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Preface

In March 2008, an International Conference on Partitions, q-Series, and Modular
Forms was held at the University of Florida. This conference was one of the
highlights of the year-long Program in Algebra, Number Theory, and Combinatorics
(ANTC) held in the Mathematics Department. The University of Florida Mathe-
matics Department has been the venue of several conferences covering the theory
of partitions and q-hypergeometric series. But what made this 2008 conference so
special was that its outstanding success led to the start of year-long programs in
ANTC in our department, with the 2007–2008 program being the first. The 2008
conference received generous support from the National Science Foundation, the
Department of Mathematics, the College of Liberal Arts and Sciences, and the
Office of Research and Graduate Programs of the University of Florida and for
this we are most grateful. The organizers of this conference were Krishnaswami
Alladi, Alexander Berkovich, and Frank Garvan of the University of Florida,
and George Andrews of The Pennsylvania State University who is Distinguished
Visiting Professor in Florida each year in the Spring Term. This volume is the
outgrowth of the 2008 Gainesville conference on partitions, q-series, and modular
forms, and contains major surveys and research papers related to some of the talks
given at the conference. The papers have been arranged in the alphabetical order of
the authors names.

Major MacMahon, a towering figure in the area of Combinatory Analysis,
initiated several major lines of study, one of which was the subject of plane
partitions. He created a calculational and analytic method for the purpose of
determining the generating function for plane partitions, but it did not turn out
to be what was he had intended, so he had to develop an alternative treatment
in the next two decades. George Andrews and Peter Paule provide a charming
account of the resurrection of MacMahon’s dream of using partition analysis to
treat plane partitions and show how the computer algebra package Omega has now
played a decisive role in a successful treatment of plane partitions via partition
analysis. Andrews and Paule point out that many essential features of this approach
were known to MacMahon and so this solution is very much along the lines of
MacMahon’s original dream.

vii



viii Preface

Srinivasa Ramanujan’s discovery of congruences modulo 5, 7, and 11 for the
partition function stunned the mathematical world and led to a deep study of
congruences not just for partition functions but for coefficients of certain types of
modular forms, an area that is intensely active even today. Ramanujan published
three papers on congruences for the partition function p(n), but there are several
fascinating identities connected to congruences for partition functions in his “Lost
Notebook.” In particular, page 182 of Ramanujan’s Lost Notebook is devoted
to partitions and here Ramanujan has results on congruences of some general
partition functions. Ramanujan demonstrates how some of these congruences follow
by clever use of Jacobi’s triple product identity for theta functions and Euler’s
pentagonal number theorem. Bruce Berndt, Chadwick Gugg, and Sun Kim closely
investigate Ramanujan’s elementary method and provide a detailed treatment of the
entries on page 182 of Ramanujan’s Lost Notebook. In doing so, they deduce some
new results as well, one being a new congruence result for partition functions using
r colors, and for this they employ a remarkable identity due to Winquist.

One of the sensational discoveries in recent years is the connection between mock
theta functions of Ramanujan and the theory of harmonic Maass forms. Kathrin
Bringmann and Ken Ono, two of the primary architects of this major development,
have exploited this fundamental connection to explain many intriguing links be-
tween Borcherds products, values of modular L-functions, and Dyson’s generating
functions for ranks of partitions, to name a few. Here Bringmann and Ono study
harmonic Maass forms with a certain bound on their weights and show that such
forms can be described explicitly as linear combinations of Maass-Poincare series
thereby extending the fundamental results of Rademacher and Zuckerman dating
back to the 1930s.

Ever since Hardy and Ramanujan produced their remarkable asymptotic series
for the partition function p(n) by means of the powerful circle method in 1918,
there has been detailed investigation on the asymptotic sizes of several partition
functions by various analytic and elementary methods. In a charming paper, Rodney
Canfield and Herb Wilf show that if the set of allowable parts S is infinite, then the
function pS(n), which enumerates the number of partitions of n whose parts come
from S, grows faster than any polynomial, no matter how sparse S is. They show
how their results are best possible by explicitly constructing sparse sets S for which
pS(n) grows faster than a polynomial but smaller than a prescribed function. They
conclude their paper with some interesting open problems.

Jacobi’s celebrated triple product identity for theta functions may be viewed as
the beginning of a chain of identities, each member of the chain being of higher
complexity than its predecessor. Thus the “next level” identity is the quintuple
product identity for which several proofs are known. These identities built upward
from the Jacobi triple product identity are viewed as special cases of the Macdonald
identities. The next paper in this volume is by Zhu Cao who shows how the quintuple
and septuple product identities can be proved in a simple manner by utilizing
properties of the cubic and fifth roots of unity. Cao’s method is a variation of the
ideas used by Shaun Cooper in his 2006 survey of the proofs of the quintuple product
identity.
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In 1998, Bousquet-Melou and Kimmo Eriksson produced a startling refinement
of Euler’s rudimentary result connecting partitions into odd parts and distinct
parts by means of the idea of Lecture Hall Partitions. This led to a flurry of
activity on Lecture Hall-type identities where there is a constraint on the ratio
between consecutive parts. Carla Savage, Sylvie Corteel, and Andrew Sills conduct
a novel study here of Lecture Hall-type identities. They first extend the approach
of Bousquet-Melou and Eriksson to encompass sequences of ratios in which the
denominators are not monotone, and by doing so they derive new partition identities
which are reminiscent of the classical partition theorems of Göllnitz.

The classical theta functions of Jacobi are considered among the most significant
discoveries of the nineteenth century in the field of analytic functions. The concept
of a theta function has been vastly generalized to include multivariable versions
and to extend the domain of definition to Riemann surfaces. The famous Thomae
problem deals with proportionalities between theta constants associated with certain
singular curves called Hutchinson’s curves, which define compact Riemann surfaces
of genus 2. Hershel Farkas, a leading authority on Riemann surfaces and the study
of theta functions and theta constants, discusses generalizations of Hutchinson’s
curves to higher genus values and the theta relations that can be deduced from such
generalizations.

In the entire theory of partitions and q-series, the celebrated Rogers-Ramanujan
identities are unmatched in simplicity of form, elegance, and depth. These identities
and their generalizations arise in a variety of settings ranging from the study of
vertex operators in the theory Lie algebras to conformal field theory in physics.
Basil Gordon, one of the foremost authorities in the theory of Rogers-Ramanujan-
type identities, studies the parity of the coefficients of the original two Rogers-
Ramanujan identities. He shows, how in contrast to the partition function, the parity
of these coefficients can be determined much more precisely.

Ramanujan’s mock theta functions are considered among his deepest contribu-
tions. These intriguing functions, the discovery of which Ramanujan communicated
in his last letter to Hardy from India in 1920 shortly before he died, continue to
fascinate mathematicians to this day. We owe much to George Andrews and others
for the present understanding of mock theta functions in the context of the theory
of partitions and q-hypergeometric series. The recent work of Ono, Brigmann,
Zwegers, and others connecting mock theta functions to Maass forms has led to
a clearer understanding of how mock theta functions are connected to the theory
of modular forms. This is a modern point of view, yet there is much significant
work that has been done in recent years in the classical theory of mock theta
functions. Basil Gordon has discovered new mock theta functions of order 8 and
Richard McIntosh has conducted a systematic investigation on the asymptotics of
the coefficients of mock theta functions, to give examples of significant work on
the classical aspects of the subject. In this volume Gordon and McIntosh provide a
fine comprehensive survey of the classical theory of the mock theta functions from
Ramanujan’s time to the present.

The Cauchy-Sylvester theorem on compound determinants is at the inter-
face of q-series, algebraic combinatorics, special functions, and combinatorial
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representation theory. Masahiko Ito and Soichi Okada discuss the application of
the Cauchy-Sylvester theorem to the evaluation of a certain multivariable integral
of Jackson and discuss implications of the approach to determinant formulae for
certain classical group characters.

Ramanujan’s original notebooks contain hundreds of formulas that have inspired
major lines of research in the twentieth century. The paper by Yasushi Kajihara in
this volume contains a vast number of multiple series identities associated with root
systems; most of these identities concern multiple series generalizations of q-series
identities found in Ramanujan’s notebooks.

In the last decade, one of the most important developments in the theory of theta
function identities of Jacobi is the work of Steve Milne who provided multivariable
versions and obtained in that process exact formulas for various sums of squares
representations. In this volume Milne provides a comprehensive treatment of
nonterminating Whipple transformations for basic hypergeometric series in U(n).
Among other things, classical work on very well-poised series on unitary groups
is extended. It is expected that this approach will extend to a similar treatment of
multiple basic hypergeometric series associated with the root system Dn.

In summary, the Conference on Partitions, q-Series, and Modular Forms held in
Gainesville in 2008 was a meeting ground for the world’s experts in these areas
to interact and discuss the latest advances. This book contains survey and research
papers by leading experts as outgrowths of that conference and covers a broad area
of mathematics covering significant parts of number theory, combinatorics, and
analysis. We are most thankful to Elizabeth Loew of Springer for including this
volume in the Developments in Mathematics series.

University of Florida, Gainesville Krishnaswami Alladi
University of Florida, Gainesville Frank Garvan
November 2010
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MacMahon’s Dream

George E. Andrews1 and Peter Paule2

Abstract We shall provide an account of MacMahon’s development of a
calculational, analytic method designed to produce the generating function for
plane partitions. His efforts did not turn out as he had hoped, and he had to spend
nearly 20 years finding an alternative treatment. This paper provides an account
of our retrieval of MacMahon’s original dream of using Partition Analysis to treat
plane partitions in general.

Keywords Plane partitions • MacMahon’s partition analysis • Generating
functions

Mathematics Subject Classification: Primary: 05A17; Secondary: 05A15, 05E99,
11P81

1 Introduction

Major MacMahon’s collected papers fill two large volumes [21] and [22]. Among
these are seven lengthy works entitled, “Memoir on the theory of the partitions of
numbers, I–VII.”

1 Work of George E. Andrews was partially supported by NSF Grant DMS-0457003.
2 Work of Peter Paule was supported SFB Grant F103 of the Austrian Science Foundation.

G.E. Andrews (�)
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2 G.E. Andrews and P. Paule

The first of these [23], also [21, pp. 1026–1080], appeared in 1895 when
MacMahon was the President of the London Mathematical Society. It was 65 pages
long and was mostly a leisurely account of what MacMahon termed partitions of
multipartite numbers.

Multipartite numbers are in modern parlance n-tuples of nonnegative integers.
For example, (7,5,0,3) is a 4-partite number. Partitions of (7,5,0,3) are direct sums
of 4-tuples of nonnegative integers that add to (7,5,0,3). For example,

(7,5,0,3) = (4,1,0,2)+ (2,3,0,0)+ (1,1,0,1),

or
= (3,3,0,3)+ (4,2,0,0).

MacMahon considers a variety of combinatorial and geometrical aspects of such
partitions. Of special interest is the classical representation of ordinary or unipartite
partitions in “Sylvester graphs” (today called Ferrers graphs). For example, the
unipartite partition of 29 given by

7+ 7+ 5+ 4+4+2

has the graphical representation

• • • • • • •
• • • • • • •
• • • • •
• • • •
• • • •
• •

where each row of nodes represents the corresponding part of the partition.
MacMahon then notes [21, p. 1058] that if one has a multipartite partition

in which the Ferrers graph of each part contains the Ferrers graph of the next
(called “the subjacent succession of lines” by him), then one may produce a three-
dimensional analog of the Ferrers graph. Thus if we start with the “regularized” (i.e.,
the entries of the tuples involved are weakly decreasing) multipartite partition

(16,8,6) = (6,4,3)+ (6,3,2)+ (4,1,1)

= A+B+C,

we may regard each of the parts as a unipartite partition, and the respective Ferrers
graphs are

A B C

• • • • • • • • • • • • • • • •
• • • • • • • •
• • • • • •
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As MacMahon says [21, p. 1058], “it is clear that we may pile B upon A, and
then C upon B & A, and thus form a three dimensional graph of the partition”

��� ��� ��� ��� �� ��

��� �� �� �

��� �� �

In subsequent papers, MacMahon refers to this three-dimensional graph as
representing the plane partition of 30 given by

6 4 3
6 3 2
4 1 1

He next determines that there are three such partitions of 2, six of 3 and 13 of 4.
This leads him to the following conjecture [21, pp. 1064–1065]:

The enumeration of the three-dimensional graphs that can be formed with a given number
of nodes, corresponding to the regularised partitions of all multi-partite numbers of given
content, is a weighty problem. I have verified to a high order that the generating function of
the complete system is

(1− x)−1(1− x2)−2(1− x3)−3(1− x4)−4 · · · ad inf.,

and, so far as my investigations have proceeded, everything tends to confirm the truth of
this conjecture.

In Sect. 2 we shall look at MacMahon’s efforts to develop a calculus (later to be
named Partition Analysis) that he hoped would allow him to prove his conjecture.
In Sect.3 we sketch our proof of all of MacMahon’s conjectures. We conclude with
a brief account of our discoveries made using our Mathematica implementation of
Partition Analysis, the package Omega which is freely available at [25].

2 Partition Analysis: The Beginning

MacMahon [21, p. 1068] begins with some very simple problems. As an example,
he considers plane partitions that only have 1s and 2s as parts and have only two
columns. For example,

2 2
2 2
2 1
1 1
1
1

(1)
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The generating function for such partitions is

∑
n1,n2,m1,m2�0

n1�n2
n1+m1�n2+m2

x2n1+2n2+m1+m2 .

Here n1 counts the number of 2s in the first column, n2 the number in the second;
m1 counts the number of 1s in the first column, m2 the number in the second.

He then utilizes an idea (traceable back to Cayley in invariant theory [21,
p. 1142]) of coding the inequalities on the indices by considering

∑
n1,n2,m1,m2�0

x2n1+2n2+m1+m2an1+m1−n2−m2 bn1−n2 ,

where all terms with negative exponents on either a or b will be thrown out and in
all other terms a and b are set to 1. This device immediately allows all the series to
be summed by the geometric series to

1

(1− xa)
(
1− x

a

)
(1− abx2)

(
1− x2

ab

) =
1

(1− xa)
(
1− x

a

)
(1− x4)

×
{

1
1−abx2 +

x2

ab

1− x2

ab

}

.

Now the second term inside { } has only negative powers of b and so can be dropped
from consideration. The first term has only positive powers of b, and so we may set
b = 1 in this term. Thus we have reduced the problem to considering

1

(1− xa)
(
1− x

a

)
(1− x4)(1− ax2)

=
1

(1− x4)
(
1− x

a

)
(1− x)

{
1

1− ax
− x

1− ax2

}

=
1

(1− x4)(1− x)
×
{

1
1− x2

(
1

1− ax
+

x
a

1− x
a

)
− x

1− x3

(
1

1−ax2 +
x
a

1− x
a

)}
.

As in the elimination of b, this reduces to

1
(1− x4)(1− x)

{
1

(1− x2)(1− x)
− x

(1− x3)(1− x2)

}
=

1
(1− x)(1− x2)2(1− x2)

,

a result which, as MacMahon points out, is not obvious [21, p. 1068].
Now two things are clear. First, one must streamline this method which is

cumbersome even in this simple example. Second, one must somehow introduce
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a simple notation for the deletion of terms with negative exponents on a and b.
MacMahon turns his attention to these requirements in [24], and finally in his
magnum opus [20, Vol. II, Sect. VIII], he has reduced the above treatment to the
following. First he defines the omega operator [20, Vol. II, p. 92]

Ω
� ∑

n1,...,n j=−∞
A(n1,n2, . . . ,n j)λ n1

1 λ n2
2 . . .λ n j

j = ∑
n1,n2,...,n j�0

A(n1,n2, . . . ,n j),

where A(n1,n2, . . . ,n j) is generally some rational function of variables like x,y, or z.
Then MacMahon prepares a list of valid omega evaluations [20, Vol. II, p. 102]

including

Ω
�

1
(1−λ x)(1−λ y)(1− z

λ )
=

1− xyz
(1− x)(1− y)(1− xz)(1− yz)

. (2)

Hence

∑
n1,n2,m1,m2�0

n1�n2
n1+m1�n2+m2

x2n1+2n2+m1+m2 = Ω
�

1

(1− xλ2)
(

1− x
λ2

)
(1−λ1λ2x2)

(
1− x2

λ1λ2

)

= Ω
�

1

(1− xλ2)
(

1− x
λ2

)
(1−λ2x2)(1− x4)

(by (2) with x, y, z replaced by λ2x2,0, x2

λ2
, resp.)

=
1

(1− x4)
Ω
�

1

(1− xλ2)(1− x2λ2)
(

1− x
λ2

)

=
1

(1− x4)
· (1− x4)

(1− x)(1− x2)(1− x2)(1− x3)

(by (2) with x, y, z replaced by x,x2,x, resp.)

=
1

(1− x)(1− x2)2(1− x3)
.

MacMahon clearly hoped to hone this tool into one that could prove his conjec-
tures on plane partitions. Clearly the problems can all be set up in the language of his
Partition Analysis. However, he was unable to develop this machinery adequately.
Sadly he sets up the general problem [20, Vol. II, p. 186], but is forced to conclude:
“Our knowledge of the Ω operation is not sufficient to enable us to establish the
final form of result.”

In the next section, we describe the work in [5] where we have overcome
MacMahon’s difficulties.
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3 Partition Analysis: The Dream

In our efforts to make MacMahon’s dream come true the Omega package [25]
has played a decisive role. Remarkably, MacMahon had already been aware of the
algorithmic essence of Partition Analysis; see Sect. VIII of [20, Vol. 2, pp. 111–114]
describing the “method of Elliott.” However, 90 years before computer algebra sys-
tems emerged he was confined to use his technique essentially in the form of a table
lookup method. After the first achievements of revitalizing Partition Analysis, [1]
and [2], we have pursued the project of replacing MacMahon’s transformation and
elimination rules for his omega operator by a deterministic algorithmic procedure.
Subsequently we have implemented these algorithms in the Mathematica system
and called the corresponding package “Omega.” For a description of this work and
for a variety of new applications we refer to the articles [3–12].

As an illustration we show how the example discussed in Sect. 2 can be treated
with Omega in a fully automatic fashion. We initialize by loading the package

In[1]:= <<Omega2.m

Following MacMahon’s terminology, the first step is to compute the “crude
generating function.” To this end one has to only input the problem in a form
which is very close to the usual mathematical syntax. (All summation parameters
are assumed to be nonnegative, if not specified otherwise.)

In[2]:= Crude = OSum[x2n1+2n2+m1+m2 ,{n1≥n2,n1 +m1≥n2+m2},λ]

Out[2]= Ω≥
λ1,λ2

1

(1− x
λ2

)(1− x2
λ1λ2

)(1−xλ2)(1−x2λ1λ2)

Finally the elimination of the λ variables is carried out by the procedure call

In[3]:= OR[Crude]
Eliminating λ1...
Eliminating λ2...

Out[3]= 1
(1−x)(1−x2)2(1−x3)

Note: During computation, the package tells the user in which order the elimination
of the λ variables is carried out.

To present a brief account of how MacMahon’s dream has come true we need a
couple of definitions.

Given an r× c matrix X = (xi, j) we define

pr,c(X) := ∑
(ai, j)∈Mr,c

x
a1,1
1,1 · · ·x

a1,c
1,c · · ·x

ar,1
r,1 · · ·x

ar,c
r,c ,
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where Mr,c consists of all r× c matrices over nonnegative integers ai, j such that
ai, j ≥ ai, j+1 and ai, j ≥ ai+1, j. Hence pr,c(X) is the generating function for all plane
partitions with at most r rows and c columns. In pr,c(X), setting all the xi, j to x
produces the corresponding enumerative generating function which we denote by
qr,c(x). The limiting case r,c→ ∞ corresponds to MacMahon’s original conjecture
[21, pp. 1064–1065] cited in Sect. 1 namely

q∞,∞(x) =
∞

∏
k=1

1
(1− xk)k . (3)

In [23] MacMahon also considered the case where r and c are set to concrete
integers. His computations led him to conjecture that

qr,c(x) =
∞

∑
n=0

Pr,c(n)x
n =

r

∏
i=1

c

∏
j=1

1
1− xi+ j−1 , (4)

where Pr,c(n) denotes the number of plane partitions of n with at most r rows and c
columns. Obviously, for r,c→ ∞ this turns into (3).

In our attempt to give a possible explanation of why MacMahon had failed to
prove (4) with his method, we first have to describe how Partition Analysis would
work on such problems in principle.

The usual heuristics approach to prove (4) by means of Partition Analysis would
be as follows: one tries to proceed by mathematical induction with respect to one
of the free parameters, e.g., with respect to c with r fixed. To this end, one applies
Partition Analysis to special instances of the problem in order to guess a pattern
for the induction step from c to c+ 1. But in many applications it turns out that
the enumerative generating function does not provide sufficient information into
the mechanism of the induction. In such situations one often can overcome this
problem by considering the full generating function, i.e., the generating function
that constructs all the objects in question; see the various examples given in [3–12].

To illustrate this point let us consider pr,c(X) with r = c = 3. The case q3,3(x),
where all the xi, j in p3,3(X) are set to x, causes no computational problem at all:

In[4]:=OSum[xa11+a12+a13+a21+a22+a23+a31+a32+a33 ,
{a11 ≥ a12,a12 ≥ a13,a21 ≥ a22,a22 ≥ a23,a31 ≥ a32,a32 ≥ a33,
a11 ≥ a21,a21 ≥ a31,a12 ≥ a22,a22 ≥ a32,a13 ≥ a23,a23 ≥ a33},λ ]

Out[4]= Ω≥
λ1,λ2 ,λ3,λ4,λ5,λ6,λ7 ,λ8,λ9,λ10,λ11,λ12

1

(1−xλ1λ7)
(

1− xλ5
λ8

)(
1− xλ3λ8

λ7

)

× 1(
1− xλ2λ9

λ1

)(
1− xλ6

λ5λ10

)(
1− xλ4λ10

λ3λ9

)(
1− xλ11

λ2

)(
1− x

λ6λ12

)(
1− xλ12

λ4λ11

)

In[5]:= OR[%4]

Out[5]= 1
(1−x)(1−x2)2(1−x3)3(1−x4)2(1−x5)
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Despite the fact that the Omega package confirms (4) within a fraction of a
second, a closer inspection shows that in order to exhibit an induction pattern for
a Partition Analysis proof of (4) the setting xi, j = 0 is too much restrictive.

So let us have a look at the full generating function p3,3(X). The crude generating
function comes out in perfect analogy to Out [4] above:

In[6]:=OSum
[
xa11

11 xa12
12 xa13

13 xa21
21 xa22

22 xa23
23 xa31

31 xa32
32 xa33

33 ,
{a11 ≥ a12,a12 ≥ a13,a21 ≥ a22,a22 ≥ a23,a31 ≥ a32,a32 ≥ a33,
a11 ≥ a21,a21 ≥ a31,a12 ≥ a22,a22 ≥ a32,a13 ≥ a23,a23 ≥ a33},λ

]

Out[6]= Ω≥
λ1,λ2 ,λ3,λ4,λ5,λ6,λ7 ,λ8,λ9,λ10,λ11,λ12

1

(1−x11λ1λ7)
(

1− x31λ5
λ8

)(
1− x21λ3λ8

λ7

)

× 1(
1− x12λ2λ9

λ1

)(
1− x32λ6

λ5λ10

)(
1− x22λ4λ10

λ3λ9

)(
1− x13λ11

λ2

)(
1− x33

λ6λ12

)(
1− x23λ12

λ4λ11

)

The computation of the full generating function takes another couple of seconds:

In[7]:= OR[%6]

Out[7]= (1− x2
11x12x21− x2

11x12x13x21−·· ·+ x14
11x12

12x7
13x12

21x7
22x2

23x7
31x2

32)/
((1− x11)(1− x11x12)(1− x11x12x13)(1− x11x21)(1− x11x12x21)
(1− x11x12x13x21)(1− x11x12x21x22)(1− x11x12x13x21x22)
(1− x11x12x13x21x22x23)(1− x11x21x31)(1− x11x12x21x31)(1− x11x12x13x21x31)
(1− x11x12x21x22x31)(1− x11x12x13x21x22x31)(1− x11x12x13x21x22x23x31)
(1− x11x12x21x22x31x32)(1− x11x12x13x21x22x31x32)
(1− x11x12x13x21x22x23x31x32)(1− x11x12x13x21x22x23x31x32x33))

However, the problem arising in this case consists in the complexity of the
resulting rational function; namely, in order to display the numerator polynomial

1− x2
11x12x21− x2

11x12x13x21−·· ·+ x14
11x12

12x7
13x12

21x7
22x2

23x7
31x2

32

in fully explicit form, one would need more than 30 printed pages.
Summarizing, the coding of the full generating function pr,c(X) in terms of the

omega operator is straight forward and has already been carried out by MacMahon
[20, Vol. II, p. 92]. But without computer algebra he did not succeed in overcoming
the computational difficulties when trying to obtain the beautiful product side of (3),
resp. (4), with omega evaluation. Essentially the problem is this: when specifying
all the xi, j to x, the underlying algebraic structure gets lost entirely. If all the xi, j are
kept, the computational complexity soon gets out of hand.

Consequently, we used the Omega package in a heuristic search to find a
substitution for the xi j which, on the one side, provides more insight into the
underlying Partition Analysis induction pattern than qr,c(x), and on the other side,
for which the elimination of the λi results in a more feasible rational function than
for the general pr,c(X).
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Finally, after various attempts our strategy turned out to be successful. More
precisely, we found that the substitution

xi j → z j−i (5)

has all the properties desired. First, the elimination of the λi results in a rational
function that factors nicely for all choices of r and c. For instance, for r = c = 3,

In[8]:=OSum[za11
0 za12

1 za13
2 za21
−1 za22

0 za23
1 za31
−2 za32
−1 za33

0 ,
{a11 ≥ a12,a12 ≥ a13,a21 ≥ a22,a22 ≥ a23,a31 ≥ a32,a32 ≥ a33,
a11 ≥ a21,a21 ≥ a31,a12 ≥ a22,a22 ≥ a32,a13 ≥ a23,a23 ≥ a33},λ ]

Out[8]= Ω≥
λ1,λ2 ,λ3,λ4,λ5,λ6,λ7 ,λ8,λ9,λ10,λ11,λ12

1

(1−z0λ1λ7)
(

1− z−2λ5
λ8

)(
1− z−1λ3λ8

λ7

)

× 1(
1− z1λ2λ9

λ1

)(
1− z−1λ6

λ5λ10

)(
1− z0λ4λ10

λ3λ9

)(
1− z2λ11

λ2

)(
1− z0

λ6λ12

)(
1− z1λ12

λ4λ11

)

In[9]:=OR[%8]

Out[9]= 1/((1− z0)(1− z−1z0)(1− z−2z−1z0)(1− z0z1)(1− z−1z0z1)
(1− z−2z−1z0z1)(1− z0z1z2)(1− z−1z0z1z2)(1− z−2z−1z0z1z2))

Second, and more importantly, in this situation MacMahon’s method of Partition
Analysis works in a way that allows to set up an elementary induction proof for the
corresponding plane partition result which originally is due to Emden Gansner. His
theorem [16, Theorem 4.2] not only generalizes (4) but also Stanley’s trace theorem
[27, Theorem 2.2] which was also conjectured by MacMahon in [23]. In order to
state Gansner’s theorem we need a couple of definitions.

Let π = (ai, j) be an r× c matrix over nonnegative integers ai, j such that ai, j ≥
ai, j+1 and ai, j ≥ ai+1, j; i.e., π represents a plane partition of n := Σi jai j with at most
r rows and c columns. For any integer k we define the k-trace tk of π by tk := Σai, j

where the sum runs over all i, j such that k = j− i. For example, the traces of the
plane partition of 30 in Sect. 1 are t−2 = 4, t−1 = 7, t0 = 10, t1 = 6, and t2 = 3.

If Tr,c(t−r+1, ..., t−1;t0, ..., tc−1;n) denotes the number of plane partitions of n with
at most r rows and c columns, and with k-trace tk, −r+ 1 ≤ k ≤ c− 1, Gansner’s
theorem reads as follows:

∞

∑
n=0

∞

∑
t−r+1=0

...
∞

∑
tc−1=0

Tr,c (t−r+1, ..., t−1;t0, ..., tc−1;n) zt−r+1
−r+1 · · ·zt−1

−1 zt0
0 · · · ztc−1

c−1xn

=
r

∏
i=1

c

∏
j=1

1
1− z−i+1z−i+2 · · · z j−1xi+ j−1 .

Obviously, z−r+1 = z−r+2 = ... = zc−1 = 1 gives (4); setting all zk = 1, except
z0, gives Stanley’s trace theorem [27, Theorem 2.2].
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It is immediate that pr,c(X) for X = (xi, j) with xi j := z j−i can be rewritten as
the multiple series in Gansner’s theorem. Our Partition Analysis proof of the fact
that it finds the product representation above can be found in [5].

Summarizing, we want to note that our proof in [5] uses only basic power
series arithmetic; essentially it proceeds by complete induction involving recur-
sively defined rational functions. So our Partition Analysis approach is completely
different from Gansner’s original proof which is based on a combinatorial bijection
of Burge [14]. This bijection is one of those variations of the Schensted-Knuth
correspondence which Burge derived in order to give combinatorial proofs for a
collection of Schur function identities due to D.E. Littlewood.

4 Conclusion

The implementation of MacMahon’s Partition Analysis in the Omega package
has provided the exploratory tool for our dozen papers on this topic [1–12]. It is
important to point out that there have been a number of parallel and complementing
projects that can be viewed as having goals similar to MacMahon’s. An incomplete
list would include (1) LattE [15, 18], an implementation of the work of Barvinok
and Pommersheim [13], (2) the MAPLE package designed by Stembridge [28] to
implement the discoveries of R. Stanley [26] which in turn were based on another
MacMahon paper [19]. Recently Xiu [29] has made contributions based on his work
on partial fractions.

In the future we hope to explore further with Omega. Also we are modifying
Omega to treat problems in which not only linear Diophantine inequalities are
considered but also divisibility properties of the summands are treated. Toward this
goal, we have developed an extension of Partition Analysis that allows us to treat
the Göllnitz-Gordon partition functions.

It is perhaps fitting to close with Glaisher’s evaluation [17] of [23] (printed with
permission of the Royal Society):

I don’t fancy the paper very much, but it must be printed. I don’t care much for a paper
on very technical mathematics being published in the Phil. Trans. unless there is something
very striking in it. However, it is one of a series, and they are in deep water now and cannot
go on much farther. I have made my report because there is no more to be said than that it
should be published (though the interesting results are the conjectural ones!), the balance
being on that side.

How fortunate we are that Glaisher’s lack of enthusiasm did not cause him to
recommend against [23]. Also we can congratulate Glaisher on his recognition of
the significance of MacMahon’s conjectures.

Acknowledgements We thank Christian Krattenthaler for pointing out that substitution (5) we
found with Partition Analysis leads us to rediscover Gansner’s theorem.
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Ramanujan’s Elementary Method in Partition
Congruences

Bruce C. Berndt, Chadwick Gugg, and Sun Kim

Abstract Page 182 in Ramanujan’s lost notebook corresponds to page 5 of an
otherwise lost manuscript of Ramanujan closely related to his paper provid-
ing elementary proofs of his partition congruences p(5n + 4) ≡ 0 (mod 5) and
p(7n+ 5) ≡ 0 (mod 7). The claims on page 182 are proved and discussed, and
further results depending on Ramanujan’s ideas are established.

Keywords Partitions • Congruences • Pentagonal number theorem • Jacobi’s
identity • Winquist’s identity
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1 Introduction

Ramanujan published three papers, [12–14], on congruences for the partition
function p(n). However, the second [13] is only a short announcement of results, and
the third [14] was extracted by Hardy from a much longer handwritten manuscript
after Ramanujan’s death. The latter manuscript, concentrating on both p(n) and
Ramanujan’s τ-function τ(n), was published for the first time with Ramanujan’s
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lost notebook [17] in its original handwritten form. Later, this p(n)/τ(n) manuscript
was prepared for journal publication, with amplification of details and extensive
commentary, by the first author and Ono [7]. That article is reproduced in the book
[1] by Andrews and Berndt, with the previous commentary considerably expanded.

Page 182 of [17] is also devoted to the theory of partitions. The number (5) is
written in the upper right-hand corner of page 182 in [17], likely indicating that
this is the fifth page of a handwritten manuscript. The first and second lines on
this page are identical to the second and third lines of (11) in [12], [15, p. 211],
where Ramanujan begins to relate his elementary proof of p(5n+4)≡ 0 (mod 5).
The tagged equation numbers on page 182 are (2.2)–(2.5), which clearly indicate
that this page is in Sect. 2 of this manuscript. However, page 182 is not identical
to any page or pages in [12]. Ramanujan’s proof of p(5n+4)≡ 0 (mod 5) here is
considerably briefer than it is in [12]. Moreover, central to Ramanujan’s thoughts is
the more general partition function pr(n) defined by

1
(q;q)r

∞
=

∞

∑
n=0

pr(n)q
n, |q|< 1,

which is not discussed in [12]. This definition is actually not provided on page 182,
but it is clear that it must have been given somewhere in the missing pages 1–4 of
the manuscript. Of course, p1(n) = p(n). In a letter to Hardy written from Fitzroy
House late in 1918 [8, pp. 192–193], Ramanujan writes, “I have considered more or
less exhaustively about the congruency of p(n) and in general that of pr(n) where

∑ pr(n)x
n =

1
(x;x)r

∞
,

by four different methods.” This declaration appears to imply that he had established
several results about pr(n), which quite likely were discussed in the manuscript for
which we now unfortunately have only page 5.

Ramanujan deduces the congruence p(5n−1)≡ 0 (mod 5) from the congruence
p−4(5n− 1) ≡ 0 (mod 5), just as he does in [12] without using this notation.
Ramanujan then remarks that, “Precisely in the same way we can show that

p−4

(
nϖ− ϖ + 1

6

)
≡ 0 (mod ϖ), (1.1)

where ϖ is a prime of the form 6λ − 1 . . . ” He then states a more general theorem.
It is therefore quite clear that Ramanujan’s paper [12] was likely extracted from
a greatly expanded longer manuscript, which was not a part of his p(n)/τ(n)
manuscript and which, except for this single page, has been lost.

After Ramanujan, the function pr(n), in another notation p−r(n), was studied
by, in particular, Newman [9], Ramanathan [10], and Atkin [3], who were also
interested in its congruences. However, they confined themselves to congruences
satisfied by a small set of primes and powers thereof, in contrast to Ramanujan’s
theorems on page 182 satisfying an infinite set of primes.
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The keys to Ramanujan’s elementary methods are the pentagonal number
theorem

∞

∑
n=−∞

(−1)nqn(3n−1)/2 = (q;q)∞ (1.2)

and Jacobi’s identity

∞

∑
n=0

(−1)n(2n+ 1)qn(n+1)/2 = (q;q)3
∞. (1.3)

It is well known that no one has been able to employ these identities to give an
elementary proof of Ramanujan’s congruence p(11n+ 6)≡ 0 (mod 11). The only
known elementary proof of this congruence is due to Winquist [18] and employs an
identity that is now known by his name. At the end of Sect. 2, for the first time, we
utilize Winquist’s identity to derive new congruences for special instances of pr(n).

Ramanujan’s elementary methods focusing on Jacobi’s identity have been uti-
lized and generalized by several authors. The most extensive applications of this
method have been made by Andrews and Roy [2]; their paper contains several
additional references. There are two further identities in the spirit of Jacobi’s
identity, both due to Ramanujan [16], and we employ them in Sect. 3, to derive two
analogues of the general theorem of Andrews and Roy.

2 Page 182 in Ramanujan’s Lost Notebook

A brief account of page 182 along with a proof of the first entry below has been
given by Ramanathan [11].

Entry 2.1 (p. 182). Let δ denote any integer, and let n denote a nonnegative integer.
Suppose that ϖ is a prime of the form 6λ − 1. Then

pδϖ−4

(
nϖ− ϖ + 1

6

)
≡ 0 (mod ϖ). (2.1)

Proof. Consider
∞

∑
n=0

pδϖ−4(n)q
n+λ = (q;q)−δϖ

∞ (q;q)3
∞(q;q)∞qλ

≡ (qϖ ;qϖ )−δ
∞

∞

∑
μ=0

∞

∑
ν=−∞

(−1)μ+ν(2μ + 1)q
1
2 μ(μ+1)+ 1

2 ν(3ν+1)+λ (mod ϖ),

(2.2)
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upon the use of Euler’s pentagonal number theorem (1.2) and Jacobi’s identity (1.3).
We want to examine those terms for which

1
2

μ(μ + 1)+
1
2

ν(3ν + 1)+
ϖ + 1

6
≡ 0 (mod ϖ). (2.3)

Our goal is to prove that
ϖ | (2μ + 1). (2.4)

Multiply (2.3) by 24 to obtain the equivalent congruence

12μ(μ + 1)+ 12ν(3ν+ 1)+ 4ϖ +4≡ 0 (mod ϖ),

or
3(2μ + 1)2 +(6ν + 1)2 ≡ 0 (mod ϖ). (2.5)

Using the fact that, for each prime p, the Legendre symbol (−1
p ) = (−1)(p−1)/2, and

the law of quadratic reciprocity, we find that

(−3
ϖ

)
=

(
ϖ
3

)
=

(−1
3

)
=−1.

Thus, the only way that (2.5) can hold is for (2.4) to happen. But then, from the
right-hand side of (2.2), we can conclude that

pδϖ−4

(
nϖ− ϖ + 1

6

)
≡ 0 (mod ϖ).

Thus, the proof is complete. ��
Corollary 2.2 (p. 182). For each positive integer n,

p6(5n− 1)≡ 0 (mod 5),

p7(11n− 2)≡ 0 (mod 11).

Proof. The first congruence arises from the case ϖ = 5 and δ = 2, while the second
arises from the case ϖ = 11 and δ = 1 in Entry 2.1. ��

Next, Ramanujan gives an elementary proof of the congruence p(7n− 2) ≡
0 (mod 7). He begins with the same first three lines of [12, (13)], [15, p. 212], and
then argues in a somewhat more abbreviated fashion than he does in [12] to deduce
the congruence

p−6(7n− 2)≡ 0 (mod 49), (2.6)

from which it follows that

p(7n− 2)≡ 0 (mod 7). (2.7)
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It should be remarked that the stronger congruence (2.6) is not mentioned by
Ramanujan in [12], although it is implicit in his argument.

Unfortunately, the one-page manuscript ends with (2.7). It would seem that
Ramanujan would have next offered a theorem analogous to Entry 2.1, and so we
shall state and prove such a theorem here, but, of course, Ramanujan probably would
have had much more to say to us, if his manuscript had survived.

Theorem 2.3. For a prime ϖ with 4 | (ϖ + 1), any integer δ , and any positive
integer n,

pδϖ−6

(
nϖ− ϖ + 1

4

)
≡ 0 (mod ϖ). (2.8)

In the case δ = 0 above, we can strengthen (2.8).

Entry 2.4 (p. 182). We have

p−6

(
nϖ− ϖ + 1

4

)
≡ 0 (mod ϖ2). (2.9)

Observe that (2.6) is the special case ϖ = 7 of (2.9), and so, with slight
exaggeration, we affixed “p. 182” to the entry above.

Corollary 2.5. For each positive integer n,

p3δ−6(3n− 1)≡ 0 (mod 3). (2.10)

Proof. Set ϖ = 3 in Theorem 2.3. ��
For the case δ = 3 in (2.10), Baruah and Ojah [4], using more sophisticated

means, obtained the stronger result

p3(3n− 1)≡ 0 (mod 32).

Proof of Theorem 2.3. Consider, for λ = (ϖ + 1)/4,

∞

∑
n=0

pδϖ−6(n)q
n+λ = (q;q)−δϖ

∞ (q;q)6
∞qλ

≡ (qϖ ;qϖ )−δ
∞

∞

∑
μ=0

∞

∑
ν=0

(−1)μ+ν(2μ + 1)(2ν + 1)q
1
2 μ(μ+1)+ 1

2 ν(ν+1)+λ (mod ϖ),

(2.11)

upon the use of Jacobi’s identity (1.3). We need to show that if

1
2

μ(μ + 1)+
1
2

ν(ν + 1)+
ϖ + 1

4
≡ 0 (mod ϖ), (2.12)

then
ϖ2 | (2μ + 1)(2ν + 1). (2.13)
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The congruence (2.8) will then follow from (2.13) and (2.11). Multiply (2.12) by 8
to obtain

4μ(μ + 1)+ 4ν(ν + 1)+ 2ϖ + 2≡ 0 (mod ϖ),

or

(2μ + 1)2 +(2ν + 1)2 ≡ 0 (mod ϖ).

Since (−1
ϖ

)
=−1,

we conclude that
ϖ | (2μ + 1) and ϖ | (2ν +1),

which completes the proof of (2.13). ��
Observe that if δ = 0, then the congruence in (2.11) can be replaced by an

equality. Hence, in (2.8), the congruence modulo ϖ can be replaced by a congruence
modulo ϖ2 in view of (2.13). Entry 2.4 therefore follows.

Although Entry 2.1 and Theorem 2.3 are not special cases of the general theorem
of Andrews and Roy [2], they would be instances of the general theorem envisioned
by the authors in Sect. 5 of their paper [2].

Recall next that a corollary of Winquist’s identity is given by [18]

48(q;q)10
∞ =

∞

∑
m,n=−∞

(−1)m+n((6m+ 3)3(6n+1)− (6m+3)(6n+1)3)

×q
1
2 (3m2+3m+3n2+n). (2.14)

Theorem 2.6. For a prime ϖ with 12 | (ϖ + 1), and any integer δ , we have

pδϖ−10

(
nϖ− 5(ϖ + 1)

12

)
≡ 0 (mod ϖ).

Proof. Let λ = 5(ϖ + 1)/12, and from (2.14) consider

∞

∑
n=0

pδϖ−10(n)q
n+λ = (q;q)−δϖ

∞ (q;q)10
∞ qλ

≡ (qϖ ;qϖ)−δ
∞

1
48

∞

∑
m,n=−∞

(−1)m+n((6m+3)3(6n+1)

−(6m+ 3)(6n+ 1)3)q
1
2 (3m2+3m+3n2+n)+λ (mod ϖ).

(2.15)
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If
1
2
(3m2 + 3m+ 3n2+ n)+λ ≡ 0 (mod ϖ),

then upon multiplying both sides above by 24, we find that

12(3m2 + 3m+ 3n2+ n)+ 10(ϖ + 1)≡ 0 (mod ϖ),

or

(6m+ 3)2+(6n+ 1)2≡ 0 (mod ϖ).

Since (−1
ϖ

)
=−1,

we see that
ϖ | (6m+ 3) and ϖ | (6n+1).

Using these observations in (2.15), we complete the proof. ��
We observe that in the special case δ = 0, our proof yields a stronger result.

Corollary 2.7. For a prime ϖ with 12 | (ϖ + 1), we have

p−10

(
nϖ− 5(ϖ + 1)

12

)
≡ 0 (mod ϖ4).

3 Two Further General Congruences

Our analogues of the main theorem of Andrews and Roy [2] are dependent on the
two identities

∞

∑
j=−∞

(6 j+ 1)q3 j2+ j = (q2;q2)3
∞(q

2;q4)2
∞ (3.1)

and

∞

∑
j=−∞

(3 j+ 1)q3 j2+2 j = (q2;q2)∞(q;q2)2
∞(q

4;q4)2
∞, (3.2)

which arise from the quintuple product identity and which are found as Entries
8(ix), (x) in Chap. 17 of Ramanujan’s second notebook [16]. For proofs, see
[5, pp. 118–119] or [6, pp. 20–22]. More historical information can be found in
[6, p. 25].

For each integer m, we shall denote by m the multiplicative inverse of m (mod p).
We prove the following theorems.
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Theorem 3.1. Suppose that p is a prime > 3, 0 < a < p, and a and b are integers.
Assume that −6a is a quadratic nonresidue modulo p. Suppose that {αn}∞

n=−∞ =
{αn(z1,z2, . . . ,z j)} is a doubly infinite sequence of Laurent polynomials over Z

with variables z1, . . . ,z j independent of q. Then there is an integer c such that the
coefficients of zm1

1 zm2
2 · · · z

mj
j qpN in

qc ∑∞
n=−∞ αnqa(n2−n)/2+bn

(q2;q2)p−3
∞ (q2;q4)p−2

∞
(3.3)

are divisible by p. The integer c = cp(a,b) may be chosen as the least positive
integer congruent to 24(3a(2ba− 1)2 + 2) (mod p).

Proof. By (3.1) and the hypotheses of the theorem, we note that

qc ∑∞
n=−∞ αnqa(n2−n)/2+bn

(q2;q2)p−3
∞ (q2;q4)p−2

∞
=

qc ∑∞
n=−∞ ∑∞

j=−∞(6 j+1)αnqa(n2−n)/2+bn+3 j2+ j

(q2;q2)p
∞(q2;q4)p

∞

≡ qc ∑∞
n=−∞ ∑∞

j=−∞(6 j+1)αnqa(n2−n)/2+bn+3 j2+ j

(q2p;q2p)∞(q2p;q4p)∞
(mod p).

(3.4)

In the last expression, we see that the denominator is a function of qp. Let us now
examine the exponent of q in the numerator; for ease of computation, we multiply
by 24 to achieve

24c+3a(4n2− 4n)+ 24bn+ 72 j2+ 24 j≡ 3a(2n+2ba−1)2

+2(6 j+1)2 (mod p). (3.5)

Now we observe that if j ≡ (p− 1)/6 (mod p) (i.e., (6 j+ 1)≡ 0 (mod p),), then
the last expression above is congruent to 0 (mod p) precisely when

n≡ (1− 2ba)2≡ p+ 1
2
− ba (mod p).

If j �≡ (p−1)/6 (mod p), then the last expression in (3.5) can never be congruent to
0 (mod p), because, by the assumption that −6a is a quadratic nonresidue modulo
p, exactly one of

−3a(2n+ 2ba− 1)2 and 2(6 j+1)2

is a quadratic residue modulo p, and so they cannot be congruent to each other
modulo p. Therefore the coefficients of qpN in (3.4) are all linear combinations over
pZ of various αn. This completes the proof. ��

Similarly, from (3.2), we can derive the next theorem. We forego the proof.
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Theorem 3.2. Suppose that p is a prime > 3, 0 < a < p, and a and b are
integers. Let −6a be a quadratic nonresidue modulo p. Suppose {αn}∞

n=−∞ =
{αn(z1,z2, . . . ,z j)} is a doubly infinite sequence of Laurent polynomials over Z with
variables z1, . . . ,z j independent of q. Then there exists an integer c such that the
coefficients of zm1

1 zm2
2 · · · z

mj
j qpN in

qc ∑∞
n=−∞ αnqa(n2−n)/2+bn

(q2;q2)p−1
∞ (q;q2)p−2

∞ (q4;q4)p−2
∞

(3.6)

are divisible by p. The integer c = cp(a,b) may be chosen as the least positive
integer congruent to 24(3a(2ba− 1)2 + 8) (mod p).

Applications analogous to those made by Andrews and Roy in Sect. 4 of their
paper [2] can be made here, but since they are easily deduced and no new ideas are
involved, we do not proceed any further.
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Coefficients of Harmonic Maass Forms

Kathrin Bringmann1 and Ken Ono2

Abstract Harmonic Maass forms have recently been related to many different
topics in number theory: Ramanujan’s mock theta functions, Dyson’s rank gener-
ating functions, Borcherds products, and central values and derivatives of quadratic
twists of modular L-functions. Motivated by these connections, we obtain exact
formulas for the coefficients of harmonic Maass forms of nonpositive weight, and
we obtain a conditional result for such forms of weight 1/2. This extends earlier
work of Rademacher and Zuckerman in the case of weakly holomorphic modular
forms of negative weight.

Keywords Harmonic maass forms • Fourier coefficients

Mathematics Subject Classification: 11F30

1 Introduction and Statement of Results

In work which gave birth to the “circle method,” Hardy and Ramanujan [19, 20]
derived their famous asymptotic formula for the partition function

p(n)∼ 1

4n
√

3
· eπ
√

2n/3. (1.1)
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In celebrated work, Rademacher perfected [30] the method to derive the exact
formula

p(n) = 2π(24n− 1)−
3
4

∞

∑
k=1

Ak(n)
k
· I 3

2

(
π
√

24n−1
6k

)
. (1.2)

Here I�(x) is the I-Bessel function of order �, and Ak(n) is the Kloosterman sum

Ak(n) :=
1
2

√
k

12 ∑
x (mod 24k)

x2≡−24n+1 (mod 24k)

χ12(x) · e
( x

12k

)
,

where e(α) := e2π iα and χ12(x) :=
(

12
x

)
.

These works make use of the fact that

P(τ) =
∞

∑
n=0

p(n)qn− 1
24 = q−

1
24

∞

∏
n=1

1
1−qn ,

where q := e2π iτ , is a weight −1/2 weakly holomorphic modular form, a meromor-
phic modular form whose poles (if any) are supported at cusps. Rademacher and
Zuckerman [31, 38, 39] subsequently generalized (1.2) to obtain exact formulas for
the coefficients of generic weakly holomorphic modular forms of negative weight.

We recall that the partition generating function also has the Eulerian form

∞

∑
n=0

p(n)qn = 1+
∞

∑
n=1

qn2

(1− q)2(1− q2)2 · · · (1−qn)2 .

By changing signs, one obtains Ramanujan’s mock theta function

f (q) =
∞

∑
n=0

a(n)qn := 1+
∞

∑
n=1

qn2

(1+ q)2(1+q2)2 · · · (1+qn)2 . (1.3)

The problem of obtaining an asymptotic formula for a(n) is greatly complicated
by the fact that f (q) is not a modular form. In their doctoral theses (written under
Rademacher), Andrews and Dragonette overcame this difficulty, and they confirmed
a conjecture of Ramanujan by proving [1, 14] that

a(n)∼ (−1)n−1

2
√

n− 1
24

· eπ
√

n
6− 1

144 .

Andrews and Dragonette conjectured an exact formula for a(n) to accompany
(1.2). However, without a suitable description of the modular transformation
properties of f (q), this conjecture seemed out of reach. Then in his 2002 Ph.D.
thesis (written under Zagier), Zwegers [40, 41] provided this required theory. He
related Ramanujan’s mock theta functions to harmonic Maass forms. By combining
his work with a lengthy argument, the authors proved the Andrews-Dragonette
Conjecture [7].
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Here we generalize this example to the general setting of harmonic Maass forms
(see Sect. 2 for the definition), a class of automorphic forms which includes the
weakly holomorphic modular forms. These results are of particular interest thanks
to the recent appearance of harmonic Maass forms in a wide array of subjects:
Ramanujan’s mock theta functions [2,7–10,37,40,41], Borcherds products [3,4,11],
derivatives and values of modular L-functions [13], probability theory [2, 6], and
mathematical physics [22–25, 27, 28, 36].

Let H2−k(N,χ) denote the space of weight 2− k harmonic Maass forms on
Γ0(N) with Nebentypus character χ , where we assume that 3

2 ≤ k ∈ 1
2Z. The Fourier

expansions of such forms are given in terms of the incomplete Gamma function

Γ(α,x) :=
∫ ∞

x
e−ttα−1 dt.

More precisely, suppose that f (τ) ∈H2−k(N,χ). We then have that

f (τ) = ∑
n�−∞

c+f (n)q
n + ∑

n<0
c−f (n)Γ(k−1,4π |n|v)qn, (1.4)

where τ = u+ iv ∈ H, with u,v ∈ R. Obviously, each f is the sum of two disjoint
pieces, the holomorphic part of f

f+(τ) := ∑
n�−∞

c+f (n)q
n, (1.5)

and the nonholomorphic part of f

f−(τ) := ∑
n<0

c−f (n)Γ(k− 1,4π |n|v)qn. (1.6)

Remark. Weakly holomorphic modular forms are those f ∈ H2−k(N,χ) with
f− = 0.

Generalizing earlier work of Rademacher and Zuckerman for weakly holomor-
phic modular forms of nonpositive weight [30, 31], and work of Bruinier and
Hejhal [11, 21] for the harmonic Maass forms, we determine exact formulas for
the coefficients c+f (n). The idea is simple. We shall obtain our results by explicitly
constructing Maass-Poincaré series which have poles supported (to arbitrary order)
at individual cusps. We then relate a generic harmonic Maass form f to that linear
combination of Maass-Poincaré series which matches the divisor of f . If 2− k≤ 0,
then it turns out that f equals this linear combination of Maass-Poincaré series.

We now define the functions which are required for these exact formulas.
Throughout, we let k ∈ 1

2Z, and we let χ be a Dirichlet character modulo N, where
4 | N whenever k ∈ 1

2Z \Z. Using this character, for a matrix M =
(

a b
c d

) ∈ Γ0(N),
we let

Ψk(M) :=

{
χ(d) if k ∈ Z,

χ(d)
(

c
d

)
�2k

d if k ∈ 1
2Z\Z,

(1.7)
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where �d is defined by

�d :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4),
(1.8)

and where
(

c
d

)
denotes the extended Legendre symbol. In addition, if T =

(
a b
c d

) ∈
SL2(Z), then we let

μ(T ;τ) := (cτ + d)2−k. (1.9)

Moreover, for pairs of matrices S,T ∈ SL2(Z), we let

σ(T,S) :=
μ(T ;Sτ)μ(S;τ)

μ(TS;τ)
. (1.10)

Using this notation, we now define certain generic Kloosterman sums which are
naturally associated with cusps of Γ0(N).

Suppose that ρ =
aρ
cρ

= L−1∞, (L ∈ SL2(Z)) is a cusp of Γ0(N) with cρ |N and

gcd(aρ ,N) = 1. Let tρ and κρ be the cusp width and parameter of ρ with respect
to Γ0(N) (see (1.13)). Suppose that c > 0 with cρ |c and N

cρ
� c. Then for integers n

and m we have the Kloosterman sum

Kc (2− k,ρ ,χ ,m,n) := ∑
0<d<c
0<a<ct

aρ a≡− c
cρ

(
mod N

cρ

)

(ad,c)=1

σ(L−1,S)
Ψk (L−1S)

·exp

(
2π i
c

(
(m+κρ)a

tρ
+nd

))
,

(1.11)

where S :=
(

a b
c d

) ∈ SL2(Z) is the unique matrix defined using the integers a,c,
and d. Using properties of σ and Ψk, one can easily show that (1.11) is well defined.
For similar Kloosterman sums we refer the reader to [32].

For convenience, we let SN be a subset of SL2(Z) with the property that S−1
1 ∞

and S−1
2 ∞ are inequivalent cusps in Γ0(N) whenever S1 and S2 are distinct elements

of SN . For M =
(

a b
c d

) ∈ SL2(Z), we define

fM(τ) := (cτ + d)k−2 f

(
aτ +b
cτ +d

)
, (1.12)

where
√

τ is the principal branch of the holomorphic square root. Using this
notation, we can speak of the Fourier expansion of a form f at a cusp ρ . More
precisely, if L ∈ SN with ρ = L−1∞, then we have

fρ (τ) = ∑
n∈Z

a+ρ (n)q
n+κρ

tρ + f−ρ (τ). (1.13)
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We define the principal part of f at ρ by

Pf ,ρ(τ) := ∑
m+κρ<0

a+ρ (m)q
m+κρ

tρ . (1.14)

We shall use the principal parts of a form f to determine our exact formulas. To
this end, we identify, for each cusp ρ , its contribution to the exact formula. To make
this precise, let M = L−1 and μ = L∞. For positive n, we then define

A(N,2− k,χ ,ρ ,m,c;n) : = − ik2π
tμ

∣
∣∣
∣
(−m+κμ)

tμn

∣
∣∣
∣

k−1
2

× ∑
c>0

cμ |c, N
cμ �c

Kc (2− k,μ ,χ ,−m,−n)
c

×Ik−1

(
4π
c

√
n|−m+κμ|

tμ

)

. (1.15)

Here tμ and κμ are the cusp parameters for μ as in the notation above.
Using this notation, we define the order N Kloosterman approximation of

c+f (n) by

C( f ,N ;n) := ∑
L∈SN

∑
m+κρ<0

a+ρ (m)
N
∑
c=1
A(N,2− k,χ ,ρ ,m,c;n). (1.16)

Moreover, we define C( f ,∞;n) in the obvious way.

Remark. We stress again that L and ρ are related (throughout this section) by the
formula ρ = L−1∞.

Theorem 1.1. If f ∈ H2−k(N,χ) with 2≤ k ∈ 1
2Z, then for positive n we have

c+f (n) = C( f ,∞;n).

Two remarks.

1. Using the asymptotic behavior of I-Bessel functions, an inspection of the
principal parts of f gives a minimalN for which

C( f ,N ;n) ∼ c+f (n).

Moreover, it is not difficult to show that

c+f (n) = C( f ,
√

n;n)+Of (n
�).
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2. Theorem 1.1 gives the results of Rademacher and Zuckerman in the very special
case of those f ∈ H2−k(N,χ) for which 2− k < 0 and f− = 0.

For weight 2− k = 1
2 , we have a conditional result. To make it precise, we say

that a form f ∈ H 1
2
(N,χ) is good if the Maass-Poincaré series corresponding to

nontrivial terms in the principal parts of f are individually convergent.

Theorem 1.2. If f ∈ H 1
2
(N,χ) is good, then there is a finite set SΘ( f ) of complex

numbers such that for positive n we have

c+f (n) = C( f ,∞;n)+ μ(n)

for some μ(n) ∈ SΘ( f ). Moreover, if n �= dm2 for some d | N and m ∈ Z
+, then

μ(n) = 0.

Four remarks.

1. Our method approximates each form as a linear combination of Poincaré series.
In this paper, apart from the cases when the weight is 1/2, this exactly determines
the form. When the weight is 1/2, this uniquely determines the form up to
a holomorphic modular form, which must be a linear combination of theta
functions. This contribution is given by SΘ( f ) and the numbers μ(n).

2. We believe that all f ∈ H 1
2
(N,χ) are good. In earlier work we deduced conver-

gence of such Maass-Poincaré series by making using of relationships between
Kloosterman sums and Salié sums (see Sect. 4 of [7]) and by generalizing work
of Goldfeld and Sarnak [18] on sums of Kloosterman sums (see [17]). It seems
likely that a careful application of these ideas will prove that each such f is
indeed good.

3. Theorems 1.1 and 1.2 give exact formulas for harmonic weak Maass forms on
congruence groups of the form Γ1(N). This follows from the fact that

H2−k(Γ1(N)) =⊕χH2−k(N,χ),

where the sum is over Dirichlet characters modulo N.
4. Apart from those harmonic Maass forms f which are holomorphic modular

forms (which in this paper can only happen if 2− k = 1/2), the results above
imply that the c+f (n) are not bounded by any power of n. There are arithmetic

progressions of n for which c+f (n) grows subexponentially in n. We note that
Bruinier and Funke [12] have a more general notion of a harmonic Maass form
for which this claim is false. Indeed, Zagier’s weight 3/2 Eisenstein series g(τ)
[35], whose holomorphic part

g+(τ) =−1/12+ ∑
n>0

h(−n)qn

is the generating function for Hurwitz class numbers, is such a form. Obviously,
we have that h(−n) = O(n

1
2+�) which does not have subexponential growth.
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As mentioned earlier, harmonic Maass forms have appeared in a wide variety of
contexts in recent years. We conclude the introduction with one application of these
results.

In his work on Ramanujan’s partition congruences

p(5n+ 4) ≡ 0 (mod 5),

p(7n+ 5) ≡ 0 (mod 7),

p(11n+ 6) ≡ 0 (mod 11),

Dyson defined [15] the rank of a partition to be its largest part minus its number of
summands. If 0≤ r < t are integers, then let N(r, t;n) denote the number of partitions
with rank congruent to r (mod t). In a recent paper [5], the first author obtained
asymptotic formulas for each N(r, t;n) when t is odd. Theorem 1.2, combined with
a generalization of Sect. 4 of [7], proves that these asymptotics can be extended to
exact formulas.

Theorem 1.3. If 0≤ r < t, where t is odd, then Theorem 1.2 gives an exact formula
for N(r, t;n).

Remark. For brevity, we do not repeat the formulas from [5]. Theorem 1.2 proves
that one obtains exact formulas, up to the coefficients of a linear combination of
theta functions, by summing the first author’s formulas to infinity.

This paper is organized as follows. In Sect. 2 we recall basic facts about
harmonic Maass forms, and in Sect. 3 we construct the relevant Maass-Poincaré
series. In Sect. 4 we prove Theorems 1.1 and 1.2.

2 Harmonic Maass Forms

We recall the notion of a harmonic Maass form of weight k ∈ 1
2Z. Throughout let

τ = u+ iv∈H with u,v ∈R, and we define the weight k hyperbolic Laplacian

Δk :=−v2
(

∂ 2

∂u2 +
∂ 2

∂v2

)
+ ikv

(
∂

∂u
+ i

∂
∂v

)
. (2.1)

For odd integers d, define �d by

�d :=

{
1 if d ≡ 1 (mod 4),

i if d ≡ 3 (mod 4).
(2.2)
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Definition 2.1. If N is a positive integer (with 4 | N if k ∈ 1
2Z \Z) and χ is a

Dirichlet character modulo N, then a weight k harmonic Maass form on Γ0(N) with
Nebentypus χ is any smooth function M : H→ C satisfying the following:

(1) For all A =
(

a b
c d

) ∈ Γ0(N) and all τ ∈H, we have

M

(
aτ +b
cτ +d

)
=

⎧
⎨

⎩
χ(d)(cτ + d)kM(τ) if k ∈ Z,
(

c
d

)2k
�−2k

d χ(d)(cτ + d)k M(τ) if k ∈ 1
2Z\Z.

(2.3)

(2) We have that ΔkM = 0.
(3) There is a polynomial PM = ∑n≤0 c+(n)qn ∈C[q−1] such that

M(τ)−PM(τ) = O(e−�v)

as v→+∞ for some � > 0. Analogous conditions are required at all cusps.

Remark. We call PM(τ) the principal part of M at ∞, with analogous parts at others
cusps.

Remark. Since holomorphic functions on H are harmonic, it follows that weakly
holomorphic modular forms are harmonic Maass forms.

Harmonic Maass forms are related to classical modular forms thanks to the
properties of differential operators. Here we require the differential operator

ξw := 2ivw · ∂
∂τ

. (2.4)

The following lemma,2 which is a straightforward refinement of a proposition of
Bruinier and Funke (see Proposition 3.2 of [12]), shall play a central role throughout
this paper.

Lemma 2.2. If f ∈H2−k(N,χ), then

ξ2−k : H2−k(N,χ)−→ Sk(N,χ)

is a surjective map. Moreover, if

f (τ) = ∑
n�−∞

c+f (n)q
n + ∑

n<0
c−f (n)Γ(k−1,4π |n|v)qn,

then we have that

ξ2−k( f ) =−(4π)k−1
∞

∑
n=1

c−f (−n)nk−1qn.

We shall also require the following lemma.

2 The formula for ξ2−k( f ) corrects a typographical error in [12].
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Lemma 2.3. If f ∈ H2−k(N,χ) has the property that ξ2−k( f ) �= 0, then the
principal part of f is nonconstant for at least one cusp.

Proof. This lemma follows from the work of Bruinier and Funke [12]. Using their
pairing {•,•}, one finds that {ξ2−k f , f} �= 0 thanks to its interpretation in terms of
Petersson norms. On the other hand, Proposition 3.5 of [12] expresses this quantity
in terms of the principal part of f and the coefficients of the cusp form ξ2−k( f ).
An inspection of this formula reveals that at least one principal part of f must be
nonconstant. ��

3 Maass-Poincaré Series

Here we use the method of Poincaré series to construct more general harmonic
Maass forms with multiplier (i.e., generalizing the notion of Nebentypus). Such
forms have been considered by Fay, Hejhal, and Niebur [16, 21, 29], and more
recently by the authors and Bruinier [9, 11].

We closely follow the setup in Rankin’s classic text [32]. Suppose that Γ is a
subgroup of finite index in SL2(Z) with −I ∈ Γ, 3

2 ≤ k ∈ 1
2Z, and let ν(•) be a

multiplier system. Moreover, let ρ := L−1∞ be a cusp and let t and κ be its cusp
width and parameter for Γ. Let Γ̂ρ be the stabilizer of ρ in Γ̂, the homogenization
of Γ. For T =

(
a b
c d

) ∈ SL2(Z), we let

μ(T ;τ) := (cτ + d)2−k, (3.1)

and for T ∈ Γ we let
ν(T ;τ) := ν(T )μ(T ;τ). (3.2)

For s ∈ C and y ∈ R\ {0}, let

Ms(y) := |y| k2−1Msign(y)(1−k/2),s− 1
2
(|y|), (3.3)

where Mν,μ(z) is the M-Whittaker function which is a solution to the differential
equation

∂ 2u
∂ z2 +

(

−1
4
+

ν
z
+

1
4 − μ2

z2

)

u = 0.

Using this function we let

φs(τ) :=Ms(4πv)e(u),

where τ = u+ iv. If m > 0, then we have the Maass-Poincaré series

PL(τ,m,Γ,2− k,s,ν) := ∑
T∈Γ̂ρ\Γ̂

φs

(
(−m+κ)

t LT τ
)

μ(L;T τ)ν(T ;τ)
. (3.4)
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It is easy to check that φs(τ) is an eigenfunction of Δ2−k with eigenvalue

s(1− s)+
k2− 2k

4
.

From this one can conclude, when the series converges absolutely, that PL is an
eigenfunction of Δ2−k. Next define for S ∈ SL2(Z)

ΓS := S−1ΓS

and let νS be the multiplier defined on ΓS by

νS (S−1T S
)

:=
ν(T )σ(T,S)
σ (S,S−1T S)

,

where

σ(T,S) :=
μ(T ;Sτ)μ(S;τ)

μ(TS;τ)
. (3.5)

We denote by H2−k(Γ,ν) the space of harmonic Maass forms with multiplier ν .
This is the space of forms satisfying the conditions in Definition 2.1 where (2.3) is
replaced, for all S ∈ Γ, by

f (Sτ) =
μ(S;τ)
σ(L,S)

f (τ). (3.6)

The following lemma follows immediately from the properties described above for
the functions in this construction.

Lemma 3.1. If Re(s) > 1, then the series in (3.4) is absolutely and uniformly
convergent. Moreover, if k > 2 and s = k/2, then the series is in H2−k(Γ,ν).

Now we return to the setting in the introduction, where we consider forms with
Nebentypus χ on Γ0(N). Recalling (1.7), we set

PL(τ,m,N,2− k,χ) :=
1

Γ(k)
PL

(
τ,m,Γ0(N),2− k,

k
2
,Ψk

)
. (3.7)

We can determine the Fourier expansion of these Poincaré series at all cusps. The
next theorem gives the holomorphic parts (1.5) for these series.

Theorem 3.2. If 2≤ k ∈ 1
2Z, then PL(τ,m,N,2−k,χ) is in H2−k(N,χ). Moreover,

the following are true:

(1) We have

P+
L (τ,m,N,2− k,χ) = δ∞,ρ · q−m

Ψk(L−1)σ(L,L−1)
+ ∑

n≥0

a+(n)qn,
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where δ∞,ρ = 0, unless ∞∼ ρ in Γ0(N), in which case it is 1. Moreover, if n > 0,
then

a+(n) = −ik2π
∣
∣
∣∣
(−m+κ)

tn

∣
∣
∣∣

k−1
2 1

t ∑
c>0

cρ |c, N
cρ �c

Kc(2− k,ρ ,χ ,−m,n)
c

×Ik−1

(
4π
c

√
n|−m+κ |

t

)

.

(2) The principal part of PL(τ,m,N,2− k,χ) at the cusp μ = S∞ is given by

δL,S ·q
(−m+κρ )

tρ ,

where δL,S = 0, unless L = S, in which case it equals 1.

Three remarks.

(1) Theorem 3.2 holds when 2 − k = 1/2, provided that one can guarantee
convergence in the formulas for the Fourier coefficients.

(2) Although Theorem 3.2 (1) is about the coefficients of the holomorphic parts of
these Poincaré series, we also give the Fourier coefficients of the nonholomor-
phic parts in the proof of the theorem.

(3) Two features of Theorem 3.2 are important for us. Obviously, the exact formulas
for the coefficients are important. Secondly, the fact that the principal parts are
distinguished by cusps is vital. This fact allows us to piece together such Maass
forms using the collection of principal parts at cusps.

Proof of Theorem 3.2. We first consider the more general Poincaré series from
above and assume Re(s) > 1. We require more notation. Let t1 (resp. t2) be the
cusp width of ∞ (resp. ρ) in Γ and κ1 (resp. κ2) the associated parameter. Define

Ws(y) := |y| k2−1W(1− k
2 )sign(y),s− 1

2
(|y|), (3.8)

where Wν,μ(z) is the standard W -Whittaker function. Define the Kloosterman sum

Kc(ρ ,Γ,ν,m,n) := ∑(
a b
c d

)
=S∈FL(c)

σ
(
L−1,S

)

ν (L−1S)
exp

(
2π i
c

(
(m+κ2)a

t2
+

(n+κ1)d
t1

))
,

where FL(c) consists of all matrices S ∈ LΓ for which

0≤ d < ct1 0≤ a < ct2.
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One can compute the Fourier expansion of the Poincaré series using Poisson
summation. Then the calculation boils down to computing integrals of the form

∫

R

τ2−k exp

(
−2π ix(κ + n)− 2π iλ Re

(
1
τ

))
Ms

(
−4πλ Im

(
1
τ

))
dx.

This integral can be computed using pages 32–33 of [11]. This yields the following
Fourier expansion:

PL(τ,m,Γ,2− k,s,ν) = δL,Γ ·
Ms

(
4π(−m+κ1)y

t1

)
e
(
(−m+κ1)(x+r)

t1

)

ν (L−1Ur)σ (L,L−1)

+ ∑
n∈Z

ay(n)e

(
x
t1
(n+κ1)

)
,

where δL,Γ = 0 unless L−1Ur ∈ Γ for some r ∈ Z with U :=
(

1 1
0 1

)
in which case it

is equal to 1. In this case we have in particular that t1 = t2 and κ1 = κ2. Moreover
the coefficients ay(n) are given as follows:

(1) If n+κ1 < 0, then

ay(n) =−ik
2πΓ(2s)

Γ
(
s+ k

2 − 1
)
∣
∣∣
∣
t1(−m+κ2)

t2(n+κ1)

∣
∣∣
∣

k−1
2

Ws

(
4π(n+κ1)y

t1

)

× 1
t1

∑
c>0

Kc(ρ ,Γ,ν,−m,n)
c

· J2s−1

⎛

⎝4π
c

√
|−m+κ2||n+κ1|

t1t2

⎞

⎠ ,

where J� is the Bessel function of order �.
(2) If n+κ1 = 0, then

ay(n) =−ik2kπ
k
2+sy

k
2−st−2

1 t
− k

2+1−s
2

× Γ(2s)

(2s− 1)Γ
(
s− k

2 + 1
)

Γ
(
s+ k

2 −1
) |−m+κ2| k2+s−1

×∑
c>0

Kc(ρ ,Γ,ν,−m,0)
c2s+1 .

(3) If n+κ1 > 0, then

ay(n) = −ik
2πΓ(2s)

Γ
(
s− k

2 + 1
)
∣
∣
∣
∣
t1(−m+κ2)

t2(n+κ1)

∣
∣
∣
∣

k−1
2

Ws

(
4π(n+κ1)y

t1

)

× 1
t1

∑
c>0

Kc(ρ ,Γ,ν,−m,n)
c

· I2s−1

⎛

⎝4π
c

√
|−m+κ2||n+κ1|

t1t2

⎞

⎠ .
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Using special values of Whittaker functions, we obtain

PL

(
τ,m,Γ,2− k,

k
2
,ν
)

= δL,Γ ·
Γ(k) · e

(
(−m+κ1)r

t1

)

ν (L−1Ur)σ (L,L−1)
q

(−m+κ1)
t1

×
⎛

⎝1−
Γ
(

k− 1, 4π(−m+κ1)y
t1

)

Γ(k−1)

⎞

⎠+ ∑
n+κ1≥0

a(n)q
n+κ1

t1

+ ∑
n+κ1<0

a(n)Γ
(

k− 1,
4π |n+ k1|y

t1

)
q

n+κ1
t1 .

Here the coefficients a(n) are given as follows:

(1) If n+κ1 < 0, then

a(n) = −ik2π(k− 1)

∣
∣
∣∣
t1(−m+κ2)

t2(n+κ1)

∣
∣
∣∣

k−1
2

× 1
t1

∑
c>0

Kc(ρ ,Γ,ν,−m,n)
c

· Jk−1

⎛

⎝4π
c

√
|−m+κ2||n+κ1|

t1t2

⎞

⎠ .

(2) If n+κ1 = 0, then

a(n) =−ik(2π)kt−2
1 t1−k

2 |−m+κ2|k−1 ∑
c>0

Kc(ρ ,Γ,ν,−m,0)
ck+1 .

(3) If n+κ1 > 0, then

a(n) = −ik2πΓ(k)
∣
∣
∣
∣
t1(−m+κ2)

t2(n+κ1)

∣
∣
∣
∣

k−1
2

× 1
t1

∑
c>0

Kc(ρ ,Γ,ν,−m,n)
c

· Ik−1

⎛

⎝4π
c

√
|−m+κ2||n+κ1|

t1t2

⎞

⎠ .

The proof of Theorem 3.2 follows easily for 2−k≤ 0. One merely observes that the
defining series are convergent. ��

4 Proof of Theorems 1.1 and 1.2

Here we prove Theorems 1.1 and 1.2 simultaneously. Thanks to Theorem 3.2, we
have an explicit linear combination of Maass-Poincaré series, say f ∈ H2−k(N,χ),
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whose principal parts agree with the principal parts of f up to additive constants.
There are three possibilities:

Case 1. We have that f − f is a holomorphic modular form. It can only be nonzero
when 2− k = 1

2 , in which case the Serre-Stark Basis Theorem implies that f − f is
a linear combination of theta functions. Either way, we obtain the relevant desired
conclusions in Theorems 1.1 and 1.2.

Case 2. We have that f − f is a weakly holomorphic modular form which is not a
holomorphic modular form. Such a form must have a pole at a cusp. However, this
cannot happen since we constructed f so that the principal parts of f − f are constant.

Case 3. We have that f − f is a harmonic Maass form with a nontrivial nonholo-
morphic part. However, Lemma 2.3 shows that all such harmonic Maass forms have
at least one principal part which is nonconstant. Therefore, this possibility never
occurs.

This completes the proofs of the claimed exact formulas in Theorems 1.1 and 1.2.
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On the Growth of Restricted Integer
Partition Functions

E. Rodney Canfield and Herbert S. Wilf

Abstract We study the rate of growth of p(n,S,M), the number of partitions of n
whose parts all belong to S and whose multiplicities all belong to M, where S (resp.
M) are given infinite sets of positive (resp. nonnegative) integers. We show that if
M is all nonnegative integers then p(n,S,M) cannot be of only polynomial growth
and that no sharper statement can be made. We ask: if p(n,S,M) > 0 for all large
enough n, can p(n,S,M) be of polynomial growth in n?

Keywords Integer partitions • Asymptotic growth

Mathematics Subject Classification: Primary: 05A17

1 The Question

Let S be a set of positive integers, and let pS(n) denote the number of partitions of
the integer n all of whose parts lie in S. For various sets S, the asymptotic growth
rate of pS(n) is known, and the known rates lie in the range of polynomial growth
to superpolynomial-but-subexponential rates.

For example, if S consists of all positive integers then the celebrated theorem
of Hardy, Ramanujan, and Rademacher [3, 5] has given the complete asymptotic
expansion, of which the first term is

pS(n)∼ 1

4n
√

3
exp

(

π
√

2n
3

)

. (1)
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As an example of a sparse set of parts, take S = {1,2,22,23, . . .}, the case of
binary partitions. Then de Bruijn [2] found several terms of the asymptotics of the
logarithm, which begins as

log pS(2n) =
1

2log2

(
log

n
logn

)2

(1+o(1)). (2)

For a final example, suppose the set S of allowable parts is finite. Then we have,
say, S = {a1 < · · · < ak}, and we are dealing with “the money changing problem,”
a.k.a. “the problem of Frobenius.” A result of Schur [6] holds that in this case pS(n)
is of polynomial growth.

Theorem 1 (Schur). If S = {a1 < · · ·< ak}, and gcd(S) = 1, then

pS(n)∼ nk−1

(k− 1)!a1a2 . . .ak
, (3)

and in particular, pS(n)> 0 for all large enough n.

We show here that if the set of allowable parts is infinite, no matter how
sparse, then the partition function pS(n) must grow faster than every polynomial.
We show also that this result is best possible in the sense that if ε(n) is any
unbounded function of n then there exists an infinite set S of allowable parts such
that pS(n) = O(nε(n)).

We discuss also the situation in which we have an arbitrary set of allowable parts
and an arbitrary set of allowable multiplicities.

2 Preliminaries

Lemma 1. Let S = a1 < a2 < a3 < .. . be a set of positive integers such that
gcd(S) = 1. Then S contains a finite coprime subset.

Proof. Let gn = gcd(a1, . . . ,an). Then a1 ≥ g1 ≥ g2 ≥ . . . , so ∃i0 such that ∀i > i0:
gi = 1. Indeed, if not then ∃i0 such that ∀i > i0: gi = g > 1. But then we would have
gcd(S) = g > 1, a contradiction. ��
Lemma 2. The following two properties of a set S of positive integers are equiva-
lent:

1. For all sufficiently large integers n we have pS(n)> 0.
2. gcd(S) = 1.

Proof. If gcd(S) = 1, then by Lemma 1, S contains a finite coprime subset S. By
Schur’s theorem, pS(n)> 0 for all large enough n, hence so is pS(n), and conclusion
1 holds. On the other hand, if gcd(S)> 1 then conclusion 1 is obviously false. ��
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We remark that Lemma 2, whose proof we have given in order to keep this paper
self-contained, is a special case of a much more general result of Bateman and Erdős
[1], who found the conditions on S under which, for a fixed k ≥ 0, almost all values
of the kth differences of {pS(n)}∞

n=0 are strictly positive.
Next we will need a lemma that allows us to estimate the growth of pS(n) for

arbitrary sets S of parts. We will in fact prove a more general result, in which not
only the set S of allowable parts can be arbitrarily prescribed, but so can the set M
of allowable multiplicities of those parts.

Hence, let S be a set of positive integers and let M be a set of nonnegative
integers such that 0 ∈ M. Let M(x),S(x) denote the respective counting functions
of M,S. That is M(x) = |{μ ∈M : μ ≤ x}| and likewise for S(x). Finally we denote
by p(n;S,M) the number of partitions of n whose parts all belong to S and the
multiplicities of whose parts all belong to M.

Lemma 3. For the general partition function p(n;S,M) we have

p(n;S,M)≤ ∏
ai∈S

M(n/ai). (4)

Further, there must exist at least one integer r ≤ n2 s.t.

p(r;S,M)≥ 1
n2 + 1 ∏

ai∈S

M(n/ai). (5)

If also p(n;S,M) is a nondecreasing function of n then we have the stronger
statement that

p(n;S,M)≥ 1
n+ 1 ∏

ai∈S

M(
√

n/ai).

Proof. Fix n > 0 and consider the form

φ = m1a1 +m2a2 +m3a3 + · · ·+mnan.

Now allow each of the mi to take any value that it wishes to take, subject to mi ∈M
and mi ≤ n/ai. For each set of choices, the form φ is a partition of some integer
≤ n2, and all partitions of n occur.

The total number of values that the form takes, counting multiplicities, is

∏
i

M(n/ai).

(Note that all terms with sufficiently large index i are = 1.) Since every partition of
n occurs, we find that

p(n;S,M)≤∏
i

M(n/ai). (6)

Furthermore, since the average number of occurrences of the integers≤ n2 is

1
n2 + 1 ∏

i
M(n/ai),

the second conclusion of the lemma is proved. ��
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Let us test this with one or two examples. First take M to be all nonnegative
integers and S to be all positive integers. then M(x) = 1+ �x� and we find that
p(n;S,M)≤∏i(1+ �n/i�). This is around nn/n!, which is roughly en, whereas the
correct growth is around eC

√
n. The lower bound is about en/n2, so there exists an

integer r ≤ n2 s.t. p(r;S,M) ≥ ∏i
n/i�/n2, which is about en/n2. But indeed, if
there is such an integer r, then since p(n) is monotone, we can take r = n2. Lemma
3 then says that p(n2;S,M)≥ en/n2, or

p(n;S,M)≥ e
√

n/n, (7)

which is reasonably sharp. For another example, in the case of binary partitions, the
upper bound (6) yields the estimate

log pS(2n)≤ log(2n+ 1)log2 (2n)∼ (logn)2

log2
,

which can be compared with (2).

3 The Growth of pS(n)

Theorem 2. Let S be an infinite set of positive integers, and let pS(n) be the number
of partitions of n whose parts belong to S. Then pS(n) is of superpolynomial growth,
that is, for every fixed k the assertion pS(n) = O(nk) is false. This result is best
possible in the sense that if ε(n) is any function of n that→ ∞, then we can find an
infinite set S such that pS(n) = O(nε(n)).

Proof. Let S = {1≤ a1 < a2 < · · · }. Then g = gcd(S)≤ a1 < ∞, and the theorem is
true for S iff it is true for S/g. Hence we can, and do, assume w.l.o.g. that gcd(S)= 1.

Let T ⊆ S be such a finite coprime subset, and put k = |T |. By Schur’s theorem
we have pS(n)≥ pT (n)∼Cnk−1. But we can make k arbitrarily large by adjoining
elements of S to T since that adjunction preserves coprimality. Therefore PS(n) must
grow superpolynomially.

For the second part of the theorem we use (4) with unconstrained multiplicities,
i.e., with M(x) = 1+�x� for x > 0. If we write A(n) = |{i : ai ≤ n}| then (4) reads as

pS(n) ≤∏
i≥1

(
1+

⌊
n
ai

⌋)
≤ ∏

ai≤n

(
1+

n
ai

)
≤ nA(n) ∏

ai≤n

(
1
n
+

1
ai

)

≤ nA(n) ∏
ai≤n

(
1+

1
ai

)
≤ nA(n) ∏

ai≤n
e1/ai ≤ nA(n)eHn = O

(
nA(n)+1

)
,

in which Hn is the nth harmonic number. Evidently we can make this O(nε(n)) by
taking the set S to be sufficiently sparse. ��
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4 A Partition Function That Grows Slowly

There are infinite sequences of allowable parts and multiplicities on which
the partition function grows only polynomially fast; in fact, it can even grow
subpolynomially.

One such example is the case where the allowable parts are the sequence
{22 j}∞

j=0, and the allowable multiplicities are

{0}∪{22 j}∞
j=0.

In this case we have, in the notation above, M(x) = 1+ �lg lgx�, for x ≥ 4, where
“lg” is the log to the base 2. Then by (6) we have

p(n;S,M) ≤ ∏
22i≤n/4

(
1+ �lglg

n

22i �
)
≤ ∏

22i≤n/4

(
2�lg lg

n

22i �
)

≤ (lgn)(lg lgn)lg lgn,

which is of subpolynomial growth. This argument fails if the parts and multiplicities
are all of the powers of 2.

The above argument can be generalized to give a fairly simple criterion, in
terms of the sets of parts and multiplicities, for polynomial growth of the partition
function.

5 Representing All Large Integers

The example above shows that if the allowable multiplicities and parts are thin
enough, even though they both are infinite sets, then the partition function can grow
very slowly. But the example has the property that some arbitrarily large integers are
not represented at all. It may be that if we rule out such situations then the growth
must be superpolynomial. We formulate this as

Unsolved problem 1. Let S,M be infinite sets of nonnegative integers with 0 /∈ S,
and let p(n;S,M) be the number of partitions of n whose parts all lie in S and the
multiplicities of whose parts all lie in M. Suppose further that p(n;S,M)> 0 for all
sufficiently large n. Must p(n;S,M) then be of superpolynomial growth?

Unsolved problem 2. Find necessary and sufficient conditions on S,M in order that
p(n;S,M)> 0 for all large enough n. Failing this, find as sharp as possible necessary
conditions, and similarly sufficient conditions for this to happen.

Unsolved problem 3. Find necessary and sufficient conditions on S,M in order that
p(n;S,M) increase monotonically for all large enough n. Failing this, find as sharp as
possible necessary conditions, and similarly sufficient conditions for this to happen.
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6 Monotonicity of the Partition Function

With reference to unsolved problem 3, we consider the case where the set S of
allowable parts is finite and all multiplicities are allowed, i.e., the problem of
Frobenius.

Theorem 3. Let {p(n)} be generated by

G(x) =
def ∑

n≥0

p(n)xn =
1

∏k
i=1(1− xai)

, (8)

where gcd(a1, . . . ,ak) = 1. The sequence {p(n)} is strictly increasing for all
sufficiently large n if there does not exist a prime p that divides all but one of the
ais, i.e., iff every (k− 1) subset of the ais is coprime.

Proof. Evidently strict monotonicity holds from some point on iff

(1− x)G(x) =
1− x

∏k
i=1(1− xai)

has positive power series coefficients, from some point on. The partial fraction
expansion of (1− x)G(x) is of the form

(1− x)G(x) =
A0

(1− x)k−1 +
A1

(1− x)k−2 + · · ·+
B0

(1−ωx)k1
+

B1

(1−ωx)k1−1 + · · ·

+
C0

(1− ζx)k2
+

C1

(1− ζx)k2−1 + · · · . (9)

In the above, ω ,ζ , etc. run through the primitive pth roots of unity for each prime p
that divides one or more of the ais, and k1,k2, . . . are the number of ais that each of
these primes divides. If no prime divides all but one of the ais then all of the kis are
≤ k−2. If in that case we take the coefficient of xn on both sides of we have that

p(n)− p(n− 1) = A0

(
n+ k− 2

n

)
+O(nk−3),

which, since A0 > 0, is positive for all large enough n, as claimed. ��

7 A Refinement of the Lower Bound

Let us find a sharper lower bound for p(n;S), when S is an infinite coprime set of
admissible parts and all multiplicities are available.
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Let A = {1 ≤ a1 < a2 < · · · < ak} be a finite coprime subset of S. If we put
r′(n;A) = ∑ j≤n p( j ; A), then an inequality due to Padberg [4] states that

r′(n;A)≥ (n+ 1)k

k!a1 . . .ak
. (10)

Now, for infinitely many n we have p(n;A) = max j≤n p( j;A). Hence for such n,
r′(n;A)≤ (n+1)p(n;A), and therefore

p(n;A)≥ (n+ 1)k−1

k!a1 . . .ak
. (11)

Next, extend the set A by adjoining to it the next h basis elements, to get a new
coprime set

Ah = {a1,a2, . . . ,ak,ak+1,ak+2, . . . ,ak+h}.

If we apply (11) to Ah we find that

p(n;S)≥ p(n;Ah)≥ (n+ 1)k+h−1

(k+ h)!a1a2 . . .ak+h
.

Since h is arbitrary we can optimize this inequality by defining j = j(n) to be the
least integer such that ja j ≥ n.

Theorem 4. Let S be an infinite coprime set, and let M consist of all nonnegative
integers. Then for large enough n we will have

p(n;S,M)≥ (n+ 1) j(n)−1

( j(n))!a1a2 . . .a j(n)
. (12)

For example if S consists of all positive integers we find for the classical partition
function that p(n)≥ e2

√
n/(2πn2) for all large enough n, which can be compared to

the bound (7), obtained earlier.
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On Applications of Roots of Unity
to Product Identities

Zhu Cao

Abstract In this paper, we give simple proofs of the quintuple product identity and
the septuple product identity using properties of cube and fifth roots of unity.
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1 Introduction

The quintuple product identity can be found in Ramanujan’s lost notebook [11,
p. 207]. Because Watson [12] gave the first published proof of the quintuple product
identity, it is often called Watson’s quintuple product identity. At least 29 proofs of
the quintuple product identity have been given, and they are included in Cooper’s
comprehensive survey [4]. Readers can also refer to Berndt’s book [1, p. 83] for
the history of the quintuple product identity. The septuple (or septagonal) product
identity was first discovered by Hirschhorn [9]. Unaware of Hirschhorn’s work,
Farkas and Kra [5] also found this identity later. Other proofs have been given by
Garvan [7] and Foata and Han [6]. In [3], the author proved that many product
identities for theta functions correspond to exact covering systems of Zn, including
both of the quintuple and the septuple product identities.

In [10], Kongsiriwong and Liu gave new proofs of the quintuple product identity,
the septuple product identity using basic properties of cube and fifth roots of unity. In
this paper, we consider the minimal polynomial of roots of unity and obtain simple
proofs of the quintuple and septuple product identities.
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We use the standard notation for q-products, defining

(a;q)∞ =
∞

∏
k=0

(1− aqk), |q|< 1. (1.1)

Jacobi’s triple product identity is given by [2, p. 10]

(−qz;q2)
∞
(−q/z;q2)

∞
(
q2;q2)

∞ =
∞

∑
n=−∞

qn2
zn, |q|< 1. (1.2)

2 The Quintuple Product Identity

The quintuple product identity is given by [2, p. 18].

Theorem 2.1. For any complex numbers z and q, with z �= 0 and |q|< 1,

(q2;q2)∞(zq;q2)∞(z
−1q;q2)∞(z

2;q4)∞(z
−2q4;q4)∞

=
∞

∑
n=−∞

(q3n2−2nz3n− q3n2+2nz3n+2). (2.1)

Proof. Let f (z) denote the left-hand side of (2.1). It is easy to see that f (z) is
analytic on 0 < |z|< ∞. We can write f (z) in a Laurent series

f (z) =
∞

∑
n=−∞

an(q)z
n. (2.2)

Then from the definition of f (z),

f (z) = qz3 f (q2z). (2.3)

Equating the coefficients of zn on both sides of (2.3) implies

an(q) = q2n−5an−3(q). (2.4)

By iteration, we find that for any integer n,

a3n(q) = q3n2−2na0(q),

a3n+1(q) = q3n2
a1(q),

a3n+2(q) = q3n2+2na2(q). (2.5)

We give the proof of a3n(q) = q3n2−2na0(q) as an example.
Replacing n with 3n in (2.4), we have a3n(q) = q6n−5a3n−3(q).
For n > 0, we can find that

a3n(q) = q6n−5a3n−3(q) = · · ·= q(6n−5)+(6n−11)···+1a0(q) = q3n2−2na0(q).
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For n < 0, from a3n(q) = q6n−5a3n−3(q), we can deduce that a3n(q) = q−6n−1

a3n+3(q). Since Σ−1
i=ni =−n(n− 1)

2
for n < 0, we have

a3n(q) = q−6n−1a3n+3(q) = · · ·= q(−6n−1)+(−6n−7)···+5a0(q) = q3n2−2na0(q).

So a3n(q) = q3n2−2na0(q) holds for any integer n.
From (2.2) and (2.5),

f (z) = a0(q)
∞

∑
n=−∞

q3n2−2nz3n + a1(q)
∞

∑
n=−∞

q3n2
z3n+1 +a2(q)

∞

∑
n=−∞

q3n2+2nz3n+2.

(2.6)

Let ω =exp(2π i/3). For any complex number z,

(1− z)(1− zω)(1− zω2) = 1− z3.

We have

(a;q)∞(aω ;q)∞(aω2;q)∞ = (a3;q3)∞. (2.7)

Setting z = 1 in (2.6), we have

[a0(q)+ a2(q)](−q;q6)∞(−q5;q6)∞(q
6;q6)∞

+a1(q)(−q3;q6)2
∞(q

6;q6)∞ = g(1) = 0 (2.8)

from the definition of g(z).
Letting z=ω =exp(2π i/3) in (2.6), we find that

(1−ω2)(q2;q2)∞(qω ;q2)∞(qω2;q2)∞(q
4ω2;q4)∞(q

4ω ;q4)∞

= a0(q)
∞

∑
n=−∞

q3n2−2n + a1(q)
∞

∑
n=−∞

q3n2
ω +a2(q)

∞

∑
n=−∞

q3n2+2nω2. (2.9)

Considering the left-hand side of (2.9), we have

(q2;q2)∞(qω ;q2)∞(qω2;q2)∞(q
4ω2;q4)∞(q

4ω ;q4)∞

=
(q2;q2)∞(q3;q6)∞(q12;q12)∞

(q;q2)∞(q4;q4)∞
=

(q2;q4)∞(q12;q12)∞

(q;q6)∞(q5;q6)∞

=
(q2;q4)∞(−q;q6)∞(−q5;q6)∞(q6;q6)∞

(q2;q12)∞(q10;q12)∞(q6;q12)∞
= (−q;q6)∞(−q5;q6)∞(q

6;q6)∞.

(2.10)
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So by (2.8)–(2.10),

(1−ω2)(−q;q6)∞(−q5;q6)∞(q
6;q6)∞ = [a0(q)+ a2(q)ω2](−q;q6)∞(−q5;q6)∞

×(q6;q6)∞− [a0(q)+ a2(q)]ω(−q;q6)∞(−q5;q6)∞(q
6;q6)∞.

After simplification, we have

[1− a0(q)]+ [a0(q)+ a2(q)]ω +[−1−a2(q)]ω2 = 0. (2.11)

Since the minimal polynomial of ω is x2 + x + 1, we have 1− a0(q) = a0(q) +
a2(q) = −1− a2(q). So a0(q) = 1, a2(q) = −1. From (2.8), a1(q) = 0. We thus
have completed the proof. ��

For most proofs based on functional equations, the recurrence relation an =
−a−n+2 is needed to determine ai (i = 0,1,2). We do not need this in our proof.

3 The Septuple Product Identity

We cite the septuple product identity in [10].

Theorem 3.2. For any complex numbers z and q, with z �= 0 and |q|< 1,

(q4;q10)∞(q
6;q10)∞(q

10;q10)∞

∞

∑
n=−∞

(−1)n(q5n2+3nz5n+3 +q5n2−3nz5n)

−(q2;q10)∞(q
8;q10)∞(q

10;q10)∞
∞

∑
n=−∞

(−1)n(q5n2+nz5n+2 +q5n2−nz5n+1)

= (q2;q2)2
∞(z;q2)∞(z

−1q2;q2)∞(z
2;q2)∞(z

−2q2;q2)∞. (3.1)

Proof. Let g(z) denote the right-hand side of (3.1). Since g(z) is analytic on
0 < |z|< ∞, we can write g(z) as a Laurent series

g(z) =
∞

∑
n=−∞

an(q)z
n. (3.2)

Then from the definition of g(z),

g(z) =−q2z5g(q2z). (3.3)

Equating the coefficients of zn on both sides of (3.3) implies

an(q) =−q2n−8an−5(q).
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By iteration, we find that for any integer n,

a5n(q) = (−1)nq5n2−3na0(q),

a5n+1(q) = (−1)nq5n2−na1(q),

a5n+2(q) = (−1)nq5n2+na2(q),

a5n+3(q) = (−1)nq5n2+3na3(q),

a5n+4(q) = (−1)nq5n2+5na4(q). (3.4)

The proof of (3.4) is similar to the proof of (2.5) and we omit it here.
So now we have

g(z) = a0(q)
∞

∑
n=−∞

(−1)nq5n2−3nz5n +a1(q)
∞

∑
n=−∞

(−1)nq5n2−nz5n+1

+a2(q)
∞

∑
n=−∞

(−1)nq5n2+nz5n+2 +a3(q)
∞

∑
n=−∞

(−1)nq5n2+3nz5n+3

+a4(q)
∞

∑
n=−∞

(−1)nq5n2+5nz5n+4

=
∞

∑
n=−∞

(−1)nq5n2+3n(a0(q)z
5n +a3(q)z

5n+3)

+
∞

∑
n=−∞

(−1)nq5n2+n(a1(q)z
5n+1 +a2(q)z

5n+2)+
∞

∑
n=−∞

(−1)nq5n2+5na4(q)z
5n+4.

(3.5)
Let ζ = exp(2π i/5). For any complex number z,

(1− z)(1− zζ )(1− zζ 2)(1− zζ 3)(1− zζ 4) = 1− z5.

So

(a;q)∞(aζ ;q)∞(aζ 2;q)∞(aζ 3;q)∞(aζ 4;q)∞ = (a5;q5)∞. (3.6)

From (3.6), by letting z = ζ in (3.5), we can obtain

(1− ζ − ζ 2 + ζ 3)(q2;q2)∞(q
10;q10)∞ = [a0(q)+ a3(q)ζ 3](q2;q10)∞(q

8;q10)∞

×(q10;q10)∞ +[a1(q)ζ + a2(q)ζ 2](q4;q10)∞(q
6;q10)∞(q

10;q10)∞. (3.7)
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Since the minimal polynomial of ζ is 1+ x+ x2 + x3 + x4, the coefficients of the
powers of ζ on both sides of (3.7) should be equal. So we obtain

a0(q) = a3(q) =
(q2;q2)∞

(q8;q10)∞(q2;q10)∞
= (q4;q10)∞(q

6;q10)∞(q
10;q10)∞,

a1(q) = a2(q) = − (q2;q2)∞

(q4;q10)∞(q6;q10)∞
=−(q2;q10)∞(q

8;q10)∞(q
10;q10)∞. (3.8)

Letting z =−1 in (3.5), we have a4(q) = 0. The proof is thus complete.
Similar to theproof of the quintuple product identity, the recurrence relation an =

a−n+3 is not needed to determine the constant terms in our proof of the septuple
product identity. ��
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Abstract We use generalized lecture hall partitions to discover a new pair of
q-series identities. These identities are unusual in that they involve partitions into
parts from asymmetric residue classes, much like the little Göllnitz partition theo-
rems. We derive a two-parameter generalization of our identities that, surprisingly,
gives new analytic counterparts of the little Göllnitz theorems. Finally, we show that
the little Göllnitz theorems also involve “lecture hall sequences,” that is, sequences
constrained by the ratio of consecutive parts.
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Let (a;q)n =∏n−1
i=0 (1−aqi) and (a;q)∞ =∏∞

i=0(1−aqi). We derive the identities

∞

∑
j=0

q j(3 j−1)/2

(
q2;q6

)
j

(q;q)3 j
=

1
(q;q3)∞ (q5;q6)∞

(1)

and

∞

∑
j=0

q j(3 j+1)/2

(
q4;q6

)
j

(q;q)3 j+1
=

1
(q2;q3)∞ (q;q6)∞

(2)

by showing that both sides of (1) count (by weight) the finite sequences of positive
integers λ1,λ2, ... satisfying

λ1

2
>

λ2

1
>

λ3

2
>

λ4

1
> · · · (3)

and both sides of (2) count the finite sequences of positive integers λ1,λ2, ...
satisfying

λ1

1
>

λ2

2
>

λ3

1
>

λ4

2
> · · · . (4)

Contrast these with Euler’s odd-distinct partition identity

∞

∑
j=0

q j( j+1)/2 1
(q;q) j

=
1

(q;q2)∞
, (5)

both sides of which count the finite sequences of positive integers satisfying

λ1

1
>

λ2

1
>

λ3

1
>

λ4

1
> · · · . (6)

Our methods combine results on lecture hall partitions from [3], on sequences
constrained by the ratio of successive parts from [5], and combinatorial reciprocity
[13]. In Sect. 2 we use “lecture hall” methods to show that the right-hand sides of (1)
and (2) count solutions to (3) and (4), respectively. In Sect. 3 we show that the left-
hand sides of (1) and (2) also count solutions to (3) and (4), using results from [5].

In Sect. 4 we refine the counting arguments in Sects. 2 and 3 to derive a two-
parameter q-series identity, I(a,q), generalizing (1) and (2). We show in Sect. 5 that
I(a,q) can be obtained as a specialization of the q-Gauss summation [6].

Say that a set, R = {r1,r2, . . . ,rk}, of residue classes modulo m, is symmetric if

R = {m− r1,m− r2, . . . ,m− rk}.
It is noteworthy that the infinite products appearing in (1) and (2) are generating
functions for partitions into parts from residue classes modulo 6 which are not
symmetric.
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Most well-known partition theorems involve symmetric residue classes, e.g.,
the Rogers-Ramanujan identities and the Gordon and Bressoud generalizations
thereof [4, 8], Schur’s 1926 partition theorem related to the modulus 6 [11], and the
Göllnitz-Gordon identities [7, pp. 162–163, Satz 2.1 and 2.2], [9, p. 741, Theorems 2
and 3]. From a q-series perspective, this is a consequence of the fact that the relevant
generating functions are modular forms (up to multiplication by a trivial factor).

Perhaps the best known partition identities involving asymmetric residue
classes are a pair of identities known as “Göllnitz’s little partition theorems”
[7, pp. 166–167, Satz 2.3 and 2.4] and the “big” Göllnitz partition theorem related
to the modulus 12 ([7, p. 175, Satz 4.1]; cf. [1, p. 37, Theorem 1]). In Sect. 6 we
show that an appropriate specialization of I(a,q) gives a different view of the infinite
products appearing in (the analytic forms of) Göllnitz’s little partition theorems.
Furthermore, we show that the little Göllnitz theorems can be alternately viewed as
statements about partitions constrained by the ratio of consecutive parts.

2 The “Lecture Hall” Approach

The purpose of this section is to show that the right-hand sides of identities (1) and
(2) count solutions to the inequalities (3) and (4), respectively. We begin with a
theorem of Bousquet-Mélou and Eriksson [3] about (k, l) sequences.

Given two integers k and l greater than one, the (k, l) sequence {a(k,l)n } is defined
in [3] for n≥ 0 by the following recurrence:

a(k,l)2i = la(k,l)2i−1− a(k,l)2i−2,

a(k,l)2i+1 = ka(k,l)2i − a(k,l)2i−1,

for i≥ 1, with initial conditions a(k,l)0 = 0 and a(k,l)1 = 1.

Let L(k,l)
n be the set of nonnegative integer sequences λ of length n satisfying

λ1

a(k,l)n

≥ λ2

a(k,l)n−1

≥ . . .≥ λn

a(k,l)1

≥ 0.

The following was shown in [3].

Theorem 1 (The (k,l)-Lecture Hall Theorem). The generating function for L(k,l)
n

is given by

G(k,l)
n (q) =

n

∏
i=1

1

1− qa(k,l)i +a(l,k)i−1

if n is even,

G(k,l)
n (q) =

n

∏
i=1

1

1− qa
(l,k)
i +a

(k,l)
i−1

if n is odd.
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When k ≥ 2 and l ≥ 2, the sequence {a(k,l)n } is strictly increasing. When k = 1

or l = 1, the sequence {a(k,l)n } is not monotone and when kl < 4 some terms
will be negative. Nevertheless, we make the following observation and prove it in
Appendix 1.

Observation 1. The (k, l)-Lecture Hall Theorem remains true when k = 1 or l = 1,
as long as kl ≥ 4.

For our application, consider the sequences:

a(1,4) = 0, 1, 4, 3, 8, 5, 12, 7, . . . ;

a(4,1) = 0, 1, 1, 3, 2, 5, 3, 7, . . . .

Then

a(1,4)2i+1 = 2i+ 1; a(1,4)2i = 4i;

a(4,1)2i+1 = 2i+ 1; a(4,1)2i = i.

So, by definition of G(k,l)
n (q),

G(1,4)
2k (q) =

k−1

∏
i=0

1
(

1− qa
(1,4)
2i+1+a

(4,1)
2i

)(
1− qa

(1,4)
2i+2+a

(4,1)
2i+1

) =
k−1

∏
i=0

1
(1−q3i+1) (1−q6i+5)

and

lim
k→∞

G(1,4)
2k (q) =

1
(q;q3)∞ (q5;q6)∞

, (7)

giving the right-hand side of (1). On the other hand, by Theorem 1, G(1,4)
2k (q) is the

generating function for L(1,4)
2k , the set of sequences satisfying

L(1,4)
2k :

λ1

4k
≥ λ2

2k− 1
≥ λ3

4(k− 1)
≥ λ4

2k− 3
≥ . . .≥ λ2k−1

4
≥ λ2k

1
≥ 0.

Note that

lim
k→∞

a(1,4)2k

a(1,4)2k−1

=
4k

2k− 1
= 2

and

lim
k→∞

a(1,4)2k+1

a(1,4)2k

=
2k+ 1

4k
=

1
2
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so limk→∞ L(1,4)
2k is the set of sequences satisfying the constraints (3), whose

generating function must therefore be (7).

Similarly, by definition of G(k,l)
n (q),

G(1,4)
2k+1(q) =

1
1− q

k

∏
i=1

1
(

1− qa
(4,1)
2i +a

(1,4)
2i−1

)(
1−qa

(4,1)
2i+1+a

(1,4)
2i

)

=
1

1− q

k

∏
i=1

1
(1− q3i−1)(1− q6i+1)

and

lim
k→∞

G(1,4)
2k+1(q) =

1
(q2;q3)∞ (q;q6)∞

, (8)

giving the right-hand side of (2).

On the other hand, by Theorem 1, G(1,4)
2k+1(q) is the generating function for L(1,4)

2k+1,
the sequences satisfying

L(1,4)
2k+1 :

λ1

2k+1
≥ λ2

4k
≥ λ3

2k− 1
≥ λ4

4(k− 1)
≥ ·· · ≥ λ2k

4
≥ λ2k+1

1
≥ 0.

As k→ ∞, L(1,4)
2k+1 becomes the set of sequences satisfying the constraints (4), and

thus their generating function is given by (8).

3 The “Enumerative Combinatorics” Approach

In this section, we use results from [5] to show that the left-hand sides of identities
(1) and (2) count the integer solutions to the inequalities (3) and (4), respectively.
Define [n]q by

[n]q := (1− qn)/(1−q).

The following is shown in [5] (we include a self-contained proof in Appendix 2).

Theorem 2. Let s1,s2, . . . ,sk be a sequence of positive integers satisfying the
condition si = 1 or si+1 = 1 for 1 ≤ i ≤ k − 1. Then the generating for the
nonnegative integer sequences λ satisfying

λ1

s1
≥ λ2

s2
≥ ·· · ≥ λk

sk
≥ 0
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is

F(q) = ∑
λ

q|λ | =
∏k−1

i=2

(
1+ qbi

(
[si+1]q−1

))

∏k
i=1(1−qbi)

,

where b1 = 1 and bi = s1 + . . .+ si for i > 1.

Note that if s1 = s2 = · · ·= sk = 1, then F(q) is the generating function for ordinary
partitions with at most k parts.

We first apply Theorem 2 to the sequence s = (2,1,2,1, ...). Note that b2 j = 3 j,
b2 j+1 = 3 j+2, so

1+qb2 j

([
s2 j+1

]
q− 1

)
= 1+ q3 j

(
[2]q−1

)
= 1+q3 j+1,

1+qb2 j+1
([

s2 j+2
]

q− 1
)
= 1+ q3 j+2

(
[1]q−1

)
= 1.

Thus, for s = (2,1,2,1, ...), the generating function for the sequences satisfying

λ1

2
≥ λ2

1
≥ λ3

2
≥ λ4

1
≥ ·· · ≥ λn

sn
≥ 0 (9)

is

fn(q) =

(−q4;q3
)
�(n−1)/2�

(1−q)(q3;q3)�n/2� (q5;q3)�(n+1)/2�
=

(1+q)
(−q4;q3

)
�(n−1)/2�

(q3;q3)�n/2� (q2;q3)�(n+1)/2�

=

(−q;q3
)
�(n+1)/2�

(q3;q3)�n/2� (q2;q3)�(n+1)/2�
=

(
q2;q6

)
�(n+1)/2�

(q;q)�(3n+1)/2�
.

Constraints (9) define a simplicial cone, so Stanley’s reciprocity theorem [13]
can be used to compute, from fn(q), the generating function for those integer points
interior to the cone. Specifically, the generating function for those integer sequences
λ satisfying the strict constraints

λ1

2
>

λ2

1
>

λ3

2
>

λ4

1
> · · ·> λn

sn
> 0

is given by

hn(q) = (−1)n fn(1/q) =

⎧
⎨

⎩

q(3n2+10n)/8 fn(q) n even,

q(3n2+4n+1)/8 fn(q) n odd.
(10)
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Finally, the generating function for the integer sequences λ satisfying (3) can now
be obtained by summing hn(q) in (10) over all n≥ 0:

∞

∑
n=0

hn(q) = 1+
∞

∑
k=1

(h2k−1+h2k)

= 1+
∞

∑
k=1

(
q(3(2k−1)2+4(2k−1)+1)/8 (q2;q6

)
k

(q;q)3k−1
+

q(3(2k)2+10(2k))/8 (q2;q6
)

k

(q;q)3k

)

= 1+
∞

∑
k=1

qk(3k−1)/2(q2;q6)k

(q;q)3k
,

which agrees with the left-hand side of (1).
We proceed similarly to find the generating function of the solutions of (4). In

this case, we apply Theorem 2 to the sequence s′ = (1,2,1,2, ...). For this sequence,
b2 j = 3 j, b2 j+1 = 3 j+ 1, so

1+qb2 j

([
s′2 j+1

]
q
− 1
)
= 1+ q3 j ([1]q−1) = 1,

1+qb2 j+1

([
s′2 j+2

]
q
− 1
)
= 1+ q3 j+1 ([2]q−1) = 1+q3 j+2.

Thus, for s′ = (1,2,1,2, ...), the generating function for the sequences satisfying

λ1

1
≥ λ2

2
≥ λ3

1
≥ λ4

2
≥ ·· · ≥ λn

s′n
≥ 0 (11)

is

f ′n(q) =

(−q5;q3
)
�(n−2)/2�

(q;q3)�(n+1)/2� (q3;q3)�(n−1)/2�

=

(
q10;q6

)
�(n−2)/2�

(q;q3)�(n+1)/2� (q3;q3)�(n−1)/2� (q5;q3)�(n−2)/2�
=

(
q2;q6

)
�n/2�

(q;q)�3n/2�
.

Again, by the reciprocity theorem [13], the generating function for those integer
sequences λ satisfying the strict constraints

λ1

1
>

λ2

2
>

λ3

1
>

λ4

2
> · · ·> λn

s′n
> 0

is given by

h′n(q) = (−1)n f ′n(1/q) =

{
qk(3k+1)/2 f ′2k(q) n = 2k,

q(k+2)(3k+1)/2 f ′2k+1(q) n = 2k+1.
(12)
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Finally, the generating function for the integer sequences λ satisfying (4) can now
be obtained by summing h′n(q) in (12) over all n≥ 0:

∞

∑
n=0

h′n(q) =
∞

∑
k=0

(
h′2k + h′2k+1

)
=

∞

∑
k=0

(
qk(3k+1)/2(q4;q6)k

(q;q)3k
+

qk(3k+1)/2(q2;q6)k

(q;q)3k+1

)

=
∞

∑
k=0

q(k+1)(3k+2)/2
(
q4;q6

)
k

(q;q)3k+1

which agrees with the left-hand side of (2).

4 A Refinement

Define the even and odd weight of a sequence λ = (λ1,λ2, ...) by

|λ |o = λ1 +λ3 + · · · ; |λ |e = λ2 +λ4 + · · · ;

and define

G(k,l)
n (x,y) = ∑

λ∈L(k,l)n

x|λ |oy|λ |e .

As we indicate in Appendix 1, what Bousquet-Mélou and Eriksson proved in [3]

was the following: The generating function for L(k,l)
n is given by

G(k,l)
n (x,y) =

n

∏
i=1

1

1− xa
(k,l)
i ya

(l,k)
i−1

if n is even,

G(k,l)
n (x,y) =

n

∏
i=1

1

1− xa
(l,k)
i ya(k,l)i−1

if n is odd.

So

lim
k→∞

G(1,4)
2k (x,y) =

1
(x;x2y)∞ (x4y;x4y2)∞

=

(−x;x2y
)

∞
(x2;x2y)∞

. (13)

Similarly, the counting method of Sect. 3 also admits an x,y-refinement. From
the bijective proof Theorem 2 that appears in Appendix 2, it can be checked that the
2-variable version of the generating function for the sequences λ satisfying (9) is

fn(x,y) = ∑
λ

x|λ |oy|λ |e =

(−x;x2y
)
�(n+1)/2�

(x2y;x2y)�n/2� (x2;x2y)�(n+1)/2�
.
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Proceeding as in Sect. 3 using reciprocity,

hn(x,y) = (−1)n fn(1/x,1/y),

and summing over all n, gives another expression for the generating function of (3):

∞

∑
n=0

hn(x,y) = 1+
∞

∑
k=1

(h2k−1(x,y)+ h2k(x,y)) =
∞

∑
j=0

x j2y j( j−1)/2(−x;x2y) j

(x2;x2y) j(x2y;x2y) j
. (14)

Since both (13) and (14) count (3), we have the following.

Theorem 3.

∞

∑
j=0

x j2y j( j−1)/2
(−x;x2y

)
j

(x2;x2y) j (x
2y;x2y) j

= ∑
λ

xλ1+λ3+···yλ2+λ4+··· =

(−x;x2y
)

∞
(x2;x2y)∞

where the second sum is over all positive integer sequences λ satisyfing

λ1

2
>

λ2

1
>

λ3

2
>

λ4

1
> · · · . (15)

Setting x=−a and y= q/a2 gives the following identity, which we refer to as I(a,q).

Corollary 1.

I(a,q) :=
∞

∑
n=0

(a;q)n(−a)nq(
n
2)

(a2;q)n (q;q)n
=

(a;q)∞

(a2;q)∞
. (16)

As an alternative to reciprocity, we could explain the sum side of (14)
combinatorially.

5 Deriving the Identities from the q-Gauss Summation

Recall Heine’s q-Gauss summation [6, (II.8)]:

H(a,b,c;q) :=
∞

∑
n=0

(a;q)n(b;q)n

(c;q)n(q;q)n

( c
ab

)n
=

(c/a;q)∞(c/b;q)∞

(c;q)∞(c/(ab);q)∞
. (17)

Note that as b→ ∞, we have (b;q)n/bn → (−1)nq(
n
2) and (x/b;q)∞ → 1, so (17)

becomes

H(a,∞,c;q) =
∞

∑
n=0

(a;q)n(−c/a)nq(
n
2)

(c;q)n(q;q)n
=

(c/a;q)∞

(c;q)∞
. (18)
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Thus

H(a,∞,a2;q) =
∞

∑
n=0

(a;q)n(−a)nq(
n
2)

(a2;q)n(q;q)n
=

(a;q)∞

(a2;q)∞
,

which is (16). So

I(a,q) = H(a,∞,a2;q).

Then,

I
(−q,q3) =

∞

∑
n=0

(−q;q3
)

n qn(3n−1)/2

(q2;q3)n (q
3;q3)n

=

(−q;q3
)

∞
(q2;q3)∞

,

which is equivalent to (1).
On the other hand, identity (2) is equivalent to

I
(−q2,q3

)

1−q
=

∞

∑
n=0

(−q2;q3
)

n qn(3n+1)/2

(q;q3)n+1 (q
3;q3)n

=

(−q2;q3
)

∞
(q;q3)∞

.

It is interesting to note that (5) follows in a similar way from (18):

H
(
∞,∞,q;q2) =

∞

∑
n=0

qn(2n−1)

(q;q)2n
=

1
(q;q2)∞

. (19)

Equation (19) is in fact equivalent to an identity appearing in Slater’s compendium
of Rogers-Ramanujan type identities [12, p. 157, (52)].

Observe that

qn(2n−1)

(q;q)2n
=

q(2n−1)(2n)/2

(q;q)2n−1
+

q(2n)(2n+1)/2

(q;q)2n
,

so that each term of the sum in (19) is the sum of two successive terms of the sum
in (5).

6 Lebesgue’s Identity and a New View of Göllnitz’s “Little”
Partition Theorems

The infinite products appearing in (1) and (2) enumerate partitions whose parts
belong to the residue classes {1,4,5}modulo 6 and {1,2,5}modulo 6, respectively.
It is noteworthy that these residue classes are not symmetric modulo 6, since most
well-known partition theorems involve symmetric residue classes.
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Two of the best known partition identities involving asymmetric residue classes
are known as “Göllnitz’s little partition theorems” [7, pp. 166–167, Satz 2.3 and 2.4].

Theorem 4 (Göllnitz). The number of partitions of N into parts differing by at
least 2 and no consecutive odd parts equals the number of partitions of N into parts
congruent to 1, 5 or 6 modulo 8.

Theorem 5 (Göllnitz). The number of partitions of N into parts differing by at
least 2, no consecutive odd parts, and no ones equals the number of partitions of N
into parts congruent to 2, 3 or 7 modulo 8.

It is well known that the analytic counterparts to Theorems 4 and 5 are special
cases of an identity due to Lebesgue ([10]; cf. [2, p. 21, Cor. 2.7]):

L(a,q) :=
∞

∑
n=0

qn(n+1)/2(a;q)n

(q;q)n
=

(
aq;q2

)
∞

(q;q2)∞
. (20)

The analytic counterpart to Theorem 4 is [7, (2.22)]

L(−q−1,q2) =
∞

∑
n=0

qn2+n(−q−1;q2)n

(q2;q2)n
=

1
(q;q4)∞(q6;q8)∞

, (21)

while that of Theorem 5 is [7, (2.24)]

L
(−q,q2) =

∞

∑
n=0

qn2+n
(−q;q2

)
n

(q2;q2)n
=

1
(q2;q8)∞ (q3;q4)∞

. (22)

However, it may not have been observed previously that the infinite products
in (21) and (22) also arise as special cases of the q-Gauss sum (17), via I(a,q). By
appropriate specialization, we obtain

I(−q,q4) =
∞

∑
n=0

q2n2−n(−q;q4)n

(q2;q2)2n
=

1
(q;q4)∞(q6;q8)∞

(23)

and

I
(−q3,q4

)

1−q2 =
∞

∑
n=0

q2n2+n
(−q3;q4

)
n

(q2;q2)2n+1
=

1
(q2;q8)∞ (q3;q4)∞

. (24)

Finally, we observe that Göllnitz’s little partition theorems can be alternately
viewed as theorems about partitions constrained by the ratio of consecutive parts
and give a combinatorial interpretation of (23).
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Observation 2. The set of partitions of N into parts differing by at least 2 and no
consecutive odd parts is the same as the set of finite sequences of positive integers
λ1,λ2, . . . of weight N satisfying

⌊λi

2

⌋
>
⌈λi+1

2

⌉
.

7 Suggestions for Further Study

Can we derive other series-product identities from the lecture hall approach, via
Theorem 1 and Observation 1? Although these tools produce a “product side”
for any positive integers (k, j) with kl ≥ 4, deriving a “sum side” from the ratio
characterization is more difficult. As shown in [3], the limiting form of Theorem 1
gives rise to the following ratios between consecutive parts: (kl+

√
kl(kl−1))/(2k)

and (kl +
√

kl(kl− 1))/(2l). These ratios are rational only if either {k, l} = {1,4}
(the case considered in this paper) or k = l = 2 (giving ratio 1, the familiar case of
distinct parts).

Are there other classical partition theorems that can be reinterpreted as state-
ments about partitions constrained by the ratio of consecutive parts? For example,
Gordon’s combinatorial interpretation [9, p. 741, Theorems 2 and 3] of the the
Göllnitz-Gordon identities involves partitions into parts differing by at least 2 and
no consecutive even parts. Such partitions can be alternatively characterized as the
set of finite sequences of positive integers λ1,λ2, . . . satisfying, for each i,

⌊λi + 1
2

⌋
>
⌈λi+1 + 1

2

⌉
.

We expect to find other examples. What can be learned from these reinterpretations?

Appendix 1: Proof of Observation 1

To verify that the (k, l)-Lecture Hall Theorem remains true for all positive k, l
satisfying kl ≥ 4, we first observe that these conditions are necessary and sufficient

to guarantee that a(k,l)n is positive for all n ≥ 1. When kl ≥ 4, each of the sequences

{a(k,l)2i }i≥0, {a(k,l)2i+1}i≥0 satisfies the recurrence

wi = (kl− 2)wi−1−wi−2,

and, with their respective initial conditions, are strictly increasing. On the other
hand, it can be checked that negative elements appear in the sequence when (k, l) ∈
{(1,1),(1,2),(2,1),(1,3),(3,1)}.
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We then outline the clever combinatorial/algebraic approach of Bousquet-Mélou
and Eriksson in [3] to illustrate that in order for Theorem 1 to hold, it is not necessary

that a(k,l)1 , . . . ,a(k,l)n be weakly increasing, rather only that all terms are positive.
Define the even and odd weight of a sequence λ = (λ1,λ2, ...) by

|Λ |o = λ1 +λ3 + · · · ; |λ |e = λ2 +λ4 + · · · ;

and define

G(k,l)
n (x,y) = ∑

λ∈L
(k,l)
n

x|λ |oy|λ |e .

The strategy is to show that the following recurrence from [3] holds for all positive
k, l satisfying kl ≥ 4.

G(k,l)
n (x,y) =

⎧
⎨

⎩

G(k,l)
n−1(x

ly,x−1)/(1− x) if n is even,

G(k,l)
n−1(x

ky,x−1)/(1− x) if n is odd,
(25)

with initial condition G(k,l)
0 (x,y) = 1. Using the recursive definition of a(k,l)n and the

fact that a(k,l)2i+1= a(l,k)2i+1, solving this recurrence gives Theorem 1.

To simplify notation in what follows, let an = a(k,l)n . To derive the recurrence (25),
define a function

ϒn : L(k,l)
n−1×N → L(k,l)

n

by ϒn(λ ,s) = μ , where

μ1 ←
⌈

anλ1

an−1

⌉
+ s;

μ2t ← λ2t−1, 1≤ t ≤ n/2;

μ2t+1 ←

⎧
⎪⎨

⎪⎩

⌈
an−2t λ2t+1

an−2t−1

⌉
+
⌊

an−2t λ2t−1
an−2t+1

⌋
−λ2t , 1≤ t < (n−1)/2,

⌊
an−2t λ2t−1

an−2t+1

⌋
−λ2t , t = (n−1)/2.

The key is to use the properties of the (k, l) sequence to prove that μ ∈ L(k,l)
n , that

ϒn is a bijection, and that

|μ |e = |λ |o; (26)

|μ |o =
{

l|λ |o−|λ |e+ s if n is even,

k|λ |o−|λ |e+ s if n is odd.
(27)
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For then this implies that when n is even,

L(k,l)
n (x,y) � ∑

μ∈L(k,l)n

x|μ|oy|μ|e = ∑
λ∈L(k,l)n−1

∞

∑
s=0

xl|λ |o−|λ |e+sy|λ |o

=
1

1− x ∑
λ∈L(k,l)n−1

(xly)|λ |o(1/x)|λ |e =
L(k,l)

n−1(x
ly,x−1)

1− x
,

giving the even case of recurrence (25) and the case for odd n is similar.
It remains to prove that ϒn is a bijection satisfying (26) and (27). First observe

that since a is a (k, l) sequence, for any m≥ 0

⌈
ai+1

ai
m

⌉
+

⌊
ai−1

ai
m

⌋
=

{
km if i even,
lm if i odd.

Thus, when n is even,

|μ |o = μ1 + μ3 + . . .= s+ l(λ1 +λ3 + . . .)− (λ2 +λ4 + . . .) = l|λ |o−|λ |e+ s,

and similarly, for n odd, proving (27). Condition (26) is easy to check.

To show that μ ∈ L(k,l)
n , note that consecutive parts λ2t−1,λ2t ,λ2t+1 in λ map to

the consecutive parts of μ :

μ2t = λ2t−1,

μ2t+1 =

⌈
an−2tλ2t+1

an−2t−1

⌉
+

⌊
an−2tλ2t−1

an−2t+1

⌋
−λ2t ,

μ2t+2 = λ2t+1.

We need to show that

μ2t ≥ an−2t+1

an−2t
μ2t+1; μ2t+1 ≥ an−2t

an−2t−1
μ2t+2.

As λ ∈ L(k,l)
n−1 ,

λ2t−1 ≥ an−2t+1

an−2t
λ2t ; λ2t ≥ an−2t

an−2t−1
λ2t+1,

so

μ2t+1 ≥
⌈

an−2tλ2t+1

an−2t−1

⌉
=

⌈
an−2tμ2t+2

an−2t−1

⌉

and

μ2t+1 ≤
⌊

an−2tλ2t−1

an−2t+1

⌋
=

⌊
an−2tμ2t

an−2t+1

⌋
.

Note that this did not require that the sequence {an} be nondecreasing.
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Finally, (λ ,s) can be recovered from μ by:

s← μ1−
⌈

anμ2

an−1

⌉
;

λ2t−1 ← μ2t , 1≤ t ≤ n/2;

λ2t ←

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

⌈
an−2tμ2t+2

an−2t−1

⌉
+

⌊
an−2t μ2t

an−2t+1

⌋
− μ2t+1, 1≤ t < (n−1)/2,

⌊
an−2tμ2t

an−2t+1

⌋
− μ2t+1, t = (n−1)/2.

Appendix 2: Bijective Proof of Theorem 2

Let s1,s2, . . . ,sk be a sequence of positive integers satisfying the condition si = 1 or
si+1 = 1 for 1≤ i≤ k− 1. Recall that b1 = 1 and bi = s1 + . . .+ si for i > 0.

In the numerator of F(q) in Theorem 2, write

1+qbi([si+1]q−1) = qbi+1+qbi+2+ . . .+qbi+si+1−1 = qbi+1+qbi+2+ . . .+qbi+1−1.

So, each positive integer in the set {b1}∪{b2,b2 +1,b2 +3, . . . ,bk} occurs exactly
once in F(q) as an exponent of q, either in the numerator or in the denominator. We
can interpret F(q) as the generating function for the set of partitions of an integer
into parts from the set {1,b2,b2 + 1, . . . ,bk} in which parts in the set ∪k−1

i=2 {bi +
1,bi +2, . . . ,bi+1− 1} can occur at most once.

To prove Theorem 2, we give a weight-preserving bijection from the set of
sequences λ = λ1, . . . ,λk satisfying

λ1

s1
≥ λ2

s2
≥ ·· · ≥ λk

sk
≥ 0

to the set of pairs of partitions (μ ,ν), where μ is a partition into parts in {b1, . . . ,bk},
and where ν is a partition into distinct parts from ∪k−1

i=2 {bi +1,bi+2, . . . ,bi+1−1}.
Given λ , construct (μ ,ν) as follows:
For i from k down to 2 do

While λi/si ≥ 1 do
For j from 1 to i do

λ j← λ j− s j

μ ← μ ∪bi

If λi > 0 then
For j from 1 to i− 1 do

λ j← λ j− s j

ν ← ν ∪ (bi−1 +λi)

μ ← μ ∪bλ1
1
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Inside the main loop, if λi ≥ si and

λ1

s1
≥ λ2

s2
≥ ·· · ≥ λi

si
≥ 0

then
λ1− s1

s1
≥ λ2− s2

s2
≥ ·· · ≥ λi− si

si
≥ 0

and another part s1 + . . .+ si = bi is added to μ . If 0 < λi < si, then si ≥ 2. By
definition of s, then si−1 = 1, so λi−1 ≥ si−1 and

λ1− s1

s1
≥ λ2− s2

s2
≥ ·· · ≥ λi− si−1

si−1
≥ 0

and, for the first and only time, part s1 + . . .+ si−1 + λi = bi−1 + λi < bi is added
to ν .

The reverse is straightforward.
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Generalizations of Hutchinson’s Curve
and the Thomae Formulae

Hershel M. Farkas

Abstract In this note we derive Thomae formulae for the family of zn curves
defined by

wn = (z−λ0)(z−λ1)(z−λ )n−1.

These may be viewed as either giving rise to a generalization of the classical
λ -function of elliptic function theory or a special class of singular zn curves.

Keywords Compact Riemann surface • zn curve • Nonspecial integral divisor
• Theta functions • Abel-Jacobi map • λ -function

Mathematics Subject Classification: 14H55, 30F10, 32J15, 32G15

1 Introduction

Hutchinson’s curve [H] is the Riemann surface defined by

w3 = (z−λ0)(z−λ1)(z−λ )2,

a compact Riemann surface of genus 2, thus hyperelliptic. In this note we treat the
family of Riemann surfaces parameterized by

wn = (z−λ0)(z−λ1)(z−λ )n−1.

This is a one parameter family of compact surfaces, X, of genus g = n− 1 which
are hyperelliptic. They all have an automorphism of period n, which we shall denote
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by T, which has precisely four fixed points and such that the quotient surface is the
sphere. In other words these surfaces have a realization as an n-sheeted cover of the
sphere branched over four points,

λ0,λ1,λ ,∞.

Hutchinson’s curve is an example of a singular zn curve with n = 3. We recall
that a curve of the form

wn =
i=rn−1

∏
i=1

(z−λi)

with λi �= λ j for i �= j is called a nonsingular zn curve, while if the polynomial has
multiple roots it is called a singular zn curve. This curve has a representation as an
n-sheeted cover of the sphere branched over the points

λ1, ...,λnr−1,∞

with each branch point of maximal order n−1. Our generalization of Hutchinson’s
curve has precisely four branch points,

λ0,λ1,λ ,∞.

The Thomae problem [B,R 1], [B,R 2], [E,F], [E,G] is concerned with writing a
set of proportionalities between theta constants associated with these curves and
polynomials in the variables λi. The characteristics of the theta constants are derived
from the set of branch points using the Abel Jacobi map [F,K] and this note treats
the simplest case of four branch points. The genus of the zn curve in this case is n−1
and all these curves are hyperelliptic. The hyperelliptic case was already treated by
Thomae, see [E,F] for a new proof.

It is clear from the above that if we denote the point over λi by Pi and the point
over ∞ by P∞, then denoting the Abel Jacobi map with base point Pi by φPi , we have
ΦPj (Pi) as a point of order n. We shall soon see that the vector of Riemann constants
KPi is a point of order 2n. Moreover it is easy to see that a basis for the holomorphic
differentials on this surface is given by

dz
w
,(z−λ )

dz
w2 , ..,(z−λ )n−2 dz

wn−1

and that the respective divisors are

(P0P1)
n−2 ,(P0P1)

n−3 (Pλ P∞) , ...,(P0P1)(Pλ P∞)
n−3 ,(Pλ P∞)

n−2 .

We wish to consider now the integral divisors Δ, of degree g = n−1 whose support
is in the set P1Pλ ,P∞ which are nonspecial. This means those with the property
i(Δ) = 0, i.e., those for which there is no holomorphic differential whose divisor is
a multiple of Δ.
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It is clear that the integral divisors are those which belong to the set

S =
(
Pn−1

1 ,Pn−1
λ ,Pn−1

∞ ,P1Pn−2
λ ,P2

1 Pn−3
λ , ...,Pn−2

1 Pλ ,P1Pn−2
∞ , ...,Pn−2

1 P∞
)
.

We recall [F,K] that the vector KPi has the following property. An integral divisor
ζ of degree 2g−2 is the divisor of a holomorphic differential on the surface if and
only if

φPi(ζ ) =−2KPi .

2 Properties of the Surface X

It is clear from the basis given above for the holomorphic differentials on X that X
is hyperelliptic and in addition that if we denote the hyperelliptic involution by H
then H(P0) = P1,H(Pλ ) = P∞. Moreover, the 2n Weierstrass points are in two fibers
above two specific points on the sphere which we can compute but will not. We
begin with

Lemma 2.1. Let k+ l = n− 1 with k =−1,0, ...,n−2.

φP0

(
Pk

1 Pl
λ

)
+KP0 = −

(
φP0(P

n−2−k
1 Pn−l

λ )+KP0

)
,

φP0

(
Pk

1 Pl
∞

)
+KP0 = −

(
φP0(P

n−2−k
1 Pn−l

∞ )+KKP0

)
.

In particular we have

φP0

(
Pn−1

1

)
+KP0

is always a point of order 2, and when n is even

φP0

(
P

n−2
2

1 P
n
2

λ

)
+KP0 ,φP0

(
P

n−2
2

1 P
n
2∞

)
+KP0

are also points of order 2.

Proof. Consider

φP0

(
Pk

1 Pn−2−k
1 Pl

λ Pn−l
λ

)
+2KP0

or

φP0

(
Pk

1 Pn−2−k
1 Pl

∞Pn−l
∞

)
+2KP0 .

In either case since φP0(P
n
λ ) = φP0(P

n
∞) = 0 we get the result φP0(P

n−2
1 )+ 2KP0 . We

have already seen that

−2KP0 = φP0

(
Pn−2

0 Pn−2
1

)
= φP0

(
Pn−2

1

)
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since the first divisor is the divisor of a holomorphic differential. Hence the sum we
obtained is 0 and this proves the first statement. Setting k =−1 and the observation
that φP0(P

−1
1 ) = φP0(P

n−1
1 ) gives the second statement while the third follows from

choosingk = n−2
2 . ��

Since we shall be interested in theta constants, θ
[

�

�′

]
(0,Π) and they satisfy

θ
[ −�

−�′

]
(0,Π) = θ

[
�

�′

]
(0,Π) and since

θ
[

�

�′

]
(ζ ,Π) = exp(l(ζ )θ

(
ζ +

1
2
(Π�+ I�′),Π

)
,

where l(ζ ) is a linear function of ζ , and finally since

φP0(Δ)+KP0 =
1
2

(
Π
(

2�+ δ
n

)
+ I

(
2�′+ δ ′

n

))

we can write θ [φP0(Δ) + KP0 ](ζ ,Π) to represent θ
[ 2�+δ

n
2�′+δ ′

n

]
(ζ ,Π). As a conse-

quence of the previous remarks the characteristics or the integral divisors of degree
g that we shall be interested in are

(
φP0

(
Pn−1

1

)
+KP0 ,φP0

(
Pn−1

λ
)
+KP0 ,φP0

(
P1Pn−2

λ
)
+KP0 , ..,φP0

(
P

n−3
2

1 P
n+1

2
λ

)
+KP0 ,

φP0

(
Pn−1

∞
)
+KP0 ,φP0

(
P1Pn−2

∞
)
+KP0 , ..,φP0

(
P

n−3
2

1 P
n+1

2∞

)
+KP0

)
,

when n is odd and
(

φP0(P
n−1
1 )+KP0 ,φP0(P

n−1
λ )+KP0 ,φP0(P1Pn−2

λ )+KP0 , ..,φP0

(
P

n−2
2

1 P
n
2

λ

)
+KP0 ,

φP0(P
n−1
∞ )+KP0 ,φP0(P1Pn−2

∞ )+KP0 , ..,φP0

(
P

n−2
2

1 P
n
2∞

)
+KP0

)
,

when n is even.

3 Even n

In this section we shall consider the case of even n. In this case we begin by studying
the sequence of functions
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fi(P) =
θ n2

[φP0(P
i−1
1 Pn−i

λ )+KP0 ](φP0(P),Π)

θ n2 [φP0(P
i
1Pn−i−1

λ )+KP0 ](φP0(P),Π)
i = 0, ...,

n−2
2

.

The first observation is that f0(P) =
θ n2

[φP0 (P
n−1
1 )+KP0 ](φP0 (P),Π)

θ n2
[φP0

(Pn−1
λ )+KP0

](φP0
(P),Π)

.

The second observation is that fi(P) = ci(
z−λ1
z−λ )n. These observations follow from

Lemma 2.1, from the elementary properties of the theta functions, and from the fact
that φP0(P

n
1 ) = 0.

If we now substitute P = P0, we find ci. We then substitute P = P∞, use the
elementary properties of theta functions in addition to the fact that ΦP0(P0P1) =
φP0(P1) = φP0(Pλ P∞), and find that for i = 0, .., n−2

2

Di =
θ 2n2

[φP0(P
i
1Pn−i−1

λ )+KP0 ](0,Π)

θ n2 [φP0(P
i+1
1 Pn−i−2

λ )+KP0 ](0,Π)θ n2 [φP0(P
i−1
1 Pn−i

λ )+KP0 ](0,Π)

=

(
λ0−λ
λ0−λ1

)n

.

We check that

D n−2
2

=

θ 2n2
[

φP0

(
P

n−2
2

1 P
n
2

λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−4
2

1 P
n+2

2
λ

)
+KP0

]
(0,Π)

=

(
λ0−λ
λ0−λ1

)n

.

We then continue to compute

D n−4
2

D n−2
2

=

θ n2
[

φP0

(
P

n−2
2

1 P
n
2

λ

)
+KP0

]
(0,Π)

θ n2

[
φP0

(
P

n−6
2

1 P
n+4

2
λ

)
+KP0

]
(0,Π)

=

(
λ0−λ
λ0−λ1

)2n

and conclude therefore

θ 2n2
[

φP0

(
P

n−2
2

1 P
n
2

λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−6
2

1 P
n+4

2
λ

)
+KP0

]
(0,Π)

=

(
λ0−λ
λ0−λ1

)4n

.

Continuing in this fashion to compute

D n−6
2

D n−4
2
,D n−8

2
D n−6

2
, ..D0D1,
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we find

Theorem 3.1. For k = 1, .., n−2
2 we have

θ 2n2
[

φP0

(
P

n−2k
2

1 P
n+2k−2

2
λ

)
+KP0

]
(0,Π)

(λ0−λ )4kn

=

θ 2n2
[

φP0

(
P

n−2k−4
2

1 P
n+2k+2

2
λ

)
+KP0

]
(0,Π)

(λ0−λ1)4kn .

If we were to begin again with the sequence

gi(P) =
θ n2

[φP0(P
i−1
1 Pn−i

∞ )+KP0 ](φP0(P),Π)

θ n2
[φP0(P

i
1Pn−i−1

∞ )+KP0 ](φP0(P),Π)

we would find that it equals c̃i(z−λ1)
n and a repeat of what we have done would

give the following result.

Theorem 3.2. For k = 1, .., n−2
2 we have

θ 2n2
[

φP0

(
P

n−2k
2

1 P
n+2k−2

2∞

)
+KP0

]
(0,Π)

(λ −λ1)4kn

=

θ 2n2
[

φP0

(
P

n−2k−4
2

1 P
n+2k+2

2∞

)
+KP0

]
(0,Π)

(λ0−λ1)4kn .

Before we explore the consequences of these theorems we do an example. The
theorems for even n give us the following identities: (alternatively, the algebraic
operations explained above when applied to the following example with n = 10 give
the following identities:)

(4)
θ 200[φP0(P

4
1 P5

λ )+KP0 ](0,Π)

(λ0−λ )40 =
θ 200[φP0(P

2
1 P7

λ )+KP0 ](0,Π)

(λ0−λ1)40 ,

(3)
θ 200[φP0(P

3
1 P6

λ )+KP0 ](0,Π)

(λ0−λ )80 =
θ 200[φP0(P1P8

λ )+KP0 ](0,Π)

(λ0−λ1)80 ,

(2)
θ 200[φP0(P

2
1 P7

λ )+KP0 ](0,Π)

(λ0−λ )120 =
θ 200[φP0(P

9
λ )+KP0 ](0,Π)

(λ0−λ1)120 ,

(1)
θ 200[φP0(P1P8

λ )+KP0 ](0,Π)

(λ0−λ )160 =
θ 200[φP0(P

9
1 )+KP0 ](0,Π)

(λ0−λ1)160 .
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In addition we have

(0)
θ 200[φP0(P

4
1 P5

λ )+KP0 ](0,Π)

(λ0−λ )10 =
θ 200[φP0(P

3
1 P6

λ )+KP0 ](0,Π)

(λ0−λ1)10 .

We now do the following arithmetic operations:
We multiply (4) by 1

(λ0−λ )120 , (3) by 1
(λ0−λ )160 , (2) by 1

(λ0−λ1)40 , and finally

(1) by 1
(λ0−λ1)80 .

We obtain from these multiplications

θ 200[φP0(P
9
1 )+KP0 ](0,Π)

(λ0−λ1)240 =
θ 200[φP0(P1P8

λ )+KP0 ](0,Π)

(λ0−λ1)80(λ0−λ )160

=
θ 200[φP0(P

3
1 P6

λ )+KP0 ](0,Π)

(λ0−λ )240

and

θ 200[φP0(P
9
λ )+KP0 ](0,Π)

(λ0−λ1)160 =
θ 200[φP0(P

2
1 P7

λ )+KP0 ](0,Π)

(λ0−λ1)40(λ0−λ )120

=
θ 200[φP0(P

4
1 P5

λ )+KP0 ](0,Π)

(λ0−λ )160 .

In order to obtain one identity we need to multiply (0) by 1
(λ0−λ )240 . It is then

clear after multiplying the first of the two identities by 1
(λ0−λ1)10 and the second

by 1
(λ0−λ )90 that in fact

θ 200[φP0(P
9
1 )+KP0 ](0,Π)

(λ0−λ1)250 =
θ 200[φP0(P

9
λ )+KP0 ](0,Π)

(λ0−λ1)160(λ0−λ )90

=
θ 200[φP0(P1P8

λ )+KP0 ](0,Π)

(λ0−λ1)90(λ0−λ )160

=
θ 200[φP0(P

2
1 P7

λ )+KP0 ](0,Π)

(λ0−λ1)40(λ0−λ )210

=
θ 200[φP0(P

3
1 P6

λ )+KP0 ](0,Π)

(λ0−λ1)10(λ0−λ )240

=
θ 200[φP0(P

4
1 P5

λ )+KP0 ](0,Π)

(λ0−λ )250 .



76 H.M. Farkas

If we used the sequence gi(P) rather than the sequence fi(P) we would have derived
in place of the above the formulae

θ 200[φP0(P
9
1 )+KP0 ](0,Π)

(λ0−λ1)250 =
θ 200[φP0(P

9
∞)+KP0 ](0,Π)

(λ0−λ1)160(λ1−λ )90

=
θ 200[φP0(P1P8

∞)+KP0 ](0,Π)

(λ0−λ1)90(λ1−λ )160

=
θ 200[φP0(P

2
1 P7

∞)+KP0 ](0,Π)

(λ0−λ1)40(λ1−λ )210

=
θ 200[φP0(P

3
1 P6

∞)+KP0 ](0,Π)

(λ0−λ1)10(λ1−λ )240

=
θ 200[φP0(P

4
1 P5

∞)+KP0 ](0,Π)

(λ1−λ )250 .

One can do the same computation for any even value of n and we come to the
following conclusion (not formally proved but quite evident).

Theorem 3.3. Let k+ l = n− 1 for k =−1,0, .., n−2
2 . Then

θ 2n2
[φP0(P

k
1 Pl

λ )+KP0 ](0,Π)

(λ0−λ1)
( n

2−k−1)2n(λ0−λ ) n3
4 −( n

2−k−1)2n
= constant

θ 2n2
[φP0(P

k
1 Pl

∞)+KP0 ](0,Π)

(λ0−λ1)
( n

2−k−1)2n(λ1−λ )
n3
4 −( n

2−k−1)2n
= constant

and of course the constants are equal since the first terms are.

The above are the Thomae formulae for even n for the Riemann surface

wn = (z−λ0)(z−λ1)(z−λ )n−1.

If we normalize and let λ0 = 0,λ1 = 1 then the term λ0−λ1 disappears and we only
obtain powers of λ and (1−λ ).

4 Odd n

The case of odd n is a bit simpler. In this case we begin once again with a sequence
of functions with i = 0, .., n−3

2 :

fi(P) =
θ 2n2

[φP0(P
i−1
1 Pn−i

λ )+KP0 ](φP0(P),Π)

θ 2n2
[φP0(P

i
1Pn−i−1

λ +KP0 ](φP0(P),Π)
= ci

(
z−λ1

z−λ

)2n

.



Generalizations of Hutchinson’s Curve and the Thomae Formulae 77

Setting first P = P0 in the above allows us to solve for ci and then setting P = P∞
and using the fact that φP0(P1) = φP0(Pλ P∞) yields

Di =
θ 4n2

[φP0(P
i
1Pn−i−1

λ )+KP0 ](0,Π)

θ 2n2
[φP0(P

i+1
1 Pn−i−2

λ )+KP0 ](0,Π)θ 2n2
[φP0(P

i−1
1 Pn−i

λ )+KP0 ](0,Π)

=

(
λ0−λ
λ0−λ1

)2n

.

Till now the only change from even n has been the fact that we have taken the square
of the function we took before. We observe that

D n−3
2

=

θ 4n2
[

φP0

(
P

n−3
2

1 P
n+1

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−1
2

1 P
n−1

2
λ

)
+KP0

]
(0,Π)θ 2n2

[
φP0

(
P

n−5
2

1 P
n+3

2
λ

)
+KP0

]
(0,Π)

=

θ 2n2
[

φP0

(
P

n−3
2

1 P
n+1

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−5
2

1 P
n+3

2
λ

)
+KP0

]
(0,Π)

=

(
λ0−λ
λ0−λ1

)2n

.

The above follows from Lemma 2.1.
We now compute

D n−5
2

D n−3
2

=

θ 4n2
[

φP0

(
P

n−5
2

1 P
n+3

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−3
2

1 P
n+1

2
λ

)
+KP0

]
(0,Π)θ 2n2

[
φP0

(
P

n−7
2

1 P
n+5

2
λ

)
+KP0

]
(0,Π)

×
θ 2n2

[
φP0

(
P

n−3
2

1 P
n+1

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−5
2

1 P
n+3

2
λ

)
+KP0

]
(0,Π)

=

θ 2n2
[

φP0

(
P

n−5
2

1 P
n+3

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−7
2

1 P
n+5

2
λ

)
+KP0

]
(0,Π)

=

(
λ0−λ
λ0−λ1

)4n

.

We now compute

D n−7
2

D n−5
2

=

θ 2n2
[

φP0

(
P

n−7
2

1 P
n+5

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−9
2

1 P
n+7

2
λ

)
+KP0

]
(0,Π)

·
θ 2n2

[
φP0

(
P

n−5
2

1 P
n+3

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−3
2

1 P
n+1

2
λ

)
+KP0

]
(0,Π)

.
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The above on the one hand equals ( λ0−λ
λ0−λ1

)4n and on the other hand equals

θ 2n2
[

φP0

(
P

n−7
2

1 P
n+5

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−9
2

1 P
n+7

2
λ

)
+KP0

]
(0,Π)

·
(

λ0−λ1

λ0−λ

)2n

from which we conclude

θ 2n2
[

φP0

(
P

n−7
2

1 P
n+5

2
λ

)
+KP0

]
(0,Π)

θ 2n2

[
φP0

(
P

n−9
2

1 P
n+7

2
λ

)
+KP0

]
(0,Π)

=

(
λ0−λ
λ0−λ1

)6n

.

Continuing in this fashion leads us to the following result.

Theorem 4.1. For k = 1,.., n−1
2 we have

θ 2n2
[

φP0

(
P

n−(2k+1)
2

1 P
n+2k−1

2
λ

)
+KP0

]
(0,Π)

(λ0−λ )2kn

=

θ 2n2
[

φP0

(
P

n−(2k+3)
2

1 P
n+2k+1

2
λ

)
+KP0

]
(0,Π)

(λ0−λ1)2kn
.

If we were to begin again with the sequence

gi(P) =
θ 2n2

[φP0(P
i−1
1 Pn−i

∞ )+KP0 ](φP0(P),Π)

θ 2n2
[φP0(P

i
1Pn−i−1

∞ )+KP0 ](φP0(P),Π)
= c̃i(z−λ1)

2n

a repeat of the arguments given would lead to the following result.

Theorem 4.2. For k = 1, .., n−1
2 we have

θ 2n2
[

φP0

(
P

n−(2k+1)
2

1 P
n+2k−1

2∞

)
+KP0

]
(0,Π)

(λ1−λ )2kn

=

θ 2n2
[

φP0

(
P

n−(2k+3)
2

1 P
n+2k+1

2∞

)
+KP0

]
(0,Π)

(λ0−λ1)2kn .
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As in the case of even n we do an example before exploring the consequences of our
results. The theorems derived yield in the case n = 9 the following:

(3)
θ 162[φP0(P

3
1 P5

λ )+KP0 ](0,Π)

(λ0−λ )18 =
θ 162[φP0(P

2
1 P6

λ )+KP0 ](0,Π)

(λ0−λ1)18 ,

(2)
θ 162[φP0(P

2
1 P6

λ )+KP0 ](0,Π)

(λ0−λ )36 =
θ 162[φP0(P1P7

λ )+KP0 ](0,Π)

(λ0−λ1)36 ,

(1)
θ 162[φP0(P1P7

λ )+KP0 ](0,Π)

(λ0−λ )54 =
θ 162[φP0(P

8
λ )+KP0 ](0,Π)

(λ0−λ1)54 ,

(0)
θ 162[φP0(P

8
λ )+KP0 ](0,Π)

(λ0−λ )72 =
θ 162[φP0(P

8
1 )+KP0 ](0,Π)

(λ0−λ1)72 .

We now multiply (3) by 1
(λ0−λ )162 , (2) by 1

(λ0−λ1)18(λ0−λ )126 , (1) by 1
(λ0−λ1)54(λ0−λ )72 ,

and finally (0) by 1
(λ0−λ1)108 we get the following Thomae formulae:

θ 162[φP0(P
8
1 )+KP0 ](0,Π)

(λ0−λ1)180 =
θ 162[φP0(P

8
λ )+KP0 ](0,Π)

(λ0−λ1)108(λ0−λ )72

=
θ 162[φP0(P1P7

λ )+KP0 ](0,Π)

(λ0−λ1)54(λ0−λ )126

=
θ 162[φP0(P

2
1 P6

λ )+KP0 ](0,Π)

(λ0−λ1)18(λ0−λ )162

=
θ 162[φP0(P

3
1 Pλ )

5)+KP0 ](0,Π)

(λ0−λ )180 .

If we used the sequence gi(P) rather than fi(P) we would have obtained in place of
the above formula

θ 162[φP0(P
8
1 )+KP0 ](0,Π)

(λ0−λ1)180 =
θ 162[φP0(P

8
∞)+KP0 ](0,Π)

(λ0−λ1)108(λ1−λ )72

=
θ 162[φP0(P1P7

∞)+KP0 ](0,Π)

(λ0−λ1)54(λ1−λ )126

=
θ 162[φP0(P

2
1 P6

∞)+KP0 ](0,Π)

(λ0−λ1)18(λ1−λ )162

=
θ 162[φP0(P

3
1 P∞)

5)+KP0 ](0,Π)

(λ1−λ )180 .

One can make this same computation for any odd n and conclude (once again not
formally proved but rather evident) the following.



80 H.M. Farkas

Theorem 4.3. Let k+ l = n− 1 for k =−1,0, .., n−3
2 . Then

θ 2n2
[φP0(P

k
1 Pl

λ )+KP0 ](0,Π)

(λ0−λ1)
(n−2k−1)(n−2k−3)

4 n(λ0−λ ) n2−1
4 n− (n−2k−1)(n−2k−3)

4 n
= constant

θ 2n2
[φP0(P

k
1 Pl

∞)+KP0 ](0,Π)

(λ0−λ1)
(n−2k−1)(n−2k−3)

4 n(λ1−λ )
n2−1

4 n− (n−2k−1)(n−2k−3)
4 n

= constant

and of course the constants are equal since the first terms are.

5 Concluding Remarks

We have titled this note as a generalization of Hutchinson’s curve. It may also be
viewed as giving an extension or generalization of the “lambda” function of elliptic
function theory. The identities derived in the case n = 2 are

θ 8[φP0(P∞)+KP∞ ](0,Π)

(1−λ )2 =
θ 8[φP0(P1)+KP0 ](0,Π)

1
=

θ 8[φP0(Pλ )+KP0 ](0,Π)

λ 2 .

The above identity defines the square of the “lambda” function, and in fact gives
Jacobi’s famous formula as well. If we write the identity when n = 3 we obtain

θ 18[φP0(P
2
∞)+KP0 ](0,Π)

(1−λ )6 =
θ 18[φP0(P

2
1 )+KP0 ](0,Π)

1
=

θ 18[φP0(P
2
λ )+KP0 ](0,Π)

λ 6 .

Once again we have a definition of a “lambda” function to a power and once again
obtain an identity.

When n grows we get more terms in the basic proportionalities and get associated
powers of a “lambda” function. Inthese extensions though the characteristics of the
associate theta functions do not remain integral characteristics but rather become
rational characteristics. These give more identities and may shed some more light
on the celebrated Scottky relation.

6 Added in Proof

Some progress has been made since the presentation of this paper at the conference.
In particular we cite [E,F1] where the Thomae formulae have been derived for
nonsingular zn curves for all n ≥ 2 with at least 2n branch points. In addition we
cite the forthcoming book [F,Z] where among other things Thomae formulae have
been derived for a class of singular zn curves which include the curves discussed
here. The result we present here is however a bit stronger.



Generalizations of Hutchinson’s Curve and the Thomae Formulae 81

References

[B,R 1] Bershadsky, M. Radul, A. Conformal Field Theories with Additional Zn Symmetry,
Internat. J. Modern Phys. A 2, no. 1, pp. 165–178 (1987)

[B,R 2] Bershadsky, M. Radul, A. Fermionic Fields on zn Curves, Comm. Math. Physics 116, no.
4, pp. 689–700 (1988)

[E,F1] Ebin, D. Farkas H. Thomae Formulae for ZN Curves, Journal d’Analyse Mathématique
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On the Parity of the Rogers-Ramanujan
Coefficients

Basil Gordon

Abstract The parity of g(n) and h(n), the enumerators of restricted partitions of
n appearing in the Rogers-Ramanujan identities, is studied. The parity of g(n) for
odd n and that of h(n) for even n are completely determined. It is shown that these
numbers are almost always even.

Keywords Partitions • Congruences • Rogers-Ramanujan
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1 Introduction

The infinite products

G(x) =
∞

∏
k=1

1
(1− x5k−4)(1− x5k−1)

and

H(x) =
∞

∏
k=1

1
(1− x5k−3)(1− x5k−2)

converge absolutely for |x|< 1 and are holomorphic there. The Rogers-Ramanujan
identities assert that

G(x) =
∞

∑
n=0

xn2

(x)n
, (1)
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H(x) =
∞

∑
n=0

xn(n+1)

(x)n
, (2)

where (x)n = ∏n
k=1(1− xk).

Identity (1) can be interpreted combinatorially as saying that the partitions of
any positive integer n into parts ≡ ±1 (mod 5) are equinumerous with partitions
n = n1 + n2 + · · ·+ nr with minimal difference 2, i.e., satisfying ni ≥ ni+1 + 2 for
1≤ i < r. Identity (2) says that those partitions of n having parts ≡±2 (mod 5) are
equinumerous with partitions of minimal difference 2 with nr �= 1.

Proofs of all the above can be found in [1, pp. 104–113].
Let

G(x) =
∞

∑
n=0

g(n)xn

and

H(x) =
∞

∑
n=0

h(n)xn

be the Taylor series expansions of G(x) and H(x). If x = e2π iτ with Im(τ)> 0, then

x
−1
60 G(x) and x

11
60 H(x) are modular forms, and hence the same is true of

x−1G(x60) =
∞

∑
n=0

g(n)x60n−1

and

x11H(x60) =
∞

∑
n=0

h(n)x60n+11.

This helps explain why the congruences for g(n) and h(n) obtained here depend
on arithmetic properties of 60n− 1 and 60n+ 11, respectively.

2 The Parity of g(n) for n Odd

It is remarkable that this parity can be completely determined, in sharp contrast to
the problem of finding the parity of the unrestricted partition function p(n). The
result is as follows:

Theorem 1. Suppose n ≡ 1 (mod 2). Then g(n) ≡ 1 (mod 2) if and only if
60n−1= p4a+1m2, where p is a prime not dividing m.
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For example,

g(1) = 1 59 = prime (a = 0,m = 1)

g(3) = 1 179 = prime

g(5) = 2 299 = 13 ·23

g(7) = 3 419 = prime

Proof of Theorem 1. If

A(x) =
∞

∑
n=0

a(n)xn and B(x) =
∞

∑
n=0

b(n)xn

are power series with integer coefficients, we write A(x) ≡ B(x) (mod m) to mean
that a(n)≡ b(n) (mod m) for all n.

First of all,

G(x) =
∞

∏
k=1

1
(1− x5k−4)(1− x5k−1)

· (1− x5k−3)(1− x5k−2)(1− x5k)

(1− x5k−3)(1− x5k−2)(1− x5k)

=
∞

∏
k=1

(1− x5k−3)(1− x5k−2)(1− x5k)

1− xk .

Since

∞

∏
k=1

(1+ x5k−3)(1+ x5k−2)(1+ x5k−4)(1+ x5k−1)(1+ x5k)

1+ xk = 1,

we have

G(x) =
∞

∏
k=1

(1− x10k−6)(1− x10k−4)(1+ x5k−4)(1+ x5k−1)(1− x10k)

1− x2k
. (3)

The product of the last three factors in the numerator of (3) can be written as

∞

∏
k=1

(1+ x10k−6)(1+ x10k−4)(1+ x10k−9)(1+ x10k−1)(1− x10k).

Hence

G(x) =
∞

∏
k=1

(1− x20k−12)(1− x20k−8)(1− x10k)(1+ x10k−9)(1+ x10k−1)

1− x2k . (4)
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We now apply Jacobi’s triple product identity ([1, p.21])

∞

∏
k=1

(1−q2k)(1+q2k−1t)(1+ q2k−1t−1) =
∞

∑
r=−∞

qr2
tr (|q|< 1 , t �= 0) (5)

with q = x5, t = x−4 to obtain

∞

∏
k=1

(1− x10k)(1+ x10k−9)(1+ x10k−1) =
∞

∑
r=−∞

x5r2−4r. (6)

The exponent 5r2− 4r is even or odd according as r = 2s or r = 2s+ 1. Hence
the terms of (6) with odd exponent have sum

∞

∑
s=−∞

x5(2s+1)2−4(2s+1) = x
∞

∑
s=−∞

x20s2+12s.

By Jacobi’s identity applied in reverse, this is equal to

x
∞

∏
k=1

(1− x40k)(1+ x40k−32)(1+ x40k−8)

≡ x
∞

∏
k=1

(1− x20k)2(1− x20k−16)2(1− x20k−4)2 (mod 2).

Substituting this into (4), we obtain

∑
n odd

g(n)xn ≡ x
∞

∏
k=1

(1− x20k)(1− x20k−16)(1− x20k−4)(1− x4k)

1− x2k (mod 2).

Another application of Jacobi’s identity, with q = x10 and t = x6, shows that

∑
n odd

g(n)xn ≡ x
∞

∑
s=−∞

x10s2+6s
∞

∏
k=1

(1+ x2k) (mod 2)

≡ x
∞

∑
r=−∞

∞

∑
s=−∞

x3r2+r+10s2+6s (mod 2), (7)

using Euler’s identity for ∏∞
k=1(1− x2k).

Replacing x by x60 in (7) and then multiplying both sides by x−1, we obtain

∑
n odd

g(n)x60n−1 ≡ x59
∞

∑
r=−∞

∞

∑
s=−∞

x180r2+60r+600s2+360s (mod 2)

=
∞

∑
r=−∞

∞

∑
s=−∞

x5(6r+1)2+6(10s+3)2
.
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Now consider the quadratic form Q1(u,v) = 5u2 + 6v2. If Q1(u,v) = 60n− 1,
then u2 ≡ 1 (mod 6), so u =±(6r+ 1). Thus 5u2 ≡ 1 (mod 4), which implies that
v is odd. Since v2 ≡ 6v2 ≡−1 (mod 5), it follows that v≡±(10s+3). Therefore 1

4
of the solutions of 5u2 + 6v2 = 60n− 1 are of the form u = 6r+1, v = 10s+3. In
other words, if rQ(N) is the number of representations of N by the quadratic form
Q, then for n odd,

g(n)≡ 1
4

rQ1(60n− 1) (mod 2).

There are four primitive reduced quadratic forms of discriminant−120, namely,

Q1(u,v) = 5u2 + 6v2,

Q2(u,v) = 3u2 + 10v2,

Q3(u,v) = 2u2 + 15v2,

Q4(u,v) = u2 + 30v2.

The equations Q j(u,v) = 60n− 1 are impossible (mod 5) for j = 2 and 3, while
Q4(u,v) = 60n−1 is impossible (mod 3). Hence rQj (60n−1) = 0 for j > 1, so that
for n odd,

g(n)≡ 1
4

4

∑
j=1

rQj (60n− 1) (mod 2).

By the classical theory of quadratic forms,

4

∑
j=1

rQj (N) = 2 ∑
d|N

(−120
N

)
= 2 ∑

d|N

(−30
N

)
,

where
(

a
b

)
is the Kronecker symbol. Hence for n odd, we have

g(n)≡ 1
2 ∑

d|60n−1

(−30
d

)
(mod 2).

If the prime factorization of 60n− 1 is

60n− 1= pα1
1 pα2

2 · · · pαt
t ,

then the multiplicativity of the Kronecker symbol implies that

∑
d|60n−1

(−30
d

)
=

t

∏
i=1

∑
di|pαi

i

(−30
di

)
.

The inner sum is even or odd according as αi is odd or even. Therefore if at least
two of the αi are odd, we have g(n) ≡ 0(mod 2). Since 60n− 1 ≡ −1(mod 3), it
is not a square. Hence t− 1 of the exponents αi are even, and one of them is odd.
Thus for n odd, g(n)≡ 1(mod 2) implies that 60n−1 = pα m2, where p is a prime
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not dividing m, and α is odd. Let α = 2β +1 with β ≥ 0. Then p2β+1m2 = 60n−1=
120ν + 59 since n is odd. Since p and m are odd, we have p ≡ 3 (mod 8) and
p ≡ 2 (mod 3). Moreover, p ≡ ±1 (mod 5), so (−2

p ) = ( 3
p ) = ( 5

p) = 1. This yields

(−30
p ) = 1 and therefore

1
2 ∑

α |pα

(−30
d

)
=

1
2
(α +1).

This is odd if and only if α = 4a+ 1, and the proof is complete.

3 The Parity of h(n) for n Even

Theorem 2. Suppose n ≡ 0 (mod 2). Then h(n) ≡ 1 (mod 2) if and only if 60n+
11 = p4a+1m2, where p is a prime not dividing m.

For example,

h(0) = 1 11 = prime

h(2) = 1 131 = prime

h(4) = 1 251 = prime

h(6) = 2 371 = 7 ·53

Proof of Theorem 2. The proof resembles that of Theorem 1. We have

H(x) =
∞

∏
k=1

1
(1− x5k−3)(1− x5k−2)

· (1− x5k−4)(1− x5k−1)(1− x5k)

(1− x5k−4)(1− x5k−1)(1− x5k)

=
∞

∏
k=1

(1− x5k−4)(1− x5k−1)(1− x5k)

1− xk .

Since

∞

∏
k=1

(1+ x5k−4)(1+ x5k−1)(1+ x5k−3)(1+ x5k−2)(1+ x5k)

1+ xk = 1,

we have

H(x) =
∞

∏
k=1

(1− x10k−8)(1− x10k−2)(1+ x5k−3)(1+ x5k−2)(1− x10k)

1− x2k
. (8)
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The product of the last three factors in the numerator of (8) can be written as

∞

∏
k=1

(1+ x10k−8)(1+ x10k−2)(1+ x10k−7)(1+ x10k−3)(1− x10k).

Hence

H(x) =
∞

∏
k=1

(1− x20k−16)(1− x20k−4)(1+ x10k−7)(1+ x10k−3)(1− x10k)

1− x2k . (9)

By the Jacobi identity (5) with q = x5, t = x−2, we have

∞

∏
k=1

(1− x10k)(1+ x10k−7)(1+ x10k−3) =
∞

∑
r=−∞

x5r2−2r. (10)

The exponent 5r2− 2r is even or odd according as r = 2s or r = 2s+ 1. Hence
the terms of (10) with even exponent have sum

∞

∑
s=−∞

x5(2s)2−2(2s) = x
∞

∑
s=−∞

x20s2−4s.

By Jacobi’s identity in reverse, this is equal to

∞

∏
k=1

(1− x40k)(1+ x40k−24)(1+ x40k−16)

≡
∞

∏
k=1

(1− x20k)2(1− x20k−12)2(1− x20k−8)2 (mod 2).

Substituting this into (9) and using the fact that

∞

∏
k=1

(1− x20k)(1− x20k−16)(1− x20k−12)(1− x20k−8)(1− x20k−4) =
∞

∏
k=1

(1− x4k),

we obtain

∑
n even

h(n)xn ≡ x
∞

∏
k=1

(1− x20k)(1− x20k−12)(1− x20k−8)(1− x4k)

1− x2k
(mod 2).

By Jacobi’s identity applied to

∞

∏
k=1

(1− x20k)(1+ x20k−12)(1− x20k−8)
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and Euler’s identity applied to

∞

∏
k=1

1− x4k

1− x2k ≡
∞

∏
k=1

(1− x2k) (mod 2) ,

we have

∑
n even

h(n)xn ≡
∞

∑
r=−∞

∞

∑
r=−∞

x3r2+r+10s2+2s (mod 2). (11)

Replacing x by x60 in (11) and then multiplying both sides by x11, we obtain

∑
n even

h(n)x60n+11 ≡
∞

∑
r=−∞

∞

∑
s=−∞

x180r2+60r+600s2+120s+11 (mod 2)

=
∞

∑
r=−∞

∞

∑
s=−∞

x5(6r+1)2+6(10s+1)2
.

If Q1(u,v) = 5u2 + 6v2 = 60n+ 11, then u2 ≡ 1 (mod 6), so u = ±(6r + 1).
Thus 5u2 ≡ 1 (mod 4), so v is odd. Since v2 ≡ 6v2 ≡ 11 (mod 5), it follows that
v≡±(10s+1). Therefore 1

4 of the solutions of 5u2+6v2 = 60n+11 are of the form
u = 6r+ 1, v = 10s+ 1. The rest of the proof is identical with the corresponding
part of the proof of Theorem 1.

4 Linear Zero Congruences (mod 2) for g(n) and h(n)

Let c(n) be an integer-valued arithmetical function. A linear zero congruence (LZC)
for c(n) is one of the form

c(n)≡ 0 (mod m) for all n with an≡ b (mod M).

Familiar examples are the Ramanujan congruences

p(n)≡ 0 (mod m) when 24n≡ 1 (mod m),

where p(n) is the partition function and m = 5, 7, or 11. In this section we present
three examples of LZCs (mod 2) for g(n) and h(n) which follow from Theorems 1
and 2.

Example 1. Let the prime factorization of 60n− 1 be 60n−1 = pα1
1 pα2

2 · · · pαt
t . By

Theorem 1, if both n and g(n) are odd, then one of the αi is ≡ 1 (mod 4) and the
others are all even. Therefore if n is odd and αi≡ 3 (mod 4) for some i, then g(n)≡ 0
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(mod 2). This situation is achieved if n ≡1 (mod 2) and 60n− 1≡ cp3 (mod p4),
where p > 5 is a prime and c ≡/ 0 (mod p). The two conditions on n are equivalent
to a single congruence of the form an≡ b (mod 2p4).

Similarly, Theorem 2 implies that h(n)≡ 0 (mod 2) if n≡ 0 (mod 2) and 60n+
11≡ cp3 (mod p4), where p and c are as above.

Example 2. It follows from Theorem 1 that if n and g(n) are both odd, then 60n−
1 = pα1

1 pα2
2 · · · pαr

r , where exactly one αi is odd. Therefore if n≡ 1 (mod 2) and two
of the αi are odd, then g(n)≡ 0 (mod 2). This situation occurs if n≡ 1 (mod 2) and
60n− 1 ≡ c1 p (mod p2), 60n− 1 ≡ c2q (mod q2), where p �= q are primes > 5,
with c1 �≡ 0 (mod p) and c2 �≡ 0 (mod q).

Similarly, Theorem 2 implies that h(n)≡ 0 (mod 2) if n≡ 0 (mod 2) and 60n+
11≡ cpq (mod p2q2), where p, q, c are as above.

Example 3. It follows from Theorem 1 that if n and g(n) are both odd, then 60n−
1 = p4a+1m2, where p is prime. Let p > 5 be a prime with p �≡ 3 (mod 8), and
suppose that n ≡ 1 (mod 2) and 60n− 1≡ cp (mod p2) with c �≡ 0 (mod p). Then
p ‖ 60n−1, and since n is odd, we have 60n−1≡ 3 (mod 8). Since p �≡ 3 (mod 8), it
follows that 60n−1

p �≡ 1 (mod 8), and therefore 60n−1
p is not a square. Hence g(n)≡ 0

(mod 2).

Alternatively, p can be chosen with
( p

3

)
= 1 or with

(
5
p

)
=−1.

The same reasoning, using Theorem 2, shows that if n ≡ 0 (mod 2) and n ≡
cp (mod p2) with p and c as above, then h(n)≡ 0 (mod 2).

5 Arithmetic Densities

Theorem 3. Let γ(N) be the number of odd integers n with 1≤ n≤N and g(n)≡ 1
(mod 2), and let δ (N) be the number of even n with 0≤ n≤N and h(n)≡ 1 (mod 2).
Then there are positive constants A and B such that

A
N

logN
< γ(N), δ (N) < B

N
logN

for sufficiently large N.

Proof of Theorem 3. By Theorem 1, g(n) ≡ 1 (mod 2) if 60n− 1 is prime. By
Chebychev’s inequality for primes in an arithmetic progression, the number of such
primes ≤ 60N−1 exceeds

A
60N− 1

log(60N− 1)
>

AN
logN
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for some positive constant A and all large enough N. This implies in particular that
γ(N)> AN

logN for large enough N. The proof for δ (N) is similar.

We now obtain the upper bound γ(N) < B N
logN for large N; a bound of the form

δ (N)< B N
logN for large N can be similarly obtained.

Put T = 60N− 1 and define

R = {n≤ N | 60n− 1 = rm2, r prime}
Sα = {n≤ N | 60n− 1 = sα m2 }.

Here s is not required to be prime; r and s may divide m. Since the exponent
4a+1= α in Theorem 1 is either 1 or ≥ 5, the theorem gives the estimate

γ(N)≤ |R|+ ∑
α≥5

2α ≤T

|Sα | .

If π(x) is the number of primes≤ x, we have

γ(N)≤ ∑
m≥1

π
(

T
m2

)
+

� logT
log2 �
∑

α =5
∑

m2≤T

(
T
m2

) 1
α
. (12)

Now

m−β <

∫ m

m−1
x−β dx for m≥ 2 and β > 0, so

∑
1≤m2≤T

m−β < 1 +
∫ T

1
2

1
x−β dx = 1+

x1−β

1−β

∣
∣
∣∣

T
1
2

1
= 1 +

T (1−β )/2

1−β
− 1

1−β
.

Hence

∑
m2≤T

(
T
m2

) 1
α
≤ T

1
α

(

1 +
T

1−2/α
2

1− 2
α
− 1

1− 2
α

)

.

Next,

1− 1

1− 2
α

= 1− α
α− 2

< 0 and

1

1− 2
α

=
α

α− 2
< 2 for α ≥5, so

∑
m2≤T

(
T
m2

) 1
α

< T
1
α ·2T ( 1

2− 1
α ) = 2T

1
2 .
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Therefore the second term of (12) satisfies

� logT
log2 �
∑

α =5
∑

m2≤T

(
T
m2

) 1
α

= O(T
1
2 logT ) as T −→ ∞. (13)

To estimate the other term ∑m≥1 π
(

T
m2

)
in (12) we make use of Chebychev’s

inequality for π(x). First take T ≥ 4, so that T
1
2 ≤ 1

2 . There is a positive constant C
so that

π
(

T
m2

)
< C

(
T
m2

)/
log

(
T
m2

)
<

2C
m2 ·

T
logT

for 1 ≤ m ≤ T
1
4 . Since π(x) < x for all x > 0, we have

∑
m≥1

π
(

T
m2

)
<

2CT
logT ∑

m≥T
1
4

m−2 + T ∑
T

1
4 <m<( T

2 )
1
2

m−2

= O

(
T

logT

)
+ T ·O(T−

1
4 ). (14)

Substituting (13) and (14) into (12), we find that

γ(N) = O(T
1
2 logT ) + O

(
T

logT

)
+ O(T

3
4 )

= O

(
T

logT

)
= O

(
N

logN

)
,

since T = 60N−1. This completes the proof.
Theorem 3 immediately implies the following.

Theorem 4. In the sense of arithmetic density,

(i) g(n) is almost always even for odd n
(ii) h(n) is almost always even for even n

(iii) g(n)h(n) is almost always even
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1 Introduction

We begin with the partition generating function P(q) = (q)−1
∞ , where as usual

(q)0 = 1 , (q)n =
n

∏
m=1

(1− qm), and (q)∞ =
∞

∏
m=1

(1−qm) , |q|< 1.

More generally, we put

(a ;qk)0 = 1 , (a ;qk)n =
n−1

∏
m=0

(1− aqmk), and (a ;qk)∞ =
∞

∏
m=0

(1−aqmk),

so that (q)n = (q ;q)n and (q)∞ = (q ;q)∞. We have

(a ;qk)n =
(a ;qk)∞

(aqnk;qk)∞

for n≥ 0, and for other real n, we take this as the definition of (a ;qk)n.
P(q) satisfies the Euler and Durfee identities

P(q) =
∞

∑
n=0

qn

(q)n
=

∞

∑
n=0

qn2

(q)2
n
. (1.1)

These express P(q) in what S. Ramanujan, in his last letter to Hardy [R1, 354–355],
[R2, 127–131], [W1, 56–61], called transformed Eulerian form. Other examples are
provided by the Rogers-Ramanujan identities

G(q) =
∞

∏
m=1

1
(1− q5m−4)(1− q5m−1)

=
∞

∑
n=0

qn2

(q)n
,

H(q) =
∞

∏
m=1

1
(1− q5m−3)(1− q5m−2)

=
∞

∑
n=0

qn(n+1)

(q)n
.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.2)

In his letter, Ramanujan remarked that as q tends radially to exponential singularities
at roots of unity, the functions P(q) and G(q) have asymptotic approximations
involving “closed exponential factors.” To describe these approximations, he intro-
duced a complex variable α with Re(α)> 0 and put q = e−α . Then, for example, if
α is real and α → 0+, we have

P(q) =

√
α
2π

exp

(
π2

6α
− α

24

)
+o(1),

G(q) =

√
2

5−√5
exp

(
π2

15α
− α

60

)
+o(1),

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(1.3)
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with similar approximations near exponential singularities at other roots of unity.
Ramanujan noted that for other q-series in Eulerian form, approximations analogous
to (1.3) may or may not exist. He stated that if

F(q) =
∞

∑
n=0

q
1
2 n(n+1)

(q)2
n

and q = e−α with α → 0+, then for each positive integer p we have

F(q) =
√

α
2π
√

5
exp

(
π2

5α
+

α
8
√

5
+ c2α2 + · · ·+ cpα p +O

(
α p+1)

)
(1.4)

with infinitely many c j �= 0. Ramanujan said that in this case “the exponential factor
does not close,” but an actual proof has not yet been found. An example of a q-series
in Eulerian form having an approximation with an unclosed exponential factor is
given by

∞

∑
n=0

q
1
2 n(n−1)+rn

(q)n
=

∞

∏
m=0

(1−qm+r),

where 0 < r < 1, r �= 1
2 . (To obtain a function holomorphic for |q| < 1, take r = a

b
rational and replace q by qb.) A proof is given in [M4].

At this point we need to clarify what Ramanujan meant by a θ -function. For this
purpose, we recall the definition of the Jacobi triple product

j(x,q) = (x ;q)∞
(
x−1q ;q

)
∞ (q ;q)∞ (1.5)

and the identity

j(x,q) =
∞

∑
n=−∞

(−1)nq
1
2 n(n−1)xn.

Following Hickerson [Hi1], we define a θ -product to be an expression of the form

Cqex f1
1 · · · x fr

r Lg1
1 · · ·Lgs

s ,

where C is a complex number, e, fi, g j are integers, and each Lj has the form

j(Dqhxk1
1 · · · xkr

r ,±qm)

for some complex number D (usually D = ±1) and integers h, ki, m with m ≥ 1.
A θ -function is a finite sum of θ -products. Thus (q)∞ = j(q,q3) is a θ -function,

even though it lacks the factor q
1
24 needed to make it a modular form.

In this survey, θ -functions are typically denoted by T (x1,x2, . . . ,xr,q), or simply
by T (q) if r = 0.
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Every θ -function with an exponential singularity at a root of unity ζ has an
asymptotic approximation under radial approach to ζ consisting of one or more
terms like (1.3), each with c j = 0 for all j ≥ 2, and where o(1) may be O(1).
As an example of an approximation with more than one term, Ramanujan gave
(q)−120

∞ . A simpler example is provided by (q)−48
∞ . By the functional equation of the

Dedekind η-function (see for example [Ap, 48]), we have

q
1
24 (q)∞ =

√
2π
α

q
1
6
1 (q

4
1;q4

1)∞ ,

where q = e−α and q1 = e−
π2
α . Hence as α → 0+,

(q)−48
∞ = q2[q

1
24 (q)∞]

−48

= q2

[√
2π
α

q
1
6
1 (q

4
1;q4

1)∞

]−48

=
α24

(2π)24 q2q−8
1 [1− q4

1+O(q8
1)]
−48

=
α24

(2π)24 q2q−8
1 [1+ 48q4

1+O(q8
1)]

=
α24

(2π)24 q2q−8
1 +

48α24

(2π)24 q2q−4
1 + o(1)

=
α24

(2π)24 exp

(
8π2

α
− 2α

)
+

48α24

(2π)24 exp

(
4π2

α
−2α

)
+o(1).

A mock θ -function is a function M(q), holomorphic for |q|< 1, such that

(i) M(q) has infinitely many exponential singularities at roots of unity
(ii) Under radial approach to every such singularity, M(q) has an approximation

consisting of a finite sum of terms with closed exponential factors, and an error
term O(1)

(iii) There is no θ -function T (q) which differs from M(q) by a “trivial function”,
i.e., a function bounded under radial approach to every root of unity

If L(q) satisfies (i)–(iii) and has an expansion

L(q) =
∞

∑
n=0

anq
n
c ,

convergent for |q| < 1, where c is a positive integer, then M(q) = L(qc) is a
mock θ -function. Such a function L(q) will be called a mock theta function in the
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wide sense. The theory of such functions is not incorporated in this survey; their
transformation laws are found in [BO2] and [BOR]. In this survey, we do not require
M(q) to be an Eulerian q-series.

In his letter, Ramanujan next introduced the function

f (q) =
∞

∑
n=0

qn2

(−q ;q)2
n

(1.6)

and the θ -function

T (q) =
(q)3

∞
(q2;q2)2

∞
.

He stated that if ζ is a primitive νth root of unity and q→ ζ radially, then

f (q) =

⎧
⎪⎪⎨

⎪⎪⎩

O(1), ν odd ,

−T (q)+O(1), ν ≡ 2 (mod 4) ,

T (q)+O(1), ν ≡ 0 (mod 4).

Thus M(q) = f (q) satisfies:

(iv) At each root of unity ζ , there is a θ -function Tζ (q) such that M(q) = Tζ (q)+
O(1) as q→ ζ radially

This implies (ii). We call (iv) the strong approximation property. Andrews and
Hickerson [AH] actually take (i), (iii), and (iv) as the definition of a mock
θ -function. Such functions will be called strong mock θ -functions.

Ramanujan wrote “it is inconceivable that a single θ -function could be found
to cut out the singularities of f (q).” Thus he suggested that f (q) satisfies property
(iii) and is therefore a strong mock θ -function. This remains an open conjecture.
Henceforth when we speak of mock θ -functions, it is with the understanding that
they have not yet been shown to possess property (iii).

From now on we will use the abbreviations θ f and mf for θ -functions and mock
θ -functions, respectively. The notation mfn stands for an mf of order n.

Ramanujan listed 17 mfs to which he assigned orders 3, 5, and 7. (The order is
somewhat analogous to the level of a modular form.) Watson [W1] found three fur-
ther mf3s, and in constructing transformation laws for them, Gordon and McIntosh
[GM2, 204] found two more. Still other mfs, to which orders 2, 6, 8, and 10 have
been assigned, are discussed in [A2], [M3], [Hk2], [AH], [BC], [M8], [GM1], and
[C1]–[C4].

The work described above belongs to the era that we have chosen to call
“classical.” Our aim has been to provide a comprehensive description of the
results achieved by classical means. Detailed calculations have been avoided where
possible.

Around the year 2000 the theory of mock θ -functions took a new turn with the
work of Zagier [Za1], Zwegers [Zw1]–[Zw3], Bringmann–Ono [BO1]–[BO4], and
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others, who found important connections with Maass forms (Sect. 9 provides more
details). These developments are described in a forthcoming paper by Ono [On].

2 The Watson–Selberg Era

The above title was first used by Andrews [A4] in discussing the groundbreaking
work on mfs done in the 1930s. This work dealt with the 17 functions of orders 3,
5, and 7 defined in Ramanujan’s letter. They are the following:

Order 3

f (q) =
∞

∑
n=0

qn2

(−q ;q)2
n
, φ(q) =

∞

∑
n=0

qn2

(−q2;q2)n
,

ψ(q) =
∞

∑
n=1

qn2

(q ;q2)n
, χ(q) =

∞

∑
n=0

qn2
(−q ;q)n

(−q3;q3)n
,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(2.1)

Order 5

f0(q) =
∞

∑
n=0

qn2

(−q ;q)n
, f1(q) =

∞

∑
n=0

qn(n+1)

(−q ;q)n
,

F0(q) =
∞

∑
n=0

q2n2

(q ;q2)n
, F1(q) =

∞

∑
n=0

q2n(n+1)

(q ;q2)n+1
,

φ0(q) =
∞

∑
n=0

qn2
(−q ;q2)n, φ1(q) =

∞

∑
n=0

q(n+1)2
(−q ;q2)n,

ψ0(q) =
∞

∑
n=0

q
1
2 (n+1)(n+2)(−q;q)n, ψ1(q) =

∞

∑
n=0

q
1
2 n(n+1)(−q ;q)n,

χ0(q) =
∞

∑
n=0

qn

(qn+1;q)n
, χ1(q) =

∞

∑
n=0

qn

(qn+1;q)n+1
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.2)

Order 7

F0(q) =
∞

∑
n=0

qn2

(qn+1;q)n
, F1(q) =

∞

∑
n=0

q(n+1)2

(qn+1;q)n+1
, F2(q)=

∞

∑
n=0

qn(n+1)

(qn+1;q)n+1
.

(2.3)

Watson wrote two papers [W1] and [W2] dealing with (2.1) and (2.2), respec-
tively, while Selberg [Se1], [Se2] dealt with (2.3). In [W1], Watson showed that
Ramanujan’s functions (2.1), together with the three further ones

ω(q) =
∞

∑
n=0

q2n(n+1)

(q ;q2)2
n+1

, υ(q) =
∞

∑
n=0

qn(n+1)

(−q ;q2)n+1
, ρ(q) =

∞

∑
n=0

q2n(n+1)(q ;q2)n+1

(q3;q6)n+1
,

(2.4)
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have the strong property (iv). This was accomplished by obtaining modular
transformation laws for all but χ(q) and ρ(q). The laws for χ(q) and ρ(q), proved
in [GM2, 204], involve two more mf3s:

ξ (q) = 1+2
∞

∑
n=1

q6n(n−1)

(q ;q6)n(q5;q6)n
, σ(q) =

∞

∑
n=1

q3n(n−1)

(−q ;q3)n(−q2;q3)n
. (2.5)

A detailed account of transformation theory and a list of the transformation laws for
the mf3s are given in Sect. 4.

Watson also proved a number of linear relations connecting the functions (2.1),
such as

4χ(q)− f (q) = 3θ 2
4 (0,q

3)(q)−1
∞ , (2.6)

where

θ4(0,q) =
∞

∑
n=−∞

(−1)nqn2
= j(q,q2) =

(q)2
∞

(q2;q2)∞
= (q)∞(q ;q2)∞ . (2.7)

In [W2], Watson went on to consider the ten 5th order functions (2.2). He was
unable to obtain transformation laws for these, so proceeded differently. He first
proved a number of linear relations stated by Ramanujan:

φ0(−q)+ χ0(q) = 2F0(q),

f0(−q)+ 2F0(q2)− 2 = φ0(−q2)+ψ0(−q)

= 2φ0(−q2)− f0(q)

= θ4(0,q)G(q),

ψ0(q)−F0(q2)+ 1 = qψ(q2)H(q4),

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

, (2.8)

where ψ(q) is the Gauss function

ψ(q) =
∞

∑
n=0

q
1
2 n(n+1) =

1
2

j(−q,q) = j(−q,q4) =

(
q2;q2

)2
∞

(q)∞
=

(
q2;q2

)
∞

(q ;q2)∞
. (2.9)

Watson also found and proved similar relations connecting f1(q), φ1(q), ψ1(q),
F1(q), χ1(q), not stated by Ramanujan. Each relation has three terms, one of which
is a θ f, while the other two are of the form cqrμ(±qk), with functions μ(q)
appearing in (2.2). Next Watson determined, directly from their definitions, which of
the functions (2.2) are bounded under radial approach to certain roots of unity. Using
the linear relations he then obtained strong approximations for all the functions (2.2)
with singularities at these and other roots of unity.

A striking consequence of (2.8) and other identities found by Watson is that the
bilateral sums associated with some mf5s are actually θ fs. For example, the bilateral
analogue of

f0(q) =
∞

∑
n=0

qn2

(−q ;q)n



102 B. Gordon and R.J. McIntosh

is
∞

∑
n=−∞

qn2

(−q ;q)n
=

∞

∑
n=0

qn2

(−q ;q)n
+

∞

∑
n=1

qn2

(−q ;q)−n
= f0(q)+ 2ψ0(q) ,

and this turns out to be the θ f

1
2
[θ3(0,q)G(−q)+θ4(0,q)G(q)]+ 3qψ

(
q2)H

(
q4) .

Here

θ3(0,q) =
∞

∑
n=−∞

qn2
= j
(−q,q2)=

(−q ;q2)2
∞
(
q2;q2)

∞ , (2.10)

and ψ(q) is the Gauss function. The bilateral analogues of F0(q) and F1(q) are

∞

∑
n=−∞

q2n2

(q ;q2)n
=

∞

∑
n=0

q2n2

(q ;q2)n
+

∞

∑
n=1

q2n2

(q ;q2)−n
= F0(q)+φ0(−q)−1

and

∞

∑
n=−∞

q2n(n+1)

(q ;q2)n+1
=

∞

∑
n=0

q2n(n+1)

(q ;q2)n+1
+

∞

∑
n=1

q2n(n−1)

(q ;q2)−n+1
= F1(q)− φ1(−q)

q
,

respectively. Using his identities, Watson [W2, 290] proved that

F0
(
q2
)
+φ0

(−q2
)− 1 =

1
2
[θ3(0,q)G(−q)+θ4(0,q)G(q)] ,

q2F1
(
q2
)−φ1

(−q2
)
=

1
2

q [θ3(0,q)H(−q)−θ4(0,q)H(q)] .

⎫
⎪⎪⎬

⎪⎪⎭
(2.11)

(A misprint in the second identity of (2.11) has been corrected here.) Further
relations between bilateral hypergeometric sums and mfs are found in [C5].

Finally, Watson related the mf5s to the Lerch sums studied in [L1], [L2].
In [Se2], Selberg proved that Ramanujan’s functions (2.3) are strong mfs. The

transformation theory was not yet available, and in contrast to orders 3 and 5, there
are no known linear relations between the Fi. Thus a new approach was required.
To deal with F0, for example, Selberg obtained an identity of the form

F0(q) =A(q)+B(q)φ(q)+C(q), (2.12)

where A(q) and B(q) are θ fs, and φ(q) is the 3rd order function listed in (2.1).
He then proved that C(q) is bounded under radial approach to every root of
unity ζ . Since φ(q) can be strongly approximated at ζ , (2.12) provides the required
approximation to F0(q) there. Similar identities forF1(q) andF2(q) show that they
are also strong mfs.
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3 The Andrews–Hickerson Era

The next major advances were made starting in the 1950s. As noted above, Watson’s
paper [W1] showed that the mf3s (2.1), (2.4) could be strongly approximated by
θ fs at every root of unity. This raised the possibility of applying the circle method
to obtain convergent or asymptotic series expansions for the Taylor coefficients of
these mfs. Such an asymptotic expansion for the partition function p(n), whose
generating function

∞

∑
n=0

p(n)qn = (q)−1
∞

is a θ f, had been found earlier by Hardy and Ramanujan [R1]. Subsequently,
Rademacher [Rd] improved their result by obtaining a convergent series expansion
of p(n). Work on mf3s was begun by Dragonette [D], who selected the function

f (q) =
∞

∑
n=0

a(n)qn

of (2.1) for detailed study. Watson’s paper [W1] gave only the transformation laws
for f (q) under the generators τ �→ τ+1 and τ �→ −1/τ of the modular group Γ(1) =
PSL2(Z) (where q = eπ iτ ), and Dragonette first needed to determine laws under all
the transformations τ �→ aτ+b

cτ+d of Γ(1). After doing so, she used Cauchy’s formula

a(n) =
1

2π i

∫

C

f (q)
qn+1 dq ,

taking for C the circle |q| = e−
π
n . The next step was to divide C into Farey arcs of

order N = �n 1
2 	. With the aid of the transformation laws, in each arc, f (q) was

replaced by another mf3 plus an “error term” (a Mordell integral [Mo]; a more
detailed account of these integrals is given in Sect. 4). This error term was then

estimated. Evaluation of the resulting integrals over the arcs with centers e−
π
n +i πh

k

(k fixed) lead to an exponential sum λ (k) = λ (k,n) involving some unevaluated
roots of unity �h,k. The final result was the expansion

a(n) =
�n 1

2 	
∑
k=1

λ (k)exp
(
π(n− 1

24)
1
2 /k
√

6
)

k
1
2 (n− 1

24 )
1
2

+O(n
1
2 logn) . (3.1)

In [A1], Andrews made a substantial improvement in evaluating both the “error
terms” and �h,k. This enabled him to express λ (k) in terms of the exponential
sum Ak(n) appearing in the Hardy-Ramanujan series for p(n) [R1, 284–285].
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The improved result is that for every � > 0, the term O(n
1
2 logn) in (3.1) can be

replaced by O(n�), and that

λ (k) =

⎧
⎪⎨

⎪⎩

1
2
(−1)

1
2 (k+1)A2k(n) , k odd,

1
2
(−1)

1
2 kA2k

(
n− 1

2
k
)
, k even.

Andrews conjectured that if expx is replaced by 2sinhx in (3.1), and the resulting
series is extended to infinity, it converges to a(n). This was later proved by
Bringmann and Ono [BO1]. They went on [BO3] to obtain convergent series for
the coefficients of all harmonic weak Maass forms of weight ≤ 1

2 . Here the circle
method was replaced by considering the principal parts of the Fourier expansions of
these forms at all cusps.

In 1976 Andrews discovered, in the mathematics library of Trinity College,
Cambridge, a notebook written by Ramanujan toward the end of his life. This
important work has come to be known as the Lost Notebook [R2]. In it, Ramanujan
defined further mfs and stated linear relations between them. We will discuss this in
Sect. 5, dealing with mfs of even order.

The Lost Notebook also lists ten identities satisfied by the mf5s (2.2), which have
come to be known as the Mock Theta Conjectures. Each of them involves an mf5, a
θ f, and the function

g3(x,q) =
∞

∑
n=0

qn(n+1)

(x ;q)n+1(x−1q ;q)n+1
. (3.2)

For later reference we remark that this series converges absolutely if |q|< 1 and
x is neither 0 nor an integral power of q. The Watson-Whipple transformation of
basic hypergeometric series [GR, 242, (III.17)] (see also [GM2, 196–198]) can be
applied to show that

(q)∞g3(x,q) =
∞

∑
n=−∞

(−1)nq
3
2 n(n+1)

1− xqn . (3.3)

The Mock Theta Conjectures are

f0(q) = −2q2g3(q2,q10)+θ4(0,q5)G(q) ,

F0(q)− 1 = qg3(q,q5)− qψ(q5)H(q2) ,

φ0(−q) = −qg3(q,q5)+ j(−q2,q5)G(q2) ,

ψ0(q) = q2g3(q2,q10)+ q j(q,q10)H(q) ,

χ0(q)− 2 = 3qg3(q,q5)− j(q2,q5)G(q)2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(3.4)
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f1(q) = −2q3g3(q4,q10)+θ4(0,q5)H(q) ,

F1(q) = qg3(q2,q5)+ψ(q5)G(q2) ,

φ1(−q) = q2g3(q2,q5)− q j(−q,q5)H(q2) ,

ψ1(q) = q3g3(q4,q10)+ j(q3,q10)G(q) ,

χ1(q) = 3qg3(q2,q5)+ j(q,q5)H(q)2,

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

, (3.5)

where G(q), H(q), θ4(0,q), and ψ(q) are the functions defined in (1.2), (2.7),
and (2.9). These identities were proved by Hickerson [Hi1]. Before describing his
groundbreaking work, we mention that it opened the floodgates to the discovery
and proof of analogous identities involving other mfs. For convenience, we will
nonetheless refer to these in the sequel as mock theta “conjectures.”

The first step in proving (3.4) and (3.5) was taken by Andrews and Garvan [AG],
who showed that the identities (3.4) are all equivalent, as are all of (3.5). This
reduced the problem to proving the identities for f0(q) and f1(q).

In [He], Hecke obtained identities of the form

T (q) =
∞

∑
m,n=−∞
Q(m,n)≥0

qQ(m,n)+L(m,n) , (3.6)

where T (q) is a θ f, Q(m,n) is an indefinite quadratic form, and L(m,n) is a
linear form. In studying characters of affine Lie algebras, Kac and Peterson [KP]
found more such identities. These involve q-series related to modular forms. Later,
Kac and Wakimoto [KW1], [KW2], [Wm] extended this investigation to Lie
superalgebras. They encountered q-series which they thought might be similarly
related. It was shown by Bringmann and Ono [BO4] that these series are in fact the
holomorphic parts of nonholomorphic Maass forms of weight k = 0. (For definitions
see Sect. 9.)

In [A3], Andrews generalized identities like (3.6) to one of the form

T (z,q) =
∞

∑
m,n=−∞
Q(m,n)≥0

(−1)cm,nqQ(m,n)+L(m,n)zn ,

and in [A5] he applied his theory of Bailey chains to produce such identities for
Ramanujan’s mf5s and mf7s. In particular,

(q)∞ f0(q) =
∞

∑
m,n=−∞
|m|≤n

(−1)mq
1
2 n(5n+1)−m2

(1−q4n+2) ,

(q)∞ f1(q) =
∞

∑
m,n=−∞
|m|≤n

(−1)mq
1
2 n(5n+3)−m2

(1−q2n+1).

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(3.7)
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In [A7], Andrews showed that such identities could be used to express the
mf5s fν (q), Fν(q), φν (q), and ψν(q) of (2.2) as constant terms in the z-Laurent
expansions of θ fs T (z,q). In particular, if

Θ(z,q) = (z ;q)∞(z
−1q ;q)∞ , (3.8)

then

f0(q) = coefficient of z0 in
(q3;q3)∞(q5;q5)2

∞Θ(−zq4,q3)Θ(z,q5)Θ(q4,q5)

Θ(−z−1q2,q5)Θ(−zq2,q5)Θ(−q2,q5)
,

(3.9)

and

f1(q) = coefficient of z0 in
−q(q3;q3)∞(q5;q5)2

∞Θ(−zq4,q3)Θ(z,q5)Θ(q2,q5)

(q)∞Θ(−z−1q,q5)Θ(−zq,q5)Θ(−q,q5)
.

(3.10)

The stage was now set for Hickerson [Hi1] to prove the Mock Theta Conjectures
for f0(q) and f1(q). This is one of the fundamental results of the theory of mfs,
and the proof is a tour de force. In this survey we will have to be content with
highlighting some of the key steps.

(i) First of all, using (3.3), it is shown that g3(x,q) is the coefficient of z0 in the
z-Laurent expansion of

A(x,z,q) =
(q)3

∞ j(xz,q) j(z,q3)

j(x,q) j(z,q)
.

(ii) Next, the auxiliary functions

L(z) =
∞

∑
r=−∞

(−1)rq
3
2 r(r+1)z3r+1zr+1

1− q3r+1z

and

M(z) =
∞

∑
r=−∞

(−1)rq
3
2 r(r+3)z−3r−1z−r−1

1− q3r+1z−1

are introduced, and the identity

A(z,x,q) = j(x3z,q3)g3(x,q)−L(z)−M(z)

is established.
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(iii) The next step is to define the function

B(z,q) =
z2
(
q2;q2

)
∞ j (−z,q) j

(
z,q3

)

j (z,q2)

and prove that

B(z,q) = q f0(q)
[
z j(q6z5,q30)+ z4 j

(
q24z5,q30

)]
+ f1(q)

[
z2 j
(

q12z5,q30
)

+ z3 j
(

q18z5,q30
)]

+L∗(z,q)+M∗(z,q),

where

L∗(z,q) = 2
∞

∑
r=−∞

(−1)rq15r2+15r+3z5r+5zr+1

1−q6r+2z

an

M∗(z,q) = 2
∞

∑
r=−∞

(−1)rq15r2+15r+3z−5rzr+1

1− q6r+2z−1 .

An important role in proving the above identities is played by [AS, Lemma 2].
(iv) Finally, a careful study is made of the function B(z,q) and its z-Laurent

expansion to establish the Mock Theta Conjectures for f0(q) and f1(q).

Key ingredients of the proof are the identities (3.7) and the technique for deriving
(3.9) and (3.10) from them.

Folsom [F1] gave a proof of the Mock Theta Conjectures using Maass forms.
Hickerson [Hi2] went on to formulate and prove analogous identities for the

mf7s. These are

F0(q)− 2 = 2qg3(q,q7)− j(q3,q7)2(q)−1
∞ ,

F1(q) = 2q2g3(q2,q7)+ q j(q,q7)2(q)−1
∞ ,

F2(q) = 2q2g3(q3,q7)+ j(q2,q7)2(q)−1
∞ .

⎫
⎪⎪⎬

⎪⎪⎭
(3.11)

In view of (3.4), (3.5), and (3.11), it is natural to ask if there are analogous
expressions for the mf3s κ(q) listed in (2.1), (2.4), and (2.5). It turns out [GM4] that
for each of them, either κ(q) or κ(−q) has the form Aqcg3(qa,qb)+T (q), where a,
b, c are nonnegative integers and T (q) is a θ f. More precisely,
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f (−q) = −4qg3
(
q,q4

)
+

(
q2;q2

)7
∞

(q)3
∞ (q4;q4)3

∞
,

φ(q) = −2qg3
(
q,q4

)
+

(
q2;q2

)7
∞

(q)3
∞ (q4;q4)3

∞
,

ψ(q) = qg3
(
q,q4

)
,

χ(−q) = −qg3
(
q,q4

)
+

(
q4;q4

)3
∞
(
q6;q6

)3
∞

(q2;q2)
2
∞ (q3;q3)∞ (q12;q12)

2
∞
,

ω(q) = g3
(
q,q2

)
,

υ(q) = −qg3
(
q2,q4

)
+

(
q4;q4

)3
∞

(q2;q2)
2
∞
,

ρ(q) = −g3
(
q,q2

)

2
+

3
(
q6;q6

)4
∞

2(q2;q2)∞ (q3;q3)2
∞
,

ξ (q) = 1+ 2qg3
(
q,q6

)

= q2g3
(
q3,q6

)
+

(
q2;q2

)4
∞

(q)2
∞ (q6;q6)∞

,

σ(−q) = q2g3
(
q3,q12

)
+

(
q2;q2

)3
∞
(
q12;q12

)3
∞

(q)∞ (q4;q4)
2
∞ (q6;q6)

2
∞
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.12)

These identities can be viewed as 3rd order mock theta “conjectures.”

4 Transformation Theory

In discussing the approximation of mfs near roots of unity, we have adhered to the
notation q = e−α , employed by Ramanujan and his early successors. This maps the
right half-plane Re(α) > 0 onto the punctured disc 0 < |q| < 1. In the classical
theory of θ fs, as expounded for example in [TM] and [WW], it is customary to
write instead q = eπ iτ with Im(τ) > 0. Thus α = −π iτ . Starting around 1950,
it became increasingly common to write instead q = e2π iτ . We have retained the
original notation because it is more appropriate when discussing θ fs. The reader
should have little difficulty with this, since we are primarily using Ramanujan’s α
and β . In Sect. 9 we will use the more modern notation q = e2π iτ .
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The variable τ is subjected to the transformations

τ �→ Aτ =
aτ + b
cτ + d

,

where a, b, c, d are integers with ad − bc = 1. These transformations form the
modular group Γ(1); it is generated by

T τ = τ + 1, Sτ =−1/τ = τ1 .

These generators map q = eπ iτ to −q and to q1 = eπ iτ1 = e−π i/τ , respectively.
Equivalently, q1 = e−β , where αβ = π2.

In connection with θ fs and mfs, it is appropriate to consider the subgroup

Γθ =

{(
a b
c d

)
∈ Γ(1) : b≡ c(mod 2)

}
.

This subgroup is generated by S and T 2. Under the action of Γθ , the functions f (q)
and f (−q) are inequivalent. Therefore to construct a complete transformation theory
it is necessary to obtain the transforms of f (q) and f (−q) under S.

When a function F(q) is being considered as a function of τ , it is customary to
denote it by F(τ). The transformation laws for an mf M(τ) express M(Aτ) (where
A ∈ Γ(1)) in terms of another mf M∗(τ) and a Mordell integral. In this survey the
term Mordell integral is extended to include linear combinations of the original

integrals
∫ ∞
−∞

eax2+bx

ecx+d dx and of those arising from them by changes of variable. Since
Watson’s fundamental paper [W1], it has become standard to write two laws for
each M(q). One of these expresses M(q) in terms of M∗(±qr

1) (where r is a rational
number) and a Mordell integral; the other does the same for M(−q). For example,
the transformation laws for the mf3 f (q) in (2.1) are given by

q−
1

24 f (q) =

√
8π
α

q
4
3
1 ω(q2

1)+

√
24α

π

∫ ∞

0
e−

3
2 αx2 sinhαx

sinh 3
2 αx

dx ,

q−
1

24 f (−q) = −
√

π
α

q
− 1

24
1 f (−q1)+

√
24α

π

∫ ∞

0
e−

3
2 αx2 cosh 5

2 αx+ cosh 1
2 αx

cosh3αx
dx,

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

.

(4.1)

where ω(q) is the mf3 in (2.4). (An alternate notation, more customary in the general
theory of modular forms F(τ), has F(Aτ) on the left and F∗(τ) on the right.) When
r is not an integer this leads to mfs in the wide sense as defined in Sect. 1. Therefore
a complete transformation theory requires inclusion of the behavior of mfs in the
wide sense. This phenomenon is dealt with in [BO2] and [BOR].
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Using the mock theta “conjectures” the laws (4.1), as well as those for all the
other mf3s, mf5s and mf7s (given at the end of this section), can be obtained from
those for the function g3(x,q) defined in (3.2). One transformation law for g3(qr,q)
is [GM2]

q
3
2 r(1−r)− 1

24 g3(q
r,q) =

√
π

2α
csc(πr)q

− 1
6

1 h3(e
2π ir,q4

1)

−
√

3α
2π

∫ ∞

0
e−

3
2 αx2 cosh(3r−1)αx+ cosh(3r−2)αx

cosh 3
2 αx

dx,

(4.2)

where

h3(y,q) =
∞

∑
n=0

qn2

(yq ;q)n (y−1q ;q)n
. (4.3)

The law for g3((−q)a,(−q)b) involves the parity of a and b.
As noted by Watson [W1], it is desirable to supplement the transformation laws

by rules governing the behavior of Mordell integrals such as

Wc(r,α) =

∫ ∞

0
e−αx2 coshrαx

coshαx
dx and Ws(r,α) =

∫ ∞

0
e−αx2 sinhrαx

sinhαx
dx

under the map α �→ β = π2/α (and thus q �→ q1). These laws are [M7]

√
α3

π3 Wc(r,α) = 2cos
(πr

2

)∫ ∞

0
e−β x2 coshβ x

cosπr+ cosh2β x
dx ,

√
α3

π3 Ws(r,α) = sin(πr)
∫ ∞

0

e−β x2

cosπr+ cosh2β x
dx

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(4.4)

for |r|< 1.
We now outline a proof of (4.2). It is more convenient to work with the functions

g3(q
r,q) =

1
(q)∞

∞

∑
n=−∞

(−1)nq
3
2 n(n+1)

1−qn+r (4.5)

and

h3(e
2π ir,q) =

4sin2πr
(q)∞

∞

∑
n=−∞

(−1)nq
1
2 n(3n+1)

(1− e2π irqn)(1− e−2π irqn)
, (4.6)

where r = a/b. The series here are called generalized Lambert series. As in [GM2,
196–198], (4.5) and (4.6) are obtained from the Watson-Whipple transformation
[GR, 242, (III.17)]. The transformation law (4.2) is obtained by starting from (4.5),
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then using contour integration and the saddle-point method. This technique can be
applied more generally to the series

uk(x,q) =
∞

∑
n=−∞

(−1)nq
1
2 kn(n+1)

1− xqn , k ∈ Z>0, (4.7)

where x = qr. Observe that

g3(x,q) =
1

j(q,q3)
u3(x,q) .

The corresponding normalizations of uk with k > 1 are

1
j(qh,qk)

uk(x,q) ,

where h is an integer with 0 < h < k. Application of the saddle-point method to the
integral

1
2π i

(∫ +∞−�i

−∞−�i
+

∫ −∞+�i

+∞+�i

)
π

sinπz
e−

1
2 kαz(z+1)

1− e−α(z+r)
dz

leads to the transformation law

q
1
2 kr(1−r)uk(q

r,q) =
4π
α

sin(πr)vk(e
2π ir,q4

1)

−
√

kα
2π

k−1

∑
m=1

q
(k−2m)2

8k j(qm,qk)
∫ ∞

0
e−

1
2 kαx2 cosh(kr−m)αx

cosh 1
2 kαx

dx ,

(4.8)

where

vk(y,q) =
1

1− y−1

∞

∑
n=−∞

(−1)knq
1
2 n(kn+1)

1− yqn (4.9)

and j(x,q) is defined in (1.5). From this it follows that the normalized functions

1
j(qh,qk)

uk(q
r,q) , r ∈Q, r �∈ Z,

are mfs in the wide sense. It is easily seen that

uk(x,q) =
∞

∑
n=−∞

(−1)nq
1
2 kn(n+1)

(1− xqn)(1− x−1qn+1)
, vk(y,q) =

∞

∑
n=−∞

(−1)knq
1
2 n(kn+1)

(1− yqn)(1− y−1qn)
.

For details see [M5].
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When k = 1, 2, or 3, the Watson-Whipple transformation can be used to express
uk(x,q) and νk(y,q) as follows:

u1(x,q) =
(q)3

∞
j(x,q)

=
(q)2

∞
(x ;q)∞(x−1q;q)∞

,

v1(y,q) =
(q)2

∞
(y ;q)∞(y−1;q)∞

,

u2(x,q) = j(q,q2)g2(x,q) = θ4(0,q)g2(x,q) ,

v2(y,q2) =
ψ(q)h2(y,q)

(1− y)(1− y−1)
,

u3(x,q) = j(q,q3)g3(x,q) = (q)∞g3(x,q) ,

v3(y,q) =
(q)∞h3(y,q)

(1− y)(1− y−1)
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.10)

Here ψ(q) is the Gauss function (2.9), the normalized u2 is

g2(x,q) =
∞

∑
n=0

q
1
2 n(n+1)(−q ;q)n

(x ;q)n+1(x−1q ;q)n+1
, (4.11)

and

h2(y,q) =
∞

∑
n=0

(−1)nqn2
(q ;q2)n

(yq2;q2)n(y−1q2;q2)n
. (4.12)

A more detailed study of the functions g2 and h2 is found in [M5] and a complete
transformation theory for these functions is presented in [BOR].

When k = 1, there is no Mordell integral in (4.8), which reduces to

q
1
2 r(1−r)u1(q

r,q) =
4π
α

sin(πr)v1(e
2π ir,q4

1) .

In view of (4.10), this asserts that

q
1
2 r(1−r)(q)2

∞
(qr ;q)∞(q1−r ;q)∞

=
4π
α

sin(πr)
(q4

1;q4
1)

2
∞

(e2π ir;q4
1)∞(e−2π ir;q4

1)∞
,

a transformation law for a θ f.
When k = 2, (4.8) simplifies to

qr(1−r)u2(q
r,q) =

4π
α

sin(πr)v2(e2π ir,q4
1)−

√
α
π

θ4(0,q)
∫ ∞

0
e−αx2 cosh(2r−1)αx

coshαx
dx .

(4.13)
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By the functional equation of the Dedekind η-function we have

q
1

24 (q)∞ =

√
2π
α

q
1
6
1 (q

4
1;q4

1)∞. (4.14)

Hence

θ4(0,q) =

√
4π
α

q
1
4
1 ψ(q2

1). (4.15)

Dividing (4.13) by (4.15) and using (4.10), we obtain

qr(1−r)g2(q
r,q) =

√
4π
α

sin(πr)
q
− 1

4
1 h2(e2π ir,q2

1)

(1− e2π ir)(1− e−2π ir)

−
√

α
π

∫ ∞

0
e−αx2 cosh(2r−1)αx

coshαx
dx .

Since (1− e2π ir)(1− e−2π ir) = 2− 2cos2πr = 4sin2πr, this simplifies to

qr(1−r)g2 (q
r,q) =

√
π

4α
csc(πr)q

− 1
4

1 h2
(
e2π ir,q2

1

)−
√

α
π

∫ ∞

0
e−αx2 cosh(2r−1)αx

coshαx
dx.

(4.16)

The transformation law for g2((−q)a,(−q)c) depends on the parity of a and c and
is given in [M5].

When k = 3, (4.8) becomes

q
3
2 r(1−r)u3(q

r,q) =
4π
α

sin(πr)v3(e
2π ir,q4

1)

−
√

3α
2π

q
1

24 (q)∞

∫ ∞

0
e−

3
2 αx2 cosh(3r−1)αx+cosh(3r−2)αx

cosh 3
2 αx

dx ,

since j(q,q3) = j(q2,q3) = (q)∞. Dividing by (4.14) and using (4.10), we obtain

q
3
2 r(1−r)− 1

24 g3(q
r,q) =

√
8π
α

sin(πr)
q
− 1

6
1 h3(e2π ir,q4

1)

(1− e2π ir)(1− e−2π ir)

−
√

3α
2π

∫ ∞

0
e−

3
2 αx2 cosh(3r−1)αx+ cosh(3r−2)αx

cosh 3
2 αx

dx

=

√
π

2α
csc(πr)q

− 1
6

1 h3(e
2π ir,q4

1)

−
√

3α
2π

∫ ∞

0
e−

3
2 αx2 cosh(3r−1)αx+ cosh(3r−2)αx

cosh 3
2 αx

dx ,

which is (4.2). A complete transformation theory for g3 and h3 is found in [BO2].
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The transformation laws for the mf3s (2.1), (2.4), (2.5) are [W1, 78–79], [GM2,
204]

q−
1
24 f (q) =

√
8π
α

q
4
3
1 ω(q2

1)+

√
24α

π
W1(α) ,

q−
1

24 f (−q) = −
√

π
α

q
− 1

24
1 f (−q1)+

√
24α

π
W (α) ,

q
2
3 ω(q) =

√
π

4α
q
− 1

12
1 f (q2

1)−
√

3α
π

W2

(α
2

)
,

q
2
3 ω(−q) = −

√
π
α

q
2
3
1 ω(−q1)+

√
12α

π
W3(α) ,

q−
1
24 φ(q) =

√
4π
α

q
− 1

24
1 ψ(q1)+

√
6α
π

W (α) ,

q−
1
24 φ(−q) =

√
2π
α

q
1
3
1 υ(−q1)+

√
6α
π

W1(α) ,

q−
1
24 ψ(q) =

√
π

4α
q
− 1

24
1 φ(q1)−

√
3α
2π

W (α) ,

q−
1

24 ψ(−q) =

√
π

2α
q

1
3
1 υ(q1)−

√
3α
2π

W1(α) ,

q
1
3 υ(q) =

√
2π
α

q
− 1

24
1 ψ(−q1)+

√
6α
π

W2(α) ,

q
1
3 υ(−q) =

√
π

2α
q
− 1

24
1 φ(−q1)−

√
6α
π

W2(α) ,

q−
1
24 χ(q) =

√
π

2α
ξ
(

q
2
3
1

)
+

√
3α
2π

W1(α) ,

q−
1
24 χ(−q) =

√
π
α

q
7

24
1 σ

(
−q

1
3
1

)
+

√
3α
2π

W (α) ,
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q
2
3 ρ(q) = −

√
π
α

q
7
12
1 σ

(
q

2
3
1

)
+

√
3α
4π

W2

(α
2

)
,

q
2
3 ρ(−q) =

√
π

4α
ξ
(
−q

1
3
1

)
−
√

3α
π

W3(α) ,

ξ (q) =
√

4π
3α

q
− 1

36
1 χ

(
q

2
3
1

)
−
√

9α
π

W2

(3α
2

)
,

ξ (−q) =

√
4π
3α

q
2
9
1 ρ
(
−q

1
3
1

)
+

√
36α

π
W3(3α) ,

q
7
8 σ(q) = −

√
2π
3α

q
4
9
1 ρ
(

q
2
3
1

)
+

√
9α
2π

W1(3α) ,

q
7
8 σ(−q) =

√
π

3α
q
− 1

72
1 χ

(
−q

1
3
1

)
−
√

9α
2π

W (3α) ,

where the Mordell integrals W , W1, W2, W3 are defined in [W1] by

W (α) =

∫ ∞

0
e−

3
2 αx2 cosh 5

2 αx+ cosh1
2 αx

cosh3αx
dx ,

W1(α) =

∫ ∞

0
e−

3
2 αx2 sinhαx

sinh 3
2 αx

dx ,

W2(α) =

∫ ∞

0
e−

3
2 αx2 coshαx

cosh3αx
dx ,

W3(α) =
1
4

W2

(α
8

)
−W1(2α) =

∫ ∞

0
e−3αx2 sinhαx

sinh3αx
dx .

They satisfy the inversion rules

W (β ) =
√

α3

π3 W (α) , W1(β ) =
√

2α3

π3 W2(α) ,

W2(β ) =
√

α3

2π3 W1(α) , W3(β ) =
√

α3

π3 W3(α) .
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The last eight of these transformation laws involve mf3s in the wide sense, which
may account for their omission in [W1]. The transformation laws for the mf5s (2.2)
are [GM2, 207–209]

q−
1
60 f0(q) =

√
2π(5−√5)

5α
q
− 1

60
1 (F0(q

2
1)−1)+

√
2π(5+

√
5)

5α
q

71
60
1 F1(q

2
1)

+

√
60α

π
L
(1

5
,10α

)
,

q
11
60 f1(q) =

√
2π(5+

√
5)

5α
q
− 1

60
1 (F0(q

2
1)−1)−

√
2π(5−√5)

5α
q

71
60
1 F1(q

2
1)

+

√
60α

π
L
(2

5
,10α

)
,

q−
1

60 f0(−q) = −
√

π(5−√5)
10α

q
− 1

60
1 f0(−q1)+

√
π(5+

√
5)

10α
q

11
60
1 f1(−q1)

+

√
60α

π
L
(1

5
,10α

)
,

q
11
60 f1(−q) =

√
π(5+

√
5)

10α
q
− 1

60
1 f0(−q1)+

√
π(5−√5)

10α
q

11
60
1 f1(−q1)

−
√

60α
π

L
(2

5
,10α

)
,

q−
1

120 (F0(q)−1) =

√
π(5−√5)

20α
q
− 1

30
1 f0(q

2
1)+

√
π(5+

√
5)

20α
q

11
30
1 f1(q

2
1)

−
√

15α
2π

L
(1

5
,5α

)
,

q
71

120 F1(q) =

√
π(5+

√
5)

20α
q
− 1

30
1 f0(q

2
1)−

√
π(5−√5)

20α
q

11
30
1 f1(q

2
1)

−
√

15α
2π

L
(2

5
,5α

)
,
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q−
1

120 (F0(−q)−1) =

√
π(5+

√
5)

10α
q
− 1

120
1 (F0(−q1)−1)+

√
π(5−√5)

10α
q

71
120
1 F1(−q1)

+

√
15α
2π

L1

(4
5
,5α

)
,

q
71
120 F1(−q) =

√
π(5−√5)

10α
q
− 1

120
1 (F0(−q1)−1)−

√
π(5+

√
5)

10α
q

71
120
1 F1(−q1)

+

√
15α
2π

L1

(2
5
,5α

)
,

q−
1

120 φ0(q) =

√
π(5+

√
5)

10α
q
− 1

120
1 φ0(q1)+

√
π(5−√5)

10α
q
− 49

120
1 φ1(q1)

−
√

15α
2π

L1

(4
5
,5α

)
,

q−
49

120 φ1(q) =

√
π(5−√5)

10α
q
− 1

120
1 φ0(q1)−

√
π(5+

√
5)

10α
q
− 49

120
1 φ1(q1)

−
√

15α
2π

L1

(2
5
,5α

)
,

q−
1

120 φ0(−q) =

√
π(5−√5)

5α
q
− 1

30
1 ψ0(q

2
1)+

√
π(5+

√
5)

5α
q

11
30
1 ψ1(q

2
1)

+

√
15α
2π

L
(1

5
,5α

)
,

q−
49
120 φ1(−q) = −

√
π(5+

√
5)

5α
q
− 1

30
1 ψ0(q

2
1)+

√
π(5−√5)

5α
q

11
30
1 ψ1(q

2
1)

−
√

15α
2π

L
(2

5
,5α

)
,

q−
1
60 ψ0(q) =

√
π(5−√5)

10α
q
− 1

60
1 φ0(−q2

1)−
√

π(5+
√

5)
10α

q
− 49

60
1 φ1(−q2

1)

−
√

15α
π

L
(1

5
,10α

)
,

q
11
60 ψ1(q) =

√
π(5+

√
5)

10α
q
− 1

60
1 φ0(−q2

1)+

√
π(5−√5)

10α
q
− 49

60
1 φ1(−q2

1)

−
√

15α
π

L
(2

5
,10α

)
,
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q−
1

60 ψ0(−q) = −
√

π(5−√5)
10α

q
− 1

60
1 ψ0(−q1)+

√
π(5+

√
5)

10α
q

11
60
1 ψ1(−q1)

−
√

15α
π

L
(1

5
,10α

)
,

q
11
60 ψ1(−q) =

√
π(5+

√
5)

10α
q
− 1

60
1 ψ0(−q1)+

√
π(5−√5)

10α
q

11
60
1 ψ1(−q1)

+

√
15α

π
L
(2

5
,10α

)
,

q−
1

120 (χ0(q)−2) = −
√

π(5−√5)
5α

q
− 1

30
1 (χ0(q

4
1)−2)−

√
π(5+

√
5)

5α
q

71
30
1 χ1(q

4
1)

−
√

135α
2π

L
(1

5
,5α

)
,

q
71
120 χ1(q) = −

√
π(5+

√
5)

5α
q
− 1

30
1 (χ0(q

4
1)−2)+

√
π(5−√5)

5α
q

71
30
1 χ1(q

4
1)

−
√

135α
2π

L
(2

5
,5α

)
,

q−
1

120 (χ0(−q)−2) =

√
π(5+

√
5)

10α
q
− 1

120
1 (χ0(−q1)−2)+

√
π(5−√5)

10α
q

71
120
1 χ1(−q1)

+

√
135α

2π
L1

(4
5
,5α

)
,

q
71
120 χ1(−q) =

√
π(5−√5)

10α
q
− 1

120
1 (χ0(−q1)−2)−

√
π(5+

√
5)

10α
q

71
120
1 χ1(−q1)

+

√
135α

2π
L1

(2
5
,5α

)
,

where

L(r,α) =
∫ ∞

0
e−

3
2 αx2 cosh(3r− 2)αx+ cosh(3r−1)αx

cosh 3
2 αx

dx

and

L1(r,α) =

∫ ∞

0
e−

3
2 αx2

{
cosh

(
3r− 7

2

)
αx+ cosh

(
3r− 5

2

)
αx

+cosh

(
3r− 1

2

)
αx− cosh

(
3r+

1
2

)
αx

}/
cosh3αxdx.
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The transformation laws for the mf7s (2.3) are [GM2, 218–219]

q−
1

168 (F0(q)−2) =

√
8π
7α

sin
(π

7

)
q
− 1

42
1 F0(q

4
1)+

√
8π
7α

sin

(
2π
7

)
q
− 25

42
1 F1(q

4
1)

+

√
8π
7α

sin

(
3π
7

)
q

47
42
1 F2(q

4
1)−

√
42α

π
L

(
1
7
,7α

)
,

q−
25

168 F1(q) =

√
8π
7α

sin

(
2π
7

)
q
− 1

42
1 F0(q

4
1)−

√
8π
7α

sin

(
3π
7

)
q
− 25

42
1 F1(q

4
1)

+

√
8π
7α

sin
(π

7

)
q

47
42
1 F2(q

4
1)−

√
42α

π
L

(
2
7
,7α

)
,

q
47

168 F2(q) =

√
8π
7α

sin

(
3π
7

)
q
− 1

42
1 F0(q

4
1)+

√
8π
7α

sin
(π

7

)
q
− 25

42
1 F1(q

4
1)

−
√

8π
7α

sin

(
2π
7

)
q

47
42
1 F2(q

4
1)−

√
42α

π
L

(
3
7
,7α

)
,

q−
1

168 (F0(−q)−2) = −
√

4π
7α

sin

(
3π
7

)
q
− 1

168
1 F0(−q1)+

√
4π
7α

sin
(π

7

)
q
− 25

168
1 F1(−q1)

+

√
4π
7α

sin

(
2π
7

)
q

47
168
1 F2(−q1)+

√
42α

π
L1

(
6
7
,7α

)
,

q−
25
168 F1(−q) =

√
4π
7α

sin
(π

7

)
q
− 1

168
1 F0(−q1)−

√
4π
7α

sin

(
2π
7

)
q
− 25

168
1 F1(−q1)

+

√
4π
7α

sin

(
3π
7

)
q

47
168
1 F2(−q1)−

√
42α

π
L1

(
2
7
,7α

)
,

q
47
168 F2(−q) =

√
4π
7α

sin

(
2π
7

)
q
− 1

168
1 F0(−q1)+

√
4π
7α

sin

(
3π
7

)
q
− 25

168
1 F1(−q1)

+

√
4π
7α

sin
(π

7

)
q

47
168
1 F2(−q1)−

√
42α

π
L1

(
4
7
,7α

)
.

5 Mock Theta Functions of Even Order

In Sect. 3 we observed that the mfs of odd order are related to the function g3(x,q)
of (3.3). It turns out that the mfs of even order are similarly related to the function

g2(x,q) =
∞

∑
n=0

q
1
2 n(n+1)(−q ;q)n

(x ;q)n+1(x−1q ;q)n+1

of (4.11).



120 B. Gordon and R.J. McIntosh

We begin with the mf2s

A(q) =
∞

∑
n=0

q(n+1)2 (−q ;q2
)

n

(q ;q2)
2
n+1

=
∞

∑
n=0

qn+1
(−q2;q2

)
n

(q ;q2)n+1
,

B(q) =
∞

∑
n=0

qn(n+1)
(−q2;q2

)
n

(q ;q2)2
n+1

=
∞

∑
n=0

qn
(−q ;q2

)
n

(q ;q2)n+1
,

μ(q) =
∞

∑
n=0

(−1)nqn2 (
q ;q2

)
n

(−q2;q2)2
n

.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.1)

The function μ(q) appears several times in the Lost Notebook [R2, (3.1), (3.4),
(3.8), (3.9), (3.11), (3.13) with a = 1]. It is related to A(q) by the identity [A2,
(3.28)]

μ(q)+ 4A(−q) =
(q)5

∞
(q2;q2)4

∞
.

The mock theta “conjectures” of order 2 are [GM4]

A(q2) = qg2(q,q4)− q(−q2;q2)∞(−q4;q4)2
∞(q

8;q8)∞ ,

B(q) = g2(q,q2) ,

μ(q4) =−2qg2(q,q
2)+

(q2;q2)∞(q4;q4)3
∞(q

8;q8)∞

(q)2
∞(q16;q16)2

∞
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5.2)

These are not needed to prove the transformation laws, which are [A2,
(4.7)–(4.10)], [M3, 285],

q−
1
8 A(q) =

√
π

16α
q
− 1

8
1 μ(−q1)−

√
α
2π

K(α) ,

q−
1
8 A(−q) =

√
π

2α
q

1
2
1 B(−q1)−

√
α
8π

J
(α

2

)
,

q
1
2 B(q) =

√
π

8α
q
− 1

8
1 μ(q1)−

√
2α
π

J(2α) ,

q
1
2 B(−q) =

√
2π
α

q
− 1

8
1 A(−q1)+

√
2α
π

J(2α) ,

q−
1
8 μ(q) =

√
8π
α

q
1
2
1 B(q1)+

√
2α
π

J
(α

2

)
,

q−
1
8 μ(−q) =

√
16π
α

q
− 1

8
1 A(q1)+

√
8α
π

K(α) ,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.3)
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where as usual q = e−α and q1 = e−β with αβ = π2. The Mordell integrals J, K,
and their inversions are

J(α) =
∫ ∞

0

e−αx2

coshαx
dx , J(β ) =

√
α3

π3 J(α) ,

K(α) =

∫ ∞

0
e−

1
2 αx2 cosh 1

2 αx

coshαx
dx , K(β ) =

√
α3

π3 K(α) .

Also appearing in the Lost Notebook and studied in [AH], [BC], [M8] are mfs to
which order 6 has been assigned. These are the following:

β (q) =
∞

∑
n=0

q3n2+3n+1

(q ;q3)n+1(q2;q3)n+1
= qg3(q,q

3) , (5.4)

γ(q) =
∞

∑
n=0

qn2
(q)n

(q3;q3)n
= h3(e

2πi
3 ,q) , (5.5)

φ(q) =
∞

∑
n=0

(−1)nqn2
(q ;q2)n

(−q ;q)2n
, ψ(q) =

∞

∑
n=0

(−1)nq(n+1)2
(q ;q2)n

(−q ;q)2n+1
,

ρ(q) =
∞

∑
n=0

q
1
2 n(n+1)(−q ;q)n

(q ;q2)n+1
, σ(q) =

∞

∑
n=0

q
1
2 (n+1)(n+2)(−q ;q)n

(q ;q2)n+1
,

λ (q) =
∞

∑
n=0

(−1)nqn(q ;q2)n

(−q ;q)n
, μ(q) =

∞

∑
n=0

(−1)n(q ;q2)n

(−q ;q)n
,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.6)

ν(q) =
∞

∑
n=0

qn+1(−q ;q)2n+1

(q ;q2)n+1
, ξ (q) =

∞

∑
n=0

qn+1(−q ;q)2n

(q ;q2)n+1
. (5.7)

The series defining μ(q) in (5.6) converges in the Cesàro (C,1) sense. In fact the
sequence of its even partial sums converges, as does the sequence of its odd partial
sums; μ(q) is the average of their limits. Functions (5.5) and (5.6) are in the Lost
Notebook, while (5.4) and (5.7) arise in the modular transformation laws [M8]. In
view of their expressions in terms of g3(x,q) and h3(y,q), a case can be made for
designating β (q) and γ(q) as mf3s.

Ramanujan listed five linear relations connecting mf6s:

q−1ψ(q2)+ρ(q) = (−q ;q2)2
∞ j(−q,q6) ,

φ(q2)+ 2σ(q) = (−q ;q2)2
∞ j(−q3,q6) ,

2φ(q2)− 2μ(−q) = (−q ;q2)2
∞ j(−q3,q6) ,

2q−1ψ(q2)+λ (−q) = (−q ;q2)2
∞ j(−q,q6) ,

3φ(q)− 2γ(q) =
j(q,q2)2

j(−q,q3)
.

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.8)
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Additional relations include [M8]

ν(q2)−σ(−q) =
q(q4;q4)2

∞(q
12;q12)2

∞
(q2;q2)2

∞(q6;q6)∞
,

2q−1ξ (q2)+ρ(−q) =
(q4;q4)3

∞(q
6;q6)2

∞
(q2;q2)3

∞(q12;q12)∞
,

φ(q3)+ 2q−1ψ(q3)+ 2β (q) =
(q2;q2)∞(q3;q3)5

∞
(q)2

∞(q6;q6)3
∞

,

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.9)

and the mock theta “conjectures” [GM4]

φ(q4) =
(q2;q2)3

∞(q
3;q3)2

∞(q
12;q12)3

∞
(q)2

∞(q6;q6)3
∞(q8;q8)∞(q24;q24)∞

−2qg2(q,q
6) ,

ψ(q4) =
q3(q2;q2)2

∞(q
4;q4)∞(q24;q24)2

∞
(q)∞(q3;q3)∞(q8;q8)2

∞
−q3g2(q

3,q6) .

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5.10)

With the aid of (5.8)–(5.10), all the mf6s (5.4)–(5.7) can be expressed in terms of
g2(x,q) and θ fs.

The transformation laws for β (q) and γ(q) are

q−
1
8 β (q) =

√
2π
9α

q
− 1

18
1 γ

(
q

4
3
1

)
−
√

81α
8π

[
J
(9α

2

)
+

1
9

J
(α

2

)]
,

q−
1
8 β (−q) = −

√
π

9α
q
− 1

72
1 γ

(
−q

1
3
1

)
+

√
81α
2π

[
K(9α)− 1

9
K(α)

]
,

q−
1

24 γ(q) =
√

6π
α

q
− 1

6
1 β

(
q

4
3
1

)
+

√
27α
2π

J1

(3α
2

)
,

q−
1
24 γ(−q) = −

√
3π
α

q
− 1

24
1 β

(
−q

1
3
1

)
+

√
27α
2π

K1(3α) ,

where

J1(α) =
1
2

J(α)+
1
6

J
(α

9

)
=
∫ ∞

0
e−αx2 cosh 2

3 αx

coshαx
dx

and

K1(α) =
1
3

K
(α

9

)
−K(α) =

∫ ∞

0
e−

1
2 αx2 cosh 5

6 αx− cosh1
6 αx

coshαx
dx .

The transformation laws for (5.6) and (5.7) are more complex than those for β (q)
and γ(q). They are
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q−
1
36 φ(q

2
3 ) =

√
4π
α

q
− 1

4
1 [q1ρ(q3

1)+σ(q3
1)]+

√
4α
π

J1(α) ,

q−
1

72 φ(−q
1
3 ) =

√
π
α

q
− 9

8
1 [q1φ(−q3

1)− 2ψ(−q3
1)]+

√
2α
π

K1(α) ,

q−
1
4 ψ(q

2
3 ) = −

√
π
α

q
− 1

4
1 [q1ρ(q3

1)− 2σ(q3
1)]+

√
α
π

J(α) ,

q−
1
8 ψ(−q

1
3 ) = −

√
π
α

q
− 9

8
1 [q1φ(−q3

1)+ψ(−q3
1)]+

√
2α
π

K(α) ,

q
1
6 ρ(q

2
3 ) =

√
π

2α
q
− 9

8
1 [q1φ(q3

1)−ψ(q3
1)]−

√
2α
π

J(2α) ,

q
1
12 ρ(−q

1
3 ) =

√
π
α

q
− 1

4
1 [q1ρ(−q3

1)+ 2σ(−q3
1)]+

√
α
π

J(α) ,

q−
1

18 σ(q
2
3 ) =

√
π

8α
q
− 9

8
1 [q1φ(q3

1)+ 2ψ(q3
1)]−

√
2α
π

J1(2α) ,

q−
1
36 σ(−q

1
3 ) =

√
π
α

q
− 1

4
1 [q1ρ(−q3

1)−σ(−q3
1)]−

√
α
π

J1(α) ,

q
1
6 λ (q

2
3 ) =

√
8π
α

q
− 9

8
1 [q1ν(q3

1)− ξ (q3
1)]+

√
8α
π

J(2α) ,

q
1

12 λ (−q
1
3 ) =

√
π
α

q
− 1

4
1 [q1λ (−q3

1)+ 2μ(−q3
1)]−

√
4α
π

J(α) ,

q−
1
18 μ(q

2
3 ) =

√
2π
α

q
− 9

8
1 [q1ν(q3

1)+ 2ξ (q3
1)]+

√
8α
π

J1(2α) ,

q−
1

36 μ(−q
1
3 ) =

√
π
α

q
− 1

4
1 [q1λ (−q3

1)− μ(−q3
1)]+

√
4α
π

J1(α) ,

q−
1

36 ν(q
2
3 ) =

√
π

4α
q
− 1

4
1 [q1λ (q3

1)+ μ(q3
1)]−

√
α
π

J1(α) ,

q−
1
72 ν(−q

1
3 ) =

√
π
α

q
− 9

8
1 [q1ν(−q3

1)− 2ξ (−q3
1)]−

√
α
2π

K1(α) ,

q−
1
4 ξ (q

2
3 ) = −

√
π

16α
q
− 1

4
1 [q1λ (q3

1)− 2μ(q3
1)]−

√
α
4π

J(α) ,

q−
1
8 ξ (−q

1
3 ) = −

√
π
α

q
− 9

8
1 [q1ν(−q3

1)+ ξ (−q3
1)]−

√
α
2π

K(α) .
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Before continuing on to the 8th order mfs, we call attention to the
half-shift method, introduced in [M2, 421–424] and further developed in
[GM1, 328–330]. This is a procedure for obtaining mfs from θ fs. Generally
speaking, it starts with a series

∞

∑
n=0

an ,

where an is defined for all real n. One then forms the series

∞

∑
n=0

bn ,

where bn = an− 1
2

or bn = an+ 1
2
. Application of this method to the series in the

Rogers-Ramanujan identities (1.2) gives rise to the mf5s F1(q), F0(q) in (2.2). The
mf7s in (2.3) can be obtained by half-shifting the Selberg functions A(q), B(q), C(q)
in [Se2, p. 5].

The mf8s were discovered by applying this method to the series in the Göllnitz-
Gordon identities [Gö], [G], [Sl, (34), (36)]:

∞

∑
n=0

qn2
(−q ;q2)n

(q2;q2)n
=

1
(q ;q8)∞(q4;q8)∞(q7;q8)∞

,

∞

∑
n=0

qn(n+2)(−q ;q2)n

(q2;q2)n
=

1
(q3;q8)∞(q4;q8)∞(q5;q8)∞

.

The resulting mf8s are

S0(q) =
∞

∑
n=0

qn2
(−q ;q2)n

(−q2;q2)n
, S1(q) =

∞

∑
n=0

qn(n+2)(−q ;q2)n

(−q2;q2)n
,

T0(q) =
∞

∑
n=0

q(n+1)(n+2)(−q2;q2)n

(−q ;q2)n+1
, T1(q) =

∞

∑
n=0

qn(n+1)(−q2;q2)n

(−q;q2)n+1
.

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5.11)

They satisfy the linear relations [GM1] [GM2, p. 222].

S0(q
2)+2T0(q

2) =
∞

∑
n=−∞

q2n2
(−q2;q4)n

(−q4;q4)n
=

1
2

[
(−q ;q2)3

∞+(q ;q2)3
∞

]
θ4(0,q

2) ,

S1(q
2)+2T1(q

2) =
∞

∑
n=−∞

q2n(n+2)(−q2;q4)n

(−q4;q4)n
=

1
2

q−1
[
(−q ;q2)3

∞− (q ;q2)3
∞

]
θ4(0,q

2) ,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5.12)
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and the mock theta “conjectures” [GM4]

S0(−q2) =
j(−q,q2) j(q6,q16)

j(q2;q8)
−2qg2(q,q

8) ,

S1(−q2) =
j(−q,q2) j(q2,q16)

j(q2,q8)
−2qg2(q

3,q8) .

Relations (5.12) are 8th order analogues of Watson’s 5th order relations (2.11).
The transformation laws for (5.11) involve the mfs

U0(q) =
∞

∑
n=0

qn2
(−q ;q2)n

(−q4;q4)n
= S0(q

2)+ qS1(q
2) ,

U1(q) =
∞

∑
n=0

q(n+1)2
(−q ;q2)n

(−q2;q4)n+1
= T0(q

2)+ qT1(q
2) ,

V0(q) = −1+ 2
∞

∑
n=0

qn2
(−q ;q2)n

(q ;q2)n
,

V1(q) =
∞

∑
n=0

q(n+1)2
(−q ;q2)n

(q ;q2)n+1
,

the last two of which are obtained by half-shifting the series in identities [Sl,
(8), (12)].

The complete set of laws reads as follows [GM1]:

q−
1

16 S0(q) =

√
π

4α
V0(q1)+

√
2π
α

q
− 1

4
1 V1(q1)+

√
4α
π

K3(α) ,

q
7

16 S1(q) =

√
π

4α
V0(q1)−

√
2π
α

q
− 1

4
1 V1(q1)−

√
4α
π

K2(α) ,

q−
1

16 T0(q) =

√
π

16α
V0(−q1)−

√
π

2α
q
− 1

4
1 V1(−q1)−

√
α
π

K3(α) ,

q
7

16 T1(q) =

√
π

16α
V0(−q1)+

√
π

2α
q
− 1

4
1 V1(−q1)+

√
α
π

K2(α) ,

q−
1

16 S0(−q) =

√
π(2−√2)

α
q
− 1

16
1 T0(−q1)+

√
π(2+

√
2)

α
q

7
16
1 T1(−q1)+

√
4α
π

J3(α) ,

q
7

16 S1(−q) =

√
π(2+

√
2)

α
q
− 1

16
1 T0(−q1)−

√
π(2−√2)

α
q

7
16
1 T1(−q1)+

√
4α
π

J2(α) ,
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q−
1

16 T0(−q) =

√
π(2−√2)

16α
q
− 1

16
1 S0(−q1)+

√
π(2+

√
2)

16α
q

7
16
1 S1(−q1)−

√
α
π

J3(α) ,

q
7

16 T1(−q) =

√
π(2+

√
2)

16α
q
− 1

16
1 S0(−q1)−

√
π(2−√2)

16α
q

7
16
1 S1(−q1)−

√
α
π

J2(α) ,

q−
1
8 U0(q) =

√
π

2α
V0

(
q

1
2
1

)
+

√
α
2π

J
(α

2

)
,

q−
1
8 U1(q) =

√
π

8α
V0

(
−q

1
2
1

)
−
√

α
8π

J
(α

2

)
,

V0(q) =

√
π
α

q
− 1

16
1 U0

(
q

1
2
1

)
−
√

16α
π

J(4α) ,

q−
1
4 V1(q) =

√
π

8α
q
− 1

16
1 U0

(
−q

1
2
1

)
−
√

α
π

K(2α) ,

q−
1
8 U0(−q) =

√
4π
α

q
− 1

8
1 V1

(
q

1
2
1

)
+

√
2α
π

K(α) ,

q−
1
8 U1(−q) = −

√
π
α

q
− 1

8
1 V1

(
−q

1
2
1

)
−
√

α
2π

K(α) ,

V0(−q) =

√
4π
α

q
− 1

16
1 U1

(
q

1
2
1

)
+

√
16α

π
J(4α) ,

q−
1
4 V1(−q) = −

√
π

2α
q
− 1

16
1 U1

(
−q

1
2
1

)
−
√

α
π

K(2α) .

Here the Mordell integrals J2, J3, K2, K3 are

J2(α) =

∫ ∞

0
e−αx2 cosh 1

2 αx

cosh2αx
dx , J3(α) =

∫ ∞

0
e−αx2 cosh 3

2 αx

cosh2αx
dx ,

K2(α) =
∫ ∞

0
e−αx2 sinh 1

2 αx

sinh2αx
dx , K3(α) =

∫ ∞

0
e−αx2 sinh 3

2 αx

sinh2αx
dx .

In view of the last eight transformation laws, a case can be made for regarding
U0(q), U1(q), V0(q), V1(q) as mf2s. Indeed, the relevant Mordell integrals are the
same as those in (5.3).

In [M3] it is shown that V1(q) is equal to the function

λ (q) =
∞

∑
n=0

qn+1(−q ;q)2n

(−q2;q4)n+1
,

found on page 8 of the Lost Notebook (see also [A2, (3.21)] and [AB, (12.5.3)]).
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The functions Ui(q) and Vi(q) satisfy the linear relations [GM1], [M3]

U0(q)+ 2U1(q) = (q)∞(−q ;q2)4
∞ ,

V0(q)+V0(−q) = 2(−q2;q4)4
∞(q

8;q8)∞ ,

V1(q)−V1(−q) = 2q(−q2;q2)∞(−q4;q4)2
∞(q

8;q8)∞ ,

⎫
⎪⎬

⎪⎭
(5.13)

and are connected to the mf2s (5.1) by

U0(q)− 2U1(q) = μ(q) ,
V0(q)−V0(−q) = 4qB(q2) ,

V1(q)+V1(−q) = 2A(q2) ,

⎫
⎪⎬

⎪⎭
(5.14)

proved in [M3]. Combining (5.13) and (5.14), we obtain

2U0(q) = (q)∞(−q ;q2)4
∞ + μ(q) ,

4U1(q) = (q)∞(−q ;q2)4
∞− μ(q) ,

V0(q) = (−q2;q4)4
∞(q

8;q8)∞ + 2qB(q2) ,

V1(q) = q(−q2;q2)∞(−q4;q4)2
∞(q

8;q8)∞ +A(q2) .

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(5.15)

Identities (5.15), together with (5.2), yield mock theta “conjectures” for Ui(q) and
Vi(q). For example, V1(q) = qg2(q,q4), proved in [GM1, 322–324].

We turn finally to the mf10s, which appear on page 9 of the Lost Notebook:

φ(q) =
∞

∑
n=0

q
1
2 n(n+1)

(q ;q2)n+1
, ψ(q) =

∞

∑
n=0

q
1
2 (n+1)(n+2)

(q ;q2)n+1
,

X(q) =
∞

∑
n=0

(−1)nqn2

(−q ;q)2n
, χ(q) =

∞

∑
n=0

(−1)nq(n+1)2

(−q ;q)2n+1
.

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

(5.16)

Srivastava [Sr1] showed that these functions can be obtained by half-shifting:

φ(q2)+ 1 arises from (q4;q4)∞
∞

∑
n=0

qn2

(q4;q4)n
= (q2;q2)∞G(q) ,

ψ(q2)+ 1 arises from (q4;q4)∞
∞

∑
n=0

qn(n+2)

(q4;q4)n
= (q2;q2)∞H(q) ,

X(q) arises from
∞

∑
n=0

(−1)nqn(n+1)

(−q ;q)2n+1
=

∞

∑
n=0

q

1
2

n(5n+3)
(1−q2n+1) ,

χ(q) arises from
∞

∑
n=0

(−1)nqn(n+3)

(−q ;q)2n+2
=

∞

∑
n=0

q

1
2

n(5n+9)
(1−qn+1) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.17)
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The first two of these half-shifts were earlier applied in [M2, 423]. They, together
with the transformation laws, make it plausible to assign order 5, rather than order
10, to the functions (5.16).

The first two identities of (5.17) appear in [Sl, (16), (20)] and the third in [Ro,
(9.7)] (see also [A6, 36, 58, 92]). The fourth identity is easily deduced from

∞

∑
n=0

(−1)nqn(n+1)

(−q ;q)2n
=

∞

∑
n=0

q
1
2 n(5n+1)(1− q4n+2) =

(

∑
n≥0

−∑
n<0

)
q

1
2 n(5n+1) ,

which is part of [Ro, (9.7)].
Ramanujan gave eight linear relations connecting the mf10s, which were proved

by Choi [C1]–[C4]. In the notation of this survey, they are

q2φ(q9)− ψ(ωq)−ψ(ω2q)
ω−ω2 = −q

(q)∞ j(q,q6) j(q3,q15)

(q3;q3)2
∞

,

q−2ψ(q9)+
ωφ(ωq)−ω2φ(ω2q)

ω−ω2 =
(q)∞ j(q,q6) j(q6,q15)

(q3;q3)2
∞

,

X(q9)− ωχ(ωq)−ω2χ(ω2q)
ω−ω2 =

(q2;q2)2
∞(q

3;q3)2
∞ j(q12,q30)

(q)∞(q6;q6)3
∞

,

χ(q9)+ q2 X(ωq)−X(ω2q)
ω−ω2 = −q3 (q

2;q2)2
∞(q

3;q3)2
∞ j(q6,q30)

(q)∞(q6;q6)3
∞

,

φ(q)−q−1ψ(−q4)+ q−2χ(q8) =
j(−q,q2) j(−q2,−q10)

j(q2,q8)
,

ψ(q)+ qφ(−q4)+X(q8) =
j(−q,q2) j(q4,−q10)

j(q2,q8)
,

∫ ∞

0

e−πnx2

cosh 2πx√
5
+ 1+

√
5

4

dx +
1√
n

e
π
5n ψ(−e−

π
n )

=

√
5+
√

5
2

e−
πn
5 φ(−e−πn)−

√
5+1

2
√

n
e−

π
5n φ(−e−

π
n ) ,

∫ ∞

0

e−πnx2

cosh 2πx√
5
+ 1−√5

4

dx +
1√
n

e
π
5n ψ(−e−

π
n )

=−
√

5−√5
2

e
πn
5 ψ(−e−πn)+

√
5−1

2
√

n
e−

π
5n φ(−e−

π
n ) ,

where ω is a primitive cube root of unity and n is a positive real number.
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The mock theta “conjectures” of order 10 are

φ(q) =
(q10;q10)2

∞ j(−q2,q5)

(q5;q5)∞ j(q2,q10)
+ 2qg2(q

2,q5) ,

ψ(q) = −q(q10;q10)2
∞ j(−q,q5)

(q5;q5)∞ j(q4,q10)
+ 2qg2(q,q

5) ,

X(−q2) =
(q4;q4)2

∞
(

j(−q2,q20)2 j(q12,q40)+ 2q(q40;q40)3
∞
)

(q2;q2)∞(q20;q20)∞(q40;q40)∞ j(q8,q40)

−2qg2(q,q20)+ 2q5g2(q9,q20) ,

χ(−q2) =
q2(q4;q4)2

∞
(
2q(q40;q40)3

∞− j(−q6,q20)2 j(q4,q40)
)

(q2;q2)∞(q20;q20)∞(q40;q40)∞ j(q16,q40)

−2q3g2(q3,q20)− 2q5g2(q7,q20) .

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.18)

The first two are proved in [C1, 533–534], and the last two in [GM4].
The transformation laws for (5.16) are

q
1
5 φ (q) =

√
π(5+

√
5)

10α
q
− 1

20
1 X(q2

1)−
√

π(5−√5)
10α

q
− 9

20
1 χ(q2

1)−
√

20α
π

J4(α) ,

q
1
5 φ (−q) =

√
π(5+

√
5)

10α
q

1
5
1 φ (−q1)+

√
π(5−√5)

10α
q
− 1

5
1 ψ(−q1)+

√
20α

π
K4(α) ,

q−
1
5 ψ(q) =

√
π(5−√5)

10α
q
− 1

20
1 X(q2

1)+

√
π(5+

√
5)

10α
q
− 9

20
1 χ(q2

1)−
√

20α
π

J5(α) ,

q−
1
5 ψ(−q) =

√
π(5−√5)

10α
q

1
5
1 φ (−q1)−

√
π(5+

√
5)

10α
q
− 1

5
1 ψ(−q1)−

√
20α

π
K6(α) ,

q−
1

40 X(q) =

√
π(5+

√
5)

5α
q

2
5
1 φ (q2

1)+

√
π(5−√5)

5α
q
− 2

5
1 ψ(q2

1)+

√
10α

π
K7

(α
2

)
,

q−
1
40 X(−q) =

√
π(5−√5)

10α
q
− 1

40
1 X(−q1)−

√
π(5+

√
5)

10α
q
− 9

40
1 χ(−q1)+

√
40α

π
J6(α) ,

q−
9

40 χ(q) = −
√

π(5−√5)
5α

q
2
5
1 φ (q2

1)+

√
π(5+

√
5)

5α
q
− 2

5
1 ψ(q2

1)+

√
10α

π
K5

(α
2

)
,

q−
9

40 χ(−q) =−
√

π(5+
√

5)
10α

q
− 1

40
1 X(−q1)−

√
π(5−√5)

10α
q
− 9

40
1 χ(−q1)+

√
40α

π
J7(α) ,
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where as usual q = e−α and q1 = e−β with αβ = π2. The Mordell integrals Jn and
Kn (n = 4,5,6,7) are

J4(α) =

∫ ∞

0
e−5αx2 coshαx

cosh5αx
dx , J5(α) =

∫ ∞

0
e−5αx2 cosh3αx

cosh5αx
dx ,

J6(α) =
∫ ∞

0
e−10αx2 cosh9αx− coshαx

cosh10αx
dx ,

J7(α) =

∫ ∞

0
e−10αx2 cosh7αx+ cosh3αx

cosh10αx
dx ,

K4(α) =

∫ ∞

0
e−5αx2 sinhαx

sinh5αx
dx , K5(α) =

∫ ∞

0
e−5αx2 sinh2αx

sinh5αx
dx ,

K6(α) =

∫ ∞

0
e−5αx2 sinh3αx

sinh5αx
dx , K7(α) =

∫ ∞

0
e−5αx2 sinh4αx

sinh5αx
dx .

6 General Relations Between Mock Theta Functions

In this section we consider how linear relations between mfs can be found. One
method is to compare the Mordell integrals in their transformation laws. If two
mfs transform with the same Mordell integral, their difference may well be a θ f.
If this difference is a θ -product, a proposed expression for it can be found by
computer algebra. Sometimes the difference is not itself a θ -product, but the even
and odd parts of its q-series are. This phenomenon underlies the last two mock theta
“conjectures” in (5.18).

Comparison of the Mordell integrals in (4.2) and (4.16) suggests that

g3(q
4r,q4)− q1−2rg2(q

6r+1,q6)− q2r−1g2(q
6r−1,q6)

is a θ f. Computer algebra leads to the conjecture that

g3(x
4,q4) =

qg2(x6q,q6)

x2 +
x2g2(x6q−1,q6)

q

−x2(q2;q2)3
∞(q

12;q12)∞ j(x2q,q2) j(x12q6,q12)

q(q4;q4)∞(q6;q6)2
∞ j(x4,q2) j(x6q−1,q2)

, (6.1)

which is proved in [GM3]. Further development along the lines of (6.1) leads to
identities involving Appell functions and Zweger’s μ-function ([M5], followed by
[BO2], [BOR], [K]). For more details see Sect. 9.
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It was noted in Sect. 3 that the mfs of odd order are related to g3(x,q), and in
Sect. 5 that the mfs of even order are related to g2(x,q). By (6.1) and its limiting
cases discussed in Sect. 7, we can express all of the classical mfs in terms of g2(x,q).
For this reason we can regard g2(x,q) as a universal mock θ -function.

Identity (6.1) has a broad generalization which we now develop. Recall the
generalized Lambert series

uk(x,q) =
∞

∑
n=−∞

(−1)nq
1
2 kn(n+1)

1− xqn =
∞

∑
n=−∞

(−1)nq
1
2 kn(n+1)

(1− xqn)(1− x−1qn+1)
,

vk(y,q) =
1

1− y−1

∞

∑
n=−∞

(−1)knq
1
2 n(kn+1)

1− yqn =
∞

∑
n=−∞

(−1)knq
1
2 n(kn+1)

(1− yqn)(1− y−1qn)

of (4.7) and (4.9). Hence

uk(x,q) = uk(x
−1q,q) , vk(y,q) = vk(y

−1,q).

From the definition of uk(x,q) it is easily seen that

u2k(x,q)+ u2k(−x,q) = 2uk(x
2,q2) .

Somewhat more difficult to prove [GM3] are the functional equation

uk(xq,q) =−xkuk(x,q)−
k−1

∑
m=1

xm j(qm,qk) , (6.2)

and for odd k the identity

(1− x)vk(x,q) =−x
1
2 (k+1)uk(x,q)−

1
2 (k−1)

∑
m=1

x
1
2 (k+1)−m j(qm,qk) . (6.3)

When k = 3, (6.3) says that

(1− x)v3(x,q) =−x2u3(x,q)− x(q)∞ ,

which is equivalent to

h3(x,q)
1− x

= xg3(x,q)+ 1 (6.4)
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by (4.10). For even k the situation is more complicated. A proof that

h2(−x2q−1,q2)

1+ x2q−1 =
(q2;q2)3

∞
j(x,q) j(−x2q−1,q4)

− qg2(x,q)
x

. (6.5)

is given in [GM3].
Another useful identity [GM3], valid for all positive integers k, is

∞

∑
n=−∞

′ (−1)nq
1
2 kn(n+1)

1− qn =
k−1

∑
m=1

1− j(qm,qk)

2
, (6.6)

where the dash indicates that the term with n = 0 is to be omitted.
We can now state the general identities of which (6.11) is the special case k = 3.

These identities express uk(x,q) in terms of u2(x,q) (and hence in terms of the
universal mf g2(x,q)). They are as follows [GM3]:

uk(x
4,q4) = −x2(q2;q2)3

∞ j(x2k−4q,q2) j(x4kq2k,q4k)

q j(x4,q2) j(x2kq−1,q2) j(q2k,q4k)

+
k−1

∑
m=1

qk−2m j(q4m,q4k)

x2k−4m j(q2k,q4k)
u2(x

2kqk−2m,q2k) , k odd , (6.7)

uk(x
4,q4) = −x4(q2;q2)3

∞ j(x2k−4,q2) j(x4kq2k,q4k)

q2 j(x4,q2) j(x2kq−2,q2) j(q2k,q4k)

+
k−1

∑
m=1

qk−2m j(q4m,q4k)

x2k−4m j(q2k,q4k)
u2(x

2kqk−2m,q2k) , k even . (6.8)

These identities are proved by showing that both sides satisfy the same functional
equation and that their difference has only removable singularities for q fixed and
x �= 0.

When k = 3, (6.7) becomes

u3(x
4,q4) =

q j(q4,q12)

x2 j(q6,q12)
u2(x

6q,q6)+
x2 j(q4,q12)

q j(q6,q12)
u2(x

6q−1,q6)

−x2(q2;q2)3
∞ j(x2q,q2) j(x12q6,q12)

q j(x4,q2) j(x6q−1,q2) j(q6,q12)
, (6.9)

since j(q8,q12) = j(q4,q12). It follows from (4.10) and (4.14) that

u2(x
6q±1,q6) =

(q6;q6)2
∞

(q12;q12)∞
g2(x

6q±1,q6) = j(q6,q12)g2(x
6q±1,q6)
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and

u3(x
4,q4) = (q4;q4)∞g3(x

4,q4) = j(q4,q12)g3(x
4,q4).

Substituting these expressions for u2 and u3 into (6.9), we obtain (6.1).

7 Singular Cases of the General Relations

As already remarked, identities (6.7) and (6.8) hold whenever all the terms are
defined. These terms, regarded as functions of x with q fixed, are meromorphic for
x �= 0. At their poles, which are all simple, (6.7) and (6.8) become identities between
Laurent series. By equating the constant terms in the Laurent series of the two sides,
we obtain a set of identities which we call singular cases.

The left sides of (6.7) and (6.8) are defined when x �= 0 and x4q4n �= 1 for any n∈
Z. For such x, the right sides of (6.7) and (6.8) are undefined when x = μq

m0
k − 1

2+n,
where μ2k = 1, 1≤m0≤ k−1 and n∈Z. In this case the product on the right side of
either (6.7) or (6.7) and the mth term of the sum have simple poles of equal residues.
The constant terms of their Laurent series can be determined. For the mth term of
the sum this is done using (6.6), and for the product, by logarithmic differentiation.
This results in identities of the form

uk(x
4,q4) = T (x,q)+

k−1

∑
m=1

m �=m0

qk−2m j(q4m,q4k)

x2k−4m j(q2k,q4k)
u2(x

2kqk−2m,q2k), (7.1)

where x = μq
m0
k − 1

2+n, and T (x,q) is a θ f [M6].
For example, when k = 3 and m0 = 2, identity (7.1) becomes

u3(q
2
3 ,q4) =

(q4;q4)∞(q6;q6)∞(q12;q12)∞

(q2;q2)∞
+

(q4;q4)2
∞(q

6;q6)4
∞

2q
2
3 (q2;q2)2

∞(q12;q12)2
∞

− (q4;q4)∞

2q
2
3

+
q

2
3 j(q4,q12)

j(q6,q12)
u2(q

2,q6)

or equivalently

g3(q,q
6) =

(q9;q9)∞(q18;q18)∞

(q3;q3)∞
+

(q6;q6)∞(q9;q9)4
∞

2q(q3;q3)2
∞(q18;q18)2

∞
− 1

2q
+qg2(q

3,q9) .

(7.2)

Ramanujan’s letter includes the identity (2.6),

4h3(e
πi
3 ,q)− h3(−1,q) = 3θ 2

4 (0,q
3)(q)−1

∞ ,
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proved by Watson [W1, p. 63]. After modular transformation, this becomes

1+ 2qg3(q,q
6)− q2g3(q

3,q6) =
(q2;q2)4

∞
(q)2

∞(q6;q6)∞
. (7.3)

Using (6.1) with q replaced by q
3
2 and x = q

3
4 , (7.3) can be written as

g3(q,q
6) =− q(q18;q18)4

∞
2(q6;q6)∞(q9;q9)2

∞
+

(q2;q2)4
∞

2q(q)2
∞(q6;q6)∞

− 1
2q

+qg2(q
3,q9) . (7.4)

Equality of the θ fs in (7.2) and (7.4) is not hard to prove. This alternate derivation
of (7.2) does not extend to a proof of (7.1) for k > 3.

Another family of singular cases is obtained from (6.7) and (6.8) when x= μq−n,
where μ4 = 1 and n∈ Z. Using (6.6) and logarithmic differentiation to calculate the
constant terms of their Laurent series, we get identities of the form

k−1

∑
m=1

qk−2m j(q4m,q4k)

x2k−4m j(q2k,q4k)
u2(x

2kqk−2m,q2k) = T (x,q) , k odd,

k−1

∑
m=1

m �=k/2

qk−2m j(q4m,q4k)

x2k−4m j(q2k,q4k)
u2(x

2kqk−2m,q2k) = T (x,q) , k even,

where T (x,q) is a θ f. These identities can also be proved using (6.2). More precisely,
repeated application of (6.2) shows that

qk−2m

x2k−4m u2(x
2kqk−2m,q2k)+

qk−2(k−m)

x2k−4(k−m)
u2(x

2kqk−2(k−m),q2k)

=
qk−2m

x2k−4m u2(x
2kqk−2m,q2k)+

x2k−4m

qk−2m u2(x
2kq2m−k,q2k)

is a θ f whenever x = μq−n.

8 Related Results

(A) Several authors, including Andrews, Garvan, and Agarwal [AG], [AA], [Ag1],
[Ag2], [Ag3], have found combinatorial interpretations of the coefficients a(n)
in the q-series expansions

M(q) =
∞

∑
n=0

a(n)qn
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of mfs M(q). These involve ranks of partitions of n (largest part minus number
of parts) as well as partitions in which each part k can occur in as many as k
different “colors.” For example, if

f (q) =
∞

∑
n=0

qn2

(−q ;q)2
n
=

∞

∑
n=0

a(n)qn

is the mf3 discussed in Sects. 1 and 3, a(n) is the number of partitions of n with
even rank minus the number of those with odd rank.

(B) Srivastava [Sr2] has obtained analogues for mf6s and mf8s of Andrews’s
identities (3.8) and (3.9) (which express mf5s as constant terms of the z-Laurent
expansions of θ fs T (z,q)). These include, in the notation of (3.8), (5.6), and
(5.11)

Order 6

j(q,q4)φ(q) = coefficient of z0 in

q2(q4;q4)∞(q6;q6)2
∞Θ(−zq5,q4)Θ(z,q6)Θ(q4,q6)

Θ(z−1q2,q6)Θ(zq2,q6)Θ(q2,q6)
,

Order 8

j(q,q4)S0(q) = coefficient of z0 in

−q3(q4;q4)∞(q8;q8)2
∞Θ(−zq6,q4)Θ(z,q8)Θ(q6,q4)

Θ(−z−1q3,q8)Θ(−zq3,q8)Θ(−q3,q8)
.

(C) In his work on mathematical physics and the quantum invariant of a three-
manifold, Hikami [Hk1], [Hk2] encountered the q-series

D5(q) =
∞

∑
n=0

qn(−q ;q)n

(q ;q2)n+1
.

He noted that
D5(q) = 2h1(q)− (−q ;q)2

∞ω(q), (8.1)

where

h1(q) =
∞

∑
n=0

qn(−q ;q)2n

(q ;q2)2
n+1

=
1

θ4(0,q)

∞

∑
n=0

(−1)nqn(n+2)

1−q2n+1

=
1

2θ4(0,q)

∞

∑
n=−∞

(−1)nqn(n+2)

1− q2n+1 ,
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and ω(q) is the mf3 in (2.4). (A misprint in the original definition of h1(q) has
been corrected here.) Equation (8.1) is the special case a = 1 of Ramanujan’s
identity [R2, 1]:

(
1+

1
a

) ∞

∑
n=0

qn(−q ;q)2n

(aq ;q2)n+1(a−1q ;q2)n+1
=

(−q ;q)∞

(aq ;q2)∞

∞

∑
n=0

a−n−1q2n(n+1)

(q ;q2)n+1(a−1q ;q2)n+1

+
∞

∑
n=0

qn(−q ;q)n

(aq ;q2)n+1

for all a �= 0. In [A2, 42], it is shown that

B(q) =
1

θ4(0,q2)

∞

∑
n=−∞

(−1)nq2n(n+1)

1−q2n+1 ,

where B(q) is the mf2 in (5.1). From this it follows that

h1(q
2) =

B(q)−B(−q)
4q

.

The even part of B(q) is the θ f

B(q)+B(−q)
2

=
1

θ4(0,q2)

∞

∑
n=−∞

(−1)nq2n(n+1)

1− q4n+2 = (q4;q4)∞(−q2;q2)4
∞ .

Hence the odd part of B(q) is an mf2. Thus D5(q) is a linear combination of
mfs of different orders.

9 Concluding Remarks: The Maass Form Era

The aim of this survey has been to document aspects of the theory of mock theta
functions which were discovered and proved using classical methods. As noted in
the introduction, the twenty first century saw a dramatic infusion of new insights
and achievements which largely transformed the subject. A comprehensive, lucid
account of these developments is contained in Ono’s memoir [On]. Our purpose
here is to provide some remarks which may help smooth the transition to the newer
approach.

Central to this approach is the theory of Maass forms, initiated in [Ma]. These
are real-analytic, complex-valued functions F(z), where z = x+ iy is in the upper
half plane H. Their defining properties are
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(i) For every
(a b

c d

)
in a given subgroup Γ of the modular group Γ(1), we have

F

(
az+ b
cz+ d

)
= F(z)

(ii) F(x+ iy) is an eigenfunction of the hyperbolic Laplacian

Δ =−y2
(

∂ 2

∂x2 +
∂ 2

∂y2

)

(iii) For some N > 0,

F(x+ iy) = O(yN) as y→ ∞

A Maass cusp form is one which satisfies the additional condition

(iv)
∫ 1

0 F(z+ x)dx = 0.

Also needed is the concept of a weakly harmonic Maass form of weight k. Here
Γ is either Γ0(N) or Γ1(N), and k is an integer or half an odd integer; in the latter
case, 4|N. Property (i) is replaced by

(i′)

F

(
az+ b
cz+ d

)
=

⎧
⎨

⎩

(cz+ d)kF(z) if k ∈ Z ,
( c

d

)2k
�−2k

d (cz+ d)kF(z) otherwise, .

where ( c
d ) is the Kronecker symbol,

√
cz+d is the principal branch of the

holomorphic square root, and

�d =

{
1 if d ≡ 1 (mod 4) ,
i if d ≡ 3 (mod 4) .

Property (ii) is replaced by
(ii′)

ΔkF = 0 ,

where

Δk =−y2
(

∂ 2

∂x2 +
∂ 2

∂y2

)
+ iky

(
∂
∂x

+ i
∂
∂y

)
.

Property (iii) is replaced by the existence of a polynomial

PF = ∑
n≤0

c+F (n)q
n ∈C[q−1]

such that
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(iii′)
F(z)−PF(z) = O(e−�y) as y→ ∞

for some � > 0, with analogous requirements at the other cusps of Γ. This is
a more precise formulation of the requirement that F(z) have at most linear
exponential growth at the cusps.

Both θ fs and mfs are related to weakly harmonic Maass forms F(z) of weight
2−k on the group Γ1(N), where k > 1 is an integer or a half-integer. The connection
involves the Fourier series of F(z), i.e., its expansion in powers of the uniformizing
variable q = e2π iz. This series has the form

F(z) = ∑
n>>−∞

c+(n)qn + ∑
n≤0

c−(n)Γ(k−1,4π |n|y)qn, (9.1)

where z = x+ iy ∈H and Γ(s, t) is the incomplete Γ-function

Γ(s, t) =
∫ ∞

t
e−uus−1 du .

The first series in (9.1) is denoted by F+(z) and is called the holomorphic part of
F(z). The second series is denoted by F−(z) and called the nonholomorphic part
of F(z).

It has been established (see [On] for details) that an extensive class of θ fs T (q)
and mfs M(q) are of the form F+(q) for some harmonic Maass form F(z). When
T (q) = F+(z), the nonholomorphic F−(z) is a period integral, and when M(q) =
F+(z) the part F−(z) is a Mordell integral. Thus harmonic Maass forms constitute a
fundamental link between θ fs and mfs, quite apart from the defining properties (i),
(ii), (iii) or (i), (iii), (iv) stated in the introduction.

Throughout the rest of this section we will use the modern notation q= e2π iτ . For
l > 0 the Appell function of level l (not to be confused with the level of a modular
form) is defined by

Al(u,v ;τ) = a
l
2

∞

∑
n=−∞

(−1)lnq
1
2 ln(n+1)bn

1−aqn ,

where a = e2π iu, b = e2π iv. These functions are related to Lerch sums [L1], [L2].
Zagier and Zwegers (see [Zw3]) showed that

Al(u,v ;τ) =
l−1

∑
m=0

amA1(lu,v+mτ +(l−1)/2; lτ) .

It follows that u2, u3, and hence g2, g3, can be expressed in terms of A1. In
his ground-breaking work on mock theta functions, Zwegers [Zw2] constructed a
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nonholomorphic Jacobi form μ̂(u,v ;τ) which is a “completion” of the normalized
level 1 Appell function:

μ(u,v ;τ) =
1

ϑ(v ;τ)
A1(u,v ;τ) ,

where

ϑ(v ;τ) = i
∞

∑
n=−∞

(−1)nq
1
2 (n+

1
2 )

2
bn+ 1

2 =−ib−
1
2 q

1
8 j(b,q).

Zwegers established laws governing the behavior of μ̂(u,v ;τ) under transformation
of the elliptic variables u, v and the modular variable τ . Using these, he constructed
weight 1/2 weakly harmonic Maass forms which include completions of many of
the classical mfs. Zwegers’ work reveals fundamental properties of these functions.

The transformation laws for g2 and μ can be combined to eliminate the Mordell
integrals. This resulting transformation law is

q−
1
2 r2(

q
1
8 g2(a

1
2 b−

1
2 q

1
4 ,q

1
2 )+ iμ(u,v ;τ)

)

=
1√−iτ

(1
2

sec(πr)q
− 1

8
1 h2(−qv−u

1 ,q1)− iμ
(u

τ
,

v
τ

;−1
τ

))
,

where q = e2π iτ , q1 = e−2π i/τ , a = e2π iu, b = e2π iv and r = (u− v)/τ . Hence

iμ(u,v ;τ)+ q
1
8 g2(a

1
2 b−

1
2 q

1
4 ,q

1
2 ) (9.2)

and

iμ(u,v ;τ)− a
1
2 b−

1
2 q−

1
8 h2(−ab−1,q)

1+ ab−1 (9.3)

are Jacobi forms; they behave like θ fs.
A proof that (9.2) vanishes when u+v= τ/2 and (9.3) vanishes when u+v= 1/2

is given in [GM3]. Therefore

g2(a,q) =−iq−
1
4 μ(u,τ−u ;2τ) (9.4)

and

h2(a,q) = (a
1
2 −a−

1
2 )q

1
8 μ
(u

2
,

1− u
2

;τ
)
= 2isin(πu)q

1
8 μ
(u

2
,

1−u
2

;τ
)
. (9.5)

In an important paper, S.-Y. Kang [K] further connected classical mfs with the
work of Zwegers and Bringmann-Ono. In particular, she found the expressions for
g2 and g3 in terms of μ :



140 B. Gordon and R.J. McIntosh

iag2(a,q) =
η4(2τ)

η2(τ)ϑ(2u ;2τ)
+ aq−

1
4 μ(2u,τ ;2τ) ,

ia
3
2 q−

1
24 g3(a,q) =

η3(3τ)
η(τ)ϑ(3u ;3τ)

+ aq−
1
6 μ(3u,τ ;3τ)+ a2q−

2
3 μ(3u,2τ ;3τ) ,

where a = e2π iu, q = e2π iτ and η(τ) = q
1
24 (q)∞ is the Dedekind η-function.

Choi [C5] proved that

∞

∑
n=−∞

anbnqn2

(aq ;q)n(bq ;q)n
=
−a(a−1;q)∞

(q ;q)∞(bq ;q)∞

∞

∑
n=−∞

(−1)nq
1
2 n(n+1)bn

1−aqn

= −ia
1
2 b

1
2 q

1
8 (a−1;q)∞(b

−1;q)∞ μ(u,v ;τ) ,

where a and b are not equal to integral powers of q. This provides an expansion of
μ as a bilateral hypergeometric sum. We immediately see that μ is symmetric in the
variables u and v. Since

∞

∑
n=−∞

(ab)nqn2

(aq ;q)n(bq ;q)n
=

∞

∑
n=0

(ab)nqn2

(aq ;q)n(bq ;q)n
+

∞

∑
n=1

qn(a−1;q)n(b
−1;q)n ,

it follows that μ can be expressed as a combination of normalized Eulerian series.
In 1987, F.J. Dyson [Dy] wrote as follows:

The mock theta-functions give us tantalizing hints of a grand synthesis still to be discovered.
Somehow it should be possible to build them into a coherent group-theoretical structure,
analogous to the structure of modular forms which Hecke built around the old theta-
functions of Jacobi. This remains a challenge for the future. My dream is that I will live
to see the day when our young physicists, struggling to bring the predictions of superstring
theory into correspondence with the facts of nature, will be led to enlarge their analytic
machinery to include not only theta-functions but mock theta-functions.

A host of talented mathematicians and physicists, both young and more senior,
are now engaged in just such an effort. In particular, the work of Bringmann, Choi,
Folsom, Kang, Ono, Rhoades, Zagier and Zwegers has shown that the theory of
Maass forms is a cornerstone of the structure envisioned by Dyson.
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[KP] V.G. Kac and D.H. Peterson, Affine Lie algebra and Hecke modular forms, Bull. Amer.

Math. Soc. (NS) 3 (1980), 1057–1061.
[K] S.-Y. Kang, Mock Jacobi forms in basic hypergeometric series, Compositio Mathematica,

(2009), 145:553–565.
[L1] M. Lerch, Poznámky k theorii funkcı́ elliptických, Rozpravy České Akademie Cı́saře
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[TM] J. Tannery and J. Molk, Éléments de la Théorie des Fonctions Elliptiques, Tomes I–IV,

Gauthier-Villars, Paris, 1893–1902; reprinted, Chelsea, New York, 1972.
[W1] G.N. Watson, The final problem: an account of the mock theta functions, J. London Math.

Soc. 11 (1936), 55–80.
[W2] G.N. Watson, The mock theta functions (2), Proc. London Math. Soc. (2) 42 (1937),

274–304.
[Wm] M. Wakimoto, Representation theory of affine superalgebras at the critical level, Proc. Intl.

Congr. Math., Vol II (Berlin, 1998) Doc. Math., Extra Vol II, 605–614.
[WW] E.T. Whittaker and G.N. Watson, Modern Analysis, 4th edition, Cambridge Univ.

Press, 1952.
[Za1] D. Zagier, A proof of the Kac-Wakimoto affine denominator formula for the strange series,

Math. Rec. Lett. 7 (2000), no 5–6, 597–604.
[Za2] D. Zagier, Traces of singular moduli, motives, polylogarithms and Hodge theory, Part I

(Irvine, CA, 1998), 211–244, Int. Press Lect. Ser., 3, I, Int. Press, Somerville, MA, 2002.
[Za3] D. Zagier, Ramanujan’s mock theta functions and their applications, Séminaire BOUR-
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An Application of Cauchy–Sylvester’s Theorem
on Compound Determinants to a BCn-Type
Jackson Integral

Masahiko Ito and Soichi Okada

Abstract A determinant formed by multiple 2rψ2r basic hypergeometric series is
evaluated as a product of q-gamma functions. Its simple and direct proof is presented
herein as an application of Cauchy–Sylvester’s theorem on compound determinants,
which also provides a very simple proof of determinant formulae for classical group
characters given in [M. Ito and K. Koike, A generalization of Weyl’s denominator
formulas for the classical groups, J. Algebra 302 (2006), 817–825].

Keywords Cauchy–Sylvester’s compound determinant • Vandermonde
determinant • BCn-type Jackson integral • Schur functions
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1 Introduction

The aim of this paper is to give a simple and direct proof to a determinant
identity involving BCn-type Jackson integrals, by applying Cauchy–Sylvester’s
theorem on compound determinants. BCn-type Jackson integrals are a multiple
generalization of the basic hypergeometric series in a class of what is called
very-well-poised-balanced 2rψ2r. A key reason to consider the BCn-type Jackson
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integrals, which admit Weyl group symmetry, is to provide an explanation and an
extension of these hypergeometric series with respect to the Weyl group symmetry
and the q-difference equations of the BCn-type Jackson integrals with respect to
their parameters. For instance, the formula called Slater’s transformation for a
very-well-poised-balanced 2rψ2r series can be regarded as a connection formula
[19] for the solutions of q-difference equations [17] of the BC1-type Jackson
integral. In [16], one of the authors extended the connection formula to that for
a BCn-type Jackson integral, which is defined in [3–5]. As an application of the
connection formula, it can be proven that a determinant of matrix formed by the
BCn-type Jackson integrals is expressed as a product of q-gamma functions.

To state our determinant identity, we review some terminology (see Sect. 2 for
details). For a point ξ = (ξ1, . . . ,ξn) ∈ (C∗)n and a holomorphic function ϕ(z) on
(C∗)n that is invariant under the Weyl group action, consider the function 〈ϕ ,ξ 〉
defined using the Jackson integral, which is the sum over the lattice Z

n:

〈ϕ ,ξ 〉 :=
∫∫
···
∫ ξ ∞

0
ϕ(z)Φ(z)Δ(z)

dqz1

z1
∧·· ·∧ dqzn

zn
.

Here, Φ(z) and Δ(z) are functions in z = (z1,z2, . . . ,zn) ∈ (C∗)n defined by

Φ(z) :=
n

∏
i=1

2s+2

∏
m=1

z1/2−αm
i

(qa−1
m zi)∞

(amzi)∞
,

Δ(z) :=
n

∏
i=1

1− z2
i

zi
∏

1≤ j<k≤n

(1− z j/zk)(1− z jzk)

z j
,

where s is an arbitrary integer satisfying s ≥ n, and qαm = am (1 ≤ m≤ 2s+2) are
parameters. The function Δ(z) is the Weyl denominator of type Cn. The sum 〈ϕ ,ξ 〉 is
called a Jackson integral of type BCn. If we regard 〈ϕ ,z〉 as a function of z ∈ (C∗)n,
there exists a holomorphic function 〈〈ϕ ,z〉〉 on (C∗)n such that

〈ϕ ,z〉= 〈〈ϕ ,z〉〉Θ(z),

where Θ(z) is defined by

Θ(z) :=
n

∏
i=1

zs
i θ (z2

i )

∏2s+2
m=1 zαm

i θ (amzi)
∏

1≤ j<k≤n

θ (z jzk)θ (z j/zk)

z j

in terms of theta functions θ (z). We call 〈〈ϕ ,z〉〉 the regularized Jackson integral of
type BCn.

The rows and columns of our determinant are indexed by integer sequences in

Z = {μ = (μ1,μ2, . . . ,μn) ∈ Z
n ; 1≤ μ1 < μ2 < · · ·< μn ≤ s}
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and

B = {λ = (λ1,λ2, . . . ,λn) ∈ Z
n ; s− n≥ λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0},

respectively. For a partition λ ∈ B, the corresponding symplectic Schur function
χλ (z1, . . . ,zn) is defined by

χλ (z1, . . . ,zn) =
det

(
zλk+n−k+1

j − z−λk−n+k−1
j

)

1≤ j,k≤n

det
(

zn−k+1
j − z−n+k−1

j

)

1≤ j,k≤n

.

Also, for x = (x1,x2, . . . ,xs) ∈ (C∗)s and μ ∈ Z, we put

x(μ) := (xμ1 ,xμ2 , . . . ,xμn) ∈ (C∗)n.

The determinant formula, which was proven in [16], is now stated as follows:

Theorem 1.1.

det
(〈〈χλ ,x(μ)〉〉

)
λ∈B
μ∈Z

= {(1− q)(q)∞}n(s
n)

×
[

∏1≤i< j≤2s+2(qa−1
i a−1

j )∞

(qa−1
1 a−1

2 . . .a−1
2s+2)∞

](s−1
n−1)

[

∏
1≤ j<k≤s

θ (x j/xk)θ (x jxk)

x j

](s−2
n−1)

, (1)

where the rows λ ∈ B are arranged in decreasing order of the lexicographic order-
ing, and the columns μ ∈ Z are arranged in increasing order of the lexicographic
ordering.

The matrix (〈〈χλ ,x(μ)〉〉)λ ,μ can be regarded as the pairing between the nth coho-
mology and the nth homology associated with Φ(z) (see [1, 2]). Thus, Theorem 1.1
enables us to determine explicitly when the paring is nondegenerate.

In this paper we give a simple proof of Theorem 1.1, by applying Cauchy–
Sylvester’s theorem on compound determinants. Given an s× s matrix A, the nth
compound matrix A(n) is the

(s
n

)× (s
n

)
matrix whose entries are the minors of A of

order n. Cauchy–Sylvester’s theorem (Proposition 3.1) says that det A(n) is equal to
the power of det A with exponent

(s−1
n−1

)
. Cauchy–Sylvester’s theorem also provides

a very simple proof of determinant formulae for classical group characters given in
[18]. See Proposition 3.2.

This paper is organized as follows. In Sect. 2 we review Jackson integral of type
BCn and its regularization. After giving Cauchy–Sylvester’s theorem in Sect. 3 we
give a proof of Theorem 1.1 in Sect. 4.

We should mention a similar determinant identity [6, Theorem 1.3] involving
other BCn-type Jackson integrals. Taking the limit q→ 0 in this determinant identity,
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we can deduce other determinant formulae for classical group characters, which are
similar to those in Proposition 3.2. The limiting case can be obtained by specializing
another formula for compound determinant recently found in [12].

2 Definition of Jackson Integral of Type BCn
and Its Regularization

Throughout this paper, we assume that 0 < q < 1 and use the standard notation for
q-shifted factorials (x)∞ := ∏∞

i=0(1− qix) and (x)N := (x)∞/(qNx)∞.

2.1 Weyl Group and Symplectic Schur Functions

Let W be the Weyl group of type Cn, which is isomorphic to the semidirect product
(Z/2Z)n

�Sn, where Sn is the symmetric group of n letters. This group W acts on
the torus (C∗)n, where Sn acts by permuting the coordinates and (Z/2Z)n acts by
inverting the coordinates. This action induces an action of W on functions f (z) on
(C∗)n by

(w f )(z) := f (w−1(z)) for w ∈W.

A function f (z) on (C∗)n is said to be W-symmetric if (w f )(z) = f (z) for all w∈W .
For an n-tuple of integers β = (β1,β2, . . . ,βn) ∈ Z

n, we define a function Aβ (z)
in z = (z1,z2, . . . ,zn) ∈ (C∗)n by putting

Aβ (z) := det
(

zβk
j − z−βk

j

)

1≤ j,k≤n
.

For example, if β = ρ = (n,n− 1, . . . ,2,1) ∈ Z
n, then we have

Aρ(z) =
n

∏
i=1

(zi− z−1
i ) ∏

1≤ j<k≤n

(zk− z j)(1− z jzk)

z jzk
, (2)

which is Weyl’s denominator formula for the symplectic group. For a partition λ =
(λ1, . . . ,λn) of length at most n, we put

χλ (z) :=
Aλ+ρ(z)

Aρ(z)
=

det
(

zλk+n−k+1
j − z−λk−n+k−1

j

)

1≤ j,k≤n

det
(

zn−k+1
j − z−n+k−1

j

)

1≤ j,k≤n

,
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where λ + ρ = (λ1 + n− 1,λ2 + n− 2, . . . ,λn) and call it the symplectic Schur
function. This function χλ is the irreducible character of the symplectic group
evaluated on the maximal torus (see [8]). It is easy to see that χλ (z1, . . . ,zn) is a
W -symmetric Laurent polynomial in z1, . . . ,zn.

2.2 BCn-Type Jackson Integral

In this section, the definition of the BCn-type Jackson integral is reviewed
following [3].

Associated to a lattice point ν = (ν1,ν2, . . . ,νn) ∈ Z
n, we define a q-shift

(C∗)n 
 z = (z1,z2, . . . ,zn) �−→ qνz := (qν1z1,q
ν2z2, . . . ,q

νnzn) ∈ (C∗)n.

Definition 2.1. For a point ξ ∈ (C∗)n and a function f (z) on (C∗)n, we write

∫∫
···
∫ ξ ∞

0
f (z)

dqz1

z1
∧·· ·∧ dqzn

zn
:= (1−q)n ∑

ν∈Zn

f (qν ξ ),

which is referred to as the Jackson integral if it converges.

Let s be an arbitrary integer satisfying s ≥ n, and let α1,α2, . . . ,α2s+2 be
parameters and put am = qαm (1 ≤ m ≤ 2s + 2). Let Φ(z) be the function of
z = (z1,z2, . . . ,zn) ∈ (C∗)n defined by

Φ(z) :=
n

∏
i=1

2s+2

∏
m=1

z1/2−αm
i

(qa−1
m zi)∞

(amzi)∞
. (3)

By definition, the following holds for Φ(z).

Lemma 2.2. For w ∈W, we put Uw(z) := (wΦ)(z)/Φ(z). Then Uw(z) is invariant
under the shifts z→ qνz for all ν ∈ Z

n.

Next, we set

Δ(z) :=
n

∏
i=1

1− z2
i

zi
∏

1≤ j<k≤n

(1− z j/zk)(1− z jzk)

z j
. (4)

Comparing with (2), we have

Δ(z) = (−1)nAρ(z),

where ρ = (n,n−1, . . . ,2,1).
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Definition 2.3. For a point ξ ∈ (C∗)n and an arbitrary W -symmetric function ϕ(z),
the BCn-type Jackson integral is defined by

〈ϕ ,ξ 〉 :=
∫∫
···
∫ ξ ∞

0
ϕ(z)Φ(z)Δ(z)

dqz1

z1
∧·· ·∧ dqzn

zn
.

By definition, the sum 〈ϕ ,ξ 〉 viewed as a function in ξ is invariant under
the shifts ξ → qνξ for ν ∈ Z

n. From the relations (wϕ)(z) = ϕ(z), (wΔ)(z) =
(sgnw)Δ(z), and Lemma 2.2, it follows that

w〈ϕ ,ξ 〉= (sgnw)Uw(ξ )〈ϕ ,ξ 〉 (w ∈W ) (5)

as functions in ξ .
In what follows, we assume that the parameters a1,a2, . . . ,a2s+2 satisfy the

condition

|a1a2 · · ·a2s+2|> qs−n+1.

Under this condition, if amξi �∈ {ql ; l ∈ Z} for 1 ≤ i ≤ n and 1 ≤ m ≤ 2s + 2,
the convergence of 〈1,ξ 〉 can be confirmed in the same manner as [13, p. 158,
Theorem 4]. In addition, we assume that the parameters a1,a2, . . . ,a2s+2 are all
generic.

2.3 Regularization

Let Θ(z) be the function on (C∗)n defined by

Θ(z) :=
n

∏
i=1

zs
i θ (z2

i )

∏2s+2
m=1 zαm

i θ (amzi)
∏

1≤ j<k≤n

θ (z jzk)θ (z j/zk)

z j
, (6)

where θ (x) denotes the theta function (x)∞(q/x)∞, which satisfies

θ (x) = θ (q/x), θ (qx) =−θ (x)/x. (7)

By definition, we have

(wΘ)(z) = (sgnw)Uw(z)Θ(z) (w ∈W ). (8)

Proposition 2.4. Suppose that the parameters a1,a2, . . . ,a2s+2 are generic. If ϕ(z)
is a W-symmetric holomorphic function on (C∗)n, then there exists a holomorphic
function f (z) on (C∗)n such that 〈ϕ ,z〉= f (z)Θ(z).
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Proof. See [4] or [14].

Definition 2.5. In Proposition 2.4, the holomorphic function f (z) is denoted by
〈〈ϕ ,z〉〉 and called the regularized Jackson integral. That is,

〈ϕ ,z〉= 〈〈ϕ ,z〉〉Θ(z).

From (5) and (8), the regularized Jackson integral 〈〈ϕ ,z〉〉 is also W -symmetric.
In particular, if s = n, it is confirmed from (7) that the function Θ(z) is periodic

for the shifts z→ qνz for ν ∈ Zn. This implies that the holomorphic function 〈〈ϕ ,z〉〉
becomes a constant that does not depend on z if s = n. The following result was
proven by Gustafson [11, p. 77, (2.6)]:

Lemma 2.6 (Gustafson). If s = n and x = (x1,x2, . . . ,xn) ∈ (C∗)n. Then

〈〈1,x〉〉= (1− q)n(q)n
∞

∏1≤i< j≤2n+2(qa−1
i a−1

j )∞

(qa−1
1 a−1

2 · · ·a−1
2n+2)∞

. (9)

Proof. See [11] or [15].

We call (9) Gustafson’s bilateral Cn-type summation formula, which is a multiple
extension of Bailey’s 6ψ6 summation formula [9, p. 140, (5.3.1)]. As we will see in
Lemma 4.2, (9) can be rewritten in the form of Vandermonde-type determinant.

3 Cauchy–Sylvester’s Compound Determinant

We denote by < the lexicographic ordering on Z
n. That is, for μ = (μ1,μ2, . . . ,μn)

and ν = (ν1,ν2, . . . ,νn) ∈ Z
n, we write μ < ν if there exists an index k such that

μ1 = ν1, . . . , μk−1 = νk−1 and μk < νk.

Let s and n be positive integers satisfying s≥ n. We put

Z = {μ = (μ1,μ2, . . . ,μn) ∈ Z
n ; 1≤ μ1 < μ2 < · · ·< μn ≤ s}. (10)

Let A = (ai j)1≤i, j≤s be an arbitrary s×s matrix. For μ and ν ∈ Z, we denote by Aμ,ν
the submatrix of A obtained by choosing rows μ1, . . . ,μn and columns ν1, . . . ,νn:

Aμ,ν =
(
aμi,ν j

)
1≤i, j≤n

.

Then the nth compound matrix A(n) of A is defined to be

A(n) =
(
detAμ,ν

)
μ,ν∈Z ,

where the rows and columns are arranged in increasing ordering on Z.
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The following formula was obtained by Cauchy [7] and Sylvester [21] (see [20,
pp. 99–131 of vol. I, pp. 193–197 of vol. II] or [22, pp. 87–89]).

Proposition 3.1. Let A = (ai j)1≤i, j≤s be an arbitrary square matrix of order s. The
determinant of the nth compound matrix A(n) is given by

det A(n) = (det A)(
s−1
n−1). (11)

By applying this formula, we can give a much simpler proof to the determinant
identities for classical group characters in [18], some of which are the special cases
(or limiting cases) of our main determinant identity in Theorem 1.1.

Let B be the set of partitions whose Young diagram is contained in an n× (s−n)
rectangle:

B = {λ = (λ1,λ2, . . . ,λn) ∈ Z
n ; s− n≥ λ1 ≥ λ2 ≥ ·· · ≥ λn ≥ 0}. (12)

Then the correspondence

Z 
 κ = (κ1,κ2, . . . ,κn) �−→ λ = (s−κ1−n+1,s−κ2−n+2, . . . ,s−κn) ∈ B

gives a bijection between Z and B. And this bijection reverses the lexicographic
ordering on Z and B induced from that on Z

n.
By applying the above formula (11), we can derive the following determinant

identities involving characters.

Proposition 3.2. (1) For symplectic Schur functions χλ , we have

det
(
χλ (x(μ))

)
λ∈B
μ∈Z

=

[

∏
1≤ j<k≤s

(1− x j/xk)(1− x jxk)

x j

](s−2
n−1)

. (13)

(2) For usual Schur functions Sλ , we have

det
(
Sλ (x(μ))

)
λ∈B
μ∈Z

=

[

∏
1≤i< j≤s

(xi− x j)

](s−2
n−1)

. (14)

In [18], Proposition 3.2 and its variations have been proven by some elementary
calculation. Note that, if n = 1, then (13) and (14) are exactly Weyl’s denominator
formulae (or the Vandermonde determinant).

Proof. Apply (11) to the matrices A = (xs−i+1
j − x−s+i−1

j )1≤i, j≤s and (xs−i
j )1≤i, j≤s.

Remark. In the determinant identity in Theorem 1.1, we take the limit q → 0
after putting ai = xi for i = 1,2, . . . ,s. Then, since 〈〈χλ ,x(μ)〉〉 → χλ (x(μ)), we can
deduce the determinant identity (13) for symplectic Schur functions. Moreover,
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considering the principal term of asymptotic behavior of both sides of (13) at
xi→+∞ (1≤ i≤ s), we immediately obtain the determinant identity (14) for Schur
functions.

4 Proof of Theorem 1.1

In this section, we use Cauchy–Sylvester’s theorem (Proposition 3.1) to give a proof
of Theorem 1.1.

For simplicity, set

D(u,v) :=
θ (u/v)θ (uv)

u
.

To specify the number n of variables z1,z2, . . . ,zn, we use the notations Φ(n)(z),
Δ(n)(z), and Θ(n)(z) instead of Φ(z), Δ(z), and Θ(z), which are defined by (3), (4),
and (6) respectively. Then we have

Φ(n)(z) =
n

∏
i=1

Φ(1)(zi), Θ(n)(z) =
n

∏
i=1

Θ(1)(zi) ∏
1≤ j<k≤n

D(z j ,zk). (15)

By definition, the symplectic Schur functions χ(i)(z) in one variable z ∈ C
∗ are

written in the form

χ(i)(z) =
zi+1− z−i−1

z− z−1 (i = 0,1,2, . . .).

Lemma 4.1. If λ = (λ1, . . . ,λn) ∈ B and μ = (μ1, . . . ,μn) ∈ Z, then

det
(〈〈χ(λi+n−i),xμ j 〉〉

)
1≤i, j≤n

= 〈〈χλ ,x(μ)〉〉 ∏
1≤ j<k≤n

D(xμ j ,xμk )

for x = (x1,x2, . . . ,xs) ∈ (C∗)s.

Proof. From the definition of the BC1-type Jackson integral 〈〈χ(λi+n−i),xμ j 〉〉, we
have

det
(〈〈χ(λi+n−i),xμ j 〉〉

)
1≤i, j≤n

n

∏
j=1

Θ(1)(xμ j )

= det
(〈χ(λi+n−i),xμ j 〉

)
1≤i, j≤n

= det

(∫ xμ j ∞

0
χ(λi+n−i)(z j)Φ(1)(z j)Δ(1)(z j)

dqz j

z j

)

1≤i, j≤n
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=
∫∫
···
∫ x(μ)∞

0
det

(
χ(λi+n−i)(z j)Δ(1)(z j)

)

1≤i, j≤n
Φ(n)(z)

dqz1

z1
∧·· ·∧ dqzn

zn

= (−1)n
∫∫
···
∫ x(μ)∞

0
det

(
zλi+n−i+1

j − z−λi−n+i−1
j

)

1≤i, j≤n
Φ(n)(z)

dqz1

z1
∧·· ·∧dqzn

zn

= (−1)n
∫∫
···
∫ x(μ)∞

0
Aλ+ρ(z)Φ(n)(z)

dqz1

z1
∧·· ·∧ dqzn

zn

=

∫∫
···
∫ x(μ)∞

0
χλ (z)Φ(n)(z)Δ(n)(z)

dqz1

z1
∧·· ·∧ dqzn

zn

= 〈χλ ,x(μ)〉

= 〈〈χλ ,x(μ)〉〉Θ(n)(x(μ)).

Using (15) for the above equation, we obtain Lemma 4.1.

Lemma 4.2. The following holds for x = (x1, . . . ,xs) ∈ (C∗)s:

det
(〈〈χ(s−i),x j〉〉

)
1≤i, j≤s

= (1− q)s(q)s
∞

∏1≤i< j≤2s+2(qa−1
i a−1

j )∞

(qa−1
1 a−1

2 · · ·a−1
2s+2)∞

∏
1≤ j<k≤s

D(x j,xk).

Remark. As we will see in the proof below (see (16)), Lemma 4.2 is just a
restatement of Gustafson’s bilateral Cs-type summation formula. In this sense,
Gustafson’s formula (9) itself can be regarded as a generalization of the original
Vandermonde determinant.

Proof. From the definition of the BC1-type Jackson integral 〈〈χ(s−i),x j〉〉, we have

det
(〈〈χ(s−i),x j〉〉

)
1≤i, j≤s

s

∏
j=1

Θ(1)(x j)

= det
(〈χ(s−i),x j〉

)
1≤i, j≤s

= det

(∫ x j∞

0
χ(s−i)(z j)Φ(1)(z j)Δ(1)(z j)

dqz j

z j

)

1≤i, j≤s

=

∫∫
···
∫ x∞

0
det

(
χ(s−i)(z j)Δ(1)(z j)

)

1≤i, j≤s
Φ(s)(z)

dqz1

z1
∧·· ·∧ dqzs

zs

= (−1)s
∫∫
···
∫ x∞

0
det

(
zs−i+1

j − z−s+i−1
j

)

1≤i, j≤s
Φ(s)(z)

dqz1

z1
∧·· ·∧ dqzs

zs

= (−1)s
∫∫
···
∫ x∞

0
Aρ(z)Φ(s)(z)

dqz1

z1
∧·· ·∧ dqzs

zs
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=
∫∫
···
∫ x∞

0
Φ(s)(z)Δ(s)(z)

dqz1

z1
∧·· ·∧ dqzs

zs

= 〈1,x〉
= 〈〈1,x〉〉Θ(s)(x),

where 〈〈1,x〉〉 is the BCs-type Jackson integral with parameters a1,a2, . . . ,a2s+2.
Using (15) for the above equation, it follows that

det
(〈〈χ(s−i),x j〉〉

)
1≤i, j≤s

= 〈〈1,x〉〉 ∏
1≤ j<k≤s

D(x j,xk). (16)

From Lemma 2.6 and (16), we obtain Lemma 4.2.

Proof of Theorem 1.4. We apply Cauchy–Sylvester’s theorem on compound deter-
minants (11) to the matrix

A =
(〈〈χ(s−i),x j〉〉

)
1≤i, j≤s

.

Let κ , μ ∈ Z and λ ∈ B be the partition corresponding to κ , i.e., λi = s−κi−
(n− i) (1≤ i≤ n). Then it follows from Lemma 4.1 that the (κ ,μ)-entry of the nth
compound matrix A(n) is given by

det Aκ ,μ = det
(〈〈χ(λi+n−i),xμ j 〉〉

)
1≤i, j≤n

= 〈〈χλ ,x(μ)〉〉 ∏
1≤ j<k≤n

D(xμ j ,xμk ).

Hence we have

det A(n) = det
(

det
(〈〈χ(λi+n−i),xμ j 〉〉

)
1≤i, j≤n

)

λ∈B
μ∈Z

= det

(

〈〈χλ ,x(μ)〉〉 ∏
1≤ j<k≤n

D(xμ j ,xμk)

)

λ∈B
μ∈Z

= det
(〈〈χλ ,x(μ)〉〉

)
λ∈B
μ∈Z

∏
μ∈Z

∏
1≤i< j≤n

D(xμi ,xμ j )

= det
(〈〈χλ ,x(μ)〉〉

)
λ∈B
μ∈Z

∏
1≤i< j≤s

D(xi,x j)
(s−2

n−2).

On the other hand, Lemma 4.2 tells us that

det A = det
(〈〈χ(s−i),x j〉〉

)
1≤i, j≤s

= (1− q)s(q)s
∞

∏1≤i< j≤2s+2(qa−1
i a−1

j )∞

(qa−1
1 a−1

2 . . .a−1
2s+2)∞

∏
1≤ j<k≤s

D(x j,xk).
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Therefore, by using s
(s−1

n−1

)
= n

(s
n

)
and

(s−1
n−1

)− (s−2
n−2

)
=
(s−2

n−1

)
, we have

det
(〈〈χλ ,x(μ)〉〉

)
λ∈B
μ∈Z

= {(1−q)(q)∞}n(s
n)

[
∏1≤i< j≤2s+2(qa−1

i a−1
j )∞

(qa−1
1 a−1

2 . . .a−1
2s+2)∞

](s−1
n−1)

[

∏
1≤ j<k≤s

D(x j,xk)

](s−2
n−1)

,

which is the desired identity. We complete the proof. 
�
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Multiple Generalizations of q-Series Identities
and Related Formulas

Yasushi Kajihara

Abstract A number of multiple generalization of “familiar” and fundamental
q-series transformation formulas in Chap. 16 of Ramanujan’s notebook are obtained
from 3φ2 transformations for Milne’s multivariate basic hypergeometric series in our
previous work. A generalization of 1φ1 transformation related to the basic Lauricella
function φD is also presented.

Keywords Multivariate basic hypergeometric series • q-series transformations
• Ramanujan’s notebook • Partition function identities

Mathematics Subject Classification: Primary: 33D67; Secondary: 05A19, 11B65,
33C67, 33D90

1 Introduction

The famous Indian mathematician Ramanujan has recorded a number of elegant
formulas without proof in his notebooks which nowadays are called as Ramanujan’s
Note-books. Bruce Berndt and his collaborators have published detailed proofs of
several of Ramanujan’s formulae which are of interest to the expert and non-expert
alike. Their work may be found in the series of books published under the title
Ramanujan’s Note-books (of relevance here will be Part III of series [5]).

Not only are the formulas beautiful, but also it is known that Ramanujan’s
formulas have arisen in many areas of mathematics and mathematical physics.
Furthermore, some of his formulas are well recognized to play important roles in
these fields.
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In this paper, we focus on Chap. 16 of Ramanujan’s notebook [1]. In particular,
we give a number of new multivariate generalizations of “familiar” (as in [1])
and fundamental q-series transformations and allied formulas in Chap. 16 of
the Ramanujan’s notebook. Most of the formulas have been obtained from 3φ2

transformation formulas for Milne’s multivariate basic hypergeometric series of A
type in our previous work by limiting procedure.

We expect that some q-series identities presented in this paper will be worthwhile
for future investigation of generalizations of minimal models in conformal field
theory and representation theory of Virasoro algebra and W -algebra where several
remarkable q-series identities arise naturally (see [16] and references therein).

The organization of this paper is as follows: After summarizing notations and
basic definitions of multivariate (basic) hypergeometric series, in the next section,
we present some multivariate 3φ2 transformation formulas which are sources of the
multivariate q-series transformations in this paper. In Sect. 3, we give certain types
of multivariate Heine transformations from 3φ2 transformations. In Sect. 4, we give
some (q-)Pfaff transformations. Sections 5 and 6 are devoted to the derivations of
multivariate generalizations of transformation and summation formulas for some
partition functions. In particular, we give multivariate generalization of Entry 9
in Chap. 16 of Ramanujan’s notebook in Sect. 6. We close this paper to present a
generalization of 1φ1 transformation formula and related q-series transformation for
partition functions. Throughout of this paper we discuss some special and limiting
cases of q-series transformations in detail.

2 Preliminaries

Let N be a set of nonnegative integers. Hypergeometric series rFs is defined by

rFs

[{ai}r

{ci}s
;z

]
= rFs

[
a1,a2, . . . ,ar

c1,c2, . . . ,cs
;q;z

]
= ∑

n∈N

[a1, . . . ,ar]n
[c1, . . . ,cs]n n!

zn, (2.1)

where

[a]n := a(a+ 1) . . .(a+ n− 1) =
Γ(a+n)

Γ(a)
(2.2)

is a shifted factorial, and we employ the notation

[a1,a2, . . . ,ar]n := [a1]n[a2]n · · · [ar]n. (2.3)

Similarly, we denote basic hypergeometric series rφs by

rφs

[{ai}r

{ck}s
;q;z

]
= ∑

n∈N

(a1, . . . ,ar)n

(c1, . . . ,cs,q)n
zn
(
(−1)nq

1
2 n(n−1)

)s−r+1
, (2.4)
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where

(a;q)∞ := ∏
k∈N

(1− aqk), (a;q)n =
n−1

∏
k=0

(1−aqk) =
(a;q)∞

(aqn;q)∞
(2.5)

are q-shifted factorials. Throughout this paper, we assume that q is a complex
number such that 0 < |q| < 1. Unless otherwise stated, we omit the basis q in
q-shifted factorials. Namely, we denote (a;q)k as (a)k for instance. We also use
the notation

(a1,a2, . . . ,ar)n := (a1)n(a2)n · · · (ar)n. (2.6)

For a multi-index β = (β1, . . . ,βn) ∈Nn, |β |= ∑n
i=1 βi stands for the length of β .

In this paper, a multiple series ∑β∈Nn S(β ) is called An basic hypergeometric series
if (1) the series has a form

∑
β∈Nn

Δ(xqβ )

Δ(x)
uβ1

1 · · ·uβn
n × (ratios of q-shifted factorials) , (2.7)

where

Δ(x) = ∏
1≤i< j≤n

(xi− x j), Δ(xqβ ) = ∏
1≤i< j≤n

(xiq
βi− x jq

β j) (2.8)

are the Vandermonde determinants of x = (x1, . . . ,xn) and xqβ = (x1qβ1 , . . . ,xnqβn)
respectively. (2) The multiple series is symmetric with respect to the subscript
1≤ i≤ n. (3) In the case when n = 1, the multiple series reduces to basic
hypergeometric series.

Now we present some multiple nonterminating 3φ2 transformation formulas from
multiple 4φ3 transformations in our previous work [8].

2.1 Nonterminating 3�2 Transformations with Different
Dimensions

∑
γ∈Nn

(
dme
aBC

)|γ| Δ(xqγ)

Δ(x)
(a)|γ|
(e)|γ|

∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n,1≤k≤m

(ckxiyk)γi

(dxiyk)γi

=
(e/a,dme/BC)∞

(e,dme/aBC)∞
∑

δ∈Nm

( e
a

)|δ | Δ(yqδ )

Δ(y) ∏
1≤k,l≤m

((d/cl)yk/yl)δk

(qyk/yl)δk

× (a)|δ |
(dme/BC)|δ |

∏
1≤i≤n,1≤k≤m

((d/bi)xiyk)δk

(dxiyk)δk

, (2.9)
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where B = b1b2 · · ·bn and C = c1c2 · · ·cm. We use such notation throughout. In the
case when m = 1 and y1 = 1, (2.9) reduces to

∑
γ∈Nn

(
de

aBc

)|γ| Δ(xqγ)

Δ(x)
(a)|γ|
(e)|γ|

∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n

(cxi)γi

(dxi)γi

=
(e/a,de/Bc)∞

(e,de/aBc)∞
n+2φn+1

[
a,d/c,{(d/bi)xi}n

de/Bc,{dxi}n
;q,

e
a

]
. (2.10)

In the case when m = n = 1 and x1 = y1 = 1, (2.9) reduces to

3φ2

[
a,b,c
d,e

;q,
de
abc

]
=

(e/a,de/bc)∞

(e,de/abc)∞
3φ2

[
a,d/b,d/c
d,de/bc

;q,
e
a

]
. (2.11)

In [6], (2.9) was obtained from the following multiple Sears transformation:

∑
γ∈Nn

q|γ|
Δ(xqγ)

Δ(x)
(q−N ,a)|γ|

(e,aBCq1−N/dme)|γ|
∏

1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n,1≤k≤m

(ckxiyk)γi

(dxiyk)γi

=
(e/a,dme/BC)N

(e,dme/aBC)N
∑

δ∈Nm

q|δ |
Δ(yqδ )

Δ(y) ∏
1≤k,l≤m

((d/cl)yk/yl)δk

(qyk/yl)δk

× (q−N ,a)|δ |
(q1−Na/e,dme/BC)|δ |

∏
1≤i≤n,1≤k≤m

((d/bi)xiyk)δk

(dxiyk)δk

, (2.12)

by taking the limit N → ∞. In the case when m = n = 1 and x1 = y1 = 1, (2.12)
reduces to the Sears transformation for terminating balanced 4φ3 series:

4φ3

[
q−N ,a,b,c

d,e,abcq1−N/de
;q,q

]
=

(e/a,de/bc)N

(e,de/abc)N
4φ3

[
q−N ,a,d/b,d/c

d,aq1−N/e,de/bc
;q,q

]
.

(2.13)

2.2 Reversing Version

∑
γ∈Nn

(
E f

amBc

)|γ|
x−γ1

1 · · ·x−γn
n

Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n

(cxi)γi

×( f )|γ|
−1 ∏

1≤k≤m

(ayk)|γ|
(ekyk)|γ|

=
(E f/amB)∞

( f )∞
∏

1≤k≤m

(ayk)∞

(ekyk)∞
∏

1≤i≤n

((E f/amc)zi)∞

((E f/amBc)zi)∞
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× ∑
δ∈Nm

(a)|δ |w−δ1
1 · · ·w−δm

m
Δ(wqδ )

Δ(w) ∏
1≤k,l≤m

((el/a)wk/wl)δk

(qwk/wl)δk

∏
1≤k≤m

(( f/a)wk)δk

×(E f/amB)|δ |
−1 ∏

1≤i≤n

((E f/ambic)zi)|δ |
((E f/amc)zi)|δ |

, (2.14)

where zi = bi/Bxi (1≤ i≤ n) and wk = y−1
k (1 ≤ k ≤ m), respectively.

In the case when m = 1 and y1 = 1, (2.14) reduces to

∑
γ∈Nn

(
e f

aBc

)|γ|
x−γ1

1 · · ·x−γn
n

Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n

(cxi)γi

(a)|γ|
(e, f )|γ|

=
(e f/aB,a)∞

(e, f )∞
∏

1≤i≤n

((e f/ac)zi)∞

((e f/aBc)zi)∞
n+2φn+1

[{(e f/abic)zi}n,e/a, f/a
{(e f/ac)zi}n,e f/aB

;q;a

]
,

(2.15)

where zi = bi/Bxi (1≤ i≤ n).
In the case when f = a, (2.15) reduces to the following An q-Gauss summation

formula for 2φ1 series:

∑
γ∈Nn

( c
aB

)|γ|
x−γ1

1 · · ·x−γn
n

Δ(xqγ)

Δ(x)
(c)|γ|

−1 ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n

(axi)γi

=
(c/B)∞

(c)∞
∏

1≤i≤n

((c/a)zi)∞

((c/abi)zi)∞
, zi = bi/Bxi, (1≤ i≤ n). (2.16)

In the case when n = 1, (2.16) reduces to the q-Gauss summation

2φ1

[
a,b
c

;q,
c

ab

]
=

(c/a,c/bc)∞

(c,c/ab)∞
. (2.17)

Remark 2.1. Formula (2.16) can be obtained from Theorem 6.5 (An Sears transfor-
mation formula) of Milne-Lilly [12].

Equation (2.14) is obtained from the following multiple 4φ3 transformation
formula ((7.6) in [8] with a different arrangement of parameters):

∑
γ∈Nn

q|γ|
Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n

(cxi)γi

((amBCq1−N/E f )xi)γi

× (q−N)|γ|
( f )|γ|

∏
1≤k≤m

(ayk)|γ|
(ekyk)|γ|
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=
(E f/amB)N

( f )N
∏

1≤k≤m

(ayk)N

(ekyk)N
∏

1≤i≤n

((E f/amc)zi)N

((E f/amBc)zi)N

× ∑
δ∈Nm

q|δ |
Δ(wqδ )

Δ(w) ∏
1≤k,l≤m

((el/a)wk/wl)δk

(qwk/wl)δk

∏
1≤k≤m

(( f/a)wk)δk

((q1−N/a)wk)δk

× (q−N)|δ |
(E f/amB)|δ |

∏
1≤i≤n

((E f/ambic)zi)|δ |
((E f/amc)zi)|δ |

, (2.18)

where zi = bi/Bxi (1≤ i≤ n) and wk = y−1
k (1 ≤ k ≤ m), respectively.

In the case when m = n = 1 and x1 = y1 = 1, (2.14) reduces to

3φ2

[
a,b,c
e, f

;q;
e f
abc

]
=

(e f/ab,e f/ac,a)∞

(e, f ,e f/abc)∞
3φ2

[
e f/abc,e/a, f/a

e f/ab,e f/ac
;q;a

]
. (2.19)

We also mention that, in the case when m = n = 1 and x1 = y1 = 1, (2.18) reduces to

4φ3

[
q−N ,a,b,c

abcq1−N/e f ,e, f
;q;q

]
=
(e f/ab,e f/ac,a)N

(e, f ,e f/abc)N
4φ3

[
q−N ,e f/abc,e/a, f/a
q1−N/a,e f/ab,e f/ac

;q;q

]
.

(2.20)

Note that (2.20) is obtained by reversing the order of the summation of the Sears
transformation (2.13) and is also verified by iterating Sears transformation twice in
an appropriate manner.

3 Passage to Heine’s Transformations

In this section, we give a number of multivariate generalizations of Heine trans-
formations for 2φ1 series [9]. (The first one is equivalent to Entry 6 of Chap. 16 of
Ramanujan’s notebook):

2φ1

[
a,b
c

;q,u

]
=

(a,bu)∞

(c,u)∞
2φ1

[
c/a,u

bu
;q,a

]
(1st)

=
(c/a,au)∞

(c,u)∞
2φ1

[
a,abu/c

au
;q,c/a

]
(2nd)

=
(abu/c)∞

(u)∞
2φ1

[
c/b,c/a

c
;q,abu/c

]
. (3rd) (3.1)
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3.1 First Heine Transformation Formula for Basic
Hypergeometric Series of Type A

Here we present a generalization of the first Heine transformation formula ((1st)
of (3.1)):

2φ1

[
a,b
c

;q,u

]
=

(a,bu)∞

(c,u)∞
2φ1

[
c/a,u

bu
;q,a

]
(3.2)

for multiple basic hypergeometric series of type A, namely, with different
dimensions.

Replace f = amBcu/E in (2.14). Then let c tend to 0. After rearranging the
parameters, we have

∑
γ∈Nn

u|γ|x−γ1
1 · · ·x−γn

n
Δ(xqγ )

Δ(x) ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤k≤m

(ayk)|γ|
(ckyk)|γ|

= ∏
1≤k≤m

(ayk)∞

(ckyk)∞
∏

1≤i≤n

(Buzi)∞

(uzi)∞
∑

δ∈Nm

a|δ |w−δ1
1 · · ·w−δm

m
Δ(wqδ )

Δ(w)

× ∏
1≤k,l≤m

((cl/a)wk/wl)δk

(qwk/wl)δk

∏
1≤i≤n

((Bu/bi)zi)|δ |
(Buzi)|δ |

,

zi = bi/Bxi, (1≤ i≤ n) wk = y−1
k , (1≤ k ≤ m). (3.3)

Note that (3.3) also has an alternative expression:

∑
γ∈Nn

u|γ|x−γ1
1 · · ·x−γn

n
Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤k≤m

(ayk)|γ|
(ckyk)|γ|

= ∏
1≤k≤m

(ayk)∞

(ckyk)∞
∏

1≤i≤n

(biux−1
i )∞

((biu/B)x−1
i )∞

∑
δ∈Nm

a|δ |yδ1
1 · · ·yδm

m
Δ(y−1qδ )

Δ(y−1)

× ∏
1≤k,l≤m

((cl/a)yl/yk)δk

(qyl/yk)δk

∏
1≤i≤n

(ux−1
i )|δ |

(biux−1
i )|δ |

. (3.4)

In the case when m = 1 and y1 = 1, (3.4) reduces to

∑
γ∈Nn

u|γ|x−γ1
1 · · ·x−γn

n
Δ(xqγ )

Δ(x) ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi

(a)|γ|
(c)|γ|

=
(a)∞

(c)∞
∏

1≤i≤n

(biux−1
i )∞

((biu/B)x−1
i )∞

n+1φn

[
c/a,{ux−1

i }n

{biux−1
i }n

;q,a

]
. (3.5)
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In the case when m = n = 1 and x1 = y1 = 1, (3.3) (equivalently (3.4)) reduces to
the first Heine transformation (3.2).

In the case when ck = a for 1 ≤ k ≤ m, (3.3) reduces to the following An

generalization of q-binomial theorem:

∑
γ∈Nn

u|γ|x−γ1
1 · · ·x−γn

n
Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi

= ∏
1≤i≤n

(biux−1
i )∞

((biu/B)x−1
i )∞

. (3.6)

In the case when n = 1 and x1 = 1, (3.6) reduces to q-binomial theorem:

∑
k∈N

uk (b)k

(q)k
=

(bu)∞

(u)∞
. (3.7)

3.2 An Second Heine Transformations

We give a multiple generalization of second Heine transformation formula for 2φ1

series ((2nd) of (3.1)):

2φ1

[
a,b
c

;q,u

]
=

(c/a,au)∞

(c,u)∞
2φ1

[
a,abu/c

au
;q,c/a

]
(3.8)

from m = n case of multiple 3φ2 transformation formula (2.9). Namely,

∑
γ∈Nn

(
dne
aBC

)|γ| Δ(xqγ)

Δ(x)
(a)|γ|
(e)|γ|

∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i,k≤n

(ckxiyk)γi

(dxiyk)γi

=
(e/a,dne/BC)∞

(e,dne/aBC)∞
∑

δ∈Nn

( e
a

)|δ | Δ(yqδ )

Δ(y) ∏
1≤k,l≤n

((d/cl)yk/yl)δk

(qyk/yl)δk

× (a)|δ |
(dne/BC)|δ |

∏
1≤k,i≤n

((d/bi)xiyk)δk

(dxiyk)δk

. (3.9)

Set bi =
d
ui

n
√

ac/e in (3.9). Then let d tend to 0. Thus we have another type of An

second Heine transformation:

∑
γ∈Nn

U |γ|
Δ(xqγ)

Δ(x)
(a)|γ|
(e)|γ|

∏
1≤i, j≤n

(qxi/x j)γi
−1 ∏

1≤i,k≤n

(ckxiyk)γi

=
(e/a,aU)∞

(e,U)∞
∑

δ∈Nn

( e
a

)|δ | Δ(yqδ )

Δ(y) ∏
1≤k,l≤n

(qyk/yl)δk

−1

× (a)|δ |
(aU)|δ |

∏
1≤k,i≤n

((ui
n
√

aC/e)xiyk)δk
. (3.10)
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In the case when n = 1 and x1 = y1 = 1, (3.10) reduces to the second Heine
transformation (3.8).

3.3 An Third Heine Transformation Formula

From (2.9), one can recover multivariate generalization of q-Euler transformation
formula [8] with different dimensions:

∑
γ∈Nn

u|γ|
Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(b jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n,1≤k≤m

(ckxiyk)γi

(dxiyk)γi

=
(BCu/dm)∞

(u)∞
∑

δ∈Nm

(
BCu
dm

)|δ | Δ(yqδ )

Δ(y) ∏
1≤k,l≤m

((d/cl)yk/yl)δk

(qyk/yl)δk

× ∏
1≤i≤n,1≤k≤m

((d/bi)xiyk)δk

(dxiyk)δk

, (3.11)

which generalize the third Heine transformation formula

2φ1

[
a,b
c

;q,u

]
=

(abu/c)∞

(u)∞
2φ1

[
c/b,c/a

c
;q,

ab
c

u

]
. (3.12)

(In the case when m = n = 1 and x1 = y1 = 1, (3.11) reduces to (3.12).)

4 Entry 8 as q-Pfaff Transformation

The purpose of this note is to present some multiple generalizations of q-Pfaff
transformation formula:

∑
k∈N

(a,b)k

(q,d)k
xk =

(ax)∞

(x)∞
∑
k∈N

(a,d/b)k

(q,d,ax)k
(−bx)k q(

k
2). (4.1)

The q-Pfaff transformation formula (4.1) is a basic analogue of the Pfaff transfor-
mation formula for 2F1 series (see (4.9)). Equation (4.1) can be expressed in terms
of basic hypergeometric series:

2φ1

[
a,b
d

;q;x

]
=

(ax)∞

(x)∞
2φ2

[
a,d/b
d,ax

;q;bx

]
. (4.2)
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Equation (4.1) has appeared as Entry 8 of Chap. 16 of Ramanujan’s second
notebook [1]. Analogous to the proof of (4.1) by Andrews [3], we derived multiple
q-Pfaff transformation formulas by taking limits in multiple 3φ2 transformations in
Sect. 2.

4.1 Preliminary Lemmas

Before beginning the derivation of the multivariate (q-)Pfaff transformation formula,
we present lemmas concerning the limiting procedure for q-shifted factorials, and
we will be using these frequently in the sequel.

First of all, the following is fundamental and is easy to see.

Lemma 1.
lim
b→∞

(bu)kb−k = (−u)kq
1
2 k(k−1). (4.3)

Equivalently, (b)k ∼ (−b)kq
1
2 k(k−1) as b→ ∞.

Successive use of the above lemma leads to the following.

Lemma 2.

lim
b1,··· ,bn→∞

[

∏
1≤i, j≤n

(b jxi/x j)γi

]

B−|γ|= (−1)n|γ|qn∑n
i=1 (

γi
2) (x1 · · ·xn)

−|γ|×xnγ1
1 · · ·xnγn

n .

(4.4)

Proof.

[

∏
1≤i, j≤n

(b jxi/x j)γi

]

B−|γ|

= ∏
1≤i≤n

(

∏
1≤ j≤n

(b jxi/x j)γib
−γi
j

)
b1,...,bn→∞−−−−−−→ ∏

1≤i≤n
∏

1≤ j≤n

[
(−1)γiq(

γi
2)(xi/x j)

γi

]

= (−1)n|γ|qn∑n
i=1 (

γi
2) (x1 · · ·xn)

−|γ| × xnγ1
1 · · ·xnγn

n . (4.5)

��

4.2 q-Pfaff Transformations with Different Dimensions

Take the limit bi to infinity for i = 1, . . . ,n in (2.9). Replacing the parameters as
u = e/a and bk = d/ck for k = 1, . . . ,m in the resulting identity leads the following
generalization of q-Pfaff transformation:
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∑
δ∈Nm

u|δ |
Δ(yqδ )

Δ(y) ∏
1≤k,l≤m

(blyk/yl)δk

(qyk/yl)δk

(a)|δ | ∏
1≤i≤n,1≤k≤m

[
(dxiyk)δk

]−1

=
(au)∞

(u)∞
∑

γ∈Nn

((−1)nBu)|γ| qn∑n
i=1 (

γi
2) (x1 · · ·xn)

−|γ| xnγ1
1 · · ·xnγn

n

×Δ(xqγ)

Δ(x)
(a)|γ|
(au)|γ|

∏
1≤i≤n,1≤k≤m

((d/bk)xiyk)γi

(dxiyk)γi
∏

1≤i, j≤n

[
(qxi/x j)γi

]−1
. (4.6)

In the case when n = 1 and x1 = 1, (4.6) reduces to

∑
δ∈Nm

u|δ |
Δ(yqδ )

Δ(y) ∏
1≤k,l≤m

(blyk/yl)δk

(qyk/yl)δk

(a)|δ | ∏
1≤k≤m

[
(dyk)δk

]−1

=
(au)∞

(u)∞
∑
γ∈N

(−Bu)γ q(
γ
2)

(a)γ

(au,q)γ
∏

1≤k≤m

((d/bk)yk)γ

(dyk)γ
. (4.7)

In the case when m = 1 and y1 = 1, (4.6) reduces to

∑
δ∈N

uδ (a,b)δ
(q)δ

∏
1≤i≤n

[(dxi)δ ]
−1

=
(au)∞

(u)∞
∑

γ∈Nn

((−1)nBu)|γ| qn∑n
i=1 (

γi
2) (x1 · · ·xn)

−|γ| xnγ1
1 · · ·xnγn

n

×Δ(xqγ)

Δ(x)
(a)|γ|
(au)|γ|

∏
1≤i≤n

((d/bk)xi)γi

(dxi)γi
∏

1≤i, j≤n

[
(qxi/x j)γi

]−1
.

In (4.6), we replace the parameters xi → qxi(1 ≤ i ≤ n), yk → qyk(1 ≤
k ≤ m),ai → qai(1 ≤ i ≤ n),bk → qbk(1 ≤ k ≤ m), and d → qd , and then take the
limit q→ 1 to obtain the following multiple generalization of Pfaff transformation
for Gauss hypergeometric function 2F1:

∑
δ∈Nm

u|δ |
Δ(y+ δ )

Δ(y) ∏
1≤k,l≤m

[bl + yk− yl ]δk

[1+ yk− yl]δk

[a]|δ | ∏
1≤i≤n,1≤k≤m

[
[d + xi+ yk]δk

]−1

= (1−u)−a ∑
γ∈Nn

(
u

u− 1

)|γ| Δ(x+ γ)
Δ(x)

[a]|γ|

× ∏
1≤i≤n,1≤k≤m

[d− bk + xi + yk]γi

[d + xi+ yk]γi
∏

1≤i, j≤n

[
[1+ xi− x j]γi

]−1
. (4.8)
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Remark 4.2. In the case when n = m = 1 and x1 = y1 = 0, (4.8) reduces to the Pfaff
transformation formula for Gauss hypergeometric series 2F1:

2F1

[
a,b
d

;u

]
= (1− u)−a

2F1

[
a,d−b

d
;

u
u−1

]
. (4.9)

In the case when n = 1 and x1 = 0, (4.8) reduces to

∑
δ∈Nm

u|δ |
Δ(y+ δ )

Δ(y) ∏
1≤k,l≤m

[bl + yk− yl]δk

[1+ yk− yl ]δk

[a]|δ | ∏
1≤k≤m

[
[d+ yk]δk

]−1

= (1− u)−a
m+1Fm

[
a,{d− bk + yk}m

{d+ yk}m
;

u
u−1

]
. (4.10)

In the case when m = 1 and y1 = 0, (4.8) reduces to

∑
δ∈N

uδ [a,b]δ
δ ! ∏

1≤i≤n

[[d+ xi]δ ]
−1 = (1− u)−a ∑

γ∈Nn

(
u

u−1

)|γ| Δ(x+ γ)
Δ(x)

[a]|γ|

× ∏
1≤i≤n

[d− bk + xi]γi

[d+ xi]γi
∏

1≤i, j≤n

[
[1+ xi− x j]γi

]−1
. (4.11)

Next, for k = 1, . . . ,m , let ck tend to infinity in (2.9) and rearrange the parameters
as u= e/a and ci = d/bi for i= 1, . . . ,n. Then we obtain the following generalization
of q-Pfaff transformation:

∑
δ∈Nm

u|δ |
Δ(yqδ )

Δ(y)
(a)|δ | ∏

1≤i≤n,1≤k≤m

(bixiyk)δk

(dxiyk)δk

∏
1≤k,l≤m

[
(qyk/yl)δk

]−1

=
(au)∞

(u)∞
∑

γ∈Nn

((−1)mBu)|γ| xmγ1
1 · · ·xmγn

n (y1 · · ·ym)
n|γ|q

1
2 ∑1≤i≤n γi(γi−1)

×Δ(xqγ)

Δ(x)
(a)|γ|
(au)|γ|

∏
1≤i≤n,1≤k≤m

[
(dxiyk)γi

]−1 ∏
1≤i, j≤n

((d/b j)xi/x j)γi

(qxi/x j)γi

. (4.12)

In the case when n = 1 and x1 = 1, (4.12) reduces to

∑
δ∈Nm

u|δ |
Δ(yqδ )

Δ(y)
(a)|δ | ∏

1≤k≤m

(byk)δk

(dyk)δk

∏
1≤k,l≤m

[
(qyk/yl)δk

]−1

=
(au)∞

(u)∞
∑
γ∈N

((−1)mbu)γ (y1 · · ·ym)
γ q(

γ
2)
(a,d/b)|γ|
(au,q)|γ|

∏
1≤k≤m

[
(dyk)γi

]−1
. (4.13)
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In the case when m = 1 and y1 = 0, (4.12) reduces to

n+1φn

[
a,{bixi}n

{dxi}n
;q;u

]
=

(au)∞

(u)∞
∑

γ∈Nn

(−Bu)|γ| xγ1
1 · · ·xγn

n q
1
2 ∑1≤i≤n γi(γi−1)

×Δ(xqγ)

Δ(x)
(a)|γ|
(au)|γ|

∏
1≤i≤n

[
(dxi)γi

]−1 ∏
1≤i, j≤n

((d/b j)xi/x j)γi

(qxi/x j)γi

.

(4.14)

Similarly to obtain (4.8), taking q→ 1 limit leads to the following multiple Pfaff
transformation:

∑
δ∈Nm

u|δ |
Δ(y+ δ )

Δ(y)
[a]|δ | ∏

1≤i≤n,1≤k≤m

[bi + xi + yk]δk

[d + xi+ yk]δk

∏
1≤k,l≤m

[
[1+ yk− yl]δk

]−1

= (1−u)−a ∑
γ∈Nn

(
u

u− 1

)|γ| Δ(x+ γ)
Δ(x)

[a]|γ|

× ∏
1≤i≤n,1≤k≤m

[
[d+ xi + yk]γi

]−1 ∏
1≤i, j≤n

[d−b j + xi− x j]γi

[1+ xi− x j]γi

. (4.15)

In the case when n = 1 and x1 = 0, (4.15) reduces to

∑
δ∈Nm

u|δ |
Δ(y+ δ )

Δ(y)
[a]|δ | ∏

1≤k≤m

[b+ yk]δk

[d+ yk]δk

∏
1≤k,l≤m

[
[1+ yk− yl]δk

]−1

= (1− u)−a ∑
γ∈N

(
u

u− 1

)γ [a,d− b]γ
γ! ∏

1≤k≤m

[
[d+ yk]γ

]−1
. (4.16)

In the case when m = 1 and y1 = 0, (4.15) reduces to

n+1Fn

[
a,{bi+ xi}n

{d+ xi}n
;u

]
= (1− u)−a ∑

γ∈Nn

(
u

u−1

)|γ| Δ(x+ γ)
Δ(x)

[a]|γ|

× ∏
1≤i≤n

[
[d+ xi]γi

]−1 ∏
1≤i, j≤n

[d−b j + xi− x j]γi

[1+ xi− x j]γi

.

(4.17)

In the case when m = n = 1 and x1 = y1 = 0, (4.15) reduces to the Pfaff
transformation (4.9).
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5 Entry 9 of Chap. 16 in Ramanujan’s Notebook
and Related Formulas

This section and the last are devoted to multivariate generalizations of the q-series
transformations for some partition functions. Particularly, the purpose of this section
is to present some multiple generalizations of Entry 9

(aq)∞ ∑
k∈N

bkqk2

(q,aq)k
= ∑

k∈N

(b/a)k

(q)k
(−a)k q

1
2 k(k+1) (5.1)

of Chap. 16 of Ramanujan’s second notebook [1]. We derive them by taking
certain limits to multiple nonterminating 3φ2 transformations. We also give some
generalizations of several classical partition function identities as special cases of
them.

In (2.9), let a and bi for i = 1, . . . ,n tend to ∞. Now we suppose that ck = c for all
k = 1, . . . ,m in the resulting identity. Then replace the parameters as d = bc/a and
e = amq. By letting c tend to 0, we arrive at the following multiple generalization of
Entry 9 (5.1):

(amq)∞ ∑
γ∈Nn

(
(−1)n+1bm)|γ| (x1 · · ·xn)

−|γ| xnγ1
1 · · ·xnγn

n q
1
2 |γ|(|γ|+1)+ n

2 ∑n
i=1 γi(γi−1)

×Δ(xqγ)

Δ(x)
[
(amq)|γ|

]−1 ∏
1≤i, j≤n

[
(qxi/x j)γi

]−1

= ∑
δ∈Nm

(−am)|δ | q
1
2 |δ |(|δ |+1) Δ(yqδ )

Δ(y) ∏
1≤k,l≤m

((b/a)yk/yl)δk

(qyk/yl)δk

. (5.2)

It is interesting to note that, since

∑
γ∈Nn,|γ|=N

Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(a jxi/x j)γi

(qxi/x j)γi

=
(a1a2 · · ·an)N

(q)N
, (5.3)

which is equivalent to the An generalization of the Rogers’ q-Dougall summation
formula for very well-poised 6φ5 series and is a direct consequence of An q-binomial
theorem by Milne [10]:

∑
γ∈Nn

u|γ|
Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(a jxi/x j)γi

(qxi/x j)γi

=
(a1a2 · · ·anu)∞

(u)∞
, (5.4)
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holds, the right hand side of (5.2) essentially reduces to m = 1 case:

(aq)∞ ∑
γ∈Nn

(
(−1)n+1b

)|γ|
(x1 · · ·xn)

−|γ| xnγ1
1 · · ·xnγn

n q
1
2 |γ|(|γ|+1)+ n

2 ∑n
i=1 γi(γi−1)

×Δ(xqγ)

Δ(x)
[
(aq)|γ|

]−1 ∏
1≤i, j≤n

[
(qxi/x j)γi

]−1
= ∑

k∈N
(−a)k q

1
2 k(k−1) (b/a)k

(q)k
.

(5.5)

In the case when n = 1 and x1 = 1, (5.5) reduces to Entry 9 (5.1) of Chap. 16 of
Ramanujan’s notebook.

We are going to present special cases of (5.5). In the case when a = b, (5.5)
reduces to

∑
γ∈Nn

(
(−1)n+1a

)|γ|
(x1 · · ·xn)

−|γ| xnγ1
1 · · ·xnγn

n q
1
2 |γ|(|γ|+1)+ n

2 ∑n
i=1 γi(γi−1)

×Δ(xqγ)

Δ(x)
[
(aq)|γ|

]−1 ∏
1≤i, j≤n

[
(qxi/x j)γi

]−1
=

1
(aq)∞

. (5.6)

Note that, in the case when n = 1 and x1 = 1, (5.6) reduces to Entry 3 of Chap. 16
of Ramanujan’s notebook [1]:

1
(aq)∞

= ∑
k∈N

akqk2

(q,aq)k
. (5.7)

In the case when a = 1, b = q, (5.5) reduces to

(q)∞ ∑
γ∈Nn

(−1)(n+1)|γ| (x1 · · ·xn)
−|γ| xnγ1

1 · · ·xnγn
n q

1
2 |γ|(|γ|+3)+ n

2 ∑n
i=1 γi(γi−1)

×Δ(xqγ)

Δ(x)
[
(q)|γ|

]−1 ∏
1≤i, j≤n

[
(qxi/x j)γi

]−1
= ∑

k∈N
(−1)k q

1
2 k(k−1). (5.8)

Note that, in the case when n = 1 and x1 = 1, (5.8) reduces to the following
q-series transformation formula:

(q)∞ ∑
k∈N

qk2+k

(q)2
k

= ∑
k∈N

(−1)k q
1
2 k(k+1), (5.9)

which is corollary (i) of Entry 9 in [1] and which is originally due to Gauss.
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Replace q by q2 and let a = q−1,b = q in (5.5) to obtain the following formula:

(q;q2)∞ ∑
γ∈Nn

(
(−1)n+1)|γ| (x1 · · ·xn)

−|γ| xnγ1
1 · · ·xnγn

n q|γ|(|γ|+2)+n∑n
i=1 γi(γi−1)

×Δ(xq2γ)

Δ(x)
[
(q;q2)|γ|

]−1 ∏
1≤i, j≤n

[
(q2xi/x j;q2)γi

]−1
= ∑

k∈N
(−1)k qk2

. (5.10)

Note that, in the case when n = 1 and x1 = 1, (5.10) reduces to the following
q-series transformation:

(q;q2)∞ ∑
k∈N

q2k2+k

(q)2k
= ∑

k∈N
(−1)k qk2

, (5.11)

which is corollary (ii) of Entry 9 in [1].

6 1�1 Transformation Formula Related to q-Lauricella
Function

In this section we give a multiple generalization of the following q-series transfor-
mation formula:

(b)∞ ∑
k∈N

(λ/a)k

(b,q)k
(−a)k q(

k
2) = (a)∞ ∑

k∈N

(λ/b)k

(a,q)k
(−b)k q(

k
2). (6.1)

Equation (6.1) is the transformation formula for 1φ1series:

1φ1

[
λ/a

b
;q;a

]
=

(a)∞

(b)∞
1φ1

[
λ/b

a
;q;b

]
. (6.2)

Note that (6.1) is symmetric with respect to the parameters a and b. In [15],
Srivastava found that Entry 9 of Chap. 16 of Ramanujan’s second notebook [1] can
be obtained from (6.1) and verified other q-series transformation and summation
formulas.

We give a result by using a multiple generalization of the second Heine’s trans-
formation between An basic hypergeometric series and basic Lauricella function

φ (n)
D (6.3) appeared in our previous work [8].



Multiple Generalizations of q-Series Identities and Related Formulas 175

6.1 Second Heine Transformation Formula Between An 2�1

Series and Basic Lauricella Series �
(n)
D [8]

∑
γ∈Nn

u|γ|
Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(a jxi/x j)γi

(qxi/x j)γi
∏

1≤i≤n

(bxi)γi

(cxi)γi

=
(Au)∞

(u)∞
∏

1≤i≤n

((c/ai)xi)∞

(cxi)∞

×φ (n)
D

[
Abu/c;a1, . . . ,an

Au
;q;(c/a1)x1, . . . ,(c/an−1)xn−1,(c/an)xn

]

=
(Au)∞

(u)∞
∏

1≤i≤n

((c/ai)xi)∞

(cxi)∞
∑

α∈Nn

(Abu/c)|α |(a1)α1(a2)α2 . . . (an)αn

(Au)|α |(q)α1(q)α2 . . . (q)αn

× ∏
1≤i≤n

[(c/ai)xi]
αi . (6.3)

Formula (6.3) has been obtained by combining the multivariate Euler transfor-
mation in our previous work [8] and Andrews’ transformation (see [2] (the case of
l = 2) and [4])

φ (l)
D

[
a;b1,b2, . . . ,bl

c
;q;x1,x2, . . . ,xl

]
=

(a)∞

(c)∞

l

∏
k=1

(bkxk)∞

(xk)∞
l+1φl

[
c/a,x1, . . . ,xl

b1x1, . . . ,blxl
;q;a

]

(6.4)

between the basic hypergeometric series n+1φn and the basic Lauricella series φ (n)
D ,

which is defined by

φ (l)
D

[
a;b1,b2, . . . ,bl

c
;q;x1,x2, . . . ,xl

]
= ∑

α∈Nl

(a)|α |(b1)α1(b2)α2 . . . (bl)αl

(c)|α |(q)α1(q)α2 . . . (q)αl

xα . (6.5)

Remark 6.3. In the case when n = 1, (6.3) reduces to the second Heine’s transfor-
mation formula (3.8).

6.2 Multivariate 1�1 Transformation

In (6.3), replace u to u/A. Then let ai tend to infinity for i = 1, . . . ,n. By setting
a = u,b = λ/a, and c = b, respectively, we arrive at a multiple generalization of 1φ1

transformation:
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∑
γ∈Nn

((−1)na)|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q

n
2 ∑i γi(γi−1)

×Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

((λ/a)xi)γi

(bxi)γi

= (a)∞ ∏
1≤i≤n

(bxi)
−1
∞ ∑

α∈Nn

(λ/b)|α |
(a)|α |(q)α1(q)α2 . . .(q)αn

(−b)|α |xα q
1
2 ∑i αi(αi−1).

(6.6)

In the case when n = 1, (6.6) reduces to 1φ1 transformation (6.1). Note that (6.6)
is not symmetric with respect to the parameters a and b, but also the forms of the
multiple series in both sides are different.

In (6.6), replace a→ aq,b→ bq, and λ → λ q. Next let a tend to 0. Then we have
a multiple generalization of Entry 9 of Chap. 16 of Ramanujan’s notebook:

∏
1≤i≤n

(bqxi)∞ ∑
γ∈Nn

(
(−1)n+1λ

)|γ|
(x1 · · ·xn)

−|γ|x(n+1)γ1
1 · · ·x(n+1)γn

n

×q
n+1

2 ∑i γi(γi−1) Δ(xqγ )

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

(bqxi)
−1
γi

= ∑
α∈Nn

(λ/b)|α |
(q)α1(q)α2 . . . (q)αn

(−b)|α |xα q
1
2 ∑i αi(αi−1). (6.7)

In the case when n = 1, (6.7) reduces to Entry 9 (5.1).
In (6.6), set λ = b. Then we obtain

∑
γ∈Nn

((−1)na)|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q

n
2 ∑i γi(γi−1)

×Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

((b/a)xi)γi

(bxi)γi

= (a)∞ ∏
1≤i≤n

(bxi)
−1
∞ . (6.8)

In the case when n = 1, (6.8) reduces to

∑
k∈N

(y/x)k

(y,q)k
(−x)k q(

k
2) =

(x)∞

(y)∞
. (6.9)

By replacing b→ bq and taking the limit a→ 0 in (6.8), we have an another An

generalization of Entry 3:

∑
γ∈Nn

(
(−1)n+1b

)|γ|
(x1 · · ·xn)

−|γ|x(n+1)γ1
1 · · ·x(n+1)γn

n q|γ|+
n+1

2 ∑i γi(γi−1)

×Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

(bqxi)
−1
γi

= ∏
1≤i≤n

(bqxi)
−1
∞ . (6.10)

In the case when n = 1, (6.10) reduces to Entry 3 (5.7).
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In (6.6), set b = q,λ = q2, and a→ aq. Then we obtain

∑
γ∈Nn

((−1)na)|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q|γ|+

n
2 ∑i γi(γi−1)

×Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

((q/a)xi)γi

(qxi)γi

= (aq)∞ ∏
1≤i≤n

(qxi)
−1
∞ ∑

α∈Nn

(q)|α |
(aq)|α |(q)α1(q)α2 . . . (q)αn

(−1)|α |xα q
1
2 ∑i αi(αi+1).

(6.11)

In the case when n = 1, (6.11) reduces to

∑
k∈N

(q/x)k

(q)2
k

(−x)k q
1
2 k(k+1) =

(xq)∞

(q)∞
∑
k∈N

1
(xq)k

(−1)k q
1
2 k(k+1). (6.12)

By letting a tend to 0 in (6.11), we have

∑
γ∈Nn

(−1)(n+1)|γ| (x1 · · ·xn)
−|γ|x(n+1)γ1

1 · · ·x(n+1)γn
n q|γ|+

n+1
2 ∑i γ2

i

×Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

(qxi)
−1
γi

= ∏
1≤i≤n

(qxi)
−1
∞ ∑

α∈Nn

(q)|α |
(q)α1(q)α2 . . . (q)αn

(−1)|α |xα q
1
2 ∑i αi(αi+1). (6.13)

In the case when n = 1, (6.13) reduces to the Gauss’ formula (5.9).
In (6.6), replace q by q2. By setting b = q,λ = q3, and a→ aq2, we obtain

∑
γ∈Nn

((−1)na)|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q2|γ|+n∑i γi(γi−1)

×Δ(xq2γ)

Δ(x) ∏
1≤i, j≤n

(q2xi/x j;q2)−1
γi ∏

1≤i≤n

((q/a)xi;q2)γi

(qxi;q2)γi

= (aq2;q2)∞ ∏
1≤i≤n

(qxi;q2)−1
∞

× ∑
α∈Nn

(q2;q2)|α |
(aq2;q2)|α |(q2;q2)α1(q

2;q2)α2 . . . (q
2;q2)αn

(−1)|α |xα q∑i α2
i .

(6.14)
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In the case when n = 1, (6.14) reduces to

∑
k∈N

(q/x;q2)k

(q,q2;q2)k
(−x)k qk2+k = ∑

k∈N

(q/x;q2)k

(q)2k
(−x)k qk2+k

=
(xq2;q2)∞

(q;q2)∞
∑
k∈N

1
(xq2;q2)k

(−1)k qk2
.

In (6.14), let a tend to 0. Then we obtain

∑
γ∈Nn

(−1)(n+1)|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q3|γ|+(n+1)∑i γi(γi−1)

×Δ(xq2γ)

Δ(x) ∏
1≤i, j≤n

(q2xi/x j;q2)−1
γi ∏

1≤i≤n

(qxi;q2)−1
γi

= ∏
1≤i≤n

(qxi;q2)−1
∞ ∑

α∈Nn

(q2;q2)|α |
(q2;q2)α1(q

2;q2)α2 . . . (q
2;q2)αn

(−1)|α |xα q∑i α2
i .

(6.15)

In the case when n = 1, (6.11) reduces to (5.11).
It is an interesting feature of our multivariate 1φ1 transformation (6.6) that the

series in both sides have a different structure from each other. So one obtains other
q-series transformation and summation formulas by reversing both sides in (6.6) and
similar specializations as above.

In (6.6), replace a→ aq,b→ bq, and λ → λ q. Next let b tend to infinity. Then
we obtain another type of multivariate generalization of Entry 9 (5.1):

∑
α∈Nn

(−λ )|α |xα q
1
2 |α |(|α |+1)+ 1

2 ∑i αi(αi−1)

(aq)|α |(q)α1(q)α2 . . . (q)αn

= (aq)−1
∞ ∑

γ∈Nn

((−1)na)|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q

n
2 ∑i γi(γi−1)

×Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

((λ/a)xi)γi . (6.16)

Indeed, in the case when n = 1, (6.16) reduces to (5.1).
By setting λ = b in (6.6), we have

∑
α∈Nn

(a/b)|α |
(a)|α |(q)α1(q)α2 . . .(q)αn

(−b)|α |xα q
1
2 ∑i αi(αi−1) = (a)−1

∞ ∏
1≤i≤n

(bxi)∞.

(6.17)

In the case when n = 1, (6.17) reduces to (6.9).
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Replace a→ aq in (6.17) and let b tend to 0. Then we obtain

∑
α∈Nn

(−1)|α |xα q
1
2 |α |(|α |+1)+ 1

2 ∑i αi(αi−1)

(a)|α |(q)α1(q)α2 . . . (q)αn

= (a)−1
∞ . (6.18)

In the case when n = 1, (6.18) reduces to Entry 3 (5.7).
Put a = q,λ = q2, and b→ bq in (6.6), we have

∑
α∈Nn

(q/b)|α |
(q)|α |(q)α1(q)α2 . . . (q)αn

(−b)|α |xα q
1
2 ∑i αi(αi+1)

= (q)−1
∞ ∏

1≤i≤n

(bqxi)∞ ∑
γ∈Nn

((−1)na)|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q

n
2 ∑i γi(γi+1)

×Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

(qxi)γi

(bqxi)γi

. (6.19)

Let b tend to 0 in (6.19). We obtain

∑
α∈Nn

xα q
1
2 |α |(|α |+1)+ 1

2 ∑i αi(αi+1)

(q)|α |(q)α1(q)α2 . . . (q)αn

= (q)−1
∞ ∑

γ∈Nn

((−1)na)|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q

n
2 ∑i γi(γi+1)

×Δ(xqγ)

Δ(x) ∏
1≤i, j≤n

(qxi/x j)
−1
γi ∏

1≤i≤n

(qxi)γi . (6.20)

In the case when n = 1, (6.20) reduces to (5.9).
Replace q→ q2 in (6.6). Then, by setting a = q,λ = q3, and b→ bq2 we get

∑
α∈Nn

(q/b;q2)|α |
(q;q2)|α |(q2;q2)α1(q

2;q2)α2 . . . (q
2;q2)αn

(−b)|α |xα q∑i αi(αi+1)

= (q;q2)−1
∞ ∏

1≤i≤n

(bq2xi;q2)∞ ∑
γ∈Nn

(−1)n|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q|γ|+n∑i γi(γi−1)

×Δ(xq2γ)

Δ(x) ∏
1≤i, j≤n

(q2xi/x j;q2)−1
γi ∏

1≤i≤n

(q2xi;q2)γi

(bq2xi;q2)γi

. (6.21)

In the case when n = 1, (6.21) reduces to (6.15).
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Let b tend to 0 in (6.21). We have

∑
α∈Nn

xα q|α |2+∑i αi(αi+1)

(q;q2)|α |(q2;q2)α1(q
2;q2)α2 . . .(q

2;q2)αn

= (q;q2)−1
∞ ∑

γ∈Nn

(−1)n|γ| (x1 · · ·xn)
−|γ|xnγ1

1 · · ·xnγn
n q|γ|+n∑i γi(γi−1)

×Δ(xq2γ)

Δ(x) ∏
1≤i, j≤n

(q2xi/x j;q2)−1
γi ∏

1≤i≤n

(q2xi;q2)γi . (6.22)

In the case when n = 1, (6.22) reduces to (5.11).
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nonterminating q-Whipple and q-Saalschütz transformations. We work in the setting
of multiple basic hypergeometric series very-well-poised on unitary groups U(n+
1), multiple series that are associated to the root system An. We extend Bailey’s
proofs of these transformations by first taking suitable limits of our U(n+ 1) 10φ9

transformation formula, in which the multiple sums are taken over an n-dimensional
tetrahedron (n-simplex). A natural partition of the (finite) n-simplex combines with
our analysis of the convergence of the multiple series to yield our transformations.
We expect that all of these results will directly extend to the analogous case of
multiple basic hypergeometric series associated to the root system Dn.
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1 Introduction

For much of the last 30 years, a natural multivariable extension of hypergeometric
series known as hypergeometric series associated to root systems has been inten-
sively studied and developed by many authors. The classical, or q = 1 case, for the
root system An, first appeared in the 1976 work of Biedenharn, Holman, and Louck
[29], where they were employed to find useful formulas for the multiplicity-free
6 j-symbols of the group SU(n). The basic, or q-case, for the root system An was
initiated by Milne in the 1985 papers [44–46], while the very-well-poised U(n+1),
or An series, were first introduced in [48, Definition 1.10]. Gustafson followed up
with very-well-poised series for the other root systems in [26]. These, and more
general, multiple series are classified according to the type of specific factors (such
as a Vandermonde determinant) appearing in the summand. For a precise definition
of the An, Cn, and Dn multiple q-series, see the papers of Bhatnagar [3] or Milne
[58, Sect. 5].

A second deep impact from mathematical physics appeared in the 1997 paper
[22] of Frenkel and Turaev. Motivated by their study of elliptic 6 j-symbols in
statistical mechanics, Frenkel and Turaev introduced 1-variable elliptic or modular
hypergeometric series. Elliptic hypergeometric series sit at the top level of the
hierarchy “rational – trigonometric – elliptic” of their term ratios. That is, a series
∑k ak is called hypergeometric if the term ratio f (k) = ak+1/ak is a rational function
of k, a q-series if f is a rational function of qk for a fixed q, and an elliptic series if f
is an elliptic function. For technical reasons involving addition formulas for suitably
defined theta functions, the development of the theory of elliptic hypergeometric
series was forced to begin by extending the deepest classical hypergeometric
results such as Jackson’s 8W7 summation and Bailey’s 10W9 transformation (or their
multivariable analogues). One could not start with or recover the simplest classical
results such as the binomial theorem and Gauss’s 2F1 summation theorem.

In recent years, the above two fields have been unified to yield the powerful, deep
subject of elliptic hypergeometric series on root systems. Warnaar, in [82], was one
of the first to enter this new unified subject by proving one multivariable elliptic Cn

analogue of Jackson’s 8W7 summation formula and conjecturing another. Van Diejen
and Spiridonov [17] showed that Warnaar’s conjectured summation could be derived
from a certain conjectured elliptic Selberg integral. Rosengren, in [69], then gave an
inductive proof of Warnaar’s second summation, using a very special case of his first
summation in the inductive step. This unified subject has since expanded rapidly.

In the sequel (in alphabetical order), since 1976, Bhatnagar [2, 3], Bhatnagar
and Milne [4], Bhatnagar and Schlosser [5], van de Bult and Rains [8], Coskun
[9, 11–13], Coskun and Gustafson [14], Degenhardt and Milne [15], van Diejen
[16], van Diejen and Spiridonov [17–19], Frenkel and Turaev [22], Gessel and
Krattenthaler [24], Gustafson [25–27], Gustafson and Rakha [28], Ito [31, 32],
Kajihara [33–35], Kajihara and Noumi [36, 37], Krattenthaler [38], Krattenthaler
and Schlosser [39], Lascoux et al. [40], Lassalle and Schlosser [41], Lilly and Milne
[42], Milne [44–59], Milne and Lilly [60], Milne and Newcomb [61], Milne and
Schlosser [62], Rains [63–65], Rakha [66, 67], Rakha and Siddiqi [68], Rosengren
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[69–71], Rosengren and Schlosser [72, 73], Schlosser [74–78], Spiridonov [80, 81],
Warnaar [82], Warnaar and Zudilin [83], and many others have developed this
theory and uncovered many applications to number theory, combinatorics, and
mathematical physics, to name a few. For more complete references to this rapidly
growing, vast subject, see Chap. 11 of [23], the survey paper [58], the papers
[56, 70, 71, 80, 81], and the references therein. Perhaps the deepest application so
far is the new infinite families of sums of squares formulas in [55, 57, 59].

The purpose of this paper is to derive multivariable generalizations of Bailey’s
classical nonterminating q-Whipple and q-Saalschütz transformations, in [23,
(III.36) on pp. 364] and [23, (II.24) on pp. 356], respectively. In order to achieve the
deepest possible results, we extend Bailey’s proofs from [23, pp. 50–51] of these
transformations by first taking suitable limits of our U(n+ 1) 10φ9 transformation
formula in [61, Theorem 3.3], in which the multiple sums are taken over an
n-dimensional tetrahedron (n-simplex). A natural partition of the (finite) n-simplex
combines with our analysis of the convergence of the multiple series to yield our
transformations. The n+1 nonterminating multiple sums on the right-hand sides of
our two U(n+1) nonterminating q-Whipple transformations correspond to the n+1
vertices of the n-dimensional tetrahedron (n-simplex) that contained the original
(before taking limits) indices of summation y1, . . . ,yn ≥ 0 and 0≤ y1 + · · ·+yn ≤N,
where N is a nonnegative integer. As a result, our two U(n+ 1) nonterminating
q-Saalschütz transformations expand an infinite product into the sum of n + 1
nonterminating multiple sums. In [15], our U(n + 1) nonterminating q-Whipple
and q-Saalschütz transformations are written (and applied) in a more compact form
using multiple q-integrals.

Our transformations here are not direct consequences of the fundamental theorem
for U(n + 1) series in [45, Theorem 1.49]. That is, they lie deeper than the
Macdonald identities for the root system An. As discussed in Sect. 3 of [58] and
Sect. 11.7 of the book [23], Theorem 1.49 of [45] is the foundation on which the
theory and application of U(n + 1) or An q-series (and the more general series
for other root systems) is built. This “fundamental theorem” is stated in modern
classical notation in [56, Lemma 7.3, pp. 163], [58, Theorem 3.1, pp. 207], [62,
Corollary 4.4, pp. 768–769], and [23, (11.7.1), pp. 331].

Coskun and Kajihara have studied nonterminating q-Whipple transformations for
multiple hypergeometric series that are quite different than those in this paper. In the
bottom of page 9 and top of page 10 of [10], Coskun claims (without any details)
to have a “multiple nonterminating [q-] Watson transformation” with the “multiple
series running over partitions.” Such BCn series, evaluated at arguments that are
generalizations of Macdonald (symmetric) polynomials, are different from the
multiple q-series associated to root systems that we study in this paper. The 3-term
U(n+1) nonterminating q-Whipple transformations in Sect. 6 of Kajihara’s preprint
[35] are easy, direct consequences of Bailey’s classical 3-term one-variable case,
are not as deep as the n+ 2-term transformations in this paper, and do not extend
Bailey’s original proof to the level of U(n+ 1) multiple q-series. In [77, Corollary
5.1], Schlosser used multiple q-integrals and a determinant evaluation to establish
a nonterminating 8φ7 summation for the root system Cn, in which the “sum side”
has 2n multiple sums. Specializing this result, he also obtained, in Corollary 6.2,
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an An nonterminating 3φ2 summation, in which the sum side also has 2n multiple
sums. Corollaries 5.1 and 6.2 of [77] are not as deep as our U(n+1) nonterminating
q-Dougall summation theorem in [15], or U(n + 1) nonterminating q-Saalschütz
transformations in this paper, in which the sum sides have n+ 1 multiple sums.
Nonetheless, Corollaries 5.1 and 6.2 of [77] are of significant interest as they are
strikingly similar to the identities supporting the combinatorial applications in the
papers of Krattenthaler [38] and Gessel and Krattenthaler [24]. Building on the
methods in [77], Rosengren and Schlosser [72, Corollaries 4.1 and 4.2] establish
Cn nonterminating 10φ9 transformations, in which each side has 2n multiple sums.
These are the first multivariable generalizations of Bailey’s nonterminating 10φ9

transformation (see (III.39) on page 365 of [23]) that have appeared in the literature.
Our main motivation for deriving our U(n+ 1) nonterminating q-Whipple and

q-Saalschütz transformations was to obtain, in [15], our U(n+ 1) nonterminating
q-Dougall summation theorem, the related (classical and q-) multiple beta integrals,
and a U(n+ 1) extension of Jacobi’s classical identity for the 8th powers of theta
functions in [21, (21), pp. xxviii] and [84, pp. 470]. Another strong motivation is
to extend the results in this paper, and [15], to the Cn and Dn cases. Keeping in
mind that the sums of squares applications involved Cn nonterminating multiple
basic hypergeometric series, such extensions could lead to additional deep number
theoretic applications. We expect that all of the results in this paper will directly
extend to the analogous case of multiple basic hypergeometric series associated to
the root system Dn.

In a subsequent paper, we will pursue this Dn case. A very strong foundation
for this work is provided by the following situation: In the paper [5], at the end
of Sect. 5, Bhatnagar and Schlosser propose using their results to derive additional
Cn and Dn 10φ9 transformations, some of which had multiple sums over an
n-simplex. Now, the inductive constructions and related algebraic manipulations
in this paper and [15] are consistent with the p = 0 case of the more general
elliptic hypergeometric series associated to the root systems An and Dn. In [70],
Rosengren carried out the calculations proposed by Bhatnagar and Schlosser at the
elliptic level, and obtained in Sect. 8, on pages 439–444, 10φ9 transformations of
An and Dn elliptic hypergeometric series, with the sums over an n-simplex. (See
Corollary 8.1 on page 439 for his first An case, and Corollary 8.2 on page 441 for
a second. Note that the n-simplex version of Corollary 8.4 on page 443 is a Dn

case, and the n-simplex version of Corollary 8.5 on page 444 is another.) More
evidence of the parallel developments is at the bottom of page 441 of [70]. Taking
the p = 0 (or trigonometric case) of Rosengren’s An and Dn 10φ9 transformations
brings us to the starting point of this paper in Theorem A.1, and also gives us the
10φ9 transformations for multiple basic hypergeometric series associated to the root
system Dn that we need to get started.

We also expect to be able to recover known, or derive new, An and Dn Ramanujan
1Ψ1 Summation Theorems, by using our corresponding multivariable nontermi-
nating q-Saalschütz transformations and other current Heine transformations. This
program would extend the analysis on page 52 of [23]. In addition, starting with our
multiple q-integral representation, in [15], of our U(n+1) nonterminating q-Dougall
summation theorem, and a Dn analog, we should be able to derive deep new An and
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Dn nonterminating 10φ9 transformations, in which each side has n+1 multiple sums.
Such analysis would extend Sect. 2.12 on pages 55 to 58 of [23].

Our present paper is organized as follows. In Sect. 2 we give some background
information and notation for classical basic hypergeometric series of one variable.
Section 3 provides a self-contained account of Bailey’s proof of the classical nonter-
minating q-Whipple transformation, and his classical nonterminating q-Saalschütz
transformation. We derive our U(n+ 1) nonterminating q-Whipple transformations
in Sect. 4 by letting N→ ∞, in an appropriate manner, on both sides of the U(n+1)
10φ9 transformation formula given by Theorem A.1. Our U(n+ 1) nonterminating
q-Saalschütz transformations are obtained in Sect. 5. Appendix A contains the
U(n + 1) basic hypergeometric series summation theorems and transformations
that we need in the derivations of our U(n + 1) nonterminating q-Whipple and
q-Saalschütz transformations. In Appendix B we discuss and prove the absolute
convergence of the nonterminating multiple series in this paper.

2 Background and Notation

In this section we give some background information and notation for classical basic
hypergeometric series of one variable. We include some simple identities that are
commonly used to transform or simplify q-factorials.

Throughout this paper we will let q be a complex number such that |q|< 1.
Define

(2.1) (α)∞ = (α;q)∞ := ∏
k≥0

(1−αqk)

and thus

(2.2) (α)n = (α;q)n :=
(α)∞
(αqn)∞

=
n

∏
i=1

(1−αqi−1).

Definition 2.1 (r�s basic hypergeometric series). Let a1, . . . ,ar, b1, . . . ,bs, and z
be complex numbers. Define

(2.3) rφs

[
a1, . . . ,ar

b1, . . . ,bs
;q,z

]
:=

∞

∑
k=0

(a1, · · · ,ar)k

(b1, · · · ,bs,q)k

[
(−1)kq(

k
2)
]1+s−r

zk,

where (a1, . . . ,an)m := (a1)m · · · (an)m,
(k

2

)
= k(k−1)

2 , and q �= 0 when r > s+1.

This definition is given in [23]. The parameters b1, . . . ,bs are such that the
denominator factors in the terms of the series (2.3) are never 0. Since (q−m; q)k = 0,
if k = m+1,m+2, . . ., an rφs series terminates if one of its numerator parameters
is of the form q−m with m = 0,1,2, . . . , and q �= 0.

Unless stated otherwise, when dealing with nonterminating (multiple) basic
hypergeometric series we shall assume that |q| < 1 and that the parameters and
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variables are such that the series converges absolutely. Note that if r = s+ 1, the

[(−1)kq(
k
2)]1+s−r factor in (2.3) drops out. This case gives the earlier definition for

rφs from [79], and others. The additional factor is present in [23] so that inverting
the base q and simplifying yields a similar series when |q| > 1. Also observe that
after replacing each parameter a by qa in (2.3) and then letting q→ 1−, the rφs series
becomes the classical rFs hypergeometric series. Such q→ 1− limit computations
can also be carried out for the U(n+1) nonterminating q-Whipple and q-Saalschütz
transformations in this paper.

The series r+1φr is said to be k-balanced if b1b2 · · ·br = qka1a2 · · ·ar+1 and z = q.
A 1-balanced series is called balanced (or Saalschützian). The r+1φr series is said
to be well-poised if qa1 = a2b1 = a3b2 = · · · = ar+1br, and very-well-poised if it is
well-poised and a2 = qa1/2

1 , a3 =−qa1/2
1 .

The following identities come up frequently in the analysis of multiple basic
hypergeometric series when powers of q−N are factored out of q-factorials, by
reversing the order of their factors:

(a;q)n = (q1−n/a;q)n(−a)nq(
n
2),(2.4)

(aqk;q)n−k =
(a;q)n

(a;q)k
,(2.5)

(aq−n;q)n = (q/a;q)n

(
−a

q

)n

q−(
n
2),(2.6)

and

(2.7)

(
y1 + · · ·+ yn

2

)
= e2(y1, . . . ,yn)+

[(
y1

2

)
+ · · ·+

(
yn

2

)]
,

where e2(y1, . . . ,yn) is the second elementary symmetric function of {y1, . . . ,yn}.
Remark. Equations (2.4), (2.5), and (2.6) are given by (I7), (I20), and (I8) on pages
351, 352, and 351, respectively, of [23]. The elementary identity in (2.7) is useful in
simplifying powers of q. We have previously applied (2.7) in [53, pp. 42] and [61,
pp. 280] and (2.4), (2.5), and (2.6) in much of our earlier work in this area.

3 Classical Nonterminating q-Whipple Transformation

In this section we give a self-contained account of Bailey’s proof of the classical
nonterminating q-Whipple transformation, as well as of his classical nonterminating
q-Saalschütz transformation. We follow the outline on pages 50–51 of [23]. One of
the main features and motivations of this paper is our extension of these classical
proofs of these two results to the U(n+ 1) case.
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The proofs begin with Bailey’s 10φ9 transformation formula in (III.28) of page
363 of [23].

Theorem 3.1 (Bailey’s 10�9 transformation formula). Let a, b, c, d, e, f , and
λ be indeterminate, n be a nonnegative integer, and suppose that none of the
denominators in (3.1) vanish. Then

10φ9

[
a,q
√

a,−q
√

a,b,c,d,e, f , λ aqn+1

e f ,q−n

√
a,−√a, aq

b , aq
c ,

aq
d , aq

e ,
aq
f ,

e f q−n

λ ,aqn+1
;q,q

]

(3.1a)

=

(
aq, aq

e f ,
λ q
e , λ q

f ;q
)

n(
aq
e ,

aq
f ,

λ q
e f ,λ q;q

)

n

(3.1b)

×10φ9

[
λ ,q
√

λ ,−q
√

λ , λ b
a , λ c

a , λ d
a ,e, f , λ aqn+1

e f ,q−n

√
λ ,−√λ , aq

b , aq
c ,

aq
d , λ q

e , λ q
f ,

e f q−n

a ,λ qn+1
;q,q

]

,(3.1c)

where λ = qa2/bcd.

Equation (3.1) is (III.28) on page 363 of [23].
Letting d→ a3q2+n/bcde f , followed by n→ ∞ in (3.1) yields Theorem 3.2.

Theorem 3.2 (Classical nonterminating q-Whipple transformation). Let a, b,
c, d, e, and f be indeterminate. Suppose that none of the denominators in (3.2)
vanish, and that 0 < |q|< 1 and |a2q2/bcde f |< 1. Then

8φ7

[
a,q
√

a,−q
√

a,b,c,d,e, f√
a,−√a, aq

b , aq
c ,

aq
d , aq

e ,
aq
f

;q,
a2q2

bcde f

]

(3.2a)

=

(
aq, aq

de ,
aq
d f ,

aq
e f ;q

)

∞(
aq
d , aq

e ,
aq
f ,

aq
de f ;q

)

∞

4φ3

[ aq
bc ,d,e, f

aq
b , aq

c ,
de f

a

;q,q

]
(3.2b)

+

(
aq, aq

bc ,d,e, f , a2q2

bde f ,
a2q2

cde f ;q
)

∞(
aq
b , aq

c ,
aq
d , aq

e ,
aq
f ,

a2a2

bcde f ,
de f
aq ;q

)

∞

4φ3

⎡

⎣
aq
de ,

aq
d f ,

aq
e f ,

a2q2

bcde f

a2q2

bde f ,
a2q2

cde f ,
aq2

de f

;q,q

⎤

⎦ .(3.2c)

Equation (3.2) is (III.36) on page 364 of [23].

Proof. We give a brief summary of Bailey’s proof, outlined on page 50 of [23]. In

(3.1), let d �→ a3q2+n

bcde f . Then (3.1a) does not change, and as n→ ∞, (3.1a) converges
to (3.2a). The products in (3.1b) converge to

(3.3)

(
aq, aq

de ,
aq
d f ,

aq
e f ;q

)

∞(
aq
d , aq

e ,
aq
f ,

aq
de f ;q

)

∞

.
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However, for large n, (3.1c) becomes relatively large at both ends and small in the
middle of the series, preventing us from taking the term-by-term limit directly. To
overcome this difficulty, Bailey used the following scheme for an arbitrary sequence
{λk}: Set n = 2m+ 1, and break up (3.1c) according to (3.4a) in

2m+1

∑
k=0

λk =
m

∑
k=0

λk +
2m+1

∑
k=m+1

λk(3.4a)

=
m

∑
k=0

λk +
m

∑
k=0

λ2m+1−k,(3.4b)

and then reverse the order of the second series as in (3.4b).
Use the summand in (3.1c) for λk in (3.4). Then let m→ ∞ (and hence n→ ∞)

and multiply by (3.3) to obtain (3.2b) and (3.2c). �	
If, in (3.2), aq/cd = 1, the 4φ3s reduce to 3φ2s, and the 8φ7 series reduces to a

6φ5. The resulting 6φ5 is summable by means of the following.

Theorem 3.3 (Classical nonterminating 6�5 summation theorem). Let a, b, c,
and d be indeterminate. Suppose that none of the denominators in (3.5) vanish,
and that 0 < |q|< 1 and |aq/bcd|< 1. Then

(3.5) 6φ5

[
a,q
√

a,−q
√

a,b,c,d√
a,−√a, aq

b , aq
c ,

aq
d

;q,
aq

bcd

]
=

(
aq, aq

bc ,
aq
bd ,

aq
cd ;q

)
∞( aq

b , aq
c ,

aq
d , aq

bcd ;q
)

∞
.

Equation (3.5) is (II.20) on page 356 of [23].
Solving for the first 3φ2 on the resulting right-hand side and relabelling we obtain

Theorem 3.4.

Theorem 3.4 (Classical nonterminating q-Saalschütz transformation). Let a,
b, c, e, and f be indeterminate. Suppose that none of the denominators in (3.6)
vanish, and that 0 < |q|< 1. Then

3φ2

[
a,b,c
e, f

;q,q

]
=

(
q
e ,

f
a ,

f
b ,

f
c ;q
)

∞(
aq
e ,

bq
e ,

cq
e , f ;q

)

∞

−

(
q
e ,a,b,c,

q f
e ;q
)

∞(
e
q ,

aq
e ,

bq
e ,

cq
e , f ;q

)

∞

3φ2

[
aq
e ,

bq
e ,

cq
e

q2

e ,
q f
e

;q,q

]

,(3.6)

where e f = abcq.

Equation (3.6) is (II.24) on page 356 of [23].
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4 U(n+1) Nonterminating q-Whipple Transformations

In this section we derive our U(n+ 1) nonterminating q-Whipple transformations
by letting N → ∞, in an appropriate manner, on both sides of the U(n+ 1) 10φ9

transformation formula given by Theorem A.1. (This multivariable extension of
Bailey’s classical 10φ9 transformation was first given by Theorem 3.3 of [61].)
The key to our extension of Bailey’s classical proof from Sect. 3 is the partition
of the n-dimensional tetrahedron (n-simplex) determined by (4.13), the analysis in
Appendix B involving the multiple power series ratio test of Lemma B.1, and the
Dominated Convergence Theorem.

We give the formal aspects of our proofs in this section, while the absolute
convergence of the nonterminating multiple series is established in Appendix B.

Theorem 4.1 (First U(n+ 1) nonterminating q-Whipple transformation). Let
a,b,c,d, e1, . . . ,en, f , and x1, . . . ,xn be indeterminate, with n ≥ 1. Take 0 < |q|< 1
and

(4.1)

∣
∣
∣
∣

a2q2

bcde1 · · ·en f

∣
∣
∣
∣< 1.

Suppose that none of the denominators in (4.2) vanish. Then

∑
y1,...,yn≥0

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

[
1− xi

xn
aqyi+(y1+···+yn)

1− xi
xn

a

]

× (b)y1+···+yn
(c)y1+···+yn

( aq
d

)
y1+···+yn

(
aq
f

)

y1+···+yn

n

∏
i=1

⎡

⎢
⎣

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

⎤

⎥
⎦

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

y1+···+yn(
xi
xn

aq
ei

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

×
(

a2q
bcde1 · · ·en f

)y1+···+yn

qy1+2y2+···+nyn

⎫
⎪⎪⎬

⎪⎪⎭
(4.2a)

=

(
aq

de1···en

)

∞

(
aq

e1···en f

)

∞
( aq

d

)
∞

(
aq
f

)

∞

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

∞

(
xn
xi

aeiq
de1···en f

)

∞(
xn
xi

aq
de1 ···en f

)

∞

(
xi
xn

aq
ei

)

∞

⎤

⎦(4.2b)
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∑
y1,...,yn≥0

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦

×
n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦ ∏

1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···nyn

⎫
⎪⎪⎬

⎪⎪⎭
(4.2c)

+

(
a2q2

bde1···en f

)

∞

(
a2q2

cde1···en f

)

∞
(q)∞

(
a2q2

bcde1 ···en f

)

∞

( aq
d

)
∞

(
aq
f

)

∞

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

∞(
xi
xn

aq
ei

)

∞

(
1− xn

xi

aq
de1···en f

)

⎤

⎦(4.2d)

n

∑
j=1

⎧
⎪⎪⎨

⎪⎪⎩

(
x j
xn

aq
bc

)

∞

(
x j
xn

d
)

∞

(
x j
xn

f
)

∞(
x j
xn

aq
b

)

∞

(
x j
xn

aq
c

)

∞

(
x j
xn

de1···en f
a

)

∞

n

∏
s=1

⎡

⎣

(
x j
xs

es

)

∞(
q

x j
xs

)

∞

⎤

⎦

× ∑
y1,...,yn≥0

∏
1≤i≤n

i �= j

[
1− xn

xi

aq
de1 · · ·en f

qy j−yi

]

× ∏
1≤i≤n

i �= j

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦

×

⎡

⎢
⎣

(
a2q2

bcde1 ···en f

)

y j

(
aq

de1···en

)

y j

(
aq

e1···en f

)

y j(
a2q2

bde1 ···en f

)

y j

(
a2q2

cde1 ···en f

)

y j

(q)y j

⎤

⎥
⎦

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

aeiq
de1···en f

)

y j(
xn
xi

aq2

de1···en f

)

y j

⎤

⎥
⎦ ∏

1≤r,s≤n
r �= j

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

×
j−1

∏
r=1

[
1

1− xr
x j

]
n

∏
s= j+1

[
1

1− x j
xs

]

×(−1) j
(

aq
de1 · · ·en f

)(
xn

x j

)

∏
1≤r<s≤n

r,s �= j

[
1− xr

xs
qyr−ys

1− xr
xs

]

×qy1+···+y j qy1+2y2+···+( j−1)y j−1+( j+1)y j+1+···+nyn

j−1

∏
r=1

(
xr

x j

)
⎫
⎪⎪⎬

⎪⎪⎭
.(4.2e)
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Remark. The n = 1 and e1 �→ e case of (4.2) is (III.36) on page 364 of [23].

Proof. Begin with Theorem A.1, and replace λ with qa2/bcd. The sum (A.1a)
becomes

∑
y1,...,yn≥0

0≤y1+···+yn≤N

⎧
⎪⎨

⎪⎩

n

∏
i=1

[
1− xi

xn
aqyi+(y1+···+yn)

1− xi
xn

a

]

(4.3a)

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi

(
xi
xn

a3q2

bcde1···en f qN
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

aq1+N
)

yi

⎤

⎥
⎦(4.3b)

×

⎡

⎢
⎣

(b)y1+···+yn
(c)y1+···+yn

(
q−N

)
y1+···+yn

( aq
d

)
y1+···+yn

(
aq
f

)

y1+···+yn

(
bcde1···en f

qa2 q−N
)

y1+···+yn

⎤

⎥
⎦(4.3c)

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

y1+···+yn(
xi
xn

aq
ei

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦(4.3d)

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···+nyn

⎫
⎪⎬

⎪⎭
(4.3e)

By interchanging pairs of factors in (4.3b) and (4.3c), observe that the
substitution

(4.4) d �→ a3q2+N

bcde1 · · ·en f

leaves the sum (4.3) (termwise) unchanged. In Appendix B we show that (4.3)
becomes (4.2a) as N→ ∞.

Since, originally, λ = qa2

bcd , we have from (4.4) that

(4.5) λ �→ de1 · · ·en f
a

q−1−N .

Use (4.5) and then apply (2.6) to rewrite the original products in (A.1b). We obtain

(
de1···en

a q−N
)

N

(
aq

e1···en f

)

N
(

d
a q−N

)
N

(
aq
f

)

N

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

N

(
xi
xn

de1···en f
aei

q−N
)

N(
xi
xn

de1···en f
a q−N

)

N

(
xi
xn

aq
ei

)

N

⎤

⎦(4.6a)
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=

(
aq

de1···en

)

N

(
aq

e1···en f

)

N
( aq

d

)
N

(
aq
f

)

N

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

N

(
xn
xi

aeiq
de1···en f

)

N(
xn
xi

aq
de1···en f

)

N

(
xi
xn

aq
ei

)

N

⎤

⎦ .(4.6b)

As N → ∞, the (rewritten) products in (4.6b) clearly become the products in
(4.2b) given by

(4.7)

(
aq

de1···en

)

∞

(
aq

e1···en f

)

∞
( aq

d

)
∞

(
aq
f

)

∞

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

∞

(
xn
xi

aeiq
de1···en f

)

∞(
xn
xi

aq
de1···en f

)

∞

(
xi
xn

aq
ei

)

∞

⎤

⎦ .

For convenience, in (A.1c), first apply the substitution (4.4), and then (4.5). With
this, (A.1c) becomes

∑
y1,...,yn≥0

0≤y1+···+yn≤N

⎧
⎪⎨

⎪⎩

n

∏
i=1

[
1− xi

xn

de1···en f
a q−1−N qyi+(y1+···+yn)

1− xi
xn

de1···en f
a q−1−N

]

(4.8a)

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦

×

⎡

⎢
⎣

(
bde1···en f

a2 q−1−N
)

y1+···+yn

(
cde1···en f

a2 q−1−N
)

y1+···+yn(
bcde1···en f

a2 q−1−N
)

y1+···+yn

(
de1···en

a q−N
)

y1+···+yn

⎤

⎥
⎦(4.8b)

×
(
q−N

)
y1+···+yn(

e1···en f
a q−N

)

y1+···+yn

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦(4.8c)

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

de1···en f
a q−1−N

)

y1+···+yn(
xi
xn

de1···en f
aei

q−N
)

y1+···+yn

⎤

⎥
⎦(4.8d)

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···+nyn

⎫
⎪⎬

⎪⎭
.

We next rewrite the sum (4.8) by using (2.4) to reverse the order of all the products
that contain a q−N . Factoring q−N out of (4.8a), and simplifying, gives the following
sum, in which each term only involves qN :



Nonterminating U(n) q-Whipple Transformations 193

∑
y1,...,yn≥0

0≤y1+···+yn≤N

⎧
⎪⎨

⎪⎩

n

∏
i=1

[
1− xn

xi

a
de1···en f q1+Nq−(yi+(y1+···+yn))

1− xn
xi

a
de1···en f q1+N

]

(4.9a)

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦(4.9b)

×

⎡

⎢
⎣

(
a2

bde1···en f q2+N−(y1+···+yn)
)

y1+···+yn(
a2

bcde1···en f q2+N−(y1+···+yn)
)

y1+···+yn

⎤

⎥
⎦(4.9c)

×

⎡

⎢
⎣

(
a2

cde1···en f q2+N−(y1+···+yn)
)

y1+···+yn(
a

de1···en
q1+N−(y1+···+yn)

)

y1+···+yn

⎤

⎥
⎦(4.9d)

×

⎡

⎢
⎣

(
q1+N−(y1+···+yn)

)

y1+···+yn(
a

e1···en f q1+N−(y1+···+yn)
)

y1+···+yn

⎤

⎥
⎦(4.9e)

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

a
de1···en f q2+N−(y1+···+yn)

)

y1+···+yn(
xn
xi

aei
de1···en f q1+N−(y1+···+yn)

)

y1+···+yn

⎤

⎥
⎦(4.9f)

×
n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦ ∏

1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

(4.9g)

×qy1+2y2+···+nyn

⎫
⎪⎬

⎪⎭
.(4.9h)

In (4.9), all the powers of q, involving N, that appear in each factor, are
nonnegative, except for those in the numerator of (4.9a). The only other negative
powers of q appear in the Vandermonde product in (4.9g). Now, termwise, as N→∞,
it is not hard to see that the other factors, involving N, in (4.9) approach a nonzero
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constant. The above two factors, as well as the power of q in (4.9h), require further
analysis. They are

n

∏
i=1

(
1− xn

xi

a
de1 · · ·en f

q1+Nq−(yi+(y1+···+yn))

)

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

]
qy1+2y2+···+nyn .(4.10)

Rewrite (4.10) as

(4.11)
n

∏
i=1

[
qyi − xn

xi

a
de1 · · ·en f

q1+N−(y1+···+yn)

]

∏
1≤r<s≤n

[
qys − xr

xs
qyr

]
.

By putting yi = αiN, with the αi nonnegative, where 0 ≤ α1 + · · ·+αn ≤ 1, (4.11)
it becomes

n

∏
i=1

[
qαiN− xn

xi

a
de1 · · ·en f

q1+N(1−(α1+···αn))

]
(4.12a)

× ∏
1≤r<s≤n

[
qαsN− xr

xs
qαrN

]
.(4.12b)

In order to investigate the behavior of (4.12) as N→∞, there are four main cases
to consider, each involving the n-dimensional tetrahedron (n-simplex) that contains
the indices of summation:

Case 1. α1 + · · ·+αn = 0. This case at the origin trivially gives a constant, as each
αi is 0.

Case 2. One αi = 1, and all the others are 0. Here, (4.12) becomes constant as
N → ∞. This case corresponds to the n vertices of the n-dimensional tetrahedron
that contains the indices of summation.

Case 3. 0 < α1 + · · ·+αn < 1, with at least one αi > 0. In this case (4.12a) will
approach 0 and (4.12b) will approach a constant. That is, (4.12) goes to 0.

Case 4. α1 + · · ·+αn = 1, with no αi = 1. In this case, at least two αis are nonzero,
so (4.12b) will approach 0 and (4.12a) will approach a constant. That is, (4.12) goes
to 0.

Remark. In the above cases 1–4, as N→ ∞, the factors in (4.12) go to constants on
the n+ 1 vertices of the n-dimensional tetrahedron, while going to 0 in the region
near the center. This implies that the behavior of (4.9) is analogous to the classical
1-variable case on page 50 of [23], which we outlined above in Bailey’s proof of
Theorem 3.2. Note that this classical (limit) analysis does not extend to the U(n)
10φ9 transformation formulas, involving sums over a “square” or “hyperrectangle,”
given by Theorems 3.1 and 3.2 of [61]. (Here, our limits tend to constants on the
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vertices of the “squares,” while diverging on the interiors.) That is why, in this paper,
we started with the U(n) 10φ9 transformation formula of Theorem A.1, involving
sums over a “triangle” or “n-simplex,” first given by Theorem 3.3 of [61].

Given the above motivation, we utilize the following scheme for dealing with the
limit of (4.9):

Split (4.9) into n+ 1 sums according to

∑
y1,...,yn≥0

0≤y1+···+yn≤N

λy1,...,yn(4.13a)

= ∑
0≤y1,...,yn≤N/2

0≤y1+···+yn≤N

λy1,...,yn(4.13b)

+
n

∑
j=1

∑
y1,...,yn≥0

N/2<y1+···+yn≤N
N/2<y j≤N

λy1,...,yn(4.13c)

= ∑
0≤y1,...,yn≤N/2

0≤y1+···+yn≤N

λy1,...,yn(4.13d)

+
n

∑
j=1

∑
y1,...,yn≥0

0≤y1+···+yn<N/2
0≤y j<N/2

λy1,...,y j−1,N−(y1+···+yn),y j+1,...,yn.(4.13e)

The multiple sum in (4.13a) is transformed into the n+1 multiple sums in (4.13b)
and (4.13c) by splitting up the index of summation set determined by y1, . . . ,yn ≥ 0
and 0 ≤ y1 + · · ·+ yn ≤ N, into the disjoint union of subsets, in which none, or
exactly one, respectively, of the conditions y j > N/2 hold. In (4.13c), the conditions
y1, . . . ,yn ≥ 0 and y j > N/2 immediately imply N/2 < y1 + · · ·+ yn. Furthermore,
the three index of summation conditions for the inner multiple sum in (4.13c) are
equivalent to the two conditions y1, . . . ,yn≥ 0 and N/2< y j ≤N−(y1+ · · ·+y j−1+
y j+1 + · · ·+ yn). In order to obtain (4.13e) from (4.13c), the inner multiple sum in
(4.13c) is shifted and then reversed only in the j-th coordinate. Shifting y j down by
N/2 gives y1, . . . ,yn≥ 0 and 0< y j ≤N/2−(y1+ · · ·+y j−1+y j+1+ · · ·+yn), while
changing λy1,...,yn to λy1,...,y j−1,y j+N/2,y j+1,...,yn . Reversing the order of summation in
y j now gives y1, . . . ,yn ≥ 0 and 0 ≤ y j < N/2− (y1 + · · ·+ y j−1 + y j+1 + · · ·+ yn),
while changing λy1,...,y j−1,y j+N/2,y j+1,...,yn to λy1,...,y j−1,N−(y1+···+yn),y j+1,...,yn , as in the
summand, we replaced y j by N/2− (y1 + · · ·+ y j−1 + y j+1 + · · ·+ yn)− y j, which
equals N/2− (y1+ · · ·+ yn). Finally, note that the two conditions y1, . . . ,yn ≥ 0 and
0 ≤ y j < N/2− (y1 + · · ·+ y j−1 + y j+1 + · · ·+ yn) are equivalent to the three index
of summation conditions for the inner multiple sum in (4.13e).
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We now replace λy1,...,yn in (4.13a) with the summand in (4.9).
The sum in (4.13d) then becomes

∑
0≤y1,...,yn≤N/2
0≤y1+···+yn≤N

⎧
⎪⎨

⎪⎩

n

∏
i=1

[
1− xn

xi

aq
de1···en f qN−(yi+(y1+···+yn))

1− xn
xi

aq
de1···en f qN

]

(4.14a)

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦(4.14b)

×

⎡

⎢
⎣

(
a2

bde1···en f q2+N−(y1+···+yn)
)

y1+···+yn(
a2

bcde1···en f q2+N−(y1+···+yn)
)

y1+···+yn

⎤

⎥
⎦(4.14c)

×

⎡

⎢
⎣

(
a2

cde1···en f q2+N−(y1+···+yn)
)

y1+···+yn(
a

de1···en
q1+N−(y1+···+yn)

)

y1+···+yn

⎤

⎥
⎦(4.14d)

×

⎡

⎢
⎣

(
q1+N−(y1+···+yn)

)

y1+···+yn(
a

e1···en f q1+N−(y1+···+yn)
)

y1+···+yn

⎤

⎥
⎦(4.14e)

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

a
de1···en f q2+N−(y1+···+yn)

)

y1+···+yn(
xn
xi

aei
de1···en f q1+N−(y1+···+yn)

)

y1+···+yn

⎤

⎥
⎦(4.14f)

×
n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦ ∏

1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

(4.14g)

×qy1+2y2+···+nyn

⎫
⎪⎬

⎪⎭
.(4.14h)

As N → ∞, we show in Appendix B that (4.14) becomes the sum in (4.2c). This
represents some of the deepest analysis of this paper.
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We next study the limit, as N→ ∞, of each inner sum in (4.13e). As these inner
sums are similar, it is only necessary to examine the jth inner sum given by

∑
y1,...,yn≥0
0≤y j<N/2

0≤y1+···+yn<N/2

⎧
⎪⎨

⎪⎩
∏

1≤i≤n
i�= j

[
1− xn

xi

a
de1···en f q1+y j−yi

1− xn
xi

a
de1···en f q1+N

]

(4.15a)

×
⎡

⎣
1− xn

x j

a
de1···en f q1−N+y j+(y1+···+yn)

1− xn
x j

a
de1···en f q1+N

⎤

⎦(4.15b)

× ∏
1≤i≤n

i�= j

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦(4.15c)

×

⎡

⎢
⎣

(
x j
xn

aq
bc

)

N−(y1+···+yn)

(
x j
xn

f
)

N−(y1+···+yn)(
x j
xn

aq
b

)

N−(y1+···+yn)

(
x j
xn

aq
c

)

N−(y1+···+yn)

⎤

⎥
⎦(4.15d)

×

⎡

⎢
⎣

(
x j
xn

d
)

N−(y1+···+yn)

(
q1+y j

)
N−y j

(
x j
xn

de1···en f
a

)

N−(y1+···+yn)

(
a

e1···en f q1+y j

)

N−y j

⎤

⎥
⎦(4.15e)

×

⎡

⎢
⎣

(
a2

bde1···en f q2+y j

)

N−y j

(
a2

cde1···en f q2+y j

)

N−y j(
a2

bcde1···en f q2+y j

)

N−y j

(
a

de1···en
q1+y j

)

N−y j

⎤

⎥
⎦(4.15f)

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

a
de1···en f q2+y j

)

N−y j(
xn
xi

aei
de1···en f q1+y j

)

N−y j

⎤

⎥
⎦ ∏

1≤r,s≤n
r �= j

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦(4.15g)

×
n

∏
s=1

⎡

⎢
⎣

(
x j
xs

es

)

N−(y1+···+yn)(
q

xj
xs

)

N−(y1+···+yn)

⎤

⎥
⎦

j−1

∏
r=1

[
1− xr

x j
q−N+yr+(y1+···+yn)

1− xr
x j

]

(4.15h)
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×
n

∏
s= j+1

[
1− x j

xs
qN−(ys+(y1+···+yn))

1− x j
xs

]

∏
1≤r<s≤n

r,s �= j

[
1− xr

xs
qyr−ys

1− xr
xs

]

(4.15i)

×qy1+2y2+···( j−1)y j−1+ j(N−(y1+···+yn))+( j+1)y j+1+···+nyn

⎫
⎪⎬

⎪⎭
.(4.15j)

We next rewrite the sum (4.15) by using (2.5) to express each product of the form
(Aqyj ;q)N−y j in (4.15e), (4.15f), and (4.15g) as a ratio of products. Factoring q−N

out of the numerators of (4.15b) and the second factor in (4.15h), and simplifying,
gives the following sum, in which each term only involves qN :

∑
y1,...,yn≥0
0≤y j<N/2

0≤y1+···+yn<N/2

⎧
⎪⎨

⎪⎩
∏

1≤i≤n
i�= j

[
1− xn

xi

aq
de1···en f qy j−yi

1− xn
xi

aq
de1···en f qN

]

(4.16a)

×
[

1− x j
xn

de1···en f
aq qN−(y j+(y1+···+yn))

1− xn
x j

aq
de1···en f qN

]

(4.16b)

× ∏
1≤i≤n

i�= j

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦(4.16c)

×

⎡

⎢
⎣

(
x j
xn

aq
bc

)

N−(y1+···+yn)

(
x j
xn

d
)

N−(y1+···+yn)

(
x j
xn

f
)

N−(y1+···+yn)(
x j
xn

aq
b

)

N−(y1+···+yn)

(
x j
xn

aq
c

)

N−(y1+···+yn)

(
x j
xn

de1···en f
a

)

N−(y1+···+yn)

⎤

⎥
⎦(4.16d)

×
⎡

⎣

(
a2q2

bde1···en f

)

N

(
a2q2

cde1···en f

)

N
(q)N

(
a2q2

bcde1···en f

)

N

(
aq

de1···en

)

N

(
aq

e1···en f

)

N

⎤

⎦(4.16e)

×

⎡

⎢
⎣

(
a2q2

bcde1···en f

)

y j

(
aq

de1···en

)

y j

(
aq

e1···en f

)

y j(
a2q2

bde1···en f

)

y j

(
a2q2

cde1···en f

)

y j
(q)y j

⎤

⎥
⎦(4.16f)
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×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

aq2

de1···en f

)

N

(
xn
xi

aeiq
de1···en f

)

y j(
xn
xi

aeiq
de1···en f

)

N

(
xn
xi

aq2

de1···en f

)

y j

⎤

⎥
⎦(4.16g)

× ∏
1≤r,s≤n

r �= j

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

n

∏
s=1

⎡

⎢
⎣

(
x j
xs

es

)

N−(y1+···+yn)(
q

xj
xs

)

N−(y1+···+yn)

⎤

⎥
⎦(4.16h)

×
j−1

∏
r=1

[
1− x j

xr
qN−(yr+(y1+···+yn))

1− xr
x j

]
n

∏
s= j+1

[
1− x j

xs
qN−(ys+(y1+···+yn))

1− x j
xs

]

(4.16i)

× ∏
1≤r<s≤n

r,s �= j

[
1− xr

xs
qyr−ys

1− xr
xs

]
j−1

∏
r=1

(
xr

x j

)
(4.16j)

×(−1) j
(

aq
de1 · · ·en f

)(
xn

x j

)
(4.16k)

×qy1+···+y j qy1+2y2+···+( j−1)y j−1+( j+1)y j+1+···+nyn

⎫
⎪⎬

⎪⎭
.(4.16l)

Letting N→ ∞, we show in Appendix B that (4.16) becomes

⎡

⎣

(
x j
xn

aq
bc

)

∞

(
x j
xn

d
)

∞

(
x j
xn

f
)

∞(
x j
xn

aq
b

)

∞

(
x j
xn

aq
c

)

∞

(
x j
xn

de1···en f
a

)

∞

⎤

⎦
n

∏
i=1

⎡

⎣

(
xn
xi

aq2

de1···en f

)

∞(
xn
xi

aeiq
de1···en f

)

∞

⎤

⎦(4.17a)

×
⎡

⎣

(
a2q2

bde1···en f

)

∞

(
a2q2

cde1···en f

)

∞
(q)∞

(
a2q2

bcde1···en f

)

∞

(
aq

de1···en

)

∞

(
aq

e1···en f

)

∞

⎤

⎦
n

∏
s=1

⎡

⎣

(
x j
xs

es

)

∞(
x j
xs

q
)

∞

⎤

⎦(4.17b)

∑
y1,...,yn≥0

⎧
⎪⎨

⎪⎩
∏

1≤i≤n
i�= j

[
1− xn

xi

aq
de1 · · ·en f

qy j−yi

]
(4.17c)

× ∏
1≤i≤n

i�= j

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦(4.17d)
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×

⎡

⎢
⎣

(
a2q2

bcde1···en f

)

y j

(
aq

de1···en

)

y j

(
aq

e1···en f

)

y j(
a2q2

bde1···en f

)

y j

(
a2q2

cde1···en f

)

y j
(q)y j

⎤

⎥
⎦(4.17e)

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

aeiq
de1···en f

)

y j(
xn
xi

aq2

de1···en f

)

y j

⎤

⎥
⎦ ∏

1≤r,s≤n
r �= j

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦(4.17f)

×
j−1

∏
r=1

[
1

1− xr
x j

]
n

∏
s= j+1

[
1

1− x j
xs

]

(4.17g)

× ∏
1≤r<s≤n

r,s �= j

[
1− xr

xs
qyr−ys

1− xr
xs

]
j−1

∏
r=1

(
xr

x j

)
(4.17h)

×(−1) j
(

aq
de1 · · ·en f

)(
xn

x j

)
(4.17i)

×qy1+···+y j qy1+2y2+···+( j−1)y j−1+( j+1)y j+1+···+nyn

⎫
⎪⎬

⎪⎭
.(4.17j)

Taking (4.17) for j = 1, . . . ,n, adding these to (4.2c), and then multiplying
everything by (4.7) gives (4.2b)–(4.2e). �	
Theorem 4.2 (Second U(n + 1) nonterminating q-Whipple transformation).
Let a,b,c,d, e1, . . . ,en, f , and x1, . . . ,xn be indeterminate, with n ≥ 1. Take
0 < |q|< 1 and

(4.18)

∣
∣
∣
∣
xn

xi

a2q2

bcde1 · · ·en f

∣
∣
∣
∣< 1, f or i = 1,2, . . . ,n.

Suppose that none of the denominators in (4.19) vanish. Then

∑
y1,...,yn≥0

⎧
⎨

⎩

n

∏
i=1

[
1− xi

xn
aqyi+(y1+···+yn)

1− xi
xn

a

]

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

c
)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

⎤

⎥
⎦

×

⎡

⎢
⎣

(b)y1+···+yn
( aq

c

)
y1+···+yn

( aq
d

)
y1+···+yn

(
aq
f

)

y1+···+yn

⎤

⎥
⎦
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×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

y1+···+yn(
xi
xn

aq
ei

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

](
a2q

bcde1 · · ·en f

)y1+···+yn

×qy1+2y2+···+nyn qe2(y1,...,yn)
n

∏
i=1

(
xn

xi

)yi

⎫
⎬

⎭
(4.19a)

=

(
aq

de1···en

)

∞

(
aq

e1···en f

)

∞
( aq

d

)
∞

(
aq
f

)

∞

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

∞

(
xn
xi

aeiq
de1···en f

)

∞(
xn
xi

aq
de1···en f

)

∞

(
xi
xn

aq
ei

)

∞

⎤

⎦(4.19b)

∑
y1,...,yn≥0

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

⎡

⎢
⎣

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦

[( aq
bc

)
y1+···+yn( aq

c

)
y1+···+yn

]

×
n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦ ∏

1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···nyn

⎫
⎪⎪⎬

⎪⎪⎭
(4.19c)

+

(
a2q2

bde1···en f

)

∞

( aq
bc

)
∞ (q)∞

( aq
c

)
∞
( aq

d

)
∞

(
aq
f

)

∞

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

∞(
xi
xn

aq
ei

)

∞

(
1− xn

xi

aq
de1···en f

)

⎤

⎦(4.19d)

×
n

∑
j=1

⎧
⎪⎪⎨

⎪⎪⎩

(
xn
x j

a2q2

cde1···en f

)

∞

(
x j
xn

d
)

∞

(
x j
xn

f
)

∞(
x j
xn

aq
b

)

∞

(
xn
x j

a2q2

bcde1···en f

)

∞

(
x j
xn

de1···en f
a

)

∞

n

∏
s=1

⎡

⎣

(
x j
xs

es

)

∞(
x j
xs

q
)

∞

⎤

⎦

× ∑
y1,...,yn≥0

∏
1≤i≤n

i�= j

[
1− xn

xi

aq
de1 · · ·en f

qy j−yi

]

× ∏
1≤i≤n

i�= j

⎡

⎢
⎣

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦

×

⎡

⎢
⎣

(
xn
x j

a2q2

bcde1···en f

)

y1+···+yn

(
aq

de1···en

)

y j

(
aq

e1···en f

)

y j(
a2q2

bde1···en f

)

y j

(
xn
x j

a2q2

cde1···en f

)

y1+···+yn
(q)y j

⎤

⎥
⎦



202 S.C. Milne and J.W. Newcomb

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

aeiq
de1···en f

)

y j(
xn
xi

aq2

de1···en f

)

y j

⎤

⎥
⎦ ∏

1≤r,s≤n
r �= j

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

×
j−1

∏
r=1

[
1

1− xr
x j

]
n

∏
s= j+1

[
1

1− x j
xs

]

×(−1) j
(

aq
de1 · · ·en f

)(
xn

x j

)

∏
1≤r<s≤n

r,s �= j

[
1− xr

xs
qyr−ys

1− xr
xs

]

×qy1+···+y j qy1+2y2+···+( j−1)y j−1+( j+1)y j+1+···+nyn

j−1

∏
r=1

(
xr

x j

)
⎫
⎪⎪⎬

⎪⎪⎭
,(4.19e)

where e2(y1, . . . ,yn) is the second elementary symmetric function of {y1, . . . ,yn}.
Proof. To obtain this second transformation, first exchange c and d in (A.1a)–
(A.1c). The rest of the proof, including the use of Appendix B, is essentially the
same as that of Theorem 4.1. �	
Remark. Note that e2(y1, . . . ,yn) only appears in (4.19a), but not the right-hand side
of (4.19). Moreover, e2(y1, . . . ,yn) does not appear in Theorem 4.1. In the proof of
Theorem 4.1, before taking N→∞ in the sum (4.3), we only had to apply (2.4) to the

ratio of the two products in (4.3c), involving q−N . The factors q(
y1+···+yn

2 ) that came
out cancelled. However, in the analogous computation in the proof of Theorem 4.2,
such cancellation does not occur. Further simplification requires (2.7), introducing
the additional power of q given by

(4.20) qe2(y1,...,yn),

where e2(y1, . . . ,yn) is the second elementary symmetric function of {y1, . . . ,yn}.
Remark. The n = 1 and e1 �→ e case of (4.19) is (III.36) on page 364 of [23].

5 U(n+1) Nonterminating q-Saalschütz Transformations

In this section we derive our U(n+1) nonterminating q-Saalschütz transformations
by applying Theorems A.3 and A.4, respectively, to suitable special cases of
Theorems 4.1 and 4.2. This analysis extends Bailey’s proof, summarized on page
51 of [23], of his classical nonterminating q-Saalschütz transformation.
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We give the formal aspects of our proofs in this section, while the absolute
convergence of the nonterminating multiple series is established in Appendix B.

Theorem 5.1 (First U(n+ 1) nonterminating q-Saalschütz transformation).
Let a,b, c1, . . . ,cn,e, f , and x1, . . . ,xn be indeterminate, with n≥ 1. Take 0< |q|< 1.
Suppose that none of the denominators in (5.1) vanish. Then

∑
y1,...,yn≥0

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

yi

(
xi
xn

b
)

yi(
xi
xn

e
)

yi

(
xi
xn

f
)

yi

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

cs

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···nyn

⎫
⎪⎪⎬

⎪⎪⎭
(5.1a)

=

(
f
a

)

∞

(
f
b

)

∞
( aq

e

)
∞

(
bq
e

)

∞

n

∏
i=1

⎡

⎣

(
xi
xn

f
ci

)

∞

(
xn
xi

q
e

)

∞(
xi
xn

f
)

∞

(
xn
xi

qci
e

)

∞

⎤

⎦(5.1b)

−

(
f q
e

)

∞
(q)∞

( aq
e

)
∞

(
bq
e

)

∞

n

∏
i=1

⎡

⎣

(
xn
xi

q
e

)

∞(
xn
xi

qci
e

)

∞

(
1− xn

xi

q
e

)

⎤

⎦

n

∑
j=1

⎧
⎪⎪⎨

⎪⎪⎩

(
x j
xn

a
)

∞

(
x j
xn

b
)

∞(
x j
xn

e
)

∞

(
x j
xn

f
)

∞

n

∏
s=1

⎡

⎣

(
x j
xs

cs

)

∞(
x j
xs

q
)

∞

⎤

⎦

× ∑
y1,...,yn≥0

∏
1≤i≤n

i�= j

[
1− xn

xi

1
e

q1+y j−yi

]

× ∏
1≤i≤n

i�= j

⎡

⎢
⎣

(
xi
xn

a
)

yi

(
xi
xn

b
)

yi(
xi
xn

e
)

yi

(
xi
xn

f
)

yi

⎤

⎥
⎦ ·

⎡

⎢
⎣

( aq
e

)
y j

(
bq
e

)

y j(
f q
e

)

y j
(q)y j

⎤

⎥
⎦

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

qci
e

)

y j(
xn
xi

q2

e

)

y j

⎤

⎥
⎦ ∏

1≤r,s≤n
r �= j

⎡

⎢
⎣

(
xr
xs

cs

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

×
j−1

∏
r=1

[
1

1− xr
x j

]
n

∏
s= j+1

[
1

1− x j
xs

]
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× ∏
1≤r<s≤n

r,s �= j

[
1− xr

xs
qyr−ys

1− xr
xs

]

(−1) j
(q

e

)(xn

x j

) j−1

∏
r=1

(
xr

x j

)

×qy1+···+y j qy1+2y2+···+( j−1)y j−1+( j+1)y j+1+···+nyn

⎫
⎪⎪⎬

⎪⎪⎭
,(5.1c)

where a = e f
bc1···cnq .

Proof. In (4.2), we require that aq/c = d. Equation (4.2a) then reduces to (A.4a),
and (4.2b)-(4.2c) becomes

(
c

e1···en

)

∞

(
aq

e1···en f

)

∞(
aq
f

)

∞
(c)∞

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

∞

(
xn
xi

cei
e1···en f

)

∞(
xn
xi

c
e1···en f

)

∞

(
xi
xn

aq
ei

)

∞

⎤

⎦

∑
y1,...,yn≥0

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

qe1···en f
c

)

yi

⎤

⎥
⎦

×
n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦ ∏

1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···nyn

⎫
⎪⎪⎬

⎪⎪⎭
.(5.2)

With the same restriction, (4.2d)-(4.2e) becomes

(
acq

be1···en f

)

∞

(
aq

e1···en f

)

∞
(q)∞

(
aq

be1···en f

)

∞

(
aq
f

)

∞
(c)∞

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

∞(
xi
xn

aq
ei

)

∞

(
1− xn

xi

c
e1···en f

)

⎤

⎦

n

∑
j=1

⎧
⎪⎪⎨

⎪⎪⎩

(
x j
xn

aq
bc

)

∞

(
x j
xn

f
)

∞(
x j
xn

aq
b

)

∞

(
x j
xn

e1···en f q
c

)

∞

n

∏
s=1

⎡

⎣

(
x j
xs

es

)

∞(
x j
xs

q
)

∞

⎤

⎦

× ∑
y1,...,yn≥0

∏
1≤i≤n

i�= j

[
1− xn

xi

c
e1 · · ·en f q

q1+y j−yi

]
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× ∏
1≤i≤n

i�= j

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

e1···en f q
c

)

yi

⎤

⎥
⎦

(
aq

be1···en f

)

y j

(
c

e1···en

)

y j(
aqc

be1···en f

)

y j
(q)y j

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

cei
e1···en f

)

y j(
xn
xi

cq
e1···en f

)

y j

⎤

⎥
⎦ ∏

1≤r,s≤n
r �= j

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

×
j−1

∏
r=1

[
1

1− xr
x j

]
n

∏
s= j+1

[
1

1− x j
xs

]

× ∏
1≤r<s≤n

r,s �= j

[
1− xr

xs
qyr−ys

1− xr
xs

]

(−1) j
(

c
e1 · · ·en f

)(
xn

x j

)

×
j−1

∏
r=1

(
xr

x j

)
qy1+···+y j qy1+2y2+···+( j−1)y j−1+( j+1)y j+1+···+nyn

⎫
⎪⎪⎬

⎪⎪⎭
.(5.3)

Now, (A.4b) is the sum of (5.2) and (5.3). Solving for the sum in (5.2) and
relabelling according to

(5.4) es �→ cs, f �→ b, c �→ bc1 · · ·cnq
e

, a �→ 1
f
, b �→ q

f 2

yields (5.1). �	
Remark. After relabelling according to (5.4), we had no more a’s, but instead, a
large number of e f /bc1 · · ·cnq’s. Just as in the one-variable classical case, we then
set these expressions equal to a, giving the balanced condition a = e f /bc1 · · ·cnq.

Remark. When we applied the nonterminating U(n+1) 6φ5 summation of Theorem
A.3 to the aq/c = d case of Theorem 4.1, we needed the convergence condition
0 < |q|< 1, as well as those in equations (A.3) and (4.1). However, in Theorem 5.1,
we only require the condition 0 < |q|< 1. Just as in the one-variable classical case,
the initial extra convergence conditions are removed by analytic continuation.

Remark. The n = 1 and c1 �→ c case of (5.1) is the classical nonterminating
q-Saalschütz transformation in (II.24) on page 356 of [23].

Theorem 5.2 (Second U(n+ 1) nonterminating q-Saalschütz transformation).
Let a,b, c1, . . . ,cn,e, f , and x1, . . . ,xn be indeterminate, with n≥ 1. Take 0< |q|< 1.
Suppose that none of the denominators in (5.5) vanish. Then
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∑
y1,...,yn≥0

⎧
⎪⎪⎨

⎪⎪⎩

(a)y1+···+yn

( f )y1+···+yn

n

∏
i=1

⎡

⎢
⎣

(
xi
xn

b
)

yi(
xi
xn

e
)

yi

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

cs

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···nyn

⎫
⎪⎪⎬

⎪⎪⎭
(5.5a)

=

(
f
a

)

∞

(
f

c1···cn

)

∞

( f )∞

(
bq
e

)

∞

n

∏
i=1

⎡

⎣

(
xn
xi

f ci
bc1···cn

)

∞

(
xn
xi

q
e

)

∞(
xn
xi

aq
e

)

∞

(
xn
xi

qci
e

)

∞

⎤

⎦(5.5b)

− (a)∞ (q)∞

( f )∞

(
bq
e

)

∞

n

∏
i=1

⎡

⎣

(
xn
xi

q
e

)

∞(
xn
xi

qci
e

)

∞

(
1− xn

xi

q
e

)

⎤

⎦

n

∑
j=1

⎧
⎪⎪⎨

⎪⎪⎩

(
xn
x j

f q
e

)

∞

(
x j
xn

b
)

∞(
x j
xn

e
)

∞

(
xn
x j

aq
e

)

∞

n

∏
s=1

⎡

⎣

(
x j
xs

cs

)

∞(
x j
xs

q
)

∞

⎤

⎦

× ∑
y1,...,yn≥0

∏
1≤i≤n

i�= j

[
1− xn

xi

1
e

q1+y j−yi

]

× ∏
1≤i≤n

i�= j

⎡

⎢
⎣

(
xi
xn

b
)

yi(
xi
xn

e
)

yi

⎤

⎥
⎦

(
xn
x j

aq
e

)

y1+···+yn

(
bq
e

)

y j(
xn
x j

f q
e

)

y1+···+yn
(q)y j

×
n

∏
i=1

⎡

⎢
⎣

(
xn
xi

qci
e

)

y j(
xn
xi

q2

e

)

y j

⎤

⎥
⎦ ∏

1≤r,s≤n
r �= j

⎡

⎢
⎣

(
xr
xs

cs

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

×
j−1

∏
r=1

[
1

1− xr
x j

]
n

∏
s= j+1

[
1

1− x j
xs

]

× ∏
1≤r<s≤n

r,s �= j

[
1− xr

xs
qyr−ys

1− xr
xs

]

(−1) j
(q

e

)(xn

x j

) j−1

∏
r=1

(
xr

x j

)

×qy1+···+y j qy1+2y2+···+( j−1)y j−1+( j+1)y j+1+···+nyn

⎫
⎪⎪⎬

⎪⎪⎭
,(5.5c)

where a = e f
bc1···cnq .
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Proof. In (4.19), first exchange b and c, then require that aq/c= d. Equation (4.19a)
reduces to (A.6a). The remainder of the proof is then similar to that of Theorem
5.1. �	
Remark. The n = 1 and c1 �→ c case of (5.5) is the classical nonterminating
q-Saalschütz transformation in (II.24) on page 356 of [23].

Appendix A. Background Information: U(n+1) (or An) Basic
Hypergeometric Summation Theorems

In this Appendix A we state the U(n+ 1) basic hypergeometric series summation
theorems and transformations, from [48, 50, 51, 53, 61], that we need in the deriva-
tions of our U(n+ 1) nonterminating q-Whipple and q-Saalschütz transformations.

All of the finite (or terminating) multiple sums here are taken over a “triangle”
or “n-simplex” determined by y1, . . . ,yn ≥ 0 and 0≤ y1 + · · ·+yn ≤ N, where N is a
nonnegative integer. This choice of region of summation is needed in order to make
our convergence arguments work.

Our two U(n + 1) nonterminating q-Whipple transformations in Sect. 4 are a
consequence of the following multivariable extension of Bailey’s classical 10φ9

transformation given by Theorem 3.3 of [61].

Theorem A.1 (First U(n+ 1) 10�9 transformation formula). Let a, b, c, d, e1,
. . . , en, f , and x1, . . . ,xn be indeterminate, N be a nonnegative integer, n ≥ 1, and
suppose that none of the denominators in (A.1) vanish. Then

∑
y1,...,yn≥0

0≤y1+···+yn≤N

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

[
1− xi

xn
aqyi+(y1+···+yn)

1− xi
xn

a

]

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi

(
xi
xn

λa
e1···en f q1+N

)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

aq1+N
)

yi

⎤

⎥
⎦

×

⎡

⎢
⎣

(b)y1+···+yn
(c)y1+···+yn

(
q−N

)
y1+···+yn

( aq
d

)
y1+···+yn

(
aq
f

)

y1+···+yn

(
e1···en f

λ q−N
)

y1+···+yn

⎤

⎥
⎦

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

y1+···+yn(
xi
xn

aq
ei

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦
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× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···+nyn

⎫
⎪⎪⎬

⎪⎪⎭
(A.1a)

=

(
aq

e1···en f

)

N

(
λq
f

)

N(
λq

e1···en f

)

N

(
aq
f

)

N

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

N

(
xi
xn

λq
ei

)

N(
xi
xn

λq
)

N

(
xi
xn

aq
ei

)

N

⎤

⎦(A.1b)

× ∑
y1,...,yn≥0

0≤y1+···+yn≤N

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

[
1− xi

xn
λqyi+(y1+···+yn)

1− xi
xn

λ

]

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

λd
a

)

yi

(
xi
xn

f
)

yi

(
xi
xn

λa
e1···en f q1+N

)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

λq1+N
)

yi

⎤

⎥
⎦

×

⎡

⎢
⎣

(
λb
a

)

y1+···+yn

(
λc
a

)

y1+···+yn

(
q−N

)
y1+···+yn

( aq
d

)
y1+···+yn

(
λq
f

)

y1+···+yn

(
e1···en f

a q−N
)

y1+···+yn

⎤

⎥
⎦

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

λ
)

y1+···+yn(
xi
xn

λq
ei

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···+nyn

⎫
⎪⎪⎬

⎪⎪⎭
,(A.1c)

where λ = qa2/bcd.

Remark. The n = 1, N = n, e1 �→ e case of (A.1) is (III.28) on page 363 of [23].

Our two U(n+ 1) nonterminating q-Saalschütz transformations in Sect. 5 arise
by applying two U(n+ 1) nonterminating 6φ5 summation theorems from [48] and
[53] to special cases of our two U(n+1) nonterminating q-Whipple transformations
in Sect. 4.

We illustrate a simple case of letting N → ∞, while using the Dominated
Convergence Theorem, in a terminating multiple q-series, summed over a “triangle”
or “n-simplex,” by deriving the above two U(n+1) nonterminating 6φ5 summation
theorems of [48] and [53] from the following U(n + 1) q-Dougall summation
formula from [50, 51].

Theorem A.2 (First U(n+ 1) q-Dougall summation formula). Let a, b, c, e,
d1, . . . ,dn, and x1, . . . ,xn be indeterminate, N be a nonnegative integer, n ≥ 1, and
suppose that none of the denominators in (A.2) vanish. Then
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∑
y1,...,yn≥0

0≤y1+···+yn≤N

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

[
1− xi

xn
aqyi+(y1+···+yn)

1− xi
xn

a

]

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

b
)

yi

(
xi
xn

e
)

yi(
xi
xn

aq1+N
)

yi

(
xi
xn

aq
c

)

yi

⎤

⎥
⎦

×
[(

q−N
)

y1+···+yn
(c)y1+···+yn( aq

b

)
y1+···+yn

( aq
e

)
y1+···+yn

]

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

y1+···+yn(
xi
xn

aq
di

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

ds

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

qy1+2y2+···+nyn

⎫
⎪⎪⎬

⎪⎪⎭
(A.2a)

=

( aq
ce

)
N

(
aq

d1···dne

)

N
( aq

e

)
N

(
aq

cd1···dne

)

N

n

∏
i=1

⎡

⎣

(
xi
xn

aq
)

N

(
xi
xn

aq
cdi

)

N(
xi
xn

aq
c

)

N

(
xi
xn

aq
di

)

N

⎤

⎦ ,(A.2b)

where aq
bc = d1···dne

a q−N.

Remark. The n = 1, N = n, d1 �→ b, e �→ d, b �→ e case of (A.2) is (II.22) on page
356 of [23].

Remark. Theorem A.2, with different notation, has already appeared in [50, 51]. In
particular, rewriting Theorem 6.17 of [50] and [51] by replacing n by n+1, m by N,
and zn/zn+1 by a, making the substitutions zi = xi and q−Ni by di, for i = 1,2, . . . ,n,
and then taking bn+1,n+2 = q/b, an+1,n+1 = c/a, and an+1,n+2 = e/a, gives Theorem
A.2. Moreover, Theorem A.2, written with the same notation as (A.2), has already
been applied as Theorems A5 and A12 of [61] and [4], respectively.

We now obtain the first U(n+ 1) nonterminating 6φ5 summation theorem. First,

set b = a2q1+N

cd1···dne in (A.2), and then make the substitutions c �→ b, e �→ f , and di �→ ei,
for i = 1,2, . . . ,n. Next, as described in Appendix B, letting N→∞, while using the
Dominated Convergence Theorem, yields the following theorem.

Theorem A.3 (First U(n+ 1) nonterminating 6�5 summation theorem). Let
a,b, f , e1, . . . ,en, and x1, . . . ,xn be indeterminate, with n≥ 1. Take 0 < |q|< 1 and

(A.3)

∣
∣
∣
∣

aq
be1 · · ·en f

∣
∣
∣
∣< 1.
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Suppose that none of the denominators in (A.4) vanish. Then

∑
y1,...,yn≥0

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

[
1− xi

xn
aqyi+(y1+···+yn)

1− xi
xn

a

]

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

⎤

⎥
⎦

⎡

⎢
⎣

(b)y1+···+yn(
aq
f

)

y1+···+yn

⎤

⎥
⎦

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

y1+···+yn(
xi
xn

aq
ei

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

]

×
(

a
be1 · · ·en f

)y1+···+yn

qy1+2y2+···+nyn

⎫
⎪⎪⎬

⎪⎪⎭
(A.4a)

=

(
aq
b f

)

∞

(
aq

e1···en f

)

∞(
aq

be1···en f

)

∞

(
aq
f

)

∞

n

∏
i=1

⎡

⎣

(
xi
xn

aq
bei

)

∞

(
xi
xn

aq
)

∞(
xi
xn

aq
b

)

∞

(
xi
xn

aq
ei

)

∞

⎤

⎦ .(A.4b)

Remark. The n = 1 and e1 �→ b, b �→ c, and f �→ d case of (A.4) is the classical
nonterminating 6φ5 summation in (II.20) on page 356 of [23].

Remark. Theorem A.3, with different notation, has already appeared in [48]. In
particular, rewriting Theorem 1.44 of [48] by replacing n by n+ 1 and zn/zn+1 by
a, making the substitutions zi = xi and aii = ei, for i = 1,2, . . . ,n, and then taking
an+1,n+1 = f/a, gives Theorem A.3. Moreover, Theorem A.3, written with the same
notation as (A.4), with n �→ �, b �→ c, f �→ d, and ei �→ bi, for i = 1,2, . . . ,n, has
already been applied as Theorem 6.3 of [60].

We next obtain the second U(n+ 1) nonterminating 6φ5 summation theorem.

First, set c = a2q1+N

bd1···dne in (A.2) and then make the substitutions e �→ f , and di �→ ei,
for i = 1,2, . . . ,n. Next, as described in Appendix B, letting N→∞, while using the
Dominated Convergence Theorem, yields the following theorem.

Theorem A.4 (Second U(n+ 1) nonterminating 6�5 summation theorem).
Let a,b, f , e1, . . . ,en, and x1, . . . ,xn be indeterminate, with n ≥ 1. Take 0 < |q| < 1
and

(A.5)

∣
∣∣
∣
xn

xi

aq
be1 · · ·en f

∣
∣∣
∣< 1, f or i = 1,2, . . . ,n.
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Suppose that none of the denominators in (A.6) vanish. Then

∑
y1,...,yn≥0

⎧
⎪⎪⎨

⎪⎪⎩

n

∏
i=1

[
1− xi

xn
aqyi+(y1+···+yn)

1− xi
xn

a

]

×
[(aq

b

)

y1+···+yn

(
aq
f

)

y1+···+yn

]−1 n

∏
i=1

[(
xi

xn
b

)

yi

(
xi

xn
f

)

yi

]

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

y1+···+yn(
xi
xn

aq
ei

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

× ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

1− xr
xs

](
a

be1 · · ·en f

)y1+···+yn

qe2(y1,...,yn)

×qy1+2y2+···+nyn
n

∏
i=1

(
xn

xi

)yi

⎫
⎪⎪⎬

⎪⎪⎭
(A.6a)

=

(
aq

be1···en

)

∞

(
aq

e1···en f

)

∞
( aq

b

)
∞

(
aq
f

)

∞

n

∏
i=1

⎡

⎣

(
xn
xi

aqei
be1···en f

)

∞

(
xi
xn

aq
)

∞(
xn
xi

aq
be1···en f

)

∞

(
xi
xn

aq
ei

)

∞

⎤

⎦ ,(A.6b)

where e2(y1, . . . ,yn) is the second elementary symmetric function of {y1, . . . ,yn}.
Remark. The n = 1 and e1 �→ b, b �→ c, and f �→ d case of (A.6) is the classical
nonterminating 6φ5 summation in (II.20) on page 356 of [23].

Remark. Theorem A.4, with different notation, has already appeared in [53]. In
particular, rewriting Theorem 4.27 of [53] by replacing n by n+ 1, and zn/zn+1 by
a, making the substitutions zi = xi and aii = ei, for i = 1,2, . . . ,n, and then taking
an+1,n+1 = f/a and an+1,n+2 = b/a, gives Theorem A.4.

Remark. The plane partition enumeration work of Krattenthaler [38] and Gessel
and Krattenthaler [24] suggests that the following direct special cases (which we do
not write down here) of Theorems 4.1, 4.2, A.3, A.4, 5.1, and 5.2 may be of interest.
They are obtained by setting es = q in the first four theorems and cs = q in the last
two.

Appendix B. Convergence of the (Multiple) (q-)Series

In this appendix we discuss and prove the absolute convergence of the non-
terminating summations in this paper. Similar convergence proofs for multiple
(basic) hypergeometric series have been given (in alphabetical order) by van Diejen
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[16, Appendix], Milne [46, pp. 54–55], [47, pp. 269–270], [48, pp. 234–237, 242],
[49, pp. 83–85], [56, pp. 132–134], Milne and Newcomb [61, pp. 274–276], and
Schlosser [75, Appendix C, pp. 455–458].

Tannery’s Theorem for Sums [7, pp. 136–138] is sufficient for the simpler
convergence arguments. However, the Dominated Convergence Theorem (see [6,
Theorem 6.19 on pp. 183] and [20, Theorem 2.24 on pp. 54, and Exercise 22 on pp.
59]) is more suitable and powerful for our analysis here.

We first complete the proof of Theorem 4.1 by showing that the sums (4.3),
(4.14), and (4.16) become (4.2a), (4.2c), and (4.17), respectively, as N→ ∞.
The following analysis is necessary for n ≥ 2, while the n = 1 case is much
simpler.

Our main analysis consists of four steps. First, observe that as N→ ∞, the term-
wise limits of the first three sums equals the terms, respectively, in the second three
sums. Second, establish upper bounds (that are independent of N) of the absolute
values of the terms in the first three sums. (This is done before taking N→ ∞, and
utilizes the conditions on N that determine the region of (finite) summation of these
sums.) Third, apply the “multiple power series ratio test” in Lemma B.1 to show that
the “upper bound” sums are absolutely convergent. Finally, appeal to the Dominated
Convergence Theorem. The convergence conditions in Theorem 4.1 are the same as
for the upper bound sums.

Establishing that (4.14) becomes (4.2c), as N → ∞, is much more subtle. This
requires the additional step of multiplying out the Vandermonde determinate as in
(B.4), interchanging summation, and carrying out a much more delicate four-step
Dominated Convergence Theorem analysis of each of the n! inner multiple sums
corresponding to the permutations σ of Sn. We then apply (B.4) in reverse to get the
Vandermonde back and finally obtain the sum in (4.2c). (Our analysis also yields
a simpler (but less sharp) upper bound for the sum (4.14), while avoiding applying
(B.4) in reverse.) This situation here is much deeper than the previous convergence
proofs for multiple (basic) hypergeometric series.

To carry out the above analysis we first need the multiple power series ratio test.

Lemma B.1 (The multiple power series ratio test). Given

(B.1) ∑
y1,...,yn≥0

f (y1, . . . ,yn),

set

(B.2) gm(y1, . . . ,yn) =

∣
∣
∣
∣

f (y1, . . . ,ym−1,ym +1,ym+1, . . . ,yn)

f (y1, . . . ,yn)

∣
∣
∣
∣ ,

for m = 1, . . . ,n. Then, if

(B.3) lim
ε→∞

gm(εy1, . . . ,εyn)< 1,

for m = 1, . . . ,n, the multiple sum in (B.1) converges absolutely.
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Remark. The multiple power series ratio test may be found in [1, 30, 43].

A useful technique appears in the proof of Theorem 5.6 in [56].

Obtaining the sum (4.2c) requires the Vandermonde determinant expansion

qy1+2y2+···+nyn ∏
1≤r<s≤n

[
1− xr

xs
qyr−ys

]
(B.4a)

=
n

∏
i=1

x1−i
i ∑

σ∈Sn

�(σ)
n

∏
i=1

xi−1
σ(i)

n

∏
i=1

qσ−1(i)yi ,(B.4b)

where �(σ) is the sign of the permutation σ .
Unless otherwise noted, we take 0 < |q|< 1.
In obtaining our various (term-wise) upper bounds we make frequent use of

(B.5)–(B.9) below:

(B.5) lim
N→∞

(
AqN)

m = 1,

where A and m are independent of N.
Equation (B.5) also implies that

(B.6) C1 ≤
∣∣(AqN)

m

∣∣≤C2,

where A and m are independent of N, A is independent of m, and C1 and C2 are
positive constants independent of N and m.

We also have

(B.7) C3 ≤
∣
∣(AqN−m)

m

∣
∣≤C4,

where N−m≥ 0, and the same conditions as in (B.6) apply.
The triangle inequality immediately gives

(B.8) ∏
1≤r<s≤n

∣
∣∣
∣

[
qys − xr

xs
qyr

]∣∣∣
∣≤ ∏

1≤r<s≤n

[
1+

∣
∣∣
∣
xr

xs

∣
∣∣
∣

]

and

(B.9)
n

∏
i=1

∣
∣
∣
∣

[
1− xi

xn
Aiq

yi+(y1+···+yn)

]∣∣
∣
∣≤

n

∏
i=1

[
1+

∣
∣
∣
∣

xi

xn
Ai

∣
∣
∣
∣

]
,

where the {y1, . . . ,yn} are nonnegative integers. Note that the right-hand sides
of (B.8) and (B.9) are independent of {y1, . . . ,yn}. In particular, we also take Ai

independent of {y1, . . . ,yn}.
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As we are using the Dominated Convergence Theorem, we only need to apply
Lemma B.1 to our various upper bound sums, whose terms and (infinite) region of
summation are independent of N.

It is easy to see that the following factors (B.10) of f in (B.1) contribute 1 to the
limit in (B.3).

(B.10)
n

∏
i=1

[
1− xi

xn
aqyi+(y1+···+yn)

1− xi
xn

a

]

,
n

∏
i=1

(a)yi
,

n

∏
r,s=1

(a)yr
, or (a)y1+···+yn

.

The expressions (including powers of q) in the “evaluation point” of our various
upper bound sums yield our convergence conditions.

We are now ready to finish the proof of Theorem 4.1.
We begin by showing that (4.3) becomes (4.2a) as N→ ∞.
Apply (2.4) to the two products in (4.3c) that involve q−N . We obtain

(
q−N

)
y1+···+yn(

bcde1···en f
qa2 q−N

)

y1+···+yn

=

(
q1+N−(y1+···+yn)

)

y1+···+yn(
q2+N−(y1+···+yn)a2

bcde1···en f

)

y1+···+yn

(
a2q

bcde1 · · ·en f

)y1+···+yn

.

(B.11)

It now follows from (B.11) and (B.5), for fixed {y1, . . . ,yn}, that the terms of
(4.3) become the terms of (4.2a), as N→ ∞.

Keeping in mind

(B.12) qy1+2y2+···+nyn = qy1+···+yn ·qy2+2y3+···+(n−1)yn

and appealing to (B.8), (B.9), then (B.11), (B.6), (B.7), and the summation
condition 0 ≤ y1 + · · ·+ yn ≤ N in (4.3a), the absolute value of the sum (4.3) is
bounded by

M1

⎧
⎪⎨

⎪⎩
∑

y1,...,yn≥0

∣∣
∣
∣
∣
∣∣

n

∏
i=1

⎡

⎢
⎣

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

⎤

⎥
⎦

× (b)y1+···+yn
(c)y1+···+yn

( aq
d

)
y1+···+yn

(
aq
f

)

y1+···+yn

×
n

∏
i=1

⎡

⎢
⎣

(
xi
xn

a
)

y1+···+yn(
xi
xn

aq
ei

)

y1+···+yn

⎤

⎥
⎦

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

×
(

a2q2

bcde1 · · ·en f

)y1+···+yn
∣
∣
∣
∣
∣

⎫
⎪⎬

⎪⎭
,(B.13)
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where M1 is a positive constant independent of {y1, . . . ,yn} and N. Note that we
first obtained the bound (B.13), with a finite sum over y1, . . . ,yn ≥ 0 and 0 ≤ y1 +
· · ·+ yn ≤ N. Adding additional nonnegative terms by removing the condition 0 ≤
y1 + · · ·+ yn ≤ N then gave the final infinite upper bound sum in (B.13).

By Lemma B.1, the upper bound sum (B.13) converges absolutely when
0 < |q|< 1 and

(B.14)

∣
∣∣
∣

a2q2

bcde1 · · ·en f

∣
∣∣
∣< 1.

From the Dominated Convergence Theorem, the sum (4.3) now becomes (4.2a)
as N→ ∞.

In order to show that (4.14) becomes (4.2c) as N → ∞, we first apply (B.4) to
expand qy1+2y2+···+nyn times the Vandermonde determinate in the sum (4.14). An
interchange of summation then gives

(B.15)
n

∏
i=1

x1−i
i ∑

σ∈Sn

�(σ)
n

∏
i=1

xi−1
σ(i) ∑

0≤y1,...,yn≤N/2
0≤y1+···+yn≤N

[
n

∏
i=1

qσ−1(i)yi

]

F(y1, . . . ,yn,N),

where �(σ) is the sign of the permutation σ , and F(y1, . . . ,yn,N) is all the factors
of the term in (4.14) except for (B.4a).

From an interchange of summation and then (B.4), we will be done once we
show, as N→ ∞, that the inner multiple sum

(B.16) ∑
0≤y1,...,yn≤N/2
0≤y1+···+yn≤N

[
n

∏
i=1

qσ−1(i)yi

]

F(y1, . . . ,yn,N)

in (B.15) becomes

(B.17) ∑
y1,...,yn≥0

[
n

∏
i=1

qσ−1(i)yi

]

G(y1, . . . ,yn),

where �(σ) is the sign of the permutation σ , and G(y1, . . . ,yn) is all the factors of
the term in (4.2c) except for (B.4a).

It follows from (B.5), for fixed {y1, . . . ,yn}, that F(y1, . . . ,yn,N) in (B.16)
becomes G(y1, . . . ,yn) in (B.17), as N→ ∞.

In order to obtain our upper bound sum for (B.16), we first factor

(B.18)
n

∏
i=1

[
1− xn

xi

aq
de1 · · ·en f

qN−(yi+(y1+···+yn))

]
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from F(y1, . . . ,yn,N) and then write (B.16) as

∑
0≤y1,...,yn≤N/2
0≤y1+···+yn≤N

[
n

∏
i=1

qσ−1(i)yi

]

(B.19a)

n

∏
i=1

[
1− xn

xi

aq
de1 · · ·en f

qN−(yi+(y1+···+yn))

]
(B.19b)

H(y1, . . . ,yn,N),(B.19c)

where H(y1, . . . ,yn,N) is all the factors of F(y1, . . . ,yn,N) except (B.18).
For each σ ∈ Sn, rewrite the factor in (B.19a) as

n

∏
i=1

qσ−1(i)yi(B.20a)

= q
1
2 yk

n

∏
i=1
i�=k

q(σ
−1(i)− 3

2 )yi(B.20b)

×q
1
2 (y1+···+yn)

n

∏
i=1
i�=k

qyi ,(B.20c)

where σ−1(k) = 1.
It is not hard to see that the product of (B.18) and (B.20c) is

(
q

1
2 (y1+···+yn)− xn

xk

aq
de1 · · ·en f

qN−yk− 1
2 (y1+···+yn)

)
(B.21a)

×
n

∏
i=1
i�=k

[
qyi − xn

xi

aq
de1 · · ·en f

qN−(y1+···+yn)

]
,(B.21b)

where σ−1(k) = 1.
The indices of summation conditions 0≤ y1, . . . ,yn≤N/2 and 0≤ y1+ · · ·+yn≤

N in (B.19a) imply that all of the powers of q in (B.21) are nonnegative. Just note that
yi ≥ 0, N−(y1 + · · ·+ yn)≥ 0, 1

2 (y1 + · · ·+ yn)≥ 0, and N−yk− 1
2(y1 + · · ·+ yn) =

(N/2− yk)+ ( 1
2 N− 1

2 (y1 + · · ·+ yn))≥ 0.
The triangle inequality and 0 < |q|< 1 then immediately gives that the absolute

value of (B.21) is bounded by

(B.22)
n

∏
i=1

[
1+

∣
∣
∣∣
xn

xi

aq
de1 · · ·en f

∣
∣
∣∣

]
.
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Keeping in mind (B.19)–(B.22), (B.20b), and the summation conditions in
(B.19a), applying (B.6) and (B.7) to the factors of H(y1, . . . ,yn,N) in (B.19c)
involving qN , it follows that the absolute value of the sum (B.16) is bounded by

M2

⎧
⎪⎪⎨

⎪⎪⎩
∑

y1,...,yn≥0

∣
∣∣
∣
∣
∣
∣

n

∏
i=1

⎡

⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi(
xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1···en f
a

)

yi

⎤

⎥
⎦

×
n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦q

1
2 yk

n

∏
i=1
i�=k

q(σ
−1(i)− 3

2 )yi

∣
∣
∣
∣∣
∣
∣

⎫
⎪⎪⎬

⎪⎪⎭
,(B.23)

where σ ∈Sn, σ−1(k) = 1, and M2 is a positive constant independent of {y1, . . . ,yn}
and N. Note that we first obtained the bound (B.23), with a finite sum over 0 ≤
y1, . . . ,yn ≤N/2 and 0≤ y1 + · · ·+yn ≤N. Adding additional nonnegative terms by
removing the conditions y1, . . . ,yn ≤ N/2 and 0 ≤ y1 + · · ·+ yn ≤ N then gave the
final infinite upper bound sum in (B.23).

By Lemma B.1, the upper bound sum (B.23) converges absolutely when 0 <
|q|< 1. Just observe that σ−1(i)≥ 2, for i = 1,2, . . . ,n, and i �= k.

From the Dominated Convergence Theorem, the sum (B.16) now becomes (B.17)
as N→ ∞.

Remark. The above proof that (4.14) becomes (4.2c), as N→ ∞, can be presented
in a slightly different form. First, it follows from (B.5), for fixed {y1, . . . ,yn}, that
the terms in (4.14) become those in (4.2c), as N→ ∞. From (B.15), (B.16), (B.23),
and an interchange of summation, we have that the absolute value of the sum (4.14)
is bounded by

M3

⎧
⎪⎪⎨

⎪⎪⎩
∑

y1,...,yn≥0

∣∣
∣
∣
∣
∣
∣∣
∣

n

∏
i=1

⎡

⎢
⎢
⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi
(

xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1 · · ·en f
a

)

yi

⎤

⎥
⎥
⎥
⎦

×
n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦q

1
2
(y1+···+yn)

∣
∣
∣
∣
∣∣
∣

⎫
⎪⎪⎬

⎪⎪⎭
,(B.24)

where M3 is a positive constant independent of {y1, . . . ,yn} and N. Just observe,
for each 0 < |q| < 1, that |q|x is a decreasing function of x, and σ−1(i) ≥ 2, for
i = 1,2, . . . ,n, and i �= k. Appealing to Lemma B.1 and the Dominated Convergence
Theorem completes the proof.
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Remark. If, in deriving an upper bound for (4.14), we do not first expand
qy1+2y2+···+nyn times the Vandermonde determinate as in (B.15), but instead, keeping
in mind (B.12), multiply qy1+···+yn times (B.18), appeal to (B.8), then (B.6), (B.7),
the expression (B.22), and the summation conditions 0 ≤ y1, . . . ,yn ≤ N/2 and
0 ≤ y1 + · · ·+ yn ≤ N in (4.14a), we would attempt to bound the absolute value of
the sum (4.14) by

M4

⎧
⎪⎪⎨

⎪⎪⎩
∑

y1,...,yn≥0

∣∣
∣∣∣
∣∣∣
∣

n

∏
i=1

⎡

⎢⎢
⎢
⎣

(
xi
xn

aq
bc

)

yi

(
xi
xn

d
)

yi

(
xi
xn

f
)

yi
(

xi
xn

aq
b

)

yi

(
xi
xn

aq
c

)

yi

(
xi
xn

de1 · · ·en f
a

)

yi

⎤

⎥⎥
⎥
⎦
×

n

∏
r,s=1

⎡

⎢
⎣

(
xr
xs

es

)

yr(
q xr

xs

)

yr

⎤

⎥
⎦

∣∣
∣∣∣
∣∣∣
∣

⎫
⎪⎪⎬

⎪⎪⎭
,

(B.25)

where M4 is a positive constant independent of {y1, . . . ,yn} and N. However,
applying Lemma B.1 to the sum (B.25) fails as the limits in (B.3) are all 1.

Remark. If, as a short-cut to the upper bound (B.24), we attempt to replace
(B.20) by

n

∏
i=1

qσ−1(i)yi(B.26a)

= q
1
2 (y1+···+yn)(B.26b)

×
n

∏
i=1

q(σ
−1(i)− 1

2 )yi ,(B.26c)

it is immediate that the product of (B.18) and (B.26c) is

(B.27)
n

∏
i=1

[
q(σ

−1(i)− 1
2 )yi− xn

xi

aq
de1 · · ·en f

qN−(y1+···+yn)q(σ
−1(i)− 3

2 )yi

]
.

The summation conditions 0≤ y1, . . . ,yn ≤N/2 and 0≤ y1+ · · ·+yn≤N in (4.14a)
imply that all the powers of q in (B.27) are nonnegative, except for (σ−1(k)− 3

2)yk =

− 1
2 yk, where σ−1(k) = 1. Moreover, for n≥ 2, and y1 = · · ·= yn = y, if 1

n+1/2 N <

y ≤ N
n , then N− (y1 + · · ·+ yn)− 1

2 yk < 0. For fixed n ≥ 2, as N → ∞, the number
of such {y1, . . . ,yn}’s goes to infinity as well. An upper bound such as (B.22) for
(B.27) does not hold, and the analysis here breaks down.

We now show that (4.16) becomes (4.17) as N→ ∞.
First, it follows from (B.5), for fixed {y1, . . . ,yn}, that the terms of (4.16) become

the terms of (4.17), as N→ ∞. Note that we moved some resulting infinite products
(that were independent of {y1, . . . ,yn}) outside the sum in (4.17).
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In order to obtain an upper bound for (4.16), we begin by writing the power of q
in (4.16l) as

qy1+···+y j qy1+2y2+···+( j−1)y j−1+( j+1)y j+1+···+nyn(B.28a)

= qy1+y2+···+y j−1+y j+1+···+yn(B.28b)

×qy2+2y3+···+( j−2)y j−1+( j−1)y j+1+···+(n−2)yn(B.28c)

×qy1+···+yn .(B.28d)

The summation conditions y1, . . . ,yn ≥ 0 and 0≤ y1 + · · ·+ yn < N/2 in (4.16a)
imply that 0 ≤ y1, . . . ,yn < N/2. All the conditions 0 ≤ y1, . . . ,yn < N/2 and
0≤ y1 + · · ·+ yn < N/2 now give that the powers of q in the numerators of (4.16b)
and (4.16i) are nonnegative. Furthermore, when multiplied by (B.28b) and (B.28c),
respectively, the powers of q in the numerators of (4.16a) and (4.16j) are also
nonnegative.

The triangle inequality immediately gives that the absolute value of these
(revised) numerators is bounded by

∏
1≤i≤n

i�= j

[
1+

∣
∣
∣
∣
xn

xi

aq
de1 · · ·en f

∣
∣
∣
∣

]
×
[

1+

∣
∣
∣
∣
x j

xn

de1 · · ·en f
aq

∣
∣
∣
∣

]
(B.29a)

× ∏
1≤i≤n

i�= j

[
1+

∣
∣
∣
∣
x j

xi

∣
∣
∣
∣

]
× ∏

1≤r<s≤n
r,s �= j

[
1+

∣
∣
∣
∣
xr

xs

∣
∣
∣
∣

]
.(B.29b)

Keeping in mind (B.28) and appealing to (B.29), then (B.6), and the summation
conditions 0 ≤ y1, . . . ,yn < N/2 and 0 ≤ y1 + · · ·+ yn < N/2 from (4.16a), the
absolute value of the sum (4.16) is bounded by

M5
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⎪⎪⎨
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y1,...,yn≥0
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(
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(
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(
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(
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⎥
⎦
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,(B.30)
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where M5 is a positive constant independent of {y1, . . . ,yn} and N. Note that we
first obtained the bound (B.30), with a finite sum over 0 ≤ y1, . . . ,yn < N/2 and
0 ≤ y1 + · · ·+ yn < N/2. Adding additional nonnegative terms by removing the
conditions y1, . . . ,yn < N/2 and 0 ≤ y1 + · · ·+ yn < N/2 then gave the final infinite
upper bound sum in (B.30).

By Lemma B.1, the upper bound sum (B.30) converges absolutely when
0 < |q|< 1.

From the Dominated Convergence Theorem, the sum (4.16) now becomes (4.17)
as N→ ∞.

The proof of Theorem 4.1 is now complete.
The application of Lemma B.1 and the Dominated Convergence Theorem to

the proof of Theorem 4.2 is very similar to that of Theorem 4.1. We just need the
(additional) simple bound

(B.31)
∣
∣
∣qe2(y1,...,yn)

∣
∣
∣≤ 1,

where e2(y1, . . . ,yn) is the second elementary symmetric function of {y1, . . . ,yn}.
Our derivation of Theorem A.3 from Theorem A.2 by means of Lemma B.1 and

the Dominated Convergence Theorem is very similar to the above proof that (4.3)
becomes (4.2a) as N → ∞. In particular, an analysis such as that in (B.11) through
(B.14) yields the sum in (A.4a), while the infinite products in (A.4b) are immediate
from the products in (A.2b).

The derivation of Theorem A.4 is similar to that of Theorem A.3. In obtaining
the sum in (A.6a), we also need the relation (2.7) and the bound in (B.31). Apply
(2.4), as needed, to the products in (A.2b), and simplify, before taking N→ ∞.

The convergence condition 0 < |q|< 1 for the sums in Theorems 5.1 and 5.2 is a
consequence of applying Lemma B.1 to suitable absolutely convergent upper bound
sums, each with evaluation point qy1+···+yn .

For the sums in (5.1a) and (5.5a), keep in mind (B.12) and appeal to (B.8), to put
together upper bound sums with evaluation point qy1+···+yn .

On the other hand, for the sums in (5.1c) and (5.5c), utilize (B.28), (B.28b),
(B.28c), and the bounds

(B.32) ∏
1≤i≤n

i�= j

∣
∣
∣
∣

[
qyi − xn

xi

1
e

q1+y j

]∣∣
∣
∣≤ ∏

1≤i≤n
i�= j

[
1+

∣
∣
∣
∣
xn

xi

1
e

∣
∣
∣
∣

]

and

(B.33) ∏
1≤r<s≤n

r,s �= j

∣
∣
∣∣

[
qys − xr

xs
qyr

]∣∣
∣∣≤ ∏

1≤r<s≤n
r,s �= j

[
1+

∣
∣
∣∣
xr

xs

∣
∣
∣∣

]
,

where the {y1, . . . ,yn} are nonnegative integers, to arrive at suitable upper bound
sums with evaluation point qy1+···+yn .
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