients. We have x = pn , y =qn for some n, that is, pn

2 −dqn
2 =1.

Here n must be odd for, by Section 6.3,

√
d = pnθn+1 + pn−1

qnθn+1 + qn−1
,

whence, on recalling that pn−1qn − pnqn−1 = (−1)n , we obtain

qn
√

d − pn = (−1)n/(qnθn+1 + qn−1),

and so, for even n, qn
√

d> pn . In fact n must have the form lm − 1, where l =
1,2,3, . . .when m is even and l =2,4,6, . . .when m is odd. For the expression
for

√
d above gives

(pn − qn
√

d)θn+1 = qn−1
√

d − pn−1,

and thus

(pn
2 − dqn

2)θn+1 = (qn−1
√

d − pn−1)(qn
√

d + pn)

= (−1)n−1√d + c,

where c is an integer. But pn
2 − dqn

2 = 1 and n is odd; hence θn+1 = √
d + c.

Now
√

d = a0 + 1/θ1, where θ1 is purely periodic, and we have θn+1 = an+1 +
1/θn+2. Since θ1 > 1, θn+2 > 1, we obtain an+1 = a0 + c and θ1 = θn+2; it
follows that n + 1 is divisible by m and so n has the form lm − 1, as asserted.

We have therefore shown that the only possible positive solutions x, y to the
Pell equation are given by x = pn , y = qn , where pn/qn is a convergent to√

d with n of the form lm − 1 as above. In fact all of these pn , qn satisfy
the equation and thus they comprise the full set of positive solutions. For, in
view of the periodicity of

√
d, we have θ1 = θn+2 for all n = lm − 1 as above,

and hence
√

d = pn+1θ1 + pn

qn+1θ1 + qn
.
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But
√

d = a0 + 1/θ1, and on substituting for θ1 and using the fact that
√

d is
irrational, we obtain

pn = qn+1 − a0qn, pn+1 − a0 pn = qnd.

On eliminating a0 we see that

pn
2 − dqn

2 = pnqn+1 − pn+1qn,

and, since n is odd, it follows that pn
2 − dqn

2 = 1, as required.
A similar analysis applies to the equation x2 − dy2 = −1. In this case there

is no solution when the period m of
√

d is even. When m is odd, all positive
solutions are given by x = pn , y = qn , where pn/qn is the nth convergent to√

d and n = lm − 1 with l = 1,3,5, . . . . Further, when the equation is soluble,
the solution of smallest value, sometimes called the fundamental solution, is
x ′ = pm−1, y′ = qm−1. Then, on writing η= x ′ + y′√d, one deduces that all
solutions are given by x + y

√
d =±ηn , where n =±1,±3,±5, . . . . The result

is in fact easily obtained on noting that the fundamental solution to x2 − dy2 =
1 is given by η2. Thus, for instance, the equation x2 − 2y2 = −1 is soluble
and all solutions are given by x + y

√
2 = ±(1 + √

2)n with n > 0 and odd;
the solutions of x2 − 2y2 = 1 are given similarly with n even and for j =
0,±1,±2, . . . we have

2x =±((3 + 2
√

2) j + (3 − 2
√

2) j ), 2
√

2y =±((3 + 2
√

2) j − (3 − 2
√

2) j ).

In summary we can say that the solutions of the equation x2 − dy2 =±1 are
given by x + y

√
d =±ηn for n =0,±1,±2, . . . . If Nη=1 then they all satisfy

x2 − dy2 = 1; otherwise we have Nη= −1 and they satisfy x2 − dy2 = 1 for
even n and x2 − dy2 = −1 for odd n. Plainly η is a unit in K =Q(√d) and if
d ≡ 2,3 (mod 4) then it is the fundamental unit. An analogous result holds for
the more general equation x2 − dy2 = k, where k is a non-zero integer. Here,
when the equation is soluble, one can specify a finite set of solutions x ′, y′ such
that, on writing ζ = x ′ + y′√d, all solutions are given by x + y

√
d =±ζεn with

ε the fundamental unit in K and n = 0,±1,±2, . . . .

As an example, consider the equation x2 − 131y2 = 1. The continued frac-
tion for

√
131 is [11,2,4,11,4,2,22] and thus the period m of

√
131 is

6. Since m is even, the solutions are given by the convergents pn/qn with
n = lm − 1 and l = 1,2,3, . . . ; the smallest solution is x = p5, y = q5. Now, by
the recurrence relations, the first five convergents are 23

2 ,
103
9 ,

1156
101 ,

4727
413 and

10610
927 . Hence we obtain x = 10610, y = 927.
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As another example, consider the equation x2 − 97y2 = −1. The continued
fraction for

√
97 is

[9,1,5,1,1,1,1,1,1,5,1,18].

Thus the period m of
√

97 is 11 and, since m is odd, the equation is soluble.
Indeed the fundamental solution is given by x = p10, y =q10, where pn/qn(n =
1,2, . . .) denote the convergents to

√
97. Now the first ten convergents to

√
97

are 10, 59
6 ,

69
7 ,

128
13 ,

197
20 ,

325
33 ,

522
53 ,

847
86 ,

4757
483 and 5604

569 . Hence the fundamental
solution to x2 − 97y2 = −1 is x = 5604, y = 569. Further, if we write η =
5604 + 569

√
97 then ε= η2 gives the fundamental solution to x2 − 97y2 = 1;

the solution is in fact x = 62 809 633, y = 6 377 352.
Incidentally, the continued fraction for

√
d always has the form

[a0,a1,a2,a3, . . . ,a3,a2,a1,2a0],

as for
√

131 and
√

97 above, and moreover the period m of
√

d is always odd
when d is a prime p ≡ 1 (mod 4). In fact, for such p, the equation x2 − py2 =
−1 is always soluble. For if x ′, y′ is the fundamental solution to x2 − py2 =
1 then x ′ is odd and so (x ′ + 1, x ′ − 1)= 2; this gives either x ′ + 1 = 2u2,
x ′ − 1 = 2pv2 or x ′ − 1 = 2u2, x ′ + 1 = 2pv2 for some positive integers u,
v with y′ = 2uv, whence u2 − pv2 = ±1, and here the minus sign must hold
since v < y′.

8.2 The Thue equation

A multitude of special techniques have been devised through the centuries for
solving particular Diophantine equations. The scholarly treatise by Dickson
on the history of the theory of numbers (see Section 7.6) contains numerous
references to early works in the field. Most of these were of an ad hoc nature,
the arguments involved being specifically related to the example under con-
sideration, and there was little evidence of a coherent theory. In 1900, as the
tenth of his famous list of 23 problems, Hilbert asked for a universal algo-
rithm for deciding whether or not an equation of the form f (x1, . . . , xn)= 0,
where f denotes a polynomial with integer coefficients, is soluble in integers
x1, . . . , xn . The problem was resolved in the negative by Matiyasevich, devel-
oping ideas of Davis, Robinson and Putnam on recursively enumerable sets.
The proof has subsequently been refined to show that an algorithm of the kind
sought by Hilbert does not exist even if one limits attention to polynomials in
just nine variables, and it seems to me quite likely that it does not in fact exist
for polynomials in only three variables. For polynomials in two variables, how-
ever, the situation would appear to be quite different.
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In 1909, a new technique based on Diophantine approximation was intro-
duced by the Norwegian mathematician Axel Thue. He considered the equa-
tion F(x, y)= m, where F denotes an irreducible binary form with integer
coefficients and degree at least 3, and m is any integer. The equation can be
expressed as

a0xn + a1xn−1 y + · · ·+ an yn = m,

and this can be written in the form

a0(x −α1 y) · · · (x −αn y)= m,

where α1, . . . , αn signify a complete set of conjugate algebraic numbers. Thus
if the equation is soluble in positive integers x , y then the nearest of the
numbers α1, . . . , αn to x/y, say α, satisfies |x − αy| � 1. Here we are using
Vinogradov’s notation; by a � b we mean a< bc for some constant c, that is,
in this case, a number independent of x and y, and similarly by a � b we shall
mean b< ac for some such c. Now, for y sufficiently large and for α � α j , we
have

|x −α j y| = |(x −αy)+ (α−α j )y| � y;
this gives |x − αy| � 1/yn−1, whence |α − x/y| � 1/yn . But by Thue’s
improvement on Liouville’s theorem mentioned in Section 6.5, we have |α−
x/y| � 1/yκ for any κ > 1

2 n + 1. It follows that y is bounded above and so
there are only finitely many possibilities for x and y. The argument obviously
extends to integers x, y of arbitrary sign, and hence we obtain the remark-
able result that the Thue equation has only finitely many solutions in integers.
Plainly the condition n ≥ 3 is necessary here, for, as we have shown, the Pell
equation has infinitely many solutions.

The demonstration of Thue just described has a major limitation. Although
it yields an estimate for the number of solutions of F(x, y)= m, it does not
enable one to furnish the complete list of solutions in a given instance or
indeed to determine whether or not the equation is soluble. This is a conse-
quence of the ineffective nature of the original Thue inequality on which the
proof depends. Some effective cases of the inequality have been derived and,
in these instances, one can easily solve the related Thue equation even for
quite large values of m; for example, from the result on

3√
2 mentioned in Sec-

tion 6.5 we obtain the bound (106|m|)23 for all solutions of x3 − 2y3 = m.
But still the basic limitation of Thue’s argument remains. Another approach
was initiated by Delaunay and Nagell in the 1920s. It involved factorization
in algebraic number fields and it enabled certain equations of Thue type with
small degree to be solved completely. In particular, the method applied to the
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equation x3 − dy3 = 1, where d is a cube-free integer, and it yielded the result
that there is at most one solution in non-zero integers x, y. The method was
developed by Skolem using analysis in the p-adic domain, and he furnished
thereby a new proof of Thue’s theorem in the case when not all of the zeros
of F(x,1) are real. The work depended on the compactness property of the
p-adic integers and so was generally ineffective, but Ljunggren succeeded in
applying the technique to deal with several striking examples. For instance, he
showed that the only integer solutions (x , y) of the equation x3 −3xy2 − y3 =1
are (1,0), (0,−1), (−1,1), (1,−3), (−3,2) and (2,1).

An entirely different demonstration of Thue’s theorem was given by Baker
in 1968. It involved the theory of linear forms in logarithms (see Section 6.6)
and it led to explicit bounds for the sizes of all the integer solutions x, y of
F(x, y) = m; in fact the method yielded bounds of the form c|m|c′

, where
c, c′ are numbers depending only on F . Thus, in principle, the complete list
of solutions can be determined in any particular instance by a finite amount of
computation. In practice the bounds that arise in Baker’s method are large, typ-
ically of order 1010500

, but it has been shown that they can usually be reduced to
manageable figures by simple observations from Diophantine approximation.

8.3 The Mordell equation

Some profound results relating to the equation y2 = x3 + k, where k is a non-
zero integer, were discovered by Mordell in 1922, and the equation continued
to be one of Mordell’s major interests throughout his life. The theorems that
he initiated divide naturally according as one is dealing with integer solutions
x , y or rational solutions. Let us begin with a few words about the latter.

The equation y2 = x3 + k represents an elliptic curve in the real projective
plane. By a rational point on the curve we shall mean either a pair (x , y) of
rational numbers satisfying the equation, or the point at infinity on the curve;
in other words, the rational points are given in homogeneous coordinates by (x ,
y, z), where λx , λy, λz are rational for some λ. It had been noted, at least by
the time of Bachet, that the chord joining any two rational points on the curve
intersects the curve again at a rational point, and similarly that the tangent at
a rational point intersects again at a rational point. Thus, Fermat remarked, if
there is a rational point on the curve other than the point at infinity, then, by tak-
ing chords and tangents, one would expect, in general, to obtain an infinity of
rational points; a precise result of this kind was established by Fueter in 1930.
It was also well known that the set of all rational points on the curve form a
group under the chord and tangent process (see Fig. 8.1); the result is in fact an
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Fig. 8.1 Illustration of the group law on y2 = x3 + 17. The points P , Q and
P + Q are (2, 5), ( 1

4 ,
33
8 ) and (−2, −3) respectively. The tangent at P meets the

curve again at −2P = (− 64
25 ,− 59

125 ).

immediate consequence of the addition formulae for the Weierstrass functions
x =℘(u), y = 1

2℘
′(u) that parameterize the curve. Indeed, with this notation,

the group law becomes simply the addition of parameters. Mordell proved that
the group has a finite basis, that is, there is a finite set of parameters u1, . . . ,un

such that all rational points on the curve are given by u = m1u1 + · · · + mnun ,
where m1, . . . ,mn run through all rational integers. This is equivalent to the
assertion that there is a finite set of rational points on the curve such that, on
starting from the set and taking all possible chords and tangents, one obtains
the totality of rational points on the curve. The demonstration involved an inge-
nious technique, usually attributed to Fermat, known as the method of infinite
descent; we shall refer to the method again in Section 8.4. The work applied
more generally to the equation y2 = x3 + ax + b with a,b rational, and so,
by birational transformation, to any curve of genus 1. Weil extended the the-
ory to curves of higher genus and the subject of the Mordell–Weil theorem, as
the result became known, subsequently gained great notoriety and stimulated
much further research. The latter has been directed especially to the problem
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of determining the basis elements u1, . . . ,un or at least the precise value of n;
this is usually referred to as the rank of the Mordell–Weil group (the rank r
of the curve is defined as the rank of the torsion-free part of the group and it
can differ from n by at most 2). There is no general algorithm for determining
these quantities but they can normally be found in practice. Thus, for instance,
Billing proved in 1937 that all the rational points on the curve y2 = x3 − 2
are given by mu1, where u1 is the parameter corresponding to the point (3, 5)
and m runs through all the integers. Since no multiple of u1 is a period of the
associated Weierstrass function, it follows that the equation y2 = x3 − 2 has
infinitely many rational solutions. On the other hand, it is known, for instance,
that the equation y2 = x3 + 1 has only the rational solutions given by (0,±1),
(−1, 0) and (2,±3), and that the equation y2 = x3 − 5 has no rational solutions
whatever.

We turn now to integer solutions of y2 = x3 + k. Although, initially, Mordell
believed that, for certain values of k, the equation would have infinitely many
solutions in integers x , y, he later showed that, in fact, for all k, there are only
finitely many such solutions. The proof involved the theory of reduction of
binary cubic forms and depended ultimately on Thue’s theorem on the equation
F(x, y)= m. Thus the argument did not enable the full list of solutions to be
determined in any particular instance. However, the situation was changed by
Baker’s work referred to in Section 8.2. This gave an effective demonstration
of Thue’s theorem, and, as a consequence, it furnished, for all solutions of
y2 = x3 + k, a bound for |x | and |y| of the form exp (c|k|c′

), where c, c′ are
absolute constants; Stark later showed that c′ could be taken as 1 + ε for any
ε > 0, provided that c was allowed to depend on ε. Thus, in principle, the
complete list of solutions can now be determined for any particular value of
k by a finite amount of computation. In practice, the bounds that arise are too
large to enable one to check the finitely many remaining possibilities for x and
y directly; but, as for the Thue equation, this can usually be accomplished by
some supplementary analysis. In this way it has been shown, for instance, that
all integer solutions of the equation y2 = x3 −28 are given by (4,±6), (8,±22)
and (37,±225).

Nevertheless, in many cases, much readier methods of solution are available.
In particular, it frequently suffices to appeal to simple congruences. Consider,
for example, the equation y2 = x3 + 11. Since y2 ≡0 or 1 (mod 4), we see that,
if there is a solution, then x must be odd and in fact x ≡ 1 (mod 4). Now we
have

x3 + 11 = (x + 3)(x2 − 3x + 9)− 16,
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and x2 − 3x + 9 is positive and congruent to 3 (mod 4). Hence there is a prime
p ≡ 3 (mod 4) that divides y2 + 16. But this gives y2 ≡ −16 (mod p), whence
(yz)2 ≡ −1 (mod p), where z = 1

4 (p + 1). Thus −1 is a quadratic residue
(mod p), contrary to Section 4.2. We conclude therefore that the equation y2 =
x3 + 11 has no solution in integers x , y. Several more examples of this kind
are given in Mordell’s book (see Section 8.7).

Another typical method of solution is by factorization in quadratic fields.
Consider the equation y2 = x3 − 11. Since y2 ≡ 0, 1 or 4 (mod 8) we see that,
if there is a solution, then x must be odd. We shall use the result established in
Section 8.5, that the field Q(

√
(−11)) is Euclidean and so has unique factor-

ization. We have

(y +√
(−11))(y −√

(−11))= x3,

and the factors on the left are relatively prime; for any common divisor would
divide 2

√
(−11), contrary to the fact that neither 2 nor 11 divides x . Thus, on

recalling that the units in Q(
√
(−11)) are ±1, we obtain y + √

(−11)= ±ω3

and x = N (ω) for some algebraic integer ω in the field. Actually we can omit
the minus sign since −1 can be incorporated in the cube. Now, since −11 ≡ 1
(mod 4), we have ω = a + 1

2 b(1 + √
(−11)) for some rational integers a, b.

Hence, on equating coefficients of
√
(−11), we see that

1 = 3(a + 1
2 b)2( 1

2 b)− 11( 1
2 b)3,

that is, (3a2 + 3ab − 2b2)b = 2. This gives b =±1 or ±2, and so the solutions
(a, b) are (0, −1), (1, −1), (1, 2) and (−3, 2). But we have x = a2 + ab + 3b2.
Thus we conclude that the integer solutions of the equation y2 = x3 − 11 are
(3,±4) and (15,±58). A similar analysis can be carried out for the equation
y2 = x3 + k whenever Q(

√
k) has unique factorization and k ≡ 2, 3, 5, 6 or 7

(mod 8).
Soon after establishing his theorem on the finiteness of the number of solu-

tions of y2 = x3 + k, Mordell extended the result to the equation

y2 = ax3 + bx2 + cx + d,

where the cubic on the right has distinct zeros; the work again rested ultimately
on Thue’s theorem but utilized the reduction of quartic forms rather than cubic.
In a letter to Mordell, an extract from which was published in 1926 under the
pseudonym X, Siegel described an alternative argument that applied more gen-
erally to the hyperelliptic equation y2 = f (x), where f denotes a polynomial
with integer coefficients and with at least three simple zeros; indeed it applied
to the superelliptic equation ym = f (x), where m is any integer ≥2. The theory
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was still further extended by Siegel in 1929; in a major work combining his
refinement of Thue’s inequality, referred to in Section 6.5, together with the
Mordell–Weil theorem, Siegel succeeded in giving a simple condition for the
equation f (x, y)= 0, where f is any polynomial with integer coefficients, to
possess only finitely many solutions in integers x , y. In particular he showed
that it suffices if the curve represented by the equation has genus at least 1. The
result was employed by Schinzel, in conjunction with an old method of Runge
concerning algebraic functions, to furnish a striking extension of Thue’s the-
orem; this asserts that the equation F(x, y)= G(x, y) has only finitely many
solutions in integers x , y, where F is a binary form as in Section 8.2, and G is
any polynomial with degree less than that of F .

8.4 The Fermat equation

In the margin of his well-worn copy of Bachet’s edition of the works of Dio-
phantus, Fermat wrote ‘It is impossible to write a cube as the sum of two cubes,
a fourth power as the sum of two fourth powers, and, in general, any power be-
yond the second as the sum of two similar powers. For this I have discovered
a truly wonderful proof but the margin is too small to contain it’. As is well
known, after efforts of numerous mathematicians over several centuries, Fer-
mat’s conjecture was finally established by Wiles in 1995. The work rested on
deep theories on the modularity of elliptic curves; it went well beyond any-
thing available at the time of Fermat and there is now considerable doubt as to
whether Fermat really had a proof.

Many special cases of Fermat’s conjecture were verified, mainly as a conse-
quence of the work of Kummer in the nineteenth century. Indeed, as mentioned
in Chapter 7, it was Kummer’s remarkable researches that led to the founda-
tion of the theory of algebraic numbers. Kummer showed in fact that the Fer-
mat problem is closely related to questions concerning cyclotomic fields. The
latter arise by writing the Fermat equation xn + yn = zn in the form

(x + y)(x + ζ y) · · · (x + ζ n−1 y)= zn,

where ζ is a root of unity. As we shall see in a moment, the case n = 4 can
be readily treated; thus it suffices to prove that the equation has no solution in
positive integers x , y, z when n is an odd prime p. The factors on the left are
algebraic integers in the cyclotomic field Q(ζ ) and, when p ≤ 19, the field has
unique factorization; it is then relatively easy to establish the result. Kummer
derived various more general criteria. In particular, he introduced the concept
of a regular prime p and proved that Fermat’s conjecture holds for all such p;
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a prime is said to be regular if it does not divide any of the numerators of the
first 1

2 (p − 3) Bernoulli numbers, that is, the coefficients B j in the equation

t/(et − 1)= 1 − 1
2 t +

∞∑
j=1

(−1) j−1 B j t
2 j/(2 j)!.

Kummer also established the result for certain classes of irregular primes.
Thus, in particular, he covered all p<100; there are only three irregular primes
in the range and these he was able to deal with separately. The most no-
table result arising from this approach was obtained by Wagstaff in 1978; by
extensive computations he succeeded in establishing Fermat’s conjecture for
all p< 125 000.

Before the work of Kummer, Fermat’s equation had already been solved
for several small values of n. The special case x2 + y2 = z2 dates back to the
Greeks and the solutions (x , y, z) in positive integers are called Pythagorean
triples. It suffices to determine all such triples with x , y, z relatively prime and
with y even; for if x and y were both odd, we would have z2 ≡ 2 (mod 4)
which is impossible. On writing the equation in the form (z + x)(z − x)= y2,
and noting that (z + x, z − x)= 2, we obtain z + x = 2a2, z − x = 2b2 and
y = 2ab for some positive integers a, b with (a,b)= 1. This gives

x = a2 − b2, y = 2ab, z = a2 + b2.

Moreover, since z is odd, we see that a and b have opposite parity. Conversely,
it is readily verified that if a, b are positive integers with (a,b)= 1 and of
opposite parity then x , y, z above furnish a Pythagorean triple with (x, y, z)=1
and with y even. Thus we have found the most general solution of x2 + y2 = z2.
The first four Pythagorean triples, that is, with smallest values of z, are (3, 4, 5),
(5, 12, 13), (15, 8, 17) and (7, 24, 25).

The next simplest case of Fermat’s equation is x4 + y4 = z4. This was solved
by Fermat himself, using the method of infinite descent. He considered in fact
the equation x4 + y4 = z2. If there is a solution in positive integers, then it
can be assumed that x , y, z are relatively prime and that y is even. Now (x2,
y2, z) is a Pythagorean triple and there exist integers a, b as above such that
x2 =a2 − b2, y2 = 2ab and z =a2 + b2. Further, b must be even, for otherwise
we would have a even and b odd, and so x2 ≡−1 (mod 4), which is impossible.
Furthermore, (x , b, a) is a Pythagorean triple. Hence we obtain x = c2 − d2,
b = 2cd and a = c2 + d2 for some positive integers c, d with (c,d)= 1. This
gives y2 = 2ab = 4cd(c2 + d2). But c, d and c2 + d2 are coprime in pairs,
whence c = e2, d = f 2 and c2 + d2 = g2 for some positive integers e, f , g.
Thus we have e4 + f 4 = g2 and g ≤ g2 = a ≤ a2< z. It follows, on supposing
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that z is chosen minimally at the outset, that the equation x4 + y4 = z2 has no
solution in positive integers x , y, z.

The first apparent proof that the equation x3 + y3 = z3 has no non-trivial
solution was published by Euler in 1770, but the argument depended on prop-
erties of integers of the form a2 + 3b2 and there has long been some doubt
as to its complete validity. An uncontroversial demonstration was given later
by Gauss using properties of the quadratic field Q(

√
(−3)). The proof is an-

other illustration of the method of infinite descent. By considering congruences
(mod λ4), where λ is the prime 1

2 (3 −√
(−3)) in Q(

√
(−3)), it is readily veri-

fied that if the equation x3 + y3 = z3 has a solution in positive integers, then one
at least of x , y, z is divisible by λ. Hence, for some integer n ≥ 2, the equation
α3 +β3 +ηλ3nγ 3 =0 has a solution with η a unit in Q(

√
(−3)) and with α, β,

γ non-zero algebraic integers in the field. It is now easily deduced, by factor-
izing α3 +β3, that the same equation, with n replaced by n − 1, has a solution
as above, and the desired result follows. The equation x5 + y5 = z5 was solved
by Legendre and Dirichlet about 1825, and the equation x7 + y7 = z7 by Lamé
in 1839. By then, however, the ad hoc arguments were becoming quite com-
plicated and it was not until the fundamental work of Kummer that Fermat’s
conjecture was established for equations with higher prime exponents.

Numerous results were obtained concerning special classes of solutions. For
instance, Sophie Germain proved in 1823 that if p is an odd prime such that
2p + 1 is also a prime then the ‘first case’ of Fermat’s conjecture holds for p,
that is, the equation x p + y p = z p has no solution in positive integers with xyz
not divisible by p. Further, Wieferich proved in 1909 that the same conclusion
is valid for any p that does not satisfy the congruence 2p−1 ≡ 1 (mod p2).
These results were greeted with great admiration at the times of their discovery.
The latter condition is not in fact very stringent; there are only two primes up
to 3 · 109 that satisfy the congruence, namely 1093 and 3511.

In another direction, Faltings succeeded in 1983 in proving a long-standing
conjecture of Mordell to the effect that every curve defined over the rationals
with genus at least 2 has only finitely many rational points. The argument
involved deep theories in algebraic geometry and was a very important ad-
vance. As a particular case it follows at once that, for any given n ≥4, there are
only finitely many solutions to the Fermat equation in relatively prime integers
x , y, z.

The work of Wiles referred to at the beginning rested on a study of the ellip-
tic curve y2 = x(x − a)(x + b). Motivated by earlier work of Hellegouarch, it
was suggested by Frey in 1985 that if there is a solution to the Fermat equation
u p + v p =w p with a prime p> 3 and integers u, v,w then the elliptic curve
indicated above with a = u p and b = v p, now often referred to as the Frey
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curve, is not modular, that is, it cannot be paramaterized by modular functions.
The suggestion was shown to be true by Ribet in 1990 and this opened the way
to the eventually successful attack on Fermat’s last theorem. For there was a
well-known conjecture of Taniyama–Shimura dating back to 1955 asserting
that every elliptic curve defined over the rationals is modular, and the Fermat
problem was now reduced to verifying the latter. Wiles succeeded in proving
the Taniyama–Shimura conjecture for a large class of elliptic curves including
the case relevant to Fermat and this established the result. Actually Wiles’ first
version of the proof, which he announced in 1993, turned out to be incomplete
but the exposition was put right a little later through some joint work of Taylor
and Wiles. The full Taniyama–Shimura conjecture, based on the same sphere
of ideas, was verified in 2001 by Breuil, Conrad, Diamond and Taylor.

The Wolfskehl Prize, offered by the Academy of Sciences in Göttingen in
1908 for the first demonstration of Fermat’s last theorem, was conferred on
Andrew Wiles in 1997; it amounted then to DM75,000.

8.5 The Catalan equation

In 1844, Catalan conjectured that the only solution of the equation x p − yq = 1
in integers x , y, p, q, all > 1, is given by 32 − 23 = 1. After the endeavours of
many mathematicians, as we shall describe below, the conjecture was finally
established by Mihăilescu in 2004. He used new ideas from the theory of cy-
clotomic fields and his work was a remarkable achievement.

Previously, the most notable advance towards a demonstration was made
by Tijdeman in 1976. He proved, by means of the theory of linear forms in
logarithms (see Section 6.6), that the Catalan equation has only finitely many
integer solutions and all of these can be effectively bounded. Thus, in princi-
ple, Tijdeman’s work reduced the problem simply to the checking of finitely
many cases. However, despite much effort, the bounds furnished by the the-
ory have turned out, so far at least, to be too large to make the computation
practical.

Nonetheless it is of interest to illustrate the approach. Accordingly let us
consider the simpler equation axn − byn = c, where a, b and c � 0 are given
integers, and we seek to bound all the solutions in positive integers x , y and
n ≥ 3. We can assume, without loss of generality, that a and b are positive, and
it will suffice to treat the case y ≥ x . The equation can be written in the form
e� − 1 = c/(byn), where

�= log(a/b)+ n log(x/y).
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Now we can suppose that yn>(2c)2, for otherwise the solutions can obviously
be bounded; then we have |e� − 1|< 1/(2y(1/2)n). But, for any real number
u, the inequality |eu − 1|< 1

2 implies that |u| ≤ 2|eu − 1|. Hence we obtain
|�|< y−(1/2)n , that is, log |�|<− 1

2 n log y. On the other hand, by the theory of
linear forms in logarithms, we have log |�|�− log n log y, where the implied
constant depends only on a and b. Thus we see that 1

2 n � log n, whence n is
bounded in terms of a and b. The required bounds for x and y now follow
from the effective result of Baker on the Thue equation referred to at the end
of Section 8.2.

The work of Tijdeman on the equation x p − yq = 1 runs on the same lines.
One can assume that p, q are odd primes and then, by elementary factorization,
one obtains x = k Xq + 1, y = lY p − 1 for some integers X , Y , where k is
1 or 1/p and l is 1 or 1/q. Plainly we have |p log x − q log y| � y−q , and
substituting for x and y on the left yields a linear form,

�= p log k − q log l + pq log(X/Y ),

for which |�| is small; similar forms arise by substituting for just one of x and
y. The theory of linear forms in logarithms now furnishes the desired bounds
for p and q, and those for x and y then follow from an effective version of the
result on the superelliptic equation referred to in Section 8.3.

Several instances of Catalan’s equation were solved long before the advent
of the theories alluded to above. Indeed, in the Middle Ages, Leo Hebraeus had
already dealt with the case x = 3, y = 2 and, in 1738, Euler had solved the case
p = 2, q = 3. The case q = 2 was treated by V. A. Lebesgue in 1850, the cases
p =3 and q =3 by Nagell in 1921, the case p =4 by S. Selberg in 1932 and the
case p =2, which includes the result for p =4, by Chao Ko in 1967. Moreover
Cassels proved in 1960 that if p, q are primes, as one can assume, then p
divides y and q divides x . Let us convey a little of the flavour of these works
by proving that the equation x5 − y2 = 1 has no solution in integers except
x = 1, y = 0. We shall use the unique factorization property of the Gaussian
field. Clearly, since y2 ≡ 0 or 1 (mod 4), we have x odd and y even. The
equation can be written in the form x5 = (1 + iy)(1 − iy) and, since x is odd,
the factors on the right are relatively prime. Thus we have 1 + iy = εω5, where
ε is a Gaussian unit and ω is a Gaussian integer. Now ε = ±1 or ±i , and so
ε=ε5. Hence, on writing εω=u + iv, where u, v are rational integers, we have
1 + iy = (u + iv)5. This gives u5 − 10u3v2 + 5uv4 = 1, whence u = ±1 and
1 − 10v2 + 5v4 =±1. It follows easily that u = 1, v= 0 and so x = 1, y = 0, as
required. The argument can readily be extended to establish Lebesgue’s more
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general theorem that, for any odd prime p, the equation x p − y2 = 1 has no
solution in positive integers.

Mihăilescu, in his studies referred to at the beginning, showed first, follow-
ing on work of Inkeri and Mignotte, that any primes p,q with x p − yq = 1 for
some positive integers x, y must satisfy a double Wieferich criterion, namely

pq−1 ≡ 1 (mod q2), q p−1 ≡ 1 (mod p2).

By combining this criterion with new results from the theory of cyclotomic
fields, especially a deep theorem of Thaine on cyclotomic units, Mihăilescu
succeeded in eliminating the case p � 1 (mod q). There remained the case
p ≡ 1 (mod q) and, initially, Mihăilescu excluded this through the theory of
linear forms in logarithms. Later, however, he showed that, here too, one could
give a purely algebraic argument. In any event, the celebrated conjecture of
Catalan was finally solved.

A particularly striking result on an exponential Diophantine equation rather
like those of Fermat and Catalan was obtained by Erdős and Selfridge in 1975;
they proved that a product of consecutive integers cannot be a perfect power,
that is, the equation

yn = x(x + 1) · · · (x + m − 1)

has no solution in integers x , y, m, n, all > 1.

8.6 The abc-conjecture

The abc-conjecture is a simple statement about integers. It was first formu-
lated by Oesterlé and subsequently refined by Masser and it encapsulates many
important results. Indeed it has come to be seen as of one of the key problems
for the future direction of mathematics.

Let a,b, c be relatively prime non-zero integers satisfying

a + b + c = 0

and let N denote the ‘radical’ or ‘conductor’ of abc, that is, the product of all
the distinct prime factors of abc. Then the abc-conjecture asserts that, for any
ε > 0, we have

max(|a|, |b|, |c|)� N 1+ ε,

where the implied constant depends only on ε (for the � notation see
Section 8.2).

The conjecture implies at once that the Fermat equation xn + yn = zn with
n > 3 has only finitely many solutions in relatively prime positive integers
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x, y, z. Indeed, on taking a = xn,b = yn, c = −zn , we see that the radical
N of abc is the same as that of xyz and so N ≤ xyz ≤ z3; hence the abc-
conjecture gives zn � z3(1+ ε) and, on assuming ε < 1

3 , it follows that z is
bounded. In the same way we deduce that the Catalan equation xm − yn =1 has
only finitely many solutions in integers x, y,m,n, all > 1, provided we exclude
m = n = 2. For on taking a = xm,b = −yn, c = −1 we see that N ≤ xy,
whence the conjecture gives max(xm, yn)� (xy)1+ ε. It follows that xy �
(xy)(1/m+1/n)(1+ ε) and so, since 1/m + 1/n < 1, we conclude that x and y
are bounded; then max(xm, yn) is bounded and thus also m and n. In fact the
argument applies more generally to the Fermat–Catalan equation

axr + bys + czt = 0,

where a,b, c are given non-zero integers, and shows that, if the conjecture
holds, then the equation has only finitely many solutions in relatively prime
integers x, y, z, all>1, and positive exponents r, s, t satisfying (1/r)+ (1/s)+
(1/t)< 1.

The conjecture has many further applications and it has been widely dis-
cussed in the literature. The only significant approach to date with regard to a
verification is due to Stewart and Kunrui Yu; they have shown, through deep
studies concerning linear forms in logarithms, that

log max(|a|, |b|, |c|)� N 1/3(log N )3,

where the implied constant is absolute, that is, it can be given a numerical value
independent of any parameters.

The work of Oesterlé was motivated by an earlier conjecture of Szpiro on
elliptic curves, and Masser was influenced by a theorem which Mason had ob-
tained through researches on linear forms in logarithms over function fields
and which we now recognize as the analogue of the abc-conjecture in that set-
ting. Stothers, as it turned out, had come upon the same result independently
through studies on Riemann surfaces; his work had been published before Ma-
son’s but its significance was not realized at the time and it was only much
later, when Mason’s theorem had long been in the public domain, that it came
to light.

Let k denote an algebraically closed field with characteristic 0. Further, let
a(x),b(x), c(x) be non-zero polynomials in k[x] with no common factor and
not all constant. Suppose that the polynomials have degrees l,m,n and that the
numbers of their distinct zeros are given by p,q, r respectively. The Mason–
Stothers theorem, as it is now known, states that if a(x)+ b(x)+ c(x)=0 then
we have

max(l,m,n)< p + q + r.
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For the proof, let w(x) be the monic polynomial with simple zeros consist-
ing of the distinct zeros of a(x)b(x)c(x). Then w(x) has degree p + q + r .
We have w(x)a′(x)= a(x)A(x), where a′(x) denotes the derivative of a(x)
with respect to x and A(x) denotes a polynomial with degree < p + q + r .
Similarly we have w(x)b′(x) = b(x)B(x) and w(x)c′(x) = c(x)C(x). Fur-
ther, the A(x), B(x),C(x) are distinct. For if, for instance, A(x)= B(x) then
a(x)b′(x) = b(x)a′(x) and so a(x) and b(x) would divide a′(x) and b′(x)
respectively; this is plainly impossible since, by hypothesis, at most one of
a(x),b(x), c(x) is constant and so a′(x) and b′(x) cannot both be zero.

Now since a′(x)+ b′(x)+ c′(x)= 0 we obtain

a(x)A(x)+ b(x)B(x)+ c(x)C(x)= 0.

Then from a(x)+ b(x)+ c(x)= 0 it follows that

a(x)(A(x)− C(x))+ b(x)(B(x)− C(x))= 0,

whence a(x) divides B(x)− C(x) and b(x) divides A(x)− C(x). Thus we
get max(l,m) < p + q + r and, since clearly n ≤ max(l,m), this proves the
theorem.

8.7 Further reading

As remarked in Section 8.2, an excellent source for early results on
Diophantine equations is Dickson’s History of the Theory of Numbers
(Washington, 1920). Another good reference work is Skolem’s Diophantische
Gleichungen (Springer, 1938).

For general reading, Mordell’s Diophantine Equations (Academic Press,
1969) is to be highly recommended; the author was one of the great contribu-
tors to the subject and, as one would expect, he covers a broad range of mate-
rial with clarity and considerable skill. Several other books on number theory
contain valuable sections on Diophantine equations; this applies especially to
Nagell’s Introduction to Number Theory (Wiley, 1951).

A good survey of results on the effective solution of Diophantine equations
is given by Győry in his article in A Panorama of Number Theory or the View
from Baker’s Garden (ed. G. Wüstholz, Cambridge University Press, 2002),
pp. 38–72. For further accounts see the books by Baker and by Baker and
Wüstholz cited in Section 6.8. The latter includes, in particular, references to
the literature on the abc-conjecture.

In connection with Section 8.4, Ribenboim’s 13 Lectures on Fermat’s Last
Theorem (Springer, 1979) deals well with the classical material, and there is
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also a good discussion of the classical aspects relating to the Fermat equation
in Borevich and Shafarevich’s Number Theory (Academic Press, 1966). For an
introduction to Wiles’ work see Stewart and Tall’s Algebraic Number Theory
and Fermat’s Last Theorem (A. K. Peters, 2002). As regards Mihăilescu’s work
referred to in Section 8.5, see Schoof’s Catalan’s Conjecture (Springer, 2008).

The theorem of Schinzel referred to at the end of Section 8.3 appeared in
Comment. Pontificia Acad. Sci. 2 (1969), no. 20, 1–9. The theorem of Wiles
referred to in Section 8.4 appeared in Ann. Math. 141 (1995), 443–551. The
theorem of Faltings referred to in Section 8.4 appeared in Invent. Math. 73
(1983), 349–366. The theorem of Mihăilescu referred to in Section 8.5
appeared in J. Reine Angew. Math. 572 (2004), 123–144. The theorem of Erdős
and Selfridge referred to at the end of Section 8.5 appeared in Illinois J. Math.
19 (1975), 292–301.

8.8 Exercises

(i) Prove that, if (xn , yn), with n =1,2, . . . , is the sequence of positive solu-
tions of the Pell equation x2 − dy2 = 1, written according to increasing
values of x or y, then xn and yn satisfy a recurrence relation un+2 −
2aun+1 + un = 0, where a is a positive integer. Find a when d = 7.

(ii) Determine whether or not the equation x2 − 31y2 = −1 is soluble in
integers x , y.

(iii) Find the minimal solution in positive integers x, y of the equation x2 −
dy2 = 1 when d = 39,41,55 and 1003.

(iv) Show that if p, q are primes ≡ 3 (mod 4) then at least one of the equa-
tions px2 − qy2 =±1 is soluble in integers x , y.

(v) Prove, by congruences, that if a, c are integers with a > 1, c > 1 and
a + c ≤ 16, then the equation x4 − ay4 = c has no solution in rationals
x , y.

(vi) Show that the equation x3 + 2y3 = 7(z3 + 2w3) has no solution in rela-
tively prime integers x , y, z, w.

(vii) By considering the intersection of the quartic surface x4 + y4 + z4 = 2
with the line y = z − x = 1 − t x , where t is a parameter, show that the
equation x4 + y4 + z4 = 2w4 has infinitely many solutions in relatively
prime integers x , y, z, w.

(viii) Solve the equation y2 = x3 − 17 in integers x , y by considering the fac-
tors of x3 + 8.

(ix) Solve the equation y2 = x3 − 2 in integers x , y by factorization in
Q(

√
(−2)).
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(x) Prove, by the method of infinite descent, that the equation x4 − y4 = z2

has no solution in positive integers x , y, z.
(xi) Prove that the equation x4 −3y4 = z2 has no solution in positive integers

x , y, z. Deduce that the equation x4 + y4 = z3 has no such solution with
(x, y) = 1. (For the first part see Pocklington, Proc. Cambridge Phil.
Soc. 17 (1914), 108–21.)

(xii) By considering (x + 1)3 + (x − 1)3, show that every integer divisible by
6 can be represented as a sum of four integer cubes. Show further that
every integer can be represented as a sum of five integer cubes.

(xiii) Prove, by factorization in Q(
√
(−7)), that the equation x2 + x + 2 = y3

has no solution in integers x , y except x = 2, y = 2 and x = −3, y = 2.
Verify that the equation x2 + 7 = 23k+2 has no solution in integers k, x
with k>1. (This is a special case of a conjecture of Ramanujan to the ef-
fect that the equation x2 + 7 = 2n has only the integer solutions given by
n =3, 4, 5, 7 and 15. The conjecture was proved by Nagell; for a demon-
stration see page 205 of Mordell’s book, referred to in Section 8.7).
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Factorization and primality testing

9.1 Fermat pseudoprimes

By a primality test we mean a criterion which, if it is not satisfied, guarantees
that a natural number n is composite. If the number passes several of these
tests – that is, if it satisfies the criterion in each case – then it is likely, though
in general not certain, that it is a prime. It turns out that in cryptography it is
often enough to know that a number is ‘probably’ a prime and this is where
the concept originates. A method which definitely establishes that a number
is a prime is called deterministic; otherwise it is called probabilistic. The sim-
plest example of a deterministic method is based on the criterion that n be not
divisible by any integer between 2 and

√
n; if n passes the test for each possible

divisor then it is, without doubt, a prime. But verifying in a particular instance
is a very time-consuming process.

Suppose now that n is composite and odd. If there exists an integer b, with
(b,n)= 1, such that bn−1 ≡ 1 (mod n) then n is called a pseudoprime (or Fer-
mat pseudoprime) to the base b. Thus a pseudoprime is a number that has a
property analogous to that in Fermat’s theorem (see Section 3.3) but is not
a prime. For example, since the order of 2 (mod 21) is 6, we obtain 820 ≡
1 (mod 21) and so 21 is a pseudoprime to the base 8; but 220 ≡ 4 (mod 21),
whence 21 is not a pseudoprime to the base 2.

To explain the way the concept is used in practice, let n be a large odd inte-
ger. For any integer b with 0< b< n we can determine d = (b,n) by Euclid’s
algorithm. If d > 1 then certainly n is composite; otherwise we calculate the
least positive residue of bn−1 (mod n) using, say, the repeated-squaring method
(see Section 9.7) and if it turns out to be 1 then there is a chance that n is a
prime. If, on repeating the process for several further b, we find that in each
case n is either a prime or a pseudoprime then there is a high probability that n
is in fact a prime; indeed it is not difficult to show (see Koblitz’s book referred

90
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to in Section 9.8) that the chance that it is composite after k tests is at most
1/2k except if it happens to have the special property that it is a pseudoprime
for all possible b.

The question now arises as to whether the latter can actually occur. The
answer is ‘yes’: the composite odd integers n such that bn−1 ≡ 1 (mod n) for
all b with (b,n)= 1 are called Carmichael numbers. The smallest example is
561 = 3 × 11 × 17. From Fermat’s theorem, one sees that, if n is square-free
and p −1 divides n −1 for each prime factor p of n (as in the case of 561), then
n is a Carmichael number. And the converse holds. For if n is square-free and
p divides n then, by the Chinese remainder theorem, there is an integer b such
that b ≡ g (mod p) and b ≡ 1 (mod n/p), where g is a primitive root (mod p);
then (b,n)= 1, whence, if n is a Carmichael number, we have gn−1 ≡ bn−1 ≡
1 (mod p) and thus p − 1 divides n − 1. The proof that a Carmichael number
is square-free follows on similar lines, taking g as a primitive root (mod p2),
and we refer again to Koblitz’s book. As a corollary, a Carmichael number n
must be the product of at least three primes; for if n = pq with p,q primes
and p< q then q − 1 divides n − 1 = p(q − 1)+ (p − 1) which is impossible
since p − 1< q − 1. A result of Alford, Granville and Pomerance of 1992 (see
Section 9.8) gives the existence of infinitely many Carmichael numbers.

9.2 Euler pseudoprimes

Let n be composite and odd and let b be an integer such that (b,n)=1. We call
n an Euler pseudoprime to the base b if, with the Jacobi symbol, we have

b
1
2 (n−1)≡

(
b

n

)
(mod n).

Thus an Euler pseudoprime has a property analogous to that in Euler’s criterion
and yet it is not a prime. If n is an Euler pseudoprime to the base b then it
is also a Fermat pseudoprime to that base; this is obvious on squaring both
sides of the above congruence. Further, there is no analogue of a Carmichael
number: that is, every composite n is not an Euler pseudoprime for some b′.
In fact, if n is square-free, we can take b′ as a solution to the congruences
x ≡ a (mod p) and x ≡ 1 (mod n/p), where p is a prime divisor of n and a is
some quadratic non-residue (mod p); if n is divisible by p2 for some prime p,
we can take b′ =1+n/p. Now if n is an Euler pseudoprime to a base b then, by
the multiplicative property of the Jacobi symbol, we see that it is not an Euler
pseudoprime for bb′. Thus at most half of the b with 0< b< n and (b,n)= 1
can be bases. It follows that if an integer n, after k trials with different random
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b, satisfies the above congruence in each case then there is a probability of at
most 1/2k that it is composite; this gives an efficient probabilistic method, due
to Solovay and Strassen, of testing for primality.

Every n is trivially an Euler pseudoprime to the bases ±1. A non-trivial
example is given by 703 = 19 × 37; since 3 has order 18 mod 19 and mod 37,
we have 3351 ≡ 39 ≡−1 (mod 703), and since also

(
3

703

)
=−

(
703

3

)
=−

(
1

3

)
=−1,

it follows that 703 is an Euler pseudoprime to the base 3.
There is a refinement of the Solovay–Strassen test due to Miller and Rabin

based on the concept of a strong pseudoprime; it derives from the observation
that the only solutions to the congruence x2 ≡ 1 (mod p) for a prime p are x ≡
±1. Let n and b be as at the beginning of this section and let n −1=2sm, where
s is a positive integer and m is odd. Then n is called a strong pseudoprime with
respect to b if either bm ≡1 (mod n) or blm ≡−1 (mod n) for some l =2r where
0 ≤ r < s. It is easily seen that a composite integer n ≡ 3 (mod 4) is a strong
pseudoprime to the base b if and only if it is an Euler pseudoprime to that base.
For in this case we have s = 1, l = 1 and m = 1

2 (n − 1), whence the criterion
for a strong pseudoprime becomes bm ≡ ±1 (mod n); this clearly holds if n is
an Euler pseudoprime and the converse is also valid, for if the congruence is

satisfied then from bm = b(b2)
1
4 (n−3) and n ≡ 3 (mod 4) we obtain

(
b

n

)
=
(

bm

n

)
=
(±1

n

)
=±1

with linked signs. An example of a strong pseudoprime is now 703 as above.
There is a theorem to the effect that a strong pseudoprime to a base b is also an
Euler pseudoprime to that base but the proof is not simple and we refer again
to Koblitz’s book for details.

In the practical application of the Miller–Rabin test, one determines, for a
random b, first whether bm ≡ ±1 (mod n) and then, by sequential squaring,
whether blm ≡−1 (mod n) for l = 2,4, . . . ,2s−1. If none of the congruences is
satisfied then n must be composite since, for a prime p, the first element in the

sequence bp−1,b
1
2 (p−1),b

1
4 (p−1), . . . which is not congruent to 1, if any, must

be congruent to −1 (mod p). The probability that n is composite after passing
k trials with different random b is at most 1/4k , a useful improvement on 1/2k

as in the earlier tests.
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9.3 Fermat factorization

As we shall see from Section 9.7, it is of interest to have an efficient technique
for the factorization of large numbers. One of the simplest is the method of
Fermat factorization, based on the fact that if n is odd and n = ab with a ≥
b> 0 then n = r2 − s2, where r = 1

2 (a + b), s = 1
2 (a − b), and, conversely, if

n = r2 − s2 then n =ab with a = r + s, b = r − s. Thus if a and b happen to be
close together so that s is small then r will be only slightly bigger than

√
n and

hence, on checking whether r2 −n is a perfect square for r = [
√

n]+1, [
√

n]+
2, . . . , we shall quickly come upon an instance when it is so and this will yield
a and b.

As an example, consider n =644 773; here [
√

n]=802 and 8032 −644 773=
36=62, whence we immediately get n = (803+6)(803−6)=809×797. As a
further example consider n =1 485 151; here [

√
n]=1218 and 12192 −n =810

is not a square but 12202 − n = 3249 = 572, whence we get n = (1220 +
57)(1220 − 57)= 1277 × 1163.

A modification of the method works when b is close to a small odd multiple
of a rather than a itself. Thus consider n =5 933 299. Here the technique above
does not readily yield the desired factorization but let us study instead m = 3n.
We have [

√
m] = 4218 and 42192 − m = 64, whence we obtain m = (4219 +

8)(4219 − 8)= 4227 × 4211 and so n = 1409 × 4211.
Fermat factorization, in its simplest form, will succeed eventually in any

particular instance but it may be impractical: that is, it may use up too much
time.

9.4 Fermat bases

There is another, more efficient, generalization of Fermat factorization based
on the fact that, whenever we find integers r, s such that r2 ≡ s2 (mod n), the
number (r − s,n) is a proper divisor of n unless r ≡ s (mod n), and similarly
for (r + s,n) unless r ≡ −s (mod n). The search for suitable r and s leads to
the following notion.

A factor base B is a set {p1, . . . , pk} of distinct primes with the proviso that
p1 is allowed to be −1. For a given odd n, the square of an integer b is called a
B-number if the numerically least residue b′ of b2 (mod n), that is, the residue
satisfying − 1

2 n<b′< 1
2 n, can be expressed as a product of powers of elements

of B. It is customary to associate to a B-number the k-tuple (ε1, . . . , εk), where
ε j = 0 if p j occurs to an even power in the canonical factorization of b′ and
ε j = 1 otherwise. Thus, for n = 233, since 502 ≡ −63 (mod 233), we see that
502 is a B-number, where B ={−1,3,7}, and its associated k-tuple is (1,0,1).
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Now to factorize a large odd integer n we seek a factor base B and a set
of B-numbers b2

m such that the product of their numerically least residues b′
m

is a perfect square, say s2. In other words, we seek the B-numbers such that
every element p j of B occurs to an even power in the canonical factorization
of the product, and this will be so if

∑
m εmj is even for each j = 1,2, . . . , k,

where (εm1, . . . , εmk) is the k-tuple associated to b2
m as above. On taking r

as the product of the bm , we have r2 ≡ s2 (mod n) and, provided that r is
not congruent to ±s (mod n), we obtain a proper factor (r ± s,n) of n. If n
is composite then, since r is a random square-root of s2, the probability that
r ≡ ±s (mod n) is at most 1

2 ; repeated trials with different bases B and sets of
B-numbers can be used to reduce the probability. Moreover, by linear algebra
over the mod 2 field F2, one knows that as soon as one has found k + 1 distinct
B-numbers b2

m then some subset can be determined that will have the desired
property.

As an example, let us attempt to factorize n = 70 751. It seems reasonable
to hope that taking integers bm close to [

√
(ln)] for l = 1,2,3, . . . will yield

small residues b′
m of b2

m (mod n) and that sufficiently many of these will be
products of small primes. On testing [

√
n], [

√
n] + 1, . . . , [

√
n] + 11, and then

[
√
(2n)], [

√
(3n)], . . . , [

√
(9n)], we find that

[
√

n] + 11 = 276, 2762 ≡ 5425 (mod n), 5425 = 52 × 7 × 31;
[
√
(8n)] = 752, 7522 ≡−504 (mod n), −504 =−23 × 32 × 7;

[
√
(9n)] = 797, 7972 ≡−1550 (mod n), −1550 =−2 × 52 × 31.

Hence we have a factor base {−1,2,3,5,7,31} and B-numbers 2762, 7522,
7972 with the desired property and thus we can take r = 276 × 752 × 797 and
s = −22 × 3 × 52 × 7 × 31. Then r ≡ 3106 (mod n) and s ≡ 5651 (mod n),
whence r + s ≡ 8757 (mod n) and r − s ≡ −2545 (mod n). Now it is readily
seen that (8757,70 751)= 139 and (2545,70 751)= 509 and so finally n =
139 × 509.

9.5 The continued-fraction method

A way of finding a factor base B and B-numbers with the property described
above is by the use of continued fractions.

The method depends on the fact that if θ >1 is a real number and pm/qm(m =
0,1,2, . . . ) are the convergents to θ then we have |p2

m − θ2q2
m |< 2θ . For the

proof, we recall that θ occurs in the interval between pm/qm and pm+1/qm+1

and that the length of this interval is 1/(qmqm+1). Thus we have |θ− pm/qm |<
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1/(qmqm+1), whence |pm − θqm |< 1/qm+1 which gives pm <θqm + 1/qm+1.
Hence we obtain

|p2
m − θ2q2

m | = |pm + θqm ||pm − θqm | < (2θqm + 1/qm+1)(1/qm+1)

< 2θ(qm + 1)/qm+1< 2θ

as required. On applying the result with θ = √
n, where n is a positive integer,

not a perfect square, we see that |p2
m −nq2

m |<2
√

n for each convergent pm/qm

to
√

n. This shows that, if n > 16 so that 2
√

n < 1
2 n, then p2

m − nq2
m is the

numerically least residue of p2
m (mod n) and that the latter is less

than 2
√

n.
Now, to factor n, one generates as far as necessary the partial quotients in

the continued fraction for
√

n and then the numerators pm (m = 0,1,2, . . . )
of the corresponding convergents reduced, say, to their least positive residues
(mod n). This enables one to compute the quantities b′

m = p2
m − nq2

m ≡ p2
m

(mod n); one knows, by the result obtained above, that all of these are less
than 2

√
n and so there is a reasonable chance that, with respect to some factor

base B, a subset of the p2
m will be B-numbers with the desired property and

that moreover (r ± s,n) will be a proper divisor of n as before. Clearly, when
pm,qm are solutions to the Pell equation x2 − ny2 = 1, we have b′

m = 1 and
p2

m is a B-number to the base {−1}. Thus it is enough simply to determine
whether the corresponding divisors (pm ± 1,n) are non-trivial and this can
always be done unless the period of the continued fraction for

√
n is unduly

large.
As an example, consider n = 27 323. The continued fraction for

√
n is given

by [165,3,2,1,2,3,330] and it has period 6. The numerators of the first 6
convergents are 165, 496, 1157, 1653, 4463, 15 042 and the numerically least
residues of their squares (mod n) are −98, 109, −178, 109, −98, 1. Thus 4962

and 16532 are B-numbers with respect to the base {109} and since 496 ×
1653 ≡ 198 (mod n) we can take r = 198 and s = 109. This gives r + s = 307
and r − s = 89, whence n = 307 × 89. The pattern of residues here is typical
and, though we chose to use the second and fourth of them, we could just as
well have used the sixth as indicated above.

As another example, consider n = 12 403. The continued fraction for
√

n
is [111,2,1,2,2,7,1,4,1,4,1,7,2,2,1,2,222] and it has period 16. The nu-
merators of the first nine convergents, reduced (mod n), are 111, 223, 334, 891,
2116, 3300, 5416, 158, 5574 and the residues of their squares are −82, 117,
−71, 89, −27, 166, −39, 158, −39. Thus 54162 and 55742 are B-numbers
with respect to the base {−1,3,13} and since 5416 × 5574 ≡ −118 (mod n)
we can take r =118 and s =39. This gives r + s =157 and r − s =79, whence



96 Factorization and primality testing

n = 157 × 79. It will be seen that we could have simply used the congruence
1582 ≡ 158 (mod n) which comes from the eighth residue and that 2232 is also
a B-number to the above base.

As a final example, consider n = 36 581. The continued fraction for
√

n be-
gins [191,3,1,4,1,1,1,3,7,12,4,1, . . . ] and it turns out to have period 66.
The numerators of the first 12 convergents, reduced (mod n), are 191, 574, 765,
3634, 4399, 8033, 12 432, 8748, 506, 14 820, 23 205, 1444 and the residues
of their squares are −100, 247, −71, 215, −148, 205, −101, 52, −31, 76,
−295, 19. Now we have 247 × 52 × 76 = (22 × 13 × 19)2 but this yields
only r ≡ s (mod n). However, we have also 76 × 19 = (2 × 19)2 and since
14 820 × 1444 ≡ 195 (mod n) we can take r = 195 and s = 38. This gives
n = 157 × 233.

9.6 Pollard’s method

Let n be a composite positive integer. If some prime factor p of n has the
property that p − 1 has no large prime divisor then there is a method, due
to Pollard, customarily referred to as Pollard’s p − 1 method, that is almost
certain to find p. It is based on the fact that if a positive integer k is divisible
by all integers up to a certain bound K and if p − 1 is divisible only by prime
powers less than K then p − 1 divides k, whence, by Fermat’s theorem, we
have ak ≡ 1 (mod p) for all integers a > 0 with (a, p)= 1. Hence (ak − 1,n)
is divisible by p and it is a proper divisor of n unless ak ≡ 1 (mod n).

To apply Pollard’s method, we choose a bound K , an integer, and we take
k to be K ! or, say, the lowest common multiple of the integers not exceeding
K . Then, for an integer a with 1< a< n − 1, we find ak (mod n) by repeated
squaring (see Section 9.7) and we compute (ak − 1,n) by Euclid’s algorithm.
If the latter is non-trivial we are through; otherwise we try again with different
pairs a, k.

As an example, consider n = 212 899. We choose K = 7 and we take k
to be the lowest common multiple of the integers up to 7, that is, k = 420.
Then, on taking a = 2 and noting that 420 = 22 + 25 + 27 + 28, we obtain
ak = 2420 ≡ 54 861 (mod n) and (54 860,n) = 211. Thus we get n =
211 × 1009.

To apply Pollard’s method when n = 732 661, for instance, we would need
a bound K as big as 359; for we have the prime factorizations n = 719 × 1019,
718 = 2 × 359 and 1018 = 2 × 509. Lenstra introduced a technique analogous
to Pollard’s based on the theory of elliptic curves which has much greater flex-
ibility. It incorporates elements of interest to both number theorists and cryp-
tographers; see the books mentioned in Section 9.8.
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9.7 Cryptography

A public key cryptosystem based on Euler’s theorem was introduced by Rivest,
Shamir and Adleman in 1978. The RSA algorithm, as it is called, begins with
each user choosing two large primes p,q and a natural number m with m <

φ(n) and (m, φ(n))= 1, where n = pq. From his knowledge of p,q the user
can compute φ(n)= (p − 1)(q − 1)= n + 1 − p − q and moreover he can find
the least positive solution l to the congruence lm ≡ 1 (modφ(n)): that is, the
multiplicative inverse of m. The pair m,n is called the enciphering key for the
particular user and it is made public; the pair l,n is called the deciphering key
and it is concealed.

Now to send a plaintext message P , in digital form, to a recipient with enci-
phering key m,n, the user transmits as ciphertext C a residue of Pm (mod n),
say the least positive residue; the recipient retrieves the original message by
computing the least positive residue of Cl (mod n). Since C ≡ Pm we have, by
Euler’s theorem, Cl ≡ Plm ≡ P (mod n) and so the recipient does indeed obtain
P assuming, as one may, that 0< P ≤ n. (Note here that, since n is square-
free, Plm ≡ P (mod n) holds for all P including the instance when (P,n)> 1.
Indeed φ(n) is divisible by p − 1, whence, if (P, p)= 1, we have, by Fermat’s
theorem, Pφ(n) ≡ 1 (mod p) and thus Plm ≡ P (mod p); the latter is obvious
when (P, p)> 1 and it holds similarly for q.) The success of the cryptosystem
depends on the fact that finding large primes is much easier than factorizing
large integers even when one knows that there are just two prime factors.

As an example, consider sending the message NO to a user with encipher-
ing key 5,703. Let us make the message digital by taking digraphs in the usual
26-letter alphabet: then the numerical equivalent of NO is P = 13.26 + 14 =
342. Now 3425 ≡ 589 (mod 703) and therefore C = 589 (that is, 22.26 + 17
or just W R in equivalent digraphs). To decipher, we observe that 703 = 19.37,
whence φ(703)=648. Then, to determine l, we use Euclid’s algorithm to solve
5l ≡ 1 (mod 648); we have 648 = 129.5 + 3, 5 = 1.3 + 2, 3 = 1.2 + 1 and so
1 = 2(648 − 129.5)− 5 = 2.648 − 259.5. This gives l ≡ −259 (mod 648) and
hence l = 389. Now 389 = 1 + 22 + 27 + 28 and, mod 703, we have 5894 ≡
266, 589128 ≡ 342, 589256 ≡ 266. Thus 589389 ≡ 342 as required. The tech-
nique used here for calculating the latter residues is called the repeated-squaring
method.

9.8 Further reading

The book most closely associated with our text and which we particularly rec-
ommend is A Course in Number Theory and Cryptography (Springer, 1994)
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by N. Koblitz. This contains, in particular, references to the original papers on
the RSA algorithm. Another relevant work is H. Riesel’s Prime Numbers and
Computer Methods for Factorization (Birkhäuser, 1994). For developments in
relation to elliptic curves, see L. C. Washington’s Elliptic Curves: Number The-
ory and Cryptography (Chapman & Hall/CRC, 2008) and the book by Blake,
Seroussi and Smart, Elliptic Curves in Cryptography (Cambridge University
Press, 2000). The result of Alford, Granville and Pomerance mentioned at the
end of Section 9.1 appeared in Ann. Math. 139 (1994), 703–722.

9.9 Exercises

(i) Show that, if p is a prime, then p2 is a pseudoprime with respect to a
base b if and only if bp−1 ≡ 1 (mod p2). What is the analogous result
for p3?

(ii) Verify that 341 is a pseudoprime to the base 2. Show that, if n is a pseu-
doprime to the base 2, then so is N = 2n − 1. Deduce that there are
infinitely many pseudoprimes to the base 2.

(iii) With the same hypothesis, show that N is both an Euler pseudoprime
and a strong pseudoprime to the base 2.

(iv) Prove that, if n is a strong pseudoprime with respect to a base b, then it
is also a strong pseudoprime with respect to the base bk for any positive
integer k.

(v) Find all Carmichael numbers of the form 91p, where p is a prime.
(vi) Determine the divisors of 1 324 703 and 7 009 529 by the Fermat factor-

ization method.
(vii) Determine the divisors of 10 349 and 30 523 by the continued-fraction

method.
(viii) Determine the divisors of 61 549 and 219 341 by Pollard’s method.

(ix) In the RSA algorithm, what is the deciphering key corresponding to the
enciphering key 7, 1027? Find also the deciphering keys corresponding
to 7, 1661 and 7, 4661.

(x) Use the repeated-squaring method to find the least positive residue of
535 (mod 1019).
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Number fields

10.1 Introduction

The subject of number fields was originated by Kummer, Dedekind, Weber
and others during the nineteenth century. It is closely related to the theory of
Diophantine equations – in fact it was motivated to a large extent by attempts
to solve Fermat’s last theorem – and it now impinges on most branches of
number theory. We have already given a short discussion of the topic, mainly
with respect to quadratic fields, in Chapter 7; here and in the next three chapters
we shall develop the subject in more detail.

As prerequisites we shall assume only the elementary properties of rings,
fields and vector spaces. Some knowledge of Galois theory is useful but, as we
shall present the material, not essential. However, to avoid the theory, we shall
need to appeal in a few places to the classical symmetric function theorem; it
asserts that if R is any ring then every symmetric polynomial in R[x1, . . . , xn]
is expressible as a polynomial over R in the elementary symmetric functions
s1, . . . , sn , where

(t + x1) · · · (t + xn)= tn + s1tn−1 + · · ·+ sn,

so that s1 = x1 + · · · + xn , s2 = x1x2 + · · · + xn−1xn , . . . , sn = x1 · · · xn . In
other words, the symmetric polynomials form a polynomial ring R[s1, . . . , sn].
A proof is given, for example, on page 178 of Vol. 1 of P. M. Cohn’s Algebra
(Wiley, 1982).

We shall frequently mention the division algorithm; this, as we recall from
Section 1.2, asserts that if a,b are in Z and if b�0 then there exist q, r in Z such
that a = bq + r with 0 ≤ r < |b|. We shall need an analogue for polynomials
to the effect that if a(x),b(x) are in the polynomial ring Q[x] (more generally
R[x], where R is a field) and if b(x) is not constant then there exist q(x), r(x)
in Q[x] such that a(x)= b(x)q(x)+ r(x) and degree r(x) < degree b(x). For
the proof, consider the polynomials of the form a(x)− b(x)q(x) with q(x) in

99
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Q[x]; one of these, say r(x), has least degree and if this were ≥ the degree
of b(x) then we could diminish it by subtracting a multiple of b(x) with an
element of Q[x] of the form λx j . In fact q(x), r(x) are unique as one readily
verifies.

10.2 Algebraic numbers

An algebraic number α is a zero of a polynomial P(x) with rational coeffi-
cients. The minimum polynomial for α is the P as above that is monic and
has least degree; a polynomial P(x)= a0xd + a1xd−1 + · · · + ad is said to be
monic if a0, the leading coefficient, is 1.† The degree of α is defined as the
degree d of the minimum polynomial P for α. The conjugates of α are defined
as the zeros α1, . . . , αd of P; thus α is one of α1, . . . , αd and we can write
P(x)= (x −α1) . . . (x −αd). Note further that

(i) P is the minimum polynomial for each of the conjugates α1, . . . , αd of α,
for, by the division algorithm, the minimum polynomial Pj for α j divides
P and so α would be a zero of Pj or P/Pj , a contradiction unless P = Pj .

(ii) All the α j are distinct. For let P ′ denote the derivative of P (that is,
with the above notation, P ′(x)=a0dxd−1 + · · · + ad−1). Then P , P ′ are
relatively prime by (i) and hence P has no squared factor.

(iii) If Q is a polynomial with rational coefficients such that Q(α j )= 0 for
some j then P divides Q and thus Q(α j )= 0 for all j .

The totality of algebraic numbers form a field �. This is readily verified
from the axioms for a field. For example we observe that α+β is a zero of the
polynomial

∏m
i=1
∏n

j=1(x − (αi + β j )), where α1, . . . , αm and β1, . . . , βn are
the conjugates of α,β; this polynomial has rational coefficients by the symmet-
ric function theorem. Also, for example, 1/β, for β �0, is a zero of xn P(1/x),
where P is the minimum polynomial for β.

10.3 Algebraic number fields

The algebraic number field Q(α) generated by the algebraic number α over the
rationals Q is defined as the set p(α) where p is a polynomial with rational co-
efficients. The set can be regarded as being embedded in the complex numbers
and so we have the usual operations of addition and multiplication. Then the set
is a field; this is obvious (p(α)+q(α)= (p +q)(α), p(α)q(α)= (pq)(α), . . . )

† The minimum polynomial defined here is the minimal polynomial of Section 6.5 divided by
a0; we argue now in terms of polynomials with rational coefficients rather than integral.
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except for the existence of the inverse. But if p(α)�0 then p and the minimum
polynomial P for α are relatively prime by (iii) above, whence there exist poly-
nomials q,Q in Q[x] with pq + P Q = 1 identically and so q(α)= 1/p(α).

Now let K =Q(α) be an algebraic number field. The degree of K is defined
as the degree of α, say n. It is clear from the division algorithm that every
element in K has the form p(α) where p(x) is a polynomial in Q[x] with
degree at most n −1. Thus K is a vector space overQwith basis 1, α, . . . , αn−1

and its dimension, say [K :Q], is n. Further, if β is any other generator of K ,
that is, K =Q(β), then β must have degree n.

The conjugate fields K1, . . . ,Kn of K are defined as the embeddings of
K into C given by the monomorphisms σ1, . . . , σn , where σ j (α) = α j and
α1, . . . , αn are the conjugates of α. Although, by (ii), the σ1, . . . , σn are dis-
tinct, the conjugate fields are not necessarily distinct; for instance Q(

√
2)=

Q(−√
2). If θ = p(α) is any element of K then the images σ j (θ)(= p(α j ))

of θ are called the field conjugates of θ . Further, we say that f (x)=∏(x −
σ j (θ)) is the field polynomial for θ . We have f (x)= (g(x))m for some pos-
itive integer m, where g is the minimum polynomial for θ ; for we can write
f (x)= (g(x))mh(x) with (g,h)= 1 and m ≥ 1 since certainly g divides f .
Now, if h(x) � 1, then, since f, g are monic, we would have h(σ j (θ)) = 0
for some j , that is, h(p(α j ))= 0, and thus, by (iii), h(p(α))= h(θ)= 0; this
contradicts (g,h)= 1. It follows that the field conjugates of θ are just the con-
jugates of θ repeated m times.

10.4 Dimension theorem

Let k be an algebraic number field and let K = k(α), that is, the set of elements
p(α) where p(x)∈ k[x]. Then plainly K is a field. In fact it is a number field
over Q in the sense defined in Section 10.3. For if k =Q(β) then the following
result holds.

Theorem 10.1 We have K = k(α)=Q(α,β)=Q(γ ), where γ = uα+ vβ for
some integers u, v.

Proof Let α1, . . . , αn and β1, . . . , βm be the conjugates of α,β respectively.
Take u, v so that the mn numbers γi j = uαi + vβ j are distinct. We put γ =
uα + vβ and assume that α = α1, β = β1 so that γ = γ1,1. We have to show
that K =Q(γ ).

Let q(x)=∏i, j (x − γi j ) and put

s(x)=
n∑

i=1

m∑
j=1

αi q(x)

x − γi j
.
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By the symmetric function theorem we have q(x) and s(x)∈Q[x]. On taking
x =γ and recalling that the γi j are distinct we obtain s(γ )=αq ′(γ ) (for clearly
q(x)/(x − γi j ) is 0 for x = γ unless i = j = 1 and then it is q ′(γ )). Hence α is
a rational function of γ . Similarly for β and the result follows.

In analogy with the rational case, we define the degree [K : k] of K = k(α)
over k as the degree of α over k, that is, the degree of the minimum polyno-
mial for α in k[x]; since k contains Q, there certainly exists such a minimum
polynomial. Then K is a vector space over k with dimension [K : k]. But, by
the theorem, K is also a vector space over Q with dimension [K :Q] and, since
k has dimension [k :Q] as a vector space over Q, we obtain the equation

[K : k][k :Q] = [K :Q].

10.5 Norm and trace

For any algebraic number α with conjugates α1, . . . , αd we define the (abso-
lute) norm and trace of α by Nα=α1 . . . αd and Tα=α1 + · · · +αd .

Now suppose that α is an element of a number field K with degree n and
let σ1, . . . , σn be the monomorphisms of K indicated in Section 10.3. Then the
field norm and trace of α are defined by

NK/Q(α)= σ1(α) . . . σn(α), TK/Q(α)= σ1(α)+ · · · + σn(α).

By the result at the end of Section 10.3 we have NK/Q(α) = (Nα)m and
TK/Q(α)= mTα for some positive integer m. Further, we have, for any ele-
ments α,β in K ,

NK/Q(αβ)= NK/Q(α)NK/Q(β),

TK/Q(α+β)= TK/Q(α)+ TK/Q(β).

Finally suppose that K = k(θ) where k is an algebraic number field over Q
with degree s. Then r = [K : k] is the degree of θ over k and we have rs = n.
Further, there are r distinct monomorphisms from K to C that fix k, namely the
mappings τ1, . . . , τr given by τ j (θ)= θ j , where θ1, . . . , θr are the zeros of the
minimum polynomial for θ over k. We define the relative norm and trace by

NK/k(α)= τ1(α) . . . τr (α), TK/k(α)= τ1(α)+ · · · + τr (α),

where α is any element in K . Then NK/k(α) is in k and we have

NK/k(αβ)= NK/k(α)NK/k(β)
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and similarly for T . Note that the definition is consistent with the case k =Q
given earlier. It is an easy exercise to show that NK/Q= Nk/Q(NK/k) and that
this holds also for T .

10.6 Algebraic integers

An algebraic number α is an algebraic integer if the coefficients in the mini-
mum polynomial for α are (rational) integers. Plainly the conjugates of an alge-
braic integer are themselves algebraic integers. Further, by Gauss’ lemma, we
see that the zeros of any monic polynomial with rational integer coefficients are
algebraic integers. Furthermore, the totality of algebraic integers form a ring
O (verification as for �) and the totality of algebraic integers in an algebraic
number field K (that is, K ∩O) form a ring OK .

Now suppose that α is any algebraic number with minimum polynomial p.
We define the denominator of α as the least integer a > 0 such that ap has
(relatively prime) integer coefficients; in other words, a is the lowest common
multiple (l.c.m.) of the denominators of the coefficients of p. Then the follow-
ing holds.

Lemma 10.1 We have aα∈O, that is, aα is an algebraic integer. More gener-
ally, aα1 . . . αm is an algebraic integer for any distinct conjugates α1, . . . , αm

of α.

Proof If p(x)= xn + an−1xn−1 +· · ·+ a0 then an p(x)=q(ax) where q(x)=
xn + aan−1xn−1 + · · · + ana0. Thus q(x) is the minimum polynomial for aα
and the first assertion follows.

We show now that if f (x) = βr xr + · · · + β0 (βr � 0) is in O[x] and if
f (γ ) = 0 then f (x)/(x − γ ) ∈ O[x]. This will suffice to prove the second
assertion; for on taking f (x)=ap(x)we deduce that f (x)/

∏
l(x −αl)∈O[x],

where αl runs through all the conjugates of α other than α1, . . . , αm , that is,
a(x −α1) . . . (x −αm) is in O[x], whence aα1 . . . αm is in O as required.

The assertion holds for r = 1 and we get the result in general by induction
on r . For consider φ(x)= f (x)− βr xr−1(x − γ ). This is a polynomial with
degree ≤ r − 1 and with φ(γ )= 0. Further, we have βrγ ∈O and so φ(x) ∈
O[x]; indeed the argument furnishing the first assertion is easily extended to
give βr−1

r f (x)= g(βr x) with a monic g in O[x] and it is also easily seen that
the zeros of any such g are in O. Hence, by induction, φ(x)/(x − γ ) ∈O[x]
and thus f (x)/(x − γ )∈O[x] as required.
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10.7 Basis and discriminant

Let K be an algebraic number field. Further, let θ1, . . . , θn be a basis for K as
a vector space over Q. We define the discriminant of the basis as

�(θ1, . . . , θn)= (det S)2,

where S is the matrix

⎛⎜⎜⎜⎝
σ1(θ1) σ2(θ1) . . . σn(θ1)

σ1(θ2) σ2(θ2) . . . σn(θ2)
...

...
. . .

...

σ1(θn) σ2(θ1) . . . σn(θn)

⎞⎟⎟⎟⎠ .
Note that then

�(θ1, . . . , θn)= det(SS′)= det(TK/Q(θiθ j )),

where S′ denotes the transpose of S.
If we have another basis, say φ1, . . . , φn , then φi =∑n

j=1 fi jθ j for some
rationals fi j . Let F = det( fi j ). Then F � 0 and

�(φ1, . . . , φn)= F2�(θ1, . . . , θn). (∗)

Now if θ is a generator of K then �(1, θ, . . . , θn−1) is the square of a Vander-
monde determinant and thus

�(1, θ, . . . , θn−1)=
∏

1≤i< j≤n

(σi (θ)− σ j (θ))
2.

Hence, on taking φ j = θ j−1, the equation (∗) shows that �(θ1, . . . , θn)� 0 for
all bases of K .

Consider next the ring of integers OK of K . A basis for OK over Z is called
an integral basis for K . Thus elements ω1, . . . ,ωn of OK form an integral basis
for K if and only if every element α in OK can be expressed in the form

α= u1ω1 + · · · + unωn

for some rational integers u1, . . . ,un .

Theorem 10.2 There exists an integral basis for K .

Proof There certainly exists an OK -basis for K over Q, that is, a basis for K
over Q with elements in OK ; for instance 1,aθ, . . . , (aθ)n−1 where K =Q(θ)
and a is the denominator for θ . Now for any OK -basis ω1, . . . ,ωn of K over
Q, the number |�(ω1, . . . ,ωn)| is a rational integer since, by symmetry, it is
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rational and ω j ∈OK implies � ∈OK . Thus there exist ω1, . . . ,ωn such that
|�(ω1, . . . ,ωn)| takes its smallest value. We proceed to prove that ω1, . . . ,ωn

is then an integral basis for K .

Let α be any element of OK . Then there exist rationals u1, . . . ,un such that
α= u1ω1 + · · · + unωn and we have to show that u1, . . . ,un must be integers.
But if, say, u1 = u + v where u is an integer and 0<v< 1 then, on writing

ω′
1 =α− uω1 = vω1 + u2ω2 + · · ·+ unωn,

we would have ω′
1,ω2, . . . ,ωn an OK -basis for K over Q. Further, by (∗), we

see that

�(ω′
1,ω2, . . . ,ωn)= F2�(ω1, . . . ,ωn),

where F is the determinant of the matrix⎛⎜⎜⎜⎝
v u2 . . . un

0 1 . . . 0
...

...
. . .

...

0 0 . . . 1

⎞⎟⎟⎟⎠
and thus F = v. Since we have 0< v < 1 this contradicts the minimal choice
of |�(ω1, . . . ,ωn)| and the theorem follows.

It is clear that the determinant F from one integral basis to another is a ra-
tional integer, and the same holds for its inverse; hence it must be ±1. Then
F2 = 1 and it follows from (∗) that �(ω1, . . . ,ωn) is the same for all inte-
gral bases. Moreover, as already noted, it is not 0. The quantity is called the
discriminant of K .

In view of the relations given at the beginning of the section, we can ex-
press the discriminant d of K alternatively as det(TK/Q(ωiω j )) and, since the
traces here are rational integers, it follows that d is a rational integer. Fur-
ther, we have Stickelberger’s criterion, namely d ≡ 0 or 1 (mod 4). To verify
this we define �= det(σ j (ωi )), so that d =�(ω1, . . . ,ωn)=�2, and we ob-
serve that � is given by a sum of n! terms of the form σ j1(ω1) . . . σ jn (ωn)

where the suffixes j1, . . . , jn run through the permutations of 1, . . . ,n. Now
� = a − b, where a and b denote the sums of the terms over all even and
odd permutations repectively, and by the symmetric function theorem we have
a +b and ab rational integers. But d = (a −b)2 = (a +b)2 −4ab and the result
follows.

The concept of the discriminant of a field derives from an earlier and more
primitive concept, namely that of the discriminant of a polynomial.



106 Number fields

Definition 10.1 The discriminant of the polynomial

f (x)= a0xn + a1xn−1 + · · · + an (a0 � 0)

with coefficients in Q and with zeros α1, . . . , αn is defined as

disc( f )= a2n−2
0

∏
1≤i< j≤n

(αi −α j )
2.

Now let K =Q(θ) with θ ∈OK . If f is the minimum polynomial of θ then

disc( f )=�(1, θ, . . . , θn−1)

and, denoting by d the discriminant of K , we see that (∗) gives disc( f )= m2d
for an integer m. The latter is called the index of θ and in terms of modules we
have m = [OK : Z(θ)], that is, m is the number of elements in OK /Z(θ) (cf.
Section 11.5). Plainly m =1, that is, disc( f )=d, if and only if 1, θ, . . . , θn−1 is
an integral basis for K ; a basis of this form is sometimes referred to as a power
integral basis. In particular, when disc( f ) is square-free then 1, θ, . . . , θn−1 is
an integral basis. More generally it follows from (∗) that if, with the notation at
the beginning of this section, θ1, . . . , θn are in OK and�(θ1, . . . , θn) is square-
free then θ1, . . . , θn is an integral basis for K .

Finally we observe that, with f as in the definition above, we have f ′(αi )=
a0
∏

j�i (αi −α j ), where f ′(x) denotes the derivative of f (x), and hence

disc( f )= (−1)
1
2 n(n−1)an−2

0 f ′(α1) . . . f ′(αn).

Further, in the special case when f (x)= xn + px +q (q �0), we have f ′(x)=
nxn−1 + p, whence αi f ′(αi )=−nq + (1 − n)pαi ; this gives

q f ′(α1) . . . f ′(αn)= (1 − n)n pn f (nq/((1 − n)p))

and thus

disc( f )= (−1)
1
2 n(n−1)

(
nnqn−1 + (1 − n)n−1 pn

)
.

10.8 Calculation of bases

The quadratic field K =Q(√d), where d is a square-free integer, has already
been discussed in Chapter 7. In particular it was shown in Section 7.2 that if
d ≡ 2 or 3 (mod 4) then an integral basis for K is 1,

√
d and the discriminant

of K is 4d; if d ≡ 1 (mod 4) then an integral basis for K is 1, 1
2 (1 + √

d)
and the discriminant of K is d. We verify this again briefly with the current
notation. The elements of K have the form α=u +v√d with u, v rational and,
on putting a = 2u,b = 2v, the field polynomial (minimum if v � 0) for α is
x2 − ax + c where c = Nα = u2 − dv2. Thus if α ∈ OK then a, c ∈ Z and
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from 4c = a2 − b2d and the fact that d is square-free we see that b ∈ Z. If
d ≡ 2 or 3 (mod 4) then, since a square is ≡ 0,1 (mod 4), we have a,b even
and u, v integers. If d ≡ 1 (mod 4) then a,b have the same parity and α =
1
2 (a − b)+ b( 1

2 (1 + √
d)) where 1

2 (a − b) is an integer. This establishes the
assertion about the bases and then the discriminants are given in the two cases
respectively by∣∣∣∣1 √

d
1 −√

d

∣∣∣∣2 = 4d and

∣∣∣∣1 1
2 (1 +√

d)
1 1

2 (1 −√
d)

∣∣∣∣2 = d.

We now give some examples to show how one can find integral bases for
fields of higher degree. We begin with a simple instance.

Example 10.1 Let α denote a zero of the polynomial x3 + px + q, where
p,q are integers and q �0. By Section 10.7 we have disc( f )=−(27q2 + 4p3)

and if the latter is square-free then it is the discriminant of the field Q(α) and
1, α,α2 is an integral basis. In particular this applies when p = q = −1 and
p =−2,q =−1; the discriminants are then −23 and 5 respectively.

Example 10.2 Consider the cubic field K =Q(α), where α= 3√10. Let β=
1
3 (α

2 + α + 1). We show first that β is in OK . In fact (α − 1)β =
1
3 (α

3 −1)=3, whence (1+3/β)3 =10, that is, (β+3)3 =10β3. The expression
on the left is β3 + 9β2 + 27β + 27 and so the field polynomial for β is x3 −
x2 − 3x − 3. This has integer coefficients and so β ∈OK as asserted. We pro-
ceed now to prove that 1, α,β is an integral basis for K . Since 1, α,α2 is a
basis for K over Q, the elements θ in OK have the form θ =a + bα+ cα2 with
a,b, c rational. The conjugates of α are α,ωα,ω2α, where ω is a primitive
cube root of unity, and so the traces of θ,αθ,α2θ are 3a,30c,30b respectively.
These must be rational integers, say u,w, v. The field polynomial of v+wα is
(x −v)3 −10w3, whence N (v+wα)=v3 +10w3. Since N (α)=10 this gives
N (3α(b + cα))= 1

100 (v
3 + 10w3) and, since 3(θ − a) is in OK , it follows that

the latter must be a rational integer; thus 10 divides v and w. Hence we have
θ = 1

3 (r + sα)+ tβ with integers r = u − 1
10w, s = 1

10 (v−w), t = 1
10w. The

field polynomial of 1
3 (r + sα) is (x − 1

3r)3 − 10( 1
3 s)3 and, since θ − tβ is in

OK , this must have integer coefficients. The coefficient of x is 1
3r2, whence

3 divides r and from the constant coefficient we see that then 3 divides s.
Hence 1, α,β form an integral basis for K as asserted. On denoting the basis
by ω1,ω2,ω3 we see that the discriminant of K is given by

det(TK/Q(ωiω j )) =
∣∣∣∣∣∣
3 0 1
0 0 10
1 10 21

∣∣∣∣∣∣ = −300.
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Example 10.3 Consider the quartic field K = Q(α), where α = 4√
2. We

proceed to prove that 1, α,α2, α3 is an integral basis for K . Plainly K contains
the subfield k =Q(√2) and, for any element θ of K , we have TK/k(θ)= θ + θ ,
where θ is the conjugate of θ given by the mapping α→ −α; in fact the latter
is the only element of the Galois group of K apart from the identity that fixes
k. Now suppose that θ ∈ OK and let θ = a + bα + cα2 + dα3 with rational
a,b, c,d. Then TK/k(θ)= 2a + 2c

√
2 and similarly TK/k(αθ)= 2b

√
2 + 4d.

Since these are in OK and since also 1,
√

2 is an integral basis for k it follows
that 2a,2b,2c and 4d are rational integers, say p,q, r, s. Further, we have
NK/k(θ) = θθ = (a + c

√
2)2 − √

2(b + d
√

2)2; the latter simplifies to A +
B

√
2, where A = a2 + 2c2 − 4bd and B = 2ac − b2 − 2d2 and these must be

rational integers. Now 4A = p2 + 2r2 − 2qs and 8B = 4pr − 2q2 − s2; this
shows successively that p, s, r,q are even and furthermore that 8 divides s2,
whence 4 divides s. Hence a,b, c,d are rational integers and so 1, α,α2, α3 is
an integral basis for K as asserted. We write the basis as ω1,ω2,ω3,ω4 and
note that the conjugates of α are α, iα,−α,−iα; then the discriminant of K is
given by

det(TK/Q(ωiω j )) =

∣∣∣∣∣∣∣∣
4 0 0 0
0 0 0 8
0 0 8 0
0 8 0 0

∣∣∣∣∣∣∣∣ = −4 × 83 = −211.

Example 10.4 Consider the biquadratic field K =Q(√2,
√

7). This has Ga-
lois group 1, α,β,αβ where α takes

√
2 to −√

2 leaving
√

7 unchanged and
β takes

√
7 to −√

7 leaving
√

2 unchanged. Now suppose that θ ∈ OK and
let θ = a + b

√
7 + c

√
2 + d

√
14 with rational a,b, c,d. When k =Q(√7) we

have TK/k(θ)=2a +2b
√

7 and, since 1,
√

7 is an integral basis for k, it follows
that 2a and 2b are rational integers, say p and q. Similarly, from the subfields
Q(

√
2) and Q(

√
14) we obtain 2c = r and 2d = s for some rational integers r

and s. Also when k =Q(√7) we have NK/k(θ)= (a + b
√

7)2 − 2(c + d
√

7)2

and this can be written as A + B
√

7, where A = a2 + 7b2 − 2(c2 + 7d2) and
B =2(ab −2cd). Now A and B must be integers and we have 4A= p2 +7q2 −
2(r2 + 7s2) and 4B = 2(pq − 2rs). Thus p2 + 7q2 and pq are even, whence
p,q are even and a,b are integers. Further, r2 + 7s2 must be even and so r and
s, that is, 2c and 2d, have the same parity. It follows that an integral basis for
K is 1,

√
2,

√
7, 1

2 (1 + √
7)

√
2. For certainly the last element is in OK since

the square of it is 4 + √
7 and it has minimum polynomial x4 − 8x2 + 9. To

calculate the discriminant of K we denote the integral basis just obtained by
ω1,ω2,ω3,ω4. Then on recalling that the Galois group of K is 1, α,β,αβ as
above we see that the discriminant of K is given by
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det(TK/Q(ωiω j )) =

∣∣∣∣∣∣∣∣
4 0 0 0
0 8 0 4
0 0 28 0
0 4 0 16

∣∣∣∣∣∣∣∣ = 44

∣∣∣∣∣∣∣∣
1 0 0 0
0 2 0 1
0 0 7 0
0 1 0 4

∣∣∣∣∣∣∣∣ = 44 × 49 = 2872.

10.9 Further reading

An introduction to the literature was given in Section 7.7 and many of the
works included under further reading in other chapters contain valuable
expositions relating to the subject. Here we mention in addition the books by
J. Esmonde and M. R. Murty, Problems in Algebraic Number Theory (Springer,
2004), and by A. Fröhlich and M. J. Taylor, Algebraic Number Theory
(Cambridge University Press, 1991), both of which cover the topic well. The
book Algebraic Number Theory by S. Lang (Springer, 1994) has been a stan-
dard reference for many years, and Number Fields (Springer, 1995) by D. A.
Marcus is another accessible work. The volume Basic Number Theory
(Springer, 1974) by A. Weil covers similar ground but it is written on a very
sophisticated level. In connection with Section 10.8, the classic text is
Berwick’s Integral Bases (Cambridge University Press, 1927).

10.10 Exercises

(i) Find the minimum polynomials over Q of (1 + i)
√

3, i +√
3, i + eiπ/3.

(ii) Find the field polynomials of i and 3√5 in Q(i + 3√5).
(iii) By the symmetric function theorem, or otherwise, prove that any zero

of a monic polynomial with algebraic integer coefficients is an algebraic
integer.

(iv) Which of the following are algebraic integers?

1/2, (
√

3 +√
5)/2, (

√
3 +√

7)/
√

2, (1 + 3√
19 + ( 3√

19)2)/3.

(v) We know that the kernel of the map ‘evaluation at i’ given by Z[X ] →
Z[i], that is, g(X) �→ g(i), is Z[X ] ∩ (X2 + 1)Q[X ]. Show that in fact
the kernel is (X2 + 1)Z[X ] and deduce that the above map induces an
isomorphism of rings Z[X ]/(X2 + 1)→Z[i].

(vii) Show that, for a,b ∈Q∗, where Q∗ denotes the multiplicative group of
non-zero elements of Q, the degree of Q(

√
a,

√
b) is equal to the order

of the subgroup of Q∗/Q∗2 generated by a,b. Determine whether the
field Q(

√
(2 +√

2)) is of the form Q(
√

a,
√

b) with a,b ∈Q.
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(viii) Show that if a number field K has degree d = s +2t , where s is the num-
ber of real conjugate fields and 2t is the number of complex conjugate
fields, then the discriminant D of K satisfies (−1)t D> 0.

(ix) Let K =Q(α) where α= 3√d for a square-free integer d � 0, ±1. Show
that the ring of algebraic integers OK of K satisfies

Z[
3√

d] ⊆OK ⊆ 1
3Z[ 3√d].

Verify that the field polynomial of a + bα+ cα2 for rational a,b, c is

x3 − 3ax + 3(a2 − bcd)x − (a3 + b3d + c3d2 − 3abcd).

By considering the cases when 3a,3b,3c are 0,±1, prove that an inte-
gral basis for K is given by 1, α,α2 when d �±1 (mod 9) and by 1, α,β
otherwise where β = 1

3 (1 ±α+α2) with corresponding ± signs.
(x) Let k ⊂ K be number fields. Show that, for α ∈OK , the trace TK/k(α)

and norm NK/k(α) are in Ok . Let now K =Q(√3,
√

5). By computing
traces and norms for the three quadratic subfields k of K , show that an
integral basis for K is 1,

√
3, 1

2 (1 +√
5), 1

2 (1 +√
5)

√
3.

(xi) Prove that an integral basis for Q(i,
√

2) is 1, i,
√

2, 1
2 (1 + i)

√
2. Prove

further that an integral basis for Q(
√

2,
√

p), where p is a prime with
p ≡ 3 (mod 4), is 1,

√
2,

√
p, 1

2 (1 + √
p)

√
2. Calculate the discrimi-

nants of the fields.
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Ideals

11.1 Origins

The introduction of ideals was motivated by a desire to restore the property of
unique factorization in number fields; certainly, as already observed in Section
7.4, the property is not universal. Consider, as there, the quadratic field K =
Q(

√
(−5)) with basis 1,

√
(−5). We have

21 = 3 × 7 = (1 + 2
√
(−5))(1 − 2

√
(−5)).

Now 3,7,1 + 2
√
(−5), 1 − 2

√
(−5) cannot be further factorized in OK . Sup-

pose, for instance, 3 = αβ with α,β in OK . Then NK/Q(α)NK/Q(β)= 9 and
so if neither α nor β were ±1 (thus if neither has norm 1) we would have
NK/Q(α)= 3, which is impossible since x2 + 5y2 = 3 has no solution in inte-
gers x, y. Similarly 7,1 + 2

√
(−5) and 1 − 2

√
(−5) cannot be factorized. The

situation was restored by Kummer; he proceeded by way of a mapping of the
ring OK into a multiplicative semigroup of elements which he called ‘ideals’.

11.2 Definitions

Let K be an algebraic number field with ring of integers OK . By an ideal in K
we mean a non-empty subset a of OK such that

(i) if α,α′ ∈ a then α−α′ ∈ a,
(ii) if α ∈ a and β ∈OK then αβ ∈ a.

For any elements α1, . . . , αm in OK the set of all numbers α1β1 + · · · +αmβm

with β1, . . . , βm in OK is plainly an ideal, say a, and we write a= [α1, . . . , αm].
Then α1, . . . , αm are called generators for a. Conversely, for any ideal a, we

111
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have a= [α1, . . . , αm] for some generators α1, . . . , αm . Indeed we shall prove
the following.

Theorem 11.1 There exists a basis for a; that is, there exist elements γ1, . . . , γn

in a such that, if α ∈ a, then α= u1γ1 + · · · + unγn with u1, . . . ,un in Z.

Proof Let ω1, . . . ,ωn be an integral basis for K . If α ∈ a and α � 0 then
αω1, . . . , αωn is an a-basis for K over Q, that is, a basis for K as a vector
space over Q with elements in a. The theorem follows on arguing as in Sec-
tion 10.7; indeed we can take for γ1, . . . , γn any set of elements of a such that
|�(γ1, . . . , γn)| assumes its smallest value.

Note that, if γ1, . . . , γn is a basis for a, then a = [γ1, . . . , γn] and so we
have exhibited a set of generators for the ideal in accordance with the assertion
above.

We define the product ab of ideals a and b as the ideal consisting of all ele-
ments a1b1 +· · ·+a j b j with the a in a and the b in b. Hence if a= [α1, . . . , αl ]
and b= [β1, . . . , βm] then ab= [α1β1, . . . , αlβm], that is, the ideal with genera-
tors αrβs (1≤r ≤ l, 1≤ s ≤m). Plainly multiplication of ideals is commutative
(ab= ba) and associative ((ab)c= a(bc)). As for integers, we say that a divides
b (written a|b) if b= ac for some ideal c. We write am = a . . . a (m factors) and
a0 = e= [1], that is, the ideal OK .

11.3 Principal ideals

An ideal a in K is called principal if a= [α] for some α ∈OK . The mapping
α→ [α] is the embedding of OK into the ideals referred to earlier.

The following result shows that every ideal a has an inverse in terms of
‘fractional ideals’; though we indicate the meaning of the concept here we
shall not need it in a formal sense until Section 11.7 and we give the precise
definition there.

Theorem 11.2 For every ideal a there is an ideal b such that ab is principal.
In fact there exists b such that ab= [c] with c ∈Z. Thus if b= [β0, . . . , βm] we
have aa−1 = e where a−1 is the fractional ideal [β0/c, . . . , βm/c].

Proof Let a= [α0, . . . , αl ] and define

f (x)=α0 +α1x + · · ·+αl x
l .
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Further, define F(x) as the ‘norm’ of f (x), that is,

F(x)=
n∏

j=1

(
σ j (α0)+ · · ·+ σ j (αl)x

l
)
.

Then, by symmetry, we have F(x) ∈ Z[x], whence F(x)= f (x)g(x) where
g(x)∈OK [x], since certainly g(x)∈O[x]. We write

g(x)=β0 +β1x + · · ·+βm xm

and define b = [β0, . . . , βm]. Then ab = [c] where c is the highest common
factor of the coefficients of F . Indeed c is a linear combination of the latter
coefficients over Z and these are themselves linear combinations over Z of the
elements αrβs (0 ≤ r ≤ l, 0 ≤ s ≤ m), whence [c] ⊂ ab. Conversely, we have
ab⊂ [c], that is, c−1αrβs ∈OK for all r, s; for we can write αrβs = αlβmγrs ,
where γrs is a product of elementary symmetric functions in the zeros of f, g,
and these zeros are precisely those of c−1 F. Now c−1αlβm is the leading co-
efficient in c−1 F and hence, from Section 10.6, we obtain (c−1αlβm)γrs ∈O.
This gives c−1αrβs ∈OK and thus ab= [c], as required.

Corollary 11.1 (Cancellation) The equation ac= bc implies that a= b.

Proof Either multiply both sides by c−1 (fractional ideal) or observe that there
exists an ideal d such that cd= [c], whence a[c] = b[c] and the desired conclu-
sion a= b follows on taking generators.

Corollary 11.2 (Division criterion) We have a|b if and only if b⊂ a.

Proof Plainly, a|b implies that b= ac for some c, whence b⊂ a. Conversely,
if b⊂ a, we can find a′ such that aa′ = [c], whence ba′ ⊂ [c]. By considering
generators, we see that this gives [c] divides ba′, that is, aa′|ba′, and so, by
cancellation, we have a|b. (Alternatively, from b⊂ a, we obtain ba−1 ⊂ e, that
is, ba−1 = c and so b= ac.)

11.4 Prime ideals

An ideal p � e is said to be prime if it is divisible only by itself and e. Our
object here is to establish the unique factorization of any ideal as a product of
prime ideals, that is, to demonstrate the analogue of the fundamental theorem
of arithmetic.
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Lemma 11.1 (Generalized division algorithm) Suppose α ∈OK and c ∈ Z,
c � 0. Then α = cβ + γ with β,γ ∈OK and with γ in a finite set depending
only on c and having cn elements where n is the degree of K .

Proof The result follows on writing α = u1ω1 + · · · + unωn in terms of an
integral basis for K . By the division algorithm u j = cv j +w j with v j ,w j ∈Z
and 0≤w j <c (1≤ j ≤n); the lemma follows on taking β=v1ω1 +· · ·+vnωn

and γ =w1ω1 + · · ·+wnωn .

Lemma 11.2 (Finiteness property) Every ideal a has only finitely many
divisors.

Proof We have ac= [c] for some c ∈ Z. Hence every divisor a′ of a divides
[c]. But, by the division criterion, we obtain c ∈ a′ and so, by the generalized
division algorithm, we see that a′ = [α1, . . . , αm] = [γ1, . . . , γm, c] with only
cmn possibilities for γ1, . . . , γm . The lemma follows.

We now define the sum of ideals a and b as the ideal a+ b consisting of all
elements a +b with a in a and b in b. Then if a= [α1, . . . , αl ], b= [β1, . . . , βm]
we have a + b = [α1, . . . , αl , β1, . . . , βm]. Moreover, by the division crite-
rion, we see that a+ b is the highest common factor of a and b in the usual
sense. We can now argue as in the proof of the fundamental theorem of arith-
metic (see Section 1.5); if p is a prime ideal and p|ab then p|a or p|b (for if p � a
then a+ p= e, whence ab+ pb= b and so p|b) and the unique factorization for
ideals follows.

11.5 Norm of an ideal

An element α ∈OK is said to be divisible by an ideal a if a divides [α], that is,
if α ∈ a. If α,β ∈OK and a divides α− β we write α≡ β (mod a). This is an
equivalence relation and the equivalence classes form a ring OK /a on defining,
in the obvious way, the product of classes with elements α and α′, say, as the
class containing αα′; it is called the residue class ring or quotient ring of OK

by a. Further, the number of equivalence classes (mod a), that is, elements of
the quotient ring, is finite; for we have ab= [c] for some ideal b and with c ∈Z
(see Section 11.3) and, by the generalized division algorithm, there are only
finitely many classes (mod [c]); note here that if α≡β (mod [c]) then certainly
α≡ β (mod a). The number of classes (mod a) is called the norm Na of a. We
establish the following.
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Theorem 11.3 (Multiplicative property) We have NaNb= N (ab).

Proof On writing b as a product of prime ideals, we see that it suffices to prove
that NaNp= N (ap) for a prime ideal p. Since ap � a, there exists an α in a and
not in ap. We show that σ +αρ runs through all representatives of equivalence
classes (mod ap) as σ,ρ run through the representatives (mod a) and (mod p)
respectively; the result follows.

Now the σ + αρ represent all classes (mod ap). For if γ ∈ OK then γ ≡
σ (mod a) for some σ ; we have a= [α] + ap (that is, a is the highest common
factor of [α] and ap), whence γ − σ ≡ αβ (mod ap) for some β ∈OK and so
γ ≡σ +αρ (mod ap)where β≡ρ (modp). Further, the σ +αρ are incongruent
(mod ap), for if

σ +αρ≡ σ ′ +αρ′ (mod ap)

then, since a divides [α], we obtain σ ≡ σ ′ (mod a), whence σ = σ ′; but then
ap divides [α][ρ− ρ′] and, since [α] = ac where p � c, this gives ρ= ρ′. Hence
NaNp= N (ap) as required.

11.6 Formula for the norm

If γ1, . . . , γn is a basis for a and ω1, . . . ,ωn is an integral basis for K then we
have

Na= (�(γ1, . . . , γn)/�(ω1, . . . ,ωn))
1/2.

Thus Na= (�/d)1/2, where�=�(γ1, . . . , γn) and d denotes the discriminant
of K .

To establish the formula we need first to show that we can construct a basis
of triangular form for a. We have the following result.

Lemma 11.3 There exists a basis γ1, . . . , γn for a of the form

γ1 = a11ω1

γ2 = a21ω1 + a22ω2

...

γn = an1ω1 + an2ω2 + · · ·+ annωn,

where the ai j are rational integers and a j j > 0.

Proof To begin with we note that there is an element v1ω1 + · · · + vnωn in
a with vn � 0; for certainly a contains n linearly independent elements over
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Q. We take for γn such an element with vn > 0 and minimal. Let now α =
u1ω1 + · · · + unωn be any element of a. On writing un = qvn + r , 0 ≤ r <vn ,
and noting that α − qγn ∈ a, we see that vn divides un (that is, r = 0) and
we have α= u′

1ω1 + · · · + u′
n−1ωn−1 + qγn for some u′

1, . . . ,u
′
n−1 ∈ Z. Since

u′
n−1 � 0 for some α (see earlier), we can now argue successively and replace
ωn−1, . . . ,ω1 by elements γn−1, . . . , γ1 in a of the form indicated above with
a j j > 0 and minimal.

Proof of the norm formula We recall that �(γ1, . . . , γn) is the same for all
bases of a; we shall establish the result for a particular basis γ1, . . . , γn of the
above form with a j j minimal. Now if u1ω1 + · · · + u jω j ∈ a we see that a j j

divides u j . Hence the numbers u1ω1 + · · · + unωn with u j ∈ Z and 0 ≤ u j <

a j j (1≤ j ≤n) are incongruent (mod a). Further, they represent all congruence
classes; for, taking α= v1ω1 + · · · + vnωn in OK , we have vn = annq + r, 0 ≤
r < ann , whence

α≡α− qγn = v′
1ω1 + · · ·+ v′

n−1ωn−1 + rωn (mod a)

with v′
1, . . . , v

′
n−1 in Z and we can now replace the coefficients of ωn−1, . . . ,ω1

similarly. Hence we have Na = a11 . . .ann . But, by (∗) of Section 10.7, we
obtain

�(γ1, . . . , γn)= (a11 . . .ann)
2�(ω1, . . . ,ωn)

and the desired formula for Na follows.

Corollary 11.3 For any α � 0 in OK we have N [α] = |NK/Q(α)|.

Proof An integral basis for [α] is given by γ j =αω j (1 ≤ j ≤ n). We have

det(σi (αω j ))= σ1(α) . . . σn(α)det(σi (ω j ))

and the formula for N [α] gives the result.

Definition 11.1 We say that an ideal a divides a rational integer b if a divides
[b], that is, if b ∈ a, and we write a|b (cf. the division criterion of Section 11.5).

Lemma 11.4 For every ideal a we have a divides Na.

Proof Let θ1, . . . , θN be a set of representatives of the congruence classes (mod
a) so that N = Na. Then θ1 + 1, . . . , θN + 1 is another set and thus

(θ1 + 1)+ · · · + (θN + 1)≡ θ1 + · · ·+ θN (mod a),

that is, N ≡ 0 (mod a), whence a|Na.
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Corollary 11.4 For every prime ideal p there is a unique rational prime p
such that p|p; the prime ideal p is said to lie above p.

Proof We have p|Np. Let now p be the least positive integer such that p|p.
Then p is a prime since obviously p = mn implies p|m or p|n. Further, p is
unique, for if p|p′ then p′ = pq + r , where 0 ≤ r < p, and this gives p|r so that
r = 0; hence, if p′ is prime, we have q = 1 and p = p′.

We now give some further definitions. By Corollary 11.3 we have N [p]= pn

and so, by Corollary 11.4, we see that Np= p f for some positive integer f .
This is defined as the degree of p. The exponent e to which p divides p, that is,
pe|p but pe+1 � p, is called the ramification index of p. If e = n then the prime
ideal p is said to be totally ramified and if e = 1 then it is said to be unramified.

Theorem 11.4 If p is a prime and p = pe1
1 . . .p

er
r as a product of prime ideals

(that is, e j is the ramification index of p j ) and if f j is the degree of p j then

e1 f1 + · · ·+ er fr = n.

Proof Obvious on taking norms.

The theorem implies in particular that a rational prime can have at most n
prime ideal divisors. We remark further that when K is a normal or Galois field,
that is, when K contains all its conjugate fields or, equivalently, any conjugate
field is identical to K , we have e1 = · · · = er = e and f1 = · · · = fr = f so that
n = e f r . In fact in this case the Galois group of K permutes the prime ideals
that lie over p.

11.7 The different

Let K be an algebraic number field. By a fractional ideal in K we mean an ideal
in K as defined in Section 11.2 but with generators α1, . . . , αm in K rather than
in OK . Since, by Section 10.6, there is an integer c� 0 such that cα1, . . . , cαm

are in OK , we may alternatively give the definition in terms of generators of
the form β1/c, . . . , βm/c with β1, . . . , βm in OK , and this is the approach often
adopted in the literature. The product of fractional ideals is defined as for ideals
in Section 11.2 and we see from Theorem 11.2 that for any fractional ideals
a and b there is a unique fractional ideal c such that a= bc; we write c= a/b.
Furthermore every fractional ideal has an integral basis in the obvious sense.

Now let ω1, . . . ,ωn be an integral basis for K and let � be the non-singular
matrix S indicated in Section 10.7 with ω1, . . . ,ωn in place of θ1, . . . , θn , that



118 Ideals

is, �= (σ j (ωi )); we shall assume that σ1 is the identity so that the basis is
given by the first column of �. We define the dual basis ω∗

1, . . . ,ω
∗
n as the

elements of the first row of the matrix �−1 and we note that they lie in K .
For we have �−1 =�′(��′)−1 and, since ��′ = (TK/Q(ωiω j )) is a matrix of
rational integers, it follows that (��′)−1 is a matrix of rationals. Further, since
again �−1 =�′(��′)−1, we have �−1 = (σi (ω

∗
j )), whence, from the fact that

��−1 is the unit matrix of order n, we obtain

TK/Q(ωiω
∗
j )= δi j (1 ≤ i, j ≤ n),

where δi j denotes the Kronecker delta, that is, δi j = 1 if i = j and δi j = 0
otherwise.

We now define the co-different of K as the the set of γ in K such that
TK/Q(γ α) is a rational integer for all α in OK . Then the co-different is a frac-
tional ideal and it has an integral basis ω∗

1, . . . ,ω
∗
n . For if

γ = u1ω
∗
1 + · · ·+ unω

∗
n

with rational integers u1, . . . ,un then TK/Q(γω j )=u j for all j , whence γ lies
in the co-different; conversely, if γ is in the latter, then, since the dual basis
is certainly a basis for K over Q, there exist rationals u1, . . . ,un as above and
from TK/Q(γω j )= u j again we see that u1, . . . ,un are integers.

The different D of K is defined as the reciprocal of the co-different. It is
in fact an ideal in K , not just a fractional ideal, for clearly γ = 1 is in the
co-different, that is, it is an element of the fractional ideal D−1, and thus D
is contained in DD−1 = OK . Now let d denote the discriminant of K ; we
establish the following result for the norm of the different.

Theorem 11.5 We have N (D)= |d|.

Proof By definition, the discriminant d of K is given by

d =�(ω1, . . . ,ωn)= (det�)2

and thus (det�−1)2 = 1/d. Further, we have

(det�−1)2 =�(ω∗
1, . . . ,ω

∗
n),

whence it suffices to show that the latter is d/(N (D))2. Now there is a positive
integer c such that cD−1 is an ideal in K and from the formula for the norm in
Section 11.5 we obtain

c2n�(ω∗
1, . . . ,ω

∗
n)=�(cω∗

1, . . . , cω
∗
n)= d(N (cD−1))2.

But (cD−1)D= [c] and so N (cD−1)N (D)= cn . This gives the result.
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We now establish the following fundamental property of the different.

Theorem 11.6 Let p be a prime ideal in K with ramification index e. Then
pe−1 divides D.

Proof Suppose that p lies above p. It will suffice to take β as any element
of p/pe−1 and to show that TK/Q(β) is divisible by p. For then β ∈ pD−1,
whence (p/pe−1)D is contained in pD−1D = [p]; thus p divides (p/pe−1)D
and this gives the desired assertion. Now p divides βr for all integers r ≥ e
since p/pe−1 divides β and so pr (p/pe) divides βr . Further, from the familiar
property that p divides all the relevant binomial coefficients, we obtain, by
induction on j ,

(TK/Q(β))
p j ≡ TK/Q(β

p j
) (mod p).

Thus, for p j ≥e, it follows that p divides TK/Q(β) and the theorem is proved.

As a corollary we see that if a prime p ramifies in K , that is, if in the prime
ideal decomposition of p at least one of the ramification indices exceeds 1,
then p divides d; for from p|D for some p we get N (p)|d and the assertion
follows since Np= p f . The corollary is in fact a celebrated result of Dedekind
and it implies in particular that, for any number field K , there are only finitely
many ramified primes.

Finally we study the particular case when the field K =Q(α) has an integral
basis 1, α, ..., αn−1. Let f (x) be the minimum polynomial for α. Then f (x)=
(x −α)g(x), where

g(x)=β0 +β1x + · · ·+βn−1xn−1

is in OK [x]; for certainly f (x)/(x −α) is in K [x] and it is also in O[x] since
it is a product of factors (x − σi (α))(1 ≤ i ≤ n) with (x −α) omitted. Now the
dual basis to 1, α, ..., αn−1 is given by

β0/ f ′(α),β1/ f ′(α), . . . , βn−1/ f ′(α).

For on taking gi (x)= f (x)/(x − σi (α)), we obtain gi (σ j (α))= 0 if σ j � σi

and gi (σ j (α))= σi ( f ′(α)) otherwise; hence if �= ((σ j (α))
i−1) then �−1 =

(σi (β j−1/ f ′(α))) and the dual basis is the row of �−1 corresponding to the
identity monomorphism.

The dual basis is an integral basis of the co-different D−1. Further, f ′(α)D−1,
that is, the module generated over Z by β0, β1, . . . , βn−1, is just Z(α)=OK .
For since f (x) is monic we have βn−1 = 1 and so certainly Z⊂ f ′(α)D−1.
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Since furthermore f (x)= (x − α)g(x) has integer coefficients which are ex-
pressible as βn−1, βn−2 −αβn−1, . . . ,−αβ0, it follows inductively, taking j =
n − 1,n − 2, . . . ,0, that β j is a monic polynomial in α with integer coeffi-
cients and degree n − j − 1. Clearly then each α j is in f ′(α)D−1 whence
Z(α)⊂ f ′(α)D−1 and each β j is in Z(α) whence f ′(α)D−1 ⊂ Z(α). Hence
we have D−1 =OK / f ′(α) and this gives D= [ f ′(α)].

11.8 Further reading

The theory here is entirely classical. It is covered in every substantial text
on number fields including all the relevant books referred to earlier in Sec-
tions 7.7 and 10.9. To these may be added Neukirch’s Algebraic Number The-
ory (Springer, 1999), which is an especially authoritative work on the
subject.

The result of Dedekind referred to in Section 11.7 was also proved by him
in the converse sense, that is, he showed that if p divides d then p ramifies; a
demonstration is given in the book by Marcus mentioned in Section 10.9.

11.9 Exercises

(i) Show that, in the field Q(
√
(−6)), the ideal [2] factorizes as [2,

√
(−6)]2

as a product of prime ideals. Factorize the ideal [6] similarly.
(ii) Find single generators for the ideals [2613,2171] in Z and [51−5i,43+

7i] in the Gaussian field Q(i).
(iii) Show that the natural definition of the lowest common multiple of ideals

a and b is the ideal a∩ b.
(iv) Show that, if m and n are the exponents to which a prime ideal p divides
a and b respectively in their canonical prime decompositions, then the
exponent to which p divides a ∩ b is max(m,n). Show further that the
exponent to which p divides a+ b is min(m,n) and establish the relation
(a∩ b)(a+ b)= ab.

(v) Verify that the different of the quadratic field Q(
√

d), with d a square-
free integer, is [2

√
d] when d ≡ 2 or 3 (mod 4) and [

√
d] when d ≡

1 (mod 4).
(vi) What are the differents of the fields Q(

4√
2) and Q(α) where α is a zero

of the polynomial x3 − x − 1?
(vii) Let K =Q(α) where α= 3√d with d � 1 a square-free integer satisfying

d ≡ 1 (mod 9). By Section 10.10 Exercise (ix), an integral basis for K is
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1, α,β with β= 1
3 (1 +α+α2). Prove that the dual basis is (α/3d)(α2 −

1, α − 1,3). Verify that the co-different of K is (α/3d)[3, α − 1] and
hence, by the construction of Theorem 11.2, show that the different is
α2[3, α− 1, β].

(viii) Prove that if f is the sum of the degrees of the prime ideals that lie
above a prime p then pn− f , where n is the degree of the field, divides
the discriminant.
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Units and ideal classes

12.1 Units

An algebraic integer ε is said to be a unit if 1/ε is an algebraic integer. This
is equivalent to the condition Nε= ±1. Indeed the conjugates of an algebraic
integer are again algebraic integers, whence, if ε is a unit, then Nε and 1/Nε
are rational integers and so ±1. Conversely if Nε = ±1 then 1/ε = ±Nε/ε
which is clearly an algebraic integer. The set of all units form a group U under
multiplication and the set of units in a number field K form a subgroup UK .
Further, we see that if [α], [β] are principal ideals in K then we have [α] = [β]
if and only if α/β ∈ UK . In general, we say that non-zero algebraic numbers
α,β are associated if α/β ∈U .

The units inQ are plainly ±1 whence they are all the roots of unity inQ, that
is, the solutions of an equation xl = 1 for some positive integer l.† The units
of the quadratic field K =Q(√d), where d � 1 is a square-free integer, were
discussed in Section 7.3. It was shown there that for the imaginary quadratic
field K with d< 0 the units are again all the roots of unity in the field; they are
given by the zeros of x2 −1 for D<−4, of x4 −1 for D =−4 and of x6 −1 for
D =−3 where D denotes the discriminant of the field, that is, D = 4d for d ≡
2,3 (mod 4) and D =d for d ≡1 (mod 4). Further, it was shown that for the real
quadratic field K with d> 0 there are infinitely many units given by ±εm with
m = 0,±1,±2, . . . for some unit ε. As mentioned in Section 7.3, these results

† An lth root of unity in any particular field is defined as a solution of an equation as here and it
is said to be primitive if it does not satisfy another equation of the kind with smaller l.

122
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are special cases of a famous theorem of Dirichlet on units in an arbitrary
number field and we proceed now to give a detailed account of this theorem.

12.2 Dirichlet’s unit theorem

We begin by recalling Minkowski’s theorem in the geometry of numbers dis-
cussed in Section 6.7; as we shall see it plays an important role in the theory of
algebraic number fields. Let S be a convex body symmetrical about the origin
and let� be the lattice with determinant d(�) as in Section 6.7; see Fig. 12.1.

Theorem 12.1 (Minkowski) If S has volume V satisfying V > 2nd(�) then S
contains a point of � other than the origin.

Proof A proof of the theorem was given in Section 6.7 in the case when � is
the integer lattice and it carries over easily to the general lattice. The result of
Blichfeldt now states that if R is a bounded set with volume V > d(�) then
there exist x, y in R such that x�y and x−y∈�; Minkowski’s theorem follows
by taking R= 1

2S as before. For the proof of Blichfeldt’s result we define Ru

as the intersection of R with the cell of � with vertex u = (u1, . . . ,un), that
is, the points x with xi =∑ai jv j and u j ≤ v j < u j + 1. Thus if R′

u is the

Fig. 12.1 Intersections of diagonal lines give points of �; the circular disc is an
example of S.
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translation of Ru to the unit cell, that is, the cell given by u = 0, and if Vu is
the volume of Ru then we have

∑
Vu = V > d(�). Hence at least two of the

R′
u, say R′

v,R′
w, must overlap and there exist points v′,w′ in Rv, Rw such that

v′ − w′ ∈�. The result follows.

As observed in Section 6.7, one of the main applications of Minkowski’s
theorem is his linear forms theorem and, as shown there, a slightly refined
version can be given as follows.

Theorem 12.2 (Minkowski’s linear forms theorem) Let

Li = Li (y1, . . . , yn)=
n∑

j=1

ai j y j (1 ≤ i ≤ n)

be real linear forms with�=det(ai j )�0. Suppose that λ1>0, . . . , λn>0 and
that λ1 · · ·λn = |�|. Then there exist integers y1, . . . , yn, not all 0, such that

|L1| ≤ λ1 and |Li |<λi (2 ≤ i ≤ n).

Now let K =Q(α) be any algebraic number field. We shall suppose that K
has precisely s real conjugate fields and 2t complex conjugate fields so that
n = s + 2t ; thus it is assumed that s of the conjugates of α are real and 2t are
complex in conjugate pairs. This differs from the notation in the classic texts
which have r1 and r2 in place of s and t but we prefer to use the latter since the
formulae in which they occur are typographically simpler.

Theorem 12.3 (Dirichlet) The group UK of units of K is finitely generated
with r = s + t − 1 generators of infinite order and one of finite order. In other
words, there exist r = s + t − 1 fundamental units ε1, . . . , εr in K such that
every unit ε in K can be expressed uniquely in the form ε= ρε

j1
1 · · · ε jr

r with
j1, . . . , jr rational integers and ρ a root of unity in K .

Proof Let ω1, . . . ,ωn be an integral basis for K , let d be the discriminant of
K and let σ1, . . . , σn be the monomorphisms defined in Section 10.3. Suppose
that λ1 > 0, . . . , λr > 0 and define λr+1 so that λ1 · · ·λn = √|d| where, for
t � 0, we put λs+t+ j = λs+ j (1 ≤ j ≤ t). Then by Minkowski’s linear forms
theorem there exist integers y1, . . . , yn , not all 0, such that θ = y1ω1 + · · · +
ynωn satisfies |σ j (θ)| ≤ λ j (1 ≤ j ≤ s) and

|Reσ j (θ)| ≤ λ j/
√

2, |Imσ j (θ)| ≤ λ j/
√

2 (s + 1 ≤ j ≤ s + t).

These give |σ j (θ)|≤λ j (1 ≤ j ≤ n), whence |Nθ |≤√|d| where N denotes the
field norm of K , that is, N = NK/Q. Now since |Nθ | ≥ 1 we have

|σ j (θ)| ≥ λ j/(λ1 . . . λn)= λ j/
√|d|
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and thus

λ j/
√|d| ≤ |σ j (θ)| ≤ λ j (1 ≤ j ≤ n).

We proceed to construct a multiplicatively independent set of units η1, . . . , ηr

in K , that is, a set of units such that if η j1
1 · · ·η jr

r = 1 with integers j1, . . . , jr
then j1 = · · · = jr = 0. Accordingly, for k = 1,2, . . . , r and l = 1,2, . . . , let θkl

denote the θ as above corresponding to λ j = 1 (1 ≤ j ≤ r, j � k) and λk =μl

for some μ> 1. Since all the θkl have bounded norm, there exist l ′, l ′′(l ′> l ′′)
such that θ ′ = θkl ′ , θ

′′ = θkl ′′ satisfy |Nθ ′| = |Nθ ′′| = N , say, and the corre-
sponding integers y′

j , y′′
j satisfy y′

j ≡ y′′
j (mod N ) for 1 ≤ j ≤ n. We now define

ηk = θ ′/θ ′′. Then Nηk = ±1 and since (θ ′ − θ ′′)/N and N/θ ′′ ∈OK we have
ηk − 1 ∈ OK . Hence ηk ∈ UK . Further, since l ′ > l ′′, we see that |σk(ηk)|>
μ/

√|d|. Thus, on observing that |σi (η j )|≤√|d| when 1≤ i, j ≤r and i � j , we
obtain a lower bound for det(log |σi (η j )|) that is asymptotic to (log(μ/

√|d|))r
as μ→ ∞. In particular the determinant is not 0 for μ sufficiently large and
this implies that the units η1, . . . , ηr are multiplicatively independent.

Now as in the proof of Corollary 12.1 below we see that every unit ε in
K can be written as ε= ξη

u1
1 · · ·ηur

r with ξ belonging to a finite set and with
u1, . . . ,ur integers. By considering ε, ε2, . . . we obtain the same ξ for some
distinct powers, whence εm = ηm1

1 · · ·ηmr
r for some integer m independent of ε

and some integers m1, . . . ,mr . Then by the argument of Section 11.6 we can
find generators εm

1 , . . . , ε
m
r for the set of εm of the form

εm
j = ηm j1

1 · · ·ηm j j
j ,

where the m jk are integers with m j j > 0 and minimal, and we have εm =
(εm

1 )
j1 · · · (εm

r )
jr for some integers j1, . . . , jr . This gives ε = ρε

j1
1 · · · ε jr

r for
some root of unity ρ as required.

The roots of unity ρ in K form a finite cyclic group. For the minimum poly-
nomial for ρ has degree at most n, the degree of K , and the coefficients are
bounded in terms of n since the leading coefficient is 1, the remainder are ex-
pressible, apart from sign, as elementary symmetric functions of σi (ρ) (1≤ i ≤
n) and these have modulus 1; hence there are only finitely many ρ. Each of the
latter satisfies an equation of the form xl = 1 for some integer l, and if we take
q as the product of all the l then the roots of unity in K form a subgroup of
the cyclic group generated by a primitive qth root of unity and the assertion
follows.

Arising from Dirichlet’s unit theorem we have the important concept of the
regulator of a number field.

Definition 12.1 The quantity det(log |σi (ε j )|), where 1 ≤ i, j ≤ r , is the same
for all sets of fundamental units ε1, . . . , εr and it is called the regulator of K .
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For the rationals and also for an imaginary quadratic field the regulator is
understood to be 1. For a real quadratic field, it is, by definition, log ε where ε
is the fundamental unit in the field exceeding 1.

The following application of Theorem 12.3 is needed in Section 17.5 and
it is in fact often invoked, implicitly or explicitly, in the study of Diophantine
equations.

Corollary 12.1 There are only finitely many non-associated algebraic inte-
gers α in a number field K with |NK/Q(α)| bounded.

Proof First we observe that every point (x1, . . . , xr ) in Euclidean r -space lies
within a distance rc, in the sense of the maximum norm, of a point of the lattice
with basis

(log |(σ1ε j )|, . . . , log |(σrε j )|) (1 ≤ j ≤ r),

where c = max | log |σi (ε j )||. For, since the regulator of K is non-zero, there
exist v1, . . . , vr satisfying

xi =
r∑

j=1

v j log |σi (ε j )| (1 ≤ i ≤ r)

and the desired lattice point is obtained on taking u j = [v j ] (1 ≤ j ≤ r). Now
putting xi = log |σi (α)| and defining ε= ε

u1
1 · · · εur

r we see that β = α/ε is an
associate of α with | log |σi (β)|| ≤ rc (1 ≤ i ≤ r). Since r = s + t − 1 the latter
in fact holds for all i with 1 ≤ i ≤ n except possibly for i = s + t and i = s + 2t .
But if |NK/Q(α)| ≤ C then also |NK/Q(β)| ≤ C , whence

n∑
i=1

log |σi (β)| ≤ log C.

This implies that | log |σi (β)||≤nrc + log C for all i . Thus the field polynomial
for β has bounded coefficients and the result follows.

12.3 Ideal classes

Let K be an algebraic number field with discriminant d. We say that two ideals
a, b in K are equivalent (written a∼ b) if [θ ]a= [φ]b for some principal ideals
[θ ], [φ]. This is an equivalence relation. Further, the equivalence classes form
a group on taking the product AB of classes A and B as the class containing
ab where a, b are any ideals in A,B respectively; the inverse A−1 exists by
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Theorem 11.2. The group is called the ideal class group of K and we proceed
to prove that it is finite. We shall need the following lemma.

Lemma 12.1 In every ideal a there is an element θ �0 such that |NK/Q(θ)|≤
Na

√|d|.

Proof Let K = Q(α) and suppose first that K is totally real, that is, all the
σ j (α) (1 ≤ j ≤ n) are real or, equivalently, all the conjugate fields of K are
real. Let γ1, . . . , γn be a basis for a and let λ1, . . . , λn be positive numbers
satisfying λ1 . . . λn = √|�|, where �=�(γ1, . . . , γn). Then by Minkowski’s
linear forms theorem there exist integers y1, . . . , yn , not all 0, such that the
element θ = y1γ1 + · · · + ynγn in a satisfies |σ j (θ)| � λ j (1 ≤ j ≤ n). This
gives |NK/Q(θ)|≤λ1 . . . λn and the lemma follows from the formula for Na in
Section 11.6.

The general result is obtained similarly. We assume, as in Section 12.2, that
σ j (α), with 1 ≤ j ≤ s, is real and σs+ j (α), with 1 ≤ j ≤ t , is the complex
conjugate of σs+ j+t (α) so that n = s + 2t . We now take λ1, . . . , λn as before
satisfying λs+ j =λs+ j+t (1≤ j ≤ t). Then there are integers y1, . . . , yn , not all
0, such that |σ j (θ)| ≤ λ j (1 ≤ j ≤ s) and

|Reσ j (θ)| ≤ λ j/
√

2, |Imσ j (θ)| ≤ λ j/
√

2 (s + 1 ≤ j ≤ s + t);

for the system of linear forms indicated here has determinant 2−t√|�|. This
gives |NK/Q(θ)| ≤ λ1 . . . λn and the lemma follows.

Theorem 12.4 The ideal class group is finite. Thus if h denotes the order
of the group, that is, the class number of K , then ah is principal for every
ideal a. In particular if h = 1 then every ideal is principal and K has unique
factorization.

Proof We shall show that for every ideal a in K there is an ideal b such that
a∼ b and Nb≤ √|d|. This will establish the theorem since, by Lemma 11.4,
there are only finitely many possible b. Now, by Theorem 11.2, there is an ideal
c such that ac is principal, say [φ]. Further, by Lemma 12.1, there is an element
θ � 0 in c with |NK/Q(θ)|≤ N c

√|d|. But then c divides [θ ], that is, [θ ] = bc for
some ideal b, and we see that Nb�

√|d|. On noting that a(bc)= b(ac) and that
bc= [θ ], ac= [φ] we get a∼ b as required.
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12.4 Minkowski’s constant

We have seen that in every ideal class of K there is an ideal b such that Nb≤
c
√|d| with c = 1. The value of c can be improved to c = (4/π)t n!/nn and

this is called the Minkowski constant. In particular, we have c = 2/π for an
imaginary quadratic field.

To obtain the Minkowski constant we apply Minkowski’s theorem with the
lattice� given by the system σ j (θ), Reσ j (θ) and Imσ j (θ) as in Sections 12.2
and 12.3. Let S be the convex body defined by

s∑
j=1

|x j | + 2
t∑

j=1

√
(x2

s+ j + x2
s+ j+t )� ρ.

Then d(�)= 2−t√|�| and the volume V of S is 2s( 1
2π)

tρn/n!. Further, by
the inequality of the arithmetic and geometric means, that is,

(ψ1 . . .ψn)
1/n ≤ (ψ1 + · · ·+ψn)/n,

we have, for x in S,

s∏
j=1

|x j |
t∏

j=1

(x2
s+ j + x2

s+ j+t )≤ (ρ/n)n .

Now taking ρ so that ρn >(4/π)t n! Na
√|d|, whence V > 2nd(�), we obtain,

for any ε>0, an element θε in a with |NK/Q(θε)| < (c + ε)Na√|d|, where c is
the Minkowski constant. A compactness argument as used in Section 6.7 and
alluded to again in Section 12.2 then completes the proof.

The Minkowski constant is important since it facilitates the determination
of the ideal class group of K in specific instances. The typical application uses
the fact that the group is generated by the classes that contain the prime ideals
which lie over the rational primes p ≤ c

√|d| and plainly a smaller value of c
means that potentially fewer p need to be examined. Consider as an example
the quadratic field K =Q(√(−5)). Here t = 1, d = −20 and so every ideal in
K is equivalent to an ideal with norm at most (2/π)

√
20 < 3. Now we have

2 = [2,1 +√
(−5)]2

as a product of prime ideals; this follows from the general theory of the next
section but it may be verified directly by noting that the expression on the right
is [4,2

√
(−5)+ 2,2

√
(−5)− 4] and this is both divisible by 2 and contains

2. Further, we see that [2,1 + √
(−5)] has norm 2 and it is not principal, for

we cannot have N (u + v√(−5))= 2, that is, u2 + 5v2 = 2, for integers u, v. It
follows that every ideal in K is either principal or equivalent to [2,1+√

(−5)].
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This gives h = 2 whence we can say that the ideal class group of K is cyclic of
order 2. We shall give more examples of this kind in Section 12.8.

12.5 Dedekind’s theorem

Let K be an algebraic number field and let OK be the ring of integers of K .
We suppose that OK has a power integral basis, that is, OK = Z(α) for some
α ∈OK . We denote by g the minimum polynomial for α.

Now let p be any rational prime. We signify by g the reduction of g (mod p),
that is, the polynomial obtained by replacing each coefficient of g by its residue
(mod p); we say that g is defined over Z=Fp . Then the following holds.

Theorem 12.5 (Dedekind) If g = pe1
1 · · · per

r as a product of irreducible monic
polynomials p1, . . . , pr defined over Z then we have p = pe1

1 · · ·per
r as a prod-

uct of prime ideals p1, . . . ,pr , and here p j = [p, p j (α)].

Proof The ideal p= p j = [p, p j (α)] is the kernel of the mapping Z(α)→ R
where R = Z(α j ) and α j is any zero of p. For clearly p is contained in the
kernel and if, conversely, we have q(x) ∈ Z[x] and q(α j )= 0, with q defined
like g above, then, since p j is irreducible, it follows that p j divides q , whence
q(α)∈ [p j (α)] and q(α)∈ p. Hence p is a prime ideal. This is classic algebra;
in fact R is a ring isomorphic to OK /p and it has no zero divisors, that is, it
is an integral domain. Thus if p= ab and if a(α)∈ a, b(α)∈ b then a(α j )= 0
or b(α j )= 0 and so a(α) or b(α) ∈ p; this implies that if p does not divide a,
so that there exists a(α)∈ a not in p, then b(α)∈ p for all b(α)∈ b, whence p
divides b.

Now we have p
e j
j ⊂ [p, (p j (α))

e j ] and hence pe1
1 · · ·per

r ⊂ [p, g(α)]. Further,

since g(α)= 0 we see that [p, g(α)] = [p]. Furthermore we have Np j = p f j

where f j is the degree of p j ; for the elements a0 + a1α + · · · + a f −1α
f −1

with f = f j and 0� ai < p (0 ≤ i < f ) give a complete set of representatives
(modp j ). Now g is monic and so the degree of g is the degree of K , say n. This
gives e1 f1 + · · ·+ er fr = n and N [p] = pn whence p = pe1

1 . . .p
er
r as asserted.

We shall apply Dedekind’s theorem to the quadratic field K =Q(√d) where
d�1 is a square-free integer. We recall that OK =Z(√d)when d ≡2,3 (mod 4)
and OK =Z(( 1

2 (1 + √
d)) when d ≡ 1 (mod 4) and so the quadratic field has a

power integral basis as in the hypothesis of the theorem.
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The minimum polynomial of
√

d is g(x)= x2 −d and, when d ≡2,3 (mod 4),
Dedekind’s theorem gives the following three possibilities, where p and p′ de-
note prime ideals.

(i) g(x) reduces (mod p) into distinct linear factors. Then p = pp′ (p � p′)
and Np= Np′ = p.

(ii) g(x) reduces (mod p) to a square. Then p = p2 and Np= p.
(iii) g(x) is irreducible (mod p). Then p = p and Np= p2.

Now suppose that d ≡ 1 (mod 4). The minimum polynomial for 1
2 (1 + √

d) is
g(x)= x2 − x + 1

4 (1 − d) and we have 4g(x)= (2x − 1)2 − d. Hence, if p is
odd, then we get the possibilities (i), (ii) and (iii) as above. When p = 2 and
d ≡ 1 (mod 8) we have g(x)≡ x(x − 1) (mod 2) and so p =pp′ as in (i). When
p = 2 and d ≡ 5 (mod 8) we see that g(x) is irreducible (mod 2) and so p = p
as in (iii).

Thus, when d ≡ 2,3 (mod 4), we have, in case (i), d a quadratic residue
(mod p) whence the Legendre symbol

( d
p

)= 1. Similarly we have
( 4d

p

)= 0 in

case (ii) and
( d

p

)= −1 in case (iii). Hence, on taking D = 4d, that is, defining

D as the discriminant of K , we obtain
( D

p

)= 1, 0 or −1 in the three cases
respectively. Moreover the same holds for the discriminant D = d of K when
d ≡ 1 (mod 4) provided that, for p = 2, we take the Jacobi symbol

( 2
|D|
)

rather
than the Legendre symbol.

The results are intimately related to the theory of characters and L-functions
of quadratic fields; see Chapter 15. Indeed, for d ≡ 2,3 (mod 4) we can define
a quadratic character of K by χ(p)= ( D

p

)
and then, for any s > 1, our results

show that ∏
p|p

(1 − (Np)−s)= (1 − p−s)(1 −χ(p)p−s).

Moreover the same holds in the case d ≡ 1 (mod 4) provided we define χ(2)=( 2
|D|
)

as above. Hence we get the important relation

ζK (s)= ζ(s)L(s, χ),
where ζK (s) is the Dedekind zeta-function defined by∑

a

(Na)−s =
∏
p

(1 − (Np)−s)−1,

ζ(s) denotes the Riemann zeta-function given by∑
1/ns =

∏
p

(1 − p−s)−1
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and L(s, χ) is the Dirichlet L-function
∞∑

n=1

χ(n)/ns =
∏

p

(1 −χ(p)p−s)−1.

All the sums and products here converge for s> 1 and indeed for any complex
variable s = σ + i t with σ > 1. In the case of the L-function we have conver-
gence for s = 1 and there are classical results of Dirichlet giving the values of
L(1, χ) in terms of the class number of K ; see Section 15.6.

12.6 The cyclotomic field

We shall need Eisenstein’s criterion relating to a polynomial

f (x)= xn + an−1xn−1 + · · ·+ a1x + a0

with integer coefficients. It is stated as follows.

Theorem 12.6 (Eisenstein) If there exists a prime p such that p divides a0,a1,
. . . ,an−1 but p2 does not divide a0 then f (x) is irreducible.

Proof Suppose on the contrary that f (x)= g(x)h(x) where g(x) and h(x)
are polynomials with integer coefficients and m < n is the degree of g(x). Let
Z= Fp be the field with p elements as in Section 12.5 and let f , g,h be the
reductions of f, g,h (mod p). Then f (x)= g(x)h(x) and f = xn . But, by hy-
pothesis, p2 � a0, whence the constant terms in g(x),h(x) cannot both be 0,
and this plainly gives a contradiction; indeed Z[x] is a unique factorization
domain, whence we have g = xm , h = xn−m . This proves the theorem.

The qth cyclotomic field is defined as K =Q(ζ ) where ζ = e2π i/q and q is
an integer > 2. We shall discuss here only the case when q is a prime. Then,
since ζ q = 1, we see that ζ is a zero of the cyclotomic polynomial given by
�q(x)= xq−1 + xq−2 + · · · + 1 and that this is irreducible; for plainly Eisen-
stein’s criterion applies to

�q(x + 1)= (x + 1)q − 1

x
= xq−1 +

(
q

1

)
xq−2 + · · ·+

(
q

q − 1

)
.

Thus �q(x) is the minimum polynomial for ζ , whence ζ has degree q − 1 and
conjugates ζ, ζ 2, . . . , ζ q−1. This gives at once the basic cyclotomic property
of ζ , namely that, for any integer k,

TK/Q(ζ
k)=

{ −1 if q � k,
q − 1 if q | k.
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Furthermore the following holds.

Theorem 12.7 (Basis) An integral basis for K is given by 1, ζ, . . . , ζ q−2.

Proof First we observe that from the factorization

�q(x)= (x − ζ )(x − ζ 2) . . . (x − ζ q−1)

we obtain NK/Q(1− ζ )=�q(1)=q. Further, we observe that (1− ζ j )/(1− ζ )
is a unit in K for certainly it is in OK and we have

NK/Q(1 − ζ )= NK/Q(1 − ζ j ) (1 ≤ j ≤ q − 1).

Taking the product over all j , it follows that q/(1 − ζ )q−1 is a unit in K .

We now suppose that α ∈OK . Then, for some rationals a0, . . . ,aq−2,

α= a0 + a1ζ + · · ·+ aq−2ζ
q−2.

By the cyclotomic property of ζ recorded above, this gives

TK/Q(αζ
− j −αζ)= qa j (0 ≤ j ≤ q − 2),

whence qa j is a rational integer. Hence we have

qα= b0 + b1(1 − ζ )+ · · ·+ bq−2(1 − ζ )q−2 (∗∗)

for some integers b0, . . . ,bq−2. We proceed to show that q divides b j for all j
and this will suffice to establish the result.

Now if we assume that b0, . . . ,br−1 are divisible by q, where 1 ≤ r ≤ q − 2,
then (∗∗) shows that br/(1 − ζ )∈OK ; thus q divides NK/Q(br )=bq−1

r and so,
since q is a prime, it divides br . Plainly, by (∗∗), b0/(1 − ζ )∈OK , whence q
divides b0 and the assertion follows by induction.

Theorem 12.8 (Discriminant) The discriminant of K is (−1)
1
2 (q−1)qq−2.

Proof We shall use the integral basis ζ, ζ 2, . . . , ζ q−1. By the cyclotomic prop-
erty of ζ referred to above we obtain, for 1 ≤ i, j ≤ q − 1,

det(TK/Q(ζ
i+ j ))=

∣∣∣∣∣∣∣∣∣∣∣

−1 −1 . . . −1 q − 1
−1 −1 . . . q − 1 −1

...

−1 q − 1 . . . −1 −1
q − 1 −1 . . . −1 −1

∣∣∣∣∣∣∣∣∣∣∣
.
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Subtracting the first row from the others and then adding the first q −2 columns
to the last we get∣∣∣∣∣∣∣∣∣∣∣

−1 −1 . . . −1 q − 1
0 0 . . . q −q

...

0 q . . . 0 −q
q 0 . . . 0 −q

∣∣∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣∣

−1 −1 . . . −1 1
0 0 . . . q 0

...

0 q . . . 0 0
q 0 . . . 0 0

∣∣∣∣∣∣∣∣∣∣∣
.

Now adding the last column to the others we obtain zeros except on the diago-
nal and the result follows.

Theorem 12.9 (Factorization) Let p be a prime. If p � q then p = p1 . . .pl

where p1, . . . ,pl are distinct prime ideals. If p = q then p = pq−1 where p=
[1 − ζ ].

Proof We have OK = Z(ζ ) and so the hypothesis of Dedekind’s theorem is
satisfied. Suppose first that p � q. Then the polynomial xq − 1 in Z[x], where
Z = Fp, is relatively prime to its derivative and hence the cyclotomic poly-
nomial �q(x) has no repeated factor (mod p). This gives the desired result.
When p = q we have xq − 1 ≡ (x − 1)q (mod q) and, since q/(1 − ζ )q−1 is a
unit in K , we see that [q,1 − ζ ] = [1 − ζ ]. The assertion follows.

We note now that K is a normal field; indeed its Galois group is isomorphic
to the multiplicative subgroup of Fq . Hence in the case when p � q all prime
divisors p of p have the same degree, say f , and we have l = (q − 1)/ f (cf.
Section 11.6). In fact we can calculate f explicitly.

Theorem 12.10 We have Np= p f for each prime divisor p of p where f is
the least positive integer such that p f ≡ 1 (mod q).

Proof It is easily seen that 1, ζ , . . . , ζ q−1 are in distinct residue classes
(modp). Indeed otherwise p would divide 1 − ζ j for some j with 1 ≤ j < q,
whence it would divide NK/Q(1 − ζ )= q contrary to p � q. The classes form
a subgroup of the multiplicative group of the field OK /p and this has order
Np− 1. Hence Np≡ 1 (mod q) and so Np= p f ′

where f ′ ≥ f . But since
p f ≡ 1 (mod q) we have ζ p f = ζ , whence α p f ≡ α (modp) for all α in OK .
Thus each of the Np elements of OK /p is a zero of x p f − x and this gives
p f ′ ≤ p f . We conclude that f ′ = f .
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It follows as a corollary to Theorem 12.10 that p splits completely in K if
and only if p ≡ 1 (mod q); the result has connections with class field theory
and it is sometimes referred to as the cyclotomic reciprocity law.

Theorem 12.11 (Units) There are 1
2 (q − 3) elements in any fundamental set

of units of K . The roots of unity are given by (−ζ ) j with 0 ≤ j < 2q.

Proof The first part follows at once from Dirichlet’s theorem since here s =
0, t = 1

2 (q − 1) and so r = s + t − 1 = 1
2 (q − 3). The roots of unity form a

finite cyclic group which includes the elements indicated above as a subgroup.
Thus 2q divides the order of the group, say m. Then m = 2q follows since
the group is generated by a primitive mth root of unity and its degree φ(m)
cannot exceed the degree φ(q) of K . Alternatively, one can argue that if there
were a primitive nth root of unity in the field with (n,q)=1 and n>2, then the
product with ζ would be a primitive nqth root of unity in K ; but this has degree
φ(nq)=φ(n)φ(q) which exceeds the degree φ(q) of K . Plainly if (n,q)> 1,
then the degree φ(n) of a primitive nth root of unity exceeds φ(q) unless n =q
or n =2q, in which case the root is just a power of ζ or −ζ . This completes the
proof except for a verification that a primitive mth root of unity with composite
m has degree φ(m), and for this we refer to the recommended books.

It was already observed in the proof of Theorem 12.7 that (1 − ζ j )/(1 − ζ )
is a unit in K for j = 2, . . . , 1

2 (q − 1). Now we have

1 − ζ j

1 − ζ = ζ ( j−1)/2 ζ
j/2 − ζ− j/2

ζ 1/2 − ζ−1/2
= ζ ( j−1)/2 sin( jπ/q)

sin(π/q)
.

Further, since ζ 1/2 = ±ζ (q+1)/2 and q is odd, we see that ζ ( j−1)/2 is a root of
unity in K . Hence the numbers sin( jπ/q)/ sin(π/q) are real positive units in
K ; they can be verified as being multiplicatively independent but they do not
necessarily comprise a fundamental system.

We note that the units referred to above all lie in the field K + =Q(ζ + ζ−1).
Indeed ζ is a zero of the polynomial x2 − (ζ + ζ−1)x + 1, whence [K : K +] =
2. Thus [K + :Q] = 1

2 (q − 1) and, since ζ + ζ−1 = 2 cos(2π/q), it follows that
K + is the maximal real subfield of K . It plays a significant role in studies on
the class number of K . One result relating to K + can be obtained easily.

Theorem 12.12 An integral basis for K + is 1, η, . . . , ηm with η = ζ + ζ−1

and m = 1
2 (q − 1)− 1.

Proof Let α be in the ring of integers of K +. Plainly we have α = a0 + a1η

+· · ·+ amη
m for some rationals a0, a1, . . . ,am . Suppose that these are not all
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integers. Then there exists a suffix k such that the a j with j > k are integers
and ak is not. But we have

ζ k(α− ak+1η
k+1 − · · · − amη

m)= ζ k(a0 + a1η+ · · ·+ akη
k)

and this is in the ring of integers of K . Thus, since 1, ζ, . . . , ζ q−2 is an integral
basis for K and 2k < q − 2, the coefficient ak of ζ 2k is an integer and this is a
contradiction.

The Dedekind zeta-function ζK (s) for K , where s = σ + i t and σ > 1, is∑
a

(Na)−s =
∏
p

(1 − (Np)−s)−1

and from Theorems 12.9 and 12.10 we deduce the following.

Theorem 12.13 We have

ζK (s)= ζ(s)
∏
χ�χ0

L(s, χ),

where

L(s, χ)=
∞∑

n=1

χ(n)/n−s =
∏

p

(1 −χ(p)p−s)−1.

Here the characters χ =χ j with 0 ≤ j ≤ q − 2 are defined by

χ j (n)=
{

e2π i jν/(q−1) if q � n,
0 if q |n,

where ν denotes the index of n with respect to a primitive root (mod q); see
Section 15.3. The character χ0 is called the principal character and it satisfies
χ0(n)= 0 if q|n and χ0(n)= 1 otherwise.

Proof of Theorem 12.13 We have

(1 − q−s)ζK (s)=
∏

p�q,p|p

(1 − (Np)−s)−1 =
∏
p�q

(1 − p− f s)−l

and

(1 − q−s)ζ(s)
∏
χ�χ0

L(s, χ)=
∏
p�q

q−2∏
j=0

(1 −χ j (p)p
−s)−1.

Now q −1= f l and if p�q then p f ≡1 (mod q) with f minimal. Thus ν= kl
for some integer k when n = p and here (k, f )= 1; for p f/(k, f ) ≡ 1 (mod q)
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since ν f/(k, f )= (k/(k, f ))(q − 1). This gives χ j (p)= e2π i jk/ f , whence the
last product is

f −1∏
j=0

(1 − e2π i j/ f p−s)−l = (1 − p− f s)−l

and the theorem follows.

We remark finally that the L-functions converge for s = 1 and we have∏
χ�χ0

L(1, χ)= 1

2
hq−q/2(2π)(q−1)/2 R,

where h is the class number of K and R is the regulator of K .

12.7 Calculation of class numbers

We now give some examples to show how the preceding theories can be used
to compute class numbers and to solve certain related Diophantine equations.

Example 12.1 Consider the cyclotomic field K =Q(ζ ) where ζ = e2π i/5.
By Theorem 12.7 an integral basis for K is ζ, ζ 2, ζ 3, ζ 4 and by Theorem
12.8 the discriminant of K is 125. Further, the Minkowski constant of K is
3/(2π2). Hence every ideal class of K contains an ideal with norm at most
3
√

125/(2π2) < 2. This implies that every ideal in K is equivalent to a prin-
cipal ideal and so is principal. Thus the class number of K is 1 and the field
has unique factorization.

Example 12.2 Consider the cubic field K = Q( 3√
2). By Section 10.10

Exercise (ix), an integral basis for K is 1,
3√

2,
3√

4. Thus by Section 10.7 the
discriminant of K is the same as the discriminant of x3 − 2 and this is −108.
The Minkowski constant for K is 8/(9π), whence every ideal class of K con-
tains an ideal with norm at most 8

√
108/(9π) < 3. Now we have 2 = [

3√
2]3

where [
3√

2] has norm 2 and so is a prime ideal as well as being principal. It
follows that K has class number 1. Similarly we can treat K = Q( 3√3). An
integral basis for K is 1, 3√3, 3√9 and the discriminant of K is −243. Thus
every ideal class contains an ideal with norm at most 8

√
243/(9π) < 5. We

have 3 = [ 3√3]3 and [ 3√3] is a prime ideal. Further, we see that x3 − 3 can be
expressed as (x −1)(1+ x + x2)−2 and the factors here are irreducible mod 2.
It follows that 2 = [ 3√3 − 1][1 + 3√3 + 3√9] and, by Dedekind’s theorem, this



12.7 Calculation of class numbers 137

gives the factorization of 2 into prime ideals. We conclude that K has class
number 1.

Example 12.3 We consider the quadratic field K =Q(√26) and show that
this has class number 2. An integral basis for K is 1,

√
26 and the minimum

polynomial for
√

26, namely x2 − 26, reduces to x2 mod 2 and to (x + 1)(x −
1)mod 5. Hence by Dedekind’s theorem, on taking ε= 5 + √

26, we have

2 = [2, ε+ 1]2, 5 = [5, ε+ 1][5, ε− 1].

Here [2, ε+ 1] and [5, ε± 1] are prime ideals in K with norms 2 and 5. Now
[2, ε+ 1] and [5, ε+ 1] divide [ε+ 1] and since N [ε+ 1] = 10 we obtain

[ε+ 1] = [2, ε+ 1][5, ε+ 1].

Further, [2, ε+ 1] is not principal for otherwise we would have [2, ε+ 1] =
[x + √

26y] for some integers x, y, whence x2 − 26y2 = 2 and, since a square
is congruent to 0 or 1 (mod 4), this is insoluble. We now use the fact that
the Minkowski constant for K is 1

2 . This implies that every ideal class in K
has an element with norm at most 1

2
√

d where d is the discriminant of K .
Since 26 ≡ 2 (mod 4) we have d = 4 × 26, whence 1

2
√

d < 6 and we need con-
sider only the primes 2, 3 and 5. But x2 − 26 is irreducible mod 3 and so, by
Dedekind’s theorem, 3 remains prime in K . Thus the ideal class group of K is
generated by the class containing [2, ε+ 1] and K has class number 2.

Example 12.4 We note now that ε is the fundamental unit in K =Q(√26).
For x = 5, y = 1 is a solution of x2 − 26y2 =−1 and so certainly ε is a unit in
K . To show that it is fundamental we observe that any solution of x2 − 26y2 =
±1 with x + √

26y > 1 gives |x − √
26y| < 1 whence x > 0 and y > 0; thus

if also x + √
26y ≤ ε then y = 1 and the assertion follows. We apply this to

solve the equation

x2 − 26y2 =±10

in integers x, y. The latter gives [x + √
26y][x − √

26y]= [10] and [10]= [ε+
1][ε− 1] is the unique factorization of 10 into principal ideals with the same
norm. Thus [x + √

26y]= [ε± 1] and Dirichlet’s unit theorem now shows that
the complete solution is given by

x +
√

26y =±εn(ε± 1) (n = 0,±1,±2, . . . ).

Example 12.5 Consider the field K = Q(√(−34)). We proceed to show
that the ideal class group of K is cyclic of order 4. An integral basis for K is
1,

√
(−34) and the minimum polynomial for

√
(−34) is x2 + 34. This reduces
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to x2 mod 2, to x2 + 1 mod 3 and to (x + 1)(x − 1)mod 5 and mod 7. Hence by
Dedekind’s theorem we have

2 = [2, ω− 1]2, 5 = [5, ω][5, ω], 7 = [7, ω][7, ω],

where ω = 1 + √
(−34), ω = 1 − √

(−34) and the factors here are prime
ideals. Further, it is obvious on taking x = 0, ±1 that x2 + 1 is irreducible
mod 3 whence 3 is a prime ideal in K . Now [5, ω] and [7, ω] divide [ω] and
we have N [5, ω] = 5, N [7, ω] = 7 and N [ω] = 35. Thus we obtain [ω] =
[5, ω][7, ω]. Similarly [2, ω+ 3] and [5, ω+ 3] divide [ω+ 3] and we have
N [2, ω+ 3] = N [2, ω− 1] = 2, N [5, ω+ 3] = N [5, ω] = 5 and N [ω+ 3] =
42 + 34 = 50. Furthermore [5, ω] cannot divide [ω+ 3] for otherwise it would
divide [5, ω+3] contrary to [5, ω] and [5, ω] being distinct prime ideals. Thus
we obtain

[ω+ 3] = [2, ω+ 3][5, ω+ 3]2.

Now we have 2= [2, ω+3]2 whence [5, ω]4 ∼1 and [2, ω+3]∼ [5, ω]2. Fur-
ther, from 5= [5, ω][5, ω] we get [5, ω]∼ [5, ω]3 and from [ω]= [5, ω][7, ω]
we get [7, ω] ∼ [5, ω]3 ∼ [5, ω]. Furthermore from 7 = [7, ω][7, ω] we get
[7, ω] ∼ [5, ω]. Note that none of the prime factors of 2, 5 and 7 are principal
since, for instance, we cannot have N (a +b

√
(−34))=7, that is, a2 +34b2 =7

for integers a, b. Now the Minkowski constant for K is 2/π and so every ideal
class of K contains an ideal with norm at most (2/π)

√|d| where d =−4 × 34
is the discriminant of K . We have (4/π)

√
34 < 8 and the only non-principal

prime ideals in K with norm < 8 are [2, ω + 3], [5, ω], [5, ω], [7, ω] and
[7, ω]. We conclude that the class containing [5, ω] generates the ideal class
group of K and the latter is cyclic of order 4.

Example 12.6 We shall apply the latter result to solve the equation

y2 = x3 − 34

in integers x, y. First we note that, since 34 is square-free, we have x and
y relatively prime and odd. Now (y + √

(−34))(y − √
(−34))= x3 and the

ideals [y + √
(−34)] and [y − √

(−34)] are relatively prime; for if they were
divisible by a prime ideal p then p would divide x and 2y and this is impossi-
ble since, with x odd, p cannot divide 2. Hence we obtain [y + √

(−34)] = a3
for some ideal a. Now the class number of K is 4 whence a must be prin-
cipal. Further, by Section 7.3, the units in K are just ±1; indeed it is clear
that the equation a2 + 34b2 = ±1 has no solution in integers a, b except with
b = 0. Thus y + √

(−34)= ±(u + √
(−34)v)3 for some integers u, v. But on

equating the coefficients of
√
(−34) we get v(3u2 − 34v2)= 1 whence v=±1
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and 3u2 − 34 =±1. The latter equation is plainly impossible and we conclude
that y2 = x3 − 34 has no solutions in integers x, y. The argument here is a
simple instance of studies on the famous Mordell equation y2 = x3 + k which
has played a pivotal role in the overall development of number theory; see
Section 8.3.

12.8 Local fields

An account of the theory of algebraic numbers would not be complete with-
out a brief indication of the properties of local fields of which p-adic fields
are a special case. We shall give here a short description of the rudiments of
the subject and refer to the books recommended in Section 12.9 for detailed
treatments.

We begin with some valuation theory. Let K be any field. A valuation on K
is defined as a real function w such that, for all a,b in K , we have

(i) w(a)> 0 (a � 0), w(0)= 0,
(ii) w(ab)=w(a)w(b),

(iii) w(a ± b) ≤ w(a)+w(b).
If (iii) can be replaced by w(a ± b)≤ max(w(a),w(b)) then we say that w is
non-Archimedean, otherwise Archimedean. Further, we say that valuations w
and w′ are equivalent if, for some λ > 0, we have w(a)= (w′(a))λ for all a
in K . Now the function d(x, y)=w(x − y) is a metric on K . Let Kw be the
completion of K with respect to the metric, that is, the set of residue classes
of Cauchy sequences modulo the null sequences. Then w can be extended to
the completion by defining w(α)= limw(an), where a1,a2, . . . is an arbitrary
Cauchy sequence in α.

We take now K = Q the rational field. By the trivial valuation on Q we
mean w0(a)= 1 (a � 0) and w0(0)= 0. Another valuation on Q is given by
w(a)= |a| and then the completion of Q with respect to the valuation, that
is, Qw, is the field of real numbers. Further, if p is any prime, then for a ∈Q
we have a = pku/v for some integer k and some integers u, v not divisible
by p and the function w(a)= p−k defines a further valuation on Q. It is non-
Archimedean; indeed in place of (iii) we have

(iv) w(a ± b) ≤ max (w(a),w(b)) with equality when w(a) � w(b).

We write w(a)= |a|p and we call |a|p the p-adic valuation on Q. The cor-
responding completion is denoted by Qp and it is referred to as the p-adic
number field. A result of Ostrowski of 1918 asserts that the set consisting of
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w0, |a| and the |a|p as p runs through the primes gives the totality of valuations
on Q up to equivalence.

The elements α in Qp with |α|p ≤ 1 are called p-adic integers. We prove
the following.

Theorem 12.14 If α is a p-adic integer then there exist rational integers a0,
a1, . . . such that 0 ≤ a j < p and

α=
∞∑
j=0

a j p j , that is, |α−
N∑

j=0

a j p j |p → 0 as N → ∞.

Proof Suppose that α � 0. Let α1, α2, . . . be any Cauchy sequence in α so that
αm = pkm um/vm (m = 1,2, . . . ) for some integer km and integers um, vm not
divisible by p. Then by (iv) we have km =k for some fixed integer k ≥ 0 and all
sufficiently large m. If k > 0 we put a0 =0. If k =0 we write um =u′

mvm + pu′′
m

with 0 ≤ u′
m < p, as we may since p � vm . Then u′

m = a0 for some fixed a0

and all sufficiently large m. In either case we have α= a0 + pα(0), where α(0)

is a p-adic integer, and we now continue by expanding α(0) similarly.

The p-adic integers form a ring and since, in any given sequence, there are
only finitely many choices for the coefficients of the powers of p, we deduce
that it is compact.

Now let K be an algebraic number field with degree n = s + 2t as earlier.
There exist s + t Archimedean valuations on K given by w j (α)=|σ j (α)| with
1 ≤ j ≤ s + t . The completion of K with respect to w j is the real or complex
field according as j ≤ s or j > s. Further, if p is any prime ideal in K that lies
over a rational prime p then, by the theory of fractional ideals, for each α � 0
in K we have [α] =pku/v for some integer k and some ideals u, v not divisible
by p. The function w(α)=|α|p= p−k/e, where e is the ramification index of p,
defines a non-Archimedean valuation on K and the completion Kw of K with
respect to |α|p is called the p-adic number field. As for Q, it can be shown that,
up to equivalence, w0(α), the |σ j (α)| and the |α|p, as p runs through the prime
ideals, are the only valuations on K . The valuations are sometimes denoted
simply by |α|v and one describes v as infinite, written v |∞, if the completion
is the real or complex field and finite, written v | p, if the completion is a p-adic
field.

We now take π to be an element in p but not in p2. Then the elements in
the ring of integers of Kp can be written in the form

∑∞
j=0 α jπ

j for
some α0, α1, . . . in a set of representatives of OK /p. We have p = επe where
ε is a p-adic unit in OK , that is, an element of OK not divisible by π , and
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|πe|p = p−1; hence we can identify Qp with a subfield of Kp by mapping∑
a j p j to

∑
a jε

jπej . Then we have [Kp :Qp] = e f where f is the degree
of p; indeed a basis for Kp as a vector space over Qp is given by ωiπ

l with
1 ≤ i ≤ f , 0 ≤ l < e, where ω1, . . . ,ω f are representative elements of a basis
for OK /p as an algebraic extension of Fp. We have the following result.

Theorem 12.15 (Product formula) For α � 0 in K we have∏
v

|α|dvv = 1,

where the product is over all inequivalent valuations v of K and dv is the
degree of the corresponding completion (so that dv = 1 or 2 if the completion
is real or complex).

Proof Let p be a rational prime. It is easily seen that

|N (α)|
∏

p

|N (α)|p = 1 and |N (α)| =
∏
v|∞

|α|dvv .

Now let p be a prime ideal that lies over p and let fp be the degree of p so that
Np= p fp . Further, let kp be the exponent of p when the fractional ideal [α]
is expressed as a canonical product of prime ideals; here kp may be positive,
negative or 0. Then we have

|N (α)|p =
∏
p|p

|Np|kpp =
∏
p|p

p− fpkp .

Thus if we write dp = ep fp with ep the ramification index of p, so that dp =
[Kp :Qp], then we obtain

|N (α)|p =
∏
p|p

|α|dpp =
∏
v|p

|α|dvv

and the result follows.

The subject of local fields was originated by Hensel in the early part of the
twentieth century and it has now become an important instrument in many
branches of number theory. Not least among these are studies in Diophantine
analysis and transcendence theory, in cyclotomic fields and p-adic L-functions
and in the theory of quadratic forms. There is a particular result that pays
homage to Hensel and it is known as Hensel’s lemma. As Hensel was aware,
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the theory of local fields is intimately related to the theory of higher congru-
ences; indeed if f (x) is a polynomial with integer coefficients then the congru-
ence f (x)≡ 0 (mod pm), where p is any prime, has a solution for all positive
integers m if and only if the equation f (x)=0 has a solution in p-adic integers;
this follows easily from the definition of the p-adic valuation and the compact-
ness property of the p-adic integers. Hensel’s lemma concerns approximations
to roots of polynomials and shows that in certain circumstances it suffices if
the congruence has a solution in the case m = 1; thus, as it is sometimes said,
one can Hensel one’s way upwards. We have already met an example of this
kind in Section 3.6.

Theorem 12.16 (Hensel’s lemma) Let Kp be a p-adic field and let Op be the
ring of p-adic integers in Kp. Suppose that f (x) is a polynomial in Op[x]
and that there exists an element a in Op such that | f (a)|p < | f ′(a)|2p where
f ′(x) denotes the derivative of f (x). Then the sequence a0, a1, a2, . . . where
a0 = a and

a j+1 = a j − f (a j )/ f ′(a j ) ( j = 0,1,2, . . . )

converges p-adically to an element of Op and this is a zero of f (x).

Proof The argument is an analogue of the Newton approximation method for
real numbers. For simplicity we shall omit the suffix p in writing the valuations.
We assume that | f (ai )| < | f ′(ai )|2 for all i ≤ j and we proceed to prove this
with j replaced by j + 1. Denoting by f (r)(x) the r th derivative of f (x),
we have

f (a j+1)=
∞∑

r=2

f (r)(a j )

r !
(a j+1 − a j )

r ;

for obviously the terms with r = 0 and r = 1 cancel. Now f (r)(x)/r ! has coef-
ficients in Op and, by the inductive hypothesis, we have

|a j+1 − a j | < | f ′(a j )| ≤ 1.

Hence we obtain

| f (a j+1)| ≤ |a j+1 − a j |2 < | f ′(a j )|2.

Further, from properties of polynomials, we see that

| f ′(a j+1)− f ′(a j )| ≤ |a j+1 − a j | < | f ′(a j )|,
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whence | f ′(a j+1)| = | f ′(a j )| and so | f (a j+1)| < | f ′(a j+1)|2. But, from the
above series with j replaced by j − 1, we obtain

|a j+1 − a j | = | f (a j )/ f ′(a j )| ≤ |a j − a j−1|2/| f ′(a)|.
Thus we conclude by induction that |a j+1 − a j | → 0 as j → ∞, whence
a0, a1, a2, . . . is a Cauchy sequence and it converges to a zero of f (x) as
required.

To give an example, suppose that p � 5 is a prime and that u ≡ v5(mod p)
for some integers u, v not divisible by p. Then on applying Hensel’s lemma to
the polynomial x5 − u we deduce that u = a5 for some p-adic integer a in Qp.

Local fields play an important role in connection with studies on the Hasse
principle or, as it is alternatively called, the local–global principle. It concerns
Diophantine equations and it is said to hold if a sufficient condition for the
existence of a non-trivial solution in an algebraic number field K is that the
equation has such a solution in all the completions of K both Archimedean
and non-Archimedean; in other words if solutions everywhere locally imply a
solution globally. The condition is certainly necessary and, although there are
known counter-examples and indeed in most situations the principle is thought
not to hold, it has nevertheless been verified in a few notable instances. The
main one is due to Hasse himself, who showed it to be true for quadratic forms
defined over K in any number of variables. Here we shall prove the following
special case of Hasse’s result which actually goes back to work of Legendre.

Theorem 12.17 Let a, b, c be integers with abc odd and square-free and
suppose that for every odd prime p the congruence ax2 + by2 + cz2 ≡ 0 (mod
p) is soluble in integers x, y, z not all divisible by p. Then there exist integers
x, y, z not all 0 such that ax2 + by2 + cz2 = 0.

Proof We first show that the hypotheses imply that there exist integers r, s, t
such that

ar2 + b ≡ 0 (mod c), bs2 + c ≡ 0 (mod a), ct2 + a ≡ 0 (mod b).

Suppose, for instance, that p divides c. Then there exist integers x, y not both
divisible by p such that ax2 + by2 ≡ 0 (mod p). Now since abc is square-free
it follows that neither x nor y is divisible by p, whence there exists an integer
rp such that rp y ≡ x (mod p). Thus we have a r2

p + b ≡ 0 (mod p). By the
Chinese remainder theorem there exists an integer r such that r ≡ rp (mod p)
for all p that divide c; this gives the first of the asserted congruences and the
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other two follow similarly. Note that, since again abc is square-free, we have
(r, c)= (s, a)= (t, b)= 1.

Now let l be a solution of bl ≡ ra (mod c) and let m be a solution of tm ≡
1 (mod b). Further, let n be a solution of the congruences n ≡ s (mod a) and
rn ≡ m (mod c); this exists by a further application of the Chinese remainder
theorem. Then the points (x, y, z) of the lattice � in R3 with basis

(bc, 0, 0), (bl, a, 0), (m, n, 1)

satisfy

r y ≡ x (mod c), sz ≡ y (mod a), t x ≡ z (mod b).

Further, the determinant d(�) of the lattice is |abc|. We take S as the convex
body, symmetric about the origin, given by

|a|x2 + |b|y2 + |c|z2 < |abc|.
It has volume (8π/3)|abc| > 8d(�). Thus, by Minkowski’s theorem, S con-
tains a point (x, y, z) of � other than the origin. But ax2 + by2 + cz2 is con-
gruent to (ar2 + b)y2 ≡ 0 (mod c) and similar congruences hold (mod a) and
(mod b) whence it is divisible by abc and the theorem follows.

12.9 Further reading

There are several substantial books by Henri Cohen that emphasize the com-
putational aspects of algebraic number theory. The most recent and perhaps
closest in spirit to the text here are Number Theory, Vols I and II (Springer,
2007). As regards Section 12.8, especially recommended is Cassels, Local
Fields (Cambridge University Press, 1986). We mention also Cassels, Rational
Quadratic Forms (Academic Press, 1978), already cited in Section 5.6, which
covers more advanced topics in the area. The book by Borevich and Shafare-
vich referred to in Section 8.7 contains a full and accessible account of the
subject. For a classic and very sophisticated treatment see Serre, Local Fields
(Springer, 1979).

The proof given above of Theorem 12.17 is due to Cassels; an exposition is
included in both of his books referred to above. We note, however, that only
the case when abc is odd is treated here and consequently our argument is
slightly simpler. To cover the even case one needs to impose the additional
hypothesis that the quadratic form has a non-trivial solution (mod 8). Further,
as Cassels points out, the fact that a, b, c cannot all be of the same sign must
necessarily be implied by the hypotheses since there is no assumption about
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the existence of a non-trivial real solution. The explicit basis for the lattice
derived in the proof of Theorem 12.17 is not from Cassels; it comes from a
paper of Davenport and Hall in Quart. J. Math. Oxford 19 (1948), 189–192.

12.10 Exercises

(i) Show that in a number field K there are only finitely many ideals with a
given norm. Hence verify the assertion in Section 8.1 about the solutions
of the equation x2 − dy2 = k.

(ii) By Section 10.10 Exercise (ix), an integral basis for K = Q( 3√
2) is

1,
3√

2,
3√

4. Verify that ε = 1 + 3√
2 + 3√

4 is a unit in K . Assuming
that it is the fundamental unit, show that all solutions in integers x, y, z
of the equation

x3 + 2y3 + 4z3 − 6xyz = 1

are given by x + 3√
2y + 3√

4z = εn for n = 0,±1,±2, . . . . Calculate the
particular solution for n = 2.

(iii) Let K =Q(√(−23)). Factorize the primes 2 and 3 in K and verify that

[2,ω][3,ω] = [ω],

where ω= 1
2 (1 +√

(−23)). Hence prove that K has class number 3.
(iv) Show that, in the field K =Q(√11), the prime ideal factors of 2 and 3

are principal. Deduce that K has class number 1.
(v) Verify that ε = 10 + 3

√
11 is the fundamental unit in K = Q(√11).

Hence show that all solutions in integers x, y of the equation x2 −11y2 =
−2 are given by

x −
√

11y =±εn(
√

11 ± 3) (n = 0, ±1, ±2, . . . ).

(vi) Factorize the primes 2 and 3 in the field K =Q(√(−17)). Verify that
5 remains prime in K . Show that [ω] = [2,ω][3,ω]2, where ω = 1 +√
(−17). Hence prove that the ideal class group of K is cyclic of order 4.

(vii) Show that, in the quadratic field K =Q(√d), a prime p ramifies if and
only if p divides the discriminant of K . For a given prime q determine
all quadratic fields K in which q is the only ramified prime.

(viii) Show that Q(
√
(−5)) has class number 2. Hence prove that the equation

y2 + 5 = x3 has no solutions in integers x, y.
(ix) Using the Minkowski constant, show that the discriminant of any alge-

braic number field other than Q exceeds 1.
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(x) Let α = e2π i/7 + e−2π i/7. Show that the minimum polynomial of α is
f (x)= x3 + x2 − 2x − 1. Verify that 27 f (x)= y3 − 21y − 7 with y =
3x + 1 and hence show that the discriminant of K =Q(α) is 49. Deduce
that K has class number 1.

(xi) Let α be a zero of f (x)= x3 − 4x + 1. Show that the discriminant of
f is positive and square-free. Hence, from Section 10.10 Exercise (viii)
and Section 10.7, verify that K =Q(α) is totally real and that it has an
integral basis 1, α,α2. Using the Minkowski constant, show that K has
class number 1.

(xii) Show that if p is a prime and p�2 or 17 then one at least of 2, 17 and 34
is a quadratic residue (mod p). Hence, using Hensel’s lemma, verify that
the equation (x2 − 2)(x2 − 17)(x2 − 34)= 0 has a solution in the reals
and in every p-adic field but not in the rationals.
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Analytic number theory

13.1 Introduction

Analytic number theory in its classical form is concerned with studies on the
distribution of the primes. However, any technique that involves the application
of mathematical analysis to the solution of number-theoretical problems can
come under this heading. We have already introduced the subject in Sections
1.6 and 2.8. In particular we referred there to the prime-number theorem, to
the Riemann zeta-function, to primes in arithmetical progressions and to sieve
methods and their applications. This and subsequent chapters will be devoted
to expanded accounts of these topics; we begin here with a brief history to help
set them in context.

Euclid (c. 300 bc): existence of infinitely many primes.

Legendre (1788): asserted that every arithmetical progression a,a + q,a +
2q, . . . with (a,q)= 1 includes infinitely many primes. He gave no
proof. Also conjectured (1808) that π(x), the number of primes ≤ x ,
is ‘approximately’ x/(log x − 1.08 . . . ) so that π(x) log x/x → 1 as
x → ∞.

Dirichlet (1839): established Legendre’s assertion on arithmetical progres-
sions; the work introduced L-functions, characters, class number for-
mulae etc.

Gauss (1849): modified Legendre’s conjecture of 1808 to π(x)/li x → 1 as
x → ∞, where li x = ∫ x

2 dt/ log t .

Tchebychev (1852): proved that π(x) log x/x lies between two bounds close
to 1 for sufficiently large x . Thus verified Bertrand’s postulate that,
for any positive integer n, there exists a prime p such that n< p ≤2n.

147
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Riemann (1860): introduced the zeta-function ζ(s) for a complex variable s
and demonstrated the fundamental connection with the distribution of
the primes.

Mertens (1874): applied Tchebychev’s results to sums and products involving
primes.

Hadamard and de la Vallée Poussin (1896): proved, independently, Gauss’
conjecture and so, in particular, the prime-number theorem.

von Mangoldt (1905): established a conjecture of Riemann on the number of
zeros of ζ(s).

Landau (1909): laid the modern foundations of analytic number theory with
the publication of his Handbuch.

Hardy and Littlewood (early 1900s): numerous studies on number-theoretical
functions. Particularly noted for the introduction of the circle method
based at least in part on ideas of Ramanujan.

Vinogradov (1937): refined the circle method and proved that every suffi-
ciently large odd integer is the sum of three primes.

Selberg and Erdős (1948): gave an ‘elementary’ proof of the prime-number
theorem.

Brun (1920): derived a new method inspired by the sieve of Eratosthenes.
Following further works of Selberg, Linnik, Rényi and others, sieve
methods now feature routinely throughout analytic number theory.
They provide, through work of Chen Jing-Run, the best approach to
date to the famous Goldbach and twin-prime conjectures.

Davis, Robinson, Putnam and Matiyasevich (1971): showed by techniques
from logic that the set of prime numbers is Diophantine, that is, there
exists a polynomial of several variables, with integer coefficients, such
that the primes are precisely the set of positive values assumed by the
polynomial as the variables run through all integers ≥ 0.

Green and Tao (2004): applied combinatorial methods to show that there exist
arbitrarily long arithmetic progressions consisting only of primes.

13.2 Dirichlet series

By a Dirichlet series we mean an expression of the form
∑∞

n=1 an/ns , where
a1,a2, . . . are real or complex numbers and s = σ + i t is a complex variable.
There is a unique σ0, possibly ±∞, such that the series converges for every
s with σ > σ0 and no s with σ < σ0; the quantity σ0 is called the abscissa of
convergence and σ =σ0 is called the line of convergence. Similarly there exists
a unique abscissa σ ∗

0 of absolute convergence. Any pair of Dirichlet series
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∑
an/ns and

∑
bn/ns can be multiplied together to give

∑
cn/ns , where cn =∑

d|n adbn/d , provided that σ >σ ∗ where σ ∗ is the maximum of the abscissae
of absolute convergence.

The Riemann zeta-function, introduced in Section 2.8, is the basic example
of a Dirichlet series and plainly it has σ0 =σ ∗

0 = 1. Further, as noted in Section
2.8, there are some simple relations between ζ(s) and other Dirichlet series.
For instance we have, for σ > 1,

ζ(2s)

ζ(s)
=

∞∑
n=1

λ(n)

ns
,

where λ is the Liouville function defined as (−1)�(n) with �(n) given by the
total number of prime divisors of n for n> 1 and �(1)= 0.

The particular Dirichlet series where an = 1 if n is a prime p and 0 oth-
erwise has much historical interest. Indeed, as already remarked in Section
1.6, the following theorem relating to it was first proved by Euler in 1737 and
provided another verification of the infinity of the sequence of primes. Our
demonstration follows an argument due to Clarkson given in 1966.

Theorem 13.1 The series
∑
(1/p) summed over all primes p diverges.

Proof Suppose that the series converges. Then there is an integer k such that∑
n>k(1/pn) <

1
2 , where, as usual, pn denotes the nth prime. Let P = p1 · · · pk .

Since none of the numbers 1 + n P for n = 1,2,3, . . . is divisible by any of
p1, . . . , pk it follows that all their prime factors occur in the sequence pk+1,
pk+2, . . . . Thus, for each integer m ≥ 1, we have

m∑
n=1

1

1 + n P
≤

∞∑
j=1

⎛⎝ ∞∑
n=k+1

1

pn

⎞⎠ j

.

The right-hand side is less than
∑∞

j=1(
1
2 )

j =1, whence the series
∑∞

n=1 1/(1+
n P) has bounded partial sums and so converges. But by the comparison or in-
tegral test, for example, the series in fact diverges and the contradiction estab-
lishes the theorem.

The first general results on the distribution of the primes were obtained by
Tchebychev† in 1852. They were based on a study of the binomial coefficient(

2n

n

)
= (2n)!

(n!)2

† The name has been transliterated in various ways; Chebyshev is another common form.
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and depended on the formula
∑∞

j=1[n/p j ] given in Section 2.1 for the expo-
nent to which a prime p divides n!. Thus Tchebychev proved that π(x), the
number of primes p ≤ x , satisfies

ax/ log x < π(x) < bx/ log x,

where a and b are positive constants. A notable application was obtained by
Mertens in 1874 who showed that

∑
p≤x (1/p) ∼ log log x and indeed gave

the more precise expression log log x + c + O(1/ log x) as recorded in Section
1.6. The Tchebychev estimates, in a refined form, also yielded a proof of the
famous Bertrand postulate to the effect that if n is a positive integer then there
is always a prime p satisfying n < p ≤ 2n.‡ We shall discuss Tchebychev’s
work and its ramifications in Sections 13.3–13.6.

Another example of a Dirichlet series is the L-function

L(s, χ)=
∞∑

n=1

χ(n)

ns
,

where χ is a Dirichlet character (mod q), that is, a completely multiplica-
tive function defined on the positive integers, periodic with period q and with
χ(n)= 0 for (n,q) > 1. An account of the theory of L-functions will be given
in Chapter 15. It is closely linked to studies on primes in arithmetical progres-
sions; in particular, it furnishes Dirichlet’s famous theorem that there exist in-
finitely many primes in any arithmetical progression a,a + q,a + 2q, . . . with
(a,q)= 1. There is an analogue of the prime-number theorem to the effect that
the number of primes p in the arithmetical progression with p ≤ x is asymp-
totic to (1/φ(q))x/ log x . Moreover, the sum of the reciprocals of the primes
in the arithmetical progression diverges, for we have, for some c depending on
a and q, ∑

p ≤ x
p≡a(modq)

1

p
= 1

φ(q)
log log x + c + O

(
1

log x

)
.

The theory of zeta-functions and L-functions has been widely generalized;
in particular, the functions can be defined for any algebraic number field.
We have already given some indication of their properties in the case of the
quadratic and cyclotomic fields in Sections 12.5 and 12.6.

‡ A well-known rhyme due to N. J. Fine remarks ‘Tchebychev said it and I’ll say it again:
there’s always a prime between n and 2n’.
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13.3 Tchebychev’s estimates

The basic result of Tchebychev, which he established in 1852, is as follows.

Theorem 13.2 (Tchebychev) There exist a > 0 and b > 0 such that for all
x ≥ 2 we have

ax/ log x < π(x) < bx/ log x .

Proof For any positive integer n the binomial coefficient

C =
(

2n

n

)
= (2n)!

(n!)2

is the largest term in the expansion of (1 + 1)2n and so

22n/(2n + 1) ≤ C ≤ 22n .

Now by Section 2.1 the exponent to which any prime p divides n! is
∑∞

j=1

[n/p j ]. Thus the exponent to which p divides C is

∞∑
j=1

{[2n/p j ] − 2[n/p j ]}.

Each term in the above sum is either 0 or 1 according as the fractional part of
n/p j is or is not less than 1

2 . Further, the number of non-zero terms is at most
(log(2n))/ log p and the value of the sum is 1 if p satisfies n < p ≤ 2n. It
follows that C cannot exceed∏

p≤2n

p(log 2n)/ log p = (2n)π(2n)

but is certainly divisible by each prime p with n< p ≤ 2n. Hence we obtain

nπ(2n)−π(n) ≤ C ≤ (2n)π(2n).

Comparison with the estimates for C recorded at the beginning gives

π(2n) ≥ (2n log 2 − log(2n + 1))/ log(2n)

and

π(2n)−π(n) ≤ 2n log 2/ log n.

The first inequality implies that π(x)> ax/ log x for some a > 0 and from the
second inequality we get π(2x)−π(x)< cx/ log x for some c> 0.
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To complete the proof we note that

π(x)=
∞∑
j=1

{π(x/2 j−1)−π(x/2 j )}.

Now if 2 j ≤ √
x then the j th term in the sum is at most cx/(2 j−1 log x) and

the number of non-zero terms is at most log x/ log 2; if 2 j >
√

x we have

π(x/2 j−1) < x/2 j−1 < 2
√

x .

Thus we see that

π(x) < (cx/ log x)
∞∑
j=1

(1/2 j−1)+ 2
√

x(log x/ log 2) < bx/ log x

for some b> 0 as required.

Let now pn denote the nth prime in ascending order of magnitude so that
p1 = 2, p2 = 3, . . . . An immediate corollary to Theorem 13.2 is the following.

Theorem 13.3 There exist a′> 0 and b′> 0 such that for all n we have

a′n log n < pn < b′n log n.

Proof We take x = pn in Theorem 13.2. Since π(pn)= n we have

apn/ log pn < n < bpn/ log pn,

whence

(1/b)n log pn < pn < (1/a)n log pn .

But, for sufficiently large n, we have log pn <
√

pn and thus
√

pn < (1/a)n,
that is, pn < (n/a)2. This gives log pn < c′ log n for some c′ > 0 and, since
certainly pn > n whence log pn > log n for all n, the theorem follows.

Bertrand conjectured in 1845 that, for every positive integer n, there is al-
ways a prime p with n < p ≤ 2n; this is the famous Bertrand’s postulate to
which we alluded in Section 1.6 and again in Section 13.2. It gives in partic-
ular pn+1 < 2pn . The conjecture was first proved by Tchebychev. In fact, by
Theorem 13.2, we have

π(2x)−π(x) > (2a − b − 2a log 2/ log(2x))x/ log x

and Tchebychev showed that one can take a =0 ·92129 . . . and b =1 ·1055 . . .
if x ≥ 30. Hence, in the latter range, we have π(2x) > π(x) and there exists a
prime p with x< p≤2x ; it is readily checked that this holds also for 2≤ x<30.
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A relatively short proof of the postulate along these lines, due to Erdős, is
given in the book by Hardy and Wright referred to in Section 1.7, and another
proof, due to Pillai, can be found in the book of Chandrasekharan of 1968
referred to in Section 2.9. As mentioned in Section 1.6, Bertrand’s postulate
has initiated a large body of research on the difference pn+1 − pn between
consecutive primes.

13.4 Partial summation formula

In order to discuss further applications of Theorem 13.2 we shall need the
following result from real analysis.

Theorem 13.4 Let a1,a2, . . . be any real sequence and let s(x)=∑n≤x an.
Further, let f (x) be a real function with continuous derivative f ′(x) for all
real x > 0. Then ∑

n≤x

an f (n)= s(x) f (x)−
∫ x

1
s(u) f ′(u)du.

Proof We have s(0)= 0 and s(x)= s([x]). Hence∑
n≤x

an f (n)=
∑
n≤x

(s(n)− s(n − 1)) f (n)

=
[x]−1∑
n=1

s(n)( f (n)− f (n + 1))+ s(x) f ([x]).

The latter can be expressed in the form

−
[x]−1∑
n=1

s(n)
∫ n+1

n
s(u) f ′(u)du − s(x)

∫ x

[x]
f ′(u)du + s(x) f (x)

and the result follows.

Alternatively, we can argue that

s(x) f (x)−
∑
n≤x

an f (n)=
∑
n≤x

an( f (x)− f (n))=
∑
n≤x

∫ x

n
an f ′(u)du.

On defining fn(u) as an f ′(u) if u ≥n and as 0 otherwise, the last sum becomes∑
n≤x

∫ x

1
fn(u)du =

∫ x

1

(∑
n≤x

fn(u)
)

du
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and the expression on the right is∫ x

1

(∑
n≤u

an f ′(u)
)

du =
∫ x

1
s(u) f ′(u)du.

As a simple application of Theorem 13.4 let us take f (x)= log x and a1 =
a2 = · · ·= 1. Then s(x)= [x] and we obtain∑

n≤x

log n = [x] log x −
∫ x

1
([u]/u)du = x log x − x + O(log x).

13.5 Mertens’ results

In 1874 Mertens applied Tchebychev’s estimates to give asymptotic expres-
sions for certain sums and products involving primes.

Theorem 13.5 We have ∑
p≤x

log p

p
= log x + O(1).

Proof By Section 2.1, since [[x]/p j ] = [x/p j ], the exponent to which a prime
p divides [x]! is

∑∞
j=1[x/p j ]. It follows that

∑
n≤x

log n = log[x]! =
∑
p≤x

∞∑
j=1

log p [x/p j ].

The contribution from the term j = 1 is∑
p≤x

log p [x/p] = x
∑
p≤x

(log p)/p + O(π(x) log x)

and, by Theorem 13.2, the error term here is O(x). The remaining terms con-
tribute ∑

p≤x

∞∑
j=2

log p [x/p j ] ≤ x
∑

2≤n≤x

(log n)/(n(n − 1))

which is O(x). Thus∑
n≤x

log n = x
∑
p≤x

(log p)/p + O(x).

But from the example given at the end of the preceding section the sum on the
left is x log x + O(x) and the result follows.
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Theorem 13.6 For some constant c we have, as x → ∞,∑
p≤x

1/p = log log x + c + O(1/ log x).

Proof We shall apply Theorem 13.4 with f (x) = 1/ log x and with an =
(log n)/n if n is a prime p and 0 otherwise; then

∑
n≤x an f (n)=∑p≤x 1/p.

It will be noted that f (x) is defined and has continuous derivative only for
x > 1 (and not for x > 0 as in the theorem) but since a1 = 0 this is immaterial.
Now by Theorem 13.5 we have s(x)= log x + τ(x) where τ(x)= O(1) and so
s(x) f (x)= 1 + O(1/ log x). Further, we have

−
∫ x

1
s(u) f ′(u)du =

∫ x

2

s(u)du

u(log u)2
=
∫ x

2

du

u log u
+
∫ x

2

τ(u)du

u(log u)2
.

The first integral on the right evaluates to log log x − log log 2 and the second
is c′ + O(1/ log x) where

c′ =
∫ ∞

2

τ(u)du

u(log u)2
.

This proves the theorem with c = 1 − log log 2 + c′.

The same method of proof shows that, for any δ > 0, the series∑
1/(p(log p)δ) summed over all primes p converges. Indeed, on defining

an as above and f (x)= (log x)−(1+δ), the partial summation formula gives∑
p≤x

1

p(log p)δ
= s(x)

(log x)1+δ + (1 + δ)
∫ x

2

s(u)du

u(log u)2+δ

and, since s(u)= O(log u) and

δ

∫ x

2

du

u(log u)1+δ = 1

(log 2)δ
− 1

(log x)δ
= O(1),

the series in question has positive terms and is bounded above.

Theorem 13.7 For some b> 0, we have∏
p≤x

(1 − 1/p)−1 = b log x + O(1).

Proof Clearly we have∏
p≤x

(1 − 1/p)−1 =
∏
p≤x

exp(− log(1 − 1/p))= exp
(∑

p≤x

(1/p + ρp)
)
,



156 Analytic number theory

where ρp = 1/(2p2)+ 1/(3p3)+ · · · . Now the series
∑

p ρp converges and
indeed

∑
p>x ρp does not exceed

∑
n>x 1/(n(n − 1))= O(1/x). On applying

Theorem 13.6, we obtain

exp
(∑

p≤x

1/p
)

= ec log x(1 + O(1/ log x))

and the theorem follows.

Precise values for the c and b appearing in Theorems 13.6 and 13.7 can be
determined. In fact we have b = eγ and

c = γ +
∑

p

{log(1 − 1/p)+ 1/p},

where γ is Euler’s constant.

Theorem 13.8 If π(x) log x/x tends to a limit as x → ∞ then the limit must
be 1.

Proof By partial summation, we have∑
p≤x

1

p
= π(x)

x
+
∫ x

2

π(u)

u2
du.

If π(x) log x/x → l as x → ∞ then the right-hand side is asymptotic to

l
∫ x

2

du

u log u
∼ l log log x

as x →∞. But, by Theorem 13.6, the left-hand side is asymptotic to log log x .
Hence l = 1 as required.

13.6 The Tchebychev functions

In his original memoirs Tchebychev introduced functions θ(x) andψ(x)which
are now classical and commonly feature in studies involving primes. They are
defined by

θ(x)=
∑
p≤x

log p, ψ(x)=
∑

pm≤x

log p,

where the first sum is over all primes p ≤ x and the second is over all primes
p and positive integers m with pm ≤ x . Clearly, since p ≥ 2, we have m ≤
log x/ log 2 and thus

ψ(x)=
∑

m ≤ log x/ log 2

θ(x1/m).
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Further, we observe that eψ(x) is the lowest common multiple of the integers
1,2, . . . , [x].

Theorem 13.2 gives at once analogous results for the Tchebychev functions.
In this context it is convenient to use Vinogradov’s notation, introduced in
Section 8.2: by f � g for functions f and g we shall mean f < cg for some
constant c> 0. Then for all x ≥ 2 we have x � θ(x)� x and x �ψ(x)� x .
For certainly θ(x)≤π(x) log x and, for any δ with 0<δ < 1, we see that

θ(x)≥
∑

xδ<p≤x

log p ≥ δ log x {π(x)−π(xδ)}.

Now, by Theorem 13.2, we have π(xδ)< xδ = o(π(x)). Further, for m ≥ 2, we
have θ(x1/m)≤√

x log x and so

ψ(x)− θ(x) � √
x(log x)2.

Plainly the inequalities here show that, as x → ∞,

π(x) ∼ θ(x)/ log x ∼ ψ(x)/ log x .

Finally we introduce the von Mangoldt function �(n), which is defined as
log p if n is a power of a prime p and as 0 otherwise. Then we have

ψ(x)=
∑
n≤x

�(n).

We note also that ∑
d|n
�(d)=

∑
pm |n

log p = log n.

Hence from the properties of Dirichlet series referred to in Section 13.2 we
obtain, for σ > 1,

ζ ′(s)
ζ(s)

=−
∞∑

n=1

�(n)

ns
.

The expression on the left is called the logarithmic derivative of the Riemann
zeta-function.

13.7 The irrationality of ζ(3)

As remarked in Section 6.6, Apéry proved in 1978 that ζ(3) is irrational; it was
a surprising and notable achievement and, so far at least, it has turned out to
be a rather singular result; no one has yet established the irrationality of ζ(5)
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or ζ(2n + 1) for integers n> 1. In contrast, as is well known, the values of the
Riemann zeta-function at positive even integers are given by

ζ(2n)= (−1)n−122n−1π2n B2n/(2n)!,

where B2n is the Bernoulli number defined by t/(et − 1) =∑∞
n=0 Bntn/n!.

Thus ζ(2)=π2/6, ζ(4)=π4/90 and in general ζ(2n) is a rational multiple of
π2n and so, in particular, transcendental. We shall give here a short proof of
Apéry’s result following work of Beukers of around the same time.

The proof rests on a study of the integral

I =
∫ 1

0

∫ 1

0

∫ 1

0

f mdxdydz

1 − (1 − xy)z
,

where m is a positive integer and

f = xyz(1 − x)(1 − y)(1 − z)

1 − (1 − xy)z
.

We shall show that the value of I for m = 0 is 2ζ(3) and that in general we
have

I = (am + bmζ(3))/c
3
m

for some integers am and bm , where cm is the lowest common multiple of
1,2, . . . ,m. By Tchebychev’s estimates with refined explicit constants we ob-
tain cm = eψ(m) ≤ 3m . Further, by solving the equations

∂ f

∂x
= ∂ f

∂y
= ∂ f

∂z
= 0,

we find that the maximum of the function f over the range of integration is
(
√

2 − 1)4; the bound is attained when x = y =√
2 − 1 and z =1/

√
2. Thus we

get I ≤ 2ζ(3)(
√

2 − 1)4m . Since 27(
√

2 − 1)4 < 1 and clearly I > 0 it follows
that am + bmζ(3)→ 0 as m → ∞. But if ζ(3) were rational, say a/b with a,b
positive integers, then the expression would be at least 1/b. The contradiction
establishes the result.

To verify the assertions about I , we observe that integrating partially m
times with respect to y gives

I =
∫ 1

0

∫ 1

0

∫ 1

0

(1 − x)m(1 − z)m Pm(y)

1 − (1 − xy)z
dxdydz,

where

Pm(y)= 1

m!

dm

dym
(ym(1 − y)m)
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so that (−1)m Pm(
1
2 (y + 1)) is the Legendre polynomial. The substitution

w= 1 − z

1 − (1 − xy)z

then gives

I =
∫ 1

0

∫ 1

0

∫ 1

0

(xyw(1 − x))m Pm(y)

(1 − (1 − xy)w)m+1
dxdydw

and on integrating partially m times with respect to x we obtain

I =
∫ 1

0

∫ 1

0

∫ 1

0

Pm(x)Pm(y)

1 − (1 − xy)w
dxdydw.

Now on integrating with respect to w we get

I =−
∫ 1

0

∫ 1

0

Pm(x)Pm(y) log(xy)

1 − xy
dxdy.

Since the polynomials Pm(x) and Pm(y) have integer coefficients and degree m
it follows that I is a linear combination with integer coefficients of the integrals

Irs =
∫ 1

0

∫ 1

0

xr ys log(xy)

1 − xy
dxdy (0 ≤ r, s ≤ m).

But Irs is the derivative with respect to t of the integral

Jrs =
∫ 1

0

∫ 1

0

xr+t ys+t

1 − xy
dxdy

evaluated at t = 0 and, on writing (1 − xy)−1 = 1 + xy + (xy)2 + · · · , we see
that

Jrs =
∞∑
j=1

(r + j + t)−1(s + j + t)−1.

Hence if r = s then Irs = −2(ζ(3) −∑r
j=1 j−3). If r > s then Jrs can be

expressed as a finite sum, namely (r − s)−1∑r−s
j=1(s + j + t)−1; this gives

Irs = (r − s)−1∑r−s
j=1(s + j)−2 and a similar expression holds if s > r . We

have I = −I00 when m = 0 and the initial assertions concerning I are now
clear.

13.8 Further reading

Several books on the subject matter here have already been mentioned in
Sections 1.7 and 2.9. We now add the works of W. and F. Ellison, Prime
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Numbers (Wiley, Hermann, 1985); M. N. Huxley, The Distribution of
the Prime Numbers (Clarendon Press, 1972); A. E. Ingham, The Distribu-
tion of Prime Numbers (Cambridge University Press, 1990); H. Iwaniec and
E. Kowalski, Analytic Number Theory (AMS Colloquium Publications, 2004);
and M. R. Murty, Problems in Analytic Number Theory (Springer, 2008). The
classic Handbuch to which we referred in Section 13.1 is Landau’s Hand-
buch der Lehre von der Verteilung der Primzahlen (Chelsea Publishing, 1953).
This contains references to all fundamental material including the papers of
Tchebychev.

The proof of Theorem 13.1 is due to Clarkson in Proc. Amer. Math. Soc. 17
(1966), 541; it is reproduced in the book by Apostol referred to in Section 2.9.
As regards Theorem 13.2, improved values for the constants a and b were
given by Sylvester in 1892 and by Rosser and Schoenfeld in Illinois J. Math.
6 (1962), 64–94; Math. Comp. 29 (1975), 243–269. For an excellent compi-
lation of results of this kind see the book by P. Ribenboim, The New Book of
Prime Number Records (Springer, 1996). He mentions, for instance, that π(x)
has been computed for certain very large x and that in particular, in 1994, M.
Deléglise and J. Rivat gave the value π(1018)= 24 739 954 287 740 860.

The paper of Beukers referred to in Section 13.8 appeared in Bull. London
Math. Soc. 11 (1979), 268–272. Rivoal, in C. R. Acad. Sci. Paris Sér I Math.
331 (2000), 267–270, and Ball and Rivoal, in Invent Math. 146 (2001), 193–
207, have used a new construction of transcendence type to show that there are
infinitely many irrational values among the ζ(2n + 1) with n > 1. Zudilin, in
Uspekhi Mat. Nauk 56 (2001), 149–150 (translated as Russian Math. Surveys
56 (2001), 774–776), has subsequently developed this sphere of ideas to prove
that at least one of ζ(5), ζ(7), ζ(9) and ζ(11) is irrational.

13.9 Exercises

(i) Let σk(n)=∑d|n dk for an integer k. Show that if σ >max(1, k + 1)
then

∞∑
n=1

σk(n)

ns
= ζ(s)ζ(s − k).

(ii) Show that the Liouville function λ(n) is multiplicative. Hence verify the
assertion about

∑
λ(n)/ns in Section 13.2.

(iii) Prove that, for κ > 1,∑
p≤x

(log p)κ

p
= 1

κ
(log x)κ + O((log x)κ−1).
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Verify that the latter holds also for 0<κ < 1 with an error term O(1).
(iv) Show that

∑
(1/p(log log p)δ) converges for δ > 1.

(v) Prove that, as x → ∞,∑
p≤x

1/(p log log p)∼ log log log x .

(vi) Let ω(n) denote the number of distinct prime divisors of n. Prove that,
for some constant c,∑

n≤x

ω(n)= x log log x + cx + O(x/ log x).

(vii) A function ρ(n) is defined on the positive integers by ρ(1)= 0 and, for
n > 1, by ρ(n) = log(p1 · · · pk), where p1, . . . , pk denote the distinct
prime factors of n. Prove that∑

n≤x

ρ(n)= x log x + O(x).

(viii) Show that the number of primes q that divide an integer n>3 and exceed
log n is at most log n/ log log n. Hence verify that

∏
q(1 − 1/q) > c> 0

for some constant c. Deduce that Euler’s totient function φ(n) satisfies
φ(n)> c′n/ log log n for some constant c′> 0.

(ix) Using the Euler product proved in Section 2.8 and the value for b referred
to after Theorem 13.7, show that, as x → ∞,∏

p≤x

(1 + 1/p)∼ (6eγ /π2) log x .

(x) Prove that ∑
n≤x

log n =
∑
n≤x

[x/n]�(n).

Hence show that ∑
n≤x

�(n)

n
= log x + O(1).
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On the zeros of the zeta-function

14.1 Introduction

We recall from Section 2.8 that the Riemann zeta-function is defined for any
complex number s = σ + i t with σ > 1 by the equation

ζ(s)=
∞∑

n=1

1

ns
.

The series converges in the region of definition and indeed uniformly for σ >
1 + δ with δ > 0. The function can be continued analytically to the region
σ >−1 by the equation

ζ(s)= s
∫ ∞

1

f (x)

xs+1
dx + 1

s − 1
+ 1

2
,

where f (x) is the ‘saw-tooth’ function given by

f (x)= [x] − x + 1
2

and xs+1 = exp((s + 1) log x) with log x real; the integral converges uniformly
for σ > δ > 0, since clearly f (x)= 1

2 − {x}, where {x} denotes the fractional
part of x , whence | f (x)| ≤ 1

2 for all x . Indeed the integral converges for all
s with σ >−1 and uniformly for σ >−1 + δ >−1; it therefore defines an
analytic function of s and the equation serves to define ζ(s) in this range. For
we have ∫ Y

X

f (x)

xs+1
dx =

[
F(x)

xs+1

]Y

X
+ (s + 1)

∫ Y

X

F(x)

xs+2
dx,

162
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where F(x) = ∫ x
1 f (u)du, and, by virtue of the boundedness of F(x), the

terms on the right tend to 0 as X,Y → ∞.
To verify the analytic continuation, that is, to show that the expression above

for ζ(s) reduces to the original series when σ > 1, we observe that

ζ(s)= s
∞∑

n=1

∫ n+1

n

f (x)

xs+1
dx + 1

s − 1
+ 1

2
,

and the integral here is

∫ n+1

n

n − x + 1
2

xs+1
dx =

[
1

(s − 1)xs−1
− n + 1

2

sxs

]n+1

n

.

It is easily seen that the number on the right can be written in the form(
1

s
− 1

s − 1

)(
1

ns−1
− 1

(n + 1)s−1

)
+ 1

2s

(
1

ns
+ 1

(n + 1)s

)
and on rearranging the absolutely convergent series which thus arise we obtain
the required identity

ζ(s)=
∞∑

n=1

1

ns
(σ > 1).

14.2 The functional equation

We remarked in Section 2.8 that ζ(s) satisfies a functional equation �(s)=
�(1 − s), where �(s)=π− 1

2 s
�( 1

2 s)ζ(s). This we now establish.
First we observe that if −1<σ < 0 we have

ζ(s)= s
∫ ∞

0

f (x)

xs+1
dx;

for if σ < 0 then

s
∫ 1

0

f (x)

xs+1
dx = 1

s − 1
+ 1

2
.

Now f (x) can be expressed as a Fourier series

∞∑
n=1

sin(2nπx)

nπ
,
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and, on substituting in the above expression for ζ(s) and integrating term by
term, a process justified since the series is boundedly convergent, we
obtain

ζ(s) = s

π

∞∑
n=1

1

n

∫ ∞

0

sin(2nπx)

xs+1
dx

= s

π

∞∑
n=1

(2nπ)s

n

∫ ∞

0

sin y

ys+1
dy

= s

π
(2π)s(−�(−s)) sin( 1

2 sπ)ζ(1 − s).

On using z�(z)=�(z + 1), this simplifies to

ζ(s)= 2sπ s−1 sin( 1
2 sπ)�(1 − s)ζ(1 − s).

Now recalling that �(s)=π− 1
2 s
�( 1

2 s)ζ(s) and using the fact that

�( 1
2 − 1

2 s)/�( 1
2 s)=π−1/22s sin( 1

2 sπ)�(1 − s)

we obtain the famous functional equation

�(s)=�(1 − s)

satisfied by ζ(s) as required. We have proved the validity only for −1<σ < 0
but, since the right-hand side is analytic throughout the half-plane σ < 0, the
equation defines the analytic continuation of ζ(s) for σ ≤−1 and it is then valid
for all s. The functional equation shows that ζ(s) is analytic throughout the
complex plane except for a simple pole at s = 1 with residue 1. It is customary
to define ξ(s)= 1

2 s(s − 1)�(s); then ξ(s) is an entire function and it satisfies
ξ(s)= ξ(1 − s).

In the proof of the functional equation above, we used the fact that∫ ∞

0

sin y

ys+1
dy =− sin( 1

2 sπ)�(−s).

This is readily verified by classical complex integration methods. We have∫ ∞

0

sin y

ys+1
dy = 1

2i

{∫ ∞

0

eiy

ys+1
dy −

∫ ∞

0

e−iy

ys+1
dy

}
.
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0

iR

−iR

R

C

C

Fig. 14.1 The contour of integration in the evaluation of the integral.

Let C denote the contour consisting of the arc from R to i R of the circle centre
the origin and radius R together with the axes from i R to 0 and 0 to R; see
Fig. 14.1. Then we have∫

C

eiz

zs+1
dz =

∫ R

0

eiy

ys+1
dy − i

∫ R

0

e−t

(i t)s+1
dt +

∫ π
2

0

ei Reiθ

(Reiθ )s+1
i Reiθ dθ.

By Jordan’s lemma, the last integral on the right is o(1) as R → ∞. Similarly,
defining C ′ as the reflection of C in the real axis as shown, we obtain∫

C ′

e−i z

zs+1
dz =

∫ R

0

e−iy

ys+1
dy + i

∫ R

0

e−t

(−i t)s+1
dt + o(1).

The integrands on the left are analytic except at the origin, whence∫ ∞

0

sin y

ys+1
dy = 1

2

{∫ ∞

0

e−t

(i t)s+1
dt +

∫ ∞

0

e−t

(−i t)s+1
dt

}

= 1

2

{
1

i s+1
�(−s)+ 1

(−i)s+1
�(−s)

}
and the result follows since

1

2i
(i−s − (−i)−s)= 1

2i
(e− 1

2 isπ − e
1
2 isπ )=− sin( 1

2 sπ).
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14.3 The Euler product

We observed in Section 2.8 that when σ >1 the function ζ(s) can be expressed
as a product over the primes p, namely

ζ(s)=
∏

p

(1 − 1/ps)−1.

The expression is due to Euler and it is essentially equivalent to the fundamen-
tal theorem of arithmetic; see Section 1.5.

The Euler product converges for σ >1 and none of the factors vanish; hence
we have ζ(s)� 0 for σ > 1. The zero-free region was extended by Hadamard
and de la Vallée Poussin; in particular they obtained the following result which
formed the key to their celebrated proofs of the prime-number theorem.

Theorem 14.1 We have ζ(s)� 0 on the line σ = 1.

Proof Let t be any real number, let σ be any number such that 1<σ ≤ 2, and
put s = σ + i t . By the Euler product we have

log ζ(s)=−
∑

p

log(1 − 1/ps)=
∑

p

∞∑
j=1

(1/j)p− js

and thus

log |ζ(s)| =
∑

p

∞∑
j=1

(1/j)p− jσ cos( j t log p).

Now since

3 + 4 cos θ + cos 2θ = 2(1 + cos θ)2 ≥ 0

we obtain

3 log |ζ(σ )| + 4 log |ζ(σ + i t)| + log |ζ(σ + 2i t)| ≥ 0,

that is,

|(ζ(σ ))3(ζ(σ + i t))4ζ(σ + 2i t)| ≥ 1.

But since ζ(s) has a simple pole at s = 1 we have |ζ(σ )|< c(σ − 1)−1 for
some absolute constant c and since ζ(s) is regular at s = σ + 2i t we have
|ζ(σ + 2i t)|< c′ for some c′ = c′(t) independent of σ . Further, if ζ(s) pos-
sessed a zero at s = 1 + i t we would have |ζ(σ + i t)|< c′′(σ − 1) for some
c′′ = c′′(t) and so the expression on the left of the above inequality would be
less than c3c′c′′4(σ − 1). This clearly gives a contradiction if σ is sufficiently
near to 1, the degree of proximity depending on t , and the contradiction proves
the theorem.
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14.4 On the logarithmic derivative of ζ(s)

We recall from Section 13.6 that the logarithmic derivative of ζ(s) is given by

ζ ′(s)
ζ(s)

=−
∞∑

n=1

�(n)

ns
(σ > 1),

where � is the von Mangoldt function introduced in Section 13.6. We now
establish some estimates for ζ(s), ζ ′(s) and ζ ′(s)/ζ(s) and we proceed to de-
rive a basic relation between the latter and the Tchebychev function ψ(x). We
shall use the Vinogradov notation referred to in Sections 8.2 and 14.4 so that
by f (t)� g(t) for real non-negative functions f (t) and g(t) we shall mean
f (t)< cg(t) for some absolute constant c>0 and similarly by f (t)� g(t) we
shall mean f (t)> cg(t) for some c> 0.

Theorem 14.2 For any s = σ + i t , with σ ≥ 1 − 2/ log |t |> 1
2 , we have

|ζ(s)| � log |t |.

Proof It is easily verified by dividing [1, N ] into unit intervals and integrating
by parts that, for any positive integer N ,

s
∫ N

1

f (x)

xs+1
dx + 1

s − 1
+ 1

2
=

N∑
n=1

1

ns
+ N 1−s

s − 1
− 1

2
N−s

and so

ζ(s)=
N∑

n=1

1

ns
+ N 1−s

s − 1
− 1

2
N−s + s

∫ ∞

N

f (x)

xs+1
dx .

Thus we have

|ζ(s)| ≤
N∑

n=1

1

nσ
+ N 1−σ

|t | + 1

2
N−σ + 1

2
|s|
∫ ∞

N

dx

xσ+1
.

Now, on assuming that σ >ρ=1−2/ log |t | and that log |t |>4 and then taking
N so that |t |< N < 2|t |, we see that the sum on the right cannot exceed

N∑
n=1

n−ρ � N 1−ρ/(1 − ρ)� log |t |.

Further, the last term on the right is given by

1
2 |s|σ−1 N−σ �|t |N−σ � 1

and the two remaining terms are also � 1. The required estimate for ζ(s)
follows.
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Theorem 14.3 For any s = σ + i t , with σ ≥ 1 − 1/ log |t |> 3
4 , we have

|ζ ′(s)| � (log |t |)2.

Proof We use the equation

ζ ′(s)= 1

2π i

∫
C

ζ(s + z)

z2
dz

where C denotes the positively orientated circle, centre the origin, with ra-
dius 1/ log |t |. The equation follows from Cauchy’s theorem, on observing
that ζ(s + z) is regular within and on C . For any z on C , it is clear that the
real part of s + z exceeds 1 − 2/ log |t | and so, by Theorem 14.2, we have
|ζ(s + z)|� log |t |. It follows that the integrand has absolute value � (log |t |)3
and this gives the required result.

Theorem 14.4 For any s = σ + i t with σ ≥ 1 and |t | � 1 we have

|ζ ′(s)/ζ(s)| � (log |t |)10.

Proof By taking the logarithmic derivative of the Euler product we see that

ζ ′(s)
ζ(s)

=−
∑

p

∞∑
j=1

p− js log p

for σ > 1, and so |ζ ′(s)/ζ(s)| ≤ |ζ ′(2)/ζ(2)| if σ ≥ 2. Hence we can assume
that 1 ≤σ ≤ 2. We now put σ ′ =σ + (log |t |)−10. Then certainly σ ′>1 and so,
as in the proof of Theorem 14.1, we obtain

|(ζ(σ ′))3(ζ(σ ′ + i t))4ζ(σ ′ + 2i t)| ≥ 1.

By Theorem 14.2 together with the inequality |ζ(σ ′)| � (σ ′ − 1)−1, this gives

|ζ(σ ′ + i t)|4 � (σ ′ − 1)3/ log |t |.
Hence, since σ ′ − 1 ≥σ ′ −σ = (log |t |)−10, we get |ζ(σ ′ + i t)|� (log |t |)− 31

4 .
Further, from the equation

ζ(s)= ζ(σ ′ + i t)−
∫ σ ′

σ

ζ ′(u + i t)du,

we see from Theorem 14.3 that

|ζ(σ ′ + i t)| − |ζ(s)| � (σ ′ − σ)(log |t |)2 = (log |t |)−8.

Thus we have |ζ(s)| � (log |t |)− 31
4 for |t | sufficiently large and this gives

|ζ ′(s)/ζ(s)| � (log |t |)10 as required.
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×
−1 a

C−C+ T

Fig. 14.2 The contours C+ and C− in the proof of Theorem 14.5.

Theorem 14.5 For any x > 0 we have∫ x

0
ψ(u)du =− 1

2π i

∫
C

ζ ′(s)
ζ(s)

xs+1

s(s + 1)
ds,

where C denotes the straight line a + i t with a> 1 and −∞< t <∞.

Proof We note first that

1

2π i

∫
C

xs+1

s(s + 1)
ds = max(0, x − 1).

For by Cauchy’s theorem we have, for any T > 1,∫ a+iT

a−iT

xs+1

s(s + 1)
ds = 2π i max(0, x − 1)+

∫
C

xs+1

s(s + 1)
ds,

where C (= C+ or C−) denotes the arc of the circle with centre the origin and
radius

√
(T 2 + a2), to the left or right of the line C , and described clockwise

or anti-clockwise respectively according as x > 1 or x ≤ 1; see Fig. 14.2. The
absolute value of the integral on the right is at most 2πxa+1(T − 1)−1 in both



170 On the zeros of the zeta-function

cases, and the desired equation follows when T → ∞. Now on recalling the
expression for ζ ′(s)/ζ(s) given in the proof of Theorem 14.4 we obtain

− 1

2π i

∫
C

ζ ′(s)
ζ(s)

xs+1

s(s + 1)
ds =

∑
p

∞∑
j=1

(p j log p)max{0, (x/p j )− 1};

here term-by-term integration is justified since the series converges absolutely
and uniformly with respect to s. The double series on the right can be
expressed as

∑
p

∞∑
j=1

(log p)max(0, x − p j )=
∑
n≤x

�(n)(x − n)

and the theorem follows from the partial summation formula given in
Section 13.4 with an =�(n) and f (u)= x − u; for clearly then f ′(u)= −1
and, by Section 13.6, we have s(u)=ψ(u).

14.5 The Riemann hypothesis

We have already referred to the subject here in Section 2.8; we now give a brief
resumé and make some supplementary remarks.

We recall from Section 14.3 that, by virtue of the Euler product, ζ(s) has
no zeros in the half-plane σ > 1 and, by Theorem 14.1, the function also has
no zeros on the line σ =1. It follows from the functional equation that the only
zeros of ζ(s) in the region σ ≤ 0 are given by the poles s = −2,−4,−6, . . .
of �( 1

2 s) and these are termed the ‘trivial’ zeros. All other zeros must lie in
the ‘critical strip’ given by 0 ≤ σ ≤ 1, indeed they must satisfy 0<σ < 1, and
Riemann conjectured in his path-breaking memoir of 1861 that they in fact lie
on the line σ = 1

2 . This is the now famous Riemann hypothesis. It remains as yet
unproved but there is considerable computational and other evidence in favour
of it. In particular it is known to be valid for the first trillion zeros above the
real axis. Furthermore, in 1915, Hardy showed that there are infinitely many
zeros on the line σ = 1

2 and Selberg proved that indeed a positive proportion of
the zeros, in a certain sense, have this property; results of Levinson, and later
Conrey, have established that this proportion is at least 2

5 .
Nevertheless, only a very limited zero-free region within the critical strip has

been demonstrated to date. In 1899 de la Vallée Poussin showed that ζ(s)� 0
for σ >1− c/ log |t | with some c>0 and, apart from an improvement reducing

log |t | to (log |t |) 2
3 (log log |t |) 1

3 by Vinogradov and Korobov in 1958, there has
been no further progress. Indeed, even the conjecture that ζ(s)�0 for σ >1− δ



14.6 Explicit formula for ζ ′(s)/ζ(s) 171

with some δ>0, the so-called ‘quasi-Riemann’ hypothesis, is beyond our reach
at present.

It is known that the Riemann hypothesis is equivalent to the assertion that

π(x)= li x + O(
√

x log x),

where, for any positive integer j ,

li x =
∫ x

2

dt

log t
= x

log x
+ x

(log x)2
+ · · ·+ j!x

(log x) j+1
(1 + o(x)).

The work of de la Vallée Poussin gave the estimate

π(x)= li x + O(xe−c
√

log x )

for some constant c > 0; Vinogradov and Korobov improved the exponent√
log x to (log x)

3
5 (log log x)−

1
5 and this is the best result to date. As remarked

in Section 2.8, another assertion known to be equivalent to the Riemann hy-
pothesis is ∑

n≤x

μ(n)= O(x
1
2 +ε)

for any ε > 0.
We conclude the section with a cautionary tale. It had been conjectured on

the basis of numerical evidence that π(x) < li x for all large x . This was dis-
proved by Littlewood in 1914. He showed that

π(x)− li x =�±(
√

x log log log x/ log x).

Here we are using the �-notation: f (x)=�±(g(x)) means that f (x)� g(x)
for a sequence of values of x tending to infinity and that f (x)� −g(x) simi-
larly. Littlewood’s proof was divided into two cases according as the Riemann
hypothesis is true or false; owing to the indirect character, it did not make
it possible to specify a particular x0 such that π(x) > li x for some x < x0.
However, in 1955, Skewes gave the value x0 = exp exp exp exp(7 · 7) and, for
a while, this ‘Skewes number’ was quite famous. Later works of Lehman and
te Riele reduced the bound to 6 · 69 × 10370; even so, the story suggests that a
zero of ζ(s) off the line σ = 1

2 with a very large ordinate cannot be discounted.

14.6 Explicit formula for ζ ′(s)/ζ(s)

In Section 14.2 we introduced the function ξ(s)= 1
2 s(s −1)�(s), where�(s)=

π− 1
2 s�( 1

2 s)ζ(s), and we observed that it is entire and satisfies ξ(s)= ξ(1 − s).
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Now clearly the zeros of ξ(s) are just the non-trivial zeros ρ of ζ(s). Fur-
ther, by Stirling’s formula, we have log |�( 1

2 s)| � |s| log |s|. Furthermore, if
σ ≥ 1

2 , then the integral defining ζ(s) is uniformly bounded, whence we obtain
|ζ(s)|� |s| as |s|→∞. It follows that log |ξ(s)|� |s| log |s|. This must in fact
hold for all s in view of the functional equation and it shows that ξ(s) is an
entire function of order 1.

We can now apply Hadamard’s factorization theorem and deduce that

ξ(s)= eA+Bs
∏
ρ

(1 − s/ρ)es/ρ

for some absolute constants A and B. On taking the logarithmic derivative
we get

ξ ′(s)
ξ(s)

= B +
∑
ρ

(
1

s − ρ + 1

ρ

)
.

Further, by the definition of ξ(s) and the fact that z�(z)=�(z + 1), we obtain

ζ ′(s)
ζ(s)

= 1

2
logπ − 1

s − 1
− 1

2

�′( 1
2 s + 1)

�( 1
2 s + 1)

+ ξ ′(s)
ξ(s)

.

Thus we have an explicit formula for ζ ′(s)/ζ(s) in terms of the set of zeros ρ
of ζ(s) in the critical strip. The �-term can be expressed as

1

2
γ +

∞∑
n=1

(
1

s + 2n
− 1

2n

)
and so represents the contribution of the trivial zeros. Moreover the value for
B can be calculated as − 1

2γ − 1 + 1
2 log 4π .

The explicit formula has found wide application. As a first instance, we shall
use it to give the classical zero-free region of the zeta-function mentioned in
Section 14.5. We shall adopt the customary notation ρ = β + iγ to denote the
real and imaginary parts of ρ. Then the real part of 1/ρ is β/(β2 + γ 2) and, in
particular, it has the same sign as β.

Theorem 14.6 We have ζ(s) � 0 for σ > 1 − c/ log |t |, where c > 0 is an
absolute constant and |t |> 2.

Proof For brevity we shall write (ζ ′/ζ )(s) for the function ζ ′(s)/ζ(s). By
definition, for σ > 1, we have

Re{(ζ ′/ζ )(s)}=−
∞∑

n=1

�(n)n−σ cos(t log n).
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It follows as in the proof of Theorem 14.1 that

−Re{3(ζ ′/ζ )(σ )+ 4(ζ ′/ζ )(σ + i t)+ (ζ ′/ζ )(σ + 2i t)} ≥ 0.

Now (ζ ′/ζ )(σ ) is real and, since (ζ ′/ζ )(s) has a simple pole at s = 1 with
residue −1, we have −(ζ ′/ζ )(σ )− 1/(σ − 1)� 1 assuming that 1< σ � 1,
where, as later, the implied constants are absolute. Further, since the real part
of any zero ρ lies between 0 and 1, the real parts of 1/(s −ρ) and 1/ρ are both
positive, whence the real part of the sum over ρ in the formula for ξ ′(s)/ξ(s)
above is positive. By Stirling’s formula, the�-term in the associated expression
for ζ ′/ζ is O(log |t |). Thus we obtain −Re{(ζ ′/ζ )(σ +2i t)}� log |t |. We now
restrict t to be the ordinate γ of a zero ρ of ζ(s) in the critical strip with |γ |>2;
then σ + i t − ρ= σ −β and from the explicit formula again we have

−Re{(ζ ′/ζ )(σ + i t)} + 1/(σ −β)� log |t |.
On combining the estimates, we get

4/(σ −β)− 3/(σ − 1)� log |t |.
Then, on taking σ = 5 − 4β, so that 1< σ < 5, the left-hand side becomes
1/(20(1 −β)); hence we see that 1 � (1 −β) log |t | and thus β < 1 − c/ log |t |
for some constant c> 0. This proves the theorem.

14.7 On certain sums

We now give two further applications of the explicit formula for ζ ′(s)/ζ(s).
The results are needed preliminary to the work of the next section.

Lemma 14.1 We have ∑
ρ

1

4 + (t − γ )2 � log |t |.

Proof The formulae in Section 14.6 give

ζ ′(2 + i t)

ζ(2 + i t)
=
∑
ρ

(
1

2 + i t − ρ + 1

ρ

)
+ O(log |t |).

The left-hand side is expressible as the Dirichlet series −∑�(n)n−2−i t and
so is O(1). Further, the real parts of the 1/ρ are positive. Thus

Re
∑
ρ

1

2 + i t − ρ � log |t |
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and the lemma follows since

Re

(
1

2 + i t − ρ
)

= 2 −β
(2 −β)2 + (t − γ )2 ≥ 1

4 + (t − γ )2 .

Lemma 14.2 For any s = σ + i t with −1 ≤ σ ≤ 2 and t not coinciding with
the imaginary part γ of a zero ρ, we have

ζ ′(s)
ζ(s)

=
∑
ρ

′ 1

s − ρ + O(log |t |),

where the summation is over all zeros ρ of ζ(s) in the critical strip such that
|t − γ |< 1.

Proof On comparing ζ ′(s)/ζ(s) with ζ ′(2 + i t)/ζ(2 + i t) we obtain

ζ ′(s)
ζ(s)

=
∑
ρ

(
1

s − ρ − 1

2 + i t − ρ
)

+ O(log |t |).

Now the summand here is

2 − σ
(s − ρ)(2 + i t − ρ)

and the imaginary part of both factors in the denominator is t − γ ; hence
the absolute value is at most 3/(t − γ )2. The latter does not exceed 15/(4 +
(t − γ )2) if |t − γ | ≥ 1. Thus, by Lemma 14.1, it suffices to sum over the
ρ satisfying |t − γ |< 1. But |2 + i t − ρ|2 = (2 − β)2 + (t − γ )2 and, since
(2 − β)2 > 1, we have |2 + i t − ρ|> 1 + 1

4 (t − γ )2 if |t − γ |< 1. Again from
Lemma 14.1, this gives

∑′
ρ 1/|2 + i t − ρ| � log |t |, and the desired result

follows.

14.8 The Riemann–von Mangoldt formula

It is customary to denote by N (T ) the number of zeros ρ = β + iγ of ζ(s) in
the critical strip with 0< γ ≤ T . In his original memoir, Riemann gave con-
jecturally an asymptotic formula for N (T ) and, in 1905, this was established
precisely by von Mangoldt.

Theorem 14.7 We have

N (T )= T

2π
log

T

2π
− T

2π
+ O(log T ).
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−1 0 1
2 2

−1 + iT 1
2 + iT 2 + iT

Fig. 14.3 The rectangle R in the proof of Theorem 14.7.

Proof Let R denote the rectangular contour with vertices 2,2 + iT , −1 +
iT , −1 described anti-clockwise; see Fig. 14.3. Further, let ξ(s) be the entire
function introduced earlier satisfying the functional equation ξ(s)= ξ(1 − s).
We assume for simplicity that T does not coincide with an ordinate γ of a
zero of ξ(s). Then we have 2πN (T )=�R(arg ξ(s)) where the latter signifies
the variation of the argument of ξ(s) as s describes R. The variation of the
argument of ξ(s) as s describes the line from −1 to 2 is 0 since here ξ(s) is real
and does not vanish. Indeed ξ(0)=ξ(1)= 1

2 and ξ(σ )= 1
2σ(σ −1)ζ(σ )>0 for

0<σ <1; see Section 14.10 Exercise (v). Now, since ξ(σ + i t)=ξ(1−σ − i t)
and this is just the complex conjugate of ξ(1 − σ + i t), it follows that the
variation of the argument of ξ(s) as s describes the part of R from 1

2 + iT to
−1 is the same as the variation as s describes the part from 2 to 1

2 + iT . With
C used to denote the latter, it therefore suffices to give an asymptotic formula
for πN (T )=�C (arg ξ(s)).

We recall again that ξ(s)= 1
2 s(s − 1)�(s), where �(s)= π− 1

2 s�( 1
2 s)ζ(s),

and we proceed to calculate the variation of the argument of each factor over
C . We have �C (arg s(s − 1))= arg(− 1

4 − T 2)=π and

�C (argπ− 1
2 s)=�C (arg e− 1

2 s logπ )=− 1
2 T logπ.

By Stirling’s formula

log�(z)= (z − 1
2 ) log z − z + 1

2 log 2π + O(|z|−1)
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uniformly as |z| → ∞, provided that −π + δ < arg z <π − δ for some δ > 0.
Hence �C (arg�( 1

2 s)) is given by

Im{log�( 1
4 + 1

2 iT )} = Im{(− 1
4 + 1

2 iT ) log( 1
4 + 1

2 iT )− 1
2 iT + O(T −1)}.

Since log( 1
4 + 1

2 iT )= log( 1
2 iT )+ log(1 + (2iT )−1), this simplifies to

Im{(− 1
4 + 1

2 iT ) log( 1
2 iT )− 1

2 iT + O(T −1)}
= 1

2 T log( 1
2 T )− 1

8π − 1
2 T + O(T −1).

On combining the results we get

N (T )= T

2π
log

T

2π
− T

2π
+ 7

8
+ 1

π
�C (arg ζ(s))+ O(T −1).

It remains only to prove that �C (arg ζ(s))= O(log T ). Now C consists of
the line L from 2 to 2 + iT and the line M from 2 + iT to 1

2 + iT . On L , the
real part of ζ(s) is at least 1 −∑n≥2(1/n2) > 0 and hence �L(arg ζ(s)) < π .
By Lemma 14.2 we have

�M (arg ζ(s))= Im
∫

M
(ζ ′(s)/ζ(s))ds =

∑
ρ

′
�M (arg(s − ρ))+ O(log T ),

where the sum is over all zeros ρ of ξ(s) with |t − γ |< 1. From Lemma 14.1
it is easily deduced that the number of these zeros is O(log T ). We have also
�M (arg(s − ρ))<π and the theorem follows.

As a corollary to Theorem 14.7 we deduce that if the ordinates of the zeros ρ
of ξ(s) above the real axis are written as an increasing sequence γ1, γ2, . . . then
γn ∼ 2πn/ log n as n → ∞. For we have 2πN (T )∼ T log T as T → ∞ and,
since N (γn)= n, this gives 2πn ∼ γn logγn as n →∞ and thus logγn ∼ log n.

Apart from N (T ), much study has also been made of the function N (σ,T )
defined as the number of zeros ρ= β + iγ of ζ(s) with β ≥ σ and 0<γ ≤ T .
We have N (T )= N (0,T ) and so Theorem 14.7 gives N (σ,T )� T log T for
all σ > 0. Better results in this direction have been obtained by Ingham, Hux-
ley and others; in particular they have shown that N (σ,T )� T (12/5)(1−σ)+ε

for 1
2 ≤ σ ≤ 1 and any ε > 0, where the implied constant depends only on ε.

Generally speaking the goal here is to prove the so-called density hypothesis
that N (σ,T )� T 2(1−σ)+ε. This is clearly implied by the Riemann hypothesis
for then N (σ,T )= 0 for σ > 1

2 . But the density hypothesis is also known to
hold under a conjecture of Lindelöf of 1908, the famous Lindelöf hypothesis,
to the effect that |ζ( 1

2 + i t)| � tε for all t > 0. Backlund proved in 1918 that
the latter is equivalent to the assertion that the number of zeros of ζ(s) with
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σ > 1
2 and T < t ≤ T + 1, which we know to be O(log T ) by Theorem 14.7, is

in fact o(log T ). In particular the Lindelöf hypothesis is a consequence of the
Riemann hypothesis.

14.9 Further reading

The material of this chapter is entirely classical and some version of it can
be found in all of the principal books on analytic number theory referred to in
Sections 1.7, 2.9 and 13.8. We have mainly followed the expositions of Ingham
and Davenport; for further reading we recommend the texts of Titchmarsh and
Ivić and also the work of Montgomery and Vaughan, Multiplicative Number
Theory I: Classical Theory (Cambridge University Press, 2006).

14.10 Exercises

(i) Defining the Gamma function by

�(z)= lim
n→∞

nzn!

z(z + 1) . . . (z + n)
(z � 0,−1,−2, . . . ),

establish the following properties used in Section 14.2.

(a) z�(z)=�(z + 1);
(b) �(z)�(1 − z)=π cosec(π z);
(c) �(z)�(z + 1

2 )2
2z−1 =�( 1

2 )�(2z);
(d) �( 1

2 )=
√
π .

(ii) Prove that, if the series
∑∞

n=1 zn of complex numbers converges abso-
lutely and if zn � 1 for all n, then

∏∞
n=1(1 − zn)� 0. Hence verify the as-

sertion of Section 14.3 that ζ(s)�0 for σ >1. Show that the convergence
of the series is necessary by proving that

∏∞
n=2(1 − 1/(n log n))= 0.

(iii) Verify the following for σ > 1 where the sum is over all primes p.

ζ(s)= s
∫ ∞

1

[x]

xs+1
dx,

∑
p

1

ps
= s
∫ ∞

1

π(x)

xs+1
dx .

(iv) Suppose that the Dirichlet series η(s) =∑∞
n=1 an/ns converges abso-

lutely for σ > b> 0. Show that, if S(x)=∑n≤x an , then, for any c> b,

1

2π i

∫ c+i∞

c−i∞
η(s)xs+1

s(s + 1)
ds =

∫ x

0
S(u)du.
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(v) Show that, for σ > 1,

(1 − 21−s)ζ(s)= 1 − 2−s + 3−s − 4−s + · · · .
Verify that, for σ >0, both sides are analytic and so the equation remains
valid there. Deduce that ζ(σ )< 0 for 0<σ < 1.

(vi) Show that the Riemann–von Mangoldt formula can be written in the
form

N (T )=
∫ T/(2π)

1
(log t)dt + O(log T ).

Deduce that N (T + A) > N (T ) if A is sufficiently large. Hence prove
that, if γ1, γ2, . . . are the ordinates of the zeros of ζ(s) above the real
axis in ascending order of magnitude, then γn+1 − γn is bounded inde-
pendently of n.

(vii) With the preceding notation, prove that N (T + 1)− N (T )= O(log T ).
Hence verify that there exists a constant c > 0 such that γn+1 − γn >

c/ log n for an infinite sequence of values of n.
(viii) Prove that ∑

0<γn≤T

1

γn
= O(log T )2.
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On the distribution of the primes

15.1 The prime-number theorem

In this chapter we shall give an account of classical results on the distribution
of the primes both in the sequence of the ordinary integers and, more gener-
ally, in arithmetical progressions. To begin with we establish the celebrated
prime-number theorem originally conjectured by Legendre and first proved by
Hadamard and de la Vallée Poussin independently in 1896. The proofs were
based on the theory of functions of a complex variable and could not therefore
be considered as elementary. An ‘elementary’ proof was given by Selberg and
Erdős in 1948; we shall mention some details relating to it in Section 15.3.
Hardy famously predicted in 1921 that if an elementary proof were ever found
then it would be time ‘for the books to be cast aside and for the theory to be
rewritten’. But in reality the original analytic method has remained the basis
of all the more precise refinements and corollaries established to date and it is
the one that we follow here.

We show first that the prime-number theorem is valid in a certain average
sense and we then obtain the theorem itself as a direct corollary.

Theorem 15.1 We have∫ x

0
ψ(u)du ∼ 1

2 x2 as x → ∞.

Proof Suppose that N > 1 and let C denote the path consisting of the lines
1 + i t with −N ≤ t ≤ −T and T ≤ t ≤ N , the line b + i t with −T ≤ t ≤ T ,
where 0< b < 1, and the connecting lines σ ± iT with b ≤ σ ≤ 1. Here the
numbers T and b are chosen in that order (see later) so that ζ(s) has no zeros
on or to the right of C ; such a choice is possible in view of Theorem 14.1
together with the fact that ζ(s) has no zeros in σ > 1 and only a finite number
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N

T

-

-

×

C C

L

L

b

a

Fig. 15.1 The contour used in the proof of Theorem 15.1.

of zeros in any bounded region. Further, let C denote the line segment a + i t
with −N ≤ t ≤ N for some a>1, let L , L ′ denote the connecting lines σ ± i N
with 1 ≤σ ≤ a, and suppose that the complete contour C, L ,C, L ′ is described
clockwise; see Fig. 15.1.

Now ζ ′(s)/ζ(s) is analytic within and on the contour, apart from a simple
pole at s = 1 with residue −1, and thus the function

�(s)= ζ ′(s)
ζ(s)

xs+1

s(s + 1)

is also analytic within and on the contour apart from a simple pole at s = 1
with residue − 1

2 x2. Further, the integrals of �(s) over L and L ′ have absolute
values
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� (log N )10 max(1, xa+1)(a − 1)/{N (N − 1)},
which clearly tends to 0 as N → ∞. This, together with Cauchy’s theorem,
implies that ∫

C ′
�(s)ds +

∫
C′
�(s)ds = 2π i( 1

2 x2),

where C ′,C′ denote the contours derived from C,C as N → ∞. But by
Theorem 14.5 we have

1

2π i

∫
C′
�(s)ds =

∫ x

0
ψ(u)du

and thus to prove Theorem 15.1 it suffices now to show that

x−2
∫

C ′
�(s)ds → 0 as x → ∞.

By Theorem 14.4 we see that

|�(1 + i t)| � (log |t |)10x2|t |−2

if |t | � 1 and so certainly the integral of x−2�(s) over that part of C ′ which
lies on the line σ = 1 tends to 0 as T → ∞. In particular, T can be chosen so
that the absolute value of the integral is at most 1

2ε for a given ε > 0. Further,
we see that x−s−1�(s) is analytic on C ′ and so, on that part of C ′ which does
not lie on σ =1, it is bounded in absolute value by M = M(T,b) independently
of x . The integral of x−2�(s) over the latter part has therefore absolute value
at most

M
∫ T

−T
xb−1 dt + 2M

∫ 1

b
xσ−1 dσ = M

{
2T xb−1 + 2(1 − xb−1)/ log x

}
and, with T and b fixed, this clearly tends to 0 as x → ∞. In particular the
absolute value of the expression is at most 1

2ε for x sufficiently large and this
proves the theorem.

Theorem 15.2 (Prime-number theorem) We have

π(x)∼ x/ log x as x → ∞.

Proof It will suffice to show that ψ(x)∼ x as x → ∞; for it was proved in
Section 13.6 that π(x)∼ψ(x)/ log x . Now ψ(u) increases with u and so, for
any h> 0, we see that ψ(x) lies between

1

h

∫ x

x−h
ψ(u)du and

1

h

∫ x+h

x
ψ(u)du.
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By Theorem 15.1, these expressions have the form x ± 1
2 h + o(x2/h) for x

sufficiently large and so, on taking h = δx with δ > 0, we deduce that ψ(x)/x
lies between 1 − δ and 1 + δ if x is sufficiently large. This gives ψ(x)∼ x as
required.

15.2 Refinements and developments

Following the preceding proofs but modified so that the contour reflects the
expanded zero-free region given by Theorem 14.6, we deduce that

ψ(x)= x + O(xe−c
√

log x )

for some c > 0. Now by the partial summation formula in Theorem 13.4
we have ∑

n≤x

�(n)

log n
=
∫ x

2

ψ(u)du

u(log u)2
+ ψ(x)

log x
.

The sum on the left is just∑
pm≤x

1

m
=

∑
m≤log x/ log 2

π(x1/m)

m
=π(x)+ O(

√
x).

Hence from the basic result ψ(x)∼ x established in Theorem 15.2 we obtain

π(x)∼
∫ x

2

du

(log u)2
+ x

log x
∼ li x as x → ∞.

Further, from the more precise expression above we get

π(x)= li x + O(xe−c
√

log x )

with c> 0. As remarked in Section 14.5, the best result to date is due to Vino-
gradov and Korobov who gave the exponent (log x)

3
5 (log log x)−

1
5 .

A precise connection between ψ(n) and ζ(s) is given by

ψ(n)=− 1

2π i

∫ a+i∞

a−i∞

(n + 1
2 )

s

s

ζ ′(s)
ζ(s)

ds,

valid for any a> 1, and the proof of the prime-number theorem can be based
on this result instead of the formula given in Theorem 14.5. But the method
involves slight additional complications due to the less rapid convergence of
the integral on the right; see, for example, the book by Prachar referred to in
Section 15.7. In this way, however, one avoids the need for the Tauberian-type
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deduction in the proof of Theorem 15.2. Various attempts were made in the
early years to reduce the amount of complex-variable theory occurring in the
exposition and it was shown, in particular, that one could dispense with
Cauchy’s theorem. But the proof could still not be regarded as elementary.

The ‘elementary’ proof of the prime-number theorem of Selberg and Erdős
is based on the Selberg formula

ψ(x) log x +
∑
n≤x

�(n)ψ(x/n)= 2x log x + O(x).

This is equivalent to

log x
∑
p≤x

log p +
∑

p,p′≤x

log p log p′ = 2x log x + O(x),

where the sums are over primes p and p′. The proof of the formula depends
on a double application of the equation

F(x) log x +
∑
n≤x

F(x/n)�(n)=
∑
d≤x

μ(d)G(x/d),

where G(x) =∑m≤x F(x/m) log x, first with F(x) = ψ(x) and then with
F(x) = x − γ − 1 where γ is Euler’s constant; for details see the book of
Hardy and Wright referred to in Section 1.7 or that of Trost referred to in
Section 15.7.

The function N (σ,T ) discussed in Section 14.8 is critical to studies on the
difference between consecutive primes. In particular Ingham showed that an
estimate of the form N (σ,T )� T κ(1−σ)(log T )c, where c is an absolute con-
stant, implies that pn+1 − pn � p(1−1/κ)+ε

n for any ε > 0, the implied constant
depending only on ε. After an initial breakthrough by Hoheisel in 1930 yield-
ing the first exponent of pn less than 1 there have been many subsequent works
in this context; especially, in 1972, Huxley gave the value κ = 12

5 and thus the

exponent 7
12 + ε. The density hypothesis implies that pn+1 − pn � p1/2+ε

n

and on the Riemann hypothesis it has been shown that pεn can be replaced by
log pn . But these estimates are probably far from best possible; indeed in 1937
Cramér conjectured that pn+1 − pn � (log pn)

2.
We remark finally that there is a so-called approximate functional equation

for the Riemann zeta-function which goes further than the observations given
in the proof of Theorem 14.2. A simple form, deducible from the latter, is

ζ(s)=
N∑

n=1

1

ns
+ N 1−s

s − 1
+ O(|t |N−σ ) (σ > 0).
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This can be refined to give

ζ(s)=
∑
n≤x

1

ns
+ x1−s

s − 1
+ O(x−σ ), 0<σ0 ≤ σ ≤ 2, x ≥ |t |/π,

where the constant implied in the O-term depends on σ0; see the book by Ivić
referred to in Section 2.9. The most famous approximate functional equation,
due to Hardy and Littlewood and obtained in 1921, is

ζ(s)=
∑
n≤x

n−s +χ(s)
∑
n≤y

ns−1 + O(x−σ )+ O(t
1
2 −σ yσ−1)

where 0 ≤ σ ≤ 1, 2πxy = t with x, y, t > c> 0, and

χ(s)= 2sπ s−1 sin( 1
2 sπ)�(1 − s).

15.3 Dirichlet characters

The remainder of this chapter is devoted to the subject of primes in arith-
metical progressions. Our principal objective will be to prove the famous the-
orem of Dirichlet of 1839 in this context. The proof rests on the concept
of Dirichlet characters and we begin with an account of their definition and
properties.

A complex-valued function χ defined on an arbitrary group G is called a
character of G if χ is multiplicative, that is, χ(a)χ(b)= χ(ab) for all a,b
in G, and χ is not identically 0. It is a consequence of group theory that,
if G is a finite abelian group of order d, then there are d distinct characters
and they themselves form a group with the product χ1χ2 of χ1, χ2 defined by
χ1χ2(a)= χ1(a)χ2(a) for all a in G. If one further specializes G to be the
group of reduced residue classes modulo an integer q > 1 then, on defining
χ(n) for any integer n with (n,q)= 1 by χ(ñ) where ñ is the residue class
that contains n and χ(n)= 0 for (n,q) > 1, one obtains a Dirichlet character
(mod q).

There are φ(q) Dirichlet characters χ(mod q), where φ is Euler’s function,
and each of these is periodic with period q, that is, χ(n + q)=χ(n) for every
n. The particular Dirichlet character χ0 that satisfies χ0(n)=1 when (n,q)=1
is called the principal character and it is the identity element in the character
group. We have the basic relations

q∑
n=1

χ(n)=φ(q) if χ =χ0,

q∑
n=1

χ(n)= 0 if χ �χ0.
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The first of these is clear and the second follows from the observation that, if
χ � χ0, then χ(m)� 1 for some m with (m,q)= 1, whence as n runs through
a reduced set of residues (mod q) so does mn, and we obtain

q∑
n=1

χ(n)=
q∑

n=1

χ(mn)=χ(m)
q∑

n=1

χ(n).

Further, we have the relations∑
χ

χ(n)=
{
φ(q) if n ≡ 1 (mod q),
0 otherwise,

where the sum is over all characters χ(mod q). Again the first of these is clear
since χ(1)= 1 for all χ ; the second follows from the fact that for every n with
(n,q)= 1 other than n ≡ 1 (mod q) there exists, by the initial group theory, a
character χ ′ such that χ ′(n)� 1 and we have∑

χ

χ(n)=
∑
χ

χ ′χ(n)=χ ′(n)
∑
χ

χ(n).

For each Dirichlet character χ we define the conjugate χ in the obvious way
by taking χ(n) as the complex conjugate of χ(n). Then χ is the reciprocal of
χ in the character group and the following holds.

Theorem 15.3 For any integer a with (a,q)= 1 we have∑
χ

χ(n)χ(a)=φ(q) if n ≡ a (mod q),
∑
χ

χ(n)χ(a)= 0 otherwise.

Proof We observe that χ(n)=χ(a)χ(n′), where n′ satisfies n ≡ an′ (mod q),
and also χ(a)χ(a)= 1, whence the result follows at once from the relations
above.

The subject of Dirichlet characters can be introduced in another way uti-
lizing properties of primitive roots rather than group theory. For simplicity
we restrict our discussion to the case q = p1 p2 · · · pk where p1, p2, . . . , pk

are distinct odd primes. If n is any integer with (n,q) = 1, we denote by
m j (1≤ j ≤k) the index of n with respect to a primitive root g j (mod p j ) so that
n ≡ g

m j
j (mod p j ) and 0 ≤ m j <φ(p j ). For each set of integers r1, r2, . . . , rk

with 0 ≤ r j <φ(p j ) we define a homomorphism χ from the integers n into the
complex numbers by χ(n)= e2π i f (n), where

f (n)=
k∑

j=1

m jr j

φ(p j )
.
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We take χ(n)= 0 if (n,q)> 1 and then χ becomes a Dirichlet character to the
modulus q. As before, there are φ(q) distinct Dirichlet characters χ (mod q)
and the principal character χ0, given by r1 = r2 =· · ·= rk = 0, is the identity in
the character group. The basic relations stated above are obtained by summing
e2π i f (n) over all m1, . . . ,mk or r1, . . . , rk and using the cyclotomic property
of the exponential function. The theory generalizes readily to deal with an
arbitrary odd integer q > 1; for even q there is a slight complication in that
there is no primitive root (mod 2l) for l ≥3 but we have n ≡ (−1)m5m′

(mod 2l)

where m = 0 or 1 and 0 ≤ m′< 2l−2 and the pair m,m′ serves as the index of n
in this instance.

15.4 Dirichlet L-functions

For the complex variable s = σ + i t with σ > 0 and the Dirichlet character
χ (mod q) with χ �χ0 we define the Dirichlet L-function by

L(s, χ)= s
∫ ∞

1

(∑
n≤x

χ(n)

)
x−s−1 dx .

In view of the basic relation
∑q

n=1 χ(n)= 0 for χ � χ0 and the periodicity of
χ , the sum is bounded in terms of q and so the integral converges for σ > 0
and uniformly for σ > δ > 0. When σ > 1, we have

L(s, χ)= s
∞∑

n=1

χ(n)
∫ ∞

n
x−s−1 dx =

∞∑
n=1

χ(n)n−s .

The Dirichlet series on the right can be expressed as an Euler product, namely

L(s, χ)=
∏

p

(1 −χ(p)p−s)−1.

For χ =χ0 we define

L(s, χ0)= ζ(s)
∏
p|q
(1 − p−s).

Then, for σ > 1, we have

L(s, χ0)=
∞∑

n=1

χ0(n)n
−s .

The existence of the Euler product shows that L(s, χ) � 0 when s > 1. We
shall prove in the next section that this holds also for s = 1. Here we shall
establish the following preliminary result.



15.5 Primes in arithmetical progressions 187

Lemma 15.1 When χ �χ , we have L(1, χ)� 0.

Proof Again in view of the Euler product, we obtain, for any s> 1,

log L(s, χ)=−
∑

p

log(1 −χ(p)p−s)=
∑

p

∞∑
m=1

χ(pm)m−1 p−ms .

On summing over all characters χ(mod q), we obtain∑
χ

log L(s, χ)=
∑

p

∞∑
m=1

m−1 p−ms
∑
χ

χ(pm).

Now by Theorem 15.3, or simply by the relations which preceded the theorem,
we see that the last sum is φ(q) if pm ≡ 1 (mod q) and 0 otherwise; in par-
ticular, the expression on the right of the equation is positive. Hence we have,
for s> 1, ∏

χ

|L(s, χ)| ≥ 1.

But L(s, χ0) has a simple pole at s =1, the remaining factors are all analytic at
s =1 and, if L(1, χ) were 0, then also L(1, χ) would be 0. Thus, for χ �χ , the
left-hand side would tend to 0 as s → 1, contrary to it being bounded below.
This proves the lemma.

15.5 Primes in arithmetical progressions

Dirichlet proved in 1839 that Euclid’s result on the existence of infinitely many
primes holds more generally in any arithmetical progression. As remarked in
Section 1.6, though some special cases were known previously, Dirichlet’s
proof involved entirely new concepts and has been of far-reaching significance.

Theorem 15.4 There exist infinitely many primes in the arithmetical progres-
sion a,a +q,a +2q, . . . , where a and q are integers with q>0 and (a,q)=1.

Proof We shall assume that q > 1 and that s > 1. Then, as in the proof of
Lemma 15.1, we see that∑

χ

χ(a) log L(s, χ)=
∑

p

∞∑
m=1

m−1 p−ms
∑
χ

χ(pm)χ(a).

We shall show that the expression on the left tends to infinity as s → 1 and
this will suffice to establish the theorem. For, by Theorem 15.3, the last sum
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on the right is φ(q) if pm ≡ a (mod q) and 0 otherwise. Hence the part of the
expression on the right for m ≥ 2 is bounded above by φ(q)

∑
p 1/(p(p − 1))

and so converges; there remains only φ(q)
∑

p−s , where the sum is over all
primes p ≡ a (mod q). It follows that the latter tends to infinity as s → 1 and
so certainly the sequence of primes p ≡ a (mod q) cannot terminate.

Now, by Lemma 15.1, the terms in the expression on the left given by those
characters with χ � χ remain bounded as s → 1. A fundamental result of
Dirichlet, which we establish in Lemma 15.2 below, gives L(1, χ)� 0 for real
χ � χ0; it follows that all the terms corresponding to non-principal characters
remain bounded as s → 1. On the other hand, the term given by χ = χ0 tends
to infinity as s → 1. Thus the whole expression tends to infinity as s → 1 and
Theorem 15.4 is proved subject to a verification of the following result.

Lemma 15.2 We have L(1, χ)� 0 for any real non-principal character χ .

Proof Let χ (mod q) be a real non-principal character and suppose that
L(1, χ)= 0. Then the function

F(s)= L(s, χ)L(s, χ0)

L(2s, χ0)

is analytic for s = σ + i t with σ > 1
2 ; indeed the pole of L(s, χ0) at s = 1

is simple and so cancels with the zero of L(s, χ), and certainly L(2s, χ0) is
analytic when σ > 1

2 . Further, since L(2s, χ0)→∞ as s → 1
2 , we have F(s)→

0 as s → 1
2 from the right.

Now, on expressing the factors of F(s) as Euler products and using the prop-
erty that a real character takes only the values 0 and ±1, we obtain

F(s)=
∏

p,(p,q)=1

1 − p−2s

(1 −χ(p)p−s)(1 − p−s)
=

∏
p,χ(p)=1

1 + p−s

1 − p−s
.

This gives F(s)=∑∞
n=1 cnn−s , where cn ≥ 0 for all n and c1 = 1. On denoting

the j th derivative of F(s) with respect to s by F ( j)(s), we see that

F ( j)(2)= (−1) j
∞∑

n=1

cn(log n) j n−2.

Further, there is the Taylor expansion

F(s)=
∞∑
j=0

F ( j)(2)

j!
(s − 2) j

valid for s with |s − 2|< 3
2 . If 1

2 < s < 2 then all the terms on the right are
non-negative; for we have (−1) j F ( j)(2)≥ 0 and (−1) j (s − 2) j ≥ 0. Thus we



15.6 The class number formulae 189

obtain F(s)≥ F(2). But the observations above on the cn give F(2)≥ 1 and
this contradicts the property that F(s)→0 as s → 1

2 . The contradiction implies
that L(1, χ)� 0 as required.

15.6 The class number formulae

The proof of Lemma 15.2 given above dates from a paper of de la Vallée
Poussin of 1896 and, though relatively short, it may seem unmotivated.
Dirichlet himself derived the result from some famous class number formu-
lae which have been very important historically and better explain the lemma;
we proceed to discuss them briefly.

A character χ(mod q) may have a period q1< q; then χ(n + q1)=χ(n) for
all n with (n,q)= 1, and the least such q1 is a proper divisor of q. If χ has
no period q1 < q then it is said to be primitive. Now it is easily shown that
for any character χ(mod q) there is a divisor q1 of q and a primitive character
χ1(mod q1) such that

χ(n)=χ1(n) if (n,q)= 1, χ(n)= 0 if (n,q)> 1;
conversely, given χ1(mod q1), these define a character χ(mod q) for each mul-
tiple q of q1 and we say that χ1 induces χ . It is clear that the Dirichlet L-
functions for χ and χ1 satisfy the relation

L(s, χ)= L(s, χ1)
∏
p|q
(1 −χ1(p)p

−s).

Thus, to verify Lemma 15.2, it suffices to consider only real non-principal
primitive characters.

Now from the analytic definition in Section 15.3, it is relatively easy to de-
duce that if χ(mod q) is a real primitive character and if χ � χ0 then q = |d|
where d is the discriminant of a quadratic field K =Q(√d). From this we get
χ(n)= ( d

n

)
where, for odd n > 0, the symbol is Jacobi’s; for even n > 0 it is

the natural extension, termed the Kronecker symbol, given by defining χ(2) as
in Section 12.5. Thus we obtain

L(s, χ)=
∞∑

n=1

(
d

n

)
n−s .

Dirichlet proved that, for these particular L-functions, we have

L(1, χ)= 2πh(d)

w
√|d| (d < 0), L(1, χ)= h(d) log ε√

d
(d > 0).
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Here h(d) is the class number, w is the number of roots of unity and ε is the
fundamental unit in K . The formulae make obvious the validity of Lemma
15.2. Siegel obtained in 1935 an important strengthening, namely L(1, χ)�
q−ε for any ε > 0, where the implied constant depends only on ε. This gives

h(d)�|d| 1
2 −ε when d < 0 which is essentially best possible.

Much of the theory discussed earlier relating to the Riemann zeta-function
can be generalized in a natural way to Dirichlet L-functions. Thus, there is an
analogue of the prime-number theorem, due to Siegel and Walfisz and referred
to as the Siegel–Walfisz theorem, to the effect that the number π(x;q,a) of
primes ≤ x in the arithmetical progression a,a +q,a + 2q, . . . with (a,q)=1
satisfies

π(x;q,a)= 1

φ(q)
li x + O(xe−c

√
log x )

uniformly for q ≤ (log x)A with any given A> 0, where c> 0 and the constant
implied in the O-term depend only on A. Further, there is an analogue of the
Riemann–von Mangoldt formula to the effect that, for primitive χ ,

1

2
N (T, χ)= T

2π
log

qT

2π
− T

2π
+ O(log(qT )),

where N (T, χ) is the number of zeros of L(s, χ) satisfying 0 < σ < 1 and
|t | ≤ T . Moreover, again for primitive χ , there is a functional equation for
L(s, χ), namely

�(1 − s, χ)= iδ
√

q

τ(χ)
�(s, χ),

where

�(s, χ)= (π/q)− 1
2 (s+δ)�( 1

2 (s + δ))L(s, χ);

here τ(χ) is the Gaussian sum

τ(χ)=
q∑

m=1

χ(m)e2π im/q ,

so that |τ(χ)|=√
q and we have δ= 0 if χ(−1)= 1 and δ= 1 if χ(−1)=−1.

There is indeed a rich literature on the subject of L-functions and we refer to
the recommended books for details.
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15.7 Siegel’s theorem

Let L(s, χ) be the Dirichlet L-function introduced in Section 15.4. We referred
in Section 15.6 to the celebrated theorem of Siegel asserting that, if χ is a real
primitive character with modulus q, then

L(1, χ)� q−ε

for any ε > 0, where the implied constant depends only on ε. We give now a
proof of this result following an argument of Estermann; as we shall see, there
are close similarities with the proof of Lemma 15.2.

We begin by defining χ1 and χ2 as real primitive characters with distinct
moduli q1 and q2. Then χ1χ2 is a real character with modulus q1q2 and, though
not necessarily primitive, it is non-principal; for if χ1(n)χ2(n) = 1, that is,
χ1(n)= χ2(n), for all n with (n,q1q2)= 1 then χ1 and χ2 would induce the
same characters mod q1q2 and this is impossible with χ1 and χ2 primitive. The
proof now rests on a study of the function

F(s)= ζ(s)L(s, χ1)L(s, χ2)L(s, χ1χ2).

It is in fact the Dedekind zeta-function of a biquadratic field (cf. Sections 12.5
and 12.6); this was noted and critically utilized by Siegel in his original memoir
but we shall not need to appeal to the property here.

Now F(s) is analytic for all s except for a simple pole at s = 1 with residue

λ= L(1, χ1)L(1, χ2)L(1, χ1χ2).

Further, from the Euler products we obtain

log F(s)=
∑

p

∞∑
m=1

m−1 p−ms(1 +χ1(p
m))(1 +χ2(p

m))

and so

F(s)=
∞∑

n=1

ann−s (σ > 1),

where an ≥ 0 for all n and a1 = 1. Hence as in the proof of Lemma 15.2 we
see that

F(s)=
∞∑

m=0

bm(2 − s)m (|s − 2|< 1),

where bm ≥ 0 for all m and b0 ≥ 1. This gives

F(s)− λ/(s − 1)=
∞∑

m=0

(bm − λ)(2 − s)m



192 On the distribution of the primes

and the equation is valid for |s − 2| < 2 since the expression on the left is
analytic there.

It is obvious from the definition of L(s, χ) that

|L(s, χ)| ≤ 2q|s| (σ ≥ 1
2 )

and so we have |F(s)| � (q1q2)
2 on the circle |s − 2| = 3

2 , where the implied
constant is absolute. The same estimate holds for λ/(s − 1). Furthermore, by
Cauchy’s estimates for the coefficients in a power series, we obtain

|bm − λ| � (q1q2)
2( 2

3 )
m,

whence, if 9
10 < s< 1, we have

∞∑
m=M

|bm − λ|(2 − s)m �
∞∑

m=M

(q1q2)
2( 2

3 )
m(2 − s)m � (q1q2)

2( 11
15 )

M .

We choose M so that the bound on the right is at most 1
2 and we take the small-

est M with this property. Then M < c log(q1q2) for some absolute constant c.
On noting that

M−1∑
m=0

(2 − s)m = ((2 − s)M − 1
)
/(1 − s)

and recalling that b0 ≥ 1 and bm ≥ 0 when m ≥ 1 we obtain

F(s)≥ 1
2 − λ(2 − s)M/(1 − s).

We now choose ε with 0< ε < 1
5 c freely and we divide into two cases ac-

cording as there does or does not exist a real primitive character χ such that
L(s, χ) has a real zero s = β with 1 − ε/(2c) < β < 1. In the first case we put
χ = χ1 and in the second we take χ1 to be any real primitive character and β
to be any number in the above interval. We then define χ2 as any real primitive
character with sufficiently large modulus q2, the size depending only on the
modulus q1 of χ1. Plainly F(β)= 0 in the first case and in the second we have
F(β) < 0 since ζ(s) < 0 for 0< s < 1 (see Section 14.10 Exercise (v)), the
L-functions in F do not vanish for β ≤ s< 1 and they are positive when s = 1
in view of Lemma 15.2 and the Euler product. Thus we get

λ� (1 −β)(2 −β)−M .

But we have

λ� (log q1)(log(q1q2))L(1, χ2),

whence

L(1, χ2)� (2 −β)−M (log q1)
−1(log(q1q2))

−1,
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the implied constant depending now on β. Since 2 − β < 1 + ε/(2c) < eε/(2c)

we obtain finally (2 − β)−M > (q1q2)
−ε/2 and, with χ2 = χ and q2 = q, this

proves Siegel’s theorem.

As a corollary one deduces that if χ is a real non-principal character then for
any ε > 0 there exists c = c(ε)> 0 such that L(s, χ)� 0 for real s> 1 − cq−ε.
For, as can be verified by partial summation using the property that

∑
n≤x χ(n)

is bounded, the relation L(s, χ)=∑χ(n)/ns , already seen for σ >1, holds in
fact for σ > 0. Then

L ′(s, χ)=−
∞∑

n=1

χ(n)(log n)n−s

and by splitting the sum into two parts according as n ≤q or n>q and applying
partial summation again one obtains |L ′(s, χ)|� (log q)2 for s> 1 − 1/ log q.
Now, if β is a zero of L(s, χ) with 1 − cq−ε <β < 1, the mean-value theorem
gives

L(1, χ)= L(1, χ)− L(β,χ)= (1 −β)L ′(ξ,χ)� (log q)2q−ε,

where ξ lies between β and 1. This contradicts Siegel’s theorem if χ is primi-
tive and the general result follows from the relation concerning L-functions of
induced characters given in Section 15.6.

It is clear from the proof that the implied constant in Siegel’s result L(1, χ)�
q−ε depends on the possible existence of a zero β of an L-function near to 1.
This is the notorious ‘Siegel zero’; it is generally conjectured that no such zero
exists but, at present, it cannot be ruled out. Thus the implied constant cannot
be explicitly determined and, as we say, Siegel’s theorem is ineffective. This
has important implications; in particular, as we remarked in Section 15.6, one

consequence of Siegel’s theorem is the class number estimate h(d)� |d| 1
2 −ε

for an imaginary quadratic field Q(
√

d) and the implied constant here is again
ineffective. Nevertheless, through some deep work of Goldfeld, Gross and Za-
gier on elliptic curves, a weaker but effective result in this direction has now
been established, namely

h(d) � (log |d|)1−ε.

Thus, at least in principle, all the imaginary quadratic fields with any given
class number k can now be found explicitly.

The case k = 1 was discussed in Section 7.4; it is the Gauss problem of
determining all the imaginary quadratic fields with unique factorization and it
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is known through works of Baker and Stark of the 1960s that there are just
nine such fields.† The case k = 2 was solved in the 1970s, again through works
of Baker and Stark; there are in fact just 18 imaginary quadratic fields with
class number 2. The case k = 3 was the first to be solved by the elliptic curve
method, namely by Oesterlé in 1985, and after further results in this context
for higher k by Arno and others, Watkins published a paper in 2004 claiming
to have covered all k ≤ 100; the work apparently took some seven months of
computation.

15.8 Further reading

The book by Prachar referred to in Section 15.2 is Primzahlverteilung
(Springer, 1957). The book by Trost referred to in the same section is
Primzahlen (Birkhäuser, 1953). For further details relating to the first part of
Section 15.3, involving the elements of group theory, see the book of Apos-
tol referred to in Section 2.9. The remainder of the section and the rest of the
chapter are inspired by the classic work of Davenport referred to in Section 1.7.

Siegel’s theorem, the subject of Section 15.7, appeared in Acta Arith. 1
(1935), 83–86. Estermann’s proof was published in J. London Math. Soc. 23
(1948), 275–279. A good account of the topic is given in Chandrasekharan’s
Arithmetical Functions, referred to in Section 2.9. For the work of Watkins
see Math. Comput. 73 (2004), 907–938; this contains references to the most
significant of the earlier papers.

15.9 Exercises

(i) Assuming the prime-number theorem, show that every interval [a,b]
with 0< a< b contains a rational p/q with p,q primes.

(ii) Let M(x)=∑n≤x μ(n). Verify that, for σ > 1,

1

ζ(s)
= s
∫ ∞

1

M(x)

xs+1
dx .

† In 1952, Heegner, a high-school teacher in Berlin, published a paper which claimed to give a
solution to the problem based on the theory of elliptic modular functions; the work was not
well understood and the experts of the time came to look upon the argument as wrong-headed
or at best incomplete. After Stark’s work, which was based on the same sphere of ideas,
Heegner’s paper was re-examined and, with hindsight, it was agreed that it gave a viable
approach.
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Show that if M(x)= O(x
1
2 +ε) for every ε>0 then the equation continues

to hold for σ > 1
2 and the Riemann hypothesis is true.

(iii) Let f (x)≥ 0 be a real function monotonic increasing for x ≥ 0. Prove
that if ∫ x

0
f (u)du ∼ g(x) as x → ∞

for a differentiable function g(x) then f (x)∼ g′(x) as x → ∞.

(iv) Let Q(x)=∑n≤x μ
2(n) so that Q(x) is the number of square-free num-

bers not exceeding x . Show that ζ(s)/ζ(2s)=∑μ2(n)/ns and verify
from Section 14.10 Exercise (iv) that∫ x

0
Q(u)du ∼ x2

2ζ(2)
as x → ∞.

Deduce that Q(x)∼ (6/π2)x as x → ∞.

(v) Let k be a positive integer and let S(x)=∑n≤x σk(n) where σk(n)=∑
d|n dk as in Section 13.9 Exercise (i). Using the contour of Section 15.1

displaced a distance k to the right, prove that S(x)∼ ζ(k + 1)xk+1/(k +
1) as x → ∞.

(vi) Using the fact that π(x)= x/ log x + O(x/(log x)2) deduce that the nth
prime pn satisfies

pn = n log n + n log log n + O(n).

(vii) Verify by partial summation that∑
p≤x

log p =π(x) log x −
∫ x

2

π(u)

u
du.

Hence prove that∑
p≤pn

log p = n log n + n log log n − n + o(n).

(viii) Prove from the Siegel–Walfisz theorem that the least prime in the arith-
metical progression a,a + q,a + 2q, . . . , with (a,q)= 1, is � eqε for
any ε > 0, where the implied constant depends only on ε.

(ix) Show that, for σ > 1,∑
p≡a(mod q)

1

ps
= s
∫ ∞

1

π(x;q,a)

xs+1
dx .
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(x) Prove that ∑
p≤x

p≡a(mod q)

1

p
= π(x;q,a)

x
+
∫ x

2

π(u;q,a)

u2
du.

(xi) Assuming the Siegel–Walfisz theorem, verify the expression for the latter
sum as stated in Section 13.2.
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The sieve and circle methods

16.1 The Eratosthenes sieve

Eratosthenes observed in ancient Greek times that if, for a given x ≥ 1, one
deletes from the natural numbers ≤ x all multiples of 2, of 3, of 5 and so on
up to the largest prime ≤ √

x then, apart from 1, only the primes between
√

x
and x remain. This can be expressed by the following result usually attributed
to Legendre.

Theorem 16.1 (Legendre’s formula) Let P denote the product of all primes
≤√

x. Then

π(x)−π(√x)+ 1 =
∑
d|P

μ(d)[x/d].

Proof The theorem follows from the basic property of the Möbius function,
that is,

∑
d|n μ(d) is 0 if n>1 and 1 if n =1. Clearly π(x)−π(√x)+ 1 is just

the number of n ≤ x with (n, P)= 1 and so can be expressed as∑
n≤x

∑
d|(n,P)

μ(d)=
∑
d|P

μ(d)
∑

n≤x,d|n
1 =

∑
d|P

μ(d)[x/d].

Alternatively we can apply the inclusion–exclusion principle to the numbers
n ≤ x . Defining p1, . . . , pk as the primes not exceeding

√
x , there are k pos-

sible properties corresponding to n being divisible by one of p1, . . . , pk . The
principle implies that the number of n that are not divisible by any of them is

[x] −
∑

r

[x/pr ] +
∑
r>s

[x/pr ps] −
∑

r>s>t

[x/pr ps pt ] + · · ·

and Legendre’s formula follows.

197
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As an application, let us take x = 50; then the primes ≤ √
x are 2,3,5,7 and

the right-hand side becomes 50 − 58 + 22 − 2 = 12; we conclude that there
are 11 primes between 8 and 50 and so π(50)= 15. The process of striking
out multiples of primes described above is called the sieve of Eratosthenes
and it is the most primitive example of a sieve method. Another, more pow-
erful sieving technique was discovered by Viggo Brun in 1920 and much has
followed; indeed techniques of this kind are now used routinely throughout
analytic number theory and they have thrown light on many problems, most
notably the famous twin-prime conjecture that there are infinitely many primes
p such that p + 2 is also a prime, and Goldbach’s conjecture that every even
integer greater than 2 is the sum of two primes. We shall say more about these
in Section 16.3.

Legendre’s formula cannot be used immediately to give a non-trivial esti-
mate for π(x). Indeed if we replace [x/d] by x/d then the right-side becomes

x
∑
d|P

μ(d)/d + O
(∑

d|P
|μ(d)|

)
= x

∏
p≤√

x

(1 − 1/p)+ O(τ (P)),

where τ is the divisor function. By Theorem 13.7, the ‘main term’ here is
� x/ log x ; in fact we see directly that∏

p≤√
x

(1 − 1/p)−1 ≥
∑

n≤√
x

(1/n)≥ log(
√

x)

and so the main term is ≤ 2x/ log x . However, the ‘error term’ is O(2π(
√

x))

which is clearly in excess. Nevertheless, if we sieve only up to the bound y =
log x/ log 4, taking P =∏p≤y p, then we obtain the estimate x/ log y for the
main term and, since π(y)≤ y, the error term is given by O(

√
x). We conclude

that π(x)− π(y)+ 1 is at most x/ log y + O(
√

x) whence, for any ε > 0 and
sufficiently large x ,

π(x)≤ (1 + ε)x/ log log x .

Though significantly weaker than the prime-number theorem or indeed the
basic theory of Tchebychev, the estimate is non-trivial and it is indicative of
what can be expected by the application of sieve methods.

16.2 The Selberg upper-bound sieve

In the period 1946 to 1951, Selberg developed a new sieve method of great
importance for analytic number theory; it arose from earlier ideas of Brun as
indicated above. We shall focus entirely on the so-called ‘upper-bound’ sieve,
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since it is here that the techniques take their simplest and most elegant form.
However, the associated ‘lower-bound’ sieve lies deeper and gives us some of
the most striking applications; we refer to the literature for details.

Let f (n) be a polynomial with integer coefficients. The case f (n)= n will
correspond to the sieve of Eratosthenes and f (n)= n(n + 2) will relate to the
twin-prime conjecture. Let M and N be integers such that 1 ≤ M ≤ N . Our
object is to estimate the number S of the integers f (1), f (2), . . . , f (N ) that
are not divisible by any of the primes p ≤ M .

Plainly S is the number of integers n with 1≤n ≤ N such that ( f (n), P)=1,
where P is the product of all the primes p ≤ M . Hence we have

S =
N∑

n=1

∑
d|( f (n),P)

μ(d)=
∑
d|P

μ(d)S(d),

where S(d) is the number of f (n) with 1 ≤ n ≤ N that are divisible by d. Now
Selberg observed that if λ(n) is any real function with λ(1)= 1 then, for each
positive integer k, we have(∑

d|k
λ(d)

)2 ≥
∑
d|k
μ(d).

Further, if k divides P , then(∑
d|k
λ(d)

)2 =
∑
d|k
ρ(d),

where

ρ(d)=
∑
d ′|P

∑
d ′′|P

{d ′,d ′′}=d

λ(d ′)λ(d ′′)

with {d ′,d ′′} denoting the lowest common multiple of d ′ and d ′′. Thus we get

S ≤
N∑

n=1

∑
d|( f (n),P)

ρ(d)=
∑
d|P

ρ(d)S(d).

Now, for every divisor d of P , we define s(d) to be the number of elements
f (n) with 1 ≤ n ≤ d that are divisible by d and we put q(d)= s(d)/d. Since
f (x) is a polynomial we have f (m)≡ f (n) (mod d) whenever m ≡ n (mod d)
and it follows that S(d)= [N/d]s(d)+ r(d), where 0≤r(d)≤ s(d). This gives
S(d)= Nq(d)+ R(d), with |R(d)|≤dq(d), and we have proved the following.
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Proposition 16.1 We have

S ≤ N
∑
d|P

ρ(d)q(d)+
∑
d|P

|ρ(d)R(d)|.

We recall that the discussion so far is valid for any real function λ(n) subject
only to λ(1)= 1. The crux of the method lies in the fact that we can select this
function such that the first sum on the right in Proposition 16.1 is minimal.

For each divisor d of P we define

w(d)= 1

q(d)

∏
p|d
(1 − q(p)).

Here we assume that 0<s(p)< p and so 0<q(p)<1 for all p≤ M ; if s(p)=0
or p for some p we would have either none or all of f (1), f (2), . . . , f (N )
divisible by p and we would simply omit the prime from the definition of P .
The functions w(d) and 1/q(d) are Möbius inverses in the sense that

1

q(d)
=
∑
δ|d
w(δ), w(d)=

∑
δ|d

μ(d/δ)

q(δ)
·

Now, by the definition of ρ(d), the first sum on the right in Proposition 16.1 is∑
d|P

ρ(d)q(d)=
∑
d ′|P

∑
d ′′|P

λ(d ′)λ(d ′′)q({d ′,d ′′}).

By the Chinese remainder theorem the function s(d) is multiplicative. This
implies that also q(d) is multiplicative, whence we have

q({d ′,d ′′})= q(d ′)q(d ′′)/q((d ′,d ′′));

see Section 16.6 Exercise (i). Hence, by the first of the Möbius relations above,
it follows that the double sum can be written as a quadratic form,∑

δ|P
w(δ)(v(δ))2, with v(δ)=

∑
d|P,δ|d

λ(d)q(d).

Here the coefficients w(δ) are independent of λ and the variables v(δ) depend
linearly on λ; we proceed to determine the values of the variables that minimize
the form.

By Möbius inversion, we have

λ(d)q(d)=
∑
δ|P,d|δ

μ(δ/d)v(δ);
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this defines λ in terms of the v(δ). Since q(1)= s(1)=1, the condition λ(1)=1
becomes ∑

δ|P
μ(δ)v(δ)= 1.

We take v(δ)= 0 for δ > M ; then by the method of Lagrange multipliers we
find that the desired values of v(δ) for δ≤ M are given by

v(δ)= μ(δ)

Ww(δ)
where W =

∑
δ|P,δ≤M

1

w(δ)
·

This can be seen directly; since δ is square-free, we have
∑
μ2(δ)/w(δ)= W ,

whence the linear condition is satisfied and gives∑
δ|P

w(δ)(v(δ))2 =
∑

δ|P,δ≤M

1

w(δ)

(
w(δ)v(δ)− μ(δ)

W

)2

+ 1

W
·

Plainly our values of v(δ) furnish the minimum 1/W of the quadratic form.
Hence the following holds.

Proposition 16.2 We have

S ≤ N/W +
∑
d|P

|ρ(d)R(d)|.

It remains now only to estimate the second term on the right in Proposition
16.2. By the definition of ρ(d), the expression is at most∑

d ′|P

∑
d ′′|P

|λ(d ′)λ(d ′′)R({d ′,d ′′})|.

From the estimate |R(d)|≤ dq(d) we see that |R({d ′,d ′′})|≤ d ′d ′′q(d ′)q(d ′′).
Thus ∑

d|P
|ρ(d)R(d)| ≤

(∑
d|P

d|λ(d)q(d)|
)2
.

But we have

λ(d)q(d)=
∑
δ|P,d|δ

μ(δ/d)v(δ),

and, on substituting for the v(δ) and using the fact that w is multiplicative, this
gives

|λ(d)q(d)| ≤ 1

W

∑
δ|P,δ≤M,d|δ

1

w(δ)
≤ 1

Ww(d)

∑
δ′|P,δ′≤M

1

w(δ′)
= 1

w(d)
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for d ≤ M , and it gives λ(d)q(d)= 0 otherwise. Hence∑
d|P

d|λ(d)q(d)| ≤
∑

d|P,d≤M

(d/w(d))≤ MW.

The second term on the right in Proposition 16.2 is therefore at most (MW )2

and we have shown that the following holds.

Theorem 16.2 We have S ≤ N/W + (MW )2.

16.3 Applications of the Selberg sieve

We now study the estimate for S in Theorem 16.2 when the polynomial f (n)
takes some simple forms. Here we recall that

W =
∑

d|P,d≤M

1

w(d)
where w(d)= 1

q(d)

∏
p|d
(1 − q(p))

and q(d)= s(d)/d with s(d) the number of elements f (n) with 1 ≤ n ≤ d that
are divisible by d.

Corollary 16.1 (Primes in an interval) For any integer y> 0 and any ε > 0
we have

π(x + y)−π(y)< (2 + ε)x/ log x as x → ∞.

Proof We take f (n)= n + y. Then s(d)= 1 and q(d)= 1/d so that w(d) is
Euler’s function φ(d). Thus, noting that μ2(n)= 1 if n is square-free and 0
otherwise, we obtain

W =
∑
d≤M

μ2(d)

φ(d)
=
∑
d≤M

μ2(d)
∏
p|d

(
1

p
+ 1

p2
+ . . .

)
≥
∑

m≤M

1

m
> log M.

Further, from the first expression for W above and Theorem 13.7, we see that

W ≤
∏
p≤M

(
1 + 1

φ(p)

)
=
∏
p≤M

(
1 − 1

p

)−1

� log M.

But we have S ≥ π(N + y)− π(y)− π(M) whence, taking N = [x], M =
[x

1
2 −ε] and observing that π(M)<M , the result follows.

An improvement in the estimate replacing 2 + ε by 2 was given in 1973 by
Montgomery and Vaughan and this is the best result to date.
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Corollary 16.2 (Brun–Titchmarsh inequality) Suppose that (a,q)= 1 and
0< q < x. Then for any ε > 0 there exists x0 = x0(ε) such that for x > x0 we
have

π(x;q,a)<
(2 + ε)x

φ(q) log(x/q)
.

Proof We take f (n)= nq + a. Then s(p)= 1 if (p,q)= 1 and s(p)= 0 if
(p,q) > 1. Thus P =∏ p where the product is over all primes p ≤ M such
that p � q. We have w(d)= φ(d) for (d,q)= 1 and thus, as in the proof of
Corollary 16.1, we obtain W ≥∑1/m where the sum is over all m ≤ M with
(m,q)= 1. But we have

q

φ(q)
W =

∏
p|q

(
1 + 1

p
+ 1

p2
+ . . .

)
W ≥

∑
m≤M

1

m
> log M.

Further, as before, we have W � log M . Furthermore it is clear that S ≥π(Nq +
a;q,a)−π(M) assuming, as we may, that 0<a<q. On taking N = [x/q]+1

and M = [(x/q)
1
2 −ε] + 1 the result follows.

Corollary 16.3 (Twin-prime estimate) The number of primes p ≤ x such that
p + 2 is a prime is � x/(log x)2.

Proof We take f (n)= n(n + 2). Then s(p)= 2 for odd primes p and s(2)= 1.
Thus q(p)= 2/p, w(p)= 1

2 p − 1 and w(2)= 1. Hence

W =
∑
d≤M

μ2(d)

w(d)
=
∑
d≤M

μ2(d)
∏

p|d,p>2

(
2

p
+ 22

p2
+ · · ·

)
.

Since the divisor function τ is multiplicative and τ(pk)= k + 1 ≤ 2k , we see
that the sum on the right is at least∑

m≤M,2�m

τ(m)

m
≥
( ∑

m≤√
M,2�m

1

m

)2 � (log M)2.

Further, by Theorem 13.7, we obtain

W ≤
∏

2<p≤M

(
1 + 1

w(p)

)
=

∏
2<p≤M

(
1 − 2

p

)−1

� (log M)2.

Hence, on taking N = [x] and M = [x
1
4 ], Theorem 16.2 gives S � x/(log x)2.

But if p is a prime with M < p ≤ N such that p + 2 is a prime then p(p + 2)
is counted in S and, since π(M)<M , this gives the result.
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It follows from Corollary 16.2 by partial summation that if p runs through all
the primes such that p, p + 2 are twin primes then

∑
1/p converges.

Corollary 16.4 (Goldbach estimate) The number of ways that an even integer
N can be expressed as a sum of two primes is � N/(log N )2.

Proof We take f (n)= n(N − n). Then as in Corollary 16.2 we have w(p)=
1
2 p − 1 for odd primes p and w(2)= 1. The result follows similarly.

The proofs of Corollaries 16.3 and 16.4 can be extended to show that, if k
is a positive even integer, then the number of primes p ≤ x such that p + k
is a prime is � (k/φ(k))x/(log x)2 where the implied constant is absolute.
Moreover the same estimate holds for the number of primes p ≤ x such that
kp + 1 is a prime. In these instances we take f (n) = n(n + k) and f (n) =
n(kn +1) respectively and we note that thenw(p)= 1

2 p −1 if p �k andw(p)=
p − 1 if p|k.

We remark finally that the ‘lower bound’ sieve gives results in the opposite
direction and it was ideas of this kind that enabled Chen Jing-Run to prove
that there exist infinitely many primes p such that p + 2 has at most two prime
factors and that every sufficiently large even integer is the sum of a prime and
a number with at most two prime factors. These are the best results to date in
the direction of the famous twin-prime and Goldbach conjectures.

16.4 The large sieve

This refers to a general technique for estimating certain exponential sums. The
theory dates back to results of Linnik in 1941 and Rényi in 1948. A crucial
advance in this context was made by Roth in 1965 and his work was followed
shortly afterwards by further important contributions of Bombieri and, inde-
pendently, of A. I. Vinogradov. They showed that the Riemann hypothesis is
true in a certain ‘average’ sense relating to primes in arithmetical progressions.

The basic result on the large sieve is concerned with the values of the expo-
nential sum

S(x)=
N∑

n=1

cn exp(2π inx),

where c1, . . . , cN denote any real or complex numbers. It asserts as follows.
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Theorem 16.3 If x1, . . . , xR are real numbers such that ‖xr − xs‖>δ>0 for
all r, s with r � s, where ‖x‖ denotes the distance of x from the nearest integer,
then we have

R∑
r=1

|S(xr )|2 ≤ (δ−1 + 2πN )
N∑

n=1

|cn|2.

Proof We begin by noting that, for any real y,

|S(x)|2 = |S(y)|2 +
∫ x

y

d

du
|S(u)|2 du,

where, as usual,
∫ x

y is interpreted as − ∫ y
x if y > x . On putting ε = 1

2δ, this
gives

2ε|S(x)|2 =
∫ x+ε

x−ε
|S(y)|2 dy +

∫ x+ε

x−ε

∫ x

y

d

du
|S(u)|2 du dy.

It is readily verified that |(d/du)|S(u)|| ≤ |S′(u)|, whence the second term on
the right is at most

2ε
∫ x+ε

x−ε
|S(u)S′(u)|du.

Now, by hypothesis, the intervals (xr − ε, xr + ε), when translated by integers
to [0,1), are disjoint and hence

R∑
r=1

|S(xr )|2 ≤ (2ε)−1
R∑

r=1

∫ xr +ε

xr −ε
|S(y)|2 dy +

R∑
r=1

∫ xr +ε

xr −ε
|S(u)S′(u)|du

≤ (2ε)−1
∫ 1

0
|S(y)|2dy +

∫ 1

0
|S(u)S′(u)|du.

The first of these integrals is just
∑N

n=1 |cn|2 and, by the Cauchy–Schwarz
inequality, we get(∫ 1

0
|S(u)S′(u)|du

)2

≤
(∫ 1

0
|S(u)|2 du

)(∫ 1

0
|S′(u)|2 du

)

=
( N∑

n=1

|cn|2
)( N∑

n=1

|2πncn|2
)
.

The theorem follows easily.

As a corollary to Theorem 16.3 we obtain the original result of Roth to the
effect that the elements of any set of Z integers between 1 and N inclusive
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must, in a certain sense, be well distributed among the congruence classes
(mod p) for primes p ≤ √

N . More precisely, let Z(a, p) be the number of
integers in the set which are congruent to a (mod p). Then the following holds.

Theorem 16.4 For any positive integer Q, we have∑
p≤Q

p∑
a=1

p(Z(a, p)− Z/p)2 � (Q2 + N )Z .

Proof We take a1,a2, . . . ,aZ as the given set of integers and we put cn = 1 if
n = am for some m and 0 otherwise. Then

S(x)=
Z∑

m=1

exp(2π iam x).

Further, we take x1, . . . , xR as the points a/p with 1≤a< p and p ≤ Q so that
δ= 1/Q2. This gives

∑
p≤Q

p−1∑
a=1

|S(a/p)|2 =
R∑

r=1

|S(xr )|2.

By Theorem 16.3, the latter sum is � (Q2 + N )Z . Further, we have

p−1∑
a=1

|S(a/p)|2 + Z2 =
p∑

a=1

Z∑
n=1

Z∑
n′=1

exp(2π i(an − an′)a/p).

The latter expression is just p times the number of pairs n,n′ such that an ≡
an′ (mod p). Thus, since Z =∑p

a=1 Z(a, p), it can be written in the form

p
p∑

a=1

(Z(a, p))2 = p
p∑

a=1

(Z(a, p)− Z/p)2 + Z2

and this establishes the theorem.

The main accomplishment arising from this sphere of ideas has been a result,
customarily referred to as the Bombieri–Vinogradov large sieve inequality,
concerning the theory of primes in arithmetical progressions; see Chapter 15.
Let ψ(x;a,q) be the generalized Tchebychev function in this context, that is,
ψ(x;a,q)=∑�(n) where the sum is taken over all natural numbers n ≤ x
with n ≡ a (mod q). Then the result in question states that, for each positive A,
there is a B such that∑

q≤√
x(log x)−B

max
y≤x

max
(a,q)=1

∣∣∣∣ψ(y;a,q)− y

φ(q)

∣∣∣∣� x(log x)−A.
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Now there is a so-called generalized Riemann hypothesis in this context which
asserts that the non-trivial zeros not only of ζ(s) but in fact of all the func-
tions L(s, χ) as χ runs through the characters mod q lie on the line σ = 1

2 . In
particular, for q ≤ x , this gives

ψ(x;a,q)= x

φ(q)
+ O(

√
x(log x)2).

The large sieve inequality shows that a result of the latter kind is valid in a
certain average sense and it has found wide application.

16.5 The circle method

The Hardy–Littlewood–Vinogradov or circle method was developed during the
early part of the last century for solving a wide range of number-theoretical
problems of additive type. The work has its origins in studies of Hardy and
Ramanujan on the partition function p(n) defined as the number of represen-
tations of a positive integer n as a sum of positive integers. It is generated by
the formal identity

F(x)=
∞∏

m=1

(1 − xm)−1 = 1 +
∞∑

n=1

p(n)xn .

This gives

p(n)= 1

2π i

∫
C

F(z)

zn+1
dz,

where C is any closed contour about the origin which is contained within the
unit disc |z|<1. By taking C as a circle centre the origin with radius close to 1
and dividing the path of integration into arcs near to the singularities of F(z),
that is, the roots of unity e2π ia/q with rational a/q, Hardy and Ramanujan
succeeded in 1918 in proving that†

p(n)∼ exp(π
√
(2n/3))

4n
√

3
as n → ∞.

This was the starting point of the circle method. In a series of papers enti-
tled ‘Some problems of “Partitio Numerorum” ’ beginning in 1920, Hardy and
Littlewood turned their attention to the famous Waring problem. Waring had
conjectured in 1770 that every natural number can be represented as a sum of
4 squares, 9 cubes, 19 biquadrates ‘and so on’. This is now interpreted to mean

† The same result was proved independently in 1920 by J. V. Uspensky.
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that, for every integer k ≥ 2, there exists s = s(k) such that every positive inte-
ger n is representable as xk

1 +· · ·+ xk
s with positive integers x1, . . . , xs . Plainly

if the conjecture holds for a particular k then there is a least s for which it is true
and we define this minimum value as g(k). The case k = 2 of the conjecture is
classical (see Section 5.5) and further special cases with k ≤10, k �9, were es-
tablished subsequently. But it was not until 1909 that Hilbert, in a major work,
proved the existence of g(k) for every k. Hilbert’s proof involved arguments
of a combinatorial kind together with certain algebraic identities and though
in principle it gave a bound for g(k) it was obvious that this would be very
large.‡

Hardy and Littlewood gave an independent proof of Hilbert’s theorem. They
showed that, for s ≥ s0(k), the number r(n) of representations of n in the above
form satisfies

r(n)∼ (�(1 + 1/k))s

�(s/k)
n(s/k)−1S(n) as n → ∞,

where the function S(n), known as the singular series, exceeds a positive con-
stant. In particular this gives r(n) → ∞ as n → ∞ and so there is certainly
at least one representation if n is sufficiently large; since every n is trivially
a sum of kth powers of 1, this is enough to establish Hilbert’s theorem. We
define, as customary, G(k) to be the least s such that every sufficiently large n
is the sum of s kth powers; then the result implies that G(k) exists and satisfies
G(k)≤ s0(k). The function G(k) is in some ways more fundamental than g(k)
since the latter is affected by the need to represent a few small exceptional n;
see Section 5.7 Exercise (ix). The argument of Hardy and Littlewood when
refined through some later work of Hua gives s0(k)= 2k + 1 and, for small k,
this is the best value to date.

Beginning in 1928 I. M. Vinogradov made important improvements to the
circle method. Hardy and Littlewood, in their studies on Waring’s problem,
had based their arguments on the relation

r(n)= 1

2π i

∫
C

(F(z))s

zn+1
dz,

where C is the circle centre the origin with radius 1 − 1/n and

F(z)=
∞∑

m=0

zmk
.

‡ G. J. Rieger worked out an estimate for g(k) in 1953, namely (2k + 1)260(k+3)3k+8
.
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Vinogradov replaced F(z) by a trigonometrical sum

f (α)=
∑

m≤n1/k

exp(2π iαmk)

and he noted that then

r(n)=
∫ 1

0
( f (α))s exp(−2π inα)dα,

as is clear since, for any integer j, we have∫ 1

0
exp(2π i jα)dα=

{
1 if j = 0,
0 otherwise.

Vinogradov obtained an estimate for G(k) of the form G(k)= O(k log k).
It has gone through numerous refinements and the best result to date in this
direction, obtained by Wooley in 1992, asserts that

G(k)≤ k(log k + log log k + O(1)).

A classical result of 1908 due to Hurwitz and Maillet gives the best current
lower bound for G(k), namely G(k)≥ k + 1; see Section 16.8 Exercise (vi).
There has been much further work in this context, particularly for small values
of k, but, apart from the classical G(2)=4, the only exact evaluation is G(4)=
16 which was obtained by Davenport in 1939. As regards g(k), it has been
conjectured that

g(k)= 2k + [(3/2)k] − 2,

and this is known to hold provided that ‖(3/2)k‖ ≥ (3/4)k where ‖x‖ denotes
the distance of x from the nearest integer. Mahler has shown that the latter
inequality has only finitely many exceptions. Further, through machine calcu-
lations, the conjecture has been verified for k ≤ 2 × 105.†† Slightly modified
expressions for g(k) have been shown to apply in the event that the conjecture
is not correct and thus we now have an almost complete evaluation of g(k).

The circle method has been applied widely and has yielded results well be-
yond the scope of the original Waring problem. Thus, for instance, in 1957
Lewis proved that a cubic form with integer coefficients and sufficiently many
variables has a non-trivial integral zero, and Birch extended this a little later
to forms of arbitrary odd degree. Hardy and Littlewood themselves applied the
circle method to problems involving primes and, in particular, in the third of

†† The case k = 4 resisted a complete solution until 1986 when Balasubramanian, Deshouillers
and Dress succeeded in showing that g(4) = 19.
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their ‘Partitio Numerorum’ series, they showed that, if the generalized Rie-
mann hypothesis is assumed true (see Section 16.4), then every sufficiently
large odd integer is the sum of three primes. In 1937 Vinogradov succeeded in
removing the assumption about the Riemann hypothesis and so established the
three-prime theorem unconditionally. He also gave an unconditional proof of
another of the famous Hardy–Littlewood results, namely that almost all even
numbers are the sum of two primes.

16.6 Additive prime number theory

To illustrate the principal features of the circle method, we shall study the
equation

a1 p1 + · · ·+ as ps = b,

where s ≥ 3, a1, . . . ,as are non-zero integers, b is an integer and p1, . . . , ps

are odd primes. Let n be a positive integer and let N(n,b) be the number of
solutions of the associated equation

a1n1 + · · ·+ asns = b

in positive integers n1, . . . ,ns not exceeding n. Further, letS(b) be the singular
series given by

S(b)=
∞∑

q=1

( s∏
j=1

cq(a j )
)
cq(b)(φ(q))

−s,

where cq(m) is Ramanujan’s sum, that is,

cq(m)=
q∑

a=1
(a,q)=1

e2π iam/q = μ(q/(m,q))φ(q)

φ(q/(m,q))
;

see Section 2.10 Exercise (vii) and Section 16.8 Exercise (vii). Then we have
the following result.

Theorem 16.5 Assuming that (ai ,a j )= 1 for i � j , the number of solutions
of the above equation in odd primes p1, . . . , ps not exceeding n is given by

N(n,b)S(b)

(log n)s
+ O

(
ns−1

(log n)s+1

)
,

where the constant implied by the O-term depends only on s and a1, . . . ,as.
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With the hypothesis of the theorem, the singular series reduces to S(b)=∏
p χ(p) taken over all primes p, where χ(p) is defined by

χ(p)= 1 +
⎧⎨⎩
(−1)s+1(p − 1)−s if p � a1 · · ·asb,
(−1)s+1(p − 1)2−s if p | (a1 · · ·as,b),
(−1)s(p − 1)1−s otherwise.

In particular, we see that the series converges. Further, we observe that
S(b) � 0 if a1 + · · · + as ≡ b (mod 2) and this condition is obviously neces-
sary if there is to be any solution to the given equation in odd primes.

Specializing to the case when s = 3, a1 = a2 = a3 = 1 and b = n we get

S(b)=
∏
p|n
(1 − (p − 1)−2)

∏
p�n

(1 + (p − 1)−3)

and if n is odd then

S(b)>
∏
p>2

(1 − (p − 1)−2)>
∏

p

(1 − p−2)= 6

π2
.

Since also, in this case, N(n,b)∼ 1
2 n2 as n → ∞, Theorem 16.5 shows that

the number of reprentations of n as a sum of three primes is asymptotic to
1
2 n2S(b)/(log n)3 and we have the three-prime theorem. Furthermore, on tak-
ing s = 3, a1 = a3 = 1, a2 = −2 and b = 0, we see that the same asymptotic
expression applies to the number of solutions of the equation p1 + p3 = 2p2

in primes not exceeding n; in this instance S(b)= 2
∏

p>2(1 − (p − 1)−2) and
we obtain the well-known result, first proved by Chowla and van der Corput,
that there exist infinitely many triples of primes in arithmetic progression.

We briefly outline a proof of Theorem 16.5. To begin with we note that the
number of solutions in question can be expressed as∫ 1

0
S(a1α) · · · S(asα)e(−bα)dα,

where

S(α)=
∑

2<p≤n

e(pα)

and, for brevity, we have written e(x) for exp(2π i x). For all integers a,q with
1 ≤ a ≤ q, (a,q)= 1 and q ≤ (log n)κ for some numerical constant κ > 0 we
define the ‘major arc’Ma,q as the interval of real α with∣∣∣∣α− a

q

∣∣∣∣< (log n)κ

n
.
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We make the convention that the right-hand half ofM1,1 is translated to the left
by an amount 1 and then, for n sufficiently large, theMa,q are non-overlapping
and contained in [0,1). We takeM as the union of all theMa,q and we define
the ‘minor arcs’m as the complement ofM in [0,1). By Dirichlet’s theorem on
Diophantine approximation (see Section 6.1), for any real α there exist integers
a,q with 1 ≤ a ≤ q, (a,q)= 1 and q ≤ n/(log n)κ such that∣∣∣∣α− a

q

∣∣∣∣< (log n)κ

nq

and if α is in m we have q >(log n)κ .
Now for each α onMa,q we put β =α− a/q and we find that then

S(a jα)= (cq(a j )/φ(q))I (a jβ)+ O
(
ne−λ√(log n))

for some numerical constant λ> 0, where

I (β)=
n∑

m=2

e(mβ)/ log m.

Indeed this results on writing

S(α)=
q∑

l=1
(l,q)=1

e(la/q)
∑

2<p≤n
p≡l(mod q)

e(pβ)+
∑

2<p≤n
p|q

e(pα)

and applying partial summation and the Siegel–Walfisz theorem; see Section
15.6. Hence, on noting that by Abel’s lemma

|I (β)| � min(n/ log n,1/‖β‖)
where ‖β‖ denotes the distance of β from the nearest integer, we obtain∫
M S(a1α) · · · S(asα)e(−bα)dα

=S(b)
∫ 1/2

−1/2
I (a1β) · · · I (asβ)e(−bβ)dβ + O(ns−1/(log n)s+1).

The last integral evaluates to
∑
(log m1 · · · log ms)

−1 summed over all integers
m1, . . . ,ms with a1m1 +· · ·+asms =b and 2≤m j ≤n and it is readily verified
that, within the margin of error above, this is N(n,b)/(log n)s .

To complete the proof of Theorem 16.5 it remains to show that the integral
over the minor arcs lies within the same margin of error. This is the deep-
est aspect of the circle method. Here Vinogradov used a sieving technique to
establish a non-trivial estimate for S(a/q) for integers a,q with 1 ≤ a ≤ q,
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(a,q)= 1 and (log n)κ < q ≤ n/(log n)κ . In our present context this implies
that |S(a jα)| � n/(log n)ν for all α on m and any ν > 0 assuming that κ is
sufficiently large. Thus we have

∫
m

|S(a1α) · · · S(asα)|dα� (n/(log n)ν)s−2
∫
m

|S(a1α)S(a2α)|dα.

Now by the Cauchy–Schwarz inequality the last integral is at most

(∫ 1

0
|S(a1α)|2 dα

)1/2(∫ 1

0
|S(a2α)|2 dα

)1/2

and this evaluates to π(n)− 1< n. The desired estimate for the integral over
the minor arcs follows at once.

16.7 Further reading

The classic introduction to sieve methods by Halberstam and Richert referred
to in Section 1.7 remains one of the best works in the field. A more recent book
particularly recommended as an initiation to the subject is that by Cojocaru and
Murty, An Introduction to Sieve Methods and Their Applications (Cambridge
University Press, 2005).

The main books on the circle method are those of Vaughan as cited in
Section 5.6 and of Davenport, Analytic Methods for Diophantine Equations
and Diophantine Inequalities (Cambridge University Press, 2005).

Theorem 16.5 is due to Richert, J. Reine Angew. Math. 191 (1953), 179–198.
In the case s =3 the problem of bounding small prime solutions has been much
studied; see the article by Ming-Chit Liu and Tianze Wang in A Panorama of
Number Theory or the View from Baker’s Garden (ed. G. Wüstholz, Cambridge
University Press, 2002), pp. 311–324. The article includes remarks on the con-
nection with the famous theorem of Linnik that the least prime p in the arith-
metical progression a,a + q,a + 2q, . . . with (a,q)= 1 satisfies p � q L for
some constant L; cf. Section 15.8 Exercise (viii).

The result on the existence of infinitely many triples of primes in arithmetic
progression referred to in Section 16.6 was extended to arbitrarily long arith-
metic progressions in the primes by Green and Tao in Annals of Math. 167
(2008), 481–547. This solved a long-standing open problem in the field.
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16.8 Exercises

(i) By considering prime decompositions, verify that if q is a multiplica-
tive function defined on the positive integers then, for all m,n, we have
q({m,n})q((m,n))= q(m)q(n).

(ii) Show that the Brun–Titchmarsh inequality can be extended to give, for
any y> 0,

π(x + y;q,a)−π(y;q,a)<
(2 + ε)x

φ(q) log(x/q)
as x → ∞.

(iii) (Rankin’s trick) A natural number n is said to be y-smooth if all of its
prime factors are ≤ y. Let �(x, y) denote the number of y-smooth num-
bers ≤ x . Show that, for any δ > 0,

�(x, y)≤
∑

n≤x, p|n⇒p≤y

( x

n

)δ ≤ xδ
∏
p≤y

1

1 − p−δ .

(iv) Verify that, if δ > 1
2 , then

�(x, y)� xδ
∏
p≤y

(1 + 1/pδ)≤ xδ exp(
∑
p≤y

1/pδ)

where the implied constant is absolute. Defining δ = 1 − (log 2)/ log y
and using Theorem 13.6, deduce that �(x, y)� xδ(log y)2.

(v) Show from Theorem 16.4 that if Z(a, p)= 0 for some a and for all p ≤√
N then Z � N/ log log N . Deduce that this gives π(x)� x/ log log x .

(vi) Let k be an integer ≥ 2 and let R be the region in Euclidean k-space
defined by

0< x1 ≤ x2 ≤ · · · ≤ xk ≤ X.

Show that the volume of R is Xk/k! and verify that the number of inte-
ger points in R does not exceed the volume. Deduce that the number of
integers n with 1 ≤ n ≤ N that are representable as a sum of k kth powers
is at most N/k! and show that this gives G(k)≥ k + 1.

(vii) Show that, for any integer m,
∑

e2π iam/q summed over all integers a
with 1≤a ≤q and (a,q)=1 is another expression for

∑
d|(m,q) dμ(n/d).

(viii) Prove that every sufficiently large even integer n can be represented in
the form n = p1 + 2p2 + 3p3 with primes p1, p2, p3.
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Elliptic curves

17.1 Introduction

The subject of elliptic curves has played an important role in the development
of the theory of numbers. It has been especially significant in connection with
studies on the rational solutions of Diophantine equations and, as indicated
in Section 8.4, it has led most famously to a proof of Fermat’s last theorem.
A brief discussion of elliptic curves was given in Section 8.3 and we broaden
this now into a deeper and more advanced exposition.

In a refined geometrical sense, an elliptic curve E over the rationals Q is
a smooth curve of genus 1 with a specified rational point. By the Riemann–
Roch theorem, E is then birationally equivalent to an algebraic curve in the
projective plane given by a Weierstrass equation

y2 = x3 + ax + b

with a,b inQ and 4a3 +27b2�0 so that, by Section 10.7, the cubic on the right
has distinct zeros in C. This can be taken as the definition of E . The Mordell
equation discussed in Section 8.3 is the special case with a = 0 and, as there, a
rational point on E is understood to be either a pair (x, y) of rational numbers
satisfying the equation or the point at infinity on E .

More generally an elliptic curve E can be defined with respect to an arbitrary
ground field K . One obtains a Weierstrass equation for E of the same shape as
above provided that K does not have characteristic 2 or 3; otherwise, with the
customary notation, the Weierstrass equation takes the form

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6.

Elliptic curves over finite fields are of particular interest in connection with
cryptography; see the references in Section 9.8.
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Two elliptic curves E and E ′ defined over C are said to be isomorphic if the
mapping x = v2x ′, y = v3 y′, where v is a non-zero complex number, takes the
Weierstrass equation for E into the Weierstrass equation

y′2 = x ′3 + a′x ′ + b′

for E ′. Then a′ = a/v4, b′ = b/v6, whence elliptic curves over C are classified
up to isomorphism by the ratio a3 : b2 or, as is more usually stated, they are
classified by the j-invariant defined by

j = j (E)= 1728(4a3)/(4a3 + 27b2).

The classification holds more generally for elliptic curves over any algebraically
closed field K , though for fields with characteristic 2 or 3 the formula for j
must be modified.

It was noted in Section 8.3 in connection with the Mordell equation that the
chord joining any two rational points on the curve intersects the curve again
at a rational point, and similarly that the tangent at a rational point intersects
again at a rational point. Moreover it was remarked that, as an immediate con-
sequence of the addition formulae for the Weierstrass functions x =℘(z), y =
1
2℘

′(z) that parameterize the curve, the set of all rational points on the curve
form a group under the chord and tangent process. Here the identity of the
group is the point at infinity O and the inverse of P = (x, y) is −P = (x,−y);
the sum of points P and Q is the point −R where R is the third point of in-
tersection of the chord joining P and Q or the tangent at P if P = Q (see
Fig. 8.1). We proceed to establish the existence of the group for elliptic curves
over C; the main issue here is the verification of the associative law. The same
deduction, as will be clear, applies for any subfield of C and so in particular
for Q; in this instance the group is referred to as the Mordell–Weil group of E .

17.2 The Weierstrass ℘-function

Let � denote the lattice in the complex plane with generators ω1,ω2 where
ω1,ω2 are non-zero complex numbers such that the imaginary part of ω2/ω1

is positive. Thus� is the set of all complex numbers ω=n1ω1 + n2ω2 with n1

and n2 rational integers. By an elliptic function with respect to � we mean a
meromorphic function f on C which satisfies f (z +ω)= f (z) for all ω in �.
A number ω as here is said to be a period of f and if every period is in � then
ω1,ω2 are said to be a fundamental pair of periods for f .

We note at once that if f is not constant then it must have a pole in C;
for otherwise f would be continuous and so bounded in the fundamental
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parallelogram for �, that is, the compact set u1ω1 + u2ω2 with 0 ≤ u1,u2 ≤ 1.
Thus f would be bounded in C and Liouville’s theorem tells us that a bounded
entire function is a constant. We shall need the following result.

Theorem 17.1 Let C denote the closed, positively orientated contour given
by the boundary of the fundamental parallelogram. Let f be an elliptic func-
tion with respect to � and let z j ( j = 1, . . . , k) be the singular points, that
is, zeros or poles, of f within C. Let m j be the order of z j and suppose
that no singular point of f lies on C. Then m1z1 + · · · + mk zk is in � and
m1 + · · ·+ mk = 0.

Proof Let g(z)= z f ′(z)/ f (z). On noting that, for each j , the point z = z j is a
pole of g with residue m j z j , we obtain from Cauchy’s theorem∫

C
g(z)dz = 2π i

k∑
j=1

m j z j .

We now separate C into pairs of opposite sides and use periodicity. We have∫ ω1

0
g(z)dz −

∫ ω1+ω2

ω2

g(z)dz =
∫ ω1

0
(g(u)− g(u +ω2))du

= −ω2

∫ ω1

0
( f ′(u)/ f (u))du.

The latter integral is the variation of the amplitude of f as u describes the line
from 0 to ω1 together with a factor i ; thus it is an integer multiple of 2π i . The
same holds with ω1 and ω2 interchanged and the first assertion in the theorem
follows. The second assertion is obtained by a similar argument applied to
g(z)= f ′(z)/ f (z).

On recalling that a meromorphic function has only a finite number of zeros
or poles in any bounded region of the complex plane, the fundamental parallel-
ogram for� can be translated to a congruent parallelogram such that f has no
singular point on the boundary and the theorem continues to hold. It follows in
particular that, in any such parallelogram, the number of zeros of f is equal to
the number of poles each counted with multiplicity.

The simplest example of a non-constant elliptic function is the Weierstrass
℘-function. It is defined by

℘(z)= 1

z2
+
∑
ω�0

{
1

(z −ω)2 − 1

ω2

}
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with ω in� as above. The series converges uniformly on compact sets not con-
taining lattice points since in these sets the summand on the right is � 1/|ω|3
and we have

∑
1/|ω|s convergent for any s> 2. The latter is a consequence of

the fact that, for each n = 1,2, . . . , the number of lattice points in the annulus
Rn given by n − 1< |z| ≤ n is � the area (2n − 1)π of Rn and thus

N∑
n=1

∑
ω∈Rn

1

|ω|s �
N∑

n=1

1

ns−1
.

It follows that ℘(z) is a meromorphic function with double poles at each point
of � and analytic elsewhere. Moreover, since it remains unchanged on replac-
ing ω in the defining sum by −ω, it is an even function, that is, ℘(z)=℘(−z).

The derivative ℘′(z), expressed by differentiating ℘(z) term by term, is

℘′(z)=−2
∑
ω

1

(z −ω)3 .

This is plainly an odd function, that is, ℘′(z)= −℘′(−z). Further, both ℘(z)
and ℘′(z) are elliptic functions with respect to �. This is obvious for ℘′(z)
and it follows for ℘(z) on observing that since ℘′(z + ω) = ℘′(z) we get
℘(z + ω)= ℘(z)+ c for some constant c; substituting z = − 1

2ω we obtain
c = 0 provided that z is not a period of �. The latter is the case when ω is ω1

or ω2 and the assertion follows; in fact ω1,ω2 is a fundamental pair of periods
of ℘(z).

We now establish the basic differential equation satisfied by ℘(z).

Theorem 17.2 We have

℘′(z)2 = 4℘(z)3 − g2℘(z)− g3,

where

g2 = 60
∑
ω�0

1/ω4, g3 = 140
∑
ω�0

1/ω6.

Proof The result is obtained by expanding ℘(z) and ℘′(z) as Laurent series
about the origin. We have 1/(ω− z)= (1/ω)∑∞

j=0(z/ω)
j and thus

1/(z −ω)2 = (1/ω2)

∞∑
j=0

( j + 1)(z/ω) j .

We shall use classical notation and define G j ( j = 3,4, . . . ) as the Eisenstein
series of order j , that is, G j =∑ω�0 1/ω j . Then G j = 0 if j is odd and we get
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℘(z)− (1/z2)=
∞∑
j=1

(2 j + 1)G2 j+2z2 j = 3G4z2 + 5G6z4 + · · · .

Differentiating term by term gives

℘′(z)+ (2/z3)=
∞∑
j=1

2 j (2 j + 1)G2 j+2z2 j−1 = 6G4z + 20G6z3 + · · · .

It is now easily seen that 4℘(z)3 and ℘′(z)2 are given respectively by

(4/z6)+ (36G4/z
2)+ 60G6 +· · · and (4/z6)− (24G4/z

2)− 80G6 +· · · .
It follows that

℘′(z)2 − 4℘(z)3 + 60G4℘(z)+ 140G6

is an entire elliptic function with a zero at the origin and hence is identically 0.
We have g2 = 60G4 and g3 = 140G6 and this proves the theorem.

It is customary to denote by e1, e2, e3 the values of ℘(z) at the half-periods,
that is, e j =℘( 1

2ω j ) for j =1,2 and 3 where ω3 =ω1 +ω2. Then the following
holds.

Theorem 17.3 The numbers e1, e2, e3 are distinct and we have

℘′(z)2 = 4(℘ (z)− e1)(℘ (z)− e2)(℘ (z)− e3).

Proof It is clear that none of 1
2ω j ( j = 1,2,3) is a pole of ℘(z) and that

℘′(− 1
2ω j )=℘′(ω j − 1

2ω j )=℘′( 1
2ω j ).

Thus since℘′(z) is odd we obtain℘′( 1
2ω j )=0. This implies that℘(z)−e j has

at least a double zero at z = 1
2ω j . But the only poles of the function are double

poles at the lattice points and hence from the remark following the proof of
Theorem 17.1 there can be no other zeros mod �. We conclude that e1, e2, e3

are distinct and the desired factorization follows.

The Weierstrass ℘-function plays a crucial role in the general theory of el-
liptic functions. Indeed if � denotes the associated lattice then we have the
following fundamental result.

Theorem 17.4 Every even elliptic function with respect to � is a rational
function of ℘. Further, the field of elliptic functions with respect to � is gener-
ated by ℘ and ℘′.
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The second property follows immediately from the first on noting that an
odd elliptic function with respect to � can be expressed as ℘′(z) f (z) with f
even and furthermore that every function g(z) is the sum of an even and odd
function, namely 1

2 (g(z)+ g(−z)) and 1
2 (g(z)− g(−z)). The verification of

the first property involves the construction of a rational function of ℘ with the
same zeros and poles as the given even elliptic function taken with multiplici-
ties and we refer to the literature cited in Section 17.9 for details.

17.3 The Mordell–Weil group

By Theorem 17.2 the functions x =℘(z), y = 1
2℘

′(z) parameterize the elliptic
curve E over C with Weierstrass equation given as in Section 17.1 with a =
− 1

4 g2 and b = − 1
4 g3. Indeed the polynomial 4x3 − g2x − g3 has discriminant

16�, where�= g3
2 − 27g2

3, and we proved in Theorem 17.3 that it has distinct
zeros. Hence we have �� 0. We call� the discriminant of E and we note that
the j-invariant of E is given by j = 1728g3

2/�.
Now suppose that E is an elliptic curve over C with a Weierstrass parame-

terization x =℘(z), y = 1
2℘

′(z) as above. We shall say that the point (x, y) has
parameter z and we define −(x, y) as the point (x,−y) with parameter −z.
Plainly the parameters are determined only up to elements of �; to specify
them uniquely they must be taken as elements of the factor group C/� men-
tioned at the end of the current section and this is implicit in the discussion
below.

Let P and Q be points on E with parameters u and v respectively. The
chord joining P and Q if P �±Q and the tangent at P if P = Q are given by
equations of the form y = λx + ν and we see that f (z)=℘′(z)− λ℘(z)− ν

is an elliptic function with zeros u and v. The poles of f are the lattice points
of � and these have order −3. Hence, from Theorem 17.1 and the remark
following the proof, the sum of the orders of the zeros of f in a parallelogram
as specified there is 3. It follows that f has a further zerow such that u +v+w
is in�; it can be taken as the parameter of the third point of intersection, say R,
of the chord or tangent with E and w=u or v if one of u, v is a zero of order 2.
We now define P + Q as the point with parameter u + v. Then if P �−Q we
have P + Q =−R and if P =−Q we have P + Q = O where O is the point at
infinity on E ; it can be taken to have parameter 0. Further, we see that addition
is associative since it is certainly so for addition of parameters mod �. Thus,
on specifying O as the identity element, we obtain an abelian group on E ,
and, in the case when E is defined over Q, the rational points on E form the
Mordell–Weil group referred to earlier.
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The structure of the group is intimately related to the well-known addition
formulae for the ℘-function.

Theorem 17.5 We have

℘(u + v)=
(
℘′(v)−℘′(u)

2(℘ (v)−℘(u))
)2

−℘(u)−℘(v),

℘ (2u)=
(
℘′′(u)
2℘′(u)

)2

− 2℘(u),

where in the first equation we are assuming that℘(u)�℘(v) and in the second
that ℘′(u)� 0.

Proof When P �±Q the coefficient λ in the equation y =λx + ν of the chord
joining P and Q is given by

λ= (℘′(v)−℘′(u))/(2(℘ (v)−℘(u))).
On taking the limit as v→ u we see that, when P = Q, the value of λ in the
corresponding equation of the tangent at P is

λ=℘′′(u)/(2℘′(u))

assuming ℘′(u)� 0 or equivalently 2P � O . Now the points of intersection of
the chord or tangent with the curve are given by the roots of the equation

x3 + ax + b − (λx + ν)2 = 0.

The coefficient of x2 in the polynomial on the left is −λ2. Further, as shown
above, when P �±Q the roots are ℘(u),℘ (v),℘ (−(u +v)) and when P = Q
they are ℘(u) counted twice and ℘(−2u). The theorem follows.

Theorem 17.5 gives at once explicit formulae for the group law often used
in computations. Purely algebraic proofs can be given but the deduction via the
℘-function is immediate and transparent.

Corollary 17.1 Let E be an elliptic curve over Q with Weierstrass equa-
tion y2 = x3 + ax + b. Let P and Q be rational points on E with coordi-
nates (x(P), y(P)) and (x(Q), y(Q)) respectively and let x(P + Q) be the
x-coordinate of P + Q. If P �±Q then

x(P + Q)=
(

y(P)− y(Q)

x(P)− x(Q)

)2

− x(P)− x(Q).
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Further, if 2P � O then

x(2P)=
(

3x(P)2 + a

2y(P)

)2

− 2x(P).

Proof Let ℘ be the Weierstrass function that parameterizes E . Then we have
x(P)=℘(u), y(P)= 1

2℘
′(u) and x(Q)=℘(v), y(Q)= 1

2℘
′(v) for some u,

v. The first assertion is now clear and for the second we note that 2P �O gives
℘′(u)� 0 and then from Theorem 17.2 we have ℘′′(u)= 2(3℘(u)2 + a).

We remark that the mapping z �→℘(z) is a homomorphism from the additive
group of complex numbers onto E and that the kernel of the mapping is �.
Thus we have E � C/�. The latter can be viewed as a Riemann surface and
topologically it is a torus. More generally, as indicated in Section 17.1, elliptic
curves E have been studied with respect to an arbitrary ground field K ; the
points with coordinates in K together with the point at infinity are called K -
rational points on E and the set E(K ) of all K -rational points forms a group
analogous to the Mordell–Weil group. For the reals we find that E(R)�Z/2Z×
R/Z or R/Z according as�>0 or�<0. For the finite field K with q elements
we have E(K ) � Z/kZ× Z/ lZ where k and l are positive integers such that
k|(q − 1) and k|l.

We remark also that there is a close connection between elliptic curves and
the theory of modular forms. Indeed g2 and g3 can be interpreted as modular
forms of weight 4 and 6 on SL2(Z), whence �, referred to at the beginning of
this section, is a modular form of weight 12 and j is a modular function. It can
be expressed in terms of τ =ω2/ω1 and it then defines, on putting z = τ , the
classical elliptic modular function with Fourier expansion

j (z)= 1/q + 744 + c1q + c2q2 + · · · ,
where q = e2π i z and c1, c2, . . . are integers. Moreover the theory of modular
forms can be applied to establish that j assumes all values in the complex plane
as � ranges over the set of lattices. Since, from Section 17.1, j classifies the
elliptic curves over C it follows that for any elliptic curve E over C there is a
corresponding lattice� such that E has a Weierstrass equation with a =− 1

4 g2

and b =− 1
4 g3. This is called the uniformization theorem and it is the converse

to the situation with which we started, namely on specifying a lattice � we
showed there is a corresponding curve E .

17.4 Heights on elliptic curves

The most fundamental result on the arithmetic of elliptic curves is the Mordell–
Weil finite basis theorem, which we have already referred to briefly in Section
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8.3 and which we shall discuss more fully in the next section. As a preliminary
we shall need the notion of the height of points on elliptic curves.

Let E be an elliptic curve defined over Q with Weierstrass equation y2 =
f (x) where f (x)= x3 + ax + b as in Section 17.1. Further, let P = (x, y) be
a rational point on E other than the point at infinity O . Then on expressing
x in lowest terms, that is, x = p/q where p,q are relatively prime integers
(possibly p = 0, q = 1) we define the classical height h(P) of P by

h(P)= log max(|p|, |q|).
Also, by convention, we define h(O)= 0. We proceed to verify the following
result.

Theorem 17.6 For any rational points P and Q on E we have

h(P + Q)+ h(P − Q)= 2h(P)+ 2h(Q)+ O(1)

where the implied constant depends on a and b but not on P or Q.

Proof First we establish the theorem in the case P = Q, that is,

h(2P)= 4h(P)+ O(1).

Let x(P) be the x-coordinate of P . We can assume that 2P � O , for oth-
erwise x(P) is a zero of f (x) and the assertion holds trivially. Then Corol-
lary 17.1 shows that the x-coordinate of 2P is g(x(P))/(4 f (x(P))) with
g(x)= ( f ′(x))2 − 8x f (x). Now g(x) has degree 4 and it follows at once on
putting x(P)= p/q that h(2P)≤ 4h(P)+ O(1).

To prove the converse we note that f (x) has only simple zeros, whence the
polynomials f (x) and g(x) have no common factor; the same then applies
to the polynomials f (x) = x4 f (1/x) and g(x) = x4g(1/x). Thus we have
f (x)r(x)+ g(x)s(x)= 1 and f (x)r(x)+ g(x)s(x)= 1 for some polynomi-
als r(x), s(x) and r(x), s(x) defined over Q with degrees at most 3. We put
x = x(P)= p/q in the first identity and x = q/p in the second, assuming, as
we may, that p � 0. Then writing F = q4 f (p/q), G = q4g(p/q) we obtain
F R + GS = q7 and F R + GS = p7 where

R = q3r(p/q), S = q3s(p/q), R = p3r(q/p), S = p3s(q/p).

Now F and G can be expressed as rationals with denominators depending only
on the coefficients of f and the same applies to R, S and to R, S. Thus since,
by supposition, p and q are relatively prime we see that, apart from a bounded
factor, the numerators of F and G are relatively prime and, on noting that
the x-coordinate of 2P is G/(4F), we get log max(|F |, |G|)= h(2P)+ O(1).
This gives 7h(P)≤ h(2P)+ 3h(P)+ O(1), that is, 4h(P)≤ h(2P)+ O(1),
and the desired expression for h(2P) follows.
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Now let P and Q be rational points on E with x-coordinates x(P) and x(Q)
respectively. We can suppose that none of P , Q, P + Q and P − Q are O , for
otherwise the theorem is trivial or follows from the preceding result. Then by
Corollary 17.1 (see Section 17.10 Exercise (ii)) the x-coordinates x(P + Q)
and x(P − Q) of P + Q and P − Q satisfy

x(P + Q)+ x(P − Q)= 2(x(P)x(Q)+ a)(x(P)+ x(Q))+ 4b

(x(P)− x(Q))2
,

x(P + Q)x(P − Q)= (x(P)x(Q)− a)2 − 4b(x(P)+ x(Q))

(x(P)− x(Q))2
.

Thus we obtain

h(x(P + Q)+ x(P − Q))≤ 2h(P)+ 2h(Q)+ O(1)

and h(x(P + Q)x(P − Q)) is bounded similarly. Now on writing x(P + Q)=
p/q and x(P − Q)= r/s for relatively prime integers p,q and r, s we have
pr, ps + qr,qs relatively prime and, as is readily verified,

max(|p|, |q|)max(|r |, |s|)≤ 2 max(|pr |, |ps + rq|, |qs|).

On taking logarithms this gives

h(P + Q)+ h(P − Q)≤ 2h(P)+ 2h(Q)+ O(1).

The reverse inequality is obtained by replacing P and Q by P + Q and P − Q
respectively and using the result for h(2P) established at the beginning. This
proves the theorem.

Theorem 17.6 is more than enough for the application needed to establish
the Mordell–Weil theorem. However, one can remove the O-term by averaging
over the group law and this leads to a particularly elegant result. Let P be any
rational point on the elliptic curve E . We define the canonical, or Néron–Tate,
height of P by

ĥ(P)= lim
n→∞ 4−nh(2n P).

The limit exists since the sequence here is Cauchy. Indeed, for m ≥ n, we have

|4−mh(2m P)− 4−nh(2n P)| ≤
m∑

j=n+1

4− j |(h(2 j P)− 4h(2 j−1 P))|
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and, by Theorem 17.6, h(2P)= 4h(P)+ O(1); thus the sum on the right is
O(4−n). The basic property of the canonical height is the following, sometimes
referred to as the parallelogram law.

Theorem 17.7 For any rational points P and Q on E we have

ĥ(P + Q)+ ĥ(P − Q)= 2ĥ(P)+ 2ĥ(Q).

Proof Replace P and Q in Theorem 17.6 by 2n P and 2n Q respectively, divide
by 4n , and take the limit as n → ∞.

It follows at once by induction that ĥ(n P)=n2ĥ(P) for all integers n. Hence
we have ĥ(P)= 0 if and only if P is a torsion point, that is, a point of finite
order in the Mordell–Weil group of E . Further, it is clear, by taking n = 0 and
letting m →∞ in the argument above, that the difference between the classical
height and the canonical height is bounded. Thus the canonical height shares
with the classical height the property that there are only finitely many points
with height not exceeding a given bound. In particular any set of rational points
on E has an element with least canonical height.

17.5 The Mordell–Weil theorem

Let E be an elliptic curve defined over Q as in Section 17.1 and let G be the
Mordell–Weil group of rational points on E described in Section 17.3. Then
the Mordell–Weil theorem asserts the following.

Theorem 17.8 The group G has a finite basis.

Proof The proof divides naturally into two parts. First it is shown that the factor
group G/2G is finite, customarily termed the weak Mordell–Weil theorem, and
Theorem 17.8 is then deduced from it by infinite descent.

We shall assume that a and b in the Weierstrass equation for E are integers;
this involves no loss of generality for it suffices to take in place of E a curve
E ′ isomorphic to it as in Section 17.1 with v such that 1/v is a denominator
for a and b. Then it is readily seen that every point in G other than O has the
form (r/t2, s/t3) for some integers r, s, t with (r, t)= (s, t)= 1. Further, by
definition, the Weierstrass equation for E can be written in the form y2 = f (x)
where

f (x)= (x − e1)(x − e2)(x − e3)

and e1, e2, e3 are distinct algebraic integers with degree at most 3.
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Let e = e1 and let K =Q(e).† For rational x we have x − e and (x − e2)(x −
e3) elements of K , whence, on taking ideals in the field, we obtain

[s]2 = [r − et2][(r − e2t2)(r − e3t2)].

This gives [r − et2] = ab2 for some ideals a, b in K where a is a factor of
[(e − e2)(e − e3)]; for, since (r, t)= 1, any common prime ideal factor of the
ideals on the right will divide the latter. Standard techniques now show that
r − et2 = αβ2 for some algebraic integer β in K and some element α in K
belonging to a finite set. Indeed from the proof of Theorem 12.4 there exist
ideals a′ and b′ in the ideal classes inverse to those of a and b with norms
at most

√|d| where d denotes the discriminant of K . Then aa′, a′b′2 and bb′

are principal, say [ξ ], [η] and [ζ ]. We have [η(r − et2)] = [ξζ 2] and thus, by
Section 12.1, r − et2 = ε(ξ/η)ζ 2 for a unit ε in K . But, by Theorem 12.3, that
is, Dirichlet’s unit theorem, ε=λμ2 for some units λ,μ in K with λ in a finite
set. Further, by Corollary 11.3, ξ and η have bounded field norms and so, by
Corollary 12.1, they can be chosen to belong to finite sets. The desired result
follows.

We suppose now that f (x) is irreducible over the rationals so that e has
degree 3 and e2, e3 are the conjugates of e; we shall indicate the modifica-
tions needed to treat the reducible case later. Let K ∗ denote the multiplicative
group of non-zero elements of K and let φ : G → K ∗/K ∗2 be the map given by
(x, y) �→ (x − e)K ∗2 and O �→ 1 K ∗2. We shall prove that φ is a group homo-
morphism with kernel 2G. This will suffice to establish the weak Mordell–Weil
theorem for, as we showed above, the image of φ is finite.

Let P = (x1, y1) and Q = (x2, y2) be points in G and let P + Q = (x3, y3).
Then as in the proof of Theorem 17.5 we see that x1, x2, x3 are roots of the
equation

f (x)− (λx + ν)2 = 0,

where y =λx + ν is the chord joining P and Q if P �±Q and the tangent at P
if P = Q. Thus the cubic on the left can be written as (x − x1)(x − x2)(x − x3)

and we obtain

(x1 − e)(x2 − e)(x3 − e)= (λe + ν)2.
Since e has degree 3 and x1, x2, x3 are rational none of the factors on the left
vanishes. Thus, since λ, ν are rational, it follows that

(x3 − e)K ∗2 = (x1 − e)(x2 − e)K ∗2
.

† There can be no confusion here with e, the base for natural logarithms.
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This gives φ(P + Q)=φ(P)φ(Q). Plainly the latter holds also when P =−Q
and when one or both of P and Q are O and so φ is a group homomorphism
as asserted.

It remains to consider the kernel. This certainly contains 2G since φ(2P)=
φ(P)2. To prove the converse let P = (x1, y1) be a point of the kernel so that

x1 − e = (u + ve +we2)2

for some rationals u, v,w. Since e has degree 3 it is clear that w � 0. We put
x2 = v/w and note that

(x2 − e)(u + ve +we2)= g(e)

where g(x)= λx + ν with λ= aw− u + vx2 and ν= bw+ ux2. This gives

f (x)= g(x)2 + (x − x1)(x − x2)
2;

for the expression on the right is a monic polynomial in x of degree 3 with
a zero x = e and so must be the minimum polynomial for e. Now the line
y = g(x) meets E in points with x-coordinates satisfying f (x)= g(x)2 and
thus satisfying (x − x1)(x − x2)

2 = 0. It is therefore the tangent to the curve
at Q = (x2, g(x2)) and it meets the curve again at ±P . We conclude that P =
2(±Q) whence P is contained in 2G as required.

The proof of Theorem 17.8 can now be completed readily by infinite de-
scent. Let ĥ be the canonical height introduced in Section 17.4. By the weak
Mordell–Weil theorem, as R runs through a set of representatives of the ele-
ments of G/2G, the heights ĥ(R) have a maximum value, say M . We show
that G is generated by the set S of points P of G with ĥ(P)≤ M . Indeed sup-
pose the contrary. Then among the points of G not in the subgroup generated
by S there is one, say P , of least canonical height. Now P = R + 2Q for some
representative R as above and some Q in G and by Theorem 17.7 we have

4ĥ(Q)= ĥ(2Q)= ĥ(P − R)≤ 2ĥ(P)+ 2ĥ(R).

But since P is not in S we obtain ĥ(R)< ĥ(P), whence Q is an element of G
not in the subgroup generated by S such that ĥ(Q) < ĥ(P). This contradicts
the minimal choice of P and the theorem follows.

The argument in the case when f (x) is reducible over Q is similar. One
takes Ki =Q(ei ) (i = 1,2,3) and one defines maps φi : G → K ∗

i /K ∗
i

2 as for φ
above with e = ei but specifying

(ei ,0) �→ (ei − e j )(ei − ek)K
∗
i

2
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with distinct suffixes i, j, k for the (ei ,0) in G. Then the map φ given by

φ(P)= (φ1(P),φ2(P),φ3(P))

is a group homomorphism with kernel 2G and the result follows as before.
Note here that if P = (x1, y1) is in the kernel of φ and y1 � 0 then x1 − ei =
u2

i with ui in Ki and, with appropriate choices of sign, the monic polyno-
mial with zeros ui (i = 1,2,3) has rational coefficients. Now there is a point
Q = (x2, g(x2)) in G, where g(x)= λx + ν with rational λ and ν, such that
f (x)− g(x)2 factorizes as (x − x1)(x − x2)

2 and thus P = 2(±Q). Indeed the
factorization is valid if and only if, for all i ,

g(ei )
2 = (x1 − ei )(x2 − ei )

2;
this certainly holds if λei + ν= ui (x2 − ei ), that is, if

g(x1)− λu2
i = ui (x2 − x1 + u2

i ),

and thus it suffices to define λ, ν and x2 by an identity in t , namely

t3 + λt2 + (x2 − x1)t − g(x1)= (t − u1)(t − u2)(t − u3).

Another way of dealing with the reducible case, well known in the subject,
is through the theory of isogenies; see Section 17.8 and the books cited in
Section 17.9.

17.6 Computing the torsion subgroup

Theorem 17.8 shows that G � T ×Zr where T is the torsion subgroup consist-
ing of the elements of G of finite order and r is a non-negative integer termed
the Mordell–Weil rank of E . Now any finite subgroup of C/�, where � is the
lattice for E , has at most two generators and we have E �C/�. Thus it follows
that there is a finite set of parameters u1, . . . ,ur , a basis ω,ω′ for � and a pair
q, q ′ of positive integers whose product qq ′ is the order of T such that the
rational points on E are given by x =℘(u), y = 1

2℘
′(u) with

u = m1u1 + · · ·+ mr ur + (m/q)ω+ (m′/q ′)ω′

where m1, . . . ,mr , m,m′ are integers with 0 ≤ m< q and 0 ≤ m′< q ′.
In the case when the coefficients a and b in the Weierstrass equation for E

are integers there is an effective criterion for computing T due to Lutz and
Nagell as follows.

Theorem 17.9 Let (x, y) be a point of T other than O. Then x, y are integers
and either y = 0 or y2 divides 4a3 + 27b2.
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For the proof of Theorem 17.9 we refer to the literature in Section 17.9. It
depends on the theory of reduction of E mod p for a prime p. Let Fp be the
finite field with p elements and for any integer r let r̃ be the representative of r
in Fp. Further, for any rational u = r/s where r, s are relatively prime integers
with p not dividing s let ũ = r̃/s̃; since s̃ is invertible ũ exists and is an element
of Fp. Now replacing a and b in the equation for E by ã and b̃ yields a curve
Ẽ defined over Fp and termed the reduced curve of E mod p. We define a map
E → Ẽ by (x, y) �→ (x̃, ỹ) if the denominators of x and y in lowest terms are
not divisible by p and by (x, y) �→ Õ , the point at infinity in Ẽ , otherwise.
The reduced curve Ẽ is an elliptic curve and it is said to be non-singular if p
is odd and does not divide 4a3 + 27b2. In this instance the points on Ẽ form
a group G̃ analogous to the Mordell–Weil group G of E and the map defines
a group homomorphism from G to G̃. Further, the torsion subgroup T of G
maps injectively into G̃, whence the order of T divides the order of G̃, that is,
the number of points on Ẽ . This gives another useful criterion for the compu-
tation of T .

Example 17.1 Consider the elliptic curve y2 = x3 + x + 1. We have 4a3 +
27b2 = 31 and, since the latter is prime, the only possible non-trivial torsion
point is P = (0,1). But a simple calculation shows that 2P = ( 1

4 ,− 9
8 ) and the

coordinates here are not integers. Hence P is a point of infinite order and the
torsion subgroup is trivial, that is, it consists of O only.

Example 17.2 The elliptic curve y2 = x3 + 4x has torsion subgroup isomor-
phic to Z/4Z; for here 4a3 + 27b2 = 44 and so the only possible torsion points
(x, y) occur with x, y integers and y = 0 or y dividing 16. Now y = ±1 and
y = ±2 are plainly impossible and since any common factor of x and x2 + 4
divides 4 we see that y = ±8 and y = ±16 can also be excluded. Thus, apart
from O , the only possible torsion points are (0,0) and (2,±4). It is simple to
verify that 2(2,4)= (0,0) and the assertion follows.

Example 17.3 Consider the elliptic curve y2 = x3 + 10. The reduced curve
mod p is non-singular for all primes p> 5. It is easy to calculate that x3 + 10
is a square mod 7 for all x mod 7 except x = 0 (in fact Fermat’s theorem of
Section 3.3 gives x3 ≡ ±1 for x � 0 mod 7) and that it is a square mod 11 for
all x mod 11 except x = 0, x = ±2, x = 4 and x = −5. Thus, including O ,
the reduced curve mod 7 has 13 points and mod 11 it has 12 points. It follows
that the order of the torsion subgroup divides 13 and 12 and so the group is
trivial. Note that the curve contains the point (−1,3) and so there is at least
one generator of the Mordell–Weil group of infinite order.
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Example 17.4 Let l be an integer not divisible by 3 and consider the curve
y2 = x3 + lx . By taking separately the cases l ≡ ±1 (mod 3) we see that the
reduced curve mod 3 has order 4. Now if l = −k2 for an integer k then the
curve includes, apart from O , the points (0,0) and (±k,0) and these are tor-
sion points. We conclude that the torsion subgroup is isomorphic to (Z/2Z)2.

A celebrated theorem of Mazur based on deep studies on the arithmetic of
modular curves establishes that, for an elliptic curve E defined overQ, the only
possibilities for the torsion subgroup are

T �Z/nZ with 1 ≤ n ≤ 10 or n = 12,

T �Z/2Z×Z/2nZ with 1 ≤ n ≤ 4.

Each of the possibilities does in fact occur for some E .

17.7 Conjectures on the rank

Computing the subgroup of G generated by the basis elements of infinite order
is a different matter. Indeed the proof of the weak Mordell–Weil theorem is
not effective and to the present day no general algorithm is known for finding
G/2G. Nevertheless, in many instances, direct search for rational points on E
yields a sharp bound for r from below and infinite descent yields an equally
sharp bound for r from above; thus the Mordell–Weil group G can be explicitly
determined. There has been extensive work on the problem of calculating r and
it has led to important conjectures in the subject, which we now describe.

Let E be an elliptic curve defined over Q with Weierstrass equation as in
Section 17.1. We shall assume that a and b are integers and that there are no
primes p such that p4 divides a and p6 divides b; these properties can be
realized by taking in place of E an isomorphic elliptic curve with Weierstrass
coefficients v4a and v6b for a suitable rational v. If p is a prime other than
2 or 3 then the curve E is said to have good reduction at p if p does not divide
4a3 + 27b2 and bad reduction at p otherwise. In other words E has good or
bad reduction at p according as the reduced curve Ẽ is or is not non-singular.
It is customary to write the number of points on Ẽ as p + 1 − ap. Then, for
complex s, we define

L p(E, s)= (1 − ap p−s + p1−2s)−1 or L p(E, s)= (1 − ap p−s)−1

according as E has good or bad reduction at p. Similar definitions apply in
the cases p = 2 and p = 3 but it is then necessary to work with the more
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general form of the Weierstrass equation as indicated in Section 17.1. The
local functions above are combined to give a global function

L(E, s)=
∏

p

L p(E, s)

known as the Hasse–Weil L-function for E . Now there is a famous theorem of
Hasse asserting that |ap| ≤ 2

√
p and it follows readily from this that L(E, s)

is analytic in the half-plane Re(s) > 3
2 . Hasse conjectured that the L-function

satisfies a functional equation relating L(E, s) to L(E,2 − s) and that, as a
consequence, the function can be analytically continued throughout the com-
plex plane. This was proved by Breuil, Conrad, Diamond and Taylor as an out-
come of the work of Taylor and Wiles on Fermat’s last theorem as described
in Section 8.4.

In the early 1960s, as a result of extensive machine computations, Birch and
Swinnerton-Dyer formulated the following conjecture; the analytic continuity
of the L-function was known at the time only when E has complex multi-
plication (see Section 17.8) and the property in general was simply assumed.

Conjecture 17.1 (Birch–Swinnerton-Dyer) The order of the zero of L(E, s)
at s = 1 is equal to the Mordell–Weil rank r of E.

The conjecture has been verified in a large number of numerical cases. More-
over, through works of Coates–Wiles, Gross–Zagier, Kolyvagin and others,
some initial steps have been taken in the direction of the general assertion;
most notably it has been shown to be valid when the order of the zero in ques-
tion is 0 or 1. There is a more explicit version of the Birch–Swinnerton-Dyer
conjecture giving an exact expression for L(E, s)/(s − 1)r as s → 1; we refer
to the literature cited in Section 17.9 for details.

As an application, we discuss briefly the congruent number problem; it dates
back to the ancient Greeks. By a congruent number we mean a positive ratio-
nal number k such that there exists a right-angled triangle with rational side-
lengths and area k. The basic problem is to determine whether a given rational
number is a congruent number. It will be seen at once that there is no loss in
assuming that k is a square-free integer; for when the sides of a right-angled
triangle are scaled by a factor s the area becomes scaled by a factor s2. An
equivalent formulation of the problem is to determine for which k there ex-
ists an x with each of x , x + k and x − k the square of a rational; see Section
17.10 Exercise (vii). For instance, the triangle with side-lengths 3

2 , 20
3 and 41

6
has area 5; thus k = 5 is a congruent number and x = ( 41

12 )
2 has the asserted

property.
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The relation to elliptic curves is given by the fact that a square-free integer
k> 0 is a congruent number if and only if the curve E with Weierstrass equa-
tion y2 = x3 − k2x has a point (x, y) with x, y rational and with y � 0. Indeed
the rational points on E with y � 0 are in bijective correspondence with the
non-zero rational triples X,Y, Z satisfying X2 + Y 2 = Z2 and 1

2 XY = k; the
correspondence is given by

X = (x2 − k2)/y, Y = 2kx/y, Z = (x2 + k2)/y

which inverts to x = k(X + Z)/Y and y = 2kx/Y . Now by Section 17.10 Ex-
ercise (iv) the non-trivial torsion points on E are (0,0) and (±k,0) and since
these have y = 0 we see that k is a congruent number if and only if the rank r
of E is at least 1. Further, the curve E has complex multiplication (see again
Section 17.8) and for curves with this property Coates and Wiles showed in
1977 that if r ≥ 1 then, in accordance with Conjecture 17.1, the Hasse–Weil
L-function for E vanishes at s = 1. Combining the result with theorems of
Shimura and Waldspurger on modular forms, Tunnell succeeded in 1983 in
deriving an easily verifiable criterion for k to be a congruent number; namely,
he proved that if an odd square-free integer k > 0 is congruent then the num-
ber of solutions to 2x2 + y2 + 8z2 = k with x, y, z integers and with z odd is
the same as the number with z even. A similar result was given for k even in
terms of solutions to 4x2 + y2 + 8z2 = 1

2 k. Furthermore Tunnell showed that if
Conjecture 17.1 holds for E then, in both cases, the converse is also valid.

We remark that the work of Goldfeld, Gross and Zagier on the Gauss class
number problem which we mentioned briefly in Section 15.7 has a close con-
nection with Conjecture 17.1. Indeed, in 1976 Goldfeld demonstrated that the
problem could be reduced to showing that there exists an elliptic curve for
which the associated Hasse–Weil L-function has a triple zero at s = 1. Since
it was known that there certainly exist elliptic curves with rank at least 3 it
followed that a verification of a special case of the Birch–Swinnerton-Dyer
conjecture would suffice in principle for a solution. For a time it seemed that
Goldfeld had merely related one intractable problem with another but, remark-
ably, in 1986 Gross and Zagier succeeded in giving an explicit elliptic curve
with the desired property. This led to the work of Oesterlé, Arno and others
on the complete determination of all the imaginary quadratic fields with given
class numbers as referred to in Section 15.7.

17.8 Isogenies and endomorphisms

Let E and E ′ be elliptic curves defined over C and let � and �′ be their as-
sociated lattices with bases ω1,ω2 and ω′

1,ω
′
2 respectively. Then E and E ′ are
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said to be isogenous if there exists an α � 0 in C such that α�⊆�′; here α�
signifies the lattice with basis αω1, αω2. An equivalent formulation is to say
that E and E ′ are isogenous if and only if there exists an α � 0 in C such that

αω1 = pω′
1 + qω′

2, αω2 = rω′
1 + sω′

2

for some integers p,q, r, s. When the curves have this property the map φ from
C/� to C/�′ given by z �→ αz is called an isogeny from E to E ′. It is clear
that isogenies are group homomorphisms. Moreover the kernel of an isogeny
φ is finite; it has precisely |ps − qr | elements and this is called the degree
of φ. Further, on noting that if ℘(z) is the Weierstrass function correspond-
ing to �′ then ℘(αz) and ℘′(αz) are elliptic functions with respect to �, one
deduces from Theorem 17.4 that φ furnishes a mapping from points (x, y) on
E to points (ξ(x), η(x, y)) on E ′ for some rational functions ξ and η, and it
turns out that the degree of φ is the maximum of the degrees of the numerator
and denominator of ξ when expressed as a quotient of polynomials in lowest
terms.

Example 17.5 Consider the elliptic curve y2 = x3 + ax where a is a non-
zero complex number. Let � be the associated lattice with basis ω1,ω2 and
let ℘(z) be the Weierstrass function that parameterizes the curve. We shall
assume that the basis is chosen so that z = 1

2ω1 yields the point (0,0) and we
shall determine the isogenous curve with lattice �′ generated by 1

2ω1,ω2.
Clearly ℘(z) has a double pole at each point of � and, by Theorem 17.3, a

double zero at each point of �′ other than the points of �. Thus ℘′(z)/℘ (z)
has a simple pole with residue ±2 at each point of �′. Now let ℘(z) be the
Weierstrass function corresponding to �′. Then ℘(z)− 1

4 (℘
′(z)/℘ (z))2 is a

bounded entire function and therefore a constant c, say. We have

℘(z)− c = (℘ (z)2 + a)/℘ (z) and so ℘′(z)=℘′(z)(1 − a/℘ (z)2).

Hence, on putting x =℘(z), y = 1
2℘

′(z) and similarly x ′ =℘(z), y′ = 1
2℘

′(z)
we get x ′ − c = (y/x)2 and y′ = y(1 − a/x2). But we have

x2(1 − a/x2)2 = (y/x)4 − 4a,

whence y′2 = (x ′ − c)3 − 4a(x ′ − c). By Theorem 17.2 we see that c = 0 and
thus the desired curve is y′2 = x ′3 − 4ax ′.

Note that the rational functions here are ξ(x)= (x2 + a)/x and η(x, y)=
(x2 − a)y/x2 and that the degree of the isogeny is 2 in agreement with earlier
remarks. The argument applies more generally to the elliptic curve y2 = x3 +
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bx2 + ax with complex a,b satisfying a � 0 and a′ = b2 − 4a � 0. Taking now
x =℘(z)−℘( 1

2ω1) we find that the curve is isogenous to

y′2 = x ′3 − 2bx ′2 + a′x ′;
we obtain ξ(x)= (x2 + bx + a)/x and the same η(x, y) as above.

Example 17.5 together with Exercises (ix), (x) and (xi) in Section 17.10 can
be used to calculate the rank of some elliptic curves; we recall that if G is the
Mordell–Weil group of E then G � T × Zr where T is the torsion subgroup
and r is termed the rank of E . Let E be the elliptic curve y2 = x3 + ax where
a is an integer, let E ′ be the curve y2 = x3 − 4ax and let G and G ′ be the
Mordell–Weil groups of E and E ′ respectively. Further, let φ and φ′ be the
maps G → G ′ and G ′ → G induced by the isogenies defined in Exercise (ix).
Then φ′φ(G)= 2G.

Now let ψ be the homomorphism defined in Exercise (x) and let ψ ′ be the
corresponding homomorphism for E ′. Then the kernels ofψ andψ ′ are φ′(G ′)
and φ(G), whence their images are isomorphic to G/φ′(G ′) and G ′/φ(G)
respectively. Further, Exercise (xi) shows that these images are finite; we shall
suppose that they have n and n′ elements respectively. We have

G/φ′φ(G)= G/2G � (T/2T )× (Z/2Z)r

and this gives 2r+2 = nn′. Indeed the sequence

0 → ker(φ)→ ker(φ′φ)→ ker(φ′)
→ coker(φ)→ coker(φ′φ)→ coker(φ′)→ 0

is exact, where, by definition,

coker(φ)= G ′/φ(G), coker(φ′φ)= G/φ′φ(G), coker(φ′)= G/φ′(G ′).

By the first isomorphism theorem for groups applied to each of the above maps
one deduces that the group orders satisfy

|ker(φ)||ker(φ′)||coker(φ′φ)| = |ker(φ′φ)||coker(φ)||coker(φ′)|.
But, since T is a finite group, the kernel and cokernel of multiplication by 2
on T have the same order whence |coker(φ′φ)| = 2r |ker(φ′φ)|. On noting that
|ker(φ)| = |ker(φ′)| = 2 and that n = |coker(φ′)|, n′ = |coker(φ)| the assertion
follows.

To compute n and n′ we use the fact that if (x, y) is a rational point on
E with x � 0 then x = kt2 with t in Q and with k a square-free divisor of a,
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positive or negative; see Exercise (xi). Thus (y/(kt))2 = kt4 + l with kl = a,
that is,

w2 = ku4 + lv4

where (u, v,w)= (t,1, y/(kt)). Conversely if there exist rationals u, v,w sat-
isfying the equation and uv � 0 then x = k(u/v)2 and y = kuw/v3 give a ra-
tional point on E with x � 0. This holds similarly for E ′ with a replaced by
−4a. Further, we note that a solution in rationals u, v,w yields also a solution
in integers u, v,w with (u, v)=1 on multiplying through by a suitable denom-
inator and cancelling common factors.

Example 17.6 Consider the elliptic curve y2 = x3 + 5x . In this case k =±1
or k = ±5. But if k < 0 then l < 0 and there is no non-trivial real solution
u, v,w. Thus since ψ maps (0,0) to 5 Q∗2 it follows that this generates the
image and n = 2. For the isogenous curve y2 = x3 − 20x we have the possible
generators given by −1, 2 and 5. Hence we must check which of −1, ±2,
±5 and ±10 correspond to rational points. Now since ±2 are quadratic non-
residues mod 5 we see that there is no solution to w2 = ±(2u4 − 10v4) in
integers u, v,w with (u, v)=1. Further, we note thatψ ′ maps (0,0) to −5Q∗2.
Thus it remains only to consider k = 5, that is, the equation w2 = 5u4 − 4v4,
and here we have the solution (1,1,1). We conclude that the image of ψ ′ is
generated by −1Q∗2 and 5Q∗2 and we have n′ = 4. This gives r = 1.

The argument here applies more generally with a = p where p is any prime
with p ≡ 5 (mod 8) and it gives again r = 1 provided that w2 = pu4 − 4v4 is
soluble in integers; some examples are p = 13 and p = 37 when there are so-
lutions (1,1,3) and (5,3,151) respectively.

By an endomorphism of E we mean either an isogeny φ from E to itself
or the zero map z �→ 0. If φ is an isogeny as here then the equations at the
beginning of the section give

(p −α)(s −α)− qr = 0 and α= p + qω2/ω1,

whence α is either a rational integer or an integer in an imaginary quadratic
field. When the latter occurs the quotient ω2/ω1 is an element of the field and
the curve E is said to have complex multiplication. Further, by the definitions
of g2 and g3 in Theorem 17.2, it is clear that the periods of lattices associated
with isomorphic elliptic curves differ only by a scaling factor v, with v as in
Section 17.1, and so complex multiplication is a property of the isomorphism
class. Furthermore the endomorphisms of E form a ring End(E). It is given by
the set of α in C such that α�⊆�, where α� signifies the origin when α= 0,
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and it has the property that End(E) is isomorphic either to Z or to an order in
the imaginary quadratic field K =Q(ω2/ω1), that is, a subring of the algebraic
integers OK of K of the form Z+ f OK for an integer f > 0.

To give some examples we shall need the following result on periods of
elliptic curves expressed in Legendre normal form, that is, y2 = f (x) where
f (x)= x(x − 1)(x − λ) with λ in C and not 0 or 1.

Theorem 17.10 The periods of the lattice associated with an elliptic curve in
Legendre normal form can be taken as

ω1 =
∫ 0

−∞
dt√
f (t)

, ω2 =
∫ ∞

1

dt√
f (t)

.

The proof depends on the mapping z �→℘(z) of the fundamental parallelo-
gram defined by the lattice in the complex plane onto the Riemann sphere and
we refer to the literature mentioned in the following section for details. At first
sight it may appear that the hypothesis in Theorem 17.10 that the curve has
Legendre normal form is restrictive but in fact this is not so. For if E is any
elliptic curve over C with Weierstrass equation y2 = (x − e1)(x − e2)(x − e3),
say, then on putting x − e1 = v2x ′ and y = v3 y′ with v=√

(e2 − e1) we obtain
y′2 = f (x ′) where λ= (e3 − e1)/(e2 − e1). Thus every elliptic curve over C
is isomorphic to an elliptic curve which, after translating the x-coordinate by
− 1

3 (1 + λ)= e1/(e2 − e1), assumes Legendre normal form.
We remark that changing the basis ω1,ω2 of the lattice associated with E to

any two distinct pairs from ω1,ω2,ω1 + ω2 permutes e1, e2, e3 and changes
λ to one of λ, 1 − λ, 1 − 1/λ or one of their reciprocals. Further, the j-
invariant of a curve in Legendre normal form is 28(λ2 − λ+ 1)3/(λ(λ− 1))2

(see Section 17.10, Exercise (xii)) and this remains unchanged by any of the
six substitutions. Furthermore the latter are distinct except when λ maps to −1
or −�, where �= 1

2 (−1 + √
(−3)) is a primitive cube-root of unity, and then

j = 1728 and j = 0 respectively.

Example 17.7 Consider the elliptic curve E given by y2 = x3 − x . We take
e1 = −1, e2 = 1 and e3 = 0 so that λ= 1

2 and v= √
2. Then putting u = 2t − 1

and noting that ω1,ω2 become scaled by a factor
√

2 we obtain as a basis

ω1 =
∫ −1

−∞
du√

(u3 − u)
, ω2 =

∫ ∞

1

du√
(u3 − u)

.

On substituting −u for u in the second integral we see that both integrals are
the same except for a factor i . Hence ω2 = iω1 and E has complex multipli-
cation. Since elliptic curves of the form y2 = x3 + ax , where a is a non-zero
complex number, are all isomorphic to E over C, they too have complex mul-
tiplication. Note that the j-invariant in this case is j = 1728.
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Example 17.8 Consider the elliptic curve E given by y2 = x3 − 1. We take
e1 = �2, e2 = � and e3 = 1 so that λ= 1 + �2 and v2 = �(1 − �). Then putting
u = v2t + �2 we get as a basis for the lattice

ω1 =
∫ �2

−∞
du√
(u3 − 1)

, ω2 =
∫ ∞

�

du√
(u3 − 1)

,

where the paths of integration are on the line joining �2 and �, that is, on
the imaginary axis translated by − 1

2 . But since we are dealing with simply
connected regions we can vary the paths so that they lie on the lines through the
origin and �2 and � respectively. Then on substituting �u for u in the second
integral we obtain the first multiplied by −�. Thus ω2 = −�ω1 and since � is
quadratic it follows that E has complex multiplication. Further, elliptic curves
of the form y2 = x3 + b for a non-zero complex number b are all isomorphic to
E over C and so they too have complex mutiplication. Note that the j-invariant
in this case is j = 0.

17.9 Further reading

The books The Arithmetic of Elliptic Curves (Springer, 2009) and Advanced
Topics in the Arithmetic of Elliptic Curves (Springer, 1994) by J. H. Silverman
give comprehensive treatments of the subject and are currently regarded as
standard references. A more elementary text, however, and closer in spirit to
our work here, is that of Silverman and Tate, Rational Points on Elliptic Curves
(Springer, 1992). Cassels’ short Lectures on Elliptic Curves (Cambridge Uni-
versity Press, 1991) covers a deceptively large range and is especially
instructive.

The congruent number problem referred to in Section 17.7 is the central
theme of Koblitz’s Introduction to Elliptic Curves and Modular Forms
(Springer, 1993). The topic of complex multiplication referred to in Section
17.8 is a particular feature of Cox’s Primes of the Form x2 +ny2 (Wiley, 1989).
For proofs of Theorems 17.4 and 17.10 and for a good treatment of the sub-
ject in general, see Husemöller’s Elliptic Curves (Springer, 2004). Computa-
tional aspects of the field are covered well by Schmitt and Zimmer’s Elliptic
Curves: A Computational Approach (de Gruyter, 2003) and by Cremona’s Al-
gorithms for Modular Elliptic Curves (Cambridge University Press, 1997). For
the method discussed in Section 17.8 of determining the rank of certain curves,
see the first of the books of Silverman, above; the method is called descent via
two-isogeny. For applications to cryptography see the books by Washington
and by Blake, Seroussi and Smart referred to in Section 9.8.
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We remark finally that there is now much important interplay between ellip-
tic curves and transcendence theory. In particular, there is an elliptic isogeny
theorem due to Masser and Wüstholz which has found significant application
in Diophantine geometry, and there is a so-called elliptic logarithm method
for solving Diophantine equations which has found widespread usage. We re-
fer to the book of Baker and Wüstholz cited in Section 6.8, to that of Schmitt
and Zimmer, mentioned above, and to Smart’s The Algorithmic Resolution of
Diophantine Equations (Cambridge University Press, 1998).

17.10 Exercises

(i) Let E be the elliptic curve defined by y2 + y = x3 + x2 − 2x . Show that
the transformation x ′ = x + 1

3 , y′ = y + 1
2 gives the Weierstrass equation

for E . For the rational points P = (0,0) and Q = (1,0) on E compute
2P , 2Q, P + Q, P − Q and 2P − Q.

(ii) Let E be an elliptic curve with Weierstrass equation y2 = x3 + ax + b
and let P = (x1, y1) and Q = (x2, y2) be points on E with x1 � x2. Show
that ((y1 − y2)/(x1 − x2))

2 and ((y1 + y2)/(x1 − x2))
2 are zeros of

(x1 − x2)
2t2 − 2(x3

1 + x3
2 + a(x1 + x2)+ 2b)t + (x2

1 + x1x2 + x2
2 + a)2

as a polynomial in t . Show further that the x-coordinates of P + Q and
P − Q are zeros of the polynomial in u obtained on putting t = u + x1 +
x2. Thus verify the formulae in Section 17.4.

(iii) Let f (x) be a polynomial with integer coefficients and let E be the curve
y2 = f (x). Further, let p be an odd prime and let Ẽ be the reduction of
E mod p as in Section 17.6. Show that the number of points on Ẽ is

1 +
p−1∑
x=0

((
f (x)

p

)
+ 1

)
.

Deduce that if f (−x)= − f (x) identically and if p ≡ 3 (mod 4) then Ẽ
has p + 1 points.

(iv) Let E be the elliptic curve y2 = x3 − k2x where k is a positive integer.
Show that the order q of the torsion subgroup of E divides p + 1 for all
primes p ≡3 (mod 4) with p not dividing 2k. Show further, as in Section
17.6 Example 17.4, that q is divisible by 4.

Let q ′ be the greatest factor of q not divisible by 3. By considering
primes p ≡ q ′ + 3 (mod q), deduce from Dirichlet’s theorem on arith-
metical progressions that q = 4 and that the torsion subgroup of E is
isomorphic to (Z/2Z)2.
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(v) Show that the curve y2 = x3 + 5 has infinitely many solutions over the
rationals.

(vi) Let E be the elliptic curve y2 = x3 −43x +166. Verify by reduction mod
3 that the order of the torsion subgroup T of E divides 7. Hence show
that T �Z/7Z and that T is generated by (3,8).

(vii) By taking Z = 2
√

x , show that if k is a positive rational then the positive
rationals X,Y, Z such that X2 + Y 2 = Z2 and 1

2 XY = k are in bijective
correspondence with the rationals x such that x , x + k and x − k are
rational squares.

(viii) Use Tunnell’s criterion to show that the least congruent number k with
k ≡ 1 (mod 8) is 41.

(ix) Let E be the elliptic curve y2 = x3 + ax and let φ be the isogeny that
takes E to the curve E ′ given by y′2 = x ′3 − 4ax ′ as in Section 17.8
Example 17.5. By considering the lattice with basis 1

2ω1,
1
2ω2, show that

there is an isogeny φ′ from E ′ to E that takes (x ′, y′) to (x, y) where
x = 1

4 (y
′/x ′)2 and y = 1

8 (x
′2 + 4a)y′/x ′2. Verify that the composition

φ′φ maps each point P on E to 2P .
(x) Let E be an elliptic curve as in Exercise (ix) but now defined over Q and

let G be the Mordell–Weil group of E . Show that the map ψ taking G
to Q∗/Q∗2 given by (x, y) �→ x Q∗2 if x � 0, (x, y) �→ aQ∗2 if x = 0 and
O �→ 1Q∗2 is a group homomorphism.

By considering the substitution x ′ = 2x + 2y/t and y′ = 2t x ′ with
x = t2 for some rational t � 0, prove that the kernel of ψ is φ′(G ′) where
G ′ is the Mordell–Weil group of E ′ and φ′ is the induced map G ′ → G
arising from the isogeny.

(xi) Let E be the elliptic curve y2 = x3 + ax + b with a,b integers. Verify
the assertion in Section 17.5 that if (x, y) is a rational point on E then
x = r/t2 and y = s/t3 for some integers r, s, t with (r, t)= (s, t)= 1.

Now let b = 0. Show that if p is a prime dividing r which occurs
to an odd power in the canonical factorization of r then p divides a.
Hence verify that the image of the map ψ in Exercise (x) is contained in
the subgroup of Q∗/Q∗2 generated by −1Q∗2 and p Q∗2 where p runs
through the prime factors of a.

(xii) Let E be the elliptic curve given in Legendre normal form by y2 = f (x)
with f (x)= x(x − 1)(x − λ). Show that the discriminant of f is (λ(λ−
1))2. Show further that the Weierstrass equation for E is y2 = x3 +ax +b
with 3a =−(λ2 −λ+ 1). Hence verify the formula for the j-invariant of
E quoted in Section 17.8.
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