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Preface

The present volume is based on an activity organized at the Max Planck Insti-
tute for Mathematics in Bonn, during the days August 6–8, 2007, dedicated to the
topic of Quantum Groups and Noncommutative Geometry. The main purpose of
the workshop was to focus on the interaction between the many different approaches
to the topic of Quantum Groups, ranging from the more algebraic techniques, re-
volving around algebraic geometry, representation theory and the theory of Hopf
algebras, and the more analytic techniques, based on operator algebras and non-
commutative differential geometry. We also focused on some recent developments
in the field of Noncommutative Geometry, especially regarding spectral triples and
their applications to models of elementary particle physics, where quantum groups
are expected to play an important role.

The contributions to this volume are written, as much as possible, in a peda-
gogical and expository way, which is intended to serve as an introduction to this
area of research for graduate students, as well as for researchers in other areas
interested in learning about these topics.

The first contribution to the volume, by Brzezinski, deals with the important
topic of Hopf-cyclic homology, which is the right cohomology theory in the context
of Hopf algebras, playing a role, with respect to cyclic homology of algebras, similar
to the cohomology of Lie algebras in the context of de Rham cohomology. The
contribution in this volume focuses on the observation that anti-Yetter-Drinfeld
contramodules can serve as coefficients for cyclic homology.

The second contribution, by Ćaćić, focuses on recent developments in particle
physics models based on noncommutative geometry. In particular, the paper de-
scribes a general framework for the classification of Dirac operators on the finite
geometries involved in specifying the field content of the particle physics models.
These Dirac operators have interesting moduli spaces, which are analyzed exten-
sively in this paper.

The paper by Fioresi deals with supergeometry aspects. More precisely, it
describes how one can treat the general linear supergroup from the point of view
of group schemes and Hopf algebras.

Fioresi and Gavarini contributed a paper on a generalization of the quantum
duality principle to quantizations of projective quantum homogeneous spaces. The
procedure is illustrated completely explicitly in the important case of the quantum
Grassmannians.
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The paper by Goswami considers the problem of finding an analogue in Non-
commutative Geometry of the isometry group in Riemannian geometry. The non-
commutative analog of Riemannian manifolds is provided by spectral triples, hence
the replacement is provided by a compact quantum group, which acts on the spec-
tral triple.

Kassel’s paper deals with the geometry of Hopf Galois extensions. Hopf Galois
extensions can be constructed from Hopf algebras, whose product is twisted with
a cocycle. The algebra obtained in this way is a flat deformation over a central
subalgebra. This paper presents a construction of elements in this commutative
subalgebra. It also shows that an integrality condition is satisfied by all finite-
dimensional Hopf algebras generated by grouplike and skew-primitive elements.
Explicit computations are given for the case of the Hopf algebra of a cyclic group.

Mukherjee’s paper gives a survey or recent results on the quantization of the
moduli space of stable parabolic Higgs bundles of rank two over a Riemann surface
of genus at least two. This is obtained via the deformation quantization of the
Poisson structure associated to a natural holomorphic symplectic structure. The
choice of a projective structure on the Riemann surface induces a canonical star
product over a Zariski open dense subset of the moduli space.

Van Daele’s paper discusses the Radford formula expressing the forth power
of the antipode in terms of modular operators. It is first shown how the formula
simplifies in the case of compact and discrete quantum groups. Then the setting of
locally compact quantum groups is recalled and it is shown that the square of the
antipode is an analytical generator of the scaling group of automorphisms.

A paper dealing with the idea of Hopf monads over arbitrary categories was
contributed by Wisbauer, as a generalization to arbitrary categories of the notion
of Hopf algebras in module categories.

The last paper in the volume, by Zampini, deals with the important topic of
covariant differential calculus on quantum groups. The example of the quantum
Hopf fibration on the standard Podleś sphere is analysed in full details. It is shown
then how one obtains from the differential calculus gauged Laplacians on associated
line bundles and a Hodge star operator on the total space and base space of the
Hopf bundle. The paper includes an explicit review of the ordinary differential
calculus on SU(2) based on the classisal geometry of the Hopf fibration, so that the
comparison with the quantum groups case becomes more transparent.

We are grateful to the numerous referees for their expertise in ensuring a high
standard of the contributions, and to all speakers and participants for a very lively
interaction during the workshop. Finally, we wish to thank the MPIM, Bonn, for
financial support for the activity and for hosting the workshop, and Vieweg Verlag
for publishing this volume.

Matilde Marcolli and Deepak Parashar





Hopf-cyclic homology with contramodule coefficients

Tomasz Brzeziński

Abstract. A new class of coefficients for the Hopf-cyclic homology of module
algebras and coalgebras is introduced. These coefficients, termed stable anti-
Yetter-Drinfeld contramodules, are both modules and contramodules of a Hopf
algebra that satisfy certain compatibility conditions.

1. Introduction

It has been demonstrated in [8], [9] that the Hopf-cyclic homology developed
by Connes and Moscovici [5] admits a class of non-trivial coefficients. These co-
efficients, termed anti-Yetter-Drinfeld modules are modules and comodules of a
Hopf algebra satisfying a compatibility condition reminiscent of that for cross mod-
ules. The aim of this note is to show that the Hopf-cyclic (co)homology of module
coalgebras and module algebras also admits coeffcients that are modules and con-
tramodules of a Hopf algebra with a compatibility condition.

All (associative and unital) algebras, (coassociative and counital) coalgebras in
this note are over a field k. The coproduct in a coalgebra C is denoted by ΔC ,
and counit by εC . A Hopf algebra H is assumed to have a bijective antipode S.
We use the standard Sweedler notation for coproduct ΔC(c) = c(1)⊗c(2), Δ2

C(c) =
c(1)⊗c(2)⊗c(3), etc., and for the left coaction N� of a C-comodule N , N�(x) =
x(−1)⊗x(0) (in all cases summation is implicit). Hom(V,W ) denotes the space of
k-linear maps between vector spaces V and W .

2. Contramodules

The notion of a contramodule for a coalgebra was introduced in [6], and dis-
cussed in parallel with that of a comodule. A right contramodule of a coalgebra C
is a vector space M together with a k-linear map α : Hom(C,M) → M rendering
the following diagrams commutative

Hom(C,Hom(C,M))
Hom(C,α) ��

Θ

��

Hom(C,M)

α

��
Hom(C⊗C,M)

Hom(ΔC ,M) �� Hom(C,M) α �� M,
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2 TOMASZ BRZEZIŃSKI

Hom(k,M)
Hom(εC ,M) ��

�
����

���
���

��
Hom(C,M)

α
�����

���
���

�

M,

where Θ is the standard isomorphism given by Θ(f)(c⊗c′) = Θ(f)(c)(c′). Left
contramodules are defined by similar diagrams, in which Θ is replaced by the iso-
morphism Θ′(f)(c⊗c′) = f(c′)(c) (or equivalenty, as right contramodules for the
co-opposite coalgebra Cop). Writing blanks for the arguments, and denoting by
matching dots the respective functions α and their arguments, the associativity
and unitality conditions for a right C-contramodule can be explicitly written as,
for all f ∈ Hom(C⊗C,M), m ∈M ,

α̇
(
α̈
(
f
(−̇⊗−̈))) = α

(
f
(
(−)(1)⊗(−)(2)

))
, α (εC(−)m) = m.

With the same conventions the conditions for left contramodules are

α̇
(
α̈
(
f
(−̈⊗−̇))) = α

(
f
(
(−)(1)⊗(−)(2)

))
, α (εC(−)m) = m.

If N is a left C-comodule with coaction N� : N → C⊗N , then its dual vector space
M = N∗ := Hom(N, k) is a right C-contramodule with the structure map

α : Hom(C,M) � Hom(C⊗N, k)→ Hom(N, k) =M, α = Hom(N�, k).

Explicitly, α sends a functional f on C⊗N to the functional α(f) on N ,

α(f)(x) = f(x(−1)⊗x(0)), x ∈ N.

The dual vector space of a right C-comodule N with a coaction �N : N → N⊗C is a
left C-contramodule with the structure map α = Hom(�N , k). The reader interested
in more detailed accounts of the contramodule theory is referred to [1], [15].

3. Anti-Yetter-Drinfeld contramodules

Given a Hopf algebra H with a bijective antipode S, anti-Yetter-Drinfeld con-
tramodules are defined as H-modules and H-contramodules with a compatibility
condition. Similarly to the case of anti-Yetter-Drinfeld modules [7] they come in
four different flavours.
(1) A left-left anti-Yetter-Drinfeld contramodule is a left H-module (with the

action denoted by a dot) and a left H-contramodule with the structure map
α, such that, for all h ∈ H and f ∈ Hom(H,M),

h·α(f) = α
(
h(2) ·f

(
S−1(h(1))(−)h(3)

))
.

M is said to be stable, provided that, for all m ∈ M , α(rm) = m, where
rm : H →M , h �→ h·m.

(2) A left-right anti-Yetter-Drinfeld contramodule is a left H-module and a right
H-contramodule, such that, for all h ∈ H and f ∈ Hom(H,M),

h·α(f) = α
(
h(2) ·f

(
S(h(3))(−)h(1)

))
.

M is said to be stable, provided that, for all m ∈M , α(rm) = m.
(3) A right-left anti-Yetter-Drinfeld contramodule is a right H-module and a left

H-contramodule, such that, for all h ∈ H and f ∈ Hom(H,M),

α(f)·h = α
(
f
(
h(3)(−)S(h(1))

)·h(2)
)
.
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M is said to be stable, provided that, for all m ∈ M , α(�m) = m, where
�m : H →M , h �→ m·h.

(4) A right-right anti-Yetter-Drinfeld contramodule is a right H-module and a
right H-contramodule, such that, for all h ∈ H and f ∈ Hom(H,M),

α(f)·h = α
(
f
(
h(1)(−)S−1(h(3))

)·h(2)
)
.

M is said to be stable, provided that, for all m ∈M , α(�m) = m.
In a less direct, but more formal way, the compatibility condition for left-left

anti-Yetter-Drinfeld contramodules can be stated as follows. For all h ∈ H and
f ∈ Hom(H,M), define k-linear maps ��f,h : H →M , by

��f,h : h′ �→ h(2) ·f
(
S−1(h(1))h′h(3)

)
.

Then the main condition in (1) is

h·α(f) = α (��f,h) , ∀h ∈ H, f ∈ Hom(H,M).

Compatibility conditions between action and the structure maps α in (2)–(4) can
be written in analogous ways.

If N is an anti-Yetter-Drinfeld module, then its dualM = N∗ is an anti-Yetter-
Drinfeld contramodule (with the sides interchanged). Stable anti-Yetter-Drinfeld
modules correspond to stable contramodules. For example, consider a right-left
Yetter-Drinfeld module N . The compatibility between the right action and left
coaction N� thus is, for all x ∈ N and h ∈ H,

N�(x·h) = S(h(3))x(−1)h(1)⊗x(0)h(2).
The dual vector space M = N∗ is a left H-module by h⊗m �→ h ·m,

(h·m)(x) = m(x·h),
for all h ∈ H, m ∈ M = Hom(N, k) and x ∈ N , and a right H-contramodule with
the structure map α(f) = f ◦ N�, f ∈ Hom(H⊗N, k) � Hom(H,M). The space
Hom(H⊗N, k) is a left H-module by (h·f)(h′⊗x) = f(h′⊗x·h). Hence

(h·α(f))(x) = α(f)(x·h) = f
(
N� (x·h)) ,

and

α
(
h(2) ·f

(
S(h(3))(−)h(1)

))
(x) = h(2) ·f

(
S(h(3))x(−1)h(1)⊗x(0)

)

= f
(
S(h(3))x(−1)h(1)⊗x(0) ·h(2)

)
.

Therefore, the compatibility condition in item (2) is satisfied. The k-linear map
rm : H →M is identified with rm : H⊗N → k, rm(h⊗x) = m(x·h). In view of this
identification, the stability condition comes out as, for all m ∈M and x ∈ N ,

m(x) = α(rm)(x) = rm(x(−1)⊗x(0)) = m(x(0) ·x(−1)),
and is satisfied providedN is a stable right-left anti-Yetter-Drinfeld module. Similar
calculations establish connections between other versions of anti-Yetter-Drinfeld
modules and contramodules.
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4. Hopf-cyclic homology of module coalgebras

Let C be a left H-module coalgebra. This means that C is a coalgebra and a
left H-comodule such that, for all c ∈ C and h ∈ H,

ΔC(h·c) = h(1) ·c(1)⊗h(2) ·c(2), εC(h·c) = εH(h)εC(c).

The multiple tensor product of C, C⊗n+1, is a leftH-module by the diagonal action,
that is

h·(c0⊗c1⊗ . . .⊗cn) := h(1) ·c0⊗h(2) ·c1⊗ . . .⊗h(n+1) ·cn.
Let M be a stable left-right anti-Yetter-Drinfeld contramodule. For all positive
integers n, set CHn (C,M) := HomH(C⊗n+1,M) (left H-module maps), and, for all
0 ≤ i, j ≤ n, define di : CHn (C,M)→ CHn−1(C,M), sj : CHn (C,M)→ CHn+1(C,M),
tn : CHn (C,M)→ CHn (C,M), by

di(f)(c0, . . . , cn−1) = f(c0, . . . ,ΔC(ci), . . . , cn−1), 0 ≤ i < n,

dn(f)(c0, . . . , cn−1) = α
(
f
(
c0(2), c

1, . . . , cn−1, (−)·c0(1)
))

,

sj(f)(c0, . . . , cn+1) = εC(cj+1)f(c0, . . . , cj , cj+2, . . . , cn+1),

tn(f)(c0, . . . , cn) = α
(
f
(
c1, . . . , cn, (−)·c0)) .

It is clear that all the maps sj , di, i < n, are well-defined, i.e. they send left H-
linear maps to left H-linear maps. That dn and tn are well-defined follows by the
anti-Yetter-Drinfeld condition. To illustrate how the anti-Yetter-Drinfeld condition
enters here we check that the tn are well defined. For all h ∈ H,

tn(f)(h·(c0, . . . , cn)) = tn(f)(h(1) ·c0, . . . , h(n+1) ·cn)
= α

(
f
(
h(2) ·c1, . . . , h(n+1) ·cn, (−)h(1) ·c0

))

= α
(
f
(
h(2) ·c1, . . . , h(n+1) ·cn, h(n+2)S(h(n+3))(−)h(1) ·c0

))

= α
(
h(2) ·f

(
c1, . . . , cn, S(h(3))(−)h(1) ·c0

))

= h·α (f (c1, . . . , cn, (−)·c0)) = h·tn(f)(c0, . . . , cn),
where the third equation follows by the properties of the antipode and counit, the
fourth one is a consequence of the H-linearity of f , while the anti-Yetter-Drinfeld
condition is used to derive the penultimate equality.

Theorem 1. Given a left H-module coalgebra C and a left-right stable anti-
Yetter-Drinfeld contramodule M , CH∗ (C,M) with the di, sj, tn defined above is a
cyclic module.

Proof. One needs to check whether the maps di, sj , tn satisfy the relations
of a cyclic module; see e.g. [12, p. 203]. Most of the calculations are standard, we
only display examples of those which make use of the contramodule axioms. For
example,

(tn−1 ◦ dn−1)(f)(c0, . . . , cn−1) = α
(
dn−1(f)

(
c1, . . . , cn−1, (−)·c0))

= α
(
f
(
c1, . . . , cn−1,ΔC

(
(−)·c0)))

= α
(
f
(
c1, . . . , cn−1, (−)(1) ·c0(1), (−)(2) ·c0(2)

))

= α̇
(
α̈
(
f
(
c1, . . . , cn−1, ˙(−)·c0(1), ¨(−)·c0(2)

)))

= α
(
tn(f)

(
c0(2), c

1, . . . , cn−1, (−)·c0(1)
))

= (dn ◦ tn)(f)(c0, . . . , cn−1),
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where the third equality follows by the module coalgebra property of C, and the
fourth one is a consequence of the associative law for contramodules. In a similar
way, using compatibility of H-action on C with counits of H and C, and that
α (εC(−)m) = m, for all m ∈ M , one easily shows that dn+1 ◦ sn is the identity
map on CHn (C,M). The stability of M is used to prove that tn+1

n is the identity.
Explicitly,

tn+1
n (f)(c0, . . . , cn) = αn+1(f((−)·c0, . . . , (−)·cn))

= α(f((−)(1) ·c0, . . . , (−)(n+1) ·cn)) = α(rf(c0,...,cn)) = f(c0, . . . , cn),

where the second equality follows by the n-fold application of the associative law
for contramodules, and the penultimate equality is a consequence of the H-linearity
of f . The final equality follows by the stability of M . 
�

Let N be a right-left stable anti-Yetter-Drinfeld module, and M = N∗ be the
corresponding left-right stable anti-Yetter-Drinfeld contramodule, then

CHn (C,M) = HomH(C⊗n+1,Hom(N, k)) � Hom(N⊗HC⊗n+1, k).

With this identification, the cyclic module CHn (C,N
∗) is obtained by applying

functor Hom(−, k) to the cyclic module for N described in [8, Theorem 2.1].

5. Hopf-cyclic cohomology of module algebras

Let A be a left H-module algebra. This means that A is an algebra and a left
H-module such that, for all h ∈ H and a, a′ ∈ A,

h·(aa′) = (h(1) ·a)(h(2) ·a), h·1A = εH(h)1A.

Lemma 1. Given a left H-module algebra A and a left H-contramodule M ,
Hom(A,M) is an A-bimodule with the left and right A-actions defined by

(a·f)(b) = f(ba), (f ·a)(b) = α (f (((−)·a) b)) ,
for all a, b ∈ A and f ∈ Hom(A,M).

Proof. The definition of left A-action is standard, compatibility between left
and right actions is immediate. To prove the associativity of the right A-action,
take any a, a′, b ∈ A and f ∈ Hom(A,M), and compute

((f ·a)·a′) (b) = α̇
(
α̈
(
f
((

¨(−)·a
)(

˙(−)·a′
)
b
)))

= α
(
f
((
(−)(1) ·a

) (
(−)(2) ·a′

)
b
))

= α (f (((−)·(aa′)) b)) = ((aa′)·f) (b),
where the second equality follows by the definition of a left H-contramodule, and
the third one in a consequence of the module algebra property. The unitality of the
right A-action follows by the triangle diagram for contramodules and the fact that
h·1A = εH(h)1A. 
�

For an H-module algebra A, A⊗n+1 is a left H-module by the diagonal action

h·(a0⊗a1⊗ . . .⊗an) := h(1) ·a0⊗h(2) ·a1⊗ . . .⊗h(n+1) ·an.
Take a stable left-left anti-Yetter-Drinfeld contramodule M , set CnH(A,M) to be
the space of left H-linear maps HomH(A⊗n+1,M), and, for all 0 ≤ i, j ≤ n, define
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δi : Cn−1H (A,M) → CnH(A,M), σj : Cn+1
H (A,M) → CnH(A,M), τn : CnH(A,M) →

CnH(A,M), by

δi(f)(a0, . . . , an) = f(a0, . . . , ai−1, aiai+1, ai+2, . . . , an), 0 ≤ i < n,

δn(f)(a0, . . . , an) = α
(
f
(
((−)·an) a0, a1, . . . , an−1)) ,

σj(f)(c0, . . . , cn) = f(a0, . . . , aj , 1A, aj+1, . . . , an),

τn(f)(a0, . . . , an) = α
(
f
(
(−)·an, a0, a1, . . . , an−1)) .

Similarly to the module coalgebra case, the above maps are well-defined by the anti-
Yetter-Drinfeld condition. Explicitly, using the aformentioned condition as well as
the fact that the inverse of the antipode is the antipode for the co-opposite Hopf
algebra, one computes

τn(f)(h·(a0, . . . , an)) = α
(
f
(
((−)h(n+1))·an, h(1) ·a0, h(2) ·a1, . . . , h(n) ·an−1

))

= α
(
f
(
(h(2)S−1(h(1))(−)h(n+3))·an, h(1) ·a0, h(2) ·a1, . . . , h(n+2) ·an−1

))

= α
(
h(2) ·f

(
(S−1(h(1))(−)h(3))·an, a0, . . . , an−1

))
= h·τn(f)(a0, . . . , an).

Analogous calculations ensure that also δn is well-defined.

Theorem 2. Given a left H-module algebra A and a stable left-left anti-Yetter-
Drinfeld contramodule M , C∗H(A,M) with the δi, σj, τn defined above is a (co)cyclic
module.

Proof. In view of Lemma 1 and taking into account the canonical isomorphism
Hom(A⊗n+1,M) � Hom(A⊗n,Hom(A,M)),

Hom(A⊗n+1,M) � f �→ [
a1⊗a2⊗ . . .⊗an �→ f

(−, a1, a2, . . . , an)] ,
the simplicial part comes from the standard A-bimodule cohomology. Thus only
the relations involving τn need to be checked. In fact only the equalities τn ◦ δn =
δn−1◦τn−1 and τn+1

n = id require one to make use of definitions of a module algebra
and a left contramodule. In the first case, for all f ∈ CnH(A,M),

(τn ◦ δn)(f)(a0, . . . , an) = α̇
(
α̈
(
f
((

¨(−)·an−1
)(

˙(−)·an
)
, a0, . . . , an−2

)))

= α
(
f
((
(−)(1) ·an−1

) (
(−)(2) ·an

)
, a0, . . . , an−2

))

= α
(
f
(
(−)·(an−1an) , a0, . . . , an−2))

= (δn−1 ◦ τn−1)(f)(a0, . . . , an),
where the second equality follows by the associative law for left contramodules and
the third one by the definition of a left H-module algebra. The equality τn+1

n = id
follows by the associative law of contramodules, the definition of left H-action on
A⊗n+1, and by the stability of anti-Yetter-Drinfeld contramodules. 
�

In the case of a contramodule M constructed on the dual vector space of a
stable right-right anti-Yetter-Drinfeld module N , the complex described in Theo-
rem 2 is the right-right version of Hopf-cyclic complex of a left module algebra with
coefficients in N discussed in [8, Theorem 2.2].

6. Anti-Yetter-Drinfeld contramodules and hom-connections

Anti-Yetter-Drinfeld modules over a Hopf algebra H can be understood as co-
modules of an H-coring; see [2] for explicit formulae and [4] for more information
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about corings. These are corings with a group-like element, and thus their comod-
ules can be interpreted as modules with a flat connection; see [2] for a review. Con-
sequently, anti-Yetter-Drinfeld modules are modules with a flat connection (with
respect to a suitable differential structure); see [10].

Following similar line of argument anti-Yetter-Drinfeld contramodules over a
Hopf algebra H can be understood as contramodules of an H-coring. This is a
coring of an entwining type, as a vector space built on H⊗H, and its form is
determined by the anti-Yetter-Drinfeld compatibility conditions between action and
contra-action. The coring H⊗H has a group-like element 1H⊗1H , which induces
a differential graded algebra structure on tensor powers of the kernel of the counit
of H⊗H. As explained in [3, Section 3.9] contramodules of a coring with a group-
like element correspond to flat hom-connections. Thus, in particular, anti-Yetter-
Drinfeld contramodules are flat hom-connections. We illustrate this discussion by
the example of right-right anti-Yetter-Drinfeld contramodules.

First recall the definition of hom-connections from [3]. Fix a differential graded
algebra ΩA over an algebra A. A hom-connection is a pair (M,∇0), where M is
a right A-module and ∇0 is a k-linear map from the space of right A-module
homomorphisms HomA(Ω1A,M) to M , ∇0 : HomA(Ω1A,M)→ M , such that, for
all a ∈ A, f ∈ HomA(Ω1A,M),

∇0(f ·a) = ∇0(f)·a+ f(da),

where f ·a ∈ HomA(Ω1A,M) is given by f ·a : ω �→ f(aω), and d : Ω∗A → Ω∗+1A
is the differential. Define ∇1 : HomA(Ω2A,M)→ HomA(Ω1A,M), by ∇1(f)(ω) =
∇0(f·ω)+f(dω), where, for all f ∈ HomA(Ω2A,M), the map f·ω ∈ HomA(Ω1A,M)
is given by ω′ �→ f(ωω′). The composite F = ∇0 ◦ ∇1 is called the curvature of
(M,∇0). The hom-connection (M,∇0) is said to be flat provided its curvature is
equal to zero. Hom-connections are non-commutative versions of right connections
or co-connections studied in [13, Chapter 4 § 5], [16], [17].

Consider a Hopf algebra H with a bijective antipode, and define an H-coring
C = H⊗H as follows. The H bimodule structure of C is given by

h·(h′⊗h′′) = h(1)h
′S−1(h(3))⊗h(2)h′′, (h′⊗h′′)·h = h′⊗h′′h,

the coproduct is ΔH⊗idH and counit εH⊗idH . Take a right H-module M . The
identification of right H-linear maps H⊗H → M with Hom(H,M) allows one to
identify right contramodules of the H-coring C with right-right anti-Yetter-Drinfeld
contramodules over H.

The kernel of the counit in C coincides with H+⊗H, where H+ = ker εH . Thus
the associated differential graded algebra overH is given by ΩnH = (H+⊗H)⊗Hn �
(H+)⊗n⊗H, with the differential given on elements h of H and one-forms h′⊗h ∈
H+⊗H by

dh = 1H⊗h− h(1)S
−1(h(3))⊗h(2),

d(h′⊗h) = 1H⊗h′⊗h− h′(1)⊗h′(2)⊗h+ h′⊗h(1)S−1(h(3))⊗h(2).
Take a right-right anti-Yetter-Drinfeld contramodule M over a Hopf algebra H
and identify HomH(Ω1H,M) with Hom(H+,M). For any f ∈ Hom(H+,M), set
f̄ : H →M by f̄(h) = f(h− εH(h)1H), and then define

∇0 : Hom(H+,M)→M, ∇0(f) = α(f̄).

(M,∇0) is a flat hom-connection with respect to the differential graded algebra ΩH.
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7. Final remarks

In this note a new class of coefficients for the Hopf-cyclic homology was intro-
duced. It is an open question to what extent Hopf-cyclic homology with coefficients
in anti-Yetter-Drinfeld contramodules is useful in studying problems arising in (non-
commutative) geometry. The answer is likely to depend on the supply of (calcula-
ble) examples, such as those coming from the transverse index theory of foliations
(which motivated the introduction of Hopf-cyclic homology in [5]). It is also likely
to depend on the structure of Hopf-cyclic homology with contramodule coefficients.
One can easily envisage that, in parallel to the theory with anti-Yetter-Drinfeld
module coefficients, the cyclic theory described in this note admits cup products
(in the case of module coefficients these were foreseen in [8] and constructed in
[11]) or homotopy formulae of the type discovered for anti-Yetter-Drinfeld modules
in [14]. Alas, these topics go beyond the scope of this short note. The author is
convinced, however, of the worth-whileness of investigating them further.
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Moduli Spaces of Dirac Operators for Finite Spectral Triples

Branimir Ćaćić

Abstract. The structure theory of finite real spectral triples developed by
Krajewski and by Paschke and Sitarz is generalised to allow for arbitrary KO-
dimension and the failure of orientability and Poincaré duality, and moduli
spaces of Dirac operators for such spectral triples are defined and studied. This
theory is then applied to recent work by Chamseddine and Connes towards
deriving the finite spectral triple of the noncommutative-geometric Standard
Model.

1. Introduction

From the time of Connes’s 1995 paper [6], spectral triples with finite-dimen-
sional ∗-algebra and Hilbert space, or finite spectral triples, have been central to the
noncommutative-geometric (NCG) approach to the Standard Model of elementary
particle physics, where they are used to encode the fermionic physics. As a result,
they have been the focus of considerable research activity.

The study of finite spectral triples began in earnest with papers by Paschke
and Sitarz [20] and by Krajewski [18], first released nearly simultaneously in late
1996 and early 1997, respectively, which gave detailed accounts of the structure of
finite spin geometries, i.e. of finite real spectral triples of KO-dimension 0 mod 8
satisfying orientability and Poincaré duality. In their approach, the study of finite
spectral triples is reduced, for the most part, to the study of multiplicity matri-
ces, integer-valued matrices that explicitly encode the underlying representation-
theoretic structure. Krajewski, in particular, defined what are now called Krajew-
ski diagrams to facilitate the classification of such spectral triples. Iochum, Jureit,
Schücker, and Stephan have since undertaken a programme of classifying Krajewski
diagrams for finite spectral triples satisfying certain additional physically desirable
assumptions [12–14,22] using combinatorial computations [17], with the aim of fix-
ing the finite spectral triple of the Standard Model amongst all other such triples.

However, there were certain issues with the then-current version of the NCG
Standard Model, including difficulty with accomodating massive neutrinos and the
so-called fermion doubling problem, that were only to be resolved in the 2006
papers by Connes [7] and by Chamseddine, Connes and Marcolli [4], which use
the Euclidean signature of earlier papers, and by Barrett [1], which instead uses
Lorentzian signature; we restrict our attention to the Euclidean signature approach
of [7] and [4], which has more recently been set forth in the monograph [8] of

2000 Mathematics Subject Classification. Primary 58J42; Secondary 58B34, 58D27, 81R60.

M. Marcolli, D. Parashar (Eds.), Quantum Groups and Noncommutative Spaces, 
DOI: 10.1007/978-3-8348-9831-9_2, © Vieweg+Teubner Verlag | Springer Fachmedien 
Wiesbaden GmbH 2011 
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Connes and Marcolli. The finite spectral triple of the current version has KO-
dimension 6 mod 8 instead of 0 mod 8, fails to be orientable, and only satisfies a
certain modified version of Poincaré duality. It also no longer satisfies S0-reality,
another condition that holds for the earlier finite geometry of [6], though only
because of the Dirac operator. Jureit, and Stephan [15,16] have since adopted the
new value for the KO-dimension, but further assume orientability and Poincaré
duality. As well, Stephan [25] has proposed an alternative finite spectral triple for
the current NCG Standard Model with the same physical content but satisfying
Poincaré duality; it also just fails to be S0-real in the same manner as the finite
geometry of [4]; in the same paper, Stephan also discusses non-orientable finite
spectral triples.

More recently, Chamseddine and Connes [2, 3] have sought a purely algebraic
method of isolating the finite spectral triple of the NCG Standard Model, by which
they have obtained the correct ∗-algebra, Hilbert space, grading and real structure
using a small number of fairly elementary assumptions. In light of these successes,
it would seem reasonable to try to view this new approach of Chamseddine and
Connes through the lens of the structure theory of Krajewski and Paschke–Sitarz,
at least in order to understand better their method and the assumptions involved.
This, however, would require adapting that structure theory to handle the failure
of orientability and Poincaré duality, yielding the initial motivation of this work.

To that end, we provide, for the first time, a comprehensive account of the
structure theory of Krajewski and Paschke–Sitarz for finite real spectral triples
of arbitrary KO-dimension, without the assumptions of orientability or Poincaré
duality; this consists primarily of straightforward generalisations of the results and
techniques of [20] and [18]. In this light, the main features of the approach presented
here are the following:

(1) A finite real spectral triple with algebra A is to be viewed as an A-
bimodule with some additional structure, together with a choice of Dirac
operator compatible with that structure.

(2) For fixed algebra A, an A-bimodule is entirely characterised by its mul-
tiplicity matrix (in the ungraded case) or matrices (in the graded case),
which also completely determine(s) what sort of additional structure the
bimodule can admit; this additional structure is then unique up to unitary
equivalence.

(3) The form of suitable Dirac operators for anA-bimodule with real structure
is likewise determined completely by the multiplicity matrix or matrices
of the bimodule and the choice of additional structure.

However, we do not discuss Krajewski diagrams, though suitable generalisation
thereof should follow readily from the generalised structure theory for Dirac oper-
ators.

Once we view a real spectral triple as a certain type of bimodule together with a
choice of suitable Dirac operator, it then becomes natural to consider moduli spaces
of suitable Dirac operators, up to unitary equivalence, for a bimodule with fixed
additional structure, yielding finite real spectral triples of the appropriate KO-
dimension. The construction and study of such moduli spaces of Dirac operators
first appear in [4], though the focus there is on the sub-moduli space of Dirac
operators commuting with a certain fixed subalgebra of the relevant ∗-algebra.
Our last point above almost immediately leads us to relatively concrete expressions
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for general moduli spaces of Dirac operators, which also appear here for the first
time. Multiplicity matrices and moduli spaces of Dirac operators are then worked
out for the bimodules appearing in the Chamseddine–Connes–Marcolli formulation
of the NCG Standard Model [4, 8] as examples.

Finally, we apply these methods to the work of Chamseddine and Connes [2,3],
offering concrete proofs and some generalisations of their results. In particular, the
choices determining the finite geometry of the current NCG Standard Model within
their framework are made explicit.

This work, a revision of the author’s qualifying year project (master’s thesis
equivalent) at the Bonn International Graduate School in Mathematics (BIGS)
at the University of Bonn, is intended as a first step towards a larger project of
investigating in generality the underlying noncommutative-geometric formalism for
field theories found in the NCG Standard Model, with the aim of both better
understanding current versions of the NCG Standard Model and facilitating the
further development of the formalism itself.

The author would like to thank his supervisor, Matilde Marcolli, for her exten-
sive comments and for her advice, support, and patience, Tobias Fritz for useful
comments and corrections, and George Elliott for helpful conversations. The author
also gratefully acknowledges the financial and administrative support of BIGS and
of the Max Planck Institute for Mathematics, as well as the hospitality and support
of the Department of Mathematics at the California Institute of Technology and of
the Fields Institute.

2. Preliminaries and Definitions

2.1. Real C∗-algebras. In light of their relative unfamiliarity compared to
their complex counterparts, we begin with some basic facts concerning real C∗-
algebras.

First, recall that a real ∗-algebra is a real associative algebra A together with
an involution on A, namely an antihomomorphism ∗ satisfying ∗2 = id, and that
the unitalisation of a real ∗-algebra A is the unital real ∗-algebra Ã defined to
be A ⊕ R as a real vector space, together with the multiplication (a, α)(b, β) :=
(ab+ αb+ βa, αβ) for a, b ∈ A, α, β ∈ R and the involution �⊕ idR. Note that if
A is already unital, then Ã is simply A⊕ R.

Definition 2.1. A real C∗-algebra is a real ∗-algebra A endowed with a norm
‖·‖ making A a real Banach algebra, such that the following two conditions hold:

(1) ∀a ∈ A, ‖a∗a‖ = ‖a‖2 (C∗-identity);
(2) ∀a ∈ Ã, 1 + a∗a is invertible in Ã (symmetry).

The symmetry condition is redundant for complex C∗-algebras, but not for
real C∗-algebras. Indeed, consider C as a real algebra together with the trivial
involution ∗ = id and the usual norm ‖ζ‖ = |ζ|, ζ ∈ C. Then C with this choice of
involution and norm yields a real Banach ∗-algebra satisfying the C∗-identity but
not symmetry, for 1 + i∗i = 0 is certainly not invertible in C̃ = C⊕ R.

Now, in the finite-dimensional case, one can give a complete description of real
C∗-algebras, which we shall use extensively in what follows:
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Theorem 2.2 (Wedderburn’s theorem for real C∗-algebras [11]). Let A be a
finite-dimensional real C∗-algebra. Then

(2.1) A ∼=
N⊕
i=1

Mni(Ki),

where Ki = R, C, or H, and ni ∈ N. Moreover, this decomposition is unique up to
permutation of the direct summands.

Note, in particular, that a finite-dimensional real C∗-algebra is necessarily uni-
tal.

Given a finite-dimensional real C∗-algebra A with fixed Wedderburn decompo-
sition ⊕Ni=1Mni(Ki) we can associate to A a finite dimensional complex C∗-algebra
AC, the complex form of A, by setting

(2.2) AC :=
N⊕
i=1

Mmi(C),

where mi = 2ni if Ki = H, and mi = ni otherwise. Then A can be viewed as a real
∗-subalgebra of AC such that AC = A+ iA, that is, as a real form of AC. Here, H
is considered as embedded in M2(C) by

ζ1 + jζ2 �→
(

ζ1 ζ2
−ζ2 ζ1

)
,

for ζ1, ζ2 ∈ C.
In what follows, we will consider only finite-dimensional real C∗-algebras with

fixed Wedderburn decomposition.

2.2. Representation theory. In keeping with the conventions of noncommu-
tative differential geometry, we shall consider ∗-representations of real C∗-algebras
on complex Hilbert spaces. Recall that such a (left) representation of a real C∗-
algebra A consists of a complex Hilbert space H together with a ∗-homomorphism
λ : A → L(H) between real C∗-algebras. Similarly, a right representation of A
is defined to be a complex Hilbert space H together with a ∗-antihomomorphism
ρ : A → L(H) between real C∗-algebras. For our purposes, then, an A-bimodule
consists of a complex Hilbert space H together with a left ∗-representation λ and
a right ∗-representation ρ that commute, i.e. such that [λ(a), ρ(b)] = 0 for all a,
b ∈ A. In what follows, we will consider only finite-dimensional representations
and hence only finite-dimensional bimodules; since finite-dimensional C∗-algebras
are always unital, we shall require all representations to be unital as well.

Now, given a left [right] representation α = (H, π) of an algebra A, one can
define its transpose to be the right [left] representation αT = (H∗, πT ) , where
πT (a) := π(a)T for all a ∈ A. Note that for any left or right representation α,
(αT )T can naturally be identified with α itself. In the case that H = CN , we
shall identify H∗ with H by identifying the standard ordered basis on H with the
corresponding dual basis on H∗. The notion of the transpose of a representation
allows us to reduce discussion of right representations to that of left representations.

Since real C∗-algebras are semisimple, any left representation can be written as
a direct sum of irreducible representations, unique up to permutation of the direct
summands, and hence any right representation can be written as a direct sum of
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transposes of irreducible representations, again unique up to permutation of the
direct summands.

Definition 2.3. The spectrum Â of a real C∗-algebra A is the set of unitary
equivalence classes of irreducible representations of A.

Now, let A be a real C∗-algebra with Wedderburn decomposition ⊕Ni=1Mki(Ki).
Then

(2.3) Â =
N⊔
i=1

M̂ki(Ki),

where the embedding of M̂ki(Ki) in Â is given by composing the representation
maps with the projection of A onto the direct summand Mki(Ki). The building
blocks for Â are as follows:

(1) M̂n(R) = {[(Cn, λ)]},
(2) M̂n(C) = {[(Cn, λ)], [(CN , λ)]},
(3) M̂n(H) = {[(C2n, λ)]},

where λ(a) denotes left multiplication by a and λ(a) denotes left multiplication by
a.

Definition 2.4. Let A be a real C∗-algebra, and let α ∈ Â. We shall call
α conjugate-linear if it arises from the conjugate-linear irreducible representation
(a �→ a,Cni) of a direct summand of A of the form Mni(C); otherwise we shall call
it complex-linear .

Thus, a representation α of the real C∗-algebra A extends to a C-linear ∗-
representation of AC if and only if α is the sum of complex-linear irreducible rep-
resentations of A.

Finally, for an individual direct summand Mki(Ki) of A, let ei denote its unit,
ni the dimension of its irreducible representations (which is therefore equal to 2ki if
Ki = H, and to ki itself otherwise), ni its complex-linear irreducible representation,
and, if Ki = C, ni its conjugate-linear irreducible representation. We define a strict
ordering < on Â by setting α < β whenever α ∈ M̂ni(Ki), β ∈ M̂nj (Kj) for i < j,
and by setting ni < ni in the case that Ki = C. Note that the ordering depends
on the choice of Wedderburn decomposition, i.e. on the choice of ordering of the
direct summands. Let S denote the cardinality of Â. We shall identifyMS(R) with
the real algebra of functions Â2 → R, and hence index the standard basis {Eαβ}
of MS(R) by Â2.

2.3. Bimodules and spectral triples. Let us now turn to spectral triples.
Recall that we are considering only finite-dimensional algebras and representations
(i.e. Hilbert spaces), so that we are dealing only with what are termed finite or
discrete spectral triples.

Let H and H′ be A-bimodules. We shall denote by LLA(H,H′), LRA(H,H′), and
LLRA (H,H′) the subspaces of L(H,H′) consisting of left A-linear, rightA-linear, and
left and right A-linear operators, respectively. In the case that H′ = H, we shall
write simply LLA(H), LRA(H) and LLRA (H). If N is a subalgebra or linear subspace
of a real or complex C∗-algebra, we shall denote by Nsa the real linear subspace of
N consisting of the self-adjoint elements of N , and we shall denote by U(N) set of
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unitary elements of N . Finally, for operators A and B on a Hilbert space, we shall
denote their anticommutator AB +BA by {A,B}.

2.3.1. Conventional definitions. We begin by recalling the standard definitions
for spectral triples of various forms. Since we are working with the finite case,
all analytical requirements become redundant, leaving behind only the algebraic
aspects of the definitions.

The following definition first appeared in a 1995 paper [5] by Connes:

Definition 2.5. A spectral triple is a triple (A,H, D), where:
• A is a unital real or complex ∗-algebra;
• H is a complex Hilbert space on which A has a left representation λ :
A → L(H);

• D, the Dirac operator , is a self-adjoint operator on H.
Moreover, if there exists a Z/2Z-grading γ on H (i.e. a self-adjoint unitary on

H) such that:
(1) [γ, λ(a)] = 0 for all a ∈ A,
(2) {γ,D} = 0;

then the spectral triple is said to be even. Otherwise, it is said to be odd .

In the context of the general definition for spectral triples, a finite spectral
triple necessarily has metric dimension 0.

In a slightly later paper [6], Connes defines the additional structure on spectral
triples necessary for defining the noncommutative spacetime of the NCG Standard
Model; indeed, the same paper also contains the first version of the NCG Standard
Model to use the language of spectral triples, in the form of a reformulation of the
so-called Connes-Lott model.

Definition 2.6. A spectral triple (A,H, D) is called a real spectral triple of
KO-dimension n mod 8 if, in the case of n even, it is an even spectral triple, and
if there exists an antiunitary J : H → H such that:

(1) J satisfies J2 = ε, JD = ε′DJ and Jγ = ε′′γJ (in the case of even n),
where ε, ε′, ε′′ ∈ {−1, 1} depend on n mod 8 as follows:

n 0 1 2 3 4 5 6 7

ε 1 1 −1 −1 −1 −1 1 1
ε′ 1 −1 1 1 1 −1 1 1
ε′′ 1 −1 1 −1

(2) The order zero condition is satisfied, namely [λ(a), Jλ(b)J∗] = 0 for all a,
b ∈ A;

(3) The order one condition is satisfied, namely [[D,λ(a)], Jλ(b)J∗] = 0 for
all a, b ∈ A.

Moreover, if there exists a self-adjoint unitary ε on H such that:

(1) [ε, λ(a)] = 0 for all a ∈ A;
(2) [ε,D] = 0;
(3) {ε, J} = 0;
(4) [ε, γ] = 0 (even case);

then the real spectral triple is said to be S0-real .
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Remark 2.7 (Krajewski [18, §2.2], Paschke–Sitarz [20, Obs. 1]). If (A,H, D)
is a real spectral triple, then the order zero condition is equivalent to the statement
that H is an A-bimodule for the usual left action λ and the right action ρ : a �→
Jλ(a∗)J∗.

It was commonly assumed until fairly recently that the finite geometry of the
NCG Standard Model should be S0-real. Though the current version of the NCG
Standard Model no longer makes such an assumption [4, 7], we shall later see that
its finite geometry can still be seen as satisfying a weaker version of S0-reality.

2.3.2. Structures on bimodules. In light of the above remark, the order one con-
dition, the strongest algebraic condition placed on Dirac operators for real spectral
triples, should be viewed more generally as a condition applicable to operators on
bimodules [18, §2.4]. This then motivates our point of view that a finite real spec-
tral triple (A,H, D) should be viewed rather as an A-bimodule with additional
structure, together with a Dirac operator satisfying the order one condition that
is compatible with that additional structure. We therefore begin by defining a
suitable notion of “additional structure” for bimodules.

Definition 2.8. A bimodule structure P consists of the following data:
• A set P = Pγ
PJ
Pε, where each set PX is either empty or the singleton
{X}, and where Pε is non-empty only if PJ is non-empty;
• If PJ is non-empty, a choice of KO-dimension n mod 8, where n is even
if and only if Pγ is non-empty.

In particular, we call a structure P :
• odd if P is empty;
• even if P = Pγ = {γ};
• real if PJ is non-empty and Pε is empty
• S0-real if Pε is non-empty.

Finally, if P is a graded structure, we call γ the grading , and if P is real or
S0-real, we call J the charge conjugation.

Since this notion of KO-dimension is meant to correspond with the usual KO-
dimension of a real spectral triple, we assign to each real or S0-real structure P of
KO-dimension n mod 8 constants ε, ε′ and, in the case of even n, ε′′, according to
the table in Definition 2.6.

We now define the structure algebra of a structure P to be the real associative
algebra with generators P and relations, as applicable,

γ2 = 1, J2 = ε, ε2 = 1; γJ = ε′′Jγ, [γ, ε] = 0, {ε, J} = 0.

Definition 2.9. An A-bimodule H is said to have structure P whenever it
admits a faithful representation of the structure algebra of P such that, when
applicable, γ and ε are represented by self-adjoint unitaries in LLRA (H), and J is
represented by an antiunitary on H such that

(2.4) ∀a ∈ A, ρ(a) = Jλ(a∗)J.

Note that a S0-real bimodule can always be considered as a real bimodule,
and a real bimodule of even [odd] KO-dimension can always be considered as an
even [odd] bimodule. Note also that an even bimodule is simply a graded bimodule
such that the algebra acts from both left and right by degree 0 operators, and the
grading itself respects the Hilbert space structure; an odd bimodule is then simply
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an ungraded bimodule. We use the terms “even” and “odd” so as to keep the
terminology consistent with that for spectral triples.

Note also that for a real or S0-real structure P , the structure algebra of P is
independent of the value of ε′. Thus the notions of real [S0-real] A-bimodule with
KO-dimension 1 mod 8 and 7 mod 8 are identical, as are the notions of [S0-real] A-
bimodule with KO-dimension 3 mod 8 and 5 mod 8; again, we make the distinction
with an eye to the discussion of Dirac operators (and hence of spectral triples) later
on.

Now, a unitary equivalence of A-bimodules H and H′ with structure P is a
unitary equivalence of A-bimodules (i.e. a unitary element of LLRA (H,H′)) that
effects unitary equivalence of the representations of the structure algebra of P .
We denote the set of all such unitary equivalences H → H′ by ULR

A (H,H′;P).
In particular, ULR

A (H,H;P), which we denote by ULR
A (H;P), is a subgroup of

ULR
A (H) := U(LLRA (H)). In all such notation, we suppress the argument P whenever
P is empty.

Definition 2.10. Let A be a real C∗-algebra, and let P be a bimodule struc-
ture. The abelian monoid (Bimod(A, P ),+) of A-bimodules with structure P is
defined as follows:

• Bimod(A, P ) is the set of unitary equivalence classes of A-bimodules with
structure P ;

• For [H], [H′] ∈ Bimod(A, P ), [H] + [H′] := [H⊕H′].
For convenience, we shall denote Bimod(A, P ) by:
• Bimod(A) if P is the odd structure;
• Bimodeven(A) if P is the even structure;
• Bimod(A, n) if P is the real structure of KO-dimension n mod 8;
• Bimod0(A, n) if P is the S0-real structure of KO-dimension n mod 8.

These monoids will be studied in depth in the next section. In light of our earlier
comment, we therefore have that

Bimod(A, 1) = Bimod(A, 7), Bimod(A, 3) = Bimod(A, 5).

and

Bimod0(A, 1) = Bimod0(A, 7), Bimod0(A, 3) = Bimod0(A, 5).
Finally, for the sake of completeness, we now define the notions of orientabilty

and Poincaré duality in this more general context; in the case of a real spectral
triple (A,H, D, γ, J) of even KO-dimension, where the right action is given by
ρ(a) := Jλ(a∗)J∗, these definitions yield precisely the usual ones (cf. [18, §§2.2,
2.3]).

Definition 2.11. We call an even A-bimodule (H, γ) orientable if there exist
a1, . . . , ak, b1, . . . , bk ∈ A such that

(2.5) γ =
k∑
i=1

λ(ai)ρ(bi).
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Definition 2.12. Let A be a real C∗-algebra, and let (H, γ) be an even A-
bimodule. Then the intersection form 〈·, ·〉 : KO0(A) × KO0(A) → Z associated
with (H, γ) is defined by setting
(2.6) 〈[e] , [f ]〉 := tr(γλ(e)ρ(f))

for projections e, f ∈ A.
In the case that the intersection form is non-degenerate, we shall say that (H, γ)

satisfies Poincaré duality .

The orientability assumption was used extensively in [20] and [18], as it leads
to considerable algebraic simplifactions; we shall later define a weakened version of
orientability that will yield precisely those simplifications.

2.3.3. Bilateral spectral triples. We now turn to Dirac operators on bimodules
satisfying a generalised order one condition, and define the appropriate notion of
compatibility with additional structure on the bimodule.

Definition 2.13. A Dirac operator for an A-bimodule H with structure P is
a self-adjoint operator D on H satisfying the order one condition:

(2.7) ∀a, b ∈ A, [[D,λ(a)], ρ(b)] = 0,

together with the following relations, as applicable:

{D, γ} = 0, DJ = ε′JD, [D, ε] = 0.

We denote the finite-dimensional real vector space of Dirac operators for an an
A-bimodule H with structure P by D0(A,H,P).

Definition 2.14. A bilateral spectral triple with structure P is a triple of the
form (A,H, D), where A is a real C∗-algebra, H is an A-bimodule with structure
P , and D is a Dirac operator for (H, P ).

We shall generally denote such a spectral triple by (A,H, D;P), where P is the
set of generators of the structure algebra; in cases where the presence or absence of
a grading γ is immaterial, we will suppress the generator γ in this notation.

Remark 2.15. In the case that P is a real [S0-real] structure of KO-dimension
n mod 8, a bilateral spectral triple with structure P is precisely a real [S0-real]
spectral triple of KO-dimension n mod 8.

More generally, an odd [even] bilateral spectral triple (A,H, D) is equivalent to
an odd [even] spectral triple (A⊗Aop,H, D) such that [[D,A⊗ 1], 1⊗Aop] = {0},
an object that first appears in connection with S0-real spectral triples [6]

A unitary equivalence of spectral triples (A,H, D) and (A,H′, D′) is then a
unitary U ∈ ULR

A (H,H′) such that D′ = UDU∗. This concept leads us to the
following definition:

Definition 2.16. Let A be a real C∗-algebra, and let H be an A-bimodule
with structure P . The moduli space of Dirac operators for H is defined by

(2.8) D(A,H,P) := D0(A,H,P)/ULR
A (H,P),

where ULR
A (H,P) acts on D0(A,H,P) by conjugation.

If C is a central subalgebra of A, we can form the subspace

(2.9) D0(A,H,P; C) := {D ∈ D0(A,H,P) | [D,λ(C)] = [D, ρ(C)] = {0}}.
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and hence the sub-moduli space

(2.10) D(A,H,P; C) := D0(A,H,P; C)/ULR
A (H,P),

of D0(A,H,P); the moduli space of Dirac operators studied by Chamseddine,
Connes and Marcolli [4, §2.7],[8, §13.4] is in fact a sub-moduli space of this form.

SinceD(A,H,P) [D(A,H,P; C)] is the orbit space of a smooth finite-dimension-
al representation of a compact Lie group, it is a priori locally compact Hausdorff,
and is thus homeomorphic to a semialgebraic subset of Rd for some d [24]. The
dimension of D(A,H,P) [D(A,H,P; C)] can then be defined as the dimension of
this semialgebraic set. Such moduli spaces will be discussed in some detail.

2.3.4. S0-reality. Following Connes [6], we now describe how to reduce the
study of S0-real bimodules of even [odd] KO-dimension to the study of even [odd]
bimodules.

Let (H, J, ε) be an S0-real A-bimodule of even [odd] KO-dimension. Define
mutually orthogonal projections Pi, P−i in LLRA (H) by P±i = 1

2
(1 ± ε). Then, at

the level of even [odd] bimodules, H = Hi ⊕H−i for H±i := P±iH, where the left
and right actions on H±i are given by

λ±i(a) := P±iλ(a)P±i, ρ±i(a) := P±iρ(a)P±i,

for a ∈ A, and, in the case of even KO-dimension, the grading on H±i is given by
γ±i := P±iγP±i. Moreoever,

J =
(
0 εJ̃∗

J̃ 0

)
,

where J̃ := P−iJPi is an antiunitary Hi → H−i, so that for a ∈ A,
λ−i(a) = J̃ρi(a∗)J̃∗, ρ−i(a) = J̃λi(a∗)J̃∗,

and in the case of even KO-dimension, γ−i = ε′′J̃γJ̃∗. Finally, note that J̃ can
also be viewed as a unitary Hi → H−i, where Hi denotes the conjugate space of
H. Hence, for fixed KO-dimension, an S0-real A-bimodule H is determined, up to
unitary equivalence, by the bimodule Hi.

On the other hand, if V is an even [odd] A-bimodule, we can construct an S0-
real A-bimodule H for any even [odd] KO-dimension n mod 8 such that Hi = V,
by setting H := Hi ⊕ H−i for Hi := V, H−i := V, defining J̃ : Hi → H−i as the
identity map on V viewed as an antiunitary V → V, then using the above formulas
to define J , γ (as necessary), λ, ρ, and finally setting ε = 1V ⊕ (−1V ). In the case
that V is already Hi for some S0-real bimodule H, this procedure reproduces H up
to unitary equivalence. We have therefore proved the following:

Proposition 2.17. Let A be a real C∗-algebra, and let n ∈ Z8. Then the map

Bimod0(A, n)→
{
Bimod(A), if n is odd,
Bimodeven(A), if n is even,

defined by [H] �→ [Hi] is an isomorphism of monoids.

Now, let H is an S0-real A-bimodule, and suppose that D is a Dirac operator
for H. We can define Dirac operators Di and D−i on Hi and H−i, respectively, by
D±i := P±iDP±i; then D = Di ⊕D−i and, in fact, D−i = ε′J̃DiJ̃∗. Thus, a Dirac
operator D on H is completely determined by Di; indeed, the map D �→ Di defines
an isomorphism D0(A,H, J, ε) ∼= D0(A,H).
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Along similar lines, one can show that ULR
A (H, J) ∼= ULR

A (Hi) by means of
the map U �→ Ui := PiUPi; this isomorphism is compatible with the isomorphism
D0(A,H, J, ε) ∼= D0(A,H). Hence, the functional equivalence between H and Hi
holds at the level of moduli spaces of Dirac operators:

Proposition 2.18. Let H be an S0-real A-bimodule. Then

(2.11) D(A,H, J, ε) ∼= D(A,Hi).
One can similarly show that for a central subalgebra C of A,

D(A,H, J, ε; C) ∼= D(A,Hi; C).
Let us conclude by considering the relation between orientability and Poincaré

duality for an S0-real bimodule H of even KO-dimension and orientability and
Poincaré duality, respectively, for the associated even bimodule Hi.

Proposition 2.19. Let H be an S0-real A-bimodule of even KO-dimension.
Then H is orientable if and only if there exist a1, . . . , ak, b1, . . . , bk ∈ A such that

(2.12) γi =
k∑
j=1

λi(aj)ρi(bj) = ε′′
k∑
j=1

λi(b∗j )ρi(a
∗
j ).

Proof. Let a1, . . . , ak, b1, . . . , bk ∈ A, and set T =
∑k
j=1 λ(aj)ρ(bj). Then

Ti := PiTPi =
k∑
j=1

λi(aj)ρi(bj),

while

T−i := P−iTP−i =
k∑
j=1

λ−i(aj)ρ−i(bj) = J̃

( k∑
j=1

λi(b∗j )ρi(a
∗
j )
)
J̃∗.

Hence, T−i = ε′′J̃TiJ̃∗ if and only if

ε′′
k∑
j=1

λi(b∗j )ρi(a
∗
j ) = Ti =

k∑
j=1

λi(aj)ρi(bj).

Applying this intermediate result to aj and bj such that γ =
∑k
j=1 λ(aj)ρ(bj), in the

case that H is orientable, and then to aj and bj such that γi =
∑k
j=1 λi(aj)ρi(bj),

in the case that Hi is orientable, yields the desired result. �

Thus, orientability of an S0-real bimodule H is equivalent to a stronger version
of orientability on the bimodule Hi.

Turning to Poincaré duality, we can obtain the following result:

Proposition 2.20. Let H be an S0-real A-bimodule of even KO-dimension
with intersection form 〈·, ·〉, and let 〈·, ·〉i be the intersection form for Hi. Then for
any p, q ∈ KO0(A),

〈p, q〉 = 〈p, q〉i + ε′′ 〈q, p〉i .
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Proof. Let e, f ∈ A be projections. Then

〈[e], [f ]〉 = tr(γλ(e)ρ(f))

= tr(γiλi(e)ρi(f)) + tr(γ−iλ−i(e)ρ−i(f))

= tr(γiλi(e)ρi(f)) + ε′′ tr(J̃γiλi(f)ρi(e)J̃∗)

= tr(γiλi(e)ρi(f)) + ε′′tr(γiλi(f)ρi(e))

= 〈[e], [f ]〉i + ε′′ 〈[f ], [e]〉i ,
where we have used the fact that the intersection forms are integer-valued. �

Thus, Poincaré duality on an S0-real bimodule H is equivalent to nondegener-
acy of either the symmetrisation or antisymmetrisation of the intersection form on
Hi, as the case may be.

3. Bimodules and Multiplicity Matrices

We now turn to the study of bimodules, and in particular, to their characterisa-
tion by multiplicity matrices. We shall find that a bimodule admits, up to unitary
equivalence, at most one real structure of any given KO-dimension, and that the
multiplicity matrix or matrices of a bimodule will determine entirely which real
structures, if any, it does admit.

In what follows, A will be a fixed real C∗-algebra.

3.1. Odd bimodules. Let us begin with the study of odd bimodules.
For m ∈MS(Z≥0), we define an A-bimodule Hm by setting

Hm :=
⊕

α,β∈ bA
Cnα ⊗ Cmαβ ⊗ Cnβ ,

λm(a) :=
⊕

α,β∈ bA
λα(a)⊗ 1mαβ ⊗ 1nβ , a ∈ A,

ρm(a) :=
⊕

α,β∈ bA
1nα ⊗ 1mαβ ⊗ λβ(a)T , a ∈ A.

Here we use the convention that 1n is the identity on Cn, with C0 := {0} and hence
10 := 0.

Proposition 3.1 (Krajewski [18, §3.1], Paschke–Sitarz [20, Lemmas 1, 2]).
The map bimod : MS(Z≥0) → Bimod(A) given by m �→ [Hm] is an isomorphism
of monoids.

Proof. By construction, bimod is an injective morphism of monoids. It there-
fore suffices to show that bimododd is also surjective.

Now, let H be an A-bimodule. For α ∈ Â define projections PLα and PRα by

PLα :=

⎧
⎪⎨
⎪⎩

λ(ei) if α = ni for Ki �= C,
1
2 (λ(ei)− iλ(iei)) if α = ni for Ki = C,
1
2 (λ(ei) + iλ(iei)) if α = ni for Ki = C,
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and

PRα :=

⎧
⎪⎨
⎪⎩

ρ(ei) if α = ni for Ki �= C,
1
2
(ρ(ei)− iρ(iei)) if α = ni for Ki = C,

1
2 (ρ(ei) + iρ(iei)) if α = ni for Ki = C,

respectively; by construction, PLα ∈ λ(A) + iλ(A) and PRα ∈ ρ(A) + iρ(A), so
that for α, β ∈ Â, PLα and PRβ commute. We can therefore define projections
Pαβ := PLα P

R
β for each α, β ∈ Â; it is then easy to see that each Hαβ := PαβH is

a sub-A-bimodule of H, and that H = ⊕α,β∈ bAHαβ .
Let α, β ∈ Â. As noted before, the left action of A on Hαβ must decompose

as a direct sum of irreducible representations, but by construction of Hαβ, those
irreducible representations must all be α. Similarly, the right action on Hαβ must
be a direct sum of copies of β. Since the left action and right action commute,
we must therefore have that Hαβ ∼= HmαβEαβ for some mαβ ∈ Z≥0. Taking the
direct sum of the Hαβ , we therefore see that H is unitarily equivalent to Hm for
m = (mαβ) ∈MS(Z≥0), that is, [H] = bimod(m). �

We denote the inverse map bimod−1 : Bimod(A)→MS(Z≥0) by mult.

Definition 3.2. Let H be an A-bimodule. Then the multiplicity matrix of A
is the matrix mult[H] ∈MS(Z≥0).

From now on, without any loss of generality, we shall assume that an A-
bimodule H with multiplicity matrix m is Hm itself.

Remark 3.3. Multiplicity matrices readily admit a K-theoretic interpreta-
tion [10]. For simplicity, suppose that A is a complex C∗-algebra and consider only
complex-linear representations. Then for H an A-bimodule, mult[H] is essentially
the Bratteli matrix of the inclusion λ(A) ↪→ ρ(A)′ ⊂ L(H) (cf. [9, §2]), and can
thus be interpreted as representing the induced map K0(λ(A)) → K0(ρ(A)′) in
complex K-theory. Likewise, mult[H]T can be interpreted as representing the map
K0(ρ(A)) → K0(λ(A)′) induced by the inclusion ρ(A) ↪→ λ(A)′ ⊂ L(H). Similar
interpretations can be made in the more general context of real C∗-algebras and
KO-theory.

We shall now characterise left, right, and left and right A-linear maps between
A-bimodules. Let H and H′ be A-bimodules with multiplicity matrices m and m′,
respectively, let Pαβ be the projections on H defined as in the proof of Proposi-
tion 3.1, and let P ′αβ be the analogous projections on H′. Then any linear map
T : H → H′ is characterised by the components
(3.1) T γδαβ := P ′γδTPαβ,

which we view as maps T γδαβ : C
nα ⊗ Cmαβ ⊗ Cnβ → Cnγ ⊗ Cm′

γδ ⊗ Cnδ , or equiv-
alently, as elements T γδαβ ∈ Mnγ×nα(C) ⊗Mm′

γδ×mαβ ⊗Mnδ×nβ (C). Thus we have
an isomorphism

comp : L(H,H′)→
⊕

α,β,γ,δ∈ bA
Mnγ×nα(C)⊗Mm′

γδ×mαβ ⊗Mnδ×nβ(C)

given by comp(T ) := (T γδαβ)α,β,γ,δ∈ bA. Note that when H = H′, T is self-adjoint if

and only if Tαβγδ = (T γδαβ)
∗ for all α, β, γ, δ ∈ Â.



22 BRANIMIR ĆAĆIĆ

Proposition 3.4 (Krajewski [18, §3.4]). Let H and H′ be A-bimodules with
multiplicity matrices m and m′, respectively. Then

comp(LLA(H,H′)) =
⊕

α,β,δ∈ bA
1nα ⊗Mm′

αδ×mαβ (C)⊗Mnδ×nβ (C),(3.2)

comp(LRA(H,H′)) =
⊕

α,β,γ∈ bA
Mnγ×nα(C)⊗Mm′

γβ×mαβ (C)⊗ 1nβ ,(3.3)

comp(LLRA (H,H′)) =
⊕

α,β∈ bA
1nα ⊗Mm′

αβ×mαβ (C)⊗ 1nβ .(3.4)

Proof. Observe that T ∈ L(H,H′) is left, right, or left and right A-linear if
and only if each T γδαβ is left, right, or left and right A. Thus, let α, β, γ and δ ∈ Â
be fixed, and let T ∈Mnγ×nα(C)⊗Mm′

γδ×mαβ ⊗Mnδ×nβ (C).

First, write T =
∑k
i=1Ai⊗Bi for Ai ∈Mnγ×nα(C) and for linearly independent

Bi ∈Mm′
γδ×mαβ ⊗Mnδ×nβ (C). Then, for a ∈ A,

(λγ(a)⊗ 1m′
γδ
⊗ 1nδ )T − T (λα(a)⊗ 1mαβ ⊗ 1nβ) =

k∑
i=1

(λγ(a)Ai −Aiλα(a))⊗Bi,

so that by linear independence of the Bi, T is left A-linear if and only if each Ai
intertwines the irreducible representations α and γ, and hence, by Schur’s lemma,
if and only if α = γ and each Ai is a constant multiple of 1nα or each Ai = 0. Thus,

LLA(Cnα ⊗ Cmαβ ⊗ Cnβ ,Cnγ ⊗ Cm
′
γδ ⊗ Cnδ)

=

{
1nα ⊗Mm′

αδ×mαβ (C)⊗Mnδ×nβ (C) if α = γ,
{0} otherwise.

Analogously, one can show that

LRA(Cnα ⊗ Cmαβ ⊗ Cnβ ,Cnγ ⊗ Cm
′
γδ ⊗ Cnδ)

=

{
Mnγ×nα(C)⊗Mm′

γβ×mαβ (C)⊗ 1nβ if β = δ,
{0} otherwise,

and then these first two results together imply that

LLRA (Cnα ⊗ Cmαβ ⊗ Cnβ ,Cnγ ⊗ Cm′
γδ ⊗ Cnδ)

=

{
1nα ⊗Mm′

αβ×mαβ (C)⊗ 1nβ if (α, β) = (γ, δ),
{0} otherwise,

as was claimed. �

An immediate consequence is the following description of the group ULR
A (H):

Corollary 3.5. Let H be an A-bimodule. Then

comp(ULR
A (H)) =

⊕

α,β∈ bA
1nα ⊗U(mαβ)⊗ 1nβ ∼=

∏

α,β∈ bA
U(mαβ),

with the convention that U(0) = {0} is the trivial group.
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3.2. Even bimodules. We now turn to the study of even bimodules; let us
begin by considering the decomposition of an even bimodule into its even and odd
sub-bimodules.

Let (H, γ) be an even A-bimodule. Define mutually orthogonal projections
P even and P odd by

P even =
1
2
(1 + γ), P odd =

1
2
(1− γ).

We can then define sub-bimodules Heven and Hodd of H by Heven = P evenH,
Hodd = P oddH; one has that H = Heven ⊕Hodd at the level of bimodules.

On the other hand, given A-bimodules H1 and H2, we can construct an even
A-bimodule (H, γ) such that Heven = H1 and Hodd = H2 by setting H = H1 ⊕H2

and γ = 1H1 ⊕ (−1H2). If H1 and H2 are already Heven and Hodd for some (H, γ),
then this procedure precisely reconstructs (H, γ). Since this procedure manifestly
respects direct summation and unitary equivalence at either end, we have therefore
proved the following:

Proposition 3.6. Let A be a real C∗-algebra. The map

C : Bimodeven(A)→ Bimod(A)× Bimod(A)
given by

C([H]) := ([Heven], [Hodd])
is an isomorphism of monoids.

One readily obtains a similar decomposition at the level of unitary groups:

Corollary 3.7. Let (H, γ) be an even A-bimodule. Then

ULR
A (H, γ) = ULR

A (Heven)⊕ULR
A (Hodd).

Another immediate consequence is the following analogue of Proposition 3.1:

Proposition 3.8. Let A be a real C∗-algebra. The map

bimodeven :MS(Z≥0)×MS(Z≥0)→ Bimodeven(A)
defined by bimodeven := C−1 ◦ (bimod×bimod) is an isomorphism of monoids.

Just as in the odd case, we will find it convenient to denote (bimodeven)−1 :
Bimodeven(A)→MS(Z≥0)×MS(Z≥0) by multeven. It then follows that multeven =
(mult×mult) ◦ C.

Definition 3.9. Let (H, γ) be an even A-bimodule. Then the multiplicity
matrices of (H, γ) are the pair of matrices

(mult[Heven],mult[Hodd]) = multeven[(H, γ)] ∈MS(Z≥0)×MS(Z≥0).

Let us now consider orientability of even bimodules.

Lemma 3.10 (Krajewski [18, §3.4]). Let (H, γ) be an even A-bimodule. Then
(H, γ) is orientable only if LLR(Heven,Hodd) = {0}.

Proof. Suppose that (H, γ) is orientable, so that γ =∑k
i=1 λ(ai)ρ(bi) for some

a1, . . . , ak, b1, . . . , bk ∈ A. Now, let T ∈ LLRA (Heven,Hodd), and define T̃ ∈ LLRA (H)
by

T̃ =
(
0 T ∗

T 0

)
.
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Then, on the one hand, since γ = 1Heven ⊕ (−1Hodd), T̃ anticommutes with γ, and
on the other, since γ =

∑k
i=1 λ(ai)ρ(bi), T̃ commutes with γ, so that T̃ = 0. Hence,

T = 0. �
This last result motivates the following weaker notion of orientability:

Definition 3.11. An even A-bimodule (H, γ) shall be called quasi-orientable
whenever LLRA (Heven,Hodd) = {0}.

The subset of Bimodeven(A) consisting of the unitary equivalence classes of the
quasi-orientable even A-bimodules will be denoted by Bimodevenq (A).

We define the support of a real p× q matrix A to be the set

supp(A) := {(i, j) ∈ {1, . . . , p} × {1, . . . , q} | Aij �= 0}.
For A ∈ MS(R), we shall view supp(A) as a subset of Â2 by means of the iden-
tification of {1, . . . , S} with Â as ordered sets. We shall also find it convenient to
associate to each matrix m ∈MS(Z) a matrix m̂ ∈MN (Z) by

(3.5) m̂ij :=
∑

α∈M̂ni
(Ki)

∑

β∈ ̂Mnj
(Kj)

mαβ .

One can check the map MS(Z)→MN (Z) defined by m �→ m̂ is linear and respects
transposes.

We can now offer the following characterisation of quasi-orientable bimodules:

Proposition 3.12 (Krajewski [18, §3.3], Paschke–Sitarz [20, Lemma 3]). Let
A be a real C∗-algebra. Then

(3.6) multeven(Bimodevenq (A))
= {(meven,modd) ∈MS(Z≥0)2 | supp(meven) ∩ supp(modd) = ∅}.

Proof. Let (H, γ) be an even A-bimodule and let (meven,modd) be its multi-
plicity matrices. Then by Proposition 3.4,

LLRA (Heven,Hodd) ∼=
⊕

α,β∈ bA
Mmodd

αβ ×meven
αβ

(C),

whence the result follows immediately. �
We therefore define the signed multiplicity matrix of a quasi-orientable even A-

bimodule (H, γ), or rather, the unitary equivalence class thereof, to be the matrix
multq[(H, γ)] := mult[Heven]−mult[Hodd] ∈MS(Z).

The map Bimodevenq (A)→MS(Z) defined by

[(H, γ)] �→ multq[(H, γ)]
is then bijective, and multeven[(H, γ)] is readily recovered from multq[(H, γ)]. In-
deed, if (H, γ) is a quasi-orientable even A-bimodule with signed multiplicity matrix
μ, then (cf. [20, Lemma 3],[18, 3.3])

(3.7) γ =
⊕

α,β∈ bA
μαβ1Hαβ .

These algebraic consequences of quasi-orientability, which were derived from the
stronger condition of orientability in the original papers [20] and [18], are key to
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the formalism developed by Krajewski and Paschke–Sitarz, and hence to the later
work by Iochum, Jureit, Schücker, and Stephan [12–14,22].

We can now characterise orientable bimodules amongst quasi-orientable bimod-
ules:

Proposition 3.13 (Krajewski [18, §3.3]). Let (H, γ) be a quasi-orientable A-
bimodule with signed multiplicity matrix μ. Then (H, γ) is orientable if and only if
the following conditions all hold:

(1) For each i ∈ {1, . . . , N} such that Ki = C and all β ∈ Â,
μniβμniβ ≥ 0;

(2) For all α ∈ Â and each j ∈ {1, . . . , N} such that Kj = C,

μαnjμαnj ≥ 0;
(3) For all i, j ∈ {1, . . . , N} such that Ki = Kj = C,

μninjμninj ≥ 0.
In particular, if (H, γ) is orientable, then

(3.8) γ =
N∑
i,j=1

λ(sgn(μ̂ij)ei)ρ(ej).

Proof. First, suppose that (H, γ) is indeed orientable, so that there exist
a1, . . . , an, b1, . . . , bn ∈ A such that γ =

∑n
l=1 λ(al)ρ(bl); in particular, then, for

each α, β ∈ Â,

sgn(μαβ)1nα ⊗ 1|μαβ | ⊗ 1nβ = γαβαβ =
n∑
l=1

λα(al)⊗ 1|μαβ | ⊗ λβ(bl)T .

Now, let i ∈ {1, . . . , N} be such that Ki = C, and let β ∈ Â, and suppose that
μniβ and μniβ are both non-zero. It then follows that

sgn(μniβ)1ni⊗1nβ =
n∑
l=1

(al)i⊗λβ(bl)T , sgn(μniβ)1ni⊗1nβ =
n∑
l=1

(al)i⊗λβ(bl)T ,

where (al)i denotes the component of al in the direct summand Mki(C) of A. If X
denotes complex conjugation on Cni , it then follows from this that

sgn(μniβ)1ni⊗1nβ = (X⊗1nβ )(sgn(μniβ)1ni⊗1nβ )(X⊗1nβ ) = sgn(μniβ)1ni⊗1nβ ,
so that sgn(μniβ) = sgn(μniβ), or equivalently μniβμniβ > 0. One can similarly
show that the other two conditions hold.

Now, suppose instead that the three conditions on μ hold. Then for all i,
j ∈ {1, . . . , N}, all non-zero entries μαβ for α ∈ M̂ki(Ki), β ∈ M̂kj (Kj), have the
same sign, so set γij equal to this common value of non-zero sgn(μαβ) if at least
one such μαβ is non-zero, and set γij = 0 otherwise. One can then easily check that
γ =

∑N
i,j=1 λ(γijei)ρ(ej), so that (H, γ) is indeed orientable. Moreover, using the

same three conditions, one can readily check that γij = sgn(μ̂ij), which yields the
last part of the claim. �
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Let us now turn to intersection forms and Poincaré duality. In particular,
we are now able to provide explicit expressions for intersection forms in terms of
multiplicity matrices.

Recall that for K = R, C or H, KO0(Mk(K)) is the infinite cyclic group gen-
erated by [p] for p ∈ Mk(K) a minimal projection, so that for A a real C∗-algebra
with Wedderburn decomposition ⊕Ni=1Mni(Ki),

KO0(A) ∼=
N∏
i=1

KO0(Mni(Ki)) ∼= ZN ,

which can be viewed as the infinite abelian group generated by {[pi]}Ni=1 for pi a
minimal projection in Mni(Ki). Since

τi := tr(pi) =

{
2 if Ki = H,
1 otherwise,

it follows that for α ∈ Â,

(3.9) tr(λα(pi)) =

{
τi if α ∈ M̂ni(Ki),
0 otherwise.

Now, if (H, γ) is an even A-bimodule with intersection form 〈·, ·〉, we can define
a matrix ∩ ∈MN (Z) by

(3.10) ∩ij := 〈[pi], [pj ]〉 .

The intersection form 〈·, ·〉 is completely determined by the matrix ∩, and in par-
ticular, 〈·, ·〉 is non-degenerate (i.e. (H, γ) satisfies Poincaré duality) if and only if
∩ is non-degenerate.

Proposition 3.14 (Krajewski [18, §3.3], Paschke–Sitarz [20, §2.4]). Let (H, γ)
be an even A-bimodule with pair of multiplicity matrices (meven,modd). Then

(3.11) ∩ij = τiτj

(
m̂even

ij − m̂odd
ij

)
,

so that (H, γ) satisfies Poincaré duality if and only if the matrix m̂even − m̂odd is
non-degenerate.

Proof. First, since H = Heven ⊕Hodd, we can write

γ =
⊕

α,β∈ bA
1nα ⊗ γαβ ⊗ 1nβ ,
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where γαβ = 1meven
αβ
⊕ (−1modd

αβ
). Then,

∩ij = 〈[pi], [pj ]〉
= tr(γλ(pi)ρ(pj))

= tr

⎛
⎝ ⊕

α,β∈ bA
λα(pi)⊗ γαβ ⊗ λβ(pj)

⎞
⎠

=
∑

α,β∈ bA
tr(λα(pi)) tr(λβ(pj))(meven

αβ −modd
αβ )

=
N∑
i,j=1

τiτj(m̂even
ij − m̂odd

ij).

This calculation implies, in particular, that ∩ can be obtained from m̂even − m̂odd

by a finite sequence of elementary row or column operations, so that ∩ is indeed
non-degenerate if and only if m̂even − m̂odd is. �

Corollary 3.15. Let (H, γ) be a quasi-orientable A-bimodule with signed mul-
tiplicity matrix μ. Then (H, γ) satisfies Poincaré duality if and only if μ̂ is non-
degenerate.

In particular, if we restrict ourselves to complex C∗-algebras and complex-
linear representations, a quasi-orientable bimodule is completely characterised by
the K-theoretic datum of its intersection form.

3.3. Real bimodules of odd KO-dimension. Let us now consider real bi-
modules of odd KO-dimension. Before continuing, recall that

Bimod(A, 1) = Bimod(A, 7), Bimod(A, 3) = Bimod(A, 5).
For m ∈ SymS(Z≥0), we define an antilinear operator Xm on Hm by defining

(Xm)
γδ
αβ : C

nα ⊗ Cmαβ ⊗ Cnβ → Cnγ ⊗ Cmγδ ⊗ Cnδ by
(3.12) (Xm)

βα
αβ : ξ1 ⊗ ξ2 ⊗ ξ3 �→ ξ3 ⊗ ξ2 ⊗ ξ1,

and by setting (Xm)
γδ
αβ = 0 whenever (γ, δ) �= (β, α).

3.3.1. KO-dimension 1 or 7 mod 8. We begin by determining the form of the
multiplicity matrix for a real bimodule of KO-dimension 1 or 7 mod 8.

Lemma 3.16 (Krajewski [18, §3.2], Paschke–Sitarz [20, Lemma 4]). Let (H, J)
be a real A-bimodule of KO-dimension 1 or 7 mod 8 with multiplicity matrix m.
Then m is symmetric, and the only non-zero components of J are of the form
Jβααβ for α, β ∈ Â, which are anti-unitaries Hαβ → Hβα satisfing the relations
Jαββα = (Jβααβ )

∗.

Proof. Let the projections PLα , P
R
β and Pαβ be defined as in the proof of

Proposition 3.1, and recall that Pαβ = PLα P
R
β . By Equation 2.4, it follows that

for all α ∈ Â,JPLα = PRα J and JPRα = PLα J , and hence that for all α, β ∈ Â,
JPαβ = JPLα P

R
β = PRα P

L
β J = PβαJ . Thus, the only non-zero components of J

are the anti-unitaries Jβααβ : Hαβ → Hβα which satisfy Jαββα = (Jβααβ )
∗; this, in turn,

implies that m is indeed symmetric. �
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Next, we show that for every m ∈ SymS(Z≥0), not only does Hm admit a
real structure of KO-dimension 1 or 7 mod 8, but it is also unique up to unitary
equivalence.

Lemma 3.17 (Krajewski [18, §3.2], Paschke–Sitarz [20, Lemma 5]). Let m ∈
SymS(Z≥0). Then, up to unitary equivalence, Jm := Xm is the unique real structure
on Hm of KO-dimension 1 or 7 mod 8.

Proof. First, Xm is indeed by construction a real structure on Hm of KO-
dimension 1 or 7 mod 8.

Now, let J be another real structure on Hm of KO-dimension 1 or 7 mod 8.
Define a unitary K on H by K = JXm; thus, J = KXm. Since the intertwining
condition of Equation 2.4 applies to both J and Xm, we have, in fact, that K ∈
ULR
A (Hm), and hence

K =
⊕

α,β∈ bA
1nα ⊗Kαβ ⊗ 1nβ ,

for Kαβ ∈ U(mαβ). In particular, since K∗ = XmJ = XmKXm, we have that
Kβα = KTαβ.

Let (α, β) ∈ supp(m), and suppose that α < β. Let Kαβ = VαβK̃αβV
∗
αβ

be a unitary diagonalisation of Kαβ , and let Lαβ be a diagonal square root of
K̃αβ . ThenKαβ = VαβLαβLαβV

∗
αβ = (VαβLαβ)(VαβLαβ)T , and hence Kβα =

(VαβLαβ)(VαβLαβ)T . If, instead, α = β, then Kαα is unitary and complex sym-
metric, so that there exists a unitaryWαα such that Kαα =WααW

T
αα. We can now

define a unitary U ∈ ULR
A (Hm) by

U =
⊕

α,β∈ bA
1nα ⊗ Uαβ ⊗ 1nβ ,

where Uαβ = 0 if mαβ = 0, and for (α, β) ∈ supp(m),

Uαβ =

⎧
⎪⎨
⎪⎩

VαβLαβ, if α < β,
VβαLβα, if α > β,
Wαα, if α = β.

Then, by construction, K = UXmU
∗Xm, and hence, J = UXmU

∗, so that U is
the required unitary equivalence between (Hm, Xm) and (Hm, J). �

We can now give our characterisation of real bimodules of KO-dimension 1 or
7 mod 8:

Proposition 3.18 (Krajewski [18, §3.2]). Let n = 1 or 7 mod 8. Then the
map ιn : Bimod(A, n)→ Bimod(A) defined by ιn : [(H, J)] �→ [H] is injective, and

(3.13) (mult ◦ιn)(Bimod(A, n)) = SymS(Z≥0).

Proof. First, since a unitary equivalence of real A-bimodules of KO-dimen-
sion n mod 8 is, in particular, a unitary equivalence of odd A-bimodules, the map
ιn is well defined.

Next, let (H, J) and (H′, J ′) be real A-bimodules of KO-dimension n mod
8, and suppose that H and H′ are unitarily equivalent as bimodules; let U ∈
ULR
A (H′,H). Now, ifm is the multiplicity matrix ofH, thenH andHm are unitarily

equivalent, so let V ∈ ULR
A (H,Hm). Then V JV ∗ and V UJ ′U∗V ∗ are both real
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structures of KO-dimension n mod 8, so by Lemma 3.17, they are both unitarily
equivalent to Jm. This implies that J and UJ ′U∗ are unitarily equivalent as real
structures on H, and hence that (H, J) and (H′, J ′) are unitarily equivalent. Thus,
ιn is injective.

Finally, Lemma 3.16 implies that (mult ◦ιn)(Bimod(A, n)) ⊆ SymS(Z≥0), while
Lemma 3.17 implies the reverse inclusion. �

Thus, without any loss of generality, a real bimodule H of KO-dimension 1 or
7 mod 8 with multiplicity matrix m can be assumed to be simply (Hm, Jm).

One following characterisation of ULR
A (H, J) now follows by direct calculation:

Proposition 3.19. Let (H, J) be a real A-bimodule of KO-dimension 1 or
7 mod 8 with multiplicity matrix m. Then

comp(ULR
A (H, J)) = {(1nα ⊗ Uαβ ⊗ 1nβ )α,β∈ bA ∈ comp(ULR

A (H)) | Uβα = Uαβ}
∼=

∏

α∈ bA

(
O(mαα)×

∏

β∈ bA
β>α

U(mαβ)
)
.

(3.14)

3.3.2. KO-dimension 3 or 5 mod 8. Let us now turn to real bimodules of KO-
dimension 3 or 5 mod 8. We begin with the relevant analogue of Lemma 3.16.

Lemma 3.20. Let (H, J) be a real A-bimodule of KO-dimension 3 or 5 mod 8
with multiplicity matrix m. Then m is symmetric with even diagonal entries, and
the only non-zero components of J are of the form Jβααβ for α, β ∈ Â, which are
anti-unitaries Hαβ → Hβα satisfying the relations Jαββα = −(Jβααβ )∗.

Proof. The proof follows just as for Lemma 3.16, except that the equation
J2 = −1 forces the relations Jαββα = −(Jβααβ )∗, which imply, in particular, that for
each α ∈ Â, (Jαααα )2 = −1, so that mαα must be even. �

Let us denote by Sym0
S(Z≥0) the set of all matrices in SymS(Z≥0) with even

diagonal entries. For n = 2k, let

Ωn =
(
0 −1k
1k 0

)
.

Lemma 3.21. Let m ∈ Sym0
S(Z≥0). Define an antiunitary Jm on Hm by

(Jm)
γδ
αβ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(Xm)
βα
αβ if (γ, δ) = (β, α) and α < β,

−(Xm)βααβ if (γ, δ) = (β, α) and α > β,
Ωmαα(Xm)

αα
αα if α = β = γ = δ,

0 otherwise.

Then, up to unitary equivalence, Jm is the unique real structure on Hm of KO-
dimension 3 or 5 mod 8.

Proof. The proof follows that of Lemma 3.17, except we now have thatKTαα =
ΩmααKααΩ

T
mαα instead of KTαα = Kαα; each KααΩmαα is therefore unitary and

complex skew-symmetric, so that we choose Wαα unitary such that

KααΩmαα =WααΩmααW
T
αα,
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or equivalently, Kαα = WααΩmααW
T
ααΩ

T
mαα . One can then construct the unitary

equivalence U between (Hm, J) and (H, Jm) as before. �
Much as in the analogous case of KO-dimension 1 or 7 mod 8, Lemmas 3.20

and 3.21 together imply the following characterisation of real bimodules of KO-
dimension 3 or 5 mod 8:

Proposition 3.22. Let n = 3 or 5 mod 8. Then the map ιn : Bimod(A, n)→
Bimod(A) defined by ιn : [(H, J)] �→ [H] is injective, and

(3.15) (mult ◦ιn)(Bimod(A, n)) = Sym0
S(Z≥0).

Finally, these results immediately imply the following description of ULR
A (H, J):

Proposition 3.23. Let (H, J) be a real A-bimodule of KO-dimension 3 or
5 mod 8 with multiplicity matrix m. Then

comp(ULR
A (H, J)) =

{
(1nα ⊗ Uαβ ⊗ 1nβ )α,β∈ bA ∈ comp(ULR

A (H)) | Uαα∈Sp(mαα),
Uβα=Uαβ , α �=β

}

∼=
∏

α∈ bA

(
Sp(mαα)×

∏

β∈ bA
β>α

U(mαβ)
)
.

(3.16)

3.4. Real bimodules of even KO-dimension. We now come to the case of
even KO-dimension. Before continuing, note that for (H, γ, J) a real bimodule of
even KO-dimension,

∀p, q ∈ KO0(A), 〈q, p〉 = ε′′ 〈p, q〉 ,
as a direct result of the relation Jγ = ε′′γJ ; this is then equivalent to the condition

(3.17) ∩ = ε′′∩T ,
where ∩ is the matrix of the intersection form. Thus, for KO-dimension 0 or
4 mod 8, the intersection form is symmetric, whilst for KO-dimension 2 or 6 mod 8,
it is anti-symmetric. It then follows, in particular, that a real A-bimodule of KO-
dimension 2 or 6 mod 8 satisfies Poincaré duality only if A has an even number
of direct summands in its Wedderburn decomposition, as an anti-symmetric k × k
matrix for k odd is necessarily degenerate.

3.4.1. KO-dimension 0 or 4 mod 8. We begin with the case where ε′′ = 1 and
hence [γ, J ] = 0, i.e. of KO-dimension 0 or 4 mod 8.

Let (H, γ, J) be a real A-bimodule of KO-dimension n mod 8, for n = 0 or
4; let the mutually orthogonal projections P even and P odd on H be defined as
before. Then, since [J, γ] = 0, we have that J = Jeven ⊕ Jodd, where Jeven =
P evenJP even and Jodd = P oddJP odd. One can then check that (Heven, Jeven) and
(Hodd, Jodd) are real A-bimodules of KO-dimension 1 or 7 mod 8 if n = 0, and
3 or 5 mod 8 if n = 4. On the other hand, given (Heven, Jeven) and (Hodd, Jodd),
one can immediately reconstruct (H, γ, J) by setting γ = 1Heven ⊕ (−1Hodd) and
J = Jeven ⊕ Jodd. Thus we have proved the following analogue of Proposition 3.6:

Proposition 3.24. Let A be a real C∗-algebra. Let k0 denote 1 or 7 mod 8,
and let k4 denote 3 or 5 mod 8. Then for n = 0, 4 mod 8, the map

Cn : Bimod(A, n)→ Bimod(A, kn)× Bimod(A, kn)
given by Cn([(H, γ, J)]) := ([(Heven, Jeven)], [(Hodd, Jodd)]) is an isomorphism of
monoids.
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One can then apply this decomposition to the group ULR
A (H, γ, J) to find:

Corollary 3.25. Let (H, γ, J) be a real A-bimodule of KO-dimension 0 or
4 mod 8. Then

(3.18) ULR
A (H, γ, J) = ULR

A (Heven, Jeven)⊕ULR
A (Hodd, Jodd).

Combining Proposition 3.24 with our earlier characterisations of real bimodules
of odd KO-dimension, we immediately obtain the following:

Proposition 3.26. Let n = 0 or 4 mod 8. Then the map ιn : Bimod(A, n)→
Bimodeven(A) defined by [(H, γ, J)] �→ ([(H, γ)]) is injective, and

(multeven ◦ιn)(Bimod(A, n)) =
{
SymS(Z≥0)× SymS(Z≥0) if n = 0 mod 8,
Sym0

S(Z≥0)× Sym0
S(Z≥0) if n = 4 mod 8.

In particular,
Bimodq(A, n) := ι−1n (Bimodevenq (A))

is thus the set of all equivalence classes of quasi-orientable real A-bimodules of
KO-dimension n mod 8; the last Proposition then implies the following:

Corollary 3.27. Let n = 0 or 4 mod 8. Then

(3.19) (multq ◦ιn)(Bimodq(A, n)) = SymS(Z).

3.4.2. KO-dimension 2 or 6 mod 8. Finally, let us consider the remaining case
where ε′′ = −1 and hence {γ, J} = 0, i.e. of KO-dimensions 2 and 6 mod 8.

Let (H, γ, J) be a real A-bimodule of KO-dimension n mod 8 for n = 2 or 6.
Since {J, γ}, we have that

J =
(
0 εJ̃∗

J̃ 0

)
,

where J̃ := P oddJP even is an antiunitary Heven → Hodd, so that for a ∈ A,
λodd(a) = J̃ρeven(a∗)J̃∗, ρodd(a) = J̃λeven(a∗)J̃∗.

It then follows, in particular, that mult[Hodd] = mult[Heven]T .
Now, let J ′ be another real structure on (H, γ) of KO-dimension n mod 8, and

let J̃ ′ = P oddJ ′P even. Define K ∈ ULR
A (H, γ) by K = 1Heven ⊕ (J̃ ′J̃∗). Then, by

construction, J ′ = KJK∗, i.e. K is a unitary equivalence of real structures between
J and J ′. Thus, real structures of KO-dimension 2 or 6 mod 8 are unique. As a
result, we have proved the following analogue of Proposition 2.17:

Proposition 3.28. Let A be a real C∗-algebra, and let n = 2 or 6 mod 8.
Then the map

Cn : Bimod(A, n)→ Bimod(A)
given by Cn([(H, γ, J)]) := ([Heven]) is an isomorphism of monoids.

Again, as an immediate consequence, we obtain the following characterisation
of ULR

A (H, γ, J):
Corollary 3.29. Let (H, γ, J) be a real A-bimodule of KO-dimension 2 or

6 mod 8. Then

ULR
A (H, γ, J) = {U even ⊕ Uodd ∈ ULR

A (Heven)⊕ULR
A (Hodd) | Uodd = J̃U evenJ̃∗}

∼= ULR
A (Heven).

(3.20)
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Finally, one can combine Proposition 3.28 with our observation concerning
the uniqueness up to unitary equivalence of real structures of KO-dimension 2 or
6 mod 8 and earlier results on multiplicity matrices to obtain the following charac-
terisation:

Proposition 3.30. Let n = 2 or 6 mod 8. Then the map ιn : Bimod(A, n)→
Bimodeven(A) defined by [(H, γ, J)] �→ ([H, γ]) is injective, and

(multeven ◦ιn)(Bimod(A, n)) = {(meven,modd) ∈MS(Z≥0)2 | modd = (meven)T}
∼=MS(Z≥0).

(3.21)

Once more, it follows that

Bimodq(A, n) := ι−1n (Bimodevenq (A)),
is the set of all equivalence classes of quasi-orientable real A-bimodules of KO-
dimension n mod 8, for which we can again obtain a characterisation in terms of
signed multiplicity matrices:

Corollary 3.31. Let n = 2 or 6 mod 8. Then

(3.22) (multq ◦ιn)(Bimodq(A, n)) = {m ∈MS(Z) | mT = −m}.
3.4.3. S0-real bimodules of even KO-dimension. Let us now characterise quasi-

orientability, orientability and Poincaré duality for an even KO-dimensional S0-
real A-bimodule (H, γ, J, ε) by means of suitable conditions on (Hi, γi) expressible
entirely in terms of the pair of multiplicity matrices of (Hi, γi)

We begin by considering quasi-orientability:

Proposition 3.32. Let (H, γ, J, ε) be an S0-real A-bimodule of even KO-
dimension n mod 8. Then (H, γ) is quasi-orientable if and only if (Hi, γi) is quasi-
orientable and{
supp(meven

i ) ∩ supp((modd
i )T ) = ∅ if n = 0, 4,

supp(meven
i ) ∩ supp((meven

i )T ) = supp(modd
i ) ∩ supp((modd

i )T ) = ∅ if n = 2, 6,

for (meven
i ,modd

i ) the multiplicity matrices of (Hi, γi), in which case, if μ and μi =
meven
i −modd

i are the signed multiplicity matrices of (H, γ) and (Hi, γi), respectively,
then

(3.23) μ = μi + ε′′μTi .

Proof. First, let (meven,modd) and (meven
i ,modd

i ) denote the pairs of multi-
picity matrices of (H, γ) and (Hi, γi), respectively. It then follows that

meven =

{
meven
i + (meven

i )T if n = 0, 4,
meven
i + (modd

i )T if n = 2, 6;

modd =

{
modd
i + (modd

i )T if n = 0, 4,
modd
i + (meven

i )T if n = 2, 6.

Thus supp(meven) = supp(meven
i ) ∪ Seven, supp(modd) = supp(modd

i ) ∪ Sodd,
where

Seven =

{
supp((meven

i )T ) if n = 0, 4,
supp((modd

i )T ) if n = 2, 6;
Sodd =

{
supp((modd

i )T ) if n = 0, 4,
supp((meven

i )T ) if n = 2, 6.
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Then,

supp(meven)∩ supp(modd) = (supp(meven
i )∩ supp(modd

i ))∪ (Seven∩ supp(modd
i ))

∪ (supp(meven
i ) ∩ Sodd) ∪ (Seven ∩ Sodd),

so that (H, γ) is quasi-orientable if and only if (Hi, γi) is quasi-orientable and
(Seven ∩ supp(modd

i )) ∪ (supp(meven
i ) ∩ Sodd) = ∅,

as required.
Finally, if μ = meven−modd and μi = meven

i −modd
i are the signed multiplicity

matrices of (H, γ) and (Hi, γi), respectively, then the relations amongst meven,
modd, meven

i , and modd
i given at the beginning immediately yield the equation

μ = μi + ε′′μTi . �
Let us now turn to orientability:

Proposition 3.33. Let (H, γ, J, ε) be a quasi-orientable S0-real A-bimodule of
even KO-dimension n mod 8. Then (H, γ) is orientable if and only if (Hi, γi) is
orientable and, if n = 2 or 6 mod 8, for all j ∈ {1, . . . , N} such that Kj = C,

(3.24) (μi)njnj = (μi)njnj ,

where μi is the signed multiplicity matrix of (Hi, γi).
Proof. Let μ be the signed multiplicity matrix of (H, γ). Propositions 2.19

and 3.13 together imply that (H, γ, J, ε) is orientable if and only if

γi =
N∑
k,l=1

λi(sgn(μ̂kl)ek)ρi(el) = ε′′
N∑
k,l=1

λi(el)ρi(sgn(μ̂kl)ek),

and by considering individual components (γi)αβ , one can easily check that this in
turn holds if and only if (Hi, γi) is orientable and for all k ∈ {1, . . . , N},

sgn(μ̂kk) = ε′′ sgn(μ̂kk).

This last condition is trivial when ε′′ = 1, i.e. when n = 0 or 4 mod 8, so let
us suppose instead that n = 2 or 6 mod 8, so that ε′′ = −1. If (H, γ) is orientable,
then, by the above discussion, (Hi, γi) is orientable and the diagonal entries of μ̂
vanish, which in turn implies by Proposition 3.13 that for each l ∈ {1, . . . , N} and
all α, β ∈ M̂kl(Kl), μαβ = 0. By antisymmetry of μ, this is equivalent to having,
for all l ∈ {1, . . . , N} such that Kl = C, μnlnl = 0, or equivalently,

(μi)njnj = (μi)njnj ,

where μi is the signed multiplicity matrix of (Hi, γi). On the other hand, if (Hi, γi)
is orientable and this condition on μi holds, then μ certainly satisfies the above
condition, so that (H, γ) is indeed orientable. �

Finally, let us consider Poincaré duality.

Proposition 3.34. Let (H, γ, J, ε) be an S0-real A-bimodule of even KO-
dimension n mod 8, let (meven

i ,modd
i ) denote the multiplicity matrices of (Hi, γi),

and let ∩ denote the matrix of the intersection form of (H, γ). Finally, let μi =
meven
i −modd

i . Then

(3.25) ∩kl = τkτl(μ̂i + ε′′μ̂i
T )kl,

so that (H, γ) satisfies Poincaré duality if and only if μ̂i+ε′′μ̂i
T is non-degenerate.



34 BRANIMIR ĆAĆIĆ

Proof. By Proposition 2.20, ∩ = ∩i + ε′′∩Ti for ∩i the matrix of the inter-
section form of (Hi, γi), which, together with Proposition 3.14, yields the desired
result. �

3.5. Bimodules in the Chamseddine–Connes–Marcolli model. To il-
lustrate the structure theory outlined thus far, let us apply it to the construction
of the finite spectral triple of the NCG Standard Model given by Chamseddine,
Connes and Marcolli [4, §§2.1, 2.2, 2.4] (cf. also [8, §1.13]).

Let ALR = C⊕HL⊕HR⊕M3(C), where the labels L and R serve to distinguish
the two copies of H; we can therefore write ÂLR = {1,1,2L,2R,3,3} without
ambiguity. Now, let (MF , γF , JF ) be the orientable real ALR-bimodule of KO-
dimension 6 mod 8 with signed multiplicity matrix

μ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −1 1 0 0
0 0 0 0 0 0
1 0 0 0 1 0
−1 0 0 0 −1 0
0 0 −1 1 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

This bimodule is, in fact, an S0-real bimodule for εF = λ(−1, 1, 1,−1); E = (MF )i
is then the orientable even ALR-bimodule with signed multiplicity matrix

μE =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 1 0
−1 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Note, however, that neitherMF nor E satisfies Poincaré duality, as

μ̂ =

⎛
⎜⎜⎝
0 −1 1 0
1 0 0 1
−1 0 0 −1
0 −1 1 0

⎞
⎟⎟⎠ , μ̂E =

⎛
⎜⎜⎝
0 0 0 0
1 0 0 1
−1 0 0 −1
0 0 0 0

⎞
⎟⎟⎠

are both clearly degenerate; the intersection forms ofMF and E are given by the
matrices ∩ = 2μ̂ and ∩E = 2μ̂E , respectively.

In order to introduce N generations of fermions and anti-fermions, one now
considers the real A-bimodule HF := (MF )⊕N ; by abuse of notation, γF , JF and
εF now also denote the relevant structure operators on HF . In terms of multiplicity
matrices and intersection forms, the sole difference from our discussion of MF is
that all matrices are now multiplied by N .

Now, let AF = C⊕H⊕M3(C), which we consider as a subalgebra of ALR by
means of the embedding

(ζ, q,m) �→
(
ζ, q,

(
λ 0
0 λ

)
,m

)
;

just as we could for ALR, we can write ÂF = {1,1,2,3,3} without ambiguity. We
can therefore view HF as a real AF -bimodule of KO-dimension 6 mod 8, whose
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pair of multiplicity matrices (meven,modd) is then given by

meven = N

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
0 0 0 0 0
1 0 0 1 0
1 1 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, modd = N

⎛
⎜⎜⎜⎜⎝

1 0 1 1 0
1 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠
;

the essential observation is that the irreducible representation 2R of ALR corre-
sponds to the representation 1 ⊕ 1 of AF , whilst 2L, 3 and 3 correspond to 2, 3
and 3, respectively.

Note that HF now fails even to be quasi-orientable let alone orientable, with
the sub-bimodule (HF )11 providing the obstruction, and even if we were to restore
quasi-orientability by setting (HF )11 = 0, (HF )11 and (HF )11 would still present
an obstruction to orientability by Proposition 3.13. Note also that HF must nec-
essarily fail to satisfy Poincaré duality, as the matrix ∩F of its intersection form is
a 3 × 3 anti-symmetric matrix, and thus a priori degenerate. Let us nonetheless
compute ∩F :

m̂even − m̂odd = N

⎛
⎝
2 0 0
1 0 1
2 0 0

⎞
⎠−N

⎛
⎝
2 1 2
0 0 0
0 1 0

⎞
⎠ = N

⎛
⎝
0 −1 −2
1 0 1
2 −1 0

⎞
⎠ ,

and hence, by Proposition 3.14,

∩F = 2N

⎛
⎝
0 −1 −1
1 0 1
1 −1 0

⎞
⎠ .

Finally, let us consider the S0-real structure on HF the AF -bimodule, inherited
from HF as an ALR-bimodule; we now denote (HF )i by Hf . One still has that
Hf = E⊕N , which is still orientable and thus specified by the signed multiplicity
matrix

μf = N

⎛
⎜⎜⎜⎜⎝

−1 0 0 −1 0
−1 0 0 −1 0
1 0 0 1 0
0 0 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠
;

the intersection form is then given by the matrix

∩f = 2N

⎛
⎝
−1 0 −1
1 0 1
0 0 0

⎞
⎠ ,

so that Hf fails to satisfy Poincaré duality as an AF -bimodule.

4. Dirac Operators and their Structure

4.1. The order one condition. We now examine the structure of Dirac
operators in detail. We will find it useful to begin with the study of operators
between A-bimodules (for fixed A) satisfying a further generalisation of the order
one condition. Thus, let A be a fixed real C∗-algebra, and let H1 and H2 be fixed
A-bimodules with multiplicity matrices m1 and m2, respectively.
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Definition 4.1. We shall say that a map T ∈ L(H1,H2) satisfies the gener-
alised order one condition if

(4.1) ∀a, b ∈ A, (λ2(a)T − Tλ1(a))ρ1(b) = ρ2(b)(λ2(a)T − Tλ1(a)).

Note that if H1 = H2, then the generalised order one condition reduces to the
usual order one condition on Dirac operators.

It is easy to check that the generalised order one condition is, in fact, equivalent
to the following alternative condition:

(4.2) ∀a, b ∈ A, (ρ2(a)T − Tρ1(a))λ1(b) = λ2(b)(ρ2(a)T − Tρ1(a)).

Thus, the following are equivalent for T ∈ L(H1,H2):
(1) T satisfies the generalised order one condition;
(2) For all a ∈ A, λ2(a)T − Tλ1(a) is right A-linear;
(3) For all a ∈ A, ρ2(a)T − Tρ1(a) is left A-linear.
Now, since the unitary group U(A) of A is a compact Lie group, let μ be the

normalised bi-invariant Haar measure on U(A).
Lemma 4.2. Let H1 and H2 be A-bimodules. Define operators Eλ and Eρ on

L1A(H1,H2) by
(4.3)

Eλ(T ) :=
∫

U(A)
dμ(u)λ2(u)Tλ1(u−1), Eρ(T ) :=

∫

U(A)
dμ(u)ρ2(u−1)Tρ1(u).

Then Eλ and Eρ are commuting idempotents such that

im(Eλ) = LLA(H1,H2), im(Eρ) = LRA(H1,H2),

and

ker(Eλ) = im(id−Eλ) ⊆ LRA(H1,H2), ker(Eρ) = im(id−Eρ) ⊆ LLA(H1,H2),

while
im(EλEρ) = LLRA (H1,H2).

Proof. First, the fact that Eλ and Eρ are idempotents follows immediately
from the Fubini-Tonelli theorem together with translation invariance of the Haar
measure μ, whilst commutation of Eλ and Eρ follows from the Fubini-Tonelli the-
orem together with the commutation of left and right actions on H1 and on H2.
Moreover, by construction, Eλ and Eρ act as the identity on LLA(H1,H2) and
LRA(H1,H2), respectively, so that

im(Eλ) ⊇ LLA(H1,H2), im(Eρ) ⊇ LRA(H1,H2).

Now, let T ∈ L1A(H1,H2). Then, by translation invariance of the Haar measure,
it follows that for any u ∈ U(A),

Eλ(T ) = λ2(u)Eλ(T )λ1(u)∗, Eρ(T ) = ρ2(u)Eρ(T )ρ1(u)∗,

or equivalently,

λ2(u)Eλ(T ) = Eλ(T )λ1(u), ρ2(u)Eρ(T ) = Eρ(T )ρ1(u).

By the real analogue of the Russo-Dye theorem [19, Lemma 2.15.16], the convex
hull of U(A) is weakly dense in the unit ball of A, so that

λ2(a)Eλ(T ) = Eλ(T )λ1(a), ρ2(a)Eρ(T ) = Eρ(T )ρ1(a)

for all a ∈ A, i.e. Eλ(T ) ∈ LLA(H1,H2) and Eρ(T ) ∈ LRA(H1,H2).
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On the other hand,

(id−Eλ)(T ) =
∫

U(A)
dμ(u)(Tλ1(u)− λ2(u)T )λ1(u−1),

(id−Eρ)(T ) =
∫

U(A)
dμ(u)(Tρ1(u−1)− ρ2(u−1)T )ρ1(u),

so that by the generalised order one condition, (id−Eλ)(T ) ∈ LRA(H1,H2) and
(id−Eρ)(T ) ∈ LLA(H1,H2).

Finally, the commutation of Eλ and Eρ together with our identification of
im(Eλ) and of im(Eρ) imply the desired result about im(EλEρ). �

Now, since

im(id−Eλ) ⊆ im(Eρ), im(id−Eρ) ⊆ im(Eλ),
one has that

(id−Eλ)Eρ = id−Eλ, (id−Eρ)Eλ = id−Eρ,
which implies in turn that id−Eρ, EλEρ and id−Eλ are mutually orthogonal idem-
potents such that

(id−Eρ) + EλEρ + (id−Eλ) = id .

We have therefore proved the following:

Proposition 4.3 (Krajewski [18, §3.4]). Let LRA(H1,H2)0 denote ker(Eλ), and
let LLA(H1,H2)0 denote ker(Eρ). Then

(4.4) L1A(H1,H2) = LLA(H1,H2)0 ⊕ LLRA (H1,H2)⊕ LRA(H1,H2)0,

where

(4.5) LLA(H1,H2)0 ⊕ LLRA (H1,H2) = LLA(H1,H2)

and

(4.6) LLRA (H1,H2)⊕ LRA(H1,H2)0 = LRA(H1,H2).

Thus, elements of LLA(H1,H2)0 can be interpreted as the “purely” left A-linear
maps H1 → H2, whilst elements of LRA(H1,H2)0 can be interpreted as the “purely”
right A-linear maps H1 → H2.

One can readily check that the decomposition of Proposition 4.3 is respected
by left multiplication by elements of LLRA (H2) and right multiplication by elements
of LLRA (H1):

Proposition 4.4. For any T ∈ L1A(H1,H2), A ∈ LLRA (H1), B ∈ LLRA (H2),

Eλ(AT ) = AEλ(T ), Eρ(TB) = Eρ(T )B.

Now, if T ∈ L(H1,H2), it is easy to see that T satisfies the generalised order
one condition if and only if each T γδαβ satisfies the generalised order one condition
within L((H1)αβ, (H2)γδ); by abuse of notation, we will also denote by Eλ and Eρ
the appropriate idempotents on each L((H1)αβ, (H2)γδ). It then follows that

Eλ(T )
γδ
αβ = Eλ(T

γδ
αβ), Eρ(T )

γδ
αβ = Eρ(T

γδ
αβ).

Finally, let us turn to characterising ker(Eλ) and ker(Eρ); before proceeding,
we first need a technical lemma:
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Lemma 4.5. Let G be a compact Lie group, and let μ be the bi-invariant Haar
measure on G. Let (H, π) and (H′, π′) be finite-dimensional irreducible unitary
matrix representations of G. Then for any T ∈ L(H′,H), if π � π′ then

(4.7)
∫

G

dμ(g)π(g)Tπ′(g−1) = 0,

and if π ∼= π′, then for any unitary G-isomorphism U : H′ → H,
(4.8)

∫

G

dμ(g)π(g)Tπ′(g−1) =
1

dimH tr(TU∗)U.

Proof. Let
T̃ =

∫

G

dμ(g)π(g)Tπ′(g−1).

which, by translation invariance of the Haar measure μ, is a G-invariant map. If
π � π′, then Schur’s Lemma forces T̃ to vanish. If instead π ∼= π′, let U : H → H′
be a unitary G-isomorphism. Then by Schur’s Lemma there exists some α ∈ C
such that T̃ = αU ; in fact,

α = α
1

dimH tr(UU∗) =
1

dimH tr(T̃U∗).

One can then show that tr(T̃U∗) = tr(TU∗) by introducing an orthonormal basis
of H and then calculating directly. �

We now arrive at the desired characterisation:
Proposition 4.6. If T ∈ LRA(H1,H2), then Eλ(T ) = 0 if and only if for all

α, β ∈ supp(m1) ∩ supp(m2),

Tαβαβ ∈ sl(nα)⊗M(m2)αβ×(m1)αβ (C)⊗ 1nβ ,
and if T ∈ LLA(H1,H2), then Eρ(T ) = 0 if and only if for all α, β ∈ supp(m1) ∩
supp(m2),

Tαβαβ ∈ 1nα ⊗M(m2)αβ×(m1)αβ (C)⊗ sl(nβ).

Proof. Let T ∈ LRA(H1,H2). Then, by Proposition 3.4, it suffices to consider
components T γβαβ for α, β, γ ∈ Â, which take the form

T γβαβ =Mγαβ ⊗ 1nβ
for Mγαβ ∈Mnγ×nα(C)⊗M(m2)γβ×(m1)αβ (C).

Now fix α, β, γ ∈ Â, and write

Mγαβ =
k∑
i=1

Ai ⊗Bi

for Ai ∈Mnγ×nα(C) and for Bi ∈M(m2)γβ×(m1)αβ (C) linearly independent. It then
follows by direct computation together with Lemma 4.5 that

Eλ(T
γβ
αβ ) =

{
1
nα

(∑k
i=1 tr(Ai)1nα ⊗Bi

)
⊗ 1nβ if α = γ,

0 otherwise,

so that by linear independence of the Bi, Eλ(T
γβ
αβ ) vanishes if and only if either

α �= γ or, α = β and each Ai is traceless, and hence, if and only α �= γ or, α = β
and Mα

αβ ∈ sl(nα)⊗M(m2)γβ×(m1)αβ (C), as required.
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Mutatis mutandis, this argument also establishes the desired characterisation
of ker(Eρ). �

4.2. Odd bilateral spectral triples. Let us now take H1 = H2 = H. By
construction of Eλ and Eρ, the following conditions are readily seen to be equivalent
for T ∈ L1A(H):

(1) T is self-adjoint;
(2) Eλ(T ) and (id−Eλ)(T ) are self-adjoint;
(3) (id−Eρ)(T ) and Eρ(T ) are self-adjoint;
(4) (id−Eρ)(T ), (EλEρ)(T ) and (id−Eλ)(T ) are self-adjoint.

Thus, in particular,

(4.9) D0(A,H) = LLA(H)0sa ⊕ LLRA (H)sa ⊕ LRA(H)0sa.
In light of Proposition 4.4, we therefore have the following description of D(A,H):

Proposition 4.7. Let H be an A-bimodule. Then

(4.10) D(A,H) = (LLA(H)0sa × LLRA (H)sa × LRA(H)0sa
)
/ULR

A (H),
where ULR

A (H) acts diagonally by conjugation.

Now, in light of Propositions 3.4, 4.3 and 4.6, we can describe how to construct
an arbitrary Dirac operator on an odd A-bimodule H with multiplicity matrix m:

(1) For α, β, γ ∈ Â such that α < γ, choose Mγαβ ∈Mnγmγβ×nαmαβ (C);
(2) For α, β, δ ∈ Â such that β < δ, choose N δαβ ∈Mmαδnδ×mαβnβ (C);
(3) For α, β ∈ Â, choose Mααβ ∈Mnαmαβ (C)sa and Nβαβ ∈Mmαβnβ (C)sa;
(4) Finally, for α, β, γ, δ ∈ Â, set

(4.11) Dγδαβ =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

Mγαβ ⊗ 1nβ if α < γ and β = δ,
(Mαγβ)

∗ ⊗ 1nβ if α > γ and β = δ,
1nα ⊗Nδαβ if α = γ and β < δ,
1nα ⊗ (Nβαδ)∗ if α = γ and β > δ,
Mααβ ⊗ 1nβ + 1nα ⊗Nβαβ if (α, β) = (γ, δ),
0 otherwise.

Note that for any K = (1nα ⊗Kαβ ⊗ 1nβ )α,β∈ bA ∈ LLRA (H)sa (so that each Kαβ
is self-adjoint), we can make the replacements

Mααβ �→Mααβ + 1nα ⊗Kαβ, Nβαβ �→ Nβαβ −Kαβ ⊗ 1nβ ,
and still obtain the same Dirac operator D; by Proposition 4.3, this freedom
is removed by requiring either that Mα

αβ ∈ sl(nα) ⊗ Mmαβ (C) or that Nβαβ ∈
Mmαβ (C)⊗ sl(nβ).

We now turn to the moduli space D(A,H) itself. By the above discussion and
Corollary 3.5, we can identify the space D0(A,H) with
(4.12) D0(A,m) :=

∏

α,β∈ bA

∏

γ∈ bA
γ>α

Mnγmγβ×nαmαβ (C)×
(
sl(nα)⊗Mmαβ (C)

)
sa

×
∏

δ∈ bA
δ≥α

Mmαδnδ×mαβnβ (C)×Mmαβnβ (C)sa,
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and identify ULR
A (H) with

(4.13) U(A,m) :=
∏

α,β∈ bA
U(mαβ).

By checking at the level of components, one sees that the action of ULR
A (H) on the

space D0(A,H) corresponds under these identifications to the action of U(A,m) on
D0(A,m) defined by having (Uαβ) ∈ U(A,m) act on

(Mγαβ;M
α
αβ ;N

δ
αβ ;N

β
αβ) ∈ D0(A,m)

by

Mγαβ �→ (1nγ ⊗ Uγβ)M
γ
αβ(1nαβ ⊗ U∗αβ), N δαβ �→ (Uαδ ⊗ 1nδ )Nδαβ(U∗αβ ⊗ 1nβ ).

We have therefore proved the following:

Proposition 4.8. Let H be an odd A-bimodule with multiplicity matrix m.
Then

(4.14) D(A,H) ∼= D0(A,m)/U(A,m).
4.3. Even bilateral spectral triples. For this section, let (H, γ) be a fixed

even A-bimodule with pair of multiplicity matrices (meven,modd).
Now, let D be a self-adjoint operator on H anticommuting with γ. Then, with

respect to the decomposition H = Heven ⊕Hodd we can write

D =
(
0 Δ∗

Δ 0

)
,

where Δ = P oddDP even, viewed as a map Heven → Hodd. Thus, D is uniquely
determined by Δ and vice versa. Moreover, one can check that D satisfies the
order one condition if and only if Δ satisfies the generalised order one condition as
a map Heven → Hodd. We therefore have the following:

Lemma 4.9. Let (H, γ) be an even A-bimodule. Then the map D0(A,H, γ)→
L1A(Heven,Hodd) defined by D �→ P oddDP even is an isomorphism.

We now apply this Lemma to obtain our first result regarding the form of
D(A,H, γ):

Proposition 4.10. The map

D(A,H, γ)→ ULR
A (Hodd)\L1A(Heven,Hodd)/ULR

A (Heven)

defined by [D] �→ [P oddDP even] is a homeomorphism.

Proof. Recall that ULR
A (H, γ) = ULR

A (Heven,Hodd). We therefore have for
D ∈ D0(A,H, γ) and U = Ueven ⊕ Uodd ∈ ULR

A (Heven,Hodd) that

P oddUDU∗P even = UoddP oddDP even(U even)∗.

Thus, under the correspondence D0(A,H, γ) ∼= L1A(Heven,Hodd), the action of
ULR
A (H, γ) decouples into an action of ULR

A (Hodd) by multiplication on the left and
an action of ULR

A (Heven) by multiplication by the inverse on the right. Thus, the
map [D] → [P oddDP even] is not only well-defined but manifestly homeomorphic.

�
Combining this last Proposition with Proposition 4.3, we immediately obtain

the following:
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Corollary 4.11. Let (H, γ) be an even A-bimodule. Then

(4.15) D(A,H, γ) ∼= ULR
A (Hodd)\(LLA(Heven,Hodd)0

× LLRA (Heven,Hodd)× LRA(Heven,Hodd)0)/ULR
A (Heven),

where ULR
A (Hodd) acts diagonally by multiplication on the left, and ULR

A (Heven) acts
diagonally by multiplication on the right by the inverse.

Now, just as we did in the odd case, let us describe the construction of an
arbitary Dirac operator D on (H, γ):

(1) For α, β, γ ∈ Â, choose Mγ
αβ ∈Mnγmodd

γβ ×nαmeven
αβ

(C);

(2) For α, β, δ ∈ Â, choose N δαβ ∈Mmodd
αδ nδ×meven

αβ nβ
(C);

(3) Construct Δ ∈ L1A(Heven,Hodd) by setting, for α, β, γ, δ ∈ Â,

(4.16) Δγδαβ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mγ
αβ ⊗ 1nβ if α �= γ and β = δ,

1nα ⊗Nδαβ if α = γ and β �= δ,
Mα
αβ ⊗ 1nβ + 1nα ⊗Nβαβ if (α, β) = (γ, δ),

0 otherwise;

(4) Finally, set D =
(
0 Δ∗
Δ 0

)
.

Again, note that for any K = (1nα ⊗Kαβ ⊗ 1nβ )α,β∈ bA ∈ LLRA (Heven,Hodd) ,
we can make the replacements

Mααβ �→Mααβ + 1nα ⊗Kαβ, Nβαβ �→ Nβαβ −Kαβ ⊗ 1nβ ,
and still obtain the same Dirac operator D; by Proposition 4.3, this freedom is
removed by requiring either that

Mα
αβ ∈ sl(nα)⊗Mmodd

αβ ×meven
αβ

(C)

or that
Nβαβ ∈Mmodd

αβ ×meven
αβ

(C)⊗ sl(nβ).

Just as in the odd case, the above discussion and Corollary 3.5 imply that we
can identify D0(A,H, γ) with

(4.17) D0(A,meven,modd) :=
∏

α,β∈ bA

∏

γ∈ bA
γ �=α

Mnγmodd
γβ ×nαmeven

αβ
(C)

×
(
sl(nα)⊗Mmodd

αβ ×meven
αβ

(C)
)
×

∏

δ∈ bA
Mmodd

αδ nδ×meven
αβ nβ

(C),

and identify ULR
A (Heven) and ULR

A (Hodd) with U(A,meven) and U(A,modd), respec-
tively, which are defined according to Equation 4.13. The actions of ULR

A (Heven) and
ULR
A (Hodd) on L1A(Heven,Hodd) therefore correspond under these identifications to

the actions of U(A,meven) and U(A,modd), respectively, on D0(A,meven,modd)
defined by having (Uodd

αβ ) ∈ U(A,modd) and (U even
αβ ) ∈ U(A,meven) act on

(Mγ
αβ;M

α
αβ ;N

δ
αβ) ∈ D0(A,meven,modd)

by
Mγαβ �→ (1nγ ⊗ Uodd

γβ )M
γ
αβ , Nδαβ �→ (Uodd

αδ ⊗ 1nδ)N δαβ ,
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and
Mγαβ �→Mγαβ(1nα ⊗ (Ueven

αβ )∗), N δαβ �→ Nδαβ((U
even
αβ )∗ ⊗ 1nβ ),

respectively. Thus we have proved the following:

Proposition 4.12. Let (H, γ) be an even A-bimodule with multiplicity matrices
(meven,modd). Then

(4.18) D(A,H, γ) ∼= U(A,modd)\D0(A,meven,modd)/U(A,meven).

In the quasi-orientable case, the picture simplifies considerably, as all com-
ponents Δαβαβ necessarily vanish. One is then left, essentially, with the situation
described by Krajewski [18, §3.4] and Paschke–Sitarz [20, §2.II] ; as mentioned
before, one can find in the former the original definition of what are now called
Krajewski diagrams. These diagrams, used extensively by Iochum, Jureit, Schücker
and Stephan [12–16, 22], offer a concise, diagrammatic approach to the study of
quasi-orientable even bilateral spectral triples that strongly emphasizes the under-
lying combinatorics. Though they do admit ready generalisation to the non-quasi-
orientable case, we will not discuss them here.

We conclude our discussion of even bilateral spectral triples by recalling a result
of Paschke and Sitarz of particular interest in relation to the NCG Standard Model.

Proposition 4.13 (Paschke–Sitarz [20, Lemma 7]). Let (H, γ) be an orientable
A-bimodule. Then for all D ∈ D0(A,H, γ),

(4.19) D =
N∑
i,j=1
i�=j

λ(ei)[D,λ(ej)] +
N∑
k,l=1
k �=l

ρ(ek)[D, ρ(el)].

Proof. Fix D ∈ D0(A,H, γ), and let

T := D −
N∑
i,j=1
i�=j

λ(ei)[D,λ(ej)]−
N∑
k,l=1
k �=l

ρ(ek)[D, ρ(el)]

= D −
N∑
i,j=1
i�=j

λ(ei)Dλ(ej)−
N∑
k,l=1
k �=l

ρ(ek)Dρ(el).

Then for all α, β, γ, δ ∈ Â,

T γδαβ =

⎧
⎪⎨
⎪⎩

Dγδαβ if r(α) = r(γ), r(β) = r(δ),
−Dγδαβ if r(α) �= r(γ), r(β) �= r(δ),
0 otherwise,

where for α ∈ Â, r(α) is the value of j ∈ {1, . . . , N} such that α ∈ M̂kj (Kj).
However, by Proposition 4.3, Dγδαβ must vanish in the second case, whilst by Propo-
sition 3.13, Dγδαβ must vanish in the first, so that T = 0. �

Now, let (A,H, D, J, γ) be a real spectral triple of evenKO-dimension. A gauge
potential for the triple is then a self-adjoint operator on H of the form

n∑
k=1

λ(ak)[D,λ(bk)],
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where a1, . . . , an, b1, . . . , bn ∈ A, and an inner fluctuation of the metric is a Dirac
operator DA ∈ D0(A,H, J, γ) of the form

DA := D +A+ ε′JAJ∗ = D +A+ JAJ∗,

where A is a gauge potential. One then has that for any gauge potential A,
(A,H, D, J, γ) and (A,H, DA, J, γ) are Morita equivalent. In this light, the last
Proposition admits the following interpretation:

Corollary 4.14. Let (H, J, γ) be an orientable real A-bimodule of even KO-
dimension. Then for all D ∈ D0(A,H, γ, J),

(4.20) A = −
N∑
i,j=1
i�=j

λ(ei)[D,λ(ej)]

is a gauge potential for the real spectral triple (A,H, D, J, γ) such that DA = 0.

Thus, every finite orientable real spectral triple (A,H, D, J, γ) of even KO-
dimension is Morita equivalent to the dynamically trivial triple (A,H, 0, J, γ).

4.4. Real spectral triples of odd KO-dimension. For this section, let
(H, J) be a realA-bimodule of oddKO-dimension n mod 8 with multiplicity matrix
m. We begin by reducing the study of Dirac operators on (H, J) to that of self-
adjoint right A-linear operators on H.

Proposition 4.15 (Krajewski [18, §3.4]). Let (H, J) be a real A-bimodule of
odd KO-dimension n mod 8. Then the map Rn : LRA(H)sa → D0(A,H, J) defined
by Rn(M) := M + ε′JMJ∗ is a surjection interwining the action of ULR

A (H, J)
on LRA(H)sa by conjugation with the action on D0(A,H, J) by conjugation, and
ker(Rn) ⊆ LLRA (H)sa.

Proof. First, note that Rn is indeed well-defined, since by Equation 2.4, for
any M ∈ LRA(H)sa, JMJ∗ ∈ LLA(H)sa, and hence Rn(M) ∈ D0(A,H, J).

Now, let Eλ and Eρ be defined as in Lemma 4.2, and let E′λ = id−Eλ, E′ρ =
id−Eρ. Then, by construction of Eλ and Eρ and Equation 2.4, for any T ∈ L1A(H),

Eλ(JTJ∗) = JEρ(T )J∗, Eρ(JTJ∗) = JEλ(T )J∗.

Hence, in particular, for D ∈ D0(A,H, J), since JDJ∗ = ε′D,

D =
1
2
(E′λ + Eρ)(T ) +

1
2
(Eλ + E′ρ)(T )

=
1
2
(E′λ + Eρ)(T ) + ε′J

1
2
(E′λ + Eρ)(T )J∗

= Rn

(
1
2
(E′λ + Eρ)(T )

)
,

where 1
2 (E

′
λ + Eρ)(T ) ∈ LRA(H)sa.

Finally, that Rn interwtines the actions of ULR
A (H, J) follows from Proposi-

tion 4.4 together with the fact that elements of ULR
A (H, J), by definition, commute

with J , whilst the fact that Rn(M) = 0 if and only if M = −ε′JMJ∗ implies that
ker(Rn) ⊆ LLRA (H)sa. �
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It follows, in particular, that ker(Rn) is invariant under the action of ULR
A (H, J)

by conjugation, so that the action of ULR
A (H, J) on LRA(H)sa induces an action on

the quotient LRA(H)sa/ ker(Rn), and hence Rn induces an isomorphism
(4.21) D0(A,H, J) ∼= LRA(H)sa/ ker(Rn)
of ULR

A (H, J)-representations. Thus we have proved the following:
Corollary 4.16. Let (H, J) be a real A-bimodule of odd KO-dimension n mod

8. Then

(4.22) D(A,H, J) ∼= (LRA(H)sa/ ker(Rn)
)
/ULR

A (H, J).
Discussion of D(A,H, J) thus requires discussion first of ker(Rn):
Lemma 4.17. If K = (1nα ⊗Kαβ ⊗ 1nβ )α,β∈ bA ∈ LLRA (H)sa, then K ∈ ker(Rn)

if and only if for each α, β ∈ Â such that α �= β,

(4.23) Kβα = −ε′KTαβ,
and for each α ∈ Â,

(4.24) Kαα ∈ Rα(n) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Symmαα(R) if n = 1,
isp(mαα) if n = 3,
Mmαα/2(H)sa if n = 5,
iso(mαα) if n = 7.

Proof. By definition of Rn, K ∈ ker(Rn) if and only if K = −ε′JKJ∗ =
−εε′JKJ , and this in turn holds if and only if, for α, β ∈ Â such that α �= β,

Kαβ = −ε′KTβα,
while for α ∈ Â,

Kαα =

{
−ε′Kαα, if n = 1 or 7,
ε′IαKααI∗α if n = 3 or 5,

where Iα = Ωmαα ◦ complex conjugation. In the case that n = 3 or 5, however, by
construction, Mmαα/2(H), viewed in the usual way as a real form of Mmαα(C), is
precisely the set of matrices in Mmαα(C) commuting with Iα. This, together with
the hypothesis that K is self-adjoint, so that each Kαβ is self-adjoint, yields the
desired result. �

We can now describe the the construction of an arbitrary Dirac operator D on
(H, J):

(1) For α, β, γ ∈ Â such that α < γ, choose Mγ
αβ ∈Mnγmγβ×nαmαβ (C);

(2) For α, β ∈ Â, choose Mα
αβ ∈Mnαmαβ (C)sa;

(3) For α, β, γ, δ ∈ Â, set

(4.25) Mγδ
αβ =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Mγ
αβ ⊗ 1nβ if α < γ and β = δ,

(Mα
γβ)

∗ ⊗ 1nβ if α > γ and β = δ,
Mα
αβ ⊗ 1nβ if (α, β) = (γ, δ),

0 otherwise.

(4) Finally, set D = Rn(M).
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Now, let K = (1nα ⊗ Kαβ ⊗ 1nβ )α,β∈ bA ∈ ker(Rn), so that each Kαβ is self-

adjoint, and for α, β ∈ Â such that α �= β, Kβα = −ε′KTαβ and Kαα ∈ Rα(n).
Thus, K is uniquely specified by the matrices Kαβ ∈Mmαβ (C)sa for α < β and by
the Kαα ∈ Rα(n). Then, we can replace M by M +K, i.e. make the replacements,
for α, β ∈ Â such that α < β,

Mα
αβ �→Mααβ + 1nα ⊗Kαβ , Mββα �→Mββα + 1nβ ⊗ (−ε′KTαβ),

Mα
αα �→Mααα + 1nα ⊗Kαα

and obtain the same Dirac operator D. However, this is a freedom cannot generally
be removed as we did in earlier cases, as it reflects precisely the non-injectivity of
Rn.

By the above discussion and Propositions 3.19 and 3.23, we can identify the
space D0(A,H, J) with

(4.26) D0(A,m, n) :=
∏

α∈ bA

[
Mnαmαα(C)sa/(1nα ⊗Rα(n))

×
∏

β∈ bA
β>α

(Mnαmαβ (C)sa ⊕Mnβmαβ (C)sa)/Mmαβ(C)sa ×
∏

β,γ∈ bA
γ>α

Mnγmγβ×nαmαβ (C)
]
,

where Mmαβ (C)sa is viewed as embedded in Mnαmαβ (C)sa ⊕Mnβmαβ (C)sa via the
map

K �→ (1nα ⊗K)⊕ (−ε′1nβ ⊗KT ),

and ULR
A (H, J) with

(4.27) U(A,m, n) :=
∏

α∈ bA

(
Uα(n)×

∏

β∈ bA
β>α

U(mαβ)
)
,

where

Uα(n) :=
{
O(mαα) if n = 1 or 7,
Sp(mαα) if n = 3 or 5.

Then the action of ULR
A (H; J) on D0(A,H; J) corresponds under these identifica-

tions to the action of U(A,m, n) on D0(A,m, n) defined by having the element
(Uαα;Uαβ) ∈ U(A,m, n) act on

(
[Mααα]; [(M

α
αβ,M

β
βα)];M

γ
αβ

) ∈ D0(A,m, n) by

[Mααα] �→
[
(1nα ⊗ Uαα)Mαα(1nα ⊗ U∗αα)

]
;

[(Mααβ ,M
β
βα)] �→

[(
(1nα ⊗ Uαβ)Mααβ(1nα ⊗ U∗αβ), (1nβ ⊗ Uαβ)M

β
βα(1nβ ⊗ UTαβ)

)]
;

Mγαβ �→

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

(1nγ ⊗ Uγβ)M
γ
αβ(1nα ⊗ U∗αβ) if α < β, γ < δ,

(1nγ ⊗ Uγβ)M
γ
αβ(1nα ⊗ UTβα) if α > β, γ < δ,

(1nγ ⊗ Uβγ)M
γ
αβ(1nα ⊗ U∗αβ) if α < β, γ > δ,

(1nγ ⊗ Uβγ)M
γ
αβ(1nα ⊗ UTβα) if α > β, γ > δ.

We have therefore proved the following:



46 BRANIMIR ĆAĆIĆ

Proposition 4.18. Let (H, J) be a real A-bimodule of odd KO-dimension
n mod 8 with multiplicity matrix m. Then

(4.28) D(A,H, J) ∼= D0(A,m, n)/U(A,m, n).

4.5. Real spectral triples of even KO-dimension. We now turn to real
spectral triples of even KO-dimension. Because of the considerable qualitative
differences between the two cases, we consider separately the case of KO-dimension
0 or 4 mod 8 and KO-dimension 2 or 6 mod 8.

In what follows, (H, γ, J) is a fixed real A-bimodule of even KO-dimension
n mod 8 with multiplicity matrices (meven,modd); we denote by L1A(Heven,Hodd;J)
the subspace of L1A(Heven,Hodd) consisting of δ such that

(
0 Δ∗

Δ 0

)
∈ D0(A,H; γ, J).

It then follows that

(4.29) D0(A,H, γ, J) ∼= L1A(Heven,Hodd; J)

via the map D �→ P oddDP even.
4.5.1. KO-dimension 0 or 4 mod 8. Let us first consider the case where n = 0

or 4 mod 8, i.e. where ε′ = 1. Then J = Jeven ⊕ Jodd for anti-unitaries Jeven and
Jodd on Heven and Hodd, respectively, such that (Heven, Jeven) and (Hodd, Jodd) are
real A-bimodules of KO-dimension n′ mod 8, where n′ = 1 or 7 if n = 0, 3 or 5 if
n = 4. In light of Corollary 3.25, one can readily check the following analogue of
Proposition 4.10:

Proposition 4.19. The map

D(A,H, γ, J)→ ULR
A (Hodd, Jodd)\L1A(Heven,Hodd; J)/ULR

A (Heven, Jeven)

defined by [D] �→ [P oddDP even] is a homeomorphism.

Here, as before, ULR
A (Hodd, Jodd) acts by multiplication on the left, whilst the

group ULR
A (Heven, Jeven) acts by multiplication on the right by the inverse.

We now prove the relevant analogue of Proposition 4.15:

Proposition 4.20. The map Rn : LRA(Heven,Hodd)→ L1A(Heven,Hodd, J) de-
fined by Rn(M) := M + JoddM(Jeven)∗ is a surjection interwining the actions of
ULR
A (Hodd, Jodd) by multiplication on the left and of ULR

A (Heven, Jeven) by multipli-
cation on the right by the inverse on LRA(Heven,Hodd) and L1A(A,Heven,Hodd, J),
and ker(Rn) ⊆ LLRA (Heven,Hodd).

Proof. First note that

L1A(Heven,Hodd, J) = {Δ ∈ L1A(Heven,Hodd) | Δ = JoddΔ(Jeven)∗},
so thatRn is indeed well-defined by construction. Moreover, since ULR

A (Heven, Jeven)
and ULR

A (Hodd, Jodd) commute by definition with J even and Jodd, respectively, it
then follows by construction of Rn that Rn does indeed have the desired intertwin-
ing properties.

Next, for M ∈ LRA(Heven,Hodd), we have that Rn(M) = 0 if and only if
M = −JoddM(Jeven)∗, but M is right A-linear if and only if JoddM(Jeven)∗ =
εJoddMJeven is left A-linear, so that M ∈ LLRA (Heven,Hodd) as claimed.
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Finally, it is easy to check, just as in the proof of Proposition 4.15, that for
Δ ∈ L1A(Heven,Hodd, J),

Δ = Rn

(
1
2
(E′λ + Eρ)(Δ)

)
,

where 1
2 (E

′
λ + Eρ)(Δ) ∈ LRA(Heven,Hodd). �

Again, just as in the case of odd KO-dimension, this last result not only implies
that the actions of ULR

A (Heven, Jeven) and ULR
A (Hodd, Jodd) on LRA(Heven,Hodd) de-

scend to actions on LRA(Heven,Hodd)/ ker(Rn), but that Rn descends to an isomor-
phism LRA(Heven,Hodd)/ ker(Rn) ∼= L1A(Heven,Hodd; J) intertwining the actions of
ULR
A (Heven, Jeven) and ULR

A (Hodd, Jodd), thereby yielding the following

Corollary 4.21. Let (H, γ, J) be a real A-bimodule of KO-dimension n mod 8
for n = 0 or 4. Then
(4.30)
D(A,H, γ, J) ∼= ULR

A (Hodd, Jodd)\ (LRA(Heven,Hodd)/ ker(Rn)
)
/ULR

A (Heven, Jeven)

Mutatis mutandis, the proof of Lemma 4.17 yields the following characterisation
of ker(Rn):

Lemma 4.22. If K = (1nα ⊗Kαβ ⊗ 1nβ )α,β∈ bA ∈ LLRA (Heven,Hodd), then K ∈
ker(Rn) if and only if for each α, β ∈ Â such that α �= β,

(4.31) Kβα = −Kαβ ,
and for each α ∈ Â,

(4.32) Kαα ∈ Rα(n) =
{
iMmodd

αα ×meven
αα

(R) if n = 0,
iMmodd

αα /2×meven
αα /2

(H) if n = 4.

Note that such a map K ∈ LLRA (Heven,Hodd) is therefore entirely specified by
the Kαβ ∈Mmodd

αβ ×meven
αβ

(C) for α < β and by the Kαα ∈ Rα(n).
Let us now describe the construction of an arbitrary Dirac operator D on the

real A-bimodule (H, γ, J) of KO-dimension n = 0 or 4 mod 8:

(1) For α, β, γ ∈ Â, choose Mγ
αβ ∈Mnγmodd

γβ ×nαmeven
αβ

(C);

(2) Construct M ∈ LRA(Heven,Hodd) by setting for α, β, γ, δ ∈ Â,

(4.33) Mγδαβ =

{
Mγαβ ⊗ 1nβ if β = δ,
0 otherwise;

(3) Finally, set

(4.34) D =
(

0 Rn(M)∗

Rn(M) 0

)
.

Just as before, if Rn is non-injective, we can make the substitution M �→
M +K for any K ∈ ker(Rn) and obtain the same Dirac operator D; at the level of
components, we have for α, β ∈ Â such that α < β,

Mα
αβ �→Mααβ + 1nα ⊗Kαβ, Mββα �→Mββα + 1nα ⊗ (−Kαβ)

Mααα �→Mααα + 1nα ⊗Kαα.

With these observations in hand, we can revisit the moduli space D(A,H, γ, J).
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By the discussion above and Corollaries 3.19 and 3.23, we can identify the space
D0(A,H, γ, J) with

(4.35) D0(A,meven,modd, n) :=
∏

α∈ bA

[
Mnαmodd

αα ×nαmeven
αα

(C)/(1nα ⊗Rα(n))

×
∏

β∈ bA
β>α

(Mnαmodd
αβ ×nαmeven

αβ
(C)⊕Mnβmodd

αβ ×nβmeven
αβ

(C))/Mmodd
αβ ×meven

αβ
(C)

×
∏

β,γ∈ bA
γ �=α

Mnγmodd
γβ ×nαmeven

αβ
(C)

]
,

where Mmodd
αβ ×meven

αβ
(C) is viewed as embedded in the space

Mnαmodd
αβ ×nαmeven

αβ
(C)⊕Mnβmodd

αβ ×nβmeven
αβ

(C)

via the mapK �→ (1nα⊗K)⊕(−1nβ⊗K), and identify the groups ULR
A (Heven;Jeven)

and ULR
A (Hodd; Jodd) with U(A,meven, n′) and U(A,modd, n′), respectively. Then

the actions of ULR
A (Heven; Jeven) and ULR

A (Hodd; Jodd) on L1A(Heven,Hodd; J) cor-
responds under these identifications to the actions of the groups U(A,meven, n′)
and U(A,modd, n′), respectively, on D0(A,meven,modd, n) defined by having

(Uodd
αα ;U

odd
αβ ) ∈ U(A,modd;n′), (Ueven

αα ;Uodd
αβ ) ∈ U(A,meven;n′)

act on
(
[Mααα]; [(M

α
αβ ,M

β
βα)];M

γ
αβ

) ∈ D0(A,m, n) by

[Mααα] �→
[
(1nα ⊗ Uodd

αα )Mαα
]
;

[(Mααβ ,M
β
βα)] �→

[(
(1nα ⊗ Uodd

αβ )M
α
αβ , (1nβ ⊗ Uodd

αβ )M
β
βα

)]
;

Mγ
αβ �→

{
(1nγ ⊗ Uodd

γβ )M
γ
αβ if γ < δ,

(1nγ ⊗ Uodd
βγ )M

γ
αβ if γ > δ;

and

[Mα
αα] �→

[
Mαα(1nα ⊗ (U even

αα )∗)
]
;

[(Mααβ,M
β
βα)] �→

[(
Mααβ(1nα ⊗ (Ueven

αβ )∗),Mβ
βα(1nβ ⊗ (U even

αβ )T )
)]
;

Mγαβ �→
{
Mγαβ(1nα ⊗ (Ueven

αβ )∗) if α < β,
Mγαβ(1nα ⊗ (Ueven

βα )T ) if α > β;

respectively. We have therefore proved the following:

Proposition 4.23. Let (H, γ, J) be a real A-bimodule of even KO-dimension
n mod 8 for n = 0 or 4, with multiplicity matrices (meven,modd). Then

(4.36) D(A,H, γ, J) ∼= U(A,modd, n′)\D0(A,meven,modd, n)/U(A,meven, n′).

It is worth noting that considerable simplifications are obtained in the quasi-
orientable case, as all components of the form Mα

αβ ⊗ 1nβ of M ∈ LRA(Heven,Hodd)
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must necessarily vanish, as must ker(Rn) itself. In particular, then, one is left with

D0(A,meven,modd, n) =
∏

α,β,γ∈ bA
Mnγmodd

γβ ×nαmeven
αβ

(C).

4.5.2. KO-dimension 2 or 6 mod 8. Let us now consider the case where n = 2
or n = 6 mod 8, i.e. where ε′ = −1. Then

J =
(
0 εJ̃∗

J̃ 0

)

for J̃ : Heven → Hodd anti-unitary, andmodd = (meven)T . In light of Corollary 3.29,
one can easily establish, along the lines of Propositions 4.10 and 4.20, the following
result:

Proposition 4.24. Let ULR
A (Heven) act on L1A(Heven,Hodd; J) by

(U,Δ) �→ J̃UJ̃∗ΔU∗

for U ∈ ULR
A (Heven) and Δ ∈ L1A(Heven,Hodd; J). Then the map

D(A,H, γ, J)→ L1A(Heven,Hodd; J)/ULR
A (Heven)

defined by [D] �→ [P oddDP even] is a homeomorphism.

In the same way, we can define an action of ULR
A (Heven) on LRA(Heven,Hodd).

We now give the relevant analogue of Propositions 4.15 and 4.20:

Proposition 4.25. The map Rn : LRA(Heven,Hodd) → L1A(Heven,Hodd; J)
defined by Rn(M) := M + εJ̃M∗J̃ is a surjection intertwining the actions of the
group ULR

A (Heven) on LRA(Heven,Hodd) and L1A(Heven,Hodd; J), and ker(Rn) ⊂
LLRA (Heven,Hodd).

Proof. First note that

L1A(Heven,Hodd; J) = {Δ ∈ L1A(Heven,Hodd) | Δ = εJ̃Δ∗J̃},
as can be checked by direct calculation, so that Rn is indeed well-defined. It also
readily follows by construction of Rn and the definition of the actions of ULR

A (Heven)
that Rn has the desired intertwining properties.

Now, for M ∈ LRA(Heven,Hodd), one has that Rn(M) = 0 if and only if M =
−εJ̃M∗J̃ , but J̃M∗J̃ is manifestly left A-linear, so thatM ∈ LLRA (Heven,Hodd), as
claimed.

Finally, just as in the proof of Propositions 4.15 and 4.20, one can easily check
that for Δ ∈ L1A(Heven,Hodd; J),

Δ = Rn
(1
2
(E′λ + Eρ)(Δ)

)
,

where 1
2 (E

′
λ + Eρ)(Δ) is right A-linear. �

Just as in the earlier cases, the action of ULR
A (Heven) on LRA(Heven,Hodd) de-

scends to an action on the quotient LRA(Heven,Hodd)/ ker(Rn), so that Rn descends
to an ULR

A (Heven,Hodd)-isomorphism

(4.37) LRA(Heven,Hodd)/ ker(Rn) ∼= L1A(Heven,Hodd; J),

thereby yielding the following:
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Corollary 4.26. Let (H, γ, J) be a real A-bimodule of KO-dimension n mod 8
for n = 2 or 6. Then

(4.38) D(A,H, γ, J) ∼= (LRA(Heven,Hodd)/ ker(Rn))/ULR
A (Heven).

Again, mutatis mutandis, the proof of Lemma 4.17 yields the following charac-
terisation of ker(Rn):

Lemma 4.27. If K = (1nα ⊗Kαβ ⊗ 1nβ )α,β∈ bA ∈ LLRA (Heven,Hodd), then K ∈
ker(Rn) if and only if for each α, β ∈ Â such that α �= β,

(4.39) Kβα = −εKTαβ,
and for each α ∈ Â,

(4.40) Kαα ∈ Rα(n) =
{
Symmeven

αα
(C) if n = 2,

so(meven
αα ,C) if n = 6.

Thus, such a map K ∈ ker(Rn) is entirely specified by the components Kαβ ∈
Mmeven

βα ×meven
αβ

(C) for α < β and by the Kαα ∈ Rα(n).
Note that the discussion of the construction of Dirac operators and of the

freedom in the construction provided by ker(Rn) in the case of KO-dimension 0 or
4 mod 8 holds also in this case. Thus we can identify D(A,H, γ, J) with

(4.41) D0(A,meven, n) :=
∏

α∈ bA

[
Mnαmeven

αα
(C)/

(
1nα ⊗Rα(n)

)

×
∏

β∈ bA
β>α

(
Mnαmeven

βα ×nαmeven
αβ

(C)⊕Mnβmeven
αβ ×nβmeven

βα
(C)

)
/Mmeven

βα ×meven
αβ

(C)

×
∏

β,γ∈ bA
γ �=α

Mnγmeven
βγ ×nαmeven

αβ
(C)

]
,

where Mmeven
βα ×meven

αβ
(C) is viewed as embedded in the space

Mnαmeven
βα ×nαmeven

αβ
(C)⊕Mnβmeven

αβ ×nβmeven
βα

(C)

via the map K �→ (1nα ⊗ K) ⊕ (−ε1nβ ⊗ KT ), and identify ULR
A (Heven) with

U(A,meven). Then the action of ULR
A (Heven) on L1A(Heven,Hodd;J) corresponds un-

der these identifications with the action of U(A,meven) on D0(A,meven, n) defined
by having (Uαβ) ∈ U(A,meven) act on

(
[Mααα]; [(M

α
αβ ,M

β
βα)];M

γ
αβ

) ∈ D0(A,m, n)
by

[Mααα] �→
[
(1nα ⊗ Uαα)Mααα(1nα ⊗ U∗αα)

]
;

[
(Mααβ ,M

β
βα)

] �→
[(
(1nα ⊗ Uβα)Mααβ(1nα ⊗ U∗αβ), (1nβ ⊗ Uαβ)Mα

βα(1nβ ⊗ U∗βα)
)]
;

Mγαβ �→ (1nγ ⊗ Uβγ)M
γ
αβ(1nα ⊗ U∗αβ).

This, then, proves the following:

Proposition 4.28. Let (H, γ, J) be a real A-bimdoule of even KO-dimension
n mod 8 for n = 2 or 6, with multiplicity matrices (meven, (meven)T ). Then

(4.42) D(A,H, γ, J) ∼= D0(A,meven, n)/U(A,meven).
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Again, considerable simplifications are obtained in the quasi-orientable case,
just as for KO-dimension 0 or 4 mod 8.

4.6. Dirac operators in the Chamseddine–Connes–Marcolli model.
Let us now apply the above results on Dirac operators and moduli spaces thereof
to the bimodules appearing in the Chamseddine–Connes–Marcolli model.

We begin with (HF , γF , JF , εF ) as an S0-real ALR-bimodule of KO-dimension
6 mod 8, which, as we shall now see, is essentially S0-real in structure:

Proposition 4.29. For the S0-real ALR-bimodule (HF , γF , JF , εF ) of KO-
dimension 6 mod 8,

D0(ALR,HF , γF , JF ) = D0(ALR,HF , γF , JF , εF ),
and

ULR
ALR(H, γF , JF ) = ULR

ALR(H, γF , JF , εF ),
so that

D(ALR,HF , γF , JF ) = D(ALR,HF , γF , JF , εF ).
Proof. To prove the first part of the claim, by Proposition 4.25, it suffices

to show that any right ALR-linear operator Heven
F → Hodd

F commutes with εF .
Thus, let T ∈ LRALR(Heven

F ,Hodd
F ). Then, since the signed multiplicity matrix μ of

(HF , γF ) as an orientable even ALR-bimodule is given by

μ = N

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 −1 +1 0 0
0 0 0 0 0 0
+1 0 0 0 +1 0
−1 0 0 0 −1 0
0 0 −1 +1 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

,

it follows from Proposition 3.4 that the only non-zero components of T are T 2L1
2R1

and T 2L3
2R3

, which both have domain and range within Hf = (HF )i, where ε acts as
the identity. Thus, T commutes with εF .

To prove the next part of the claim, it suffices to show that any left and right
ALR-linear operator on HF commutes with εF . But again, if K ∈ LLRALR(HF ), then
the only non-zero components of K are of the form Kαβαβ , each of which therefore
has both domain and range either within Hf or Hf = JFHf , so that K commutes
with εF . The last part of the claim is then an immediate consequence of the first
two parts. �

Thus, by Proposition 2.18, we have that

(4.43) D0(ALR,HF , γF , JF ) = D0(ALR,HF , γF , JF , εF ) ∼= D0(ALR,Hf , γf )
and

(4.44) D(ALR,HF , γF , JF ) = D(ALR,HF , γF , JF , εF ) ∼= D(ALR,Hf , γf ),
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where (Hf , γf ) = ((HF )i, (γF )i) is the orientable even ALR-bimodule with signed
multiplicity matrix

μf = N

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 0 0 0 0
+1 0 0 0 +1 0
−1 0 0 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In particular, then, (HF , γF , JF ) as a real ALR-bimodule admits no off-diagonal
Dirac operators, that is, Dirac operators with non-zero P−iDPi : Hf → Hf , or
equivalently, that have non-vanishing commutator with εF . Let us now exam-
ine D0(ALR,HF , γF , JF ) and D(ALR,HF , γF , JF ), or rather, D0(ALR,Hf , γf ) and
D(ALR,Hf , γf ), in more detail.

First, it follows from the form of μf and Proposition 3.4 that LLALR(Heven
f ,Hodd

f )
vanishes, whilst

LRALR(Heven
f ,Hodd

f ) =M2N (C)⊕ (M2N (C)⊗ 13) ∼=M2N (C)⊕M2N (C).

so that any Dirac operator on Hf (and hence on HF ) is completely specified by
a choice of M2R

2L1
, M2R

2L3
∈ M2N (C). Indeed, if (meven,modd) denotes the pair of

multiplicity matrices of (Hf , γf ), then, in the notation of subsection 4.5.2,
D0(ALR,meven, 6) =M2N (C)⊕M2N (C).

At the same time,

ULR
ALR(Heven

f ) = (12⊗U(N))⊕ (12⊗U(N)⊗13) ∼= U(N)×U(N) =: U(ALR,meven)

and

ULR
ALR(Hodd

f ) = (12⊗U(N))⊕ (12⊗U(N)⊗ 13) ∼= U(N)×U(N) =: U(ALR,modd).

It then follows that

D(ALR,Hf , γf ) ∼= U(ALR,modd)\D0(ALR,meven, 6)/U(ALR,meven)(4.45)

=
(
U(N)\M2N (C)/U(N)

)2
,(4.46)

where U(N) acts on the left by multiplication and on the right by multiplication
by the inverse as 12 ⊗ U(N). The two factors of the form U(N)\M2N (C)/U(N)
can thus be viewed as the parameter spaces of the components M2R

2L1
and M2R

2L3
,

respectively.
Let us now consider (HF , γF , JF , εF ) as an S0-real AF -bimodule, so that the

multiplicity matrices (meven,modd) of (HF , γF ) are given by

meven = N

⎛
⎜⎜⎜⎜⎝

1 1 0 0 0
0 0 0 0 0
1 0 0 1 0
1 1 0 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠

, modd = N

⎛
⎜⎜⎜⎜⎝

1 0 1 1 0
1 0 0 1 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0

⎞
⎟⎟⎟⎟⎠
= (meven)T .

Now it follows from the form of (meven,modd) that

LRAF (Heven
F ,Hodd

F ) =MN (C)⊕2 ⊕MN×2N (C)⊕2 ⊕MN×3N (C)⊕2

⊕ (MN×2N (C)⊗ 13)⊕2,
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whilst
ker(R6) = sl(N,C) ⊆MN (C)

for the copy of MN (C) corresponding to LRA((Heven
F )11, (Hodd

F )11). Since MN (C) =
SymN (C)⊕ sl(N,C), MN (C)/sl(N,C) can be identified with SymN (C), so that

D0(AF ,HF , γF , JF )
∼=LRAF (Heven

F ,Hodd
F )/ ker(R6)

=SymN (C)⊕MN (C)⊕MN×2N (C)⊕2 ⊕MN×3N (C)⊕2 ⊕ (MN×2N (C)⊗ 13)⊕2.
Thus, a Dirac operator D, which is specified by a choice of class

[M ] ∈ LRAF (Heven
F ,Hodd

F )/ ker(R6),

is therefore specified in turn by the choice of the following matrices:
• M1

11 ∈ SymN (C), M1
11 ∈MN (C);

• M1
21, M

1
21 ∈MN×2N (C);

• M1
31, M

1
31 ∈MN×3N (C);

• M1
23, M

1
23 ∈MN×2N (C).

Indeed, it follows that

(4.47) D0(AF ,meven, 6) = SymN (C)⊕MN (C)⊕MN×2N (C)⊕2 ⊕MN×3N (C)⊕2

⊕MN×2N (C)⊕2.

Next, we have that U(AF ,meven) = U(N)6, with a copy of U(N) corresponding
to each of (Heven

F )11, (Heven
F )11, (Heven

F )21, (Heven
F )23, (Heven

F )31, and (Heven
F )31.

Then, by Proposition 4.28,

(4.48) D(AF ,HF , γF , JF ) ∼= D0(AF ,meven, 6)/U(AF ,meven)

for the action of U(AF ,meven) on D0(AF ,meven, 6) given by having the element
(Uαβ) ∈ U(AF ,meven) act on (Mγαβ) ∈ D0(AF ,meven, 6) by

Mγαβ �→ (1nγ ⊗ Uβγ)M
γ
αβ(1nα ⊗ U∗αβ).

Note that in the notation of [8, §§13.4, 13.5], for (Mγαβ) ∈ D0(AF ,meven, 6),

M1
11 =

1
2
ΥR,

so that the so-called Majorana mass term is already present in its final form, whilst
for U ∈ U(AF ,meven),

U = (U11, U11, U21, U23, U31, U31) = (V2, V1, V3,W3,W2,W1).

Finally, let us compute the sub-moduli space D(AF ,HF , γF , JF ;CF ) for
CF = {(ζ,diag(ζ, ζ), 0) ∈ AF | λ ∈ C} ∼= C.

It is easy to see that [M ] ∈ LRAF (Heven
F ,Hodd

F )/ ker(R6) yields an element of the
subspace D0(AF ,HF , γF , JF ;CF ) if and only if M commutes with λ(CF ), but this
holds if and only if for all ζ ∈ C and β ∈ ÂF ,

ζM1
1β =M1

1βζ, ζM1
1β =M1

1βζ,

ζM1
2β =M1

2β(diag(ζ, ζ)⊗ 1N ), ζM1
2β =M1

2β(diag(ζ, ζ)⊗ 1N ),
0M1

3β =M1
3βζ, 0M1

3β =M1
3βζ,
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which is in turn equivalent to having M1
11, M

1
31 and M1

31 all vanish, and

M1
21 =

(
Υν 0

)
, M1

21 =
(
0 Υe

)
, M1

23 =
(
Υu 0

)
, M1

23 =
(
0 Υd

)
,

for Υν , Υe, Υu, Υd ∈ MN (C). One can check that our notation is consistent with
that of [8, §§13.4, 13.5]. Indeed, if D0(AF ,meven, 6;CF ) denotes the subspace of
D0(AF ,meven, 6) corresponding to D0(AF ,HF , γF , JF ;CF ), then
(4.49) D(AF ,HF , γF , JF ;CF ) ∼= D0(AF ,meven, 6;CF )/U(AF ,meven) ∼= Cq × Cl
for

(4.50) Cq :=
(
U(N)×U(N))\(MN (C)×MN (C)

)
/U(N),

where U(N) acts diagonally by multiplication on the right, and

Cl :=
(
U(N)×U(N))\(MN (C)×MN (C)× SymN (C)

)
/U(N),

where U(N)×U(N) acts trivially on SymN (C) and U(N) acts on SymN (C) by
(V2,ΥR) �→ V2ΥRV T2 ;

note that Cq is the parameter space for the matrices (Υu,Υd), whilst Cl is the
parameter space for the matrices (Υν ,Υe,ΥR). Thus we have recovered the sub-
moduli space of Dirac operators considered by Chamseddine–Connes–Marcolli [4,
§§2.6, 2.7] (cf. also [8, §§13.4, 13.5]).

5. Applications to the Recent Work of Chamseddine and Connes

In this section, we reformulate the results of Chamseddine and Connes in [2,3]
and give new proofs thereof using the theory of bimodules and bilateral triples
developed above.

Before continuing, recall that, up to automorphisms, the only real forms of
Mn(C) are Mn(C), Mn(R), and, if n is even, Mn/2(H).

5.1. Admissible real bimodules. We begin by studying what Chamsed-
dine and Connes call irreducible triplets, namely, real A-bimodules satisfying cer-
tain representation-theoretic conditions, along the lines of [3, §2]. However, we
shall progress by adding Chamseddine and Connes’s various requirements for irre-
ducible triplets one by one, bringing us gradually to their classification of irreducible
triplets.

In what follows, A will once more denote a fixed real C∗-algebra, and for
(H, J) a real A-bimodule of odd KO-dimension, LLRA (H; J) will denote the real
∗-subalgebra of LLRA (H) consisting of elements commuting with J .

Let us now introduce the first explict requirement for irreducible triplets.

Definition 5.1. Let (H, J) be a real A-bimodule of odd KO-dimension. We
shall say that (H, J) is irreducible if 0 and 1 are the only projections in LLRA (H; J).

To proceed, we shall need the following:

Lemma 5.2. Let (H, J) be a real A-bimodule of odd KO-dimension n mod 8
with multiplicity matrix m. Then
(5.1)

LLRA (H; J) ∼=

⎧
⎪⎪⎨
⎪⎪⎩

(⊕
α∈ bAMmαα(R)

)
⊕⊕

α,β∈ bA
α<β

Mmαβ (C), if n = 1 or 7 mod 8,
(⊕

α∈ bAMmαα/2(H)
)
⊕⊕

α,β∈ bA
α<β

Mmαβ (C), if n = 3 or 5 mod 8.
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Proof. Let T = (1nα ⊗ Tαβ ⊗ 1nβ ) ∈ LLRA (H). Just as for Propositions 3.19
and 3.23, one can show that [T, J ] = 0 if and only if for all α, β ∈ Â, Tβα = Tαβ if
α �= β and

Tαα ∈
{
Mmαα(R), if n = 1 or 7 mod 8,
Mmαα/2(H), if n = 3 or 5 mod 8.

Thus, T ∈ LLRA (H; J) is completely specified by the matrices Tαα and Tαβ for
α > β, giving rise to the isomorphisms of the claim. �

We can now formulate the part of the results of [3, §2] that depends only on
this notion of irreducibility.

Proposition 5.3. Let (H, J) be a real A-bimodule of oddKO-dimension n mod
8 with multiplicity matrix m. Then (H, J) is irreducible if and only if one of the
following holds:

(1) There exists α ∈ Â such that m = 2(1−ε)/2Eαα;
(2) There exist α, β ∈ Â, α �= β, such that m = Eαβ + Eβα.

Proof. By definition, (H, J) is irreducible if and only if the only projections
in the real C∗-algebra LLRA (H, J) are 0 and 1, but by Lemma 5.2, this in turn holds
if and only if one of the following holds:

(1) LLRA (H; J) ∼= R, so that n = 1 or 7 mod 8, and m = Eαα for some α ∈ Â,
(2) LLRA (H; J) ∼= H, so that n = 3 or 5 mod 8, and m = 2Eαα for some α ∈ Â,
(3) LLRA (H; J) ∼= C, so that m = Eαβ + Eβα for some α, β ∈ Â, α �= β,

which yields in turn the desired result. �

We shall call an irreducible odd KO-dimensional real A-bimodule (H, J) type
A if the first case holds, and type B if the second case holds; Chamseddine and
Connes’s first and second case for irreducible triplets [3, Lemma 2.2] correspond to
the type A and type B case, respectively. We shall also find it convenient to define
the skeleton skel(H, J) of such a bimodule as follows:

(1) if (H, J) is type A, then skel(H, J) := {α}, where α ∈ Â is such that
mult[H] = 2

1−ε
2 Eαα;

(2) if (H, J) is type B, then skel(H, J) := {α, β}, where α, β ∈ Â, α �= β, are
such that mult[H] = Eαβ + Eβα.

Let us now introduce the second explicit requirement for irreducible triplets.

Definition 5.4. An A-bimodule H is (left) separating if there exists some
ξ ∈ H such that λ(A)′ξ = H. Such a vector ξ is then called a separating vector for
A.

Recall that for a representation X of a complex C∗-algebra C, ξ ∈ X is a
separating vector if and only if the map C → X given by c �→ cξ is injective.

Lemma 5.5. Let p, q ∈ N. There exists a separating vector ξ for the usual
action of Mp(C) on Cp ⊗ Cq as Mp(C)⊗ 1q if and only if p ≤ q.

Proof. Let {ei}pi=1 be a basis for C
p, and let {fj}qj=1 be a basis for C

q.
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First suppose that p ≤ q. Let ξ ∈ Cp ⊗Cq be given by ξ =
∑p
i=1 ei ⊗ fi. Then

for any a, b ∈Mp(C),

(a⊗ 1q) ξ − (b⊗ 1q) ξ =
p∑
i=1

(
p∑
l=1

(ali − bli)el

)
⊗ fi

so that by linear independence of the ei and fj , the left-hand side vanishes if and
only if for each i and l, ali − bli = 0, i.e. a = b. Hence, ξ is indeed a separating
vector.

Now suppose that p > q. Then dimCMp(C) − dimC Cp ⊗ Cq = p(p − q) > 0,
so that for any ξ ∈ Cp ⊗ Cq, the map Mp(C) �→ Cp ⊗ Cq given by a �→ (a⊗ 1q) ξ
cannot possibly be injective, and hence ξ cannot possibly be separating. �

We can now reformulate that part of the results in [3, §2] that depends only on
irreducibility and the existence of a separating vector.

Proposition 5.6. Let (H, J) be an irreducible real A-bimodule of odd KO-
dimension n mod 8.

(1) If (H, J) is type A, then it is separating;
(2) If (H, J) is type B with skeleton (α, β), then (H, J) is separating if and

only if nα = nβ.

Proof. First suppose that (H, J) is type A. Let {α} = skel(H, J), and let
mn = 2(1−ε)/2. Then H = Cnα ⊗ Cmn ⊗ Cnα = Cnα ⊗ Cmnnα , and the left action
λ of A on H is thus given by λα ⊗ 1mnnα . Now

λ(A)′ = (λα(A)⊗ 1mnnα)′ = (Mnα(C)⊗ 1mnnα)′ ,
so that the action λ of A admits a separating vector if and only if the action of
Mnα(C) as Mnα(C)⊗ 1mnnα admits a separating vector, but by Lemma 5.5 this is
indeed the case, as nα ≤ mnnα.

Now, suppose that (H, J) is type B. Let {α, β} = skel(H, J). Then
H = (Cnα ⊗ Cnβ )⊕ (Cnβ ⊗ Cnα),

and the left action λ of A on H is given by λ = (λα ⊗ 1nβ ) ⊕ (λβ ⊗ 1nα). Since
α �= β,

λ(A)′ = (
(λα(A)⊗ 1nβ )⊕ (λβ(A)⊗ 1nα)

)′

=
(
(Mnα(C)⊗ 1nβ )⊕ (Mnβ (C)⊗ 1nα)

)′
,

so that the action λ of A admits a separating vector if and only if the action of
Mnα(C)⊕Mnβ (C) as (Mnα(C)⊗1nβ )⊕(Mnβ (C)⊗1nα) admits a separating vector.
Since dimCMnα(C)⊕Mnβ (C)−dimCH = (nα−nβ)2, if nα �= nβ then no injective
linear maps Mnα(C) ⊕Mnβ (C) → H can exist, and in particular, there exist no
separating vectors for the action of Mnα(C) ⊕Mnβ (C), and hence for λ. Suppose
instead that nα = nβ = n. Then

H = (Cn ⊗ Cn)⊕ (Cn ⊗ Cn)
so that, since α �= β, λ(A)′ = (Mn(C) ⊗ 1n)′ ⊕ (Mn(C) ⊗ 1n)′. Thus, if ξ is
the separating vector for the action of Mn(C) on Cn ⊗ Cn given by the proof of
Lemma 5.5, then ξ ⊕ ξ is also a separating vector for the action λ of A, and hence
(H, J) is indeed separating. �
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Let us now introduce the final requirement for irreducible triplets; recall that
the complex form of a real C∗-algebra A a real C∗-algebra is denoted by AC.

Definition 5.7. We shall call an A-bimodule H complex-linear if both left and
right actions of A on H extend to C-linear actions of AC, making H into a complex
AC-bimodule.

It follows immediately that a A-bimodule H is complex-linear if and only if
for m = mult[H], mαβ = 0 whenever α or β is conjugate-linear. In particular, by
Proposition 3.13, it follows that a complex-linear quasi-orientable graded bimodule
is always orientable.

We can now reformulate Chamseddine and Connes’s definition for irreducible
triplets:

Definition 5.8. An irreducible triplet is a triplet (A,H, J), where A is a finite-
dimensional real C∗-algebra and (H, J) is a complex-linear, separating, irreducible
realA-bimodule of oddKO-dimension such that the left action ofA onH is faithful.

Note that for H a real A-bimodule, the left action of A is faithful if and only
if the right action is faithful.

By combining the above results, we immediately obtain Chamseddine and
Connes’s classification of irreducible triplets:

Proposition 5.9 (Chamseddine–Connes [3, Propositions 2.5, 2.8]). Let A be
a finite-dimensional real C∗-algebra, and let (H, J) be a real A-bimodule of odd
KO-dimension n mod 8. Then (A,H, J) is an irreducible triplet if and only if one
of the following cases holds:

(1) There exists n ∈ N such that A =Mk(K) for a real form Mk(K) of Mn(C),
and

(5.2) mult[H] = 2(1−ε)/2Enn;

(2) There exists n ∈ N such that A = Mk1(K1) ⊕ Mk2(K2) for real forms
Mk1(K1) and Mk2(K2) of Mn(C), and

(5.3) mult[H] = En1n2 + En2n1 .

5.2. Gradings. We now seek a classification of gradings inducing even KO-
dimensional real bimodules from irreducible triplets.

Definition 5.10. Let (A,H, J) be an irreducible triplet. We shall call a Z2-
grading γ on H as a Hilbert space compatible with (A,H, J) if and only if the
following conditions all hold:

(1) For every a ∈ A, γλ(a)γ ∈ λ(A);
(2) The operator γ either commutes or anticommutes with J .

Given a compatible grading γ for an irreducible triplet (A,H, J), one can view
(H, γ, J) as a real Aeven-bimodule of even KO-dimension, for Aeven = {a ∈ A |
[λ(a), γ] = 0}, with KO-dimension specified by the values of ε and ε′′ such that
J2 = ε, γJ = ε′′Jγ.

Now, recall that a Z2-grading on a real C∗-algebraA is simply an automorphism
Γ on A satisfying Γ2 = id; we call such a grading admissible if and only if Γ extends
to a C-linear grading on AC. Thus, if (A,H, J) is an irreducible triplet and γ is
a grading on H, then γ satisfies the first condition for compatibility if and only if
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there exists some admissible grading Γ on A such that Adγ ◦λ = λ ◦ Γ, where Adx
denotes conjugation by x.

Lemma 5.11. Let Mk(K) be a real form of Mn(C), and let α ∈ Aut(Mn(C)).
Then α is an admissible grading on Mk(K) if and only if there exists a self-adjoint
unitary γ in Mk(K) or iMk(K), such that α = Adγ.

Proof. Suppose that α is an admissible grading. Let K0 be C if K = C, and
R otherwise. Then Mk(K) is central simple over K0, so that there exists some
invertible element S of Mk(K) such that α = AdS . Since α respects the involution,
for any A ∈Mk(K) we must have

(S−1)∗A∗S∗ = (SAS−1)∗ = α(A)∗ = α(A∗) = SA∗S−1,

i.e. [A,S∗S] = 0, so that S∗S is a positive central element of Mk(K), and hence
S∗S = c1 for some c > 0. Thus, U = c−1/2S is a unitary element of Mk(K) such
that α = AdU . Now, recall that α2 = id, so that AdU2 = id, and hence U2 = ζ1 for
some ζ ∈ T ∩K0. If K = C, then one can simply set γ = λU for λ is a square root
of ζ. Otherwise, U2 = ±1, so that if U2 = 1, set γ = U ∈Mk(K), and if U2 = −1,
set γ = iU ∈ iMk(K).

On the other hand, if γ is a self-adjoint unitary in either Mk(K) or iMk(K),
then Adγ is readily seen to be an admissible grading on Mk(K). �

Let us now give the classification of compatible gradings for a type A irreducible
triplet; it is essentially a generalisation of [3, Lemma 3.1].

Proposition 5.12. Let (A,H, J) be a type A irreducible triplet of odd KO-
dimension n mod 8, so that A is a real form Mk(K) of Mn(C) for some n, and let
γ be a grading on H as a Hilbert space. Then γ is compatible if and only if there
exists a self-adjoint unitary g in Mk(K) or iMk(K) such that

(5.4) γ = ±g ⊗ 1mk ⊗ gT ,

in which case γ necessarily commutes with J .

Proof. Let mn = 2(1−ε)/2. Then H = Cn ⊗ Cmn ⊗ Cn, and for all a ∈ A,
λ(a) = λα(a)⊗1mn⊗1n = a⊗1mnk⊗1n, ρ(a) = 1n⊗1mn⊗λα(a)T = 1n⊗1mn⊗aT .

Suppose that γ is compatible. Then by Lemma 5.11 there exists some self-
adjoint unitary g in either Mk(K) or iMk(K) such that for all a ∈ A,

γ(a⊗ 1mn ⊗ 1n)γ = (gag)⊗ 1mk ⊗ 1n.
Now, let γ0 = g ⊗ 1mn ⊗ gT . Then, by construction, γ0 is a compatible grading
for (A,H, J) that induces the same admissible grading on A as γ, and moreover
commutes with J . Then ν := γγ0 ∈ ULR

A (H; J), so that ν = 1n⊗ νnn⊗ 1n for some

νnn ∈
{
{±1}, if n = 1 or 7 mod 8,
SU(2), if k = 3 or 5 mod 8.

Thus γ = g ⊗ νnn ⊗ gT , and hence, since γ is self-adjoint, νnn must also be self-
adjoint. Therefore ναα = ±1mk , or equivalently, γ′ = ±γ.

On the other hand, if g is a self-adjoint unitary in either Mk(K) or iMk(K),
then γ = g⊗1mk⊗gT is certainly a compatible grading that commutes with J . �
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Thus, irreducible triplets can only give rise to real Aeven-bimodules of KO-
dimension 0 or 4 mod 8.

Let us now turn to the type B case.

Proposition 5.13. Let (A,H, J) be a type B irreducible triplet of odd KO-
dimension n mod 8, so that for some n ∈ N, A = Mk1(K1) ⊕Mk2(K2) for real
forms Mk1(K1) and Mk2(K2) of Mn(C), and let γ be a grading on H as a Hilbert
space. Then γ is compatible if and only if one of the following holds:

(1) There exist gradings γ1 and γ2 on Cn, with γj ∈ Mkj (Kj) or iMkj (Kj),
such that

(5.5) γ =
(
γ1 ⊗ γT2 0

0 ε′′γ2 ⊗ γT1

)
,

in which case γJ = ε′′Jγ, and if γ′ is any other compatible grading,
Adγ′ = Adγ if and only if γ′ = ±γ.

(2) One has that K1 = K2 = K and k1 = k2 = k, and there exist a unitary
u ∈Mk(K) and η ∈ T such that

(5.6) γ =
(

0 ηu∗ ⊗ u
ηu⊗ uT 0

)
,

in which case γ necessarily commutes with J , and if γ′ is any other com-
patible grading, Adγ′ = Adγ if and only if γ′ = (ζ1n2 ⊕ ζ1n2)γ for some
ζ ∈ T.

Proof. Let γ be a compatible grading. Then, with respect to the decomposi-
tion H = (Cn ⊗ Cn)⊕ (Cn ⊕ Cn), let us write

γ =
(
A B
C D

)

for A, B, C and D ∈Mn(C)⊗Mn(C). Applying self-adjointness of γ, we find that
A and D must be self-adjoint, and that B = C∗, and then applying the fact that
γ2 = 1, we find that

A2 + C∗C = 1, CA+DC = 0, CC∗ +D2 = 1.

Finally, applying the condition that γ commutes or anticommutes with J , i.e. that
γJ = ε′′Jγ for ε′′ = ±1, we find that

D = ε′′XAX, C∗ = ε′′XCX,

where X is the antiunitary on Cn ⊗ Cn given by X : ξ1 ⊗ ξ2 �→ ξ2 ⊗ ξ1.
Now, since γ is compatible, and since (1, 0) and (0, 1) are projections in A

satisfying (1, 0) + (0, 1) = 1, there exist projections P and Q in A such that

Adγ λ(1, 0) = λ(P, 1−Q), Adγ λ(0, 1) = λ(1− P,Q),

that is, (
P ⊗ 1n 0
0 (1−Q)⊗ 1n

)
= γ

(
1 0
0 0

)
γ =

(
A2 AC∗

CA CC∗

)

and (
(1− P )⊗ 1n 0

0 Q⊗ 1n
)
= γ

(
0 0
0 1

)
γ =

(
C∗C C∗D
DC D2

)
.

Thus, A is a self-adjoint partial isometry with support and range projection P ⊗1n,
D is a self-adjoint partial isometry with support and range projection Q⊗ 1n, and
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C is a partial isometry with support projection (1− P )⊗ 1n and range projection
(1−Q)⊗ 1n.

Now, recalling that D = ε′′XAX, we see that

Q⊗ 1n = D2 = XA2X = XP ⊗ 1nX = 1n ⊗ P .

If Q = 0, then certainly P = 0. Suppose instead that Q �= 0, and let ξ ∈ QCn⊗Cn
be non-zero. Then

idξ⊗Cn = (Q⊗ 1n)|ξ⊗Cn = (1⊗ P )|ξ⊗Cn ,
so that P = 1 and hence Q = 1 also. We therefore have two possible cases:

(1) We have

γ =
(
A 0
0 ε′′XAX

)

for A a grading on Cn ⊗ Cn;
(2) We have

γ =
(
0 C∗

C 0

)

for C a unitary on Cn ⊗ Cn such that C∗ = (−1)mXCX.
First suppose that the first case holds. Then, on the one hand, AdA |Mn(C)⊗1n

induces an admissible grading forMk1(K1), so that there exists a self-adjoint unitary
γ1 in either Mk1(K1) or iMk1(K1) such that AdA |Mn(C)⊗1n = Adγ1⊗1n , and on
the other hand, Adε′′XAX |Mn(C)⊗1n induces an admissible grading for Mk2(K2),
so that there exists a self-adjoint unitary γ2 in Mk2(K1) or iMk2(K1) such that
Adε′′XAX |Mn(C)⊗1n = Adγ2⊗1n . Since for a⊗ b ∈Mn(C)⊗Mn(C) we can write

a⊗ b = (a⊗ 1n)X(b⊗ 1n)X,

it therefore follows that AdA = Adγ1⊗γT2 on the central simple algebra Mn(C) ⊗
Mn(C) ∼= Mn2(C) over C. Hence, there exists some non-zero η ∈ C such that
A = ηγ1⊗ γT2 , and since both A and γ1⊗ γT2 are self-adjoint and unitary, it follows
that η = ±1. Absorbing ±1 into γ1 or γ2, we therefore find that

γ =
(
γ1 ⊗ γT2 0

0 ε′′γ2 ⊗ γT1

)
.

On the other hand, γ so constructed is readily seen to be a compatible grading
satisfying γJ = ε′′Jγ.

Now suppose that the second case holds. Then, since γ is compatible, it is clear
that the automorphisms α, β of Mn(C) specified by

α(a)⊗ 1n = C(a⊗ 1n)C∗, β(a)⊗ 1n = C∗(a⊗ 1n)C,
are inverses of each other, and that α, in particular, induces an isomorphism
Mk1(K1) → Mk2(K2), so that K1 = K2 = K and k1 = k2 = k. Next, by the
proof of Lemma 5.11, there exists some unitary u in Mn(C)I such that α = Adu,
from which it follows that β = Adu∗ . By the same trick as above, we then find that
AdC = Adu⊗uT on the central simple algebra Mn(C) ⊗Mn(C) ∼= Mn2(C) over C.
Hence, there exists some non-zero η ∈ C such that C = ηu⊗ uT , and since both C
and u⊗ uT are unitary, it follows that η ∈ T. Thus,

γ =
(

0 ηu∗ ⊗ u
ηu⊗ uT 0

)
.
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On the other hand, γ so constructed is readily seen to be a compatible grading
satisfying [γ, J ] = 0.

Finally, let γ and γ′ be two compatible gradings. Suppose that Adγ = Adγ′ ,
and set U = γ′γ. Then, by construction, U is a unitary element of LLRA (H; J), so
that there exists some ζ ∈ T such that

U = ζ1n2 ⊕ ζ1n2 .

If the second case holds, then nothing more can be said, but if the first case holds,
so that

γ =
(
γ1 ⊗ γT2 0

0 ε′′γ2 ⊗ γT1

)

for suitable γ1 and γ2, then

γ′ =
(
ζγ1 ⊗ γT2 0

0 ε′′ζγ2 ⊗ γT1

)
,

so that by self-adjointness of γ′, γ1 and γ2, we must have ζ = ±1, as required. �

Thus, we can obtain a real bimodule of KO-dimension 6 mod 8 only from a
type B irreducible triplet together with a compatible grading satisfying the first
case of the last result.

5.3. Even subalgebras and even KO-dimensional bimodules. We now
consider real bimodules ofKO-dimension 6 mod 8 obtained from irreducible triplets.
Thus, let (A,H, J) be a fixed type B irreducible triplet of KO-dimension 1 or
7 mod 8, and let γ be a fixed compatible grading for (A,H, J) anticommuting with
J , so that for some n ∈ N,

• A =Mk1(K1)⊕Mk2(K2) for real forms Mkj (Kj) of Mn(C);
• mult[H] = En1n2 + En2n1 ;
• There exist self-adjoint unitaries γj ∈Mkj (Kj) or iMkj (Kj) with signature
(rj , n− rj) such that

γ =
(
γ1 ⊗ γT2 0

0 −γ2 ⊗ γT1

)
.

It is worth noting that (H, J) admits, up to sign, a unique S0-real structure, given
by ε = 1n2⊕−1n2 , which certainly commutes with γ. We can exploit the symmetries
present to simplify our discussion by taking, without loss of generality, rj > 0, and
requiring that γ1 ∈ iMk1(K1) only if γ2 ∈ iMk2(K2), and that γ1 = 1n only if
γ2 = 1n.

Our main goal in this section is to give an explicit description of Aeven and of
(H, γ, J) as a real Aeven-bimodule. To do so, however, we first need the following:

Lemma 5.14. Let Mk(K) be a real form of Mn(C), let g be a self-adjoint unitary
in Mk(K) or iMk(K), and let r = null(g−1). Set Mk(K)g := {a ∈Mk(K) | [a, g] =
0}.

• If g ∈Mk(K), then Mk(K)g ∼=Mkr/n(K)⊕Mk(n−r)/n(K);
• If g ∈ iMk(K), then r = n/2 and

Mk(K)g ∼= {(a, b) ∈Mk/2(C)2 | b = a} ∼=Mk/2(C).
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Proof. Let P+ := 1
2 (1 + g) and P− := 1

2(1 − g), which are thus projections
in Mn(C) of rank r and n − r, respectively. Define an injection φ : Mk(K)g �→
Mr(C)⊕Mn−r(C) by φ(A) := (P evenAP even, P oddAP odd).

First, suppose that g ∈ Mk(K). Then P+ and P− are also in Mk(K), from
which it immediately follows that φ(Mk(K)g) =Mkr/n(K)⊕Mk(n−r)/n(K).

Suppose instead that g ∈ iMk(K) and K �= C. Then Mk(K) = {A ∈ Mn(C) |
[A, I] = 0} for a suitable antiunitary I on Cn satisfying I2 = α1, where α = 1 if
K = R and α = −1 if K = H. Then {g, I} = 0, and hence, with respect to the
decomposition Cn = P+Cn ⊕ P−Cn ∼= Cr ⊕ Cn−r,

I =
(
0 αĨ∗

Ĩ 0

)
,

where Ĩ = P oddIP even is an antiunitary Cr �→ Cn−r. Thus, n is even and r = n/2,
and taking Ĩ, without loss of generality, to be complex conjugation on Cr, for all
A ∈ Mn(C) commuting with g, [A, I] = 0 if and only if P−AP− = P+AP+, and
hence φ(Mk(K)g) = {(a, a) | a ∈Mn/2(C)} ∼=Mn/2(C). �

In light of the form of γ, this last Lemma immediately implies the aforemen-
tioned explicit description of Aeven and (H, γ, J):

Proposition 5.15. Let (meven,modd) = (meven, (meven)T ) be the pair of mul-
tiplicity matrices of (H, γ, J) as an even KO-dimensional real Aeven-bimodule. Let
r′i = n− ri, and, when n is even, let c = n/2. Then:

(1) If γ1 ∈ iMk1(K1), γ2 ∈ iMk2(K), then

(5.7) Aeven =Mc(C)⊕Mc(C),

and

(5.8) meven = Ec1c2 + Ec1c2 + Ec2c1 + Ec2c1 ;

(2) If γ1 ∈ iMk1(K1), γ2 ∈Mk2(K) \ {1n}, then
(5.9) Aeven =Mc(C)⊕Mk2r2/n(K2)⊕Mk2r′2/n(K2).

and

(5.10) meven = Ecr2 + Ecr′2 + Er2c + Er′2c;

(3) If γ1 ∈ iMk1(K1), γ2 = 1, then

(5.11) Aeven =Mc(C)⊕Mk2(K2),

and

(5.12) meven = Ecn + Enc;

(4) If γ1 ∈Mk1(K1) \ {1n}, γ2 ∈Mk2(K2) \ {1n}, then
(5.13) Aeven =Mk1r1/n(K1)⊕Mk1r′1/n(K1)⊕Mk2r2/n(K2)⊕Mk2r′2/n(K2),

and

(5.14) meven = Er1r2 + Er′1r
′
2
+ Er2r′1 + Er′2r1 ;
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(5) If γ1 ∈Mk1(K1) \ {1n}, γ2 = 1n, then

(5.15) Aeven =Mk1r1/n(K1)⊕Mk1r′1/n(K1)⊕Mk2(K2),

and

(5.16) meven = Er1n + Enr′1 ;

item If γ1 = γ2 = 1n, then

(5.17) Aeven =Mk1(K1)⊕Mk2(K2),

and

(5.18) meven = En1n2 .

One can check in each case that (H, γ) is quasi-orientable as an even Aeven-
bimodule. However, Propositions 3.13 and 3.14 immediately imply the following:

Corollary 5.16. The following are equivalent for (H, γ) as an even Aeven-
bimodule:

(1) γ1 ∈Mk1(K1) and γ2 ∈Mk2(K2);
(2) (H, γ) is orientable;
(3) (H, γ) has non-vanishing intersection form;
(4) (H, γ) is complex-linear.

This then motivates us to restrict ourselves to the case where γ1 ∈ Mk1(K1)
and γ2 ∈Mk2(K2). Note, however, that in no case is Poincaré duality possible.

5.4. Off-diagonal Dirac operators. Let us now consider the slightly more
general S0-real Aeven-bimodule (HF , γF , JF , εF ) of KO-dimension 6 mod 8 given
by taking the direct sum of N copies of (H, γ, J, ε), where N ∈ N. If we modify our
earlier conventions slightly to allow for the summand 0 in Wedderburn decomposi-
tions, we can therefore write

(5.19) Aeven =Mk1r1/n(K1)⊕Mk1r′1/n(K1)⊕Mk2r2/n(K2)⊕Mk2r′2(K2),

so that (HF , γF , JF ) is the real Aeven-bimodule of KO-dimension 6 mod 8 with
signed multiplicity matrix

(5.20) μF = N(Er1r2 − Er1r′2 − Er′1r2 + Er′1r
′
2
− Er2r1 + Er2r′1 + Er′2r1 − Er′2r

′
1
),

whilst (Hf , γf ) := ((HF )i, (γF )i) is the even Aeven-bimodule with signed multiplic-
ity matrix

(5.21) μf = N(Er1r2 − Er1r′2 − Er′1r2 + Er′1r
′
2
).

It then follows also that (Hf , γf ) := (JFHf ,−(JFγfJF )|JFHf ) is the even Aeven-
bimodule with signed multiplicty matrix

μf = −μTf = N(−Er2r1 + Er2r′1 + Er′2r1 − Er′2r
′
1
).

Now, for C a unital ∗-subalgebra of Aeven, let us call a Dirac operator D ∈
D0(C,HF , γF , JF ) off-diagonal if it does not commute with εF , or equivalently [3,
§4] if [D,Z(A)] �= {0}. IfD1(C,HF , γF , JF , εF ) ⊆ D0(C,HF , γF , JF ) is the subspace
consisting of Dirac operators anti-commuting with εF , then, in fact,

(5.22) D0(C,HF , γF , JF ) = D0(C,HF , γF , JF , εF )⊕D1(C,HF , γF , JF , εF ),
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as can be seen from writing

D =
1
2
{D, εF }εF + 1

2
[D, εF ]εF

for D ∈ D0(C,HF , γF , JF ). Thus, non-zero off-diagonal Dirac operators exist for
(HF , γF , JF , εF ) as an S0-real C-bimodule if and only if

D1(C,HF , γF , JF , εF ) �= {0}.
Our goal is to generalise Theorem 4.1 in [3, §4] and characterise subalgebras of
Aeven of maximal dimension admitting off-diagonal Dirac operators.

The following result is the first step in this direction:

Proposition 5.17 ([3, Lemma 4.2]). A unital ∗-subalgebra C ⊆ Aeven admits
off-diagonal Dirac operators if and only if there exists some partial unitary T ∈
L(Cr1 ⊕ Cr′1 ⊕ Cr2 ⊕ Cr′2) with support contained in one of Cr1 or Cr

′
1 and range

contained in one of Cr2 or Cr
′
2 , such that

C ⊆ A(T ) := {a ∈ Aeven | [a, T ] = [a∗, T ] = 0}.
Proof. First note that the map D1(C,HF , γF , JF , εF )→ L1C(Hf ,Hf ) given by

D �→ P−iDPi is an isomorphism, so that C admits off-diagonal Dirac operators if
and only if L1C(Hf ,Hf ) �= {0}. Since a map S ∈ L(Hf ,Hf ) satisfies the generalised
order one condition for C if and only if ρf (c)S−Sρf (C) is left C-linear for all c ∈ C,
C admits off-diagonal Dirac operators only if

{S ∈ LLC(Hf ,Hf ) | −γfS = Sγf} �= {0},
or equivalently,

C ⊆ AS := {a ∈ Ceven | λf (a)S = Sλ(a), λf (a
∗)S = Sλ(a∗)}

for some non-zero S ∈ L(Hf ,Hf ) such that −γfS = Sγf .
Now, let S ∈ L(Hf ,Hf ) be non-zero and such that −γfS = Sγf . Then, the

support of S must have non-zero intersection with one of (HF )r1r2 or (HF )r′1r′2 , and
the range of S must have non-zero intersection with one of (HF )r2r1 or (HF )r′2r′1 .
Thus, Sγδαβ �= 0 for some (α, β) ∈ {(r1, r2), (r′1, r′2)} and (γ, δ) ∈ {(r2, r1), (r′2, r′1)},
so that AS ⊆ ASγδαβ . Let us now write

Sγδαβ =
∑
i

Ai ⊗Bi

for non-zero Ai ∈ Mnγ×nα(C) and for linearly independent Bi ∈ MNnδ×Nnβ (C).
Then for all a ∈ Aeven,

λf (a)S − Sλf (a) =
∑
i

(
λγ(a)Ai −Aiλα(a)

)⊗Bi,

so by linear independence of the Bi, a ∈ ASγδαβ if and only if for each i,

λγ(a)Ai = Aiλα(a), λγ(a∗)Ai = Aiλα(a),

and hence

A(S) ⊆ ASγδαβ ⊆ A(T0) := {a ∈ A
even | [a, T0] = 0, [a∗, T1] = 0}

for T0 = A1, say, viewing T0 and the elements of Aeven as operators on Cr1 ⊕Cr′1 ⊕
Cr2 ⊕ Cr′2 . However, if T0 = PT is the polar decomposition of T0 into a positive
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operator P on Cnγ and a partial isometry T : Cnα → Cnγ , it follows that a ∈ Aeven

commutes with T0 only if it commutes with T , and hence A0 ⊆ A(T0) ⊆ A(T ),
proving the one direction of the claim.

Now suppose that C = A(T ) for a suitable partial isometry T , which we view
as a partial isometry Cnα0 → Cnγ0 for some α0 ∈ {r1, r′1}, γ0 ∈ {r2, r′2}. Then
for any non-zero Υ ∈ MN (C), we can define an element S(Υ) ∈ LLRC (Hf ,Hf ) by
setting

S(Υ)γδαβ =

{
T ⊗Υ⊗ T ∗ if α = δ = α0, β = γ = γ0,
0 otherwise,

which, as noted above, corresponds to a unique non-zero element of the space
D1(C,HF , γF , JF , εF ), so that C does indeed admit off-diagonal Dirac operators. �

In light of the above characterisation, it suffices to consider subalgebras A(T )
for partial isometries T : Cr1 → Cr2 , so that

A(T ) = {(a1, a2, b1, b2) ∈ Aeven | b1T = Ta1, b
∗
1T = Ta∗1}(5.23)

∼= A0(T )⊕Mk1r′1/n(K1)⊕Mk2r′2/n(Kk),(5.24)

where

(5.25) A0(T ) := {(a, b) ∈Mk1r1/n(K1)⊕Mk2r2/n(K2) | bT = Ta, b∗T = Ta∗},
so that our problem is reduced to that of maximising the dimension of A0(T ).

It is reasonable to assume that T is, in some sense, compatible with the algebraic
structures ofMk1r1/n(K1) andMk2r2/n(K2), so as to minimise the restrictiveness of
the defining condition on A0(T ), and hence maximise the dimension of A0(T ). It
turns out that this notion of compatibility takes the form of the following conditions
on T :

(1) The subspace supp(T ) of Cr1 is either a K1-linear subspace of Cr1 =
Kk1r1/n1 or, if K1 = H, supp(T ) = E ⊕ C for E an H-linear subspace of
Cr1 = Hr1/2;

(2) The subspace im(T ) of Cr2 is either a K2-linear subspace of Cr2 = K
k2r2/n
1

or, if K2 = H, im(T ) = E ⊕C for E an H-linear subspace of Cr2 = Hr2/2.
Now, let r = rank(T ), let d(r) = dimR(A0(T )), and let

di =

⎧
⎪⎨
⎪⎩

1 if Ki = R,
2 if Ki = C,
1
2

if Ki = H.

Under these assumptions, then, one can show that
(1) If K1 = K2 or K2 = C, and, if K1 = H, r is even, then

(5.26) A0(T ) ∼=Mk1r/n(K1)⊕Mk1(r1−r)/n(K1)⊕Mk2(r2−r)/n(K2),

and hence

d(r) = d1r
2 + d1(r − r1)2 + d2(r − r2)2;

(2) If (K1,K2) = (H,R) and r is odd, then

(5.27) A0(T ) ∼=
(
M(r−1)/2(H) ∩Mr−1(R)

)⊕ R⊕M(r2−r−1)/2(H)⊕Mr1−r(R),

and hence

d(r) = (r − 1)2 + 1 + 1
2
(r − r2 + 1)2 + (r − r1)2;
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(3) If (K1,K2) = (H,C) and r is odd, then

(5.28) A0(T ) ∼=M(r−1)/2(H)⊕ C⊕M(r2−r−1)/2(H)⊕Mr1−r(C),

and hence

d(r) =
1
2
(r − 1)2 + 2 + 1

2
(r − r2 + 1)2 + 2(r − r1)2;

(4) If K1 = K2 = H and r is odd, then

(5.29) A0(T ) ∼=M(r−1)/2(H)⊕ C⊕M(r1−r−1)/2(H)⊕M(r2−r−1)/2(H),

and hence

(5.30) d(r) =
1
2
(r − 1)2 + 2 + 1

2
(r − r1 + 1)2 +

1
2
(r − r2 + 1)2.

The other cases are obtained easily, by symmetry, from the ones listed above.
Now, let Rmax be the set of all r ∈ {1, . . . ,min(r1, r2)} maximising the value

of d(r). By checking case by case, one can arrive at the following generalisation of
Theorem 4.1 in [3]:

Proposition 5.18. Let T : Cr1 → Cr2 be a partial isometry. Then A(T )
attains maximal dimension only if rank(T ) ∈ Rmax, where Rmax = {1} except in
the following cases:

(1) (K1,K2) = (C,C) and (r1, r2) = (2, 2), in which case Rmax = {2};
(2) (K1,K2) = (C,C) and (r1, r2) = (3, 3), in which case Rmax = {1, 2};
(3) (K1,K2) = (C,R) and (r1, r2) = (2, 2), in which case Rmax = {1, 2};
(4) (K1,K2) = (C,H) and (r1, r2) = (2, 2), in which case Rmax = {1, 2};
(5) (K1,K2) = (R,C) and (r1, r2) = (2, 2), in which case Rmax = {1, 2};
(6) (K1,K2) = (R,R) and (r1, r2) = (2, 2), in which case Rmax = {2};
(7) (K1,K2) = (R,R) and (r1, r2) = (3, 3), in which case Rmax = {1, 2};
(8) (K1,K2) = (R,H) and r1 = 2, in which case Rmax = {1, 2};
(9) (K1,K2) = (H,C) and (r1, r2) = (2, 2), in which case Rmax = {1, 2};
(10) (K1,K2) = (H,R) and r2 = 2, in which case Rmax = {1, 2};
(11) (K1,K2) = (H,H) and (r1, r2) = (4, 4), in which case Rmax = {4};
(12) (K1,K2) = (H,H) and (r1, r2) �= (4, 4), in which case Rmax = {2}.

Moreover, if T satisfies the aforementioned compatibility conditions, then A(T ) does
indeed attain maximal dimension whenever rank(T ) ∈ Rmax.

One must carry out the same calculations for the other possibilities for the
domain and range of T , but this can be done simply by replacing (r1, r2) in the above
equations and claims with (r1, r′2), (r

′
1, r2) and (r

′
1, r

′
2). Thus, one can determine

the maximal dimension of a subalgebra of Aeven admitting off-diagonal operators
by comparing the maximal values of dimR(A(T )) for T : Cr1 → Cr2 , T : Cr1 → Cr

′
2 ,

T : Cr
′
1 → Cr2 , and T : Cr

′
1 → Cr

′
2 .

Finally, by means of the discussion above and the fact that Sp(n) acts tran-
sitively on 1-dimensional subspaces of Cn, one can readily check that the real
C∗-algebra AF and the S0-real AF -bimodule (HF , γF , JF , εF ) of KO-dimension
6 mod 8 of the NCG Standard Model are uniquely determined, up to inner auto-
morphisms of Aeven and unitary equivalence, by the following choice of inputs:

• n = 4;
• (K1,K2) = (H,C);
• g1 ∈M2(H), g2 ∈M4(C);



FINITE SPECTRAL TRIPLES 67

• (r1, r2) = (2, 4);
• N = 3.

The value of N , by construction, corresponds to the number of generations of
fermions, whilst the values of n, r1 and r2 give rise to the number of species of
fermion of each chirality per generation. The significance of the other inputs remains
to be seen.

6. Conclusion

As we have seen, the structure theory first developed by Paschke and Sitarz [20]
and by Krajewski [18] for finite real spectral triples of KO-dimension 0 mod 8 and
satisfying orientability and Poincaré duality can be extended quite fully to the
case of arbitrary KO-dimension and without the assumptions of orientability and
Poincaré duality. In particular, once a suitable ordering is fixed on the spectrum of
a finite-dimensional real C∗-algebra A, the study of finite real spectral triples with
algebra A reduces completely to the study of the appropriate multiplicity matrices
and of certain moduli spaces constructed using those matrices. This reduction is
what has allowed for the success of Krajewski’s diagrammatic approach [18, §4] in
the cases dealt with by Iochum, Jureit, Schücker, and Stephan [12–17,22]. We have
also seen how to apply this theory both to the “finite geometries” of the current
version of the NCG Standard Model [4, 7, 8] and to Chamseddine and Connes’s
framework [2, 3] for deriving the same finite geometries.

Dropping the orientability requirement comes at a fairly steep cost, as even
bimodules of various sorts generally have fairly intricate moduli spaces of Dirac
operators. It would therefore be useful to characterise the precise nature of the
failure of orientability (and of Poincaré duality) for the finite spectral triple of
the current noncommutative-geometric Standard Model. It would also be useful
to generalise and study the physically-desirable conditions identified in the extant
literature on finite spectral triples, such as dynamical non-degeneracy [22] and
anomaly cancellation [18]. Indeed, it would be natural to generalise Krajewski
diagrams [18] and the combinatorial analysis they facilitate [17] to bilateral spectral
triples of all types. The paper by Paschke and Sitarz [20] also contains further
material for generalisation, namely discussion of the noncommutative differential
calculus of a finite spectral triple and of quantum group symmetries. In particular,
one might hope to characterise finite spectral triples equivariant under the action
or coaction of a suitable Hopf algebra [21,23].

Finally, as was mentioned earlier, the finite geometry of the current NCG Stan-
dard Model fails to be S0-real. However, this failure is specifically the failure of
the Dirac operator D to commute with the S0-real structure ε. The “off-diagonal”
part of D does, however, take a very special form; we hope to provide in future
work a more geometrical interpretation of this term, which provides for Majorana
fermions and for the so-called see-saw mechanism [4].
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Tensor representations of the general linear super group

Rita Fioresi

Abstract. We show a correspondence between tensor representations of the
super general linear group GL(m|n) and tensor representations of the general
linear superalgebra gl(m|n) using a functorial approach.

1. Introduction

Supersymmetry is an important mathematical tool in physics that enables to
treat on equal grounds the two types of elementary particles: bosons and fermions,
whose states are described respectively by commuting and anticommuting func-
tions. It is fundamental to seek a unified treatment for these particles since they
do transform into each other. Hence considering only symmetries that keep one
type separated from the other is not acceptable. For this reason the symmetries of
elementary particles must be described not by groups, but by supergroups, which
are a natural generalization of groups in the Z2 graded or super setting.

The theory of representations of supergroups has a particular importance since
it is attached to the problem of the classification of elementary particles.

As in the classical theory, in order to understand the representations of a su-
pergroup, one must first study the representations of its Lie superalgebra. The
representation theory of the general linear superalgebra gl(m|n) has been the ob-
ject of study of many people.

In [3] Berele and Regev provide a full account of a class of irreducible repre-
sentations of gl(m|n) that turns out to be linked to certain Young tableaux called
semistandard or superstandard tableaux. The same result appeares also in [7] by
Dondi and Jarvis in a slightly different setting. Dondi and Jarvis in fact introduce
the notion of super permutation and use this definition to motivate the semistan-
dard Young tableaux used for the description of the irreducible representations of
the general linear superalgebra.

The results by Berele and Regev were later generalized and deepened by Brini,
Regonati and Teolis in [4]. In their important work, they develop a unified theory
that treats simoultaneosly the super and the classical case, through the powerful
method of virtual variables.

Another account of this subject is found in [17]. Sergeev establishes a corre-
spondence between a class of irreducible tensor representations of gl(m|n) and the
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irreducible representations of a certain finite group, different from the permutation
group used both in [3] and [7].

It is important to remark at this point that the theory of representations of
superalgebras and of supergroups has dramatic differences with respect to the clas-
sical theory. As we will see, not all representations of the super general linear
group and its Lie superalgebra are found as tensor representations. Moreover not
all representations are completely reducible over C.

In this paper we want to understand how tensor representations of the Lie
superalgebra gl(m|n) can be naturally associated to the representation of the cor-
responding group GL(m|n). Using [3, 7] we are able then to obtain a full classi-
fication of the irreducible tensor representations of the general linear supergroup
coming from the natural diagonal action and a correspondence between such rep-
resentations and representations of the symmetric group. These facts are generally
known, however we feel that using the functorial language we can explicitly write
the exponential map and construct explicitly the correspondence, not only over C,
but over an arbitrary field. This helps to deepen the understanding since it provides
a bridge between different languages and moreover can be used for applications in
algebraic supergeometry.

We will do this using the functor of points approach, suggested originally by
Kostant and Leites [13, 14] and later devoloped by Bernstein (see the notes by
Deligne and Morgan in [6]). This approach allows to recover the geometric intuition
of the problem.

This paper is organized as follows.

In section 2 we review some of the basic definitions of supergeometry. Since we
will adopt the functorial language we relate our definitions to the other definitions
appearing in the literature.

In section 3 we recall briefly the results obtained indipendently by Berele, Regev
and Dondi, Jarvis. These results establish a correspondence between tensor repre-
sentations of the permutation group and tensor representations of the superalgebra
gl(m|n). Moreover we show that the tensor representations of the Lie superalgebra
gl(m|n) do not exhaust all polynomial representations of gl(m|n).

Finally in section 4 we discuss tensor representations of the general linear su-
pergroup associated to the representations of gl(m|n) described in §3.

Acknowledgements. We wish to thank Prof. V. S. Varadarajan, Prof. A.
Brini, Prof. F. Regonati and Prof. I. Dimitrov for helpful comments.

2. Basic definitions

Let k be an algebraically closed field of characteristic 0.

All algebras have to be intended over k.

A superalgebra A is a Z2-graded algebra, A = A0⊕A1, p(x) denotes the parity
of an homogeneous element x. A is said to be commutative if

xy = (−1)p(x)p(y)yx
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Let (salg) denote the category of commutative superalgebras. We call A0, the
reduced algebra, the quotient A/Iodd, where Iodd is the (two-sided) ideal generated
by the odd nilpotents.

The concept of an affine supervariety or more generally an affine superscheme
can be defined very effectively through its functor of points.

Definition 2.1. An affine superscheme is a representable functor:

X : (salg) −→ (sets)

A �→ X(A) = Hom(k[X], A).

If k[X]0 has no nilpotents we say that X is an affine supervariety.

From this definition one can see that the category (salg) plays a role in algebraic
supergeometry similar to the category of commutative algebras for the ordinary (i.e.
non super) algebraic geometry. In particular we have an equivalence of categories
between the categories of affine superschemes and commutative superalgebras. (For
more details see [8], [5] ch. 5).

Examples 2.2. 1. Affine superspace. Let V = V0⊕V1 be a finite dimensional
super vector space. Define the following functor:

V : (salg)−→(sets), V(A) = (A⊗ V )0 = A0 ⊗ V0 ⊕A1 ⊗ V1

This functor is representable and it is represented by:

k[V ] = Sym(V0)⊗ ∧(V1)
where Sym(V0) is the polynomial algebra over the vector space V0 and ∧(V1) the
exterior algebra over the vector space V1. Let’s see this more in detail.

If we choose a graded basis for V , e1 . . . em, ε1 . . . εn, with ei even and εj odd,
then

k[V ] = k[x1 . . . xm, ξ1 . . . ξn],

where the latin letters denote commuting indeterminates, while the greek ones
anticommuting indeterminates i.e. ξiξj = −ξjξi. In this case V is commonly
denoted with km|n and m|n is called the superdimension of V . V is the functor of
points of the super vector space V .

In particular, if V = km|n:

V(A) = {(a1 . . . am, α1 . . . αn) | ai ∈ A0, αj ∈ A1} =

= Hom(k[V ], A) = {φ : k[V ]−→k | φ(xi) = ai, φ(ξj) = αj}
Hence V(A) = A0 ⊗ km ⊕A1 ⊗ kn.

2. Tensor superspace. Let V be a finite dimensional super vector space. We
define the vector space of r-tensors as:

T r(V ) =def V ⊗ V · · · ⊗ V︸ ︷︷ ︸
r times
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T r(V ) is a super vector space, the parity of a monomial element is defined as
p(v1 ⊗ · · · ⊗ vr) = p(v1) + · · ·+ p(vr). The functor of points of T r(V ) viewed as a
supervariety is:

Tr(V)(A) = V(A)⊗A · · · ⊗A V(A)
We define the superspace of tensors T (V ) as:

T (V ) =
⊕
r≥0

T r(V )

and denote with T(V) its functor of points.

3. Supermatrices. Given a finite dimensional super vector space V of dimension
m|n, the endomorphisms End(V ) over V is itself a supervector space of dimension
m2 + n2|2mn: End(V ) = End(V )0 ⊕ End(V )1, where End(V )0 are the endomor-
phisms preserving parity, while End(V )1 are those reversing parity.

Hence we can define the following functor:

End(V ) : (salg)−→(sets), End(V )(A) = (A⊗ End(V ))0
This functor is representable (see (1)). Choosing a graded basis for V , V =

km|n, the functor is represented by k[xij , ykl, ξkj , ηil] where 1 ≤ i, j ≤ m, m+ 1 ≤
k, l ≤ m+ n.

In this case:

End(V )(A) =
{(

am×m βm×n
γn×m dn×n

)}

where a, d and β, γ are block matrices with respectively even and odd entries in A.

Definition 2.3. An affine supergroup G is a group valued affine superscheme,
i.e. it is a representable functor:

G : (salg) −→ (groups)
A �→ GL(V )(A)

It is simple to verify that the superalgebra representing the supergroup G has
an Hopf superalgebra structure. More is true: Given a supervariety G, G is a
supergroup if and only if the algebra representing it k[G] is an Hopf superalgebra.

Let V be a finite dimensional super vector space. We are interested in the
general linear supergroup GL(V ).

Definition 2.4. We define general linear supergroup the group valued functor

GL(V ) : (salg) −→ (sets)

A �→ GL(V )(A)

where GL(V )(A) is the set of automorphisms of the A-supermodule A ⊗ V , A ∈
(salg). More explicitly if V = km|n, the functorGL(V ) commonly denotedGL(m|n)
is defined as the set of automorphisms of Am|n =def A⊗ km|n and is given by:

GL(m|n)(A) =
{(

am×m βm×n
γn×m dn×n

)
| a, d invertible

}

where a, d and β, γ are block matrices with respectively even and odd entries in A.
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This functor is representable and it is represented by the Hopf algebra (see [9]):

k[xij , yαβ , ξiβ , ηαj , z, w]/
(
(w det(x)− 1, z det(y)− 1),

i, j = 1, . . .m α, β = 1, . . . n.

We now would like to introduce the notion of Lie superalgebra using the func-
torial language. We then see it is equivalent to the more standard definitions (see
[12] for example).

Definition 2.5. Let g be a finite dimensional supervector space. The functor
(see Example 2.2 (1)):

g : (salg)−→(sets), g(A) = (A⊗ g)0
is said to be a Lie superalgebra if it is Lie algebra valued, i.e. for each A there exists
a linear map:

[ , ]A : g(A)× g(A)−→g(A)
satisfying the antisymmetric property and the Jacobi identity.

Notice that in the same way as the supergroup functor is group valued, the
Lie superalgebra functor is Lie algebra valued, i. e. it has values in a classical
category. The super nature of these functors arises from the different starting
category, namely (salg), which allows superalgebras as representing objects.

The usual notion of Lie superalgebra, as defined for example by Kac in [12]
is equivalent to this functorial definition. Let’s recall this definition and see the
equivalence with the Definition 2.5 more in detail.

Definition 2.6. Let g be a super vector space. We say that a bilinear map

[, ] : g× g−→g

is a superbracket if ∀x, y, z ∈ g:

[x, y] = (−1)p(x)p(y)[y, x]
[x, [y, z]] + (−1)p(x)p(y)+p(x)p(z)[y, [z, x]] + (−1)p(x)p(z)+p(y)p(z)[z, [x, y]] = 0
(g, [, ]), is what in the literature is commonly defined as Lie superalgebra.

Observation 2.7. The two concepts of Lie superalgebra g in the functorial
setting and superbracket on a supervector space (g, [, ]) are equivalent.

In fact if we have a Lie superalgebra g there is always a superspace g associated
to it together with a superbracket. The superbracket on g is given following the
even rules. (For a complete treatment of even rules see pg 57 [6]). Given v, w ∈ g,

we have that since the Lie bracket on g(A) is A0-linear:

[a⊗ v, b⊗ w] = ab⊗ z ∈ (A⊗ g)0 = g(A)

Hence we can define the bracket {v, w} as the element of g such that:
z = (−1)p(a)p(w){v, w}

i. e. satisfying the relation:

[a⊗ v, b⊗ w] = (−1)p(b)p(v)ab⊗ {v, w}.
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We need to check it is a superbracket. Let’s see for example the antisymmetry
property. Observe first that if a ⊗ v, b ⊗ w ∈ (g ⊗ A)0 must be p(v) = p(a),
p(w) = p(b) since (A⊗ g)0 = A0 ⊗ g0 ⊕A1 ⊗ g1. So we can write:

[a⊗ v, b⊗ w] = (−1)p(b)p(v)ab⊗ {v, w} = (−1)p(v)p(w)ab⊗ {v, w}.
On the other hand:

[b⊗ w, a⊗ v] = (−1)p(a)p(w)ba⊗ {w, v} =

= (−1)p(a)p(w)+p(a)p(b)ab⊗ {w, v} =

= (−1)2p(w)p(v)ab⊗ {w, v} = ab⊗ {w, v}.
Comparing the two expression we get the antisymmetry of the superbracket. For
the super Jacobi identity the calculation is the same.

Vice-versa if (g, {, }) is a super vector space with a superbracket, we immedi-
ately can define its functor of points g. g is a Lie superalgebra because we have a
bracket on g(A) defined as

[a⊗ v, b⊗ w] = (−1)p(b)p(v)ab⊗ {v, w}.
The previous calculation worked backwards proves that [, ] is a (classical) Lie
bracket.

With an abuse of language we will call Lie superalgebra both the supervector
space g with a superbracket [, ] and the functor g as defined in 2.5.

Observation 2.8. In [8] is given the notion of a Lie super algebra associated to
an affine supergroup. In particular it is proven that the Lie superalgebra associated
to GL(m|n) is End(km|n). We will denote End(km|n) with gl(m|n) as supervector
space and with gl(m|n) as its functor of points. The purpose of this paper does not
allow for a full description of such correspondence, all the details and the proofs
can be found in [8].

3. Summary and observations on results by Berele and Regev

In this section we want to review some of the results in [3, 7]. We wish to
describe the correspondence between tensor representations of the superalgebra
gl(m|n) and representations of the permutation group. This correspondence is
obtained using the double centralizer theorem. (Note: in [3] gl(m|n) is denoted by
pl).

Let V = km|n and let T (V ) =
⊕
r≥0 T

r(V ) be the tensor superspace (see
Example 2.2 (2)).

We want to define on T r(V ) two actions: one by Sr the permutation group and
the other by the Lie superalgebra gl(m|n).

Let σ = (i, j) ∈ Sr and let {vi}1≤i≤m+n be a basis of V (v1 . . . vm even elements
and vm+1 . . . vm+n odd ones). Let’s define:

(v1 ⊗ · · · ⊗ vr) · σ =def εvσ(1) ⊗ · · · ⊗ vσ(r)
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where ε = −1 when vi and vj are both odd and ε = 1 otherwise. This defines
a representation τr of Sr in T r(V ). The proof of this fact can be found in [3]
pp.122-123.

Consider now the action θr of the Lie superalgebra gl(m|n) on T r(V ) given by
derivations:

θn(X)(v1 ⊗ · · · ⊗ vr) =def

∑
i(−1)s(X,i)v1 ⊗ · · · ⊗X(vi)⊗ · · · ⊗ vr

g ∈ gl(m|n)(A), vi ∈ V (A), A ∈ (salg)
with s(X, i) = p(X)o(i) where o(i) denotes the number of odd elements among
v1 . . . vi.

One can see that this is a Lie superalgebra action i.e. it preserves the super-
bracket and that it extends to an action θ of gl(m|n) on T (V ) (this is proved in [3]
4.7).

In [3] Theorem 4.14 and Remark 4.15 prove the important double centralizer
theorem:

Theorem 3.1. The algebras τr(Sr) and θr(gl(m|n)) are each the centralizer of
the other in End(T r(V )).

This result establishes a one to one correspondence between irreducible tensor
representations of Sr occurring in τr and those of gl(m|n) occurring in θr.

These representations are parametrized by partitions λ of the integer r. In [3] §3
and §4 is worked out completely the structure of irreducible tensor representations
of gl(m|n) arising in this way.

We are now interested in the dimensions of such representations.

Definition 3.2. Let t1 < · · · < tm < u1 < · · · < un be integers and λ a
partition of r corresponding to a diagram Dλ. A filling Tλ of Dλ is a semistandard
or superstandard tableau if

1. The part of Tλ filled with the t’s is a tableaux.
2. The t’s are non decreasing in rows and strictly increasing in columns.
3. The u’s are non decreasing in columns and strictly increasing in rows.

As an example that will turn out to be important later let’s look at m = n = 1,
t1 = 1, u1 = 2 and r = 2. We can have only two partitions of r: λ = (2), λ = (1, 1).
Each partition admits two fillings:

λ = (2) 1 1 1 2

λ = (1, 1)
1
2

2
2

By Theorem 3.17, 3.18 and 4.17 in [3] we have the following:

Theorem 3.3. The irreducible representations of gl(m|n) occurring in θr are
parametrized by partitions of λ of the integer r satisfying the hook condition ( i.
e. if λ = (λ1, λ2 . . . ), λj ≤ n for j > m, see 2.3 in [3] for more details). The
irreducible representations associated to the shape λ has dimension equal to the
number of semistandard tableaux of shape λ.
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Observation 3.4. This theorem tells us immediately that we have no one
dimensional representations of gl(m|n) occurring in θr, if n > 0. In fact one can
generalize the Example 3.2 to show that since the odd variables allow repetitions
on rows, we always have more than one filling for each shape. However there exists
a polynomial (or rational) representation of gl(m|n) of dimension one, namely the
supertrace ([1] pg. 100):

gl(m|n) −→ k ∼= End(k)

A =
(
X Y
Z W

)
�→ str(A) =def tr(X)− tr(W )

This shows that the tensor representations described in [3] do not exhaust all poly-
nomial representations of gl(m|n), for n > 0.

4. Tensor representations of the general linear supergroup

Let’s start by introducing the notion of supergroup and of Lie superalgebra
representation from a functorial point of view.

Definition 4.1. Given an affine algebraic supergroup G we say that G acts
on a super vector space W , if we have a natural transformation:

r : G−→End(W )

In other words, if we have for any A ∈ (salg) a functorial morphism
rA : G(A)−→End(W )(A).

Similarly given a Lie superalgebra g we say that g acts on a super vector space
W , if we have a natural transformation:

t : g−→End(W )

preserving the Lie bracket, that is for any A ∈ (salg), we have a Lie algebra mor-
phism tA : g(A)−→End(W )(A). It is easy to verify that this is equivalent to ask
that we have a morphism of Lie superalgebras:

T : g−→End(W )

i.e. a super vector space morphism preserving the superbracket. This agrees with
the definition of Lie superalgebra representation in [3], which we also recalled in
§3.

If W ∼= km|n we can identify rA(g), g ∈ G(A) and tA(x), x ∈ g(A) with
matrices in End(W )(A) (see Example 2.2 (3)).

Let V be a finite dimensional super vector space. Define:

ρr : GL(V )−→End(T r(V ))

ρr,A(g)(v1 ⊗ · · · ⊗ vn) =def g(v1)⊗ · · · ⊗ g(vn),

g ∈ GL(V )(A), vi ∈ V(A), A ∈ (salg).
This is an action of GL(V ) on T r(V ), that can be easily extended to the whole
T (V ).



TENSOR REPRESENTATIONS OF THE GENERAL LINEAR SUPER GROUP 77

We are also interested in the action θr of gl(V ), the Lie superalgebra of GL(V )
on T r(V ) introduced in Section 3.

Let’s assume from now on V = km|n. Let eij denote an elementary matrix in
gl(m|n). {eij} is a graded canonical basis for the supervector space gl(m|n), with
p(eij) = p(i) + p(j), where an index i is even if 1 ≤ i ≤ m, odd otherwise.

Definition 4.2. Consider the following functor Eij : (salg)−→(sets), 1 ≤ i �=
j ≤ m+ n:

Eij(A) = {I + xeij |x ∈ Ak, k = p(eij)}
This is an affine supergroup functor represented by k1|0 if p(i) + p(j) is even, by
k0|1 if it is odd. We call Eij a one parameter subgroup functor.

Define also the (additive) supergroup functor eij : (salg)−→(sets):
eij(A) = {a⊗ eij | a ∈ Ak, k = p(i) + p(j)}.

Theorem 4.3. 1. For all A ∈ (salg), the group GL(m|n)(A) is generated by:

Eij(A), i = m+ 1 . . .m+ n, j = 1 . . .m

Ekl(A), k = 1 . . .m, l = m+ 1 . . .m+ n

GL(m)(A0)×GL(n)(A0) =
{(

X 0
0 W

)
|X,W with entries in A0

}

where GL(m) denotes the group functor associated with the classical general linear
group.

2. The Lie superalgebra gl(m|n) is generated by the supergroup functors eij.

Proof. (2) is immediate. For (1) it is enough to prove the given generators
generate the following (see [19] pg. 117):

(
X 0
0 W

) (
I Y
0 I

) (
I 0
Z I

)

where X,W have entries in A0 and Y , Z have entries in A1. This is immediate. �
Consider now the action of the (non super) group GL(m) × GL(n) on the

ordinary vector space V = V0⊕V1 and also the action of its Lie algebra gl(m)×gl(n)
on the same space. We can build the diagonal action ρ0 of GL(m)×GL(n) on the
space of tensors T (V ) (again V is viewed disregarding the grading) and also the
usual action θ0 by derivation of gl(m)× gl(n) on the same space.

Lemma 4.4.

< ρ0(GL(m)×GL(n)) >=< θ0(gl(m)× gl(n)) >

where < S > denotes the subalgebra generated by the set S inside End(V ) the
endomorphism of the ordinary vector space V = km+n.

Proof. This is a consequence of a classical result, see for example [11] 8.2. �
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Theorem 4.5.

< ρr,A(GL(m|n)(A)) >A=< θr,A(gl(m|n)(A)) >A A ∈ (salg).
where < S >A denotes the subalgebra generated by the set S inside End(m|n)(A).

Proof. By Theorem 4.3 and Lemma 4.4 it is enough to show that:

ρr,A(Eij(A)) ∈< θr,A(gl(m|n)(A)) >A,

θr,A(eij(A)) ∈< ρr,A(GL(m|n)(A)) >A
with i = m+ 1 . . .m+ n, j = 1 . . .m or k = 1 . . .m, l = m+ 1 . . .m+ n.

Let Dij be the derivation corresponding to the elementary matrix eij . So we
have that eij(A) = α1 ⊗Dij , α ∈ A1. We claim that

θr,A(eij(A)) = 1(A)− ρr,A(Eij)(A)

This is a simple calculation. �

Corollary 4.6. There is a one to one correspondence between the irreducible
representations of Sr and the irreducible representations of GL(m|n) occurring in
ρr.

Observation 4.7. By Corollary 4.6 and Theorem 3.3 we have that also the
irreducible representations occuring in ρr of GL(m|n) are parametrized by parti-
tions of the integer r. However by Observation 3.4 we have that there is no one
dimensional irreducible representation hence also for GL(m|n) we miss an impor-
tant representation, namely the Berezinian:

GL(m|n)(A) −→ A ∼= End(k)(A)(
X Y
Z W

)
�→ det(W )−1det(X − YW−1Z)

This shows that the tensor representations of GL(m|n) do not exhaust all polyno-
mial representations of GL(m|n), for n > 0.

The Berezinian representation has been described by Deligne and Morgan in
[6] pg 60, in a natural way as an action of GL(m|n) on Ext group

ExtmSym∗
(V ∗)(A, Sym

∗(V ∗)).

Ext plays the same role as the antisymmetric tensors in this super setting.

References

[1] F. A. Berezin, Introduction to superanalysis. Edited by A. A. Kirillov. D. Reidel Publishing
Company, Dordrecht (Holland) (1987).

[2] A. Baha Balantekin, I. Bars Dimension and character formula for Lie supergroups, J. Math.
Phy., 22, 1149-1162, (1981).

[3] A. Berele, A. Regev Hook Young Diagrams with applications to combinatorics and to repre-
sentations of Lie superalgebras, Adv. Math., 64, 118-175, (1987).



TENSOR REPRESENTATIONS OF THE GENERAL LINEAR SUPER GROUP 79

[4] A. Brini, F. Regonati, A. Teolis The method of virtual variables and representations of Lie
superalgebras. Clifford algebras (Cookeville, TN, 2002), 245–263, Prog. Math. Phys., 34,
Birkhauser Boston, MA, (2004). Combinatorics and representation theory of Lie superalge-
bras over letterplace superalgebras. Li, Hongbo (ed.) et al., Computer algebra and geometric
algebra with applications. 6th international workshop, IWMM 2004, Shanghai, China, Berlin:
Springer. Lecture Notes in Computer Science 3519, 239-257 (2005).

[5] L. Caston, R. Fioresi, Mathematical Foundations of Supersymmetry, xxx.lanl.gov,
0710.5742v1, 2007.

[6] P. Deligne and J. Morgan, Notes on supersymmetry (following J. Bernstein), in “Quantum
fields and strings. A course for mathematicians”, Vol 1, AMS, (1999).

[7] P. H. Dondi, P. D. Jarvis Diagram and superfields tecniques in the classical superalgebras, J.
Phys. A, Math. Gen 14, 547-563, (1981).

[8] R. Fioresi, M. A. Lledo On Algebraic Supergroups, Coadjoint Orbits and their Deformations,
Comm. Math. Phy. 245, no. 1, 177-200, (2004).

[9] R. Fioresi, On algebraic supergroups and quantum deformations, math.QA/0111113, J. Al-
gebra Appl. 2, no. 4, 403–423, (2003).

[10] R. Fioresi, Supergroups, quantum supergroups and their homogeneous spaces. Euroconference
on Brane New World and Noncommutative Geometry (Torino, 2000). Modern Phys. Lett. A
16 269–274 (2001).

[11] G. James, A. Kerber The representation theory of the symmetric group, Encyclopedia of
Mathematics and its applications Vol. 16, Addison Wesley, (1981).

[12] V. Kac Lie superalgebras Adv. in Math. 26, 8-26, (1977).
[13] B. Kostant, Graded manifolds, Graded Lie theory and prequantization. Lecture Notes in

Math. 570 (1977).
[14] D. A. Leites, Introduction to the theory of supermanifolds. Russian Math. Survey. 35:1 1-64

(1980).
[15] Yu. Manin, Gauge field theory and complex geometry. Springer Verlag, (1988).
[16] Yu. Manin, Topics in non commutative geometry. Princeton University Press, (1991).
[17] A. N. Sergeev The tensor algebra of the identity representation as a module over the Lie

superalgebras gl(m|n) and Q(n), Math. USSR Sbornik, 51, no. 2, (1985).
[18] M. Scheunert, R. B. Zhang The general linear supergroup and its Hopf superalgebra of regular

functions, J. Algebra 254, no. 1, 44-83, (2002).
[19] V. S. Varadarajan Supersymmetry for mathematicians: an Introduction, AMS, (2004).
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Quantum duality principle for quantum Grassmannians

Rita Fioresi and Fabio Gavarini

Abstract. The quantum duality principle (QDP) for homogeneous spaces
gives four recipes to obtain, from a quantum homogeneous space, a dual one,
in the sense of Poisson duality. One of these recipes fails (for lack of the initial
ingredient) when the homogeneous space we start from is not a quasi-affine
variety. In this work we solve this problem for the quantum Grassmannian, a
key example of quantum projective homogeneous space, providing a suitable
analogue of the QDP recipe.

1. Introduction

In the theory of quantum groups, the geometrical objects that one takes into
consideration are affine algebraic Poisson groups and their infinitesimal counter-
parts, namely Lie bialgebras. By “quantization” of either of these, one means a
suitable one-parameter deformation of one of the Hopf algebras associated with
them. They are respectively the algebra of regular function O(G) , for a Poisson
group G, and the universal enveloping algebra U(g), for a Lie bialgebra g . Deforma-
tions of O(G) are called quantum function algebras (QFA), and are often denoted
with Oq(G) , while deformations of U(g) are called quantum universal enveloping
algebras (QUEA), denoted with Uq(g) .

The quantum duality principle (QDP), after its formulation in [9, 10, 11],
provides a recipe to get a QFA out of a QUEA, and vice-versa. This involves a
change of the underlying geometric object, according to Poisson duality, in the
following sense. Starting from a QUEA over a Lie bialgebra g = Lie (G) , one gets
a QFA for a dual Poisson group G∗ . Starting instead from a QFA over a Poisson
group G , one gets a QUEA over the dual Lie bialgebra g∗.

In [3], this principle is extended to the wider context of homogeneous Poisson
G–spaces. One describes these spaces, in global or in infinitesimal terms, using
suitable subsets of O(G) or of U(g) . Indeed, each homogeneous G–space M can be
realized as G

/
K for some closed subgroup K of G (this amounts to fixing a point

in M : it is shown in [3], §1.2, how to select such a point). Thus we can deal with
either the space or the subgroup. Now, K can be coded in infinitesimal terms by
U(k), where k := Lie (K) , and in global terms by I(K) := {

ϕ∈O(G) ∣∣ϕ(K) = 0
}
,
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the defining ideal of K . Instead, G
/
K can be encoded infinitesimally by U(g) k

and globally by O(G/K) ≡ O(G)K , the algebra of K–invariants in O(G) . Note
that U(g)

/
U(g) k identifies with the set of left-invariant differential operators on

G
/
K , or the set of K–invariant, left-invariant differential operators on G .
These constructions all make sense in formal geometry, i.e. when dealing simply

with formal groups and formal homogeneous spaces, as in [3]. Instead, if one looks
for global geometry, then one construction might fail, namely the description of
G
/
K via its function algebra O(G/K)

= O(G)K . In fact, this makes sense —
i.e., O(G)K is enough to describe G

/
K — if and only if the variety G

/
K is quasi-

affine. In particular, this is not the case if G
/
K is projective, like, for instance,

when G
/
K is a Grassmann variety.

By “quantization” of the homogeneous space G
/
K one means any quantum

deformation (in suitable sense) of any one of the four algebraic objects mentioned
before which describe either G

/
K or K . Moreover one requires that given an

infinitesimal or a global quantization for the group G, denoted by Uq(g) or Oq(G)
respectively, the quantization of the homogeneous space admits a Uq(g)–action or a
Oq(G)–coaction respectively, which yields a quantum deformation of the algebraic
counterpart of the G–action on G

/
K .

The QDP for homogeneous G–spaces (cf. [3]) starts from an infinitesimal
(global) quantization of a G–space, say G

/
K, and provides a global (infinites-

imal) quantization for the Poisson dual G∗–space. The latter is G∗
/
K⊥ (with

Lie
(
K⊥) = k⊥ , the orthogonal subspace — with respect to the natural pairing

between g and its dual space g∗ — to k inside g∗ ). In particular, the principle gives
a concrete recipe

Oq
(
G
/
K
) ◦−−−−� Oq

(
G
/
K
)∨ =: Uq

(
k⊥

)

in which the right-hand side is a quantization of U
(
k⊥

)
.

However, this recipe makes no sense when Oq
(
G
/
K
)
is not available. In the

non-formal setting this is the case whenever G
/
K is not quasi-affine, e.g. when it

is projective.

In this paper we show how to solve this problem in the special case of the
Grassmann varieties, taking G as the general linear group and K = P a maximal
parabolic subgroup. We adapt the basic ideas of the original QDP recipe to these
new ingredients, and we obtain a new recipe

Oq
(
G
/
P
) ◦−−−−� ̂Oq

(
G
/
P
)∨

which perfectly makes sense, and yields the same kind of result as predicted by

the QDP for the quasi-affine case. In particular, ̂Oq
(
G
/
P
)∨ is a quantization of

U
(
p⊥

)
, obtained through a (q − 1)–adic completion process.

Our construction goes as follows.

First, we consider the embedding of the Grassmannian G
/
P (where G := GLn

or G := SLn , and P is a parabolic subgroup of G ) inside a projective space, given
by Plücker coordinates. This will give us the first new ingredient:

O(G/P ) := ring of homogeneous coordinates on G
/
P .
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Many quantizations Oq
(
G
/
P
)
of O(G/P ) already exist in the literature (see,

e.g., [6, 12, 13]). All these quantizations, which are equivalent, come together with
a quantization of the natural G–action on G/P .

In the original recipe (see [3]) Oq
(
G
/
K
) ◦−−−−� Oq

(
G
/
K
)∨ of the QDP

(when G
/
K is quasi affine) we need to look at a neighborhood of the special point

eK (where e ∈ G is the identity), and at a quantization of it. Therefore, we shall
replace the projective variety G

/
P with such an affine neighborhood, namely the

big cell of G
/
P . This amounts to realize the algebra of regular functions on the

big cell as a “homogeneous localization” of O(G/P ), say O loc
(
G
/
P
)
, by inverting

a suitable element. We then do the same at the quantum level, via the inversion
of a suitable almost central element in Oq

(
G
/
P
)
— which lifts the previous one

in O(G/P ) . The result is a quantization O loc
q

(
G
/
P
)
of the coordinate ring of the

big cell.

Hence we are able to define Oq
(
G
/
P
)∨ := O loc

q

(
G
/
P
)∨, where the right-hand

side is given by the original QDP recipe applied to the big cell as an affine variety (we
can forget any group action at this step). By the very construction, this Oq

(
G
/
P
)∨

should be a quantization of U
(
p⊥

)
(as an algebra). Indeed, we prove that this is

the case, so we might think at Oq
(
G
/
P
)∨ as a quantization (of infinitesimal type)

of the variety G∗
/
P⊥ . On the other hand, the construction does not ensure that

Oq
(
G
/
P
)∨

also admits a quantization of the G∗–action on G∗
/
P⊥ (just like the

big cell is not a G–space). As a last step, we look at ̂Oq
(
G
/
P
)∨, the (q−1)–adic

completion of Oq
(
G
/
P
)∨. Of course, it is again a quantization of U(

p⊥
)
(as an

algebra). But in addition, it admits a coaction of the (q−1)–adic completion of
Oq(G)∨ — which is a quantization of U(g∗). This coaction yields a quantization of

the infinitesimal G∗–action on G∗
/
P⊥. Therefore, in a nutshell, ̂Oq

(
G
/
P
)∨ is a

quantization of G∗
/
P⊥ as a homogeneous G∗–space, in the sense explained above.

Notice that our arguments could be applied to any projective homogeneous
G–space X , up to having the initial data to start with. Namely, one needs an
embedding of X inside a projective space, a quantization (compatible with the G–
action) of the ring of homogeneous coordinates of X (w.r.t. such an embedding),
and a quantization of a suitable open dense affine subset of X . This program is
carried out in detail in a separate work (see [2]).

Finally, this paper is organized as follows.
In section 2 we fix the notation, and we describe the Manin deformations of the

general linear group (as a Poisson group), and of its Lie bialgebra, together with
its dual. In section 3 we briefly recall results concerning the constructions of the
quantum Grassmannian Oq

(
G
/
P
)
and its quantum big cell O loc

q

(
G
/
P
)
. These are

known results, treated in detail in [6, 7]. Finally, in section 4 we extend the original
QDP to build Oq

(
G
/
P
)∨, and we show that its (q− 1)–adic completion is a quan-

tization of the homogeneous G∗–space G∗
/
P⊥ dual to the Grassmannian G

/
P .
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2. The Poisson Lie group GLn(k) and its quantum deformation

Let k be any field of characteristic zero.

In this section we want to recall the construction of a quantum deformation
of the Poisson Lie group GLn := GLn(k) . We will also describe explicitly the
bialgebra structure of its Lie algebra gln := gln(k) in a way that fits our purposes,
that is to obtain a quantum duality principle for the Grassmann varieties for GLn
(see §4).

Let kq = k
[
q, q−1

]
(where q is an indeterminate), the ring of Laurent polyno-

mials over q , and let k(q) be the field of rational functions in q .

Definition 2.1. The quantum matrix algebra is defined as

Oq(Mm×n) = kq
〈{xij }1≤j≤n1≤i≤m

〉/
IM

where the xij ’s are non commutative indeterminates, and IM is the two-sided ideal
generated by the Manin relations

xij xik = q xik xij , xji xki = q xki xji ∀ j < k

xij xkl = xkl xij ∀ i < k , j > l or i > k , j < l

xij xkl − xkl xij =
(
q − q−1

)
xkj xil ∀ i < k , j < l

Warning: sometimes these relations appear with q exchanged with q−1 .

For simplicity we will denote Oq(Mn×n) with Oq(Mn) .
There is a coalgebra structure on Oq(Mn) , given by

Δ(xij) =
n∑
k=1

xik ⊗ xkj , ε(xij) = δij ( 1 ≤ i , j ≤ n )

The quantum general linear group and the quantum special linear group are
defined in the following way:

Oq(GLn) := Oq(Mn)[T ]
/(

TDq − 1 , 1− TDq
)

Oq(SLn) := Oq(Mn)
/(

Dq − 1
)

where Dq :=
∑
σ∈Sn (−q)(σ) x1σ(1) · · ·xnσ(n) is a central element, called the

quantum determinant.
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Note: We use the same letter to denote the generators xij of Oq(Mm×n) , of
Oq(GLn) and of Oq(SLn) : the context will make clear where they sit.

The algebra Oq(GLn) is a quantization of the algebra O(GLn) of regular func-
tions on the affine algebraic group GLn , in the following sense: Oq(GLn)

/
(q−

1)Oq(GLn) is isomorphic to O(GLn) as a Hopf algebra (over the field k ). Sim-
ilarly, Oq(SLn) is a quantization of the algebra O(SLn) of regular functions on
SLn . Both Oq(GLn) and Oq(SLn) are Hopf algebras, that is, they also have the
antipode. For more details on these constructions see for example [1], pg. 215.

By general theory, O(GLn) inherits from Oq(GLn) a Poisson bracket, which
makes it into a Poisson Hopf algebra, so that GLn becomes a Poisson group. We
want to describe now its Poisson bracket. Recall that

O(GLn) = k
[{ x̄ij }i,j=1,...,n

]
[t]
/(

t d− 1)

where d := det
(
x̄i,j

)
i,j=1,...,n

is the usual determinant. Setting x̄ = π(x) for
π : Oq(GLn) −→ O(GLn) , the Poisson structure is given (as usual) by

{
ā , b̄

}
:= (q − 1)−1 (a b− b a)

∣∣∣
q=1

∀ ā , b̄ ∈ O(GLn) .

In terms of generators, we have
{
x̄ij , x̄ik

}
= x̄ij x̄ik ∀ j < k ,

{
x̄ij , x̄k

}
= 0 ∀ i < � , k < j

{
x̄ij , x̄j

}
= x̄ij x̄j ∀ i < � ,

{
x̄ij , x̄k

}
= 2 x̄ij x̄k ∀ i<� , j<k

{
d−1, x̄ij

}
= 0 ,

{
d , x̄ij

}
= 0 ∀ i, j = 1, . . . , n .

As GLn is a Poisson Lie group, its Lie algebra gln has a Lie bialgebra structure
(see [1], pg. 24). To describe it, let us denote with Eij the elementary matrices,
which form a basis of gln . Define (∀ i = 1, . . . , n− 1 , j = 1, . . . , n )

ei := Ei,i+1 , gj := Ej,j , fi := Ei+1,i , hi := gi − gi+1

Then
{
ei , fi , gj

∣∣ i = 1, . . . , n−1, j = 1, . . . , n
}
is a set of Lie algebra generators

of gln , and a Lie cobracket is defined on gln by

δ(ei) = hi ∧ ei , δ(gj) = 0 , δ(fi) = hi ∧ fi ∀ i, j.

This cobracket makes gln itself into a Lie bialgebra: this is the so-called standard Lie
bialgebra structure on gln . It follows immediately that U(gln) is a co-Poisson Hopf
algebra, whose co-Poisson bracket is the (unique) extension of the Lie cobracket of
gln while the Hopf structure is the standard one.

Similar constructions hold for the group SLn . One simply drops the generator
d−1 , imposes the relation d= 1 , in the description of O(SLn) , and replaces the
gs’s with the hi’s ( i = 1, . . . , n ) when describing sln .

Since gln is a Lie bialgebra, its dual space gl
∗
n admits a Lie bialgebra structure,

dual to the one of gln . Let
{
Eij := E ∗

ij

∣∣ i, j = 1, . . . , n
}
be the basis of gl ∗n dual
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to the basis of elementary matrices for gln . As a Lie algebra, gl
∗
n can be realized

as the subset of gln ⊕ gln of all pairs
⎛
⎜⎜⎜⎜⎜⎝

⎛
⎜⎜⎜⎜⎜⎝

−m11 0 · · · 0
m21 −m22 · · · 0
...

...
...

...
mn−1,1 mn−1,2 · · · 0
mn,1 mn,2 · · · −mn,n

⎞
⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎝

m11 m12 · · · m1,n−1 m1,n

0 m22 · · · m2,n−1 m2,n

...
...

...
...

...
0 0 · · · mn−1,n−1 mn−1,n
0 0 · · · 0 mn,n

⎞
⎟⎟⎟⎟⎟⎠

⎞
⎟⎟⎟⎟⎟⎠

with its natural structure of Lie subalgebra of gln⊕ gln . In fact, the elements Eij
correspond to elements in gln ⊕ gln in the following way:

Eij∼=
(
Eij , 0

) ∀ i>j , Eij∼=
(−Eij ,+Eij

) ∀ i=j , Eij∼=
(
0 , Eij

) ∀ i<j

Then the Lie bracket of gl ∗n is given by
[
Ei,j , Eh,k

]
= δj,h Ei,k − δk,i Eh,j , ∀ i≤j , h≤k and ∀ i>j , h>k

[
Ei,j , Eh,k

]
= δk,i Eh,j − δj,h Ei,k , ∀ i=j , h>k and ∀ i>j , h=k

[
Ei,j , Eh,k

]
= 0 , ∀ i<j , h>k and ∀ i>j , h<k

Note that the elements ( 1 ≤ i ≤ n−1 , 1 ≤ j ≤ n )

ei = e ∗i = Ei,i+1 , fi = f ∗i = Ei+1,i , gj = g ∗j = Ejj

are Lie algebra generators of gl ∗n . In terms of them, the Lie bracket reads[
ei , fj

]
= 0 ,

[
gi , ej

]
= δij ei ,

[
gi , fj

]
= δij fj ∀ i, j .

On the other hand, the Lie cobracket structure of gl ∗n is given by

δ
(
Ei,j

)
=

n∑
k=1

Ei,k ∧ Ek,j ∀ i, j = 1, . . . , n

where x ∧ y := x⊗ y − y ⊗ x .

Finally, all these formulæ also provide a presentation of U
(
gl ∗n

)
as a co-Poisson

Hopf algebra.

A similar description holds for sl ∗n= gl ∗n
/
Z
(
gl ∗n

)
, where Z

(
gl ∗n

)
is the centre

of gl ∗n , generated by ln := g1+ · · ·+gn . The construction is immediate by looking
at the embedding sln ↪→ gln .

3. The quantum Grassmannian and its big cell

In this section we want to briefly recall the construction of a quantum deforma-
tion of the Grassmannian of r–spaces inside an n–dimensional vector space and its
big cell, as they appear in [6, 7]. The quantum Grassmannian ring will be obtained
as a quantum homogeneous space, namely its deformation will come together with
a deformation of the natural coaction of the function algebra of the general lin-
ear group on it. The deformation will also depend on a specific embedding (the
Plücker one) of the Grassmann variety into a projective space. This deformation
is very natural, in fact it embeds into the deformation of its big cell ring. Let’s see
explicitly these constructions.
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Let G := GLn , and let P and P1 be the standard parabolic subgroups
P :=

{(
A B
0 C

)}
⊂ GLn , P1 := P

⋂
SLn

where A is a square matrix of size r , with 0 < r < n .

Definition 3.1. The quantum Grassmannian coordinate ring
Oq

(
G
/
P
)
with respect to the Plücker embedding is the subalgebra of Oq(GLn)

generated by the quantum minors (called quantum Plücker coordinates)

DI = Di1...ir :=
∑
σ∈Sr

(−q)(σ) xi1 σ(1) xi2 σ(2) · · ·xir σ(r)

for every ordered r–tuple of indices I = {i1 < · · · < ir} .
Remark: Equivalently, Oq

(
G
/
P
)
may be defined in the same way but with

Oq(SLn) instead of Oq(GLn) .

The algebra Oq
(
G
/
P
)
is a quantization of the Grassmannian G

/
P in the usual

sense: the k–algebra Oq
(
G
/
P
)/
(q − 1)Oq

(
G
/
P
)
is isomorphic to O(G/P ) , the

algebra of homogeneous coordinates of G
/
P with respect to the Plücker embed-

ding. In addition, Oq
(
G
/
P
)
has an important property w.r.t. Oq(G) , given by the

following result:

Proposition 3.2.

Oq
(
G
/
P
) ⋂

(q − 1)Oq(G) = (q − 1) Oq
(
G
/
P
)

Proof. By Theorem 3.5 in [13], we have that certain products of minors {pi}i∈I
form a basis of Oq

(
G
/
P
)
over kq . Thus, a generic element in Oq

(
G
/
P
) ⋂

(q−
1)Oq(G) can be written as ∑

i∈I αi pi = (q − 1)φ (3.1)

for some φ ∈ Oq(G) . Moreover, the specialization map
πG : Oq(G) −−−� Oq(G)

/
(q − 1)Oq(G) = O(G)

maps {pi}i∈I onto a basis
{
πG(pi)

}
i∈I of O

(
G
/
P
)
, the latter being a subalgebra

of O(G) . Therefore, applying πG to (3.1) we get
∑
i∈I αi πG(pi) = 0 , where

αi := αi mod (q−1)kq , for all i ∈ I . This forces αi ∈ (q−1)kq for all i , by the
linear independence of the πG(pi)’s, whence the claim. �

An immediate consequence of Proposition 3.2 is that the canonical map

Oq
(
G
/
P
)/
(q − 1)Oq

(
G
/
P
) −−−−→ Oq(G)

/
(q − 1)Oq(G)

is injective. Therefore, the specialization map

πG/P : Oq
(
G
/
P
) −−−� Oq

(
G
/
P
)/
(q − 1)Oq

(
G
/
P
)

coincides with the restriction to Oq
(
G
/
P
)
of the specialization map

πG : Oq(G) −−−� Oq(G)
/
(q − 1)Oq(G) .

Moreover — from a geometrical point of view — the key consequence of this
property is that P is a coisotropic subgroup of the Poisson group G . This implies
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the existence of a well defined Poisson structure on the algebra O(G/P ) , inherited
from the one in O(G) .

Observation 3.3. The quantum deformationOq
(
G
/
P
)
comes naturally equipped

with a coaction of Oq(GLn) — or, similarly, of Oq(SLn) — on it, obtained by re-
stricting the comultiplication Δ . This reads

Δ
∣∣
Oq(G/P ) : Oq

(
G
/
P
) −→ Oq(G)⊗Oq

(
G
/
P
)

DI �→ ∑
K DIK ⊗DK

where, for any I = (i1 . . . ir) , K = (k1 . . . kr) , with 1 ≤ i1 < · · · < ir ≤ n ,
1 ≤ k1 < · · · < kr ≤ n , we denote by DIK the quantum minor

DIK ≡ Di1...irk1...kr
:=

∑
σ∈Sr

(−q)(σ) xi1 kσ(1) xi2 kσ(2) · · ·xir kσ(r) .

This provides a quantization of the natural coaction of O(G) onto O(G/P ) .

The ring Oq
(
G
/
P
)
is fully described in [6] in terms of generators and relations.

We refer the reader to this work for further details.

We now turn to the construction of the quantum big cell ring.

Definition 3.4. Let I0 = (1 . . . r) , D0 := DI0 . Define

Oq(G)
[
D−10

]
:= Oq(G)[T ]

/(
T D0 − 1 , D0 T − 1

)

Moreover, we define the big cell ring O loc
q

(
G
/
P
)
to be the kq–subalgebra of

Oq(G)
[
D−10

]
generated by the elements

tij := (−q)r−j D1 ...bj ... r iD−10 ∀ i , j : 1 ≤ j ≤ r < i ≤ n

(see [7] for more details).

As in the commutative setting, we have the following result:

Proposition 3.5. O loc
q

(
G
/
P
) ∼= Oq

(
G
/
P
)[
D−10

]
proj

, where the right-

hand side denotes the degree-zero component of the quotient ring Oq
(
G
/
P
)
[T ]

/(
TD0−

1 , D0 T − 1
)
.

Proof. In the classical setting, the analogous result is proved by this argument:
one uses the so-called “straightening relations” to get rid of the extra minors (see,
for example, [4], §2). Here the argument works essentially the same, using the
quantum straightening (or Plücker) relations (see [6], §4, [13], formula (3.2)(c)
and Note I, Note II). �

Remark 3.6. As before, we have that

O loc
q

(
G
/
P
) ⋂

(q − 1)O loc
q (G) = (q − 1)O loc

q

(
G
/
P
)

This can be easily deduced from Proposition 3.2, taking into account Proposition
3.5. As a consequence, the map

O loc
q

(
G
/
P
)/
(q − 1)O loc

q

(
G
/
P
) −−−−→ O loc

q (G)
/
(q − 1)O loc

q (G)
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is injective, so that the specialization map

π loc
G/P : O loc

q

(
G
/
P
) −−−� O loc

q

(
G
/
P
)/
(q − 1)O loc

q

(
G
/
P
)

coincides with the restriction of the specialization map

π loc
G : O loc

q (G) −−−� O loc
q (G)

/
(q − 1)O loc

q (G) .

The following proposition gives a description of the algebra O loc
q

(
G
/
P
)
:

Proposition 3.7. The big cell ring is isomorphic to a matrix algebra, via the
map

O loc
q

(
G
/
P
) −→ Oq

(
M(n−r)×r

)
tij �→ xij ∀ 1 ≤ j ≤ r < i ≤ n

In particular, the generators tij’s satisfy the Manin relations.

Proof. See [7], Proposition 1.9. �

4. The Quantum Duality Principle for quantum Grassmannians

The quantum duality principle (QDP), originally due to Drinfeld [5] and later
formalized in [9] and extended in [10, 11] by Gavarini, is a functorial recipe to
obtain a quantum group starting from a given one. The main ingredients are
the “Drinfeld functors”, which are equivalences between the category of QFA’s
and the category of QUEA’s. Ciccoli and Gavarini extended this principle to the
setting of homogeneous spaces. More precisely, in [3] they developed the QDP
for homogeneous spaces in the local setting, i.e. for quantum groups of formal type
(where topological Hopf algebras are taken into account). If one tries to find a global
version of the QDP for non quasi-affine homogeneous spaces, then problems arise
from the very beginning, as explained in §1. The case of projective homogeneous
spaces has been solved in [2], where the original version of the Drinfeld-like functor
for which the (global) QDP recipe should fail is suitably modified.

In this section, we apply the general recipe for projective homogeneous spaces
to the Grassmannian G/P . The result is a quantization of the homogeneous space
dual (in the sense of Poisson duality, see [3]) to G/P , just as the QDP recipe
predicts in the setting of [3].

We begin recalling the Drinfeld functor ∨ : QFA −→ QUEA .

Definition 4.1. Let G be an affine algebraic group over k , and Oq(G) a
quantization of its function algebra. Let J be the augmentation ideal of Oq(G) ,
i.e. the kernel of the counit ε : Oq(G) −→ k . We define

Oq(G)∨ :=
〈
(q − 1)−1 J 〉

=
∞∑
n=0

(q − 1)−n Jn ( ⊂ Oq(G)⊗kq k(q)
)
.

It turns out that Oq(G)∨ is a quantization of U(g∗) , where g∗ is the dual
Lie bialgebra to the Lie bialgebra g = Lie (G) . So Oq(G)∨ is a QUEA, and
an infinitesimal quantization for any Poisson group G∗ dual to G , i.e. such that
Lie

(
G∗

) ∼= g∗ as Lie bialgebras. Moreover, the association Oq(G) �→ Oq(G)∨
yields a functor from QFA’s to QUEA’s (see [10, 11] for more details).
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Remark 4.2. Let G = GLn . ThenOq(G)∨ is generated, as a unital subalgebra
of Oq(G)⊗kq k(q) , by the elements
D− := (q − 1)−1 (D−1q − 1

)
, χij := (q − 1)−1 (xij − δij

) ∀ i, j = 1, . . . , n

where the xij ’s are the generators of Oq(G) . As xij = δij + (q − 1)χij ∈ Oq(G)∨ ,
we have an obvious embedding of Oq(G) into Oq(G)∨ .

In the same spirit — mimicking the construction in [3] — we now want to
define Oq

(
G
/
P
)∨ when G

/
P is the Grassmannian.

Let G = GLn , and let P be the maximal parabolic subgroup of §3.

Definition 4.3. Let ε′ be the natural extension toO loc
q (G/P ) of the restriction

to Oq(G/P ) of the counit of Oq(G) , and let J loc
G/P := Ker (ε′ ) . We define (as a

subset of O loc
q

(
G
/
P
)⊗kq k(q) )

Oq
(
G
/
P
)∨ :=

〈
(q − 1)−1 J loc

G/P

〉
=

∞∑
n=0

(q − 1)−n (J loc
G/P

)n
.

It is worth pointing out that Oq
(
G
/
P
)∨ is not a “quantum homogeneous

space” for Oq(G)∨ in any natural way, i.e. it does not admit a coaction of Oq(G)∨ .
This is a consequence of the fact that there is no natural coaction of Oq(G) on
O loc
q

(
G
/
P
)
. Now we examine this more closely.

Since Oq
(
G
/
P
)∨ is not contained in Oq(G)∨ , we cannot have a Oq(G)∨ coac-

tion induced by the coproduct. This would be the case if Oq
(
G
/
P
)∨ were a (one-

sided) coideal of Oq(G)∨ ; but this is not true because O loc
q

(
G
/
P
)
is not a (right)

coideal of Oq(G). This reflects the geometrical fact that the big cell of G/P is
not a G–space itself. Nevertheless, we shall find a way around this problem simply
by enlarging Oq

(
G
/
P
)∨ and Oq(G)∨, i.e. by taking their (q−1)–adic completion

(which will not affect their behavior at q = 1 ).

To begin, we provide a concrete description of Oq
(
G
/
P
)∨ :

Proposition 4.4.

Oq
(
G
/
P
)∨ = kq

〈{μij }j=1,...,r
i=r+1,...,n

〉/
IM

where μij := (q − 1)−1 tij (for all i and j ), IM is the ideal of the Manin relations
among the μij’s, and tij = (−q)r−j D1 ...bj ... r iD−10 (for all i and j).

Proof. Trivial from definitions and Proposition 3.7. �

We now explain the relation between Oq
(
G
/
P
)∨ and Oq(G)∨ . The starting

point is the following special property:

Proposition 4.5.

Oq
(
G
/
P
)∨ ⋂

(q − 1)Oq(G)∨
[
D−10

]
= (q − 1)Oq

(
G
/
P
)∨

Proof. It is the same as for Proposition 3.2. �
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Remark 4.6. As a direct consequence of Proposition 4.5, the canonical map

Oq
(
G
/
P
)∨/(q − 1)Oq

(
G
/
P
)∨ −→ Oq(G)∨

[
D−10

]/
(q − 1)Oq(G)∨

[
D−10

]

is in fact injective: therefore, the specialization map

π∨G/P : Oq
(
G
/
P
)∨ −−−� Oq

(
G
/
P
)∨/(q − 1)Oq

(
G
/
P
)∨

coincides with the restriction to Oq
(
G
/
P
)∨ of the specialization map

π∨G : Oq(G)∨
[
D−10

] −−−� Oq(G)∨
[
D−10

]/
(q − 1)Oq(G)∨

[
D−10

]
.

From now on, let Â denote the (q − 1)–adic completion of any kq–algebra A .
Note that Â and A have the same specialization at q = 1 , i.e. A/(q − 1)A and
Â/(q−1) Â are canonically isomorphic. When A = Oq(G) , note also that Ôq(G)
is naturally a complete topological Hopf kq–algebra.

The next result shows why it is relevant to introduce such completions.

Lemma 4.7. Oq(G)∨
[
D−10

]
naturally embeds into Ôq(G)∨ .

Proof. By remark 4.2 we have that Oq(G)∨ is generated by the elements (for
all i, j = 1, . . . , n )

D− := (q − 1)−1 (D−1q − 1
)
, χij := (q − 1)−1 (xij − δij

)

inside Oq(G)⊗kq k(q) . On the other hand, observe that

and
xij = (q − 1)χi,j ∈ (q − 1)Oq(G)∨ ∀ i �= j

x = 1 + (q − 1)χ ∈
(
1 + (q − 1)Oq(G)∨

) ∀ � .

Then, if we expand explicitly the q–determinant D0 := DI0 , we immediately see

that D0 ∈
(
1 + (q − 1)Oq(G)∨

)
as well. Thus D0 is invertible in Ôq(G)∨, and so

the natural immersion Oq(G)∨ ↪−−→ Ôq(G)∨ canonically extends to an immersion

Oq(G)∨
[
D−10

]
↪−−→ Ôq(G)∨ . �

Corollary 4.8.
(a) The specializations at q=1 of Oq(G)∨ , Oq(G)∨

[
D−10

]
and Ôq(G)∨ are

canonically isomorphic. More precisely, the chain

Oq(G)∨ ↪−−→ Oq(G)∨
[
D−10

]
↪−−→ Ôq(G)∨

of canonical embeddings induces at q = 1 a chain of isomorphisms.

(b) Oq
(
G
/
P
)∨ embeds into Ôq(G)∨ via the chain of embeddings

Oq
(
G
/
P
)∨

↪−−→ Oq(G)∨
[
D−10

]
↪−−→ Ôq(G)∨

(c) Oq
(
G
/
P
)∨ ⋂

(q − 1) Ôq(G)∨ = (q − 1)Oq
(
G
/
P
)∨ .
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Proof. Part (a) and (b) are trivial, and (c) follows from them. �

Notice that part (c) of Corollary 4.8 also implies that

Oq
(
G
/
P
)∨∣∣∣
q=1

:= Oq
(
G
/
P
)∨/(q − 1)Oq

(
G
/
P
)∨

is a subalgebra of

Ôq(G)∨
∣∣∣
q=1

= Oq(G)∨
∣∣∣
q=1

:= Oq(G)∨
/
(q − 1)Oq(G)∨ ∼= U(g∗)

just because the specialization map

π∨G/P : Oq
(
G
/
P
)∨ −−−� Oq

(
G
/
P
)∨/(q − 1)Oq

(
G
/
P
)∨

coincides with the restriction to Oq
(
G
/
P
)∨ of the specialization map

π̂∨G : Ôq(G)∨ −−−� Ôq(G)∨
/
(q − 1) Ôq(G)∨ .

Now we want to see what is Oq
(
G
/
P
)∨∣∣∣
q=1

inside U
(
gln
∗) . In other words, we

want to understand what is the space that Oq
(
G
/
P
)∨ is quantizing.

Proposition 4.9.
Oq

(
G
/
P
)∨∣∣∣
q=1

= U
(
p⊥

)

as a subalgebra of Oq(G)∨
∣∣∣
q=1

= U
(
gln
∗) , where p⊥ is the orthogonal subspace to

p := Lie (P ) inside gln
∗ .

Proof. Thanks to the previous discussion, it is enough to show that

π∨G
(
Oq

(
G
/
P
)∨) = U

(
p⊥

) ⊆ U
(
gln
∗) = Oq(G)∨

∣∣∣
q=1

.

To do this, we describe the isomorphism Oq(G)∨
∣∣∣
q=1

∼= U
(
gln
∗) (cf. [8]). First,

recall that Oq(G)∨ is generated by the elements (see Remark 4.2)
D− := (q − 1)−1 (D−1q − 1

)
, χij := (q − 1)−1 (xij − δij

)

(for all i, j = 1, . . . , n ) inside Oq(G) ⊗kq k(q) . In terms of these generators, the
isomorphism reads

Oq(G)∨
∣∣∣
q=1
−−−−→ U

(
gln
∗)

D− �→ −(E1,1 + · · ·+ En,n) , χi,j �→ Ei,j ∀ i , j .

where we used notation X := X mod (q − 1)Oq(G)∨ . Indeed, from χi,j �→ Ei,j
and (q − 1)−1 (Dq − 1

) ∈ Oq(G)∨ , one gets Dq �→ 1 and (q − 1)−1 (Dq − 1
) �→

E1,1 + · · ·+En,n . Moreover, the relation DqD
−1
q = 1 in Oq(G) implies Dq D− =

−(q − 1)−1 (Dq−1
)
in Oq(G)∨ , so D− �→ −(E1,1+ · · ·+En,n) as claimed (cf. [8],

§3, or [10], §7). In other words, the specialization π∨G : Oq(G)∨ −−� U
(
gln
∗) is

given by

π∨G
(D−

)
= −(E1,1 + · · ·+ En,n) , π∨G

(
χi,j

)
= Ei,j ∀ i , j .
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If we look at Ôq(G)∨, things are even simpler. Since

Dq ∈
(
1 + (q − 1)Oq(G)∨

)
⊂

(
1 + (q − 1) Ôq(G)∨

)
,

then D−1q ∈
(
1 + (q − 1) Ôq(G)∨

)
, and the generator D− can be dropped. The

specialization map π̂∨G/P of course is still described by formulæ as above.

Now let’s compute π∨G/P
(
Oq

(
G
/
P
)∨) = π̂∨G

(
Oq

(
G
/
P
)∨) . Recall thatOq

(
G
/
P
)∨

is generated by the μij ’s, with

μij := (q − 1)−1 tij = (q − 1)−1 (−q)r−j D1 ...bj ... r iD−10

for i = r + 1, . . . , n , and j = 1, . . . , r ; thus we must compute π̂∨G
(
μij

)
.

By definition, for every i �= j the element xij = (q − 1)χij is mapped to 0 by
π̂∨G . Instead, for each � the element x  = 1 + (q − 1)χ  is mapped to 1 (by π̂∨G
again). But then, expanding the q–determinants one easily finds — much like in
the proof of Lemma 4.7 — that

π̂∨G
(
(q−1)−1D1 ...bj ... r i

)
=

(
(q−1)−1 ∑

σ∈Sr
(−q)(σ) x1σ(1) · · ·xr σ(r)

)
=

= π̂∨G
(
(q−1)−1 ∑

σ∈Sr
(−q)(σ)∏ r

k=1

(
δk σ(k) + (q−1)χk σ(k)

))

The only term in (q − 1) in the expansion of D1 ...bj ... r i comes from the product
(
1 + (q−1)χ1 1) · · ·

(
1 + (q−1)χr r

)
(q−1)χi j ≡ (q−1)χi j mod (q−1)2O

(
G
/
P
)

Therefore, from the previous analysis we get

π̂∨G
(
(q − 1)−1D1 ...bj ... r i

)
= π̂∨G

(
χi,j

)
= Ei,j

π̂∨G
(
D0

)
= π̂∨G

(
1
)
= 1 , π̂∨G

(
D−10

)
= π̂∨G

(
1
)
= 1

so in the end π̂∨G
(
μij

)
= (−1)r−j Ei,j , for all 1 ≤ j ≤ r < i ≤ n .

The outcome is that π∨G/P
(
Oq

(
G
/
P
)∨) = U(h) , where

h := Span
({
Ei,j

∣∣ r + 1 ≤ i ≤ n , 1 ≤ j ≤ r
})

.

On the other hand, from the very definitions and our description of gln
∗ one easily

finds that h = p⊥ , for p := Lie (P ) . The claim follows. �

Proposition 4.9 claims that Oq
(
G
/
P
)∨ is a quantization of U(

p⊥
)
, i.e. it is a

unital kq–algebra whose semiclassical limit is U
(
p⊥

)
. Now, the fact that U

(
p⊥

)
describes (infinitesimally) a homogeneous space for G∗ is encoded in algebraic
terms by the fact that it is a (left) coideal of U(g∗) ; in other words, U

(
p⊥

)
is

a (left) U(g∗)–comodule w.r.t. the restriction of the coproduct of U(g∗) . Thus,
for Oq

(
G
/
P
)∨ to be a quantization of U

(
p⊥

)
as a homogeneous space we need

also a quantization of this fact: namely, we would like Oq
(
G
/
P
)∨ to be a left

coideal of Oq(G)∨, our quantization of U(g∗) . But this makes no sense at all,
as Oq

(
G
/
P
)∨ is not even a subset of Oq(G)∨ !



QUANTUM DUALITY PRINCIPLE FOR QUANTUM GRASSMANNIANS 93

This problem leads us to enlarge a bit our quantizationsOq
(
G
/
P
)∨ andOq(G)∨ :

we take their (q−1)–adic completions, namely ̂Oq
(
G
/
P
)∨ and Ôq(G)∨ . While not

affecting their behavior at q = 1 (i.e., their semiclassical limits are the same), this

operation solves the problem. Indeed, Ôq(G)∨ is big enough to contain Oq
(
G
/
P
)∨ ,

by Corollary 4.8(b). Then, as Ôq(G)∨ is a topological Hopf algebra, inside it we
must look at the closure of Oq

(
G
/
P
)∨ . Thanks to Corollary 4.8(c) (which means,

roughly, that an Artin-Rees lemma holds), the latter is nothing but ̂Oq
(
G
/
P
)∨.

Finally, next result tells us that ̂Oq
(
G
/
P
)∨ is a left coideal of Ôq(G)∨, as expected.

Proposition 4.10. ̂Oq
(
G
/
P
)∨ is a left coideal of Ôq(G)∨ .

Proof. Recall that the coproduct Δ̂ of Ôq(G)∨ takes values in the topological

tensor product Ôq(G)∨ ⊗̂ Ôq(G)∨ , which by definition is the (q−1)–adic comple-
tion of the algebraic tensor product Ôq(G)∨ ⊗ Ôq(G)∨ . Our purpose then is to
show that this coproduct Δ̂ maps ̂Oq

(
G
/
P
)∨ in the topological tensor product

Ôq(G)∨ ⊗̂ ̂Oq
(
G
/
P
)∨ .

By construction, the coproduct of Oq(G)∨, hence of Ôq(G)∨ too, is induced
by that of Oq(G) , say Δ : Oq(G) −→ Oq(G) ⊗ Oq(G) . Now, the latter can be
uniquely (canonically) extended to a coassociative algebra morphism

Δ̃ : Oq(G)
[
D−1I0

] −−→ Oq(G)
[
D−1I0

] ⊗̃Oq(G)
[
D−1I0

]

where ⊗̃ is the J⊗–adic completion of the algebraic tensor product, with

J⊗ := J ⊗Oq(G) + Oq(G)⊗ J , J := Ker
(
εOq(G)

)
.

In fact, since Δ(D0) = D0 ⊗D0 +
∑
K �=I0

DI0K ⊗DK , one easily computes

Δ̃(D0) =
(
1 +

∑
K �=I0

DI0K D−10 ⊗DKD−10

)(
D0 ⊗D0

)

Δ̃
(
D−10

)
=

(
D0 ⊗D0

)−1( 1 + ∑
K �=I0

DI0K D−10 ⊗DKD−10

)−1

=
(
D−10 ⊗D−10

) ∑
n≥0

(−1)n
( ∑
K �=I0

DI0K D−10 ⊗DKD−10

)n

Let’s now look at the restriction Δ̃r of Δ̃ to O loc
q

(
G
/
P
)
. We have

Δ̃r(tij) = Δ̃r
(
D1 ...bj ... r iD−10

)
= Δ̃

(
D1 ...bj ... r i

) · Δ̃(
D0

)−1
=

=
(∑
L

D1 ...bj ... r i
L D−10 ⊗DLD−10

)
· ∑
n≥0

(−1)n
( ∑
K �=I0

DI0K D−10 ⊗DKD−10

)n

Now, by Proposition 3.5 we know that each product DLD−1I0 is a combina-
tion of the tij ’s. Hence the formula above shows that Δ̃r maps O loc

q

(
G
/
P
)
into

Oq(G)
[
D−10

] ⊗̃O loc
q

(
G
/
P
)
.
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By scalar extension, Δ̃ uniquely extends to a map defined on the k(q)–vector
space k(q) ⊗kq Oq(G)

[
D−10

]
, which we still call Δ̃ . Its restriction to the similar

scalar extension of O loc
q

(
G
/
P
)
clearly coincides with the scalar extension of Δ̃r ,

hence we call it Δ̃r again. Finally, the restriction of Δ̃ to Oq(G)∨
[
D−10

]
and of Δ̃r

to Oq
(
G
/
P
)∨

both coincide — by construction — with the proper restrictions of

the coproduct of Ôq(G)∨ (cf. Corollary 4.8).
In the end, we are left to compute Δ̃r(μij) . The computation above gives

Δ̂(μij) = Δ̃r(μij) = (q−1)−1 Δ̃r(tij) =

= (q−1)−1∑
L

D1 ...bj ... r i
L D−10 ⊗DLD−10 ·

∑
n≥0

(−1)n
( ∑
K �=I0

DI0KD
−1
0 ⊗DKD−10

)n

Now, each left-hand side factor above belongs to Ôq(G)∨ ⊗̂ ̂Oq
(
G
/
P
)∨ , because

either DL ∈ J loc
G/P (if L �= I0 , with notation of §4.3), or D1 ...bj ... r i

L ∈ J (if L = I0 ,
with J := Ker

(
εOq(G)

)
). On right-hand side instead we have

DK ∈ J loc
G/P ⊆ (q − 1)Oq

(
G
/
P
)∨

, DI0K ∈ J ⊆ (q − 1)Oq(G)∨

whence — as D−10 ∈ Ôq(G)∨ and D−10 ∈ ̂Oq
(
G
/
P
)∨ — we get

∑
K �=I0

DI0K D−10 ⊗DKD−10 ∈ (q − 1)2 Ôq(G)∨ ⊗̂ ̂Oq
(
G
/
P
)∨

so that
∑
n≥0

(−1)n
( ∑
K �=I0

DI0K D−10 ⊗DKD−10

)n
∈ Ôq(G)∨ ⊗̂ ̂Oq

(
G
/
P
)∨

The final outcome is Δ̂(μij) ∈ Ôq(G)∨ ⊗̂ ̂Oq
(
G
/
P
)∨ for all i and all j . As

the μij ’s topologically generate
̂Oq
(
G
/
P
)∨ , this proves the claim. �

In the end, we get the main result of this paper.

Theorem 4.11. ̂Oq
(
G
/
P
)∨ is a quantum homogeneous G∗–space, which is

indeed an infinitesimal quantization of the homogeneous G∗–space p⊥ .

Proof. Just collect the previous results. By Proposition 4.9 and by the fact that
̂Oq
(
G
/
P
)∨∣∣∣
q=1

= Oq
(
G
/
P
)∨∣∣∣
q=1

we have that the specialization of ̂Oq
(
G
/
P
)∨

is U
(
p⊥

)
. Moreover we saw that ̂Oq

(
G
/
P
)∨ is a subalgebra, and left coideal, of

Ôq(G)∨ . Finally, we have
̂Oq
(
G
/
P
)∨ ⋂

(q − 1) Ôq(G)∨ = (q − 1) ̂Oq
(
G
/
P
)∨

as an easy consequence of Corollary 4.8 (c). Therefore, ̂Oq
(
G
/
P
)∨ is a quantum

homogeneous space, in the usual sense. As Ôq(G)∨ is a quantization of g∗ , we have
that ̂Oq

(
G
/
P
)∨ is in fact a quantum homogeneous space for G∗ ; of course, this is

a quantization of infinitesimal type. �
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Remark 4.12. All these computations can be repeated, step by step, taking
G = SLn and P = P1 .
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Some remarks on the action of quantum isometry groups

Debashish Goswami

Abstract. We give some new sufficient conditions on a spectral triple to
ensure that the quantum group of orientation and volume preserving isometries
defined in [6] has a C∗-action on the underlying C∗ algebra.

1. Introduction

Taking motivation from the work of Wang, Banica, Bichon and others (see
[20], [21], [2], [3], [4], [22] and references therein), we have given a definition of
quantum isometry group based on a ‘Laplacian’ in [11], and then followed it up
by a formulation of ‘quantum group of orientation preserving isometries’ in [6] (see
also [7], [9], [8], [5] for many explicit computations). The main result of [6] is that
given a spectral triple (of compact type) (A∞,H, D) and a positive unbounded op-
erator R commuting with D, there is a universal object in the category of compact
quantum groups which have a unitary representation (say U) on the Hilbert space
H w.r.t. which D is equivariant and the normal (co)-action αU of the quantum
group obtained by conjugation by the unitary representation leaves the weak clo-
sure of A∞ invariant and preserves a canonical functional τR called ‘R-twisted vol-
ume form’ described in [6]. The Woronowicz subalgebra of this universal quantum
group generated by the ‘matrix elements’ of αU (a), a ∈ A∞ is called ‘the quantum
group of orientation and R-twisted volume preserving isometries’ and denoted by
QISO+

R(D).
However, it is not clear from the definition and construction of this quantum

group whether αU is a C∗ -action of QISO+
R(D) on the C

∗ algebra generated by
A∞ (in the sense of Woronowicz and Podles). The problem is that to prove the
existence of a universal object in [6] we had to make use of the Hilbert space and
the strong operator topology coming from it. This is the reason why we demanded
only the stability of the von Neumann algebra generated by A∞ in the definition
of an isometric and orientation preserving quantum group action on the spectral
triple (A∞,H, D). In a sense, we worked in a suitable category of ‘measurable’
actions and could prove the existence of a universal object there. In the classical
situation, i.e. for isometric orientation preserving group actions on Riemannian
spin manifolds, the apparently weaker condition of measurability turns out to be
equivalent to a topological, in fact smooth action, thanks to the Sobolev’s theorem

The author gratefully acknowledges support obtained from the Indian National Academy of
Sciences through the grants for a project on ‘Noncommutative Geometry and Quantum Groups’.
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(see the proof of the converse part of Theorem 2.2 in [6]).The analogous question in
the noncommutative situation is to see whether αU (which is a-priori only a normal
action) is a C∗ action, and we shall show that under some assumptions which very
much resemble the conditions for the classical Sobolev’s theorem, we can indeed
answer this question in the affirmative. In fact, we have already given a number of
sufficient conditions for ensuring C∗-action in [6], and the conditions given in the
present article add to this list, strengthening our belief that the action of quantum
group of orientation preserving isometries is in general a C∗ action.

2. Preliminaries

2.1. Generalities on quantum groups and their action. We review some
basic facts about quantum groups (see, e.g. [25], [24], [1], [19] and references
therein). A compact quantum group (to be abbreviated as CQG from now on) is
given by a pair (S,Δ), where S is a unital separable C∗ algebra equipped with
a unital ∗-homomorphism Δ : S → S ⊗ S (where ⊗ denotes the injective tensor
product) satisfying
(ai) (Δ⊗ id) ◦Δ = (id⊗Δ) ◦Δ (co-associativity), and
(aii) the linear span of Δ(S)(S ⊗ 1) and Δ(S)(1⊗ S) are norm-dense in S ⊗ S.
It is well-known (see [25], [24]) that there is a canonical dense ∗-subalgebra S0
of S, consisting of the matrix coefficients of the finite dimensional unitary (co)-
representations (to be defined shortly) of S, and maps ε : S0 → C (co-unit) and
κ : S0 → S0 (antipode) defined on S0 which make S0 a Hopf ∗-algebra.

We say that the compact quantum group (S,Δ) (co)-acts on a unital C∗ algebra
B, if there is a unital ∗-homomorphism (called an action) α : B → B ⊗S satisfying
the following :
(bi) (α⊗ id) ◦ α = (id⊗Δ) ◦ α, and
(bii) the linear span of α(B)(1⊗ S) is norm-dense in B ⊗ S.
It is known (see [16]) that the above is equivalent to the existence of a dense unital
∗-subalgebra B0 of B on which the action α is an algebraic action of the Hopf
algebra S0, i.e. α maps B0 into B0 ⊗alg S0 and also (id⊗ ε) ◦ α = id on B0.

Such an action will be called a C∗ or topological action, to distinguish it from
a normal action on a von Neumann algebra, which we briefly mention later.

Definition 2.1. A unitary ( co ) representation of a compact quantum group
(S,Δ) on a Hilbert space H is a map U from H to the Hilbert S module H⊗S such
that the element Ũ ∈M(K(H)⊗S) given by Ũ(ξ⊗ b) = U(ξ)(1⊗ b) (ξ ∈ H, b ∈ S)
is a unitary satisfying

(id⊗Δ)Ũ = Ũ(12)Ũ(13),

where for an operator X ∈ B(H1 ⊗ H2) we have denoted by X12 and X13 the
operators X ⊗ IH2 ∈ B(H1 ⊗H2 ⊗H2), and Σ23X12Σ23 respectively (Σ23 being the
unitary on H1 ⊗H2 ⊗H2 which flips the two copies of H2).

Given a unitary representation U we shall denote by αU the ∗-homomorphism
αU (X) = Ũ(X ⊗ 1)Ũ∗ for X ∈ B(H). For a not necessarily bounded, densely
defined (in the weak operator topology) linear functional τ on B(H), we say that
αU preserves τ if αU maps a suitable (weakly) dense ∗-subalgebra (say D) in the
domain of τ into D ⊗alg S and (τ ⊗ id)(αU (a)) = τ(a)1S for all a ∈ D. When



98 DEBASHISH GOSWAMI

τ is bounded and normal, this is equivalent to (τ ⊗ id)(αU (a)) = τ(a)1S for all
a ∈ B(H).

We say that a (possibly unbounded) operator T on H commutes with U if T ⊗ I

(with the natural domain) commutes with Ũ . Sometimes such an operator will be
called U -equivariant.

We also need to consider von Neumann algebraic quantum group of compact
type. This is given by a von Neumann algebra M equipped with a normal coas-
sociative coproduct and also a faithful normal state (Haar state) invariant under
the coproduct. We refer to [18], [15] for more details, in fact for a locally compact
von Neumann algebraic quantum group, of which those of compact type form a
very special and relatively simple class. We shall actually be concerned with the
canonical von Neumann algebraic compact quantum group coming from the GNS
representation of a CQG (w.r.t. the Haar state). Let us mention that the Haar
state (say h) on a CQG S is not necessarily faithful, but it is faithful on the dense
∗-algebra S0 mentioned before. Let ρh : S → B(L2(h)) be the GNS representa-
tion. It is easily seen that the coproduct on S is implemented by the canonical
left regular unitary representation, say U , on this space, and then αU can be used
as the definition of a normal coassociative coproduct on the von Neumann algebra
M = ρh(S)′′ ⊆ B(L2(h)). Since the Haar state is a vector state in L2(h) and hence
normal invariant state, it is clear thatM is a compact type von Neumann algebraic
quantum group.

We remark here that the definition of unitary representation as well as (co)-
action has a natural analogue for such von Neumann algebraic quantum groups,
and it can be shown that any such representation decomposes into direct sum
of irreducible ones, and that any irreducible representation of a compact Hopf
von Neumann algebra is finite dimensional. The proofs of these facts are almost
the same as the proof in the C∗ case, with the only difference being that the
norm topology must be replaced by appropriate weak or strong operator topology.
Moreover, we remark that given a C∗-action α : A → A ⊗ S of the CQG S on a
separable unital C∗ algebra embedded in B(H) for some Hilbert space H, such that
the action α is implemented by some unitary representation U of the CQG S on
H, i.e. α = αU , we can canonically construct a normal action of the von Neumann
algebraic compact quantum group M as follows. First, replace the action α by
αh = (id⊗ ρh) ◦α, which is an action of ρh(S), and note that αh(a) = Uh(a⊗ 1)U∗h
for a ∈ A, where Uh := (id⊗ ρh)(U), a unitary representation of ρh(S) on H. Now
we use the right hand side of the above to extend the definition of αh to the whole
of B(H), in particular on N := A′′ ⊆ B(H), and observe that this indeed gives a
normal action ofM = ρh(A)′′ on N .

2.2. Quantum group of orientation and volume preserving isome-
tries. Next we give an overview of the definition of quantum isometry groups as
in [6].

Definition 2.2. A quantum family of orientation preserving isometries of the
spectral triple (A∞,H, D) (of compact type) is given by a pair (S, U) where S is a
separable unital C∗-algebra and U is a linear map from H to H ⊗ S such that Ũ
given by Ũ(ξ ⊗ b) = U(ξ)(1 ⊗ b) (ξ ∈ H, b ∈ S) extends to a unitary element of
M(K(H)⊗ S) satisfying the following
(i) for every state φ on S we have UφD = DUφ, where Uφ := (id⊗ φ)(Ũ);
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(ii) (id ⊗ φ) ◦ αU (a) ∈ (A∞)′′ ∀a ∈ A∞ for every state φ on S, where αU (x) :=
Ũ(x⊗ 1)Ũ∗ for x ∈ B(H).

In case the C∗-algebra S has a coproduct Δ such that (S,Δ) is a compact
quantum group and U is a unitary representation of (S,Δ) on H, we say that
(S,Δ) acts by orientation-preserving isometries on the spectral triple.

Consider the categoryQ with the object-class consisting of all quantum families
of orientation preserving isometries (S, U) of the given spectral triple, and the
set of morphisms Mor((S, U), (S ′, U ′)) being the set of unital ∗-homomorphisms
Φ : S → S ′ satisfying (id ⊗ Φ)(U) = U ′. We also consider another category
Q′ whose objects are triplets (S,Δ, U), where (S,Δ) is a compact quantum group
acting by orientation preserving isometries on the given spectral triple, with U being
the corresponding unitary representation. The morphisms are the homomorphisms
of compact quantum groups which are also morphisms of the underlying quantum
families of orientation preserving isometries. The forgetful functor F : Q′ → Q is
clearly faithful, and we can view F (Q′) as a subcategory of Q.

Unfortunately, in general Q′ or Q will not have a universal object, as discussed
in [6]. We have to restrict to a subcategory described below to get a universal object
in general, though in some cases. Fix a positive, possibly unbounded, operator R
on H which commutes with D and consider the weakly dense ∗-subalgebra ED of
B(H) generated by the rank-one operators of the form |ξ >< η| where ξ, η are
eigenvectors of D. Define τR(x) = Tr(Rx), x ∈ ED.

Definition 2.3. A quantum family of orientation preserving isometries (S, U)
of (A∞,H, D) is said to preserve the R-twisted volume, (simply said to be volume-
preserving if R is understood) if one has (τR⊗id)(αU (x)) = τR(x)1S for all x ∈ ED,
where ED and τR are as above.

If, furthermore, the C∗-algebra S has a coproduct Δ such that (S,Δ) is a CQG
and U is a unitary representation of (S,Δ) on H, we say that (S,Δ) acts by (R-
twisted) volume and orientation-preserving isometries on the spectral triple.

We shall consider the categories QR and Q′R which are the full subcategories
of Q and Q′ respectively, obtained by restricting the object-classes to the volume-
preserving quantum families.

The following result is proved in [6].

Theorem 2.4. The category QR of quantum families of volume and orientation
preserving isometries has a universal (initial) object, say (G̃, U0). Moreover, G̃ has
a coproduct Δ0 such that (G̃,Δ0) is a compact quantum group and (G̃,Δ0, U0) is a
universal object in the category Q′0. The representation U0 is faithful.

The Woronowicz subalgebra of G̃ generated by elements of the form {< (ξ ⊗
1), α0(a)(η ⊗ 1) >G̃ , a ∈ A∞}, where α0 ≡ αU0 and < ·, · >G̃ denotes the G̃-
valued inner product of the Hilbert module H⊗ G̃, is called the quantum group of
orientation and volume preserving isometries, and denoted by QISO+

R(D).

3. C∗-action of QISO+
R(D)

It is not clear from the definition and construction of QISO+
R(D) whether

the C∗ algebra A generated by A∞ is stable under α0 := αU0 in the sense that
(id⊗φ) ◦α0 maps A into A for every φ. Moreover, even if A is stable, the question
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remains whether α0 is a C∗-action of the CQG QISO+
R(D). Although we could not

yet decide whether the general answer to the above two questions are affirmative,
we have given a number of sufficient conditions for it in [6]. In fact, those conditions
already cover all classical compact Riemannian manifolds, and many noncommu-
tative ones as well. In what follows, we shall provide yet another set of sufficient
conditions, which will be valid for many interesting spectral triples constructed
from Lie group actions on C∗ algebras.

Suppose that there are compact Lie groups G̃, G with a (finite) covering map
γ : G̃→ G (which is group homomorphism), such that the following hold:
(a) There is a strongly continuous (w.r.t. the norm-topology) action of G on A, i.e.
g �→ βg(a) is norm-continuous for a ∈ cla.
(b) there exists a strongly continuous unitary representation Vg̃ of G̃ on H which
commutes with D and R, and we also have Vg̃aVg̃−1 = βg(a), where a ∈ A, g̃ ∈ G̃,
and g = γ(g̃).
(c) In the decomposition of the G-action β on A into irreducible subspaces, each
irreducible representation of G occurs with at most finite (including zero) multi-
plicity.
It follows from (b) that we can extend βg to the von Neumann algebra A′′ as a
strongly continuous (w.r.t. SOT) action of G. Indeed, for g ∈ G, a ∈ A′′, we
can choose any g̃ such that γ(g̃) = g, and also choose a bounded net an from A
converging in the S.O.T. to a. Clearly, βg(an) = Vg̃anV

−1
g̃ converges in S.O.T., and

the limit defines βg(a).
Since G is a Lie group, we choose a basis of its Lie algebra, say {χ1, ..., χN}.

Each χi induces closable derivation on A (w.r.t. the norm topology) as well as on
A′′ (w.r.t. SOT) which will be denoted by δi and δ̃i respectively. We do have natural
Frechet spaces E1 :=

⋂
n≥1,1≤ij≤N Dom(δi1 ...δin) and E2 :=

⋂
n≥1,1≤ij≤N Dom(δ̃i1 ...δ̃in),

and we assume that
(d) E1 and E2 coincide with A∞.

Remark 3.1. We have a feeling that in (c), it may be enough to require only the
finite dimensionality of the identity representation. Indeed, if the action is ergodic,
i.e. the identity representation has multiplicity one, it is known (see [14]) that (c)
does hold, and in fact, by Lemma 8.1.20 of [13] (see also [12]), one can also deduce
(d). This strongly indicates that if there is a generalization of the results obtained
in [14] for actions which have finite multiplicity of the identity representation, then
one may relax the condition (d), and also weaken (c). However, we are not aware
of any such generalization of [14].

Let Ĝ denote the (countable) set of equivalence classes of irreducible represen-
tations of G, and let Vπ denote the (finite dimensional by assumption) subspace of
A′′ which is the range of the ‘spectral projection’ Pπ corresponding to π, namely
x �→ ∫

G
cπ(g)βg(x)dg, cπ being the character of π. It is easy to see from the assump-

tions made that elements of Vπ actually belong to A∞, and clearly, this subspace
coincides with the range of the restriction of Pπ on A. Thus, in particular, the
linear span of Vπ, π ∈ Ĝ, is norm-dense in A as well.

Now we have the following:

Theorem 3.2. Under the above assumptions, A has the C∗-action of G =
QISO+

R(D) given by the restriction of α0 on A.



SOME REMARKS ON THE ACTION OF QUANTUM ISOMETRY GROUPS 101

Proof: As discussed in the previous section, we consider the reduced CQG ρh(G)
where ρh is the GNS representation of the Haar state, and denote the von Neumann
algebraic quantum group (of compact type) ρh(G)′′ byM. Clearly, α0 extends to a
normal action ofM on A′′ ⊆ B(H), given by α0(x) = U0(x⊗1)U∗0 ⊆ A′′⊗B(L2(h))
for x ∈ A′′, which decomposes into finite dimensional irreducible subspaces of A′′,
say {Ai, i ∈ I} (I some index set).

We claim that G can be identified with a quantum subgroup of G, in the sense
that C(G) is identified with a quotient of G by some Woronowicz ideal. To see
this, note that by assumption, Vg̃ (∀g̃ ∈ G̃) commutes with D and τR(Vg̃xV −1g̃ ) =
Tr(RVg̃xV −1g̃ ) = Tr(Vg̃RxV −1g̃ ) = τR(x), for all x ∈ ED, since Vg̃ is unitary com-
muting with R. Moreover, Vg̃AV −1g̃ ⊆ A′′. This implies, by the universality
of G̃, that there is a Woronowicz ideal Ĩ of G̃ such that C(G̃) ∼= G̃/Ĩ. Since
C(G) is a Woronowicz subalgebra of C(G̃) in the obvious way, via the injective
∗-homomorphism which sends f ∈ C(G) to f ◦ γ ∈ C(G̃), our claim follows.

it is clear that each Ai is G-invariant, i.e. βg(Ai) ⊆ Ai for all g.
Thus, we can further decompose Ai into G-irreducible subspaces, say Aπi , π ∈

Ĝ. Clearly, Aπi ⊆ Vπ ⊆ A∞. Thus, the restriction of α0 to the linear span of all the
Aπi ’s, say V (which is already a ∗-algebra by the general theory of CQG), is a Hopf
algebraic action of M. However, by definition of G = QISO+

R(D) it is clear that
α0|Aπi is actually a Hopf algebraic action of the CQG ρh(G). Moreover, since Aπi
is finite dimensional, the ‘matrix coefficients’ of α0|Aπi must come from the Hopf
algebra G0 mentioned in the previous section, on which ρh is faithful, and we thus
see, by identifying ρh(G0) with G0, that α0(Aπi ) ⊆ Aπi ⊗alg G0.

Now it suffices to prove the norm-density of the subspace V in A. To this
end, we note that, by the weak density of V in A′′, the range Vπ of Pπ |A′′ is the
weak closure of Pπ(V). But Pπ being finite dimensional, the range must coincide
with Pπ(V), which is nothing but the linear span of those (finitely many) Aπi which
are nonzero , i.e. for which the irreducible of type π occurs in the decomposition
of Ai. It follows that V contains Vπ for each π, hence (by the norm-density of
Span{Vπ, π ∈ Ĝ} in A) V is norm-dense in A. �

Examples:
We shall mention two classes of spectral triples which satisfy our assumptions.
(I) The assumptions of the above theorem are valid (with R = I) in case the given
spectral triple obtained from an ergodic action of a compact Lie group G on the
underlying C∗ algebra A. Let G have a Lie algebra basis {χ1, . . . , χN} and an
ergodic G-action on A. It is well-known (see [14]) that A has a canonical faith-
ful G-invariant trace, say τ , and if we embed A in the corresponding GNS space
L2(τ), the operator iδj (where δj is as before) extends to a self adjoint operator
on L2(τ). Taking H = L2(τ) ⊗ Cn, where n is the smallest positive integer such
that the Clifford algebra of dimension N admits a faithful representation as n× n
matrices, we consider D =

∑
j iδj ⊗ γj , γj being the Clifford matrices. As we have

already remarked, the smooth algebra A∞ corresponding to the G-action on A
satisfies our assumption (d), and it has the natural representation a �→ a⊗ 1Cn on
H. If the operator D has a self-adjoint extension with compact resolvent, it is clear
that (A∞,H, D) gives a spectral triple satisfying all the assumptions (a)-(d) with
G̃ = G, R = I and the unitary representation V being βg ⊗ ICn , where βg is the
given ergodic action of G on A, extended naturally as a unitary representation on
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L2(τ). It may be mentioned that the standard spectral triple on the noncommuta-
tive tori arises in this way.
(II) Another interesting class of examples satisfying assumptions (a)-(d) come from
those classical spectral triples for which the action of the group of orientation pre-
serving Riemannian isometries on C(M) (where M denotes the underlying mani-
fold) is such that any irreducible representation occurs with at most finite multi-
plicities in its decomposition. It is easy to see that the classical spheres and tori
are indeed such manifolds.
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Generic Hopf Galois extensions

Christian Kassel

Abstract. In previous joint work with Eli Aljadeff we attached a generic Hopf
Galois extension AαH to each twisted algebra αH obtained from a Hopf alge-
bra H by twisting its product with the help of a cocycle α. The algebra AαH
is a flat deformation of αH over a “big” central subalgebra BαH and can be
viewed as the noncommutative analogue of a versal torsor in the sense of Serre.
After surveying the results on AαH obtained with Aljadeff, we establish three
new results: we present a systematic method to construct elements of the com-
mutative algebra BαH , we show that a certain important integrality condition
is satisfied by all finite-dimensional Hopf algebras generated by grouplike and
skew-primitive elements, and we compute BαH in the case where H is the Hopf
algebra of a cyclic group.

1. Introduction

In this paper we deal with associative algebras αH obtained from a Hopf alge-
bra H by twisting its product by a cocycle α. This class of algebras, which for sim-
plicity we call twisted algebras, coincides with the class of so-called cleft Hopf Galois
extensions of the ground field; classical Galois extensions and strongly group-graded
algebras belong to this class. As has been stressed many times (see, e.g., [22]), Hopf
Galois extensions can be viewed as noncommutative analogues of principal fiber
bundles (also known as G-torsors), for which the rôle of the structural group is
played by a Hopf algebra. Hopf Galois extensions abound in the world of quantum
groups and of noncommutative geometry. The problem of constructing systemat-
ically Hopf Galois extensions of a given algebra for a given Hopf algebra and of
classifying them up to isomorphism has been addressed in a number of papers over
the last fifteen years; let us mention [4, 5, 10, 12, 13, 14, 15, 16, 17, 19, 20, 21].
This list is far from being exhaustive, but gives a pretty good idea of the activity
on this subject.

A new approach to this problem was recently considered in [2]; this approach
mixes commutative algebra with techniques from noncommutative algebra such
as polynomial identities. In particular, in that paper Eli Aljadeff and the author

2000 Mathematics Subject Classification. Primary (16W30, 16S35, 16R50) Secondary
(13B05, 13B22, 16E99, 58B32, 58B34, 81R50).

Key words and phrases. Hopf algebra, Galois extension, twisted product, generic, cocycle,
integrality.

Partially funded by ANR Project BLAN07-3−183390.

M. Marcolli, D. Parashar (Eds.), Quantum Groups and Noncommutative Spaces, 
DOI: 10.1007/978-3-8348-9831-9_6, © Vieweg+Teubner Verlag | Springer Fachmedien 
Wiesbaden GmbH 2011 



GENERIC HOPF GALOIS EXTENSIONS 105

attached two “universal algebras” UαH , AαH to each twisted algebra αH. The al-
gebra UαH , which was built out of polynomial identities satisfied by αH, was the
starting point of loc. cit. In the present paper we concentrate on the second al-
gebra AαH and survey the results obtained in [2] from the point of view of this
algebra. In addition, we present here two new results, namely Theorem 7.2 and
Proposition 8.1, as well as a computation in Subsection 4.3.

The algebra AαH is a “generic” version of αH and can be seen as a kind of
universal Hopf Galois extension. To construct AαH we introduce the generic cocycle
cohomologous to the original cocycle α and we consider the commutative algebra BαH
generated by the values of the generic cocycle and of its convolution inverse. Then
AαH is a cleft H-Galois extension of BαH . We call AαH the generic Galois extension
and BαH the generic base space. They satisfy the following remarkable properties.

Any “form” of αH is obtained from AαH by a specialization of BαH . Conversely,
under an additional integrality condition, any central specialization of AαH is a form
of αH. Thus, the set of algebra morphisms Alg(BαH ,K) parametrizes the isomor-
phism classes of K-forms of αH and AαH can be viewed as the noncommutative
analogue of a versal deformation space or a versal torsor in the sense of Serre
(see [11, Chap. I]). We believe that such versal deformation spaces are of interest
and deserve to be computed for many Hopf Galois extensions. Even when the Hopf
algebra H is a group algebra, in which case our theory simplifies drastically, not
many examples have been computed (see [1, 3] for results in this case).

Our approach also leads to the emergence of new interesting questions on Hopf
algebras such as Question 7.1 below. We give a positive answer to this question for
a class of Hopf algebras that includes the finite-dimensional ones that are generated
by grouplike and skew-primitive elements.

Finally we present a new systematic way to construct elements of the generic
base space BαH . These elements are the images of certain universal noncommuta-
tive polynomials under a certain tautological map. In the language of polynomial
identities, these noncommutative polynomials are central identities.

The paper is organized as follows. In Section 2 we recall the concept of a
Hopf Galois extension and discuss the classification problem for such extensions.
In Section 3 we define Hopf algebra cocycles and the twisted algebras αH. We
construct the generic cocycle and the generic base space BαH in Section 4; we also
compute BαH when H is the Hopf algebra of a cyclic group. In Section 5 we illus-
trate the theory with a nontrivial, still not too complicated example, namely with
the four-dimensional Sweedler algebra. In Section 6 we define the generic Hopf
Galois extension AαH and state its most important properties. Some results of Sec-
tion 6 hold under a certain integrality condition; in Section 7 we prove that this
condition is satisfied by a certain class of Hopf algebras. In Section 8 we present
the above-mentioned general method to construct elements of BαH . The contents of
Subsection 4.3 and of Sections 7 and 8 are new.

We consistently work over a fixed field k, over which all our constructions will
be defined. As usual, unadorned tensor symbols refer to the tensor product of k-
vector spaces. All algebras are assumed to be associative and unital, and all algebra
morphisms preserve the units. We denote the unit of an algebra A by 1A, or simply
by 1 if the context is clear. The set of algebra morphisms from an algebra A to an
algebra B will be denoted by Alg(A,B).
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2. Principal fiber bundles and Hopf Galois extensions

2.1. Hopf Galois extensions. A principal fiber bundle involves a group G
acting, say on the right, on a space X such that the map

X ×G→ X ×Y X ; (x, g) �→ (x, xg)

is an isomorphism (in the category of spaces under consideration). Here Y repre-
sents some version of the quotient space X/G and X ×Y X the fiber product.

In a purely algebraic setting, the group G is replaced by a Hopf algebra H with
coproduct Δ : H → H ⊗ H, coünit ε : H → k, and antipode S : H → H. In
the sequel we shall make use of the Heyneman-Sweedler sigma notation (see [23,
Sect. 1.2]): we write

Δ(x) =
∑
(x)

x(1) ⊗ x(2)

for the coproduct of x ∈ H and

Δ(2)(x) =
∑
(x)

x(1) ⊗ x(2) ⊗ x(3)

for the iterated coproduct Δ(2) = (Δ⊗ idH) ◦Δ = (idH ⊗Δ) ◦Δ, and so on.
The G-space X is replaced by an algebra A carrying the structure of an H-

comodule algebra. Recall that an algebra A is an H-comodule algebra if it has a
right H-comodule structure whose coaction δ : A→ A⊗H is an algebra morphism.

The space of cöınvariants of an H-comodule algebra A is the subspace AH of A
defined by

AH = {a ∈ A | δ(a) = a⊗ 1} .
The subspace AH is a subalgebra and a subcomodule of A. We then say that
AH ⊂ A is an H-extension or that A is an H-extension of AH . An H-extension is
called central if AH lies in the center of A.

An H-extension B = AH ⊂ A is said to be H-Galois if A is faithfully flat as a
left B-module and the linear map β : A⊗B A→ A⊗H defined for a, b ∈ A by

a⊗ b �→ (a⊗ 1H) δ(b)
is bijective. For a survey of Hopf Galois extensions, see [18, Chap. 8].

Example 2.1. The group algebra H = k[G] of a group G is a Hopf algebra
with coproduct, coünit, and antipode respectively given for all g ∈ G by

Δ(g) = g ⊗ g , ε(g) = 1 , S(g) = g−1 .

This is a pointed Hopf algebra. It is well known (see [7, Lemma 4.8]) that an
H-comodule algebra A is the same as a G-graded algebra

A =
⊕
g∈G

Ag .

The coaction δ : A → A ⊗H is given by δ(a) = a ⊗ g for a ∈ Ag and g ∈ G. We
have AH = Ae, where e is the neutral element of G. Such a algebra is an H-Galois
extension of Ae if and only if the product induces isomorphisms

Ag ⊗Ae Ah ∼= Agh (g, h ∈ G) .
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2.2. (Uni)versal extensions. An isomorphism f : A → A′ of H-Galois ex-
tensions is an isomorphism of the underlying H-comodule algebras, i.e., an algebra
morphism satisfying

δ ◦ f = (f ⊗ idH) ◦ δ .
Such an isomorphism necessarily sends AH onto A′H .

For any Hopf algebra H and any commutative algebra B, let CGalH(B) denote
the set of isomorphism classes of central H-Galois extensions of B. It was shown
in [13, Th. 1.4] (see also [14, Prop. 1.2]) that any morphism f : B → B′ of
commutative algebras induces a functorial map

f∗ : CGalH(B)→ CGalH(B′)

given by f∗(A) = B′ ⊗B A for all H-Galois extensions A of B. The set CGalH(B)
is also a contravariant functor in H (see [14, Prop. 1.3]), but we will not make use
of this fact here.

Recall that principal fiber bundles are classified as follows: there is a principal
G-bundle EG → BG, called the universal G-bundle such that any principal G-
bundle X → Y is obtained from pulling back the universal one along a continuous
map f : Y → BG, which is unique up to homotopy.

By analogy, a (uni)versal H-Galois extension would be a central H-Galois
extension BH ⊂ AH such that for any commutative algebra B and any central
H-Galois extension A of B there is a (unique) morphism of algebras f : BH → B
such that f∗(AH) ∼= A. In other words, the map

Alg(BH , B)→ CGalH(B) ; f �→ f∗(AH)
would be surjective (bijective). We have no idea if such (uni)versal H-Galois ex-
tensions exist for general Hopf algebras.

In the sequel, we shall only consider the case where B = k and the H-Galois
extensions of k are cleft. Such extensions coincide with the twisted algebras αH
introduced in the next section. To such an H-Galois extension we shall asso-
ciate a central H-Galois extension BαH ⊂ AαH , such that the functor Alg(BαH ,−)
parametrizes the “forms” of αH. In this way we obtain an H-Galois extension
that is versal for a family of H-Galois extensions close to αH in some appropriate
étale-like Grothendieck topology.

3. Twisted algebras

The definition of the twisted algebras αH uses the concept of a cocycle, which
we now recall.

3.1. Cocycles. Let H be a Hopf algebra and B a commutative algebra. We
use the following terminology. A bilinear map α : H × H → B is a cocycle of H
with values in B if∑

(x),(y)

α(x(1), y(1))α(x(2)y(2), z) =
∑

(y),(z)

α(y(1), z(1))α(x, y(2)z(2))

for all x, y, z ∈ H. In the literature, what we call a cocycle is often referred to as a
“left 2-cocycle.”

A bilinear map α : H ×H → B is said to be normalized if

(3.1) α(x, 1H) = α(1H , x) = ε(x) 1B
for all x ∈ H.
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Two cocycles α, β : H × H → B are said to be cohomologous if there is an
invertible linear map λ : H → B such that

(3.2) β(x, y) =
∑

(x),(y)

λ(x(1))λ(y(1))α(x(2), y(2))λ−1(x(3)y(3))

for all x, y ∈ H. Here “invertible” means invertible with respect to the convolution
product and λ−1 : H → B denotes the inverse of λ. We write α ∼ β if α, β are
cohomologous cocycles. The relation ∼ is an equivalence relation on the set of
cocycles of H with values in B.

3.2. Twisted product. Let H be a Hopf algebra, B a commutative algebra,
and α : H ×H → B be a normalized cocycle with values in B. From now on, all
cocycles are assumed to be invertible with respect to the convolution product.

Let uH be a copy of the underlying vector space of H. Denote the identity map
from H to uH by x �→ ux (x ∈ H).

We define the twisted algebra B ⊗ αH as the vector space B ⊗ uH equipped
with the associative product given by

(3.3) (b⊗ ux)(c⊗ uy) =
∑

(x),(y)

bc α(x(1), y(1))⊗ ux(2)y(2)

for all b, c ∈ B and x, y ∈ H. Since α is a normalized cocycle, 1B ⊗ u1 is the unit
of B ⊗ αH.

The algebra A = B ⊗ αH is an H-comodule algebra with coaction

δ = idB ⊗Δ : A = B ⊗H → B ⊗H ⊗H = A⊗H .

The subalgebra of cöınvariants of B ⊗ αH coincides with B ⊗ u1. Using (3.1)
and (3.3), it is easy to check that this subalgebra lies in the center of B ⊗ αH.

It is well known that each twisted algebraB⊗αH is a centralH-Galois extension
of B. Actually, the class of twisted algebra coincides with the class of so-called
central cleft H-Galois extensions; see [6], [9], [18, Prop. 7.2.3].

An important special case of this construction occurs when B = k is the ground
field and α : H ×H → k is a cocycle of H with values in k. In this case, we simply
call α a cocycle of H. Then the twisted algebra k⊗αH, which we henceforth denote
by αH, coincides with uH equipped with the associative product

ux uy =
∑

(x),(y)

α(x(1), y(1))ux(2)y(2)

for all x, y ∈ H. The twisted algebras of the form αH coincide with the so-called
cleft H-Galois objects, which are the cleft H-Galois extensions of the ground field k.
We point out that for certain Hopf algebras H all H-Galois objects are cleft, e.g.,
if H is finite-dimensional or is a pointed Hopf algebra.

When H = k[G] is the Hopf algebra of a group as in Example 2.1, then a
G-graded algebra A =

⊕
g∈G Ag is an H-Galois object if and only if AgAh = Agh

for all g, h ∈ G and dimAg = 1 for all g ∈ G. Such an H-extension is cleft and
thus isomorphic to αH for some normalized invertible cocycle α.

3.3. Isomorphisms of twisted algebras. By [6, 8] there is an isomorphism
of H-comodule algebras between the twisted algebras αH and βH if and only if
the cocycles α and β are cohomologous in the sense of (3.2). It follows that the
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set of isomorphism classes of cleft H-Galois objects is in bijection with the set of
cohomology classes of invertible cocycles of H.

When the Hopf algebra H is cocommutative, then the convolution product of
two cocycles is a cocycle and the set of cohomology classes of invertible cocycles
of H is a group. This applies to the case H = k[G]; in this case the group of
cohomology classes of invertible cocycles of k[G] is isomorphic to the cohomology
group H2(G, k×) of the group G with values in the group k× of invertible elements
of k.

In general, the convolution product of two cocycles is not a cocycle and thus the
set of cohomology classes of invertible cocycles is not a group. One of the raisons
d’être of the constructions presented here and in [2] lies in the lack of a suitable
cohomology group governing the situation. We come up instead with the generic
Galois extension defined below.

4. The generic cocycle

Let H be a Hopf algebra and α : H ×H → k an invertible normalized cocycle.

4.1. The cocycle σ. Our first aim is to construct a “generic” cocycle of H
that is cohomologous to α.

We start from the equation (3.2)

β(x, y) =
∑

(x),(y)

λ(x(1))λ(y(1))α(x(2), y(2))λ−1(x(3)y(3))

expressing that a cocycle β is cohomologous to α, and the equation

(4.1)
∑
(x)

λ(x(1))λ−1(x(2)) =
∑
(x)

λ−1(x(1))λ(x(2)) = ε(x) 1

expressing that the linear form λ is invertible with inverse λ−1. To obtain the
generic cocycle, we proceed to mimic (3.2), replacing the scalars λ(x), λ−1(x) re-
spectively by symbols tx, t−1x satisfying (4.1).

Let us give a meaning to the symbols tx, t−1x . To this end we pick another copy
tH of the underlying vector space of H and denote the identity map from H to tH
by x �→ tx (x ∈ H).

Let S(tH) be the symmetric algebra over the vector space tH . If {xi}i∈I is a
basis of H, then S(tH) is isomorphic to the polynomial algebra over the indetermi-
nates {txi}i∈I .

By [2, Lemma A.1] there is a unique linear map x �→ t−1x from H to the field
of fractions FracS(tH) of S(tH) such that for all x ∈ H,

(4.2)
∑
(x)

tx(1) t
−1
x(2)

=
∑
(x)

t−1x(1) tx(2) = ε(x) 1 .

Equation (4.2) is the symbolic counterpart of (4.1).
Mimicking (3.2), we define a bilinear map

σ : H ×H → FracS(tH)

with values in the field of fractions FracS(tH) by the formula

(4.3) σ(x, y) =
∑

(x),(y)

tx(1) ty(1) α(x(2), y(2)) t
−1
x(3)y(3)
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for all x, y ∈ H. The bilinear map σ is a cocycle of H with values in FracS(tH);
by definition, it is cohomologous to α. We call σ the generic cocycle attached to α.

The cocycle α being invertible, so is σ, with inverse σ−1 given for all x, y ∈ H
by

(4.4) σ−1(x, y) =
∑

(x),(y)

tx(1)y(1) α
−1(x(2), y(2)) t−1x(3) t

−1
y(3)

,

where α−1 is the inverse of α.
In the case where H = k[G] is the Hopf algebra of a group, the generic cocycle

and its inverse have the following simple expressions:

(4.5) σ(g, h) = α(g, h)
tg th
tgh

and σ−1(g, h) =
1

α(g, h)
tgh
tg th

for all g, h ∈ G.

4.2. The generic base space. Let BαH be the subalgebra of FracS(tH) gen-
erated by the values of the generic cocycle σ and of its inverse σ−1. For reasons
that will become clear in Section 6, we call BαH the generic base space.

Since BαH is a subalgebra of the field FracS(tH), it is a domain and the tran-
scendence degree of the field of fractions of BαH cannot exceed the dimension of H.

In the case where H is finite-dimensional, BαH is a finitely generated algebra.
One can obtain a presentation of BαH by generators and relations using standard
monomial order techniques of commutative algebra.

4.3. A computation. Let H = k[Z] be the Hopf algebra of the group Z of
integers. We write Z multiplicatively and identify its elements with the powers xm

of a variable x (m ∈ Z).
We take α to be the trivial cocycle, i.e., α(g, h) = 1 for all g, h ∈ Z (this is no

restriction sinceH2(Z, k×) = 0). In this case the symmetric algebra S(tH) coincides
with the polynomial algebra k[tm |m ∈ Z]. Set ym = tm/t

m
1 for each m ∈ Z. We

have y1 = 1 and y0 = t0.
By (4.5), the generic cocycle is given by

σ(xm, xn) =
tmtn
tm+n

for all m,n ∈ Z. This can be reformulated as
σ(xm, xn) =

ymyn
ym+n

.

The inverse of σ is given by

σ−1(xm, xn) =
1

σ(xm, xn)
=

ym+n

ymyn
.

A simple computation yields the following expressions of ym in the values of σ
and σ−1:

ym =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

σ−1(xm−1, x)σ−1(xm−2, x) · · ·σ−1(x, x) if m ≥ 2 ,
1 if m = 1 ,
σ(x0, x0) if m = 0 ,
σ(xm, x−m)σ(x−m−1, x)σ(x−m−2, x) · · ·σ(x, x)σ(x0, x0) if m ≤ −1 .
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It follows that the elements y±1m belong to BαH for all m ∈ Z−{1} and generate this
algebra. It is easy to check that the family (ym)m�=1 is algebraically independent,
so that BαH is the Laurent polynomial algebra

BαH = k[ y±1m |m ∈ Z− {1} ] .
We deduce the algebra isomorphism

(4.6) k[t±1m |m ∈ Z] ∼= BαH [t±11 ] .

If in the previous computations we replace Z by the cyclic group Z/N , where N
is some integer N ≥ 2, then the algebra BαH is again a Laurent polynomial algebra:

BαH = k[y±10 , y±12 , . . . , y±1N ]

where y0, y2, . . . , yN−1 are defined as above and yN = t0/t
N
1 . In this case, the

algebra k[t±10 , t±11 , . . . , t±1N−1] is an integral extension of BαH :
k[t±10 , t±11 , . . . , t±1N−1] ∼= BαH [t1]/(tN1 − y0/yN ) .

5. The Sweedler algebra

We now illustrate the constructions of Section 4 on Sweedler’s four-dimensional
Hopf algebra. We assume in this section that the characteristic of the ground field k
is different from 2.

The Sweedler algebra H4 is the algebra generated by two elements x, y subject
to the relations

x2 = 1 , xy + yx = 0 , y2 = 0 .
It is four-dimensional. As a basis of H4 we take the set {1, x, y, z}, where z = xy.

The algebra H4 carries the structure of a Hopf algebra with coproduct, coünit,
and antipode given by

Δ(1) = 1⊗ 1 , Δ(x) = x⊗ x ,
Δ(y) = 1⊗ y + y ⊗ x , Δ(z) = x⊗ z + z ⊗ 1 ,
ε(1) = ε(x) = 1 , ε(y) = ε(z) = 0 ,
S(1) = 1 , S(x) = x ,
S(y) = z , S(z) = −y .

By definition, the symbols tx and t−1x satisfy the equations

t1 t
−1
1 = 1 , tx t

−1
x = 1 ,

t1 t
−1
y + ty t

−1
x = 0 , tx t

−1
z + tz t

−1
1 = 0 .

Hence,

t−11 =
1
t1

, t−1x =
1
tx

, t−1y = − ty
t1tx

, t−1z = − tz
t1tx

.

Masuoka [15] showed that any cleft H4-Galois object has, up to isomorphism,
the following presentation:

αH4 = k〈ux, uy |u2x = a , uxuy + uyux = b , u2y = c 〉
for some scalars a, b, c with a �= 0. To indicate the dependence on the parameters
a, b c, we denote αH4 by Aa,b,c.

It is easy to check that the center of Aa,b,c is trivial for all values of a, b, c.
Moreover, the algebra Aa,b,c is simple if and only b2 − 4ac �= 0. If b2 − 4ac = 0,
then Aa,b,c is isomorphic as an algebra to H4; the latter is not semisimple since the
two-sided ideal generated by y is nilpotent.
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The generic cocycle σ attached to α has the following values:

σ(1, 1) = σ(1, x) = σ(x, 1) = t1 ,

σ(1, y) = σ(y, 1) = σ(1, z) = σ(z, 1) = 0 ,

σ(x, x) = at2xt
−1
1 ,

σ(y, y) = σ(z, y) = −σ(y, z) = (at2y + bt1ty + ct21) t
−1
1 ,

σ(x, y) = −σ(x, z) = (atxty − t1tz) t−11 ,

σ(y, x) = σ(z, x) = (bt1tx + atxty + t1tz) t−11 ,

σ(z, z) = −(t2z + btxtz + act2x) t
−1
1 ,

The values of the inverse σ−1 are equal to the values of σ possibly divided by
positive powers of t1 and of σ(x, x) = at2xt

−1
1 .

By definition, BαH4
is the subalgebra of FracS(tH4) generated by the values of

σ and σ−1. If we set

(5.1)
E = t1 , R = a t2x , S = a t2y + b t1ty + c t21 ,

T = tx (2a ty + b t1) , U = a t2x (2 tz + b tx) ,

then we can reformulate the above (nonzero) values of σ as follows:

σ(1, 1) = σ(1, x) = σ(x, 1) = E ,

σ(x, x) =
R

E
,

σ(y, y) = σ(z, y) = −σ(y, z) = S

E
,

σ(x, y) = −σ(x, z) = RT − EU

2ER
,

σ(y, x) = σ(z, x) =
RT + EU

2ER
,

σ(z, z) =
aU2 − (b2 − 4ac)R3

4aER2
.

From the previous equalities we conclude that E±1, R±1, S, T , U belong to BαH4

and that they generate it as an algebra.
In [2, Sect. 10] we obtained the following presentation of BαH4

by generators
and relations.

Theorem 5.1. We have

BαH4
∼= k[E±1, R±1, S, T, U ]/(Pa,b,c) ,

where

Pa,b,c = T 2 − 4RS − b2 − 4ac
a

E2R .

It follows from the previous theorem that the algebra morphisms from BαH4

to a field K containing k are in one-to-one correspondence with the quintuples
(e, r, s, t, u) ∈ K5 verifying e �= 0, r �= 0, and the equation

(5.2) t2 − 4rs = b2 − 4ac
a

e2r .

In other words, the set of K-points of BαH4
is the hypersurface of equation (5.2)

in K× ×K× ×K ×K ×K.
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6. The generic Galois extension

As in Section 4, we consider a Hopf algebra H and an invertible normalized
cocycle α : H ×H → k. Let αH be the corresponding twisted algebra.

6.1. The algebra AαH . By the definition of the commutative algebra BαH given
in Section 4.2, the generic cocycle σ takes its values in BαH . Therefore we may apply
the construction of Section 3.2 and consider the twisted algebra

AαH = BαH ⊗ σH .

The product of AαH is given for all b, c ∈ BαH and x, y ∈ H by

(b⊗ ux)(c⊗ uy) =
∑

(x),(y)

bc σ(x(1), y(1))⊗ ux(2)y(2) .

We call AαH the generic Galois extension attached to the cocycle α.
The subalgebra of cöınvariants of AαH is equal to BαH ⊗ u1; this subalgebra is

central in AαH . Therefore, AαH is a central cleft H-Galois extension of BαH .
By [2, Prop. 5.3], there is an algebra morphism χ0 : BαH → k such that

χ0

(
σ(x, y)

)
= α(x, y) and χ0

(
σ−1(x, y)

)
= α−1(x, y)

for all x, y ∈ H. Consider the maximal ideal m0 = Ker(χ0 : BαH → k) of BαH .
According to [2, Prop. 6.2], there is an isomorphism of H-comodule algebras

AαH/m0AαH ∼= αH .

Thus, AαH is a flat deformation of αH over the commutative algebra BαH .
Certain properties of αH lift to the generic Galois extension AαH such as the

one recorded in the following result of [2], where FracBαH stands for the field of
fractions of BαH .

Theorem 6.1. Assume that the ground field k is of characteristic zero and the
Hopf algebra H is finite-dimensional. If the algebra αH is simple (resp. semisimple),
then so is

FracBαH ⊗BαH AαH = FracBαH ⊗ σH .

6.2. Forms. We have just observed that αH ∼= AαH/m0AαH for some maxi-
mal ideal m0 of BαH . We may now wonder what can be said of the other central
specializations of AαH , that is of the quotients AαH/mAαH , where m is an arbitrary
maximal ideal of BαH . To answer this question, we need the following terminology.

Let β : H ×H → K be a normalized invertible cocycle with values in a field K
containing the ground field k. We say that the twisted H-comodule algebra K⊗βH
is a K-form of αH if there is a field L containing K and an L-linear isomorphism
of H-comodule algebras

L⊗K (K ⊗ βH) ∼= L⊗k αH .

We now state two theorems relating forms of αH to central specializations of
the generic Galois extension AαH . For proofs, see [2, Sect. 7].

Theorem 6.2. For any K-form K ⊗ βH of αH, where β : H × H → K is
a normalized invertible cocycle with values in an extension K of k, there exist an
algebra morphism χ : BαH → K and a K-linear isomorphism of H-comodule algebras

Kχ ⊗BαH AαH ∼= K ⊗ βH .
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Here Kχ stands for K equipped with the BαH-module structure induced by the
algebra morphism χ : BαH → K. We have

Kχ ⊗BαH AαH ∼= AαH/mχAαH ,

where mχ = Ker(χ : BαH → K).
There is a converse to Theorem 6.2; it requires an additional condition.

Theorem 6.3. If FracS(tH) is integral over the subalgebra BαH , then for any
field K containing k and any algebra morphism χ : BαH → K, the H-comodule
K-algebra Kχ ⊗BαH AαH = AαH/mχAαH is a K-form of αH.

It follows that if FracS(tH) is integral over BαH , then the map
Alg(BαH ,K) −→ K- Forms(αH)

χ �−→ Kχ ⊗BαH AαH = AαH/mχAαH
is a surjection from the set of algebra morphisms BαH → K to the set of isomorphism
classes of K-forms of αH. Thus the set Alg(BαH ,K) parametrizes the K-forms
of αH. Using terminology of singularity theory, we say that the Galois extension
BαH ⊂ AαH is a versal deformation space for the forms of αH (we would call this
space universal if the above surjection was bijective).

By Theorem 6.1, the central localization FracBαH ⊗BαH AαH is a simple algebra
if the algebra αH is simple. Under the integrality condition above, we have the
following related result (see [2, Th. 7.4]).

Theorem 6.4. If FracS(tH) is integral over BαH and if the algebra αH is simple,
then AαH is an Azumaya algebra with center BαH .

This means that AαH/mAαH is a simple algebra for any maximal ideal m of BαH .
For instance, any full matrix algebra with entries in a commutative algebra is
Azumaya.

Example 6.5. For the Sweedler algebra H4, we proved in [2, Sect. 10] that
AαH4

is given as an algebra by

(6.1) AαH4
∼= BαH4

〈X,Y 〉/(X2 −R , Y 2 − S , XY + Y X − T ) ,

where BαH4
is as in Theorem 5.1 and the elements R,S, T of BαH4

are defined by (5.1).
As an BαH4

-module, AαH4
is free with basis {1, X, Y,XY }.
7. The integrality condition

In view of Theorem 6.3 it is natural to ask the following question.

Question 7.1. Under which condition on the pair (H,α) is FracS(tH) integral
over the subalgebra BαH?

Question 7.1 has a negative answer in the case where H = k[Z] and α is
the trivial cocycle. Indeed, it follows from (4.6) that FracS(tH) is then a pure
transcendental extension (of degree one) of the field of fractions of BαH .

We give a positive answer in the following important case.

Theorem 7.2. Let H be a Hopf algebra generated as an algebra by a set Σ of
grouplike and skew-primitive elements such that the grouplike elements of Σ are of
finite order and generate the group of grouplike elements of H and such that each
skew-primitive element of Σ generates a finite-dimensional subalgebra of H. Then
FracS(tH) is integral over the subalgebra BαH for every cocycle α of H.
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Theorem 7.2 implies a positive answer to Question 7.1 for any finite-dimensional
Hopf algebra generated by grouplike and skew-primitive elements. It is conjectured
that all finite-dimensional pointed Hopf algebras are generated by grouplike and
skew-primitive elements; if this conjecture holds, then Question 7.1 has a positive
answer for any finite-dimensional Hopf algebra that is pointed.

Recall that g ∈ H is grouplike if Δ(g) = g ⊗ g; it then follows that ε(g) = 1.
The inverse of a grouplike element and the product of two grouplike elements are
grouplike. An element x ∈ H is skew-primitive if

(7.1) Δ(x) = g ⊗ x+ x⊗ h

for some grouplike elements g, h ∈ H; this implies ε(x) = 0. The product of a
skew-primitive element by a grouplike element is skew-primitive.

In order to prove Theorem 7.2, we need the following lemma.

Lemma 7.3. If x[1], . . . , x[n] are elements of H, then

tx[1]···x[n] =
∑

x[1],...,x[n]

σ−1(x[1](1) · · ·x[n−1](1) , x
[n]
(1))×

× σ−1(x[1](2) · · ·x[n−2](2) , x
[n−1]
(2) ) · · ·σ−1(x[1](n−1), x

[2]
(n−1))×

× t
x
[1]
(n)

t
x
[2]
(n)
· · · t

x
[n−1]
(3)

t
x
[n]
(2)
×

× α(x[1](n+1), x
[2]
(n+1)) · · ·α(x[1](2n−2) x

[2]
(2n−2) · · ·x[n−2](6) , x

[n−1]
(4) )×

× α(x[1](2n−1) x
[2]
(2n−1) · · ·x[n−1](5) , x

[n]
(3)) .

Proof. We prove the formula by induction on n. When n = 2 it reduces to

(7.2) txy =
∑

(x),(y)

σ−1(x(1), y(1)) tx(2) ty(2) α(x(3), y(3))

for x, y ∈ H. Let us first prove (7.2). By (4.4) the right-hand side of (7.2) is equal
to

∑
(x),(y)

tx(1)y(1) α
−1(x(2), y(2)) t−1x(3) t

−1
y(3)

ty(4)︸ ︷︷ ︸
tx(4) α(x(5), y(5))

=
∑

(x),(y)

tx(1)y(1) α
−1(x(2), y(2)) t−1x(3) tx(4)︸ ︷︷ ︸

α(x(5), y(3))

=
∑

(x),(y)

tx(1)y(1) α
−1(x(2), y(2)) α(x(3), y(3))︸ ︷︷ ︸

=
∑

(x),(y)

tx(1)y(1) ε(x(2)) ε(y(2))

=
∑

(x),(y)

tx(1)y(1) ε(x(2)y(2)) = txy .

Let us assume that Lemma 7.3 holds for all n-tuples of H and consider a
sequence (x[1], x[2], . . . , x[n+1]) of n+1 elements of H. By the induction hypothesis
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and by (7.2), tx[1]x[2]···x[n+1] = t(x[1]x[2])···x[n+1] is equal to
∑

x[1],x[2],...,x[n+1]

σ−1
(
(x[1](1)x

[2]
(1)) · · ·x[n](1), x

[n+1]
(1)

)×

× σ−1(
(
x
[1]
(2)x

[2]
(2)) · · ·x[n−1](2) , x

[n]
(2)

) · · ·σ−1(x[1](n−1)x
[2]
(n−1), x

[3]
(n−1))×

× t
x
[1]
(n)x

[2]
(n)

t
x
[3]
(n)
· · · t

x
[n]
(3)

t
x
[n+1]
(2)
×

× α(x[1](n+1)x
[2]
(n+1), x

[3]
(n+1)) · · ·

· · ·α((x[1](2n−2) x
[2]
(2n−2))x

[3]
(2n−2) · · ·x[n−1](6) , x

[n]
(4)

)×
× α

(
(x[1](2n−1) x

[2]
(2n−1))x

[3]
(2n−1) · · ·x[n](5), x

[n+1]
(3)

)

=
∑

x[1],x[2],...,x[n+1]

σ−1(x[1](1)x
[2]
(1) · · ·x[n](1), x

[n+1]
(1) )σ−1(x[1](2)x

[2]
(2) · · ·x[n−1](2) , x

[n]
(2)) · · ·

· · ·σ−1(x[1](n−1)x
[2]
(n−1), x

[3]
(n−1))σ

−1(x[1](n), x
[2]
(n))×

× t
x
[1]
(n+1)

t
x
[2]
(n+1)

t
x
[3]
(n)
· · · t

x
[n]
(3)

t
x
[n+1]
(2)
×

× α(x[1](n+2), x
[2]
(n+2))α(x

[1]
(n+3)x

[2]
(n+3), x

[3]
(n+1)) · · ·

· · ·α(x[1](2n) x
[2]
(2n) x

[3]
(2n−2) · · ·x[n−1](6) , x

[n]
(4))×

× α(x[1](2n+1) x
[2]
(2n+1) x

[3]
(2n−1) · · ·x[n](5), x

[n+1]
(3) ) ,

which is the desired formula for n+ 1 elements. �

Proof of Theorem 7.2. Let A be the integral closure of BαH in FracS(tH).
To prove the theorem it suffices to establish that each generator tz of S(tH) belongs
to A.

We start with the unit of H. By [2, Lemma 5.1], t1 = σ(1, 1). Thus t1 belongs
to BαH , hence to A.

Let g be a grouplike element of the generating set Σ. By hypothesis, there is
an integer n ≥ 2 such that gn = 1. We apply Lemma 7.3 to x[1] = · · · = x[n] = g.
Since any iterated coproduct Δ(p) applied to g yields

(7.3) Δ(p)(g) = g ⊗ g ⊗ · · · ⊗ g ,

where the right-hand side is the tensor product of p copies of g, we obtain

(7.4) tgn = σ−1(gn−1, g)σ−1(gn−2, g) · · ·σ−1(g, g) tng×
× α(g, g) · · ·α(gn−2, g)α(gn−1, g) .

Since the values of an invertible cocycle on grouplike elements are invertible ele-
ments, since tgn = t1, and since σ−1(g, h) = 1/σ(g, h) for all grouplike elements
g, h, Formula (7.4) implies

tng = t1
σ(gn−1, g)σ(gn−2, g) · · ·σ(g, g)
α(g, g) · · ·α(gn−2, g)α(gn−1, g) .

The right-hand side belongs to BαH . It follows that tg is in A for each grouplike
element of Σ.

Since the grouplike elements of Σ are of finite order and generate the group of
grouplike elements of H, any grouplike element g of H is a product g = g[1] · · · g[n]
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of grouplike elements of Σ for which we have just established that tg[1] , . . . , tg[n]

belong to A. It then follows from Lemma 7.3 and (7.3) that

tg[1]···g[n] = κ(g[1], . . . , g[n]) tg[1] tg[2] · · · tg[n−1] tg[n] ,

where κ(g[1], . . . , g[n]) is the invertible element of BαH given by

κ(g[1], . . . , g[n])

=
α(g[1], g[2]) · · ·α(g[1] g[2] · · · g[n−2], g[n−1])α(g[1] g[2] · · · g[n−1], g[n])
σ(g[1] g[2] · · · g[n−1], g[n])σ(g[1] g[2] · · · g[n−2], g[n−1]) · · ·σ(g[1], g[2]) .

Therefore, tg ∈ A for every grouplike element of H.
We next show that tx belongs to A for every skew-primitive element x of Σ. It

is easy to check that if x satisfies (7.1), then for all p ≥ 2,

(7.5) Δ(p)(x) = g⊗p ⊗ x+
p−1∑
i=1

g⊗(p−i) ⊗ x⊗ h⊗i + x⊗ h⊗p .

Thus the iterated coproduct of any skew-primitive element x is a sum of tensor
product of elements, all of which are grouplike, except for exactly one, which is x. It
then follows from Lemma 7.3 and (7.5) that for each n ≥ 1 the element txn is a linear
combination with coefficients in BαH of monomials of the form tg1tg2 · · · tgn−ptpx,
where 0 ≤ p ≤ n and g1, . . . , gn−p are grouplike elements. It is easily checked
that in this linear combination there is a unique monomial of the form tnx whose
coefficient is the invertible element of BαH

σ−1(gn−1, g)σ−1(gn−2, g) · · ·σ−1(g, g)α(h, h) · · ·α(hn−2, h)α(hn−1, h) .
Since tg belongs to A for any grouplike element g ∈ H, it follows that, for all
n ≥ 1, the element txn is a polynomial of degree n in tx with coefficients in A. By
hypothesis, there are scalars λ1, . . . , λn−1, λn ∈ k for some positive integer n such
that

xn + λ1x
n−1 + · · ·+ λn−1x+ λn = 0 .

Therefore, tx satisfies a degree n polynomial equation with coefficients in the in-
tegral closure A and with highest-degree coefficient equal to 1. This proves that
tx ∈ A.

To complete the proof, it suffices to check that tz belongs to A for any product z
of grouplike or skew-primitive elements x[1], . . . , x[n] such that tx[1] , . . . , tx[n] belong
to A. It follows from Lemma 7.3, (7.3), and (7.5) that tz is a linear combination
with coefficients in BαH of products of the variables tx[1] , . . . , tx[n] and of variables of
the form tg, where g is grouplike. Since these monomials belong to A, so does tz. �

8. How to construct elements of BαH
In the example considered in Section 5 we reformulated the values of the generic

cocycle in terms of certain rational fractions E, R, S, T , U . The aim of this last
section is to explain how we found these fractions by presenting a general systematic
way of producing elements of BαH for an arbitrary Hopf algebra. To this end we
introduce a new set of symbols.
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8.1. The symbols Xx. Let H be a Hopf algebra and XH a copy of the
underlying vector space ofH; we denote the identity map fromH toXH by x �→ Xx
for all x ∈ H.

Consider the tensor algebra T (XH) of the vector space XH over the ground
field k:

T (XH) =
⊕
r≥0

X⊗rH .

If {xi}i∈I is a basis of H, then T (XH) is the free noncommutative algebra over the
set of indeterminates {Xxi}i∈I .

The algebra T (XH) is an H-comodule algebra equipped with the coaction δ :
T (XH)→ T (XH)⊗H given for all x ∈ H by

(8.1) δ(Xx) =
∑
(x)

Xx(1) ⊗ x(2) .

8.2. Cöınvariant elements of T (XH). Let us now present a general method
to construct cöınvariant elements of T (XH). We need the following terminology.

Given an integer n ≥ 1, an ordered partition of {1, . . . , n} is a partition I =
(I1, . . . , Ir) of {1, . . . , n} into disjoint nonempty subsets I1, . . . , Ir such that i < j
for all i ∈ Ik and j ∈ Ik+1 (1 ≤ k ≤ r − 1).

If x[1], . . . , x[n] are n elements of H and if I = {i1 < · · · < ip} is a subset
of {1, . . . , n}, we set x[I] = x[i1] · · ·x[ip] ∈ H. If I = (I1, . . . , Ir) is an ordered
partition of {1, . . . , n}, then clearly x[I1] · · ·x[Ir] = x[1] · · ·x[n].

Now let x[1], . . . , x[n] be n elements of H and I = (I1, . . . , Ir), J = (J1, . . . , Js)
be ordered partitions of {1, . . . , n}. We consider the following element of T (XH):
(8.2) Px[1],...,x[n];I,J =

∑
(x[1]),...,(x[n])

Xx[I1](1) · · ·Xx[Ir](1)XS(x[Js](2)) · · ·XS(x[J1](2)) .

The element Px[1],...,x[n];I,J is an homogeneous element of T (XH) of degree r + s.
Observe that Px[1],...,x[n];I,J is linear in each variable x[1], . . . , x[n].

We have the following generalization of [2, Lemma 2.1].

Proposition 8.1. Each element Px[1],...,x[n];I,J of T (XH) is cöınvariant.

Proof. By (8.1), δ(Px[1],...,x[n];I,J) is equal to
∑

(x[1]),...,(x[n])

Xx[I1](1) · · ·Xx[Ir](1)XS(x[Js](4)) · · ·XS(x[J1](4))

⊗ x[I1](2) · · ·x[Ir](2) S(x[Js](3)) · · ·S(x[J1](3))

=
∑

(x[1]),...,(x[n])

Xx[I1](1) · · ·Xx[Ir](1)XS(x[Js](4)) · · ·XS(x[J1](4))

⊗ x[1](2) · · ·x[n](2) S(x[n](3)) · · ·S(x[1](3))

=
∑

(x[1]),...,(x[n])

Xx[I1](1) · · ·Xx[Ir](1)XS(x[Js](3)) · · ·XS(x[J1](3))

⊗ ε(x[1](2)) · · · ε(x[n](2))
=

∑
(x[1]),...,(x[n])

Xx[I1](1) · · ·Xx[Ir](1)XS(x[Js](2)) · · ·XS(x[J1](2)) ⊗ 1 .
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Therefore, δ(Px[1],...,x[n];I,J ) = Px[1],...,x[n];I,J ⊗ 1 and the conclusion follows. �
As special cases of the previous proposition, the following elements of T (XH)

are cöınvariant for all x, y ∈ H:

(8.3) Px = Px;({1}),({1}) =
∑
(x)

Xx(1) XS(x(2))

and

(8.4) Px,y = Px,y;({1},{2}),({1,2}) =
∑

(x),(y)

Xx(1) Xy(1) XS(x(2)y(2)) .

8.3. The generic evaluation map. As in Section 4, let H be a Hopf algebra,
α : H ×H → k a normalized invertible cocycle, and αH the corresponding twisted
algebra.

Consider the algebra morphism μα : T (XH) → S(tH) ⊗ αH defined for all
x ∈ H by

μα(Xx) =
∑
(x)

tx(1) ⊗ ux(2) .

The morphism μα possesses the following properties (see [2, Sect. 4]).

Proposition 8.2. (a) The morphism μα : T (XH) → S(tH) ⊗ αH is an H-
comodule algebra morphism.

(b) If the ground field k is infinite, then for every H-comodule algebra morphism
μ : T (XH)→ αH, there is a unique algebra morphism χ : S(tH)→ k such that

μ = (χ⊗ id) ◦ μα .
In other words, any H-comodule algebra morphism μ : T (XH) → αH is ob-

tained by specialization from μα. For this reason we call μα the generic evaluation
map for αH.

Now we have the following result (see [2, Sect. 8]).

Proposition 8.3. If P ∈ T (XH) is cöınvariant, then μα(P ) belongs to BαH .
It follows that the image μα(Px[1],...,x[n];I,J ) of all cöınvariant elements defined

by (8.2) belong to BαH . This provides a systematic way to produce elements of BαH .
Example 8.4. When H = H4 is the Sweedler algebra, it is easy to check that

the elements R, S, T , U of (5.1) are obtained in this way: we have

R = μα(Px) , T = μα(Py−z) , U = μα(Px,z) , ES = μα(Py,y) ,

where {1, x, y, z} is the basis of H4 defined in Section 5 and Px, Py−z, Px,z, and Py,y
are special cases of the noncommutative polynomials defined by (8.3) and (8.4).

Remark 8.5. In [2] we developped a theory of polynomial identities for H-
comodule algebras. This theory applies in particular to the twisted algebras αH.
We established that the H-identities of αH, as defined in loc. cit., are exactly the
elements of T (XH) that lie in the kernel of the generic evaluation map μα. Thus
the H-comodule algebra

UαH = T (XH)/Kerμα
plays the rôle of a universal comodule algebra. We also constructed an H-comodule
algebra morphism UαH → AαH ; under certain conditions this map turns the generic
Galois extensionAαH into a central localization of the universal comodule algebra UαH
(see [2, Sect. 9] for details).
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Quantizing the Moduli Space of Parabolic Higgs Bundles

Avijit Mukherjee

Abstract. We consider the moduli space Ms
H of stable parabolic Higgs bun-

dles (of rank 2 for simplicity) over a compact Riemann surface of genus g > 1.
This is a smooth variety over C, equipped with a holomorphic symplectic form
ΩH . Any symplectic form is known to admit a quantization, but in general
the quantization is not unique. We fix a projective structure P on X. Using
P we show that there is a canonical quantization of ΩH on a certain Zariski
open dense subset U ⊂ Ms

H , once a projective structure P on X has been
specified.

1. Introduction

In this talk, we shall outline a quantization scheme for a certain smooth variety (over
C) which admits a (holomorphic) symplectic form. By quantization we shall refer to
the Moyal-Weyl quantization [1]. The smooth variety in question is taken to be the
moduli spaceMs

H of stable parabolic Higgs bundles (of rank 2 for simplicity, and)
of fixed degree over a compact Riemann surface of genus g > 1. It is well-known
thatMs

H is a smooth, irreducible quasi-projective complex variety.
A natural holomorphic symplectic form ΩH on MsH is known to exist and its
construction has been described in details in [8],[7]. The symplectic form defines a
Poisson structure on OMs

H
, the sheaf of complex valued algebraic functions onMsH ,

which is then amenable to a quantization procedure. However, given a symplectic
structure, the space of all possible quantizations of that symplectic structure is
infinite-dimensional, and hence non-unique. In this talk, we address the question:
is there a canonical quantization of ΩH? To obtain an affirmative answer, it is seen
that one has to fix some additional datum, a projective structure P on X. Once
this is fixed/chosen, there does exist a preferred, and hence in that sense canonical,
quantization of the symplectic form ΩH on a certain Zariski open dense subset of
MsH .
The present talk is a report of that pursuit. We shall here outline the basic ideas and
the strategy of the proof, skipping most of the details, which have appeared in [5].
Though in this work, we have restricted ourselves to the case of rank 2 parabolic
vector bundles, the generalization of our results and conclusions to higher rank
cases is straight-forward. (The restriction is motivated by reasons of notational
and computational simplicity.)
The author would like to thank the MPIM–Bonn, and the organizers of the Work-
shop for providing the opportunity of presenting these results.
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In the next section, we begin by recalling the relevant notions and definitions in
this context.

2. Preliminaries

Let us first recall the basic definitions and also fix our notations. Unless other-
wise stated, X will always denote a compact, connected Riemann surface of genus
g > 1, or in other words, X is a smooth, projective curve (over C) of genus g > 1.

2.1. Parabolic bundles. Let X be a compact, connected Riemann surface
of genus g, with g ≥ 2. We fix a finite subset of points

S := {s1, s2, · · · , sn} ⊂ X .

(Parabolic structures can also be defined for the cases of g = 0, 1. For these cases,
if g = 0, we would take n ≥ 4; and for g = 1, we take n ≥ 1. However in our present
problem, we only consider g ≥ 2.) Also we shall, for computational convenience
and simplicity, consider the case of parabolic vector bundles of rank 2 and arbitrary
(but fixed) degree, on X.
A parabolic vector bundle of rank 2 overX, with parabolic structure over S, consists
of the following datum[14]:

(1) a holomorphic vector bundle E of rank 2 over X;
(2) for each point s ∈ S, a line Fs ⊂ Es of the fiber Es;
(3) for each point s ∈ S, a real number λs (parabolic weights) with 0 < λs < 1.

For a parabolic vector bundle E∗ := (E, {Fs}, {λs}) as above, the parabolic degree
is defined to be

par-deg(E∗) := deg(E) +
∑
s∈S

λs

where deg(E) is the degree of E [14]. The parabolic vector bundle E∗ is called
stable if for every holomorphic line subbundle L of E, the inequality

(2.1) deg(L) +
∑
s∈S′

λs <
par-deg(E∗)

2

where S′ := {s ∈ S |Ls = Fs} [14]. If a weaker condition, namely

(2.2) deg(L) +
∑
s∈S′

λs ≤ par-deg(E∗)
2

is valid, then E∗ is called semistable [14].

2.2. Parabolic Higgs bundles. Let KX denote the holomorphic cotangent
bundle of X. A Higgs structure of a parabolic vector bundle E∗ := (E, {Fs}, {λs})
is a holomorphic section

(2.3) θ ∈ H0(X, End(E)⊗KX ⊗OX(S))
with the property that for each s ∈ S, the image of the homomorphism

θ(s) : Es −→ (E ⊗KX ⊗OX(S))s
is contained in the subspace Fs ⊗ (KX ⊗ OX(S))s ⊂ (E ⊗ KX ⊗ OX(S))s and
θ(s)(Fs) = 0 [11], [8], [9]. In other words, θ(s) is nilpotent with respect to the flag
0 ⊂ Fs ⊂ Es.
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A parabolic Higgs bundle (E∗ , θ) as above is called stable if for every line subbundle
L of E with

θ(L) ⊆ L⊗KX ⊗OX(S) ⊂ E ⊗KX ⊗OX(S)
the inequality (2.1) is satisfied. If the weaker inequality (2.2) is valid, then (E∗ , θ)
is called semistable. In particular, if E∗ is stable (respectively, semistable), then
(E∗ , θ) is stable (respectively, semistable). However, (E∗ , θ) can be stable (respec-
tively, semistable) without E∗ being stable (respectively, semistable).
It is known that the moduli space of stable parabolic Higgs bundles is an irreducible,
smooth, quasiprojective variety of dimension 8gX−6+2n. This moduli space will be
denoted byMs

H . There is a natural inclusion of the total space of the holomorphic
cotangent bundle of the moduli space of stable parabolic bundles on X intoMs

H .
Given a stable parabolic bundle E∗, the holomorphic cotangent space at the point
E∗ of the moduli space of stable parabolic bundles is the space of all sections θ as in
the definition of Higgs structure in (2.3) [7],[8]. Therefore, we have a tautological
map from the holomorphic cotangent bundle of the moduli space of stable parabolic
bundles toMs

H . The image of this map is a Zariski open subset. The moduli space
of semistable parabolic Higgs bundles will be denoted byMssH . It is an irreducible,
normal, quasiprojective variety, andMsH is a Zariski open smooth subvariety of it.

2.3. Symplectic structure on the moduli space. The natural symplectic
form on the total space of the cotangent bundle of the moduli space of stable
parabolic bundles extends to a symplectic form on the moduli spaceMs

H of stable
parabolic Higgs bundles. The symplectic form on MsH is described in [8],[7]. A
crucial ingredient in the construction of this symplectic form is the observation
that:

Theorem 2.1. The tangent space T(E∗,θ)MsH of the variety MsH at the point
represented by the parabolic Higgs bundle (E∗ , θ) is identified with the hypercoho-
mology H1(C•) [8],

where, the complex C• is the 2-term deformation complex of a Higgs bundle defined
by:

C• : C0 = End(E)
[−,θ]−→ C1 = KX ⊗ End(E),

with End(E) at the 0-th position, and if θ = dz ⊗A in a local trivialization z, and
s is a local section of End(E), then [s, θ] = dz ⊗ (sA−As).

In fact it turns out that this holomorphic symplectic form is itself exact and there
exists a one-form Ψ on the varietyMsH , such that: ΩH = dΨ. The two–form dΨ
gives our desired symplectic form onMsH . The restriction of dΨ to the Zariski open
subset ofMsH defined by the total space of the cotangent bundle of the moduli space
of parabolic bundles coincides with the canonical symplectic structure on cotangent
bundles. (See [8], [9].). We shall henceforth denote this symplectic structure on
MsH by ΩH . This symplectic form defines a Poisson structure on OMs

H
, the sheaf

of holomorphic (= C-valued algebraic) functions onMs
H .

Definition: A quantization of ΩH is a 1-parameter family of associative algebra
structures on OMs

H
, deforming the abelian algebraic structure (defined by pointwise

multiplication) with the infinitesimal deformations of the pointwise multiplication
structure being governed by the Poisson structure. Any symplectic structure admits
a quantization, but there is as such no unique (canonical) quantization! That is,
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the space of all quantizations of a symplectic structure is infinite-dimensional. The
main theme of this talk is to present the observation that a preferred or a canonical
quantization scheme does however exist, once a projective structure on X has been
chosen/fixed.

Theorem 2.2. Let X be a compact Riemann surface (of genus ≥ 2) equipped
with a (chosen) projective structure P. There there exists a certain Zariski open
dense subset U ⊂MsH , such that the projective structure P gives a canonical quan-
tization of the symplectic structure ΩH over U [5].

(This subset U will be defined in the following section.)

2.4. A few useful facts about Projective Structures on X. A projective
atlas on X is defined by giving a covering of X by holomorphic coordinate charts
{Uα, φα}α∈A, for some set A, and where for every α,

Uα ⊂ X and φα : Uα −→ V ⊂ C
is a bi-holomorphism such that φβ ·φ−1α is the restriction of a Möbius transformation
on the image of φα(Uα

⋂
Uβ) in C. A projective structure on X is an equivalence

class of projective atlases. Recall that the Uniformization Theorem states that if,
X̃ −→ X is the universal cover of a Riemann surface X, then X̃ is bi-holomorphic
to C, or P1 or H. Moreover it is known that Aut

(
C/P1/H

) ⊂Möbius group. Hence
any Riemann surface admits a natural projective structure. Further, it is known
that the space of all projective structures on X is an affine space for H0

(
X,KX

⊗2),
the space of quadratic differentials where dimC H0

(
X,KX

⊗2) = 3gX − 3

3. Quantization

We start with a brief recapitulation of the relevant ideas and notions. Let
M denote a complex manifold, TM and T ∗M its respective holomorphic tangent
and cotangent bundles. Let ω be a holomorphic symplectic form on M , and let
τ : T ∗M −→ TM be the holomorphic isomorphism defined by ω.

i.e., τ−1 (v) · u = ω (u, v) , for u, v ∈ TxM, x ∈M

Let f and g be any two holomorphic functions defined on an open subset U ⊂M .
The map sending the pair,

(f, g) �−→ {f, g} := ω (τ(df), τ(dg))

defines a holomorphic Poisson structure on H(M), the space of all locally defined
holomorphic functions on M . The Poisson bracket thus provides the commutative
algebra H(M), with the structure of a Lie algebra satisfying the Leibnitz rule:

{fg, k} = f{g, k} + g{f, k}
Let us define a formal parameter h, and

A(M) := H(M)[[h]] = space of all formal Taylor series in h.

Given two elements f, g ∈ A(M) (i.e., f :=
∞∑
j=0

hjfj , where fj ∈ H(M), and

g :=
∑∞
j=0 h

jgj , where gj ∈ H(M)), a Quantization of the Poisson structure
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is an assignment of an associative algebra operation � on A(M), for every pair,
(f, g) ∈ A(M), defined by,

(f, g) �−→ (f � g) :=
∞∑
j=0

hjφj , φi ∈ H(M).

satisfying the following rules: [1],[13]
(a) Each φi ∈ H(M) is some polynomial (independent of f and g) in derivatives
(of arbitrary order) of {fi} and {gi}.
(b) φ0 = f0g0
(c) 1 � f = f � 1 = f , for every f ∈ H(M)
(d) f � g − g � f =

√−1 h {f0, g0} + h2β, where β ∈ A(M) depends on the
choice of f and g.

3.1. Moyal-Weyl Quantization. Let V be a complex vector space, Θ a
constant symplectic form on V and let H(V ) denote the space of all locally defined
holomorphic functions on V , equipped with the Poisson structure.

Let
� : V −→ V × V

denote the diagonal homomorphism defined by v �−→ (v, v). Then it is known that
there exists a differential operator

D : H(V × V ) −→ H(V × V )

with constant coefficients, such that for any pair (f, g) ∈ H(V ),
{f, g} = �∗ D(f ⊗ g)

where f ⊗ g is the function on V × V defined by (u, v) �−→ f(u)g(v). Moreover D
is unique. The Moyal-Weyl algebra is then defined by

f � g = �∗ exp (√−1 hD/2
)
(f ⊗ g) ∈ A(V )

The Moyal-Weyl algebra can be extended to a multiplication operation on A(V )
using bilinearity with respect to h,

f � g =
∞∑
i,j=0

hi+j (fi � gj) ∈ A(V )

Theorem 3.1. The � operation converts A(V ) into an associative algebra that
quantizes the symplectic structure Θ [1],[13].

In this present work, we shall always mean the above Moyal-Weyl quantization
scheme whenever we refer to quantization. Note that if Sp(V ) denotes the group
of all linear automorphisms of V preserving the symplectic form Θ, then the dif-
ferential operator D commutes with the diagonal action of Sp(V ) on V × V , from
which it readily follows that:

(f ◦G) � (g ◦G) = (f � g) ◦G, for any G ∈ Sp(V ), and f, g ∈ A(V )
For X, a projective algebraic curve, let Z := KX \ 0X be the complement of the
zero section of the total space of the holomorphic cotangent bundle. The total
space of KX has a natural algebraic symplectic structure. (The total space of KX
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has a tautological one-form on it and its exterior derivative defines this symplectic
structure). Let

Θ0 ∈ H0
(Z,Ω2

Z
)

be the algebraic symplectic form on Z, obtained by restricting the natural sym-
plectic form on the total space of KX . Then it is known, that

Theorem 3.2. Given a projective structure on X, there exists a natural quan-
tization of the symplectic form Θ0 on the symplectic manifold Z [3].

4. Quantization of ΩH

In this section we will consider the quantization problem for the moduli space of
stable parabolic Higgs bundles. Our Main Theorem (which stems from an extension
of the ideas captured by main theorem proved in [3]) is:

Theorem 4.1. Let X be a compact Riemann surface equipped with a projective
structure P. The projective structure P then gives a (natural/canonical) quantiza-
tion of a certain Zariski open dense subset (to be defined later) U ⊂Ms

H equipped
with the symplectic form ΩH .

The construction of this Zariski open dense subset U ⊂ MsH will be explained
below.
Fix one of the points s1 ∈ S, over which the parabolic structure is defined. Then
we have the following lemma.

Lemma 4.2. There is a non-empty Zariski open dense subset U1 ⊂Ms
H , such

that for all parabolic Higgs bundles (E∗, θ) in U1,
(a) dim H0(X,E ⊗OX((gX − 1/2− d/2)s1)) = 1, if the degree d of E is odd.
(b) dim {β ∈ H0(X,E ⊗OX((gX − d′)s1)) | β(s1) ⊂ Fs1} = 1, where d′ = d/2
(when the degree d of E is even),
and Fs1 ⊂ Es1 is the line defining the quasi-parabolic structure over the fixed point
s1 [7].

Fix a positive integer δ, such that 2(δ + gX) − 1 > max{0, 6(gX − 1) + #S}, and
then set,

δ0 := 2(δ + gX)− 1, if d is odd,

δ0 := 2(δ + gX), when d is even.

Let Mδ0H denote the moduli space of all rank two, stable parabolic Higgs bundles
(E∗, θ), where E∗ is a parabolic vector bundle of rank 2 and degree δ0 with parabolic
weights λs1 at s1 ∈ S (as fixed earlier) and θ, a Higgs structure on E∗. We can, in
addition, introduce and construct a Moduli Space Mδ0

T of Triples ([6],[7]) of the
form (E∗, θ, σ), where (E∗, θ) ∈Mδ0H and σ ∈ H0(X,E) \ {0} is a non-zero section
of E. The construction of this moduli space of triples has been discussed elsewhere
([6],[7]). Here it suffices to make the observation that the projection (the forgetful
map) p : Mδ0

T −→Mδ0H that sends any (E∗, θ, σ) −→ (E∗, θ) is a smooth projective
bundle, whose fibre over the point inMδ0H corresponding to (E∗, θ) is PH0(X,E),
the projective space of lines in H0(X,E). The numerical condition on δ0 that we
have assumed then ensures that the dim H0(X,E) is independent of E.([6],[7])
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Let Z denote the total space of the line bundle KX ⊗ OX(S). In an earlier work
([7]), we have constructed a surjective morphism

μ :Mδ0
T −→ Hilbl(Z)

where l = 4gX + 2δ + n − 3 when d is odd and l = 4gX + 2δ + n − 2 when d is
even, with n = #S, and Hilbj(Z) as usual denotes the Hilbert scheme of points
of length j of Z ([6],[7]). Now consider any (E∗, θ) ∈ U1, where U1 is the open
subset in Lemma 4.2. When d is odd, let β ∈ H0(X,E ⊗OX((gX − 1/2− d/2)s1))
be a non-zero section. (For the case, d is even, we analogously choose a β ∈
H0(X,E ⊗OX((gX − d/2)s1)), with β(s1) ⊂ Fs1). The previous lemma ensures
that a non-zero β always exists and any two choices of β differ by the multiplication
by an element of C∗. Given a choice of β, we can construct the map:

ψ : U1 −→ Mδ0T
(E∗, θ) −→ (E′∗, θ, β ⊗ sδ)

where sδ is the section of the line bundle OX(δs1) defined by the constant function
1, and E′∗ is the appropiately twisted parabolic bundle,

E′∗ := E∗ ⊗OX((gX − 1/2− d/2 + δ)s1), when d is odd,
E′∗ := E∗ ⊗OX((gX − d/2 + δ)s1), when d is even

We note that this twisting ensures that the resulting isomorphism:

i0 : MsH −→Mδ0H
that sends any pair: (E∗, θ) −→ (E′∗, θ) preserves the symplectic structures of the
two moduli spaces.
Let

ψ1 : U1 −→ Hilbl(Z)

be the composition of the two maps defined above. It is known that Hilbl(Z)
admits a meromorphic symplectic form ([2], [7]), and we shall denote that by Θ.
Now, using this map ψ1, we shall construct a map from a non-empty Zariski open
subset U2 ⊂ U1 to Hilb4gX+n−3(Z ′). The details of this construction are explained
in [5]. Here we just summarize the results. Let Z ′ := Z \ {0s1} ⊂ Z be the
complement of the point. Then

Theorem 4.3. There is a subset U2 ⊂ U1 and a unique map:

ψ2 : U2 −→ Hilb4gX+n−3(Z ′)

such that U2 is non-empty and Zariski open dense subset of U1 and ψ1(y) ∩ Z ′ =
ψ2(y). Moreover, it is easy to see that the map ψ2 is dominant and the meromorphic
symplectic form on Hilb4gX+n−3(Z ′) pulls back to the symplectic form on U2.

Finally let V ⊂ Hilb4gX+n−3(Z ′) be the Zariski open dense subset, corresponding
to the distinct 4gX + n − 3 points of Z ′ and let πX : Z ′ −→ X be the natural
projection. Define

U := {y ∈ V |y ∩ (π−1X (S) ∪ 0X
)
= ∅}

where 0X is the image of the zero section of the line bundle KX⊗OX(S). Then U is
a Zariski open dense subset of Hilb4gX+n−3(Z ′) and the complement of U is a divisor
of Hilb4gX+n−3(Z ′). The meromorphic symplectic form Θ on Hilb4gX+n−3(Z) will
define a symplectic form on the open subset U , as the pole of Θ would be supported
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on the divisor of Hilb4gX+n−3(Z) consisting of all zero-dimensional subschemes with
support intersecting π−1X (S). We define a Zariski open subset of U2 by

U := ψ−12 (U),

then we find that the above Zariski open dense subset U ⊂MsH , equipped with the
symplectic form ΩH admits a natural quantization. In fact to quantize ΩH over U ,
it suffices to quantize Θ over U .

4.1. Quantization of Θ over U : In this section we will sketch the basic
features of our quantization scheme for the quantization of Θ over U . We recall
that we had defined the variety Z := KX \ 0X , and p the natural projection
Z −→ X. Set

Z0 := Z \ p−1(S) ⊂ Z and let Ẑ ⊂ (Z0
)4gX+n−3

be the Zariski open dense subset of the Cartesian product parametrizing all distinct
4gX + n− 3 points of Z0. Clearly the permutation group Σ of

{1, 2, 3, · · ·, 4gX + n− 3}

acts freely on Ẑ, which immediately yields the identification:

Ẑ/Σ = U.

One can then see that the symplectic structure θ0 on Z, defines/extends to a
symplectic structure Θm on Zm, by pointwise multiplication [2]. Since the action
of Σ preserves the symplectic form on Z4gX+n−3, the symplectic form on Ẑ descends
to U , in other words U inherits the symplectic form Θ.
Now we have already discussed the fact that fixing a projective structure P on X,
gives us a preferred or canonical quantization of the symplectic structure Θ0 on Z.
Using the pointwise construction and the free action of Σ, this quantization in turn,
gives a quantization of the symplectic structure Θm on Zm for all m ≥ 1. As the
action of the permutation group Σ on

(Z0
)4gX+n−3 preserves this quantization, the

quantization of the symplectic form Θ4gX+n−3 on Ẑ, descends to a quantization of
the symplectic variety Ẑ/Σ (= U), hence giving us a quantization of the symplectic
structure Θ over U .
Now let Π : U −→ U be the restriction of the map ψ2. Then from [[7],Theorem
3.2], it follows that Π∗Θ = ΩH . Therefore to quantize ΩH over U , it suffices to
quantize Θ over U , and this we have just achieved. Therefore we have proved the
following theorem:

Theorem 4.4. Let X be a compact Riemann surface, equipped with a projective
structure P, and let MsH be the moduli space of stable, parabolic Higgs bundles on
X. Let ΩH denote the symplectic form on MsH . Then the choice of the projective
structure P gives a canonical quantization of the Zariski open dense subset U ⊂
Ms
H , equipped with the symplectic form ΩH . Moreover the map from the space

of all projective structures on X to the space of all quantizations of (U ,ΩH) is
injective.
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Locally compact quantum groups. Radford’s S4 formula.

A. Van Daele

Abstract. Let A be a finite-dimensional Hopf algebra. The left and the right
integrals on A are related by means of a distinguished group-like element δ

of A. Similarly, there is this element bδ in the dual Hopf algebra bA. Radford
showed that

S4(a) = δ−1(bδ � a � bδ−1)δ

for all a in A where S is the antipode of A and where � and � are used to

denote the standard left and right actions of bA on A. The formula still holds
for multiplier Hopf algebras with integrals (algebraic quantum groups).
In the theory of locally compact quantum groups, an analytical form of Rad-
ford’s formula can be proven (in terms of bounded operators on a Hilbert
space).
In this talk, we do not have the intention to discuss Radford’s formula as such,
but rather to use it, together with related formulas, for illustrating various
aspects of the road that takes us from the theory of Hopf algebras (includ-
ing compact quantum groups) to multiplier Hopf algebras (including discrete
quantum groups) and further to the more general theory of locally compact
quantum groups.

1. Introduction

As we have mentioned in the abstract, this note is about different steps along
the road from the (purely algebraic) theory of Hopf algebras to the (analytical) the-
ory of locally compact quantum groups. The formula of Radford, under its different
forms at each level, is only used to illustrate certain aspects in this development.

In Section 1, we start with the simplest case. We take a finite-dimensional Hopf
algebra A and we recall Radford’s formula for the fourth power of the antipode in
this case (see [R]), introducing the terminology that will be used further. We use
S for the antipode and δ and δ̂ for the distinguished group-like elements in A

and the dual Â. We call these the modular elements for reasons we explain later.
We are also interested in the ∗-algebra case and in particular when the underlying
algebra is an operator algebra. This means that A can be represented as a ∗-algebra
of operators on a (finite-dimensional) Hilbert space. Then however, the integrals
are positive, the modular elements are 1 and S2 = ι (the identity map) so that
Radford’s formula becomes a triviality. We speak about a finite quantum group
but in the literature, it is usually called a finite-dimensional Kac algebra (see [E-S]).

In Section 2, we first consider the case of a Hopf algebra A, not necessarily
finite-dimensional, but with integrals (a co-Frobenious Hopf algebra). Radford’s
formula in this case was obtained in [B-B-T] where the modular element δ̂ is seen

M. Marcolli, D. Parashar (Eds.), Quantum Groups and Noncommutative Spaces, 
DOI: 10.1007/978-3-8348-9831-9_8, © Vieweg+Teubner Verlag | Springer Fachmedien 
Wiesbaden GmbH 2011 
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as a homomorphism from A to C. In this note however, we consider the dual Â of
this Hopf algebra and describe it as a multiplier Hopf algebra. The element δ̂ is
then an element in the multiplier algebra M(Â) of Â.

In the operator algebra framework, we get here (essentially) a compact quan-
tum group (as introduced by Woronowicz in [W2] and [W3]). In this setting, we
necessarily have δ = 1, but now it can happen that δ̂ �= 1 (e.g. for the compact
quantum group SUq(2), see [W1]). We also consider discrete quantum groups.
They were first introduced in [P-W] as duals of compact quantum groups. Later
they have been studied, as independent objects and independently in [E-R] and
[VD2]. In this case of course, δ̂ = 1 while possibly δ �= 1. Radford’s formula gives
S4(a) = δ−1aδ for all a in the algebra. In fact, one can define the square root δ

1
2

of δ and show that even S2(a) = δ−
1
2 aδ

1
2 . It is a fundamental formula for discrete

quantum groups.
Section 3 is about algebraic quantum groups. We already needed the notion of

a multiplier Hopf algebra (see [VD1]) in Section 2 for properly dealing with discrete
quantum groups. However, it is only in this section that we introduce the concept.
We also look at the case with integrals and then we speak about algebraic quantum
groups (cf. [VD3]). For an algebraic quantum group (A,Δ), it is possible to define
a dual (Â, Δ̂). It is again an algebraic quantum group. This duality extends the
duality of finite-dimensional Hopf algebras (as used in Section 1), as well as the
duality between compact and discrete quantum groups (as in Section 2). Also in
this more general case, we have the existence of the modular elements δ and δ̂, now
in the multiplier algebras, and Radford’s formula is still valid. It seems appropriate
to give a proof (or rather sketch it) in this situation because it will follow easily from
well-known results in the theory (see [D-VD-W]). As this case is more general than
the previous ones (e.g. the finite-dimensional and the co-Frobenius Hopf algebras),
this proof is also valid for these earlier cases.

Also here, we consider the ∗-algebra case and in particular when the integrals
are positive. Then, the underlying algebras are operator algebras (now ∗-algebras
of bounded operators on a possibly infinite-dimensional Hilbert space). We also
have an analytical form of Radford’s formula here and it is very close to the form
we will obtain in the still more general case of locally compact quantum groups (in
Section 4). Observe that now it can happen that both δ and δ̂ are non-trivial.

It should not come as a surprise that, for ∗-algebraic quantum groups, we
can formulate a form of Radford’s result that is similar to the one we will obtain
for general locally compact quantum groups. After all, the theory of ∗-algebraic
quantum groups has been a source of inspiration for the development of locally
compact quantum groups (as found in [K-V1], [K-V2] and [K-V3]). See e.g. the
paper by Kustermans and myself [K-VD] and also the more recent paper entitled
Multiplier Hopf ∗-algebras with positive integrals: A laboratory for locally compact
quantum groups [VD6].

Finally, in Section 4 we briefly discuss the most general and tecnically far more
difficult case of a locally compact quantum group. We recall the definition (within
the setting of von Neumann algebras) and we explain how the basic ingredients of
the analytical form of Radford’s result are constructed. About the proof, we have
to be very short because this would take us too far. Nevertheless, we say something
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about it and especially, what kind of similarities there are with the case of algebraic
quantum groups. Observe some differences in conventions in this section.

This note contains no new results. It is more like a short survey of various levels,
from Hopf algebras to locally compact quantum groups, making a link between the
purely algebraic approach to quantum groups and the operator algebra approach.
It is well-known that working with operator algebras in this context puts sometimes
very severe restrictions on possible results, special cases and examples. Think e.g.
of the fact that it forces the square of the antipode to be the identity map in the
finite-dimensional case (see Section 1). On the other hand, it also has some nice
advantages like the analytic structure of a ∗-algebraic quantum group (see Section
3). In any case, we are strongly convinced that a fair amount of knowlegde of ’the
other side’ can be of great help, not only for a basic understanding, but also because
it sometimes provides different and handy tools to obtain new results or to treat
old results in a better way. We think Radford’s formula is a good illustration of
this fact. Therefore, with this note, we hope to contribute to increase the interest
of algebraists in the analytical aspects and vice versa.

Let us finish this introduction with some notation and conventions, as well as
with providing some basic references. More of this will be given throughout the
note.

We work with associative algebras over the comlex numbers since we often will
also consider an involution on the algebra, making it into an operator algebra. The
algebras need not have an identity, but we always assume that the product, as a
bilinear map, is non-degenerate. This allows to consider the algebra as a two-sided
ideal sitting in the multiplier algebra. If the algebra has a unit, we denote it by 1.
This will also be used for the unit in the multiplier algebra. We will systematically
use ι for the identity map.

We use A′ for the space of all linear functionals on a vector space A and call
it the dual space of A. Often, we will consider a suitable subspace of this full dual
space. Most of the time, our tensor products are purely algebraic, except in the
last section on locally compact quantum groups where we work with von Neumann
algebras and von Neumann algebraic tensor products. Unfortunately, some other
conventions in Section 4 are also different from those in the earlier sections. This is
mainly due to differences between the algebraic approach and the operator algebra
approach.

The basic references for Hopf algebras are of course [A] and [S]. For compact
quantum groups we have [W2] and [W3], see also [M-VD]. For discrete quantum
groups we refer to [P-W], [E-R] and [VD2]. The basic theory of multiplier Hopf
algebras is found in [VD1] and when they have integrals, the reference is [VD3].
See also [VD-Z] for a survey paper on the subject. Finally, the general theory of
locally compact quantum groups is developed in [K-V1], [K-V2] and [K-V3]. See
also [M-N] and [M-N-W] for a different approach and [VD8] for a more recent and
simpler treatment of the theory.

Acknowledgements I would like to thank the organizers of the Workshop on
Quantum Groups and Noncommutative Geometry (MPIP Bonn, August 2007) for
giving me the opportunity to talk about this subject. I am also grateful to P.M.
Hajac who drew my attention to the paper by Kaufman and Radford [K-R].



LOCALLY COMPACT QUANTUM GROUPS. RADFORD’S S4 FORMULA. 133

2. Finite quantum groups

Let A be a finite-dimensional Hopf algebra (over the complex numbers) with
coproduct Δ, counit ε and antipode S. Let Â denote the dual Hopf algebra of A.
We will us the pairing notation. So, if a ∈ A and b ∈ Â we write 〈a, b〉 for the value
of b in the element a.

Let ϕ be a left integral on A. There exists a distinguished group-like element
δ in A defined by the formula ϕ(S(a)) = ϕ(aδ) for all a ∈ A. We will call δ the
modular element (for reasons we will explain later, in Section 3). Similarly, when ϕ̂

is a left integral on Â, there is the modular element δ̂ in Â satisfying ϕ̂(S(b)) = ϕ̂(bδ̂)
for all b ∈ Â.

Now we can state Radford’s formula (see [R]):

Theorem 2.1. For all a ∈ A, we have

S4(a) = δ−1(δ̂ � a � δ̂−1)δ.

We use the standard left and right actions of the dual Â on A defined by

b � a =
∑
(a)

a(1)〈a(2), b〉 and a � b =
∑
(a)

a(2)〈a(1), b〉

for a ∈ A and b ∈ Â (where we use the Sweedler notation).
Later, we will give a proof of this formula in the more general setting of algebraic

quantum groups (see Section 3).
Let us also consider the case of a Hopf ∗-algebra. We assume that A is a ∗-

algebra and that Δ is a ∗-homomorphism. Then ε is a ∗-homomorphism but S need
not be a ∗-map. In stead, it is invertible and satisfies S(a)∗ = S−1(a∗) for all a.
So, it is a ∗-map if and only if S2 = ι, the identiy map.

If moreover A is an operator algebra, then there exists a positive left integral ϕ
(and conversely). Then necessarily ϕ(1) > 0 so that left and right integrals coincide.
This implies that δ = 1. One can show that again Â will be an operator algebra
and so also δ̂ = 1. Radford’s formula implies that in this case S4 = ι. In fact, it
follows that already S2 = ι and that the integrals are traces. We will give a short
argument later in the more general case of a discrete quantum group (see the next
section and also Section 3).

In this note, we will call a finite-dimensional Hopf ∗-algebra with positive inte-
grals a finite quantum group. In the literature however, one often calls it a finite-
dimensional Kac algebra (see [E-S]).

3. Compact and discrete quantum groups

Now, let A be any Hopf algebra. We do no longer assume that it is finite-
dimensional, but we require that it has integrals. Assume also that it has an
invertible antipode. Again there exists a unique group-like element δ in A such
that ϕ(S(a)) = ϕ(aδ) for all a ∈ A when ϕ is a left integral on A.

The dual space A′ is an algebra but no longer a Hopf algebra (in general).
However, there still is the distinguished element δ̂ ∈ A′. It is a homomorphism, it
is invertible and Radford’s formula is still valid. For all a ∈ A, we have

S4(a) = δ−1(δ̂ � a � δ̂−1)δ.
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The actions are defined as before by

f � a =
∑
(a)

f(a(2))a(1) and a � f =
∑
(a)

f(a(1))a(2)

for all a ∈ A and f ∈ A′.
The proof we plan to give later (for algebraic quantum groups) will also include

this case.
If moreover A is a ∗-algebra and Δ a ∗-homomorphism, still ε will be a ∗-

homomorphism and S(a)∗ = S−1(a∗) for all a ∈ A. And if A is an operator
algebra, the left integral is positive, it is also a right integral and so δ = 1.

We agree to use the term compact quantum group for this case. Indeed, it is
essentially a compact quantum group as defined by Woronowicz in [W3].

Remark that δ̂ need not be 1 in this case, the integrals need not be traces and
S2 �= ι is still possible. The standard example where this happens is the quantum
SUq(2) (see [W1]).

Let us now consider the case of a discrete quantum group. Discrete quantum
groups can be obtained as duals of compact quantum groups. Although it is more
natural to treat them within the framework of multiplier Hopf algebras (see later),
we will briefly consider the case already now (and see why we need to pass to
multiplier Hopf algebras).

The following result is part of the motivation for what we will do later.

Proposition 3.1. Let A be a Hopf algebra with a left integral ϕ. Define the
dual Â as the subspace of A′ containing all elements of the form ϕ( · a) with a ∈ A.
It is a subalgebra of A′. If we define the coproduct Δ̂ : A′ → (A⊗ A)′ by dualizing
the product on A, we find that

Δ̂(Â)(1⊗ Â) ⊆ Â⊗ Â and (Â⊗ 1)Δ̂(Â) ⊆ Â⊗ Â

in the algebra (A⊗A)′.

So, we get that Δ̂ maps Â into the multiplier algebra M(Â ⊗ Â) (as we will
define it later). Moreover, the pair (Â, Δ̂) is a multiplier Hopf algebra (and not a
Hopf algebra in general).

If we define ψ̂(b) = ε(a) when b = ϕ( · a), we get a right integral on Â. This
means here that

(ψ̂ ⊗ ι)(Δ̂(b)(1⊗ b′)) = ψ̂(b)b′

for all b, b′ ∈ Â. The antipode S leaves Â invariant and converts ψ̂ to a left
integral ϕ̂ on Â. The element δ̂, considered earlier, is in M(Â) and still satifsies
ϕ̂(S(b)) = ϕ̂(bδ̂) for all b ∈ Â.
If A is a compact quantum group, it turns out that Â is a direct sum of matrix
algebras. This takes us to the following definition of a discrete quantum group.

Definition 3.2. A discrete quantum group is a pair (A,Δ) where A is a direct
sum of matrix algebras (with the standard involution), Δ is a coproduct on A and
such that there is a counit ε and an antipode S.

It is not a Hopf algebra (except when it is a finite direct sum), but it is a
multiplier Hopf algebra (see further). Indeed, we have Δ(A) ⊆ M(A ⊗ A), the
multiplier algebra of A⊗A, but in general Δ(A) does not belong to A⊗A itself.
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For discrete quantum groups, we can prove (among other things) the following
result.

Theorem 3.3. There exists a positive left integral ϕ and a positive group-like
element δ in the multiplier algebra M(A) of A defined by ϕ(S(a)) = ϕ(aδ) for all
a ∈ A. This element moreover satisfies

S2(a) = δ−
1
2 aδ

1
2

for all a. We also have ϕ(ab) = ϕ(bS2(a)) for all a, b ∈ A and therefore, the map
a �→ ϕ(aδ

1
2 ) is a trace on A.

The first formula is a slightly stronger version of Radford’s formula for these
discrete quantum groups. It can be dualized to get a similar expression for the
square S2 of the antipode of a compact quantum group.

One way to develop discrete quantum groups is by viewing them as duals of
compact quantum groups (as done in [P-W]). This however is not the best choice.
It is relatively easy to develop the theory of discrete quantum groups (and prove
the above results) directly from the definition above. Using the standard trace on
each component, one can obtain quickly a formula for both integrals as well as for
the modular element. See e.g. [VD2].

It can happen that δ �= 1 (so that left and right integrals are different). It can
also happen that S2 �= ι so that the integrals are not traces. This can of course
only happen if δ �= 1.

The standard example is the dual of the compact quantum group SUq(2) whose
underlying algebra is the direct sum ⊕∞n=0Mn. All objects can easily be given in
terms of the deformation parameter q, except for the comultiplication (which is
quite complicated), see e.g. [VD4].

On the other hand, if δ = 1 we must have that S2 = ι and that the integrals
are traces. This generalizes the corresponding result for finite quantum groups as
we have seen in Section 1. Observe also that if we have a quantum group that is
both discrete and compact, it must be a finite quantum group.

4. Algebraic quantum groups

Discrete and compact quantum groups are special cases of algebraic quantum
groups. Also the duality of algebraic quantum groups generalizes the one between
discrete and compact quantum groups. We will briefly review this theory. For
details, we refer to the literature, see [VD1], [VD3] and [VD-Z].

The basic ingredient is that of a multiplier Hopf algebra:

Definition 4.1. Let A be an algebra over C, with or without identity, but
with a non-degenerate product. A coproduct (or comultiplication) on A is a non-
degenerate homomorphism Δ : A → M(A ⊗ A) (the multiplier algebra of A ⊗ A),
satisfying coassociativity (Δ⊗ ι)Δ = (ι⊗Δ)Δ. The pair (A,Δ) is called a (regular)
multiplier Hopf algebra if there exists a counit and an (invertible) antipode. If A
is a ∗-algebra and Δ a ∗-homomorphism, regularity is automatic and we call it a
multiplier Hopf ∗-algebra.

There is a lot to say about this definition and we refer to the literature for
details. However, it is important to notice that any Hopf (∗-)algebra is a multiplier
Hopf (∗-)algebra and conversely, if the underlying algebra of a multiplier Hopf
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algebra has an identity, it is actually a Hopf algebra. Also remark that the counit
and the antipode are unique.

Next, we consider algebraic quantum groups:

Definition 4.2. Let (A,Δ) be a regular multiplier Hopf algebra. A left integral
is a non-zero linear functional ϕ : A → C satisfying left invariance (ι ⊗ ϕ)Δ(a) =
ϕ(a)1 in M(A) for all a ∈ A. Similarly, a right integral is defined.

If a left integral ϕ exists, also a right integral ψ exists (namely ψ = ϕ ◦ S).
In that case, we call (A,Δ) an algebraic quantum group. If moreover (A,Δ) is a
multiplier Hopf ∗-algebra with a positive left integral ϕ (i.e. such that ϕ(a∗a) ≥ 0
for all a), then also a positive right integral exists (which is not a trivial result!).
In that case, we call (A,Δ) a ∗-algebraic quantum group.

Remark that the term ’algebraic’ does not refer to the possible quantization
of algebraic groups, but we use it rather because ∗-algebraic quantum groups are
locally compact quantum groups (considered in the next section) that can be treated
with purely algebraic techniques.

Integrals on regular multiplier Hopf algebras are unique (up to a scalar) if they
exist. They are faithful in the sense that (for the left integral ϕ) we have a = 0
if either ϕ(ab) = 0 for all b or ϕ(ba) = 0 for all b. From the uniqueness it follows
that there is a constant ν (the scaling constant), given by ϕ(S2(a)) = νϕ(a) for all
a ∈ A. It can happen that ν �= 1 but when A is a ∗-algebraic quantum group (with
positive integrals), we must have ν = 1 (see [DC-VD]).

In general, integrals need not be traces, but there exist automorphisms σ and
σ′ (called the modular automorphisms) satisfying

ϕ(ab) = ϕ(bσ(a)) ψ(ab) = ψ(bσ′(a))

for all a, b ∈ A when ϕ is a left integral and ψ a right integral. The term ’modular’
comes from operator algebra theory and the modular automorphism group of a
faithful normal state (or semi-finite weight) on a von Neumann algebra (see the
next section).

Important for us in this note that focuses on Radford’s formula is the modular
element δ. It is a group-like element in the multiplier algebra M(A) satisfying
ϕ(S(a)) = ϕ(aδ) for all a just as in the case of Hopf algebras with integrals. It can
be defined, using the uniqueness of integrals, by the formula (ϕ ⊗ ι)Δ(a) = ϕ(a)δ
for all a. In this case, the term ’modular’ is used because it is related with the
modular function for a non-unimodular locally compact group. In fact, also the
modular automorphism group in the theory of von Neumann algebras finds its
origin in the theory of non-unimodular locally compact groups.

There are many relations among these objects and again, we refer to the liter-
ature.

For any algebraic quantum group, we have a dual:

Theorem 4.3. Let (A,Δ) be an algebraic quantum group. Define the subspace
Â of the dual space A′ of functionals of the form ϕ( · a) where a ∈ A. The adjoints
of the coproduct and the product on A define a product and a coproduct Δ̂ on Â,
making (Â, Δ̂) into an algebraic quantum group, called the dual of (A,Δ). A right
integral ψ̂ on Â is given by the formula ψ̂(ω) = ε(a) when ω = ϕ( · a) and a ∈ A.
If (A,Δ) is a ∗-algebraic quantum group, then so is (Â, Δ̂) and ψ̂ as defined before
is positive when ϕ is positive.
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The last statement in the above theorem is a consequence of Plancherel’s for-
mula. Here it says that ψ̂(â∗â) = ϕ(a∗a) if a ∈ A and â = ϕ( · a), its Fourier
transform.

Also remark that the dual of (Â, Δ̂) is again (A,Δ).
We will use the pairing notation (as we have already done in Section 1 for a

finite-dimensional Hopf algebra and its dual). We also have the standard actions
of Â on A and of A on Â. In the first case, we have

〈b � a, b′〉 = 〈a, b′b〉
〈a � b, b′〉 = 〈a, bb′〉

for all a ∈ A and b, b′ ∈ B. It is not completely obvious that these elements are
well-defined in A, but it can be shown. Moreover, these actions are unital. This
means that elements of the form b � a with a in A and b in Â span all of A and
similarly for the right action. See [Dr-VD] and [Dr-VD-Z].

Let us now first state some of the formulas relating the various objects of (A,Δ)
and indicate how they can be proven. We use the notations introduced before.

Proposition 4.4. Let (A,Δ) be an algebraic quantum group. We have σ ◦S ◦
σ′ = S and δσ(a) = σ′(a)δ and for all a. Also for all a ∈ A we have

Δ(σ(a)) = (S2 ⊗ σ)Δ(a).

The first formulas follow in a straighforward way from the definitions of σ and
σ′ with ψ = ϕ ◦ S = ϕ( · δ). For the second one, we use that for all a, b ∈ A,

S((ι⊗ ϕ)(Δ(a)(1⊗ b))) = (ι⊗ ϕ)((1⊗ a)Δ(b)),

two times in combination with the definition of σ. This last formula itself follows
easily from left invariance of ϕ and the standard properties of the antipode.

We will also need some other properties. We have that the automorphisms S2,
σ and σ′ all commute with each other. And we also have that σ(δ) = σ′(δ) = 1

ν
δ

where ν is the scaling constant.
Next, we state and prove some of the formulas relating objects of (A,Δ) with

objects of the dual (Â, Δ̂).

Proposition 4.5. Let (A,Δ) be an algebraic quantum group and let (Â, Δ̂)
be its dual. We have δ̂−1 = ε ◦ σ where δ̂ is the modular element of Â, seen as a
homomorphism of A. Also σ(a) = δ̂−1 � S2(a) for all a ∈ A.

Proof. To prove the first formula, we start with c ∈ A and we take the element
b = ϕ( · c) in the dual Â. Because for all a, a′ in A we have ϕ(a′cσ(a)) = ϕ(aa′c),
we get ϕ( · cσ(a)) = b � a. If we apply ψ̂ we find ε(cσ(a)) = ψ̂(b � a). Because
(ι ⊗ ψ̂)Δ̂(b) = ψ̂(b)δ̂−1 (a formula that can easily be obtained from the definition
of δ̂ by using the antipode), we get ψ̂(b � a) = ψ̂(b)〈a, δ̂−1〉. Combining all results
and using that ψ̂(b) = ε(c), we find the first formula of the proposition.

To obtain the second formula, consider the equation Δ(σ(a)) = (S2 ⊗ σ)Δ(a),
obtained in the previous proposition, apply ι ⊗ ε and use the first formula of this
proposition. �

In the proof above, we have used the left action of A on Â. We also have looked
at δ̂−1 as a linear functional on A by extending the pairing between A and Â to
M(Â) in an obvious way. If the quantum group is counimodular, that is if δ̂ = 1,
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it follows from these results that σ = S2. This is the case for discrete quantum
groups as we saw in Theorem 2.3.

Now we are ready to give a simple proof of Radford’s formula for algebraic
quantum groups.

Theorem 4.6. Let (A,Δ) be an algebraic quantum group. When δ and δ̂ are
the modular elements in A and its dual Â, then

S4(a) = δ−1(δ̂ � a � δ̂−1)δ

for all a ∈ A.

Proof. ¿From the second formula in Proposition 3.5 we find δ̂�a = S2(σ−1(a)).
Similarly, or by applying the antipode on this formula, we obtain a�δ̂−1 = S2(σ′(a)).
If we combine these two formulas with the relation σ′(a) = δσ(a)δ−1 and use that
S2(δ) = δ, we get Radford’s formula. �

The proof we have given can be found in [D-VD-Z] and in [D-VD], where we
have generalized this result further to algebraic quantum hypergroups.

Next, let us look at the case of a ∗-algebraic quantum group. The requirement of
positivity of the integrals is quite strong. We have mentioned already that it forces
the scaling constant ν to be 1. On the other hand, we end up with an operator
algebra and this allows to work on Hilbert spaces and use spectral theory. In this
case, we arrive at what is called the analytic structure of a ∗-algebraic quantum
group (see [K] and also [DC-VD]). Roughly speaking, it means that powers of
S2, σ, σ′ and δ all have analytical extensions to the whole complex plane. More
precisely, we get the following result. We only consider S2 and δ because we focus
in this note on Radford’s formula.

Proposition 4.7. Let (A,Δ) be a ∗-algebraic quantum group. There exists an
analytic function τ : z �→ τz on C such that τz is an automorphism of (A,Δ), that
τz+y = τz ◦ τy for all z, y ∈ C and so that S2 = τ−i. Similarly, there is an analytic
function z �→ δz so that δz ∈M(A), that δz+y = δzδy for all z, y ∈ C and such that
δz = δ for z = 1 (justifying the notation).

Analyticity here is in a strong sense. In the first case, we want z �→ f(τz(a))
analytic for all a ∈ A and all f ∈ A′. In the second case, we want e.g. z �→ f(aδz)
analytic for all a ∈ A and f ∈ A′. These analytical extensions are unique.

Then, we can get the analytical form of Radford’s formula. For real numbers,
we obtain the following:

Theorem 4.8. Let (A,Δ) be a ∗-algebraic quantum group. Let τz and δz for
z ∈ C be defined as in the previous proposition. Consider also δ̂z ∈ M(Â) in a
similar way. Then, for all t ∈ R, we have

τ2t(a) = δ−it(δ̂it � a � δ̂−it)δit

for all a ∈ A.

This is the form of Radford’s formula that we will be able to generalize to
general locally compact quantum groups (see the next section). The result however
is true for all complex numbers. In particular, we can take z = − i2 . This yields

S2(a) = δ−
1
2 (δ̂

1
2 � a � δ̂−

1
2 )δ

1
2
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for all a ∈ A. Indeed, as a consequence of the result in Proposition 3.7, we can also
define the square roots δ

1
2 and δ̂

1
2 in M(A) and M(Â) respectively. These are still

group-like elements.
We should make a reference to a paper by Kaufman and Radford here [K-R].

They discover the formula with the square roots for Drinfel’d doubles that are
ribbon Hopf algebras.

Finally, consider some special cases. If e.g. (A,Δ) is counimodular, this is by
definition when left and right integrals on Â are the same, so that δ̂ = 1, we find
that S2(a) = δ−

1
2 aδ

1
2 for all a. This is the formula that we have seen in Theorem

2.3 for discrete quantum groups. They are counimodular because compact quantum
groups are unimodular. If (A,Δ) is both unimodular and counimodular, then we
must have S2 = ι. In this case, it follows from Proposition 3.5 that both σ and σ′

are trivial. This means that the integrals are traces. This, in particular, applies to
the case of finite quantum groups (as in Section 1).

5. Locally compact quantum groups

We start this section with the definition of a locally compact quantum group
in the von Neumann algebra setting.

Definition 5.1. Let M be a von Neumann algebra. A coproduct on M is
a normal unital ∗-homomorphism Δ : M → M ⊗M , the von Neumann algebraic
tensor product, satisfying coassociativity (Δ⊗ι)Δ = (ι⊗Δ)Δ. If there exist faithful
normal semi-finite weights ϕ and ψ on M that are left, resp. right invariant, then
the pair (M,Δ) is called a locally compact quantum group.

We collect some important remarks about this concept:

Remarks 5.2. i) The adapted form of continuity of Δ in the von Neumann
algebra setting is expressed in the requirement that the coproduct is normal.
ii) By this continuity, the ∗-homomorphisms Δ⊗ ι and ι⊗Δ are well-defined from
M ⊗M to M ⊗M ⊗M and so coassociativity makes sense.
iii) A weight on a von Neumann algebra is, roughly speaking, an unbounded positive
linear functional. It is called semi-finite if it is bounded on enough elements. And
again it is called normal if it satisfies the proper continuity.

For the theory of von Neumann algebras and the notions needed above, we
refer to the books of Takesaki [T1] and [T2].

The weight ϕ is called left invariant if ϕ((ω ⊗ ι)Δ(x)) = ϕ(x)ω(1) whenever
x is a positive element in the von Neumann algebra with ϕ(x) < ∞ and ω is a
positive element in the predual M∗ of M . Similarly, right invariance of the weight
ψ is defined. These weights are unique (up to a scalar) and are called the left and
right Haar weights. They are of course the analogues of the left and right integrals
in the theory of ∗-algebraic quantum groups.

It is also possible to define locally compact quantum groups in the framework of
C∗-algebras, but that is somewhat more complicated. In fact, both approaches are
equivalent in the sense that they define the same objects. We refer to the original
works by Kustermans and Vaes; see [K-V1], [K-V2] and [K-V3]. Independently, the
notion was also developed by Masuda, Nakagami and Woronowicz; see [M-N] and
[M-N-W]. A more recent and simpler development of the theory can be found in
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[VD8] and a discussion on the equivalence of the C∗-approach and the von Neumann
approach is e.g. given in [VD7].

The basic examples come from a locally compact group G. On the one hand,
there is the abelian von Neumann algebra L∞(G), defined with respect to the
left Haar measure. The coproduct Δ is given as before by Δ(f)(p, q) = f(pq)
when f ∈ L∞(G) and p, q ∈ G. The invariant weights ϕ and ψ are obtained by
integration with respect to the left and right Haar measures on the group. On the
other hand, there is the group von Neuman algebra V N(G) generated by the left
regular representation λ of the group on the Hilbert space L2(G). In this case, the
coproduct is given by Δ(λp) = λp ⊗ λp. The left and right integrals are the same.
Formally, we must have ϕ(λp) = 0, except when p = e, the identity of the group,
but it is not so easy to define this weight properly.

Any multiplier Hopf ∗-algebra with positive integrals, i.e. a ∗-algebraic quantum
group, gives rise to a locally compact quantum group (see [K-VD]):

Theorem 5.3. Let (A,Δ) be a ∗-algebraic quantum group with left integral ϕ.
Consider the GNS-representation πϕ of A associated with ϕ. The coproduct on A
yields a coproduct on the von Neumann algebra M generated by πϕ(A) making it
into a locally compact quantum group.

The Haar weights are of course nothing else but the unique normal extensions
of the original left and right integrals.

It is an interesting, but open problem to describe those locally compact quan-
tum groups that can arise from ∗-algebraic quantum groups as above. In the case
of locally compact groups, the problem has been solved in [L-VD]. The requirement
is that there exists a compact open subgroup. In particular, when G is a totally
disconected locally compact group, the two associated locally compact quantum
groups are essentially ∗-algebraic quantum groups. In connection with this prob-
lem, let us also observe the following. For any ∗-algebraic quantum group, the
scaling constant ν is necessarily 1 (see [DC-VD]). However, there are examples of
locally compact quantum groups where this is not the case (see [VD5]). We will
come back to this statement later.

Let us now indicate how the theory of locally compact quantum groups is
developed (as e.g. in [VD8]) and focus on the relevant formulas, needed to formulate
Radford’s result.

So, we start with a locally compact quantum group (M,Δ) with left and right
Haar weights ϕ and ψ as in Definition 4.1. We recall the GNS construction:

Proposition 5.4. Denote by Nϕ the set of elements x ∈M so that ϕ(x∗x) <
∞. It is a dense left ideal of M and ϕ has a unique extension (still denoted by ϕ)
to the ∗-algebra spanned by elements of the form x∗y with x, y ∈ Nϕ. There exists
a Hilbert space Hϕ and an injective linear map Λϕ : Nϕ → Hϕ with dense range
such that 〈Λϕ(x),Λϕ(y)〉 = ϕ(y∗x) for all x, y ∈ Nϕ. There also exists a faithful,
unital and normal ∗-representation πϕ of M on Hϕ given by πϕ(y)Λϕ(x) = Λϕ(yx)
whenever x ∈ Nϕ and y ∈M .

In what follows, we will drop the index ϕ and use H and Λ in stead of Hϕ and
Λϕ. We will also omit πϕ and assume that M acts directly on the space H.

Next, we recall some results from the Tomita-Takesaki modular theory (see e.g.
[T2]):
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Proposition 5.5. There is a closed, conjugate linear, possibly unbounded but
densely defined involutive operator T on H so that Λ(x) ∈ D(T ), the domain of
T , for any x ∈ Nϕ ∩ N ∗ϕ and TΛ(x) = Λ(x∗). If T = J∇ 1

2 denotes the polar
decomposition of T , then J is a conjugate linear isometric involutive operator and
∇ a positive non-singular self-adjoint operator. If M ′ denotes the commutant of
M , we have JMJ =M ′. Also ∇itM∇−it =M for all t ∈ R.

It follows from this result that we can define a one-parameter group (σt) of au-
tomorphisms of M , called the modular automorphism group, by σt(x) = ∇itx∇−it
for x ∈M and t ∈ R. A similar construction will give the modular automorphisms
(σ′t) associated with the right Haar weight ψ.

Using a proper notion of an analytic extension, one can show that ϕ(xy) =
ϕ(yσ−i(x)) for the appropriate elements x and y. So (σ−i) plays the role of the
modular automorphism σ as we have it for ∗-algebraic quantum groups. Similarly
σ′−i plays the role of the modular automorphism σ′. We apologize for the possi-
ble confusion caused by the difference in notations used here (and further in this
section).

There is also something called the ’relative modular theory’ when two weights
are considered. If we apply results from this theory to the invariant weights ϕ and
ψ, we find the following:

Proposition 5.6. There exists a positive non-singular self-adjoint operator δ
on the Hilbert space H such that for all t ∈ R we have δit ∈M and ψ = ϕ(δ

1
2 · δ 1

2 ).

It should be mentioned that it is not so easy to interprete this last formula in
a correct way.

When thinking of a ∗-algebraic quantum group, where we have σ(δ) = δ (be-
cause the scaling constant is trivial), we see that this formula is another form of
the one we have for algebraic quantum groups, namely ψ = ϕ( · δ). Here, we call δ
the modular operator.

These are the first main ingredients of the theory. Remark that these objects
are only dependent on the weights ϕ and ψ on the von Neumann algebras M and
seem in no way related with the coproduct structure. This is not completely correct
as the result in Proposition 4.6 would not be true for any pair of weights.

Next, let us consider the dual locally compact quantum group (M̂, Δ̂) with left
and right Haar weights ϕ̂ and ψ̂. The precise construction is quite involved but
in essence, it is a careful analytic version of the same construction for ∗-algebraic
quantum groups.

The Hilbert space associated with the dual left Haar weight ϕ̂ is identified with
H and the map Λ̂ associated with ϕ̂ is defined in such a way that Λ̂(x̂) = Λ(x)
when x is an appropriate element inM and x̂ its Fourier transform ϕ( ·x). Remark
that a different convention is used in the sense that the dual coproduct is flipped
causing, among other things, that the dual right integral ψ̂ is now the dual left
integral ϕ̂. This convention is common in the operator algebra approach.

And just as for the original locally compact quantum group (M,Δ), we also
have the conjugate linear isometric operator Ĵ on H for the dual (M̂, Δ̂) satisfying
ĴM̂ Ĵ = M̂ ′ and the modular automorphisms (σ̂t) and (σ̂′t) of M̂ , as well as the
modular operator δ̂ for the dual.
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The scaling group can be characterized as follows:

Proposition 5.7. There exists a one-parameter group of automorpisms (τt)
of (M,Δ) such that

Δ(σt(x)) = (τt ⊗ σt)Δ(x)

Δ(σ′t(x)) = (σ′t ⊗ τ−t)Δ(x)

for all x ∈ M and t ∈ R. All the automorphisms in (σt), (σ′t) and (τt) mutually
commute.

Similarly, we have the scaling group (τ̂t) on the dual, characterized by similar
formulas.

If we take a proper analytic extension, we see that τ−i is like the square S2 of
the antipode in a ∗-algebraic quantum group. The first formula replaces Δ(σ(a))) =
(S2⊗σ)Δ(a) and the second one is Δ(σ′(a)) = (σ′⊗S−2)Δ(a) for an element a in
a ∗algebraic quantum group.

Again, the proof is technically rather difficult. It essentially uses the polar
decomposition of an operator Λ(x) �→ Λ(S(x)∗) where S is the ’antipode’, roughly
defined by the formula

S((ι⊗ ϕ)(Δ(x)(1⊗ y))) = (ι⊗ ϕ)((1⊗ x)Δ(y))

for well-chosen elements x and y in the von Neumann algebra M .
There are several relations among the data we have so far:

Proposition 5.8. When x ∈M and y ∈ M̂ we have

σt(x) = ∇itx∇−it τt(x) = ∇̂itx∇̂−it
σ̂t(y) = ∇̂ity∇̂−it τ̂t(y) = ∇ity∇−it

for all t ∈ R.

The formulas on the left were mentioned already but the others are new (and
somewhat remarkable). We do not have any counterparts of these equations in the
theory of ∗-algebraic quantum groups. This is not so with the following results.

Proposition 5.9. There exists a strictly positive number ν, called the scaling
constant, satisfying

ϕ ◦ τt = ν−tϕ ϕ ◦ σ′t = νtϕ
ψ ◦ τt = ν−tψ ψ ◦ σt = ν−tψ

for all t ∈ R.

When extending these formulas analytically to the complex number −i, we find
e.g. ϕ ◦ S2 = νiϕ and we see that νi turns out to replace the scaling constant as
introduced for ∗-algebraic quantum groups. As mentioned already, in this case, the
scaling constant can be non-trivial, see e.g. [VD5].
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Also the above result is a consequence of the uniqueness of the invariant weights.
And finally, we have some formulas relating δ with the other data:

Proposition 5.10. We have τt(δ) = δ and

σt(δ) = νtδ σ′t(δ) = ν−tδ

for all t. We also have ĴδĴ = δ−1.

Of course, these formulas have to be interpreted (e.g. by looking at powers
δis of δ). There is also a formula for JδJ but that is more complicated. Similar
equations hold for the dual modular operator δ̂.

Having defined the main objects and the most important formulas, we can now
state the analytical form of Radford’s formula for locally compact quantum groups
(see Theorem 4.20 in [VD8]):

Theorem 5.11. Because the left Haar weight is relatively invariant, we can
define a one-parameter group of unitary operators, denoted P it, by the formula
P itΛ(x) = ν

1
2 tΛ(τt(x)) for all x ∈ N . Then we have

P−2it = δit(JδitJ)δ̂it(Ĵ δ̂itĴ)

for all t.

Compare this formula, call it the ’second’ formula in what follows, with the
formula in Theorem 3.8, which we will call the ’first’ one. And assume for the
moment that the scaling constant is 1. Change t to −t in the first formula and
’apply’ Λ. On the left hand side, we get P−2itΛ(a). When we look at the right
hand side, first we have left multiplication with δit in the first formula which we find
as the operator δit in the second formula. Next we have right multiplication with
δ−it in the first formula that results in the operator JδitJ in the second formula.
The change in sign comes from the fact that J is conjugate linear and δ self-adjoint.
Also remember that J is the unitary part in the polar decomposition of the map
Λ(x) �→ Λ(x∗) and the fact that the involution changes the order allows to express
right multiplication with elements as operators, using this map. The third factor in
the second formula comes from the left action of δ̂−it. Now, the difference in sign is
coming from the difference in conventions about the dual coproduct. Flipping this
coproduct causes δ̂ to be replaced by δ̂−1. Finally, the right action of δ̂it corresponds
with the factor Ĵ δ̂itĴ . We have the same sign here because it is changed two times
for reasons explained earlier.

If the scaling constant is not equal to 1, we get an extra factor on the left
because P−2itΛ(x) = ν−tΛ(τt(x)). This factor will also occur on the right hand
side because right multiplication with δ−it is not exactly the same as JδitJ . There
is a factor ν

1
2 t coming from the commutation rules between the modular operator

∇ and δ (as σ(δ) = 1
ν δ in the case of algebraic quantum groups). Similarly, this

scalar will pop up when comparing the right action of δ̂it with the factor Ĵ δ̂itĴ .
So, we see that the two formulas are completely in accordance with each other

and that it is justified to call the formula in Theorem 4.11 above the analytical
form of Radford’s formula for locally compact quantum groups.

Also here, it is interesting to look at some special cases. If e.g. δ̂ = 1, also
in this case we have σt = τt and σ′t = τ−t (as for discrete quantum groups). If
both modular operators are 1, then necessarily the scaling group and the modular
automorphisms are trival, causing the Haar weights to be traces and S2 = ι.
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Categorical aspects of Hopf algebras

Robert Wisbauer

Abstract. Hopf algebras allow for useful applications, for example in physics.
Yet they also are mathematical objects of considerable theoretical interest and
it is this aspect which we want to focus on in this survey. Our intention is to
present techniques and results from module and category theory which lead
to a deeper understanding of these structures. We begin with recalling parts
from module theory which do serve our purpose but which may also find other
applications. Eventually the notion of Hopf algebras (in module categories)
will be extended to Hopf monads on arbitrary categories.

1. Introduction

The author’s interest in coalgebraic structures and Hopf algebras arose from the
observation that the categories considered in those situations are similar to those in
module theory over associative (and nonassociative) rings. At the beginning in the
1960’s, the study of coalgebras was to a far extent motivated by the classical theory
of algebras over fields; in particular, the finiteness theorem for comodules brought
the investigations close to the theory of finite dimensional algebras. Moreover,
comodules for coalgebras C over fields can be essentially handled as modules over
the dual algebra C∗.

Bringing in knowledge from module theory, coalgebras over commutative rings
could be handled and from this it was a short step to extend the theory to corings
over non-commutative rings (e.g. [BrWi]). This allows, for example, to consider
for bialgebras B over a commuatative ring R, the tensorproduct B ⊗R B as co-
ring over B and the Hopf bimodules over B as B ⊗R B-comodules. Clearly this
was a conceptual simplification of the related theory and the basic idea could be
transferred to other situations. Some of these aspects are outlined in this talk.

Since Lawvere’s categorification of general algebra, algebras and coalgebras are
used as basic notions in universal algebra, logic, and theoretical computer science,
for example (e.g. [AdPo], [Gu], [TuPl]).

The categories of interest there are far from being additive. The transfer of Hopf
algebras in module categories to Hopf monads in arbitrary categories provides the
chance to understand and study this notion in this wider context.

Generalisations of Hopf theory to monoidal categories were also suggested in
papers by Moerdijk [Moer], Loday [Lod] and others. Handling these notions in
arbitrary categories may also help to a better understanding of their concepts.

M. Marcolli, D. Parashar (Eds.), Quantum Groups and Noncommutative Spaces, 
DOI: 10.1007/978-3-8348-9831-9_9, © Vieweg+Teubner Verlag | Springer Fachmedien 
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Not surprisingly, there is some overlap with the survey talks [Wi.H] and
[Wi.G]. Here a broader point of view is taken and more recent progress is recorded.

2. Algebras

Let R be an associative and commutative ring with unit. Denote by MR the
category of (right) R-modules.

2.1. Algebras. An R-algebra (A,m, e) is an R-module A with R-linear maps,
product and unit,

m : A⊗R A→ A, e : R→ A,

satisfying associativity and unitality conditions expressed by commutativity of the
diagrams

A⊗R A⊗R A
m⊗I ��

I⊗m
��

A⊗R A

m

��
A⊗R A m �� A,

A
I⊗e ��

=
���

��
��

��
��

A⊗R A
m

��

A
e⊗I��

=
����
��
��
��
�

A.

2.2. Tensorproduct of algebras. Given two R-algebras (A,mA, eA) and
(B,mB , eB), the tensor product A⊗R B can be made an algebra with product

mA⊗B : A⊗R B ⊗R A⊗R B
I⊗τ⊗I�� A⊗R A⊗R B ⊗R B

mA⊗mB�� A⊗R B ,

and unit eA ⊗ eB : R→ A⊗R B, for some R-linear map

τ : B ⊗R A→ A⊗R B.

inducing commutative diagrams

B ⊗R B ⊗R A

I⊗τ
��

mB⊗I �� B ⊗R A

τ

��
B ⊗R A⊗R B

τ⊗I �� A⊗R B ⊗B
I⊗mB �� A⊗R B,

A
eB⊗I ��

I⊗eB ���
��

��
��

��
B ⊗R A

τ

��
A⊗R B,

and similar diagrams derived from the product mA and unit eA of A.

It is easy to see that the canonical twist map

tw : A⊗R B → B⊗R, A, a⊗ b→ b⊗ a,

satisfies the conditions on τ and this is widely used to define a product on A⊗RB.
However, there are many other such maps of interest.

These kind of conditions can be readily transferred to functors on arbitrary cat-
geories and in this context they are known as distributive laws (e.g. [Be], [Wi.A]).
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3. Category of A-modules

Let A be an associative R-algebra with unit.

3.1. A-modules. A left A-module M is an R-module with an R-linear map
ρM : A⊗RM →M with commutative diagrams

A⊗R A⊗RM
I⊗ρM ��

m⊗I
��

A⊗RM
ρM

��
A⊗RM

ρM �� A,

M
e⊗I ��

=
���

��
��

��
��

A⊗RM
ρM

��
M.

The category AM of (unital) left A-modules is a Grothendieck category with A
a finitely generated projective generator.

Properties of (the ring, module) A are reflected by properties of the category
AM. These interdependencies were studied under the title homological classification
of rings.

To use such techniques for the investigation of the structure of a right A-
module M , one may consider the smallest Grothendieck (full) subcategory of AM
which contains M . For this purpose recall that an A-module N is called

M -generated if there is an epimorphism M (Λ) → N , Λ an index set, and
M -subgenerated if N is a submodule of an M -generated module.

3.2. The category σ[M ]. For any A-module M , denote by σ[M ] the full
subcategory of AM whose objects are all M -subgenerated modules. This is the
smallest Grothendieck category containing M . Thus it shares many properties
with AM, however it need not contain neither a projective nor a finitely generated
generator. For example, one may think of the category of abelian torsion groups
which is just the subcategory σ[Q/Z] of ZM (without non-zero projective objects).

In general, M need not be a generator in σ[M ]. A module N ∈ σ[M ] with
σ[N ] = σ[M ] is said to be a subgenerator in σ[M ]. Of course, M is a subgenerator
in σ[M ] (by definition). The notion of a subgenerator also plays a prominent role
in the categories considered for coalgebraic structures (e.g. 4.2, 5.3).

An A-module N is a subgenerator in AM if and only if A embeds in a finite
direct sum of copies of N , i.e. A ↪→ Nk, for some k ∈ N. Such modules are also
called cofaithful.

The notion of singularity in AM can be transferred to σ[M ]: A module N ∈
σ[M ] is called singular in σ[M ] orM -singular if N � L/K for L ∈ σ[A] and K ⊂ L
an essential submodule.

3.3. Trace functor. The inclusion functor σ[P ] → AM has a right adjoint
T M : AM→ σ[M ], sending X ∈ AM to

T M (X) :=
∑
{f(N) | N ∈ σ[M ], f ∈ HomA(N,X)}.

3.4. Functors determined by P ∈ AM. Given any A-module P with S =
EndA(P ), there is an adjoint pair of functors

P ⊗S − : SM→ AM, HomA(P,−) : AM→ SM,

with (co)restriction

P ⊗S − : SM→ σ[P ], HomA(P,−) : σ[P ]→ SM.
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and functorial isomorphism

HomA(P ⊗S X,Y )→ HomS(X,HomA(P, Y )),

unit ηX : X → HomA(P, P ⊗S X), x �→ [p �→ p⊗ x];
counit εY : P ⊗S HomA(P, Y )→ Y , p⊗ f �→ f(p).
These functors determine an equivalence of categories if and only if η and ε are

natural isomorphisms.

In any category A, an object G ∈ A is said to be a generator provided the func-
tor MorA(G,−) : A → Ens is faithful. It is a property of Grothendieck categories
that these functors are even fully faithful ([Nast, III, Teoremǎ 9.1]).

Let P ∈ AM, S = EndA(P ). Then P is a right S-module and there is a
canonical ring morphism

φ : A→ B = EndS(M), a �→ [m �→ am].

P is called balanced provided φ is an isomorphism.

3.5. P as generator in AM. The following are equivalent:
(a) P is a generator in AM;
(b) HomA(P,−) : AM→ SM is (fully) faithful;
(c) ε : P ⊗S HomA(P,N)→ N is surjective (bijective), N ∈ AM;
(d) P is balanced and PS is finitely generated and projective.

Note that the equivalence of (a) and (d) goes back to Morita [Mor]. It need
not hold in more general situations. In [Wi.G, 2.6] it is shown:

3.6. P as generator in σ[P ]. The following are equivalent:
(a) P is a generator in σ[P ];
(b) HomA(P,−) : σ[P ]→ SM is (fully) faithful;
(c) εN : P ⊗S HomA(P,N)→ N is sur-(bi-)jective, N ∈ σ[P ];
(d) φ : A→ B is dense, PS is flat and

εV is an isomorphism for all injectives V ∈ σ[P ].

The elementary notions sketched above lead to interesting characterisations of
Azumaya R-algebras (R a commutative ring) when applied to A considered as an
(A,A)-bimodule, or - equivalently - as a module over A⊗R Ao.

In this situation we have for any A⊗R Ao-module M ,

HomA⊗RAo(A,M) = Z(M) = {m ∈M | am = ma for all a ∈ A},
and EndA⊗RAo(A) � Z(A), the center of A.

3.7. Azumaya algebras. Let A be a central R-algebra, that is Z(A) = R.
Then the following are equivalent:
(a) A is a (projective) generator in A⊗RAoM;
(b) A⊗R Ao � EndR(A) and AR is finitely generated and projective;
(c) HomA⊗RAo(A,−) : A⊗RAoM→MR is (fully) faithful;
(d) A⊗R − :MR → A⊗RAoM is an equivalence;
(e) μ : A⊗R Ao → A splits in A⊗RAoM (A is R-separable).
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The preceding result can also be formulated for not necessarily associative
algebras by referring to the following.

3.8. Multiplication algebra. Let A be a (non-associative) R-algebra with
unit. Then any a ∈ A induces R-linear maps

La : A→ A, x �→ ax; Ra : A→ A, x �→ xa.

The multiplication algebra of A is the (associative) subalgebra
M(A) ⊂ EndR(A) generated by {La, Ra | a ∈ A}.

Then A is a left module overM(A) generated by 1A (in general not projective) and
EndM(A)(A) is isomorphic to the center of A. By σ[M(A)A], or σ[A] for short, we
denote the full subcategory of M(A)M subgenerated by A. (For algebras A without
unit these notions are slightly modified, e.g. [Wi.B]).

This setting allows to define Azumaya also for non-associative algebras (e.g.
[Wi.B, 24.8]).

3.9. Azumaya algebras. Let A be a central R-algebra with unit. Then the
following are equivalent:
(a) A is a (projective) generator in M(A)M;
(b) M(A) � EndR(A) and AR is finitely generated and projective;
(c) HomM(A)(A,−) : M(A)M→MR is (fully) faithful;
(d) A⊗R − :MR → M(A)M is an equivalence.

The fact that the generator property of A as A⊗R Ao-module implies projec-
tivity is a consequence of the commutativity of the corresponding endomorphism
ring (=Z(A)).

Restricting to the subcategory σ[A] we obtain

3.10. Azumaya rings. Let A be a central R-algebra with unit. Then the
following are equivalent:
(a) A is a (projective) generator in σ[M(A)A];
(b) M(A) is dense in EndR(A) and AR is faithfully flat;
(c) HomM(A)(A,−) : σ[M(A)A]→MR is (fully) faithful;
(d) A⊗R − :MR → σ[M(A)A] is an equivalence.

For any algebra A, central localisation is possible with respect to the maximal
(or prime) ideals of the center Z(A) and also with respect to central idempotents
of A.

3.11. Pierce stalks. Let A be a (non-associative) algebra and denote by B(A)
the set of central idempotents of A which form a Boolean ring. Denote by X the set
of all maximal ideals of B(A). For any x ∈ X , the set B(A)\x is a multiplicatively
closed subset of (the center) of A and we can form the ring of fractions Ax = AS−1.
These are called the Pierce stalks of A (e.g. [Wi.B, Section 18]). They may be
applied for local-global characterisations of algebraic structures, for example (see
[Wi.B, 26.8], [Wi.M]):

3.12. Pierce stalks of Azumaya rings. Let A be a central (non-associative)
R-algebra with unit. Then the following are equivalent:
(a) A is an Azumaya algebra;
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(b) A is finitely presented in σ[A] and
for every x ∈ X , Ax is an Azumaya ring;

(c) for every x ∈ X , Ax is an Azumaya ring with center Rx.

Considering the (A,A)-bimodules for an associative ring A may be regarded
as an extension of the module theory over commutative rings to non-commutative
rings. Using the multiplication algebra M(A) we can even handle non-associative
algebras A. In particular, we can describe a kind of central localisation of semiprime
algebras A. This may help to handle notions in non-commutative geometry.

One problem in transferring localisation techniques from semiprime commu-
tative rings to semiprime non-commutative rings is that the latter need not be
non-singular as one-sided modules. To guarentee this, additional assumptions on
the ring are required (e.g. Goldie’s theorem). This is not the case if we consider A
in the category σ[A].

A module N ∈ σ[A] is called A-singular if N � L/K for L ∈ σ[A] and K ⊂ L
an essential M(A)-submodule (see 3.2). The following is shown in [Wi.B, Section
32].

3.13. Central closure of semiprime algebras. Let A be a semiprime R-
algebra and Â the injective hull of A in σ[M(A)A]. Then
(i) A is non-singular in σ[M(A)A].

(ii) EndM(A)(Â) is a regular, selfinjective, commutative ring, called the extended
centroid.

(iii) Â = AHomM(A)(A, Â) = AEndM(A)(Â) and allows for a ring structure (for
a, b ∈ A, α, β ∈ EndM(A)(Â)),

(aα) · (bβ) := abαβ.
This is the (Martindale) central closure of A.

(iv) Â is a simple ring if and only if A is strongly prime (as an M(A)-module).

Not surprisingly - the above results applied to A = Z yield the rationals Q as
the (self-)injective hull of the integers Z.

A semiprime ring A is said to be strongly prime (as M(A)-module) if its central
closure is a simple ring, and an ideal I ⊂ A is called strongly prime provided the
factor ring A/I is strongly prime.

Using this notion, an associative ring A is defined to be a Hilbert ring if any
strongly prime ideal of A is the intersection of maximal ideals. This is the case if
and only if for all n ∈ N, every maximal ideal J ⊂ A[X1, . . . , Xn] contracts to a
maximal ideal of A or - equivalently - A[X1, . . . , Xn]/J is finitely generated as an
A/J ∩A-module (liberal extension). This yields a natural noncommutative version
of Hilbert’s Nullstellensatz (see [KaWi]).

The techniques considered in 3.13 were extended in Lomp [Lomp] to study the
action of Hopf algebras on algebras.

4. Coalgebras and comodules

The module theory sketched in the preceding section provides useful techniques
for the investigation of coalgebras and comodules. In this section R will denote a
commutative ring.
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4.1. Coalgebras. An R-coalgebra is a triple (C,Δ, ε) where C is an R-module
with R-linear maps

Δ : C → C ⊗R C, ε : C → R,

satisfying coassociativity and counitality conditions.
The tensor product C ⊗R D of two R-coalgebras C and D can be made to

a coalgebra with a similar procedure as for algebras. For this a suitable linear
map τ ′ : C ⊗R D → D ⊗R C is needed leading to the corresponding commutative
diagrams (compare 2.2).

The dual R-module C∗ = HomR(C,R) has an associative ring structure given
by the convolution product

f ∗ g = (g ⊗ f) ◦Δ for f, g ∈ C∗,
with unit ε.

Replacing g ⊗ f by f ⊗ g (as done in the literature) yields a multiplication
opposite to the one given before. This does not do any harm but has some effect
on the formalism considered later on.

4.2. Comodules. A left comodule over a coalgebra C is a pair (M,�M ) where
M is an R-module with an R-linear map (coaction)

�M :M → C ⊗RM
satisfying compatibility and counitality conditions.

A morphism between C-comodules M,N is an R-linear map f : M → N
with �N ◦ f = (I ⊗ f) ◦ �M . The set (group) of these morphisms is denoted by
HomC(M,N).

The category CM of left C-comodules is additive, with coproduct and cokernels
- but not necessarily with kernels.

The functor C ⊗R − : MR → CM is right adjoint to the forgetful functor
CM→MR, that is, there is an isomorphism

HomC(M,C ⊗R X)→ HomR(M,X), f �→ (ε⊗ I) ◦ f,
and from this it follows that

EndC(C) � HomR(C,R) = C∗,

which is a ring morphism - or antimorphism depending on the choice for the con-
volution product (see 4.1).

C is a subgenerator in CM, since any C-comodule leads to a diagram

R(Λ)

h

��

C ⊗R R(Λ) � ��

I⊗h
��

C(Λ)

0 �� M
�M �� C ⊗RM,

where h is an epimorphism for some index set Λ.
Monomorphisms in CM need not be injective maps and - as a consequence -

generators G in CM need not be flat modules over their endomorphism rings and
the functor HomC(G,−) : CM→ Ab need not be full.

All monomorphisms in CM are injective maps if and only if C is flat as an
R-module. In this case CM has kernels.

There is a close relationship between comodules and modules.
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4.3. C-comodules and C∗-modules. Any C-comodule �M : M → C ⊗RM
is a C∗-module by the action

�̃M : C∗ ⊗M
I⊗�M �� C∗ ⊗ C ⊗M ev⊗I �� M .

For any M,N ∈ CM, HomC(M,N) ⊂ HomC∗(M,N) and hence there is a
faithful functor

Φ : CM→ C∗M, (M,�M ) �→ (M, �̃M )

To make Φ a full functor, the morphism (natural in Y ∈MR)
αY : C ⊗R Y → HomR(C∗, Y ), c⊗ y �→ [f �→ f(c)y],

has to be injective for all Y ∈MR (α-condition, see [BrWi, 4.3]):

4.4. CM a full module subcategory. The following are equivalent:
(a) Φ : CM→ C∗M is a full functor;
(b) Φ : CM→ σ[C∗C] (⊂ C∗M) is an equivalence;
(c) αY is injective for all Y ∈MR;
(d) CR is locally projective.

This observation shows that under the given conditions the investigation of the
category of comodule reduces to the study of C∗-modules, more precisely, the study
of the category σ[C∗C] (see [BrWi], [Wi.F]).

As a special case we have (see [BrWi, 4.7]):

4.5. CM a full module category. The following are equivalent:
(a) Φ : CM→ C∗M is an equivalence;
(b) α is an isomorphism;
(c) CR is finitely generated and projective.

4.6. Natural morphism. Applying HomR(X,−) to the morphism αY leads
to the morphism, natural in X,Y ∈MR,

α̃X,Y : HomR(X,C ⊗R Y )→ HomR(X,HomR(C∗, Y ))
�→ HomR(C∗ ⊗R X,Y ).

If αY is a monomorphism, then αX,Y is a monomorphism,
if αY is an isomorphism, then αX,Y is an isomorphism, X,Y ∈MR.

The latter means that the monad C∗ ⊗R − and the comonad C ⊗R − form an
adjoint pair of endofunctors on MR, while the former condition means a weakened
form of adjunction.

It is known (from category theory) that, for the monad C∗ ⊗R −, the right
adjoint HomR(C∗,−) is a comonad and the category C∗M is equivalent to the
category MHomR(C

∗,−) of HomR(C∗,−)-comodules (e.g. [BöBrWi, 3.5]).
Thus α : C ⊗ − → HomR(C∗,−) may be considered as a comonad morphism

yielding a functor

Φ̃ : CM −→MHomR(C
∗,−),

M → C ⊗RM �−→ M → C ⊗RM
αM−→ HomR(C∗,M).

As noticed in 4.4 and 4.5, this functor is fully faithful if and only if α is injective;
it is an equivalence provided α is a natural isomorphism.



154 ROBERT WISBAUER

5. Bialgebras and Hopf algebras

Combining algebras and coalgebras leads to the notion of

5.1. Bialgebras. An R-bialgebra is an R-module B carrying an algebra struc-
ture (B,m, e) and a coalgebra structure (B,Δ, ε) with compatibility conditions
which can be expressed in two (equivalent) ways
(a) m : B ⊗R B → B and e : R→ B are coalgebra morphisms;

(b) Δ : B → B ⊗R B and ε : B → R are algebra morphisms.
To formulate this, an algebra and a coalgebra structure is needed on the tensor-
product B⊗RB as defined in 2.2 and 4.1 (with the twist tw map taken for τ). The
twist map (or a braiding) can be avoided at this stage by referring to an entwining
map

ψ : B ⊗R B → B ⊗R B,
which allows to express compatibility between algebra and coalgebra structure by
commutativity of the diagram (e.g. [BöBrWi, 8.1])

B ⊗R B
m ��

Δ⊗IB
��

B
Δ �� B ⊗R B

B ⊗R B ⊗R B
IB⊗ψ �� B ⊗R B ⊗R B.

m⊗IB
��

In the standard situation this entwining is derived from the twist map as

ψ = (m⊗ I) ◦ (I ⊗ tw) ◦ (δ ⊗ I) : B ⊗R B → B ⊗R B, a⊗ b �→ a1 ⊗ ba2.

This is a special case of 6.12 (see also [BöBrWi, 8.1]).

5.2. Hopf modules. Hopf modules for a bialgebra B are R-modules M with
a B-module and a B-comodule structure

ρM : B ⊗RM →M, ρM :M → B ⊗RM,

satisfying the compatibility condition

ρM (bm) = Δ(b) · ρM (m), for b ∈ B, m ∈M.

Here we use that - due to the algebra map Δ - the tensor product N ⊗RM of
two B-modules can be considered as a left B-module via the diagonal action

b · (m⊗ n) = Δ(b)(m⊗ n) =
∑

b1n⊗ b2m.

This makes the category BM monoidal.
If the compatibility between m and Δ is expressed by an entwining map

ψ : B ⊗R B → B ⊗R B (see 5.1), then the Hopf modules are characterised by
commutativity of the diagram

B ⊗RM
ρM ��

I⊗ρM
��

M
ρM �� B ⊗RM

B ⊗R B ⊗RM
ψ⊗I �� B ⊗R B ⊗RM.

I⊗ρM
��
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5.3. Category of Hopf modules. Morphisms between two B-Hopf modules
M and N are R-linear maps f :M → N which are B-module as well as B-comodule
morphisms. With these morphisms, the Hopf modules form an additive category,
we denote it by BBM. Certainly B is an object in BBM, but in general it is neither a
generator nor a subgenerator.

As mentioned above, B ⊗R B has a (further) left B-module structure induced
by Δ, we denote the resulting module by B ⊗b B. It is not difficult to see that
B ⊗b B is an object in B

BM and is a subgenerator in this category (e.g. [BrWi,
14.5]).

Similarly, one may keep the trivial B-module structure on B⊗RB but introduce
a new comodule structure on it. This is again a Hopf module, denoted by B ⊗c B,
and is also a subgenerator in BBM (e.g. [BrWi, 14.5]).

As for comodules, monomorphisms in BBM need not be injective maps unless B
is flat as an R-module.

If B is locally projective as an R-module, the comodule structure of the Hopf
modules may be considered as B∗-module structure and their module and comodule
structures yield a structure as module over the smash product B#B∗. In this case,
B
BM is isomorphic to σ[B#B∗B ⊗b B], the full subcategory of B#B∗M subgenerated
by B ⊗b B (or B ⊗c B) (e.g. [BrWi, 14.15]).

5.4. Comparison functor. For any R-bialgebra B, there is a comparison
functor

φBB : RM→ B
BM, X �→ (B ⊗R X,m⊗ IX ,Δ⊗ IX),

which is full and faithful since, by module and comodule properties, for any X,Y ∈
MR,

HomBB(B ⊗R X,B ⊗R Y ) � HomBR(X,B ⊗R Y ) � HomR(X,Y ),

with the trivial B-comodule structure on X. In particular, EndBB(B) � R.

5.5. The bimonad HomR(B,−). As mentioned in 4.6, for a monad (comonad)
B⊗R−, the right adjoint functor HomR(B,−), we denote it by [B,−], is a comonad
(monad).

An entwining ψ : B⊗RB → B⊗RB may be seen as an entwining between the
monad B ⊗R − and the comonad B ⊗R −,

ψ̃ : B ⊗R B ⊗R − → B ⊗R B ⊗R −

and this induces an entwining between the Hom-functors (see [BöBrWi, 8.2])

ψ̂ : [B, [B,−]]→ [B, [B,−]].

This allows to define [B,−]-Hopf modules (similar to 5.2), the categoryM[B,−]
[B,−], and

a comparison functor (with obvious notation)

φ
[B,−]
[B,−] : RM→M[B,−]

[B,−], X �→ ([B,X],Δ∗X ,m
∗
X).

5.6. Antipode. For any bialgebra B, a convolution product can be defined on
the R-module EndR(B) by putting, for f, g ∈ EndR(B), (compare 4.1)

f ∗ g = m ◦ (f ⊗ g) ◦Δ.

This makes (EndR(B), ∗) an R-algebra with identity e ◦ ε.
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An antipode is an S ∈ EndR(B) which is inverse to the identity map IB of B
with respect to ∗ , that is S ∗ IB = e ◦ ε = IB ∗ S or - explicitely -

m ◦ (S ⊗ IB) ◦Δ = e ◦ ε = m ◦ (IB ⊗ S) ◦Δ.
If B has an antipode it is called a Hopf algebra.

The existence of an antipode is equivalent to the canonical map

γ : B ⊗R B
δ⊗I �� B ⊗R B

I⊗m �� B ⊗R B
being an isomorphism (e.g. [BrWi, 15.2]).

The importance of the antipode is clear by the (see [BöBrWi, 8.11])

5.7. Fundamental Theorem. For any R-bialgebra B, the following are equiv-
alent:
(a) B is a Hopf algebra (i.e. has an antipode);
(b) φBB : RM→ B

BM is an equivalence;

(c) φ[B,−][B,−] : RM→M[B,−]
[B,−] is an equivalence;

(d) HomBB(B,−) : BBM→ RM is full and faithful.
If BR is flat then (a)-(d) are equivalent to:
(e) B is a generator in B

BM.

Recall that for BR locally projective, BBM is equivalent to σ[B#B∗B ⊗b B] and
thus we have:

5.8. Corollary. Let B be an R-bialgebra with BR locally projective. Then the
following are equivalent:
(a) B is a Hopf algebra;
(b) B is a subgenerator in B

BM and B#B∗ is dense in EndR(B);
(c) B is a generator in B

BM.

These characterisations are very similar to those of Azumaya rings (see 3.10).
This indicates, for example, that Pierce stalks may also be applied to characterise
(properties of) Hopf algebras.

The notion of bialgebras addresses one functor with algebra and coalgebra struc-
tures. More general, one may consider relationships between distinct algebras and
coalgebras:

5.9. Entwined algebras and coalgebras. Given an R-algebra (A,m, e) and
an R-coalgebra (C,Δ, ε), an entwining (between monad A ⊗R − and comonad
C ⊗R −) is an R-linear map

ψ : A⊗R C → C ⊗R A,
inducing certain commutative diagrams. This notion was introduced in Brzeziński
and Majid [BrMa] and is a special case of a mixed distributive law (see 6.5).
Entwined modules are defined as R-modules M which are modules (M,�M ) and
comodules (M,�M ), inducing commutativity of the diagram (e.g. [BrWi, 32.4])

A⊗M
�M ��

IA⊗�M
��

M
�M �� C ⊗M

A⊗ C ⊗M
ψ⊗I �� C ⊗A⊗M.

I⊗�M
��
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With morphisms which are A-module as well as C-comodule maps, the entwined
modules form a category denoted by CAM.

C ⊗R A is naturally a right A-module and ψ can be applied to define a left
A-module structure on it,

a · (c⊗ b) = ψ(a, c)b, for a, b ∈ A, c ∈ C.
Moreover, a coproduct can be defined on C ⊗R A, making C ⊗R A an A-coring, a
notion which extends the notion of R-coalgebras to non-commutative base rings A.
The category CAM of entwining modules can be considered as C⊗AM, the category
of left comodules over the coring C ⊗R A (e.g. [BrWi, 32.6]).

To get a comparison functor as in 5.4, we have to require that A is an object
in C

AM; this is equivalent to the existence of a grouplike element in the A-coring
C ⊗R A (e.g. [BrWi, 28.1 and 23.16]).

5.10. Galois corings. Let (A,C) be an entwined pair of an algebra A and a
coalgebra C. Assume that A is an entwined module by �A : A → C ⊗A A. Then
there is a comparison functor

φCA :MR → C
AM : X �→ (A⊗R X,m⊗ I, �A ⊗ I),

which is left adjoint to the (coinvariant) functor HomCA(A,−) : CAM→MR.
Moreover, B = HomCA(A,A) is a subring of A, Hom

C
A(A,C ⊗R A) � A, and

evaluation yields a (canonical) map

γ : A⊗B A→ C ⊗R A.
Now C ⊗R A is said to be a Galois A-coring provided γ is an isomorphism (e.g.
[BrWi, 28.18]). This describes coalgebra-Galois extensions or non-commutative
principal bundles. If - in this case - AB is a faithfully flat module, then the functor

MB → C
AM : Y �→ (A⊗B Y,m⊗ I, �A ⊗ I)

is an equivalence of categories.
This extends the fundamental theorem for Hopf algebras to entwined structures:

If A = C = H is a Hopf algebra, then (H,H) is an entwining, B = R, and the
resulting γ is an isomorphsism if and only if H has an antipode (see 5.6).

6. General categories

As seen in the preceding sections, the notions of algebras, coalgebras, and Hopf
algebras are all buit up on the tensor product. Hence a first step to generalisation is
to consider monoidal categories (V,⊗, I). For example, entwining structures in such
categories are considered in Mesablishvili [Me]. Furthermore, opmonoidal monads
T on V were considered by Bruguières and Virelizier (in [BruVir, 2.3]) which may
be considered as an entwining of the monad T with the comonad − ⊗ T (I). The
generalised bialgebras in Loday [Lod], defined as Schur functors (on vector spaces)
with a monad structure (operads) and a specified coalgebra structure, may also be
seen as a generalisation of entwining structures [Lod, 2.2.1].

However, algebras and coalgebras also show up in more general categories
as considered in universal algebra, theoretical computer science, logic, etc. (e.g.
Gumm [Gu], Turi and Plotkin [TuPl], Adámek and Porst [AdPo]). It is of some
interest to understand how the notion of Hopf algebras can be transferred to these
settings. In what follows we consider an arbitrary category A.
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6.1. Monads on A. A monad on A is a triple (F,m, e) with a functor F : A→
A and natural transformations

m : FF → F , e : IA → F ,
inducing commutativity of certain diagrams (as for algebras, see 2.1).

F -modules are defined as X ∈ Obj(A) with morphisms �X : F (X)→ X and
certain commutative diagrams (as for the usual modules, see 3.1).

The catgegory of F -modules is denoted by AF . The free functor

φF : A→ AF , X �→ (F (X),mX)

is left adjoint to the forgetful functor UF : AF → A by the isomorphism, for X ∈ A,
Y ∈ AF ,

MorAF (F (X), Y )→ MorA(X,UF (Y )), f �→ f ◦ eX .

6.2. Comonads on A. A comonad on A is a triple (G, δ, ε) with a functor
G : A→ A and natural transformations

δ : G→ GG, ε : G→ IA,
satisfying certain commuting diagrams (reversed to the module case).
G-comodules are objects X ∈ Obj(A) with morphisms �X : X → G(X) in A

and certain commutative diagrams.
The category of G-comodules is denoted by AG. The free functor

φG : A→ AG, X �→ (G(X), δX)

is right adjoint to the forgetful functor UG : AG → A by the isomorphism, for
X ∈ AG, Y ∈ A,

MorAG(X,G(Y ))→ MorA(UG(X), Y ), f �→ εY ◦ f.

Monads and comonads are closely related with

6.3. Adjoint functors. A pair of functors L : A→ B, R : B→ A is said to be
adjoint if there is an isomorphism, natural in X ∈ A, Y ∈ B,

MorB(L(X), Y )
�−→ MorA(X,R(Y )),

also described by natural transformations η : IA → RL, ε : LR→ IB. This implies
a monad (RL,RεL, η) on A , a comonad (LR,LηR, ε) on B.

L is full and faithful if and only if ε : GF → IA is an isomorphism.
L is an equivalence (with inverse R) if and only if ε and η are natural isomor-

phisms.

6.4. Lifting properties. Compatibility between endofunctors F,G : A → A
can be described by lifting properties. For this, let F : A → A be a monad and
G : A→ A any functor on A and consider the diagram

AF
G ��

UF

��

AF

UF

��
A

G �� A.

If a G exists making the diagram commutative it is called a lifting of G. The
questions arising are:
(i) does a lifting G exist ?
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(ii) if G is a monad - is G again a monad (monad lifting)?
(iii) if G is a comonad - is G also a comonad (comonad lifting)?

For R-algebras A and B, (i) together with (ii) may be compared with the
definition of an algebra structure on A⊗RB and leads to diagrams similar to those
in 2.1.

For an R-algebras A and an R-coalgebra C, (i) together with (iii) corresponds
to the entwinings considered in 5.9.

We formulate this in the general case (e.g. [Wi.A, 5.3]).

6.5. Mixed distributive law (entwining). Let (F,m, e) be a monad and
(G, δ, ε) a comonad. Then a comonad lifting G : AF → AF exists if and only if
there is a natural transformations

λ : FG→ GF

inducing commutativity of the diagrams

FFG
mG ��

Fλ

��

FG

λ

��
FGF

λF �� GFF
Gm �� GF,

FG
Fδ ��

λ

��

FGG
λG �� GFG

Gλ

��
GF

δF �� GGF,

G
eG ��

Ge 		�
��

��
��

� FG

λ

��
GF,

FG
Fε ��

λ

��

F

GF.

εF



��������

Entwining is also used to express compatibility for an endofunctor which is a
monad as well as a comonad. Notice that the diagrams in 6.5 either contain the
product m or the coproduct δ, the unit e or the counit ε. Additional conditions
are needed for adequate compatibility.

6.6. (Mixed) bimonad. An endofunctor B : A → A is said to be a (mixed)
bimonad if it is
(i) a monad (B,m, e) with e : I → B a comonad morphism,
(ii) a comonad (B, δ, ε) with ε : B → I a monad morphism,
(iii) with an entwining functorial morphism ψ : BB → BB,
(iv) with a commutative diagram

BB
m ��

Bδ

��

B
δ �� BB

BBB
ψB �� BBB.

Bm

��

6.7. (Mixed) B-bimodules. For a bimonad B on A, (mixed) bimodules are
defined as B-modules and B-comodules X satisfying the pentagonal law

B(X)
�X ��

B(�X)

��

X
�X �� B(X)

BB(X)
ψX �� BB(X).

B(�X)

��
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B-bimodule morphisms are B-module as well as B-comodule morphisms. We denote
the category of B-bimodules by ABB.

There is a comparison functor (compare 5.4)

φBB : A→ ABB , A �−→ [BB(A)
μA→ B(A) δA→ BB(A)],

which is full and faithful by the isomorphisms, functorial in X,X ′ ∈ A,

MorBB(B(X), B(X
′)) � MorB(B(X), X ′) � MorA(X,X ′).

In particular, this implies EndBB(B(X)) � EndA(X), for any X ∈ A.

Following the pattern in 5.6 we define an

6.8. Antipode. Let B be a bimonad. An antipode of B is a natural transfor-
mation S : B → B leading to commutativity of the diagram

B
ε ��

δ

��

I
e �� B

BB
SB ��
BS

�� BB

m

��

We call B a Hopf bimonad provided it has an antipode.
As for Hopf algebras (see 5.6) we observe that the canonical natural transfor-

mation

γ : BB
δB �� BBB

Bm �� BB

is an isomorphism if and only if B has an antipode (e.g. [BrWi, 15.1]).

The Fundamental Theorem for Hopf algebras states that the existence of an
antipode is equivalent to the comparison functor being an equivalence (see 5.7). To
get a corresponding result in our general setting we have to impose slight conditions
on the base category and on the functor (see [MeWi, 5.6]):

6.9. Fundamental Theorem for bimonads. Let B be a bimonad on the
category A and assume that A admits colimits or limits and B preserves them.
Then the following are equivalent:
(a) B is a Hopf bimonad (see 6.8);

(b) γ = Bm · δB : BB → BB is a natural isomorphism;

(c) γ ′ = mB ·BδB : BB → BB is a natural isomorphism;

(d) the comparison functor φBB : A→ B
BA is an equivalence.

Recall that for an R-module B, the tensor functor B ⊗R − has a right adjoint
and we have observed in 5.5 that a bialgebra structure on B can be transferred to
the adjoint HomR(B,−).

As shown in [MeWi, 7.5], this applies for general bimonads provided they have
a right adjoint:

6.10. Adjoints of bimonads. Let B be an endofunctor of A with right adjoint
R : A → A. Then B is a bimonad (with antipode) if and only if R is a bimonad
(with antipode).
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As a special case we have that for anyR-Hopf algebraH, the functor HomR(H,−)
is a Hopf monad onMR. This is not a tensor functor unless HR is finitely generated
and projective.

As pointed out in 5.1, no twist map (or braiding) is needed on the base category
to formulate the compatibility conditions for bialgebras (and bimonads). There may
exist a kind of braiding relations for bimonads based on distributive laws.

6.11. Double entwinings. Let B be an endofunctor on the category A with
a monad structure B = (B,m, e) and a comonad structure B = (B, δ, ε).

A natural transformation τ : BB → BB is said to be a double entwining
provided
(i) τ is a mixed distributive law from the monad B to the comonad B;
(ii) τ is a mixed distributive law from the comonad B to the monad B.

6.12. Induced bimonad. Let τ : BB → BB be a double entwining with
commutative diagrams

BB
Bε ��

m

��

B

ε

��
B

ε �� 1,

1
e ��

e

��

B

δ

��
B

eB
�� BB,

1
e ��

=
���

��
��

��
B

ε

��
1,

BB

δδ

��

m �� B
δ �� BB

BBBB
BτB

�� BBBB.

mm

��

Then the composite

τ : BB
δB �� BBB

Bτ �� BBB
mB �� BB

is amixed distributive law from the monadB to the comonadB making (B,m, e, δ, ε, τ)
a bimonad (see 6.6).

It is obvious that for any bimonad B, the product BB is again a monad as well
as a comonad.

BB is also a bimonad provided τ satisfies the Yang-Baxter equation, that is,
commutativity of the diagram

BBB
τB ��

Bτ

��

BBB
Bτ �� BBB

τB

��
BBB

τB
�� BBB

Bτ
�� BBB .

If this holds, then BB is a bimonad with

product m : BBBB
BτB �� BBBB

mm �� BB ,

coproduct δ : BB
δδ �� BBBB

BτB �� BBBB,

entwining
=
τ : BBBB

BτB �� BBBB
ττ �� BBBB

BτB �� BBBB .

Finally, if τ is a double entwining satisfying the Yang-Baxter equation and
τ2 = 1, then an opposite bimonad Bop can be defined for B with
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product m · τ : BB τ−→ BB
m−→ B,

coproduct τ · δ : B δ−→ BB
τ−→ BB.

If B has an antipode S, then S : Bop → B is a bimonad morphism provided
that

τ ·BS = SB and τ ·BS = SB.

In the classical theory of Hopf algebras, the category MR of R-modules over a
commutative ring R (or vector spaces) is taken as category A and tensor functors
B ⊗R − are considered (which have right adjoints HomR(B,−)). Here the Fun-
damental theorem for bimonads 6.9 implies that for Hopf algebras 5.7. The twist
map provides a braiding on MR and this induces a double entwining on the tensor
functor B ⊗R −.

We conclude with a non-additive example of our notions.

6.13. Endofunctors on Set. On the category Set of sets, any set G induces
an endofunctor

G×− : Set→ Set, X �→ G×X,
which has a right adjoint

Map(G,−) : Set→ Set, X �→ Map(G,X).

Recall (e.g. from [Wi.A, 5.19]) that
(1) G×− is a monad if and only if G is a monoid;

(2) G×− is comonad with coproduct δ : G→ G×G, g �→ (g, g);

(3) there is an entwining morphism

ψ : G×G→ G×G, (g, h) �→ (gh, g).

Thus for any monoid G, G×− is a bimonad and

Hopf monads on Set. For a bimonad G×−, the following are equivalent:
(a) G×− is a Hopf monad;

(b) Mor(G,−) is a Hopf monad;

(c) G is a group.
Here we also have a double entwining given by the twist map

τ : G×G×− �→ G×G×−, (a, b,−) �→ (b, a,−).

6.14. Remarks. After reporting about bialgebras and the compatibilty of their
algebra and coalgebra part, we considered the entwining of distinct algebras and
coalgebras (see 5.9). Similarly, one may try to extend results for bimonads to the
entwining of a monad F and a distinct comonad G on a category A and to head for
a kind of Fundamental Theorem, that is, an equivalence between the category AGF
and, say, a module category over some coinvariants. For this one has to extend the
notion of (co)modules over rings to (co)actions of (co)monads on functors and to
introduce the notion of Galois functors. Comparing with 5.10, a crucial question is
when F allows for a G-coaction. For this a grouplike natural transformation I → G
is needed. In cooperation with B. Mesablishvili the work on these problems is still
in progress.
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Laplacians and gauged Laplacians on a quantum Hopf bundle

Alessandro Zampini

Abstract. This paper presents an analysis of the set of connections and co-
variant derivatives on a U(1) quantum Hopf bundle on the standard quantum
sphere S2

q, whose total space algebra SUq(2) is equipped with the 3d left covari-
ant differential calculus by Woronowicz. The introduction of a Hodge duality
on both Ω(SUq(2)) and on Ω(S2

q) allows for the study of Laplacians and of
gauged Laplacians.

This paper is dedicated to Sergio Albeverio, on the occasion of his 70th birthday.

1. Introduction

This paper is focussed on the analysis of a class of Hall Hamiltonians in the
noncommutative set up. It is intended as a survey of the general formulation of
quantum principal bundles, and as a description of a specific procedure to introduce,
on both the total space and the base space of a quantum Hopf bundle, a set of
Laplacian operators and to couple them with gauge connections. It also presents a
detailed formulation of the classical Hopf bundle. The emphasis in the presentation
of structures from differential geometry will be given to their algebraic aspects
extended to the noncommutative setting.

Classical Hall Hamiltonians are gauged Laplace operators acting on the space of
sections of the vector bundles associated to the principal bundles π : G→ G/K over
homogeneous spaces (with G semisimple and K compact) and can be constructed
in terms of the Casimir operators of G and K. With (ρ, V ) a representation of K,
one has the identification of sections of the associated vector bundle E = G×ρ(K) V
with equivariant maps from G to V , Γ(G/K, E) � C∞(G, V )ρ(K) ⊂ C∞(G) ⊗ V .
Given a connection on G one has a covariant derivative ∇ on Γ(G/K, E), so that
the gauged Laplacian operator is ΔE = (∇∇∗ +∇∗∇) = �∇ �∇, where the dual
∇∗ is defined from the metric induced on the homogeneous space basis G/K by
the Cartan-Killing metric on G, or equivalently the Hodge duality comes from
the induced metric on G/K. If the connection is the canonical one, given by the
orthogonal splitting of the Lie algebra g of G in terms of the Lie algebra k of the
gauge group and of its orthogonal complement, then the gauged Laplacian operator
can be cast in terms of the quadratic Casimirs of g and k:

(1.1) ΔE = (ΔG ⊗ 1− 1⊗ Ck)
∣∣
C∞(G,V )ρ(K)

= (Cg ⊗ 1− 1⊗ Ck)|C∞(G,V )ρ(K)

M. Marcolli, D. Parashar (Eds.), Quantum Groups and Noncommutative Spaces, 
DOI: 10.1007/978-3-8348-9831-9_10, © Vieweg+Teubner Verlag | Springer Fachmedien 
Wiesbaden GmbH 2011 
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The above formula [4] simplifies the diagonalisation of the gauged Laplacian, and
has important applications in the study of the heat kernel expansion and index
theorems on principal bundles.

The natural evolution is to develop models of the Hall effect on noncommuta-
tive spaces whose symmetries are described in terms of quantum groups. In [24] the
first model of ’excitations moving on a quantum 2-sphere’ in the field of a magnetic
monopole has been studied. It is described by quantum principal U(1)-bundle over
a quantum sphere S2q having as a total space the manifold of the quantum group
SUq(2) [6]. The natural associated line bundles are classified by the winding num-
ber n ∈ Z: equipped SUq(2) with the three dimensional left covariant calculus
from Woronowicz [38], the gauge monopole connection is studied and a gauged
Laplacian acting on sections of the associated bundle is completely diagonalised.
That paper presents a first generalisation of the relation (1.1). Its most interest-
ing aspect is that the corresponding energies are not invariant under the exchange
monopole/antimonopole, namely the spectrum of the gauged Laplacian is not in-
variant under the inversion of the direction of the magnetic field, a manifestation of
the phenomenon usually referred to as ’quantisation removes degeneracy’. A paral-
lel study of the relation (1.1) is presented in [11], where Laplacians on a quantum
projective plane are gauged via the monopole connection.

The analysis in [24] embodies two specific starting points. The first one is that
the quantum Casimir Cq for the universal envelopping algebra Uq(su(2)) dual to
SUq(2) – thus playing the quantum role of the classical envelopping algebra dual
to the classical Lie group – is a quadratic operator in the generators of Uq(su(2))
acting on SUq(2), but can not be cast in the form of a whatever rank polynomial
in the left invariant generators of the left invariant three dimensional differential
calculus by Woronowicz, so to say in the basis of natural left invariant derivations
associated to this differential calculus. The second starting point is given by the
studies performed in [26]. In that paper a �-Hodge operator on the exterior algebra
on the Podleś sphere S2q – coming from the differential two dimensional calculus
induced on S2q by the three dimensional calculus on SUq(2) – had been introduced,
so to make it possible the definition of a Laplacian operator on S2q .

This paper develops the analysis started in [24], and describes another gener-
alisation of the relation (1.1) to the setting of the same quantum Hopf bundle. A
family of compatible �-Hodge structures on the exterior algebras Ω(SUq(2)) and
Ω(S2q), depending on a set of real parameters, are introduced, giving the corre-
sponding Laplacians �SUq(2) = �d�d : A(SUq(2)) �→ A(SUq(2)), and �S2

q
= �d�d :

A(S2q) �→ A(S2q). The connections on the principal bundle allows for a gauging of
the Laplacian �S2

q
on each associated line bundle. When �S2

q
is gauged into �D0

via the monopole connection, one finds

(1.2) q2n�D0 = (�SUq(2) + γXzXz),

where the integer n ∈ Z specifies the value of the monopole charge. This is the
relation generalising the first equality in (1.1): the role of the quadratic Casimir of
the gauge group algebra is played by γXzXz�, with Xz the vertical derivation of the
fibration, and γ ∈ R+ appears in this formulation as a parametrisation for a set of
compatible �-Hodge structures giving Laplacians satisfying the same relation (1.2).

This paper begins with an exposition of the classical Hopf bundle π : S3 → S2.
Section 2 presents a global – i.e. charts independent – description of the differential
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calculi on both the Lie group manifold SU(2) � S3 and on the homogeneous space
S2 = S3/U(1), and introduces on the exterior algebras Ω(S3) and Ω(S2) the Hodge
duality structures coming from a Cartan-Killing type metric on the Lie algebra
su(2), in order to define Laplacian operators. The principal bundle structure is
described in terms of a well known principal bundle atlas. The aim of the section
is to explicitly compute for such a specific Hopf bundle, following the classical
approach from differential geometry, the main structures which will be generalised
to the quantum setting. A more general and complete analysis of a noncommutative
geometry approach to the differential geometry of principal and quantum bundles
is in [3].

Section 3 describes the quantum formulation [6] of the principal bundle having
A(SUq(2)) as total space algebra, A(S2q) as base manifold algebra and A(U(1)) as
gauge group algebra, with the differential calculus on SUq(2) given the 3d left-
covariant calculus introduced by Woronowicz [37, 38].

Section 4 presents a �-Hodge duality on Ω(SUq(2)), allowing for the definition
of a Laplacian operator. The Hodge duality is introduced following [22]; section
5 describes an evolution of this approach, giving a �-Hodge duality structure on
Ω(S2q), and analysing its compatibility with the one on Ω(SUq(2)).

Section 6 provides a complete explicit description of the set of connections on
this specific realisation of the quantum Hopf bundle, and of the main properties of
the covariant derivative operators on each associated line bundle. The emphasis is
on the domain of the covariant derivative operators – the set of horizontal coequiv-
ariant elements of the bundle – which appears here as the quantum counterpart of
the classical forms also called tensorial forms. Section 7 studies the coupling of the
Laplacian operator on Ω(S2q) to the gauge connections.

Section 8 applies to the commutative algebras {A(SUq(2)),A(S2),A(U(1))}
the formalism developed in the quantum setting, in order to recover the structure
of the classical Hopf bundle from an algebraic perspective. Section 9 closes the
paper with an evolution of section 6, describing how a covariant derivative operator
can be defined on Ω(SUq(2)), the whole exterior algebra on the total space SUq(2)
of the quantum Hopf bundle, following the formalism developed in [12, 13].

2. The classical Hopf bundle

The first formulation of what are nowadays known as Hopf fibrations is con-
tained in [18, 19] in terms of projecting spheres to spheres of lower dimensions: it
came also as a geometric formulation of the Dirac’s model of magnetic monopole
[10]. The following lines are intended as a concise introduction to the formalism
of fiber – and principal – bundles, aimed to set the notations that will be used in
this paper: excellent textbooks – like for example [20, 28] – deeply and extensively
describe this subject.

With π : P →M a smooth surjective map from a manifold P to a manifoldM,
(P,M, π) is a fibre bundle with typical fibre F overM if there is a fibre bundle atlas
with charts (Ui, λi), where Ui is an open covering of M and the diffeomorphisms
λi : π−1(Ui) → Ui × F are such that π : π−1(Ui) → Ui is the composition of λi
with the projection onto the first factor in Ui × F . The manifold P is called the
total space of the bundle, the manifold M is the base of the bundle. From the
definition it follows that π−1(m) is diffeomorphic to F – the fibre of the bundle –
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for any m ∈ M. For any f ∈ F one has λi ◦ λ−1j (m, f) = (m,λij(m, f)) where
λij : (Ui ∩ Uj) × F → F is smooth and λij(m, ) belongs to the group Diff(F)
of diffeomorphisms of the fibre F for each m ∈ Ui ∩ Uj . The mappings λij are
called the transition functions of the bundle, and satisfy the cocycle condition
λij(m, ) ◦ λjk(m, ) = λik(m, ) for m ∈ Ui ∩ Uj ∩ Uk, with λii(m, ) = idF for
m ∈ Ui.

A fibre bundle (P,M, π) is called a vector bundle if its typical fibre F is a vector
space and if the trivialisation diffeomorphisms λi give transition functions λij which
are invertible linear maps, elements in GL(F) for any m ∈ M. A principal bundle
(P,K, [M], π) with structure group K is a fibre bundle (P,M, π) with typical fibre
K and transition functions λij(m, ) ∈ Aut(K) which give the left translation of
the group K on itself. On the total space of a principal bundle there is also a right
action of the Lie group K – that is rk′(rk(p)) = rkk′(p) for any p ∈ P and k, k′ ∈ K
– such that π(rk(p)) = π(p), and such that the action is free and transitive. The
baseM of the bundle can be identified with the quotient P/K with respect to such
a right action.

Given G a Lie group and K ⊂ G a closed Lie subgroup of it, the group manifold
G is the total space manifold of a principal bundle (G,K, G/K, π) with base space
G/K - the space of left cosets - and typical fiber given by the structure or gauge
group K, so that the bundle projection π : G → G/K is the canonical projection.
The right principal action of the gauge group K on G is given as rk(g) = gk for
any k ∈ K and g ∈ G. This action trivially satisfies the requirements of being free
and transitive. If k is the Lie algebra of the group K, the fundamental vector field
Xτ ∈ X(G) associated to τ ∈ k is defined as the infinitesimal generator of the right
principal action rexp sτ (g) = g exp sτ of the one parameter subgroup exp sτ ⊂ K:
the mapping τ ∈ k → {Xτ} ∈ X(G) is a Lie algebra isomorphism between k and
the set of fundamental vector fields {Xτ}. A differential form φ ∈ Ω(G) is called
horizontal if iXτφ = 0 for any fundamental vector field Xτ .

If ρ : K → GL(W ) is a finite dimensional representation of K on the vector
spaceW , the associated vector bundle to G is the vector bundle whose total space is
E = G×ρ(K)W , having typical fiber W . It is defined as the quotient of the product
G ×W by the equivalence relation (rk(g) = gk;w) ∼ (g; ρ(k) · w) for any choice
of g ∈ G, k ∈ K and w ∈ W : (E , G/K, πE) is a fibre bundle with a projection
πE : E → G/K which is consistently defined on the quotient as πE [g, w]ρ(K) = π(g)
from the principal bundle projection π.

With r∗k : Ω(G)→ Ω(G) the action of K on the exterior algebra Ω(G) induced
as a pull-back of the right action rk of K on G, the ρ(K)-equivariant r-forms of the
principal bundle are W -valued forms on G defined as:

(2.1) Ωr(G,W )ρ(K) = {φ ∈ Ωr(G,W ) = Ωr(G)⊗W : r∗k(φ) = ρ−1(k)φ}.
A section of the associated bundle E is an element in Γ(G/K, E), namely a map
σ : G/K → E such that πE(σ(m)) = m for any m ∈ G/K. This definition is
extended to Γ(r)(G/K, E), the set of r-forms on the basis G/K of the principal
bundle with values in E . There is a canonical isomorphism
(2.2) Γ(r)(G/K, E) � Ωrhor(G,W )ρ(K)

from the space of E-valued differential forms on G/K onto the space of horizontal
ρ(K)-equivariantW -valued differential forms on the principal bundle (G,K, π). For
r = 0 – with Γ(G/K, E) � Γ(0)(G/K, E) – the isomorphism gives the well known
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equivalence between equivariant functions of a principal bundle and sections of its
associated bundle. In particular, for W = R,C with trivial representation the
isomorphism is

(2.3) Ω(G/K) � Ωhor(G)ρ(K)=K = {φ ∈ Ω(G) : iXτφ = 0; r∗kφ = φ},
giving a description of the exterior algebra on the basis of the principal bundle.

A connection on a principal bundle can be given via a connection 1-form. A
connection 1-form on G is an element ω ∈ Ω(G, k), taking values in k and satisfying
the two local conditions:

ω(Xτ ) = τ,

r∗k(ω) = Adk−1 ω,

where the adjoint action of K is given by (Adk−1 ω)(X) = k−1ω(X)k for any vector
field X ∈ X(G). At each point g ∈ G there is on the tangent space TgG a natural
notion of vertical subspace, whose basis is given by the vectorsXτ which are tangent
to the fiber group K, while the connection 1-form selects the horizontal subspace
H

(ω)
g (G) given by the kernel of ω. Identifiying the element ω(X) ∈ k with the

vertical vector field it generates, the expression X(ω) = X − ω(X) denotes the
horizontal projection of the vector field X ∈ X(G).

With any ρ(K)-equivariant form φ ∈ Ωr(G,W )ρ(K), the covariant derivative is
defined as the map D : Ωr(G,W )ρ(K) → Ωr+1

hor (G,W )ρ(K) given as

(2.4) Dφ(X1, . . . , Xr+1) = dφ(X(ω)
1 , . . . , X

(ω)
r+1)

where d is the exterior derivative on G. On a ρ(K)-equivariant horizontal form
φ ∈ Ωhor(G,W )ρ(K) the action of the covariant derivative can be written in terms
of the connection 1-form as:

(2.5) Dφ = dφ+ ω ∧ φ.

The following sections describe the Hopf fibration π : S3 �→ S2, with G �
SU(2), K � U(1) and S2 the space of the orbits SU(2)/U(1), and the monopole
connection.

2.1. A differential calculus on the classical SU(2) Lie group. The aim
of this section is to describe the differential calculus on the total space of this
bundle, in terms of a natural basis of global vector fields and 1-forms [28]. It is
intended to give them an explicit expression in order to clarify the classical limit of
their quantum counterparts.

Recall that a Lie group G naturally acts on itself both from the right and from
the left. The left action is the smooth map l : G × G → G defined via the left
multiplication l(g′, g) = g′g = lg′(g): since lg′g′′(g) = lg′(lg′′(g)), the left action is
a group homomorphism lg : G → Aut(G). The right action is the smooth map
r : G×G→ G defined via the right multiplication r(g, g′) = gg′ = rg′(g); it is then
immediate to see that rg′g′′(g) = gg′g′′ = rg′′(rg′(g)): the right action is a group
anti-homomorphism rg : G → Aut(G). For any T ∈ g, the Lie algebra of G, it is
possible to define a vector field RT ∈ X(G). It acts as a derivation on a smooth
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complex valued function defined on G, and can be written in terms of the pull-back
l∗g : C

∞(G)→ C∞(G) induced by lg. On φ ∈ C∞(G):

(2.6) RT (φ) =
d
ds

(l∗exp sT (φ))
∣∣
s=0

Although defined via the left action lg, the vector field RT is called the right in-
variant vector field associated to T ∈ g; this set of fields owes its name to the fact
that, given rg∗ : X(G) → X(G) the push-forward induced by the right action rg,
they satisfy a property of right invariance as rg∗(RT ) = RT . From the definition of
the pull-back map l∗g : C

∞(G)→ C∞(G) one has:

l∗g′g′′(φ) = φ ◦ lg′g′′ = φ ◦ lg′ ◦ lg′′ = l∗g′′(l
∗
g′(φ))

for any φ ∈ C∞(G). This relation enables to prove that the map ľ : T ∈ g→ RT ∈
X(G) is a Lie algebra anti-homomorphism, [RT , RT ′ ] = R[T ′,T ].

The analogous definitions starting from the right action naturally hold. For
any T ∈ g, the vector field LT ∈ X(G) is defined as a derivation on C∞(G), namely
as the infinitesimal generator of the pull-back r∗g induced by the right action rg:

(2.7) LT (φ) =
d
ds

(r∗exp sT (φ))
∣∣
s=0

on any φ ∈ C∞(G). Left invariant vector fields satisfy a property of left invariance
given as l∗g(LT ) = LT ; the map ř : T ∈ g→ LT ∈ X(G) is a Lie algebra homomor-
phism, with [LT , LT ′ ] = L[T,T ′]. The sets {LT }, {RT } are two basis of the left free
C∞(G)-module X(G).

The total space of the classical Hopf bundle is the manifold S3, which represents
the elements of the Lie group SU (2). A point g ∈ S3 can be then written via a
2× 2 matrix with complex entries and unit determinant:

(2.8) g =
(

u −v̄
v ū

)
: ūu+ v̄v = 1;

the left invariant vector fields ř(T ) = LT are given, following (2.7), as the tangent
vectors to the curves g(s) = g · exp sT . In the defining matrix representation it
reads:

(2.9)
d

ds

(
u −v̄
v ū

)
· (exp sT ) |s=0=

(
u −v̄
v ū

)
· (T )

Since exp sT is unitary, T is antihermitian, and the choice of a basis in terms of
the Pauli matrices:

(2.10) Tx =
1
2

(
0 i
i 0

)
, Ty =

1
2

(
0 −1
1 0

)
, Tz =

i

2

(
1 0
0 −1

)
,



170 ALESSANDRO ZAMPINI

gives the explicit form of the left invariant vector fields:

Lx = − i

2

(
v̄
∂

∂u
− ū

∂

∂v
+ u

∂

∂v̄
− v

∂

∂ū

)

Ly = −12
(
v̄
∂

∂u
− ū

∂

∂v
− u

∂

∂v̄
+ v

∂

∂ū

)

Lz =
i

2

(
u
∂

∂u
+ v

∂

∂v
− v̄

∂

∂v̄
− ū

∂

∂ū

)

L− = Lx − iLy = i

(
v
∂

∂ū
− u

∂

∂v̄

)

L+ = Lx + iLy = i

(
ū
∂

∂v
− v̄

∂

∂u

)
,(2.11)

satisfying the commutation relations:

[Lz;L−] = iL−,

[Lz;L+] = −iL+,

[L−;L+] = 2iLz.(2.12)

The components of the right invariant vector fields RT = ľ(T ) are then clearly given
in the defining matrix representation (2.6) as:

(2.13)
d

ds
(exp sT ) ·

(
u −v̄
v ū

)
|s=0= (T ) ·

(
u −v̄
v ū

)

acquiring the form:

Rx =
i

2

(
v
∂

∂u
+ u

∂

∂v
− ū

∂

∂v̄
− v̄

∂

∂ū

)

Ry = −12
(
v
∂

∂u
− u

∂

∂v
− ū

∂

∂v̄
+ v̄

∂

∂ū

)

Rz =
i

2

(
u
∂

∂u
− v

∂

∂v
+ v̄

∂

∂v̄
− ū

∂

∂ū

)

R− = Rx − iRy = i

(
v
∂

∂u
− ū

∂

∂v̄

)

R+ = Rx + iRy = i

(
u
∂

∂v
− v̄

∂

∂ū

)
.(2.14)

The commutation relations they satisfy are:

[Rz;R−] = −iR−,
[Rz;R−] = iR+,

[R−;R+] = −2iRz.(2.15)

The quadratic Casimir of the Lie algebra su(2) is written as

(2.16) C =
1
2
(L+L− + L−L+) + LzLz =

1
2
(R+R− +R−R+) +RzRz.
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The set X(S3) is a free left C∞(S3)- module. Right vector fields can be expressed
in the basis of the left vector fields as Ra = JabLb. The matrix J is given by:

(2.17)

⎛
⎝

R−
Rz
R+

⎞
⎠ =

⎛
⎝

ū2 2ūv −v2
−ūv̄ uū− vv̄ −uv
−v̄2 2uv̄ u2

⎞
⎠

⎛
⎝

L−
Lz
L+

⎞
⎠

and its inverse matrix is:

(2.18)

⎛
⎝

L−
Lz
L+

⎞
⎠ =

⎛
⎝

u2 −2uv −v2
uv̄ uū− vv̄ ūv
−v̄2 −2ūv̄ ū2

⎞
⎠

⎛
⎝

R−
Rz
R+

⎞
⎠

A similar analysis can be performed in the study of the cotangent space X∗(G)
of a Lie group. This is a C∞(S3)-bimodule, with two basis of globally defined
1-forms, namely the left invariant {ω̃a} dual to the set of left invariant vector fields
{La}, and the right invariant {η̃b} dual to the set of right invariant vector fields
{Rb}. They satisfy the invariance property:

l∗g(ω̃a) = ω̃a,

r∗g(η̃b) = η̃b :(2.19)

one then immediately computes:

(2.20) Ri = JijLj ⇔ η̃sJsp = ω̃p.

The left invariant 1-forms are:

ω̃z = −2i (ūdu+ v̄dv)

ω̃− = −i (v̄dū− ūdv̄)

ω̃+ = −i (udv − vdu)(2.21)

with ω̃x = (ω̃− + ω̃+) and ω̃y = i(ω̃+ − ω̃−). The antilinear involution on Ω1(S3),
compatible with the antilinear involution on C∞(S3), is given by ω̃∗x = ω̃x, ω̃∗y = ω̃y,
ω̃∗z = ω̃z. The right-invariant 1-forms are:

η̃z = 2i (udū+ v̄dv)

η̃− = i (udv̄ − v̄du)

η̃+ = −i (ūdv − vdū) .(2.22)

Given a complex valued smooth function φ ∈ C∞(S3), the exterior derivative is the
map d : C∞(S3)→ Ω1(S3) defined via:

(2.23) dφ(X) = X(φ)

in terms of the Lie derivative X(φ) of φ along the vector field X. This map acquires
the form:

(2.24) dφ = La(φ)ω̃a = Rb(φ)η̃b
where now La(φ) represents the Lie derivative of φ along the vector field La, while
Rb(φ) represents the Lie derivative of φ along the vector field Rb.

From the C∞(S3)-bimodule Ω1(S3) define the tensor product of forms as the
C∞(S3)-bimodule {Ω1(S3)}⊗k = Ω1(S3) ⊗C∞(S3) . . . ⊗C∞(S3) Ω1(S3) (k times).
The exterior algebra coming from the differential calculus (2.24) is defined as the
graded associative algebra Ω(S3) =

(⊕kΩk(S3);∧), with k-forms and wedge prod-
uct introduced in terms of an alternation mapping A : {Ω1(S3)}⊗k → {Ω1(S3)}⊗k
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[1]. The wedge product is bilinear, and satisfies the identity α ∧ β = (−1)klβ ∧ α
for any k-form α and l-form β. The complex involution is extended by requiring

(α ∧ β)∗ = (−1)klβ∗ ∧ α∗.
The exterior derivative is extended to d : Ωk(S3) → Ωk+1(S3) as the unique C-
linear mapping satisfying the conditions:

(1) d is a graded ∧-derivation,
that is d(α ∧ β) = (dα) ∧ β + (−1)kα ∧ dβ for any k-form α;

(2) d2 = d ◦ d = 0;
(3) on φ ∈ Ω0(S3) � C∞(S3), it is given by dφ as in (2.24).

It is then easy to see that Ω2(S3) is three dimensional, with a basis given by
{ω̃− ∧ ω̃+, ω̃+ ∧ ω̃z, ω̃z ∧ ω̃−}: extending in a natural way via the pull back the left
and right actions of the group SU(2) on Ω2(S3), it is also clear that such basis
elements are left invariant. From (2.21) one has:

dω̃− = iω̃− ∧ ω̃z,
dω̃+ = −iω̃+ ∧ ω̃z,
dω̃z = 2iω̃− ∧ ω̃+.(2.25)

The bimodule Ω3(S3) is one dimensional, with again a left invariant basis 3-form
given by {ω̃− ∧ ω̃+ ∧ ω̃z}. A right invariant basis of the exterior algebra Ω(S3) is
analogously given in terms of the 1-forms η̃a.

2.2. A Laplacian operator on the group manifold SU(2). Being SU(2)
a semisimple Lie group, the group manifold S3 can be equipped with the Cartan-
Killing metric originated from the Cartan decomposition of the Lie algebra su(2).
Consider now as a riemannian metric structure on S3 the symmetric tensor

(2.26) g = α(ω̃x ⊗ ω̃x + ω̃y ⊗ ω̃y) + ω̃z ⊗ ω̃z,

with α ∈ R+. For α = 1 such a metric tensor coincides with the the Cartan-Killing
metric. The volume associated to the g-orthonormal basis and to the choice of the
orientation (x, y, z) is given by θ = α ω̃x ∧ ω̃y ∧ ω̃z, so that θ∗ = θ. Such a volume
θ is a Haar volume, namely it is invariant with respect to both the left l∗g and the
right actions r∗g of the Lie group SU(2) on itself, since an explicit calculation gives
La(θ) = Ra(θ) = 0. The Hodge duality � : Ωk(S3)→ Ω3−k(S3) which corresponds
to this volume [1] is the C∞(S3)-linear map given on the left invariant basis of the
exterior algebra Ω(S3) by �(1) = θ, �(θ) = 1, and:

(2.27)
�(ω̃x) = ω̃y ∧ ω̃z, �(ω̃y ∧ ω̃z) = ω̃x,
�(ω̃y) = ω̃z ∧ ω̃x, �(ω̃z ∧ ω̃x) = ω̃y,
�(ω̃z) = α ω̃x ∧ ω̃y, �(ω̃x ∧ ω̃y) = α−1 ω̃z.

The differential calculus on the group manifold S3 as well as the above �-Hodge
duality on the exterior algebra Ω(S3) give a Laplacian operator defined as �S3φ =
�d � dφ on any φ ∈ C∞(S3). It can be written as a differential operator in terms
of the left invariant vector fields:

(2.28) �S3φ = [
1
2α
(L−L+ + L+L−) + LzLz]φ

The Laplacian operator is the Casimir of the Lie algebra su(2) only if α = 1, that
is only if the metric from where it is originated is the Cartan-Killing metric.
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The Hodge structure satisfies two identities:

�2 (ξ) = (−1)k(3−k)ξ = ξ(2.29)

ξ ∧ (�ξ′) = ξ′ ∧ (�ξ)(2.30)

for any ξ, ξ′ ∈ Ωk(S3). This allows to define a symmetric bilinear map 〈 , 〉S3 :
Ωk(S3)× Ωk(S3)→ C∞(S3) (k = 0, . . . , 3) as:

(2.31) 〈ξ, ξ′〉S3 θ = ξ ∧ (�ξ′).

It is clearly a symmetric tensor on {X∗(S3)}⊗2k, whose components can be ex-
pressed in terms of the components of the inverse metric g−1 = g−1abLa ⊗ Lb ∈
{X1(S3)}⊗2 with g−1abgbc = δac , as

(2.32) 〈ω̃i1 ∧ . . . ∧ ω̃ik , ω̃j1 ∧ . . . ∧ ω̃jk〉S3 =
∑
σ

πσg
−1i1σ(j1) . . . g−1ikσ(jk)

where the summation is over permutations σ of k elements, with parity πσ. Starting
from the Hodge duality a second bilinear map 〈 , 〉∼S3 : Ωk(S3)×Ωk(S3)→ C∞(S3),
can be introduced as

(2.33) 〈ξ′, ξ〉∼S3 θ = ξ∗ ∧ (�ξ′)

for any ξ, ξ′ ∈ Ωk(S3), being hermitian (〈ξ′, ξ〉∼S3)∗ = 〈ξ, ξ′〉∼S3 . The Haar volume
form can be used to introduce an integral on a manifold [1],

∫
θ
: Ω3(S3)→ C; being

S3 compact, the volume of the group manifold can be normalised, setting
∫
θ
θ = 1.

From (2.31) and (2.33) it is possible to define on the exterior algebra Ω(S3) both a
scalar product,

(2.34) (ξ; ξ′)S3 =
∫

θ

ξ ∧ (�ξ′) =
∫

θ

〈ξ, ξ′〉S3 θ,

and an hermitian inner product,

(2.35) (ξ′; ξ)∼S3 =
∫

θ

ξ∗ ∧ (�ξ′) =
∫

θ

〈ξ′, ξ〉∼S3 θ.

An evaluation on a non hermitian basis in Ω(S3) presents the differences between
the non vanishing terms of two bilinear forms:

〈1, 1〉S3 = 1;

〈ω̃−, ω̃+〉S3 = 〈ω̃+, ω̃−〉S3 =
1
2α

,

〈ω̃z, ω̃z〉S3 = 1;

〈ω̃+ ∧ ω̃z, ω̃− ∧ ω̃z〉S3 = 〈ω̃− ∧ ω̃z, ω̃+ ∧ ω̃z〉S3 =
1
2α

,

〈ω̃− ∧ ω̃+, ω̃− ∧ ω̃+〉S3 =
1
4α2

;

〈θ, θ〉S3 = 1;(2.36)



174 ALESSANDRO ZAMPINI

while

〈1, 1〉∼S3 = 1;

〈ω̃−, ω̃−〉∼S3 = 〈ω̃+, ω̃+〉∼S3 =
1
2α

,

〈ω̃z, ω̃z〉∼S3 = 1;

〈ω̃+ ∧ ω̃z, ω̃+ ∧ ω̃z〉∼S3 = 〈ω̃− ∧ ω̃z, ω̃− ∧ ω̃z〉∼S3 =
1
2α

,

〈ω̃− ∧ ω̃+, ω̃− ∧ ω̃+〉∼S3 =
1
4α2

;

〈θ, θ〉∼S3 = 1.(2.37)

2.3. The principal bundle structure and the monopole connection.
Consider the one parameter subgroup of SU(2) given by γTz (s) = exp sTz where
Tz is the generator in (2.10). In this specific matrix representation it is

(2.38) γTz (s) = exp
[
is

2

(
1 0
0 −1

)]
=

(
eis/2 0
0 e−is/2

)
,

thus proving that γTz (s) � U(1) as a subgroup in SU(2). The space of left cosets
SU(2)/U(1) is the set of the orbits of the right principal action řexp sTz (g) =
g exp sTz which is free, and smooth; its infinitesimal generator coincides with the
vector field Lz (2.9). As already mentioned the canonical projection π : SU(2) →
SU(2)/U(1) gives a principal bundle whose vertical field is Lz. A formulation for
a principal bundle atlas on a homogeneous space is extensively analysed in terms
of local sections [20, 28]. This section describes in detail how a principal bundle
atlas is introduced [15, 35] defining suitable trivialisations.

Parametrise S3 by

u = cos θ/2 ei(ϕ+ψ)/2

v = sin θ/2 e−i(ϕ−ψ)/2,

with 0 ≤ θ ≤ π and φ, ψ ∈ R, the Hopf map π : SU(2) → S2 � SU(2)/U(1) is
defined by:

bz = uu∗ − vv∗ = cos θ,

by = uv∗ + vu∗ = sin θ cosϕ,

bx = −i(vu∗ − uv∗) = − sin θ sinϕ(2.39)

with b2z + b2x + b2y = 1. It is immediate to see that π(u, v) = π(u′, v′) if and only
if u′ = ueiα and v′ = veiα with α ∈ R: this is also a way to recover that the
projection has the standard fibre U(1). A choice for an open covering of the sphere
S2 is given by:

S2
(N) = {S2 : bz �= 1} ⇒ π−1(S2

(N)) = S3
(N) = {S3 : v �= 0},

S2
(S) = {S2 : bz �= −1} ⇒ π−1(S2

(S)) = S3
(S) = {S3 : u �= 0},(2.40)
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with S3
(j) � S2

(j) ×U(1) via the diffeomorphisms:

g � (u, v) ∈ S3
(N) : λN (g) = (π(g);

v

|v| ) ∈ S2
(N) ×U(1),

g � (u, v) ∈ S3
(S) : λS(g) = (π(g);

u

|u| ) ∈ S2
(S) ×U(1).

The set of transition functions associated with this trivialisation is given by λ−1NS =
λSN = λS ◦ λ−1N : (S2

(N) ∩ S2
(S)) × U(1) → U(1). Choose b ∼ (θ, ϕ) ∈ S2

(N) ∩ S2
(S).

The element (b, eiα) ∈ (S2
(N) ∩ S2

(S))×U(1) is mapped into

λ−1N (b, eiα) = (u =
by − ibx√
2(1− bz)

eiα; v =

√
1− bz
2

eiα) ∈ S3
(N)

⇒ λS ◦ λ−1N (b; eiα) = (b, eiϕeiα).

This means that λSN (b)·eiα = eiϕeiα. The transition functions describe a left action
of the U(1) gauge group on itself, and trivially satisfy the cocycle conditions.

For any integer n there is a representation of the gauge group,

(2.41) ρ(n) : U(1)→ C∗, ρ(n)(eiα) = einα

so that for any n ∈ Z there is a line bundle En = SU(2) ×ρ(n) C associated to the
principal Hopf bundle. Since the representations of the gauge group given in (2.41)
are defined on C, the set Ωr(S3,C)ρ(n) � Ωr(S3) of ρ(n)(U(1))-equivariant r-forms
on the Hopf bundle can be easily described in terms of the action of the vertical
field of the bundle, giving the infinitesimal version of the definition in (2.1) (with
r = 0, . . . , 3)

(2.42) Ωr(S3)ρ(n) = {φ ∈ Ωr(S3) : ř∗k(φ) = ρ−1(n)(k)φ ⇔ Lz(φ) = − in2 φ}.
The sets Ωr(S3)ρ(n) are C

∞(S2)-bimodule. The horizontal ρ(n)(U(1))-equivariant
r-forms are given as:

(2.43) L(r)
n = {φ ∈ Ωr(S3)ρ(n) : iLz (φ) = 0}

for r > 0: one obviously has L(3)
n = ∅, while

(2.44) L(0)
n = Ω0(S3)ρ(n) = {φ ∈ C∞(S3) : ř∗k(φ) = φ ⇔ Lz(φ) = −(in/2)φ}.

With Γ(r)(S2, En) the set of En-valued r-forms defined on S2, the isomorphisms in
(2.2) can be written as isomorphisms of C∞(S2)-bimodule

(2.45) Γ(r)(S2, En) � L(r)
n .

They formalise the equivalence between r-form valued sections on each line bundle
En and ρ(n)(U(1))-equivariant horizontal r-forms of the principal Hopf bundle. This
equivalence can be described – as in [29] – using the local trivialisation (2.40). A
global, algebraic description of them, naturally conceived for the generalisation to
the non commutative setting, is in [23], and it is based on the Serre-Swan theorem1.

1The theorem of Serre and Swan [34] constructs a complete equivalence between the category
of (smooth) vector bundles over a (smooth) compact manifold M and bundle maps, and the
category of finite projective modules over the commutative algebra C(M) of (smooth) functions
over M and module morphisms. The space Γ(M, E) of (smooth) sections of a vector bundle
πE : E → M over a compact manifold M is a finite projective module over the commutative
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Given n ∈ Z, consider an element
∣∣∣Ψ̃(n)

〉
∈ C∞(S3)|n|+1 whose components

are given by:

n ≥ 0 :
∣∣∣Ψ̃(n)

〉
μ
=

√(
n
μ

)
v̄μūn−μ ∈ L(0)

n ,

n ≤ 0 :
∣∣∣Ψ̃(n)

〉
μ
=

√( |n|
μ

)
v|n|−μuμ ∈ L(0)

n(2.46)

with μ = 0, . . . |n|. Recalling the binomial expansion it is easy to compute that:

n ≥ 0 :
〈
Ψ̃(n), Ψ̃(n)

〉
=

n∑
μ=0

(
n
μ

)
un−μvμv̄μūn−μ = (ūu+ v̄v)n = 1,

n ≤ 0 :
〈
Ψ̃(n), Ψ̃(n)

〉
=

|n|∑
μ=0

( |n|
μ

)
ūμv̄|n|−μv|n|−μuμ = (ūu+ v̄v)n = 1.

(2.47)

The ket-bra element p̃(n) =
∣∣∣Ψ̃(n)

〉〈
Ψ̃(n)

∣∣∣ ∈ M|n|+1(C∞(S2)) is then a projector in

the free finitely generated module C∞(S2)|n|+1, as it satisfies the identities (p̃(n))† =
p̃(n), (p̃(n))2 = p̃(n). The matrix elements of the projectors are given by p̃

(n)
μν =∣∣∣Ψ̃(n)

〉
μ

〈
Ψ̃(n)

∣∣∣
ν
: each projector p̃(n) has rank 1, because its trace is the constant

unit function given by

(2.48) tr p̃(n) =
|n|∑
μ=0

∣∣∣Ψ̃(n)
〉
μ

〈
Ψ̃(n)

∣∣∣
μ
= 1.

Consider the set of ρ(n)(U(1))-equivariant map L
(0)
n as a left module over

C∞(S2) ⊂ C∞(S3): any equivariant map φ ∈ L
(0)
n can be written in terms of

an element 〈f | ∈ C∞(S2)|n|+1 as

φf =
〈
f, Ψ̃(n)

〉
=

|n|∑
μ=0

〈f |μ
∣∣∣Ψ̃(n)

〉
μ
.

Given the set Γ(0)(S2, En) of sections of each associated line bundle En, the equiv-
alence with the set L(0)

n of ρ(n)(U(1))-equivariant maps of the Hopf bundle is for-
malised via an isomorphism between C∞(S2)-left modules, represented by:

Γ(0)(S2, En) ↔ L(0)
n

〈σf | = 〈f | p̃(n) ↔
〈
f, Ψ̃(n)

〉

〈σf | = φf

〈
Ψ̃(n)

∣∣∣ ↔ φf =
〈
σf , Ψ̃(n)

〉
(2.49)

for any 〈f | ∈ C∞(S2)|n|+1. Since from this definition it is 〈σf | p̃(n) = 〈σf |, this
isomorphism enables to recover 〈σf | ∈ Γ(0)(S2, En) � C∞(S2)|n|+1p̃(n). An

algebra C(M) and every finite projective C(M)-module can be realised as a module of sections
of a vector bundle over M.
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explicit computation from (2.11) and (2.21) gives:

Lz(ω̃+) = iω̃+ ⇒ ω̃+ ∈ L
(1)
−2;

Lz(ω̃−) = −iω̃− ⇒ ω̃− ∈ L
(1)
2 ,(2.50)

so that for any n ∈ Z the set of ρ(n)(U(1))-equivariant horizontal 1-forms of the
Hopf bundle is

(2.51) L(1)
n = {φ = φ′ω̃− + φ′′ω̃+ : φ′ ∈ L

(0)
n−2 andφ

′′ ∈ L
(0)
n+2}.

For n = 0 one also recovers from (2.3) the equivalence L
(1)
0 � Ω1(S2), so to have

the C∞(S2)-bimodule identification L
(1)
n � Ω1(S2) ⊗C∞(S2) L

(0)
n . For r = 1 the

isomorphism in (2.45) can be written as:

Γ(1)(S2, En) � Ω1(S2)|n|+1 · p̃(n) ↔ L(1)
n � Ω1(S2)⊗C∞(S2) L

(0)
n ,

〈σ| = φ
〈
Ψ̃(n)

∣∣∣ ↔ φ =
〈
σ, Ψ̃(n)

〉
.(2.52)

Given any φ ∈ L
(1)
n , set 〈σ| = φ

〈
Ψ̃(n)

∣∣∣ ∈ Ω1(S2)|n|+1, so to have 〈σ| = 〈σ| p̃(n). To
write the inverse mapping, consider 〈σ| ∈ Ω1(S2)|n|+1p̃(n) with components 〈σ|μ ∈
Ω1(S2) in the bra-vector notation, satisfying 〈σ|μ p̃(n)μν = 〈σ|ν . Define φ =

〈
σ, Ψ̃(n)

〉
:

it is then straightforward to recover that φ ∈ L
(1)
n and that 〈σ|μ = φ

〈
Ψ̃(n)

∣∣∣
μ
.

The same path can be followed to analyse the higher order forms. One has
Lz(ω̃− ∧ ω̃+) = 0, so the C∞(S2)-bimodule of horizontal ρ(n)(U(1))-equivariant
2-forms of the Hopf bundle is given by

(2.53) L(2)
n = {φ = φ′′′ω̃− ∧ ω̃+ : φ′′′ ∈ L(0)

n } � Ω2(S2)⊗C∞(S2) L
(0)
n

for any n ∈ Z. It is clear that for r = 2 the isomorphism in (2.45) can be written
as:

Γ(2)(S2, En) � Ω2(S2)|n|+1 · p̃(n) ↔ L(2)
n � Ω2(S2)⊗C∞(S2) L

(0)
n ,

〈σ| = φ
〈
Ψ̃(n)

∣∣∣ ↔ φ =
〈
σ, Ψ̃(n)

〉
.(2.54)

The most natural choice of a connection, compatible with the local trivialisa-
tion, is given via the definition, as a C-valued connection 1-form, of

(2.55) ω =
i

2
ω̃z = (u∗du+ v∗dv).

It globally – i.e. trivialisation independent – selects the horizontal part of the
tangent space as the left C∞(S3)-moduleH(ω)(S3) ⊂ X(S3) = {L±} since ω(L±) =
0. On the basis of left invariant vector fields the horizontal projection acts as
L
(ω)
± = L±, L

(ω)
z = 0.

2.4. A Laplacian operator on the base manifold S2. The canonical iso-
morphism expressed in (2.3) allows to recover the exterior algebra Ω(S2) on the
basis of the Hopf bundle as the set of horizontal forms in Ω(S3) which are also
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invariant for the right principal action of the gauge group U(1). Recalling the defi-
nition of the C∞(S2)-bimodules of ρ(n)(U(1))-equivariant forms given in (2.51) and
(2.53), it is possible to identify

Ω0(S2) = C∞(S2) � L
(0)
0 ;

Ω1(S2) � L
(1)
0 = {φ = φ′ω̃− + φ′′ω̃+ : φ′ ∈ L

(0)
−2, φ

′′ ∈ L
(0)
2 };

Ω2(S2) � L
(2)
0 = {fω̃− ∧ ω̃+ : f ∈ L

(0)
0 = C∞(S2)},(2.56)

where all such identifications are C∞(S2)-bimodule isomorphisms.
On the basis manifold S2 � SU(2)/U(1) = π(SU(2)), whose trivialisation is

given in (2.40), consider the metric

(2.57) ǧ = 2α (ω̃− ⊗ ω̃+ + ω̃+ ⊗ ω̃−)

and its associated volume θ̌ = α ω̃x∧ω̃y = 2iα ω̃−∧ω̃+ = iLzθ in terms of the volume
on the group manifold S3. The corresponding Hodge duality is the C∞(S2)-linear
map � : Ωk(S2)→ Ω2−k(S2) given by:

(2.58) �(θ̌) = 1, �(1) = θ̌,
�(φ′′ω̃+) = iφ′′ω̃+, �(φ′ω̃−) = −iφ′ω̃−,

with φ′ ∈ L
(0)
−2 and φ′′ ∈ L

(0)
2 . The Laplacian operator on S2 can be now evaluated:

(2.59) �S2f = �d � df =
1
2α
(L+L− + L−L+)f.

It corresponds to the action of the Laplacian �S3 (2.28) on the subalgebra algebra
C∞(S2) ⊂ C∞(S3).

Remark 2.1. Given the Hodge duality (2.58), the expression (2.31) defines a
bilinear symmetric tensor 〈 , 〉S2 : Ωk(S2)× Ωk(S2)→ C∞(S2) (with k = 0, 1, 2):

(2.60) 〈ξ, ξ′〉S2 θ̌ = ξ ∧ (�ξ′),
for any ξ, ξ′ ∈ Ωk(S2). Its non zero terms are given by:

〈1, 1〉S2 = 1;

〈φ′ω̃−, φ′′ω̃+〉S2 = 〈φ′′ω̃+, φ′ω̃−〉S2 = φ′φ′′/2α;〈
θ̌, θ̌

〉
S2 = 1 :(2.61)

such a tensor coincides with the restriction to the exterior algebra Ω(S2) of the
analogue tensor 〈 , 〉S3 . The expression

(2.62) 〈ξ, ξ′〉∼S2 θ̌ = ξ′∗ ∧ (�ξ),
with again ξ, ξ′ ∈ Ωk(S2), defines a bilinear map on Ω(S2), which coincides with
the restriction of the bilinear map 〈 , 〉∼S3 to Ω(S2):

〈1, 1〉∼S2 = 1;

〈φ′ω̃−, ψ′ω̃−〉∼S2 =
1
2α

ψ′∗φ′ = 〈φ′ω̃−, ψ′ω̃−〉∼S3 ,

〈φ′′ω̃+, ψ′′ω̃+〉∼S2 =
1
2α

ψ′∗φ′ = 〈φ′′ω̃+, ψ′′ω̃+〉∼S3 ;
〈
θ̌, θ̌

〉∼
S2 = 1 = 〈2iα ω̃− ∧ ω̃+, 2iα ω̃− ∧ ω̃+〉∼S3(2.63)

for any φ′, ψ′ ∈ L
(0)
−2 and φ′′, ψ′′ ∈ L

(0)
2 .
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Remark 2.2. Introducing from the volume form θ̌ an integral
∫
θ̌
: Ω2(S2) �→ C

with the normalisation
∫
θ̌
θ = 1, the bilinear maps in (2.60) and (2.62) give on the

exterior algebra Ω(S2) a symmetric scalar product and a hermitian inner product,
setting:

(ξ; ξ′)S2 =
∫

θ̌

ξ ∧ (�ξ′),(2.64)

(ξ; ξ′)∼S2 =
∫

θ̌

ξ′∗ ∧ (�ξ).(2.65)

It is clear that they coincide with the restrictions to Ω(S2) of respectively (2.34)
and (2.35).

3. The quantum principal Hopf bundle

This section describes a quantum formulation of a Hopf bundle. It starts with
a description of the algebraic approach to the theory of differential calculi on Hopf
algebras coming from [38, 21] and then algebraically presents the geometric struc-
tures of a principal bundle.

3.1. Algebraic approach to the theory of differential calculi on Hopf
algebras. The first order differential forms on the smooth group manifold SU(2) �
S3 have been presented as elements in the space X∗(S3), or more properly as
sections of the cotangent bundle T ∗(S3). The set Ω1(S3) � X∗(S3) of 1-forms is a
bimodule over C∞(S3), with the exterior derivative d satisfying the basic Leibniz
rule d(ff ′) = (df)f ′+fdf ′ for any f, f ′ ∈ C∞(S3). Moreover, being S3 a compact
manifold, any differential form θ ∈ Ω1(S3) is necessarily of the form θ = fkdf ′k
(with k ∈ N).

In an algebraic setting, these properties are a definition. Given a C-algebra
with a unit A and Ω a bimodule over A with a linear map d : A → Ω, (Ω,d) is
defined a first order differential calculus over A if d(ff ′) = (df)f ′ + fdf ′ for any
f, f ′ ∈ A and if any element θ ∈ Ω can be written as θ =∑

k fkdf
′
k with fk, f

′
k ∈ A.

For a C-algebra with unit A, any first order differential calculus (Ω1(A),d) on
A can be obtained from the universal calculus (Ω1(A)un, δ). The space of universal
1-forms is the submodule of A⊗A given by Ω1(A)un = ker(m : A⊗A → A), with
m(a⊗ b) = ab the multiplication map. The universal differential δ : A → Ω1(A)un
is δa = 1 ⊗ a − a ⊗ 1. If N is any sub-bimodule of Ω1(A)un with projection
πN : Ω1(A)un → Ω1(A) = Ω1(A)un/N , then (Ω1(A),d), with d := πN ◦ δ, is a first
order differential calculus over A and any such a calculus can be obtained in this
way. The projection πN : Ω1(A)un → Ω1(A) is πN (

∑
i ai ⊗ bi) =

∑
i aidbi with

associated subbimodule N = kerπ.
The concept of action of a group on a manifold is algebraically dualised via

the notion of coaction of a Hopf algebra H on an algebra A: if the algebra A is
covariant for the coaction of a quantum group H = (H,Δ, ε, S), one has a notion
of covariant calculi on A as well, thus translating the idea of invariance of the
differential calculus on a manifold for the action of a group. Then, let A be a
(right, say) H-comodule algebra, with a right coaction ΔR : A → A⊗H which is
also an algebra map. In order to state the covariance of the calculus (Ω1(A),d) one
needs to extend the coaction of H. A map Δ(1)

R : Ω1(A) → Ω1(A) ⊗ H is defined
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by the requirement
Δ(1)
R (df) = (d⊗ id)ΔR(f)

and bimodule structure governed by

Δ(1)
R (fdf ′) = ΔR(f)Δ

(1)
R (df ′),

Δ(1)
R ((df)f ′) = Δ(1)

R (df)ΔR(f ′).

The calculus is said to be right covariant if it happens that

(id⊗Δ)Δ(1)
R = (Δ(1)

R ⊗ id)Δ(1)
R

and
(id⊗ε)Δ(1)

R = 1.
A calculus is right covariant if and only if for the corresponding bimodule N it is
verified that Δ(1)

R (N ) ⊂ N ⊗H, where Δ(1)
R is defined on N by formulæ as above

with the universal derivation δ replacing the derivation d:

(3.1) Δ(1)
R (δf) = (δ ⊗ id)ΔR(f).

Differential calculi on a quantum group H = (H,Δ, ε, S) were studied in [38].
As a quantum group consider a Hopf ∗-algebra with an invertible antipode: the
coproduct Δ : H → H⊗H defines both a right and a left coaction of H on itself:

Δ(1)
R (dh) = (d⊗ 1)Δ(h),

Δ(1)
L (dh) = (1⊗ d)Δ(h).(3.2)

Right and left covariant calculi on H will be defined as before. Right covariance of
the calculus implies that Ω1(H) has a module basis {ηa} of right invariant 1-forms,
that is 1-forms for which

Δ(1)
R (ηa) = ηa ⊗ 1,

and left covariance of a calculus similarly implies that Ω1(H) has a module basis
{ωa} of left invariant 1-forms, that is 1-forms for which Δ(1)

L (ωa) = 1 ⊗ ωa. In
addition one has the notion of a bicovariant calculus, namely a both left and right
covariant calculus, satisfying the compatibility condition:

(id⊗Δ(1)
R ) ◦Δ(1)

L = (Δ(1)
L ⊗ id) ◦Δ(1)

R .

Given the bijection

(3.3) r : H⊗H → H⊗H, r(h⊗ h′) = (h⊗ 1)Δ(h′),
one proves that r(Ω1(H)un) = H⊗ker ε. Then, if Q ⊂ ker ε is a right ideal of ker ε,
the inverse image NQ = r−1(H⊗Q) is a sub-bimodule contained in Ω1(H)un. The
differential calculus defined by such a bimodule, Ω1(H) := Ω1(H)un/NQ, is left-
covariant, and any left-covariant differential calculus can be obtained in this way.
Bicovariant calculi are in one to one correspondence with right ideals Q ⊂ ker ε
which are in addition stable under the right adjoint coaction Ad of H onto itself,
that is Ad(Q) ⊂ Q⊗H. Explicitly, one has Ad = (id⊗m) (τ ⊗ id) (S ⊗Δ)Δ, with
τ the flip operator, or Ad(h) = h(2) ⊗

(
S(h(1))h(3)

)
using the Sweedler notation

Δh =: h(1) ⊗ h(2) with summation understood, and higher numbers for iterated
coproducts.

Given the ∗-structure on H, a first order differential calculus (Ω1(H),d) on H
is called a ∗-calculus if there exists an anti-linear involution ∗ : Ω1(H) → Ω1(H)
such that (h1(dh)h2)∗ = h∗2(d(h

∗))h∗1 for any h, h1, h2 ∈ H. A left covariant first
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order differential calculus is [38] a ∗-calculus if and only if (S(Q))∗ ∈ Q for any
Q ∈ Q. In such a case the ∗-structure is also compatibe with the left coaction Δ(1)

L

of H on Ω1(H): Δ(1)
L (dh∗) = (Δ(1)(dh))∗.

The ideal Q also determines the tangent space of the calculus. This is the
complex vector space of elements {Xa} in H′ defined by

XQ := {X ∈ H′ : X(1) = 0, X(Q) = 0, ∀Q ∈ Q},
whose dimension, which coincides with the dimension of the calculus, is given by
dim XQ = dim(ker εH/Q). If the vector space XQ is finite dimensional, then [21]
its elements Xa belong to the dual Hopf algebra Ho ⊂ H′. Given an infinite
dimensional Hopf ∗-algebraH and the setH′ of its linear functionals, the setH′⊗H′
is a linear subspace of (H⊗H)′ obtained via the identification X ⊗ Y ∈ H′ ⊗H′
with the linear functional on H⊗H determined by (X⊗Y )(h1⊗h2) = X(h1)Y (h2).
For any X ∈ H′ consider ΔX as the element in (H⊗H)′ defined by ΔX(h1⊗h2) =
X(h1h2). The spaceHo ⊂ H′ denotes the set of linear functionalsX ∈ H′ for which
ΔX ∈ H′ ⊗H′, i.e. there exist functionals {Ya}, {Zb} ∈ H′ – with a, b = 1, . . . , r;
r ∈ N – such that

X(h1h2) =
r∑
i=1

Yi(h1)Zi(h2) ⇔ ΔX =
r∑
i=1

Yi ⊗ Zi.

Dualising the structure maps from H to H′ via:
X1X2(h) = X1(h(1))X2(h(2)),

εH′(X) = X(1),

(SH′(X))(h) = X(S(h)),

1H′(h) = ε(h),

X∗(h) = X(S(h)∗)(3.4)

for any X,X1, X2 ∈ H′ and h, h1, h2 ∈ H, the dual Ho is proved to be the
largest Hopf ∗-subalgebra contained in H′. The presence of a ∗-structure on a first
order left-covariant differential calculus can be translated into a condition on the
quantum tangent space: (Ω1(H), d) is a left-covariant differential calculus if and
only if X ∗Q ⊂ XQ with H′ endowed by the complex structure in (3.4).

The exterior derivative can be written as:

(3.5) dh :=
∑
a
(Xa � h) ωa,

in terms of the canonical left and right H′-module algebra structure on H given by
[37]:

X � h := h(1)(X(h(2))),

h � X := X(h(1))h(2).(3.6)

Left and right actions mutually commute:

(X1 � h) � X2 = X1 � (h � X2),

and the ∗-structures are compatible with both actions:
X�h∗ = ((S(X))∗�h)∗,

h∗�X = (h�(S(X))∗)∗, ∀X ∈ Ho, h ∈ H.
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Given the two Hopf ∗-algebras H = (H,Δ, ε, S) and U = (U ,ΔU , εU , SU ), they
can be dually paired. This duality is expressed by the existence of a bilinear map
〈 , 〉 : U ×H → C such that:

〈ΔU (U), h1 ⊗ h2〉 = 〈U, h1h2〉 ,
〈U1U2, h〉 = 〈U1 ⊗ U2,Δ(h)〉 ,
〈U, 1〉 = εU (U),

〈1, h〉 = ε(h)(3.7)

for any Ua ∈ U(H) and hb ∈ H. The pairing is also required to be compatible with
∗-structures:

〈U∗, h〉 = 〈U, (S(h))∗〉,
〈U, h∗〉 = 〈(SU (U))∗, h〉.(3.8)

Such a dual pairing has the property that 〈SU (U), h〉 = 〈U, S(h)〉. A dual pairing
can be defined on the generators and then extended to the whole algebras following
the relations (3.7): it is called non degenerate if the condition 〈U, h〉 = 0 for any
h ∈ H implies U = 0, and if 〈U, h〉 = 0 for any U ∈ U implies h = 0.

It comes from this analysis out that via a non degenerate dual pairing between
the two Hopf algebras H and U , it is possible to regard U as a Hopf ∗-subalgebra
of Ho, and H as a Hopf ∗-subalgebra of Uo, after the identifications U(h) = h(U) =
〈U, h〉 for any U ∈ U and h ∈ H. A further comparison among relations (3.4) and
(3.7) shows that H and Ho are dually paired in a natural way, with a pairing which
is non degenerate if Ho separates the points in H.

The derivation nature of elements in XQ is expressed by their coproduct,

Δ(Xa) = 1⊗Xa +
∑
b
Xb ⊗ fba,

with the elements fab ∈ Ho having specific properties [38]:
Δ(fab) = fac ⊗ fcb,

ε(fab) = δab,

S(fab)fbc = fabS(fbc) = δac.

These elements also control the commutation relation between the basis 1-forms
and elements of H:

ωah =
∑
b
(fab � h)ωb,

hωa =
∑
b
ωb

(
(S−1(fab)) � h

)
for h ∈ H.

For a left covariant differential calculus, the elements Xa ∈ XQ play the role which
is classically played by the vectors tangent to a Lie group manifold at the group
identity: the first of equations (3.6) transforms them into the analogue of left
invariant derivations on the Hopf algebra of functions on the group. Their dual
forms ωa play the role of the left invariant one forms. For a bicovariant differential
calculus it is possible to define a basis of the bimodule of 1-forms which are right
invariant. The right coaction of H on Ω1(H) defines a matrix:
(3.9) Δ(1)

R (ωa) = ωb ⊗ Jba
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where Jab ∈ H. This matrix is invertible, since S(Jab)Jbc = δac and JabS(Jbc) = δac;
it satisfies the properties Δ(Jab) = Jac⊗Jcb, ε(Jab) = δab and can be used to define
a set of 1-forms:

(3.10) ηa = ωbS(Jba) ⇔ ηaJab = ωb

which are right invariant:

(3.11) Δ(1)
R (ηa) = ηa ⊗ 1.

On the basis of right invariant 1-forms, the exterior derivative operator acquires
the form:

(3.12) dh = ηa(h � Ya)

where Ya = −S−1(Xa) are the analogue of the derivations associated to right
invariant vector fields. Equation (2.24) is then represented, in an algebraic approach
to the theory of differential calculi, by (3.5) and (3.12). The derivation nature of
Ya as well as the commutation relation between the basis of right invariant 1-forms
and elements of H are ruled by the same elements fab ∈ U(H) [2]:

Δ(Ya) = Ya ⊗ 1 +
∑
b
S−1(fba)⊗ Yb

ηah = (h � S−2(fab))ηb,

hηa = ηb(h � (S−1(fab)).

3.2. Quantum principal bundles. An algebraic formalisation of the geo-
metric structures of a principal bundle has been introduced in [6] and refined in
[7]. A slightly different formulation of such a structure is in [12, 13]; an interesting
comparison between the two approaches is in [14].

Following [6], consider as a total space an algebra P (with multiplication m :
P ⊗ P → P) and as structure group a Hopf algebra H. Thus P is a right H-
comodule algebra with coaction ΔR : P → P ⊗ H. The subalgebra of the right
coinvariant elements, B = PH = {p ∈ P : ΔRp = p⊗ 1}, is the base space of the
bundle. At the ‘topological level’ the principality of the bundle is the requirement
of exactness of the sequence:

(3.13) 0 → P (
Ω1(B)un

)P → Ω1(P)un χ→ P ⊗ ker εH → 0

with Ω1(P)un and Ω1(B)un the universal calculi and the map χ defined by

(3.14) χ : P ⊗ P → P ⊗H, χ := (m⊗ id) (id⊗ΔR) ,
or χ(p′⊗p) = p′ΔR(p). The exactness of this sequence is equivalent to the require-
ment that the analogous ‘canonical map’ P ⊗B P → P ⊗H (defined as the formula
above) is an isomorphism. This is the definition that the inclusion B ↪→ P be a
Hopf-Galois extension [33].

Remark 3.1. The surjectivity of the map χ appears as the dual translation of
the classical condition that the action of the structure group on the total space of
the principal bundle is free. In the classical setting described in section 2, given the
principal bundle (P,K, [M], π), the condition that the right principal action rk is
free can be written as the injectivity of the map:

P ×G → P ×M P, (p, k) �→ (p, rk(p)),

whose dualisation is the condition of the surjectivity of the map χ.
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With differential calculi on both the total algebra P and the structure Hopf
algebra H one needs compatibility conditions that eventually lead to an exact se-
quence like in (3.13) with the calculi at hand replacing the universal ones. Then, let(
Ω1(P),d) be a H-covariant differential calculus on P given via the subbimodule
NP ∈

(
Ω1(P)un

)
, and

(
Ω1(H), d) a bicovariant differential calculus on H given via

the Ad-invariant right ideal QH ∈ ker εH. In order to extend the coaction ΔR of H
on P to a coaction of H on Ω1(P), one requires ΔR(NP) ⊂ NP ⊗H. The coaction
ΔR of H on NP ⊂ P ⊗P is understood as a usual coaction of a Hopf algebra on a
tensor product of its comodule algebras, i.e.

ΔR = (id⊗ id⊗·) ◦ (id⊗τ id) ◦ (ΔR ⊗ΔR).
The condition ΔR(NP) ⊂ NP ⊗H is equivalent to the condition (3.1).

The compatibility of the calculi are then the requirements that χ(NP) ⊆ P⊗QH
and that the map ∼NP : Ω

1(P)→ P ⊗ (ker εH/QH), defined by the diagram

(3.15)
Ω1(P)un πN−→ Ω1(P)
↓ χ ↓∼NP

P ⊗ ker εH
id⊗πQH−→ P ⊗ (ker εH/QH)

(with πN and πQH the natural projections) is surjective and has kernel

(3.16) ker ∼NP= PΩ1(B)P =: Ω1
hor(P).

Here Ω1(B) = BdB is the space of nonuniversal 1-forms on B associated to the
bimodule NB := NP ∩ Ω1(B)un. These conditions ensure the exactness of the
sequence:

(3.17) 0 → PΩ1(B)P → Ω1(P)
∼NP−→ P ⊗ (ker εH/QH) → 0.

The condition χ(NP) ⊆ P ⊗QH is needed to have a well defined map ∼NP : with
all conditions for a quantum principal bundle (P,B,H;NP ,QH) satisfied, this in-
clusion implies the equality χ(NP) = P ⊗QH. Moreover, if (P,B,H) is a quantum
principal bundle with the universal calculi, the equality χ(NP) = P ⊗ QH en-
sures that (P,B,H;NP ,QH) is a quantum principal bundle with the corresponding
nonuniversal calculi.

Elements in the quantum tangent space XQH(H) giving the calculus on the
structure quantum group H act on ker εH/QH via the pairing 〈·, ·〉 between Ho and
H. Then, with each ξ ∈ XQH(H) one defines a map

(3.18) ξ̃ : Ω1(P)→ P, ξ̃ := (id⊗ξ) ◦ (∼NP )

and declare a 1-form ω ∈ Ω1(P) to be horizontal iff ξ̃ (ω) = 0, for all elements
ξ ∈ XQH(H). The collection of horizontal 1-forms is easily seen to coincide with
Ω1
hor(P) in (3.16).

3.3. A topological quantum Hopf bundle. As a step toward a quantum
formulation of the classical Hopf bundle π : S3 → S2 this section will describe,
following [24], a topological U(1)-bundle [6] over the standard Podleś sphere S2q
[30], with total space the manifold of the quantum group SUq(2).
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3.3.1. The algebras. The coordinate algebra A(SUq(2)) of the quantum group
SUq(2) is the ∗-algebra generated by a and c, with relations

ac = qca ac∗ = qc∗a cc∗ = c∗c,

a∗a+ c∗c = aa∗ + q2cc∗ = 1.(3.19)

The deformation parameter q ∈ R is taken in the interval 0 < q < 1, since for q > 1
one gets isomorphic algebras; at q = 1 one recovers the commutative coordinate
algebra on the group manifold SU(2). The Hopf algebra structure for A(SUq(2)) is
given by the coproduct:

Δ
[
a −qc∗
c a∗

]
=

[
a −qc∗
c a∗

]
⊗
[
a −qc∗
c a∗

]
,

antipode:

S

[
a −qc∗
c a∗

]
=

[
a∗ c∗

−qc a

]
,

and counit:

ε

[
a −qc∗
c a∗

]
=

[
1 0
0 1

]
.

The quantum universal envelopping algebra Uq(su(2)) is the Hopf ∗-algebra
generated as an algebra by four elements K,K−1, E, F with KK−1 = 1 and subject
to relations:

K±E = q±EK±,

K±F = q∓FK±,

[E,F ] =
K2 −K−2

q − q−1
.(3.20)

The ∗-structure is
K∗ = K, E∗ = F, F ∗ = E,

and the Hopf algebra structure is provided by coproduct:

Δ(K±) = K± ⊗K±,

Δ(E) = E ⊗K +K−1 ⊗ E,

Δ(F ) = F ⊗K +K−1 ⊗ F ;

antipode:
S(K) = K−1, S(E) = −qE, S(F ) = −q−1F ;

and a counit:
ε(K) = 1, ε(E) = ε(F ) = 0.

From the relations (3.20), the quadratic quantum Casimir element:

(3.21) Cq :=
qK2 − 2 + q−1K−2

(q − q−1)2
+ FE − 1

4

generates the centre of Uq(su(2)). The irreducible finite dimensional ∗-representations
σJ of Uq(su(2)) (see e.g. [25]) are labelled by nonnegative half-integers J ∈ 1

2N (the
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spin); they are given by2

σJ (K) |J,m〉 = qm |J,m〉 ,
σJ (E) |J,m〉 =

√
[J −m][J +m+ 1] |J,m+ 1〉 ,(3.23)

σJ (F ) |J,m〉 =
√
[J −m+ 1][J +m] |J,m− 1〉 ,

where the vectors |J,m〉, for m = J, J − 1, . . . ,−J + 1,−J , form an orthonormal
basis for the (2J+1)-dimensional, irreducible Uq(su(2))-module VJ , and the brackets
denote the q-number. Moreover, σJ is a ∗-representation of Uq(su(2)), with respect
to the hermitian scalar product on VJ for which the vectors |J,m〉 are orthonormal.
In each representation VJ , the Casimir (3.21) is a multiple of the identity with
constant given by:

(3.24) C(J)
q = [J + 1

2
]2 − 1

4
.

The Hopf algebras Uq(su(2)) and A(SUq(2)) are dually paired. The bilinear
mapping 〈·, ·〉 : Uq(su(2))×A(SUq(2)) �→ C compatible with the ∗-structures, is set
on the generators by:

〈K, a〉 = q−1/2, 〈K−1, a〉 = q1/2,

〈K, a∗〉 = q1/2, 〈K−1, a∗〉 = q−1/2,

〈E, c〉 = 1, 〈F, c∗〉 = −q−1,(3.25)

with all other couples of generators pairing to 0. Since the deformation parameter q
runs in the real interval range ]0, 1[, this pairing is proved [21] to be non degenerate.
The canonical left and right actions of Uq(su(2)) on A(SUq(2)) can be recovered
by:
(3.26)
K± � as = q∓

s
2 as F � as = 0 E � as = −q(3−s)/2[s]as−1c∗

K± � a∗s = q±
s
2 a∗s F � a∗s = q(1−s)/2[s]ca∗s−1 E � a∗s = 0

K± � cs = q∓
s
2 cs F � cs = 0 E � cs = q(1−s)/2[s]cs−1a∗

K± � c∗s = q±
s
2 c∗s F � c∗s = −q−(1+s)/2[s]ac∗s−1 E � c∗s = 0;

and:
(3.27)
as � K± = q∓

s
2 as as � F = q(s−1)/2[s]cas−1 as � E = 0

a∗s � K± = q±
s
2 a∗s a∗s � F = 0 a∗s � E = −q(3−s)/2[s]c∗a∗s−1

cs � K± = q±
s
2 cs cs � F = 0 cs � E = q(s−1)/2[s]cs−1a

c∗s � K± = q∓
s
2 c∗s c∗s � F = −q(s−3)/2[s]a∗c∗s−1 c∗s � E = 0.

Denote A(U(1)) := C[z, z∗]/< zz∗ − 1 >; the map π : A(SUq(2)) → A(U(1)),

(3.28) π

[
a −qc∗
c a∗

]
=

[
z 0
0 z∗

]

2The ‘q-number’ is defined as:

(3.22) [x] = [x]q :=
qx − q−x

q − q−1
,

for q �= 1 and any x ∈ R.
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is a surjective Hopf ∗-algebra homomorphism, so that A(U(1)) becomes a quantum
subgroup of SUq(2) with a right coaction,

(3.29) ΔR := (id⊗π) ◦Δ : A(SUq(2)) �→ A(SUq(2))⊗A(U(1)).
The coinvariant elements for this coaction, elements b ∈ A(SUq(2)) for which
ΔR(b) = b ⊗ 1, form a subalgebra of A(SUq(2)) which is the coordinate algebra
A(S2q) of the standard Podleś sphere S2q . From:

ΔR(a) = a⊗ z,

ΔR(a∗) = a∗ ⊗ z∗,

ΔR(c) = c⊗ z,

ΔR(c∗) = c∗ ⊗ z∗(3.30)

as a set of generators for A(S2q) one can choose:

(3.31) B− := −ac∗, B+ := qca∗, B0 :=
q2

1 + q2
− q2cc∗,

satisfying the relations3:

B−B0 = [
q2 − q4

1 + q2
B− + q2B0B−],

B+B0 = [
q2 − 1
q2 + 1

B+ + q−2B0B+],

B+B− = q
[
q−2B0 − (1 + q2)−1

] [
q−2B0 + (1 + q−2)−1

]
,

B−B+ = q
[
B0 + (1 + q2)−1

] [
B0 − (1 + q−2)−1

]
,

and ∗-structure:
(B0)∗ = B0, (B+)∗ = −qB−.

The sphere S2q is a quantum homogeneous space of SUq(2) and the coproduct of
A(SUq(2)) restricts to a left coaction of A(SUq(2)) on A(S2q) which on generators
reads:

Δ(B−) = a2 ⊗B− − (1 + q−2)B− ⊗B0 + c∗2 ⊗B+,

Δ(B0) = q ac⊗B− + (1 + q−2)B0 ⊗B0 − c∗a∗ ⊗B+,

Δ(B+) = q2 c2 ⊗B− + (1 + q−2)B+ ⊗B0 + a∗2 ⊗B+.

3.3.2. The associated line bundles. The left action of the group-like element
K on A(SUq(2)) allows [27] to give a vector basis decomposition A(SUq(2)) =
⊕n∈ZL(0)n , where

(3.32) L(0)n := {x ∈ A(SUq(2)) : K�x = qn/2x}.
In particular A(S2q) = L(0)0 . One also has L(0)∗n ⊂ L(0)−n and L(0)n L(0)m ⊂ L(0)n+m. Each
L(0)n is a bimodule over A(S2q); relations (3.30) show that they can be equivalently
characterised by the coaction ΔR of the quantum subgroup A(U(1)) on A(SUq(2)):
(3.33) L(0)n = {x ∈ A(SUq(2)) : ΔR(x) = x⊗ z−n}.

3I should like to thank T.Brzezinski, who noticed that the commutation relations among the
generators Bj of the algebra A(S2

q) written in [24] are not correct.
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This equation appears as the natural quantum analogue of the classical relation
(2.44), introducing L(0)n ⊂ A(SUq(2)) as A(S2q)-bimodule of co-equivariant elements
with respect to the coaction (3.29) of the gauge group algebra. The relation (3.32)
can then be read as an infinitesimal version of that in (3.33). The classical L(0)

n

are recovered as rank 1 projective left C∞(S2)-modules: the analogue property in
the quantum setting was shown in [31]. Each L(0)n is isomorphic to a projective
left A(S2q)-module of rank 1. These projective left A(S2q)-modules give modules of
equivariant maps or of sections of line bundles over the quantum sphere S2q with
winding numbers (monopole charge) −n. The corresponding projections [8, 17] can
be explicitly written. Given n ∈ Z, consider an element ∣∣Ψ(n)

〉 ∈ A(SUq(2))|n|+1

whose components are:

n ≥ 0 :
∣∣∣Ψ(n)

〉
μ
=

√
βn,μ c∗μa∗n−μ ∈ L(0)n ,

where : βn,0 = 1; βn,μ = q2μ
∏μ−1
j=0

(
1− q−2(n−j)

1− q−2(j+1)

)
, μ = 1, . . . , n

(3.34)

n ≤ 0 :
∣∣∣Ψ(n)

〉
μ
=
√
αn,μ c|n|−μaμ ∈ L(0)n ,

where : αn,0 = 1; αn,μ =
∏|n|−μ−1
j=0

(
1− q2(|n|−j)

1− q2(j+1)

)
, μ = 1, . . . , |n|

(3.35)

Using the commutation relations (3.19) and the explicit form of the coefficients in
(3.34) and (3.35), it is possible to compute that:

n ≥ 0 :
〈
Ψ(n),Ψ(n)

〉
=

∑n

μ=0
βn,μ a

n−μcμc∗μa∗n−μ = (aa∗ + q2cc∗)n = 1,

n ≤ 0 :
〈
Ψ(n),Ψ(n)

〉
=

∑|n|
μ=0

αn,μ a
∗μc∗|n|−μc|n|−μaμ = (a∗a+ c∗c)|n| = 1

(3.36)

so that a projector p(n) ∈ M|n|+1(A(S2
q )) can be defined as:

(3.37) p(n) =
∣∣∣Ψ(n)

〉〈
Ψ(n)

∣∣∣
which is by construction an idempotent - (p(n))2 = p(n) - and selfadjoint operator
- (p(n))† = p(n) - whose entries are:

n ≥ 0 : p(n)μν =
√
βn,μβn,ν c

∗μa∗n−μan−νcν ∈ A(S2q),
n ≤ 0 : p̌(n)μν =

√
αn,μαn,ν c

|n|−μaμa∗νc∗|n|−ν ∈ A(S2q).(3.38)

The projections (3.37) play a central role in the description of the quantum Hopf
bundle. As a first application one can prove that the algebra inclusion A(S2q) ↪→
A(SUq(2)) satisfies the topological requirements for a quantum principal bundle,
when both the algebras are equipped with the universal calculus.

Proposition 3.2. The datum (A(SUq(2)),A(S2q),A(U(1))) is a quantum prin-
cipal bundle.
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Proof. The proof consists of showing the exactness of the sequence

0 → A(SUq(2))
(
Ω1(S2q)un

)A(SUq(2))
→ Ω1(SUq(2))un

χ−→ A(SUq(2))⊗ ker εU(1) → 0

or equivalently that the map χ : Ω1(SUq(2))un → A(SUq(2)) ⊗ ker εU(1) defined
as in (3.14) – and with the A(U(1))-coaction on A(SUq(2)) given in (3.29) – is
surjective. Given an element x ∈ L(0)n ⊂ A(SUq(2)), from (3.33) the map χ acts
as:

(3.39) χ(δx) = χ(1⊗ x− x⊗ 1) = x⊗ (z−n − 1).
A generic element in A(SUq(2))⊗ ker εU(1) is of the form x⊗ (zn − 1) with n ∈ Z
and x ∈ A(SUq(2)). To show surjectivity of χ the strategy is to show that
1 ⊗ (zn − 1) is in its image since left A(SUq(2))-linearity of χ will give the gen-
eral result: if γ ∈ Ω1(SUq(2))un is such that χ(γ) = 1 ⊗ (zn − 1), then χ(xγ) =
x (1⊗ (zn − 1)) = x⊗(zn − 1). Fixed now n ∈ Z, define an element γ in A(SUq(2))
as γ =

〈
Ψ(−n), δΨ(−n)〉 following (3.34) and (3.35). Since ∣∣Ψ(−n)〉 ∈ L(0)−n, one com-

putes that:
χ(γ) = 1⊗ (zn − 1),

thus completing the proof. �

Next, it is possible to identify the spaces of equivariant maps L(0)n – or equiv-
alently of coequivariant elements L(0)n – with the left A(S2q)-modules of sections
E(0)n = (A(S2q))|n|+1p(n). For this write any element in the free module (A(S2q))|n|+1

as 〈f | = (f0, f1, . . . , f|n|) with fμ ∈ A(S2q). This allows to write equivariant maps
as

φf :=
〈
f,Ψ(n)

〉
=

∑n

μ=0
fμ
√
βn,μ c

∗μa∗n−μ for n ≥ 0,

=
∑|n|
μ=0

fμ
√
αn,μ c

|n|−μaμ for n ≤ 0.

making it straightforward to establish the proposition, which generalises to the
quantum setting the equivalence (2.49):

Proposition 3.3. Given n ∈ Z, let E (0)n := (A(S2q))|n|+1p(n). There is a left
A(S2q)-modules isomorphism:

L(0)n �−−→ E(0)n , φf �→ 〈σf | = φf

〈
Ψ(n)

∣∣∣ = 〈f | p(n),
with inverse

E(0)n �−−→ L(0)n , 〈σf | = 〈f | p(n) �→ φf :=
〈
f,Ψ(n)

〉
.

3.3.3. A Peter-Weyl decomposition of A(SUq(2)). The aim of this section is to
describe the known decomposition of the modules L(0)n into representation spaces
under the action of Uq(su(2)) [21]. From (3.32) one has a vector space decomposi-
tion A(SUq(2)) = ⊕n∈ZL(0)n , with

(3.40) E�L(0)n ⊂ L(0)n+2, F�L(0)n ⊂ L(0)n−2.
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On the other hand, commutativity of the left and right actions of Uq(su(2)) yields
that

L(0)n �h ⊂ L(0)n , ∀h ∈ Uq(su(2)).
It has already been shown in [31] that there is also a decomposition,

(3.41) L(0)n :=
⊕

J=
|n|
2 ,
|n|
2 +1,

|n|
2 +2,···

V
(n)
J ,

with V
(n)
J the spin J-representation space (for the right action) of Uq(su(2)). Alto-

gether it gives a Peter-Weyl decomposition for A(SUq(2)) (already given in [37]).
More explicitly, the highest weight vector for each V (n)

J in (3.41) is cJ−n/2a∗J+n/2:

K�(cJ−n/2a∗J+n/2) = qn/2(cJ−n/2a∗J+n/2),

(cJ−n/2a∗J+n/2)�K = qJ(cJ−n/2a∗J+n/2),

(cJ−n/2a∗J+n/2)�F = 0.(3.42)

Analogously, the lowest weight vector for each V
(n)
J in (3.41) is aJ−n/2c∗J+n/2:

K�(aJ−n/2c∗J+n/2) = qn/2(aJ−n/2c∗J+n/2),

(aJ−n/2c∗J+n/2)�K = q−J(aJ−n/2c∗J+n/2),

(aJ−n/2c∗J+n/2)�E = 0.

The elements of the vector spaces V (n)
J can be obtained by acting on the highest

weight vectors with the lowering operator �E, since clearly
(
cJ−n/2a∗J+n/2

)
�E ∈

L(0)n , or explicitly,

K�
[(

cJ−n/2a∗J+n/2
)
�E

]
= qn/2

[(
cJ−n/2a∗J+n/2

)
�E

]
.

To be definite, consider n ≥ 0. The first admissible J is J = n/2; the highest
weight element is a∗n and the vector space V

(n)
n/2 is spanned by {a∗n�El} with

l = 0, . . . , n + 1: V
(n)
n/2 = span{a∗n, c∗a∗n−1, . . . , c∗n}. Keeping n fixed, the other

admissible values of J are J = s + n/2 with s ∈ N. The vector spaces V (n)
s+n/2 are

spanned by {csa∗s+n�El} with l = 0, . . . , 2s+ n+ 1. Analogous considerations are
valid when n ≤ 0. In this cases, the admissible values of J are J = s+ |n| /2 = s−
n/2, the highest weight vector in V

(n)
s−n/2 is the element c

s−na∗s, and a basis is given

by the action of the lowering operator �E, that is V (n)
s−n/2 = span{(cs−na∗s) �El, l =

0, . . . , 2s− n+ 1}.
From (3.40) one has that the left action F� maps L(0)n to L(0)n−2. If p ≥ 0, the

element a∗p is the highest weight vector in V
(p)
p/2 and one has that F�a∗p ∝ ca∗p−1.

The element ca∗p−1 is the highest weight vector in V
(p−2)
p/2 since one finds that

(ca∗p−1)�F = 0 and (ca∗p−1)�K = qp/2(ca∗p−1). In the same vein, the elements
F t�a∗p ∝ cta∗p−t are the highest weight elements in V

(p−2t)
p/2 ⊂ L(0)p−2t, t = 0, . . . , p.

Once again, a complete basis of each subspace V
(p−2t)
p/2 is obtained by the right

action of the lowering operator �E.
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With these considerations, the algebra A(SUq(2)) can be partitioned into finite
dimensional blocks which are the analogues of the Wigner D-functions [36] for the
group SU(2). To illustrate the meaning of this partition, start with the element
a∗, the highest weight vector of the space V (1)

1/2 . Representing the left action of F�

with a horizontal arrow and the right action of �E with a vertical one, yields the
box

a∗ → c
↓ ↓
−qc∗ → a

,

where the first column is a basis of the subspace V (1)
1/2 , while the second column is a

basis of the subspace V (−1)
1/2 . Starting from a∗2 – the highest weight vector of V (2)

1

– one gets:

a∗2 → q−1/2 [2] ca∗ → [2] c2

↓ ↓ ↓
−q1/2 [2] c∗a∗ → [2] (aa∗ − cc∗) → [2]2 q1/2ca

↓ ↓ ↓
q2 [2] c∗2 → −q1/2 [2]2 ac∗ → [2]2 a2

.

The three columns of this box are bases for the subspaces V
(2)
1 , V (0)

1 ,V (−2)
1 , re-

spectively. The recursive structure is clear. For a positive integer p, one has a
box Wp made up of (p+ 1) × (p+ 1) elements. Without explicitly computing the
coefficients, one gets:

a∗p → ca∗p−1 → . . . → cta∗p−t → . . . → cp

↓ ↓ . . . ↓ . . . ↓
c∗a∗p−1 → . . . → . . . → . . . → . . . → acp−1

↓ ↓ . . . ↓ . . . ↓
. . . → . . . → . . . → . . . → . . . → . . .
↓ ↓ . . . ↓ . . . ↓

c∗sa∗p−s → . . . → . . . → . . . → . . . → ascp−s

↓ ↓ . . . ↓ . . . ↓
. . . → . . . → . . . → . . . → . . . → . . .
↓ ↓ . . . ↓ . . . ↓
c∗p → ac∗p−1 → . . . → atc∗p−t → . . . → ap

.

The space Wp is the direct sum of representation spaces for the right action of
Uq(su(2)),

Wp = ⊕pt=0V
(p−2t)
p/2 ,

and on each Wp the quantum Casimir Cq acts is the same manner from both the
right and the left, with eigenvalue (3.24), that isCq�wp = wp�Cq =

(
[ p+1

2
]2 − 1

4

)
wp,

for all wp ∈Wp. The Peter-Weyl decomposition for the algebra A(SUq(2)) is given
as

A(SUq(2)) = ⊕p∈NWp = ⊕p∈N
(
⊕pt=0V

(p−2t)
p/2

)
.

A compatible basis with this decomposition is given by elements

(3.43) wp:t,r := F t�a∗p�Er ∈ Wp

for t, r = 0, 1 . . . , p. In order to get elements in the Podleś sphere subalgebra
A(S2q) � L(0)0 out of a highest weight vector a∗p we need p = 2l to be even and
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left action of F l: F l�a∗2l ∝ cla∗l ∈ A(S2q). Then, the right action of E yields a
spherical harmonic decomposition,

(3.44) A(S2q) = ⊕l∈NV (0)
l ,

with a basis of V (0)
l given by the vectors F l�a∗2l�Er, for r = 0, 1, . . . , 2l.

3.4. A quantum Hopf bundle with non-universal differential calculi.
Once described how the inclusion A(S2q) ↪→ A(SUq(2)) has the structure of a topo-
logical quantum principal bundle, the aim of this section is to describe non-universal
differential calculi on the algebras A(SUq(2)),A(S2q),A(U(1)), and to show that
these are compatible [6, 7].

3.4.1. The left-covariant 3D calculus on SUq(2). The first differential calculus
defined on the quantum group SUq(2) is the left-covariant one developed in [37].
It is three dimensional with corresponding ideal QSUq(2) ⊂ ker εSUq(2) generated by
the 6 elements {a∗ + q2a − (1 + q2); c2; c∗c; c∗2; (a − 1)c; (a − 1)c∗}. Its quantum
tangent space turns out to be, in terms of the non degenerate pairing (3.25), the
vector space over the complex XSUq(2) ⊂ Uq(su(2)), whose basis is

X− = q−1/2FK,

X+ = q1/2EK,

Xz =
1−K4

1− q−2
;(3.45)

their coproducts result:

ΔXz = 1⊗Xz +Xz ⊗K4,

ΔX± = 1⊗X± +X± ⊗K2.(3.46)

The differential d : A(SUq(2))→ Ω1(SUq(2)) is

(3.47) dx = (X+ � x)ω+ + (X− � x)ω− + (Xz � x)ωz,

for all x ∈ A(SUq(2)). This equation gives a basis for the dual space of 1-forms
Ω1(A(SUq(2))),

ωz = a∗da+ c∗dc,

ω− = c∗da∗ − qa∗dc∗,

ω+ = adc− qcda,(3.48)

of left-covariant forms, that is Δ(1)
L (ωs) = 1 ⊗ ωs, with Δ

(1)
L the (left) coaction of

A(SUq(2)) onto itself extended to forms (3.2). The above relations (3.48) can be
inverted to

da = −qc∗ω+ + aωz,

da∗ = −q2a∗ωz + cω−,

dc = a∗ω+ + cωz,

dc∗ = −q2c∗ωz − q−1aω−.(3.49)

A direct computation shows that (S(QSUq(2)))
∗ ⊂ QSUq(2). This differential calcu-

lus is then a ∗-calculus, with ω∗− = −ω+ and ω∗z = −ωz. The bimodule structure
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is:

ωzφ = q2nφωz,

ω±φ = qnφω±(3.50)

for any φ ∈ L(0)n . Higher dimensional forms can be defined in a natural way by
requiring compatibility for commutation relations and that d2 = 0. Consider the
tensor product {Ω(SUq(2))}⊗2 = Ω1(SUq(2)) ⊗A(SUq(2)) Ω1(SUq(2)). A consistent
alternation mapping on {Ω(SUq(2))}⊗2, generalising the alternation mapping in
the classical formalism, can be introduced only if the quantum differential calculus
is bicovariant. The strategy to define a wedge product comes then from Lemma 15
in chapter 14 in [21], where it is proved that SQSUq(2)

(x) =
∑
a,b 〈XaXb, x〉ωa ⊗ ωb

for any x ∈ QSUq(2) generates a two-sided ideal in {Ω(SUq(2))}⊗2. The bimodule
of exterior differential 2-forms results to be the quotient

(3.51) Ω2(SUq(2)) � {Ω1(SUq(2))}⊗2/A(SUq(2)){SQ}A(SUq(2)).
The wedge product ∧ : Ω1(SUq(2))×Ω1(SUq(2))→ Ω2(SUq(2)) embodies the com-
mutation relations among 1-forms: from the six generators in QSUq(2) the elements
generating SQ can be written as

ω+ ∧ ω+ = ω− ∧ ω− = ωz ∧ ωz = 0,

ω− ∧ ω+ + q−2ω+ ∧ ω− = 0,

ωz ∧ ω− + q4ω− ∧ ωz = 0,

ωz ∧ ω+ + q−4ω+ ∧ ωz = 0.(3.52)

Such commutation rules also show that the bimodule Ω2(SUq(2)) is 3 dimensional,
the three basis 2-forms being exact, since one has

dωz = −ω− ∧ ω+,
dω+ = q2(1 + q2)ωz ∧ ω+,
dω− = −(1 + q−2)ωz ∧ ω−;(3.53)

the commutation relations moreover clarify that this left covariant calculus has a
unique top form ω− ∧ω+ ∧ωz. The ∗-structure is extended to Ωm+n by (α∧β)∗ =
(−1)mnβ∗∧α∗ with α ∈ Ωm and β ∈ Ωn. This definition is compatible with (3.52).

The left covariance of the differential calculus allows to extend to higher order
forms in a natural way the left coaction Δ(1)

L of A(SUq(2)) on Ω1(SUq(2)). An
element η ∈ {Ω1(SUq(2))}⊗k can always be written as η = xa1 ... ak ωa1 ⊗ . . . ⊗ ωak
in terms of the left invariant forms ωj in (3.48). Define

Δ(k)
L (η) = xa1...ak(1) ⊗ xa1...ak(2)ωa1 ⊗ . . .⊗ ωak ,

from the Sweedler notation for the coproduct Δ(xa1...ak). One proves that this
definition is consistent on the exterior algebra Ωk(SUq(2)), as Δ

(2)
L (SQ) ⊂ 1⊗ SQ,

and that Δ(k)
L (dη) = (1 ⊗ d)Δ(k−1)

L (η) for any η ∈ Ωk(SUq(2)) with k = 1, 2, 3.
The relations (3.53) show then that Ω2(SUq(2)) has a basis of exact left invariant
forms, given by dωj ; it is also clear that ω− ∧ ω+ ∧ ωz is a left-invariant 3-form.



194 ALESSANDRO ZAMPINI

3.4.2. The calculus on the structure group. The strategy adopted in [6] consists
in defining the calculus on U(1) via the Hopf projection π in (3.28). Out of the
QSUq(2) which determines the left covariant calculus on SUq(2), one defines a right
ideal QU(1) = π(QSUq(2)) ⊂ ker εU(1) for the calculus on U(1).

This specific QU(1) results generated by the element ξ = (z−1 − 1) + q2(z − 1),
and the differential calculus is then characterised by the quotient ker εU(1)/QU(1).
Any term in ker εU(1) can be written as ϕ = u(z − 1) = ∑

j∈Z ujz
j(z − 1), with

u =
∑
j∈Z ujz

j ∈ A(U(1)) and uj ∈ C, so that the elements ϕ(j) = zj(z − 1)
define a vector space basis over C of ker εU(1). The basis elements ϕ(j) can be
written in terms of the element ξ, via the two identities:

j ≥ 0, ϕ(j) = zj(z − 1) = ξ

(
j∑
m=1

q−2mzj−m+1

)
+ q−2j(z − 1),

j ≤ 0, ϕ(j) = z−|j|(z − 1) = −ξ
⎛
⎝
|j|−1∑
m=0

q2mz1+m−|j|

⎞
⎠+ q2|j|(z − 1),(3.54)

which can be proved by induction on j. Define a map λ : ker εU(1) → ker εU(1)
setting on the basis elements λ(ϕ(j)) = q−2j(z − 1), and linearly extending it to:
(3.55) λ : u(z − 1) =

∑
j∈Z

ujz
j(z − 1) �→

∑
j∈Z

ujq
−2j(z − 1).

It is clear that λ describes the choice of a representative element out of the equiva-
lence class [u(z−1)] ∈ ker εU(1)/QU(1), since it is possible to see that kerλ = QU(1).
To prove this assertion, one first directly computes that λ(ξ) = 0, then since λ is
linear one recovers that λ(uξ) = λ(u(q2(z − 1) + (z−1 − 1))) = q2λ(u(z − 1)) +
λ(u(z−1 − 1)), so to have:

λ(uξ) = q2λ(u(z − 1)) + λ

⎛
⎝∑
j∈Z

ujz
j(z−1 − 1)

⎞
⎠

= q2λ(u(z − 1)) + λ

⎛
⎝−

∑
j∈Z

ujz
j−1(z−1)

⎞
⎠

= q2

⎛
⎝∑
j∈Z

ujq
−2j(z − 1)

⎞
⎠−

∑
j∈Z

ujq
−2(j−1)(z − 1) = 0,(3.56)

thus proving thatQU(1) ⊂ kerλ. To prove the inverse inclusion, consider an element
ǔ = u(z − 1) ∈ ker εU(1), and write it as:

u(z − 1) =
∑
j∈Z

ujz
j(z − 1)

=
∑
j∈N

ujz
j(z − 1) +

∑
j∈N

u−jz−j(z − 1)

=
∑
j∈N

uj(α(j)ξ + q−2j(z − 1)) +
∑
j∈N

u−j(β(−j)ξ + q2j(z − 1))

(3.57)
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where α(j) =
∑j
m=1 q−2mzj−m+1 and β(−j) =∑|j|−1

m=0 q2mz1+m−|j| are the terms
proportional to ξ in (3.54) for positive and negative values of j ∈ Z. The previous
sum can be rewritten as:

u(z − 1) = ξ

⎛
⎝∑
j∈N

ujα(j) +
∑
j∈N

u−jβ(−j)
⎞
⎠+

∑
j∈Z

ujq
−2j(z − 1).

From the definition (3.55), it is λ(ǔ) = 0 ↔ ∑
j∈Z ujq

−2j = 0, so the last lines
proves that kerλ ⊂ QU(1).

Lemma 3.4. Given the ideal QU(1) ⊂ ker εU(1) generated by the element ξ =
(z−1 − 1) + q2(z − 1), it is ker εU(1)/QU(1) � C.

Proof. Define a map λ̃ : ker εU(1) → C setting, on the basis elements ϕ(j) ∈
ker εU(1), λ̃(ϕ(j)) = q−2j and extending it to ker εU(1) by linearity. The properties
of the map λ defined in (3.55) clarify that ker λ̃ = QU(1), so to give a well defined
map λ̃ : ker εU(1)/QU(1) → C. It is immediate to see that λ̃ is an isomorphism of
vector spaces, thus describing the equivalence: with w ∈ C, the map λ̃−1(w) =
w ∈ [w(z − 1)] ⊂ ker εU(1) represents the inverse of the map λ̃. �

This result shows that the differential calculus generated by the specific QU(1)

is 1D, while a direct computation shows that it is bicovariant. As a basis element
for its quantum tangent space one can consider

(3.58) X = Xz =
1−K4

1− q−2
,

with dual left-invariant 1-form given by ωz. This calculus turns out to have a
∗-structure, with ω∗z = −ωz. Explicitly, one has ωz = z∗dz with

dz = zωz,

dz∗ = −q2z∗ωz;
and noncommutative A(U(1))-bimodule relations

zdz = q2(dz)z;

ωzz = q−2zωz,

ωzz
∗ = q2z∗ωz.

3.4.3. The standard 2D calculus on S2q. The restriction of the above 3D calculus
to the sphere S2q yields the unique left covariant 2-dimensional calculus on the latter
[26]. An evolution of this approach has led [32] to a description of the unique 2D
calculus of S2q in term of a Dirac operator. The ‘cotangent bundle’ Ω1(S2q) is shown

to be isomorphic to the direct sum L(0)−2⊕L(0)2 , that is the line bundles with winding
number ±2. Since the element K acts as the identity on A(S2q), the differential
(3.47) becomes, when restricted to the latter,

df = (X− � f)ω− + (X+ � f)ω+

= (F � f) (q−1/2ω−) + (E � f) (q1/2ω+), for f ∈ A(S2q).
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These leads to break the exterior derivative into a holomorphic and an anti-holomorphic
part, d = ∂̄ + ∂, with:

∂̄f = (X− � f)ω− = (F � f) (q−1/2ω−),

∂f = (X+ � f)ω+ = (E � f) (q1/2ω+), for f ∈ A(S2q).
An explicit computation on the generators (3.31) of S2q yields:

∂̄B− = q−1 a2 ω−, ∂̄B0 = q ca ω−, ∂̄B+ = q c2 ω−,

∂B+ = q2 a∗2 ω+, ∂B0 = −q2 c∗a∗ ω+, ∂B− = q2 c∗2 ω+.

The above shows that: Ω1(S2q) = Ω1
−(S

2
q)⊕Ω1

+(S
2
q) where Ω

1
−(S

2
q) � L(0)−2 � ∂̄(A(S2q))

is the A(S2q)-bimodule generated by:
{∂̄B−, ∂̄B0, ∂̄B+} = {a2, ca, c2}ω− = q2ω−{a2, ca, c2}

and Ω1
+(S

2
q) � L(0)+2 � ∂(A(S2q)) is the one generated by:
{∂B+, ∂B0, ∂B−} = {a∗2, c∗a∗, c∗2}ω+ = q−2ω+{a∗2, c∗a∗, c∗2}.

That these two modules of forms are not free is also expressed by the existence of
relations among the differential:

∂B0 = q−1B−∂B+ − q3B+∂B−, ∂̄B0 = qB+∂̄B− − q−3B−∂̄B+.

Writing any 1-form as α = φ′ω− + φ′′ω+ ∈ L(0)−2ω− ⊕ L(0)+2ω+, the product of
1-forms is

(3.59) (φ′ω− + φ′′ω+) ∧ (ψ′ω− + ψ′′ω+) = (q−2φ′′ψ′ − φ′ψ′′)ω+ ∧ ω−,
while the exterior derivative acts as:

d(φ′ω− + φ′′ω+) = (dφ′) ∧ ω− + φ′dω− + (dφ′′) ∧ ω+ + φ′′dω+
= (X+�φ

′)ω+ ∧ ω− + {(Xz�φ′)ωz ∧ ω− + φ′dω−}
+ (X−�φ′′)ω− ∧ ω+ + {(Xz�φ′′)ωz ∧ ω+ + φ′′dω+}

= {(X−�φ′′)− q2(X+�φ
′)}ω− ∧ ω+,(3.60)

since the terms in curly brackets vanish: {(Xz�φ′)ωz∧ω−+φ′dω−} = {(Xz�φ′′)ωz∧
ω+ + φ′′dω+} = 0 from (3.53) and (3.32). It is then clear that the calculus on the
quantum sphere is 2D, and that Ω2(S2q) = A(S2q)ω− ∧ω+ = ω− ∧ω+A(S2q), as both
ω± commute with elements of A(S2q) and so does ω− ∧ ω+.

Remark 3.5. From (3.53) it is natural to ask that dω− = dω+ = 0 when
restricted to S2q. Then, the exterior derivative of any 1-form α = φ′ω− + φ′′ω+ ∈
L(0)−2ω− ⊕ L(0)+2ω+ is given by:

dα = d(φ′ω− + φ′′ω+)

= ∂φ′ ∧ ω− + ∂̄φ′′ ∧ ω+
= (X+�φ

′ − q−2X−�φ′′)ω+ ∧ ω−
= q−1/2(E�φ′ − q−1F�φ′′)ω+ ∧ ω−,(3.61)

since K� acts as q∓ on L(0)∓2. Notice that in the above equality, both E�φ′ and F�φ′′

belong to A(S2q), as it should be.
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The above results can be summarised in the following proposition, which is the
natural generalisation of the description in (2.56) of the classical exterior algebra
on the sphere manifold S2.

Proposition 3.6. The 2D differential calculus on the sphere S2q is given by:

Ω(S2q) = A(S2q)⊕
(
L(0)−2ω− ⊕ L(0)+2ω+

)
⊕A(S2q)ω+ ∧ ω−,

with multiplication rule(
f0;φ′, φ′′; f2

)(
g0;ψ′, ψ′′; g2

)

=
(
f0g0; f0ψ′ + φ′g0, f0ψ′′ + φ′′g0; f0g2 + f2g0 + q−2φ′′ψ′ − φ′ψ′′

)
,

and exterior derivative d = ∂̄ + ∂:

f �→ (q−1/2F�f, q1/2E�f), for f ∈ A(S2q),

(φ′, φ′′) �→ q−1/2(E�φ′ − q−1F�φ′′), for (φ′, φ′′) ∈ L(0)−2 ⊕ L(0)+2.

3.4.4. The compatibility between the calculi. Given the 3D left-covariant dif-
ferential calculus on SUq(2) described in section 3.4.1, as well the 1D bicovariant
differential calculus on the gauge group algebra U(1) in section 3.4.2, the ‘principal
bundle compatibility’ of these calculi is established by showing that the sequence
(3.17) is exact. For the case at hand, this sequence becomes

0 → A(SUq(2))
(
Ω1(S2q)

)A(SUq(2)) →
→ Ω1(SUq(2))

∼NSUq(2)−→ A(SUq(2))⊗ ker εU(1)/QU(1) → 0,

where QU(1) is the ideal given in section 3.4.2 that defines the calculus on A(U(1))
and the map ∼NSUq(2)

is defined as in the diagram (3.15) which now acquires the
form:

Ω1(SUq(2))un
πNSUq(2)−→ Ω1(SUq(2))

↓ χ ↓∼NSUq(2)

A(SUq(2))⊗ ker εU(1)
id⊗πQU(1)−→ A(SUq(2))⊗ (ker εU(1)/QU(1)) .

Having a quantum homogeneous bundle, that is a quantum bundle whose total
space is a Hopf algebra and whose fiber is a Hopf subalgebra of it, with the dif-
ferential calculus on the fiber obtained from the corresponding projection, for the
above sequence to be exact it is enough [7] to check two conditions. The first one
is

(id⊗π) ◦Ad(QSUq(2)) ⊂ QSUq(2) ⊗A(U(1))
with π : A(SUq(2)) → A(U(1)) the projection in (3.28). This is easily established
by a direct calculation and using the explicit form of the elements in QSUq(2). The
second condition amounts to the statement that the kernel of the projection π can
be written as a right A(SUq(2))-module of the kernel of π itself restricted to the
base algebra A(S2q). Then, one needs to show that kerπ ⊂ (kerπ|S2

q
)A(SUq(2)),

the opposite implication being obvious. With π defined in (3.28), one has that

kerπ = {cf, c∗g, with f, g ∈ A(SUq(2))}.
Then cf = c(a∗a + c∗c)f = ca∗(af) + c∗c(cf), with both ca∗ and c∗c in kerπ|S2

q
.

The same holds for elements of the form c∗g, and the inclusion follows.
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The analysis of the map ∼NSUq(2)
: Ω1(SUq(2))→ A(SUq(2))⊗ ker εU(1)/QU(1)

shows that ω± ∈ Ω1(A(SUq(2))) are indeed the generators of the horizontal forms
of the principal bundle, being in the ker ∼NSUq(2)

. From (3.39) one recovers:

χ(δa) = a⊗ (z − 1),
χ(δa∗) = a∗ ⊗ (z∗ − 1),
χ(δc) = c⊗ (z − 1),
χ(δc∗) = c∗ ⊗ (z∗ − 1).

Given the two generators ω± and the specific QSUq(2) which determines the 3D
calculus, corresponding universal 1-forms can be taken to be:

ω+ = adc− qcda ⇒ (aδc− qcδa) ∈ [πNSUq(2)
]−1(ω+),

ω− = c∗da∗ − qa∗dc∗ ⇒ (c∗δa∗ − qa∗δc∗) ∈ [πNSUq(2)
]−1(ω−).

The action of the canonical map then gives:

χ(aδc− qcδa) = (ac− qca)⊗ (z − 1) = 0,

χ(c∗δa∗ − qa∗δc∗) = (c∗a∗ − qa∗c∗)⊗ (z∗ − 1) = 0,

which means that

(3.62) ∼NSUq(2)
(ω±) = 0

For the third generator ωz, one shows in a similar fashion that

(3.63) ∼NSUq(2)
(ωz) = 1⊗ (πQU(1)(z − 1)).

From these it is possible to conclude that the elements ω± generate the A(SUq(2))-
bimodule of horizontal forms, while from (3.58) one has that the vector X = Xz =
(1 − q−2)−1(1 − K4) is the dual generator to the calculus on the structure Hopf
algebra A(U(1)). For the corresponding ‘vector field’ X̃ on A(SUq(2)) as in (3.18),
one has that X̃(ω±) = 〈X,∼NSUq(2)

(ω±)〉 = 0, while X̃(ωz) = 〈X,∼NSUq(2)
(ωz)〉 =

1. These results identify X̃ as a vertical vector field.

4. A �-Hodge duality on Ω(SUq(2)) and a Laplacian on SUq(2)

In classical differential geometry a metric structure g on a N-dimensional man-
ifoldM enables to define a Hodge duality � : Ωk(M)→ ΩN−k(M) on the exterior
algebra Ω(M). The strategy is to consider the volume form θ ∈ ΩN (M) associated
to a g-orthonormal basis; this corresponds to the choice of an orientation. Via the
Hodge duality it becomes possible to introduce in Ω(M) both a symmetric bilinear
product and a sesquilinear inner product.

The algebraic formulation of geometry of quantum groups, that has been de-
scribed, presents no metric tensor. The strategy to introduce a Hodge duality on
the exterior algebra Ω(H) coming from a N-dimensional differential calculus on a
Hopf algebra H is then reversed with respect to the strategy used in the classical
setting. The path consists in defining a suitable bilinear product on Ω(H) and
considering a volume N-form, from which to induce a �-Hodge structure, using an
equation like the one in (2.33) as a definition.

The following description of the quantum formulation of a Hodge duality orig-
inates from [22]. Assume that H is a ∗-Hopf algebra equipped with a left covariant
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calculus (Ω1(H),d), with N the dimension of the calculus such that dim ΩNinv(H) =
1, dimΩkinv(H) = dimN−kinv (H). Suppose also thatH admits a Haar state h : H → C,
that is a unital linear functional on H for which (id⊗ h)Δx = (h⊗ id)Δx = h(x)1
for any x ∈ H, where 1 is used to emphasise the unit of the algebra. Suppose
further that h is positive, that is h(x∗x) ≥ 0 for all x ∈ H; it is known that the
Haar state is unique and automatically faithful: if h(x∗x) = 0, then necessarily
x = 0. One can endow H with an inner product derived from h, setting:

(4.1) (x′;x)H = h(x∗x′)

for any x, x′ ∈ H. The whole exterior algebra can be endowed with an inner
product, defined on a left invariant basis and then extended via the requirement of
left invariance,

(4.2) (x′ω′;xω)H = h(x∗x′)(ω′, ω)H

for any x, x′ ∈ H and left invariant forms ω, ω′ in Ω(H). An inner product is said
graded if the spaces Ωk(H) are pairwise orthogonal.

Out of ΩN (H) choose a left invariant hermitian basis element θ = θ∗, which
will be called the volume form of the calculus. A linear functional

∫
θ
: Ω(H)→ C –

called the integral on Ω(H) associated to the volume form θ ∈ ΩN (H) – is defined by
setting

∫
θ
η = 0 if η is a k-form with k < N , and

∫
θ
η = h(x) if η = x θ with x ∈ H.

The differential calculus will be said non-degenerate if, whenever η ∈ Ωk(H) and
η′ ∧ η = 0 for any η′ ∈ ΩN−k(H), then necessarily η = 0. This property reflects
itself in the property of left-faithfulness of the functional

∫
θ
: starting from a non

degenerate calculus, it is possible to prove that, if η is an element in Ωk(H) for
which

∫
θ
η′ ∧ η = 0 for all η′ ∈ ΩN−k(H), then it is η = 0.

Proposition 4.1. Given the exterior algebra Ω(H) coming from a left covari-
ant, non degenerate calculus (Ω1(H),d), there exists a unique left H-linear bijective
operator L : Ωk(H)→ ΩN−k(H) for k = 0, . . . , N , such that

(4.3)
∫

θ

η∗ ∧ L(η′) = (η′; η)H

on any η, η′ ∈ Ωk(H).
The proof of this result is in [22], where the operator L is called a Hodge oper-

ator. With a left-invariant inner product which is positive definite, i.e. (ω, ω)H > 0
for any exterior form ω, the operator L does not yet define a �-Hodge structure on
Ω(H), since its square does not satisy the natural requirement (2.29). It is then
used to define a new graded left invariant inner product setting on a basis of left
invariant forms ω ∈ Ω(H):

(ω;ω′)�H = (ω;ω′)H, onΩk(H), k < N/2;

(ω;ω′)�H = (L−1(ω);L−1(ω′))H, onΩk(H), k > N/2.(4.4)

If N is odd, these relations completely define a new left invariant graded inner
product on the exterior algebra Ω(H); notice also that assuming the relation (4.1)
means that (1; 1)H = 1, from which one has L(1) = θ, so to obtain in (4.4) that
(θ; θ)�H = (1; 1)H = 1.
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In analogy with (4.3) define a new Hodge operator L� : Ωk(H)→ ΩN−k(H) via
the inner product given in (4.4) as

(4.5)
∫

θ

η∗ ∧ L�(η′) = (η′; η)�H.

Due to the left-faithfulness of the integral, it is clear that L� is a well defined
bijection, which satisfies the identity L = L� when restricted to Ωk(H) with k <
N/2. Such an operator L� is also proved to satisfy (L�)2 = (−1)k(N−k): this is the
reason why one can define a �-Hodge structure on Ω(H) as:
(4.6) � : Ωk(H)→ ΩN−k(H) � (η) = L�(η).

The relation (4.5) appears as the quantum version of the classical relation (2.35),
which is now used as a definition for the Hodge duality.

If the dimension of the calculus is given by an even N = 2m, a more specific
procedure is needed, The same procedure as before gives a �-Hodge operator on
Ωk(H) for k �= m via the inner product (4.4). Using the volume form θ ∈ ΩN (H)
set now a sesquilinear form

(4.7) 〈η′, η〉 =
∫

θ

η∗ ∧ η′,

which is non-degenerate by the faithfulness of the integral
∫
θ
. The H-bimodule

Ωm(H) has a basis of
(
2m
m

)
left invariants elements ωa. The restriction of

(4.7) to elements ωa defines a sesquilinear form on the vector space Ωminv: this
form is hermitian if (−1)m2

= 1, and anti-hermitian if (−1)m2
= −1, so it can be

’diagonalised’. There exists a basis ω̌j ∈ Ωm(H) such that one has 〈ω̌a, ω̌b〉 = ±δab
if it is hermitian, and 〈ω̌a, ω̌b〉 = ±iδab if it is anti-hermitian. It is then possible to
use such a basis to define a left H-linear operator L : Ωm(H)→ Ωm(H) setting on
the basis

(4.8) L(ω̌a) = (−1)m2 〈ω̌a, ω̌a〉 ω̌a.
(no sum on a). This map is a bijection, and satisfies L2 = (−1)m2

, so a �-Hodge
structure on Ωminv(H) can be defined as:
(4.9) �(ω̌a) = L(ω̌a),

and extended on any η ∈ Ωm(H) by the requirement of left linearity, thus giving
a complete constructive procedure for a �-Hodge structure on Ω(H). The Hodge
operator L : Ωm(H) → Ωm(H) is then used to introduce a left invariant inner
product on Ωm(H), defined by:

(4.10) (ωa;ωb)
�
H =

∫

θ

ω∗b ∧ L(ωa),

on a basis of left invariant {ωa} 2-forms, and then extended via the requirement of
left invariance as in (4.2). It is easy to see that the definition eventually gives the
inner product

(4.11) (ω̌a; ω̌b)
�
H = δab.
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4.1. A �-Hodge structure on Ω(SUq(2)). This section describes how the
outlined procedure yields a left invariant inner product on the exterior algebra
Ω(SUq(2)) generated by the left covariant 3D calculus from section 3.4.1, and the
way it gives rise to a �-Hodge structure. Such a �-Hodge structure will be then used
to define a Laplacian operator on A(SUq(2)), which is completely diagonalised.

The Hopf algebra A(SUq(2)) has a Haar state h : A(SUq(2)) → C, which is
positive, unique and authomatically faithful. From the Peter-Weyl decomposition
of A(SUq(2)) in terms of the vector space basis elements wp:r,t ∈ Wp (3.43), the
Haar state is determined by setting:

h(1) = 1 h(wp:r,t) = 0 ∀ p ≥ 0.
The algebraic relations (3.19) among the generators of A(SUq(2)) makes it then
possible to prove that the only non trivial action of h on A(SUq(2)) can also be
written as:

h((cc∗)k) = (
k∑
j=0

q2j)−1 =
1

1 + q2 + . . .+ q2k
,

with k ∈ N. One can define on A(SUq(2)) an inner product derived from h, setting:

(4.12) (x′, x)SUq(2) = h(x∗x′)

with x, x′ ∈ A(SUq(2)). The differential 3D calculus being left covariant, the set
of k-forms Ωk(SUq(2)) has a basis of left invariant forms. The exterior algebra
Ω(SUq(2)) is endowed with an inner product, defined on a left invariant basis and
extended via the requirement of left invariance:

(x′ω′, x ω)SUq(2) = h(x�x′)(ω′, ω)SUq(2)

for all x, x′ in A(SUq(2)) and ω, ω′ ∈ Ω(SUq(2)) left invariant forms. Assume
the top form θ = α′ω− ∧ ω+ ∧ ωz as volume form, with α′ ∈ R so that θ� = θ.
The integral on the exterior algebra Ω(SUq(2)) associated to the volume form θ is
defined by

∫
θ
η = 0 if η is a k-form with k < 2, and

∫
θ
η = h(x) if η = x θ. This

integral is left-faithful.
Set a left invariant graded inner product by assuming that the only non-zero

products among left invariant forms are:

(1, 1)SUq(2) = 1,

(θ, θ)SUq(2) = 1;(4.13)

while in Ω1(SUq(2)) are:

(ω−, ω−)SUq(2) = β,

(ω+, ω+)SUq(2) = ν,

(ωz, ωz)SUq(2) = γ(4.14)

with β, ν, γ ∈ R, and:
(ω− ∧ ω+, ω− ∧ ω+)SUq(2) = 1,

(ω+ ∧ ωz, ω+ ∧ ωz)SUq(2) = 1,

(ωz ∧ ω−, ωz ∧ ω−)SUq(2) = 1(4.15)
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in Ω2(SUq(2)). This choice comes as the most natural in order to mimic the proper-
ties of the classical inner product (2.37), coming from the classical Hodge structure
(2.27) originated from the metric (2.26). The Hodge operator defined in (4.3) is:

L(1) = α′ ω− ∧ ω+ ∧ ωz,
L(ω−) = −α′βq−6 ωz ∧ ω−,
L(ω+) = −α′ν ω+ ∧ ωz,
L(ωz) = −α′γ ω− ∧ ω+,
L(ω− ∧ ω+) = −α′ ωz,
L(ω+ ∧ ωz) = −α′ ω+,
L(ωz ∧ ω−) = −α′ ω−,
L(ω− ∧ ω+ ∧ ωz) = α′−1.(4.16)

The Hodge operator L is used to define a new graded left invariant inner product
on Ω(SUq(2)), as:

(ω′, ω)�SUq(2) = (ω′, ω)SUq(2) on Ωk(SUq(2)), k = 0, 1;

(ω′, ω)�SUq(2) = (L−1(ω′), L−1(ω))SUq(2) on Ωk(SUq(2)), k = 2, 3,(4.17)

on the basis of left invariant forms. On Ωk(SUq(2))) – with k = 2, 3 – one has:

(ω− ∧ ω+, ω− ∧ ω+)�SUq(2) = α′−2γ−1,

(ω+ ∧ ωz, ω+ ∧ ωz)�SUq(2) = α′−2ν−1,

(ωz ∧ ω−, ωz ∧ ω−)�SUq(2) = q12α′−2β−1,

(θ, θ)�SUq(2) = 1.(4.18)

Associated to this new inner product there is in analogy a new unique leftA(SUq(2))-
linear operator L� : Ωk(SUq(2)) → Ω3−k(SUq(2)) defined by

∫
θ
η∗ ∧ L�(η′) =

(η′, η)�, which is a bijection. This operator is such that (L�)2 = (−1)k(3−k) = 1, so
following (4.6) one has a �-Hodge structure on the exterior algebra Ω(SUq(2)):

(4.19) � : Ωk(SUq(2))→ Ω3−k(SUq(2)) � (η) = L�(η),

given by:

� (1) = θ = α′ ω− ∧ ω+ ∧ ωz,
� (ω−) = −α′βq−6 ωz ∧ ω−,
� (ω+) = −α′ν ω+ ∧ ωz,
� (ωz) = −α′γ ω− ∧ ω+,
� (ω− ∧ ω+) = −α′−1γ−1 ωz,
� (ω+ ∧ ωz) = −α′−1ν−1 ω+,
� (ωz ∧ ω−) = −α′−1β−1q6 ω−,
� (ω− ∧ ω+ ∧ ωz) = α′−1.(4.20)

Remark 4.2. The definition of the graded left invariant inner product (·, ·)�SUq(2)
in (4.17) shows that, in order to have a �-Hodge structure on the exterior algebra
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Ω(SUq(2)) generated by the 3D calculus, it is sufficient to choice an hermitian vol-
ume form and a graded left invariant inner product only on Ωk(SUq(2)) for k = 0, 1.
This is a general aspect: given a Hopf ∗-algebra H, equipped with a finite odd N di-
mensional left covariant differential calculus, the formalism developed in [22] shows
that what one needs is an hermitian volume form and a graded left invariant inner
product on Ωk(H) for k < N/2.

4.1.1. A Laplacian operator on A(SUq(2)). Given a differential calculus and a
�-Hodge structure on the Hopf algebra A(SUq(2)) it is possible to define a scalar
Laplacian operator �SUq(2) : A(SUq(2)) → A(SUq(2)) as �SUq(2)φ = �d � dφ for
any φ ∈ A(SUq(2)). This Laplacian can be written down by a computation on the
basis of the left invariant forms of the calculus:

dφ = (X+�φ)ω+ + (X−�φ)ω− + (Xz�φ)ωz;

�dφ = −α′[ν(X+�φ)ω+ ∧ ωz + βq−6(X−�φ)ωz ∧ ω− + γ(Xz�φ)ω− ∧ ω+].

The last line comes from (4.20) and the left linearity of the �-Hodge on the exterior
algebra Ω(SUq(2)). By (3.53) the derivative d acts on the previous 2-form as:

d � dφ = −α′[ν(X−X+�φ)(ω− ∧ ω+ ∧ ωz) + βq−6(X+X−�φ)(ω+ ∧ ωz ∧ ω−)
(4.21)

+ γ(XzXz�φ)(ωz ∧ ω− ∧ ω+)]
= −α′{[νX−X+ + βX+X− + γXzXz]�φ}(ω− ∧ ω+ ∧ ωz),

where the commutation rules (3.52) have been used. The last of (4.20) finally gives
the Laplacian operator the expression:

(4.22) �d � dφ = −[νX−X+ + βX+X− + γXzXz]�φ

in terms of the left action of the quantum vector fields of the calculus. The ex-
pression (4.22) shows that �SUq(2) : Ln → Ln. This operator can be diagonalised.
One has to recall the decomposition (3.41) of the modules Ln for the right action
of Uq(su(2)): this right action leaves invariant the eigenspaces of the Laplacian
since left and right actions of Uq(su(2)) on A(SUq(2)) do commute. On each ir-
reducible subspace V

(n)
J (3.41) for the right action of Uq(su(2)) one has a basis

φn,J,l = (cJ−n/2a�J+n/2) � El = w2J:J−n
2 ,l

(with l = 0, . . . , 2J) of eigenvectors
(3.43) for the Laplacian. The spectrum of the Laplacian does not depend on the
integer l: an explicit computation shows that

XzXz � φn,J,l = q2(n+1)[n]2φn,J,l,

X+X− � φn,J,l = qn−1([J − n

2
][J + 1 +

n

2
] + [n])φn,J,l,

X−X+ � φn,J,l = qn+1([J − n

2
][J + 1 +

n

2
])φn,J,l.(4.23)

The spectrum of the Laplacian (4.22) is then given as �SUq(2)φn,J,l = λn,J,lφn,J,l
with:

(4.24) λn,J,l = −qn{νq[J−n

2
][J+1+

n

2
]+βq−1([J−n

2
][J+1+

n

2
]+[n])+γqn+2[n]2}.
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5. A �-Hodge structure on Ω(S2q) and a Laplacian operator on A(S2q)
The way the �-Hodge structure (4.20) has been introduced on Ω(SUq(2)) comes

from the analysis in [22]. The aim of this section is to extend that procedure in
order to introduce a �-Hodge structure on Ω(S2q). The strategy is to directly follow
the same path, and to apply to the differential calculus Ω(S2q) the same procedure,
explicitly checking its consistency in the new setting.

5.1. A �-Hodge structure on A(S2q). The differential calculus on the quan-
tum sphere S2q has been described in section 3.4.3 and fully presented in proposition
3.6. It is a 2D left covariant calculus: as a volume form consider θ̌ = iα′′ω− ∧ ω+.

Lemma 5.1. The 2D calculus Ω(S2q) from proposition 3.6 is non degenerate.

Proof. The proof of this lemma is direct. To be definite, consider a 0-form
η = f with f ∈ A(S2q) � L(0)0 , so to have a product

η′ ∧ η = f ′(ω− ∧ ω+)f = f ′f ω− ∧ ω+
from the commutation rules in (3.50), where η′ = f ′ ω− ∧ ω+ with f ′ ∈ L(0)0 . One
has η′ ∧ η = 0 ⇔ f ′f = 0: such a relation is satisfied for any f ′ ∈ L(0)0 iff f = 0.

Consider now the 1-form η = xω− with x ∈ L(0)−2, so to have a product
η′ ∧ η = (x′ω− + y′ω+) ∧ xω− = −y′xω− ∧ ω+

where (x′, y′) ∈ (L(0)−2,L(0)2 ). The relation η′ ∧ η = 0 ⇔ y′x = 0 is satisfied for any
y′ ∈ L(0)2 iff x = 0. The remaining cases can be analogously analysed, thus proving
the claim. �

The restriction of the Haar state h to A(S2q) yields a faithful, invariant – that is
h(f�X) = h(f)ε(X) for f ∈ A(S2q) and X ∈ Uq(su(2)) – state on A(S2q), allowing
the definition of an integral

∫
θ̌
: Ω(S2q)→ C given by:

∫

θ̌

f = 0, on f ∈ A(S2q),
∫

θ̌

η = 0, on η ∈ Ω1(S2q),
∫

θ̌

f ω− ∧ ω+ = −iα′′−1 h(f).(5.1)

Lemma 5.2. The integral
∫
θ̌
defined in (5.1) is left-faithful.

Proof. The proof of this result is also direct. Consider, to be definite, the 1-
form η = xω− with x ∈ L(0)−2, and a generic η′ = x′ω−+y′ω+ ∈ Ω1(S2q). The relation∫
θ̌
η′ ∧ η = 0 for any η′ ∈ Ω1(S2q) is equivalent to the condition h(y′x) = 0 ∀ y′ ∈

L(0)2 . Since this last equality must be valid for any y′ ∈ L(0)2 , choosing y′ = x∗,
it results h(x∗x) = 0: the faithfulness of the Haar state h then gives x = 0. The
claim of the lemma is proved by an analogous analysis on the remaining cases. �

The restriction to Ω(S2q) of the left invariant graded product (4.17) on Ω(SUq(2)),
which is the one compatible with the �-Hodge structure, gives a left A(S2q)-invariant
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graded inner product:

(1, 1)S2
q
= 1;

(x′ω− + y′ω+, x ω− + y ω+)S2
q
= h(x∗x′)β + h(y∗y′)ν;

(ω− ∧ ω+, ω− ∧ ω+)S2
q
= α′−2γ−1,(5.2)

with , x, x′ ∈ L(0)−2 and y, y′ ∈ L(0)2 . Recalling proposition 4.1 – namely equation
(4.3) – and the results proved in lemmas 5.1 and 5.2, a left A(S2q)-linear Hodge
operator L : Ωk(S2q) → Ω2−k(S2q) can be defined for k = 0, 2. From the first
line in the inner product relation (5.2) one has L(1) = θ̌, while the third gives
L(θ̌) = α′′2α′−2γ−1. It is evident that for such an Hodge operator it is L2 �= 1, which
is a natural requirement for a �-Hodge structure on Ωk(S2q) for k = 0, 2. On the
exterior algebra Ω(SUq(2)) this problem was solved by changing the inner product
via the definition (4.17), and proving that the new Hodge operator does satisy all
the required properties to have a consistent �-Hodge. Following an analogous path,
define

(1, 1)�S2
q
= 1,

(x′ω− + y′ω+, x ω− + y ω+)
�
S2
q
= (x′ω− + y′ω+, x ω− + y ω+)S2

q
,

(θ̌, θ̌)�S2
q
= (L−1(θ̌), L−1(θ̌))S2

q
= 1,(5.3)

where the inner products on 1-forms amounts to a different labelling of the inner
product in (5.2). The Hodge operator on Ωk(S2q) for k = 0, 2 relative to such a new
inner product is given by L�(1) = θ̌ and L�(θ̌) = 1. But now the inner product has
changed: the requirement that the inner product ( , )�SUq(2) on the exterior algebra
Ω(SUq(2)) fixed – via a restriction, as given in (5.2) – the inner product ( , )S2

q
on

the exterior algebra Ω(S2q) implies that the condition

(5.4) (θ̌, θ̌)�S2
q
= (θ̌, θ̌)�SUq(2)

has to be imposed, giving

(5.5) α′′2α′−2γ−1 = 1

as a constraint among the parameters. The constraint (5.4) can be interpreted as
the quantum analogue of fixing the classical metric on the basis S2 of the Hopf
bundle as the contraction of the Cartan-Killing metric on S3 ∼ SU(2), since that
choice in the classical formalism, as stressed in remark 2.2, gives the equality of the
inner product on Ω(S2) defined in (2.65) with the restriction of the inner product
on Ω(S3) given in (2.35).

The differential calculus on S2q is even dimensional with N = 2, so on Ω1(S2q)
define a sesquilinear form:

(5.6) 〈η′, η〉 =
∫

θ̌

η∗ ∧ η′ = iα′′−1{h(y∗y′)− q2h(x∗x′)}

where η = xω− + y ω+ and η′ = x′ω− + y′ω+, with x, x′ ∈ L(0)−2 and y, y′ ∈ L(0)2 .
The quantum sphere S2q is a quantum homogeneous space and not a Hopf algebra,
so there is no left-invariant basis in Ω1(S2q): neverthless such a sesquilinear form
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can be ”diagonalised”, as

〈xω−, x ω−〉 = −iq2α′′−1 h(x∗x);
〈y ω+, y ω+〉 = iα′′−1 h(y∗y),(5.7)

where the faithfulness of the Haar state ensures that the coefficients on the right
hand side of these expressions never vanish. The general result from [22] – recalled
in (4.8) – is no longer valid on a quantum homogeneous space: the diagonalisation
in (5.7) suggests indeed a way to define a Hodge operator. Since α′′ can be both
positive or negative, define

x θ− = q−1
( |α′′|
h(x∗x)

)1/2

xω−,

y θ+ =
( |α′′|
h(y∗y)

)1/2

yω+(5.8)

so to have from (5.7):

〈x θ−, x θ−〉 = −i |α
′′|

α′′
,

〈y θ+, y θ+〉 = i
|α′′|
α′′

.(5.9)

In the same way as in (4.8), define a left A(S2q)-linear operator L : Ω1(S2q)→ Ω1(S2q)
setting:

L(x θ−) = i
|α′′|
α′′

x θ−,

L(y θ+) = −i |α
′′|

α′′
y θ+.(5.10)

Such an operator clearly satisfies the condition L2 = −1 for any value of α′′.
It is not yet a consistent Hodge operator: it has to be compatible with the left
invariant inner product on Ω1(S2q) obtained in (5.3) as a restriction of the analogue
on Ω1(SUq(2)). From the relation (4.10), this compatibility must be imposed:

(5.11) (η′, η)�S2
q
=

∫

θ̌

η∗ ∧ L(η′).

This condition is fulfilled if and only if the parameters in this formulation satisfy:

(5.12) |α′′|β = q2,

(5.13) |α′′|ν = 1.

The �-Hodge structure on Ω(S2q) is defined as a left A(S2q)-linear operator whose
action is given by:

� (1) = iα′′ ω− ∧ ω+,

� (xω−) = i
|α′′|
α′′

(xω−),

� (y ω+) = −i |α
′′|

α′′
(y ω+),

� (iω− ∧ ω+) = α′′−1,(5.14)

with the parameters α′, α′′, β, ν, γ satisfying the constraints (5.5), (5.12), (5.13).
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Remark 5.3. The �-Hodge structure (5.14) differs from the one in [26], because
in that paper the �-Hodge structure was required to satisfy the relation �2 = 1,
while the path followed here is to remain consistent with the requirement that �2 =
(−1)k(N−k) on k-forms from a N -dimensional calculus.

The definition (5.14) of the Hodge duality is still not complete. The constraints
among the parameters involve the absolute value of α′′, so one still needs to choose
their relative signs. In the classical setting the only parameter was α ∈ R, and
it has been chosen positive so to give a riemannian metric g in the analysis of
section 2.2. As it is clear from (2.31) and from the definition (2.33), the positivity
of the metric implies the positivity of the symmetric form 〈 , 〉S3 (2.31) and of the
sesquilinear inner product 〈 , 〉∼S3 (2.33): the signature of the metric tensor implies
the signature of both the bilinear forms

In the quantum setting, having no metric tensor, the choice of the relative signs
of the parameters is equivalent to choose the signature of the left-invariant inner
product (4.14) on Ω1(SUq(2)): this will encode a specific metric signature.

The natural choice for a riemannian signature is, from (4.14) and (4.18), given
by β, ν, γ ∈ R+. This choice turns out to be compatible with (5.5), (5.12) and
(5.13) for every α′ and α′′. From (5.12) and (5.13) one also has that:

(5.15) β = q2ν.

This relation has a number of interesting and important consequences, described
in the next propositions.

Proposition 5.4. The �-Hodge structure given as a left A(S2q)-linear map
� : Ωk(S2q)→ Ω2−k(S2q) for k = 0, 1, 2 and defined by (5.14), has the property4

(5.16) �(η) ∧ η′ = (−1)k(2−k)η ∧ �(η′)
for any η, η′ ∈ Ωk(S2q).

Proof. The relation is trivially satisfied for k = 0, 2. Consider now the two
elements η = xω− + y ω+ and η′ = x′ω− + y′ω+ in Ω1(S2q), which means x, x

′ ∈
L(0)−2 and y, y′ ∈ L(0)2 by proposition 3.6. The multiplication rule from the same
proposition gives:

(�η) ∧ η′ = iα′′(β xy′ + ν yx′)ω− ∧ ω+,
η ∧ (�η′) = −iα′′(q−2β yx′ + q2ν xy′)ω− ∧ ω+.(5.17)

The two expression are equal – up to the sign, which is the claim of the proposition
– from (5.15). �

Proposition 5.5. The left A(S2q)-linear �-Hodge map defined by (5.14) is right
A(S2q)-linear: given η ∈ Ω(S2q), it is �(ηf) = �(η)f for any f ∈ A(S2q).

Proof. The 2D differential calculus on the quantum sphere S2q has the specific
property, coming from the bimodule structure (3.50) of Ω1(SUq(2)) – where one
has ω±φ = qnφω± for any φ ∈ L(0)n – that ω±f = fω± with f ∈ L(0)0 � A(S2q).

4In the classical formalism, the �-Hodge structure on an exterior algebra coming from a N
dimensional differential calculus � : Ωk(H) �→ ΩN−k(H) satisfies the identity (2.30):

η ∧ (�η′) = η′ ∧ (�η)

to which the identity (5.16) reduces in the classical limit.
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The claim of the proposition is trivial for η ∈ Ω0(S2q) � A(S2q). For a 1-form
η = xω− + yω+ in Ω1(S2q), one has:

�(ηf) = �((xω− + yω+)f) = �(xfω− + yfω+) = iα′′ν(xfω− − yfω+)

= iα′′ν(xω− − yω+)f = �(η)f.

An analogue chain of equalities is valid for η = f ′ω− ∧ ω+ ∈ Ω2(S2q), with f ′ ∈
A(S2q). �

In the same way it is possible to prove the following identities, which will be
explicitly used in the analysis of the gauged Laplacian operator, and which slightly
generalise the last proposition.

Lemma 5.6. Given the left A(S2q)-linear �-Hodge map defined by (5.14), with

φ ∈ L(0)n , φ′ ∈ L(0)−n and η ∈ Ω1(S2q) one has:

� (φ′ηφ) = φ′(�η)φ,

� (φ′(ω− ∧ ω+)φ) = q2nφ′{�(ω− ∧ ω+)}φ.

Proof. With φ′ηφ ∈ Ω1(S2q), and again η = xω− + yω+, it is explicitly:

�(φ′ηφ) = �(φ′qn(yφω+ + xφω−)) = −iqnα′′ν φ′(yφω+ − xφω−)

= −iα′′ν φ′(yω+ − xω−)φ = φ′(�η)φ.

�(φ′(ω−∧ω+)φ) = q2n�(φ′φ(ω−∧ω+)) = q2nφ′φ�(ω−∧ω+) = q2nφ′{�(ω−∧ω+)}φ,
where the last equality is evident, since �(ω− ∧ ω+) ∈ C. �

5.2. A Laplacian operator on A(S2q). Using the 2D differential calculus on
the Podleś sphere S2q and the �-Hodge structure on Ω(S

2
q) it is natural to define a

Laplacian operator �S2
q
: A(S2q)→ A(S2q) as �S2

q
f = �d �df on any f ∈ A(S2q). An

explicit computation using the properties of the exterior algebra Ω(S2q) represented
in proposition 3.6 gives:

df = (X+�f)ω+ + (X−�f)ω−,

�df = −iα′′[ν(X+�f)ω+ − q−2β(X−�f)ω−],

d � df = −iα′′[νX−X+ + βX+X−]�f (ω− ∧ ω+),
�d � df = −[νX−X+ + βX+X−]�f.(5.18)

The relation (3.32) shows that such a Laplacian operator can be seen as an op-
erator �S2

q
: L(0)0 → L(0)0 . In particular, from (4.22), the Laplacian �S2

q
is the

restriction of the Laplacian �SUq(2) to the subalgebra A(S2q) ⊂ A(SUq(2)). A basis

of the eigenvector spaces L(0)0 = ⊕J∈NV (0)
J coming from (3.41) is given by elements

φ0,J,l = cJa∗J�El = w2J:J,l, so that formulas (4.23) drive to a spectrum of this
Laplacian on S2q as:

�S2
q
φ0,J,l = −(qν + q−1β){[J ][J + 1]}φ0,J,l

= −2qν{[J ][J + 1]}φ0,J,l.(5.19)
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Remark 5.7. Equations (4.22) and (5.18) show that the classical relations
between the Laplacians �SU(2) and �S2 , coming from the Hodge duality associated
to the metric tensor g (2.26) related to the Cartan-Killing metric, is then reproduced
in the quantum formalism, in the specific realisation of the quantum Hopf bundle
that has been described. The constraints among the 5 real parameters used in the
analysis of the Hodge duality can be written as:

γ = α′′2α′−2,

ν = |α′′|−1,
β = q2ν.(5.20)

The parameters α′, α′′ are the coefficients of the volume forms. The analysis of the
classical limit of this formulation is in section 8. The choice:

lim
q→1

α′ = −4α,
lim
q→1

α′′ = −2α(5.21)

gives (4.22) and (5.18) in the classical limit. Being α a positive real number, it
seems natural to assume α′ and α′′ negative real numbers. This also gives ν =
−α′′−1 from the second relation in (5.20), so to have a Hodge duality (5.14) which
is now:

� (1) = θ̌ = iα′′ ω− ∧ ω+,
� (xω−) = −ix ω−,
� (y ω+) = iy ω+,

� (iω− ∧ ω+) = α′′−1,(5.22)

giving, if (5.21) is satisfied, the Hodge duality (2.58) in the classical limit.

6. Connections on the Hopf bundle

The structure of a quantum principal bundle (P,B,H;NP ,QH) with compat-
ible differential calculi, given the total space algebra P on which the gauge group
Hopf algebra H coacts, has been described in section 3.2. The compatibility con-
ditions ensure the exactness of the sequence (3.17):

(6.1) 0 → PΩ1(B)P → Ω1(P)
∼NP−→ P ⊗ (ker εH/QH) → 0.

with the map ∼NP defined via the commutative diagram (3.15). Among the com-
patibility conditions, the requirement that ΔRNP ⊂ NP ⊗ H – giving a right
covariance of the differential structure on P – allows to extend the coaction ΔR
of H on P to a coaction of H on 1-forms, Δ(1)

R : Ω1(P) → Ω1(P) ⊗ H, defining
Δ(1)
R ◦ d = (d⊗ 1) ◦ΔR.
Note that Ad(ker εH) ⊂ (ker εH) ⊗ H. If the right ideal QH is Ad-invariant

(which is equivalent to say that the differential calculus on H is bicovariant), it is
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possible to define a right-adjoint coaction Ad(R) : ker εH/QH → ker εH/QH ⊗ H
by the commutative diagram

ker εH
πQH−→ ker εH/QH

↓ Ad ↓ Ad(R)
ker εH ⊗H

πQH⊗id−→ (ker εH/QH)⊗H
Together with the right coaction ΔR of H on P, such a right-adjoint coaction Ad(R)
allows to define a right coaction Δ(Ad)

R of H on P ⊗ ker εH/QH as a coaction of
a Hopf algebra on the tensor product of its comodules. This coaction is explicitly
given by the relation:

(6.2) Δ(Ad)
R (p⊗ πQH(h)) = p(0) ⊗ πQH(h(2))⊗ p(1)(Sh(1))h(3),

adopting the Sweedler notation for the coaction as ΔR(p) = p(0) ⊗ p(1).
It is now possible to define a connection on the quantum principal bundle

as a right invariant splitting of the sequence (6.1). Given a left P-linear map
σ : P ⊗ (ker εH/QH)→ Ω1(P) such that

Δ(1)
R ◦ σ = (σ ⊗ id)Δ(Ad)

R ,

∼NP ◦σ = id,(6.3)

then the map Π : Ω1(P)→ Ω1(P) defined by Π = σ◦ ∼NP is a right invariant left
P-linear projection, whose kernel coincides with the horizontal forms PΩ1(B)P:

Π2 = Π,

Π(PΩ1(B)P) = 0,

Δ(1)
R ◦Π = (Π⊗ id) ◦Δ(1)

R .(6.4)

The image of the projection Π is the set of vertical 1-forms of the principal bundle.
A connection on a principal bundle can also be written in terms of a connection
1-form, which is a map ω : H → Ω1(P). Given a right invariant splitting σ of the
exact sequence (6.1), define the connection 1-form as ω(h) = σ(1⊗πQH(h−εH(h)))
on h ∈ H. Such a connection 1-form has the following properties:

ω(QH) = 0,

∼NP (ω(h)) = 1⊗ πQH(h− εH(h)) ∀h ∈ H,
Δ(1)
R ◦ ω = (ω ⊗ id) ◦Ad,
Π(dp) = (id⊗ ω)ΔR(p) ∀ p ∈ P.(6.5)

Conversely if ω is a linear map ker εH → Ω1(P) that satisfies the first three condi-
tions in (6.5), then there exists a unique connection on the principal bundle, such
that ω is its connection 1-form. In this case, the splitting of the sequence (6.1) is
given by:

(6.6) σ(p⊗ [h]) = pω([h])

with [h] in ker εH/QH, while the projection Π is given by:

(6.7) Π = m ◦ (id⊗ ω)◦ ∼NP

The general proof of these results is in [6]. This section explicitly describes the
connections on the quantum Hopf bundle with the compatible differential calculi
presented in sections 3.4.1 and 3.4.2.
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6.1. Vertical subspaces on the quantum Hopf bundle. The right coac-
tion Δ(1)

R : Ω1(SUq(2))→ Ω1(SUq(2))⊗A(U(1)) of the gauge group algebraA(U(1))
on the set of 1-forms on the total space algebra of the bundle, whose consistency is
allowed by the compatibility conditions between the 3D left covariant calculus on
A(SUq(2)) and the 1D bicovariant calculus on A(U(1)), gives:

Δ(1)
R ωz = ωz ⊗ 1,

Δ(1)
R ω± = ω± ⊗ z±2.(6.8)

From the analysis on the 1D calculus on A(U(1)) performed in section 3.4.4 and
the result of lemma 3.4, a connection on the quantum Hopf bundle is given via
a splitting map σ : A(SUq(2)) ⊗ (ker εU(1)/QU(1)) → Ω1(SUq(2)), which can be
defined recalling the isomorphism λ̃ : ker εU(1)/QU(1) → C. Given w ∈ C set:

(6.9) σ(1⊗ w) = σ(w ⊗ 1) = w(ωz + Uω+ + V ω−);

and extend by the requirement of left A(SUq(2))-linearity, so to have:
σ(1⊗ [ϕ(j)]) = q−2j(ωz + Uω+ + V ω−),

σ(φ⊗ [ϕ(j)]) = q−2jφ(ωz + Uω+ + V ω−),(6.10)

where φ ∈ A(SUq(2)) and the requirement of right covariance (6.3) selects – from
(6.8) – U ∈ L(0)2 and V ∈ L(0)−2. The projection Π associated to this connection is
easily seen to be:

Π(ω±) = σ(∼NSUq(2)
(ω±)) = 0,

Π(ωz) = σ(∼NSUq(2)
(ωz)) = σ(1⊗ [ϕ(0)]) = ωz + Uω+ + V ω−.(6.11)

In this expression the 1-forms ω± are recovered as horizontal (3.62), a notion de-
pending only on the compatibility conditions between the differential calculi, while
a choice of a connection is equivalent to the choice of the vertical part of Ω1(SUq(2)).
The set of connections for the quantum Hopf bundle corresponds to the set of the
possible choices of 1-forms on the basis of the bundle as a = Uω++V ω− ∈ Ω1(S2q),
so that the second line in (6.11) can be written as

(6.12) Π(ωz) = ωz + a.

The connection one form (6.5) ω : U(1)→ Ω1(SUq(2)) is given by:

ω(zj) = σ(1⊗ [zj − 1])

=
(
1− q−2j

1− q−2

)
(ωz + Uω+ + V ω−) =

(
1− q−2j

1− q−2

)
(ωz + a).(6.13)

Given the projection Π and the connection 1-form ω, it is possible to compute the lhs
and the rhs of the last line in (6.5). On the basis of left invariant differential forms
and using the explicit form of the quantum vector fields in (3.45), with φ ∈ L(0)j
one has:

Π(dφ) = Π((Xj�φ)ωj) = (Xj�φ)Π(ωj)

=
(
1− q2j

1− q−2

)
φ(ωz + Uω+ + V ω−);(6.14)
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and also:

(id⊗ ω)ΔR(φ) = (id⊗ ω)(φ⊗ z−j)

=
(
1− q2j

1− q−2

)
φ(ωz + Uω+ + V ω−) = Π(dφ).(6.15)

The monopole connection corresponds to the choice U = V = 0 ⇔ a = 0, so to
have Π0(ωz) = ωz and the monopole connection 1-form ω0(zj) = [(1− q−2j)/(1 −
q−2)]ωz [5, 9]. With a connection, one has the notion of covariant derivative
D : A(SUq(2))→ Ω1(A(SUq(2))) of equivariant maps. Given φ ∈ L(0)n , define

(6.16) Dφ = (1−Π)dφ.
The covariant derivative Dφ is clearly an horizontal 1-form: the adjective ”covari-
ant” refers to the behaviour under the coaction of the gauge group algebra, as one
directly (3.33) shows that:

(6.17) ΔRφ = φ⊗ z−j ⇔ Δ(1)
R (Dφ) = Dφ⊗ z−j ,

from the right invariance (6.4) of the projection Π. In terms of the connection
1-form the covariant derivative can be written, using (6.15), as :

Dφ = (1−Π)dφ = dφ−Π(dφ)
= dφ− φ ∧ ω(z−j)(6.18)

on a φ ∈ L(0)j . It is then immediate to recover that, for any f ∈ L(0)0 � A(S2q), one
has Df = df .

Remark 6.1. Given any φ ∈ L(0)n , from (6.18) and (6.12), the covariant de-
rivative can be written as:

Dφ = {(X+�φ)− (Xz�φ)U}ω+ + {(X−�φ)− (Xz�φ)V }ω−.
It is an easy computation using the A(SUq(2))-bimodule properties (3.50) of Ω1(SUq(2))
to prove that Dφ � Ω1(S2q) · A(SUq(2)) for any connection represented by a ∈
Ω1(S2q). This means that any connection on this quantum Hopf bundle is a strong
connection, following the analysis in [16].

6.2. Covariant derivative on the associated line bundles. A covariant
derivative, or a connection, on the left A(S2q)-module E(0)n is a C-linear map

(6.19) ∇ : Ωk(S2q)⊗A(S2
q)
E (0)n → Ωk+1(S2q)⊗A(S2

q)
E(0)n ,

defined for any k ≥ 0 and satisfying a left Leibniz rule:
∇(α 〈σ|) = dα ∧ 〈σ|+ (−1)mα ∧ (∇〈σ|)

for any α ∈ Ωm(S2q) and 〈σ| ∈ Ωk(S2q) ⊗A(S2
q)
E(0)n . A connection is completely

determined by its restriction ∇ : E(0)n → Ω1(S2q) ⊗A(S2
q)
E(0)n and then extended by

the Leibniz rule. Connections always exist on projective modules: the canonical
(Levi-Civita, or Grassmann) connection on a left projective A(S2q)-module E(0)n is
given as

(6.20) ∇0 〈σ| = (d 〈σ|)p(n);
the space C(E (0)n ) of all connections on E(0)n is an affine space modelled on

HomA(S2
q)
(E(0)n , E(0)n ⊗A(S2

q)
Ω1(S2q)),
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so that any connection can be written as:

(6.21) ∇〈σ| = (d 〈σ|)p(n) + (−1)k 〈σ| ∧A(n)

with 〈σ| ∈ Ωk(S2q)⊗A(S2
q)
E(0)n and A(n) ∈M|n|+1⊗A(S2

q)
Ω1(S2q) – which is called the

gauge potential of the connection ∇ – subject to the condition A(n) = A(n)p(n) =
p(n)A(n). The composition

∇2 = ∇ ◦∇ : Ωk(S2q)⊗A(S2
q)
E(0)n → Ωk+2(S2q)⊗A(S2

q)
E(0)n

is Ω(S2q)-linear. This map can be explicitly calculated: given 〈σ| ∈ Ωk(S2q) ⊗A(S2
q)

E(0)n , from (6.21) one has

∇2 〈σ| = d(∇〈σ|)p(n) + (−1)k+1(∇〈σ|) ∧A(n)

= d{(dσ)p(n) + (−1)k 〈σ| ∧A(n)}p(n) + (−1)k+1{(d 〈σ|)p(n)(6.22)

+ (−1)k 〈σ| ∧A(n)} ∧A(n)

= d{(d 〈σ|)p(n)}p(n) + (−1)k(d 〈σ| ∧A(n))p(n) + (〈σ| ∧ dA(n))p(n)

+ (−1)k+1{(d 〈σ|)p(n) ∧A(n)} − 〈σ| ∧A(n) ∧A(n)

= 〈σ| {−(dp(n) ∧ dp(n))p(n) + (dA(n))p(n) −A(n) ∧A(n)}.(6.23)

The restriction of the map ∇2 to E(0)n , seen as an element in Ω2(S2q)⊗A(S2
q)
E(0)n , is

the curvature F∇ of the given connection.
The left A(S2q)-module isomorphism between L(0)n and E(0)n described in propo-

sition 3.3 allows for the definition of an hermitian structure on each projective left
module E(0)n , { ; } : E(0)n × E(0)n → A(S2q) given as:
(6.24) {〈σ|φ ; 〈σ|φ′} = φφ′∗,

with φ, φ′ ∈ L(0)n . Such an hermitian structure satisfies the relations:

{f 〈σ|φ ; f ′ 〈σ|φ′} = fφ(f ′φ′)∗,

{〈σ|φ , 〈σ|φ} ≥ 0, {〈σ|φ , 〈σ|φ} = 0 ⇔ 〈σ| = 0.

The left A(S2q)-module isomorphism between L(0)n and E(0)n also enables to re-
late the concept of connection on the quantum Hopf bundle to that of covariant
derivative on the associated line bundles. As first step, define the A(S2q)-bimodule:
(6.25)
L(1)n = {φ ∈ Ω1

hor(SUq(2)) � A(SUq(2))Ω1(S2q)A(SUq(2)) : Δ(1)
R φ = φ⊗ z−n}

and introduce the notations:

E (k)n = Ωk(S2q)⊗A(S2
q)
E(0)n .

The maps:

L(1)n �−→ E(1)n : φ �→ 〈σ|φ = φ
〈
Ψ(n)

∣∣∣ ,
E(1)n �−→ L(1)n : 〈σ| �→ φ =

〈
σ,Ψ(n)

〉
(6.26)

give left A(S2q)-module isomorphisms (in this notation the explicit dependence on
〈f | ∈ A(S2q)|n|+1 as in proposition 3.3 has been dropped). Via this isomorphism,
any connection on the quantum Hopf bundle – represented by a projection Π (6.11)
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or by a connection 1-form (6.13) – induces a gauge potential A(n) on any associated
line bundle E(0)n .

Proposition 6.2. Given the left A(S2q)-isomorphism L(0)n � E(0)n described in

proposition 3.3, as well as the analogue left A(S2q)-module isomorphism L(1)n � E(1)n
described in (6.26), there is an equivalence between the set of connections on the
quantum Hopf bundle via a projection Π in Ω(SUq(2)) as in (6.11), and the set of
covariant derivative ∇ ∈ C(E(0)n ) on any associated line bundle. With φ ∈ L(0)n so
that 〈σφ| = φ

〈
Ψ(n)

∣∣ ∈ E(0)n , the equivalence is given by Dφ = (∇〈σ|φ)
∣∣Ψ(n)

〉
.

Proof. Choose φ ∈ L(0)n , so to have σφ = φ
〈
Ψ(n)

∣∣ and from the definition in
(6.21) express a covariant derivative on E(0)n via a gauge potential as:

∇〈σ|φ = d
(
φ
〈
Ψ(n)

∣∣∣
) ∣∣∣Ψ(n)

〉〈
Ψ(n)

∣∣∣+ φ
〈
Ψ(n)

∣∣∣A(n)(6.27)

= {dφ− φ[
〈
Ψ(n), dΨ(n)

〉
−
〈
Ψ(n)

∣∣∣A(n)
∣∣∣Ψ(n)

〉
]}
〈
Ψ(n)

∣∣∣(6.28)

since A(n) = A(n)p(n). On the other hand, being φ ∈ L(0)n one has:

Dφ = (1−Π)dφ = dφ− (Xz�φ)Π(ωz)

= dφ−
(
1− q2n

1− q−2

)
φΠ(ωz),

with Dφ ∈ L(1)n from (6.17). By the isomorphism (6.26), equating

Dφ = (∇〈σ|φ)
∣∣∣Ψ(n)

〉

defines the gauge potential A(n) as:
〈
Ψ(n), dΨ(n)

〉
−
〈
Ψ(n)

∣∣∣A(n)
∣∣∣Ψ(n)

〉
=
1− q2n

1− q−2
(ωz + Uω+ + V ω−)

=
1− q2n

1− q−2
(ωz + a) = ω(z−n) :(6.29)

an explicit calculation shows that
〈
Ψ(n), dΨ(n)

〉
= [(1 − q2n)/(1 − q−2)]ωz, so the

previous expression becomes:

(6.30)
〈
Ψ(n)

∣∣∣A(n)
∣∣∣Ψ(n)

〉
= − 1− q2n

1− q−2
(Uω+ + V ω−),

which is solved by

A(n) = − 1− q2n

1− q−2

∣∣∣Ψ(n)
〉
(Uω+ + V ω−)

〈
Ψ(n)

∣∣∣

= − 1− q2n

1− q−2

∣∣∣Ψ(n)
〉
a
〈
Ψ(n)

∣∣∣ .(6.31)

This solution is unique. Being the set of connection an affine space, any different
gauge potential, solution of equation (6.30), should be Ǎ(n) = A(n) + A′(n) where
A(n) is given in (6.31) and A′(n) must satisfy

〈
Ψ(n)

∣∣A′(n) ∣∣Ψ(n)
〉
= 0, with A′(n) =
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p(n)A′(n)p(n) = p(n)A′(n) = A′(n)p(n) = A′(n). One directly has:
〈
Ψ(n)

∣∣∣A′(n)
∣∣∣Ψ(n)

〉
= 0

⇒ 0 =
∣∣∣Ψ(n)

〉〈
Ψ(n)

∣∣∣A′(n)
∣∣∣Ψ(n)

〉〈
Ψ(n)

∣∣∣ = p(n)A′(n)p(n) = A′(n).

The complete equivalence claimed in the proposition comes by (6.30), which gives
for any gauge potential A(n) a 1-form a ∈ Ω1(S2q), suitable to define a connection
as in (6.12). �

The form of the gauge potential (6.31) shows that the monopole connection
Π0(ωz) = ωz corresponds to the Grassmann, or canonical covariant derivative
∇0 〈σ| = (d 〈σ|)p(n) on the line bundles E (0)n , having A(n) = 0 for any n ∈ Z.
A connection on the quantum Hopf bundle is defined compatible with the her-
mitian structure (6.24) on each module of sections of the associated line bundle
if

d{〈σ|φ ; 〈σ|φ′} = {∇ 〈σ|φ ; 〈σ|φ′}+ {〈σ|φ ;∇〈σ|φ′}.
It is easy to compute that this condition amounts to have a connection (6.12)
satisfying the condition

a∗ = −a.

The compatibility between the differential calculi allows to extend the con-
cept of right coaction of the gauge group algebra on the whole exterior algebra
Ω(SUq(2)), introducing a right coaction Δ

(k)
R : Ωk(SUq(2))→ Ωk(SUq(2))⊗A(U(1))

by induction as

(6.32) Δ(k)
R ◦ d = (d⊗ id) ◦Δ(k−1)

R .

It becomes now natural to define the A(S2q)-bimodule:

(6.33) L(2)n = {φ ∈ A(SUq(2))Ω2(S2q)A(SUq(2)) : Δ(2)
R φ = φ⊗ z−n};

so that the maps:

L(2)n �−→ E(2)n : φ �→ 〈σ|φ = φ
〈
Ψ(n)

∣∣∣ ,
E(2)n �−→ L(2)n : 〈σ| �→ φ =

〈
σ,Ψ(n)

〉
(6.34)

are left A(S2q)-module isomorphisms, generalising the isomorphisms given in propo-
sition 3.3 and in (6.26). In the formulation of [6], the elements in L(k)n are strongly
tensorial forms.

Recall that the covariant derivative ∇ is defined in (6.19) as an operator
∇ : E (k)n → E(k+1)

n for k = 0, 1, 2, since the differential calculus on A(S2q) is 2
dimensional; the covariant derivative D has been defined by (6.16) only on the
A(S2q)-bimodule L(0)n , while the proposition 6.2 shows the equivalence between

D : L(0)n → L(1)n and ∇ : E(0)n → E(1)n . The isomorphism (6.34) allows then to
extend the covariant derivative to D : L(1)n → L(2)n , defining:

(6.35) Dφ = (∇〈σ|φ)
∣∣∣Ψ(n)

〉
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for any φ ∈ L(1)n with 〈σ|φ = φ
〈
Ψ(n)

∣∣ ∈ E(1)n = Ω1(S2q) ⊗A(S2
q)
E(0)n . Such an

operator can be represented in terms of the connection (6.13) 1-form ω. From the
Leibniz rule one has:

d(φ
〈
Ψ(n)

∣∣∣) = (dφ)
〈
Ψ(n)

∣∣∣+ (−1)kφ d
〈
Ψ(n)

∣∣∣ ,

with φ ∈ L(k)n . This identity gives the next proposition.

Proposition 6.3. Given φ ∈ L(1)n , so that 〈σ|φ = φ
〈
Ψ(n)

∣∣ ∈ E(1)n , the action

of the operator D : L(1)n → L(2)n defined by (6.35) can be written as:

(6.36) Dφ = dφ+ φ ∧ ω(z−n)

Proof. The proposition is proved by a direct computation. Start from φ ∈
L(1)n , so that from(6.21) one has ∇〈σ|φ = (d 〈σ|φ)p(n) − 〈σ|φ ∧A(n), so that :

Dφ = (∇〈σ|φ)
∣∣∣Ψ(n)

〉

= (d 〈σ|φ)
∣∣∣Ψ(n)

〉
− 〈σ|φ ∧A(n)

∣∣∣Ψ(n)
〉

= d(φ
〈
Ψ(n)

∣∣∣)
∣∣∣Ψ(n)

〉
− φ ∧

〈
Ψ(n)

∣∣∣A(n)
∣∣∣Ψ(n)

〉

= dφ+ φ ∧
〈
Ψ(n), dΨ(n)

〉
− φ ∧

〈
Ψ(n)

∣∣∣A(n)
∣∣∣Ψ(n)

〉
= dφ+ φ ∧ ω(z−n),(6.37)

where the last equality comes from (6.29), expressing the gauge potential A(n) in
terms of the connection 1-form ω. �

To give the curvature F∇ of the given connection (6.23) a more explicit form,
one can make use of two further relations. The first one, involving the projectors
p(n) only, comes from [24], while the second is proved again by direct calculation.

Lemma 6.4. Let p(n) denote the projection given in (3.37). With the 2D calculus
on S2q of section 3.4.3 one finds:

dp(n) ∧ dp(n) p(n) = −q−n−1[n] p(n) ω+ ∧ ω−,
p(n) dp(n) ∧ dp(n) = −q−n−1[n] p(n) ω+ ∧ ω−.

Lemma 6.5. Given for any n ∈ Z the projectors p(n) as in (3.37) and the
expression of the gauge potential A(n) as in (6.31), one has:

(6.38) p(n)dA(n)p(n) = −
(
1− q2n

1− q−2

) ∣∣∣Ψ(n)
〉
d(Uω+ + V ω−)

〈
Ψ(n)

∣∣∣ .

Proof. Setting

a(n) =
〈
Ψ(n)

∣∣∣A(n)
∣∣∣Ψ(n)

〉
= −{(1− q2n)/(1− q−2)}(Uω+ + V ω−) = − 1− q2n

1− q−2
a,
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the expression (6.38) can be written as the sum of three terms, from the Leibniz
rule satisfied by the exterior derivation d:

p(n)dA(n)p(n)

=
[∣∣∣Ψ(n)

〉〈
Ψ(n), dΨ(n)

〉
a(n)

〈
Ψ(n)

∣∣∣
]
+
[∣∣∣Ψ(n)

〉
(da(n))

〈
Ψ(n)

∣∣∣
]

−
[∣∣∣Ψ(n)

〉
a(n)

〈
dΨ(n),Ψ(n)

〉〈
Ψ(n)

∣∣∣
]

=
(
1− q2n

1− q−2

) ∣∣∣Ψ(n)
〉 [

ωz ∧ a(n) + a(n) ∧ ωz
] 〈
Ψ(n)

∣∣∣+
[∣∣∣Ψ(n)

〉
da(n)

〈
Ψ(n)

∣∣∣
]
,

where the second equality comes from the identities
〈
Ψ(n), dΨ(n)

〉
= −

〈
dΨ(n),Ψ(n)

〉
= {(1− q2n)/(1− q−2)}ωz,

while the A(SUq(2))-bimodule relations (3.50) of 1-forms in Ω1(SUq(2)), as well as
commutation relations among them (3.52), give:

ωz ∧ (Uω+ + V ω−) = q4Uωz ∧ ω+ + q−4V ωz ∧ ω− = −(Uω+ + V ω−) ∧ ωz,
so that ωz ∧ a(n) + a(n) ∧ ωz = 0 and the identity claimed in (6.38) is verified. �

Remark 6.6. The identity ωz ∧ a(n)+a(n) ∧ωz = 0 also shows that the 1-form
ωz anti-commutes with every 1-form in Ω1(S2q).

Proposition 6.7. Given the covariant derivative ∇ : E(k)n → E (k+1)
n from

(6.21) with a gauge potential (6.31) A(n) = −(1 − q2n)(1 − q−2)−1
∣∣Ψ(n)

〉
a
〈
Ψ(n)

∣∣,
the operator ∇2 : E(0)n → E(2)n can be written as:
(6.39)
∇2 〈σ| = 〈σ| ∧ F∇ = −〈σ| ∧ {

∣∣∣Ψ(n)
〉
qn+1[n](ω− ∧ ω+ − da+ qn+1[n]a∧ a)

〈
Ψ(n)

∣∣∣}.

Proof. From the general expression (6.23), the action of the operator ∇2 on
a 〈σ| ∈ E(0)n is linear, and given by the sum of three terms. The first one, recalling
the result of the lemma 6.4 and the commutation rules (3.50) and (3.52), is:

−(dp(n) ∧ dp(n))p(n) = q−n−1[n]p(n)ω+ ∧ ω−
= −q1−n[n]

∣∣∣Ψ(n)
〉〈

Ψ(n)
∣∣∣ω− ∧ ω+

= −qn+1[n]
∣∣∣Ψ(n)

〉
ω− ∧ ω+

〈
Ψ(n)

∣∣∣ .(6.40)

Since one has 〈σ| p(n) = 〈σ|, being elements in the projective modules E(0)n , the
other two terms in (6.21) are:

p(n)dA(n)p(n) = −
(
1− q2n

1− q−2

) ∣∣∣Ψ(n)
〉
da

〈
Ψ(n)

∣∣∣

= qn+1[n]
∣∣∣Ψ(n)

〉
da

〈
Ψ(n)

∣∣∣ ,

−A(n) ∧A(n) = −
(
1− q2n

1− q−2

)2 ∣∣∣Ψ(n)
〉
a ∧ a

〈
Ψ(n)

∣∣∣

= −q2(n+1)[n]2
∣∣∣Ψ(n)

〉
a ∧ a

〈
Ψ(n)

∣∣∣ .
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The sum of these three lines gives the curvature F∇ ∈ M|n|+1 ⊗A(S2
q)
Ω2(S2q) the

expression:

(6.41) F∇ = −
∣∣∣Ψ(n)

〉
qn+1[n](ω− ∧ ω+ − da + qn+1[n]a ∧ a)

〈
Ψ(n)

∣∣∣ .
�

The isomorphism (6.34) allows to formulate the curvature as a linear map
D2 : L(0)n → L(2)n , defined by:

(6.42) D2φ = (∇2 〈σ|φ)
∣∣∣Ψ(n)

〉

for a given φ =
〈
σ,Ψ(n)

〉
. This operator can also be written in terms of the

connection 1-form ω.

Proposition 6.8. The operator D2 : L(0)n → L(2)n defined in (6.42) can be
written as

(6.43) D2φ = −φ ∧ {dω(z−n) + ω(z−n) ∧ ω(z−n)} = φ ∧
(〈
Ψ(n)

∣∣∣F∇
∣∣∣Ψ(n)

〉)

on any φ ∈ L(0)n .

Proof. The proof is a direct application of the result in propositions 6.18 and
6.3. It is Dφ = dφ− φ ∧ ω(z−n) with φ ∈ L(0)n , so that:

D2φ = d(Dφ) + (Dφ) ∧ ω(z−n)
= −d(φ ∧ ω(z−n)) + (dφ− φ ∧ ω(z−n)) ∧ ω(z−n)
= −φ ∧ (dω(z−n) + ω(z−n) ∧ ω(z−n)).

The relation (6.29) can be rewritten as ω(z−n) = −q1+n[n](ωz + a), so to have:
dω(z−n) = −q1+n[n](dωz + da) = q1+n[n](ω− ∧ ω+ − da),
ω(z−n) ∧ ω(z−n) = {q1+n[n]}2(ωz + a) ∧ (ωz + a) = q2(1+n)[n]2a ∧ a,

where the last equality in the second line comes from the remark 6.6. It becomes
then clear to recover from (6.39)

D2φ = −φ ∧ q1+n[n]{ω− ∧ ω+ − da + q1+n[n]a ∧ a} = φ ∧
(〈
Ψ(n)

∣∣∣F∇
∣∣∣Ψ(n)

〉)
,

meaning that the action of the operator D2 can be represented by the 2-form(〈
Ψ(n)

∣∣F∇
∣∣Ψ(n)

〉) ∈ L(2)0 . �

Remark 6.9. Recall from (6.16) that, given φ ∈ L(0)n , the covariant derivative
D : L(0)n → L(1)n has been defined in terms of the projector Π associated to the
connection as:

Dφ = (1−Π)dφ.
Given the left A(S2q)-module isomorphisms L(k)n � Ωk(S2q) ⊗A(S2

q)
E(0)n = E(k)n , the

proposition 6.2 shows that any connection written as a projector Π as in (6.11)
induces a gauge potential A(n), so to have a covariant derivative ∇ : Ωk(S2q)⊗A(S2

q)

En → Ωk+1(S2q)⊗A(S2
q)
En. The operator D is then extended in (6.35) as D : L(1)n →

L(2)n in terms of the operator ∇, without using the projector Π. This definition
is perfectly consistent, but it seems natural to understand whether it is possible to
define D : L(1)n → L(2)n via the projector Π, and even whether it is possible to extend
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the domain of such a covariant derivative operator D from the set of horizontal
forms L(k)n to the whole exterior algebra Ω(SUq(2)), in analogy to the classical case
(2.4).

Given φ ∈ L(1)n , the most natural definition of a covariant derivative seems to
be:

(6.44) Ďφ = (1−Π)dφ,
with the horizontal projector (1 − Π) extended to Ω2(SUq(2)) by assuming a com-
patibility with the wedge product

Ω2(SUq(2)) = {Ω1(SUq(2))⊗A(SUq(2))Ω1(SUq(2))}/SQ = Ω1(SUq(2))∧Ω1(SUq(2))

so to have:

(6.45) (1−Π)Ω2(SUq(2)) = {(1−Π)Ω1(SUq(2))} ∧ {(1−Π)Ω1(SUq(2))}.
It is easy to see that such a compatibility does not exist. To be definite, consider an
example. Choose ω+ ∈ L(1)−2, so that dω+ = q2(1+ q2)ωz ∧ω+ = −(1+ q−2)ω+∧ωz
by the commutation properties of the ∧ product (3.52). Compute now:

q2(1 + q2)(1−Π){ωz ∧ ω+} = q2(1 + q2){(1−Π)ωz} ∧ {(1−Π)ω+}
= q2(1 + q2)V ω− ∧ ω+,

−(1 + q−2)(1−Π){ω+ ∧ ωz} = −(1 + q−2){(1−Π)ω+} ∧ {(1−Π)ωz}
= (1 + q−2)V ω− ∧ ω+,

The two expressions are different: the problem is that, for the given 3D calculus on
A(SUq(2)), one has

(6.46) (1−Π)SQ � SQ.
Consider the 6 relations (3.52) generating SQ. An explicit calculation shows that,
from the three of them not involving ωz, one has:

{(1−Π)ω+} ∧ {(1−Π)ω+} = 0,

{(1−Π)ω−} ∧ {(1−Π)ω−} = 0,

{(1−Π)ω−} ∧ {(1−Π)ω+}+ q−2{(1−Π)ω+} ∧ {(1−Π)ω−} = 0,

while from the remaining terms:

{(1−Π)ωz} ∧ {(1−Π)ω−}+ q4{(1−Π)ω−} ∧ {(1−Π)ωz} = (1− q4)Uω+ ∧ ω−,
{(1−Π)ωz} ∧ {(1−Π)ω+}+ q−4{(1−Π)ω+} ∧ {(1−Π)ωz} = (1− q−4)V ω− ∧ ω+,
{(1−Π)ωz} ∧ {(1−Π)ωz} = a ∧ a.
These computations show that only in the case of the monopole connection – that
is a = 0 – it is

(6.47) (1−Π0)SQ ⊆ SQ :
only in the case of the monopole connection it is consistent to set

(1−Π0)Ω2(SUq(2)) = {(1−Π0)Ω1(SUq(2))} ∧ {(1−Π0)Ω1(SUq(2))}
and to define

(6.48) D0 : Ωk(SUq(2)) �→ Ωk+1(SUq(2)), D0φ = (1−Π0)dφ
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The operator D0 is a ’covariant’ operator: given φ ∈ Ωk(SUq(2)) such that Δ(k)
R φ =

φ ⊗ z−n, it is Δ(k+1)
R (D0φ) = D0φ ⊗ z−n, and moreover D0φ ∈ L(k)n : D0φ is

horizontal. Note that L(3)n = ∅, as the calculus on S2q is 2D. It becomes an easy

computation to prove that the restriction D0 : L(k)n → L(k+1)
n acquires the form:

(6.49) D0φ = (1−Π0)dφ = dφ− (−1)kφ ∧ ω0(z−n).
This relation is the quantum analogue of the classical (2.5). The classical covariant
derivative of an equivariant differential form φ can be expressed in terms of the
connection 1-form ω only if such φ is horizontal. In this quantum formulation, the
classical condition that φ is horizontal and equivariant has been translated into the
condition φ ∈ L(k)n .

7. A gauged Laplacian on the quantum Hopf bundle

With a covariant derivative ∇ acting on the left A(S2q)-projective modules
E(k)n = Ωk(S2q) ⊗A(S2

q)
En and the �-Hodge structure on the exterior algebra Ω(S2q)

introduced in section 5 it is possible to define a gauged Laplacian operator �∇ :
E(0)n → E(0)n as:

(7.1) �∇ 〈σ| = �∇ �∇〈σ|
on any 〈σ| ∈ E(0)n . From the left A(S2q)-linearity of the �-Hodge map, and the
relation (6.21), one has:

∇ �∇〈σ| = d{�(∇〈σ|)}p(n) − (�∇〈σ|) ∧A(n)

= d{�[(d 〈σ|)p(n)] + 〈σ| ∧ (�A(n))}p(n) − {(�[(d 〈σ|)p(n)] ∧A(n)

+ 〈σ| ∧ (�A(n)) ∧A(n)}
= d{�[(d 〈σ|)p(n)]}p(n) + d{〈σ| ∧ (�A(n))}p(n) − �{(d 〈σ|)p(n)} ∧A(n)

− 〈σ| ∧ (�A(n)) ∧A(n)(7.2)

The second term in the last line can be written as:

d{〈σ| ∧ (�A(n))}p(n) = d 〈σ| ∧ (�A(n))p(n) + 〈σ| ∧ {d(�A(n))}p(n)
= d 〈σ| ∧ (�A(n)) + 〈σ| ∧ {d(�A(n))}p(n),(7.3)

while the third term in (7.2) is:

− � {(d 〈σ|)p(n)} ∧A(n) = − � (d 〈σ|)p(n) ∧A(n)

= −(�d 〈σ|) ∧A(n) :(7.4)

in both the relations (7.3) and (7.4) the specific property of right A(S2q)-linearity
of the �-Hodge map has been used, namely as �(A(n))p(n) = �(A(n)p(n)) = �A(n) in
(7.3) and as �{(d 〈σ|)p(n)} = �(d 〈σ|)p(n) in (7.4). Moreover, from the proposition
5.4 one has d 〈σ| ∧ (�A(n)) = −(�d 〈σ|) ∧A(n), so that

�∇ �∇〈σ| = � d{�(d 〈σ|)p(n)}p(n) − 2 � {(�d 〈σ|) ∧A(n)}+ 〈σ| ∧ {�d �A(n)}p(n)
− 〈σ| ∧ �{(�A(n)) ∧A(n)}(7.5)

The four terms componing the gauged Laplacian can be individually studied.
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• Recalling the result of lemma 5.6, one has:
�A(n) = qn+1[n] � {

∣∣∣Ψ(n)
〉
a
〈
Ψ(n)

∣∣∣}
= qn+1[n]

∣∣∣Ψ(n)
〉
(�a)

〈
Ψ(n)

∣∣∣ .(7.6)

The fourth term in (7.5) is, using once more the result of lemma 5.6 with〈
Ψ(n)

∣∣ ∈ L(0)−n:
−〈σ| ∧ �{(�A(n)) ∧A(n)} = −〈σ| ∧ q2(1+n)[n] � {

∣∣∣Ψ(n)
〉
(�a) ∧ a

〈
Ψ(n)

∣∣∣}
= −q2[n] 〈σ| ∧

∣∣∣Ψ(n)
〉
(�{(�a) ∧ a})

〈
Ψ(n)

∣∣∣ .(7.7)

• From (7.6) the third term in the expression (7.5) of the gauged Laplacian
is:

〈σ| ∧ {�d �A(n)}p(n) = 〈σ| ∧ q1+n[n] � {d
(∣∣∣Ψ(n)

〉
(�a)

〈
Ψ(n)

∣∣∣
)
}p(n)

= 〈σ| ∧ q1+n[n] � {p(n)d
(∣∣∣Ψ(n)

〉
(�A(n))

〈
Ψ(n)

∣∣∣
)
p(n)}.(7.8)

The last term in curly bracket is, by the derivation property of d:

p(n)d
(∣∣∣Ψ(n)

〉
(�A(n))

〈
Ψ(n)

∣∣∣
)
p(n) =

=
∣∣∣Ψ(n)

〉(〈
Ψ(n), dΨ(n)

〉
(�a)

)〈
Ψ(n)

∣∣∣−
∣∣∣Ψ(n)

〉(
(�a)

〈
dΨ(n),Ψ(n)

〉)〈
Ψ(n)

∣∣∣
+
∣∣∣Ψ(n)

〉
(d(�a))

〈
Ψ(n)

∣∣∣

=
∣∣∣Ψ(n)

〉
{−q1+n[n]ωz ∧ (�a)− q1+n[n](�a) ∧ ωz + d(�a)}

〈
Ψ(n)

∣∣∣ ,
(7.9)

where the last equality comes from
〈
Ψ(n), dΨ(n)

〉
= −q1+n[n]ωz. Recalling

the remark 6.6, and using the commutation rules (3.50) as they were used
in (7.7), the expression (7.8) becomes:

〈σ| ∧ {�d �A(n)}p(n) = q1+n[n] 〈σ| ∧ �{
∣∣∣Ψ(n)

〉
d(�a)

〈
Ψ(n)

∣∣∣}
= q1−n[n] 〈σ| ∧

∣∣∣Ψ(n)
〉
{�d � a}

〈
Ψ(n)

∣∣∣ .(7.10)

• It is now straightforward to analyse the second term in the expression
(7.5) of the gauged Laplacian. From the definition (6.31) and the Hodge
duality (5.14), with again a = Uω+ + V ω−, U ∈ L(0)2 and V ∈ L(0)−2 :

2 � {d 〈σ| ∧ (�A(n))}(7.11)

= 2iα′′ν qn+1[n] � {(X+� 〈σ|)ω+

∣∣∣Ψ(n)
〉
∧ a

〈
Ψ(n)

∣∣∣
− (X−� 〈σ|)ω−

∣∣∣Ψ(n)
〉
∧ a

〈
Ψ(n)

∣∣∣}
= −2iα′′ν q[n]{(X+� 〈σ|

∣∣∣Ψ(n)
〉
V
〈
Ψ(n)

∣∣∣
+ q2(X−� 〈σ|)

∣∣∣Ψ(n)
〉
U
〈
Ψ(n)

∣∣∣} � (ω− ∧ ω+)
= −2q[n]{ν(X+� 〈σ|

∣∣∣Ψ(n)
〉
V
〈
Ψ(n)

∣∣∣+ β(X−� 〈σ|)
∣∣∣Ψ(n)

〉
U
〈
Ψ(n)

∣∣∣}(7.12)
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• To analyse the first term in (7.5), which is the only one not depending on
the gauge potential a, start with:

�{(d 〈σ|)p(n)} = �
(
{(X+� 〈σ|)ω+ + (X−� 〈σ|)ω−}p(n)

)

= �{(X+� 〈σ|)p(n)ω+ + (X−� 〈σ|)p(n)ω−}
= −iα′′ν{(X+� 〈σ|)p(n)ω+ − (X−� 〈σ|)p(n)ω−}(7.13)

so to have:

d � {(d 〈σ|)p(n)}
= −iα′′ν

(
X−�

[
{X+� 〈σ|}p(n)

]
ω− ∧ ω+ −X−�

[
{X−� 〈σ|}p(n)

]
ω+ ∧ ω−

)

= −iα′′ν
(
X−�

[
{X+� 〈σ|}p(n)

]
+ q2X+�

[
{X−� 〈σ|}p(n)

])
ω− ∧ ω+.

�
(
d � {(d 〈σ|)p(n)}

)

= −iα′′
(
νX−�

[
{X+� 〈σ|}p(n)

]
+ βX+�

[
{X−� 〈σ|}p(n)

])
� (ω− ∧ ω+)

= −
(
νX−�

[
{X+� 〈σ|}p(n)

]
+ βX+�

[
{X−� 〈σ|}p(n)

])(7.14)

The gauged Laplacian can be seen as an operator �D : L(0)n → L(0)n via the equiva-
lence between equivariant maps φ ∈ L(0)n and section of the associated line bundles
σ ∈ E (0)n , represented by the isomorphism in proposition 3.3:

(7.15) �Dφ = (�∇ 〈σ|)
∣∣∣Ψ(n)

〉

on any equivariant φ =
〈
σ,Ψ(n)

〉
. The terms (X±� 〈σ|)

∣∣Ψ(n)
〉
in (7.12) and(7.14)

need a specific analysis. Given the coproduct ΔX± = 1⊗X±+X±⊗K2, one has:

(X±� 〈σ|)
∣∣∣Ψ(n)

〉
= (X±�{φ

〈
Ψ(n)

∣∣∣})
∣∣∣Ψ(n)

〉

= φ(X±�
〈
Ψ(n)

∣∣∣)
∣∣∣Ψ(n)

〉
+ q−n(X±�φ)

= q−n(X±�φ).(7.16)

This last equality is clear from (3.26) with X+ and n < 0, and with X− and n > 0.
In the other two cases, it is possible to apply once more the deformed Leibniz rule
to products of elements in A(SUq(2)), having:

qn(X±�
〈
Ψ(n)

∣∣∣)
∣∣∣Ψ(n)

〉
= X±�

〈
Ψ(n),Ψ(n)

〉
−
〈
Ψ(n)

∣∣∣ (X±�
∣∣∣Ψ(n)

〉
)

= X±�(1)−
〈
Ψ(n)

∣∣∣ (X±�
∣∣∣Ψ(n)

〉
)

= −
〈
Ψ(n)

∣∣∣ (X±�
∣∣∣Ψ(n)

〉
) = 0;(7.17)

since again from (3.26) one has X+�
∣∣Ψ(n)

〉
= 0 with n > 0, and X−�

∣∣Ψ(n)
〉
= 0

with n < 0.
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Recollecting the four terms from (7.5) and making use of the relation (7.16),
one has:

−σ ∧ �{(�A(n)) ∧A(n)}
∣∣∣Ψ(n)

〉
= −q2[n]φ ∧ �{(�a) ∧ a},

σ ∧ {�d �A(n)}
∣∣∣Ψ(n)

〉
= q1−n[n]φ ∧ {�d � a},

2 � {dσ ∧ (�a)}
∣∣∣Ψ(n)

〉
= −2q1−n[n] (ν(X+�φ)V + β(X−�φ)U) ,

[
�
(
d � {(dσ)p(n)}

)] ∣∣∣Ψ(n)
〉
= −q−2n (νX−X+ + βX+X−) �φ.(7.18)

It is clear that the gauged Laplacian operator can be completely diagonalised only
if one chooses the gauge potential a = 0, that is if one gauges the Laplacian by the
monopole connection. Such a gauged Laplacian �D0 : L(0)n → L(0)n can be written
as:

(7.19) �D0φ = −q−2n (νX−X+ + βX+X−) �φ, forφ ∈ L(0)n .

The diagonalisation is straightforward, following (4.23). One has:

�D0φn,J,l = −q1−nν{[J −
n

2
][J + 1 +

n

2
]} − q−1−nβ{[J − n

2
][J + 1 +

n

2
] + [n]}φn,J,l

= −q1−nν{2[J − n

2
][J + 1 +

n

2
] + [n]}φn,J,l.(7.20)

Recall the Laplacian operators on A(SUq(2)) and on A(S2q) from equations (4.22)
and (5.18):

�SUq(2)φ = −(νX−X+ + βX+X− + γXzXz)�φ, φ ∈ L(0)n ,

�S2
q
f = −(νX−X+ + βX+X−)�f, f ∈ A(S2q) � L(0)0 ,

�D0φ = −q−2n (νX−X+ + βX+X−) �φ, φ ∈ L(0)n .(7.21)

One has that the restriction of �D0 to φ ∈ L(0)0 coincides with the operator �S2
q
.

Moreover it is now possible to generalise to the quantum Hopf bundle with the
specific differential calculi studied so far, the classical relation (1.1), from which
this analysis started:

(7.22) q2n�D0�φ =
(
�SUq(2) + γXzXz

)
�φ, φ ∈ L(0)n .

This relation appears as the natural generalisation of the classical relation (1.1) to
this specific quantum setting. The quantum Casimir operator (3.21) can not be
written as a polynomial in the basis derivations Xj (3.45) of the 3D left covariant
calculus from Woronowicz, so its role is played by the Laplacian �SUq(2). Its quan-
tum vertical part can still be written as a quadratic operator in the vertical field
Xz of the quantum Hopf fibration.

8. An algebraic formulation of the classical Hopf bundle

The aim of this section is to apply the formalism developed to study the quan-
tum Hopf bundle to the case when all the space algebras are commutative, in order
to recover the standard formulation of the classical Hopf bundle described at the
beginning of the paper, from a dual viewpoint.
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8.1. An algebraic description of the differential calculus on the group
manifold SU(2). Rephrasing the relations (2.8) which define the matrix Lie group
SU(2), the coordinate algebra A(SU(2)) of the simple Lie group SU(2) is the
commutative ∗-algebra generated by u and v, satisfying the spherical relation u∗u+
v∗v = 1. The Hopf algebra structure is given by the coproduct:

(8.1) Δ
[
u −v∗
v u∗

]
=

[
u −v∗
v u∗

]
⊗
[
u −v∗
v u∗

]
,

antipode:

(8.2) S

[
u −v∗
v u∗

]
=

[
u∗ v∗

−v u

]
,

and counit:

(8.3) ε

[
u −v∗
v u∗

]
=

[
1 0
0 1

]
.

The universal envelopping algebra U(su(2)) is the Hopf ∗-algebra generated by the
three elements e, f, h which satisfy the algebraic relations (2.12) coming from the
Lie algebra structure in su(2):

[e, f] = 2h,

[f, h] = f,

[e, h] = −e.(8.4)

The ∗-structure is:
h∗ = h, e∗ = f, f∗ = e,

and the Hopf algebra structure is provided by the coproduct:

Δ(e) = e⊗ 1 + 1⊗ e,
Δ(f) = f ⊗ 1 + 1⊗ f,
Δ(h) = h⊗ 1 + 1⊗ h;

antipode:
S(e) = −e, S(f) = −f, S(h) = −h;

and a counit which is trivial:

ε(e) = ε(f) = ε(h) = 0.

The centre of the algebra U(su(2)) is generated by the Casimir element:

(8.5) C = h2 +
1
2
(ef + fe)

The irreducible finite dimensional ∗-representations σj of U(su(2)) are well known
and labelled by nonnegative half-integers j ∈ 1

2N. They are given by:

σj(h) |j,m〉 = m |j,m〉 ,
σj(e) |j,m〉 =

√
(j −m)(j +m+ 1) |j,m+ 1〉 ,

σj(f) |j,m〉 =
√
(j −m+ 1)(j +m) |j,m− 1〉 .(8.6)



LAPLACIANS AND GAUGED LAPLACIANS ON A QUANTUM HOPF BUNDLE 225

The algebras A(SU(2)) and U(su(2)) are dually paired. The bilinear (3.7) mapping
〈 , 〉 : U(su(2))×A(SU(2)) → C, compatible with the ∗-structures, is set by:

〈h, u〉 = −1/2,
〈h, u∗〉 = 1/2,

〈e, v〉 = 1,

〈f, v∗〉 = −1;(8.7)

all other couples of generators pairing to 0. This pairing is non degenerate: the
condition 〈l, x〉 = 0 ∀l ∈ U(su(2)) implies x = 0, while 〈l, x〉 = 0 ∀x ∈ A(SU(2))
implies h = 0.

It is possible to prove [21] that a finite dimensional vector space X ⊂ H′ of
linear functionals on a Hopf algebra H is a tangent space of a finite dimensional
left covariant first order differential calculus (Ω1(H), d) if and only if X(1) = 0 and
(Δ(X) − ε ⊗ X) ∈ X ⊗ Ho, for any X ∈ X , where Ho ⊂ H′ is the dual Hopf
algebra to H. The ideal Q = {x ∈ ker εH : X(x) = 0∀X ∈ X} characterises the
calculus, the bimodule of 1-forms being isomorphic to Ω1(H) = Ω1

un(H)/NQ with
NQ = r−1(H⊗Q). This result shows the path to prove the following proposition.

Proposition 8.1. Given the nondegenerate bilinear pairing 〈 , 〉 : U(su(2))×
A(SU(2))→ C as in (8.7), the set {e, f, h} of generators in U(su(2)) defines a basis
of the tangent space XSU(2) for a bicovariant differential ∗-calculus on A(SU(2)).
Such a differential calculus is isomorphic to the differential calculus (2.24), once
the algebra C∞(S3) is restricted to the polynomial algebra A(SU(2)).

Proof. The definition of counit in the Hopf algebra U(su(2)) shows that the
generators la = {e, f, h}, seen as linear functionals on A(SU(2)) via the pairing, are
such that:

e(1) = 〈e, 1〉 = ε(e) = 0,

f(1) = 〈f, 1〉 = ε(f) = 0,

h(1) = 〈h, 1〉 = ε(h) = 0;

while the coproduct relations can be cast in the form:

Δ(e)− 1⊗ e = e⊗ 1,
Δ(f)− 1⊗ f = f ⊗ 1,
Δ(h)− 1⊗ h = h⊗ 1;(8.8)

thus proving that the set {e, f, h} in U(su(2)) defines a complex vector space basis
of a tangent space XSU(2) for a left covariant differential calculus. The obvious
inclusion X ∗SU(2) ⊂ XSU(2) proves, as described in section 3, that such a calculus
admits a ∗ structure.

In order to recover the ideal QSU(2) ⊂ ker εSU(2) for this specific calculus,
consider a generic element x ∈ ker εSU(2). It must necessarily be written as x =
{(u − 1)x1, (u∗ − 1)x2, vx3, v∗x4} with xj ∈ A(SU(2)). Such an element x will
belong to QSU(2) if 〈la, x〉 = 0 for any of the generators la ∈ U(su(2)), since they
form a vector space basis for the tangent space XSU(2) relative to this calculus. For



226 ALESSANDRO ZAMPINI

the element x = (u− 1)x1 the three conditions are:

〈e, (u− 1)x1〉 = 〈e, u− 1〉 〈1, x1〉+ 〈1, u− 1〉 〈e, x1〉 = 0,

〈f, (u− 1)x1〉 = 〈f, u− 1〉 〈1, x1〉+ 〈1, u− 1〉 〈f, x1〉 = 0,

〈h, (u− 1)x1〉 = 〈h, u− 1〉 〈1, x1〉+ 〈1, u− 1〉 〈h, x1〉 = −12 〈1, x1〉 = −
1
2
ε(x1),

(8.9)

where, in each of the three lines, the first equality comes from the general properties
of dual pairing and from the specific coproduct in U(su(2)), while the final result
depends on the specific form of the pairing. This means that x = (u−1)x1 belongs
to QSU(2) if and only if x1 ∈ ker εSU(2). The analysis is similar for the other three
elements x = {(u∗ − 1)x2, vx3, v∗x4}. It is then proved that this left covariant
differential calculus on A(SU(2)) - whose tangent space is 3 dimensional - can be
characterised by the ideal QSU(2) = {ker εSU(2)}2 ⊂ ker εSU(2), which is generated
by the ten elements: QSU(2) = {(u− 1)2, (u− 1)(u∗ − 1), (u− 1)v, (u− 1)v∗, (u∗ −
1)2, (u∗ − 1)v, (u∗ − 1)v∗, v2, vv∗, v∗2}. The equation (3.5) allows then to write the
exterior derivative for this calculus as:

(8.10) dx = (e�x)ωe + (f�x)ωf + (h�x)ωh

The commutation properties between the left invariant forms {ωe, ωf , ωh} and ele-
ments of the algebra A(SU(2)) depend on the functionals fab defined as Δ(la) =
1⊗ la+ lb⊗fba. From (8.8) one has fab = δab, so 1-forms do commute with elements
of the algebra A(SU(2)), ωax = xωa.

The ideal QSU(2) is in addition stable under the right coaction Ad of the algebra
A(SU(2)) onto itself: Ad(QSU(2)) ⊂ QSU(2) ⊗A(SU(2)). The proof of this result
consists of a direct computation. The stability of the ideal QSU(2) under the right
coaction Ad means that this differential calculus is bicovariant.

The explicit form of the left action of the generators of U(su(2)) on the gener-
ators of the coordinate algebra A(SU(2)) is:

(8.11)

h�u = −1
2
u

h�u∗ = 1
2
u∗

h�v = −1
2
v

h�v∗ = 1
2
v∗

e�u = −v∗
e�u∗ = 0
e�v = u∗

e�v∗ = 0

f�u = 0
f�u∗ = v
f�v = 0
f�v∗ = −u

Starting from these relations it is immediate to see that the left action of the
generators la ∈ U(su(2)) is equivalent to the Lie derivative along the left invariant
vector fields La (2.11). This equivalence can now be written as:

e�(x) = −iL+(x),

f�(x) = −iL−(x),
h�(x) = iLz(x),(8.12)

and it is valid for any x ∈ A(SU(2)), as the Leibniz rule for the action of the
derivations La is encoded in the definition of the left action (3.6) and the properties
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of the functionals fab = δab. From relation (8.10) it is possible to recover:

du = −v∗ωe − 1
2
uωh,

du∗ = vωf +
1
2
u∗ωh,

dv = u∗ωe − 1
2
vωh,

dv∗ = −uωf + 1
2
v∗ωh.

These relations can be inverted, so that left invariant 1-forms {ωe, ωf , ωh} can be
compared to (2.21):

ωe = udv − vdu = iω̃+,

ωf = v∗du∗ − u∗dv∗ = iω̃−,

ωh = −2(u∗du+ v∗dv) = −iω̃z.(8.13)

The ∗-structure is given, on the basis of left-invariant generators, as ω∗e = −ωf , ω∗h =
−ωh. The equalities (8.13), which are dual to (8.12), represent the isomorphism
between the first order differential calculus introduced via the action of the exterior
derivative in (8.10), and the one analysed in section 2.1.

�

It is now straightforward to recover this bicovariant calculus as the classical limit
of the quantum 3D left covariant calculus (Ω(SUq(2), d) described in section 3.4.1.
In the classical limit A(SUq(2))→ A(SU(2)) as q → 1, with φ→ x, one has:

ω+ → ωe, (X+�φ)→ (e�x),
ω− → ωf , (X−�φ)→ (f�x),
ωz → − 1

2 ωh, (Xz�φ)→ (−2h�x).
The coaction Δ(1)

R of A(SU(2)) on the basis of left invariant forms defines the
matrix Δ(1)

R (ωa) = ωb ⊗ Jba:

Δ(1)
R (ωf) = ωf ⊗ u∗2 + ωh ⊗ u∗v∗ − ωe ⊗ v∗2,

Δ(1)
R (ωh) = −ωf ⊗ 2u∗v + ωh ⊗ (u∗u− v∗v)− ωe ⊗ 2uv∗,

Δ(1)
R (ωe) = −ωf ⊗ v2 + ωh ⊗ uv + ωe ⊗ u2,(8.14)

which is used to define a basis of right invariant one forms ηa = ωbS(Jba):

ηf = u2ωf − uv∗ωh − v∗2ωe = v∗du− udv∗,

ηh = 2uvωf + (uu∗ − vv∗)ωh + 2u∗v∗ωe = 2(udu∗ + v∗dv),

ηe = −v2ωf − u∗vωh + u∗2ωe = u∗dv − vdu∗;(8.15)

- note that it has been made explicit use of the commutativity between forms ωa
and elements of the algebra A(SU(2)). The right acting derivation associated to
this basis are given by (3.12) as

dx = ηa�(−S−1(la)) = ηa�la

for any x ∈ A(SU(2)), since an immediate evaluation gives S−1(la) = −la for
the three vector basis elements of the tangent space la ∈ X . Using again the
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commutativity of the right invariant one forms ηa with element of A(SU(2)), the
action of the exterior derivation (8.10) can be written as:

(8.16) dx = (x�f)ηf + (x�h)ηh + (x�e)ηe.

Comparing (8.15) to (2.22) one has:

ηf = iη̃−,
ηh = −iη̃z,
ηe = iη̃+,(8.17)

while for the right action of the generators la on A(SU(2)) one computes:

(8.18)

u�h = −1
2
u

u∗�h = 1
2
u∗

v�h = 1
2
v

v∗�h = − 1
2
v∗

u�e = 0
u∗�e = −v∗
v�e = u
v∗�e = 0

u�f = v
u∗�f = 0
v�f = 0
v∗�f = −u∗;

so that the identification with the action of the right invariant vector fields (2.14)
can be recovered as:

(x)�f = −iR−(x),
(x)�e = −iR+(x),

(x)�h = iRz(x),(8.19)

being dual to the identification (8.17). It is also evident that relations (8.17) and
(8.19) define a different realisation of the isomorphism between the differential cal-
culus introduced in this section (8.16) and the differential calculus from section 2.1.

Remark 8.2. The identification (8.12) can be read as a Lie algebra isomor-
phism between the Lie algebra {e, f, h} given in (8.4) and the Lie algebra of the left
invariant vector fields {La} (2.12):
(8.20) e = −iL+, f = −iL−, h = iLz.

The notion of pairing between the algebras U(su(2)) and A(SU(2)) can be recovered
as the Lie derivative of the coordinate functions along the vector fields La, evaluated
at the identity of the group manifold. The terms in (8.7) giving the nonzero terms
of the pairing are:

Lz(u)|id = i
2

⇒ 〈h, u〉 = − 1
2

Lz(u∗)|id = − i2 ⇒ 〈h, u∗〉 = 1
2

L+(v)|id = i ⇒ 〈e, v〉 = 1
L−(v∗)|id = −i ⇒ 〈f, v∗〉 = −1

The whole exterior algebra Ω(SU(2)) can now be constructed from the differ-
ential calculus (8.10). Any 1-form θ ∈ Ω1(SU(2)) can be written on the basis of left
invariant forms as θ =

∑
k xkωk = ωkxk with xk ∈ A(SU(2)). Higher dimensional

forms can be defined by requiring their total antisimmetry, and that d2 = 0. One
has then ωa ∧ ωb + ωb ∧ ωa = 0 and:

dωf = ωh ∧ ωf ,
dωe = ωe ∧ ωh,
dωh = 2ωf ∧ ωe.(8.21)

Finally, there is a unique volume top form ωf ∧ ωe ∧ ωh.
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The algebra A(SU(2)) can be partitioned into finite dimensional blocks, whose
elements are related to the Wigner D-functions [36] for the group SU(2). Con-
sidering all the unitary irreducible representations of SU(2), their matrix elements
will give a Peter-Weyl basis for the Hilbert space L2(SU(2), μ) of complex val-
ued functions defined on the group manifold with respect to the Haar invariant
measure. The Wigner D-function DJks(g) is defined to be the matrix element (k, s
are the matrix indices) representing the element g � (u, v) in SU(2) (2.8) in the
representation of weight J . They are known:

DJks = (−i)s+k[(J + s)!(J − s)!(J + k)!(J − k)!]1/2

·
∑
l

(−1)k+l u∗lv∗J−k−lvJ−s−lu∗k+s+l

l!(J − k − l)!(J − s− l)!(s+ k + l)!
(8.22)

with J = 0, 1/2, 1, . . . and k = −J, . . . ,+J , s = −J, . . . ,+J . In (8.22) the index l
runs over the set of natural numbers such that all the arguments of the factorial
are non negative. To illustrate the meaning of this partition, proceed as in the
quantum setting, and consider the element u∗ ∈ A(SU(2)). Representing the left
action f� with a horizontal arrow and the right action �e with a vertical one yields
the box:

(8.23)
u∗ → v
↓ ↓
−v∗ → u

while starting from u∗2 ∈ A(SU(2)) yields the box:

(8.24)

u∗2 → 2u∗v → 2v2

↓ ↓ ↓
−2u∗v∗ → 2(u∗u− v∗v) → 4uv
↓ ↓ ↓

2v∗2 → −4v∗u → 4u2

A recursive structure emerges now clear. For each positive integer p one has a
box Wp made up of the (p + 1) × (p + 1) elements wp:t,r = ft�u∗p�er. An explicit
calculation proves that:

(8.25) ft�u∗p�er = it+rj!
[

t!r!
(p− t)!(p− r)!

]1/2
D
p/2
t−p/2,r−p/2

with t ≤ p, r ≤ p. As an element in U(su(2)), the quadratic Casimir C (8.5)
of the Lie algebra su(2) acts on x ∈ A(SU(2)) as C�x = x�C, and its action
clearly commutes with the actions f� and �e. This means that the decomposition
A(SU(2)) = ⊕j∈NWp gives the spectral resolution of the action of C:

(8.26) C�wp:t,r =
p

2
(
p

2
+ 1)wp:t,r.

8.2. The bundle structure.
8.2.1. The base algebra of the bundle. Given the abelian ∗-algebra A(U(1)) =

C[z, z∗]/ < zz∗ − 1 >, the map π̌ : A(SU(2))→ (U(1))

(8.27) π̌

[
u −v∗
v u∗

]
=

[
z 0
0 z∗

]
,
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is a surjective Hopf ∗-algebra homomorphism, so that A(U(1)) can be seen as a
∗-subalgebra of A(SU(2)), with a right coaction:

(8.28) Δ̌R = (1⊗ π̌) ◦Δ, A(SU(2)→ A(SU(2))⊗A(U(1)).

The coinvariant elements for this coaction, that is elements b ∈ A(SU(2)) for which
Δ̌R(b) = b ⊗ 1, form the subalgebra A(S2) ⊂ A(SU(2)), which is the coordinate
subalgebra of the sphere S2. From:

Δ̌R(u) = u⊗ z,

Δ̌R(u∗) = u∗ ⊗ z∗,

Δ̌R(v) = v ⊗ z,

Δ̌R(v∗) = v∗ ⊗ z∗,(8.29)

one has that a set of generators for A(S2) is given by (2.39):

bz = uu∗ − vv∗,

by = uv∗ + vu∗,

bx = −i(vu∗ − uv∗)(8.30)

The comparison with section 2.3 shows that π̌ dually describes the choice of the
gauge group U(1) as a subgroup of SU(2), whose right principal pull-back action ř∗k
is now replaced by the right A(U(1))- coaction Δ̌R. The basis of the principal Hopf
bundle S2 � SU(2)/U(1) will be given as the algebra A(S2) of right coinvariant
elements ba ∈ A(SU(2)), which is a homogeneous space algebra. The coproduct Δ
of A(SU(2)) restricts to a left coaction Δ : A(SU(2)) �→ A(SU(2))⊗A(S2) as:

Δ(bf) = u2 ⊗ bf − v∗u⊗ bh − v∗2 ⊗ be,

Δ(bh) = 2uv ⊗ bf + (u∗u− v∗v)⊗ bh + 2u∗v∗ ⊗ be,

Δ(be) = −v2 ⊗ bf − u∗v ⊗ bh + u∗2 ⊗ be.(8.31)

with bf = 1/2(by − ibx) = uv∗, be = 1/2(by + ibx) = vu∗, bh = bz. The choice of
this specific basis shows that Δ(ba) = S(Jka) ⊗ bk where the matrix J is exactly
the one defined in (8.14) as Δ(1)

R (ωa) = ωb ⊗ Jba.
The identification (8.12) between the left action h�x – given the generator

h ∈ U(su(2)) on any x ∈ A(SU(2)) – and the action iLz(x) – given the left
invariant vector field Lz – as well as the definition of the A(U(1))-right coaction
Δ̌R on A(SU(2)) (8.29), allow to recover the set of the U(1)-equivariant functions
L
(0)
n ⊂ A(SU(2)) in (2.44) as:

(8.32) L(0)
n = {φ ∈ A(SU(2)) : h�φ = n

2
φ ⇔ Δ̌R(φ) = φ⊗ z−n}.

8.2.2. A differential calculus on the gauge group algebra. The strategy under-
lining the proof of the proposition 8.1 brings also to the definition of a differ-
ential calculus on the gauge group algebra A(U(1)). The bilinear pairing 〈·, ·〉 :
U(su(2))×A(SU(2))→ C (8.7) is restricted via the surjection π̌ (8.27) to a bilinear
pairing 〈·, ·〉 : U{h} × A(U(1))→ C, which is still compatible with the ∗-structure,
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given on generators as:

〈h, z〉 = −1
2
,

〈
h, z−1

〉
=
1
2
.

The set XU(1) = {h} is proved to be the basis of the tangent space for a 1-
dimensional bicovariant commutative calculus on A(U(1)). The ideal QU(1) ⊂
ker εU(1) turns out again to be AU(1) = (ker εU(1))2 generated by {(z − 1)2, (z −
1)(z−1 − 1), (z−1 − 1)2}, which can also be recovered as QU(1) = π̌((ker εSU(2))2).
From:

h�z = −1
2
z,

h�z−1 =
1
2
z−1,

one has that:

dz = −1
2
zω̌,

dz−1 =
1
2
z−1ω̌(8.33)

with zdz = (dz)z. The only left invariant 1-form is

ω̌ = −2z−1dz = 2zdz−1,

while the role of the right invariant derivation associated to h ∈ U{h} is played by
−S−1(h) = h, so that the right invariant form generating this calculus is:

dz = η̌(z�h) = η̌(− 1
2z) ⇒ η̌ = −2z−1dz,

dz−1 = η̌(z−1�h) = η̌(12z
−1) ⇒ η̌ = 2zdz−1

so that one obtains η̌ = ω̌.
It is possible to characterise the quotient ker εU(1)/QU(1) = ker εU(1)/(ker εU(1))2.

The three elements generating the ideal QU(1) = (ker εU(1))2 can be written as:

ξ = (z − 1)(z−1 − 1) = (z − 1) + (z−1 − 1),
ξ′ = (z − 1)(z − 1) = ξ + ξ(z − 1),
ξ′′ = (z−1 − 1)(z−1 − 1) = ξ + ξ(z−1 − 1),

so that QU(1) can be seen generated by ξ = (z − 1) + (z−1 − 1). Set a map
λ : ker εU(1) → C by λ(u(z − 1)) = ∑

j∈Z uj , where u =
∑
j∈Z ujz

j is generic
element in A(U(1)). The techniques outlined in lemma 3.4 in the quantum setting
enable to prove that λ can be used to define a complex vector space isomorphism
between ker εU(1)/(ker εU(1))2 and C, whose inverse is given by λ−1 : w ∈ C �→
λ−1(w) = w(z−1) ∈ ker εU(1). It is evident that such a map λ gives the projection
πQU(1) : ker εU(1) → ker εU(1)/QU(1) � C, since it chooses a representative in each
equivalence class in the quotient ker εU(1)/QU(1).
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8.2.3. The Hopf bundle structure. With the 3D bicovariant calculus on the
total space algebra A(SU(2)) and the 1D bicovariant calculus on the gauge group
algebra A(U(1)), one needs to prove the compatibility conditions that lead to the
exact sequence:

0 → A(SU(2)) (Ω1(S2)
)A(SU(2)) →

→ Ω1(A(SU(2))
∼NSU(2)−→ A(SU(2))⊗ ker εU(1)/QU(1) → 0,

where the map ∼NSU(2) is defined as in the diagram (3.15) which now acquires the
form:

(8.34)
Ω1(SU(2))un

πQSU(2)−→ Ω1(A(SU(2))
↓ χ ↓∼NSU(2))

A(SU(2))⊗ ker εU(1)
id⊗πQU(1)−→ A(SU(2))⊗ (ker εU(1)/QU(1)) .

The proof of the compatibility conditions is in the following lemmas. The first one
analyses the right covariance of the differential structure on A(SU(2)).

Lemma 8.3. From the 3D bicovariant calculus on A(SU(2)) generated by the
ideal QSU(2) = (ker εSU(2))2 ⊂ ker εSU(2) given in proposition 8.1, one has

Δ̌RNSU(2) ⊂ NSU(2) ⊗A(U(1)).
Proof. Using the bijection given in (3.3), it is Ω1(SU(2)) � Ω1(SU(2))/NSU(2)

with NSU(2) = r−1(A(SU(2)) ⊗ QSU(2)). For this specific calculus one has that
NSU(2) is the sub-bimodule generated by {δφ δψ} for any φ, ψ ∈ A(SU(2)), where
δφ = (1 ⊗ φ − φ ⊗ 1) ∈ Ω1(SU(2))un. Choose φ ∈ L

(0)
n and ψ ∈ L

(0)
m so to

have Δ̌Rφ = φ ⊗ z−n and Δ̌Rψ = ψ ⊗ z−m. Extending the coaction Δ̌R to
a coaction Δ̌R : A(SU(2)) ⊗ A(SU(2)) → A(SU(2)) ⊗ A(SU(2)) ⊗ A(U(1)) as
Δ̌R = (id⊗ id⊗m) ◦ (id⊗τ ⊗ id) ◦ (Δ̌R ⊗ Δ̌R) in terms of the flip operator τ , it
becomes an easy calculation to find:

Δ̌R(δφ δψ) = (1⊗ φψ + φψ ⊗ 1− φ⊗ ψ − ψ ⊗ φ)

= (1⊗ φψ + φψ ⊗ 1− φ⊗ ψ − ψ ⊗ φ)⊗ z−m−n = (δφ δψ)⊗ z−m−n.

�
Lemma 8.4. The map χ : Ω1(SU(2))un → A(SU(2)) ⊗ A(U(1)) defined in

(3.14) as χ = (m⊗ id) ◦ (id⊗Δ̌R) is surjecive.

Proof. The proof of this result closely follows the proof of the proposition 3.2.

From the spherical relation 1 = (u∗u+ v∗v)n =
∑n
a=0

(
n
a

)
u∗av∗n−avn−aua it is

possible to set
∣∣Ψ(n)

〉
a
∈ L

(0)
n for a = 0, . . . , |n| with 〈

Ψ(n),Ψ(n)
〉
= 1 as:

n > 0 :
∣∣∣Ψ(n)

〉
a
=

√(
n
a

)
v∗au∗n−a,

n < 0 :
∣∣∣Ψ(n)

〉
a
=

√( |n|
a

)
v∗|n|−aua.

Fixed n ∈ Z, define γ =
〈
Ψ(−n), δΨ(−n)〉. Since ∣∣Ψ(−n)〉 ∈ L

(0)
−n, one computes

that χ(γ) = 1⊗ (zn − 1), and this sufficient to prove the surjectivity of the map χ,
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being χ left A(SU(2))-linear and ker εU(1) is a complex vector space with a basis
(zn − 1).

�

Lemma 8.5. Given the map χ as in the previous lemma, it is χ(NSU(2)) ⊂
A(SU(2))⊗QU(1), where NSU(2) is as in lemma 8.3 and QU(1) = (ker εU(1))2.

Proof. To be definite, consider φ ∈ L
(0)
n and ψ ∈ L

(0)
m . One has:

χ(δφ δψ) = φψ ⊗ {z−n−m + 1− z−n − z−m}
= φψ ⊗ {(1− z−n)(1− z−m)} ⊂ A(SU(2))⊗ (ker εU(1))2.

�

The results of these lemmas allow to define the map ∼NSU(2) : Ω
1(SU(2)) →

A(SU(2)) ⊗ ker εU(1)/QU(1) from the diagram (8.34). Using the isomorphism λ :
ker εU(1)/QU(1) → C described in section 8.2.2, one has:

∼NSU(2) (ωe) = 0

∼NSU(2) (ωf) = 0

∼NSU(2) (ωh) = −2⊗ πQU(1)(z − 1) = −2⊗ 1.(8.35)

The next lemma completes the analysis of the compatibility conditions between
the differential structures on A(SU(2)) and on A(U(1)). The horizontal part of the
set of k-forms out of Ωk(SU(2)) is defined as Ωkhor(SU(2)) = Ωk(S2)A(SU(2)) =
A(SU(2))Ωk(S2).

Lemma 8.6. Given the differential calculus on the basis Ω1(S2) = Ω1(S2)un/NS2

with NS2 = NSU(2) ∩ Ω1(S2)un, it is

ker ∼NSU(2)= Ω1(S2)A(SU(2)) = A(SU(2))Ω1(S2) = Ω1
hor(SU(2)).

Proof. Consider a 1-form [η] ∈ Ω1(SU(2)) and choose the element η = ψ δφ ∈
Ω1(SU(2))un as a representative of [η], with φ ∈ L

(0)
n and ψ ∈ L

(0)
m . One finds:

χ(ψ δφ) = ψφ⊗ (z−n − 1),
∼NSU(2) (η) = ψφ⊗ πQU(1)(z

−n − 1).
Recalling once more the isomorphism λ : ker εU(1)/QU(1) → C, it is λ(z−n − 1) = 0
if and only if n = 0, so to have η = ψ δφ with δφ ∈ Ω1(S2)un and then η ∈
Ω1(S2)unA(U(1)). It is clear that the condition χ(NSU(2)) ⊂ A(SU(2)) ⊗ QU(1)

proved in lemma 8.5 ensures that the map ∼NSU(2) is well-defined: its image does
not depend on the specific choice of the representative η ∈ [η] ⊂ Ω1(SU(2)).

�

The property of right covariance of the calculus on A(SU(2)) – proved in
lemma 8.3 – allows to extend the coaction Δ̌R to a coaction Δ̌

(k)
R : Ωk(SU(2)) →

Ωk(SU(2))⊗A(U(1)) via Δ̌(k)
R ◦d = (d⊗ id)◦ Δ̌(k−1)

R . Via such a coaction it is pos-
sible to recover (2.42) the set Ωk(SU(2))ρ(n) as the ρ(n)(U(1))-equivariant k-forms
on the Hopf bundle:

Ωk(SU(2))ρ(n) = {φ ∈ Ωk(SU(2)) : Δ̌(k)
R (φ) = φ⊗ z−n}.

as well as the A(S2)-bimodule L(k)
n of horizontal elements in Ωk(SU(2))ρ(n) .
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8.2.4. Connections and covariant derivative on the classical Hopf bundle. The
compatibility conditions bring the exactness of the sequence:

(8.36) 0 −→ Ω1
hor(SU(2)) −→ Ω1(SU(2))

∼NSU(2)−→ A(SU(2))⊗ ker εU(1)/QU(1),

whose every right invariant splitting σ : A(SU(2))⊗ ker εU(1)/QU(1) → Ω1(SU(2))
represents a connection (6.3). With w ∈ C � ker εU(1)/QU(1), one has:

σ(1⊗ w) = −w
2
(ωh + Uωe + V ωf),

σ(φ⊗ w) = −w
2
φ(ωh + Uωe + V ωf)(8.37)

where φ ∈ A(SU(2)), and U ∈ L
(0)
2 , V ∈ L

(0)
−2. The right invariant projection

defined in(6.4) Π : Ω1(SU(2)) → Ω1(SU(2)) associated to this splitting is, from
(8.35):

Π(ωe) = Π(ωf) = 0,

Π(ωh) = ωh + Uωe + V ωf .(8.38)

The connection one form ω : A(U(1)) �→ Ω1(SU(2)) defined in (6.5) is:

(8.39) ω(zn) = σ(1⊗ [zn − 1]) = −n
2
(ωh + Uωe + V ωf).

The horizontal projector (1 − Π) : Ω1(SU(2)) → Ω1
hor(SU(2)) can be extended to

whole exterior algebra Ω(SU(2)), since it is compatible with the wedge product:
one finds that {(1−Π)ωa ∧ (1−Π)ωb}+ {(1−Π)ωb ∧ (1−Π)ωa} = 0 or any pair
of 1-forms. This property, which is not valid in the quantum setting for a general
connection – recall the remark 6.9 –, allows to define an operator of covariant
derivative D : Ωk(SU(2)) �→ Ωk+1(SU(2)) as:

(8.40) Dφ = (1−Π)dφ, ∀φ ∈ Ωk(SU(2)).

This definition is the dual counterpart of definition (2.4). It is not difficult to prove
the main properties of such an operator of covariant derivative D:

• For any φ ∈ Ωk(SU(2)), Dφ ∈ Ωk+1
hor (SU(2)).

• The operator D is ’covariant’. One has Δ̌(k)
R φ = φ⊗ zn ⇔ Δ̌(k+1)

R (Dφ) =
Dφ⊗ zn.
• Given φ ∈ L

(k)
n , that is φ ∈ Ωkhor(SU(2)) such that Δ̌

(k)
R φ = φ⊗ zn, it is

Dφ = dφ+ ω(zn) ∧ φ. This last property recovers the relation (2.5).

9. Back on a covariant derivative on the exterior algebra Ω(SUq(2))

The analysis in section 6 presents the formalism of connections on a quan-
tum principal bundle [6] and explicitly describes both the set of connections on a
quantum Hopf bundle and the corresponding set of covariant derivative operators
∇ : E(k)n → E(k+1)

n acting on k-form valued sections of the associated quantum line
bundles. The left A(S2q)-module equivalence between E (k)n and horizontal elements

L(k)n ⊂ Ωkhor(SUq(2)) allows then for the definition of a covariant derivative operator
D : L(k)n → L(k+1)

n with k = 0, 1, 2.
The equation (6.46) in remark 6.9 clarifies the reasons why, presenting a con-

nection via the projector (6.7) Π : Ω1(SUq(2)) → Ω1(SUq(2)) given in (6.12), the
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operator Ď = (1−Π)d : Ω1(SUq(2))→ Ω2
hor(SUq(2)) as in (6.44) defined a consis-

tent covariant derivative on the whole exterior algebra Ω(SUq(2)) only in the case
of the monopole connection: the operator (1− Π) : Ω1(SUq(2))→ Ω1

hor(SUq(2)) is
a covariant projector compatible with the properties of the wedge product (6.47) in
the exterior algebra Ω(SUq(2)) only if the connection is the monopole connection.

The problem of defining, for any connection on a principal quantum bundle, a
consistent covariant projection operator on the whole exterior algebra on the total
space of the bundle whose range is given by the horizontal exterior forms has been
studied in [12, 13]. The aim of this section is, from one side, to describe the
properties of the horizontal projector arising from that analysis, and then to show
that in such a formulation of the Hopf bundle more than one horizontal covariant
projector can be consistently introduced.

As already mentioned, the formulation presented in [12, 13] of the geometrical
structures of a quantum principal bundle slightly differs from that described in
section 3.2 and a comparison between them is in [14]. This formalism will not
be explicitly reviewed: the main results concerning how to define an horizontal
covariant projector will be translated into the language extensively described in
the previous sections.

The differential ∗-calculus (Ω(U(1)), d) on the gauge group algebra U(1) is
described in section 3.4.2. It canonically corresponds to the right A(U(1))-ideal
QU(1) ⊂ ker εU(1) generated by the element {(z∗−1)+q2(z−1)}, so that by lemma
3.4 it is Ω1(U(1))inv � ker εU(1)/QU(1) � C. Such a calculus is bicovariant: given
the left and right coactions (3.2) of the ∗-Hopf algebra A(U(1)) on Ω1(U(1)) one
has that the 1-form ωz is both left and right invariant,

(9.1)
Δ(1)
 : Ω1(U(1))→ A(U(1))⊗ Ω1(U(1)), Δ(1)

 (ωz) = 1⊗ ωz;
Δ(1)
℘ : Ω1(U(1))→ Ω1(U(1))⊗A(U(1)), Δ(1)

℘ (ωz) = ωz ⊗ 1.
The exterior algebra on this differential calculus is built following [21], as explained
in section (3.4.1), where the same procedure has been applied to the analysis of the
3D left-covariant calculus on SUq(2). It results SQU(1) = (Ω1(U(1)))⊗2, so that

(9.2) Ω(U(1)) =
∑
k≥0

⊕Ω(U(1))∧k = A(U(1))⊕ Ω1(U(1)).

The coproduct map in the Hopf ∗-algebra A(U(1)) can be extended to a homomor-
phism Δ̂U(1) : Ω(U(1))→ Ω(U(1))⊗ Ω(U(1)) given by

Δ̂U(1)(ϕ) = Δ(ϕ) = ϕ⊗ ϕ,

Δ̂U(1)(ϕωz) = Δ(1)
 (ϕωz) + Δ(1)

℘ (ϕωz) = ϕ(1⊗ ϕωz + ωz ⊗ ϕ),(9.3)

for any ϕ ∈ A(U(1)). Given the principal bundle structure, the compatibility
conditions among calculi on the total space algebra and the gauge group algebra
allow to prove that there exists a unique extension of the coaction (3.29) of the gauge
group U(1) on the total space SUq(2) to a left A(SUq(2))-module homomorphism
F : Ω(SUq(2))→ Ω(SUq(2))⊗ Ω(U(1)) implicitly defined by:

(F⊗ id)F = (id⊗Δ̂U(1))F,

F∗SUq(2) = (∗SUq(2) ⊗ ∗U(1))F :
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where the second condition expresses a compatiblity between the map F and the
∗-structures on the exterior algebras built over the calculi on SUq(2) and U(1). One
has

F(x) = ΔR(x) = x⊗ z−n,

F(xω−) = xω− ⊗ z−2−n,

F(xω+) = xω+ ⊗ z2−n,

F(xωz) = (x⊗ z−nωz) + (xωz ⊗ z−n),

F(xω− ∧ ω+) = xω− ∧ ω+ ⊗ z−n,

F(xω+ ∧ ωz) = (xω+ ⊗ z2−nωz) + (xω+ ∧ ωz ⊗ z2−n),

F(xωz ∧ ω−) = (xω− ⊗ z−2−nωz) + (xωz ∧ ω− ⊗ z−2−n),

F(xω− ∧ ω+ ∧ ωz) = (xω− ∧ ω+ ⊗ z−nωz) + (xω− ∧ ω+ ∧ ωz ⊗ z−n),(9.4)

with x ∈ A(SUq(2)), such that ΔR(x) = x⊗z−n ⇔ x ∈ L(0)n . The homomorphism
F can be restricted to the right coaction Δ(k)

R : Ωk(SUq(2))→ Ωk(SUq(2))⊗A(U(1))
given in (6.32):

Δ(k)
R (φ) = (id⊗p0)F(φ)

with φ ∈ Ωk(SUq(2)) and p0 the projection Ω(U(1))→ A(U(1)) coming from (9.2).
The horizontal subset of the exterior algebra Ω(SUq(2)) can be defined via:

(9.5) Ωhor(SUq(2)) = {φ ∈ Ω(SUq(2)) : F(φ) = (id⊗ p0)F(φ)},
while the exterior algebra Ω(S2q) described in section 3.4.3 can be recovered as

Ω(S2q) = {φ ∈ Ω(SUq(2)) : F(φ) = φ⊗ 1}.
From the analysis in section 6 one has that a connection 1-form is given via a map
ω̃ : Ω1(U(1))inv → Ω(SUq(2)) satisfying the conditions (6.5). The equation (6.13)
shows that any connection can be written as:

ω̃(ωz) = ωz + a,

with a ∈ Ω1(S2q). Given a connection, one can define a map

(9.6) mω : Ωhor(SUq(2))⊗ Ω(U(1))inv → Ω(SUq(2)),

where the relation (9.2) enables to recover Ω(U(1))inv � {C⊕ Ω1(U(1))inv}: given
ψ ∈ hor(SUq(2)) and θ = λ+ μωz ∈ Ω(U(1))inv (with λ, μ ∈ C) set:
(9.7) mω(ψ ⊗ θ) = ψ ∧ (μ+ λω̃(ωz)).

The map mω is proved to be bijective, and the operator

(9.8) hω = (id⊗p0)m−1ω
a covariant horizontal projector hω : Ω(SUq(2))→ hor(SUq(2)). Given an element
φ ∈ Ωk(SUq(2)), define its covariant derivative:

(9.9) Dφ = hωdφ.

In the formulation developed in [12, 13] this definition is meant to be the quantum
analogue of the classical relation (8.40).

The previous analysis allows for a complete study of this quantum horizontal
projector. Consider a connection 1-form ω̃(ωz) = ωz + Uω− + V ω+ = ωz + a with
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U ∈ L(0)2 and V ∈ L(0)−2 as in equation (6.11). The inverse of the multiplicative
map mω – the map m−1ω : Ω(SUq(2)) → hor(SUq(2))⊗ Ω(U(1))inv – as well as the
horizontal projector are given on 0-forms and 1-forms by:

(9.10)
m−1ω (x) = x⊗ 1 ⇒ hω(x) = x;
m−1ω (xω±) = xω± ⊗ 1 ⇒ hω(xω±) = xω±,
m−1ω (xωz) = (−x a⊗ 1) + (x⊗ ωz) ⇒ hω(xωz) = −x a

with x ∈ A(SUq(2)). This means that one has Dφ = Dφ where φ ∈ A(SUq(2))
with respect to the covariant derivative defined in (6.18). On higher order exterior
forms one has:

m−1ω (xω− ∧ ω+) = xω− ∧ ω+ ⊗ 1
⇒ hω(xω− ∧ ω+) = xω− ∧ ω+,

m−1ω (xω+ ∧ ωz) = (−xω+ ∧ a⊗ 1) + (xω+ ⊗ ωz)

⇒ hω(xω+ ∧ ωz) = −xω+ ∧ a = xU ω− ∧ ω+,
m−1ω (xω− ∧ ωz) = (−xω− ∧ a⊗ 1) + (xω− ⊗ ωz)

⇒ hω(xω− ∧ ωz) = −xω− ∧ a = −q2xV ω− ∧ ω+,
m−1ω (xω− ∧ ω+ ∧ ωz) = xω− ∧ ω+ ⊗ ωz

⇒ hω(xω− ∧ ω+ ∧ ωz) = 0.(9.11)

Recalling the analysis in remark 6.9, it is important to stress that the projector
hω from (9.8) is well defined on the exterior algebra Ω(SUq(2)) for any choice of
the connection, and defines a covariant derivative D : Ωk(SUq(2))→ Ωk+1

hor (SUq(2))
which reduces to the operators (6.18) on 0-forms and (6.35) on 1-forms. The last
equation out of (9.11) shows also that D : Ω2(SUq(2))→ 0.

Remark 9.1. Is the horizontal projector hω defined in (9.8) the only well-
defined horizontal covariant projector operator whose domain coincides with Ω(SUq(2))
and whose range is hor(SUq(2)) ⊂ Ω(SUq(2)), such that the associated horizontal
projection of the exterior derivative (9.9) reduces to the well established operator
D : L(k)n → L(k+1)

n given in (6.16),(6.35)? The answer is no. To be definite,
consider the operator h′ω : Ω(SUq(2))→ Ωhor(SUq(2)) given by:

h′ω(x) = x;

h′ω(xω±) = xω±,

h′ω(xωz) = −x a,(9.12)

so to coincide with the projector hω (9.10) on 0-forms and 1-forms, and:

h′ω(xω− ∧ ω+) = xω− ∧ ω+,
h′ω(xω+ ∧ ωz) = q4x a ∧ ω+ = q4xU ω− ∧ ω+,
h′ω(xω− ∧ ωz) = q−4x a ∧ ω− = −q−2xV ω− ∧ ω+;
h′ω(xω− ∧ ω+ ∧ ωz) = 0.(9.13)

It is clear that the operator D′ = h′ωd : Ωk(SUq(2)) → Ωk+1
hor (SUq(2)) defines a

consistent covariant derivative on the whole exterior algebra on the total space al-
gebra of the quantum Hopf bundle, which reduces to the operator D from (9.9) when
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restricted to horizontal elements L(k)n ⊂ Ωk(SUq(2)). Both the operators D,D′ coin-
cide in the classical limit with the covariant derivative on the classical Hopf bundle
(8.40) presented in section 8.

The last step is to understand from where it is possible to trace the origin of
such a projector h′ω back. It is easy to see that the isomorphism m−1ω coming from
(9.7) can be recovered as the choice of a specific left A(SUq(2))-module basis for the
exterior algebra Ω(SUq(2)), namely

Ω(SUq(2)) � A(SUq(2)){1⊕ ω− ⊕ ω+ ⊕ ω̃(ωz)}

⊕ A(SUq(2)){(ω− ∧ ω+)⊕ (ω− ∧ ω̃(ωz))⊕ (ω+ ∧ ω̃(ωz))⊕ (ω− ∧ ω+ ∧ ω̃(ωz))},
(9.14)

while the horizontal projection obviously annihilates all the coefficients associated
to exterior forms having the connection 1-form ω̃(ωz) as a term. The projector h′ω
in (9.12),(9.13) comes from the choice of a different left A(SUq(2))-module basis of
Ω(SUq(2)), that is setting – as analogue of (9.14) – the isomorphism

Ω(SUq(2)) � A(SUq(2)){1⊕ ω− ⊕ ω+ ⊕ ω̃(ωz)}

⊕ A(SUq(2)){(ω− ∧ ω+)⊕ (ω̃(ωz) ∧ ω−)⊕ (ω̃(ωz) ∧ ω+)⊕ (ω− ∧ ω+ ∧ ω̃(ωz))}.
(9.15)

and then defining h′ω as the projector whose nucleus is given as the left A(SUq(2))-
module spanned by {ω̃(ωz), ω̃(ωz)∧ω±, ω− ∧ω+ ∧ ω̃(ωz)}. An explicit computation
shows that

ω− ∧ ω̃(ωz) = (q2 − q−2)V ω− ∧ ω+ − q−4ω̃(ωz) ∧ ω− ⇒ ker hω �= ker h′ω :

the two projectors are not equivalent, being equivalent if and only if the connection
is the monopole connection.
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