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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the first edition and there have been great changes
in the landscape of philosophical logic since then.

The first edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the first edition as ‘the best starting point
for exploring any of the topics in logic’. We are confident that the second
edition will prove to be just as good!

The first edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983–1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and artificial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
artificial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading figures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and artificial in-
telligence. It shows that the first edition is very close to the mark of what
was needed. Two topics were not included in the first edition, even though

D. Gabbay and F. Guenthner (eds.), 
Handbook of Philosophical Logic, Volume 15, vii–ix. 
DOI 10.1007/978-94-007-0485-5, © Springer Science+Business Media B.V. 2011 
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they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

• a chapter on non-monotonic logic

• a chapter on combinatory logic and λ-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and λ-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, fibring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the effective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, fifteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and artificial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a specification and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange benefits with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
artificial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!

PREFACE TO THE SECOND EDITION



PREFACE TO THE SECOND EDITION ix

such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based effective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

Dov M. Gabbay
King’s College London
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CHRIS HANKIN

LAMBDA CALCULI: A GUIDE

1 INTRODUCTION

One of the universal notions of programming languages is functional abstrac-
tion. The methods of Java and the functions defined and used in functional
programming languages, such as Haskell, are instances of this general no-
tion. The inspiration for this form of abstraction mechanism comes from
Mathematical Logic; notably Church’s λ(lambda)-calculi and Schönfinkel’s
and Curry’s Combinatory Logic. A proper study of these foundations leads
to a better understanding of some of the fundamental issues in Computer
Science. Areas in which they have had a major influence include:

Programming Language Design: We have already suggested the link
with the notion of functional abstraction in programming languages.
In addition, many of the typing notions found in modern programming
languages have been inspired by the typing mechanisms found in these
formal calculi. A notable example of this, to which we shall return,
is the style of polymorphism which is employed in modern functional
programming languages.

Semantics: One of the predominant schools of thought on this topic is
denotational semantics. In this approach a typed λ-calculus is used as
the meta-language; the meaning of a program is expressed by mapping
it into a corresponding λ-calculus object. Understanding what such
objects are requires that we should have a model of the calculus; the
construction of such models has been the motivation for the subject
of domain theory.

Computability: A classical use of the λ-calculus was in the study of com-
putability; the study of the theoretical limitations of formal systems
for describing computations. Indeed the first result in computability
was a result concerning the relationship between the λ-calculus and
Kleene’s Recursive Functions. The (un-)decidability results familiar
from automata theory have their analogues in the theory of the λ-
calculus.

Natural Language Understanding: Since Richard Montague’s pioneer-
ing use of λ-abstractions in natural language semantics in the 1970s
there has been extensive use of extended calculi within the linguistics
community.

I hope that this chapter will serve as an introduction to the λ-calculus
for students of these areas.

D. Gabbay and F. Guenthner (eds.), 
Handbook of Philosophical Logic, Volume 15, 1–66. 
DOI 10.1007/978-94-007-0485-5_1, © Springer Science+Business Media B.V. 2011 



2 CHRIS HANKIN

2 SYNTAX

Classically, in set theory, a function is represented by its graph. The graph
of a function defines a function by its input/output behaviour; for example,
a unary function is represented by a set of pairs where the first component
of each pair specifies the argument and the second component specifies the
corresponding result. From this perspective, the function on pairs of natural
numbers which adds its two arguments is represented as:

{((0, 0), 0), ((0, 1), 1), . . . , ((1, 0), 1), ((1, 1), 2), . . .}

or:

{((m,n), p) | m,n ∈ Num, p = n + m}

Two functions are equal if they have the same graph; this notion of equality
is referred to as extensional equality and we will return to it later.

From the point of view of Computer Science, this representation is not
very useful. We are usually as interested in how a function computes its
answer as in what it computes. For example, all sorting functions have
the same graph and are thus (extensionally) equal but a significant part
of the Computer Science literature has been devoted to the definition and
analysis of different sorting algorithms, so we are clearly missing something.
The casual use of the word “algorithm” in the last sentence is the key; we
should represent a function by a rule, which describes how the result is
calculated, rather than its graph. In this scheme, two functions are equal
if they are both defined by the same (or equivalent) rules; this form of
equality is called intensional equality. The λ-calculus1 provides a formalism
for expressing functions as rules of correspondence between arguments and
results.

The λ-calculus consists of a notation for expressing rules, λ-notation, and
a set of axioms and rules which tell us how to compute with terms expressed
in the notation. A BNF specification of the λ-notation is:

< λ-term> ::= <variable> |
(λ <variable>< λ-term>) | (abs)
(< λ-term>< λ-term>) (app)

<variable> ::= x | y | z . . .

It is more usual to present the syntax of a formal calculus using an in-
ductive definition. The λ-calculus may defined in this style in the following

1There is a wide variety of different λ-calculi. The calculi differ along many axes:
syntax, typing, rules of inference,. . . . When we talk of the λ-calculus we generally mean
the pure, type-free λKβ-calculus which is the primary object of study in Barendregt’s
encyclopaedic book.
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way. The class of λ-terms consists of words constructed from the following
alphabet:

x, y, z, . . . variables
λ
(, ) parentheses

We define terms formally as follows:

DEFINITION 1 (λ-terms).
The class Λ of λ-terms is the least class satisfying the following:

1. x ∈ Λ, x a variable

2. if M ∈ Λ then (λxM) ∈ Λ

3. if M,N ∈ Λ then (MN) ∈ Λ

We specify the least class to avoid including “junk” terms; the clauses of
the definition say what has to be in the class, not what shouldn’t be. Some
λ-terms are:

x (xz) ((xz)(yz)) (λx(λy(λz((xz)(yz)))))

The intuition is that terms matching clause 2 correspond to function defi-
nitions, where the variable after the λ specifies the name of the formal pa-
rameter, and terms matching clause 3 correspond to function applications.
Thus:

(λxx)

should be compared to:

(\ x -> x)

in Haskell, or to:

public int id(int x) { return x;}

in Java2. To avoid the proliferation of parentheses, we will generally use
an alternative notation for terms constructed according to clause 2 of the
definition:

λx.M

2The λ-term is type-free. This is in contrast to the Haskell function which is polymor-
phic and the Java method which is strongly (monomorphically) typed. Both the λ-term
and the Haskell program are actually equivalent to a whole set of Java methods with an
element for every type.
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and moreover, we will elide internal λs and “.”s and assume that abstraction
associates to the right so that the following terms are equivalent:

λx1 . . . xn.M ≡ λ�x.M ≡ (λx1(. . . (λxnM) . . .))

where �x is our notation for the sequence x1, . . . , xn. We will generally use
the symbol ≡ to denote syntactic equality between terms.

The symbol λ acts as a variable binder in a similar fashion to
∫

. . . dx
in integral calculus and the quantifiers ∃ and ∀ in predicate calculus. The
set of bound variables is defined inductively by the following function, BV :
Λ → P(V ar)3:

BV x = Ø
BV (λxM) = (BV M) ∪ {x}
BV (MN) = (BV M) ∪ (BV N)

We will also need the set of free variables in a term; these are defined
inductively by the following function, FV : Λ → P(V ar):

FV x = {x}
FV (λxM) = (FV M)− {x}
FV (MN) = (FV M) ∪ (FV N)

When (FV M) is the empty set, ∅ , M is said to be closed; closed terms are
sometimes called combinators and the class of all such terms is Λ0. Notice
that the sets of bound and free variables are not necessarily disjoint; x
occurs both bound and free in:

x(λxy.x)

Terms which are defined by clause 3 of the definition correspond to ap-
plications. We adopt the convention that application is left associative.
Consequently:

MN1 . . . Nn ≡ M �N ≡ (. . . (MN1) . . . Nn)

In the following, we also make use of the notion of subterm. A subterm of a
λ-term is some part of the term which is itself a well-formed λ-term; we can
generate the set of subterms using the function, Sub : Λ → P(Λ), defined
as follows:

Sub x = {x}
Sub (λxM) = (SubM) ∪ {(λxM)}
Sub (MN) = (SubM) ∪ (SubN) ∪ {(MN)}

3f : A → B means that f is a function which takes arguments from the “set” A to
results in B. The notation P(A) constructs the powerset of A.
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Although we have presented an recursive definition of subterms, we could
think of “subterm” as being a reflexive, transitive, binary relation on terms.
Our definition does not distinguish between different occurrences of the
same subterm; to do so we would need to construct a multi-set of subterms
but we will not require this refinement in the following.

Often, we will need the notion of a partially specified term, that is a term
with “holes” in it. Such a term gives a context into which we can put other
terms (to fill the holes!). The ability to construct contexts will clarify some
definitions and generalise some results (for example see the generalisation of
the Substitution Lemma later). We give an inductive definition of contexts
for λ-terms:

DEFINITION 2 (Contexts).
The class C[] of λ-contexts is the least class satisfying:

1. x ∈ C[]

2. [] ∈ C[]

3. if C1[], C2[] ∈ C[] then (C1[]C2[]), (λxC1[]) ∈ C[]

Notice that a hole is represented by []. An example of a context is:

((λx.[]x)M)

We will often give a name to a context, say C[] for the one above, such
names will always terminate with “[]”. To represent the term generated
by filling the holes in a context with some term, we write the name of the
context with the term that is to fill the hole appearing between the square
brackets. Thus:

C[λy.y]

is the term:
(λx.(λy.y)x)M

Of course, a context may have many holes but they will all be filled with
the same term; we could generalise this by labelling holes, in which case
different holes could be filled by different terms, but we will not need such
generality in here. Notice that variables in FV (M) might become bound in
C[M ] if the context has holes inside λ-abstractions.

A major limitation of the notation seems to be that we can only define
unary functions; we introduce one formal argument at a time. The fact that
this is not a real restriction was first observed by Schönfinkel. Given some
binary function denoted by an expression in formal arguments x and y, say
f(x, y), then we define:

a ≡ (λy(λx(f(x, y))))
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then a is equivalent to the original function but takes its arguments one at
a time4.

We next introduce the basic theory of equality between λ-terms. We
will identify a set of “canonical” terms – the normal forms. We present
material on reduction; this concerns how we compute with terms. Next we
turn to semantics and abstractly characterise models of the λ-calculus. We
then consider the relationship between the λ-calculus and other notions of
computable functions. Finally we present a number of typed calculi.

3 THE BASIC THEORY

3.1 The theory λ

We can construct formulae from the terms; a theory then establishes certain
formulae as axioms and provides rules of inference which enable us to derive
new formulae. The true formulae (either axioms or formulae that can be
derived from the rules) are called theorems.

We now present a theory of equality (or convertibility) between λ-terms.
There are a number of reasonable requirements for such a theory:

1. An application term should be equal to the result obtained by applying
the function part of the term to the argument. For example, suppose
that Java methods can be higher-order (take methods as arguments
and produce them as results) and that we have defined a higher-order
variant of id. Then:

id(fun)

should surely be the same method as fun (for any appropriate method
parameter fun).

2. Equality should be an equivalence relation.

3. Equal terms should be equal in any context.

These requirements go some way to motivating the theory λ which is shown
in Figure 1.

The rule (ξ) is sometimes called the rule of weak extensionality. The
rule (β) is the rule which corresponds to function application. The nota-
tion M [x := N ] should be read “replace free occurrences of x in M by N”
(some care must be taken — we return to this later). The classical presen-
tation of the theory also includes an α-rule which allows a change of bound
variable names. Computer Science readers should compare the rule (β) to

4A function such as a, which takes its arguments one at a time, is often called a curried
function (in honour of the logician Haskell B. Curry).



LAMBDA CALCULI: A GUIDE 7

(λx.M)N = M [x := N ] (β)

M = M

M = N

N = M
M = N N = L

M = L
M = N

MZ = NZ
M = N

ZM = ZN
M = N

λx.M = λx.N
(ξ)

Figure 1. The theory λ

their intuitive understanding of the meaning of procedure calls in a familiar
programming language.

We write:

λ 	 M = N

to mean that M = N is a theorem of λ and read the theorem as “M and
N are convertible”. The notation of λ-terms and this theory are variously
called the λ-calculus (the name that we will use in the following), the λβ-
calculus, the λK-calculus or the λKβ-calculus.

Note that:

M ≡ N ⇒ M = N

but:

¬(M = N ⇒ M ≡ N)

For example:

(λx.x)y = y

but the two terms are not identical.

Finally, we illustrate the use of the theory to prove a fundamental theo-
rem, the Fixed Point Theorem. This will play an important role when we
consider computability. Fixed points give meaning to self-referential con-
structs such as recursive method definitions or functions. The theorem fixes
a term F and then states that there is another term which is a fixed point
for F . The proof of the theorem is constructive in that it shows precisely
how to construct the required term.
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THEOREM 3 (The Fixed Point Theorem).

∀F ∈ Λ,∃X ∈ Λ.FX = X

Proof.
Let W ≡ λx.F (xx) and X ≡ WW . Then

X ≡ WW ≡ (λx.F (xx))W = F (WW ) ≡ FX

�

In a more familiar context, for example, 1 is a fixed point of the squaring
function. The Fixed Point Theorem may seem quite surprising at first sight;
it says that all terms have fixed points. For some terms, such as:

λx.x

which is the identity function, this is obvious (all terms are fixed points of
the identity!) but for others, such as:

λxy.xy

it is not so clear. However, since the proof of the Fixed Point Theorem is
constructive; it gives a recipe for constructing a fixed point of any term. In
the second case above this leads to the following construction:

W ≡ λx.(λxy.xy)(xx) = λx.λy.(xx)y ≡ λxy.(xx)y

The required fixed point is thus

(λxy.(xx)y)(λxy.(xx)y)

we can check that this is indeed a fixed point of the original term:

(λxy.(xx)y)(λxy.(xx)y)
= λy.((λxy.(xx)y)(λxy.(xx)y))y
= (λxy.xy)((λxy.(xx)y)(λxy.(xx)y))

The fixed point constructed for the identity function is:

(λx.xx)(λx.xx)

This term plays a special role in the theory which we shall return to later5.

5For those readers familiar with domain theory, this term plays the same role as ⊥.
It is the least fixed point of the identity function (and many others!).
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Fixed points are important in Computer Science. They play a fundamen-
tal role in the semantics of recursive definitions. For example, the factorial
function:

fac 0 = 1
fac (succ n) = (succ n)× (fac n)

is a fixed point of the term:

λfn.if(= n 0) 1 (× n (f(pred n)))

(of course we must be careful about reading too much into this term – 0, 1,×
are just formal symbols, variables, they have no deeper significance in the
λ-calculus which we have defined so far). We shall return to this point later.

3.2 Substitution

We now return to the substitution operation used in the rule (β). A naive
approach to defining this operation leads to the problem of “variable cap-
ture”. This problem occurs when we naively substitute a term containing a
free variable into a scope where the variable becomes bound. For example:

(λxy.yx)y �= λy.yy

The free occurrence of y in the left hand term is analogous to a global vari-
able in programming, in the right hand side the global variable has become
confused with the bound variable (formal parameter). We will consider
three different approaches to this problem before selecting one for use in
the rest of this article.

Three Approaches

The Classical Approach: The first approach is based on Church’s orig-
inal treatment of substitution. We use the following definition:

1. x[x := N ] ≡ N

2. y[x := N ] ≡ y, if x is not the same as y

3. (λx.M)[x := N ] ≡ λx.M

4. (λy.M)[x := N ] ≡ λy.M [x := N ], if x �∈ FV M or y �∈ FV N

5. (λy.M)[x := N ] ≡ λz.(M [y := z])[x := N ], if x ∈ FV M and y ∈
FV N , z a new variable

6. (M1M2)[x := N ] ≡ (M1[x := N ])(M2[x := N ])
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We consider the three rules 3 to 5 in a bit more detail. Rule 3 applies when
the variable being substituted for is bound at the outermost level; in this
case there will be no free occurrences of x in the remainder of the expression
and thus the substitution has no effect. Rule 4 is applicable when variable
capture cannot occur, either x does not occur free in the body (in which
case the substitution is a no-operation again) or the variable that is bound
in the outermost level does not occur free in the term being substituted (no
capture); in either case the substitution can be pushed through the λ to
apply to the body. Rule 5 applies when variable capture could occur, that
is when some substitution does take place and the variable bound at the
outermost level does occur free in the term being substituted; in this case,
we first rename the bound variable to a completely new variable.

Rule 5 is only valid under the assumption that terms which are similar,
having the same free variables and differing only in their bound variables,
are essentially the same. This is reasonable if we think about programming
languages:

public int id(int y) { return y;}

the above method is clearly the same as the earlier one with the same name;
we have only changed the formal parameters. In Church’s original presenta-
tion of the λ-calculus there were two additional axioms; (α) formalises the
above discussion and (η) introduces extensional equality (see below). The
alpha rule is:

λx.M = λy.M [x := y], y �∈ FV M (α)

The Variable Convention: For our second definition of the substitution
operation, which is introduced in Barendregt’s book, we start with two
definitions:

DEFINITION 4 (Change of Bound Variables).
M ′ is produced from M by a change of bound variables if M ≡ C[λx.N ]
and M ′ ≡ C[λy.(N [x := y])] where y does not occur at all in N and C[] is
a context with one hole.

DEFINITION 5 (α-congruence).
M is α-congruent to N , written M ≡α N , if N results from M by a series
of changes of bound variable.

According to the second definition, we have:

λx.xy ≡α λz.zy

but not:

λx.xy ≡α λy.yy
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Notice that the first two terms are also equal by the rule (α) but the second
two are not. Our strategy for defining substitution is as follows:

1. Identify α-congruent terms

2. Consider a λ-term as a representative of its equivalence class

3. Interpret M [x := N ] as an operation on the equivalence classes, using
representatives according to the following variable convention:

DEFINITION 6 (Variable Convention).

If M1, . . . , Mn occur in a certain context then in these terms all bound
variables are chosen to be different from free variables6.

With this strategy, we can define substitution as follows:

1. x[x := N ] ≡ N

2. y[x := N ] ≡ y, if x �≡ y

3. (λy.M)[x := N ] ≡ λy.(M [x := N ])

4. (M1M2)[x := N ] ≡ (M1[x := N ])(M2[x := N ])

The variable capture problem has disappeared! — the reason for this is that
for y to appear free in N in the context:

(λy.M)[x := N ]

would breach the variable convention so we would have to use a different
representative of the α-equivalence class of λy.M (this is precisely what rule
5 in the classical approach makes explicit). In the following, we will adopt
this convention and definition of substitution because it is easier to work
with (there are less cases to consider in proofs). An example of its use is
illustrated below:

(λxyz.xzy)(λxz.x) = λyz.(λxw.x)zy by the variable convention
= λyz.(λw.z)y
= λyz.z

However, before continuing we consider a third alternative.

6We have already implicitly employed this convention in the proof of the Fixed Point
Theorem — consider what happens if x occurs free in the term F .
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The de Bruijn Notation: The third approach to defining substitution
avoids the problem of variable capture by banishing free variables. We revise
the definition of λ-terms so that parameters occurring in the body of a term
are referred to by natural numbers which uniquely identify the binding λ.
For example:

λ.λ.2 is equivalent to λxy.x

This is the notation invented by de Bruijn and used in the Automath project,
an automated theorem proving system. More formally the terms in de
Bruijn’s notation are defined inductively as the least set such that:

1. any natural number (greater than zero) is a term

2. If M and N are terms, then (MN) is a term

3. If M is a term, (λM) is a term

and (β) is replaced by:
(λP )Q = P [1 := Q]

where:

n[m := N ] ≡

⎧⎨
⎩

n if n < m
n− 1 if n > m
renamen,1(N) if n = m

(M1M2)[m := N ] ≡ (M1[m := N ])(M2[m := N ])
(λM)[m := N ] ≡ λ(M [m + 1 := N ])

and

renamem,i(j) ≡

{
j if j < i
j + m− 1 if j ≥ i

renamem,i(N1N2) ≡ renamem,i(N1)renamem,i(N2)
renamem,i(λN) ≡ λ(renamem,i+1(N))

The following example illustrates the effect of this new β rule:

EXAMPLE 7.

λ.(λ.λ.2)1 = λ.(λ.2)[1 := 1]
≡ λ.λ.2[2 := 1]
≡ λ.λ.rename2,1(1)
≡ λ.λ.2

(c.f. (λx.(λyz.y)x)).

Notice the rôle that rename takes in relabelling variable indices. There is
a simple translation between standard λ-terms and de Bruijn terms (notice
that α-congruent terms are equal in the de Bruijn notation):

DB x (x1, . . . , xn) = i, if i is the minimum such that x ≡ xi

DB (λxM) (x1, . . . , xn) = λ(DB M (x, x1, . . . , xn))
DB (MN) (x1, . . . , xn) = (DB M (x1, . . . , xn))(DB N (x1, . . . , xn))
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The de Bruijn notation is not very readable but the beta rule is easy to im-
plement; indeed it inspired the Categorical Abstract Machine — an efficient
mechanism for the implementation of functional languages.

The Substitution Lemma

From now on, we will assume the variable convention unless otherwise
stated.
We now present a result which allows us to reorder substitutions, The Sub-
stitution Lemma.

LEMMA 8 (The Substitution Lemma).
If x and y are distinct variables and x �∈ FV L then

M [x := N ][y := L] ≡ M [y := L][x := N [y := L]]

The proof is a straightforward induction on the structure of M .
Substitution has a number of other useful properties with respect to con-

vertibility:

1. M = M ′ ⇒ M [x := N ] = M ′[x := N ]

2. N = N ′ ⇒ M [x := N ] = M [x := N ′]

3. M = M ′, N = N ′ ⇒ M [x := N ] = M ′[x := N ′]

These properties are useful but care should be taken when applying them.
A major property of functional languages is referential transparency; the
property which allows equals to be substituted by equals. The properties
of substitution appear to be related to this concept but referential trans-
parency is more. For example, the following inference does not follow from
(1) to (3):

N = N ′ ⇒ λx.x(λy.N) = λx.x(λy.N ′)

This is because we cannot express the two sides of the second equality in
the correct form:

λx.x(λy.N) is not the same as (λx.x(λy.z))[z := N ]

since N may contain free occurrences of y. The correct formulation of the
property of referential transparency, also referred to as Leibniz Law, is:

LEMMA 9 (Referential Transparency).
Let C[] be a context, then

N = N ′ ⇒ C[N ] = C[N ′]

The proof is by induction on the structure of contexts. The variable
convention takes care that we do not inadvertently capture any variables in
this substitution.
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3.3 Extensionality

The convertibility relationship, =, is intensional equality; two terms are
equal if they encode the same algorithm in some sense. This does not equate
some terms which we might naturally think of as equal. For example, con-
sider a term which has one bound variable and applies some constant term
(i.e. a term that does not contain free occurrences of the bound variable)
to any term bound to the variable:

λx.Mx

this term should surely be equal to M since if we apply either λx.Mx or M
to some term N , we end up with MN . The formula:

λx.Mx = M

is not a theorem of λ; there are two ways we can extend λ to make the
above formula a theorem. Firstly, we could add a new rule to the theory,
giving the new theory λ + ext:

Mx = Nx

M = N
x �∈ (FV MN) (ext)

Alternatively, we can add a new axiom, giving the new theory λη (as pro-
posed by Church):

λx.Mx = M,x �∈ FV M (η)

In fact, the following result can be shown:

LEMMA 10. λ + ext and λη are equivalent

The calculus based on λη or λ + ext is alternatively called the λη-calculus,
the λβη-calculus, the λKη-calculus or the λKβη-calculus. Practically, from
the point of view of functional programming, the λη-calculus is not as impor-
tant as the λβ-calculus since the rule (η) is not normally implemented. The
term λx.Mx is a weak head normal form and is thus distinguishable from
M ; the former is a “value” whilst the latter may lead to a non-terminating
computation. Even in an eager language, such as Standard ML, the two
terms are distinguished. However, the λη-calculus does have some theoret-
ical significance which we shall return to later.

3.4 Consistency and Completeness

For a theory to be useful, there must be some theorems and not all closed
formulae should be theorems. The former is satisfied provided that the
theory has at least one axiom. The latter is slightly trickier and is quite a



LAMBDA CALCULI: A GUIDE 15

fragile property; a theory which satisfies this constraint is called consistent.
Both of the theories presented here are consistent but it is very easy to lose
consistency as we shall see.

We start by formalising the concept. First, some definitions:

DEFINITION 11. An equation is a formula of the form:

M = N

where M,N ∈ Λ.

DEFINITION 12. An equation is closed if M,N ∈ Λ0.

DEFINITION 13 (Consistency).
If T is a theory with equations as formulae then T is consistent, written
Con(T ), if it does not prove every closed equation.
If T is a set of equations then λ + T is formed by adding the equations of
T as axioms to λ. T is consistent, also written Con(T ), if Con(λ + T ).

Both of the theories that we have dealt with in this Section, λ and λη
are consistent (see Barendregt’s book). The property of consistency can be
lost by adding a single equation. We define the following three terms:

S ≡ λxyz.xz(yz)
K ≡ λxy.x
I ≡ λx.x

Notice that:

SMNO = MO(NO) by three applications of (β)
KMN = M by two applications of (β)
IM = M

Now, if we add the equation:

S = K

to either λ or λη we get an inconsistent theory. This can be proved as
follows (we elide some of the steps):

EXAMPLE 14.
S = K ⇒ SABC = KABC for all A,B,C

⇒ AC(BC) = AC
Now consider the case when A = C = I, then since IA = A for all A:

AC(BC) = AC ⇒ B(I) = I
Now consider the case when B = KD for some arbitrary D, then:

B(I) = I ⇒ D = I
and thus, since D was arbitrary, all terms are equal to the constant term I.

Consideration of the foregoing motivates the following definition:
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DEFINITION 15 (Incompatibility).

Let M,N ∈ Λ, then M and N are incompatible, written M#N , if ¬Con(M =
N).

We now turn to the notion of completeness. Yet again, we start by making
some definitions:

DEFINITION 16 (Normal Forms).

If M ∈ Λ, then M is a β-normal form, written β-nf or nf, if M has no
subterms of the form (λx.R)S

If M ∈ Λ, then M has a β-nf if there exists an N such that N = M and N
is a β-nf.

Some (non-)examples of normal forms:

λx.x is a nf
(λxy.x)(λx.x) has λyx.x as a nf
(λx.xx)(λx.xx) does not have a nf

By analogy, a βη-nf is a β-nf which also does not contain any subterms of
the form:

(λx.Rx) with x �∈ FV R

We now state the following facts about normal forms:

PROPOSITION 17.

1. M has a βη-nf ⇔ M has a β-nf

2. If M and N are distinct β-nfs then M = N is not a theorem of λ (and
similarly for λη).

3. If M and N are distinct βη-nfs then M#N .

The use of βη-nfs in the last point is essential; y and λx.yx are distinct
β-nfs but not incompatible – they are η-equivalent.

The completeness of λη is expressed by the following:

PROPOSITION 18 (Completeness).

Suppose M and N have nfs; then either:

λη 	 M = N

or

λη + (M = N) is inconsistent
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4 REDUCTION

Normal forms can be used as canonical representatives for the convertibility
equivalence classes. A more computational view results from treating nor-
mal forms as the “answers” produced from λ-term “programs”. This view
is justified by observing that the evaluation of the β-normal form of a term
involves removing application subterms by applying the (β) rule; we have
already identified this process with function application in programming
languages. We will pursue this view further7.

We illustrate the earlier discussion and motivate the following material
by considering an example in a λ-calculus extended with constants. We
consider the following program:

let

fac 0 = 1

fac n = n * fac(n-1)

in fac 0

We briefly discussed a variant of this function earlier, where we saw that it
was the fixed point of a certain functional. We consider that the calculus
which we are using is extended with a constant, Y, which computes the
fixed point of a given term; following the construction used in the proof of
the Fixed Point Theorem, it is clear that such a constant could be defined
by the following term:

Y ≡ λf.((λx.f(xx))(λx.f(xx)))

The program may be translated in the following way:

(λf.f0)(Y(λfn.if(= n 0)1(∗ n (f(− n 1)))))

notice that the let-construct has been translated as an application term.

Consider now the normal form of the program. We can produce the
normal form by repeatedly applying rule (β); in outline, we perform the

7Notice that in lazy functional languages such as Haskell, rather than normal forms,
(weak) head normal forms are considered to be answers — we shall return to this point
later.
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following steps8:

(λf.f0)(Y . . .) = (Y . . .)0
= (λfn.if . . .)(Y . . .)0 (A)
= (λn.if(= n 0)1(∗n((Y . . .)(− n 1))))0
= if(= 0 0)1(∗0((Y . . .)(− 0 1)))
= if true 1 . . .
= 1

Throughout this derivation we have used the convertibility relation. Con-
vertibility is symmetrical, indeed it is an equivalence relation, but we have
used it in a non-symmetrical way. We are happy to consider 1 as the answer
of the above computation, the factorial of 0, but it is a little harder to see
the original program as the value of the term “1”. The latter view would
associate an infinite set of “values” with terms such as “1”. We will study
some new relations between λ-terms, notably →β (one step β-reduction)
and →→β (β-reduction), the reflexive, transitive closure of →β . We will see
that →→β is closely related to = but is not symmetric; each = in the above
derivation, other than the one in step (A), could be replaced by →β .

In performing reduction, we are faced with a problem of strategy. For ex-
ample, at line (A) there are two subterms of the form (λx.R)S — henceforth
called β-redexes (reducible expression) — as follows:

(λfn.if . . .)(Y . . .)0

and

(Y . . .)

that is, the whole term and the subterm involving the fixed point combina-
tor. We chose to reduce the first term but consider what would happen if
we consistently chose to reduce the fixed point subterm: we would never get
to the answer, we would merely construct a larger and larger term! Making
the “wrong” choice is not always so catastrophic, for example:

(λxy./(+ x y)2)((λz. + z 1)4)6 →β (λy./(+((λz. + z 1)4)y)2)6
→β /(+((λz. + z 1)4)6)2
→β /(+(+ 4 1)6)2

but also:

8We have elided two steps here and used a defining property of fixed point combinators
such as Y:

YF = F (YF )
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(λxy./(+ x y)2)((λz. + z 1)4)6 →β (λxy./(+ x y)2)(+ 4 1)6
→β (λy./(+(+ 4 1)y)2)6
→β /(+(+ 4 1)6)2

and so the answer will be the same.
The above discussion should pose two questions in the reader’s mind:

Question 1: Given a term and a number of reduction sequences from that
term which all terminate in a normal form, is it possible that some of
the sequences might terminate with different normal forms?

Question 2: Given that some choices of reduction strategy appear to be
better than others in some situations (for example the bottomless pit
of (Y . . .)) is there a best way of choosing what to do next?

The first question is closely related to the issue of determinacy; compu-
tationally, the question amounts to asking if we can get different answers
from a program depending on how we execute it. A corollary of the Church–
Rosser Theorem, which we will present below, guarantees that the answer
to this question is no. The second question is less precisely formulated; the
Standardisation Theorem, also presented below, addresses the question by
giving a reduction order which is guaranteed to terminate with normal form
if any reduction sequence does (recall (λx.xx)(λx.xx)!) but if “best” is also
meant to be read as “optimal” then the question is more complicated.

4.1 Notions of Reduction

Reduction may be viewed as a special form of relation on λ-terms. Why
special? Recall the discussion of the constraints on equality above; it is
reasonable to place some of the same constraints on reduction. For example,
if one term reduces to another, then it should do so in any context. On the
other hand, bearing in mind our earlier discussion, we should not expect a
reduction relation to be an equivalence relation. We introduce the following
definitions:

DEFINITION 19. R ⊆ Λ2 is a compatible binary relation if:

(M,M ′) ∈ R ⇒ (C[M ], C[M ′]) ∈ R

for all M,M ′ ∈ Λ and all contexts C[] with one hole.

DEFINITION 20. R ⊆ Λ2, is an equality (congruence) relation if it is a
compatible equivalence relation.

DEFINITION 21. R ⊆ Λ2, is a reduction relation if it is compatible, reflex-
ive and transitive.
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We call an arbitrary binary relation on Λ, a notion of reduction. For
example, the notion of reduction that we will be particularly interested in
is:

β = {((λx.M)N,M [x := N ]) | M,N ∈ Λ}

Given two notions of reduction, R1 and R2, we sometimes write R1R2 for
R1 ∪R2 (notably in the case that R1 is β and R2 is η, we write βη).

The one-step reduction relation induced by some notion of reduction
R, written →R, is the compatible closure of R. The closure is explicitly
constructed as follows:

DEFINITION 22 (One-step R-reduction).

(M,N) ∈ R

M →R N
M →R N

MZ →R NZ
M →R N

ZM →R ZN
M →R N

λx.M →R λx.N

The notation “M →R N” should be read as “M R-reduces to N in one
step” or “N is an R-reduct of M”. We have already seen the relation →β ,
in this case we will often say that “M reduces to N in one step” or “N is a
reduct of M”.

The reduction relation, written →→R, is the reflexive, transitive closure
of the one-step reduction relation. While, as its name implies, the one-step
reduction relation allows a single step of reduction, the reduction relation
allows many (including zero! — allowed by reflexivity). The reflexive tran-
sitive closure is defined formally as follows:

DEFINITION 23 (R-reduction).

M →R N

M→→RN

M→→RM

M→→RN N→→RL

M→→RL

For the notation “M→→RN”, read “M R-reduces to N”.
Finally, we consider R-equality (also called R-convertibility), written =R.

This is the equivalence relation generated by →→R.
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DEFINITION 24 (R-convertibility).

M→→RN

M =R N
M =R N

N =R M
M =R N N =R L

M =R L

In the case that “M =R N”, we say “M is R-convertible to N”.
We have the following result for these relations:

PROPOSITION 25. →R, →→R and =R are all compatible.

Earlier, we discussed substitution and presented some results which re-
lated = to the substitution operation (notably the Substitution Lemma).
Similar considerations applied to →R and →→R help us establish some dif-
ferences between the two.

LEMMA 26. N→→RN ′ ⇒ M [x := N ]→→RM [x := N ′]

The same result does not hold for →R, since the substitution may cause
redexes (see below) to be duplicated. For example consider: M ≡ xx,
N ≡ (λy.y)z and N ′ ≡ z, then:

N →R N ′

but:

(λy.y)z((λy.y)z) �→R zz

DEFINITION 27. An R-redex is a term M such that (M,N) ∈ R for some
term N ; in this case N is called an R-contractum of M . A term M is called
an R-normal form (R-nf) if it does not contain any R-redex. A term N is
an R-nf of M if N is an R-nf and M =R N .

If M one-step reduces to N then some sub-term of M must have been
reduced; this is captured formally in the following proposition.

PROPOSITION 28. M →R N ⇔ M ≡ C[P ], N ≡ C[Q] and (P,Q) ∈ R
for some P,Q ∈ Λ where C[] has one hole.

A simple corollary of this result gives us some, not unexpected, results
relating reduction and normal forms:

COROLLARY 29. Let M be an R-nf, then:
(i) There is no N such that M →R N
(ii) M→→RN ⇒ M ≡ N

Care should be taken with this result; it is not the case that if:
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∀N,M→→RN ⇒ M ≡ N

then M is an R-nf. To see why, consider the following term with R being
β:

M ≡ (λx.xx)(λx.xx)

We are now ready to present the Church–Rosser Theorem.

4.2 The Church–Rosser Theorem

We start by introducing the diamond property:

DEFINITION 30 (The Diamond Property). Let � be a binary relation on
Λ, then � satisfies the diamond property, written � |= ♦, if:

∀M,M1,M2[M � M1 ∧ M � M2 ⇒ ∃M3[M1 � M3 ∧ M2 � M3]]

If there are two diverging �-steps from some term and � satisfies the
diamond property, then there is always a way to converge again.

DEFINITION 31 (Church–Rosser). A notion of reduction R is said to be
Church–Rosser (CR) if →→R |= ♦.

We then have the following theorem:

THEOREM 32 (Church–Rosser Theorem).
Let R be CR, then:

M =R N ⇒ ∃Z[M→→RZ ∧ N→→RZ]

The proof is by straightforward induction on the definition of =R. This
theorem has a useful corollary:

COROLLARY 33. Let R be CR, then:
(i) if N is an R-nf of M then M→→RN
(ii) a term can have at most one R-nf

Thus if we can demonstrate that β is CR, we will have answered our first
question. In fact the corollary tells us more; not only does it guarantee
unicity of normal forms for terms, it also guarantees that if a term has a
normal form then it will be possible to reduce the term to it.

To demonstrate that β is CR we must show →→β |= ♦. First some no-
tation; if � is some binary relation on a set X then we write �∗ for its
transitive closure and we have:

� |= ♦ ⇒ �∗ |= ♦
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So if we could show that the reflexive closure of one-step β-reduction satisfies
the diamond property, we would have finished. Alas, life is never that
simple! Consider the following term:

(λx.xx)((λx.x)(λx.x))

Then we have the following pair of divergent reductions:

(λx.xx)((λx.x)(λx.x)) →β ((λx.x)(λx.x))((λx.x)(λx.x))

(λx.xx)((λx.x)(λx.x)) →β (λx.xx)(λx.x)

But while in the second case there is then only one redex:

(λx.xx)(λx.x) →β (λx.x)(λx.x)

there is no way of converging to this term by one step in the first case. So we
cannot directly apply the above result to show that β is CR. The approach
that we will take, following Tait and Martin-Löf, involves introducing a new
relation which is “sandwiched” by the reflexive closure of →β and →→β and
which has →→β as its transitive closure.

We define the relation →→1. This relation is reflexive and allows multiple
β-reductions in one step. We read “M→→1N” as “M grand reduces to N”.
The intuition is that →→1 can perform multiple →β steps in one big step.

DEFINITION 34 (Grand Reduction).
→→1 is defined in the following way:

M→→1M

M→→1M
′

λx.M→→1λx.M ′

M→→1M
′ N→→1N

′

MN→→1M ′N ′

M→→1M
′ N→→1N

′

(λx.M)N→→1M ′[x := N ′]

Notice that, since →→1 is reflexive, both of the divergent →β steps are
also →→1 steps. There are two additional →→1 steps, the first uses reflexivity
and the second results in the term (λx.x)(λx.x) (by using the fourth clause
in the definition). Evidence that →→1 is weaker than →→β is furnished by the
fact that:

(λx.xx)((λx.x)(λx.x))→→βλx.x
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but the corresponding grand reduction requires at least two steps.

The following properties of →→1 can all be proved by induction on the defi-
nition of the relation:

1. M→→1M
′, N→→1N

′ ⇒ M [x := N ]→→1M
′[x := N ′]

2. λx.M→→1N ⇒ N ≡ λx.M ′ with M→→1M
′

3. MN→→1L implies either:

(a) L ≡ M ′N ′ with M→→1M
′ and N→→1N

′

(b) or M ≡ λx.P, L ≡ P ′[x := N ′] with P→→1P
′ and N→→1N

′

4. →→1 |= ♦

Finally, we have the result:

THEOREM 35.

→→β is the transitive closure of →→1

From this result and property 4 of →→1 we have that β is CR.

Therefore, using the corollary to the theorem that started this section,
we know that β-nfs are unique and that, if a term has a β-nf then it is
possible to reduce it to that nf. This allows us to prove the consistency of
the theory λ. First, we need the following:

PROPOSITION 36.

M =β N ⇔ λ 	 M = N

Consistency follows because:

M = N

is not a theorem for any two distinct normal forms (because by the Church–
Rosser Theorem they would have to have a common contractum for the
equality to hold).

We can also define a notion of reduction which is related to the extensional
theory λη:

η = {(λx.Mx,M) | x �∈ FV (M)}

We can define one-step η-reduction, η-reduction and η-convertibility in the
standard way. It is then possible to address the question “Is η CR?”; how-
ever, a more interesting question is whether the derived notion βη (= β∪η)
is. It turns out that both η and βη are CR and the interested reader is
referred to Barendregt for more detail.
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Newman’s Lemma

An alternative strategy for proving that a notion of reduction is CR uses
Newman’s Lemma. First we introduce a few more definitions:

DEFINITION 37. A binary relation, �, on a set X satisfies the weak dia-
mond property if:

∀M,M1,M2[M � M1 ∧ M � M2 ⇒ ∃M3[M1 �∗
= M3 ∧ M2 �∗

= M3]]

where �∗
= is the reflexive, transitive closure of �.

Compare this to the diamond property; here the reductions diverge in one
step but there may be many (or zero) steps for them to re-converge. The
converging reduction sequences need not have the same number of steps.
The reduction relation →β satisfies the weak diamond property.

DEFINITION 38. R is Weakly Church–Rosser (WCR) if →R satisfies the
weak diamond property.

DEFINITION 39. For M ∈ Λ:

1. M R-strongly normalises (R-SN(M)) if there is no infinite R-reduction
starting with M .

2. M is R-infinite (R-∞(M)) if not R-SN(M).

3. R is Strongly Normalising (SN) if:

∀M ∈ Λ.R-SN(M)

Examples of (1) for β are:

λx.x and (λx.xx)((λx.x)(λx.x))

But:

β-∞((λx.xx)(λx.xx)) and β-∞((λx.y)((λx.xx)(λx.xx)))

The second example is instructive since it shows that terms can be β-
infinite but have normal forms. Because of the existence of these latter
examples, it is clear that β is not SN and thus the following is not applica-
ble (however it will be useful for the simply typed λ-calculus). Newman’s
Lemma is stated as follows:

LEMMA 40 (Newman’s Lemma).

SN ∧WCR ⇒ CR

Thus the alternative strategy involves showing SN and WCR separately
and then inferring CR.
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4.3 Delta Rules

The pure, type free λ-calculus is an extremely powerful formalism. Indeed,
all computable functions are representable as λ-terms as we shall see later.
Such representations use clever coding tricks. For example a possible coding
of integers is equivalent to using the data type specification:

num = Zero | Succ num

so that 5 (say) is represented as Succ(Succ(Succ(Succ(Succ Zero)))) and
the arithmetic operations are coded up as recursive functions, for example:

plus(m,Zero) = m
plus(m,Succ(n)) = plus(Succ(m), n)

An alternative to this approach is to add constants to the notation along
with associated reduction rules (so-called δ-rules).

If δ is some constant, we write Λδ to represent the class of terms con-
structed from the usual alphabet plus δ. A δ-rule is then of the form9:

δ �M → E(�M)

An example, introduced by Church, is:

δCMN → λxy.x if M,N ∈ βδC-nf0,M ≡ N
δCMN → λxy.y if M,N ∈ βδC-nf0,M �≡ N

where βδC-nf0 are closed βδC normal forms.
Several remarks are in order. First, as we shall see later, λxy.x is a

standard encoding for true and λxy.y is a standard encoding for false.
Thus δC is effectively a predicate which determines if two closed βδC normal
forms are equivalent. It is important that the δ-rules should specify closed
terms to avoid inconsistency:

(λxy.δCxy)II →→ δCII → λxy.x

but if δC can be applied to open terms then the body of the λ-expression
becomes a redex and we also have:

(λxy.δCxy)II → (λxyzw.w)II →→ λzw.w

since x �≡ y. Now,

λxy.x = λzw.w
⇒ (λxy.x)MN = (λzw.w)MN
⇒ M = N

9We use the notation E(M) to denote some arbitrary expression involving M .
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for arbitrary M, N. For reasons that we will return to below, it is also
important that δC operates on normal forms.

Caution is required. Even quite innocuous looking rules can disturb the
Church–Rosser property. This is illustrated by the following example. We
consider Λcons, head, tail with the rules (collectively called SP for “surjec-
tive pairing”):

head(consM1M2) → M1

tail(consM1M2) → M2

cons(headM)(tailM) → M

Klop shows that βSP is not CR.
So how can we be sure that we will not disturb the CR property? For-

tunately, there is a theorem, due to Mitschke, which gives conditions under
which CR is preserved and we now present this. We start by defining what
it means for two binary relations to commute:

DEFINITION 41.
Let �1 and �2 be binary relations on X. �1 and �2 commute if:

∀x, x1, x2 ∈ X[x �1 x1 ∧ x �2 x2 ⇒ ∃x3 ∈ X[x1 �2 x3 ∧ x2 �1 x3]]

Notice that � |= ♦ if and only if � commutes with itself (which follows
from the definition). An important (useful) lemma which makes use of this
notion of commutativity is due to Hindley and Rosen:

LEMMA 42 (Hindley–Rosen Lemma).
(i) Let �1 and �2 be binary relations on X. Suppose

1. �1 |= ♦ and �2 |= ♦

2. �1 commutes with �2

then (�1 ∪ �2)
∗ |= ♦ (where (�1 ∪ �2)

∗ is the transitive closure of the
combined relation).
(ii) Let R1 and R2 be two notions of reduction. Suppose

1. R1 and R2 are CR

2. →→R1
commutes with →→R2

then R1 ∪R2 is CR.

We can now state Mitschke’s theorem:

THEOREM 43.
Let δ be some constant. Let R1, . . . , Rm be n-ary relations on Λδ and let

N1, . . . , Nm be arbitrary terms in Λδ. Introduce the notion of reduction δ
by the following rules:
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δ �M → N1 if R1(�M)
. . .

δ �M → Nm if Rm(�M)

Call this collection of rules δM . Then βδM is CR provided that:

1. The Ri are disjoint

2. The Ri are closed under βδM -reduction and substitution, that is:

Ri(�M) ⇒ Ri(
�M′) if �M→→βδM

�M′ or �M′ is a substitution instance of �M.

We refer the reader to Barendregt for details of the proof. Church’s rules
passes the test because of the insistence that M and N are βδC normal
forms.

4.4 Residuals

In the following we will often want to trace a redex through a reduction
sequence. Of course the redex, or more generally subterm, may be trans-
formed through the sequence. For example, in the following sequence:

(λxy.(λzw.xz)y)MN

→β (λy.(λzw.Mz)y)N

→β (λzw.Mz)N

→β λw.MN

the underlined redexes are clearly related though different; notice that there
is no remnant of the redex in the final term (it was reduced in the preced-
ing line). We formalise this by introducing the notion of descendant of a
subterm; we reserve the name residual for the descendant of a redex. We
follow Klop and Lévy by introducing these notions via a labelled variant of
the λ-calculus.

Terms in the labelled λ-calculus are words over the usual alphabet plus
a label set, A (for example A might be Z≥0 - the positive integers):

DEFINITION 44.
ΛA is the set of labelled λ-terms defined inductively by:

1. xa ∈ ΛA, a ∈ A, x a variable

2. If M ∈ ΛA and a ∈ A then (λx.M)a ∈ ΛA

3. If M,N ∈ ΛA and a ∈ A then (MN)a ∈ ΛA
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For example:

((λx.(x1x2)3)4(y5z6)7)8

We can develop a theory for this calculus which closely mirrors λ; rather
than do that we will just define the rule (β) and associated substitution
operation and leave the reader to fill in the remaining details. Since we can
view labels as colours which are attached to terms and which have no effect
on computation (but are preserved by reduction) the theory is similar to
our earlier development. The new rule (β) is:

((λx.A)aB)b = A[x := B]

Notice that A and B are labelled terms and their labels are preserved but the
labels a and b disappear. This is reasonable since a labels the function part
of the redex and b labels the redex; neither of these plays any further rôle in
the reduction sequence once the redex has been reduced. The substitution
operation has to respect labels:

DEFINITION 45.

xa[x := B] ≡ B
ya[x := B] ≡ ya, y distinct from x
(MN)a[x := B] ≡ (M [x := B]N [x := B])a

(λy.M)a[x := B] ≡ (λy.M [x := B])a

For example, corresponding to the unlabelled term:

(((λx.(λy.y))((λx.xx)(λx.xx)))((λx.x)z))

we have the following labelled term and reduction sequence:

(((λx.(λy.y1)2)3((λx.x4x5)6(λx.x7x8)9)10)11((λx.x12)13z14)15)16

→β ((λy.y1)2((λx.x12)13z14)15)16

→β ((λx.x12)13z14)15

→β z14

DEFINITION 46.
Let M be an unlabelled λ-term and A a label set. A labelling is a

function, I, mapping each subterm to a label. We call a labelling initial if
it labels distinct subterms with distinct labels.

For a reduction Δ, we have the labelled equivalent, Δ∗:

Δ∗ : I(M) →Δ J (N) for some labellings I and J

where we have used the superscript on the reduction arrow to indicate the
redex that is being reduced.
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DEFINITION 47.
If I(S) = J (T ) for S ∈ Sub(M) and T ∈ Sub(N) then T is a descendant

of S. As already mentioned, the descendant of a redex is called a residual
and the redex that we contract at each stage has no residuals.

4.5 Head Normal Forms

We now introduce an alternative form of normal form: head normal form.
Head normal forms play an important rôle in the theory and they are much
closer to the concept of “answer” employed in lazy functional programming
languages, as we shall see.

We start with some formal definitions:

DEFINITION 48. M ∈ Λ is a head normal form (hnf) if M is of the form:

λx1 . . . xn.xM1 . . . Mm n,m ≥ 0

In this case x is called the head variable.
If M ≡ λx1 . . . xn.(λx.M0)M1 . . . Mm where n ≥ 0,m ≥ 1 then the subterm
(λx.M0)M1 is called the head redex of M .

Some examples of head normal forms are:

• xM

• λx.x

• λxy.x

• λxy.x((λz.z)y)

• λy.z

If

M →Δ N

and Δ is the head redex of M , then we write:

M →h N

and we also write →→h for the many-step reduction relation.

DEFINITION 49. If A and B are two redexes in an expression M and the
first occurrence of λ in A is to the left of the first occurrence of λ in B then
we say that A is to the left of B. If A is a redex in M and it is to the left
of all of the other redexes then A is the leftmost redex.

Notice that the head redex of a term is always the leftmost but not con-
versely; consider:
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λxy.x((λz.z)y)

this term is an hnf (i.e. it has no head redex!) and so the leftmost redex is
the internal redex10:

(λz.z)y

Unlike normal forms, a term does not usually have a unique head normal
form. For example:

(λx.x(II))z where I ≡ λx.x

has hnf’s

• z(II)

• and zI

However, since any term has only one head redex, every term which has an
hnf has a principal head normal form which is reached by reducing the head
redex at each stage until the head normal form is reached. The principal
head normal form of the example is z(II).

Head normal forms play a crucial rôle in the Computability Theory as-
sociated with the λ-calculus. There must be some way of coding partial
functions — functions which are undefined for some elements in the do-
main. Readers familiar with denotational semantics will have already met
this problem; in domain theory, partial functions are made into total func-
tions by adding an undefined element ⊥ (pronounced “bottom”) to the
co-domain. In the λ-calculus, the solution is to use a class of terms to
represent the undefined element. The first attempt at solving this problem
involved equating all of the terms without normal form and then using some
canonical representative as the undefined element. However, this leads to
inconsistency because neither:

λx.xKΩ where K ≡ λxy.x and Ω ≡ (λx.xx)(λx.xx)

nor:

λx.xSΩ where S ≡ λxyz.xz(yz)

has an nf but it is easy to show that λ+(λx.xKΩ = λx.xSΩ) is inconsistent:

λx.xKΩ = λx.xSΩ ⇒ (λx.xKΩ)K = (λx.xSΩ)K
⇒ KKΩ = KSΩ
⇒ K = S

10A redex is internal if it is not a head redex.
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but we saw above that K#S . Instead, we equate all terms which do not
have a head normal form (this is a proper sub-class of the class of terms
without nf); this leads to no inconsistency, a canonical representative is Ω.

Practical lazy functional programming systems even stop some way short
of hnf. Most lazy systems evaluate terms to weak head normal form. A weak
head normal form is a term of the form:

xM0 . . . Mn where n ≥ 0

or

λx.M

that is, lazy systems do not evaluate inside λs.

4.6 The Standardisation Theorem

DEFINITION 50.
A reduction sequence:

σ : M0 →
Δ0 M1 →

Δ1 M2 →
Δ2 . . .

is a standard reduction if ∀i.∀j < i.Δi is not a residual of a redex to the left
of Δj relative to the given reduction from Mj to Mi.

An alternative description of a standard reduction is as follows: after
reduction of each redex R, all of the λs to the left of R are marked indelibly;
no redex whose first λ is marked can be further reduced.

If there is a standard reduction from some term M to some other term
N then we write M→→sN . Notice that any head reduction sequence is a
standard reduction sequence.

We have already defined an internal redex to be any redex which is not
a head redex. We write:

M→→iN

if there is a reduction sequence:

M ≡ M0 →
Δ0 M1 →

Δ1 . . . →Δn−1 Mn ≡ N

such that each of the Δi is an internal reduction in Mi. Before we can
prove the Standardisation Theorem, we must state a result which allows
us to factor reductions into a sequence of head reductions followed by a
sequence of internal reductions. The proof of the following result can be
found in Barendregt’s book.

PROPOSITION 51. M→→N ⇒ ∃Z[M→→hZ→→iN ]

The details of the proof use some additional theory which is beyond the
scope of this article; it relies on two observations:
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• If M →i M ′→→hN ′, then there is an equivalent reduction sequence
M→→hN→→iN

′.

• Any reduction sequence M→→N is of the form

M→→hM1→→iM2→→hM3→→i . . .→→iN

The intuition behind the first observation is the difference between call-by-
value and call-by-name: an internal redex is an argument, so if we pre-
evaluate it we only need do it once, if we don’t pre-evaluate it then it may
be duplicated. Since any reduction is either a head reduction or an internal
reduction, the second observation is straightforward.

We then have the Standardisation Theorem:

THEOREM 52 (The Standardisation Theorem).

M→→N ⇒ M→→sN

Thus we are able to answer the second question posed earlier: since we
know from the Corollary to the Church–Rosser Theorem that if M has a
normal form N then M→→N , then by the Standardisation Theorem we know
that a standard reduction sequence will lead to the normal form.

5 MODELS

The purpose of a model is to give a semantics for terms. The objective
is to identify each term with an element of some mathematical structure,
normally a set or a set with additional structure (e.g. a complete partial
order); the underlying theory of the mathematical structure then becomes
available as a basis for reasoning about the terms of our language and their
inter-relationships.

For the type-free λ-calculus, we are unable to give a (naive) set-theoretic
model. The problem is that terms serve as both functions and arguments;
in particular, a term can be applied to itself — recall Ω. Consequently, a
model of the type-free λ-calculus requires a structure which is isomorphic
(has the same structure) as its own function space, i.e. we have to “solve”
the following:

D ∼= D → D

In set theory, the only solutions are trivial (D is a singleton) which follows
from consideration of the cardinalities of the sets involved. Other than the
term models (see below), there were no models of the type-free λ-calculus
until the late 1960s. Dana Scott realised that the isomorphism could be
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solved by imposing a topology on the sets and then restricting the function
space to continuous functions with respect to the topology. This fundamen-
tal contribution has become known as Scott’s thesis:

Scott’s Thesis: All computable functions are continuous.

which has a similar status in domain theory to the Church–Turing Thesis.
Scott’s original work used complete lattices, his first model was called D∞

and later he published the graph model Pω. Later work in this area has
tended to use sub-categories of complete partial orders11.

A detailed treatment of any particular model, other than the term models,
takes us a little far from our main theme. Instead, we will give an abstract
characterisation of a model. We will introduce two classes of models:

• λ-algebras which satisfy all provable equations of the λ-calculus

• λ-models which satisfy all provable equations of the λ-calculus and
the axiom of weak extensionality:

∀x.(M = N) ⇒ λx.M = λx.N

5.1 λ-algebras

We will start with a very simple structure and successively refine it. At the
very minimum, we will require a set of objects and an operation on these
objects which will be used to give a semantics to application:

DEFINITION 53 (Applicative Structure).
M = (X, •) is an applicative structure if • is a binary operation on X (i.e.
• : X ×X → X).
M is said to be extensional if, in addition, for a, b ∈ X, one has:

(∀x ∈ X.a • x = b • x) ⇒ a = b

We will usually omit the • and just juxtapose the “function” and its “argu-
ment” thus:

ax ≡ a • x

The class of terms over an applicative structure T (M) are words over the
alphabet:

v0, v1, . . . variables
ca, cb, . . . constants denoting objects in X
(, ) parentheses

11One motivation for this switch is that there is often no good computational interpre-
tation for the Top elements which appear in the complete lattice approach.
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[[v]]Mρ = ρ(v)
[[ca]]Mρ = a
[[(AB)]]Mρ = [[A]]Mρ [[B]]Mρ

Figure 2. Interpretation, [[A]]Mρ

DEFINITION 54 (Terms).
T (M) is the least class satisfying the following:

1. v ∈ T (M), v a variable

2. ca ∈ T (M), a ∈ X

3. if A,B ∈ T (M) then (AB) ∈ T (M)

Before we can give an interpretation to terms in T (M), we need another
definition. Terms can contain free variables and in order to decide what
such a term denotes, we must know the “value” of the free variables. We
will use an environment function to record the current bindings for the free
variables:

ρ : variables → X

An interpretation of A ∈ T (M) in M under ρ – written [[A]]Mρ but we will
omit ρ and the M-superscript when they are clear from the context – is
defined as shown in Figure 2
We will write:

M, ρ |= A = B

read “A = B is true in M under ρ” if:

[[A]]Mρ = [[B]]Mρ

We write M |= A = B and say “A = B is true in M” if

M, ρ |= A = B for all ρ

So much for the basic structure; we will now start to refine it. We intro-
duce the following definition:

DEFINITION 55 (Combinatory Algebra).
A combinatory algebra is an applicative structure with two distinguished
elements:
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M = (X, •, k, s)

which satisfy:

kxy = x

and

sxyz = xz(yz)

A structure is non-trivial if its cardinality is greater than 1; a combinatory
algebra is non-trivial if and only if k �= s.

An arbitrary applicative structure is capable of modelling application
of λ-terms but we have no obvious way of representing abstraction terms.
In a combinatory algebra, it is possible to simulate abstraction and thus
combinatory algebras are candidate models for the λ-calculus. We start
by extending the class of terms with three distinguished constants, K and
S, which denote k and s respectively and I which denotes s • k • k. For
A ∈ T (M) and variable x, we define the term λ∗x.A ∈ T (M):

DEFINITION 56.

λ∗x.x ≡ I
λ∗x.P ≡ KP, if P does not contain x
λ∗x.PQ ≡ S(λ∗x.P )(λ∗x.Q)

It is possible to show that λ∗ captures the main properties of abstraction.
We extend the class of λ-terms, Λ, to Λ(M) which consist of the λ-terms
built from variables and constants from M. We now define two maps which
establish a relationship between Λ(M) and the terms over M:

DEFINITION 57 ( CL and λ).

CL : Λ(M) → T (M)

xCL = x
cCL = c
(MN)CL = MCLNCL

(λx.M)CL = λ∗x.MCL

λ : T (M) → Λ(M)

xλ = x
cλ = c
Iλ = λx.x
Kλ = λxy.x
Sλ = λxyz.xz(yz)
(AB)λ = AλBλ
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Since we are mainly interested in λ-terms, we will abuse notation and
write M when we should write MCL and use the turnstile, |=, for equality
between λ-terms:

M, ρ |= M = N ≡ [[MCL]]Mρ = [[NCL]]Mρ
M |= M = N ≡ [[MCL]]M = [[NCL]]M for all ρ

DEFINITION 58 (λ-algebra).
A combinatory algebra is called a λ-algebra if for all A,B ∈ T (M):

λ 	 Aλ = Bλ ⇒M |= A = B

Not all combinatory algebras are λ-algebras. We now give a theorem
which gives a slightly more useful characterisation of λ-algebras:

THEOREM 59. Let M be a combinatory algebra, then M is a λ-algebra
iff:
∀M,N ∈ Λ(M)

1. λ 	 M = N ⇒M |= M = N

2. M |= Kλ,CL = K and M |= Sλ,CL = S

5.2 λ-models

Finally, we arrive at the most natural class of models: the λ-models. Given
a combinatory algebra, we define:

1 = s(ki)

A good intuition is that 1 is a function application operator — it takes two
arguments and applies the first to the second.

DEFINITION 60 (λ-model).
A λ-model is a λ-algebra, M , in which the following axiom, due to Meyer
and Scott, holds:

∀a, b, x ∈ M.(ax = bx) ⇒ 1a = 1b

Below, we will give an alternative characterisation of λ-models, but first
we need some results about 1:

PROPOSITION 61.
Let M be a combinatory algebra, then in M:

1. 1ab = ab

If, moreover, M is a λ-algebra then:
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2. 1 = λxy.xy

3. 1(λx.A) = λx.A for all A ∈ T (M)

4. 11 = 1

A λ-algebra is weakly extensional if for A,B ∈ T (M):

M |= ∀x.(A = B) ⇒ λ∗x.A = λ∗x.B

We close this section with a theorem which characterises λ-models in terms
of weakly extensional λ-algebras:

THEOREM 62.
M is a λ-model ⇔ M is a weakly extensional λ-algebra

5.3 Term models

As we said earlier, most models of the λ-calculus require the sets to have
some kind of order-theoretic structure. There is, however, a class of models
– the term models – which have a proof-theoretic structure. The basic idea
is that the semantics of a term is given to be the equivalence class of the
term under the convertibility relationship.

We define the equivalence class of a term M .

DEFINITION 63. [M ] ≡ {N ∈ Λ | λ 	 M = N}

As is usual, the equivalence classes partition the set of terms and we can
define a quotient set:

Λ/λ ≡ {[M ] | M ∈ Λ}

Finally, we can define a binary operation, •, on equivalence classes:

[M ] • [N ] ≡ [MN ]

We now have the necessary components to enable us to define a model.

DEFINITION 64 (Term Models).
The open term model for the type free λ-calculus is:

M(λ) = (Λ/λ, •, [λxy.x], [λxyz.xz(yz)])

If it is the closed terms that are of interest, we can consider the closed term
model:

M0(λ) = (Λ0/λ, •, [λxy.x]0, [λxyz.xz(yz)]0)

We then have the following two facts:

Fact 1: M0(λ) is a λ-algebra

Fact 2: M(λ) is a λ-model
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6 COMPUTABILITY

6.1 Fixed Points

In order to study the computability aspects of the λ-calculus, we will rely
extensively on the ability to construct recursive definitions. In this section
we introduce the concept of a fixed point combinator and consider the variety
of different combinators.

We start by recalling the Fixed Point Theorem:

THEOREM 65 (The Fixed Point Theorem).

∀F.∃X.X = FX

The proof (see earlier) inspires us to make the following definition:

DEFINITION 66 (A Fixed Point Combinator).

Y ≡ λf.(λx.f(xx))(λx.f(xx))

This is a term which, when applied to another term, is equal to the fixed
point of the given term. Y is sometimes known as Curry’s Paradoxical
Combinator (consider the result of applying Y to a term representing logical
negation). In general, any term M which satisfies the following:

∀F.MF = F (MF )

is called a fixed point combinator – there is an infinite variety of such terms
but we will only use Y and Θ (see below) in the following.

In the preceding paragraph we have used convertibility both in the state-
ment of the Fixed Point Theorem and the definition of fixed point combi-
nators. Sometimes it will be desirable to have a fixed point combinator M
which satisfies the slightly stronger requirement:

∀F.MF→→F (MF )

Notice that Y does not have this property but the following combinator
does:

Θ ≡ AA where A ≡ λxy.y(xxy)

since:

ΘF ≡ (λxy.y(xxy))AF
→ (λy.y(AAy))F
→ F (AAF )
≡ F (ΘF )
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We now introduce a result which we will make implicit use of throughout
the rest of this chapter:

PROPOSITION 67. Let C ≡ C(f, �x) be a term (with free variables f and
�x), then:

(i) ∃F.∀ �N.F �N = C(F, �N)

(ii) ∃F.∀ �N.F �N→→C(F, �N)

Proof.
In both cases, we can take F ≡ Θ(λf�x.C(f, �x)). Notice that we could use
Y instead for (i). �

EXAMPLE 68. As an example suppose that:

C ≡ fyxf ≡ C(f, x, y)

then (i) guarantees the existence of a term F such that:

Fxy = FyxF

Just take F ≡ Θ(λfxy.fyxf) then:

Fxy ≡ Θ(λfxy.fyxf)xy
= (λfxy.fyxf)(Θ(λfxy.fyxf))xy
≡ (λfxy.fyxf)Fxy
= FyxF

EXAMPLE 69. A more familiar example is:

C ≡ if n = 0 then 1 else n× f(n− 1) ≡ C(f, n)

and (i) guarantees the existence of a term, F , which behaves like a factorial
function12, i.e.:

Fn = if n = 0 then 1 else n× F (n− 1)

and we just take:

F ≡ Y(λfn.if n = 0 then 1 else n× f(n− 1))

Finally we recall the definition of the term Ω:

Ω ≡ ω where ω ≡ λx.xx

and just note that13:

Ω = YI
12Of course we have deviated somewhat from the standard syntax for terms but hope-

fully the message in this example is clear.
13Readers familiar with domain theory should consider what the fixed point of the

identity function is. Ω is playing the same role as ⊥.
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6.2 Numeral Systems

In the next subsection we show the equivalence of the λ-calculus and Re-
cursive Function Theory. To do this, we will need to define λ-terms which
encode numerals, booleans, conditionals and various other constructs; we
shall consider various approaches to this problem in this section.

We start with boolean values. We define true and false by terms T and
F:

DEFINITION 70 (True and False).

T ≡ λxy.x ≡ K
F ≡ λxy.y ≡ KI

These choices are motivated by the simple definition of the conditional func-
tion:

if ≡ λpca.pca

since:
if TMN→→M and if FMN→→N

There are also simple representations for the standard boolean operations,
for example and14:

and ≡ λxy.xyF

We will also need to manipulate pairs of terms or, more generally, tuples.

DEFINITION 71 (Pairs).
We define the pairing operation as a distfix operator, [ , ]:

[M,N ] ≡ λz.zMN

The first and second projection functions on a pair are defined as

(λp.pT) and (λp.pF)

respectively.

These definitions are sensible since, for example, if M ≡ [P,Q] then:

MT ≡ (λz.zPQ)T
→ TPQ
→→ P

14This encoding uses a trick that is often used in the code generators of compilers,
which is to encode the logical operations as conditional expressions. For example and x
y is equivalent to:

if x then y else false
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Ordered n-tuples can now be defined using pairing:

[M ] ≡ M
[M0, . . . , Mn+1] ≡ [M0, [M1, . . . , [Mn,Mn+1] . . .]]

The generalisation of the projection functions are defined by the following
terms; πi,n selects the i-th element from an n + 1 element tuple, 0 ≤ i < n:

πi,n ≡ λx.xF∗iT ≡ λx.x . . . (i occurrences of F) . . .T
πn,n ≡ λx.xF∗n

An alternative approach to defining tuples is slightly more direct:

< M0, . . . , Mn >≡ λz.zM0 . . . Mn

and then we define the projection functions as follows:

Pi,n ≡ λx.xUi,n

where
Ui,n ≡ λx0 . . . xn.xi

Before we introduce our first numeral system, we need one further com-
binator, composition, which is written as an infix operator:

M ◦N ≡ λx.M(Nx)

We now define the numerals as the following terms:

DEFINITION 72 (Standard Numerals).

�0� ≡ I
�n + 1� ≡ [F, �n�]

So for example:
�3� ≡ [F, [F, [F, I]]]

This way of constructing numerals is reminiscent of the following type con-
struction:

num = Zero | Succ num

in which 3 would be represented as:

Succ(Succ(Succ Zero))

This motivates the definition of a successor function S+:

S+ ≡ λx.[F, x]
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The predecessor function, which decrements the numeral by 1, is just the
second projection function:

P− ≡ λx.xF

Notice that:
P−(�0�) ≡ P−I → IF → F

We also define a unary predicate, Zero, which returns T if its argument is
�0� and F otherwise:

Zero ≡ λx.xT

since:
IT = T
[F, n]T = F

Given this encoding and the two functions and the predicate, we can
define more sophisticated functions such as addition:

+xy = if(Zero x)y(+(P−x)(S+y))

(use Proposition 67).
This encoding for numerals is by no means the only possibility. Before

introducing another encoding we make some definitions:

DEFINITION 73.
A numeral system is a sequence:

d = d0, d1, . . .

consisting of closed terms such that there are λ-terms, S+
d and Zerod such

that:
S+

d dn = dn+1

Zerod d0 = T
Zerod dn+1 = F

for all numbers n, i.e. we have codes for all numerals, the successor function
and a test for zero.

DEFINITION 74. d is a normal numeral system if each dn has a normal
form.

DEFINITION 75. s = �0�, �1�, . . . with successor function S+ is called the
standard numeral system.

It is clear that the numerals in the standard numeral system are all distinct
normal forms; thus the standard numeral system is a normal system.

The system d is determined by d0 and S+
d , so we often write:

d = (d0, S
+)
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A foretaste of the next section is given by the following definition:

DEFINITION 76.

Let d be a numeral system, a numeric function:

φ : Np → N

(where N is the set of natural numbers) is λ-definable with respect to d if:

∃F.∀n1, . . . , np ∈ N.Fdn1
. . . dnp

= dφ(n1,...,np)

We say that d is adequate if and only if all recursive functions are λ-definable
with respect to d. Alternatively, d is adequate if and only if we can define
a predecessor function for d.

An alternative encoding of the numerals is due to Church:

DEFINITION 77 (Church Numerals). c = c0, c1, . . .

cn = λfx.fn(x)

The successor function is defined by:

S+
c

cn ≡ λabc.b(abc)

We can define translation functions between the standard and Church nu-
merals, H and H−1, such that:

H�n� = cn and H−1cn = �n�

These functions are defined in the following way:

Hx = if (Zero x) c0 S+
c

(H(P−x))
H−1cn = cn S+(�0�)

Given these, we can define a test-for-zero:

Zeroc ≡ Zero ◦H−1

The Church numeral system is also adequate, since we can define a prede-
cessor function:

P−
c
≡ H ◦P− ◦H−1

The Church numerals are of interest because we can define some of the
more powerful arithmetic functions without recursion; for example x ◦ y
gives the result of multiplying the Church numeral x by the numeral y.
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6.3 λ-definability

We can specialise Definition 76 to the standard numeral system. In this case
we talk about a numeric function being λ-definable (without specifying a
numeral system). Since standard numerals are normal forms, in particu-
lar �φ(n1, . . . , np)� is a normal form, we also have, by the Church–Rosser
theorem, that:

F�n1� . . . �np� →→ �φ(n1, . . . , np)�

Our definition implicitly assumes that the given numeric function is total,
i.e. defined on its whole domain. The results can be extended to partial
functions but we will mainly consider total functions in this section; there
is a brief discussion of partial functions at the end of the section. We
start by defining the class of total recursive functions and then proceed to
demonstrate that the functions in this class are all λ-definable.

DEFINITION 78 (Initial Functions).
We define the following numeric functions to be the initial functions:

Ui,p(n0, . . . , np) = ni 0 ≤ i ≤ p
S+(n) = n + 1
Z(n) = 0

i.e. a family of selector functions, a successor function and a constant zero
function.

If P (n) is a numeric relation, we use the notation:

μm[P (m)]

to denote the least number m for which P (m) holds; or to denote undefined
if there is no such m.

Given a class of numeric functions, A, we consider the following closure
operators on the class:

DEFINITION 79.

• A is closed under composition if for all φ defined by:

φ(�n) = H(G1(�n), . . . , Gm(�n))

with H,G1, . . . , Gm ∈ A, one has φ ∈ A.

• A is closed under primitive recursion if for all φ defined by:

φ(0, �n) = H(�n)
φ(k + 1, �n) = G(φ(k, �n), k, �n)

with H,G ∈ A, one has φ ∈ A.
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• A is closed under minimalisation if for all φ defined by:

φ(�n) = μm[H(�n,m) = 0]

with H ∈ A, such that15:

∀�n.∃m.H(�n,m) = 0

one has φ ∈ A.

Notice that the primitive recursion construction is similar to the for-loop
construction found in Algol-like languages and the DO-loop of FORTRAN;
it provides iteration for a predetermined number of steps. It is possible to
define most of the basic arithmetic functions using primitive recursion, for
example:

plus(0, y) = id(y)
plus(k + 1, y) = F (plus(k, y), k, y)

where F (x, y, z) = S+(U0,2(x, y, z))

where id is the identity function. In contrast, the minimalisation con-
struct corresponds to the more general form of iteration represented by
while. . . do. . . and repeat. . . until. . . loops in Algol-like languages.

The class of recursive functions may now be defined formally as the least
class of numeric functions which contains all of the initial functions and is
closed under composition, primitive recursion and minimalisation.

We will now demonstrate that the initial functions are λ-definable and
that the class of λ-definable functions is appropriately closed. First, we
define:

Ui,p ≡ λx0 . . . xp.xi

S+ ≡ λx.[F, x]
Z ≡ λx.�0�

Now suppose that H,G1, . . . , Gm are λ-defined by S, T1, . . . , Tm, then:

φ(�n) = H(G1(�n), . . . , Gm(�n))

is λ-defined by:
F ≡ λ�x.S(T1�x) . . . (Tm�x)

If φ is defined by:

φ(0, �n) = H(�n)
φ(k + 1, �n) = G(φ(k, �n), k, �n)

15This condition ensures that φ is total.
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with H and G λ-defined by S and T respectively, then φ is λ-defined by:

F ≡ Yλfx�y.(Zero x) (S�y) (T (f(P−x)�y)(P−x)�y)

In order to define minimalisation, we first define a function which, given a
predicate λ-defined by P , determines the least numeral which satisfies P .
We start by defining:

HP ≡ Θ(λhz.(Pz)z(h(S+z)))

which just iterates from a given numeral, z, until (Pz) is true and returns
z. The required function, written μP , is defined thus:

μP ≡ HP �0�

Then suppose that φ is defined by:

φ(�n) = μm[H(�n,m) = 0]

where H is λ-defined by S; then φ is λ-defined by:

F ≡ λ�x.μ[λy.Zero(S�xy)]

From the preceding paragraphs, we have that the initial functions are λ-
definable and that the three function-forming operations can be encoded in
the λ-calculus. Consequently, we can infer that all (total) recursive functions
are λ-definable. We also have the following result:

THEOREM 80.
If φ is λ-defined by F , then ∀�n,m ∈ N :

φ(�n) = m ⇔ F
→

�n�= �m�

Putting these two results together, we get the following theorem (due to
Kleene):

THEOREM 81.
The λ-definable numeric functions are exactly the recursive functions.

Finally, the definition can be extended to partial functions in the following
way:

DEFINITION 82. A partial numeric function, φ, with p arguments is λ-
definable if for some F ∈ Λ:

∀�n ∈ Np.

F
→

�n� = �φ(�n)� if φ(�n) converges (i.e. is defined)

F
→

�n� without hnf otherwise
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where �n ≡ n1, . . . , np

In this section we have characterised the class of functions which are λ-
definable. In general, the link between λ-definability and Recursive Function
Theory is:

φ is λ-definable ⇔ φ is partial recursive

Given another result from Computability Theory:

φ is partial recursive ⇔ φ is Turing Computable

we see that λ-definability, according to the Church–Turing thesis, can be
claimed to capture the notion of effective calculability.

6.4 Decidability

One of the fundamental theorems of Mathematical Logic is Gödel’s Incom-
pleteness Theorem; the details of the theorem are tangential to this article
but the proof of the theorem uses a coding technique which gives an ef-
fective way of associating a unique integer, the Gödel number, with each
sentence in some theory. Translating this result to the λ-calculus, we have
that there is an algorithmic injective map # : Λ → N such that #M is
the Gödel number of M . Using this notion, we can state the Second Fixed
Point Theorem:

THEOREM 83 (The Second Fixed Point Theorem).

∀F.∃X.F�#X� = X

Proof.
Define:

Ap�#M�(�#N�) = �#(MN)�
Num�#n� = �#(�#n�)�

Now take W ≡ λx.F (Ap x(Num x)) and X ≡ W�#W�; then:

X → F (Ap�#W�(Num�#W�))
= F (Ap�#W�(�#�#W��))
= F (�#(W�#W�)�)
≡ F�#X� as required

�

Notice how this construction parallels the proof of the Fixed Point Theo-
rem. Its importance for us is that it allows us to prove Scott’s Theorem (the



LAMBDA CALCULI: A GUIDE 49

analogue of Rice’s Theorem) and thereby answer some important questions
about decidability in the λ-calculus.

In the following we assume that A and B are subsets of λ-terms:

DEFINITION 84. A is non-trivial if A �= ∅ and A �= Λ.

DEFINITION 85. A is closed under equality if:

∀M,N ∈ Λ[M ∈ A ∧ M = N ⇒ N ∈ A]

DEFINITION 86. A and B are recursively separable iff there is a recursive
set16 C such that:

(A ⊆ C) ∧ (B ∩ C = ∅)

Scott’s Theorem may be stated thus:

THEOREM 87 (Scott’s Theorem).

1. Let A and B, subsets of Λ, be non-empty sets closed under equality.
Then A and B are not recursively separable.

2. Let A, a subset of Λ, be a non-trivial set closed under equality. Then
A is not recursive.

We can now show the undecidability of the question as to whether an
arbitrary term has a normal form — this is equivalent, in some senses, to
the Halting Problem for Turing Machines. The theorem is formally stated:

THEOREM 88.

{M | M has a nf} is an recursively enumerable17 set which is not recur-
sive.

We can also show the undecidability of λ. First we define the notion of
essential undecidability:

DEFINITION 89. A theory T is essentially undecidable iff T is consistent
and has no consistent recursive extension.

The theorem is then:

THEOREM 90.

λ is essentially undecidable

16By the term “recursive set” we mean a set whose membership predicate is recursive;
i.e. there is a Turing machine which for any potential element either halts with an
indication that the element is a member or halts with a contrary indication.

17A set is recursively enumerable if we can construct a Turing machine which, given a
potential element, will stop with the answer YES if the element is in the set but may not
halt otherwise.
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Proof.
Let T be a consistent extension of λ, then let X = {M | T 	 M = I}.
X is not empty because surely T 	 I = I!
X �= Λ because T is consistent.
X is clearly closed under equality.
Thus, by Scott’s Theorem (ii), X is not recursive and thus T is not recursive.

�

7 TYPED CALCULI

7.1 Typed λ-calculus

We start our study of typed calculi with the simply typed λ-calculus; this
calculus has a strong typing discipline similar to that adopted in many
typed imperative and object-oriented languages — each term has a single
(monomorphic) type associated with it. The simply typed λ-calculus is
in many ways simpler than the (type-free) λ-calculus; for example self-
application is outlawed and thus all terms are strongly normalising and
there are no fixed point combinators. Once again, in introducing a new
calculus, we should address all of the issues that we have considered for the
λ-calculus (reduction, models, computability, etc. . . ) but instead we will
just present the highlights.

There are two approaches that can be taken in defining a typed calculus.
The first, originated by Curry, is called implicit typing; the terms are the
same as the type-free calculus and each term has a set of possible types
assigned to it. The second approach, originated by Church, is called ex-
plicit typing; terms are annotated with type information which uniquely
determines a type for the term. In the following, we will follow Church’s
approach.

Since terms will have types associated with them, we start by considering
the syntax of types:

DEFINITION 91 (Types).
The set of types, Typ, is the least set such that:

1. 0 ∈ Typ

2. if σ, τ ∈ Typ then (σ → τ) ∈ Typ

The type 0 is a ground type. Notice that we only have a single ground
type; later we will see that it plays the role of a type variable. In a more
realistic language, we might differentiate between type constants and vari-
ables; for example in a programming language context, the type constants
are the “built-in” types such as integers, booleans and characters. However,
since we are considering a pure calculus it is sufficient to restrict ourselves
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to a single ground type. Types of the form (σ → τ) correspond to a function
type; a function of this type takes arguments of type σ and returns a result
of type τ . Examples of types are:

0 (0 → 0) ((0 → 0) → (0 → 0))

If we adopt the convention that → associates to the right18, we can omit
the majority of the parentheses:

0 0 → 0 (0 → 0) → 0 → 0

Terms in the typed λ-calculus are words over the alphabet:

vσ
0 , vσ

1 , . . . variables, a distinct set for each σ ∈ Typ
λ
(, ) parentheses

The class of typed λ-terms is written Λτ ; when we want to talk about the
class of terms of some specific type, σ, we write Λσ.

DEFINITION 92 (Typed Terms).
The class Λτ is the class: ⋃

{Λσ | σ ∈ Typ}

and the Λσ are such that:

1. vσ
i ∈ Λσ

2. M ∈ Λσ→τ , N ∈ Λσ ⇒ (MN) ∈ Λτ

3. M ∈ Λτ , x ∈ Λσ ⇒ (λx.M) ∈ Λσ→τ

Free/bound variables, closed terms and substitution are defined in the ob-
vious way (by analogy to the type-free calculus). Care must be taken to
respect the types; for example:

FV (λv0.v0→0) = {v0→0}

The theories λτ and λητ 19 are defined in the same way as the corresponding
type-free theories but the types of terms have to make sense, for example:

(λxσ.M)N = M [xσ := N ] if N ∈ Λσ

18A moment’s thought should convince the reader that this convention is consistent
with the left associativity of application.

19In future we will write λ(η)τ to stand for either of these theories.
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and formulae are of the form:

M = N with M,N ∈ Λσ for arbitrary type σ

Notions of reduction in the typed λ-calculus are the obvious analogues of
the notions that we introduced in the type-free case:

β = {(((λxσ.M)N),M [xσ := N ]) | M ∈ Λτ , N ∈ Λσ for some σ, τ ∈ Typ}

η = {((λxσ.Mxσ),M) | M ∈ Λσ→τ for some σ, τ ∈ Typ, xσ �∈ (FV M)}

By analogy with the type-free case we have that β(η) is CR.

Strong Normalisation

An essential difference between the type-free and the typed calculus is that,
in the latter case, β(η) is strongly normalising (SN), i.e. βη-SN . As a
consequence of the strong normalisation result, all typed terms have normal
forms; moreover, provable equality in λ(η)τ is decidable:

PROPOSITION 93. λ(η)τ 	 M = N implies M and N have the same β(η)-
nfs.
The nfs can be found effectively by SN .

It should be fairly obvious that many type-free terms can be given a type
(or many types!). For example:

λx.x

can be typed as:

λxσ.xσ ∈ Λσ→σ for all σ ∈ Typ

that is: “σ → σ is a possible type for λx.x ∈ Λ”. However, there are many
terms that can not be assigned a type; given our earlier comments and the
structure of the typed terms, it should be clear that any term involving
self-application falls into this category, for example:

• In order to assign a type to λx.xx, we must assign a type to xx.

• In order to assign a type to xx, x must have type α → β and type α.

Suppose M ∈ Λσ, we write | M | (∈ Λ) for the term produced by erasing
all of the type symbols in M ; clearly, | M | is typable and a possible type is
σ. If σ is a type then σ∗ is an instance of σ if it results from σ by replacing
some of the 0’s in σ by some other type:

EXAMPLE 94. Some instances of 0:
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0 → 0, 0 → 0 → 0, ((0 → 0 → 0) → (0 → 0) → 0 → 0)

Some instances of 0 → 0:

(0 → 0) → 0 → 0, (0 → 0 → 0) → 0 → 0 → 0

Two important results concerning these issues were first discovered by Roger
Hindley; we state them without proof:

PROPOSITION 95.

1. The set of typable λ-terms is recursive; i.e. there is an algorithm which
will decide whether a given term is typable or not.

2. If M ∈ Λ is typable then one can find a unique σ ∈ Typ such that
every possible type for M is an instance of σ; σ is called the principal
type scheme for M .

Since we cannot have fixed point combinators in the typed λ-calculus, the
reader may have wondered about the impact this has on computability. We
can define a notion of λτ -definability analogously to λ-definability but there
are some problems. The first problem is that we cannot use the standard
numerals:

�0� ≡ I
�n + 1� ≡ [F, �n�]

since the numerals all have different types, for example:

�0� ≡ I has type 0 → 0
�1� ≡ λz.zFI has type ((0 → 0 → 0) → (0 → 0) → 0) → 0

As a consequence, the successor function (for example) is untypable! How-
ever, the Church numerals all have the same type:

cn ≡ λfx.fnx

cn ∈ Λ(0→0)→0→0

DEFINITION 96. The extended polynomials are the least class of numeric
functions containing:

1. Projections: Ui,n
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2. Constant functions

3. The sg function : sg 0 = 0, sg (n + 1) = 1

and is closed under addition and multiplication.

It turns out that it is exactly this class of functions which is λτ -definable
on the Church numerals; the interested reader is referred to the literature
for the proof. Using constant functions, addition and multiplication it is
possible to construct functions which have polynomial expressions as bodies.
The adjective “extended” is used in the definition to indicate that we can
encode conditional functions using the sg function (with multiplication).

7.2 The Polymorphic λ-calculus

This calculus was invented independently by Girard and Reynolds. Just as
the λ-calculus and functional programming have been sloganised by “func-
tions as first class citizens” (Stoy), the 2nd-order λ-calculus can be slogan-
ised by “Types as first class citizens”; types can be abstracted just as normal
values:

EXAMPLE 97 (A polymorphic identity function:).

M ≡ Λt.λx ∈ t.x

we can then specialise this term to a particular type by application:

Mint or M [int]

Type schemes in this calculus are constructed in the following way:

σ ::= α | ι | σ1 → σ2 | ∀α.σ

where α is a type variable and ι is a type constant. The last component is
the type scheme associated with Λ-abstractions.

DEFINITION 98. The terms of the 2nd-order polymorphic λ-calculus, Λ2,
are the least class such that:

1. Every variable and constant is in Λ2.

2. M,N ∈ Λ2 ⇒ (MN) ∈ Λ2.

3. M ∈ Λ2, x a variable, σ a type scheme ⇒ (λx ∈ σ.M) ∈ Λ2.

4. M ∈ Λ2, σ a type scheme ⇒ (Mσ) ∈ Λ2.

5. M ∈ Λ2, α a type variable ⇒ (Λα.M) ∈ Λ2.
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A 	 x : σ (x : σ in A)

Ax ∪ {x : σ} 	 M : τ

A 	 (λx ∈ σ.M) : σ → τ

A 	 M : σ → τ A 	 N : σ

A 	 (MN) : τ

A 	 M : σ

A 	 (Λt.M) : ∀t.σ
t �∈ FV (A)

A 	 M : ∀t.σ

A 	 (Mτ) : [τ/t]σ

where Ax is the same as A except any assumption about x has been removed.

Figure 3. Type inference for the 2nd-order polymorphic λ-calculus.

Substitution and α-congruence are defined in the obvious way. We have two
β-conversion axioms:

(β1) (λx ∈ σ.M)N = M [x := N ]
(β2) (Λt.M)σ = M [t := σ]

Of course it is also possible to define η-conversion. Some basic facts con-
cerning βη-reduction are:

• βη is CR

• Every Λ2 term has a βη-nf

• βη is SN

We now present a formal system for type inference in the 2nd-order poly-
morphic λ-calculus. Basic judgements have the following form:

A 	 e : σ

where A is a list of assumptions of the form x : σ assigning types to variables.
The axioms and rules are shown in Figure 3.

For example, we have:

x : α 	 x : α
	 (λx ∈ α.x) : α → α

	 (Λαλx ∈ α.x) : (∀α.α → α)
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Reynolds has used the second-order polymorphic λ-calculus to model
various programming language concepts such as type definitions, abstract
data types and polymorphism.

The style of polymorphism found in most functional programming lan-
guages (discussed below) is a restricted version of that discussed above. In
particular, the syntax of types in Λ2 allows arbitrary nesting of quantifiers.
For example, the following is a valid type in Λ2:

∀α.(∀β.α → β) → α → α

The type schemes assigned to terms in functional programming systems are
usually shallow; the quantifiers are usually omitted and are implicitly at
the outermost level. Consequently, the scope of all quantifiers is the whole
scheme (to the right of the quantifier).

7.3 Polymorphic Type Inference

A simple example of a polymorphic function in a functional programming
language is:

map : (∗ → ∗∗) → [∗] → [∗∗]

map f [] = []
map f (a : x) = (f a) : (map f x)

The symbols ∗ and ∗∗ are used as type variables and [ ] is the list type
constructor. One of the first programming languages to allow polymorphic
functions was ML and in this section we introduce an algorithm, due to
Milner, which given an untyped function will either find a polymorphic
type for it or indicate that it is untypable.

We will consider the following language Exp of expressions:

e ::= x | e e′ | λx.e | let x = e in e′

Types are constructed from type variables, typical representative α, prim-
itive (ground) types, typical representative ι, and the function space con-
structor:

τ ::= α | ι | τ → τ

The algorithm will produce the principal type scheme for a term; type
schemes have the following form:

σ ::= τ | ∀α.σ

We will use the shorthand ∀α1 . . . αn.σ for ∀α1 . . . ∀αn.σ; the αi are called
generic type variables. A monotype is a type containing no type variables.
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A substitution is a mapping from type variables to types. For a substi-
tution S, we write:

Sσ

to represent the type scheme obtained from σ by replacing each free occur-
rence of any variable in the domain of S by the corresponding element of
the co-domain of S; the resultant type scheme is called an instance of σ.
We sometimes write S explicitly as:

[τ1/α1, . . . , τn/αn]

meaning that τi (1 ≤ i ≤ n) is substituted for αi. Notice that the substitu-
tion operation may lead to variable capture if applied naively — we should
adopt a variable convention.

In contrast to the notion of instance, a type scheme σ = ∀α1 . . . αm.τ
has a generic instance σ′ = ∀β1 . . . βn.τ ′ if τ ′ = [τi/αi]τ and the βj are not
free in σ; in this case we write σ > σ′. Notice that instantiation involves
substitution for free variables while generic instantiation acts on bound
variables.

We now present a formal system for type inference. The basic judge-
ments, or assertions, in this system are of the form:

A 	 e : σ

where A is a set of assumptions of the form:

x : σ′ where x is a variable

The assertion should be read: “Under assumptions A, e has type σ”. An
assertion is closed if A and σ contain no free variables. The axioms and the
rules are presented in Figure 4.

The assumptions Ax used in Abs and Let denote the new assumptions
derived from A by removing any assumption about x. The reader should
compare these rules, particularly Comb and Abs, to the definition of λτ -
terms. Notice that polymorphism is represented by type schemes; only
the rules Taut, Inst, Gen and Let concern type schemes. Type inference
amounts to a process of theorem proving in this formal system, for example:

x : α 	 x : α Taut
	 (λx.x) : α → α Abs

	 (λx.x) : ∀α.α → α Gen

This (polymorphic) type associated with the identity function is the most
general type for the identity function; all other possible types are generic
instances of ∀α.α → α – it is the largest type in the >-ordering.

We now present an algorithm for inferring types; the algorithm is Milner’s
W algorithm. The informal type of W is:
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Taut A 	 x : σ (x : σ in A)

Inst
A 	 e : σ

A 	 e : σ′
(σ > σ′)

Gen
A 	 e : σ

A 	 e : ∀α.σ
(α not free in A)

Comb
A 	 e : τ ′ → τ A 	 e′ : τ ′

A 	 (e e′) : τ

Abs
Ax ∪ {x : τ ′} 	 e : τ

A 	 (λx.e) : τ ′ → τ

Let
A 	 e : σ Ax ∪ {x : σ} 	 e′ : τ

A 	 (let x = e in e′) : τ

Figure 4. Polymorphic type inference.

Assumptions × Exp → Substitution × Type

and if:
W(A, e) = (S, τ)

then we have:
SA 	 e : τ

where substitutions are extended to assumption lists in the obvious way. In
order to define W, we will need two operations: unification and closure with
respect to some assumptions.

DEFINITION 99. A unifier of two terms is a substitution which, when
applied to the two terms, makes the terms equal. We will define an algorithm
U which finds a unifier for two types τ and τ ′ or fails. Furthermore:

1. If U(τ, τ ′) = V then V τ = V τ ′

i.e. V unifies τ and τ ′

2. If S unifies τ and τ ′ then U(τ, τ ′) returns some V and there is another
substitution R such that

S = RV

where composition of substitutions is done in the obvious way. This
requirement amounts to stating that V does the least amount of work
to equate the two terms; V is called the most general unifier.
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3. V only involves variables in τ and τ ′; no new variables are introduced
during unification.

The algorithm uses the notion of a disagreement set:

D(τ, τ ′) = Ø
if τ = τ ′

= {(τ1, τ
′
1)}

if τ1, τ
′
1 are the “first” two subterms at which τ and τ ′ disagree

In the second clause of the definition, we assume a depth-first traversal.
Some examples may clarify this concept:

D(int → int, int → int) = Ø

D(α → β, α → β) = Ø

D(α, α → β) = {(α, α → β)}

D(α → α, (int → int) → β) = {(α, int → int)}

D((int → α) → β, (int → int) → γ) = {(α, int)}

We now define U in terms of an auxiliary function which iterates with a
substitution and the two types to find the unifier:

U(τ, τ ′) = iterate(Id, τ, τ ′)
where
iterate(V, τ, τ ′) = if V τ = V τ ′

then V
elsif a is a variable that does not occur in b
then iterate([b/a]V, τ, τ ′)
elsif b is a variable that does not occur in a
then iterate([a/b]V, τ, τ ′)
else FAIL
where {(a, b)} = D(V τ, V τ ′)

The closure of a type results in a type where some free variables are quan-
tified; more formally:

DEFINITION 100. The closure of a type τ with respect to some assump-
tions A involves making any free variables of τ which are not free in A into
generic type variables. We write the closure as A(τ). Thus:

A(τ) = ∀α1 . . . αn.τ

where α1, . . . , αn are the type variables occurring free in τ but not in A.

We define W in Figure 5.
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W(A, e) = (S, τ) where

• If e ≡ x and x : ∀α1 . . . αn.τ ′ ∈ A then S = Id and τ = [βi/αi]τ
′ with

the βi new.

• If e ≡ e1e2:

let W(A, e1) = (S1, τ1) and

W(S1A, e2) = (S2, τ2)

and U(S2τ1, τ2 → β) = V where β is new

then S = V S2S1 and τ = V β.

• If e ≡ λx.e1:

let β be a new type variable and W(Ax ∪ {x : β}, e1) = (S1, τ1)

then S = S1 and τ = S1β → τ1.

• If e ≡ let x = e1 in e2:

let W(A, e1) = (S1, τ1) and

W(S1Ax ∪ {x : S1A(τ1)}, e2) = (S2, τ2)

then S = S2S1 and τ = τ2.

• Otherwise W fails.

Figure 5. The algorithm W.
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We now state several important properties of this algorithm.

PROPOSITION 101. If S is a substitution and A 	 e : σ holds then SA 	
e : Sσ also holds. Moreover if there is a derivation of A 	 e : σ of height n
then there is also a derivation of SA 	 e : Sσ of height less than or equal to
n.

THEOREM 102 (Soundness of W).
If

W(A, e) = (S, τ)

then
SA 	 e : τ

which is just the property that we required in the specification of W.

Given A and e, σp is a principal type scheme of e under A if and only if:

• A 	 e : σp

• Any other σ for which A 	 e : σ is a generic instance of σp.

Soundness states (approximately) that any types inferred by W can be
inferred using the inference system. An equally important property is com-
pleteness, which means that any type that can be inferred by the inference
system can be found by W (again approximately). We state two versions
of completeness without proof; see the seminal paper by Damas and Milner
for details.

1. Completeness of W:

Given A and e, let A′ be an instance of A and σ a type scheme such
that A′ 	 e : σ then:

• W(A, e) succeeds

• If W(A, e) = (S, τ) then for some substitution R:

A′ = RSA

and RSA(τ) > σ

2. Completeness (no free type variables) of W:

If A 	 e : σ, for some σ, then W computes a principal type scheme
for e under A.

Property 2 is actually a simple corollary of Property 1.
We conclude this section by noting the importance of the let-construct

in the language. In a type-free setting:

let x = e in e′
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is just syntactic sugar for:
(λx.e′)e

This is no longer true when we use W to infer types. The let-construct
introduces polymorphic functions; thus:

let f = λx.x in . . . f true . . . f 1 . . .

can be validly typed because f will be given type ∀α.α → α (because of
the closure operator in the fourth clause) which can then be instantiated to
both bool → bool and int → int. However:

(λf. . . . f true . . . f 1 . . .)(λx.x)

cannot be validly typed because λx.x is given type α → α and α can only
be instantiated to one type.

7.4 Intersection Types

In the polymorphic λ-calculus a function can be applied to arguments of
different types but the types of the arguments must have the same “struc-
ture”. This becomes more apparent in the context of programming lan-
guages where we have a richer set of type constructors. For example, the
standard map function is polymorphic in its second argument but the ar-
gument must at least be a list structure. Most programming languages also
allow overloading of operators, for example + can be applied to a pair of
integers or a pair of reals — the operation performed in each case is very
different. In terms involving overloaded operators, functions are applied to
arguments with structurally different types.

An intersection type is like a type in the simply typed calculus except
types can be constructed using the intersection operator ∩ — a term which
is assigned such a type has both types involved in the intersection. An
example of how this is used is in the term λx.xx, which is untypable in the
previous calculi, but we can show:

(λx.xx) : (σ ∩ (σ → τ)) → τ

Notice that the argument is given both σ and σ → τ as types and thus the
self-application in the body can be typed. In this section, we will present
the λ∩-calculus. In this calculus, it no longer makes sense to have explicit
typing so we present an implicitly typed calculus.

The set of types is defined as follows:

τ ::= α | ι | τ → τ | τ ∩ τ

Amongst the constants, we include a distinguished type ω.
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σ ≤ σ

σ ≤ ω ≤ ω → ω

σ ∩ τ ≤ σ σ ∩ τ ≤ τ

σ ≤ τ τ ≤ ρ

σ ≤ ρ

σ ≤ τ σ ≤ ρ

σ ≤ τ ∩ ρ

(σ → ρ) ∩ (σ → τ) ≤ σ → (ρ ∩ τ)

σ′ ≤ σ τ ≤ τ ′

(σ → τ) ≤ (σ′ → τ ′)

Figure 6. The pre-order on intersection types.

The rôle of ω is as a universal type; any term can be assigned ω as a
type. Given ω and ∩ it is fairly natural to order the types; we define the
pre-order in Figure 6.

We write σ ≡ τ in the case that σ ≤ τ and τ ≤ σ. We also adopt the
convention that ∩ has higher precedence than → which allows us to omit
some parentheses.

The last rule in the definition of ≤ expresses the fact that → is con-
travariant in its first argument.

The inference system shown in Figure 7 assigns intersection types to
terms.

In λ∩, the following properties hold:

• βη is CR.

• SN fails – every term from Λ is typable, including Ω; all terms have
type ω.

• it is undecidable whether a term has a particular type.

van Bakel has studied a restricted inference system which does not have
the Top rule; in this system, the following is true:

SN(M) ⇔ ∃A.∃σ.A 	 M : σ

Barendregt et al prove that:

M has a normal form ⇔ ∃A.∃σ.A 	 M : σ and ω does not occur in σ
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Taut A 	 x : σ (x : σ) ∈ A

Top A 	 M : ω

→E
A 	 M : (σ → τ) A 	 N : σ

A 	 M N : τ
→I

Ax ∪ (x : σ) 	 M : τ

A 	 λx.M : σ → τ

∩E
A 	 M : (σ1 ∩ σ2)

A 	 M : σi

i = 1, 2 ∩I
A 	 M : σ A 	 M : τ

A 	 M : σ ∩ τ

Sub
A 	 M : σ σ ≤ τ

A 	 M : τ

Figure 7. Type inference for intersection types.

8 CONCLUSIONS

We have given a Computer Science perspective on the material covered in
this article. Many of the fundamental results have been produced by logi-
cians. Our inspiration has been Barendregt’s encyclopaedic tome [Baren-
dregt, 1984]. Most of the basic material presented here is treated in much
more detail in [Barendregt, 1984] and the interested reader is urged to con-
sult it. The classical presentation of the λ-calculi is Church’s 1941 report
[Church, 1941 ].

One of the earliest textbooks in the field was Hindley, Lercher and Seldin’s
Introduction to Combinatory Logic; while this is no longer available, [Hind-
ley and Seldin, 1986] is a much-expanded treatment of the same material.
The latter is written from a mathematical logician’s perspective, so it is
short on computational intuitions, but it is nonetheless a useful reference,
particularly for material on typed calculi. Krivine’s book, [Krivine, 1993],
covers similar material but includes a chapter on intersection types. The
type free λ-calculus is the main object of study in [Hankin, 1994]; this book
is written from a computer science perspective and explores some of the
links between the λ-calculus and programming language theory.

A number of functional programming textbooks contain computing-oriented
descriptions of the λ-calculus and combinators. For example [Field and
Harrison, 1988; Peyton Jones, 1987; Reade, 1989] contain accounts of the
main results relating to functional languages and their implementation. The
de Bruijn notation is studied in detail in [Curien, 1993]. Michaelson uses
the λ-calculus to introduce functional programming in [Michaelson, 1989].
Turner, [Turner, 1991] provides an introduction to the axiomatic founda-
tions of functional programming which includes a lot of material on both
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the λ-calculus and type theory.

A more detailed consideration of evaluation strategies for functional lan-
guages and the relevance of the λ-calculus to such languages may be found in
[Field and Harrison, 1988]. The material on labelled reduction and residuals
is based on the approach used by Klop in [Klop, 1980].

A comprehensive treatment of semantics may be found in [Barendregt,
1984] and [Hindley and Seldin, 1986]. Both include detailed discussions
of Scott’s models. Stoy’s book [Stoy, 1977] is the classical textbook on
denotational semantics and contains a good introduction to the λ-calculus
and models. There have been a number of books published which contain
some coverage of this material; a good example is [Winskel, 1993].

Computability aspects of the Lambda Calculus are dealt with in [Baren-
dregt, 1984] and [Hindley and Seldin, 1986]. A more general treatment of
this subject may be found, for example, in [Hopcroft and Ullman, 1979].

In [Barendregt, 1984] the main focus is on type-free calculi; there is a
short appendix on the simple typed λ-calculus. For a more detailed treat-
ment of typed calculi, [Barendregt, 1992] is recommended. A large part
of [Hindley and Seldin, 1986] is devoted to typed calculi and [Huet, 1990]

contains a number of seminal papers on the polymorphic λ-calculus. The
material on Milner’s algorithm is based on [Damas and Milner, 1982].

As mentioned in the Introduction, an interesting use of λ-calculus has
been in natural language understanding; the book [Dowty et al., 1981] is a
good introduction to Montague semantics.

In constructing this “bibliography” we have restricted our attention to
material that is readily accessible; except in a few cases, this has meant
that we have cited books. Many of the most fundamental and exciting
results have appeared and continue to appear in conference proceedings and
journals. Good starting points are the proceedings of the ACM Symposium
on Principles of Programming Languages (POPL), the IEEE Symposium
on Logic in Computer Science (LICS) and the proceedings of the ETAPS
Federated conference.
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DOV M. GABBAY AND LARISA L. MAKSIMOVA

INTERPOLATION AND DEFINABILITY

This chapter is on interpolation and definability. This notion is not
only central in pure logic, but has significant meaning and applicability
in all areas where logic itself is applied, especially in computer science, ar-
tificial intelligence, logic programming, philosophy of science and natural
language. The notion may sometimes appear to the reader as too tech-
nical/mathematical but it does also have a general meaning in terms of
expressibility and definability.

Many of basic results and methods on the subject are presented in our
book [Gabbay and Maksimova, 2005] published in Oxford University Press.
The aim of this chapter is to explain the various options and aspects of
interpolation and to give some case study examples (for the benefit of the
applied reader who does not wish to read the book in its entirety) and
then to give an overview of basic results on interpolation and definability in
non-classical, especially in modal and intuitionistic logics.

1 INTRODUCTION AND DISCUSSION

1.1 General discussion

Let us begin with the simplest notion of interpolation. Let 	 be a con-
sequence relation for a (propositional) logic based on the atomic proposi-
tions {q1, q2, . . .}. The reader is invited to think of classical or intuitionistic
propositional logics as examples. Let A(p, q) and B(q, r) be two formulas
built up from the connectives of the logic and the atoms {p, q} and {q, r}
respectively. So A and B have (the language based on) the atom {q} in
common.

Assume now that we have A 	 B. The simple interpolation property
asserts that there exists a formula H(q) built up from the atoms of the
common language {q} such that A 	 H and H 	 B hold.

At first sight this assertion seems simple and straightforward. However,
let us examine it more closely, by offering a variety of points of view. Note
that we mentioned interpolation for atomic propositions but one can also
discuss interpolation for connectives. For example let �1,�2,�3 be three
modalities (for example, necessity, knowledge and time operators). Assume
A(�1,�2) 	 B(�2,�3) is there an H(�2) built up using �2 only such that
A 	 H and H 	 B?

The following is a specific problem: Let K ⊗K ⊗K be some product of
propositional modal K with itself (there are various possibilities for ⊗ see
[Gabbay et al., 2003]). Assume A(p, q,�1,�2) 	 B(q, r,�2,�3). Is there
an interpolant H(q,�2) such that A 	 H 	 B?

D. Gabbay and F. Guenthner (eds.), 
Handbook of Philosophical Logic, Volume 15, 67–123. 
DOI 10.1007/978-94-007-0485-5_2, © Springer Science+Business Media B.V. 2011 
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Interpolation: View 1 — Common logical content

This view is most plausible in applications. If A “talks” or “specifies”
properties of {p, q} and these properties “force” properties involving {q, r},
then since q is the only common factor, we would expect that there must
be something about {q}, namely H(q), which is forced by A, i.e., A 	 H
and this “requirement” H(q) is the one which forces B, i.e., H 	 B.

To give an example, suppose the Queen of England invites several famous
professors of logic for dinner in her palace. She specifies that the table
(q) and chairs (p1, p2, . . .) are arranged in such a way that the result is
completely symmetrical, (call this specification), S(q, pi). She also specifies
that the tablecloth (r) must lie on the table in a completely flawless and
smooth way (call this specification) F (q, r).

The royal staff discover that S&F 	 tablecloth is round.
Interpolation in this case means that for some H(q)

S 	 H(q) 	 F → tablecloth is round .

H says in this case that the table itself must be round and this forces the
tablecloth to be round.

Interpolation: View 2 — Expressive power

We immediately encounter some technical difficulties with our simple
view of interpolation. The first is simple. Take the fragment of logic with
implication → only. Then we have

p → p 	 r → r

The interpolant is � but technically it is not in the language. Similarly we
can have

p&¬p 	 q&¬q

and then we would need ⊥ in the language.
The reader might say that these are artificial examples of lack of interpo-

lation and that � and ⊥ should be in the language anyway. However, this
is not a satisfactory answer. First, there are logics where the connectives
are not necessarily expected to be available. Second, there may be another
way of looking at interpolation for such logics, namely as forcing functional
completeness.

Consider, for example �Lukasiewicz three-valued logic for →,&,∨,¬ with
0 as the designated value and the table of Figure 1.

The value 1
2 cannot be defined by a formula (i.e., a formula A(q1, . . . , qn)

which gets value 1
2 for all (q1, . . . , qn)).

Define A(p, q) 	 B(q, r) iff for all values of p, q, r we have

value A � value B.
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We have
p&¬p 	 q ∨ ¬q

but no interpolant (we need 1
2 as interpolant). It is much less obvious in

this case that a constant for 1
2 is needed in the language. We might as well

argue that any finite many valued matrix logic must have constants for all
its values.

p q p ∨ q p&q p → q ¬p

0 0 0 0 0 1

0 1
2 0 1

2
1
2 1

0 1 0 1 1 1

1
2 0 0 1

2 0 1
2

1
2

1
2

1
2

1
2 0 1

2

1
2 1 1

2 1 1
2

1
2

1 0 0 1 0 0

1 1
2

1
2 1 0 0

1 1 1
2 1 0 0

Figure 1.

However, we notice that requiring interpolation may be equivalent to
functional completeness in many logics because it forces us to have constants
for truth values, and the functions associated with the other connectives
of the logic together with the constant names of the values may give us
functional completeness.

Note that in some cases, such as p → p 	 r → r, we can try and formulate
interpolation slightly differently. If A,B 	 rA (rA atomic in the language
of A), then for some H in the common language, (maybe we don’t need H
at all), we have

(1) B 	 H,

(2) A,H 	 rA.

In the case above we write r, p → p 	 r and thus drop p → p.
In the general case interpolation is genuinely linked to expressive power

and the lack of connectives cannot be dismissed so easily. A more technical
example of lack of interpolation, because a connective is missing, can be
found in [Gabbay and Maksimova, 2005, Chapter 15], where the existential
quantifier “∃x” is needed to interpolate, but is missing.
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In fact, the lack of interpolation because of the lack of expressibility can
be quite sophisticated mathematically. The reader can have his own opinion
of whether technical examples like the above are genuine cases of lack of
interpolation. The mathematician will probably be quite happy with an
exhaustive classification of systems with and without interpolation and will
take a special pride and delight in the various methods and counterexamples
used. The computer scientist, however, may take a different view. He
may not want a “laundry-list” of variations on meaningless technical results
arising from an “obvious” lack of expressive power. He may want to know
the reasons behind the results. The truth is that the mathematician would
also like to understand what is happening. It seems that there are serious
cases where lack of expressive power has meaning beyond the technical.
See, for example, [Fine, 1979], where it is shown that interpolation fails
for quantified modal S5. Section 14.3 of [Gabbay and Maksimova, 2005]

discusses the expressibility reasons for the failure. A long history and hard
work of many colleagues are involved here over a period of 20 years.

Let us look at another example, from linear temporal logic. There is
lack of interpolation there because a connective “until” is definable using
additional propositional atoms but it is not definable without them. In this
example technical expressive power has an intuitive meaning. Temporal
logic is applied in the analysis of tenses of natural language, and from the
linguistic point of view, expressing temporal phenomena using additional
atoms (atoms correspond to time dates like p = “The date is January 1st,
1970”) is not the same kind of linguistic construction as expressing temporal
phenomena using connectives (temporal connectives correspond to tense and
aspect constructions in natural language). So lack of interpolation for the
linguist may carry a whole lot more meaning than lack of interpolation may
mean for the computer scientist!

We will come back to tenses and time later on in this section, but mean-
while, let us continue to our next view.

Interpolation: View 3 — Quantifier elimination

Consider the situation of A(p, q) 	 H(q).

Interpolation has nothing to say about this situation, since H is in a
sublanguage of A. However, the computer scientist has many questions to
ask. If A is a specification about {p, q} and it forces a property H(q) of q,
we ask which part of A does the job? In other words, which part of A is
“responsible for” q?

This is important to the computer scientist for several reasons.

1. Can the specification A be algorithmically simplified to give the part
dealing with q only? (Imagine A(p, q) is to be implemented using gates and
boolean circuits, we want to simplify the circuitry to something controlling
q only.)
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2. Suppose A is a program that does not perform exactly right. Can we
slice it (the area doing this kind of work is called “program slicing”) to the
parts on {p} and {q} and check where the bug is?

Another example is when a specification H(qi) is implemented in another
computer language and the implementation is described by the formula
A(qi, pj). (Say, implementing sets in the programming langauge C as lists).
If the implementation is sound, we want A(qi, pj) 	 H(qi). Again we want
to know exactly how A is “responsible” for H and most importantly, what
additional properties and expressive power does A add to H.

Put in technical terms, we want to effectively derive from A(p, q) the part
A 	 {q}, talking about q only. In logical terms, we want to have

A 	 A 	 {q}

and we want A 	 {q} to be minimal, i.e., whenever A 	 H(q) then A 	 {q} 	
H(q).

Put in these words, this has meaning in pure logic as well. Obviously
logically A 	 {q} is equivalent to ∃pA(p, q) and the computational require-
ments of the “slicing” computer scientist amount to (propositional and/or
second order) quantifier elimination in logic.

In fact, if

A(p, q) 	 B(q, r)

and the deduction theorem is available and the logic 	 is reasonable, then
we can write schematically:

	 ∀p∀r(A(p, q) → B(q, r)),

∃pA(p, q) 	 ∀rB(q, r)

and hence

A(p, q) 	 ∃pA(p, q) 	 ∀rB(q, r) 	 B(q, r).

In classical logic we can write

∃pA(p, q) ≡ A(�, q) ∨A(⊥, q)

which gives us an algorithmic way of finding interpolants. This can be
done in any finite fixed matrix logic (for example, finite many valued logic)
provided constants for the values and “disjunction” are available.

Interpolation: View 4 — Artificial intelligence

The quantifier elimination view is important for interpolation for non-
monotonic logics arising in Artificial Intelligence. Most of the logics there,
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such as default logics, circumscription, logics with negation as failure, in-
heritance nets, autoepistemic logics and more are nonmonotonic and non-
transitive. We consider these logics as very applicable common sense, day
to day service logics which allow for the following to happen:

(1) Δ 	 B but Δ, A �	 B

(2) A 	 B and B 	 C but A �	 C

Clearly we have a difficulty here for interpolation. If A(p, q) 	 B(q, r),
we still expect some interpolant H(q) to “transmit” the specification from
A to B via A 	 H 	 B. But if such logics cannot force transitivity, how can
we expect this?

The existential quantifier view is more helpful. ∃pA(p, q) has nothing to
do with B and is likely to have a similar meaning in nonmonotonic logic,
parallel to the monotonic case.

Interpolation for nonmonotonic logics in AI have not been studied much.
Partly because the logics have neither good proof theory nor simple seman-
tics and partly because we need to reconsider what interpolation is supposed
to mean in such cases.

Note that it is not clear what the existential view would be for connective
interpolation of the form

A(�1,�2) 	 B(�2,�3).

Interpolation: View 5 — Proof theory

The “slicing” view of interpolation has its counterpart in logic. It is the
proof theoretical view for interpolation. Suppose we are given a logic 	
and we want to find the interpolants algorithmically in this logic, then we
must ask, as logicians, how is 	 presented to us? Let us assume that we
have some proof theoretic manipulative rules that can begin with A(p, q) and
manipulate it and end up with B(q, r). Thus A(p, q) 	 B(q, r) is established
algorithmically. We can thus hope, by carefully and inductively looking at
the proof and the rules, to extract an H(q) such that A(p, q) 	 H(q) 	
B(q, r).

In fact a careful analysis of the proof process may give us additional
information about the interpolant H. We can indicate the positions of q
in H as compared with its position in A and the nature and nesting of the
connectives in H as compared with A. In practice it is not so difficult to
find the interpolant once a good set of proof rules is established. The hard
part to prove is that a set of good rules does indeed characterise the logic.
The reader has probably heard a lot about cut free proofs and normalisation
theorems, as well as goal directed procedures.

The basic idea is that if we start with some assumptions A1, . . . , An, we
first break them apart into smaller subparts (using elimination rules) and
then put the parts together again (using introduction rules). Such a proof
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is normalised and it is easy to trace when and where the new (non-logical)
symbols are introduced.

This view seems very promising indeed. In fact it has three further major
advantages.

1. Proof methodologies go across logics: variations in the proof process
can yield a variety of known logics. Thus interpolation can be studied for
families of logics and hence its nature can be better understood (see [Gabbay
and Olivetti, 2000]).

2. Logicians love cut free formulations of logics and so one can obtain a
lot of support for interpolation in many quarters. In fact we hope that this
chapter will contribute towards crystallising some interest in our area.

3. In computer science the theme “proofs as programs” is a very promi-
nent, strongly supported and widely applied approach. Computer science is
also keenly interested in interpolation. So if we study some logics (usually
intuitionistic or linear logic variants) which also play a role also as pro-
gramming languages, we can unify and benefit from both points of view
in our quest of understanding interpolation. To succeed in this attempt we
need to look at some simple logic programming language (intuitionistic logic
fragment with negation as failure? Horn clause logic?) and try and prove
interpolation for it in a variety of ways.

Interpolation: View 6 — Consistency

The consistency view is important to both the computer scientist and the
logician. Suppose Δ and Γ are two specifications/theories which “agree” on
their common language. We ask ourselves can we put them together in a
consistent way, i.e., consider Θ = Δ∪Γ, and is Θ consistent? This is known
in logic as Robinson’s consistency theorem (for different logics there may
be different specific formulations and assumptions involved in the proof of
this theorem). In computer science this is the problem of amalgamation (or
push-out to use category theory language).

Let H = Δ ∩ Γ. Then Figure 2 describes the situation.

We seek a commutative diagram here. Figure 2 is meaningful in computer
science. We can give different groups of programmers the tasks to write
specification and codes on different parts of the application. We hope they
agree on the common parts and we hope we can put them all together
consistently.

The connection with interpolation is clear. If Δ ∪ Γ were inconsistent
then Δ,Γ 	 ⊥. We find an interpolant I in the common language such that
Γ 	 I and Δ, I 	 ⊥, i.e., Γ 	 I and Δ 	 I → ⊥. But this contradicts
the assumption that Δ and Γ agree on the common language. The above
“proof” manipulated Δ,Γ and ⊥ in a way permissible in classical logic.
When we deal with a variety of logics we get several possible formulations
of the interpolation and of the consistency theorems and one has to study
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Θ

Δ Γ

H

Figure 2.

what implies what. See for example Sections 2.1 and 2.3 below.

In fact, the very notion of “consistency” can vary from logic to logic (as
well as the availability of ⊥) and it is better to talk about “Θ is acceptable”
instead of “Θ is consistent.” The notion of “acceptability” is certainly
more in tune with artificial intelligence applications, where theories may
be formally logically consistent but unacceptable in the application area.
For example, any database which does not satisfy its integrity constraints
is consistent but not acceptable.

Interpolation: View 7 — Semantical view

The consistency view leads naturally to semantical and algebraical con-
siderations. Roughly speaking, given A 	 B we can proceed as follows: Let
H be H = {h in common language | A 	 h}. If H 	 B then we have our in-
terpolant. Otherwise Δ = {A}∪H and some carefully chosen Γ ⊇ {B → ⊥}
are each consistent and they agree on the common language. Use a Henkin
or tableaux construction to build a model for Δ ∪ Γ (consistency theorem)
and get a contradiction.

This method is powerful but it has its problems.

1. Many logics have models involving families of interconnected theories
(possible worlds) and so it is complicated to construct a common model for
Δ ∪ Γ out of Δ and Γ.

2. We already saw that sometimes interpolation fails because of lack of
expressive power. If the attempted construction of a model for Δ ∪ Γ fails,
can we get an idea of what expressiveness is missing? It is not as “easy” in
the semantic view as it might be in the proof theoretic view.

Some logics such as intuitionistic logic of constant domains (for which the
problem of interpolation is still open) has been giving us a lot of headache
over the past 30 years, and several false proofs using different methods have
been published.
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Note that the logic or the theory for which we want to interpolate may
be presented semantically to us via a class of models M. Thus interpolation
will take the form M 
 A → B implies that for some H in the common
language M 
 A → H and M 
 H → B. In such a case only semantic
methods are available.

Interpolation: View 8 — Algebraic view

This is one of the most potent views for interpolation. Given a logic 	
it must be such that a Lindenbaum free algebraic semantics is available for
it. The atoms are the generators of the algebra, the connectives are the
algebraic functions and the axioms are identities. Any further axioms are
additional identities. We can ask whether such algebras (for a given logic)
satisfy a variety of amalgamation properties. Interpolation is connected
with amalgamation and because of the effectiveness and potency of algebraic
methods, impressive results can be obtained. See Section 2.3 for example.

Note that amalgamation is a general algebraic property of independent
research interest.

The amalgamation view is connected with the consistency and semantic
views. A close examination of the constructions will show that one is ac-
tually building models. There is also a connection with amalgamation of
proof systems (called combining logics).

It is worth our while to look more closely at combining logics. Let L1 and
L2 be two propositional logical systems presented as Hilbert style systems,
using the set of connectives C1 and C2 respectively and based on the atomic
propositions Q1 and Q2 respectively.

To have some specific examples, take L1 as intuitionistic implication “→”
based on Q1 and let L2 be the same “→” based on Q2 and let Q = Q1∩Q2.
We chose to base L1 and L2 on the same connective “→” but we could have
chosen L1 based on “→” and say L2 based on “→,” giving “→” the Hilbert
axioms of strict S4 implication.

It is important to note the Hilbert proof theory of such a logic L. We
define

	0
L

A if A is a substitution instance of an axiom. (SubL)

If 	m
L

A and 	n
L

A → B then 	k
L

B, k = max(m,n).1 (MPL)

The important point to note is that in (SubL) above the “substitution
instance” is in the language of the logic L.

So if we have two versions L1 and L2 of intuitionistic implication “→,”
one based on atoms Q1 and one based on atoms Q2, then in (SubLi) the

1The modus ponens part can differ from logic to logic. This variation is essential
and reflects the rich variety of substructural logics. What is important for us is the
Hilbert style generation of the theorems (as opposed to, for example, natural deduction
elimination/introduction rules) and the next point we make about (SubL).



76 DOV M. GABBAY AND LARISA L. MAKSIMOVA

substitution is in the langauge based on Qi, i = 1, 2.

Let us now consider the logic based on Q1∪Q2, call it L1,2. We can have
two versions of substitution for axioms:

Full version. (SubL1,2) = all substitution instances of axioms with formu-
las based on Q1 ∪Q2.

Restricted version. Take the union of the sets of all substitution instances
of the axioms of formulas based on Q1 and separately the set based on Q2.
In symbols we can say that we are taking (SubL1) ∪ (SubL2).

Clearly (SubL1) ∪ (SubL2) ⊆ (SubL1,2).

Let 	L1,2 be the logic based on Q1 ∪ Q2 generated from (SubL1,2), and
let 	L1+L2

be the logic generated from (SubL1) ∪ (SubL2) using (MPL1)
and (MPL2) and the new rule of transitivity

If 	 A → B and 	 B → C then 	 A → C. (TRL1L2).

We need this rule because modus ponens applies in each language only
and TR gives the connection between languages.

The following holds in some cases (including the case of intuitionistic
logic).

Claim. (1) and (2) are equivalent:

(1) L1,2 has interpolation,

(2) 	L1+L2
=	L1,2

.

To persuade ourselves of this claim, assume L1,2 has interpolation and
assume 	L1,2

A(p, q) → B(q, r). (We take this example as a typical case.)
Then we need to show that 	L1+L2

A(p, q) → B(q, r), namely that it can
be generated from (SubL1) ∪ (SubL2). By interpolation there is an H(q)
such that

	L1,2
A → H and 	L1,2

H → B.

Since it is easy to show that L1,2 is a conservative extension of Li, we can
now show that 	L1+L2

A → B.

Now assume (2) and we show interpolation. This is actually simple. If
we write 	1,	2 for provability in languages 1 and 2 respectively, then 	1+2

is the transitive closure of 	1 ∪ 	2, while 	1,2 is direct provability in the
language of Q1 ∪ Q2. So if A 	1+2 B and A is in language 1 and B in
language 2, then there must be a sequence of wffs such that

A 	1 A1 	1 A2 . . . 	1 Ak 	2 B1 	 . . . 	 B.

The junction Ak 	2 B1 is the first point in the sequence where there is
a change in provability. Since we are starting with language 1, we have to
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start with 	1 and when we change to 	2, Ak must be in the common lan-
guage. Thus Ak is an interpolant.

The above argument is deceptively easy. This is because the hard work
is to establish (2). The reader should note that condition (2) is not just a
technical condition (equivalent to interpolation) which has no meaning of
its own. Far from it, we are touching here on the area of combining logics
and combining varieties etc and this is a deep subject (see [Gabbay, 1998;
Gabbay et al., 2003; Gabbay, 2008].

To highlight the distinction we made between 	1,2 and 	1+2 consider the
following example.

EXAMPLE 1 (Logics with conjunction only). Let “∧” and “&” be two
conjunctions. Write rules for each:

(& Introduction)
A,B

A&B
,

(& Elimination)
A&B

A
,

A&B

B
,

(∧ Introduction)
A,B

A ∧B
,

(∧ Elimination)
A ∧B

A
,

A ∧B

B
.

If we combine the language and combine the rules we get (A ∧ B) ≡
(A&B) as follows:

A&B 	 A

A&B 	 B

A,B 	 A ∧B

and hence

A&B 	 A ∧B

However, if we allow the rules to be applied only in each logic take tran-
sitive closure, this will not make the two conjunctions equal.

Let us try and prove

(A ∧B) ∧ C 	 (A ∧B)&C.

we can get

(A ∧B) ∧ C 	 (A ∧B),

(A ∧B) ∧ C 	 C,
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but we cannot use
A ∧B,C 	 (A ∧B)&C

because it is not purely in one language!

We can continue

A ∧B 	 A ,

A ∧B 	 B

and then collect and get

A,B,C 	 (A&B)&C

and so
(A ∧B) ∧ C 	 (A&B)&C

but not mixed!

The concept of restricted combination applies to any form of proof system
and not necessarily only to a Hilbert formulation. It is a version of the
concept of amalgamation (properly formulated) which may be equivalent to
interpolation (properly and respectively formulated).

Amalgamation is a fascinating subject. See for example the papers of
H. Neumann in the American Journal of Mathematics, 590–625 (1948) and
491–540 (1949).

In these papers, Figure 3 is studied for groups

G

H

Gn

jn

in

G1

j1 . . .

i1 . . .

Figure 3.

where given that H is isomorphically embedded into G1, . . . , Gn through
i1, . . . , im. We want an amalgamated group G containing G1, . . . , Gn such
that all the copies i1(H), . . . , in(H) are the same copy.
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Interpolation: View 9 — Definability

To see this point of view recall the implicit function theorem from first
year calculus.

Let G(x, y) be a differentiable function with G(x0, y0) = 0 and
∂G

∂y
�= 0

at (x0, y0).
Then there exists a unique function y = h(x), defined near x = x0

such that h(x0) = y0 and G(x, h(x)) ≡ 0 (identical 0). The function h
is differentiable and

h′(x) =
∂G/∂x

∂G/∂y
.

The above is a very fundamental basic theorem which is used in proving
many key theorems from differential equations to differential geometry and
manifolds. It essentially says that under reasonable conditions if G(x, y) = 0
defines y as a unique function of x implicitly, with G(x0, y0) = 0, then an
explicit solution/definition exists y = h(x) in the vicinity of (x0, y0) (i.e.,
y0 = h(x0).)

Let us look now at Beth’s definability theorem in logic. Suppose we have
(the exactly formulation of the Beth property can also depend on the logic):

A(p, q1)&A(p, q2) 	 q1 ≡ q2.

Then there exists a formula h(p) such that

A(p, q) 	 q ≡ h(p).

Interpolation is sometimes equivalent to Beth definability and sometimes
not. It depends on the logic. Let us consider classical propositional logic.

Assume we have interpolation and we show Beth definability.
Assume that A(p, q1)&A(p, q2) 	 q1 ≡ q2.
Then A(p, q1)&q1 	 A(p, q2) → q2.
So for some h(p)

(a) A(p, q1) 	 q1 → h(p),

(b) h(p)&A(p, q2) 	 q2.

Hence A(p, q) 	 q ≡ h(p).

The converse can also be proved in the classical logic. But it does not
hold in intermediate logics.

Interpolation: View 10 — Interpolation by translation

This is actually a general methodology for solving problems in logic.
Suppose we are given two logical systems 	1 and 	2 and 	2 is well known to
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us (for example, it is classical or intuitionistic predicate logic). If we have
a faithful translation τ from 	1 to 	2 then we can learn properties of 	1 by
translating into 	2 and then translating back.

The general schema is as follows:
We have a theory Θ in 	2 such that for any A,B of 	1 we have

A 	1 B iff Θ ∪ {τ(A)} 	2 τ(B) (∗)

Let A 	1 B be an interpolation problem in 	1 and assume Θ is in the
common language and assume further that 	2 does allow for interpolation.
Then we have

Θ, τ(A) 	2 τ(B).

Hence there exists an interpolant I in 	2 such that

(1) Θ, τ(A) 	2 I, (2) I 	2 τ(B).

If we can find an H in 	1 such that τ(H) = I, (i.e., if we can translate I
back into 	1) then

A 	1 H 	1 B.

Thus the problem of interpolation for 	1 is reduced to the problem of
translation back from 	2 to 	1, which is again the problem of expressive
power in 	1.

We have a chapter devoted to this method in the book [Gabbay and
Maksimova, 2005].

By the way, the “logic by translation” is a general methodology. We can
do “revision by translation” or any other property by translation.

Another aspect of translation is to translate a schematic family of logics
L1

i into a respective family L2
i in a systematic way and see what happens.

For instance, the translation of superintuitionistic logics into extensions of
S4 was exploited to solve interpolation problem over S4.

There are other useful translations such as the translation of nonmono-
tonic systems into temporal logic, which can help with interpolation.

Interpolation: View 11 — Traditional studies

There are traditional questions a logician asks in any logic discipline and
our subject has its share of this. The following are some such questions.

(1) Complexity of (the algorithms for finding) the interpolants.

(2) Given a logic L for which there is (or there is not) an interpolation
theorem, what can we learn about neighbouring systems?

(3) Variations of the interpolation theorem and how they relate to each
other.

(4) Same as 3 for concepts related to interpolation.
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Remarks. We conclude this section with an observation. The reader should
note that the views mentioned above are not just methods for proving inter-
polation which are conceptually subordinate to the concept of interpolation
itself. These are methodologies of independent interest and independent
ideas and in many cases these are independent communities of researchers
which are active in their area independently of interpolation.

1.2 Interpolation in general logics

1.2.1 Historical background

In recent years, applied disciplines such as computer science, artificial in-
telligence and computational linguistics were under increasing commercial
pressure to provide devices which help and/or replace the human in his daily
activity. This pressure required the use of logic in the modelling of human
activity and organisation on the one hand and to provide the theoretical
basis for the computer program constructs on the other.

The increased demand for logic from computer science and artificial in-
telligence and computational linguistics accelerated the development of the
subject. It pushed research forward, stimulated by the needs of applica-
tions. New logic areas became established and old areas were enriched and
expanded.

The table at the end of the editorial to this Volume, will give our readers
an idea of the landscape of logic and its relation to computer science and
formal language and artificial intelligence.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the effective negotiation of research partnerships
with fallacy theory. These subjects are becoming more and more useful in
agent theory and intelligent and reactive databases.

1.2.2 General logics and interpolation

The discussion in the previous subsection has shown that the notion of
what is a logical system has evolved considerably in recent years. Similarly
the notion of what we mean by interpolation in such logics needs to be
modified. This gives us the opportunity not only to address interpolation
for new logics but also to sharpen our understanding of interpolation in the
old traditional logics, as we develop new points of view during our dealings
with the new logics.

The purpose of this subsection is to discuss all these new developments.
Our method of exposition is to isolate and discuss main features arising

in the new logic which seem to cause us difficulty in formulating and solving
the interpolation problem.
Challenge 1: Structured databases. We begin with classical proposi-
tional logic. This logic has a notion of a formula A (built up using atoms
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Logic Intuitionistic or
classical logic

Modal logic Lambek logic

Notion
Declarative unit
(formula A)

formula formula formula

Theory
(database)
Δ

set of formulas sequence of for-
mulas

sequence of for-
mulas

Input into a
database

Input an el-
ement into a
set

Append an ele-
ment at the end
of a sequence

Append an ele-
ment into end of
a sequence

Deletion from
database

Delete from a
set

Drop last ele-
ment in a se-
quence

Drop last ele-
ment in a se-
quence

Substitution of
a database into
another (cut)

Δ(x/Γ) = (Δ −
{x}) ∪ Γ

Take the first x
out of the se-
quence Δ and
replace by the
sequence Γ

Take any ele-
ment x out of Δ
and replace by
Γ.

Language Classical impli-
cation

Strict implica-
tion

Lambek re-
source implica-
tion

Figure 4.

and the traditional connectives), a notion of a theory (set of formulas), a
notion of how to add an assumption to a theory and how to take an as-
sumption out of a theory, as well as a notion of substitution of one theory
into another (as seen in formulation of a cut).

The new logics differ from classical and intuitionistic logic in that they
need variations on the above notions.

Let us summarise these notions in a table and indicate how two other
sample logics have different notions. We simplify our language and look
only at pure implicational logics. Figure 4 summarises the results for clas-
sical/intuitionistic implication, strict implication and Lambek implication.

A database in intuitionistic logic is a set of formulas. A database in strict
implication or Lambek is a sequence of formulas. The consequence relation
is always of the form Δ 	 A, i.e.,

Database 	 formula.

Thus classical and intuitionistic logic have the same syntax but different
consequence relation 	. Strict implication and Lambek also have almost the
same syntax to each other but different consequence relations. Our book
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[Gabbay and Maksimova, 2005, Section 17.1] contains more comparison and
details.

The cut theorem (if at all true) in the case of sequence database looks
like the following:

Cut for strict K implication

(A1, . . . , An) 	 B

and

(C1, . . . , Cm) 	 A1

imply

(C1, . . . , Cm, A2, . . . , An) 	 B

Cut for Lambek implication

(A1, . . . , An, X,D1, . . . , Dk) 	 B

and

(C1, . . . , Cm) 	 X

imply

(A1, . . . , An, C1, . . . , Cm, D1, . . . , Dk) 	 B

To give an idea what 	 means in the case of strict implication, we use
the semantic interpretation in Kripke models:

• (A1, . . . , An) 	 B iff in every Kripke model and every sequence of
worlds (t1, . . . , tn) such that t1Rt2, t2Rt3, . . . tn−1Rtn and such that
t1 
 A1 and t2 
 A2, . . . , and tn 
 An, we also have that tn 
 B.

Figure 5 shows the situation:

tn : An 	 tn : B

t2 : A2

. .
.

t1 : A1

•

Figure 5.

The Lambek calculus implication requires semigroup (with operation ∗)
semantics. We have
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(A1, . . . , An) 	 B iff in every semigroup model and any t1, . . . , tn such
that t1 
 A1, . . . , tn 
 An we have that ((t1 ∗ t2) ∗ . . .) ∗ tn 
 B.

The additional difficulties arising for the problem of interpolation for
logics where the database has additional structure is the challenge of the
very formulation of the interpolation theorem.

We could of course write

A(p, q) 	 B(q, r)

and ask for H(q) such that A 	 H 	 B.
Since any logic of any complex structure will have to accept any single

formula as a legitimate database, the above is always meaningful.
However, this setting may not be general enough to be useful (besides

being a coward’s way out!). We want a formulation which reflects the ex-
pressive properties of the logic and closed under inductive manoeuvres. If
the logic has axioms or proof rules then A 	 B might be forced to reduce
to Δ(A,Bi) 	 C where Bi and C are subformulas and Δ is a structured
database. In fact, this may be the very method for finding what structures
are needed!

It makes more sense to try something like the following (for the case of
the data being sequences)

A1(p, q), B1(q, r), A2(p, q), . . . ,	 B

i.e., we want the languages to alternate. But then in this case we need to
figure out first that the interpolant is probably going to be a sequence and
what role is the interpolant sequence H1,H2, . . . to play in the picture? See
[Gabbay and Olivetti, 2000], where new notions of chain interpolation were
introduced.

The reader at this stage needs to realise the following points

1. Applied logic forces us to consider structured databases Δ which con-
tain many formulas arranged in a specified structure (lists, trees, generally
labelled, etc). The consequence relation is much more complex for such
cases.

2. We need to formulate reasonable interpolation theorems for such struc-
tures and check their validity.

3. Many of the methods may not work here and may need to be specially
modified. For example, algebraic methods will have a problem, how are
we going to do algebraic logic for lists? Other methods such as semantical
methods and proof theoretical methods will become more dominant. We
may learn more about the old logics (classical, intuitionistic, modal), owing
to the possibility of them being formulated as special limiting cases of the
structured ones.

Before we conclude this subsection, let us talk more about structures. The
most general logic with structured databases is that of labelled deductive
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systems. These systems have an algebra A of labels (A having algebraic and
relational signature) and the formulas are “structured” by possibly several
algebras of the form A, i.e., our database Δ have the form Δ = (A, f),
where f is a function f : A → set of wffs, and A is one of the algebras we
can use. We write f visually as {ti : Ai}, ti ∈ A where Ai = f(ti). The
consequence relation must therefore be defined in the form {ti : Ai} 	 s : B,
for ti, s ∈ A.

We now have to consider an interpolation problem in the form:

Let f = f1 ∪ f2, where Domain f1 ∩ Domain f2 = ∅. Assume f1(ti) is in
language 1 and f2(tj) is in language 2. Assume {t : f(t)} 	 s : B with B in
language 2. Can we eliminate f1 in some form and substitute by f ′1 giving
values in the common language?

Currently we have neither a general formulation nor a solution to this
problem (see [Gabbay, 1996]).

Challenge 2: Nonmonotonicity. The interpolation challenges we had
with strict implication arose because our database was structured. It was
a list. But our logic was monotonic. Namely, if Δ 	 A and Δ′ has more
information than Δ (this notion has to be defined) then also Δ′ 	 A.

This condition is called monotonicity. Both strict implication and the
Lambek implication are essentially monotonic.

In the case of strict implication, we can say that

a sequence (A1, . . . , An, B1, . . . , Bk)

has more information than (D1, . . . , Dk)

if for each 1 � i � k we have (A1, . . . , An, B1, . . . , Bi) 	 Di.

The Lambek implication is not technically monotonic but it is monotonic
in spirit. If we change the definition of 	 a bit it will become monotonic.2

In a general labelled deductive system, we have to define the notion of
“Δ has more information than Δ” using some homomorphic mapping of Δ′

on Δ satisfying some provability conditions.3

We now address the problems arising from real nonmonotonicity.

EXAMPLE 2 (Negation as failure). Imagine that we go to a travel agent
and ask for a flight from Novosibirsk to London direct. The agent looks
up his list of flights and says that there is no such flight. All flights must
connect through Moscow. We continue and ask whether there is a flight
where the connection is such that one need not get off the plane (i.e., the
plane just picks up more passengers at Moscow). Again the agent checks

2Lambek logic arose in natural language processing. A sentence like John is tall
needs to be parsed and so it is present as np (representing John) and np → sentence
(representing Tall) and the sentence is well formed if np, np → sentence � sentence.
Thus John is Tall Tall should not be successful. But this is a technical nonmonotonicity.

3This, by the way, has not been published yet. It is in Volume 2 of Gabbay’s Labelled
Deductive Systems book.
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his tables of flights and says that although there are no details about the
connecting flight, the time gap is 4 hours and so he cannot believe it is the
same plane (collecting more passengers).

The agent used negation as failure, a fundamental nonmonotonic prin-
ciple, to deduce that there is no direct flight. The reasoning principle was
that since such a flight was not listed, then there was no such flight!

This means that on a more formal basis we can do a deduction of the
form

a, a → q,¬s&q → r 	 r (1)

The reason being that we can deduce ¬s because s is atomic and is not
listed in the database.

In fact, Horn clause logic programming with negation as failure will in-
deed give us r as a consequence, as suggested in (1). Consider now the
interpolation question

a, a → q 	 (¬s&q → r) → r (2)

This is supposed to be equivalent by the deduction theorem, if it holds,
to the previous problem (1).

We now ask what is the common language? Is s in the common language?
If the database says no to anything (atomic!) not listed in it, then its
language is everything! It proves ¬s&¬r&¬x . . . etc, etc, all the atoms
not listed in it. Indeed in the old days, when nonmonotonic logic was just
starting to spread, many logicians insisted that there was no such thing as
nonmonotonicity. They strongly claimed that if we are given some database
Δ, then there are some principles (such as negation by failure, default,
circumscription, etc, etc) which say that the actual database given is not
Δ but Δ′, where Δ′ is the augmentation of Δ obtained by using these
principles (in our case it is {a, a → q,¬s,¬r,¬p1,¬p2, . . .}), and that from
Δ′ everything can be derived in a monotonic way. This view is not correct,
but we still have the problem of defining interpolation for such logics, and
trying to decide what is the common language. Another problem in the
case of negation as failure is that 	 may not be defined between clauses and
the interpolant may be a clause.

To get ourselves even more agitated let us look at the following example:

EXAMPLE 3 (Transitivity). We have

(1) ¬s → r 	 r,

(2) r 	 s → r,

but

(3) ¬s → r �	 s → r because (3) is equivalent to (4),

(4) (¬s → r), s �	 r even though (3*) holds

(3*) ¬s → r 	 ¬s.
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The first problem is that we have no transitivity. The second problem is
that although (3*) holds, the minute we put s into the database (forming
(4)), 	 ¬s is retracted! (This is why the system is nonmonotonic.)

So can we define and check interpolation in such a system?

Our case study section will define the above logic precisely. Meanwhile
let us give you a semantic definition of another system — a circumscription
system.

EXAMPLE 4 (Circumscription). (1) A classical model for the atoms Q =
{q1, q2, . . .} is any function h h : Q �→ {0, 1}.

(2) We write h1 �Q h2 iff for all q ∈ Q,h1(q) � h2(q).

(3) Let A be a wff of classical logic. We say h 
 A iff the value of h(A)
of A is 1 when computed according to classical truth tables.

(4) We say h is a minimal model of A (notation h 
Q
m A) iff h 
 A and

there does not exist h′ �Q h such that h′ 
 A.

(5) Define A 	Q
m B for A,B containing atoms from Q) by A 	Q

m B iff for
any minimal model h of A we have h 
 B. In symbols

h 
Q
m A implies h 
 B.

(6) For example, we have p ∨ q 	
{p,q}
m ¬p ∨ ¬q.

Challenge. Formulate a reasonable interpolation question for 	Q
m and check

its validity!

The reader can see that we again have a problem of common language.
When we write A(p, q) 	Q

m B(q, r) what are the minimal models? Are they
minimal as functions on Q = {p, q} or on Q = {p, q, r}? In the second case
we have A(p, q) 	Q

m ¬r. In the first case we don’t know.

The above discussion concentrated on the question of language, but there
is also the question of consequence. If nonmonotonic logics may not be
transitive (i.e., we may have X 	 Y and Y 	 Z but X �	 Z) then how do
we know if interpolation fails because of lack of expressivity or because of
lack of transitivity?

Suppose we have A(p, q) 	 B(q, r). Look for all h(q) such that A(p, q) 	
h(q). If H = {h(q)} �	 B(q, r) is it because of lack of logical expressivity or
is it because 	 is not transitive?

Fortunately for our interpolation problems, nonmonotonic logics do have
some structure to them. Almost every nonmonotonic logic 	1 can be ob-
tained in some systematic functorial4 semantic or syntactic way from a
maximal monotonic logic 	2, having the main connecting property:

A 	2 B implies A 	1 B (∗)

4By “functorial” we mean a universal construction on a logic which does not use any
specific properties of it.
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and some other connections arising from the construction.

This allows us to propose the following interpolation theorem for 	1 (it
may or may not hold).

Interpolation property for nonmonotonic consequence. Let 	1 be
a nonmonotonic consequence and let 	2 be a monotonic consequence from
which 	1 is constructed. Then by interpolation we mean the following:

• If A(p, q) 	1 B(q, r) then there exist hA and hB in the common language
such that A 	2 hA 	1 hB 	2 B (i.e., A monotonically interpolates to hA

which nonmonotonically proves hB which then monotonically proves B).

The above overcomes the problem of lack of transitivity!

Challenge 3: Refined Interpolation. Our interpolation considerations
so far were relative to the consequence relation. We wrote A(p, q) 	 B(q, r)
and asked for an interpolant H. We did not ask how 	 works, that is we
did not ask how it is presented to us (semantically, proof theoretically, as a
Hilbert system, via a translation into another logic, etc) and then asked for
the interpolant to be presented accordingly in some specific way. We were
quite happy with any H, satisfying only the “	” interpolating requirements.
There are, however, several compelling reasons for us to insist on more from
H. We want H to be influenced/tailored/be more meaningful in the context
of the way the logic is presented. There are strong arguments in favour of
this approach.

1. The view that a logic is just a consequence relation or just the set of
its theorems is being seriously challenged by the emergence of the new log-
ics. There are strong proof theoretical and there are enormously successful
semantic methodologies that run across logics. We have tableaux meth-
ods, Gentzen methods, resolution methods, goal directed methods, truth
table matrix methods, Hilbert methods, possible world semantics, algebraic
semantics, etc. All these methodologies are cognitively distinct and eas-
ily identifiable and each can characterise a rich variety of diverse logics by
executing minor changes in its procedures. Take for example three logics:

(a) classical logic,

(b) intuitionistic logic,

(c) �Lukasiewicz n-valued logic.

Presented through the truth table matrix method, classical logic and
�Lukasiewicz logic are “brother and sister.” Presented through Gentzen for-
mulation, classical logic and intuitionistic logic are very close while �Lukasiewicz
logic is a pain in the neck! Intuitionistic logic has no truth presentation.
It seems that the landscape of logics is a two dimensional grid (see Figure
1.6).
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tableaux

Gentzen

Truth table

matrix

classical
logic

intuitionistic
logic

�Lukasiewicz
logic

✓

✓

✓

✓ ✓

✓

✗✗

✗

Figure 1.6

So classical propositional logic Gentzen presentation is not the same logic
as classical propositional logic truth table presentation. So we may expect
our interpolation demands to reflect that.

2. The connection of interpolation with computer science requires us to
interpolate on the proof procedures which correspond to the programming
steps. The set of theorems (which defines the logic) is meaningless in this
context. This means that we should be more interested in finding inter-
polants relative to proofs which are in a sense uniform across logics, given
a fixed database. So to be absolutely clear about this notion, given Δ and
a family of logics L1, L2, all using variations of the same proof procedure
πi (πi is a variation of some generic π) and given a common sublanguage
Q ⊆ QΔ we find an interpolant H which is a sort of functional projection,
so that if π proves B from Δ then H(πi) proves B from Δ through some
Hi, which can be identified in H(πi).

Challenge 4: Interpolation and Abduction. Abduction is a general
process for finding missing premisses. Thus if Δ �	 q we are looking for A
such that Δ,A 	 q. Processes that look for possible such A’s and reason
about them are abductive processes. This is a very central area in common
sense reasoning and artificial intelligence as well as in philosophy of science
(new scientific theories can be found by abduction/explanation). See the
book [Gabbay and Woods, 2004]. For a quick lesson in abduction consider
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the following abduction problem:

p → q 	?q.

We want to know what data A to add to {p → q} to make it prove q. There
are three typical options for abduction for the case of Δ 	?q.

Option 1. Simply add q (i.e., A = {q}). This ia an easy way out and we
are adding the maximal logical content. So in our case the new database
becomes {p → q, q}.

Option 2. Add Δ → q. This is a minimal approach. So in our case the
new database becoems {p → q, (p → q) → q}.

Option 3. This is an intermediate option and it depends on the computa-
tion procedure. We simply follow the computation (which fails!) and help
it along with additional data whenever it gets stuck. In our case the ab-
duced wff is {p} because the computation uses modus ponens. So the new
database is {p, p → q}

We now ask: how is abudction connected with interpolation?
Consider the interpolation problem

Δ1,Δ2 	 q2.

Assume that q2 is genuinely in the language of Δ2. The interpolation prob-
lem requries an H in the common language such that

Δ1 	 H and H,Δ2 	 q2.

Write this situation as

Δ1 	 H 	 Δ2 → q2.

Now consider the abduction problem Δ2 	?q2. Clearly we need to abduce
some A such that Δ2,A 	 q2. Suppose we can fine-tune the abduction
algorithm to find an A in the common language. Call it H. If we also have
Δ1 	 H then we found our interpolant. So we need a mechanism that can
modify an abduction algorithm for Δ2 	?q2 which can make use of the fact
that Δ1 	 Δ2 → q2 and try and abduce in the common language. So our
interpolation problem becomes a modified abudction problem.

By way of illustration, let us analyse the following database:

Δ1 = {a → x, {x, r} → s},

Δ2 = {z, z → r, (a → s) → p}.

Here the common language is {a, r, s}.
Clearly Δ1,Δ2 	 p.
Let us try to prove p from Δ2 only. What do we need to add to Δ2 to

make it prove p?
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1. We can add p itself.

2. We can add Δ2 → p.

Clearly (1) and (2) are two extreme cases (strongest and weakest as-
sumptins). The following (3) is intermediate, as we disucssed.

3. Follow the computation and help it by adding the necessary assump-
tions. This option is good for interpolation because it allows us to

(a) restrict our additions to the common language and

(b) look at Δ1 for clues of what to add.

So let us do it. Since we have in Δ2 the clause (a → s) → p, we continue
the computation by trying to prove a → s. We therefore add a to the data
and try and prove s. Nothing in the data can give us s but we do have r.
So let us abduce and try to add r → s, but since this is done under the
assumption a, we need to add to Δ2 the clause a → (r → s).

Our candidate to add is then

A = {a → (r → s)}.

But we also want Δ1 	 A, so we want to make A as weak as possible.
However in this case we do have Δ1 	 a → (r → s).

2 INTERPOLATION AND DEFINABILITY IN MODAL AND
INTUITIONISTIC LOGICS

In this section we present the basic results on interpolation in modal and
intuitionistic logics, and also in some related logics.

We study interrelations of definability, interpolation and joint consis-
tency, and present a proof of Lyndon’s interpolation property (LIP) for
some modal logics, in particular, for quantified K, K4 and S4, and for some
other predicate systems. Also the propositional S5 has LIP. At the same
time, the quantified extension of S5, as well as other systems satisfying the
Barcan formula, have neither Lyndon’s nor Craig’s interpolation, nor Beth’s
property [Fine, 1979]. There are normal modal logics which have CIP but
do not possess LIP. Also Craig’s interpolation property holds for the most
known propositional modal logics, in particular, for Grzegorczyk’s logic Grz
and for the provability logic G.

In Section 2.3 we give a brief overview of the basic results on interpolation.
The detailed study can be found in [Gabbay and Maksimova, 2005].

First of all we consider
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2.1 Interrelations between interpolation, definabillity and joint

consistency

A normal modal logic is any set of modal formulas containing all the clas-
sical tautologies and the axioms �(A → B) → (�A → �B), �A ≡ ¬�¬A
and closed under the rules R1: A, (A → B)/B (modus ponens), R2: A/�A
(necessitation) and substitution. The minimal normal modal logic is de-
noted by K. The family of all normal modal logics, which are extensions of
a modal logic L, is denoted by NE(L). The least normal extension of L
containing a set Ax of formulas is denoted by L + Ax.

We use standard denotations for some members of NE(K):

D = K + ��,

K4 = K + (�p → ��p),

D4 = D + (�p → ��p),

T = K + (�p → p),

S4 = K4 + (�p → p),

G = K4 + (�(�p → p) → �p),

Grz = S4 + (�(�(p → �p) → p) → p),

Grz.2 = Grz + (��p → ��p),

K4.3 = K4 + (�(p&�p → q) ∨�(q&�q → p),

S4.3 = S4 + K4.3,

S5 = S4 + (p → ��p).

If L is a normal modal logic, its natural quantified extension is denoted
by LQ. Also we consider quantified modal logics with the Barcan formula:
∀x�A → �∀xA.

The relational semantics of the first-order modal language is defined as
follows. Let W be a set and R be a binary relation of accessibility on W .
Let D be some non-empty set (a domain). A first-order Kripke frame over
D is a triple

W = 〈W,R, {Dw}w∈W 〉,

where for any w,Dw is a non-empty subset of D (called by domain of w)
and also the monotonicity condition is satisfied:

for all w,w′ ∈ W, wRw′ implies Dw ⊆ Dw′ .

The frame W = 〈W,R, {Dw}w∈W 〉 is a constant domain frame, whenever
Dw = Dw′ = D for all w,w′ in W .

A model is a frame together with truth-relation. If L is a logic, a model
M is said to be an L-model if all axioms of L are true at all worlds in W ;
a frame W is an L-frame whenever all axioms of L are valid in all models
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based on W. It is well known that the logic K is characterized by all frames,
D by serial frames, K4 by transitive frames, T by reflexive frames, S4 by
reflexive and transitive frames, S5 by frames with the total relation R. The
Barcan formula is valid in a frame W if and only if W is a constant domain
frame.

Interpolation and definability notions play an important part in the math-
ematical logic. We consider various versions of these properties. We assume
that first order language contains the propositional constant �.

The Beth definability theorem [Beth, 1953] states that any predicate
implicitly definable in a first order theory is explicitly definable.

Let P be a list of predicate letters and individual constants and variables.
We write A(P ) to indicate that all predicates, constants and free variables
of the formula A are contained in P .

The Beth definability property B1 can be formulated for the predicate
logics as follows:

Let A(P,X) be a first order formula, X and Y n-ary predicate variables
outside of P,u = u1, . . . , un a list of individual variables outside of P . If

L 	 A(P,X)&A(P, Y ) → ∀u(X(u) ≡ Y (u))

then there exists a formula B(P,u) such that

L 	 A(P,X) → ∀u(X(u) ≡ B(P,u)).

Here the first formula means that A(P,X) implicitly defines X, and the
conclusion states that A(P,X) explicitly defines X; the formula B(P,u) is
said to be an explicit definition of X.

The Beth property B1 is closely connected with the Craig interpolation
property.

The Craig interpolation property (CIP) of a logic L is the following:
Let P,Q,R be disjoint sets consisting of predicate symbols and individual

constants. If

L 	 A(P,Q) → B(P,R)),

then there exists a formula C(P ) such that

L 	 A(P,Q) → C(P ))

and

L 	 C(P ) → B(P,R)).

Craig [Craig, 1957] proved that in the classical first-order logic the inter-
polation property implies the Beth property B1. In the same way one can
prove
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LEMMA 5. Let L be any modal logic. If L has CIP then L possesses B1.

We defined the Beth property in a syntactic way. Often other defini-
tions are applied, where the implicit and/or explicit definability is given
semantically. Assume K is a class of Kripke models. Then it determines
a semantical consequence relation. For a set of sentences Γ and a sentence
B we may say that Γ semantically implies B on the class K and write

K Γ → B if for any model M = 〈W,R, {Dw}w∈W ,
〉 in K and for any
w ∈ W we have

w 
 Γ ⇒ w 
 B.

Let A(P,X) be a first order formula, X and Y n-ary predicate variables
outside of P,u = u1, . . . , un a list of individual variables outside of P , and
let K be a class of models. We may say that X is implicitly definable by
Γ(P,X) on the class K if


K Γ(P,X),Γ(P, Y ) → ∀u(X(u) ≡ Y (u));

X is explicitly definable by Γ(P,X) on the class K if there exists a formula
B(P,u) such that


K Γ(P,X) → ∀u(X(u) ≡ B(P,u)).

Then one can change the definition of the Beth property replacing its
premise and/or its conclusion by the new definition of implicit or explicit
definability. It depends on the class K whether the new definition will be
equivalent to the old one or not. A sufficient condition for such an equiva-
lence is strong completeness of the logic L with respect to the class K. In
particular, the equivalence holds when L is one of the logics K, K4, S4, S5
and K is the class of models based on L-frames. This immediately follows
from Strong Completeness Theorem (see Theorem 15(i) below).

Fix any predicate modal logic L. For any sets Γ and Δ of formulas, write
Γ →L Δ, if there exist formulae A1, . . . , An in Γ and B1, . . . , Bm in Δ such
that ((A1& . . . &An) → (B1 ∨ . . . Bm)) is in L. A set Γ is L- consistent if
there is no formula B such that Γ →L B and Γ →L ¬B for some formula
B. We say that a set Γ of sentences of the language F is an L-theory of
this language if Γ is closed with respect to →L, i.e., if Γ →L B for some
sentence B of F then B ∈ Γ. A set Γ of sentences of F is a set of axioms
of an L-theory T if

T = {B|B is a sentence of Fand Γ →L B}.

It is clear that a L-theory is L-consistent if and only if it does not contain
⊥. A theory Γ of the language F is complete if it contains A or ¬A for any
sentence A of F .

In classical modal logics the Craig interpolation property is equivalent to
the following property RCP that is an analog of the Robinson Consistency
Theorem:
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(RCP) Let P,Q,R be disjoint lists of predicate symbols and individual con-
stants, and let Γ be a L-consistent L-theory of the language F(P,Q),
Δ a L-consistent L-theory of F(P,R) such that Γ ∩Δ is a complete
and L-consistent L-theory of the language F(P ). Then the set Γ ∪Δ
is L-consistent.

In order to prove the equivalence between CIP and RCP, we need some
definitions. Let L be a modal logic. Let P,Q,R be disjoint lists of predicate
symbols and individual constants, L1 = F(P,Q), L2 = F(P,R). We restrict
ourselves with considering at most countable languages. A pair of sets
(T1, T2), where Ti ⊆ Li for i = 1, 2, is L-separable if there is a formula
C in L0 = L1 ∩ L2 such that T1 →L C and T2 →L ¬C; such C is called
an interpolant. A pair is L-inseparable if it is not L-separable. An L-
inseparable pair (T1, T2) is (L,L1,L2)-complete if Ti is Li-complete for i =
1, 2. Note that if (T1, T2) is (L,L1,L2)-complete and A ∈ L1 ∩ L2, then
A ∈ T1 iff A ∈ T2.

One can prove the following lemma for any modal logic L.

LEMMA 6. (i) Every L-inseparable pair (T1, T2), where Ti ⊆ Li for i = 1, 2,
can be extended to a (L,L1,L2)-complete pair.

(ii) For each (L,L1,L2)-complete pair (T1, T2) and for every formula A ∈
Li,

Ti →L A ⇐⇒ A ∈ Ti.

In particular, ⊥ �∈ Ti and for all A,B ∈ Li,

L 	 A ≡ B ⇒ (A ∈ Ti ⇐⇒ B ∈ Ti).

THEOREM 7. A modal logic L has CIP if and only if it has RCP.

Proof. Let L have CIP. Let Γ be a L-consistent L-theory of the language
F(P,Q), Δ a L-consistent L-theory of F(P,R), where P,Q,R be disjoint
lists of predicate symbols and individual constants, and Γ ∩ Δ is an L-
complete L-theory of F(P ). Suppose that Γ ∪ Δ is L-inconsistent. Then
L 	 A&B → ⊥, where A and B are conjunctions of some formulas in Γ and
Δ respectively. Therefore, L 	 A → ¬B and, by CIP, there exists a C(P )
such that L 	 A → C(P ) and L 	 C(P ) → ¬B . Hence C(P ) ∈ Γ and
¬C(P ) ∈ Δ. If C(P ) ∈ Γ ∩Δ then Δ is L-inconsistent. If ¬C(P ) ∈ Γ ∩Δ
then Γ is L-inconsistent. So Γ ∩Δ is incomplete. Thus L has RCP.

For the converse, assume that L has RCP. Let L 	 A(P,Q) → B(P,R).
Suppose that there is no interpolant for this formula. It follows that the pair
({A(P,Q)}, {¬B(P,R)}) is L-inseparable. By Lemma 6 it can be extended
to a (L,L1,L2)-complete pair (Γ,Δ). Then Γ∩Δ is an L0-complete theory,
and Γ ∪Δ is L-consistent by RCP. We note that Γ ∪Δ →L ¬(A(P,Q) →
B(P,R)) contradicting the assumption. �
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2.2 Lyndon’s interpolation in some modal systems

In this section we consider the Lyndon interpolation property (LIP) which
is stronger then CIP. We prove that the most known quantified modal sys-
tems have this interpolation property, in particular, it holds for quantified
logics K, K4 and S4 and for the propositional S5. Also some superintu-
itionistic logics have Lyndon’s interpolation property. At the same time,
there are normal extensions of the propositional S5 which have the Craig
interpolation property and do not have the Lyndon interpolation. Some
examples are given in [Gabbay and Maksimova, 2005]. Also the Craig inter-
polation property is known for the logics Grz and G. K. Fine [Fine, 1979]

has proved that the quantified system S5 has neither interpolation nor the
Beth property.

We use semantic methods in style of [Gabbay, 1972] to obtain interpola-
tion theorems for quantified modal logics (see Theorem 2.10 below). The
proofs were published in [Maksimova, 1982a]. Other proofs, also for non-
normal systems, can be found in [Fitting, 1983]. In this section we consider
first order languages without equality and without functional symbols.

First we give some definitions.

Let us define notions of negative and positive occurrences of a subformula
in a formula inductively as follows:

(i) occurrence of subformula A in A is positive,

(ii) occurrence of A in a positive (negative) occurrence of (A&B), (B&A),
(A ∨B), (B ∨A), (B → A), �A, �A, ∃xA, ∀xA is positive, (negative),

(iii) occurrence of A in a positive (negative) occurrence of (A → B),¬A
is negative (positive).

An occurrence of a symbol X in a formula A is called to be positive
(negative), if it is situated in a positive occurrence of some subformula of
A.

For any set Γ of formulas, denote by Ω+(Γ) the set of all predicate symbols
occurring positively in formulae of Γ and by Ω−(Γ) the set of all predicate
symbols occurring negatively in formulae of Γ,Ω(Γ) = Ω+(Γ)∪Ω−(Γ); D(A)
is the set of individual constants and free variables of a formula A.

The Lyndon interpolation property (LIP) in a logic L is the following:

If (A → B) is in L, then there exists a formula C such that (A → C)
and (C → B) are both in L and also D(C) ⊆ D(A) ∩ D(B),Ω+(C) ⊆
Ω+(A) ∩ Ω+(B) and Ω−(C) ⊆ Ω−(A) ∩ Ω−(B).

This formula C is called a Lyndon interpolant of (A → B).

Say, that a formula A is reduced if it is built from atomic formulas and
their negations by use of &,∨,�,�,∃,∀.

LEMMA 8. Any quantified modal formula A is equivalent in K to some
reduced formula A′, where D(A′) = D(A), Ω+(A) = Ω+(A′) and Ω−(A) =
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Ω−(A′).

For proof, one can use the replacement lemma and the following equiva-
lences of K:

¬¬A ≡ A, (A → B) ≡ (¬A ∨B), ¬(A&B) ≡ (¬A ∨ ¬B),

¬(A ∨B) ≡ (¬A&¬B), ¬�A ≡ �¬A, ¬�A ≡ �¬A,

¬∀xA ≡ ∃x¬A, ¬∃xA ≡ ∀x¬A.

Let Γ be a set of formulas. Denote by D(Γ) the set of all individ-
ual constants and free variables contained in Γ. Denote by L (sometimes
with indices) a language consisting of reduced formulas, i.e., the set of all
reduced formulas A satisfying the conditions Ω+(A) ⊆ Ω+(L),Ω−(A) ⊆
Ω−(L), D(A) ⊆ D(L). If Γ is a set of reduced formulas, denote by L(Γ)
the least language containing Γ. Languages L and L′ are correlated if
D(L′) = D(L). A language L′ is said to be an inessential extension of
L, whenever D(L′) ⊆ D(L),Ω+(L′) = Ω+(L),Ω−(L′) = Ω−(L).

Fix any predicate modal logic L. For any sets Γ and Δ of formulas, write
Γ →L Δ, if there exist formulae A1, . . . , An in Γ and B1, . . . , Bm in Δ
such that ((A1& . . . &An) → (B1 ∨ . . . Bm)) is in L. By a theory of the
language L, we mean any set T ⊆ L satisfying the condition: (A ∈ L and
T →L A) ⇒ A ∈ T . If F ⊆ L satisfies the dual condition: (A ∈ L and
A →L F ) ⇒ A ∈ F , then F is a L-cotheory of the language L. Denote
by Th(L, L) the set of all L-theories and by CTh(L, L) the set of all L-
cotheories of the language L.

Let L′ and L′′ be correlated languages, L = L′ ∩ L′′,Γ ⊆ L′ and Δ ⊆
L′′. A pair (Γ,Δ) is called L-separable in (L′,L′′), whenever there exists a
formula A of the language L such that Γ →L A and A →L Δ. Note, that
the pair (T, F ), where T ∈ Th(L′, L) and F ∈ CTh(L′′, L), is L-inseparable
in (L′,L′′) if and only if T ∩ F = ∅.

A pair (T, F ) is called L-saturated in (L′,L′′) if the following conditions
are satisfied:

1) T ∈ Th(L′, L) and F ∈ CTh(L′′, L);

2) T ∩ F = ∅, i.e., (T, F ) is L-inseparable in (L′,L′′);

3) (A ∨B) ∈ T ⇒ (A ∈ T or B ∈ T );

4) ∃xA(x) ∈ T ⇒ (∃c ∈ D(L′))(A(c) ∈ T );

5) (A&B) ∈ F ⇒ (A ∈ F or B ∈ F );

6) ∀xA(x) ∈ F ⇒ (∃c ∈ D(L′′))(A(c) ∈ F ).

For fixed L, sometimes use terms “separable” and “saturated” instead of
“L-separable” and “L-saturated.”

LEMMA 9. Let (Γ,Δ) be L-inseparable in (L′,L′′). Then

(i) if �A ∈ Γ, then the pair ({A} ∪ {A′|�A′ ∈ Γ}, {B′|�B′ ∈ Δ}) is
L-inseparable in (L′,L′′);
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(ii) if �B ∈ Δ, then the pair ({A′|�A′ ∈ Γ}, {B} ∪ {B′|�B′ ∈ Δ}) is
L-inseparable in (L′,L′′).

Proof. (i) Assume that L 	 ((A&A1& . . . &An) → C) and L 	 (C → (B1 ∨
. . .∨Bm)) for some formula C ∈ L = L′∩L′′, where �A1, . . . ,�An ∈ Γ and
�B1, . . . ,�Bm ∈ Δ. Then �C ∈ L, L 	 ((�A&�A1& . . . &�An → �C
and L 	 (�C → (�B1 ∨ . . . ∨ �Bm)), so the pair (Γ,Δ) is L-separable in
(L′,L′′).

(ii) Suppose that L 	 ((A1& . . . &An) → C) and L 	 (C → B ∨ B1 ∨
. . . ∨ Bm)) for some C ∈ L = L′ ∩ L′′, where �A1, . . . , An ∈ Γ and
�B1, . . . ,�Bm ∈ Δ. Then �C ∈ L, L 	 ((�A1& . . . &�An) → �C) and
L 	 (�C → (�B ∨�B1 ∨ . . . ∨�Bm)), so the pair (Γ,Δ) is L-separable in
(L′,L′′). �

LEMMA 10. Let L′ and L′′ be countable. Then any pair L-inseparable in
(L′,L′′) can be extended to a pair which is L-saturated in (L′∗,L′′∗), where
L′∗ (L′′∗) is an inessential extension of L′ (L′′).

Proof. Let (Γ,Δ) be L-inseparable in (L′,L′′). We extend L′ and L′′

adding a countable set {c0, c1, . . .} of new individual constants and denote
extensions by L′∗ and L′′∗ respectively. Note that (Γ, Δ) is L-inseparable
also in (L′∗,L′′∗). If there were a formula C in L∗ = L′∗ ∩ L′′∗, such that
Γ →L C and C →L Δ, one would construct a formula C ′ in L = L′ ∩ L′′

replacing the new constants by new individual variables and binding them
by universal quantifiers, then C ′ would separate (Γ,Δ) in (L′,L′′).

Now enumerate all the formulas of (L′∗,L′′∗):

L′∗ = {A1, A1, . . .},L
′′∗ = {B1, B2, . . .}.

Let T0 = Γ, F0 = Δ. Further, let F2n+1 = F2n and define T2n+1 as
follows: T2n+1 = T2n ∪ {An}, whenever the pair (T2n ∪ {An}, F2n) is L-
inseparable in (L′∗,L′′∗) and An does not begin with existential quantifier;

T2n+1 = T2n ∪ {An, A′
n(c)}, whenever the pair (T2n ∪ {An}, F2n) is L-

inseparable in (L′∗,L′′∗) and An = ∃xA′
n(x) and c is the former new con-

stant, which has no occurrences in formulas of (T2n ∪ {An}, F2n); T2n+1 =
T2n, whenever the pair (T2n ∪ {An}, F2n) is L-separable in (L′∗,L′′∗).

At step 2n + 2 let T2n+2 = T2n+1 and define F2n+2 as follows: F2n+2 =
F2n+1, whenever the pair (T2n+1, F2n+1∪{Bn}) is L-separable in (L′∗,L′′∗);
F2n+2 = F2n+1 ∪ {Bn, B′

n(c)}, whenever Bn = ∀xB′
n(x), the pair

(T2n+1, F2n+1∪{Bn}) is L-inseparable in (L′∗,L′′∗) and c is the former new
constant, which has no occurrences in formulas of (T2n+1, F2n+1 ∪ {Bn});
F2n+2 = F2n+1 ∪ {Bn} in other case. Evidently, T0 ⊆ T1 ⊆ T2 ⊆, . . . , F0 ⊆
F1 ⊆ F2 ⊆ . . ..

In a standard way, one can proof by induction on n that each pair (Tn, Fn)
is L-inseparable in (L′∗,L′′∗).
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Now define

T = {A ∈ L′∗|∃n(Tn →L A)}, F = {B ∈ L′′∗|∃n(B →L Fn)}

and prove that (T, F ) is L-saturated in (L′∗,L′′∗).

It is obvious that T ∈ Th(L′∗, L) and F ∈ CTh(L′′∗, L) and also (T, F )
is L-inseparable in (L′∗,L′′∗). Further, the following holds:

(i) for any formula A in L′∗ : A ∈ T iff (T ∪ {A}, F ) is L-inseparable,

(ii) for any formula B in L′′∗ : B ∈ F iff (T, F ∪ {B}) is L-inseparable.

Indeed, let A = An. Then inseparability of (T ∪{A}, F ) implies insepara-
bility of (T2n∪{A}, F2n) so A ∈ T2n+1 ⊆ T . On the other hand, from A ∈ T
there follows inseparability of (T ∪{A}, F ) since (T, F ) is is inseparable. (ii)
can be proved in similar way.

Suppose that (A∨B) ∈ T , but A �∈ T and B �∈ T . Then both (T∪{A}, F )
and (T ∪ {B}, F ) would be separable, i.e., T,A →L C and C →L F and
also T,B →L C ′ and C →L F for some C,C ′ ∈ L∗ = L′∗ ∩ L′′∗. Therefore,

T,A ∨B →L C ∨ C ′and C ∨ C ′ →L F, C ∨ C ′ ∈ L∗,

so the pair (T, F ) would be separable in (L′∗,L′′∗), but it is not the case.
So, we have

(A ∨B) ∈ T implies (A ∈ Tor B ∈ T ).

In analogous way, one can prove that

(A&B) ∈ F implies (A ∈ For B ∈ F ).

At last, let ∃xA(x) ∈ T,∃xA(x) = An. Then the pair (T2n ∪ {A}, F2n)
is L-separable; by construction, A(ck) ∈ T2n+1 for some k and 4) of the
definition of L-saturated theory is proved. 6) can be obtained by analogy.
It completes the proof of Lemma 10. �

We say that a pair (Γ,Δ) is satisfiable in a model

M = 〈W,R, {Dw}w∈W ,
〉

if there is a w ∈ W such that w 
 A for any A ∈ Γ and w 
 ¬B for any
B ∈ Δ; a pair (Γ,Δ) is satisfiable in a frame W = 〈W,R, {Dw}w∈W 〉 if it
is satisfiable in some model based on W.

THEOREM 11. Let L be any of quantified modal logics KQ, DQ, TQ, K4Q,
D4Q and S4Q. Let L′ and L′′ be correlated languages, L = L′ ∩ L′′,Γ ⊆
L′,Δ ⊆ L′′ and a pair (Γ,Δ) be L-inseparable in (L′,L′′). Then (Γ,Δ) is
satisfiable in some L-frame.
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Proof. By Lemma 10, (Γ,Δ) can be extended to a pair (T0, F0) which is
L-saturated in (L′∗,L′′∗), where L′∗ and L′′∗ are inessential extensions of
L′ and L′′ respectively. Let

W0 = {(T0, F0)}.

Suppose that Wk is already built and all its elements are L-saturated pairs
in some suitable countable correlated languages. We use Lemmas 9 and 10
to extend Wk. Let (T, F ) ∈ Wk be any pair L-saturated in (L1,L2). For
each formula �A ∈ T we extend Wk adding a pair (T ′, F ′) L-saturated in
some suitable countable (L′

1,L
′
2), such that T ′ ⊇ {A}∪{A′|�A′ ∈ Γ}, F ′ ⊇

{B′|�B′ ∈ Δ}, D(L′
1) = D(L′

2),⊇ D(L1) = D(L2),L
′
i is an inessential ex-

tension of Li. Also for each formula �B ∈ F we add to Wk a pair (T ′, F ′) L-
saturated in suitable countable (L′

1,L
′
2) such that T ′ ⊇ {A′|�A′ ∈ Γ}, F ′ ⊇

{B} ∪ {B′|�B′ ∈ Δ}, D(L′
1) = D(L′

2) ⊇ D(L1) = D(L2),L
′
i is an inessen-

tial extension of Li. So Wk+1 arises from Wk by adding new pairs for all
(T, F ) in Wk. Since all languages are countable, each Wk is countable. Now
let

W = ∪{Wk | k < ω}.

If (T, F ) ∈ W is L-saturated in (L1,L2), define D(T,F ) = D(L1) = D(L2),
for any (T ′, F ′) in W let

(T, F )R(T ′, F ′) iff (D(T,F ) ⊆ D(T ′,F ′) and ∀A ∈ L1(�A ∈ T ⇒ A ∈ T ′)
and ∀B ∈ L2(�B ∈ F ⇒ B ∈ F ′)).

For each n-ary predicate symbol P in L1 ∪L2 and c1, . . . , cn ∈ D(T,F ) let

(T, F ) 
 P (c1, . . . , cn) iff (P (c1, . . . , cn) ∈ T or ¬P (c1, . . . , cn) ∈ F ).

Then M = 〈W,R, {Dw}w∈W ,
〉 is a Kripke model. �

Let us prove

LEMMA 12. Let (T, F ) ∈ W be L-saturated in (L′,L′′). Then

(i) (∀A ∈ L′)(A ∈ T ⇒ (T, F ) |= A),

(ii) (∀B ∈ L′′)(B ∈ F ⇒ (T, F ) �
 B).

Proof. (i) By induction on A. Remember that A is reduced. For an atomic
A, the statement holds by definition. Let A be a negated atomic sentence
¬P (c1, . . . cn). Then A ∈ T implies that P (c1, . . . , cn) �∈ T , otherwise both
T →L ⊥ and ⊥ →L F would be true, so (T, F ) would be L-separable.
Moreover, A �∈ F since (T, F ) is saturated. So (T, F ) |= ¬P (c1, . . . , cn).

Let A = A1&A2 ∈ T . Then T →L A1 and T →L A2, so A1 ∈ T and
A2 ∈ T . By the induction hypothesis (T, F ) 
 A1&A2.

Let A = A1 ∨A2 ∈ T . Then A1 ∈ T or A2 ∈ T since (T, F ) is saturated.
By the induction hypothesis, (T, F ) 
 A1 ∨A2. The case A = ∃xA2 can be
considered by analogy.
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Let A = ∀xA1(x). Then A1(c) ∈ T for each c ∈ D(L′) since T →L

A1(c) and A1(c) ∈ L′. By induction hypothesis (T, F ) 
 A1(c) for each
c ∈ D((T, F )), so (T, F ) 
 ∀xA1(x).

Let A = �A1 ∈ T . The (T, F )R(T ′, F ′) implies A1 ∈ T and (T ′, F ′) 


A1. So (T, F ) 
 �A1.
At last, let A = �A1 ∈ T . By construction of the model, we have (T, F ) ∈

Wk for some k. Then there exists a pari (T ′, F ′) ∈ Wk+1 ⊆ W such that
(T, F )R(T ′, F ′) and A1 ∈ T ′. By the induction hypothesis, (T ′, F ′) 
 A1 so
(T, F ) 
 �A1. It proves (i) of the lemma.

(ii) Can be proved by analogy. �

It follows from Lemma 12 that w = (T0, F0) satisfies the condition: w |=
A for any A ∈ Γ and w |= ¬B for any B ∈ Δ. It proves the theorem in case
L =KQ. To complete the proof, we need

LEMMA 13. W = 〈W,R, {Dw}w∈W 〉 is an L-frame.

Proof. If L contains an axiom ��, then for any pair (T, F ) in W we have
�� ∈ T , so there exists a (T ′, F ′) in W such that (T, F )R(T ′, F ′); therefore,
M is a D-model.

Let L contain an axiom (�p → p). Then R is reflexive. Indeed, �A →L A
and B →L �B for any formulas A and B. Therefore, for each (T, F ) in W
we have �A ∈ T ⇒ A ∈ T and �B ∈ F ⇒ B ∈ F , and then (T, F )R(T, F ).

Let L contain an axiom (�p → ��p). Prove that R is transitive. Take
any (T, F ), (T ′, F ′), (T ′′, F ′′) in W such that (T, F )R(T ′, F ′) and
(T ′, F ′)R(T ′′, F ′′). Then

D((T, F )) ⊆ D((T ′, F ′)) ⊆ D((T ′′, F ′′)),

�A ∈ T ⇒ ��A ∈ T ⇒ �A ∈ T ′ ⇒ A ∈ T ′′,

�B ∈ F ⇒ ��B ∈ F ⇒ �B ∈ F ′ ⇒ B ∈ F ′′

So (T, F )R(T ′′, F ′′). It completes the proof of Lemma 13 and of Theorem
11. �

Now we can prove the Lyndon interpolation property for our logics.

THEOREM 14 (Interpolation). Let L be any of quantified modal logics KQ,
DQ, TQ, K4Q, D4Q and S4Q, and let (A → B) be in L. Then there exists a
formula C such that both (A → C) and (C → B) are in L and also Ω+(C) ⊆
Ω+(A) ∩ Ω+(B),Ω−(C) ⊆ Ω−(A) ∩ Ω−(B) and D(C) ⊆ D(A) ∩D(B).

Proof. By Lemma 8, one can assume that A and B are reduced. Let
us replace any individual constant, which occurs A and does not occur
in B, by a new variable. Then bound all free variables of the premise,
which have no occurrences in the conclusion, by existence quantifiers, so
we get a formula A′ such that (A → A′) is in L. By duality, we obtain
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a formula B′ replacing the constants of B, which are not contained in A,
by new variables and bounding them by universal quantifiers. So we have
L 	 (B′ → B), D(A′) = D(B′) and L 	 (A′ → B′).

Denote by L′ the language satisfying D(L′) = D(A′), Ω+(L′) ⊆ Ω+(A′) =
Ω+(A), Ω−(L′) ⊆ Ω−(A′) = Ω−(A) and by L′′ the language satisfying
D(L′′) = D(B′) = D(A′), Ω+(L′′) ⊆ Ω+(B′) = Ω+(B), Ω−(L′′) ⊆ Ω−(B′) =
Ω−(B).

Assume that there is no formula C such that both (A′ → C) and (C →
B′) are in L and also C ∈ L = L′ ∩ L′′. Then the pair ({A′}, {B′}) is
L-inseparable in (L′,L′′). By Theorem 2.7 there exists an L-model M =
(W,R, {Dw}w∈W 〉, |=) and an element w ∈ W such that w |= A′ and w |=
¬B′. But it contradicts to L 	 (A′ → B′).

So there is an interpolant C of (A′ → B′) in L. Then C is also an
interpolant of (A → B). �

Lyndon’s interpolation, and also Craig’s interpolation and the Beth prop-
erty do not hold in quantified modal logics containing the Barcan formula
[Fine, 1979], in particular, it fails in the quantified S 5. On the contrast,
the propositional logic S5 has the Lyndon interpolation property. It follows
from Theorem 2.10 that the propositional logics K, D, T, K4, D4 and S4
have Lyndon interpolation property.

We note that Theorem 11 implies the strong completeness theorem for
all systems considered.

THEOREM 15. Let L be any of quantified modal logics KQ, DQ, TQ, K4Q,
D4Q and S4Q.

(i) Let T be a set of sentences and A a sentence such that for any model
M based on an L-frame 〈W,R, {Dw}w∈W 〉 and for any w ∈ W,w 
 t implies
w 
 A. Then T →L A.

(ii) Every L-valid formula is provable in L.

Proof. (i) Assume that T →L A does not hold. Then the set T ∪ {¬A} is
L-consistent, and so is the set T ′ ∪ {(¬A)′} consisting of reduced formulas
equivalent to the formulas of T ∪ {¬A}. It follows that the pair (T ′ ∪
{(¬A)′}, {⊥}) is L-inseparable. By Theorem 2.7, it is satisfiable in some
L-frame, which contradicts the condition.

(ii) Let a formula A be L-valid. Then ∀x1, . . . ,∀xnA is L-valid, where
x1, . . . , xn are all free variables of A. It follows from (i) that ∀x1 . . . ∀xnA
is provable in L. Hence, A is provable in L. �

One can easily see that a propositional logic has LIP, CIP or B1 whenever
its quantified extension has the same property. Indeed, we can consider
propositional variables as 0-place predicates. Then an interpolant (or an
explicit definition), which is a first-order formula in a langauge with 0-place
predicates and without equality, is equivalent to a quantifier-free formula.
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In particular, the propositional logics K, D, T, K4, D4 and S4 have Lyndon
interpolation property. Although the interpolation fails for quantified S5,
LIP holds for propositional S5.

2.3 Overview of interpolation and definability in modal and in-

tuitionistic logics

This section is mainly devoted to modal logics and to extensions of the
intuitionistic logic. Such extensions are called superintuitionistic logics.
Superintuitionistic logics which are contained in the classical logic are said
to be intermediate. An intermediate propositional logic is the same as a
consistent superintuitionistic logic; it is not true for predicate logics.

We give a brief survey of basic results presented in [Gabbay and Maksi-
mova, 2005].

The logics are presented here in different ways. First a well known
Hilbert-style axiomatization of the most known propositional modal sys-
tems K, D, T, K4, D4, S4, S5 and also of the intuitionistic logic is given.
Their predicate extensions are also investigated. For each of the calculi its
relational semantics originated from Hintikka and Kripke is considered. For
example, K is characterized by all Kripke models, K4 by models with tran-
sitive admissibility relation and S4 by reflexive and transitive models. For
all the mentioned basic logics the strong completeness theorems guarantee
the equivalence of the syntactic consequence relations to the corresponding
semantical consequence relations defined by Kripke models.

On the other hand, it is well known that there are modal and intermedi-
ate logics which are Kripke-incomplete. When we are interested in general
study of large families of logics, for instance, the family of all superintuition-
istic logics or all normal extensions of the minimal normal modal logic K,
algebraic methods are very fruitful. With every normal modal logic a variety
of modal algebras is associated, and also there is a one-to-one correspon-
dence between superintuitionistic logics and varieties of Heyting algebras.
Strong algebraic completeness of all propositional modal and superintu-
itionistic logics makes possible to investigate these logics in an uniform way.
The algebraic semantics is closely connected with relational semantics via
representation theorems.

It is well known that the intuitionistic logic Int may be translated into
S4. This translation was introduced by Gödel in order to give an interpre-
tation of Int in the classical logic with an additional provability operator.
Provability interpretation of modalities stimulated interest to the provabil-
ity logic G. Not long ago an interpretation of S4 as a logic of proofs was
found [Artemov, 2001]. Also the logics S4 and Int have a natural topological
interpretation.
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2.3.1 Intermediate logics and extensions of S4

In Chapter 3 of our book [Gabbay and Maksimova, 2005] we pay special at-
tention to extensions of the intuitionistic logic and of the modal logic S4. An
algebraic semantics and also Kripke semantics for these logics is presented
in more detail. We explain the main interrelations of the family E(Int)
of superintuitionistic logics and of the family NE(S4) induced by Gödel’s
translation. In particular, any intermediate logic L has an infinite family of
its modal companions in NE(S4), which have L as their superintuitionistic
fragment.

2.3.2 Interpolation and joint consistency in the classical and intuitionistic
logic

The study of interpolation begins with Chapter 4. Interpolation theorem for
the classical predicate logic was discovered by W. Craig in 1957. It says that
if A implies B, where each of A and B has its own language, then there is an
interpolant, i.e., a formula C in the common language such that A implies C
and C implies B. At the same time A.Robinson proved his joint consistency
theorem which appeared to be equivalent to Craig’s interpolation theorem.
Robinson’s theorem states that the join of two first order theories is con-
sistent if their intersection is a complete theory in the common language.
Lyndon’s interpolation theorem proved in 1959 is a strengthening of Craig’s
theorem and takes into consideration also negative and positive occurrences
of shared predicate symbols. Beth’s theorem on implicit definability proved
in 1953 says that any predicate implicitly definable in a first order theory
is explicitly definable.

Some analog’s of these statements are valid also for the intuitionistic and
the most known modal logics.

Craig’s interpolation is equivalent to Robinson’s joint consistency, and
Lyndon’s interpolation theorem is proved for the classical predicate logic.
The general form of Robinson’s consistency property RCP fails in the in-
tuitionistic predicate logics HQ; a weaker form of RCP is equivalent to
Craig’s interpolation property CIP and holds in HQ, a semantic proof orig-
inated from [Gabbay, 1971] is given. On the other hand, we prove that in
propositional intermediate logics the general form of RCP is equivalent to
CIP. A derivation of Beth’s property from CIP is given for the intuition-
istic predicate logic. Also Kreisel’s proof of validity of the Beth property
for any propositional intermediate logic is presented. Note that there are
intermediate predicate logics without Beth’s property.

2.3.3 Lyndon’s interpolation in modal logics

In Section 2.2 we already presented a proof of Lyndon’s interpolation prop-
erty LIP for quantified extensions of basic modal logics K,T,D,K4 and S4
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and for some others. Also the propositional S5 has LIP. At the same time,
the quantified extension of S5, as well as other systems satisfying the Barcan
formula, have neither Lyndon’s nor Craig’s interpolation, nor Beth’s prop-
erty; K.Fine’s proof is presented in [Gabbay and Maksimova, 2005, Chapter
5].

Some examples of propositional modal logics which have CIP but do not
possess LIP are found. A proof of Craig’s interpolation property is given for
a number of propositional modal logics including Grzegorczyk’s logic Grz,
its extension Grz.2 and the provability logic G.

Section 5.5 of [Gabbay and Maksimova, 2005] deals with propositional
logics. We define a class of so-called L-conservative formulas, which can
be added to L as new axiom schemes without loss of interpolation. Also
we prove that the interpolation properties are preserved when we go from
predicate logics without equality to their extensions with equality.

2.3.4 Interpolation in intermediate logics

Chapters 6–12 of [Gabbay and Maksimova, 2005] are devoted to interpola-
tion and definability problems in propositional logics. Of course, the results
have immediate applications in predicate logics: if the propositional frag-
ment of a predicate logic L lacks interpolation or Beth’s property, so does
L itself. The main results of these chapters concern intermediate logics and
also modal logics over S4, G or K4.

Chapter 6 of our book contains full description of superintuitionistic log-
ics with Craig’s interpolation property obtained by [Maksimova, 1977]. It
turns out that in the continuum of intermediate logics, only seven have have
Craig’s interpolation. All of them are finitely axiomatizable and have the
finite model property. For the proof, the algebraic semantics via varieties
of Heyting algebras is used and the equivalence of CIP in a logic L to amal-
gamability of the corresponding variety V (L) is stated (a class of algebras
is amalgamable if any two algebras with a common subalgebra have their
common extension). We also prove that the interpolation problem over the
intuitionistic logic Int is decidable: for any finite set Ax of axiom schemes to
determine, whether the calculus Int + Ax has CIP; also the amalgamation
problem is base-decidable for varieties of Heyting algebras.

2.3.5 Interpolation and definability in modal logics

It is necessary to note that the definitions of interpolation and of Beth’s
property essentially depend on the consequence relation in the logic under
consideration. When we go to modal logics, we have at least two natural
logical consequence relations: provable implication and deducibility. They
are equivalent in superintuitionistic logics due to deduction theorem but
not equivalent in normal modal logics, where only a weaker form of the
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deduction theorem holds. So in modal logics we consider two forms of inter-
polation: CIP and IPD (interpolation property for deducibility), and two
forms B1 and B2 of the Beth property. It is shown in [Gabbay and Maksi-
mova, 2005, Chapter 7] that B1 is equivalent to CIP for all modal logics but
all other properties are not equivalent. CIP implies IPD, B1 implies B2,
and IPD and B2 are independent. A full diagram of interrelations of these
properties as well as their algebraic equivalents are found. In particular,
IPD is equivalent to the amalgamation property AP, CIP to the supera-
malgamation property SAP and B2 to epimorphisms surjectivity ES∗ of the
corresponding variety of modal algebras.

2.3.6 Interpolation over S4

It appears that the behavior of interpolation over S4 is similar to interpo-
lation in superintuitionistic logics. It is shown in [Gabbay and Maksimova,
2005, Chapter 8] that all modal logics with IPD in NE(S4) are modal com-
panions of superintuitionistic logics with CIP but there is an intermediate
logic with CIP that has no modal companions with IPD. On the other hand,
all modal companions of intermediate logics with CIP have a weaker version
of interpolation, which is CIP restricted to those formulas A → B, where
all occurrences of variables are preceded by necessity symbol.

It is proved by Maksimova [Maksimova, 1979], that there are only finitely
many modal logics with IPD in the family NE(S4). The list of 49 logics is
found, which contains all extensions of S4 with IPD, in this list there are
12 logics that have IPD but do not have CIP, and CIP is proved for 31
logics. All the 49 logics are finitely axiomatizable and have the finite model
property.

The problem of interpolation is completely solved for extensions of the
Grzegorczyk logic Grz and for those logics over S4 which are well-
representable by Kripke frames, in particular, for logics over S5. We leave
open the problem how many logics over S4 have CIP or IPD. In fact, inter-
polation problem is still open for 6 normal extensions of S4.

Nevertheless, it is proved that IPD and CIP problems are decidable over
S4, and amalgamation and superamalgamation are base-decidable in vari-
eties of closure algebras. Complexity bounds for interpolation, amalgama-
tion and some other problems over Int and S4 are found. For example, the
interpolation problems over Int and Grz are PSPACE-complete.

2.3.7 Interpolation and the Beth property over K4

In the next two chapters of [Gabbay and Maksimova, 2005] the family
NE(K4) of normal modal logics containing K4 is investigated. We find
a strong necessary condition for interpolation which implies failure of inter-
polation for a large family of logics over K4. In particular, all infinite-slice
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extensions of K4.3 do not possess interpolation.

On the contrast, a strong positive result holds for extensions of K4. We
prove that all logics in NE(K4) have the Beth property B2. An algorithm
for constructing explicit definitions is found for logics of finite slices charac-
terized by transitive and antisymmetric Kripke models.

2.3.8 Extensions of the provability logic

It is evident that all the results concerning logics over K4 are applicable to
all logics over S4 or over the provability logic G since all these logics contain
K4. The family NE(G) of normal extensions of G is studied in [Gabbay and
Maksimova, 2005, Chapter 12]. Here we see that the results on interpolation
over S4 can not be extended to all modal logics. The picture of interpolation
over G is quite different from that of NE(S4), where only finitely many logic
possessed interpolation and all of them were finitely axiomatizable and had
the finite model property.

We build a continuum of normal modal logics with CIP. We find logics
with CIP which are neither finitely axiomatizable nor finitely approximable.
The most interesting of these logics is a logic Gγ constructed in [Gabbay and
Maksimova, 2005, Section 12.1]. It appeares that Gγ is the greatest among
the infinite-slice logics with IPD in NE(G); in addition, it is decidable. Also
we prove that IPD is equivalent to CIP in all finite-slice logics over G, it
was not true in NE(S4).

2.3.9 Syntactic proofs of interpolation

In Chapters 3 and 6–12 of [Gabbay and Maksimova, 2005] algebraic methods
are developed, that allows to formulate and prove our results in two areas:
in logic and in algebra. Actually even in “algebraic” chapters we apply
relational semantics in parallel with algebraic one, where it is possible. In
particular, we propose semantical methods for proving interpolation. The
most of the results of Chapters 6–12 of our book are formulated also in the
language of Kripke semantics.

In Chapter 4 (as well as in Chapter 5) of [Gabbay and Maksimova, 2005]

semantic methods are used for proving interpolation. On the one hand,
we prove an extension of Model Existence Theorem which implies Strong
Completeness Theorem as a partial case. But on the other hand, semantic
methods do not give any algorithm for constructing an interpolant. In
syntactic proofs special Gentzen-style or tableaux calculi are required which
have convenient rules of inference and admit cut elimination. Then an
interpolant is constructed from a derivation of the formula A → B or of the
sequent A → B. In [Gabbay and Maksimova, 2005, Chapter 13] we give a
syntactic proof of Lyndon’s interpolation for the intuitionistic (and also for
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the classical) predicate logic by modifying Schütte’s proof [Schütte, 1962]

of interpolation for HQ.

The proof also works for the most of fragments of HQ. For the fragment
containing neither disjunction nor existence quantifier, a weaker form of
Lyndon’s interpolation is proved. Note that this fragment coincides with
the {→,⊥,&,∀}-fragment of the intuitionistic logic of finite domains and
also with the analogous fragment of the logic of constant domains.

Another proof of weak Craig’s interpolation for {→,⊥,&,∀}-fragment
of HQ is presented in [Gabbay and Maksimova, 2005, Chapter 15], which
deals with interpolation in intuitionistic logic programming (see [Gabbay
and Olivetti, 2005]). A counter-example to the general form of Craig’s
interpolation is given in [Gabbay and Maksimova, 2005, Section 15.5].

The aim of Chapter 16 of [Gabbay and Maksimova, 2005] on goal-directed
proof systems (see also [Gabbay and Olivetti, 2000]) is to study interpolation
properties for implicational fragment of a variety of substructural, strict
modal and intuitionistic and intermediate logics. The methodology is proof-
theoretical and makes use of a goal directed formulation of these fragments
which follows the logic programming style of deduction. We obtain more
refined as well as new kinds of interpolation theorems for our logics and
investigate new global methods for obtaining interpolation.

2.3.10 Interpolation by translation

Interpolation by translation first proposed in [Gabbay and Ohlbach, 1992]

gives some uniform algorithmic methodology for finding interpolants. It
operates with translations of non-classical logics into classical first order
teories and introduces so-called expansion interpolation. That allows to
find interpolants in the classical theories using the existing algorithms and
then translate them back into non-classical theories. In [Gabbay and Mak-
simova, 2005] two examples from modal logic are considered: quantified S5
and propositional S4.3. These logics lack ordinary interpolation but have
expansion interpolation.

It is impossible to give the details and all the references in this short
chapter. The reader may find them in our book [Gabbay and Maksimova,
2005]. In the next section we discuss further directions of research and some
results which were not included in this volume.

3 FURTHER RESULTS AND DISCUSSION

This section contains two subsections. One describing additional material
already existing in papers, and one describing the new research / challenges
that need to be addressed.
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3.1 Further results

In [Gabbay and Maksimova, 2005] the picture of methods and results was
presented which gives some basic knowledge on interpolation and definabil-
ity in most popular logics. At the moment we have a lot of material which
was not included, and we are planning to write volume 2 of this book. In this
section we continue our exposition of further directions and known results
on interpolation and definability in non-classical logics.

The algebraic approach to modal logic can be applied to other logics.
For instance, the same algebraic criteria for interpolation and definability
properties are valid for multi-modal and (sometimes with some changes) for
various non-classical logics. It allows to prove or disprove interpolation and
Beth’s properties in large families of logics.

The significance of our negative results (criteria for failure of interpolation
or Beth properties) is twofold: 1) if we wish to find a logic for solving some
tasks, we prefer to choose a logic having the mentioned good properties; 2)
there is a general method for constructing counter-examples to interpola-
tion in particular logics, this may be helpful for understanding which logical
constants should be added in order to obtain the desirable properties. Ac-
tually this method is only performed in volume 1, and must be developed
in more detail.

3.1.1 Temporal logics

First we consider temporal logics.
Temporal logics form a natural class of multi-modal logics. In Maksimova

[Maksimova, 1991b], [Maksimova, 1991a], we proved failure of CIP, IPD and
of the Beth properties in temporal logics with discrete (linear or branching)
time. A counter-examples are found. The same counter-examples work for
CTL and related logics.

F. Wolter [Wolter, 1997] proved that tense logics of linear time have
no interpolation. On the other hand, the modal μ-calculus has uniform
interpolation [D’Agostino and Hollenberg, 1998].

3.1.2 Beth properties and epimorphisms surjectivity

3.1.2.1 Projective Beth properties. We consider various versions of
the Beth definability property for propositional nornal modal logics, and
also for superintuitionistic and relevant logics. We discuss interrelations of
these properties, and find their algebraic equivalents in case of modal and
superintuitionistic logics.

The Beth properties B1 and B2 are particular cases of projective Beth’s
properties PB1 and PB2 defined as follows.

Let x, q, q′ be disjoint lists of variables not containing y and z, A(x,q, y)
a formula. We say that a logic L has the projective Beth property PB1 if
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	L A(x,q, y)&A(x,q′, z) → (y ≡ z) implies 	L A(x,q, y) → (y ≡ B(x))
for some formula B(x).

Further, L has the projective Beth property PB2 if

A(x,q, y), A(x,q′, z) 	L y ≡ z implies A(x,q, y) 	L y ≡ B(x) for some
B(x).

In [Gabbay and Maksimova, 2005, Chapter 7] a diagram of interrelations
between the properties B1, B2 and interpolation properties CIP and IPD
was found for normal modal logics. It was proved that B1 is equivalent to
CIP, and implies B2 and IPD; the properties IPD and B2 are independent.

The following relations are stated in Maksimova [Maksimova, 1999b]:

PB1 ⇐⇒ B1 ⇐⇒ CIP ⇒ B2+IPD ⇒ PB2 ⇒ B2.

Since all normal extensions of K4 have B2 (see [Gabbay and Maksimova,
2005, Chapter 11]), IPD implies PB2 in logics over K4.

3.1.2.2 Algebraic equivalent of PB2. It is proved in Maksimova
[Maksimova, 1999b] that a modal logic has PB2 if and only if its corre-
sponding variety has strong epimorphisms surjectivity SES:

For any A,B in V(L), for any monomorphism α : A → B and for any
x ∈ B − α(A) there exist C ∈ V and monomorphisms β : B → C and
γ : B → C such that βα = γα and β(x) �= γ(x).

It was shown in [Gabbay and Maksimova, 2005, Chapter 7] that a modal
logic has B2 if and only if its corresponding variety has epimorphisms sur-
jectivity ES∗. Another form BP of the Beth property equivalent to a general
form of epimorphisms surjectivity was considered in Sain [Sain, 1989]. In
our terms it can be formulated as follows: Let P , Q and Q′ be pairwise
disjoint sets of variables and Q′ = {q′i| qi ∈ Q}. If Γ(P,Q),Γ(P,Q′) 	L

(qi ≡ q′i), then for every qi ∈ Q there exists a formula Bi(P ) such that
Γ(P,Q) 	 (qi ≡ Bi(P )).

It is easy to see that PB2 ⇒ BP ⇒ B2 for any variety. If the set Q is
finite, BP is equivalent to B2 [Maksimova, 1999b], [Hoogland, 2000]. It is
not clear if the general form of BP is equivalent to B2 or PB2 in the case
of modal logics.

Convenient algebraic criteria for validity of PB2 and SES are found in
Maksimova [Maksimova, 1999b], [Maksimova, 2003b].

3.1.3 Projective Beth property over Int

In intermediate logics two versions PB1 and PB2 of projective Beth prop-
erty are equivalent due to deduction theorem, so we write PBP instead of
PB2. It is easy to derive PBP from CIP by analogy with the proof of B1
from CIP. The equivalence of PBP to SES also holds for intermediate logics
[Maksimova, 1999a].
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It appeared that the behavior of PBP over Int is similar to that of interpo-
lation. In Maksimova [Maksimova, 2000b] we have obtained full description
of propositional superintuitionistic logics with the projective Beth property.
There are exactly 16 logics with PBP over Int. All of them are finitely
axiomatizable and have the finite model property. Their Kripke character-
ization is rather simple.

Decidability of projective Beth property over Int is proved in [Maksimova,
2001]. It follows that strong epimorphisms surjectivity is base-decidable in
varieties of Heyting algebras.

The methods and results concerning intermediate logics have immediate
applications in positive and paraconsistent logics and also in modal logics.

3.1.4 Positive and paraconsistent logics

3.1.4.1 Positive logics. In the language of the intuitionistic logic there
is a formula ⊥ which implies any formula in Int, and negation is expressed by
A → ⊥. If ⊥ and ¬ are ejected, we come to positive logics. Let us consider
positive logics containing positive fragment Int+ of the intuitionistic logic.
Each positive logic can be considered as positive fragment of a suitable
superintuitionistic logic. But in general interpolation and projective Beth’s
property are not preserved by transfer to positive fragments. We define a
special translation of logics over Int+ into intermediate logics, which allows
to apply the results of the previous section to positive logics.

Full description of positive logics with interpolation or projective Beth
property is found. There are exactly 7 positive logics with PBP, among
them 4 logics have CIP and the others do not have.

Moreover, we prove that interpolation and projective Beth’s property are
decidable over Int+. The problem of interpolation is PSPACE-complete over
Int+, and so is PBP problem. One can find proofs in [Maksimova, 2002c],
[Maksimova, 2003a].

3.1.4.2 Applications to paraconsistent extensions of Johansson’s
minimal logic The methods of studying positive and intermediate logics
also applicable to extensions of the minimal logic J which has the same
positive fragment as the intuitionistic logic but is a good base for paracon-
sistency. The constant ⊥ has no special features. In particular, the formula
⊥ → p is not a theorem of J. Many results can be transferred from positive
logics to extensions of J although still we have no solution for the problems
of interpolation or projective Beth’s property over J. It is open problem
how many logics over J have interpolation or PBP.

The papers [Maksimova, 2002a], [Maksimova, 2003a] present current knowl-
edge on the subject.
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3.1.4.3 Some remarks on relevant logics It was proved by Urquhart
[Urquhart, 1993] that the basic relevant logics, among them E and R, have
neither CIP nor Beth definability properties. Nevertheless, CIP holds in
OR which is R without distributivity axiom [McRobbie, 1983].

Only some weak forms of the deduction theorem hold in relevant logics.
On this reason, the interrelations of different forms of interpolation and
Beth property given in Section 3.1.2 (and also in Section 3.1.6 below) are
broken. The usual implication from CIP to IPD holds for extensions of
the logic E of entailment if the language includes a propositional constant
t (”the strongest truth”), where 	L denotes the deducibility with modus
ponens and adjunction. To preserve a standard proof of the Beth property
from CIP, we need an intensional conjunction ◦ (that is commutative and
associative) and the following definition

PB1’. If 	L A(x,q, y) ◦A(x,q′, z) → (y ↔ z) then 	L A(x,q, y) → (y ↔
B(x)) for some B(x).

Thus CIP implies PB1’ in extensions of the relevance logic R. The equiv-
alence of IPD to the amalgamation property holds for all extensions of E
[Czelakowski, 1982], and the equivalence of CIP in L to the superamalga-
mation in its associated variety V(L) holds for extensions of R (or of the
fragment of R with t, &, → and ◦).

3.1.5 Modal logics and projective Beth property

In modal logics as well as in intermediate logics there is a similarity of
projective Beth property PB2 to interpolation properties.

1. It was proved in [Gabbay and Maksimova, 2005, Chapter 10] that for
any infinite slice logic with IPD over K4, its reflexive fragment is contained
in Grz.2. The theorem remains true if IPD is replaced with PB2 (which is
implied by IPD over K4) [Maksimova, 2002b].

2. NE(S4) versus E(Int). The results of Section 3.1.3 are applied in
study of modal logics over S4 [Maksimova, 2004]. We find some similarity
and some difference of modal and intermediate logics with respect to PB2.
In particular, any modal logic over S4 with PB2 is a modal companion
of an intermediate logic with PB2. On the other hand, there are three
intermediate logics with PB2 which have no modal companions with PB2.

We proved that there are exactly 16 superintuitionistic logics with PB2.
At this moment we have no list of logics with PB2 in NE(S4). And we do
not know if their number is finite.

3. Full description of logics with PB2 over Grz and over S5 is found.
There are exactly 13 normal extensions with PB2 over Grz and 4 over S5.
The property PB2 is decidable over Grz and over S5. Some complexity
bounds are found.
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3.1.6 Restricted interpolation and restricted amalgamation

Interconnections between various versions of Craig’s and Beth’s proper-
ties essentially depend on the form of deduction theorem which holds (or
does’not hold) in the logic under consideration. The same is true for cate-
gorical properties such as congruence extension property and various forms
of amalgamation and epimorphisms surjectivity in the corresponding class
of algebras. It may happen (for instance, in some substructural logics) that
a logic has CIP but does not have IPD.

Some natural forms of interpolation and of Robinson property are rel-
atively new and will be a subject of research. In [Maksimova, 2003b] we
introduced a restricted interpolation property :

IPR. If A(p,q), B(p, r) 	L C(p), then there exists a formula A′(p) such
that A(p,q) 	L A′(p) and A′(p), B(p, r) 	L C(p).

We proved that the restricted version IPR of interpolation property is
equivalent to the restricted amalgamation in varieties of modal or Heyting
algebras and showed that IPR follows from PB2. In addition we found an
algebraic criterion for PB2 with use of the restricted amalgamation property.
A class V has Restricted Amalgamation Property if it satisfies the condition:

RAP. For each A,B,C ∈ V such that A is a common subalgebra of B
and C there exist an algebra D in V and homomorphisms δ : B → D,
ε : C → D such that δ(x) = ε(x) for all x ∈ A and the restriction δ′ of δ
onto A is a monomorphism.

THEOREM 16 (Maksimova, 2003b). Let L be a normal modal logic. Then
L has PB2 if and only if SI(V ) has RAP and FI(V ) has SES.

We note that V has RAP iff SI(V ) has RAP, so PB2 implies IPR.

Interconnections between syntactical and categorical properties of equa-
tional theories are established in [Maksimova, 2003c]; in [Maksimova, 2003b]

modal logics are discussed. We obtain the following relations for all normal
modal logics and varieties of modal algebras:

(1) IPD + B2 ⇐⇒ StrAP,

(2) IPD + B2 ⇒ PB2 ⇐⇒ SES,

(3) PB2 �⇒ IPD ⇐⇒ AP, IPD �⇒ PB2, PB2 ⇒ B2,

(4) PB2 ⇒ IPR ⇐⇒ RAP,

(5) IPD ⇒ IPR, IPR + B2 �⇒ IPD,

(6) IPR �⇒ B2, B2 �⇒ IPR.

We do not know if IPR+B2 implies PB2 in modal logics. We can prove
that it holds for positive logics of Subsection 3.1.4.1.

In fact, most of the relations (1)–(6) are valid for arbitrary varieties
which are congruence-distributive, have congruence extension property and
satisfy an additional condition: any subalgebra of a subdirectly irreducible
algebra is finitely indecomposable. The proofs are given in [Maksimova,
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2003b]. In particular, all of (1)–(6) hold for substructural logics without
contraction but with weakening and exchange; they are characterized by
suitable varieties of residuated lattices investigated in [Ono, 2003].

All intermediate and positive logics, and also modal logics over K4 have
the Beth property B2. For those logics and corresponding varieties we
obtain:

IPD ⇐⇒ AP ⇐⇒ StrAP,
IPD ⇒ PB2 ⇐⇒ SES,
PB2 �⇒ IPD,
PB2 ⇒ IPR ⇐⇒ RAP.
Note that IPR implies CIP in extensions of S5, therefore, all proper-

ties PB1, PB2, B1, CIP, IPD, IPR are equivalent over S5. The results of
this section are published in Maksimova [Maksimova, 2003b], [Maksimova,
2003c].

Problem. The implication from PB2 to IPR in modal logics is proved by
purely algebraic argument. It would be interesting to find a direct proof in
logical terms.

3.1.7 Variable separation

3.1.7.1 Principles of variable separation in relevant and substruc-
tural logics. Relevant calculi satisfy so-called Relevance principle: If the
implication A → B is valid then A and B share a variable. It was proved
that the the most known relevant systems such as the logic R of relevant im-
plication and the logic E of entailment are undecidable [Urquhart, 1984] and
have neither interpolation nor the Beth property [Urquhart, 1993], although
some relevant logics have interpolation [McRobbie, 1983].

In Maksimova [Maksimova, 1976], [Maksimova, 1982b] we formulated and
proved various principles of variable separation, which are in some sense
similar to interpolation, for the most known relevant systems R of relevant
implication and E of entailment. For example, the following statement
holds:

PVS if two formulas (A1 → A2) and (B1 → B2) have no variable in common
and the formula ((A1&B1) → (A2∨B2)) is provable in E (or R), then
at least one of (A1 → A2) and (B1 → B2) is also provable.

It is clear that PVS implies Hallden’s property

HP If A ∨ B is provable and A and B have no variable in common then
A or B is also provable.

Naruse [Naruse et al., 1998] considered PVS in substructural logics.
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3.1.7.2 Hallden property and variable separation in modal and
intermediate logics, and joint embedding property in varieties.
It was shown (see [Gabbay and Maksimova, 2005, Section 4.3]) that CIP
implies PVS in intermediate logics; also one can prove that IPR implies
PVS. Connections of PVS in intermediate logics with Hallden’s property
of their modal companions were studied in Chagrov and Zakharyaschev
[Chagrov and Zakharyaschev, 1993], [Chagrov and Zakharyaschev, 1997]; it
was proved that HP and PVS are undecidable over Int and over S4.

It is clear that in modal logics, PVS and HP are equivalent; CIP implies
HP in extensions of D but the provability logic G has CIP and does not
possess HP.

Algebraic equivalents of these properties were found in [Maksimova, 1995],
where some other related properties were considered. It appeared that HP
and PVS are in close relation with joint embedding property of correspond-
ing varieties of algebras. In particular, HP in a modal logic L is equivalent
to

JSEP for any A,B in V (L) there is a C ∈ V (L) and embeddings ϕ : A → C,
ψ : B → C such that ϕ(a) �� ψ(b) for any a ∈ A, a �= ⊥, b ∈ B, a �= �.

HP and related properties in intermediate logics were studied in [Wronski,
1976] and [Suzuki, 1990].

3.1.8 Decidable properties of logics and of varieties

3.1.8.1 Decidable and strongly decidable properties of logical cal-
culi. We already mentioned that interpolation is decidable over Int and
over S4, the projective Beth property is decidable over Int and so on.

Decidability of interpolation over Int means that there is an algorithm,
which for any finite list Ax of axiom schemes decides if the calculus Int +
Ax has interpolation property. Here Int+ Ax denotes a calculus obtained
from some standard calculus for the intuitionistic logic by adding new axiom
schemes but not rules of inference. Decidability (or undecidability) of vari-
ous properties of logical calculi was a subject of many papers (see [Chagrov
and Zakharyaschev, 1997]).

We say that a property P is strongly decidable over a logic L if there is an
algorithm, which for any finite list Rul of additional axiom schemes and rules
of inference decides if the calculus L + Rul has the property P. It is proved
in [Maksimova, 2000a] that interpolation is strongly decidable over Int, S5
and Grz, consistency is strongly decidable over D. Strong decidability of
some other properties is also shown. An overview of decidable and strongly
decidable properties of logical calculi is given in [Maksimova, to appear].
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3.1.8.2 Tabular logics and varieties. It is worth noting that all ver-
sions of interpolation and of the Beth property, and also Hallden property,
are decidable on the class of tabular modal logics. A logic is tabular if it can
be characterized by finitely many finite algebras or (equivalently) by finitely
many Kripke frames. We can propose an uniform constructive method of
checking interpolation and related properties through amalgamation and
epimorphisms surjectivity of suitable finite classes of finite algebras. We
will describe this method in volume 2. Some ideas can be found in [Maksi-
mova, 1999c].

3.2 Further discussion

We have already mentioned that writing volume 1 of our book [Gabbay
and Maksimova, 2005] has indentified some areas that need to be further
summarised and investigated so that we have a better understanding and
a more complete picture of interpolation. This section will describe the
challenges we hope to address in volume 2. Since what we have here is
hopeful thinking, and a discussion of what seems to us promising points
of view, we named this section “Further discussion” as compared with the
previous section “Further results.”

3.2.1 Interpolation and artificial intelligence

We do not have much more to say here beyond what we have already said in
Section 1.2. It is sufficient that we stress again that we view the challenges of
Section 1.2 as mainstream research in logic and whatever we find and include
in volume 2 will enhance our general understanding of Interpolation.

3.2.2 Interpolation for classical theories

We have discussed interpolation by translation in Chapter 14 of [Gabbay
and Maksimova, 2005]. The research on this topic is only beginning and
there is more to be done. There are two reasons for intensive continuation
of this research. The first is that we have the general methodology of Logic
by Translation, and so we need to look also at interpolation by translation as
part of the program. The second reason is that when we translate from one
logic into another, we need to have interpolation in the target logic, relative
to the theory controlling the translation. This gives urgency to studying
interpolation in general for arbitrary or for particular theories in the target
logic and also for special fragments of the target logic, which is usually
classical logic. To be concrete, we can study interpolation for interesting
well known theories of classical logic. For example let FF be the theory of
finite fields (i.e., defined semantically by the class of all finite fields).

Does it have interpolation?
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How about the theory of all finite projective planes in some obvious
language?

We will try and get some answers for some well known theories.

3.2.3 A semantic/categorial engine for interpolation

The construction we gave in [Gabbay and Maksimova, 2005, Chapter 4]

proving interpolation for intuitionistic logic seems to be actually a general
purpose construction for proving interpolation. M. Makkai [Makkai, 1995]

has observed that the steps can be generalised and presented in the frame-
work of categorial logics. In fact the proof in Section 4.2 shows something
categorical, stronger than interpolation.

We should mention that a very elegant and conceptually interesting proof
of interpolation for intuitionistic logic was given by A. Pitts [Pitts, 1983].
He uses locale-theoretic methods. Pitt’s proof is constructive as opposed to
our Section 4.2 which is model-theoretic. On the other hand, the proof we
give can be generalised into a general engine for proving interpolation for a
variety of systems. We postpone this study to volume 2. One by product
of such an engine will be that for some logics for which interpolation fails, a
better understanding can be gained by trying to see why the general engine
cannot prove interpolation for the logic.

3.2.4 Interpolation in computer science

The important role of interpolation in theoretical computer science was
first observed by M. Sadler [Maibaum and Sadler, 1985] and further devel-
oped by many others, see [Bergstra et al., 1990], [Rodenburg and van Gal-
beek, 1988], [Dimitrakos and Maibaum, 1997b], [Dimitrakos and Maibaum,
1997a], [Ehrich, 1982], [Marx, 1995]. See also Chapters 4–5 of T. Dimitrakos
[Dimitrakos, 1998] and see also the paper [Bicarregui et al., 2001]. We find
Veloso’s paper [Veloso, 1993] most clear and our exposition will make use
of it.

The notion of interest from computer science is that of the Modularisa-
tion Theorem. It has to do with composing specification. It is not necessary
for us to go in this chapter into computer science examples. It suffices to say
that if we have a language L0 with specification G0 about the predicates of
L0, then implementing this specification on some machine means in logical
terms that we have a language L2 (of the machine) and axiom G2 (describ-
ing the machine, how it works), and a translation f : L0 �→ L2, actually
describing the implementation. We must have that all the properties of G0

are soundly and faithfully implemented, namely for any ϕ in L0, if G0 	0 ϕ
then f(G0) 	2 f(ϕ), and vice versae.

In logic we have many such examples of implementations, we call them
Interpretations. It would be useful to think of the “implementation” of
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modal predicate logic K4B (modal K4 with the Barcan formula, i.e., con-
stant domains modal K4) in classical logic CQ, as our working example.
This “implementation,” together with ideas of Interpolation by translation
[Gabbay and Ohlbach, 1992], [Gabbay and Maksimova, 2005], will be used
by us to explain the mudularisation theorem and its connection with inter-
polation.

So let us go on with our discussion of specifications and their implemen-
tations. So assume we have specification (L0, G0) and we implement it on a
machine (L2, G2). We may expand our specification in a conservative way
to an additional language (L1, G1). Naturally we want to expand our imple-
mentation on the machine (L2, G2) into an expanded specification (L3, G3).
The most natural requirement is that the additional implementation is con-
servative over the old implementation. We do not want to spoil what we
already have!

Going back to logic, suppose we now extend the language L0 into the
language L1 by adding new symbols C (thus L1 = L0 +C) and new axioms /
specification G1. This is a very natural thing to do. A builder for example,
may specity what he wants in a kitchen in language L0 and then realise
he has to add the oven and microwave in there, so he gives additional
specification. We need to assume that L2 and L1 are disjoint (otherwise
life gets complicated!), We also assume that G1 is a conservative extension
of G0, i.e., the additional specification does not change what was already
agreed about L0.

We now want to expand the implementation language L1 and the axioms
G1 into L3 and axioms G3 such that the additional specification (L1, G1)
can be implemented (via a function g : L1 �→ L3) in (L3, G3). Of course g
extends the original f . The modularisation theorem says that this can be
done in a natural way and that G3 is a conservative extension of G2.

Figure 6 shows the situation; i0,1 and i2,3 are inclusion mappings.

(L0, G0) (L2, G2)

(L1, G1) (L3, G3)

i0,1 i2,3

f

g

Figure 6.

It turns out that the modularisation theorem is related (equivalent) to
versions of interpolation, see [Veloso, 1993].
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3.2.5 Case study: Implementation of constant domains modal K4 in clas-
sical logic

Let L0 be the language of modal predicate logic with one modality � and
let G0 be the axioms for modal K4 with constant domains. Let L1 be
the language of classical logic with binary relation xRy for the accessibility
relation of the Kripke semantics and the domain relation U(x, y), meaning
y is in the domain of the world x. For each atomic predicate P (x1, . . . , xn)
of the modal language let P ∗(x0, x1, . . . , xn) be a corresponding predicate
of the classical language L2.

Let f be the following translation, indexed by a variable t:

ft(P (x1, . . . , xn)) = P ∗(t, x1, . . . , xn),

ft(A&B) = ft(A)&ft(B),

ft(¬A) = ¬ft(A),

ft(∀xA(x)) = ∀x(U(t, x) → ft(A(x))),

ft(�A) = ∀s(tRs → fs(A)).

Let G2 be the first order theory with the axioms

∀x∃yU(x, y),

∀y∀t∀s(U(t, y) → U(s, y)),

∀xyz(xRy&yRz → xRz).

We have G0 	 ϕ (i.e., ϕ is a theorem of modal K4 with constant domains)
iff G2 	 ∀tft(ϕ).

Thus the translation f gives us an implementation of the modal logic in
classical logic. It is important to note at this stage that there may be a
variety of implementations. For example modal K4 is complete for Kripke
semantics with additional conditions on the accessibility relation such as
irreflexivity and tree property. So we can add ∀x¬xRx to G2.

Let us now expand modal logic K4 with constant domains with the ad-
ditional unary predicate λxW (x) and the additional semantic condition

t |= W (x) iff x = t.

Such a predicate W was recommended to be always a part of modal logic
(see [Gabbay and Malod, 2002]. It can be axiomatised by the following
theory G1 in the language L1 = L0 + {W}:

∃xW (x),

∀x(W (x) → �¬W (x)),

∀x(♦(W (x)&A) → �(W (x) → A)),

∀x∀y(♦(W (x)&W (y)) → �(A(x) ≡ A(y))).

It is known that (L1, G1) is a conservative extension of (L0, G0). However,
since interpolation does not hold, we would expect that the modularity
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theorem does not hold. Let us see what happens to the obvious extension
g of the translation f to the predicate W . We need to take L3 as the
language L2 together with W ∗ as well. So we have in L3 the predicate
W ∗(x, y) reading

W ∗(x, y) iff x = y.

So W ∗ is just equality; it does not add anything to the theory G2. In
fact, since we have the axiom ∀x(W (x) → �¬W (x)), G3 forces R to be
irreflexive. So if we do not include irreflexivity in the implementation, G3

will not be a conservative extension of G2.

We would like to take advantage of our comment that this subsection is
called “further discussion.” We are not exactly clear about the relationship
between the computer science notion of “implementation” and the logical
notion of “interpretation.” Also the exact formulation of the modularisation
theorem and its use in computer science will influence, of course, its exact
connection with interpolation. We need to further study of what is going
on here and we hope to present our results in future.

Consider the constant domain axiom of G2 of our example, namely

∀x∀y∀z(U(x, z) → U(y, z)).

We know that modal K4 does not have interpolation if we have this axiom. It
does have interpolation without it. We also know that if we have λxW (x) in
the language, we do have interpolation. Thus if modularisation is equivalent
to interpolation, this means that without this axiom, W can be implemented
in a conservative extension of G2 (see Figure 3.1) and with this axiom it
cannot.

At the moment we cannot pin down exactly where the difference manifests
itself.

One thing is clear: there is a strong connection with computer science!
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DISCOURSE REPRESENTATION THEORY

1 INTRODUCTION

Discourse Representation Theory, or DRT, is one of a number of theories
of dynamic semantics, which have come upon the scene in the course of the
past twenty years. The central concern of these theories is to account for
the context dependence of meaning. It is a ubiquitous feature of natural
languages that utterances are interpretable only when the interpreter takes
account of the contexts in which they are made — utterance meaning de-
pends on context. Moreover, the interaction between context and utterance
is reciprocal. Each utterance contributes (via the interpretation which it is
given) to the context in which it is made. It modifies the context into a new
context, in which this contribution is reflected; and it is this new context
which then informs the interpretation of whatever utterance comes next.

The focus on context dependence has led to an important shift in
paradigm, away from the “classical” conception of formal semantics which
sees semantic theory as primarily concerned with reference and truth and
towards a perspective in which the central concept is not that of truth but
of information. In this perspective the meaning of a sentence is not its truth
conditions but its “information change potential” — its capacity for modify-
ing given contexts or information states into new ones. Theories of dynamic
semantics, which have been designed specifically to deal with the two-way in-
teraction between utterance and context, all reflect this change of paradigm.
Nevertheless, the connection between information and truth is of paramount
importance and they are a crucial ingredient of all dynamic theories. DRT
differs from certain other dynamic theories [Groenendijk and Stokhof, 1991;
Groenendijk and Stokhof, 1990; Chierchia, 1991; Kohlhase et al., 1996;
Eijck and Kamp, 1997] in that the role it attributes to truth is especially
prominent - so much so, in fact, that some comparisons between the differ-
ent types of dynamic theories have gone so far as to qualify DRT as “static”.
There is some justification for this allegation, but nevertheless DRT contains
within it the essence of all that distinguishes dynamic semantics from ear-
lier “static” semantic theories, such as in particular, Montague Grammar,
which were exclusively concerned with reference, truth and satisfaction.

Context dependence in natural language is an extraordinarily complex
and many-faceted phenomenon. Anaphoric pronouns - pronouns which refer
back to something that has been introduced previously in the discourse
— represent perhaps the most familiar kind of context dependence; and
certainly it is the kind that has been most thoroughly investigated, within
linguistics, philosophy and Artificial Intelligence. But it is only one of many,

D. Gabbay and F. Guenthner (eds.), 
Handbook of Philosophical Logic, Volume 15, 125–394. 
DOI 10.1007/978-94-007-0485-5_3, © Springer Science+Business Media B.V. 2011 
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and to get a proper perspective on context dependence and its theoretical
implications it is important to consider others too. Thus a substantial part
of this survey will look at cases of context dependence other than anaphoric
pronouns, and at the implications they have for the structure of DRT and
of dynamic semantics generally.

We will start, however, with a review of the DR-theoretical treatment
of pronominal anaphora, retracing the steps which led to its original form.
This will motivate the basic formal version of “classical” DRT, in which
the central characteristics of the DR-theoretical approach are easiest to
recognize.

This is a handbook of philosophical logic. Thus it seems natural to em-
phasize the general logical architecture of DRT and its philosophical ap-
plications. These will be discussed in sections 2.3 and 3.1. Or decision to
give priority to these aspects of the theory has forced us to be silent or
very brief on others. Thus our choice of DRT-based treatments of natural
language phenomena has been guided by the consideration that those we
present here should reveal important logical or philosophical issues. Many
of the treatments that can be found in the existing DRT literature have
been left out.

We also remain almost entirely silent on the quite extensive work on
computer implementations of DRT. As the following sections should make
clear, the representational character of DRT renders it especially suitable
for implementations - as some computer scientists have put it, the theory
can be looked upon as a high level program specification. While we see this
amenability to implementation as an important feature of DRT, and as one
that also has a clear logical and conceptual importance, the specific prob-
lems to which implementation gives rise fall outside the horizons that we
consider appropriate for this Handbook. However we will discuss, in Section
3.1, versions of DRT which have been partly inspired by the goal to cast the
theory in forms which make its computational properties more transpar-
ent and thus facilitate implementation in a large variety of computational
environments [Asher, 1993; Bos et al., 1994; Muskens, 1996].

Closely connected with the question of implementation is an issue that
becomes unavoidable when semantic analyses are made fully explicit. All
natural language semantics is concerned with the question how meaning is
determined by syntactic form. Thus every explicit semantic analysis must
assume some form of syntactic structure for the natural language expres-
sions with which it is concerned. The choice of syntax is something from
which many presentations of DRT have tried to remain aloof — out of the
conviction that the specifically DR-theoretical contributions that DRT can
make to our understanding of semantic problems are largely independent of
the details of syntactic theory and thus should be explained in as syntax-
neutral a mode as possible. Nevertheless, the general endeavour of linguistic
theory — to arrive at an optimal description of all linguistic properties of
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natural languages — includes the task of finding the optimal account of its
syntax no less than finding an optimal account of its semantics. From this
perspective the viability of DRT will depend also on its compatibility with
what may come to be recognized, perhaps on largely independent grounds,
as the best — or the right — theory of syntax.

At present there are versions of DRT building on many of the leading
syntactic frameworks — in particular LFG [Kaplan and Bresnan, 1982],
HPSG [Pollard and Sag, 1994], and forms of Categorial Grammar [Steed-
man, 2001] and of GB [Chomsky, 1981]. As the interface problems posed
by these different combinations seem to us to have limited repercussions
for the logical and philosophical aspects of DRT, this is a part of the DRT
literature which we have also decided to pass over. Here as elsewhere we
refer the reader to the bibliography.

2 A DYNAMIC AND REPRESENTATIONAL ACCOUNT OF
MEANING

Traditionally, formal approaches to natural language semantics have focused
on individual sentences and tried to explicate meaning in terms of truth
conditions. Nevertheless it had long been acknowledged that content and
context are closely related and in fact strongly determine each other. This
is nowhere more evident than in the case of multi-sentence natural language
texts and discourses which can constitute highly structured objects with a
considerable amount of inter- and intra-sentential cohesion. Much of this
cohesion can be traced back to anaphoric properties of natural language
expressions, that is their capacity to refer back to (or point forward to)
other expressions in the text.1 Pronominals and tense are but two exam-
ples of anaphoric devices — devices whose anaphoric nature was realised
many years ago but which, it turned out, were difficult to capture with the
machinery available within formal semantics in the 60’s and 70’s.

When formal semantic approaches were extended to capture inter- and
intrasentential anaphoric phenomena, it soon became evident that (i) the
narrow conception of meaning in terms of truth conditions has to give way to
a more dynamic notion and (ii) the traditional analysis of (NP) anaphora in
terms of bound variables and quantificational structures has to be modified.
Below we briefly retrace some of the basic and by now often rehearsed2

arguments.

1DRT and other dynamic semantic theories focus on textual anaphora. This is not
meant to indicate that deictic and common ground etc. anaphora are in any sense
considered less important.

2C.f. the introductory sections of [Kamp, 1981a], [Heim, 1982], [Groenendijk and
Stokhof, 1991], [Groenendijk and Stokhof, 1990] and textbooks such as [Gamut, 1991]

and [Kamp and Reyle, 1993].
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DRT is probably still best known for its treatment of the inter- and
intrasentential anaphoric relations between (originally singular) indefinite
NPs and personal pronouns s/he, it, him, her, his and its. In this section
we will concentrate on this part of the theory and somewhat arbitrarily refer
to this part as “core DRT”.3

2.1 Truth Conditions, Discourse and Interpretation in Context

In predicate logic ([Hodges, 2001]) the following two expressions are truth
conditionally equivalent

(1) ∃xΦ ⇔ ¬∀x¬Φ

If Φ is instantiated to (delegate(x) ∧ arrive(x)), then the two formulas are
approximate semantic representations of

(2) A delegate arrived.

and

(3) It is not the case that every delegate failed to arrive.

While (2) can be extended into the mini-discourse

(4) A delegatei arrived. Shei registered.

where anaphoric relationships are indicated by subscripts for anaphors and
corresponding superscripts for their antecedent head-words, its truth-
conditionally equivalent counterpart (3) does not admit of any such ex-
tension:4

(5) ∗ It is not the case that every delegate i failed to arrive. Shei regis-
tered.

Truth conditions alone fail to capture the contextual dimension of sentence
interpretation. Intuitively (and pre-theoretically) the difference between (2)
and (3) (and hence the difference between (4) and (5)) can be accounted
for as follows: (2) updates the initially available context with an antecedent
which can be picked up by anaphoric expressions in subsequent discourse;
the truth conditionally equivalent (3) doesn’t.

3Historically this is somewhat inaccurate since the original motivation for the devel-
opment of DRT was provided by accounts of temporal anaphora. Here it should also be
mentioned that DRT did not come completely “out of the blue”. Some of the central
concepts were in some form or other already present and/or being developed indepen-
dently at about the same time as the original formulation of DRT in e.g. the work of
[Karttunen, 1976], [Heim, 1982] and [Seuren, 1986].

4Here and in what follows the asterisk ∗ in (5) indicates linguistic unacceptability.
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It might be presumed that at least simple intersentential anaphora of the
type illustrated by the well-formed discourse in (4) could be captured with
the machinery provided by traditional Montagovian approaches [Montague,
1973]. On this approach sentence sequencing (i.e. the full stop) is analysed
as conjunction and the semantic contribution of the antecedent NP (a del-
egate) “put on ice” and later “quantified-in” into a representation for the
conjunction of the first and the second sentence in (4) in which the same
variable instantiates the subject positions of the two conjoined clauses:

(6) (λP.∃x(delegate(x) ∧ P (x))(λy.arrive(y) ∧ register(y))

(6) can be reduced to

(7) ∃x(delegate(x) ∧ arrive(x) ∧ register(x))

On this account, however, a discourse consisting of n sentences may have
to be processed in its entirety with NP meanings on hold before finally
quantifying-in can take place. Such an approach fails to capture the on-line
character of discourse processing by a human interpreter. Worse still, this
approach delivers wrong results. Consider (8) and (9):

(8) Exactly one delegate arrived. She registered.

(9) Exactly one delegate arrived and registered.

It is not possible to analyse (8) by treating the full stop between the two
sentences as conjunction and then quantifying-in the phrase exactly one del-
egate with logical form λP∃x(delegate(x)∧P (x)∧∀y([delegate(y)∧P (y)] →
x = y)). For this associates (8) with the truth conditions of (9), as given in
(10), whereas the truth conditions of (8) are rather those of (11). In words,
(8) rules out than any other delegates arrived while (9) is compatible with
this possibility as long as those further delegates did not register.

(10) ∃x(delegate(x)∧arrive(x)∧register(x)∧∀y[(delegate(y)∧arrive(y)∧
register(y)) → x = y])

(11) ∃x(delegate(x) ∧ arrive(x) ∧ ∀y[(delegate(y) ∧ arrive(y)) → x = y] ∧
register(x))

2.2 Donkey Sentences

Traditionally, indefinite NP’s have been translated into logic as predications
involving existential quantification with intrasentential anaphors referring
back to the indefinites as variables bound by the existential quantifiers. In
many cases, this approach delivers the right results. However, puzzles asso-
ciated with “donkey sentences” (originating in the middle ages and discussed
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in [Geach, 1962 (Third revised edition: 1980)]) show that indefinites cannot
be translated uniformly into existential quantifications and demonstrate the
need to revise the traditional quantificational bound variable approach to
such NP anaphora.

(12) If Pedroi owns a donkeyj , hei likes itj .

(13) Every farmer who owns a donkeyj likes itj .

It is widely agreed that (on at least one prominent reading) the truth condi-
tions associated with (12) and (13) correspond to (14) and (15), respectively:

(14) ∀x[(donkey(x) ∧ own(pedro, x)) → like(pedro, x)]

(15) ∀x∀y[(farmer(x) ∧ donkey(y) ∧ own(x, y)) → like(x, y)]

In (14) the indefinite NP a donkey in (12) surfaces as a universally quan-
tified expression taking wide scope over the material implication operator.
By contrast, in a sentence like (2) the indefinite a delegate has existential
import. The occurrence of the indefinite noun phrase a donkey in (13)
poses similar problems. The indefinite NP, this time located inside a rela-
tive clause modifying a universally quantified NP, surfaces as a universally
quantified expression with wide scope in (15).

Interpreting (12) under the quantifying-in approach illustrated in (6)–
(11) results in

(16) ∃x(donkey(x) ∧ [own(pedro, x) → like(pedro, x)])

while a direct insertion approach (where quantified NPs are interpreted in
situ [Montague, 1973]) produces an open formula, in which the x in the
consequent of the material implication is not bound:

(17) ∃x[donkey(x) ∧ own(pedro, x)] → like(pedro, x)

Neither (16) nor (17) are adequate representations of the perceived meaning
(14) of (12). (16) comes out true in case there is (at least) one donkey Pedro
doesn’t own and (17) doesn’t even express a proposition.

2.3 DRT — the Basic Ingredients

Examples (2), (3), (4) and (5) illustrate the need to extend the narrow
conception of meaning as truth conditions to a more dynamic notion of
meaning relative to context. Examples (8) and (9), (12) and (13) illustrate
the need to reconsider the traditional quantificational and bound variable
approach to nominal anaphora on the intra- and intersentential level.
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In the original formulation of DRT [Kamp, 1981a; Kamp and Reyle,
1993] interpretation involves a two stage process: first, the construction of
semantic representations, referred to as Discourse Representation Structures
(DRSs), from the input discourse and, second, a model-theoretic interpre-
tation of those DRSs. The dynamic part of meaning resides in how the
representations of new pieces of discourse are integrated into the represen-
tation of the already processed discourse and what effect this has on the
integration of the representations of subsequent, further pieces of discourse.
Put differently, a new piece of discourse is interpreted against and in turn
updates the representation of the already processed discourse and the mean-
ing of a linguistic expression consists both in its update potential and its
truth-conditional import in the resulting representation. The dynamic view
of meaning in terms of updates of representations and the attempt at a
rational reconstruction of the on-line and incremental character of discourse
processing by human agents naturally leads to an algorithmic specification
of DRS-construction in [Kamp, 1981a; Kamp and Reyle, 1993]. To process a
sequence of sentences S1, S2, . . . , Sn the construction algorithm starts with
a syntactic analysis of the first sentence S1 and transforms it in a roughly
top-down, left-to-right fashion with the help of DRS construction rules into
a DRS K1 which serves as the context for the processing of the second sen-
tence S2. The syntactic analysis of S2 is then added to and incrementally
decomposed within the context DRS K1. Semantic contributions of con-
stituent parts of S2 are integrated into DRS K1 as soon as they become avail-
able, eventually resulting in a complete DRS K1,2 for the sequence S1, S2.
Truth conditional interpretations are provided for completed DRSs K1, K1,2,
. . . K1,...,n but not for intermediate steps involving application of DRS con-
struction rules. In its original formulation, DRT tries to do justice to a
conception prevalent in a number of AI, Cognitive Science and Linguistics
approaches (cf. [Fodor, 1975]) according to which the human mind can be
conceived of as an information processing device and that linguistic mean-
ings are best viewed as instructions to dynamically construct and update a
mental representation, which can then be employed in further mental pro-
cessing (such as theoretical and practical reasoning). At the same time, com-
plete meaning representations are associated with truth-conditional seman-
tic interpretations. DRT’s decidedly representational stance has inspired (or
provoked) research on a large number of “non-representational” approaches
to dynamic semantics, cf. [Zeevat, 1989; Groenendijk and Stokhof, 1991;
Groenendijk and Stokhof, 1990; Muskens, 1996; Eijck and Kamp, 1997;
Harel, 1984].

In the early nineties a new DRT architecture was proposed by Van Der
Sandt and Geurts [van der Sandt, 1992; Geurts and van der Sandt, 1999;
Geurts, 1999; Kamp, 2001a; Kamp, 2001b], based on a general treatment of
presupposition [Soames, 1984]. Informally speaking, a (linguistic) presup-
position is a requirement which a sentence imposes on the context in which
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it is used. If the context doesn’t satisfy the presuppositions imposed by the
sentence, it may be be modified through “accommodation”, i.e. modified or
updated to a new context which does satisfy them. If the context neither
satisfies all the presuppositions of the sentence nor can be accommodated
to one that does, then interpretation aborts; these are cases in which in-
terpreters perceive the sentence as incoherent in the context in which it
occurs. Within such an account of presupposition anaphoric expressions
such as pronouns can be treated as carrying presuppositions of a special
kind, viz. that a suitable antecedent is available for them.

Within the new DRT architecture presuppositions are treated via a two
stage procedure. First, a “preliminary” representation is constructed for
each individual sentence in which all presuppositons which the sentence
carries are given explicit representations. During the second stage the
presuppositions represented in the preliminary representation are checked
against the context; when necessary and feasible, the context is accommo-
dated. When all presuppositions have been satisfied, the remaining non-
presuppositional part of the preliminary representation is merged with the
(original or updated) context; the result is a DRS which includes both the
context information (possibly with its accommodations) and the contribu-
tion made by the sentence.

A further difference between the original version of DRT and the new
version is that in the former representations are constructed top-down –
the syntactic structure of a sentence is decomposed starting from -the top
node which represents the sentence as a whole — whereas in the new ver-
sion construction proceeds bottom-up: the preliminary representations are
constructed from syntactic trees by first assigning semantic representations
to the leaves of the tree and then building representations for complex
constituents by combining the representations of their immediate syntac-
tic parts. In this section we will give a brief impression of both the old and
the new architecture. (Details of the old version of DRT can be found in
[Kamp and Reyle, 1993]. For alternative bottom-up constructions see e.g.
[Asher, 1993; Muskens, 1996; Eijck and Kamp, 1997].)

We begin with a description of some of the basic tools (such as DRSs,
DRS conditions, accessibility, etc.) which are characteristic for the general
DRT enterprise.

The DRT-based solutions to interpretation in context and context up-
date (with inter- and intrasentential anaphora) are based on (i) a novel
conception of logical form and (ii) the use of Discourse Referents (DRs)
to represent the semantic contributions made by noun phrases (as well as
certain other sentence elements). The logical forms of DRT are the DRSs
already mentioned. DRSs can be extended and merged, and in this way
DRSs representing sentences can be combined into DRSs that represent
multi-sentence discourses. DRs are DRS constituents which serve to repre-
sent entities and which could be described as “variables” that are subject to
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a novel form of binding. This new form of binding allows among other things
for a new treatment of indefinite NPs (which are among the contributors
of DRs to sentence and discourse representations), a treatment which ac-
counts for their potential as anaphoric antecedents to pronouns (recall,e.g.,
the difference between (4) and (5)).

Discourse Representation Structures

Semantic representations in DRT are specified in terms of a language of
DRSs. Simple DRSs are pairs consisting of a set of discourse referents U —
often referred to as the “universe” of the DRS — and a set of conditions
Con. The general form of a DRS is as in (18).

(18) 〈 U , Con 〉

Intuitively, the universe collects the discourse entities talked about in a
discourse while the conditions express constraints (properties, relations) on
those discourse entities. Simplifying somewhat,5 sentence (2) (a delegate
arrived) corresponds to the DRS

(19) 〈 {x},{delegate(x), arrive(x)} 〉

or, in the often used pictorial “box notation”,

(20)

x

delegate(x)
arrive(x)

In what follows we will make use of both the box notation and the linear
notation. The box notation provides better readability especially in the
case of complex DRSs (it displays the anaphoric possibilities provided by a
context at a glance) while the linear, set based notation saves space and is
the basis for formal definitions of syntax, semantics and proof systems for
the DRS language.

Informally, the indefinite a delegate in (2) contributes the discourse refer-
ent x to the universe of the DRS in (20) and the atomic condition delegate(x)
to its set of conditions. The VP arrived contributes the atomic condition
arrive(x). The associated semantics (cf. Definition 10) ensures that this
simple DRS is true in a model just in case there exists a mapping from the
discourse referents of the DRS into the universe of the model such that all
the conditions in the set of conditions come out true. In this way discourse
referents in the top box of a DRS are endowed with existential force and
sets of conditions are interpreted conjunctively.

5Abstracting away from tense, aspectual phenomena etc.
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DRS Conditions and Accessibility

Discourse referents have a double function. On the one hand they serve
as antecedents for anaphoric expressions such as pronouns, on the other
they act as the bound variables of quantification theory. This second func-
tion entails that discourse referents must be able to stand to each other in
certain scope relations. To mark these relations we need the concept of a
“sub-DRS”: DRSs can occur as constituents of larger DRSs. As it turns out,
this mechanism provides a natural explanation of the chameleonic quantifi-
cational import (existential or universal) of indefinite NPs like those in (2),
(12) or (13). Sub-DRSs always occur as part of complex DRS conditions. By
contrast, the DRS conditions we have seen so far are simple or atomic DRS
conditions. Two examples of complex DRS conditions are those involving
implication and negation.

Conditional sentence constructions of the form if S1 then S2 such as (12)
involve a complex DRS condition of the form:

(21)
KS1

⇒
KS2

which consists of DRSs for the sentences S1 and S2, respectively, joined by
the ⇒ operator. Similarly, negation introduces a complex condition of the
form

(22) ¬
KS

which contains the DRS KS for the sentence S in the scope of the negation
as its subconstituent. To give an example, sentence (12) gives rise to the
following DRS:

(23)

x

predro(x)

y

donkey(y)
own(x,y)

⇒

z w

beat(z,w)
z = x
w = y

The truth conditions (cf. Definition 10) associated with DRS (23) involve a
wide scope universal quantification over the discourse referent y associated
with the indefinite a donkey. Intuitively the interpretation of the conditional
says that in order for (23) to be true it must be the case that whenever a
situation obtains that satisfies the description provided by the antecedent
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of the conditional, then a situation as described by the consequent obtains
as well. In other words, the consequent is interpreted and evaluated in the
context established by the antecedent. The natural language paraphrase of
the truth conditions associated with (23) expresses the universal force with
which the indefinite a donkey in (12) is endowed. Furthermore, since the
consequent is interpreted in the context set by the antecedent, the truth-
conditional requirement that situations in which the antecedent is true be
accompanied by situations in which the consequent is true is tantamount to
situations of the former kind being part of (possibly more comprehensive)
situations in which antecedent and consequent are true together. This is
the informal justification of why discourse referents introduced in the an-
tecedent of the conditional are available for resolution of anaphors in the
consequent but not vice versa. It also explains why the universal quanti-
fier expressed by the conditional is conservative in the sense of generalized
quantifier theory [Westerstahl, 1989b]. The conservativity of other natu-
ral language quantifiers follows in the same way, cf. Section (3.3) below.
DRS construction for a universal NP with a relative clause containing an
indefinite NP, as in (13), proceeds in a similar manner.

The semantics of conditional DRS conditions, then, is based on the prin-
ciple that the interpretation of the antecedent can be extended to an in-
terpretation of the consequent. This principle entails that a pronoun in
the consequent can be interpreted as anaphoric to a constituent in the an-
tecedent, i.e. the pronoun’s discourse referent can be linked to the one
introduced by this constituent. Such anaphoric links are subject to what is
called accessibility in DRT, a relation which must hold between the linked
discourse referents and which obtains if, informally speaking, the pronoun
occurs within the logical scope of its antecedent. On the other hand, dis-
course referents from the consequent of a conditional are in general not
accessible to pronouns in the antecedent. So there is an asymmetry in the
accessibility relation here: discourse referents introduced by constituents in
the antecedent are accessible to the consequent but not vice versa (unless
they are allowed to “escape” to a higher position in the DRS, cf. the discus-
sion on proper names below). The accessibility relation turns out to play
a central role in the DR-theoretical account of when anaphora is possible
and when not. How DRS-constructors — which, like those of (21) and (22),
create complex DRS conditions — affect accessibility, is an essential aspect
of the semantic analysis of the natural language constituents (if . . . (then)
. . . , not etc.) which they are used to represent. It can be argued, along
lines similar to the argument we have given for conditionals above, that
the discourse referents within the scope of a negation operator ¬ are not
accessible from outside the SubDRS which is in the scope of the negation
operator and similarly for discourse referents in the scope of a conditional
operator ⇒ (again, unless they can “escape”). As long as ⇒ and ¬ are the
only complex DRS condition constructors, the accessibility relation can be
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graphically described in terms of the geometrical configurations of the box
representation of the DRS language as going left and up.

The structure of the DRS determines, via its model-theoretic interpreta-
tion, the quantificational import of discourse referents it contains. In this
way indefinites are interpreted as terms which receive different quantifica-
tional import depending on where the discourse referents they introduce
end up within the DRS. To a considerable extent, therefore, the variable
binding role of quantifiers in traditional predicate logic or within the higher
type Intensional Logic used in Montague Grammar style representations is
taken over in DRT by the DRS universes, which in effect act as quantifier
prefixes, and by the structure of DRSs which defines the scope and binding
properties of these DRS universes.

We are now in a position to account for the contextually relevant differ-
ence between the truth-conditionally equivalent (2) and (3) that is manifest
in (4) and (5). (2) and (3) are mapped into the DRSs in (24) and (25),
respectively:

(24)

x

delegate(x)
arrive(x)

(25)
¬ x

delegate(x)
⇒

¬
arrive(x)

(24) and (25) are truth-conditionally equivalent, as can be verified against
the semantics given in Definition 10. However, (24) can be extended to an
anaphorically resolved DRS

(26)

x y

delegate(x)
arrive(x)

register(y)
y = x

representing the two sentence discourse (4), while (25) can only be extended
to the unresolvable
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(27)

y

¬ x

delegate(x)
⇒

¬
arrive(x)

register(y)
y = ?

where the remaining resolution instruction y = ? indicates that no an-
tecedent for the pronoun she has been found.

Finally, let us consider the pair of sentences in (8) and (9). An anal-
ysis of sentence sequencing as conjunction together with a quantifying-in
approach as the last step in the derivation would ascribe a complex prop-
erty λx.(arrive(x)∧register(x)) to the representation λP.∃x(delegate(x)∧
P (x) ∧ ∀y[(delegate(y) ∧ P (x)) → x = y]) of the quantifying NP exactly
one delegate in one fell swoop resulting in the formula ∃x(delegate(x) ∧
arrive(x) ∧ register(x) ∧ ∀y([delegate(y) ∧ arrive(y) ∧ register(y)] → x =
y)). In contrast, in the DRT approach a discourse referent x is set up by
the indefinite NP a delegate in the first sentence and then incrementally
constrained by the addition of further conditions:

(28)

x z

delegate(x)
arrive(x)

y

delegate(y)
arrive(y)

⇒
x = y

register(z)
z = x

In this way we obtain the truth conditions associated with the predicate
logic formula ∃x(delegate(x) ∧ arrive(x) ∧ ∀y[(delegate(y) ∧ arrive(y)) →
x = y] ∧ register(x)) which are those intuitively associated with (8) .

DRS Construction

DRS construction has been defined for many of the leading syntactic theories
including (simple or decorated) CFG [Kamp, 1981a; Kamp and Reyle, 1993;
Bos et al., 1994], LFG [Reyle and Frey, 1983; Genabith and Crouch, 1999],
HPSG [Frank and Reyle, 1995] and Categorial Grammar [Zeevat et al., 1987]

based approaches. Below we sketch the original top-down DRS construction
algorithm and the more recent, bottom-up, presupposition-based version.
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A DRT-Top-Down Construction Algorithm: In the original formu-
lation of DRT [Kamp, 1981a; Kamp and Reyle, 1993] the construction of
DRSs is spelled out in terms of an algorithm based on DRS construction
rules which successively decompose syntactic analyses for the individual sen-
tences in a discourse into DRSs in a roughly top-down, left-to-right manner.
Here we briefly and informally illustrate the algorithm with the two sentence
mini-discourse (4), here repeated as (29):

(29) A delegate1 arrived. She1 registered.

As a first step the algorithm inserts the syntactic analysis of the first sen-
tence in (29) as a “reducible condition” into an empty DRS representing an
initial empty context. A DRS construction rule for indefinite NPs matches
the relevant part of the tree, introduces a new discourse referent x into the
universe of the DRS under construction and adds a condition delegate(x)
to the set of conditions. The matching part of the tree configuration is
replaced by x. Next, a DRS construction rule for simple intransitive VP
configurations applies. The matching tree is consumed and a condition ar-
rive(x) is added to the DRS condition. This completes the processing of the
first sentence of (29).

(30)
S

NP VP
Det N V
a delegate arrived

�

x

delegate(x)
S

x VP
V

arrived

�

x

delegate(x)
arrive(x)

In the next step the top-down construction algorithm inserts the syntactic
analysis of the second sentence in (29) as a reducible condition into the con-
text DRS constructed from the first sentence. A DRS construction rule for
pronominal NPs introduces a new discourse referent y into the universe of
the DRS under construction, adds a condition y = ? to the set of conditions
and replaces the matching part of the tree with y. Informally, y = ? can be
understood as an instruction to find a suitable antecedent for the pronoun
she. A suitable antecedent is a discourse referent already introduced and
available in the context representation constructed so far. In the case at
hand discourse referent x is available and the anaphor is resolved to y =
x. Note that in this set-up the anaphoric NP she is resolved as soon as it
is processed by the construction algorithm. The original DRS construction
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algorithm was in fact designed as a reconstruction of the on-line and incre-
mental interpretation of a discourse by a human interpreter. In the final
step the algorithm processes the intransitive VP in the same fashion as for
the first sentence in (29):

(31)

x

delegate(x)
arrive(x)

S
NP VP

ProN V
She registered

�

x y

delegate(x)
arrive(x)

S
y VP

V
registered
y = ?

�

x y

delegate(x)
arrive(x)

S
y VP

V
registered
y = x

�

x y

delegate(x)
arrive(x)

register(y)
y = x

Two Stage Bottom-Up DRS Construction: A top-down DRS con-
struction algorithm of the kind sketched for a modest fragment of English is
spelled out in detail in [Kamp and Reyle, 1993]. We already noted that the
new, presupposition-based version of DRT makes use of a bottom-up con-
struction process. In recent times bottom-up construction became increas-
ingly common within DRT, and it will be assumed (if often only implicitly)
throughout most of this survey. In the next few pages we present, briefly
and informally, the essential steps involved in constructing a DRS for the
mini-discourse in (29) in the more recent bottom-up and presupposition-
based version of DRT.

As noted above, in the new version of DRT DRS construction proceeds in
two stages: a preliminary sentence representation is constructed during the
first stage and during the second stage the pesuppositions of the sentence,
which are explicitly represented in the preliminary DRS, are verified in
their respective contexts, with or without context accommodation; when
presupposition verification is successful, the non-presuppositional remainder
of the preliminary representation is merged with the context representation
(or with the representation of the accommodated context). The simplest
preliminary representations for sentences with presuppositions are of the
form 〈 P,D 〉, where D (a DRS) is the non-presuppositional part of the
representation and P is a set of representations of the presuppositions of
the sentence, where these representations also take the form of DRSs. In
more complicated cases the set P may itself consist of preliminary DRSs
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(as a presupposition may rest in its turn on other presuppositions) and
D too may have a more complicated structure which involves additional
presuppositions.

We also noted that anaphoric pronouns are treated as carrying a presup-
position that the context provides a suitable anaphoric antecedent. In fact,
in the new version of DRT all definite NPs are treated as coming with a pre-
supposition to the effect that there is a way of determining their reference
which is independent of the remaining material on the sentential utterance
to which the NP belongs; reference via coreference with an anaphoric an-
tecedent is one of the various forms which this presupposition can take.

Indefinite NPs, on the other hand, are assumed to be without presup-
position. It is this which sets them apart from definite NPs and allows
them to make the quantifier-like contributions to sentence meaning which
motivated the traditional treatment of indefinites as existential quantifiers.
However, the novel form of binding which we mentioned earlier as one of the
distinctive features of DRT, and which applies in particular to the discourse
referents contributed by indefinites, distinguishes indefinites form “genuine”
quantifier phrases like every delegate and makes it possible to account for
the capacity of indefinites to act as antecedents for anaphoric pronouns in
sentences like (12) and (13) and discourses like (4).

The absence of presuppositions connected with indefinites means that
no presupposition is introduced by the subject NP a delegate of the first
sentence of (29). So, if we assume that no other constituent of this sentence
carries a presupposition, then the preliminary representation of the sentence
will be that given on the right hand side in (32). The left hand side gives
the representation of the context, which we have assumed to be empty.

(32)

〈
∅ ,

x

delegate(x)
arrive(x)

〉

context preliminary DRS

As there are no presuppositions to resolve, the non-presuppositional part
of the preliminary DRS can be merged with the (initially) empty context.
Here  is the symmetric merge operation, i.e. 〈 U1,Con1 〉  〈 U2,Con2 〉 =
〈 U1 ∪ U2,Con1 ∪ Con2 〉.

6

6There exists an extensive literature on symmetric and non-symmetric merge opera-
tions including [Fernando, 1994; Vermeulen, 1995; Eijck and Kamp, 1997].
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(33)

 

x

delegate(x)
arrive(x)

=

x

delegate(x)
arrive(x)

context non-presuppositional
DRS

The result of the merge in (33) constitutes the new context DRS against
which the preliminary DRS for the second sentence in (29) is interpreted:

(34)

x

delegate(x)
arrive(x)

〈{
y

fem(y)

}
,

y

register(y)

〉

context preliminary DRS

The presuppositional part of the preliminary DRS for the second sentence
derives from the pronominal NP She. She requires a suitable antecedent,
either one that has the property female or one that is neutral between a
fe/male interpretation, to be available in the context established so far. In
(34) a possible antecedent is provided in the form of the discourse referent x
for a delegate in the context DRS. Delegate is neutral (delegates can be either
female or male), so the presupposition can be satisfied by accommodating
fem(x) to the context DRS. Presupposition resolution is recorded as y = x in
the non-presuppositional part of the preliminary DRS and, in the final step,
merging the non-presuppositional part of the DRS for the second sentence
in (29) with the (updated) context DRS established by the first sentence
results in:

(35)

x

delegate(x)
arrive(x)
fem(x)

 

y

register(y)
y = x

=

x y

delegate(x)
arrive(x)
fem(x)

register(y)
y = x

context non-presuppositional
DRS

Presupposition verification in (34) involves a “world knowledge” inference
corresponding to an axiom of the form ∀x(delegate(x) → (male(x) ∨x

female(x))).7 The example may seem trivial but, in general, presuppo-
sition verification may potentially draw upon open-ended knowledge. Ex-
cept for the accommodated condition fem(x), (35) is equivalent to the final

7∨x is exclusive or: P ∨x Q iff (P ∨ Q) ∧ ¬(P ∧ Q).
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unreducible DRS in (31) obtained via the top-down construction algorithm.
Its truth conditions are those of ∃x∃y(delegate(x) ∧ arrive(x) ∧ fem(x) ∧
register(y) ∧ y = x).

Finally, we outline how example (12) if Predro owns a donkey, he beats
it comes to be interpreted as the DRS in (23) in the bottom-up approach.
The pair consisting of the empty context DRS and the preliminary DRS
constructed for (12) is given in (36):

(36)

〈
∅,

〈{
x

pedro(x)

}
,

y

donkey(y)
own(x,y)

〉

⇒

〈
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z

human(z)
male(z)

u

¬
human(u)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
z u

beat(z,u)

〉
〉

(36) is an example of a complex preliminary DRS with embedded presup-
positions. The antecedent of the implicational DRS condition contains a
presupposition triggered by the proper name Pedro. The use of the proper
name Pedro, as opposed to, say, the phrase someone named “Pedro”, car-
ries the implication that Pedro is already part of the available context. To
do justice to this intuition, DRT assumes that the discourse referents for
proper names are always part of the highest DRS universe (the highest DRS
universe contains those discourse referents which represent entities that can
be considered as elements of the current context of interpretation, as it has
been established by the interpretation of the already processed parts of the
text). Note that there is a certain tension between the claim we just made
that the use of a name presupposes its bearer to be already represented
in the context, and the stipulation that the name introduces a discourse
referent representing its bearer into the context. This apparent contradic-
tion can be easily resolved. By using the name the speaker presupposes
familiarity with it, in the sense of there being a representation of its bearer.
This, however, is a type of presupposition that is readily accommodated
when neccessary: if the bearer is not yet represented in the context as the
interpreter has it, then the context is readily updated by adding a repre-
sentation for the name’s bearer. The discourse referent introduced by the
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name’s current use can be identified with this representation. Processing
the presupposition in the antecedent of the DRS condition in (36) results
in the following representation:

(37)
x

Pedro(x)

〈
∅,

〈
∅,

y

donkey(y)
own(x,y)

〉

⇒

〈
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z

human(z)
male(z)

u

¬
human(u)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
z u

beat(z,u)

〉
〉

The consequent of the preliminary DRS involves two presuppositions gen-
erated by the pronominal NPs he and it. The former requires an an-
tecedent that is human and male, the latter an antecedent that is nonhuman.
Pronominal presuppositions can only be resolved through satisfaction by the
local or nonlocal context, which is to say that the required antecedents will
have to be provided by the context. The context available to both pronomi-
nals is provided by (i) the antecedent of the implicational condition, together
with (ii) the context DRS and (iii) the discourse referents and conditions of
the DRS which contains the ⇒-condition as a component. (However, in the
present case in which the universe of this DRS is empty, this third compo-
nent of the context has no part to play.) These are precisely the domains
that are accessible from the position of the consequent of the conditional, in
the sense of accessibility alluded to in the description of the top-down algo-
rithm. Also, the antecedent-presupposition triggered by the name Pedro has
already been accommodated and the result of this accommodation added to
the (previously empty) context DRS. Thus the presupposition introduced
by he can be resolved at the level of the context DRS while the one for it is
resolved at the level of the antecedent DRS. These resolutions match he with
the discourse referent x introduced by Pedro and it with discourse referent
y introduced by a donkey. These matches are recorded by z = x and u = y,
which are added to the non-presuppositional component of the consequent
DRS. Again, presupposition verification involves “world-knowledge”. The
resulting representation is8

8Here and elsewhere we sometimes supress (some of) the presuppositional constraints,
such as e.g.
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(38)
x

pedro(x)

〈
∅,

〈
∅,

y

donkey(y)
own(x,y)

〉
⇒

〈
∅,

z u

beat(z,u)
z=x
u=y

〉 〉

At this stage all presuppositions generated by the preliminary DRS are re-
solved (or cancelled) and the various (local and global) context DRSs can
now be merged with the non-presuppositional components of the prelimi-
nary DRS to yield the DRS for the discourse in (12):

(39)
x

predro(x)
 

y

donkey(y)
own(x,y)

⇒

z u

beat(z,u)
z = x
u = y

=

x

pedro(x)

y

donkey(y)
own(x,y)

⇒

z u

beat(z,u)
z = x
u = y

3 BASIC DRS LANGUAGES AND THEIR INTERPRETATIONS

In this section we provide formal definitions of the syntax and semantics of
some basic DRS-languages. We start with a simple, extensional, first-order
DRS language, present an intensional model for the language and define
the notion of proposition expressed by a DRS as the set of possible worlds
where the DRS is true. Truth conditions and propositions, however, do
not fully capture the dynamic aspects of discourse interpretation in DRT
where sentences are interpreted against a previously established context and
where, in turn, a given context is updated through this interpretation into a

u

¬
human(u)

to avoid clutter in the resolved representations.
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new context for subsequent sentences. We model this dynamics semantically
in terms of information states and, based on this, context change potentials
(CCPs [Heim, 1982]), i.e. functions on, or relations between information
states. The remaining parts of this section considers extensions that deal
with generalized quantifiers, plurals, tense and aspect.

3.1 A First-Order, Extensional DRS Language

Here we provide the syntax and semantics for simple, complete and proper
DRSs, the final products resulting from exhaustive and successful applica-
tion of either of the two DRS construction algorithms informally presented
in Section (2.3). Such DRSs do not contain any reducible conditions (i.e.
they are complete) or presuppositions (they are simple) and all occurrences
of discourse referents are bound (they are proper).

The vocabularies of simple, first-order, extensional DRS languages consist
of four disjoint sets.

DEFINITION 1. The vocabulary for a simple, extensional DRS language
L is given by:

(i) a set Ref of discourse referents

(ii) a set Name of one-place definite relation constants

(iii) sets Reln of predicate constants

(vi) a set Sym of logical symbols; for the language defined in this section
this is the set {=,¬,∨,⇒}

In languages of this form, the work of individual constants in ordinary pred-
icate logic is done by the unary predicates in the set Name. Thus, instead
of an individual constant p to denote Pedro, Name will contain a unary
predicate Pedro and the condition “Pedro(x)” expresses that x represents
the individual Pedro.

DRSs and DRS-conditions are defined by simultaneous recursion:

DEFINITION 2. Syntax of DRSs and DRS conditions of L:

(i) if U⊆ Ref and Con a (possibly empty) set of conditions, then 〈 U,Con 〉
is a DRS

(ii) if xi, xj ∈ Ref, then xi = xj is a condition

(iii) if N ∈ Name and x ∈ Ref, then N(x) is a condition

(iv) if P is a n-place predicate constant in Rel and x1, . . . , xn ∈ Ref, then
P(x1, . . . ,xn) is a condition



146 HANS KAMP, JOSEF VAN GENABITH, UWE REYLE

(v) if K is a DRS, then ¬ K is a condition

(vi) if K1 and K2 are DRSs, then K1 ∨ K2 is a condition

(vii) if K1 and K2 are DRSs, then K1 ⇒ K2 is a condition

The conditions specified in (ii), (iii) and (iv) are called atomic conditions,
those specified in (v), (vi) and (vii) complex conditions .

Given a DRS K, FV(K) denotes the set of free discourse referents of K.

DEFINITION 3. FV(K), the set of free discourse referents of K, is defined
by:

(i) FV(〈 UK,ConK 〉) := (
⋃

γ∈ConK
FV(γ)) - UK

(ii) FV(xi = xj) := {xi, xj}

(iii) FV(P(x1,...,xn)) := {x1, . . . , xn}

(iv) FV(¬ K) := FV(K)

(v) FV((K1 ∨ K2)):= FV(K1) ∪ FV(K2)

(vii) FV(K1 ⇒ K2) := FV(K1) ∪ (FV(K2) - UK1

)

BV(K), the set of bound discourse referents of K, is the set V(K) \ FV(K),
where V(K) is the set of all discourse referents occurring somewhere in K.

A proper DRS is a DRS where all occurrences of discourse referents are
properly bound.

DEFINITION 4. A DRS K is proper iff FV(K) = ∅

To define the notion of a pure DRS formally we need to make use of the
relation of one DRS being a sub-DRS of another DRS. This relation, which
we represent as ≤, is defined as the reflexive transitive closure of the relation
< of a DRS K1 being an immediate sub-DRS of a DRS K. < is given in
Definition 5.

DEFINITION 5. K1 is an immediate sub-DRS of K, K1 < K, if any of the
following conditions holds:

(i) ¬ K1 ∈ ConK

(ii) there is a DRS K2 sth. K1 ⇒ K2 ∈ ConK or K2 ⇒ K1 ∈ ConK

(iii) there is a DRS K2 sth. K1 ∨ K2 ∈ ConK or K2 ∨ K1 ∈ ConK
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Purety of a DRS can now be defined as in Definition 6. A DRS is pure if it
does not contain otiose declarations of discourse referents.

DEFINITION 6. A DRS K is pure iff for every two distinct DRSs K1 and
K2 such that K2 is a sub-DRS of K1 and K1 is a sub-DRS of K, UK2

∩
(UK1

∪ FV(K)) = ∅.

On the basis of the relation ≤ we can also define a relation of accessibil-
ity, either between DRSs of between discourse referents. The accessibility
relation between DRSs is given in Definition (7), that between between
discourse referents in Definition 8.

DEFINITION 7. Given DRSs K and K1, K is accessible from K1, in symbols
K acc K1, iff

(i) K1 ≤ K; or

(ii) there exist DRSs K2 and K3, sth. K2 ⇒ K3 and K acc K2 and K3 acc
K1

DEFINITION 8. Given DRSs K, K1 and discourse referents x and y, x is
accessible from y, in symbols x acc y, iff x ∈ UK, y ∈ UK1

and K acc K1.

Models 〈U , ! 〉 for the simple DRS language L defined above are extensional
first-order models consisting of a non-empty domain U of individuals and
an interpretation function ! which maps names in Name into elements in
U, and n-ary relations in Rel into sets of n-tuples of elements of U, i.e. into
elements of the set P(Un).

DEFINITION 9. Interpretation functions ! for models of L are defined as
follows:

(i) ! : Name → {{u}|u ∈ U}

(ii) ! : Reln → P(Un)

The model-theoretic interpretation of the core DRS language defined above
can be illustrated as follows: by way of a first approximation, a DRS K =
〈 UK,ConK 〉 can be thought of as a “partial” model (this is qualified below)
representing the information conveyed by some discourse D; K is true if and
only if K can be embedded into the “total” model M = 〈 U, ! 〉 by mapping
all the discourse referents in the universe UK of K into elements in the
domain U ofM in such a way that under this mapping all the conditions γ ∈
ConK come out true in M. In other words, K is true if and only if there is a
homomorphism from K into M. In DRT parlance, such a homomorphism is
called a verifying embedding for K into M. Embeddings are partial variable
or discourse referent9 assignment functions and the notation g ⊆X k, where

9We often use the terms “variable” and “discourse referent” interchangeably.
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X is a (possibly empty) set of discourse referents, states that embedding k
extends g to the discourse referents in X, i.e. Dom(k) = Dom(g) ∪ X.10

The conception of a DRS K as a partial model makes straightforward
sense only in those cases where all conditions of K are atomic. As soon as the
DRS contains complex conditions, of the form (21), say, or of the form (22),
the notion becomes problematic for the very same reasons that negation and
implication are problematic in Situation Semantics ([Cooper et al., 1990;
Barwise et al., 1991; Barwise and Cooper, 1993]). Take negation: should
the condition

(40) ¬

y

donkey(y)
own(x,y)

be understood as giving partial information in the sense that (the value of)
x does not own any of the donkeys that can be found in some limited set
or should it be taken as an absolute denial that x owns any donkeys what-
ever? The view adopted by classical DRT is that (40) is to be interpreted
absolutely, in the sense that an embedding (assignment) f with f(x)=a into
a model M = 〈 U , ! 〉 verifies (40) iff there is no b ∈ U such that b ∈
!(donkey) and 〈 a,b 〉 ∈ !(own); or to put it into slightly different terms,
and assuming that f is not defined for y: f verifies (40) in M iff there is no
function g such that f ⊂{y} g (i.e. no extension g of f such that Dom(g)
= Dom(f) ∪ {y}) which verifies (41) in M.

(41)

y

donkey(y)
own(x,y)

A similar verification clause is adopted for complex conditions of the form
K1 ⇒ K2, where K1 = 〈 UK1

,ConK1

〉 and K2 = 〈 UK2

,ConK2

〉 are DRSs.
K1 ⇒ K2 is verified by f in M iff for every g such that f ⊂UK1

g which

verifies the conditions in K1 there exists an h such that g ⊂UK2

h and h

verifies the conditions in K2. Putting these considerations together we come
to the following definitions of verification and truth:

DEFINITION 10. Verifying embeddings for DRSs and DRS conditions of
L:

(i) 〈g, h〉 |=M 〈 U,Con 〉 iff g ⊂U h and for all γ ∈ Con: h |=M γ

(ii) g |=M xi = xj iff g(xi) = g(xj)

10Below we use g ⊆X k and k ⊇X g interchangeably.
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(iii) g |=M N(x) iff !(N) = {g(x)}

(iv) g |=M P(x1,..,xn) iff 〈g(x1), .., g(xn)〉 ∈ !(P)

(v) g |=M ¬ K iff there does not exist an h such that 〈g, h〉 |=M K

(vi) g |=M K1 ∨ K2 iff there is some h such that 〈g, h〉 |=M K1 or there is
some h such that 〈g, h〉 |=M K2

(vii) g |=M K1 ⇒ K2 iff for all m such that 〈g,m〉 |=M K1 there exists a k
such that 〈m, k〉 |=M K2

When g |=M γ where γ is a DRS condition, we say that g verifies γ in M.
When K is a DRS and 〈g, h〉 |=M K, we say that h verifies K with respect
to g.

DEFINITION 11. Truth of a proper DRS K in a model M:

A proper DRS K is true in a model M iff
there exists a verifying embedding h for K in M with respect to the
empty assignment Λ.
We write: |=M K iff there exists an h such that 〈Λ, h〉 |=M K.

The definition of truth for a DRS in a model given in 11, together with
the definition of a verifying embedding for DRSs in 10, ensures that the
discourse referents in the universe of a main DRS (i.e. one which is not
occurring as a sub-DRS of some other DRS) are interpreted as existentially
quantified variables. The existential quantifier in the truth definition in
11 is often referred to as existential closure. Note the difference between
the existential closure which the truth definition imposes on the discourse
referents in the universe of a main DRS and the universal quantification
imposed on the discourse referents in the antecedent of a conditional DRS
condition K1 ⇒ K2, as shown in clause 10(vii). Note also the conjunctive
interpretation that 10(i) imposes on condition sets: in order that h verifies
〈 U , Con 〉 (with respect to a prior embedding g) in M, h must extend g
to U and h must verify each of the conditions γ1, . . . , γn ∈ Con (which is
equivalent to the claim that h verifies their conjunction). Thus it is an effect
of 10(i) that conjunction is built into the structure of a DRS via its condition
set, just as it follows from 11 that existential quantification is built into it via
its universe. There is no need to represent the conjunction and existential
quantification operators of classical logic by means of special devices (i.e. in
the form of special complex conditions — but see the discussion of dynamic
conjunction in Section 4). One consequence of this is that the DRS language
in which the only complex conditions are of the form ¬ K has the expressive
power of the full predicate calculus (for this sub-language can express ∃, ∧
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and ¬, and the other logical operators of classical logic can be expressed
with the help of these, cf. [Kamp and Reyle, 1991]).

The DRSs in the first order fragment as defined in 2 and 10 can be
mapped straightforwardly into corresponding FOPL formulae in terms of a
function ℘�11 following the clauses in the syntactic definition 2 above:

DEFINITION 12. Translation of L into FOPL

(i) ℘�(〈{x1, . . . , xn}, {γ1, . . . , γm}〉) := ∃x1 . . . ∃xn(℘�(γ1) ∧ . . . ∧ ℘�(γm))

(ii) ℘�(xi = xj) := (xi = xj)

(iii) ℘�(N(x)) := (N = x)12

(iv) ℘�(P(t1,...,tn)) := P(t1,...,tn)

(v) ℘�(¬K) := ¬(℘�(K))

(vi) ℘�(K1 ∨K2) := ℘�(K1) ∨ ℘�(K2)

(vii) ℘�(〈{x1, . . . , xn}, {γ1, . . . , γm}〉 ⇒ K2) := ∀x1 . . . ∀xn[(℘�(γ1) ∧ . . . ∧
℘�(γm)) → ℘�(K2)]

The definition of verifying embeddings for DRSs given in 10 can be re-
garded as the definition of a relation between partial input and output
assignments on discourse referents — the relation which holds between an
output assignment o and an input assignment i relative to a model M
and DRS K if o extends i and verifies the conditions of K in M. In the
light of this, the input assignment i may be seen as potentially verifying
K in M if it has one or more extensions o verifying the conditions of
K in M. Alternatively, verification may be seen as a non-deterministic
process which transforms i into one of the possible output assignments
o. The input-output view of the verification definition for DRT is very
natural from the perspective of the semantics of programming languages
[Harel, 1984]. This analogy has led to versions of the semantics of DRT
which are very compact and elegant (see e.g. [Dekker, 1993; Muskens, 1996;
Kohlhase et al., 1996; Muskens et al., 1997; Eijck and Kamp, 1997]) and
inspired alternative approaches (such as [Groenendijk and Stokhof, 1991;
Groenendijk and Stokhof, 1990]). In these versions, DRSs are interpreted
as programmes consisting of sequences of instructions; some of these take
the form of the introduction of a discourse referent, others the form of DRS

11Strictly speaking in order to ensure that ℘� is functional we have to define it for a
certain canonical order on the sets of discourse referents and conditions in a given DRS.
The definition given above maps a DRS into a set of equivalent FOPL formulae.

12N is assumed to be a first-order predicate logic constant in the right hand side of
(iii) denoting the object u in the interpretation {u} assigned to the corresponding DRT
definite relation symbol on the left hand side.
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conditions. A DRS of the form 〈U,Con〉 is one where all the instructions of
the first type precede those of the second; but in this new version of DRT,
any order of discourse referents and conditions is admissible (though DRSs
which differ in the order of their instructions will, in general, not be equiva-
lent, even if they involve the same set of instructions). Here we give a (star
free)13 fragment of Quantificational Dynamic Logic (QDL, cf. [Pratt, 1976;
Harel, 1984; Goldblatt, 1992 (first edition 1987)]) and show how simple
first-order DRSs can be translated into QDL programmes. QDL standardly
assumes total assignments so there is a prima facie mismatch between that
semantics and the partial assignment semantics in DRT. However, so long as
we restrict attention to pure DRSs the partial assignment semantics can be
restated without difficulty as a semantics involving total assignments. The
translation given below in Definition 15 preserves satisfaction. Embeddings
are also possible if both QDL and DRT are defined with partial assignments,
for details see e.g. [Fernando, 1992]. The syntax of (a fragment of) QDL
formulas F and programmes P is defined by simultaneous recursion:

DEFINITION 13. A QDL Syntax Fragment:

(i) P(t1, . . . , tn) ∈ F

(ii) ⊥ ∈ F

(iii) if π ∈ P and φ ∈ F then [π]φ ∈ F

(iv) x := ? ∈ P

(v) if π1, π2 ∈ P then π1;π2 ∈ P

(vi) if φ ∈ F then φ? ∈ P

Intuitively, x := ? is a random assignment; π1;π2 is a sequence of pro-
grammes: first carry out π1, then π2. The postfix operator ‘?’ in (13vi)
turns formulas into programmes. [π]φ is a formula stating that φ will be
true after every terminating execution of π. The semantics of QDL is given
in terms of ordinary first order models M = 〈 U , ! 〉 and total assignment
functions g, i, o, . . .:

DEFINITION 14. QDL Semantics

(i) [[P(t1, . . . , tn)]] = {g|〈[[t1]]
g, . . . , [[tn]]g〉 ∈ !(P)}

(ii) [[⊥]] = ∅

(iii) [[[π]φ]] = {g|for all m sth. 〈g,m〉 ∈ [[π]] there exists h sth. 〈m,h〉 ∈
[[φ]]}

13“∗” is the iteration operator.
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(iv) [[x := ?]] = {〈i, o〉|i[x]o}14

(v) [[φ1;φ2]] = {〈i, o〉|there exists an m sth. 〈i,m〉 ∈ [[φ1]] and 〈m, o〉 ∈
[[φ2]]}

(vi) [[φ?]] = {〈i, i〉|i ∈ [[φ]]}

The execution of a programme may change an input state into possibly
different output states. States are modelled as sets of embeddings (sets
of assignments of values to variables). At a given state a formula is ei-
ther true or false. The ‘?’ post-fix operator turns a formula into a test,
i.e. a programme that passes on the input assignment unchanged if the
assignment supports the formula in the scope of the operator; otherwise
execution aborts. It is easy to see how negation ¬φ can be modelled as
[φ?]⊥ and existential quantification ∃xφ as 〈x =?〉φ where 〈π〉φ is short-
hand for ¬([π](¬φ)). The embedding q of pure DRSs (Definition 6) into
QDL translates DRS conditions into formulas and DRSs into programmes
as follows:

DEFINITION 15. DRT to QDL translation:

(i) q(P(t1 , . . . , tn)) = P(t1 , . . . , tn)

(ii) q(¬ K) = [q(K)]⊥

(iii) q(K1 ⇒ K2) = [q(K1)]〈q(K2)〉�

(iv) q([x1 , . . . , xn — γ1 , . . . , γm]) = x1 = ? ; . . . , xn = ? ; q(γ1)? ; . . . ;
q(γm)?

Working again with partial assignments (embeddings), a discourse referent
x is interpreted as an instruction to extend the current assignment (the
input assignment) randomly with an assignment to x while the occurrence
of a condition γ functions as a check whether an assignment satisfies the
constraint γ expresses. If we stick to the DRS format adopted here (as in
[Kamp, 1981a] and [Kamp and Reyle, 1993]) — DRSs are pairs 〈U,Con〉 —
then the input-output perspective can be brought out more prominently in
the following reformulation 16 of 10:

DEFINITION 16.

(o) [[xl]]
i = i(x) if x ∈ Dom(i); undefined otherwise.

(i) [[〈U,Con〉]] := {〈i, o〉|i ⊂U o and o ∈
⋂

γj∈Con[[γj ]]}

(ii) [[xl = xk]] := {i|[[xl]]
iand[[xk]]i defined and = [[xl]]

i = [[xk]]i}

14Given two variable assignment functions i and o, i[x]o states that o is exactly like i

except possibly for the value assigned to x.
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(iii) [[N(x)]] := {i|[[x]]i defined and [[x]]i ∈ !(N)}

(vi) [[P( x1, . . . ,xn)]] := {i|[[xj ]]
l defined for j = 1, ..., n and

〈[[x1]]
i, . . . , [[xn]]i〉 ∈ !(P)}

(v) [[¬K]] := {i|¬∃o〈i, o〉 ∈ [[K]]}

(vi) [[K1 ∨K2]] := {i|∃o(〈i, o〉 ∈ [[K1]]) or ∃o(〈i, o〉 ∈ [[K2]])}

(vii) [[K1 ⇒ K2]] := {i|∀o(〈i, o〉 ∈ [[K1]] → ∃k〈o, k〉 ∈ [[K2]])}

In 16 DRS conditions are interpreted as sets of assignments. In other words,
they are “externally static” and do not pass on updated assignments to other
conditions. Conditions act as tests on the current assignment and pass on
the assignment unchanged if it verifies the condition. One condition, K1 ⇒
K2, is “internally dynamic”. The (possibly updated) output assignments of
the antecedent of implicative conditions are passed on as input assignments
to the consequent DRS.

In this format, DRS sequencing K1 ; K2 can easily be defined as relational
composition:

DEFINITION 17. DRS sequencing

(i) [[K1 ; K2]] := {〈i, o〉|∃m(〈i,m〉 ∈ K1 ∧ 〈m, o〉 ∈ K2)}
15

The relationship between DRT and models of computation has also been ex-
plored extensively within the framework of constructive/intuitionistic type
theory [Martin-Löf, 1984]. We refer the reader to [Ahn and Kolb, 1990;
Ranta, 1995; Fernando, 2001b; Fernando, 2001a]

3.2 Intensional Semantics, Propositions, Information States and

Context Change Potential

Traditionally, the aim of model theoretic semantics has been to explicate
meaning in terms of conditions of truth and reference. Often this goal is
implemented via a two-step procedure: expressions of the object language
(e.g. some fragment of English) are assigned a logical form or “semantic
representation” — an expression belonging to some formal language. The
model theoretic definition of truth conditions is then given directly for these
semantic representations or logical forms. The truth conditions of an ex-
pression of the object language are in that case the truth conditions of the

15It is important to distinguish the DRS sequencing operation “;” from that of the
merge of two or more DRSs. The merge K1 � K2 of two DRSs is the DRS 〈 UK1

∪ UK2
,

ConK1
∪ ConK2

〉. Similarly, if K is a set of DRSs, then � K = 〈 ∪ { UK — K ∈ K } ,

∪ { ConK — K ∈ K } 〉. Merge, unlike DRS sequencing, is a symmetric operation which
obliterates any order between or among its arguments. It is an operation which is often
useful in DRT, but it is alien to the dynamic perspective of QDL.
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formal expressions assigned to it. This two-step procedure is reminiscent
of DRT where we also assign formal representations (viz. DRSs) to bits of
natural language and then state the truth definition as applying to DRSs.
DRSs are assigned truth conditions, and the truth conditions of a DRS are
to be understood as the truth conditions, and thus as the propositional con-
tent, of the bit of language it represents. But DRSs do more: they not only
represent propositional content, but also provide the context against which
new sentences in a discourse are interpreted. In DRT every new sentence in
a discourse contributes to and in turn is interpreted against a continually
evolving context. This new conception of meaning as context update and
interpretation in context is the hallmark of “dynamic” semantics, which
DRT and other early dynamic semantic theories such as File Change Se-
mantics [Heim, 1982] initiated. One aspect of the contextual dependence of
sentences in a cohesive text or dialogue is that in the bottom-up processing
architecture the DRS constructed from a sentence which comes somewhere
in the middle of a text will often be improper: it will contain occurrences
of discourse referents which are free in the DRS itself (but belong to the
universe of the context DRS; this happens whenever an anaphoric pronoun
gets resolved in context, cf. examples (35), (39) and (43)). In these cases, it
is only the merge of the new DRS with the context DRS to which the ver-
ification definition 10 and the truth definition 11 assign well defined truth
conditions. The question that naturally arises at this point is: can we ex-
plicate the way in which the new sentence updates the context in which
it is interpreted, in model theoretic terms, viz. by assigning it a function
which maps the truth conditions of the context DRS to those of its up-
date? When we move from an extensional model theory, of the kind we
have assumed up to now, to an intensional one, in which it is possible to
assign to every (proper) DRS the proposition (set of worlds) it expresses,
then we can rephrase the above question as follows: can we associate with
each improper DRS K a function CCP from propositions to propositions
such that, if Pc is the proposition expressed by a context DRS Kc, then
CCPK(Pc) is the proposition expressed by the updated context, obtained
through merging Kc with K? The answer to this question is negative. But it
is nevertheless possible to achieve something that comes reasonably close to
a positive answer: we can ‘refine’ the notion of the proposition expressed by
a proper DRS Kc to that of the information state described by Kc, and can
then assign to improper DRSs K update functions CCPK from information
states to information states [Heim, 1982], such that if Ic is the information
state described by the context DRS Kc and CCPK is the update function
determined by K, then CCPK(Ic) is the information state of the merge of
Kc and K.

Below, we first present a simple, intensional semantics for the DRS lan-
guage L defined in 2. We define the proposition expressed by a DRS K
relative to M as the set of all possible worlds in M where K is true. We
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show that a simple version of CCP based on propositions is too coarse-
grained to capture anaphoric dependencies (42), introduce the richer notion
of information states and present a version of the CCP based on these.

To avoid certain notorious difficulties with existence and the denotation
of names, we base the intensional model theory for the simple DRS lan-
guage in 2 on models where all worlds come with the same universe (set of
individuals) and where names denote once and for all (each name N denotes
the same individual in every world of the model). Relations, however, are
interpreted relative to particular worlds. We further assume that the acces-
sibility relation between possible worlds is the universal relation (i.e. each
world is accessible to itself and to each other world). An intensional model
M is then defined as a triple 〈 WM , UM, !M 〉 as follows:

DEFINITION 18. An intensional model M is given by 〈WM,UM,!M〉,
where:

(i) WM is a set of possible worlds

(ii) UM is a non-empty set

(iii) – for names, !M : Name → {{d}|d ∈ UM}

– for n-ary relations, !M : Reln → (WM → P(Un))

Verifying embeddings are defined globally, i.e. for some X ⊆ Ref, a verifying
embedding g is defined as g : X → UM (and this assignment is understood
as holding for all worlds, cf. clauses (ii)-(iv) of Defn. 19). An intensional
semantics for DRSs and DRS conditions of L can now be defined as follows:

DEFINITION 19. Intensional semantics for DRSs and DRS conditions of
L:

(i) 〈g, h〉 |=M,w 〈 U,Con 〉 iff g ⊆U h and for all γ ∈ Con: h |=M,w γ

(ii) g |=M,w xi = xj iff g(xi) = g(xj)

(iii) g |=M,w N(x) iff {g(x)} = !(N)

(iv) g |=M,w P(x1,..,xn) iff 〈g(x1), .., g(xn)〉 ∈ !(P)(w)

(v) g |=M,w ¬ K iff there does not exist an h such that 〈g, h〉 |=M,w K

(vi) g |=M,w K1 ∨ K2 iff there is some h such that 〈g, h〉 |=M,w K1 or
there is some h such that 〈g, h〉 |=M,w K2

(vii) g |=M,w K1 ⇒ K2 iff for all m such that 〈g,m〉 |=M K1 there exists a
k such that 〈m, k〉 |=M,w K2
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A proper DRS K is true in M at a world w (|=M,w K) iff there exists
an embedding h of UK such that 〈Λ, h〉 |=M,w K. Given a model M, the
proposition [[K]]pM expressed by a DRS K can now be defined as the set of
all possible worlds in M in which K is true.

DEFINITION 20. Given a proper DRS K, the proposition [[K]]pM expressed
by K relative to M is defined as:

[[K]]pM := {w| |=M,w K}

The intensional semantics for DRT makes it possible to extend the repertoire
of complex DRS conditions with intensional conditions whose verification
at a world w may depend on the verification of the constituent DRSs at
worlds other than w. Simple examples are conditions of the form � K (“it
is necessary that K” ) and � K (“it is possible that K”), where K is a DRS.
This extends L to a modal DRS language L�. Within the present intensional
semantics we can state verification conditions for such DRS conditions which
reflect Leibnitz’ principle that necessary truth is truth in all possible worlds
(while possible truth is truth in at least one possible world):

DEFINITION 21. Verification of modal DRS conditions of L� in M:

(i) g |=M,w � K iff for all w′ ∈ WM, g |=M,w′ K

(ii) g |=M,w � K iff for some w′ ∈ WM, g |=M,w′ K

Intensional models can also be used to formulate a semantics for DRSs that
is dynamic in a somewhat different (and some say: stronger) sense than the
versions given above. In DRT the construction of a semantic representation
takes the form of an evolving context DRS where new pieces of discourse are
interpreted against the available context and in turn update this context to
a new context for the further following pieces to come. Given an already
constructed context DRS K1,...,n for the first n sentences in a discourse,
it is attractive to conceive of the dynamic semantic value of a DRS Kn+1

for the next sentence Sn+1 as transforming the semantic value [[K1,...,n]]
of the current context DRS into the new semantic value [[K1,...,n+1]] for the
extended context DRS K1,...,n+1 which includes the information contributed
by Sn+1. On this view, the semantic value of Kn+1 would be a function from
[[K1,...,n]] to [[K1,...,n+1]]. The question is: what should these semantic values
be? DRSs are associated with truth conditions and, given an intensional
model, these, in their turn, define the proposition expressed by a DRS as
the set of worlds where the DRS is true. Thus it might be tempting to
build a dynamic semantics for DRT by defining the dynamic value of a
DRS Kn+1 as an operator which transforms the proposition expressed by
the old context K1...n into the proposition expressed by the new context
K1...n+1. Formally this will give us, for each DRS K and model M, a set
of pairs of propositions relative to M: where PropM = P(WM), [[K]]dM ⊆
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PropM × PropM. Note that such operators can only add information: for
all K and P ∈ PropM, [[K]]dM(P) ⊆ P.

This view may seem attractive as it attempts to explicate dynamic seman-
tic values [[·]]d in terms of standard static semantic values [[·]]p. There are,
however, many examples (cf. (2) and (3)) that show that truth conditions
alone (and dynamic semantic values based on functions from propositions
to propositions) are insufficient to capture the dynamic meaning of seman-
tic representations. Here we present a variant of a famous example due to
Barbara Partee to illustrate the point

(42) (i). Exactly nine of the ten coins are in the bag and exactly one of
the ten marbles is not. It is under the sofa.

(ii). Exactly nine of the ten marbles are in the bag and exactly one
of the ten coins is not. It is under the sofa.

The DRSs for the first sentences in (42)(i) and (ii) are truth conditionally
equivalent, i.e. they determine the same proposition. However, interpreta-
tion of the second sentence of (42.i,ii) in the context provided by the first
sentence of (i) yields different results compared to its interpretation in the
context provided by the first sentence of (ii). In (i) “It” refers to the missing
marble, in (ii) to the missing coin.16 Intuitively (as in examples (2) and (3))
the crucial difference between the first sentences of (42)(i) and (ii) above
is not one of truth conditions but concerns which antecedents are made
available for anaphoric reference in the following sentence.

In order to capture this difference, we need a more fine-grained notion of
context than truth conditions and propositions provide. For the simple DRS
fragment introduced up to now, the notion of an Information State [Heim,
1982; Groenendijk and Stokhof, 1990] provides the required granularity. For
a proper DRS K and an intensional model M, the information state [[K]]sM
records not just the worlds w ∈ WM where K is true, but also the verifying
embeddings f that make K true in w:

DEFINITION 22. Given a proper DRS K, the information state [[K]]sM
expressed by K relative to an intensional model M is defined as:

[[K]]sM := {〈w, f〉|〈Λ, f〉 |=M,w K}

Intuitively, verifying embeddings f for a given context DRS K record which
discourse referents are available in the universe UK as antecedents for
anaphoric expressions occurring in sentences that are interpreted in the
context of K. The embedding functions f occurring in the information state
I = [[K]]sM expressed by a DRS K in M will all have the same domain,

16Partee’s original example was:

(i) Exactly one of the ten marbles is not in the bag. It is under the sofa.

(ii) Exactly nine of the ten marbles are in the bag. It is under the sofa.

Here it is interpretable as referring to the missing marble in (i) but not in (ii).
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viz. UK: if 〈w, f〉 ∈ I, then Dom(f) = UK. We adopt this as a general
constraint on information states (irrespective of whether they are the de-
notation of some DRS): for each information state I there is a set X of
discourse referents such that for all 〈w, f〉 ∈ I, Dom(f) = X. X is called the
base of I and denoted as XI . Given a DRS K, the proposition [[K]]pM defined
by K (i.e. the set of possible worlds in which K is true) can be recovered from
the information state [[K]]sM: [[K]]pM = {w|∃f〈w, f〉 ∈ [[K]]sM}. It is clear that
the mapping from information states to propositions is many to one: two
sentences (such as the first sentences in (42.i) and (42.ii)) can express the
same proposition but two different information states. Unlike propositions,
information states record which discourse referents are provided by a con-
text as potential antecedents for anaphoric NPs from sentences interpreted
in this context.

DEFINITION 23. Given an intensional model M, a DRS K and a set of
discourse referents X we define

(i) I is an information state relative to M and X iff I ⊆ {〈w, f〉|Dom(f) =
X ∧ Ran(f) ⊆ UM ∧ w ∈ WM}

(ii) I is an information state relative to M iff there is an X such that I
is an information state relative to M and X

(iii) when I is an information state relative to M and X, X is called the
base of I, and will sometimes be denoted as XI

(iv) the empty information state ΛI
M relative to M, ΛI

M := {〈w, ∅〉|w ∈
WM}

(v) the proposition Prop(I) determined by I: Prop(I) := {w|∃f〈w, f〉 ∈
I}

Given a context DRS Ki and a DRS K for a sentence interpreted in the
context represented by Ki resulting in a new context Ko, the dynamic se-
mantic value (i.e. the CCP) associated with K should transform the input
context Ki to the output context Ko which results from updating Ki with
K. K need not be a proper DRS as illustrated in the following example:
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(43)

John owns a donkey. It loves him.

x y

John(x)
donkey(y)
own(x,y)

 

z u

love(u,z)
z = x
u = y

=

x y z u

John(x)
donkey(y)
own(x,y)
love(u,z)

z = x
u = y

Ki K Ko

The context DRS Ki is a proper DRS but the DRS K is not since it con-
tains occurrences of x and y free in K. K is anaphorically resolved in that
equations z = x and u = y record with which antecedent discourse referents
provided by the context DRS Ki the discourse referents z, u introduced into
K by the anaphoric pronouns it and him are identified. But, as a conse-
quence, K is not proper.

In the present case K can serve as an update of the context DRS Ki

because the merge Ki  K of K and Ki is proper; or, put differently, because
FV(K) ⊆ UKi

( = X[[Ki]]sM
for any model M). This last condition is the

key to the general principle underlying the characterization of the CCP
of a DRS K in relation to a model M: this should be a function that is
defined on those information states I relative to M such that FV(K) ⊆
XI , and which in particular assigns to each such I which is of the form
[[Ki]]

s
M the information state expressed by Ki  K as value. Generalising to

arbitrary information states (i.e. abstracting away from the condition that
I is expressed by some context DRS Ki) we get the following definition:

DEFINITION 24. The Context Change Potential (or the dynamic semantic
interpretation) [[K]]dM of a DRS K relative to a model M is defined as a
partial function from information states to information states such that :

(i) [[K]]dM is defined for those information states I relative to M such that
FV(K) ⊆ XI

(ii) if Ii ∈ Dom([[K]]dM), then [[K]]dM(Ii) = {〈w, g〉|∃f(〈w, f〉 ∈ Ii ∧
〈f, g〉 |=M,w K)}

For the example in (43) it is easy to see that [[K]]dM([[Ki]]
s
M) = [[Ko]]

s
M, i.e.

applying the dynamic semantic value associated with K to the information
state expressed by Ki for the first sentence yields the information state
expressed by Ko, the DRS representing the two sentences of (43) together.
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Note that in case K is a proper DRS, [[K]]dM is a total function; put differ-
ently, if K is proper, then [[K]]dM is defined even for the empty information
state ΛI

M.

Useful Notions Relating Information States and CCPs

Information states can be ordered along two different dimensions. Intu-
tively, given two information states I and I ′ relative to the same base X,
I ′ is at least as informative as I if I ′ ⊆ I. On the other hand, it is possi-
ble for an information state I ′ to be more informative than an information
state I, even though Prop(I ′) = Prop(I). For it may be that I ′ makes
more discourse referents available than I, i.e. XI ⊂ XI′ and moreover that
whenever 〈w, g〉 ∈ I ′, then there is an f ⊆ g such that 〈w, f〉 ∈ I. This
last condition can be used in a general definition of the relation “carries at
least as much information as”, which also applies to cases where Prop(I) �=
Prop(I ′):

DEFINITION 25. Given two information states I and I ′, I ′ carries at
least as much information as I, in symbols I # I ′, iff ∀w∀g(〈w, g〉 ∈ I ′ →
∃f(〈w, f〉 ∈ I ∧ f ⊆ g))

Information states can be merged. We make use of this operation in Section
5 below.

DEFINITION 26. LetM be an intensional model and S a set of information
states relative to M. The consistent merge of the I ∈ S, denoted ∪S, is the
information state defined by:

∪S := {〈w, h〉| there exists a function F such that Dom(F) = S, for
all I ∈ S, 〈w,F (I)〉 ∈ I and h = ∪{F (I)|I ∈ S} is a function. }

N.B. Note that if ∪S �= ∅, then the base of ∪S is the union of the bases of
the information states in S, i.e. X∪S =

⋃
I∈S XI .

When S = {I, I ′} we also write I∪I ′ in lieu of ∪S. Of particular impor-
tance are applications of consistent merge in cases where the bases of the
members of S are disjoint, e.g. if S = {I, I ′} and XI ∩ XI′ = ∅. In such
applications the requirement that h must be a function is redundant.

In general, a CCP J relative to a model M is a function defined on some
subset of the set of all information states relative to M, which returns an
information state relative to M for each information state in the domain.
The CCPs [[K]]dM determined by some DRS K fit this general description,
but they satisfy further conditions:

(i) whether an information state I belongs to the domain of such a CCP
J depends exclusively on its base XI . More precisely, there is a set of
discourse referents JJ such that I ∈ Dom(J ) iff JJ ⊆ XI . We call JJ the
referential presupposition of J .
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(ii) J has a base XJ , a set of discourse referents such that if J is defined
for I, then XJ (I) = XI ∪ XJ .

(iii) J is distributive, i.e. if J is defined for I, then J (I) = ∪{J ({〈w,
f〉})|〈w, f〉 ∈ I}.
We call CCPs which satisfy conditions (i) to (iii) regular CCPs. These
informal stipulations are summarised in in Definition 27:

DEFINITION 27. Let M be an intensional model, J a CCP relative to M
and XJ a set of discourse referents. J is regular with base XJ iff

(i) for arbitrary information states I relative to M, I ∈ Dom(J ) iff XJ

⊆ XI

(ii) for I ∈ Dom(J ), I # J (I)

Note that if J is both regular and total, then J is defined on all information
states relative to M:

DEFINITION 28. Total Context Change Potential
A Context Change Potential J is total iff J (ΛI

M) is defined.

The notion of the proposition expressed by a DRS K relative to a model
M and that of the information state expressed by K have so far been de-
fined exclusively for proper DRSs. But they can be readily generalised to
improper DRSs by making them dependent on assignments to the free dis-
course referents of the DRS. For instance, when K is a DRS and g is a map
from FV(K) into UM, then the proposition expressed by K in M relative
to g can be defined as the set of those worlds w of M for which there is
an g ⊆UK

h such that 〈g, h〉 |=M,w K (see Definition 19). The notion of

an information state relative to M can be generalised analoguously. The
formal charachterisations are given in the next definition.

DEFINITION 29. Let M be an intensional model, K a possibly improper
DRS, g an assignment of FV(K) in M. Then

(i) the proposition expressed by K relative to M and g, [[K]]pM,g, is defined
by
[[K]]pM,g = 〈w ∈ WM|(∃h)(g ⊆UK

h ∧ 〈g, h〉 |=M,g K〉

(ii) the information state expressed by K relative to M and g, [[K]]sM,g, is
defined by
[[K]]sM,g = {〈w, f〉|g ⊆UK

f ∧ 〈g, f〉 |=M,w K}

For DRSs K from the extensional DRS-languages we have so far considered
there is a close relation between [[K]]dM and [[K]]sM,g. Suppose that I is an

information state in the domain of [[K]]dM and that 〈w, g〉 ∈ I. Then we
have for any f such that g ⊆UK

f :
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(44) 〈w, f〉 ∈ [[K]]dM(I) iff 〈w, f〉 ∈ [[K]]sM,g.

This property is closely connected with the fact that the context change po-
tentials defined by such DRSs are extensional in the sense described below.
For any two information states I and I ′ relative to M with the same base
(i.e. XI = XI′) we say that I and I ′ coincide on w ∈ WM iff {f |〈w, f〉 ∈ I}
= {f : 〈w, f〉 ∈ I ′}.

A CCP J relative to M is called extensional iff whenever w ∈ WM, I,
I ′ ∈ Dom(J ), XI = XI′ and I and I ′ coincide on w, then J (I) and J (I ′)
coincide on w. It is not hard to verify that when K is a DRS from the
extensional DRS language defined above (which does not contain � and �),
then [[K]]dM is extensional.

For certain purposes it is convenient to be able to make use of λ-abstracts
over DRSs. As in Intensional Higher Order Logic ([Gallin, 1975]) we admit
two kinds of λ-abstraction.

(i) extensional λ-abstraction over free discourse referents in a DRS.

(ii) intensional abstraction denoted by the operator ∧, which is de facto
an abstraction operator over worlds.

It has proved convenient to assume that λ-abstraction over discourse refer-
ents may involve any non-empty subset {x1 ,. . . , xn} of the free discourse
referents of the DRS (rather than just a single discourse referent). The
definitions follow the pattern familiar from the model theory for formalisms
with abstraction operators, and as such they are unsurprising. The only
complication we are facing is that we have defined several types of semantic
values for the objects to which these operators apply, viz. DRSs. A simi-
lar variety of options does in principle exist for the terms which we get by
applying an abstraction operator to a DRS. We limit our attention here to
truth values, propositions and information states. The formal definitions
are given in Definition 30.

DEFINITION 30. Let M be an intensional model, K a DRS and let x1

,. . . , xn ∈ FV(K).

(a) Let w ∈ WM, g an assignment in M on FV(K) \ {x1 ,. . . , xn}.

(i) [[λ{x1, ..., xn}.K]]M,w,g is that function from (UM)n to truth val-
ues which is given by:
if a1 ,. . . , an ∈ UM, then [[λ{x1, . . . , xn}.K]]M,w,g(〈a1, . . . , an〉) =
1 iff (∃h)(g ∪ {〈x1, a1〉, . . . , 〈xn, an〉} ⊆UK

h ∧ 〈g, h〉 |=M,w K)

(ii) [[λ{x1, . . . , xn}.K]]pM,w,g is that function from (UM)n to proposi-
tions relative to M such that for a1 ,. . . , an ∈ UM:
[[λ{x1, . . . , xn}.K]]pM,w,g(〈a1, . . . , an〉) =
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{w′ ∈ WM|(∃h)(g∪{〈x1, a1〉, . . . , 〈xn, an〉} ⊆UK
h∧〈g, h〉 |=M,w′

K))}

(iii) [[λ{x1, . . . , xn}.K]]sM,w,g is that function from (UM)n to informa-
tion states relative to M such that for a1 ,. . . , an ∈ UM:
[[λ{x1, . . . , xn}.K]]pM,w,g(〈a1, . . . , an〉) =
{〈w′, f〉|w′ ∈ WM∧g∪{〈x1, a1〉, ..., 〈xn, an〉} ⊆UK

f∧〈g, f〉 |=M,w′

K))}

(b) We consider two possible operands for the intensional abstraction op-
erator ∧, (i) DRSs and (ii) λ-abstracts over DRSs. Moreover, we only
define the effect of ∧ as a proposition forming operator, in the follow-
ing sense: If the operand is a DRS K, we consider ∧ as forming a term
denoting the proposition expressed by K (relative to some assignment,
when K is improper). If the operand is a λ-abstract λ{x1, . . . , xn}.K
then the result of applying ∧ is a term which denotes a propositional
function, i.e. a function which for each combination of objects a1,...,an

∈ UM returns a proposition relative to M as value. Again the defini-
tions are unsurprising.

(iv) [[∧K]]M,w,g = {w′|w′ ∈ WM ∧ (∃h)(g ⊆UK
h∧〈g, h〉 |=M,w′ K)}

(v) [[∧λ{x1, ..., xn}.K]]M,w,g is that function from (UM)n to proposi-
tions relative to M such that such that for a1 ,. . . , an ∈ UM:
[[λ{x1, ..., xn}.K]]pM,w,g(〈a1, . . . , an〉) =
{w′ ∈ M|(∃h)(g ∪ {〈x1, a1〉, ..., 〈xn, an〉} ⊆UK

h ∧ 〈g, h〉 |=M,w′

K))}

It would be possible to generalise these definitions to a full fledged Higher
Order Intensional Dynamic Logic. But the generalised definitions become
fairly abstract, and we have not been able to envisage much use for them
in relation to the aspects of DRT discussed in this survey.

Abstraction of either kind is also possible for DRS conditions. We can
reduce such applications by identifying a DRS condition γ with the DRS
〈∅, {γ}〉}. In later parts of this survey (in particular in Section 3.5) we will
need in particular terms of the form ∧x.γ, where x is a free variable of γ.
These are short for ∧λ{x}.γ, or, more precisely, ∧λ{x}.〈∅, {γ}〉.

3.3 Generalised Quantifiers

One of the central tenets of DRT is that certain expressions which earlier
theories treat as quantifiers should not be treated in this way. In particular,
indefinites, DRT claims, should not be treated as quantificational expres-
sions, but rather as terms, and thus in a manner that aligns them more
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closely with definite noun phrases than with the (genuinely) quantifying
NPs. What quantificational force individual occurrences of indefinites may
seem to have is, it is argued, an indirect effect — a kind of side effect due
to the interactions with such operators as negation or implication.

Connected with this perspective is the fact that the orginal DRT formal-
ism while expressively equivalent to first order predicate logic, nevertheless
differs from it importantly in the way in which its “formulas” (i.e. the
DRSs) parcel the information they contain. In particular, DRT differs from
first order logic in that it doesn’t make a principled distinction between sen-
tential and quantificational operators. In fact, the original formalism didn’t
have any quantifiers as such. What comes nearest to a quantifier in this
system is the implication operator ⇒. But even this operator is not a quan-
tifier strictly speaking. It acts like a quantifier only when at least one of the
DRSs it connects has a non-empty universe, and what kind of quantification
it represents then further depends on which of those universes is non-empty:
As we saw in Section 3.1, the force of an implicational condition like that in
(45) is that of a plain sentential conditional if U1 = U2 = ∅; of a restricted
universal quantifier if U1 �= ∅ and U2 = ∅; of a conditionalized existential
quantifier if U1 = ∅ and U2 �= ∅; and of a quantificational complex in which
some universal quantifiers are followed by some existential quantifiers, if U1

�= ∅ and U2 �= ∅.

(45) 〈U1, Con1〉 ⇒ 〈U2, Con2〉

There is arguably a sense in which ⇒ is the universal quantifier of the
original DRT formalism. For one thing it is used in the representation of
the universal quantifiers that are part of the natural language fragment for
which the first DRT accounts provided a systematic analysis, i.e. NPs with
the determiner every. For instance, as discussed in Section 2, the universally
quantified sentence

(46) Every farmer who uses a tractor has a neigbour with whom he shares
it.

is represented as in (47).

(47)

x y

farmer(x)
tractor(y)
owns(x,y)

⇒

z u

u = y
neighbour(z,x)
share(x,u,z)

But (47) shows that even in those cases where the universe U1 is non-
empty and ⇒ consequently involves universal quantification of some sort,
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it does not quite behave like the universal quantifier of predicate logic in its
standard form. Even if in addition U2 = ∅ there still are the following two
differences: (i) ⇒ operates on two formula-like arguments (the DRSs to the
left and right of the arrow) rather than one; (ii) ⇒ is “unselective”, binding
all the discourse referents in the universe of the first argument DRS.

(i) is in keeping with a now well-neigh universally accepted view of how
quantification in natural language typically works: it involves an opera-
tor which takes two predicates as arguments, the first called its restrictor ,
and the second its (nuclear) scope. In particular, when quantification is
expressed by a noun phrase such as the subject of (46), it is the common
noun phrase of this NP that acts as restrictor, while the scope of the quan-
tifier is provided by the remainder of the clause in which the NP occurs as
a constituent. Structures of this sort have been studied extensively within
generalised quantifier theory (see [Westerstahl, 1989a]), in which quantifiers
are analysed as variable binding operators — operators which bind one or
more variables and whose arguments are formulas that, in the typical case,
contain free occurrences of the variable or variables the operator binds. The
special case of immediate interest is that represented in (48), of an operator
Q which binds one variable and takes two formula-arguments.

(48) Qx(A(x), B(x))

The standard interpretation of such a quantifier Q is as a relation R(Q)
between sets: (48) is true if the set of x’s satisfying A stands in the relation
R(Q) to the set of x’s satisfying B. In particular, the universal quantifier is
interpreted as inclusion: if Q is the universal quantifier, then (48) is true iff
the set of the A’s is included in the set of the B’s. We will see presently in
what sense DRT’s implication operator conforms to this analysis of universal
quantification.

(ii) is more controversial. It was argued in [Lewis, 1975] that quantifica-
tion in natural language is unselective: the quantificational operator binds
whatever bindable variables turn up within its immediate scope; in principle
there is no upper bound to the number of variables that a single operator
can bind. Original DRT (and likewise File Change Semantics, see [Heim,
1982]) adopted the unselective analysis of quantification because of the at-
tractive solution that it seems to offer to the “donkey problem” — how to
account for the fact that in a sentence like (46) the indefinite a tractor inside
the quantifying subject NP has the apparent force of a universal quantifier
whose scope extends beyond the NP and includes all other sentence material
(see Section 2, [Kamp, 1981a]).

The generalised quantifier semantics described for (48) can be naturally
adapted to the case of the unselective universal “quantifier” ⇒: a DRS
condition governed by ⇒ is true if a certain set associated with the first
argument (i.e. the left DRS) is included in the corresponding set associated
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with the second (the right DRS). But in view of the unselectiveness of ⇒
we need to adjust the definition of the sets. Instead of the set of objects
satisfying the first argument of ⇒ we must now consider the set of possible
assignments of objects to all the discourse referents in the universe of the
left DRS — in the case of (47) this is a set of pairs of objects 〈a, b〉, where a
is assigned to the discourse referent x and b to y, and where this assignment
satisfies the conditions on the left. Similarly, the second set should consist of
those assignments that satisfy the first argument and which can be extended
to an assignment which includes the discourse referents on the right and
satisfies the second argument of ⇒ — in the case of (47) these are the pairs
〈a, b〉 which satisfy the conditions on the left and can be extended to tuples
〈a, b, c, d〉 with c assigned to z and d to u, which satisfy the conditions on
the right. It is easily seen that (47) is true according to Def. 10 iff the first
of these sets is included in the second.

Duplex Conditions and the Proportion Problem

It was soon noted that unselectivity leads to problems with non-universal
quantifiers. This is the so-called “proportion problem” [Kadmon, 1987,
Chapter 10]. The problem is easiest to explain for the case of the quantifier
most. It is quite generally held that a sentence like (49) is true if the number
of farmers that are rich exceeds the number of farmers that are not rich.
(More generally and formally: Most A’s are B’s is true iff the cardinality of
the set A∩B is bigger than that of the set A \B). But what are the truth
conditions of sentence (50)?

(49) Most farmers are rich.

(50) Most farmers who use a tractor share it with a neighbour.

By analogy with what we have just said about (46) one would expect the
following:

(51) (50) is true iff the number of assignments 〈a, b〉 to x, y which satisfy
the conditions on the left of (47) and can be extended to an assign-
ment 〈a, b, c, d〉 which satisfies the conditions on the right exceeds the
number of assignments 〈a, b〉 which satisfy the conditions on the left
but which cannot be so extended.

However, linguistic intuition tells us that this cannot be right; in a case
where there are 19 farmers who each use just one tractor and share this
tractor with some neighbour, while the 20-th farmer uses 25 tractors none
of which he shares with anyone, (50) seems intuitively true (it is 19 against
1!), but the condition we have just stated predicts it to be false, as there
are 19 pairs 〈a, b〉 of the first kind and 25 of the second.
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The trouble with (51) is that it counts numbers of assignments (here
pairs consisting of a farmer and a tractor) rather than just the numbers of
farmers. What should be counted are just the satisfiers of the one variable
which, in the standard generalised quantifier format (48), is bound by the
quantifier. In order to correct (51) so that it conforms to this intuition,
the discourse representation of (50) (and by parity those of (46) and other
quantified sentences) should mark the “bound variable” in some way, so
that it can be distinguished from the other discourse referents on the left.
To this end DRT has adopted the so-called duplex conditions. An example
is the duplex condition representing (50), given in (52).

(52)

x y

farmer(x)
tractor(y)
own(x,y)

�
��

�
��
�
���

��
MOST

x

z v u

neighbour(z,x)
share(v,u,z)

v = x
u = y

In general, a duplex condition consists of three parts, (i) the restrictor DRS,
(ii) the scope DRS and (iii) the quantifier part. (i) and (ii) are as in the
earlier DRT representations of quantification (cf. the left hand side DRS
and right hand side DRS in 47); the quantifier part consists of a quantifier
(most, every, many, etc.) and a discourse referent (corresponding to the
bound variable in (48)).

There is one aspect of the duplex notation which requires comment. This
is the simultaneous occurrence of the discourse referent x as a constituent of
the quantifier part and as a member of the universe of the restrictor DRS.
This two-fold occurrence could create the impression that x is bound “twice
over”, something which would be logically incoherent. But this is not what
is intended. Only the occurrence of x as constituent of the quantifier acts
as a binding. In fact, we could eliminate the occurrence in the universe
of the restrictor DRS provided we adjust the definition of accessibility (see
3.1) by stipulating that a discourse referent occurring as constituent of the
quantifier part of a duplex condition acts, for the purpose of accessibility, as
if it was a member of the universe of the restrictor DRS. The duplex notation
exemplified in (52), in which the operator-bound discourse referent is added
explicitly to the restrictor universe, obviates the need for this stipulation.
The presence of this discourse referent within the quantifier part then sets
it apart from the other members of the restrictor universe, in a way that is
made explicit in the verification conditions for duplex conditions.

It is through its quantifier part that (52) provides us with the distinction
which we need if we are to revise the truth condition (51) so that it conforms
to intuition. But how should (51) be changed? This is not obvious. In fact,
what exactly does (50) assert? Does it say that the majority of the farmers
who use a tractor has the property that they share every tractor they use
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with some neighbor; or does the sentence require that there be a majority
who share at least one of the tractors they use? There is surprisingly little
agreement on this question, and the linguistic debate which sentences of
the general form of (50) have, or prefer, the one interpretation and which
the other, remains inconclusive to this day. (See [Chierchia, 1991], [Rooth,
2005].)

This is not the place to take sides in this debate. We only note that it
has led to the names for the two readings which are now in general use; the
first reading, according to which the second of the two sets consists of the
farmers who share all the tractors they use is called the strong reading (of
donkey sentences); the other, according to which the set consists of farmers
who share some of the tractors they use, is the weak reading.

When turning (51) into a verification condition for duplex conditions like
that in (52), we must see to it that the new condition accords with our
intuitions about the proportion problem; but this still leaves us both the
option for the strong reading and that for the weak reading. The second
option, given in (54), is formally simpler and more elegant. It can be stated
as follows. Recall that each duplex condition has a restrictor DRS Kr and
a scope DRS Ks, and that its quantifier part binds one discourse referent,
say x. For simplicity let us assume that FV(Kr) = ∅ and that FV(Ks) ⊆
UKr

. Define:

(53) i. Sr := the set of all objects a such that there is an assignment h
of objects to the discourse referents in the universe of Kr which
assigns a to x and verifies the conditions of Kr;

ii. Ss := the set of all a such that there is an assignment h to the
discourse referents of the universes of Kr and Ks which assigns
a to x and verifies the conditions of Kr and Ks.

(54) (52) is true iff |Ss| > |Sr \ Ss|

The corresponding condition for the strong reading can be stated in a similar
form:

(55) (52) is true iff |S′
s| > |Sr \ S′

s|

Superficially, this looks much like (54), but the definition of S′
s is more

complex and awkward than that of Ss:

(56) iii. S′
s := the set of all a such that (i) there is an assignment h to

the discourse referents of the universe of Kr which assigns a to x
and verifies the conditions of Kr and (ii) for every assignment h
to the discourse referents of the universe of Kr which assigns a
to x and verifies the conditions of Kr there is an assignment k to
the discourse referents of the universe Ks which extends h and
verifies the conditions of Ks.
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Some linguists have taken the complexity of (56.iii) as an indication that
the strong reading cannot be the primary interpretation of donkey sentences
such as (50). (See e.g. [Chierchia, 1993]).

N.B. (54) and (55) come close to what is needed when duplex condi-
tions are added to the DRS language defined in Section 3.1. But the addi-
tional truth clauses for such connectives as supplements of Def. 10 require
a slightly more complicated form. For instance, for the weak reading of (52)
the new clause is

(57) g |=M Kr

�
��

�
��
�
���

��
MOST

x
Ks iff |Sg

s | > |Sg
r \ Sg

s |

where Sg
r = the set of a ∈ UM sucht that there is an assignment h

such that g ⊆UKr

h, h(x) = a and h verifies the conditions of Kr.

And analoguously for Sg
s (see (53.ii).)

The truth conditions for the strong reading of duplex conditions with the
operator MOST is obtained from (55) and (56) in the same way that (56) can
be obtained from (53) and (54). Duplex conditions for other quantifiers will
also give rise to truth conditions for either the weak or the strong reading.

Natural languages have various constructions for expressing quantifica-
tion. No less prominent than quantifying noun phrases are adverbs of quan-
tification — always, never, often, mostly and so on. In fact it was quan-
tificational adverbs which led Lewis [1975] to his proposal of non-selective
quantification; and as an analysis of adverbial quantification this proposal
stands up much better than it does for quantification by means of noun
phrases; adverbial quantification is much less vulnerable to objections con-
nected with the proportion problem.

For instance, consider the adverbial analogue (58) of (50):

(58) Mostly when a farmer uses a tractor, he shares it with a neighbour.

In the scenario we considered in connection with (50), (50) itself seemed
unequivocally true. But for (58) this is much less evident. Here a good case
can be made for the claim that it is the numbers of farmer-tractor pairs
which are to be counted, and not just the farmers.

This judgement seems to show that adverbial quantification can involve
binding of several variables by the same quantifier. There has been dis-
cussion in the literature whether even these cases should be analysed as
involving a single bound variable, ranging over “occasions”, or “situations”,
where such occasions or situations may have several participants. (E.g.
(58) would be analysed as quantifying over situations which each involve a
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farmer and a tractor that farmer uses.)17 In the light of the commitment we
have already made to duplex conditions, in which the left hand side DRS
universe may contain discourse referents besides the one which is bound by
the quantifier, this debate loses much of its urgency and we will assume
without further argument that quantificational binding of more than one
variable is indeed possible. Thus for (58) we assume a representation of the
form given in (59).

(59)

x y

farmer(x)
tractor(y)
uses(x,y)

�
��

�
��
�
���

��
MOST

x,y

z u

u = y
neighbour(z,x)
share(x,u,z)

More generally, we assume that duplex conditions representing sentences
with the quantifier most(ly) instantiate the following schematic form.

(60)

x1 ... xn y1 ... ym

C1(x1,...,xn,y1,...,ym)
...

Cr(x1,..., xn,y1,..., ym)

�
��

�
��
�
���
��

MOST

x1...xn

z1 ... zk

D1(x1,...,xn,y1,...,ym,z1,...,zk)
...

Ds(x1,...,xn,y1,...,ym,z1,...,zk)

A duplex condition of the general form of (60) is verified by an embedding
f iff
| S2 | ¿ | S1 \ S2 |, where S1, S2 are as defined as follows:

S1 = {〈a1,...,an〉 — (∃g)(f ⊆U g ∧
∧n

i=1 g(xi) = ai ∧∧r
j=1 g |=M Cj(x1,...,xn,y1,...,ym))}

where U = {x1,...,xn,y1,...,ym}
S2 = {〈a1,...,an〉— (∃g)(f ⊆U g ∧

∧n
i=1 g(xi) = ai ∧∧r

j=1 g |=M Cj(x1,...,xn,y1,...,ym) ∧ (∃h)(g ⊆V h ∧∧s
t=1 h |=M Dt(x1,..., xn,y1,...,ym, z1,...,zk)))}

where V = {z1,...,zk}.

Even more generally, the duplex conditions may have some other operator
Q occupying the position of MOST in (60). The truth conditions of such

17In Section 3.5 we will consider frequency adverbs like mostly more closely, albeit only
in their role as quantifiers over times. We have just seen that such adverbs have other
uses as well — (58) is a case in point, as it need not be interpreted as a case of temporal
quantification, and on its most natural interpretation it is not. Nevertheless, the analysis
we will consider there of the temporal uses of such adverbs is instructive from the point
at issue here. For it shows how the times t over which the quantifier ranges can serve
as representations for groups individuals — those individuals which stand in a certain
relationship at t.
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duplex conditons will be given by some relation between the sets S1 and S2,
which is denoted by Q.

The schematic form in (60) allows us to distinguish between two kinds
of quantifier-related binding, that of the variables x1,...,xn and that of the
variables y1,...,ym. We refer to the former kind as primary quantificational
binding and to the latter as secondary quantificational binding. (We recall
that the natural language examples of secondary quantificational binding
we have seen so far all involve indefinite NPs in the restrictor of the quan-
tifier represented by the central part of the duplex condition. The cases of
secondary quantificational binding known to us are all of this kind.

The introduction of duplex conditions into DRT seems to bring its repre-
sentation of quantification much more in line with that practiced in tradi-
tional logic than was the case for the original formulation of DRT. It should
be emphasised however that the alternative possibilities of capturing quan-
tificational effects which make DRT in its original formulation look so very
different from standard formulations of predicate logic are still there. In
fact, not only do we still have the quantificational interpretation of dis-
course referents in the universes of DRSs in the scope of ⇒, ¬, and ∨, the
duplex conditions themselves incorporate this alternative source of quan-
tificational effects as well, viz. in the form of secondary quantificational
binding. The point of including duplex conditions in the DRS formalism
as an additional mode of representation is that the quantification expressed
by those natural language constituents which duplex conditions are used to
represent is fundamentally different from the quantificational effects that
are produced by indefinites within the scope of operators like negation or
conditionalisation. If these different forms of quantification seem to come to
the same thing within the context of standard predicate logic, this should
be seen as a symptom of the exclusively truth-conditional focus of predicate
logic on the one hand and of its limited expressive resources on the other.
Semanticists who are interested in truth conditions only will see this kind
of simplification as harmless and maybe even as desirable. But it can be
harmless only for so long as the quantifiers expressible within the formalism
are those definable from the standard existential and universal quantifiers
of the lower predicate calculus. As we have seen in this section, even truth
conditions may be affected when non-standard quantifiers (such as most)
are taken into consideration as well.

Duplex Conditions and Generalized Quantifier Theory

A large part of the more logically oriented literature on quantifiers is con-
cerned with their formal properties (see [Westerstahl, 1989a; Keenan and
Westerstahl, 1997; van der Does and van Eijck (eds.), 1991]). In particu-
lar, there is a long-standing concern to identify and study those properties
which single out from the set of all logically possible generalised quantifiers
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those that are actually found in natural languages. Especially prominent
among these properties is conservativity : A binary relation D between sets
is conservative iff for any sets A and B, D(A,B) iff D(A,A ∩ B).

It is easily verified that all cases of quantification we have discussed so
far (and which can be analysed as relations between sets) are conservative.
In fact, conservativity is a consequence of the very way in which quantifi-
cational constructions are conceived in DRT. As first argued in Section 2.2
in connection with ⇒, the antecedent of a conditional serves as context of
interpretation for the consequent; and so the consequent of the conditional
is to be seen as an addition of the information it explicitly provides to the
information provided by the antecedent. Thus, if K1 is the representation
of the antecedent and K2 the representation of the consequent in the con-
text of the antecedent, the conditional comes (roughly) to the implication
K1⇒K1 K2. Much the same applies to the DRT analysis of quantificational
NPs: the material that goes into the nuclear scope of the representing du-
plex condition is to be interpreted in the context of the restrictor, and the
nuclear scope is to be understood as addition to the restrictor. The state-
ments of the truth conditions for most-quantifications which was given in
(51)–(57) are a direct continuation of this insofar as they take the form of
relations between the sets S1 and S2, corresponding to the restrictor DRS
K1 and the extension K2 of K1 with the material from the scope. In other
words, the truth conditions associated with a duplex condition of the form

K1

�
��

�
��
�
���

��
Q

x
K2 are of the form FQ(SK1

,SK1
K2

) to begin with. Since evi-

dently SK1
K2

is a subset of SK1

, FQ(SK1

,SK1
K2

) = FQ(SK1

, (SK1
K2

∩ SK1

)), the quantification represented by such a duplex condition is con-
servative by fiat.

Essentially the same is true for duplex conditions in which more than one
discourse referent is subject to primary quantificational binding. “Conser-
vativity” is now to be understood as a property of binary relations between
n-place relations rather than sets, but the generalisation is obvious: let U
be a given non-empty set, Q a 2-place relation between n-place relations
over U — that is, Q ⊆ P(Un) × P(Un). Then Q is conservative if for all
A,B ∈ P(Un), 〈A,B〉 ∈ Q iff 〈A,A ∩B〉 ∈ Q.

In the literature on generalised quantifiers conservativity is only one of
many quantifier properties of which the question has been raised whether
all natural language quantifiers have them. But it is the only one about
which the DRT analysis of natural language quantification carries immediate
implications. As the discussion of other properties of quantifiers is not
directly relevant from a DRT-centered perspective, this is not the place to
pursue them further. We refer the reader to [Westerstahl, 1989a], and to
the other publications cited there.
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Before we conclude this discussion of quantifiers representable by means
of duplex conditions, we must add an observation on what has come to be
recognised as a general feature of quantification in natural language. The
interpretation of natural language quantifiers often involves implicit restric-
tions in addition to the restrictions that are explicitly expressed in the sen-
tence itself. (And with adverbial quantifiers, where sometimes no material
within the sentence itself makes a contribution to the restrictor, the implicit
restrictions will make up the restrictor on their own.) Following [von Fin-
tel, 1994] and many others we represent the implicit restrictions on a given
quantifier by means of an additional predicate C on the quantificationally
bound discourse referents. (Thus C will in general be an n-place predicate,
where n is the number of discourse referents x1, ..., xn involved in primary
quantificational binding.) Formally the implicit restriction takes the form
of a supplementary condition “C(x1,...,xn)” in the restrictor of the duplex
condition, as represented in (60). Morevover, since C has to be resolved
within the context in which the quantification restricted by it occurs, we
take it to give raise to a presupposition, which is included in the initial (or
“preliminary”) representation as left-adjoined to the duplex condition which
represents the quantification. (For the details of the DRT-based treatment
that is assumed here see Section 4.) In general, this presupposition will also
contain information that is relevant for the resolution of the predicate dis-
course referent C (to some particular predicate). Representing this higher
order constraint as P (C) we get (61) as representation for the contribution
made by the quantifier of a sentence, instead of the slightly simpler form
exemplified in (60).

(61)

〈{
C

P (C)

}
,

x1 ... xn y1 ... ym

C1(x1,...,xn,y1,...,ym)
...

Cr(x1,..., xn,y1,..., ym)
C(x1,...,xn)

�
��

�
��
�
���
��

MOST

x1...xn

z1 ... zk

D1(x1,...,ym,z1,...,zk)
...

Ds(x1,...,ym,z1,...,zk)

〉

As with many other cases of presuppostion the most difficult part of the
theory of contextual restriction concerns the principles which govern the
resolution of C. This is a problem about which we will say nothing here.
We will turn to a certain aspect of this question in Section 3.5, where, as
we announced already, we will consider frequency adverbs in their capacity
of quantifiers over times.

Beyond Duplex Conditions

Many discussions of quantification in natural language suggest the implicit
assumption that all quantifiers found in natural language are semantically
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like generalised quantifiers (viz. binary relations between sets, or, more
generally, between n-place relations) — in our terminology, that natural
quantifiers are generally to be represented in the form of duplex conditions,
as schematically represented in (60) and (61). In the course of the past two
decades, however, it has become increasingly apparent that this is not so:
natural languages also have quantificational devices, many of them perfectly
natural and even colloquial ones, which do not fit the generalised quantifier
pattern [Keenan, 1992].

In the remainder of this section on quantification we discuss two examples
of English quantifiers for which this is true. This is meant as a hint of how
the representational approach of DRT may be extended to provide adequate
representations for such forms of quantification, and also as a remainder of
how much work still needs to be done in this area of natural language
semantics, whether within a DRT-based framework or any other.

Our first pair of examples seems to resist representation by means of a
duplex condition because it expresses a relation not between two sets, but
between three.

(62) a. Not as many women as men were drinking orange juice.

b. More boys than girls got a present that made them happy.

(62.a) says that the set of men who drank orange juice is larger than the
set of women who drank orange juice. One might want to argue that the
actual quantifier involved in this example is a binary set relation which
holds between two sets A and B iff A has larger cardinality than B, that
this relation can be represented in the duplex format we already adopted,
and that (62.a) differs from other sentences expressing this same relation
only in terms of the mapping rules which lead from syntactic structure to
this representation. But the difficulties which sentences like those in (62)
present are in fact more serious. Consider (62.b), in which the pronoun them
must be construed as referring to boys on the one hand and to girls on the
other. The syntactic form of (62.b) — like that of (62.a) and other sentences
in which a comparative construction occurs as part of a quantifying NP
— suggests that at some level of semantic representation we must have a
duplex-like structure with the content of the NP occurring to the left of
the quantifier part and the sentence material that expresses the predicate
of which this NP is an argument occurring to the right of it:

(63) xpl

“boys than girls”(x)

�
��

�
��
�
���

��
Q

x

y

present(y)
x got y

y “made them happy”
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N.B. The superscript pl of the discourse referent x indicates that x originates
from a morphologically plural NP and therefore can serve as antecedent for
a plural pronoun like they or them; for discussion see Section 3.4. Further-
more we have adopted the practice of abbreviating parts of DRSs in the
form of quasi-atomic DRS-conditions in which the predicate is given by an
expression in scare quotes. To replace such a DRS by one that is fully
worked out, these abridged conditions must be further expanded. Since the
principles involved in those expansions do not matter to the point at issue,
and paying attention to them would be likely to obscure it, we have decided
that it is better to leave the conditions in question in the unfinished state in
which they are presented. Henceforth we will proceed in this way whenever
this seems expedient.

In (63) the pronoun them can be resolved to x if we assume that, as has
been assumed for duplex conditions, the part to the left of the quantifier
serves as context for the material to the right. At the same time, however,
the restrictor part of (63) has to be processed in such a way that the two
predicates λx.boy(x) and λx.girl(x) remain separable, so that each of them
can be separately combined with the predicate in the nuclear scope. In
fact, the quantifier and the comparative construction involved in the sub-
ject NP — severally represented, one might say, by the words more and
than — arguably form a single semantic unit, and a single construction
step should result in the four-component representation shown in (64.a).
After further processing of the material in the nuclear scope (in the present
example no further processing happens to be required for the material in
the components left of the quantifier) this leads to (64.b). At this point two
strategies seem possible. According to the first a further processing rule
turns (64.b) into (64.c). The truth conditions for (64.c) are those of the set
comparison quantifier MORE: the cardinality of its first agument exceeds
that of its second argument. It is important to note that while this quan-
tifier is of the binary set relation type distinctive of standard generalised
quantifiers, it is not conservative. (For instance, if A has smaller cardinality
than B but larger cardinality than A ∩ B, then MORE(A,B) is false, while
MORE(A,A∩B) is true.)

The second strategy is to analyse the more of (62) as denoting a 3-place
operator, and accordingly to take (64.b) as the final semantic representation
of (62.b). This 3-place operator would denote a 3-place relation MORE3

between sets, such that MORE3(A,B,C) is true iff —A ∩ C— ¿ —B ∩ C—.
Analysed this way sentences like those in (62) can be seen to validate a
certain form of conservativity: We have MORE3(A,B,C) iff MORE3(A,B,
C ∩ (A ∪ B))). This observation is in keeping with the intuition that in
a sentence like (62.b) the discourse referent introduced by the subject NP
can serve as antecedent for the interpretation of the material which makes
up the VP, just as we have found this to be the case for those quantifying
subject NPs which give rise to duplex conditions of the form given in (61).



176 HANS KAMP, JOSEF VAN GENABITH, UWE REYLE

(64) a.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xpl

boy(x)

xpl

girl(x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�
��

�
��
�
���

��
MORE

x

y

present(y)
x got y

y “made them hapy”

b.

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

xpl

boy(x)

xpl

girl(x)

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

�
��

�
��
�
���

��
MORE

x

y u

present(y)
x got y
u = x

“make-happy”(y,u)

c.

�
��

�
��
�
���

��
MORE

x

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

xpl y u

boy(x)
present(y)

x got y
u = x

“make-happy”(y,u)

,

xpl y u

girl(x)
present(y)

x got y
u = x

“make-happy”(y,u)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

A quite different type of quantification which also does not fit the standard
generalised quantifier pattern is that exemplified by (65)

(65) Every student chose a different topic.

(65) has a reading according to which it asserts (i) that every student
chose a topic and (ii) that for every two different students x and y the
topics chosen by x and y were distinct. It is obvious how the truth conditions
associated with this reading should be written down in first order logic and,
by the same token, how they can be represented in a DRS of the DRT
formalism thus far developed. Such a DRS is shown in (66).



DISCOURSE REPRESENTATION THEORY 177

(66)

x

student(x)

�
��

�
��
�
���

��
∀

x

u

topic(u)
chose(x,u)

x y

student(x)
student(y)

x �= y

�
��

�
��
�
���

��
∀

x,y

u v

topic(u)
topic(v)

chose(x,u)
chose(y,v)

u �= v

(If it is assumed that the set of students has cardinality greater than 1, then
the first duplex condition of (66) becomes redundant.)

As we found in connection with the sentences in (62), the challenge pre-
sented by sentence (65) is to explain how it is possible for the syntactic form
of the sentence to give rise to truth conditions like those in (66). It is intu-
itively clear that the element of (65) which is responsible for the complexity
of these truth conditions is the adjective different. But this observation
doesn’t help us much to account for how the subject NP of (65) and its
object NP in which different occurs can “connive” to produce such truth
conditions.

The intuition that these truth conditions are due to a coordinated contri-
bution by the two NPs, and thus that these NPs are jointly responsible for a
single, undecomposable quantificational complex at the level of logical form,
is especially prominent in the work of Keenan on what he calls “non-Fregean
quantifiers” (viz. [Keenan, 1992]). Keenan analyses sentences like (65) as
involving a single quantificational operation on a 2-place relation.18 The
quantification is polyadic insofar as it binds two variables, corresponding to
the two arguments of its relational operands. (In the case of (65) one of
the variables corresponds to the subject NP and the other one to the object
NP.) Schematically, the resulting logical form can be represented either as in
(67.a), where O represents a function from 2-place relations to truth values
and is applied to the 2-place relation λx.λy.R(x,y), or as in (67.b), where O
is a variable-binding operator on formulas which is applied to the formula
R(x,y), while binding the two variables x and y. As vehicle for the truth
conditions of sentences like (65) there is little to choose between those two
forms and the little we have to say applies (mutatis mutandis) to either.

(67) a. O(λx.λy.R(x,y))

b. (Ox,y).R(x,y)

18A first treatment within DRT (and UDRT) can be found in [Seizmair, 1996].



178 HANS KAMP, JOSEF VAN GENABITH, UWE REYLE

In the case of (65) the formula in (67.b) is “student(x) ∧ topic(y) ∧ chose(x,y)”
and the relation in (67.a) is the corresponding λ-abstract. Keenan shows
that the operator involved in (65), schematically represented in (67.b) and
yielding the truth conditions in (66), cannot be replaced by a pair of 1-
place quantifiers which are applied to this relation one after the other. This
entails in particular that we cannot associate an “ordinary quantifier” —
which binds one variable only — with the subject NP of (65) and another
such quantifier with the object NP in such a way that the successive appli-
cation of these quantifiers to the mentioned formula (or alternatively to the
formula chose(x,y) contributed by the verb on its own) lead to the truth
conditions of (66).

While this is an important and interesting result, it doesn’t solve the
syntax-semantics interface problem to which we have drawn attention. It
only underscores the urgency of that problem. As it stands we do not know
how this problem should be solved, and we can only venture a specula-
tion about the direction in which a solution might be found. Consider the
sentence we get by eliminating different from (65):

(68) Every student chose a topic.

This sentence asserts the existence of a functional dependence of chosen
topics on the students who chose them. There is substantial independent
evidence (going back at last to the work of Engdahl [Engdahl, 1980] on func-
tional wh-questions) that such functions can play a role in the interpretation
of the sentences which either presuppose or entail their existence: Many
sentences can be construed as making some claim about functions whose
existence they entail or presuppose; and more often than not it doesn’t
seem possible to account for their meaning in another way.

Our tentative proposal for the analysis of (65) now comes to this. (65)
entails the existence of the function we just described in connection with
(68). (For it entails (68), which entails the existence of the function in its
turn.) different (on the interpretation intended here) is to be construed as
a predication of this function, to the effect that it returns different values
for different arguments. However, in order that different can be applied to
this function, the function has to be made available first. Thus, according
to the present proposal the interpretation of (65) involves three distinct
steps: (i) a “first run” interpretation in which different is ignored; (ii) the
extraction of the function from this “first run” interpretation; and (iii) the
application of different to this function. (It should be stressed that on this
analysis relational adjectives like different act as predicates of functions qua
function, i.e. as entities which embody information about what values the
function returns for each of the arguments in its domain).

Even if this proposal should prove to be on the right track, it is evident
that from the description we have given of it here many of the details are
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missing. The most serious shortcoming is that nothing has been said about
the role that is played by the syntactic position which different occupies in
(65), in virtue of which it can be interpreted as a predicate of the function
which assigns topics to students. And how precisely does the relational
character of the meaning of different contribute to the resulting reading?

The discussion of these last two examples has been speculative and the
analyses we have suggested have many loose ends. We have included it
nonetheless in order to make plain that the classical notion of generalised
quantifiers as relations between sets is not the last word about quantification
in natural language. The insight that natural language quantifiers very
often work this way has been extremely important and fruitful, but it must
not blind us to the fact that there is more. The same applies to duplex
conditions. Duplex conditions constitute a non-trivial generalisation of the
standard notion of generalised quantifiers as two-place relations between
sets, but we have seen that they too cannot be applied in a straightforward
manner to the analysis of the sentences in (62) and (65). These are but two
examples of a range of cases of which we do not claim to fathom the diversity
and complexity, but in all of which duplex conditions either are the wrong
representational form or are related to syntactic structure via interpretation
mechanisms that differ from those that are properly understood.

Metamathematical Properties of (Duplex Conditions for)
Non-Standard Quantifiers

One often discussed type of question within the metamathematics of first
order predicate logic and its various extensions is: what happens when we
add one or more new quantifiers to a given formal language, and in partic-
ular what happens when we add these quantifiers to the classical first order
predicate calculus itself? For instance: What can we say about the compu-
tational complexity of the notion of logical validity for the extensions of first
order logic which result from such additions? Is validity still axiomatisable?
If not, what is its complexity class (e.g. is it hyperarithmetic)? And what
can be said about the extensions that are obtained in this way for certain
natural subsystems of first order logic, such as monadic predicate logic?

Among the quantifiers with respect to which some of these questions
have been explored we find in particular the quantifiers most, there are
infinitely many and there are non-denumerably many. None of these are
definable within standard first order logic. They form an interesting triad
insofar as between them they exemplify the different answers that are pos-
sible for the question: what happens to axiomatisability when we add this
undefinable quantifier to standard first order predicate logic? Briefly the
answers are as follows. For the quantifier infinitely many : the extension is
non-axiomatisable; for non-denumerably many : the extension is axiomatis-
able; for most : it depends. The first answer is an immediate consequence
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of Trakhtenbrot’s Theorem (Non-axiomatisability of the Theory of Finite
Models); the second is a famous early result in this area due to [Keisler,
1970]; the third needs explanation.

For most the situation is as follows. If we assume that the generalised
quantifier MOST denoted by most satisfies the general condition:
MOST(A,B) is true whenever |A ∩ B| > |A \ B| (i.e. irrespective of whether
the sets A and B are finite or infinite), then the addition of MOST leads to
non-axiomatisability. It is by no means evident, however, that this is the
semantics for most that we should adopt. The condition |A ∩ B| > |A \ B|
is plausible when A is finite, but far less so for cases where A is infinite. And
alternative stipulations of the truth conditions of MOST, which arguably fit
speakers’ intuitions about what most means in the context of infinite sets
better, can be shown to preserve axiomatisability.

We mention these few logical results about non-standard quantifiers be-
cause they illustrate what we consider an important point. Its importance
will come more clearly into focus at the end of the next section. To prepare
the ground for what we will say there we note the following. It appears that
quantifying NPs, which have been the main topic of the present section
always involve quantification over individuals, and not over sets. And the
same appears to be true of adverbial quantifiers even if they sometimes in-
volve quantification over several variables, rather than just one. This doesn’t
guarantee that adding such a quantifier to the first order predicate calcu-
lus will preserve its agreeable metamathematical properties, but it doesn’t
mean either that these properties will automatically be lost: for instance,
Keisler’s result [Keisler, 1970] shows that axiomatisability may be preserved
even though the added quantifier is not definable, adding it therefore results
in a genuine extension of standard first order logic. Whether a property such
as axiomatizability will be preserved thus depends on individual features of
the added quantifier.

Similar considerations apply to the addition of duplex conditions to the
DRS-formalism of Section 3.1. From the addition as such nothing can be
inferred about the metamathematical properties of the extension. Conclu-
sions can be drawn only on the basis of the truth conditions associated with
the particular quantifier symbols Q which occur in the central components
of the added duplex conditions. We recall in this connection that all duplex
conditions are “formally first order” in that the discourse referents involved
(i.e. those subject to either primary or secondary binding) invariably stand
for individuals, and not for sets. This restriction — that all discourse ref-
erents occurring in DRSs stand for individuals — will be abandoned in the
next section.
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3.4 Plural

Some of the quantifying NPs we discussed in the last section — such as most
tractors or all farmers — were syntactically plural. But their semantic rep-
resentation, it was stressed, always involved individual discourse referents
— discourse referents whose values are individual farmers etc. Discourse ref-
erents standing for sets (of two or more elements) were not needed. When
we consider definite and indefinite plural NPs this is no longer true.

The point is perhaps most easily made in connection with definite plurals
such as the farmers or the farmers of Weybridge. The referents of such NPs
must be represented as sets when predication — say by the verb of the
sentence containing the NP — is collective. Thus

(69) The farmers of Weybridge voted against the by-pass.

has a prominent interpretation according to which the vote involved all the
farmers of Weybridge and they voted against it as a body – some may have
voted in favour but the majority was against and so the proposal didn’t
carry.

Such a predication can only be plausibly represented as a predication of
the set consisting of the farmers of Weybridge. To this end we now introduce
discourse referents representing sets (of cardinality ≥ 2) besides the ones we
have been using so far, which always represent individuals. We use capitals
for the new discourse referents, as opposed to the lower case letters which
we continue to use for individual discourse referents. Thus the predication
in (69) will take some such form as “X voted against”, where X represents
the set denoted by the farmers of Weybridge.

We do not want to pursue the analysis of definite NPs further at this
point. We assume that all definites are presupposition triggers – they trigger
presuppositions of proper reference. Accordingly their place is in Section 4,
which is entirely devoted to presuppositional phenomena.

Indefinite NPs, however, are not presuppositional and plural indefinites
resemble plural definites in that they can be the subjects of collective pred-
ication. Examples are the sentences in (70).

(70) a. Five/Some lawyers hired a new secretary.

b. Some graduates from Harvard Law School decided to set up a
“legal clinic” for the poor of South Boston.

(70.a) can be understood as a joint hiring — the secretary will be working
for the five lawyers — and (70.b) as saying that some group of Harvard
graduates made a joint decision. Here too it is only by representing the
indefinite NP via a “set” discourse referent that we can guarantee adequate
representations of the collective predications. In particular, using the dis-
course referent X to represent the subject NP of (70.a) (and extending the



182 HANS KAMP, JOSEF VAN GENABITH, UWE REYLE

construction algorithm in intuitively obvious ways on which we do not dwell
here) we get for (70.a) the following DRS.

(71)

X y

lawyer*(X)
|(X)| = 5

secretary(y)
hired(X,y)

N.B. The asterisk “*” turns the predicate of individuals that is expressed
by a noun N into a predication N* of sets which is true of a set X if each
member of X satisfies N. Thus lawyer*(X) is equivalent to the DRS condition

x

x∈X

�
��

�
��
�
���

��
∀

x
lawyer(x)

and could be replaced by that condition if

this was preferred.
It might be thought that when predications involving plural definites and

indefinites are not collective, the contribution made by the NP to the seman-
tic representation could in principle be accounted for through the exclusive
use of individual discourse referents. However, this is often awkward —
think of how to express the contribution of five to the sentence Five lawyers
voted for the proposal. — and it lacks principled motivation. It seems clearly
preferable to assume that plural definites and indefinites always introduce
plural discourse referents, and to treat non-collective predications involving
such NPs as the result of some operation of distribution over the represented
set. (For details see [Kamp and Reyle, 1993].)

There exists a substantial literature on the semantics of plurals (for in-
stance [Lasersohn, 1995] and [Winter, 2002]). Here we concentrate on the
dynamic and trans-sentential aspects of the semantic contributions made by
plural NPs, focussing in particular on plural indefinites and plural pronouns.

Plural anaphoric pronouns allow for interpretational strategies that are
not found with singular pronouns. These strategies involve certain infer-
ential principles that are needed to obtain the pronoun’s antecedent. The
initial goal of DRT’s account of plurality was to identify these principles,
and that will also be the main purpose of the present section.

Two of these inferential principles are illustrated in (72).

(72) a. Tom met Sue. They talked for quite a while.

b. Few boys of Lena’s class showed up. They were smart.

Consider first (72.a). The construction of its DRS proceeds in the familiar
left-to-right manner, with the representation of the first sentence providing
the context for the second. If the construction is to run according to plan the
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DRS for the first sentence should present a discourse referent that can serve
as antecedent for the anaphoric pronoun they. But if the DRS construction
for the first sentence follows the rules we have been assuming (for details
see Section 2.3 or [Kamp and Reyle, 1993]), then the antecedent discourse
referent which represents the set consisting of Tom and Sue is not available:
no such discourse referent is a member of the DRS universe resulting from
this construction; all that it contains are a discourse referent representing
Tom and one representing Sue as shown by the DRS in the upper left corner
of (73). In order to obtain the antecedent we want, we have to synthesise
it out of what this DRS for the first sentence provides. The synthesisation
operation which accomplishes this is called Summation. It takes a set Z of
two or more discourse referents as input and returns a discourse referent
representing the set consisting of all individuals represented by the different
discourse referents belonging to Z. We represent applications of the Sum-
mation operation by adding the “output” discourse referent, say X, to the
DRS universe where it is wanted while adding the condition “X = ΣZ” to
the corresponding condition set. We use a capital letter for the new dis-
course referent since it invariably represents a set of two or more elements.
In the case before us Z consists of the discourse referents t for Tom and s
for Sue. In cases like this we write the condition “X = t⊕s” instead of the
official notation “X = Σ{t,s}”. We assume in addition that Summation is
applied as part of the effort to resolve the anaphoric presupposition that is
triggered by the anaphoric pronoun they. Thus it is the combination of the
completed DRS for the first sentence of (72.a) and the preliminary represen-
tation of the second sentence, in which the presupposition triggered by they
is explicitly represented, that gives rise to the application in this instance.
The result of applying the Summation operation is shown to the right of
the first �; the DRS after the second � results from the resolution of the
anaphoric discourse referent Y to the Summation output X; this is the final
DRS for (72.a).

(73)

t s

Tom(t)
Sue(s)

meet(t,s)

 

〈{
Y

person*(Y)

}
,

talk(Y)

〉
�

t s X

Tom(t)
Sue(s)

X = t ⊕ s
meet(t,s)

 

〈{
Y

person*(Y)

}
,

talk(Y)

〉
�

t s X Y

Tom(t)
Sue(s)

X = t ⊕ s
meet(t,s)
Y = X
talk(Y)
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The operation that is involved in providing the antecedent for they in (72.b)
is called Abstraction. The Abstraction operation acts on duplex conditions
and introduces a plural discourse referent X that stands for the set consisting
of all individuals that satisfy the DRS K which results from merging the
restrictor of the duplex condition with its nuclear scope. The DRS condition
expressing this has the form X = Σx.K, where Σ is now to be understood
as binding the discourse referent x. For the case at hand the condition is
shown at the bottom of the DRS on the left in (74).

(74)

c X

“Lena’s class” (c)

x

boy(x)

�
��

�
��
�
���
��

few

x
“show up”(x)

of(x,c)

X = Σ x

x

boy(x)
of(x,c)

“show up”(x)

〈{
Y

person*(Y)

}
,

smart(Y)

〉

In addition to the interpretation represented in (74), (72.b) also has an
interpretation in which they refers not just to the boys in Lena’s class who
showed up, but to the set of all boys in Lena’s class. (In the present example
this interpretation is awkward for rhetorical reasons, but it isn’t hard to
come up with alternatives in which it is quite natural. For instance, we
could replace the second sentence of (72.b) by Nevertheless they had all
received an invitation.) A discourse referent representing this set can also
be obtained through Abstraction. But in this case the operation has to be
applied to the restrictor of the duplex condition on its own.

The examples in (72) have shown that certain inference-like operations —
Summation and the two versions of Abstraction — may be used to synthe-
sise the antecedents of plural pronouns from material present in the context
DRS. Since antecedents may be derived from the context through the appli-
cation of these operations, it might be thought that any logical derivation
from the context DRS of the existence of a set may be used to interpret
a plural pronoun. Since such inferences are generally not allowed for sin-
gular pronouns (see the discussion of (42)), the difference between plural
and singular pronouns would thus simply come to this: the antecedent
of a singular anaphoric pronoun must have been introduced explicitly by
the DRS-construction algorithm (i.e. as the discourse referent representing
some earlier NP); the antecedents of plural anaphoric pronouns may be logi-
cally inferred from the context in the form which the construction algorithm
imposes on it.

This way of formulating the difference between singular and plural pro-
nouns, however, is not only misleading, it is inadequate. To see this compare
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the following three sentence pairs:

(75) a. Two of the ten balls are not in the bag. They are under the sofa.

b. Eight of the ten balls are in the bag. They are under the sofa.

c. Few boys of Lena’s class showed up. They were smart.

The they of (75.a) can be understood as referring to the two balls that are
missing from the bag. In contrast, no such interpretation is possible for the
they of (75.b). Nevertheless we can infer from the first sentence of (75.b)
that there must be such a set — it is the difference between sets that are
explicitly mentioned, viz. the set of eight balls that are in the bag and the
larger set of ten balls of which this first set is said to be a subset. But,
apparently, subtracting one set from another is not a permissible operation
for the formation of pronominal antecedents. And so the inference to the
existence of this set, while valid, is not sufficient to have it as antecedent for
the pronoun. Similarly, a plural pronoun cannot pick up the complement of
a group introduced by Abstraction. The they in (72.c) cannot refer to the
group of boys that didn’t show up.

Between them the sentence pairs in (72) and (75) show that the interpre-
tation of anaphoric plural pronouns is supported by a restricted repertoire
of logical operations which create pronoun antecedents from material in the
context representation. These examples only give us a hint of what a pre-
cise characterisation of this repertoire could be like. We do not know that
a formal definition of it has been attempted. But even without such a char-
acterisation there are two conclusions that can be drawn, the first firm, the
second more tentative.

The first is that what we are seeing here is a form of an aspect of linguis-
tic knowledge: What operations may be used to construct antecedents for
plural pronouns is an aspect of the interpretation of this particular type of
expression. (Note in this connection that the restrictions we have observed
in connection with (75.a,b) disappear when we replace the pronouns by
definite descriptions such as the missing/other balls or the boys who didn’t
come.) Moreover, we are dealing with linguistic knowledge which pertains
to the semantics of discourse, since it is often the discourse context, provided
by the sentences which precede the one in which the given pronoun occurs,
to which the antecedent-creating operations must be applied. (Especially
for those who think of linguistic knowledge as confined to (syntactic) struc-
ture of the individual sentence, this is a phenomenon that ought to be food
for thought.)

Secondly, what we have noted about the limited repertoire of logical op-
erations available for the construction of pronoun antecedents suggests that
the apparent difference between plural and singular pronouns to which we
have drawn attention may well be reducible to the fact that singular pro-
nouns stand for individuals while plural pronouns stand for sets of two or
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more individuals. We have noted that the operation of Summation always
yields sets of cardinality ≥ 2. Moreover, this tends to be true of Abstraction
as well, viz. in all those cases where the DRS K to which the operation is ap-
plied is satisfied by more than one value for the discourse referent bound by
the abstraction operator. As a rule this last condition is fulfilled. (Often it is
a presupposition associated with the linguistic construction which gave rise
to the duplex condition from which K is obtained, e.g. nominal quantifiers
such as every boy, all/most boys.) Thus application of either Summation or
Abstraction will in the normal course of events produce discourse referents
that are unsuitable antecedents for singular pronouns, even if we assume
that nothing else speacks against their employment in the interpretation
of such pronouns. Moreover, there are some cases where Abstraction does
seem to be needed to interpret a singular pronoun, viz. where the sentence
preceding the one containing the pronoun involves the quantifying phrase
there is exactly one ball — as in (76).

(76) There is exactly one ball missing from the bag. It is under the sofa.

However, even if there is no difference here between the logical repertoire
supporting the interpretation of plural pronouns from that of singular pro-
nouns, it remains true that this repertoire is characteristic of the behaviour
of pronouns, as one particular category of anaphoric expressions that we
find in natural languages such as English.

Mereological vs. Set-Theoretical Ontology

In the DRSs displayed above graphically distinct discourse referents (lower
case and upper case letters) have been used to represent single individuals
and collections of two or more individuals. This could suggest that the
graphically distinct discourse referents are meant to stand for entities of
distinct ontological types, individuals and sets of individuals. However, in
the model-theoretic semantics for the extended DRS formalism to which
these DRSs belong no type distinction is made between the possible values
of the two kinds of discourse referents. The ontology adopted in the models
of this semantics is the mereological one first proposed for semantic purposes
in [Link, 1983]. Link’s proposal involves a single ontological category which
provides for the denotations of mass terms (NPs whose nominal head is a
mass noun) as well as singular and plural count terms (NPs with a count
noun as head). In this survey we are concerned only with singular and plural
count terms, so only that part of Link’s ontology is relevant which concerns
the denotations of those terms. This ontological category is structured by a
part-whole relation ≤, and this part takes the form of an upper semi-lattice
A = 〈A, ≤ 〉 which does not have a zero element (i.e. an element 0A such
that for all a ∈ A, 0A ≤ a) and which is complete, atomic and free.
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DEFINITION 31.

(i) An upper semilattice 〈A,≤ 〉 is called complete if for all X ⊆ A the
supremum

∨
X exists.

(ii) If a is the “largest” element of A — i.e. for all x ∈ A, x ≤ a — then
a is called the one of A and denoted as 1A. Similarly, if a is the
“smallest” element of A — i.e. for all x ∈ A, a ≤ x – then a is called
the zero of A and denoted as 0A.

(iii) By an atom of A we understand any element a �= 0A, such that
∀x(x ≤ a → (x = a ∨ x = 0A)).

(iv) A is said to be atomic if for every a, b ∈ A such that a �≤ b there is an
atom c such that c ≤ a and c �≤ b.

(v) A is free if for all a ∈ A, X ⊆ A if At(a) and a ≤
∧

X then (∃b ∈
X)(a ≤ b).

With respect to a model whose universe is such a lattice 〈A, ≤ 〉 lower case
discourse referents represent atomic elements of A and upper case discourse
referents non-atomic elements. (Thus an assignment will have to map the
lower case discourse referents onto atomic elements and the upper case dis-
course referents to non-atomic ones.) Moreover, the sum operation Σ and
Abstraction operation Σx occurring within the new DRS conditions are in-
terpreted as the join operation ∨ of the semi-lattice, while the *-operator
gives the closure of predicates under ∨. I.e. if P is any 1-place predicate of
our representation language whose extension is a subset V of A, then the
extension of P* is the set of all a ∈ A which are joins of subsets of V.

Upper semi-lattices which are complete, atomic and free have a remark-
ably simple structure. It is easy to show (see, e.g., [Kamp and Reyle, 1993])
that such a structure A is isomorphic to a structure 〈P(B), ⊆ 〉 where P(B)
is the set of all subsets of some given set B and ‘⊆’ is the relation of set-
theoretical inclusion. In particular, one can take B to be the set At(A)
consisting of all atoms of A.

THEOREM 32. Let A = 〈 A,≤ 〉 be a complete, atomic, free upper semi-
lattice without zero, and let At(A) be the set of atoms of A. Then A is
isomorphic to the structure 〈P(At(A)) \ ∅,⊆〉.

Theorem (32) shows that the choice between a lattice-theoretic and a set-
theoretic approach towards the model theory of singular and plural count
nouns is not important from a strictly formal point of view: models based
on the one approach can be readily converted into equivalent models based
on the other. Even so, there are considerations of naturalness which clearly
favour the lattice-theoretic approach. First, the behaviour of singular and
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that of plural NPs are quite similar, both from a syntactic and from a se-
mantic perspective. In view of this, making singular and plural NPs denote
entities of logical types as different as individuals (i.e. first order entities)
and sets of individuals (second order entities) seems to lack motivation.

A second, and more decisive, argument in favour of having a single entity
type that includes the possible denotations of both singular and plural NPs
is the following. Sometimes discourse referents must be allowed to take both
“individuals” and “sets of individuals” as values. This can happen when a
discourse referent is quantificationally bound. An example is provided by
the sentences in (77).

(77) a. All boys bought the books they wanted.

b. All boys bought books they wanted.

(77.a) can be used to describe a situation in which some of the boys wanted
a single book, and bought it, while the others wanted several books, and
bought them. This means that in a DRS for (77.a) the discourse referent
ζ introduced by the NP the books they wanted must be allowed to get as
value a single book when the discourse referent x introduced by all boys and
bound by the quantification denoted by all takes the first kind of boy, and
a set of individuals when x gets mapped to a boy of the second kind. If
we assume that ζ has a single logical type (an assumption usually made for
variables of typed calculi), then its possible values must all belong to a single
ontological category. The same applies to (77.b) in which the definite the
books has been replaced by the indefinite books. We will return to this latter
sentence below in a slightly different context, and will then also consider its
semantic representation.

We conclude the present section with a brief statement of how the changes
introduced in this section affect the model theory of the new extended DRS
formalism. First, the model with respect to which DRSs of the extended
formalism are to be evaluated are like those introduced in Section 3.1 except
that the universe of a given model M now has the structure 〈A, ≤ 〉 of a
complete, atomic, free join-semi-lattice. This extra structure is directly
relevant only for the evaluation of atomic DRS-conditions. The satisfaction
clauses for these conditions are given in the next definition. It is to be noted
in this connection that the distinction between lower case and upper case
discourse referents is treated as “syntactic sugar”. In the official notation for
the present DRS formalism there is still only one type of discourse referent,
and discourse referents of this one sort can stand for any entity of the new
ontology — i.e. for groups as well as for (atomic) individuals. We continue
to use the old discourse referent symbols (i.e. x, y, z, ... x1, x2, x3, ...) and
distinguish between discourse referents which stand only for individuals,
those which stand only for groups and those which allow for values of either
kind by means of the predicate “at”: a discourse referent x standing only for
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individuals comes with the condition “at(x)”, a discourse referent x standing

only for groups with the complex condition “¬ at(x) ”, and when neither

of these conditions is present this means that x can take values of either
kind. (Distinguishing between lower case, upper case and lower case Greek
letters is nevertheless a useful practice. We have also found it convenient to
refer to the first as “singular discourse referents”, to the second as “plural
discourse referents” and to the third as “neutral discourse referents”.) In
addition, we assume that the new formalism has the cardinality functor
|.| (|x| is the “cardinality” of x, i.e. the cardinality of the set of atoms
contained in x), and moreover, a canonical name n for each natural number
n (e.g., the symbol “5” might be the canonical name for the natural number
five.). Finally we need to be more explicit than we have so far been about
the exact form of the condition introduced by applications of Summation
and Abstraction. Conditions introduced by Summation have the form X =
Σ {y1,...yn}. These introduced by Abstraction take the form X = Σy.K,
where, we assume, y belongs to UK .

Definition 33 extends Definition 10 of Section 3.1 with the new clauses
that now become relevant. We now assume that the universe U of the
model M has the structure of an atomic, free and complete upper semi-
lattice 〈 U, ≤ 〉. (They clauses are listed starting with (ix) to make clear
that we are dealing with an extension of Definition 10.)

DEFINITION 33.

(ix) g |=M At(x) iff g(x) is an atomic element of UM

(x) g |=M x ∈ y iff g(x) is an atomic element of UM, g(y) is a non-atomic
element of UM and x ≤ y

(xi) g |=M x = Σ{y1,...yn} iff g(x) =
∨
{b ∈ UM|(∃yi)(b ≤ g(yi))}

(xii) g |=M x = Σ y.K iff g(x) =
∨
{b ∈ UM|(∃h)(g ⊆UK

h ∧ h(y) =

b ∧ h |=M γ for all conditions γ ∈ ConK}.

N.B. Both the model-theoretic extensions of the last subsection and the one
stated in Definition 33 are easily adapted to the intensional set-up discussed
in Section 3.2. We will return to the intensional perspective in the next
Section, 3.5.

The Semantic Import of Plural Morphology

Most plural NPs we have considered in this section denote groups (of ≥ 2
members); they can be, and often must be, represented by plural discourse
referents. In this respect they differ from quantificational NPs which, we ar-
gued in the last section, must be represented by singular discourse referents
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irrespective of whether they have singular or plural morphology. However,
it is not only quantificational plural NPs where representation by means of
a plural discourse referent is inappropriate. We saw that the direct object
NPs the books and books of (77.a) and (77.b) require discourse referents
that are neutral between individuals and groups. And in fact, (77) also
gives us a further example of the need of singular discourse referents to
represent plural NPs, viz. the plural pronoun they. The two occurrences
of they in (77.a,b) can (and naturally would) be interpreted as anaphoric
to the quantificationally bound singular discourse referent x introduced by
the subject NP all boys. If the pronoun is interpreted in this way then the
discourse referent that represents it must, through its identification with the
singular discourse referent x, become a singular discourse referent – i.e. one
whose values are restricted to (atomic) individuals — also; the discourse
referent for the anaphoric expression inherits, so to speak, the features of
its antecedent.

Note well that this anaphoric option for the plural pronoun they exists
in (77.a,b) only because its intended grammatical antecedent, the subject
NP all boys, is morphologically plural. When we change all boys into every
boy, then (at least according to most English speakers we have consulted)
they can no longer be interpreted as coreferential with the discourse referent
bound by the quantifier (though it can be understood as referring to the set
of boys as a whole; cf. the discussion of Abstraction earlier in this section).
It thus appears that in each of the four instances of the phenomenon under
discussion which we find in (77) — the books, books and the two ocurrences
of they — there is some sort of dependency of the NP in question on another
NP which is morphologically plural but whose semantic representation does
not involve a plural discourse referent. This seems to be a general require-
ment. In the absence of such a dependency the discourse referent for a
non-quantificational plural NP must stand for a group.

Let us assume that these dependency relations can be computed and then
used to licence the interpretations that concern us here. This would make
it possible to obtain for sentence (77.b) the representation given below in
(79) via an initial representation like that in (78). In (78) the pronoun
they is represented as part of an anaphoric presupposition; moreover, the
discourse referent ζ for the NP books is given in a preliminary form, which
creates the opportunity for its subject-dependent interpretation without yet
establishing this interpretation.



DISCOURSE REPRESENTATION THEORY 191

(78) xpl

boy(x)

�
��

�
��
�
���

��
∀

x

ζpl

book*(ζ)
buy(x,ζ)〈{

ηpl

person*(η)

}
, want(η,ζ)

〉

New in (78) are the superscripts pl on the discourse referents x, ζ and η.
A superscript pl indicates that the NP which is represented by a discourse
referent bearing it is morphologically plural. Note further that in (78) the
first of these superscripts applies to the singular discourse referent x, while
in the other two cases it applies to the neutral discourse referents ζ and
η. The explanation is this: the unequivocally quantificational character of
the NP all boys determines that the discoure referent x which represents it
must be a singular discourse referent, whereas the status of the discourse
referents represented by the plural indefinite books and the plural pronoun
they is initially undetermined.

Getting from (78) to (79) requires the application of two principles.

(i) The first principle concerns pl-marked discourse referents of anaphoric
presuppositions triggered by pronouns. It says that an anaphoric pl-
marked discourse referent may take a singular or neutral discourse
referent as antecedent provided this antecedent discourse referent is
also pl-marked.

(ii) The second principle concerns pl-marked discourse referents which are
not to be anaphorically resolved. If such a discourse referent is neutral
as it stands, and it stands in the right dependency relation to another
discourse referent which is also pl-marked, then it may remain neutral
in the final representation.

Applying the first principle in (78) to ηpl and the accessible discourse ref-
erent xpl leads to identification of η with x. η is thereby coerced to act
as singular discourse referent. There is no coercion of ζ so ζ retains its
status of neutral discourse referent. Since the superscripts pl are no longer
needed, they have been omitted in the final representation of (79). (In order
to make the effects of the applications of the principles more clearly visible,
we have used in the presentation of this representation the official notation
introduced in the preceding subsection.)
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(79)
x

boy(x)
at(x)

�
��

�
��
�
���

��
∀

x

z y

book*(z)
buy(x,z)
y = x

person*(y)
want(y,z)

What is missing from the way in which we have dealt with (77.b) is a
proper account of the dependency relations that licence the two principles
just mentioned. In fact, the constraints which govern dependent interpreta-
tions of plural definite and indefinite descriptions are not the same as those
which govern dependent interpretations of pronouns. This is shown by the
sentences in (80).

(80) a. Most boys have friends who have pets.

b. Most boys have a friend who has pets.

c. Most boys have friends they like.

d. Most boys have a friend they like.

In (80.a) we can understand friends as dependent on most boys, so that the
sentence is neutral on the question whether the boys in question have one or
more friends with pets, and pets can be interpreted as dependent on friends,
so that each of the relevant friends could have had one pet or more than one.
But for (80.b), where the “intermediate” NP a friend is in the singular,
the only possible interpretation is that for each of a majority of boys there
is a friend who has several pets. Here the plural morphology of pets and
most boys does not licence a dependent interpretation of pets. Apparently,
the relevant dependency relation which constrains dependent interpetations
of indefinite descriptions as clause bound — the licencing plural NP must
belong to the same clause as the licencee. For anaphoric pronouns the
situation is different. In both (80.c) and (80.d) they can be interpreted as
coreferring with the bound variable of the quantification. That in (80.d)
there is a singular NP which “intervenes” does not seem to matter.

As regards plural pronouns, we conjecture that the constraint on appli-
cations of principle (ii) comes simply to this: in order that any discourse
referent can serve as antecedent for any ananaphoric pronoun it must be
accessible from the position of the pronoun (in the DRT-sense of accessibil-
ity). If moreover the discourse referent for the pronoun is pl-marked, then
its antecedent must be either (a) a plural discourse referent, or (b) it must
also be pl-marked. Thus the dependency constraint is in this case nothing
more than the already familiar relation of accessibility. The dependency
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constraints involved in applications of principle (ii), on the other hand, do
not seem to be reducible to notions we have already introduced. Apparently
these constraints are at least in part syntactic. But in any case more needs
to be said about them than we are able to do here and now.

The subject of this subsection has been one which belongs squarely within
the realm of the syntax-semantic interface: how and why do certain sentence
constituents, with their given morphological features and in their given syn-
tactic positions, contribute to the semantic representation of the sentence
in the ways they do? This might be thought a topic that is inappropriate in
a survey article like the present one, where the focus ought to be on matters
of logical and/or philosophical relevance. If we have decided to include the
above discussion nevertheless, that has been for two reasons. First, syntax-
semantics interface questions are of interest from a general philosophical
perspective insofar as they reveal how complex the relationship between
syntactic structure and logically transparent semantic representation can
be: the principles according to which information is encoded in natural lan-
guage differ significantly from those which determine the organisation of log-
ical representation languages such as predicate logic or the DRS-languages
of DRT. Exactly what these differences are and why they exist is surely of
central interest for the philosophy of language, for the foundations of logic
and for our general understanding of human information processing.

But there is also a second reason why we consider the problems that have
been discussed in this subsection to be one of general interest. It is related
to the first reason, but more specific. The general problem of the relation
between meaning and linguistic form is often equated with the “syntax-
semantics interface”. Part of this equation is that syntax defines linguistic
form and therewith both the input to and the constraints on the mapping
which produces meanings as outputs. This is pretty much the standard
view, and in first approximation it is surely correct. However, the problems
we have discussed throw doubt on the simplicity of this view.

Apart from the dynamic aspects of this mapping, in view of which it
is more appropriately seen and treated as a mapping from discourses and
texts to meanings rather than from single sentences — this is the general
message of dynamic semantics, and in no way specific to what has been said
above — the discussions of this subsection have pointed towards the need
for a “cascaded” mapping procedure, in which the syntactic structure of a
sentence is first transformed into an “initial” semantic representation, and
then from this initial representation into the representation which renders
its semantic contribution in definitive, fully transparent form. However, it
is clear neither of the initial representation itself nor of the operations that
must be applied to it to turn it into the final representation whether they
belong on the syntactic or the semantic side of the dichotomy that is implicit
in a simple-minded conception of the relation between form and meaning.
Particularly problematic in this context is the allocation of the operations
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Summation and Abstraction. On the one hand these seem to belong on
the side of meaning in that they operate on structures in which much of
the information of the sentence has been made transparent already. On
the other, they appear to be sensitive to aspects of linguistic form that are
reflected in the “semantic” representations which serve as their application
domains.

As we have seen intermittently in earlier sections, and will see in greater
detail in Section 4below, the need for a cascaded architecture of DRS con-
struction (and thus of the mapping from syntactic form to transparent rep-
resentation of meaning) arises also for other reasons. The most important of
these has to do with the treatment of presupposition which will be presented
at length in Section 4. The basic assumption underlying this treatment is
that presuppositions must first be given explicit representations which are
then subjected to a (linguistically motiovated) process of presupposition
justification, after which they either disappear from the semantic represen-
tation or else are integrated into its non-presuppositional core.

Metamathematical Properties

We conclude this subsection with an observation which links up with the
concluding remarks of the last one. There we noted that the addition of non-
standard quantifiers to the first-order DRS-formalism of Section 3.1 may but
need not lead to the loss of axiomatizability. We also noted that the class
of quantifying NPs include plural as well as singular forms. But all of these,
we argued, introduce singular discourse referents. In contrast, indefinite
and definite plural NPs, we have seen in the present section, are often (if
not invariably) “semantically plural” in that they denote non-atomic entities
(or, in more traditional terms, sets of cardinality ≥2). It is a consequence of
this addition that the DRS formalism of this section necessarily transcends
the boundaries of first order logic.

It should be stressed that it is the plural indefinite NPs that are the
principal culprits here. To see this, observe that it is possible to state the
induction axiom of second order Peano Arithmetic by means of the following
English sentence:

(81) If 0 is among some numbers and the successor of a number is among
them if that number itself is, then they include all the natural num-
bers.

(Note that this sentence does not make use of a noun such as “set”. The
crucial phrase, which is responsible for the irreducibly second order status
of (81), is the NP some numbers.)

If we combine (81) with sentences which state the familiar axioms of
Peano Arithmetic (those saying that the successor function is a bijection
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from the set of natural numbers without 0 to the set of all natural num-
bers, together with the recursive axioms for + and ×, then we get a version
of Peano’s second order axioms, an axiom system which has the standard
model of arithmetic for its only model. This entails that the truths of arith-
metic are an (easily recognisable) subset of the set of logical consequences of
this axiom set. So, the set of these logical consequences has at least the com-
plexity of that of the truths of arithmetic. Consequently it does not admit
of a proof-theoretical characterisation. The same is true for a set of DRSs
which give truth-conditionally correct representations of these axioms. In
particular, if (82), which is a truth-conditionally correct representation of
(81), is merged with DRSs for the other Peano axioms mentioned into a
DRS K, the set of DRSs which are logically entailed by K is not amenable
to proof-theoretic characterisation. Since all compounds of K other than
(82) are first order (i.e. they can be given in a first order DRS language of
the kind discussed in Section 3.1) non-axiomatisability must be due to (82),
and thus to the presence in it of the plural discourse referent X, since that
is the one feature of (82) which sets it apart from first order DRSs. And as
far as the sentence in (81) is concerned, which (82) represents, the feature
which makes it second order is the indefinite plural some natural numbers
which is responsible for the presence of X in (82).

(82)

X

natnr*(X)
0∈X

x

x∈X

�
��

�
��
�
���
��

∀

x
S(x)∈X

⇒ x

natnr(x)

�
��

�
��
�
���
��

∀

x
x∈X

One noteworthy feature of this example is that it shows how little of the
additional resources made available by the introduction of plural discourse
referents is needed to move outside the realm of first order logic: (82) con-
tains only one plural discourse referent, occuring within the scope of a single
logical operator (viz ⇒). If the present formalism were restricted in such a
way that an axiomatisable fragment results, hardly any of the additional ex-
pressive power that plural discourse referents introduce would be preserved.

It deserves to be stressed that it is an indefinite plural NP which is
responsible for the second order status of (81). We saw at the end of the last
section that non-axiomatisability may result from the incorporation of non-
standard quantifiers. But whether this happens will depend on incidental
and often subtle features of the particular quantifier in question. Moreover,
since these quantifiers only bind variables ranging over (atomic) individuals,
there is an important sense in which they do not transcend the bounds
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of first order logic. In this regard the extension of the present section is
much more radical. It introduces a form of quantification over sets and this
leads us directly into second order logic, with all the dire metamathematical
concequences that entails.

3.5 Tense and Aspect

The starting point for DRT was an attempt in the late seventies to come to
grips with certain problems in the theory of tense and aspect. In the sixties
and early seventies formal research into the ways in which natural languages
express temporal information had been dominated by temporal logic in the
form in which it had been developed by Prior and others from the fifties
onwards. By the middle of the seventies a large number of tense logics had
been formulated, many of them for the very purpose of analysing temporal
reference in natural language. It became increasingly clear, however, that
there were aspects to the way in which natural languages handle temporal
information which neither the original Priorean logics nor later modifica-
tions can handle. And some of these problems had to do directly with the
behaviour of tense, i.e. with that feature of natural languages which had
been a primary source of inspiration for the development of temporal logic in
the first place. (In earlier days the term “tense logic” was the common way
to refer to Prior-type temporal logics, and it is still used by many today.)

A particularly recalcitrant problem for the temporal logic approach are
the differences between two past tenses of French, the imparfait and the
passé simple, and the largely similar differences beween the past progressive
and simple past in English. In many contexts it is possible to use either
tense form to describe the same situation. An example is given by the pair
of English sentences in (83).

(83) a. Hans was filling out his visa application form.

b. Hans filled out his visa application form.

On the face of it these sentences may seem to have the same truth con-
ditions. But one feels that there is an important difference between them
nevertheless. To explain what this difference consists in has been a problem
of long standing. It was seen as a problem especially by those who taught
French to non-native speakers and had to explain to their students when to
use the passé simple and when the imparfait, and why.

Earlier attempts to account for the distinctions between these tenses (as
well as between their English counterparts) were often couched in metaphor-
ical or quasi-metaphorical terms. Thus, the differences between (83.a) and
(83.b) have been variously described in terms like:

(84) a. (83.a) presents the event of which it speaks as “open”, (83.b)
presents it as “closed”;



DISCOURSE REPRESENTATION THEORY 197

b. (83.a) presents its event “from the inside”, (83.b) “from the out-
side”;

c. (83.b) presents its event as “punctual”, (83.a) as “temporally
extended”.

Moreover, it has been pointed out that when sentences in the passé simple
or simple past occur in a narrative, they often “carry the story forwards”,
while sentences in the past progressive or imparfait hardly ever do this.

As they stand, these formulations are too informal and imprecise to be of
much use in a systematic analysis. But they contain clear hints why it is that
temporal logics aren’t the right tools to explain what the difference between
these tenses is. There are a number of reasons for this, three of which will be
mentioned here. The first has to do with the temporal ontology on which
an analysis of the tenses (and of temporal reference in natural language
generally) should be based. Even a fairly cursory inspection of the way
temporal reference works in natural language reveals that temporal intervals
play as important a role as temporal points; in fact, from the perspective of
natural language there does not seem to be a principled distinction between
instants and intervals. This is at odds with Prior-type tense logics, with
their commitment to the concept of “truth at an instant”.

In the seventies alternative temporal logics — so-called interval logics
— were developed to remedy this. But when we turn to the next two
objections against temporal logics, interval logics are no real improvement
on tense logics of the Priorean sort. The first of these has to do with the fact
that in temporal logic — whether we are dealing with a point logic or an
interval logic — time only enters at a meta-linguistic level. The formulas
of temporal logics do not have any means to refer to times directly and
explicitly — they have no terms whose values are points or intervals of
time. This was originally seen as a virtue of tense logic. The tenses of the
verb, it was thought, carry temporal information but they do this without
making explicit reference to time. In this respect they are much like modal
operators such as necessarily or it is possible that, which have to do with
what might be or might have been the case as well as with what is, but do
so without explicitly referring to possible worlds.

The principal reason why this is the wrong conception of the way in
which temporal reference is handled in natural language is that tenses are
not the only means that natural languages use for this purpose. As often
as not the temporal information conveyed by a natural language sentence
or discourse is the result of interaction beween several kinds of elements, of
which the tenses constitute only one. Among the others we find in particular
temporal adverbs and prepositional phrases such as three hours later, on the
first of February 2001, etc. and these clearly do refer to times in a direct
and explicit manner. (If these aren’t explicitly referring expressions, what
expression would count as referring?) Consequently, one would presume
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the logical forms, or semantic representations, for sentences in which such
adverbs occur to contain devices for explicit reference to time as well. But
the formulas of temporal logics do not. So they provide the wrong repertoire
of logical forms.

A first hint of this is implicit in the informal observation concerning (83.a)
and (83.b) that sentences in the simple past have the capacity to “carry the
story forwards” while past progressive sentences do this hardly if ever. There
are two sides to this difference — on the one hand simple past sentences
differ from past progressives in the contexts which they contribute to the
interpretation of the sentences which follow them; on the other there is a
difference in the way in which simple past and past progressive sentences
make use of the context which the sentences that precede them provide.
Thus the dynamic dimension of what distinguishes these two tenses is both
forward-directed and backward-directed.

The difference between the backward dynamics of simple past and past
progressive comes roughly to this: When a past progressive sentence such as
(83.a) occurs as part of a narrative passage or text, it is typically interpreted
as describing a process that was going on at the time which the story had
reached at that stage, i.e. as a process going on at the last time of the con-
text established by the antecedent discourse. In other words, the temporal
relation between the process described by the new sentence and the last time
from the discourse context is that of temporal inclusion, with the process
described by the new sentence including the time from the discourse context.
In contrast, a simple past sentence like (83.b) is more naturally understood
as presenting the event it describes as the next one in the sequence of nar-
rated events, and thus as following the time reached thus far [Kamp, 1979;
Kamp, 1981b; Kamp and Rohrer, 1983a; Partee, 1984].

We see this distinction between simple past and past progressive when we
compare (85.a) and (85.b). Each of these is a “mini-text” consisting of two
sentences. The only difference between them is that the second sentence
of the first text has a past progressive whereas the second sentence of the
second text is in the simple past:

(85) a. Josef turned around. The man was pulling his gun from its hol-
ster.

b. Josef turned around. The man pulled his gun from its holster.

The difference between (85.a) and (85.b) seems clear: in (85.a) the man is
in the process of pulling his gun from its holster when Josef turns around
and sees him. Here the second sentence is understood as describing a pro-
cess that was going on at the point when Josef turned around. (85.b) is
interpreted more naturally as saying that the event of the second sentence
— i.e. that of the man pulling his gun from its holster — occurred after
Josef turned around, presumably as a reaction to it.
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An account of these differences in terms of the anaphoric properties of the
tenses involved has to make use of some notion of context-supplied “refer-
ence point”: the antecedent discourse provides a reference point (here as in
many other cases: the time or event to which the story has so far advanced)
with which the tense of the new sentence establishes a certain anaphoric re-
lation. It seems natural therefore to build on what is undoubtedly the most
famous early theory of tense in which the notion of reference point plays a
prominent role, viz. that of [Reichenbach, 1947]. Unfortunately, however,
Reichenbach’s theory cannot be taken over as is. The difficulty has to do
with what is arguably the most salient feature of this theory, its so-called
“two-dimensionality”. Reichenbach’s theory is called a two-dimensonal the-
ory of tense because it analyses the tenses in terms of pairs of relations, one
between utterance time and what Reichenbach calls “reference time” and a
second relation between reference time and the described “eventuality” (i.e.
state or event).19

As we will argue below, Reichenbach’s use of the notion of reference time
suffers from the defect that it is “overloaded”: in his theory reference times
are made to do too many things at once. For this reason the DRT account of
temporal reference has replaced Reichenbach’s notion by a pair of notions
which share the burdens of the original notion between them. They are:
(i) the notion of “perspective time”, which plays the role of Reichenbach’s
reference time in his analysis of the past perfect (about which more below)
and which is responsible for the two-dimensionaltiy of the account presented
here, and (ii) a second notion, for which the name “reference time” has been
retained. It is the second notion which is used to account for the difference
between (85.a) and (85.b).

To present this account in succinct terms is not all that easy. A number
of preliminaries have to be dealt with before we can proceed towards the
actual representations of (85.a) and (85.b), which are given in diagrams
(87)–(89) below. Should the reader feel he is getting lost or bored, s/he
might find it helpful to take a glance ahead at these diagrams.

For the time being we only consider those tenses for which temporal
perspective time is not needed. (Simple past and past progressive, in the
interpretation which matters in connection with (85.a), are among these.)
The analysis of these tenses involves two relations, a relation between the
utterance time and the described eventuality and a relation between this
eventuality and the reference point. For both simple past and past pro-
gressive the first relation is that of temporal precedence — the eventuality
precedes the utterance time. But with regard to the second relation the
two tenses apparently differ. Simplifying somewhat: in the case of the past
progressive the relation is temporal inclusion, in the case of the simple past

19We follow the widely adopted practice within the formal semantics of tense and
aspect to use [Bach, 1981]’s term “eventuality” as a common term for the events, states,
processes etc. which verbs can be used to describe.
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it is not. (In the case of (85.b) the relation is temporal succession — the
eventuality follows the reference time. In fact, the simple past often signi-
fies temporal succession, but it doesn’t always, a point to which we return
below.)

The semantics of the tenses is complicated by a factor we have not yet
mentioned. This is the role that is played by aspect. The term “aspect”
covers a complex spectrum of interconnected phenomena. In the DRT-
based theory of temporal reference we present here aspectual phenomena
are considered only insofar as they have an effect on temporal reference. The
theory assumes that it is possible to account for this influence by drawing
a single binary distinction, that between events and states: Tensed clauses
are assumed to have either stative or non-stative aspect; in the first case the
eventuality described by the clause is a state, in the second it is an event.
(So the totality of eventualities consists of two disjoint parts, the events and
the states.)

In general the anaphoric properties of stative and non-stative clauses
may differ even when they have identical tense morphology. This causes a
problem for the line of analysis we have sketched, according to which it is
the tense form alone which determines the temporal anaphoric properties of
the clause. As it turns out, however, it is possible to deal with this problem
without deviating too much from what we have outlined so far. All that is
required is a slight complication of the analysis of the two above-mentioned
relations – that between eventuality and utterance time and that between
eventuality and reference time. The complication comes to this: we do not
analyse the relations as directly involving the eventuality itself, but rather
its “location time”. Informally, the “location time” of an event is to be seen
as the time when the event is said to occur and the location time of a state
as the time at which the state is said to hold.

This leads to an analysis of tense in which the location time gets “interpo-
lated”, as it were, between eventuality on the one hand and utterance time
and reference time on the other, and which involves three relations instead
of two: (i) a relation between location time and utterance time; (ii) a rela-
tion between location time and reference time; and (iii) a relation between
the eventuality and its location time. The difference between the simple
past of the second sentence of (85.b) and the past progressive of the second
sentence of (85.a) manifests itself through the third relation: In the case of
the second sentence of (85.b) (or, for that matter the first sentence of (85.a)
and (85.b)), the relation is inclusion of the described event in the location
time. The past progressive determines the inverse inclusion relation: the
location time is included in the described state.20

20This principle generalises to the progressive and non-progressive forms of other tenses,
and beyond that to stative and non-stative clauses of any kind: when the clause is stative
(and in particular when its verb is in the progressive), the location time is included in
the described state; when the clause is non-stative, the described event is included in the
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According to what we said so far, the semantic contribution of tense
involves a combination of two things: on the one hand a relation between
location time “tloc” and utterance time “n” and on the other a relation
between location time and reference time “r”. The first contribution varies
according to whether the tense is classified as past, present or future. The
contributions are given in (86).

(86) Contribution of tense:

past pres fut

tloc

tloc ≺ n

tloc

tloc = n

tloc

n ≺ tloc

The second contribution, we said, is of an anaphoric character. Adopting
the position announced in Section 2, according to which anaphora is a pre-
suppositional phenomenon, we analyse this contribution as taking the form
of a presupposition: the tense of a clause triggers a presupposition to the
effect that the location time of the eventuality which the clause describes
stands in a temporal relation ρ to a reference time r; r has to be linked, via
a process of anaphoric presuppposition resolution, to an element from the
context. In the cases which concern us here this is the context established
by the antecedent discourse.

Treating the second contribution of tense as a presupposition entails that
the representation of a tensed clause involves two stages, one in which the
presupposition is explicitly displayed and one in which it has been resolved.
(Recall the sketch of this architecture in Section 2.3; for more details see
Section 4 below.)

At last we come to the first of our representations. (87) gives a combina-
tion of the complete representation of the first sentence of (85.b) together
with the preliminary representation of the second sentence. (For the first
sentence of a discourse there is no discourse context. In such cases resolution
of the tense-triggered presuppositions is governed by certain default rules;
we ignore these here.) The first of the two relations contributed by the sim-
ple past of the second sentence — that between location time and utterance
time — has been incorporated into the non-presuppositional part of the rep-
resentation of this sentence (the structure on the right); the second relation
is represented as presupposition prefixed to this non-presuppositional part
(the structure in the middle). Note that the temporal relation ρ has not
yet been identified with the one which we have argued gives the intuitively
correct interpretation in this case, viz. that t2 comes after r. The reason
is that in general this relation depends on more factors than tense alone.
More on this point below.

location time.
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(87)

n j t1 e1

Josef(j)
t1 ≺ n
e1 ⊆ t1

e1:“turn-around”(j)

〈{
r

ρ(r,t2)

}
,

n x t2 e2

“the man”(x)
t2 ≺ n
e2 ⊆ t2

e2:“pull-gun”(h)

〉

Before we say more about the presupposition of (87), a couple of remarks
are in order about features of the representations shown in (87) which are
fundamental to DRT’s treatment of tense and aspect in general.

1. The first remark concerns the new types of discourse referents that are
found in (87). Among these there are in the first place discourse referents
standing for times (t1, t2, n). The presence of these discourse referents
is enough to set the representation formalism which (87) exemplifies apart
from the formalisms offered by the temporal logics mentioned at the start
of this section, in which there is no explicit reference to time.

In addition we find in (87) also discourse referents for eventualities (e1,
e2). After the informal discussion which led up to (87) this will hardly be
surprising. Nevertheless it is a point which deserves special emphasis. The
presence of these discourse referents is testimony to our conviction that
(most) natural language sentences should be analysed as descriptions of
eventualities. (More often than not the eventuality a sentence describes is
introduced into the discourse by the sentence itself. But a sentence can also
be used to provide an additional description of an eventuality that has been
introduced previously.) Within semantics this view is at present hardly
controversial and it is deeply embedded in the ways in which semanticists
think about a wide variety of issues. From an ontological point of view
however, events form a notoriously problematic category, for which identity
conditions and structural properties and relations are hard to pin down and
have proved a never ending topic for debate. For the philosopher and the
philosophical logician it is therefore tempting to try and do without them.

There is a conflict here between philosophical conscientiousness and the
needs of linguistic theory. (Cf. [Bach, 1981] on the distinction between
“real metaphysics” and “natural language metaphysics”.) We have argued
elsewhere (see [Kamp and Reyle, 1993]) that this is a case where ontological
theory just has to do the best it can, and that a form of “underspecified”
model theory is the best option for realising this. A few words will be
devoted to this in the last part of this section where we sketch the model
theory for the DRS language to which (87) and the following DRSs of this
section belong.21

21Of the arguments in favour of the view that verbs are to be treated as predicates of
events, processes or states we mention here just two:

(i) This argument has to do with the relation between deverbal nouns and the verbs
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2. The second remark concerns the occurrences of the discourse referent
n. n is an indexical discourse referent. It represents the utterance time of
the represented discourse or sentence. (“n” stands for “now”.) Its presence
introduces a pragmatic element into our representations which played no
role up to this point. DRSs which display occurrences of n have to be
understood not as representations of sentence or discourse types, whose
identity is determined exclusively by linguistic form, but as representations
of particular utterances (i.e. sentence or discourse tokens), which are made
at some particular time.22 The pragmatic element which n introduces into
a DRS has implications for verification and truth. The verification of a
DRS K which contains occurrencs of n like those we find in (87) must take
account of the time tu at which the represented sentence or discourse is
uttered. This means that only assignments f are to be considered for which
f(n) = tu. A consequence of this is that verification of K is only possible
in models (and, in case we are dealing with intensional models, at worlds of
those models) in which the time of the utterance represented by K exists.
(For more on this check the model theory for the DRS language which is
presented in the last part of this section.)

With these two general observations behind us we return to the details
of example (85.b). (87), we pointed out, contains a presuppositional com-
ponent — viz. the DRS in curly brackets. Resolution of this presupposition
requires finding specifications of two of its constituents, r and ρ. For sen-
tences in the simple past the relation ρ is, as we noted in our informal gloss
on the sentences in (85) above, often that of temporal succession: the new
event e2 occurred after the last event reached by the discourse so far, here
e1. To convert (87) into a representation which expresses this relation, the

from which they are derived. It is generally assumed that deverbal nouns (such as walk,
cleaning or action, etc.) are treated as predicates, and thus, inevitably, as predicates of
some such entities as events. (This, to our knowledge, is an assumption that has never
been seriously challenged.) If that is right, however, then it is highly artificial not to
treat the verbs from which these nouns are derived as event predicates also.

(ii) Treating verbs as predicates of eventualities restores an apparently universal fea-
ture of natural language predication which is lost when verbs are denied an eventuality
argument. Note that all predicate-like word classes of natural languages other than verbs
— in particular nouns, adjectives/adverbs and prepositions – are analysed as predicates
one argument of which is syntactically implicit: This argument is not realised by a sepa-
rate phrase, but carried by the lexical predicate itself. Thus a “relational” noun such as
friend has one “internal” argument, which can be realised by an adjoined of -PP, such as
of Maria in the NP a friend of Maria. But the other argument, the one for the person
who is Maria’s friend, cannot be realised by an explicit argument phrase. We find the
same with non-relational nouns such as girl, broom, etc. Here there is only one argument
and it is implicit in the same way as one of the two arguments of friend.

Note well that both these considerations apply as much to stative as to non-stative
verbs.

22As well as by some particular speaker, and usually addressed to some particular
person or audience, but these last two factors are of no importance in this section and
will be left aside.
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anaphoric discourse referent r must be resolved in the context that is pro-
vided by the DRS for the first sentence of (85.b). For all we have said so far,
r could be resolved either to e1 itself or to its location time t1. We adopt
the second option without argument.

We will return to the problems connected with the presupposition of (87)
below, at the point when we will be in a position to compare the analysis
of (85.b) with that of (85.a).

After resolving r to t1, specifying ρ as ≺, incorporating the (now justi-
fied) presupposition into the representation of the second sentence and then
merging the two DRSs into one, we get as final representation for (85.b) the
structure given in (88).

(88)

n j t1 e1 x t2 e2

Josef(j)
t1 ≺ n
e1 ⊆ t1

e1:“turn-around”(j)
t1 ≺ t2

“the man”(x)
t2 ≺ n
e2 ⊆ t2

e2:“pull-gun”(x)

We have seen that (85.a) differs from (85.b) in that the eventuality of the
second sentence is now understood as a process that is going on at the time
of the event of the first sentence, and not as an event which follows it.
Given the way in which we have analysed the second sentence of (85.b) in
(87) and (88) one would expect this difference between (85.a) and (85.b) to
manifest itself as a difference in the relation ρ: ρ should now be inclusion.
More precisely, assuming that r is once more resolved to t1, the relational
condition of the presupposition should now be “t1 ⊆ t2”.

This comes fairly close to what we want, but as it is, it isn’t quite right.
It isn’t for two separate reasons. The first is that what we are really after
is the conclusion that the eventuality e1 described in the first sentence is
included in the eventuality described in the second. Given the assumptions
we have made, the condition “t1 ⊆ t2” does not guarantee this; it would if
we could also rely on the condition “t2 ⊆ e2”. But that is not what (87)
tells us: It specifies that “e2 ⊆ t2”, not that “t2 ⊆ e2”.

The second reason is that even if the relation between e2 and t2 is re-
versed, there is still a problem with the characterisation of e2 by means of
the condition “e2:“pull-gun”(x)”. In the literature on tense and aspect this
second problem is known as the imperfective paradox (see [Dowty, 1979]).
It manifests itself in connection with a number of different linguistic con-
structions: with progressive forms of event verbs in English, with imparfait
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sentences in French, and also in a number of other situations which are of
no direct concern here. When an event verb occurs in one of these construc-
tions it is usually interpreted as describing a process that can be viewed as
an initial segment of an event of the kind that the verb describes when it
is used “non-progressively”. However, there is no requirement that the de-
scribed event segment actually evolves into a complete event of this kind.23

The imperfective paradox is exemplified by (85.a) in that this sentence can
be used to describe a scene in which the man never managed to get his gun
out of its holster because Josef, with his widely known and much-feared
reflexes, made sure he didn’t.

The DRT account we present here deals with these two problems by
not treating the past progressive as a complex tense (as was implied by
the discussion up to this point), but by assuming, rather, that the past
progressive factors into (i) the past tense; and (ii) an aspectual operator
PROG. PROG transforms an event type E into a state type PROG(E). In
particular, when the event predicate in the scope of the progressive is (as
it is in our example) given by the event typing condition “e:“pull-gun”(x)”
(see the right hand side representation of (87)), then the condition which
characterises the state s as being of the corresponding PROG-type has the
form “s: PROG(∧e.e:“pull-gun”(x))”. (Here ∧ is the intensional abstraction
operator of Intensional Logic, see Section 3.2, Definition 30.)

The past tense of a verb occurring with past progressive morphology is
assumed to carry the same semantic import as the past tense of a sentence
in the simple past (such as, e.g., the second sentence of (85.b)). Thus the
contribution which the past tense makes to the semantics of the second
sentence of (85.a) is the same as the one it makes to the three other sen-
tences of (85.a,b). In all cases it is the contribution given by the past tense
specification in (86). The difference beween the interpretation of the second
sentence of (85.a) and that of (85.b) now results from an aspectual differ-
ence between events and states. As already noted an event is assumed to
occur within its location time, whereas a state is assumed to be going on
during its location time.

With these additional assumptions we get for (85.a) the representations
(89.a) (corresponding to (87)) and (89.b) (corresponding to (88)).

(89) a.

n j t1 e1

Josef(j)
t1 ≺ n
e1 ⊆ t1

e1:“turn-around”(j)

〈{ r

ρ(r,t2)

}
,
〉 n x t2 s2

“the man”(x)
t2 ≺ n
t2 ⊆ s2

s2:PROG(∧e2:“pull-gun”(x))

23Although there does appear to be a requirement that a completion into such an event
be intended by the agent, or that the segment would have turned into one if it hadn’t
been for some external interference which prevented this.
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b.

n j t1 e1 x t2 s2

Josef(j)
t1 ≺ n
e1 ⊆ t1

e1:“turn-around”(j)
t1 ⊆ t2

“the man”(x)
t2 ≺ n
t2 ⊆ s2

s2:PROG(∧e2:“pull-gun”(x))

Discussion: How to choose the Reference Time, Temporal Relations and
Discourse Relations?

The analysis of (85.a) and (85.b) we have shown here has been challenged by
linguists who share many of our assumptions [Partee, 1984; Hinrichs, 1986;
Roßdeutscher, 2000]. The controversy concerns the interpretation of the
two elements of the tense-triggered presupposition — see (87) — which
need resolution in context, viz (i) the reference time r and (ii) the relation
ρ in which r stands to the new location time. The mentioned authors
argue for a different conception of narrative progression, and with that for
a different way of identifying reference times. On this alternative view an
event sentence in a narrative introduces not only the event it describes
into the discourse context but also a “reference point” which follows this
event and acts as the (default) location time for the eventuality of the next
sentence. Stative sentences do not introduce such a subsequent point. They
inherit their “reference point” from the context in which they are interpreted
and pass it on to the next sentence. This is one reason why, on the account
now under discussion, event sentences propel the story forward but stative
sentences do not. On this alternative account the determination of the
relation ρ becomes simpler: ρ is always identity between the reference point
and the new location time.24

The simple and uniform way in which the alternative account handles
ρ seems to speak in its favour. But on the other hand it also encounters
certain difficulties which do not arise for the approach we have presented.
For instance, it cannot explain directly why (85.a) seems to imply that the
pulling of the gun out of its holster was going on when the event e1 of Josef
turning around occurred. All it yields is that the process goes on at the
reference point following e1; that it was going on at the time of e1 itself
must be attributed to some further inference. It is clear that a motivated
choice between the two accounts requires looking at many more examples

24Rossdeutscher’s account differs from those of Hinrichs and Partee in ways that are
difficult to explain at this point. We return to this later.
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than the pair that has been considered here. However, when one looks more
closely at examples that might help to decide between the two accounts, one
finds that the crucial judgements not only tend to be delicate and unstable,
but also that they are influenced by factors that neither account takes into
consideration. What is really needed, is therefore not so much a choice
between these two accounts, but a theory which is capable of dealing also
with these additional factors.

Many of these factors have to do with rhetorical and other discourse re-
lations.25 (90) gives a few simple examples in which the effects of rhetorical
relations on temporal relations are easy to perceive. In (90.a) the event
reported in the second sentence may overlap the one reported in the first,
e1 © e2. This is typically the case if the second sentence is an elaboration
of the first. A reversed temporal order, e2 ≺ e1, is induced by the causal
relation between the events reported in (90.b), where the second sentence
is understood as giving a (causal) explanation of the first. And in (90.c)
temporal progession, e1 ≺ s2, (instead of overlap) is also induced by an as-
sumption of causality. Here the second sentence issues to describe a result
of the event reported in the first rather than a state that obtained while the
event occurred.

(90) a. Chris had a fantastic meal. He ate salmon.

b. Max fell. John pushed him.

c. John turned off the light. The room was pitch dark.

Theories of discourse interpretation [Moens and Steedman, 1988; Hobbs,
1990; Caenepeel, 1989; Lascarides and Asher, 1993; Asher, 1993] use rhetor-
ical and other discourse relations to represent the conceptual glue between
the eventualities reported. The first theory to deal with discourse rela-
tions within a formal dynamic setting was Asher’s S(egmented) D(iscourse)
R(epresentation) T(heory). (See [Asher and Lascarides, 2003] as well as
the SDRT publications cited there. Another important body of work in
this area is that of Webber and others. See [Webber, 1988; Stone, 1998].)
SDRT exploits non-monotonic logic to determine the possible interactions
between discourse structure and temporal structure. Updates trigger usu-
ally defeasible inferences from an axiomatic system combining discourse

25One way to get a sense of the different factors that affect our judgments of temporal
relations in discourse is to try to construct minimal pairs like that of (85), where the
only difference is that a certain verb occurs in one member of the pair in the simple
past and in the past progressive in the other. In order for it to be easy to get the
contrast which (85) is meant to illustrate, the verb in question must allow on the one
hand an interpretation according to which the action it describes is something which the
agent could have been engaged in independently of (and thus antecedently to) the event
described in the immediately preceding sentence, and on the other hand as an action
which the agent could be seen as performing as a reaction to that event. When either of
these requirements fails, one of the two texts becomes infelicitous or the intended contrast
is no longer salient.
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relations, temporal relations and world knowledge. Cases where different
sources supply conflicting conclusions about interpretation are dealt with
by the underlying non-monotonic logic.

We wish to stress, however, that it is nevertheless important for a the-
ory of temporal interpretation which accounts for the correlations between
temporal relations and discourse relations to also pay due attention to all
constraints that are imposed on temporal relations by linguistic form. We
refer to [Roßdeutscher and Reyle, 2000]. The strategy adopted there is in
essence the same that is implicitly assumed in this entire chapter: First, an
interpretation is constructed on the basis only of the linguistic information
contained in the interpreted sentence or sentences. The temporal relations
contained in the representation which results from this first, “purely linguis-
tic” interpretation process will often be underspecified. However, further in-
terpretational operations, which use the initial representation as input, may
compute the discourse relations between the represented sentences. On the
strength of these discourse relations the initially underspecified temporal
relations may then be resolved or the underspecification reduced. Over-
all, this strategy does not differ essentially from SDRT in its current form
[Asher and Lascarides, 2003].

Tenses and Temporal Adverbs

So far we have only considered sentences for which the interpretation of
tense involved a link to a reference time supplied by the antecedent dis-
course. Through this link between location time and reference time the
new eventuality is temporally located in relation to the context established
by the preceding sentences of the discourse of which the new sentence is
an integral part. It is just as common, however, for the eventuality to get
temporally located sentence-internally, through the presence of a temporal
adverb. A few examples of such cases of sentence-internal location are given
in (91)

(91)

On 03 03 03
Once upon a time
On the last day before his marriage
On a Sunday
On the preceding Sunday
The next day
Last Sunday
Yesterday
Yesterday, between 4.00 and 6.00
After the exam
During the summer holidays

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fred bought a lawn mower.
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Each of these different adverbs gives information about the time when Fred
bought a lawn mower.

The first point to notice about the examples in (91) is the variety of refer-
ential mechanisms involved in determining what times the adverbs denote.
Temporal adverbs display the full range of referential possibilities which we
find with noun phrases in general – absolute, anaphoric, indexical, etc. This
of course is no surprise, given that many temporal adverbs have the form
of prepositional phrases. In addition, we find temporal adverbs subject to
referential mechanisms which depend crucially for the way they work on
the structure which we ascribe to time — the fact that time is a linearly
ordered medium, with a metric grid imposed on it by the accepted calendar
(manifest in our language through our ways of referring to particular times
and dates, often with the help of calendar-related predicates like day, week,
month, year, ...) An example of one such mode of specifically temporal ref-
erence is the possibility of using the phrase on Sunday to refer to the last
Sunday before the utterance time, or alternatively to the first Sunday after
it (with the tense of the sentence usually disambiguating between these al-
ternatives). A systematic study of the range of referential possibilities for
temporal adverbs is instructive (as well as indispensible for practical needs
of computational linguistics), but it is not a matter we pursue here.

The second point is one we need to consider more closely. It concerns
the way in which the referent of a temporal adverbial adjunct gets con-
nected with the information provided by the rest of its clause. There are
two aspects to this question. First, there is an issue of the syntax-semantics
interface: how does the syntactic relation in which the temporal adverb
stands to the remainder of the clause lead to its interpretation as temporal
location predicate of the described eventuality? It is generally assumed that
adverbial phrases are adjuncts, though there appears to be some degree of
uncertainty about where such phrases are adjoined. But these details need
not detain us, as long as we assume (i) that the constituent to which the
adverbial is adjoined acts as a predicate of a certain argument and that the
temporal locating adverb provides an additional predication of that argu-
ment, and (ii) that when the adjunction is to some syntactic projection of
the verb, as it is in the sentences of (91), then this argument is the eventu-
ality described by the verb. (Temporal adverbials aren’t always adjoined to
a projection of the verb. For instance, in a construction such as the news at
12.00 the PP at 12.00 is adjoined to the NP the news. Here, the argument
of the locating predication is the referent of this NP. However, in the re-
mainder of this discussion we limit attention to the cases where the adverb
serves to locate the eventuality described by the verb.)

The other aspect of the contribution which temporal adverbs make to
eventuality location has to do with content and form of the predications
that temporal locating adverbials express. In DRT-terms: what are the
discourse referents and conditions which the adverb contributes to the DRS
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of its clause? Since the sentence DRSs to which we have already committed
ourselves involve not only eventualities but also their location times, the
first question we need to answer here is: should the adverb be construed
as locating the eventuality by entering in relation to it directly, or does it
do this via a relation with its location time? It is not easy to motivate
an answer to this question. We have adopted the second option. For the
somewhat complicated and partly theory-internal reasons for this decision
see [Reyle et al., 2003]).

The contribution of a temporal locating adverb, then, takes the form of
some relation between (i) its own referent and (ii) the location time of the
described eventuality. To explore how this relation should be represented
we need to look at some particular cases. It is advisable to begin with an
adverb which does not have the form of a prepositional phrase; our choice
is yesterday.

First some details concerning this particular adverb. yesterday is a deictic
adverb. Normally it refers to the day preceding that on which the utterance
containing it is made. (In special cases of indirect discourse — especially
of so-called free indirect discourse — it may refer to the day preceding
some past vantage point, but these we ignore; but compare the related
remarks on shifted now in the next subsection.) We will represent this
indexical information by introducing a discourse referent ty to represent
this day, together with certain conditions which determine how this day is
determined in relation to n. To this end we make use of a partial functor
DAY-OF which maps any time t that is included within some calendar day
onto that calendar day, as well as of a predicate DAY which is true of those
and only those periods of time which are calendar days. (Exactly what
people understand by “day” may be open to some variation. For simplicity
we assume that a calendar day runs from midnight to midnight.)

So much for the particularities of yesterday as distinct from other tem-
poral adverbs. What is still missing is the relation between the discourse
referent ty which represents its referent and the discourse referent tloc for
the location time of the eventuality. Let us focus on the sentence in (91)
which begins with yesterday. (That is, the sentence Yesterday Fred bought
a lawn mower.) In this case we obtain an intuitively correct representation
of the truth conditions of the sentence if we assume that the relation is
that of inclusion of the location time within the adverb time: “tloc ⊆ ty”.
Together with what has already been assumed about the representation of
tensed sentences and the special conditions connected with the reference of
yesterday this condition leads to the representation in (92)
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(92)

n f z e tloc ty

Fred(f)
lawn mower(z)

tloc ≺ n
DAY(ty)

ty ⊃⊂ DAY-OF(n)
tloc ⊆ ty

e ⊆ tloc

e:buy(f,z)

(The symbol ⊃⊂ denotes the relation of “abutment”. An interval t1 abuts
an interval t2 if (i) t1 lies entirely before t2, and (ii) there is no interval t3
such that t1 lies entirely before t3 and t3 lies entirely before t2.)

Is the condition “tloc ⊆ ty” incidental to this particular sentence, in which
a described event is located by the adverb yesterday? The answer is no.
“tloc ⊆ ty” is the condition which links the referent of the temporal locating
adverb to the location time in all cases where the adverbial is adjoined to
a projection of the verb. This claim may well seem counterintuitive and we
need to consider a couple of other cases to show why it can be upheld.

Adverbials which look at first blush like counterexamples are PPs begin-
ing with the prepositions before and after. Consider the sentence After the
exam Fred bought a lawn mower. Isn’t the relation between tloc and tadv

temporal succession in this case, rather than inclusion? The reason why we
maintain that this is not so rests on a view of the semantics of locating PPs
which has been proposed in connection with adverbials of spatial location,
but which, we believe, applies equally to those which locate in time. For
spatial PPs, such as, say, above the cupboard, in front of the cupboard or
in the cupboard, it has been suggested [Bierwisch, 1983] that they refer to
a certain spatial region and locate the relevant entity as lying within this
region. The region is determined as one which stands to the referent of the
preposition-governed NP in a relation expressed by the given preposition.
For example, in the case of above the cupboard the region consists of por-
tions of space which are encountered when one moves vertically upwards
from any part of the top of the cupboard. (In normal situations, where the
cupboard is indoors, it is the space between the cupboard and the ceiling.)
Similarly for in front of the cupboard, in the cupboard and so on.

On this view the adjunction of a spatial location PP involves two relations
linking the referent of the NP it governs to the entity which it serves to
locate (i) the relation expressed by the preposition, which holds between
the referent of the NP and the region denoted by the PP as a whole, and
(ii) the relation of spatial inclusion between that region and the entity that is
being located; this second relation is the semantic correlate of the syntactic
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relation between adjunct and adjunction site.26

Not only do we endorse this proposal about the interpretation of spatial
PPs, we also propose that the same analysis be adopted for PPs which
express temporal location. According to the extended proposal the PP
after the exam denotes a certain region of time — an interval which extends
from the exam into the future, with an intrinsically vague upper bound —
and when the PP is used in the way it is in (91), i.e. as locating predicate
of the described event, it imposes a locating constraint on this event via the
condition that the event’s location time is included in the temporal region
denoted by the PP.

Instead of presenting the DRS for the sentence After the exam Fred bought
a lawn mower. itself we give, in order to catch two birds with a single DRS
in (92.b) the representation of a sentence in which this PP serves to locate
a state rather than an event. This sentence is given in (92.a) — the VP
have a headache is generally assumed to have stative aspect.

(93) a. After the exam Fred had a headache.

b.

n f s tloc tex treg

Fred(f)
“the exam”(tex)

tloc ≺ n
tex ⊃⊂ treg

tloc ⊆ treg

tloc ⊆ s
s:“have-a-headache”(f)

The present treatment of the semantics of temporal adverbials has one con-
sequence which deserves special mention in view of the amount of attention
which this matter has received in the literature. To the sentence Yesterday
Fred had a headache. our treatment assigns truth conditions according to
which the state of Fred having a headache is merely required to overlap
with yesterday. Thus the analysis does not require that the headache lasted
all day. For the present example this seems to be all to the good, but we
hasten to add that the issue is more involved than this one example reveals.

We conclude this discussion of the role of temporal adverbials with four
remarks of a more general methodological nature.

26Note that for a PP whose preposition is in (such as in the cupboard) this analysis
has a semblance of redundance, since inclusion is expressed by the preposition as well as
by the syntactic adjunction configuration. But of course this incidental duplication does
not speak against the proposal as such.
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1. As the interaction between times and adverbs has been analysed here,
it involves a combination of several constraints on one and the same entity
(viz. the location time represented by the discourse referent tloc), with one
constraint contributed by the adverb and the other by tense. This means in
essence that the mechanism of tense-adverb interaction involves a form of
semantic unification. In fact, it was because of its unification-like character
that the analysis of this interaction has had a decisive influence on DRT’s
general conception of the syntax-semantics interface.

2. A typical feature of unification is that it can fail when the constraints
that need to be unified are incompatible with each other. Interactions be-
tween tenses and temporal adverbs manifest this typical feature of
unification-based processes too. An example is the sentence in (94).

(94) Yesterday Fred will buy a lawn mower.

Here the constraint imposed on tloc by yesterday requires it to precede
n, while the constraint imposed by the future tense forces it to follow n.
Consequently interpretation aborts, with the effect that the sentence is felt
to suffer from a special kind of “semantic ungrammaticallity”.

3. So far we have considered a couple of examples (those in (85)) which
demonstrated the dynamic poperties of tense (and especially its backwards
dynamic, or “anaphoric” properties) and after that a number of examples
where temporal location is constrained by a clause-internal adverb (and
where the constraints imposed by adverb and tense have to be consistent).
What happens in situations where both those mechanisms are applicable?
The unification perspective would suggest that the same consistency con-
straints apply in these cases too: if there is a conflict between the constraints
imposed by the adverb and the relation in which the location time stands
to the context-supplied reference time, then the sentence tends to be un-
interpretable or at least to be judged infelicitous. One type of example of
this are sentences in which the adverb denotes a time which is located well
before the contextual reference time and where the tense is a simple past.
Such sentences often sound bad, or seem incomprehensible. (In such cases
the past perfect is usually required, or at least it is preferred over the sim-
ple past. The reasons for this will become clear when we discuss our next
example.)

But although the constraints contributed by reference time and adverb
often seem to lead in such cases to conflicts which render the sentence in-
felicitous, there is nevertheless an asymmetry between them. Adverbial
constraints tend to overrule contextual contraints. This is no surprise given
that the principles which govern adverbial reference are much more clearly
defined (and therefore less amenable to reinterpretation on the spur of the
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moment) than those which govern the links beween the new sentence and
its context. The upshot of this is that to the extent that the system of
temporal location we find in a language like English can be regarded as
unification-based, the unification involved is one that allows for constraint
prioritisation. In other words, we are dealing with a form of default unifi-
cation (cf. [Briscoe et al., 1993; Lascarides and Copestake, 1999].)

4. The interaction between tense and temporal adverb has also been of
central importance for the overall structure of the DRT-account of temporal
reference that is the particular topic in the present section. As we noted at
the beginning of this section, one of the reasons why temporal logics do not
provide a satisfactory framework for the analysis of temporal reference in
natural language is their lack of any devices for explicit reference to times.
We cited temporal adverbs as salient examples among the expressions of
natural languages for which it is obvious that they do explicitly refer to
times. The way in which adverbs and tenses work together in locating
eventualities along the time axis is important in this connection insofar as
it indicates that treating tenses and temporal adverbs separately, using one
representational framework to deal with tense and another to deal with
adverbs, would be a hopeless undertaking. We need representations which
contain terms standing for times to represent the contribution of the tenses
no less than we need such terms to represent the contributions that are
made by the adverbs.

Perspectival Shift and the Two-Dimensional Theory of Tense

So far we have considered a couple of tenses which can be analysed without
reference to temporal perspective points. (Other tenses which allow for a
similar analysis are the present tense and simple future tense of English
(recall (86)) and similarly the présent and the futur of French.) But this is
not true in general. That there are tenses which require a more complicated
analysis is arguably the most salient feature of Reichenbach’s theory of
tense. Reichenbach showed that when a sentence in the simple past is
followed by a sentence in the past perfect, the eventuality described by the
latter is typically understood as preceding the former: the first sentence
provides a “past reference time” for the interpretation of the past perfect
of the second sentence and the past prefect locates its eventuality in the
past of this past perspective time. The following example illustrates this
principle. At the same time it shows why it is necessary to distinguish
between temporal perspective time and reference time.

(95) Luigi was writing to the Department Chairman. He had applied for
the job without much hope. But the Committee had invited him for a
talk, he had given a perfect presentation, they had offered him the job
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and he had accepted. Now he was worried about what he was going
to teach.

(95) begins with a sentence S1 in the past progressive. S1 is followed by a
sequence of five sentences S2, S3, S4, S5, S6 in the past perfect. The passage
ends with a sentence S7 in the simple past.

The first aspect of (95) that matters here is the interpretation of the past
perfects in S2-S6. We start by looking at S2. In the context provided by the
sentence S1 which precedes it S2 is understood as describing an event e2 situ-
ated in the past of the location time t1 of the eventuality s1 described by S1.
The observation that this is so, we just noted, was the central insight which
led Reichenbach to his “two-dimensional” theory. In the present account,
Reichenbach’s analysis of the past perfect has been taken over, except that
here it is the temporal perspective time which plays the intermediate role
between event time (i.e. our location time) and utterance time. This role
cannot be played by what we have called the temporal reference time, as the
reference time may be needed in a different capacity. To see this consider
the second past perfect sentence of (95), i.e. S3. The interpretation of this
sentence involves temporal location of the described event e3 in the past of
t1, and we may assume that the same mechanism is responsible for this that
also locates e2 before t1. On the other hand e3 is understood as following
e2, and the mechanism responsible for this is strongly reminiscent of what
we saw in our discussion of (85.b). There the second of a pair of sentences in
the simple past was interpreted as describing an event whose location time
stood in a relation ρ of temporal succession to the location time t1 of the
event described by the first sentence, and in the interpretation of the tense
of the second sentence t1 was assumed to play the role of temporal reference
time. We claim that a similar relationship holds between the location times
of the events introduced by the second and third sentence of (95), and that
like in the case of (85.b) the location time of S2 acts as reference time in
the interpretation of S3.

According to this analysis the interpretation of S3 involves both a tem-
poral reference time and a perspective time. Since the new location time
t3 is assumed to stand to reference time and perspective time in distinct
relations — the relation to the reference time we have assumed is that of
the reference time preceding t3, whereas t3 precedes the perspective time,
as it does for any past perfect — reference time and perspective time must
be distinct. Hence the need for two notions rather than one.

Note that for each of the sentences S3, ..., S6 reference time and per-
spective time are distinct. Moreover, while the perspective time remains
constant, the reference time changes from sentence to sentence. This is a
typical feature of extended flashbacks. These remarks evidently do not solve
the problem how perspective times are chosen in general. For one thing,
not every sequence of sentences in the past perfect following a sentence in
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the simple past constitutes a single extended flashback. Sometimes we find
flashbacks within flashbacks, and in such cases the perspective time for the
sentence or sentences of the embedded flashback is not the location time of
the last simple past sentence but that of an earlier past perfect sentence.
However, the question when we are dealing with a single flashback and when
with an embedding of one flashback within another once again depends on
factors on which the account we have sketched has no purchase. Thus the
choice of perspective time is (for the reason given as well as others) a prob-
lem that our account can deal with only to a first approximation — just as
we found this to be the case for the specification of the relation ρ.

In (96) and (97) we present the relevant stages in the interpretation of S3.
The DRS in (96) gives complete presentations for S1 and S2 together with
a preliminary representation for S3 which displays the two presuppositions
triggered by the past perfect. One of these concerns the relation to the
reference time and is identical with the presupposition of (87), while the
other has to do with the relation to the perspective time.27

(96)

n l c t1 s1 j t2 e2

Luigi(l)
“the Department Chairman”(c)

t1 ≺ n
t1 ⊆ s1

s1: PROG(∧e. e: write-to(l,c))
“the job”(j)

t2 ≺ t1
e2 ⊆ t2

e2: apply-for(l,j)
“without-much-hope”(e2)

〈{
r3

ρ3(r3,t3)
,

p3

p3 ≺ n

}
,

C t3 e3

“the Committee”(C)
t3 ≺ p3

e3 ⊆ t3
e3:”invite-for-a-talk”(C,l)

〉

To obtain the final representation of the first three sentences of (95) the two
presuppositions of (96) must still be resolved. How they should be resolved
has already been stated: r3 must be identified with t2 and p3 with t1, while

27N.B. In (96) we have simplified the representation of anaphoric pronouns (such as the
he of S2) by substituting the discourse referents for their anaphoric antecedents into their
argument positions (instead of introducing a distinct discourse referent for the pronoun
together with an equation which enforces coreference between it and the antecedent
discourse referent). This too is a practice which from now on we will adopt whenever it
suits us.
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the relation ρ is to be specified as “≺”, so that the condition “ρ3(r3,t3)”
turns to “t2 ≺ t3”. These resolutions lead to the representation in (97).

(97)

n l c t1 s1 j t2 e2 C t3 e3

Luigi(l)
“the Department Chairman”(c)

t1 ≺ n
t1 ⊆ s1

s1: PROG(∧e. e: write-to(l,c))
“the job”(j)

t2 ≺ t1
e2 ⊆ t2

e2: apply-for(l,j)
“without-much-hope”(e2)

“the Committee”(C)
t1 ≺ n
t3 ≺ t1
t2 ≺ t3
e3 ⊆ t3

e3:”invite-for-a-talk”(C,l)

The interpretation of the sentences S4-S6 proceeds in the same way as that
of S3 and requires no further comment. But the last sentence S7 of (95)
presents a new problem, which is connected with the occurrence in it of the
word now. This is a problem of a kind which we have not yet encountered
and which merits separate discussion.

Apart from the question raised by now, the representation of S7 also
presents some difficulties which are orthogonal to the concerns of this sec-
tion. These have to do with the embedded question what he was going to
teach. We finesse them by considering instead of S7 the simpler sentence

(98) Now he was worried.

We will refer to this sentence as S′
7. (So the revised version of (95) consists

of the sentences S1,S2,S3,S4,S5,S6,S
′
7.) Looking at S′

7 rather than S7 allows
us to focus attention on the issue that matters in the present context.

The problem arises from the fact that in S′
7 now occurs in the presence of

the past tense. It has been claimed that now is an indexical adverb which
always refers to the time at which it is uttered [Kamp, 1971]. If this were
true without qualification, then the interpretation of S′

7 should abort, since
the constraints imposed on its location time t7 by tense and adverb would be
incompatible. The fact that in the given context S′

7 is not uninterpretable
indicates that (at least in this type of context) now can be used to refer to
times which lie in the past of the utterance time.
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An inspection of those cases where now can refer to a time other than the
one at which it is actually uttered suggests that it is referring in such cases
to a time that can be regarded as a kind of “displaced utterance time” (or,
in slightly different terms, to the time of a “view point”, or “perspective”
which has been shifted away from the real utterance time).28

The appeal to “shifted view points” may have a plausible ring to it,
but as it stands it is too vague to serve in a formal theory of temporal
interpretation of the kind we are pursuing. So we are facing the question:
How can this notion be made more concrete? [Kamp and Reyle, 1993],
following an earlier proposal in the unpublished manuscript [Kamp and
Rohrer, 1983b], proposes that the perspectival shifts that are involved in
the reference of now to a time in the past of n are the same as those
involved in the interpretation of a past perfect sentence (viz. as placing its
eventuality in the past of a time that itself is in the past of the utterance
time) and thus that the same notion of perspective time we have just been
invoking for the interpretation of S2-S6 is also the one to be invoked in the
interpretation of S′

7. According to this proposal the interpretation of now
involves two possibilities, as stated in (99).

(99) now either refers to the utterance time, or else to a time which plays
the role of perspective time in the interpretation of the sentence to
which it belongs.

Given this assumption it follows that the interpretation of S′
7 follows

a pattern that closely resembles that of S2-S6. Again the interpretation
requires the choice of a perspective time and once again the intuitively right
candidate for this is the location time t1 introduced in the interpretation of
S1. We assume therefore that the preliminary representation of S′

7 involves
the same pair of presuppositional components that are also part of the
preliminary representations of S2-S6. This representation is given in (100).

(100)

〈{
r7

ρ7(r7,t7)
,

p7

p7 ≺ n

}
,

t7 e7 tnow

t7 ⊆ s7
r7 ⊆ t7

tnow = p7

t7 ⊆ tnow

s7:”be-worried”(l)

〉

Resolution of the perspective time p7 should, we said, again be to t1.
What about the reference time r7? Before we try to answer this question
let us see what we know about the location time t7 of the state which S7

28For reasons which we make no effort to explain here such shifts seem to occur almost
exclusively in the direction of the past; cases where now refers to some time in the future
of the utteramce time appear to be marginal. But see [Sandström, 1993].
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describes. Identifying p7 with t1 means that now is construed as referring
to t1. At the same time now, as a temporal adverb, serves as a constraint
on the new location time t7; thus t7 ⊆ t1. So all that we need and can
hope for from the resolution of the presupposition concerning r7 is that the
result is consistent with this interpretation. As before, resolution of this
presupposition involves (i) specifying ρ7, and (ii) finding an antecedent for
r7. As regards (i) note that tense and aspect of S′

7 are like those of the second
sentence of (85.a): the sentence has stative aspect and its tense is in the
simple past. This suggests that once again the relation should be inclusion:
r7 ⊆ t7. This leaves r7. It is clear that the only possible antecedent for r7
within the context provided by S1-S6 which is consistent with the constraints
that have been established already is the location time t1. Resolving r7
accordingly means that this time reference time and perspective time both
get identified with t1 and thus that they coincide. (101) gives (in abridged
form) the representation for (95) that results from these resolutions of the
two presuppositions of (100).

The choice of t1 as reference time for S′
7 indicates that the determination

of reference times is in general more complex than was revealed by the
examples that have so far been discussed in this section. Choosing the
location time t1 of the first sentence S1 after the sentences S2, ..., S6 have
intervened reflects the perception that the flashback S2, ..., S6 has come to
an end and that S′

7 returns to the point of the story which had been reached
with S1 and then interrupted. Here we see a correspondence between choice
of reference time and narrative structure, a correspondence which once more
transcends the scope of the account as it has been presented.

Discussion: Resolution of Reference Time, Perspective Time and their Re-
lations; Perspective Time and Perspectival Shifts; A General 2-Dimensional
Theory of Tense

The treatment of (95) which we have presented here leaves some questions
unanswered and suggests some new ones of its own.

1. First, as we have stated it our account of (95) contains a number of
loose ends. The most serious of these concern (i) the principles governing
the identification of reference time r and perspective time p; and (ii) the
specification of the relations in which r and p stand to location time and
utterance time. As we noted in the discussion after our analysis of (85), a
central problem, and one on which the present account has nothing to say,
is that the specification of ρ often depends on other, “pragmatic” factors
besides those we have considered. In our discussion of the interpretation of
S3-S6 of (95) we observed that the same applies to the choice of perspective
time and we concluded in connection with our discussion of S′

7 that the
choice of reference time gives rise to similar problems. The same proves to
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(101)

n l c t1 s1 j t2 e2 C t3 e3 ... t5 t6 e6 t7 e7 tnow

Luigi(l)
“the Department Chairman”(c)

t1 ≺ n
t1 ⊆ s1

s1: PROG(∧e. e: write-to(l,c))
“the job”(j)

t2 ≺ t1
e2 ⊆ t2

e2: apply-for(l,j)
“without-much-hope”(e2)

“the Committee”(C)
t1 ≺ n
t3 ≺ t1
t2 ≺ t3
e3 ⊆ t3

e3:”invite-for-a-talk”(C,l)
...

t6 ≺ t1
t5 ≺ t6
e6 ⊆ t6

e6: accept(l,j)

t7 ⊆ t1
t7 ≺ n

tnow = t1
t7 ⊆ s7

s7:”be-worried”(l)
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be true with regard to the resolution of r and p. It appears that if we want
to make substantial further progress on these problems we need a framework
in which these other factors can be treated in a systematic way. As it stands
DRT does not provide this framework.

2. Another question which naturally arises in the context of what we have
said about (95) concerns the need for the notion of perspective time. We
argued in relation to the non-initial sentences of extended flashbacks — in
the case of (95): sentences S3, ..., S6 — that their interpretation involves
linking to two different times from the context. Since the reference time
cannot be responsible for both these links at once, we said, a further notion
is needed. But does that really follow? There might be an alternative
way of dealing with this problem, viz by maintaining that the past perfect
(and possibly other tenses as well) requisitions the reference time for its own
needs, and thereby creates the possibility of choosing a further, “secondary”
reference time, which can take over the task that is accomplished by the
“primary” reference time in cases where the tense does not come with such
special needs (e.g. when it is a simple past). On the face of it this may
seem to be nothing more than a superficial variant of the account we have
presented. But it is connected with a more substantive issue. Even if we
adopt this variant there is still a need for some notion of perspective time
in connection with “pseudo-indexical” uses of indexical adverbs, like that of
now in the last sentence of (95). But shifted references of now and run-of-
the-mill past perfects would no longer be represented as involving one and
the same conceptual operation (that of choosing a past perspective point).
And this is a disentanglement that some would welcome. It may be added
in this connection that not all cases of shifted reference by indexicals appear
to be of the same kind. For instance, there are subtle differences between
the kind of perspectival shift we find with a word like now and the shifts
involved in shifted reference of adverbs like yesterday or tomorrow. (See
[Kamp and Rohrer, 1983b]). How many different notions of perspective will
be needed eventually to do justice to these differences remains open.

3. The examples we have discussed in detail involved only two tense forms,
the simple past and the past perfect. (The past progressive, we said, should
be analysed as a combination of the simple past and an aspectual operator
which transforms a verb into its progressive form.) And for only one tense
form, viz., the past perfect, did our analysis require perspective time. It
is a natural question for which other tenses (if any) perspective times are
needed as well. Answers to this question lie somewhere between a lower and
an upper bound. The lower bound consists of a small set of tenses which
includes besides the past perfect also the the “future of the past”, as we
find it in the second sentence of (102).
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(102) On the 3rd Powell arrived in Brussels. On the 4th he would be in

London and on the 5th in Berlin.

(With such future-of-the-past sentences the location time of the described
eventuality follows the perspective time while the perspective times precedes
n.) The upper bound is the set consisting of all tense forms. A proposal to
the effect that perspective time is involved in the analysis of all tenses can
be found in [Kamp and Reyle, 1993] (and in the unpublished [Kamp and
Rohrer, 1983b] for the tenses of French). Tenses which in a lower bound
account would be treated as not involving perspecive time (as one assumed
for the simple past in the analyses given here) are analysed in this proposal
as locating the perspective time at the utterance time. Since the proposal
uses perspective time both to account for the tenses and for perspectival ref-
erence shifts for words like now (just as was assumed above), a consequence
is that the simple past tense is ambiguous between an analysis where the
perspective time coincides with n — see the treatment of (85.a,b) above —
and one where the pespective time lies in the past of n and coincides with
the location time — see the above treatment of sentence S′

7. This conse-
quence has been perceived as undesirable and seen as a further argument
against assuming that perspective times serve in this dual capacity. A dif-
ferent explanation of the possibility of shifted reference of words like now
can be found in [Roßdeutscher, 2000].

The questions raised under points 1.-3. above are of prime importance for
linguistics. But they carry no implications for the form of the DRS-language
that is needed to represent temporal information. As can be seen from the
examples we have presented, all reference to r and p has disappeared from
the representation when the DRS for a sentence or discourse has reached
its final form. Since the form of these final DRSs — i.e. of the “formulas”
of our DRS language — is independent of the details of DRS construction
in which the alternative accounts alluded to in the discussion above differ
from the account we have presented, these details will be of lesser interest
to those readers who are primarily concerned with form and meaning of the
final representation language.

Temporal Quantification

So far we have looked at the interaction between tenses and temporal “lo-
cating” adverbs. These adverbs, we argued, denote certain periods (or “re-
gions”) of time, within which the location time of the described eventuality
is situated. But not all temporal adverbs function this way. Just as among
NPs we find besides the definite and indefinite ones, which have some sort
of referential status, also quantificational NPs, so we find quantificational
temporal adverbials besides those locating adverbs which contribute to the
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interpretation of the sentences in which they occur just one particular time.
Quantificational temporal adverbials come in two main forms: (i) preposi-
tional phrases whose NP is quantificational, such as on every Sunday, on
most Sundays between June 15th and August 31st, after many parties thrown
by Mary, etc.; and (ii) quantifying adverbs such as often, always, usually,
regularly.

The question how sentences containing quantifying temporal adverbials
should be represented is somewhat easier for adverbials of type (i). What
we would expect in this case is that the representation of a sentence with
a quantifying temporal PP stands to that of a corresponding sentence in
which the quantifying NP of the PP has been replaced by a referential
NP in the same relation that, say, the representation of a sentence with a
quantificational subject stands to that of the sentence we get by replacing
this subject NP by a referential one. Compare for instance the following
four sentences.

(103) a. The Dream of Gerontius is boring.

b. Every choral work of Elgar is boring

c. On Sunday Mary went to see her aunt.

d. On every Sunday between June 15-th and August 31-st, 2001
Mary went to see her aunt.

(104.a) and (104.b) give DRSs for (103.a,b) in accordance with the proposals
of Sections 2 and 3.1 and (104.c) gives a representation of (103.c) according
to the proposals that have already been made in the present subsection:

(104) a.

d

“The-Dream-of Gerontius”(d)
boring(d)

b.

e

Elgar(e)

x

“choral-work-of”(x,e)

�
��

�
��
�
���

��
∀

x
boring(x)
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c.

n m a tloc e ts tadv

Mary(m)
aunt(a,m)

“Sunday”(ts)
on(tadv,ts)
tloc ≺ n

tloc ⊆ tadv

e ⊆ tloc

e: “go-to-see”(m,a)

If the representation for (103.d) is to be related to (104.c) in the way that
(104.b) stands to (104.a), it should be something like the one given in (105).

(105)

n m a

Mary(m)
aunt(a,m)

ts

“Sunday-between...”(ts)

�
��

�
��
�
���

��
∀

ts

tloc e tadv

on(tadv,ts)
tloc ≺ n

tloc ⊆ tadv

e ⊆ tloc

e: “go-to-see”(m,a)

(105) is adequate insofar as it captures the truth conditions of (103.d) cor-
rectly. But it provides no insight into the question which has been high on
our agenda so far: how do tense and temporal adverb interact to produce
such interpretations?

Intuitively it seems clear that the tense of (103.d) is relevant to the in-
terpretation of the sentence insofar as it locates the possible values of the
sentence-internally bound variable tloc in the past of n. In other words,
whenever the quantificationally bound variable ts takes a value satisfying
the restrictor predicate Sunday between 15-06-2001 and 31-08-2001, and
tloc is a time included within the time tadv (which in this case will coincide
with the value of ts), then tloc must precede n. This is consistent with
speakers’ intuitions about use and meaning of (103.d): if we assume that
(103.d) is uttered at a date after 31-08-2001 (such as, say, March 2003),
in which case all values for tloc which satisfy the restrictor predicate also
satisfy the constraint imposed by the past tense (i.e. are in the past of n),
then the sentence is used felicitously. But when the sentence is uttered at
some time before this date, then some values for tloc will not lie before n;
and, indeed, such an utterance would be perceived as incoherent or strange.
By the same token, (106) would be incoherent at any time when (103.d)
can be used coherently.
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(106) On every Sunday between June 15th and August 31st, 2001 Mary will
go to see her aunt.

In the light of these observations, together with what has been said about
the interaction between tenses and referential temporal adverbs earlier, the
following would appear to be a natural hypothesis about the way in which
the tenses of sentences like (103.d) and (106) and the adverbs of these
sentences interact:

(107) The tense contributes its constraints to the nuclear scope of the duplex
condition introduced by the quantificational adverb.

In fact, we already used this hypothesis in the construction of the DRS in
(105), where the condition “tloc ≺ n”, contributed by the simple past of
(103.d), is one of the conditions in the nuclear scope DRS.

Unfortunately, however, (107) isn’t correct in general. It fails for sen-
tences in the present tense. Consider (108).

(108) This week the patient is checked every half hour.

Let us assume that (108) is uttered on a Wednesday. It then asserts that
at half hourly intervals throughout the week to which the given Wednesday
belongs there are occurrences of events of the described type (i.e. of the
patient being checked). Some of these events are situated in the past of the
utterance time, some of them in the future of it, and perhaps one is going
on at the very moment when the statement is made. Though we haven’t
discussed the constraints imposed by the English present tense explicitly, we
trust that the reader is prepared to accept this much: not all these different
temporal relations in which patient-checking events stand to the utterance
time n are compatible with the constraints it imposes. (This follows in
particular if we assume that the contribution of the present tense is as
given in (86). In actual fact the English present tense covers a somewhat
wider set of possibilities than (86) allows for, but the present point is not
affected.) If not all the events of which (108) asserts that they took, take or
will take place satisfy the constraint which the present tense imposes, then
(107) is refuted. What then is the way in which tense and quantificational
temporal adverbs interact? And in particular, how can we explain that
(108) is an acceptable sentence? The answer we propose is the following:

(109) In quantificational statements like those in (103.d), (106) or (108) the
tense of the sentence locates the temporal interval within which the
times from the domain of the quantification are included.

In the case of (103.d) this interval is located entirely in the past of the
utterance time, whence a past tense is appropriate there. Likewise, with
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future tense substituting for past tense, for (106). In the case of (108) the
interval straddles the utterance time, and this requires the present tense.

To find a justification for (109) we may look in either or both of two
directions. The first involves the assumption that duplex conditions can
function as characterisations of eventualities. We refer to such eventualities
as “quantificational states”. On this assumption the duplex condition in
(105) can be construed as the description of a state s as shown in (110):

(110) s:
ts

“Sunday-...”(ts)

�
��

�
��
�
���

��
∀

ts

tloc e tadv

on(tadv,ts)
tloc ≺ n

tloc ⊆ tadv

e ⊆ tloc

e: “go-to-see”(m,a)

The full representation of (103.d) of which (110) is part includes in addition
the introduction of s as a member of its DRS universe. Moreover, just as
any other eventuality, s is assumed to come with its own location time t, and
it is this location time that is assumed to be the time that is constrained
by tense. With these assumptions (105) turns into (111):

(111)

n m a t s

Mary(m)
aunt(a,m)

t ≺ n
t ⊆ s

s:
ts

“Sunday-...”(ts)

�
��

�
��
�
���

��
∀

ts

tloc e tadv

on(tadv,ts)
tloc ⊆ tadv

e ⊆ tloc

e: “go-to-see”(m,a)

Like (105), (111) correctly captures the truth conditions of (103.d). But we
aren’t out of the woods yet. This becomes clear when we consider sentences
in which the quantificational temporal adverb is in the scope of another
temporal adverb, as it is for instance in (108). In (108) the time specified
by the “outer” adverb this week functions as an additional restriction on
the quantification expressed by the “inner” adverb: we are talking about
events one half hour apart throughout the week containing the utterance
time.

In order to keep the connection with the representations of adverbial
quantifications we have considered so far (i.e. (105) and (111)) as trans-
parent as possible, let us look, not at (108), but at the following variant of
(103.d):
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(112) Last summer Mary went to see her aunt (on) every Sunday.

Suppose we try to construct a representation for (112) along the lines of
(111). The additional matter we now have to deal with is the adverb last
summer. In the light of what we have said above about how referential
temporal adverbs contribute their semantics, last summer should constrain
the relevant location time as included within the period t which the adverb
denotes. (Somewhat simplified, if tls is the summer of the year preceding
the one in which the utterance is made, and t is the relevant location time,
then the constraint contributed by the adverb should be the condition “t ⊆
tls”.)

What is the relevant location time in this case? It is easy to see that
it cannot be the one which in (110) and (111) appears within the nuclear
scope of the duplex condition. For that would clearly lead to the wrong
truth conditions. The only other possibility is that the relevant location
time is the location time t of the quantificational state s. However, as it
stands the condition “t ⊆ tls”, in which t is this location time, does not
give us what we want either. For the only conclusion which it allows us to
draw is that s overlaps with the denotation of last summer. And that is too
weak. What we want is this: the temporal quantification is restricted to
the period denoted by last summer.

To get this stronger implication we need a pair of further stipulations:

(113) (i). The duration of a quantificational state coincides both with its
location time and its adverb time; moreover,

(ii). the quantification which characterises a quantificational state is
by definition restricted to the state’s duration.

Given (113) we get the following “upgraded” representation for (112):

(114)

n m a t s tls

Mary(m)
aunt(a,m)

t ≺ n
t = dur(s)

“last summer”(tls)
tls = dur(s)

s:

ts

“Sunday”(ts)
ts ⊆ t

�
��

�
��
�
���

��
∀

ts

tloc e tadv

on(tadv,ts)
tloc ⊆ tadv

e ⊆ tloc

e: “go-to-see”(m,a)
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But what is the justification for the assumptions made in (113)?
We can get closer to such a justification by following the second one of

the two directions hinted at. This direction has to do with the contextual
constraints that quantification has been observed to be subject to in general.
We noted in Section (3.3) that quantification often involves tacid restrictions
and we followed the proposal of [von Fintel, 1994] and others to represent
these in the form of an additional restriction on the bound variable of the
quantification, involving an initially unspecified predicate C. C is introduced
as part of a presuppostion which requires resolution in the light of contextual
information.

When the variable bound by the quantifier ranges over times, the reso-
lution of C often takes on a special form: that of a “frame interval” within
which the values of the bound variable are temporally included. (In such
cases resolution of C may involve other factors as well, a point to which
we turn below.) Moreover, when the quantificational temporal adverbial is
within the scope of another temporal adverb — as it is in (108) or (112) —
it is the outer adverb which specifies the frame interval for the quantifica-
tion expressed by the inner adverb. (In such cases an expression belonging
to the sentence itself accomplishes what in its absence would be the task of
the context. Recall what was said on this score in the section on tenses and
locating adverbs.)

In this way the constraint contributed by the outer temporal adverb
becomes part of the restrictor of the quantification, which is where it is
wanted. (115.a) gives the representation of (112) before resolution of the
restrictor predicate C and (115.b) the result of resolving C to the referent
of last summer.
Like (114), (115.b) renders the truth conditions of (112) correctly. But
once more we need to ask: what could be the deeper justification for the
assumptions on which the new representation rests? That the outer adverb
can serve as a source for the specification of C seems plausible enough. But
even if we asume that it can serve this purpose, that is not the same thing
as showing that it must be understood in this capacity. Perhaps it could
be argued that this is the only meaningful function that the outer adverb
could have in a sentence like (112), so that the necessity of its contribution
to the restrictor of the adverbial quantification becomes an instance of “full
interpretation”: each potentially meaningful constituent of a sentence must
make a meaningful contribution to the whole. But it is unclear to us how
this intuitive principle could be made more precise.

The point we have reached can be summarised as follows. We have looked
at two mechanisms which could be held responsible for the interaction be-
tween quantificational temporal PPs, tenses and other temporal adverbs:
(i) “reifying” the quantifications expressed by quantifying temporal PPs as
“quantificational states” whose types are given by the duplex conditions
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(115)

a.

n m a t s tls

Mary(m)
aunt(a,m)

t ≺ n
t = dur(s)

“last summer”(tls)
tls = dur(s)

〈{
C

P(C)

}
, s:

ts

“Sunday”(ts)
C(ts)

�
��

�
��
�
���
��

∀

ts

tloc e tadv

on(tadv,ts)
tloc ⊆ tadv

e ⊆ tloc

e: “go-to-see”(m,a)

〉

b.

n m a t s tls

Mary(m)
aunt(a,m)

t ≺ n
t = dur(s)

“last summer”(tls)
tls = dur(s)

s:

ts

“Sunday”(ts)
ts ⊆ tls

�
��

�
��
�
���

��
∀

ts

tloc e tadv

on(tadv,ts)
tloc ≺ n

tloc ⊆ tadv

e ⊆ tloc

e: “go-to-see”(m,a)
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representing the quantifications, and interpreting tense and outer adverb
as constraints on this “state”; and (ii) treating the outer adverb as an
additional restriction on the temporal quantification expressed by the PP.
Neither of these mechanisms could account for the facts we observed with-
out further assumptions, however, and even when the two are combined,
extra assumptions are needed for which no compelling justification has yet
been offered. We must leave the question of the interpretation of sentences
like (112) in this unsatisfactory state, as an example of the many problems
in this domain that are still waiting for a solution.

Frequency Adverbs

So far we have considered quantificational temporal adverbs which have the
form of PPs in which the preposition governs a quantificational NP. The
interpretation of frequency adverbs such as always, often etc. runs along
much the same lines. But here we encounter additional complications. First,
there is the problem how material within the scope of the adverb is to be
divided between restrictor and nuclear scope. (cf. e.g. [Rooth, 1992] for the
effects of information structure). This is a problem about which much has
been and is being written, but it falls outside the scope of this survey. A
second problem has to do with the interpretation of the contextual predicate
C. In discussing quantificational PPs we focussed on the interpretation of
C as inclusion (of the values of the bound variable) within a certain frame
interval. With frequency adverbs this aspect of the interpretation of C is
equally important. But in addition quantification by frequency adverbials is
affected by another element of indeterminacy, which also can be contextually
resolved or reduced, and often is. This second indeterminacy concerns the
“granularity” of the quantification. For an illustration consider the following
sentence:

(116) On Sunday Mary often called her aunt.

This sentence is ambiguous between an interpretation according to which
there were many Sundays on which Mary called her aunt and a reading
according to which there was a particular Sunday (e.g. the last one before
the time on which the sentence was uttered) when Mary made many calls
to her aunt. On the first reading the set of “cases” many of which are said
to have been “cases when Mary called her aunt on Sunday” presumably
consists of periods of the order of magnitude of a week. On the second
reading the cases of which many are said to be “cases where Mary called”
involve times of which a good many must fit within a single day. Part
of what a speaker has to do when he has to assign meaning to sentences
involing frequency adverbs is thus to form a conception of roughly what
size periods are involved in the quantification it expresses. With nominal
quantification the granularity question is normally resolved through the
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predication expressed by the nominal head of the quantifying phrase (cf.
the noun Sunday in the quantifying NP of (103.d)), but with frequency
adverbs granularity has to be determined by other means. For this reason
the ambiguity we find in (116) is possible with the latter but not with the
former. What general strategies are employed in arriving at granularity
decisions when interpreting frequency adverbs is another question we can
do no more than mention.

Negation

Sentence negation, as expressed in English by the word not (with or without
do support), is among the operators of natural language which have a tem-
poral and an aspectual dimension. As a rule, negation involves, implicitly
or explicitly, some “frame” interval within which the negated condition is
asserted to be unrealised. For instance, the statement

(117) Mary didn’t call on Tuesday.

is understood as claiming that within the period denoted by Tuesday the
condition of Mary calling did not obtain; in other words, that within this
period there was no event of Mary calling. It is natural to associate with
this observation the assumption that negation also has an aspectual effect,
viz that irrespective of whether the material in its scope is stative or non-
stative, the negated clause describes a state - a state to the effect that the
given frame interval does not include an eventuality described by the clause
to which the negation applies.

To capture these intuitions we consider the option of analysing negation
as an aspect operator “NOT” which, like the operator “PROG”, operates
on properties of eventualities. The eventuality property is provided by the
material in the scope of the negation – indeed, this perspective makes it
natural to treat negation in a manner that is suggested by syntax for many
of its actual occurrences - viz as a VP adjunct (nothing of the present
proposal, though, really depends on this assumption.)

For the case of (117) the option gives rise to a representation of the
following form:

(118)

t t′adv m

Mary(m)
Tuesday(t′adv)

t < n ; t = dur(s) ; t′adv = dur(s)
s:NOT(∧ e.e:call(m))

The conditions t=dur(s) and t′adv = dur(s) arise from the assumption that
NOT has the properties of an adverbial quantifier and as such is subject
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to the same special constraints on the temporal location of the state it
introduces as fequency adverbs like always, often or never.

(118) doesn’t reveal much of the actual truth conditions associated with
negation. This can be made more explicit via a meaning postulate for NOT,
according to which the last condition of (118) can be written as in (119):

(119)

t t′adv m

Mary(m)
Tuesday(t′adv)

t < n ; t = dur(s) ; t′adv = dur(s)

s:¬

e

e ⊆ dur(s)
e:call(m)

In virtue of the condition dur(s)=t we can replace dur(s) by t. s has now
become redundant. So we can eliminate all further occurrances of s, thus
obtaining the reduced representation (120):

(120)

t t′adv m

Mary(m)
Tuesday(t′adv)

t < n ; t = t′adv

¬

e

e ⊆ t
e:call(m)

Although (120) is sufficient to capture the truth conditional content of (117),
the alternative representations (118) and (119) are useful as well, in so far
as they bring out the aspectual effect of negation and allow the rules which
govern the temporal location of negation to be subsumed under the more
general category of adverbial quantification. (120) should thus be considered
as the result of a harmless simplification after a representation has first been
constructed in the form given in (118), and then be transformed into (119)
by application of the meaning postulate.

The present analysis brings out how negation can, through the ways in
which it interacts with tense and temporal adverbs, produce an effect of
temporal quantification. One consequence of this is that sentences con-
taining negation expressed with the help of not often have the same truth
conditions as sentences in which this negation is replaced by never. For
instance (117) has the same truth conditions as

(121) On Tuesday Mary never called.
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In fact, the two sentences may end up with the same semantic representa-
tions. Whether they do will depend on the exact treatment we adopt for
the adverb never.

These proposals for treating negation are closely related to and in large
part inspired by work of DeSwart (see [de Swart, 1999]).

Syntax and Semantics of the New Representation Language

Representating temporal information in the way which we argued to be
necessary requires important extensions to the formalism which we had
reached by the end of Section 3.1.29 These extensions consist of

• new discourse referents for

– points and periods of time,

– events, and

– states;

• a number of new predicates and functors in which entities of the sorts
represented by the new discourse referents occur as arguments (as well
as the atomic and non-atomic individuals exclusively considered hith-
erto). Among the predicates there are those which relate times and/or
eventualities — the only ones we have had occasion to use here were
≺, ⊆ and ⊃⊂, but in general more are needed — as well as an open-
ended number of predicates which relate eventualities to the entities
of which we have been speaking throughout this chapter as (atomic
and non-atomic) individuals. (These latter predicates, in which the
eventuality argument is linked via a colon to the remainder of the
predicational expression, are usually based on lexical verbs, although
in the discussion of temporal quantification we also considered state
predicates built from duplex conditions.)

From the point of view of predicate logic the new representation formal-
ism is a system of many-sorted predicate logic. This is made explicit in both
the syntax and the model theory for the new formalism which are given be-
low. It is well-known that the transition from ordinary (1-sorted) predicate
logic to many-sorted predicate logic is of little importance for metamath-
ematics. Many-sorted formalisms can be embedded within their 1-sorted
counterparts by adding predicates for the different sorts and adding postu-
lates which express the sortal restrictions on the arguments of the original
predicates and functors. It follows from this that systems of many-sorted
first order logic are axiomatisable just as standard first order logic is; and

29Or alternatively, the extended formalisms of Sections 3.3 and 3.4. The extension
described below is independent from those of 3.3 and 3.4.
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the many-sorted variants of first order logic inherit other nice properties
from standard first order logic as well. From this perspective the present
extension thus seems much less dramatic than the introduction of plural
discourse referents in the previous section.

However, our extensive experience with questions concerning the struc-
ture of time has taught us to be cautious. From a semantic perspective the
present formalism is not just some arbitrary many-sorted generalisation of
first order logic. It is a many-sorted logic the sorts of which are subject to
certain conceptual constraints. For instance, time is conceived as a linear
order, and some will go further and see its conception as carrying a com-
mitment to its being unbounded, dense or even continuous (in the technical
sense of being closed under limits of infinite ascending or descending se-
quences of bounded intervals). For someone who takes some or more of the
sorts of the many-sorted system to be subject to such ontological constraints
valid inference should mean “valid given that these constraints are satisfied”.
If this is the notion of “logical” validity we are after, the question whether a
many-sorted system is axiomatisable can no longer be answered in a simple
once-and-for-all manner. It now depends on the nature of the postulates
which express the properties that are part of the ontological commitments.
If these postulates are second order, then it may well be that validity ceases
to be amenable to a finitary proof-theoretical characterisation.30

The problems we are facing when we pass from the DRT formalism of
Section 3.1 to a many-sorted formalism where some of the sorts are as-
sumed to come with a special structure are thus not unlike those which we
encounter when we extend first order logic with non-standard quantifiers.
What metamathematical properties our many-sorted system will have de-
pends on what properties we assume for the different sorts it represents, just
as the logical properties of extensions by non-standard quantifiers depend
on the particular assumptions that are made about the semantics of those
quantifiers.

We will not pursue these metamathematical questions here. (For the
extensive knowledge that has been gathered about the effect of assumptions
about the structure of time on the metamathematical properties of temporal

30The addition of plural discourse referents to the first order DRT formalism may be
seen as a case in point. We could have introduced these as discourse referents of a new
sort, whose values are sets (of cardinality ≥ 2; but this restriction has no importance in the
present context). This would turn the representation system of the last section formally
into a two-sorted system. That validity for this system cannot be axiomatised follows
from the fact that the relationship between the values of the new discourse referents
and those of the old ones – i.e. the relation that holds between sets and their members
— is essentially second order. If we are content with less — e.g. by adopting one of
the well-known first order set theories such as ZFU (Zermelo-Fränkel with Urelements),
or GBU (Gödel-Bernays with Urelements) — as stating the relevant properties of and
relations between the two sorts of individuals (viz. between Urelements and sets), then
axiomatisability of validity is regained, albeit at the loss of the conceptually simplest way
of conceiving of the realm of sets and its relation to the realm of things.
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logics we refer to [Gabbay and Reynolds, 1994] and [Gabbay and Finger,
2000]. One of the general surprises within this domain has been no doubt
that constraints on the structure of time which are irreducibly second order
may nevertheless lead to notions of validity for temporal logics which are
axiomatisable (or even decidable). (This is not always so, but it is true for
a remarkably broad range of cases.) What metamathematical properties
we get for the “first order part” of the formalism defined below (i.e. the
part without plural discourse referents) on various assumptions about the
structure of time is a question which to our knowledge has hardly been
studied. We leave this as one of the many open problems of this section.

The DRS language we now proceed to define is to be regarded as a pro-
totype. We have decided to include in it those symbols and expressions
which make appearences in the DRSs that have been displayed in this sec-
tion. A good deal more is needed for a representation language which is
able to represent in a transparent and natural way all temporal information
expressible by means of natural language devices.

Like the DRS language considered in Section 3.1 the vocabulary of the
present one to define includes the following three categories of symbols.

(i) a set Ref of discourse referents,

(ii) a set Rel of predicates, and

(iii) a set Name of proper names.

In addition we allow for function symbols. In the language presented
here this category plays only a marginal role. It contains only one element,
viz. the functor DAY-OF which was used in the representation of yesterday
in (92). However, in a full-blown DRS formalism for the representation of
temporal information many more functors are needed. The same is true
for the category of 1-place predicates of times. Many of these are calendar
predicates — predicates such as day, week, year — which are true of a time
iff it is a member of the various partitions of the time line into successive
intervals which the calendar imposes on it. We have found use for one such
predicate here, viz. DAY; but obviously that is one of a whole “network” of
calendar concepts. (For more on the modeltheoretic semantics of calendar-
predicates and other predicates which involve the metric of time, see [Kamp
and Schiehlen, 2002].) Finally, we will make use of a 1-place predicate
EXISTS in order to be able to represent contingency of existence.

As noted, the principal difference between the present DRS language and
those introduced earlier is that the new one is many-sorted. This is reflected
in the structure of the set Ref given in Definition 34.

DEFINITION 34. Ref is the union of the following four mutually disjoint
sets of discourse referents.
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Ind = {x1, ..., xn, ...}, a set of individual referents
Time = {t1, ..., tn, ...}, a set of referents for times
Event = {e1, ..., en, ...}, a set of referents for events
State = {s1, ..., sn, ...}, a set of referents for states

We refer to the sets Ind, Time, Event and State as “sorts”. We will later use
the term “sort” also to refer to sets of entities in our models. No confusion
should arise from this “overloading”.

DEFINITION 35. The set Rel of relation symbols consists of

(i) n-place predicates of individuals;

(ii) (n + 1)-place predicates (with n ≥ 0) where the first argument is an
event and the remaining n arguments are of type individual (so-called
(n + 1)-place event predicates);

(iii) (n + 1)-place predicates (with n ≥ 0) where the first argument is
of type state and the remaining n arguments are of type individual
(so-called (n + 1)-place state predicates);

(iv) 2-place predicate symbols denoting temporal relations between times,
events and states: ≺, ⊆, ⊃⊂;

(v) A 2-place predicate PROG, whose first argument is a state and whose
second argument is a property of events;

(vi) A 1-place predicate of times: DAY;

(vii) A 1-place partial function of times: DAY-OF;

(viii) A 1-place predicate of individuals, events and states: EXISTS;

(ix) A 1-place functor from eventualities to times: DUR;

As before, DRS-conditions and DRSs are defined by simultaneous recursion.
In Definition 36 we only specify the new clauses of the definition; they should
be seen as supplementary to those of Definition 2. ((ix) replaces the earlier
clause 2.ii for conditions of the form “xi = xj”.)

DEFINITION 36. DRS conditions:

(i) if τ, σ ∈ Event ∪ State ∪ Time, R one of the predicates ≺, ⊆ and ⊃⊂,
then τ R σ is a condition;

(ii) if e ∈ Event, x1,..,xn ∈ Ind and R ∈ Rel an (n + 1)-place event pred-
icate, then e:R(x1,..,xn) is a condition;

(iii) if s ∈ State, x1,..,xn ∈ Ind and R ∈ Rel an (n+1)-place state predicate,
then s:R(x1,..,xn) is a condition;
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(iv) if s ∈ State, e ∈ Event, K a DRS and e ∈ UK, then s:PROG(∧ e.K)
is a condition;

(v) if s ∈ State, t ∈ Time, K1 and K2 are DRSs and t ∈ UK1

, then s:K1
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��
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t
K2 is a condition;

(vi) if t ∈ Time, then DAY(t) is a condition;

(vii) if t1, t2 ∈ Time, then t1 = DAY-OF(t2) is a condition;

(viii) if τ ∈ Event ∪ State ∪ Ind, then EXISTS(τ) is a condition.

(ix) if τ and σ are discourse referents of the same sort, then τ = σ is a
condition.

The model theory for the DRS language defined above raises a number of
fundamental questions. Some of these concern status and structure of the
ontological categories of times, events and states, the relations between them
and the relations between them and the category of (atomic and non-atomic)
individuals which have been the sole denizens of the models considered up
until this point. Secondly, there is the problem of contingent existence,
which was mentioned briefly in Section 3.2 in connection with intensional
models. In fact, in the present context this problem arises twice over, once
in connection with possible worlds — what exists need not have existed
necessarily – and once in connection with time — what exists at one time
need not exist at every other time. Finally, models which involve both
worlds and times raise the question how worlds and times are connected.
An important part of our conception of possibility and necessity has to do
with future contingency: our actual world can develop into one future or
another, so what is one world at one time may turn onto one of a number
of different possible worlds at a later time.

We begin with the problems which concern the ontological status of times
and eventualities, their structural properties and the relations between them
and individuals. The first question that an ontologist is likely to ask about
these or any of the categories is in what sense, if any, entities belonging
to them “exist”, or are “real”. Here the question is a fairly ramified one,
since (apart from the category of individuals of which we will assume for
simplicity’s sake that the question has already been answered) we are deal-
ing with three categories at once — times, events and states. So a whole
range of possible answers is possible in principle. One possible position
is that only times constitute a primitive domain of “irreducible existents”
and that events and states constitute “virtual” or “derived” entities which
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should be seen as constructs out of times (in combination, presumably, with
entities from other sorts, such as individuals, properties or relations). But
a diametrically opposed position, according to which events form an irre-
ducible category and times are constructions out of events, has been put
forward also (with or without the supplementary assumption that states
are constructs defined from this basis as well). Yet another position is the
one according to which events are to be analysed as transitions between
states, and thus that the category of events is reducible to the category of
states. (For discussion of some of these alternatives see [Benthem, 1983;
Kamp and Reyle, 1993] and references there.)

This list is surely not exhaustive. But it suffices to show that the model
theory for the DRS language we have specified in Definitions 34-36 might be
grounded in a number of different ways, and that the philosophical logician
is likely to prefer one version or another depending on his metaphyiscal
persuasions. In the model theory we develop here we remain neutral on
these issues of ontological priority and reducibility. Note, however, that
we are committed to models in which all of the four mentioned sorts —
individuals, times, events and states — are represented. For the vocabulary
of our DRS language includes discourse referents of each of these sorts, and
we want to stick to the general form of our semantic definitions, all of which
are based on the notion of an assignment which maps discourse referents
onto suitable entities in the model. In the context of this section (as in that
of the last section) this entails that a discourse referent belonging to any
one of these sorts should be always assigned entities of the model which are
of its own sort. Under these constraints neutrality on matters of ontological
reducibility can only mean this:

The universe of a model M is composed of the four categories TimeM,
EventM, StateM, IndividualM. Whether any one of these categories
can be reduced to any combination of the others is left open. Models
which involve such reductions are not excluded. But they will be
only some among the totality of all models admitted by the general
definition we will give.

As far as the time structure of our models is concerned we want to be very
specific. We are persuaded that people’s intuitions about the structure of
the time of the external world are, when pushed hard enough, to the effect
that time is like the real numbers; so we will assume that the time structure
TM = 〈TM,≺M〉 of M is isomorphic to the reals. Our assumptions about
the structure of events and states are less specific. The times of the model
M that are targets for assignments to the discourse referents in TimeM
are not the “points of time” which make up the set TM, but the “inter-
vals” which can be formed out of these. The notion of interval must be
handled with some care, however, since the distinction between open and
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closed intervals of TM is meaningless from the perspective of natural lan-
guage interpretation. We can eliminate the open-closed distinction either
by forming equivalence classes of convex subsets of T — for two such sets
X and Y we put X ≡ Y iff Cl(X) = Cl(Y ), where Cl(X), the “closure of
X”, is the set consisting of all limits of converging sequences of points in
X — or, alternatively, by taking unique representatives of the equivalence
classes of ≡, for instance the intervals (t1, t2] with t1 ≺M t2, together with
(−∞, t2], (t1,∞) and (−∞,∞). These two options are not fully equivalent
in sofar as the first includes the points t ∈ TM themselves – in the form of
singleton equivalence classes {[t]≡} – whereas the second leaves them out.
(There is no such half-open, half-closed interval as (t, t].) In connection
with the DRS language of Definitions 34-36 this difference appears to be of
no importance but for definiteness’ sake we arbitrarily choose the second
option. We refer to this set of intervals of T as Time(TM). (In connection
with certain richer representation languages the question whether “inter-
vals” consisting of single points should be included gains importance and
must be considered carefully.)

We assume that each model M has a set EM of events and a set SM

of states, that these sets are disjoint and that together they form the set
of eventualities EVM of M. EVM is part of an eventuality structure
〈EVM,≺M,©M〉, which is assumed to satisfy the following postulates.

DEFINITION 37. An eventuality structure EVM is a triple 〈EVM,≺M,
©M〉 with EVM = EM ∪SM where EM is a set of events and SM a set of
sates. EVM satisfies for all eventualities ev, ev1, ..., ev4 ∈ EVM:

(1) (ev1 ≺M ev2) → ¬(ev2 ≺M ev1)
(2) (ev1 ≺M ev2 ∧ ev2 ≺M ev3) → (ev1 ≺M ev3)
(3) ev ©M ev
(4) (ev1 ©M ev2) → (ev2 ©M ev1)
(5) (ev1 ≺M ev2) → ¬(ev2 ©M ev1)
(6) (ev1 ≺M ev2 ∧ ev2 ©M ev3 ∧ ev3 ≺M ev4) → (ev1 ≺M ev4)
(7) ev1 ≺M ev2 ∨ ev1 ©M ev2 ∨ ev2 ≺M ev1

EVM and TM are correlated via a function LOCM which maps the even-
tualities in EVM onto intervals of TM, thereby locating these eventualities
on the time axis defined by TM. Thus LOCM is assumed to assign each
ev ∈ EVM an interval in Time(TM). We assume that LOCM preserves the
temporal relations of EVM, that is: if ev1, ev2 ∈ EVM, then

• if ev1 ©M ev2, then LOCM(ev1) ∩ LOCM(ev2) ∈ Time(TM),

• if ev1 ≺M ev2, then LOCM(ev1) ≺int LOCM(ev2)
(where ≺int is the relation which holds between two intervals (t1, t2]
and (t′1, t

′
2] in TimeM iff t2 ≺M t′1.

31

31It is well known that structures EV satisfying the conditions of Definition 37 give rise
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So far we have identified as components of our models:

1. A time structure TM

2. An eventuality structure EVM

3. An embedding LOCM of the latter in the former

What we need in addition are:

4. A universe UM of individuals

5. Interpretations for the predicates of the DRS language (specified in
Definition 35)

Among the predicates there are three structural “predicates”, viz ≺, ⊆ and
⊃⊂, whose interpretation is determined by the information provided in 1-3
above. For instance, the interpretation !M(≺) is defined as follows:

to an instant structure I(EV) = 〈I(EV),≺ (EV)〉, where

– I(EV) consists of all maximal sets of pairwise overlapping members of EV (i.e.
i ∈ I(EV) iff (i) i ⊆ EV , (ii) whenever ev1, ev2 ∈ i, then ev1 © ev2, and (iii) if
i ⊆ H ⊆ EV and H has the property that ev1 © ev2 whenever ev1, ev2 ∈ H, then
H ⊆ i).

And

– for i1, i2 ∈ I(EV), i1 ≺i i2 iff there are ev1 ∈ i1 and ev2 ∈ i2 such that ev1 ≺ ev2.

On the basis of these definitions it is easy to show that I(EV) is a linear
order, that for each ev ∈ EV the set if i ∈ I(EV) such that ev ∈ i forms a convex
subset of I(EV), and that the relation “ev ∈ i” is naturally interpreted as saying
the i is a period of time at which ev is going on.

We might expect that the function LOCM induces an order preserving embedding LOC′

of I(EV) into the interval structure INT (TM) of TM via the condition

(i) LOC′(i) is that non-empty interval (t1, t2] such that (t1, t2] =
Cl(

⋂
{LOCM(ev)|ev ∈ i}),

where for arbitrary X ⊆ T Cl(X) denotes the convex hull of X in T .

However, in general this need not be so. On the other hand, if LOC′ is such an embedding
then LOC can conversely be defined in terms of it via

(ii) LOCM(ev) = (t1, t2], where (t1, t2] = CL(∪{LOC′(i) : ev ∈ i})

More generally, when LOC′ is any order preserving map from I(EVM) into TM and a
function LOC on EVM is defined from LOC′ via (*), then LOC is order preserving.

We conclude that in some models M LOCM will be derivable from an underlying map
LOC′, but not in all.
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DEFINITION 38.

(a) Let α ∈ Time(TM) ∪ EVM, then

Time(α) =

{
α, if α ∈ Time(TM)
LOCM(α), if α ∈ EVM

(b) !M(≺) = { 〈Time(α),Time(β)〉|
α, β ∈ Time(TM) ∪ EVM ∧ Time(α) ≺int Time(β) }

(c) The definitions of !M(⊆) and !M(⊃⊂) are left to the reader.

The extension of the predicate DAY in M should partition TM into a set
of intervals which is order-isomorphic to some subset of the integers (some
subset of the integers rather than all of the integers, since we want to allow
for the possibility that there is a first and/or a last day).

Once the interpretation !M(DAY) is given, this also fixes the interpreta-
tion of the partial functor DAY-OF: If t is an interval belonging to Int(TM)
and there is a member d of !M(DAY) such that t ⊆ d, then DAY-OF(t) is
d. Otherwise DAY-OF is undefined.

We will not impose any constraints on the other predicates of Defini-
tion 35 (except for the predicates PROG and EXISTS, to which we will
come below). In order to obtain a “realistic” class of models many further
constraints would be desirable. However, formulating such constraints is a
notoriously difficult problem.

The second problem about which something needs to be said is that of
contingent existence. In relation to the models that are needed here this
problem arises “twice over”, we noted, once in connection with time and
once in connection with modality. From a general logical point of view
the problem is the same in either case; it constitutes one part of what in
the classical analytical literature on modality is known as the problem of
“quantifying in” (See among others: [Quine, 1961; Quine, 1956; Kaplan,
1969]). In DRT-terminology the problem can be described as follows. (We
give the description for the case of worlds, but the version for times is
analogous.) Suppose that in the process of evaluating a DRS K or a DRS
condition γ in a given world w we assign to a given discourse referent x
an entity d which exists in w, and suppose that the structure of K or γ
requires that we evaluate parts of it which contain free occurrences of x at
some other world in which d does not exist. In this case the evaluation will
abort, and it is quite possible that it will abort for what is intuitively the
wrong reason. A truth definition which does not handle this problem with
the care it requires is likely to create a lot of truth value gaps in places
where there shouldn’t be any.

Since the contingent existence problem arises as much in relation to time
as in relation to possible worlds, the model theory for our present DRS lan-
guage would have to deal with it even if it were kept purely extensional. But
since what we want is an intensional model theory, we have to address both
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the temporal dimension of it and the possible world dimension. As a mat-
ter of fact we will not really deal with either dimension of the problem, but
follow the avoidance strategy we adopted in Section 3.2: we blithely assume
that everything that exists exists both necessarily and eternally. This for-
mally avoids the quantifying-in problem we have described, but at the price
of a notion of model that is blatantly unrealistic. However, in applications
to the semantic analysis of natural language the conceptual disadvantages
of this crude simplification can be minimised through the judicious use of
existence predicates — predicates the extension of which at a given time in
a given world consists of what exists at that time in that world. The ex-
tensions of such predicates will normally vary as a function of both worlds
and times. By inserting existence predicates into the semantic represen-
tations of sentences or discourses the most nefarious manifestations of the
quantifying-in problem can usually be avoided. In formulating the satisfac-
tion conditions for the DRS language under consideration we will encounter
one problem for whose solution we will need an existence predicate. For
this reason we add such a predicate to our language. We denote it as “EX-
ISTS”. The contingency of existence which EXISTS allows us to represent
is limited: it accounts for variation between worlds, but not between times
within the same world. (In order to account for variation between times as
well within the present formalism an existence predicate would have to be
a 2-place predicate with an additional argument for times. Since variation
between times is not needed for the application alluded to, we have decided
to make do with the simpler version of a 1-place predicate.)

As we have already made the decision to adopt a notion of model which
sweeps the problem of contingent existence under the rug, further discussion
of this problem may seem an unwanted luxury. However, we want to point
at some of the more specific problems that will have to be dealt with by
a model theory in which the contingency problem is taken seriously. In
particular we want to draw attention to the fact that behind the superficial
similarity we have noted between the temporal and the modal dimension
of the problem hide what seem to be important differences. One is that
in the case of time an important role is played by temporal order: once
something has existed, it continues to be something that can be referred
to (for instance in order to assert of it that it exists no longer); but it is
dubious whether something can be an object of reference at a time before
it comes into existence. This contrast seems to be particularly pronounced
for eventualities: for an event or state there is the time at which it happens
or holds. But it is entirely natural to refer to it at later times as something
that did occur or hold at the earlier time. (In fact, in almost all cases where
we have made use of eventuality discourse referents in the DRSs above the
discourse referents play just this role: they serve to represent events or
states of which the DRS claims that they occurred at some time distinct
from the utterance time.)
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A special case for the question of contingent existence are the times them-
selves. Were we to assume that times “exist only at themselves”, and could
not be referred to at any other time, then meaningful talk about time and
times would be impossible. If we are to acknowledge time as an ontological
category at all, then only as one whose elements are possible subjects of
discussion at all times. In other words, times must — paradoxical as that
may sound — be eternal if they are to be anything at all.

This doesn’t settle the modal dimension of the existence of time. We
may still ask: is the time structure of one possible world the same as that
of another, or could they be different? This is a question which is closely
connected with the problem of ontological priority we mentioned earlier.
Someone who sees time as an invariant receptacle within which the contin-
gencies of the actual world unfold in the way they happen (whether this
receptacle is to be seen as a metaphyiscal given in the sense of Newton or
as a cognitively necessary condition on experience in the sense of Kant) will
be inclined to assume that time is the same in all possible worlds. Some-
one who sees time as an epiphenomenon generated by the actual course of
events and whose structure is a reflection of the underlying event structure,
would expect the structure of time to vary from world to world — like the
underlying courses of events on which it depends.

In the light of these possibilities, our assumption that time is necessarily
isomorphic to the reals reveals a definite parti pris. It is an assumption which
reflects our conviction that what matters in a model-theoretic treatment of
meaning in natural language is our conception of time, which informs the
ways in which we think and speak. However, by itself the claim that time is
necessarily isomorphic to the reals doesn’t determine whether all worlds of
a given model have the same time. Two worlds w1 and w2 could each have
a time structure isomorphic to the reals and yet the set of times of w1 might
be disjoint from the set of times of w2. If that were so, there would be no
natural way of comparing the times of w1 with those of w2 — there would
be no straightforward way of “synchronising” the two worlds. In particular
there would be no way of determining which time in w2 corresponds to a
time tu at which a certain utterance is made in w1. This is a situation that,
in the light of what we need our model theory for, should be avoided. The
simplest (and most radical) way to avoid it is to assume that all worlds of
a given model M have one and the same time structure TM; and this is
what we do. (In fact, we already made this decision, since it is entailed by
the more general one according to which all four ontological categories are
constant between the different worlds of a given model.)

The last of the problems we mentioned above has to do with future contin-
gency. In the philosophical literature this problem has often been discussed
under the heading of “historical necessity” — a proposition about the fu-
ture is historically necessary at a given point in time t iff it is necessarily
true in virtue of what has been the case up to t and is the case at t itself.
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A natural way of modelling the intuition that some of the things that will
happen later will happen as a matter of historical necessity while others will
happen contingently, is as follows: a given world w, as it has developed up
to the time t, can go on after t in any one of a number of different ways;
these different ways form a “bundle” of future continuations of w after t
which between them cover all that is possible in the light of what is and has
been the case in w at t. It is common to formalise this by means of a 3-place
relation between two worlds w1 and w2 and a time t, a relation which holds
between w1, w2 and t iff w1 and w2 are alternative possible continuations
of what was still a single world at t.

This relation between worlds and times has proved indispensible to the
semantic and logical analysis of a significant range of natural language ex-
pressions and constructions. (And the same is true for a number of aspects
of the interactive structure of worlds and times). Should one want to use
the model theory developed here in the analysis of any of these, then it
will have to be refined by endowing its models with additional structure of
the kind discussed (see [Thomason, 2002]). In connection with the DRS
language we have defined here, however, the additional structure wouldn’t
do any work. So it isn’t mentioned in the definition of models below.

DEFINITION 39. An (intensional) model M for the DRS language spec-
ified in Definitions 34-36 is a tuple 〈W,U, EV, T ,LOC,!〉, where W is a
non-empty set of worlds, U a non-empty set of individuals, where EV, T
and LOC are described as above, and ! is a function which assigns to each
non-logical constant of our DRS language an appropriate extension at each
world w ∈ W and is subject to the constraints expressed in Def. 38 and
those mentioned in the three paragraphs following it.

We have already assumed that the universe of individuals U, the even-
tuality structure EV and the time structure T are the same for all worlds
of M. What about LOC? Here we do want to allow for variation. The
intuition is that the same eventuality could have happened earlier in one
world than it did in another, or that it could have taken more or less time
in the first world than in the second. We achieve this by allowing LOC(ev)
to be different intervals in different worlds. So we assume that LOC is not
simply a function from EV to Time(TM), but that it maps the worlds of W
to such functions.

With regard to the interpretation function ! the question of variability
arises as well. We assume that the interpretation of the following non-logical
constants of our DRS language are rigid (i.e. that they do not vary).

(i) the proper names of our language, i.e. the members of Name,

(ii) the relations ⊆, ⊃⊂ and ≺,

(iii) the predicate DAY and the functor DAY-OF.
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In other words, for each such expression α from this list we stipulate that
if w,w′ are any two worlds from W, then !(α)(w) = !(α)(w′).

For Name the assumption of rigidity was already made in Section 3.2, for
DAY it is a stipulation for which we take the motivation to be clear, and
for ≺, ⊆, ⊃⊂ and (given the rigidity of DAY) DAY-OF it follows from the
definitions given above.

For all other non-logical constants we assume that they are not rigid. For
the predicates some or all of whose arguments are of the sort individual we
take this to need no justification. Likewise for the predicate PROG. For
the functor dur non-rigidity is a consequence of the non-rigidity of LOC
together with the self-evident principle that dur should be interpreted as
LOC — that is, for every w ∈ W !(dur)(w) is the function which maps
each ev ∈ EV onto LOC(w)(ev). The non-rigidity of EXISTS is of course
the very point of the presence of this predicate in our language.

It should be emphasised once more that non-rigidity of the sort allowed
for in our models does not give us as much variation as one might want. In
particular, it fails to account for the temporal variation of predicates which
in natural language are expressed by means of nouns, adjectives and prepo-
sitions. Such natural language predicates typically vary their extensions
over time (being blond, under 65 kg, or a student are properties which a
person may have at one time without having them at all times.) The n-place
predicates between individuals, which are intended as the formal represen-
tatives of such non-verbal natural language predicates do not capture this
dimension of variation. One way to deal with this problem is to represent
non-verbal n-place predicates of natural language by means of (n+1)-place
state predicates where necessary and keeping the n-place predicates of Def-
inition 36 only for those natural language predicates which are “eternal” in
the sense that when an individual (or tuple of individuals) satisfies it at one
time, it satisfies them at all times.

Most of what needs to be said towards the definition of truth and other
semantic relations between expressions of our DRS language and models
has been said already. The new DRS conditions are, with only a couple of
exceptions, simple atomic conditions for which the satisfaction conditions
they contain are determined directly by the interpretations assigned to the
non-logical constants they contain. One example should be enough to estab-
lish the general pattern. We choose conditions of the form “e:R(x1,...,xn)”.
In Section 3.2 we showed various forms in which notions like satisfaction and
truth can be defined. Here we focus on the first of these, according to which
an assignment verifies a DRS condition in a model at a world: g |=M,w γ
(see Definition 19 of Section 3.2). On the basis of these satisfaction clauses
we can then define all other semantic notions introduced in 3.2 along the
lines given there.

In this format the satisfaction clause for a condition of the form e:R(x1,...,
xn) takes the following form:
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Let M be a model in the sense of Definition 39, w ∈ W and g an assign-
ment which maps e onto an element of EV and x1, ..., xn onto elements of
U. Then

(122) g |=M,w e:R(x1,...,xn) iff 〈g(e), g(x1), ..., g(xn)〉 ∈ !(R)(w)

Of the remaining DRS conditions listed in Definition 36 there are three
which need special attention. The first and easiest of these are DRS condi-
tions of the form “t = DAY-OF(t′)”. We defined !(DAY-OF) as a partial
function from intervals of Time(T ) to intervals of Time(T ) which is defined
only if the argument is included in a member of !(DAY). Partiality doesn’t
lead to truth value gaps in this case, because of the fact that terms of the
form “DAY-OF(t′)” only occur in the context of conditions of the form “t
= DAY-OF(t′)”. The following obvious satisfaction condition makes this
clear:

Assume that M, w are as above and that g maps t and t′ to members of
Time(T ). Then

(123) g |=M,w t = DAY-OF(t′) iff t ∈ !(DAY) and t′ ⊆ t.

The second clause that deserves attention is that for conditions of the form
“s:PROG(∧e.K)”. Actually the satisfaction conditions follow the pattern of
(122):

(124) g |=M,w s:PROG(∧e.K) iff 〈g(s), [[∧e.K]]M〉 ∈ !(PROG)(w)

We mention conditions of this form nevertheless because they contain –
as the only ones among all the atomic conditions of our DRS language
— terms which are not simply discourse referents. These terms are the
property terms that occur as second arguments of PROG. The presence of
these terms provides no real obstacles to our truth definition. But the fact
that they don’t is something which deserves explicit notice. For it is here
that, for the first time, our choice of an intensional model theory for the
present DRS language proves to be essential. In view of the developments in
Section 3.2 the definition of satisfaction and truth of which (122) and (123)
are constitutive clauses yields among other things a denotation for terms of
the form ∧e.K. For this reason we can assume the property [[∧e.K]]M to be
defined at the point where it is needed in the definition of the satisfaction
condition of “s:PROG(∧e.K)”.

The last and most problematic type of DRS condition is that which uses
duplex conditions to characterise states as quantificational states. We repeat
the general form of such conditions in (125).

(125) s:

t

K1

t ⊆ dur(s)

�
��

�
��
�
���

��
∀

t
K2
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(N.B. the box on the left should be seen as follows: it is a DRS K such that
t ∈ UK and t ⊆ dur(s) ∈ ConK.)

The problem with these conditions is that so far we have done no more
than hint at what truth conditions they represent. We have described the
quantificational state s as one that is to the effect that the quantification
holds over the period of its duration. But what exactly does this mean and
how could it be made precise? We propose the following: in order that s be
a state to the effect that the given quantification holds over the period that
it defines, the proposition that s exists must be the same as the proposition
that the quantification holds over the given period. This leads for conditions
of the form (125) to the satisfaction condition in (126). (It is at this point,
and at this point only, that we have to make use of our existence predicate
EXISTS in the satisfaction and truth definition of our DRS language.)

(126) g |=M,w s:

t

K1

t ⊆ dur(s)

�
��

�
��
�
���

��
∀

t
K2

iff

there is an interval tfr ∈ Time(TM) such that tfr = [[dur(s)]]M,g and

(*) [[∧EXISTS(s)]]M,g = [[∧
t

K1

t ⊆ dur(s)

�
��

�
��
�
���

��
∀

t
K2

]]M,g′ ,

where g′ = g ∪ {〈t′, tfr〉}.

N.B. In general there is no reason to assume that the condition (*) in (126)
determines s uniquely. But the idea that s is exhaustively characterised by
this condition is not all that far-fetched; and it would be possible to adopt
the condition that this is so as a general constraint on models.

This completes the satisfaction definition in essence. The complete defi-
nition is obtained by combining (123), (124), (126) with (a) clauses for the
other atomic conditions of Definition 36 for which (122) serves as example,
and (b) the clauses of the Satisfaction Definition 19 of Section 3.2. As we
already observed, all the other semantic relations mentioned in 3.2 can be
defined for the extended languages too.

To conclude, a remark relating to the DRS conditions (iv) and (v) of
Definition 36. We begin with the PROG-condition defined in (iv). We
argued that the existence of an event which statisfies a DRS K is not a
neccessary condition for the existence of a state s such that s:PROG(∧e.K).
But intuitively the condition is sufficient and if it is to be that also formally,
then there should be enough states around to make it so. In order to make
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sure of this we must impose on our models the requirement that they verify
the following existence postulate.32

(127)

e t

K
t ⊆ e

⇒

s

t ⊆ s
s:PROG(∧e.K)

(Here we have followed the same convention as in (125): The box on the
left hand side of ⇒ is a DRS K such that e ∈ UK and “t ⊆ e” ∈ ConK.)

The quantificational state conditions specified in Definition 36.v also cry
out for a supporting existence postulate. In this postulate we make use of
the same principle which we also used in defining the satisfaction condition
of quantificational state conditions: if a temporal quantification condition
holds over a period of time tfr then there exists a state the duration of
which is tfr and which exists in any world w iff the quantificational state
condition holds over tfr in w.

(128)

tfr

t

K1

t ⊆ tfr

�
��

�
��
�
���
��

∀

t

s

dur(s) = tfr

∧EXISTS(s) = ∧

t

K1

t ⊆ tfr

�
��

�
��
�
���
��

∀

t
K2

(127) and (128) can be regarded as meaning postulates. Meaning postulates
play the same role in the model theory of DRS languages as they do in
Montague Grammar; they act as constraints on models which narrow the
class of models down by eliminating models which violate the semantic
adequacy conditions they express. In this regard (127) and (128) do not
differ, of course, from the axioms on EV given in Definition 37, the postulate
that T be isomorphic to the reals, or the conditions of Definition 31 in
Section 3.4 which articulate the mereological structure of U. However, the
bulk of meaning postulates that will be needed to arrive at a satisfactory

32It may be felt that this is not quite right in so far as the progressive state does not
hold up to the very end of e. To formulate the meaning postulate in a way that takes
account of this we would need a richer vocabulary for expressing temporal relations than
the given DRS language provides. Another possible objection against (127) is that it
is wrong for the progressives of so-called achievement verbs such as die. He was dying
expresses a state which is usually seen as preceding the event of death itself, rather than
as being included in it. To deal with this, (127) should either be replaced by a weaker
disjunction which distinguishes between achievements and accomplishments, or else one
would have to assume that the interpretation of sentences like He was dying involves as
an intermediate step extending the predicate die to one which is true of events that the
process that leads up to the actual death is an integral part of.
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model theory for a DRS language suitable for the representation of natural
language have to do with the meanings of individual lexical items such as
nouns and verbs. We will consider some examples of such postulates in a
forthcoming article.

The DRS language for which we defined syntax and model theory in this
last part of Section 3.5 may have left a rather motley impression. This is the
effect of our decision to include in our language only those special predicates
and functors which happened to be needed in the DRSs displayed earlier
in the section. As we noted, a DRS language capable of representing, in a
direct and natural way, the temporal information expressible in a language
like English would require a much richer vocabulary, and would appear much
less arbitrary than the one we have considered here.

¿From a methodological point of view, however, the language we have
presented is not as arbitrary as it may seem. For the predicates and functors
it contains exemplify between them a substantial part of the complications
a model theory for a DRT-based language capable of presenting the various
kinds of temporal information we find in natural language will have to deal
with. The largest simple exception to this concerns the substantial range
of concepts which natural languages employ for the description of metric
concepts. There is only one pale reflection of this aspect of time in the
language we represent here, viz. the predicate DAY. Its extension, we said,
partitions the time into intervals. Intuitively these intervals are all of equal
duration. But since in the language considered here DAY is the only metric
notion, the metric aspect of its extension played no further part. For some
of the issues connected with the model theoretic treatment of metric-related
expressions of English see [Kamp and Schiehlen, 2002].

3.6 A First-Order DRT Calculus

When we ask whether a given conclusion that is presented in natural lan-
guage follows from premises given in that same language it will quite often
be the case that the conclusion depends for its interpretation in various ways
on those premises. To take an extremely simple example, is the following
argument valid:

(129) Peter ate a pizza and drank a glass of wine.
So, he ate something.

Here the second sentence does seem to follow from the first. But it does so
only when we interpret he as anaphoric to Peter.

A natural way to capture the context-dependent notion of validity illus-
trated by this example is to construct a DRS Kpr for the premises of the
argument and to then use this DRS Kpr as context for the construction of
a DRS Kcon for the putative conclusion. What we will typically get in this



250 HANS KAMP, JOSEF VAN GENABITH, UWE REYLE

way is a pair consisting of (i) a proper DRS Kpr and (ii) a possibly improper
DRS, but such that the merge of Kpr and Kcon is again proper. Of this pair
we can then ask whether the first DRS semantically entails the second, that
is if any verifying embedding f of Kpr in any model M can be extended to a
verifying embedding of Kcon in M. The following definition generalises this
intuition. For technical reasons it allows for free discourse referents to occur
in Kpr and Kcon. Nevertheless Kpr and Kcon must be pure, i.e. no discourse
referent is allowed to be declared in two distinct DRSs, one subordinate to
the other.

DEFINITION 40. For K and K’ pure (but not necessarily proper) DRSs: K
|=DRS K’ holds iff for every model M = 〈 U, ! 〉 and embedding functions
f and g such that f ⊆UK∪FV(K)∪FV(K’) g such that 〈f, g〉 |=M K, there

is a function h such that g ⊆UK′
h such that 〈g, h〉 |=M K’.

In order to obtain a proof system for this notion of validity wrt. the first
order DRS language presented in Section 3.1, there are two options. The
first consists in mapping a proof argument Kpr 	 Kcon into the formula of
predicate logic that is the result of the translation of the DRS-condition
Kpr ⇒ Kcon according to Def. (12) above and then employ any of the
standard calculi developed for FOPL (viz. [Sundholm, 1986],[Sundholm,
2001]). The second option is to develop deduction rules that operate directly
on DRT style proof representations Kpr 	 Kcon. [Koons, 1988; Sedogbo,
1988; Reinhard, 1989; Saurer, 1993; Reyle and Gabbay, 1994] and [Kamp
and Reyle, 1991] provide a number of sound and complete proof systems
of this type, obviating the detour through FOPL. In the following we will
present the calculus presented in [Kamp and Reyle, 1991].

[Kamp and Reyle, 1991] represent premise conclusion pairs Kpr and Kcon

in the format used in [Kalish and Montague, 1964] and [Bonevac, 1987] with
Kcon occurring within a “Show-line” that is embedded within the premise
DRS Kpr = 〈{x1,...,xn},{γ1,...,γm}〉:

(130)

x1 ... xn

γ1

...
γm

Show: Kcon

A proof is accomplished if the Show-line is cancelled, denoted by Show:——-
Kcon. Cancelling of a Show-line is achieved whenever one of the rules of
proof has successfully been applied to it. Additional Show-lines may be
added at any point in the derivation (provided only that merging the Show-
line DRS with the DRS into which the Show-line is inserted would not result
in an improper DRS). However, once a Show-line has been introduced it
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must be cancelled at a later time in order that the derivation counts as
complete.

Rules of proof come in two types: direct and indirect rules of proof. Direct
proofs do not involve any subproofs while indirect ones do. The system has
one direct rule of proof RDP (Rule of Direct Proof) and two indirect rules
of proof CP (Conditional Proof) and RAA (Reductio Ad Absurdum). In
additon to the rules of proof there are inference rules. They apply to a
DRS Kpr and extend it to a DRS K′

pr with Kpr ⊆ K′
pr. The system without

disjunction and identity involves three inference rules DET (Detachment
- also referred to as GMP (Generalized Modus Ponens)), DNE (Double
Negation Elimination) and NEU (Non-Empty Universe). The full system
with disjunction and identity features four additional inference rules MTP
(Modus Tollendo Ponens), DI (Disjunction Introduction), SoI (Substitution
of Identicals) and SI (Self-Identity). Soundness and completeness theorems
relating |=DRS and 	DRS are proved in [Kamp and Reyle, 1991]. Moreover,
the sublanguage involving “¬” but without “⇒” and “∨” requires only the
rules of proof RDP and RAA and the inference rules DNE and NEU (as
well as SOI and SI iff “=” is included as well). In each of these cases the
system consisting of the mentioned inference rule and rules of proof is sound
and complete for the model theory of Section 3.1.

SUMMARY 41. Architecture of a First-Order DRT Calculus

Rules of Proof
Direct Indirect

RDP Rule of Direct Proof CP Conditional Proof
RAA Reductio Ad Absurdum

Inference Rules
DET Detachment
DNE Double Negation Elimination
NEU Non-Empty Universe
MTP Modus Tollendo Ponens
DI Disjunction Introduction
SOI Substitution of Identicals
SI Self Identity

The Rule of Direct Proof (RDP) states that a DRS or DRS-condition Δ is
proved if an alphabetic variant Δ′ of Δ occurs as part of the DRS which
contains the Show-line Show:Δ.

There are two notions in this description which have not yet been defined,
“alphabetic variant” and “contains”. The definition of “contains” is entirely
straightforward.

DEFINITION 42. A DRS 〈 U1, Con1 〉 is contained in a DRS 〈 U, Con 〉
iff U1 ⊆ U and Con1 ⊆ Con.
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The notion of alphabetic variant is most clearly defined for pure DRSs
(see Definition 6). Since alphabetic variance enters into the formulation of
several rules we will make things easy by restricting attention in this section
to pure DRSs. (It can easily be verified that the changes produced by the
application of the rules of the system preserve purity.)

DEFINITION 43. Let K and K′ be DRSs. Then K′ is an alphabetic variant
of K iff there is a function f which maps the set BV(K) of bound discourse
referents of K onto the bound discourse referents of K′ such that

(i) for each sub-DRS K′′ of K f|UK′′
is one-to-one, and

(ii) K′ is the result of replacing for each x ∈ BV(K) all occurrences of x
in K by f(x).

For the remainder of this section all DRSs will be pure.

DEFINITION 44. Rule of Direct Proof (RDP): if a DRS K contains a
Show-line Show: Δ and if K contains Δ′ where Δ′ is an alphabetic variant
of Δ, the Show-line may be cancelled.

Direct Proofs are proofs involving RDP and the inference rules only. The
inference rule of Detachment (DET - also referred to as Generalised Modus
Ponens) applies to DRS conditions of the form K1 ⇒ K2 in a DRS K. DET
states that provided it is possible to homomorphically embed the antecedent
K1 into K we can add to K an alphabetic variant K′

2 of the consequent K2

such that

(i) the bound discourse referents of K′
2 do not already occur in K, and

(ii) K′
2 extends the homomorphic embedding f of K1.

DEFINITION 45. Detachment (DET) (Generalized Modus Ponens
(GMP)): Given a DRS K, if K1 ⇒ K2 ∈ ConK and if there is a homo-
morphic embedding f(K1) into K, then we may add an alphabetic variant
g(K2) to K where f ⊆UK2

g, g \ f is one-to-one and g maps UK2

to a set

of discourse referents that do not already occur in K.

Definitions (44) and (45) can be illustrated with the following example. In
order to show that

(131)

z

x

P(x)
⇒

y

Q(x,y)

P(z)

	DRS

u

Q(z,u)

we add a Show-line with the conclusion to the premise in (131):
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(132)

z

x

P(x)
⇒

y

Q(x,y)

P(z)

Show:
u

Q(z,u)

Since the left-hand-side of the conditional DRS condition in (132) can be
homomorphically embedded in the main DRS we can apply DET (45) and
add an alphabetic variant of the right-hand-side, which extends the homo-
morphic embedding of the left-hand side, to the main DRS as shown on the
left of (133). Then we apply RDP and cancel the Show-line yielding the
proof structure shown on the right of (133), completing the proof of (131):

(133)

z v

x

P(x)
⇒

y

Q(x,y)

P(z)

Show:
u

Q(z,u)

Q(z,v)

z v

x

P(x)
⇒

y

Q(x,y)

P(z)

Show:——
u

Q(z,u)

Q(z,v)

The rule of Double Negation Elimination (DNE) applies to structures of the
form

(134)
¬

...

...

¬ K2

K1

K

In simple cases this amounts to the cancellation of two negation signs. In
more complex cases where K1 contains conditions other than ¬ K2, DNE
can be applied provided that K1 - 〈∅, {¬K2}〉 has a homomorphic embedding
in K.

DEFINITION 46. Double Negation Elimination (DNE): if ¬ K1 ∈
ConK and ¬ K2 ∈ ConK1

and f(K1 − 〈∅, {¬K2}〉) is a homomorphic em-
bedding into K, then g(K2) may be added to K where f ⊆UK2

g, g − f
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is one-to-one and g maps the set of discourse referents UK2

to a set of
discourse referents new to K.

The rule of Non-Empty Universe (NEU) states that we only consider mod-
els with non-empty universes. This means that we can always introduce
discourse referents at the highest level of the DRS.

DEFINITION 47. Non-Empty Universe (NEU): if K is a DRS we may
always add a new discourse referent to UK.

Disjunction is treated in terms of two inference rules: Modus Tollendo Po-
nens (MTP) and Disjunction Introduction (DI). Modus Tollendo Ponens
states that given a DRS with a disjunctive condition together with the
negation of an alphabetic variant of one of the disjuncts we may add a dis-
junctive condition to the DRS which is like the original disjunction except
that the disjunct corresponding to the negated condition is missing.

DEFINITION 48. Modus Tollendo Ponens (MTP): given an DRS K
with a disjunctive condition of the form K1 ∨ . . .∨ Ki−1 ∨ Ki ∨ Ki+1 ∨
. . . Kn and a condition of the form ¬K′

i where K′
i is an alphabetic variant

of Ki we may add K1 ∨ . . .∨ Ki−1 ∨ Ki+1 ∨ . . . Kn to K.

Disjunction Introduction permits us to introduce any disjunctive condition
into a DRS if the DRS already contains one of the disjuncts.

DEFINITION 49. Disjunction Introduction (DI): if Ki is included in
K then we may add K1 ∨ . . .∨ Ki−1 ∨ Ki ∨ Ki+1 ∨ . . . Kn to K.

The proof system features two inference rules pertaining to identity: Sub-
stitution of Identicals (SoI) and Self-Identity (SI).

DEFINITION 50. Substitution of Identicals (SoI): if K contains con-
ditions x = y and γ where x,y �∈ Decl(γ), we may add a condition γ′ to K
where γ′ results from γ by replacing one occurrence of x by y.

DEFINITION 51. Self-Identity (SI): if K is a DRS, then for any x ∈ UK
we may add x = x to K.

As stated the inference rules apply at the level of the “main” DRS only. It
can be shown, however, that the application of the inference rules can be
extended to embedded DRSs and furthermore that every argument provable
in the thus extended proof system is also provable in the old system.

The inference rules described above are based entirely on the premise
DRS. Applying them extends the premise DRS until RDP can be applied.
Proofs based on RDP and the inference rules are referred to as direct proofs.
They do not involve any intermediate proofs and do not introduce any new
temporary assumptions. In addition to direct proofs, the calculus features
two rules of proof for indirect proofs involving sub-proofs and the intro-
duction of temporary assumptions. These rules are the rule of Conditional
Proof (CP) and Reductio ad Absurdum (RAA).
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The rule of Conditional Proof is applied in proofs of DRS conditions of
the form K1 ⇒ K2 in a premise DRS K. CP introduces a sub-proof which,
on the assumption that an alphabetic variant of K1 holds, tries to derive
a variant of K2. The sub-proof may make use of what is asserted in the
premise DRS K. If the sub-proof is successful, K1 ⇒ K2 is established and
the sub-proof and the temporary assumption are discarded.

DEFINITION 52. Conditional Proof (CP): if ConK in a premise DRS
K contains a Show-line Show: K1 ⇒ K2, we may introduce a sub-proof

K ‖ K′
1

Show:K′
2

where K′
1 and K′

2 are alphabetic variants of K1 and K2, respectively. When
the Show-line in the sub-proof is cancelled, the Show-line Show: K1 ⇒ K2

in the premise DRS K may be cancelled as well.

Suppose we want to show

(135)

x

P(x)
⇒

Q(x)

y

Q(y)
⇒

R(y)

	DRS
z

P(z)
⇒

R(z)

We add the conclusion in a Show-line to the premise DRS and apply CP.

(136)

x

P(x)
⇒

Q(x)

y

Q(y)
⇒

R(y)

Show:
z

P(z)
⇒

R(z)

‖

z

P(z)

Show:
R(z)

Note well: In connection with proving the Show-line to the right of ‖ the
entire DRS to the left of ‖ is available as premise (with the exception of
course of the Show-line, or Show-lines it contains). Put differently, the
premise DRS for the Show-line on the right is the merge of the DRSs to the
left and right of ‖ without their respective Show-lines. In this regard the
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architecture of the present system is like that of any other natural deduction
system.

Now we can apply DET twice: from 〈 {z}, {P(z)} 〉 in the CP sub-
derivation and the first condition in the premise DRS we get Q(z) and from
〈 {z}, {Q(z)} 〉 together with the second condition in the premise DRS we
get R(z).

(137)

x

P(x)
⇒

Q(x)

y

Q(y)
⇒

R(y)

Show:
z

P(z)
⇒

R(z)

‖

z

P(z)

Show:
R(z)

Q(z)
R(z)

Now RDP may be applied to the CP sub-derivation cancelling the Show-line

Show:
R(z)

. According to the CP rule we may also cancel the Show-line

in the premise DRS, completing the proof of (135).
The final rule of proof, Reductio ad Absurdum, also opens up a new sub-

derivation in which we try to show that the assumption ¬ K′
1 where K′

1 is
an alphabetic variant of K1 and K1 is a goal in a Show-line in the premise
DRS, leads to an explicit contradiction thus establishing K1. Here by an
explicit contradiction we mean the following. A DRS K contains an explicit
contradiction iff there is a DRS K′ such that

(i) ¬ K′
1 ∈ ConK, and

(ii) K contains an alphabetic variant of K′.

We use ⊥ to represent arbitrary contradictions of this kind. Thus “Show:⊥”
can be cancelled when the DRS contianing this Show-line also contains such
a combination of ¬ K′ and a variant of K′ (for any K′ whatever).

DEFINITION 53. Reductio ad Absurdum (RAA): if ConK of some
premise DRS K contains a Show-line Show: K1 we may introduce a sub-
proof

K ‖ ¬ K′
1

Show:⊥
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When the Show-line in the sub-proof is cancelled, the Show-line “Show: K1”
in the premise DRS K may be cancelled as well.

One place where RAA is needed is in the proof of the principle of Modus
Tollens, which in the present system is a derived rather than a primitive
rule. The following example shows one variant of this principle.

(138)

x y

P(x,y)
⇒

u

Q(u,x)

¬
v t

Q(v,t)

	DRS ¬
x y

P(x,y)

We add the conclusion in a Show-line and apply RAA and DNE.

(139)

(i)
x y

P(x,y)
⇒

u

Q(u,x)

(ii) ¬
v t

Q(v,t)

Show: ¬
w z

P(w,z)

‖

w′ z′

P(w′,z′)

Show: ⊥

By applying DET on (i) and the DRS on the right of ‖ we obtain:

(140)

(i)
x y

P(x,y)
⇒

u

Q(u,x)

(ii) ¬
v

Q(v,x)

Show: ¬
w z

P(w,z)

‖

w′ z′ u′

P(w′,z′)

Show: ⊥

Q(u′,w′)

We now have ¬
v t

Q(v,t)
as a condition in the DRS to the left of ‖ and

a variant
u′ w′

Q(u′,w′)
of the DRS in the scope of the negation contained
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in the (extended) DRS to the right of ‖. This establishes the contradiction
and we can cancel the Show-line “Show: ⊥” on the right and with it the
Show-line in the DRS on the left, completing the proof.

Note also that the DRS version of the argument ¬(A ∧ ¬B),A 	 B (a
version of Modus Ponens) can be proved by a simple application of RAA. For
example, the Show-line in (141.a) can be derived by adding the environment
for an application of RAA to the right of it as shown in (141.b).

(141) a.

z

P(z)

¬

x

P(x)

¬
y

Q(x,y)

Show:
v

Q(z,v)

b.

z

P(z)

¬

x

P(x)

¬
y

Q(x,y)

Show:
v

Q(z,v)

‖ ¬
w

Q(z,w)

Show:⊥

It now suffices to observe that if we add the new assumption ¬
y

Q(z,y)

to the DRS on the left, then this DRS will contain an alphabetic variant of

the condition ¬

x

P(x)

¬
y

Q(x,y)

which belongs to its condition set. So the

Show-line “Show: ⊥” can be cancelled and with it the Show-line on the left.
We noted earlier that the fragment of the DRS language of Section 3.1 in

which only complex conditions are of the form ¬ K has the same expressive
power as the full language. For this sublanguage the present system reduces
to one consisting of the rules RDP, NEU, DNE and RAA. This system is
sound and complete for the given fragment, just as the full system is sound
and complete for the full language of Section 3.1.

One of the features of DRS languages, we stressed in Section 3.3, is
that they do not separate sentential and quantificational aspects in the
manner familiar from standard predicate logic. This feature of the syntax
of DRS languages has its reflection in the rules of the deduction system
we have presented. It is manifest in every rule which involves matching of
alphabetic variants. This feature we have seen, is particularly prominent
in applications of DET and RAA, and indeed it is only because RAA is
stated as applicable in cases of a contradiction between alphabetic variants
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that DNE, NEU, RDP and RAA suffice for the fragment which is without
“⇒”, “∨” and “=”. But it is indispensible also in the presence of other
rules such as DET and CP. Without this flexibility in the application of
RAA the DR-theoretical equivalent of ¬(A ∧ ¬B),A 	 B cannot be derived
even when all the other rules are available. In short, matching of alphabetic
variants in the application of deduction rules is the proof theoretic mirror
of the structural binding of discourse referents (through membership in a
certain DRS-universe) which is perhaps the most distinctive feature of the
DR-theoretical representation format.

Given that the present deduction system clearly reflects this feature of
the DRS language to which the system applies, it would appear to be of
interest (i) to extend it with rules that equally mirror this feature of DRT for
the extended languages we have discussed in Sections 3.3–3.5 (Of course for
the non-axiomatisable extensions, such as that of 3.4, such a coverage could
only be partial.); and (ii) to explore the possibilities of implementations of
such proof procedures. To our knowledge neither of these tasks has thus far
been persued in good depth.

4 PRESUPPOSITION

4.1 Introduction

Dynamic Semantics is ideally suited to the analysis of presupposition. This
is true of all versions of it, including the two that come first historically,
File Change Semantics (FCS, see [Heim, 1982]) and DRT. As we have seen
in the previous sections for DRT, a central rationale for these theories was
to give a context-based account of pronominal anaphora. In this section we
will see how such an account can be extended to a context-based account
of presupposition.

To deal with cases of transsentential anaphora one needs a formally pre-
cise notion of context. All Dynamic theories provide such a notion, a notion
of “discourse” context which evolves as the discourse proceeds, with each
new sentence meaning its own contribution to it. Each sentence is to be
interpreted in the current discourse context, and thus in the light of what
its predecessors have contributed to it. The notion of discourse context can
be refined, moreover, so that it can change even in the course of a single
sentence, with some parts of the sentence contributing to the context serv-
ing the interpretation of some part. We already saw that along these lines
it is possible to develop a uniform account of transsentential and sentence-
internal anaphora.

The Dynamic concept of a discourse context which changes not only
between sentences but also sentence-internally is crucial not only for an ac-
count of anaphora but also of presupposition. In particular it is essential
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for dealing with the so-called Projection Problem. Sometimes a presuppo-
sition that is generated within some part of a logically complex sentence
is perceived as presupposition of the entire sentence — the presuppositon
“projects” — and sometimes it seems to have disappeared when one consid-
ers the sentence as a whole — the presupposition does not “project”. The
basic strategy that the Dynamic approach offers for explaining this differ-
ence is surprisingly simple: A presupposition doesn’t project if it is justified
by its “local” context, i.e. on the basis of contextual information that is
entirely sentence-internal. For in that case its justification has no further
need for information from the “global”, or sentence-external, context; so, as
far as this presuppositon is concerned any global context whatever would
be a suitable context in which the sentence could, as far as presuppositions
are concerned, be properly used.

The parallel that is suggested by this gloss on presupposition projection
is too obvious to overlook: When a pronoun has a sentence-internal an-
tecedent — i.e. when it finds an antecedent in its local context — it is no
obstacle to interpreting the sentence as one which expresses a proposition
on its own, and no further contextual information is required. Likewise for
a locally justified presupposition. Only when pronoun or presupposition
cannot be accounted for on the basis of sentence-internal information alone
does their presence turn into a constraint on the global context — to pro-
vide an antecedent for the pronoun or to justify (or assist in justifying) the
presupposition.

Indeed, it was not long after FCS and DRT were first proposed that
Heim formulated an account of presupposition which extends the Dynamic
approach to anaphora to presuppositional phenomena, and most notably to
the Projection Problem [Heim, 1983]. But it wasn’t until the very end of the
eighties that the central ideas of her proposal were pushed further. At that
point a number of people proposed an even more tightly unified account of
presupposition and anaphora. (See [Geurts and van der Sandt, 1999; van der
Sandt, 1992; Zeevat, 1992]). In these proposals anaphoric expressions (and
especially pronouns) are treated as “presupposition triggers”, on a par with
the presupposition triggers which in the theory of presupposition had long
been recognised as such: definite descriptions, factive verbs like regret , be
surprised , etc, aspectual verbs like stop or continue, particles like again or
too, cleft-constructions, and so on (as many readers will surely know, the
complete list is much, much longer). The presupposition triggered by an
anaphoric expression is that an antecedent for it can be found in the context.
The proposals that have just been mentioned are all formulated within the
framework of DRT.

One consequence of such a unified treatment of presupposition and
anaphora is that anaphoric expressions impose, just like other presuppo-
sition triggers, constraints in context. At the same time such a treatment
highlights the “anaphoric” dimension of arbitrary presuppositions: Not only
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pronominal “presuppositions” act as pointers to information provided ear-
lier, this is a feature of presuppositions in general; all presuppositions are
“anaphoric” in the sense of linking the sentence or sentence part in which
they originate with the relevant part of the context that serves as back-
ground for the interpretation of that sentence or sentence part. In this
way, i.e. by linking a sentence or sentence constituent to those parts of
the context where the required information is found, presuppositions foster
and consolidate discourse coherence. As we will see below, this cohesion-
creating effect of presuppositions is closely connected with presupposition
accommodation, i.e. with the adaptation of an initially insufficient context
in such a way that the given presuppositions can be seen to be justified after
all by the adjusted context.

Our exposition will proceed as follows. In Section 4.2 we first give some
elementary illustrations of how the present account of presupposition works,
using examples which are taken from [van der Sandt, 1992] (modulo some
trivial alternations). The notation we use differs cosmetically from the one
found in Van Der Sandt’s paper. More importantly, our treatment of defi-
nite descriptions differs from his, as well as from his and our treatment of
anaphoric pronouns. This is an issue to which we devote a somewhat longer
discussion, motivated by the consideration that the logical and philsoph-
ical tradition has for the most part treated descriptions and pronouns as
separated by a major divide, with pronouns the paradigmatic variables of
natural language and definite descriptions the prototypical presupposition
triggers. Following this some further variants on the pattern of these ex-
amples are discussed. These variants are chosen in order to illustrate local
presupposition justification, as the source of non-projection.

Section 4.2 ends with a few examples which bring out some of the com-
plexities that arise when other kinds of presuppositions are taken into ac-
count besides those on which Van Der Sandt’s paper focusses and to which
we limit ourselves in the first two parts of this section. A further aim of this
section is to reveal some of the intricate interactions that are often found
between presuppositions connected with different presupposition triggers
occurring within one and the same sentence. Section 4.3 presents the syn-
tax for the DRT formalism in which the preliminary representations of the
present account are expressed, and a model-theoretic semantics to go with
it. As part of this we define the notions of global and local context, as well
as one way of distinguishing between “anaphoric” and “non-anaphoric” pre-
suppositions. Section 4.4 is devoted to presupposition resolution and accom-
modation and Section 4.5 to the principles according to which preliminary
representations are constructed from syntactic trees.
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4.2 Examples

Pronouns and Definite Descriptions in Simple Sentences

We begin by looking in some detail at the following examples (cf [van der
Sandt, 1992]).

(142) a. Walter has a rabbit and a guinea pig. The rabbit is white.

b. Walter has a rabbit and a guinea pig. His rabbit is white.

c. Walter has a rabbit. It is white.

We start with (142.a). We assume that processing of the first sentence yields
the DRS (143), and that this DRS represents the context within which the
second sentence, It is white., is to be interpreted.33

(143)

w y z

Walter(w)
rabbit(y)

guinea pig(z)
have (w,y)
have (w,z)

The preliminary representation of the second sentence contains a presup-
position that is triggered by the definite description the rabbit. What form
should the representation of this presupposition take? This question leads
us directly to one of those central issues in the theory of presuppositions
which the Dynamic approach has brought into sharper focus. Definite de-
scriptions have been considered the prototypical cases of presupposition-
triggering, since the time where the notion of presupposition was recognised
as important to the theory of meaning and logic. In fact, it was they who
gave rise to this issue in the first place. Frege, one of the two fathers of
modern formal logic,34 noted that the referential function of singular defi-
nite descriptions of the form the N is compromised by failure of either the
associated existence condition — there is at least one N – or the associated
uniqueness condition — there is at most one N. So he saw the conjunc-
tion of these two conditions as the presupposition that must be satisfied
in order that the description can perform the function for which it is in-
tended: refer to the unique x such that N (x). If the presupposition is not
satisfied, then, Frege thought, any sentence containing the description will

33In dealing with the examples in (142) we revert to the mode of representation in which
temporal relations are ignored. We will return to representations which take temporal
reference into account later on (starting with example (163)).

34We take it as established that the predicate calculus, the fundament on which all
modern logic rests, was invented — or, if you prefer, discovered — independently by
Frege and Peirce.
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fail to have a proper truth value, with unforseeable consequences for the
logic of formal systems into which definite descriptions are admitted. The
proposals to which Frege’s worries about presupposition gave rise during
the following 75 years seem to have been concerned almost exclusively with
definite descriptions, from Russell’s Theory of Descriptions [Russell, 1905]

to Strawson’s revindication of the Fregean perspective [Strawson, 1950;
Strawson, 1964], and the literature that arose out of the debate provoked
by Strawson’s 1950 publication in the course of the years following it.

It was not until the late sixties that presupposition became an active
concern within linguistics. One important effect of this was that presuppo-
sition came to be seen as a much more general phenomenon, of which the
presuppositions of definite descriptions are only one among many different
manisfestations. But even since that time the presuppositions of definite
descriptions have retained much of their paradigmatic status.

As said, the logicians of the end of the 19-th and the first half of the 20-th
century took the presupposition of a singular definite description the N to be
the proposition that there exists a unique individual satisfying the predicate
N. It cannot but have been clear from the start that the definite descriptions
used in ordinary conversation hardly ever satisfy this proposition when it is
taken literally. (142.a) is a case in point. Noone who hears (142.a) will take
it to imply that there is only one rabbit in the entire universe. Insofar as the
uniqueness requirement applies to this case, it is only in the sense that the
satisfier of the predicate rabbit is uniquely determined within the context
in which the sentence containing the description (the second sentence of
(142.a)) appears. This context can be seen as providing a restricted set of
individuals, and it is only within this set that rabbit can be assumed to
have a unique satisfier. In our example this condition is fulfilled when we
take the context to be given by (143), and the context set as given by its
DRS-universe {w,y,z}. For in light of the information which (143) makes
available about the represented entities, it seems safe to conclude that only
one of them is a rabbit.

It follows that a plausible version of the existence-and-uniqueness presup-
position for singular descriptions will have to allow for contextual restric-
tion. We represent this restriction in the form of a predicate C (cf. [von
Fintel, 1994]), ??). In particular, the representation of the existence-and-
uniqueness presupposition for the rabbit in (142.a) takes the form given in
(144.a).
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(144) a.

u

rabbit(u)
C(u)

u′

rabbit(u′)
C(u′)

�
��

�
��
�
���

��
∀

u′ u′ = u

b.

u=1

rabbit(u)
C(u)

We will abbreviate a DRS representing the existence-and-uniqueness pre-
supposition for singular descriptions by superscribing =1 to the discourse
referent representing the individual the singular description denotes. I.e.
the DRS in (144.a) will be abbreviated by (144.b).

The contextual predicate C must, as the term “contextual” implies, be
“recovered” from the context in which the description is used. Thus C im-
poses on the context a constraint which is reminiscent of those imposed
by anaphoric pronouns: the predicate C is to be identified with this “an-
tecedent” and the identification should fit the interpretation of the discourse
as a whole — more specifically, it should enable the interpreter to see the
contextualised existence-and-uniqueness presupposition as fulfilled.

This leads us to the conclusion that the existence-and-uniqueness pre-
supposition of a definite description presupposition comes with a further,
more “anaphoric” presupposition, to the effect that an antecedent must be
found for the predicate variable C. We represent this latter presupposition
in the form given in the DRS (145). (145) treats C as a discourse referent of
higher type (that of a predicate of individuals). The only constraint on C,
which is entailed by the role that it plays in the existence-and-uniqueness
presupposition from which its presupposition derives, is that there must be
at least one thing falling under C which satisfies the overt descriptive con-
tent of the description — i.e., in the case of our example, that there must
be at least one thing in C’s extension which is a rabbit. The underlining of
C in the universe of (145) serves as indication that C is anaphoric, i.e. that
the context must provide a suitable value for it.

(145)

C r

C(r)
rabbit(r)

The classical view of the contribution that is made by a definite description
to the proposition expressed by the sentence in which it occurs is as follows.
On the assumption that the existence-and-uniqueness presuppositon of the
description is satisfied, the proposition expressed is that some instance of
the descriptive content – or, if one prefers, its unique instance; in case the
presupposition is satisfied, the distinction doesn’t matter — satisfies the
predicate which the sentence asserts of the descriptive NP. Thus, in our
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example (142.a) the proposition expressed by the second sentence is that
some rabbit (viz. the contextually unique one) is white.

We take it to be implied by this perspective of what proposition is ex-
pressed that in a case where the descriptive content is reinforced by a con-
textual predicate C, this additional predication also becomes part of the
content of the proposition. So in particular, the proposition expressed by
the second sentence of (142.a) is that some rabbit with the property C is
white. Consequently the non-presuppositional part of the preliminary rep-
resentation must be to the effect that there is something which is a rabbit,
satisfies C and is white:

(146)

v

rabbit(v)
C(v)

white(v)

We represent presuppositions as left-adjoined to those parts of the pre-
liminary sentence representation which represent the parts of the sentence
which contain their trigger. Moreover, presuppositions which are generated
by other presuppositions are left-adjoined to the representations of those.
In the case of the second sentence of (142.a) this means that the existence-
and-uniqueness presupposition gets adjoined to the representation of the
sentence as a whole, while the anaphoric presuppositon concerning C gets
left-adjoined to the existence-and-uniqueness presupposition. Thus we ar-
rive at the preliminary representation in (6).35

(147)

〈⎧⎪⎨
⎪⎩
〈⎧⎪⎨
⎪⎩

C r

C(r)
rabbit(r)

⎫⎪⎬
⎪⎭ ,

u=1

rabbit(u)
C(u)

〉⎫⎪⎬
⎪⎭ ,

v

rabbit(v)
C(v)

white(v)

〉

The final representation of the discourse (142.a) is obtained by combining
(147) with the context DRS (143). This combination involves justification
of the two presuppositions of (147), the existence-and-uniqueness presuppo-
sition and the “anaphoric” presupposition concerning C that is adjoined to
it. Resolution of the latter can, we have seen, take the form of identifying
the extension of C with the the DRS-universe {w,y,z} of the context DRS.
(Note that this resolution can be seen to satisfy the constraints of the C-
presupposition, since the context (143) carries the information that one of
the three represented individuals, that represented by y, is a rabbit.)

35The presence of the curly brackets is explained as follows: In general what gets
adjoined to a given part of the representation is not a single presupposition, but a set
of them. In (147) both sets are singletons. (When this is the case, the brackets may be
omitted without risk of ambiguity.)
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The effect of this is shown in (148). The C-presupposition has been
eliminated now that the identification of C with the predicate “∈{w,y,z}”
has led to its satisfaction.

(148)

〈⎧⎪⎨
⎪⎩

u=1

rabbit(u)
v∈{w,y,z}

⎫⎪⎬
⎪⎭ ,

v

rabbit(v)
white(v)

〉

The remaining presupposition can now be seen as satisfied by the context
DRS (143). But note that to “see” this we must rely on certain assumptions
about the world (i.e. on “world knowledge”): (i) The assumption that
an individual who owns rabbits and guinea pigs may be assumed to be a
person; and (ii) the general knowledge that neither persons nor guinea pigs
are rabbits. Such considerations very often enter into the justification of
presuppositions. In further examples we will take this world knowledge-
related aspect of presupposition justification for granted. It is important,
however, to keep in mind how common it is for world knowledge to play
some role in presupposition justification.

Given that the presupposition of (148) is justified in (143), it can be
discarded as well, and the non-presuppositional part of (148) merged with
(143). The result is the DRS (149).36

(149)

w y z v

Walter(w)
rabbit(y) ; guinea pig(z) ; rabbit(v)

have (w,y) ; have (w,z)
v∈{w,y,z}
white(v)

Now consider sentence (142.b). Once more we assume that (143) is the
context representation in relation to which the second sentence of the dis-
course is interpreted. This time the presupposition-triggering subject, the
definite description his rabbit, contains another definite NP, the pronoun
his. Since we are aiming for a unified analysis, in which anaphoric expres-
sions are treated as presupposition triggers too, our preliminary represen-
tation should also contain a presupposition associated with his. We will
assume here without further argument that the possessive pronoun his can
be analysed as decomposable into (i) the masculine singular pronoun (other
realisations of which are the forms he and him) and (ii) a relation expressed

36Whenever atomic DRS-conditions are listed in one line we will separate them with
“;”. Note that this use of “;” is not dynamic conjunction — although there would be no
truth-conditional difference for the case of atomic conditions. It is only a representational
means to separate the elements in the condition set of a DRS.
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by the genitival ending ’s, which we will take to express a relation of pos-
session between the referent of the pronoun and that of the NP containing
it (here: the NP his rabbit). For simplicity we will represent this relation
as “have(-,-)”, just as we have been representing the verb have occurring in
the first sentence of (142.a).

But how should we represent the presupposition triggered by the pro-
noun? We proceed in much the same way we did in connection with the
contextual predicate C: The presupposition presents a discourse referent for
the anaphoric element, here x, as requiring an antecedent. Since this is
the purport of the presupposition, x appears with underlining (like C in
its presupposition in (147)). The choice of x’s antecedent is constrained
by some information which the pronoun itself contributes. We make the
simplifying assumption that the use of this information, carried by the En-
glish third person singular masculine pronoun, is that its referent must be
a male person. Note that the underlined discourse referents of anaphoric
presuppositions recur in the adjunction sites of these presuppositions. Non-
underlined discourse referents, such as u in the existence-and-uniqueness
presuppositions of (147) and (148) or r in the presupposition for C in (147),
do not.

In (150) below the presupposition associated with the definite description
is represented in the same way as before, viz as an existence-and-uniqueness
presupposition involving a potential contextual restriction C. The pronoun
his is part of the definite description his rabbit which gives rise to this pre-
supposition. So the presupposition triggered by the pronoun arises in the
process of interpreting the content of the description: it is a presupposition
which must be resolved in order to determine what this content is. Note
in this connection that the discourse referent x, which in the pronoun pre-
supposition plays the role of anaphoric discourse referent in search of an
antecedent, also occurs in the specification of the descriptive content of the
existence-and-uniqueness presupposition of the definite description (as well
as, by implication, in the representation of the proposition expressed by the
sentence). Moreover, since the descriptive content is contextually restricted
by C, the resolution of the pronoun is also relevant to the resolution of C.
So we assume that the pronoun presupposition is left-adjoined to the com-
plex presupposition. With these assumptions we arrive at the preliminary
representation in (150).

(150)

〈⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈⎧⎪⎨
⎪⎩

x

male(x)
pers(x)

⎫⎪⎬
⎪⎭ ,

〈⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C r

C(r)
rabbit(r)
have(x,r)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

u=1

rabbit(u)
C(u)

have(x,u)

〉〉⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

v

rabbit(v)
C(v)

have(x,v)
white(v)

〉

Justification of the presuppositions of (150) within the context DRS (143)
proceeds much as before. We now have one more presupposition to deal
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with, viz. the anaphoric presupposition triggered by his. The obvious
resolution of this presupposition is that which identifies x with w. Once
again the resolution of C to “∈ {w,y,z}” satisfies the constraints of the
C-presupposition itself and guarantees justification of the existence-and-
uniqueness presupposition (given the same uncontroversial bits of world
knowledge). The resulting representation (151) for (142.b) is nearly the
same as that for (142.a) and represents the same truth conditions.

(151)

w y z x v

Walter(w)
rabbit(y) ; guinea pig(z)
have (w,y) ; have (w,z)

x = w
rabbit(v)

v∈{w,y,z}
have (x,y)
white(v)

Our third example, (142.c), differs from (142.a) and (142.b) in two re-
spects: (i) the first sentence only introduces a rabbit into the discourse,
but no guinea pig; and (ii) the subject NP of the second sentence is not a
definite description but the pronoun it. What has been said in connection
with the previous two examples largely determines the way in which we are
to deal with this one. The context representation for the second sentence
(that is, the representation for the first sentence of (142.c)) is the one given
in (152). The preliminary representation, in (153), has only one presuppo-
sition, triggered by it. Just as we did in connection with his im (153.b), we
simplify the constraints which it imposes on what sort of entity its refer-
ent can be, assuming simply that its referent must be a non-person. Note
also that, like we saw in (150) for the discourse referent introduced by his,
the distinguished discourse referent u of the anaphoric presuppositon recurs
in the non-presuppositional part; lastly, the result of combining (152) and
(153) yields, via the only conceptually admissible resolution of u (the one
which identifies u with y), the DRS in (154).

(152)

w y

Walter(w)
rabbit(y)
have (w,y)

(153)

〈{
u

non-pers(u)

}
,

white(u)

〉
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(154)

w y u

Walter(w) ; rabbit(y) ; have (w,y)
u = y

white(u)

In the treatment of the examples (142.a-c) we have stuck as closely as possi-
ble to the traditional distinction between (a) definite descriptions as expres-
sions whose denotation presupposes existence and uniqueness of descriptive
content and (b) pronouns as anaphoric expressions, whose intepretation re-
quires that they must be found an antecedent. Since, as we have seen,
the definite descriptions of our examples cannot be analysed in this clas-
sical manner unless we allow for contextual restriction of their descriptive
content, the two analysis strategies do not appear as radically different as
they seem according to the logical picture that emerges from the by now
“classical” literature in the philosophy of language, including the writings
of Frege, Strawson and Quine, according to which a definite description is
a singular term the use of which is subject to the truth of a certain presup-
posed proposition, while anaphoric pronouns are seen as the “variables of
natural language”.

Nevertheless, it might be thought that we haven’t pushed the unified
treatment of pronouns and definite descriptions far enough. In fact, many
current analyses of definite descriptions treat them (or at any rate treat
many of them) much more on a par with pronouns than we have done here.37

In these analyses definite descriptions introduce, like pronouns, anaphoric
discourse referents, while their descriptive content is treated as a restriction
that must be satisfied by the antecedent for this discourse referent. For
example, the definite description the rabbit in the second sentence of (142.a)
gives rise, on such an analysis, to the anaphoric presupposition shown in
(155).

(155)

〈{
u

rabbit(u)

}
,

white(u)

〉

On the analysis of definite descriptions which (155) exemplifies they are
anaphoric NPs, which differ from pronouns only in that they are capable
of providing more specific descriptive content. Favouring such a closely
parallel treatment of pronouns and descriptions is the following considera-
tion. Compare (142.c), in which the use of the pronoun it is coherent and
unambiguous, with (156), in which it is not.

(156) *Walter has a rabbit and a guinea pig. It is white.

37An example is the paper [van der Sandt, 1992] itself, which has been the major
inspiration for the theory sketched in this section.
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The incoherence of it in (156) derives, it would appear, from its inability
to distinguish between the two non-persons represented in the context, the
rabbit and the guinea pig. (A description which doesn’t discriminate be-
tween these two, such as, say, the rodent or the furry creature, would do just
as poorly.) But the rabbit does fine, given that we all know that guinea pigs
aren’t rodents and that Walter, who “has” a rabbit, is therefore presum-
ably not a rabbit himself.38 It might seem from these considerations, that
anaphoric pronouns and definite descriptions differ only in their descriptive
content.

However, there are also considerations on the other side, which speak
against such a rapprochement between our analysis of descriptions and pro-
nouns. Arguments to this effect can be found in many places in the philo-
sophical and semantic literature. Here we mention only one, which has to
do with “bridging”. Compare the pair of discourses in (157).

(157) a. Bill is a donkey owner. The donkey is not happy.

b. Bill is a donkey owner. ? It is not happy.

The interpretation of the donkey in (157.a) can be justified as follows: The
first sentence entails that there are one or more donkeys that Bill owns.
So this information can be regarded as part of the context in which the
description has to find its reference. In order to justify the singular definite
NP we have to “accommodate” the assumption that Bill’s donkey ownership
involves a single donkey only, but in the interpretation of (157.a) this does
not appear to pose a problem. Consider now (157.b). Here too the content
of the first sentence allows us to extend the context unverse from the set
consisting just of Bill (the only individual explicitly mentioned) to one which
contains in addition the donkey or donkeys he owns. If we suppose that the
only distinction between the donkey and it concerns the desriptive contents
of their respective presuppositions — that of the donkey is to the effect that
its antecedent satisfies the predicate “donkey” and that of the pronoun that
it satisfies the predicate “non-person” — then the fact that (157.a) is fine
but (157.b) is not, becomes a mystery. For the predicate “non-person” is
all we need to distinguish the donkey or donkeys owned by Bill from Bill
himself. So, on the accommodated assumption that Bill’s donkey ownership

38The circumstance that the descriptive content “rabbit” of the definite description
the rabbit matches the constraint “rabbbit(y)” on the discourse referent y of (152) and
that it doesn’t match the descriptive constraint of the other discourse referents in the
universe of (152), is enough for the interpreter to “zero-in” on y as the antecedent for u.
It might be thought that such an interpretation carries with it the accommodation that
the individuals represented by the other discourse referentes are not rabbits. But this
isn’t always so. For instance, consider A man went to see a doctor. The doctor asked
the man what was wrong with him. Interpreting the man as anaphoric to a man doesn’t
carry the implication that the doctor is not a man. Nor does interpreting the doctor as
anaphoric to a doctor carry the implication that the man who came to see him wasn’t a
doctor too.
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involves a sole donkey, the pronoun should be just as effective in this case
in selecting the intended antecedent as the description. But apparently it
isn’t.

This example points to a conclusion to which many other case studies
point as well: An antecedent for a pronoun must have been introduced
explicitly into the discourse beforehand; definite descriptions are happy to
pick up entities whose existence is implied by the context, even if no explicit
introduction has previously taken place.

This difference between pronouns and definite descriptions indicates that
a uniform treatment of the two will go only so far. A theory which treats
both pronouns and descriptions as anaphoric NPs will need an additional
component which articulates the “anaphora resolution principles” according
to which the antcedents for these two different NP types are determined.
The analysis of definite descriptions we have exemplified in our treatment
of (142.a) and (142.b) could be seen as a step in this direction. According
to that analysis the anaphoric dimension of definite descriptions is located
entirely in the determination of the contextual predicate C. However, if this
is the way in which we want to make fully explicit precisely how descriptions
differ from pronouns, then we will have to say much more about the rules
according to which C may be resolved. This is arguably the central task for
a theory of Bridging. It is a task on which some progress has been made
in recent years, but which surely isn’t yet completely solved. (See [Heim,
1982], [Bos et al., 1995], [Clark, 1997], [Asher and Lascarides, 1998])

Summarising: It remains a question for further research exactly to what
extent the analyses of definite descriptions and pronouns can be unified. We
have seen that treating both as triggers of anaphoric presuppositions shifts
the burden to articulating the different principles which govern the resolu-
tion of these presuppositions. Analysing definite descriptions, in the spirit of
the logical tradition, as triggers of contextualised existence-and-uniqueness
presuppositions brings out the difference between them and pronouns more
clearly in principle, but work remains to be done as regards the contextual
resolution of the anaphoric predicate variable C.

We have spent what may seem a disproportionate amount of space in
this section on the analysis of pronouns and definite descriptions, and es-
pecially on the question how similar or dissimilar their analyses ought to
be. Our justification for this is twofold. First, the analysis of pronouns and
definite descriptions is a matter that has been of central importance in the
philosophy of logic and language for well over a century. Second, the light
in which these two NP types appear from the Dynamic perspective is rad-
ically different from the traditional picture, according to which anaphoric
pronouns are variables and definite descriptions some species of referential
term. (This is a view which, if we are not mistaken, is still prevalent among
many philosophers and philosophical logicians today.) According to this
view the two kinds of expressions are very different indeed. The Dynamic
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approach, however, makes it possible to see that, certain remaining discrep-
ancies notwithstanding, the conceptual differences are far smaller than the
traditional picture implies. All in all Dynamic Semantics (at least in the
form in which it is being used here) projects a very different image of the
way in which reference contributes to the expression of propositions, and to
the range of posibilities of expressions which serve a referential role within
the setting of dynamic interpretation.

Local vs global Justifcation

The examples we consider in this section are variants of those considered in
Section 4.2. They have been chosen to show the difference between global
and local justification of presuppositions. We will focus on just two logical
sentence types, a conditional sentence (158.a) and a universal quantification
(158.b).

(158) a. (It is a peculiar fact, but) If a friend of mine has both a rabbit
and a guinea pig, the rabbit is white.39

b. Every friend of mine who has a rabbit overfeeds it.

The point of these examples is that the presuppositions associated with the
definite description of (158.a) and the pronoun of (158.b) do not seem to
“project”. They don’t, because they can be resolved in local contexts that
are furnished by some other part of the sentence (the antecedent of the
conditional or the restrictor of the quantification) than the part in which
they are triggered (the conditional’s consequent or the quantifier’s nuclear
scope). We note in passing that the it of (158.b) is a typical donkey pronoun.

The analysis of (158.a) resembles in most respects the one we gave in
the last section of (142.a). The difference is that the presupposition is now
adjoined to some embedded part of the preliminary representation (the con-
sequent of the conditional), since it is this part that represents the sentence
constituent which contains its trigger.

Adopting the same treatment of the definite description the rabbit which
we used in our treatment of (142.a) we get as preliminary sentence represen-
tation the structure in (159), where K(147) stands for the preliminary DRS
in (147).

(159)

w

Walter(w)
y z

rabbit(y) ; guinea pig(y)
have(w,y) ; have(w,z)

⇒ K(147)

39The initial part of (158.a) in parentheses is intended to make the sentences a little
less implausible, but the discussion will not take it into acount.
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Note that the discourse referent w introduced by the NP Walter has been
placed in the universe of the main DRS, not in that of the sub-DRS rep-
resenting the antecedent of the conditional. In the original top-down con-
struction algorithm for DRT (See Section 2) this was the effect of the pro-
cessing rule for proper names. But in the present setting, where we have
already committed ourselves to presuppositional accounts of pronouns and
descriptions, it is natural to adopt an account also for other types of defi-
nite NPs, such as proper names and demonstratives. For each of these NP
types the account must include an articulation of the resolution rules for
the presuppositions generated by the NP in question. In the first part of
this subsection we noted in relation to descriptions that determining what
these resolution rules is anything but a trivial task, which a large spectrum
of earlier investigations into the semantic and pragmatic behaviour of the
given NP type requires taking account of. For other types of definite NPs
the situation is no different. This is true in particular for proper names,
whose referential properties have been the subject of countless publications
within the philosophy of language, and, more recently, also within linguis-
tics.40 The fact that the referent of a proper name occurring in a discourse
always finds a representation within the global context should come out as
a consequence of the resolution rules for the presuppositions triggered by
proper names.

We forgo an explicitly presuppositional treatment of proper names41 here,
and simply assume that the ultimate result of their interpretation is always
representation at the level of the main universe of the sentence or discourse
representation. There is one aspect to the use of proper names, however,
which should be mentioned here. This is the ease with which they (or, in the
present terminology, their presuppositions) are “accommodated”. We have
made passing mention of accommodation in the last section, and will have
cause to do so a few more times until Section 4.4, in which accommoda-
tion is the topic. What matters right now are two points: (i) What sorts of
information may be accommodated for the sake of justifying a given presup-
position, and under what conditions, varies from one type of presuppositon
to the next (cf. the discussion of bridging as a form of accommodation
that is permissible in the case of definite descriptions but not of pronouns);
and (ii) Accommodation is particularly unproblematic in the case of proper
names: In cases where the interpreter of an occurrence of a proper name
is unfamiliar with that name, or believes himself to be unfamiliar with the
name’s referent, he will normally assume that the speaker who is using the
name knows who she is talking about. Accordingly he will accommodate

40Much of the philosophical literature of the past thirty years was in reaction to Kripke’s
Naming and Necessity [Kripke, 1972]. For an analysis of proper names that is directly
relevant to the presuppositional account that is at issue here, see [Geurts, 1997].

41Likewise for the various types of demonstratives. Demonstratives, however, won’t
occur in any of the examples we discuss in this survey.
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his interpretation context so that it contains a representation of the in-
tended referent of the name, to which the discourse referent introduced by
the given name occurrence can then be linked. We will assume henceforth
that a name which does not as yet have a representation in the context will
automatically lead to an accommodation of this kind.

Justification of the presupposition of (159) whose representation is ad-
joined to the representation of the consequent of the conditional can make
use of the local context information that is provided by the antecedent —
just as justification of the presuppositions of (147) could make use of the
discourse context (143) provided by the preceding sentence. It is impotant
to note, however, that the local context information is not restricted to the
contents of the relevant sub-DRS itself, but includes also all information
that belongs to other DRSs which are accessible from the local context.
Thus, in the case at hand the discourse referent w and the condition “Wal-
ter(w)”, which are not part of the sub-DRS representing the antecedent of
the conditional, but of the main DRS, which is accessible from this sub-
DRS, are part of the local context information too. It follows from this that
if one context is more local than another (i.e. the second is accessible from
the first, but not conversely), the first will always contain at least as much
information as the second, and usually more.

This means among other things that resolution of C in the local context
provided by the antecedent of the conditional in (159) can take the same
form as it did in our treatment of (142.a), viz. that of identifying C with the
predicate “∈{w,y,z}”. After this identification, the effect of which results in
replacing the DRS-component K(147) in (159) with K(148), satisfaction of the
existence-and-uniqueness presupposition of the definite description follows
as before and we end up with the presupposition-free sentence representation
in (160).

(160)

w

Walter(w)
y z

rabbit(y) ; guinea pig(y)
have(w,y) ; have(w,z)

⇒

v

rabbit(v)
v∈{w,y,z}

Inasmuch as the presuppositions of (159) have been justified on the strength
of information provided by the antecedent of the conditional alone, we have
accounted for why these projections do not project to become presuppo-
sitions of the conditional sentence as a whole. However, we should recall
in this connection the observation made in the last section regarding our
treatment of (142.a): The justifcation of the existence-and-uniqueness pre-
supposition rests strictly speaking not only on the information explicitly
provided, but also on further assumptions, such as that Walter is a human
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being and that human beings are not rabbits. Because of this it isn’t strictly
speaking true that the local justification of the presuppositions of (158.a)
described here makes them disappear without any trace whatever. In a con-
text in which these assumptions could not be made, (158.a) would impress
the interpreter as infelicitous. However, for the sentence in question such
contexts are unlikely and in general, there will be a presumption, shared by
speaker and interpreter, that the context is not like this. Because of this
general default assumption a sentence like (158.a) will appear to us as free
of presuppositional constraints on context altogether.

Much the same treatment as the one we just presented for (158.a) is
possible for (158.b). The presupposition triggered by it is now adjoined to
the right hand side DRS of the duplex condition introduced by the quantifier
every friend of mine. (161) gives the preliminary representation of the
sentence and (162) the final sentence representation.

(161)

m

speaker(m)
x y

friend-of(x,m)
rabbit(y)
have(x,y)

�
��

�
��
�
���

��
∀

x

〈{
u

non-pers(u)

}
,

overfeed(x,u)

〉

(162)

m

speaker(m)
x y

friend-of(x,m)
rabbit(y)
have(x,y)

�
��

�
��
�
���
��

∀

x

u

u = y
overfeed(x,y)

Examples involving presupposition triggers distinct from definite noun phrases

In this section we look at examples which involve presupposition triggers
that are not NPs. The first of these is a factive verb, be surprised that, and
the second the adverb again. We begin with sentence (163).

(163) Bill is surprised that he is late.

Factive verbs presuppose the truth of their clausal complements. Within
the setting of the present account this means that in the preliminary repre-
sentation the representation of the complement sentence must occur more
than once — first, as argument of the attitudinal predicate expressed by the
verb, and, second, as factive presupposition. This need for representation
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duplication is extremely common. It arises in all cases of factive presuppo-
sition and with many other presupposition triggers as well. Moreover, the
duplication problem doesn’t arise just in the context of presupposition. It
is equally important in connection with ellipsis, and in that connection it
has received a good deal of attention.42 Here we will only be concerned
with aspects of the problem that are specific to its manifestations in the
context of presupposition.43 Duplication poses a major problem: the dupli-
cate representations must identify the same content. Strictly speaking we
are dealing wwith just one interpretation of the sentence material for which
duplicate representations seem required; the duplicate representations must
all capture the content captured by that interpretation.

One way in which this duplication problem manifests itself has to do with
the interpretation of pronouns occurring within a sentence or sentence part
of which duplicate representations are needed. This form of the problem is
illustrated by (163), where the anaphoric presuppositon trigger he occurs
as part of the representation serving as second argument of the complement
of be surprised and also as part of the factive presupposition.

To focus more clearly on the problem, let us consider a preliminary rep-
resentation for (163) in which the he-presupposition is represented twice.

(164)

b

Bill(b)〈{
K
}

, be-surpr.(b,

〈⎧⎪⎨
⎪⎩

u

male(u)
person(u)

⎫⎪⎬
⎪⎭ ,

“be-late”(u)

〉
)

〉
,

where K is the DRS

〈⎧⎪⎨
⎪⎩

u′

male(u′)
person(u′)

⎫⎪⎬
⎪⎭ ,

“be-late”(u′)

〉

The first thing to observe about (164) is that there will be no way to justify
the factive presupposition unless we assume that (163) is used in a context

42See e.g. [Schiehlen, 1999; Schiehlen, July 2002] and the references cited there.
43The requirement that multiple representaions of the same sentence constituent ex-

press the same content is another reason for preferring a bottom-up contruction algorithm
to one which works top-down. When we work our way bottom up, then normally we will
have constructed a represention of the part which requires mutliple representation at the
point when duplicates of the representation must be introduced into the representation
that is being constructed. Disambiguation decisions that sometimes have to be made in
the course of representation construction — we assume that syntactic trees may contain
ambiguities which are resolved only when they are converted into semantic representa-
tions — will already have been made in this case. When we proceed top-down, copying
will usually be needed at a point where the relevant part of the syntactic tree has not
yet been converted. Special provisions have to be made to make sure that afterwards the
same disambiguation decisions will be made in each of the copies.
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that entails it. However, factive presuppositions are, like those connected
with proper names, easily accommodated, and we will assume that this is
what happens eventually in this case. But before the factive presupposition
can be accommodated it ought to be clear what it is. In the present case this
requires that its satellite presupposition, involving the anaphoric discourse
referent u′, has already been resolved. So it is to the resolution of this
presupposition, and of its alter ego involving the discourse referent u, that
we must turn first.

When (163) is considered out of context — or against the background
of an empty discourse context, as when it is the very first utterance of a
conversation — the difficulty that multiple copies of anaphoric presupposi-
tions can cause doesn’t become visible yet. For in such a situation only Bill
is available as anaphoric antecedent for both u and u′. Resolving the two
pronoun presuppositions accordingly leads to the representation in (165).

(165)

b u′ u

Bill(b) ; u′ = b
“be-late”(u′)

be-surpr.(b,

u

u = b
“be-late”(u)

)

In (165) the representation of the second argument of be-surprised and that
of the factive presuppostion do express the same proposition, viz the de
re proposition which asserts of Bill that he is late. This is as it should
be. But we cannot count on being so lucky always. Things may go wrong
when a sentence like (163) is used in a non-empty context like that which
is provided by the first sentence of (166).

(166) John was late and thats what he told Bill. Bill isn’t surprised that he
was late.

The context established by the first sentence of (166) contains the informa-
tion that John was late and that John has told Bill that this is so. Among
other things it introduces (representations for) John and Bill. So the pro-
noun he in the second sentence is now ambiguous between an interpretation
in which it refers to Bill and one in which it refers to John. Once again we
assume that the preliminary representation (now for the second sentence of
(166)) is as in (164). Suppose we were to resolve u′ to John and u to Bill.
This would give us on the one hand satisfaction of the factive presupposition
in the context due to the first sentence (since the first sentence sasserts that
John was late). On the other hand the non-presuppositional part of the
sentence representation now says that Bill isn’t surprised that Bill was. It
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is plain, however, that the factive presupposition of that claim isn’t justified
by the first sentence of (166). So the presupposition justification we obtain
in this way is spurious. Evidently it won’t do to resolve u and u′ to different
antecedents.

There are various ways in which the requirement of a common resolution
for the discourse referents u and u′ of the duplicate presupposition repre-
sentations can be secured. One possibility is to insist that different copies of
the same anaphoric presupposition all use the same distinguished discourse
referent, and then to insist that different such occurrences (i.e. underlined
occurrences) of the same discourse referent in the same representation just
get the same antecedent. In the case of (164) this would mean that instead
of the two discourse referents u and u′ we would have just one — u, say –
occurring as distinguished discourse referent in both.)

These remarks are no more than suggestive. They can be turned into
someh]thing more precise only within the context of an explicite construc-
tion algorithm for preliminary representations. This is of course a very
important part of the theory of presupposition that is presented in this sec-
tion. And not only that, it is a crucial part of the version of DRT presented
here, given that presuppostion (with anaphors as special case of it) is the
central phenomenon that DRT should be able to account for. Unfortunately
a systematic treatment of DRS-construction — the construction of prelim-
inary sentence representations and the integration of these into discourse
representations — would transcend the already strained bounderies of the
present chapter. We will say a few words about the two phases of DRS con-
struction in Section 4.4 and 4.5, respectively. For a more detailed treatment
we point the reader to the forthcoming [Hans and Reyle, ].

We conclude this discussion with one last remark. on factive presuppo-
sitions here. As a rule factive predicates serve the purpose of attributing
propositional attitudes. Such predicates do not only give rise to factive pre-
suppositions, but also to presuppostions to the effect that the content of
the attributed attitude is something that the attributee himself believes (or
even takes for granted). At this point we are lacking the means to represent
such “doxastic” presuppositions adequately. Once we will have procured
these means in Section 5, we will return to the presuppositions of factive
verbs.

Our next example involves the presupposition trigger again. again trig-
gers a presupposition to the effect that the event or state described by the
sentence constituent to which it is adjoined was preceded by an event or
state satisfying the same description.44 To account for such presupposi-

44This is an oversimplification. As has been noted by several authors [Fabricius-Hansen,
1980; Fabricius-Hansen, 1983; Stechow, 1996], again is ambiguous between a repetitive
and a restitutive interpretation. The difference is most clearly seen with certain telic
verbs, for instance, the verb cure. In The tourist came down with typhoid, but the local
doctor cured him again. The word again can either be interpreted as presupposing that
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tions we must be able to represent the temporal aspects of natural language
meaning. So we now need as our basic DRT-language, which provides the
building blocks from which preliminary representations are built, one in
which events, states and their temporal properties and relations are made
explicit. We take as underlying language the DRS language of Section 3.5.
(See also [Kamp and Reyle, 1993].)

First consider the sentence (167), with the preliminary representation in
(168).45

(167) John made a mistake again.

(168)

j

John(j)

〈⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t′ e′ y′

mistake(y′)
e′:make(j,y′)

e′ ⊆ t′

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

t e y

mistake(y)
e:make(j,y)

e ⊆ t

t′ ≺ t

〉

The aspect of (168) that requires more extensive discussion is the placement
of the condition “t′ ≺ t”. This condition expresses that the presupposed
eventuality precedes the asserted one and this is clearly needed. But where
should we put it? In (168) it has been inserted into the non-presuppositional
part of the representation, to which the again-presupposition has been ad-
joined. The reason for doing this is that a presupposition has a certain
“logical priority” over the sentence or sentence part to which it is adjoined:
The semantic contribution that is made by this sentence or sentence part
will be determined only when the presuppostion has been resolved. So the
presuppotion should not be “referentially dependent” on the representation
of its adjunction site in the sense of containing a free discourse referent which
is bound only in the representation of the adjunction site. But adding the
condition “t′ ≺ t” to the representation of the presupposition would create
just such a dependency. Hence its appearance as part of the representation
of the adjunction site.

the there was an earlier event of the doctor curing the patient (the repetititve reading),
or as presupposing that before the time when the tourist came down with typhoid he
was in a state of being healthy (or at least typhoid- free) and that this state of affairs
is “restituted” by the curing event whose occurrence is asserted by the sentence (the
restitutive reading). Here we will only consider repetitive readings.

45The representation given here of the VP make a mistake is not really satisfactory.
First, it isn’t right to analyse make as a relation between the subject Bill and some
independently existing object, the mistake. make functions as “verb of creation” here
and the mistake is what results from the event it describes. Second, make acts as a light
verb. The relation it contributes cannot be determined from the verb by itself, but only
in combination with the head noun mistake of its direct object.
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There is, however, another intuition which seems to speak against adding
“t′ ≺ t” to the adjunction site representation. Again-sentences like (167)
seem to be making a certain claim, expressed by the sentence without again.
Again seems to “tag on” a certain presupposition to this claim, to the effect
that one or more eventualities of the kind described by the claim occurred
before the one whose occurrence is claimed. From this perspective the pre-
suppostion is that one or more eventualities of the kind described occurred
before the occurrence time of the asserted eventuality : The latter eventual-
ity ev is said to have occurred at some time t and the presupposition is that
there were similar eventualities before t. This perspective is especially com-
pelling in connection with certain negated again-sentences. For instance
the second sentence of

(169) Mary came on Tuesday. But she didn’t come again on Wednesday.

is naturally glossed as (i) making the claim that there was no coming on
Wedensday, and (ii) that there was a coming of Mary at some time be-
fore Wednesday (a presupposition which is justified by the first sentence of
(169)).

But for non-negated sentences such as (167) the perspective is plausible
as well. It is easy to imagine a context in which a certain past time is
already in focus and in which the ..... of (167) is understood to locate
the event it describes. In fact, as we saw in Section 3.5, tenses are often
anaphoric in several ways; now that we have reinterpreted anaphora as
a species of presuppositions we can make this anaphoric dimension more
explicit by representing the location time t of the asserted event as involving
an anaphoric presupposition of its own. In a preliminary representation
in which t is treated in this way, the again-presupposition can now be
made dependent on this first presupposition, without it thereby becoming
dependent on the non-presuppositional part of the representation. Such a
preliminary representation is given in (170).

(170)

j

John(j)

〈{
t

t ≺ n

}
,

〈
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t′ e′ y′

mistake(y′)
e′:make(j,y′)

e′ ⊆ t′

t′ ≺ t

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

e y

mistake(y)
e:make(j,y)

e ⊆ t

〉〉

An interesting feature of again, which it shares with anaphoric words such
as else, other and relational adjectives such as similar, related etc., is shown
by the following pair of discourses.
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(171) a. I will help Bill tomorrow. But I won’t help him again.

b. I will help Bill tomorrow. But I will not help him.

c. I will help Bill tomorrow. But I will never help him again.

d. I will help Bill tomorrow. But I will never help him.

(171.b) and (171.d) are bizarre and can only be interpreted as straight
contradictions: the first sentence announces that a certain event will take
place tomorrow and the second asserts that no such event will take place
(ever) in the future. (171.a) and (171.c) are perfectly coherent. They convey
that a certain event will occur tomorrow and that no such event will ever
happen after this one. Evindently it is the presence of again in (171.a,c)
and its absence from (171.b,d) which is responsible for the difference.

To account for this contrast we must recall what was said about frequency
adverbs and negation in 3.5. The interpretation of both negation and ad-
verbs like never involves a frame adverbial, we noted there. This frame
adverbial plays the same role in such sentence as does the location time in
simple sentences like (167) or the first sentence of (171.a,b); in particular,
in sentence with not or never it is now the frame interval that is involved
in the anaphoric location time presupposition displayed in (170). Thus we
get for the second sentence of (171.a) which contains not the representa-
tion in (ref29”), whereas (ref29”’) is the representation of the corresponding
sentence without again.

(172)

j b

the speaker(j) ; Bill (b)

〈{
t

n ≺ t

}
,

〈⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t′ e′

e′:help(j,b)
e′ ⊆ t′

t′ ≺ t

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

s

dur(s) = t

s:¬

e

e ⊆ t
e:help(j,b)

〉〉

(173)

j b

the speaker(j) ; Bill (b)

〈{
t

n ≺ t

}
,

s

dur(s) = t

s:¬

e

e ⊆ t
e:help(j,b)

〉

The contrast between (172) and (173) shows that the presence of the again-
presupposition in (171) creates the possibility of resolving t′ to the time t0 of



282 HANS KAMP, JOSEF VAN GENABITH, UWE REYLE

the event of the speaker helping Bill tomorrow which is asserted in the first
sentence and resolving t to the period following t′ (=t0). In (173), where
the again-presupposition is absent, such a resolution of t is apparently not
possible (even though the context is exactly the same). We will return to
this case in Section 4.5.

There is one further feature of (172) which requires comment here. This is
the interaction between again-presuppositions and negation.46 Even though
syntactically again is presumably within the scope of negation in (171.a) the
presupposition it triggers has been adjoined outside the negation operator
in (172). What is the justification for this?

The answer is connected with an aspect of the theory of presupposition
that was prominent from the first beginnings. This is the relation between
presupposition and negation. (The interaction between negation and again-
presupposition in (171) is just one instance of this; but the relation equally
concerns all type of presuppositions.) In the early days, when presupposition
was primarily the concern of logicians it was seen as one of the central
features of presuppositions that they equally affect a sentence S and its
negation. The presuppositions of ¬S are the same as the presuppositions
of S. If the presuppositions are not satisfied, then neither S nor ¬S is (i.e.
have a truth value, or express a proposition); if the presuppositions are
satisfied, then both S and ¬S are “proper” (and, of course, of opposite
truth value). When presupposition theory became a part of linguistics later
on, the question whether an implication is preserved under negation became
one of the major criteria for deciding whether the implication is a case of
presupposition.

Whithin the setting of present account of presupposition, the fact that
presuppositions of S are also presuppositions of ¬S has a simple explana-
tion. Negation is a 1-place operator. (In this regard it differs both from

46Note that the scope relation between the negation and again in the second sentence
of (174.a) is also evident semantically. When again has scope over a negation, then the
negation will figure in the again-presupposition. Compare for instance (174.a) – (174.d)

(174) a. Bill was on time yesterday. But he hasn’t been on time again today.

b. Bill wasn’t on time yesterday. And he hasn’t been on time again today.

c. Bill was on time yesterday. *But again he hasn’t been on time today.

d. Bill wasn’t on time yesterday. And again he hasn’t been on time today.

These examples make two points. First, the oddity of (174.c) shows that when again
unequivocally has scope over the negation, then the negation is part of the presupposition.
The again-presupposition of the second sentence of (174.c) and (174.d) says that there
was an earlier occasion when Bill wasn’t on time. This is precisely what the first sentence
of (174.c) does not allow us to justify. (The first sentence of (174.d), on the other hand,
does allow this, so (174.d) is unobjectionable.) That both (174.a) and (174.b) are fine
shows that there the second sentence is ambigous between a reading in which again has
wide scope over the negation and one in which it does not. In our representation of (174.a)
we have been guided by the semantic intuition that here the narrow scope reading for
again seems the intended one.
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“sentential connectives”, like and and if, and from natural language quan-
tifiers, like all, most, many, etc., all of which are 2-place (the quantifiers
always involve restrictor as well as nuclear scope). As a consequence there
is within the scope of the negation no new information that could serve as
local context for the justification of a presupposition triggered by the sen-
tence or sentence part on which the negation operates (in the way in which
the antecedent of a conditional can serve as context for the justification of
a presupposition triggered by the consequent, etc.) So justification of the
presupposition will be possible, if at all, only in a context which includes
the negation within its scope.

In view of this it is immaterial for the final outcome of the interpretation
process whether a presupposition triggered within a negated sentence or
sentence part is adjoined under or outside the scope of the negation operator.
For instance, we could have represented the second sentence of (171.a) also
as in (175), with the representation of the presupposition inside the scope
of ¬.

(175)

j b

the speaker(j) ; Bill (b)

〈{
t

n ≺ t

}
,

s

dur(s) = t

s:¬
〈⎧⎪⎪⎪⎨
⎪⎪⎪⎩

t′ e′

e′:help(j,b)
e′ ⊆ t′

t′ ≺ t

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

e

e ⊆ t
e:help(j,b)

〉
〉

In the context provided by the first sentence of (171) justification of the
again-presupposition of (175) clearly comes to the same thing as justifica-
tion of the again-presupposition of (172): In both cases justification is in the
global context specified by the first sentence, so exactly where the presup-
position is adjoined in the preliminary representation of the new sentence
is, as far as justification is concerned, of no consequence. The same is true
in cases where the presupposition is justified sentence-internally. (Consider,
e.g., the conditional with the first sentence of (171.a) as antecedent and
the second sentence as consequent.) Here too it doesn’t matter whether
the justified presupposition is represented under or outside the negation
operator.

Is there any way of choosing between the preliminary representations
(172) and (175)? Arguably it is (175) which results directly from the ap-
plication of the general construction rules to the input structure (i.e. the
syntactic structure of the second sentence of (171.a)). (172) can then be
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seen as a variant of (175) which can be obtained by “lifting” the presup-
position “beyond” the negation, relying on the principle that justification
of the presupposition is equivalent to justification in a context which has
scope over the negation.

(175) is preferable to (172) also for another reason. Sometimes presuppo-
sition can be “cancelled under negation”. This typically involves denying ex-
plicitly that the presupposition is true. A famous example which played its
part in the debate between Russel and Strawson over the question whether
there is such a thing as presupposition is given in (176.a); (176.b) illustrates
the same phenomenon, but in connection with a presupposition triggered
by again.

(176) a. The exhibition wasn’t opened by the King of France.

b. I am not reading this paper again. I am reading it for the very
first time.

Sentences of this kind are described as instances of “local satisfaction of
the presupposition under negation”, a term which suggest that what we see
in these cases is on a par with non-projection of the kind exemplified by,
for instance, ...... We believe, however, that the two phenomena are very
different in nature and that the right explanation of what we see in (176) is
along the lines of Horn’s theory of negation. According to this theory the
function of negation is not restricted to denying the truth of the proposition
expressed by the sentence material in its scope, but can be extended to
cover other factors that can be responsible for failure to produce a felicitous
true claim. Failure of presupposition is one of the many factors. There
is an ongoing dispute precisely under what circumstances negation can be
used to reflect factors other than the actual falsity of a correctly expressed
proposition. (In order that a negation can be understood as denying truth
of what it applies to because of presupposition failure, it seems neccessary
that the presupposition must itself be denied explicitely, but probably the
last word about what is involved in presupposition cancellation has not
yet been said.) However, it should be clear, whatever the details, that
presupposition cancellation is an entirely different phenomenon from local
satisfaction. In the latter case the presupposition is “locally true”; in the
former it is “globally false” and thus a fortiori “locally false” as well.

Local Justification in Conjunctions

In this subsection we briefly address one further instance of local presup-
position justification, that of sentence compounds formed with “&-like”
conjunctions such as and, but, although, because and others. It is one of the
standard facts about anaphora that pronouns to the right of such a conjunc-
tion can be construed as anaphoric to an indefinite on the left, but not vice
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versa. This is so both when the compound is a complete sentence by itself
and when it occurs as part of a larger sentence, e.g. as antecedent or con-
sequent of a conditional. The same observations apply to presuppositions
that are due to other triggers than pronouns. We restrict our attention here
to coordinate structures with the conjunction and.

(177) a. If a friend of mine has a rabbit and he loves it, then he overfeeds it

b. *If he loves it and a friend of mine has a rabbit, then he overfeeds it

c. If someone is caught stealing and he is then caught stealing again,
he is sent to goal.

d. *If someone is caught stealing again and he is then caught steal-
ing, he is sent to goal.

From the point of presupposition justification conjunctions thus behave like
conditionals and quantifications. It is natural to capture this similarity
by representing conjunctions at the level of preliminary representations in
the form of complex DRS conditions, composed of the representation for
the first conjunct and the representation of the second. This will enable
us to specify, by the same means that we used for duplex conditions and
conditions formed with ⇒, that the first conjunct serves as local context for
the second conjunct.

To form such conjunctive DRS conditions we need an operator to rep-
resent the conjunction operator which English expresses by means of the
word and. From the Dynamic Semantics literature it is clear what symbol
we should use for this purpose. Dynamic Semantics, in the more restrictive
sense of the term, makes use of the dynamic conjunction operator “;”.47

The semantics of this operator stipulates that a conjunction formed with
its help is true in a given context K0 iff (i) the first conjunct is true in K0

and (ii) the second argument is true in the context obtained from updating
K0 with the information contributed by the first conjunct. This is in essence
what we need. And in Section 4.3, where we present the model theory for
preliminary DRSs, we will define the semantics of “;” along these lines.

Using “;” we get for (177.a) the preliminary representation in (178).

(178)
x y

boy(x)
rabbit(y)
have(x,y)

;

〈
K1, love(z,u)

〉
⇒

〈
K2, overfeed(w,v)

〉

47See for instance [Groenendijk and Stokhof, 1991].
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K1 =

⎧⎪⎨
⎪⎩

z

male(z)
pers(z)

,
u

non-pers(u))

⎫⎪⎬
⎪⎭

K2 =

⎧⎪⎨
⎪⎩

w

male(w)
pers(w)

,
v

non-pers(v))

⎫⎪⎬
⎪⎭

We assume that the left sub-DRS of the ;-condition in (178) can serve as
local context for the justification of the presuppositions adjoined to its right
sub-DRS. This allows for resolution of the anaphoric discourse referents z
and u via identification with x and y. The result of this can be represented
as in (179).

(179)
x y

boy(x)
rabbit(y)
have(x,y)

;

z u

z = x ; u = y
love(z,u)

⇒
〈
K2, overfeed(w,v)

〉

K2 =

⎧⎪⎨
⎪⎩

w

male(w)
pers(w)

,
v

non-pers(v))

⎫⎪⎬
⎪⎭

What about the justification of the remaining presuppositions, in the con-
sequent of the conditional? Here we face an issue which we have not yet
encountered. By representing the antecedent of the conditional (177.a) in
(178) as a complex condition inside the left DRS of the ⇒-condition we
have created a configuration which seems to render the information inside
the DRS components of the ;-condition inaccessible to that in the conse-
quent of the ⇒-condition. Clearly this is not what we want. We could
extend the definition of accessibility in such a way that the information in
the conjuncts of ; in (179) does become accessible to the consequent. But
the same effect can also be achieved in a slightly different way, viz. via
the priciple that presupposition-free ;-conjunctions can be merged with the
DRS to whose condition set the conjunction belongs. The principle is stated
in (180).

(180) (Lifting of presupposition-free ;-conditions)

Suppose that a preliminary representation K has a component K′, that
K′ contains a condition of the form “K1;K2” and that this condition is
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a DRS condition — that is, both K1 and K2 are free of presuppositions.
Then K′ may be replaced in K by the merge of K′, K1 and K2.

Applying (180) to (179) gives (181), in which the remaining presuppositions
can now be resolved in the manner desired. The final representation is (182).

(181)

x y z u

fr.o.m.(x)
rabbit(y)

z = x
u = y

have(x,y)
love(z,u)

⇒
〈
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

w

male(w)
pers(w)

v

non-pers(v)

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,
overfeed(w,v)

〉

(182)

x y z u

fr.o.m.(x)
rabbit(y)

z = x
u = y

have(x,y)
love(z,u)

⇒

w v

w = x
v = y

overfeed(w,v)

Applications of principle (180) seem to introduce into the justification pro-
cess a genuine element of sequentiality. For instance, in (179) we must first
resolve the presuppositions involving z and u, then apply (180) and then
resolve the remaining presuppositions. In this regard the processing order
that is imposed on (179) differs from the cases discussed in the last section.
There too, presupposition resolution often seemed to be a matter of pre-
ceeding in the right order. For instance, in discussing the again-sentence
(167) we attributed a logical priority to the resolution of the presuppostion
for the location time t over the presupposition triggered by again. But it
is nevertheless possible to understand presuppostion resolution for a given
preliminary representation as a single problem, that of the simultaneous so-
lution of a set of (presuppositional) constraints: each constraint resolution
must be chosen in such a way that all fit together. In Section 4.5 we will
look at examples which bring out this aspect of simultaneous constraint
solving very clearly.

Principle (180) appears to change this picture. Usually it requires that
certain resolutions have already been carried out while other resolutions are
possible only once the application has occurred. But of course this doesn’t
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alter the spirit of simultaneous resolution. Even in the presence of (180) it
remains true that the earlier resolutions should be carried out in such a way
that the later ones remain possible. In fact, we can eliminate the element
of sequentiality which the introduction of (180) introduces by redefining
accessibility (as suggested earlier), and leaving (180) merely as a means for
simplifying the notation of presupposition-free representations. But this is
an alternative we won’t pursue further here.48

We noted that and is only one of a number of words that form logical
conjunctions in English. In some cases, like in that of and itself these
conjunctions take the form of coordinations and in others (e.g. because)
that of subordinations; but in all these cases left-to-right order matters
to anaphoric an presupposition resolution, and therefore requires the use
of ; in preliminary representation for the same reasons why it is needed
in the representation of conjunctions with and. (There is a complication
with subordinate conjunctions. When the subordinate clause precedes the
main clause, resolution may “go in either direction”, with the main clause
serving as context for the justification of presuppositions arising within the
subordinate clause as well as the other way round. These cases require a
more complex analysis, which we do not go into here. (For the case of
pronominal anaphora see [Chierchia, 1991].)) But it is not only coordinate
and subordinate conjunctions which require the use of ;. The effect of linear
order on presupposition resolution makes itself fell in many other . . . as well.
One type of case involves relative clauses. An example is given in (183).

(183) A man who loves a woman who also loves him ought to be happy.

Here him can (and is naturally understood to) refer to the discourse
referent introduced by a man and also is appropriate in that the proposition

48One reason for dwelling on the case of conjunction has to do with the history of
DRT. The problem was known from the earliest days of DRT, at least in its application
to anaphoric pronouns. In [Kamp and Reyle, 1993] it was discussed at considerable
length (see Ch. 1.5). But the solution presented there, involving a baroque indexation
system which takes away much of the initial appeal of DRSs as comparatively simple data
structures, can be euphemistically described as “awkward”. At that time the dynamic
conjunction operator ; was already widely known and it was certainly known to the
authors. The failure to make use of ; in [Kamp and Reyle, 1993] was based on a certain
confusion: In DRSs the need for conjunction as a logical operator is rendered superfluous
by the device of collecting DRS conditions into sets — the set ConK consisting of the
DRS conditions of the DRS K acts as the conjunction of those conditions. But sets are
by definition unordered, so the left-right ordering between the conjuncts of a conjunction
in natural language is lost as soon as those conjuncts, or their representations, are made
into a set. The indexing system of [Kamp and Reyle, 1993] was designed to retain
information about their order as long as it was needed, but the solution seems at hoc
and is unappealing.

The two-stage architecture adopted here gives us the right way of having our cake
and eating it. As indicated by our discussion of (174.a), we need the order within the
preliminary representations, but once presupposition justification has taken place, it can
be discarded. In the present formulation, it is principle (180) which does the discarding.
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expressed by the clause to which it is adjoined — that of the woman y loving
the man x — is parallel in the way required for the interpretation of also
to the proposition that x loves y which “precedes” it. It is a well-known
point of generative syntax that reversal of him and its antecedent distroys
this interpretation and the same can be observed when we move also from
the inner to the outer relative clause.

(184) a. He who loves a woman who also loves a man ought to be happy.

b. A man who also loves a woman who loves him ought to be happy.

(184.a) can only be interpreted as a statement about men who love a
women who love some man or other, and presumably one that is different
from themselves. And (184.b) implies that there is something else connected
with the man (some other property, or something he does) besides loving
a woman who also loves him; the parallel between x loves y and y loves
x doesn’t help in this case to justify the presence of also. If we want to
capture these asymmetries with the help of ;, then the component DRSs of
the restrictor of the generic quantification in (183) will have to be separated
by ; at least to the extend shown in (185).49

(185) x

man(x) ; K

�
��

�
��
�
���

��
x

∀
“ought to be happy”(x)

with K =

y

woman(y)
loves(x,y)

;

〈⎧⎪⎪⎪⎨
⎪⎪⎪⎩

u

male(u)
person(u)

,

v w

v �= y
w �= u

loves(v,w)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
loves(y,u)

〉

We leave it as an excercise to verify (i) that the two presuppositions of
(185) can be resolved in the intended ways on the assumption that what
comes to the left of ; can serve as context for what occurs to the right,
and (ii) that the intended resolutions are blocked in similarly constructed
preliminary DRSs for (184a,b).

For relative clause constructions the construction principle yields the ;-
articulated representations we want. But the asymmetry problem is much
more pervasive. (186) gives two further examples.

49The represenation of the also-presupposition is based on the assumption that the
presupposition also generates is similar to the one expressed by also’s adjunction site.
For this particular case we have assumed that such a proposition can take the form of a
combination of the same relation, “love”, with different arguments. A proper treatment of
the presuppositions triggered by also requires an account of information structure which
has not been included in this chapter; so the present treatment of the also-presupposition
has to be taken at force value.
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(186) a. A little boy loved his rabbit.

b. When a bishop meets another bishop, he blesses him.

In (186.a) switching the order of the two NPs distroys the possibility
of interpreting his as anaphoric to a little boy (whether or not we keep
the verb in the active, as in His rabbit loved a little boy., or turn it into
the passive, as in His rabbit was loved by a little boy.) Similarly switching
subject and object in (186.b) — When another bishop meets a bishop he
blesses him. — it becomes much harder (if perhaps not outright impossible)
to interpret another as anaphorically related to the object NP a bishop (i.e.
as understanding the latter NP as denoting an individual from which that
of the NP another bishop is disjoint). Rather, the new sentence suggests
that some bishop is already part of the discourse context.

These last two examples illustrate two points: (i) apparently the asym-
metry conditions which limit the possibilites for presupposition resolution
are not the same for presuppositions of different types. (The constraint on
his seems to be stricter than that on another.); (ii) the conditions seem to
depend on subtle questions of grammatical structure. For the special case of
anaphoric pronouns this problem has been thoroughly investigated within
the so-called Binding Theory of Government and Binding and subsequent
frameworks of Chomskyan or Chomsky-inspired syntax.50 For anaphoric
presuppositions of other kinds and for non-anaphoric presuppositions (for
the distinction between anaphoric and non-anaphoric presuppositions as we
here understand it, see Section 4.2) the issue is, as far as we know still
largely unexplored. As long as the empirical facts in this area remain in
the dark there is no hope of stating the principles which guarantee that
perliminary representations receive the correct ;-articulation. But, equally
important, if the asymmetry constraints on presupposition resolution vary
from one type of presupposition to the next, ;-articulation cannot be a suf-
ficient guideline to presupposition resolution in any case. At least for some
kinds of presuppositions the relevant structural constraints will have to be
represented or defined in some other way. At the present point in time the
range of questions that need to be answered in this domain is only gradually
coming into sharper view. All we can do here is to point somewhat loosely
in this general direction.

4.3 Syntax and Semantics of Preliminary Representations

The examples we have shown in Section 4.2 should have given some impres-
sions of the form that preliminary sentence representations can take, but
this impression is inevitably incomplete. The formal definition we present

50See, e.g., [Chomsky, 1981] and [Lasnik, 2003]. For a proposal how the Binding Theory
of GB can be integrated into a method of constructing DRSs see [Berman and Hestvik,
1994].
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in this section of the syntax of preliminary representations is quite liberal.
It specifies a class of preliminary representations which includes not only
the types exemplified in the last section, but much else besides. For all that
is known to us at this point, the class may well be in excess of what it needs
to be from the perspective of the semantics of a natural language. But this
is an issue that it will be possible to settle only when the present proposal
has been applied to a much larger range of cases than it has been so far.

We assume a DRS language L as given. DRSL denotes the set of all
DRSs of L. Exactly what L is like won’t matter to the definitions which
follow. We have by now come across quite a number of DRS-languages: the
“basic” language used in Section 2 and formally defined in Sections 3.1 and
3.2, and the extensions that were introduced in Sections 3.3 — 3.5. Since
the extensions proposed in 3.3, 3.4 and 3.5 are independent of each other,
this already gives us a range of 7 possible extensions of the basic language.
But in fact this is an underestimate since the extensions proposed in 3.3 and
3.5 were not uniquely determined; rahter, each can take one of a number
of different forms, depending of the adopted set of quantifiers in the case
of 3.3 or, in the case of 3.5, depending on the set of aspectual operators,
and on the set of adverbial temporal quantifiers. The formal definitions
which will follow should be independent of which of the possible DRS lan-
guages we choose for our underlying language L. To this end we assume
that L is equipped with a certain set OPL of “complex condition formers”
— operators On — which build complex DRS conditions from n-place se-
quences of “argument” DRSs, while binding one or more discourse referents
in the process (in the sense in which a quantifier like ∀ binds the discourse
referent appearing in the central diamond of the corresponding duplex con-
dition). We will assume for simplicity that no operator binds more than
one discourse referent at a time (thus leaving the cases of polyadic quan-
tification discussed at the end of Section 3.3 out of consideration). On this
assumption it is possible to distinguish between the “variable binding” and
the “non-variable binding” operators in terms of a binary feature: we mark
each variable binding operator with a “+”, writing On

+, while leaving the
non-variable binding ones unmarked. We restrict the scope of the possible
languages L in other ways as well, in that we ignore operators like PROG,
which apply to intensional event abstracts over DRSs, as well as predicates
like the attitudinal state predicate ‘Att’ of the next section whose second
argument is an ADS (Attitude Description Set), an expression type of a
complexity not yet encountered. Again these restrictions are not essential
and are easily removed once the definitions are in place for the more re-
stricted set of languages we will consider. We need one furhter peace of
information about our operators, viz. the accessibility relation among their
arguments. This is something that cannot be predicted in general terms —
recall the difference between ⇒ and ∨, with the first argument being ac-
cessible from the second (but not vice versa) in the case of ⇒, but with no
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accessibility either way in the case of ∨. Since we take the accessibility rela-
tion within a preliminary DRS K to be a strict partial order (i.e. a relation
which is transitive and asymmetric)51 and since it will contain the accessi-
bility relations between the components of a DRS condition On(K1,...,Kn)
as a suborder in case K contains this condition, the accessibility relation
among K1, ..., Kn will have to be a strict partial order as well. We assume
that the accessibility relation among the arguments of any operator On

(+)

∈ OPL is given as part of OPL, and assume that this information is given
in the form of a function Acc on OPL which assigns to each On

(+) ∈ OPL a

strict partial order on the set {1, ..., n}. for operators On
(+) with more than

two arguments we need to make two further assumptions relating to their
local accessibility relation, AccOn . First, in order that the definitions below
are well behaved it is neccessary to assume that for each argument Kj of a
condition On(K1,...,Kn) from which at least one other argument Ki of the
condition is accessible, there exists a “nearest accessible” argument.

(187) Suppose that 〈i,j〉 ∈ AccOn , then there must be among the argument
positions 1,...,n one position k which is a “minimal predecessor of j in
AccOn”, i.e. 〈k,j〉 ∈ AccOn and for all m such that 〈m,j〉 ∈ AccOn ,
〈m,k〉 ∈ AccOn .

This assumption is needed to guarantee a coherent definition of the local
context of a presupposition within a preliminary representation. The rele-
vance of the constraint can be seen when we define the accessibility relation
AccK between the sub-DRSs of a given DRS of L. We can define this relation
as the transitive closure of the union of the following sets:

(a) the set of all pairs 〈K′,Ki〉, where Ki is the i-th argument of a condition
of the form On(K1,...,Kn) belonging to the condition set of K′, and

(b) the set of all pairs 〈Ki,Kj〉, where Ki and Kj are the i-th and
j-th arguments, respectively, of a condition of the form On(K1,...,Kn)
occurring somewhere in K and 〈i,j〉 ∈ AccOn .

(187) is easily seen to ensure that for each K′ occurring in K there is a
“nearest” sub-DRS K′′ of K such that 〈K′′,K′〉. The second assumption
only concerns the variable binding operators. For these we assume that
the discourse referent bound by the operator is accessible to each of the

51We assume (i) that presupposition resolution always takes place in a context which
does not include information provided by the part of the sentence which contains the
presupposition trigger, and (ii) that all information that is accessible from a given con-
stituent of a preliminary representation can be used for justification of the presupposi-
tions adjoined to that constituent. Thus the accessibility relation we need here should be
asymmetric and transitive. This is a difference with the original accessibility of DRT, as
defined in [Kamp, 1981a] or [Kamp and Reyle, 1993] which is transitive, antisymmetric
and reflexive.
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operator’s arguments. More formally, suppose we write the DRS conditions
fromed with the help of such an operator as “On

x (K1,...,Kn)”, then x is
accessible from each of K1, ..., Kn. We can express this condition in the form
of a relation between DRSs, viz. by assuming that each variable binding

operator On has an extra DRS argument of the form K0 =
x

, where x

is the discourse referent bound by the operator, and that the accessibility
relation determined by On includes all pairs 〈0,i〉 (where i = 1,...,n).

It is clearly in the spirit of our general approach that the transition
form DRSs to preliminary DRSs should be defined in this general way, as
pertaining to any one of a large number of possible choices for L. However,
some of the definitions, which are quite complex, and in our judgment are
all the more difficult to understand in the abstract setting which includes
an open ended class of underlying DRS languages L which are only required
to obey a number of very general constraints. We therefore recommend
that the reader, while he is making his way through these definitions for the
first time, keeps a particular comparatively simple DRS language L0 in the
back of his head, where the condition forming operators are ¬, ⇒, ∀ and
;, and where atomic conditions are of the forms x=y or P(x1,...,xn). For
the operator set OPL0

(= {¬,⇒,∀, ; }) the relevant information is familiar:
∀ is the only variable binding operator among them, all but ¬ are 2-place,
while ¬ is 1-place; for ⇒ and ; the accessibility order is {〈1,2〉} (where for
⇒ 1 is the restrictor and 2 the nuclear scope and for ; 1 is the first conjunct
and 2 the second). For ∀ the accessibility relation is {〈0,1〉,〈0,2〉,〈1,2〉},
where 1 indicates the restrictor, 2 the nuclear scope and 0 the “dummy
DRS” containing only the bound variable (recall the convention about the
accessibility relation of bound variable operators introduced above). For
the 1-place operator ¬ the local accessibility relation is of course ∅. Clearly
this charachterisation of Acc{¬,⇒,∀,;} is in accordance with the constraints
imposed above.

Before we proceed with the formal specifications of the various syntactic
notions which we will need, a few things ought to be said about the semantics
of the representation formalism we are about to define. We are facing a
fundamental question here: What should we expect from a semantics for
such a formalism? Different answers to this question may be possible, and
different answers may be wanted on the basis of one’s general view of the
nature of presupposition. From our own perspective, which has informed
most of what has been said in this section so far, the following answer
seems adequate, and perhaps that by now the reader expected as much:
The “semantics” of a preliminary representation should answer the two
basic questions which are connected with it witihin a presupposition theory
of the general form we have been advocating:

(i) there must be a precise model-theoretic answer to the question whether
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the presuppositions of the preliminary representation are verified given
a global context DRS Kg; and

(ii) there must be a model-theoretic definition of whether that which re-
mains of a preliminary representation after all its presuppositions have
been justified and eliminated is true.

The second of these questions is unproblematic as long as what remains
of a preliminary representation after elimination of its presuppositions is
a DRS of the underlying DRS language L. For in that case this question
reduces to the semantics for L, and we may assume that that has been
delat with as part of the specification of L. This is what we would expect
on intuitive grounds, and indeed found to be the case in all the examples
we have so far considered. And as a matter of fact, it will follow from the
formal definitions below that this will always be so.

What remains is the first question. At first sight this question appears
daunting, because, as we have seen, the structure of preliminary represen-
tations can be very complex: Presuppositional components of a preliminary
representation may have further presuppositions adjoined to them, and so
on arbitrarily far down; and presuppositions can occur in the local contexts
created by the operators On, i.e. as adjuncts to the DRSs which occur
as arguments to those operators. And of course these two sources of com-
plexity will often combine (for instance when a possessive NP such as his
rabbit occurs within the consequent of a conditional. Presuppositions in
the subordinate positions created by operators may look like they present a
particularly serious problem, for in general justification of such a presuppo-
sition isn’t with respect to the global context Kg as such, but with respect
to the local context of the presupposition, which combines the information
from Kg with information that is sentence-internal.

Nevertheless, it turns out that for the formalisms we will define question
(i) has a simple solution too, which relies entirely on the model theory
for the underlying language L, which is assumed to be already in place.
The reason for this can be explained as follows. For any presuppositional
component K′ occurring somewhere in a preliminary representation K we
can, given a global context Kg, define the total information available for its
justification at its local context in K. Moreover, this total information at
K′’s local context has the form of a DRS Klc(K′). So the question whether
K′ is justified given KC reduces to the question whether DRS lc(K′) |= K′

and this a question about entailment between two DRSs form L.

To determine the local context of K′ in K we amalgamate all the non-
presupposition parts of K which we encounter when follwing the “projection
line” defined by the accessibility relation starting from the position of K′’s
local context all the way up to the global context Kg. Here we only col-
lect the non-presuppositonal parts, while ignoring the presuppositions. This
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may seem suspicious. For a presupposition such as K′ may itself depend on
other presuppositions that occur as constituents of K, for instance presup-
positions that are directly left-adjoined to K′ itself. Is there anything that
can be meaningfully said about the jsutification of K′, one might ask, when
the justification of these other presuppositions has not yet been settled?

The answer to this question is as follows. The relation between Kg and
K′ which concerns us is whether all of K’s presupposiotions are justified
in their respective contexts. If that is so, it will be true in particular for
those presuppositional components in K which do not presuppose other
such compoennts in K. This means that the information they represent is
entailed by their local context (and thus by Kg together with the relevant
non-presuppositional parts of K). So the question whether presuppositional
components of K which depend only on presuppositions of the first (“inde-
pendent”) sort are justified, won’t be affected by whether their presupposi-
otions are ignored; for the information that those presuppositions represent
will be part of the ontextual infomation in any case. And so on.

In other words, the analysis of presupposition justifcation we have al-
luded to will lead to intuitively correct answers to the question whether all
presuppositions of K are justified. As soon as one presupposition is not sat-
isfied in its local context, then our analysis can not be relied upon to give
us meaningful assessments of the justification of other presuppositions of K,
which depend on it. But in that case we already have a negative answer to
our question in any case.

As we have seen, justification in the global discourse context of all presup-
positions of the preliminary representation of a sentence is not something
that can be expected. More often than not some form of accommodation
will be needed. In such cases the justification anaylysis we have sketched will
return a negative answer, but as things stand it will not tell us what accom-
modations should be made to turn the global context into one which does
justify all presuppositions at once. All that the theory gives us in such cases
is a criterium that decides which accommodations will be formally adequate
in the sense that the resulting context does justify all presuppositions. We
think it is a legitimate suspicion that this cannot be the complete story. For
there are many cases where the presuppositions of a sentence that is used
in a given context seem to force accommodation of a very specific kind, so
much so that the accommodations feel almost like regular inferences which
the discourse enables us to draw. We will see an example of this in the
next subsection. For the phenomenon of “forced accommodation”, where
the sentence and its given context compell us to accommodate in one very
specific way no explanation is given by the theory presented here.

When we argued that the entailment relation between DRSs of L is all
we need to answer the question whether Kg justifies all presuppositions of
K we implicitly assumed that all presuppositions were non-anaphoric. As
soon as anaphoric presuppositions come into play, matters get somewhat
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more complicated because the non-presuppositonal parts of K may now
have occurrences of discourse referents which are bound within an anaphoric
presupposition on whihc the part depends. However, even this is not a
real stumbling block. For justification of an anaphoric presupposition will
involve linking its anaphoric discourse referents to some other discourse
referent and this “antecedent” discourse referent will have to be declared
in (that is, belong to the DRS-universe of) either the global context or else
some non-presuppositional part of K. Suppose that there is a link for all the
anaphoric discourse referents of K such that all presuppositions of K are
justified given that link. Then the presuppositions can be elminated and
at the same time the occurrences of the anaphoric discourse referents in
nonpresuppositional parts can be replaced by their antecedents according
to the link. In this way we once again obtain from K a DRS from L as
definitive representation. This DRS will in general not be proper, but its
free discourse referents will be declared in the global context DRS Kg, just
as this would be expected on the treatment of transsentential anaphora in
classical DRT.

Syntax for Preliminary Representations without Anaphoric Presuppositions

The definition of the set of preliminary representations for L is fairly straight-
forward except for one complication. This complication is connected with
anaphoric presuppositions — those which involve anaphoric discourse refer-
ents (marked by underlining in our sample treatments in Section 4.2). We
sidestep this complication for the moment by defining, as a first step, the
set of preliminary representations in which anaphoric presuppositions do
not occur. The definition which includes anaphoric presuppositions will fol-
low in the next subsection. This definition is quite simple: The set PR−

L of
preliminary representations of L without anaphoric presuppositions consists
of (i) the DRSs of L, and (ii) pairs of the form 〈K,K〉, where K is a prelimi-
nary representation and K a set of preliminary representations (intuitively,
the set of presuppositions left-adjoined to K). Moreover, complex conditions
now come in two forms. On the one hand we want to admit perliminary
representations of the form 〈K,K〉 where K is a preliminary representation
and K a set of such representations; and on the other hand we must al-
low for compex conditions of the form On

x (K1,...,Kn), where K1, ..., Kn are
preliminary representations. If K is of the form 〈K,K′〉, then K′ may itself
be again of such a form, i.e. 〈K ′,K′′〉, and so on. In a case like this both
K and K ′ function as presuppositions for K ′′. We define the notion of the
presupposition set in K of a quasi-DRS K′ that is a constituent of K — in
symbols: PRES(K′,K) — accordingly.

(i) Suppose that K′ is a preliminary DRS that is a constituent of K and
which is not part of a larger constituent 〈K ′,K′′〉. Then PRES(K′,K)
= ∅.
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(ii) Suppose that 〈K,K′〉 is a constituent of K. Then PRES(K′,K) =
PRES(〈K,K′〉,K) ∪ K.

As usual V is the set of all discourse referents. ATCONL is the set of
atomic conditions of L.

DEFINITION 54. (Of the set PR−
L of Preliminary Representations of L

without anaphoric presuppositions, and the set PRCON−
L of Conditions of

such Preliminary Representations)

(i) PR−
L ::= 〈P(V), P(PRCON−

L )〉— 〈P(PR−
L ), PR−

L 〉

(ii) PRCON−
L ::= ATCONL— On(PR−

L ,...,PR−
L ) (with On ∈ OPL)

(P(X) denotes the power set of X.)

In order to define the semantics for preliminary representations we need
a number of notions related to the syntax of PR−

L . These are defined under
1.-8. below.

1. We can distinguish the members of PR−
L into two types, those prelimi-

nary representatons which are of the form 〈K,K′〉 and those which are not.
The latter will be called quasi -DRSs. (They are like DRSs in that they
consist of a set of discourse referents and a set of conditions, except that
the conditions need not be DRS-conditions in the strict sense of the word
but can be preliminary conditions of any kind.)

2. When K ∈ PR−
L is of the form 〈K,K′〉, K′ is called the head of K and

K the presupposition set of K.

3. Each member K of PR−
L is either a quasi-DRS or it is formed from a

quasi-DRS through possibly repeated adjunction of sets of presuppositions.
This quasi-DRS is called the (non-presuppositional) root of K, and denoted
as root(K). The definition is obvious: If K is a quasi-DRS, then root(K) =
K, and if K = 〈K,K′〉, then root(K) = root(K′). It follows that among the
preliminary representations K′ that are part of a preliminary representation
K we have: K′ is a quasi-DRS iff root(K′) = K′.

4.alt Suppose that K′ is part of a preliminary representation K (either a
proper part or K itself) and that K′ is a quasi-DRS. Then the presupposi-
tions of K′ in K, PRES(K′,K), are all those which have been added to K′

through successive left-adjunction. We define PRES(K′,K) via the auxiliary
notion of a preliminary representation K′′ being an Adjunction Expansion
of K′ in K, ADEX(K′′,K′,K). Let IMADEX(K) be the relation of immediate
adjunction in K, i.e. 〈K′′,K′〉 ∈ IMADEX(K) iff K′, K′′ are parts of K and
there is a subset K of PR−

L such that K′′ ∈ 〈K,K′〉. Then ADEX(K′′,K′,K)
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iff there is a finite chain K1 = K′,...,Km = K′′, of length m ≥ 1, such that for
i = 1,...,m-1, 〈Ki+1,Ki〉 ∈ IMADEX(K). (Note that this entails that always
ADEX(K′,K′,K).) PRES(K′,K) is defined in terms of ADEX as follows:

PRES(K′,K) =def. {K′′: there are preliminary representations
Ki, Ki+1 that are constituents of K and K ⊆ PR−

L such that
ADEX(Ki,K

′,K), Ki+1 = 〈K,Ki〉 and K′′ ∈ K}

4. Given a preliminary DRS K we can consider the set of all constituents
of K which are presuppositions of some quasi-DRS K′ that is a constituent
of K. We call this set the set of presuppositions occurring in K, PRES(K):

PRES(K) = {K′′ | ∃ K′ (K′ is a constituent of K and K′′ ∈
PRES(K′,K))}

5. Def.1 assigns to each member E of PR−
L ∪ PRCON−

L a unique parse.
We can think of the parse as a decorated tree TE , in which each node is
decorated by either (i) a member of PR−

L , (ii) a subset of PR−
L , or (iii)

a member of PRCONL. Moreover, the edges of TE are of the following
types: ∈, pres, head and Argi(O

n), where On ∈ OPL and i ≤ n. Each edge
connects a mother node with one of its daughters. We have an ∈-edge when
either (a) the decoration of the mother node is a set of members of PR−

L

and the decoration of the daughter node is a member of that set or (b) the
decoration of the mother node is a quasi-DRS and the decoration of the
daughter node is one of its conditions. pres-edges connect a mother node
decorated with a member of PR−

L of the form 〈K,K〉 with the daughter node
that is decorated with the presupposition set K of that member; and root-
edges connect mother nodes decorated with 〈K,K〉 with the daughter node
decorated with the root K. Finally, an Argi(O

n)-edge connects a mother
node decorated with a preliminary condition of the form On(K1,...,Kn) with
the daughter node decorated with the i-th argument Ki.

Note that in the parse trees described here the discourse referents occur-
ring in preliminary representations are ignored.

6. Each preliminary representation K can be reduced to a DRS
PRESRED(K), the presupposition reduction of K, by eliminating all pre-
suppositions from it. The procedure for obtaining PRESRED(K) from K
may be obvious in any case, but here is a formal definition:

DEFINITION 55.

(i) PRESRED(〈K,K〉) = PRESRED(K);

(ii) for a quasi-DRS K, PRESRED(K) = 〈UK , {PRESRED(γ): γ ∈
ConK}〉;
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(iii) for γ an atomic condtion of L: PRESRED(γ) = γ

(iv) for On
(x)(K1,...,Kn) ∈ PRCON−

L , PRESRED(γ) = On
(x)(PRESRED(K1),

...,PRESRED(Kn)).

7. Let K ∈ PR−
L and let γ be an atomic condition occurring somewhere

in K. Then there will be at least one preliminary representation K′ that is
a constituent of K such that γ ∈ PRESRED(K′).

The fact mentioned in 7. is the key to the definition of what it means for
a preliminary representation K from PR−

L to count as proper, i.e. for all the
discourse referents occurring in it to be properly bound. An occurrence of a
discourse referent x in some atomic condition γ which occurs somewhere in
K is bound in K if there exists a preliminary representation K′ that is part
of K such that γ ∈ PRESRED(K′) and either x ∈ UK′ or there is a K′′ in
PRESRED(K) which is accessible from K′ such that x ∈ UK′′ .

DEFINITION 56. Let K ∈ PR−
L . K is proper iff for each occurrence of a

discourse referent x in some atomic condition γ occurring in K there exists
a K′ ∈ PR−

L such that K′ is a constituent of K, γ ∈ PRESRED(K′) and x
∈ UK′ .

8. Among the preliminary representations which are constituents of a
given preliminary representation K, some can play a role of local context in
presupposition justification. These are (i) the root of K and (ii) the root of
every complex condition 〈K,K′〉 in K, and (iii) the roots of the arguments
Ki of a complex condition On

(x)(K1,...,Kn) in K. We refer to this set as the

set of potential local contexts in K and denote it as PLC(K).
All preliminary representations that are part of K and that are not in

NPRP(K) are among K′s presuppositions or are part of some presupposi-
tion. We will refer to them as the Presuppositional Representations in K,
PRESR(K).

Syntax of Preliminary Representations with Anaphoric Presuppositions

The notion of an “anaphoric presupposition”, in the sense in which it was
used in Section 4.2, involves that of “anaphoric” discourse referents, dis-
course referents which must, as part of the presupposition’s justification,
find antecedents in some accessible context. In the examples of anaphoric
presuppositions we have seen there was never more than one anaphoric dis-
course referent per anaphoric presupposition, but this is a restriction that
we cannot expect to hold generally. So we want to allow for arbitrary sets
of anaphoric discourse referents. In other words, the set of anaphoric dis-
course referents will in general be some subset of the main Universe U of
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such a presupposition representation. We allow any subset between ∅ and U
inclusive, the case of being the non-anaphoric — or “purely propositional”
— presuppositions being that where the set = ∅.

The simplest way to formalise this notion of an anaphoric presuppositon
representation is to replace in our definitions of PRL and PRCONL the
DRS universes U everywhere by pairs 〈U,A〉, with A ⊆ U. A is the set of
anaphoric discourse referents of the given representation with “universe”
〈U,A〉.

A slight further complication is that anaphoric discourse referents have
no business in the non-presuppositional parts of representations. That is,
if 〈〈U,A〉, Con〉 ∈ PLC(K) for some K, then A should be ∅. We denote
the set of preliminary representations K for which this condition holds as
PR′

L. This more restricted set also is now the resource from which complex
conditions are built. The need to distinguish between PRL and PR′

L entails
that we now need a definition by simultaneous recursion of the three sets
PRL, PR′

L and PRCONL. It is convenient in this connection to deviate a
little more from the strict Backus-Naur format than we did in Def. 54.

DEFINITION 57. (Of the set PRL of Preliminary Representations of L
with anaphoric presuppositions, and the set PRCONL of Conditions of such
Preliminary Representations)

PRL ::= 〈〈U,A〉, P(PRCONL)〉, where U ∈ P(V) and A ⊆ U
— 〈P(PRL),PRL〉

PR′
L ::= 〈〈U,∅〉, P(PRCONL)〉, where U ∈ P(V)

— 〈P(PRL), PR′
L〉

PRCONL ::= ATCONL — On(PR′
L,...,PR′

L) (with On ∈ OPL)

N.B. there is a one-one correspondance between the preliminary represen-
tations given in Def. 54 and those preliminary representations in the sense
of Def. 57 in which all universes are of the form 〈U,∅〉. Let us denote the
subset of these preliminary representations in the sense of Def. 57 which
correspond in this way to members of PR−

L as PR−1
L . Then we evidently

have PR−1
L ⊂ PR′

L ⊂ PRL.

All notions defined in the last section for members of PR−
L generalise

straightforwardly to the sets PRL and PR′
L. In particular, every member

of PRL has a unique parse, which can be represented by a parse tree of
the same form as defined on page 298. The only exception is the notion
of a proper representation. This notion requires renewed attention because
the anaphoric presuppositions create situations in which an occurrence of
a discourse referent x in some atomic condition belonging to a part rep-
resentation K′ is bound by the occurrence of x in the universe of some
presupposition of K′. We have seen several instances of this in Section 4.2.
For example, in (153) the occurrence of u in the condition “white(u)” of the
non-presuppositional part of the representation is bound by the occurrence
of u in the universe of the presupposition left-adjoined to this part.
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We will assume that presuppositional binding of discourse referents is al-
ways of this comparatively simple form: If an occurrence of x in some atomic
condition belonging to some quasi-DRS K′ in a preliminary representation
is bound presuppositionally, then this can be only through the presence of x
in the set A of anaphoric discourse referents of a preliminary representation
in PRES(K′,K). (This entails in particular that if x is any non-anaphoric
discourse referent belonging to the universe of a presupposition K′′ of K′

(i.e. if this universe is 〈U,A〉, then x ∈ U\A), then x will not occur in atomic
conditions belonging to K′. For an illustration, see the discourse referent x
for the possessive pronoun his in (150).)

These assumptions lead us to the notion of the extended universe of a
quasi-DRS K′ belonging to some preliminary representation K. We denote
this set as EU(K′,K), and sometimes, when it is clear which K is at issue,
as EUK′ . EU(K′,K) consists of the universe of K′ itself together with the
sets of anaphoric discourse referents of all members of the presupposition
set of K′ in K. In other words:

EU(K′,K) =
UK′ ∪

⋃
{A: (∃ K′′,U,Con)(K′′ ∈ PRES(K′,K) & K′′ = 〈〈U,A〉,Con〉}

EUK′ replaces UK′ in a couple of the auxiliary notions introduced above.
First, the definition of the reduction PRESRED now has to be modified in
that if K′ is a quasi-DRS, then

PRESRED(K′) = 〈EUK′ , {PRESRED(γ) : γ ∈ ConK′}〉.

(This renders the definition on the larger preliminary representation K of
which K′ is considered a part, so that PRESRED now becomes dependent
on this second parameter as well. Thus, strictly speaking the definition is
now of a 2-place function PRESRED(K′,K). But we will persist with the
earlier notation and only mention the argument K′. Secondly, need to adapt
the definition of what it is for a preliminary representation to be proper.

DEFINITION 58. Let K ∈ PRL. K is proper iff for each occurrence of a
discourse referent x in some atomic condition γ occurring in K there exists
a K′ ∈ PRL such that K′ is a constituent of K, γ ∈ PRESRED(K′) and x
∈ EUK′ .

Local Contexts

Suppose that K is a member of PR′
L and that K′ is a presupposition occur-

ring in K, i.e. K′ ∈ PRES(K). Justification of K′ takes place in the local
context of K′ in K whenever possible, and only if K′ has no local context in
K in the global context. The local context of K is intuitively the first quasi-
DRS K′′ in K (if any) which one encounters going up the parse tree TK of
K, starting from K′. If such a quasi-DRS K′′ is reached , this will always
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mean that the last edge of the path running from K′ to K′′ is an ∈-edge and
taht if m and d are the mother node and daughter node this edge connects,
then the decoration of d is a condition belonging to the condition set of the
duration of m. There then are two possibilities: (i) the condition at d is
of the form 〈K,K′′′〉 with K ∈ P(PRL), K′′′ ∈ PRL; (ii) the condition is
of the form On

(x)(K1,...,Kn). In the first case K′′ is the local context of K′

in K. The second case is a little more complicated. In this case the node
will itself be the mother node of an Argi(O

n)-edge along the given path,
and the corresponding daughter d′ will be decorated with Ki. If there is a
j such that 〈j,i〉 ∈ AccOn then the local context of K′ will be the root of
that Kh (h�=i, h≤n) such that 〈h,i〉 ∈ AccOn and for all j such that 〈j,i〉
∈ AccOn 〈j,h〉 ∈ AccOn . (I.e. the root of Kh which is the nearest to K of
the arguments of On which are accessible from Ki.) If for no j ≤ n 〈j,i〉 ∈
AccOn , then the local context of Ki is K′′.

We can define this notion of local context formally on the basis of a notion
of accessibility for preliminary representations which we define first.

DEFINITION 59. Let K be a preliminary representation, then the acces-
sibility relation on K, AccK , is the set of all pairs 〈K′′,K′〉, where K′′ and
K′ are constitutents of K, K′ is a preliminary representation and K′′ is a
quasi-DRS, is defined as the transitive closure of the relation Acc0

K . Acc0
K

consists (i) of all pairs 〈 root(Kj), Ki〉 such that On
(x)(K1,...,Kn) occurs in

K and 〈j,i〉 ∈ AccOn ; and (ii) of all pairs 〈 K′′, K′〉 satisfying the following
condition:

(a) (which is close to the one already informally described)
K′ is a preliminary representation that is a constituent of K and K′′

is determined as follows: go up through the construction tree TK of
K, starting from K′. K′′ is the decoration of the first node along this
path whose decoration is a quasi-DRS.

Like the accessibility relation between sub-DRSs of a given DRS, AccK is
a strict partial order. Furthermore it is not hard to verify that if K′ ∈
Ran(AccK) (i.e. there are “sentence-internal” contexts of K′), then there
is a “nearest” such K′′, i.e. 〈K′′,K′〉 ∈ AccK and for all 〈K′′′,K′〉 ∈ AccK

either K′′′ = K′′ or〈K′′′,K′′〉 ∈ AccK . And, finally, whenever 〈K′′,K′〉 ∈
AccK , then K′′ is a quasi-DRS and K′′ ∈ PLC(K).

We are now in a position to define the local context of a presuppositional
component K′ of a preliminary representation K. There are in fact three
related but distinct notions of local context that we will need. The first is
the one which we have informally described already: The local context of
K′ in K in this sense is that K′′ in PLC(K) which is nearest to K′ in the
sense of AccK (provided any such K′′ exists; if not, then K′ doesn’t have
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a local context). We represent this notion of local context in the form of
a 3-place relation between K, K′ and its local context K′′ and denote the
relation as “LocConK(K′′,K′,K)”).

The second notion is that of the Sentence-Internal Information avail-
able for presupposition justification at the local context of K′ in K, which
we denote as SILC(K′). Intuitively SILC(K′,K) consists of the totality of
presupposition-free information that is available at all “sentence-internal”
contexts accessible from K′, i.e. all quasi-DRSs K′′ such that 〈K′′,K′〉
∈ AccK . All local contexts, we saw, are quasi-DRSs. But what is the
“presupposition-free” information of a quasi-DRS? The definition is pretty
much as the term suggests: the presupposition-free information of a quasi-
DRS K′′ consists of the discourse referents of K′′ together with those con-
ditions which contain no presuppositions, and thus are DRS-conditions of
the language L.

Let K be a quasi-DRS from PRL, then
PF(K) = 〈 UK , { γ ∈ ConK : γ ∈ CONL } 〉

We can now define SILC(K′,K) as the merge of all the DRSs PF(K′′) for
〈K′′,K′〉 ∈ AccK .

DEFINITION 60. Let K′′′ be a preliminary representation that is a con-
stituent of a preliminary representation K. Then
SILC(K′,K) =  { PF(K′′) : 〈K′′,K′〉 ∈ AccK}.

(Here  represents the merge of a set of DRSs. See the end of Section 3.2.)
NB. In case K′ has no local context in K, then the argument set of  in the
definition above is empty and SILC(K′,K) =  ∅ = 〈∅,∅〉 (the empty DRS).

The third notion of local context is very close to the second. This is
the total information available for presupposition justification at the local
context of K′ in K, TILC(K′,K). TILC(K′,K) is the merge of SILC(K′,K)
with the global context DRS Kg.

Def. 61 repeats the definitions of the three notions.

DEFINITION 61. (Local Context of K′ in K; Total Information Available
at the Local Context of K′ in K; and Sentence-Internal Information available
at the Local Context of K′ in K)

Let K be a preliminary representation and Kg a DRS. (Intuitively, Kg

represents the context in which the sentence represented by K is uttered.)
Let K′, K′′ be preliminary representations that are constituents of K.

(i) LocConK(K′′,K′,K) iff

(a) 〈K′′, K′〉 ∈ AccK and

(b) for all K′′′ such that 〈K′′′,K′〉 ∈ AccK , 〈K′′′,K′′〉 ∈ AccK .
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(ii) SILC(K′,K) =  {PF(K′′): 〈K′′, K′〉 ∈ AccK}

(iii) TILC(K′,K,Kg) = SILC(K′) ∪ Kg

The point of these different notions is as follows. Assume that K′ ∈ PRES(K).
The local context K′′ of K′ in K is intuitively the lowest point in the log-
ical structure of K where justification of the presupposition K′ is possible.
We assume that a presupposition is always justified at this lowest possible
point. In other words — this is one respect in which the present proposal
differs from other DRT-based accounts:

(188) Presupposition justification always takes place at the local context.

However, the contextual information that is available for justification of K′

at its local context K′′ includes not only the information contained in K′′

itself but also that contained in all K′′′ in K which are accessible from K′′

(and thus from K′) as well as that of the global context Kg. (Thus the more
local a context, the more information it makes available.) It follows from
this stipulation that if justification of K′ can succeed at all, it will succeed
at K′′. So the assumption (188) that presuppositions are always justified
at their local context isn’t shouldn’t be seen as an empirical claim. It only
reflects a particular perspective on the nature of presupposition justification.

Sometimes justification of K′ at its local context K′′ is possible on the
basis of SILC(K′,K) alone. These are the cases which the classical presup-
position literature describes as instances of “local satisfaction”, or “local
binding”,52 cases where the presupposition, being justifiable without any
appeal to Kg, disappears as a presupposition of the full sentence which
contains its trigger — in other words, where the presupposition “doesn’t
project”. It disappears because the constraints it imposes on context are
satisfied in any case. Thus, as far as it is concerned, the sentence could be
uttered in any global context.

Semantics for Preliminary Representations

As explained above, the “semantics” of preliminary DRSs as we understand
it only concerns the question whether the presuppositions of a preliminary
DRS K are justified in a global context Kg. And this question, we already
saw, has a positive answer iff for every K′ ∈ PRES(K) K′ is entailed by
the total information at its local context. In the case where none of the
presuppositions of K are anaphoric this amounts simply to: TILC(K′,K,Kg)
|= K′ for all K′ ∈ PRES(K).

52Or alternatively, as “intermediate satisfaction” or “binding”. Note that the use we
make of “local” corresponds to what others have called “intermediate” (cf. in particular
[van der Sandt, 1992]).
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That is all that needs to be said for this case. If the answer is positive,
then K can be reduced to the DRS PRESRED(K). The questions of truth
and verification for such DRSs are a matter for the semantics of the under-
lying language L, as is the definition of TILC(K′,K,Kg) |= K′. In case K
contains anaphoric presuppositions the matter is more complicated. Jus-
tification of the presuppositions of K must now be made dependend on a
resolution of the anaphoric discourse referents, and we need to spend some
care on the definition of what a possible resolution is for the anaphoric
discourse referents of K given a global context Kg.

A possible resolution of K (given Kg) must link each anaphoric discourse
referent u occurring in K with a possible antecedent x. For x to be a pos-
sible antecedent for u, x must (i) accessible from the position of u in the
sense familiar from standard DRT, and (ii) x must belong to the universe
of a quasi-DRS K′′ which qualifies as context from the perspective of the
anaphoric presupposition K′ which contains u as a member of its universe.
Both these requirements are fulfilled if 〈K′′,K′〉 ∈ AccK . Let us make these
considerations more explicit. Suppose that K ∈ PRL and that x is a dis-
course referent which belongs to the set of anaphoric discourse referents
AK′ for some constituent K′ of PRES(K) (in other words UK′ = 〈U,A〉).
The set of potential antecedents for x is then the union of all universes of
quasi-DRSs K′′ in K such that 〈K′′,K′〉 ∈ AccK together with the universe
of the context DRS Kg. We distinguish between the set IPA(x,K) of those
potential antecedents of x which are “internal to” K, and the total set of
potential antecedents, given the context Kg, PA(x,K,Kg). Formally:

IPA(x,K) =
⋃
{UK′′ : 〈K

′′,K′〉 ∈ AccK}
PA(x,K,Kg) = IPA(x,K) ∪ UKg

IPA(x,K) and PA(x,K,Kg) enable us to define the notion of a potential
resolution of the anaphoric discourse referents of K:

A potential anaphoric resolution for a preliminary representation K
belonging to PRL, given the global context Kg, is a function r from
discourse referents to discourse referents whose domain consists of the
anaphoric discourse referents occurring in K and which is such that
for any such discourse referent x, r(x) ∈ PA(x,K,Kg).

We say that r resolves x sentence-internally iff r(x) ∈ IPA(x,K).

Exactly how the anaphoric discourse referents of a preliminary DRS K
should be resolved in a context DRS Kg — i.e. which of the possible res-
olutions should be chosen — is a problem which classical DRT made it a
policy to leave to other theories. We will adopt this policy here too. That
is, we consider, given K and Kg, any one of the possible resolutions r for
the anaphoric discourse referents of K, given Kg, and then consider whether
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for each of the presuppositions K′ of K TILC(K′,K,Kg) |= K′ given this
choice of r. We abbreviate this relation as TILC(K′,K,Kg) |=r K′. This
relation holds provided the discourse referents of K′ are always assigned the
same values as the discourse referents in TILC(K′,K,Kg) to which r resolves
them. In other words, for any DRSs K1, K2 K1 |=r K2 iff for any model M,
world w of M and time t of M r-verification of K1 within w at t, entails
r-verification of K2 within w at t, where r-verification is defined in the same
way as verification except that the embedding functions f involved must all
satisfy the following condition:

if x ∈ Dom(r) ∪ Dom(f), then r(x) ∈ Dom(f) and f(x) = f(r(x)).

Suppose we can find a resolution r for K, given Kg, such that all presup-
positions are justified by Kg. Then, as for the case where K contains no
anaphoric presuppositions K should be reducible to a DRS K′ by eliminat-
ing all presuppositions from it. We must now take care, however, that when
an anaphoric presupposition is removed, and with it an anaphoric discourse
referent or discourse referents occurring in its universe, then the occur-
rences of the anaphoric discourse referents in conditions belonging to the
non-presuppositional parts of K, which are not removed should be replaced
by their antecedents under r. We obtain the desired result by reducing K
first through application of the operator PRESRED and then replacing dis-
course referents in PRESRED(K) which also occur in Dom(r) everywhere
by their r-values. The result will be a DRS r(PRESRED(K)) which need
not be proper, but where free discourse referents will belong to the universe
of Kg.

4.4 Accommodation and Inference.

The semantics developed in Section 4.3 tells us when a sentence, uttered in
a context Kg and preliminarily represented as K, is true or false in a model.
Part of what it tells us is that the sentence will be either true or false only
if all its presuppositions are justified. The examples we have looked at in
Section 4.2 have given us a taste of how stringent this requirement is. It is
normal for a sentence to generate presuppositions, and usually not just one
but a whole bunch of them: Joint satisfaction of all those presuppositions
is a constraint that it is in general not easy for utterance contexts to meet.
This implies that if a speaker wants to make an assertion that is true, he will
have to proceed with great caution in general, lest this sentence generate a
presupposition that in the given context isn’t warranted.

When we see how language is actually used and interpreted, this con-
clusion appears alarmist. Far fewer utterances seem inappropriate than it
predicts. The reason for this discrepancy is that human interpreters are
generous accommodators. Many presuppositions are accommodated quasi-
automatically by interpreters who don’t seem to be aware of the fact that
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they are doing so. Normally it is only when an accommodation that is
needed goes against something that the interpreter believes that he will be
concious of what he is doing – that he is adjusting his assumptions in such
a way that the utterance makes sense against their backgound.

When an accommodation which the interpreter perceives as required is
in conflict with what he believes, he may nevertheless make it and revise
his beliefs accordingly. But if these beliefs are too amply entrenched —
when he is quite certain of them, then he will refuse to make the accommo-
dation, and in such cases, we already stated in the last section, we regard
the interpretation process as breaking down: a perliminary representation
for the utterance can be constructed, but there is no way (not even one
involving accommodation) to integrate it into the context. How easy a
presuppositional constraint ca be accommodated seems to vary between
presuppositions, and in particular as a function of their triggers. Pronouns
are a notorious case in point (if they are included among the presupposition
triggers at all, as we have done here). Factive presuppositions are among
the kinds of presuppositions that are accomodated with great ease. If A
tells B that Fred is relaxed that his proposal wasn’t accepted, and B didn’t
know that Fred proposed, B will assume this almost as a matter of course.
(He will ....... only if he is convinced that Fred didn’t propose.) Such pre-
suppositions differ from presuppositions triggered by a word like too. An
utterance containing too (or an equivalent expression such as also, as well
and some others) gives rise to a presupposition that should be justifiable
in the context established by the immediately prededing discourse. These
“anaphoric” presuppositions (in the sense of “anaphoric” used by Kripke
which is different from the sense in which we have been using the term) are
hard to accommodate because the discourse context is as accessible to the
interpreter as it is to the speaker: It is constituted by that what has just
been said and that is equally known to both parties.53

The distinction between presuppositions that are “anaphoric” in the
present sense and those that are not, is only one among a number which
we expect a detailed theory of presupposition will have to draw.54 And it

53The exception that confirms the rule is where a hearer drops in on an ongoing con-
versation and the first sentence he hears is one containing too. In these circumstances
a too-presupposition will be readily accommodated, but not only in the sense of being
entailed by something that is assumed to be true but as something that was actually said
in virtue of which the presupposition is justified.

54Another distinction has to do with how easily a presupposition is cancellable under
negation. Cancellation of the existence presupposition carried by a definite description,
while possible, requires genuine effort — you can say The exhibition wasn’t opened by the
King of France. but something like the because-clause is indispensible lest the main clause
be misunderstood. The matter is different for the pre-state presuppositions of change-
of-state verbs. Take for instance the transitive verb open. You can open something at
a time t only when at t that thing isn’t open yet — y’s being closed is a neccessary
pre-state of an event of opening y. And this condition appears to be presuppositional
insofar as there is a tendency to interpret negated statements like He didn’t open the



308 HANS KAMP, JOSEF VAN GENABITH, UWE REYLE

isn’t clear at this point which of these distinctions are binary and which a
matter of graduation. The need to draw such distinctions between types of
presuppositions exists in particular for a theory like the one sketched here,
which is very liberal in what it includes among the range of phenomena to
which it applies.

As far as we can see the DR-theoretical bases of the present theory is of
little help in telling what these distinctions are, and we have more to say on
their account here. There is another issue connected with accommodation,
however, where the DRT-approach outlined here does appear to be of use.
Often presupposition accommodation strikes us not only as possible, but
in fact as necessary. In such cases the accommodation seems to be forced
upon the interpreter, and the accommodated information seems more like
an inference from the uttered sentence or discourse than like an assumption
which the interpreter chooses to make for the sake of restoring coherence.

We present two examples of this phenomenon which have been discussed
in the literature. In these examples the inferential effect of accommodation
seems particularly compelling. One of them, given in (189.b), is a sentence
that was first presented by Kripke in a lecture that is often cited, but of
which no canonical textual version seems available.55

(189) a. We shouldn’t have pizza on John’s birthday, if we are going to
have pizza on Mary’s birthday.

b. We shouldn’t have pizza again on John’s birthday, if we are going
to have pizza on Mary’s birthday.

(189.b) strongly invites the inference that Mary’s birthday is before John’s
birthday. (189.a) does not seem to carry this implication — if at all, then
surely much less forcefully than (189.b). The difference can only be the
presence in (189.b) of again.

What is the explanation of this effect? As we saw in 2.3, occurrences of
again trigger presuppositions to the effect that an event of the same type
as that described in the clause containing the occurrence happened before
the described event. In other words, we have the presupposition that at
some time before the event of “we” having pizza at John’s birthday there
was another event of “we” having pizza. In (189.b) this presupposition is
generated within the consequent of the conditional, so its local context is the
antecedent of the conditional. As it stands, the information contained by
the antecedent goes a fair way towards justifying the presupposition, since
the antecedent does speak of a pizza eating event with “we” as agent. But it

window. as implying that the window was closed at the time in question. Nevertheless
when someone asks you: Did you open the window while I was out of the room? you
can quite legitimately answer with a simle no even if as a matter of fact the window had
been open all day long.

55fn on Kripke’s presupposition lecture.
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doesn’t stretch all the way. What is still missing is the information that the
event spoken of in the antecedent temporally precedes the one spoken of in
the consequent. Still, the antecedent gets us so close to a justification of the
again-presupposition that the impression that is meant to be understood as
the justification of the presupposition seems virtually inescapable. So the
recipient of (189.b), who is uninformed about the dates of the two birthdays,
will feel impelled – he will conclude — that Mary’s birthday comes before
John’s.

That this “conclusion” is mediated by presupposition justification finds
further support in the circumstance that when (189.b) is offered as follow-up
to a sentence which talks about yet another pizza eating event the conclusion
may be blocked. Thus consider (190)

(190) We have just had pizza on Billie’s birthday. So we shouldn’t have
pizza again on John’s birthday, if we have pizza on Mary’s birthday.

In (190) the again-presupposition can be justified in the context provided
by the first sentence, (Indeed, since the first sentence speaks of such an
event in the past and the main clause of the second sentence of one in
the future, justification doesn’t need accommodation in this case.) Since
the presupposition can be justified in this way, there is no need to use
the information of the if -clause for this purpose, so there is no need to
accommodate that Mary’s birthday precedes that of John.

In our second example the inferential flavour of accommodation is even
stronger, and it is hard to see how it could be suspended by providing more
context. This example is a three-sentence discourse, given in (191).

(191) I gave the workmen a generous tip. One went out of his way to thank
me. The other one left without saying a word.

Anyone who reads these two lines knows that the number of workmen to
whom the speaker gave a generous tip must have been two. How does
this knowledge arise? It clearly depends on the subject phrases of the three
sentences. The dependence on the subject of the third sentence, for instance,
becomes visible when we replace it by certain alternatives, while leaving
everything else the same. Thus, for each of the substitutions Another one,
The other two, Two others, One, Two for The other one the conclusion
about how many workmen there are will be different. Likewise, dependence
on the subject of the second sentence is shown by replacing its subject by,
e.g., Two, At least two or Another one.

The reason why the subject phrases of (191) produce the inferential effect
observed has to do with their specific anaphoric properties — or in other
words (given our liberal use of the term “presupposition”) with the specific
presuppositions to which these phrases give rise. To give an idea of the in-
terpretational mechanisms that are involved in this case without enmeshing
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us into too much detail, we will focus on the third subject NP The other
one. We assume that the phrase the workmen has introduced a discourse
referent X standing for a set of two or more workmen, and that the NP one
has been interpreted as introducing a discourse referent y together with the
condition “y ∈ X” which says that the individual represented by y is one of
the members of X.

When we look at the NP the other one more closely, we see that it gives
rise to a “bundle” of presuppositions, each one of which is connected either
with the lexical meaning of one of the words of which the NP is made up
or else with a morphological feature. They are:

(i) an anaphoric presupposition triggered by one, to the effect that there
is a (nominal) predicate in context with which one can be identified

(ii) a doubly anaphoric presupposition triggered by other, to the effect
that the referent of the NP is distinct from some other individual or
individuals of the same type, or belonging to the same set.

This presupposition is doubly anaphoric in that both of the following
items must be identifiable in context:

(a) the type or set which contains both the referent of the NP and
the individual or individuals from which it differs, and

(b) the other individual or individuals belonging to this type or set

(iii) A presupposition connected with the fact that the NP is in the singu-
lar, to the effect that the NP’s referent is a single individual, rather
than a set of two or more individuals.

(iv) A maximality presupposition connected with the definite article the, to
the effect that in the given context the referent of the phrase exhausts
the extension of the descriptive content of the NP.56

The set X and its member y, both of which are part of the context within
which the third sentence must be interpreted, provide a very good basis
for satisfying this complex of presuppositions. Let’s assume that ζ is the
discourse referent introduced to represent the referent of the NP The other
one. Identifying the predicate “∈ X” with one, and y with the presup-
posed individual(s) falling under the relevant predicate, which after this
first identification becomes “∈ X”, deals with the presuppositions (i) and
(ii), triggered by one and other. What remains is the singularity presuppo-
sition (iii), which says that ζ represents an individual, and the maximality

56The existence and uniqueness presuppositions which we assumed for definite de-
scriptions in 4.2 can be seen as a combination of these three factors: (i) existence, (ii)
maximality, and (iii) cardinality 1. Here these factors are attributed to (i) the very fact
that an NP contributes a discourse referent, (ii) the, and (iii) the singular.
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presupposition (iv), to the effect that this individual exhausts the predi-
cate of being a member of X that is distinct from y. Accommodating the
assumption that the cardinality of X is 2, both these remaining presupposi-
tions are fulfilled as well. It is also clear that no other assumption about the
cardinality of X will lead to justification of both of these presuppositions.

As in the case of (189.b), the interpreter is compelled to accommodate
this information. (In fact, the accommodation comes so naturally to the
human interpreter that audiences to which (191) is presented tend to have
considerable difficulty at first in seeing what the point of the example could
be.) Moreover, we do not see any way of embedding (191) in a larger dis-
course in which the “inference” is cancelled — in this regard (191) appears
to differ from (189.b).

Both examples suggest that our strategies for dealing with presupposi-
tions in discourse involve some kind of “economy principle”, which forces the
interpreter to choose that presupposition resolution which gets by with the
smallest amount of additional (i.e. accommodated) information. The extra
information which must still be accommodated even when this most “eco-
nomical” solution is chosen then appears as something that the discourse
entails.57

One intuitively attractive way of thinking about accommodation for pre-
supposition justification is to see it as a special form of abduction:58 The in-
terpreter of an utterance is trying to find the “simplest” explanation for why
the speaker would have uttered an expression which generates those pre-
suppositions that his actual utterance does generate. From this abduction-
theoretic perspective the fact that accommodations are often so compelling
as to look like inference. One “abductive” accommodation may, when com-
pared with possible alternatives, appear so unequivocally superior that the
interpreter simply has no choice but to adopt it as the correct way to justify
the utterance. Hence the impression that the accommodation is entailed by
the sentence or discourse for which it is needed.

But a caveat is in order. The abduction-theoretic pespective allows us
to see presupposition accommodation as part of a much more general type
of problem — that of coming up with hypotheses which account for ob-
servations which would otherwise remain unexplained. However, the mech-
anisms of presupposition accommodation and the contraints to which it
is answerable are closely adapted to the special structure of language and
the principles of verbal communication, and so we can’t expect that seeing

57For some discussion of this aspect of presupposition justification, as well as for a
motivation of the term “justification” which we have used freely within this Section,
see [Kamp and Roßdeutscher, 1994] [DRS-Construction and Lexically Driven Inference,
Theoretical Linguistics Vol (20, nr. 2/3, pp. 165-235].

58The abduction-theoretic perspective on presupposition accommodation is argued per-
suasively and worked out in considerable detail in the doctoral dissertation of Krause.
See [Krause, 2001].
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accommodation as a form of abduction will go very far in helping us to de-
termine its special properties. All the hard work that is needed to uncover
those mechanisms and contraints remains, even if the abduction-theoretic
perspective promises to give us a plausible way of interpreting the results
once we have them in front of us.

Our final point in this Section concerns accommodations that are needed
to justify presuppositions occurring in embedded positions, such as, e.g.
the again-presupposition of (189.b) and (190). So far, we have said noth-
ing about where such accommodations are made: Is the accommodated
information added to the global context, to the local context of the presup-
position whose justification requires it, or at some context “intermediate”
between these two in cases where there are such intermediate contexts. (In
the case of (189.b) there aren’t any intermediate contexts, but often there
are.)

In the case of (189.b) the question seems to be only of formal interest,
for the proposition that Mary has her birthday before John is true or false
categorically — its truth is not dependent on whether “we” have pizza on
Mary’s birthday. In other words, the accommodation is one which affects
the global context; whether we enter the accommodated information into
the representation of the global context itself or into that of the antecedent
of the conditional doesn’t make a real difference one way or the other.

This is not so, however, for a sentence like (192).

(192) Every Angelino uses his car to go to work; most New Yorkers use it
only during the weekend.59

When someone is offered this sentence out of the blue, the question whether
all people from LA or New Yorkers have a car or his knowledge that many
New Yorkers don’t are unlikely to bother him. He will assume that the
speaker intends to speak only of those people from Los Angeles and New
York who do have cars. That is, he will interpret (192) as equivalent to
(193).

(193) Every Angelino who has a car uses his car to go to work; most New
Yorkers who have a car use it only during the weekend.

This observation has sometimes been taken as evidence that in some in-
stances accommodation takes place at a non-global level. In relation to the
first sentence of (192) the argument is as follows. The definite description
his car creates a presupposition to the effect that the relevant individual
y has a car, and the pronoun his contained in it gives rise to a further
presupposition involving some anaphoric discourse referent u. These pre-
suppositions are generated within the nuclear scope of the universal quan-
tifier over Angelinos, so their local context (in our sense of “local”) is the

59Cf. [Beaver, 2004]
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restrictor of this quantifier. Following the representation in (150), we get an
additional presupposition for the contextual restrictor C of the existence-
and-uniqueness presupposition of the definite description. (194) gives the
preliminary representation.

(194) x

Angelino(x)

�
��

�
��
�
���

��
∀

x

〈
K,

v

ttgtw(x,v)

〉

K =

〈⎧⎪⎨
⎪⎩

y

male(y)
pers(y)

⎫⎪⎬
⎪⎭ ,

〈⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C c

car(c)
C(c)

have(y,c)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,

u=1

car(u)
C(u)

have(y,u)

)

〉〉

If we accommodate the three presuppositions adjoined to the nuclar scope
of the quantifier in (194), we get the interpretation of the first conjunct of
(192) that is given by the paraphrase in (193). And it seems that that is
the only way in which we can obtain this reading. Thus, the argument goes,
non-global accommodation is sometimes needed.

As Beaver [Beaver, 1997] has observed, the problem with non-global ac-
commodation is that it easily leads to overgeneration – that is, of readings
for sentences with embedded presuppositions which human interpreters do
not get. Moreover, we believe it to be in the spirit of his general view of
presupposition accommodation to maintain that even in a case like (192)
accommodation is a matter of adjusting the global context. The reason why
global accommodation can give us the desired reading in the case of the first
sentence of (192) is connected with an omission in its preliminary represen-
tation given in (194). Note that by our own standards (194) is incomplete.
It fails to represent the contextual restrictor which, we already noted in 4.2,
enters into the interpretation of quantifiers no less than in the (quantifica-
tional) uniqueness presuppositions of definite descriptions. When we add a
representation of this restrictor and its representation to (194), as in (195),
then the reading we are after can be obtained by global restriction too. In
(195) it is assumed that the extension of the quantification restrictor C′ con-
tains at least one object of the kind explicitly specified by the quantifying
NP.

(195)
〈⎧⎪⎨
⎪⎩

C′ x′

Angelino(x′)
C′(x′)

⎫⎪⎬
⎪⎭ ,

x

Angelino(x
C′(x)

〉 �
��

�
��
�
���

��
∀

x
Scope
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With Scope as in (194).

It is now possible to justify the set of presuppositions of the preliminary
representation for the first sentence of (181) as follows. We globally ac-
commodate the assumption that the predicate C′ is one which is only true
of persons in possession of a car, for instance by identifying C′ with the
predicate “there is a car such that — owns”. This allows us to derive from
the updated global context the quantificational statement given in (196).

(196)
w

Angelino(w)
C′(w)

�
��

�
��
�
���
��

∀

w

z

car(z)
have(w,z)

(196) enables us to enrich the antecedent of (195), which verifies all that the
antecedent of (196) claims of the quantified variable w holds for its quantified
variable x, with the information contained in the nuclear scope of (196). If
we now resolve the anaphoric discourse referent y by identification with x,
and the contextual predicate C by identification with “∈ {x,z}”, then the
existence-and-uniqueness presupposition in 194 is satisfied too.

The moral of this story is that even in cases like this global accommo-
dation can produce the desired effect as well as non-global justification.
We want to stress in this connection that the assumption of the contextual
restriction on the quantifier expressed by every Angelino is independently
motivated. The reason we did not display such contextual dependencies of
quantifiers before is that up to now they played no part in our considera-
tions.

The possibility of obtaining the intuitively plausible readings of sentences
like (181) as the result of global accommodation is important to us, since we
see the notion of non-global accommodation as conceptually problematic.
When the context available to the recipient of an utterance U is insufficient
for justification of all the presuppositions it generates, it is natural for him to
take himself to be underinformed about the context KS that the speaker is
actually assuming (or “presupposing”, in the sense of those who see presup-
position as in the first instance a pragmatic phenomenon60) in producing U.
If KS weren’t capable of justifying all presuppositons of U, then the speaker
surely wouldn’t have expressed himself in the way he did. On the basis of
this “speaker knows best” principle the interpreter will, within a certain
range delimited by further constraints on accommodation, assume that KS

is a context in which the information needed for justification is included.
And if this is the rationale behind accommodation, then accommodation is
an essentially global phenomenon.

60See [Stalnaker, 1979; Stalnaker, 1972; Stalnaker, 1974]
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We end this Section with a succinct statement of the two complementary
theses on presupposition justification and accommodation to which we have
committed ourselves here and in the preceding Section:

(197) (General theses concerning the justification and accommodation of
presuppositions in logically embedded positions)

(i) A presupposition K must be justified in its local context Kl. (But
the justification may use everything in the total information of
Kl, TILC(Kl,K,Kg).)

(ii) Accommodation for the sake of presupposition justification is
always accommodation of the global context.

4.5 Construction of Preliminary Representations

Perhaps the greatest challenge for a DRT-based account of presupposition
— as for DTR-based accounts of almost any aspect of natural language
— is to formulate the rules according to which semantic representation
are constructed. In the case of presupposition this challenge concerns in
the first place the construction of the preliminary representations in which
presuppositons are explicitly represented.

In view of the importance that representation construction has for any
application of DRT, it may be felt as something of a let-down that this is
precisely the part of the presupposition theory outlined here about which
we will say next to nothing. Our excuse is that in order to do a proper
job on this part of the theory we would have to go into much technical
detail, which would detract from the more fundamental points where the
present account differs from others. Also, it would have taken up so much
space that little would have been left for other aspects of the theory. Given
that within the present survey presupposition is only one of a substantial
number of topics, the space we are devoting to it may already seem out of
proportion as it is.

All we will do in this section is to outline the major issues with which
a construction algorithm for preliminary representations has to cope. For
further details we refer to [Kamp, 2001a] and to [Hans and Reyle, ].

The first point is this. Rather than building representations from the sen-
tences of a discourse by traversing their syntactic trees from the top down
(as was done in the original formulation of DRT as, e.g., in [Kamp and
Reyle, 1993]; for discussion see Section 2), we use a bottom-up algorithm.61

It is a familiar fact from other bottom up, “compositional”, definitions of
sentence meaning (cf. e.g. [Cooper, 1975]), that these are often forced

61There are several proposals for bottom up construction of DRSs in the DRT-
literature. See for instance [Asher, 1993], [Zeevat, 1989].
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to make use of variable stores. (The need for variable stores arises when-
ever variables are introduced at one stage in the construction and bound
at some later stage, with other stages in between.) This applies also to
bottom up construction algorithms for DRT like the one that is at issue
here. There the need for a store arises among other things for the location
times of eventuality variables introduced by verbs.62 According to the usual
assumptions about syntactic structure these may get bound at a much later
stage, when the construction process reaches the information contributed
by tense. Many syntactic theories assume this information to be located
at some functional projection of the verb fairly high up in the tree (such
as Infl in pre-Minimalist versions of Chomskyan syntax), which can be at
a considerable distance from the node of the verb itself. Variable storage,
moreover, is also indispensible within the set up of U(nderspecified) DRT.63

The algorithm for constructing preliminary representations uses variable
storage widely. In particular, it assumes that the discourse referent repre-
senting its referent (or, in the case of quantificational NPs, the discourse
referent which plays the role of the variable bound by the quantifier) gets
introduced by the head noun, but may be bound only later on and thus
must be kept in store until then. “Binding” of the discourse referent intro-
duced by the lexical head of an NP can take various forms. Binding can be
quanficational, in which case the element responsible for it is the determiner
of the NP; it can be effected by some other, NP-external operator, as we
find with indefinites, according to the proposals of FCS, classical DRT and
other forms of Dynamic Semantics; or it can take one of the various forms of
referent identification that are associated with the different types of definite
NPs.64

Among the different modes of referent identification for definite NPs there
are, we have seen, in particular those which take the form of finding an
anaphoric antecedent in the discourse context. Within the present discus-
sion it is this anaphoric kind of binding that is of primary interest to us.
In Section 4.1 we saw that such anaphoric binding is not only the standard
form of binding for anaphoric pronouns but that it also plays a part in the
interpretation of at least some definite descriptions. Moreover, it is arguable
that other-than-first occurrences of proper names in a discourse involve such

62See e.g. [Reyle et al., 2000]
63See [Reyle, 1993],[Eberle, 1997]
64In most cases, it is the determiner of the NP which tells us what kind of binding is

wanted (even if it is only with quantificational NPs that the determiner then also takes
care of the binding itself). With definite NPs the matter is a little more complicated,
since many of these — proper names, pronouns and simple demonstratives — no clear
separation between determiner and lexical head can be made. In these cases a more
complicated story has to be told. For the purpose of the present discussion it suffices to
assume that the single word of which such NPs are made up unites the function of lexical
head (and thus variable introducer) and determiner (and thus indicator of binding mode)
in one.
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“antecedent” binding as well; and that the same is true for certain simple
and complex demonstatives. In all such cases the algorithm under discussion
stores the discourse referent, x, that is introduced by the “anaphoric” NP
initially, together with information about the way in which it is to be bound
when the time for binding will have come – information which depends at
least in part on what NP type (pronoun, definite description, proper name,
demonstrative, ...) x belongs to. The account of “antecedent” binding pre-
sented here entails that at some point the store entry for such a discourse
referent must be converted into the representation of the sort of anaphoric
presupposition we have encountered in the preceding sections, and this rep-
resentation adjoined to that part of the representation under construction
which contains the store of the given entry.

To give an impression of how the discourse referents introduced by (the
heads of) anaphoric NPs are processed by the construction algorithm for
preliminary representations we present a selection of the successive stages
in the construction of the preliminary representation of (158.b) of Section
4.2. This will also reveal some other aspects of representation construction
by this algorithm. We will not explain all details of the construction, nor of
the notation used to record its various intermediate stages. The intereseted
reader will have to consult the papers mentioned at the beginning of this
Section.

(158.b) Every friend of mine who has a rabbit overfeeds it.

The NP a rabbit leads to the representation in (198).

(198)

〈{
〈 y, rabbit(y) , indef.art 〉

}
,

〉

This representation consists of a variable store with one entry (for the vari-
able y) and an empty DRS. (This DRS is to be thought of as representing
the predication which involves the NP as argument. It will get filled when
the representation of the NP is combined with that of its predicate — here
the verb have. (At that point the empty DRS of (198) gets merged with that
which represents the predicate and the resulting DRS is empty no longer.)
The entry for u consists, as do all store entries, of three components, (i)
the variable itself; (ii) a simple or complex predication of this variable,
presented in the form of a DRS (also often empty); and (iii) a “Binding
Constraint”, which can be inferred from the source introducing the vari-
able or its syntactic environment — here the indefinite determiner a. These
Binding Constraints are presented here only schematically, by expressions
like “indef.art”. These expressions should be seen as abbreviations of the
often complex binding information that a full and explicit presentation of
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the construction algorithm must spell out in detail.65

What has just been said about a rabbit applies mutatis mutandis also to
the two other NPs, the complex Subject NP of the sentence beginning with
every, and the direct object pronoun it. The representation for it is given
in (199), that for the subject NP in (200).

(199)

〈{
〈 u, non-pers(u) , an.pron 〉

}
,

〉

(200)

〈⎧⎨
⎩〈 x,

fr.o.m.(x)〈{
〈 y, rabbit(y) , indef.art 〉

}
, have(x,y)

〉
, every 〉

⎫⎬
⎭,

〉

(199) is much like (198), the only difference being that its Binding Con-
straints are now the presuppositional ones of anaphoric pronouns rather
than the indefinite Binding Constraints of a-NPs. The story of (200) is
more complicated. To obtain this representation several construction oper-
ations are needed. Some of these are required for the construction of the
representation of the relative clause, and one for the combination of that
representation with that for the lexical head friend of mine (which for pre-
sentational purposes we treat here as if it were a single noun). The main
point here is that the integration of RC representation and head noun yields
a complex representation for the second component of the store entry for
the subject, one which once again has the form of a DRS preceded by a
variable store.

Combining the representation of the direct object with that of the verb
overfeed yields (201) and combining that with (200) the representation in
(202).

(201)

〈{
〈 u, non-pers(u) , an.pron 〉

}
, overfeed(ARG1,u)

〉

(202)

〈⎧⎪⎪⎨
⎪⎪⎩
〈 u, non-pers(u) , an.pron 〉

〈 x,
fr.o.m.(x)

K
, every 〉

⎫⎪⎪⎬
⎪⎪⎭ , overfeed(ARG1,u)

〉

with K =
〈{
〈 y, rabbit(y) , indef.art 〉

}
, have(x,y)

〉
(202) can now be converted into the desired preliminary representation by
implementing the Binding Constraints. We assume that the variable y for

65The spelling out of “indef.art” and other Binding Conditions is arguably the most
demanding part of the entire algorithm specification. In fact, much of the linguistic
literature on the semantics and pragmatics of different types of noun phrases can be seen
as relevant to the exact form in which the Binding Constraints should be stated.
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the indefinite gets bound locally, in the familiar DRT-mode of insertion into
the local DRS universe. (The effect of this assumption is that the indefinite
is interpreted as having narrow scope with respect to the universal quantifier
expressed by every. The binding of y has the effect that the predicate
occupying the second slot of its store entry gets added to the DRS whose
universe receives y. In the present case this is the DRS for the second
slot of the store entry for the subject NP, which becomes the restrictor of
the duplex condition that results from implementing “every”. These two
conversions of Binding Constraints into actual bindings yield (203).

(203)

x y

fr.o.m.(x)
rabbit(y)
have(x,y)

�
��

�
��
�
���
��

∀

x

〈{
〈 u, non-pers(u) , an.pron 〉

}
, overfeed(x,u)

〉

Implementation of the presuppositional Binding Constraint then yields the
preliminary representation (161) of 4.2 (if we abstract of the present treat-
ment of friend of mine as an atomic 1-place predicate. From this represen-
tation one then derives, by the “local” presupposition resolution described
in Section 4.2, the final representation (162).

The computation of the representations of pronoun presuppositions is
simple in that it has to deal with a fixed (and very limited) amount of de-
scriptive information. With other kinds of presuppositions – including in
essence all the presuppositions that are considered in the long tradition of
non-anaphoric approaches to presupposition, from Frege to Heim — this
is not so: For all such “traditional” presupposition types there is no up-
per bound to the complexity that this descriptive information can have.
This is plain for factive presuppositions — the complement of a factive
verb can be as complicated a sentence as you like. But it is equally true
for the existence-and-uniqueness presuppositions of definite descriptions –
since there is no upper bound to the complexity of the relative clauses that
definite descriptions can contain — or for again-presuppositions, since again
may have scope over a VP which includes NP arguments, PP adjuncts, or
subordinate clauses, and for each of these categories complexity has no up-
per bound. Similar considerations apply to all other presuppositions which
in earlier theories were treated as “presupposed propositions”.

The problem that all these presuppositions present for the construction of
preliminary representations was mentioned in Section 4.3: The representa-
tion of the presupposition must be obtained as a “copy” of the representation
of the sentence part to which the trigger applies. (It is useful in this connec-
tion to think of the presupposition trigger as an operator whose operand is
the part whose representation must be “copied” to get the representation of
the presupposition it triggers. It is immaterial in this connection whether
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the part in question is a complement of the trigger, as with the typical
factive verb, or the trigger an adjunct to the part, as we find with adverbs
such as again or too. We will illustrate a couple of aspects of the copying
problem for the case of again-presuppositions, starting with example (167)
of Section 4.3.

(167) John made a mistake again.

One preliminary representation for (167) was given in (170), also repeated
here.

(170)

j

John(j)

〈{
t

t ≺ n

}
,

〈
⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

t′ e′ y′

mistake(y′)
e′:make(j,y′)

e′ ⊆ t′

t′ ≺ t

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

,

e y

mistake(y)
e:make(j,y)

e ⊆ t

〉〉

To get a better grip on what is involved in the construction of such
a representation we give the representation of that part of the syntactic
analysis of the sentence which immediately precedes the construction stage
just before the trigger again comes into play. We assume that again is an
adverbial adjunct to the VP, so the representation in question is that of the
VP. This representation is given in (204).

(204)

〈⎧⎪⎪⎨
⎪⎪⎩
〈t, , m.ev.l.t.〉

〈e, e ⊆ t , m.ev. 〉

〈y, mist(y) , ia. 〉

⎫⎪⎪⎬
⎪⎪⎭ ,

e:make(ARG1,y

〉

(204) has a store with three entries, one for the variable introduced by the
direct object, and two, e and t, connected with the eventuality described
by the verb, the eventuality e itself and its location time t. The respective
Binding Constraints “m.ev.l.t.” and “m.ev.” contain information pertinent
to the binding of these variables. “m.ev.l.t.” — “m.ev.l.t.” is short for
“main eventuality location time” — abbreviates a complex set of condi-
tions which articulate the various ways in which such location times can
be bound.66 All we need to know in connection with the present example

66The matter is as complex as it is, because binding of location times can take many
different forms. One possibility is the indexical binding by finite tense (as we assumed in
our treatment of (167) in 4.3, via the conditrion “t 〈 n” and an additional requirement of
antecedent-binding in context). But there are many other possibilities as well. Location
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is that the indexically constrained anaphoric binding represented in (170)
is among the options “m.ev.l.t.” provides for. By comparison the Bind-
ing Constraint “m.ev.” for e is simpler. We assume that e gets bound by
insertion into an appropriate DRS-universe.67

It is from the structure in (204) that the presupposition triggered by
again must be constructed. One question which the formulation of this op-
eration must adress is which elements of the store require duplication and
which do not. Our earlier treatment of this example took it for granted that
all store elements are to be duplicated, but we will see that this is ques-
tionable. Another question concerns the eventual scope which these store
elements acquire when Binding finally takes place. As we saw in Section
4.3, a precondition of the presupposition construal represented in (170) was
that the variable t be bound anaphorically. This decision amounts to a kind
of “disambiguation” of “m.ev.l.t”, which we abbreviate “m.ev.l.t;an.”. This
means that t is not only related by tense to the utterance time n, but that
moreover it is identified with some (past) time t0 provided by the context.
The main point of this “disambiguation” of “m.ev.l.t” there was, it enabled
us to enter the temporal precedence condition “t′ ≺ t” into the representa-
tion of the presupposition, rather than into the non-presuppositional part.
Formally, however, this possibility depended on the t-presupposition having
wider scope than the again-presupposition. By ...... we would now want
the again-presupposition to be within the scope of the store element for t.

What should we assume to be the scope relation between the again-
presupposition and the other store elements of 204? For the present example
it won’t matter which way we decide. But a general principle is needed on
the basis of which decisions are to be made. At this point we do not feel
able to state such a principle, but even only put forward a few hints about
the form it should take.

First, a correlation between the scope question and onother one which is
even more important. (It matters in almost all cases, the example before
us among them.) This is the question which of the elements in the store
of the represenations that is in the scope of the trigger at the point when
the representation is constructed for the triggered presupposition need be
“copied” — i.e. whether a store element of the same form but involving a

times can be bound, either internally to the clause containing the verb responsible for
its introduction or externally to it, via the binding relations that often exist between
finite subordinate clauses and the clauses to which they are adjoined, gerundival and
other infinitival constructions (including control), adverbial quantification and aspect
operators, and possibly others as well. [Reyle et al., 2000] give an impression of this
complexity, even when restricted to possibilites of clause-internal binding. For discussions
of clause-external binding see e.g. [Ogihara, 1999; Abusch, 2004]).

67The default assumption is that e gets inserted into the universe of the DRS which
contains the condition “e:...” as one of its conditions. But sometimes there are other
possibilities as well. In this regard eventuality discourse referents are much like those
introduced by indefinite NPs, although we don’t know how close the similarities are.
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different discourse referent should be included in the store of the represen-
tation for the triggered presupposition. The natural correspondance seems
to be this: Precisely those store elements of the argument representation
of the representation in the scope of the presupposition trigger should be
copied into the store of the representation of the triggered presupposition
which remain within the scope of the new presupposition representation in
the representation which results from its construction.

This correlation doesn’t tell us, however, how either decision – which
store elements remain within the scope of the new presupposition, which
store elements must be copied — is to be made. This is a hard problem
since so many different factors seem to impinge on its solution. And as with
other questions of semantic scope, there appears to be room for genuine un-
derspecification by syntactic form. The best way to deal with this and other
scope problems is therefore, we believe, withing the setting of UDRT [Reyle,
1993]. Among the various constraints on the solution to the present scope
problem there is one which deserves to be mentioned here, as it concerns the
interaction between presuppostions. In general some of the store elements
that may occur within the scope of a presupposition trigger like again may
be persuppositional themselves. These are the store elements introduced by
definite NPs which will have to be converted into presuppostion representa-
tions at some stage. (In the discussion above it was assumed implicitely that
this happens at the point when the input tree to the construction process
has been entirely transformed into a representation form of the kind illus-
trated in the representations (198)-(204) above. But for the present point it
doesn’t really matter when we take these conversions to take place.) What
can be said about the scope relations between different presuppositions? In
many cases, including all those where the presuppositions in question are
resolved globally, their scope relations within the preliminary representation
are of no consequence. But there are also cases where this matters. One
case is discussed at length in [Kamp, 2001a]. A sentence like

(205) Fred has pawned his watch again.

is ambiguous between an interpretation according to which there was a
simple watch which he pawned, then retrieved from the pawnshop and then
pawned again, and a reading on which he pawned one watch, then go an-
other one and then pawned that one too. The second interpretation can be
obtained (within the present theory) only by copying the presuppositional
store element which again finds in its scope. Rendering the possessival re-
lation conveyed by his dependent on time, so that we can evaluate this
relation to the time t of the asserted event in the presupposition represen-
tation adjoined to the assertion and to the time t′ of the event presupposed
by again in the copy of that representation then makes it possible to obtain
two distinct referents, each of which was the unique satisfier of the relevant
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conditions at the relevant time. The interpretation according to which the
same watch was pawned twice can also be obtained in this way, viz. when
the unique satisfier of the given condition at t′ is in fact the same as the
unique satisfier a t. (According to this analysis the difference between the
two cases isn’t really a matter of two different readings but of two different
situations to which the same semantic representation is true, which seems
to be in accordance with the intuitions which some speakers have expressed
about such examples like (205).

But does (205) also have another reading, which we obtain by giving
the presupposition for the definite description wide scope over the again-
presupposition? The matter is difficult to decide, since there is in principle
always the possibility of making the conditions of the original presuppostion
representation and its copy identical, so that they will resolve to the same
referent. It is important, however, to distinguish in the present connection
between definite descriptions and pronouns. In a discourse like (206)

(206) Fred hasn’t got his watch on him. In fact, he has pawned it again.

the strongly preferred interpretation seems to be that the same watch was
pawned twice. Anaphoric pronouns, it would thus seem, — and the same
thing may well be true of anaphoric presuppositions (in the sense of 4.3)
in general — come with the requirement that they “may be resolved only
once”. There are various ways to make sure of this within the present frame-
work. One is to insist that anaphoric presupposition representations (or the
store elements that are destined to become anaphoric presupposition rep-
resentations) always are given scope over the presuppositions generated by
again when the presupposition occurs within the trigger’s scope. (Though
other stipulations to the same effect are possible too.)68

We summarise this inconclusive discussion by stating once more the prob-
lem that it addressed: When the representation must be constructed for a
presupposition-triggering particle like again and the representation in its
scope has a store S, then the question arises which of the elements of S
should get scope over the new presupposition representation and which
should remain within the scope of the new representation. We assume that
in general the new representation cleaves S into two parts, of the elements
with wider and the elements with narrower scope. But the principles which
govern this division require further investigation.

68The distinciton between pronouns and definite descriptions is more complex that the
above remarks imply.

(207) Fred is without a watch. He has pawned it again.

can be said perfectly well in a case where Fred pawned two different watches at two
different times. Examples like this one seem to be .... to the famous paycheck examples
(The man who gave his paycheck to his wife was wiser than the man who gave it to his
mistress). But exactly how this connection should be accounted for is left as a question
of further investigation.
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In the case of (204) we decided, in keeping with our earlier analysis of
the example, that only the t-presupposition should get wide scope over
the again-presupposition, while the other two elements of the store remain
within the scope of the new presupposition, and at the same time yield
copies within it. The result is given in (208).

(208)

〈{
〈t, , m.ev.l.t.;an.〉

}
,

〈
K,

〈⎧⎨
⎩
〈e, e ⊆ t , m.ev. 〉

〈y, mist(y) , ia. 〉

⎫⎬
⎭,

make(ARG1,y)

〉〉〉

with K =

〈⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈t′, t′ ≺ t , m.ev.ag-pr.l.t.〉

〈e′, e′ ⊆ t′ , m.ev.ag-pr. 〉

〈y′, mist(y′) , ia. 〉

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

,
make(ARG1,y

′

〉

“m.ev.ag-pr.” and “m.ev.ag-pr.l.t.” stand for “main eventuality of an
again-presupposition” and “location time of the main eventuality of an
again-presupposition”. The Binding Constraints “m.ev.ag-pr.” and “m.ev.ag-
pr.l.t.” are short for the special Binding Constraints appropriate for such
variables.

There is a difficulty here which we passed over in our discussion of again-
presuppositions in Section 4.2: Should we see the presupposed variable
e′ and its location time t′ as existentially quantified within the again-
presupposition, so that this presupposition has the status of a presup-
posed proposition? Or should one or both of them be treated as anaphoric
discourse referents? Our discussion in Section 4.4 of the justification of
the again-presupposition of Kripke’s example (189.b) and its variant (190)
might seem to suggest the second view. After all, in the two cases of justi-
fication that we considered in Section 4.4 the context did provide an event
with which e′ could be identified (as well as a time for the identification of t′).
On the basis of other cases, however, it appears to us that for the justifica-
tion of an again-presupposition no explicit representation of an eventuality
and/or location time in the context is required; it is enough if the context
can be seen to entail that there was an earlier occurrence of an eventuality
of the desired type. Hence no underlining of e′ and t′ in (170).69

4.6 Conclusion

This very brief Section serves both as a conclusion to the Section 4.5 and
as conclusion to Section 4 as a whole. We extract what we see as the most
salient features of the presuppositon theory presented here.

69It should be clear that the absence of underlining for these variables is a reflection
of the Binding Constraints “m.ev.ag-pr.” and “m.ev.ag-pr.l.t.”. Generally, presence or
absence of underlining is something that the Binding Constraints for the variables of
presupposition-triggering NPs must make explicit.
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1. The general approach towards the theory of presuppositions of which
the first explicit version in print is [van der Sandt, 1992] and of which the
present proposal is an instance, implies a sharp separation between:

(i) the computation of presuppositions, which is part of the construction
of the preliminary sentence representations in which presuppositions
are explicitly represented, and

(ii) their justification, which is part of the integration of the preliminary
representation with the context.

This separation “presupposes” a two level DRT architecture, in which sen-
tences are first assigned a preliminary representation which is then subse-
quently connected with the context representation.

In recent years it has been principally the second problem, that of presup-
position justification, on which most of the work in presupposition theory
was focussed. The problem of presupposition computation has often been
bypassed, partly, we suspect, because systematic proposals for a syntax-
semantics interface which includes presuppositional phenomena were lack-
ing altogether. But the problem of presupposition computation should not
be underestimated. There are various reasons why it shouldn’t be. A par-
ticularly important one is that so often, and in the plainest and seemingly
most innocent uses of language, a single sentence will give rise to several
presuppositions at once.

2. Following [van der Sandt, 1992], the theory is set up to deal with phe-
nomena which have been traditionally classified as cases of presupposition
and those that have been classified as cases of anaphora in largely parallel
ways. Nevertheless differences between these two kinds of phenomena re-
main. The present theory endeavours to do justice to these differences by
distinguishing between anaphoric presuppositions and non-anaphoric (or
“purely propositional”) presuppositions. Whether or what further distinc-
tions will prove necessary is a matter which we have left open.

3. The theory makes a sharp distinction between presupposition justifi-
cations that are accommodation-free (cases which in [van der Sandt, 1992]

and elsewhere are described as “presupposition binding”), and cases where
accommodation plays a role. One difference between justification and ac-
commodation on which the present theory insists is that justification is
always “local” and accommodation always “global”.

4. The theory is designed to deal not only with single presuppositions
individually but also with the (extremely common) cases where a single
sentence generates several presuppositions at once and where these inter-
act in often intricate ways. This is a domain in which there is need for
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much further work, both with regard to presupposition computation and to
presupposition justification.

5 PROPOSITIONAL ATTITUDES

5.1 Introduction

There is a natural connection between DRT and the description of propo-
sitional attitudes, such as belief, desire or intention. The most direct con-
nection is with belief. According to DRT, interpretation of an assertion one
hears or reads takes the form of constructing a DRS for it. One way to
think of this DRS is as a structure which the interpreter forms in his mind
and which for him identifies the content of the interpreted statement.

In most presentations of DRT this connection is played down: as a theory
of semantics, it was felt, DRT should be able to stand its ground without
reference to the minds of language users. Emphasising the psychological an-
gle would only have detracted from those aspects of the theory which make
it useful as a tool for linguistic analysis in which the mental plays no direct
part. The conviction that linguistics should stay clear from assumptions
about what goes on in the heads of speakers or hearers was particularly
strong within the context in which DRT was first developed (that of the
formal semantics community of roughly twenty five years ago), and there
was a correspondingly strong reluctance to dwell on the psychological po-
tential of the theory. In the meantime, suspicion of reference to the mental
has lessened even among formal semanticists. But even today it seems good
policy to keep those aspects of DRT that make it a “mind-neutral” theory
of meaning separate from what the theory might have to say about mental
representation. This is the policy that we ourselves have followed in earlier
work on DRT and to which we have also stuck in the present overview.

It should nevertheless be admitted that the idea of a mental represen-
tation which the interpreter of a sentence, text or bit of spoken discourse
builds was an essential motive for developing DRT, even if the standard for-
mulations of DRT that have made it into print bear little evidence of this.
Witness to this are publications which explicitly explore the possibilities of
DRT as a theory of propositional attitudes. Some of this work goes back
to the eighties (cf. [Asher, 1986; Asher and H.Kamp, 1989; Kamp, 1990;
Asher, 1993] ).

The reason why the psychological significance of DRSs seemed a promis-
ing line of investigation from the start is directly connected with what DRT
has to say about the semantics of indefinite expressions and anaphora to
indefinite antecedents (highlighted by donkey sentences and donkey dis-
courses; see Section 2.3). Suppose that a recipient B has just interpreted a
sentence containing an indefinite NP α and that the next sentence he must
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interpret contains a pronoun for which α is a fitting antecedent. According
to DRT the anaphoric connection between pronoun and NP can be estab-
lished by identifying the discourse referent for the pronoun with the one
for α. It is tempting to think that this account of what goes on in estab-
lishing indefinite-pronoun links tells us something about how the content of
interpreted sentences is represented in the interpreter’s mind: the indefinite
α does give rise, at the level of mental representation, to the introduction
of an entity representation (corresponding to the discourse referent for α)
and this representation can then serve, just as could in principle any other
entity representation in the mind of the interpreter, as an antecedent for
anaphoric noun phrases occurring in sentences that are to be interpreted
subsequently.

The fact that cross-sentential anaphora works in the way the theory pre-
dicts (with some exceptions, but on the whole the number of these does not
seem damning), and that the theory gives such an apparently simple account
for it, was one reason for thinking that DRSs capture some genuine aspect
of the way in which the mind represents menal content. A further early
reason for thinking this was the observation, due to Partee, that pronom-
inal anaphora is sensitive to the form of the preceding sentence, and not
just to its “propositional” (i.e. intensional) content: “It is under the sofa.”
can be understood as a statement about the missing marble when it follows
“One of the ten marbles is not in the bag.” but not when it follows the
propositionally equivalent “Nine of the ten marbles are in the bag”. (See
section 3.1 This distinction is also captured effortlessly by DRT, and it is
one which seems to go directly against the fundamental assumptions about
semantic content that were dominant within formal semantics at the time.

Even if these and other facts (some discovered by psycholinguists over the
past twenty years) make it plausible that entity representation (including
representation of entities introduced by indefinite NPs) has psychological
reality, we must, when it comes to claiming psychological reality for the
representational form of DRSs generally, tread very carefully. About the
mental representation of predication very little is apparently known even
today. Thus it would be premature to consider all aspects of the form of
DRSs as capturing aspects of psychological reality.

In this section we will discuss an extension of DRT, in which DRSs will
be used to identify mental representations of content. We want to remain
agnostic, however, on the question precisely which features of DRSs are
psychologically significant and which are not, leaving these questions to be
settled by future work in cognitive science.70 We certainly do not advocate

70In this respect the account presented here is less committal than, for instance, [Asher,
1986], where the form of DRSs is used to arrive at an account of the identity conditions
of beliefs and other propositional attitudes. Our own inclination on this point is that the
concept of identity for beliefs and other propositional attitudes is too context-dependent
to allow for a characterisation once and for all in any case.
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wholesale adoption of the DRS-format as psychologically significant in each
and every respect.

5.2 Extending DRT to a Formalism Capable of Describing At-

titudinal States and Attitude Attributions. Some Examples

Semi-Formally Treated

As indicated above, a principal motive for applying DRT to the analysis
of mental contents is its ability to deal with cases of cross-sentential don-
key anaphora and the way in which it does this: the new sentence with the
anaphoric pronoun is interpreted via a representation in which the discourse
referent of the pronoun is identified with that of its antecedent. A conse-
quence of this is that the DRS K2 for the new sentence is not a proper DRS;
one of the discourse referents occurring in conditions of K2, viz. the dis-
course referent for the pronoun’s antecedent, is not bound within K2 itself,
but in the DRS K1 which represents the preceding sentence or sentences
and serves as context of interpretation for the new sentence.71 In standard
DRT the non-properness of K2 does not cause problems, since what counts
in the end is only the merge of K1 and K2, and that DRS will normally be
proper even if K2 isn’t.

For the question how content is mentally represented, cases of cross-
sentential anaphora to indefinite antecedents hold a double moral. First,
if the representation of content is along the lines DRT describes, then rep-
resentation of new information, and thus of the content of newly acquired
propositional attitudes, will take the form of “pegging” the new represen-
tation on one that is already in place. By itself the new representation
would not determine a well-defined propositional content; it succeeds in do-
ing so only in conjunction with the representation of some other attitude,
on which it depends “referentially”. Let us assume that the recipient of a
two-sentence discourse in which the second sentence is in such an anaphoric
dpendence on the first sentence, that both sentences are asertions which
communicate new information to him and that the recipient accepts both
bits of information as true and thus forms the corresponbding beliefs. It is
natural in such a situation to think of the first DRS, K1, which (we assume)
the recipient has formed as the result of his interpretatiojn of the first sen-
tence as representing for him the content of the first of his two beliefs, and
of the sewcond DRS, K2, the result of his interpreting the second sentence,
as representing the content of the second belief. So far the storz may seem
barely distinguishable form the one whic standard DRT tells about incre-
mental interpretation of discourse. But there is one difference with what

71Note that this is so irrespective of whether we insert the discourse referent α for
the antecedent in the argument slots of the pronoun, or proceed as we have here, viz.
by introducing a separate discourse referent β for the pronoun and then add to K2 the
condition “α = β”.
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we have been assuming so far, and it is a difference that is crucial. For in
the presnt context it is no longer possible to simply amalgamate the new,
improper representation K2 with the DRS K1 on which it depends. The
reason is that the attitude whose content is represented by K2 may be of a
different kind from the one represented by K1. For instance, K2 may repre-
sent a belief with a lower confidence degree than K1. Or, more dramatically,
the attitude represented by K2 could be a desire while that represented by
K1 is a belief; and so on. To give an example of the first case, consider
a sitaution in which two philosophers, Φ1 and Φ2, are talking over coffee.
Φ1 is telling Φ2 about the last convention he went to, and which Φ2 had
decided not to attend. “You know”, he says to Φ2,

(209) “I gave my paper on implicature, the one you have seen. There was
one person in the audience who objected — of course I was prepared
for an intervention of that kind — that not every case of inference is
a case of implicature. Well, I wiped the floor with him.”

Let’s assume that Φ2, in accordance with the speaker’s referential intentions,
interprets him as anaphoric to one person in the audience. This makes her
representation of the third sentence in (209) referentially dependent on her
representation of the first sentence. But let us assume also that Φ2, while
seeing no reason to doubt that the first two sentences of (209) are true,
doubts the truth of the third: she knows Φ1 as a rather inflated person,
who tends to be out of touch with reality where his ability to convince
or impress others is concerned. So she registers the first two sentences as
belief (with a high confidence degree), and the third sentence as a doubt.
The two representations must be kept separate, one as specification of the
content of a belief and the other as specification of the content of a doubt;
amalgamating them would obliterate the crucial demarcation between what
is accepted as true and what isn’t. It follows from this that DRS-merge can
no longer be used to account for the binding problem connected with cross-
sentential anaphora.

Our second example shows that the problem illustrated by the first is not
restricted to attitudes which arise through the interpretation of language.72

A stamp collector opens the lid of a box which contains an unsorted mis-
cellany of stamps. He has been told he can pick one stamp out of the box
and keep it. He perceives (or thinks he does) a copy of the 2d stamp of the
1840 edition of Great Britain (showing the head of Queen Victoria), but of
which only a tiny portion is visible to him. (Stamp collectors are known
to develop an uncanny ability to identify stamps even if only a tiny part
of them is exposed to view.) The 1840 2d of GB is a stamp for which he
is always on the look-out. So his perceptual experience instantly produces
in him (i) the belief that there is a copy of this stamp in the box, (ii) the

72See [Kamp, 2003].
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desire to make this copy his own; and (iii) the resolve to pick the stamp out
of the box (thereby making his desire true).

Let us assume that each of these attitudes can be represented as a pair
consisting of (a) a representation of its propositional content and (b) an
indicator of its attitudinal mode — that is, some feature which distinguishes
between beliefs, desires, intentions, etc. For simplicity we will assume just
three such mode indicators here — BEL, for belief, DES, for desire, and
INT, for intention. This way of representing propositional attitudes “two-
dimensionally” allows among other things for the possibility that the same
propositional content representation can combine with different mode indi-
cators. This corresponds to the possibility of representing attitudes with
the same content but distinct modality, as when two different persons hear
the same assertion and assign the same interpretation to it, but where one
accepts it as true, while the other withholds judgement; or when a person
first believes something but then discovers this belief to be false; or when
someone has a fervent hope that something is the case (e.g. that his beloved
is still alive) and then finds his hope confirmed. The representation of atti-
tudes which coincide in content but differ in mode is especially important
in the description of dialogue — where the participants will often have dif-
ferent attitudes towards the same proposition — and also in describing how
attitudinal states change in time, either under the influence of new incom-
ing information or as a consequence of internal information processing (i.e.
reasoning).73

Given these assumptions, and ignoring for the moment the temporal di-
mension, we can represent the complex of the three attitudes that, in our
presentation of the case, result from the (presumed) perception of the Queen
Victoria stamp as follows:

(210)

〈
BEL,

x z

2d-1840-GB(x) (the box)(z) in(x,z)

〉

〈
DES,

poss(i,x)

〉

〈
INT,

pick-from(i,x,z)

〉

The first point connected with (210) is that the discourse referent x for
the stamp, which is bound in the belief-component (through its presence

73The possibility of representing attitudes in this way is also important for accounts of
belief revision which pay closer attention to the form in which new information becomes
available than is done in the classical approaches to belief revision. (For the classical
approach see e.g. [Gärdenfors, 1988].)
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in the universe of the belief DRS), recurs in the desire and the intention
components. So the DRSs of these components do not determine a well-
defined propositional content without support from the belief DRS. The
second point, to which we will return below, concerns the symbol “i”. “i”
is specific to attitude representations and there it stands for the “self”,
i.e. for the bearer of the attitude as he immediately perceives himself, in
particular as the subject of his own perceptions and actions. Thus “i”
acts as an indexical discourse referent. A token of “i” which occurs in the
representation of an attitude of an agent A will ipso facto stand for A.74

The third point is that the “referential sharing” between the belief, the
desire and the intention of (210) which is captured by the occurrences of
the same discourse referent x in each of them, is a decisive factor in the
way in which someone whose mental state includes these attitudes may be
expected to “act” — internally (i.e. in thought) as well as externally (i.e.
in acting upon his environment). The belief that there is a 2d stamp from
the 1840 edition of Great Britain in the box, we suggested, gives rise to
the desire to be in possession of “that stamp”, and then to the intention to
take it out of the box. And the action into which this intention is likely to
result — that of reaching for a stamp assumed to be the 2d. 1840 Queen
Victoria and seen to be at a certain place in the box — will be guided by this
intention (in combination with a further belief, or aspect of the displayed
belief, which concerns the precise location of the stamp in the box, one that
also comes from the perception, but which we didn’t display in (210)). The
desire and intention develop out of the belief as desire and intention about
the same object the belief is about. And here the sense of “the same object”
is clearly a psychological one, which controls the internal development of
thought and its eventual manifestations through action.

In fact, it is important to distinguish this internal sense of “same object”

74In this regard “i” is reminiscent of the indexical discourse referent “n”. We saw
in Section 3.5 that an occurrence of “n” always stands for the utterance time of the
sentence represented by the DRS containing it. In fact, as we will explain presently, “n”
also has a use within the representations of propositional attitudes. However, there are
also important differences between “i” and “n”.

Representations of beliefs and other attitudes which contain “i” should be distinguished
from representations which contain in lieu of “i” a non-indexical discourse referent x
which (as it happens) represents the thinker himself. Such a “non-first person” discourse
referent x can be internally and externally anchored to the thinker (for anchoring see
Section 5.3), but the anchors may be such that they do not enable the thinker to realise
that he himself is the individual represented by x. In other words, these anchors do not
enable him to make the transition from the thought representable as “P(x)” to the one
representable as “P(i)”. Kaplan’s well-known case of the man who sees a person in the
mirror whose trousers are on fire, who doesn’t at first realise that he is that person, but
for whom the penny then drops, can be described in our DRS language by a sequence
of two attitudinal states, the first containing a belief representable as 〈 {y}, {trousers-
of(y,x), on fire(y)} 〉, with x internally anchored and externally anchored to the man,
while the second state, which supplants the first when the penny drops, contains instead
a belief represented as 〈 {y}, {trousers-of(y,i), on fire(y)} 〉.
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from the external sense which is prominent in many philosophical discus-
sions of meaning, reference and the content of propositional attitudes. These
discussions typically focus on cases where two expressions refer to the same
real world entity, but where a particular speaker (or thinker) may be un-
aware of this, or alternatively where a speaker takes two expressions (or
occurrences thereof) to refer to the same thing although in actuality they
refer to distinct real world entities.75 The internal sense of “sameness of
reference” that we are dealing with here is different. The difference comes
out clearly when we consider cases of misperception. Suppose first that our
stamp collector has falsely concluded that a particular stamp, of which he
glimpsed a corner, was the 2d 1840 of Great Britain. In this case the belief
he forms can be construed as a false belief about a particular object (i.e.
the stamp whose corner he misinterpreted). The desire and intention could
then also be directed towards this stamp, even though the collector would
not have had these attitudes if he wasn’t under this misconception. If he
implements his intention by taking the stamp out of the box, he will be
disappointed. But the process leading up to this action will be, from an
internal, psychological perspective, just as in the first case.

Misperception, however, can also be more radical than this. The belief
that there is a specimen of the 2d 1840 of Great Britain in the box may have
been caused by some combination of optical factors that led to this illusion
without there being any one stamp in the box that is directly responsible
for it — there is no stamp of which it could be said that the observer had
misidentified that stamp as the 2d 1840 of GB. In such cases it is plausible
to hold that the belief — and with it the desire and the intention — are
not about any one object in particular. This is the position we adopt in
relation to cases of this latter sort. In fact, we will argue below that if the
sitatioj is as in this last scenario, then the representations in (210) fail to
define a propositional content altogether (although there are closely related
representations which are also within reach of the agent and which define
the corresponding existential propositions, e.g. the proposition that there
is a specimen of the 2d 1840 of GB in the box).

We assume that the crucial difference between this last case and the first
two is that the discourse referent x has an external anchor in the first two
cases, but not in the last one. What we mean by this can be explained as
follows. Our point of departure is a causal theory of perception according to
which direct perception of an object involves a certain kind of causal relation
between the thing perceived and the perceiver.76 In the present context
this view takes a slightly different form from the one in which it is normally
presented: The causal relation is a three-place relation, involving (a) the
object perceived, (b) the perceiver, and (c) the discourse referent which

75See, as one among many places in the philosophical literature, [Kripke, 1979].
76[Grice, 1961], [Kaplan, 1989]
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arises as a constituent of the content representation of the propositional
attitude to which the perception gives rise and which represents the object
in that representation. So, in the first two cases considered, the terms of the
relation will be: (a) the stamp whose corner suggests that it is a specimen of
the 2d 1840 of GB, (b) the collector, and (c) the discourse referent x shown
in (210). Since the discourse referents at issue will always be constituents
of the representations of propositional attitude contents, and the perceiver
is uniquely determined as the one who has this attitude, it is legitimate
to talk about the causal relation as one which involves just the perceived
object and the discourse referent to which its perception gives rise; and this
is the practice we will adopt.

Whether an external anchor actually exists is something for which the
observer cannot have conclusive evidence — this is just what the examples
of optical illusion show. In the cases we just discussed, however, the observer
is persuaded that he is seeing a particular stamp — this is as true in the
third case as it is in the first two. From his own, internal perspective
the three cases look exactlz alike. In each of them he takes himself to
have direct perceptual contatc with an object, and about which he then
forms certain beliefs, as wellas (as in the cases before us) certain other
attitudes. we consider this aspect of the resulting attitude complex —
that the perceiver forms a representation of something to which he takes
himself to stand in direct perceptual contact — an important feature of the
nature of mental representation. We capture this feature — the presumption
connected with an entity representation that it is the result of a causal
interaction between the one whose representation it is and that which it
is presumed to represent — in terms of the notion of an internal anchor.
Internal anchors are, unlike the external anchors we have just spoken of,
constituents of the mental state of the perceiver. We represent them as
separate components of the attitudinal state as a whole, on a par with
those constituents that are genuine propositional attitudes.

We assume that internal anchors carry some information about how the
anchored discourse referent anchored. Thus a perceptual anchor like the
one for x in our example will contain some information which records how
the perceiver perceives (or thinks he perceives) the represented object. We
will not be very precise about exactly what information should go into in-
ternal anchors, leaving this as a question for further research.It should be
stressed, however, that we regard perception as only one of several sources
of anchoring. Other causal relations between a cognitive agent and an ob-
ject can also give rise to anchored representations. And in these cases too
the anchored representation may be legitimate (i.e. it did arise from an ac-
tual interpretation between the agent and the represented object) or it maz
be the illegitimate product of an illusory interaction, in which case there
will be, once again, an internal anchor but no external one. The anchor-
ing information that is part of such non-percpetual anchors will of course
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be different that which is part of the various kinds of perceptual anchors.
But, as said, this is an aspect of the conecpt of an anchor about which
we remain neutral. As an indication that we admit other anchors besides
the perceptual ones, we will occasionally mark the latter with the subscript
“dir. perc.”.

With regard to our example of the stamp box we assume that (in all
three scenarios) the agent has anchored representations not only for the
(presumed) stamp, but also for the box.77

Thus we now get a total of five components instead of the three of (210).

(211)

〈
[ANCH,z],

z

(the box)(z) infrontof(z,i)

dir.perc

〉

〈
[ANCH,x],

x

stamp(x) in(x,z)

dir.perc

〉

〈
BEL,

2d-1840-GB(x)

〉

〈
DES,

poss(i,x)

〉

〈
INT,

pick-from(i,x,z)

〉

The representation in (211) leaves open whether the internally anchored
discourse referents x and z are also externally anchored. This is information
that, as noted above, cannot be part of an attitude description of which

77The anchored discourse referent of an internal anchor is mentioned not only in the
universe of the DRS that occurs as second component of the anchor, but also in the first
component. This is in order to make explicit that it is this discourse referent (i.e. the
one which occurs as part of the first component of the anchor) for which the anchor is an
internal anchor. The DRS universe might contain additional discourse referents needed
to express the anchoring information which the DRS serves to represent. In that case
confusion maz arise as to which discourse referent is actually being anchored. This is a
complication which doesn’t affect any of the examples which will be considered in this
section. But it is not too difficult to come up with cases in which it does (given plausible
assumptions about the information that goes into the second part of an internal anchor).
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all constituents are intended to correspond to psychologically significant
aspects of the represented attitude complex. It is nevertheless possible,
however, for an external observer O who attributes a certain mental stateto
some agent A to judge that A did truly perceive a certain object, and that
his representation x of that object therefore has not only an internal but
also an external anchor. It should be possible for our formalism to represent
such judgements. That is, it should be possible to represent the judgement
that A’s representation x is externally anchored as part of O’s representa-
tion of his attribution to A. We once more use our example of the Queen
Victoria stamp to show how this additional information is represented in the
present framework. Suppose that (211) is O’s representation of the mental
representation he attributes to A. O’s judgement that, e.g., the discourse
referent x is externally anchored, is expressed in the form of a pair 〈x,s〉,
where s is a designator which O uses to refer to the stamp which he assumes
is the perceptual origin of A’s internally anchored representation. As indi-
cated above, this information should be kept separate from that part of the
representation which “models” A’s mental state insofar as it is accessible
to A himself. So the pair 〈x,s〉 is treated as part of a distinct component,
and is placed to the right of the “internal” part of the representation given
in (211). (212) rerpesents an attribution by O to A whose “psychological”
component is like the representation in (211) and in which both the dis-
course referents x and z are externally anchored. (Thus O also takes A’s
box representation z to be the result of a true perception, and uses the
designator b to refer to the box which he takes A to have perceived.)
The set {〈 z,b〉 , 〈x,s 〉} is called the external anchor of (212), and its
member pairs 〈z,b〉 and 〈x,s〉 external anchors for z and x, respectively. If
the observer O believes z to be externally anchored, but not x, then the
external anchor of his description would contain the pair 〈z,b〉, but no pair
for x. In the unlikely event that he thought even z to be the effect of an
optical illusion, the external anchor would be empty; and so on. 78

Let us return to the purely internal representation (211). The mental
state represented by (211), we said, could arise in each of the three scenarios
we have described. In the first of these, where the stamp of which the
collector sees a small corner is indeed a 1840 2d. of Great Britain, the
discourse referent x is externally anchored and the belief involving it is true.
In the second scenario we still have an external anchor for x, but the belief
is now false. In the third scenario there isn’t even an external anchor for x.
What are we to say in this case about the belief of (211)? Is it false again?
Or odes its truth value depend on whether there is a specimen of the stamp
somewhere in the box, or in that part of it where the collector thought he

78The formalism we present here does not provide for statements which deny external
anchorage for a discourse referent occurring as a constituent in the described mental
state. There are no principled objections, however, to extending the formalism with such
means.
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(212)

〈
[ANCH,z],

z

(the box)(z) infrontof(z,i)

dir.perc

〉

〈
[ANCH,x],

x

stamp(x) in(x,z)

dir.perc

〉

〈
BEL,

2d-1840-GB(x)

〉

〈
DES,

poss(i,x)

〉

〈
INT,

pick-from(i,x,z)

〉

{〈 z,b 〉 , 〈x,s 〉}
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saw such a specimen? Our position is that in this last case the represented
belief is neither true nor false: Since there is no particular object to which
x is directly linked, and which it could thereby be considered to represent,
there is a fortiori no way to decide whether or not this putative object has a
certain property. Failure of an internally anchored discourse referent to have
a corresponding external anchor is a failure of presupposition, which renders
the question of truth or falsity moot. representations of presuppositional
attitudes which contain occurrences of discourse referents that are anchored
internally but lack an external anchor, cannot be avaluated as true or false;
they do not determine well-defined propositions.

This position, that attitude representations with internally but not exter-
nally anchored discourse referents do not express propositions, is connected
with another one. Suppose an attitude representation contains occurrences
of internally anchored discourse referents but that all those discourse ref-
erents do have corresponding external anchors too. In that case the rep-
resentation does determine a well-defined proposition. But the proposition
expressed is a singular proposition. In case the representation contains just
one externally and externally anchored discourse referent, this proposition
is the one which attributes to the object to which the discourse referent is
externally anchoredthe property expressed by the remainder of the represen-
tation. In case there are two anbchored discourse referents , the proposition
attributes to the external anchors of these discourse referents a certain bi-
nary relation, and so on for numbers greater than two. In particular, in
the case of the first two stamp scenarios the belief representation in (211)
expresses the proposoition that says of s that it is a specimen of the 2d
1840 of GB and the representation of the intention attributes to s, b and
the perceiver himself the relation which holds between any individuals a, b
and c iff c takes a out of b.

The position that external anchoring entails propositional singularity
while absence of an external anchor for an internally anchored discourse ref-
erent entails failure to determine propositional content can be summarised
as follows:

• If all internally anchored discourse referents that occur in the repre-
sentation of a propositional attitude are externally anchored, then the
representation expresses a proposition that is singular with respect to
each of the external anchors for these discourse referents;

• If the representation contains an occurrence of a discourse referent
that is internally but not externally anchored, then it doesn’t express
any proposition at all.

This position might be thought to undermine the very purpose of the pro-
posal we are in the process of developing, viz. that different propositional
attitudes can be “referentially connected” by sharing one or more discourse
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referents — just as this is often found with the representations of different
sentences in a coherent discourse. For instance, in the example on which we
have concentrated so far, we considered two possibilities for the discourse
referent x: either x is externally anchored, in which case each of the three
attitude content representations in (211) defines a singular proposition on
its own (that is, none of them needs any of the others to determine the
proposition it expresses); or else x is not externally anchored, in which case
none of these representations express a proposition.

So it looks like we are left with these two possibilities: either each of the
components of the representation of an attitude complex defines a (often
singular) proposition on its own, in which case the referential connections
between them are mediated by external referents; or the “dependent” repre-
sentations don’t have a proper propositional content, so there are no propo-
sitional contents to be connected. Are we to conclude that the internal
referential dependencies illustrated in (211) are a red herring?

That would surely be the wrong conclusion. Internal referential connect-
edness is a psychologically real and important aspect of thought. To repeat
once more, from the internal perspective of the perceiver-agent it makes no
difference whether his internally anchored discourse referents are externally
anchored or not. In either case his thoughts and actions will be the same.
To return to our example: The agent A will make a move for the stamp
which (he thinks) he has perceived, whether or not there really is a partic-
ular stamp that has caused his visual experience. The differences between
the three cases solely concern the actual outcome of the action he performs.
When there is a stamp he does perceive and this stamp has the properties
he perceives it to have, things will work out as he expected; in the second
case he will find to his disappointment that the stamp on which his action
is targeted isn’t the one he thought it was; and in the third case he may
come to realise that what he thought was a specimen of a certain stamp
wasn’t really anything at all. But while there will be variation in the result
of the action, the mental process which leads to it, as well as all or most79

of the actual motions which the action involves, will be the same.
The conclusion can only be that an account of what people think and

(try to) do must be independent of whether or not the discourse referents
of their attitudes are externally anchored. What does matter is how they
are internally connected. What we need, therefore, is not only a semantics
for attitude descriptions which take external anchors into account, but also

79Of course, as soon as the action leads to the agent’s discovery that the stamp is
different from what he thought it was or that there was no particular stamp that he saw
at all, the remainder of his action may be expected to be different from what it would
have been if he had perceived a specimen of the stamp of which he thought he saw a
specimen. But as soon as such a discovery is made, A’s internal representation of the
stamp will no longer be the same, but will be modified to reflect his new information.
In particular, the discovery that there was no particular stamp at all will have the effect
that A’s representation for the particular stamp will be expunged.
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one in which only the internal properties of the represented mental state
are taken into consideration. It is this second semantics which provides the
basis for a useful theory of practical reasoning, not the first. What this
second semantics, in which external anchors are ignored, is like, is another
matter. One of the principal concerns of this section is to find out what
such a semantics could be like.80

Attitude Attributions

There are two important features of mental states and their ascriptions
which we have not yet considered. The first is the time at which the bearer
of an attitude is supposed to have it. It is a crucial fact about people (and
presumably certain other creatures too) that they have propositional atti-
tudes. It is almost equally important that they can change them. People
learn, part of which is that they acquire new beliefs; they forget things,
they may change their agendas, i.e. their desires and intentions, and some-
times they come to realise that certain things they believed are false (a
point already made). Therefore we want to be able to describe bearers of
propositional attitudes not just as (timelessly) having beliefs, desires, etc.
but also as coming to believe a given proposition at a certain time t, as
having lost or abandoned a belief by a certain time (whether through sheer
forgetfulness or by losing conviction that it is correct); and so on.

The second feature that is still missing from our representation format
concerns the integration of ascriptions of attitudinal states into the general
representation format of DRT. For instance, what would a DRS be like
which combines the following bits of information: (a) that A is a stamp
collector; and (b) that A has (at some particular time) the complex of
attitudes represented in (212)?

We deal with these two problems — temporal dependence and integration
– by one and the same representational device. It consists in introducing
a special predicate, Att, into DRT’s vocabulary. Att has three arguments:
(i) for the individual to whom an attitude complex is attributed, (ii) for
the attitude complex that is attributed to this individual and (iii) for the
external anchor for this complex. Thus Att(a, K, EA) says that a is in a
mental state which contains the attitudes represented in K, and that EA
externally anchors some or all of the internally anchored discourse referents
occurring in K. We will assume that K is a set of attitude descriptions

80The distinction between these two kinds of semantics for attitude representations has
been discussed extensively within the philosophy of mind. There one is often led to draw
the disc tinction between narrow content and wide content. This distinction corresponds
fairly closely to the semantics of attitude representations with or without external an-
chors: narrow content ignores external anchors whereas wide content takes them into
account. The correspondence is far from perfect, however, since the distinction between
narrow content and wide content glosses over the problem of referential connectedness.
(See [Loar, 1988; Loar, 1987; Stalnaker, 1990].)
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of the kind encountered in our examples: pairs 〈MOD,K〉, where MOD is
a mode indicator (here: BEL, DES, INT) and K is a DRS. We refer to
such sets as Attitude Description Sets (ADSs). As we have seen, the DRSs
occurring as second members of pairs belonging to an Attitude Description
Set K may contain free occurrences of discourse referents so long as these
discourse referents are bound in a DRS occurring as second component of
some other pair in K. External anchors are as described: pairs consisting of
a discourse referent occurring in K and a discourse referent not occurring in
K. (The latter discourse referent functions as a K-external representation
for the external anchor of the former.)

What DRS-conditions the predicate Att enters into depends on the DRS
language to which it is added. However, if Att is to serve also representing
the temporal aspects of attitude attributions, then the language we need
is one capable of making predication time explicit generally — what we
need is the language defined in Section (3.5). In this language the time of
a given predication (that it is expressed by representing the predication as
an eventuality to the effect that the predication holds and then locating
this eventuality in time by adding further conditions (such as, say, “t ⊆ s”,
where s is the eventuality and t its location time).

is at or during time t that the predication holds) can be expressed by
locating the state which consists in the predication holding as including t.
This is the device of which we also make use here. Thus, DRS-conditions
involving Att will come in the form given in (213)

(213) s:Att(a,K,EA)

The temporal dimension of such predications can now be expressed by re-
lating s to some “location” time t, which can then be further specified in
various ways (see Section (3.5)). For instance, the DRS which expresses
that the individual represented as a is at the time n in a mental state which
contains the belief, desire, intention and internal anchors of (211) as com-
ponents takes the form given in (214).

Here EA could for instance be the external anchor of (212).81

It should be intuitively clear how this formalism can express more com-
plex temporal information about attitudinal states. For instance, suppose
that stamp collector A’s desire to have the stamp he has spotted and his
intention to pick it out of the box do not arise instantaneously, and thus not
simultaneously with the belief that this stamp is a specimen of the 2d 1840
of GB, but that the belief, the desire and the intention come about at three
successive times t1, t2 and t3. Let K1 consist of the first three components
of (211), K2 of the first four and K3 of all five. And let EA be the external
anchor given in (212). Then an approximation of the situation described is
given by the following DRS (215)

81N.B. When the third argument EA of Att is empty, we will usually suppress it
altogether: we write “s:Att(a,K)” instead of “s:Att(a,K,∅)”.
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(214)

t s a

t = n t ⊆ s collector(a)

s:Att( a,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
[ANCH,z],

z

(the box)(z) infrontof(z,i)

dir.perc

〉

〈
[ANCH,x],

x

stamp(x) in(x,z)

dir.perc

〉

〈
BEL,

2d-1840-GB(x)

〉

〈
DES,

poss(i,x)

〉

〈
INT,

pick-from(i,x,z)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, EA)
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(215)

t1 t2 t3 s1 s2 s3 a

t1 < t2 < t3 t1 ⊆ s1 t2 ⊆ s2 t3 ⊆ s3 collector(a)
s1:Att( a, K1, EA) s2:Att( a, K2, EA) s3: Att( a, K3, EA)

This is arguably not quite what we want, since it provides no temporal
lower bound for the new attitudes. For instance, (215) doesn’t exclude that
A had the desire to be in possession of the stamp s already at time t1. The
information that t2 was the first time at which A had this desire can be
expressed by adding the condition that a was not in a mental state of the
type of s2 at any time preceding t2. The addition would take the form given
in (216)

(216) ¬

t s

t < t2 t ⊆ s
s:Att( a, K2, EA)

This may not be the most elegant way to express such negative information,
but in the formalism presented here it is the only way. A more convenient
notation could be added without difficulty, if desired.

5.3 Syntax and Semantics of the Extended Formalism

Syntax

About the syntax of the extended formalism we can be brief, since all that
is important has already been said.

We take the DRS-language L of Section (3.5) as our point of departure.

DEFINITION 62. (Syntax for DRS languages capable of describing propo-
sitional attitudes and attitudinal states).

Let L be the language defined in Section (3.5) or some extension of that
language.

1. The vocabulary of the language LPA is the vocabulary of L (????)
together with the following two additions:

(i) the indexical discourse referent i;

(ii) the predicate Att.

2. The set of DRS conditions is extended via the clause:

If s is a state discourse referent, a a discourse referent for individuals
or sets thereof, K an Attitude Description Set and EA an External
Anchor Description for K. Then s:Att( a, K, EA) is a DRS condition.
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The notions used in 62, that of anAttitude Description Set and that of
an external anchor for such an ADS, have been described infromally above.
But more precise characterisations are needed. The notion of an Attitude
Description Set is based on a set MI of mode indicators. In the presentation
here we have opted for the set {BEL,DES,INT}, but this restriction has no
direct consequences for the definition: members of an ADS are pairs of the
form 〈MOD,K 〉 where MOD ∈ MI and K is a DRS (of the new, extended
language LPA). The one type of element of ADSs that requires more atten-
tion is that where the first member of the pair is an expression of the form
“[ANCH,ξ]”, for some discourse referent ξ. Here too the second component
of the pair is a DRS. As indicated above, the repertoire of conditions that
occur in such a DRS should probably be restricted to conditions (or condi-
tion combinations) of special forms. This is a matter which we ignore here.
But another aspect of the pairs 〈[ANCH,ξ],K〉 that can occur as members
of ADSs is going to be relevant later on and needs to be stated explicitly:
We assume in general that the discourse referent ξ is a member of UK. (cf.
example (212) above).

Thus we come to the first of the two supplements that are needed to turn
the definition of the syntax of L into a fully explicit definition of the syntax
of LPA:

3. An ADS of LPA is a set of pairs each of which has one of the following
two forms:

(i) 〈MOD,K〉, where MOD ∈ {BEL,DES,INT} and K is a DRS of
LPA.

(ii) 〈[ANCH,ξ],K〉, where ξ is a discourse referent and K is a DRS of
LPA such that ξ ∈ UK.

What remains is the defintion of the notion of an external anchor EA
for an ADS K. But this is easy. Each ADS K has a set IA(K) of internal
anchors. (These are just the members of K whose first component is of the
form “[ANCH,ξ]”.) An external anchor for K is simply a function whose
domain is a subset of IA(K):

4. Let K be an ADS. An external anchor for K is a function f such that
Dom(f) ⊆ IA(K)(= {x: for some DRS K, 〈[ANCH,x],K〉 ∈ K.

Semantics

The semantics for languages like LPA presents us with a real quandary.
The problem is a very fundamental one, and it is one which doesn’t have
anything to do with Dynamic Semantics as such, although one might hope
that a representational approach towards semantics like that of DRT would
help to find a solution for it.
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The problem can be apostrophied as the gap between intentionality and
intensionality. As discussed in Section (3.2), Intensional Semantics is that
approach to the theory of meaning according to which notions such as
“proposition”, “propositional content (of an attitude)” and so on are anal-
ysed in terms of the notion of a possible world. Thus a proposition is a
set of possible worlds (the set of “those worlds in which the proposition
is true”), a necessary truth is a sentence or proposition that is true in all
possible worlds, and similarly for other such notions. This proposal for the
analysis of propositional content and of intensional sentence operators and
predicates is of a piece with the thesis that it is this very notion of proposi-
tional content — which identifies propositions with sets of possible worlds
— that serves as basis for the analysis of “belief contexts” (and other “at-
titude contexts” for other types of attitudes): the complement clauses of
verbs like believe and other attitudinal verbs contribute to the meaning of
the whole their “propositional content” in the sense under discussion (i.e.
the set of possible worlds which verify the complement clause).

It is an old and often repeated observation that this cannot be right
[Turner, 1988]. The principle that propositions, in the present, intensional
sense of the term according to which they are sets of worlds, are the “objects
of belief” does not do justice to the form in which the content of what is
believed is available to the believer. Suppose that Bill says that he believes
that there are twice as many women in his class as men and that he has
expressed his belief in these very words. There are innumerable ways of
expressing this proposition — that the number of women in Bill’s class is
twice the number of men — in an intensionally equivalent way. Some such
ways can be quite indirect, e.g. by restating the concept of one number be-
ing twice as large as another number in more esoteric mathematical terms,
which require the know-how of an expert in number theory to be recognised
as mathematically equivalent to the notion of multiplication by 2. And of
course there is no limit to how abstruse the chosen formulations can be.82

Most of these Bill — let us assume him to be a person of average mathemat-
ical knowledge and ability, though in the end the assumption matters little
— will not recognise as expressing the belief to which he has just committed
himself in the words mentioned. Yet they are all intensionally equivalent —
i.e. they express the same propositional content, if propositional content is
what the intensional approach makes it — as the words he has used himself.
So if we take him by his word and attribute to him the belief which he has
claimed for himself, then we are forced to say that Bill believes what each
of the other sentences expresses too, notwithstanding his reluctance or re-
fusal to accept them as true. In this manner the intensional approach calls
into question one of the principal criteria that we use to determine what it

82A very modest step in this direction would be to say that any set containing the
number of the men and closed under the operation of forming addition will contain the
number of the women.
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is that other people believe. (And mutatis mutandis for determining their
other attitudes, such as desire, intention, etc.).

One reason why this is a fundamental problem is that it is directly
connected with the question whether agents can arrive at new knowledge
through ratiocination alone. We believe that it is one of the fundamen-
tal intuitions of the pure mathematician that it is possible to acquire new
knowledge (and with it belief) through mathematical proof — that a math-
ematician who has established a surprising mathematical fact by finding
a hard and non-obvious proof for it which reasons from mathematical ax-
ioms that every mathematician accepts and that he himself had been long
acquainted with and never questioned, has discovered and established a
new item of mathematical knowledge. However, if new knowledge can be
gained through the transformation of information structures that were al-
ready there, without addition of any new information from outside, then
evidently there is more to the form of information than the intensional ap-
proach allows for.

Accepting the verdict that seems to follow from these considerations is
tantamount to condemning all intensional analyses of the propositional atti-
tudes. This is a step that should not be taken lightly, for the intensional ap-
proach has proved immensely useful, and especially in the semantic analysis
of natural language. It combines great simplicity with a degree of empirical
adequacy which, although it could not be perfect (this is what the above
reflections show beyond doubt), is nevertheless a striking advance over what
came b efore it. That Montague Grammar has long been hailed — and still
is by many, especially for its account of “intensional” contexts (attitude
contexts prominently among them) — isn’t due to collective confusion or
bewitchment. Nevertheless, the step appears inevitable.

In fact, one could not hope for a model-theoretic approach towards the
notions of meaning and inference to come much closer to a correct analy-
sis of propositional attitudes and attitude ascription than the intensional
approach actually does. For those distinctions which the theory of proposi-
tional attitudes needs but which the intensional approach cannot supply are
not distinctions in truth conditions. They concern different ways in which
the same truth conditions can be expressed. A theory which does justice
to this aspect of the having and handling of information must therefore in-
clude a component which deals with the possibilities of transforming one
representation of information into another one (which either expresses the
very same information or some part of it), and as part of this addresses the
question how hard or easy it is to carry out those transformations are. In
other words, such a theory must include a proof-theoretical component.

On the face of it the hope that DRT could help us to develop such a
theory is not unreasonable. For we have seen that the content represen-
tations which DRT makes available can distinguish in at least some cases
between different expressions of the same propositional intension. This, one
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might say, is the true moral from a cognitive point of view of Partee’s mar-
ble example (see (42), Section (3.2)), which played such a decisive part in
demonstrating the importance of DRSs as a significant level of representa-
tion of linguistic information: “One of the ten marbles is not in the bag,”
and “Nine of the ten marbles are in the bag.”, though expressing the same
propositional intension, differ nevertheless in some way that has to do with
their semantics, something which is captured by the DRSs for these two sen-
tences and which turns out to be crucial if they are followed by a statement
in which the pronoun “it” is intended to refer to the missing marble.

Dynamic Semantics succeeded in recasting the distinction between these
two DRSs in the form of a kind of “refined intensionality”, viz. by replacing
the classical notion of a proposition — that of a set of possible worlds —
by that of an information state — a set of pairs, with each pair consisting
of a possible world and a “verifying embedding” which assigns objects to
a certain set of discourse referents. (Definition (22), Section (3.2).) This
refined intensionality concept, of which information states are the most
salient representatives, is one step in the right direction — one step away
from a classically intensional account of the attitudes and towards an ac-
count which pays due heed to issues of form and of transformation of forms
through inference. But it is only one step, and a fairly minor one at that.
The more serious obstacles to a model-theoretic account of the content of
propositional attitudes and the semantics of attitude descriptions are cases
with which this refined notion of intensionality cannot deal any better than
the classical notion. As a rule these cases have nothing to do with the avail-
ability or non-availability of discourse referents which the refined notion is
able to capture while the classical notion cannot.

Whether structural properties of DRSs other than what is contained in
their main universes can be used to arrive at better approximations of inten-
sionality is a question which cannot be answered here.83 We doubt, however,
that even if such other properties should prove to be cognitively significant,
they could do more than give us what would still be only a partial solution
of the intensionality problem. For there is one sense in which the intensional
solution seems just right: once someone has been shown that two sentences
are intensionally equivalent — i.e. that they are true in the same possible
worlds — he simply can no longer sincerely profess belief in what the one
sentence says and refuse to profess belief in what is said by the other; and
likewise with other attitudinal modes, such as intending or desire.

In the model-theoretic semantics for LPA we now proceed to present the
problems which necessarily beset any version of the intensional approach to-
wards the analysis of the attitudes have been set aside. Still, the semantics

83But compare for instance [Asher, 1986], where the formal similarity of DRSs is used
to define a new notion of propositional identity which is much stricter than the notion of
an information state (and thus a fortiori than the classical notion of a proposition as a
set of possible worlds).
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does take account of complexities illustrated by the Partee example, which
means that we need at a minimum model-theoretic concepts such as that of
an infromation state (Hence the spate of defintions of such notions in Section
3.2.) However, the notions we will actually need are more complicated yet.
This is connected with the form of “naive realism about propositional atti-
tudes that is adopted in our model theory. We assume that the information
which renders attitudinal conditions true in a given model are psychological
facts encoded in the model which pertain to the relevant attitude bearers
at the relevant times. That is, we assume that each model M is equipped
with a function ASM which assigns in each possible world w of M to each
member a of a certain set CAw of the universe of the model (intuitively:
the Cognitive Agents of M in w) at each moment of time t belonging to
a certain interval or set of intervals (the period(s) of consciousness of a in
M in w) a certain object which identifies a’s mental state at the time in
question. These objects are similar in structure to the Attitude Description
Sets K which occupy the second argument position of the predicate Att.
The values which ASM assigns to argument combinations w,a,t are not sets
of pairs each consisting of a mode indicator and a DRS, but rather sets of
pairs each consisting of a mode indicator and an “intensional object defin-
able by a DRS”. In other words, the information about attitudinal states
which is incorporated in the model M abstracts from the form of DRSs all
but what is captured by an intensional semantics for DRSs.

What are the “intensional objects definable by a DRS” of which the last
paragraph speaks? That will depend in the first place on what kind of inten-
sional semantics we adopt. In the light of all that has been said about the
importance of the role of discourse referents in an account of propositional
attitudes the natural choice here is for the refined intensionality provided
by information states — this, we take it, requires no further argumenta-
tion. However, it will not do to assume that the second members of pairs
in ASM(w,a,t) are always simply information states. Recall that one of
the points of ADSs K as attitudinal state descriptions was that they may
contain improper DRSs — these, we saw, are the natural representations
of attitudes which referentially depend on other attitudes that are part of
the same mental state. An improper DRS, however, does not determine
an information state on its own. By itself, it only defines an information
update (or context update), and to get an information state out of this, the
information update has to be combined with the information states deter-
mined by the attitudes on which it depends. Since the concept of referential
dependence within a single attitudinal state is in principle recursive — one
component K1 of the state may referentially depend on another component
K2, which in its turn referentially depends on a component K3, and so on —
the intensional structure of an attitudinal complex can get quite involved.
The definitions below, which build on those of an information state and a
Context Change Potential as defined in Section (3.2), are designed to cope
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with this complication. In the interest of space we will give these definitions
with a minimum of elucidation.84

The main problem that these definitions are designed to cope with are the
referential dependencies of some components of a mental state on others.
Suppose that the component K1 of a given mental state depends on the
components K2,1 and K2,2 and on no others, and that of these K2,1 depends
in turn on the components K3,1 and K3,2 and no others; and furthermore
that K2,2, K3,1 and K3,2 do not depend on any other components. Let us
also assume that none of these components are internal anchors. K2,2, K3,1

and K3,2 will be proper DRSs and thus each determine an information state
(with respect to a given model M, world w of M and time t0 of M). (They
also define, as explained in Section (3.2), a regular total CCP; these CCPs
stand to the information states in the relation stated there.) The other
two components, K1 and K2,1, will be improper DRSs and thus determine
non-total CCPs relative to M, and no information states. Note however
that the CCP J2,1 determined by K2,1, will be defined for the merge I3,1

∪ I3,2 of the information states I3,1, I3,2 determined by K3,1 and K3,2.
(The reason is that according to our assumptions the bases of I3,1 and I3,2

together cover the set of free discourse referents of K2,1.) Let I2,1 be the
result of applying J2,1 to I3,1 ∪ I3,2, i.e. I2,1 = J2,1(I3,1 ∪ I3,2). The
same considerations lead us to conclude that the CCP defined by K1 will
be defined for the merge I2,1 ∪ I2,2 (where I2,2 is the information state
determined by K2,2); so we can also associate an information state, viz.
J1(I2,1 ∪ I2,2), with K1.

The moral of this should be clear: By themselves the dependent compo-
nents of a complex attitudinal state do not define information states; but
they do so when combined with the information states determined by the
components upon which they depend — provided those determine informa-
tion states, something they will do so long as this is true for the components
that they depend on — and so on, all the way down. This of course presup-
poses that by going all the way down one comes, no matter how one goes,
to a well-defined end. In other words, the referential dependence relation
between components of a mental state should be well-founded. So we will as-
sume that the attitude description sets K to which the semantics described
in this section assigns intuitively acceptable model-theoretic interpretations
are all well-founded in the sense that the transitive closure ≺K of the fol-
lowing relation ≺ between the DRS components K1 and K2 of an ADS K is
well-founded: K1 ≺ K2 iff there is a discourse referent x which occurs free in
K2 and belongs to the universe of K1. We will from now on assume that we
are dealing only with ADSs which satisfy this well-foundedness constraint.

In addition we restrict attention to ADSs K which are “proper over all”
in that for each 〈MOD, K〉 ∈ K the set Fr(K) of free discourse referents

84For more extensive comments see [Kamp, 2003].
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of K is included in the union of the universes of DRSs occurring in pairs
〈MOD′,K′ 〉 ∈ K such that K′ ≺K K:

Fr(K) ⊆ ∪{UK′ | (∃ MOD′)〈MOD′,K′ 〉 ∈ K ∧ K′ ≺K K}

Given these assumptions about ADSs, it will be possible, given a model
M, a world w in M and an instant of time t of M, to associate with
each component DRS K of an ADS K an information state [[K]]sM,w,t,K

.

We cannot show this yet, since we haven’t made any commitments on the
form of the information given by the function ASM. But we can illustrate
the general idea for simple ADSs K, in which all content specifications K
(i.e. all second components of members 〈MOD,K〉 of K) are DRSs of the
underlying DRS language L, in which the predicate Att does not occur.
For the evaluation of such K the function ASM plays no role, so we may
assume that M is a model for the underlying language L. First suppose
that K is a content specification which has no predecessors in the order ≺K .
Then [[K]]sM,w,t,K

is simply the information state determined by K in M

in w at t. Secondly, suppose that we have determined information states
[[K′]]sM,w,t,K

for all content specifications K′ in K such that K′ ≺K K. By

assumption the CCP J (K,M,w,t,K) determined by K in M in w at t will
be defined for the merge of these information states: ∪ { [[K′]]sM,w,t,K

: K′

≺K K }.
We noted earlier that a model-theoretic analysis of when the attitude

descriptions provided by ADSs are correct implies that any model M must
contain information about the actual attitudinal state of an agent a in a
world w at a time t in terms of which ADSs can be evaluated; and we as-
sumed that this information is supplied by the function ASM. We must now
decide in which form this information is given. We will opt for a form which
makes the evaluation of ADSs in models a comparatively straightforward
matter.

We proceed in two steps. We first define the notion of a P(otential)
I(nformation) S(tate) B(ased) A(ttitudinal) S(tate description), and then
narrow this concept down further to that of an I(nformation) S(tate) B(ased)
A(ttitudinal) S(tate description).

DEFINITION 63. Let M be a model and let J , J1, J2, J
′ be CCPs:

(i) A PISBAS relative to M is any set of pairs 〈MOD, J 〉 , with MOD
a mode indicator and J a regular CCP relative to M.

(ii) Let J be a PISBAS relative to M. Let ≺J be the transitive closure
of the relation ≺ between the members of J defined by: J1 ≺ J2 iff
there is a discourse referent x which belongs to PRES(J2) and to a
base of J1.
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(iii) We say that a PISBAS relative to M is an ISBAS relative to M iff
(i) ≺J is well-founded and (ii) it is possible to assign, by induction
along ≺J , to each CCP J occurring in J an information state I(J )
as follows: (a) Suppose that J has no predecessors according to ≺J .
Then J is a total CCP and the associated information state I(J ) is
defined as J (Λ). (b) Suppose that for all J ′ occurring in J such that
J ′ ≺J J , I(J ′) has been defined. Then J is defined on ∪{I(J ′) | J ′

≺J J } and I(J ) = J (∪{I(J ′) | J ′ ≺J J }).

The idea behind the definition of a PISBAS is that of a structure that is
essentially like that of an ASD, except that the DRSs which form the second
components of the pairs 〈MOD, K〉 which occur as elements of ASDs are
replaced by intensional objects (relative to the given model M) of the sorts
that DRSs can be used to describe. Since the DRSs occurring in ASDs are
sometimes improper, these intensional objects cannot always be information
states; in general they will have to be CCPs. However, when a PISBAS is
an ISBAS, each of these CCPs is, roughly speaking, defined on the merge
of information states that can be associated with all the CCPs on which
it “referentially depends”: the I(J ′) such that J ′ ≺J J jointly fulfill the
presupposition of the CCP J , so that application of J to their merge gives
a well-defined information state, viz. I(J ). The concept of an ISBAS thus
captures the idea that the contents of propositional attitudes which make
up a complex attitudinal state may depend on other attitudes in the state,
but that in possible worlds where the propositional contents of these other
attitudes are true, the dependent attitude has a well-defined propositional
content. In restricting attention to ISBASs as the possible values of the
function ASM, and thus as the only possible characterisations of complex
attitudinal states (of a person a in a world w at a time t) we thus impose
a certain coherence condition on the mental states that, according to our
model theory,it is possible for a cognitive agent to be in.

There is at least one further constraint that it seems reasonable to impose
on the possible values of ASM. In our first version of the stamp example
(see (211) ff.) the desire and intention referentially depend on the belief.
Such a state of affairs seems quite possible intuitively: You have a belief
to the effect that a certain thing exists and then form regarding the thing
you believe to exist a certain desire and/or intention. But can a belief
referentially depend on a desire or an intention? We think not. On the
face of it this might perhaps seem like a possibility — something of the
order of wishful thinking, not to be recommended perhaps, but a cognitive
possibility even so. When we look more closely, however, we realise that
wishful thinking is really something else. In wishful thinking a desire may
be the irrational and unjustifiable cause of a belief. But the belief won’t be
referentially grounded in the desire in the way in which we have seen that
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a desire can be referentially dependent on a belief.85

To capture this additional constraint we need to specify the Attitudinal
Hierarchy. This is a partial order <MOD between mode indicators; MOD1

<MOD MOD2 means that an attitude of mode MOD2 may referentially
depend on one of mode MOD1. With only the three mode indicators BEL,
DES, INT we would, in the light of the remarks above, assume that BEL
<MOD DES and BEL <MOD INT, as well as BEL <MOD BEL (whereas
the relations DES <MOD BEL and INT <MOD BEL never hold). Whether
<MOD should be assumed to hold also between DES and INT, however, or
between INT and DES, is a more delicate question. We will not try to solve
these here. When further mode indicators are added, the Attitudinal Hier-
archy must be extended. For instance, addition to the set {BEL,DES,INT}
of the mode indicator ANCH, as shown in (210), comes with an extension
of the relation <MOD with all pairs 〈ANCH, MOD〉 where MOD is any one
of the indicators ANCH, BEL, DES, INT. More generally, richer and more
refined mode indicator classifications each come with their own Attitudinal
Hierarchy, and each raises its own problems about what that hierarchy is
like.

We have now laid the groundwork for the truth definition that is the
central purpose of this subsection. We make the general assumption that
for any model M, ASM(a,w,t), if defined, is an ISBAS relative to M.86

To define truth (=proper embeddability) of DRSs of our extended language
LPA into such models we proceed in three steps. In the remainder of this
subsection we give the truth definition for that sublanguage of LPA in which
(i) ADSs contain no internal anchors (and in which, consequently, there are
no external anchors either; thus the third argument of Att will always be
the empty set and we can treat Att as a 2-place predicate); and (ii) in which
there are no occurrences of i and of n within the scope of Att. In the next
subsection, 5.3, we deal with the reference conditions of i and n, and in
subsection 5.3 with the full language LPA.

The remaining task of this subsection is to state the verification condi-
tions for DRS-conditions of the form “s:Att(a,K)”. In outline it should be
clear what these conditions ought to be: an embedding function f verifies
the condition in M in w iff for each time t within the duration of f(s), K is
a correct description of ASM(f(a),w,t). Given our decision about the values
of AS, it should also be roughly clear how we should interpret the phrase
“K is a correct description of ASM(f(a),w,t)”: There must exist a map H

85The belief could become in its turn the basis for the emergence of a further desire
with a content which referentially depends on the belief. But the referential dependence
will still be this way round, not of the belief on the first desire.

86Note well that in doing so we adopt the intensional perspective which we criticised
because of its inability to deal with the logical equivalence problem. But as we already
noted a refined intensional treatment of propositional attitudes is the best we can do
within a framework that is purely model-theoretic.
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from K to ASM(f(a),w,t) such that for each 〈MOD,K〉 ∈ K, the Mode of
H(〈MOD,K 〉) matches that of 〈MOD,K〉 and the content of H(〈MOD,K〉)
matches the content of 〈MOD,K 〉. But what is matching here? It is not,
we contend, quite the same in the two cases. Matching of Mode should (at
least for the extremely simple Mode Indicator system used here) be just
what the term suggests, viz. identity: if H(〈MOD,K 〉) = 〈MOD′,J〉, then it
must be the case that MOD′ = MOD. In connection with content, however,
identity does not seem the right way to define matching. We normally re-
gard an attitude description as correct even if it is not complete. This fact
is particularly striking for the attitudinal modes of desire and intention. We
can truthfully describe Mary as wanting to marry a Swede not only when
her goal is as unspecific as simply “marrying a Swede” (which it it would
be unlikely to be), but also (more plausibly) when her idea of a suitable
husband goes well beyond that: what she wants is not just any Swede, but
one who is tall, blond, blue-eyed, and (of course) handsome, dashing and
considerate. In other words, the content of her actual desire may be much
richer than the description which we give of it. On the other hand, in or-
der that the description is to count as correct, it must subsume the actual
content.

For belief the argument that content matching should be defined as logical
entailment of the described belief by the one actually held according to ASM

is not quite the same as for desire or intention, and arguably it is somewhat
less persuasive. According to our own intuitions, however, belief attribution
also obeys the principle of content subsumption, so we will handle matching
for description components of the form 〈BEL,K〉 in the same way as those
of the forms 〈DES,K〉 and 〈 INT,K〉.87

How do we capture subsumption of K by H(〈MOD,K〉)? Suppose that
H(〈MOD,K〉) = 〈MOD,J 〉. In view of the assumptions which we have
been making about ADSs on the one hand and about their model-theoretic
counterparts, ISBASs, on the other, it might be thought that subsumption
can be stated straightforwardly: the information state [[K]]s

M,w,t,K
must

be entailed, in the sense of entailment that is appropriate for information
states, by the information state I(J ) which, we have seen, can be associated
within the ISBAS ASM(f(a),w,t) with the CCP J ; that is, [[K]]s

M,w,t,K
#

I(M).

But there is one further snag here: the discourse rerferents occurring in
the ADS K need not be the same as those occurring in the bases of the
CCPs of the ISBAS. Some “renaming of variables” is needed in order to

87Note well that the subsumption principle does not hold for all attitudinal modes. It
doesn’t hold, for instance, for doubt, or for “wondering”, the attitude which an agent
a entertains vis-a-vis a proposition p when A is unsure whether p is true and wonders
whether or not it is. For attitude descriptions with richer mode repertoires the verification
condition below will therefore have to be more complicated than it is for the restricted
set {BEL,DES,INT}.
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make sure that the information states [[K]]s
M,w,t,K

and I(J ) can be related

in the right way. This clearly requires that the bases of the first be included
in those of the second. But of course this need not be the case, even if the
attitude description provided by K is intuitively correct. For the discourse
referents chosen in the actual description which K provides can be chosen
freely, and will in general stand in no relation to those of the ISBAS. There
are two ways to get rid of this discrepancy — either we rename the ADS or
we rename the ISBAS.

For reasons which will become transparent later on we prefer the first
of these options. This however runs into another difficulty, which is also
connected with the formal identity of discourse referents. The ADS that
needs evaluation may be part of a larger DRS in which discourse referents
occur “higher up” which happen to be part also of the ISBAS. Renaming
bound discourse referents from the ADS into such discourse referents could
wreak havoc with the proper functioning of the truth definition and should
be avoided. We eliminate this danger once and for all by assuming that the
discourse referents occurring in ISBASs (including in particular all those
which occur as values of the function ASM are entirely disjoint from those
which belong to the language LP A.

Suppose that r is a 1-1 map from the set of discourse referents occurring in
the ADS K onto some other set of discourse referents. Then the alphabetic
variant of K determined by r is the set of all pairs 〈MOD,r(K)〉 such that
〈MOD,K〉 belongs to K together with the pairs 〈[ANCH,r(x)],r(K)〉 such
that 〈[ANCH,x].K〉 belongs to K. r(K) is the DRS obtained by replacing
each discourse referent x occurring in K throughout K by r(x).

At last we have all the pieces we need to state the verification conditions
for DRS conditions of the form s:Att(a,K). We get:

DEFINITION 64.

f |=M,w s:Att(a,K) iff there exists (i) a renaming function r such that

Dom(r) consists of the discourse referents occurring in K and (ii) a function
H with Dom(H) = r(K) such that (a) H(〈MOD,K〉) is of the form 〈MOD,J
〉, (b) for all t ∈ dur(f(s)) and each 〈MOD,K〉 ∈ r(K) H(〈MOD,K〉) belongs
to ASM(f(a),w,t) and (c) for each 〈MOD,K〉 ∈ r(K), [[K]]s

M,w,t,K
# I(J ),

where I(J ) is the information state determined within ASM(f(a),w,t) by
the CCP J of H(〈MOD,K〉).

The Indexical Discourse Referents i and n

We need two further specifications, concerning the indexical discourse ref-
erents i and n. i, we stipulated, only occurs within the scope of Att. And
there it always represents the self of the cognitive agent which appears as
first argument of Att. The matter of its interpretation is slightly more
complicated, however, than this informal description may suggest, for some
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occurrences of Att may occur within the scope of others. For instance, we
can express in our DRS language the statement that Bill thinks that Mary
thought that she was clever. (More precisely, that Mary had a thought
which she herself might have expressed as “I am clever.”). The condition
expressing this is given in (217)

(217)

t1 s1 b

t1 = n n ⊆ s1 Bill(b)

s1:Att(b,

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

t2 s2 m

t2 < n t2 ⊆ s2 Mary(m)

s2:Att(m,

⎧⎪⎨
⎪⎩
〈

BEL,

s3

n ⊆ s3
s3: clever(i)

〉⎫⎪⎬
⎪⎭)

〉
⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

)

(217) has two occurrences of Att, one within the scope of the other, the
first argument of the outer occurrence is the discourse referent b represent-
ing Bill, that of the inner occurrence the discourse referent m representing
Mary. Clearly it is Mary whose self the occurrence of i in (217) is meant
to represent. The general principle should be clear from this example: an
occurrence of i represents the self of the first argument of the nearest oc-
currence of Att one encounters when going upwards from that occurrence
in the structure of the DRS.

Formally this means, first, that the entity denoted by an occurrence of i
must be evaluated within the context of this occurrence - i.e. with respect
to the DRS K which contains it. And because K may well contain several
occurrences of i, we need some device to distinguish these. To this end we
assume that the different occurrences of i in K are indexed and use the
symbol “i(j,K)” to refer to the j-th of these occurrences.

Secondly, the denotation of i(j,K) is determined by Definition (65)

DEFINITION 65. [[i(j,K)]]M,w,f = f(a) where a is the discourse referent

occupying the first argument slot of that occurrence of Att in K which
contains i(j,K) in its scope and is within the scope of all other occurrences

of Att in K with this property.88

88Denotation clauses for singular terms like that in (65) haven’t been considered so
far, and may seem at variance with the way in which verification and truth definitions
are usually formulated for DRS languages. However, the change is only a slight one.
Even at this point there are only two kinds of terms to be considered,(i) “ordinary”
discourse referents, any occurrences of which in proper DRSs are bound by an occurrence
of the discourse referent in some DRS universe, and (ii) the two indexical discourse
referents n and i. The former discourse referents will, in any normal evaluation of a
proper DRS, already be in the domain of the embedding function under consideration
when the question arises whether the function verifies a condition which contains such
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N.B. The way in which DRSs and their parts are semantically evaluated
guarantees that by the time we “get to the given occurrence i(j,K) of i in

K”, the embedding function f will be defined for the relevant argument a.
The interpretation of n is determined by much the same principles as

that of i: when n occurs within the scope of an occurrence of Att, then it
is intended to represent the “present” of the represented thought, i.e. as
representing the present from the perspective of the thinker at the time
when he had that thought. That is, the occurrence should be interpreted
as referring to the very same time as that of the state s characterised as
“s:Att(a,K)”, where the given occurrence of n is somewhere in K. Consider
for instance the occurrence of n in (217) as part of the condition “n ⊆
s3”. This occurrence marks the time at which Mary has the thought which
according to (217) Bill attributes to her. This is the time represented by t2,
which according to what (217) says is in the past of the time represented
by the occurrence of n in the condition “t2 < n”. And that time, the time
of the thought of Bill, and thus of the corresponding state s1, is one which
includes the utterance time of the entire statement represented by (217).
It is easy to see that each of these occurrences of n is made to refer to the
intuitively right time if we stipulate that the value assigned to an occurrence
of n in K by an embedding function f is equal to dur(f(s)), where s is the
state discourse referent such that the occurrence of n is in the condition
s: Att(α,K ′) and where moreover this is the nearest condition of this form
containing that occurrence.

One difference between i and n is that n is also allowed to occur outside
the scope of Att. In those cases it refers to the utterance time of the
represented statement. Thus the interpretation clause for n divides into
two parts. (In analogy with our convention for i, we denote particular
occurrences of n in K as “n(j,K)”.)

DEFINITION 66.

(i) Suppose that the occurrence n(j,K) of n in K is within some condition

of the form s:Att(α,K ′). Then

[[n(j,K)]]M,w,f = dur(f(s0)), where s0 is the discourse referent such

that n(j,K) occurs in s0:Att(α,K ′) in K and s0:Att(α,K ′) is within the

discourse referents as arguments, and the values of these discourse referents will then be
whatever this function assigns to them; and the values which ambedding functions assign
to i and n are determined once and for all by 66 and 68 below. This fixes the values of
[[α]]M,w for all relevant cases — both when α is an ordinary discourse referent and when

it is i or n. The verification clauses for atomic conditions will now refer to the values of
their argument terms. For instance, the clause for an atomic condition P(α1,. . . ,αn) can
now be stated by referring to the values (under the embedding function f in question) of
their argument terms:

f |=M,w P(α1,. . . ,αn) iff 〈 [[α1]]M,w,f ,. . . ,[[αn]]M,w,f 〉 ∈ FM,w(P).
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scope of all other conditions of this form which contain n(j,K).

(ii) Suppose that the occurrence n(j,K) of n in K is not within any con-

dition of the form s: Att(α,K ′). Then

[[n(j,K)]]M,w,f = the “utterance time of the represented utterance.

Semantics for Anchored Representations

The verification definition (64) only covers representations in which all dis-
course referents are unanchored. When anchored discourse referents are
taken into account, matters get a little more complicated. First, we now
must distinguish between wide content and narrow content. In the case of
wide content, the internal and external anchors play a part in the verifica-
tion conditions, in the case of narrow content they do not.

We start with wide content. There are two complications which do not
arise with anchor-free representations. First, when a discourse referent
x which is internally anchored in an ADS K has an external anchor x′,
then each DRS K such that 〈MOD,K〉 belongs to K and in which x occurs
should be seen as expressing a proposition that is singular with respect to
the value of x′. More precisely, in the context of evaluating the condition
“s:Att(a,K,EA)” in M in w at t under f the proposition expressed by K
in M relative to f should be singular with respect to f(x′). (Note that
if 〈x,x′ 〉 ∈ EA, then x′ occurs free in “s:Att(a,K,EA)”; so if evaluation of
“s:Att(a,K,EA)” in M in w at t under f arises in the context of evaluating
a proper DRS of LPA in which the condition occurs, then x′ will be in the
Domain of f .) We achieve singularity of the proposition expressed by K
with respect to all the internally and externally anchored discourse refer-
ents occurring in K if we evaluate the proposition expressed by K not with
respect to f but with respect to the extension f ∪ (EA ◦ f) of f which has
each of these discourse referents x in its domain and assigns to x the value
that f assigns to x′.

The second desideratum for the verification condition for “s:Att(a,K,EA)”
is that verification is undefined when K contains discourse referents which
are internally but not externally anchored. There are various ways to achieve
this. A very simple one is to remove the internal anchors of such discourse
referents from K. This will in particular have the effect that occurrences of
the discourse referents whose anchors have been removed in other compo-
nents of K will not be declared (i.e. they won’t belong to any DRS universe).
As always this causes indeterminacy of verification for any atomic condition
which contains such a discourse referent as argument. This will then also
entail indeterminacy of the verification condition for “s:Att(a,K,EA)”.

To implement this idea we must form, given an ADS K and an external
anchor EA, the Reduction of K with respect to EA, Red(K,EA). This is the
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structure which we get by removing all internal anchors in K which aren’t
justified by EA, i.e. all internal anchors for discourse referents which do not
occur in the Domain of EA:

DEFINITION 67. Red(K,EA) := K \ {〈[ANCH,x],K〉 | 〈[ANCH,x],K〉 ∈
K ∧ ¬ (∃ x′)〈x,x′ 〉 ∈ EA }

N.B. Evidently. if all internally anchored discourse referents of K are
externally anchored by EA, then Red(K,EA) = K.

We are now ready to state the generalisation of Definition (64) in the
sense of wide content:

DEFINITION 68. f |=M,w s:Att(a,K,EA) iff for all t ∈ dur(f(s)) there

exists a function H from Red(K,EA) into ASM(f(a),w,t) such that for each
〈MOD,K〉 ∈ Red(K,EA), [[K]]s

M,w,f ∪ (EA ◦ f),K
# I(J ), where I(J ) is

the information state determined within ASM(f(a),w,t) by the CCP J of
H(〈MOD,K〉).

Our last task in this section is to define the verification conditions of
“s:Att(a,K, EA)” in the sense of narrow content. Informally speaking this
amounts to ignoring the external anchor EA and treating internally an-
chored discourse referents of K “existentially”. Existential interpretation
of the internally anchored discourse referents can be accomplished in more
than one way, with slightly different effects. One of them is to treat the
internal anchors as “de dicto beliefs”, i.e. to replace each internal anchor 〈
[ANCH,x],K〉 in K by 〈BEL,K〉, and that is the one we adopt. To this end
we define, for arbitrary ADS K:

DEFINITION 69. NC(K) = (K \ {〈[ANCH,x],K〉 | 〈[ANCH,x],K 〉 ∈ K })
∪ {〈[BEL,K〉: 〈[ANCH,x],K〉 ∈ K }

The narrow content verification of “s:Att(a,K, EA)” can now be defined
as the verification of the condition “s:Att(a,NC(K))” in the sense of Defi-
nition (64).

We have argued that being in a mental state involving internally anchored
discourse referents which lack an external anchor is being in a state involving
unjustified presuppositions. So at least those attitudes that are part of the
state and which are directly affected by the presupposition failure fail to
determine well-defined propositions. Yet, we noted, the unjustified internal
anchors are connected with existential beliefs whose truth conditions are
well-defined, but false. In the light of the developments in this section it
seems plausible that these remarks can now be made more explicit via the
notion of narrow content: Given an ADS K, we obtain the associated beliefs
by passing from K to NC(K).

Whether this gives us precisely what we want isn’t altogether clear. For it
isn’t clear that the associated beliefs will necessarily be false. Such a belief,
associated with an unjustified internal anchor for the discourse referent x,



358 HANS KAMP, JOSEF VAN GENABITH, UWE REYLE

might come out true if there were an object satisfying the anchor’s DRS
(which is also the DRS of the belief which replaces the anchor in NC(K)),
even though there was nothing to cause the introduction of x. Whether
this is a genuine possibility depends on detailed assumptions about the
conditions imposed by internal anchors. This is a matter that requires
careful discussion and one that we decided to set aside in this survey.

There is however another way of associating beliefs with unjustified in-
ternal anchors. It involves a form of reflection — a thought process in which
the agent reflects on his own thoughts, thereby making these into the sub-
jects of further thoughts. The simplest form of reflection consists of nothing
more than being aware that one has the thoughts one has. Reflection of this
kind is possible, we take it, not only in relation to single attitudes but also
to attitude complexes. Within the formalism developed in thi section the
capacity of self-reflection comes to this: We assume that whenever an agent
A is in a mental state that can be described by means of an ADS K, A is
in a position to form beliefs of the form (218)

(218)

〈
BEL,

s x′
1 . . . x′

n

n ⊆ s
s:Att(i,K,EA)

〉

(Here EA is {〈x1,x
′
1 〉, ..., 〈 xn,x′

n 〉}, withx1, . . . , xn the discourse referents
with internal anchors in K.) 89

While most beliefs which result from this type of reflection are true in
virtue of the very fact that the agent does have the attitudes which (218)
says he believes he has, this is not so for those instances of (218) in which
K involves unjustified internal anchors, anchors for which there is no cor-
responding external anchor. For the lack of an external anchor is precisely
what (218) denies: cases of unjustified internal anchors are cases where the
agent is mistaken about what attitudes he has.

It is also reasonable to assume that reflection can target internal anchors
by themselves. (219) gives the belief resulting from such a reflection:

(219)

〈
BEL,

s x′

n ⊆ s
s:Att(i,{〈 [ANCH,x],K 〉}, {〈x,x′ 〉} )

〉

where 〈[ANCH,x],K〉 is a correct description of one of the internal anchors
belonging to A’s attitudinal state at the time in question. For any internal
anchor 〈[ANCH,x],K〉 of an attitudinal state described by K the belief rep-
resented in (219) is necessarily false if 〈[ANCH,x],K〉 is unjustified. Indeed,

89In addition, one might consider products of self-reflection beliefs which attribute to
the x′

i
some or all of the properties that are specified in the internal anchor of xi. But

these aren’t needed for the present consideration.
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the representations in (219) seem to capture exactly the idea of the false
existential beliefs lurking behind defective attitudes de re.

5.4 Construction of Representations of Attitude Attributing Sen-

tences and Texts

The formalism described in Section (5.2) has considerable flexibility. On
the one hand it allows us to represent not only referentially connected at-
titudinal complexes, but also successions of these in time; thus it affords
representation of attitudinal change, and not just static representations of
attitudinal states at one given time. On the other hand, the formalism
allows for the representation of thoughts whose content is itself an atti-
tude attribution (either to someone else or to oneself, as when one reflects
on one’s own thoughts). Since this representational device is recursive, it
allows also for thoughts that are attributions of attributions — as for in-
stance when I wonder what you may be thinking about me — and so on. All
these different aspects are important in a wide range of applications, and
in particular in the description of the attitudinal states of participants in a
conversation which arise through the verbal exchanges between them and
guide the successive utterances through which the conversation progresses.
(Of special importance in connection with the representation of conversa-
tion are mutliply iterated attitude attributions (of the type “You think that
I think that you think that ...”. such attributions play an important part in
human interaction generally, and they are an almost inariable by-product
of what happens when people talk face-to-face: “I have just said this and
you know that I have and you know that I am aware that you know that I
...”.)

To construct representations in which the various devices of our formalism
are instantiated we need an extension of the DRS construction algorithm.
In fact, the problem that many of the intended applications present is that
we do not only need additional DRS construction rules to supplement the
construction algorithms for the underlying DRS language (i.e.rules which
extend the construction algorithm for the underlying language L to one
for the full language LPA); we also need rules that apply to settings not
considered hitherto, such as that of a conversation in which speakers take
turns. This second problem is a major one in its own right, which should be
addressed in some other context. In this section we will only be concerned
with the first, that of extending the text processing construction algorithms
discussed in earlier sections to algorithms that can handle the problems of
those sentences by means of which attitude attributions are made.

Of such attitude-attributing sentences we will only consider a very small
sample, in which the vehicle for attitude attribution is an “attitude attribut-
ing verb”. Examples of such verbs are believe, know, hope, want, desire, re-
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gret, . . . 90 Moreover, we will only look at a very small number of examples
here, emphasising the problems which an extended construction algorithm
will have to tackle. Our aim will be to bring to light the special problems
which will have to be tackled when the construction algorithm is extended
so that it covers attitude-attributing sentences of unrestricted form. But we
will only give informal hints of how the solutions might go, sketching sonme
of the additional construction principles that will be needed but without
stating an extension explicitly. For further details we must refer the reader
to [Hans and Reyle, ].

A first and Simple Case of Interpretation Using Secondary Context

We start with an example that may be familiar to many. It was first dis-
cussed by Stalnaker in [Stalnaker, 1988] (See also the comments [Kamp,
1988] following this paper) It consists of two sentences:

(220) Phoebe believes that a man has broken into her garden. She thinks
that he has stolen her prize zucchini.

Stalnaker’s principal concern in connection with this example was to show
how earlier belief attributions in a discourse can serve as contexts for the
interpretation of attributions made in subsequent sentences. (He calls such
contexts “secondary contexts”, to distinguish them from the “primary con-
text” of a given utterance, which contains information about the ways of
the world that the utterance as a whole is about.) In the case of (220)
the first sentence will enrich the primary context with the information that
Phoebe believes that a man has broken into her garden. At the same time
the sentence introduces a secondary context, viz. Phoebe’s “current belief
context”, which is to the effect that a man broke into Phoebe’s garden.
The point of the secondary context is that it can serve the interpretation of
cross-sentential devices (such as anaphoric pronouns) occurring in the com-
plement sentences of following attitude attributions, in much the same way
that primary contexts serve this purpose for occurrences of those devices
when they occur outside the complements of attitudinal predicates.

Where there are two or more contexts to choose from, it is to be expected
that the options for presupposition justification increase. And indeed they
do. However, the addition of interpretational possibilities is much more
dramatic than the availability of several justification contexts might have

90There has been a tendency in the philosophical and also in the linguistic literature
to restrict the discussion of attitude attributions to sentences of this kind. But the
repertoire natural languages make available for such purposes is much richer, including
nouns such as rumour, thought, opinion or fact, adjectives such as suspected or alleged,
prepositions such as according to. It is true that for many of the basic issues which
attitude attributions raise the exclusive focussing on verbs is not a problem. But from a
linguistic perspective such a narrow focus seems neverhteless arteficial and provincial.



DISCOURSE REPRESENTATION THEORY 361

suggested by itself. In particular, both pronouns and definite descriptions
occurring in the complements of attitudinal verbs and verba dicendi come
with a much wider repertoire of possible interpretation strategies than they
do when they do not occur within the scope of such verbs. (Actually this is
a more general phenomenon, which holds for a much wider range of expres-
sions than just pronouns and descriptions, but we will explore it here only in
connection with these.) To our knowledge the details of this problem have
not been very systematically investigated, and our own observations here
are of an exploratory character. Nevertheless they will keep us occupied for
some time. Even the discussion of the seemingly simple (220), with which
we begin our exploration and which illustrates only some of the issues that
will preoccupy us in this final part of the present section, will take longer
than might have been expected.

In the representation format we have developed in this chapter secondary
contexts are identifiable as the second arguments of the DRT predicate Att.
To see what this comes to in the case of (220) let us assume without further
argument that its first sentence gets the representation given in (221).91

91We have made the plausible assumption that Phoebe has an internally and exter-
nally anchored representation for her garden. The discourse referent g serves as external
representation of the object to which her representation g′ of her garden is anchored. We
have also assumed that it is part of the internal anchoring information connected with
this internal anchor that the object represented by g′ is “understood” by Phoebe as her
garden. What other information the anchor contains — e.g. whether it is perceptual,
based on memory or whatever — our representation leaves open; nothing in (220) indi-
cates what this information might be like and there is no need for it to be made explicit.
(In fact, with familiar objects, such as your own garden, your cat, your lover, your bed,
etc. the notion of an anchor needs further scrutiny. Such objects do not have a single
anchor, but an indefinite bunch of them, with each new contact between agent and object
extending the bunch with a further component. It might be held that after only a little
while the anchors within such a bunch blend into a single “super anchor”. For current
purposes such super anchors play the same role as anchors based on single encounters,
so we refrain from pursuing the differences.) Note that the possession relation between
Phoebe’s garden and Phoebe is represented differently in relation to g′ and in relation
to g. The external description of the object represented by g as Phoebe’s garden makes
use of the external representation p for Phoebe, whereas the internal representation of
this information, as part of the internal anchor for Phoebe’s own representation of her
garden makes use of the indexical discourse referent i. We will return to this point when
discussing the interpretation of the description “her prize zucchini”, which is part of the
second sentence of (220).

A further question that can be asked in connection with (221) is this: should we
assume that Phoebe’s representation of what the report describes with the NP a man
is anchored too, either just internally or else both internally and externally? The case
we are thinking of is one in which the reported beliefs of Phoebe’s are a figment of her
imagination, and that there is no particular man to whom her entity representation x
can be seen as externally anchored. This still leaves open two possibilities: (i) that x is
internally (though not externally) anchored; (ii) that x is not anchored at all. In (221)
we have assumed that there is neither an external nor an internal anchor, but for the
point that the example is meant to illustrate here it is not important how the question is
settled. It would be of importance if we assumed that only anchored discourse referents
can serve as the antecedents of subsequent pronouns. [Rooy, 1997].
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(221)

t s p g

n ⊆ t t ⊆ s Phoebe(p) garden-of(g,p)

s:Att(p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
[ANCH,g′],

g′

garden-of(g′,i)

〉

〈
BEL,

t′ e′ x

t′ < n e′ ⊆ t′ man(x)
e′:break-into(x,g′)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
{
〈g′,g〉

}
)

The preliminary representation of the second sentence of (220) is given in
(222)

(222) 〈 {

y

pers(y)
fem(y)

} ,

t′′ s′′

n ⊆ t′′ t′′ ⊆ s′′

s′′:Att(y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈 BEL ,

〈 {

u

pers(u)
male(u)

, 〈 {

v

pers(v)
fem(v)

} , 〈 {

C z′

prize-z.(z′)
poss(z′,v)

C(z′)

} ,

z

prize-z.(z) poss(z,v) C(z)

z′

prize-z.(z′)
poss(z′,v)

C(z′)

�
��

�
��
�
���
��

∀

z′
z′ = z

〉 〉} ,

t′′′ e′′′

t′′′ < n e′′′ ⊆ = t′′′

e′′′:steal(u,z)
〉

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

)

〉

This preliminary representation has five presuppositions. The first of these,
triggered by the pronoun she, is adjoined to the DRS for the entire sen-
tence. In addition, there are four other presuppositions, which are adjoined
to the representation of the complement clause of thinks. Three of these
are triggered by NPs: the pronoun he, the definite description her prize
zucchini and the pronoun her inside it; the fourth is the presupposition on
the contextual restrictor C for the existence- and-uniqueness condition from
the presupposition triggered by the definite description (See Section 4). The
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presuppositions triggered by her and C are subordinate to the one triggered
by her prize zucchini.

she. The presupposition for she can be resolved in the “primary” context
provided by (221). (The secondary context is not available in this case, see
below.) This means that only the discourse referents in the main universe
of (221) are potential antecedents for the discourse referent y representing
she. Resolution follows the pattern described in Section 4.2 and needs no
further comment.

Resolution of the presuppositions adjoined to the representation of the
complement is possible in principle both with respect to the primary and to
the secondary context. We will take these possibilities in turn. But first we
must address a general question concerning the role of the secondary context
in presupposition resolution. This point will also be important in connection
with the next two examples, which will be discussed in the following two
subsections.

In order that the representation K′ of the contents of a mental state can
serve as interpretation context for the complement of an attitude attributing
sentence S, it must be possible to see the attitude as a further component
of the mental state which K′ (partially) represents. This entails (i) that
the agent to whom the attitude is attributed is the same as the agent of
the mental state, and (ii) that the attitude is attributed to the agent at a
time when he is in the mental state rerpesented byK’: mental state and
attitude must be simultaneous. In the case at hand the mental state is
given as consisting of just one belief, represented by the DRS K′ which
occurs as second component in the second argument {〈BEL,K′ 〉} of Att in
(221). That the agent of the attribution made by the second sentence of
(220) is the same as the agent of this belief follows when y is resolved to p.
Simultaneity of attribution and context belief rests on the fact that both
sentences of (220) are in the present tense. Thus both t and t′′ must include
the speech time n of (220). (As it stands, this doesn’t strictly speaking entail
that t′′ = t. What it does entail is that there exists a time t′′ during which
the attribution made by the second sentence holds, which includes n and is
included in t. But that seems enough to capture the content of (220).92)

Having identified y with p and t′ with t we have made the DRS of the
complement clause of (221) available for resolution of the remaining presup-
positions of (222). But this doesn’t by itself answer the question how these
presuppositions are to be resolved. This is true in particular of the three

92The possibility of identifying t′ with t would be a consequence of treating present
tense sentences as having an anaphoric dimension: apart from the requirement that the
location time of the described eventuality include n, such a treatment would create the
possibility of identifying this location time with some other time t which also includes
n and which has already been introduced into the context. We will not elaborate this
treatment further here. For the anaphoric dimension of tense see Section (3.5).
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remaining NP presuppositions. In fact, we will see that each of these raises
its own problems.

he. The least problematic is the anaphoric presupposition triggered by he.
Now that we have secured the belief representation in (221) as (secondary)
context for the interpretation of the complement of the second sentence
of (220), the discourse referents in the universe of that representation are
available as possible antecedents for the discourse referent u representing
he. The obvious choice is x. So we resolve the presupposition by identifying
u with x. (N.B this solves the problem with which the paper of Stalnaker
in [Grimm and Merrill, 1988] and the comments by Kamp in that volume
were principally concerned.)

her. Next, we turn to the possessive pronoun her of the definite description
her prize zucchini. Intuitively it seems clear that this presupposition should
be resolved by identifying the discourse referent v which represents her with
the discourse referent p of the primary context. But such identifications
come with a complication. By identifying the discourse referent v with
one that is bound inside the main DRS we turn the propositional content
of the attributed attitude into a singular proposition. In fact, the link
between the discourse referent originating within the representation of the
attributed content and the one bound outside this representation can be seen
as an external anchor for the former. According to the position adopted
in Section ???? this is coherent only if the internal discourse referent is
internally anchored as well as externally. Thus, if we stick to the principle
that there can be no external anchor without an internal anchor, then we
must assume that by resolving v through identification with an external
discourse referent, the interpreter is committed to the assumption that there
is an internal anchor for v.

In cases where the external discourse referent with which the internal
discourse referent v is identified represents an individual distinct from the
agent of the attitude to whose representation v is internal, what was said
in the last paragraph is all that needs to be said. But the situation has
an additional complexity when the external discourse referent represents
the agent. In this case it is also possible to interpret the internal discourse
referent through identification with the external one. In the example we are
discussing this amounts to identifying v with p — or, more fully, to taking v
to be internally anchored and externally anchored to p. Note however that
while the result of this is a representation of a belief of Phoebe’s that is de
re with respect to Phoebe herself, it is only one of two ways in which the
pronoun her can be interpreted as referring to Phoebe.

The other possibility is to interpret her as signalling reference to Phoebe’s
self from her own internal perspective. We discussed self-reference in thought
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of this type in Section 5.3 and there we decided to represent it with the help
of the special indexical discourse referent i. In line with that decision, the
interpretation of which we are speaking now should involve identification of
the discourse referent v with i. When a pronoun (or its representing dis-
course referent) is interpreted in this way, however, then there is of course
no need for further assumptions about internal or external anchors. (For
any occurrence of i is itself internal and, because of its direct link with the
agent, it can be considered to have both an internal and an “external” an-
chor no matter what.) Below we will display both the de se and the de re
interpretation of her.

her prize zucchini. The difference between the de re and the de se inter-
pretation of her has its repercussions for that of the NP her prize zucchini
which contains it. Let us begin with the assumption that her is given a
de re interpretation. In that case there are still two options for the justi-
fication of the existence-and-uniqueness presupposition: either at the level
of the secondary context or at that of the primary one. The first option
amounts to assuming (i.e. accommodating the assumption) that Phoebe
takes it that there is a unique entity x which is a garden, satisfies some
additional predicate C and stands in the relation of being “had” by the
person v of whom she has some anchored representation (which happens
to be Phoebe). The second option amounts to there being a unique entity
that is a garden, satisfies C and stands in the “being had” relation to the
individual represented by p, i.e. to Phoebe. A further effect of this second
option is that the discourse referent z which represents the denotation of the
description moves to a position that is external to the representation of the
belief. Once again this entails, in the light of our earlier assumptions about
external and internal anchors, that there must be an internally anchored
discourse referent that stands within the belief representation and that is
externally anchored to z.

C. Let us, before we go on, display the representations to which these
interpretational decisions lead. To do so, we also need to make a decision
about the interpretation of C, but in connection with the example before
us this is a matter that can be dealt with straightforwardly: the predicate
“is a’s garden” is uniquely satisfied for many values of a. If we are prepared
to suppose that this is the case in particular for Phoebe, then the default
interpretation of C as the universal predicate will serve. Let us assume
that this is the way in which C in (221) gets resolved. Since this resolution
makes the predications involving C vacuous, they will be dropped in the
final representations of (220) that will be displayed below.

Both (223) and (224) assume the de re interpretation of her. (223) gives
the internal accommodation of the existence-and-uniqueness presupposition
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of her prize zucchini, (224) its external accommodation. Both representa-
tions give the merge of the new representation with (221). For easier reading
we have kept the two components of the merge graphically separate.

(223)

t s p g

n ⊆ t t ⊆ s Phoebe(p) garden-of(g,p)

s:Att(p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
[ANCH,g′],

g′

garden-of(g′,i)

〉

〈
BEL,

t′ e′ x

t′ < n e′ ⊆ t′ man(x)
e′:break-into(x,g′)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
{
〈g′,g〉

}
)

t′′ s′′ y v

n ⊆ t′′ ⊆ s′′ y = p v = p t′′ = t

s′′:Att(y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
[ANCH,v′],

v′

pers(v′)
fem(v′)

〉

〈
BEL,

z′

prize-z.(z′) poss(z′,i)

z′′

prize-z.(z′′)
poss(z′′,i)

�
��

�
��
�
���

��
∀

z′′
z′′ = z

〉

〈
BEL,

t′′′ e′′′ u

t′′′ < n e′′′ ⊆ t′′′ u = x
e′′′:steal(u,z′)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,
{
〈 v′,v 〉

}
)
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(224)

t s p g

n ⊆ t t ⊆ s Phoebe(p) garden-of(g,p)

s:Att(p,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈
[ANCH,g′],

g′

garden-of(g′,i)

〉

〈
BEL,

t′ e′ x

t′ < n e′ ⊆ t′ man(x)
e′:break-into(x,g′)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,
{
〈g′,g〉

}
)

t′′ s′′ y v z

n ⊆ t′′ ⊆ s′′ y = p v = p t′′ = t prizez.(z) poss(z,v)

z′′

prize-z.(z′′)
poss(z′′,v)

�
�

�
�
�
��
�

∀

z′′
z′′ = z

s′′:Att(y,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈
[ANCH,z′],

z′
〉

〈
BEL,

t′′′ e′′′ u

t′′′ < n e′′′ ⊆ t′′′ u = x
e′′′:steal(u,z′)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

,
{
〈 z′,z 〉

}
)

Note that in (224) there is no internal anchor for the referent of the pro-
noun her. The “external” interpretation of the definite description her prize
zucchini which (224) represents allows for a purely external representation
of her; only the discourse referent z for the entity denoted by the expression
as a whole enters (indirectly via z′) into the content representation of the
belief that the second sentence attributes.

The official notation in which these last two representations are given
has the merit of making the distinction between internal and external an-
chors explicit. But it is cumbersome, and now that we have repeatedly
demonstrated how it works, the time is ripe for simplifying it. We simplify
by adopting the very notation against which we warned above: the one in
which a discourse referent which is bound in a position external to
Att” occurs as an argument in one or more DRS-conditions which are within
the scope of this occurrence. The use of this notation is now to be under-
stood, however, as shorthand for the more complex one which appears in
(223) and (224):

NOTATIONAL CONVENTION 70. Externally Bound Discourse Referents
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If a condition P(w) is part of the representation K of an attitude con-
tent and w is bound outside the Att-condition of which K is an immediate
constituent — i.e. the condition is of the form “s: Att(a,K,EA)”, while 〈
MOD,K 〉 ∈ K for some MOD — then this is to be understood as equiva-
lent to the condition “s: Att(a, K ∪{〈 [ANCH,w′], Kw′ 〉 }, EA ∪ 〈 w′,w
〉 )”, where w′ is a new discourse referent (i.e. one that does not occur in
the representation of which the Att-condition is part) and Kw′ is the DRS
〈{w′},∅ 〉.

In this simplified notation, the lower part of (223) (corresponding to the
contribution of the second sentence of (220)) takes the form (225)

(225)

t′′ s′′ y v

n ⊆ t′′ ⊆ s′′ y = p v = p t′′ = t

s′′:Att(y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

z

prize-z.(z) poss(z,v)

z′

prize-z.(z′)
poss(z′,v)

�
�

�
�
�
��
�

∀

z′
z′ = z

〉

〈
BEL,

t′′′ e′′′ u

t′′′ < n e′′′ ⊆ t′′′ u = x
e′′′:steal(u,z)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

)

When her is interpreted de se, then of the two possibilities of the last para-
graph for justifying the existence-and-uniqueness presupposition of her prize
zucchini only the first one is a formal option. For the discourse referent i
that is used to interpret the pronoun is internal to the representation; if we
export the existence-and-uniqueness condition to the level of the primary
context, then the condition “v = i” would have to be left behind and v would
no longer be properly bound. The new (lower) part of the representation is
given in (226)
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(226)

t′′ s′′ y

n ⊆ t′′ ⊆ s′′ y = p t′′ = t

s′′:Att(y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

z

prize-z.(z) poss(z,i)

z′

prize-z.(z′)
poss(z′,i)

�
�

�
�
�
��
�

∀

z′
z′ = z

〉

〈
BEL,

t′′′ e′′′ u

t′′′ < n e′′′ ⊆ t′′′ u = x
e′′′:steal(u,z)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

)

N.B We have adopted in this representation the convention of replacing the
discourse referent v for her everywhere by i rather than link it to i via the
condition “v= i”.

The representations (223) — (226) may seem to present us with a problem
in that none of them seem to fully capture the interpretation which a normal
speaker is likely to understand the definite description of the second sentence
of (220): as an NP that is to be interpreted de re, while the pronoun her
that it contains is given a de se interpretation. None of the representations
we have given shows this combination.

This doesn’t mean that a representation with these properties would be
incompatible with the principles we have formulated so far. For one thing,
the representations which we have shown are to be understood as minimal,
in the sense that the information they contain must obtain if the represented
sentence (on its given interpretation) is to be true. They do not exclude
the possibility that the interpreter’s representation gets further enriched on
the strength of various “pragmatic” considerations, which go beyond that
which is conveyed by linguistic form as such. In the present case, however,
it might even be argued that the interpretation that we are looking for is the
result of yet another way of interpreting the definite description her prize
zucchini, according to which it has a double function - — first as a means of
identifying the external anchor of an internally anchored representation of
the agent Phoebe, and secondly as a description of the information which
she herself uses to represent the referent; it is in this second capacity that
the description allows - and suggests — a de se interpretation of her, while
it is the first function which makes the belief de re with respect to the
zucchini. (227) gives the representation which results if the description is
taken to play this double role. As (227) shows, the processing rule which
reflects the double role interpretation of the NP must produce the effect
that the internally anchored discourse referent introduced by the “internal”
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interpretation of the NP is externally anchored to the discourse referent
established by its de re interpretation. In the simplified notation used in
(227) this means that the conditions yielded by the internal interpretation
take the form of predications of the external anchor

(227)

t′′ s′′ y v z

n ⊆ t′′ ⊆ s′′ y = p v = p t′′ = t prize-z.(z) poss(z,v)

z′

prize-z.(z′)
poss(z′,i)

�
�

�
�
�
��
�

∀

z′
z′ = z

s′′:Att(y,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

t′′′ e′′′ u

t′′′ < n e′′′ ⊆ t′′′ u = x
e′′′:steal(u,z) prize-z.(z) poss(z,i)

z′′

prize-z.(z′′)
poss(z′′,v)

�
�

�
�
�
��
�

∀

z′′
z′′ = z

〉
⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

)

Summary of 5.4: Our discussion of example (220) has focused on two
aspects of the interpretation of attitude attribution sentences. First —
this is a very general point, which will play a major role in the examples
considered in the next two sections — in order that representations of mental
states in the context in which such a report is interpreted can serve as
“secondary contexts”, it must be established that they represent mental
states of the agent to whom the report attributes a state and moreover that
they hold at the time at which the agent has this attitude according to the
report.

The second point, to which most of the discussion of this section has
been devoted, concerned the multiplicity of possible interpretations for cer-
tain NPs which arise when the NP is part of the complement clause of
an attitudinal predicate (such as, in our example, the verbs believe and
think). Although we haven’t explicitly stated the interpretation (= DRS
construction) rules for NPs which cover these new possibilities, we trust
that the discussion has given a fairly clear indication how rules could be
stated which lead to the representations we have shown. Now that we have
seen in some detail to what multiplicity of alternative interpretation rules
pronouns and definite descriptions give rise when they occur in the scope
of attitude predicates, it is well to reiterate our earlier observation that this
dramatic increase in intepretational options is by no means limited to just
these two types of expressions. WE find a comparable increase for other NP
types that have anaphoric uses (such as demonstrative NPs), as well as —
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and this is particularly important — for indefinite NPs. (It is an old obser-
vation about indefinite NPs in the complements of attitude predicates like
“believe” that they usually allow for a “de re” as well as a“de dicto” inter-
pretation. The de re option can be seen as one way in which indefinite NPs
can be “specific”.) Moreover, new interpretational distinctions also arise
for types of expressions other than NPs. for these reasons extending the
construction algorithm for a language fragment without attitude predicates
to one which includes them is a complicated matter, which requires careful
analyses of what ranges of representations are possible for which sentences.

In the next two sections we consider examples which illustrate two further
aspects of the representational capacities of our formalism and of the inter-
pretational principles needed to interpret sentences and discourses which
make use of these possibilities. The example of the next section concerns
the description of attitudinal change, i.e. of a temporal succession of dis-
tinct mental states of the same agent. The section after that is devoted
to a case in which attitudes are attributed to two different agents who can
be assumed to share a certain common ground. Such a common ground
will often make it possible to use an attribution that has been made to one
of them as context for the interpretation of an attribution that is made
subsequently to the other.

Reporting Changes of Attitudinal States

The next example illustrates the ability of the present formalism to accu-
rately represent temporal relations between the times at which attitudes are
entertained and the times of the eventualities mentioned in the propositional
contents of those attitudes.

(228) On Sunday Bill heard that Mary was in Paris. On Tuesday he learned
that on the previous day she had left.

(228) also exemplifies some of the complexities that arise in connection with
the interpretation of tenses and other expressions referring to time; these,
we will see, have much to do with the way in which the temporal aspects
of the contents of thoughts are connected with the times at which they are
entertained.

The first instance of this problem that we must consider here is the past
tense in the complement of heard in the first sentence of (228). It is a well-
known and much discussed fact of languages like English that a simple past
tense within the complement of an attitudinal verb which itself is also in a
past tense can be understood as expressing simultaneity between the even-
tuality of the complement and the attitude or attitudinal change referred
to by the verb itself — a phenomenon known in the literature as “sequence
of tense”. This is not the only possible interpretation for the past tenses of
verbs in the complements of past tense attitude verbs or verba dicendi; they
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can also be understood as expressing anteriority to the time of the matrix
verb eventuality. Thus the first sentence of (228) can be understood not
only as saying that what Bill came to believe on Sunday was that Mary was
in Paris at the very time he had just formed this new belief, but also that
what he came to believe was that she was in Paris at some time before that
when his new belief came about. How the tense of the complement is inter-
preted will depend on several factors, one of which is the Aktionsart of the
embedded verb. If this is an event verb, then in English the simultaneous
(i. e. sequence of tense) interpretation is excluded. (For the same reason
that the use of the simple present is proscribed in normal context. However,
the simultaneous reading returns as a possibility when the simple past is
replaced by a past progressive, just as present progressives of event verbs
are acceptable in normal contexts.) When the embedded verb is stative,
then its simple past will in general be ambiguous between the simultaneous
interpretation and the anterior interpretation. (When the verb phrase of
the complement sentence is stative, there is usually a preference for the si-
multaneous interpretation.) We choose the simultaneous interpretation for
the first sentence as the basis for the interpretation of the second sentence,
which is the real topic of this subsection. (See (229), (230) below).

How do we represent the simultaneous interpretation? For the most part
this should be clear from what has been said about the representation of
propositional attitudes so far. In particular, simultaneity of the content of
a thought with the time when the thought is being entertained can be ex-
pressed with the help of the temporal indexical n. In other words, the state
of Mary’s being in Paris is to be represented as surrounding the “internal
present” which is denoted by an occurrence of n within the representation
of Bill’s attitudinal state. As the sentence makes clear, this attitudinal state
is temporally located within the interval denoted by Sunday. (See Section
(3.5) for details.)

New in the representational challenge which the first sentence of (228)
presents is the representation of the verb hear. Like the verb learn of the
second sentence, hear, in the use that is made of it in (228), conveys the
emergence of a new belief (or item of knowledge), where just before there
wasn’t such a belief (or perhaps even a contrary opinion). It is arguable that
this bit of information, which is unequivocally part of the meaning of learn,
is only an implicature in the case of hear. But we will leave this question —
whether we are dealing with an implicature or a genuine part of the lexical
meaning — for some other occasion, and assume for simplicity that there is
a lexical meaning of hear which does include the previous non-existence of
the belief as a component, just as this is the case for learn. (We also ignore
that hear, as opposed to learn, carries implications about the way in which
the information reaches the agent — for instance, hearing is not the same
as (learning by) reading.) We also pass over the question whether “x heard
that p” really entails that x came to believe that p. Perhaps Bill heard that
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Mary was in Paris, but didn’t believe a word of it? In the context of (228),
where the second sentence seems to refer back to the attitudinal state which
has been set up by the first, this second possibility seems more remote than
it may be in other contexts, and so it too is set aside.

The relevant reading of hear, then, which we assume to be the one relevant
to the present sentence is that of a change-of-state verb, which expresses a
transition from the state of not believing/knowing the content of what one
hears to the state in which one does believe/know that. We also make the
usual assumption about pre-states of change-of-state verbs, viz. that such
verbs carry a presupposition to the effect that a pre-state of the relevant
type (one which denies the type of the result state) obtains at the time when
the venetuality described by the verb begins.93

We are now ready to present the representation of the first sentence of
(228). (229) gives the preliminary representation for this sentence, with ex-
plicit and separate representations of the presuppositions triggered by the
proper names Sunday, Bill, Mary and Paris and the pre-state presuppo-
sition of hear. In the final representation (230) for the sentence all five
presuppositions have been accommodated.

93There is one further issue connected with the first sentence of (228) which we must
briefly comment on before showing the representation which we will use as context for
the interpretation of the second sentence. This issue concerns the representation of the
names Mary and Paris. It doesn’t have to do with the temporal aspects of (228) as such
and we would have raised it in connection with our last example if that had happened
to contain a proper name within an attitudinal complement. Occurrences of names
within the complements of attitude verbs and dicendi verbs are typically understood
as de re. (There may be marginal exceptions to this, but if we are right, then these
really are marginal.) This means that the reported belief must be construed as involving
discourse referents which are externally anchored to the person Mary and the city of
Paris, respectively.

We assume that the same is true for the NP Sunday. Weekday names aren’t proper
names in the sense of having all properties that semanticists and philosophers of language
take to be part of the concept of a proper name. In particular, the denotations of weekday
names depend in systematic ways on the contexts in which they are used. We will ignore
this contextual dimension of the reference of Sunday here. (No information about the
context was given anyway. We will take Sunday in (228) to refer the last Sunday before
the utterance time, but nothing much hangs on this.) What is more relevant to what
will be said about the interpretation of (228) below is the temporal relation between the
referents of Sunday in the first sentence and Tuesday in the second. We will assume
that Tuesday refers to the Tuesday immediately after the referent of Sunday in the first
sentence.
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(229)

〈{
t0

Sunday(t0)
,

b

Bill(b)
,

m

Mary(m)
,

p

Paris(p)

}
,

〈
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

s0

s0 : ¬

s′0

s′0 ⊆ s0

s′0:Att(b,

⎧⎪⎨
⎪⎩
〈

BEL,

s′

n ⊆ s′

s′:IN(m,p)

〉⎫⎪⎬
⎪⎭)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

,

t1 e s1

t1 ⊆ t0 e ⊆ t1 s0 ⊃⊂e ⊃⊂s1

s1:Att(b,

⎧⎪⎨
⎪⎩
〈

BEL,

s′

n ⊆ s′

s′:IN(m,p)

〉⎫⎪⎬
⎪⎭)

〉〉

(230)

t0 b m p s0 t1 e s1

Sunday(t0) Bill(b) Mary(m) Paris(p) t1 ⊆ t0 e ⊆ t1 s0 ⊃⊂e ⊃⊂s1

s0 : ¬

s′′0

s′′0 ⊆ s0

s′0:Att(b,

⎧⎪⎨
⎪⎩
〈

BEL,

s′

n ⊆ s′

s′:IN(m,p)

〉⎫⎪⎬
⎪⎭)

s1:Att(b,

⎧⎪⎨
⎪⎩
〈

BEL,

s′

n ⊆ s′

s′:IN(m,p)

〉⎫⎪⎬
⎪⎭)

(Here “⊃⊂” denotes abutment of two eventualities or the periods (see Sec-
tion (3.5)). Note the somewhat cumbersome way of expressing the informa-
tion that Bill’s belief that Mary is in Paris is new: the event e contributed
by hear is represented as the transition to a post-state s1 in which Bill has
a belief to the effect Mary is in Paris from the pre-state s0 in which Bill’s
attitudes do not include such a belief. We will discuss the representation of
state transitions at length in Section 6.



DISCOURSE REPRESENTATION THEORY 375

We now pass to the central concern of this subsection: the interpretation
of the second sentence of (228) in the light of the context established by
the first sentence (230). We split the discussion of the issues which need
addressing into two parts, (i) the conditions that must be satisfied in order
that the secondary context provided by the belief attribution of the first
sentence can be used in the interpretation of the second sentence, and (ii)
some of the complexities that arise in connection with the interpretation of
certain constituents of the complement of the second sentence, given that
both the primary and the secondary context are available for the resolution
of presuppositions.

Temporal Alignment of the Secondary Context with the Attitude
Report. The second sentence of (228) is in many ways like the first. But
there is one crucial difference, and this is our principal reason for making
(228) the topic of a separate discussion: as in our previous example (220),
interpreting the complement of the matrix verb of the second sentence —
here the verb learn — requires as context the representation provided by the
complement sentence of the first sentence. As we noted in connection with
(220) using one attitude attribution as context for another presupposes that
the two attitudes must be part of a single attitudinal state. This entails that
we must be dealing (i) with a single attitude bearer, and (ii) with a single
time at which both attitudes are entertained. In our first example (220)
verifying that these conditions were fulfilled was straightforward. Here it is
not.

Note that what the first sentence of (228) tells us is just that Bill acquired
a certain belief on Sunday. We are not told whether he kept this belief —
that Mary was in Paris during some period including the time when he
heard that she was in Paris — until the time on Tuesday, when he is said to
have learned that she “left”. Yet we must assume that he did, for otherwise
it is hard to make sense of the belief attribution that is made in the second
sentence: the intransitive verb leave always involves, from a semantic point
of view, an argument for the place from which the subject leaves, irrespective
of whether this place is mentioned explicitly (in the form of a from-PP) or
not. Moreover, when the place is not mentioned explicitly, there is always
an implication that it can be reconstructed from context.

In the case of (228) the resolution of this instance of “implicit argument
anaphora” is intuitively clear: it seems clear that the place of which Bill
learns that Mary left from there was Paris. Since a discourse referent rep-
resenting Paris is present in the primary context that is given by (230), this
resolution does not require the secondary context. But leave also comes
with a pre-state presupposition, viz., that its subject was in the place that
she is said to have left. In principle, pre-state presuppositions are quite
easily accommodated, but nevertheless the use of leave (like that of other
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change-of-state verbs) creates a definite presumption of the relevant pre-
state being “already known” — that is, part of the context. In the case at
hand this means that there is a presumption that the pre-state — that of
Mary being in Paris — is “already known” to Bill. The context provided
by (230) supports this presumption, in that the obtaining of this pre-state
is the content of its secondary context. However, the secondary context of
(230) can resolve the pre-state presupposition triggered by leave only when
it is assumed that the belief which (230) attributes to Bill continues to be
his belief until the time on Tuesday when he finds out about Mary’s de-
parture. That this is really so cannot be strictly inferred from (230), but
must be accommodated. It is the kind of accommodation that comes easily,
since it is in line with a general principle of discourse “persistence”: states
of affairs which the discourse claims to obtain at some given time will typi-
cally be assumed to persist unless the discourse provides explicit or implicit
information to the effect that the state has come to an end.94 Nevertheless,
it is an accommodation of some kind.

The next question we must address is what exactly is being accommo-
dated. This may seem a strange question, with an answer that is entirely
obvious: we simply add a condition that the state s1 of (230) still holds
at the time of the event e′ of Bill learning that Mary has left Paris. But
there is a subtlety here. It is certainly true that the accommodation just
described is one way of arriving at a coherent interpretation to the second
sentence. But it is not the only one. The belief which (230) attributes to
Bill on Sunday is that Mary is in Paris on Sunday. There are two ways in
which this belief can persist as time goes on, either as the belief that Mary
is in Paris in the sense of the “psychological present”, i.e. at the time at
which the belief is entertained, or else as the belief that Mary was in Paris
on Sunday. The accommodation mentioned above is to the effect that Bill’s
belief persists as a belief “about the present”. For at the later time on Tues-
day to which the accommodation extends the belief, the discourse referent n
inside the characterisation of its content refers to this time on Tuesday, and
not to the earlier time on Sunday, when Bill heard that Mary was in Paris.
The more modest accommodation of the belief that Mary was in Paris on
Sunday requires that the belief content now be represented in a different
way, not as a “present tense” but as a “past tense belief”: the time of the
state of Mary being in Paris must now be represented as one before (the
embedded occurrence of) n, rather than simultaneous with n. This second
accommodation leaves it open whether Bill believed on Tuesday that Mary

94This principle, also called “monotonicity” (see [Reyle and Rossdeutscher, 2001]) is
reminiscent of the frame problem from AI. But the discourse effect tends to be even
stronger, for it is a constraint on discourse coherence that the termination of such states
must be conveyed, if this is what the speaker or author intends. So the very fact that
the discourse says nothing about termination can be taken as a sign that the state is to
be understood as persisting.
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was still in Paris then, whereas the first accommodation claims this. We
will show both accommodations below. As we will see, they have slightly
different consequences for the remaining aspects of the interpretation of the
second sentence of (228).

A further observation concerns the use of the past perfect. It was ob-
served in Section (3.5) that this tense is typically interpreted as involving a
past Temporal Perspective Point, locating the described eventuality in the
past of this TP-point. In the present case there are two possible choices
for this TP-point, (i) the time of the event e introduced by hear in the first
sentence and (ii) the event e′ introduced by learn in the matrix clause of
the second sentence. The first choice places the event of Mary’s leaving
before Sunday. So, on this interpretation the information which Bill gets
on Tuesday contradicts what he heard on Sunday. In view of the “correc-
tive” character which (228) takes on with this interpretation, one would,
if this had been the intended interpretation, have expected some kind of
contrastive element, such as e.g. but as first word of the second sentence, to
bear witness to the contrast between the claim made by the first sentence
and that made by the second. So, without dwelling further on the general
principle at work here, we take the absence of such a particle as a justifica-
tion for choosing the second option, according to which the event of Mary’s
leaving Paris occurred before Tuesday.

A similar ambiguity arises also in connection with the interpretation of
the temporal adverbial the day before. This adverbial has the form of a
definite description, and its referent has to be determined accordingly. The
descriptive content of this description is the relational expression day before.
Like the verb leave, this phrase can occur either with an explicit second
argument, as in day before Sunday, say, or without any phrase designating
this argument. The latter possibility is the one we find realised in (228).
And like with the verb leave there is in such cases an implication to the
effect that the missing argument should be recoverable from the context.
Moreover, when the phrase the day before occurs as adjunct to a finite VP,
it is subject to a default recovery principle according to which the missing
argument is the TP-point that is also needed to interpret the tense of te
clause. This means that if we take the time of the event e as TP-point, then
the the day before gets an interpretation on which it denotes the Saturday
before the mentioned Sunday; and when the time of e′ is taken as TP-point,
then the phrase is understood as denoting the following Monday. Since we
have already decided to identify the TP-point with e′, we are led to interpret
the description as denoting the Monday.

(231) gives the preliminary representation for the second sentence of
(228), and (232) and (233) the updates of the context DRS (230) with the
two mentioned accommodations. After these diagrams we will first have
to say a few more things about presupposition justification of (231) on the
basis of, respectively, (232) and (233). Only after that we will give,in (234)
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and (235) the representations of (228) which result when all presupposi-
tions have been resolved and the representation of the new sentence has
been merged with the context representation.

(231)

〈⎧⎪⎨
⎪⎩

t′0

Tuesday(t′0)
,

u

pers(u)
male(u)

,

v

pers(v)
fem(v)

,
l

loc(l)
,

t4

(impl. arg.)
“day before”

⎫⎪⎬
⎪⎭ ,

〈
⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

s2

s2 : ¬

s′0

s′2 ⊆ s2

s′2:Att(u,
{
〈 BEL, 〈 { K1 } , K2 〉 〉

}
)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

t3 e′ s3

t3 ⊆ t′0 e′ ⊆ t3 s2 ⊃⊂e′ ⊃⊂s3

s′3:Att(u,
{
〈 BEL, 〈 { K1 } , K2 〉 〉

}
)

〉〉

where K1 is the DRS
s′3

s′3:IN(v′,l′)

and K2 is the DRS

t′′0 t′′ e′′ s′′3

day(t′′0) t′′0 ⊆ day(t4) t′′ ⊆ t′′0
t′′ < n e′′ ⊆ t′′ s′3 ⊃⊂e′′ ⊃⊂s′′3

s′′3 :¬IN(v,l)

(232)

t0 b m p s0 t1 e s1

Sunday(t0) Bill(b) Mary(m) Paris(p) t1 ⊆ t0 e ⊆ t1 s0 ⊃⊂e ⊃⊂s1

s0 : ¬

s′0

s′0 ⊆ s0

s′0:Att(b,

⎧⎪⎨
⎪⎩
〈

BEL,

s′

n ⊆ s′

s′:IN(m,p)

〉⎫⎪⎬
⎪⎭)

t3 ⊆ s1

s1:Att(b,

⎧⎪⎨
⎪⎩
〈

BEL,

s′

n ⊆ s′

s′:IN(m,p)

〉⎫⎪⎬
⎪⎭)
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(233) (230) ∪

s4

t3 ⊆ s1

s1:Att(b,

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
〈

BEL,

s′

t0 < n
t0 ⊆ s′

s′:IN(m,p)

〉⎫⎪⎪⎪⎬
⎪⎪⎪⎭

)

N.B. In both (232) and (233) the accommodation involves adding a con-
dition which guarantees that the belief about Mary being in Paris lasts up
to the time t3 of the event e′ of 231. In the case of (232) this can be rep-
resented simply by insisting that the very belief state s1 of (230) overlaps
with t3. The case of (233) is somewhat more involved since here the repre-
sentation of the content of the belief has to be modified so that it suits the
new, later belief time t3.

Presupposition Resolution for the Preliminary Representation of
the Second Sentence of (228) As stated above, each of the updated
contexts (232) and (233) makes it possible to justify the pre-state presup-
position of leave in (231). (This requires that u be resolved to b, v to m, l
to p and t4 to t1.) But there is an obvious difference between the two cases:
the belief attributed to Bill in (233) is compatible with the belief that is
attributed to him in (231), but the belief attribution of (232) is not. This
means that the two interpretations corresponding to (232) and (233), while
both possible, are conceptually quite different. If Bill was, at the time on
Tuesday when he learned about Mary’s departure, in the doxastic state in-
dicated in (233), then it is reasonable to assume that his new doxastic state
results from the immediately preceding one through simple addition of the
new belief that Mary left Paris on Monday. If Bill’s immediately preceding
doxastic state is as described in (232), then addition to it of the new belief
represented in (231) leads to a contradiction so obvious that it is hardly
credible that Bill should have acquiesced in it. Almost certainly he will
have revised his former beliefs in the light of what has just become known
to him. The intuitively most likely revision would be that Mary didn’t re-
main in Paris until Tuesday — in other words, that the state of her being in
Paris did not persist as far into the future as Bill had erroneously supposed
up to that point. This leads us back to (233), the result of the weaker ac-
commodation of (230). After merging with the non-presuppositional part
of (231), we get the representation given in (234).
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(234) (231)  

t′0 u v l t4 s2

Tuesday(t′0) u = b v = m l = p t4 = s2

s2 : ¬

s′2

s′2 ⊆ s2

s′2:Att(u,
{
〈 BEL, 〈 { K1 } , K2 〉 〉

}
)

t3 e′ s3

t3 ⊆ t′0 e′ ⊆ t3 s2 ⊃⊂e ⊃⊂s3

s′2:Att(u,
{
〈 BEL, 〈 { K1 } , K2 〉 〉

}
)

where again K1 and K2 are as under (231).

The representation in (234) seems very similar to that in (233). For one
thing the two represent the same truth conditions. It should be stressed,
however, that as interpretations of (228) they are clearly distinct. The sto-
ries that (232) and (233) tell about Bill up to the time when he learned that
Mary left on the previous day differ in important details. That the repre-
sentation in (234), which is based on the accommodation shown in (232),
converges in the end with the one that is based on (227), depends crucially
on the likely assumption that in the case of (232) Bill will have revised his
earlier belief in the light of his new information. Belief revision, however,
is something very different from what goes on when we arrive, by merely
following the linguistic rules of interpretation, at a semantic representation
that is inconsistent right away.

The discussion of this last section has demonstrated the same problems
of exposition that became evident already in connection with hte last one:
A large number of seemingly unrelated details, many of which also had
no direct bearing on the issues which the example was meant to illustrate.
We already drew attention to this at the outset of the last section; if we
return to the observation once more here, it is in the hope that the reader
is in a better position now to appreciate the quandary: Any example which
illustrates the points on which the last two subsections were trained, will
present a comparable range of issues, some closely related to the cantral
issues and others hardly or not at all. But even those which are not or only
distantly related require some attention if the representations proposed are
to come across as well-motivated. Our discussions of the two examples of
these last subsections would have made a much less haphazard impression,
if it had been possible to rely on antecedently given solutions of all those
problems which we encountered and which are irrelevant or ancillary to our
principal cocerns. But this would have required a very different set-up of the
present chapter, which in our own view would have made it quite unsuitable
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as a chapter for a Handbook. In the light of these considerations dealing
with marginally relevant issues as they are tossed up by the examples chosen
seemed to us the lesser of two evils.

Whether or not the mode in which we have proceeded in these sections is
seen as satisfactory, there is an obvious moral that can be drawn: In order
to provide a realistic account of the semantic representation of all but hte
simplest sentences and discourses one needs to appeal to a highly complex
system of interacting interpertation rules.

For a good number of the issues which we were forced to treat on the fly
in dealing with our examples more systematic treatments can be found in
the DRT literature than they could be given here. But this isn’t the case
for all of them. DRT may compare quite favourably with other frameworks
for natural language semantics when it comes to coverage, but its coverage
is still quite limited nonetheless. This means in particular that building a
DRT-based semantics for a fragment of a natural language such as English
which is large enough to permit relatively unimpeded use in all but the most
special contexts remains a big challenge.

As regards the issues which have been our central concern in these last
two subsections — viz. the ways in which successive attitude attributions
can be semantically connected — there is a special reason why it is hard to
come up with examples that illustrate the point without getting involved
in additional problems. This is because so many natural examples which
illustrate this kind of connectedness establish the connection by means of an
anaphoric expression in the second attribution, which picks up the propo-
sitional content attributed by the first one. Some examples are given in
235.

(235) a. Bill thought that Mary was in Paris. But then he discovered that
this wasn’t so.

b. Bill thought that Mary was in Paris. But then he discovered that
he was wrong.

c. For many years Bill wanted to make a trip to Egypt, but he
doesn’t want to any more now.

d. Bill very much wanted to prove that theorem and he was terribly
pleased that he had when at last he had succeeded.

e. Bill had wanted to be a politician, but when he understood why
he wanted this, his desire disappeared.

Pronominal and demonstrative reference to propositional attitudes and their
contents is a subject in its own right, which goes well beyond what we have
touched upon here. It is a topic that has received a considerable amount of
attention in the DRT-related literature, cf. [Asher, 1993]. The same is true
of ellipsis. Here too there is a growing literature (See [Hardt, 1992], [Asher
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et al., ], [Schiehlen, 1999]). (235.e), moreover, points up a problem of a dif-
ferent sort. Many of our attitudes are “second order” in that they are about
some of our own attitudes. (A belief which you entertain about the origin
of one of your desires is only one of a wide variety of different types of such
second order attitudes.) It might be thought that such attitudes can be rep-
resented in much the same way in which the present formalism represents
attitude attributions that one person makes to another (and about which
we will have more to say in the next subsection). However, representing
self-reflection in this way fails to capture one special feature of attributing
properties to one’s own thoughts. Such attributions have a kind of trans-
parency that isn’t there when we attribute thoughts to others. Whenever
we attribute a thought to someone else, we must rely on hypotheses about
what thoughts this person has. These hypotheses involve representations
we form of the other’s thoughts and to the question whether or how closely
they capture the thoughts which we attribute to the other correctly there
is rarely if ever a conclusive answer. But when we think about our own
thoughts, then the subjects of our reflections are immediately accessible to
us, with an immediacy that is reminiscent of how the direct access we have
to our own selves. The thoughts that are formed in self-reflection are thus
thoughts which are directly about the first order thoughts on which they are
targeted; their contents are singular propositions whose subjects are other
thoughts. But they are singular propositions of a special kind, similar to the
singular proposition about my own self that is the content of the thought I
have when thinking, say, “I want to go home”.

Self-reflection is an important topic within the general theory of propo-
sitional attitudes and attitude attributions, but it is one we will not pursue
here. A proposal for the representation of self-reflective thoughts within the
present framework can be found in [Kamp, 1999].

Shared Attitudes between Different Agents

Our last example concerns the possibility of referentially connected attribu-
tions to different agents. Consider:

(236) Phoebe believes that a man broke into her garden and that he stole
her prize zucchini. Ella thinks he didn’t take anything.

The first sentence leads to the same representation as the two sentences of
(220). One of these representations was given in (224) and we will assume
that it is this representation which the interpreter of (236) assigns to its
first sentence. (224) is repeated here as (237), in the abridged notation in
which internal and external anchors are not explicitly mentioned and after
merging of the representations of the two conjuncts of the first sentence into
a single DRS.:
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(237)

t s p g y v z

n ⊆ t t ⊆ s Phoebe(p) garden-of(g,p)
v = p t′′ = t prize-z.(z) poss(z,v)

z′′

prize-z.(z′′)
poss(z′′,v)

�
��

�
��
�
���

��
∀

z′′
z′′ = z

s:Att(p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

t′ e′ x

t′ < n e′ ⊆ t′ man(x)
e′:break-into(x,g)

〉

〈
BEL,

t′′′ e′′′ u

t′′′ < n e′′′ ⊆ t′′′ u = x
e′′′:steal(u,z)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

)

(237) is the context of interpretation for the second sentence of (236). One
of the questions which arise in connection with the interpretation of this
sentence is on the face of it quite similar to a problem we encountered when
discussing the second sentence of (228). There a persistence accommodation
was necessary to extend the belief that the first sentence attributes to Bill
at t1 to the later time t2, so that it could serve as context of interpretation
for the belief attribution made by the second sentence. In (236) a similar
problem arises in connection with the pronoun he in the second sentence.
What does this pronoun refer to? “Well”, one might be inclined to reply,
“to the man of whom Phoebe believes that he broke into her garden and
stole her prize zucchini.” But how and in what sense can Ella’s thought be
about this man, if, as we assumed in our discussion of (220), there is for all
we know no such man in reality, and if what is said in the first sentence is a
figment of Phoebe’s imagination? Clearly, the anaphoric relation between
a man in the first and he in the second sentence of (236) makes no sense
unless there is some mental content which Ella shares with Phoebe. What
is needed, therefore, is an accommodation according to which some of what
the first sentence attributes to Phoebe is also part of the beliefs of Ella.

But what exactly should be accommodated in this case? That is not
so easy to say. On the one hand, as much should be accommodated as is
necessary for a meaningful interpretation of he. On the other, the accom-
modation should be modest enough to avoid attributing to Ella beliefs that
are so plainly contradictory that they could only be seen as incoherent. One
possibility which meets these two conditions — but it is only one among
several — is to accommodate the belief attributed to Phoebe by the first
conjunct of the first sentence of (236) as a belief of Ella’s, but not the one
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attributed by the second. (239) below shows the effect of this accommoda-
tion on (237). First, however, we need the preliminary representation for
the second sentence of (236). This representation is given in (238)

(238)

〈{
q

Ella(q)

}
,

t′′ s′′

n ⊆ t′′ t′′ ⊆ s′′

s′′:Att(q,

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

〈⎧⎪⎨
⎪⎩

u′

pers(u′)
male(u′)

⎫⎪⎬
⎪⎭ ,

¬

t′′′ e′′′ w

t′′′ < n e′′′ ⊆ t′′′

e′′′:steal(u′,w)

〉 〉
⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

)

〉

Justification of (238) in the context of (237) includes, first, the justification
of the presupposition introduced by the proper name Ella. Here we proceed
as we did in the last example: assuming that the context in which this
presupposition must be justified contains no more information than what
is given in (237), accommodation is the only way, and it is what recipients
normally do when they are confronted with a name whose referent they
cannot identify by independent means.

We will assume, then, that this presupposition is accommodated and that
the accommodation has yielded a discourse referent q in the main universe,
which represents the referent of the name.

It is now possible to accommodate the first of the two beliefs in (237) as
a belief of Ella’s. The two accommodations together yield (239)
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(239)

t s p g q s′

n ⊆ t t ⊆ s Phoebe(p) garden-of(g,p) Ella(q) t ⊆ s′

z′′

prize-z.(z′′)
poss(z′′,v)

�
��

�
��
�
���

��
∀

z′′
z′′ = z

s:Att(p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

t′ e′ x

t′ < n e′ ⊆ t′ man(x)
e′:break-into(x,g)

〉

〈
BEL,

t′′′ e′′′ u

t′′′ < n e′′′ ⊆ t′′′ u = x
e′′′:steal(u,z)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

)

s′:Att(q,

⎧⎪⎨
⎪⎩
〈

BEL,

t′′ e′′ x′

t′′ < n e′′ ⊆ t′ man(x′)
e′′:break-into(x′,g)

〉⎫⎪⎬
⎪⎭)

(239) can only be regarded as an intermediate accommodation result, for
we still have to deal with the presupposition generated by he in the last sen-
tence of (236). This presupposition can be resolved in the secondary context
given by the accommodated belief, applying the same resolution principle
that we already made use of in our treatment of (220) and (228). The result
of this last resolution (which takes the form of adding the discourse referent
u to the universe of the DRS characterising the belief in (239) and adding
“u = x′” to its conditions), and the merge with (238) which follows it, is
given in (240)
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(240)

t s p g q s′ s′′

n ⊆ t t ⊆ s Phoebe(p) garden-of(G,p) Ella(q) t ⊆ s′ t ⊆

z′′

prize-z.(z′′)
poss(z′′,v)

�
��

�
��
�
���

��
∀

z′′
z′′ = z

s:Att(p,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

t′ e′ x

t′ < n e′ ⊆ t′ man(x)
e′:break-into(x,g)

〉

〈
BEL,

t′′′ e′′′ u

t′′′ < n e′′′ ⊆ t′′′ u = x
e′′′:steal(u,z)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

)

s′:Att(q,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

〈
BEL,

t′′ e′′ x′

t′′ < n e′′ ⊆ t′′ man(x′)
e′′:break-into(x′,g)

〉

〈
BEL,

¬

t′′′′ e′′′′ u′ w

t′′′′ < n e′′′′ ⊆ t′′′′ u′ = x′

e′′′:steal(u′,w)

〉

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

)

The interpretation problem on which we have focused in our discussion of
(236) is closely related to one that has received a good deal of attention in
the literature, especially from philosophers of language. This secon problem
is known as the “Hob-Nob problem”, after the example sentence which was
used by Geach to introduce the problem:

(241) Hob believes that a witch has killed Cob’s cow and Nob thinks that
she has blighted Bob’s sow.

Geach pointed out that this sentence could be used truthfully in a report
composed by a journalist describing the goings-on in some remote rural
backwater, even if the journalist herself is persuaded that witches do not
exist. This is a problem for the application of standard logical notation
to the representation of truth-conditional content. For in order that the
pronoun she in the belief attribution to Nob be bound by the “existential
quantifier” a witch in the belief attribution to Hob, this quantifier would
have to take scope over the two belief attributions. But this would, on
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the standard interpretation of quantification theory, imply that there are
witches in the world in which Hob, Nob and the journalist live. That is
something to which the journalist would under no conditions want to commit
herself.And it is something to which (241) does not commit her.

30 Note that there is no need to adapt our notions of PISBAS and IS-
BAS to the more comprehensive repertoire of DRSs we are considering now,
in which internal and external anchors have their place too. For the cases
of singularity (of propositions and, by extension, of information states and
CCPs to which anchoring gives rise are included in the original Def. 2.
However, it is only at this point that the possibility of ISBASs containing
singular information states, etc as constituents becomes essential. ADSs can
now determine such singular semantic objects, and when they do, they will
be subsumed by the relevant values of ASM only if those values have corre-
sponding constituents which are singular as well. 31 Pronouns occurring in
the complement of an attitude predicate or in the complement of a predi-
cate dicendi, and which are given a de se interpretation are also sometimes
called “quasi-indicators”. The term was coined by Castaneda, who was the
first to investigate the de se interpretation of third person pronouns closely)
[ref.s]. 32 Think of Bill seeing no more than the lower part of himself, with
the burning trousers, and that he thinks on the strength of what he sees:
”Soon this guy’s shirt will be on fire too.” He hasn’t seen the shirt the man
is wearing but assumes, on the basis of general knowledge, that the man, if
he wears the trousers he can see, will also be earing a (unique) shirt. Here
poor bill may be right that hte person he is seeing doe wear a shirt, and
he may also be right in thinking that that shirt will be presently on fire,
but the part of his attitudes that corresponds to his shirt dos not have an
anchored representation for the shirt, and a de re representation for himself
as the owner of the shirt.
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