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PREFACE TO THE SECOND EDITION

It is with great pleasure that we are presenting to the community the
second edition of this extraordinary handbook. It has been over 15 years
since the publication of the first edition and there have been great changes
in the landscape of philosophical logic since then.

The first edition has proved invaluable to generations of students and
researchers in formal philosophy and language, as well as to consumers of
logic in many applied areas. The main logic article in the Encyclopaedia
Britannica 1999 has described the first edition as ‘the best starting point
for exploring any of the topics in logic’. We are confident that the second
edition will prove to be just as good!

The first edition was the second handbook published for the logic commu-
nity. It followed the North Holland one volume Handbook of Mathematical
Logic, published in 1977, edited by the late Jon Barwise. The four volume
Handbook of Philosophical Logic, published 1983–1989 came at a fortunate
temporal junction at the evolution of logic. This was the time when logic
was gaining ground in computer science and artificial intelligence circles.

These areas were under increasing commercial pressure to provide devices
which help and/or replace the human in his daily activity. This pressure
required the use of logic in the modelling of human activity and organisa-
tion on the one hand and to provide the theoretical basis for the computer
program constructs on the other. The result was that the Handbook of
Philosophical Logic, which covered most of the areas needed from logic for
these active communities, became their bible.

The increased demand for philosophical logic from computer science and
artificial intelligence and computational linguistics accelerated the devel-
opment of the subject directly and indirectly. It directly pushed research
forward, stimulated by the needs of applications. New logic areas became
established and old areas were enriched and expanded. At the same time, it
socially provided employment for generations of logicians residing in com-
puter science, linguistics and electrical engineering departments which of
course helped keep the logic community thriving. In addition to that, it so
happens (perhaps not by accident) that many of the Handbook contributors
became active in these application areas and took their place as time passed
on, among the most famous leading figures of applied philosophical logic of
our times. Today we have a handbook with a most extraordinary collection
of famous people as authors!

The table below will give our readers an idea of the landscape of logic
and its relation to computer science and formal language and artificial in-
telligence. It shows that the first edition is very close to the mark of what
was needed. Two topics were not included in the first edition, even though

D. Gabbay and F. Guenthner (eds.), 
Handbook of Philosophical Logic, Volume 16, vii–ix. 
DOI 10.1007/978-94-007-0479-4, © Springer Science+Business Media B.V. 2011 
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they were extensively discussed by all authors in a 3-day Handbook meeting.
These are:

• a chapter on non-monotonic logic

• a chapter on combinatory logic and λ-calculus

We felt at the time (1979) that non-monotonic logic was not ready for
a chapter yet and that combinatory logic and λ-calculus was too far re-
moved.1 Non-monotonic logic is now a very major area of philosophi-
cal logic, alongside default logics, labelled deductive systems, fibring log-
ics, multi-dimensional, multimodal and substructural logics. Intensive re-
examinations of fragments of classical logic have produced fresh insights,
including at time decision procedures and equivalence with non-classical
systems.

Perhaps the most impressive achievement of philosophical logic as arising
in the past decade has been the effective negotiation of research partnerships
with fallacy theory, informal logic and argumentation theory, attested to by
the Amsterdam Conference in Logic and Argumentation in 1995, and the
two Bonn Conferences in Practical Reasoning in 1996 and 1997.

These subjects are becoming more and more useful in agent theory and
intelligent and reactive databases.

Finally, fifteen years after the start of the Handbook project, I would
like to take this opportunity to put forward my current views about logic
in computer science, computational linguistics and artificial intelligence. In
the early 1980s the perception of the role of logic in computer science was
that of a specification and reasoning tool and that of a basis for possibly
neat computer languages. The computer scientist was manipulating data
structures and the use of logic was one of his options.

My own view at the time was that there was an opportunity for logic to
play a key role in computer science and to exchange benefits with this rich
and important application area and thus enhance its own evolution. The
relationship between logic and computer science was perceived as very much
like the relationship of applied mathematics to physics and engineering. Ap-
plied mathematics evolves through its use as an essential tool, and so we
hoped for logic. Today my view has changed. As computer science and
artificial intelligence deal more and more with distributed and interactive
systems, processes, concurrency, agents, causes, transitions, communication
and control (to name a few), the researcher in this area is having more and
more in common with the traditional philosopher who has been analysing

1I am really sorry, in hindsight, about the omission of the non-monotonic logic chapter.
I wonder how the subject would have developed, if the AI research community had had
a theoretical model, in the form of a chapter, to look at. Perhaps the area would have
developed in a more streamlined way!
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such questions for centuries (unrestricted by the capabilities of any hard-
ware).

The principles governing the interaction of several processes, for example,
are abstract an similar to principles governing the cooperation of two large
organisation. A detailed rule based effective but rigid bureaucracy is very
much similar to a complex computer program handling and manipulating
data. My guess is that the principles underlying one are very much the
same as those underlying the other.

I believe the day is not far away in the future when the computer scientist
will wake up one morning with the realisation that he is actually a kind of
formal philosopher!

The projected number of volumes for this Handbook is about 18. The
subject has evolved and its areas have become interrelated to such an extent
that it no longer makes sense to dedicate volumes to topics. However, the
volumes do follow some natural groupings of chapters.

I would like to thank our authors are readers for their contributions and
their commitment in making this Handbook a success. Thanks also to
our publication administrator Mrs J. Spurr for her usual dedication and
excellence and to Kluwer Academic Publishers for their continuing support
for the Handbook.

King’s College London
Dov M. Gabbay
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ODINALDO RODRIGUES, DOV GABBAY AND

ALESSANDRA RUSSO

BELIEF REVISION

1 INTRODUCTION AND HISTORICAL PERSPECTIVE

The investigation of how humans reach conclusions from given premises has

long been the subject of intense research in the literature. It was the basis

of the development of classical logic, for instance. The investigation of how

humans change their minds in the face of new contradictory information is

however somewhat more recent. Early accounts include the work of Ramsey
[Ramsey, 1931; Ramsey, 1990] in his insights into conditional statements, for

instance, and subsequently the work on conditionals by Stalnaker [Stalnaker,

1968b] and by Lewis [Lewis, 1973], among others. More recent work on

the formalisation of common-sense reasoning, sometimes also called non-

monotonic reasoning, include [McCarthy, 1958; Brewka, 1990;  Lukaszewicz,

1990; Reiter, 1980].

The now trademark term AGM is an acronym formed with the ini-

tials of the main proposers of this theory of belief change, namely, Car-

los Alchourrón, Peter Gärdenfors and David Makinson. Alchourrón and

Makinson had worked jointly on theory change in the early 80s [Alchourrón

and Makinson, 1982; Alchourrón and Makinson, 1985], and, independently,

Gärdenfors had been working on belief change in the late 70’s and early

80s [Gärdenfors, 1978; Gärdenfors, 1982]. After collaborations in various

combinations of the three authors, they published together the paper “On

the Logic of Theory Change” [Alchourrón et al., 1985], which provided the

basis for what is now known as the AGM theory of belief revision.1

The main object of study of the theory of belief revision is the dynamics

of the process of belief change: when an agent is faced with new information

which contradicts her current beliefs, she will have to retract some of the

old beliefs in order to accommodate the new belief consistently. In general,

this can be done in a number of ways. Belief revision is concerned with how

to make the process rational. The AGM theory stipulates some rationality

principles to be observed — the so-called AGM postulates for belief change.

These are discussed in more detail in Section 2.

1A more comprehensive recapitulation of the early history of AGM done by Makinson

himself can be found in [Makinson, 2003]

D. Gabbay and F. Guenthner (eds.), 
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2 ODINALDO RODRIGUES, DOV GABBAY AND ALESSANDRA RUSSO

Many other articles followed the initial proposal of the AGM theory

analysing properties of belief change operations and how they relate to each

other. Subsequently, Gärdenfors published a book entitled “Knowledge in

Flux” [Gärdenfors, 1988], which is an excellent reference to the early work

in the area. Since then, the work on belief revision has flourished and di-

versified into several different subareas.

One of the first specialisations was related to the status given to cer-

tain beliefs held by an agent. Following the usual terminology, we will

call the collection of beliefs of an agent at a given moment in time her

belief set. According to the coherentist view, an agent has no mecha-

nism other than logical coherence for keeping track of the ‘reasons’ why

a given belief is supported. Consequently, belief change operations need

only to describe the relationship between belief sets at two adjacent mo-

ments in time. In the foundationalist view, however, beliefs can be held

by an agent only if they have a proper justification — if a justification

becomes untenable and is retracted, then all beliefs that rely on it must

also be retracted. Therefore, belief change operations need to specify a

mechanism for maintaining the justifications for the beliefs. In the sim-

plest form of foundationalism, some beliefs are regarded as requiring no

justification and called basic (sometimes also called foundational [Harman,

1986, page 31]). A variation of this approach with special interest to com-

puter science makes a simple distinction between the set of beliefs sup-

ported by an agent (her belief set) and the set of beliefs from which these

are derived (her belief base). Changes are made to the belief base, which,

in general, is a finite set. The reader is referred to [Gärdenfors, 1990;

Doyle, 1992] for a more comprehensive discussion of the differences between

the two paradigms. Obviously, the problem of belief revision can be ap-

proached from different perspectives as well. We will present some of these

throughout this chapter.

A related area of investigation on theory change is concerned with the

formalisation of the effects of the execution of actions in the real world.

Operations of this types are usually called updates and this problem is re-

lated with other areas of artificial intelligence, including planning, logical

databases and robotics. In a very influential article [Fagin et al., 1983],

Fagin et al. investigated how to update logical databases presenting many

of the principles of theory revision and update now widely accepted. One

of these is the idea of preservation of old information through the definition

of some minimality criteria. They also realised early on the importance of

considering the logical consequences associated with a database.

Some other early work in that area is also worth mentioning. For in-
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stance, Ginsberg and Smith’s articles on the formalisation of the reasoning

about actions [Ginsberg and Smith, 1988a; Ginsberg and Smith, 1988b]

and the well known article written by Winslett “Reasoning about action

using a possible models approach” [Winslett, 1988a]. The latter highlighted

the importance of semantical considerations in the achievement of rational

changes of information caused by the execution of actions.

Even though belief revision and updates are clearly distinct, they have

similarities between them. In particular, the so-called principle of infor-

mational economy. After all, it does not seem rational for an agent to

discard all of the knowledge accumulated about the world in the face of

new contradictory information. The similarities between updates and belief

revision (as well as those between other forms of non-monotonic reason-

ing) have been extensively investigated (see, for instance [Makinson, 1993;

Katsuno and Satoh, 1991; Makinson and Gärdenfors, 1989]). Analogously,

the differences between the two were emphasised by Katsuno and Mendel-

zon [Katsuno and Mendelzon, 1991a; Katsuno and Mendelzon, 1992]. In

an analogy to the AGM trio, they proposed some postulates for update

operations. Further investigation on specialised types of update operations

appeared in [Brewka and Hertzberg, 1993].

We note that several formalisms deal independently with belief revision
[Dalal, 1988a; Gärdenfors, 1988; Alchourrón and Makinson, 1985], updates

in databases [Brewka and Hertzberg, 1993; Winslett, 1988a; Ginsberg and

Smith, 1988a; Ginsberg and Smith, 1988b], default reasoning [Reiter, 1980;

Poole, 1988a; Brewka, 1989b; Brewka, 1991], conditional reasoning [Lewis,

1973; Nute, 1984; Stalnaker, 1968b; Grahne, 1991a; Grahne, 1991b], ar-

gumentation [Bench-Capon and Dunne, 2007; Besnard and Hunter, 2008;

Modgil, 2009], etc. However, there is very little work on the combination of

these. Such integration is arguably essential to the modelling of a rational

agent that needs to deal with multiple forms of common-sense reasoning.

One issue that often arises in the problem of belief revision is the choice

of what beliefs to give up during a revision operation. One approach re-

lies on the representation of how strongly an agent feels about her beliefs

so that when a choice needs to be made, those beliefs on which she less

strongly believes will go first. In order to support this approach, some of

the work on belief revision includes the investigation of the representation

of priorities associated with the beliefs in the belief set (or base). The usual

mechanism is a preference relation associated with the beliefs. The rea-

soning about the preferences can itself be quite complex, because in the

general (and interesting) case, an agent has only partial information about

these preferences.
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Another issue is the investigation of the relation between belief sets ob-

tained after successive belief change operations. The original AGM theory

had little to say about the iteration of the process of belief change. The

study of the properties of iterated revision started in the mid 90’s and is, of

course, of great importance to both computer science and philosophy in gen-

eral. More profound considerations started with [Darwiche and Pearl, 1994;

Freund and Lehmann, 1994; Lehmann, 1995; Friedman and Halpern, 1996;

Darwiche and Pearl, 1997; Rodrigues, 1998; Friedman and Halpern, 1999]

and more recent work includes [Konieczny and Pérez, 2000; Herzig et al.,

2003; Rodrigues, 2005]. The problems of iteration will be discussed in Sec-

tion 4.

Finally, some effort has also been directed towards the study of the com-

plexity involved in the implementation of belief revision systems. Some

results can be found in [Gärdenfors and Rott, 1995, page 98] and in [Eiter

and Gottlob, 1992a; Eiter and Gottlob, 1993; Nebel, 1991a; Nebel, 1992;

Nebel, 1998; Gärdenfors and Rott, 1995; Eiter and Gottlob, 1992b; Nebel,

1992; Nebel, 1998]. As we shall see in Section 2, one of the postulates for

belief revision operations stipulates that the resulting belief set is consis-

tent provided that the revising information is not itself contradictory. Thus,

the problem of belief revision is at least as hard as the problem of decid-

ing the satisfiability of a set of formulae. Reasoning about preferences can

also add to the complexity of the problem and, as a consequence, many

belief revision formalisms constrain themselves to a fragment of first-order

logic or, in most cases, to propositional logic [Dalal, 1988a; Dargam, 1996;

Katsuno and Mendelzon, 1991b; Gabbay and Rodrigues, 1997; Rodrigues,

2003]. Some complexity results will be briefly presented in Section 6.

In the sections that follow we provide a review of the AGM framework,

discuss some philosophical problems of the process of belief change not

addressed by the theory, and present some representative work proposed

to tackle the issues.

This chapter is structured as follows: alternative formalisations of the

problem of belief revision are presented and discussed in Section 2. Some

well known belief revision operators are presented in Section 3. In Section 4,

we discuss the problems of iterated revision and alternative ways of dealing

with it. Section 5 presents some special types of revision formalisms. This

is followed by a survey of complexity issues associated with the revision

operation in Section 6; some applications of belief revision in Section 7 and

a discussion of challenges and open issues in Section 8.
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2 FORMALISATION OF THE PROBLEM OF BELIEF REVISION

In order to discuss belief revision in more detail, it will be useful to introduce

some terminology first. Let K be a set of formulae representing the beliefs

of an agent in the language of some logic L, with consequence relation Cn.2

K is called a belief set when it is closed under Cn, i.e., K = Cn(K). Given

a belief set K and a belief ϕ, we say that ϕ is accepted in K when ϕ ∈ K.

As mentioned previously, the framework of belief revision was developed

around some desiderata of the operations on belief sets, called the AGM

postulates for belief change, whose main purpose is to model rational changes

of belief. The AGM theory defines three main types of belief change:

• Expansion: the incorporation of a new belief ϕ into a belief set K.

The new belief set is represented by K+ϕ and defined simply as

Cn(K ∪ {ϕ}). Notice that K+ϕ will be inconsistent if K is incon-

sistent; or if ϕ is contradictory; or if they are both independently

satisfiable although K ∪{ϕ} is not jointly satisfiable. Since belief sets

are closed under the consequence relation, the inconsistent belief set

is unique and equivalent to the set of all formulae in the language.

The inconsistent belief set will be denoted by K⊥.

• Contraction: the retraction of a belief from a belief set. Since belief

sets are closed under the consequence relation, in order to retract a

belief ϕ from K, it is also necessary to remove other beliefs in K that

imply ϕ. A contraction of K by ϕ is represented by K−ϕ.

• Revision: the incorporation of a belief ϕ into a belief set K in such

a way that the resulting belief set is consistent unless ϕ is itself con-

tradictory. The interesting case is when ϕ is not contradictory but

inconsistent with K. The main issue in this case is to determine

which of the beliefs in K to retract in order to consistently accept ϕ.

The revision of a belief set K by a belief ϕ is represented by K◦ϕ.

As can be seen, the interesting belief change operations are contractions

and revisions. In fact, it is possible to define one of the operations in terms

of the other. The Levi identity defines revisions in terms of contractions

and the Harper identity defines contractions in terms of revisions.3

Levi identity: K◦ϕ=(K−¬ϕ)+ϕ

2We will use the terms “belief” and “formula” interchangeably.
3Note that these operations are all defined at the metalevel. For an investigation on

how to bring contraction to the object level see [Gabbay et al., 2002; Gabbay et al., 2004].
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Harper identity: K−ϕ=K ∩ (K◦¬ϕ)

In this chapter, we will concentrate only on the revision process although

we state the following important result [Gärdenfors, 1988] that will prove

useful in the next sections:

THEOREM 1. If a contraction function verifies the AGM postulates for

contraction and an expansion function verifies the AGM postulates for ex-

pansion and a revision function ◦ is defined in terms of both according to

the Levi identity above, then ◦ verifies the AGM postulates for revision (pre-

sented in the next section).

The intuition behind revisions defined via the Levi identity is that one

should first give up all beliefs that are in conflict with the new information

before adding it (if consistency is to be maintained). Naturally, when forced

to give up some of the beliefs, one should try and minimise the loss of infor-

mation involved in the process. This requirement is commonly referred to as

the principle of minimal change or the principle of informational economy
[Gärdenfors, 1988, page 49]:

“. . . when we change our beliefs, we want to retain as much

as possible of our old beliefs — information is not in general

gratuitous, and unnecessary losses of information are therefore

to be avoided.”

Without considering preferences between beliefs, in general there will be

several possibilities of contracting a belief set K in such a way that it can

consistently accept a new belief ϕ. In order to comply with the principle

of minimal change, we will be interested only in those contractions that

minimise the loss of beliefs. This can be formalised in the following way:

DEFINITION 2 (Maximal subsets that fail to imply a sentence). Let K be

a belief set and ¬ϕ a belief. A set K ′ is a maximal subset of K that fails

to imply ¬ϕ iff the following conditions are met:

• K′ ⊆ K

• ¬ϕ 6∈ Cn(K ′)

• ∀K ′′, K′ ⊂ K ′′ ⊆ K implies ¬ϕ ∈ Cn(K ′′)

In other words, any subset of K larger than K ′ (and containing it) would

result in the derivation of ¬ϕ. It should always be possible to find such

subsets unless ¬ϕ is a tautology. Following the usual convention found in
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the literature, the set of all subsets of K that do not imply ¬ϕ will be de-

noted K⊥¬ϕ. A maxichoice contraction of K by ¬ϕ is an operation that

returns one of the elements of K⊥¬ϕ when there is at least one or K itself

if ¬ϕ is a tautology. A full meet contraction of K by ¬ϕ is an operation

that returns the intersection of all elements of K⊥¬ϕ or K itself if K⊥¬ϕ is

empty. Finally, a partial meet contraction of K by ¬ϕ is an operation that

returns the intersection of some appropriately selected elements of K⊥¬ϕ

if it is non-empty4 or as before K itself, otherwise. Based on these con-

traction functions, a number of revision functions can be defined via the

Levi identity. However, Alchourrón and Makinson showed that maxichoice

contraction functions produce belief sets that are too large [Alchourrón and

Makinson, 1982] and, as a result, revision operations defined in terms of

these contractions will be maximal:5

THEOREM 3. If a revision function ◦ is defined from a maxichoice con-

traction function − via the Levi identity, then for any belief ϕ such that

¬ϕ ∈ K, K◦ϕ will be maximal.

On the other hand, full meet contractions are too restrictive, and anal-

ogously Alchourrón and Makinson showed that revisions defined in terms

of this kind of contractions will in general produce belief sets that are too

“small”:

THEOREM 4. If a revision function ◦ is defined from a full meet contrac-

tion function − via the Levi identity, then for any belief ϕ such that ¬ϕ ∈ K,

K◦ϕ = Cn({ϕ}).

Thus, on the one hand, if maxichoice revisions are used, the arrival of

some conflicting information makes an agent omniscient. On the other hand,

if full meet revisions are used, the arrival of new conflicting information

causes the agent to lose all previous information. So it seems that the only

realistic revisions that can be defined in terms of contractions and the Levi

identity are the ones that use partial meet contractions. The difficulty with

this type of revisions is that they rely on a selection mechanism that is

external to the agent’s own representation of beliefs. Although arguably

not as elegant from the philosophical point of view, the need for some extra

information supporting the beliefs of an agent will become evident in the

sections that follow. In particular, a discussion to motivate the employment

of an agent’s epistemic state (as opposed to her belief state) is presented in

Section 4.

4The selection function may take other criteria such as epistemic entrenchment (see

Section 2.5) into consideration during the process.
5A belief set K is maximal if for any belief ϕ, either ϕ ∈ K or ¬ϕ ∈ K.
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The postulates for the revision operation as given in [Gärdenfors, 1988,

pp. 54–56] are now presented. In the following presentation ϕ and ψ denote

beliefs and the symbolK⊥ denotes the inconsistent belief set as before. From

now on, ◦ will be subscripted to denote a specific belief revision operation.

In particular, ◦a will be used to denote a revision operation complying with

the AGM postulates.

2.1 AGM postulates for belief revision

(K◦1) K ◦a ϕ is a belief set

(K◦2) ϕ ∈ K ◦aϕ

(K◦3) K ◦aϕ ⊆ Cn(K ∪ {ϕ})

(K◦4) If ¬ϕ 6∈ K, then Cn(K ∪ {ϕ}) ⊆ K ◦aϕ

(K◦5) K ◦aϕ = K⊥ only if ϕ is contradictory

(K◦6) If ϕ ≡ ψ, then K ◦aϕ ≡ K ◦aψ

(K◦7) K ◦a(ϕ ∧ ψ) ⊆ Cn((K ◦aϕ) ∪ {ψ})

(K◦8) If ¬ψ 6∈ K ◦aϕ, then Cn(K ◦aϕ ∪ {ψ}) ⊆ K ◦a(ϕ ∧ ψ)

Postulate (K◦1) requires the result of the revision operation to be a belief

set, i.e., that the revised set be closed under the consequence relation Cn. In

more general terms, (K◦1) requires that the operation preserves the defining

properties of the original belief set.

Postulate (K◦2) is known as the success postulate, but sometimes also

referred to as the principle of the primacy of the update [Dalal, 1988b]. It

basically requires the revision process to be successful in the sense that the

new belief is effectively accepted after the revision operation is applied. The

controversy is that the new belief may be itself contradictory, in which case

(K◦2) requires the new belief set to be inconsistent. Since the logic used

to model the belief sets is classical and AGM adopts the coherentist view,

all beliefs become accepted after such a revision is performed. The reliance

of AGM framework on the consistency notion is discussed in more detail in
[Gabbay et al., 2000; Rodrigues et al., 2008].

(K◦3) says sets an expansion as the upper bound of a revision operation.

(K◦4) on the other hand, specifies that provided that the new belief is not

inconsistent with the current belief set, the revision operation will include

all of the consequences of the old belief set together with the new belief.

Thus, it sets a lower bound for the operation in the case when the new belief

is consistent with the current belief set.

(K◦5) is sometimes referred to as the recovery postulate. It guarantees

that the result of a revision is consistent provided that the revising sentence
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itself is non-contradictory. To understand what (K◦3)–(K◦5) say, two cases

need to be considered:

Case 1: K ∪ {ϕ} is consistent.

In this case, (K◦3) and (K◦4) require that K ◦aϕ = Cn(K ∪ {ϕ}), since

by (K◦3), K◦aϕ ⊆ Cn(K∪{ϕ}) and by (K◦4), Cn(K∪{ϕ}) ⊆ K◦aϕ. (K◦5)

is vacuously true.

Case 2: K ∪ {ϕ} is inconsistent.

In this case, (K◦3) does not say much about K ◦aϕ. If K ∪ {ϕ} is

classically inconsistent, then any theory whatsoever is included in Cn(K ∪

{ϕ}), because this theory is simply K⊥. Similarly, (K◦4) says little about

K ◦aϕ. Since K ∪ {ϕ} is inconsistent, it follows that ¬ϕ ∈ K (since K is

a closed theory), and hence (K◦4) is satisfied vacuously. As for (K◦5), two

subcases can be considered:

1. ϕ is non-contradictory. In this case, (K◦5) requires K ◦aϕ to be con-

sistent, but gives us no clue as to what K ◦aϕ should look like —

minimal requirements are given by (K◦1) and (K◦2).

2. ϕ is contradictory. In this case, (K◦5) says nothing about K ◦aϕ.

However, (K◦1) and (K◦2) jointly force K ◦aϕ = K⊥.

The above case analysis shows that the AGM postulates (K◦3)–(K◦5)

have something to say only when K ∪{ϕ} is consistent, or when it is incon-

sistent even though ϕ is non-contradictory. The particular way of writing

the postulates given above makes use of technical properties of classical logic

(the way inconsistent theories prove everything). Also notice that classical

inconsistency is the (only) trigger of the revision process — if the new belief

and the current belief set are jointly consistent, the revision simply amounts

to an expansion.

When considering the AGM postulates for logics other than classical

logic, the notion of acceptability needs to be employed instead of consistency

whenever the latter is missing. In that case, one needs to decide when a

revision is required according to what is reasonable in the non-classical

logic. In classical logic, the postulates do not give any clue beyond (K◦5)

as to what to require when K ∪ {ϕ} is inconsistent. These issues have

been analysed in detail in [Gabbay et al., 2000; Rodrigues et al., 2008;

Gabbay et al., 2010].

To summarise, postulates (K◦3)–(K◦4) effectively mean the following:

(K◦
3,4) If ϕ is consistent with K, then K◦aϕ = Cn(K ∪ {ϕ}).
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If K is finitely representable, it can be taken as a formula and the pos-

tulate above corresponds to postulate (R2) in Katsuno and Mendelzon’s

rephrasing of the AGM postulates for belief sets represented by finite bases
[Katsuno and Mendelzon, 1992, p. 187] (see also Section 2.4 below).

(K◦6) specifies that the revision process should be independent of the

syntactic form of the sentences involved. It is called the principle of irrele-

vance of syntax by many authors, including [Dalal, 1988b].

(K◦7) and (K◦8) are the most interesting and controversial postulates.

They try to capture the informational economy principle outlined before.

In order to understand these postulates, consider the following semantical

interpretation and assume one has some mechanism to evaluate similarity

between models (i.e., valuations of the logic L). In order to keep as much

as possible of the informational content of a belief set K, we need to look

at the valuations that most resemble the models of K itself (in symbols,

mod(K)). If a new belief ϕ is also to be accepted, we will then be looking

at the models of ϕ that most resemble some model of K. (K◦7) says that

if a model I of ϕ is among the valuations that are most similar to models

of K and it happens that I is also a model of a belief ψ, then I should also

be among the models of ϕ ∧ ψ which are most similar to models of K.

Similarly, to understand the intuitive meaning of (K◦8) consider the fol-

lowing situation: suppose that (K ◦aϕ) ∧ ψ is satisfiable. It follows that

some models of ϕ which are most similar to models of K are also models

of ψ. These models are obviously in mod(ϕ ∧ ψ), since by (K◦1), mod(K

◦aϕ) ⊆ mod(ϕ). Now, every model in mod(ϕ ∧ ψ) which is most similar

to a model of K must also be a model of (K ◦aϕ) ∧ ψ. This situation is

depicted in Figure 1, where valuations are represented around K according

to their degree of similarity. The closer it is to mod(K), the more similar

to K is a valuation (the exact nature of the similarity notion is irrelevant to

the understanding of the postulate now). The figure provides an illustration

of (K◦8) using Grove’s modelling of theory change [Grove, 1988] presented

in Section 2.3.

Another way of seeing (K◦7) and (K◦8) is by considering the restrictions

they impose on the acceptance of beliefs ϕ and ψ as a sequence (revising by

ϕ, then expanding by ψ), as compared to revising by ϕ and ψ at the same

time (i.e., revising by ϕ∧ψ). One of the main criticisms to the AGM frame-

work is the fact that they do not constrain enough properties of sequences

of revisions. (K◦7) and (K◦8) impose the bare minimum restrictions (see

Section 4 below). We distinguish the following three cases:

Case 1: ϕ is consistent with K.
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In this case, K ◦aϕ = Cn(K ∪ {ϕ}) (by previous postulates). Three

possible subcases with respect to the sentence ψ are considered.

1. ψ is consistent with K ◦aϕ. In this case, the antecedent of (K◦8) holds

and (K◦7) and (K◦8) together effectively say that Cn((K◦aϕ)∪{ψ}) =

K◦a(ϕ ∧ ψ). A more thorough analysis reveals more about AGM in

this case, namely, that (K◦aϕ)◦aψ = Cn(K◦aϕ ∪ {ψ}).

2. ψ is inconsistent with K ◦aϕ, but ψ itself is non-contradictory. In this

case, Cn((K◦aϕ) ∪ {ψ}) is K⊥. (K◦7) holds because the right hand

side of the inclusion is the set of all well-formed formulae and any set

of formulae is included in this set. (K◦8) holds vacuously, since the

antecedent of the implication is false.

3. ψ is itself contradictory. The postulates effectively say nothing new

in this case, since K ◦a(ϕ ∧ ψ) = Cn((K ◦aϕ) ∪ {ψ}) = K⊥. (K◦7)

holds trivially and (K◦8) holds vacuously.

Case 2: ϕ is not consistent with K, but ϕ is itself non-contradictory.

In this case, K ◦aϕ can be any consistent theory (by previous postulates),

such that ϕ ∈ K ◦aϕ. As before, there are three possibilities:

1. ψ is consistent with K ◦aϕ.

2. ψ is inconsistent with K ◦aϕ, but ψ itself is non-contradictory.

3. ψ is itself contradictory.

These three cases follow, respectively, the same reasoning of cases (1.1),

(1.2) and (1.3) above.

Case 3: ϕ is itself contradictory.

In this case, K ◦aϕ = K⊥. Whether or not ψ is contradictory is irrelevant

in the postulates in this case. Cn(K◦aϕ ∪ {ψ}) = K⊥ and as for case (1.2)

above (K◦7) holds because any set of formulae is included in K⊥. (K◦8)

holds vacuously, since the antecedent of the implication is false.

Summary of (K◦7)–(K◦8)

Postulates (K◦7)–(K◦8) do not tell us anything new (beyond what we can

deduce from earlier postulates), except in the case where ψ is consistent

with K ◦aϕ (case 1.1), when (K◦7) and (K◦8) together are equivalent to

the postulate below:

(K◦
7,8) If ψ is consistent with K◦aϕ, then Cn((K◦aϕ)∪{ψ}) = K◦a(ϕ∧ψ)
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Interpretations in mod(ϕ ∧ ψ)

mod(ϕ)

mod(ψ)

mod(K)

mod(ϕ)

mod(ψ)

mod(K)

Interpretations in K ◦a(ϕ ∧ ψ)

Interpretations in K ◦aϕ

Figure 1. Illustrating postulate (K◦8).

Several representation theorems exist for the AGM postulates, for more

details the reader is referred to [Grove, 1988; Katsuno and Mendelzon, 1992;

Boutilier, 1994].

The realisation of a belief set as an infinite set of formulae poses some

problems for computer science applications. In order to overcome this, many

authors concentrate instead on a set of basic beliefs from which the belief

set is derived. In this case, the basic set of beliefs is called the belief base

and the belief change process called base revision instead. A reformulation

of the AGM postulates for finite belief bases will be discussed in Section 2.4.

2.2 Counterfactual statements and the Ramsey Test

There are references to the work on information change since the early 30’s
[Ramsey, 1931] as well as in subsequent decades [Chisholm, 1946; Stalnaker,

1968a; Stalnaker and Thomason, 1970; Lewis, 1973]. In particular, there is

work on the so-called counterfactual statements. The best way to introduce

the intuition behind counterfactual statements is by presenting an example

borrowed from Lewis’ book on the subject [Lewis, 1973]:
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“If kangaroos had no tails, they would topple over.”

Since the antecedent of the sentence is false, its evaluation as an impli-

cation in classical logic is trivially true. However the intended meaning of

such a sentence is, as described by Lewis, something like “in any possible

state of affairs in which kangaroos have no tails, and which resembles our

actual state of affairs as much as kangaroos having no tails permits it to,

kangaroos topple over” [Lewis, 1973].

The evaluation of such statements has been the object of investigation by

many authors [Stalnaker, 1968a; Adams, 1975; Pollock, 1981; Nute, 1984].

Speaking generically, a counterfactual is a sentence of the form

(CNT) “If it were the case that ϕ, then it would also be the case that

ψ.”

Following Lewis, we will represent (CNT) by the expression ϕ��ψ. It is

natural to ask how one should evaluate the truth-values of such sentences.

The intended meaning described above suggests that one should accept the

belief in ϕ, changing as little as possible one’s current state of beliefs in order

to maintain consistency, and then check whether ψ follows from the resulting

belief set. This corresponds to the well known Ramsey Test, inspired by

one of Ramsey’s philosophical papers [Ramsey, 1990; Ramsey, 1931], and

generalised to its present form by Stalnaker [Stalnaker, 1968b]. One could be

easily mislead to think that belief revision could be the operation employed

in the Ramsey Test, by taking ϕ��ψ as accepted in a belief set K whenever

ψ is accepted in K◦ϕ. In symbols,

(RT) K ⊢ ϕ��ψ iff K◦ϕ ⊢ ψ

However, it is well known that belief revision cannot be used to eval-

uate counterfactual statements [Gärdenfors, 1986] [Gärdenfors, 1988, Sec-

tion 7.4]. Gärdenfors’s impossibility theorem showed us that whereas (RT)

forces the belief change operation to be monotonic, belief revision is intrin-

sically non-monotonic. To see the first, assume (RT) is accepted, that ◦

is the belief change operation used to evaluate counterfactual statements

and suppose that for belief sets K1 and K2, it is the case that K1 ⊆ K2.

We show that K1◦ϕ ⊆ K2◦ϕ. Take any ψ such that ψ ∈ K1◦ϕ. By (RT),

ϕ��ψ ∈ K1 ∴ ϕ��ψ ∈ K2, and by (RT) again ψ ∈ K2◦ϕ. To see that belief

revision is incompatible with monotonicity, recall the following postulates

and consider Example 5.

(K◦2) ϕ ∈ K ◦aϕ
(K◦

3,4) If ϕ is consistent with K, then K ◦aϕ = Cn(K ∪ {ϕ})

(K◦5) K ◦aϕ = K⊥ only if ϕ is contradictory
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EXAMPLE 5. Consider three formulae ϕ, ψ and (non-contradictory) ¬ϕ∨

¬ψ and three belief sets K1,K2 and K3, such that K1 = Cn({ϕ}), K2 =

Cn({ψ}), and K3 = Cn({ϕ,ψ}). It can be easily seen that K1,K2 ⊆

K3. By (K◦
3,4), K1 ◦a(¬ϕ ∨ ¬ψ) = Cn({ϕ,¬ϕ ∨ ¬ψ}) = Cn({ϕ,¬ψ}); K2

◦a(¬ϕ ∨ ¬ψ) = Cn({ψ,¬ϕ}); and since ¬ϕ ∨ ¬ψ is non-contradictory, K3

◦a(¬ϕ ∨ ¬ψ) is satisfiable. However,

i) ϕ ∈ K1 ◦a(¬ϕ ∨ ¬ψ)

ii) ¬ϕ ∈ K2 ◦a(¬ϕ ∨ ¬ψ)

and hence, either K1 ◦a(¬ϕ ∨ ¬ψ) 6⊆ K3 ◦a(¬ϕ ∨ ¬ψ) or K2 ◦a(¬ϕ ∨ ¬ψ) 6⊆

K3 ◦a(¬ϕ ∨ ¬ψ), since {ϕ,¬ϕ} 6⊆ K3 ◦a(¬ϕ ∨ ¬ψ).

In semantical terms, the reason can be understood by recalling Lewis’s

formulation of satisfiability of counterfactuals via systems of spheres. Let

us first introduce the notion of a centred system of spheres [Lewis, 1973]:

DEFINITION 6 (Centred system of spheres). Let I be a set of worlds. A

centred system of spheres $ is an assignment from I to a set of subsets of

I, $I , where for each I ∈ I:

➀ {I} ∈ $I . (centring)

➁ For all S, T ∈ $I , either S ⊆ T or T ⊆ S. (nesting)

➂ $I is closed under unions.

➃ $I is closed under nonempty intersections.

Systems of spheres are used to represent the degree of similarity between

worlds. The smaller a sphere containing a world J in $I is, the closer to

world I world J is. The centring condition ➀ can be interpreted as “there

is no world more similar to world I than I itself”. ➀ can be replaced by

➀′ For all S ∈ $I , I ∈ S.

This condition is often called weak centring.6 If, in addition to condi-

tions ➀–➃ above, we also have that for all I,
⋃

$I = I, then we say that $

is universal.

In terms of a system of spheres $, a world I satisfies ϕ��ψ, according to

the following rules:

6Update operations as semantically characterised by Katsuno and Mendelzon in [Kat-

suno and Mendelzon, 1991b], require strong centring (i.e., the innermost sphere in $I

contains just I itself).
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DEFINITION 7 (Satisfiability of counterfactuals via systems of spheres).

Let I be a set of worlds, I ∈ I and $ a centred system of spheres for I:

I 
$ ϕ��ψ iff

1. either ∀S ∈ $I mod(ϕ) ∩ S = ∅;

2. or ∃S ∈ $I such that mod (ϕ) ∩ S 6= ∅, and ∀I ∈ S, I 
 ϕ→ ψ.

In case (1) above, we say that ϕ is not entertainable at I. That is,

there is no sphere around I which intersects any worlds where ϕ is true.

If $ is universal, this happens only if mod(ϕ) = ∅. The set of models of

a counterfactual ϕ��ψ can be defined as mod(ϕ��ψ) = {I ∈ I | ∀S ∈

$I (mod(ϕ) ∩ S 6= ∅ implies ∀J ∈ S J 
 ϕ→ ψ)}. As for case (2), since $I
is nested, it is sufficient to check whether ϕ→ ψ is satisfied by every world

in the innermost sphere S for which S ∩ mod(ϕ) is non-empty. Intuitively,

this intersection corresponds to the models of ϕ which are more similar (or

closer) to I. Now, if we want to evaluate whether a counterfactual ϕ��ψ is

entailed by a belief set K, we have to check whether for each I ∈ mod(K),

(2) holds, that is, whether the models of ϕ that are more similar to each of

the models of K are also models of ψ.

It is not surprising that belief revision cannot be used to evaluate counter-

factuals, since it fails to consider each model of K individually — which the

operation of update does. Indeed, the relationship between counterfactual

statements and updates has been pointed out many times [Grahne, 1991b;

Rodrigues et al., 1996; Ryan and Schobbens, 1996]. Updates can be used

to evaluate conditional statements, and the properties of the resulting con-

ditional logic will depend on the properties of the specific update operation

considered.

An alternative way of evaluating counterfactuals is by employing an or-

dering relation on the set of worlds that determines similarity with respect

to a given world I. This is done via the definition of a comparative similarity

system [Lewis, 1973]:

DEFINITION 8 (Comparative similarity system). A comparative similarity

system is a function that assigns to each world I a tuple 〈≤I , SI〉, where SI
is a set of worlds, representing the worlds that are accessible from I; and

≤I is a binary relation on worlds, representing the comparative similarity

of worlds with respect to I, such that

➀ ≤I is transitive

➁ ≤I is strongly connected
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➂ I ∈ SI

➃ For any world J , J 6= I implies I <I J

➄ K 6∈ SI implies K is ≤I -maximal

➅ For any J,K, J ∈ SI and K 6∈ SI implies J <I K.

The intended meaning for ≤I is the following: if J ≤I K, then world J

is at least as similar to world I as world K is.

Lewis proved that there is a correspondence between the satisfiability of

counterfactuals via a system of spheres and their satisfiability via a compar-

ative similarity system. If we consider only universal comparative similarity

systems (i.e., SI = I), the truth conditions for counterfactuals can be sim-

plified as follows:

DEFINITION 9 (Satisfiability of counterfactuals via comparative similarity

systems). Let I be a set of worlds and take I ∈ I. Given a comparative

similarity system as in Definition 8:

I 
 ϕ��ψ iff

1. either mod(ϕ) = ∅;

2. or ∃M ∈ mod (ϕ) such that for anyN ∈ I, N ≤I M implies N 
 ϕ→

ψ

These early results were very influential on the work of theory change

carried out in the 80’s and beyond.

We now turn to another very important semantical characterisation of

belief change operations.

2.3 Grove’s systems of spheres

In a very influential paper, Grove proposed a semantical characterisation of

the AGM theory based on the so-called systems of spheres [Grove, 1988].

The idea is similar to that of Lewis’ own systems of spheres presented in

Section 2.2 above, except for a few modifications. Firstly, the spheres in

Lewis’ systems contain worlds, whereas in Grove’s formulation they contain

theories. In addition, Grove’s systems of spheres can contain a collection of

theories in their centre (a form of weak centring).

Interestingly enough, Grove was one of the first to notice that Lewis’

formulation was incompatible with belief revision [Grove, 1988]. The re-

lationship between the types of system of spheres proposed by Lewis and
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Grove on the one hand and formalisms for theory change on the other

was explored in more detail in [Katsuno and Mendelzon, 1991a; Katsuno

and Mendelzon, 1992; Rodrigues et al., 1996] and as it turns out only

strongly centred systems of spheres can be used to model updates of a knowl-

edge base in the reasoning about the effects of actions [Winslett, 1988b;

Katsuno and Mendelzon, 1992].

The starting point in Grove’s formulation is the set M⊤
L of all maximal

consistent sets of L. These in fact correspond to all (consistent) complete

theories of L. Amongst these, some are of particular interest for a given (not

necessarily complete) belief set K — the ones that extend it. The set of all

such extensions is denoted by |K| and formally defined as {m ∈M⊤
L | K ⊆

m}. Notice that if K is K⊥, then |K| is simply ∅. Analogously, given a set

S of maximal consistent sets of L, the set t(S) is defined as
⋂
{Si ∈ S} or

K⊥ if S = ∅. It follows that t(S) is also closed under logical consequence.7

In semantical terms, one can think of the set I of all valuations instead

of M⊤
L . Analogously, |K| would correspond to mod(K) and for a given

set of valuations S ⊆ I, t(S) = {ϕ | I � ϕ for all I ∈ S}. According to

this view of the formulation, if K is K⊥, then |K| = mod(K) = ∅ and

if K = Cn(∅), then |K| = I, as expected. However, viewing the revision

process in terms of sets of formulae as done by Grove makes the relationship

with the AGM postulates immediate, whereas viewing it semantically, i.e.,

in terms of valuations, gives us an interesting insight into the process.8

DEFINITION 10 (Grove’s systems of spheres). Let S be a collection of

subsets of M⊤
L and take S ⊆M⊤

L . S is a called a system of spheres centred

on S if it satisfies the following conditions:

(S1) S is totally ordered by ⊆

(S2) S is the ⊆-minimum of S

(S3) M⊤
L is the ⊆-maximum of S

(S4) For any wff ϕ, if M⊤
L ∩ |ϕ| 6= ∅, then there is a smallest sphere in S

intersecting |ϕ|.

7It is possible to construct a lattice by ordering theories of a logic L under set in-

clusion. In this case, Cn(∅) will be the minimum and K⊥will be the maximum. The

only inconsistent theory in the lattice is K⊥ itself with the elements of M⊤

L sitting im-

mediately below it. The only way to extend an element of M⊤
L and retain closure under

logical consequence is to jump to K⊥.
8The semantical view is essentially the basis for the work by Katsuno and Mendelzon

seen in Section 2.4 [Katsuno and Mendelzon, 1991a; Katsuno and Mendelzon, 1992].
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Provided a formula ϕ is non-contradictory, there is always a maximal

consistent extension of Cn({ϕ}). Since by (S3) the outermost layer in every

system of spheres is M⊤
L itself (i.e., all maximal theories of L), some maxi-

mal consistent extension of Cn({ϕ}) will intersect S at some sphere. Con-

dition (S4) only ensures that there are not infinitely many smaller spheres

in S whose intersection with |ϕ| is non-empty. We use Sϕ to denote the

smallest sphere around S in S whose intersection with |ϕ| is non-empty if

it exists and if it does not, we define Sϕ = M⊤
L . fS(ϕ) is used to denote the

intersection itself, i.e., |ϕ| ∩Sϕ. Notice that if ϕ is contradictory fS(ϕ) = ∅.

Intuitively, the function fS selects the ϕ-worlds which are closest to S. This

can be used to define a revision operation as follows [Grove, 1988]:

DEFINITION 11 (Revision in terms of systems of spheres). Let S be a

system of spheres centred on |K|.

K ◦Sϕ = t(fK(ϕ))

PROPOSITION 12. If K and ϕ are consistent with each other, then K

◦Sϕ = Cn(K ∪ {ϕ}).

Proof. Notice that if K and ϕ are consistent with each other, then |K|∩ |ϕ|

is non-empty, and hence Kϕ = |K|. Therefore, fK(ϕ) = {m ∈ M⊤
L | K ⊆

m and Cn(ϕ) ⊆ m}. It follows that t(fK(ϕ)) = Cn(K∪{ϕ}). The fact that

Cn(K∪{ϕ}) ⊆ t(fK(ϕ)) comes directly from the definition of fK(ϕ). To see

that t(fK(ϕ)) ⊆ Cn(K ∪{ϕ}), suppose γ ∈ t(fK(ϕ)), but γ 6∈ Cn(K∪{ϕ}).

γ is neither contradictory itself (for it belongs to t(fK(ϕ)), by assumption);

nor is it a tautology (for it does not belong to Cn(K∪{ϕ}), ditto), therefore

it is possible to have two extensions m1 and m2 of Cn(K ∪ {ϕ}) in fK(ϕ)

such that γ ∈ m1 and ¬γ ∈ m2. Since m1 and m2 are both consistent,

γ 6∈ m2, but this is a contradiction since γ ∈ t(fK(ϕ)). �

The proof above establishes that ◦S verifies (K◦
3,4). In fact, ◦S verifies

all of the AGM postulates for revision. Grove has proved the following

important results:

THEOREM 13. For any system of spheres S with centre on |K|, if K ◦Sϕ

is given as in Definition 11, then ◦S verifies the AGM postulates for belief

revision.

THEOREM 14. If ◦ verifies the AGM postulates for belief revision, then

for any belief set K, there is a system of spheres S, with centre on |K| such

that K◦ϕ = t(fs(ϕ)).

A system of spheres around |K| is depicted in Figure 2.
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|K|

...

M⊤
L

Some of the theories in the outer

This sphere contains all maximal

consistent extensions of K

spheres are not extensions of K

extensions of L

This sphere contains all maximal

Figure 2. A system of spheres around |K|

An alternative representation theorem is given in terms of total pre-orders

≤G on wff(L) satisfying the following conditions (we call such pre-orders

Grove relations):

(≤G 1) ≤G is total

(≤G 2) ≤G is transitive

(≤G 3) If ϕ→ (ψ ∨ γ), then either ψ ≤G ϕ or γ ≤G ϕ.

(≤G 4) ϕ is ≤G minimal if and only if ¬ϕ 6∈ T .

(≤G 5) ϕ is ≤G maximal if and only if ¬ϕ is a tautology.

It is also possible to define a revision operation in terms of a relation ≤G
as follows (<G is the strict counterpart of ≤G):

DEFINITION 15 (Revision obtained from ≤G).

T ◦Gϕ = {ψ | (ϕ ∧ ψ) <G (ϕ ∧ ¬ψ)}.

Grove has shown the following correspondences:

THEOREM 16. Let ≤G be any pre-order satisfying (≤G 1)–(≤G 5). If a

revision operation ◦G is defined according to Definition 15, then ◦G also

satisfies (K◦1)–(K◦8).

THEOREM 17. Any revision operator ◦ satisfying the AGM postulates can

be defined in terms of some relation ≤G according to Definition 15.

It is not surprising that ≤G can also be defined in terms of a system of

spheres S:
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DEFINITION 18 (Relation between Grove relations and systems of spheres).

Let S be a system of spheres with centre in |S|. ϕ ≤G ψ if and only if

Sϕ ⊆ Sψ.

PROPOSITION 19. If ≤G is given according to Definition 18, then it will

also verify (≤G 1)–(≤G 5).

Some of the theories in the outer

This sphere contains all maximal

spheres are not extensions of K

extensions of L

This intersection contains all
maximal consistent extensions of K
and ϕ

...

M⊤
L

|K|
|ϕ|

Figure 3. A system of spheres when K and ϕ are consistent

There is a relationship between Grove relations and the notion of epis-

temic entrenchment. This will be discussed in Section 2.5.

We now turn to a characterisation of the AGM postulates for finite belief

bases.

2.4 AGM revision for finite belief bases

In [Katsuno and Mendelzon, 1992], Katsuno and Mendelzon provided a

reformulation of the AGM postulates for belief sets represented by finite

sets of propositional formulae. We shall refer to these here as belief bases.

Finite belief bases can be associated with the conjunction of their formulae.

In the presentation below, the language L is assumed to be constructed from

a finite set of propositional variables P. K is the formula representing the

current belief base and ϕ and ψ are formulae representing new beliefs to be

accepted; valuations are constructed by assigning {⊤,⊥} to each element

of P and extended to complex formulae in the usual way. We use capital

letters from the middle of the alphabet (sometimes with a prime symbol),

e.g., I (I ′), to denote valuations and the symbol I to denote the set of all
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valuations. The set mod (K) denotes the set of models of K as before (more

formally, mod(K) = {I ∈ I | I 
 K}).

AGM postulates for belief revision rewritten for finite belief bases

(R1) K ◦aϕ implies ϕ

(R2) If K ∧ ϕ is satisfiable, then K ◦aϕ ≡ K ∧ ϕ

(R3) If ϕ is satisfiable, then K ◦aϕ is also satisfiable

(R4) If K1 ≡ K2 and ϕ1 ≡ ϕ2, then K1 ◦aϕ1 ≡ K2 ◦aϕ2

(R5) (K ◦aϕ) ∧ ψ implies K ◦a(ϕ ∧ ψ)

(R6) If (K ◦aϕ)∧ψ is satisfiable, then K ◦a(ϕ ∧ ψ) implies (K ◦aϕ)∧ψ

The reader will notice that the above reformulation contains two fewer

postulates than AGM’s original formulation. (K◦1) does not make sense

for belief bases and (K◦3) and (K◦4) were combined into (R2). This is no

surprise, as we saw in the previous section that in the case that K ∧ ϕ is

satisfiable, (K◦3) and (K◦4) amount to (K◦
3,4) — which in the finite case can

be rewritten as (R2); and in the case that K ∧ ϕ is not satisfiable, neither

(K◦3) nor (K◦4) provide any useful information.

In the same paper [Katsuno and Mendelzon, 1992], Katsuno and Mendel-

zon provided a semantical characterisation in terms of pre-orders of all re-

vision operators satisfying the AGM postulates. This characterisation is

useful as a tool to abstract from the postulates and instead concentrate on

the semantical properties of the operations. The ideas used are reminiscent

of Grove’s [Grove, 1988] (see Section 2.3).

The first step in the characterisation is to define minimum requirements

the pre-orders have to satisfy. The pre-orders are used to compare the

relative “similarity” of valuations with respect to a given belief base. A

pre-order satisfying the requirements is said to be faithful. In general, for

valuations I and I ′ and a belief base K, I ≤K I ′ denotes the fact that

valuation I is at least as similar to K as I ′ is with respect to ≤. As usual,

I <K I ′ denotes I ≤K I ′ and I ′ 6≤K I.

DEFINITION 20 (Faithful assignment for belief revision). A faithful as-

signment for belief revision is a function mapping each propositional formula

K to a pre-order ≤K on I, such that

(F1) If I, I ′ ∈ mod(K), then I <K I ′ does not hold.

(F2) If I ∈ mod(K) and I ′ 6∈ mod(K), then I <K I ′ holds.

(F3) If K ↔ ϕ, then ≤K=≤ϕ.
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A faithful assignment is total if its associated pre-orders are total. What

Definition 20 effectively says is that provided K is satisfiable i) any two

distinct models of K are either incomparably or equivalently similar to each

other with respect to ≤K ; ii) models of K are strictly more similar to K

than any non-model of K and iii) pre-orders assigned to logically equivalent

bases are equivalent. Note that no constraints on the granularity of ≤K for

non-models of K are imposed even though a restriction is imposed on not

preferring some models of K over other models. The strongest requirement

is the strict preference of models of K over valuations that do not satisfy it.

Notation 1. Let ≤ be a pre-order on a set S, and M ⊆ S. The expression

min≤(M) will denote the set {m ∈M | ¬∃m′ ∈M such that m′ < m}.

The following theorem given in [Katsuno and Mendelzon, 1992] estab-

lishes the correspondence between faithful assignments and revision opera-

tors satisfying the AGM postulates:

THEOREM 21. A revision operator ◦ satisfies postulates (R1)–(R6) if and

only if there exists a total faithful assignment ≤K for each formula K, such

that mod(K◦ϕ) = min≤K
(mod(ϕ)).

Since the assignments associated with operators verifying the AGM pos-

tulates are in fact total, (F1) requires equivalence between any two models

of K. Because of (F2), total faithful assignments require that min≤K
(I)

form an equivalence class consisting of all the valuations in mod(K).

Katsuno and Mendelzon’s characterisation is perhaps the most intuitive

way to understand the revision process. In order to verify (R1), the models

of K◦ϕ must be included in the models of ϕ (if any). Intuitively, one expects

these to be those which preserve as much as possible of the informational

content of K. The measurement of similarity to K is given by the ordering

≤K . The minimum requirements ≤K must fulfil in order for the associated

revision operator to verify the information preservation requirements given

by (R1)–(R6) are specified in Definition 20 and hence the minimal elements

in mod (ϕ) are exactly the models of ϕ which best preserve the informational

content of K (with respect to ≤K).

Notice that if K is consistent with ϕ, it is easy to see by Definition 20 that

min≤K
(mod(ϕ)) = mod(K) ∩ mod(ϕ). According to Theorem 21, these

are the models of K◦ϕ — meeting exactly the requirements imposed by

(R2). Notice also that K is considered as a whole in the similarity measure-

ment ≤K . This reflects well the coherentist view adopted by AGM.

As seen in this section, a key concept in the process of belief revision

is the measurement of information change, that is, how much of the old
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information is lost during a revision operation. One way of evaluating the

change is by comparing the relative informative value of the beliefs held by

an agent. This will be discussed in the next sections.

2.5 Epistemic entrenchment

One of the main criticisms against the AGM postulates is that although they

define general properties of rational changes of belief, they do not actually

provide an explicit construction of the belief change operations themselves.

The notion of epistemic entrenchment helps to address this issue. Epis-

temic entrenchment can be used to guide the contraction operation. Since

expansions can be trivially constructed, and revisions can be defined from

contractions and expansions via the Levi identity (see page 5), the definition

of a contraction operation is sufficient to determine the three basic types of

belief change.

The idea behind epistemic entrenchment is to retain the more informative

propositions during a contraction operation. This involves a comparison of

the relative strengths of propositions and is modelled by a so-called epis-

temic entrenchment relation ≤K for a given belief set K. Desirable prop-

erties of such relations are given in the form of the postulates presented

below. In what follows, ϕ, ψ and γ are formulae of L and ϕ ≤K ψ denotes

the fact that ψ is at least as (epistemologically) entrenched as ϕ as far as

K is concerned.

(EE1) ϕ ≤K ψ and ψ ≤K γ imply ϕ ≤K γ

(EE2) If ϕ ⊢ ψ, then ϕ ≤K ψ

(EE3) Either ϕ ≤K ϕ ∧ ψ or ψ ≤K ϕ ∧ ψ

(EE4) If K 6= K⊥, then ϕ 6∈ K iff ϕ ≤K ψ for all ψ

(EE5) If for all ψ, ψ ≤K ϕ, then ⊢ ϕ .

(EE1) simply stipulates that epistemic entrenchment relations should be

transitive. (EE2) represents the principle of minimal change. Since belief

sets are closed under the consequence relation ⊢, in the choice between

giving up ϕ or ψ (given that ϕ ⊢ ψ), it makes more sense to give up ϕ

first, since giving up ψ would ultimately require ϕ to be given up as well.

Note that (EE2) implies reflexivity of ≤K . (EE3) postulates that the loss

of information incurred in giving up ϕ∧ψ is equivalent to that of giving up

either ϕ or ψ. This follows from the fact that (EE2) already constrains ≤K
so that ϕ ∧ ψ ≤K ϕ and ϕ ∧ ψ ≤K ψ. (EE1)–(EE3) jointly imply that ≤K
is total. (EE4) expresses a minimality condition for ≤K . Since ≤K is total,

(EE4) stipulates that all beliefs that are not in K are equivalent (modulo
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≤K). Also notice that the proviso is necessary, because if K = K⊥, then

ϕ ∈ K for all ϕ, in which case there would be an infinite descending chain

of beliefs ϕ >K ψ1 >K ψ2 > . . . in K. (EE5) says that only the tautologies

are maximal in ≤K . The converse follows trivially from (EE2) and hence

all tautologies are equivalent modulo ≤K .

What is needed now is a way to define a revision function in terms of an

epistemic entrenchment relation. This is done indirectly via a contraction

function and the Levi identity (see page 5).

DEFINITION 22 (Contractions and epistemic entrenchment).

ψ ≤K ϕ iff ψ 6∈ K−(ϕ ∧ ψ)

In particular,

THEOREM 23 (Properties of epistemically entrenched contraction). Let

≤K and − be defined according to Definition 22. It follows that ≤K satisfies

(EE1)–(EE5) iff − satisfies the AGM postulates for contraction.

These results are similar to the correspondences arising from revision

operations defined in terms of Grove relations. This is not surprising. In

fact, it is possible to define epistemic entrenchment relations and Grove

relations in terms of each other.

DEFINITION 24. For all formulae ϕ and ψ in L, ϕ ≤K ψ iff ¬ϕ ≤G ¬ψ.

The properties of ≤G and ≤K are related as given in the following theorem
[Gärdenfors, 1988, page 96].9

THEOREM 25. A total pre-order ≤G satisfies (≤G 1)–(≤G 5) iff ≤K , as

given in Definition 24, satisfies (EE1)–(EE5).

A number of revision formalisms using epistemic entrenchment were pro-

posed. The reader is referred to [Rott, 1992; Wobcke, 1992; Nayak, 1994a]

for more details.

2.6 Discussion

The relationship between the several representations seen in this section is

depicted in Figure 4. Roughly speaking, an arrow indicates that the

object at its source has the properties stated by the object at its target; an

arrow indicates that there exists an object of the type of its target for

each object of the type of its source; and finally, an arrow −→ indicates that

9This result appears as Lemma 4.26 and Lemma 4.27 in that reference.
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the object at its target can be defined in terms of the object at its source.

We discuss some of these relationships next.

A relation verifying properties (≤G 1)–(≤G 5) can be defined from a

system of spheres S and vice-versa via Definition 18. Theorem 25 establishes

the correspondence between Grove relations and epistemic entrenchment

relations defined according to Definition 24. An epistemic entrenchment

relation ≤E E can be used to define a contraction function −. According

to Theorem 23, − will satisfy the AGM postulates for contraction. Via the

Levi identity, it is possible to define a revision function ◦a, which according

to Theorem 1 will satisfy the AGM postulates for revision. Theorem 21

establishes the correspondence between faithful assignments ≤KM (for a

belief base KM ), revision operators ◦KM defined in terms of these and the

AGM postulates. The dashed arrow is to be interpreted as “given a revision

operator ◦KM satisfying the AGM postulates for revision, there exists an

associated faithful assignment ≤KM .” The rest of the diagram can be read

in an analogous form.

Th. 25 (EE1)–(EE5)(≤G 1)–(≤G 5)

Def. 24 ≤EE≤G

◦a

AGM Revision

Systems of ≤KM

Th. 21

Th. 21

Spheres

Def. 18

Th. 13

Def. 15
Levi + Def. 22

Harper + Def. 22

Th. 1Th. 16

Th. 13

Th. 14

Prop. 19 Def. 15 Th. 23

◦S

◦G

Th. 21
◦KM

Figure 4. Relationships between different revision formalisms.
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3 BELIEF REVISION OPERATORS

Up to now, the ideas presented for the evaluation of change in belief sets

were based on general principles a belief change operation should verify or

on requirements of an underlying preference relation. However, they did not

form the basis for an algorithmic mechanism for computing and/or evalu-

ating change between belief sets. In this section, we present some quan-

titative and qualitative mechanisms for change measurement. In general,

quantitative measurements of change result in total similarity orderings,

whereas qualitative ones yield partial orderings. As we have seen in Sec-

tion 2.4, AGM operations are associated with total similarity measurements

and hence quantitative procedures have been used in a number of belief

change operations [Dalal, 1988a; Winslett, 1988a; Gabbay and Rodrigues,

1996a].

3.1 Measuring information change

In the case of propositional logic, one possibility of evaluating the degree

of change between belief sets is by quantifying the amount of disagreement

between the truth-values of propositions in different valuations. This section

will describe how this has been used in belief revision.

Let us call the “distance” between two valuations M and N as the number

of propositional variables with different truth-values in M and N . This

measurement of change was initially proposed in [Dalal, 1988a]. Following
[Katsuno and Mendelzon, 1991a], we will assume the language L of the

logic L to be defined from an arbitrarily large but finite set of propositional

variables P. We denote the set of all valuations of L by I.

DEFINITION 26. Let M and N be two elements of I. The distance d

between M and N is the number of propositional variables pi, for which

M(pi) 6= N(pi).

The function d satisfies a number of interesting properties [Rodrigues,

1998]:

PROPOSITION 27.

(M1) d(M,N) ≥ 0

(M2) d(M,N) = 0 iff M = N

(M3) d(M,N) = d(N,M)

(M4) d(M,O) ≤ d(M,N) + d(N,O)
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Proof. Let M,N,O be elements of I. (M1) and (M2): Clearly, d(M,N)

cannot be negative. If d(M,N) = 0, then M(pi) = N(pi) for all pi ∈ P ,

and then M = N . If M = N , then they obviously agree w.r.t. every

propositional variable, and hence d(M,N) = 0.

(M3) follows directly from Definition 26.

(M4): Let us identify interpretations M,N,O with the sets Ml, Nl and

Ol of (positive or negative) literals that they satisfy, respectively. We then

define X to be Ml − Ol, that is the set of literals li such that li ∈ Ml and

li 6∈ Ol, Y to be Ml − Nl and Z to be Nl − Ol. It is easy to see that,

for a given propositional variable pi and interpretation M , either pi ∈ Ml

or ¬pi ∈ Ml (but not both), and that there is a correspondence between

the cardinalities of X, Y and Z and the distances d(M,O), d(M,N ) and

d(N,O), respectively. We show that |X | ≤ |Y | + |Z|, by proving that

X ⊆ Y ∪ Z.

Suppose pi ∈ X, but pi 6∈ Y ∪ Z. If pi ∈ X, then pi ∈ Ml and ¬pi ∈ Ol.

Either pi ∈ Nl or ¬pi ∈ Nl. If pi ∈ Nl, then pi ∈ Z. On the other hand, if

¬pi ∈ Nl, then pi ∈ Y . In either case, pi ∈ Y ∪ Z, a contradiction. �

Using the distance d to evaluate the degree of change to a belief set

The interesting case in belief revision is when the new belief contradicts

the agent’s current belief set and hence consistency can only be maintained

by giving up some of her old beliefs. This is where the notion of minimal

change comes into play, since generally one wants to minimise the loss of

information incurred in the process.

Obviously, what constitutes “change” itself varies according to the type

of operation being performed. For the case of belief revision, the change is

measured with respect to the belief set as a whole. In semantical terms, this

can be seen as the minimal distance associated to any pair of models of the

belief set and the new belief. It will prove useful to extend the distance d

defined above to classes of valuations, taking into account the special case

when either of the two classes is empty (i.e., when either the belief set is

inconsistent or the new belief is contradictory).

DEFINITION 28. Let M and N be two classes of valuations of L. The set

distance D between M and N , D(M,N ), is defined as

D(M,N ) ={
inf{d(M,N) |M ∈ M and N ∈ N} ➪ if M and N are both nonempty

∞ ➪ otherwise

REMARK 29. If the class M is composed solely by a valuation I, that is, if
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M = {I}, then D in fact computes the minimum distance between a class

of models and a single valuation, i.e., a world. This notion is used in the

definition of update operations by Katsuno and Mendelzon [Katsuno and

Mendelzon, 1992].

PROPOSITION 30. D is symmetric.

Proof. This follows directly from Definition 28 and Proposition 27, since by

(M3), d is symmetric. �

Intuitively, the greater the distance between two classes of valuations, the

more they disagree with respect to the truth-value of propositions. When

combining the information represented by these two classes one will try

and minimise the distance between any two pairs of models taken from each

class. If the new belief ϕ is consistent with the belief set K, then mod (K)∩

mod(ϕ) 6= ∅. Thus, they will have a model M in common. By (M1),

d(M,M) = 0 (see Proposition 27) and hence D(mod(K),mod(ϕ)) = 0. In

this case, it is possible to combine K and ϕ without any loss of information

to either. On the other extreme, if either the new belief is contradictory

or the current belief set is inconsistent, then one of them (or both) is not

really informative and we are free to interpret the loss of information in the

combination as we wish. In this case, ∞ seems an appropriate value.

Now, if one wants to choose the models of ϕ which preserve as much

of the informational content of K as possible (according to d), the natural

solution is to pick those with a minimum distance to any model of K. With

this idea in mind, it is possible to define the following similarity ordering on

valuations with respect to a belief set K. The only technicality is to decide

how to compare valuations when K is inconsistent (i.e., mod(K) = ∅). We

can arbitrarily consider all valuations equivalent in this case (remember

from Definition 20, that no constraints on the granularity of non-models of

K are actually imposed).

DEFINITION 31. For any M,N ∈ I and each propositional formula K,

M ≤K N iff

➀ mod(K) = ∅; or

➁ ∃I ∈ mod(K) such that ∀I ′ ∈ mod(K) d(M, I) ≤ d(N, I ′)

That is, M is at least as good as N at preserving the information in K

if there is some model I of K such that d(M, I) is less than or equal to the

distance between N and any model of K.

PROPOSITION 32. For each propositional formula K, ≤K is a pre-order.
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Proof. Reflexivity follows trivially when mod(K) = ∅ and to see that con-

dition ➁ ensures that M ≤K M for all M when mod(K) 6= ∅, just take

I = M , then d(M, I) = d(M,M) = 0 and by (M1) of Proposition 27, this is

the minimum value for d. For transitivity, the interesting case is as follows:

suppose M ≤K N , and N ≤K O. If M ≤K N , then ∃I1 ∈ mod(K), such

that ∀I ′ ∈ mod(K) d(M, I1) ≤ d(N, I ′). If N ≤K O, then ∃I2 ∈ mod(K)

such that ∀I ′′ ∈ mod(K) d(N, I2) ≤ d(O, I ′′). I2 ∈ mod(K). Thus, in

particular, d(M, I1) ≤ d(N, I2), and hence M ≤K O. �

Now consider the following function χ which assigns to every proposi-

tional formula K a pre-order ≤K on I as defined above.

DEFINITION 33. For each formula K of propositional logic χ(K) =≤K .

It should not surprise the reader that χ is in fact a faithful assignment

for belief revision in Katsuno and Mendelzon’s terms.

PROPOSITION 34. χ is a faithful assignment for belief revision.

Proof. By Proposition 32, for each propositional formula K, ≤K is a pre-

order. It can be easily seen that ≤K is also total. We are left to prove:

1. If M,N ∈ mod(K), then M <K N does not hold.

If M ∈ mod(K), then M ≤K N , because ∀I ′ ∈ mod(K) d(M,M) ≤

d(N, I ′). Also, N ≤K M , for the same reason, since N ∈ mod(K),

and hence M ≡K N .

2. If M ∈ mod(K) and N 6∈ mod(K), then M <K N .

Clearly, M ≤K N (see previous item). Since N 6∈ mod(K), then

every model of K will will have at least one disagreement in a propo-

sitional letter with respect to N and hence the distance with be a

positive natural number greater than zero. However, d(M,M) = 0,

therefore ¬∃I ∈ mod(K) such that d(N, I) ≤ d(M,M).

3. If K ↔ ϕ, then ≤K=≤ϕ.

This follows directly, since d and ≤K are defined semantically.

�

In [Katsuno and Mendelzon, 1991a; Katsuno and Mendelzon, 1992], Kat-

suno and Mendelzon used the same distance function d to define a faithful

assignment for belief revision and prove that Dalal’s revision operator (see

Section 3.2) verifies the AGM postulates. The idea above is similar but
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corrects a few problems. Specifically, they define a total pre-order ≤K on I

as

I ≤K J if and only if dist(mod(K), I) ≤ dist(mod(K), J)

where

dist(mod(K), I) = min
J∈ mod (K)

d(J, I).

This definition does not cover all possibilities, as K may be inconsistent and

hence mod(K) = ∅. As it turns out, a similar problem occurs with Dalal’s

revision operator when K is inconsistent [Dalal, 1988a].

Now suppose K is indeed consistent and consider the following collection

S of subsets S0, S1, . . ., S|P| of M⊤
L : Si = {m ∈ M⊤

L | D(mod(m),mod

(K)) ≤ i}.

PROPOSITION 35. The collection S defined above is a system of spheres

centred on |K| (in Grove’s sense).

Proof. First, notice that it is easy to see that S is totally ordered. Similarly,

S0 = {m ∈ M⊤
L | D(mod(m),mod(K) = 0}, and then K ⊆ m, for all

m ∈ S0, and hence S0 = |K|. Since D is based on d and the minimum

value for d is 0, then |K| is the minimum in S. The maximum number

of propositional variables any two valuations in I can differ is |P| (since

we consider a finite number of propositions), therefore S|P | will contain all

maximal consistent extensions of L. Condition (S4) is trivially satisfied

since there are only finitely many spheres in S. �

If we consider valuations in each sphere instead of their corresponding

theories, we will have a semantical characterisation as proposed by Katsuno

and Mendelzon. The innermost sphere contains all of the models of K, the

next sphere extends the former to include all valuations that differ from

any model of K by at most the truth-value of one propositional variable,

and so forth (see Figure 5). This inclusion of valuations proceeds until all

valuations are eventually included (in Grove’s sense, this corresponds to

M⊤
L — the ⊆-maximum in S — see Definition 10).

Intuitively, the valuations in the innermost sphere are the ones that most

preserve the informational content of K (according to d). In fact, any

valuation in the innermost sphere preserves all of K’s informational content,

since these are K’s models. The farther away from the centre, the bigger

the loss of information, because other valuations which do not satisfy K

are included as well. Provided a formula ϕ is non-contradictory, there will

be some non-empty intersection between the models of ϕ and some sphere
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d = 1

d = 2
d = 3

mod(K)

Interpretations with distance
at most 3 with respect to some
interpretation in mod(K)

Interpretations with distance
at most 2 with respect to some
interpretation in mod(K)

Interpretations with distance
at most I with respect to some
interpretation in mod(K)

I

Figure 5. A system of spheres around mod(K).

around |K|. A revision of K by ϕ in semantical terms corresponds to finding

exactly those models of ϕ that are as close to the centre, i.e., |K|, as possible.

We now give a concrete example of these spheres for a propositional

formula p ∧ q according to the similarity measurement d. The centre of

the system of spheres will be constituted by mod(p ∧ q), the next sphere

will contain these and all valuations that differ from them with respect to

at most the truth-value of either p or q (i.e., the models of p ∨ q) and the

last sphere will contain all valuations of L. This is depicted in Figure 6.

The intuitive meaning can be grasped as follows: if an agent believes in

p ∧ q10 and she is told that it is not the case that both p and q are true,

then the next best thing is to think that at most one of p or q is false,

hence p ∨ q. Subsequently, any further loss of beliefs requires that both

p and q be false. These three possibilities include all possible valuations.

Of course, the similarity measurement provided by d is one of the simplest

possible. It is presented here mainly for historical reasons, but also for the

easy visualisation of the revision process it provides.

Qualitative measurements of change

The function d seen before provides a quantitative measure of the degree of

similarity between valuations and classes of valuations. One advantage of

this is that it leads directly to the definition of a total ordering on I.

Even though the distance d provides an indication of the magnitude of the

difference between two valuations, it has little to say about the qualitative

10Note that AGM is coherentist and hence believing in p ∧ q and believing in p and

believing in q (or any variation of beliefs implying p ∧ q) amounts to exactly the same.
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mod(p ∧ q)

I

mod(p ∨ q)

Figure 6. A system of spheres around mod(p ∧ q) based on ≤p∧q .

value of the change in information itself.

In this section, we consider another way of comparing valuations by

analysing the sets of propositional variables which differ with respect to

the truth-values assigned by these valuations. The function presented here

was initially proposed by Borgida [Borgida, 1985].

DEFINITION 36. Let M and N be two elements of I. The difference

set between M and N , in symbols, diff(M,N) is the set of propositional

variables pi, for which M(pi) 6= N(pi).

It is easy to see that diff is a symmetric function. That is, diff(M,N) =

diff(N,M). Also notice that for any valuations M and N , |diff(M,N)| =

d(M,N).

The function diff was used in a number of formalisms both for belief revi-

sion and updates, including Borgida’s revision operator, extended in [Dalal,

1988b], Winslett’s possible models approach [Winslett, 1988a], Weber’s re-

vision operator [Weber, 1987] and, to some extent, in Satoh’s formalism too
[Satoh, 1988].

If we want to define closeness with respect to a given valuation I via

the function diff presented above, in symbols ⊑I , it can be done in the

following way:

DEFINITION 37 (Closeness of valuations using the function diff).

M ⊑I N iff diff(M, I) ⊆ diff(N, I)

PROPOSITION 38. ⊑I is a pre-order.
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Proof. It is straightforward to see that ⊑I is reflexive. For transitivity,

suppose that M ⊑I N . It follows that diff(M, I) ⊆ diff(N, I). Similarly, if

N ⊑I O, then diff(N, I) ⊆ diff(O, I). It follows that diff(M, I) ⊆ diff(O, I),

and hence M ⊑I O. �

The reader can easily check that ⊑I is also antisymmetric. However,

unlike ≤I , ⊑I is not a total ordering on I, as illustrated below.

EXAMPLE 39. Consider three valuations I, M and N , such that I(p) =

M(p) = true, I(q) = N(q) = true and M(q) = N(p) = false. I, M and N

agree in the truth values of all other propositional variables.

It follows that diff(M, I) = {q} and diff(N, I) = {p}. Neither diff(M, I) ⊆

diff(N, I), nor diff(N, I) ⊆ diff(M, I), and therefore M and N are incom-

parable with respect to ⊑I .

Using the function diff directly to evaluate similarity between valuations

according to Definition 37 has some implications for belief revision. The

example above demonstrates that ⊑I defines a partial order on I. In [Kat-

suno and Mendelzon, 1991b, Theorem 5.2], Katsuno and Mendelzon showed

that partial pre-orders on I can be associated with revision operators which

only verify a weaker version of the AGM postulates. The weakening applies

basically to postulate (R6) which is dropped in favour of the rules below:

(R6′) If K ◦aϕ→ ψ and K ◦aψ → ϕ, then K ◦aϕ↔ K ◦aψ

(R6′′) (K ◦aϕ) ∧ (K ◦aψ) → K ◦a(ϕ ∨ ψ)

Note that (R6′) and (R6′′) are very similar to the following update pos-

tulates below, where K⋄ϕ denotes the update of K by ϕ.

(U6) If K⋄ϕ→ ψ and K⋄ψ → ϕ, then K⋄ϕ↔ K⋄ψ

(U7) If K is complete, then (K⋄ϕ) ∧ (K⋄ψ) → K⋄(ϕ ∨ ψ)

(R6′) and (U6) are identical. In (U7), the requirement that K is complete

is to make sure that there is just one valuation satisfying it, if any. In fact,

the completeness requirement in (U7) is related to the requirement of a

language with a finite number of propositional variables in Katsuno and

Mendelzon’s formulation.

Not surprisingly, all of the early revision operators defined via diff [Borgida,

1985; Satoh, 1988; Weber, 1987] fail to verify (R6), even though they are

shown to verify weaker versions of it. It must be pointed out that in the

early 80s, there was still some confusion about the appropriate roles of

the operations of belief revision and updates in common-sense reasoning.
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Thus, some of the “revision” postulates cited above in fact could be seen

as update ones. An important contribution in the clarification of the roles

of these two operations came in 1992 when Katsuno and Mendelzon pub-

lished a follow-up to their 1991 paper [Katsuno and Mendelzon, 1991a;

Katsuno and Mendelzon, 1992].

The function diff can, however, be used as a measurement of change for

update operations, since the similarity orderings required for that kind of

operation need not be total. In fact, Rodrigues showed that ⊑I can be used

in the definition of a so-called faithful assignment for updates. The reader

is referred to [Rodrigues, 1998] for further details on this.

3.2 Dalal’s revision operator

As we discussed previously, some of the early revision operators proposed

in the literature turned out to actually be update operators. The confusion

arose because at the time work in belief revision started to emerge, there was

some expectation that work initially done to model updates in databases

could fit within the belief revision perspective. Later on, it was made clear

that, in spite of many similarities, the two kinds of theory change have some

fundamentally distinct characteristics: in a belief revision, an agent sees

the world as a static entity about which she has incomplete or inaccurate

information; whereas in an update the agent wants to bring up to date an

internal representation of the world after it changed (e.g., by the execution

of an action).

Thus, it is not reasonable to classify Borgida’s “revision” operation
[Borgida, 1985] as a belief revision operation, since it was first devised to

model the handling of exceptions in database systems. The same criticism

equally applies to Weber’s revision operator [Weber, 1987]. In this sec-

tion we will present Dalal’s revision operator, one of the earliest operators

known to verify the AGM postulates for belief revision [Dalal, 1988a]. A

full description of Dalal’s formalism can be found in [Dalal, 1988b; Dalal,

1988a].

Dalal starts by defining systems of spheres around valuations of the given

logic.

DEFINITION 40 ([Dalal, 1988a]). For a given I ∈ I,

g(I) = {J ∈ I | d(I, J) ≤ 1}

And then the definition is extended to classes of interpretations:
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DEFINITION 41 ([Dalal, 1988a]). Let M be a class of interpretations

g(M) =
⋃

I∈M

g(I)

For a formula ψ, G(ψ) is defined in terms of its models as

mod(G(ψ)) = g(mod(ψ))

DEFINITION 42 ([Dalal, 1988b, Definition 4.4]). Gk(ψ)(k ≥ 0) is defined

recursively as follows:

G0(ψ) = ψ

Gk(ψ) = G(Gk−1(ψ))

The revision operator is then defined semantically as

DEFINITION 43 ([Dalal, 1988b, Definition 4.3]). Let ψ and ϕ be proposi-

tional formulae. The revision of ψ by ϕ, ψ◦dϕ, is defined as:

mod(ψ◦dϕ) = mod(Gk(ψ)) ∩ mod(ϕ)

where k is the least value for which mod(Gk(ψ)) ∩ mod(ϕ) 6= ∅.

By using the result below given in [Weber, 1987], Dalal provides a way

to compute ψ◦dϕ syntactically.

LEMMA 44. Let ψ be a formula and p a propositional symbol. There exists

formulae ψ+
p and ψ−

p such that

• ψ+
p and ψ−

p do not contain p; and

• ψ ≡ (p ∧ ψ+
p ) ∨ (¬p ∧ ψ−

p )

According to Weber [Weber, 1987], ψ+
p and ψ−

p can be obtained by re-

placing the propositional variable p in ψ by ⊤ and ⊥ respectively. These

constants can then be eliminated through standard simplifications of clas-

sical logic. What Lemma 44 actually does is to “isolate” the symbol p from

the formula ψ. The next two definitions originally appeared in [Weber,

1987].

DEFINITION 45. Let ψ be a formula which may contain the propositional

variable p. If ψ+
p and ψ−

p are formulae obtained according to Lemma 44,

then

resp(ψ) = ψ+
p ∨ ψ−

p

is called the resolvent of ψ with respect to p.
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Intuitively, ψ and resp(ψ) admit change with respect to the truth-value

of p only. That is, the models of resp(ψ) are the models of ψ plus the

interpretations which differ from them with respect to at most the truth-

value of p.

The definition of res is extended to a set of symbols:

DEFINITION 46. If {p1, p2, . . . , pk} is a set of symbols and ψ is a propo-

sitional formula, then

res∅(ψ) = ψ

res{p1,p2,...,pk}(ψ) = res{p2,...,pk}(resp1(ψ))

Weber also proved that the order of the propositional variables chosen in

the definition above is not important, so one can pick any desired enumer-

ation.

THEOREM 47 ([Dalal, 1988b, Theorem 5.5]). Let ψ be a formula and

var(ψ) = {p1, p2, . . . , pk}.

G(ψ) = resp1(ψ) ∨ . . . ∨ respk
(ψ)

We are now in a position to define ψ◦dϕ syntactically:

DEFINITION 48 ([Dalal, 1988a]). Let ψ and ϕ be two formulae of propo-

sitional logic. The revision of ψ by ϕ, ψ◦dϕ, is defined as:

ψ◦dϕ = Gk(ψ) ∧ ϕ

where k is the least value of i for which mod(Gi(ψ)) ∩ mod(ϕ) 6= ∅.

Notice that the definitions above only work for non-contradictory formu-

lae ψ.

PROPOSITION 49. If ψ is contradictory, then so is Gk(ψ), for any k.

Proof. First notice that gk(∅) = ∅, for any k (by Definition 41). If ψ is con-

tradictory, then mod(ψ) = ∅. By Definitions 41 and 42, mod(Gk(ψ)) =

gk(mod(ψ)) = ∅. �

As a result, ◦d as defined above cannot always verify the following pos-

tulate:11

(R3) If A is satisfiable, then K ◦aA is also satisfiable

By making a special provision for when ψ is contradictory, ◦d can indeed

satisfy all of the AGM postulates for belief revision. It is sufficient to define

11In order to see this, consider the revision of any contradictory ψ by any non-

contradictory ϕ.
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ψ◦dϕ = ϕ if ψ is contradictory. A proof overlooking the extreme case above

was given by Katsuno and Mendelzon. The reader is referred to [Katsuno

and Mendelzon, 1991a; Katsuno and Mendelzon, 1992] for more details.

A simpler and equivalent revision operation defined in terms of formulae

written in disjunctive normal form (DNF) was proposed by Rodrigues in
[Gabbay and Rodrigues, 1996a]. It is convenient to regard each disjunct

in a DNF formula as an easy to manipulate syntactical representation of

a class of models of that formula (the set of all models of the formula will

correspond to the union of all such classes). Measuring distance between

classes of models amounts to counting literals with different signs in a pair

of disjuncts and conflict can be solved by superimposition of the stronger

disjunct (coming from the new information) over the weaker one (coming

from the old belief base).

4 ITERATION OF THE REVISION PROCESS

One of the main criticisms against the AGM framework is that it gives little

guidance with respect to how future belief change operations should interact

with the one currently taking place. Postulates (K◦7) and (K◦8) give some

guidelines about revisions followed by expansions, but say nothing about

revisions followed by revisions. Many formalisms for belief revision use

extraneous mechanisms for deciding what beliefs to keep and this makes

it harder to iterate the process. Such mechanisms include the selection

functions used in partial meet revisions and partial meet contractions. The

main criticism against these is that whereas one starts with a belief set and

a selection function, the revision operation determines what the new belief

set should be, but says nothing about how to update the selection function.

Postulates (K◦7) and (K◦8) only constrain the interaction between revi-

sions and expansions:

(K◦7) K ◦a(ϕ ∧ ψ) ⊆ Cn((K ◦aϕ) ∪ {ψ})

(K◦8) If ¬ψ 6∈ K ◦aϕ, then Cn(K ◦aϕ ∪ {ψ}) ⊆ K ◦a(ϕ ∧ ψ)

The constraint about interaction between successive revisions is limited

to the case of a revision K ◦a ϕ followed by a revision by ψ when ψ is

consistent with K ◦aϕ. We have seen that in this case, (K◦3) and (K◦4) on

the one hand and (K◦7) and (K◦8) on the other amount to the following

conditions

(K◦
3,4) If ϕ is consistent with K, then K◦aϕ = Cn(K ∪ {ϕ}).

(K◦
7,8) If ψ is consistent with K◦aϕ, then Cn((K◦aϕ)∪{ψ}) = K◦a(ϕ∧ψ)
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Since ψ is consistent with K ◦aϕ, (K◦
3,4) dictates that (K ◦aϕ) ◦aψ =

Cn((K ◦aϕ)∪{ψ}). On the other hand, (K◦
7,8) requires that Cn((K ◦aϕ)∪

{ψ}) = K ◦a(ϕ ∧ ψ), and hence (K ◦aϕ) ◦aψ = K ◦a(ϕ ∧ ψ).12

Even though the postulates do capture the intuitions behind rational

changes of belief, many authors seem to agree that seeing the agent’s corpus

of beliefs as a single coherent unit (a sentence in the finite case or a theory,

otherwise) poses some problems and have thus sought to enrich the structure

of a belief set in order to model the iteration of the operation [Nebel, 1991b;

Nebel, 1992; Ryan, 1992; Rodrigues, 1998; Gabbay and Rodrigues, 1996b;

Gabbay et al., 2003]. We motivate the need for this richer structure next,

before presenting a number of formalisms that deal specifically with the

problem of iterated revision.

4.1 The problem of iteration and the need for extralogical in-

formation to guide the process

In the introduction to this chapter we have briefly mentioned the differences

between the coherence and foundational approaches to belief revision. In

this section we will motivate the importance of having a more structured

representation of the beliefs of an agent to allow for truly rational changes

of belief, and in particular when these changes occur over a period of time,

which is the main concern of iterated belief revision.

Let us start with an example. Suppose the current belief state of an

agent includes the belief that tweety is a penguin, and let us represent

this belief by the formula

pt(1)

In addition, assume that the agent also believes that penguins cannot

fly. One instance of this general rule is that if tweety is a penguin,

it does not fly, which can be represented by the formula

pt→ ¬ft(2)

The two beliefs together imply the conjunction pt ∧ ¬ft:

pt ∧ (pt→ ¬ft)

pt ∧ ¬ft

Intuitively speaking, faced with the information that tweety can in fact fly

(i.e., ft), there would be only two possibilities for the agent to reconciliate

this information with her previous beliefs:

12This property is verified by the iterated revision mechanism proposed by Boutilier
[Boutilier, 1996] (see (CB2) in Section 4.4).
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➀ either by rejecting pt, that is,

Since penguins cannot fly, tweety must not be a penguin

➁ or by rejecting the fact that penguins cannot fly

Tweety is a penguin and it does fly. Thus, some penguins

can indeed fly

However, remember that the AGM theory is coherentist. The beliefs (1)

and (2) will reside side by side in the agent’s belief set with an infinite

number of other beliefs (all equally regarded) including, for instance, pt ∨

¬ft, ft→ ¬pt, pt∧ ¬ft, ¬ft, etc. As it turns out, (1) and (2) and ¬ft are

all accepted, but the information that ¬ft is there only as a consequence of

(1) and (2) is lost. Notice that all models of pt and pt→ ¬ft are also models

of pt∧¬ft, so any revision operation based on a simple evaluation of change

such as the one provided by the distance d will keep the belief in pt and

reject the belief in ¬ft, resulting in pt ∧ ft [Gabbay and Rodrigues, 1996a;

Dalal, 1988a].

The use of a belief base would improve matters, since it would allows us

to distinguish between the beliefs pt→ ¬ft and ¬ft (the latter being in the

belief set, but not in the belief base). However, it would not be enough to

solve the problem of choosing between ➀ and ➁. This secondary issue can

be addressed by preference orderings, such as the epistemic entrenchment

relations seen in Section 2.5, but this is again a mechanism external to the

belief set and does not deal explicitly with iteration.

Not surprisingly, iterated revision is usually modelled by mechanisms that

explicitly distinguish between an agent’s belief state and his/her epistemic

state [Darwiche and Pearl, 1994; Lehmann, 1995; Boutilier, 1996; Konieczny

and Pérez, 2000]; the epistemic state containing the additional structural

information needed to support the rational iteration of the revision process.

From the axiomatic point of view, the basic ideas consist of either aug-

menting the original AGM formulation with new postulates, such as (C1)–

(C4) proposed by Darwiche and Pearl [Darwiche and Pearl, 1994; Darwiche

and Pearl, 1996; Darwiche and Pearl, 1997] and presented here later, or

by proposing entirely new formulations based on the original AGM ideas
[Lehmann, 1995].

We shall start by presenting and discussing Darwiche and Pearl’s ap-

proach.
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4.2 Darwiche and Pearl’s approach

Darwiche and Pearl’s approach [Darwiche and Pearl, 1994] was based on

the formulation of some postulates to constrain the expected behaviour of

iterated revisions. They pointed out that a distinction between belief states

and epistemic states was essential in the iteration process, although a re-

formulation of the AGM postulates in order to reflect this only appeared

later in [Darwiche and Pearl, 1996] and [Darwiche and Pearl, 1997]. The

main idea was to consider belief sets as being obtained from the agent’s

epistemic states, which possess a richer structure. An immediate conse-

quence of this change in paradigm is that the equivalence of epistemic states

cannot be derived from the equivalence between belief sets. Under this

approach, two equivalent belief sets may be reached from two completely

different epistemic states. This departure from coherentism has been sup-

ported by other authors [Friedman and Halpern, 1996; Lehmann, 1995;

Rodrigues, 1998].

The starting point is again the assumption of a finite set of beliefs from

which the belief set is derived. In Katsuno and Mendelzon’s terms, an

epistemic state would be associated with a belief base, whereas the belief

set would be obtained by closing the base under the consequence relation.

Since an epistemic state carries more information than a belief set, revisions

must take into account differences arising from the distinction. The original

postulates for revision for the finite case (R1)–(R6) were reformulated with

this in mind and motivated by the observation that they were incompatible

with the new set of proposed postulates to deal explicitly with the iteration

of the revision process ((C1)–(C4)) (see [Freund and Lehmann, 1994]).

In the following presentation, Ψ will be used to represent an epistemic

state and bel(Ψ) to represent the belief set obtained from Ψ. However,

in order to lighten the notation and where the context is clear, we follow

Darwiche and Pearl and use Ψ instead of bel(Ψ). By this we mean that,

for instance, in (R⋆4) below, it is the epistemic states Ψ1 and Ψ2 that are

meant in the first half of the postulate, but the belief sets bel(Ψ1◦ϕ1) and

bel(Ψ2◦ϕ2) in the second one.

Darwiche and Pearl’s postulates for belief revision of epistemic states

(R⋆1) Ψ◦ϕ implies ϕ

(R⋆2) If Ψ ∧ ϕ is satisfiable, then Ψ◦ϕ ≡ Ψ ∧ ϕ

(R⋆3) If ϕ is satisfiable, then Ψ◦ϕ is also satisfiable

(R⋆4) If Ψ1 = Ψ2 and ϕ1 ≡ ϕ2, then Ψ1◦ϕ1 ≡ Ψ2◦ϕ2

(R⋆5) (Ψ◦ϕ) ∧ ψ implies Ψ◦(ϕ ∧ ψ)

(R⋆6) If (Ψ◦ϕ) ∧ ψ is satisfiable, then Ψ◦(ϕ ∧ ψ) implies (Ψ◦ϕ) ∧ ψ
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The above presentation is essentially the same as Katsuno and Mendel-

zon’s, except for (R⋆4) which is strictly weaker than (R4). In (R⋆4), the

condition for the equivalence of the resulting belief sets is that the original

epistemic states are identical, instead of equivalent as in (R4). This is re-

flected immediately in the semantical characterisation of revision operators

satisfying (R⋆1)–(R⋆6) given in [Darwiche and Pearl, 1997].

Notation 2. The models of an epistemic state Ψ will be denoted by Mod(Ψ).

By this we mean that Mod(Ψ) = mod(bel(Ψ)).

In the formulation below, I �Ψ I ′ represents the fact that I is at least as

good at satisfying Ψ as I ′ is.

DEFINITION 50 (Faithful assignment for revision of epistemic states).

A faithful assignment for belief revision of epistemic states is a function

mapping each epistemic state Ψ to a total pre-order �Ψ on I, such that

1. If I, I ′ ∈ Mod(Ψ), then I ≡Ψ I ′.

2. If I ∈ Mod(Ψ) and I ′ 6∈ Mod(Ψ), then I ≺Ψ I ′ holds.

3. If Ψ = ∆, then �Ψ=�∆.

Obviously, I ∈ Mod(Ψ) if and only if I 
 bel(Ψ). Note that condition

3 above requires that the two epistemic states are identical. Darwiche and

Pearl proved the following theorem, which is the counterpart of Theorem 21

for epistemic states:

THEOREM 51. A revision operator ◦ satisfies postulates (R⋆1)—(R⋆6) if

there exists a faithful assignment that maps each epistemic state Ψ to a total

pre-order �Ψ, such that

Mod(Ψ◦ϕ) = min�Ψ
(mod(ϕ)).

(R⋆1)–(R⋆6) were then augmented with a new set of postulates dealing

specifically with the iteration of the revision process.

(C1) If ϕ � ψ, then (Ψ◦ψ)◦ϕ ≡ Ψ◦ϕ

(C2) If ϕ � ¬ψ, then (Ψ◦ψ)◦ϕ ≡ Ψ◦ϕ

(C3) If Ψ◦ϕ � ψ, then (Ψ◦ψ)◦ϕ � ψ

(C4) If Ψ◦ϕ 6� ¬ψ, then (Ψ◦ψ)◦ϕ 6� ¬ψ

The meaning of the postulates above can be described as follows. (C1)

says that revising an epistemic state Ψ by some information ψ and then re-

vising it again by some more specific information ϕ is the same as revising

Ψ by ϕ only. In [Lehmann, 1995], Lehmann showed that (C1) together with
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the AGM postulates imply (C3) and (C4). However, this is only the case

when the distinction between epistemic states and belief sets is ignored.

The importance in this distinction was shown by Darwiche and Pearl in
[Darwiche and Pearl, 1997, Theorem 15], where they provided the reformu-

lation of the AGM postulates in terms of epistemic states seen above, i.e.,

(R⋆1)–(R⋆6) .

Notice the subtle difference between (C1) and (C2): in (C1) the new

information is just a specialisation of some information learned previously:

ϕ gives more detail about some information ψ received previously. In (C2),

however, the new information ϕ contradicts something that had just been

learnt (ψ). Herzig et al. have discussed the plausibility of (C1), by showing

that if an AGM revision operator satisfies (C1), then any non-trivial revision

(i.e., a revision that does not correspond to a single expansion) can be

described in terms of the new belief only, that is, without taking into account

the previous belief set [Herzig et al., 2003].

(C2) is one of the most controversial postulates. It says that if an agent

learns ψ first and then she is given some information that contradicts this

evidence (i.e., ϕ), then she should completely ignore the information con-

veyed by ψ. In [Freund and Lehmann, 1994], Freund and Lehmann showed

that (C2) was incompatible with the original AGM postulates, but again

this is only the case if one ignores the distinction between epistemic states

and belief sets. However, (C2) and other variants seem to undermine the

principle of minimal change. It does not seem reasonable to always discard

the information conveyed by ψ completely simply because of the arrival of

the contradictory information ϕ. For instance, suppose ψ is p ∧ q and ϕ

is ¬p ∨ ¬q. Since ¬p ∨ ¬q � ¬(p ∧ q) (C2) applies, but the question re-

mains as to whether an agent should completely discard the information

conveyed by p ∧ q in face of ¬p ∨ ¬q. After all, the belief in p ↔ ¬q is

compatible with ¬p ∨ ¬q and keeps some of the informational content of

p∧ q. Compliance with (C2) requires an agent to completely ignore the fact

that she ever believed in p and in q. The example by which Darwiche and

Pearl justify the plausibility of (C2) is arguable [Darwiche and Pearl, 1997,

page 12]. In the example, an agent’s current epistemic state includes the

formula smart ∧ rich, representing the belief that lady X is smart and

she is also rich. The epistemic state is then revised by ¬smart and,

subsequently, by smart. Since smart ∧ rich is followed by some informa-

tion that contradicts this observation, namely, ¬smart, (C2) applies and

requires that the resulting epistemic state is equivalent to the initial state

revised by the second observation only. In other words, the intermediate
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observation should be disregarded:







smart ∧ rich

¬smart

6




smart

6




≡




smart ∧ rich

smart

6




However, the reason why (C2) seems reasonable in this example is be-

cause nothing of the informational content of the first revising sentence (i.e.,

¬smart) can be kept after the second revision (by smart) is performed.

After all, what could be consistently kept from “¬smart” in the face of

“smart”?

However, consider the following modified scenario. We start with an

initially empty epistemic state which is to be revised by smart ∧ rich and

then by ¬smart:







⊤

smart ∧ rich

6




¬smart

6




≡




⊤

¬smart

6




The postulate applies here too, because ¬smart � ¬(smart∧rich). How-

ever, if one adopts the principle of minimal change, it seems counterintuitive

to give up the belief in “rich” just because of the arrival of “¬smart”. It

might have been the case that the observation with respect to lady X ’s

being smart was wrong, but this does not necessarily mean that the belief

in her being rich was inaccurate too. The acceptance of (C2) requires this

though.

We now continue with the analysis of the remaining postulates. (C3)

says that if after revising the epistemic state Ψ by ϕ, the agent holds the

belief in ψ, then this belief should also hold in the epistemic state obtained

after revising Ψ by ψ and then by ϕ.

(C4) is the negative counterpart of (C3). It says that if after revising Ψ

by ϕ the agent does not believe that ¬ψ holds, then it should not believe

that ¬ψ holds after revising Ψ by ψ and then by ϕ.
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Taking into account a temporal perspective of the iterated revision pro-

cess. Rodrigues [Rodrigues, 1998] advocated for the following stronger con-

dition (where M ≺∆ N means M is strictly better than N at satisfying

∆):

(CR⋆) If M ∈ mod(β) and N ∈ mod(¬β), then M ≺Γ◦β N .

The motivation for (CR⋆) comes from the following observation: when

Γ is revised by β, the new top priority with respect to the newly generated

epistemic state Γ◦β is to satisfy β (if possible at all). If valuation M satisfies

β, whereas N does not, it should not matter how M and N related before

with respect to �Γ. In the new ordering �Γ◦β, M should be preferred to N .

Of course, this is biased by the AGM perception that the more recent some

information is, the better it is regarded. A similarly flavoured behaviour of

the iteration of the revision process was proposed by Boutilier [Boutilier,

1996] (see Section 4.4).

If Ψ is the current epistemic state and ϕ is used to revise Ψ, then the or-

dering �Ψ must relate to �Ψ◦ϕ appropriately in order for (C1)–(C4) to hold.

The following representation theorem by Darwiche and Pearl [Darwiche and

Pearl, 1997] dictates the relationship between the faithful assignments of two

consecutive epistemic states.

THEOREM 52. If a given revision operator ◦ satisfies postulates (R⋆1)—

(R⋆6), then ◦ satisfies (C1)—(C4) if and only if the operator and its corre-

sponding faithful assignment satisfy:

(CR1) If M, N ∈ mod(ϕ), then M �Ψ N if and only if M �Ψ◦ϕ N .

(CR2) If M, N ∈ mod(¬ϕ), then M �Ψ N if and only if M �Ψ◦ϕ N .

(CR3) If M ∈ mod(ϕ) and N ∈ mod(¬ϕ), then M ≺Ψ N implies M ≺Ψ◦ϕ N .

(CR4) If M ∈ mod(ϕ) and N ∈ mod(¬ϕ), then M �Ψ N implies M �Ψ◦ϕN .

(CR1) states that the relationship between models of a formula ϕ should

not change with respect to an epistemic state before and after a revision of

this state by ϕ. (CR2) says that whenever two valuations M and N do not

satisfy a formula ϕ, their relationship with respect to satisfying the previous

epistemic state is transferred to the epistemic ordering of the new epistemic

state after the revision by ϕ. (CR3) and (CR4) can be seen in the following

way: (CR4) “preserves” the preference in favour of a model of a formula ϕ

against a non-model of ϕ after a revision by ϕ, whereas (CR3) “preserves”

the non-preference of non-models of ϕ against models of ϕ.
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4.3 Lehmann’s approach: belief revision, revised

Lehmann also argued that the AGM postulates in their original belief set

interpretation were incompatible with some desired properties of the itera-

tion process (including postulate (C1) above) and advocated for a complete

reformulation of the revision postulates [Lehmann, 1995]. This led to the

definition of the new set of postulates (I1)–(I7).

For Lehmann, an epistemic state corresponds to a finite sequence of re-

visions by non-contradictory formulae. The corresponding belief set is ob-

tained by the successive application of a particular revision procedure, which

is denoted by ·. For instance, [α] represents the initial epistemic state, ob-

tained by the initial acceptance of α. Subsequent revisions are represented

by the concatenation of formulae to the end of the list. Thus, [α · β] repre-

sents the epistemic state obtained from the revision of [α] by β, etc.

The new set of postulates proposed by Lehmann is given below:

Lehmann’s postulates for iterated belief revision

(I1) [α] is a consistent theory

(I2) α ∈ [σ · α]

(I3) If β ∈ [σ · α], then α→ β ∈ [σ]

(I4) If α ∈ [σ], then [σ · γ] = [σ · α · γ]

(I5) If β � α, then [σ · α · β · γ] = [σ · β · γ]

(I6) If ¬β 6∈ [σ · α], then [σ · α · β · γ] = [σ · α · α ∧ β · γ]

(I7) [σ · ¬β · β] ⊆ Cn([σ], β)

The only postulates that actually add new properties to the original AGM

presentation are (I5) and (I7). The others are simply a reformulation of the

original postulates in terms of the new representation. It is worth emphasis-

ing though, that as for Darwiche and Pearl, the notion of an epistemic state

plays a fundamental role in the postulates. The condition below, which is

a consequence of (K◦6), does not follow from (I1)–(I7):

(IS) If [σ] = [γ], then [σ · α] = [γ · α]

(I5) is Lehmann’s counterpart for Darwiche and Pearl’s (C1) presented

before. It says that if α is a logical consequence of β, then revising by α

and then revising by β is the same as revising by β only.

(I7) is a weaker version of (C2). It asserts that beliefs acquired from

the revision by ¬β should not be retained if the belief state is immediately

revised by β. Notice that the precondition for (C2) is strictly weaker than

that for (I7), whereas its postcondition is in turn at least as strong.
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In order to discuss these postulates, let us call a trivial revision procedure

the operation that assigns Cn(A) to [σ ·A], whenever ¬A ∈ [σ], and Cn([σ]∪

{A}), otherwise. A negative result of Lehmann’s framework is that any

revision procedure satisfying postulates (I1)–(I7) becomes trivial after an

arbitrarily long sequence of revisions. This is obviously against the principle

of minimal change. Lehmann suggests that, because postulates (I1)–(I7)

are closely related to AGM’s original formulation, no reasonable revision

satisfying these postulates can comply with the principle of minimal change.

However, we argue that the problem may in fact be with postulate (I7)

below.

(I7) [σ · ¬β · β] ⊆ Cn([σ], β)

This is because (I7) is closely related to Darwiche and Pearl’s postulate

(C2), whose incompatibility with the principle of minimal change we argued

in Section 4.2.

4.4 Iterated revision according to Boutilier

In [Boutilier, 1996], Boutilier presented an influential work on belief revision

that made use of a similarity notion and also distinguished belief sets from

epistemic states. The terminology there was slightly different. He called

the former objective belief sets and the latter revision models. The revision

model contained structural information used to guide the revision process

of a given belief set. We present the details next. As before, we consider a

language L over a set of propositional variables P.

DEFINITION 53 (Revision model). Given a belief set K, a revision model

for K is a tuple M = 〈W,≤, v〉, where W is a set of worlds; ≤ is a total

pre-order on W ; and v : P −→ 2W is a valuation function.

In Boutilier’s work, a valuation v identifies those worlds in W in which

a given propositional variable holds. v is extended to complex formulae as

usual. M �w ϕ denotes the fact that w ∈ v(ϕ) in M . The collection of all

such worlds is denoted by |ϕ|. For worlds v, w ∈ W , v ≤ w is interpreted

as world v being at least as plausible a state of affairs as world w is. The

relation ≤ induces at total order on equivalence classes in W and can be

seen as a ranking relation (much in the same way as in Grove’s spheres).

Revision models are required to verify a number of rationality conditions.

One such condition is that |K| is constituted exactly by the minimum equiv-

alence class in W . In other words,

w ≤ v for all v ∈W if and only if M �w K
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It is also required that for all p ∈ P , v(p) 6= ∅ in addition to a well

foundedness condition on ≤.

Conditional assertions of the kind ϕ��ψ are evaluated in a model M in

the following way:

DEFINITION 54 (Evaluation of conditionals in a revision model). Let M

be a revision model and ϕ and ψ formulae of propositional logic.

M � ϕ��ψ if and only if min(M,ϕ) ⊆ |ψ|

where

min(M,ϕ) = {w ∈W |M �w ϕ, and M �v ϕ implies m ≤ v for all v ∈W}

The above notion is used to define a revision function ◦b for a particular

revision model M (we will drop the subscript M to lighten the notation):

DEFINITION 55. Let K be a belief set; M a revision model for K; and ϕ

and ψ formulae of propositional logic.

K ◦bϕ = {ψ |M � ϕ��ψ}

Note that ◦b is defined in terms of first-degree conditionals, since ϕ and

ψ are restricted to propositional logic formulae only and cannot contain

conditionals themselves. In [Boutilier, 1994], Boutilier proved the following

correspondences:

THEOREM 56. If M is a K-revision model and ◦b the revision function

determined by M according to Definition 55, then ◦b verifies the AGM pos-

tulates for belief revision.

THEOREM 57. Let ◦ be any revision function satisfying the AGM pos-

tulates. For any belief set K, there is a K-revision model M such that

K◦ϕ = K ◦bϕ.

Note that if ϕ is contradictory, then min(M,ϕ) = ∅. Therefore, M �

ϕ��ψ for all ψ and hence K ◦b ϕ=K⊥, as expected.

Boutilier rightly points out that a K-revision model M is only sufficient

to determine the revision of the belief set K by an arbitrary belief ϕ. Addi-

tional iterations of the revision procedure will require new revision models

of their own. In his own words:

“Conditionals and judgements of entrenchment form an integral

part of an agent’s epistemic state.”

The difficulty is in establishing how the subsequent (K◦ϕ)-revision model

(M◦ϕ) should relate to K’s original revision model M . One of the basic



48 ODINALDO RODRIGUES, DOV GABBAY AND ALESSANDRA RUSSO

conditions is that M◦ϕ satisfies the same requirements originally imposed

on the revision model M . This is called the basic requirement:

DEFINITION 58 (Basic requirement). If M is a K-revision model and ◦b
is used to revise K by ϕ, then the revision model M◦ϕ must be such that

min(M◦ϕ,⊤) = min(M,ϕ).

There are similiarities with Gärdenfors’ belief revision systems [Gärdenfors,

1988], although Boutilier’s approach is semantical in flavour.

Since the ordering ≤ in a revision model M is the underlying mechanism

determining the revision of K by ϕ, Boutilier argues that the principle of

minimal change should also be applied to ≤ to obtain the ordering ≤′ of the

revision model M◦ϕ. Because ≤′ is expected to verify the basic requirement

given in Definition 58, all worlds in which ϕ holds (i.e., |ϕ|) must constitute

the minimum equivalence class with respect to ≤′. The remaining worlds

are free to relate to each other as one pleases, but it makes sense to preserve

the way they used to relate in the old K-revision model (via ≤). This is

formalised as follows:

DEFINITION 59. Let M = 〈W,≤, v〉 be a revision model for K. The

minimal conditional revision operator (MC-revision operator) ◦b maps M

into M ◦bϕ for any propositional formula ϕ, such that M ◦bϕ = 〈W,≤′, v〉

where

1. if v ∈ min(M,ϕ) then v ≤′ w for all w ∈W and w ≤′ v if and only if

w ∈ min(M,ϕ); and

2. if v, w 6∈ min(M,ϕ), then w ≤′ v if and only if w ≤ v.

Note the similarity of condition 1. above and (F1) and (F2) (see page 21).

Condition 2. encapsulates the application of the principle of minimal change

to ≤. This process can be applied iteratively and Boutilier showed in
[Boutilier, 1996] that iterated revisions obtained in this way will have the

following properties:

(CB1) If (K ◦bϕ) ⊢ ¬ψ, then (K ◦bϕ) ◦bψ = K ◦bψ

(CB2) If (K ◦bϕ) 6⊢ ¬ψ, then (K ◦bϕ) ◦bψ = K ◦b(ϕ ∧ ψ)

We saw in the beginning of this section that (CB2) is a natural conse-

quence of (K◦
3,4) and (K◦

7,8). (CB1) implies Darwiche and Pearl’s (C2):

(C2) If ϕ � ¬ψ, then (Ψ◦ψ)◦ϕ ≡ Ψ◦ϕ

For assume that K ◦bϕ ⊢ ¬ψ. If ϕ � ¬ψ, then ψ � ¬ϕ. In this case, (C2)

requires that (K ◦bϕ) ◦ψ≡K ◦bψ, which is the consequent of (CB1). On the
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other hand, if K ◦bϕ 6⊢ ¬ψ, then ∃I ∈ mod(ϕ) such that I 6∈ mod(¬ψ), in

which case ϕ 6� ¬ψ and hence (C2) is vacuously true.

(C2) however does not imply (CB1), for it is possible that ϕ 6� ¬ψ, but K

◦bϕ ⊢ ¬ψ, in which case (CB1) constrains (K ◦bϕ) ◦b ψ, whereas (C2) does

not. This happens because it is not possible to know a priori what models

of ϕ will be chosen as the models of K ◦b ϕ, but it is possible that all such

chosen models satisfy ¬ψ without necessarily implying that all models of ϕ

do.

Furthermore, we can see from Definition 59 that the worlds in min(M,ϕ)

become the preferred class with respect to ≤′ and the relationships between

all other worlds remain unchanged. This rearrangement of ≤ only works

well if revisions are kind, i.e., forward-compatible in Boutilier’s terminology.

DEFINITION 60 (Forward compatibility). Let M be a revision model de-

termining a MC-revision function ∗. The revision sequence ϕ1, . . . , ϕn is

forward-compatible with respect to ∗ (or model M), if and only if ¬ϕi+1 6∈

(. . . ((K ◦bϕ1) ◦bϕ2) . . .)◦bϕi for each 1 ≤ i < n.

One could argue that revision sequences that are always forward com-

patible are not interesting, since they can be accomplished by expansions

only. Boutilier has noticed that:

THEOREM 61. If ϕ1, . . . , ϕn is forward compatible for K, then ((K ◦bϕ1)

◦bϕ2 . . .)◦bϕn = K ◦b(ϕ1 ∧ . . . ∧ ϕn).

Unfortunately, when an incompatible formula comes in, the model for-

gets all revisions occurring up to the last formula in the sequence that is

compatible with the new information:

THEOREM 62 (Forgetfulness). Let ϕ1, . . . , ϕn+1 be an incompatible se-

quence such that ϕ1, . . . , ϕn is compatible. Let k be the maximal element

of {i ≤ n | ¬ϕn+1 6∈ ((K ◦bϕ1) ◦bϕ2 . . .)◦bϕi}. It follows that ((K ◦bϕ1)

◦bϕ2 . . .)◦bϕn+1 = K ◦b(ϕ1 ∧ . . . ∧ ϕk ∧ ϕn+1).

We will discuss this in some more detail in Section 4.6. For further

considerations of this model of iterated revision, including special conditions

under which sequences of revisions can be reduced to one step revisions, the

reader is referred to [Boutilier, 1996].

4.5 Prioritised base revision

In [Nebel, 1991b; Nebel, 1992], Nebel introduced the concept of a prioritised

belief base. A prioritised belief base is a pair Γ = 〈K,⊑〉, where K is a set of

formulae and ⊑ is a total pre-order on K. ⊑ is called an epistemic relevance
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ordering and represents priorities in K, where x ⊑ y denotes that y has at

least the same priority as x. If ⊑ is also antisymmetric, Γ is called a linear

prioritised belief base. ⊑ is assumed to always have maximal elements.

Since ⊑ is total, K can be partitioned into a set of equivalence classes

induced by ⊑. That is, a family of subsets of K whose elements are at

the same priority level modulo ⊑. Let us denote such a partitioning by K.

If K is finite, Γ can be represented as a list Γ = [K1, . . . ,Kn] where each

Ki is a partition of K generated by the equivalence relation induced by ⊑

(Kn being the partition associated with the maximal elements of K in ⊑).

Moreover, if Γ is linear, then each Ki is just a singleton.

A revision of H by ϕ, in symbols, H>ϕ, is obtained via the Levi identity

(see page 2). H is first contracted by ¬ϕ and then expanded by ϕ. The

contraction of H by ¬ϕ uses the epistemic relevance ordering and is called

the prioritised removal of ¬ϕ from H, in symbols, H⇓¬ϕ. This is defined

as follows

DEFINITION 63 (Prioritised removal of formulae). Let 〈Γ,⊑〉 be a priori-

tised belief base and ϕ a formula. The prioritised removal of ϕ from Γ is

the family of subsets of K defined as follows:

X =
⋃

Ki∈K

{Hi}

where each Hi is a subset of Ki and X ∈ Γ⇓¬ϕ if and only if ∀X ′ ⊆ K and

∀i:

X ∩ (Ki ∪ . . . ∪Kn) ⊂ X ′ ∩ (Ki ∪ . . . ∪Kn) implies ¬ϕ ∈ Cn(X ′)

That is, starting from the most prioritised equivalence class, we consider

maximal subsets of each class that together with the set being constructed

do not imply ¬ϕ. There will possibly be a number of such X ′s, as there are

possibly many combinations of subsets of each class that do not imply ¬ϕ.

Therefore, to obtain the belief state in the prioritised removal of ¬ϕ from

Γ it is necessary to take the set
⋂
{Cn(X) | X ∈ Γ⇓¬ϕ}.

The prioritised base revision of Γ by ϕ is then defined as follows

DEFINITION 64 (Prioritised base revision). Let 〈Γ,⊑〉 be a prioritised

belief base and ϕ a formula. The revision of Γ by ϕ (Γ>ϕ) is defined as

Γ>ϕ =def Cn(
⋂

{Cn(X) | X ∈ Γ⇓¬ϕ} ∪ {ϕ})

Thus, in the general case it is not possible to iterate the revision process.

However, if K is finite, then Γ>ϕ can be at least finitely represented and
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the result is simply

Cn(
∨

(Γ⇓¬ϕ) ∧ ϕ)

4.6 Prioritised databases

In the case of finite belief bases (representable as a formula) both arguments

of the revision operation are of the same type. Therefore, it is possible to

take ◦ as a right or left-associative operation. Furthermore, we argued

in [Gabbay and Rodrigues, 1997] that ◦ is in general non-associative. It

turns out that there are advantages to adopting the right-associative ap-

plication of ◦. The right-associative interpretation of the revision oper-

ation yields a refined notion of similarity between worlds for a sequence

∆ = δ1◦(δ2◦ . . . (δk−1◦δk) . . .). In this section, we analyse the properties of

such a sequence and show that this interpretation reconciliates the coher-

entist approach with “memory”.

For simplicity, we consider epistemic states that arise from a finite se-

quence of input formulae ∆ = [δ1, δ2, . . . , δk], where for all j > i, δj is

received after δi. In [Gabbay and Rodrigues, 1997], we called this a priori-

tised database (PDB) and required that each δi was a formula in disjunctive

normal form (DNF). The DNF requirement was due to the fact that the re-

vision operator used took advantage of the properties of a formula in DNF.13

However, in general we can consider any revision operation ◦ satisfying the

AGM postulates for finite bases. Notice that Lehmann’s approach seen in

Section 4.3 as well as the linear version of Nebel’s prioritised belief bases

(Section 4.5, [Nebel, 1991b]) are also based on sequences of revisions.

If we assume that the belief set associated with a PDB ∆ is obtained by

successively applying ◦ to the formulae in ∆ and provided ◦ is not associa-

tive, there will be two natural ways of interpreting the sequence of revisions

in ∆: either by considering the operation left-associative or by considering

it right-associative. We will use ∗∆ (read left delta) to denote the left asso-

ciative interpretation of the sequence of revisions in ∆ and ∆∗ (read right

delta) to denote the right-associative one. Formally,

DEFINITION 65. Let ∆ = [ϕ1, ϕ2, . . . , ϕk] be a PDB.

∗∆ =

{
ϕk ➪ if k = 1

((ϕ1◦ϕ2)◦ . . .)◦ϕk ➪ if k > 1

∆∗ =

{
ϕk ➪ if k = 1

ϕ1◦(. . . ◦(ϕk−1◦ϕk)) ➪ if k > 1

13The operator was defined in [Gabbay and Rodrigues, 1996a].



52 ODINALDO RODRIGUES, DOV GABBAY AND ALESSANDRA RUSSO

In [Gabbay and Rodrigues, 1997], we argued that the right associa-

tive interpretation was the most interesting one, because the inevitable re-

application of the revision steps, although costly, provided an opportunity

to revisit past decisions.14 In the following, we assume ◦ is any revision

operator complying with the AGM postulates for finite bases.

We start by defining an ordering �∆ that will help us to analyse how

valuations of L compare with each other with respect to the epistemic state

∆ (much in the sense of Lehmann’s epistemic states and Darwiche and

Pearl’s faithful assignments). As before, I �∆ I ′ denotes the fact that I is

at least as good at satisfying ∆ as I ′ is.

DEFINITION 66. Let ∆ = [δ1, δ2, . . . , δk] be a PDB and consider the belief

set ∆∗ where the revision operator ◦ satisfies the AGM postulates. Let ≤δi

be the faithful assignment for the operation for each formula δi in ∆ as in

Definition 20, and take i, j ∈ {1, . . . , k}.

I �∆ I ′ if and only if for all i, I ′ <δi
I implies ∃j > i such that I <δj

I ′.

The ordering above was motivated by the observations about associativity

of ◦ made in [Gabbay and Rodrigues, 1997] and first appeared in [Rodrigues,

1998], where a comprehensive account of its properties can be found.

Note that if ∆ is the empty sequence ε, then I ≡∆ I ′, for all I, I ′ ∈ I

(vacuously). The greater the index of a formula in a PDB, the more recent

it is the information it represents. Thus, what the definition above says is

that the failure of a valuation I to be at least as good as another valuation

I ′ at satisfying a formula received at time i can only be compensated by

I being better than I ′ at satisfying some other formula received at a later

time j. Similarity with respect to the formula at each point is determined

by the faithful assignment of the operator used in the sequence of revisions

at that point.

A number of properties of �∆ can be found in [Rodrigues, 2005]. We

show some of interest below.

Notation 3. ∆;β will be used to denote the sequence obtained by appending

β to the end of the sequence ∆, i.e., ∆:: [β].

Note that ∆;β is also a PDB.

REMARK 67. The revision of a PDB ∆ by a formula β is (∆;β)∗.

DEFINITION 68. For each PDB ∆, κ is a function defined as follows:

κ(∆) = {�∆, I}.

14In day-to-day reasoning, we do this routinely.
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where �∆ conforms to Definition 66.

THEOREM 69. κ is a faithful assignment for revision of epistemic states.

THEOREM 70. The revision scheme obtained by (∆)∗, where ∆ is a PDB,

satisfies postulates (R⋆1)–(R⋆6).

Remember that (R⋆1)–(R⋆6) are Darwiche and Pearl’s basic rewriting

of the AGM postulates for the case of epistemic states (see Section 4.2,

page 40). Proofs of both theorems above can be found in [Rodrigues, 1998;

Rodrigues, 2005].

We now discuss more specifically how the ordering � evolves as new

formulae are added to a PDB. The evolution itself depends on the particular

characteristics of the faithful assignment for the revision operator. For

illustration purposes, we pick ≤δ as determined by the distance function

used by Dalal and others [Dalal, 1988a; Gabbay and Rodrigues, 1997], in

which I ≤δ J if and only if the minimum number of disagreements of truth-

values of propositional letters between I and any model of δ is at most the

minimum number of disagreements between J and any model of δ.

Suppose the initial PDB is composed solely by the formula p. The only or-

dering in this case is the faithful assignment ≤p and hence �[p]=≤p. There-

fore, we have the ordering below. For simplicity, we consider L over [p, q, r]

only. A valuation I is represented as a sequence of binary digits PQR where

P = 1 if and only if I 
 p, and P = 0 otherwise; Q = 1 if and only if I 
 q,

and Q = 0 otherwise and R = 1 if and only if I 
 r, and R = 0 other-

wise. A valuation appearing lower in the graph is preferred to a valuation

appearing above it. Thus, in the diagram below, we have that for instance

100 ≺[p] 000. Note that the valuations displayed at the same level are all

equivalent modulo �[p].

000, 001, 010, 011

100, 101, 110, 111
6

There is not much information in the PDB when only p is present and

the ordering above reflects that; it only makes a distinction between the

valuations that satisfy p and those which do not. This is the rather weak

requirement imposed by (F2) of Definition 31. The class with the models

of p must be as represented above because of (F1) and the fact that the

faithful assignments must be total. Also note that the models of ¬p are not

constrained in any way by Definition 31, but they are all equivalent in this

case because of the definition of ≤p.
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By adding the formula p → q to the PDB above, the ordering �[p,p→q]

for the PDB [p, p→ q] changes to reflect the new priorities:

100, 101

000, 001, 010, 011
6

110, 111
6

Now we have three classes of valuations: in the minimal (preferred) one

we have 110 and 111, which are exactly the only two models of p and

p → q. According to this similarity ordering, the next class of valuations

that best satisfy [p, p→ q] are 000, 001, 010, 011. These correspond exactly

to the valuations that failing to satisfy p, at least satisfy the most important

formula in the PDB (p → q). Finally, the last level contains the valuations

that do not satisfy p→ q, but at least satisfy p.

The addition of r to the previous PDB results in the following rearrange-

ment of the similarity ordering.

100

000, 010
6

110
6

101
6

001, 011
6

111
6

The minimal elements of this ordering are exactly the models of the

three formulae. The next class contains the valuations that satisfy the two

formulae with highest priority in the PDB, followed by the class with the

valuations that satisfy the formula with highest priority and the one with

least priority.

The other four classes of the ordering in the top half follow a similar

pattern. They contain the valuations that fail to satisfy r. Whenever that

is not possible, the next best thing is to satisfy the other two formulae.

This is represented by valuation 110. The next two valuations satisfy the

second formula and the least preferred one satisfies only the least important

formula.
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Perhaps a little more interesting is to see how the ordering above is ob-

tained. Each class of valuations is recursively ordered in the reverse order of

the sequence of formulae in the PDB. That is, firstly the set of all valuations

is ordered according to the most recent information received: r. This will

result in a number of equivalence classes totally ranked amongst themselves

(since each faithful assignment is total). Next, each class is internally or-

dered according to the faithful assignment of the previous formula in the

PDB: p→ q. Finally, the resulting classes are ordered according to the first

formula in the sequence: p (see Figure 7).

I
≤r-

000, 010,
100, 110

001, 011,
6

101, 111

≤p→q-

100

000, 010, 110
6

101
6

001, 011, 111
6

≤p-

100

000, 010
6

110
6

101
6

001, 011
6

111
6

Figure 7. Embedded orderings in PDBs.

More formally, we can show the relationship between the ordering of a

given PDB ∆ and the ordering of ∆ revised by a formula β, in the following

way:

PROPOSITION 71. Let ∆ = [δ1, . . . , δk] be a PDB, β a formula, �∆ the

faithful assignment for ∆ and ≤β the faithful assignment for the formula β.

I �∆;β I
′ if and only if I ′ ≤β I implies I ≤β I

′ and I �∆ I ′

where �∆;β is the faithful assignment for the PDB [δ1, . . . , δk, β].

The characterisation given in Proposition 71 above allows us to relate

revisions achieved by PDBs with Darwiche and Pearl’s formalisation given

in Section 4.2 in the following way:

THEOREM 72. The revision method achieved by PDBs satisfies postulates

(C1), (C3) and (C4).
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The proofs of Proposition 71 and Theorem 72 can be found in [Rodrigues,

2005; Rodrigues, 1998]. Note that PDBs do not satisfy (C2). However, we

have argued against this postulate in Section 4.2.

There are similarities between the revision scheme obtained by PDBs and

Boutilier’s approach (see Section 4.4). However, PDBs are more forgiving,

as showed in the next example.

EXAMPLE 73. Consider the sequence of formulae p, q ∧ r and ¬q and

suppose the revision model for p is M = 〈W,≤, v〉, where ≤=≤p. According

to Definition 59, the MC-revision operator will update ≤ successively as

follows.

≤[p] −→ ≤[p,q∧r] −→ ≤[p,q∧r,¬q]

000, 001, 010, 011 000, 001, 010, 011 000, 001, 010, 011

100, 101, 110, 111

6
100, 101, 110

6
110

6

111

6
111

6

100, 101

6

As a result, (p ◦b(q ∧ r)) ◦b¬q = Cn(p ∧ ¬q). Notice that the revision by

q ∧ r is completely “forgotten” (see Theorem 62).
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However, the ordering in a PDB would evolve as follows.

≤[p] −→ ≤[p,q∧r] −→≤[p,q∧r,¬q]

000, 001, 010, 011 000 010

100, 101, 110, 111

6
100

6

110

6

001, 010

6

011

6

101, 110

6
111

6

011

6
000

6

111

6

100

6

001

6

101

6

and the final result of the sequence of revisions would be [p, q ∧ r,¬q]∗ =

Cn(p∧¬q∧ r). In PDB’s case, at least the compatible component r of q∧ r

is retained.

There are similarities between the way PDBs construct the orderings for

epistemic states and the way Konieczny and Pérez’s basic memory operator

operates [Konieczny and Pérez, 2000]. However, the basic memory operator

satisfies (C2), whereas the revision process obtained by PDBs does not. We

have argued against (C2) in page 42. A number of variations of the memory

operator is also given in [Konieczny and Pérez, 2000].

4.7 Ordered theory presentations

Another formalism that can be used in the reasoning about epistemic changes

is Ryan’s ordered theory presentations (OTPs) [Ryan, 1992]. The main idea

is again to have a finite belief base associated with some priority information

for its formulae. For the case of belief revision, belief bases are presented as

lists of formulae [ϕ1, . . . , ϕk], where ϕi has priority over any ϕj with j < i
[Ryan, 1992, Section 4.4]. The priority information is used to solve possi-

ble inconsistencies arising from conflicting elements in the base. As before,

revisions are performed by appending formulae to the list.
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The main difference between OTPs and the other formalisms presented

here is based on the way conflicts are solved. In an OTP, change is eval-

uated through a restricted notion of classical consequence called natural

consequence. In order to introduce that, we need a few definitions first.

DEFINITION 74 (Positive and negative occurrences of propositional sym-

bols). Let p ∈ P and ϕ a formula of propositional logic.

• p occurs positively in p.

• If p occurs positively (negatively) in ϕ, then it occurs negatively (pos-

itively) in ¬ϕ.

• If p occurs positively (negatively) in ϕ or in ψ, then it occurs positively

(negatively) in ϕ ∧ ψ and ϕ ∨ ψ.

• If p occurs negatively (positively) in ϕ or positively (negatively) in ψ,

then it occurs positively (negatively) in ϕ→ ψ.

• If p occurs at all in ϕ or ψ, then it occurs both positively and negatively

in ϕ↔ ψ.

Using the notion of positive (resp., negative) occurrences, Ryan then

defines the sets of symbols p ∈ P in which a formula ϕ is monotonic (resp.,

anti-monotonic).

DEFINITION 75 (Monotonicity and anti-monotonicity of formulae with

respect to propositional variables).

1. ϕ is monotonic in p, if it is equivalent to a formula in which all oc-

curences of p (if any) are positive.

2. ϕ is anti-monotonic in p, if it is equivalent to a formula in which all

occurences of p are negative.

3. ϕ+ and ϕ− are the sets of symbols in which ϕ is monotonic and anti-

monotonic, respectively.

DEFINITION 76 (Natural consequence). Let ϕ and ψ be formulae. ψ is a

natural consequence of ϕ, in symbols ϕ�̆ψ, if

1. ϕ � ψ;

2. ϕ+ ⊆ ψ+; and

3. ϕ− ⊆ ψ−
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Given the notion of natural consequence, it is now possible to define a

partial pre-order ⊑ϕ on valuations of L that can be used to compare how

good interpretations are at satisfying a formula ϕ.

DEFINITION 77 (Similarity via natural consequence). Let I and I ′ be two

valuations of L, I ⊑ϕ I ′ if, for each ψ

ϕ�̆ψ implies (if M 
 ψ, then N 
 ψ)

In the definition above, I ⊑ϕ I ′ is read as “I is at least as good at

satisfying ϕ as I ′ is”. For illustration purposes, the notion of similarity

according to Definition 77 and that provided by the distance d for a belief

base containing p ∧ q are compared in Figure 8.

Analogously to what happened with the similarity ordering defined in

terms of the distance diff presented before, the similarity measurement de-

fined via natural consequence is associated with a partial pre-order on the

set of valuations of L. This impairs the satisfaction of postulates (K◦4) and

(K◦8).

For simplicity, the language L in the diagrams of Figure 8 is defined over

the propositions p and q only and the valuations are represented as sequences

of binary digits as before (the first digit for p and the second one for q).

The lower a valuation appears in the diagram, the more preferred it is. As

such, 10 and 01 are incomparable in ➀ because they satisfy different natural

consequences of p∧q, namely p and q, respectively. In ➁, they are considered

equivalent, because they have the same distance to the only model of p ∧ q

(i.e., d = 1 to model 11). In this sense, OTPs offer a qualitative evaluation

of change, whereas d offer a purely quantitative one. The distance function

d yields a total ordering on the set of valuations I, which ultimately leads

to the satisfaction of all of the AGM postulates.

What remains to be shown is how to compare how good valuations are

at satisfying a given belief base Γ = [ϕ1, . . . , ϕk]. As we said, the ordering

⊑ϕ is used subject to the priorities of the formulae in Γ.

DEFINITION 78 (Comparing valuations with respect to belief bases). Let

I and I ′ be two valuations and Γ = [ϕ1, . . . , ϕk] a belief base.

I ⊑Γ I ′ if ∀ϕi∃ϕj such that (I 6⊑ϕi
I ′ implies j > i and I ⊏ϕj

I ′)

Intuitively, the definition above says that a valuation I is at least as

good at satisfying a belief base Γ as a valuation I ′ is if for any formula

ϕi, whenever I fails to be as good as I ′ at satisfying ϕi, then there exists

a formula ϕj , which is more important than ϕi and I is strictly better at

satisfying ϕj than I ′ is.
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➀ ⊑p∧q:

00

10

-

01

�

11

-
�

➁ Using d:

00

10, 01

6

11

6

Figure 8. Comparative similarity for p ∧ q using natural consequence and

the function d.

Revisions are defined in a semi ad hoc manner by considering linear

ordered theory presentations (i.e., a list of formulae). An overall order for

the theory presentation is constructed by utilising the individual induced

orders on interpretations obtained from the natural consequence relation

over each formula on the list. In order to perform a revision, the revising

formula is simply concatenated to the end of the list, giving it the highest

priority in the base.

OTPs used for belief revision as defined above were shown to verify pos-

tulates (K◦1), (K◦3), (K◦5), (K◦6) and (K◦7). (K◦2) cannot be verified

directly when the revising belief is contradictory, but this can be circum-

vented by the introduction of an inconsistent OTP ⊥ and defining Γ◦⊥ = ⊥.

However (K◦4) and (K◦8) are not verified. Some arguments against (K◦4)

and (K◦8) are presented in [Ryan, 1992]. An application of this belief revi-

sion approach is discussed in Section 7.

5 SPECIALISED BELIEF REVISION

Apart from the use of a richer structure to enable the distinction between

epistemic states and belief sets, in all of the formalisms presented so far,

some of the underlying assumptions remained the same: the logic was es-

sentially classic (although the notion on consequence was restricted in the

case of OTPs); the input was a single formula (although sequences of sin-

gle inputs were considered in Section 4); and the revision process itself

was mainly described in an axiomatic way. In this section, we present and

discuss a number of formalisms for belief revision that depart from these

assumptions. We start with resource-bounded revision.
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5.1 Resource-bounded revision

Resource-based revision is a specialised belief revision approach proposed

by Wassermann [Wassermann, 1999]. The shift from the AGM paradigm,

where agents are idealised, is in recognising that in most practical appli-

cations agents are in fact entities with limited memory and capacity of

inference, i.e., they have limited resources.

In the resource-bounded revision framework the beliefs of an agent are di-

vided into explicit, active or inferred (or implicit) beliefs. Active beliefs are

beliefs currently available for use. These can be beliefs recently acquired; in-

termediate conclusions in an argument; or beliefs related to a current topic.

Beliefs have to become active first in order for them to be subsequently ex-

plicitly accepted, revised or rejected. However, explicit beliefs do not need

to be necessarily active at all times and not all active beliefs are necessarily

explicit.

In the formalism, a belief state is defined as a tuple 〈E, Inf, A〉, where E

is the set of explicit beliefs, Inf is the agent’s inference relation (which can

be used to determine the set of implicit beliefs), and A is the set of active

beliefs.

Normally, when new information arrives it is firstly added to the set of

active beliefs as a provisional belief, and then questioned by the agent. The

depth of the enquiry on a provisional belief is determined by the agent and

her interest in the subject [Wassermann, 1999]. If the new information

“survives” the enquiry, it is incorporated into the set of explicit beliefs.

Wassermann defines six main operations on a belief state 〈E, Inf, A〉 that

can be used to change the status of a belief. These operations enable beliefs

• which are explicit to become active (+r);

• which are active to be rejected (+c);

• to be observed as provisionally active (+o);

• to change status from active to explicit (+a);

• to be inferred from the active beliefs (+i);

• to be put into question by being temporarily removed from the set of

explicit beliefs (+d).

The operations can be combined into complex operations to manipulate

a belief state and were shown to be complete with respect to all possible

changes that a belief state may undergo [Wassermann, 1997]. In other
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words, for any two belief states K1 = 〈E1, Inf, A1〉 and K2 = 〈E2, Inf, A2〉,

there is a sequence of basic operations that transforms K1 into K2.

A revision is performed on the active beliefs. Given a belief state K =

〈E, Inf, A〉, a new belief α is provisionally made active by taking K +o

α = 〈E, Inf, A ∪ {α}〉. At this point, the set of active beliefs may well

be inconsistent. Consistency can be restored through revision. During the

process, both explicit and active beliefs can be rejected, and explicit (but

not active) beliefs retrieved and made active so that they can be taken into

consideration during the reasoning process.

In [Wassermann, 1999], Wassermann also showed how to combine the

operations given above to obtain Hansson’s local semi-revision operation
[Hansson, 1997b], according to which a belief base is revised in such a way

that the incoming information is not necessarily given the highest priority.

As a result, the new belief can either be accepted (i.e., made explicit) or

rejected — a departure from the principle of the primacy of the update,

imposed by (K◦2).15

The following example illustrates how the revision process in this formal-

ism takes place.

EXAMPLE 79 (Resource bounded revision). Let the current belief state

be Ψ = 〈B,Cn, ∅〉, where B = {¬p, q, q → p, r} and assume the belief p

is received as input. The first step is to observe it. This produces the

new belief state Ψ1 = Ψ +o p = 〈B,Cn, {p}〉 (i.e., p is added to the set

of active beliefs). In order to incorporate the new belief as explicit, an

enquiry process is performed on p. This involves retrieving explicit beliefs

that are “relevant” to p. The amount of retrieval is bounded by the agent’s

resources. For this example, assume that the beliefs {¬p, q → p, q} are

retrieved (r is not relevant for this inference). An intermediate belief state

Ψ2 = Ψ1 +r {¬p, q → p, q} = 〈B,Cn, {p,¬p, q → p, q}〉 is then obtained.

At this point the set of active beliefs is inconsistent and thus needs to be

revised. A possible revision would be one of the maximal consistent subsets

that includes p, for instance, {p, q → p, q}. Effectively, this corresponds to

rejecting the active belief ¬p. The result would then be the new belief state

Ψ3 = (Ψ2 +d ¬p) +c ¬p = 〈B\{¬p},Cn, {p, q → p, q}〉. The resulting active

beliefs would now be consistent and can be made explicit, finally giving the

belief state Ψ4 = Ψ3 +a {p, q → p, q} = 〈(B\{¬p}) ∪ {p},Cn, ∅〉.

Resource-based revision is general enough to encompass the standard

AGM belief revision framework as well as Nebel’s belief base approach

15This also happens in the controlled revision approach described in Section 5.2 and

some authors have called it the non-insistent policy.
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[Nebel, 1989]. Note, however, that the set of explicit beliefs is not nec-

essarily closed under the consequence relation and that the active beliefs

consist only of a limited part of the current set of beliefs of an agent. This

means that it is quite possible that the agent has an inconsistent belief

state without being aware of it (so long as the inconsistency is not within

the set of active beliefs). This is an idea which seems to represent well how

common-sense reasoning operates in practice.

In order to show how the traditional AGM approach relates to this ap-

proach, we make the following assumptions: for a belief state Ψ = 〈K,Cn,

K〉, K is a theory closed under the consequence relation Cn (the belief set

of the agent) and the set of active beliefs of Ψ is equal to the set of explicit

beliefs. Note that this is an idealised interpretation, since it assumes that

an agent has unlimited memory and inference capability. However, it can

be seen as an (AGM) idealisation of the process. Revision of a belief set

K by a belief α (in the AGM sense) is obtained via the Levi identity (see

page 5) in a sequence of +o (observation), +d (doubting) and +c (rejec-

tion) operations of the beliefs contradicting α followed by the acceptance

of α itself. The operations would query K to check whether the active (=

explicit) beliefs contradict α and, if they do, would perform the deletion

of an appropriate subset in order to attain consistency with α — at which

point α can be added via the acceptance operation. A formal account of

the process loosely described above can be found in [Wassermann, 1997].

Resource-based revision can also be used to define Nebel’s belief base

revision [Nebel, 1989], in which there is a distinction between explicit be-

liefs (i.e., those included in a finite belief base) and implicit ones (i.e., those

derivable from the base). However, as we mentioned before, Nebel’s formal-

ism does not distinguish between active and explicit beliefs. A belief base

Φ would be represented by a belief state 〈Φ,Cn,Cn(Φ)〉 where the explicit

beliefs consist of the belief base Φ, and the active beliefs contain all of its

consequences (modulo Cn). Under this perspective, it is possible to show

that Nebel’s revision operation can also be expressed via an appropriate

sequence of resource-bounded operations [Wassermann, 1997].

5.2 Controlled revision

Controlled revision is an algorithmic approach to belief revision that makes

use of the history of updates in order to try and minimise the loss of in-

formation in the process and achieve more rational changes of belief. The

basic idea is to activate/deactivate formulae as necessary in order to main-

tain consistency and also to keep record of the history of a formula’s status
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through time. The history allows for previously deactivated formulae to be

reinstated should they no longer cause inconsistency at a later stage. In

addition, it is possible to analyse how stable beliefs have been through the

evolution of an agent’s belief state.

The approach builds upon the idea of a labelled deductive system [Gabbay,

1996], whereby belief bases are represented as sets of labelled formulae; the

consequence relation defines a relation between sets of labelled formulae

and individual labelled formulae; and inference rules specify how formulae

and labels can be manipulated. The extra information in the labels may be

used to constrain the application of the rules according to desired criteria.

In the case of controlled revision, a label is a pair of terms (l, h), where

l is a unique name for a formula and h is a list of constants ±i (i ≥ 1)

indicating whether the formula was active (+) or inactive (−) at stage i.

For instance, a labelled formula of the form (lij ,+j) : Aij states that the

formula Aij (uniquely associated to the term lij) is active in the belief base

at the j-th revision step (i.e., at time j).

With respect to the standard presentation, a belief base at stage n can

be seen as the collection of all formulae active at step n, i.e., those formulae

whose label’s second term is a list (±i, . . . ,±m), with 1 ≤ i ≤ m and

k ≤ n ≤ m and where n appears with a positive sign. The approach uses

Johansson’s minimal logic [Johansson, 1936] as its underlying logic, which

includes the intuitionistic implication → and the constant symbol ⊥ for

falsity, with no special axiom. Within this logic, negation is defined as

¬A =def A→ ⊥, and the classical axiom ⊥ → A, for every formula A, does

not hold. A belief base is said to be inconsistent if it can derive ⊥.

In the controlled revision framework the initial belief baseK0 is allowed to

contain integrity constraints expressed in denial form (A1, A2, . . . , An) → ⊥.

Intuitively, this represents A1 → (A2 → . . . → (An → ⊥) . . .). Integrity

constraints cannot be deactivated. An arbitrary belief base Kn is said to

be consistent, if the set of its active formulae and integrity constraints is

consistent.16

The mechanism for revision uses two main algorithms: a selection al-

gorithm, which computes subsets of the base that are involved in an in-

consistency; and a reinstatement algorithm, which reactivates previously

deactivated formulae that no longer cause inconsistency. A new input

An+1 is temporarily included into a consistent belief base Kn and the set

K
′

n = Kn ∪ {(ln+1,+(n + 1)) : An+1} checked for consistency. If K
′

n is

consistent, then Kn+1 is defined by i) adding (ln+1,+(n+ 1)) : An+1 to Kn

16The concepts of consistency and integrity constraints are subsumed by the more

general concept of acceptability, presented in Section 5.4.
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and ii) appropriately modifying the labels of the formulae in Kn so as to

include the constant +(n+ 1) into the history part of the active formulae’s

labels and the constant −(n+ 1) into the history part of the inactive ones.

No re-instantiation is needed because the logic behaves monotonically in

this case, i.e., any formula causing inconsistency in Kn would still cause

inconsistency in Kn+1.

The more interesting case is when K
′

n turns out to be inconsistent and

the selection algorithm is applied to compute one (or more) selection sets

Γn+1
i of formulae from K

′

n. In effect, this algorithm determines which active

formulae in K
′

n should become inactive. The constant −(n+ 1) is added to

the history part of the labels of these formulae and the constant +(n + 1)

added to the history part of the labels of the remaining formulae. The new

base Kn+1 is then computed using the re-instantiation algorithm, which

identifies the inactive formulae in Kn that are no longer inconsistent with

the newly determined active formulae. These formulae are then reactivated

in Kn+1, i.e., they get the label +(n+ 1). Notice that one would in general

expect the sets Γn+1
i to be minimal and that some policy has to be applied

to decide which of these to use. Furthermore, for any given Γn+1
i , there

is possibly more than one way of applying the reinstantiation algorithm

depending on the ordering on which the inactive formulae are considered

for reactivation.

The following example illustrates the overall revision process.

EXAMPLE 80 (Controlled revision). Let K0 = ∅ be the initial belief base

and σ the following sequence of updates performed in the left to right order.

σ = [l1 : D → C, l2 : C → ⊥, l3 : D](3)

The first update amounts to a simple expansion of K0, thus giving us the

new base

K1 = {(l1, (+1)) : D → C}

The second update is now applied to K1. A temporarily expanded base K
′

1

is defined as K1 ∪ {(a1,+1) : C → ⊥}, where a1 is an arbitrary but unique

temporary name for the input C → ⊥. K
′

1 is then checked for consistency.

Since it is consistent, the new belief base K2 is defined as

K2 = {(l1, (+1,+2)) : D → C, (l2, (+2)) : C → ⊥}

The third update is then applied to K2. The temporarily expanded base

K
′

2 is K2 ∪ {(a2,+2) : D} and checked for consistency. K
′

2 is inconsistent,

since ⊥ can be derived from D, D → C and C → ⊥ (the actual derivation
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uses the underlying labelled deductive system proof theory for Johansson’s

minimal logic, but this suffices for our discussion).17

Several policies can be applied to resolve the inconsistency. The principle

of the primacy of the update would force the new input to be accepted in the

revised base and some of the previous labelled formulae to be deactivated.

In this case, {(a2, (+2)) : D} is kept, resulting in the following candidate

subsets of K
′

2:18

Γ2
1 = {(l1, (+1,+2)) : D → C}

Γ2
2 = {(l2, (+2)) : C → ⊥}

Deactivating all of the formulae in either Γ2
1 or Γ2

2 would prevent the in-

consistency from being derived. The selection algorithm would choose one

of them taking various parameters into account. One of these is persistence

of the formulae in a given candidate subset. Persistence is calculated as the

total number of times the formulae in the subset have been active. Those

formulae with the lowest persistence value are then rejected. These corre-

spond intuitively to the formulae that have been less stable in the base. If

there is more than one candidate subset with the same minimum persis-

tence value, then the smallest subset is chosen.19 If the subsets with lowest

persistence also have the same cardinality, then the history of the data in

each subset is considered by computing the number of ± changes of each

formula in the set. The subset whose formulae have lower reliability pri-

ority (i.e., higher number of changes) is selected. If none of these checks

identify a singular candidate, a tree-revision mechanism is adopted. This

mechanism structures the alternative ways of revising an inconsistent base

into a tree and adds to each of them the input formula — this eventu-

ally helps to reinforce or reject some of the alternatives. The tree revision

mechanism provides a criteria for choosing among candidate subsets for re-

jection in terms of newly acquired information instead of the random choice

mechanism adopted in systems like TMS [Doyle, 1979].

Going back to the example above, from the two candidate subsets Γ2
1 and

Γ2
2, the selection algorithm would choose Γ2

2 since it has persistence value 1

which is lower than Γ2
1’s persistence value (2). The revised base would then

be given by

K3 = {(l1, (+1,+2,+3)) : D → C, (l2, (+2,−3)) : C → ⊥, (l3, (+3)) : D}

17The reader is referred to [Gabbay et al., 2003] for a description of a labelled proof

system for Johansson’s minimal logic.
18If a policy does not verify the principle of the primacy of the update, then there

could be a third candidate subset Γ2
3

= {(a2, (+2)) : D}.
19One can see this as minimal change subject to persistence.
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The selection algorithm is followed by the reinstatement algorithm to

reactivate formulae previously made inactive if they no longer generate in-

consistency in the newly revised base. In the example above, the formulae

in K2 are all active, so the reinstatement algorithm does nothing.

One of the main characteristics of this approach is that it defines the

revision process in terms of the history of the sentences in the belief base.

The principle of primacy of the update is not necessarily satisfied by the

selection algorithm, as it is also the case for the local semi-revision operation

mentioned in Section 5.1 [Hansson, 1997b].

When the new belief is consistent with the belief base, the controlled

revision algorithm behaves as other existing approaches for base revision.

However, when the new belief is not consistent with the belief base, it is

straightforward to show that postulate (R1) is not necessarily satisfied since

the selection algorithm could well reject the update information (in fact, it

will always do so if the update is itself inconsistent). For the same reason,

postulate (R5) is also not satisfied. Consider any base K revised by a

formula A and expanded by the formula ¬A. The result will be a base K ′

from which l : ⊥ could be inferred with some label l. On the other hand,

revising K by A ∧ ¬A will result in a belief base K ′′ from which ⊥ cannot

be inferred. Postulates (R2), (R3), (R4) and (R6) are all satisfied.

The non-required enforcement of the principle of the primacy of the up-

date makes the controlled revision approach in general different from the

approaches proposed in [Darwiche and Pearl, 1997; Freund and Lehmann,

1994]. Controlled revision satisfies Lehmann’s postulates (I1) and (I3)–(I6)

and Darwiche and Pearl’s (R⋆2), (R⋆3), (R⋆4) and (R⋆6). However, it fails

to satisfy Darwiche and Pearl’s (R⋆1) and (R⋆5) and Lehmann’s (I2) and

(I7), for the same underlying reason that prevented the satisfaction of (R1):

contradicting information may not necessarily be accepted in the revision

process.

For further details, the reader is referred to [Gabbay et al., 2003].

5.3 Multiple belief revision

All belief revision approaches described so far are defined for the revision of a

belief set (or belief base) by a single formula, although sometimes a sequence

of such revisions is considered as part of an iterative revision process. We

now consider formalisms that are defined for revisions of belief sets or bases

by a set of formulae. We will refer to this class of formalisms as multiple

belief revision.

Several approaches have been proposed to extend the AGM theory of
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belief revision so that it can handle revisions by sets of formulae. Some

depart from the principle of primacy of the update and compute the revision

based on the concept of an explanation, e.g., [Falappa et al., 2002]; whereas

others provide a general framework for multiple revision including the cases

of revisions and contractions by infinite sets of formulae [Zhang, 1996; Zhang

et al., 1997; Zhang and Foo, 2001]. In this section, we will present these

ideas in some detail and relate them to the original AGM theory described

in the beginning of this chapter.

Explanation-based belief revision

As mentioned before, the principle of the primacy of the update requires

that the new information is always accepted by a revision operation. How-

ever, we have seen that some approaches to belief revision have departed

from this principle. Hansson called such operations semi-revisions [Hansson,

1997a]. Examples of semi-revisions include the controlled revision approach

described in Section 5.2; the revision operators based on a non-insistent

policy described in [Gabbay et al., 2010] and the explanation-based belief re-

vision operation proposed by Falappa [Falappa et al., 2002], which we now

present.

Explanation-based belief revision is based on the idea that new beliefs

are supported by explanations. When new information that contradicts

the current set of beliefs is received, the explanation for the information is

considered and evaluated with respect to the current set of beliefs. If the

explanation “resists the argument” then it is incorporated into the belief

set and consequently the new belief is also accepted.

By definition, an explanation for a formula ϕ is a minimal consistent set of

sentences Γ whose closure under the consequence relation properly includes

all consequences of ϕ (Cn({ϕ}) ⊂ Cn({Γ})). Note that an explanation Γ

for a sentence ϕ cannot be the singleton set {ϕ} itself. To take into account

the notion of explanation given above, a revision operation has to allow

revision of a belief base by sets of sentences. In order to do this, Falappa

proposes a set of postulates, some of which are direct generalisations of the

original AGM ones, whereas others are stricter versions. We only present

the key postulates below. In all postulates, K is a belief base; Γ, Γ1 and Γ2

are (finite) sets of sentences; ϕ is a formula and K ◦FΓ is the explanation-

based revision of K by Γ. For a full account of the framework the reader is

referred to [Falappa et al., 2002].

(Vacuity) If K ∪ Γ 6⊢ ⊥ then K ◦FΓ = K ∪ Γ
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(Consistency) If Γ 6⊢ ⊥ then K ◦FΓ 6⊢ ⊥

(Congruence) If K ∪ Γ1 = K ∪ Γ2 then K ◦FΓ1 = K ◦FΓ2

(Strong consistency) K ◦FΓ 6⊢ ⊥

(Weak Success) If K ∪ Γ 6⊢ ⊥ then Γ ⊆ K ◦FΓ

(Core Retainment) If ϕ ∈ (K ∪ Γ)\(K ◦FΓ) then there is a set H such

that H ⊆ (K ∪ Γ), H is consistent but H ∪ {ϕ} is

inconsistent

(Relevance) If ϕ ∈ (K ∪ Γ)\(K ◦FΓ) then there is a set H such

that (K ◦FΓ) ⊆ H ⊆ (K ∪ Γ), H is consistent but

H ∪ {ϕ} is inconsistent

(Inclusion) K ◦FΓ ⊆ K ∪ Γ

(Reversion) If K ∪ Γ1 and K ∪ Γ2 have the same minimally in-

consistent subsets then (K ∪ Γ1)\(K ◦FΓ1) = (K ∪

Γ2)\(K ◦FΓ2)

One can easily see that by taking the conjunction of the sentences in K

and Γ, the first three postulates above are essentially equivalent to Katsuno

and Mendelzon’s postulates (R2)–(R4) given in Section 2.4. The weak suc-

cess postulate is new. It states that the explanation Γ for the new belief is

accepted after the revision only when it is consistent with the initial base.

This is a weakening of postulate (R1), which requires instead that the new

belief is always accepted in the revised base. The core retainment postu-

late requires that nothing should be removed from the belief base or the

set of sentences unless the removal is necessary to establish consistency in

the revised belief base. The relevance postulate is a stronger version of core

retainment. The reversion postulate states that if expanding a belief base

by two different sets of formulae gives the same collection of minimal incon-

sistent subsets, then the sentences removed from the base in each respective

revision should be the same.

The basic mechanism for revising a belief base K by a set of sentences Γ

with partial acceptance consists of first expanding K by Γ, and thus provi-

sionally accepting the new belief (entailed by Γ), and then eliminating from

K ∪ Γ all possible inconsistencies. Note that the second phase may result

in the new belief no longer being entailed.

Restoration of consistency to an inconsistent set K∪Γ is done by defining

an incision function σ that returns a set containing formulae from each

of the minimal inconsistent subsets of K ∪ Γ and then removing this set
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from K ∪ Γ to define a non-prioritised belief revision operation. Note that

Fallapa only requires that an arbitrary formula is removed from each of

these minimally inconsistent subsets. This will not necessarily correspond

to the minimal contraction of K ∪ Γ needed to restore consistency, as there

might be formulae in the intersection of some of these minimally inconsistent

subsets — these would be the ideal candidates in order to achieve minimal

loss of information. We will return to this point after the following example

illustrating the process.

EXAMPLE 81. Consider the belief base K = {t, u, r, r → s} and the ex-

planation Γ = {¬t, p, p → ¬s} for a belief ¬s. Clearly, the new belief and

its explanation are inconsistent with K. The first step is to consider the

expanded base K ∪ Γ given below

K ∪ Γ = {t, u, r, r → s,¬t, p, p→ ¬s}.

A revision function would attempt to remove fromK∪Γ as little information

as possible so as to re-establish its consistency (as required by the core

retainment postulate). There are only two minimally inconsistent subsets

of K ∪ Γ in this case, namely {t,¬t} and {p, p → ¬s, r, r → s}. Each of

these sets is called a ⊥-kernel set of K ∪ Γ. The collection of all such sets,

namely {{t,¬t}, {p, p→ ¬s, r, r → s}}, is denoted (K ∪ Γ)∐⊥.

Note that removing sentences from just some of the ⊥-kernel sets of K∪Γ

is not sufficient to re-establish consistency. On the other hand, removing

from K ∪ Γ the union of all ⊥-kernel sets removes more information than

is necessary. In this example, for instance, it would result in the revised

belief base {u} — a revision that does not satisfy the relevance postulate.

A more “economic” solution would be to pick a formula from each of the

minimally inconsistent subsets, namely to “cut” from each ⊥-kernel set

enough information so as to establish consistency of K ◦FΓ. As an example,

a possible incision function σ on the set (K ∪ Γ)∐⊥ could return the set

σ((K ∪ Γ)∐⊥) = {p, t}. Each element in σ((K ∪ Γ)∐⊥) is taken from a

different ⊥-kernel set of K ∪ Γ. More formally, for each X ∈ (K ∪ Γ)∐⊥,

σ((K ∪Γ)∐⊥)∩X 6= ∅. In this case, the revised base would then be defined

as K ◦FΓ = K ∪ Γ\σ((K ∪ Γ)∐⊥) = {u, r, r → s,¬t, p→ ¬s}.

Note that in the above example the revised base does not explicitly in-

clude the new belief ¬s and hence explanation-based revision does not guar-

antee the success of the revision operation (in AGM terms), but the revised

set can in general include at least part of the new belief’s explanation.

We can now return to our previous remark on the failure of this type of re-

vision’s satisfaction of the principle of informational economy. Consider the
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set K ∪Γ = {¬p, p, p→ q,¬q}. In this case, (K ∪Γ)∐⊥ = {{¬p, p}, {p, p→

q,¬q}}. An arbitrary incision function σ could return the set {¬p} ∪ {p}

(one formula from each X ∈ (K ∪ Γ)∐⊥). However, in this particular case,

the removal of p alone would be sufficient.

The explanation-based revision illustrated above was formally called ker-

nel revision by Falappa in [Falappa et al., 2002]. It uses the following notion

of a kernel set proposed by Hansson in [Hansson, 1994].

DEFINITION 82 (Kernel set). Let K be a set of formulae and ϕ a formula.

The set of ϕ-kernel sets of K, in symbols K∐ϕ, is defined as the set of all

K′ ⊆ K such that

➀ K′ ⊢ ϕ

➁ if K ′′ ⊂ K′ then K ′′ 6⊢ ϕ.

In order to ensure that each minimally inconsistent subset is sufficiently

contracted so that K ◦FΓ is consistent, an incision function is defined by

selecting some elements from each one of the ⊥-kernel sets of K ∪ Γ.

DEFINITION 83 (External incision function). Let K be a set of sentences.

An external incision function for K is a function σ such that for any (finite)

set of sentences Γ:

➀ σ((K ∪ Γ)∐⊥) ⊆
⋃

((K ∪ Γ)∐⊥)

➁ If X ∈ (K ∪ Γ)∐⊥ and X 6= ∅ then (X ∩ σ((K ∪ Γ)∐⊥)) 6= ∅

DEFINITION 84 (Kernel revision). Let K and Γ be finite sets of sentences

and σ an external incision function for K. The kernel revision of K by Γ,

in symbols, K ◦FΓ is defined as

K ◦FΓ = (K ∪ Γ)\σ((K ∪ Γ)∐⊥)

Falappa has showed that an operator ◦F is a kernel revision operation if

and only if it satisfies the postulates of inclusion, strong consistency, core

retainment and reversion (see [Falappa et al., 2002] for details).

Revision by finite sets of formulae

The idea of multiple belief change was initially proposed by Fuhrmann
[Fuhrmann, 1988] and eventually evolved into a framework called package

contraction. This defines the contraction of a belief set K by a set of formu-

lae F as the operation of removing the set F as a whole from K [Fuhrmann
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and Hansson, 1994]. Later on, Zhang proposed a full generalisation and

extension of the AGM revision postulates to deal with revisions by finite

and infinite sets [Zhang, 1996]. His generalised contraction operator, called

set contraction, contracts a belief set K by a set of formulae F , in symbols

K⊖F , by removing from K enough sentences so as to make the remaining

subset K⊖F ⊆ K closed under the consequence relation and consistent with

F . Obviously, these two operations produce different results. We illustrate

this with an example.

EXAMPLE 85. Suppose that the belief set K = Cn({¬α,¬β, γ}) is to be

contracted by the set F = {α,¬β, γ}. A possible set contraction K ⊖ F in

this case could be the set K ′ = Cn({¬β, γ}), since K ′ ∪F is consistent. On

the other hand, a package contraction of K by F would instead remove ¬β

and γ (and their logical consequences) from K, giving as a result the set

Cn({¬α}).

Set contraction can be seen as an operation for selecting a consistent sub-

set of a set K ∪F . If F contains a single non-contradictory formula A, this

amounts to removing from K any information that proves ¬A. Informally,

the set contraction of K by A in this particular case can be achieved by the

contraction of K by ¬A (in symbols, K−¬A). As expected, if K is already

consistent with F , the set contraction of K by F would simply return K

itself. The motivation for set contraction is the rationale that beliefs ought

to be contracted only when they conflict with new information.

Some postulates for set contraction were proposed in [Zhang, 1996] and

subsequently shown to be insufficient for the characterisation of contraction

by infinite sets [Zhang et al., 1997].

Zhang also proposed a number of postulates for a second belief change

operation to revise a belief set K by a (possibly infinite) set of formulae F in
[Zhang, 1996]. The operation was called set revision and denoted by K⊕F .

The postulates are direct generalisations of the AGM revision postulates.

Revision postulates for set revision

(K⊕1) K ⊕ F = Cn(K ⊕ F )

(K⊕2) F ⊆ K ⊕ F

(K⊕3) K ⊕ F ⊆ K + F

(K⊕4) If K ∪ F is consistent, then K + F ⊆ K ⊕ F

(K⊕5) K ⊕ F = K⊥ iff F is inconsistent

(K⊕6) If Cn(F1) = Cn(F2), then K ⊕ F1 = K ⊕ F2

(K⊕7) K ⊕ (F1 ∪ F2) ⊆ K ⊕ F1 + F2

(K⊕8) If F2 ∪ (K ⊕ F1) is consistent, then (K ⊕ F1) + F2

⊆ K ⊕ (F1 ∪ F2)
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Zhang showed in [Zhang, 1996] that when F is a singleton set (K⊕1)

– (K⊕8) are equivalent to (K◦1) – (K◦8).20 One may wonder about the

relationship between set revisions and set contractions. This can be inves-

tigated by extending the Levi and Harper identities to deal with sets as the

second argument of the operations. More specifically:

K ⊕ F = (K ⊖ F ) + F (Extended Levi identity)

K ⊖ F = (K ⊕ F ) ∩K (Extended Harper identity)

According to Zhang, the revision of a belief set K by a set of sentences F

can be performed by removing enough information from K so as to attain

consistency with F and then subsequently expanding the result by F (this

expansion is assumed to be closed under the consequence relation).

The full semantical framework for set revision and set contraction can

be found in [Zhang and Foo, 2001]. The framework generalises the repre-

sentation theorems of the AGM postulates (see beginning of this chapter or
[Alchourrón et al., 1985]). Whilst the semantical results were initially de-

fined for the set contraction operation, it is their corresponding formulation

for set revision that will be referred to here, which can be directly obtained

via the extended Levi identity mentioned above [Zhang et al., 1997].

We still need to define what set of formulae K ′ ⊆ K need to be removed

from K in order to make it consistent with an input set. The problem of

constructing such a K ′ constitutes both the result of performing a set con-

traction of K by an input set F as well as the intermediate result necessary

in the definition of a set revision of K by F . A possible starting point is

the collection of all maximal subsets of K that are consistent with F . We

will use the symbol K ‖ F to denote this collection. Note that when F is

a singleton set {A}, K ‖ F corresponds to the familiar collection of maxi-

mally consistent subsets of K that fail to imply A, in symbols, K⊥¬A (see

Definition 2). Each element in K ‖ F is therefore a potential candidate for

our K ′. However, given a belief set K and a set of formulae F , in general

there will be many such maximal subsets. The usual notion of a selection

function S is used in the process.

DEFINITION 86 (Selection function for multiple belief revision). Given a

belief set K and a set of formulae F , a selection function S is such that:

➀ S(K ‖ F ) ⊆ K ‖ F

20This can be done by defining K ◦a φ = K ⊕ F .
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➁ K ‖ F 6= ∅ implies S(K ‖ F ) 6= ∅

Different selection functions can be defined by imposing additional con-

straints. For instance, one can require that S return a singleton set, i.e.,

S(K ‖ F ) would choose one of the maximal subsets of K that are consis-

tent with F . Correspondingly, this would yield a maxichoice set revision

function, defined in terms of the maxichoice set contraction given below.

DEFINITION 87. Let K be a belief set, F a set of sentences and S a

selection function such that S(K ‖ F ) is a singleton set. A maxichoice set

contraction of K by F (K ⊖ F ) is defined as:

K ⊖ F =

{
K, if F is inconsistent

K′ ∈ S(K ‖ F ), otherwise

The set revision function defined in terms of a maxichoice set contraction

function satisfies postulates (K⊕1) – (K⊕5), a weaker version of postulate

(K⊕6), and the following condition: (using the extended Levi identity and

Theorem 3.14 of [Zhang and Foo, 2001]):

If A ∈ K\K ⊖F, then there exists B ∈ K such that F ⊢ ¬B and A→ B ∈

K ⊖ F

However, as we have seen to be the case in the original AGM formulation,

a maxichoice set contraction function produces belief sets that are too large,

and thus the corresponding set revisions are also maximal (see page 7). An

alternative approach is to make the selection function return the entire set

K ‖ F , i.e., S(K ‖ F ) = K ‖ F and define the set contraction function as

the intersection of all of its elements.

DEFINITION 88. Let K be a belief set, F a set of sentences and S a

selection function such that S(K ‖ F ) = K ‖ F . A full meet set contraction

of K by F (K ⊖ F ) is defined as:

K ⊖ F =

{
K, if F is inconsistent⋂

(K ‖ F ) otherwise

Zhang and Foo showed that set revisions defined in terms of full meet set

contractions satisfy postulates (K⊕1) – (K⊕5); a weaker version of postulate

(K⊕6) and the following condition: (using the extended Levi identity and

Theorem 3.14 of [Zhang and Foo, 2001]):

If F1 ⊆ F2 and F1 ∪K is inconsistent, then K ⊖ F1 ⊆ K ⊖ F2
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Here again, similarly to what happens in the original AGM formulation,

full meet set contractions yield belief sets that are too small, thus generating

the smallest set revision of a belief set K by a set of formulae F . The result

of the intersection would include only the sentences that belong to all of K’s

maximal subsets that are consistent with F . Maxichoice set contraction and

full meet set contraction have therefore opposite drawbacks. However, they

provide upper and lower bounds for any set contraction operation (and

hence to a set revision operation too).

An intermediate solution, as expected, is the definition of a partial meet

set contraction using the basic notion of a selection function given in Defi-

nition 86.

DEFINITION 89. Let K be a belief set, F a set of sentences and S a

selection function as given in Definition 86. A partial meet set contraction

of K by F (K ⊖ F ) is defined as:

K ⊖ F =

{
K, if F is inconsistent⋂
S(K ‖ F ), otherwise

The selection function chooses some of the maximal subsets of K that are

consistent with F and the partial meet contraction takes the intersection

of such subsets. Set revisions defined in terms of partial meet contractions

can be shown to satisfy postulates (K⊕1) – (K⊕5) and a weaker version

of postulate (K⊕6). In order to provide a set contraction operation (and

therefore also a set revision) that satisfies postulates (K⊕7) and (K⊕8) as

well, it is necessary to consider the notion of entrenchment over the maximal

subsets of a given belief set K. In this way, the selection function S will

pick from K ‖ F only those maximal subsets that are epistemologically

most entrenched. This is captured by a relation ≤ on UK =
⋃
{K ‖ F | F ⊆

wff(L)}, where wff(L) is the set of all well-formed formulae of L and Y ≤ X ,

represents the fact that X is at least as epistemologically entrenched as Y .

DEFINITION 90. Let K be a belief set, F be a set of sentences and ≤ a

relation on UK . A selection function S is said to be relational if:

S(K ‖ F ) = {X ∈ K ‖ F | ∀Y ∈ K ‖ F. Y ≤ X}

Zhang and Foo present some conditions under which a set revision opera-

tor ⊕ derived via the Extended Levi identity in terms of a relational partial

meet contraction operator satisfies postulates (K⊕1) – (K⊕8). For more

details, the reader is referred to [Zhang and Foo, 2001].
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Revision by infinite sets of formulae

As we mentioned above, the semantical characterisation just presented does

not deal with infinite revision (or contraction). This is defined axiomatically

by an additional postulate called the limit postulate expressing the relation-

ship between the contraction of a belief set K by an infinite set of formulae

F . The limit postulate (K⊕LP ) is what in fact really extends the basic

AGM theory to cover revisions by infinite sets. The full set of postulates

for the infinite case is therefore given by (K⊕1)–(K⊕8), where the sets F ,

F1 and F2 may be infinite, plus the limit postulate below.

(K⊕LP ) K ⊕ F =
⋃

F̄⊆F

⋂

F̄⊆F̄ ′⊆f Cn(F )

K ⊕ F̄ ′

K⊕LP states that a revision of a belief set K by an infinite set of formulae

F can be performed by revising K by all finite subsets F̄ ′ of Cn(F ) (in

symbols, F̄ ′ ⊆f Cn(F )).

A semantical characterisation of the limit postulate is based on the con-

cept of a nice-ordering partition, in its turn defined in terms of a total-

ordering partition. A total-ordering partition is a tuple 〈Γ,Π, <〉 where Γ is

a set of formulae (e.g., a belief set); Π is a partition of Γ; and < is a strict

relation induced by a total order on Π. The rank of a formula A ∈ Γ is

defined as the set ∆ ∈ Π such that A ∈ ∆ and denoted by b(A). Given a

relation <, the higher the degree a belief has, the lower in the ordering its

ranking will be. A nice-ordering partition is a total-ordering partition that

satisfies the following property:

If A1, . . . , An ⊢ B, then max{b(A1), . . . , b(An)} ≥ b(B)

In other words, a nice-ordering partition guarantees that the degree of

belief of a formula is not higher than the maximum degree of belief of the

formulae that entail it.21

Given a nice-ordering partition, it is possible to define a nice-ordering

partition contraction function, which, together with the Levi identity, gives

a set revision function that satisfies postulates K⊕1–K⊕8 [Zhang, 1996].

The remaining question is whether a nice-ordering partition is sufficient for

the construction of a set contraction function (and therefore a set revision

function as well) that also satisfies the limit postulate K⊕LP .

21Of course, this is related to AGM’s original notion of epistemic entrenchment. In

fact, Zhang showed the relationship between epistemic entrenchment relations ≤EE and

nice-ordering partitions by considering beliefs with lower rank as being more entrenched
[Zhang, 1996].
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A possible way to define the contraction operation would be to consider

the contraction of a belief set K by an infinite set F as the limit of set

contractions of K by all finite subsets of F . Formally, this is defined as

limF̄⊆fF
K ⊖ F̄

However, the limit of a set sequence exists only when the limit superior

and the limit inferior of the same set sequence exist and are equal, which

is not necessarily the case here. The lack of convergence is partly due to

the fact that each individual operation using a finite subset F̄ of F depends

on the syntax of F̄ . The sequence over the sets F̄ ⊆ Cn(F ) also does not

converge [Zhang, 1996]. Alternatively, one could use either the limit inferior

or the limit superior of the contractions of K by the finite subsets of F . To

explain which of these two possibilities is most appropriate, let us briefly

recap how these two limits are defined.

DEFINITION 91. Let {Γi : i ∈ N} be a infinite sequence of sets. The limit

superior and limit inferior of this sequence are defined respectively by:

limi→∞Γi =
∞⋂

i=0

∞⋃

j=i

Γj limi→∞Γi =
∞⋃

i=0

∞⋂

j=i

Γj

It can be seen that the limit superior would not necessarily give a set

closed under the consequence relation, whereas the limit inferior would.

Contractions (resp., revisions) of a belief set K by an infinite set of formulae

F are hence defined as the limit inferior of the sequence of contractions

(resp., revisions) of K by all finite subsets of F . Formally,

K ⊖ F =
⋃

F̄⊆Cn(F )

⋂

F̄⊆F̄ ′⊆f Cn(F )

K ⊖ F̄
′

Intuitively, given a belief set K and an infinite set of sentences F , a

formula B will be included in the contraction of K by F , in symbols B ∈

K⊖F , if there exists a finite subset F̄ of F such that B is in the contraction

of K by each finite superset of F̄ included in Cn(F ). The above is the actual

definition of the limit postulate K⊖LP for set contraction.

Analogously,

K ⊕ F =
⋃

F̄⊆F

⋂

F̄⊆F̄ ′⊆f Cn(F )

K ⊕ F̄
′

As expected, this is the limit postulate K⊕LP for revisions given previ-

ously.
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In terms of limit inferior these can be given as

K ⊖ F = limF̄⊆f Cn(F )K ⊖ F̄ and

K ⊕ F = limF̄⊆f Cn(F )K ⊕ F̄

In summary, the limit postulate essentially provides an approximation of

the revision by an infinite set in terms of revisions by finite subsets. Using

this postulate it is possible to show that infinite belief change operations can

be reduced to finite belief change operations. In particular, if ⊕ is a belief

revision operator satisfying the postulates K⊕1–K⊕8, then the limit pos-

tulate K⊕LP and the following requirement are equivalent [Zhang, 1996]:

K ⊕ F =
⋂

F̄⊆fCn(F )

K ⊕ F̄

Partial meet semantics for multiple revision

An alternative semantical approach to revision by sets of formulae can be

given in terms of the notion of a partial meet revision [Falappa et al., 2002].

The underlying mechanism of this revision is to add to a belief base K an

input set of formulae Γ and then remove from the (possibly inconsistent)

union as few formula as possible so as to restore consistency. This will

result in a collection of maximal consistent subsets of K ∪Γ, which is again

denoted by (K ∪ Γ)⊥⊥.

By using an appropriate selection function, a choice can be made between

the maximal consistent subsets of K ∪ Γ. The revised base is subsequently

constructed from the intersection of the selected maximal consistent sub-

sets.22 The selection function is in principle defined according to the revision

postulates that it needs to satisfy. In the case of the ◦F revision operator

such a function is called equitable and defined as follows.

DEFINITION 92 (Equitable selection function). Let K be a belief base. A

selection function γ for K is equitable if (K ∪ A)∐⊥ = (K ∪ B)∐⊥ implies

that (K ∪ A) ∩ γ(K ∪A)⊥⊥ = (K ∪B) ∩ γ(K ∪B)⊥⊥.

The intuition behind the above definition is that if the set of minimally

inconsistent subsets of K ∪ A is equal to the set of minimally inconsistent

subsets of K ∪ B then the same sentences can be eliminated from K ∪ A

and K ∪B in order to produce consistent revised bases with A and with B,

respectively.

22The notion of maximal consistent subset here is related to the notion presented in

Definition 2, except that K is not closed under the consequence relation and the input

is a set.



BELIEF REVISION 79

Partial meet revisions are then defined as follows.

DEFINITION 93. Let K be a belief base, Γ a set of sentences and γ an

equitable selection function for K. Then K ◦F Γ =
⋂
γ((K ∪ A)⊥⊥).

This type of partial meet revision can be related to the previously pre-

sented partial meet contraction and revision operations proposed by Zhang.

However, note that ◦F does not necessarily satisfy the principle of the pri-

macy of the update, whereas Zhang’s operation ⊕ does. Consider the fol-

lowing example.

EXAMPLE 94. Let K = {a, b,¬c}, Γ = {¬b, c, d, e} and consider what the

partial meet revisions K ⊕ Γ and K ◦F Γ would give in this case.

K ⊕ Γ =
⋂
s(K ‖ Γ) + Γ. The set K ‖ Γ = {{a}} in this case. Hence,

independently of the selection function s used,
⋂
s(K ‖ Γ) = {a}, which

expanded by Γ would result in K ⊕ Γ = {a,¬b, c, d, e}.

In the case of K ◦F Γ, the operation would consider first the set K ∪Γ =

{a, b,¬c,¬b, c, d, e}, which is inconsistent. The remainder set with respect to

⊥ would, in this case, be (K ∪ Γ)⊥⊥ = {{a, b,¬c, d, e}, {a, b, c, d, e}, {a,¬c,

¬b, d, e}, {a, c,¬b, d, e}}. Depending on the selection function used to pick

some of these sets, the resulting revision may or may not include Γ. For

instance, if the selection function γ picks just {a, c,¬b, d, e}, then K ◦F Γ =

{a, c,¬b, d, e} = K ⊕ Γ. However, a different selection function could also

select the two maximal consistent subsets {{a, c,¬b, d, e}, {a, c, b, d, e}}, in

which case K ◦F Γ = {a, c, d, e}, and hence K ◦F Γ 6= K ⊕ Γ. Note that ◦F

would not verify the principle of the primacy of the update since K◦F Γ 6⊢ ¬b

and ¬g ∈ Γ.

The above example shows that only in some cases does Falappa’s partial

meet revision agree with Zhang’s multiple belief revision. In general terms,

Falappa’s revision approach falls into the category of non-insistent revisions

whereas Zhang’s approach to multiple revision always satisfies the principle

of the primacy of the update. In the cases where the two revision oper-

ations coincide, further correspondences could be drawn by appropriately

constraining the equitable selection functions so as to capture the various

partial meet contraction properties given before.

5.4 Revision by translation

An altogether different approach to belief revision was proposed in [Gabbay

et al., 2000; Rodrigues et al., 2008]. It provided a uniform framework for

revising theories of non-classical logics. The general idea is to define a belief

revision operator for these logics in terms of a standard belief revision op-
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erator for classical logic. Typically, given a classical logic theory ∆ and an

input formula ψ, a revision process ◦a gives a new theory Γ = ∆ ◦aψ, corre-

sponding to the revision of ∆ by ψ and satisfying some desirable properties.

In many belief revision approaches, these properties are often considered

to be the AGM postulates [Gärdenfors, 1988], whereas in database updates

the notion of integrity constraints often appears [Katsuno and Mendelzon,

1991a; Katsuno and Mendelzon, 1992]. Gabbay et. al. propose the notion

of acceptability [Gabbay et al., 2000] used to export the AGM revision pro-

cess to non-classical logics whose semantical properties are axiomatisable in

first-order logic.

The approach consists of translating the underlying semantics of a given

object logic L into classical logic, performing the revision process in classical

logic and then translating the results back into the original object logic. Let

τ denote a translation function from L into classical logic, let AL be a sound

and complete axiomatisation of the semantical features of L in classical logic,

and Acc a first-order characterisation of acceptable L-theories. A revision

operator ∗L in the logic L can be defined as follows:

∆∗Lψ = {β | ∆τ◦a(ψτ ∧ AL ∧Acc) ⊢ βτ}(4)

where ∆τ , and ψτ are the classical logic translations of ∆ and ψ respectively.

The revision of ∆ by ψ is therefore defined in terms of the revision (in

classical logic) of ∆τ by ψτ , AL and Acc. The presence of AL in the

revising part ensures that the semantical properties of the object logic L

are preserved by the revision operation and allows that the revised theory

can be mapped back into the original logic L. Similarly, the formula (Acc)

represents additional acceptability conditions of the revised theory. These

conditions can be used to capture semantical differences between the object

and the target logics as well as to express application driven constraints.

For non-classical logics that are extensions of classical logic, e.g., modal

logics, the notion of inconsistency is identical to the notion of inconsistency

of the target (classical) logic. If a given formula ψ is inconsistent with a

given theory ∆, then ψτ would also be inconsistent (in classical logic) with

∆τ . Hence the classical revision would be able to revise the (translated)

theory and provide a revised theory that is also consistent in the object

logic. For such logics, Acc could be simply ⊤ and the revision operator ∗L
defined in a more straightforward manner as

∆∗Lψ = {β | ∆τ◦a(ψτ ∧ AL) ⊢ βτ}.

This is the approach adopted and discussed in [Gabbay et al., 2000]. How-

ever, even in these cases, domain-dependent notions of acceptability could
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still be provided to further refine the revision process, as it is done, for

instance, with integrity constraints in database updates.

In the case of logics that are not extensions of classical logic, e.g., Belnap’s

four-valued logic [Belnap, 1977a; Belnap, 1977b], the notion of consistency

may differ from that of classical logic. Classical inconsistency of a set of

formulae is associated with the non-existence of a valuation that makes for-

mulae in the set true — i.e., the non-existence of models. Object theories

may not necessarily yield to translated theories that are inconsistent in the

classical sense. For instance, the formula p ∧ ¬p, is consistent within the

context of Belnap’s four-valued logic, as it accepts semantic valuations (set-

ups in Belnap’s terminology) that assign the value both to the formula. A

“model” of the classical-logic translation of this statement would therefore

be a first-order interpretation that satisfies the truthfulness of the corre-

spondence between Belnap’s truth-values of p, ¬p and p ∧ ¬p with respect

to the intended meaning of the ∧ connective in the underlying object logic.

Such a translation in classical logic would bind the value “true” for p

in a (Belnap) valuation, with the value “false” for ¬p in the valuation and

the value “both” for p ∧ ¬p (i.e. “both true and false”). It is then not

surprising the fact that, if the translation to classical logic of the underlying

object-level semantics is sound and complete, then {pτ} is consistent in

classical logic with (¬p)τ , and consequently, the revision of p by ¬p via the

classical logic translation would simply result in the conjunction {p ∧ ¬p}.

This is because the AGM revision mechanism heavily relies upon the notion

of (classical) consistency: AGM revision is triggered only when the new

information is inconsistent with the current belief set (see postulate (K◦
3,4)).

As a result, for certain types of non-classical logics which do not pos-

sess a similar notion of consistency, revisions done via translation would be

equivalent to simple expansions of the belief set, as it is the case in [Restall

and Slaney, 1995]. For these logics, the use of the acceptability theory Acc

enables the revision by translation mechanism to capture more refined revi-

sion processes without necessarily embedding the revision mechanism into

the object logic itself, as is the case, for instance, in the system R [Martins

and Shapiro, 1988; Shapiro, 1992]. The view adopted in [Gabbay et al.,

2000] is that a revision process for such logics (including paraconsistent log-

ics) benefits from a shift towards the notion of acceptable belief sets — the

imposition of specific restrictions on what an acceptable (revised) theory

should be in the object logic L.

To illustrate this approach the case of modal logic is briefly summarised

below. The reader is referred to [Gabbay et al., 2000] where a detailed

analysis for other logics is also given.
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Different translation mechanisms can be defined from a given object logic

to classical logic, depending on the underlying semantical structures used by

the object logic. In the case of modal logic — an extension of classical logic

— the translation mechanism essentially maps the notion of satisfiability

of atomic formulae to first-order predicates with one or more (additional)

arguments to encapsulate elements of the underlying semantical structure.

For instance, the semantical notion w 
 p, for a possible world w and

atomic formula p can be associated with the first-order formula P (w), and

analogously, w 6
 p, with the formula ¬P (w). In addition, appropriate

axioms need to be defined to encode the correct behaviour of the connectives

and indeed other semantical properties of the object logic, e.g., properties

of the accessibility relation [Ohlbach, 1991]. These have to be sound and

complete with respect to the notion of entailment of the object logic L. In

general, the objective is to ensure that, given a translation function τ and

a classical logic axiomatisation of the object level semantics AL, for any

theory ∆ and formula α in L the following correspondence holds

∆ ⊢L α iff AL ∪ ∆τ ⊢ ατ

where ∆τ and ατ are the translations to classical logic of ∆ and α respec-

tively.23

Translating the modal logic K into first-order logic requires a binary

predicate R in classical logic to represent the accessibility relation and unary

predicates P1, P2, P3, . . ., for each propositional symbol pi of K. The idea is

to encode the information of satisfiability of modal formulae by worlds into

the variable of each unary predicate. In general, for a given world w and

formula β the translation method can be defined as follows, where βτ (w)

represents w 
k β.

pτi (w) = Pi(w)

(¬β)τ (w) = ¬(βτ (w))

(β ∧ γ)τ (w) = βτ (w) ∧ γτ (w)

(β → γ)τ (w) = βτ (w) → γτ (w)

(�β)τ (w) = ∀y(wRy → βτ (y))

The translation to classical logic of a modal theory ∆ is given by the set

∆τ (w) = {βτ (w) | β ∈ ∆}.

23We use the symbol ⊢ without subscript to denote entailment in classical logic and

with subscript to denote entailment on a object logic.
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The soundness and completeness of the translation function can be easily

shown by proving the following property:

(Correspondence)

∆ ⊢k β iff AL ∪ ∆τ (w0) ⊢ βτ (w0)(5)

where for the modal logic K, AL is empty (i.e., truth).24 If ∆ is finite, one

can simply use the conjunction of its formulae instead (δ =
∧

∆) and the

correspondence between the object modal logic entailment and its translated

first-order logic formalisation would be expressed as follows:

(Correspondence reformulated)

δ ⊢k β iff ⊢ ∀x(δτ (x) → βτ (x))

A revision operator ∗k for K is then defined as follow.

DEFINITION 95. [Belief revision in K]

∆∗kψ = {α | ∆τ◦a(ψτ ∧ T τ ) ⊢ ατ}

The following proposition shows that the above revision operator satisfies

the AGM postulates. The proof relies on the fact that ∗k is defined in terms

of ◦a, which satisfies the AGM postulates for the target first-order logic, and

that the first-order derivability relation captures the modal logic derivability

relation.

PROPOSITION 96. Let ∆ be a belief set and ψ be a formula of the modal

logic K. Let ∗k be as belief revision operator as specified in Definition 95.

Then ∗k satisfies the AGM postulates (K◦1)–(K◦8).

Proof. For a complete proof the reader is referred to [Gabbay et al., 2000]

�

6 COMPLEXITY ISSUES

The computational complexity associated with the problem of belief revi-

sion has been investigated by many authors [Nebel, 1991a; Nebel, 1992;

Nebel, 1998; Gärdenfors and Rott, 1995; Eiter and Gottlob, 1992b; Eiter

24In the case of a modal logic other than K, AL would be non-empty. For instance, in

the case of S4, AL = {∀x(xRx)∧∀x∀y∀z(xRy∧yRz → xRz)}. Note that this first-order

translation approach allows also for non-normal logics, e.g., if w0 is the actual world, a

first-order theory of the form AL = {w0Rw0} would impose reflexivity only on the actual

world w0.
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and Gottlob, 1992a]. Postulate (K◦5) (or (R3) in the finite case) stipulates

that the result of a revision operation is consistent provided that the re-

vising sentence itself is not contradictory. Thus, regardless of whether one

considers closed belief sets or belief bases, belief revision is at least as hard

as deciding satisfiability of a set of formulae and deciding derivability from

a set of formulae [Nebel, 1992].

In addition to that, the principle of minimal change requires that the re-

sult of the revision operation retains as much as possible of the information

in the previous belief set. The notion of evaluation of change was briefly

introduced in Section 3.1 and complexity analyses in general consider two

main cases: the one where change is evaluated with respect to models of the

belief set and the one where change is evaluated based on the syntactical

representation of the set. The two results are in general similar except that

in the model-based approaches, the size of the revising formula determines

the number of models to analyse and therefore a restriction on it has an im-

pact on the overall complexity of the method in question [Eiter and Gottlob,

1992a; Nebel, 1998].

Eiter and Gottlob’s complexity analysis is based on what they call the

implication problem, i.e., whether a given belief ψ is entailed by a belief set

K◦ϕ (in symbols, K◦ϕ ⊢ ψ). This obviously involves two components

(whose complexity interacts in the majority of the approaches to belief

revision):

1. the inference process itself, i.e., whether a formula ψ is entailed by a

belief set

2. the search for a maximal subset of a belief set that is consistent with

a given formula

The second component is the one related to the revision operation itself

and the principle of minimal change mentioned earlier. In [Eiter and Gott-

lob, 1992b; Eiter and Gottlob, 1992a], the implication problem is analysed

for propositional logic under a number of different scenarios arising from

the possible combinations of placing a restriction on the type of formulae

allowed (e.g., full propositional formulae or horn clauses only) and on the

size of the update formula itself (e.g., unlimited length or length bound by

a constant).

Eiter and Gottlob’s findings are that the complexity problem for the

implication problem resides, in general, at the second level of the polynomial

hierarchy (ΠP
2 ). These results confirm the initial investigations done by

Nebel in [Nebel, 1991a], but go further by analysing scenarios under which
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the complexity can be reduced.25 It turns out that tractability can only be

attained by imposing a restriction on the size of the revising formulae and

on the type of formulae allowed in the language — i.e., horn clauses only.

Part of this is attributed to the fact that propositional inference for horn

clauses is tractable.

Revision mechanisms that use priorities to help in the decision of what

beliefs to give up, such as prioritised base revision [Fagin et al., 1983; Nebel,

1991a] (see Section 4.5) in general share the same complexity of those who

do not employ priorities, i.e., they are Πp
2-complete. However, Nebel has

proved that the implicational problem K◦ϕ ⊢ ψ, for the special case of

horn languages and bases which are linearly ordered, can be decided in

time O(n2), where n = |K| + |ϕ| + |ψ|.

On the other hand, the problem of generating a revised belief base K◦ϕ

was investigated by Gogic et al. [Gogic et al., 1994]. For a quite comprehen-

sive analysis of the complexity of several satisfiability problems, the reader

is referred to [Dalal and Etherington, 1992]. On the more specific topic

of the complexity of iterated belief revision, see [Liberatore, 1997b; Eiter

and Gottlob, 1993]. The complexity of update operations was also anal-

ysed by several authors and relevant references include [Liberatore, 1997a;

Eiter and Gottlob, 1992b].

7 APPLICATIONS

Applications of belief revision have been proposed for the solution of many

computer science problems. In this section, we provide a brief description

of the applications that are more closely related to the belief revision ap-

proaches presented in this chapter.

7.1 Belief Revision in Requirements Engineering

A key problem in large systems engineering projects is the management of

frequently changing requirements, both during initial system development

and subsequent maintenance and evolution. It has been noted [Williams,

1998] that changes occurring during the development process are estimated

to be responsible for 80% of the overall total costs of software development
[Williams, 1993].

25For more information about computational complexity, the reader is referred to
[Stockmeyer, 1987; Garey and Johnson, 1979; Johnson, 1990; Krentel, 1988; Papadim-

itriou and Steiglitz, 1982; Papadimitriou and Yannakakis, 1982].
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The ability to record, track, analyse and control changes in requirements

is crucial because modifications have a particularly significant impact on

the consistency of specifications. Changes may introduce inconsistencies

and conversely, handling existing inconsistencies requires changes to the

requirements. Inconsistencies may arise for different reasons, for exam-

ple, when multiple conflicting viewpoints are embodied in the specifica-

tion, or when the specification itself is at a transient stage of evolution.

These inconsistencies cannot always be resolved immediately — this fact

is captured by Zowghi’s and Rodrigues et. al.’s approaches [Zowghi, 1997;

Rodrigues et al., 2003]. In addition, manual assessment of the effects of

these changes is very hard due to the complexity involved in modern large

software systems. As a result, a number of techniques have been proposed

to provide automated assistance to this task.

We describe four approaches based on belief revision principles for han-

dling inconsistencies in the evolution of system requirements specifications:

the first one uses AGM revision for default theories; the second one is based

on the OTPs described in Section 4.7; a third one is based on epistemic

entrenchment and finally the fourth one uses the clustered belief revision

approach proposed in [Rodrigues, 2003].

Modelling and reasoning about the evolution of requirements

In [Zowghi, 1997], Zowghi formalised specifications as default theories where

each requirement is defined as either defeasible or non-defeasible. In iso-

lation, both defeasible and non-defeasible information are assumed to be

consistent, but when put together, they can be inconsistent. Inconsisten-

cies introduced by an evolutionary change can be resolved by performing a

revision operation over the entire specification which changes the status of

information from defeasible to non-defeasible or vice-versa.

Zowghi’s approach has three main characteristics. It allows explicit rep-

resentation of default information that can be used to construct complete

requirements models from given (incomplete) sets of requirements; it per-

mits the identification of consistent alternative models that resolve contra-

dictions arising in an (incomplete) requirements specification; and finally it

provides a constructive formal mechanism for computing the evolution of re-

quirements models arising from the addition or retraction of requirements.

The framework represents requirements specifications as default theories
[Poole et al., 1987; Poole, 1988b] and requirements evolution as the map-

ping between default theories through a process of rational belief revision.

A non-monotonic derivability relation |∼ is used to derive from a given (in-
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complete) set of requirements nonmonotonic consequences (or extensions)

of the specifications using assumptions and defaults about the underlying

problem domain. An AGM revision operator ◦ satisfying the AGM postu-

lates is used to provide a rational revision of requirements specifications.

This operator and its properties confine, but does not uniquely determine

the new default theory obtained from the addition of information to a given

partial requirements specifications.26 The revision process used is based on

a priority relation over the requirements expressing their relative importance

— changes in the priorities affect the result of the revision.

The representation of requirements specifications is based on the non-

monotonic reasoning framework THEORIST proposed in [Poole et al., 1987;

Poole, 1988b]. Requirements specifications are therefore defined as a tuple

〈F,H,C〉, where F is a set of formulae that are necessarily true, called

facts, H is a set of formulae that are tentatively true, called hypotheses and

C is a set of constraints, such that F ∪ C is satisfiable. Requirements that

are known to be true in a given domain are treated as facts, together with

domain knowledge, whereas defaults or tentative requirements are treated

as elements of H. Within this default logic representation framework, a

requirements specification 〈F,H,C〉 is said to be consistent if 〈F,H,C〉 is

a consistent default theory, namely if the set F ∪ C is satisfiable. Given a

default theory ∆, the set of extensions of maximal scenarios of ∆, denoted

with E(∆) is the usual maximal default extension of ∆ as defined by Reiter
[Reiter, 1980].

Given a specification S = 〈F,H,C〉, a complete requirements specifica-

tion (or maximal extension) constructed from S is the set K ∪ h such that

h ⊆ H, F ∪h∪C is consistent and there is no h′ such that h ⊂ h′ ⊆ H and

F ∪ h′ ∪ C is consistent.

The evolution and change management of a given requirements speci-

fication is modelled by a revision operation that takes as input a given

specification and the new information to be included and computes the re-

vised specification. The operation satisfies the basic AGM postulates. The

most important property in this context is the principle of informational

economy (see page 6). In this setting, this amounts to retaining as much

as possible of the old requirements. Obviously, if the new requirements are

consistent with the current specification they are simply added and nothing

is lost in the process. The difficulty arises when they are inconsistent with

the current specification. In order to retain consistency some requirements

in the current specification need to be retracted. In practice, what happens

26A contraction operation is also used on the same lines.
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is the deactivation of these requirements. However, as the specification

evolves, previously deactivated requirements may be reactivated provided

they do not cause inconsistency. This is similar in spirit to the reinstate-

ment algorithm of the controlled revision framework described in page 64.

The revision mechanism defined in [Zowghi and Offen, 1997] provides the

theoretical framework to this process and is based on the revision scheme

for default theories proposed in [D. Zowghi and Peppas, 1996], which uses

revision operators closely related to those defined in [Brewka, 1989a].

Given a default theory 〈F,H,C〉 representing a requirements specification

and some new information ϕ, the revision of the specification by ϕ, denoted

by 〈F,H,C〉◦ϕ, is required to satisfy the following properties:

• the revised specification is a consistent default theory, i.e., the revised

set of facts is consistent with the integrity constraints;

• the revision operation is successful, namely all the maximal scenarios

of 〈F,H,C〉◦ϕ derive ϕ, and

• the outcome is independent from the syntactical form of ϕ. This

means that for any formula ψ such that ψ ≡ ϕ, the revised specifica-

tions 〈F,H,C〉◦ϕ and 〈F,H,C〉◦ψ have the same maximal scenarios

A revision operator for default theories satisfying the above criteria was

formally defined in [Zowghi and Offen, 1997] as follows.

DEFINITION 97. Let 〈F,H,C〉 be a default theory where F is a belief

base, H is a set of default hypotheses and C is a set of constraints. Let ϕ

be a formula. The revision of 〈F,H,C〉 by ϕ, denoted by 〈F,H,C〉◦ϕ, is a

default theory 〈F ′,H ′, C ′〉 where:

• F ′ = F ◦aϕ

• H ′ = H ∪ (F\F ′)

• C′ = C−¬F ′

The above operator satisfies the following properties (see [Zowghi and

Offen, 1997]).

THEOREM 98. Let 〈F,H,C〉 be a default theory and ϕ be a formula. The

revised theory 〈F,H,C〉◦ϕ = 〈F ′,H ′, C′〉 satisfies the following properties:

• F ′ ∪ C ′ is consistent

• for all e: e ∈ E(〈F ′,H ′, C ′〉) implies e ⊢ ϕ
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• if ϕ ≡ ϕ′, then E(〈F,H,C〉◦ϕ) = E(〈F,H,C〉◦ϕ′)

Zowghi also defined a contraction operation for default theories in a simi-

lar way. The contraction is used to retract information from a requirements

specification.

DEFINITION 99. Let 〈F,H,C〉 be a default theory and ϕ be a formula.

The contraction of 〈F,H,C〉 by ϕ, denoted by 〈F,H,C〉−ϕ, is a default

theory 〈F ′,H ′, C ′〉 where:

• F ′ = F−¬C ′

• H ′ = H ∪ (F\F ′)

• C′ = C ◦a¬ϕ

Zowghi showed that the above operator satisfies the following properties
[Zowghi and Offen, 1997].

THEOREM 100. Let 〈F,H,C〉 be a default theory and let ϕ be a formula.

The default theory 〈F ′,H ′, C′〉 = 〈F,H,C〉−ϕ satisfies the following prop-

erties:

• F ′ ∪ C ′ is consistent

• there is no e ∈ E(〈F ′,H ′, C ′〉) such that e ⊢ ϕ

• if ϕ ≡ ϕ′, then E(〈F,H,C〉−ϕ) = E(〈F,H,C〉−ϕ′)

Informally, the contraction of a default theory by a formula ϕ consists

of revising the set of constraints C with ¬ϕ in order to guarantee that no

default maximal extension of the theory will be consistent with ϕ; then con-

tracting from the set of facts F the constraints that are consistent with ϕ;

and finally adding the information removed from F into the set of default

assumptions H. The latter ensures that no requirement is ever discarded

from a given specification. If, for instance, a requirement ϕ is added to a

specification that already contains ¬ϕ,27 then ¬ϕ is demoted to “default”

status (i.e., moved from F to H) thus guaranteeing that no maximal sce-

nario will contain it. If later on ϕ is retracted from the specification (e.g., by

revising the constraints C with ¬ϕ), the set of facts F is contracted with all

information that is inconsistent with the new set of constraints and there-

fore ϕ is contracted from F and added to H. In so doing the information ¬ϕ

is again included in the maximal scenarios of the new revised specification.

27ϕ is added to F .
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In general, all requirements that have been considered during an evolution

process are included in either F or H at all future times. Elements in F can

be seen as resulting from prior revisions of a given specification whereas all

the elements in C can be seen as resulting from prior contraction. The revi-

sion (resp., contraction) of F (resp., C) makes use of the notion of epistemic

entrenchment to represent the relative importance of requirements. This or-

dering is clearly application-specific. For instance, in safety-critical systems,

requirements related to safety factors may be considered most entrenched,

whereas in real-time systems, requirements related to response time instead

may be considered so. During the revision process inconsistencies between

requirements are resolved by giving up those requirements that have lower

epistemic entrenchment.

The following example, taken from [D. Zowghi and Peppas, 1996], illus-

trates how the revision and contraction operations defined above are used

for evolving requirements.

EXAMPLE 101. Consider the set of requirements for a word processor

Spec = {screencolour ↔ ¬screenmono, targetchildren→ screencolour}

where screencolour/screenmono denote the requirement that the monitor

screen be in colour or monochrome, and targetchildren/targetadults indi-

cates whether the word processor is targetted at schoolchildren or adults.

With the addition of the facts wordproc and targetadults we get the

default theory 〈F0,H0, C0〉 given by

• F0 = {screencolour ↔ ¬screenmono, targetchildren→ screencolour,

wordproc, targetadults}

• H0 = ∅

• C0 = ∅

Let us now consider the revision of this theory by screenmono. This for-

mula is consistent with F0 and therefore can be directly added to the set of

requirements, thus generating the following requirements theory 〈F1,H1, C1〉:

• F1 = F0 ∪ {screemono}

• H1 = ∅

• C1 = ∅

A second revision of the specification by targetchildren would instead

require a revision of the theory generating the new theory 〈F2,H2, C2〉,

where:
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• F2 = F1◦targetchildren = F0 ∪ {targetchildren}

• H2 = H1 ∪ (F1\F2) = F1\F2 = {screemono}

• C2 = ∅

A subsequent evolution of the specification requiring the contraction of

screemono would generate the new theory 〈F3,H3, C3〉, where:

• F3 = F2−{screemono} = F2

• H3 = H2 ∪ (F2\F3) = H2 = {screemono}

• C3 = C2◦¬screemono = {¬screemono}

Although this approach builds upon Poole’s notion of default theories
[Poole et al., 1987; Poole, 1988b], the revision process of each component F

and C is based on standard AGM revision with epistemic entrenchement.

Subsequently, a set of operators closely related to the two operators given

in Definition 97 and Definition 99 were shown to satisfy a reformulation of

the AGM postulates based on the concept of maximal extensions of a given

default theory. For further details the reader is referred to [Ghose, 1991].

Defaults in specifications

In [Ryan, 1993], the use ordered theory presentations (OTPs)28 was proposed

to handle the representation of default information and revision of software

specifications.

The main motivation was to use default information to help narrowing the

gap between formal specifications and the customers’ initial requirements

and to use belief revision to perform changes required by the realisation

of undesirable consequences or inconsistency of a specification. A formal

specification (or theory) is structured by splitting its signature into smaller

components. For example, the signature of the specification of a lift system

could be divided into three smaller signatures governing the behaviour of

the lift’s buttons; the behaviour of its door and the lift’s current position.

Requirements are associated with each of the classes identified in the

structure which then induces a partial ordering relation over a given system

specification. The finite set of requirements specifications equipped with

such a partial order (or priority relation) defines an ordered theory presen-

tation. The ordering relation over the system requirements enables the use

28See Section 4.7 or [Ryan, 1991]).
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of a specificity principle for the resolution of conflicts between specifications

of different but dependent classes of objects. The more specific the class

of a requirement is, the lower in the ordering the requirement is and the

higher its priority is. In other words, more general classes have less priority

than more specific ones. The specificity principle states that defaults about

a class of objects override those about a more general class [Ryan, 1993].

In the lift example given above, a “lift” class would be considered to be

more specific than a “button” class. Consider, for example, the following

two statements, in which the first requirement refers to an object of class

“lift” and the second one to an object of class “button”.

• when the lift is on the i-th floor, the indicator light of the i-th floor is

off

• pressing a button for a floor causes the corresponding light indicator

to come on

In the particular situation when a lift is on the floor whose corresponding

button has been pressed, the conflicting statements indicator light of the i-

th floor is off and indicator light of the i-th floor comes on could be derived.

However, in this case the specificity principle would block the consequences

imposed by the second requirement since indicator light of the i-th floor is

off would override the requirement associated the more general button class.

Logically speaking, a system specification is defined as a pair 〈∆,Γ〉,

where ∆ is the set of inviolable requirements (an ordinary theory presenta-

tion) and Γ is a set of norms (an ordered theory presentation). The models

of a specification 〈∆,Γ〉 are then the ⊑Γ-maximal elements in the set of

interpretations that satisfy ∆. From the point of view of belief revision,

∆ represents a belief base and the ordering of the OTP Γ comes from the

process by which the specification is obtained, i.e., its revision history. The

history can be thought of as showing the structure (through refinement) of

a system component. The more general classes are introduced earlier during

the development cycle and the more specific classes are introduced later as

a refinement (or revision) of existing (more general) components. This pro-

cess would generate a linear OTP, as discussed in Section 4.7. Revision of

a specification would be obtained by the addition of sentences to the OTP.

Goal-structured analysis and design revision

One of the difficulties in automating some aspects of the process of software

engineering is that although a formal mathematical language is needed in

order to ensure a thorough analysis and verification of system properties,
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requirements from stakeholders are usually expressed in a natural language

that is prone to ambiguities and other weaknesses.

In [Duffy et al., 1995], Duffy et al. propose a formalism that attempts

to bridge this gap by allowing information about requirements and other

design decisions to be expressed both in natural language and in sentences

of a formal logic language. The latter is used to automate the process

of change evaluation. The framework was called goal-structured analysis

(GSA), which is described next.

In GSA, logical representations of requirements and design decisions are

embedded in a goal structure — a directed acyclic graph where the nodes,

here called frames, contain information about the system. The information

in a frame consists of natural language assertions as well as sentences in a

logical language. Frames are divided into four main classes: goals — possibly

structured statements about objectives to be achieved by the system; effects

— similar to goals, but describing an outcome which is possibly undesirable;

facts — statements that cannot be further decomposed (i.e., atomic); and

conditions — statements that are also atomic, but which are possibly false

in a given scenario. GSA does not distinguish between facts that support

other facts. We will later see that this distinction is necessary during the

process of goal structured revision.

Scenarios in GSA correspond to a set of conditions. A goal is said to be

globally supported if it is satisfied by facts and conditions only. During the

top-down decomposition, it is not usually possible to tell whether a goal will

eventually be globally supported. However, the framework’s objective is to

identify conditions to ensure global support for the goal in the final struc-

ture. A goal which satisfies these conditions is said to be locally supported.

Duffy et al. have shown in [Duffy et al., 1995] that local support leads to

global support.

In order to avoid certain difficulties, such as cycles in the support chain

of a goal, the formalism adopts a partial order �G on goals. A goal must

be entailed by goals appearing lower in the order �G for it to be locally

supported.

The formalism presented in [Duffy et al., 1995] does not contain a formal-

isation of how goal structures should change (for instance to accommodate

changes in requirements). In [MacNish and Williams, 1998], Williams et

al. put forward belief revision as the formal mechanism for revision of user

specifications in top-down designs (which is the case of goal structures).

The idea is to associate the partial order on the requirements with an

entrenchment ranking 0 < Rc < Rf < Rr < Rmax where 0 is the least

entrenched point; Rmax is the most entrenched one and in which
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• conditions are ranked in the interval [0,Rc];

• facts are ranked in the interval (Rc,Rf ];

• goals and effects are ranked in the interval (Rf ,Rr]; and

• causal rules are ranked in the interval (Rr,Rmax]

The only interval above that does not directly correspond to GSA’s par-

tition of assertions is (Rr,Rmax]. Williams et al. note in [MacNish and

Williams, 1998] that some facts actually represent causal relationships and

consider them to play a more fundamental role. These are called causal

rules and placed in the most entrenched interval. Also note that this par-

ticular way of ranking separates conditional requirements from mandatory

ones (assumed to be true in any given scenario) by placing the former in

the least entrenched rank [0,Rc]. Intuitively, these will be the requirements

that one is most willing to give up.

The entrenchment ranking is used to allow the development of goal (de-

composition) structures without loops, and also to define a belief revision

process over a given goal structure. Three types of operations on goal

structures were proposed: test of alternative scenarios; revision of goals and

effects; and contraction of causal rules. The first type of operation corre-

sponds to the type of analysis usually associated with “what-if” questions.

It tests different scenarios to see whether goals are (still) supported. The

change in this case is in the set of conditional requirements — a new sce-

nario might require removing existing conditions and adding new ones. As

conditions are placed in the least entrenched interval of requirements, ad-

ditions and deletions can be made on this part of the specification without

affecting requirements in more entrenched ranks such as those associated

with goals and causal rules. Only conditions that contradict newly added

conditions are retracted leaving other existing unrelated conditions unaf-

fected. The revision of goals and effects arises when a goal decomposition

leads to disjunctive antecedents.

Given a partial entrenchment ranking, an assertion g is defined to be

globally supported with respect to a scenario if and only if there exists a

set S of assertions in the specification that entails g and such that each

assertion si in S has a rank value deg(si) either in the interval (0,Rf ] or in

the interval [Rr,Rmax].

For an assertion g to be locally supported in a scenario, there must exist

a set S of assertions that entails g and such that the rank value deg(si) of

each assertion si in S is either in the interval (0, deg(g)) or in the interval

[Rr,Rmax].
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Williams et al. make other considerations with respect to improving ef-

ficiency by imposing syntactical constraints on the representation of rules

(and hence simplifying theorem proving in the process). For more infor-

mation, the reader is referred to [MacNish and Williams, 1998; Williams,

1998].

Clustered belief revision

As we have seen, conflicting viewpoints inevitably arise in the process of

requirements analysis. Conflict resolution, however, may not necessarily

happen until later in the development process. This highlights the need for

requirements engineering tools that support the management of inconsis-

tencies [Easterbrook and Nuseibeh, 1996; Spanoudakis and Zisman, 2001;

Hunter and Nuseibeh, 1998].

Many formal methods of analysis and elicitation rely on classical logic

as the underlying formalism. Model checking, for example, typically uses

temporal operators on top of classical logic reasoning [Huth and Ryan, 2000]

with well-behaved and established proof procedures. However, it is well

known that classical logic theories trivialise in the presence of inconsistency

and this is clearly undesirable in the context of requirements engineering.

Paraconsistent logics [da Costa, 1974] attempt to circumvent the problem

of theory trivialisation by weakening some of the axioms of classical logic,

often at the expense of reasoning power. For instance, Belnap’s four valued

logic [Belnap, 1977a] allows for non trivial logical representations where

propositions can be both true and false, but does not verify basic inference

rules such as modus ponens. While appropriate for concise modelling, logics

of this kind are too weak to support practical reasoning and the analysis of

inconsistent specifications.

In [Rodrigues et al., 2003], Rodrigues et al. argue that a formal frame-

work for the analysis of evolving specifications should be able to tolerate

inconsistency without trivialising the reasoning process and enable impact

analyses of potential changes to be carried out. They proposed the use of

clustered belief revision [Rodrigues, 2003] to help in this process. The idea

is to use priorities to obtain plausible (i.e., not trivial) conclusions from an

inconsistent theory whilst exploiting the full power of classical logic reason-

ing. Requirements with similar functionality are grouped into “clusters”

and the clusters themselves may have relative priorities between them. By

analysing the result of a cluster, an engineer can either choose to rectify

problems in the specification or to postpone the changes until more in-

formation becomes available. This allows for the anlaysis of the results of
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different possible prioritisations through reasoning in classical logic, and the

evolution of specifications that contain conflicting viewpoints in a principled

way.

The analysis of user-driven cluster prioritisations can also give stakehold-

ers a better understanding of the impact of certain changes in the specifica-

tion. The formalism does not provide any support for the creation of such

prioritisations other than the reasoning mechanism itself, because priori-

tising requirements is subjective to the interpretation of the engineer and

stakeholders and is in itself a very complex issue.

The starting point is a basic priority relation ≤ associated with a set of

requirements Γ. This relation is extended to a relation � associated with

the power set of Γ, i.e., 2Γ. The idea is to consider only subsets of 2Γ whose

requirements satisfy certain properties — these are called plausible. One

such property is obviously logical consistency. However, any constraint that

can be expressed in classical logic can be used. The extension of the original

≤ to � is then used to determine which among the plausible elements of 2Γ

are preferredpreferred subsets of requirements.

The tool translates requirements given in the form of “if-then-else” rules

into the (more efficient) disjunctive normal form (DNF) for classical logic

reasoning (this simplifies the consistency checking, for instance). A cut-

down version of the light control case study [Heitmeyer and Bharadwaj,

2000] was given in [Rodrigues et al., 2003] as an illustration of the use of

the framework for requirements engineering.

As discussed above, the emphasis of the work is on the use of priorities

for reasoning about potentially inconsistent specifications. The same tech-

nique can be used to check the consequences of a given specification and to

reason about “what-if” questions arising during evolutionary changes as dis-

cussed for GSA above. This can be done by imposing different plausibility

conditions, for instance.

The extension of ≤ to � can be optimised by the use of a number of

heuristics about its behaviour with respect to ≤. The use of DNF greatly

simplifies the reasoning process, but the conversion to DNF sometimes gen-

erates complex formulae — these can be minimised via Karnaugh maps. If

conversion to DNF is not desired, a suitable theorem prover could be used

instead in the reasoning process.

Clustered belief revision applied to software engineering relates to the

GSA formalism proposed by Duffy et al. and described in the beginning of

Section 7.1 in the sense that the latter also allows for an analysis of the

consequences of alternative changes by checking the verification of goals af-

ter modifications to a specification. Rodrigues et. al.’s approach in addition
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supports the evaluation of consequences of (evolutionary) changes through

the analysis of requirements retention after changes to a specification.

Many other techniques can be found in the literature for the manage-

ment of inconsistency, but much of the work has focused on consistency

checking; consistency analysis and actions to be taken based on pre-defined

inconsistency handling rules rather than on belief revision itself. For exam-

ple, Easterbrook et al. proposed to augment consistency checking rules with

pre-defined lists of possible actions [Easterbrook and Nuseibeh, 1996], but

with no policy or heuristics to guide in the choice among alternative actions.

Their approach takes decisions based on an analysis of the history of the

development process (e.g., past inconsistencies and past actions). Klein et

al. also proposed the use of pre-defined hierarchies of conflicts and associ-

ated resolutions [Klein and Lu, 1990], while Robinson et al. suggested the

use of negotiation for this purpose [Robinson and Volkov, 1998].

8 CONCLUSIONS

One can divide the evolution of the investigation of belief revision in two

main fronts. The more philosophical/mathematical approach, in which the

fundamental aspects of the process have been analysed; and the more ap-

plied one, in which the belief revision principles identified by the former are

applied in the solution of specific computer science problems.

In [Hansson, 2003], Hansson presents a number of interesting philosophi-

cal problems for belief revision. One such problem is the representation and

reasoning of conditional assertions. Suppose an agent’s language for the

representation of beliefs would allow for the representation of hypothetical

reasoning with statements of the kind “it is possible that A” (in symbols

⋄A), whenever ¬A is not held by the current belief set K. If A ∈ K and

K is not inconsistent, then it follows that ⋄¬A 6∈ K. Now notice that

⋄¬A ∈ K−A, contradicting one of the contraction postulates that asserts

that K−A ⊆ K. Many issues of this nature are still open to investigation.

We discussed at some length in Section 4 some of the difficulties incurred

by the intrinsic lack of a richer structure in a belief set. We argued that

this was one of the main problems in the application of belief revision in

practical reasoning systems because it makes it difficult to represent some

meta-level constraints that are essential for the correct modelling of these

systems. The lack of structure of the belief set was circumvented in a sense in

the original AGM formulation with the proposal of epistemic entrenchment

orderings and the like. However, no guidelines were provided as to how these
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orderings should evolve themselves. Many authors have highlighted this

categorial matching problem preventing a more natural definition of revision

mechanisms supporting iteration [Nayak, 1994b; Rott, 2001; Hansson, 2003].

As a result, all of the main proposals for the modelling of iteration of the

revision process make use of an enriched notion of a belief set and provide

some guidance on how this enriched structure (sometimes called an epis-

temic state) is affected by a belief change operation. In the formalisms for

iterated revision, the meta-level information is used mainly to record the

history of revisions, but the meta-level information has many other appli-

cations. It could be used for instance to represent priorities associated with

beliefs. The question remains as to whether a more realistic approach can

depart from principles that need to make reference to the richer structure

explicitly. We will discuss this further later on in this section. In what now

follows, we present a number of possible directions for the expansion of the

field.

Revision for structured theories

In Section 2, the problem of belief revision was presented and formulated

as follows:

(Def ∗) Let K be a set of formulae representing the beliefs of some agent

in the language L of some logic L, with consequence relation Cn.

Assume some additional information ϕ is received and that ϕ is

consistent in L but K ∪ {ϕ} is inconsistent. Belief revision seeks

to find a new consistent theory K′ = K◦ϕ which contains ϕ.

The context and discussion above was initiated in [Alchourrón and Makin-

son, 1982; Alchourrón et al., 1985] where the postulates the revision ◦ should

satisfy were proposed. At that time, the main logic L was classical logic.

The notion of a theory K was a set of well formed formulae and the notions

of consistency and consequence were mainly those of classical logic or of

similar logics.

Nowadays, as a result of deeper interaction of logic with computer science,

artificial intelligence, common sense reasoning, legal reasoning, language

analysis, etc., the notion of a logical system has changed and evolved. It is

time to discuss the concepts of revision theory as applied to the new logics.

We will do so without going into the character of the new logics, but giving

just enough detail to put revision theory in perspective. For more details,

the reader is invited to consult the book on Labelled Deductive Systems
[Gabbay, 1996] and the chapter on labelled deduction in this series. The

basic concepts used by ◦ are:
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(Π◦1) A theory K is a set. ϕ is in K means set theoretical inclusion.

(Π◦2) Consistency is that of classical logic or similar.

(Π◦3) Consequence is monotonic, therefore maintaining consistency is

done by deletion.

(Π◦4) Input ϕ is done by set theoretic inclusion.

The new concepts are at least as follows:

(Π◦1′) A theory K is a labelled structure of formulae. ϕ is in K probably

means that ϕ appears somewhere in the structure

(Π◦2′) Consistency is no longer a central notion. A better notion is ac-

ceptability. Certain structured theories are not allowed.

(Π◦3′) Consequence is labelled deduction with quite a complex hierarchy of

rules. Non-monotonicity is a natural side-effect of the proof system.

Acceptability can be maintained by deletion, re-structuring or even

addition.
(Π◦4′) The notion of input is part of the logic. Since a theory K is a

complex structure, the input function must tell us how to integrate

the input ϕ (which may come with a label) into the structure K.

The problem of revision now becomes as follows:

(Def ∗′) Given a theory K and an acceptable input ϕ, turn K into a new

theory K ′, with ϕ appearing in the structure. If K′ is not ac-

ceptable, find another theory K ′′ in which ϕ appears and which

is acceptable.

Some examples are given to illustrate this idea:

EXAMPLE 102. Let a police inspector record information (expressed by

formulae in the language of classical logic) by its source and reliability.

Thus, he may have a database with the following structure:

1. (witness a, 0.7) : ϕ

2. (witness b, 0.9) : ψ

3. common sense : ϕ→ ¬ψ

4. common sense : ϕ→ γ

Assuming the evidence from witness a is acceptable (i.e., it was obtained

by legal means), this knowledge base is problematic. How can one revise it?

Option 1: One can consider one of the witnesses less reliable, by for example,

changing the label of item 1 to, say, ‘(witness a, 0.3)’. This will affect the

value with which γ is derived.
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Option 2: One can modify the view of the common-sense rule ϕ → ¬ψ.

Perhaps it has more exceptions than anticipated.

Option 3: Leave the data as it is and wait for more data to become available

(or request for more data before making any conclusions).

The reader can see that the process of revision in such complex contexts

is different and has more options than AGM and its variations.

EXAMPLE 103. This example arises naturally from iterated revision. Sup-

pose one starts with a theoryK and keep revising it to getK1 = K◦ϕ1,K2 =

K1◦ϕ2, . . .. If a record of the input stream and of how revisions of K into

K1, K1 into K2, etc., is kept, then this complex historical structure can

be used to help in the decision of how to revise from Ki to Ki+1. This

generalisation is the basis of controlled revision and other similar revision

mechanisms using the history of the updates (see Section 4).

Connections with social choice theory

We also note connections with voting and Arrow’s paradox [Arrow, 1963;

Geanakoplos, 1996]. Consider a domain of alternatives D = {a1, . . . , an}

and assume there are voters K1, . . . ,Km giving total orders of preferences

on this domain. The problem is to resolve some compromise ordering C

on the domain D. Under very reasonable assumptions on the compromise

function c = f(K1, . . . ,Km), one finds that the solution C will be (under

these assumptions) one of the Ki. This is the essence of Arrow’s paradox

and is considered an undesirable outcome.

Now looking at the situation from the point of view of revision theory,

the problem can be layed out as follows. Let a1, . . . , an be n constants and

consider a predicate language with equality = and a binary order symbol

<. Let ϕ be a formula containing as a conjunction all axioms of total order

together with the axiom

∀x(x = a1 ∨ x = a2 ∨ . . . ∨ x = an).

Let K be a consistent theory of order and consider K ∪ {ϕ}. If this theory

is not consistent, then one could invoke an AGM revision operator ◦ to

find a theory K ′ = K◦ϕ such that K ′ ⊢ ϕ. In fact, K ′ is some theory on

how to order the set of elements D = {a1, . . . , an}. As we have seen, one

way of finding K ′ is to look at all maximal consistent subsets K◦
1 , . . . ,K

◦
m

of K that fail to imply ¬ϕ (i.e., K⊥¬ϕ). In other words, revision will be

considering consistent theories L◦
i = K◦

i ∪ {ϕ} on D. These correspond to

disjunctions L◦
i of total orderings on the set D. The important point to
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bear in mind is that a maxichoice revision function will pick one of these,

but this is exactly what social choice theory does not want. In voting terms

a maxichoice revision operation is a process which, faced with a conflict

between different voters, determines how to eliminate them all but one! In

other words, this special kind of revision welcomes Arrow’s paradox.

What would the voting compromise function look like from the point of

view of revision theory?

Well, given an inconsistent theory K ∪{ϕ}, one seeks some K′ such that

K′ ∪{ϕ} is consistent and K′ bears some relation to all acceptable possible

AGM revision candidates K◦
i of K. K ′ need not be a contraction of K but

a different theory satisfying different requirements.

Note that since L◦
i are disjunctions of possible total orderings, it may still

be possible to find a total order consistent with the majority of the disjunc-

tions (i.e., acceptable to the majority of voters). This does not contradict

Arrow’s paradox. What it says is that if the voters give several alterna-

tives each for total preferences, maybe one can accommodate a majority of

them.29

Another promising line of research flowing from this new point of view is

the following:

“What would iterated revision be in the context of voting?”

“Would iterated changes in preferences be inconsistent with previous

compromises?”

We should note in this context that revision for voting makes use of

the ordering and the details of the theory involved. This suggests context

revision, where the principles of how to revise a theory K makes use of the

theory K itself and may be different for different theories K. So for example

for a theory involving colours of objects (unary predicates Ci(x)), we may

want to restore consistency without rendering any predicate Ci(x) empty.

Object level revision

The class of AGM operators K × ϕ −→ K◦ϕ is not defined in the object

level, but in the meta-level, since the binary operation ◦ is not part of

the language L. However, there would be advantages in having the revision

operator defined in the object level. This could lead to the design of systems

which fix themselves axiomatically and would be good for applications where

29One can let the voters have preferences on the linear orders and try to accommodate

them. From the revision theory point of view, this means each maximal subtheory of K

(maximally consistent with the input ϕ) has its model preferentially ordered and looking

at the models can help in making a choice.
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inconsistencies can mean fault, undesirable behaviour, violation of integrity

constraints and the like. Thus, moving into the object level may seem simple

and straightforward.

One can immediately add ◦ to the object language and write (AGM?)

axioms for it. This can indeed be done but it is not satisfactory. There are

plenty of algorithms for actually finding K◦ϕ, and the natural question is

how to reflect them in the object level.

Obviously, the only way to do it is to present the object-level logic in a

proof theoretical formulation (proof theory is algorithmic) and to add to it

additional algorithmic features which can be used to do revision. Thus the

particular algorithm for revision will be reflected and manifested as special

proof rules for the object-level connective ◦. This exercise has yet to be

done in detail, but one thing is already clear at this stage: since revision is

connected with contraction, one must also be able to perform object-level

deletion!

In fact, once one thinks of object-level deletion, one realises that perhaps

deletion is a more fundamental notion than revision (in the spirit of the

Levi identity — see page 2). Figure deletion out in the object level and

many other notions can be defined, including revision, abductive revision,

contraction and what else? Note that it would also be necessary to formalise

the connections between the meta-level revision and the object-level ones.

For more details, the reader is referred to [Gabbay et al., 2002; Gabbay et

al., 2004].

Reactive systems

There is a more general way of looking at belief revision. One can regard the

belief set as a system and the input as an interaction with the system. The

system reacts to the attempt to interact with it. If the input is inconsistent,

the system revises itself.

This idea can be applied in many contexts. Take for example the bridge

from point a to point b seen in Figure 9.

b

a

Figure 9. A bridge between points a and b.

As one passes through the bridge, if the load is too heavy, the bridge



BELIEF REVISION 103

can collapse. The arrow with the white head indicates the connection, the

arrow with the black head indicates the possible signal to disconnect.

Figure 10 depicts a more sophisticated scenario. In that figure, if one

crosses from a to b without proper procedure, the connection between b

and c would be automatically dropped and one would not be able to con-

tinue. Note that such system has object-level properties. It revises itself

automatically.

a

b

c

Figure 10. Bridges between points a, b and c.

Another example of interaction is revising consequence relations. Let Cn

be a collection of consequence relations of the form x|;y over some language

L. Assume L contains some form of implication →. Define the revision of

|; by α (|;α) as x|;αy iff x|;α→ y. This notion turns out to be useful in

quantum logic. In quantum logic, the elements are subspaces of the Hilbert

space and revision is done by projection [Engesser and Gabbay, 2002]. For

more details on reactive systems the reader is referred to [Gabbay, 2004].

First-order belief change

There is a vast body of literature on belief change, but almost all of it

is propositional and mainly involves theories of the classical propositional

logic. There is no study of belief change involving quantificational theories.

This is not unique to belief change. Other areas of applied logic are also

mainly propositional. For example, nonmonotonic logics are mainly propo-

sitional. There are some exceptions like circumscription and some predicate

default logics but the main bulk of the research is propositional. We have

a similar situation for probabilistic logics, and to a lesser extent with fuzzy

logic. In restrospect, the entire area of non-classical possible-world logics is

heavily slanted towards the propositional case. There are some studies of

the quantifiers but not really enough. There is still the notion in people’s

minds that the main character of a logic is given by its propositional part

and that the quantifiers are standard additions, acting like big conjunctions

(for ∀) and big disjunctions (for ∃) over variable instantiations.
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It is time, however, to turn our attention to predicate logics and apply

our machinery to theories containing quantifiers, variables and individuals.

The received wisdom about passing from the propositional case to the

predicate case was that all we need to do is add variables and basically add

the quantifier rules:

1. ∀xA(x) ⇒ A(y)

2. A(y) ⇒ ∃xA(x)

3.
⊢ A(x) ⇒ B

, x not in B
⊢ ∃xA(x) ⇒ B

4.
⊢ B ⇒ A(x)

, x not in B
⊢ B ⇒ ∀xA(x)

There may be some variations depending on the meaning of ⇒ (in e.g.

substructural logics) but on the whole there is nothing special to the move of

introducing the quantifiers into a logic. Of course one may study generalised

quantifiers or linguistic quantifiers and so on but the ordinary ∀ and ∃ are

considered as routinely introduced and require no special treatment and

cause no special problems.

The first surprise was when this recipe did not exactly work for relevance

logics (as Kit Fine has shown). Still, this was regarded as an aberration,

as something to be fixed. There was no realisation that we need to look

at ‘reasoning at the presence of quantifiers’ as something completely differ-

ent from propositinal reasoning, having its own completely different set of

problems and methods of solution.

Such a realisation is needed when we look at belief change, as we are

going to discuss next.

We begin with an example.

EXAMPLE 104. Suppose we have two witnesses w1 and w2. w1 says she

saw Mr. Jones at Kings’ Cross at 12.00 January 1st, 2010; whereas w2 says

he saw Mr. Jones at the Strand at 12.00, January 1st, 2010.

Obviously given a standard theory of people and time, these two state-

ments are inconsistent. Standard AGM revision theory or any algorithmic

refinements of it will seek to eliminate (delete) one of the statements. A

more practical commonsense approach is to accept the honesty of the wit-

nesses and seek to investigate the possibility of mistaken identity. Maybe w1

saw Mr. Jones, but w2 saw a Mr. Smith, and mistook him for Mr. Jones.

This is an easier way out of the inconsistency, and with less side effects in

the context of the application.
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If we look at the previous example more formally, we have that we

are given an inconsistent predicate theory talking about the individuals

a1, . . . , an involving atomic predicates P1(x), . . . , Pk(x).

Question. Can we restore consistency by one of the following operations?

1. Swapping identities of individuals for predicate Pi: replace all or some

occurrences of Pi(aj) by Pi(ar), r 6= j.

2. Identifying elements: add aj = ar, r 6= j and delete all assumptions

aj 6= ar.

3. Postulate a new element b 6= ai, i = 1, . . . , n and swap some occur-

rences of Pi(aj) by Pi(b).

4. Split the predicate P into two predicates P ′ and P ′′, and replace each

occurrence of P by either P ′ or P ′′. (For example, we have that the

witness is partially colour blind and had identified two different shades

of red!)

Technical challenges

1. For the method of reidentification and shifting of predicate extensions

is belief revision the same as contraction and then expansion? (We

expect the answer to be negative.)

2. Write reasonable postulates for this kind of first-order belief change.

3. Characterise belief change where only reidentification of elements is

involved.

4. Do the same where postulating new elements is involved.

5. Can any inconsistent theory be made consistent by a reasonable shift-

ing of predicate extensions? If not, characterise the boundaries.

6. Investigate inconsistencies for the monadic fragment and how it can

be rectified by reidentification and shifting.

7. Investigate the role of equality in this area.

EXAMPLE 105. Consider the following assertions.

1. there are three elements a1, a2 and a3

2. two of them are green
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3. two of them are brown

4. an element cannot be both green and brown.

How would AGM deal with this? How would we deal with this?

If we turn this into a propositional problem, we would have

1.
∨
i6=j G(ai) ∧G(aj)

2.
∨
i6=j B(ai) ∧B(aj)

3. ¬(G(ai) ∧B(ai)), i = 1, 2, 3.

Ordinary revision will take something out. Will first-order revision add

a fourth element?
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TOMASZ SKURA

REFUTATION SYSTEMS IN PROPOSITIONAL

LOGIC

1 INTRODUCTION

1.1 Basic Concepts

By a refutation system N we mean an inference system consisting of refuta-

tion axioms and refutation rules. Refutation axioms are non-valid formulas,

and refutation rules are rules preserving non-validity.

For example, consider the following rule (called reverse modus ponens).

B

A
(where ⊢ A→ B)

It was introduced by  Lukasiewicz (who was inspired by Aristotle) [ Lukasiewicz,

1951;  Lukasiewicz, 1952]. It is a refutation rule for every logic closed under

modus ponens (⊢ B, whenever ⊢ A and ⊢ A→ B).

Another typical example is the rule

A B

A ∨B
(Rd)

reversing the disjunction property (⊢ A or ⊢ B, whenever ⊢ A ∨B), which

was introduced by Gödel. It is a refutation rule for Intuitionistic Logic

(INT ), but it is not a refutation rule for Classical Logic (CL).

In Modal Logic we have the following variant of Rd.

A B

2A ∨ 2B
(RD)

It reverses the rule of disjunction (studied in [Hughes and Cresswell, 1984]).

We remark that RD is a refutation rule for several standard modal logics,

including S4.

We say that a formula A is refutable in N, if A is derivable from refutation

axioms by refutation rules.

For example, consider the following refutation system.

Refutation axioms: All formulas that are not in CL.

D. Gabbay and F. Guenthner (eds.), 
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Refutation rule: Rd.

Note that it is a refutation system for INT . We can refute the formula

p ∨ ¬p in this system as follows.

1. p (axiom)

2. ¬p (axiom)

3. p ∨ ¬p (1,2,Rd)

Thus our refutation systems are just like traditional axiomatic proof sys-

tems, but they generate non-valid formulas rather than valid ones.

Syntactic refutations can be described as attacks in argumentation net-

works. An argumentation network is a pair (S,R), where S is a non-empty

set of arguments and R ⊆ S×S is an attack relation (for more information

see [Gabbay, 2008], [Barringer et al., 2005]). In the above example, both

1 and 2 attack 3. As a result, p ∨ ¬p is refuted, which can be written as

−p ∨ ¬p, and the derivation p,¬p, p ∨ ¬p justifies this. Thus a node x ∈ S

can be regarded as

(∆x,−Ax)

where ∆x is a derivation refuting Ax.

Let
A1, ..., An

A

be a refutation rule. The corresponding attack can be presented as follows.

(∆1,−A1), ..., (∆n,−An)

(∆1, ...,∆n, A,−A)

The reverse modus ponens rule involves provability, which can be viewed as

support. This rule can be presented as the following attack.

(∆,+A→ B) (∆′,−B)

(∆′, A,−A)

In the context (∆,+A), ∆ is a proof of A. A node can also have the form

(∆x,+Ax).

Reverse modus ponens is a hybrid refutation rule. It involves provability

as well as refutability. This feature may seem a disadvantage. However,

it is in fact an advantage. This concept is more general than that of pure

refutation rule. (Pure rules are special cases of hybrid rules.) Moreover, it

makes the refutation machinery stronger by providing an additional deriva-

tion engine. And the proof system need not be an axiom system. It can be

any convenient procedure generating valid formulas.
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1.2 A Problem

Let N be a refutation system for a logic L. We say that N is characteristic

(or complete) for L, if every formula A 6∈ L is refutable in N.

In some logics, like CL as well as the modal logics K and S5, finding

complete refutation systems is easy. In CL the conjunctive normal form

procedure provides the following characteristic refutation system.

Refutation axioms: All formulas
∧
X →

∨
Y , where X ,Y are finite sets of

propositional variables such that X ∩ Y = ∅.

Refutation rule: reverse modus ponens

By adding the following refutation rule (introduced in [Lemmon and Scott,

1977]) to the refutation system for CL, we obtain a characteristic refutation

system for the modal logic K.

A→ B1, ..., A→ Bn, C

2A→ C ∨ 2B1 ∨ ... ∨ 2Bn

where A,B1, ..., Bn are formulas and C is a modal-free formula.

A similar characteristic refutation system for the modal logic S5 is pro-

vided by the reduction procedure described in [Hughes and Cresswell, 1968].

But in other logics, like the modal logic S4, the task is not easy.

One way of showing that a rule

A1, ..., An
A

is a refutation rule for a logic L consists in assuming that the sequent ⇒ A

is provable in some cut-free sequent system for L, analysing all possible

proofs of ⇒ A, and concluding that some ⇒ Ai is provable. This should

also give a complete refutation procedure.

This method was introduced by Gentzen and it became a standard proof-

search method using cut-free sequent systems (see e.g. [Kleene, 1952]). As

a refutation-search method, it works in some logics, like the modal logic K.

But in other logics, like S4, the method is problematic and it may produce

suspicious results, because it is an intuitively described procedure rather

than an exact proof that no proof of ⇒ A exists.

Consider the following sequent system for the modal logic K.

Axioms: All sequents U ⇒ V, where U ,V are sets such that U ∩ V 6= ∅ or

⊥ ∈ U .
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Rules:
U , A⇒ V , B

U ⇒ V , A→ B

U ⇒ V , A U , B ⇒ V

U , A→ B ⇒ V

U ⇒ A

U ′,2U ⇒ 2A,V ′

Take any sequent α = U ⇒ V that is not an axiom. Assume that α is

provable. If U ∪ V contains a formula A → B, then α can be obtained

by one of the rules introducing →, and so some simpler sequents must be

provable. And if U ∪ V has no formula A → B, then α can be obtained

only by the rule introducing 2, so that some simpler sequent must again be

provable. This reasoning justifies the following refutation system for K.

Refutation axioms: All sequents U ⇒ V , where U ,V are sets of atomic

formulas such that U ∩ V = ∅ and ⊥ 6∈ U .

Refutation rules:
U , A⇒ V , B

U ⇒ V , A→ B

U , B ⇒ V

U , A→ B ⇒ V

U ⇒ V, A

U , A→ B ⇒ V

{U ⇒ A : A ∈ V}

U ′,2U ⇒ 2V ,V ′

In the last rule U ′,V ′ are sets of atomic formulas such that U ′ ∩V ′ = ∅ and

⊥ 6∈ U ′.

It may seem that applying this method to other standard modal logics is

a routine exercise, and very elegant refutation systems for these logics can

be obtained.

But let us consider the modal logic S4 and the sequent system presented

in [Fitting, 1983, Section 3.6]. The rule for introducing 2 on the left of ⇒

is the following.

U , A⇒ V

U ,2A⇒ V
(L1)

Here a sequent is a pair U ⇒ V, where U ,V are finite sets of formulas.

Note that U , A,A⇒ V = U , A⇒ V because U ∪ {A,A} = U ∪ {A}.
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Now consider the following rule.

B → C

2B → C

where B is a formula and C is a propositional variable. It seems that it is

a refutation rule for S4. Indeed, assume that the sequent ⇒ 2B → C is

provable. Then the sequent 2B ⇒ C is provable, and it can be obtained

only by the rule L1. Hence B ⇒ C is provable, and so ⇒ B → C is also

provable.

However, let B = ¬2(p∨2¬2p) and C = p. Then it is true that 2B → C

is provable, but it is not true that B → C is provable.

Here is a proof for 2B → C.

1. p⇒ p,2¬2p (axiom)

2. 2p⇒ p,2¬2p (1,L1)

3. 2p⇒ p ∨ 2¬2p (2,D1)

4. 2p⇒ 2(p ∨ 2¬2p) (3,L2)

5. B,2p⇒ (4,N2)

6. 2B,2p⇒ (5,L1)

7. 2B ⇒ ¬2p (6,N1)

8. 2B ⇒ p,2¬2p (7,L2)

9. 2B ⇒ p ∨ 2¬2p (8,D1)

10. 2B ⇒ 2(p ∨ 2¬2p), p (9,L2)

11. 2B,B ⇒ p (10,N2)

12. 2B,2B ⇒ p (11,L1)

13. 2B ⇒ p (12,{A,A} = {A})

14. ⇒ 2B → p (13,I1)

In order to refute B → C, we use the following refutation rule, which is

a generalization of RD.
A,B,C

C ∨ 2A ∨ 2B
(R′

D)
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where A,B are formulas and C is modal-free. By using a standard semantic

construction (see Section 3.4 of this paper), it is easy to check that R′
D is a

refutation rule for S4. Note that the refutation rule

A,C

C ∨ 2A
(R′′

D)

is a special case of R′
D.

And here is a refutation for B → C.

1. p (refutation axiom)

2. ¬2p (refutation axiom)

3. p ∨ 2¬2p (1,2,R′′
D)

4. p ∨ 2(p ∨ 2¬2p) (1,3,R′′
D)

5. ¬2(p ∨ 2¬2p) → p (4,reverse mp, ⊢ (¬A→ B) → (B ∨A))

A complete refutation procedure for S4 is a genuine problem.

1.3 Proving Syntactic Completeness

We solve this problem by modifying the method of proving syntactic com-

pleteness that was introduced by Scott in [Scott, 1957]. It can be described

as follows.

1. For every formula A we can construct a normal form F with the

property that A is valid if and only if F is valid.

2. In addition to reverse modus ponens we have a characteristic refuta-

tion rule R that is applicable to normal forms and consists in simple

syntactic transformations.

3. We adopt some convenient proof system, and we prove, by an inductive

argument, that every normal form is either provable or refutable. We

emphasize that such a proof is exact, constructive, and simple. It

describes a procedure for constructing for a given normal form either

a proof or a refutation. (In this article, for the sake of uniformity, we

adopt the traditional proof systems.)

4. We adopt some convenient semantic (or algebraic) system, and we

check that R preserves non-validity.
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This method can be applied to standard modal logics by modifying the

normal forms and the characteristic refutation rule. It seems that it works

quite well in transitive logics (see [Skura, 2002]).

We remark that one can also prove that a refutation system N is charac-

teristic for a logic L in an indirect way, by obtaining characteristic formulas

of some semantic (or algebraic) structures for L and refuting these formulas

in N. This method is studied in [Skura, 1989; Skura, 1992; Skura, 1995] and
[Goranko, 1994].

1.4 Reduction Procedures

Our refutation systems have reverse modus ponens as a refutation rule. This

rule involves provability. However, all the applications of reverse modus

ponens are exactly described in the completeness proof. What is more,

the applications of reverse modus ponens (as well as modus ponens) can be

deleted altogether. As a result, we obtain a reduction procedure, which

can be regarded as a generalization of the classical conjunctive normal form

procedure. In Classical Logic every formula A is reducible to normal forms

F1, ..., Fn such that A ∈ CL if and only if every Fi ∈ CL. In a non-classical

logic L, the procedure can be presented as a reduction tree with origin A

and finite sets Z1, ...,Zm of normal forms (whose validity is easy to check)

as the end nodes having the following property. A ∈ L if and only if some

Zi ⊆ L. Hence if every formula in some Zi is in L then A ∈ L, and if some

formula in every Zi is not in L then A 6∈ L.

1.5 General Remarks

Our refutation procedures resemble tableau procedures. But, in essence,

these methods are different. The most important differences are the follow-

ing.

1. Refutation rules preserve non-validity, whereas tableau rules preserve

satisfiability. For example, the rule

A ∨B

A|B

is a tableau rule for Classical Logic, for if A∨B is true, then A is true

or B is true. But its reverse

A B

A ∨B
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is not a refutation rule for CL, because p ∨ ¬p ∈ CL, but p 6∈ CL and

¬p 6∈ CL.

2. The tableau method is primarily a proof-search method. A closed

tableau for ¬A is a proof of A. And our reduction method is primarily

a refutation-search method. A finite reduction tree forA is a refutation

of A.

Tableau rules can also be used for producing semantic refutations. It

is by failure to close a complete tableau for ¬A that a countermodel

for A can be constructed. In order to make sure that no proof of A

exists, a systematic tableau procedure must be used (see e.g. [Fit-

ting, 1983]). However, in transitive logics, like S4, the procedure may

produce an infinite tableau. Several techniques for dealing with loops

and obtaining finite countermodels are known (for example [Hughes

and Cresswell, 1968], [Fitting, 1983]). Our syntactic method is an

alternative method of obtaining loop-free refutation procedures. A

syntactic refutation is, by definition, a finite procedure consisting in

simple transformations of plain formulas (with no semantic informa-

tion). Thus our method is complementary to the standard refutation

methods. It produces refutations by using the traditional method of

axiomatic proof systems. However, in contrast with the traditional

method, our method, in its refined form of reduction procedures, is

modus ponens-free and it provides a refutation-search algorithm. The

idea is that you write a normal form F and then you write simpler

normal forms F1, ..., Fn. How efficient this procedure is, is a purely

computational problem and will not be considered here. Our goal is a

deep understanding of the syntactic workings of propositional logics.

In our opinion, the simplicity of the basic concept, which is that of

inference, makes the subject worth investigating.

Moreover, the method of refutation systems also has the following inter-

esting aspects.

1. A syntactic proof-refutation system expresses positive and negative

conditions. This may be useful in studying non-classical logics that

are proper subsets of CL (so some CL laws are rejected), for example

in paraconsistent logics, which are defined by both positive conditions

and negative ones. A system S = (POS,NEG) (where POS,NEG

are inference systems generating valid formulas and non-valid formu-

las, respectively) can be viewed as a refutation device determining the
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set of S-refutable formulas. If S is characteristic for a logic L, then L

is the greatest set satisfying the conditions expressed by S.

2. It is possible to construct a refutation system for every finite (modal

or intuitionistic) algebra, and then use such systems for defining a

refutation system for every (modal or intermediate) logic with the

finite model property (that is, characterized by a class of finite mod-

els). However, there are logics without the finite model property

(that is, they cannot be characterized by any class of finite models)

that do have finite characteristic refutation systems (see [Skura, 1992;

Skura, 1994]).

This article is an introduction to refutation systems. In Section 2 we offer

a systematic exposition of the refutation procedure involving normal forms

for Intuitionistic Logic. (Section 2.2 is elementary and can be skipped.) In

Section 3, which is the most important part of the paper, we extend this

method to the modal logic S4. In Section 4 refined reduction procedures are

distilled from our proof-refutation procedures. Finally, symmetric inference

systems are briefly discussed.

2 INTUITIONISTIC LOGIC

2.1 Preliminaries

Let FOR be the set of all formulas generated from the set AT consisting

of the constant ⊥ (the false) and the propositional variables p, q, r, p1, p2, ...

by means of the connectives

→ (implication), ∧ (conjunction), ∨ (disjunction).

(The members of AT are called atoms.) We define the connectives: ¬ (nega-

tion), ≡ (equivalence), and the constant ⊤ (the true) as follows.

¬A = A→ ⊥

⊤ = ¬⊥

A ≡ B = (A→ B) ∧ (B → A).

We assume that ∧,∨ bind stronger than →, and so we also write

A ∧B → C ∨D instead of (A ∧B) → (C ∨D).

By a model we mean a system W = (W ,≤, V ), where (W,≤) is a re-

flexive transitive tree and V is a function assigning either 0 or 1 to every

propositional variable a at a point x ∈ W and satisfying the following con-

dition.
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If V (a, x) = 1 and x ≤ y, then V (a, y) = 1.

It follows (by straightforward induction on the complexity of a formula A)

that if V (A, x) = 1 and x ≤ y, then V (A, y) = 1.

Such a valuation V is extended to the other formulas as follows.

V (⊥, x) = 0.

V (A ∧B, x) = 1 iff V (A, x) = 1 and V (B, x) = 1.

V (A ∨B, x) = 1 iff V (A, x) = 1 or V (B, x) = 1.

V (A→ B, x) = 1 iff for all y such that x ≤ y,

we have V (B, y) = 1 whenever V (A, y) = 1.

We say that a formula A is valid in the model W, if V (A, x) = 1 for every

x ∈ W . And we say that A is valid in the tree (W,≤), if A is valid in every

model on that tree.

It is convenient to define Intuitionistic Logic (INT ) as the set of formulas

valid in all finite reflexive transitive trees.

2.2 Proof System

Axioms:

(I) A→ (B → A)

(II) (A→ (B → C)) → ((A→ B) → (A→ C))

(III) A ∧B → A A ∧B → B

(IV) A→ (B → A ∧B)

(V) A→ A ∨B B → A ∨B

(VI) (A→ C) → ((B → C) → (A ∨B → C))

(VII) ⊥ → A

Rule:

(modus ponens) A,A→ B / B

We say that a formula A is derivable from a finite set Z ⊆ FOR (in

symbols Z ⊢ A), if there is a finite sequence

F1

...

Fn
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of formulas such that Fn = A and for each 1 ≤ i ≤ n either Fi is an axiom

or Fi ∈ Z or Fi is obtained from preceding formulas by modus ponens. If

Z = ∅ then A is said to be provable (in symbols ⊢ A). We remark that

every provable formula is in INT .

We say that formulas A,B are equivalent, if ⊢ A ≡ B.

In this section some elementary facts about this proof system are estab-

lished. For a start, we show that A→ A is provable.

(VIII) ⊢ A→ A.

Proof.

(1) A→ ((A→ A) → A) (I)

(2) (A→ ((A→ A) → A)) → B

where B = (A→ (A→ A)) → (A→ A) (II)

(3) (A→ (A→ A)) → (A→ A) (1, 2, mp)

(4) A→ (A→ A) (I)

(5) A→ A (3, 4, mp)

�

By a substitution we mean a function s from the set of propositional variables

to FOR extended as follows.

s(⊥) = ⊥

s(A→ B) = sA→ sB

s(A ∧B) = sA ∧ sB

s(A ∨B) = sA ∨ sB.

PROPOSITION 1. The set of provable formulas is closed under the substi-

tution rule.

Proof. Assume that ⊢ A, that is, there is a proof A1, ..., An of A with the

property that every Ai is an axiom or is obtained form preceding formulas

by mp. By induction on n show that sA1, ..., sAn, where s is a substitution,

is a proof as well (so ⊢ sAn). And this follows from the fact that every sub-

stitution instance of an axiom is also an axiom and C is provable whenever

B,B → C are. �
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By Classical Logic (CL) we mean the following subset of FOR.

CL = {A ∈ FOR : v(A) = 1 for every Boolean valuation v}

where a Boolean valuation is a function v from FOR to {0, 1} satisfying

the following conditions.

v(⊥) = 0.

v(A→ B) = 0 iff vA = 1 and vB = 0.

v(A ∧B) = 1 iff vA = vB = 1.

v(A ∨B) = 0 iff vA = vB = 0.

PROPOSITION 2. If ⊢ A then A ∈ CL.

Proof. It is not hard to verify that CL is closed under modus ponens and

each axiom is in CL. Hence every proof A1, ..., An has the property that

An ∈ CL, which gives the result. �

In order to establish several useful provable formulas of the kind A →

B, we assume A (as an additional axiom) and derive B. This standard

technique is justified by the following theorem (called Deduction Theorem).

Here we write X , A ⊢ B for X ∪ {A} ⊢ B.

PROPOSITION 3. Let X be a finite set of formulas. Then

X , A ⊢ B if and only if X ⊢ A→ B.

Proof. If X ⊢ A → B, then X , A ⊢ B by mp, so assume that B is

derivable from X ∪ {A}. Then there is a derivation A1, ..., An such that

An = B and each Ai is an axiom (or an element of X ∪ {A}) or is obtained

from preceding formulas by mp. Starting with A1, show that each formula

A → Ai is derivable from X . This is easily accomplished by using mp and

the theorems I,II,VIII. Indeed, if A1 ∈ X ∪ {A} then A → A1 is derivable

from X by I and mp (or by VIII). And if say A3 is obtained from A1 and

A2 = A1 → A3 by mp, and we know that A→ A1 and A→ A2 are derivable

from X , then so is A→ A3 by II and mp. Therefore X ⊢ A→ An, that is,

X ⊢ A→ B, as required. �

COROLLARY 4. {A1, ..., Am} ⊢ B iff ⊢ A1 → (...→ (Am → B)...).

Proof. By straightforward induction on m. �

It is not hard to prove the following.

(IX) A→ ((A→ B) → B)
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(X) (A→ B) → ((B → C) → (A→ C))

(XI) (A ≡ B) → ((B ≡ C) → (A ≡ C))

(XII) (A→ (B → C)) ≡ (B → (A→ C))

(XIII) (A ∧B) ≡ (B ∧A)

(XIV) (A ∨B) ≡ (B ∨A)

(XV) A ∧ (B ∧ C) ≡ (A ∧B) ∧ C

(XVI) A ∨ (B ∨ C) ≡ (A ∨B) ∨ C

(XVII) (A→ (B → C)) ≡ (A ∧B → C)

(XVIII) (A→ B ∧ C) ≡ (A→ B) ∧ (A→ C)

(XIX) (A ∨B → C) ≡ (A→ C) ∧ (B → C)

For example, in order to prove XI we show that A ≡ B,B ≡ C ⊢ A ≡ C.

Proof.

(1) A ≡ B (A1)

(2) B ≡ C (A2)

(3) A→ B (1, III, mp)

(4) B → C (2, III, mp)

(5) (B → C) → (A→ C) (3, X, mp)

(6) A→ C (4, 5, mp)

(7) C → A (1, 2, III, X, mp)

(8) A ≡ C (6, 7, IV, mp)

We finally establish the following replacement theorem.

(XX) (B ≡ C) → (A ≡ A(B/C))

where A(B/C) results from A by replacing some occurrences of B by C.

Proof. By induction on the complexity of A. If A ∈ AT then XX is

(B ≡ C) → (A ≡ A) (or VIII), so that XX is provable. And if A is say
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A1 → A2 and XX(A1), XX(A2) are provable, then A2(B/C) can be derived

from

B ≡ C,A1 → A2, A1(B/C)

and A2 can be derived from

B ≡ C,A1(B/C) → A2(B/C), A1

so (by Proposition 3) XX(A) is provable.

COROLLARY 5. ⊢ (A ∧B) ≡ (A ∧B(A/⊤)).

Proof. Note that ⊢ A→ (⊤ ≡ A). Moreover by XX

(⊤ ≡ A) → (B(A/⊤) ≡ B)

Hence B is derivable from A∧B(A/⊤), and B(A/⊤) is derivable from A∧B,

which gives the result.

COROLLARY 6. Let

A = A1 ∧ (A2 ∧ ...(An−1 ∧An)...)

B = B1 ∧ (B2 ∧ ...(Bn−1 ∧Bn)...)

where {A1, ..., An} = {B1, ..., Bn} with all Ai, Bi ∈ FOR. Then A is equiv-

alent to B.

Proof. By induction on n. If n = 1 then A = B, and so ⊢ A ≡ B. Assume

that n ≥ 2.

(Case 1) A1 = B1. Then A′ = A2 ∧ ... ∧ An is equivalent to B′ = B2 ∧

...∧Bn by the induction hypothesis. Hence A is equivalent to B

by replacement.

(Case 2) A1 6= B1. Then A1 ∈ {B2, ..., Bn}, and by the induction hypoth-

esis B′ = B2 ∧ ... ∧Bn is equivalent to

C = A1 ∧ ... ∧Bn

(obtained from B′ by replacing B2 with A1 and A1 with B2).

Hence by replacement B is equivalent to B1 ∧C, which is equiv-

alent (by XIII, XV, and replacement) to A1∧D, where D results

from C by replacing A1 by B1. Now A is equivalent to A1 ∧D

by the induction hypothesis and replacement.

Therefore (by XI) A is equivalent to B, as required. �



REFUTATION SYSTEMS IN PROPOSITIONAL LOGIC 129

We may thus ignore the order of formulas in such contexts and in-

troduce the symbol
∧
Z standing for a conjunction of the formulas in

Z = {A1, ...An}. The symbol
∨
Z is defined in an analogous way.

For any formulas A1, ..., An, B, the symbol

A1, ..., An −→ B

stands for A1 → (...→ (An → B)...).

PROPOSITION 7. Let Z = {A1, ..., An}. Then A1, ...An −→ B is equiva-

lent to
∧

Z → B.

Proof. By induction on n. If n = 1 then this is true, so assume that n ≥ 2.

Then

A1 → (A2, ..., An −→ B)

is equivalent (by the induction hypothesis and replacement) to

A1 → (
∧

{A2, ..., An} → B)

which is equivalent (by XVII) to
∧

Z → B, as required. �

We also introduce the symbol

Z −→ B

standing for any formula A1, ..., An −→ B, where {A1, ..., An} = Z.

2.3 Normal Forms

By a general form we shall mean a formula

F = S −→ a

where S = T ∪ U0 ∪ U and

U = {(ai → bi) ≡ ci : i ∈ {1, ..., k}}

U0 is a finite set of formulas of the kind

b→ c or b→ (c→ d) or b→ c ∨ d with b, c, d ∈ AT,

T is finite set of atoms, and all a, ai, bi, ci ∈ AT.

The natural number k associated with U will be called the rank of F . (If

S = ∅ then F is a.)

Moreover we say that a general form is normal, if the following condition

is satisfied.
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If b→ B ∈ U0 then b 6∈ T .

REMARK 8. Every general form S −→ a with T = ∅ is normal.

And we say that a normal form F is special, if the formula

F0 = T ∪ U0 −→ a ∨ c1 ∨ ... ∨ ck

is not in CL, that is, v(F0) = 0 for some Boolean valuation v.

PROPOSITION 9. Let F be a normal form. Then ⊢ F0 if and only if

F0 ∈ CL.

Proof. If ⊢ F0 then F0 ∈ CL by Proposition 2, so let us assume that F0 ∈

CL. If {a, c1, ..., ck,⊥} ∩ T 6= ∅ then ⊢ F0. And if {a, c1, ..., ck,⊥} ∩ T = ∅

then v(F0) = 0, where v is the Boolean valuation assigning 1 to the variables

b ∈ T and 0 to the other ones, so that F0 6∈ CL, which is impossible. Hence

⊢ F0, as required. �

We now describe a procedure for constructing for a given formula A a

normal form A′.

First of all, for any formula A we define the set SUB(A) of subformulas

of A thus.

(1) SUB(a) = {a} if a ∈ AT.

(2) If A = B ⊗ C and ⊗ ∈ {→,∧,∨},

then SUB(A) = SUB(B) ∪ SUB(C) ∪ {A}.

Second, for each compound subformula B of A we introduce a new propo-

sitional variable pB and we let pa = a for any atom a occurring in A, so

that every subformula B of A has a unique corresponding atom pB .

Third, we define the formula N(A) to be SA −→ pA, where

SA = {(pB ⊗ pC) ≡ pB⊗C : B ⊗ C ∈ SUB(A),⊗ ∈ {→,∧,∨}}

Fourth, we replace

a ∧ b ≡ c by a→ (b→ c), (c→ a), (c→ b)

a ∨ b ≡ c by a→ c, b→ c, c→ a ∨ b

The resulting formula A′ = S −→ pA is a general form equivalent to N(A).

It is also a normal form because S contains no atoms.

REMARK 10. This technique was known to Wajsberg [Wajsberg, 1938],

and it is now used in the resolution method (see e.g. [Mints, 1990]).
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EXAMPLE 11. Let A = (¬p) ∨ (¬¬p), B = ¬¬p, C = ¬p. We define

pC = p1, pB = p2, pA = p3.

Then N(A) = SA −→ p3, where

SA = {(p→ ⊥) ≡ p1, (p1 → ⊥) ≡ p2, (p1 ∨ p2) ≡ p3},

and A′ = S −→ p3, where S = T ∪ X0 ∪ X and

T = ∅

U0 = {p3 → p1 ∨ p2, p1 → p3, p2 → p3}

U = {(p→ ⊥) ≡ p1, (p1 → ⊥) ≡ p2}.

The construction of N(A) from A has the following properties.

PROPOSITION 12. If ⊢ N(A) then ⊢ A.

Proof. Assume that ⊢ N(A). Let s be a substitution such that

s(pB) = B

for any B ∈ SUB(A) − {⊥}. Since s(⊥) = ⊥, we have s(pB) = pB for

every subformula B of A. In particular spA = A. Consider the formula

sN(A) = sSA −→ spA. The set sSA consists of formulas of the kind B ≡ B,

so sN(A) is equivalent to A, which gives the result by Proposition 1. �

PROPOSITION 13. ⊢ A→ N(A).

Proof. We first show that

(∗) ⊢ SA −→ (pB ≡ B)

for every subformula B of A.

The proof is by induction on the complexity of B. If B ∈ AT then

pB = B, so ∗ holds. Assume now that B = C ⊗D with ⊗ ∈ {→,∧,∨} and

∗ is true for C and D. By the definition of SA we have

⊢ SA −→ ((pC ⊗ pD) ≡ pC⊗D)

and so ⊢ SA −→ (pC⊗D ≡ (pC ⊗ pD)). By the induction hypothesis

⊢ SA −→ (pC ≡ C) ⊢ SA −→ (pD ≡ D)

By using replacement we can derive pC⊗D ≡ (C ⊗D) from

pC⊗D ≡ (pC ⊗ pD) pC ≡ C pD ≡ D
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Hence ∧
SA ⊢ pC⊗D ≡ (C ⊗D)

so that (by Proposition 3)

⊢ SA −→ (pC⊗D ≡ (C ⊗D))

which is ∗. Therefore in particular

⊢ SA −→ (pA ≡ A)

Hence ⊢ SA −→ (A → pA), and so ⊢ A → (SA −→ pA), which means that

⊢ A→ N(A), as required. �

Since N(A) is equivalent to A′, we also have the following.

COROLLARY 14.

(i) If ⊢ A′ then ⊢ A.

(ii) ⊢ A→ A′.

2.4 Refutation System

Refutation axioms: All special normal forms of rank 0.

Refutation rules:

(reverse modus ponens) B/A, where ⊢ A→ B

(NI)
F1, ..., Fk

F

where F = S −→ a is a special normal form and for each 1 ≤ i ≤ k

Fi = ai,S −→ bi.

(Here we write A,X −→ B for {A} ∪ X −→ B.) We say that A is refutable

(in symbols ⊣ A), if A is derivable in this system.

In order to verify that NI is a refutation rule for INT , assume that

Fi 6∈ INT (1 ≤ i ≤ k). Then every Fi is not valid in some finite model

Wi = (Wi,≤i, Vi), so Vi(Fi, xi) = 0 for some xi ∈ Wi. Since (Wi,≤i) is

a finite tree, we can choose xi in such a way that Vi(Fi, x) = 1 for every

successor x of xi. Consider the subtree (W ′
i,≤

′
i) of (Wi,≤i) generated by xi

(consisting of xi and its successors) together with the valuation V ′
i defined



REFUTATION SYSTEMS IN PROPOSITIONAL LOGIC 133

by the condition: V ′
i (c, x) = Vi(c, x) for any x ∈ W ′

i and any propositional

variable c. It is not difficult to check that V ′
i (B, x) = Vi(B, x) for every

formula B. Hence

V ′
i (ai, xi) = V ′

i (
∧

S, xi) = 1 V ′
i (bi, xi) = 0

for every 1 ≤ i ≤ k. Construct a new tree Υ with a new root w and x1, ..., xk
(with their trees) as the immediate successors of w. Define a new valuation

V on Υ preserving the old valuations V ′
1 , ..., V

′
k and such that for every

propositional variable c we have: V (c, w) = 1 if c ∈ T and V (c, w) = 0

otherwise. Then the formulas in T ∪ U0 are true at w. (Note that the

formulas in S are true at every xi.) Since {a, c1, ..., ck} ∩ T = ∅ (for F is

special), all a, ci are false at w. Moreover each ai → bi is false at xi, so that

all ai → bi are also false at w (because w ≤ xi). Therefore S is true at w,

and so V (F,w) = 0, which gives the result.

2.5 Syntactic Completeness

PROPOSITION 15. Let A,B ∈ FOR.

(i) If If both A and B are provable, then A ∧B is provable.

(ii) If A is refutable or B is refutable, then A ∧B is refutable.

Proof. If ⊢ A and ⊢ B, then ⊢ A ∧ B by mp and IV. And if ⊣ A or ⊣ B,

then ⊣ A ∧B by rmp and III, as required. �

By the length l(A) of a formula A we mean the number of →-occurrences

in A. More precisely

(1) If A ∈ AT then l(A) = 0.

(2.1) If A = B ⊗ C and ⊗ ∈ {∧,∨}, then l(A) = l(B) + l(C).

(2.2) If A = B → C then l(A) = l(B) + l(C) + 1.

We shall also write A,B,X −→ C instead of {A,B} ∪ X −→ C.

LEMMA 16. Every general form F of rank k is equivalent to a conjunction

of normal forms of rank k.

Proof. By induction on the length l of F .

(1) l = 0. Then F is a normal form.
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(2) l ≥ 1 and the lemma holds for general forms of length < l. We assume

that

F = b, b→ B,S ′ −→ a

where B ∈ {c, c→ d, c ∨ d} with c, d ∈ AT, and

S ′ = T ′ ∪ U ′
0 ∪ U

T ′ = T − {b}

U ′
0 = U0 − {b→ B}

Then F is equivalent to

F ′ = b,B,S ′ −→ a

because b ∧ (b→ B) is equivalent to b ∧B.

(Case 1) B ∈ {c, c→ d}. Then F ′ is a general form of length < l, so by the

induction hypothesis it is equivalent to a conjunction of normal

forms of rank k.

(Case 2) B = c ∨ d. Then F ′ is equivalent (by XIX) to G ∧H, where

G = b, c,S ′ −→ a

H = b, d,S′ −→ a

Since the induction hypothesis applies to G and H, this gives the result. �

PROPOSITION 17. Let A,B ∈ FOR.

(i) ⊢ (A ∧ ((A→ B) ≡ C) ≡ (A ∧ (B ≡ C))

(ii) ⊢ (A ∧ (A ≡ B)) ≡ (A ∧B).

Proof. By Corollary 5 and the fact that

⊢ (⊤ → B) ≡ B

⊢ (B → ⊤) ≡ ⊤

⊢ (B ∧ ⊤) ≡ B.

�

THEOREM 18. Every normal form is either provable or refutable.

Proof. By induction on the rank k of a normal form F .
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(1) k = 0. Then F = F0. If F0 ∈ CL then ⊢ F0 by Proposition 9, and so

⊢ F . And if F0 6∈ CL then F is a refutation axiom, so that ⊣ F .

(2) k ≥ 1 and we assume that the theorem is true for normal forms of

rank < k. Consider the following formulas.

Fi = ai,S −→ bi

Gi = ai → bi,S −→ a

where 1 ≤ i ≤ k. Let F ′
i result from Fi by replacing (ai → bi) ≡ ci

with bi ≡ ci, and let G′
i result from Gi by replacing (ai → bi) ≡ ci with

ci. By Proposition 17 the formulas F ′
i , G

′
i are equivalent to Fi, Gi,

respectively. Moreover F ′
i , G

′
i are general forms of rank < k. By

Lemma 16 they are equivalent to conjunctions of normal forms of

rank < k, which, by the induction hypothesis and Proposition 15, are

provable or refutable. Hence, by using mp as well as rmp, we have

⊢ Fi or ⊣ Fi
⊢ Gi or ⊣ Gi

for every 1 ≤ i ≤ k. Now if ⊣ Gi for some i then ⊣ F by rmp, so we

may assume that ⊢ Gi (so that ⊢ S −→ (ci → a)) for all i. And if

F0 ∈ CL then

⊢ S −→ a ∨ c1 ∨ ... ∨ ck

by Proposition 9, so ⊢ S −→ a, and so we may also assume that

F0 6∈ CL.

(Case 1) Every Fi is refutable. Then F is refutable by NI .

(Case 2) Some Fj is provable, so ⊢ S −→ (aj → bj). Since ⊢ Gj , we get

⊢ F .

Therefore either ⊢ F or ⊣ F , which was to be shown. �

COROLLARY 19. A is provable if and only if A ∈ INT .

Proof. If A is provable then A ∈ INT , so let us assume that A is not

provable. Then its normal form A′ is not provable. (Otherwise, N(A) is

provable, and so ⊢ A, by Proposition 12, which is impossible.) Hence A′ is

refutable, by Theorem 18, so that A′ 6∈ INT (because no refutable formula

is in INT ). Therefore A 6∈ INT (for ⊢ A→ A′), as required. �
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2.6 Classical Logic

By modifying this procedure, we obtain a simple procedure for CL. We

consider only the set FOR of all formulas generated from AT by →. The

connectives ∧,∨ can be handled in a similar way, or they can be defined as

follows.

A ∧B = ¬(A→ ¬B) and A ∨B = ¬A→ B.

By a general form of rank k we now mean a formula

F = S −→ a

where S = T ∪ U0 ∪ U and

U = {(ai → bi) → ci : i ∈ {1, ..., k}}

U0 is a finite set of formulas of the kind

b→ c or b→ (c→ d) with b, c, d ∈ AT,

T is finite set of atoms, and all a, ai, bi, ci ∈ AT.

A general form is normal, if for every b→ B ∈ U0, we have b 6∈ T .

And N(A) is now SA −→ pA, where

SA = {(pB → pC) → pB→C ,

pB→C → (pB → pC) : B → C ∈ SUB(A)}

Note that N(A) is a normal form. Moreover

PROPOSITION 20.

(i) If N(A) ∈ CL then A ∈ CL.

(ii) A→ N(A) ∈ CL.

Proof System

Axioms: All normal forms of rank 0 such that a ∈ T or ⊥ ∈ T .

Rules:

(P)
A,¬B,X −→ D C,X −→ D

(A→ B) → C,X −→ D

(PN )
A,B,X −→ C

A,A→ B,X −→ C
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Refutation System

Refutation axioms: All normal forms of rank 0 such that a 6∈ T and ⊥ 6∈ T .

Refutation rules: PN and

(N ′)
A,¬B,X −→ D

(A→ B) → C,X −→ D

(N ′′)
C,X −→ D

(A→ B) → C,X −→ D

THEOREM 21. Every normal form is either provable or refutable.

Proof. By induction on the rank k of a normal form F .

(1) k = 0. If a ∈ T or ⊥ ∈ T , then F is an axiom. And if a 6∈ T and

⊥ 6∈ T , then F is a refutation axiom.

(2) k ≥ 1 and this is true for normal forms of rank < k. Consider the

following formulas.

F ′ = a1,¬b1,S ′ −→ a

F ′′ = c1,S ′ −→ a

where
S ′ = T ∪ U0 ∪ U ′

U ′ = U − {(a1 → b1) → c1}

Note that F ′, F ′′ are general forms of rank < k. If F ′ (F ′′) is not a normal

form, we replace all pairs b, b → B by b,B. As a result, we obtain normal

forms G′, G′′ of rank < k. Note that F ′ (F ′′) is derivable from G′ (G′′) by

PN . By the induction hypothesis G′, G′′ are provable or refutable, so that

F ′, F ′′ are also provable or refutable. If both F ′ and F ′′ are provable, then

⊢ F by P. If F ′ is refutable then ⊣ F by N ′, and if F ′′ is refutable then

⊣ F by N ′′. Therefore either ⊢ F or ⊣ F , which was to be shown. �

3 THE MODAL LOGIC S4

3.1 Preliminaries

We now deal with the set FORM of all formulas generated from AT by the

connectives: →, ∧, ∨, and 2 (necessity). We define:

¬A = A→ ⊥ and A ≡ B = (A→ B) ∧ (B → A).
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The logic S4 is here defined as the set of formulas valid in all finite cluster

trees.

By a cluster we mean a system

Q = (Q,Q×Q)

where Q is a finite non-empty set. And by a finite cluster tree (with root

Q) we mean a system Φ = (Q,W,�) defined as follows.

1. A cluster Q is a finite cluster tree.

2. If Φ1 = (Q1,W1,�1), ...,Φn = (Qn,Wn,�n) are finite cluster trees

and Q is a cluster, then the system Φ:

Q
Q

Q
Q

Q
Q

Q
QQ

C
C
C
C
C
C

�
�
�
�
�
�

�
�

�
�

�
�

�
��

@
@

@
@@

�
�

�
��

@
@

@
@@

�
�

�
��

~

~ ~

Q

Q1

Φ1 Φn

Qn

is a finite cluster tree. More precisely,

Φ = (Q,W ,�),

W = Q∪W1 ∪ ... ∪Wn,

and the relation � ⊆ W ×W satisfies the condition: x� y

if either x�i y in some Φi or x, y ∈ Q.

In other words, a finite cluster tree is a finite reflexive transitive tree with

clusters instead of points.

3.2 Proof System

Axioms: Every A ∈ FORM that is a substitution instance of some B ∈ CL,

and

(K) 2(A→ B) → (2A→ 2B)
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(T ) 2A→ A

(4) 2A→ 22A

Rules:

(modus ponens) A,A→ B/B

(necessitation) A/2A

A formula A is said to be provable (in symbols ⊢ A), if A is derivable in

this system. If ⊢ A ≡ B, then we say that A is equivalent to B.

We now have the following replacement theorem.

⊢ 2(B ≡ C) → (A ≡ A(B/C)

3.3 Normal Forms

For any set X of formulas, the symbol 2X stands for {2A : A ∈ X}.

By a normal form we shall mean a formula

F = 2S −→ c1

where S = T ∪ U0 ∪ U ,

U = {2ai ≡ bi : 1 ≤ i ≤ k}

U0 = {2cj ≡ b0 : 1 ≤ j ≤ l}

T is a finite set of 2-free formulas, and all ai, b0, bi, cj are atoms. By the

rank of F we mean the number k. For any A ∈ FORM we construct such

a form (with no U0) as follows.

First, we define the set SUB(A) of subformulas of A in the following way.

(1) SUB(A) = {A} if A ∈ AT.

(2.1) If A = B⊗C with ⊗ ∈ {→,∧,∨}, then SUB(A) = SUB(B)∪SUB(C)∪

{A}.

(2.2) If A = 2B then SUB(A) = SUB(B) ∪ {A}.
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Second, with every subformula B of A we associate a unique atom pB in

such a way that pb = b (b ∈ AT).

Finally, we define the normal form N(A) of A thus.

N(A) = 2SA −→ pA

where

SA = {(pB ⊗ pC) ≡ pB⊗C : B ⊗ C ∈ SUB(A),⊗ ∈ {→,∧,∨}}∪

{2pB ≡ p2B : 2B ∈ SUB(A)}

PROPOSITION 22.

(i) If ⊢ N(A) then ⊢ A.

(ii) ⊢ A→ N(A).

Proof. See Section 2.3. �

3.4 Refutation System

For any normal form F we define the following 2-free formulas.

F 1
0 = T −→ c1 ∨ b0 ∨ b1 ∨ ... ∨ bk
F 2

0 = T −→ c2 ∨ b0 ∨ b1 ∨ ... ∨ bk
...

F l0 = T −→ cl ∨ b0 ∨ b1 ∨ ... ∨ bk.

By a special form we mean a normal form F such that F j0 6∈ CL for every

1 ≤ j ≤ l.

Refutation axioms:

Every special form F of rank 0.

Refutation rules:

reverse modus ponens (B/A with ⊢ A→ B) and

(N4)
F1, ..., Fk

F

where F is a special form and for any 1 ≤ i ≤ k

Fi = 2S,2c1 −→ ai

In order to show that N4 is a refutation rule for the logic S4, let us

assume that each Fi 6∈ S4. Then there are finite cluster trees Φ1, ...,Φk with
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roots Q1, ...,Qk and valuations V1, ..., Vk, respectively, such that for every

1 ≤ i ≤ k there is x ∈ Qi with Vi(Fi, x) = 0. Hence ai is false there and

the formulas in S are true everywhere in Φi. By the familiar construction,

we now define a new finite cluster tree Φ with a new root Q = {x1, ..., xl}

whose immediate successors are Q1, ...,Qk (with their cluster trees) and

with a new valuation V preserving the old valuations and satisfying the

following conditions.

V (a, x1) = v1(a), ..., V (a, xl) = vl(a)

for any propositional variable a, where vj is a Boolean valuation refuting

F j0 (1 ≤ j ≤ l). Then cj is false at xj and the formulas in T are true at each

x ∈ Q. Also both 2ai and 2cj are false at every x ∈ Q. Since b0, b1, ..., bk
are false there, the formulas in S are true everywhere in Φ, so that F is

false at x1, which gives the result.

3.5 Syntactic Completeness

THEOREM 23. Every normal form F is either provable or refutable.

Proof. By induction on the rank k of F = 2S −→ c1.

1. k = 0. Then S = T ∪ U0. Consider the formulas F 1
0 , ..., F

l
0. If no F j0

is in CL, then F is a refutation axiom, and so ⊣ F . Assume that some

F j0 ∈ CL. Then

⊢ 2S −→ cj ∨ b0

Since ⊢ 2S −→ (b0 → cj) (by the definition of U0), we have ⊢ 2S −→

cj , so ⊢ 2S −→ 2cj (by necessitation), so ⊢ 2S −→ 2c1, and so ⊢ F .

Hence ⊢ F or ⊣ F .

2. k ≥ 1 and the theorem holds for normal forms of rank < k. Consider

the following formulas.

Fi = 2S,2c1 −→ ai
Ai = 2S,2ai −→ c1
Bi = 2S,2(2c1 ≡ bi) −→ c1

where 1 ≤ i ≤ k. Let

F ′
i = 2T1,2U ′

0,2U ′ −→ ai

with T1 = T ∪ {b0, c1, ..., cl},U ′
0 = {2ai ≡ bi},U ′ = U − {2ai ≡ bi},

A′
i = 2T2,2U0,2U ′ −→ c1
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with T2 = T ∪ {ai, bi},

B′
i = 2T3,2U ′′

0 ,2U ′ −→ c1

with T3 = T ∪ {b0 ≡ bi},U ′′
0 = U0 ∪ {2ai ≡ b0}.

By simple reductions all Fi, Ai, Bi are equivalent to F ′
i , A

′
i, B

′
i, respec-

tively, which are normal forms of rank < k, which by the induction

hypothesis are provable or refutable. Hence so are all Fi, Ai, Bi by mp

and rmp.

(Case 1) All Fi are refutable and every F j0 6∈ CL. Then ⊣ F by N4.

(Case 2) Some Fi is provable or some F j0 ∈ CL. We may assume that

⊢ Ai ⊢ Bi

for each 1 ≤ i ≤ k. (Otherwise ⊣ F by rmp.)

(Case 2.1) Some Fi is provable. Then ⊢ 2S −→ (2c1 ≡ 2ai) (for ⊢ Ai).

Since ⊢ 2S −→ (2ai ≡ bi) (and ⊢ Bi), this gives ⊢ F

(Case 2.2) Some F j0 ∈ CL. Then

⊢ 2S −→ cj ∨ b0 ∨ ... ∨ bk

Also ⊢ 2S −→ (b0 → cj) and ⊢ 2S −→ (bi → 2ai) (1 ≤ i ≤ k). Since ⊢

2S −→ (2ai → 2c1) (because ⊢ Ai), we obtain ⊢ 2S −→ (2ai → cj), and

so ⊢ 2S −→ (bi → cj) (1 ≤ i ≤ k). Hence ⊢ 2S −→ cj , so ⊢ 2S −→ 2cj ,

so ⊢ 2S −→ 2c1, and so ⊢ F .

Therefore either ⊢ F or ⊣ F , as required. �

COROLLARY 24. A is provable if and only if A ∈ S4.

4 REDUCTION PROCEDURES

4.1 Reduction Rules

Roughly speaking, the idea behind reduction rules is to have a procedure

that can transform a given formula A into a sequence

A

A1

...

Az
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of simpler and simpler formulas such that every Ai is valid if and only if its

immediate predecessor is valid. At the end we have a formula whose validity

is easy to check. If the end formula Az is valid, then A is valid. And if Az
is non-valid, A is also non-valid. (For some philosophical motivation of this

concept (connected with Erotetic Logic) see [Wísniewski, 2004].)

EXAMPLE 25. The following is a reduction rule for Classical Logic.

(A→ B) → C

(¬A→ C) ∧ (B → C)

In such procedures sets of formulas (or sequences of formulas) are more

useful than conjunctions of formulas, and so we modify this rule as follows.

(A→ B) → C

¬A→ C B → C

More precisely, by a (linear) reduction rule we mean a set H of pairs

Z/Z1, where Z,Z1 are finite sets of formulas. We say that H is a reduction

rule for a set L ⊆ FORM, if for every Z/Z1 ∈ H the following condition

is satisfied.

Z ⊆ L if and only if Z1 ⊆ L.

In non-classical logics it is useful to generalize this concept by introducing

branching reduction rules. The linear rules are special cases of the branching

ones. By a (branching) reduction rule we mean a set H of pairs Z/∆, where

∆ = {Z1, ...,Zn} and all Z,Z1, ...,Zn are finite sets of formulas. We say

that H is a reduction rule for a set L ⊆ FORM, if for every Z/∆ ∈ H the

following condition is satisfied.

Z ⊆ L if and only if some Zi ⊆ L.

In order to simplify the notation we also write

A1; ...;Am0

A1
1; ...;Am1

1 |...|A1
n; ...;Amn

n

instead of
{A1, ..., Am0}

{{A1
1, ..., A

m1

1 }, ..., {A1
n, ..., A

mn
n }}

And if n = 1, we simply write

A1; ...;Am0

A1
1; ...;Am1

1
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EXAMPLE 26. The following is not a reduction rule for CL.

A ∨B

A|B

Indeed, p ∨ ¬p ∈ CL, but both p 6∈ CL and ¬p 6∈ CL. However, it is a

reduction rule for INT .

REMARK 27. If H,H′ are reduction rules, then H ∪ H′ is also a reduction

rule, so we may regard a number of reduction rules as a single one.

4.2 Reduction Systems

By a reduction system we shall mean a pair H = (H0,H1), where H0 is a

set of formulas (called simple formulas) and H1 is a reduction rule. We say

that H is a reduction system for a set L ⊆ FORM, if H1 is a reduction

rule for L.

Let Y be a finite set of formulas, and let H = (H0,H1) be a reduction

system. By an H-reduction tree Ψ for Y we mean a finite tree consisting of

finite sets of formulas that satisfies the following conditions.

1. The origin of Ψ is Y .

2. If Z1, ...,Zn are the immediate successors of a node Z , then {Z1, ...,Zn}

is obtained from Z by H1.

3. If Z is an end node of Ψ, then Z ⊆ H0.

We say that Y is H-reducible, if there is an H-reduction tree for Y .

EXAMPLE 28. Let H = (H0,H1) be defined as follows.

(H0) Simple formulas:

The formulas in FOR− CL.

(H1) Reduction rules:

(H∧)
{A ∧B}
{{A,B}}

(H∨)
{A ∨B,C}

{{A,C}, {B,C}}

In the simplified notation these rules become

(H∧) A ∧B
A;B
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(H∨)
A ∨B;C

A;C
∣∣∣B;C

Then H is a reduction system for INT .

EXAMPLE 29. Let H be the reduction system defined in Example 28, and

let

Y = {p ∧ ((p→ q) ∨ (q → p))}

Then the following is an H-reduction tree for Y.

Reduction

Y

{p, (p→ q) ∨ (q → p)} H∧

{p, p→ q} {p, q → p} H∨

In the simplified notation the above tree is this.

p ∧ ((p→ q) ∨ (q → p))

p; (p→ q) ∨ (q → p)

p; p→ q p; q → p

Let H be a reduction system for a set L ⊆ FORM. We say that H is

characteristic for L (or complete for L), if every finite set Y is H-reducible.

4.3 Intuitionistic Logic

Recall that a general form of rank k is a formula F = S −→ a, where

S = T ∪ U0 ∪ U

U = {(ai → bi) ≡ ci : i ∈ {1, ..., k}}

U0 is a finite set of formulas of the kind: b → c or b → (c → d)

or b→ c ∨ d with b, c, d ∈ AT

T is finite set of atoms, and all a, ai, bi, ci ∈ AT.

A general form is normal, if for every b→ B ∈ U0 we have b 6∈ T .

Simple formulas:

Every normal form of rank 0.
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Reduction rules:

(H→)
A,A→ B,X −→ C; ...
A,B,X −→ C; ...

(H∨)
A ∨B,X −→ C; ...

A,X −→ C;B,X −→ C; ...

(HI)
{F} ∪ Y

{{F 1
1 , F

1
2 } ∪ Y, ..., {F k1 , F

k
2 } ∪ Y , C0 ∪ Y}

where F = S −→ a is a normal form

C0 = {F0, F
1
2 , ..., F

k
2 }

F0 = T ,U0 −→ a ∨ c1 ∨ ... ∨ ck

and for every 1 ≤ i ≤ k

F i1 = ai, bi → ci, ci → bi,Si −→ bi
F i2 = ci, ai → bi,Si −→ a

Si = S − {(ai → bi) ≡ ci}.

LEMMA 30. HI is a reduction rule for INT .

Proof.

1. F i1 6∈ INT or F i2 6∈ INT for every 1 ≤ i ≤ k, and C0 6⊆ INT .

1.1. Some F i2 6∈ INT . Then ai → bi,S −→ a 6∈ INT (because A ∧ B is

equivalent to A ∧ (A ≡ B)), so F 6∈ INT .

1.2. Every F i2 ∈ INT . Then every F i1 6∈ INT and F0 6∈ CL, so there are

finite intuitionistic models

W1, ...,Wk

such that each F i1 is not valid in Wi, and so ai,S −→ bi is not valid

in Wi (1 ≤ i ≤ k). By using the familiar construction we show that

F is not valid in some finite intuitionistic model.

2.1. F i1, F
i
2 ∈ INT for some 1 ≤ i ≤ k. Then S −→ (ai → bi) ∈ INT ,

and ai → bi,S −→ a ∈ INT . Hence F ∈ INT .

2.2. C0 ⊆ INT . Then F ∈ INT , which gives the result.

�
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Let Z be a set of general forms. Then the rank of Z is the greatest rank of

F ∈ Z, and the length of Z is the greatest length of F ∈ Z.

LEMMA 31. Every finite set Z (of rank k) of general forms is reducible to

a finite set (of rank k) of normal forms.

Proof. By induction on the length l of Z.

1. l = 0. Then every F ∈ Z is a normal form.

2. l ≥ 1. We consider any general form F in Z = {F} ∪ Y . We assume

that

F = b, b→ B,S ′ −→ a

with B ∈ {c, c→ d, c ∨ d}. By applying the rule H→ we reduce Z to

{F ′} ∪ Y

(see the proof of Lemma 16). If B ∈ {c, c → d} then F ′ is a general

form of length < l. And if B = c∨d then this set is reducible (by H∨)

to

{G,H} ∪ Y

where G,H are general forms of length < l. Note that these reductions

do not affect the rank of F .

We now transform the other general forms of length l in the same way,

and we obtain a finite set Z ′ of length < l and of rank k. By the induction

hypothesis Z ′ is reducible to a finite set (of rank k) of normal forms. Since

Z is reducible to Z ′, this gives the result. �

THEOREM 32. Every finite set Z of normal forms is reducible.

Proof. By induction on the rank k of Z.

1. k = 0. Then every F ∈ Z is a simple formula.

2. k ≥ 1. Let F be any normal form of rank k in Z = {F}∪Y. By using

the rule HI we reduce Z to

{F 1
1 , F

1
2 } ∪ Y ... {F k1 , F

k
2 } ∪ Y C0 ∪ Y

Note that all F i1, F
i
2 are general forms of rank < k. By Lemma 31

every set {F i1, F
i
2} is reducible to a set (of rank < k) of normal forms.

We transform the other normal forms of rank k in this way until we

obtain

Z1 ... Zt
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where each Zi is a finite set (of rank < k) of normal forms. By

the induction hypothesis every Zi is reducible. Therefore Z is also

reducible, which was to be shown.

�

EXAMPLE 33. Let F = S −→ p, where S = U ∪ U0,

U = {(p1 → p4) ≡ p4, (p2 → p5) ≡ p5, (p3 → p6) ≡ p6}

U0 = {p1 → p, p2 → p, p3 → p, p4 → p2 ∨ p3, p5 → p1 ∨ p3, p6 → p1 ∨ p2}.

Reduction

{F}

{F 1
1 , F

1
2 } {F 2

1 , F
2
2 } {F 3

1 , F
3
2 } C0 (HI)

where
F i1 = pi, pi+3 → pi+3,Si −→ pi+3

Si = S − {(pi → pi+3) ≡ pi+3}

Note that every F i1 is not in CL, and so each F i1 6∈ INT . Also F0 6∈ CL.

Thus some formula in every end set is not in INT . Therefore F 6∈ INT .

4.4 Classical Logic

Simple formulas:

Every normal form of rank 0.

Reduction rules: H→ and

(HCL)
(A→ B) → C,X −→ D; ...

A,¬B,X −→ D;C,X −→ D; ...

We say that a finite set Y ⊆ FOR is reducible, if it is reducible in this system.

By the rank of a set Y of general forms we mean the greatest rank of

F ∈ Y .

THEOREM 34. Every finite set Y of normal forms is reducible.

Proof. By induction on the rank k of Y .

1. k = 0. Then every F ∈ Y is a simple formula.
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2. k ≥ 1 and this holds for sets of rank < k. We assume that Y = {F}∪U

and the rank of F is k. By using the rule HCL we reduce Y to the set

Y ′ = {F ′, F ′′}∪U (see the proof of Theorem 21). Next, by using H→,

we reduce F ′, F ′′ to G′, G′′, if necessary. Note that G′, G′′ are normal

forms of rank < k. We repeat such reductions with the normal forms

of rank k that are in U , until we obtain a finite set Z of normal forms

of rank < k. By the induction hypothesis Z is reducible. Therefore Y

is also reducible, which was to be shown.

�

EXAMPLE 35. Let F = S −→ p4, where

S = T ∪ U0 ∪ U ,

T = {p, p1}

U0 = {p5 → (p2 → p5), p6 → (p3 → p6),

p2 → p, p3 → p, p4 → p3, p5 → p3, p6 → p2}

U = {(p2 → p5) → p5}

Reduction
{F}

{F ′, F ′′}(HCL)

{G′, F ′′}(H→)

where
F ′ = p2,¬p5,S ′ −→ p4

F ′′ = p5,S ′ −→ p4

S′ = T ∪ U0

G′ = p2,¬p5, T ,U ′
0 −→ p4

U ′
0 = U0 − {p2 → p}

Note that G′ is a normal form of rank 0. Since p4 6∈ T and ⊥ 6∈ T , we have

G′ 6∈ CL, so that some formula in the end set is not in CL. Hence F 6∈ CL.

4.5 The Modal Logic S4

Recall that a normal form of rank k is a formula F = 2S −→ c1, where

S = T ∪ U0 ∪ U

U = {2ai ≡ bi : 1 ≤ i ≤ k}

U0 = {2cj ≡ b0 : 1 ≤ j ≤ l}

T is a finite set of 2-free formulas, and all ai, b0, bi, cj are atoms.
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For every 1 ≤ j ≤ l we define the following 2-free formula.

F j0 = T −→ cj ∨ b0 ∨ ... ∨ bk

Simple formulas:

Every normal form of rank 0, and every 2-free formula.

Reduction rule:

(H4)
{F} ∪ Y

{{F 1
1 , F

1
2 , F

1
3 } ∪ Y, ..., {F k1 , F

k
2 , F

k
3 } ∪ Y, C1 ∪ Y , ..., Cl ∪ Y}

where F is a normal form,

Cj = {F j0 , F
1
2 , F

2
2 , ..., F

k
2 } (1 ≤ j ≤ l)

and for every 1 ≤ i ≤ k,

F i1 = 2T1,2U ′
0,2U ′ −→ ai

with T1 = T ∪ {b0, c1, ..., cl},U ′
0 = {2ai ≡ bi},U ′ = U − {2ai ≡ bi},

F i2 = 2T2,2U0,2U ′ −→ c1

with T2 = T ∪ {ai, bi},

F i3 = 2T3,2U ′′
0 ,2U ′ −→ c1

with T3 = T ∪ {b0 ≡ bi},U ′′
0 = U0 ∪ {2ai ≡ b0}.

LEMMA 36. Let F be a normal form of rank 0.

(i) If F j0 6∈ CL for all 1 ≤ j ≤ l, then F 6∈ S4.

(ii) If F j0 ∈ CL for some 1 ≤ j ≤ l, then F ∈ S4.

Proof. See (1) in the proof of Theorem 23. �

LEMMA 37. H4 is a reduction rule for S4.

Proof.

(1) F i1, F
i
2, F

i
3 ∈ S4 for some 1 ≤ i ≤ k, or Cj ⊆ S4 for some 1 ≤ j ≤ l.

Since F i1 (that is F ′
i ), F

i
2 (that is A′

i), F
i
3 (that is B′

i) are equivalent to

Fi, Ai, Bi, respectively (see the proof of Theorem 23), it follows that

F ∈ S4 (see Case 2.1 and Case 2.2 in that proof).
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(2) F i1 6∈ S4 or F i2 6∈ S4 or F i3 6∈ S4 for every 1 ≤ i ≤ k, and some A ∈ Cj
is not in S4 for every 1 ≤ j ≤ l.

(2.1) Some F i3 6∈ S4 or some F i2 6∈ S4. Then F 6∈ S4.

(2.2) All F i2, F
i
3 ∈ S4. Then every F i1 6∈ S4 and every F j0 6∈ CL (so F is a

special form). Since N4 is a refutation rule for S4, we get F 6∈ S4, as

required.

As usual, the rank of a set Z of normal forms is the greatest rank of F ∈ Z.

�

THEOREM 38. Let Z be a finite set of normal forms, and let X be a finite

set of 2-free formulas. Then Z ∪ X is reducible.

Proof. By induction on the rank k of Z.

1. k = 0. Then every F ∈ Z is a simple formula.

2. k ≥ 1. Let F be any normal form of rank k in Z ∪ X = {F} ∪ Y. By

using the rule H4 we reduce this set to

{F 1
1 , F

1
3 } ∪ Y ... {F k1 , F

k
3 } ∪ Y C1 ∪ Y ... Cl ∪ Y

Note that all F i1, F
i
2, F

i
3 are normal forms of rank < k. (Of course,

each F j0 is 2-free.) We transform the other normal forms of rank k in

this way and we obtain

Z1 ... Zt

where each Zi is a finite set consisting of normal forms of rank <

k (and 2-free formulas). By the induction hypothesis every Zi is

reducible. Therefore Z ∪ X is also reducible, which was to be shown.

�

EXAMPLE 39. Let F = 2(2p ≡ r),2(2q ≡ r),2(2s ≡ ⊥) −→ p.

Reduction

{F}

{F 1
1 , F

1
2 , F

1
3 } {F 1

0 , F
1
2 } {F 2

0 , F
1
2 } (H4)

where
F 1

1 = 2(p ∧ q ∧ r),2(2s ≡ ⊥) −→ s

F 1
0 = p ∨ r ∨ ⊥

F 2
0 = q ∨ r ∨ ⊥

Note that F 1
1 is a normal form of rank 0 and p ∧ q ∧ r → s ∨ ⊥ 6∈ CL, so

F 1
1 6∈ S4 (by Lemma 36). Also F 1

0 6∈ CL and F 2
0 6∈ CL. Hence some formula

in every end set is not in S4, and so F 6∈ S4.
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5 SYMMETRIC INFERENCE SYSTEMS

5.1 Preliminaries

Let us consider a set FM consisting of all formulas generated from the

atoms by standard connectives. An inference is a pair Z/A, where A ∈ FM

and Z is a finite set of formulas. Sets of inferences are called rules. Note

that if R,R′ are rules, then R∪R′ is also a rule, so we may view a number of

rules as a single one. An inference system is a pair R = (R0,R1), where R1

is a rule and R0 ⊆ FM. A formula A is said to be R-derivable from a finite

set Z of formulas (in symbols Z ⊢R A), if there is a sequence F1, ..., Fn
of formulas such that Fn = A and every Fi is in R0 ∪ Z or is obtained

from preceding formulas by the rule R1. We say that a set L of formulas

is R-closed, if R0 ⊆ L and L is closed under R1 (that is, A ∈ L whenever

Z ⊆ L for every inference Z/A ∈ R1).

5.2 Syntactic Refutability

By a symmetric inference system we shall mean a pair

S = (POS,NEG)

where POS and NEG are inference systems. We say that S is consistent,

if for no formula A we have both ∅ ⊢POS A and ∅ ⊢NEG A.

A symmetric inference system can be regarded as a syntactic refutation

device. If A is NEG-derivable from ∅, then we say that A is S-refutable.

What is more, if A ⊢POS B and B is S-refutable, then we also say that A

is S-refutable.

More formally, we say that a formula A is S-refutable (in symbols A ∈

REF(S)), if

∅ ⊢NEGP A

where

NEGP = (NEG0,NEG1 ∪NP) and NP = {C/B : B ⊢POS C}

Let L ⊆ FM. We say that L is S-closed, if L is POS-closed and −L (that

is, FM−L) is NEG-closed.

We say that S is a symmetric inference system for L, if L is S-closed.

PROPOSITION 40. If S is a symmetric inference system for L, then

L ⊆ −REF(S)
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Proof. It suffices to prove that every S-refutable formula A is not in L. Let

F1, ..., Fn be a NEGP derivation. We show by induction on n that An 6∈ L.

1. n = 1. Then F1 ∈ NEG0. Since NEG0 ⊆ −L, we have F1 6∈ L.

2. n ≥ 2. (Case 1) Fn is obtained from say F1 by NEG1. By the

induction hypothesis F1 6∈ L, so Fn 6∈ L because −L is NEG1-closed.

(Case 2) Fn is obtained from say F1 by NP . Then Fn ⊢POS F1. Also F1 6∈ L

by the induction hypothesis. Note that if B ⊢POS C and B ∈ L then C ∈ L

for L is POS-closed. Therefore Fn 6∈ L, which gives the result. �

Let S be a symmetric inference system for L. We say that S is charac-

teristic for L, if

T (S) ⊆ L

where T (S) = −REF(S).

5.3 Syntactic Properties

Let S = (POS,NEG) be a symmetric inference system. S expresses a

syntactic property, which may be described as the class Φ(S) of all S-closed

sets. This means that a set L ⊆ FM has this property, if the following

conditions are satisfied.

1. L contains POS0 and L is closed under POS1.

2. −L contains NEG0 and −L is closed under NEG1.

Proposition 40 enables us to establish the following interesting facts about

the property Φ(S).

THEOREM 41. If S is characteristic for L, then L is the greatest S-closed

set.

Proof. Assume that S is characteristic for L. Since S is an inference system

for L (that is, L is S-closed), we have L ⊆ T (S), so that L = T (S). Now

any S-closed set L′ ⊆ T (S) by Proposition 40. Hence L is the greatest

S-closed set, as required. �

Let X ⊆ FM. By the strengthening of POS by X we mean the system

POSX = (X ∪ POS0,POS1)
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We define

SX = (POSX ,NEG)

THEOREM 42. If SX is characteristic for L, then L is a maximal S-closed

set.

Proof. Suppose that SX is characteristic for L but L is not a maximal

S-closed set. Then there is an S-closed set L′ ⊃ L, so A ∈ L′ and A 6∈ L

for some formula A. Since T (SX ) ⊆ L, we have A 6∈ T (SX ). Also L is

SX -closed (SX being characteristic for L), so X ⊆ L ⊆ L′, and so L′ is

SX -closed. Therefore L′ ⊆ T (SX ) by Proposition 40, so that A 6∈ L′, which

is a contradiction. �

We now give a few examples of syntactic properties of this kind that seem

interesting. The relevant proofs can be found in the indicated papers.

Intermediate Logics

By an intermediate logic we mean a set L ⊆ FOR such that

INT ⊆ L ⊆ CL

and L is closed under substitution and modus ponens.

EXAMPLE 43. [Skura, 1992] The intermediate logics without the law of

excluded middle.

Let S = ((Int0, Int1),NEG), where

Int0 = {p→ (q → p), (p→ (q → r)) → ((p→ q) → (p→ r)),

p ∧ q → p, p ∧ q → q, p→ (q → p ∧ q),

p→ p ∨ q, q → p ∨ q, (p→ r) → ((q → r) → (p ∨ q → r)),

⊥ → p}

Int1 = {A,A→ B/B : A,B ∈ FOR} ∪ {A/s(A) : s is a substitution}

NEG0 = {p ∨ ¬p}

NEG1 = ∅.

Then S is characteristic for the intermediate logic VAL(3), where VAL(3)

is the set of formulas valid in the three-element intuitionistic algebra 3:
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u

u

u

0

⋆

1

Therefore (by Theorem 41) VAL(3) is the greatest intermediate logic with-

out the law of excluded middle.

We say that an intermediate logic L has the disjunction property, if for

any formulas A,B we have

A ∨B 6∈ L whenever both A 6∈ L and B 6∈ L.

In other words, L has the disjunction property, if the rule A,B/A∨B is a

refutation rule for L.

EXAMPLE 44. [Skura, 1992] The intermediate logics with the disjunction

property.

Here S = ((Int0, Int1),NEG), where

NEG0 = −CL

NEG1 = {A,B/A ∨B : A,B ∈ FOR}

We remark that there are plenty of maximal intermediate logics with the

disjunction property (see e.g. [Chagrov and Zakharyashchev, 1991]). For

example, the logic M of finite problems, which is the set of formulas valid

in all frames (2X − {X},⊆), where X is a finite non-empty set.

Let S′ = ((Int ′0, Int1),NEG), where

Int ′0 = Int0 ∪ {(¬p→ q ∨ r) → (¬p→ q) ∨ (¬p→ r)}

Then S′ is characteristic for M. Therefore M is a maximal intermediate

logic with the disjunction property (by Theorem 42).
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We say that an intermediate logic L has the generalized disjunction prop-

erty, if for any formulas Ai, Bi we have

A→ A1 ∨ ... ∨An 6∈ L whenever A→ A1 6∈ L, ..., A→ An 6∈ L

where A = (A1 → B1) ∧ ... ∧ (An → Bn).

EXAMPLE 45. [Skura, 1989] The intermediate logics with the generalized

disjunction property.

Let S = ((Int0, Int1), (−CL,GD)), where

GD = {A→ A1, ..., A→ An/A→ A1 ∨ ... ∨ An :

A = (A1 → B1) ∧ ... ∧ (An → Bn)}

Then S is characteristic for INT . Therefore INT is the only intermediate

logic with the generalized disjunction property.

Paraconsistent Logics

Let FO be the set of formulas generated form the propositional variables

by the connectives:

→,∧,∨,¬.

EXAMPLE 46. [Skura, 2004] The paraconsistent logics with the ¬-free

INT and contraposition.

Let S = (POS,NEG), where

POS0 = {p→ (q → p), (p→ (q → r)) → ((p→ q) → (p→ r)),

p ∧ q → p, p ∧ q → q, p→ (q → p ∧ q),

p→ p ∨ q, q → p ∨ q, (p→ r) → ((q → r) → (p ∨ q → r)),

(p→ q) → (¬q → ¬p)}

POS1 = {A,A→ B/B : A,B ∈ FO} ∪ {A/s(A) : s is a substitution}

NEG0 = {p→ (¬p→ q)} ∪ (−CL)

NEG1 = ∅

Then S is characteristic for the paraconsistent logic CL ∩ PC, where PC is

the set of formulas valid in the algebra 2′ resulting from the two-element

Boolean algebra 2 = ({0, 1},−,∩) by replacing the operation − with the

operation t defined by the condition: t(0) = t(1) = 1. (This logic was

introduced by da Costa and Béziau [da Costa and Béziau, 1993].) There-

fore CL ∩ PC is the greatest paraconsistent logic with the ¬-free INT and

contraposition.
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E.G. RUYS AND YOAD WINTER

QUANTIFIER SCOPE IN FORMAL

LINGUISTICS

1 INTRODUCTION

The remarkable efficiency of language acquisition and linguistic communica-

tion must rely on some systematic mapping relating forms and meanings. As

a result of this understanding, the study of the relations between syntactic

and semantic descriptions has become a central element of all formal linguis-

tic theories. Problems of quantifier scope constitute a perennial challenge

for uncovering the relations between form and meaning. In some notorious

examples, a linguistic element behaves semantically like a logical quantifier,

but in a way that is not predicted from straightforward assumptions about

its semantics or its position in the syntactic description. In many of these

cases, a quantificational expression semantically behaves as if it appeared

in a different position than its actual position in the sentence. Such effects

are often referred to as inverse scope effects. Standard mechanisms that

account for these phenomena often complicate the relations between the

syntax and the semantics of natural language. As a result, much research

has been devoted to the problem of quantifier scope, in an enduring at-

tempt to reveal the status and the theoretical significance of scope shifting

principles in formal linguistics.

In this article we give a broad overview of well-known empirical data

about quantifier scope and about some proposals for its treatment in the

linguistic-logical literature. The article is organized as follows. Section 2

introduces a toy grammar generating a simple fragment of English. This

grammar will be used for illustrating and characterizing the problem of

quantifier scope, and for discussing some methodological principles for as-

sessing whether linguistic data support an analysis using scope shifting. In

Section 3, we give a small inventory of other scope problems in natural lan-

guage, and then concentrate on the problem of quantified NP scope that is

illustrated by the fragment of Section 2. Section 4 discusses some syntactic

and semantic theories that address the problem of quantifier scope. Section

5 looks beyond the scope phenomena present in the fragment, and considers

some further evidence for the theories of scope shifting discussed in Section

4. Throughout, our empirical data will be drawn from English.

D. Gabbay and F. Guenthner (eds.), 
Handbook of Philosophical Logic, Volume 16, 159–225. 
DOI 10.1007/978-94-007-0479-4_3, © Springer Science+Business Media B.V. 2011 
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2 CHARACTERIZING INVERSE SCOPE EFFECTS

This section aims to characterize the problem of inverse scope effects with

quantified NPs (QNPs). We start by introducing a small fragment of En-

glish with a semantics that illustrates the common notion of direct scope. In

this semantics, the scope of semantic operators corresponds to simple struc-

tural relations in the syntax. However, we show that this simple conception

of the syntax-semantics interface is insufficient for capturing some seman-

tic intuitions, which are often referred to as inverse scope phenomena. The

postulation of scope ambiguity is used for describing such cases. After the

exposition of these basic notions, we move on to two confounding factors

that are especially relevant for identifying inverse scope effects in natural

language: the influence of pragmatic effects and of logical dependency be-

tween potential readings.

2.1 A “direct scope” grammar for a fragment of English

This section defines a toy grammar for an extremely simple fragment of

English. The syntax and the lexicon define the set of Structural Descriptions

(SDs) of well-formed expressions — the syntactic structures assigned to such

expressions by the syntactic derivation, which in the given fragment are

described using labeled bracketing notation. The semantics for the fragment

is defined by means of a translation function (denoted by “⇒”) into the

simply typed lambda calculus. For details on these standard techniques see

[Gamut, 1991].1

The following rules describe the syntax of our toy grammar.

Syntax

S → NPV P N ′ → N S′ → 7RelV P

V P → VtrNP N ′ → NtrNP

V P → V N ′ → N ′S′

NP → DN ′ N ′ → AN ′

These rules do not deal with number and person marking on nouns and

verbs; we will silently amend the incorrect forms in our sample SDs. Note

1By using the translation to lambda-terms we do not take any position here regard-

ing the necessity of this translation procedure. As many researchers (e.g. [Barker and

Jacobson, 2007]) stress, it is possible that syntactic representations of natural language

expressions are directly interpreted in a semantic model, with no translation to an inter-

mediate logical language. A more complete discussion of this question and its relevance

to the analysis of scope phenomena is beyond the limits of the present paper.
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also that we use here a traditional noun phrase structure where modification

occurs within an internal nominal labeled N’, and the determiner appears

at the NP level. For expository purposes, we will not use the more modern

syntactic assumptions about DP structure (see [Abney, 1987]).2

For our exposition we will use the following lexicon over the above toy

grammar, including corresponding logical types and translations to logical

expressions of the higher order typed lambda calculus.

Lexicon
Cat Word Translation Type

N one, man,

woman, city ⇒ person, man, woman, city 〈e, t〉

Ntr inhabitant of ⇒ λyλx[person(x)∧

inhabit(y)(x)] 〈e, 〈e, t〉〉

D every ⇒ λAλB.∀x[A(x) → B(x)] 〈〈e, t〉, 〈〈e, t〉, t〉〉

no ⇒ λAλB.¬∃x[A(x) ∧B(x)] 〈〈e, t〉, 〈〈e, t〉, t〉〉

some,a ⇒ λAλB.∃x[A(x) ∧B(x)] 〈〈e, t〉, 〈〈e, t〉, t〉〉

∅ ⇒ λAλB.∃2x[A(x) ∧B(x)] 〈〈e, t〉, 〈〈e, t〉, t〉〉

three ⇒ λAλB.∃3x[A(x) ∧B(x)] 〈〈e, t〉, 〈〈e, t〉, t〉〉

five ⇒ λAλB.∃x[A(x) ∧B(x)] 〈〈e, t〉, 〈〈e, t〉, t〉〉

exactly three ⇒ λAλB.∃!3x[A(x) ∧B(x)] 〈〈e, t〉, 〈〈e, t〉, t〉〉

exactly five ⇒ λAλB.∃!5x[A(x) ∧B(x)] 〈〈e, t〉, 〈〈e, t〉, t〉〉

A midwestern ⇒ λAλx[midwestern(x) ∧ A(x)] 〈〈e, t〉, 〈e, t〉〉

NP John, Mary ⇒ λA.A(johne), λA.A(marye) 〈〈e, t〉, t〉

V participated ⇒ participated 〈e, t〉

Vtr inhabit ⇒ inhabit 〈e, 〈e, t〉〉

admire ⇒ admire 〈e, 〈e, t〉〉

meet ⇒ meet 〈e, 〈e, t〉〉

Rel who ⇒ λAλBλx.[A(x) ∧B(x)] 〈〈e, t〉, 〈〈e, t〉, 〈e, t〉〉〉

Abbreviations

We use some to abbreviate λAλB.∃x[A(x)∧B(x)] (the translation of some,

a);

we use every to abbreviate λAλB.∀x[A(x) → B(x)] (the translation of

every).

Translation

1. Lexical items translate as stated in the lexicon.

2The grammar also uses the traditional designation S for sentence, rather than some

theoretically more up-to-date notation, and its variant S’ in the (wholly unrealistic) rule

for relative clauses.
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2. For all γ ∈ SD s.t. γ = [Xβ]:

if β ⇒ β’ then γ ⇒ β’.

3. For all γ ∈ SD s.t. γ = [Xαβ] or γ = [Xβα]:

if α⇒ α′
a and β ⇒ β′

〈a,c〉, then γ ⇒ β′(α′).

4. For all γ ∈ SD s.t. γ = [V Pαβ] (or γ = [N ′αβ]) where α is a Vtr (Ntr

respectively):

if α⇒ α′
〈e,〈e,t〉〉 and β ⇒ β′

〈〈e,t〉,t〉, then γ ⇒ λx.β′(λy.α′(y)(x)).

2.2 Incompleteness of the grammar’s “direct scope” strategy

The reader may verify that for sentences (1) and (2), the toy grammar

above derives the (simplified) SDs in (1a) and (2a), with the accompanying

translations (1b) and (2b). The latter translations contain some obvious

abbreviations and appear with their reductions to first order predicate cal-

culus.

1. some woman admires every man

(a) [NP some woman] [V P admires [NP every man]]

(b) some(woman)(λx.(every(man))(λy.admire(y)(x))

(c) ≡ ∃x[woman(x) ∧ ∀y[man(y) → admire(y)(x)]]

2. some inhabitant of every midwestern city participated

(a) [NP some inhabitant of [NP every midwestern city]] participated

(b) some(λx.(every(midwest city))(λy.inhabitant of(y)(x)))

(participated)

(c) ≡ ∃x[[person(x) ∧ ∀y[[midwestern(y)∧ city(y)] →

inhabit(y)(x)]]∧ participated(x)]]

Although highly simplified, the SDs in (1a) and (2a) display the commonly

supposed constituent structures for the English sentences in (1) and (2). In

particular, these SDs capture the commonly assumed syntactic asymmetry

in (1) between VP-external subject and VP-internal object, and the part-

whole relation in (2) between the NP-modifier in every midwestern city

and the subject NP that contains it. The meanings of lexical items in this

grammar are standard in natural language semantics. The four translation

rules provide for each sentence in the fragment a translation in the simply

typed lambda-calculus, which for (1b) and (2b) reduce to formulas of the
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first-order predicate calculus (1c) and (2c).3 In the translations (1b) and

(2b), scope relations between translations of quantificational expressions

match the constituent structures assumed by the syntax. Also in more

comprehensive grammars, keeping to this matching and to simple lexical

semantics and interpretative strategies normally leads to the propositions

in (1c) and (2c) for (1a) and (2a).

Of the four translation rules of the toy grammar, rules 1 and 2 are triv-

ial. Translation rule 3 embodies a very simple assumption about meaning

composition in natural language, under which two lambda terms (or their

denotations) can only compose by way of function application. Translation

rule 4, however, is rather ad hoc in the way it composes binary relations

of type 〈e, 〈e, t〉〉 with QNP meanings of the type 〈〈e, t〉, t〉 of generalized

quantifiers (see section 4.1). The problem of composing meanings of rela-

tional predicates with quantifier meanings is conceptually distinct from the

problem of scope ambiguity. However, as we shall see in section 4.2, most

theories of QNP scope establish a connection between the two problems in

one way or another. Thus, translation rule 4 in the above toy grammar

should be considered as a provisional assumption for expository purposes,

and not as a necessary part of theories of QNP interpretation.

The simple architecture that is assumed in our toy grammar is empirically

inadequate, however, and its inadequacy illustrates the problem of quantifier

scope. Consider first sentence (1). Many English speakers judge (1) true in

case every man is admired by a different woman. Therefore, it is reasonable

to assume that (1) has not only the reading in (1b), but also the one in (3)

below.

3. ∀y[ man(y) → ∃x[woman(x)∧ admire(y)(x)]]

A similar problem is even clearer in sentence (2). This sentence is unlikely

to be interpreted using the statement (2b) that the grammar generates,

which would entail the unlikely existence of a person who inhabits every

midwestern city. Many English speakers judge (2) unambiguous, with a

meaning that is expressible using the following formula.

4. ∀y[[midwestern(y)∧ city(y)] → ∃x[person(x)∧ inhabit(y)(x)∧

participated(x)]]

Here again, we see that the scope relations that the grammar generates in

(2b) are different than what semantic intuitions require.

3Similar conversions of lambda terms are henceforth performed without mention.
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As mentioned above, in the analyses (1b) and (2b), the scope relations

between the logical operators are in agreement with the scope relations be-

tween the constituents that they correspond to. We will henceforth refer to

such analyses as direct scope. But the semantics of sentences like (1) and

(2) demonstrate that English may also exhibit opposite scope relations as

in (3) and (4). Such interpretations will be referred to as inverse scope. By

extension, when treating examples outside the fragment, we will also speak

of inverse scope interpretations: statements whose representations in Pred-

icate Calculus or the typed lambda calculus show reversed scope relations

with respect to the scope relations between constituents in the commonly

assumed syntactic structure. Since many scope relations in the syntactic

structure are often obvious or taken for granted by syntactic theories, we

will at times sloppily talk about the scope of a constituent (e.g. a QNP),

where in fact we should properly speak of the scope of the corresponding

operator in a translation of the sentence.

2.3 Methodological and empirical principles in the study of quan-

tifier scope

Whether a given English sentence is ambiguous, and if so, whether the rele-

vant ambiguity is one of scope, is a theoretical question that often relies on

intricate syntactic and semantic intuitions. Various methodological issues

arise when addressing this question, which we would like to discuss at the

outset.

First, we will not assume that native speakers have direct knowledge of

ambiguity. That is, we do not rely on speakers’ intuitions as to whether

a sentence is ambiguous; nor do we rely on speakers’ ability to report re-

liably on semantic properties of selected readings of ambiguous sentences,

which would require them to consciously differentiate between and select

these readings. While the possibility of such “direct access” to different

readings of a given sentence is ultimately an empirical question, we will

prefer to err on the side of caution. Consequently, our primary data will be

native speakers’ intuitions on truth and inference as they relate to “raw”

utterances. In the present section we discuss some of the difficulties that

arise in drawing conclusions from such data. We will introduce some com-

monly accepted guidelines for evaluating the reliability of native speakers’

intuitions, and deciding whether these intuitions support an analysis of the

relevant sentences as scopally ambiguous. Section 2.3.1 briefly discusses

how pragmatic preferences for particular readings may interfere with the

reliability of judgments; Section 2.3.2 discusses the repercussions of logical
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dependence between readings for the analysis of scope ambiguity. We end

this section on methodological issues with a brief note on cross-linguistic

variation, section 2.3.3.

2.3.1 Pragmatic effects

Particular interpretations may prove more or less accessible to speakers de-

pending on their plausibility in the given context; such effects may interfere

with the semantic judgments we seek. Crucially, a reading may appear to be

absent merely because it is implausible. For instance, consider the contrast

between the following examples.

5. John saw the man with the telescope.

6. John saw the man with the dog.

Most syntactic theories assume that both (5) and (6) are structurally am-

biguous. However, for obvious pragmatic reasons the ambiguity is much

clearer in (5) than in (6). Thus, we should be wary of trusting the judgment

that a sentence lacks a particular reading, if that reading is an implausible

one. The safest course is to accept that a reading is absent only if we have

found it absent despite its being plausible — or better, despite its being the

only plausible reading of the sentence. Consider for instance the following

sentence.4

7. [NP someone [S′ who inhabits every midwestern city]] participated

(a) ∃x[[person(x) ∧ ∀y [[city(y)∧ midwestern(y)] →

inhabit(y)(x)]] participated(x)]]

(b) ∀y[[city(y)∧ midwestern(y)] → ∃x[person(x)∧

inhabit(y)(x)∧ participated(x)]]

Sentence (7) is judged by most speakers to be pragmatically strange, as

it asserts that one and the same person can inhabit every midwestern city.

Thus, it is safe to assume that sentence (7), by contrast to (2), lacks reading

(7b) and allows only reading (7a). As (7a) is an implausible proposition,

and (7b) is a plausible one. Thus, the fact that we perceive sentence (7) as

stating the implausible statement (7a) and not as stating (7b), is reliable

evidence that sentence (7) does not have (7b) as one of its readings. This

contrast between sentences (2) and (7) will play an important role in Section

3.2.
4To save space, we here and henceforth identify sentences with their SDs unless this

may lead to confusion.
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2.3.2 Logical dependence between readings

The need to postulate scope ambiguities is particularly hard to demonstrate

(or disprove) in case one purported reading entails another one. Consider

example (8):

8. [S [NP every man] [V P admires [NP some woman ]]]

(a) ∀x[ man(x) → ∃y[woman(y)∧ admire(y)(x) ]]

(b) ∃y[woman(y) ∧ ∀x [man(x) → admire(y)(x) ]]

Cases like (8) have often been cited as allowing the inverse scope reading

(8b). However, considering that whenever (8b) is true, (8a) is true as well,

how could we determine whether (8) allows the inverse scope reading in

addition to its direct scope reading (8a)? Some speakers may indicate that

they can interpret (8) as entailing (8b). However, as implied from our as-

sumptions above, we do not want to rely on such judgments, which would

presuppose that speakers have the ability to access intuitions on the prop-

erties of particular readings of sentences to the exclusion of other readings;

the safer course is to assume that speakers cannot separate different read-

ings. It should be stressed that this does not prevent sentences like (8) from

being judged scopally ambiguous, we assume that but the decision on this

question can only rely on theoretical considerations or on the behavior of

similar sentences, and not on direct intuitions concerning the sentence in

question. For relevant discussions of this point see [Reinhart, 1976, pp. 190-

196; Cooper, 1979, p. 142; Kempson, 1977, ch.8; Kempson and Cormack,

1981; Ruys, 1992, pp. 6-20; Altman et al., 2005].

We might choose to ignore examples such as (8) altogether, and concen-

trate on examples such as (1), for which the inverse scope reading (3) does

not entail the direct reading (1b). Strictly speaking, of course, the argument

against an ambiguity analysis of (8) also applies to (1), but an unambigu-

ous analysis for (1) would have to state that it has only the inverse scope

reading (3). This is highly unlikely, given the constituent structure of the

sentence, and would still support the main point, namely the existence of

inverse scope readings. On the other hand, admittedly, the intuitions on

the existence of an inverse scope reading for (1) are not solid for all speak-

ers (Kurtzman and MacDonald 1993). In addition, indefinite NPs such as

some woman in (8) sometimes exhibit exceptional (inverse) scope options

that are theoretically interesting, as will be discussed in section 3.3. For

these reasons, let us illustrate some methods that are employed in order to

test the ability of QNPs to take inverse scope.
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2.3.2.1 A. We can construct examples for which the direct scope and

inverse scope readings are independent. For instance, in the following ex-

ample (9), the direct scope analysis in (9a) is logically independent from

the inverse scope analysis in (9b).

9. exactly three men admire some woman

(a) ∃!3x[man(x) ∧ ∃y[ woman(y)∧Admire(y)(x) ]]

(b) ∃y[ woman(y) ∧ ∃!3x [man(x)∧ admire(y)(x) ]]

It can be demonstrated that in cases such as (9), the inverse scope analysis

in (9b) captures situations for which many speakers judge sentence (9) to be

true, but which are not captured by the direct scope analysis (9a). Hence

it is rather reasonable to conclude that indefinite object NPs allow a wide

scope interpretation over the subject in cases like (8) as well.

2.3.2.2 B. Another potentially relevant piece of evidence for scope am-

biguity in cases like (8) is obtained once they are embedded in negative

entailing contexts, as in the following example.

10. it is not the case that every man admires some woman

(a) ¬∀x [ man(x) → ∃y[woman(y)∧ admire(y)(x) ]]

(b) ¬∃y[woman(y) ∧ ∀x[man(x) → admire(y)(x) ]]

The two relevant analyses of (10) in (10a) and (10b) are the negations of

(8a) and (8b). Due to the negation, the inverse scope reading (10b) is not

logically stronger than the direct scope reading (10a). Hence, we could

demonstrate the existence of the (10b) reading by showing that (10) is true

in a model in which (10b) is true but (10a) false. Despite the fact that

negation as in (10) may facilitate the decision whether the inverse scope

analysis reflects a reading of (10), actual judgments have proven rather

insecure.5 This “experimental” difficulty makes it harder to use sentences

like (10) as even indirect evidence for deciding whether an inverse scope

analysis is justified for (8) as well.

5This is further complicated by the possibility that in addition to (10a) and (10b),

sentence (10) may also have four potential readings where one of the QNPs, or both of

them, takes scope over the negation.
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2.3.2.3 C. We can attempt to construct grammatical tests for inverse

scope. For example, (11) shows that the indefinite object in (8) introduces

a “discourse referent” for a pronoun to pick up:

11. Every man admires some woman. She is really smart.

Evidence that the anaphoric relation in (11) is available only in case the

antecedent takes wide scope comes from (12), where anaphora is blocked in

the second sentence in case the pronoun in the first sentence is interpreted

as “bound” by the subject (i.e. the value picked for he in (12) may vary

from man to man).

11. ?? Every man admires some woman he knows. She is really smart.

Tests like the ones surveyed in A–C above may be used to justify a scope

mechanism for QNPs also in cases where direct semantic intuitions do not

necessarily support a n account that is based on scope ambiguity.

2.3.3 A note on cross-linguistic variation

As the reader may have observed, all our empirical data so far have been

drawn from one language, English, and we will continue to confine discus-

sion in this article to this language. We feel that this limitation is serious,

but defensible, for several reasons. Firstly, scope phenomena in English have

been studied much more extensively and in more detail than in any other

language. Secondly, our primary interest in this article is not so much in

the description of all manner of scope phenomena as it is in the presentation

of the various theoretical approaches to scope phenomena that have been

proposed. Since English data suffice to illustrate the workings of the various

theories of quantifier scope that we will discuss, and since we are not aware

of scope phenomena in other languages that cannot in principle be described

by means of the theoretical devices we will be presenting, our discussion is

not seriously hampered by the limitation to English. Nonetheless, cross-

linguistic variation in quantifier scope phenomena is an important topic,

not only from a descriptive stand-point, but also because the existence and

extent of such variation has important theoretical implications. There are

numerous important works describing scope phenomena in other languages

than English, including [Huang, 1982; Liu, 1990] for Chinese, [Hoji, 1985]

for Japanese, as well as works that focus specifically on cross-linguistic vari-

antion: e.g. [Gil, 1982); Aoun and Li, 1989] various papers in [Szabolcsi,

1997]; see [Pafel, 1994] for an overview.
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3 SOME PROBLEMS OF QNP SCOPE

This section gives an overview of some of the major empirical generaliza-

tions concerning problems of scope ambiguity in natural language, especially

scope ambiguities with QNPs. We first give a short catalogue of phenomena

that have been analyzed as scope ambiguities, and then turn to some of the

special effects with QNP scope: restrictions on their scope, unexpected wide

scope/narrow scope of QNPs, and “mixed scope” effects.

3.1 Overview of some scope phenomena

3.1.0.1 A. QNP-QNP. The following two examples from the fragment

of Section 2 have illustrated that sentences with multiple QNPs can show

scope ambiguities:

13. some woman admires every man

14. some inhabitant of every city participated

The inverse wide scope for the embedded NP in (14) is known as “inverse

linking” (see Gabbay and Moravcsik 1974 and May 1977 for early discus-

sion). This inverse scope reading is prominent, often more prominent than

the direct scope reading. Inverse wide scope for the object in simple transi-

tive sentences like (13) is usually less prominent than the direct reading of

such sentences, but nonetheless available.

3.1.0.2 B. Negation and QNPs. Sentences containing negation and

a quantified NP may show scope ambiguity:

15. John doesn’t speak exactly three languages

16. all that glitters is not gold

Sentence (15) can be understood as asserting the falsity of the claim that

John speaks exactly three languages. In this case we say that negation takes

scope over the QNP. But (15) can also be interpreted as stating that there

are exactly three languages that John doesn’t speak. In this case the QNP

takes scope over the negation. Similarly, in (16) the sentence may either

mean that nothing that glitters is gold or that there are glittering things

that are not gold. For work on the scope of negation, also with respect

to topic-focus structure, see [Jackendoff, 1972, pp. 352-362; Horn, 1989, p.

226; Beghelli and Stowell, 1997; Büring, 1997].
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3.1.0.3 C. Intensionality. De re/de dicto ambiguities are also com-

monly analysed as scope ambiguities (cf. [Quine, 1956; Montague, 1973;

Ben-Avi and Winter, 2007]). For instance:

17. John is looking for a book

18. an American runner is likely to win the race

In (17), whether the sentence means that John is looking for a specific book

or for any book, is often analyzed as a scope ambiguity of the indefinite a

book with respect to the predicate look for. The former, de re, reading is

often analyzed as a case where the indefinite takes scope over the predicate,

whereas the latter, de dicto, reading is often analyzed by giving the predicate

scope over the indefinite. A similar distinction is made for (18).

3.1.0.4 D. QNPs inside questions. Questions containing quantified

NPs and wh-phrases may show a scope ambiguity, as in (19):

19. which woman does every man love?

(19) permits an individual answer (“every man loves Mary”), or a “pair-

list” answer (“John loves Sue, Peter loves Mary, ...”). The pair-list reading

of the question can be treated as involving every man quantifying into the

question, taking wider scope than which woman; for the individual answer,

every man scopes below which woman. See [Karttunen and Peters, 1980;

Engdahl, 1980; Jacobson, 1999; Groenendijk and Stokhof; 1984; 1997; May,

1985].

3.1.0.5 E. Adverbs. Scope relations between adverbs of different

types and QNPs may also vary:

20. (a) John has never met a friend of mine

(b) someone always wins

21. (a) John probably saw an article in this morning’s Times

(b) someone probably spiked the punch

For instance, (20a) can either mean that John has met no friend of mine, or

that there is a friend of mine that John has never met. When adverbs are

analyzed as quantifiers (over times, events, possible worlds etc.), this kind

of ambiguity is often analyzed as similar to the QNP-QNP kind of scope

ambiguity. For two studies of the scope of adverbs and relevant further

references see [Larson, 2003; Schäfer (2004].
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3.1.0.6 F. Coordination. Sentences like (22) have been analyzed (e.g.

in [Bergamann, 1982]) as involving scope ambiguity of coordination:

22. (Exactly) four teachers and authors smiled.

Under one interpretation, where and is often assumed to take scope below

four, the sentence makes a claim about (exactly) four people, each of them

a teacher and an author.6 Under another interpretation, where (22) makes

a claim about four teachers and four authors, and can be analyzed as taking

scope over four.

Another kind of sentence that was analyzed in terms of scope ambiguity

of coordination is the following:

23. John is looking for a maid or a cook.

The interpretation under which it is either a maid or a cook that John is

looking for, but not necessarily both, was analyzed by Rooth and Partee

[1982] as involving wide scope for the disjunction over the intensional verb

look for. The other interpretation, where John would be both satisfied by

finding a maid and by finding a cook, is considered as a case where or takes

scope below look for. For more analyses of scopal effects with coordination

see [Hendriks, 1993; Larson, 1985a; Schwarz, 1999; Winter, 2000b], among

others.

After this review of some scope ambiguity phenomena in English, the

remainder of his section formulates some generalizations that govern the

distribution of direct and inverse scope readings that appear with QNPs.

The facts in this domain can roughly be summarised as follows. In almost all

cases (as far as our fragment in section 2.1 goes: in all cases) direct scope is

an option. Whether a structure containing quantified noun phrases A and B

allows inverse scope of B over A depends on two factors: the syntactic con-

figuration relating A and B, and the choice of B. The following subsections

elaborate on some circumstances that empirically affect the availability of

inverse scope.

6We do not discuss here a possible interpretation, where the sentence refers to four

people, some of whom are teachers and the rest are authors. An analysis of this inter-

pretation involves the complicated question of collective readings of and conjunctions

with nominals and predicates [Heycock and Zamparelli, 2005]. Yet another possible in-

terrepretation of (22), which is however irrelevant for our purposes, is the one where the

constituency of the subject is [exactly four teachers] and [authors].
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3.2 Restrictions on scope

As is well known, not every sentence containing two QNPs allows scope

inversion. The availability of inverse scope depends partly on the syntactic

configuration that relates the two QNPs. Consider again the minimal pair

(2) (=(14)) and (7), which are restated below.

24. some inhabitant of every midwestern city participated

25. someone who inhabits every midwestern city participated

As we have seen, the QNP every midwestern city in (24) can take scope

over some inhabitant, which yields a pragmatically acceptable inverse scope

reading. By contrast, sentence (25) allows only an unacceptable direct scope

reading, as predicted by the direct scope strategy of the grammar in Section

2.

At this point we would not like to prejudge the issue whether the expla-

nation of the inverse scope reading of (24) and its absence in (25) is to be

found in syntax or semantics; we discuss this issue in some detail in Sec-

tion 4. For convenience, however, we describe a generalization that roughly

governs these facts in syntactic terms. A hypothesis that has often been pur-

sued since the late 1960s is that those syntactic domains that QNPs cannot

scope out of are exactly the ones that are opaque to syntactic “movement”

(e.g. formation of wh questions). To understand this hypothesis, consider

first the examples in (26):

26. (a) which cityi did you meet inhabitants of ti ?

(b) * which cityi did you meet people who inhabit ti ?

(c) did you meet inhabitants of this city ?

(d) did you meet people who inhabit this city ?

The phrase which city in (26a) performs the same function as argument of

inhabitants of that is performed by this city in (26c). In this sense, which

city in (26a) is related to the position following of ; we indicate the relation

by marking that position with a symbol t (for “trace”) coindexed with

which city (see section 4.2.1 below for further explanation of the syntactic

mechanisms involved). (26b) shows that the relation is disturbed when

which city sits outside a relative clause, while the position t it is related

to sits inside the relative clause (compare (26b) to (26d)). The restriction

that (26b) illustrates is referred to as the Complex NP Constraint (CNPC);

the NP containing the relative clause is said to function syntactically as an

island for wh-extraction.
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Returning now to the examples (24) and (25), we find a similar pattern:

the quantified NP every midwestern city in (24), in the same position as t

in (26a), can take sentential scope, as though, like which city in (26a), it

occupied the sentence-initial position. But every midwestern city in (25),

which is inside a relative clause, cannot take scope over the sentence as a

whole, similarly to the unacceptability of (26b). In this sense, the NP with

the relative clause in (25) functions as a scope island, and (25) suggests that

the CNPC is not only an extraction island as in (26b), but also an island

that holds of QNP scope. In syntactic terminology, we say that scope islands

and extraction islands coincide.

As we shall see in section 4.2.1, this generalization about the similarity

between scope islands and islands for extraction led to the hypothesis that

inverse scope results from (covert) movement of the QNP. Below we provide

some more examples of islands, not illustrated by the fragment.7

27. (a) * which mani will you inherit a fortune if ti dies

(b) you will inherit a fortune if every man dies

28. (a) * whati did John hiss that Smith liked ti

(b) John hissed that Smith liked every painting

Both the if -clause in (27) and the complement clause to a verb hiss in (28)

are islands for wh-extraction, and disallow matrix scope.8 See Section 4.2.1

for further discussion of the similarity of scope taking and wh-movement,

and for further examples of islands.

3.3 Unexpected wide scope: simple indefinites

Given the constraints on inverse scope illustrated in (24)–(25), the absence

of a similar contrast in (29)–(30) is unexpected.

29. every inhabitant of a/some midwestern city participated

30. everyone who inhabits a/some midwestern city participated

31. (a) ∃x[city(x)∧ midwestern(x)∧∀y[[person(y)∧ inhabit(x)(y)] →

participated(y)]]

7Example (28) is from [May, 1977, p. 94,120].
8In many syntactic frameworks, constructions like the if clauses as in (27) are classified

as sentential adjuncts, and accordingly illicit sentences like (27a) are classified as violating

an adjunct constraint. Verbs like hiss (that) in (28) that prevent grammaticality in cases

like (28a) are often referred to as non-bridge verbs (unlike other verbs like think and say);

hence one might classify (28) as exemplifying a non-bridge verb island for extraction and

scope.
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(b) ∀y[[person(y) ∧ ∃x [city(x)∧ midwestern(x)∧

inhabit(x)(y)]] → participated(y)]

Many English speakers agree that both (29) and (30) allow the inverse scope

reading as well as the direct scope reading, as stated in (31a) and (31b)

respectively. This is clearly the case with the determiner some, but also

(marginally) with the article a. A classical example, outside our fragment,

that more clearly demonstrates the same effect is the following.

32. If a friend of mine from Texas had died in the fire, I would have

inherited a fortune. [Fodor and Sag, 1982]

Sentence (32) can be interpreted as true if I have a certain friend whose

death would make me rich, even if I have other friends for whom this does

not hold. Again it seems, as in (30), that the indefinite can take scope over

an island, in this case the adjunct island contributed by the conditional.

The generalization seems to be that simple indefinite NPs can scope out

of relative clause islands, and this pattern also persists with other scope

islands types. The contrast between the ill-formedness of (26b) and the

availability of the inverse scope reading (31b) for (30) is illuminating: it

suggests that it would be problematic to derive (31b) for (30) by the same

rule that “fronts” wh-elements as in (26a). Using such a rule for both (30)

and (26a) (or the inverse scope reading of (24)) would make the contrast

between (26b)/(25) and (24) completely mysterious. See Section 4.3.3 for

alternative theories about the behavior of indefinite NPs as in (30).

In our fragment, the exceptional wide scope behavior seen in (30) is

displayed by those NPs that are headed by a and some, as well as the

numeral three. For instance:

33. John met everyone who admires three midwestern cities

Sentence (33) has a reading, fitting in a context in which John is researching

the popularity of three particular cities. This suggests a wide scope option

for three cities. This description of the facts is a bit simplistic, as we shall

see in See Section 3.5. We also postpone to sections 3.4 and 3.5 a discussion

of the class of NPs that support this exceptional wide scope behavior.

3.4 Absence of inverse scope

There are several types of QNP that show an unexpected absence of inverse

scope, even in syntactic contexts where other QNPs do show inverse scope.

One prominent and fairly uncontroversial example is the bare plural. Bare
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plural NPs do not take inverse scope, as the following example illustrates

[Carlson, 1977]:9

34. no man met women

(a) ¬∃x[man(x) ∧ ∃2y[woman(y)∧ meet(y)(x)]]

(b) ∃2y[woman(y) ∧ ¬∃x[man(x)∧ meet(y)(x)]]

Sentence (34) only has the reading in (34a), not the reading in (34b). The

same holds for (35) and (36):

35. John met every man who inhabits midwestern cities

36. John met every inhabitant of midwestern cities

Intuitions are particularly clear for these examples, which are pragmatically

infelicitous. Inverse scope readings would be a pragmatically acceptable,

but the sentences are not, which means that these sentences do not allow

an inverse scope analysis.

Unfortunately, for some other classes of QNPs the relevant semantic intu-

itions are not as clear-cut, and their scope properties have not been studied

as extensively in the available literature as e.g. the scope properties of

QNPs of the every N variety. Nonetheless, some tentative generalizations

have been proposed in the literature that deserve to be mentioned.

Consider first NPs with modified numeral determiners. Given the inverse

scope option for (13), repeated as (37), a similar option for (38) is expected.

It is however claimed [Liu, 1990; Beghelli, 1993; 1995] that this option is

not available.

37. some woman admires every man

38. some woman inhabits exactly three cities

(a) ∃x[woman(x) ∧ ∃!3y [city(y)∧ inhabit(y)(x)]]

(b) ∃3!y[city(y) ∧ ∃x[woman(x)∧inhabit(y)(x)]]

According to these authors, a sentence such as (38) is intuitively judged to

mean only (38a): it is true if (38a) is true, and false if (38a) is false. Specif-

ically, (38) is false if exactly three cities are each inhabited by a different

woman, as allowed by (38b). This means that for the case of (38), an inverse

scope analysis would be incorrect (but see [Reinhart, 2006b] for a different

view on these data). Absence of inverse scope can also be observed in (39)

below.
9For ease of exposition, we translate the bare plural with the quantifier ∃2, while

noting that this is an extreme simplification.
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39. every man admires less than three women

(a) there are less than three women that every man admires

Sentence (39) does not allow the inverse wide scope reading for less than

three women, as expressed by (39a).

In the second syntactic configuration our fragment contains, a PP-modified

NP, it has been claimed that we find a similar effect [Beghelli, 1993]:

40. an inhabitant of exactly three cities participated

Although intuitions are less secure here, (40) shows a clear preference for

the (pragmatically implausible) direct scope interpretation over the (more

plausible) inverse scope analysis.

The exceptional wide scope found with simple indefinites in (30) and (33)

is also not found with modified-numeral NPs:

41. John met every man who admires exactly three midwestern cities

This example is judged false if there is any man admiring any choice of three

midwestern cities whom John did not meet.

Sentences (38)–(41) show NPs with a compound determiner that do not

take inverse scope. We find the same behaviour with other monotone de-

creasing QNPs, even non-modified ones, as shown in (42):

42. some man admires few woman

A third category of NPs that, in some respects, belongs to the class discussed

here are simple numeral NPs. We saw in the previous section (see (33)) that

there are indications that these NPs can take exceptional wide scope. The

example in (43), on the other hand, suggests that in other cases they must

take direct scope:

43. some man admires three women

(a) ∃x[man(x) ∧ ∃3y[woman(y)∧ admire(y)(x)]]

(b) ∃3y[woman(y) ∧ ∃x[man(x)∧admire(y)(x) ]]

This sentence is judged to entail the proposition that there is at least one

man who admires three women; the inverse scope reading is judged to be

much harder to obtain than in (13). The seemingly contradictory behaviour

of the three N class is the subject of the next section.
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3.5 Mixed scope

Below we repeat examples (33) and (43), and add examples (46) and (47):

44. John met everyone who admires three midwestern cities

(a) ∀x[[person(x)∧∃3y[midwestern(y)∧ city(y)∧ admire(y)(x)]]

→ meet(john,x) ]

(b) ∃3y[midwestern(y)∧ city(y)∧∀x[[person(x)∧ admire(y)(x)]

→ meet(john,x) ]]

45. some man admires three women

(a) ∃x[man(x) ∧∃3y[woman(y)∧admire(y)(x)]]

(b) ∃3y[woman(y) ∧ ∃x[man(x)∧admire(y)(x)]]

46. no man admires three midwestern cities

47. (a) John met someone who inhabits three midwestern cities

(b) John met some inhabitant of three midwestern cities

(c) ∃x[[person(x)∧∃3y[midwestern(y)∧ city(y)∧ inhabit(y)(x)]]

∧ meet(john,x) ]

(d) ∃3y[midwestern(y)∧ city(y)∧∃x[[person(x)∧ inhabit(y)(x)]]

∧ meet(john,x) ]

Unmodified numeral plurals display a seemingly contradictory scope be-

haviour. On the one hand, their scope is not limited to their surface po-

sition: from object position, they can “escape” the scope of the subject in

(46), and even from relative-clause embedded position, they seem to escape

the scope of the containing quantifier in (44). Thus, (44) is not felt to entail

that John met everyone who admired any choice of three midwestern cities;

rather, this sentence can apparently be about three particular midwestern

cities. Likewise, sentence (46) allows more than just the direct scope read-

ing; this is clear from the fact that (46) is true even if some men do admire

some choice of three midwestern cities. In view of these facts, these bare

numeral QNPs appear to behave much like simple indefinites (aN), which

allow both “normal” inverse scope and exceptional wide scope (see section

3.3, as well as section 4.3.3 below).

On the other hand, a description of these non-narrow scope readings for

the plural indefinites in (44) and (46) as “wide scope readings” would be

too simplistic, as already mentioned in Section 3.4. Bare numeral QNPs

do not simply take inverse wide scope out of islands: (44) does not allow
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the reading (44b), and (47a) does not allow the wide scope reading (47d).

Furthermore, the inability of such QNPs to take inverse wide scope extends

to non-island contexts: (45) and (47b) show that these QNPs behave much

like the exceptional narrow scope modified numeral QNPs of section 3.4: the

inverse scope readings given in (45b) and (47d) are highly marked [Ioup,

1975; Liu, 1990; Beghelli 1993].

3.6 Summary of QNP scope problems

In Section 2 we showed readings of sentences which suggest that the simple

“direct scope” interpretative strategy of our toy grammar does not cover the

interpretations of sentences in the fragment. We saw that in many cases

this incompleteness can be a result of an “inverse scope” strategy for inter-

preting syntactic structures. In this section we saw some central challenges

for the inverse scope strategy. First, inverse scope readings are often con-

strained by syntactic restrictions that seem parallel (at least partially) to

the restrictions on overt extraction. However, simple indefinite NPs seem

exceptionally free, and can often display an inverse scope behavior that

does not seem to obey these syntactic restrictions. Conversely, some other

NPs seem exceptionally restricted, and hardly show any inverse scope phe-

nomena. Further, some plural indefinite NPs seem both exceptionally free

and exceptionally restricted in their inverse scope potential, in a way that

may lead to “mixed” scope behavior. The next section is an overview of

some theories that attempt to account for (parts) of this complex array of

linguistic scope phenomena.

4 LOGICAL AND LINGUISTIC THEORIES OF QUANTIFIER

SCOPE

4.1 Preliminaries on quantifier scope

A common approach to quantification in natural language, which was clearly

manifested in [Montague, 1973], (henceforth PTQ) and substantiated and

popularized in [Barwise and Cooper, 1981; Keenan and Stavi, 1986], is

to consider all QNPs as denoting generalized quantifiers. This assumption

means that all QNPs denote sets of sets of entities, or, isomorphically, predi-

cates over predicates over entities. For instance, in this approach a QNP like

every man denotes the predicate that holds of the predicates that hold of all

individual men in the model. In grammars with an extensional semantics

such as the one of Section 2, using typed lambda terms, such a generalized
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quantifier receives the type 〈〈e, t〉, t〉 and is represented as follows:

48. λB.∀x[man(x) → B(x)]

Compositionally, this treatment entails that the determiner every receives

the denotation of a function from predicates over entities to generalized

quantifiers. This means that the type of such determiners, as in the gram-

mar of Section 2, is 〈〈e, t〉, 〈〈e, t〉, t〉〉. The standard lambda term assumed

for representing the extensional meaning of the determiner every is also as

in the grammar of Section 2:

49. λAλB.∀x[A(x) → B(x)]

Most semantic frameworks assume that transitive predicates like admire de-

note two-place relations, of type 〈e, 〈e, t〉〉. This is also the typing strategy

assumed in the grammar of Section 2. In order to derive a meaning for

sentences like some/every woman admires every man, the semantic mecha-

nism should be able to compose the binary relation for admire with the two

generalized quantifiers for the subject and the object. Many works assume,

as we did in translation rule 4 of the grammar in Section 2, that the way

to reach an interpretation for such transitive sentences involves lambda ab-

straction over variables that take the argument positions in the predicate.

The two linear orders of composition with the binary predicate (object first

or subject first) lead to the following two propositions, with Q1 and Q2 as

the lambda terms for the subject and object quantifiers, respectively, and

R the binary predicate.

50. (a) Q1(λx.Q2(λy.R(x, y)))

(b) Q2(λy.Q1(λx.R(x, y)))

For our expository purposes here it is important to note that representa-

tions like (50) involve what we call a “standard” approach to quantifier

scope. Two basic principles underlie this approach: (i) QNPs denote gener-

alized quantifiers; (ii) the denotations of QNPs and relational predicates are

amalgamated using “linear” composition as in (50a) and (50b), equivalent

to a formula where one of the quantifiers takes scope over the other. As

we will see in the sequel, these assumptions are not necessarily sufficient

for describing all scope phenomena. However, as a baseline approach these

“standard scope” principles allow one to capture many basic facts about

inverse scope phenomena. We now move on to some theories that adopt

and substantiate these principles.
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4.2 “Standard scope” mechanisms

Familiar mechanisms that adopt the standard approach to scope can roughly

be divided into two categories: syntactic and semantic ones. We call an ap-

proach syntactic if it requires a modification of the rules of syntax in order

to derive inverse scope. In case of scope ambiguity, syntactic approaches

normally postulate multiple distinct syntactic representations (structures,

derivations) underlying the same string, with a different meaning assigned

to each of them. We call an approach semantic if it keeps to the most

straightforward syntactic account of the constituent structure of the lan-

guage and only postulates a modification of the semantics so as to derive

inverse scope readings. In case of ambiguity, a semantic approach postulates

a single syntactic representation, to which rules of semantic interpretation

can apply in different ways.

It should be remarked, however, that the distinction between syntactic

and semantic approaches is a rather crude one. In many cases a syntactic

scope mechanism has semantic repercussions and vice versa. In the following

sections, we shall outline a selection of syntactic and semantic scope mech-

anisms from the literature. We will first introduce two well-known scope

mechanisms: the methods of Quantifier Raising and Quantifying-in. The

first approach is mostly followed in works in generative linguistics following

May [1977], whereas Quantifying-in was introduced in PTQ and followed

by much work in the tradition of Montague Grammar. Then we move on to

a brief overview of the semantic scope mechanism of Cooper [1975; 1983],

known as Cooper Storage, and the flexible type mechanism of Hendriks

[1993]. Lastly, we will outline two categorial approaches to quantifier scope,

which show a tight interaction between syntax and semantics.

4.2.1 Quantifier Raising

The “Quantifier Raising” (QR) theory of quantifier scope ambiguity was

first proposed by Chomsky [1976] and May [1977] as a revision of the domi-

nant generative theory of the time, known as the Extended Standard Theory

[Chomsky, 1972]. The QR theory persisted into the subsequent Principles

& Parameters framework (the basis of the well-known Government Binding

theory following [Chomsky, 1981], see [Chomsky and Lasnik, 1993], and it

still plays a role in the currently dominant Minimalist Program of Chomsky

[1993; 1995].

In these syntactic models, an expression is associated with multiple phrase

structure representations, which are related by rules of movement (and other

transformations). This is illustrated in (51):
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51. I wonder who John thinks Peter likes

(a) I wonder [CP John thinks Peter [V P likes who ]]

(b) I wonder [CP whoi John thinks Peter [V P likes ti ]]

(51a) is the (simplified) Deep Structure (or: D-Structure) representation

of (51). This representation is generated by a set of Base Rules (for in-

stance, rewrite rules as used for our fragment in section 2.1 above). The

constituent structure at this level of representation captures the fact that

who in (51) functions as the object of likes. (51b), the Surface Structure

(or: S-Structure) representation, is derived from (51a) via a movement rule,

which displaces the wh-element who to the front of the embedded question.

The movement operation leaves a “trace” denoted t, which functions like a

phonetically empty constituent coindexed with the moved constituent. The

presence of indexed traces makes it possible to recover the D-Structure role

of moved elements from the S-Structure representation. In the S-Structure

(51b), the coindexing between the wh-element who and the trace keeps track

of the fact that who is related to the object position of the verb likes. The

S-Structure in turn is further input to rules of the phonological component

of the grammar, which yields the phonetic form of the sentence.

Chomsky [1976] proposed that the S-Structure representation is input to

a further set of rules, QR among them, which derive the Logical Form of

the sentence. Representations at the level of Logical Form are interpreted

by a semantic mechanism.10 A simple configuration of this setting is one

in which each LF is mapped to one, and only one, semantic analysis of the

sentence.11 Since the rules deriving LF do not feed into the phonological

component (hence do not affect phonetic form), they are known as “covert”

10The term Logical Form has of course been chosen to suggest similarity with the logi-

cian’s notion of the logical form of a proposition which underlies its inference properties,

as distinguished from the grammatical form. However, it has repeatedly been stressed, in

particular by Chomsky (see e.g. [Chomsky, 1980]), that the representation of a sentence

at the grammatical level of LF is not to be equated with its “logical form.” The contribu-

tion of LF is in structural aspects of meaning determined by syntax, potentially leaving

other aspects unspecified. Representations at the level of LF are (almost always) taken

as phrase structure representations, derived by syntactic rules and subject to syntactic

well-formedness conditions, for which independent evidence is sought in other grammat-

ical phenomena (such as conditions on wh-phrases left in situ at S-Structure, and on the

coreference behavior of pronouns and anaphors), not necessarily semantic ones.
11It has been proposed (esp. by [May, 1985; Aoun and Li, 1989]) that the level of LF

is not disambiguated: these authors combine a syntactic account of scope ambiguities

(QR deriving LF) with a non-syntactic approach to deriving various interpretations from

a given LF-representation.
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operations, as opposed to “overt” movement operations such as the wh-

movement illustrated in (51).

On this approach, scope ambiguities arise through optionality in the ap-

plication of a movement rule called Quantifier Raising (QR). This rule de-

rives from one given S-Structure several different LFs with different scope

relations between elements in the sentence. On its earliest formulation [May

1977], this movement rule operates as shown in (52):

52.

. . . ti . . .

S

. . . NP . . . NPi S

S

This version of the QR rule takes the S-structure representation of a sentence

S containing a quantified noun phrase NP, moves NP, and attaches it to

the node S by “splitting” S into two nodes and attaching the NP under the

highest of these.12 Since the rule is a standard movement rule, by convention

it leaves a trace t coindexed with the moved NP, as shown in (52).13

Adding such a rule to the grammar of section 2.1 will yield at least the

following LFs for examples (13) and (24), respectively:

53. (a) [S[NP some woman]1[S [NP every man]2[St1[V P admires t2]]]]

(b) [S[NP every man]2[S[NP some woman]1[St1[V P admires t2]]]]

54. [S [NP every city]2[S [NP some inhabitant of t2]1[St1[V P participated]]]]

The interpretive rules in the grammar should now apply to these LF repre-

sentations. In order to modify our toy grammar so that structures derived

by QR are properly interpreted, we add the following translation rule:

12The manner in which the moved NP in (52) is attached is known as “(Chomsky-

)Adjunction”; hence May’s formulation of the rule: “Chomsky-adjoin a QNP to S”

[May, 1977, p. 18]. For a formal definition of Chomsky-adjunction, see [Lasnik and

Kupin, 1977].
13The extensive literature on the topic contains a variety of other definitions, differing

e.g. in what NP types are subject to QR [May, 1985; Reinhart, 1991; Ruys, 1992], what

nodes besides S it may target (Williams 1977, May 1985), whether it may also move

material downward [May, 1977; 1985; Fox, 1995], under what conditions it may or must

apply [May, 1977; Fox, 1995; 2000; Reinhart, 2006a], whether it should be equated with

other supposed covert operations [Hornstein, 1995], whether or not it involves adjunction

[Hornstein, 1995; Beghelli and Stowell, 1997; Bruening, 2001] and even in whether or not

it feeds into phonetic form [Kiss, 1991; Fox and Nissenbaum, 1999, and references cited

there]. See [Kiss, 2006] for a recent overview.
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5. For all γ ∈ SD s.t. γ = [Sβi α ], β is an NP and α is an S, for all

i ∈ N : if α⇒ α′ and β ⇒ β′, thenγ ⇒ β′(λxi.α
′).

This rule relies on the afore-mentioned assumption that when a movement

rule adjoins a QNP to a sentence node S, that sentence contains a trace

that is coindexed with the QNP. Furthermore, Translation Rule 5 also relies

on the assumption that a trace with an index i is translated using a free

variable xi.
14 This assumption about the translation of traces is satisfied

by the following scheme for traces in the lexicon, which is added on top of

the lexicon of section 2.1.

Cat Word Translation Type

NP ti ⇒ λP.P (xi) 〈〈e, t〉, t〉

This scheme follows Montague [1973] in that traces, like proper names, are

translated into generalized quantifier terms, with the variable filling the

role of the constant johne in terms like λA.A(johne), which appear in the

lexicon of section 2.

The LFs in (53) and (54) are now interpreted similarly to the general

representations we gave in (50) to simple transitive sentences. For instance,

the verb phrase [admires t2] in (53b) now receives the following translation

using translation rule 4 in the grammar of section 2.1.

λx.(λP.P (x2))(λy.admire(y)(x)),

which is equivalent to:

λx.admire(x2)(x).

Using translation rule 5 above we get the following translation for the LF

in (53b):

(λA.∀y[man(y) → A(y)])(λx2.(λB.∃z[woman(z)∧B(z)])(λx.admire(x2)(x))),

which is equivalent to the inverse scope reading of sentence (13):

∀y[man(y) → ∃x[woman(x) ∧ admire(y)(x)]]

In most treatments, such rules as translation rule 5 above are left implicit

(but see e.g. [May, 1989]). Keenan and Faltz [1985] and Heim and Kratzer

[1998] manage without the extra translation rules by effectively adding the

lambda operator for variable binding as an extra node to the syntactic

representation.

14It is assumed further that every QNP receives a “fresh” index, to prevent accidental

coindexing of variables.
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Evaluating the LF / QR approach

The QR theory, which holds that quantifier scope is mediated through a

syntactic movement rule deriving a syntactic level of representation, has

several types of empirical consequences. First and foremost, it leads one to

expect that conditions on quantifier scope can be stated as conditions on

rules of movement; this implication is our primary topic in this section.

We want to stress, however, that the QR/LF theory has further im-

plications, some of which are only indirectly related to quantifier scope

phenomena. It has been argued, for instance, that additional (movement)

operations besides QR apply in deriving LF from S-Structure (e.g. a rule

fronting wh-phrases left in situ at S-Structure). These operations are held

responsible for other semantic effects besides relative scope, and even for

the well-formedness of certain constructions and aspects of cross-linguistic

variation. Since the QR theory presupposes the existence of LF as a gram-

matical level of representation, any independent evidence for such LF op-

erations affects the status of the QR theory. In addition, since QR derives

a syntactic level of representation, one expects that there might be further

rules of syntax that take the output of QR as their input: either further

derivation rules, or syntactic constraints that apply to LF representations

derived by QR; the treatment of “Antecedent Contained Deletion” (ACD)

phenomena discussed in Section 5.2 may be a case in point. A full evalua-

tion of the QR approach to scope phenomena must take these various types

of indirect evidence into account.

Primarily, however, evidence for QR exists to the extent that generaliza-

tions on quantifier scope can be stated in terms of syntactic properties of

the relevant constructions, and to the extent that these generalizations ap-

ply to other purported movement operations as well. Ultimately, on the QR

approach, a unified theory explaining properties of both overt and covert

movement should be possible.

As far as our fragment goes, there are two factors affecting quantifier

scope, and the occurrence of inverse scope: choice of QNP, and syntactic

context. Some of the effects of the choice of the QNP on scope are men-

tioned in section 3.4. However, by far the most widely discussed prediction

associated with QR theory is that limitations on scope and limitations on

(overt) movement which arise from the syntactic context should coincide.

As mentioned in section 3.2 above, many of the islands for extraction that

were discovered in Ross [1967] have also been identified as scope islands.

We repeat some earlier examples and add some further types:

55. (a) ∗ which cityi did you meet [NP people who inhabit ti ]
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(b) [NP someone who inhabits every midwestern city] participated

56. (a) ∗ which mani will you inherit a fortune [CP if ti dies ]

(b) you will inherit a fortune [CP if every man dies ]

57. (a) ∗ which student does Prof Jones [V P despise ti] and [V P admire

the dean]

(b) some professor [V P despises every student] and [V P admires the

dean]

58. (a) ∗ whoi did you see [John’s picture of ti]

(b) I saw [ John’s picture of everyone ]

(55) illustrates the effect of the Complex NP Constraint (CNPC), intro-

duced in section 3.2: an NP with a relative clause does not allow overt

wh-extraction of which city in (55a); it also does not allow wide scope for

every Midwestern city in (55b). (56) shows the effect of an Adjunct Island :

the if -clause serves as an island for both extraction (cf. the ungrammatical-

ity of (56b)) and scope, witness the fact that sentence (56) does not have a

reading where the noun phrase every man takes scope over the conditional

(see more on this observation in section 4.3.3). (57) shows the effect of the

Coordinate Structure Constraint (CSC): an element may not be extracted

out of one conjunct in a coordination structure in (57a), and a quantifier

does not scope out of such a construction in (57b) (every student does not

scope over some professor). (58) illustrates the Specificity Constraint : a

definite NP, especially one with an overt subject (John’s) is an island for

both extraction (58a) and scope: (58b) has only a narrow scope reading for

everyone (it’s a single group photograph).15

The parallelism between the a.-examples and the b.-examples in (55)–(58)

provides strong prima facie evidence that the rule responsible for quanti-

fier scope ambiguities is indeed a movement rule, of the same type, hence

largely subject to the same conditions, as the rule responsible for overt (wh-

)movement. This provides the primary motivation for the QR theory.16

15For more recent discussion of the CSC effect on quantifier scope, see [Ruys, 1992;

Fox, 1995 (who discusses certain classes of exceptions)]. For the Specificity Constraint,

see [Chomsky, 1973; Fiengo and Higginbotham, 1981; Davies and Dubinsky, 2003].
16In fact, the observation that islands for overt movement coincide with scope islands,

and the account of quantifier scope in terms of a quantifier movement rule, precedes the

QR theory. Lakoff [1970], working in the framework of Generative Semantics, presents

many of the basic observations and proposes a similar account (see also [Postal, 1974]):

in the deep structure underlying a sentence with a quantified NP, the quantificational
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Prima facie evidence, of course, need not be conclusive. An alternative for

describing scope islands in terms of restrictions on overt movement might be

that quantifier scope is clause-bounded ; this would trivially prevent scoping

out of clauses that happen to be syntactic islands. For instance, CNPC

islands consist of an NP containing a relative clause; if scoping out of the

clause is blocked, scoping out of the island as a whole is blocked as well.

This was the argument raised by Chomsky [1975] against Rodman’s [1976]

syntactic approach to quantifier scope based on Montague’s Quantifying-in

operation (see section 4.2.2 below). Rodman demonstrated that quantifier

scope is sensitive to CNPC islands; Chomsky countered that quantifier scope

simply cannot escape finite clauses, as shown by the non-ambiguity of (59):

59. John said that everyone had left [Chomsky, 1975]: (α3α)

One might thus argue that the similarity of syntactic islands to scope islands

is an illusion, and that the former happen to be a subset of the latter —

although it remains to be seen, of course, whether this would support any

other approach to quantifier scope. That would depend on whether clause-

boundedness could be implemented insightfully in, say, a semantic theory

of quantifier scope.

One empirical answer to Chomsky’s challenge can be based on the ob-

servation that clause-boundedness may both be too restrictive and too per-

missive as an account of quantifier scope. Sometimes, quantifier scope is

more restricted than the minimal clause, namely when a QNP is embedded

in an island smaller than the minimal clause: this is illustrated in (57b)

and (58b) above. At the same time, a quantifier may sometimes scope out

of the minimal clause, especially when the minimal clause in non-finite (see

e.g. (60), from Hornstein 1995), and for some speakers also when the clause

is finite, as in (59) (see [May, 1977, p. 217]; see also [Reinhart, 1997].

60. someone expected [S every Republican to win]

While Chomsky’s alternative description may thus be rejected as oversim-

plified, the contrast between (59), where a QNP cannot scope out of a finite

clause for most speakers, and (51) above, where a wh-phrase does move out

of such a clause, is indicative of a more fundamental challenge to the QR

theory: there is no perfect parallelism between scope and overt movement.

In itself, this observation does not falsify the movement approach to scope

phenomena: given that QR and wh-movement differ in the type of object

determiner (e.g., many) occupies the scope position, from which it is lowered to its surface

position by a lowering rule which is sensitive to the same island conditions that block

overt wh-movement.
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being moved, the landing site for the movement, and the (c)overtness of

the movement, it is possible that conditions on syntactic movement, prop-

erly formulated, predict some observational divergence of wh-movement and

scope. In the case of Chomsky’s example (59), May [1977] showed that his

own account correctly predicts the distinction between (51) and (59) (see

below). In general, whether the syntactic approach to quantifier scope is

correct is not decided on the basis of superficial (dis-)similarities of wh-

movement and quantifier scope. What matters for a critical evaluation of

QR theory is whether we can construct a successful theory of movement

which provides an insightful account of both wh-movement and QR.

In order to provide a concrete illustration of these points, we conclude

this section by briefly returning to the fragment of section 2, and illustrating

some of the problems that have arisen in providing a syntactic, QR account

of the scope ambiguities it contains. Our purpose here is emphatically

not to provide an overview, either historic or systematic, of constraints on

movement developed in the generative framework and their applicability to

QR; it is merely to provide some sense of the type of problems and solutions

that arise.

May [1977] proposed that both (overt) wh-movement and QR obey Chom-

sky’s [1973] Subjacency condition. This syntactic condition states that no

movement may cross two bounding nodes, where S and NP are considered

bounding nodes. This correctly predicts that quantifier scope obeys the

CNPC. Given the subjacency restriction on QR, sentence (25) above does

not allow the LF below:

61. [S every cityi [S [NP someone [S who inhabits ti ]] participated]]

In (61) there are three bounding nodes (two Ss and one NP) that sepa-

rate the trace t2 and the landing site for every city. Likewise, the CNPC

effect with overt wh-movement in (55a), repeated below, is explained by

Subjacency: three bounding nodes separate which city from its trace.

62. * which cityi [S did you meet [NP people who [S inhabit ti ]]]

Crucially, May [1977] argues that the Subjacency condition also explains the

observation that QNPs cannot, but wh-phrases can, escape finite clauses.

The LF for (59) that would give wide scope to everyone, given in (63),

violates Subjacency:

63. [S everyonei [S John said that [S ti had left ]]]

(51), however, does not violate Subjacency, since a wh-phrase moving out

of a finite clause, unlike a quantifier NP, can make an intermediate landing
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at the left edge of the finite clause, as indicated in (64) by the trace t∗i in

this position:

64. I wonder [S′ whoi[S John thinks [S′t ∗i [S Peter [V P likes ti]]]]]

While the empirical implications of this analysis are satisfactory, two prob-

lems arise. First, the supposed LF for (13) which yields the available inverse

scope reading, given below, also appears to violate Subjacency.

65. [S2[NP every man]i[S1[NP some woman]j [S0tj[V P admires ti ]]]]

Assuming that the noun phrase some woman also undergoes QR, the noun

phrase every man has to cross two S-nodes in order to take scope above it.

This led May to a revision of the Subjacency condition for which no inde-

pendent evidence from overt movement was available at the time (although

the problem was resolved in the framework of [Chomsky, 1986a]): multiple

S-nodes in a relation of immediate domination (S0 and S1 in (65)) count as

one bounding node.

The problem illustrated in (65) was perhaps purely technical. However,

example (66) below drives a more substantive wedge between QR and overt

movement, and the problem it illustrates remains to this day:

66. ∗ who [S did [NP pictures of t ] please you]

This ill-formed example shows that wh-movement out of a subject-NP is

disallowed, an effect that has also been attributed to Subjacency [Chomsky,

1977, p. 112]: the element who in (66) crosses both the NP and S nodes.

On this count, we would expect that our third syntactic context disallows

extraction as well: the LF that yields the inverse scope reading for (24)

should also violate Subjacency according to its definition above. This LF is

given below.

67. [S [NP every city]i[S [NP some inhabitant of ti]j [Stj [V P participated]]]]

May’s [1977, p. 214] solution to this puzzle added a clause to the Subjacency

condition: NP does not count as a bounding node in case the relevant move-

ment is QR. Clearly, this does not resolve the conflict, but rather codifies

the divergence of wh-movement and QR seen in (66)—(67); a proliferation

of such divergences would render the “unification” of QR with an overt

movement rule vacuous.

One solution to this puzzle was offered by May [1985], who suggested

that QR does not extract a QNP from another QNP in inverse linking

constructions, but rather adjoins the embedded QNP to the containing one:
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68. [S [NP [NP every city]i[NP some inhabitant of ti]]j [Stj [V P participated]]]

In (68), Subjacency is not violated. For discussion of the semantic interpre-

tation of structures like (68), see May (1989) and Larson (1985b). We will

not trace the history of the treatment of these problems any further; the

reader is referred to May and Bale (2006) for a recent overview.

A considerable amount of further work has been done on the QR theory

of quantifier scope ambiguity in various stages of the generative framework;

space does not allow us to discuss, or even outline, this body of literature.

We refer to Reinhart (1997) for an overview of many of the issues involved

in determining the conditions on covert movement, and arguments that, on

balance, the Subjacency condition remains the preferred account of QR-

determined quantifier scope phenomena. We conclude by observing that,

at the time of writing, although progress has been made in several areas, a

complete theory of movement restrictions as they apply to scope does not

appear within reach.

4.2.2 Quantifying-in

Montague’s [1973] PTQ introduced a grammar for a fragment of English

that, among other phenomena, treats quantifier scope ambiguities. The

syntactic formalism that is assumed in PTQ is somewhat non-standard, and

it is therefore hard to illustrate its treatment of scope ambiguities using the

phrase structure grammar of section 2. We will here illustrate only the

general idea behind Montague’s operation of Quantifying-in — a syntactic

treatment of NPs that generates quantifier scope ambiguities in the PTQ

fragment. For full details see PTQ itself, or the more friendly introductions

in [Dowty et al., 1981, ch. 7] and [Gamut, 1991, ch. 6].

A syntactic rule in PTQ takes a sequence of expressions α1, α2, . . . , αn
and their syntactic categories C1, C2, . . . , Cn, and generates an expression

α and a category C. Crucially, syntactic rules in PTQ can generate α us-

ing non-concatenative operations on the expressions α1, α)2, . . . , αn. This

is unlike ordinary phrase structure rules, which only concatenate the in-

put expressions. To see how this allows PTQ to capture quantifier scope

ambiguities, consider our example (13) from section 2.1, restated below:

69. some woman admires every man

To generate the object wide scope reading of this sentence, PTQ generates

the following two expressions, with the respective categories:

α1, category t: some woman admires himn

α2, category T : every man
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The expression α1 is of category t — PTQ’s category for sentences — and it

contains a pronoun him, derived with an arbitrary index n. The expression

α2 is of category T — PTQ’s category for noun phrases. Both α1 and α2 are

generated using rules that are mostly similar to standard phrase structure

rules in using concatenation of lexical expressions. However, PTQ’s quan-

tification rule (S14) uses a syntactic operation of substitution to replace the

pronoun in α1 by the noun phrase α2. This derives the output expression

α = some woman admires every man in (69). The rule determines that this

expression, like the input expression α1, is of category t (=sentence).

On the semantic side, PTQ assigns each derived expression in the gram-

mar a translation in Montague’s intensional logic (IL — an intensional vari-

ant of the typed lambda calculus, see [Dowty et al., 1981; Gamut, 1991]).

Each syntactic rule has a corresponding translation rule responsible for de-

riving the translation of the output expression. In the case of the syntactic

quantification rule, the corresponding translation rule (rule T14 in PTQ) is

responsible for the wide scope interpretation of the object in (69). The sen-

tential expression α1, with the pronoun himn, is derived with the following

translation β1, containing a free variable xn. The translation β1 is given

here after some simplifications, and ignoring the intensional aspects of PTQ

translations:

β1 = ∃x[woman(x) ∧ admire(x)(x)]

The noun phrase expression α2 is derived with the following generalized

quantifier translation β2 (again, with some simplifications):

β2 = [λB.∀y[man(y) → B(y)]

The translation rule T14 for quantification lets the quantifier bind the free

variable xn in β1 using lambda abstraction over this variable:

β = β2(λxn.β1)

The resulting translation β of the sentential output expression α (= some

woman admires every man) is equivalent to the object wide scope reading

of the sentence:

∀y[man(y) → ∃x[woman(x) ∧ admire(y)(x)]]

Montague’s method of Quantifying-in does not on its own account for

island constraints on quantifier scope. Considering the complex NP con-

straint (CNPC), Rodman [1976] addresses this problem for an extension of

PTQ that also treats ordinary relative clauses with who and that relative
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pronouns, in addition to the rather artificial such that construction of PTQ.

To see the problem for the PTQ grammar, reconsider sentence (25) from

section 2.3.1, restated below as (70), or its equivalent in the PTQ grammar

that is given in (71).

70. someone who inhabits every midwestern city participated

71. someone such that he inhabits every midwestern city participated

Without further assumptions, PTQ and its straightforward extension in

Rodman [1976] allow such sentences to be interpreted with a sentential

scope for the noun phrase every midwestern city. This is because rules S14

and T14 of quantification allow such NPs to compose with the sentential

expression in (72), which contains the free pronoun itn.

72. someone who inhabits itn participated

Further, the translation rule T14 allows the quantifier translation of the

noun phrase every midwestern city to bind the free variable correspond-

ing to the pronoun itn. This leads to the counterintuitive analysis of (70)

(=(25)) in (7b). Rodman proposes to block such illicit interpretations by

marking the indices on pronouns within relative clauses with a special sign

that blocks application of the Quantifying-in rule from outside the relative

construction. Rodman uses the superscript ‘R’ to mark such pronouns,

disallowing sentential expressions like (72) that do not contain ‘R’ on pro-

nouns within their relative clauses. As a result, the expression in (72) is

not derived by Rodman’s grammar, and instead the following expression is

derived, with the index nRon the pronoun.

73. someone who inhabits itnR participated

The syntactic rule S14 in Rodman’s extension of the PTQ fragment can only

substitute a noun phrase for occurrences of pronouns with indices unmarked

by ‘R’. Consequently, sentence (70) cannot be derived using (73) and the

noun phrase every midwestern city. The net outcome of this treatment is

that sentences like (70) and (71) are derived by Rodman’s fragment, but

without an analysis that gives sentential scope to the NP within the relative

clause.

Rodman further notes that because of the way in which his relative clause

rules are construed, pronouns with an ‘R-ed’ index cannot be used for form-

ing more complex relative clauses. For instance, from (73) Rodman’s frag-

ment cannot generate the following ungrammatical sentence:

74. * I admire the city which someone who inhabits participated
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As Rodman argues, this proposal captures the parallelism between island

restrictions on overt wh-“movement” (to wit, the movement of the relative

clause operator which in (74)) and scope islands (witness the absence of a

wide scope reading for (70)).

4.2.3 Cooper Storage

One of the first alternatives to Quantifying-in, and the first semantic ap-

proach to QNP scope, was the proposal of Cooper [1975; 1979; 1983] known

as Cooper Storage. For Cooper, a central motivation for this technique

[Cooper, 1975, ch. 4] was to show that syntactic representations for natural

language sentences need not be “disambiguated” in the sense of PTQ. Each

syntactic representation in Cooper’s system may have more than one seman-

tic analysis. The reason that examples showing quantifier scope ambiguity,

such as (69), are seen to justify such an approach, is that straightforward

syntactic considerations (relating e.g. to well-formedness, or to syntactic

constituency tests) do not appear to support assumptions about syntac-

tic ambiguity in the relevant examples, or about the existence of multiple

syntactic derivations. For instance, sentences like (69) receive only one syn-

tactic analysis in the grammar of Section 2. If one considers that inverse

scope readings of such sentences are not by themselves sufficient reason

for postulating a syntactic ambiguity, the conclusion that their syntactic

representation must receive more than one semantic analysis may seem in-

evitable.

Cooper’s account of “purely semantic” ambiguity is obtained by gener-

alizing meaning representations.17 First, meanings in Cooper’s account are

represented using ordered pairs, where the core lambda term representing

the expression’s meaning is coupled with a store. A store is a sequence of

pairs of quantifiers and variables they bind. Such representations need to

be processed in order to interpret the expression. For instance, one of the

representations for sentence (69) above is the following one:

{hi1 = 〈admire(x)(y), 〈x/Q1, y/Q2〉〉,

where
Q1 = λA.∀z[man(z) → A(z)]

Q2 = λB.∃u[woman(u)) ∧B(u)]

The first element in such a representation as Φ1 is a lambda-term (in this

case admire(x)(y)), possibly with free variables, which can be bound by

17Our account of Cooper Storage here essentially follows Carpenter [1997, ch. 7]. For

another overview of Cooper Storage see Hendriks [1993, ch. 1].
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one of the quantifiers in the store. Cooper essentially assumes that each

quantifier in the store can bind the respective variable at any point in the

process of meaning derivation. NPs are the syntactic elements that con-

tribute quantifiers to meaning representation. As a result, each NP occur-

ring in an expression may either combine with the core meaning directly, or

be stored and, at a later stage of the semantic interpretation process, taken

out of storage and combined with the core meaning at that point. Hence,

each expression containing one or more NPs may in principle have more

than one representation using Cooper storage. For instance, in addition to

Φ1, sentence (69) also have the following representations:

Φ2 = 〈Q1(λx.admire(x)(y)), 〈y/Q2〉〉

Φ3 = 〈Q2(λy.admire(x)(y)), 〈x/Q1〉〉

Φ4 = 〈Q2(λy.Q1(λx.admire(x)(y))), 〈−〉〉

Φ5 = 〈Q1(λx.Q2(λyadmire(x)(y))), 〈−〉〉

In representation Φ2, the quantifier Q1 binds the variable x associated with

it, whereas Q2 remains on the store. In representation Φ3 it is the opposite

situation, whereas in representation Φ4 and Φ5, both quantifiers bind their

variables and the store is empty, with the different scope construals of the

quantifiers with respect to one another. Φ5 is equivalent to the object wide

scope reading of the sentence; it is obtained when the translation of the

object is stored, and taken out of storage after the translation of the subject

has been combined with the core meaning. Only the last two representations

are fully interpretable, and lead to the actual two meanings of the sentence.

In [Cooper, 1979, 157-158] and [Cooper, 1983, 61] a preliminary account

of CNPC restrictions on scope is proposed using Cooper’s method of quan-

tifier storage.

4.2.4 Type Flexibility

An approach to QNP scope that is also purely semantic, yet quite differ-

ent from Cooper Storage, was proposed by Hendriks [1993]. The three

approaches to standard QNP scope that were reviewed above all capture

scope ambiguity using operations on noun phrases or the quantifiers they

denote. Unlike these approaches, Hendriks’ proposed method takes predi-

cates to be the locus of scope ambiguity. Following Partee and Rooth [1983],

Hendriks assumes that predicates in natural language have multiple seman-

tic types. On the one hand, as in our toy grammar of section 2 and in

many traditional accounts, it is assumed that natural language predicates

can take entities as their arguments. On the other hand, Hendriks follows
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Montague and Partee/Rooth, and allows predicates in natural language to

have generalized quantifiers as their direct arguments.

One of Montague’s motivations for allowing quantifiers to be direct ar-

guments of predicates comes from the semantics of intensional predication

in natural language. Consider the following classical example.

75. John is looking for a unicorn.

Sentences like (75) cannot be fully treated by analyzing the verb look for

as a relation between e-type entities. Sentence (75) can of course be true

if no unicorns exist. No plausible interpretation for the object a unicorn

would capture this fact if the object argument of verb look for were to be

treated as a simple entity. Montague’s conclusion from this difficulty was

to allow intensional predicates like look for to take an intensional quantifier

as their direct object argument. In extensional terms, this analysis can be

presented as treating the transitive verb look for with type 〈〈〈e, t〉, t〉, 〈e, t〉〉.

For a discussion of this analysis and intensional verbs see [Gamut, 1991, pp.

168-9; Zimmermann, 1993], among others.

Following his general assumptions about uniform type assignment to syn-

tactic categories, Montague also assigned intensional types to non-intensional

predicates like participate above, or admire or inhabit in (69) and (70). In

extensional terms, this means that also transitive verbs like admire or in-

habit receive the analysis above of the predicate look for as allowing a quan-

tificational direct argument. Partee and Rooth diverged from Montague’s

type uniformity, and proposed that extensional verbs like participate, ad-

mire or inhabit may have multiple types. In Partee and Rooth’s account,

extensional transitive predicates lexically denote relations between entities,

but their arguments can be adjusted to fit the quantifier type 〈〈e,t〉,t〉 when

the meaning derivation process requires it.

Hendriks exploits the type ambiguity in Partee and Rooth’s proposal in

order to derive QNP scope ambiguity in his semantic system. Simplifying

Hendriks’ mechanism, we introduce the following type shifting operators,

both of which map a relation of type 〈e, 〈e, t〉〉 between entities to a relation

between quantifiers.

∑
ONS = λR〈e,〈e,t〉〉λQ〈〈e,t〉,t〉λP〈〈e,t〉,t〉.P (λy.Q(λx.R(x)(y)))∑
OWS = λR〈e,〈e,t〉〉λQ〈〈e,t〉,t〉 λP〈〈e,t〉,t〉.Q(λx.P (λy.R(x)(y)))

Under the assumption that these operators can apply to the transitive pred-

icate admire in (69), we derive the object-narrow-scope (direct scope) read-

ing using the first operator and the object-wide-scope (inverse scope) read-
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ing using the second one. This is illustrated below.

∑
ONS (admire)(every(man))(some(woman))

⇔ ∃x[woman(x) ∧ ∀y[man(y) → admire(y)(x)]]∑
OWS (admir)(every(man))(some(woman))

⇔ ∀y[man(y) → ∃x[woman(x) ∧ admire(y)(x))]]

In addition to these direct/inverse scope readings of simple transitive sen-

tence, Hendriks shows that his system also allows deriving wide scope read-

ings of QNPs beyond embedded structures, like the ones that were illus-

trated by example (60) in section 4.2.1. See [Hendriks, 1993, p.85-88] for

further details.

Hendriks suggests that (island) constraints on quantifier scope may be

captured in his system by only allowing type shifting operations for a sub-

class of lexical items (e.g., for transitive verbs, but not for relative clause

operators).

4.2.5 Categorial approaches

A purely semantic proposal to quantifier scope was tentatively suggested by

van Benthem [1986, 130-131; 1991, 61, 113-114], based on a non-directional

version of Categorial Grammar, known as the Lambek Calculus with permu-

tation (LP). Van Benthem’s LP system can be conceived of as an extension

of the core semantic calculus for meaning composition. Early categorical ap-

proaches (e.g. [Ajdukiewicz, 1935]) only allow function application, which

is used as the core principle for composing types (or categories). In a gen-

eral format, function application allows one to “eliminate” the functional

relation between types A and B in a complex type 〈A,B〉 by providing an

〈A,B〉-type function fwith its A-type argument x. Officially, this simple

type/meaning change is written as follows in natural deduction format:

〈A,B〉 : f A : x

b : f(x)

This rule of function application corresponds to translation rule 3 of the

grammar in section 2. For instance, when composing a quantifier ev-

ery(man) of type 〈〈e, t〉, t〉 with a one place predicate participate of type

〈e, td〉, Ajdukiewicz Calculus allows function application with the appropri-

ate outcome of type t. In natural deduction format, this simple inference of
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types and meanings is written as follows:18

〈〈e, t〉, t〉 : every(man) 〈e, t〉 : participate

t : (every(man))(participate)

In addition to function application, Van Benthem’s LP Calculus, like other

calculi following Lambek [1958], also contains a rule of hypothetical rea-

soning. In natural deduction format, this rule allows one to introduce an

element into the meaning derivation as a variable, which is later eliminated

using abstraction, and which derives a function type. In natural deduction

format, hypothetical reasoning looks as follows:

[A : x]1
...

B : y
E1

〈A,B〉 : λx.yg

– introduction of assumption 1

– using assumption 1 for derivation

– eliminating assumption 1 using

hypothetical reasoning

In this scheme, LP’s hypothetical reasoning rule “pretends as if” a type

A with meaning x is present in the derivation (assumption 1), uses it for

deriving a type B with meaning y, and then “discharges” assumption 1 by

creating a type 〈A,B〉 with meaning λx.y.

Hypothetical reasoning allows LP to do away with the fairly artificial

translation rule 4 of section 2, while at the same time deriving QNP scope

ambiguity. Consider the following meaning derivation for sentence (69).

76. some woman admires every man

〈〈e, t〉, t〉 : some(woman)

〈e, 〈e, t〉〉 : admire [e : y]1u

〈e, t〉 : admire(y) [e : x]2

t : admire(y)(x)
E1

〈e, t〉 : λy.admire(y)(x) 〈〈e, t〉, t〉 : every(man)

t : (every(man))(λy.admire(y(x))
E2

〈e, t〉 : λx.(every(man)))(λy.admire(y)(x))

t : (some(woman))(λx.(every(man))(λy.admire(y)(x)))

This direct scope reading is derived because hypothetical reasoning allows

LP to “feed” the transitive predicate with its entity arguments by postu-

lating them in the derivation, and then to “discharge” these assumptions

18Also the meaning and type of the quantifier every(man) are derived using a similar

application from the standard types of the determiner and the noun as assumed in the

grammar.
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at the steps preceding the application of the object/subject quantifier. A

similar use of hypothetical reasoning also derives the inverse scope reading,

as in the derivation below.

77. some woman admires every man

〈〈e, t〉, t〉 : some(woman)

〈e, 〈e, t〉〉 : admire [e : y]1

〈e, t〉 : admire(y [e : x]2

t : admire(y)(x)
E2

〈e, t〉 : λx.admre(y)(x) [〈〈e, t〉, t〉 : Q]3

t : Q(λx.admire(y)(x))
E1

〈e, t〉 : λy.Q(λx.admire(y)(x)) 〈〈e, t〉, t〉 : every(man)

t : (every(man))(λy.Q(λx.admire(y)(x)))
E3

〈〈〈e, t〉, t〉, t〉 : λQ.(every(man))(λy.Q(λx.admire(y)(x)))

t : (every(man))(λy.(some(woman))(λx.admire(y(x)))

This inverse scope reading of (69) is here derived because of the possibility

to introduce a subject quantifier Q by assumption 3, which takes narrow

scope below the object every man, and which is later discharged before the

quantifier denoted by the subject some woman is composed in the deriva-

tion.19

Unfortunately, as pointed out by Hendriks [1993, 69], this derivation

of QNP scope ambiguity is accompanied by massive overgeneration. The

principle of hypothetical reasoning allows the introduction of “traces” of

arguments before they actually appear in the derivation. A too simplistic

usage of this principle may also allow binding of such traces by the “wrong”

quantifier in the sentence. For instance, if assumption 2 in derivation (76)

were to be discharged immediately prior to the composition with the object

quantifier, and similarly for assumption 1 and the subject quantifier, the

result would have been the following one.

78. some woman admires every man

19Note that there is an apparently simpler way of deriving the inverse scope reading

of (69) than the one in (77), using a derivation similar to (76) where assumption 1 is

discharged after assumption 2, and the subject quantifier composes with the transitive

verb before the object quantifier. This analysis would be completely symmetrical to the

one in (76), and it is therefore often assumed in the categorical literature. We show here

the more complicated derivation (77) of the inverse scope reading, in order to show that

the problem demonstrated in (78) below persists even with the standard [Subject [Verb

Object]] constituency, which we adopt throughout this paper.
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〈e, 〈e, t〉〉 : admire [e : y]1

〈e, t〉 : admire(y) [e : x]2

t : admire(y)(x)
E2

〈e, t〉 : λx.admire(y)(x) 〈〈e, t〉, t〉 : every(man)

t : (every(man))λx.admire(y)(x))
E1

〈〈e, t〉, t〉 : some(woman) 〈e, t〉λy, (every(man))(λx.admire(y)(x))

t : (some(woman))(λy.(every(man))(λx.admire(y)(x)))

In the resulting proposition, this analysis states that there is a woman who

is admired by every man, which is not consistent with any interpretation of

sentence (69).

In the categorial grammar literature on scope ambiguity there have been

two major attempts to overcome this kind of overgeneration. Moortgat

[1997] proposes a multimodal version of categorical grammar, which uses a

special scoping type constructor different from the functional constructor

in standard functional type 〈A,B〉. In this way hypothetical reasoning in

the semantics is properly coupled with the syntax of the sentence without

generating illicit derivations like (78). A more recent strategy, first proposed

in De Groote [2001] and Muskens [2003], who attribute the original approach

to Oehrle [1994], is that of Abstract Categorial Grammar (sometimes also

referred to as Lambda Grammar), where the relations between syntax and

semantics allow a more sophisticated separation between word order and

semantic composition than in LP and traditional categorical grammars. We

will not try to discuss the technical details of these works here, and refer the

reader to the overviews in [Carpenter, 1997, ch. 7] and [Muskens, 2003]).

Importantly, these categorical approaches keep the treatment of QNP scope

phenomena rather close to the treatment of “overt movement” phenomena.

Thus, it is conceivable that parallelisms between scope and movement can

be captured in categorical approaches similarly to QR theory. For some

remarks on this point in relation to the Coordinate Structure Constraint

see [Carpenter, 1997, 241].

Yet another approach to quantifier scope, not entirely “categorial”, but

quite in the spirit of the categorial approaches surveyed above, was proposed

by Barker [2002]. Barker uses the notion of continuation from computer sci-

ence, as an account of the apparent mismatch between quantifier types and

their function in syntax. This move allows an elegant account of quantifier

scope as well.
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A general survey and evaluation of various approaches to quantifier scope

appears in Jacobson [2002]. Jacobson distinguishes among four types of

theories: direct compositional approaches (e.g. Cooper Storage, Hendriks’

type shifting); weaker compositional approaches that include some enrich-

ments of the syntax (e.g. Quantifying-in); generative semantic approaches

(modeling scope relations at Deep Structure); and “modern” syntactic ap-

proaches to scope (modeling scope relations at LF). We believe that it is

worthwhile to consider Jacobson’s classification as a basis for discussion on

the merits and disadvantages of various techniques, also in light of catego-

rial approaches (e.g. Moortgat) and more recent proposals like the ones by

Barker, de Groote and Muskens. However, we will not attempt this analysis

here.

4.2.6 Discussion — different emphases by different approaches to QNP

scope

The approaches to QNP scope that were surveyed above are rather heteroge-

neous in terms of their empirical coverage and methodological standpoints.

The QR theory, being a syntactic theory, is most concerned about character-

izing different syntactic configurations for quantifier scope, and motivating

the derivation of LF using the QR movement rule. Cooper Storage and

Hendriks’ type shifting mechanism are purely semantic theories which aim

at avoiding syntactic representations of QNP scope. In the Quantifying-in

technique and the categorial approaches surveyed, syntactic or derivational

processes are still used for describing QNP scope, but the main focus is

on securing a tight connection between these operations and the semantic

component.

These different methodological and technical emphases complicate the

comparison between the different approaches to QNP scope. In terms of

empirical content the QR theory is by far the most comprehensive among

these proposals. Problems like the nature of the restrictions on QNP scope

have been much better studied and described in the QR literature. By

contrast, the other approaches have studied more extensively the method-

ological and technical questions surrounding the notion of compositionality,

and in general — the matching between syntax and semantics, as revealed

by QNP scope phenomena. We cannot address here the question of com-

positionality in detail, and refer the reader to some of the many works on

this topic: [Montague, 1970; Janssen, 1983; 1996; Hendriks, 1993, ch.2;

Jacobson, 2002; Barker and Jacobson, 2007].

To compare specific theories in this situation is a rather difficult task. Ex-
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plicit comparisons among the “Montagovian” theories have been at times

carried out in the literature: see for instance Carpenter’s [1997, ch. 7]

comparison of Moortgat’s scoping type constructor and the methods of

Quantifying-in and Cooper Storage. However, while these comparisons are

beneficial for choosing between the non-QR theories, they only lightly touch

on the empirical concerns of most QR-theorists. Conversely: in the QR

literature there is considerably less emphasis on foundational questions re-

garding the mathematical properties of the relations between syntax and

semantics.

We believe that further developments in the theory of QNP scope may

ultimately depend on the general understanding of “movement phenomena”

(cf. discussion at the end of section 4.2.1). Perhaps only such a comprehen-

sive theory could settle the current discrepancies between rival approaches

to standard QNP scope. Once the more general problem is resolved, current

technical differences between some alternative theories of scope may appear

less central they currently do.

4.3 Non-Standard Scope Mechanisms

The direct scope and inverse scope readings that we have discussed so far can

all be treated using standard scope mechanisms. Despite the many techni-

cal differences between these mechanisms, they all produce linear relations

between QNPs as exemplified in (50). In most contemporary theories, such

linear quantification — or “Fregean” quantification (cf. [Keenan, 1992])

— technically means that the QNPs in the sentence are interpreted as a

sequence of standard 〈〈e, t〉, t〉 generalized quantifiers, which are composed

using standard translation rules or compositional principles. However, as

mentioned above, there are semantic phenomena that involve more compli-

cated mismatches between syntactic structure and the scopal semantics of

QNPs. This section gives a brief overview of some of these challenges and

attempts that have been made to address them.

4.3.1 Branching quantification

The assumption that scopal relations between quantifiers in natural lan-

guage are essentially linear draws to a large extent on the tradition of first

order Predicate Calculus. In the Predicate Calculus, quantifiers can only

take scope (i.e. be prefixed to formulas) in a linear order, as in the following

formula.

79. ∀x∃z∀y∃uΦ(x, y, z, u)
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Following Henkin [1961], logicians have also explored other possible ordering

relations between quantifiers, especially the following branching scheme.

80.

∀x∃z

∀y∃u

Φ(x, y, z, u)

Henkin proposed a semantics for branching schemes as in (80) using the

notion of Skolem functions, which is defined below.

81. A n-ary Skolem function over a domain E is a function that sends

any non-empty subset A of E and a tuple of n elements in E to an

element of A.

For instance, a 2-ary Skolem function f over E sends every non-empty set

A ⊆ E and any two elements x and y in E to an element f(x, y,A) in A.

A 0-ary Skolem function f is a function that sends any non-empty subset

A of E to one of its elements f(A). Such 0-ary Skolem functions, which

are discussed in more detail in section 4.3.3 below, are also known as choice

functions.

In Henkin’s proposal, linear quantification using Skolem functions is used

for interpreting formulas with branching first-order quantifiers. For in-

stance, the formula in (80) is interpreted as the non-first-order formula

below, using linear existential quantification over Skolem functions f and g

of arity 1, where the set E is the whole domain of individuals in the model.20

82. ∃f∃g∀x∀yΦ(x, y, f(x,E), g(y,E))

By the semantics in (82), the branching formula in (80) is not equivalent to

any formula with a linear ordering of the quantifiers.

Let us now concentrate on possible linguistic manifestations of differences

between branching interpretations and standard linear schemes of first order

quantifiers. The claim that natural language sentences can exhibit branch-

ing quantification that should be interpreted similarly to Henkin’s scheme

was first made in Hintikka [1973] and Gabbay and Moravcsik [1974]. One

of Hintikka’s well-known examples is the following.

20In the literature on Skolem functions, the set argument in definition (81) of Skolem

functions is sometimes suppressed when this set argument is the whole domain of indi-

viduals E. For linguistic purposes, however, quantification is often restricted and the set

argument in (82) is replaced by a proper subset of E, as in formula (85) below representing

the meaning of the restricted branching quantification in (84).
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83. Some book by every author is referred to in some essay by every critic.

Hintikka suggests that sentence (83) should have an analysis equivalent

to the scheme of branching quantification given in (84) below. Following

Schlenker [2006], we adopt in (84) a format of restricted quantification that

is more convenient than Henkin’s scheme for displaying the parallelism be-

tween the branching formula and the sentence.21

84.

referred-to-in(z, u)

[∀x :author(x)][∃z :book-by(z, x)]

[∀y :critic(y)][∃u :essay-b(u, y)]

Using a proper adjustment of Henkin’s strategy in (80)–(82), formula (84)

can be interpreted as follows using Skolem functions of arity 1, similar to

(82).

85. ∃f∃g[∀x : author(x)][∀y : critic(y)]

referred-to-in(f(x, λzsc book-by(z, x)), g(y, λu.essay-by(y, y)))

Assuming that every author wrote at least one book and every critic wrote

at least one essay, the proposition expressed by (85) can roughly be para-

phrased as follows:

“There is a way to map each author x and his books B(x) to a

particular book b(x), and there is a way to map each critic y and

his essays E(y) to a particular essay e(y) s.t. for each author x

and critic y : b(x) is referred to in e(y).”

What this paraphrase entails, in the terms of Sher [1991], is that there is

a “massive nucleus” N of books and essays, such that each book in N is

referred to by each essay in N, and the writers of the books and essays in

N cover the set of all authors and critics.

Whether such a reading that involves a “massive nucleus” exists for

sentences like (83) has been debated in the literature [Fauconnier, 1975;

Beghelli et al., 1997; Landman, 2000, ch. 9.5; Schlenker, 2006]. One of the

problems for deciding on this question is similar to the problem discussed

in relation to sentence (8) in section 2.3.2 with respect to inverse scope

21In a restricted quantifier notation, the formula [∀x : P (x)]Φ is equivalent to the

standard predicate calculus formula ∀x[P (x) → Φ], whereas the formula [∃x : P (x)]Φ is

equivalent to ∃x[P (x) ∧ Φ].



QUANTIFIER SCOPE IN FORMAL LINGUISTICS 203

readings. As Fauconnier pointed out, the branching scope analysis in (85)

is logically stronger than some of the linear readings for (83). For instance,

if a “massive nucleus” of books and essays exists as required by (85), then

the following, linear scope reading of (83) is automatically satisfied as well.

86. [∀x : author(x)][∀y : critic(y)][∃z : book-by(z, x)][∃u : essay-by(u, y)]

referred-to-in(z, u)

Thus, using truth-conditional evidence alone, it is hard to determine if sen-

tence (83) should have an interpretation as formalized in (84) and (85).

Independently of this empirical debate, other works [Barwise, 1979; West-

erstähl, 1987; van Benthem, 1989; Sher, 1991] suggested an extension of

Henkin’s definition of branching quantification to generalized quantifiers

beyond the existential and universal quantifiers of first order logic. This

makes it possible to construct branching schemes without a linear equiva-

lent, using only two (generalized) quantifiers. For instance, Sher suggested

the definition in (88) below for interpreting the branching formula (87) with

the generalized quantifiers Q1 and Q2.

87.

Φ(x, y)

Q1 x

Q2 y

88. Formula (87) is true iff there are sets X and Y such that the following

conditions hold:

(1) Q1 holds of X and Q2 holds of Y ;

(2) each element of X is in the relation Φ to each element of Y ;

(3) X and Y are maximal sets satisfying condition 2.22

Under this definition, the branching analysis of sentence (89) below, with

non-monotone numeral quantifiers, should be interpreted as paraphrased in

(90).

89. Exactly four critics read exactly ten books.

22That is, no element can be added to X or Y such that condition 2 remains satisfied.
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90. There is a “massive nucleus” N of four critics and ten books, such that

each critic in N read each book in N , and this nucleus is a maximal

one: no critic c outside N read all the books in N , and no book b

outside N was read by all the critics in N .

As in the case of Hintikka’s original example, whether sentences like (89)

require an analysis along the lines of (90) was debated in the literature

[Beghelli et al., 1997].

Here we will not try to settle the empirical debates that surround the

linguistic status of branching analyses. Rather, we will now move on to

other problems of non-linear scope, where there are fewer empirical doubts

surrounding the validity of the core factual judgments challenging stan-

dard theories of linear QNP scope. However, as we will see, accounts of

other non-linear scope phenomena have been proposed that bear a strong

resemblance to the mechanisms that were used to characterize “branching”

quantification.

4.3.2 Cumulative quantification

A non-linear scopal interaction between quantifiers, which is somewhat sim-

ilar to “branching” but more solidly supported by empirical evidence, is

cumulative quantification. The phenomenon was illustrated in [Scha, 1981]

using the following example, which Scha paraphrased as in (92).

91. (exactly) 600 Dutch firms use (exactly) 5000 American computers.

92. The total number of Dutch firms that use an American computer is

600, and the total number of computers that are used by a Dutch firm

is 5000.

Similarly to the “branching” analysis (90) of (89), the analysis of (91) in

(92) does not give priority to the scope of any of the two QNPs over the

other. Like branching analyses, also cumulative interpretations cannot be

expressed using any linear combination of unary generalized quantifiers like

the ones generated in section 4.1 above.23 Empirically, the situation is

clearer with such “cumulative” effects than with the “branching” effects

discussed above. Even if Scha’s strategy of paraphrasing sentence (91) in

(92) is not completely accurate, it is rather clear that (92) comes close to

23For a proof of this fact, as well as more examples of such cases of inherently polyadic

quantification, which is not reducible to linear composition of unary quantifiers, see [van

Benthem, 1989; Keenan, 1992].
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capturing a scope effect in (91) that does not involve simple linear compo-

sition of 〈〈e, t〉, t〉 generalized quantifiers. Intuitively, speakers agree that

sentences like (91) can be true in situations that render the linear scope

analysis (or analyses) of the sentence false, but where the proposition ex-

pressed by (92) is true.24 Unlike the branching paraphrase of (89) in (90),

however, Scha’s paraphrase of (91) in (92) makes no requirement of a “mas-

sive nucleus”, which is the part of the branching semantics that is most

debated by researchers who deny the relevance of this semantics for natural

language [Beghelli et al., 1997].

There are quite a few mechanisms that have been proposed in the litera-

ture in order to deal with cumulative effects. Scha proposed to compose the

standard meanings of determiners like exactly three and exactly five into

complex determiners, which can combine with the two nouns (e.g. men

and women in (91)) and derive a cumulative reading. Another proposal, by

Schein [1993, ch. 9], is to use a mechanism that combines event semantics

with the linear scope mechanism of QR and anaphoric analysis for deriving

a cumulative reading of sentences like (91) or (93). Landman [2000, pp. 222-

280] addresses the problem of cumulative readings for such sentences using

another mechanism in event semantics, involving maximality principles of

the sort used for implicatures of numeral expressions [Krifka, 1989].

We will not embark here upon a critical evaluation of these proposals.

One of the complicating factors in such an evaluation is the status of possi-

ble interactions between cumulativity and collective readings. For instance,

Scha considers examples with two definites like the soldiers hit the targets,

and contends that the prominent reading of such sentences is to be para-

phrased using vague predication over collective entities, roughly: there is a

hitting relation between the group of soldiers and the group of targets. This

kind of interpretation is sometimes also referred to as cumulative. Whether

such effects with “referential” plural NPs are to be distinguished from cases

like (91) or (93) is an open question (see [Sternefeld, 1997; Winter, 2000a;

Beck and Sauerland, 2001] among others). However, it should be noted that

cumulative quantification in the sense of Scha is also observable with sin-

gular NPs, and not only with plurals. For instance, consider the following

cases, classified as “resumptive” by May [1989]:

93. Exactly one man admires exactly one woman.

24This conclusion also holds when considering the object-wide-scope analysis of sen-

tences like (91), since the cumulative analysis is also independent of this analysis. How-

ever, as mentioned in section 3.4, this inverse scope construal is unlikely to reflect a true

reading of sentences like (91) with numeral indefinites.
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94. No man admires no woman.

Cases like (93) and (94) also admit readings that are paraphrased using

Scha’s cumulative strategy in (92), which takes into account the total num-

bers of men admiring women and women admired by men. Thus, to say the

least, the relations between cumulative quantification and plurality are not

obvious.

4.3.3 Wide-scope indefinites and quantification over Skolem functions

As mentioned in sections 3.3 and 3.5, one of the long-standing challenges

for theories of QNP semantics is the scopal behavior of indefinite NPs. So

far, we have assumed that like other noun phrases, indefinites should de-

note generalized quantifiers, possibly augmented with branching/cumulative

schemes of interpretation as discussed above. However, it is a well-established

fact in the extensive literature about the restrictions on QNP scope (see sec-

tion 3.3) that some indefinites do not seem to obey the same restrictions as

other QNPs. We repeat example (32), from the locus classicus, [Fodor and

Sag, 1982]:

95. If a friend of mine from Texas had died in the fire, I would have

inherited a fortune.

Fodor and Sag’s intuition, widely agreed on in the literature, is that sentence

(95) can be interpreted as true if I have a certain friend whose death would

make me rich, even if I have other friends for whom this does not hold.

Under the standard treatment of indefinites as quantifiers, this behavior

looks quite exceptional. This is because, as was pointed out in section 3.2,

the scope of most other QNPs is restricted (at least) by island constraints.

In (95) the indefinite is within an adjunct island (the if clause, see section

3.2). As a result, standard scope mechanisms are expected to be restricted

so that if the indefinite denotes an existential quantifier, this quantifier

would not take scope over the conditional. The only reading expected for

(95) using island restricted standard scope mechanisms is the following one

(where the conditional is treated as material implication).

96. [∃x[friend(x) ∧ die(x)]] → inherit fortune(I)

The proposition in (96) entails that in any event in which a friend of mine

dies I inherit a fortune. The interpretation of (95) that Fodor and Sag point

out is however more similar to the following analysis, where the existential

quantifier takes sentential scope, over the material implication.
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97. ∃x[friend(x) ∧ [die(x) → inherit fortune(I)]]

The contrast between (95) and its variation (98) with a universal quantifier

is instructive. For (98), the analysis in (99) is the only plausible reading

available for the sentence.

98. If every friend of mine from Texas had died in the fire, I would have

inherited a fortune.

99. [∀x[friend(x) → die(x)]] → inherit fortune(I)

Indeed, sentence (98) unequivocally claims that I inherit a fortune if all my

friends die, which is the statement that (99) models.

The following example includes more of the indefinite NPs that have been

reported to show the same effect illustrated by (95) above.

100. If a certain friend/some friend/some friends/three friends of mine

from Texas had died in the fire, I would have inherited a fortune.

Work on the scope of indefinites has shown a wide range of syntactic contexts

where indefinites show a freer scopal behavior than other QNPs. Specifically,

the singular and plural indefinite NPs in (95) and (100) seem able to violate

all island constraints, not only adjunct islands, and including the CNPC

island present in our fragment: see section 3.3, example (30). Since the

standard scope mechanisms (such as QR, Storage, Quantifying in, Type

Shifting) must be made subject to these island constraints (or we no longer

account for the usual island effects with other QNPs illustrated in (98)), the

exceptional scope of indefinites must be due to some non-standard scope

mechanism, or due to some other peculiarity of their interpretation.

There have been various attempts to address the challenge that the be-

havior of indefinites raises for the theory of QNP scope. We can roughly

identify two extremes in the approaches that have proposed. One approach

has been to derive the “wide scope” behavior of indefinites from their tradi-

tional treatment as existential quantifiers. Another approach analyses the

“wide scope” impression with indefinites as an effect resulting from their

exceptional descriptive (or “referential”) properties. According to the first

approach, sentence (95) should have an analysis equivalent (or logically sim-

ilar) to the one given in (97). According to the second, sentence (95) has no

such reading, and the “wide scope” effect is a result of analyzing the indef-

inite a friend of mine in (95) as close in meaning to a definite description

or a demonstrative (i.e. the/this friend of mine).

We will not review or analyze in detail these two approaches and the var-

ious ways in which they are combined in actual proposals. Instead, we refer
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the reader to some of the many works on this problem (Egli & Von Heusinger

1995, Schwarzschild 2002, Farkas 1997, Ruys 1992, Abusch 1994 etc.). In

the context of the current discussion of non-standard scope mechanisms,

however, it is worthwhile to mention one logical semantic mechanism that

has been proposed for treating “wide-scope” indefinites: the mechanism of

choice functions, or more generally, Skolem functions. Skolem functions as

defined in (81) above were used in Henkin’s treatment of branching schemes

with first order quantifiers. Assuming that f is a variable over choice func-

tions (0-ary skolem functions), the following formula can be used to model

the “wide-scope” effect in (95).

101. ∃f [die(f(friend)) → inherit fortune(I)]

The proposition in (101) claims that there is a value for a choice function

f that satisfies the following formula:

die(f(friend)) → inherit fortune(I)

Assuming that the set of my friends is non-empty, let us denote the element

that f assigns this set by r. By definition of f as a choice function, r is a

friend of mine. Hence, the following proposition now holds:

die(r) → inherit fortune(I)

This means that using the choice function representation in (101) is logically

close to the predicate calculus representation in (97).25

Semantic mechanisms using choice functions for treating “scopal” phe-

nomena were used in [Reinhart, 1992; 1997; Kratzer, 1998; Winter, 1997]

and many more recent works, with notable variations in the details of their

usage. Importantly, Kratzer proposed to use choice functions as a “refer-

ential” (or deictic) semantic mechanism, without existential quantifiers like

the one in (101). The reason that many works have found representations

as in (101) attractive for treating the “wide-scope” of indefinites is that,

unlike standard existential quantification (e.g. (97)), the representation us-

ing choice functions does not require that the restrictive predicate of the

indefinite is “pulled out” of its surface position. In (101), the predicate

friend that is denoted by the indefinite’s restriction friend of mine re-

mains within the scope of the conditional, in accordance with the surface

25The difference between (101) and (97) is in the case where the argument of the choice

function f , i.e. the predicate friend, is empty (which may occur if I happen to have

no friends). The implications of this point for the usages of choice functions in formal

semantics were extensively discussed in [Winter, 1997; 2001]. See [Ruys, 2006] for a

somewhat different view.
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constituent structure of the sentence, and is not “pulled out” of the adjunct

island. The felicitous consequence is that no scope mechanism is required

that violates island conditions.

One advantage of not having to pull out the restriction of the indefinite

out of the island was pointed out in [Winter, 1997], based on observations

in [Ruys, 1992] discussed in section 3.5. These works show that despite the

fact that some plural indefinites show wide scope effects beyond islands,

the scope of their distributivity is restricted to remain within the island.

Relevant examples were given in sections 3.3 and 3.5, and two more examples

are the following ones.

102. If three friends of mine from Texas had died in the fire, I would have

inherited a fortune.

103. If three workers in our staff have a baby soon we will have to face

some hard organizational problems.

In both (102) and (103), the sentence can be interpreted as a statement on

three people (relatives or works), and possible scenarios that would occur

under certain events happening to these people (death, having a baby).

However, in both cases the events would have to happen to all three people

in order for the conditional to take effect. Thus, for instance, sentence (102)

can be interpreted as in (104) below, but not as in (105).

104. ∃A[|A| = 3 ∧ [∀x ∈ A friend(x)] ∧ [[∀y ∈ A die(y)] →

inherit fortune(I)]]

105. ∃A[|A| = 3 ∧ ∀x ∈ A [friend(x) ∧ [die(x) → inherit fortune(I)]]

In (104) distribution over elements in the set A is independent for each of the

predicates friend and die. By contrast, in (105) distribution takes scope

over the conditional. Winter further discusses cases like (103) of mixed

scope, where distribution over different workers (and different babies!) is

pragmatically prominent due to world knowledge. Such cases strengthen

the conclusion that distribution cannot violate syntactic islands, and must,

if existent, remain constrained within the island. This fact cannot be eas-

ily captured if restrictions on indefinites are free to violate islands, but it

directly follows from the choice function mechanism.

Other works on the scope of indefinites [Kratzer, 1998; Chierchia, 2001;

Winter, 2004; Schlenker, 2006] have shown various reasons to adopt the

more general Skolem function mechanism for treating not only branching

quantifiers as in (83) above, but also for some cases of more ordinary scope
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taking indefinites. Schlenker [2006] points out that this decision has in-

teresting implications for the debate surrounding branching quantification.

Reconsider sentence (83), repeated below.

106. Some book by every author is referred to in some essay by every critic.

With previous works, Schlenker assumes a Skolem function mechanism for

interpreting the scopal behavior of indefinites in sentences like (96) and

(100). Schlenker then argues that using the same mechanism, we expect the

indefinites some book or some essay in (106) to lead to a branching reading

of this sentences as formalized in (82) following Henkin’s use of unary Skolem

functions. If this is the case, the origins of branching quantification in

such cases may be explained on independent considerations about the scope

of indefinites. Further, the same Skolem mechanism would be unlikely to

derive any “branching” reading for sentence (89) and similar ones, with

indefinites like exactly four critics or exactly ten books. The reason is that

this kind of modified numeral indefinites was argued [Liu, 1990] not to show

any exceptional “wide scope” behavior. Therefore, it was concluded (e.g.

[Winter, 2001, ch.3-4]) that modified numeral indefinites like these ones

should not be treated using Skolem functions. Non-linear quantificational

effects in cases like (89) exist, but independently of whether we classify

them as “cumulative” or “branching”, they are not likely to be captured

by a linguistic mechanism that employs Skolem functions for interpreting

indefinites.

5 TWO EMPIRICAL EXTENSIONS

Our discussion so far of scope inversion phenomena and their theoretical im-

plications has focused exclusively on one type of empirical data: examples

in which a scope bearing element takes wider scope than would be expected

given its standard semantics and its position in the syntactic structure. The

present section discusses two additional types of data that provide evidence

that some scope shifting rule, of which we discussed various implementa-

tions in section 4.2, is operative in natural languages. Section 5.1 deals

with examples in which a scope bearing element takes narrower scope than

expected given its syntactic position (“scope reconstruction”). Section 5.2

presents data in which ellipsis resolution data, rather than intuitions arising

from relative scope, provide evidence for the operation of a scope shifting

rule. Because most literature on these topics is in the QR/LF tradition sur-

veyed in section 4.2.1, our discussion will also mostly take this perspective.
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It is not our intention, however, to suggest that these phenomena neces-

sarily constitute an argument in favor of the QR approach: other plausible

analyses have been proposed, and we will briefly mention a few of them.

5.1 Quantifier scope reconstruction — syntactic and semantic

accounts

Let us repeat some examples of quantifier scope ambiguity from section 3.1.

107. all that glitters is not gold

108. an American runner is likely to win the race

109. someone always wins

110. someone probably spiked the punch

The scope problems in our fragment that have been treated so far all involve

a QNP which is optionally assigned a wider scope than would be expected

given its position in the overt syntactic structure. The examples repeated

above, on the other hand, allow the QNP to take narrower scope than its

surface position would lead one to expect. Thus, (108) allows a reading

which can be paraphrased by ‘it is likely that there exists some American

runner who wins the race’. Under this reading, presumably, the noun phrase

an American runner is interpreted with narrow scope relative to likely : a de

dicto reading. Similarly, in the other examples the subject can scope below

negation, the adverb of quantification, and the modal adverb, respectively.

May [1977] discussed examples like (108) and proposed that his QR

rule (see section 4.2.1 above) can sometimes move a QNP downward. This

instance of applying QR is referred to as ‘Quantifier Lowering’ (QL)26. For

(108) QL results in the following derivation.

111. a. DS: is [AP likely [S [an American runner]i to win the race ]]

b. SS: [an American runner]i is [AP likely [S ti to win the race ]]

c. LF: t is [AP likely [S [an American runner]i [S ti to win

the race ]]]

d. likely(∧kx[american(x) ∧ runner(x) ∧ win the race(x)])

(111a) is the D-Structure, where an American runner occupies its base posi-

tion as logical subject of win the race. (111b) is the S-Structure, derived via

26The term Quantifier Raising is therefore somewhat of a misnomer in theories that

assume QL.



212 E.G. RUYS AND YOAD WINTER

NP-movement of an American runner to the grammatical subject position

of be likely. QL then results in the LF given in (111c), where the lowered

NP still binds its original trace, with scope relations giving rise to the de

dicto reading formalized in (111d).27 In each of the examples given above,

a similar derivation can be proposed: the QNP moves across the negation

or adverb at S-Structure, a movement that can optionally be ‘undone’ at

LF via QL.

Motivation for a syntactic movement analysis is weaker in these examples

than in examples that motivated QR, for which sensitivity to syntactic is-

land effects can be demonstrated. Indeed, the QL operation is syntactically

suspect, as it is believed that movement operations in general do not move

material downward. For instance, the derivation in (112) is ill-formed:

112. a. DS you asked whoi [CP [John loved Mary ]]

b. SS * you asked ti [CP whoi [John loved Mary ]]

There is assumed to be no operation that derives the illicit SS in (112b) by

“lowering” who from its position in the main clause, in the DS representation

(112a), to a position in the embedded clause, as in the SS representation

(112b). This is not decisive evidence against the QL hypothesis, however.

The reason (112) is ruled out might be that the wh-operator at S-Structure

does not bind a trace (violating a ban on vacuous quantification) and its

trace is unbound (violating e.g. Chomsky’s [1986b, 85] Strong Binding

condition). The putative examples of QL in (1512)–(1517) are different.

The QL operation in these examples is assumed to be preceded by an overt

Raising operation. For instance, in (111), the SS (111b) is already assumed

to be derived from the DS in (111a) by a movement operation. As a result,

the lowered QNP in the LF representation (111c) still binds its original trace

after QL; hence, (111c) does not violate a ban on vacuous quantification.

Indeed, QL is not allowed if not preceded by a Raising operation, even if

the ban on vacuous quantification is respected:

113. [an American runner]i is eager [ PROi to win the race ]

a. ti is eager [[an American runner]i [ PROi to win the race ]]

In (113), the S-Structure of which is not derived by movement of an amer-

ican runner out of the embedded clause, a de dicto reading for the noun

27The ‘∧’ operator from [Montague, 1973] is meant to guarantee that the argument

of the operator likely is the intension, rather than the extension, of the complement

proposition (equivalent to the clause “an American runner will win the race”). For details

see [Gamut, 1991], or, in a more perspicacious format, [Gallin, 1975].
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phrase an American runner is not available, presumably because QL would

result in the LF (113a) in which the trace of an American runner in argu-

ment position is unbound (see May 1977, 1985).

Because QL is assumed to (partly) undo a preceding movement, the data

are often considered to reveal a “reconstruction” effect: the effect found

when an element moved out of its DS position functions at LF as though it

occupies its pre-movement position (these effects are also found, e.g., with

Binding Theoretic phenomena; see [Sportiche, 2006] for a recent overview).

This has led to the hypothesis that, instead of a QL operation, the trace

of the raised QNP might be playing a role in determining its scope.28 One

possible implementation makes use of the supposition in Chomsky’s [1995]

Minimalist Program that a movement trace is in fact a copy of the moved

element. If so, the surface syntactic form (111b) is actually (114):

114. [an american runner] is likely [IP [an american runner] to win the race]

The phonological component is assumed to delete the downstairs copy of

an American runner. By contrast, the semantic component is assumed to

have an interpretative strategy that ignores the upstairs copy. This results

in the de dicto reading.

A semantic alternative to the syntactic approaches to scope reconstruc-

tion phenomena outlined above appears to be readily available. Consider,

for instance, the ambiguous example (115), which allows the readings para-

phrased in (115a) and (115b):

115. [How many people]i should John talk to ti

a. for how many people x, John should talk to x

b. for which number n, John should talk to n-many people

Roughly speaking, reading (115b) involves “reconstruction” of n-many peo-

ple into the scope of should. The solution proposed by e.g. [Cresti, 1995]

(see also references cited there) involves the assumption that the trace of

how many people can be translated as a variable of different types. How

many people (or rather, n-many people, after how is separated out) is com-

posed with its sister after abstraction over this variable. If it is type e, the

result is (115a). If it is type 〈s, 〈〈s, 〈e, t〉〉, t〉〉 (the type of the intension of a

Montagovian generalized quantifier) then the translation of n-many people

is converted into the scope of should, resulting in (115b).

28As e.g. in [Aoun and Li, 1989]. In some languages, quantifier scope ambiguities

between subject and object appear to arise only in situations that are analyzed as recon-

struction.
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A similar strategy can be employed to deal with the examples (107)–

(110). This is illustrated in (116) below for (108).

116. [S [an american runner]i [ is likely [Sti to win the race ]]

a. λP〈s,〈e,t〉〉.ky[american(y) ∧ runner(y) ∧∨ P (y)]

b. λxe.likely(∧win the race(x))

c. λX〈s,〈〈s,〈e,t〉〉,t〉〉.likely(∧([∨X ](∧win the race)))

Assume, with Cresti, that the composition rule can freely apply to the

intension or extension of an expression (depending on type requirements);

that the trace of NP movement can be translated as a variable of type e

or 〈s, 〈〈s, 〈e, t〉〉, t〉〉; and that in the translation of a structure [S NPi VP]

the relevant xi variable in the translation of VP is abstracted over. Then

in (116), the translation of the subject (116a) can be combined either with

(116b) or (116c), giving the two readings discussed above.

We will not discuss the relative merits of a syntactic or semantic approach

to scope reconstruction here. See [Cresti, 1995] for arguments that her

semantic approach can deal with the island effects observed with scope

reconstruction after wh-movement. See [Fox, 1995; 1999], on the other

hand, for arguments that scope reconstruction is subject to Binding Theory

and economy constraints on movement.

5.2 Antecedent Contained Deletion (ACD)

The phenomenon of Antecedent Contained Deletion (ACD) has been used

to argue for the existence of a scope shifting rule.29 Consider (117) and

(118) (from [May, 1985]):

117. Dulles [V P1 suspected Philby], and Angleton did [V P2 e ] too

118. Dulles [V P1 suspected [NP everyone who Angleton did [V P2 e ]]]

The VP in the second conjunct of (117) has been elided, where such ellipsis is

an operation that is allowed under identity with the VP of the first conjunct

(the antecedent of the ellipsis). Although the exact nature of the relevant

29We would like to stress that this section only scratches the surface of the large and

expanding body of literature on ellipsis and ACD; our purpose here is merely to point

out the connection between scope and ellipsis resolution phenomena. We repeat that,

for convenience, our discussion is phrased mostly from the perspective of a QR theory of

quantifier scope, and an LF VP-copying theory of VP-ellipsis, but the problems raised

by ACD exist independently of this approach and reoccur in various forms in other

approaches.
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identity constraint and the nature of the ellipsis operation are subject to

debate, cases as in (118) create a problem for almost every approach.30

As noted by [May, 1985] (see also [Bouton, 1970; Sag, 1976], the elided

VP2 is contained in its antecedent VP1.31 If ellipsis resolution involves

copying the antecedent into the empty VP, the copying procedure never

terminates, as illustrated in (119) (the infinite regress problem). If ellipsis

involves deletion of an underlying full form, (118) would require an infinite

underlying structure.

119. a. Dulles [V P1 suspected [NP everyone who Angleton did [V P2 e ]]]

b. Dulles [V P1 suspected [NP everyone who Angleton did

[V P1 suspected [NP everyone who Angleton did [V P2 e ]]]]]

c. Dulles [V P1 suspected [NP everyone who Angleton did

[V P1 suspected [NP everyone who Angleton did [V P1 suspected

[NP everyone who Angleton did [V P2 e ]]]]]]]

May [1985] proposed that QR moves the NP containing VP2 out of VP1

(step 2); the resulting LF allows copying without regress (step 3):

120. a. Dulles [V P1 suspected [NP everyone who Angleton did [V P2 e ]]]

b. [NP everyone who Angleton did [V P2 e ]]i [S Dulles [V P1 sus-

pected ti] ]

c. [NP everyone who Angleton did [V P1 suspected ti]]i [S Dulles

[V P1suspected ti]]

This approach predicts, correctly, that the QNP containing the elided VP

must scope out of the antecedent VP (Sag 1976; examples from Bruening

2001):

121. a. Ozzy wanted every book that Kate wrote

b. Ozzy wanted every book that Kate did [V P e]

While (121a) allows a de dicto reading (see section 3.1) for the object, (121b)

does not.

30See e.g. [Williams, 1977; Sag, 1976; Vanden Wyngaerd and Zwart, 1991; Lasnik,

1993; Hornstein, 1994; Rooth, 1992; Fiengo and May, 1994; Heim, 1997; Merchant, 2001;

Wilder, 2003]. See [Jacobson, 1992; 1996; 1998; Jäger, 2001; 2005] for views of ACD and

VP ellipsis in a categorial approach.
31For the simple case (118), the problem might be circumvented by assuming it is only

V, not VP, that has been elided; then the antecedent does not contain the ellipsis site.

But this simple expedient does not resolve the ACD in more complicated cases such as

(122) or (123a); a scope shifting rule does. For a sophisticated version of a V-ellipsis

approach, see [Cormack, 1985; Jacobson, 1992].
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The hypothesis that the operation that resolves ACD is also the one

responsible for inverse scope predicts that ACD will be allowed just where

scope inversion is allowed. Thus, for instance, ACD is allowed in inverse

linking structures (Kennedy 1997):

122. John [V P1 wrote [NP a report on [NP every student Peter did [V P2 e

]]]]

ACD resolution is blocked by a CNPC island (section 3.2), but this may be

due to a corresponding CNPC island violation inside the ellipsis site. Better

evidence that scope islands affect ACD comes from the following paradigms

(from [Larson and May, 1990]; see also [Wilder, 2003]):

123. a. John [V P1 believed [S [NP everyone you did [V P2 e ]] to be a

genius ]]

b. John [V P1 believed [S [NP everyone you believed to be a genius ]

to be a genius ]]

c. * John [V P1 believed [CP (that) [NP everyone you did [V P2 e ]]

was a genius ]]

When the elided VP is contained in the subject of a non-tensed subclause,

as in (123a), the matrix VP can antecede the ellipsis: (123a) allows the

paraphrase (123b). But ACD cannot be resolved in this manner when the

ellipsis site is contained in the subject of a tensed subclause; hence the ill-

formedness of (123c). This corresponds to the scope options for quantified

NPs in these positions: the subject of a non-tensed clause easily scopes into

the matrix clause, even higher than the matrix subject; but the subject

of a tensed subclause does not, as illustrated in (124) (although intuitions

differ).

124. a. someone believes [S everyone to be a genius ]

b. someone believes [CP (that) everyone is a genius ]

Observe, incidentally, that (122) and (123a) are examples where the an-

tecedent for the ellipsis contains more material than a single V, in a way

that renders more secure the diagnosis that, barring a scope shifting oper-

ation, the ellipsis is antecedent-contained (cf. footnote 31).

It is further predicted that NPs that are not subject to QR (or other

covert movement operations) do not allow ACD; this is confirmed by (125),

from Lasnik (1993) (the indicated NP is not quantificational, and receives

Case in situ):
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125. * Mary stood near [NP Susan, who Emily did [V P e ] as well]

Finally, we expect that the correlation between scope and ACD resolution

breaks down with NPs that are subject to a non-standard scope mecha-

nism which does not “displace” the NP. This is confirmed by (126) (from

[Kennedy, 1997]):

126. John [V P1 believed that Bill [V P2 had seen a certain film that I did

[V P3 e ] ]]

(126) has a de re reading with a certain film that I did taking wide scope

relative to believed, but even on this matrix scope reading, only VP2 may

antecede the empty VP. The example does not have a reading ‘there is a

certain film I believed that Bill had seen, that John believed that Bill had

seen’; the absence of this reading follows if ACD resolution indeed requires

LF movement of the NP, but exceptional wide scope for indefinite NPs is

due to a different mechanism (see section 4.3.3).

6 CONCLUSIONS

In this paper we have tried to give a broad overview of QNP scope phe-

nomena and some prominent approaches to their treatment. By way of

conclusion, we would like to highlight three topics that have reoccurred in

our review at various places and seem to us especially central.

Syntax vs. Semantics

We believe that there is little reason to prejudge scope phenomena as be-

longing to either syntax or semantics. Even though the primary data of

inverse and non-linear scope readings are always semantic, the mechanisms

that account for them may reasonably involve syntactic considerations and

principles. The real challenge, we think, is to provide a theory of scope ef-

fects that makes the optimal division of labor between syntax and semantics,

in terms of empirical coverage, conceptual clarity and technical soundness

and elegance. As our overview above has clarified, this is by no means an

easy challenge: more comprehensive solutions to this challenge are still to

be found.

Scope effects as “movement”?

One of the major theoretical decisions that any theory of scope has to make

is whether to treat inverse scope effects as a “movement” phenomenon. Are
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the mechanisms that are responsible for inverse scope relations also respon-

sible for phenomena that involve “overt” extraction? A positive answer to

this question, as most clearly given in QR theory, does not yet determine

completely the description of a phenomenon like QNP scope in the grammar.

However, any answer to this question has direct implications for the overall

organization of the grammar. Specifically, a positive answer to this question

leads to far-reaching challenges that emerge from the many discrepancies

between scope effects and “movement” effects, as surveyed in section 4.2.1.

Conversely, a decision to clearly dissociate scope effects from “movement”

phenomena may require substantial justification for any proposed account

of the former.

“QNP Scope” as an epiphenomenon

Pre-theoretically, and in the face of such a simple set of examples as we

initially employed in section 2.2 in order to illustrate the incompleteness of

the direct scope strategy in our toy grammar, one might have expected that

the available scope options for quantified NPs might be described as a simple

permutation of quantifiers, as illustrated in (50), and might be explained by

postulating one syntactic or semantic rule (such as QR, or Storage), or one

set of rules of a given type, which would be enough to derive the available

options. Instead, as has become clear from several decades of research on

this topic, and as we have attempted to illustrate in this article, the scope

of quantified NPs is not a unified phenomenon, and it is unlikely that it is

mediated by one component of the grammar, a dedicated “scope module”.

Various NP types “take scope” in different ways: sometimes their scope is

mediated through a “movement-like” rule, sometimes through one of the

non-standard mechanisms described in section 4.3.3. Unforeseen factors

have often been found to influence the available scope options. This makes

the study of scope phenomena all the more challenging, as it requires a

non-trivial balance between descriptive accuracy and theoretical frugality

and elegance.

The many questions surrounding the notion of QNP scope, and scope

effects in general, leave much room for further research. We do believe,

however, that more than forty years of extensive linguistic-logical research

of scope phenomena also leave room for hope. The important theoretical

and empirical advances that have been made and the unique collaboration

that they have prompted between logicians and formal linguists promise to

keep the study of scope phenomena an active area of research for years to

come.



QUANTIFIER SCOPE IN FORMAL LINGUISTICS 219

BIBLIOGRAPHY

[Abney, 1987] S. P. Abney. The English Noun Phrase in its Sentential Aspect. PhD
thesis, Massachusetts Institute of Technology, 1987.

[Aoun and Li, 1989] J. Aoun and Y. A. Li. Scope and Constituency. Linguistic Inquiry
20-2:141-172, 1989.

[Abusch, 1994] D. Abusch. The scope of indefinites. Natural Language Semantics,
3:88.135, 1994.

[Ajdukiewicz, 1935] K. Ajdukiewicz. Die syntaktische konnexität. Studia Philosophia,
1:1.27, 1935.

[Altman et al., 2005] A. Altman, Y. Peterzil, and Y. Winter. Scope dominance with
upward monotone quantifiers. Journal of Logic, Language and Information, 14:445-
455, 2005.

[Barker, 2002] C. Barker. Continuations and the nature of quantification. Natural Lan-
guage Semantics 10:211-242, 2002.

[Barker and Jacobson, 2007] C. Barker and P. Jacobson. Introduction: Direct compo-
sitionality. In Barker, C. and Jacobson, P., eds., Direct Compositionality. Oxford
University Press, Oxford, 2007.

[Barwise, 1979] J. Barwise. On branching quantfiers in English. Journal of Philosophical
Logic, 8:47-80, 1979.

[Barwise and Cooper, 1981] J. Barwise and R. Cooper. Generalized Quantifiers and Nat-
ural Language. Linguistics and Philosophy 4, 159-219, 1981.

[Beck and Sauerland, 2001] S. Beck and U. Sauerland. Cumulation is needed: a reply to
Winter (2000a). Natural Language Semantics, 8:349–371, 2001.

[Beghelli, 1993] F. Beghelli. A minimalist approach to Quantifier Scope. NELS 23, Vol
1, 65-80, 1993.

[Beghelli, 1995] F. Beghelli. The Phrase Structure of Quantifier Scope. PhD diss, UCLA,
1995.

[Beghelli et al., 1997] F. Beghelli, D. Ben-Shalom, and A. Szabolcsi. Variation, distribu-
tivity, and the illusion of branching. In Szabolcsi, A., editor, Ways of Scope Taking.
Kluwer, Dordrecht, 1997.

[Beghelli and Stowell, 1997] F. Beghelli and T. Stowell. Distributivity and Negation: the
Syntax of each and every. In Szabolcsi, A., editor, Ways of Scope Taking. Kluwer,
Dordrecht. 71-107, 1997.

[Ben-Avi and Winter, 2007] G. Ben-Avi and Y. Winter. The semantics of intensionaliza-
tion. In Proceedings of the Workshop on New Directions in Type-theoretic Grammars,
2007.

[van Benthem, 1986] J. van Benthem. Essays in Logical Semantics. D. Reidel, Dor-
drecht, 1986.

[van Benthem, 1989] J. van Benthem. Polyadic quantifiers. Linguistics and Philosophy,
12:437-464, 1989.

[van Benthem, 1991] J. van Benthem. Language in Action: categories, lambdas and dy-
namic logic. North-Holland, Amsterdam, 1991.

[Bergmann, 1982] M. Bergmann. Cross-categorial semantics for conjoined common
nouns. Linguistics and Philosophy 5:399-401, 1982.

[Bouton, 1970] L. Bouton. Antecedent-contained pro-forms. In: Proceedings of CLS 6,
154-167, 1970.

[Bruening, 2001] B. Bruening. QR obeys Superiority: Frozen Scope and ACD. LI 32-2
p. 233-273, 2001.
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ARNON AVRON AND ANNA ZAMANSKY

NON-DETERMINISTIC SEMANTICS FOR

LOGICAL SYSTEMS

1 INTRODUCTION

1.1 The Key Idea

The principle of truth-functionality (or compositionality) is a basic princi-

ple in many-valued logic in general, and in classical logic in particular. Ac-

cording to this principle, the truth-value of a complex formula is uniquely

determined by the truth-values of its subformulas. However, real-world

information is inescapably incomplete, uncertain, vague, imprecise or in-

consistent, and these phenomena are in an obvious conflict with the prin-

ciple of truth-functionality. One possible solution to this problem is to

relax this principle by borrowing from automata and computability theory

the idea of non-deterministic computations, and apply it in evaluations of

truth-values of formulas. This leads to the introduction of non-deterministic

matrices (Nmatrices) — a natural generalization of ordinary multi-valued

matrices, in which the truth-value of a complex formula can be chosen non-

deterministically out of some non-empty set of options. There are many

natural motivations for introducing non-determinism into the truth-tables

of logical connectives. We discuss some of them below. They give rise to two

different ways in which non-determinism can be incorporated: the dynamic

and the static1. In both the value v(⋄(ψ1, . . . , ψn)) assigned to the formula

⋄(ψ1, ..., ψn) is selected from a set ⋄̃(v(ψ1), . . . , v(ψn)) (where ⋄̃ is the inter-

pretation of ⋄). In the dynamic approach this selection is made separately

and independently for each tuple 〈ψ1, . . . , ψn〉. Thus the choice of one of the

possible values is made at the lowest possible (local) level of computation, or

on-line, and v(ψ1), . . . , v(ψn) do not uniquely determine v(⋄(ψ1, . . . , ψn)).

In contrast, in the static semantics this choice is made globally, system-wide,

and the interpretation of ⋄ is a function, which is selected before any compu-

tation begins. This function is a “determinisation” of the non-deterministic

interpretation ⋄̃, to be applied in computing the value of any formula under

the given valuation. This limits non-determinism, but still leaves the free-

dom of choosing the above function among all those that are compatible

with the non-deterministic interpretation ⋄̃ of ⋄.

1The dynamic approach was introduced together with the concept of Nmatrices. The

static approach was later introduced in [Avron and Konikowska, 2005]
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1.2 Some Intuitive Motivations

We start by presenting some cases in which the need for non-deterministic

semantics naturally arises.

Syntactic “underspecification”:

Consider the standard Gentzen-type system LK for propositional classical

logic (see e.g. [Troelstra and Schwichtenberg, 2000]). Its introduction rules

for ¬ and ∨ are usually formulated as follows:

Γ ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
(¬ ⇒)

Γ, ψ ⇒ ∆

Γ ⇒ ∆,¬ψ
(⇒ ¬)

Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆
(∨ ⇒)

Γ ⇒ ∆, ψ, ϕ

Γ ⇒ ∆, ψ ∨ ϕ
(⇒ ∨)

The corresponding semantics is given by the following classical truth-tables:

¬

t f

f t

∨

t t t

t f t

f f t

f f f

Note that each syntactic rule of LK dictates some semantic condition on

the connective it introduces: (¬ ⇒) corresponds to the condition ¬̃(t) =

f , while (⇒ ¬) corresponds to the condition ¬̃(f) = t, thus completely

determining the truth-table for negation. Similarly, (∨ ⇒) dictates the

last line of the truth-table for ∨, i.e ∨̃(f, f) = f , while (⇒ ∨) dictates

the other three lines. Now suppose we want to reject the law of excluded

middle (LEM), in the spirit of intuitionistic logic. This can most simply

be done by discarding the rule (⇒ ¬), which corresponds to LEM, while

keeping the rest of the rules unchanged. What is the semantics of the

resulting system? Intuitively, by discarding (⇒ ¬), we lose the information

concerning the second line of the truth-table for ¬. Accordingly, we are left

with a problem of underspecification. This can be modelled using Nmatrices

in a very natural way: in case of underspecification, all possible truth-values

are allowed. The corresponding semantics in the case we consider would be
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as follows (we use sets of possible truth-values instead of truth-values):

¬

t {f}

f {t,f}

∨

t t {t}

t f {t}

f f {t}

f f {f}

Linguistic ambiguity:

In many natural languages the meaning of the words “either ... or” is

ambiguous. Thus the Oxford English Dictionary explains the meaning of

this phrase as follows:

The primary function of either, etc., is to emphasize the indiffer-

ence of the two (or more) things or courses, ..., but a secondary

function is to emphasize the mutual exclusiveness (i.e. either of

the two, but not both).

Following this kind of common-sense intuition about “or”, it follows that

in many natural languages the word “or” has both an “inclusive” and an

“exclusive” sense. For instance, when some mathematician promises: “I

shall either attack problem A or attack problem B”, then in many cases he

might at the end solve the two problems, but there are certainly situations

in which what he means is “but do not expect me to attack them both”.

In the first case the meaning of “or” is inclusive, while in the latter case it

is exclusive. Now in many cases one is uncertain whether the meaning of a

speaker’s “or” is inclusive or exclusive. However, even in cases like this one

would still like to be able to make some certain inferences from what has

been said. This situation can be captured by dynamic semantics based on

the following non-deterministic truth-table for ∨:

∨

t t {t, f}

t f {t}

f t {t}

f f {f}

Note that the static semantics is less appropriate here, since the meaning

of a speaker’s “or” is not predetermined, and he might use both meanings

of “or” in two different sentences within the same discourse.

Inherent non-deterministic behavior of circuits:

Nmatrices can be applied to model non-deterministic behavior of various
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Figure 1. The circuit C

elements of electrical circuits. An ideal logic gate performing operations

on boolean variables is an abstraction of a physical gate operating with a

continuous range of electrical quantity. This electrical quantity is turned

into a discrete variable by associating a whole range of electrical voltages

with the logical values 1 and 0 (see [Rabaey et. al, 2003] for further details).

There are a number of reasons, due to which the measured behavior of a

circuit may deviate from the expected behavior. One reason can be the

variations in the manufacturing process: the dimension and device parame-

ters may vary, affecting the electrical behavior of the circuit. The presence

of disturbing noise sources, temperature and other conditions are another

source of deviations in the circuit response. The exact mathematical form

of the relation between input and output in a given logical gate is not always

known, and so it can be approximated by a non-deterministic truth-table.

For instance, suppose that the circuit C given in Figure 1 consists of a

standard OR gate and a faulty AND gate, which responds correctly if the

inputs are similar, and unpredictably otherwise. The behavior of the gate

can be described by the following truth-table, equipped with the dynamic

semantics:
AND

t t {t}

t f {f, t}

f t {f, t}

f f {f}

Computation with unknown functions:

Let us return to Figure 1, and suppose that this time it represents a circuit

about which only some partial information is known. Namely, it is known

that the gate labelled with “?” is either an XOR gate or an OR gate, but

it is not known which one. Thus the function describing the second gate
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is deterministic, but unknown to us. This situation can be represented

by using the non-deterministic truth-table for ∨ given in the “linguistic

ambiguity” example, equipped with the static semantics.

Verification with unknown evaluation models:

There are two well-known three-valued logics for describing different types

of computational models. The first, which captures parallel evaluation, was

described in the context of computational mathematics by Kleene ([Kleene,

1938]); the second, programming oriented method, in which evaluation pro-

ceeds sequentially, was proposed by McCarthy ([McCarthy, 1963]). Below

are the corresponding truth-tables for ∨:

(Kleene)

∨̃ f e t

f f e t

e e e t

t t t t

(McCarthy)

∨̃ f e t

f f e t

e e e e

t t t t

Now suppose we are sending an expression ψ ∨ ϕ for evaluation to some

distant computer, for which it is not known whether it performs parallel or

sequential computations. Hence we know that ψ∨ϕ will be evaluated using

a deterministic function ∨̃, defined by either Kleene’s or McCarthy’s truth-

table for ∨, but we have no information which of the two. Again this can

be captured by using a static interpretation of the following “truth-table”:

∨̃ f e t

f {f} {e} {t}

e {e} {e} {e, t}

t {t} {t} {t}

According to this static interpretation, the function f∨ : {t, f, e}2 → {t, f, e}

used by the computer satisfies either f∨(t, e) = t (in case the computation

is parallel) or f∨(t, e) = e (in case it is sequential). However, it is not known

which of these two conditions is satisfied.

Incompleteness and inconsistency:

This example is taken from [Avron et. al., 2006; Avron et. al., 2008].

Suppose we have a framework for information collecting and processing,

which consists of a set S of information sources and a processor P . The

sources provide information about formulas over {¬,∨}, and we assume that
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for each such formula ψ a source s ∈ S can say that ψ is true (i.e., assigned

the truth-value 1), ψ is false (i.e., assigned the truth-value 0), or that it has

no knowledge about ψ. In turn, the processor collects information from the

sources, combines it according to some strategy and defines the resulting

combined valuation of formulas. Thus for every formula ψ the processor can

encounter one of the four possible situations: (a) it has information that ψ

is true, but no information that ψ is false, (b) it has information that ψ is

false, but no information that ψ is true, (c) it has both information that ψ

is true and information that it is false, and (d) it has no information on ψ at

all. In view of this, it was suggested by Belnap in [Belnap, 1977] (following

works and ideas of Dunn, e.g. [Dunn, 1976]) to account for incomplete and

contradictory information by using the following four logical truth values:

t = {1}, f = {0},⊤ = {0, 1},⊥ = ∅

Here 1 and 0 represent “true” and “false” respectively, and so ⊤ represents

inconsistent information, while ⊥ represents absence of information.

The above scenario has many ramifications, corresponding to various

assumptions regarding the kind of information provided by the sources and

the strategy used by the processor to combine it. We assume that the

processor respects at least the deterministic consequences (in both ways) of

each of the classical truth tables. This assumption means that the values

assigned by the processor to complex formulas and those it assigns to their

immediate subformulas are interrelated according to the following principles

derived from the classical truth-tables of ¬ and ∨:

1. The processor ascribes 1 to ¬ϕ iff it ascribes 0 to ϕ.

2. The processor ascribes 0 to ¬ϕ iff it ascribes 1 to ϕ.

3. If the processor ascribes 1 to either ϕ or ψ, then it ascribes 1 to ϕ∨ψ.

4. The processor ascribes 0 to ϕ ∨ ψ iff it ascribes 0 to both ϕ and ψ.

Here the statement “the processor ascribes 0 to ψ” means that 0 is included

in the subset of {0, 1} which is assigned by the processor to ψ (recall that

the truth-values used by the processor correspond to subsets of {0, 1}). It

is crucial to note that the converse of (3) does not hold, since some source

might inform the processor that ϕ∨ψ is true, without providing information

about the truth/falsehood of either ϕ or ψ. Under the above assumptions,

there can be a number of possible scenarios concerning the type of formulas

evaluated by the sources. The case when the sources provide information

only about atomic formulas has been considered in [Belnap, 1977]. This case
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is deterministic, and leads to the famous Dunn-Belnap four-valued logic.

Now consider the case when the sources provide information about arbitrary

formulas (also complex ones), but not necessarily all of them. In this case

the assumptions above are reflected in the following non-deterministic truth-

tables:
∨̃ f ⊥ ⊤ t

f {f,⊤} {t,⊥} {⊤} {t}

⊥ {t,⊥} {t,⊥} {t} {t}

⊤ {⊤} {t} {⊤} {t}

t {t} {t} {t} {t}

¬̃

f {f}

⊥ {⊥}

⊤ {⊤}

t {f}

Note that the table for negation reflects the principles 1 and 2, while the

table for disjunction reflects the principles 3 and 4. To see this, let us

examine one of the most peculiar cases: the entry f∨̃f = {f,⊤}. Suppose

that ψ and ϕ are both assigned the truth-value f = {0}. Then by principle

4 above, the truth-value of ψ ∨ ϕ (which is a subset of {0, 1}) must include

0. If in addition one of the sources assigned 1 to ψ ∨ ϕ, then the processor

ascribes 1 to ψ∨ϕ too, and so the truth-value it assigned to ψ∨ϕ is in this

case ⊤. Otherwise it is f. This justifies the two options in the truth-table.

The rest of the entries can be explained in a similar way.

1.3 Things To Come

The rest of this survey is divided into two parts. Part I describes the propo-

sitional framework of Nmatrices. We begin with some preliminaries and

a review of many-valued matrices in Section 2. The basic definitions of

the framework of Nmatrices are presented in Section 3. In Section 4 we

introduce canonical signed calculi, a natural family of proof systems ma-

nipulating sets of signed formulae (Gentzen-type systems can be thought

of as a specific instance of such calculi). The relation between Nmatrices

and canonical calculi is then explored in two complementary directions. In

Section 4.1 we provide a general proof theory for Nmatrices using canoni-

cal calculi. In Section 4.2 modular non-deterministic semantics is provided

for every canonical calculus (satisfying a simple syntactic condition). We

then proceed to describe further applications of Nmatrices. In Section 5

we extend the modular approach to two non-canonical families of Gentzen-

type calculi: those that are obtained from the positive fragments of classical

logic and intuitionistic logic by adding various natural Gentzen-type rules

for negation. In Section 6 Nmatrices are used for yet another family of non-

classical logics: paraconsistent logics, designed for reasoning in the presence
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of contradictions. In Part II we handle the extension of the framework

of Nmatrices to the first-order level and beyond. In Section 7 we briefly

review the two standard approaches to interpreting unary quantifiers in

many-valued logics. In Section 8 we extend the propositional framework of

Nmatrices to languages with such quantifiers and discuss the problems that

this move reveals (and were not evident on the propositional level). Section

9 is devoted to the particular case of the usual first-order quantifiers. An

application of this case is presented in Section 10, where we extend the re-

sults from Section 6, and provide semantics for a large family of first-order

paraconsistent logics. Section 11 further generalizes the framework of Nma-

trices to multi-ary quantifiers and extends the relation between Nmatrices

and canonical signed calculi to languages with such quantifiers.

Due to lack of space, we omit in what follows most of the proofs, pro-

viding instead pointers to the relevant papers. Those of the proofs we do

include are intended to give the reader a better insight into the nature of

Nmatrices, and a flavour of the (mostly new) methods that can be employed

in handling and applying them.

PART I: THE PROPOSITIONAL CASE

2 PRELIMINARIES

In what follows, L is a propositional language and FrmL is its set of wffs.

The metavariables ψ,ϕ range over L-formulas, and Γ,∆ over sets of L-

formulas. For an L-formula ψ, we denote by Atoms(ψ) the set of atomic

formulas in ψ. We denote by SF (Γ) the set of all subformulas of Γ.

2.1 Logics, Consequence Relations and Abstract Rules

DEFINITION 1.

1. A Scott consequence relation (scr for short) for a language L is a binary

relation ⊢ between sets of formulas of L that satisfies the following

three conditions:

strong reflexivity: if Γ ∩ ∆ 6= ∅ then Γ ⊢ ∆.
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monotonicity: if Γ ⊢ ∆ and Γ ⊆ Γ′, ∆ ⊆ ∆′ then Γ′ ⊢ ∆′.

Transitivity (cut): if Γ ⊢ ψ,∆ and Γ′, ψ ⊢ ∆′ then Γ,Γ′ ⊢ ∆,∆′.

2. A Tarskian consequence relation (tcr) ⊢1 for a language L is a binary

relation between sets of L-formulas and L-formulas, that satisfies the

following conditions:

strong reflexivity: if ψ ∈ Γ then Γ ⊢1 ψ.

monotonicity: if Γ ⊢1 ψ and Γ ⊆ Γ′, then Γ′ ⊢1 ψ.

Transitivity (cut): if Γ ⊢1 ψ and Γ′, ψ ⊢1 ϕ then Γ,Γ′ ⊢1 ϕ.

3. A tcr ⊢ for L is structural if for every uniform L-substitution σ and

every Γ and ψ, if Γ ⊢ ψ then σ(Γ) ⊢ σ(ψ). ⊢ is finitary if whenever

Γ ⊢ ψ, there exists some finite Γ′ ⊆ Γ, such that Γ′ ⊢ ψ. ⊢ is consistent

(or non-trivial) if there exist some non-empty Γ and some ψ s.t. Γ 6⊢ ψ.

⊢ is uniform if Γ ⊢ ψ whenever Γ,∆ ⊢ ψ, Atoms(Γ∪{ψ})∩Atoms(∆) =

∅, and ∆ is consistent (i.e. there exists ϕ such that ∆ 6⊢ ϕ). Similar

properties can be defined for an scr.

4. A Tarskian propositional logic (propositional logic) is a pair 〈L,⊢〉,

where L is a propositional language, and ⊢ is a structural and consis-

tent tcr (scr) for L. The logic 〈L,⊢〉 is finitary if ⊢ is finitary.

For the rest of this section, we focus on scrs. However, the properties

below can be formulated in the context of tcrs as well.

There are several ways of defining consequence relations for a language

L. The two most common ones are the proof-theoretical and the model-

theoretical approaches. In the former, the definition of a consequence rela-

tion is based on some notion of a proof in some formal calculus. In the latter

approach, the definition is based on a notion of a semantics for L. The gen-

eral notion of an abstract semantics is rather opaque. One usually starts

by defining a notion of a valuation as a certain type of partial functions

from FrmL to some set. Then ones defines what it means for a valuation to

satisfy a formula (or to be a model of a formula). A semantics is then some

set S of valuations, and the consequence relation induced by S is defined as

follows: Γ ⊢S ∆ if every total valuation in S which satisfies all the formulas

in Γ, satisfies some formula in ∆ as well (note that this always defines an

scr). We say that a semantics S is analytic2 if every partial valuation in S,

2The term ‘effective’ was used in [Avron, 2007a; Avron and Zamansky, 2007c; Avron

and Zamansky, 2007a] instead of ‘analytic’.
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whose domain is closed under subformulas, can be extended to a full (i.e.

total) valuation in S. This implies that the exact identity of the language

L is not important, since analycity allows us to focus on some subset of

its connectives. (See Remark 12 below for another important consequence

of analycity.) We shall shortly see that both ordinary many-valued seman-

tics and non-deterministic semantics based on propositional Nmatrices are

always analytic. However this is not necessarily the case in general 3.

DEFINITION 2.

1. A pure (abstract) rule in a propositional language L is any ordered

pair 〈Γ,∆〉, where Γ and ∆ are finite sets of formulas in L (We shall

usually denote such a rule by Γ ⇒ ∆ rather than by 〈Γ,∆〉).

2. Let L = 〈L,⊢1〉 be a propositional logic, and let S be a set of rules

in a propositional language L′. The extension L[S] of 〈L,⊢1〉 by S is4

the logic 〈L∗,⊢∗〉, where L∗ = L ∪ L′, and ⊢∗ is the least structural

scr ⊢ such that Γ ⊢ ∆ whenever Γ ⊢1 ∆ or 〈Γ,∆〉 ∈ S.

REMARK 3. It is easy to see that ⊢∗ is the closure under cuts and weaken-

ings of the set of all pairs 〈σ(Γ), σ(∆)〉, where σ is a uniform substitution in

L∗, and either Γ ⊢1 ∆ or 〈Γ,∆〉 ∈ S. This in turn implies that an extension

of a finitary logic by a set of pure rules is again finitary.

CONVENTION 4. To emphasize the fact that the presence of a rule in a

system means the presence of all its instances, we shall usually describe a

rule using the metavariables ϕ,ψ, θ rather than the atomic formulas p1, p2, ....

Thus although formally (⊃⇒) is the rule p1, p1 ⊃ p2 ⇒ p2, we shall write

it as ϕ,ϕ ⊃ ψ ⇒ ψ.

REMARK 5. Suppose that the formula θ occurs in a pure rule of a logic L,

and we decide to select θ as the “principal formula” of that rule. Assume e.g.

that the rule is of the form ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψk, θ (the consideration in

the other case is similar). Suppose further that Γi ⊢ ∆i, ϕi for i = 1, . . . , n

and ψj ,Γj ⊢ ∆j for j = 1, . . . , k. Then Γ1, . . . ,Γn ⊢ ∆1, . . . ,∆k, θ (by n+k

3For instance, in the bivaluations semantics and the possible translations semantics

described in [Carnielli, 1998; Carnielli and Marcos, 2002; Carnielli et. al., 2007] no general

theorem of analycity is available. Hence analycity should be proved from scratch for every

useful instance of these types of semantics.
4Obviously, the extension of 〈L,⊢1〉 by S is well-defined (i.e. a logic) only if ⊢∗

is consistent. In all the cases we consider below this will easily be guaranteed by the

semantics we provide (and so we shall not even mention it).
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cuts). It follows that L is closed in this case under the Gentzen-type rule:

Γi ⇒ ∆i, ϕi (i = 1, . . . , n) ψj ,Γj ⇒ ∆j (j = 1, . . . , k)

Γ1, . . . ,Γn ⇒ ∆1, . . . ,∆k, θ

Conversely, if L is closed under this Gentzen-type rule then by applying it

to the reflexivity axioms ϕi ⊢ ϕi (i = 1, . . . , n) and ψj ⊢ ψj (j = 1, . . . , k)

we get ϕ1, . . . , ϕn ⊢ ψ1, . . . , ψk, θ. It follows that every pure rule in the

sense of Definition 2 is equivalent to some multiplicative (in the terminology

of [Girard, 1987]) or pure (in the terminology of [Avron, 1991]) Gentzen-

type rule. Moreover: it is easy to see that most standard rules used in

Gentzen-type systems are equivalent to finite sets of pure rules in the sense

of Definition 2. For example: the usual (⊃⇒) rule of classical logic is

equivalent by what we have just shown to the pure rule ϕ,ϕ ⊃ ψ ⇒ ψ. The

classical (⇒⊃), in turn, can be split into the following two rules:

Γ, ϕ⇒ ∆

Γ ⇒ ∆, ϕ ⊃ ψ

Γ ⇒ ∆, ψ

Γ ⇒ ∆, ϕ ⊃ ψ

Hence (⇒⊃) is equivalent to the set {ψ ⇒ ϕ ⊃ ψ, ⇒ ϕ,ϕ ⊃ ψ}. 5

2.2 Many-valued Matrices

The most standard general method for defining propositional logics is by

using many-valued (deterministic) matrices ([Rosser and Turquette, 1952;

Bolc and Borowik, 1992; Malinowski, 1993; Gottwald, 2001; Hähnle, 2001;

Urquhart, 2001]):

DEFINITION 6.

1. A matrix for L is a tuple P = 〈V,D,O〉, where:

• V is a non-empty set of truth values.

• D (designated truth values) is a non-empty proper subset of V.

• For every n-ary connective ⋄ of L, O includes a corresponding

function ⋄̃ : Vn → V .

We say that P is (in)finite if so is V.

2. A partial valuation in P is a function v to V from some subset of

FrmL which is closed under subformulas, such that for each n-ary

connective ⋄ of L, the following holds for all ψ1, . . . , ψn ∈ FrmL:

v(⋄(ψ1, ..., ψn)) = ⋄̃(v(ψ1), ..., v(ψn))

5Recall that formally we should have written here {p2 ⇒ p1 ⊃ p2, ⇒ p1, p1 ⊃ p2}.
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A partial valuation in P is a (full) valuation if its domain is FrmL.

A partial valuation v in P satisfies a formula ψ (v |= ψ) if v(ψ) ∈ D.

3. Let P be a matrix. We say that Γ ⊢P ∆ if whenever a valuation in

P satisfies all the formulas of Γ, it satisfies also at least one of the

formulas of ∆. We say that Γ ⊢1
P ψ if Γ ⊢P {ψ}. For a family of

matrices F , we say that Γ ⊢F ∆ if Γ ⊢P ∆ for every P in F .

4. A logic L is sound for a matrix P if ⊢L⊆⊢P . L is complete for a matrix

P if ⊢P⊆⊢L. P is a characteristic matrix for a logic L if ⊢L=⊢P . F

is a characteristic set of matrices for L if ⊢L=⊢F .

The following well-known theorem can easily be proved:

THEOREM 7. For every matrix P for L, ⊢P is a uniform propositional

logic, and ⊢1
P is a uniform Tarskian propositional logic.

The converse of this theorem also holds (see [Urquhart, 2001]):

THEOREM 8. Every (Tarskian) uniform structural logic has a character-

istic matrix.

REMARK 9. Although every Tarskian uniform structural logic has a char-

acteristic matrix, it is often the case that this matrix is infinite, and is hard

to find and use. We will shortly see that finite characteristic Nmatrices

exist for many logics which have only infinite characteristic matrices (see

Theorem 24).

THEOREM 10. (Compactness) ([Shoesmith, 1971]) If P is a finite ma-

trix then ⊢P and ⊢1
P are finitary.

The next important result is again very easy to prove:

PROPOSITION 11. (Analycity) Any partial valuation in a matrix P for

L, which is defined on a set of L-formulas closed under subformulas, can be

extended to a full valuation in P.

REMARK 12. At this point the importance of analycity should again be

stressed. Because of this property ⊢S is decidable whenever S is a finite ma-

trix. Moreover, analycity guarantees semi-decidability of non-theoremhood

even if a matrix P is infinite, provided that P is effective (i.e, the set of

truth-values is countable, the interpretation functions of the connectives

are computable, and the set of designated truth-values is decidable). Note

that this implies decidability in case ⊢S also has a corresponding sound and

complete proof system.
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REMARK 13. One of the main shortcomings of matrix-based semantics is

its lack of modularity with respect to proof systems. To use this type of

semantics, the rules and axioms of a system which are related to a given

connective should be considered as a whole, and there is no method for

separately determining the semantic effects of each rule alone. Take for

example the standard Gentzen-type rules for negation:

Γ ⇒ ∆, ψ

Γ,¬ψ ⇒ ∆
(¬ ⇒)

Γ, ψ ⇒ ∆

Γ ⇒ ∆,¬ψ
(⇒ ¬)

The corresponding truth-table is the classical one:

¬

t f

f t

However, if one of the negation rules is discarded, the resulting system has

no finite characteristic matrix (this is a special case of Theorem 24 below).

It follows that in the framework of (ordinary) matrices the semantic effects

of each of the above two rules of negation cannot be analyzed separately. We

will shortly see that in contrast, the semantics of non-deterministic matrices

does allow a high degree of modularity: In many cases the effect of each

syntactic rule or axiom alone can easily be determined, and the semantics

of a proof system can then be constructed by straightforwardly combining

the semantics of its various rules and axioms.

3 INTRODUCING NMATRICES

Nmatrices were introduced in [Avron and Lev, 2001; Avron and Lev, 2005;

Avron and Konikowska, 2005]. The definitions below are taken from there.

DEFINITION 14. A non-deterministic matrix (Nmatrix) for L is a tuple

M = 〈V,D,O〉, where:

• V is a non-empty set of truth values.

• D (designated truth values) is a non-empty proper subset of V .

• For every n-ary connective ⋄ of L, O includes a corresponding function

⋄̃ : Vn → 2V \ {∅}.

DEFINITION 15. Let M = (V ,D,O) be an Nmatrix for L.
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1. A partial dynamic valuation in M (or an M-legal partial dynamic

valuation) is a function v from some subset of FrmL to V , which is

closed under subformulas, such that for each n-ary connective ⋄ of L,

the following holds for all ψ1, . . . , ψn ∈ FrmL:

(SLC) v(⋄(ψ1, . . . , ψn)) ∈ ⋄̃(v(ψ1), . . . , v(ψn))

A partial valuation in M is called a valuation if its domain is FrmL.

2. A (partial) static valuation in M (or an M-legal (partial) static valua-

tion) is a (partial) dynamic valuation which satisfies also the following

compositionality (or functionality) principle (CMP): for each ⋄ of L

and for every ψ1, . . . , ψn, ϕ1, . . . , ϕn ∈ FrmL,

v(⋄(ψ1, . . . , ψn)) = v(⋄(ϕ1, . . . , ϕn)) if v(ψi) = v(ϕi) (i = 1 . . . n)

REMARK 16. Ordinary (deterministic) matrices correspond to the case

when each ⋄̃ is a function taking singleton values only (then it can be treated

as a function ⋄̃ : Vn → V). In this case there is no difference between static

and dynamic valuations, and we have full determinism.

REMARK 17. Like in usual multi-valued semantics, the principle here is

that each formula has a definite logical value. This is why we exclude ∅ from

being a value of ⋄̃. However, the absence of any logical value for a formula

can still be simulated in our formalism by introducing a special logical value

⊥ representing exactly this case (which is a well-known procedure in the

framework of partial logics ([Blamey, 1986])).

To understand the difference between ordinary matrices and Nmatrices,

recall that in the deterministic case (see Defn. 6), the truth-value assigned

by a valuation v to a complex formula is defined as follows: v(⋄(ψ1, ..., ψn)) =

⋄̃(v(ψ1), ..., v(ψn)). Thus the truth-value assigned to ⋄(ψ1, ..., ψn) is uniquely

determined by the truth-values of its subformulas: v(ψ1), ..., v(ψn). This,

however, is not the case in dynamic valuations in Nmatrices: in general

the truth-values assigned to ψ1, ..., ψn do not uniquely determine the truth-

value assigned to ⋄(ψ1, ..., ψn) because v makes a non-deterministic choice

out of the set of options ⋄̃(v(ψ1), ..., v(ψn)). Therefore the non-deterministic

semantics is non-truth-functional, as opposed to the deterministic one.

DEFINITION 18.

1. A (partial) valuation v in M satisfies a formula ψ (v |= ψ) if (v(ψ) is

defined and) v(ψ) ∈ D. It is a model of Γ (v |= Γ) if it satisfies every

formula in Γ.
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2. We say that ψ is dynamically (statically) valid in M, in symbols

|=d
M ψ (|=s

M ψ), if v |= ψ for each dynamic (static) valuation v in M.

3. A logic L is dynamically (statically) weakly sound for an Nmatrix M

if ⊢L ψ implies |=d
M ψ (|=s

M ψ). A logic L is dynamically (statically)

weakly complete for M if |=d
M ψ (|=s

M ψ) implies ⊢L ψ. M is a

dynamically (statically) weakly characteristic for L if L is dynamically

(statically) both weakly sound and weakly complete for M.

4. ⊢dM (⊢sM), the dynamic (static) consequence relation induced by M,

is defined as follows: Γ ⊢dM ∆ (Γ ⊢sM ∆), if every dynamic (static)

model v in M of Γ satisfies some ψ ∈ ∆.

5. A logic L = 〈⊢L,L〉 is dynamically (statically) sound for an Nmatrix

M for L if ⊢L⊆⊢dM (⊢L⊆⊢sM). L is dynamically (statically) complete

for M if ⊢dM⊆⊢L (⊢sM⊆⊢L). M is dynamically (statically) character-

istic for L if ⊢dM=⊢L (⊢sM=⊢L).

REMARK 19. Obviously, the static consequence relation includes the dy-

namic one, i.e. ⊢sM ⊇ ⊢dM. Also, for ordinary matrices ⊢sM = ⊢dM.

CONVENTION 20. We shall denote F = V \ D, and shall usually identify

singletons of truth-values with the truth-values themselves.

EXAMPLE 21. Assume that L has binary connectives ∨, ∧, and ⊃ inter-

preted classically, and a unary connective ¬, for which the law of contradic-

tion obtains, but not necessarily the law of excluded middle. This leads to

the Nmatrix M2 = (V,D,O) for L, where Let V = {f, t},D = {t}, and O

is given by:
∨̃ ∧̃ ⊃̃

t t t t t

t f t f f

f t t f t

f f f f t

¬̃

t f

f {t, f}

Note that classical negation can be defined in M2 by: ∼ψ = ψ ⊃ ¬ψ (this

is a semantic counterpart of the observation made in [Béziau, 1999]).

EXAMPLE 22. Consider the following two 3-valued Nmatrices M3
L,M

3
S .

In both we have V = {f,⊤, t},D = {⊤, t}. Also the interpretations of

disjunction, conjunction and implication are the same in both of them, and

correspond to those in positive classical logic:

a∨̃b =

{
D if either a ∈ D or b ∈ D

F if a, b ∈ F
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a∧̃b =

{
D if a, b ∈ D

F if either a ∈ F or b ∈ F

a⊃̃b =

{
D if either a ∈ F or b ∈ D

F if a ∈ D and b ∈ F

However, negation is interpreted differently: more liberally in M3
L, and

more strictly in M3
S :

M3
L :

¬̃

t f

⊤ V

f t

M3
S :

¬̃

t f

⊤ D

f t

EXAMPLE 23. After considering 2-valued Nmatrices and 3-valued Nma-

trices, our last example is the 4-valued Nmatrix M4 = (V,D,O), where

V = {f,⊥,⊤, t}, D = {⊤, t}, ∧,∨,⊃ are defined by the general rules given

in Example 22 (applied, however, to the sets D and F = V \ D appearing

in the current example), while ¬ is the negation of the bilattice FOUR

([Belnap, 1977; Ginsberg, 1988; Fitting, 1994; Arieli and Avron, 1996]):

¬̃

t f

⊤ ⊤

⊥ ⊥

f t

At this point it is natural to ask whether finite Nmatrices can be used

for characterizing logics that cannot be characterized by finite ordinary

matrices. The next theorem provides a positive answer to this question:

THEOREM 24. Let M be a two-valued Nmatrix which has at least one

proper non-deterministic operation. Then there is no finite family of finite

ordinary matrices F , such that ⊢dM= ⊢F . If in addition M includes the

classical implication, then there is no finite family of ordinary matrices F ,

such that ⊢dM ψ iff ⊢F ψ.

Proof: a straightforward modification of the proof of Theorem 3.4 in [Avron

and Lev, 2005].
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As the next easy theorem shows, things are different in the case of the

static semantics:

THEOREM 25. For every (finite) Nmatrix M, there is a (finite) family of

ordinary matrices, such that ⊢sM=⊢F .

Thus only the expressive power of the dynamic semantics based on Nma-

trices is stronger than that of ordinary matrices. For this reason (after

providing general proof theory for both kinds of semantics in the next sub-

section) our main focus will be on this semantics and what it induces. Ac-

cordingly, we shall usually write simply ⊢M instead of ⊢dM.

The following theorem from [Avron and Lev, 2005] is a generalization of

Theorem 10 to the case of Nmatrices:

THEOREM 26. (Compactness) ⊢M is finitary for any finite Nmatrix M.

Later we shall prove a stronger version of this theorem (see Theorem 53).

The proof of the next important result is as easy for Nmatrices as it is for

ordinary matrices:

PROPOSITION 27. (Analycity) Let M = 〈V,D,O〉 be an Nmatrix for

L, and let v′ be a partial valuation in M. Then v′ can be extended to a

(full) valuation in M.

It is easy to show that like in the case of ordinary matrices (see Remark

12), Proposition 27 implies the following Theorem:

THEOREM 28. Non-theoremhood of a logic which has an effective charac-

teristic Nmatrix M is semi-decidable. If M is finite, or L also has a sound

and complete formal proof system, then L is decidable.

The following is an easy analogue for Nmatrices of Theorem 7:

PROPOSITION 29. For any Nmatrix M, ⊢M is uniform.

We end this subsection by introducing the notion of a refinement:

DEFINITION 30. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be Nma-

trices for a language L.

1. A reduction of M1 to M2 is a function F : V1 → V2 such that:

(a) For every x ∈ V1, x ∈ D1 iff F (x) ∈ D2.

(b) F (y) ∈ ⋄̃M2
(F (x1), . . . , F (xn)) for every n-ary connective ⋄ of L

and every x1, . . . , xn, y ∈ V1 such that y ∈ ⋄̃M1
(x1, . . . , xn).

2. M1 is a refinement of M2 if there exists a reduction of M1 to M2.
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THEOREM 31. If M1 is a refinement of M2 then ⊢M2
⊆ ⊢M1

.

REMARK 32. An important case in which M1 = 〈V1,D1,O1〉 is a re-

finement of M2 = 〈V2,D2,O2〉 is when V1 ⊆ V2, D1 = D2 ∩ V1, and

⋄̃M1
(~x) ⊆ ⋄̃M2

(~x) for every n-ary connective ⋄ of L and every ~x ∈ Vn1 . It

is easy to see that the identity function on V1 is in this case a reduction of

M1 to M2. A refinement of this sort will be called simple.

4 CANONICAL DEDUCTION SYSTEMS AND NMATRICES

The idea of “canonical” systems implicitly underlies a long tradition in

the philosophy of logic, established by G. Gentzen in his classical paper
[Gentzen, 1969]. According to this tradition, the meaning of a connective

is determined by the introduction and the elimination rules which are as-

sociated with it (see, e.g., [Zucker, 1978a; Zucker, 1978b]). The supporters

of this thesis usually have in mind Natural Deduction systems of an ideal

type. In this type of “canonical systems” each connective ⋄ has its own

introduction and elimination rules, in each of which ⋄ is mentioned ex-

actly once, and no other connective is involved. The rules should also be

pure in the sense of [Avron, 1991]. Unfortunately, already the handling of

negation requires rules which are not canonical in this sense. This prob-

lem was solved by Gentzen himself by moving to what is now known as

(multiple-conclusion) Gentzen-type calculi, which instead of introduction

and elimination rules use left and right introduction rules. The intuitive

notion of a “canonical rule” can be adapted to such systems in a straight-

forward way, and it is well-known that the usual classical connectives can

indeed be fully characterized in this framework by such rules. Moreover, the

cut-elimination theorem obtains in all the known Gentzen-type calculi for

propositional classical logic (or some fragment of it) which employ only rules

of this type. These facts were generalized in [Avron and Lev, 2005], where

the notion of a canonical propositional Gentzen-type system has been intro-

duced. This notion was further generalized in [Avron and Konikowska, 2005;

Avron and Zamansky, 2009] to canonical signed calculi. These calculi and

their intimate connections with finite Nmatrices are the subject of the

present section.

Signed calculi consist of rules operating on finite sets of signed formulas,

and axioms being sets of such formulas. The deduction formalism we use

here for them is similar to the Rasiowa-Sikorski (R-S) systems ([Rasiowa

and Sikorski, 1963; Konikowska, 2002]), known also as dual tableaux ([Baaz

et. al., 1993; Hähnle, 1999]).
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Henceforth (until the end of Section 4) V denotes some finite set of signs.

DEFINITION 33. A signed formula for (L,V) is an expression of the form

s : ψ, where s ∈ V and ψ ∈ FrmL. A signed formula s : ψ is atomic if ψ

is an atomic formula. A sequent for (L,V) is a finite set of signed formulas

for (L,V). A clause is a sequent consisting of atomic signed formulas.

REMARK 34. The usual (two-sided) sequent notation Γ ⇒ ∆ can be in-

terpreted as {f : Γ} ∪ {t : ∆}, i.e. a sequent in the sense of Defn. 33 over

the two signs {t, f}.

DEFINITION 35. Let v be a function from the set of formulas of L to V.

1. v satisfies a signed formula γ = (l : ψ), denoted by v |= (l : ψ), if

v(ψ) = l.

2. v satisfies a set of signed formulas Υ, denoted by v |= Υ, if there is

some γ ∈ Υ, such that v |= γ.

CONVENTION 36. Formulas will be denoted by ϕ,ψ, signed formulas - by

α, β, γ, δ, sets of signed formulas - by Υ,Λ, sequents - by Ω,Σ,Π, sets of sets

of signed formulas - by Φ,Ψ and sets of sequents - by Θ,Ξ. We write S : ψ

instead of {s : ψ | s ∈ S}, and S : ∆ instead of {s : ψ | s ∈ S, ψ ∈ ∆}.

DEFINITION 37. A signed canonical (propositional) rule of arity n for

(L,V) is an expression of the form [Θ/S : ⋄(p1, . . . , pn)], where S is a non-

empty subset of V, ⋄ is an n-ary connective of L and Θ = {Σ1, ...,Σm},

where m ≥ 0 and for every 1 ≤ j ≤ m, Σj are clauses (see Definition 33)

consisting of signed formulas of the form a : pk, where a ∈ V and 1 ≤ k ≤ n.

An application of a rule [{Σ1, ...,Σm}/S : ⋄(p1, . . . , pn)] is any inference of

the form:
Ω ∪ Σ∗

1 ... Ω ∪ Σ∗
m

Ω ∪ S : ⋄(ψ1, ..., ψn)

where ψ1, ..., ψn are L-formulas, Ω is a sequent, and for all 1 ≤ i ≤ m: Σ∗
i

is obtained from Σi by replacing pj by ψj for every 1 ≤ j ≤ n.

EXAMPLE 38.

1. The standard Gentzen-style introduction rules for the classical con-

junction are usually defined as follows:

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆

Γ ⇒ ∆, ψ Γ ⇒ ∆, ϕ

Γ ⇒ ∆, ψ ∧ ϕ
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Using the notation in Remark 34, we can write {f : Γ}∪{t : ∆} (that

is, ψ occurs with a sign ‘t’ if ψ ∈ Γ and with a sign ‘f ’ if ψ ∈ ∆), thus

the canonical representation of the rules above is as follows:

[{{f : p1, f : p2}}/{f} : p1 ∧ p2] [{{t : p1}, {t : p2}}/{t} : p1 ∧ p2]

Applications of these rules have the forms:

Ω ∪ {f : ψ1, f : ψ2}

Ω ∪ {f : ψ1 ∧ ψ2}

Ω ∪ {t : ψ1} Ω ∪ {t : ψ2}

Ω ∪ {t : ψ1 ∧ ψ2}

2. Consider a calculus over V = {a, b, c} with the following introduction

rules for a ternary connective ◦:

[{{a : p1, c : p2}, {a : p3, b : p2}}/{a, c} : ◦(p1, p2, p3)]

[{{c : p2}, {a : p3, b : p3}, {c : p1}}/{b, c} : ◦(p1, p2, p3)]

Their applications are of the forms:

Ω ∪ {a : ψ1, c : ψ2} Ω ∪ {a : ψ3, b : ψ2}

Ω ∪ {a : ◦(ψ1, ψ2, ψ3), c : ◦(ψ1, ψ2, ψ3)}

Ω ∪ {c : ψ2} Ω ∪ {a : ψ3, b : ψ3} Ω ∪ {c : ψ1}

Ω ∪ {b : ◦(ψ1, ψ2, ψ3), c : ◦(ψ1, ψ2, ψ3)}

DEFINITION 39. Let V be a finite set of signs.

1. A logical axiom for V is a sequent of the form: {l : ψ | l ∈ V}.

2. The cut and weakening rules for V are defined as follows:

Ω ∪ {l : ψ | l ∈ L1} Ω ∪ {l : ψ | l ∈ L2}

Ω ∪ {l : ψ | l ∈ L1 ∩ L2}
CUT

Ω
Ω, l : ψ

WEAK

where L1, L2 ⊆ V and l ∈ V .
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The following proposition follows from the completeness of many-valued

resolution (see [Baaz et. al., 1995]):

PROPOSITION 40. Let Θ be a set of clauses and Ω - a clause. Then Ω

follows from Θ (in the sense that every v which satisfies Θ also satisfies Ω)

iff there is some Ω′ ⊆ Ω, such that Ω′ is derivable from Θ by cuts.

COROLLARY 41. Let Θ be a set of clauses. The empty sequent is derivable

from Θ by cuts iff Θ is not satisfiable.

Now we are ready to define “canonical signed calculi” in precise terms:

DEFINITION 42. A signed calculus over a language L and a finite set of

signs V is canonical if it consists of:

1. All logical axioms for V.

2. The rules of cut and weakening from Defn. 39.

3. Any number of signed canonical inference rules.

Not all canonical calculi are useful. Of interest are only those of them

which “define” the semantic meaning of the logical connectives they intro-

duce. It turned out that this property can be captured syntactically by a

simple syntactic criterion called coherence, introduced in [Avron and Lev,

2005] for canonical Gentzen-type systems, and extended in [Avron and Za-

mansky, 2009] to signed calculi.

DEFINITION 43. A canonical calculus G is coherent if Θ1 ∪ ... ∪ Θm is

unsatisfiable whenever {[Θ1/S1 : ψ], ..., [Θm/Sm : ψ]} is a set of rules of G

such that S1 ∩ ... ∩ Sm = ∅ (here ψ = ⋄(p1, . . . , pn) for some n-ary ⋄).

Obviously, coherence is a decidable property of canonical calculi. Note

also that by Corollary 41, a canonical calculus G is coherent if whenever

{[Θ1/S1 : ψ], ..., [Θm/Sm : ψ]} is a set of rules of G, and S1 ∩ ... ∩ Sm = ∅,

we have that Θ1 ∪ ... ∪ Θm is inconsistent (i.e. the empty sequent can be

derived from it using cuts).

EXAMPLE 44.

1. Consider the canonical calculus G1 over L = {∧} and V = {t, f}, the

canonical rules of which are the two rules for ∧ from Example 38. We

can derive the empty sequent from {{t : p1}, {t : p2}, {f : p1, f : p2}}

as follows:

{t : p1} {f : p1, f : p2}

{f : p2}
CUT

{t : p2}

∅
CUT
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Thus G1 is coherent.

2. Consider the canonical calculus G2 over V = {a, b, c} with the follow-

ing introduction rules for the ternary connective ◦:

[{{a : p1}, {b : p2}}/{a, b} : ◦(p1, p2, p3)]

[{{a : p2, c : p3}}/{c} : ◦(p1, p2, p3)]

Clearly, the set {{a : p1}, {b : p2}, {a : p2, c : p3}} is satisfiable, thus

G2 is not coherent.

REMARK 45. [Ciabattoni and Terui, 2006a] investigates a general class

of single-conclusion two-sided (sequent) calculi called simple calculi. These

calculi may include any set of structural rules, and so the two-sided canonical

calculi are a particular instance of simple calculi which include all of the

standard structural rules. The reductivity condition of [Ciabattoni and

Terui, 2006a] can be shown to be equivalent to our coherence criterion in

the context of two-sided canonical systems.

Next we define some notions of cut-elimination6 in canonical calculi:

DEFINITION 46. Let G be a canonical signed calculus and let Θ be some

set of sequents.

1. A cut is called a Θ-cut if the cut formula occurs in Θ. We say that a

proof is Θ-cut-free if the only cuts in it are Θ-cuts.

2. A cut is called Θ-analytic if the cut formula is a subformula of some

formula occurring in Θ. A proof is called Θ-analytic7 if all cuts in it

are Θ-analytic.

3. A canonical calculus G admits (standard) cut-elimination if whenever

⊢G Ω, Ω has a cut-free proof in G. G admits strong cut-elimination8

if whenever Θ ⊢G Ω, Ω has in G a Θ-cut-free proof from Θ.

4. G admits strong analytic cut-elimination if whenever Θ ⊢G Ω, Ω has in

G a Θ∪{Ω}-analytic proof from Θ. G admits analytic cut-elimination

if whenever ⊢G Ω, Ω has in G a {Ω}-analytic proof.

6We note that by ‘cut-elimination’ we mean here just the existence of proofs without

(certain forms of) cuts, rather than an algorithm to transform a given proof to a cut-free

one (for the assumptions-free case the term “cut-admissibility” is sometimes used, but

this notion is too weak for our purposes).
7This is a generalization of the notion of analytic cut (see e.g. [Baaz et. al., 2001]).
8The notion of strong cut-elimination from [Avron, 1993] was studied in the context

of canonical Gentzen-type systems in [Avron and Zamansky, 2007b].
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EXAMPLE 47. Consider the following calculus G′ for a language with a

binary connective ◦ and V = {a, b, c}. The rules of G′ are as follows:

R1 = {{a : p1}}/{a, b} : p1 ◦ p2} R2 = {{a : p1}}/{b, c} : p1 ◦ p2}

In the following proof in G′, the cut in the final step is analytic:

a : p1, b : p1, c : p1

b : p1, c : p1, b : (p1 ◦ p2), c : (p1 ◦ p2)

a : p1, b : p1, c : p1

b : p1, c : p1, a : (p1 ◦ p2), b : (p1 ◦ p2)

b : p1, c : p1, b : (p1 ◦ p2)

4.1 Canonical Calculi for Nmatrices

There are numerous works on proof theory for logics based on finite ordi-

nary matrices, mainly using many-placed sequent calculi or tableaux sys-

tems with truth values as signs (cf. [Baaz et. al., 1993; Borowik, 1986;

Carnielli, 1991; Rousseau, 1967; Takahashi, 1967; Hähnle, 1999; Baaz et.

al., 2000]). In this section we present analogous canonical signed calculi

for logics based on finite Nmatrices (developed in [Avron and Konikowska,

2005]).

DEFINITION 48. Let M = 〈V,D,O〉 be an Nmatrix for L.

1. Φ ⊢dM Υ (Φ ⊢sM Υ) if v |= Υ for every M-legal dynamic (static)

valuation v which satisfies all the sets in Φ.

2. Let G be a deduction system based on sequents. G is dynamically

(statically) strongly sound for M if Θ ⊢G Ω implies that Θ ⊢dM Ω

(Θ ⊢sM Ω). G is dynamically (statically) strongly complete for M if

Θ ⊢dM Ω (Θ ⊢sM Ω) implies Θ ⊢G Ω. M is a dynamically (statically)

strongly characteristic Nmatrix for G if G is dynamically (statically)

strongly sound and strongly complete for M. (The notions of sound-

ness, completeness and a characteristic Nmatrix are defined similarly

by setting Θ = ∅.)

It should be noted that the set of designated values D in an Nmatrix

M = 〈V,D,O〉 has not been used in the semantic definitions above. This is

because the consequence relations defined above are between sets of sequents

and sequents. Recall, however, that the set D is used in Definition 18,
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where the consequence relations between sets of formulas are defined. The

following easy observations are the key for using proof systems based on

sets of signed formulas for characterizing logics induced by Nmatrices:

PROPOSITION 49. Let M = 〈V,D,O〉 be an Nmatrix for L. Then:

Γ ⊢dM ∆ iff {D : ψ | ψ ∈ Γ}∪{F : ψ | ψ ∈ ∆} ⊢dM ∅ iff ⊢dM F : Γ∪D : ∆

Γ ⊢sM ∆ iff {D : ψ | ψ ∈ Γ}∪{F : ψ | ψ ∈ ∆} ⊢sM ∅ iff ⊢sM F : Γ∪D : ∆

DEFINITION 50. The proof system SF dM for the dynamic semantics of a

finite-valued Nmatrix M = 〈V,D,O〉 is the canonical signed calculus for

(L,V) which for every n-ary ⋄, and every a1, . . . , am, b1, . . . , bk ∈ V such

that ⋄̃(a1, . . . , am) = {b1, . . . , bk}, includes the rule:

[{a1 : p1}, . . . , {am : pm}/{b1, . . . , bk} : ⋄(p1, . . . , pn)]

or in a more conventional formulation:

(⋄-D)
Ω ∪ {a1 : ϕ1} . . . Ω ∪ {am : ϕm}

Ω ∪ {b1 : ⋄(ϕ1, . . . , ϕm), . . . , bk : ⋄(ϕ1, . . . , ϕm)}

The following theorem is a generalization of a result first shown in [Avron

and Konikowska, 2005]. Its proof requires just a straightforward extension

of the argument given there:

THEOREM 51. SF dM is dynamically strongly characteristic for M.

The following corollary follows from Prop. 49 and the above theorem:

COROLLARY 52. Γ ⊢dM ∆ iff {D : ψ | ψ ∈ Γ} ∪ {F : ψ | ψ ∈ ∆} ⊢SFd
M

∅.

Moreover, if Γ and ∆ are finite then Γ ⊢dM ∆ iff ⊢SFd
M

F : Γ ∪ D : ∆.

Now we are ready to prove the general compactness theorem mentioned

immediately after Theorem 26:

THEOREM 53. (Compactness)

1. Let Θ be a set of sequents and Ω a sequent. If Θ ⊢dM Ω, then there is

some finite Θ′ ⊆ Θ, such that Θ′ ⊢dM Ω.

2. Let Γ,∆ be two sets of L-formulas. If Γ ⊢dM ∆, then there are some

finite Γ′ ⊆ Γ and ∆′ ⊆ ∆, such that Γ′ ⊢dM ∆′.
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Proof. For the first part, assume that Θ ⊢dM Ω. Then Θ ⊢SFd
M

Ω by

Theorem 51, and so there is some finite Θ′ ⊆ Θ, such that Θ′ ⊢SFd
M

Ω.

Hence (again by Theorem 51) Θ′ ⊢dM Ω. For the second part, suppose that

Γ ⊢dM ∆. Then by Proposition 49, {D : ψ | ψ ∈ Γ}∪{F : ψ | ψ ∈ ∆} ⊢dM ∅.

By the first part, there are some finite Γ′ ⊆ Γ and ∆′ ⊆ ∆, such that

{D : ψ | ψ ∈ Γ′} ∪ {F : ψ | ψ ∈ ∆′} ⊢dM ∅. By Proposition 49, Γ′ ⊢dM ∆′.

�

DEFINITION 54. The proof system SF sM for the static semantics of M is

obtained from the system SF dM by adding, for any m-ary connective ⋄ of L

and any a1, . . . , am, b ∈ V such that b ∈ ⋄̃(a1, . . . , am), the rule (⋄-S):

{Ω ∪ {aj : ϕj}}1≤j≤m {Ω ∪ {aj : ψj}}1≤j≤m Ω ∪ {b : ⋄(ψ1, . . . , ψm)}

Ω ∪ {b : ⋄(ϕ1, . . . , ϕm)}

Obviously, these (2m + 1)-premise inference rules are not very convenient.

More importantly: they are not analytic9. However, they can be simplified

at the price of extending the language with a constant a for every a ∈ V .

In that case we can also resign from repeating the inference rules from the

dynamic semantics, adding instead equivalent axioms for the constants:

DEFINITION 55. The proof system SF scM for the static semantics of the

language featuring constants consists of:

• Axioms: Each set of signed formulas containing either:

1. {a : ϕ | a ∈ V}, where ϕ is any formula in W; or

2. {a : a}, for any a ∈ V; or

3. {b1 : ⋄(a1, . . . , am), . . . , bk : ⋄(a1, . . . , am)} for any m-ary con-

nective ⋄ of L and any a1, . . . , am, b1, . . . , bk ∈ V such that

⋄̃(a1, . . . , am) = {b1, . . . , bk} .

• Inference rules: For any a1, . . . , am, b ∈ V and any m-ary connec-

tive ⋄ such that b ∈ ⋄̃(a1, . . . , am), the rule (⋄-SC):

Ω ∪ {a1 : ϕ1} . . . Ω ∪ {am : ϕm} Ω ∪ {b : ⋄(a1, . . . , am)}

Ω ∪ {b : ⋄(ϕ1, . . . , ϕm)}

9By an analytic rule we mean a rule which has some kind of a subformula property

(see, e.g. [Baaz et. al., 2000]). This should not be confused with analycity of semantics

(see Remark 12).
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REMARK 56. Examining the generic deduction systems given above, we

can easily observe that the inference rules of the static semantics really differ

from those of the dynamic semantics only in case of truly non-deterministic

values of the connectives. Indeed, if the value of the connective is a singleton,

i.e. ⋄̃(a1, . . . , am) = {b}, the rule (⋄-S) is just a weaker version of (⋄-D), and

so need not be included in SF sM. As for SF scM, the last premise of rule (⋄-SC)

is derivable in the system by virtue of the singleton set {b : ⋄(a1, . . . , am)}

being an axiom — hence it can be skipped. As the other premises of the

“static” and “dynamic” rules coincide, and so do the conclusions in such

a “singleton” case, the rules can be considered identical. in this case the

“static” Axiom 3 corresponding to such a singleton value of the connective

can be deleted too, since it is derivable from rule (⋄-D) and the basic axioms

for the constants (“static” Axiom 2).

REMARK 57. It can easily be proved that the weakening rule is admissible

in SF scM. This is the reason why it is not necessary to officially include it

among the rules of this system.

The following generalizes a theorem from [Avron and Konikowska, 2005]:

THEOREM 58. SF scM is statically strongly characteristic for M.

COROLLARY 59. Γ ⊢sM ∆ iff {D : ψ | ψ ∈ Γ} ∪ {F : ψ | ψ ∈ ∆} ⊢SF s
M

∅.

Moreover, if Γ and ∆ are finite, then Γ ⊢sM ∆ iff ⊢SF sc
M

F : Γ ∪ D : ∆.

4.2 Nmatrices for Canonical Calculi

In this subsection we provide, in a modular way, finite non-deterministic

semantics for signed canonical calculi. Moreover, we show that there is

an exact correspondence between the coherence of a canonical calculus G,

the existence of a strongly characteristic Nmatrix for G, and analytic cut-

elimination (Definition 46) in G. Then we focus on stronger notions of cut-

elimination and show that coherence is not a sufficient condition for them.

Therefore we define a stronger criterion of density which is a necessary and

sufficient condition for strong cut-elimination in canonical calculi. Finally,

we focus on the special case of Gentzen-type (two-signed) canonical calculi

and show how the correspondence theorem can be used to provide a solution

to the well-known “Tonk” problem of Prior ([Prior, 1960]).

Modular Semantics for Signed Canonical Calculi 10

10This subsection is based on [Avron and Zamansky, 2009], where all proofs can be

found.
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We start by defining semantics for the simplest canonical calculus: the one

without any canonical rules.

DEFINITION 60. G
(L,V)
0 is the canonical calculus over a language L and a

set of signs V, whose set of canonical rules is empty.

In the rest of this section we assume that our language L, the set of signs

V, and the set of designated signs D, are fixed. Accordingly, we shall write

G0 instead of G
(L,V)
0 . It is easy to see that G0 is (trivially) coherent. We

now define a strongly characteristic Nmatrix for G0. It has the maximal

degree of non-determinism in interpreting the connectives of L.

DEFINITION 61. M0 = 〈V,D,O〉 is the Nmatrix in which ⋄̃(a1, ..., an) =

V for every n-ary connective ⋄ of L and a1, ..., an ∈ V.

THEOREM 62. M0 is (dynamically) strongly characteristic for G0.

Now to the modular effects of canonical rules. The idea is that each rule

which is added to G0 imposes a certain semantic condition on refinements

of M0, while coherence guarantees that these semantic conditions are not

contradictory. This can be formalized as follows:

DEFINITION 63. For 〈a1, ..., an〉 ∈ Vn, the set of clauses C〈a1,...,an〉 is

defined as follows:

C〈a1,...,an〉 = {{a1 : p1}, {a2 : p2}, ..., {an : pn}}

DEFINITION 64. Let R be a canonical rule of the form [Θ/S : ⋄]. C(R),

the refining condition induced by R, is defined as follows:

C(R): For a1, ..., an ∈ V, if C〈a1,...,an〉∪Θ is consistent, then ⋄̃(a1, ..., an) ⊆ S.

Intuitively, a rule [Θ/S : ⋄] leads to the deletion from ⋄̃(a1, ..., an) of all the

truth-values which are not in S. If some rules [Θ1/S1 : ⋄], ..., [Θm/S2 : ⋄]

“overlap”, their overall effect leads to S1 ∩ ... ∩ Sm (the coherence of a

calculus guarantees that S1 ∩ ... ∩ Sm is not empty in such a case).
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DEFINITION 65. Let G be a canonical calculus for (L,V).

1. Define an application of a rule [Θ/S : ⋄] ofG for some n-ary connective

⋄ on a1, ..., an ∈ V as follows:

[Θ/S : ⋄](a1, ..., an) =

{
S if Θ ∪ C〈a1,...,an〉 is consistent

V otherwise

2. MG = 〈V,D,O〉 is any Nmatrix, such that for every n-ary connective

⋄ for L and every a1, ..., an ∈ V:

⋄̃MG
(a1, ..., an) =

⋂
{[Θ/S : ⋄](a1, ..., an) | [Θ/S : ⋄] ∈ G}

PROPOSITION 66. If G is coherent, then MG is well-defined.

REMARK 67. It is easy to see that for a coherent calculus G, MG is the

weakest refinement of M0, in which all the conditions induced by the rules of

G are satisfied. Thus if G′ is a coherent calculus obtained from G by adding

a new canonical rule, M′
G can be straightforwardly obtained from MG by

some deletions of options as dictated by the condition which corresponds to

the new rule.

THEOREM 68. For every coherent canonical calculus G, MG is a (dynam-

ically) strongly characteristic Nmatrix for G.

REMARK 69. The last theorem provides the converse of Theorem 51.

The next theorem is the most important result of this subsection. It

establishes a quadruple correspondence between coherence of canonical cal-

culi, non-deterministic matrices and analytic cut-elimination.

THEOREM 70. Let G be a canonical calculus. The following statements

concerning G are equivalent.

1. G is coherent.

2. G has a strongly characteristic Nmatrix.

3. G admits strong analytic cut-elimination.

4. G admits analytic cut-elimination.

What about full (strong) cut-elimination? The next example shows that

coherence is not a sufficient condition for it. Therefore a stronger condition

is provided in the definition that follows that example.
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EXAMPLE 71. Consider the calculus G′ from Example 47. G′ is obviously

coherent. A proof of the sequent {b : p1, c : p1, b : (p1 ◦ p2)} is given in that

example. However, this sequent clearly has no cut-free proof in G′.

DEFINITION 72. A canonical calculus G is dense if for every a1, ..., an ∈ V

and every two rules of G of the forms [Θ1/S1 : ⋄] and [Θ2/S2 : ⋄], such that

Θ1 ∪ Θ2 ∪ C〈a1,...,an〉 is consistent, there is some rule [Θ/S : ⋄] in G, such

that Θ ∪ C〈a1,...,an〉 is consistent and S ⊆ S1 ∩ S2.

LEMMA 73. Every dense canonical calculus is coherent.

THEOREM 74. Let G be a canonical calculus. Then the following state-

ments concerning G are equivalent:

1. G is dense.

2. G admits cut-elimination.

3. G admits strong cut-elimination.

Canonical Gentzen-type Calculi and Tonk

A very important class of canonical signed calculi is the class of canoni-

cal ordinary Gentzen-type calculi ([Avron and Lev, 2001; Avron and Lev,

2005]), i.e. calculi employing ordinary sequents of the form Γ ⇒ ∆. As

noted above, such calculi can be thought of as a special case of canonical

signed calculi in which the set V of signs is {t, f}, and D is {t}. For this par-

ticular class, the criteria of coherence and density can be simplified, because

the next proposition can easily be proved:

PROPOSITION 75. A canonical ordinary Gentzen-type calculus G is co-

herent iff for every two canonical rules of G of the form Θ1/{t} : ⋄ and

Θ2/{f} : ⋄, the set of clauses Θ1 ∪Θ2 is classically inconsistent (and so the

empty sequent can be derived from it using cuts). Moreover, such a calculus

is dense iff it is coherent.

The following characterization theorem11 easily follows from Theorems

70, 74, and Proposition 75:

THEOREM 76. Let G be a canonical calculus with the set of signs V =

{t, f}. Then the following statements concerning G are equivalent:

1. G is coherent.

11With the exception of the last item (concerning strong cut-elimination), this theorem

was originally proved in [Avron and Lev, 2005].
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2. G is non-trivial.

3. G has a characteristic two-valued Nmatrix.

4. G admits cut-elimination.

5. G admits strong cut-elimination.

Theorem 76 was used in [Avron and Lev, 2001; Avron and Lev, 2005] to

provide a complete solution for the old “Tonk” problem of Prior in the mul-

tiple conclusion framework (the single conclusion case is handled in [Avron,

2010]). In [Prior, 1960] Prior strongly challenged the above mentioned

Gentzen’s thesis that the semantic meaning of a connective is determined

by its introduction and elimination rules. He did that by introducing his fa-

mous binary “connective” Tonk (denoted below by T), which has two rules

of the “ideal” type. The introduction rule allows to infer ϕTψ from ϕ. The

elimination rule allows to infer ψ from ϕTψ. In the presence of Tonk, every

formula can be derived from any other formula, making trivial the “logic”

that is “defined” by any system which includes this “connective”. Prior’s

paper made it clear that not every combination of “ideal” introduction and

elimination rules can be used for defining the semantic meaning of a con-

nective, and some constraints should be imposed on the set of rules. Such a

constraint was indeed suggested by Belnap in [Belnap, 1962]: the rules for a

connective ⋄ should be conservative, in the sense that if T ⊢ ψ is derivable

using them, and ⋄ does not occur in T ∪{ψ}, then T ⊢ ψ can also be derived

without using the rules for ⋄. However, Belnap did not provide any effective

necessary and sufficient criterion for checking whether a given set of rules is

conservative in the above sense. Moreover: he formulated the condition of

conservativity only with respect to the basic deduction framework, in which

no connectives are assumed. Accordingly, nothing in what he wrote excludes

the possibility of a system G having two connectives, each of them “defined”

by a set of rules which is conservative over the basic system, while G itself

is not conservative over it. To prevent this situation one should demand a

much stronger conservativity condition than Belnap’s, and it might not even

be clear how it should be formulated. Later attempts of solutions of the

Tonk problem insisted on closer connections between the introduction and

the elimination rules for a given connective than those implicit in Belnap’s

condition of conservativity. Usually it is demanded that the introduction

and elimination rules should precisely “match” (see, e.g., [Sundholm, 2002;

Hodges, 2001]) in the sense that the elimination rules could be derived from

the introduction rules by some syntactic procedure. From Theorem 76 it
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follows that this condition is too strong. What should be required from the

set of rules is only coherence, which is an absolute (and minimal) condition

for non-triviality. Tonk’s rules indeed do not meet this condition: in the

framework of canonical Gentzen-type systems its rules are translated into

the following pair of rules: {{f : p1}}/{f} : T and {{t : p2}}/{t} : T. This

pair is not coherent, since the set {{f : p1}, {t : p2}} is classically consistent.

It is no wonder therefore that the resulting calculus is inconsistent. On the

other hand every coherent set of canonical rules does indeed define a unique

non-deterministic connective over {t, f}. This proves Gentzen’s thesis at

least in the multiple-conclusion canonical case. For further discussion and

generalizations, we refer the reader to [Avron, 2010].

5 USING NMATRICES FOR NON-CANONICAL SYSTEMS

In the previous section we have applied finite Nmatrices in a modular way

to characterize canonical calculi. The goal of this section is to show that the

modular approach can be further extended and fruitfully applied (at least

in many important cases) also to non-canonical Gentzen-type calculi. As

our example we take the most common type of non-canonical rules that can

be found in the literature: those which involve a combination of negation

with other connectives. We investigate the semantic effects of rules of this

type in the context of two major families of non-canonical Gentzen-type

calculi: those that are obtained from the positive fragments of classical logic

and intuitionistic logic by adding various natural Gentzen-type rules for

negation. Not surprisingly, while Nmatrices suffice for providing adequate

semantics for the first family, for the second one we need a combination of

Nmatrices with intuitionistic Kripke frames. We demonstrate the power of

this semantic tool by using it for solving the following important problem:

given a system from the second family, determine whether or not it is a

conservative extension of the positive fragment of intuitionistic logic.

The material of this section is based on [Avron, 2007b; Avron, 2005a].

5.1 Extensions of Classical Logic

In this section L denotes the propositional language {∧,∨,⊃,¬}, while Lff

is the language obtained from L by adding the constant ff . LK+ denotes

positive classical logic taken over L, and LK denotes positive classical logic

taken over Lff . G[LK+], the standard Gentzen-type (canonical) for LK+,

is given in Figure 2. G[LK], the Gentzen-type system for LK, is obtained
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from G[LK+] by adding the sequent ff ⇒ as an additional axiom.

Axioms:

A⇒ A

Structural Rules:

Cut, Weakening

Logical Rules:

Γ ⇒ ∆, ψ ϕ,Γ ⇒ ∆

Γ, ψ ⊃ ϕ⇒ ∆
(⊃⇒)

Γ, ψ ⇒ ϕ,∆

Γ ⇒ ψ ⊃ ϕ,∆
(⇒⊃)

Γ, ψ, ϕ⇒ ∆

Γ, ψ ∧ ϕ⇒ ∆
(∧ ⇒)

Γ ⇒ ψ,∆ Γ ⇒ ϕ,∆

Γ ⇒ ψ ∧ ϕ,∆
(⇒ ∧)

Γ, ψ ⇒ ∆ Γ, ϕ⇒ ∆

Γ, ψ ∨ ϕ⇒ ∆
(∨ ⇒)

Γ ⇒ ψ,ϕ,∆

Γ ⇒ ψ ∨ ϕ,∆
(⇒ ∨)

Figure 2. The system LK

The table in Figure 3 lists the most common and natural logical rules for

formulas involving negation and its combinations with other connectives

(along with corresponding Hilbert-style axioms and Gentzen-style rules).

Note that only the first two rules in this table are canonical.

DEFINITION 77. Denote by NIR the set of rules in Figure 3. For a logic

L and S ⊆ NIR, let L[S] be the extension of L by S.

CONVENTION 78. For a rule R, denote by HR its corresponding Hilbert-

style axiom, and by GR its corresponding Gentzen-style rule.

REMARK 79. It is easy to see that for every S ⊆ NIR and L ∈ {LK+, LK},

a sound and complete Hilbert-style axiomatization for L[S] can be obtained

by adding to some axiomatization of L the set of axioms {HR| R ∈ S},

and similarly for Gentzen-type axiomatizations. We denote the resulting

systems by HL[S] and GL[S], respectively.

Now we provide semantics for the systems introduced in Defn. 77. The

basic idea is to let the value assigned to a sentence ϕ provide information

not only about the truth/falsity of ϕ, but also about the truth/falsity of its

negation. This leads to the use of elements from {0, 1}2 as our truth-values,

where the intended intuitive meaning of v(ϕ) = 〈x, y〉 is the following:
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Rule Abstract form Hilbert-style axiom Gentzen-style rule

(¬ ⇒) ¬ϕ, ϕ ⊢ ¬ϕ ⊃ (ϕ ⊃ ψ)

Γ ⇒ ∆, ϕ

Γ,¬ϕ ⇒ ∆

(⇒ ¬) ⊢ ¬ϕ, ϕ ¬ϕ ∨ ϕ

Γ, ϕ ⇒ ∆

Γ ⇒ ∆,¬ϕ

(¬¬ ⇒) ¬¬ϕ ⊢ ϕ ¬¬ϕ ⊃ ϕ

Γ, ϕ ⇒ ∆

Γ,¬¬ϕ ⇒ ∆

(⇒ ¬¬) ϕ ⊢ ¬¬ϕ ϕ ⊃ ¬¬ϕ

Γ ⇒ ∆, ϕ

Γ ⇒ ∆,¬¬ϕ

(¬ ⊃⇒)1 ¬(ϕ ⊃ ψ) ⊢ ϕ ¬(ϕ ⊃ ψ) ⊃ ϕ

Γ, ϕ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

(¬ ⊃⇒)2 ¬(ϕ ⊃ ψ) ⊢ ¬ψ ¬(ϕ ⊃ ψ) ⊃ ¬ψ

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ⊃ ψ) ⇒ ∆

(⇒ ¬ ⊃) ϕ,¬ψ ⊢ ¬(ϕ ⊃ ψ) ϕ ⊃ (¬ψ ⊃ ¬(ϕ ⊃ ψ))

Γ ⇒ ∆, ϕ Γ ⇒ ¬ψ

Γ ⇒ ∆,¬(ϕ ⊃ ψ)

(¬∨ ⇒)1 ¬(ϕ ∨ ψ) ⊢ ¬ϕ ¬(ϕ ∨ ψ) ⊃ ¬ϕ

Γ,¬ϕ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(¬∨ ⇒)2 ¬(ϕ ∨ ψ) ⊢ ¬ψ ¬(ϕ ∨ ψ) ⊃ ¬ψ

Γ,¬ψ ⇒ ∆

Γ,¬(ϕ ∨ ψ) ⇒ ∆

(⇒ ¬∨) ¬ϕ,¬ψ ⊢ ¬(ψ ∨ ϕ) (¬ϕ ∧ ¬ψ) ⊃ ¬(ϕ ∨ ψ)

Γ ⇒ ∆,¬ψ Γ ⇒ ∆,¬ϕ

Γ ⇒ ∆,¬(ϕ ∨ ψ)

(¬∧ ⇒) ¬(ϕ ∧ ψ) ⊢ ¬ϕ,¬ψ ¬(ϕ ∧ ψ) ⊃ (¬ϕ ∨ ¬ψ)

Γ,¬ψ ⇒ ∆ Γ,¬ϕ ⇒ ∆

Γ,¬(ϕ ∧ ψ) ⇒ ∆

(⇒ ¬∧)1 ¬ϕ ⊢ ¬(ϕ ∧ ψ) ¬ϕ ⊃ ¬(ϕ ∧ ψ)

Γ ⇒ ∆,¬ϕ

Γ ⇒ ∆,¬(ϕ ∧ ψ)

(⇒ ¬∧)2 ¬ψ ⊢ ¬(ϕ ∧ ψ) ¬ψ ⊃ ¬(ϕ ∧ ψ)

Γ ⇒ ∆,¬ψ

Γ ⇒ ∆,¬(ϕ ∧ ψ)

Figure 3. The set of rules NIR
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• x = 1 iff ϕ is “true” (i.e. v(ϕ) ∈ D ).

• y = 1 iff ¬ϕ is “true” (i.e. v(¬ϕ) ∈ D).

This interpretation of the truth-values dictates the following constraint on

any valuation v (where P1(〈x1, x2〉) = x1, and P2(〈x1, x2〉) = x2):

P1(v(¬ϕ)) = P2(v(ϕ))

In terms of Nmatrices this constraint translates into the condition:

(NEG) ¬̃a ⊆ {y | P1(y) = P2(a)}

We start our semantic investigation ofNIR with the weakest Nmatrix which

satisfies Condition (NEG) and has the standard interpretation of ⊃,∧, and

∨ (since the standard rules for these connectives are in LK+).

DEFINITION 80. Let MB
4 = 〈V4,D4,O4〉 be the following Nmatrix for L:

• V4 = {t,⊤,⊥, f}12 where:

t = 〈1, 0〉

⊤ = 〈1, 1〉

⊥ = 〈0, 0〉

f = 〈0, 1〉

• D4 = {a ∈ V4 | P1(a) = 1} = {t,⊤}

• Let V = V4, D = D4, F = V4 −D. The operations in O4 are:

¬̃a =

{
D if P2(a) = 1 (i.e. a ∈ {f,⊤})

F if P2(a) = 0 (i.e. a ∈ {t,⊥})

a⊃̃b =

{
D if a ∈ F or b ∈ D

F otherwise

a∨̃b =

{
D if a ∈ D or b ∈ D

F otherwise

a∧̃b =

{
D if a ∈ D and b ∈ D

F otherwise

12The intuition behind these four truth-values is like in Dunn-Belnap’s logic, see the

end of the Introduction.
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MBff

4 (for Lff ) is obtained from MB
4 by adding the condition: ff̃ ∈ F .

THEOREM 81. MB
4 (MBff

4 ) is a (dynamically) characteristic Nmatrix for

LK+ (LK).

Now each rule of NIR induces a semantic condition, and L[S] (L ∈

{LK+, LK}) is characterized by the simple refinement (Remark 32) of

MB
4 /M

Bff

4 , induced by the conditions that correspond to the rules in S.

DEFINITION 82. The refining conditions induced by the rules in NIR:

C(¬ ⇒) : If P1(a) = 1 then P2(a) = 0

C(⇒ ¬) : If P1(a) = 0 then P2(a) = 1

C(⇒ ¬¬) : If P1(a) = 1 then ¬̃a ⊆ {x | P2(x) = 1}

C(¬¬ ⇒) : If P1(a) = 0 then ¬̃a ⊆ {x | P2(x) = 0}

C(¬ ⊃⇒)1 : If P1(a) = 0 then a⊃̃b ⊆ {x | P2(x) = 0}

C(¬ ⊃⇒)2 : If P2(b) = 0 then a⊃̃b ⊆ {x | P2(x) = 0}

C(⇒ ¬ ⊃) : If P1(a) = 1 and P2(b) = 1 then a⊃̃b ⊆ {x | P2(x) = 1}

C(¬∨ ⇒)1 : If P2(a) = 0 then a∨̃b ⊆ {x | P2(x) = 0}

C(¬∨ ⇒)2 : If P2(b) = 0 then a∨̃b ⊆ {x | P2(x) = 0}

C(⇒ ¬∨) : If P2(a) = 1 and P2(b) = 1 then a∨̃b ⊆ {x | P2(x) = 1}

C(⇒ ¬∧)1 : If P2(a) = 1 then a∧̃b ⊆ {x | P2(x) = 1}

C(⇒ ¬∧)2 : If P2(b) = 1 then a∧̃b ⊆ {x | P2(x) = 1}

C(¬∧ ⇒) : If P2(a) = 0 and P2(b) = 0 then a∨̃b ⊆ {x | P2(x) = 0}

As an example how these conditions have been derived, take (¬ ⊃⇒)2.

This rule is valid if ¬(a ⊃ b) is in F whenever ¬b is in F (where x ⊃ y

denotes some element in x⊃̃y, and ¬x denotes some element in ¬̃x). This is

equivalent to: if P2(b) = 0 then P2(a ⊃ b) = 0, which is exactly C(¬ ⊃⇒)2.

REMARK 83. With the obvious extensions of P1 and P2, The above for-

mulation of the conditions in C(NIR) can be applied whenever the truth-

values are finite sequences of 0’s and 1’s, the designated elements are those

for which the first component is 1, and condition (NEG) is satisfied. How-

ever, these conditions can be simplified in case exactly {t, f,⊤,⊥} are used.

Thus the conditions involving ¬ and ⊃ can be reformulated as follows:
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C(¬ ⇒) : Use only t, f and ⊥

C(⇒ ¬) : Use only t, f and ⊤

C(⇒ ¬¬) : ¬̃t = {f}, ¬̃⊤ = {⊤}

C(¬¬ ⇒) : ¬̃f = {t}, ¬̃ ⊥= {⊥}

C(¬ ⊃⇒)1 : If a ∈ F then a⊃̃b ⊆ {t,⊥}

C(¬ ⊃⇒)2 : If b ∈ {t,⊥} then a⊃̃b ⊆ {t,⊥}

C(⇒ ¬ ⊃) : If a ∈ D and b ∈ {⊤, f} then a⊃̃b ⊆ {⊤, f}

Moreover, if we consider only simple refinements of MB
4 , then the three last

conditions can be further transformed into more specific ones:

C(¬ ⊃⇒)1 : If a ∈ F then a⊃̃b = {t}

C(¬ ⊃⇒)2 : If b = t then a⊃̃b = {t}

If b = ⊥ and a ∈ F then a⊃̃b = {t}

If b = ⊥ and a ∈ D then a⊃̃b = {⊥}

C(⇒ ¬ ⊃) : If a ∈ D and b ∈ {⊤, f} then a⊃̃b = {b}

DEFINITION 84.

1. For S ⊆ NIR, let C(S) = {Cr | r ∈ S}

2. For S ⊆ NIR, let MS (Mff
S ) be the weakest simple refinement of

MB
4 (MBff

4 ) in which the conditions in C(S) are all satisfied. In other

words: MS = 〈VS ,DS ,OS〉, where VS is the set of values from V4

which are not rejected by any condition in S, DS = D4 ∩ VS , and

for any connective ⋄ and ~x ∈ VnS (where n is the arity of ⋄), the

interpretation in O of ⋄ assigns to ~x the set of all the values in ⋄̃(~x)

which are not forbidden by any condition in C(S) (it is easy to check

that for S ⊆ NIR this set is never empty. The same is true for DS).

EXAMPLE 85.

1. Let Cmin = LK+[{(⇒ ¬), (¬¬ ⇒)}]. Then MCmin
is the three-valued

Nmatrix13 〈V,D,O〉, where:

• V = {t,⊤, f} (the rule (⇒ ¬) causes the deletion of ⊥)

13Cmin is studied in [Carnielli and Marcos, 1999]. The 3-valued Nmatrix for this logic

described here was first introduced in [Avron and Lev, 2005].
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• D = {t,⊤}

• The operations in O are:

¬̃a =





D if a = ⊤

{f} if a = t

{t} if a = f

a⊃̃b =

{
D if a = f or b ∈ D

{f} otherwise

a∨̃b =

{
D if a ∈ D or b ∈ D

{f} otherwise

a∧̃b =

{
D if a, b ∈ D

{f} otherwise

2. Let FOUR = NIR − {(¬ ⇒), (⇒ ¬)}. Then MFOUR is a 4-valued

deterministic Nmatrix (i.e. an ordinary matrix). The operations in

this matrix are defined as follows (where a ≤t⊥,⊤ ≤t t): 14

¬̃t = f ¬̃f = t ¬̃⊤ = ⊤ ¬̃ ⊥=⊥

a⊃̃b =

{
t if a 6∈ D

b otherwise

a∧̃b = inf≤t
{a, b} a∨̃b = sup≤t

{a, b}

Now the modular character of the semantics of Nmatrices allows us to

formulate and prove together soundness and completeness theorems for 213

systems (most of which define different logics):

THEOREM 86. For S ⊆ NIR, MS (Mff
S ) is a (dynamically) characteristic

Nmatrix for LK+[S] (LK[S]).

Proof. We give an outline of the completeness part. So let L ∈ {LK+, LK},

and assume that T 6⊢L[S] ψ0. We construct a model of T in MS which is

not a model of ψ0. For this extend T to a maximal set T ∗ of formulas such

that T ∗ 6⊢L[S] ψ0. Then ϕ 6∈ T ∗ iff T ∗, ϕ ⊢L[S] ψ0. Define now a valuation

v by v(ϕ) = 〈x(ϕ), y(ϕ)〉, where:

x(ϕ) =

{
1 ϕ ∈ T ∗

0 ϕ 6∈ T ∗ y(ϕ) =

{
1 ¬ϕ ∈ T ∗

0 ¬ϕ 6∈ T ∗

14Without e⊃, MFOUR is the famous 4-valued matrix of Dunn and Belnap ([Dunn,

1976; Belnap, 1977]). The connective e⊃ of O4 was introduced in [Arieli and Avron, 1996].

The soundness and completeness of the logic FOUR for MFOUR was also first stated

and proved there.
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It is not difficult to see that v is a legal valuation in MB
4 . To show that

it is also a legal valuation in MS , we need to check that it respects the

conditions in C(S) (as formulated in Remark 83). We do some of the cases,

leaving the rest for the reader:

C(¬ ⇒) : Assume (¬ ⇒) ∈ S. Then there can be no sentence ϕ such that

{ϕ,¬ϕ} ⊆ T ∗. Hence v(ϕ) 6= ⊤ for all ϕ.

C(⇒ ¬) : Assume (⇒ ¬) ∈ S, but v(ϕ) =⊥ for some ϕ. Then ϕ 6∈ T ∗ and

¬ϕ 6∈ T ∗. It follows that T ∗, ϕ ⊢L[S] ψ0 and T ∗,¬ϕ ⊢L[S] ψ0. Hence

T ∗ ⊢L[S] ϕ ⊃ ψ0, and T ∗ ⊢L[S] ¬ϕ ⊃ ψ0. This contradicts the fact

that T ∗ 6⊢L[S] ψ0, since ϕ ⊃ ψ0,¬ϕ ⊃ ψ0 ⊢L[S] ψ0 in case (¬ ⇒) ∈ S.

C(⇒ ¬¬) : Assume (⇒ ¬¬) ∈ S.

• Suppose v(ϕ) = t. Then ϕ ∈ T ∗ and ¬ϕ 6∈ T ∗. By (⇒ ¬¬), also

¬¬ϕ ∈ T ∗. Hence v(¬ϕ) = f by definition of v.

• Suppose v(ϕ) = ⊤. Then ϕ ∈ T ∗ and ¬ϕ ∈ T ∗. By (⇒ ¬¬),

also ¬¬ϕ ∈ T ∗. Hence v(¬ϕ) = ⊤ by definition of v.

C(¬ ⊃⇒)1 : Assume (¬ ⊃⇒)1 ∈ S. Suppose that v(ϕ) 6∈ D. Then ϕ 6∈ T ∗,

and so also ¬(ϕ ⊃ ψ) 6∈ T ∗. It follows that v(ϕ ⊃ ψ) ∈ {t,⊥}.

Obviously, v is a model of T in MS which is not a model of ψ0. �

The following corollary is implied by the above theorem and the analycity

of Nmatrices:

COROLLARY 87. LK+[S] and LK[S] are decidable for every S ⊆ NIR.

5.2 Extensions of Intuitionistic Logic

Let LJ denote propositional intuitionistic logic (over {∧,∨,⊃,ff}), and let

LJ+ be its positive fragment (i.e. its {∧,∨,⊃}-fragment). Next we investi-

gate extensions of LJ+ and LJ by a negation connective ¬.15 Now, it is well

known that it is impossible to conservatively add to LJ+ or LJ a connective

¬ which is both explosive (i.e.: ¬A,A ⊢ B for all A,B) and satisfies the law

15Positive intuitionistic logic might be a better starting point for investigating negations

than positive classical logic (especially constructive negations), because its valid sentences

are all intuitively correct. LK+, in contrast, includes counterintuitive tautologies like

(A ∧ B ⊃ C) ⊃ (A ⊃ C) ∨ (B ⊃ C) or A ∨ (A ⊃ B). Moreover: the classical natural

deduction rules for the positive connectives (∧,∨ and ⊃) define LJ+, not LK+. It is

only with the aid of the classical rules for (the classical) negation that one can prove the

counterintuitive positive tautologies mentioned above.
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of excluded middle LEM. With such an addition we get classical logic. The

intuitionists indeed reject LEM, retaining the explosive nature of negation

(which is usually defined by ∼ ϕ =Def ϕ ⊃ ff). In this subsection we show

that this is not the only possible choice. The main problem we shall solve

is: Which of the logics LJ+[S] (S ⊆ NIR) is conservative over LJ+ (and

similarly for LJ)? We believe that each such logic is entitled to be called

“a logic with a constructive negation”.

REMARK 88. G[LJ+] (G[LJ ]), a multiple-conclusioned Gentzen-type sys-

tem for LJ+ (LJ), is obtained from G[LK+] (G[LK]) by replacing the

(⇒⊃) rule with the following impure (single-conclusion) rule:

Γ, A⇒ B

Γ ⇒ A ⊃ B
(⇒⊃)

It is again easy to see that for every S ⊆ NIR and L ∈ {LJ+, LJ}, a

Gentzen-type system GL[S] which is sound and complete for L[S] can be

obtained by adding to GL the Gentzen-type versions of the rules in S. In

what follows we identify L[S] and GL[S].

Like in the classical case, we start by generalizing the standard, two-

valued semantics of LJ+ (or LJ). Recall that this semantics is usually

provided by the class of all Kripke frames of the form W = 〈W,≤, v〉 16,

where 〈W,≤〉 is a nonempty partially ordered set (of “worlds”), and v is a

function from W × FrmL to V that satisfies the following conditions:

1. If y ≥ x and v(x, ϕ) = t then v(y, ϕ) = t.17

2. • v(x, ϕ ∧ ψ) = t iff v(x, ϕ) = t and v(x, ψ) = t

• v(x, ϕ ∨ ψ) = t iff v(x, ϕ) = t or v(x, ψ) = t

• v(x,ff) = f (if ff is in the language).

3. v(x,ff) = f (if ff is in the language).

4. v(x, ϕ ⊃ ψ) = t iff v(y, ψ) = t for every y ≥ x such that v(y, ϕ) = t

16In the literature by a “frame” one usually means just the pair 〈W,≤〉. Here we have

found it convenient to use this technical term differently, so that the valuation v is an

integral part of it.
17For the language of LJ it suffices to demand this condition for atomic formulas only;

then one can prove that every formula has this property. This is not the case for the

nondeterministic generalizations with ¬ that we present below.



266 ARNON AVRON AND ANNA ZAMANSKY

Obviously, if W = 〈W,≤, v〉 is a frame, then for every x ∈ W the function

λϕ.v(x, ϕ) behaves like an ordinary classical valuation with respect to all

the connectives except ⊃. The treatment of ⊃ is indeed what distinguishes

between classical logic and intuitionistic logic. This observation leads to the

following nondeterministic generalization of intuitionistic Kripke frames:

DEFINITION 89. Let ⊃ be one of the connectives of a propositional lan-

guage L, and let M = 〈V,D,O〉 be an Nmatrix for L − {⊃}. An M-frame

for L is a triple W = 〈W,≤, v〉 such that:

1. 〈W,≤〉 is a nonempty partially ordered set

2. v : W × FrmL → V satisfies the following conditions:

• Persistence: if y ≥ x and v(x, ϕ) ∈ D then v(y, ϕ) ∈ D

• For every x ∈ W , λϕ.v(x, ϕ) is a legal M-valuation.

• v(x, ϕ ⊃ ψ) ∈ D iff v(y, ψ) ∈ D for every y ≥ x such that

v(y, ϕ) ∈ D

We say that a formula ϕ is true in a world x ∈W of a frame W if v(x, ϕ) ∈ D.

A sequent Γ ⇒ ∆ is valid in W if for every x ∈ W there is either ϕ ∈ Γ

such that ϕ is not true in x, or ψ ∈ ∆ such that ψ is true in x.

Obviously, if M1 is a refinement of M2, then any M1-frame is also an

M2-frame, and every sequent valid in M2 is also valid in M1.

DEFINITION 90.

1. Let M = 〈V,D,O〉 be an Nmatrix for a language which includes the

language of LJ+. We say that M is suitable for LJ+ if the following

conditions are satisfied (where again V − D is denoted by F):

• If a ∈ D and b ∈ D then a ∧ b ⊆ D

• If a 6∈ D then a ∧ b ⊆ F

• If b 6∈ D then a ∧ b ⊆ F

• If a ∈ D then a ∨ b ⊆ D

• If b ∈ D then a ∨ b ⊆ D

• If a 6∈ D and b 6∈ D then a ∨ b ⊆ F

• If b ∈ D then a ⊃ b ⊆ D

• If a ∈ D and b 6∈ D then a ⊃ b ⊆ F
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2. Let M = 〈V,D,O〉 be an Nmatrix for a language which includes the

language of LJ . We say that M is suitable for LJ if it is suitable for

LJ+, and the following condition is satisfied:

• ff ⊆ F

THEOREM 91. Assume W is an M-frame, where M is suitable for LJ+

(LJ). Then any sequent provable in LJ+ (LJ) is valid in W.

Below we concentrate on the systems LJ+(S) for S ⊆ NIR (obtaining

similar results for LJ(S) causes no further difficulties).

DEFINITION 92. Let MIB
4 be the following Nmatrix 〈V,D,O〉 for L:

• V = {t,⊤, f,⊥}

• D = {t,⊤}

• a ⊃ b =





D b ∈ D

F b 6∈ D, a ∈ D

V a, b ∈ F

a ∨ b =

{
D a ∈ D or b ∈ D

F otherwise

a ∧ b =

{
D a, b ∈ D

F otherwise

¬t = ¬ ⊥= F ¬f = ¬⊤ = D

REMARK 93. The only difference between MIB
4 and MB

4 (recall Defn. 80)

is that in MIB
4 we have a ⊃ b = V in case a, b ∈ F = V − D, while in MB

4

a ⊃ b = D in this case.

PROPOSITION 94. Let M be a refinement of MIB
4 . Then LJ+ is sound

for every M-frame.

Now we turn to the effects of the various negation rules in the context of

our semantics for LJ+ and its extensions. The conditions we associated with

these conditions in the previous subsection lead this time to refinements of

MIB
4 on which the corresponding frames are based.

DEFINITION 95. For S ⊆ NIR, let MI
S be the weakest refinement of

MIB
4 in which the conditions in C(S) are satisfied.18

18It is advisable here to read again the first part of Remark 83.
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THEOREM 96. If S ⊆ NIR then LJ+(S) is sound and strongly complete

for MI
S-frames: Γ ⊢LJ+(S) ψ iff for every MI

S-frame W = 〈W,≤, v〉, and

every x ∈W , if v(x, ϕ) ∈ D for every ϕ ∈ Γ then also v(x, ψ) ∈ D.

EXAMPLE 97. The system Cω of da Costa ([da Costa, 1974]) is identical

to LJ+({(⇒ ¬), (¬¬ ⇒)}). Theorem 96 provides illuminating semantics

for it which is much simpler than the Kripke-type semantics given in [Baaz,

1986] and the bivaluations semantics of [Loparić, 1986] (and can be used

for a decision procedure — see Corrolary 104 below). Here is a compact

description of this semantics: A frame for Cω is a triple 〈W,≤, v〉 such that

〈W,≤〉 is a nonempty partially ordered set, and v : W × F → {t, f,⊤} is a

valuation which satisfies the following conditions:

• If x ≤ y then v(x, ϕ) ≤k v(y, ϕ)

• v(x, ϕ ∧ ψ) = f iff v(x, ϕ) = f or v(x, ψ) = f

• v(x, ϕ ∨ ψ) = f iff v(x, ϕ) = f and v(x, ψ) = f

• v(x, ϕ ⊃ ψ) = f iff for some y ≥ x, v(y, ϕ) 6= f while v(y, ψ) = f

• v(x,¬ϕ) = f iff v(x, ϕ) = t

• If v(x, ϕ) = f then v(x,¬ϕ) = t

A frame is a model of a formula ϕ if v(x, ϕ) 6= f for every x ∈W .

Theorem 96 does not have much value in itself. Indeed, it does not

guarantee that LJ+(S) is conservative over LJ+, and neither does it provide

a decision procedure for LJ+(S). The reason for this is that the current

semantic framework (of Nmatrices combined with intuitionistic frames) is

not always analytic (recall Remark 12). Next we provide a definition of this

notion which is suitable for the present context. For this we need first the

following important observation.

PROPOSITION 98. Let M be a refinement of MIB
4 . Then the persistence

condition for M is equivalent to the following monotonicity condition:

• If x ≤ y then v(x, ϕ) ≤k v(y, ϕ), where the partial order ≤k on V4 is

defined by: ⊥≤k t, f ≤k ⊤. 19

19≤k had a crucial role already in [Belnap, 1977]. The structure obtained by equipping

V4 with both ≤t and ≤k is nowadays known as the basic (distributive) bilattice (see
[Ginsberg, 1988; Fitting, 1994; Arieli and Avron, 1996]).
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Analycity for the semantics of frames can now be defined as follows:

DEFINITION 99. Let M = MI
S for some S ⊆ NIR.

1. An M-semiframe is a triple W = 〈W,≤, v′〉 such that:

(a) 〈W,≤〉 is a nonempty partially ordered set.

(b) v′ : W ×F ′ → V is a partial valuation such that:

• F ′ is a subset of FrmL which is closed under subformulas.

• v′ satisfies the monotonicity condition: if y ≥ x and ϕ ∈ F ′,

then v′(x, ϕ) ≤k v′(y, ϕ).

• v′ respects M: If ⋄(ψ1, . . . , ψn) ∈ F ′, then v′(x, ⋄(ψ1, . . . , ψn))

is in ⋄̃(v′(x, ψ1), . . . , v′(x, ψn)).

• If ϕ ⊃ ψ ∈ F ′ then v′(x, ϕ ⊃ ψ) ∈ D iff v′(y, ψ) ∈ D for

every y ≥ x such that v′(y, ϕ) ∈ D.

2. MI
S is analytic if for any MI

S- semiframe 〈W,≤, v′〉 there exists an

MI
S-frame 〈W,≤, v〉 such that v extends v′.

The next theorem provides the conditions under which MI
S is analytic:

THEOREM 100. MI
S (S ⊆ NIR) is analytic iff either {(⇒ ¬), (¬ ⇒)} ⊆ S

or {(⇒ ¬), (¬ ⊃⇒)1} 6⊆ S.

REMARK 101. In [Avron, 2005a] it is shown that Theorem 100 would have

failed had the definition of a semiframe included the persistence condition

rather than the monotonicity condition.

REMARK 102. The problem with the combination {(⇒ ¬), (¬ ⊃⇒)1} is

that the condition imposed by (¬ ⊃⇒)1 is not consistent with the condition

of monotonicity in case ⊥ is not available.

As an immediate application, Theorem 100 can be used to determine for

which S ⊆ NIR the system LJ+(S) is conservative over LJ+. This is done

in the next theorem. The proof of this theorem nicely demonstrates how our

semantic framework can be used, as well as the crucial role of the analycity

property. Therefore we include here this proof.

THEOREM 103. Let S ⊆ NIR. If neither {(⇒ ¬), (¬ ⇒)} ⊆ S nor

{(⇒ ¬), (¬ ⊃⇒)1} ⊆ S, then LJ+(S) is a conservative extension of LJ+.

Otherwise LJ+(S) = LK+(S).

Proof. It is easy to see that the two conditions are necessary. Let SN =

NIR − {(⇒ ¬)}, SP = NIR − {(¬ ⇒), (¬ ⊃⇒)1}. To show that the
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two conditions together are also sufficient, it suffices to show that both

LJ+(SN) and LJ+(SP ) are conservative over LJ+. So let ψ be a sentence

in the language of LJ+ which is not provable in LJ+. We show that ψ

is provable in neither LJ+(SN) nor LJ+(SP ). Since 6⊢LJ+ ψ, there is an

ordinary two-valued Kripke frame 〈W,≤, u〉 (where u : W×FrmL → {t, f})

in which ψ is not valid (i.e. u(x0, ψ) = f for some x0 ∈W ). Now we define

the corresponding semiframes for LJ+(SN) and LJ+(SP ). Let F ′ be the

set of formulas in the language of LJ+.

LJ+(SN): Define v′N on W ×F ′ by:

v′N (x, ϕ) =

{
t if u(x, ϕ) = t

⊥ if u(x, ϕ) = f

It is straightforward to check that 〈W,≤, v′N 〉 is an MIP [SN ]-semiframe

(note that any condition concerning ¬ is vacuously satisfied, since

there is no sentence of the form ¬ϕ in F ′).

LJ+(SP ): Define v′P on W ×F ′ by:

v′P (x, ϕ) =

{
⊤ if u(x, ϕ) = t

f if u(x, ϕ) = f

Again, it is easy to check that 〈W,≤, v′P 〉 is an MIP [SP ]-semiframe.

By Theorem 100, 〈W,≤, v′N 〉 and 〈W,≤, v′P 〉 can respectively be extended

to an MIP [SN ]-frame 〈W,≤, vN 〉 and an MIP [SP ]-frame 〈W,≤, vP 〉. Since

vN (x0, ψ) = v′N (x0, ψ) =⊥, ψ is not valid in 〈W,≤, v′N 〉, and so it is not

provable in LJ+(SN). Similarly, vP (x0, ψ) = v′P (x0, ψ) = f . Hence ψ is

not valid in 〈W,≤, v′P 〉, and so is not provable in LJ+(SP ). �

Theorems 100, 103 and Corollary 87 immediately entail:

COROLLARY 104. LJ+(S) is decidable for every S ⊆ NIR.

It follows from Theorem 103 that LJ+(SN) and LJ+(SP ) are the two

maximal logics in the family {LJ+(S) | S ⊆ NIR} which are conservative

extensions of constructive positive logic. Now the first is the well-known

system N of Nelson ([Almukdad and Nelson, 1984]) and von Kutschera

([von Kutschera, 1969]). The other, in contrast, is new. However, it is a

very attractive system for constructive negation. First: it is paraconsistent

(i.e.: a single contradiction does not imply everything in it). Second: LEM

is valid in it. In fact, LJ+(SP ) is obtained from N by replacing two of
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its axioms by LEM. Now, while LEM is very intuitive, the two axioms it

replaces are not. Indeed, one of them, ¬ϕ ⊃ (ϕ ⊃ ψ), intuitively means

that if ϕ is false then it implies everything. The second, ¬(ϕ ⊃ ψ) ⊃ ϕ,

intuitively means that if there is something that ϕ does not imply, then ϕ

should be true (i.e.: it cannot be false). Obviously, these two principles are

similar — and counterintuitive. It is no wonder that from a constructive

point of view, each of them is inconsistent with LEM, and is rejected in

LJ+(SP ). It is also worth noting that despite the paraconsistent nature of

LJ+(SP ), the basic intuitive law of contradiction ¬(ϕ ∧ ¬ϕ) is valid in it.

Next we turn to another application of Theorems 96 and 100: elimi-

nations of cuts. It was shown in [Avron, 2007b] that in general the cut-

elimination theorem does not hold for the Gentzen-type systems presented

in this subsection. Moreover: examples have been given there of a subset S

of NIR and a sequent which is provable in LJ+(S), but any proof of it there

should contain a non-analytic cut. This is perhaps not surprising, since our

logical rules themselves do not have the strict subformula property: some

of them involve negations of subformulas of their conclusion, even though

those negations are not subformulas themselves. Therefore, it is reasonable

to expect the same from cuts. This leads to the following theorem from
[Avron, 2005a]:

THEOREM 105. Assume that S ⊆ NIR, and {(⇒ ¬), (¬ ⊃⇒)1} 6⊆ S.

Then for every sequent s in the language of LJ+ there is either a finite

MI
S-frame in which s is not valid, or a proof in LJ+(S) in which every cut

is either on a subformula of s or on a negation of such a subformula.

6 NMATRICES FOR LOGICS OF FORMAL INCONSISTENCY

In this section we apply the framework of Nmatrices to provide modular

semantics for yet another family of non-classical logics: da Costa’s para-

consistent logics. A paraconsistent logic is a logic which allows non-trivial

inconsistent theories. One of the oldest and best known approaches to the

problem of designing useful paraconsistent logics is da Costa’s approach.

This approach is based on two main ideas. The first is to limit the applica-

bility of the classical (and intuitionistic) rule ¬ϕ,ϕ ⊢ ψ to the case where ϕ

is “consistent”. The second is to express this assumption of consistency of ϕ

within the language. The easiest way to implement these ideas is to include

in the language a special connective ◦, with the intended meaning of ◦ϕ

being “ϕ is consistent”. Then one can explicitly add the assumption of the

consistency of ϕ to the problematic (from a paraconsistent point of view)
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Name of rule Abstract form Hilbert-style axiom

(b) ◦ϕ,¬ϕ,ϕ ⊢ (◦ϕ ∧ ¬ϕ ∧ ϕ) ⊃ ψ

(k1) ⊢ ◦ϕ,ϕ ◦ϕ ∨ ϕ

(k2) ⊢ ◦ϕ,¬ϕ ◦ϕ ∨ ¬ϕ

(i1) ¬◦ϕ ⊢ ϕ ¬◦ϕ ⊃ ϕ

(i2) ¬◦ϕ ⊢ ¬ϕ ¬◦ϕ ⊃ ¬ϕ

(a¬) ◦ϕ ⊢ ◦¬ϕ ◦ϕ ⊃ ◦¬ϕ

(a⋄) ◦ϕ, ◦ψ ⊢ ◦(ϕ ⋄ ψ) ◦ϕ ⊃ (◦ψ ⊃ ◦(ϕ ⋄ ψ))

(o1
⋄) ◦ϕ ⊢ ◦(ϕ ⋄ ψ) ◦ϕ ⊃ ◦(ϕ ⋄ ψ)

(o2
⋄) ◦ψ ⊢ ◦(ϕ ⋄ ψ) ◦ψ ⊃ ◦(ϕ ⋄ ψ)

(l) ¬(ϕ ∧ ¬ϕ) ⊢ ◦ϕ ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ

Figure 4. Schemata involving ◦

rule, getting the rule called (b) below. Other rules concerning ¬ and ◦ can

then be added, leading to a large family of logics known as “Logics of For-

mal Inconsistency” (LFIs - see [da Costa, 1974; Carnielli and Marcos, 2002;

Carnielli et. al., 2007]). In this chapter we investigate those that are ob-

tained using the rules in NIR, as well as the main rules involving the

consistency operator that have been studied in the literature on LFIs. The

latter rules are listed in Figure 4 (in which ⋄ ∈ {∧,∨,⊃}). The material of

this section is based on [Avron, 2007a]. Throughout it, we fix the language

LC = {¬, ◦,⊃,∧,∨}. Again our basic system will be LK+ (the positive

fragment of classical logic).

6.1 LFIs with Finite Characteristic Nmatrices

DEFINITION 106.

1. Let FCR be the set of all the rules in the table above except the last

one (l). We shall write (i) instead of the combination of (i1) and (i2),

(a) instead of {(a⋄) | ⋄ ∈ {∧,∨,⊃}} and similarly for (o).

2. Let LFIR = NIR∪FCR. We denote by HLFIR the set of Hilbert-

style axioms corresponding to the rules in LFIR.

3. For S ⊆ LFIR let LK+[S] be the extension of LK+ by S.

The basic idea in providing semantics for LK+[S] (where S ⊆ LFIR) is

this time to let the value assigned to a sentence ϕ provide information not

only about the truth/falsity of ϕ and ¬ϕ, but also about the truth/falsity
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of ◦ϕ. This leads to the use of elements from {0, 1}3 as our truth-values,

where the intended intuitive meaning of v(ϕ) = 〈x, y, z〉 is now:

• x = 1 iff ϕ is “true” (i.e. v(ϕ) ∈ D ).

• y = 1 iff ¬ϕ is “true” (i.e. v(¬ϕ) ∈ D).

• z = 1 iff ◦ϕ is “true” (i.e. v(◦ϕ) ∈ D).

In addition to (NEG), which remains unchanged, this interpretation dictates

also the following condition:

(CON) ◦̃a ⊆ {y | P1(y) = P3(a)}

Accordingly, this time we start our semantic investigation of LFIR with

the weakest Nmatrix which satisfies both (NEG) and (CON). Then we show

that every logic which is defined by some subset of LFIR is characterized

by some (easily computable) simple refinement of that Nmatrix.

DEFINITION 107. The Nmatrix MB
8 = 〈V8,D8,O8〉 is defined as follows:

• V8 = {0, 1}3

• D8 = {a ∈ V8 | P1(a) = 1}

• Let V = V8, D = D8, F = V8 −D. The operations in O8 are:

¬̃a =

{
D if P2(a) = 1

F if P2(a) = 0

◦̃a =

{
D if P3(a) = 1

F if P3(a) = 0

a∨̃b =

{
D if either a ∈ D or b ∈ D,

F if a, b ∈ F

a⊃̃b =

{
D if either a ∈ F or b ∈ D

F if a ∈ D and b ∈ F

a∧̃b =

{
F if either a ∈ F or b ∈ F

D otherwise

THEOREM 108. ([Avron, 2007a]) MB
8 is a (dynamically) characteristic

Nmatrix for LK+.

DEFINITION 109.
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1. The general refining conditions induced by the conditions in NIR are

identical to those given in Definition 82.

2. The general refining conditions induced by the conditions in FCR are:

C(b): If P1(a) = 1 and P2(a) = 1 then P3(a) = 0

C(k1): If P1(a) = 0 then P3(a) = 1

C(k2): If P2(a) = 0 then P3(a) = 1

C(i1): If P1(a) = 0 then ◦̃a ⊆ {x | P2(x) = 0}

C(i2): If P2(a) = 0 then ◦̃a ⊆ {x | P2(x) = 0}

C(a¬): If P3(a) = 1 then ¬̃a ⊆ {x | P3(x) = 1}

C(a⋄): If P3(a) = 1 and P3(b) = 1 then a⋄̃b ⊆ {x | P3(x) = 1}

C(o1
⋄): If P3(a) = 1 then a⋄̃b ⊆ {x | P3(x) = 1}

C(o2
⋄): If P3(b) = 1 then a⋄̃b ⊆ {x | P3(x) = 1}

3. For S ⊆ LFIR, let C(S) = {Cr | r ∈ S}, and let MS be the weakest

simple refinement of MB
8 in which the conditions in C(S) are all

satisfied (again it is not difficult to check that this is well-defined for

every S ⊆ LFIR).

THEOREM 110. MS (S ⊆ LFIR) is a characteristic Nmatrix for LK+[S].

COROLLARY 111. LK+[S] is decidable for every S ⊆ LFIR.

EXAMPLE 112.

1. Let B = LK+[{(⇒ ¬), (b)}]. This logic is the basic logic of formal

inconsistency from [Carnielli and Marcos, 2002; Carnielli et. al., 2007]

(where it is called mbC). By Theorem 110, the following Nmatrix

MB
5 = 〈V5,D5,O5〉 is characteristic for it:

• V5 = {t, tI , I, fI , f} where:

t = 〈1, 0, 1〉

tI = 〈1, 0, 0〉

I = 〈1, 1, 0〉

f = 〈0, 1, 1〉

fI = 〈0, 1, 0〉

• D5 = {t, I, tI} (= {〈x, y, z〉 ∈ V5 | x = 1}).
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• Let D = D5, F = V5 −D. The operations in O5 are defined by:

¬̃a =

{
D if a ∈ {I, f, fI}

F if a ∈ {t, tI}

◦̃a =

{
D if a ∈ {t, f}

F if a ∈ {I, tI , fI}

The rest of the operations are defined like in Definition 107.

2. Let S = {(⇒ ¬), (b), (⇒ ¬ ⊃), (i1), (a¬)}. Then MS = 〈VS ,DS ,OS〉,

where:

• VS = {t, tI , I, f}

• DS = {t, I, tI}

• a⊃̃b =





DS if either a = f or b ∈ {t, tI}

{I} if a ∈ DS and b = I

{f} if a ∈ DS and b = f

• ¬̃t = ¬̃tI = {f} ¬̃I = DS ¬̃f = {t}

• ◦̃t = DS ◦̃tI = ◦̃I = {f} ◦̃f = {t, tI}

3. Let Cia = {(⇒ ¬), (b), (¬¬ ⇒), (i), (a)}. MCia = 〈VCia,DCia,OCia〉,

where:

• VCia = {t, I, f}

• DCia = {t, I}

• a⊃̃b =





{f} if a ∈ {t, I} and b = f

{t} if either a = f, b ∈ {f, t} or a = t, b = t

{t, I} otherwise

• a∨̃b =





{f} if a = f and b = f

{t} if either a = t, b ∈ {f, t} or b = t, a ∈ {f, t}

{t, I} otherwise

• a∧̃b =





{f} if a = f or b = f

{t} if a = t and b = t

{t, I} otherwise

• ¬̃t = {f} ¬̃I = {I} ¬̃f = {t}

• ◦̃t = ◦̃f = {t} ◦̃I = {f}
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6.2 LFIs with Infinite Characteristic Nmatrices

The family of LFIs for which we provided semantics in the previous subsec-

tion does not include the well-known da Costa’s original logic C1 from ([da

Costa, 1974]). Now C1 is just the ◦-free fragment of Cila, the logic which

is obtained by adding the rule (l) from Figure 4 to the system Cia from

Example 112. This rule is problematic, because of the following theorem:

THEOREM 113. No system between Bl and Bl[(⇒ ¬¬), (¬¬ ⇒), (i), (o)]

has a finite characteristic Nmatrix (and so none of them has a finite char-

acteristic ordinary matrix). 20

It follows that the method used in the previous subsection cannot work

for logics like Cila. As a reasonable useful substitute, in this subsection we

present infinite (but still effective) characteristic Nmatrices for a family of

such systems (which includes Cila). Then we show that these Nmatrices can

still be used to provide decision procedures for the logics they characterize.

As usual, we start with the basic LFI which includes (l), and find first a

characteristic Nmatrix for it.

DEFINITION 114. The system Bl is obtained from the basic system B

(from Example 112) by adding (l) as an axiom.

Now the validity of (l) in an Nmatrix means that whenever ◦ϕ is “false”,

so is ¬(ϕ ∧ ¬ϕ). Accordingly, Nmatrices appropriate for Bl should be able

to distinguish between conjunctions of an “inconsistent” formula with its

negation from other types of conjunctions. Therefore such Nmatrices should

enforce an intimate connection between the truth-value of an “inconsistent”

formula and the truth-value of its negation. This in turn requires a supply

of infinitely many truth-values, corresponding to the potentially infinite

number of “inconsistent” formulas. But from where will we take these truth-

values, and how should we define the operations on them? A key observation

in our path to solve these problems is that (k1) and (k2) are theorems of Bl.

Hence Bl extends B[{(b), (⇒ ¬), (k1), (k2)}]. Accordingly, the Nmatrices

which we will use for characterizing Bl and its extensions will be refinements

(see Definition 30) of M{(b),(⇒¬),(k1),(k2)}. The latter is an Nmatrix with

three truth-values: those that were denoted above by t, f , and I. Now one

of the most productive method of refining a given Nmatrix M (which is

20It easily follows from this theorem that C1 has no finite characteristic Nmatrix. Now

it has been known before that C1 and some other LFIs have no characteristic ordinary

matrices (see e.g. [Carnielli and Marcos, 2002; Carnielli et. al., 2007]). However, the

result of Theorem 113 is much stronger.
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not available in the framework of ordinary matrices!) is to first duplicate its

elements: we can construct an Nmatrix M′ which is completely equivalent

to M by replacing each element a by a nonempty set of “copies”, and then

defining the operations in M′ to be “the same” as in the original M, but

without distinguishing between two copies of the same element of M. In

other words: if b′, a′1, . . . , a
′
n are copies in M′ of b, a1 . . . , an (respectively),

then b′ ∈ ⋄̃(a′1 . . . , a
′
n) in M′ iff b ∈ ⋄̃(a1 . . . , an) in M. 21 What we shall

do in order to construct an Nmatrix for Bl is first to duplicate the elements

of M{(b),(⇒¬),(k1),(k2)} (actually only t and I) infinitely many times. Then

we shall refine the resulting Nmatrix in the way hinted above so that axiom

(l) becomes valid.

DEFINITION 115. Let T = {tji | i ≥ 0, j ≥ 0}, I = {Iji | i ≥ 0, j ≥ 0},

F = {f}. The Nmatrix MBl = 〈V,D,O〉 is defined as follows:

1. V = T ∪ I ∪ F and D = T ∪ I.

2. O is defined by:

a∨̃b =

{
D if either a ∈ D or b ∈ D

F if a, b ∈ F

a⊃̃b =

{
D if either a ∈ F or b ∈ D

F if a ∈ D and b ∈ F

a∧̃b =





F if either a ∈ F or b ∈ F

T if a = Iji and b ∈ {Ij+1
i , tj+1

i }

D otherwise

¬̃a =





F if a ∈ T

D if a ∈ F

{Ij+1
i , tj+1

i } if a = Iji

◦̃a =

{
D if a ∈ F ∪ T

F if a ∈ I

THEOREM 116. MBl is a characteristic Nmatrix for Bl.

Now we turn to the extensions of Bl with axioms.

DEFINITION 117.

21Actually, we have already implicitly used this method above several times. Thus

from the point of view of the positive classical connectives, MB
8 is just a duplication of

the classical two-valued matrix: all elements of D are copies of “true”, all elements of F

are copies of “false”.
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1. Let LFIRl = LFIR− {(⇒ ¬), (¬ ⇒), (b), (k1), (k2)}.

2. For S ⊆ LFIRl, the system Bl[S] is obtained from Bl by adding the

schemata in S.

Like in the previous subsection, each of the schemata in LFIRl corre-

sponds to some easily computed semantic condition, this time on simple

refinements of the basic Nmatrix MBl. These conditions are in fact iden-

tical to the conditions that correspond to these axioms in refinements of

M{(b),(⇒¬),(k1),(k2)}, but with t replaced by T , and I replaced by I.

DEFINITION 118. For S ⊆ LFIRl, MBl[S] is the weakest simple refine-

ment of MBl which satisfies the following conditions:

1. If (¬¬ ⇒) ∈ S then a ∈ F ⇒ ¬̃(a) ⊆ T

2. If (⇒ ¬¬) ∈ S then a ∈ I ⇒ ¬̃(a) ⊆ I

3. If (i1) ∈ S then a ∈ T ⇒ ◦̃(a) ⊆ T

4. If (i1) ∈ S then a ∈ F ⇒ ◦̃(a) ⊆ T

5. If (a¬) ∈ S then a ∈ I ⇒ ◦̃a ⊆ I

6. If (a⋄) ∈ S then a ∈ F ∪ I, b ∈ F ∪ I ⇒ a⋄̃b ⊆ F ∪ I

7. If (o1
⋄) ∈ S then a ∈ F ∪ T ⇒ a⋄̃b ⊆ F ∪ T

8. If (o2
⋄) ∈ S then b ∈ F ∪ T ⇒ a⋄̃b ⊆ F ∪ T

9. If (¬ ⊃⇒)1 ∈ S then a ∈ F ⇒ (a⊃̃b) ⊆ T

10. If (¬ ⊃⇒)2 ∈ S then b ∈ T ⇒ (a⊃̃b) ⊆ T

11. If (⇒ ¬ ⊃) ∈ S then a ∈ D, b ∈ F ∪ I ⇒ a⊃̃b ⊆ F ∪ I

THEOREM 119. For S ⊆ LFIR, MBl[S] is a (dynamically) characteristic

Nmatrix for Bl[S].

COROLLARY 120. For every S ⊆ LFIRl, the logic Bl[S] is decidable.

Proof. The proof of Theorem 119 in [Avron, 2007a] implies that to check

whether a given formula ϕ is provable in L, it suffices to check all legal

partial valuations v in ML which assign to subformulas of ϕ values in

{f} ∪ {tji | 0 ≤ i ≤ n(ϕ), 0 ≤ j ≤ k(ϕ)} ∪ {Iji | 0 ≤ i ≤ n(ϕ), 0 ≤ j ≤ k(ϕ)}
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where n(ϕ) is the number of subformulas of ϕ which do not begin with ¬,

and k(ϕ) is the maximal number of consecutive negation symbols occurring

within ϕ. This is a finite process.

COROLLARY 121. da Costa’s system C1 is decidable, 22 and it has a char-

acteristic Nmatrix MC1
, in which the sets of truth-values and designated

truth-values are like in MBl, and the interpretations of the connectives are

defined as follows:

a⊃̃b =





F a ∈ D, b ∈ F

T a ∈ F , b 6∈ I

T b ∈ T , a 6∈ I

D otherwise

a∧̃b =





F a ∈ F or b ∈ F

T a ∈ T , b ∈ T

T a = Iji , b ∈ {Ij+1
i , tj+1

i }

D otherwise

¬̃a =





F a ∈ T

T a ∈ F

{Ij+1
i , tj+1

i } a = Iji

a∨̃b =





F a ∈ F , b ∈ F

T a ∈ T , b 6∈ I

T b ∈ T , a 6∈ I

D otherwise

PART II: THE FIRST-ORDER CASE AND BEYOND

In the first part we have described the semantic framework of Nmatrices

on the propositional level and presented a number of applications of this

framework. However, no semantic framework can be considered really use-

ful unless it can be naturally extended at least to the first-order level. Ac-

cordingly, this part is devoted to extending the framework of Nmatrices to

languages with quantifiers.

The simplest and most well-known quantifiers are of course the first-order

quantifiers ∀ and ∃ (and we shall devote Section 9 to them). However, we

start by exploring a more general notion of quantifiers. By a (unary) quan-

tifier we mean a logical constant which (may) bind a variable when applied

to a formula. In other words, if Q is a quantifier, x is a variable and ψ is a

formula, then Qxψ is a formula in which all occurrences of x are bound by

Q. It should be noted that this notion can be further generalized to multi-

ary quantifiers, which are logical constants that can be applied to more than

one formula. If Q is an n-ary quantifier, x is a variable and ψ1, ..., ψn are

formulas, then Qx(ψ1, ..., ψn) is a formula in which all occurrences of x are

22The decidability of C1, as well as of most of the systems presented here is not new

(see, e.g. [Carnielli and Marcos, 2002; Carnielli et. al., 2007]).



280 ARNON AVRON AND ANNA ZAMANSKY

bound by Q. In this context the ordinary quantifiers can be thought of as

unary quantifiers, while the bounded universal and existential quantifiers ∀

and ∃ used in syllogistic reasoning are examples of binary quantifiers23.

7 MANY-VALUED MATRICES WITH QUANTIFERS

We start with ordinary (unary) quantifiers and their treatment in the frame-

work of standard many-valued matrices. In what follows, L is a language,

which includes a set of propositional connectives, a set of quantifiers, a

countable set of variables, and a signature, consisting of a non-empty set of

predicate symbols, a set of function symbols, and a set of constants. FrmL

is the set of (standardly defined) wffs of L, and Frmcl
L is its set of closed

wffs. TrmL is the set of terms of L, and Trmcl
L is its set of closed terms. In

ordinary (deterministic) many-valued matrices (unary) quantifiers are stan-

dardly interpreted using the notion of distributions. This notion is due to

Mostowski ([Mostowski, 1961]; the term ‘distribution’ was later coined in
[Carnielli, 1987].

DEFINITION 122. Given a set of truth values V, a distribution of a quan-

tifier Q is a function λQ : (2V \ {∅}) → V.

The following is a standard definition (see, e.g. [Urquhart, 2001]) of a

deterministic matrix with distribution quantifiers:

DEFINITION 123. A matrix for L is a tuple P = 〈V,D,O〉, where:

• V is a non-empty set of truth-values,

• D is a non-empty proper set of V,

• O includes a function ⋄̃ : Vn → V for every n-ary connective of L, and

a function Q̃ : 2V \ {∅} → V for every quantifier of L.

EXAMPLE 124. Consider the matrix P = 〈{t, f}, {t},O〉 for a first-order

language L, where O contains the following (standard) interpretations of ∀

and ∃:
H ∀̃(H) ∃̃(H)

{t} t t

{t, f} f t

{f} f f

23The respective meanings of ∀x(ψ1, ψ2) and ∃x(ψ1, ψ2) are ∀x(ψ1 → ψ2) and

∃x(ψ1 ∧ ψ2).
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The notion of a structure is defined standardly:

DEFINITION 125. Let P = 〈V,D,O〉 be a matrix for L. An L-structure

S for P is a pair 〈D, I〉 where D is a (non-empty) domain and I is an

interpretation of constants, predicate symbols and function symbols of L,

which satisfies:

• For every constant c of L: I(c) ∈ D.

• For every n-ary predicate symbol p of L: I(p) ∈ Dn → V.

• For every n-ary function symbol f of L: I(f) ∈ Dn → D.

There are two main approaches to interpreting quantified formulas: the

objectual (referential) approach, which uses assignments, and the substitu-

tional approach ([Leblanc, 2001]), which is based on substitutions. Below

we shortly review these two approaches. In the better known objectual ap-

proach (used in most standard textbooks on classical first-order logic, like
[Mendelson, 1964; Enderton, 1972; van Dalen, 1980]), a variable is thought

of as ranging over a set of objects from the domain, and assignments map

variables to elements of the domain. In the context of many-valued deter-

ministic matrices this is usually formalized as follows (see e.g. [Urquhart,

2001; Hähnle, 1999]).

DEFINITION 126. Given an L-structure S = 〈D, I〉, an assignment G in S

is any function mapping the variables of L to D. For any a ∈ D we denote

by G[x := a] the assignment which is similar to G, except that it assigns a

to x. G is extended to L-terms as follows: G(c) = I(c) for every constant

c of L and G(f(t1, ..., tn)) = I(f)(G(t1), ..., G(tn)) for every n-ary function

symbol f of L and t1, ..., tn ∈ TrmL.

DEFINITION 127. Let S be an L-structure for a matrix P and let G be

an assignment in S. The valuation vS,G : FrmL → V is defined as follows:

• vS,G(p(t1, ..., tn)) = I(p)(G(t1), ..., G(tn)).

• vS,G(⋄(ψ1, ..., ψn)) = ⋄̃(vS,G(ψ1), ..., vS,G(ψn)).

• vS,G(Qxψ) = Q̃({vS,G[x:=a](ψ) | a ∈ D}).

In the alternative substitutional approach to quantification (used e.g.

for first-order classical logic in [Shoenfield, 1967]) a variable is thought of

as ranging over syntactical (closed) terms rather than over elements of the
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domain. Accordingly, the key notion in this approach is that of a substitution

instance (rather than an assignment):

DEFINITION 128. For any formula ψ, a substitution L-instance of ψ is a

formula ψ{t1/x1, ..., tn/xn}, where for all 1 ≤ i ≤ n, ti is an L-term free for

xi in ψ. A substitution L-instance of Γ is a set {ψ{t1/x1, ..., tn/xn} | ψ ∈ Γ}

for some t1, ..., tn ∈ TrmL which are free for x1, ..., xn (respectively) in all

the formulas of Γ.

The main idea of the substitutional approach is that a formula is inter-

preted in terms of its substitution instances. Thus a formula ∀ψx (∃xψ) is

true if and only if each (at least one) of the closed substitution instances of

ψ is true. To apply this approach, we need to assume that every element of

the domain has a closed term referring to it. This condition can be satisfied

by extending the language with individual constants:

DEFINITION 129. For an L-structure S = 〈D, I〉 for P, L(D) is the

language obtained from L by adding to it the set of individual constants

{a | a ∈ D}. The L(D)-structure which is induced by S is 〈D, I ′〉, where I ′

is the unique extension of I to L(D) such that I ′(a) = a.

Henceforth we shall identify an L-structure S with the L(D)-structure

which is induced by S.

Here is the substitutional counterpart of the notion of a valuation given

in Definition 127:

DEFINITION 130. Let S = 〈D, I〉 be an L-structure for a matrix P =

〈V,D,O〉. The valuation vS : Frmcl
L(D) → V is defined as follows:

• vS(p(t1, ..., tn)) = I(p)(I(t1), ..., I(tn))

• vS(⋄(ψ1, ..., ψn)) = ⋄̃(v(ψ1), ..., v(ψn))

• vS(Qxψ) = Q̃({vS(ψ{a/x}) | a ∈ D})

For reasons that will become clear in the sequel, in what follows we shall

use the substitutional approach to define the consequence relations we are

interested in, and not the objectual one.

DEFINITION 131. Let S = 〈D, I〉 be an L-structure for a matrix P =

〈V,D,O〉.

• The valuation vS satisfies a sentence ψ (denoted by vS |= ψ), if

vS(ψ) ∈ D. vS is a model of Γ ⊆ Frmcl
L(D) (denoted by vS |= Γ),

if vS(ψ) ∈ D for every ψ ∈ Γ.
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• vS satisfies a formula ϕ ∈ FrmL, denoted by vS |= ϕ, if for every

closed L(D)-instance ϕ′ of ϕ, (vS(ϕ′) is defined and) vS(ϕ′) ∈ D. vS
satisfies a set of formulas Γ ⊆ FrmL, denoted by vS |= Γ, if for every

closed L(D)-instance Γ′ of Γ, vS |= Γ′.

In analogy to the propositional case (recall Definition 1), a (Taskian)

logic L is a pair 〈L,⊢〉, where L is a language and ⊢ is a structural and

consistent scr (tcr) for L.24 However, unlike in the propositional case, when

variables and quantifiers are involved, there is more than one natural way

of defining consequence relations induced by a given matrix. Two such

relations which are usually associated with first-order logic are the truth and

the validity consequence relations ([Avron, 1991]). Using the substitutional

approach they can be generalized to the context of many-valued matrices

as follows:

DEFINITION 132.

• For sets of L-formulas Γ,∆, we say that Γ ⊢tP ∆ if for every L-

structure S and every closed L(D)-instance Γ′ ∪∆′ of Γ∪∆: vS |= Γ′

implies that vS |= ψ for some ψ ∈ ∆′.

• We say that Γ ⊢vP ∆ if for every L-structure S: vS |= Γ implies that

vS |= ψ for some ψ ∈ ∆.

To demonstrate the difference between the validity and the truth con-

sequence relations, consider a matrix P for a first-order language L with

the standard interpretations of the quantifiers ∀ and ∃ from Example 124.

Then p(x) ⊢vP ∀xp(x), but p(x) 6⊢tP∀xp(x). On the other hand, the classical

deduction theorem holds for ⊢tP , but not for ⊢vP . However, the two conse-

quence relations are identical from the point of view of theoremhood (i.e.,

⊢tP ψ iff ⊢vP ψ). This is a special case of the second part of the following

well-known proposition:

PROPOSITION 133. Let P be a matrix for L.

1. Γ ⊢tP ψ implies Γ ⊢vP ψ.

2. If Γ ⊆ Frmcl
L (i.e, Γ contsists of sentences), then Γ ⊢tP ψ iff Γ ⊢vP ψ.

24The extension of the notion of structurality to languages with quantifiers is not an

immediate matter. We omit the technical details.
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8 NMATRICES WITH QUANTIFIERS

The extension of Nmatrices to languages with quantifiers is a natural gen-

eralization of Definition 123:

DEFINITION 134. An Nmatrix for L is a tuple M = 〈V,D,O〉, where:

• V is a non-empty set of truth-values,

• D is a non-empty proper set of V,

• O includes a function ⋄̃ : Vn → 2V \ {∅} for every n-ary connective of

L, and a function Q̃ : 2V \ {∅} → 2V \ {∅} for every quantifier of L.

EXAMPLE 135. Consider the Nmatrix M = 〈{t, f}, {t},O〉 for a first-order

language L, where O contains the following (non-standard) interpretations

of ∀ and ∃:
H ∀̃(H) ∃̃(H)

{t} {t, f} {t}

{t, f} {f} {t, f}

{f} {f} {f}

L-structures for Nmatrices are defined like in Definition 125. However,

it seems difficult to apply the objectual approach to quantification in the

context of Nmatrices. The reason for this is that unlike the deterministic

case (recall Definition 127), an L-structure S and an assignment G do not

uniquely determine the valuation vS,G in a Nmatrix M. Thus the expression

vS,G[x:=a] (used in Definition 127) is not well-defined. The substitutional

approach, in contrast, is suitable for the non-deterministic context.

DEFINITION 136. Let S = 〈D, I〉 be an L-structure.

1. A set of sentences W ⊆ Frmcl
L(D) is closed under subsentences with

respect to S if (i) for every n-ary connective ⋄ of L: ψ1, ..., ψn ∈ W

whenever ⋄(ψ1, ..., ψn) ∈ W , and (ii) for every quantifier Q of L and

every a ∈ D: if Qxψ ∈W , then ψ{a/x} ∈W .

2. Let W ⊆ Frmcl
L(D) be some set of sentences closed under subsentences

with respect to S. We say that a partial S-valuation v : W → V is

semi-legal in M if it satisfies the following conditions:

• v(p(t1, ..., tn)) = I(p)(I(t1), ..., I(tn))

• v(⋄(ψ1, ..., ψn)) ∈ ⋄̃M(v(ψ1), ..., v(ψn))
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• v(Qxψ) ∈ Q̃({v(ψ{a/x}) | a ∈ D})

A partial S-valuation v in M is a (full) S-valuation if its domain is

Frmcl
L(D).

It is easy to see that the above notion of a valuation is now well-defined. This

is due to the fact that the truth-value v(Qxψ) depends on the truth-values

assigned by v itself to the subsentences of Qxψ (unlike in our previous

attempt using objectual quantification, where vS,G[x:=a] was used in the

definition of vS,G).

REMARK 137. It is important to stress the difference between our use of

notation in the above definition and the one used in Definition 130. Given a

(deterministic) matrix P and an L-structure S, the valuation vS is uniquely

determined by S and P . However, this is not the case for non-deterministic

valuations in an Nmatrix M (although S does determine the truth-values

of the atomic sentences), and so we write “an S-valuation v” (compare to

“the valuation vS”).

DEFINITION 138. Let S = 〈D, I〉 be an L-structure for an Nmatrix M =

〈V,D,O〉. Let W ⊆ Frmcl
L(D) be some set of sentences closed under sub-

sentences with respect to S, and let v : W → V be a partial S-valuation.

• v satisfies a sentence ψ ∈ W (denoted by v |= ψ), if v(ψ) ∈ D. v is a

model of Γ ⊆W (denoted by v |= Γ), if v(ψ) ∈ D for every ψ ∈ Γ.

• v satisfies a formula ϕ ∈ FrmL (denoted by v |= ϕ), if for every closed

L(D)-instance ϕ′ of ϕ, (v(ϕ′) is defined and) v(ϕ′) ∈ D. v is a model

of Γ ⊆ FrmL (denoted by v |= Γ), if for every closed L(D)-instance

Γ′ of Γ, v |= Γ′.

The following analycity property is analogous to that given in Proposition

27 for the propositional case:

PROPOSITION 139. Let M be an Nmatrix for L and S an L-structure for

M. Any partial S-valuation v, which is semi-legal in M can be extended to

a full S-valuation, which is semi-legal in M.

At this point we note two important problems concerning the above naive

semantics, which do not arise on the propositional level. The first problem

is related to the principle of α-equivalence, capturing the idea that the

names of bound variables are immaterial. It is of course quite reasonable

to expect that in any useful semantics two α-equivalent sentences are al-

ways assigned the same truth-value. However, this is not necessarily the
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case for valuations in Nmatrices as defined above. As an example, con-

sider a language La with the unary connective ¬ and the quantifier ∀. Let

Ma = 〈{t, f}, {t},O〉 be the Nmatrix for La with the standard (determinis-

tic) interpretation of ∀ and the non-deterministic interpretation of ¬ given

in Example 21. Let Sa = 〈{a}, Ia〉 be the simple La-structure, such that

Ia(ca) = a and Ia(p)(a) = t. Clearly, there is a Ma-semi-legal Sa-valuation

v, such that v(¬∀xp(x)) = t and v(¬∀yp(y)) = f. Hence two α-equivalent

formulas are not necessarily assigned the same truth-value by a Ma-semi-

legal Sa-valuation!25 The second problem is related to the nature of identity

and becomes really crucial if equality is added to the language. Suppose we

have two terms, denoting the same object. It is again reasonable to expect

that we should be able to use these terms interchangeably, or substitute one

term for another in any context. Returning to our example, suppose we

add another constant da to the language La and extend the structure Sa
to interpret it: I(da) = a. Thus the constants da and ca refer to the same

element a, but there is a Ma-legal valuation v, such that v(¬p(ca)) = t and

v(¬p(da)) = f.

These problems are directly related to introducing a new level of freedom

by the non-deterministic choice of truth-values for quantified formulas. In

view of these issues, further limitations need to be imposed on this choice.

This can be done by introducing the following congruence relation, captur-

ing these principles.

DEFINITION 140. Let S = 〈D, I〉 be an L-structure for an Nmatrix M.

The relation ∼S between terms of L(D) is defined as follows:

• x ∼S x for every variable x of L.

• If t, t′ ∈ Trmcl
L(D) and I[t] = I[t′], then t ∼S t′.

• If t1 ∼S t′1, ..., tn ∼S t′n, then f(t1, ..., tn) ∼S f(t′1, ..., t
′
n).

The relation ∼S between formulas of L(D) is defined as follows:

• If t1 ∼S t′1, t2 ∼S t′2, ..., tn ∼S t′n, then p(t1, ..., tn) ∼S p(t′1, ..., t
′
n).

• If ψi ∼S ϕi for all 1 ≤ i ≤ n, then ⋄(ψ1, ..., ψn) ∼S ⋄(ϕ1, ..., ϕn) for

every n-ary connective ⋄ of L.

• If ψ{z/x} ∼S ϕ{z/y}, where x, y are distinct variables and z is a new

variable, then Qxψ ∼S Qyϕ for every quantifier Q of L.

25Of course, two different occurrences of the same formula are still assigned the same

truth-value, since a valuation is a mapping from formulas to truth-values.
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The following lemma is easy to prove:

LEMMA 141. Let S be an L-structure, and let t1, t2 be closed terms of L(D)

such that t1 ∼S t2. Let ψ1, ψ2 be L(D)-formulas such that ψ1 ∼S ψ2. Then

ψ1{t/x} ∼S ψ2{t2/x}.

Using the above congruence relation, we can now modify Definition 136

as follows:

DEFINITION 142. Let S be an L-structure and M an Nmatrix for L. Let

W ⊆ Frmcl
L(D) be some set of sentences closed under subsentences with

respect to S. A partial S-valuation v : W → V is ∼S-legal in M if it is

semi-legal in M and for every ψ,ϕ ∈W : ψ ∼S ϕ implies v(ψ) = v(ϕ).

Now we come to the definition of consequence relations induced by Nma-

trices, analogous to Definition 132:

DEFINITION 143.

• For sets of L-formulas Γ,∆, we say that Γ ⊢tM ∆ if for every L-

structure S, every S-valuation v which is ∼S-legal in M, and every

closed L(D)-instance Γ′ ∪∆′ of Γ∪∆: v |= Γ′ implies v |= ψ for some

ψ ∈ ∆′.

• We say that Γ ⊢vM ∆ if for every L-structure S and S-valuation v

which is ∼S-legal in M: v |= Γ implies v |= ψ for some ψ ∈ ∆.

The following extension of Proposition 133 to the context of Nmatrices

can be easily proved:

PROPOSITION 144. Let M be an Nmatrix for L.

1. Γ ⊢tM ψ implies Γ ⊢vM ψ.

2. If Γ ⊆ Frmcl
L (i.e, Γ contains only closed formulas), then Γ ⊢tM ψ iff

Γ ⊢vM ψ.

As for analycity, the following analogue of Proposition 139 can be proved

(the presence of the ∼S-relation makes its proof less trivial):

PROPOSITION 145. Let M be an Nmatrix for L and S an L-structure.

Then any partial S-valuation which is ∼S-legal in M can be extended to a

full S-valuation which is ∼S-legal in M.

We end this section by generalizing the notions of reduction and refine-

ment from Definition 30 to languages with quantifiers:
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DEFINITION 146. Let M1 = 〈V1,D1,O1〉 and M2 = 〈V2,D2,O2〉 be two

Nmatrices for L.

1. A reduction of M1 to M2 is a function F : V1 → V2, such that:

• For every x ∈ V1, x ∈ D1 iff F (x) ∈ D2.

• F (y) ∈ ⋄̃M2
(F (x1), ..., F (xn)) for every n-ary connective ⋄ of L

and every x1, ..., xn, y ∈ V1, such that y ∈ ⋄̃M1
(x1, ..., xn).

• F (y) ∈ Q̃M2
({F (z) | z ∈ H}) for every quantifier Q of L, every

y ∈ V1 and H ∈ 2V1 \ {∅}, such that y ∈ Q̃M1
(H).

2. M1 is a refinement of M2 if there exists a reduction of M1 to M2.

THEOREM 147. Let M1 be a refinement of M2. Then ⊢tM2
⊆ ⊢tM1

and

⊢vM2
⊆ ⊢vM1

.

REMARK 148. Again an important case in which M1 = 〈V1,D1,O1〉 is a

refinement of M2 = 〈V2,D2,O2〉 is when V1 ⊆ V2, D1 = D2 ∩V1, ⋄̃M1
(~x) ⊆

⋄̃M2
(~x) for every n-ary connective ⋄ of L and every ~x ∈ Vn1 , and Q̃M1

(H) ⊆

Q̃M2
(H) for every quantifier Q of L and every H ∈ 2V1 \ {∅}. It is easy

to see that the identity function on V1 is in this case a reduction of M1 to

M2. We will refer to this kind of refinement as simple.

9 THE FIRST-ORDER CASE

Next we focus on the first-order quantifiers ∀ and ∃ with their natural

interpretations. Throughout this section we assume that ∀ and ∃ are in L.

In Example 124 we have seen the standard interpretation of these quantifiers

in the two-valued case. This can be generalized to an arbitrary number of

truth-values as follows:

DEFINITION 149. Let M = 〈V,D,O〉 be an Nmatrix for L. We say that

a quantifier Q is universally interpreted in M if for all H ∈ 2V \ {∅}:

Q̃(H) ⊆

{
D if H ⊆ D

F otherwise

A quantifier Q is existentially interpreted in M if for all H ∈ 2V \ {∅}:

Q̃(H) ⊆

{
D if H ∩ D 6= ∅

F otherwise
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At this point we note a problem, the nature of which is very similar to the

problems of the α-equivalence and identity principles which we handled in

the previous section. Namely, in the context of universally and existentially

interpreted quantifiers, one would expect the equivalence of two formulas,

where one is obtained from the other by deletion or addition of void quan-

tifiers (by a void quantifier we mean the case then a variable is bound

vacuously). For instance, we expect ¬∀xp(c) and ¬p(c) to be equivalent.

This, however, is not always the case, again due to the degree of freedom

introduced by the non-deterministic choice in our semantic framework. For

an example, consider again the Nmatrix Ma = 〈{t, f}, {t},O〉 discussed in

the previous section, where ¬ is interpreted like in Example 21, and ∀ and ∃

have the universal and the existential interpretations in Ma (respectively).

Then there exists an L-structure S and an S-valuation v legal in Ma, such

that v(¬∀xp(c)) = t, but v(¬p(c)) = f.

The solution is similar to the one in the previous section: we extend the

congruence relation ∼S to capture the principle of void quantification:

DEFINITION 150. Let L be a language which includes the quantifiers ∀

and ∃ and let S = 〈D, I〉 be an L-structure. ∼S∀∃ is the minimal congruence

relation between L(D)-formulas, which satisfies: (i) ∼S⊆∼S∀∃, and (ii) If

ψ ∼S∀∃ ψ
′ and x does not occur free in ψ, then Qxψ ∼S∀∃ ψ

′ for Q ∈ {∀,∃}.

The following extension of Lemma 141 is again easy to prove:

LEMMA 151. Let S be an L-structure, and let t1, t2 be closed terms of L(D)

such that t1 ∼S t2. Let ψ1, ψ2 be L(D)-formulas such that ψ1 ∼S∀∃ ψ2. Then

ψ1{t/x} ∼S∀∃ ψ2{t2/x}.

DEFINITION 152. Let S be an L-structure and M an Nmatrix for L. Let

W ⊆ Frmcl
L(D) be some set of sentences closed under subsentences with

respect to S. A partial S-valuation v : W → V is ∼S∀∃-legal in M if it is

semi-legal in M and for every ψ,ϕ ∈W : ψ ∼S∀∃ ϕ implies v(ψ) = v(ϕ).

Using the above definition, we can now modify the notions of truth- and

validity-based consequence relations from Definition 143:

DEFINITION 153. The consequence relations ⊢tM,∀∃ and ⊢vM,∀∃ are defined

like ⊢tM and ⊢vM (respectively), but using ∼S∀∃ rather than ∼S.

PROPOSITION 154. Let M be an Nmatrix for L.

1. Γ ⊢tM,∀∃ ψ implies Γ ⊢vM,∀∃ ψ.

2. If Γ ⊆ Frmcl
L (i.e, Γ contains only closed formulas), then Γ ⊢tM,∀∃ ψ

iff Γ ⊢vM,∀∃ ψ.
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It should be noted that analycity for ∼S∀∃ is not always guaranteed. Con-

sider, for instance, an Nmatrix Mv = 〈{t, f}, {t},O〉 for some first-order

language L, with the following interpretation of ∀: ∀̃[{H}] = {t} for every

H ⊆ P+({t, f}). Let S = 〈{a}, I〉 be an L-structure, such that I(c) = a

and I(p) = ∅. Let W = {p(c)}. Then no partial valuation on W can

be extended to a full M-legal valuation v which respects ∼S∀∃. Next we

characterize those Nmatrices in which this problem does not occur.

DEFINITION 155. Let L include propositional connectives and (at most)

the quantifiers ∀ and ∃. An Nmatrix M for L is {∀,∃}-analytic if every

L-structure S has the property that every partial S-valuation which is ∼S∀∃-

legal in M can be extended to a full S-valuation which is ∼S∀∃-legal in M.

THEOREM 156. Let M = 〈V,D,O〉 be an Nmatrix for a language which

in addition to propositional connectives includes (at most) the quantifiers ∀

and ∃. M is {∀, ∃}-analytic iff for every a ∈ V: a ∈ Q̃[{a}] for Q ∈ {∀, ∃}.

Next we turn to the problem of extending a propositional formal system

having a nondeterministic semantics to the first-order level. We take as an

example HLK+, the Hilbert-type system which corresponds to the basic

Nmatrix MB
4 from Definition 80 (see Remark 79).

DEFINITION 157. QHL0 is obtained by adding to HLK+ the following

standard axioms and inference rules for ∀ and ∃:

∀xψ ⊃ ψ{t/x} ψ{t/x} ⊃ ∃xψ

(ϕ ⊃ θ)

(ϕ ⊃ ∀xθ)

(θ ⊃ ϕ)

(∃xθ ⊃ ϕ)

where t is any term free for x in ψ, and x does not occur free in ϕ.

Unfortunately, QHL0 is not very useful. Due to the absence of axioms

for negation, neither the α-equivalence principle, nor the void quantification

principle, are derivable in it. For instance, 6⊢QHL0
¬∀xp(x) ↔ ¬∀yp(y), and

6⊢QHL0
(¬∀xp(c)) ↔ ¬p(c). To handle this, we follow da Costa’s approach

from [da Costa, 1974]:

DEFINITION 158. ∼dc is the minimal congruence relation between formu-

las, which satisfies for Q ∈ {∀,∃}:

• If ψ{z/x} ∼dc ψ′{z/y}, where z is fresh, then Qxψ ∼dc Qyψ′.

• If ψ ∼dc ψ′ and x does not occur free in ψ, then Qxψ ∼dc ψ′.

DEFINITION 159. Let QHL be the system obtained from QHL0 by adding

the axiom (DC) ψ ⊃ ψ′ whenever ψ ∼dc ψ′.
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DEFINITION 160. Let the Nmatrix QMB
4 be the extension of the Nmatrix

MB
4 (Definition 80) with the following interpretations of ∀ and ∃:

∀̃(H) =

{
D if H ⊆ D

F otherwise

∃̃(H) =

{
D if H ∩ D 6= ∅

F otherwise

PROPOSITION 161. Γ ⊢QHL ψ iff Γ ⊢v
QMB

4
,∀∃

ψ.

The proof is very similar to the proof of Theorem 164 below.

10 AN APPLICATION: NMATRICES FOR FIRST-ORDER LOGICS

OF FORMAL INCONSISTENCY

In this section we further apply the framework of Nmatrices with first-

order quantifiers to provide semantics for first-order LFIs (the propositional

fragments of which were already handled in section 6). For simplicity of

presentation, we formulate these logics in terms of Hilbert-style systems,

rather than in terms of abstract consequence relations. The results of this

section are mainly taken from [Avron and Zamansky, 2007c; Zamansky and

Avron, 2007]. Throughout it, we let LC = {∨,∧,⊃,¬, ◦,∀,∃}.

Our starting point will be the basic paraconsistent system QHB, ob-

tained from QHL (Definition 159) by the addition of the following schemata:

(⇒ ¬) ϕ ∨ ¬ϕ (b) (◦ϕ ∧ ¬ϕ ∧ ϕ) ⊃ ψ

CONVENTION 162. QHB is the obvious first-order extension of the Hilbert-

style axiomatization of the logic B from Example 112. Accordingly, in this

section we shall refer to QHB simply as B.

We obtain a large family of first-order LFIs by extending B with various

combinations of axioms from HLFIR (Definition 106), to which we add

the following quantifier-related versions of the axioms (see, e.g. [Carnielli

et. al., 2000]) (a) and (o) which were considered in section 6: 26

(aQ) ∀x◦ϕ⊃ (◦(Qxϕ)) (oQ) ∃x◦ϕ⊃ (◦(Qxϕ)) (Q ∈ {∀,∃})

26See [Zamansky and Avron, 2006b; Avron and Zamansky, 2007c; Zamansky and

Avron, 2007] for other quantifier-related axioms treated in the context of Nmatrices.
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DEFINITION 163. Let QR = HLFIR ∪ {(a∀), (a∃), (o∀), (o∃)}. For a set

S ⊆ QR, B[S] is the system obtained by adding the axioms in S to B.

Our Nmatrix for B is a straightforward extentension of the Nmatrix MB
5

from Example 112:

THEOREM 164. Let QMB
5 be the extension of MB

5 with the following

interpretations of quantifiers:

∀̃(H) =

{
D if H ⊆ D

F otherwise
∃̃(H) =

{
D if H ∩ D 6= ∅

F otherwise

Then Γ ⊢v
QMB

5 ,∀∃
ψ0 iff Γ ⊢B ψ0.

Proof. The proof of soundness is not hard and is left to the reader. For

completeness, we first note that by definition of the interpretation of ∀ in

QMB
5 , ∀xϕ ⊢QMB

5
ϕ and ϕ ⊢QMB

5
∀xϕ for every formula ϕ and every

variable x. Obviously the same relations hold between ϕ and ∀xϕ also in

B. It follows that we may assume that all formulas in Γ∪{ψ0} are sentences.

It is also easy to see that we may restrict ourselves to sentences in σr, the

signature consisting of all the constants, function, and predicate symbols

occurring in Γ ∪ {ψ0}. Now suppose that Γ6 ⊢B ψ0. We will construct an

σr-structure S and a QMB
5 -legal S-valuation v, such that v |= Γ, but v 6|=ψ0.

Let L′ be the language obtained from σr by adding a countably infinite set of

new constants. It is a standard matter to show (using a usual Henkin-type

construction) that Γ can be extended to a maximal set Γ∗ of sentences in

L′, such that: (i) Γ∗ 6⊢B ψ0, (ii) Γ ⊆ Γ∗, (iii) For every L′-sentence ∃xψ ∈ Γ∗

there is a constant c of L′, such that ψ{c/x} ∈ Γ∗, and (iv) For every

L′-sentence ∀xψ 6∈ Γ∗, there is a constant c of L′, such that ψ{c/x} 6∈ Γ∗.

(The last property follows from property (iii), the deduction theorem for B,

and the fact that for any x 6∈ Fv(ϕ), (∀xψ ⊃ ϕ) ⊃ ∃x(ψ ⊃ ϕ) is provable

in B.) It is now easy to show that Γ∗ has the following properties: (1) If

ψ 6∈ Γ∗, then ψ ⊃ ψ0 ∈ Γ∗, (2) ψ ∨ ϕ ∈ Γ∗ iff either ϕ ∈ Γ∗ or ψ ∈ Γ∗,

(3) ψ ∧ ϕ ∈ Γ∗ iff both ϕ ∈ Γ∗ and ψ ∈ Γ∗, (4) ϕ ⊃ ψ ∈ Γ∗ iff either

ϕ 6∈ Γ∗ or ψ ∈ Γ∗, (5) Either ψ ∈ Γ∗ or ¬ψ ∈ Γ∗, (6) If ψ and ¬ψ are

both in Γ∗, then ◦ψ 6∈ Γ∗, (7) If ψ ∈ Γ∗, then for every L′-sentence ψ′ such

that ψ′ ∼dc ψ: ψ′ ∈ Γ∗, (8) If ∀xθ ∈ Γ∗, then for every closed L′-term t:

θ{t/x} ∈ Γ∗. If ∀xθ 6∈ Γ∗, then there is some closed term tθ of L′, such

that θ{tθ/x} 6∈ Γ∗, (9) If ∃xθ ∈ Γ∗, then there is some closed term tθ of L,

such that θ{tθ/x} ∈ Γ∗. If ∃xθ 6∈ Γ∗, then for every closed term t of L′:
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θ{t/x} 6∈ Γ∗.

The L′-structure S = 〈D, I〉 is defined as follows:

• D is the set of all the closed terms of L′.

• For every constant c of L′: I(c) = c.

• For every t1, ..., tn ∈ D: I(f)(t1, ..., tn) = f(t1, ..., tn).

• For every t1, ..., tn ∈ D: I(p)(t1, ..., tn) = 〈x, y, z〉, where x, y, z ∈

{0, 1} and (i) x = 1 iff p(t1, ..., tn) ∈ Γ∗, (ii) y = 1 iff ¬p(t1, ..., tn) ∈

Γ∗, (iii) z = 1 iff ◦p(t1, ..., tn) ∈ Γ∗.

Given an L′(D)-sentence ψ, let the sentence ψ̃ be obtained by replacing

all individual constants t occurring in ψ by the respective (closed) term t.

Then the following lemma is easy to prove:

LEMMA 165. For any ψ,ϕ ∈ Frmcl
L′(D): if ψ ∼S∀∃ ϕ, then ψ̃ ∼dc ϕ̃.

The refuting S-valuation v : Frmcl
L′(D) → V is defined as follows:

v(ψ) = 〈xψ, yψ, zψ〉

where xψ, yψ, zψ ∈ {0, 1} and: (i) xψ = 1 iff ψ̃ ∈ Γ∗, (ii) yψ = 1 iff ¬̃ψ ∈ Γ∗,

(iii) zψ = 1 iff ◦̃ψ ∈ Γ∗.

Let ψ,ψ′ be two L′(D)-sentences, such that ψ ∼S∀∃ ψ
′. Then by lemma

165, ψ̃ ∼dc ψ̃′, and by property 7 of Γ∗, ψ̃ ∈ Γ∗ iff ψ̃′ ∈ Γ∗. Similarly, since

¬ψ ∼S∀∃ ¬ψ′ and ◦ψ ∼S∀∃ ◦ψ′, ¬ψ̃ = ¬̃ψ ∼dc ¬̃ψ′ = ¬ψ̃′ and ◦̃ψ ∼dc ◦̃ψ′.

Thus ¬̃ψ ∈ Γ∗ iff ¬̃ψ′ ∈ Γ∗ and ◦̃ψ ∈ Γ∗ iff ◦̃ψ′ ∈ Γ∗. Hence v(ψ) = v(ψ′)

and so v respects the ∼S∀∃ relation.

It remains to check that v respects the interpretations of the connectives

and quantifiers in QM5. This is guaranteed by the properties of Γ∗. We

prove this for the case of ∀:

• Let ∀xψ be an L′(D)-sentence, such that {v(ψ{a/x}) | a ∈ D} ⊆ D.

Suppose by contradiction that v(∀xψ) 6∈ D. Then ∀̃xψ = ∀xψ̃ 6∈ Γ∗.

By property 8 of Γ∗, there exists some closed L′-term t, such that

ψ̃{t/x} 6∈ Γ∗. Then v(ψ̃{t/x}) 6∈ D. Since ψ ∼S∀∃ ψ̃, by lemma

151 also ψ{t/x} ∼S∀∃ ψ̃{t/x}. We have already shown that v re-

spects the ∼S∀∃ relation, and so v(ψ{t/x}) 6∈ D. By lemma 151 again,

ψ{t/x} ∼S∀∃ ψ{t/x}, and so v(ψ{t/x}) 6∈ D, in contradiction to our

assumption.
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• Let ∀xψ be an L′(D)-sentence, such that {v(ψ{a/x}) | a ∈ D} ∩

F 6= ∅. Suppose by contradiction that v(∀xψ) 6∈ F . Then ∀xψ̃ ∈

Γ∗. By property 8 of Γ∗, for every closed L′-term t: ψ̃{t/x} ∈ Γ∗.

Then v(ψ̃{t/x}) ∈ D. Similarly to the previous case, we get that

v(ψ{a/x}) ∈ D for every a ∈ D, in contradiction to our assumption.

Now for every L′-sentence ψ: v(ψ) ∈ D iff ψ ∈ Γ∗. So v |= Γ (recall that

Γ ⊆ Γ∗), but v 6|=ψ0. �

Like in the propositional case, the systems obtained by adding some set

of axioms from QR to B can be characterized by the simple refinement of

QMB
5 induced by the conditions corresponding to the axioms from QR:

DEFINITION 166.

1. Let Con = {〈x, y, 1〉 | x, y ∈ {0, 1}}.

• For r ∈ HLFIR, C(r) is defined like in Definition 82 (for NIR)

or Definition 109 (for FCR).

• C(aQ): If H ⊆ Con, then Q̃(H) ⊆ Con

• C(oQ): If H ∩ Con 6= ∅, then Q̃(H) ⊆ Con

2. For S ⊆ QR, C(S) = {Cr | r ∈ S}, and QMS is the weakest simple

refinement of QMB
5 in which the conditions in C(S) are all satisfied.

EXAMPLE 167. Let Si = {(i)}, Sa = Si ∪ {(a)} and So = Si ∪ {(o)}.

The interpretations of ∀ and ∃ are defined in QMSi
, QMSa

and QMSo

(respectively) as follows:27

QMSi
:

H ∀̃[H] ∃̃[H]

{t} {t, I} {t, I}

{f} {f} {f}

{I} {t, I} {t, I}

{t, f} {f} {t, I}

{t, I} {t, I} {t, I}

{f, I} {f} {t, I}

{t, f, I} {f} {t, I}

27Recall that by C(i1) and C(i2) the truth-values tI and fI are deleted and we are left

with only three truth-values: t, f and I.
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QMSo
: QMSa

:

H ∀̃[H] ∃̃[H]

{t} {t} {t}

{f} {f} {f}

{I} {t, I} {t, I}

{t, f} {f} {t}

{t, I} {t} {t}

{f, I} {f} {t}

{t, f, I} {f} {t}

H ∀̃[H] ∃̃[H]

{t} {t} {t}

{f} {f} {f}

{I} {t, I} {t, I}

{t, f} {f} {t}

{t, I} {t, I} {t, I}

{f, I} {f} {t, I}

{t, f, I} {f} {t, I}

THEOREM 168. For S ⊆ QR, Γ ⊢vQMS ,∀∃
ψ iff Γ ⊢B[S] ψ.

And what about systems which include the problematic axiom (l) (see

Figure 4 and Section 6.2)? It suffices to say that they can be handled in

a way which is very similar to the systems discussed so far in this section.

The only difference is that their semantics is based on the Nmatrix MBl

from Definition 115 rather than on MB
5 .

EXAMPLE 169. da Costa’s well-known first-order logic C∗
1 is the ◦-free

fragment of B[{(i), (c), (a)}] (note that the axioms (a∀) and (a∃) are also

included). Let MC∗
1

be the Nmatrix which extends MC1
from Corollary

121 with the following interpretations of quantifiers:

∀̃(H) =





T if H ⊆ T

D if H ⊆ D and H ∩ I 6= ∅

F otherwise

∃̃(H) =





T if H ⊆ T ∪ F and H ∩ T 6= ∅

D if H ∩ I 6= ∅

F otherwise

Then Γ ⊢vQMC∗
1
,∀∃ ψ iff Γ ⊢C∗

1
ψ.

11 CANONICAL DEDUCTION SYSTEMS AND NMATRICES WITH

MORE GENERAL QUANTIFIERS

The main goal of this section is to extend the notion of coherent canonical

calculi from the propositional case to the level of multi-ary quantifiers. After

that we briefly summarize the main related results, omitting the (quite
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complicated) technical details, which can be found in [Avron and Zamansky,

2010].

Henceforth L is a language with multi-ary quantifiers28. In order to

work with signed formulas, we need to extend the semantic notions from

Definitions 35 and 48 to languages with multi-ary quantifiers. This is done

by replacing “M-legal valuation v” by “a structure S and an S-valuation

v which is ∼S-legal in M”, and ⊢dM by ⊢tM. We then have the following

counterpart of Proposition 49:

PROPOSITION 170. Let M = 〈V,D,O〉 be an Nmatrix for L. Then:

Γ ⊢tM ∆ iff {D : ψ | ψ ∈ Γ}∪{F : ψ | ψ ∈ ∆} ⊢tM ∅ iff ⊢tM F : Γ∪D : ∆

In order to represent canonical rules with multi-ary quantifiers, we shall

use a simplified language which abstracts over the internal structure of L-

formulas. For a single canonical rule introducing some n-ary quantifier, this

representation language includes the unary predicate symbols p1, ..., pn and

some finite sets of variables and constants: a constant signifies the case of

a term variable, while a variable signifies an eigenvariable.

DEFINITION 171. For n ≥ 1 and a set of constants Con, QLn(Con) is the

first-order language with n unary predicate symbols p1, ..., pn and the set of

constants Con (QLn(Con) contains no quantifiers or logical connectives).

CONVENTION 172. In case the set Con is clear from context, we will

write QLn instead of QLn(Con).

DEFINITION 173. A signed canonical quantifier rule of arity n over a finite

set of signs V is an expression of the form [Θ/ S : Q], where Q is an n-ary

quantifier, S ⊆ V, and Θ = {Σ1, ...,Σm}, where for all 1 ≤ j ≤ m, Σj is a

clause over QLn (i.e. it consists of signed formulas of the form s : pi(x) or

s : pi(c), where s ∈ V and 1 ≤ i ≤ n).

EXAMPLE 174. Using the notation in Remark 34, applications of the stan-

dard Gentzen-type introduction rules for ∀ have the following forms:

Ω, t : ψ{z/w}

Ω, t : ∀wψ

Ω, f : ψ{t/w}

Ω, f : ∀wψ

28For simplicity of presentation, we assume that the language L does not include any

propositional connectives. The latter can anyway be thought of as multi-ary quantifiers

which bind no variables.
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where z and t are free for w in ψ and z does not occur free in Ω ∪ {∀wψ}.

The canonical representation of these rules will be:

[{{t : p1(x)}}/ {t} : ∀] [{{f : p1(c1)}}/{f} : ∀]

This shows that for instantiating a canonical rule we need a context and

some notion of a mapping from the terms and formulas of QLn to the terms

and formulas of L, which handles with care the choice of terms and variables

of L, so that they satisfy the appropriate conditions.

DEFINITION 175. For a canonical rule R = [Θ/ S : Q] and a sequent

Ω over L, an 〈R,Ω, z〉-mapping is any function χ from the predicate sym-

bols, terms and formulas of QLn to formulas and terms of L, satisfying the

following conditions:

• For every 1 ≤ i ≤ n, χ(pi) is an L-formula.

• χ(y) is a variable of L.

• χ(x) 6= χ(y) for every two variables x 6= y of QLn.

• χ(c) is an L-term, such that χ(x) does not occur in χ(c) for any

variable x occurring in Θ.

• For every 1 ≤ i ≤ n, if pi(t) occurs in Θ, χ(t) is a term free for

z in χ(pi), and if t is a variable, then χ(t) does not occur free in

Ω ∪ {Qz(χ(p1), ..., χ(pn))}.

• χ(pi(t)) = χ(pi){χ(t)/z}.

χ is extended to sequents as follows: χ(Σ) = {a : χ(ψ) | a : ψ ∈ Σ}.

DEFINITION 176. Let Q be an n-ary quantifier. An application of a

canonical quantifier rule R = [{Σ1, ...,Σm}/ S : Q] is any inference step

of the form:
Ω ∪ χ(Σ1) . . . Ω ∪ χ(Σm)

Ω ∪ S : Qx(χ(p1), . . . , χ(pn))

where Ω is a sequent and χ is some 〈R,Ω, x〉-mapping.

EXAMPLE 177. The introduction rules for the bounded universal binary

quantifier ∀ over V = 〈t,⊤, f,⊥〉 can be formulated as follows (taking t

and ⊤ as the designated truth-values, this is a natural generalization of its

classical interpretation):
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[ { {f : p1(x),⊥ : p1(x), t : p2(x),⊤ : p2(x)} } / {t,⊤} : ∀ ]

[ { {t : p1(c1),⊤ : p1(c1)}, {f : p2(c1),⊥ : p2(c1)} } / {f,⊥} : ∀ ]

Their applications have the forms:

Ω ∪ {f : ψ1{y/z},⊥ : ψ1{y/z}, t : ψ2{y/z},⊤ : ψ2{y/z}}

Ω ∪ {t : ∀z(ψ1, ψ2),⊤ : ∀z(ψ1, ψ2)}

Ω ∪ {t : ψ1{t/z},⊤ : ψ1{t/z}} Ω ∪ {f : ψ2{t/z},⊥ : ψ2{t/z}}

Ω ∪ {f : ∀z(ψ1, ψ2),⊥ : ∀z(ψ1, ψ2)}

On the level of quantifiers two new elements are added to canonical cal-

culi: the axiom of α-equivalence and the rule of substitution.

DEFINITION 178. Let V = {l1, ..., ln} be a finite set of signs.

1. A logical axiom29 for V is any sequent {l1 : ψ1, l2 : ψ2..., ln : ψn},

where ψ1 ≡α ψ2... ≡α ψn.

2. The substitution rule for V is defined as follows:

Ω
Ω′ Sub

where Ω′ is obtained from Ω by legal substitutions of terms for free

variables.

The following proposition follows from the completeness of many-valued

resolution ([Baaz et. al., 1995]):

PROPOSITION 179. Let Θ be a set of clauses. The empty sequent can be

derived from Θ using cuts and substitutions iff Θ is not satisfiable.

DEFINITION 180. We say that a signed calculus over V is canonical if it

consists of: (i) All logical axioms for V, (ii) The rules of cut, weakening and

substitution, and (iii) A finite number of signed canonical quantifier rules.

Next we extend the propositional criterion of coherence to canonical cal-

culi with multi-ary quantifiers.

DEFINITION 181. For sets of clauses Θ1, ...,Θm, Rnm(Θ1 ∪ ... ∪ Θm) is a

set Θ′
1 ∪ ... ∪ Θ′

m, such that for all 1 ≤ i ≤ n, Θ′
i is obtained from Θi by

29This is an extension of the α-axiom from [Zamansky and Avron, 2006c]
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renaming the constants and variables which occur in Θi, and no constant

or variable occur in both Θ′
i and Θ′

j in case i 6= j.

DEFINITION 182. A canonical calculus G is coherent if Rnm(Θ1∪ ...∪Θm)

is unsatisfiable whenever [Θ1/ S1 : Q], ..., [Θm/ Sm : Q] is a set of rules of

G, such that S1 ∩ ... ∩ Sm = ∅.

Note that by Proposition 179, the above definition of coherence can be

translated into a purely syntactic one.

PROPOSITION 183. The coherence of a canonical calculus is decidable.

EXAMPLE 184. Consider a canonical calculus over V = {t,⊤, f} with the

following rules for a unary quantifier Q:

R1 = [ { {t,⊤} : p1(x) } / {t,⊤} : Q ]

R2 = [ { {⊤, f} : p1(y) } / {⊤, f} : Q ]

R3 = [ { {t, f} : p1(c1) } / {t, f} : Q ]

Since {t,⊤} ∩ {⊤, f} ∩ {t, f} = ∅, we need to check whether the empty

sequent is derivable (using cuts and substitutions) from the set of premises

of these rules:

{t, f} : p1(c1)

{t,⊤} : p1(x)

{t,⊤} : p1(c1)
Sub

{t} : p1(c1)
Cut

{⊤, f} : p1(y)

{⊤, f} : p1(c1)
Sub

∅
Cut

Thus this calculus is coherent (note that each pair of premises is consistent,

but the three of them together are not).

Below we briefly review the main results related to the connection be-

tween canonical calculi and finite Nmatrices. What follows is an extension

of the results for the propositional case from Sections 4.1 and 4.2.

The notions of standard, analytic and strong cut-elimination from Defi-

nition 46 can be naturally extended to calculi with multi-ary quantifiers.

THEOREM 185. A coherent canonical calculus which admits strong cut-

elimination can be constructed for every finite Nmatrix.

As a corollary, we have the following extension of Theorem 53:

COROLLARY 186. (Compactness) Let Θ be a set of sequents and Ω a

sequent.

1. If Θ ⊢tM Ω, then there is some finite Θ′ ⊆ Θ, such that Θ′ ⊢tM Ω.
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2. Let Γ,∆ be two sets of L-formulas. If Γ ⊢tM ∆, then there are some

finite Γ′ ⊆ Γ and ∆′ ⊆ ∆, such that Γ′ ⊢tM ∆′.

In the converse direction, every coherent calculus has a corresponding fi-

nite Nmatrix. Moreover, there is a direct correspondence30 between analytic

cut-elimination, coherence and finite Nmatrices:

THEOREM 187. Let G be a canonical calculus for a language L and a finite

set of signs V. The following statements concerning G are equivalent:

1. G is coherent.

2. G has a strongly characteristic finite Nmatrix.

3. G admits strong analytic cut-elimination.
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